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Abstr act—Given the anomal ous magnetic moments of electrons and positrons in the one-loop approximation,
we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg—Euler
Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization
of the Lagrangian is real for arbitrary magnetic fields. In aweak field, the calculated L agrangian matches the
standard Heisenberg—Euler formula. In extremely strong fields, the field dependence of the Lagrangian com-
pletely disappears and the Lagrangian tends to a constant determined by the anomal ous magnetic moments of

the particles. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The quantum corrections to the Maxwellian
Lagrangian of a constant electromagnetic field were
first calculated by Heisenberg and Euler [1] in 1936.
Radiative corrections corresponding to polarization of
an electron—positron vacuum by external electromag-
netic fields with diagrams containing different numbers
of electron loops are till the focus of attention [2—4].
Estimates suggest that the quantum (radiative) correc-
tions could reach the Maxwellian energy density of the
electromagnetic field only in exponentially strong elec-
tromagnetic fields! (F. ~ exp(3a)H,) [5]. The calcu-
lations by Heisenberg and Euler are known to contain
no approximations in the intensity of external electro-
magnetic fields, and their results have been repeatedly
confirmed by calculations performed in terms of differ-
ent approaches. On this basis, severa authors have
identified the field intensity F, with the validity bound-
ary of universally accepted QED. However, it is clear
that, although such quantities were greatly overesti-
mated because the corresponding scale lengths are
many orders of magnitude smaller than not only the
scale on which weak interactions manifest themselves,
but also the Planck length, determining the validity
range of traditional QED is currently of fundamental
importance. While on the subject of the physics of
extremely small distances, we cannot but say that there
isastrong ana ogy2 between the phenomena that arise

1 Here, we use a system of units with 7 = ¢ = 1, H, = m?/|e] =

4.41 x 1013 G is the characteristic scale of the electromagnetic
field intensity in QED, e and m are the electron charge and mass,
and o = €? = 1/137 is the fine-structure constant.

2 This analogy was first pointed out by Migdal [6] and Ritus[2].

for large momentum transfers and the processes in
intense electromagnetic fields [2-17]. In fact, the over-
lapping of seemingly distinctly different areas of phys-
icsisnot accidental and is suggested by simple dimen-
sion considerations.

Allowance for the electromagnetic field intensity
based on the exact integrability of the equations of
motion is known to play an important role in studying
the quantum effects of the interaction between charged
particles and the el ectromagnetic field. In particul ar, the
standard Schwinger correction to the Bohr magneton

- &
U'O 2m’
which is called the anomalous magnetic moment of a
particle,

a
Ap = MOE.F[!

manifests itself only in the nonrelativistic limit for
weak quasi-static fields [7]. Indeed, when the influence
of an intense external field is accurately taken into
account, the anomal ous magnetic moment of a particle
calculated in QED as a one-loop radiative correction
decreases with increasing field intensity and increasing
energy of the moving particles from the Schwinger
value to zero. In particular, for magnetic fieldsH ~ H,,
the anomalous magnetic moment of an electron is
described by the asymptotic formula[7, 10]

a H; 2H
Au(H) = Mo InT )

It followsfrom (1) that Ap(H) becomes zero only at one
point while decreasing with increasing field. A similar
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expression for the anomal ous magnetic moment of an
electron in an intense constant crossed field E 00 H
(E=H) a Hp; > mH., where p; is the electron
momentum component perpendicular to E x H, can be
represented as [11]

al (1/3) DBp_DHD—m. @

0 9./3 OmH. O

Note that AU(E) # 0 in the entire range of parameters.

Numerous calculations of the Lagrangian for an
electromagnetic field (see, eg., [1-3, 5-7, 11]) have
been performed by assuming that the magnetic moment
of electronsisexactly equal to the Bohr magneton,3 i.e,
at Ap = 0. However, thefollowing questionis of consid-
erable importance in elucidating the internal closeness
of QED: What effectswill allowance for the anomalous
magnetic moments of electrons and positrons produce
when calculating the polarization of an electron—
positron vacuum by intense electromagnetic fields?

Thus, it isof interest to take the radiative corrections
to the Maxwellian Lagrangian of aconstant field calcu-
lated by the traditional method and compare them with
the results that can be obtained from similar calcula-
tions by taking into account the nonzero anomalous
magnetic moments of particles. The fact that the
Lagrangian replacing the Heisenberg—Euler Lagran-
gian with nonzero anomalous magnetic moments can
be cal culated by retaining the method of exact solutions
of the Dirac equation in arbitrarily intense electromag-
netic fields also deserves serious attention. In the
approach under development, the suggested theoretical
generalization initially contains no constraints on the
electromagnetic field intensity.

It should be noted that nonzero anomal ous magnetic
moments also appear in some of the modified quantum
field theories (QFTs) that al so describe the electromag-
netic interactions. In particular, thisis true for a gener-
alization of the traditional QFT known as the theory
with “fundamental mass’ (see, [12, 13] and references
therein). The starting point of this theory is the condi-
tion that the mass spectrum of elementary particlesis
limited. This condition can be represented as

m< M, 3

where the new universal parameter M is called the fun-
damental mass. Relation (3) is used as an additional
fundamental physical principle that underlies the new
QFT. A significant deviation from traditional calcula-
tions is the fact that the charged leptons in QED with
fundamental mass have magnetic moments that are not
equal to the Bohr magneton. Thisis because, apart from
the traditional “minimal” term, the new Lagrangian of
the electromagnetic interaction includes “ nonminimal”

Ap(E) = p

3 The authors of [4] took into account the anomalous magnetic
moments of particles when analyzing the equilibrium processes
in a degenerate electron—nucleon gas in a strong magnetic field.
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terms. Thus, an electron in modified QED has an anom-
alous magnetic moment from the outset:

O w O
Ap = p—Ho = Ko |1+ —~10. (4)
M? O

An important aspect of the problem under consider-
ation is that the current state of the art in the develop-
ment of laser physics [14] alows one to carry out a
number of optical experiments to directly measure the
contributions from the nonlinear vacuum effects pre-
dicted by various generalizations of Maxwellian elec-
trodynamics [15]. Therefore, it should be emphasized
that experimental verification of the nonlinear vacuum
effects with a high accuracy in the presence of rela-
tively weak electromagnetic fields can also provide
valuable information about the validity of QED predic-
tions at small distances [16, 17]. Note in passing that
precision measurements of various quantities (e.g., the
anomalous magnetic moments of an electron and a
muon) at nonrelativistic energies, together with studies
of the particle interaction at high energies, are of cur-
rent interest in the same sense.

2. CORRECTION TO THE LAGRANGIAN
OF AN ELECTROMAGNETIC FIELD
WITH ALLOWANCE
FOR ANOMALOUS MAGNETIC MOMENTS
OF PARTICLES

Let us consider the correction to the Lagrangian of
an electromagnetic field attributabl e to the polarization
of an electron—positron vacuum in the presence of an
arbitrarily strong constant magnetic field by taking into
account the nonzero anomalous magnetic moments of
the particles. To solve this problem, it is convenient, as
in the standard approach [5], to represent the electron—
positron vacuum as a system of electrons that fill * neg-
ative” energy levels. For a constant uniform magnetic
field, the Dirac—Pauli equation containing the interac-
tion of a charged lepton with the field (including the
anomalous magnetic moment of the particle) has an
exact solution [18]. In this case, the energy eigenvalues
explicitly depend on the spin orientation with respect to
the axis of symmetry specified by the magnetic field
direction. Thus, the energy spectrum of an electron that
moves in an arbitrarily intense constant uniform mag-
netic field is
2

E49H£)=nﬂ%

+OfH
H

where p is the electron momentum component along
theexternal fieldH; n=0, 1, 2, ... isthe quantum num-
ber of the Landau levels; and € = +1 characterizes the
el ectron spin component along the magnetic field.

_ 2-1/2
(1+2n+g)+ 1+ ghbeHIT™

2y, HO

C
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POLARIZATION OF AN ELECTRON-POSITRON VACUUM

Noting that the radiative correction to the classical
density of the Lagrangianisequal, to withinthesign, to
the total energy density of the electron—positron vac-
uum in the presence of an external field [5],

$ =W,

let us calculate WH in a constant magnetic field by tak-
ing into account the anomalous magnetic moment of
the electron. Without dwelling on the details of stan-
dard calculations, we represent WH as

w = —'e—le
(2m)
o . (6)
x J’dp[—sg(p)+ Z [SE(ID)+€;(D)]},
where
+ Jp emBheofine B o

Using the Laplace and Fourier integral transforms
for thefunctionsthat define (6) and performing summa-
tion over Landau levels, we can obtain the following
formulafor £":

| mybl dr] _rl

" e It

< smhb+1j'e OIXcotD 'V” e @

—00

[l
+ FzE{l} %%m

where we use the notation

M 3 b D}

O H 7 _
bi=1+ T b_bl’

1F2(2) isthe generalized hypergeometric function. For-
mula (8) is an exact expression for the Lagrangian with
allowance for the anomal ous magnetic moment calcu-
lated in the one-loop approximation in an arbitrarily
intense magnetic field. An important deviation from the
Heisenberg-Euler Lagrangian is that expression (8)
contains the additional field scale

a; = yzﬂ'
LT2HY H.'

m

Hc = m (9)

In the theory with fundamental mass, it would be natu-
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ral to call the quantity

m?
m2

2
H = Me— =My, (10)

afundamental field.

Passing to the limits of integration over x from zero
to e in (8) and using the evenness of the function ;F,(2),
we obtain

| - myblj-dr] -
(11)
. g dxsin(2yx) cosx + sinxsinhy
><[smhb+ X  cosh(2y) — cos(2yx) iF(2)|,
0

wherey = ny/b; and z = —b¥/64x2.
In particular, it immediately follows from (11) that

Im&' = 0.

The fact that the Lagrangian &' is real for all possible
field intensities suggests the absence of unstable
modes; i.e., the vacuum in a constant uniform magnetic
field in the case under consideration, as in traditional
QED, is stable against the spontaneous production of
electron—positron pairs.

Next, let us separate out the integral over x in
expression (11). After several obvious substitutions, it
reduces to

0

du[ 2a,sinucos(b,u) + (1 - ag) sin(b,w)]

- { u[1 + a5 — 2a,cosu] 12)
x1Fa(zy),
where
4
a2 = e_zyi b2 = l! Zl = b (2y2)
2y 64u
Since the expansions
sinu
1+ a5—2a,cosu
= sinu+a,sin(2u) + a;sin(3u) + ...,
1-a5
—~ = 1+ 2a,C0su + 2a.cos(2u) + ...
1+ a,—2a,cosu

arevalid, we obtain for (12)

.[ [_sin(bzu) + 22 a'§sin[u(k+ b,)]
0

k=0

(13
x 1Fy(zy).
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It is easy to see that the following expansion of the
function ;F,(z,) at zero may be used in a field that is
weak compared to the fundamental field H} :

16 256_»

1Fa(z) = 1+§‘Zl+16j,__)21+ (14)
Hence, we obtain for (13)
_ 1_-[1+a2 _T
=31 a - 2cothy, (15)

wherey =ny.

Substituting (15) into (11) and performing standard
regularization of the derived integral [5] yields

4% 2.2
g =M e—[r]ycoth(ny)—l—u}dr]. (16)
8T[2-£ n’ 3
Thus, it follows from (16) that in the limit of a weak
field, formula (11) matches the Heisenberg—Euler

Lagrangian [1] for an arbitrarily intense constant uni-
form magnetic field.

Next, let us consider H > 4H7 . It is easy to verify
that in the limit of extremely strong fields, H >

16H§2/Hc, we may again use expansion (14) and can
obtain the following expression for integral (13):

n

I=2

cothy, 17)

wherey = 16nNHj; 2/(HCH). Results (15) and (17) have
a smple meaning: for a sufficiently wide energy gap
that separates the electron and positron states, theterms
with large numbers k make the largest contribution to
integral (13). However, for magnetic fields close to the
fundamental field, H ~ 4H} , i.e., when the gap width
is close to zero, the term with k = 0 makes the largest
contribution to the sum in the integrand of (13). In this

case, integral (13) can be calculated exactly. Our calcu-
lations yield

| = gcosh [n (18)

H 1 }
2HE 1+ (HI4H:)2)
The estimates of integral (12) in the three ranges of

magneticfields(H < HY ,H~4HZ ,andH > HY ) can
be represented as a single formula:

| = ]—Tcosh[n H 1 }
2 2HT 1+ (H/4HY)?
oot — Y]
1+ (H/4HY)
Substituting (19) into (11) and regularizing the remain-

(19)
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ing diverging integral 4we obtain

cosh[(1+a)ny/b]
sinh(ny/b;,)

2%
¥ = —%{2}%8 ”[nbly
0 (20)
2
—bi- %—yz(z +6a+ 3a2)},

wherea=HJ/2H} .

3. ASYMPTOTIC RESULTS
In weak fields (H < H) and in the limit of very
strong magnetic fields (H > 16H:§2/Hc), the integrand

in (20) admits an expansion into a series. In the first
approximation,

<)

4. 4
g = MY [8—15a2(2+a)2]Id]ne_”,
0

~ 283012b°
whence it follows that
c__my
288017°h’

Thus, the quantum correction to the Maxwellian
Lagrangian in the limit of aweak field (H < H,) can be
represented as

[8—15a°(2+a)?. (21)

,__m H
H4
3601 H. 22
15 2 15 3 15 4 2. 2.2
X[l—‘ga —Sa-ga+0(yTy a)]

where the first term matches the standard Heisenberg—
Euler formula. The first correction to it attributable to
the anomalous magnetic moments of the particles is
negative and quadratic in a.

In an extremely strong field (H > 16H§2/Hc), we
can aso obtain from (21)
4

$ = —__(8—60a"—60a’—15a")
18017a
o (23)
0
X & ——
%L yzaﬂ

4 First, as usual [5], the part of theintegral that does not contain the
magnetic field intensity and that represents the energy of the free
vacuum electrons should be discarded. Second, it is necessary to
subtract the contribution proportional to H2 that has aready been
included in the unperturbed field energy. Discarding this term is
related to renormalizing the field intensity and, hence, the charge.
Finally, subtracting a contribution on the order of H¥/H** basi-
cally corresponds to renormalizing an additional parameter of the
theory—the anomal ous magnetic moment of the particle.
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POLARIZATION OF AN ELECTRON-POSITRON VACUUM

According to (23), in the limit of extremely strong
fields, the Lagrangian &£' ceases to depend on thefield;
i.e., as the field grows, the quantum correction to the
density of the Lagrangian in the case under consider-
ation asymptotically approaches the constant

2
) a

o = . 24
36017 (Ap)* 9
In acertain sense, the result obtained may be com-
pared with the situation observed in the standard model,
where the cross sections for several processes cease to
increase with energy if, apart from a photon, vector W*-
and Z° bosons, an additional diagram with a Higgs
H boson is included in the analysis. Allowance made
for this diagram reduces the increasing termsin ampli-
tude and leads to a behavior of the cross sections con-
sistent with the unitary limit. Since the standard model
does not predict the mass of the H-boson, it may well
bethat this particleis much heavier than thet quark, the
heaviest known elementary particle. Thus, M, ~ 1 TeV
may prove to be the critical mass that limits the mass
spectrum of elementary particles, i.e., acting asthe fun-
damental mass (see (3)).°

By comparing the correction &' with the Lagrangian
of the Maxwellian field, we can determine the field

intensity
*2
F* = [256a H
¢ 4510 H.'’

at which &, becomes equal to (24). For H = F} , the
quantum correction &' does not yet reach its asymp-
totic value of £.,. A comparison of £, and &' in other
field ranges clearly shows that the corrections &' are
always small compared to the Lagrangian &£,,. The rel-
ative corrections &'/mt* derived from (20) for the anom-
alous magnetic moments of particles Ap,/p, = 1073,
AP,/ = 10739, and Apg/p, = 10731 are plotted against
magnetic field intensity y=H/H. in Fig. 1.

(25

We estimate the Lagrangian for strong magnetic
fields by using formula (20), which we will represent
after the substitution yn/b; — x as

¢ = m4y2J,exp(—blx/y)
0

3
X

8 (26)

cosh[x(1+a)] , X 3.7
x[x—sinh(x) 1 3%L+3a+2am}dx.

5 Note in this connection that the chief goal in the research at the
Large Hadron Collider (LHC) at CERN is the search for Higgs
bosonsin amass range up to 1 TeV.
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Fig. 1. Normalized Lagrangian &'/m* versus magnetic field
intensity y = H/H. for various anomalous magnetic

moments of particles: 1—Ap;/pg = 107 S 2—NApy/pg =
10739, and 3—Aug/ug = 103%

For H, < H < 16H*’/H,, the range 1 < x <

16H’C*2/H§ is important in integral (26). In this case,
the hyperbolic functions may be substituted with expo-
nentials and the integrand in (26) becomes

exp[fi(a,y,x)] exp[fa(a y, X)]

3
X2 X

(27)

exp[ fa(ay, X)] 3.7
— 3x %L +3a+ éa i
where

1
fi(ay,x) = —4—y(2—av)2x,

_ g, a o
faa v, = SH+ZVEx
For Ho < H< 4H! (1 <y<2a),f, ~f,=-xly
and we find from (26) with logarithmic accuracy that

4 2
3
P = D0 433+ Zatiny.
24n2%l 220

(28)

For a — 0, this formula matches the Heisenberg—
Euler Lagrangian in the limit of strong magnetic fields,
H> H_[5].

If 4H} <H < 16H**/H, or 2/a <y < 4/a2, then
f, ~f, = —-ya®/4. The range 1 < x < 4/(a?y) gives the
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Fig. 2. Lagrangian versus magnetic field intensity y = H/H,

with (curve 1) and without (curve 2) an allowance for the
anomalous magnetic moment of an electron.

largest contribution to the integral. In this case, we find
from (26) that

$ = 24n2%+3a+ -a %In——ln

For H > 16H§2/HC, we return to the cases considered

above (see (23)) wheretherange x < 1 givesthe largest
contribution to integral (26).

If ay=2,i.e, for H = 4H , the exponent (f,) in one
of the exponentialsin (27) becomes zero. It is easy to
verify that this term is attributable to the contribution
from the ground energy state €, (see formula (7)) in
which the dependence on particle mass completely
drops out at this field intensity. There is no such state
with a“dropping” mass in the structure of the Heisen-
berg—Euler Lagrangian for afixed field. However, if we
consider the passage to the limit m> — 0, then the
Heisenberg—Euler Lagrangian can simulate such an
effect. It is easy to see that the total contribution of the
ground state is small compared to the contribution of
the last term in (27), which owes its origin to the field
renormalization in expression (11). A similar conclu-
sion can aso be reached by considering integral (16).

The following should be emphasized when com-
menting on the analogy between the limitsnm? —» 0 in
the Heisenberg—Euler Lagrangian (see formula (16))

andH — 4HY in (26). Aswe showed above, for H =
4H7 inthemodified Lagrangian, just asin the Heisen-
berg—Euler Lagrangian for m? = 0, the exponent in the
terms whose contributions are vanishingly small
against the background of the contributions from the
renormalization procedure becomes zero. In other
words, in both cases, the ground states in the structure
of the integrand are equally preferential, but their con-
tribution to the integral is not dominant.

(29)
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Neglecting thefirst and the second termsin (27), we
find from (26) that

3aD 2
F = +3a+ In—
61'[261 %l

This result agrees with formulas (28) and (29) from
which it can be obtained by the substitution y = 2/a.
Thus, these functions are continuously joined at H =

4H? .

Finally, let us estimatethe Lagrangian &£' in terms of
traditional QED, i.e., by taking into account the non-
zero anomalous magnetic moments of particles in
intense electromagnetic fields attributable to radiative
effects. Substituting Ap from (1) into the expression
b, = 1 + (AuH/mM)? yields an estimate of &' (26) in the
limit of extremely strong fields. For a constant mag-
netic field, y > py/Al,

b, Da,In*(2y),
where
a, = a’/16TP.
In this case, the exponent in (26) is

2
fy = ol @),

Y Y

If y> a,In?(2y), then therange 1 < x < y/a,In?(2y)
isimportant in (26). Thus, we can find from (26) that

42
¢ = %[lny—lnaz—zln(lnzy)].

Thefirsttermin (30) isidentical toitsestimatein the
Heisenberg-Euler theory [5]. The relative effective
Lagrangian &'/n* derived from the integral representa-
tion (26) (with a, = 3.4 x 107) is plotted against the
magnetic field intensity in Fig. 2 (curve 1). For com-
parison, the same figure also shows a plot for Au =0
(curve 2).

Note that allowance for the anomalous magnetic
moments of vacuum particles in terms of universally
accepted QED leads to a decrease in the radiative cor-
rection to the field energy density. Recal that we
reached a similar conclusion by considering the static
anomalous magnetic moment that arises, in particular,
in the modified field theory. Thus, irrespective of the
nature of the anomal ous magnetic moment attributable
to the dynamic or static types of interaction, we obtain
consistent results. Our conclusions are also important
in studying the anomalous magnetic moment as the

(30)
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most accurately calculable and measurable (in numer-
0ous precision experiments) characteristic of particles.

4. CONCLUSIONS

Our results can be of considerable importance in
constructing astrophysical models, in particular, in
studying extremely magnetized neutron stars—magne-
tars; interest in the existence of the latter objects has
increased appreciably in recent years (see, e.g., [4] and
referencestherein). According to modelsfor the macro-
scopic magnetization of bodies composed mostly of
neutrons, theintensity of the magnetic fieldsfrozeninto
them increases from the surface to the central regions
and can reach 10%-10'" G [19].

Note also that the radiative effects can be enhanced
by external intense electromagnetic fields not only in
Abelian, but aso in non-Abelian quantum field theo-
ries. For example, alowance for the influence of an
external field on such parameters asthelepton massand
magnetic moment in terms of the standard model leads
to nontrivial results. In this case, apart from the electro-
dynamic contribution, the one-loop mass operator of a
charged lepton also contains the contributions from the
interaction of W*-, Z%-, and H bosons with avacuum. It
iseasy to seethat, in the absence of an external field, the
contribution from weak interactions to the radiative
shift of the lepton mass mis suppressed by a factor of
(Mm/M))? (i = W, Z, H) compared to the electrodynamic
contribution. However, the contributions of weak cur-
rents in the ultrarelativistic limit can dominate in
intense external fields, as was first noted in [20] (see
aso[21]).

In close ana ogy with the quantum correctionsto the
particle masses, the anomal ous magnetic moments of
charged leptons in the standard model are attributable
to the vacuum radiative effects of electromagnetic and
weak interactions and contain the contribution from the
hadron polarization of the vacuum. For example, for the
anomal ous magnetic moment of a muon,

According to recent theoretical estimates made in the
standard model [22], the contributions from electro-
magnetic and weak interactions can be written as

ag™ = 11658470.57(0.29) x 10°°,

a,™ = 15.1(0.4) x 107,

Although the cal culations of the contributions from the
hadron polarization of avacuum to an have a history

that spans almost forty years, aﬂad is currently under-

stood with the largest uncertainty (see, e.g., [23-28]).
One of the most reliable estimates for the contributions
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of the lowest-order hadron polarization of a vacuum
that generalizes the data on hadron t-decay and e*e”
annihilation appears as follows [23, 24]:°

al™ = 692(6) x 10°°.

The theoretical anomalous magnetic moment of a
muon in the standard model takes the form [28]

a," = 11659177(7) x 10~°.

The results of one of the most recent (g — 2) experi-
ments aimed at measuring the anomalous magnetic
moments of positive polarized muons carried out on a
storage ring with superconducting magnets at
Brookhaven National Laboratory (BNL) can be repre-
sented as

a;® = 11659204(7)(5) x 10~ (31)
(Both statistical and systematic errors are included
here.) The data obtained yield the difference

A, = a®-ad = 27x107°,

(32)
which exceeds the total measurement errors and the
uncertainties of the theoretical estimates. According to
the most recent reports from the BNL muon (g —2) col-
laboration [29], the relative value of this excessis 2.6.
A twofold increase in this accuracy is expected in the
immediate future. Clearly, the solution of the muon
(g — 2) problem may lead to the appearance of a new
theory beyond the scope of the standard theory.

Recall in this connection that the anomalous mag-
netic moment of a muon in the modified theory con-
tains a contribution attributable to the new universal
parameter M from the outset. According to (4),

2
m

a,(M) = 3, (33)

where m, isthe muon mass. It is easy to see that a,(M)
isequal in order of magnitudeto (32) at M ~ 1 TeV.
The principal conclusion drawn from a comparison
of the above estimates is that we cannot rule out the
possibility that the observed difference between the
theoretical and experimental values for A, is equal to
a,(M). As was pointed out above, the parameter M in
the new theory may be related to the Higgs boson mass

My In this case, the difference between a’ and a;"
can provide vauable information about a particle

6 See, however, [25], where the contribution of the highest orders
of hadron polarization of a vacuum were calculated, and the
recent papers [26, 27], in which the contribution from the third-

order diagrams to aﬂad attributable to photon—photon scattering
was taken into account.
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whose mass has not been determined in the standard
model. Substituting m, and the anomalous magnetic
moment of a muon into (33), we can easily impose the
following constraints on the H-boson mass:

12TeV <M, <18 TeV.

The standard model with the Higgs boson mass
My = 1 TeV entails several additional features, in par-
ticular, theimpossibility of describing the weak interac-
tionsin the sector of H-, W-, and Z particlesin terms of
perturbation theory [30]. Naturally, the need for con-
structing a new nonperturbative theory arises in this
case. Apart from the condition for the mass spectrum
being limited, m< M, (see (2)), the Higgs mechanisms
of mass formation and compensation for the discrepan-
cies can become integral elements of one of the most
promising versions of the modified theory—the stan-
dard model with fundamental mass.
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Abstract—The €electron structure function method is applied to calculate model-independent QED radiative
corrections to the asymmetry of electron—proton scattering. Representations for both spin-independent and
spin-dependent parts of the cross section are derived. Master formulas include the leading corrections in all
orders and the main contribution of the second order and provide accuracy of the QED corrections at the level
of one per mill. Numerical calculationsillustrate our analytic results for both elastic and deep inelastic events.
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1. INTRODUCTION

Precise polarization measurements in both inclu-
sive [1, 2] and elastic [3, 4] scattering are crucial for
understanding the structure and fundamental properties
of anucleon.

Oneimportant component of the precise data analy-
sis is radiative effects, which always accompany the
processes of electron scattering. Thefirst calculation of
radiative correctionsto polarized deep inelastic scatter-
ing was done by Kukhto and Shumeiko [5], who
applied the covariant method of extraction of the infra-
red divergence [6, 7] to this process. The polarization
states were described by 4-vectors, which were kept in
their general forms during the calculation. This
required a tedious procedure of tensor integration over
photonic phase space and, asaresult, led to avery com-
plicated structure of the final formulas for the radiative
corrections. The next step wastaken in [8], where addi-
tional covariant expansion of polarization 4-vectors
over acertain basis allowed one to simplify the calcul a-
tion and final results. It resulted in producing the For-
tran code POLRAD [9] and Monte Carlo generator
RADGEN [10]. These tools are widely used in all cur-
rent experiments in polarized deep inelastic. Later, the
calculation was applied to collider experiments on deep
inelastic scattering [11, 12]. We also applied this
method to the elastic processesin [13, 14].

However, the method of covariant extraction of the
infrared divergence is essentially restricted by the low-
est-order radiative corrections. All attempts to go
beyond the lowest order lead to very unwieldy formu-
las, which are difficult to cross check, or to a smple

TThis article was submitted by the authorsin English.

leading log approach [15]. The recent developmentsare
reviewed in [16].

The resolution can be found in applying the formal-
ism of electron structure functions (ESFs). Within this
approach, such processes asthe el ectron—positron anni-
hilation into hadrons and the deep inelastic electron—
proton scattering in the one-photon exchange approxi-
mation can be considered asthe Drell-Yan process[17]
in the annihilation or scattering channel, respectively.
Therefore, the QED radiative corrections to the corre-
sponding cross sections can be written as a contraction
of two electron structure functions and the hard part of
the cross section (see [18, 19]). Traditionaly, these
radiative correctionsinclude effects caused by loop cor-
rections and soft and hard collinear radiation of photons
and e*e” pairs. But it was shown in [19] that this method
can be improved by also including effects due to radia-
tion of one noncollinear photon. The corresponding
procedure results in a modification of the hard part of
the cross section, which takes the lowest-order correc-
tion into account exactly and allows going beyond the
leading approximation. We applied this approach to the
recoil proton polarization in elastic electron scattering
in[20]. In the present paper, we calcul ate radiative cor-
rections to polarized deep inelastic and elastic scatter-
ing following [20].

Section 2 gives a short introduction to the structure
function method. There, we present two known forms
of the electron structure functions, iterative and analyt-
ical, which resume singular infrared termsin all orders
into the exponent. In this section, we aso obtain master
formulas for observed cross sections. Leading log
results are presented in Section 3. These results are
valid for both deep inelastic and elastic cases. We aso
use the iterative form of electron structure functions to

1063-7761/04/9803-0403$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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extract the lowest-order correction, which can provide
acrosscheck viacomparison with the known results. In
Sections 4 and 5, we describe the procedure of general-
izing the results to the next-to-leading order in the degp
inelastic and elastic cases. Numerical analysis is pre-
sented in Section 6. We consider kinematical conditions
of current polarization experiments at fixed targets and
collider kinematics. Some conclusionsare given in Sec-
tion 7.

2. ELECTRON STRUCTURE FUNCTIONS

A straightforward calculation based on the quasi-
real electron method [21] can be used to write the
invariant cross section of the deep inelastic scattering
process

e (ky) + P(p) — € (k) + X(py) N
as
(M J’dzlj’dzzD(zl, L)
dQ dy : :
1lm 2m (2)
2
X%D(ZZ, L)M’_EZ_)1 L = |n9_2,
Z dQ dy
where mis the electron mass and
2p.(k, —k
Q"= -k, y= B v = 2pk,

The reduced variables that define the hard cross sec-
tion in the integrand are

~ k
kl -_ Zlkl' k2 - 2_21
2
2 Z 1- y 3)
= 12 _q
Q= ZzQ o y=1 212,

Theelectron structure function D(z, L) includes con-
tributions due to photon emission and pair production,

D = D'+D5° +DZ°, @)

where DV is responsible for the photon radiation and

Dy° and DS describe pair production in nonsinglet
(by single photon mechanism) and singlet (by double
photon mechanism) channels, respectively.

The structure functions on the right-hand side of
Eq. (4) satisfy the DGLAP equations [22] (see
also[18]). The respective functions D(z;, L) and
D(z, L) are responsible for radiation of the initial and
final electrons.

There exist different representations for the photon
contribution to the structure function [18, 23, 24], but
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we here use the form given in [18] for DY, Dﬁ;ef, and

DS°,
D'(2. Q") = 3(1-2)"*

«[14+3a_BrL 477 _B
[1+8[3 48EBL +T0 — } 4(1+z)
Lsap ®)
+ 37

— Inz—5—z},

+g—;[—4(1+z)ln(1—z)—
_ 2a
p=—(@L-1).

D° (2 Q)

_ 1 ;3/2
B (:_[2[12(1—2)%[_ a‘ 3 (6)
RN

2(1- z)

e'e _
s T 4n2L [ 3z

(7)
+Z (1 z)+(1+z)|nz} %l Z—=— m]

where € isthe energy of the parent electron and
L, = L+2In(1-2).
We note that the above form of the structure function

DN includes effects due to real pair production only.
The correction caused by the virtual pair isincluded in
DvY. Terms containing a contribution of the order a?L3
are canceled in the sum DY + DS,° .

Instead of the photon structure function given by
Egs. (5)—7), one can use their iterative form [23]

LT (7)€

D'(z L) = 6(1—z)+ kIEIZnD

P(2) 0.0 Py(2) = P,(2)""
k

1

PAOPE = POPET  @®
P2) = T 3
A <1
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QED CORRECTION TO ASYMMETRY FOR POLARIZED ep SCATTERING

Theiterativeform (8) of DY does not include any effects
caused by pair production. The corresponding nons-
inglet part of the structure due to real and virtual pair
production can be included into the iterative form of
DY(z, L) by replacing aL/2rt on the right-hand side of
Eqg. (8) with the effective el ectromagnetic coupling

oL O(eff _
o o = ——I nH -5 9)

which (within the leading accuracy) is the integral of
the running el ectromagnetic constant.

Thelower limits of integration with respect to z; and
Z, in the master equation (2) can be obtained from the
condition for the existence of inelastic hadronic events,
(P +8)°>Mf, @ =ki—ke, My = M+mp, (10)
where m,, is the pion mass. This constraint can be
rewritten in terms of dimensionless variables as

2,2, +y—1-Xyz, 2 7,7,
. Q? L, - MG, — M? (11)
2p; (ks —ky)’ " v o
which leads to
5 = 1-y+xyz; _1l+z,-y
T, AT Ty

The squared matrix element of the considered pro-
cess in the one-photon exchange approximation is pro-
portional to the contraction of the leptonic and hadronic
tensors. Representation (2) reflects the properties of the
leptonic tensor. Therefore, it has a universal nature
(because of the universality of the leptonic tensor) and
can be applied to processes with different final hadronic
states. In particular, we can use the electron structure
function method to compute radiative correctionsto the
elastic and deep inelastic (inclusive and semi-inclusive)
el ectron—proton scattering cross sections.

On the other hand, straightforward calculations in
thefirst order in a [5, 8, 21] and the recent cal culations
of the leptonic current tensor in the second order [25—
28] for the longitudinally polarized initial electron
demonstrate that, in the leading approximation, the
spin-dependent and spin-independent parts of this ten-
sor are the same for the nonsinglet channel contribu-
tion. The latter corresponds to photon radiation and
e*e -pair production through the single-photon mecha-
nism. The difference appearsin the second order dueto
the possibility of pair production in the singlet channel
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by the double-photon mechanism [28]. Therefore, rep-
resentation (2), being slightly modified, can be used for
the calculation of radiative correctionsto cross sections
of different processes with a longitudinally polarized
electron beam.

In our recent paper [20], we applied the electron
structure function method to compute radiative correc-
tions to the ratio of the recoil proton polarizations
measured at CEBAF by Jefferson Lab Hall A Collab-
oration [3]. The aim of this high-precision experiment
is the measurement of the proton electric form factor
Ge. In the present work, we use this method for calcu-
lation of the model-independent part of the radiative
corrections to the asymmetry in the scattering of longi-
tudinally polarized electrons on polarized protons at the
level of per mill accuracy for elastic and deep inelastic
hadronic events.

The cross section of the scattering of the longitudi-
nally polarized electron by the proton with given longi-
tudina (|]) or transverse ([0) polarizations for both elas-
tic and deep inelastic events can be written as a sum of
the spin-independent and spin-dependent parts,

do(ky ko, S) _ do(ky, k) | do' “(ky, k,, S)
dQ*dy dQ*dy dQ*dy

where Sisthe 4-vector of the target proton polarization
and ) isthe product of the electron and proton polariza-
tion degrees. Hereafter, we assumen = 1.

Master equation (2) describes the radiative correc-
tions to the spin-independent part of the cross section
on the right-hand side of Eqg. (12), and the correspond-
ing equation for the spin-dependent part is given by

» (12)

1

Il O 1
d—o (ky, Kz, S) [z J'dzzD(p)(zl, L)

dQ°d
Q y z].m ZZm (13)
2 [l O
X _D( - L) Ohard(kll k2, S)’
Z dQ°dy
where
D(p) - DV+ Di:e_"' Dge_(p),
and [28]
ee(p) - O 2(p(1-2)
DS 4T[2L o +(1+2)Inz]
(14

xe%L—z—z?”H

describes the radiation of the initial polarized electron.
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This representation is valid if radiation of collinear
particles does not change the polarizations S! and S-.
Such stabilized 4-vectors of the proton polarization can
be written as[8]

2
q& - 2M klp—Vplu
MV ’
S? _ up1u+Vk2“—[ZUT+V(1—y)] km
J—uvi(1-y) —u*M?

(15

where

u=-Q° 1= MIV.

It can be verified that, in the laboratory system, the
4-vector S'has the components (0, n), where the 3-vec-
tor n has the orientation of the initia electron
3-momentum k;. It can aso be verified that S'S/= 0
and that in the laboratory system,

S’=(,ny), ni=1, nCh, =0,

where the 3-vector n belongs to the plane (k4, k»).

If the longitudinal direction L is chosen aong the
3-momentum k; — k, in the laboratory system, which
coincides with the direction of the 3-vector g for nonra-
diative process, and we choose the transverse direction
T in the plane (k4, k), then we have the relations

L I i
dg = cosH dg +sin@ d(g ,
dQ"dy dQ"dy dQ*dy
T Il O
dczy = —sin@ dc2r + cosO dc; ,
dQ"dy dQ"dy dQ’dy
y + 2XyT

cosO =

S§no = _ijyr(zl—y—xw),
Yy +4xyt

JYP + 4xyt’

and the master formula (13) for doll and do®.

Theasymmetry in elastic scattering and deep inelas-
tic scattering processesis defined astheratio

da'* "(ky, ky, S)

O _
AT otk k)

(16)

and therefore, calculating the radiative corrections to
the asymmetry requires knowing radiative corrections
to both spin-independent and spin-dependent parts of
the cross section.
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Radiative corrections to the spin-independent part
were calculated (within the electron structure function
approach) in [19]. In the present work, we compute the
radiative corrections to the spin-dependent parts for
longitudinal and transverse polarizations of the target
proton and longitudinally polarized electron beam. For
completeness, we briefly recall the result for the unpo-
larized case.

3. THE LEADING APPROXIMATION

Within the leading accuracy (with the terms of the
order (aL)" taken into account), the electron structure
function can be computed, in principle, in al orders of
the perturbation theory. In this approximation, we have
to take the Born cross section asahard part on the right-
hand sides of Egs. (2) and (13).

We express the Born cross section in terms of lep-
tonic and hadronic tensors as

do_ _ 4nd’(Q%)
dQ’dy vQ*

LovH o, (17)

where a(Q?) is the running electromagnetic constant,
which accounts for the effects of vacuum polarization,
and

. Fy. .
Huv = _Flgpv+51—dplpplv

Mg,
”Sf;qu[(gl"' gz)%‘Qz%Dm}
: (18)
LE\) = - %guv + kluk2v + klvk2u + isuv}\pq)\klp’
qu = guv_%i blp = plu_%lqp'

In Eq. (18), we assume the proton and electron polar-
ization degrees equal to 1. The spin-independent
(F,, F,) and spin-dependent (g,, g,) proton structure
functions depend on the two variables

2
T _q 2 _ 2
X = , = (py— )

In the Born approximation, X' = x, but these variables
differ in the general case, when radiation of photons
and electron—positron pairsis allowed.
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Because the normalization is chosen, the elastic  For this purpose, we can use the iterative form of the
limit (pi = M?) can be obtained by simply substituting photon structure function DY withL — L —1 and

5 S . _ _ 2(A¢)
Fi(X, 0°) — 38(1-X)Gh (), TRy OAR
GZ 2 )\GZ 2
Fo(x, ) — (1) 2Lt 2B (@), 2 =y, 209

o for D(z, L) and
0:(¢, ) = 58(1-X) FGu(@)Ge(d) or Dizy, L) an

) V(1l-
2 fGu(@) -Ge@Neu@ g Na-z)
0

for D(z,, L), where (Ag) isthe minimal energy of ahard

5 1 , collinear photon in the special system (k, —k, + p; =0).
%(% q7) — —358(1-X) 77~ Straightforward calculations yield the expression
% [Gu(a’) ~ Ge(@)] Gy (@), do®(ky ko) _ a(L=1)
¢ dQ’dy 21
4Mm? . X
o™ (ky, ko) 4(8e) (2, + 1)
in the hadronic tensor, where G, and G are the mag- 0% [3 +2l V(1-z)(1- xy)}
netic and electric proton form factors. 0 dQidy 23)
A simple cal cul ation gives the spin-independent and 1472 do®(z. k. K
spin-dependent parts of the well-known Born cross sec- + J' dz 4 O (Ziky, ko)
tion in the form (1-xy)(1-z)  dQdy,

do® _ Ano’(Q°) ]
dQ’dy Q'y (20) 1+ do®(k, kZ/zZ)Ft
2
x[(1—y—xyT)F,(x, Q%) + xy’Fy(x, Q9] T2 w0

where

doy _ 8mo’(QY)
2 2
dQ dy Vy (21) |\/|i—|\/|2 l-y+z

<[F- o0 @) + Bax @),

B Z
dop _ 8no’(Q) /M S—y—xy1) ?
szdy Vy 22)

2 _ 2 _ 2 > 2 _Q
x| 0% Q) + ygz(x, Q). QUG =aQ, =6 =5
Thus, within the leading accuracy, the radiatively cor- Yoo = 1— 1-y
rected cross section of process (1) is defined by Eq. (2) LS 2,5
(for its spin-independent part) with (20) asthe hard part
of the cross section and by Eq. (13) (for its spin-depen- Similar equations can be derived for the first-order
dent part) with (21) or (22) asthe hard part. correction to the spin-dependent part of the cross sec-

It isuseful to extract the first-order correctiontothe tion for both longitudinal and transverse polarizations
Born approximation, as defined by master equation (2).  of the target proton.
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4. DEEP INELASTIC SCATTERING
CROSS SECTION
BEYOND THE LEADING ACCURACY

To go beyond the leading accuracy, we have to
improve the expressions for hard parts of the cross sec-
tions in master equations (2) and (13) in order to
include effects caused by radiation of a hard noncol-
linear photon. In principle, we can also improve the
expression for the D function in order to take collinear
next-to-leading effects in the second order of perturba-
tion theory into account. The essential part of these
effectsisincluded in our D functions due to the replace-
ment L — L — 1. The rest can be written using the
results of the corresponding calculations for the double
photon emission [27, 30], pair production [28, 31, 32],
one-loop corrected Compton tensor [25, 26, 33], and vir-
tual correction [34]. But we restrict ourselves here to the
D functions given above in Egs. (5), (6), (7), and (14).

To compute the improved hard cross section, we
must find the full first-order radiative correctionsto the
cross section of process (1) and subtract from it (to
avoid double counting) its leading part defined by
Eqg. (23) (for the unpolarized case). Therefore, the
improved hard part can be written as

d0pyy _ do® dG(S+V)+ do"  do®
dQ’dy dQ’dy dQ’dy dQ’dy dQ’dy

, (24)

where doS*V is the correction to the cross section of
process (1) due to virtual and soft photon emission and
do" isthe cross section of the radiative process

e (k) + P(p,) — e (ko) +y(k) + X(py).  (25)

Thevirtual and soft corrections are factored in asim-
ilar way for both polarized and unpolarized cases [19]
and can be written as

do®  do®*V _ do®
+ =
dQ’dy dQ’dy  dQ’dy

x %+(L—1)%+2In(—r_—;&r-))—(1—_—z+—)%}

2

§=-1-T _pf L1-Y-XyT

3 T (1-xy)(1-z)

(26)
21 —xy

1-z°

F(x) = J’%‘ln(l—t).
0

To calculatethe cross section of radiative process (25),
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we use the corresponding leptonic tensor in the form

_ H(un) | H d’k
LZ{V - ——(L o pv)—

41t

Liv = 2i€ueth (KipR + KzpRe),

R = _u+t o el 151 (27)
st BENE
_u+s_ , 25 _—u(u+Vy-Vz)
Rs st 2m ut?’ = u+Vv '
where w is the energy of the radiated photon; LH(“”’ is

the leptonic tensor for unpolarized particles (see [33]);
and we use the notation

s =2kk,, t=-2kk;, q° = u+s+t

for kinematic invariants. The result for the unpolarized
case was derived in [19], and here we rewrite it using
standard notation as

dOhaa _ %l + _a
dQ’dy dQ ayd  2m Q’
[dzs f’tN—i:rzlssN
Zi
Idr (28)
T y + 4xyT

1-P (1+ )N
+PI1—r[r—r1|D 1-xy

_1-Ps(1+r°)N
Ir=rjd 1-2z,

+(r - I‘)T

2
# (=074 EUD—(:ZQ )

where r = —g%/Q? and the limits of integration with
respecttor are

1
2xy(T+2,)

x [2xy(T +2) + (2, —2)(y £ /Y’ + 4xy1)].

r.(z) =
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Here, we used the notation

rxyxy U
= 2F,(X, r)—%Fz(x r),
2X[1-r(1- ,
T, = 2X1 " (2 e x, 1), (29)
XYr
TS — MFZ(X‘,I'),
X’ y
1 , Xyr
rl = Zl’ r2 = 2_2, X = Wy-'_z

The action of the operators P; and Ps is defined as

Pf(r,x) = f(r, %), Psf(r,x) = f(ryxo),

Xyry
t — ' s =
Xyr, +Z

Xyr,
Xyr,+2Z

The hard cross section (29) has neither collinear nor
infrared singularities. The different terms on the right-
hand side of Eq. (29) have singularitiesatr =r,, r =r,,
and r = 1. Singularities at the first two points are col-
linear, and the one at the third point, nonphysical,
arising at integration. Collinear singularities vanish
because of the action of the operators P; and Ps onthe
terms containing N. The nonphysical singularity can-
cels because, in the limiting caser — 1, we have

=1, 1 = -1,

T,+T, = 0.

To derive the hard cross section for the polarized
case, we have to use the analogue of Eq. (24) for do'l
and do". Taking into account that doV*S and do® are
the same in the polarized and unpolarized cases and
using expression (27) for the antisymmetric part of the
leptonic tensor to compute do* in the polarized case,
we arrive at

Oy _ doj 5 %l % U|| O
szdy dQ’dy- 2m
IdzD———— PN+ TP
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1-P
+P [ S
,r[l—r Ir—ry(1-2,)

(30)

2(r,— r)TIIED 1-P,

2 ||,D
x%1+r)Ns r O r=ry

(LN

Il @
XA T-xy +2r(ry—=n)T, }

IO
+J'dr 2W" Eb(O( (S r)
y2+4xyr r

where

ul=1 U"= J%ﬁ(l—y—xyr)‘l,

wh=aytw, W = 2y%(1+2xn)W,
W = (1+r)Xg; + X0y,

N{' = 2[2r —z—xy(r + 21)] g, —8X'1Q,,

N! = 2[2—z—xyr(1+21)]9, —8X1Q,,

Ny = 2[1—y—z+r—xy(r + 2T)] (xyg; + 2X,),
0 — 1_2 1
Ng = 2[1—y+T—xy(1+2T)}(xyrgl+2xgz),

T = 2rg,—4x1g,, T = 2(z—1)(g,—2X10y),

T, = 2xyrg, + 2X(1—y +r — 2Xy1)g,,

T = 2(z-1)[xyg, + X (L -y + 1/r —2xyT)g,] .

The polarized hard cross section defined by Eqg. (30)
isalso free from collinear singularities due to the action

of the operators 1— P, and 1— Ps. Thenonphysical sin-
gularity at r = 1 on the right-hand side of Eq. (30) can-
cels because

ho- 1 quo
Tt Z_lTS

in thislimit. We note that radiation of a photon at large
angles by the initial and final electrons increases the
range of r in (28) and (30), becauser, <r <r, for col-
linear radiation, and now r_<r, and r, > r,. This may
be important if the hadron structure functions are large
in these additional regions.
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5. HARD CROSS SECTION Eq. (32) isdefined as
FOR ELASTIC HADRONIC EVENTS

do® _ 4na’(Q)

To describe the hard cross section for elastic had-

ronic events, we use the replacement defined by (19) in dQ’dy V2
Egs. (28) and (30). We refer to Egs. (21)—(23) for the (33)
Born cross sections that enter these equations. The lG F[l-y(l+T )] +AGy %,
function §(1 —x) is used to integrate with respect to the 2°M y (1 )
inelasticity z,
In writing this last equation, we took into account that
J’dz6(1—x') = Xyr. (3D

O(1l-x) = yé%——
Thefinal result for the unpolarized caseis given by (we

do not introduce special notation for the elastic cross The spin-dependent hard cross section for elastic

section) hadronic events can be written in a form very similar
to (32),
dOhard dGB a a
= + — + — dO'”’D dGB a a O
dQ%dy  dQdy” 2mH 2 - 100 S = uh
. r Ol—rya v po, I=Toa 10
L , x 2 By NJ T 2PN
x%l rlptN_é:: r2P5N+J.dT 2W oL —xy tIN 1—z, °°s
o — Xy - Y+ Axyt
O B (32 8]
r, +Id|" W” J.
dr [1-Pid+r? 70 JV2 + Axyt 1- [ r—rl|
+P.rl_r[lr—rllﬁtl—xy’\l+(Ir s LAYy (34
Dl+r IO _ b 1-Ps
XEtL—_—xyN‘ +2r(r,—r)T, 0 T o=z
(]
1-p (@
|I’—|’S|Eln.tr N+(r2—r)T%}E@—(—rQ-r—), x H1+rf)NL 2(r2 =) 11 ED}DD—O‘ Q)
) % s r, Tso (AM? + Q%r)r?
where
where I 0 _ 5,2
W' = 4ytW, W = 2y°(1+ 2xT)W,
2 2
_ g2 4 2=y _pGe*tACy = 241+ 2
N—GM+x_yery S0 1+N W—r[x(1+r)—1]GM+[r+y(1+r)}GMGE,
Il _ 0l _ 0
. G AAGE N = r(2t+1)(2 - xy)GM+8T[ B(—y—ID—T}GMGE,
W = GM -,
Xyr 1+A
N!'= r (21 + 1)(2 - xyr) G, + ST[;J;—r(1+T)i|GMGE1
2 Gi +AGy,
T = - Zr[l_r(l_y)] 1T+n NtE':[l_y+r—xy(r+2I)]
x [—r(2—=xy)Giy + 2(r + 21)GyGgl,
2 Ge + AGy
Ts = _Xzyzr(l_r_y) 1+A N, = [1—y+%_XY(1+2T)}
The Born cross section on the right-hand side of X [=1(2=xyr)Gy + 2r (1 + 21)Gy Gyl
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T = r[(r +21)G, +2T

IDGG}

Tl = —r(1+21)Gy - 2155 —1HG Gy,

Ek

TtD = r{-[r(1-xy) +1-y-—2xyt] Gfﬂ
+[1-y-2xyt +r + 41] G, G},

1
TE = r[F—xy(1+2r) + 1—y}Gf,,

—[2t—(2—xyr) +1+r(1-y)] GyGe.

We note that the argument of the electromagnetic form
factorsin Egs. (32) and (34) is—Q-r.

The Born cross sections on the right-hand side of
Eqg. (34) aregiven by

2

oL - _4nc(Q) [4tf+1-Heuc
dQdy  V(4M®+Q%) yD

~(1+2n) -2 GM} %/ vD’

for the longitudinal polarization of the target proton
and by

doﬁ‘

(35

dot
dQ%dy

x [%—iy%efﬂ —(1+21)G,,G ]6%/ VD’

for thetransverse one. The argument of theform factors
in (35) and (36) is—Q°.

Theresultsin this section can be generalized to elas-
tic electron—deuteron scattering in both polarized and
unpolarized cases in a very simple way, because the

respective deuteron tensors H ﬂ\, are connected with the

gma’ (Q )
V(4M* + Q%)

J s[1-y(1+1)]
(36)

proton ones HSV by therelations

dun) _ 4T+ XYr  p(un)
HMV = TH
8x y r?

. G(d) . G -G
i e o(at)?
Ao _ AT+ XYr pa o

fa = g

X %M — G(d), GE — ZGC Xyqu:|,

where Gi; , G¢, and G, are the magnetic, charged, and
guadrupole deuteron form factors, respectively.
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6. NUMERICAL ESTIMATIONS

The formulas obtained in the last section include
some operators that emphasi ze the physical meaning of
the transformations performed, but they are not conve-
nient in numerical analysis. Here, we present a unified
version of the formulas without any operators. For
example, the symbol P is explicitly treated as

J' I:()

.[ (F(r) F(1)) + F(l)ln———ri.

Therefore, all cross sections given by Egs. (28),
(30), (32), and (34) can be written by means of the uni-
fied formula

i B
W _ 95, 80, qu,
dQ’dy dQ’dy- 27

X IdZE{ LilNi(rl) + LI2N|(r2)}

(37)

J’dr%\N +T, A

[N (r) =Ni(r)

+|r:ri|[Ni(r)—Ni<r1>]

N
TN =N | O
| £ as
where

(1- r12)_| —I_

Ly, = ¥b,
" 1+ri2 —

Theindex i runs over all polarization states (i = u, I, t).
The functions Ni(r) and T, are given by

2 2
1+r°  Xd
Ni(r) = ——N—,
Z,—7Z ¢
0O T, xao?
b3, T<ry, >0
01—
T =0 ’
Xa
ETiz“gﬂ rg<r<r;
O
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Transverse

| Unpolarized

Longitudinal

0.7 MR 1| L Y TR
0.1 02 05 0102 05 0102 05y

Fig. 1. Radiative correction to unpolarized and polarized
(both longitudinal and transverse) parts of the cross section

for kinematics close to JLab experiments, V = 10 GeVZ,
x=0.5.

Thepoleat r = 1 can bereached only in theregion r; <
r <r,, and hence there is no singularity in the terms
involving T;;. For T;,, this pole cancels explicitly:

1, 2229

2 T|2 = _4(1+ r)gl+8XIT927
Xy
T, =-4(1+ r)xygl—4x‘BL + % + 2—y—2xyTEgz.

In the unpolarized case, N, = rN/X with N from (28). In
other cases, they are

N, = 2[—1

41—-z+r(1—xy)]
r(2-y)
+X(1-y+z+r(l-y+xy))g,] +4xy(1l+2x1)Q,,

y(1+2xr)[1 Z+r(1-xy)]
-y Jo.
+8X|Tg2!

N, = [xyr(1-y—xyt)g;

2(1+r)F
= 2Ar0F

X’y

4y(l + r2)(1 + 2XT)

T|1 = 2_

9:+8x(1+1)10,,

[ +r?
T = 405y | -20(1-y -0,
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+(y=2z+yr(1-29)% g,

+xy(L+ 2xT)(1+1)g,
O

and
2 Il O 2
W= 2Ty o 2V
Ny +axyt ! Ay +axyt T
Sk O
1 U
Uu = Ul,t = -
VQ Q

The same formulas can be used in the €lastic case.
Only Egs. (19) and (31) are needed here. In the elastic
case, we must therefore substitute

J'dzaxyr,

set X' = 1 and z = 0, and replace the proton structure
functions in accordance with (19).

It is believed that the formulas obtained within the
presented formalism are not convenient for numerical
analysis. There are two reasons for such an opinion.
First, the electron structure functionin form (5), (6) has
avery sharp peak as z tends to unity. Second, because
absolute values appear in denominators, the integrand
cannot be a continuous function of the integration vari-
ables. This produces obstacles for numerical analysisif
itiscarried out in thetraditional style based on adaptive
methods of numerical integration, whichisused in such
programs as TERAD/HECTOR [36] or POLRAD [9].
But it is possible to perform numerical anaysis if
Monte Carlo integration is used instead of adaptive
integration and the regions with sharp peaks are
extracted into separate integration subregions. Based
on these |deas we developed the Fortran code
ESFRAD,! which allows one to perform the numerical
analysis without any serious difficulties.

We considered two radiative processes. In the first
case, the continuum of hadronsis produced, and in the
second case, the proton remains in the ground state.
Both of the effects considered contrl bute to the experi-
mentally observed cross section? of deep inelastic scat-
tering. They are usually called the radiative tails from
the continuous spectrum and the el astic peak, or smply
theinelastic and elastic radiative tails. Below, we study
the contributions of the tails numerically within kine-

1 Electron Structure Function method for RADiative corrections.

2 Here and below, we mean double differential cross section o =
do/dydQ?.
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3.0

Unpolarized

Longitudinal

Transverse

5,

Fig. 2. Radiative correction to unpolarized and polarized
(both longitudinal and transverse) parts of the cross section
for kinematics close to HERMES experiments, V =

50 GeV?, x=0.1, & =-3,.

matical conditions of the current experiments on deep
inelastic scattering.

Wetakethreetypical valuesof V equal to 10, 50, and
10° GeV?2. They correspond to JLab, HERMES, and
HERA measurements. Figures 1-3 give the radiative

Unpolarized
1.8 . :

Longitudinal

413

correction factor for al polarization states (unpolar-
ized, longitudinal, or transverse)

obs

(38)

The observed double differential cross section is given
by master formulas (2) and (13), and the Born cross
section is calculated via (20), (21), and (22). Both elas-
tic and inelastic contributions must betaken for g;,,4. IN
this case, we obtain thetotal radiative correctionsfactor
(8). The subscripts i and t correspond to the cases
where the elastic radiative tail is included in the total
correction (&) or the inelastic radiative tail contributes
only (&). Theelastic radiative tail may optionally not be
included, because there sometimes exist experimental
methods to separate this contribution. We note that, for
the HERA kinematics, we do not includeit becauseitis
usually separated experimentally. Also, we can extract
a one-loop contribution in order to study the effect of
higher-order corrections. The observed cross sectionin
this case is given by the sum of the cross sections in
Egs. (23) and (37). We note that this can provide an
additional cross check by comparison with POLRAD.

We use rather simple models for spin-averaged and
spin-dependent structure functions. It allows us not to
mix the pure radiative effects, which are of interest,
with the effects due to hadron structure functions. Spe-
cifically, we use the so-called D8 model for the spin-
average structure function [35] (see also discussion

1.6 -

141+

0.8 '

0.5 1.0

0.5

1.0 0.5 1.0

y

Fig. 3. One-loop and total radiative corrections (dashed and solid lines) for collider kinematics (HERA); V = 10° GeV2. Linesfrom
top to bottom correspond to different values of x = 0.001, 0.01, and 0.1.
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Ay, %
68 T T T T
x=0.5,V =10 GeV? .

64

S ——e e = T

241 .
- x=0.01,V =50 GeV? .

2.0 1 1 1 1
0.2 0.4 0.6 0.8

y

1.0

AFANASEV et al.

Ar, %
2 T T T T
;\ x=0.5,V =10 GeV?

-10 1 1 1 1

A, %
015 T T T T

0.10}

0.05 -

0

—-0.05}
-0.10+ .
x=0.01, V=50 GeV?

~0.15 ' ' ' '
02 04 06 08

1.0
y

Fig. 4. Radiative correction to asymmetriesfor the HERMES (lower plots) and JLab (upper plots) kinematics. The dotted line shows
the Born asymmetry. The full and dashed lines correspond to the total and one-loop contributions. Asymmetries with the elastic

contribution taken into account are marked by dots at the end.

in[9]), and A (X) = X%, suggested in [37]; we set
g, = 0 (the definition of A,(X) is given below).

From these plots, we can see that the total radiative
correction is basically determined by the one-loop cor-
rection with some important effect around kinematical
boundaries. The sign and value of the higher-order
effects are in agreement with the leading log estima-
tions and calculations of the correction to the eastic
radiative tail in [38, 39]. Two regions require special
consideration: the region of higher y for the HERMES
and JLab kinematics and the region near the pion
threshold at JLab.

We define the polarization asymmetries in the stan-
dard way,

o o

= - = -0
A 5’ A; 5 (39)
We can al so define the spin asymmetry A; as A, = DA,
(for the chosen model where g, = 0), where D is the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

kinematical depolarization factor depending on the
ratio R of the longitudinal and transverse photoabsorp-
tion cross sections,

_ y(2-y)(1+y'yI2) |
Y(L+Y?) +2(1—y—y?y*14)(1+R)

o _ M@ +VIF;

R =
Ot sz Fi

1,

wherev = yV/2M and y? = Q?/v2. For fixed x, A, isacon-
stant within our model, and it is therefore very conve-
nient for graphical presentation and analysis of differ-
ent radiative effects. Figure 4 gives the asymmetries A
and A; for the kinematics of HERMES and JLab up to
y = 0.95. The influence of higher-order and elastic radi-
ative effects can be seen. Figure 5 givesthetotal correc-
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AL’ % AT’ %
28+ 1 8t 1
24t PN .
20 | i 1 0
16 C 1 1 1 1 -4C 1 1 1 ]
09 10 1.1 12 13 09 10 1.1 1.2 13
W, GeV W, GeV

do/dydQ>, nb

103

10%E

1.00

1
1.25
W, GeV

1
0.95

Fig. 5. The cross section (lower plot) and polarization
asymmetries (both longitudinal and transverse) for the JLab

kinematics (Q? = 1 GeV?) near the pion threshold. The dot-
ted line shows the Born cross section and asymmetry. Full
and dashed lines correspond to the total and one-loop con-
tributions.

tions to the cross sections and asymmetries for the
threshold region of JLab.

7. CONCLUSIONS

We have considered model-independent QED radi-
ative correction to the polarized deep inelastic and elas-
tic electron—proton scattering. Together with the ana-
lytic expression for the radiative corrections, we giveits
numerical values for different experimental situations.

Our analytic calculations are based on the electron
structure function method, which alows us to write
both the spin-independent and spin-dependent parts of
the cross section with the radiative corrections to the
leptonic part of interaction taken into account in the
form of the well-known Drell-Yan representation. The
corresponding radiative corrections explicitly include
the first-order correction aswell asthe leading-log con-
tribution in al orders of the perturbation theory and the
main part of the second-order next-to-leading-log con-
tribution. Moreover, any model-dependent radiative
correction to the hadronic part of the interaction can be
included in our analytic result by inserting it asan addi-
tive part of the hard cross section in the integrand sign
in master formulas (2) and (13).

To derive the radiative corrections, we take into
account the radiation of photons and e*e™ pairs in col-
linear kinematics, which produces a large logarithm L
in the radiation probability (in D functions), and the
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radiation of one noncollinear photon, which enlarges
the range of the hadron structure function arguments. It
may be important that these functions are sufficiently
sharp. In this case, the loss in the radiation probability
(the loss of L) can be compensated by the increase in
the value of the hard cross section.

We note that we extracted the explicit formulas for
the first-order contribution at both |eading and next-to-
leading order levels. We found analytic agreement
between these results for the one-loop correction with
the previous results in [8], which provides the most
important test of the total correction.

Onthebasis of the analytic results, we constructed the
Fortran code ESFRAD.3 Because of several known rea-
sons discussed in Section 6, results obtained by the
electron structure function method are usually not very
convenient for precise numerical anaysis. But we
believe that our numerical procedure based on Monte
Carlo integration allows us to overcome the obstacles.

Using the ESFRAD code, we performed numerical
analysis for kinematical conditions of the current and
future polarization experiments. We found two kine-
matical regions where the higher-order radiative cor-
rection can be important. These are the traditional
region of high y and the region around the pion thresh-
old. We gave a detailed analysis of the effects within
these regions and presented numerical results within
one of the smplest possibilities for modeling the deep
inelastic scattering structure functions. Model depen-
dence of the result is certainly an important issue
requiring separate investigation for specific applica-
tions within the experimental data analysis.
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Abstract—We reexamine the problem of n—n oscillations for ultracold neutrons confined within a trap. We

show that, for up to 10° collisions with the walls, the process can be described in terms of wave packets. The n
component grows linearly with time, with the enhancement factor depending on the reflection properties of the

walls. © 2004 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

For quite along time, physics beyond the Standard
Model has continued to be an intriguing subject. Sev-
eral reactions that may serve as signatures for the new
physics have been discussed. One of the most elegant
proposals is to look for n—n oscillations [1] (see
also [2]). There are three possible experimental settings
aimed at observation of this process. The first is to
establish a limit on nuclear instability because n pro-
duced inside anucleus will blow it up. The second isto
use a neutron beam from a reactor. This beam propa-
gates along distance to the target in which the possible
n component would annihilate and, thus, is detected.
Thethird option, which we discussin the present paper,
is to use ultracold neutrons (UCNSs) confined in a trap.
The main question isto what extent generation of the n
component is reduced by the interaction with the trap
walls. This subject was addressed by severa authors
[3-8]. In our opinion, a thorough investigation of the
problemis still lacking.

First of all, a clear formulation of the problem of
n—n oscillations in a cavity has been hitherto missing.
Two different approaches were used without presenting

sound arguments in favor of their applicability and
without tracing connections between them.

Inthefirst approach [4, 5], n—n oscillations are con-
sidered in the basis of the discrete eigenstates of the
trap potential, with the splitting between nand n levels

and n annihilation taken into account. The density of
the trap eigenstates, which is proportional to the macro-
scopic trap volume, is huge and the states cluster
together extremely thickly. But these arguments do not
suffice to discard the discrete-state approach, because

the n—n mixing parameter ismuch smaller thanthe dis-

TThis article was submitted by the authorsin English.

tance between adjacent levels (see below). Thetruerea-
son due to which the above treatment is of little physi-
cal relevance is as follows. The spectrum of the neu-
trons provided to the trap by the source is continuous
and a certain time is needed for rearrangement of the
initial wave function into standing waves correspond-
ing to the trap eigenstates. Asis shown below, thistime
interval appears to be of the order of the 3-decay time,
and, therefore, the standing wave regime, being inter-
esting by itself, can hardly be reached in the real phys-
ical situation.

The second approach [3, 6, 7] treats the neutrons
and antineutronsinside atrap asfreely moving particles
that undergo reflections from the trap walls. Collisions
with the walls result in areduction of the n component
compared to the case of the free-space evolution. This
suppression is due to two factors. The first is the anni-
hilation inside the walls. The second is the phase deco-
herence of then and i componentsinduced by the dif-

ference of the wall potentials acting on n and n.
Reflections of antineutrons from the trap walls were,
for thefirst time, considered in [3]. The purpose of that
paper was to investigate the principal possibility of
observing n—n oscillations in a trap, and the authors
estimated the reflection coefficient for antineutrons
without paying attention to the decoherence phenom-
ena. Only asingle collision with the trap wall was con-
sidered in [3]. A comprehensive study of n—n oscilla-
tionsin atrap was presented in [6, 7]. Decoherence and
multiple reflections and the influence of gravitational
and magnetic fields were included. The approximate
equation for the annihilation probability after N colli-
sionsaobtainedin [7, Eq. (3.8)] coincides with the exact
formula (59) in the present paper when N > 1. Aswe
show below, the N-independent asymptotic regime set-
tlesat N = 10.

Derivation of the exact equation for the annihilation
probability with an arbitrary number of collisionsis not

1063-7761/04/9803-0417$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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the only purpose of the present work. We already men-
tioned the problem of the relation between the eigen-
value and the wave-packet approaches. Within the
wave-packet approach, some basic notions such as the
time between successive collisions and the collision
time itself can be defined in a clear and rigorous way.
Another question within the wave-packet formalism is
the independence of the reflection coefficient from the
width of the wave packet and the applicability of the
stationary formalism to calculate reflections from the
trap walls. These and some other principal points are,
for the first time, considered in detail in the present

paper.

We also mention that an alternative approach to the
evaluation of thereflection coefficientsfor nand n was
outlined in [8]. It is based on the time-dependent
Hamilton formalism for the interaction of nand 0 with

thetrap walls. This subject remains outside the scope of
the present paper.

The paper is organized as follows. In Section 2, we
recall the basic equations describing n—n oscillations
in free space. Section 3 is devoted to the optical poten-
tial approach to the interaction of nand n with thetrap
walls. In Section 4, we analyze the two formalisms pro-
posed to treat n—n oscillations in the cavity, namely,
box eigenstates and wave packets. In Section 5, reflec-

tion from thetrap wallsis considered. Section 6 contains
the main result in this work, the time dependence of the

N component production probability. In Section 7, con-

clusions are formulated and problems to be solved out-
lined.

2. OSCILLATIONS IN FREE SPACE

We start by recalling the basic equations describing
n—n oscillations in free space. The phenomenological
Hamiltonian isa 2 x 2 matrix in the basis of the two-
component n—n wave function (we set 2 = 1),

H; = B—h—l

wherej, | =n, n, H; = k¥2m — B, ; is the magnetic
moment, B is the external (e.g., the Earth's) magnetic
field, 'y is the B-decay width, € is the n—n mixing
parameter (see below), and o, is the Pauli matrix.
Assuming the n and n wave functions to be plane
waves, we write the two-component wave function of
the n—n system as

-
S50 + (0.1 (1)

B(x, 1) = 0¥V B @
Oy,(t) O
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Evolution of the time-dependent part of ‘-AP(X, t) isthen
described by the equation

E T, E
EXSNOTENNC S« S[TNGYS [
- O O '
Mgy, 0 g £ _iTen0wi®D
0 o0

The difference between E, and E, due to the Earth’'s
magnetic field is
= E,—E, = 2|u/B=6x10"2eV. (4)

Diagonalizing the matrix in (3), we find @,(t) and
Pn(t) intermsof their valuesat t = 0,

w,(t) = B.pn(O)%;osvHié%)sinv%—wﬁ(O)i-VEsinv%

x exp[—%(iQ + FB)t}, ©

wa(t) = & qJn(O)iV—esinvt +(0) posvt - iz%)sinv%

x exp[—%(iQ + FB)t}, ©)

whereQ =E,+ E,,v = (w4 + )2, andw= E, —E,.
In particular, if $,(0) =1and Y,(0) =0, we have

4¢€?

W’ + 4€®
x sinz%dm2 + 4e2%.

The use of thisequation to test fundamental symmetries
isdiscussed in [9].

Without the magnetic field, i.e., for w = 0, and for
t< e, Eq. (7) yidds

lwa(t)* = exp(—Tgt)

(7)

[Wa(t)]” = et exp(—Tpt). (8)

This law (for t < I'5') has been used to establish the

lower limit on the oscillation time T = X, According to
the ILL-Grenoble experiment [10],

1>0.86 % 10°s. (9)

The corresponding value of the mixing parameter ise =
1022 eV. This number is used in obtaining numerical
results presented below.
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The Earth’smagnetic field leads to a strong suppres-
sion of the n—n oscillations. With the value of w given
by (4), Eq. (7) leadsto

2
Wa(1)]* = ‘l—ezexp(—rﬁt)sinzt/rB
@ (10)

~1025n’t/1;,

where 15 = (|4,|B)?* = 2 x 10* s. In what follows, we
assume that the magnetic field is screened.

For w=0but for arbitrary initial conditions, Egs. (5)
and (6) take the form

Wn(t) = (Wn(0)coset —iy,(0)sinet)
S

Wa(t) = (=iP,(0)sinet + Y, (0) coset)
o )

whereE=E,= E,.

(11)

(12)

3. OPTICAL POTENTIAL MODEL
FOR THE TRAP WALL

We remind the reader that neutrons with the energy
E <107 eV arecalled ultracold. An excellent review of
UCN physicswas given in [11] (see dso [12]).

A useful relation connecting the neutron velocity v
incm/sand Ein eV isgiven by

vlem/s = 10%(10°E[eV]/5.22)">. (13)
For E=10" eV, the velocity is v = 4.4 x 10 cm/s.

A lessformal definition of UCN involves the notion
of thereal part of the optical potential corresponding to
the trap materia (see below). Neutrons with energies
lessthan the height of thispotential are called ultracold.
The two definitions are essentially equivalent because,
as we see in what follows, the real part of the optical
potential is of the order 107 eV for most materials.

Our main interest is in strongly absorptive interac-
tion of the n component with the trap walls. We there-
fore ignore very weak absorption of UCN on the walls
[11, 12]. Dueto completereflection from thetrap walls,
UCN can be stored for about 10° s (B-decay time), as
was first pointed out in [13].

To be specific, we consider UCN with E = 0.8 x
1077 eV, which corresponds to v = 3.9 x 10> cm/s
(see (13)), k= 12.3 eV, and de Broglie wavelength A =
10-5 cm. In the next section, we describe UCN in terms
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of wave packets, and, hence, the above values must be
attributed to the center of the packet.

We treat the interaction of n and n with the trap
wallsin terms of an energy-independent optical poten-
tial. The validity of this approach to UCN has been jus-
tified in a number of papers (see, e.g., [11, 12, 14]).
Thereis still an open question concerning the discrep-
ancy between theoretical prediction and experimental
data on the UCN absorption. Interesting by itself, this
problem is outside the scope of our work because, as
was already mentioned, absorption of neutrons may be
ignored in the n—n oscillation process. The low-energy
optical potential is given by

_2m

Uja = —rﬁNajA’ (14)

wherej = n, n; misthe neutron mass; N is the number
of nuclei in aunit volume; and a5 isthe j—A scattering

length, which isreal for n and complex for n. For neu-
trons, the scattering lengths a,, are accurately known
for various materials [12]. For antineutrons, the situa-
tion isdifferent. Experimental data on low-energy n—A
interaction are absent. Only some indirect information
may be gained from level shifts in antiprotonic atoms,
and, therefore, thevalues of a,, usedin|3, 6, 8, 15] as

an input in the n—n oscillation problem are similar but
not the same. We consider the set of a,, caculated

in [16] within the framework of the internuclear cas-
cade model as most reliable. Even this particular model
leads to severa solutions, and the one that we have cho-
sen for 12C (graphite and diamond) may be called
“motivated” by [16]. To estimate the dependence on the
material of the walls and to compare our results with
those in [3], we aso performed calculations for Cu.
Scattering lengths for Cu are not given in [16], and we
used the solution proposed in [3]. Our calculations

were thus performed with the n—A scattering lengths

ac = (3=i1l)fm, ayg, = (5—i05)fm. (15)
The scattering lengths for neutrons are [12]
a,c = 6.65fm, a,, = 7.6fm. (16)

The concentrations of atoms N entering (14) are as
follows:

Nc(grapitey = 1.13 X 107 fm™3,

NC(diamond) = 1.63x 10_16 fm‘s,

Ng, = 0.84x 107 fm™.
In accordance with (14), the optical potentials are
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then given by
Uncn = 1.95%107 eV,
Upciaan = 28%107 eV, (7
Uy, = 1.66x 107 eV;
Uncn = (0.9-i03) x 107" eV,
Uncgiany = (1.3-10.4) x 107" eV, (18)

Une, = (2-i0.2) x 107" eV.

In this paper, we consider particles (nand n) with ener-
gies below the potential barrier formed by the real part
of the potential. For n and *°C, the limiting velocity is
v =4.15 x 10? cm/s.

4, WAVE PACKET VERSUS STANDING WAVES
It is convenient to use the short notation

for optical potentias (17) and (18), wherej =n, n and
the wall material is not indicated explicitly. We con-
sider the following model for the trap in which n—n
oscillations may possibly be observed. We imagine two
wallsof type (19) separated by adistance of L ~10° cm,
i.e., the one-dimensional potential well of the form

U;(x) = {8(=x—L) +8(x} {V,—iW;8,3 , (20)

with 8(x) being the step function. Our goal isto follow
the time evolution of the h component in such a trap,
assuming that the initial stateis a pure n one.

Thefirst question to be answered is how to describe
the wave function of the system. Two different
approaches seem to be feasible, and both were dis-
cussed in the literature [4, 6, 8]. Thefirst isto consider
oscillations occurring in the wave packet and to inves-
tigate to what extent reflections from the walls distort
the picture compared to the free-space regime. The sec-
ond approach is to consider the eigenvalue problem in
potential well (20), to find energy levels for n and n,
and to consider oscillations in this basis. Because of
different interactions with the walls, the levels of n and
n aresplit and the n levelsacquire annihilation widths.

At first glance, this approach might seem inadequate
because, in atrap with L ~ 10° cm, the density of states
is very high, the characteristic quantum number corre-
sponding to the UCN energy isvery large, and the split-
ting OE between adjacent nlevels (or between thelevels
of the n and n spectra) is extremely small. The values
of al these quantities are given below, and it follows
that 6E < 104 eV. However, this approach cannot be
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discarded without further analysis, because the n—n
mixing parameter € = 1022 eV ismuch smaller than dE.

To understand the relation between the two
approaches, we note that the initial conditions corre-
spond to a beam of UCN provided by a source. The
momentum spectrum of UCN depends on the specific
experimental conditions. In order to stay on general
grounds and, at the sametime, to simplify the problem,
we assume that the UCN beam entering the trap hasthe
form of a Gaussian wave packet. We suppose that, at
t =0, the center of the wave packet is at X = X,, and,
hence,

-1/4

W(x t=0) = (1)

0 (x—%)° . O (21)
xexp[-)—(x )ZO) +iko(,
0 2a O

where a is the width of the wave packet in coordinate
space. The normalization of wave function (21) corre-
sponds to one particle in the entire one-dimensional
q)me!

+o00

J’dx|ka(x,t =0) = 1. (22)

For E = 0.8 x 107 eV and the beam resolution

AE/E = 1073, we have

k=123eV, a=32x10"°cm. (23)

The width of wave packet (21) increases with time
according to

. nt D2}1/2~ t
= + = = —_—
a a[l E}naﬂ e

and becomes comparable with the trap size L for t ~
10° s. For the wave hitting the wall and the reflected
wave to be clearly resolved, the condition a/v < 1, or
a < L must be satisfied, where 1, ~ 1 s is the time
between two consecutive collisions with the trap walls.
Reflection of the wave packet from the wallsis consid-
ered in detail in the next section. Here, we show that t ~
103 sisthe characteristic time needed for the rearrange-
ment of the initial wave packet into stationary states of
the trapping box.

We consider the eigenvalue problem for potential
well (20). The parameters of potential (20) for neutrons
areV,=2x107 eV and L = 10° cm. The number of lev-
elsis

(24)

10®

M = =
Tt

LJ/2mV _ (25)
L8
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According to (23), the center of wave packet (21) has
the momentum k = 12.3 €V, which corresponds to a
state with the number of nodesj = 2 x 10" and kL = 6 x
107 > 1. Positions of such highly excited levels in a
finite-depth potential are indistinguishable from the
spectrum in a potential box with infinite walls. There-

fore,
~ 24 -0
¢j(x)~A/Esmonx, W = T

Wave functions (26) describe semiclassical states with
j > 1in a potential well with sharp edges. The “fre-
quency” w is very high compared to the width of the
wave packet in momentum space,

(26)

w; = 6x10°cm > v —%~2><10 cm™
a

This implies that the wave packet spans over a large
number of levels. To determine this number, we note
that the distance between adjacent levels around the
center of the wave packet is

3E = E;.,—E; 010 ev.

The highly excited levels within the energy band

AE = 10°E010 " ev

corresponding to wave packet (21) are to a high accu-
racy equidistant, as they should be in the semiclassical
regime. The number of stateswithin AE is

Aj = AE/SE 010"

and their density in momentum spaceis

p(w) = apj = L/mO10° eV ™. (27)

We can now answer the question formulated at the
beginning of this section, namely, whether the n—n
oscillations in the trap should be described in terms of
the wave packet or in terms of the stationary eigenfunc-
tions. At t = O, the wave function has the form of the
wave packet (21) provided by the UCN source. Due to
collisionswith thetrap walls, transitionsfrom theinitial
state (21) into discrete (or quasi-discrete for n) eigen-
states (26) occur.

The time evolution of the initial wave function (21)
proceeds according to

W(xt) = Idx'G(x,t; X, 0)P, (X, 0), (28)

where G(x, t; X', 0) isthe time-dependent Green’s func-
tion for potential well (20). Using the spectral represen-
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tation for G, we can write

Wx 1) = 3 e 9,00 [d0T (), 0).  (29)
j

In the semiclassical approximation, the distance
between the adjacent levelsis 8E = 171, and, therefore,
onemay think that, att =1, i.e., already at thefirst col-
lision, the neighboring termsin (29) would cancel each
other. But thisis not the case. Indeed,

¢+ 1(X)exp(—iEj.1t) + ¢;(x) exp(-i E;t)

= eXTE/EIEt)[exp(lwx)%H epo (x— vt)%

—exp(—iw, x)%L + exp —|—(x+ vt)%}

Therefore, thereisaconstructiveinterference at x = +vt
either in the first or in the second term, respectively.
This is true with the whole sum of terms in (29) taken
into account, and, hence, we can pass from summation
tointegrationin (29). The overlap of the wave functions
entering (29) can be easily evaluated, provided the cen-
ter of the wave packet X, is not within the bandwidth
distance a' from the trap walls. The overlap is given by
the integral

IdX o7 (X)Wi(X, 0) =

ﬁrLa)
0 , 2
x dx‘expg—wﬂ(k—w-)x%
I 0 2a 0 30)
_ i
(ZﬁLa)llz
; ., |](x"+xo)2 . ju
xIdx expEl—z—az—l(k—ooj)xE.

At this step, we have omitted the exponentia with the

high frequency (k +w). We next take (x" + x)/(,/2a) as
anew variable and assumethat [Xy| > a, L — [Xy| > a (we
recall that X, is negative because —L < x < 0). The result
isthat

JaXe7T COw(x, 0)
_ iD/_’—_[a]llz
0

(31)

2
a .
= exp%—g(k—ooj)2 + |(k—ooj)xq%.
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Corrections to (31) are of the order of a/L. We now
consider frequency summation in (29). Thissummation
can be replaced by integration over w, because the den-
sity of semiclassical states p(w) is very high. We thus
arrive at

1
l‘IJ(X! t) = /\/_ t [ 1/2
a +i———}
e
5
x CBXp _L-t)z (32)
O 2 t" 0O
2a"Al+
O %L mal
0
+ exp|— a(=x, t) EL
t* 0|0
2’ +
%L g/t
2
a(x ) = (x—xO—vot)Z—it(X_XZO)
ma
o , (33)
. .Kpa . " 0
— 2iko@’(X = Xg) + i =t + 2iKyX, 8" + .
0 0 m 0 o%" EE

The second term in Eq. (32) describes the reflected
wave packet (see the next section). According to (21),
(28), and (32), al that happensto the wave packet inthe
trap is broadening and reflections. This is true during
some initial period of itslife history at least. How long
does this period last? The answer to this question may
be obtained by estimating the accuracy of performing
frequency integration instead of summation over dis-
crete statesin (29).

To estimate the time scale for the rearrangement of
initial wave packet (21) into trap standing waves (26),
it is convenient to introduce the difference

6L|J(X, t) = lpsum(xv t) - lpint(xv t)

between the “exact” wave function (29) and the approx-
imate integral representation (32). Whenever

dw(t) = jdx(|wwm|2—|wim|2)
= 2J’de¢ oY) <1,

(34)

we can consider oscillations as proceeding in the wave
packet basis. With

f(w) = /fi‘;"
2L

a’ W’
x exp%—i(ko—w)z—iint Fi(x—%,) + ikx,

(35)
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we have the estimate

Sw(x 1) = % f(w) —J'dwp( W) f(w)

n

= _z I dwp( W) (f(w) - f(w,))

.. (36)
==y j dwp(w) f'(w,)(w— )
I
- _ézf (wn)(wn+1_wn)-
From (35), we find that
f'(w) = g(w)f(w), @)

g(w) = i(X—Xy—Vt) —(ky—w)a’.

Because f(w) isanarrow Gaussian peak, we can substi-
tute g(w) by g(k,), and then (36) resultsin

T
SY(X, 1) = 57 (X=X = Vo) Pine(X, 1). (38)
From (34) and (38), we have
T " 2
ow = T I dX|X —Xo — Vo] [Win(X, 1)
o (39)
a t t
YL mal 107

where a' is given by (23).

Roughly speaking, the timet ~ 10° s needed for the
neutron wave function to rearrange into the trap eigen-
state is comparabl e to the neutron lifetime, and the neu-
tron would rather “die”’ than adjust to the new boundary
conditions. The wave packet formalism is therefore
used in what follows. Some additional subtletiesarising
from the quantization of levels in the trapping box are
discussed in Section 7.

5. REFLECTION FROM THE TRAP WALLS

We return to one-dimensional trap (20). Let the par-
ticle moving from x = —o enter the trap at t = 0 through
the window at x = —L. Att = 1, it reaches the wall at
x =0, the n component is reflected from the wall, and
the N component is partly reflected and partly
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absorbed. The wave packet describing the interaction
with the wall has the form

+o00

W(xt) = n‘s"‘fj’dklpj(k, X)

(40)
x expH (k ko)® +iL(k— k)—|—kﬂ
D 2 0 0
wherej =n, h and
(k,x) = €%+ R(k)e™
W;(k, ) (k()) (a1)
- e +p(k) ‘PJ —|kx

For the n component, p,(k) = 1, because we neglect
very weak absorption of neutrons at the surface. The
integral (40) with thefirst termin (41) istrivia. Tointe-
grate the second term in (41), we note that, due to the
Gaussian form factor with ak, ~ 10° > 1, the dominant
contribution to integral (40) comesfrom anarrow inter-
val of karound k. Expanding R(k) at k—k, and keeping
the leading term, we obtain

R;(k) = p; (ko) exp(i@;(ko))

<[1+igik (ko) + 3,28 k—ko) | (42
IASAY

= p;(Ko) exp(i@;(Ko) +i@j(ko) (K—ko)).

The validity of the last step for n becomes clear from
the explicit expressionsfor p,(k) and ¢,(k) presented
below.

Integration in (40) can now be easily performed,
with the result [17]

1
lle(X1 t) =
ot 1/2
Jma +|—D}
e+ i—f
0
x DEXp _ ainC(Xi t) (43)
E O
2a4]
g
+ R (ko) exp| — et D) .
t
28’ + ——
mza U
2
Qinc(X, 1) = (X+ L—v,t) —|tu
ma’
oo . (44)
. 2 - Ko . 2
—2ikpa"(x+ L) +i - t+2|k0L% +r—n-2—a—ﬂ,
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arefl(xv t) = Ginc(_ X+ (plv t)

+ 2ik, @ %12 +

From (43)—(45), we see that the essence of R(K) in
the wave packet formalism is the same as in the time-
independent approach. Therefore, imposing standard
boundary conditions at x = 0, we obtain the reflection
coefficients

(45)

LS LS
R = pieP(ie () = pogd (40
K, = [2m(V, - E)]"?,
[2m( )] @)
Kn = [2Mm(V,—iW,—E)]"? = k) —ikj,
ng, = S g = ————;, (49)
k™=K K" —(Kp)" —(Kp)
b=l pi=l-— 0 (4
(k+Kq) +(Kp)
For *2C (graphite), in particular,
p =056 6=¢—-q@, =072 (50)

The first term on the right-hand side of (45) can be
written as [-x + L — v(t — @/v)]2 Hence, the collision
timeor timedelay is[17, 18]

@;(ko)

2m
Tl = — = Re—.

Vo Kk (1)

j
For neutrons, i.e., for real k,, Eq. (51) gives the well-
known result

Tn, coll — [ E(Vn - E)] _1/2'

This result is in line with the naive estimate T, o ~
I/vy~108s[8], where| < A isthe penetration depth.

For 12C (graphite), Eq. (51) yields

Tnoot = 0.7%x107°s, Ty = 11x10°s. (52)

Equations (43)—(45) supplemented by the above
inequality make it possible to follow the time evolution
of the beam inside the trap. We imagine an observer
placed at a bandwidth distance from the wall, i.e., at
x = —a. According to (43)—(45), such an observer con-
cludes that the incident wave (the first term in (43))
dominates at timest < 1, —T,, while the reflected wave
prevails at t = 1, + 1,. With this splitting of the time
interval around Nt , N=1, 2, ..., we use the notation
(Nt.-) and (Nt +) for the moments before and after the

Nth collision. Thus, we can calculate the n production
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rate, because we have rigorous definitions of the colli-
sion time and the time interval between the two subse-
guent collisions.

6. ANNIHILATION RATE IN A TRAP

We can now inquire into the problem of time-depen-
dence of the n production probability. In free space, it

isgiven by |qJﬁ(t)|2 = €2t? (see (2)), whilein atrap with
the complete annihilation or total loss of coherence at
each collision, it hasalinear time dependence |, (t)|* =
€’1,t [8].

To avoid cumbersome equations and because we
consider the time interval t < I';", we omit exp(—T gt)
factors. Production of n during the collision can also be
neglected [8]. The difference in collision times (52) for
nand h may also be ignored. In the previous section,
we have seen that the interaction of the wave packet

with the wall is described in terms of reflection coeffi-
cients (46).*

We assume that, at t = 0, a pure-n beam enters the
trap at x = —L. After crossing the trap, i.e., at t = (1),
the ti me-dependent parts of the wave functlons are
given by (12)

Wn(T ) = cos(et,)exp(-ET,),

: . (53)
Wn(t,—) = sin(et)exp[-(ET, + W2)].
After thefirst reflection at t = (1, +), we have
Wn(t +) = cos(et,)exp[—i(ET. —¢,)], 54
Wn(t +) = pﬁsin(ETL)eXp[—i(ETL—%+Tr/2)]-( )

Evolution fromt = (1, +) tot = (21,-) again proceedsin
accordance with (12),

W, = Zsin(2et,)(1+ pe)

(55)

x exp[—i (2ET, — @, + T02)]

=~ €1, (1 + pe®) exp[—i (2ET, — @, + TU2)],

where 8 = @, — @, isthe decoherence phaseand p = p,, .

1 An aternative description using time-evolution operators was
proposed in [8].

2We state this athough the Gaussian form factor in (43) also
depends on time, the corresponding terms in the time-dependent
Schrodinger eguation are of the order of 1/aky compared to the
derivative of the exponent exp(—Et); we also note that the form
factors are the same for nand n up to a constant multiplier.
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The answer for Y(NT,—) now seems evident:

N __iN©

Wa(NT -) = GTL:LL
1-pe (56)

x exp[-1(NET_ -, + T/2)].

This conjecture is easy to verify by induction. For t =
(2t-), the result was derived explicitly in (55). Evolv-
ing (56) through onereflection at t = Nt_ and free prop-
agation fromt = (Nt +) tot = (N + 1)T,-), we arrive
at (56) with (N + 1) instead of N. This completes the
proof.

Therefore, the admixture of n before the Nth colli-
sion,i.e,at =Nt —is
1+ -2 cosNe
Ga(NT 7 = 2l =20 (57)
1+ p°—2pcosh

The annihilation probability at the jth collision is
Po(i) = (1=P)|wa(iT )" (58)

The total annihilation probability after N collisions is
therefore given by

P.(N) = (1-p )Z Wn(kr)f

g\,p(lp)

cosb —p — pN[cos(N +1)6 + pcosNB]
1+ p>—2pcosh b

€ TL(l_p )

= <L (59)
1+p~—2pcosO

_2p

After severa collisions, the terms proportional to pN,
pN, and pN*! may be dropped, because p ~ 0.5
(see (50)). Then, (59) takes the form

2_2
€T,

P,(N) =
() 1+ p®—2pcosh

(1-p)" [
1+ p°—2pcost]

(60)

O 2
><BN(l—p )+1-

Three different regimes may be inferred from (60).
For avery strong annihilation, i.e., p < 1,

P.(N) = €*TN = €T, t. (61)
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1 1 1 1

0 10 20 30 40 50
N
Fig. 1. Plot of the Q(N) = (e?1, t)™P,(N) dependence vs.

N. The solid line corresponds to 12C (graphite); the dashed
one, to 12C (diamond); and the dotted one, to Cu.

For the compl ete decoherence at each collision, i.e., for
0=T

_ 1-p,p2=-pp. 1-p 2
Pa(N) = E‘\llﬂ) (L+py) I+p° (62
For the (unrealistic) situation where 6 = 0,
P(N) = rPNT TR _REZTRII 1P 2y ¢ (g3)

1-p (1-p?J 1-

For the values of p and 0 corresponding to optical
potentials (17) and (18), the quantity

-1 -1
Qu(N) = (€'TEN)™ = (T0t) Py(N)
calculated in accordance with the exact equation (59) is
displayed in Fig. 1. This figure shows that the linear
time dependence settles after about 10 collisions with
the trap walls. The asymptotic value of Q4(N), which
may be caled the enhancement factor, is 1.5-2,
depending on the wall material.

Proposals have been discussed intheliterature [6, 19]
to compensate the decoherence phase 0 by applying the
external magnetic field. Assuming the ideal situation
that the regime 8 = 0 may be achieved in such away and
also assuming that the reflection coefficient p can be
varied in the whole range by varying the trap material,
we plot the quantity N (p) defined as

P.(N) = €’T;Ng(p)

in Fig. 2. Thus defined, Ng(p) obviously depends also
on the number of collisionsN; theresultsfor N=10and
N = 50 are presented in Fig. 2. This figure shows what

(64)
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Nege

800

600

400

200

Fig. 2. Plot of the N dependence vs. p at 6 = 0. The solid
lineis for the number of collisions N = 50; the dashed line
correspondsto N = 10.

can be expected from the trap experiments in the most
favorable, although hardly realistic, scenario.

7. CONCLUDING REMARKS

We have reexamined the problem of n—n oscilla-
tionsfor UCN in atrap. Our aim was to present a clear
formulation of the problem, to calculate the amplitude
of the n component for an arbitrary observation time
and for any given reflection properties of the trap walls.
We have shown that, for the physically relevant obser-
vation time (i.e,, for the time interval less than the
[B-decay time), the process of n—n oscillations is
described in terms of wave packets, while the standing-
wave regime may settle only at later times. By calculat-
ing the difference between then and n collision times,
new light has been shed on the decoherence phenom-
ena. For the first time, an exact equation has been
derived for the annihilation probability for an arbitrary
number of collisionswith thetrap walls. Inlinewith the
conclusions of the previous authors on the subject, this
probability grows linearly with time. We have calcu-
lated the enhancement factor entering this linear time
dependence and found this factor to be 1.5-2, depend-
ing on the reflection properties of the wall material.

Despite the extensive investigations reviewed in this
article and the results of the present paper, the list of
problemsfor further work islarge. The central and most
difficult task isto obtain reliable parameters of the opti-
cal potentia for antineutrons. The beam of n with the

energy intherange of 10~ eV will hardly be accessible
in the near future. Therefore, work has to be continued
along the two lines mentioned above: to deduce the
parameters of the optical potentia the level shifts in
antiprotonic atoms and to construct reliable optical
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models that can be confronted with the available exper-
imental data on n—nuclear interaction at higher ener-
gies. In a forthcoming publication, we plan to present
numerical calculation of the time evolution of a wave
packet into standing waves and to discuss some features
of n—n oscillations in the eigenfunction basis, which
were not discussed in [4]. Ancther task is to perform
calculation for the specific geometry of the trap and a
realistic spectrum of the neutron beam. Thisrequiresan
input corresponding to a specific experimental setting.
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Abstract—An analysis of two-dimensional spatial optical solitonsin alarge-aperture class A laser with a sat-
urable absorber is developed. New types of rotating asymmetric solitons are found by computing the governing
equation. The existence of weakly and strongly coupled solitons is demonstrated. Essential distinctions
between them manifest themselves in the pattern of energy flows. A strongly coupled state evolves with time
from aninitial superposition of the fields of two solitons via successive bifurcations (topological changesin the
energy-flow pattern). © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Optical solitons are blobs of light whose linear (dif-
fractive or dispersive) spread is balanced by nonlinear
compression. There exist optical solitons of two types.
One is the conservative soliton developing and pro-
pagating in atransparent medium with negligiblelosses
[1, 2]. The basic characteristics of conservative solitons
have continuous spectra. In other words, the corre-
sponding peak intensities or blob widths can vary con-
tinuously (within certain limits). The other type is the
dissipative soliton (also called autosoliton) [3]. Origi-
nally, dissipative optical solitons were predicted and
analyzed theoretically in large-aperture nonlinear inter-
ferometers[4, 5] and lasers with saturable absorbers[6].
By virtue of an additional requirement of energy bal-
ance (not imposed in the case of conservative solitons),
the basic characteristics of dissipative solitonshave dis-
crete spectra. This implies substantial difference in
properties between the two types of solitons. Dissipa
tive optical solitons are characterized by an excitation
threshold. In conjunction with the discreteness of their
spectra, this property enhancestheir potential utility for
data-processing technologies. Progress in experiment
and application was stimulated by the introduction of
semiconductor microcavities[7, 8]. The current status of
theory and experiment in studies of optica solitons was
discussed in reviews [9, 10] and a monograph [11].

One-, two-, and three-dimensional dissipative opti-
cal solitons can be implemented in certain lasers with
and without feedback [11, 12]. In this paper, we con-
sider the spatial solitons that arise in a large-aperture
laser with nonlinear (saturable) gain and absorption.
Since the longitudinal variation of the electric-field
envelope is slow, we can use a paraxia eguation aver-
aged over this direction [13], i.e., solitons of this kind
are essentially two-dimensional. We restrict our analy-
sis to media with fast optical nonlinearity, whose

response is determined by instantaneous values of the
electric field envelope. In other words, we neglect the
effects due to finite relaxation times (examined in [11,
14-16]). Under this assumption, field dynamics are
governed by the complex Ginzburg—Landau equation
for the envelope of eectric field. The governing equa-
tion and its key properties are considered in Section 2.
Numerical solution of the governing equation reveals a
number of interesting structures that can be interpreted
asstrongly coupled states of cavity solitons (see[11, 17]
and references cited therein). In this paper, we also
compute several new structures of this kind. However,
the present analysisis focused on the elucidation of the
“internal structure” of cavity solitons, which is most
obviously manifested in the pattern of energy flow. We
apply some well-known methods of the theory of non-
linear oscillations to analyze the pattern of Poynting-
vector streamlines (Section 3). The relatively simple
patterns corresponding to single solitons with axially
symmetric intensity distributions are discussed in Sec-
tion 4. In Section 5, we consider a pair of interacting
solitons and expose qualitative (topological) difference
in energy-flow pattern between widely separated
(weakly interacting) and closely spaced (strongly inter-
acting) solitons. This analysisindicates that the pattern
changes via bifurcations as the distance between the
solitons decreases. The main results are summarized in
the Conclusions Section.

2. MODEL OF A LASER
AND THE BASIC EQUATIONS

Consider a large-aperture laser with saturable gain
and absorption in the optical cavity between plane par-
allel mirrors. Inthe case of fast optical nonlinearity (for
aclassA laser), the paraxial equation for the envelope
E(r, t) averaged over the longitudinal coordinate z (in
the mean-field approximation valid when the electric-
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field envel ope changes weakly over the cavity length) is
the generalized complex Ginzburg—-Landau equation
(see[11])

0E

5 = (i+d)AE+ f(|E/)E.

2.1)

We use the following dimensionless notation here: tis
the time measured in units of field decay time in an
empty cavity, d is the effective diffusion coefficient
characterizing aweakly dispersivemedium (0<d < 1),
and A = 3%/0x? + 0°/0y? is the transverse L apl ace oper-
ator. Thetransverse coordinates x and y are measured in
units of Fresnel zone width wg = [L./2k(1 — |R])]Y?,
where L. is the cavity length, k is the wavenumber in a
linear medium, and R is the product of the amplitude
reflectivities of the cavity mirrors. The function f(|E]%)
characterizes gain and absorption saturation and
includes constant (nonresonant) losses. Without speci-
fying this function, we note here that stable localized
structures (with field amplitude rapidly decreasing
toward periphery) can exist only if

Ref, = Ref(0)<O0. (2.2
Otherwise, the peripheral structure would be unstable
with respect to small perturbations.

Equation (2.1) is invariant under phase shift of the
field

E— Eexp(i®y), (2.3)
shift in the transverse coordinates
E(X,y,t) — E(X+ Xp, Y+ Yq, 1) (2.9

(Pg, Xy, and Y, are constants), and inversion of either
transverse coordinate, such as

Furthermore, Eqg. (2.1) entails the following integral bal-
ance energy relation valid for localized structures [12]:

d 2 _
d—tJ'lEl dry = 2W(E), (2.6)
where the functional W(E) is defined as

W(E) = [[IEI*Ref () ~dTEdry.  (27)

For steady structures (including those moving or rotat-
ing as awhole), it holds that
W(E) = 0. (2.8)

Inthe case of anegligiblefrequency detuning, fisareal
function (Imf = 0). In the calculations presented below,
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we used the function f corresponding to a two-level
medium with saturable gain and absorption:

9 &
1+|E? 1+b|E*

where g, and a, are the linear gain and absorption coef-
ficients, respectively; b is the ratio of gain and absorp-
tion saturation intensities; and nonresonant losses are
represented by the first term on the right-hand side
(equal to —1 on the time scale used here).

f(IE) = -1+

(2.9)

3. FLOWS OF RADIANT ENERGY

In the paraxia approximation employed here, the
Poynting vector S averaged over the period of an elec-
tromagnetic wave with constant (e.g., amost linear)
polarization isrelated to the envelope E, the real ampli-

tude A = |E|, and phase W = argE asfollows[18, 19]:

S= AW = Im(E*0E). (3.1)
In accordance with the laser model, we treat the z axis
as the predominant wave propagation direction, and
governing equation (2.1) involves only the transverse
coordinates rp = (X, y). Therefore, the vector S, =

(S, S) at atimet can be expressed as

S, = A’0.,¢ = Im(E*0.E). (3.2)
The corresponding streamlines (curves with tangents
paralel to S at every point) are conveniently parame-
terized by equations written in terms of afunction 1 of
the arclength (cf. the ray equation in geometrical
optics):

dx _ dy _
a.E - SX(X, y)v dt - %/(Xv y) (33)

Note that these streamlines would be almost every-
where described by Eq. (3.3) with the Poynting vector
replaced by the phase gradient. However, the Poynting
vector is more suitable in most cases. Indeed, whereas
the phaseis not defined at the points of screw wavefront
didocations (where the field amplitude vanishes), the
Poynting vector vanishes at these points. Note also that
both energy flow and Poynting vector have well-
defined physical meaning in the paraxia approxima-
tion. The transverse distribution of the Poynting vector
combined with the transverse intensity distribution pro-
vides an unambiguous description of the field (up to an
insignificant constant).

Equations similar to (3.3) have been analyzed in
detail in the theory of nonlinear oscillations [20, 21].
The degenerate case corresponds to conservative sys-
tems amost everywhere satisfying the relation
div;S; = 0. Conservative systems do not have isolated
closed orbits and are not robust. The phase portrait of
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ENERGY-FLOW PATTERNS AND BIFURCATIONS

such a system consists of “cells’ occupied by trajecto-
ries of similar type that can be altered by an arbitrarily
small changein S(x, y) and §(x, y) [20, 21]. Examples
of Poynting-vector streamlines for conservative optical
systems can be found in [22].

Lasers are dissipative systems (div-S; # 0) in which
the field exchanges energy with active and absorbing
media. To divide a phase portrait into cells of similar
behavior of the trajectories described by x(t) and y(1),
one should find the singular (fixed) points (X, Yo) at
which S(Xo, Yo) = 0 and S/(Xo, Yo) = 0. According
to (3.1), the singular points are of two types, since the
Poynting vector vanishes with field amplitude or phase
gradient. In the former case, the expansion of the com-
plex field envelopein terms of small deviations of x and
y from x, and y, about asingular point startsfrom linear
terms:

1

2
2E(xx)x

E(XY) = EnX+Eypy+
(3.9

1
+ E(yy)xy+ éE(yy)y2 T

where the derivatives, E,, = 0E/0X| - -, €tC., are cal-
culated at the singular point. Then,

Sc=ay, §=-ax (3.5
where q = Im(E E{}) ), and Egs. (3.3) become

dx _ dy _ _

T qy, gt - gX. (3.6)

Solutions to these equations correspond to trajectories
X2 + y? = R?in the phase plane xy. In this case, the point
is a center (i.e., not a robust one) and its type may
change when higher order terms of expansion (3.4) are
taken into account. The analysis below shows that the
point is actually a focus in the case of a cavity soliton
with an axially symmetric intensity distribution.

The expansion of the field about a singular point of
the other type contains a constant term E, # O:

1
E(x,Y) = Eo+ EgyX+ Eqyy + 5Ep0X’
. 3.7

2
2E(yy)y + ...

+ By Xy +

Here, the Poynting vector vanishes at the singular point
(x =y =0)if Im(E; Ey) = Im(Ej Eg)) = 0, and the
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energy-flow streamlines are described by the equations

dx
dt
dy
dt

Im(ES E(xx))X + (q + p)y,
(3.8)

(p_q)x + |m(E3 E(yy))yv

where p = Im(Eg Ey). The type of asingular point is
determined by the roots of the quadratic equation

A +0OA+A = 0, (3.9)

with
o = —-Im(E§ E(XX)) —Im(E; E(yy)),

. o (3.10)

A = Im(E§ Exy)IM(E; E(yy)) — P+ Q"

When o # 0 and A # 0, the singular point is robust
(node, focus, or saddle point). In the general case, to
divide a phase portrait into cells, one must know not
only the singular points and their types, but also nonlo-
cal elements (periodic orbits and saddle separatrices)
[20, 21].

Energy-flow streamlines change with system
parameters, initial conditions, or time. Of particular
interest are bifurcations, i.e., topological changes in
the partition of the phase portrait into cells. All types
of bifurcations admitted by Egs. (3.3) have been well
studied [20, 21], which facilitates analysis of energy-
flow patterns in two-dimensional solitons.

4. SOLITONS
WITH AXIALLY SYMMETRIC INTENSITY
DISTRIBUTIONS

For a steady soliton, the time dependence of the
envelope has the form exp(—ivt), where the frequency
shift v is the eigenvalue of the problem. Solitons with
axially symmetricintensity distributions should be con-
sidered in polar coordinates r and ¢ (x = rcos¢, y =
rsing). Writing

E = F(r)exp(imé)exp(—ivt), 4.1
where the integer m = 0, +1, 2, ... is a topological
index, we obtain an equation for the complex radial
function F(r):

d’F_ 1dF _m’_ 1 2F =
v Tar = T+ prgliv+ FOFPIF = 0. @42

The “instantaneous’ phase W = argE is related to the
radial phase Wy(r) = argF:
W(r, ¢) = Wo(r) + mo. (4.3)
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It isassumed that timet isfixed and W,(0) = 0 since the
constant component of the phase is of no importance.
When the field amplitude is small, Eq. (4.2) reduces to
alinear egquation:

dF 1dF m’
dr? rOIr_rF_p

= F =0, (4.4)

where

2__iV+fO
p- = g (4.5)

Without loss of generality, we can assumethat Rep > 0.
When m = 0, we can use (4.5) with f, —= f(|Fg]),
where |Fo? isthe intensity at the center of afundamen-
tal soliton. The solution to (4.4) can be expressed in
terms of cylinder functions. However, only their asymp-
toticscanbeused atr — oo (at the periphery of asoli-
ton) and r — 0 (when m £ O, since the field vanishes
at the center of the solitoninthiscase). Asr — oo, the

complex amplitude F, thereal amplitude A= |F|, and the
radial phase W, are
F=F,.exp(—pr), A=A,exp(—pT),
p(—pr) p(=p'r) 46)

Y, = const— p"r,

wherep' = Rep > 0and p" = Imp.
Asr —= 0, the power series expansion of the solu-

tion to (4.4) with m # O or the solution to (4.2) with
m = 0 hasthe form

F = For™@+Fr?+...). (4.7)
Substituting (4.7) into (4.4), we find
2
- p

which yields the lowest order term in the radial phase
2

_ r
Wo(r) = 4—(|m| +1)Im

r? fot+iv

Am+D ird
Note that the asymptotic behavior of theradial phaseis
determined by the same complex quantity p both as
r—ooandasr — 0.
In polar coordinates (with basis vectors € and &),

Poynting vector (3.2) for solitons of this type has the
form

2

(4.9)

W m
= Az(r)g%’e, + ?qu. (4.10)
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Accordingly, Egs. (3.3) for energy-flow streamlines are
rewritten as

dr _ ,2d% dp _ m

— i 2
TG G T r2A, (4.11)
and trajectories are described by the equations
do m '
= = - 00, . (412
dar  r’dy,/dr I dwO/d

Thefirst equationin (4.11) isstrictly radial (doesnot
contain ¢). AST — oo, the radius r(1) tends to a con-
stant Ry, where R, isaroot of the equation

TRy = 0,

whoserootsinclude R, = 0. When m=0, thetragjectories
are radia line segments with endpoints on circles of
radius R,. When m # 0, these circles are limit cycles,
and the state point moves along them with a constant

angular velocity Q = mA2(R,)/ R:. We should note that

stability analysis of energy-flow patterns developed
here has nothing to do with time evolution, because a
fixed point in time is considered. However, one can
consider “stability” with respect toincreasein T (hence
the quotation marks). Note that the singular points
(nodes or foci) and limit cycles that are “unstable” in
the limit of r — o become “stable” as the sign of 1
reverses. This property can be used in calculations, in
particular, to find “unstable” limit cycles.

Since Eq. (4.2) for an axialy symmetric localized
distribution is a complex one, it is equivalent to a non-
linear system of four first-order ordinary differential
equations. The equations for the real amplitude A and
the radial phase W, entailed by (4.2) are

dA 1d_A_m _Amjiqu
dr? rdr r2 Udr O
+Re|_\_)_+_.f_(_A__2A 0
+d (4.13)
d*Wo , ,1dAd¥, 1dW, '
dr? Adr dr r dr
. 2
+|mw = 0.
i+d

Since Egs. (4.13) do not contain the phase, the order of
the system can be reduced to three. The equivalent sys-
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Fig. 1. The eigenvalue v for solitons with topological charge m = 1 versus (a, b) gain gy for d = 0 and (c, d) diffusion coefficient d
for gg = 2.13. The second loop of the spiral is shown in more detail in panels (b) and (d) as compared to (8) and (c). The numbers
at the spiral illustrate the change in (Nq, Nk) across the points Sy with vertical tangents. Unstable solitons are marked with circles.
The dots with arrows near the self-intersection in panel (d) (d = 0.04) correspond to the fundamental and excited solitons depicted

in Figs. 2c and 2d, respectively.

tem of equations for A(r), Q(r) = d¥y/dr, and K(r) =
(VA)dA/dr is

dA_ A = dQ Q
dr KA =0, dr+2KQ+r
iv+ f(AY) _
+im—ed = o, (414)
dK 2 2, K=—m’_ _iv+f(A) _
ar K@ rRe T =0

Asr — O0and r — oo, the asymptotics of these func-
tions can easily be determined from expressions (4.6)
and (4.7). Specifically, asr — o, wefind that K —
—-p'<0and Q — —p" >0.Asr — 0, both Q(r) and
K(r) — |[m}/r must vanish simultaneously. These asymp-
totics can be used to cal cul ate characteristics of the soli-
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tonswith axially symmetric intensity distributions con-
sidered here.

The calculations presented below were performed
for a; =2 and b = 10. When all parameters are held con-
stant, every solution to Eq. (4.14) with appropriate
asymptotic behavior corresponds to an eigenvalue v
belonging to a discrete set. The dependence of v on a
control parameter, such as g, or d, is graphically repre-
sented by a self-intersecting spiral with several loops
(seeFig. 1). Different branches of the spiral are charac-
terized by different numbers of zeros Ny and N of the
functions Q(r) and K(r) at r > 0. The numbers N, and
Nk change by 1 (when m=0) or 2 (when misany inte-
ger) at the points §, with vertical tangents in Fig. 1
(N=1,2).

If m=0, then Ny = Nk = 0 for the outer loop of the
spiral (above S;) and the corresponding localized struc-
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Fig. 2. Radial profiles of amplitude A(r) and “radial” phase Wq(r) for stable fundamental solitons with (8) m=0 (gp = 2.11,d =
0.01, v = 0.12036) and (c) m= 1 (gg = 2.13, d = 0.04, v = 0.070658) and for excited solitons with (d) m= 1 (gg = 2.13, d = 0.04,

v = 0.070998) and (b) m= 2 (go = 2.10, d = 0.06, v = 0.0809).

tures are unstable. Here, stability (without quotation
marks) is interpreted in terms of time evolution and is
determined by applying the conventional linear analy-
sis[11]. There exist stable solitons corresponding to the
segments of the next loop where Ng = 1 and N, = 0. If
m =1 or 2, then there exist no stable solitons corre-
sponding to the outer loop, where Ng = Ni = 1. Stable
solitons correspond to the segments of the next loops
where Ny = 3 and N¢ = 1 (fundamental soliton) and
No = 3 and N¢ = 3 (excited soliton). The dots with
arrowsin Fig. 1d represent two close values of v corre-
sponding to the same value of g, and lying on different
loops of the spira near its self-intersection. These
points are associated with the fundamental and excited
solitons with the radial amplitude and phase distribu-
tionsillustrated by Figs. 2c and 2d, respectively.

The analysis that follows is focused on stable soli-
tons. When m = 0, the field amplitude is a monotoni-
cally decreasing function of radius. When m # O, the
radial profile of the amplitude has a single maximum

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

and the radial phase is an oscillating function of radius
with number of oscillations depending on |m| (see
Fig. 2). Note that the fundamental and excited states of
a stable soliton (which correspond to different loops of
spirals similar to those in Fig. 1) differ only quantita-
tively (cf. Figs. 2b and 2c).

According to the foregoing analysis, the pattern of
energy flows in the phase plane is as shown in Fig. 3.
The central point, r = 0, isa“stable” node when m=0
and afocus when m# 0. In the latter case, thispoint is
encompassed by an odd number of limit cycles, i.e., cir-
cles of radius R, defined by the condition

av,
QRy) = SFURy) = 0

(see above). The cycles have dternating “stability”
properties. the cycle closest to the central point is the
“unstable” boundary of the basin of attraction of the
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Fig. 4. Bound states of solitons with m; = my, =0, gg = 2.11, and d = 0.06: (&, ¢) instantaneous transverse intensity distributions

1(x, y) and (b, d) phase portraits for (a, b) weakly and (c, d) strongly coupled solitons. Dashed curves are separatrices associated
with saddle points S. Arrows indicate the direction of the Poynting vector.

focus, the next cycleis a“stable” one that attracts tra-
jectoriesasT —» oo, and the outermost cycleis“unsta
ble” since the trgjectories lying outside it tend to infin-
ity asr — oo. Figures 1-3 illustrate caseswhen m= 0.
Those corresponding to m < 0 can readily be obtained
by coordinate inversion, asin (2.5). When m = 0, the

systemisnot robust (degenerate). Inthiscase, thecircle
encompassing the “stable” node is a set of individual
fixed points rather than alimit cycle. A small perturba-
tion, such as a distant soliton, givesrise to two pairs of
“unstable” nodes N and saddle points S. The four circu-
lar arcs that connect them are separatrices incident to
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the saddle points (see Fig. 4b). This pattern is robust
(not degenerate).

5. WEAK AND STRONG INTERACTION
BETWEEN CAVITY SOLITONS

Suppose that the distance L between the centers of
two solitons is much greater than the size of a single
soliton, which is determined by the radius of the outer-
most limit cycle. Then, the distortion of their structure
caused by the overlap of soliton tails is weak and the
instantaneous field can be expressed as

E = A(ry)exp[i®(ry) +im,¢,]
+A(rp) exp[iWo(rp) +imyd, +i3].

For simplicity, we consider solitons whose topological
charges are equal in absolute value (|my| = [my|). This
implies that the solitons are associated with equal
eigenvalues v and their amplitudes A and radial phases
Y, are similar functions of radius. However, the argu-
ments of these functionsaredifferent: r,and ¢, (n=1, 2)
are polar coordinates with origin at the center of the nth
soliton:

? x+L/2
o= e 3+, cose, = —.

(5.1)

(5.2
sing,, = rX

The constant phase difference 8 affects the interaction
between the solitons [11].

Since the degree of overlap islow, the energy flows
near the solitons centers change insignificantly.
Accordingly, the pattern of Poynting-vector stream-
lines determined by Egs. (3.3) preserves al closed
orbits that encompass the fixed points representing
individual solitons (stable and unstable limit cycles, as
well as closed orbits consisting of individual separa-
trices). Additional fixed (typically, saddle) points may
arise in the intermediate regions between them. The
separatrices emanating from these points partition the
plane into cells occupied by trajectories moving away
from individual solitons. The intensity distribution and
energy-flow pattern corresponding to a steady pair of
relatively weakly coupled solitons with zero topologi-
cal chargesare depicted in Figs. 4aand 4b, respectively.

Bound state (5.1) with a constant phase difference 9
and an arbitrary distance L between the solitons may
vary with time. The constant distances L > R, corre-
sponding to steady (stable or unstable) pairs of weakly
interacting solitons can be found by substituting (5.1)
into (2.8). As the distance between the solitons
decreasesto L < R, inthe course of time, theinteraction
becomes stronger and the phase portrait becomes qual-
itatively (topologically) different from that in the case
of L > R,. Note that this change in interna soliton
structureisdueto bifurcations associated with variation
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of time (not control parameter). The corresponding
field dynamics are found numericaly by solving
Eqg. (2.1) with function (2.9) by a splitting method with
the use of fast Fourier transform.

Figures 4c and 4d show the instantaneous intensity
distribution and energy-flow pattern in a steady two-
hump structure rotating with a constant angular veloc-
ity. This structure can be interpreted as a strongly cou-
pled state of two fundamental cavity solitons (with zero
topological charges). Note that the phase portrait in
Fig. 4d contains only “unstable” fixed points. In other
words, the two nodes that are “stable”’ in the case of
weakly coupled solitons (see Fig. 4b) transform into
“unstable” nodes in the case of strongly coupled soli-
tons (see Fig. 4d). Another manifestation of strong cou-
pling is the absence of “individual” closed orbits
encompassing the nodes (characteristic of weak cou-
pling), which explains the change in “stability” of the
nodes. Almost every trgjectory tends to infinity as
T — 0. The separatrices of the saddle point S lying
between the nodes partition the plane into cells occu-
pied by trajectories going to infinity along different
directions. The bound solitons rotate as a whole without
any didocation of the wavefront. This demonstrates that
field asymmetry is the key condition for rotation [11].

Now, consider the interaction between two cavity
solitons with topological charges m; = m, = 1 (see
Fig.5). The corresponding strongly coupled state
evolves in time from an initial superposition (5.1) of
two independent fields with certain § and L at t = 0. In
Fig. 5a, the individual solitonsthat make up the pair are
represented by the “stable” foci corresponding to wave-
front dislocations. (The field amplitude vanishes at
these points and remains finite at other fixed points.)
The final steadily rotating structure of a strongly cou-
pled state (see Fig. 5f) preserves only one of the three
individual limit cycles associated with each of the two
didocations (the inner “unstable” one, see Fig. 3b).
However, the system has two “common” limit cycles
encompassing both foci, one of which is “stable” and
the other is “unstable.” The trajectories lying outside
the outer limit cycle go to infinity, whereas those inside
it either approach the “stable” common limit cycle or
tend to the stable foci (they are partitioned by the sepa-
ratrices of the saddle point Slying between the foci).
The separatrices incident to the saddle point unwind off
the individual “unstable” limit cycles, while the outgo-
ing separatrices wind to the “stable” common limit
cycle. The overall partition of the phase portrait into
cells of steady-state trajectories characterized by differ-
ent behavior is obvious from Fig. 5f. Actually, transi-
tion between the initial and final states involves atime
sequence of bifurcations of the energy-flow pattern.
Some of these areillustrated by Fig. 5. In particular, the
transition between the phase portraits shown in Figs. 5a
and 5b involves a bifurcation in which the outer two
limit cycles encompassing the left focus coalesce and
disappear. The transition from Fig. 5b to Fig. 5¢ can be
associated with abifurcation at the central saddle point
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Fig. 5. Instantaneous phase portraits of energy flows for an evolving, strongly coupled, rotating pair of solitonswith m; =m, =1,
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Sthat givesrise to ahomoclinic orbit encompassing the
right outer limit cycle. Several bifurcations, including
the last one (in transition from Fig. 5e to Fig. 5f), cor-
respond to the appearance and coal escence of two fixed
points, a node N and a honcentral saddle point S (see
Figs. 5d and 5€).

The phase portrait of a strongly coupled pair of soli-
tons with opposite topological charges (m, =1, m, = -1)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

is more complicated. This rotating and slowly moving
structure evolves from superposition (5.1) in a rela
tively long time interval. The wavefront dislocations
(centers of individual solitons) are represented by the
“stable” foci in Fig. 6. In the final state, both foci are
encompassed by single “unstable” limit cycles (with
opposite senses of rotation corresponding to opposite
charges). The trajectories unwinding off these limit
cycles include separatrices of the adjacent saddle
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points. Each of the three saddle points emits a separatrix
going toinfinity. The separatrices emanating from differ-
ent saddle points asymptotically converge. In addition to
those from the two foci and three saddle points, there are
two “ungtable” nodes in the phase plane. The rays ema-
nating from the nodes include saddle separatrices.

Interactions between cavity solitons can giveriseto
strongly coupled states of other types. In particular,
trains of several solitonswith m= 1 and two- and three-
wave trains including both fundamental and excited
solitons were computed by solving Eq. (2.1) (see
Figs. 1 and 2 in [23]). All of these states are rotating,
and their phase portraits are analogous to those dis-
cussed above.

6. CONCLUSIONS

The phase portraits of energy flows (Poynting vec-
tor) provide important information about the “internal
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structure” of cavity solitons. Eveninthe case of anindi-
vidua soliton with an axially symmetric intensity dis-
tribution, the energy-flow plane is partitioned by con-
centric circles into severa cells occupied by topologi-
cally equivalent trajectories (energy-flow streamlines).
The radius of each circle corresponds to an extremum
in the radial phase distribution. The phase portrait of a
pair of weakly interacting solitons retains some “indi-
vidual” features (fixed points and weakly distorted cir-
cular periodic orbits). The additional “collective’ fea-
tures typicaly include a saddle point with two incident
separatrices coming from closed orbits and two separa-
trices going to infinity. The interaction is weak if the
distance between the solitons is much greater than the
diameter of the outermost “individua” closed orbit. As
the distance between the solitons decreases, a sequence
of bifurcations results in a qualitatively (topologically)
different phase portrait corresponding to strongly inter-
acting solitons. Individual elements (outer trajectories
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in the first place) are replaced by “collective” ones,
such as limit cycles encompassing both solitons. Both
“stability” properties and number of fixed points may
change. Even though the bifurcations alter the distribu-
tion of light intensity, the phase portraits of energy
flows appear to be more informative.

The variety of strongly coupled soliton structures
turns out to be very wide. They include trains and pairs
characterized by strongly asymmetric fields. Analysis
of the corresponding energy flows is also an important
task. Note that analysis of energy diagrams (broadly
analogous to Poynting-vector patterns) would also be
useful in studies of dissipative solitons of different (not
only optical) nature.
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Abstract—The kinetics of atoms with degenerate energy levelsin the field produced by dlliptically polarized
waves is considered in the semiclassical approximation. Analytic expressions for the force acting on an atom
and for the diffusion coefficient in the momentum space are derived for the optical transition Jy = 1/2 — J, =
1/2 inthe slow atom approximation. These expressions are valid for an arbitrary one-dimensional configuration
of thelight field and for an arbitrary intensity. The peculiarities of the atomic kinetics are investigated in detail ;
these peculiarities are associated with ellipticity of light waves and are absent in particular configurations
formed by circularly or linearly polarized waves, which were considered earlier. © 2004 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

At the initial stage (up to 1988), the mechanical
action of resonance radiation on atoms and, in particu-
lar, the motion of atoms in a light field were studied
comprehensively in the framework of the simplest
model of atwo-level atom [1, 2]. This description has
made it possible to explain the physical mechanisms
and theorigin of forcesactingonanatominalight field
and to predict the minimal temperature of |aser-assisted
cooling of atoms (Doppler limit) ksTp ~ 2y, whereyis
the natural width of an excited level. Experimental
observation of temperatures below T, [3, 4] stimulated
further development of the theory. Detailed analysis
proved that sub-Doppler cooling is associated with the
degeneracy of the ground atomic state in the projection
of the angular momentum. It should be noted that, in
spite of alarge number of publications concerning the
theory of sub-Doppler cooling [5, 6], only a limited
class of laser field configurations formed by linearly or
circularly polarized waves was studied. Nevertheless,
these simple examples have made it possible to single
out two main mechanisms of friction leading to sub-
Doppler cooling. In the case of counterpropagating lin-
early polarized waves, we are dealing with the
Sisyphean mechanism of friction, associated with the
action of induced light pressure, while in the case of
counterpropagating circularly polarized waves (0,—0_
configuration), the mechanism is of the orientation type
and is associated with the action of spontaneous light
pressure [7]. However, the analysis of these particular
cases is not exhaustive in view of the nonlinear nature
of interaction of atoms with the resonance field and
gives no idea about the motion of particles in a field
with a more genera configuration. Thus, the problem

on the kinetics of atoms in the field produced by ellip-
tically polarized waves is interesting in itself. For
example, as was proved in our earlier publication [8],
ellipticity leadsto qualitative differencesin the kinetics
as compared to the results obtained by using the two-
level model even in the simple case of a uniformly
polarized field.

Here, the motion of atoms in the field of a one-
dimensional configuration formed by waves with arbi-
trary eliptical polarizations is studied theoretically. In
the framework of the semiclassical approach, the kinet-
ics of atoms is described by the Fokker—Planck equa
tion. Analytic expressions are derived for the force act-
ing on an atom as well as for the diffusion and friction
coefficients in the slow atom approximation for the
optical transition J, = 1/2 — J, = 1/2 (where J; and J,
aretotal angular momentaof the ground (g) stateand an
excited (e) state). These expressions are analyzed for a
number of specific field configurations; in each case,
new terms associated with the ellipticity of waves are
separated and analyzed. The physical mechanisms
leading to these new contributions are interpreted qual-
itatively.

2. FORMULATION OF THE PROBLEM

We consider the motion of atoms undergoing the
optical transition J; —= J in a resonance monochro-
matic field

E(r,t) = E(r)e" +cc.

We represent the spatially inhomogeneous vector

1063-7761/04/9803-0438%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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amplitude in the form

E(r) = E(re(r)e™”, (D
where E(r) is the real-valued amplitude and e(r) is the
unit complex polarization vector. The field phase ®(r)
isdefined so that e(r) - e(r) = cos(2¢(r)) isareal-valued
quantity determining the local ellipticity of the light
field (e(r) is the élipticity parameter and |tang| is
equal to theratio of the sesmiminor axis of the polariza-
tion elipse to its semimajor axis). The Hamiltonian of
a free atom in a rotating (in the energy pseudospin
space) basis has the form

. @2
Ho = = oM — %50, 2
where 6 = w — wy, is the field frequency detuning from
the atomic transition frequency wy, M isthe mass of the
atom, and the projection operator

ﬁe = Z |Jev ueme- Uel (3)
HMe

is constructed from the wave functions of the Zeeman
sublevels |J,, pOof the excited state. In the dipole
approximation, the operator of resonant interaction
with field (1) can be written in the form

V(r) = £Q(r) z Dqe'(r) +H.c., (4)
q=0z%1

where Q =—dE/% isthe Rabi frequency, d isthe reduced
matrix element, and €4(r) are contravariant components
of the polarization vector in the cyclic basis

{en=e,e,=F(e,tie)/ /2.

Operator Dy can be expressed in terms of the 3jm
symbols:

~ ‘]e_ e
Dy = Y Mo mell-1) "

He g

0
><DJ 1J

©)

g DDlg, M-
—He 0 By

The state of an atomic ensemble is described by the

one-particle density matrix p; the quantum-mechani-
cal kinetic equation for this matrix has the form

0, _ i.n “[h

where '{ p} isthe radiation relaxation operator. Inter-
atomic interactions will be disregarded. Since Eq. (6)
describes the evolution of external as well as interna
(trandlational) degrees of freedom of an atom, solving
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thisequation isacomplicated problem. However, inthe
semiclassical approximation, rapid processes of order-
ing in internal degrees of freedom can be separated
from the slow processes associated with tranglational
motion of an atom if the following three basic condi-
tions are satisfied.

1. The dispersion Ap of an atomic momentum con-
siderably exceeds the recoil momentum 7k of a photon:

hk
Ap < 1. (7)

2. The time of interaction between an atom and the
field must exceed the characteristic time of evolution of
the internal degrees of freedom of the atom,

(VG)}, 8)

t>1 = max{y",

where

___loF
3(y°/4+ &)
is the saturation parameter.

3. The recoil energy 72k?/2M is much smaller than
At

hk?

It was shownin[1, 2, 9, 10] that, under the above con-
ditions, Eg. (6) can be reduced to the equation

W(r,p,t) =Tr{p(r, p, t)} for the atomic distribution
function in the phase space (the trace is taken over
internal states of the density matrix in the Wigner rep-

resentation):
% Z P DEW

i—«mw4 0,1, )W
. ap 0 0

(10)

The kinetic coefficients F;(r, p) and Dj;(r, p) are the
components of the force and the diffusion tensor in the
Cartesian basis.

3. KINETIC COEFFICIENTS
FOR SLOW ATOMS

The kinetic coefficients of the Fokker—Planck equa-
tion can be determined from the equations derived by
the reduction of Eg. (6) to Eg. (10) and depend on the
distribution of atoms over internal states. These coeffi-
cients are often determined using the approximation of
slow atoms, which are displaced over a distance much
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shorter than the wavel ength of light during the relaxation
time for internal degrees of freedom; i.e., vi < A or

kv <vy, \G.

In this case, to take into account dissipative processes
correctly, it is sufficient to confine the analysis to the
linear approximation (in velocity v = p/M) for theforce,

(11)

Fi(r,v)=Fi(r) + ZEij(r)Vjv (12)
j
and to the zeroth approximation for diffusion,
D(r, v);; = D(r);. (13)

Quantity F(r) is the force of light pressure acting on a
stationary atom. The asymmetric part of tensor &; cor-
responds to the effective Lorentz force, while its sym-
metric part defines friction.

The general procedure for deriving the Fokker—
Planck equation via the semiclassical expansion in
small parameter fk/Ap is described in detail in[1, 2, 9,
10]. However, the determination of the explicit form of
the kinetic coefficients for atoms with energy levels
degenerate in the angular momentum projection in a
field of the most general form is a complex mathemati-
cal problem even for small values of angular momenta
Jy and J.. For example, in order to determine the fric-
tion and diffusion coefficients, it is necessary to calcu-
late and integrate a matrix exponential [9]. The com-
plexity of such calculations increases rapidly with the
angular momentum of atomic levels. It is probably for
this reason that the atomic kinetics was analyzed only
for several particular light field configurations formed
by linearly or circularly polarized traveling waves.

An aternative method for determining the kinetic
coefficients was proposed (without derivation) in [8].
This method, which is in line with the methods devel-
oped earlier, ismore convenient in our opinion sincethe
search for the coefficients of friction and diffusion is
reduced to solving a single algebraic equation for an

auxiliary matrix ¢ . Here, we will use these results (the
derivation is given in Appendix A).

The gradient force acting on a stationary atom is a
quantum-mechanical mean of the force operator F,

Fi(r) = THR@OG}, Fi(r) = -0V(), (14)

where the density matrix G(r) is the solution to the
optical Bloch equation

[ -idine + L -igor|

i o Ata
+£[V, 0] -y (2J3.+ l)ZDqODq =0
q

(15)
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with the normalization condition Tr{6} = 1 and
describes the steady-state distribution of atoms over
magnetic sublevels in the zeroth approximation in the
recoil parameter and the velocity of atoms. It should be
noted that the explicit analytic form of & for all dipole
transitions was determined in [11, 12].

The coefficient of friction is proportional to the spa-
tial gradient of G:

&(r) = —AkTr{$;0;0} . (16)

The diffusion coefficient can be represented as the sum
of two terms,

D,(r) = D{(r) + D(r), (17)
thefirst of which,
(s) _Y 2
Dij’(r) = g(fik)
(18)

~ 2Jt 1 A - NS Agn
XTI’%”HQ— e4 (DiD]T+ DjDiT)EOD,
O

is due to recail in the case of spontaneous emission,
while the second term,

iy = 1K
Di'(r) = 3 as)
xTr{qii(é&_jj + ﬁja) + (6813i + STQLia)dij} )
is determined by the operator of force fluctuation,
3B(r) = F(r)—F(r). (20)

Matrix ¢ used in formulas (16) and (19) satisfies the
equation (see Appendix A)

[%"' i%ﬁe(bi + %—i%@ﬁe}—%[\?a ¢

oF,
ik

(21)
~¥(23,+1) Y DadiDg =
q

and makes it possible to write the expressions for the
friction and diffusion coefficientsin a universal form.

4. ANALYTIC EXPRESSIONS
FOR KINETIC COEFFICIENTS
FOR TRANSITION J, = /2 — J, = 1/2

We will consider here one-dimensional configura-
tions of a light field, when the vector amplitude is a
function of only one coordinate z. In the general case,
such afield is formed by two counterpropagating trav-
eling plane waves with arbitrary intensities and ellipti-
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cal polarizations. In this case, the local vector field
amplitude (1) can be characterized by four real-valued
quantities: thereal amplitude, phase, lipticity, and the
angle of orientation of the polarization ellipse. In the
coordinate system where the z axis is orthogonal to the
polarization plane, vector (2) in a cyclic basis can be
written in terms of the local elipticity €(2) of the light
field and the angle of rotation ¢(2) of the polarization
ellipse:

82) = cos% + %e‘i %, — cos% - %e‘i %e,.. (22)

For smplicity, we will henceforth consider a one-
dimensional problem. It should be noted that, in the
general case, the kinetic problem can be reduced to a
one-dimensional problem only approximately, since
recoil processes occurring during spontaneous reemis-
sion of phaotons of the field result in the formation of a
coupling between tranglational degrees of freedom of
an atomin all three directions. Coupling in the longitu-
dinal and transverse directions relative to the z axis can
be neglected when the width Ap of the momentum dis-
tribution in the transverse direction considerably
exceeds the width Ap, of the momentum distribution in
the longitudinal direction (Apy > Ap,) and the recoil
effect in the transverse direction does not lead to a
noticeable change in the momentum distribution. Such
a model is applicable, for example, for a problem on
interaction of an atomic beam with a transverse light
field. Henceforth, we will assume that the force and the
diffusion tensor are functions only of coordinate z and
the corresponding velocity component, which will be
denoted by v. In the notation adopted here, it is conve-
nient to express kinetic coefficients in terms of the gra-
dients of light field parameters: [1,®, ¢, and [,£ (gra-
dients of the phase, the angle of rotation of the polariza-
tion ellipse, and the lipticity) aswell of O,A (A =InE)
(gradient of the logarithm of the real part of the field
amplitude).

4.1. Force

Using theexplicit form for matrix & (15), we obtain
the following expression for force in the zeroth order in
velocity:

4G,

F =176,

[6(tan(2£) 0,6 —O,A) + ‘-Z’DZcb] (23)

For the sake of simplicity, weintroduced here the effec-
tive saturation parameter G, = Gcos?(2¢). The first
term, proportional to 9, is the force of induced light
pressure emerging from the gradients of ellipticity and
light field amplitude, while the gradient of phase makes
a contribution to the force of spontaneous light pres-
sure, associated with spontaneous rescattering of pho-
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tons. It should be noted that expression (23) does not
contain the contribution from the gradient O of orien-
tation of the polarization elipse. Thisis due to the spe-
cific form of matrix & for optical transitions J;=J —»
Je = J (Jisahalf-integer) [12, 13], for which the mag-
netic sublevels of the excited state are populated uni-
formly (isotropically).

4.2. Coefficients of Friction and Diffusion
Coefficients of friction, & = &, and induced diffu-
sion, DO = DY), can be written in the general form,

E = hZXBB'DzBDzB‘! (24)
BB

D" = ﬁZZ@BB-DZBDZB', (25)
Bp'

where summation indices 3 and 3' correspond to { A, €,
®, @}, and components Xps and Ypg can be expressed
inthe parameters of thelight field. Sincein the problem
under investigation we are dealing only with gradients
along the z axis, the coefficients of friction and induced
diffusion contain only symmetric combinations of non-
diagonal (B # ') terms: Xpg + Xpp @d D + Dp. It
should be noted that expressions Xpg and Y are also
applicablein the 3D formulation of the problem. Inthis
case, it remains for us to calculate the required gradi-
ents of the light field parameters to find the tensors of
friction and diffusion. Note that, in the most general 3D
formulation of the problem, we must take into account,
in addition to the available gradients of { A\, €, ®, @}, the
two angles describing the rotation drawing from the
plane of the polarization ellipse. However, for 3D prob-
lems in which the plane of the polarization ellipse
remains unchanged, the above results are sufficient.
The expressionsfor the components of the coefficients
of friction Xpg and diffusion 9ge are given in Appen-
dix B.

Spontaneous diffusion coefficient D® = DY is pro-
portional to thetotal population of the excited level and
isindependent of the external field gradients:

y(tik)® G

(s) —
D™ =75 1+G,’

(26)

The expressions for the force and the coefficients of
friction and diffusion derived here make it possible to
describe the kinetics of slow atoms with the optical
transition J,= 1/2 — J, = 1/2, whichisasimple model
for atoms with energy levels degenerate in the angular
momentum projection. It should be noted that simple
configurations of light field exist, which are character-
ized by the gradient of only one parameter. For exam-
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ple, a standing uniformly polarized wave is character-
ized by intensity gradient O,A, a traveling uniformly
polarized wave is characterized by phase gradient [1,®,
the field of the 0,—0_ configuration is characterized by
gradient [, of the orientation of the polarization vec-
tor, while thefield of thelin O lin configuration is char-
acterized by ellipticity gradient (€. For these configu-
rations, the coefficients of friction and diffusion are
determined by the corresponding diagonal elements g

and D,

5. UNIFORMLY POLARIZED FIELD

Inauniformly polarized field, the dlipticity and ori-
entation of the polarization ellipse are independent of
the coordinate; i.e., such afield is characterized only by
the gradients of phase and intensity. On the other hand,
precisely these gradients appear in the description of
the atomic kinetics in the nondegenerate two-level
model of an atom [1, 2]. For this reason, it would be
especially important to consider this type of light fields
separately and compare the expressions for the kinetic
coefficients (force and coefficients of friction and diffu-
sion) obtained in this way with the available results for
the two-level model of an atom. This will enable usto
determine the differences associated with the degener-
acy of atomic levels in the angular momentum projec-
tion and to single out the effects determined by the
ellipticity of alight field.

5.1. Elliptically Polarized Traveling Wave

A simple example of auniformly polarized configu-
ration of a light field is a traveling plane monochro-
matic wave,

E(zt) = E,eee’ +c.c. (27)

Light field amplitude E, and polarization vector e are
spatialy homogeneous, while phase ® = kz is a func-
tion of the coordinate. The force acting on an atom in
thisfield is proportional to phase gradient (23) and is
a force of spontaneous light pressure by nature.
Expressions (B.3) for thefriction coefficient, aswell as
the expressions for the force, coincide in form with the
results for a two-level atom with an effective satura-
tion parameter of G,. The most significant difference
from the model of atwo-level atom appearsin expres-
sion (B.19) for the diffusion coefficient,

zkz\_/ Gs

DY =17
41+G,)°

(28)

2
x| (1+G,)?+3sin’(2¢) + G,0 - —Y D};
[ 7 yii4 + 5

namely, an additional term proportional to sin?(2€)
appears, which is significant in a low-intensity field
(G, < 1). It is well known that induced diffusion of
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atoms in atraveling wave is associated with fluctuation
of the number of photons scattered from an atom [1, 14].
This quantity is determined by the statistics of the num-
ber of scattered photons; for atwo-level atom in alow-
intensity field (G < 1), the distribution is of the Pois-
son type. The presence of the additional term in
expression (28) indicates a deviation from the Poisson
distribution in the statistics of the number of photons
scattered in a low-intensity field. These deviations are
due to correlation of processes of emission of photons
with the o, and o_ polarization in an élliptically polar-
ized field. Indeed, the scattering probability o, of acir-
cularly polarized quantum of the externa field in a
small timeinterval of At,

1+ sin(2¢)
2

depends on the degree of dlipticity and the probability
L. of finding an atom in the ground state with an angu-
lar momentum projection of pgy = +1/2 (1t + 1L = 1). Let
us suppose, for example, that a o, photon was scattered
in acertain interval; then, . = /3 and = 2/3 for a
subsequent interval in accordance with the relative
probabilities of spontaneous decay via the channels
|be = 120 |y = 1/200and |l = 1/20— |y = -1/20)
On the contrary, after the scattering of a o_ photon, we
have 1, = 2/3 and 1= 1/3. Consequently, for € # 0, the
scattering probability for a photon (of any type),

p. = YG AL,

p.+ . = Y21~ (T -T)sin(2e)]At,

depends on the polarization of the quantum scattered
before this event; i.e., the scheme of independent trials
is violated. The average number of scattered quantais
determined by the mean values

- l+sd
7L, = sm(Zs)_
2
Consequently, the statistics of the number of photonsis
not Poissonian any longer; we can conclude from rela-
tion (28) that the statistics is super-Poissonian by
nature.

5.2. Uniformly Polarized Standing Wave

In a uniformly polarized standing wave, the rea
amplitude (1) is a periodic function of coordinate
(E(2) = Ejcos(kz)) and polarization vector eis spatially
homogeneous. In such a field, only the gradient of
intensity A differs from zero; consequently, the force
acting on a stationary atom,

£5G, 0,

F(2) = -t

(29)

is the force of induced light pressure. The coefficients
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of friction and induced diffusion have the form
£(2) = hxan(DN)°,

DY(2) = A*Ta\(O,N)° (31)

The case of a homogeneously polarized standing wave
with an arbitrary analyticity € was considered in our
earlier publication [8]. Henceforth, we will consider
only someinteresting featuresin the kinetics which had
not been analyzed earlier. In particular, we will find the
difference between our results and the results obtained
in the nondegenerate model of an atom on the basis of
spatialy averaged expressions for the coefficients of
friction and diffusion.

The gradient force averaged over the spatial period
of alight field vanishes ((F(2) (= 0); the friction coeffi-
cient can be represented as the sum of two contribu-
tions:

(30)

el = [0+ (g [1 (32)
Thefirst term,
_ Ak dys(2+3)
&,0= 2 [(1+ 36)3/2(52"'\/2/4)
(33
_3(8+35 +155 +20S,-8(1+S)%)
y(1+8)>

corresponds to the expression in the two-level model of
an atom [1] with the effective saturation parameter

SS ﬁ23(62+y2/4) ( )
The second term,
. ,[38sin’(2e)S.(4+3S)
R TR } &

isan additional contribution to friction and may be inter-
preted in terms of the probabilities of transitions between
dressed states of the atom (Sisyphus effect) [8, 15]. For
small saturation parameters (S, < 1), the main contribu-
tion to this effect comes from transitions between
dressed states, which correspond to the Zeeman sublev-
els of the ground state; this leads to an additional con-
tribution to friction.

In the low-intensity limit of the light field (S < 1),
coefficients [§,and [§ ,Lhave the form

Ak dyS
o= 2= 36
[El 2 62+y2/4 ( )
0= hk235in2(2£)6788. (37)
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Contribution [§,Ccorresponds to the well-known Dop-
pler mechanism of friction [1, 2]. For large detunings
(d>y), thereation

Bo
(£,

holds, which shows that, in an dliptically polarized
field (g # 0), the additional contribution can exceed the
result for the two-level model by severa orders of mag-
nitude.

In intense fields (S > 1), the expressions for the
coefficients assume the form

: 5
= 63|n2(2s)—2
Y

20 (V -125 )«/_

a= k —_ I N T
0= e =3 (38)
= 7SN (2035 (25)5“58. (39)

It should be noted that the sign of the friction coef-
ficient in the two-level model of an atom in a high-
intensity field is determined not only by the sign of
detuning, but also by its magnitude (38). Theinclusion
of degeneracy of atomic levels leads to the following
interesting effect: for field ellipticities sin?(2e) > 1/3, in
view of additional contribution (39), the sign of the
total friction coefficient (32) is determined only by the
sign of detuning: heating for & > 0 and cooling for d < 0.

The averaged coefficient of induced diffusion, as
well as the friction coefficient, can be presented as the
sum of two terms:

Dm0 = o0+ %o (40)
The first term represented the familiar result [1] for a
two-level atom with anew parameter S:

) 22 2,252
Din= MKYS  AKE) 5, 3
8 Y 2

(41)

1535 + 408, + 24 + V2 (52 + y¥4)
8(1+5)*

The second term,
#2Kk’sin’ (2¢)
Y

3C052(28)

Y0 =

[35 S(4+3s)
8(1+5)%

is additional as compared to the two-level model of the
atom and describes the contributions from the diffusion
processes associated with Zeeman degeneracy of
energy levels.
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Fig. 1. Temperaturein units of #y/kg as afunction of detun-
ing for various ellipticities of the light field: the solid curve
corresponds to the linear polarization of the field, the

dashed curve corresponds to a field ellipticity of sin?(2) =
1/3, and the dotted curve is the formal limit for the circular
field polarization.
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Fig. 2. Temperature in units of 7ySY%/kg as a function of
detuning for various dlipticities of the light field: the solid
curve corresponds to the linear polarization of the field and
the dashed curve correspondsto afield elipticity of € = 1712.

According to [1], the expressions written above for
the coefficients of friction and diffusion averaged over
the space period make it possible to estimate the tem-
perature of the atomic ensemble, kgT = DG with-
out taking into account localization as afunction of the
field elipticity. In awesk field (S, < 1), we obtain

_h (9sin’(26)8° + y?) (45" +Y7)
06(12sin°(2€)8° + 3sin°(2€)y° + 2y°)

keT = 43

The diffusion coefficient is positive; consequently, the
steady-state distribution of atoms is possible only for
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< 0 and the expression for temperature has sense
only for & < 0. For the linear field polarization, the
result can be reduced to the known expression for the
Doppler temperature of laser cooling in the model of a
two-level atom,

_h(43°+Y).

kgT(e=0) = 195

(44)

the minimum of thistemperatureis attained for & = —y/2
and amounts to kT = Ay/3. In the general case, the
inclusion of thefield polarization leadsto adightly dif-
ferent dependence of temperature on detuning (Fig. 1).
It can be seen that the temperature can assume values
smaller than in the case of the linear polarization of the
field. It can be verified that the lowest temperature
valueisreached for afield ellipticity of || — 174 (i.e.,
for the circular polarization).

In the other limiting case of a high-intensity light
field (S > 1), the atomic temperature can be estimated
using the following dependence:

_h
KeT = —5 (45)

(3cos’(2¢) + sin’(2¢))(48° +y))'./S.
Bcos’(2€)(365in°(2€)2 + 9sin’ (2€)y° + v — 1289

Here, we can separate two different cases. Inthefirst
case, when thelight field ellipticity issin?(2e) = 1/3, the
direction of the kinetic process is determined only by
thesign of & (cooling for & < 0). For afield elipticity of
sin’(2e) < 1/3, cooling takes place for detunings
belonging to the following two intervals:

_y«/(3—9sin2(2£))(93in2(25) +1)

> <0<0,
6—18sin"(2¢)

(46)

55 VJ(s—gsinz(zs))(gsinz(zs) +1)
6 —18sin"(2¢)

In particular, for the linear field polarization, the
expression for temperature assumesthefamiliar form [1]

7 (48 )" /S

keT(e = 0) =
° 20 125%—y?

(47)

The dependence of temperature on the light field detun-
ing for light field ellipticities of sin?(2¢) < 1/3 is shown
inFig. 2.

It should be emphasi zed once again that the estimate
for temperature is the ratio of the friction and diffusion
coefficients; i.e., this estimate is based on slow atom
approximation (11). It iswell known [1], however, that
the applicability of this approximation is restricted by
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rather severe conditions even in the two-level model of
an atom in a standing wave in view of the presence of
light field nodes. In the case of a nonzero elipticity of
thelight field, this problem requires additional analysis,
which will not be carried out here.

5.3. Uniformly Polarized Field of a “ Mixed” Type

In the general case, auniformly polarized field may
simultaneously contain the amplitude gradient and the
phase gradient. A situation of thiskind arises, for exam-
ple, in the field formed by counterpropagating waves
with identical polarization ellipses, but with different
amplitudes. The friction and diffusion coefficients in
such afield contain, in addition contributions diagonal
in gradients, crossed contributions X,e and Ppe. It
should be noted that the additional contribution to the
friction coefficient exhibits an even dependence on
detuning &, while the additional contribution to the dif-
fusion coefficient is an odd function of 6. Thus, in a
“mixed”-type field, an “abnormal” dependence of the
friction and diffusion coefficients on the detuning is
observed (in particular, the friction coefficient does not
vanish in the case of exact resonance, 6 = 0, owing to
additional contributions X ¢ and Xoa; See Appendix B).

6. NONUNIFORMLY POLARIZED FIELDS

It iswell known that sub-Doppler cooling of atoms
is possiblein fields with nonuniform polarization. Sim-
ple examples of this kind are fields with an ellipticity
gradient (lin Olinfield configuration) and fieldswith an
orientation gradient (o,—o_ field configuration). In the
former case, thefield isasuperposition of counterprop-
agating plane waves with linear polarizations oriented
at right angles to each other:

—ikz

Ez 1) = E(e€“+ee’ e’ +cc. (48)

Here, E,isthe amplitude of each wave, while vectorse,
and g, describe linear polarization of the counterpropa-
gating waves along the x and y axes, respectively. This
expression can be reduced to formula (1) with parame-
ters E(2) = 2E, and €llipticity €(2) = kz. The phase and
the angle of orientation are independent of coordinate z.

A field of the 0,—0_ configuration is a superposition
of counterpropagating waves of circular polarizations
with opposite directions of rotation:

—ik

E(zt) = Efe e +e,6 e +cc.  (49)

Aswe passto formula(l), thisgivesE(2) = 2E,, €(2) =0,
®(2) = 0, and @(2) = kz. The motion along the z axis
changes only the orientation of the polarization vector
of thelight field.

It should be recalled that the expressions for the
kinetic coefficients in these configurations are deter-
mined by contributions (8 )?(B.2) and (I¢ )?(B.18) for
thelin O lin configuration and X, (B.4) and 9, (B.20)
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for the 0,—o_ configuration, which are diagonal in gra-
dients X, and 9, respectively. “Simple” configura-
tions of anonuniformly polarized field are undoubtedly
convenient for analysis of the atomic kinetics and make
it possible to explain the main mechanisms of sub-Dop-
pler cooling in low-intensity fields [7]. However, these
mechanisms do not exhaust the atomic kineticsin fields
with nonuniform polarization since, asfollowsfromthe
general results for the friction and diffusion coeffi-
cients, the presence in the field of severa gradients
simultaneously leadsto new interesting effects and new
mechanisms of sub-Doppler cooling. We will consider
these effectsin greater detail.

6.1. The e-6—€ Field Configuration

A simple example of afield containing al gradients
(of intensity, ellipticity, orientation, and phase) is the
field formed by counterpropagating plane waves of the
same intensity and modulo equal ellipticities, but with
opposite directions of rotation:

E@) = E,8(9)e " +c.. (50)

Here, E, is the amplitude of each of the counterpropa
gating waves and vector é(2) = a,e,, + a_e_; with cyclic
components a,(2) and a_(2) defines the local polariza-
tion ellipse, amplitude, and phase of the field,
a, = —cos%O + %e’ k2 _ c:os%0 + %e" k2g®,
(51)

—ikz_i6

a_ = cos%0+%eikz+ cos%o—%e e’

where 0 is the angle between the principal semiaxes of
the polarization ellipses of the counterpropagating
waves (Fig. 3) and parameter g, characterizes the
degree of ellipticity of the counterpropagating waves.
For field configuration (51), we will use the notation
€—06-€. It should be noted that the familiar configura-
tionslin Olin (g, =0, 6 = 1W2) and 0,—0_ (g, = TV4) are
specia cases of the given field configuration.

6.1.1. Gradient force. For low field intensities
(G < 1), the kinetic coefficients assume asimple form.
For example, the gradient force splits into the sum of
two contributions:

F@) = F@ +F9@,
FO@2) = 24kdS,

x [ cos(2¢,) sin(2kz)(cosB + cos(2¢,) cos(2kz))]

x (1 + cos(2g,) cosbcos(2kz)) ™, (52)

hkyS, sin(4eo)sin(2kz)sin®

S —
@ = 2 1+ cos(2¢,)cosBcos(2kz)’
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Fig. 3. Spatia configuration e-6—€ of alight field. Thefield is produced by counterpropagating waves of elliptic polarization with

dlipticity parameters of € and —€.

Here, the saturation parameter is given by

24’

NRECRET) ©

where Q,=-Ed/#, E, being the amplitude of the coun-

terpropagating waves. Thefirst term, FO, isthe force of
induced light pressure (dipole force), while the second
term, F©®, is the force of spontaneous light pressure. It
can be seen that the force of spontaneous light pressure
induces in this case a periodic optical potential if the
ellipticities of the light waves differ from linear or cir-
cular lipticities (g, # 0, T¥4) and also if angle©@ £ 0; in
other words, the potential of familiar configurations
with linear or circular polarizations is equal to zero.
The mechanism of formation of the force of spontane-
ous light pressure is as follows: spatially inhomoge-
neous anisotropy of atomsis created by anonuniformly
polarized field; as aresult of this anisotropy, atoms res-
catter photons of counterpropagating waves with differ-
ent probabilities, which leads to disbalance of the
forces of spontaneous light pressure. It should be
emphasized that a spontaneous force in the given field
leads to a periodic optical potential that does not van-
ish in the case of exact resonance (& = 0). It should also
be observed that F® is an odd function of detuning &
and an even function of polarization parameters €, and
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8, while F®
and 6.
6.1.2. Friction coefficient. Like the gradient force,

the friction coefficient dlits onto two terms of different
origin:

, on the contrary, isevenin d and odd in g,

{2 = "2 + &9,

0z = Gﬁ\l/( 671K 3 120 cos? (2¢,)
x cos(2kz)[ cos(2kz) + cosBcos(2¢,) ]
x [1 + cos(2g,) cos(2kz) cosb] >, (54)

_3h k ——sinBsin(4g,)

%@ =
x [ cos(2kz) + cosBcos(2¢,)]

x [1 + cos(2g,) cos(2kz) cosb]

After averaging over the spatial period, we obtain

£ = 3kk?S  Sin“Bcos’(2¢,)
Y (1-cos’(2¢,)c0s’0)*” (=5
F00 = 3#k?sin(20) cos(2¢,) sin(4¢,)

8 (1- 0032(280) c:osze)S/2
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It isworth noting that average friction coefficients [§ 00
and [§®cannot be expressed in analytic form at point
0 =0, &, =0, in the vicinity of which we have

i 0’

00 ——;
(0% + 482)*

and

B¢,

FYo0————.
(0 + 482)*

Using the lin—8-in configuration as an example, it was
noted in [16] that such a behavior of the friction coeffi-
cient isassociated with inapplicability of the slow atom
approximation in the vicinity of nodes of the field,
where, on the one hand, the local saturation parameter
issmall and, on the other hand, noticeable gradients of
the field polarization arise (i.e., the field polarization
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changes strongly over distances much smaller than
wavelength A). Analysis of situations in these regions
requires more exact expressions for the force of fric-
tion, which would take into account all orders in the
velocity of atoms.

6.1.3. Diffusion coefficient. The spontaneous diffu-
sion coefficient has the form

o - yzhzkzso[
6

1+ cos(2¢,) cos(2kz) cosO
(56)

__cos’(2g,)sin"@sin”(2kz)
1 + cos(2¢,) cos(2kz) cose} '

It is convenient to decompose the induced diffusion
coefficients into the terms corresponding to different
degrees of detuning, DO = D, + D, + D,, where D, is
the term independent of detuning,

_ yhPKPSy1— cos’(2g,)(cos’ (2kz) cos’B — sin’ (2kz) sin“8) + sin’(2g,)

Do(@) =

2 1+ cos(2¢,) cos(2kz) cosB

(57)

3yA’K’S,  sin”(4g)sin”@sin”(2kz)

8  (1+ cos(2¢,)cos(2kz)cosB)®

The term with an abnormal dependence on detuning
has the form

3h°K’S,sin(4¢e,) Sin@cos(2kz)
1+ cos(2¢,) cos(2kz) cosB

D.(2 =
(58)

| 3c0s’(2¢,) sin“0sin’ (2kz) }

(1 + cos(2g,) cos(2kz) cos)®

while the part of the diffusion coefficient quadratic in
detuning is given by

DL

66°%°k*S,cos” (2€,) Sin° O cos” (2kz)
y(1 + cos(2¢g,) cos(2kz) cosh)

Dx(2 =

(59)
X|1—

cos’(2€,) Sin“Bsin’(2kz)
(1 + cos(2¢,) cos(2kz) cosB)? |

After averaging over the spatial period, we obtain the

following expressions for the diffusion coefficient. The

average spontaneous diffusion coefficient has the form

11°kyS,Qsin®” + cos(20)
6 cos’®

The average induced diffusion coefficient is given by
(DO= Dy} D,[H D, where

M0 = (60)

4 cos’0

M,0=

_ ﬁzkyso[z(l_Qsinze) .\ sin’(2g,)(2sin’(2¢,) + cos’(2g,) cos’ 0 — 1)

17kdS, SiNBSIN(2€,)(Q —1)[2Q%(2 + sin‘0) —3(Q + 1)sin’)

Q3

(61)

_ 31°kS3°(Q-1)sin’®

(D1
? y Q%cos’e
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Q%cos’®

(2Q%Sin0 —2Q%(sin’0 + 1) + (Q + 1)sin’9).
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Fig. 4. Temperature in units of #ySykg as a function of

ellipticity €g of light waves for different angles: 6 = 13

(bold curves), 1U5 (fine curves), and 1710 (dashed curves);
light field detuning 6 = 2y (a) and O (b).

For brevity, we have introduced the notation

Q= Jl - cosz(Zso)cosze.

It should be noted that the coefficients of friction
and diffusion in the e-0—¢ field configuration contain
contributions &® and D,, which are anomalous in
detuning; among other things, this may lead to cooling
in the case of exact resonance. The direction of the
kinetic process (heating or cooling) inthis caseis deter-
mined by the sign of dlipticity g, of counterpropagat-
ing light waves and by angle 6 determining the mutual
orientation of polarization ellipses. The abnormal con-
tribution to friction remains significant for a nonzero
detuning as well. Consequently, heating can be
replaced by cooling or vice versaby choosing an appro-
priate elipticity of the counterpropagating waves and
angle 6. Thetemperaturein the cooling regionisafunc-
tion of ellipticity g, of the light waves and angle 8. Fig-
ure 4 shows the dependence of the atomic temperature
on the ellipticity of light waves for certain angles 6. It
can be seen that the shape of the curves is asymmetric
in elipticity parameter &, however, for a large detun-
ing, this effect becomes less pronounced and the tem-
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perature minimum is attained for wave dlipticities
close to linear. The characteristic increase in the tem-
perature for dlipticities of light waves close to circular
is associated with the specific features of the optical
transition J, = /2 —~ J, = 1/2, in which the friction
coefficient is equal to zero in the limiting case of the
0,—0_ configuration of the light field and, hence, there
is no cooling. Note that friction is present for optical
transition with larger values of angular momentsin the
0,~0_ configuration aso (e.g., for the transition J, =
1—J=2)[7].

6.2. The e-8— Configuration of the Light Field

In this section, we consider an example of the light
field configuration formed by elliptically polarized
waveswith equal ellipticities and the same directions of
rotation for the polarization vectors. In contrast to the
previous case, afield with the e-8—¢ configuration con-
tainsonly the gradients of intensity and ellipticity of the
light field (Fig. 5). In particular cases, when angle 06
between the principal axes of the dlipses is zero, we
return to the case of a uniformly polarized standing
wave; for 8 = 172 and g, = 0, we have a field of the
lin Olin configuration, in which only the dllipticity gra-
dient differs from zero.

In the first order in the field intensity, the explicit
dependence of the force on polarization parameters g,
and 6 hasthe form

F(2 = 2akdS,

sin(2kz) cos’ (2€,)(cosh + cos(2kz))
1 + cos(2kz)cosb — sin(2¢,)sinBsin(2kz)’

(62)

where the saturation parameter S, is defined in terms of
amplitude (53) of the counterpropagating waves. It fol-
lows hence that the force averaged over a spatial period
differs from zero (effect of rectification of the dipole
force):

y cos’(2€,) Sin(2€,) Sin(20) (1 —|sin®| cos(2g,))?

(cosze + sin2(2£0)sin29)2

The mean force is an odd function of the light field
detuning; in addition, it is an odd function of angle 6
and ellipticity €, of the light waves, which is also
observed in the general case of an arbitrary field inten-
sity. It can be proved rigorously proceeding from the
general symmetry relations for the optical Bloch equa-
tion that such aform of the dependence of the force on
parameters 9, €,, and 6 in the e-0— field configuration
takes place for arbitrary optical transitions J; —» Je.
Note that the rectified force vanishesin the case of lin-
ear and circular polarizations €, = 0, 174 for any 6 as
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Fig. 5. Spatial configuration e-6— of alight field. Thefield is produced by counterpropagating waves of the same dllipticity.

well asfor angles8 = 0, £172 in the case of arbitrary €,.
This becomes obviousif we use the symmetry relations
for the force acting on a stationary atom. Reflection in
the xy plane gives the following relation for the force:
[(Fle o, 6) = —[Feo —9). (64)
It can be seen that, for the circular polarization of the
waves (g, = +174) or for angles © = 0, 172, the reflec-
tion in the xy plane leads to the initial configuration of
the light field and, hence, [(FCJ= 0. Another symmetry
relation for the force can be obtained using two consec-
utive reflections in the xy and xz planes:
[FLE o, 8) = —[F(€,, 0). (65)
If the field is produced by waves with the linear polar-
ization (g, = 0), after the spatia reflections mentioned

above, wereturn to the initial configuration of the light
field; i.e., F[{e, =0, 68) = 0 for any 6.

The effect of rectification of the dipole force and the
mechanism for the emergence of this effect was consid-
ered in detail in our earlier publication [17]. We only
note here that the mechanism for the emergence of the
constant component of the dipole force in an e-6—<
field isassociated with spatially inhomogeneous optical
pumping and with the presence of the gradients of the
light field intensity and ellipticity.
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The linear (in velocity) correction to force (62) can
be defined in terms of the friction coefficient; in the
case of alow intensity of the light field (§ < 1), the
friction coefficient has the form

2
671K°3 0 cos? (2¢,) (cos(kz) + cosh)

€@ = -

x (cos(kz)sin® + cosBsin(2g,)sin(kz))

(66)
x [1 + cosBcos(kz) — sinBsin(2g,) sin(kz)] .

Thefriction coefficient averaged over the spatial period
for 6 # 0, tand for field polarizations other than circu-
lar, €, % 174,

3#k’s
y|sinBcos(2¢,)|’

[£0 = (67)

determines the correction to the force for atoms per-
forming above-barrier motion in the potential created
by force (62). Figure 6 shows that the rectified force
produces an optical potential in which cold atoms can
be localized. It is important to note that, with the
appropriate choice of the sign of detuning 9, the force
of friction in the vicinity of the minima of potential
Uy can lead to cooling of atoms. The latter circum-
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Fig. 6. Spatial dependence of effective potential Ugy in
units of 7y (a) and the friction coefficient in units of #k? (b)
for Qg = 100y and for parameters optimal for rectification
(0= 0.46, 8 = 0.51, 5 = 62y).

stance plays an important role for a stable localization
of atoms.

6. CONCLUSIONS

We have derived analytic expressions for the kinetic
coefficients (the force acting on a stationary atom and
coefficients of friction and diffusion) of the Fokker—
Planck equation for atoms performing the optical tran-
sitionJy =12 — J.= L/2inafield of an arbitrary con-
figuration and intensity. The expressions are analyzed
for the fields produced by elliptically polarized waves.
We have considered two important types of light fields:

(i) fields with a uniform polarization, in which the
gradients of dlipticity and spatial orientation are equal
to zero and

(i) nonuniformly polarized fields produced by ellip-
tically polarized waves.

It was shown that, in thefirst case, in the absence of
gradients of the light field polarization, the kinetics of
atoms resembles the results obtained in the two-level
model of atoms (in particular, our results coincide with
the results of this model in the case of the linear elip-
ticity of the light field). In addition, it was found that
our results differ from the predictions of the model of a
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two-level atom in the case when auniform polarization
of thelight field does not coincide with the linear polar-
ization. For light fields of the second type, the effects
resulting from the ellipticity of traveling waves that
produce the field were demonstrated. The two most
interesting configurations were singled out: the e-0—¢
field created by counterpropagating waves of the oppo-
site ellipticities and the e—8—¢ field created by counter-
propagating waves with the same dllipticity (6 is the
angle of mutual orientation of the polarization ellipses
for the counterpropagating waves). For example, in the
e—0—¢€ field, the dlipticity of traveling waves may lead
to sub-Doppler cooling of atoms even in the case of
exact resonance (6 = 0); in addition, anomalous (rela-
tive to conventional sub-Doppler cooling) regions of
heating and cooling are formed. It was shown that, in
the field of the e-6—€ configuration, the dlipticity of
traveling waves leads to rectification of the dipole
force. Note that the optical transition J,= 1/2 — J. =
1/2 chosen for our analysisis asimple example of tran-
sition with energy levels degenerate in the angular
momentum projection. It should also be observed that
the effects described in Section 6 take place for transi-
tions with larger values of angular momenta J, and J,
aswell.
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APPENDIX A

Procedure of Reduction
of the Quantum-Mechanical Kinetic Equation
for the Density Matrix to the Fokker-Planck Equation
for Sow Atoms

The expansion of thekinetic equation for the density
matrix in recoil parameter 7k/Ap has the form

d . _ 2 0) A 0+ A

G P) = L{A(r, p) +ﬁkza—le {p(r, p}t
' (A.D)
@, .
+(5K)°S =—=—Li; {p(r. p}} +...,

( )Zapiap,. (P, p)

where (r, p) are the coordinates of a point in the phase
space. Inthe zeroth order in recoil effects, the evolution
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of the density matrix is determined by the operator
£ (0 A A A
L%y =—[%—|%I‘Iep+ %H%pl‘le}

i~ R At
51V, B +y(23.+ 1) S DepD,
q

(A.2)

corresponding to the optical Bloch equation (15). The
first order terms,

(8 = 5 (FOR+RF(), (A3

can be expressed in terms of the force operator (14).
Second-order corrections contain both induced terms

proportional to the second derivative of operator V(r)
with respect to the coordinate and the term associated
with the recoil effect in spontaneous emission:

i ~ " 2J.+1
LB = —5I0F0. 2 » U2 )
(A4
X Z ij6nm (6In61m+ 5,m5m)EDmpDn

mn=1,23

In order to derive Eq. (10), we make use of the exist-
ence of characteristic time 1. Over timeintervalst < T,
only the changein theinternal degrees of freedom of an
atom, which strongly depend on the initial conditions,
is significant, while time intervals t > T correspond to
the kinetic stage of evolution; accordingly, achangein
the internal states of an atom is matched with the
change in distribution function W [2]. Thus, at the
kinetic stage of evolution, the density matrix isalinear
functional of the distribution function and can be repre-
sented in the form

p(r,p,t) = o(r,p)W(r,p,t) +X(r,p,1). (A5

Here, 6(r, p) isthe reduced density matrix describing
the stationary state of theinternal degrees of freedom of
an atom moving with velocity v,

La0.p) = L150r,p}
5 (A.6)
250.m =0,

with the normalization condition Tr{&(r,p)} = 1.
Closed optical transitions exhibit the property

Tr{ L(p) } = 0, indicating the conservation of popula-
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tion. Consequently, in the zeroth order in recoil, we
have

d ~ _ d _ O PP
aTr{p} = EOW =Tr{L"{p}} =0, (A7)

i.e., thederivative of the distribution function is at |east
of the first order of smallness in recoil, and the zeroth

order f)(o)(r, p,t) can be written in the form
. p, 1) = 6(r, WO, p,1). (A8)

Thus, 6 & isthe part of the density matrix adiabatically

tracing the motion and ¥ is a small nonadiabatic cor-
rection. Indeed, in the zeroth order in the recoil param-
eter, the equation for the density matrix has the form

—o°W(°) d. 2O = (O + L O3 |

X (A.9)

In accordance with Egs. (A.6) and (A.7), we find that,
in the zeroth order in recail, x(o) satisfies the equation

d, ~(0) o
X000 = L%y (A0

with the normalization condition Tr{ )Z(O)(r, p,t)} =0.
The solution to this equations over time periodst corre-

sponding to the kinetic stage of the evolutionis X(O) =0;
thus, nonadiabatic correction ¥ contains terms starting
only from the first order in recoil.

Taking the trace of expression (A.1) and retainingin
it only the terms up to the second order in recoil, we
obtain

°W hkza T{L‘”{ &1 W

Tr{ L8 W

+ (hiK)? Za (A.11)

+ﬁkza ap T %507y .

The last term has a smallness of at least the second
order in recoil and contributes to the diffusion coeffi-
cient. We will not seek these nonadiabatic corrections
to the density matrix as was done, for example, in [15],
but will use an alternative approach. To this end, we
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supplement Eq. (A.11) with the linear combination of
Ea. (A.2),

ﬁkza

2 9° Y EATIR
+ (fk) ;m-ﬁ{qiil—j (g} +..,

d O _ 0)
-d—pg— kZa Tr{¢L {p}}
(A.12)

where §; isamatrix of dimension (2J,+ 1) + (2], + 1).
The left-hand side of this equality hasthe form

9 .0 d.0 d O
Ak =—Trb—p0 = Ak =—Tr;
2 ap, Pt Za EFboltD
(A.13)
d .0

+ﬁkza Tr{dS 0} dt"W+ﬁkZa Tr[;]ildt -

The last term contains the second order in recoil. Over
time periodst > 1 corresponding to the kinetic stage of
evolution, dX /dt = v - [, X ; consequently, the contribu-
tion from this term to the diffusion coefficient can be
neglected since only zero-order terms in velocity are
retained in the diffusion coefficient for slow atoms.
Subtracting expression (A.11) from (A.12) and retain-
ing terms up to the second order in recoil, we ultimately
obtain

°W hkz Tr{divDIjr}W

_ﬁkza Tr{qs &} dtw = hkz T{L.(l){ &YW
0 N OPP
—ﬁkza—piTr{diiL {8} W
(A.14)
+ (1K) zap—T{L(”{ &} W

Tr{¢ L8y w

— (1ik)* Za

+ﬁkzaipm L3 —ﬁkzaipr{¢i£(o){X}} .

Note that by choosing matrix ¢; appropriately, we can

ensure the compensation of the contributions contain-

ing nonadiabatic correction ¥ so that
A1), A~

= Tr{Li"{x}}.

Tr{ &L {5} (A.15)
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This condition leads to the equation for density matrix
®; (21). Matrix ¢ isasolutionto nonhomogeneouslin-

ear equation (21) with a source in the form of the fluc-
tuation of theforce operator (20). Since theforce acting
on an atom should be defined in the zeroth and first
ordersinvelocity, whilethe diffusion coefficient should
be defined in the zeroth approximation, it issufficient to
retain in expression (A.14) only the zeroth order (in

velocity) of matrix 6 (v = 0, r) satisfying optical Bloch
equation (15) for stationary density matrix L(O 6} = 0.

APPENDIX B

Components of Friction and Diffusion Coefficients

Thediagonal elements of thefriction coefficient com-
ponents are functions of only odd powers of detuning o,

Xn = B
MYy @a+e)?

(B.1)

2
+ G, 10— 3cos’(2¢) - =Y tan’ 28}
| (29) - 7L tan’(29)

) (B.2)

+G [6 coS (28) % ' anz(Zs)}
cos’(2e) Y 14+
N sz — cos’(2¢) O
COSZ(ZS) O
dy G,
Va4 + 8 (1+G,)?

(B.3)

Xoo =

Xoo = 0. (B.4)

We will write the nondiagonal elements associated
with correlations of gradients of the amplitude and
phase,

2 2
_ y14-3T]
= + L B.5
Xno (1+Gs)283 y2/4 + &4 ®9
X =
")’
(B.6)
VI, CNT2 ageeioef
2 2 2 2 n"(2e)],
Yy /4+0" yl4+0d O
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elipticity and phase,

G.tan(2€) p°-v/4 .
o = ~-GZ, B.7
® 1+ P yia U (87
Xoe = tan(2¢)
T a+G)
(B.8)
2
x Eﬂ-+Gs+(1_Gs) 2y i 2—3sin2(3e) E
0 yl4+d [
dlipticity and angle,
Xep = o
“" COS(2£)(1+GS)2
(B.9)
%sm (28) e 5—1— G%
cos(2£) 0 (
. —1-——= 1 (B.10)
¢ (1+G) Eb cos (Zs)D
ellipticity and amplitude,
_ 280G, tan(2¢)
T oya+Gy)
0 36°G, + (56, 2y D
x [Bcos (2€) + G2 + 2 2( - )Y 0,
O Va4 +3 0
ne = Mm _3c0(28)(1-G,)
Y(1+G,)’D
(B.12)
N 2G2(y?14—8°) — G, (78° + 11y°/4) EL
V4 + & O
amplitude and angle,
sm 2¢)G, &
Xnp = —220Z) (B.13)
(1+GE) (y 14+ & )
sin(2¢)G,
= 33—, B.14
oA (1+G€)2 ( )
and phase and angle,
oo = Sn(zs)Gj > oy -, (B.15)
(1+G,) y/4+d
Xoo = O. (B.16)

The diagona elements of the diffusion coefficient
components QDBB., which are even functions of 8, have
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the form

1 G
4V(1+G)

Dy +128°sin (28)

AN

4

+G£[—y2+ > y

st (482 +v?) tanZ(ZS)} (B.17)

+ G[3y” + 2(45° + y*)tanl (2¢)] +GZMD
cos (28) 0
1 G O 22 — COS’(2€)

+128°cos(2¢
4y(1+G,)°g  cos(2e) (2¢)

ge

21—5C0$2(2€)

+G{n4#+vﬁ+v
82(28)

(B 18)
2.3+ 2c05 (2¢)

cos (28)
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[(1+G) +3sin”(2e) + G, - T 625}
N

y G

Doo = 377 G,

(B.20)

It was noted above that components %, are sym-
metric in indices BB and, hence, the expression for dif-
fusion coefficient (25) will contain only symmetric
sums Wpg + Py These are two normal nondiagonal
elements even in detuning,

sin(4e) G

Den* e = =3 (1+G,)

2
><[1262— Y 4g,—2 (B.21)

cosZ(Zs) 80032(28)

4
2, .2 Y/I2 O
x 85" +y _y2/4+5ﬂ+G

ysin(2¢)G,

285" —y° }
Ecosz(2£) ’

(B.22)

Finally, wewrite four anomalous nondiagonal elements
leading to asymmetry in the dependence of the diffu-
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sion coefficient on o:
oG,

Bop+Dpp = ——i
PA AP (1+G8)3

. (B.23)

x H-3sin”(2¢) + 65;2/21/—;%-2 +G3,

20sin(2¢) G,
(1+G)*

—otan(2¢) G,
(1+G,)’

Do+ Dpg = (B.24)
gb!bs + gbslb =
(B.25)

[3cos(2£)+G B%+ D+G}

/4+6ﬂ

235G,
(1+G,)*

cos (23) + G,

& cos(2¢)

+ 9

ot Do = (B.26)
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Abstract—A semiclassica method for calculating the total energy and spatial distribution of electron density
in spherically symmetric electron—-ion systems is applied to atoms and both solid and hollow atomic clusters.
Both exchange—correl ation interaction and second-order gradient correction are taken into account. The contri-
bution due to the fourth-order gradient correction is discussed. An expression is proposed for the oscillating
correction to the averaged electron density. An expression is obtained for the equilibrium radius of a hollow
cluster. The dependence of the equilibrium radius of an endohedral cluster on the valence of the central atomis

analyzed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Spherically symmetric electron-ion systems with
fixed distributions of ions can be used to model atoms,
ions, neutral and charged atomic clusters, etc. Their
characteristics are calculated in the Hartree or Hartree—
Fock approximation or by the Kohn—Sham method in
density functional theory [1]. However, the complexity
of these calculations increases with the number of par-
ticles in the system, whereas the ssmpler and more
explicit semiclassica methods become more accurate.
In particular, semiclassical approximations have been
successfully applied in calculations of thermodynamic
properties [2-5] and in analytical treatments of shell
effects in the mass spectra of medium-sized and large
atomic clusters at zero and finite temperatures [6-8].

In this paper, an improved Thomas—Fermi (ITF)
model and correctionsto it are used as abasisfor auni-
fied algorithm for computing local characteristics (den-
sity and potential) and electron energy in a spherically
symmetric electron—ion system. The efficiency of the
proposed algorithm is demonstrated by applying it to
atoms and atomic clusters.

Originally, the semiclassical generalization of the
Thomas—Fermi model based on an energy functional
allowing for the exchange interaction and the lowest
order (gradient) correction was applied to calculate
the energy of the electron shell of afree atomin[9].
The energy functional was minimized over the sim-
plest class of tria functions. To develop the method,
the authors of [10] proposed a quantum-statistical
model in which the electron density was calculated by
solving the Euler—L agrange equation. This model was
used to compute an equation of state in the cell
approximation for awide range of density at zero tem-

perature. Its extension to nonzero temperatures was
presented in [11].

The semiclassical energy functional on a class of
trial density functions has al so been applied to describe
atomic clusters[12, 13]. In[13], the fourth-order gradi-
ent correction was included in the expression for
kinetic energy. The authors claimed (referring also to
anumerical comparison made in computations of
nuclei [14]) that the use of this particular correction
made it possible to attain the best accuracy of mean
electron density.

The simplest semiclassical functional based on the
Thomas—ermi theory was used in [15] to anayze a
hollow cluster as amodel of the fullerene Cgp.

In the present study, a unified semiclassical ITF
model is applied to analyze the properties of these and
other systems. In Section 2, the general model equation
for eectron density is written out, including the
exchange and correlation interactions and the second-
order gradient correction. The model describes average
characteristics of the system. However, it can also be
used to calculate the oscillationsin electron density due
to the discrete nature of the electron spectrum. The
oscillatory effects are discussed in Section 3, where a
corresponding correction to the mean electron density
is derived. The results of computations performed for
particular atoms, solid and hollow clusters, and
fullerenes are presented and discussed in Section 4.
Finally, the principal conclusions are summarized.

Some preliminary results of this study were pub-
lishedin [16, 17].

2. EQUATION FOR ELECTRON DENSITY

In the ITF model, the system of N, electrons occu-
pying avolumeV inthefield U;(r) generated by ions at

1063-7761/04/9803-0455$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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zero temperature is described by the following energy
functional of density n = ng(r) (in atomic units)

EJ[n] = J‘dr

@
<)+ U0 + 2UL(1) |+ €0() + ()],
0 0

wheret(n) isthekinetic energy density including the sec-
ond-order correction to the Thomas—Fermi model [2],

t(n) = tre(n) +3,t(n)

_ i 2/3 5/3_i(Dn)2_
10(3"2) T 2
isthe potential generated by electrons;
_ §|:§]l/3 43 B |:g]l/3 13
) = 200 " Uex“mﬂ L
_ s _ns8g”
X=1a "7 O
€r(n) = —0.033n 3

x[(1+ X3)In(1+ XY +>§<—x2—%},

Uy = —0.033In(1+ X

are the exchange and correlation energy densities [18]
and the corresponding potentials.

The extremum condition for the functional subject
to conservation of the number of particles N, =

drn,(r) entails the Euler—Lagrange equation for
density

-(3n2 ) %U%D —3—16A—n+U(r)—p =0, (4)

where the Lagrange multiplier p isthe chemical poten-
tial of the system and the effective potential U(r) isthe
sum of external, electrostatic, exchange, and correla-
tion terms,

U(r) = Ui(r) + Ue(r) + Uex(r) + Ucorr(r)'
Using spherical symmetry and changing from the

radius to the dimensionless variable x =r/R (Ris aref-
erence length) and from the density to the function
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v(X) = x./n, one obtains a nonlinear integrodifferential
equation for this function and the chemical potential:

1 dv_ @Em)*
18R%dx? 2

—4/3v7/3+ (H—U)V — 0’

v(0) = v(L) = 0,

Ne = 41TR3J’dx'v2(x‘), ©)

Ud() = ‘H‘—Figdxv (x)—jdx%t X0 0ers

It can be solved by Newton’s method in a finite-differ-
ence approximationfor0<x<L > 1.

The ITF model can be used to evaluate the contribu-
tions due to effects ignored in the model (see [7]). In
particular, the contribution to energy due to the fourth-
order gradient correction is expressed as follows [9]

1

AE = —=—(drn*®
7 bagEm)*? ©

[[éﬂ] 9[DrD2An 1.

OpnO "80n0 n 3D nO

3. OSCILLATING ELECTRON DENSITY
IN A SHELL

Solving the Schrédinger equation with the potential
U(r) obtained in the ITF approximation, one can find
the spectrum and wavefunctions of electrons and use
theresultsto calculate the electron density for adiscrete
spectrum. In what follows, thisisdone analytically in a
semiclassical approximation, and the expression for the
oscillating correction to electron density obtained
in[19] for an infinite atom is extended to the case of a
finite system. The anaysis relies on a semiclassical
solution to the Schrédinger equation for the radia
wavefunction, the Bohr—Sommerfeld quantization con-
dition, and Poisson’s summation formula (see [2, 19]
for details). The resulting expression for the oscillating
correction is

u Pe(r)r’
Nosc (T dE d\’
0= 5 | |
v ()
i (_1)k+ssn[2ca(r) +2s0¢, + 2TkA]
Pex(r)

Kk, s=—0
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Here,

Per(r) = /pé(r)—%, p2(r) = 2(E-U(r)),

Rex

Oea(r) = I dr'pea(r')

are the radia momentum and action, respectively;
o, = 0p(R%,); RL, and Re, are the left- and right-
hand turning points, respectively; and A =1 + /2 (I is
the orbital quantum number).

Performing the integral by parts with respect to
energy, retaining the integrated term to the leading

order in the semiclassical parameter at E = |, and
changing to the variable

A’ P (r)
= 1-— =
t NCoparrt Pu)

in the integral with respect to A2, one obtains

(_1)k+ s

= —o00

b (),
Nosc(r) = ——— [t
‘(l)’ ks

®
cos[Zc“t(r) + Zscrth + 2nkpu(r)rA/ ]

Te(r) +Srut

where

acm(r)

Tu(r) = J.pm(r) Tﬁt = Tut(RLt)

isthe classical time. Note that a similar expression for
the oscillating correction is obtained if a,,(r) and t,,(r)
are replaced by the “ complementary” quantities

~ 0 ~ 0
o-ut(r) = O-ut_o-ut(r)i Tpt(r) = Tpt_Tut(r)'

These formulas are used in the computations for atoms
presented below.

Expression (8) for n,.(r) contains a double sum and
an integral of an oscillating function. Their values are
mainly determined by the contributions of the integra-
tion limits and the regions of slow variation of the argu-
ment of an oscillating function. An analysis shows that
the argument of the cosine in (8) varies rapidly when
sz k — 1 for attractive potentials of atomic type
(U(r — 0) — —=2Z/r, where Z is the charge number)
and when s # 2k for anharmonic attractive potentials of
cluster type (U(r — 0) — U(0) = const < 0). In par-
ticular, its derivative with respect to t goesto infinity as
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t — 1 (A — 0). Therefore, only the terms with s =
k—1 and s = 2k are summed for atoms and clusters,
respectively.

Sums of the form

ikCOS(X + kx)
z D) =

a+k

k=—-

can be calculated analytically (see[20]), withi =0and
1 for atoms and clusters, respectively. Performing the
integral by parts and retaining the integrated term to the
leading order in the semiclassical parameter at t = 1,
one obtains an oscillating correction to the electron
density in an atom:

sin[26,(r) + G ((2n + 1)1t—20,)]
412, (r)T58,(r) sin(Tr)

Nosc() = (9)

where

,(r) = Idr'p“(r‘), op = 6,(R)),

0 ~
nsﬂ‘sn+1, &=T“(Or),
Tt TN
~ d
~ rl 0 ~
(N = (== T = (R,

coo_dr 1 1 2
%0 = [ Tamr) T

In the Thomas—Fermi model of a free atom, the radius
isinfinite, ‘[3 =0, and (9) isidentical to the expression

obtained in [19]. In the case of a cluster, the oscillating
correctionis

sin[20,,(r) + a(nr—20%)]

Nosc(r) = , (10
o 81 *p,(r) 1,5, (r)sin(0.5ma)
where
1 20° 1 _1,(r)
n—és——n—“sn+§, a = Lf[O ,
u
RP
dr'
3,(r) =
{ r*pu(r)
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Fig. 1. Radial electron-density distribution D(r) = 4Trr2n(r)
in afree atom predicted by the Thomas—Fermi model (solid
curves) and by the ITF model with Z =10 (circles) and 80
(triangles).
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Fig. 2. Radia electron-density distribution in the central
region of the mercury atom (without exchange and correla-
tioninteractions) predicted by the | TF model (dotted curve),
Hartree model (solid curve), and the ITF model with oscil-
lating correction (9) (thin curve).

the integrals in o,(r) and 1,(r) with respect to r' are
taken from r to the right-hand turning point R, 03 =
0,(0), and 15 =1,(0).

Let us briefly discussthe applicability of the expres-
sions obtained here. Integrating by parts and retaining
theintegrated term, one obtains an accurate estimate for
the integral if the derivative of the argument of the
oscillating function (cosine) in (8) with respect to t is
sufficiently large. In the present case, this derivative (at
t=1)is 2pa(r)r’du(r) for anatomand 2p(r)r’d,(r)
for a cluster. Accordingly, the domains where the esti-
mation procedure used here is not valid are determined

by the pointswhere the factorsin these products vanish.
There exist exactly three such points in the case of an
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aom, r=0,r=R,andr =rg (éu(ro) = 0), which
restricts the applicability of expression (9)to0 <<r <ry,.
In the case of a cluster, there are two such points, r =0
andr =R, and the interval of applicability iswider.

4. ATOMS, ATOMIC CLUSTERS,
HOLLOW CLUSTERS, AND FULLERENES

In this section, the formulas obtained above are
applied to specific spherically symmetric systems:
medium-sized and large atoms, solid sodium clusters,
hollow clusters, and endohedrally doped hollow clus-
ters. The possibility of using a hollow spherical cluster
asamodel of the fullerene Cg, is aso discussed.

The only difference between the electron-on sys-
tems considered in thissection liesin the potential U;(r)
generated by ions.

4.1. Atom

The externa field in an atom is generated by a
nucleus with charge number Z (Z = N, in aneutral atom):

Ui(r) = -Z/r.

Figure 1 compares the radial electron-density distribu-
tions calculated by solving Eq. (5) for neon (Z = 10) and
mercury (Z = 80) with those predicted by the Thomas-
Fermi model. It is well known that the moddl yields a
divergent density at the origin, nye 0 r=2, and the cor-
responding radial density distribution behaves as a

square root, D(r — 0) O Jr. In the ITF model, as
in [10], the effects of second order in the semiclassical
parameter are treated in a self-consistent manner, elec-
tron density is constant at the origin, and theradial den-
sity distribution is a quadratic function of radius
(D(r —= 0) O r?). In the system of units employed
here, the Thomas—Fermi model yields the same curve
for any Z. The figure demonstrates that the I TF results
tend to this universal curve as the charge number Z
increases, whiletheir correct behavior near theoriginis
preserved (see the enlarged inset). Thisisagood illus-
tration of the well-known validity conditions Z*¥3 < 1
and r > 1/Z for the semiclassical description as applied
to an atom.

Figure 2 comparesthe electron density in the central
region of the mercury atom predicted by the I TF model
(without exchange and correlation terms) with and
without the use of oscillating correction (9) against that
calculated in the Hartree approximation [21]. Within its
limits of applicability, the oscillating correction accu-
rately describes the oscillation associated with the con-
centration of electronsin theK, L, and M shells.

The top row in Table 1 shows the results of a self-
consistent calculation of the total electron-shell energy
for the mercury atom and some of its components,
including the exchange energy, the correlation energy,
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Table 1. Energy of the electron shell of the mercury atom according to the I TF model
E Eox Ecorr 5,E 5,E E—Eg + OE Eat
-1.9616 x 10* | -3.3196 x 10> | —1.0086 x 10' | 12772x10° | 7.8599x 10° | —1.8820 x 10* | —1.8400 x 10*
—3.2560 x 10° | —9.9442 x 10° | 1.2770 x 103 7.8632 x 10°

and the second-order gradient correction. The bottom
row presents the exchange and correlation energies cal-
culated as additive corrections (not self-consistently)
by solving Eq. (5) without exchange and correlation
terms. It is obvious that the self-consistent and non-
self-consistent results are very close. This agrees with
the assertion in [7] about the energy correction associ-
ated with the small termsignored in functional (1).

As noted in the Introduction, the calculations per-
formed for nuclei and clusters in [13, 14] took into
account the fourth-order gradient correction in a self-
consistent manner. This correction can aso be esti-
mated for an atom by using expression (6) with the den-
sity obtained by solving Eq. (5). Theresulting estimates
based on the ITF model (with and without exchange
and correlation terms) are aso presented in Table 1.
First, note that the fourth-order correction is smaller
than the second-order one by only afactor of 1.5, which
implies slow convergence of the expansion. Second, the
fourth-order gradient correction cannot be used sepa-
rately, since it must be combined with quantum-
mechanical corrections to the exchange energy, which
have yet to be found (see [9, 22]). Third, the self-con-
sistent treatment of the exchange—correlation interac-
tion weakly affects the values of gradient corrections;
however, thisis not true for clusters (see below).

The last two columns in Table 1 present the values
of electron energy obtained by using the ITF model
(without the correlation term and with fourth-order gra-
dient correction (6) added) and the well-known semi-
classical formula

Eyy = —0.7687452"° + 052° - 0.26997°°.  (11)
For Z > 4, expression (11) corresponds to the depen-
dence of the electron-shell energy on Z in the Hartree—
Fock model within fractions of apercent. A comparison
of the present results with Eg, shows that the error in
the calculated energy is reduced from 6.5% to 2.3% by
taking into account o,E.

The correspondence between the corrections cal cu-
lated in this study and the summands in (11) can be
explained asfollows. Thefirst termin (11) isthe energy
predicted by the Thomas—Fermi model, the second one
is the Scott correction, and the third one is the sum of
the exchange energy and a finite part of the second-
order gradient correction. Subtracting the exchange
energy from the last term in (11) for Z = 80, one finds
that the finite part of the second-order quantum-
mechanical correction is much smaller than the value
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obtained in the present calculations (fourth column).
Thisis explained by recalling that the Scott correction
was shown in [23] to arise from the summation of a
divergent series of quantum-mechanical corrections to
energy. The divergence is due to the inapplicability of
the semiclassical approximation in the central region of
an atom. Thus, the large values of d,E and d,E given by
the ITF model are explained by the contributions of this
region that are responsible for the Scott correction.

4.2. Atomic Cluster

In the jellium model of an atomic cluster, N; ions
uniformly distributed over the volume of radius R gen-
erate the potentia

UN 2

[ _DLD} <

DZR[S Rl TR
u(r) =0

EI——I\E r>R

0 R

where N, = wN; (w is the valence of an atom). The

radius of acluster isrelated to the number of electrons
1/3

init: R=r,Ng ~, whereristhe Wigner-Seitz radius.

Figure 3 takesthe electron density distributioninthe
cluster Nasg (rs = 3.92, R(N = 58) = 15.17) predicted
by the ITF model with and without oscillating correc-
tion (10) and compares it with the results obtained by
the Kohn—Sham method borrowed from [24]. Expres-
sion (10) provides a good approximation of the oscilla-
tion amplitude and phase outside the neighborhoods of
r=0andr =R, =16.5, in agreement with the analysis
presented in Section 3.

Figure 4 compares the total energy per atom

Ee+ Ei
N

E
N

for a sodium cluster with its analog for bulk metal. The
energy of ions uniformly distributed over a ball of

radius Ris E; = 0.6N2/R. The energy calculated in this
study agrees (within 1-5%) with the semiclassica
results obtained in [13]. The agreement improves with
increasing number of particles, i.e., with a decreasing
semiclassical parameter (which is proportional to
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Fig. 3. Relative electron-density distribution in Nasg pre-
dicted by the ITF models with and without oscillating cor-
rection (10) (thick and thin solid curves, respectively) and
by the Kohn—Sham method in [24] (symbols). The dotted
curve isthe distribution of ions.
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Fig. 4. Total energy per atom in sodium clustersin units of
the absolute value of energy per atom in a metal (J&,| =

2.252 €V). The dotted and solid curves correspond to the
ITF models with and without the fourth-order gradient cor-
rection (6), respectively. The symbolswere obtained in self-
consistent calculations using correction (6) [13].

N."®). Furthermore, Fig. 4 demonstrates that the addi-

tive contribution of correction (6) istoo large and a bet-
ter result is obtained without it.

Theresults presented in Table 2 for the cluster Nay gy
illustrate the contributions to the energy of electrons
dueto the exchange, correlation, and gradient terms. As
in Table 1, the top and bottom rows here show, respec-

Table 2. Energies of electrons and ionsin the Nayo cluster

E. Eo Ecor | OF 8,E E
—337.71|-11.254 | -3.6959 | 0.2126 | 0.36 | 329.76
~10.577 | -3.5387 | 0.10552 | 0.0478
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tively, the results predicted by the complete I TF model
and by the ITF model without exchange—correlation
terms. Additive fourth-order correction (6) calculated
for clusters according to the complete ITF model is by
afactor of 1.5 greater than the contribution of the sec-
ond-order correction (top row). However, both gradient
corrections are reduced and their ratio changes (bottom
row) by dropping the exchange—correlation terms in
Eg. (5), whereas the exchange and correlation terms
calculated self-consistently (top row) and as additive
corrections (bottom row) are similar in both cases.

Thus, exchange and correlation effects are much
more important for clusters as compared to free atoms.
When they are taken into account, the values of gradi-
ent terms are substantially modified and the use of the
fourth-order correction leads to unsatisfactory results.
Since this correction has no theoretical justification
(see Section 4.1), the good results of the self-consistent
treatment of the fourth-order correction in [13, 14]
should be interpreted as accidental and attributed to the
use of amore suitable class of trial functions.

Finally, note that the contribution of the shell-

related oscillatory effects to the energy of cluster elec-
trons can be calculated by the method described in [7].

4.3. Hollow Cluster and Fullerene

The calculated characteristics of the hollow cluster
proposed in [15] as a model of the fullerene Cgy will
now be presented. The charge of N, ions in a hollow
cluster is“smeared out” over aspherical shell of radius
R. This distribution of ions generates the potential

oNe <R
OR

u(r) =0
D&e r>R
D_r’ !

which acts on mutualy interacting valence electrons
(Ne=wN;, wherew = 1 and N, = N; = 60). The energy
of ions uniformly distributed over the sphere is E; =
0.5 Nﬁ/R. According to [15], the Thomas—Fermi model
of a hollow cluster does not admit any finite equilib-
rium radius R,. The finite value Ry= 7.36 close to
RI®?) = 6.75 measured for the fullerene Cg was
obtained in [15] by using the ion energy

2

N
E, = 04311%, (12)

which corresponds to the real Cg, molecule with ions
located at the vertices of the truncated icosahedron of

radius R.

The calculations performed for a hollow cluster in
this study show that the equilibrium radius R, predicted
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Fig. 5. Radia electron-density distributions in a hollow
cluster (Z = 0, solid curve) and in a hollow cluster with a
trivalent central atom (Z = 3, dotted curve) (N, — Z = 60).

by the ITF model isfinite. Its value was determined by
minimizing the total energy of the cluster, E = E, + E;,
asafunction of R. Asaresult, areasonable sguare-root
dependence of the equilibrium radius on the number of

particles was obtained: R, = aN? with a = 3.743.

When thisformulais applied to the fullerene, the result
istoo large (R, =29), because the energy of ionsis sub-
stantially overestimated by replacing their actual distri-
bution with a spherical shell. The corresponding radial
electron-density distribution is shown in Fig. 5. When
the actua (not self-consistent) energy of ions given
by (12) isused, the ITF model yields R, = 5[16].

Analysis of spherical hollow clusters based on self-
consistent modeling is of special interest becauseit can
elucidate, in particular, the dependence of R, on the
valence Z of theatom located at the center of the cluster.
Thereal system corresponding to this model isahighly
symmetric fullerenewith acentral atom, such asLaCy,.
Inthiscase, the potential generated by theionsand their
energy are expressed as

DNe__Z1 r<R
Z O R
Ui(r) = -%-
' oNe—2
DT, r>R,
E - NZ-Z°
T 2R

where Z is the charge number of the central ion and the
number N, of electronsincludesthe Z valence el ectrons
of the central atom. Calculations were performed for
N, —Z = 60 electrons in a spherical shell and Z =0, 1,
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2, and 3. The resulting monotonically decreasing func-
tion is accurately approximated by the expression

Ry(Z) = Ry(0)exp(—0.04Z%), R,(0) = 29.

Figure 5 shows the radial electron-density distribution
D(r) = 41rny(r) calculated for a hollow cluster (Z = 0)
and an endohedrally doped hollow cluster with a triva-
lent central atom (Z = 3) having the corresponding equi-
librium radii.

5. CONCLUSIONS

Based on an improved semiclassical model, a uni-
fied efficient algorithm is proposed for calculating the
characteristics of a spherically symmetric many-body
electron-on system. The Euler—Lagrange equation for
density is derived by minimizing the semiclassical
energy functional including the exchange—correlation
interaction and second-order gradient terms. Thisequa
tion is applied to calculate averaged characteristics of
various physical systems, such as atoms and solid or
hollow clusters.

The proposed model can be used to calculate the
total energy of electrons and their local characteristics
(density and potential distributions). The radia
Schrodinger equation with this potential is solved ana-
Iytically in the semiclassical approximation. Theresult-
ing expression is used to obtain an oscillating correc-
tion to density in afinite system and cal cul ate electron-
density distributions for atoms and atomic clusters
reflecting the discreteness of their electronic spectra.
The contributions of the fourth-order corrections based
on the averaged electron densities to the energies of
these systems are evaluated. The use of these correc-
tionsin calculationsis shown to be unjustified.

An analysis of the properties of a hollow cluster
with ions uniformly “smeared” over a sphere is pre-
sented. In particular, the spatial density distribution is
caculated for the valence electrons, and the total
energy of a hollow cluster is determined as a function
of radius for a given number of atomsin the cluster. It
is shown that the resulting curve has a minimum at a
finite (equilibrium) value of radius. A reasonable
square-root dependence of the equilibrium radius on
the number of particles in a cluster is obtained. The
dependence of the equilibrium radius of an endohe-
drally doped hollow cluster on the valence of the atom
located at its center isanalyzed. The possibility of using
hollow spherical clusters as models of the fullerenes
Cegp and LaCyq, isalso discussed. It is shown that an ade-
guate quantitative description cannot be developed,
because the energy of ions is highly overestimated
when their actual distribution in afullereneis approxi-
mated by a spherical shell.
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Abstract—The formalism of nonlinear transfer matrices is used to develop a phenomenological model of a
cubic nonlinear-optical response of one-dimensional photonic crystals and microcavities. It is shown that third-
harmonic generation can be resonantly enhanced by frequency-angular tuning of the fundamental waveto the pho-
tonic band-gap edges and the microcavity mode. The positions and amplitudes of third-harmonic resonances at
the edges of a photonic band gap strongly depend on the value and sign of the dispersion of refractive indexes of
the layers that constitute the photonic crystal. Model calculations elucidate the role played by phase matching
and spatial localization of the fundamental and third-harmonic fieldsinside aphotonic crystal asthe main mech-
anisms of enhancement of third-harmonic generation. The experimental spectrum of third-harmonic intensity
of aporous silicon microcavity agrees with the calculated results. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Photonic crystals have been extensively studied in
recent years because of their unique dispersion proper-
ties and the possibility of modulating the spectral den-
sity of optical field modes, which manifestsitself by the
formation of photonic band gaps [1]. Fundamental
interest in photonic crystals, in particular, stems from
peculiar nonlinear optical effects, such as bistability [2]
and optical switching [3] due to modulation of the
refractive index of one-dimensional photonic crystal
layersin ahigh-intensity field. This modulation causes
adynamic or quasi-stationary shift of the photonic band
gap in a photonic crystal with a cubic nonlinearity. In
such crystals, one can observe four-wave mixing and
excitation of the waveguide mode at the anti-Stokes fre-
guency which propagates along interfaces[4]. In media
with modulation only of nonlinear susceptibility with a
period of the order of the wavelength, nonlinear diffrac-
tion effects are observed [5].

The use of photonic crystals for effectively generat-
ing radiation at the second harmonic frequency was
suggested in [6] and experimentally implemented for
the first time in [7]. Phase mismatch between the fun-
damental and second harmonic waves is minimized by
adding the reciprocal lattice vector of the periodic
medium to the wave vectors of the interacting waves.
When one of the frequencies is tuned to the edge of a
photonic band gap, the phase matching condition for
pumping and second harmonic waves is satisfied,
which results in the enhancement of second harmonic
generation in photonic crystals [8-11].

Third-harmonic generation (THG) in a photonic
crystal can occur either directly due to cubic suscepti-
bility or in a cascade manner as a result of quadratic

susceptibility. The first process was considered for an
infinite photonic crystal in [12], where it was shown
that there were structure parameters at which phase
matching conditions were simultaneously satisfied for
the fundamental and second-harmonic waves and the
fundamental and third-harmonic waves. With these
parameters, the time evol ution of second- and third-har-
monic intensitieswas studied, and it was shown that the
pump energy could not be completely transfered to the
second or third harmonic. In cascade THG by a one-
dimensional photonic crystal with quadratic suscepti-
bility [13, 14], smultaneous phase matching of the
pump with the second and third harmonics can aso be
achieved by adjusting the optical thicknesses of photo-
nic crystal layers. The calculations reported in [13]
were performed for a photonic crystal with an infinite
number of layers, and only phase matching effectswere
therefore studied. In [14], a photonic crystal with a
finite number of layers was considered, and effects of
the spatial localization of fields related to its finite
dimensions were taken into account. Pumping field
localization effects can be enhanced by theintroduction
of adefect into aphotonic crystal. In such amicrocavity
with distributed mirrors, the electromagnetic field reso-
nant to the microcavity mode is effectively localized,
which enhances second [15, 16] or third [17] harmonic
generation. The enhancement of harmonic wave gener-
ation at the photonic band gap edge and in the micro-
cavity modeisaresult of the combined effects of phase
matching due to the periodicity of Bragg reflectors and
field localization caused by the presence of a microcav-
ity spacer and finite photonic-crystal dimensions [11].
A key parameter that determines the enhancement of
third harmonic generation isthe dispersion of refractive
indexes of layers in a photonic crystal or microcavity.
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Its compensation is the essence of the phase matching
at the photonic band gap edgesin aphotonic crystal and
in the microcavity mode. However, the dependence of
the magnitude and spectral position of third harmonic
resonances on the magnitude and sign of the dispersion
of layers constituting a photonic crystal or microcavity
has not been studied yet.

In this work, we study THG in one-dimensional
finite photonic crystals and microcavities characterized

by a cubic nonlinearity ¥ . The formalism of nonlin-
ear transfer matricesis used to elucidate the role played
by each of the mechanisms of the enhancement of third
harmonic generation, that is, phase matching and
pumping and third harmonic field localization when the
pumping wave is in resonance with the microcavity
mode or photonic band gap edge. The spectra of third
harmonic intensity in the spectral range containing a
photonic band gap with amicrocavity mode and a pass-
band region are calculated in the approximation of a
given pumping field. The dependence of third harmonic
generation enhancement on the dispersion of therefrac-
tive indexes of the layers that constitute a photonic
crystal is studied. This dispersion determines the
mutual arrangement of photonic band gaps and micro-
cavity modes at the pump and third-harmonic wave-
lengths. The calculation results are compared with the
experimental third harmonic spectrum generated in a
microcavity made from mesoporous silicon.

2. NONLINEAR TRANSFER-MATRIX METHODS
FOR CALCULATING THIRD-HARMONIC
GENERATION IN PHOTONIC CRYSTALS

2.1. Nonlinear Transfer-Matrix Method

There are severa approaches to calculating optical
harmonic generation in one-dimensional photonic crys-
tals. One of these is via solving a system of reduced
equations obtained in the method of slowly varying
amplitudes [12-14, 18]. This approach can be used to
take into account energy transfer from the pump to the
generated harmonic; analyze simultaneous generation
of the second and third harmonics;, and examine the
time evolution of the fundamental and the second- and
third-harmonic waves, which isimportant for studying
harmonic generation by femtosecond pulses. In the
approximation of constant fundamenta field, THG is
described by a single inhomogeneous equation, which
can bedirectly solved using the Green function of amul-
tilayer structure [4, 19]; the solution is constructed
based on linearly independent solutionsto the homoge-
neous wave equation, which can be found using the for-
malism of transfer matrices [20]. Lastly, a convenient
method is the extension of the formalism of transfer
matrices to harmonic generation. This method is appli-
cable in the approximation of constant fundamental
wave and when the fields are stationary, that is, under
the condition that the pumping pulse width is much
greater than the time of fundamental-wave propagation
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across the photonic crystal. There are two equivalent
approaches. The first one, described in [21], uses the
formalism of Green functions suggested by Sipe [22].
The second approach given in [23] is based on the for-
malism of coupled and free harmonic wavesintroduced
by Bloembergen and Pershan [24]. Both rely on direct
solution of an inhomogeneous wave equation with the
use of the Green functions of a photonic crystal and
provide additional information about the nonlinear
optical processes under consideration, such as contribu-
tions of separate layers to the resulting third-harmonic
wave.

The method of nonlinear transfer matrices sug-
gested in [23] can conveniently be used to calculate
nonlinear-optical effects in one-dimensional photonic
crystals because of its simplicity and form optimal for
numerical calculations. The problem of THG in photo-
nic crystals can be decomposed into three sequential
stages. First, the fundamental wave propagation in a
multilayer linear structure is described taking into
account multiple-reflection interference, and the spatial
pumping field distribution within the photonic crystal is
calculated. At the second stage, cubic polarization

induced in a medium with nonzero )2(3) is determined.
Lastly, thelinear problem of third harmonic wave prop-
agation in a layered structure is solved taking into
account coupled and homogeneous waves, and the
intensity of the third harmonic wave that emerges from
the photonic crystal isfound.

Let the z axis be perpendicular to the surface of the
photonic crystal and xz be the plane of pumping wave
incidence (Fig. 1a). A monochromatic linearly polar-
ized fundamental wave with frequency w, wave vector
ki, and amplitude E; propagates in half-space 1 at
angle 8, to the normal to the surface of the photonic
crystal. We assume that the photonic crystal isoptically
inactive and nonmagnetic; s- and p-polarized waves
will therefore be considered separately. The electro-
magnetic field in the jth layer is a superposition of two
plane forward waves (propagating in the positive direc-
tion along the z axis) and backward,

EX(zt) = E[exp[ik? (z—d;j) + (ik? x—iwt)]

. - e (1)
+Ejexp[—|kzyj(z—dij)+(|kX,jx—|oot)],

where

kz; = |kj|cos;, ky; = |kj|sin®;,

d; is the z coordinate of the boundary between the ith
and jth layers, k; is the wave vector, and 6; isthe angle
of refraction of the pumping wave in the jth layer. The
exp(iks, ; X —it) term will further be omitted because
of the trangdlational invariance of the problem in the xy
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plane and its stationary character. The field at the left
boundary of the jth layer is represented by the two-

component vector E; = (E}' + E;); the first component

of this vector is the amplitude of the forward wave and
the second one, that of the backward wave. Therelation
between E; and E in the kth layer at itsleft boundary is
given by the two 2 x 2 matrices

0 .0
E EKE — E 1/tk] I’k]/tkj %
2
. oo _.d
exp(ik;;d;) 0 O0E O

O
*g 0o_ O
o o0 exp(-iky;d;) D0 E; O

Here, thefirst matrix containsthe Fresnel reflectivity M
and transmissivity t,; for the wave incident from the kth
to the jth layer and relates fields to the | eft and right of
the kjth interface. In what follows, this matrix is
denoted by M,;. The second ®;(d;) matrix describes
field propagation in thejth layer of thicknessd, fromthe
left to right boundary. The fields in half-spaces 1 and |
can therefore be related. Under the assumption that the
backward waveis absent in half-space | and that awave
with unit amplitudeisincident on the 1-2 boundary, we
obtain

ogd—o. 3

Here, r and t are the reflectivity and transmissivity of
the photonic crystal as a whole. They are determined
from (3), which gives

where T, are the elements of the transfer matrix for the
photonic crystal asawhole, T = M, _y®@;_y) ... M.
The fundamental field distribution within the photonic
crystal is given by

EV(2)

(4)
= @(z=dj-))M (- P(j-3)--Ma

oo™

1
r

[}

Spatial distribution (4) can be used to calculate the spa-
tial distribution of the cubic polarization wave and
inhomogeneous third harmonic can be calculated; this
is done in the next Section.
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The third stage of solving the problem can be con-
siderably simplified. In the approximation of a given
pumping field, cubic polarization in each layer isathird
harmonic source independent of the other layers. Thus,
we can solve the problem of third-harmonic generation
and propagation for asingle photonic crystal layer with
a cubic susceptibility. The third-harmonic field gener-
ated by the photonic crystal can then be obtained by
summing such partial third-harmonic outputs of al lay-
ers and taking into account their phases.

Let thejthlayer be nonlinear. Theinterference of the
coupled E® and free E; third harmonic waves is
included in the boundary conditions, which, for theijth
and jkth boundaries, have the form

®.E = M;E;+MEY, -
M@ E +MIDE® = E,.

The amplitude of the inhomogeneous third-harmonic
wavein (5) iscaculated in the jth nonlinear layer at its
left boundary, and all homogeneous waves are third-
harmonic waves. Matrices M with index (s) are con-
structed similarly to the usual transfer matrices, but the
Fresnel coefficientsin their elements contain refractive
indexes for the inhomogeneous third-harmonic wave in
the nonlinear layer and the free third harmonic in the
layer whose number equals the lower index of the
matrix. The ®© matrix is similar to @, and is obtained
from thelatter by replacing the wave vectors of the free
third harmonic with the wave vectors of the inhomoge-
neous wave. System (5) yields

Ex = My®;(M;®E +5S), (6)
where the vector
S = (®MP® —MmP)E® (7)

is singled out for convenience. The @®; matrix is
inverse to @;. Equation (6) determines the third-har-
monic field in the kth layer as a superposition of the
waves transmitted from the ith layer and generated in
the jth layer by nonlinear sources. Equation (7) con-
tains the contribution of the nonlinear jth layer to the
third-harmonic wave; theterm in parentheses takesinto
account the interference of the homogeneous and inho-
mogeneous waves. Under the assumption that no exter-
nal field with the third-harmonic wavel ength isincident
on the photonic crystal, (6) can be rewritten as

R“{Er(j)} _le{ _ol =S, ©)
0 E.(J)
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201
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_____ A 7

Fig. 1. (@) Scheme of a one-dimensional photonic crystal
(layers 2 ... | — 1) (half-spaces 1 and | denote the vacuum
and substrate, s-polarized fundamental wave is shown) and
(b) THG scheme in the jth nonlinear layer.

where the matrices
Rji = @M ;@M .y Pa-M gy,
Lii=EM;i@Mji_y)... @My

characterize the propagation of homogeneous third-
harmonic waves from half-spaces 1 and | to the jth
layer. It follows that, given S, we can find the ampli-

tude and phase of the third-harmonic fields E,(j) and

E;(j) generated in the jth photonic crystal layer and
emerging from the phaotonic crystal into the vacuum
(half-space 1) and substrate (half-space I). The total
third-harmonic field in the substrate or vacuum is the

sumof E/(j) or E;(j) taken over al layers.

2.2. Inhomogeneous Third-Harmonic Waves
in a Photonic Crystal

Let us obtain equations describing inhomogeneous
third-harmonic waves for direct THG by means of a

cubic susceptibility )2(3). Equations for cascade THG

caused by quadratic susceptibility )”((2) can be obtained
similarly. The cascade process can beignored when the
nonlinear medium has an inversion center. The genera
tion of the bulk dipole second harmonic is then forbid-
den, and the second harmonic is only generated by
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dipole surface and bulk quadrupole sources; con-
versely, the generation of the bulk dipole third har-
monic is alowed. As a result, the cascade process
becomes less effective.

A nonlinear photonic crystal layer can be treated as
a medium rotationally isotropic in the plane of the
layer. Such amedium is characterized by the symmetry
groups co/mm and o2 (cylinders) and com (a cone with
a symmetry axis of an infinite order perpendicular to
the surface of the layer). Equations for inhomogeneous
third-harmonic waves for other symmetry groups can
be obtained similarly. The tensor of dipole cubic sus-

ceptibility )2(3) invariant with respect to the com, «2,
and co/mm groups and symmetrical with respect to per-

mutations of the last three indices has four independent
nonzero components [25],

_ _ _1 _1
X1=Xxxyy - nyxx - éXxxxx - ényyy!

X2 = nyzz = Xxxzza (9)
X3 = Xzzzz’

Xa= Xax = Xzzyy-

Let the jth layer with cubic susceptibility be situated
between two linear layersi and k (Fig. 1). Let us deter-
mine the amplitude of the inhomogeneous third har-
monic E® on the jith interface from the fundamental
field amplitude E; on the same boundary. The angle
between the fundamental wave vector

_ w
kw - nwE1

where n, is the refractive index at the fundamental fre-
guency, and the z axis is 6. Here and throughout, index
j numbering layers is omitted. The dipole cubic polar-
ization is given by the convolution

P> = {9 (E"exp(ik®2) + E-exp(=ik®2))°

=P exp(ik; '2) + P'"exp(-ik; '2) (10)

s Il

+P"exp(ikd"2) + P""exp(<ikd " 2).

Here, ki’ = k,cos isthe projection of the fundamental
wave vector onto the norma to the interface. In
Eqg. (10), al cubic polarization terms are divided into
two types. The terms of the first type have the z wave
vector component k' = 3k? and are obtained by the
convolution of three fundamental waves propagating in
the same direction. The other terms have the normal

projection of the wave vector kK" = k¥ and are

obtained by the convolution of three fundamental
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waves one of which has the z component of the wave
vector opposite to the projections of the other two
waves. The propagation of cubic polarization and inho-
mogeneous third-harmonic waves is determined by the
effective permittivity calculated as

kS’(I’”) = 3—00 el’”.
c
For the waves of typel,
! = 3k, = 22 e(w);
thatis,
€ = e(w)

and the polarization wave propagates in the medium
collinearly to the fundamental wave, 6' = 6. Similar cal-
culations for the polarization waves of type Il give

e = e(w)(1+8sin’0)/9.
The angle between axis z and the propagation direction
of the polarization waves of type Il is different from 6;
itisgiven by
8" = arctan(3k/KY).

Taking into account nonzero components (9) of the

tensor 2(3) , the projections of the two-component vec-
tors P' = (P'*, P-) and P!' = (P''*, P'') onto the coordi-
nate axes expressed in terms of the s- and p-polarized
fundamental wave components can be written as

P, = X.(Ejcos’0 + EZE,cosh)

+X,E5cos0sin’6,

P, = X.(ES + EE5cos’0) + X,EE2sin’8,  (11)

1 .
P, = —éxgEf’)snge
—X4(E,E2sin® + E>sinBcos’0)
for P' and

P, = X1(3E3,;c0839 + 2E EE cos0 + EEE ;cosB)
+3X,E>sin“Bcoss,
P} = X.(3EZ+ 2E(E E cos’0

+E E,Esc0s’0) (12)
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+X2(EEEsin°0 + 2EE E sin’6),

P, = —x;E.sin°®

—x4sin9(3Epcos 0+ E.EE, + 2E E(E,)
for P''. Here, we use the equation

E, = Es, E = E,cosb, E, = -E,siné.
The product of three two-component vectors is given
by the rule

(13)

(14)

for the waves of type Il. Cubic polarization can conve-
niently be decomposed into components with polari-
zation directions normal and parallel to the wave vector
of the inhomogeneous wave and the s-polarized com-
ponent,

I, 11
P
P|D,||

Pi(,lls-n(el,ll) + PIZ,IICOS(eI,II),
P!(,IICOS(OI,II)_PIZ,IIS-n(eI,II),

Py

(15)

For such components, the transition to third-harmonic

inhomogeneous waves is simple [24]:

___4_____
—€(3w)

A L
e(3w) |

EOLI _ (PI T +PID”)

(16)

Equations (16) for third-harmonic inhomogeneous
waves are substituted into (7). The reduction of the gen-
era problem of THG in aphotonic crystal to THG in a
photonic crystal containing a single layer with cubic
susceptibility allows partial contributions of each pho-
tonic crystal layer to the total third-harmonic wave to
be calculated. In combination with the feasibility of
calculating the fundamental field at each point in the
photonic crystal, thisis a convenient tool for analyzing
the mechanisms of nonlinear-optical phenomena in
one-dimensional photonic crystals. Variation of theini-
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Fig. 2. Dependence of the linear reflection coefficient of the
s-polarized fundamental wave on its wavelength calculated
for (a) a photonic crystal and (b) a microcavity. Photonic
crystal and microcavity schemes are shown in the insets.

tia calculation parameters, such as the fundamental-
radiation wavelength or the corresponding incidence
angle, allows us to obtain the frequency and angular
spectraof the linear reflection coefficient and the inten-
sities and phases of third harmonic waves.

Notethat (11), (12), and (15) specify possible polar-
izations of third-harmonic waves. If the fundamental
wave is s-polarized, only an s-polarized third harmonic
is generated (the first term of the P, component), and if
the fundamental wave is p-polarized, the third har-
monic is also p-polarized (the first terms of the P, and
P, components).

3. THIRD-HARMONIC GENERATION
IN PHOTONIC CRYSTALS

3.1. The Absence of Dispersion

Calculations of the enhancement of third-harmonic
generation at the edge of the photonic band gap are per-
formed for a photonic crystal. For a microcavity, we
study THG enhancement effects that appear when the
fundamental radiation is tuned across the region in the
frequency-angle space that corresponds to the micro-
cavity mode. The influence of the microcavity layer is
weak at the edge of the photonic band gap, and third-
harmonic enhancement is similar to that characteristic
of photonic crystals. The model photonic crystal con-
sists of 20 pairs of alternating layers with refractive

indexes n, = 1.93 and n., = 1.61 and optical thick-
nesses Ay/4, where A = 960 nm (Fig. 2). The refractive
indexes selected are close to the real refractive indexes
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of poroussilicon layers (porous silicon was used to fab-
ricate the microcavity studied experimentally in this
work). The microcavity is obtained by doubling the
thickness of the central twenty-first layer. It isassumed
that the photonic crystal and microcavity are placed
between two half-spaces, air and alinear medium with
a refractive index equal to the refractive index of sili-
con. THG from the silicon substrate isignored. Funda-
mental radiation comes from air. The mechanisms of
THG enhancement are studied in the frequency
domain, that is, under fundamental wavelength varia-
tions, which allows both photonic band gap edgesto be
observed for the same sample. This cannot be done by
means of angular third-harmonic spectroscopy with a
fixed fundamental wavelength and normal component
of the fundamental wave vector tuned by changing the
angle of incidence. All frequency spectraare calculated
at theincidence angle 8; = 45°. The fundamental wave-
length A, isvaried from 730 to 1100 nm. Therefractive
indexes of photonic crystal layers are assumed to be
constant in the spectral ranges of the fundamenta and
third harmonic wavelengths.

The spectraof the linear reflection coefficient of the
photonic crystal and microcavity are shown in Fig. 2.
The samefigure containsthe spectraof thelinear reflec-
tion coefficient in the wavelength ranges of the second
(360560 nm, this spectrum is further denoted by R,,)
and third (240-370 nm, spectrum Rs,,) harmonics. The
reflection coefficient R, is close to unity from 820 to
940 nm, which is a manifestation of the photonic band
gap. The Ry, spectrum also contains a wavelength
region with the reflection coefficient close to unity
(photonic band gap at third-harmonic wavelengths),
whereas there is no photonic band gap in the R,,, spec-
trum, because the phase difference between the waves
reflected from layers with optical thicknesses A/4 or
3M4istn, wherenisan eveninteger, and thewavesare
added in phase. If the optical thickness of layersisA/2,
the phase difference between the waves reflected from
such layers is Tim, where mis an odd integer, and the
waves interfere destructively. The presence of a reso-
nant layer manifestsitself in the spectrum of the linear
reflection coefficient by a dip within the photonic band
gap corresponding to the microcavity mode. The micro-
cavity modeis present in both R, and R, spectra.

The spatial distributions of the fundamental field
amplitude shown in Fig. 3 were calculated at the wave-
lengths corresponding to the minimain the spectrum of
the linear reflection coefficient that are closest to pho-
tonic band gap (Figs. 3b, 3c), in the region within the
photonic band gap of the photonic crystal (Fig. 3d), and
in the microcavity mode (Fig. 3a). The fundamental

field amplitudeisE,, = |Ej + E] |, where E; and E; are
the complex components of the Ej-" two-component

pumping field vector given by (4). When A, is tuned
across the photonic band gap, the fundamental field
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Fig. 3. Fundamental field amplitude distributions inside a
photonic crystal and microcavity: (a) for the microcavity
mode, fundamental wavelength is A, = 877 nm; (b) at the

short-wavelength edge of the photonic crystal band gap,
A, = 806 nm; (c) at the long-wavelength edge of the photo-

nic band gap, A, = 966 nm; and (d) within the photonic
band gap, A, = 870 nm. The dashed lineistheincident wave
amplitude equal to one.

exponentially decays as the depth of penetration into
the photonic crystal increases (Fig. 3d). The fundamen-
tal wave which is in resonance with the microcavity
mode is strongly localized inside the resonant layer. At
the chosen microcavity parameters, E, increases
approximately fourfold. At the short-wavelength and
long-wavelength edges of the photonic band gap, the
fundamental field is localized less strongly and is
enhanced 2.1-2.3 times. This effect is caused by the
finite photonic crystal length; with a larger number of
layers, the fundamental field is distributed more evenly.
The amplitude of the pumping field resonant to the
microcavity mode reaches amaximum in the microcav-
ity layer and sharply decreases in several neighboring
layers, whereas in a photonic crystal, the fundamental
field tuned to photonic band gap edges is more evenly
distributed over the photonic crystal. This means that
for effective THG in aphotonic crystal, phase matching
of the homogeneous third harmonic waves generated
by various layers and having amplitudes of the same
order isimportant.
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Fig. 4. The third harmonic intensity spectrum of a photonic
crystal calculated for s-polarized fundamental and third har-
monic waves (SSgeometry) (the thick solid line); the reflec-
tion coefficient spectra of an s-polarized wave calculated in
the regions of fundamental (solid thin line) and third-har-
monic (dashed line) wavelengths. The third-harmonic
intensity 13,,is given in arbitrary units.

Thethird-harmonic intensity spectrum I 5, generated
in a photonic crystal in the absence of refractive index
dispersion is shown in Fig. 4. Multiple peaks located
both within the photonic band gap and near every R,
spectrum minimum to the left and right outside the pho-
tonic band gap are observed in the third-harmonic spec-
trum. Third-harmonic enhancement is less pronounced
at the edge of the photonic band gap, but the amplitude
of third-harmonic peaks increases in the next linear
reflection coefficient minima.

When the fundamental wavelength is tuned across
the photonic band gap, the amplitude of the fundamen-
tal field decreases exponentially as the depth of pene-
tration into the photonic crystal increases and the
source of third-harmonic generation is several photonic
crystal layers near surface. Upon tuning A, to the min-
imum of the reflection coefficient, the fundamental
field effectively penetrates deep into the photonic crys-
tal and al its layers become sources of third-harmonic
waves. At the sametime, the amplitudes of the peaks of
third-harmonic intensity are commensurate no matter
whether A, istuned across the photonic band gap or the
minima of the reflection coefficient spectrum. This is
evidence of dephasing of third-harmonic waves coming
from different photonic crystal layers; these waves
destructively interfere with each other. It can be
expected that the inclusion of dispersion into calcula
tions (when the refractive indexes of photonic crystal
layers have different values at the fundamental and
third-harmonic wavelengths) will change the phases
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Fig. 5. (a b) Third-harmonic intensity spectra of a photonic crystal calculated for the SSgeometry in the presence of dispersion of
photonic crystal layersand (c, d) s-polarized wave reflection coefficient spectracalculated in the wavel ength ranges of fundamental
waves (solid line) and the third harmonic (dashed line). Third-harmonic intensity unitsin Figs. 5a, 5b and 4 are incommensurate.

of partial third-harmonic waves coming from different
layers and the peaks corresponding to the minimum of
R, will gain in third-harmonic intensity.

3.2. Enhancement of Third-Harmonic Generation
in the Presence of Dispersion

Characteristic third-harmonic intensity spectra cal-
culated in the presence of dispersion of the refractive
indexes of photonic crystal layersare shownin Figs. 5a
and 5b. The bottom panels show the linear reflection
coefficient spectraR, and Ry,,. Figures 5aand 5¢ corre-
spond to the dispersion of the refractive indexes of opti-

cally less dense photonic crystal layers Ang, = néw —
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n, = —0.045, and Figs 5b and 5d, to Ang,, = n5,, — g, =
0.051. The refractive index at the fundamental wave-

length is taken to be n;, = 1.610 + i x 0.00003; that i,

absorption is virtualy absent. The dispersion of the
refractive indexes of optically denser photonic crystal

layers is set equal to Ang,ni/ns,. The Ia,(A,) Spectra

show that the third-harmonic intensity resonantly
increases in the spectral region of photonic band gap
edges. At Ang, < 0O, the intensity of the third harmonic
peak at thefirst R, spectrum minimum to the left of the
photonic band gap (the short-wavelength edge of the
photonic band gap) increases by no lessthan two orders
of magnitude as compared to the intensity of the peaks
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within the photonic band gap. At Ang,, > 0, the third har-
monic intensity at the long-wavel ength edge of the pho-
tonic band gap increases by approximately an order of
magnitude.

The correspondence between the sign of dispersion
and the spectral position of the third-harmonic intensity
peak with respect to the photonic band gap is unambig-
uous; namely, at An,,, < 0 and Ans,, > 0, third-harmonic
intensity resonances are observed only at the short- and
long-wavelength photonic band gap edges, respec-
tively. Thisis clearly seen in Fig. 6, where the depen-
dence of the amplitude of the third-harmonic intensity

peaks |5, on dispersion An,, are shown at the short-

and long-wavelength photonic band gap edges. The
main conclusion isthat we do not observe simultaneous
enhancement of the third harmonic at both photonic

band gap edges. The |55 (Ans,) dependences are oscil-

latory in character. Their maxima that appear, for
instance, at dispersion Ang, values equa to 0.051,
-0.114, and —0.045 arereached when A, coincides with
the minimum of the spectrum of the reflection coeffi-
cient for the fundamental wave R, and one of the min-
ima of the R, spectrum is observed at the third har-
monic wavelength (Figs. 5c, 5d). The farther from the
photonic band gap minimum of the R;,, spectra that
coincides with the photonic band gap edge in the R,
spectrum corresponds to the weaker the third harmonic
resonance. It followsthat akey factor of third-harmonic
enhancement is the coincidence of the pumping wave-
length with the photonic band gap edge and of thethird-
harmonic wavelength with the minimum of the reflec-
tion coefficient Ry,

Third-harmonic resonances are observed not only at
the photonic band gap edge but also at the fundamental
wavelengths at which the R, spectrum has the second,
third, etc., minima. These resonances are enhanced to a
lesser degree than the peaks at the edge of the photonic
band gap. This is clearly seen from Fig. 7, where the
whole set of all third harmonic frequency spectra
obtained as An,,, changed from —0.21 to 0.19 in steps of
0.002 in wavelength steps of 1 nm is shown. Peaks at
the edges of the photonic band gap are quite pro-
nounced. The enhancement at the short-wavelength
edge is more intense, and the enhancement at the other
R,, spectrum minimais much weaker.

The resonance enhancement of third-harmonic gen-
eration at the edge of the photonic band gap is deter-
mined by multiple-reflection interference of both fun-
damental and third-harmonic waves, because the stron-
gest enhancement of the third harmonic is observed
when the third-harmonic wavelength occurs at an Ry,
spectrum minimum. To elucidate the role played by
interference effects at the fundamental wavelength we
must use (4) to calculate the spatial distribution of the
amplitude of the fundamental wave within the photonic
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Fig. 6. Dispersion Ans,, dependences of maximum third-

harmonic pesk intensity at the right (thin line) and left
(thick line) edges of the photonic band gap. Arrows show
the dispersion values that correspond to the characteristic
third-harmonic intensity maxima. The region with positive
Ang,, valuesis shown in the inset on an enlarged scale.

crystal (Fig. 3) and the amplitude of inhomogeneous
third harmonic waves at the boundary of each layer
[EQ. (16)]. The multiple-reflection interference effects
at the third-harmonic wavelength are determined by
comparing the amplitude and phase of the output

homogeneous third-harmonic waves E;(j) generated
separately by each jth layer [see Eq. (8)] and the ampli-
tude and phase of inhomogeneous third harmonic
waves at the boundary of each layer.

The spatia distribution of the amplitude of the inho-
mogeneous third-harmonic wave inside the photonic
crystal when A, correspondsto the edge of the photonic

band gap is shown in Fig. 8a. The shape of the E®)()
dependence reproduces that of the distribution of the
fundamental wave amplitude. When the dispersion
Ang,, is introduced into calculations, the shape of the

E®(j) dependence does not change and enhancement
in the middle of the photonic crystal caused by funda
mental field localization is retained, while the ampli-
tude of the inhomogeneous wave decreases as Ang,
increases. The phase distribution of theinhomogeneous
third-harmonic wave at the boundary of each layer is
determined by the fundamental field phase at the same
boundary. The phase difference between third-har-
monic fields in neighboring layers with equal refractive
indexes is close to Tt For this reason, each point of the
polar diagram in which inhomogeneous third harmon-
ics are shown with their phases (Fig. 8b) has a corre-
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Fig. 8. (a) Dependence of the amplitude of the inhomogeneous third-harmonic wave determined by (16) on the number of the pho-
tonic crystal layer and (b) amplitudes and phases of inhomogeneous third-harmonic waves. The calculations were performed for

An3w =0.

sponding point with a comparable amplitude and an
almost opposite phase. The phase of inhomogeneous
waves does not change at Ang,, # 0.

The dependences of the amplitudes and phases of

the third-harmonic partial waves E; emerging fromthe

photonic crystal on the layer number j are shown in
Fig. 9. These dependences were calculated at the max-
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ima of the |55 (Ans,) dependence (Figs. 9a-9d) and at
its minimum (Figs. 9e, 9f). The amplitudes of inhomo-
geneous third-harmonic waves at the minimum and
maximum of the I35 (Ang,) dependence are of the
same order of magnitude (Fig. 8), and the amplitude of
emerging free third harmonic waves at the minimum of

the 150" (Ang,,) dependence is by afactor no less than 3
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Fig. 9. (a c, €) Dependences of the partial third-harmonic E; amplitude on the layer number j calculated when the fundamental
wavelength is tuned to the edge of the photonic band gap for dispersion Ang,, values of (a) —0.114, (c) —0.131, and (€) —0.085 and

(b, d, f) partia third-harmonic waves with their phases. The insets show schematically the | 3mf)x (Ang,,) dependence shownin Fig. 6.
The points at which the cal cul ations were made are marked by arrows.

smaller than at its maximum. This implies additional
amplitude enhancement of the emerging third harmonic
by constructive multiple-reflection interference of
third-harmonic waves, namely, the partial third har-
monic-wave generated in the jth nonlinear layer
reaches an interference maximum outside the photonic
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crystal. Thisisaccompanied by phase matching of par-
tial third-harmonic fields outside the photonic crystal,

and the phases of the E; waves become localized in a

narrow angular interval. The weakest phase matching
of partial third-harmonic wavesis observed at the min-
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Fig. 11. Maximum intensity of third-harmonic peaks gener-
ated in the microcavity mode (thin line) and at the long-
wavelength (thick line) and short-wavel ength (dot-and-dash
line) edges of the photonic band gap as afunction of disper-
sion Ang,,,; the dependences in the Ang, > O region are

shown in the inset on an enlarged scale.

imum of the 155 (Ans,) dependence. The phase jump
through 2173 in Fig. 9d explains the reason of a maxi-
mum third-harmonic enhancement when the photonic
band gap edges in the R, spectrum and the minimain

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

MARTEMYANOV et al.

the R;,, spectra closest to the photonic band gap coin-
cide; namely, the larger the Ang,, value, the larger phase
changes of partia third-harmonic waves and the stron-
ger their destructive interference. As aresult, the high-
est intensity of the total emerging third harmonic is
attained because, first, the amplitude of the emerging
partial third-harmonic waves increases and, second,
their phases are matched (Figs. 9a, 9b). The smallest

I35 value is observed when the photonic band gap in

the R, spectrum corresponds to the edge of the photo-
nic band gap in the Ry, spectrum (Figs. 9e, 9f). The

maximum of the E;(j) dependence for the selected

photonic crystal parametersisthen shifted by six layers
toward the photonic crystal surface with respect to the
maximum of the spatial distribution of the inhomoge-
neous third-harmonic wave amplitude. This is
explained by the third-harmonic wavelength falling
within the photonic band gap in the R;,, spectrum. The
contributions of deeper photonic crystal layers to the
emerging third harmonic then exponentially decrease.

The plots in Fig. 9 were constructed for Ang, < 0,
when the third harmonic resonance is observed at the
short-wavelength edge of the photonic band gap. The
dependences for An,,, > 0 are similar.

4. THIRD HARMONIC GENERATION
IN MICROCAVITIES

The dependence of the intensity of the third har-
monic generated in a microcavity on its wavelength is
shown in Fig. 10. The third-harmonic spectrum has a
peak corresponding to the resonance between the fun-
damental radiation and the microcavity mode. Itsinten-
sity is more than three orders of magnitude higher than
the intensity of the third harmonic in other spectral
regions. No enhancement is observed at the edge of the
photonic band gap. If Ang, # 0, the resonance peak
amplitude substantially changes and THG enhance-
ment at the edge of the photonic band gap arises. The

I30 (Ang,) dependences of the maxima of third-har-

monic intensity peaks at the resonance between the fun-
damental radiation and the mode and between the fun-
damental radiation and the short- and long-wavelength
edges of the photonic band gap are shown in Fig. 11. If
Ang, < 0, the resonance amplitudes in the microcavity
mode and at the left edge of the photonic band gap
increase. If Ang, > 0, we observe enhancement in the
mode and at the right edge of the photonic band gap.
THG enhancement in the microcavity mode is maxi-
mum at zero dispersion. If dispersion is nonzero, its
amplitude decreases by approximately an order of mag-
nitude and oscillates as a function of Ang,,.

Thelocalization of the fundamental field resonant to
the mode results in a very substantial increase in the
amplitude of partial third-harmonic waves, which
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depend on the third power of the fundamental field
amplitude. Irrespective of the phase difference between
these waves, the minimum intensity of the emerging
third-harmonic wave is then no less than the maximum
amplitude of the third-harmonic wave generated at the
edge of the photonic band gap. The partial third-har-
monic wave amplitudes in the microcavity mode
remain almost invariant as An,,, isvaried, whereastheir

phases change substantially. The E;(j) phases at the

I36 (Ang,) peaks are nearly equal (see Fig. 12a). At the
minimum reached at An,,=-0.04 (Fig. 12b), the partial

waves E;(j) areout of phase, and their interferenceis
destructive.

It follows that, when the fundamental wavelengthis
tuned to the photonic band gap edges and the microcav-
ity mode, the fundamental wave is localized in the
neighborhood of the cavity layer. The fundamental field
enhancement is stronger when the fundamental wave-
length is in resonance with the microcavity mode. As a
result, the amplitude of inhomogeneous partia third-
harmonic waves increases. At certain dispersion Ang,
values, the amplitudes of partial homogeneous third-
harmonic waves become maximum because of multi-
ple-reflection interference and their phases are close to
each other. This results in a resonant increase in the
third-harmonic intensity. The third-harmonic intensity
peak in the microcavity mode is less sensitive to phase
matching of partial waves because of strong fundamen-
tal field amplitude enhancement. THG enhancement in
the microcavity modeisobserved almost irrespective of
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the dispersion value, whereas the peaks at the short-
wavelength edge of the photonic band gap appear at a
negative dispersion, and those at the long-wavelength
edge, when dispersion is positive.

5. AN EXPERIMENTAL STUDY
OF THIRD HARMONIC GENERATION
IN MICROCAVITIES

We experimentally studied THG in microcavities.
The sample was a one-dimensional microcavity made
from mesoporous silicon by electrochemical etching of
a heavily doped p-type silicon plate with a (100) crys-
tallographic orientation in a solution of hydrofluoric
acid following the procedure described in [11]. The
sample was two one-dimensional photonic crystals
consisting of five pairs of quarter-wave (Ao = 1300 nm)
porous silicon layers separated by a half-wave cavity
layer. The A, value isthe spectral position of the micro-
cavity mode at the normal fundamental waveincidence.

The refractive index and thickness were n!; = 1.93 and

dy, = 170 nm for optically denser layersand n;, = 1.61
and d, =200 nm for less dense ones. The porous silicon
microcavity layer hastherefractiveindex n- = 1.61 and
thickness d,. = 400 nm. The spectral dependences of
thethird harmonic intensity were measured using atun-
able optical parametric generator. Its output linearly
polarized radiation had the following characteristics:
pulse width of 4 ns, pulse energy of about 10 mJ at a
800 nm wavelength, and tuning range of 410-690 nm
for the signal wave and 735-2200 nm for the idle wave.
We used the idler tuning range because the photonic
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Fig. 13. (8) Spectrum of the reflection coefficient of the
s-polarized pumping wave and (b) dependence of the inten-
sity of the s-polarized third harmonic wave on the wave-
length of s-polarized pumping. The sampleisamicrocavity
made from porous silicon with Ag = 1300 nm.

band gap and the allowed mode of the microcavity were
within it. Third-harmonic radiation reflected from the
microcavity sample was separated by UV filters and
detected by a photoelectron multiplier. The frequency
spectra of third-harmonic intensity were measured for
fundamental and third-harmonic waves polarized in the
plane of the sample (SSgeometry) at a60° angle of fun-
damental wave incidence.

The third-harmonic intensity spectrum is shown in
Fig. 13b, and the spectrum of the linear reflection coef-
ficient for the fundamental wave is shown in Fig. 13a.
The I5,4(A,) Spectral dependence has a resonance a a
fundamental wavelength of A, = 1075 nm, which coin-
cides with the microcavity mode wavelength shifted to
shorter waves with respect to A, at an oblique angle of
incidence. We aso observe resonant third-harmonic
features when A, is tuned to the spectral regions of the
photonic band gap edge and outside the gap (inset to
Fig. 13). The third-harmonic intensity in these reso-
nance peaks is three orders of magnitude lower than in
the microcavity mode. The positions of third-harmonic
intensity resonances correlate with the minima of the
spectrum of the linear reflection coefficient for the fun-
damental wave.
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6. CONCLUSIONS

We devel oped a phenomenological model of optical
THG in one-dimensional phaotonic crystals and micro-
cavities. The model is based on the formalism of trans-
fer matrices. It describes the generation and propaga-
tion of third-harmonic wavesthrough a photonic crystal
by taking into account multiple reflections of funda-
mental and third-harmonic wave at interfaces and inter-
ference between the homogeneous and inhomogeneous
third-harmonic waves. The spectra of third-harmonic
intensity in photonic crystals and microcavities were
studied for the example of nonlinear optical mediawith
the limiting point symmetry groups 2, com, and co/mm
of layers constituting photonic crystals. The spectra
were studied in the spectral range of wavelengths and
incidence angles of fundamental waves containing the
photonic band gap and regions near its edges. At the
resonance between the fundamental wave and the
microcavity mode, the third-harmonic intensity
increases by more than three orders of magnitude.
When the fundamental wavelength coincides with pho-
tonic band gap edges, we observe resonance enhance-
ment of third-harmonic intensity, which depends on the
magnitude and sign of dispersion. If the refractive
indexes of photonic crystal layers at the third-harmonic
wavelength ng, are smaller than the refractiveindexesat
the fundamental wavelength, we observe resonant third-
harmonic enhancement by a factor exceeding 100 at the
short-wavelength edge of the photonic band gap. If
Ng, > Ny, THG is enhanced at the long-wavel ength edge
of the photonic band gap.

The main mechanism of resonant THG enhance-
ment in the microcavity mode is fundamental field
localization, which manifestsitself by afour- to tenfold
increase in the third-harmonic amplitude. An additional
enhancement factor is phase matching of partial third-
harmonic waves from each photonic crystal layer when
they leave the microcavity. THG enhancement at the
edges of the photonic band gap is caused to a greater
extent by an increasein the amplitude of emerging par-
tia third-harmonic waves and their phase matching as
aresult of multiple-reflection interference of third-har-
monic waves and, to a lesser extent, by fundamental
wave |localization within the photonic crystal.

In agreement with the calculated third-harmonic
spectra, the experimental spectrum of the intensity of
the third harmonic generated in a one-dimensional
microcavity fabricated from porous silicon shows that
the intensity of the third harmonic increases approxi-
mately 1000 times in the microcavity mode. Additional
third-harmonic peaks are observed at the left edge of
the photonic band gap and outside the gap. The spectral
positions of the resonances coincide with the minima of
the linear fundamental wave reflection coefficient to
within several nanometers.

No. 3 2004



OPTICAL THIRD-HARMONIC GENERATION IN ONE-DIMENSIONAL PHOTONIC CRYSTALS

ACKNOWLEDGMENTS
Theauthors are deeply indebted to O.A. Aktsipetrov

for the statement of the problem and numerous useful
discussions.

10.

11

12.

REFERENCES
K. Sakoda, Optical Properties of Photonic Crystals
(Springer, Berlin, 2001).
W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160
(1987).
M. Scdora, J. P. Dowling, C. M. Bowden, and
M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).

A.V.Andreev,A.V. Baakin, A. B. Kozlov, et al., J. Opt.
Soc. Am. B 19, 1865 (2002).

I. Freund, Phys. Rev. Lett. 21, 1404 (1968).

N. Bloembergen and J. Sievers, Appl. Phys. Lett. 17, 483
(1970).

J. P. van der Ziel and M. llegems, Appl. Phys. Lett. 28,
437 (1976).

J. Martorell, R. Vilaseca, and R. Corbalan, Appl. Phys.
Lett. 70, 702 (1997).

A. V. Baakin, V. A. Bushuev, N. |. Koroteev, et al., Opt.
Lett. 24, 793 (1999).

Y. Dumeige, P. Vidakovic, S. Sauvage, et al., Appl. Phys.
Lett. 78, 3021 (2001).

T. V. Dolgova, A. |. Maidykovski, M. G. Martemyanov,
etal., J Opt. Soc. Am. B 19, 2129 (2002).

V. V. Konotop and V. Kuzmiak, J. Opt. Soc. Am. B 16,
1370 (1999).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

13

14

15.

16.

17.

18.

19.

20.

21.

22.
23.
24,

25.

477

V. V. Konotop and V. Kuzmiak, J. Opt. Soc. Am. B 17,
1874 (2000).

M. Centini, G. D’ Aguanno, M. Scalorg, et al., Phys. Rev.
E 64, 46606 (2001).

T.V. Dolgova, A. |. Maidykovskii, M. G. Martem’yanov,
et al., Pisma zZh. Eksp. Teor. Fiz. 73, 8 (2001) [JETP
Lett. 73, 6 (2001)].

T. V. Dolgova, A. |. Maidykovski, M. G. Martemyanov,
et al., Appl. Phys. Lett. 81, 2725 (2002).

T.V. Dolgova, A. I. Maidykovskii, M. G. Martem' yanov,
et al., Pis ma Zh. Eksp. Teor. Fiz. 75, 17 (2002) [JETP
Lett. 75, 15 (2002)].

G. D’Aguanno, M. Centini, M. Scalora, et al., J. Opt.
Soc. Am. B 19, 2111 (2002).

A.V.Andreev,A.V. Baakin, A. B. Kozlov, et al., J. Opt.
Soc. Am. B 19, 2083 (2002).

M. Born and E. Wolf, Principles of Optics, 2nd ed. (Per-
gamon, New York, 1964; Nauka, Moscow, 1970).

N. Hashizume, M. Ohashi, T. Kondo, and R. Ito, J. Opt.
Soc. Am. B 12, 1894 (1995).

J.E. Sipe, J. Opt. Soc. Am. B 4, 481 (1987).
D. S. Bethune, J. Opt. Soc. Am. B 6, 910 (1989).

N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606
(1962).

Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of
Crystal Physics, 2nd ed. (Nauka, Moscow, 1979; Mir,
Moscow, 1982).

Trandlated by V. Spachev

No. 3 2004



Journal of Experimental and Theoretical Physics, Vol. 98, No. 3, 2004, pp. 478-482.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 125, No. 3, 2004, pp. 543-547.

Original Russian Text Copyright © 2004 by Ryazanov.

ATOMS, SPECTRA,
RADIATION

Angular Distribution of Transient Radiation
from an Ultrarelativistic Particlein a Magnetic Field

M. |. Ryazanov

Moscow Institute of Engineering Physics (Technological University),
Kashirskoe sh. 31, Moscow, 115409 Russia
e-mail: ryazanov@theor.mephi.msk.su
Received September 5, 2003

Abstract—It is shown that amagnetic field acting on an ultrarelativistic charged particle escaping from a con-
ductor changestheintensity of transient radiation. The angular and frequency distribution of transient radiation
in the magnetic field is determined. The possibility of determining the energy of the ultrarelativistic particle
from the change in the azimuthal asymmetry of transient radiation emitted by this particle in the magnetic field

is discussed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itiswell known that the energy and momentum con-
servation lawshold for the emission of aphoton by afree
ultrarelativistic particlefor asmall longitudinal (directed
along the particle velocity) momentum transfer,

so that the wave process of radiation formation takes
place over a particle path of length

nE

CZD.

glo
3

Ap

For ultrarelativistic particles, the length of radiation
formation (coherence length) may be of a macroscopic
size. On such along path, the competing processes may
significantly change the motion of aparticleintheregion
of radiation formation, thus lowering the radiation inten-
sity. An example of thiseffect isthe influence of multiple
scattering on bremsstrahlung [1-3] or the effect of polar-
ization of the medium on bremsstrahlung [4].

In the case of an ultrarelativistic particle and the
conductor-vacuum interface, transient radiation emerg-
ing when the charged particle crosses the interface
between the two media[5-7] isalso formed in a spatial
region having a length of (c/w)(E/mc?)? and a much
smaller transverse size. In view of the large coherence
length, the action of an external field on the particle
may change the type of mation of the particle in the
course of radiation formation. This affects the process
of radiation formation since the angular distribution of
radiation changes and itsintensity decreases.

In an external electric field, for a particle escaping
from a conductor along the normal to the interface, this
effect leads to the emergence of azimuthal asymmetry
inthe distribution of transient radiation, which strongly
depends on the Lorentz factor y [8]. The action of a
magnetic field on transient radiation differs from the
action of an electric field; it would hence be interesting
to estimate the effect of a magnetic field on transient
radiation emitted by an ultrarelativistic particle.

2. TRANSIENT RADIATION EMITTED
BY A NONUNIFORMLY MOVING CHARGE

Let aparticle bearing a charge e and having aveloc-
ity v = c escape at instant t = 0 from a conductor (z < 0)
into vacuum (z> 0), whereit isacted upon by aconstant
uniform magnetic field H parallel to the conductor sur-
face. We choose the direction of the x axis along the
magnetic field and consider transient radiation from the
particle escaping along the z axis perpendicular to the
conductor surface. The law of motion of the particle can
be written in the form

r(t) = R(t) +s(1),

where R(t) and s(t) are the normal and tangential com-
ponents of the radius vector of the particle relative to
the surface, respectively. It iswell known that, for such
amotion of the charge, the field outside the conductor
coincides with the field of two charges escaping from
thesamepointr =0 at instant t = 0, viz., charge e mov-
ing according to the law r(t) and an image charge —e
moving according to the law

r(t) = —R(t) +s(t)

(see [9]).
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ANGULAR DISTRIBUTION OF TRANSIENT RADIATION

For such mation of the two charges, the angular and
frequency distribution of the radiant energy has the
form (n =r/r, v(t) = dR/dt, u(t) = ds/dt)

d’E _ZIdt[n{v(t)+u(t)}]
0

- €W
dwdQ Arecd
x exp{iwt—ik (R(t) —ik C5(1)}

+J’dt[n{v(t)—u(t)}] @)
0

2

x exp{i(w+ik [(R(t) —ik Os(t)}

The action of the field may be significant when the
terms independent of the field are partly cancelled out.
For example, in the ultrarelativistic case, the exponent
of one of the exponential functions is on the order of
w—k - v and is smaller than the exponent of the other
exponential, whichison the order of w+k -v. Theinte-
gra with the rapidly oscillating exponential is small
and can be omitted. The effect of the external field can
be disregarded in the first approximation in al cases
when the main terms are not mutually cancelled out.
This enables us to transform relation (1) to

d’E 2|
Jodo - %{dt[n{V(t)*'U(t)}] )
2

x exp{i(w—ik CR(t) —ik C&(t)}

3. TRANSIENT RADIATION
IN A MAGNETIC FIELD

With the above choice of the coordinate axes, the
velocity components of an ultrarelativistic particlein a
magnetic field have the form (Q = eH/mcy)
ult) =0, uy(t) =vesinQt, v(t)=v,cosQt. (3)
It follows hence that the law of motion of the particle
can be written in the form

X(t) =0, y(t) = (vo/Q)(1-cosQt),

_ . (4)
Z(t) = (v/Q)sinQt.

We confine our analysisto the case when the change
inthe particle vel ocity due to the action of the magnetic
field in the region of radiation formation considered
here is small as compared to the initial velocity of the
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particle. This means that the inequality u, < v, issatis-
fied; i.e., Qt < 1. Inthis case, the law of motion of the
charge can be represented in the form

ult) =0, uy(t)=veQt, v(t)=v,,

» ©)
X(t) =0, y(t) = (v, Q)t7/2,

Z(t) = vt.

The law of motion of the image charge in this approxi-
mation has the form

u(t) = 0,
X(t) = 0, y(t) = (vQ)t7/2,

uy(t) = voQt, v(t)=-v,,
(6)
z(t) = —v,t.

Considering that v, > u, we can disregard quantity uin
the preexponential factor in expression (2); inthis case,
the angular and frequency distribution of the energy of
transient radiation can be written in the form (Q =
kv Q/2)

d’E _ W’ 2
Jod gl Vol
- 2 ()
J’dtexp{ i(ot+—ik Orgt —iQt)} | .
0

X

The integral contained in this formula cannot be
reduced to elementary functions and can be expressed
in terms of the Fresnel integrals

S(x) = (2/m)*? J'si n’tdt,
N ®

C(x) = (2/n)1’2J'cos2tdt.
0

ForQ<0,i.e,for ky =ksind sind <0, integration gives

00

Idtexp{ i(w—k V)t +i|Q|t}
0

_nnp?,  Hile—kinT 9
Fon ®P5T ag o ®
1 o=k Om), il gw—k G
XQ:Z CD2|Q|1/2|:[| |:2 D2|Q|l/2|j}%

The angular and frequency distribution of transient
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radiation for sind sing < 0 hasthe form

d’E _ fw’nxv]’
dwdQ T[C3 |Q|

" ﬁ%_cﬂleT”E‘E} l5-

For Q >0, i.e, for ky = ksindsing > 0, integration
yields

(10)

—k B/DTH
Uaig? g

[

Idtexp{ i(w—k OV)t—i|Q[r’)}
0

(11)

—k O
+ s }D
Jaigre

In contrast to expression (10), the angular and fre-
guency distribution of transient radiation for
sing sing > 0 assumes the form

d’E
dwdQ

1, ~w=kKOm? 11, qw-—k oy
lic _[L+s
x§2 To1q™ 1) -3 To1q™ D}E

2 2
= 22 (Inxv]%/IQl)
TiC
(12)

For large x, Fresnel integrals C(x) and §(x) oscillate
in the vicinity of 1/2 with an amplitude decreasing
slowly upon anincreasein x:

S(x) = 1/2—(1/2m)"*(1/x) cosx’, 13
C(x) = 1/2+ (1/2m)"*(1/x)sinX’.

For small x, the Fresnel integralsincrease rapidly from
zero for x = 0 to values on the order of unity for x ~ 1.
In the vicinity of zero, we have

S(x) = (2IM)Y4(x*13), C(x) = (2/m)Y*x. (14)

We introduce auxiliary functions f(x) and g(x), defined
by the equations

1/2 = S(x) = g(x)sin(1x’/2) + f (x) cos(Tx’/2), (15)
1/2-C(x) = g(x) cos(nx2/2) - f(x)sin(nx2/2). (16)

For sindsing < 0, the radiant energy distribution (10)
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can be written as

d’E _ €w’ini]h
dwdQ 23U Q|

(17)

J219"

Intheregion 0 < x < e, auxiliary functionsf(x) and g(x)
can be approximated with an error smaller than 2 x 1073
by the expressions [10]
1+ 0.926x
2 +1.792x + 3.104xX"
1
2+ 4.142x + 3.492%" + 6.670x°

f(x) =
(18)

9(x) =
More accurate approximations can be found in [11].

4. EFFECT OF A MAGNETIC FIELD
ON TRANSIENT RADIATION

As the magnetic field tends to zero, the argument
(w—k - v)/2|Q|Y? of the Fresnel integrals in expres-
sions (10) and (12) tends to infinity. Consequently, in
the range of frequencies and angles for which
1/2

(w—k [v) > |Q¥2 0|KyVoeH

the magnetic field practically does not affect transient
radiation. The angular and frequency distribution of
transient radiation is deformed by the magnetic field
when the opposite inequality holds,

voeHw3dsin|1/2

2
mc°y (19)

2
> (w-k ) Do’ + 25
y

For characteristic angles of 9 ~ 1/y of the emission of
radiation, this inequality assumes the form

eHsing| 5. @

2
mc? Y

(20)

When inequalities (19) and (20) are satisfied, the argu-
ment of the Fresnel integralsis small; consequently, we
can use approximate expressions (14) for the Fresnel
integrals. In region (20), we have

-k Og_w-kOr
T

-k Oy
H2gtH

(21)
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so that distribution (10) of transient radiation for
sing < 0 can be writtenin the form

d’E :eswz[nxv]zﬂl_w—kﬂlg
dwdQ  ne® Q Q" g

(22)

In the range of angleswhere sing > 0, distribution (12)
of transient radiation has the form

d’E _ €w’[n xv]251+w—k [vl%
dodQ 1 1Ql ImQ¥? g’

(23)

It should be emphasized that, for small values of angle
¢, the conditions for applicability of expressions (22)
and (23) are violated; consequently, a direct transition
from relation (22) to (23) isruled out.

5. AZIMUTHAL ASYMMETRY
OF RADIATION DISTRIBUTION

If a charged particle escapes from a conductor at
right angles to its surface, the angular distribution of
radiation in zero magnetic field exhibits azimuthal sym-
metry. The action of a magnetic field breaks the axial
symmetry of the angular distribution. Defining the
direction of emission of radiation by anglesd and ¢ in
aspherical system of coordinates with the axis directed
along theinitia velocity of the particle and considering
that the radiation emitted by the ultrarelativistic particle
is concentrated in the region of small angles 9, we can
represent the argument of Fresnel integrals C(x) and
S(X) in expressions (10) and (12) in the form

w-k I _ _(w2)(8*+y7)
210" [(Quw/2)9sing]M?

The limiting case in which the value given by for-
mula(24) tendsto infinity correspondsto transient radi-
ation in zero magnetic field. Then the angular and fre-
guency distribution (2) is transformed into the conven-
tional distribution for transient radiation,

(24)

d’E _ &  [nxv]?

dwdQ nz_c{ 1—(n i)} 2

(25)

It can be seen from formula (24) that this limiting
caseemergesfor ¢ =0aswell asford — 0. However,
theregion of 9 < 1/y makesasmall contribution to the
radiation intensity and can be disregarded. Thus, radia-
tion emitted in the plane passing through the particle
velocity and the magnetic field (i.e., for ¢ = 0) does not
depend on the magnetic field strength on the whole.
However, the intensity of radiation propagating in the
plane perpendicular to the magnetic field and passing
through the initial velocity of the particle (i.e., for ¢ =
TU2) can noticeably decrease depending on the external
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magnetic field strength. The ratio of the intensity of
radiation emitted at angles ¢ = 0 and ¢ = 172 is obvi-
ously close to unity if the argument of functions C(x)
and S(x) is much greater than unity. Considerable devi-
ations of thisratio from unity corresponds to small val-
ues of quantity (24), i.e., to the region in which the fol-
lowing inequality holds:

(/2)(8% +y7?) < [(Qw/2)9sing] =

112 (26)
[(w8/y)(eH/mc)sing] .
For characteristic angles 3 ~ L/y and ¢ ~ 172, thisine-
quality assumes the form
Hy o
mc vy

(27)

The intensity ratio for radiation emitted at angles of
¢ = 0 and 172 can be obtained in the form

I°E(w, 9,0 =1w2) _ ndme{1+(y9)}"

28
d’E(w, 9,9 = 0) 8ceH ay°® (5)
For very small anglesd, inequality (27) isviolated, and
relation (28) becomes inapplicable. It follows from the
above arguments that azimuthal asymmetry in the
angular distribution of transient radiation strongly
depends on the particle energy. From the presence or
absence of azimuthal symmetry, one can judge whether
or not the field strength is high enough for affecting
transient radiation.

6. DISCUSSION

It follows hence that an external magnetic field
affects the process of formation of transient radiation
from an ultrarelativistic particle only for alarge length
of radiation formation and, hence, strongly depends on
the radiation frequency and the Lorentz factor of the
particle. For example, for millimeter wavelengths and
for a Lorentz factor of 103, the coherence length is on
the order of several metersover such alength. The mag-
netic field must noticeably change the motion of a par-
ticle for the effect in question to be manifested. In this
case, for a particle escaping aong the normal to the
conductor—vacuum interface in an external constant
and uniform magnetic field, azimuthal asymmetry in
transient radiation is observed if inequality (26) is sat-
isfied.

The magnetic field strength for which noticeable
asymmetry takes placeis determined by inequality (27)
and strongly depends on the Lorentz factor of the parti-
cle and the radiation frequency.

Azimuthal asymmetry of transient radiation in a
magnetic field can be measured quite easily, while its
strong dependence on the Lorentz factor ensures suffi-
ciently high accuracy in energy measurements. Hence,
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it can be concluded that the measurement of azimuthal
asymmetry in the angular distribution of transient radi-
ation in an external field may become a convenient
method for measuring the energy of ultrarelativistic
particles.

Itisimportant to emphasize that we have considered
only the transient radiation formed near the surface of a
conductor over aparticle path with alength onthe order
of the coherence length. The action of thefield on apar-
ticle also leads to emission of radiation on the subse-
guent path of the particle; however, this radiation is not
connected any longer with the intersection of the inter-
face by the particle and is conventional radiation emit-
ted by a particle moving in a magnetic field. The prop-
erties of such radiation are determined by the specific
nature of the subsequent motion of the particle in the
field and its contribution to the total radiation can be
different. In comparison with experiment, the contribu-
tion from such radiation should be taken into account,
but it isinexpedient to includeit in the general analysis.
Thisisdueto the fact that, first, such radiation depends
on thevelocity of the particle and not on its energy; sec-
ond, the distribution of this radiation strongly depends
on the condition of subsequent motion of the particlein
the experimental setup.
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Abstract—An experimental investigation of the effect of linearly polarized high-energy pulsed laser light, nor-
mally incident on a carbon thin film, is reported. The material under study consists of platelike graphite crys-
talliteswith basal crystallographic planes mostly oriented perpendicular to the substrate surface. An increaseis
revealed in the fraction of the graphite crystallites oriented perpendicular to the polarization plane. Laser light
isfound to cause significant anisotropy in diffuse scattering by the film surface. Experimental observations are
explained by a model of anisotropic evaporation of graphite-like carbon material due to polarization depen-
dence of the absorption and reflection coefficientsfor arough surface. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Currently, much attention is given to analysis of var-
ious allotropic forms of carbon having unique physical
properties, such as diamond, graphite, carbon nano-
tubes, and fullerenes. In particular, it was shown in our
recent publications that some graphite-like films are
characterized by extremely low threshold electric field
strengths for electron tunneling from their surface to
vacuum [1]. The field-emission properties of these
films are analogous to those of carbon nanotubes (e.g.,
see [2-4]). One distinctive feature of graphite-like
materials with low field-emission thresholds is that the
basal crystallographic planes of the constituent well-
ordered platelike graphite crystallites are mostly ori-
ented perpendicular to thefilm surface[1, 2]. Structura
properties of these graphite films can manifest them-
selves in other phenomena as well. In this paper, we
present the results of a study of the effect of high-
energy laser light on the morphology and optical prop-
erties of graphite films.

It should be noted that one well-known effect of
pulsed laser light on solids is the formation of diverse
periodic surface structures (e.g., see[5-12]). Normally,
a laser-induced periodic surface structure is character-
ized by a surface height varying with a period d ~ A,
where A is the wavelength of the laser light [6, 7].
Moreover, large-scale roughness (with a length scale
varying from 10 to 300 um) may develop on the surface
of an opague materia in the zone irradiated by pulsed
laser light with A <1 um [8, 10, 12].

2. EXPERIMENTAL

We studied specimens of carbon films obtained by
means of our standard technigue of plasma deposition
from a methane-hydrogen mixture (e.g., see [1, 13]).
The films were deposited on 25 x 25 mm? silicon sub-

strates. A single-mode YAG:Nd®** laser was used as a
high-power light source. The laser cavity was designed
to produce linearly polarized light at 1064 nm with
pulse energy of up to 50 mJ [14]. The half-width of
Gaussian laser pulses was about 22 ns, and the beam
diameter was 2 mm. The laser beam was directed
through a converging lens with afocal length of 10 cm
onto the film surface under study. The irradiance on the
carbon-film surfacewas varied gradually by varying the
lens-to-specimen distance between 12 and 35 cm. The
specimens were irradiated by one or several laser light
pulsesin air.

The film structure and morphology before and after
irradiation was analyzed by means of a Neophot 32
optical microscope with aresolution of at least 0.4 um,
a Solver P47 atomic-force microscope (AFM), and a
LEO 1550 scanning electron microscope (SEM). The
angular dependence of the efficiency of diffuse scatter-
ing by the examined carbon films was analyzed by
means of an apparatus based on an LEF-3M €llipsome-
ter (see Fig. 1), withaHe-Nelaser used asal mW cir-
cularly polarized light source. Diffuse scattered light b
was observed at a constant angle ¢ in the plane yz per-
pendicular to the plane xz of incidence of beam a. The
angle of incidence of beam a in the xz plane was equal
to the angle of reflection of beam b in the yz plane. We
studied the intensity | of reflected light on the speci-
men’s orientation characterized by the angle a of rota-
tion in the xy plane at various constant angles ¢. In the
starting position of a specimen, the sides of the silicon
substrate were aligned with the x and y axes.

3. RESULTS

In its origina surface morphology, a graphite-like
film consists of platelike graphite crystallites several
tens of nanometers thick, with other dimensions vary-
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Fig. 1. Optical arrangement for studying diffuse light scat-
tering by carbon film surface: (1) He—Ne laser; (2) beam
chopper; (3) carbon film on silicon substrate; (4) photomul-
tiplier; xyz is a Cartesian coordinate system.

Fig. 2. Electron-microscopic images of carbon surface
(a) before and (b) after irradiation by laser light. Arrows
indicate the direction of the laser electric field vector E.

MIKHEEV et al.

ing from one to several microns (see Fig. 2a). The pre-
dominant orientation of the platelike crystallite planes
is parallel to the basal crystallographic plane of graph-
ite (0001) and perpendicular to the substrate. There is
no particular orientation in other directions. This orien-
tation of the crystallites explains the changesin diffuse
scattering efficiency that can be observed with the
naked eye asthe angle of incidence or observationisvar-
ied. Notethat the diffuse reflection efficiency isinvariant
with respect to rotation of the specimen about an axis
perpendicular to its surface. These observations are con-
sistent with previoudy reported results[1, 2, 13, 15].

Irradiation with high-energy laser light substantially
changes the film-surface morphology, as illustrated by
images obtained by means of SEM (see Fig. 2b) and
AFM (Fig. 3). After irradiation with five to ten pulses
(depending on the beam irradiance, which varied
between 10 and 30 MW/cm?), the surface had numer-
ous elements stretched along a certain direction. Appar-
ently, these were platelike graphite crystallites that had
existed on the film surface and were not strongly
affected by laser light. Comparative electron micros-
copy of theoriginal and laser-irradiated carbon surfaces
(see Figs. 2a and 2b, respectively) leads to the follow-
ing conclusions.

I. Irradiation by laser light resultsin a partia disor-
dering of the graphite-like material under study, which
manifests itself in changes in its surface morphology
and in the efficiency of secondary electron emission.
Thelatter effect isinferred from the observed changein
SEM image contrast. Additional evidence of the disor-
dering has been obtained in Raman-scattering studies.

Il. There is no indication of any periodic structure
on the surface after repeated irradiation by laser pulses
[5-7, 11]. The absence of periodic surface structurewas
also noted in [7], where the effect of irradiation with
40 ns XeCl excimer laser pulses on rough diamond film
surfaces was investigated.

[11. An increase is revealed in the fraction of the
graphite crystallites perpendicular to the polarization
plane. This conclusion about predominant orientation
of crystallites on the irradiated surface segment is cor-
roborated by atomic-force microscopy of surface mor-
phology (Fig. 3).

This last effect is most clearly manifested in the
AFM image of the film surface shown in Fig. 3. More-
over, the figure demonstrates that the width of an indi-
vidual crystalite at a height of 0.6 um can be as large
as 2 uminthe A-A cross section (see Fig. 3b), whereas
its width in the perpendicular B-B cross section is
0.6 um (Fig. 3c). Analogous characteristics are exhib-
ited by other morphological elements of the film sur-
faceirradiated by laser light. All of them are parallel to
the A—A cross section. Note that the surface irradiated
by five to ten pulses of laser light changes color from
the origina metallic gray to velvet black. Further
increase in the number N of irradiating pulses leads to
decrease in the height of surface elements. When N is
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sufficiently large, the film-surface color changes from
black back to gray and no morphological elementswith
predominant orientation are observed in AFM images.

An analysis of experimental results shows that the
orientation of morphologica elementsin the SEM and
AFM images of the graphite film surface is perpendic-
ular to the polarization plane of the incident laser light.
An angular displacement of the irradiated specimen
about the axis of the laser beam (normal to the film
plane) results in a corresponding rotation of the pre-
dominant orientation. When the polarization plane of
laser light is changed by means of two quarter-wave
plates without rotating the specimen, the structures cre-
ated by laser irradiation on the carbon film surface
change correspondingly.

The predominant orientation of crystallites along
the direction normal to the surface is also confirmed by
the aforementioned visual observations of diffuse scat-
tering anisotropy with respect to the angle of incidence
inthe plane perpendicular to the film surface [2]. More-
over, we found that the efficiency of diffuse scattering
by an irradiated surface depends on the angle of rota-
tion of the specimen about an axis perpendicular to the
substrate. This effect was analyzed in detail by measur-
ing the intensity of diffuse scattered light at various
angles of rotation of the specimen.

Figure 4 shows the intensity I of diffuse scattered
He-Ne laser light measured as a function of the angle
of specimen rotation a. Whereas no orientational
dependence of Iz on a is observed (see Fig. 4a), the
dependence Ix(a) obtained after irradiation by high-
energy laser light with polarization characterized by an
angle y; exhibits two pronounced peaks over the inter-
val of complete revolution about the axis (Fig. 4b). For
an angle of rotation a measured relative to an arbitrary
direction, the peaksin I z(a) correspondto a;; = 83° and
04, = 264°; that is, a1, — 01, = 180°. By scrutinizing the
curve Ig(a) obtained for the film irradiated by laser
light with a polarization angle y, differing from y; by
Ay, it was found that the corresponding peaks in Iz(a)
were observed at anglesdiffering by Ay. Asan example,
Fig. 4c shows the dependence Iz(a) measured for Ay =
45°, in which case a,, = 129° and a,, = 309°. The fol-
lowing relations were found to hold within the mea-
surement error: Oy — 011 = Oy — O pp = Ay.

4. DISCUSSION

According to [6], the formation of periodic surface
patterns is caused by diffraction of a spatially coherent
incident light wave by arough surface and interference
of diffracted waves with the wave that penetrates the
medium and creates a periodic temperature field on the
surface. Large-scale periodic pattern formation is asso-
ciated with instability development at the interface
between a melt and an optical-breakdown plasma, melt
displacement caused by the vaporizing target material,
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Fig. 3. AFM image of carbon film after laser irradiation (a)
and the mutually perpendicular cross-sectiona profiles of a
structural element on the film surface in planes A-A (b) and
B-B (c).

initial capillary-wave pattern formation, and other
effects [12]. As noted above, our experiments give no
indication of pattern formation on the irradiated carbon
film surface. However, we did observe stretched ele-
ments mostly oriented perpendicular to the polarization
plane of laser light. It should be noted that these parall el
elements are chaotically distributed over the film sur-
face, but their presence is clearly manifested in the
angular dependence of diffuse scattering. This can be
explained by anisotropic evaporation of platelike
graphite crystallites from the original film surface.
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Fig. 4. Intensity | of scattered He-Nelaser light versusthe

angle of rotation a of a specimen, measured at ¢ = 75°
(a) before laser irradiation and after irradiation by pulsed
laser light polarized at angles (b) y; and (c) v, differing
by 45°.

To elucidate this phenomenon, let us consider the
effect of laser light on a rough film surface consisting
of hemispherical elements. Supposethat alaser beamis
normally incident on the film surface. For the laser
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Fig. 5. Schematic illustration of interaction between alaser
beam normally incident on a surface and a hemispherical
element on the surface: (a) diametrical cross-sectional view
of the hemisphere; (b) top view of the hemispherical ele-
ment after irradiation by a laser beam polarized in the
plane .

polarization plane Y passing through an arbitrary diam-
eter of a hemisphere, the angle of incidence 3 is deter-
mined by the azimuthal angle 6: 3 = |90° — 0] (see
Fig. 5).

The reflection efficiency and absorption coefficient
for absorbing media depend on the angle of incidence
and polarization of the beam. To evaluate the reflection
coefficients R, and R, which correspond, respectively,
to polarization in the plane of incidence (p-polariza-
tion) and in the plane perpendicular to the plane of inci-
dence (s-polarization), we can use the following exact
formulas for isotropic absorbing media[16, 17]:

_ a’+b%—2acosp + cos’B

a’+b%+2acosp + cos’p’

R = Ra2+b2—2asinBtanB+ sin’ Btan’ B
a2+ b+ 2asinptanf + sn’Ptan’ B

a’+ b’ —2asinBtanp + sin’Btan’ B
a’+ b’ +2asinBtanp + sin’ Ptan’ B

Rp
Ry
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where

a = Gl x-snp) - anix)”

1/2

H(Mox?—sp)] g
|

1/2
)

b = Gl i)+’

1/2
. Ol
—(nz—xz—anB)]E ,

with n and X denoting the real and imaginary parts of
the complex refractive index of the absorbing medium.
Borrowing the real and imaginary parts of the permit-
tivity of graphite at 1 um from [18], we obtain n? = 1.3
and x2 = 4.9 for graphite at the neodymium laser wave-
length. Then, we use the formulas written out above to
plot the absorption coefficients A, = 1-R,and A;=1-R,
(see Fig. 6d). Figure 6b shows the dependence of A/A,
on 3 plotted in a similar manner. According to Fig. 6,
A,=A;=048forB=0and A,=A;=0for 3 =90°.As
B varies from 0 to 90°, the absorption coefficient A,
monotonically decreases. The dependence of A, on 3
exhibits different behavior. At B, = 66°, the absorp-
tion coefficient A, reaches its maximum value 0.67,
whereas A; = 0.23, i.e,, AJA; = 2.9. At higher values
of B, the ratio A,/A; monotonically increases.

Note that laser-induced fracture and evaporation of
the material under study are characterized by threshold
conditions depending on the absorption coefficient.
Accordingly, evaporation (or fracture) of a graphite-
like material induced by laser light with a certain irra-
diance at points on a spherical surface where 0 < (3.«
and 0 = 11— B3« (see Fig. 5a) is much more efficient in
the case of p-polarization as compared to s-polariza-
tion. Even though the shapes of graphite crystallitesin
the examined films substantially differ from a hemi-
sphere, the analysis developed above explains the
mechanism of their selective ablation with respect to
the laser polarization direction. In the case of linearly
polarized laser light, both heating and subsequent frac-
ture of a hemispherical element are anisotropic. On the
lateral parts of such elements, spherical half-segments
of the material oriented perpendicular to the polariza-
tion plane evaporate in the first place. As a result, the
original hemispherical shape of the element change,
and itstop view becomes a curvilinear trapezoid whose
parallel sides are perpendicular to the polarization
plane of the laser beam (see Fig. 5b).
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Fig. 6. Calculated dependences on the angle of incidence 3
for graphite at awavelength of 1 um: (a) absorption coeffi-
cients Ag (curve 1) and A, (curve 2); (b) Ag/As.

Thus, we can explain how irradiation by high-
energy laser light can cause a certain preferred direc-
tion to appear on an initially isotropic rough film sur-
face. The morphology of areal carbon film surface is
inhomogeneous and is substantially different from the
model considered above. However, the anisotropic
evaporation mechanism outlined above can obviously
manifest itself in asimilar manner in this case as well.

In experimental studies of film structure by means
of aHe-Ne laser, the angle between the incident beam
and the direction of observation of the scattered light
was 90° (see Fig. 1). Therefore, the dependence pre-
sented in Fig. 4a can be explained by diffuse scattering
by afractal rough surface [19]. It is clear that the pat-
terns developing on an irradiated surface substantially
change the diffuse scattering function, asillustrated by
the experimental results shown in Figs. 4b and 4c.

5. CONCLUSIONS

It is demonstrated that irradiation of graphite-like
films by linearly polarized high-energy pulsed laser
light leads to the development of spatially oriented
structures. The structure orientation determined by the
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laser polarization plane is explained by anisotropic
evaporation of the carbon film.
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Abstract—The dynamics of a two-level atom with optical transition J; — J = Jy + 1 under the action of
elliptically polarized resonance radiation in the presence of a constant field directed along the radiation wave
vector is studied in the approximation of asemiclassical description of the angular momentum orientation. It is
shown that the atomic distribution over the angular momentum orientation exhibits a two-scal e time evol ution.
At thefirst stage, after the beginning of irradiation, the angular momenta of atoms get oriented (over compara
tively short time interval s) along the magnetic field, aswell asin the opposite direction, depending on their ini-
tial orientation and the ellipticity of radiation. At the second (longer) stage, the redistribution of atoms takes
place, as aresult of which they are oriented predominantly in one of the above directions. The duration of the
second stage is an exponentia function of angular momentum J. © 2004 MAIK “ Nauka/Interperiodica” .

The scope of problems that involve the interaction
of atoms with resonance radiation in the presence of a
magnetic field has been expanded in recent years. We
are speaking primarily of magnetooptical trapsfor neu-
tral atoms [1], magnetometers based on optical pump-
ing [2, 3], and so on. A characteristic feature of such
problems is that the degeneracy of atomic states in the
angular momentum projection must be included in
view of the vector nature of the interaction of the elec-
tromagnetic field with the atoms. Even if we confine
our analysis to the model of an atom with two energy
states, the problem becomes essentially a multilevel
problem in view of the above-mentioned degeneracy
and an analytic solution can be obtained only in afew
specific cases [4—6]. The dynamics of an atom can be
traced only vianumerical solution of the corresponding
equations, which can provide answers to specific ques-
tions, although it is difficult to analyze the dependences
on the parameters of the problem in this case.

However, semiclassical approaches to the descrip-
tion of rotational motion and, in particular, the angular
momentum orientation can be useful here [7]. In these
approximations, the equations for the density matrix
are simplified to such an extent that analytic solutions
can be obtained and their parametric analysis can be
carried out. A necessary condition for the validity of a
semiclassical description of rotational motionisalarge
angular momentum of the quantum system, J > 1.
However, essentially quantum effects, which are for-

mally manifested in the presence of narrow angular
structures with a size smaller than the quantum indeter-

minacy A8 ~ 1/./J in the angular momentum orienta-
tion in the density matrix, can also be exhibited in such
systems [7, 8]. In the present study, we consider only
such solutions which will be referred to as semiclassi-
cal and in which the characteristic scale of angular
strictures exceeds the quantum-mechanical indetermi-
nacy in the angular momentum orientation. Neverthe-
less, the results obtained when the condition J > 1
holds remain qualitatively valid for not very large val-
uesof J~3-5aswell. Thisremark is especially impor-
tant since atoms are mainly characterized by not very
large values of J. For example, the akali atom Cs
exhibitsaclosed transition F — F + 1 from the hyper-
fine state with atotal angular momentum of F = 4. Only
some atoms (e.g., Fr isotopes) possess an angular
momentum sufficient for assuming that the semiclas-
sical approximation is quite applicable for their
description.

It was shown in [8], where the classical approxima-
tion was used for describing rotational motion, that an
atom with optical transition J; —= J. = J; + 1 in the
field of elliptically polarized resonance radiation and in
the presence of amagnetic field directed along the wave
vector orients its angular momentum either parallel or
antiparallel to the magnetic field, depending on its ini-
tial orientation and the ellipticity of the resonance field
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Fig. 1. Evolution of the angular momentum orientation distribution for an atom with J; = 4, Je = 5; the dllipticity of radiation is
Xo =—0.3 and ty = J/G?. The z axis and the magnetic field are directed upwards.

polarization. However, such dynamics of the angular
momentum is observed only for a certain time interval,

t, = Jr/G?

where J is the angular momentum, G is the Rabi fre-
guency, and I is the line half-width. Numerical calcu-
lations based on the optical Bloch equations in the IM
representation for a two-level degenerate system show
that, in the case of the elliptic polarization of radiation,
one of the directions of the angular momentum is unsta-
ble. For long time intervals t > t,, the overwhelming
majority of particles are concentrated only in the vicin-
ity of one of the possible directions of the angular
momentum (Fig. 1). The results of calculations
obtained in the JM representation are visualized with
the help of the method described in [7]. The figure
shows that, in the case of population of the lower state
with aninitially isotropic distribution over the direction
of the angular momentum, an anisotropic distributionis
formed at thefirst stage over timeintervalst ~ t, (for the
chosen elipticity of polarization, the angular momenta
of part of the atoms are oriented along the magnetic
field, while the angular momenta of a dightly smaller
part of atomsare oriented in the opposite direction). For
longer periods of time, the latter part becomes smaller
and smaller until the angular momenta of nearly all par-
ticlesare oriented along the magnetic field (it should be
stipulated that, in view of quantum indeterminacy A6 ~

1/./J inthe angle of orientation of angular momentum,
a certain distribution of angular momentum directions

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

about the magnetic field direction always exists). It is
worth noting that the second stage is much longer than
thefirst.

The present study aimsto describe this phenomenon
on the basis of asemiclassical representation of angular
momentum [9]. In particular, the factors determining
the duration of the second stage in the redistribution of
particles over the direction of angular momentum will
be clarified.

We consider aquantum system with two energy lev-
els degenerate in the angular momentum projection,
which resonantly interacts with radiation so that radia-
tion induces transitions from the lower (ground) state g
to the upper (excited) state e and back. Passing to a
semiclassical description of rotational motion, we will
use the @Ba representation introduced in [9] for arota-
tor or aspherical top. Here, angles 6 and ¢ characterize
the polar and azimuth angles of the direction of the
angular momentum, while angle a determines the ori-
entation of the rotator axis in a plane orthogona to the
angular momentum direction. In exact resonance with
the exciting field, the equations for the density matrix
for the quantum system considered here in the @Ba rep-
resentation have the form [9]

d

Oy = _i ey OWO
mﬁ"_r(ﬂpee__
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d d
1P+ OniggPos = IeXpE’ZEEGpge

- | exp D\M:'G* peg + fef:)ee’ (1)

Pge = Pogr 2] = Jo+J,+1.

Here, ', is the constant of spontaneous decay of the
excited state to the ground state. We assume that there
exists only one decay channel for state e. Constant I' is
the rate of coherence breaking between levels e and g.
In the absence of other mechanisms of destruction of
this coherence besides spontaneous breaking, we have
r=rJ2

We consider the case of aweak magnetic field, when
the Zeeman frequency wy is much smaller than the
relaxation constant I"; consequently, we disregard the
magnetic field effects in Egs. (1) for nondiagonal ele-
ments of the density matrix and for the excited state.
The effect of rotation of the angular momentum of the
atom in the magnetic field isincluded only in the equa-
tion for the diagonal element of the density matrix for
the ground state. Equations (1) are written in a coordi-
nate system with the z axis directed along the magnetic
field.

Term fepee on the right-hand side of the equation
for the diagona element py, of the density matrix
describes the arrival at the ground state due to sponta-
neous decay of excited state e. The specific form of this
term for various types of optical transitions was deter-
mined in [8]. In the particular case of transition J; —~
Je = Jy + 1, thisterm has the form

Me—T,
Me

[ R T P
= 3 %+ 53 D+4TZA, (2)

where A isthe angular Laplacian in angular variables 6
and .
In Egs. (1), the following notation is used:

G(. 6, @) = 3 GoDg5,5,(% 6 )

= G(¢, 8)exp(i(Jo—Jg)a),

Eodeg
hf23+1

G(@ 8) =Y GoD5 5, 3,(9 8,0), G, =
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Here, E, arethe circular components of the polarization
vector of the electric field of thewave (0 = 0, £1); dgy iS
the reduced matrix element of the dipole moment for
the e—g transition; and Dfl,, 34—, is the Wigner rotation
matrix. We will consider the case when the direction of
propagation of radiation coincides with the direction of
the magnetic field. Operator W actsin accordance with
therule[9]

GD 0

WPQ = %_COSGOO(D c?coseQ -
0 o
acosE)PQ?(p cose Q

We consider the situation when the radiation inten-
sity is not high; i.e., the Rabi frequency G < T'. In this
case, the population of the excited stateis always much
smaller than that of the ground state and we can disre-
gard pe as compared to py, as well as the time deriva-
tives in the equations for py and pe;. Summing the
equations for the diagonal elements of the density
matrix in this approximation for the radiation intensity,
we arrive at the equation

0 0
(ﬁpgg + (*)Ha_(ppgg
(4)
= ZSIHDWD(Gpge"' G* peg) + (re_ re)pee

In the semiclassical approximation, when it is
assumed that the angular scales of characteristic varia-
tions of the density matrix considerably exceed the

quantum indeterminacy 1/./J in the angular momen-
tum orientation, we can retain only afew first termsin
the expansion of operators of the type exp(iw/2J) into
aTaylor series. In particular, for our subsequent analy-
Sis, it is sufficient to retain in Eq. (4) for py, only the
terms on the order up to 1/J% consequently, in the
expansion of the sine in Eq. (4), we retain only the
first nonzero term. In addition, p, and nondiagonal
elements of the density matrix can be calculated to
within 1/J:

i W
Pee = — F'e(Gpge_G* peg) + E‘E(Gpge +G* peg)v
i W
peg = - FGpgg + _2—\]—I:Gpggv (5)

i W
Pge = FG* Pgg + ZJ_FG* Pyg-
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-0.5 0 0.5 1.0

-1.0

Fig. 2. Normalized drift velocity uJr /G (solid curve), nor-

malized diffusion coefficient DJZFIG2 (dashed curve), and

the ratio u/DJ of the drift velocity to the diffusion coef-
ficient (dotted curve). The elipticity of polarization is
Xg=-0.3.

We assume further that the Zeeman frequency wy, is
much higher than the velocity G’ /Jr of rotation of the

angular momentum [8] (here, G° = |G, + [G_,P). This
alows us to assume that population pyy has a uniform
distribution over angle @. In this approximation, we will
study the angular momentum distribution over angle 6,

2n

-1
P = J’ Pggd®. (6)
0

Proceeding in the same way as described in [8] and
retaining only the terns on the order of 1/J and 1/,
after certain calculations, we obtain

gtp+55‘%§gﬁlp—Da—£s—épE =0, )
Sin‘8. . 2 2
= ﬁ[|G_1| (1+ cosB) —|G,4| (1 - cosb)],
SN0~ 2
= Ff[|G_l| (1 + cosB)(3 - cosB)

+|G,4*(1 - cosB)(3 + cosB)].

It can be seen that the dynamics of the angular momen-
tum distribution over its projection on the z axis obeys
adiffusion-drift equation, the terms proportional to 1/J
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determining the drift velocity u of the motion of angular
momentum in coordinate cosB, while the terms propor-
tional to 1/J? are responsible for diffusion.

Thus, if we consider the case when J > 1, whichis
necessary for the semiclassical description of the angu-
lar momentum to be valid, the diffusion term is of the
next order of smallnessin parameter 1/J as compared to
the drift term. This means that the angular momentum
dynamics at the initial instant following the application
of laser radiation is mainly determined by the drift; at
later stages, diffusion beginsto play asignificant role.

To simplify the subsequent analysis, we introduce
the notation x = cosB. In accordance with Egs. (7),
velocity u is dternating in the range of admissible val-
ues of x (-1 < x £ 1) and assumes zero value for

[ (<

= . (8)
|G—1|2 + |G+1|2

0

Quantity x, also characterizesthe éllipticity of the radi-
ation polarization (in particular, x, = 0 corresponds to
thelinear polarization and x, = £1 to theright and left cir-
cular polarization). It followsfrom Egs. (7) that u> 0 for
X > X, and, conversely, u < 0 for x < X, (see Fig. 2). In
other words, all particles with initial coordinate x > X,
move to the right and would be accumulated at point
x =1 in the absence of diffusion, while particles with
initial coordinate x < X, would gather at point x = —1. If
we assume that the initial distribution of particles over
x isuniform, the number of particles gathered at points
x=1and x = -1 would be

- _1+x

N = , N 5 9)

respectively. We will use the following normalization
for the number of particles:

(10)

However, the steady-state solution to Eq. (7) has the
form

1 0 U U
Po(X) = zexpg ) x%,
. (12)

1

Z = J'expé’rgdxlgdx.
-1 XOD U

Using this equation to evaluate the total number of par-
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ticlesfor x > X, and x < Xy, we obtain

N+ _1 ; Er< Ud Dd
0~ ZJ.engD Xl% X,
%o %o

’ (12)
N = L ropErYax
0= ZIengB X% X,
] %o

which doesnot coincidein the general casewith theini-
tial distribution (9) for N* and N~. It follows hence that
the initial redistribution of particles, which takes the
characteristic time

t, = 1/u = Jr/G’

is followed by a longer process, during which a true
steady-state distribution of particles (11), (12) sets in.
The duration of this processis determined by diffusion
of particlesin aregion in the vicinity of point x,. Inte-
grating Eq. (7) with respect to x from X, to 1, we obtain
the equation for the time variation of N*,

do.
aN = Jos (13)

wherej, isthe particle flux at point x;.

It follows from Egs. (11) and (12) that function u/D
(the dependence of thisfunction onxisshowninFig. 2)
plays an important role. This function possesses the

property

= %2,

x=%1

(14)

Olc

which is useful for subsequent calculations. To deter-
mine the value of j,, we will use the fact that the second
stage of the redistribution of particles to the stationary
value is a slow process. From the standpoint of mathe-
matics, we are using the presence of small parameter
1/J in the problem, which in fact is manifested in that
the diffusion velocity is smaller than the drift velocity
by a factor of 1/J. This circumstance suggests that, at
large distances from point Xy, in each of the regions
X>X, and X < X, for long time intervals, we have a
guasi-stationary distribution

+

+ N
p(x)= N—+po(X), X > Xo,

0

(15)

o (x) = E—ipo(x), X < Xe. (16)

0
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On the other hand, owing to the quasi-stationary
condition, thefollowing equationisvalid in thevicinity
of point X = X

d _ .
up—D&p = . a7
The solution to this equation is obvious:
~ Efud 0
p(x) = expgﬁ X
’ (18)

i o'y o
X p(xo)—I—[SexpEI—J’de%dx1 :

Inthevicinity of point x,, we can also use the expan-
sion

, _ du

U(x) = (X=Xp)u', u = ax

; (19)

X = X

and calculate explicitly the integral in the exponentia
function on the right-hand side of Eq. (18):

X
0 _u

D \]
2 ~ expY_(x—x 2
exp E)—!’ Ddx% expp 2DO(x Xo) il (20

Since the latter function rapidly attenuates, we can
rightfully take the quantity j/D outside the integra in
Eq. (18) at point x = x, and use in the region

X =Xg| > [2Do/u' 01/./3

the following relations instead of (18):

*(x) exdud%
X) = —aXx
P DBX’D .

. " (21)
X p(x)—h expEl— dede
° Do;!. D;!—D [l ok
_ Ou. O
P (x) = explfFdxe
A (22)

X p(x)+hxoexpE|—X1dede
° DO_J;L DJD [l dl

Comparing expressions (21) and (22) with (15)
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and (16), we find that
. D - NO
JO = 1 OX a N__*,D'

ZIexpE}—IDdX%ENO No-

(23)

We will caculate Ny and N,
approximations, such as

by using obvious

1

ZNg = Iexpé’dexlmdx = expB'DdX]

(24)

1 1

Dludm

O u. O expB’D )%

—_ :#
XJ’expE—J’Ddxlde >3

On segment x, < X < 1, we approximately assume that

u X—= XO
5 2J T (25)
which finally gives
exp(J(1 = o))
ZNg= >3 (26)
Anaogoudly, for N, we obtain
ZNg= —eXp(J(;]J’XO)). 27)

Finally, using approximation (19), (20), we obtain
the following expression for jg:

D

jo = 23 °“(N exp(=J(1 + xp))

~N"exp(-J(1-xo)))

2,3/2 2

1
- [2U29 Cvepaaex)

(28)

~N"exp(=3(1-%o))).

Substituting this expression for flux j, into Eq. (13)
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and using normalization condition (10), we obtain

/
dy . [301-9"¢E
dt 2T[J 2 T

x[exp(=3(L1+Xp)) =N’

x (exp(=J(1+Xo)) + exp(=J(1—Xo)))].

It follows from this equation that the duration of the
second stage in the evolution of the angular momentum
orientation is given by

) _tF 1 e’
1 0 2.3/2
(1 ) COSh(JX)

Simple estimates show that the second stage dura-
tionist; = 40t, for J =5 and for dlipticity x, = -0.3.

Thus, in the description of the angular momentum
based on the semiclassical approximation, the problem
of the interaction between atwo-level atom and ellipti-
cally polarized radiation in the presence of a magnetic
field can be formally reduced to the diffusion-drift
equation of particle transfer in the coordinate corre-
sponding to the angular momentum projection on the
guantization axis. For the optical transition

Jg—=Je=Jy+1,

(29)

(30)

the drift velocity is alternating; as aresult, particles are
concentrated depending on the angular momentum ori-
entation parallel or antiparallel to the magnetic field.
However, when the polarization differsfrom linear, one
of these directions dominates in the sense that, after a
long time, the angular momenta of most particles are
oriented in thisdirection. Asaresult of diffusion, parti-
clesare”pumped” from theless advantageousdirection
of their angular momentum orientation to the opposite
direction. However, the rate of such pumping is propor-
tiona to the number density of particlesin the vicinity
of point Xy, at which the drift velocity vanishes. In view
of the properties of the solution to the diffusion-drift
equation, the number density of particlesin thisregion
isfound to be exponentialy small,

+1

O o
expB—I(u/D)d)GDe ,
0 O

as compared to the number density of particles concen-
trated in the above-mentioned directions. This circum-
stance determines the slow rate of the second process.

After completion of the second stage, the numbers
of particle oriented along and against the magnetic field
satisfy the equilibrium relation

No = exp(2J%0)No,
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which is quite sensitive to ellipticity x, for large values
of J.
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Abstract—The physics of stationary vacuum microarc in a wide interelectrode gap with the perveance corre-
sponding to ageometry of the Miiller electron projector type and the Langmuir—Blodgett function a? > 5is con-
sidered on a qualitative level. Under these conditions, the electric field at the cathode can exhibit a significant
(severafold) increase due to a positive space charge of microarc, which makesfield electron emission possible.
The most important features of the continuity equation, Poisson equation, and thermal conductivity equation
describing this system are considered. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Electric microarc is a fundamental phenomenon
playing the role of a living cell in the complicated
“organism” of high-current arc discharge, widely used,
albeit still on the basis of empirical knowledge, in both
science and technology [1]. Asis known, a vacuum arc
can beinitiated in variousways, in particular, it appears
as aresult of the electric discharge between two elec-
trodes in vacuum, thus restricting the maximum possi-
ble potential difference between electrodesto alevel of
about 10° V per millimeter of discharge gap width.
Alternatively, avacuum arc arises upon breakage of the
contact between current-carrying electrodes. Depend-
ing on the circuit parameters, the current of a vacuum
arc may vary from afraction of ampere to tensand hun-
dreds of kiloamperes, while the voltage drop varies
from the ionization potential to several dozens of volts.
A vacuum arc can exist between electrodes made of any
metals (from mercury to tungsten) possessing substan-
tially different evaporation rates, thermal conductivi-
ties, and other properties.

In most cases, electric arc is studied in a discharge
gap with a width below 1 cm, where an important or
even decisive role is played by anode evaporation. A
high-current arc consists of numerous autonomous
arcs, each arising from its own cathode spot emitting
electrons. The discharge current via one cathode spot
can vary from about 0.4 A for mercury up to 10° A for
tungsten [2]. The current density measured on a cath-
ode spot may reach up to 10 A/cm?. Therefore, the
cathode spot radius can be estimated at about 5 x
10™* cm, the electron density is on the order of 10 cmr3,

and the Debyeradiusis5 x 10-7,/T, cm (T,isthe elec-
tron temperature expressed in electronvolts).

Thus, according to the results of observations, avac-
uum arc with a sufficiently small current is a micro-
scopic self-sustained discharge arising from a single

cathode spot on the surface of a massive cathode. This
very type of discharge, referred to below as vacuum
microarc, is studied in this paper.

It is commonly accepted that the typical vacuum
microarc consists of three parts: (i) a cathode spot;
(i) an active near-cathode region called the cathode
layer, from which all ions are collected in the cathode
spot to provide for continuous reproduction of the nec-
essary flow of atoms from the cathode surface, the
working temperature, the electric field strength, and the
electron emission current |; and (iii) a passive anode
layer playing the role of a conductor between the outer
surface of the cathode layer and the anode surface. In
the case of adistant anode, the anode layer is character-
ized by predominating negative space charge and by a
very low density of atoms. lonization of atoms in the
anode layer does not play any significant role in the
mechanism of self-sustained vacuum microarc. The
conditions of existence and the properties of vacuum
microarc are fully determined by interaction of the
active cathode layer with the cathode spot surface.

The active cathode layer can be represented by a
spherical sector of solid angle Q with a cathode spot

with an areaof T(R2 = Qr at the apex. The atomic flux

from the cathode spot surface, with an angular distribu-
tion described approximately by the cosine law, propa-
gates within a solid angle Q, > Q irrespective of the
electric field structure. A part of the atomic flux within
the angle AQ = Q, — Q bypasses the active cathode
layer and does not participate in discharge.

Figure 1 shows a schematic diagram of such an ide-
alized vacuum arc with AQ = 0. The outer boundary of
the active cathode layer has a potential of ¢, and is
spaced by r, + a from the center (point O) of the spher-
ical sector. Analysisof thismodel, despiteits simplified
character, allows the most important parameters to be
established and their interrelation to be understood.
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In the scheme of Fig. 1, unknown parameters
includethe potential ¢, the electron emission current |,
the ion current |; to the cathode, the spot radius R, the

solid angle Q (or the quantity ré = TR%/Q), and the
cathode layer thickness a.

All the cathode characteristics important from the
standpoint of the microarc’s existence are considered as
known. These include the evaporation rate, the rate of
cathode sputtering by ion bombardment, and the den-
sity of electron emission current asafunction of the cath-
odetemperature (T,) and the electric field strength (E,) at
the cathode, as well as thermal conductivity, electric
conductivity, etc.

Based on the known properties of the cathode, vac-
uum microarc is described by jointly solving the equa
tion of continuity for particle fluxes in the active cath-
ode layer, the Poisson equation, and the thermal bal-
ance equation for the cathode spot surface. Rigorous
solution of this problem isavery complicated task. For
this reason, an analysis of the schemein Fig. 1 will be
performed using justified simplifying assumptions
implying that a stationary vacuum microarc existsin a
certain limited region of parameters.

2. THE EQUATION OF CONTINUITY
AND THE CONDITION OF EXISTENCE
OF VACUUM MICROARC

Let us restrict the consideration to a region of
parameters in which the ion current fraction is small:
i =1,/ < 1. Asis known, the Langmuir collisionless

cathode layer is characterized by i = ./m/M , where m
and M are the electron and ion masses, respectively. For

example, the latter ratio for tungsten is ./m/M = 1.7 x

103, In the case of i = 2./m/M, the electric field E,
accountsfor greater than 0.7 of the value corresponding
toi > 1 (i.e, to a cathode layer with positive space
charge). Therefore, the condition of i < 1 does not
exclude field electron emission, provided that a field
strength on the order of E. = 10’108 VV/cm is consi stent
with ajoint solution of the Poisson and continuity equa-
tions. Thus, the region of parameters corresponding to
i <€ 1 admitsthe electron emission viathe Richardson—
Dushman-Schottky and Fowler—Nordheim mecha
nisms.

Under the condition of i < 1, we may assume that
| = congt in the active cathode layer. Then, the ion cur-
rent component can be expressed asl; = |g;N,, where o;
is the average ionization cross section and N, is the
“atomic density” in the gas phase of the cathode layer:

fpta
[
Ng J’ ng(r)dr o Q)
To

For aobtaining estimates, we will use the well-known
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Fig. 1. Schematic diagram of themodel of vacuum microarc
(see the text for explanations).

approximated formula

where g, isthe maximum ionization cross section, W=
¢JU;, ¢, isthe kinetic energy of electron, an U; isthe
ionization potential. For example, i = 1.7 x 10~ and
0, = 107¢ cm? correspond to Ny = 1.7 x 103 cm™, For
such alow atomic density and atransport cross section
of o < 10'® cn?, electrons are barely scattered on
atomsin the cathode layer. It should be also noted that,
for 0,,=5x 10 cm? and U; = 8V, the average cross
section g; = 10716 cm? can be obtained for two values of
W W, =1.083 (¢.=8.76 V) and W, = 54 (¢, = 430 V).

For the known values of i and o;, formula (1) gives
a necessary condition for the existence of a stationary
discharge obeying the equation of continuity for the
fluxes of atoms, ions, and emitted electrons.

L et us consider the behavior of atomsin more detail,
assuming their radial motion at a constant velocity
of V. Then, atoms will travel the distance r without
losing electrons with a probability of

_ 0o '
where
Xo = €V /0] ©)

is the characteristic ionization length in the flow of
electrons with theinitia current density j (at r =ry).

Asaresult of ionization, the density of atoms drops
faster than according to the quadratic law,

2
r
(1) = No2u(r),

and the integration yields

i
Ng = o = NeXo(1—H), 4
where 4 = u(r, + a@). Note that, with allowance for
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ro/a

Fig. 2. The behavior of 1j(rg/a) for vacuum microarc with
X = const.

expression (3), formula (4) is equivalent to the relation

ki = (1-p), ®)

wherek = j/eq, and ¢, = nyV, isthe density of theatomic
flux from the cathode surface at r = r. The probability
H(ro+a) isnaturally called the transparency of the cath-
ode layer, while thereciprocal quantity x = ptiscalled
the compression.

Another important processisthe resonance recharge
of atomsin the counterflow of ions. With allowance for
this factor, the quantity k in relation (5) should be
replaced by

k=Kkd + SoiD
k=kHL+ 537

where g, isthe recharge cross section. Then, relation (5)
should be rewritten as

ki =h(1-p),

where the coefficient h takes into account the reverse
flux of recharged ions (1 < h < 2). Since g, > 10%0;, the
recharge process may significantly decrease the trans-
parency and thickness of the cathode layer, while leav-
ing Ny = const. It should be noted that, astheion current
fraction i increases, the gas compression in the active
cathode layer takes place predominantly dueto the res-
onance recharge.

The model of vacuum microarc under consider-
ation, characterized by a “zero cone transparency”
(Vgllr; AQ = 0), is optimum from the standpoint of a
minimum necessary rate of reproduction of the atomic
flux from the cathode surface. An analogous situation
with negligibly small “edge transparency” is actually
possiblefor R> a.

The transparency of the cathode layer can vary in
response to deformation of the spherical sector, which
leadsto achangein Xy, a, and/or r,. However, for areal
vacuum microarc in a stationary regime, the integral
transparency must exactly compensate for reproduction
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of the atomic flux from the cathode spot surface by
means of evaporation and cathode sputtering. If no such
reproduction takes place, avacuum arc can exist only in
the case of zero integral transparency or infinite com-
pression.

It is naturally assumed that ions are reflected from
the cathode in the neutral state, rather than condensed
on the cathode surface, so that the atomic flux density
o Obeystherelation

edo = ji(1+y;) +eqs,
where vi(¢,) is the cathode sputtering coefficient and
0«(T,) isthe evaporation rate. In a stationary regime,

Yiji + €qs
= -5 6
™ (6)

In particular, at a sufficiently low cathode temperature
T. for which cathode sputtering predominates (while
still y; < 1), we obtain

H(¢c) = yl(q)c) < 11

X(0) = p > 1.

Thus, for the given values of ¢, = const and eg, <
Y:ji» the microarc transparency and compression are
constant and determined by cathode sputtering. In this
case,

(7)

a _ an

. %Hrdjlnx. ®)
For g; = 10*° cm? and V, = 5 x 10* cm/s, we obtain an
estimate of x, = 80/j, for which relation (8) can be

rewritten in terms of the product of the current | and
current density j:

- 4 rq:|2 2
lj=3x10 %l+5m In°x.
For Inx =5 (x = 148), we obtain

- 5 V_sz .
|j~7.5><10%|.+aD. (8)
In the limit of ry/a < 1, this yields Ij — 7.5 x
10° A%/cm? = const; in the other limiting case, ro/a > 1,

we obtain Ij —»= 7.5 x 10°r;/a?. This behavior of
lj(ro/a) for x = const isillustrated in Fig. 2.

Using to the results reported by Daalder for vacuum
microarc on copper cathode (see review by Harris[2]),

2
1=50A, j=2x10° 2 1j =102
cm cm

we obtain an estimate of R= 2.8 x 10~ cm. Taking |j =
10 A%/cn??, inrelation (8'), weobtainry/a= 115. Rela
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tion (8) for ro/a> 1 correctly reflects the dependence of

alx, on Iny, since the edge transparency can be
ignored. Then, applying relation (8) to the experimental
data of Daalder, we may conclude that the maximum
current of a field-emission microarc, | = 50 A, corre-
spondsto a“degenerate”’ one-dimensional geometry of
the active cathode layer (ry/a > 1).

The scheme of vacuum microarc under consider-
ation implies that the superimposed flows of atoms,
ions, and electrons inside the spherical segment pro-
ceed intheradia direction and do not intersect the cone
surface. This idedlization leads to a severalfold
decreasein thelower limiting value of the microarc cur-
rent (called threshold current). The threshold current
corresponds to a certain minimum ratio (ry/a),, for
which the atomic density N, decreases below a mini-
mum possible level (N, < i/0), leading to the appear-
ance of “vacuum” in the cathode layer volume and to
the quenching of arc discharge. In the vicinity of this
threshold, the discharge may be conventionally called
point microarc. It is obvious that, for (ry/a)m,, < 1, the
threshold current coincidesin order of magnitude with
that for ry/a < 1.

In the field emission regime at j ~ 10® A/lcm?, the
threshold current of a point microarc according to for-
mula (8 is approximately 7.5 x 103 A. It isinteresting
to note that a current of the same order of magnitude is
observed for field emission from amicroscopic point [3].
Therefore, the question naturally arises as to how can
the field el ectron emission from amicroscopic point be
distinguished from that in the case of microarc.

In this context, it is necessary to emphasize the need
for taking into account the ionization and recharge pro-
cessesin the description of stationary electron emission
for j ~ 108 A/cm?, when the ionization length is x, ~
107¢ cm, that is, much smaller than the point radius. It
is not excluded that stationary field emission in the
Mdller projector can be observed for aflat cathode.

Finally, note that the above question has a physical
meaning only provided that both degenerate and point
microarcs involve an electric field strength of E ~
108 V/cm.

3. ELECTRIC POTENTIAL
AND FIELD DISTRIBUTION
IN VACUUM MICROARC

In many investigations, it is assumed that the active
cathode layer is filled with a quasineutral plasma and
the current density obeys the “3/2 law,” which is valid
for the Langmuir collisionless cathode layer. However,
there is some doubt concerning the validity of these
assumptions in the case of vacuum microarc. At alow
density of atoms (N, < 10* cm=) and a monotonic
potential distribution in the cathode layer, all electrons
travel the distance to the potential virtually without col-
liding with atomsin thislayer. For thisreason, the cath-
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ode layer is characterized by predominating positive
space charge and the Poisson equation in the zero
approximation can be written with neglect of the space
charge of electrons. This assumption does not seem
preposterous in view of a microscopic size of vacuum
microarc.

In order to check this, let us obtain estimates for a
one-dimensional cathode layer in which

Ng(X) = NoeXP(=X/Xo),

and theion current density at alow transparency can be
expressed as

ji(x) = enOVgexp(—x/ Xo) -

Moving toward the cathode, ions are retarded asaresult
of the Coulomb interaction with the intense flow of
electrons and the resonance recharge caused by the
counterflow of atoms. Therefore, it can be reasonably
assumed that the average ion velocity is comparable
to that of the neutral atoms, V; ~ V,. Then, en, =
enyexp(—=x/xy), the electric field at the cathode obeysthe
condition

|E| < 4menyX,, 9)
and the voltage drop is

b < 4TEeNnX;. (10)

Formulas (9) and (10) reflect equality of the densi-
tiesof atoms and ionsin the cathode layer, N, = N;, and
can be rewritten as

|EJ <1.8x10°N, [V/cm], 9)

b, <1.44x 104"\'Tg [V]. (10"

For i ~ 102 and g; = 106 cm?, we obtain N, =
10°% em?, |E| < 1.8 x 108 V/em, and ¢, < 144V (for
E. > 108 V/cm, the field emission current density isj >
108 A/cm?). These estimates seem to be quite realistic.

It should be also noted that, for j ~ 10® A/cm?, the
frequency of the Coulomb electron-on collisions is
much greater than that of the electron—atom collisions.
Therefore, the electric conductivity in the cathode layer

must correspond, in order of magnitude, to the Spitzer
formula

. 32, ,d¢
j=13T.(X) Ix

For a negligibly small ion current fraction, inelastic
electron collisions are insignificant and the electron
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temperature Ty(X) = T, + (2/3)ed increasesin proportion
to the potentia ¢. In this case, the electric field at the
cathodeis|E.|=j/13TY?. Forj=2x 108 Alcm?and T, <
0.3 eV, thisyidlds |E| = 10° V/cm. The potential ¢(x)

can be determined from the formulajx = 2.9$%2, which
can be written for eV,/o; = 10 as §(x) = 4(x/x)?®. For
alxy = Inx =5, thisyields ¢, = 7.6 V. The electric con-
ductivity according to Spitzer corresponds to electro-
neutrality, but the order of magnitudeisretained evenin
the case of atwo- to threefold decompensation.

The first special feature of vacuum microarc appar-
ently consists in that the ion concentration exponen-
tially increases toward the cathode, rather than decreas-
ing in this direction. The second (and main) feature is
the positive space charge in the cathode layer. Accord-
ing to estimates, the electric field strength at the cath-
ode and the current density may reach levels typical of
the field emission at low values of ¢.. Moreover, it is
quite possible that the maximum field strength E at the
cathode of a microarc may exceed the values achieved
as a result of the field enhancement at a microscopic
point.

In concluding this section, it should be emphasized
that the initial assumption concerning a passive role of
the anode layer in vacuum microarc is valid provided
that the microarc current 1(¢.) is consistent with the
current I (L, ¢, ¢,) limited by the perveance of the
anode volume, that is, depends on the anode potential
¢, and the discharge gap width L. For | > 1, anonsta-
tionary regime can take place asaresult of thefield sag-
ging in theregion of X > a or even an aperiodic instabil-
ity of the Pierce type can devel op with the formation of
avirtual cathode and current breakage. Such processes
were considered in detail, with description of original
experiments, by Nezlin [4].

Thus, with exponential growth of the gas and ion
density toward the cathode, field emission under sta-
tionary vacuum microarc conditions seems to be quite
possible even from aflat cathode surface.

4. THERMOPHY SICS
OF A VACUUM MICROARC CATHODE

The thermophysics of cathode spotsis a very inter-
esting and complicated problem of independent basic
significance. However, judging by the available litera-
ture, this problem was never systematically nor thor-
oughly studied and was not given proper attention in
reviews. For the description of thermal processesin the
cathode spot of vacuum microarc, it will be necessary
to make simplifying assumptions as it was done in the
preceding sections.

Consider a cathode spot in the form of a hemispher-
ical well of radiusr, on the surface of amassive cathode

at atemperature of T.. The microarc current | = 2nr§j
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determines the characteristic scale of the Joule power
evolved on the cathode,

Qo = IT./L.

Here, L = 2.45 x 108 isthe Lorenz number, which can
be considered as a fundamenta constant determining
the rel ationship between the thermal conductivity A, the
electric conductivity o, and the temperature in the
Wiedemann—Franz law A = oTL.

A heat flux from the cathode layer via the well sur-
faceis
dT
dr

>0.

To

NE1 9

Let us assume that no heat exchange with the gas dis-
charge volume takes place on the flat cathode surface
outside the well. Then, the temperature of the well sur-
faceisdetermined by the thermal conductivity equation

.2
: - _J(n)
divgradT = (X

with the boundary condition T| = T.A solution of

rerg

this equation can be presented in the following form:

t = cosa —Bsina, (12)
where
t:i, B:%, a:—jroﬁ.
T Qo A
The current | can be expressed in terms of o as
. 8,2 2 A°
lj = 256 x 10°A 0" —. (12
cm

The angle o determines the rate of temperature
decrease in the bulk of cathode. In particular, for 3 =0,
we obtain

T(r) _ arqg
T = COSE]—TD.

C

In the regime of field emission from tungsten (A = 1)
for j = 2.56 x 108 A/cm?, we obtain | = a2. At a suffi-
ciently small cathode spot radius, the microarc current
can be very small (on the order of 102 A). For a < 1,
formula (11) yieldst = 1 — Ba, which implies that the
spot can be “cold” for Ba < 1/2.

Using the condition Ba < 1/2, we obtain

QAS%—: = EI%J—Ez8><10‘5onc< 1W.

Since B ~ Y2a > 1, the ion-bombardment-induced
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heating predominates. However, the heat flux is such
that

Qs li(d+U) =il(d.+U)).

Fori~102 1~102A, T,=600K,anda ~ ./ ~107,
we obtain an estimate of ¢.=40V. Thisimpliesthat a
low-current stationary microarc with | ~ 102 A is pos-
sible both on a big massive cathode and on a cathode
with dimensions on the order of severa micrometers.
For the above estimates, the spot diameter is smaller
than the characteristic scale of the polycrystalline struc-
ture of amassive cathode. In this case, using the values
of A from handbooks is physicaly meaningless and
estimation of the minimum current of a field-emission
microarc becomes a difficult problem.

In the opposite limiting case of B = Q,/Qy < 1,
expression (11) impliesthat, for a —= 1W2,t — 0 and
the problem has no stationary solutions. For a = 172,
this situation takes place when

(1)) = 6.3x 10°A* A%/cm®. (13)

For copper (A = 3.5), this yields (lj), = 7.74 x
10° A%/lcm?. This value is in satisfactory agreement
with the result obtained by Daalder: (1j)., =109 A2/cn??.
Thus, the upper limiting microarc current is probably
related to a thermal instability of the cathode spot
developed at 3 — 0 [2].

Returning to the approximation of t = 1 — af3, note
that, irrespective of the temperature, the equality aBp =1
isvalid for p determined by the temperature gradient on
the spot surface viathe relation

- T
o rop.

dT
dr

Therefore, p — 1impliesaff — 1 and, apparently,
a thermal instability (t — 0) in a point microarc can
develop for a < 1. It is amost impossible to study
rather complicated thermophysics of vacuum microarc
in experiments on natural microscopic objects without
recourse to modeling on specially designed setups.

5. CONCLUSIONS

It is believed that a high-current low-voltage vac-
uum arc consists of numerous fragments (“group
spots’) representing complexes of vacuum microarcs
[2, 5]. Therefore, investigation into the properties of
vacuum microarc is of primary significance. This task
can be solved both by studying natural microscopic
objectsand by modeling separate processes and parts of
a microarc. For example, gas compression, potentia
distribution, and stability of the quasispherical cathode
layer can probably be studied in a non-self-sustained
discharge with an incandescent cathode of macroscopic
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dimensions. The thermophysics of the microscopic
cathode spot, including the problems of thermal insta-
bility, can aso be studied in detail using a probe or a
cathode filament that has been self-heated in discharge,
aswas done by Pustogarov [6] for plasmatrons. M odel-
ing seems to offer a quite justified method stimulating
fundamental rather than purely technological approach
to arc discharge and promising both new important
basic knowledge and effective solutions of applied
problems.

To summarize, the following conclusions can be
emphasized.

1. At a high current density, the cathode layer fea
tures densification (described in terms of compression
X) related to a higher probability of ionization and res-
onance recharge of atomsin the gas phase. The charac-
teristic size of the cathode layer is on the order of the
ionization length x, = 10%j (for j > 107 Alcm?, this
yields a microscopic value below 10° cm).

2. On the microscopic scale, the entire cathode layer
is characterized by a predominating positive space
charge. For this reason, the electric field at the cathode
E. and the potential ¢ can be estimated by the order of
magnitude as E, = 1.8 x 10°N, [V/cm] and ¢, = 1.4 x
10*Ny/j [V], where Ny = i/0; = ngX, [cm?]. For Ny 2
107 cm?, thisyieldsE, = 108 V/cm, ¢.< 10°V, and | =
108 A/cm?. Therefore, a positively charged active cath-
ode layer of vacuum microarc provides conditions for
field electron emission.

3. In a stationary microarc, the compression is
inversely proportional to the rate of reproduction of the
atomic flux from the cathode spot. In the vicinity of a
cathode sputtering threshold, the compression may
reach alevel of x > 10%.

4. For the cathode layer geometry modeled by a
spherical segment, the compression dependson theion-
ization length X,, the cathode spot radius R, and the
cathode layer thickness a. For a preset constant com-
pression, there are certain possible relations between
the spatia characteristics x,, R, and a corresponding to
various stationary values of the microarc current | and
the current density j:

(i) for R > a (degenerate one-dimensional regime),
JR 2
(1)),=3x%10 ;(lnx) ;

(ii) for a > R (point microarc regime),
(1)), =3 x 10*(Inx)>.

For a point microarc with j = 108 A/cm?, the
microarc current is on the same order of magnitude as
the current of field emission from a microscopic point.
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5. The ascending current—voltage characteristic and
self-sustained character of vacuum microarc, together
with the possibility of stationary states, admit the for-
mation of complexes (clusters[2]) of alarge number of
microarcs on a smooth (flat) surface, arranged in a cer-
tain order and satisfying the conditions of a stable ther-
mal regime and self-sustained operation. If this hypoth-
esis is valid, it will be possible to create stationary,
high-current high-voltage field emission vacuum
diodes using smooth massive cathodes.
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Abstract—Thefreguencies of natural electroacoustic oscillations of aluminum oxide particlesin alaminar dis-
perse aluminum flame are determined experimentally using the capacitive method. A computational model is
proposed for estimating the natural frequency of oscillations of charged particles in the smoky plasma taking
into account the Doppler effect. It is shown that, for anatural frequency of oscillations of 51 kHz, two mea-
sured maxima at frequencies of 30 and 60 kHz in the oscillation spectrum correspond to the Doppl er frequen-

cies. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Combustion products obtained as aresult of burning
of a metal powder in a gaseous oxidizer contain fine-
dispersed particles of metal oxide, whose size may
change depending on the combustion regime, from
hundredths of a micrometer (volumetric condensation
in the gas-phase combustion regime) to severa
micrometers (heterogeneous combustion and conden-
sation) [1]. When the temperature of combustion prod-
ucts exceeds 2000 K, condensed particles are charged
asaresult of thermionic emission from the particle sur-
face; conseguently, the gas phase contains free elec-
trons. If the gas phase isfree of easy-ionized admixture
of akali metal atoms, the ionization of the gas can be
disregarded. Such a variety of the combustion product
plasmais sometimes referred to as a plasma sol, which
in turn is a variety of low-temperature plasma with a
condensed disperse phase (CDP) [2]. A plasmacontain-
ing the condensed phase in the form of smoke grainsis
called a smoky plasma[3].

A specific feature of plasmas with CDP is the ther-
modynamic interaction at the interface, as a result of
which intrinsic electric fields associated with surface
processes, the charge state, and the mobility of charged
plasma components (condensed particles, electrons,
and ions) are induced in the plasma[2, 4]. In all proba-
bility, these processes in plasmas lead to the formation
of linear chains of smoke grains [5] as well as ordered
3D structures, which were discovered in [6] and dem-
onstrated in review [7]. In standing strata of gas dis-
charge in dusty plasma, plasma—dust structures have a
more perfect shape and were hence called plasma crys-
tals[8, 9].

On the other hand, the interfacia thermodynamic
interaction in the plasma with CDP gives rise to new
modes and instabilities [10—12]. Acoustic oscillation in

the condensed phase of a smoky plasma, which emerge
as a result of eectric charge fluctuations on the surface
of grains, was studied by us for the first time in [10].
Later [11], analogous oscillations were studied in the
dusty plasma of a dc glow discharge and were inter-
preted as a consequence of the plasma—dust current
instability. The most comprehensive analysis of oscilla-
tion processes and instabilities in dusty plasmas is
given in review [12]. Unfortunately, smoky plasmas
with their specific features were outside of the author’s
interest, although some of the results considered in this
review are applicablein both cases. Thus, electroacous-
tic oscillationsin smoky plasmas have not been studied
in actual practice. In addition, the above-mentioned
features of plasmaswith CDP (such asthe formation of
ordered structures and the emergence of vibrational—
oscillatory processes) may be interrelated.

This study is devoted to experimental investigation
of the spectrum of natural low-frequency electroacous-
tic oscillations of the condensed disperse phase in the
front of a laminar flame of aluminum powder. An
attempt is made to interpret the experimental results as
a conseguence of the formation of an ordered structure
of aluminum oxide particlesin the plasma flow.

First of al, we note the distinguishing features of
two common types of plasmawith a CDP:

(i) The dusty plasmais formed when light dust par-
ticles are introduced into a gas discharge under a low
pressure or emerges in cosmic space in the presence of
dust particles[12]; the typical features of such plasmas
are the difference between the electron and ion temper-
atures, the insignificant role of thermionic emission
from the surface of particles during their charging, and
the collisionless nature of processes in the bulk; as a
result, the self-consistent Vlasov equation for electrons
can be applied.

1063-7761/04/9803-0503$26.00 © 2004 MAIK “Nauka/ Interperiodica’



504

1, arb.units
0.20 L | T T T T

0.16

0.12 i

0.08

0.04 .

0|I L L TR SR N N S | |
10 100

f. kHz

Fig. 1. Spectrum of low-frequency electroacoustic oscilla-
tionsin the smoky plasma of aluminum oxide.

(ii) The smoky plasma contains smoke grains, i.e.,
particles formed in the combustion products in the
course of volumetric condensation or as residues of the
burning-out fuel [2]; free electrons are generated in the
gas phase due to the thermionic emission from grains or
asaresult of ionization of gas atoms; the distribution of
the self-consistent electrostatic potential in the vicinity
of free charges and charged grains can be described by
the Poisson-Boltzmann equation.

Thus, the laminar flame of a uminum particles under
investigation is atypical example of asmoky plasma.

2. EXPERIMENTAL TECHNIQUE
AND RESULTS

The experiments were performed on the setup
described in[1]. Fine-disperse aluminum powder of the
grade ASD-4 with an average grain size of 4 um was
carried by the air flow through a metallic pipe into the
combustion zone formed above the pipe cross section
after the ignition of the air—fuel mixture. The experi-
mental technique madeit possibleto distribute the pow-
der uniformly in the flow and to organize alaminar dif-
fuse flame. The flame was conical in shape with a
height of L =0.12 m and abase diameter of d=0.028 m
at the burner throat. Two plane-paralel metallic plates
of 0.16 m in height and with a width of 0.11 m were
spaced 0.065 m apart and mounted along the flame axis.
The plates were arranged so that there was an air gap
between the plates and the flame. One of the plates was
grounded viaaresistor R=1 kQ. A constant potential
of 4kV relativeto the grounded plate was applied to the
other plate. As the flame propagated in the electrode
gap, a voltage drop was created across resistor R and
detected by a storage oscilloscope. The same signal was
fed to alow-frequency spectrum analyzer.
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Spectral analysisof radiation emitted by theflamein
the visible spectra range reveaed that the width L of the
combustion front was approximately equal to 102 mand
that the combustion products contained the gaseous and
condensed phases. The gas phase contained uncontrol -
lable admixture of sodium atoms and molecules with a
high ionization potential.

The condensed phase was investigated by sampling
of the flame followed by the electron microscopic anal-
ysis. It was found that the condensed phase was repre-
sented by Al,O5 submicrometer spherical smoke grains
with a cubic mean diameter of 0.12 um. The number
density of particles and their mean charge were deter-
mined using the techniques described in [1]. The mean
value of the number density of grains was (2 + 1) x
10 m2 and their mean charge was 30 + 10 in units of
€lectron charge.

The volume-averaged temperature of grains was
determined from the continuous radiation spectrum by
the polychromatic method, while the temperature of the
gas phase was cal culated from the absolute intensity of
resonance lines for Na. Experiments proved that the
temperature of the gas phase was equal to the tempera-
ture of the condensed phase to within the experimental
error and amounted to T = (3150 + 100) K.

The processing of the experimental data on oscilla-
tion processes in a smoky plasma in the electrode gap
proved that the signal recorded from resistor R was
aternating and bipolar in spite of the fact that a con-
stant voltage was supplied to it. The averaged ampli-
tude value of the signal was U = 0.8 + 0.2V and the
duration of oscillationswas T = 70 + 30 ms. The oscil-
lation process was induced periodically and at random.

The spectral composition of signal | is shown in
Fig. 1. It can be seen that the oscillation process occurs
in the frequency range from 15 to 200 kHz with two
characteristic frequencies in the vicinity of 30 and
60 kHz with clearly manifested peaks. Thefirst peak at
afrequency of 30 kHz has a larger amplitude and low
dispersion. The half-width of the distribution function
amounts approximately to 1 kHz. The second peak with
asmaller amplitude has alarger half-width of 6 kHz.

3. DISCUSSION
OF EXPERIMENTAL RESULTS

In order to explain the observed oscillations of the
voltage drop across standard resistor R, we consider the
processes occurring in the electrode gap. The constant
voltage applied to the plates obviously does not induce
acurrent in the circuit since thereis no contact between
the plasma and the plates. The presence of an air gap
between the plasma and the plates also ensures the
absence of conduction current in the plasmaand, hence,
its polarization. In this case, current may appear in the
circuit only asaresult of achangein the permittivity in
the electrode gap; i.e., oscillations are capacitive by
nature. Considering that the flame under study is sta-
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tionary and oscillations of itssize with such afrequency
are hardly probable, we can assume that oscillations
take place within the flame.

L et us determine the main plasmaparameters. In the
smoky plasma under investigation, the temperature of
the electronic component is close to the gas tempera-
turein view of ahigh collision rate (the pressure of the
ambient is 10° Pa) and the absence of conduction cur-
rent in the plasma flow. The gas phase is formed by
molecules with a high ionization potential value; con-
sequently, the ionization of these moleculesisinsignif-
icant. We can assume that free electrons appear in the
gaseous phase as a result of the thermionic emission
from the surface of Al,O; particles. Then the number
density of free electrons can be determined from the
guasi-neutrality condition

Ne = Zn,, (D)

where n, isthe concentration of free electronsin the gas
phase, n, is the concentration of Al,O; particles, and Z
is the mean charge of particles in units of elementary
charge. Substituting the experimental values of the
charge and number density of particles, we obtain the
average value of the number density of free electrons,
which isequal to 6 x 10* m3,

The Debye screening length in such a plasma
medium is defined as the distance from the surface of a
particle at which the value of the Debye potential is
smaller than the Coulomb potential by a factor of 2.7
and is given by

KT

— = 16x10° m.
41e"n,

D =

Thisvalue is close to the mean distance between parti-

cles, | = n;’ = 1.7 x 10 m, and is much smaller than

the characteristic scal e of the plasma (thisisanecessary
condition for the existence of plasmas). The plasmafre-
quency for the electron component is 1.4 x 100 s,

Clearly, electron oscillations cannot induce low-fre-
guency oscillations; hence, we assume that the oscilla-
tions are induced by smoke grains. When charged par-
ticles are displaced relative to one another, aretrieving
force appearing as a result of electrostatic interaction
leads to oscillations propagating in the condensed
phase of the smoky plasma. It can easily be verified that
the potentia energy of interaction between particlesis
comparable to the energy of thermal motion. Taking
into account the electric origin of the interaction
between the particles and the low-frequency nature of
oscillations, we will refer to these oscillations as elec-
troacoustic. It is interesting to note that oscillations of
particles may in turn lead to the propagation of ultra-
sound in the gas phase.
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4. THEORETICAL DESCRIPTION

We assume that a smoky plasma exhibits a certain
ordering resembling the crystalline structure [8, 9] or
its grains form the linear chains described in [5]. Then
it becomes possible to consider a one-dimensional lin-
ear model, following the approach developed in [13],
where the problem of propagation of waves in crystal
lattices is described.

We assume that the system is monodisperse. Then a
plane wave propagating along a chain of smoke grains
can be represented in the form

u; = Aexpli(kja—wt)], ()]

where u; is the displacement of the jth particle relative
to its equilibrium pasition in the chain, A is the ampli-
tude of longitudinal oscillations, k is the wave number,
w is the angular frequency, a is the mean distance
between particles, and t isthe time.

Let us consider the interaction of the jth particle
with its nearest neighbors with numbersj —1andj + 1.
Taking into account the screening of the surface charge
of a particle by the volume charge of electrons, we can
write the expressions for the distribution of potential ¢
in the vicinity of the particle and strength E of the elec-
tric field produced by the particlein the form

- il
¢ = _eXprD iy

e~ e~

E = = expD 5) D rDexpD D D’

where e is the electron charge and r, is the particle
radius.

This leads to the following expression for the force
of electrostatic interaction between the jth and (j + 1)th
particles:

2.2
a+u,,—u
I S v o
z%e gatu.;—ung

(a+uj+1—uj)DeXIDD D r

An analogous expression can be derived for force
Foi .
hi-1

The resultant force acting on the jth particleis

Fii-1- 4)

We expand expression (3) and a similar expression
for F; ;_, into a Taylor series; assuming that u;_;, U,

F. =

i = Fjjea—
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U .1 < a, we confine our analysisto the linear terms of
the expansion. Then formula (4) istransformed to

Fj = M(2U;=Uj. 1= Uy ), ®)

where

Mp—4

M= (6)

a’D?

The eguation of motion of a particle of mass m can
be written in the form

d’u;
m?zl = —H(2u; = U1 —Uj ). )

Substituting expression (2) into (7), we obtain the
dispersion equation for longitudinal waves propagating
along alinear chain in the condensed phase of a smoky
plasma:

® = i%smk—;, (®)

o, = zjrﬁn. (©)

The plus and minus signs correspond to waves prop-
agating in opposite directions.

In the range of long waves, when ka < 1, expres-
sion (8) assumes the form

1/2
W=V = akgl—rg

(10)
To estimate characteristic quantities, we will usethe
plasma parameters obtained from the experiment: n, =
2.0x 10" m3,r,=0.06 pm, T = 3150 K, Z = 30, and
the particle density p = 3570 kg/m?.
Expressions (6), (9) and (10) then give

H=84x10° N/m, f, = ——=51kHz,

é‘
Vo =0.33 m/s.

Pay attention to the rather low velocity of wave
propagation (0.33 m/s), which is due to alarge mass of
particles (m = 108 kg) as compared to the atomic
mass.

To analyze the spectral composition of oscillations,
we consider the frequency (density of states) distribu-
tion of modes. According to [13], the density of states
for alinear one-particle chain can bewritten in theform

1dk

g(w) = =—.

Ttdw (11)
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Taking into account expression (8), we obtain

2—-1/2
1- D‘*’D} . (12)

o(@) = o-[1-H20

It can be seen that the density of states exhibits an
explicit dependence on wand turnsto infinity for w= .
If we take into account the polydisperse nature of the
system, the charge distribution of particles, and energy
dissipation, the density of states will probably not turn
toinfinity. However, amaximum of the frequency spec-
trum must bein the vicinity of wy,. It should be recalled
that f, = 51 kHz. Experiments show the presence of two
peaks near 30 and 60 kHz. It should be noted in this
connection that, in spite of quantitative agreement
between the experimental results and the predictions of
such an approximate model, a serious drawback exists
since the model predicts only one peak.

To explain the results obtained here, we consider the
possibility of formation of two peaks in the oscillation
spectrum as a result of the Doppler effect. In the com-
bustion front, the smoky plasma moves at a velocity
closeto vy, = 0.6 m/s, which exceeds the wave velocity
V,. For a monodisperse linear chain of particles, the
phase (v,,) and the group (v,) velocities of longitudinal
waves are given by

W sin(ka/2
Ven = T Vo k(a/2 ! 13)
Vg = do _ v cosk—a (14)

97 gk 0¥==T

Taking into account Eq. (8), for w = ), we obtain
sin(ka/2) = 1 and cos(ka/2) = 0. Then the group velocity
is vy = 0. Consequently, a standing wave formed at a
frequency of w = wy, can be represented as the result of
summation of two counterpropagating traveling waves.
In accordance with expression (13), the velocity of
these waves is v, = 2v/Tt One of these waves propa-
gates along the plasma flow, while the other runsin the
opposite direction. In areference frame attached to the
setup, we determine the values of frequencies of per-
ceived signals,

-1

v
f, = fo%'Hv—p'cosaE = 41 kHz,
ph
Vol D_l
f, = fogl—-v——hcosuD = 68 kHz,
p

where a isthe angle between the direction of motion of
the plasma and the wave vector. In our case, this angle
is determined by the flame geometry: o =
arctan(2L/d), where L = 0.12 m is the flame height
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Fig. 2. Dependence of the naturd frequency of oscillations (1)
and Doppler frequenciesf; (2) and f, (3) on the number den-
sity of smoke grains.

and d = 0.028 m is the flame diameter at the burner
throat.

Thus, the values of frequencies obtained for oscilla-
tions of the condensed phase in a smoky plasma match
the experimental values, which leads to the conclusion
that the Doppler effect can be observed in the laminar
flame of a metallic powder.

Let us consider the dependence of the Doppler fre-
guencies of oscillations on the number density of
smoke grains of aluminum oxide, shown in Fig. 2.
Curve 1 describes the theoretical dependence of the nat-
ural frequency of oscillations in the condensed phase on
the number density of particles, while curves 2 and 3
correspond to Doppler frequencies f; and f,, respec-
tively. Note that the oscillation frequency for charged
smoke grains depends on their number density. As the
value of n, increases by afactor of three, the oscillation
frequency of particlesisamost doubled. It can be seen
that the natural frequency of oscillations of particles
and the frequencies of detected Doppler waves are
determined not only by the parameters of the con-
densed phase, but also by the properties of particles,
which determine their charge state (e.g., the work func-
tion for electrons escaping from the surface of particles
to the plasma).

The horizontal dashed lines in the figure show for
comparison the experimental frequency values of 30
and 60 kHz. It can be seen from the graphs that the
experimental values of oscillation frequencies virtualy
coincideto within the error in the measurements of con-
centration of smoke grains.

Thus, the above analysis|eadsto the conclusion that
an ordered structure of condensed submicrometer par-
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ticles can be formed in the front of alaminar disperse
flame. On the other hand, taking into account the
assumption concerning the arrangement of particlesin
the flow in the form of chains, we can assume that the
spatial ordering of particles and their charge state are
responsible for the observed effects.

It is interesting to note that oscillations of smoke
grains are macroscopic by nature; consequently, these
oscillations may induce acoustic oscillations of the gas
phase of the flame. The latter oscillations should appar-
ently be detected by acoustic methods.
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Abstract—It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives
rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with
atomic ionsinside the clustersin the presence of thelaser filed. Theyield of even harmonics whose el ectromag-
netic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their
drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are
emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics
are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases.
The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only
the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state
targetsinside a skin layer. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

I nteraction between superintense femtosecond | aser
pulses and large clusters[1, 2] or solid-state targets (in
askin layer) generates a plasmathat consists of relativ-
istic electrons and multicharged atomic ions. The pro-
cess of multiplefield-induced ionization is of tunneling
or above-barrier character [3] because the Keldysh
parameter yin a superatomic field is very small:

2E
yszZ<1. (1)

Here, F and w are the amplitude of the electric field
strength and the frequency of laser radiation, respec-
tively, and E; istheionization potential of an atomicion
with the charge multiplicity Z. Throughout this paper,
we use the atomic system of unitse=m,=#% =1. The
collision ionization of atomic ions is essential only in
weak electromagnetic fields, when the electron vel ocity
is small. Cluster beams have definite advantages over
solid-state targets owing to the absence of a thin skin
layer and a low reflection of an electromagnetic field
from the surface.

In the case of a linearly polarized laser field, elec-
trons leave atomic ions during multiple ionization and
have an essentially nonuniform angular distribution
with respect to the drift velocities (i.e., with respect to
the initial velocities of electrons at the moment of ion-
ization). Indeed, the characteristic values of the initial
momenta of electrons along and perpendicular to the

polarization of the laser field in the nonrelativistic case
are given by [4-6]

[Bw [F
= |[—, = , > Pg. 2
Py 2y Po 2 2E, P> Po 2

Of course, electrons may be gected even with greater
drift velocities (see formula (4) below), but with lesser
probability. In the field of a titanium—sapphire laser of
intensity 10'° W/cm? and for the ionization potential of
a multicharged atomic ion of 500 eV, we have p, =
100 au (c = 137 au); i.e., atypical longitudina drift
momentum is relativistic.

The oscillatory motion of electronsin the filed of a
superintense laser pulse is still more relativistic. The
relativistic momentum of the oscillatory motion is on
the order of

F

Pr = prS 3

In the field of a titanium—sapphire laser of intensity
10 W/cm?, pe ~ 300 au; i.e., the oscillatory motion of
electronsis essentially relativistic.

Collisions between electrons and multicharged
atomic ions in the presence of alaser field give rise to
an induced emission of field harmonics due to the non-
monochromatic motion of a free electron in the laser
field. The nonrelativistic case for a linearly polarized
laser field (F/w < ¢) has aready been considered in
detail by Silin [7-9]. In this limit, only odd harmonics
(along the polarization vector of the laser field) are
emitted. Silin aso considered the case of weak relativ-
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ism [10], when even harmonics are also emitted. How-
ever, the longitudinal field of thisradiation is polarized
along the wave vector of the external laser field; there-
fore, this radiation exists only inside the plasmaand is
not emitted outside. A similar case in the general rela
tivistic statement has recently been considered in [11].

In [11], the drift momenta p; and p; were small and
therefore neglected compared to the oscillation
momentum pe. However, it was shown for the first time
in [11] that the consideration of both oscillation and
drift momenta leads to the generation of even harmon-
ics, which can be experimentally observed. Indeed, the
electric-field vector of these harmonics contains acom-
ponent directed along the electric field of the external
laser field:; i.e., thefield of even harmonicsistransverse
and is different from zero in the wave zone outside the
plasmaregion. According to theresults of [10, 11], this
component vanishes at p;; = p; = 0.

In view of inequality (2), we assume that only the
longitudinal drift momentum p, is different from zero.
To simplify the problem mathematically, we will not
average over the distribution of this momentum at
themoment of ionization, as it was done in Silin's
works [7-9]; we just fix its value. Indeed, there is not
much difference between the dependence of the har-
monic yield on a current value of the longitudinal
momentum and on the longitudinal temperature defined
by formula (2). Under the tunneling ionization, the dis-
tribution over longitudinal drift momenta formally
coincides with the Maxwell distribution [4, 12]:

3
w O exp E—pﬁ%’—ug. (4)

2. MOTION OF A RELATIVISTIC ELECTRON
IN A SUPERINTENSE LASER FIELD

When solids are irradiated by a superintense laser
field, the problem is complicated due to the fact that a
larger part of a pulse is reflected by the surface of the
skin layer. The electric field inside the thin skin layer is
very small compared to the electric field of the incident
electromagnetic wave and compared to the magnetic
field inside the skin layer. The motion of afree relativ-
istic electron inside the skin layer is essentially differ-
ent from its motion in vacuum (in the latter case, the
electron trajectory looks like figure 8 in the case of lin-
ear polarization). In particular, in the case of vacuum,
the amplitude of two-dimensional oscillations of arel-
ativistic electron in the plane passing through the polar-
ization vector and the wave vector of thefield is on the
order of c/w. Thisquantity is much greater than the skin
depth c/w, (under the standard condition of a dense

plasma, w, > w), where wy, = /41N, isthe plasmafre-
guency (N, isthe concentration of free electrons). Thus,

in the case of a solid-state target, the oscillations of an
electron are substantially distorted and damped due to
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the skin layer; the electron trgjectory becomes similar
to a one-dimensional trgjectory along the polarization
vector and closer to the surface of asolid.

One does not face such a problem when irradiating
atomic clusters (of course, one also does not face such
a problem when irradiating atomic gases, however,
because of the low density of gases, the harmonic yield
issmall in the case of gastargets). The cluster radius R
(of about tens of angstroms) is less than the skin depth
(hundreds of angstroms), so that the external electro-
magnetic filed easily passes through a whole cluster.
However, the oscillation amplitude of a relativistic
electron is ¢/w > R. Therefore, the generation of har-
monics occurs only at the moments when arelativistic
electron passes through a cluster during its oscillations.
In the case of large clusters, the external ionization of
clustersisinsignificant, so that there is not enough time
for acluster to substantially expand due to the Coulomb
explosion during a femtosecond laser pulse.

Accordingly, the intensity of harmonics, calculated
for the motion of an electron in acluster medium, must
be multiplied by asmall factor wR/c < 1, which repre-
sents a fraction of the time that a relativistic electron
remains inside a cluster. Bearing thisin mind, we con-
sider the motion of afreeeectroninthefield of asuper-
intense laser wave neglecting the effects of laser pulse
focusing. The effect of the plasma medium reduces to
the fact that the wave vector

of the laser field in the medium is different from the
wave vector of afree electron in vacuum.

The Newton equations for the motion of arelativistic
electron in the fidd of alinearly polarized wave can be
solved analyticaly (although in the implicit form) [13].
Choose axis x along the propagation direction of the
wave, axisy along its polarization, and axis z aong the
direction of the magnetic field. The kinematic momen-
tum of an electron aong axisy isdefined by therelation

p(t) = py+ - cos. )

Here, p, is the drift momentum along the polarization
axisand ¢ = wt — kx isthe phase of the electromagnetic
wave. The kinematic momentum of an electron along
axis x (when the transverse drift momentum is
neglected) is defined by

_ iI:E DZ CZ—KZ
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Fig. 1. Coefficients (a) Cq, (b) C,, (c) Cs, (d) Cy, (€) C4, and (f) Cg as functions of the dimensionless drift momentum u.

Here, the constant K is given by The components of the kinematic velocities of elec-
trons along axes y and x are equal to

P Vi - 2KR)
SR ™ T ®

2cK py (1)

Finally, we set p,(t) = O: there is no motion along mag- vi(t) = +ki+ pZ(t)’
netic field (again, when one neglectsthe transverse drift Y
momentum). respectively. Finally, the time differential dt can be

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No. 3 2004



GENERATION OF EVEN HARMONICS IN A RELATIVISTIC LASER PLASMA

expressed in terms of the differential of the phase of the
field, d¢, by the relation

2 2 2
_ CTHK T+ py(t)
dt = —=d. 9)

20K

The transport cross section of relativistic elastic
scattering of an electron by an atomicion of charge Z at
small angles is defined by the Mott formula [14] (in
atomic units):

_ _4nZ’A
R OVR )

Here, A isthe Coulomb logarithm and p(t) and v(t) are
the total momentum and velocity of the electron,
respectively. In the limit of large velocities, the Cou-
lomb logarithm represents a quantum logarithm [7].

The frequency of elastic electron—ion scattering is
given by

(10)

_ ATIZ°N,A
PPV (L)

Here, N; is the concentration of atomic ions. Multiply-
ing (11) by the velocity vector v of the electron, by the
electron concentration N,, and by the time interval dt,
we obtain the density of the electric current of elec-
trons:

Vo = OyN;v (11)

dj = —Ngvvdt. (12
This density has components along axes x and y. Note
that thisrelation isalso valid in the relativistic case (the
so-called Pauli formula[13]).

The component of current (12) along axis x gives
riseto thelongitudinal electric field, which, aswe men-
tioned above, does not exist outside the plasma region.
Therefore, below we will concentrate only on the com-
ponent of the electric current density that is directed
along axis y. Substituting the expressions for the total
velocity and momentum of the electron that were
obtained above into (12), we obtain

dj, = —AFf(¢)ds. (13)
Here, we denote
AMZ*N N, AW
A= T 14
and define the function
f(9)
(u+cosd)[1+s(ucosd + (1/4)cos2¢)] (15)

" [(u+ cosp)? + s(ucos + (1/4)cos29)
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The dimensionless constants u and s are defined by the
relations

B
L

2
s = OF0

Lo

u= (26)

Equation (13) implies the following expression for the
y component of the tensor of electric conductivity:

[0
o, = éj'djy = -A[1(0)dp. (17)
0

The conductivity o, is anonlinear function of the elec-
tric field intensity F.

Expanding the integrand in (17) in terms of Fourier
series, we obtain the following set of harmonics:

o, = —AZ C,sinnd —AC,6.

n=1

(18)

Here, the coefficients C, of the Fourier series are
defined by the following integral:

21

C, = n—an’ f (%) cosnddd, (19)
0

2m

Co = 55.[ 1(®)db. (20)

One can see that both odd and even harmonics of con-
ductivity are different from zero. They are coherent to
the field of the incident electromagnetic wave. There
also existsazero-order harmonic, which correspondsto
aconstant electric field.

3. CALCULATION OF CONDUCTIVITY
AT HARMONIC FREQUENCIES

The coefficients C,, in (19) and (20), which deter-
mine the conductivity for the harmonics of the external
electromagnetic field, were calculated numerically as
functions of the dimensionless drift momentum of an
electron (see (16))

W
u= p”E. (21)

We fixed a value of the dimensionless oscillation
momentum of the electron

(22)
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Then, the constant s, defined by relation (16), can be
expressed in terms of u and w by the relation

1
uw?+1/2 + Uw?

Figure 1 represents the cal cul ated val ues of the coef-
ficients C, with n = 0-5 for atypical relativistic case of
w = F/wc = 2, which corresponds to a peak intensity of
8 x 108 W/cm? of atitanium—sapphire laser.

Figure lacorrespondsto afield generated at the fun-
damental harmonic. For drift momentau < 1, we have
C, >0, which corresponds to the normal (positive) con-
ductivity of the electron current (electrons move oppo-
site to the direction of the electric field). Whenu > 1,
the conductivity becomes negative (electrons move
along thefield). Asexpected, thefield of the fundamen-
tal harmonic is the greatest among the fields of all the
other harmonics. This makes it possible to determine
the Joule absorption of electromagnetic energy by an
atomic medium [15]. According to Fig. 1a, this absorp-
tion is determined by electrons with small drift veloci-
ties, which dominate in the expression for the absorp-
tion integrated over all drift velocities. The value of
C,(0) coincides with that obtained in [11] for the case
of w = 2, as expected.

In principle, an electron generated during tunneling
or above-barrier ionization by an ac field may have any
value of its drift momentum. However, the probability
of large values of the drift momentum is suppressed due
to the exponentially small probability (4) of generation
of such electrons and due to the small value of the coef-
ficient C, for large values of p; (see Fig. 1a).

Figure 1b shows C, as afunction of the dimension-
less drift momentum u. According to the results of [11],
the second harmonic along the polarization axis of the
field is not generated for u = 0. The probability of its
generation is maximal when u = 0.5 and decreases asu
increases. The inequality C, < 0 implies that the con-
ductivity of the second harmonic is negative (electrons
move along the electric field vector of the electromag-
netic field). Comparing Figs. 1a and 1b, we can con-
clude that the intensity of the second harmonic is not
much smaller than that of the fundamental harmonic.
However, substantial generation of the second har-
monic occurs only for relativistic values of the drift
momentum of an electron.

The coefficient C;, which represents the amplitude
of the third harmonic, is shownin Fig. 1c. The value of
C5(0) dso coincides with that obtained in [11] for the
case of w = 2, as expected. When u < 0.5, the conduc-
tivity of the third harmonic is negative, whereas, for
u> 0.5, it becomes positive.

Figure 1d corresponds to the static part of conduc-
tivity. It vanishes when u = 0 in accordance with the
results of [11]. The static conductivity is mainly posi-
tive; even though its magnitude is smaller than the con-
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ductivity at the fundamental frequency, it is still suffi-
ciently high. It lowly decreases as the drift momentum
u increases.

Figure lerepresents the coefficient C, for the fourth
harmonic. In the large, the intensity of this harmonic

decreases as the harmonic number increases. As
expected for an even harmonic, we have C,(0) = 0.

Finally, Fig. 1f represents the coefficient C; for the
conductivity at the fifth harmonic. The value of C5(0)
coincides with that obtained in [11] for the case of
w = 2. The conductivity at thefifth harmonic is positive
for u< 0.3 and negative for u > 0.3.

The analysis of the results obtained alows us to
draw the following conclusion. In a relativistic laser
plasma, not only odd but also even harmonics, as well
asaconstant electric field along the polarization axis of
the external linearly polarized electromagnetic field,
are efficiently generated.

4. INTENSITY
OF RELATIVISTIC HARMONICS

The expressions for the currents obtained above can
be used for determining the el ectromagnetic fields of the
generated harmonics according to Silin’s approach [16].
According to (18), the Maxwell equation for the pro-
jection of the vector potential onto the polarization axis
y of the external electromagnetic field (at the frequency
of the nth harmonic) is expressed as

62A(n)
6x2

_10°A7 )
oyl

AT _(n) 4T

?O'y F =

cat

4T[ .(n)

(23)

—-—AC JFsinnd.

Here, j'y(”) denotes the density of the electron current

that is not associated with the collisions between elec-
trons and atomic ions but is attributed to the electro-
magnetic field of the generated harmonic (see below).
The corresponding equation for the electric-field inten-
sity at the harmonic frequency,

" dAY
F = 19
c ot
is obtained from (23) by differentiating with respect to
time:

2e(n) 2(n) ()
il L R
2 2
ot ax ot

= —4TANWC, F cos[n(wt —kx)] .

(24)

Here, k? = (w? — ws )/c? is the square of the wave num-
ber for the incident el ectromagnetic wave.
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From Newton’s second law of motion (in the nonrel-
ativistic case, from the fact that the current generated by
the field of aharmonic is small), we have

a..(n)

J _ (n)
ot - NPy

Substituting this equation into (24), wefind its solution
F0 = 4TAwNnC,F

v (n2—1)oof, cos[ n(wt —kx)] .

(25)

Thissolution isalso valid in the relativistic case w,> w
because the field does not decay at adistance equal to a
cluster size. Substituting the value of the constant A
from (14) into (25), wefinally obtain

Zoy0°nC, A

F(n) =
(n°-1)F?

v cos[n(wt —kx)] . (26)

From (26), we obtain the following expression for the

ratio of the harmonic intensity to the intensity of the

external electromagnetic field:

2
: (27)

2
ORI Lk ‘ZCnooSoozn/\
[Feospl® | (RP-1)F®

This ratio decreases as the intensity of the incident
wave increases and as the harmonic number n
increases.

Evaluating F ~ wc for the general relativistic case,
we obtain the following estimate for the generation effi-
ciency of harmonics:

2
0ze’w;C,nA O
1

(n)
n'" O .
[y (n’ - 1)c’ed]

(28)

Here, we recovered the charge and mass of an electron,
which we set equa to unity above. The efficiency of a
harmonic increases as the density of the atomic
medium increases (whereby clusters are more efficient
than agaseous medium) and asthe laser-field frequency
w decreases. The estimates obtained are also valid
when the plasma frequency is greater than the laser fre-

quency.

5. CONCLUSIONS

The generation of harmonics was experimentally
observed by the authors of [17] on argon clusters (see
also the survey [3]). It was shown that odd harmonics
from the third to the ninth are generated on clusters
consisting of several thousands of argon atoms; the
generation efficiency is greater than that obtained with
agaseous medium of the same average density by afac-
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tor of 5. Moreover, in the case of clusters, one observed
the generation of higher order harmonics than in the
case of a gaseous medium. There was no generation of
even harmonics because the intensity of laser radiation
was less than 10 W/cm? in the experiment. The gener-
ation of harmonics associated with the nonlinearity of
the Mie oscillations (surface plasma oscillations of the
electron cloud in a cluster) was insignificant in view of
the small anharmonicity of the Mie oscillations. This
conclusion was confirmed by numerical calculations
for small metal clusters[18].

The results of this work can also be applied to the
irradiation of solid-state targets by superintense laser
pulses, where the aforementioned phenomena occur
inside the skin layer. Even and odd harmonics of the
laser field (from the second to the tenth) were observed
by the authors of [19] for intensities higher than
10%° W/cm?. The generation region of the harmonics
corresponded to the electron concentration ranging
from 10 to 10?3 cmrS,

The results obtained in the present study show that
the generation of even harmonics is determined by the
drift velocity of electrons. During above-barrier ioniza-
tion, an electron may acquire a sufficiently high drift
velocity. Of course, in a superintense laser field, this
velocity is not given by relation (2) but must be deter-
mined from relativistic theory. Preliminary estimates
show that, even at intensities on the order of
10?0 W/cn?, this velocity is nonrelativistic in contrast
to the oscillation velocity of electrons. However, an
electron may acquire relativistic energy during a laser
pulse when heating a plasma. This heating is attributed
to the induced inverse bremsstrahlung of laser energy
during collisions between electrons and multicharged
atomicions, reflectionsfrom theinner surface of aclus-
ter, elastic scattering by charged clusters, excitation of
surface plasma oscillations (Mie oscillations), etc.
However, electron heating in a plasma aways
decreases as the kinetic energy of electrons increases
because the collison rate of electrons with other
objects decreases. The experimental results of [20] on
theirradiation of argon clusters by a superintense fem-
tosecond laser pulse have shown that the typical elec-
tron temperature is several keV. The energy spectra of
electrons were measured in [21, 22] under the irradia-
tion of xenon clusters by a 150-fs laser pulse with a
peak intensity of 2 x 10'® W/cm?. The mean energy of
electrons was no greater than 2 keV. In spite of the fact
that the drift velocity of electrons is small, it is this
velocity that is responsible for the generation of even
harmonicsin arelativistic laser plasma.
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Abstract—~Pair correlation is analyzed for systems of macroscopic particles with various isotropic interaction
potentials. Under certain conditions, the behavior of the pair correlation function is determined by an effective
order parameter and its decrease toward infinity follows an asymptotic power law. When the effective parameter
is smaller than a certain critical value, the decay of pair correlation is much steeper. Experimental results con-
cerning the form of the pair correlation function are presented for liquid-like dust structures localized in the
near-electrode plasma sheath of a high-frequency capacitive discharge. An analysis of numerical and experi-
mental results shows that melting dynamicsin these systems are anal ogous to those characteristic of atopolog-
ical phase transition. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Laboratory dusty plasmasare partially ionized gases
containing micrometer-sized dust particles, which can
have large negative or positive charges (10°~10°) and
combine into quasi-steady liquid- or crystal-like struc-
tures [1-5]. These plasma-dust structures provide a
unique tool both for analyzing the properties of essen-
tially nonideal plasmas and for gaining deeper under-
standing of self-organization of matter. Studies of the
properties of nonideal dusty plasmas play an important
role in developing new phenomenologica models of
liquid-like systems. These studies are particularly
important because strong interaction between particles
in liquids makes it impossible to develop an anaytical
description of their thermodynamic characteristics
based on the use of a small parameter, as done in the
theory of gases[6-10].

The equilibrium properties of aliquid are compre-
hensively described by aset of probability density func-
tionsgy(ry, ro, ..., rg) for particlesat pointsrq, ry, ..., r.
In the case of an isotropic binary interaction, the phys-
ical properties of a liquid (such as pressure, density,
energy density, and compressibility) are determined by
apair correlation function g(r) = g(|r,—r,|) [6-9]. This
function can be expressed as follows [10]:

g(r) = exp(=[U(r)/T] + N(r) + B(r)), (1)

where U(r) isthe potential energy of binary interaction,
T is the kinetic energy of chaotic (thermal) motion of
particles, N(r) is determined by the functions g,(r,) and

g(r), and B(r) represents the effects due to higher order
correlations and has the form of a complicated integral
of gyrq, ry ..., rg if s> 2. In the popular hypernetted
chain approximation, B(r) = 0, and N(r) is determined
using the Ornstein—Zernike relation [9, 10]. However,
numerical studies have shown that the use of the hyper-
netted chain approximation leads to unsatisfactory
results even for weakly nonideal systems [9-13]. Only
allowance for higher order correlations (calculation of
B(r) # 0) ensures agreement with numerical simula-
tions [10]. Thus, determination of g(r) generally
requires not only information about the binary interac-
tion potential, but also knowledge of the behavior of
0«4, ry, ..., rg for s> 2 or use of some approximations
of these correlation functions.

Unlike real fluids, |aboratory dusty plasmas provide
agood model for examining physical properties of non-
ideal systems, because dust particles are large enough
to be imaged, which facilitates application of direct
nonintrusive diagnostic methods. Interaction between
dust particlesin plasmasis commonly described by the
Yukawa-type screened Coulomb potential

¢ = ¢.exp(—r/A), )

wherer isdistance, A is the screening radius, ¢, = eZ,/r
is the Coulomb potential, and Z, is the dust-particle
charge. Thisassumption is consistent both with measure-
ments of forces acting between two dust particles [14]
and with acomputed structure of ascreening cloud [15]
only at relatively short distances from the particle
(r <5A). The screening weakens with increasing r, and
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the asymptatic behavior of ¢ at r > Ay is governed by
the power law [16]

2
b =eZya,/r".

The results reported in [14—-16] were obtained for iso-
lated dust particles in plasmas. However, it remains
unclear how the potential of interaction between two
particlesis modified by influence of other particlesin a
dense dust cloud, ionization of gasbothin the cloud and
outside it, collisions of electrons or ions with neutrals
in the ambient gas, and other factors. Thus, the red
potentials of interaction between particles are not
known for dust grains in plasmas, and neither are they
for many other physical systems in which interparticle
interaction forces play an essential role.

Determination of the parameters responsible for the
state of asystem of interacting particlesis an important
task in the physics of nonideal dusty plasmas, aswell as
in other natural sciences. In particular, two dimension-
less parameters responsible for masstransfer and phase
state in Yukawa dissipative systems (with k = r /A < 6)
were found in [17, 18]: the effective “nonideadlity”
parameter

M* = T{(1+K+K22)exp(—K)}
and the scaling parameter
& = viteZ,{ (1+K +Kk?2)exp(—k)ny/mmg 2,

where n, is the particle concentration, I' = (Z,€)%/Tr, is
the Coulomb coupling parameter, vy, is the friction

coefficient for dust particles, and r, = n,""® isthe mean

distance between particles. A numerical model was
tested against the laboratory experimental conditions in
various dusty gas-discharge plasmasin[19-21]. Experi-
mental studies showed that dust-particle dynamics in
these plasmas can be described in terms of the parame-
ters™* and . However, the parameters of the potential
of interaction between particles can be determined only
if additional information about itsform is available.

The behavior of the pair correlation function reflects
the phase state of a system. For example, liquid-like
nonideal systems are characterized by short-range
ordering of particles, whereas the functions g(r) used
for crystaline lattices describe long-range ordering.
Numerical simulations showed that the effective
parameter '* of a Yukawa system (with k < 6) com-
pletely determines the pair correlation function g(r)
(describing both long- and short-range ordering) in the
interval from '* < 1 to the point of crystallization into
a body-centered cubic (BCC) lattice at ' — 106.
Thus, it was noted that the spatial correlation of parti-
cles in three-dimensiona Yukawa systems with K < 6
depends only on the ratio of the second derivative ¢" of
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the binary interaction potential ¢(r) at r, to the particle
temperature T. Moreover, both melting and crystalliza-
tion processes (at ['* = 102—106) and formation of well-
ordered clusters of dust grains (at I'* = 22—25) occur at
nearly constant values of I'* [17, 18]. One may reason-
ably assume that this property holds under certain con-
ditions for potentials of more general form describing
binary interactions in many-particle systems. In the
present study, we examine this assumption by analyz-
ing pair correlation functions and conditions for phase
transitions in systems characterized by various repul-
sive potentials.

Certain physical systems exhibit topological phase
transitions between low- and high-temperature phases
[22-30]. Topological phase transitions are more com-
monly observed in low-dimensional systems. Such a
transition can be interpreted as akind of “melting” that
eliminates the positional ordering of the low-tempera-
ture phase at T > T,, and preserves its orientational
ordering (which breaks down at T > T,> T,). Physi-
cally, thisphasetransition is explained by the formation
of topological defects (dislocations and disclinations)
in crystalline lattices. In a theory of this phenomenon
developed for two-dimensional systems, melting is
interpreted as transformation of acrystal into an isotro-
pic liquid via an intermediate hexatic phase [22]. The
theory was corroborated both by experimental studies
of quasi-two-dimensional nonideal systems and by
recent numerical simulations of extended two-dimen-
sional many-particle systemswith various binary inter-
action potentials[23-30]. In real monolayers of macro-
scopic particles, the topological mechanism of melting
frequently manifests itself as topological excitations
(vortices and antivortices) characteristic of finite two-
dimensional systems [22]. Experimental investigation
of topological phase transitions is a difficult task,
because essential qualitative changes in rea systems
may be obscured by quasi-two-dimensiona effects
induced by small perturbations [23-26]. Nevertheless,
short-range orientational ordering is observed not only
in dust subsystems consisting of several (four to ten)
dust layers, but also in simulated three-dimensional lig-
uid-like structures. An analysis of three-particle corre-
lation in systems of macroscopic particles with
screened interaction potential (2) has revealed the for-
mation of well-ordered clusters at '* > 25 [31]. This
observation is in good agreement with numerical
results[17]. The qualitative changes can be attributed to
topological defects of a three-dimensional lattice, and
the transition can be associated with the existence of
two distinct liquid phases by analogy with the topol og-
ical phase transitions in two-dimensional systems.

Orientational ordering is commonly analyzed in
terms of boundary angular autocorrelation functions
gs(t) and static correlation functions gg(r) and g(r)
(see [23-30]). The correlation functions of two-dimen-
sional systemswere found to exhibit universal behavior
in topological phase transitions [22]: their decay with
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increasing r follows exponential and power lawsin the
high- and low-temperature phases, respectively. Thus,
the existence of two liquid phases must be manifested
as a different variation of the correlation with distance
between particles. In this paper, we present numerical
results concerning the spatial asymptotics of pair corre-
lation of interacting dust grains over awide range of an
“order” parameter and examine the experimental pair
correlation functions obtained for liquid-like dust struc-
tures in the near-electrode plasma sheath of a high-fre-
guency capacitive discharge.

2. NUMERICAL SIMULATION
2.1. Parameters of the Numerical Analysis

Correct simulation of plasma-dust particle transport
must rely on a molecul ar-dynamics method, in which a
system of ordinary differential equations containing a
Langevin force F, is solved. Thisforce represents ran-
dom impacts by molecules of the ambient gas or other
random processes that underlie the relaxation of the
kinetic temperature T of dust grains to the equilibrium
value characterizing the energy of their stochastic
motion [32—34]. Microscopic processes in homoge-
neous extended clouds of interacting macroscopic par-
ticlesare simulated by setting periodic boundary condi-
tions and taking into account not only the random force
Fy, responsible for thermal motion, but also the forces
F, acting between pairs of particles[17-21]:

d |k diy

szt()h “k_”ll | mp frdt

99
eZpal

I:bra
©)
Fin(l) =

wherel = [, ;| isthe separation between particles, m,
isthe particle mass, vy, is the friction coefficient associ-
ated with collisions between dust particles and ambi-
ent-gas neutrals[35, 36], and ¢ isthe potential of inter-
action between particles (the interaction energy is
U(r) ~ eZ,$(r)). Computations were performed for the
Yukawa potential with k = 2.4 and 4.8. Correct simula-
tion of molecular dynamics was ensured by using dis-
cretization cells of size R > A [37]. In our computa-

tions, R= 5n;""* > (12-24)\. Additional computations

were performed for the following combinations of power
and exponential laws frequently used to model repulsion
in kinetics of interacting particles[34, 38, 39]:

¢ = ¢cb(ry/r)", (4)
¢ = ¢ {aexp(—Kyr/ry) +bexp(—«riry)}, (9

¢ = ¢ {aexp(—Kyriry) +b(r,/r)%}, (6)
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where a, b, K;, and K,, and n are parameters. Both
potential (2) and models (5) and (6) (withn = 1in the
latter) are of specia interest in the physics of dusty
plasmas. They can be used to allow for weaker screen-
ing at relatively large distances between dust grains
[14-16]. These models have also been applied to
describe repulsion between atoms in covalent metals
[38, 39] or polymers[34, 38].

To analyze pair correlations in systems of particles
with isotropic interaction potentials (4)—(6), three-
dimensional equations of motion (3) were solved for
specific values of parameters defined by analogy with
those characterizing Yukawa systems: the effective
order parameter

= (Zx€)°ITr,, ©)
and the scaling parameter
£ = w*lvy, )

wherethe frequency of collisions between macroscopic
particlesis calculated as

w* = ez} (ny/mmy)*"? ©)
and the effective particle chargeis

Zre = {Z,e¢"/2n} 2. (10)

Notethat the effective particle charge does not have any
particular physical meaning here. However, the use
of (10) makesit possibletoretain '*, &, and w* as uni-
versally applicable parameters in models with interac-
tion potentials of any type.

The computations were performed for 125 indepen-
dent particles in the central cell, while the number of
particles taken into account in computing binary inter-
actions reached approximately 3000. The binary inter-
action potential was cut off at the distance Lo = 4l,. To
ensure that numerical results are independent of the
number of particles and cut-off distance, we performed
additi onal computations for 512 actual particles for

Lo =7l withT* = 1.5, 17.5, 25, 49, and 92. A detailed
dwcrlptlon of the numerical procedure can be found
in [18, 21]. The value of & was varied between 0.04 and
3.6, i.e,, within the limits characteristic of the experi-
mental conditions in gas-discharge plasmas. The value
of I'* was varied between 1 and 110.

Our computations showed that the effective para-
meter ™* completely characterizes the ordering and
phase states of the simulated particle systems if the
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Fig. 1. Pair correlation functions g(r/r) for Yukawa systems (k < 6) for several values of I'* indicated at the curves.

following empirical condition for long-range interac-
tion is satisfied:

21 ¢ (rp)| > 0" (rp)| - (11)

In the first (linear) approximation, this criterion
specifies conditions under which the force acting
between two particles separated by the mean interparti-
cledistanceis greater than the force typically arising in
collisions of macroscopic particles.

2.2. Ordering in Dissipative Dust-Particle Systems
with Various Isotropic Repulsive Potentials

Ordering in the simulated systems was analyzed by
using the pair correlation function g(r) and the structure
factor §q). Figure 1 shows the pair correlation func-
tions obtained for Yukawa systems in a wide range of
™. Figure 2 compares these functions with the func-
tions g(r) computed using various potentials subject to
empirical condition (11) for two values of '* and two
valuesof §. Figures 3 and 4 illustrate the dependence of
thefirst maximag, and S; of the functions g(r) and §q)
and the corresponding distancesr = d; and g = dg on
I*. Here, vertical bars represent the absolute deviations
of these quantities for ¢ = 0.04-3.6 and for various
potentials satisfying (11). To compare the pair correla
tions computed for dissipative systems (v;, # 0) with
solutions to reversible equations of motion for nondis-
sipative Yukawa systems (v;, = 0) and with results
obtained for a one-component plasma model, Fig. 3

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

also shows the maximum values of g(r) and §q) found
in[10, 40].

Our numerical study shows that spatial correlation
of dust grains in the simulated systems is independent
of friction (v4) and is determined by the value of *

under conditions ranging from a gaseous state (I'* ~ 1)
to the point of crystallization into a BCC lattice (IT'* =

Fig. 2. Comparison of g(r/rp,) for several model potentials

and several valuesof & and '*. For '* =77, the solid curve,
triangles, and circles correspond to & = 0.14 and ¢/¢ =

exp(-4.8rfrg), & = 0.14 and ¢/d. = 0.lexp(-2.4r/rp) +
exp(=4.8rirp), and & = 1.22 and ¢/¢; = exp(-4.8r/ry) +
0.05rp/r, respectively. For I'* = 17.5, the solid curve, trian-
gles, and circles correspond to § = 1.22 and ¢/¢p, =
exp(=2.4rirp), & = 1.22 and ¢/p. = O.lexp(-2.4r/rp) +
exp(-4.8r/r), and & = 0.14 and ¢/¢p = 0.05(r /r)*, respec-
tively.
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102-104). Indeed, the first maximum points of the
functions g and S corresponding to crystalline structure
are characteristic of the BCC lattice: dy, = ry =

(34/374n,)3, dg; = q; = 21(/2n,) ™3, and k, = 2m(n,) V3
(see Fig. 4). Jumps in the values of the first maxima of
g(r) and §q) from 2.65 to 3.1 are observed as the nor-
malized order parameter I'* variesfrom the crystalliza-

tion point '}, = 102-104 to the melting point 'Y, =
106-107 (see Fig. 3). Thus, I iom = 104.5(2) can be

interpreted as the point of phase transition between a
liquid-like state and a BCC lattice.

Since T jimem = 104.5 (£2%) is independent of the
ambient viscosity, thisresult is consistent with molecu-

lar-dynamics simulations of crystallization in Yukawa
systems with zero friction [40—42]. The deviations of

their results from I}, = 104.5 vary within 5% and

can be attributed to difference in numerical procedures
(number of particles, integration step, etc.) and to
choice of I'* associated with either melting or crystalli-
zation point of the system. It should be noted that

[ mpm = 104.5(x2%) agrees with the theoretical results

obtained in [43], wherethe value of the order parameter
on the phase-transition line in the BCC model was
105(x3%). (The latter value is consistent with numeri-
cal results based on various criteria for crystallization
[44] and melting [45].)

Note also that the form of acorrelation function g(r)
satisfying condition (11) is determined by the value of
I*. Therefore, the methods for determining the poten-
tial of interaction between particlesfrom measurements
of the structure factor based on the hypernetted chain
approximation (using direct relations between g(r),
Sq), and ¢(r) [8-10]) cannot be applied to the systems
in question. Furthermore, the result obtained here can
explain the widespread use of various phenomenologi-
cal melting and crystallization criteria specifying the
maximum values of correlation functions or the ratios
of their maximum and minimum values on phase-tran-
sition lines (when r # 0) irrespective of theinterparticle
interaction potential. In particular, one can use the sim-
ilarity of pair correlation functions (see Section 2.3)
and the numerical values of their maximag;, (see Fig. 3)
to abtain the well-known ratio of g, to the first mini-
mum of g(r), equal to 5, on the crystallization line.

2.3. Pair Correlation in Liquid-Like Particle Systems
and Dust Cluster Formation

To analyze the asymptotic decay of pair correlation
with increasing distance between particles, we normal-
ized the corrdation function h(r) = g(r) — 1to h; =
max(h(r)). Figure 5 shows the results obtained for sev-
eral values of I'*. An anaysis of numerical results
shows that h(r) has pronounced maxima when I'* >
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1
100 120
Fig. 3. First maxima of structure factor S; (thin curve) and
pair correlation function g, (thick curve) vs. I'*: closed tri-
angles represent g; in the nondissipative Yukawa model
(v = 0) [40]; open triangles, g, in the BCC model [10];
opencircles, S; inthe BCC model [10]. Vertical barsarethe

absolute deviations for & = 0.04-3.6 and for various poten-
tials satisfying (11).

dSl/kp’ dgl/"p

1.05

0'95 1 1 1 1
0 20 40 60 80

r*

Fig. 4. Relative locations of the maximum of S, dgi/ky
(thin curve), and the maximum of gy, dg/r, (thick curve),
versus IM*. Dashed curves represent the maximum points of
the correlation function for BCC lattice. Vertical barsarethe
absolute deviations for & = 0.04-3.6 and for various poten-
tials satisfying (11).

1
100 120

3-5. For '* between 28 and 102, the behavior of h(r)/h,
is determined by the value of '* (see Section 2.2). Its
decay with increasing distance follows an asymptotic
power law. At r > r, it can be approximated by the
function (see Fig. 5a)

h(r/rp)hy= (Br/r)*™sinnp(r/r,+B-1)), (12)
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Fig. 5. Normalized pair correlation functions h(r/rp)/h; for Yukawa systems with I'* indicated in the panels, approximations (12)
and (13) (thick and thin curves, respectively), and (d) an enlarged fragment comparing the numerical results obtained for several

valuesof I'*.

where 3 = 1.07. When the effective order parameter is
smaller than '* ~ 21, the decrease in pair correlation is
much steeper and can be approximated by an exponen-
tial (see Fig. 5b):

h(r/r,)/h; = exp{ 2.75(B —r/r )}

. (13)
xsin(2mp(r/r,+B—-1)).

Notethat approximation of the pair correlation function

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

is a difficult task, because the high-frequency thermal
fluctuations due to stochastic motion of dust grains
affect the measured value of h(r)/h,, particularly when
r is large and the fluctuation-induced error is compara
bleto h(r)/h; (see Fig. 5d). In the present case, one can
hardly use a more suitable function to approximate
numerical data for practical applications, because the
dust-subsystem correlation functions measured in
actual experiments exhibit stochastic variations due
both to fluctuationsin the ambient plasmaand to instru-
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Fig. 6. Functions h(r/rp)/h; for Yukawa systems with I'*

indicated in the panels and approximations (14) and (15)
(thick and thin curves, respectively). Shift between curves
corresponding to different '* is due to change in the loca-
tion of the maximum of g, (see Fig. 4).

mentation noise. Nevertheless, substantial qualitative
difference in asymptotic behavior of pair correlationsis
found between weakly (I < 21) and strongly (I'* = 28)
nonideal systems. When I'* = 28, the decay of the pair
correlation with increasing distance follows power
law (12). When the effective parameter is smaller than
acertain critical valuel™ ~ 21, the decreasein pair cor-
relation can be approximated by exponential law (13).
Note that this result disagrees with experimental obser-
vations reported in [30], where g(r) was found to decay
exponentially for both hexatic and isotropic liquid
phases in amonolayer, and a power-law approximation
was obtained only for a crystalline phase. This dis-
agreement can be explained by the essentially two-
dimensional structure of the monolayer (distinct from
the three-dimensiona system analyzed here). The

(@)

521

0.5 ' '

0.8 1.0 1.3 1.5

r/rp

Fig. 7. Maximaof pair correlation functionsfor ' = 17-40.
Thick curves correspond to I'* = 24 and 29.

behavior of the correlation function predicted for a
crystalline phase by simulating three-dimensional sys-
tems of interacting particlesisillustrated by Fig. 5c. It
is obvious that the decay of pair correlation is much
steeper here, as compared to that characteristic of lig-
uid-like systems.

Improvement of the accuracy of approximations of
g(r) by numerical fitting would not be physically justi-
fied. However, such approximations may facilitate
computations of thermodynamic characteristics of lig-
uid-like systems determined by the pair correlation
function g(r), such as pressure, energy density, and
compressibility (see [9, 10]). A detailed anaysis of
approximating functionsfor g(r) curvesat O<r <r,was
presented in [10]. The following functions can be sug-

(b)

Fig. 8. Slices of three-particle correlation functions gz obtained by numerical simulation for '* = 37.5 (a), 17.5 (b), and 1.5 (c).
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CCD camera

Ring

Fig. 9. Experiment in high-frequency capacitive discharge.

gested as approximations of h(r) at r > r, (see Fig. 6):

h(r/rp)/h, = (Br,/r)*°
x (sin(2mdgy(r/r, + B—1)) +0.1)/g,, (14)
28<[*<102, Fig. 10. Images of dust-cloud particlesin the near-electrode

plasma sheath of discharge for (a) P=3 Paand W=10W,
(b) P=3PaandW=2W, and (c) P=7 Paand W= 10 W.

h(r/r,)/h; = exp{ 2.25(B —r/r )}

x (sin(2mdgy (r/r, + B—1)) +0.1)/g,, (15)  with change in the location of its maximum g, as a
A<T*<2]. function of I'* (seeFig. 4).

The difference in the asymptotics of the pair corre-
These functions alow for the shift in g(r) associated lation functions corresponding to different values of the

(a)

Fig. 11. Tragjectories of dust grains over the averaging timeinterval for pair correlation functionsfor (a) P =3 Paand W=10W and
(b) P =7 Paand W= 10 W.
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order parameter can be compared with the results of
numerical experiments reported in [17, 31]. In particu-
lar, formation of groups (clusters) of macroscopic par-
ticles was observed in [17] at ['* = 22-24. This phe-
nomenon was accompanied by a sharp decrease in dif-
fusivity D and a shift in the location of the first
maximum of g(r) (see Fig. 4), and the system’s proper-
ties changed qualitatively at this point (at least, those
analogous to properties of a solid). Figure 7 illustrates
the behavior of the maximum of g(r) at '* = 22-24 for
three-dimensional Yukawa systems. The critical value
™ = 23.5 corresponds to the condition of one particle
per sphere of Wigner—Seitz radius

ays = (41 /3)™"°

(9(r) =0at r < ays), and the mean free path

- 2 1/2
Mo—p = (3T/*"my)

for particle—particle collisionsis close to ays.

Subsequently, the formation of well-ordered clus-
ters of macroscopic particles at I'* > 22-24 was
revealed in numerical simulations and laboratory
experiments by anayzing three-particle correlation
functions [31]. Figure 8 shows dlices of three-particle
correlation functions gs(ryp, roz rar) (ry; = Iri — 1) at
ri» = dy computed for several valuesof I'*. To facilitate
comparison, the slices are normalized to the maximum
of g5(rq, I3, '31) (black and white areas correspond to
g; =1 and O, respectively).

The formation of well-ordered dust clusters can be
interpreted as the onset of orientational (short-range)
ordering in the systems in question with increasing
order parameter (see Fig. 8a). The observed qualitative
changes can be attributed to the topological defects of
three-dimensional crystalline structure responsible for
the existence of two distinct (isotropic and orientation-
aly ordered) liquid-like phases (by analogy with topo-
logical phase transitions in two-dimensional systems).
Therefore, with increasing I'*, the simulated system
should exhibit a solid-like dynamical behavior that can
be described by the jump model developed for molecu-
lar liquids [6]. In this model, a liquid-phase molecule
residesin an equilibrium position (site) until its energy
becomes sufficiently large for the molecule to break
free from the potential bonding with adjacent mole-
cules and jump into a new site surrounded by different
molecules. Agreement of the dynamics of Yukawa sys-
tems with predictions of this model at '* > 40-50 is
supported by numerical results [17]. To elucidate the
nature of the observed effects, quantitative charac-
teristics of orientational ordering (mean time of spe-
cific orientation of macroscopic particles, topological
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Fig. 12. Measured g(r/rp) (a) and h(r/rp)/hy (b, c) for P =
3 Paand W= 10W (diamonds), P =3 Paand W= 2W (cir-
cles), and P=7 Paand W= 10 W (triangles). Solid curves
are () g(r/rp) computed for several I'* and (b, c) approxi-
mations (12) and (13) (thick and thin curves, respectively).

entropy, rates of variation of autocorrelation func-
tions, etc.) must be determined as functions of the
order parameter.

3. EXPERIMENT

The setup used to study pair correlations of dust par-
ticles in the near-electrode plasma sheath of a high-fre-
guency capacitive discharge is schematized in Fig. 9.
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(b)

(©)

Fig. 13. Slices of three-particle correlation functions gz obtained in experiments for (8) P =7 Paand W=10W, (b) P = 3 Paand

W=2W, and (c) P=3Paand W=10W.

The experiments were conducted in argon at a pressure
of P = 2-10 Pa and discharge power of W= 2-10 W.
Monodisperse meamine-formaldehyde particles of
radius a, = 1.7 pm and density p, = 1.5 g cm™ were
used as the dust component. Four to ten layers of dust
particleswere observed. The dust cloud was sliced with
a 200-300 pum thick He—-Ne laser sheet and its images
were recorded with a CCD camera at a framing speed
of 25fps. Figure 10 shows fragments of dust-cloud
images obtained under different experimental condi-
tions.

The images were processed by means of a special
computer program that determined the locations and
displacements of individual particlesin dust structures.
In al cases under analysis, we observed quasi-steady
liquid-like structures. The mean distance r, between
dust grains in these structures varied from 260 to
350 pm. Since the structures under analysis consisted
of several layers of macroscopic particles, no large-
scale vortices analogous to those observed in [24, 25]
were observed. Figure 11 shows the tragjectories of
grains recorded during the averaging time interval for
pair correlation functions (between 1 and 2 s).

The images were processed to obtain correlation
functions g(r) and gs(r 1, I3, I3) averaged over 1to2 s
under constant experimental conditions. Figure 12a
shows g(r/r,) obtained for several values of P and W.
Figure 12b compares measured functions h(r)/h; with
approximations (12) and (13) found in numerical
experiments. It is clear that the measured pair correla
tion functions agree with the functions g(r) obtained for
thesimulated systemswith '™ = 17.5and '™ > 37, even
though the actual experimental conditions differed
from those set in the computed homogeneous problem.
Note that the decay of spatial correlation of macro-
scopic particles follows a power law when ™ > 37 and
is approximately exponential when ' = 17.5.

Degpite the difference between parameters of the
three-dimensional  homogeneous problem and the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

experimental conditions, the measured three-particle
correlation functions are aso consistent with those
obtained by numerical smulation (see Fig. 8). Figure 13
shows slices of measured three-particle correlation
functions gs(rq,, s, rar) for ry, = dy (most probable
interparticle distance determined as the point of maxi-
mum for measured g(r)). A comparison of the results
presented here for several values of discharge parame-
ters reveals a short-range orientational ordering in the
dust structures, which is manifested by the maxima of
03(r 12, 23, '37) & the vertices of the hexagonal clusters
depicted by dashed linesin Figs. 13a and 13b. As the
maximum of the pair correlation function increases,
these maxima (separated by a distance r nearly equal
to dy;) grow and additional maxima, separated by adis-
tancer = 2d,, appear (see Fig. 139).

Thus, our analysis of the spatial correlation of mac-
roscopic particles suggeststhat the behavior of pair cor-
relation functions in experimentaly observed dust
structures should be independent of the binary interac-
tion potential. At I'* = 22-24, the dust subsystem
appearsto exhibit atransformation into an isotropiclig-
uid analogous to the topological phase transition in
two-dimensional systems. This conjecture can be sup-
ported by experimental studies of boundary angular
autocorrelation and spatial correlation functions (gg(t),
gs(r)) and by measurements of topological entropy.

4. CONCLUSIONS

A numerical analysisof correlation functionsis per-
formed for extended three-dimensional many-particle
systems with various binary interaction potentials. It is
shown that the form of the pair correlation function is
determined by the value of ™ for systems character-
ized by various repulsive potentials. This implies that
the form and parameters of the potentials cannot be
determined by inverting g(r). Our results show that pair
correlation of particles with interaction potentials con-
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sidered in this study can be described (and, therefore,
certain thermodynamic characteristics of liquid-like
systems can be determined) without performing the
complicated calculations required to find spatial clo-
sure approximations. For a system of thiskind, the pair
correlation function can be approximated by afunction
depending on two dimensionless parameters (M and
rirp). Furthermore, substantialy different forms of this
function at r/r, > 1 will be obtained only for weakly
correlated and strongly nonideal structures (when '* <
22 and '™* > 28, respectively).

The behavior of h(r)/h, = (g(r) — 1)/(g, — 1) for lig-
uid-like systems at '* > 28 and I'* < 22 weskly
depends on the order parameter if r > r,, in which case
h(r)/h, can be approximated by the product of a har-
monic function with a function describing the decay of
spatia correlation. In strongly correlated systems (at
I* = 28), the asymptotic decay of pair correlation fol-
lows a power law. When the effective order parameter
is smaller than a certain critical '* = 22, the decay of
the correlation function can be described by an expo-
nential law. The pair correlation of macroscopic parti-
clesmeasured in liquid-like dust structureslocalized in
the near-electrode plasma sheath of a high-frequency
capacitive discharge is in good agreement with numer-
ical results. The change in the decay of the pair correla
tion function observed in both humerical and experi-
mental studies can be attributed to the existence of two
distinct liquid phases: an isotropic phase and a phase
characterized by short-range orientational ordering.
This conjecture is supported by observations of well-
ordered clusters of dust grains.
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Abstract—We study the electromagnetic radiation at twice the plasma frequency, which emerges because of
the interaction of two identical counterpropagating short laser pulsesin ararefied plasma and caused by exci-
tation of small-scale standing plasmawaves in the pul se overlap region. The energy, spectral, and angular char-
acteristics of radiation are investigated, and the dependence of these characteristics on the parameters of the
laser pulsesis analyzed. The possibility of applying this effect for diagnostics of localized plasma oscillations

is discussed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In our previous publication [1], we considered the
possibility of “impact” excitation of localized coherent
small-scale plasma oscillations in ararefied plasma by
counterpropagating short laser pulses. These oscilla-
tions could become an attractive object for studying
both laser pulses and the processes determining the
evolution of plasma oscillations (destruction of oscilla-
tion coherence, wave breaking, and the devel opment of
Langmuir turbulence). Here, we consider a possible
method for diagnostics of localized plasmawaves from
radiation produced by these waves in the vicinity of a
twofold plasma frequency 2w,

Radiation at afrequency of 2w, has been widely dis-
cussed starting from 1950s in connection with solar
flares [2]. A possible physical mechanism responsible
for this radiation, which is now commonly referred to
as coalescence of two plasmons, was mentioned for the
first time in [3]. Since the end of the 1960s, this effect
has attracted the attention of researchers in connection
with general problems of strong Langmuir turbulence
(see, for example, [4]). Some of the observed singular-
itiesin the spectrum of radiation reflected from aninho-
mogeneous laser plasma in the region of the twofold
laser frequency 2wy, were also attributed to two-plas-
mon fusion [5].

The effect considered here is aso based on elemen-
tary nonlinear coaescence of two plasmons accompa-
nied by the generation of photons. The actually
observed characteristics of the radiation at twice the
plasma frequency (such as intensity, directivity dia-
gram, polarization, and linewidth) are determined by
the superposition of thefields of transverse waves (pho-

tons) originating from a large number of elementary
processes and depend on the properties of plasma
waves (their spatial structure, damping, degree of
coherence, and method of excitation).

In this paper, we consider the radiation at twice the
plasma frequency resulting from localized small-scale
standing plasmawaves excited in aplasmaby the inter-
action of two short laser pulses. It was shownin [1] that
the collision of such pulsesin the plasmagivesriseto a
short-lived standing el ectromagnetic wave in the region
where these pulses overlap, producing ponderomotive
forces, which vary periodicaly in space with a wave
number of 2k,, where k; is the wave number of laser
radiation. Under the action of these forces, small-scale
coherent plasma perturbations are formed. The time
evolution of these perturbations depends on the dura-
tion of the pulses. If the pulse duration T islonger than

the reciproca plasma frequency w;l, these perturba-

tions exist only during the time of interaction of the
pulses and disappear as the pulses move apart. If the
pulse duration is on the order of or smaller than the
plasma period, such plasma oscillations persist even
after termination of the interaction between the pulses
in the form of alocalized coherent plasmawave. It will
be shown below that, asaresult of such an impact exci-
tation, the electromagnetic radiation at twice the
plasma frequency can be emitted from the region of
localization of plasmaoscillations. Theintensity of this
radiation and its directivity diagram are essentially
determined by the parameters of interacting pulses and
carry information both on the pulses propagating in the
plasma and on the Langmuir waves remaining in the
region of their interaction.

1063-7761/04/9803-0527$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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It should be noted that the effect of radiation at twice
the plasma frequency from a localized standing Lang-
muir wave considered here is analogous in a certain
sense to the effect of generation of second harmonic
radiation from counterpropagating surface polaritons,
which isknown in solid-state physics[6].

2. EXCITATION OF PLASMA OSCILLATIONS
DURING THE INTERACTION OF LASER PULSES

In our previous publication [1], we studied the exci-
tation of small-scale plasma oscillations during the
interaction of two identical short laser pulses in the
hydrodynamic nondissipative approximation. The infi-
nitely long lifetime of oscillations emerging in this
model leads to a singularity in the spectral density of
the energy radiated. To avoid this difficulty, we must
take into account the damping of plasma oscillations,
which is possible only in the framework of the kinetic
theory. For this reason, in this section, aswell asin the
Appendix, we will develop a kinetic approach to
describing the interaction of short laser pulses.

We consider two identical laser pulses propagating
in a plasma towards each other along the z axis. We
write the electric field E; of the pulsesin the form

_1
Bur) =3 (2.1)

x { Eq(r, t)exp(—iwgt) + E§ (r, t) exp(iwgt)} .

Here, wy is the laser frequency and E, is the complex

amplitude varying slowly with time on the oogl scale
and exhibiting the coordinate dependence

Eo(r,t) = E.(r,t)exp(iky2)

. (2.2)

+E_(r, t)exp(—iky2),
where k; is the longitudinal wave number connected
with frequency wy via the dispersion relation k,c =

Jo— w5, @, = AJ4TEe’Ny/m being the plasma fre-

guency, which is assumed to be smaller than wy,;, €, m,
and N, are the charge, mass, and concentration of elec-
trons in the plasma; and E.(r, t) are the amplitudes of
laser pulses propagating from left to right (plus sign)
and from right to left (minus sign), which change in

space insignificantly over ascale of kj.

In the course of interaction, the pulses generate a
standing electromagnetic wave associated with quasi-
static small-scale ponderomotive forces. These forces
induce periodic electron density perturbations (with a
wave number of 2k;) and small-scale quasi-static elec-
tric fieldsin the plasma. Substituting formula (2.2) into
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definition (A.23) of the high-density potential and sep-
arating the terms proportional to exp(x2ik,z), we obtain

2
e

4mw;
+exp(-2ik,2)(E_[E*)}.

o(r, 1) = { exp(2iko2) (E, [EY)

(2.3)

We assume that the electric field amplitude of the
laser pulsesin the region of their interaction has an axi-
ally symmetric Gaussian form,

0 & _p°[;
E.(rt) = eEqexpp— -5,
2L 2R
2 (2.4)
E(r,t) = e g exp L0
oL 0] 2L2 ZRE

where { = z— Vgt and n = z + Vt are the longitudinal
coordinates in the systems comoving with the pulses,
V, = cko/ay, is the group veloci ty of the pulses, L isthe
length of a pulse connected with its duration via the

relation T = L/V,, p = /X" +y* isthetransverse coordi-
nate, R is the pulse width, E; is the maximal value of
theelectric field amplitude, and e, and e_arethe vectors
determining the polarization of the laser pulses.

The Fourier component of the éectric field of
plasma perturbations can be expressed in terms of the
corresponding component of the ponderomotive poten-
tial with the help of formula (A.27) (see Appendix). In
accordance with formula (2.4), the latter component
has the form

2 2
(k) = mVTPR iT(e+ (&)

2 2 22
0wt kKiRp
X &P 4 4 0

(2.5)

2, 2 2, 2
0 (kz—2k0) L 0 0 (kz+ 2k0) L ]
X [e"pm‘—4 I D}'

where Vg = eEy /muy,.

Bearing in mind that we are dealing with short laser

pulses of duration T on the order of oo;l, we will study
plasma oscillations remaining in the overlap region of
the pulses after termination of their interaction. Since
ponderomotive forces in this case are equal to zero,
only free plasma oscillations can exist in the plasma;
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the frequency w and the wave vector k of these oscilla-
tions are connected viathe dispersion relation [ 7]

g'(w k) = 1+3¢(w k) = 0. (2.6)
If thethermal velocity of electrons, Vy= ,/T/m (T isthe
electron temperature), is smaller than the phase veloc-
ity (w/k) of plasmawaves for the Maxwellian distribu-

tion function F, expression (A.28) leads to the follow-
ing relation [7]:

2 2\ /2
0 KV
8¢ (e, k) = —201 + 31
w w O
2.7)
2 2
. mw U U
i M8 epe 9 1
2°Vs 02k

Bearing in mind that the ratio of the thermal velocity of
electrons to the phase velocity of a plasma wave is
small (in our case, this corresponds to the inequality
2Vr/c < wyuy), we can represent the Fourier compo-
nent (A.27) of plasmawavesin the form

ik
[EZ((‘L)! k)D = _-Z—éq)( (*L k)wL

(2.8)
0 1 1
X - —_ "
flo—oy +iy, o+ +iy
where
w (k) = %L+ K
s 1 (2.9)
_ 0 0
yL(k) 8k3 3 pl:l 2 2k2 2|:|1

and rp = Vy/w, isthe Debye radius for electrons.

In contrast to the hydrodynamic result [1], expres-
sion (2.8) takes into account the thermal correction in
the dispersion relation for Langmuir waves as well as
Landau damping. Although both these effects are weak
in the given approximation, consistent inclusion of
damping plays afundamental role, limiting the lifetime
of excited plasma waves and removing the singularity
in the frequency spectrum of the radiation at twice the
plasma frequency.

Formula (2.8) combined with relation (2.5) defines
the electric field of a small-scale standing plasmawave
excited by the pulses in their overlap region. The life-
time of such a wave is characterized by decrement
Vi (2ky), and the range of wave vectorsin the transverse
and longitudinal directions is characterized, respec-
tively, by the transverse and longitudinal sizesR and L
of the pulses. Considering that the laser wavelength is
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small as compared to the pulse sizes, we will hence-
forth assume that k = 2k, in formulas (2.9).

3. ELECTRIC FIELD
OF LOW-FREQUENCY RADIATION

The interaction between plasma waves induces a
nonlinear current. In the approximation quadratic in the
wave fields, the Fourier component of current density j,
in the general form can be written as[8]

i (@ k) = _iw dw'dk’
ji(w k) = —gf 2’
x §js(w, k, w', k') Ej(w", k") Eg(w', k"),

(3.1)

wherew" = w—w', k" =k —k', and E(w, k) = [E,(w, k)
In the case we are interested in, when the phase vel oci-
ties of interacting waves are larger than the thermal
velocity of electrons (w > kVy, w' > k'Vy, w' > K'Vy),
tensor S;(w, k, o3, k') hasthe form [8]

4mie’N
Sis(@ k, @, k) = ———=
m www"

s,
w

Using formula(2.8), we obtain the nonlinear current (3.1)
of astanding plasma wave:

(3.2)
X [56]’54' 'k_j..6i5+
W w

W, dawdk @@, K, k")
32nem_[ (2m)’ ww"

j(w k) =

X[g(k )+ K "2+%k'}

(323)
<0 1 _ 1 O
Lo —w +iy, w0 +w +iyU
0 1 _ 1 D_
L' —, +iy, "+ +iyU

Current (3.3) is proportional to the squared intensity of
the plasma wave field or the fourth power of the laser
field.

The radiation field is generated only by the vortex
part of current (3.3). Separating this part, we obtain
from the Maxwell equations the spectral density of the
vortex electric field E"(w, r),

E"(w, )
dk exp(ik [T). i (.
21 ) kT( k)

(3.4)

= —4mi wcurl curl I ( k),
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where T(ey, k) = w?e(w) — c2k? and g(w) = 1 — wh/u? is
the transverse permittivity of the plasma. Relations (3.3)
and (3.4) determine the low-frequency electromagnetic
fieldinduced in ararefied plasmaasaresult of collision
of two short laser pulses.

Substituting relation (3.3) into (3.4), integrating
with respect to frequencies w' and wave vectors k', and

discarding the small terms proportional to
exp(—kg L2) , We obtain
E (1) = 0w, M VekeRELT? (6.2 )’
’ em 16./2 T

(o T 0
X expD ——8——Dcurl curle,=— 3

s 1 KL® K2RT 35)

I(zn)Ssz(m, K) g 8L ™

N erfm(w 20T

[(h
s J8 Dex (w—2w,)°1
E Ww-2w, +2iy, p[ 8 }
0
i(W+2w)1
+en‘%—L o )

(w+2w)%T

)

/8 Dexp[

W+ 2w +2iy,

[ I O |

where

erf(2) = %{ [dtexp(-+)

is the probability integral of the complex argument, e,
is the unit vector in the direction of the z axis, w, =

wy(1 + Bkgrp) is the plasma oscillation frequency tak-
ing into account spatial dispersion, and

- MW 03 10
e @Skgr%@(pDZ gkri

ol b

We are naturally interested in the radiation field in
the wave zone at large distances from the region of
localization of plasma oscillations (r > R, L). In this
case, the integral over wave vectorsin expression (3.5)
can be evaluated by the steepest descent method. Tak-
ing into account the contribution from the pole, k =

Je(w)wlc, we arrive at the following expression for
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the spectral density of the electric field of low-fre-
guency electromagnetic radiation:

3/2, 2 (A) V
E"((A),r) _ T WT __p_E oL
8.2 Wogc®
kG RL .
x 2—— (e, [B)*Je(w)sinOcoshe,
2_2
) W1
xexpEE s(w)r—? .
W’ (w)chosze+ R’sin’6 '
-5 = .

fm(m 201
U /8 O

w-—2w, +2iy,_

Dl + ( 2 )2 2
0W—2w) T
P55 O

X

[ .

d(oo+ ZooL)rD
_ 0 /8 Dex 0 (0+2w) 1
W+ 2w+ 2iy, U 8 u

1+erf

OooOa

where 8 isthe angle between the z axis and the direction
of radius vector r and g, is the unit vector in the merid-
ional direction.

In order to find the space-time dependence of the
low-frequency electric field in the wave zone, we carry
out the inverse Fourier transformation in time. Taking
into account the contributions from poles w = +2w, —
2iy, , we obtain from relation (3.6)

J3%wit’w, Vi kOR L
—Eo.——

E'(r,t) = —— P
2.2  wo8c?

(e.[B)°

. 0
x sSin@cosBey expF 2y,
0

. 0
_3 2(L?cos’ + R*sin“0)
8 0

x sinEQwL[t—“/ér(l+ 2KCr E)} .
0

This relation describes a diverging spherical electro-
magnetic wave having a doubled plasma frequency and
polarized in the meridional direction. It should be noted
that expression (3.7) holds only at large distances from
the region of localization of small-scale plasmaoscilla
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tions(r > R, L). Inaddition, it becomesvalid only after
some time following the passage of the leading front of
radiation through a given point (for t — r/c > w,T?,
w,R/C?).

4. ANGULAR, SPECTRAL,
AND ENERGY CHARACTERISTICS
OF RADIATION

The energy emitted in unit interval of frequencies
dw into unit solid angle do is connected with spectral
density (3.6) of the electric field through therelation [9]

dW _ cJ/e(w

)2 tr 2

(4.)

where frequency w is regarded as positive.

Using relation (3.6), we can write the expression for
low-frequency radiation energy (4.1) in the form

2 43

dw _ Jmerw't

(e, ) KR (w)

dwdo 64
V20
x D% W, sin’6cos’ 0
[4c
2_2 2 2 2 2 . 2
Wt W L°cos 0+ R sin
xexp%———z——gs(w) 7 aa (4.2
j(w—2w )1y
1+ erf QA0 20T
U B U H(w-—2w)th
W-2w, +2iy, U 8 U
i(W+2w)T 2
1+erf%—L B ) s
3 /8 exp (@ F20) T
W+ 2w+ 2iy, P 8 0
where

ESLT[3/2 RZL
W 8m
is the energy of a laser pulse. For weakly damped
plasma oscillations (w, > V), expression (4.2) has a
sharp peak in the vicinity of frequency w = 2w, corre-
sponding to the emission of el ectromagnetic waves at a
doubled plasma frequency. In the vicinity of resonance
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0 0.5 1.0 1.5 2.0
X

Fig. 1. Dependence of the dimensionless energy spectrum |
of radiation emitted at angles of 45° and 135° on the dimen-
sionless frequency X = w/2wy_for y /wy = 0.1 and for fixed

intensity and radius of laser pulses for three values of
parameter 3 = ((.OLT)Z/Z, characterizing the pulse duration:
B=0.25(1),1(2), and 2 (3).

(w = 2wy), formula (4.2) can be noticeably simplified
and assumes the form

dw _ 3BnarkR
dwdo 32

(e, &)

3
y OviD W sin“8cos’0
mc% “(00—2w, )2 + 4y?
4.3)

O .
x exp%—wﬁ2 - gkﬁ(chosze + R?sin’0)

(w-2w,)’1°0
0

It follows from thisformulathat, for afixed angle, both
the radiation intensity and the linewidth depend on the
damping rate of plasma oscillations as well as on the
pulseduration 1. The reason for such dependenceisthat
the pul se duration determines not only the efficiency of
excitation of plasma waves, but also the longitudinal
size of the region of their interaction. This sizeis asso-
ciated with the spread in the longitudinal components
of the wave vectors of excited plasma oscillations and
with the possibility that the condition for the merging of
two plasma waves with the formation of a transverse
electromagnetic wave will be fulfilled.

No. 3 2004



532

Figure 1 showsthe dependence of the dimensionless
radiation energy spectrum,

dw 5120
dwdog, 3R (e, [8.)*(V2/4c?) cEL R

x exp KR = 1
(8" 2 2
qo i, ¥
(oo wp
2.2 3 2_2
XDZ DEXpD— [EE(—DT_—1D+4i|E,

at angles of B = 45° and 135° for three values of param-

eter wT°/2 characterizing the duration of pulses for

their fixed intensity and radius. The pulse duration
mainly affects the efficiency of plasmawave excitation
and, hence, the radiation intensity. In addition, a rela-
tively weak influence of the pulse duration on the radi-
ation linewidth is observed. The shorter the pulses, the
wider the spread in the longitudinal components of the
plasmawaves excited by these pulses and the larger the
possible number of elementary processes of plasmon
coalescence. It should be recalled that the coalescence
of two plasmons with opposite wave vectorsinto oneis
possible only if these vectors differ in magnitude by a
value on the order of w,/c.

Integrating expression (4.3) with respect to fre-
guency, we obtain the angular distribution of the radi-
ated energy:

dw (3n)3’2wf,r5k§ R
do 32
Ovao

D% WL2 “b §n’0cos’0

[l . 0
x exp%i— Wt —gkf,(chosze + stmze)g.

(e, (&)

(4.4

L et us analyze the dependence of the directivity dia-
gram of the low-frequency electromagnetic radiation
on the relation between the longitudinal and transverse
sizes of laser pulses. The equation for the optimal angle
0. corresponding to the maximum radiation energy
follows from relation (4.4) and has the form

SiN'Q,s — SIN'O [1 + ;}
max max 3k,23( R2 _ L2)
4 (4.5)

+ 2 2 2 =
3AIE(RP-L?)
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If the pulses have identical or nearly identical longi-
tudinal and transverse sizes (such that k, (R2—L?) < 1),

Eq. (4.5) leads to sin?6,,,,, = 0.5, which corresponds to
the following values of the angles:

m 3m
4 4°
Radiation is concentrated in narrow cones with angles
of 45° and 135° relative to the axis along which the
pulses propagate. This result coincides with that
obtained in [10, 11] from analysis of radiation emitted
from solar flares in the approximation such that the
spectrum of Langmuir noisein the wave vector spaceis

concentrated in a small neighborhood of two opposite
and rather long wave vectors.

When pulses with transverse sizes much larger than
their longitudina sizes (R > L) collide, the angular
directivity of low-frequency radiation essentialy
depends on the parameter k,R. For narrow pulses
(k,R < 1), theradiation intensity hasthe maximal value
for angles defined by relation (4.6). If, however, pulses
have large transverse sizes, Eq. (4.5) leads to

4 1

0 = /\/@i a4 _—
e 3k,R’ 3k,R’
In this case, radiation is emitted at small anglesrelative

to the direction of pulse propagation. However, the
radiation intensity is small in accordance with (4.4).

If the longitudinal size of colliding pulses exceeds
their transverse size (L > R), the radiant energy attains
its maximal value for angles (4.6) provided that
1. If the opposite inequality (w,t > 1) holds, Eq. (4.5)

leads to
[ §oo T

Inthis case, radiation is emitted in the direction perpen-
dicular to the direction of pulse propagation, but the
value of radiant energy is exponentially small.

Figure 2 shows the angular dependences of dimen-
sionless energy of the radiation at twice the plasmafre-
quency for three values of parameter (R/L)?, character-
izing theradii of laser pulses, for their fixed energy and
duration:

(4.6)

emax =

4.7

(4.8)

_dw_ Lexp(wt)
do 24, /3kxko (e, [ ) Wi
3
y DAm°c’wdd v,

O e Qgw

2
x eXIOD—4wLT2H:os 0+ IE—sm %

d-D

sin“0cos’0
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It can be seen that the radiated energy decreases
with increasing pulse radius and the directivity diagram
becomes narrower. These effects are due to the fact that
an increase in the pulse radius narrows the angular
spread in the wave vectors of the excited plasmawaves
and reduces the number of elementary events of their
coalescence (cf. [10, 11]). In addition, in accordance
with results (4.7), optimal angle 6, decreases with
increasing transverse size of alaser pulse.

The total energy of low-frequency electromagnetic
radiation can be determined from relation (4.4) by inte-
grating over solid angle do. For pulses with identical
gpatial sizes L = R, integration is carried out analyti-
cally and the total energy has the form

ﬁnS/waTSK
W = (m) oR (+EE)B%WL
(4.9)
W 07 2.1
2y exXp OOTD

Thelow-frequency radiant energy (4.9) attainsits max-
imal value

5/2[\/2[]
fﬁk" e oy BT Qo )

W = Crd) ot 2y,

in the case of collision of two laser pulses with a dura

tion equal to
_ |10
Q%T = 17.

In gspite of the fact that expression (4.10) for the
energy contains the product of two large parameters
k:R® > 1 and wyly, > 1, the energy value must be

smaller than the energy of a small-scale standing
plasmawave [1],

(4.12)

(4.12)

Comparing expression (4.12) with formula (4.10), we
find that our treatment is valid provided that

VT

kORB% <

Another limitation on the plasma parameters is con-
nected with the condition of smallness of the Landau
damping for small-scale plasma oscillations (y, < wy,).
For values of parameter kyrp < 0.2, ratio y /wy, does not
exceed 0.1 and plasma oscillations are weakly damped.

(4.13)
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Fig. 2. Angular dependence of the dimensionless energy g
of the radiation at twice the plasmafregquency for short laser

pulses (wpt = /4/3) for various values of parameter o =
(R/L)2 characterizing the pulsewidth: a = /2 (1), 1(2), and
1.2 (3).

For example, for kyrp = 0.2, the damping decrement
amounts to y; = 0.1w, and the plasma oscillation fre-
quency wy_ isequal to 1.24w, on account of spatial dis-
persion.

L et us estimate the value of energy emitted upon the
collision of two short laser pulses of intensity I, =
10% W/cm?, wavelength A = 0.8 um (w = 2.4 x 101 s72),
duration T = 27 fs, and focal spot diameter 2R = 16 um
in ararefied plasmaof density Ny, = 1.7 x 10*° cm— and
temperature T, = 20 eV. For such parameters, the energy
of the laser pulses amountsto W, = 0.96 x 102 J, while
the energy of a small-scale standing plasma wave is
W, = 1.4 x 10°W,. In this case, small-scale plasma
oscillations attenuate weakly with a decrement of y, =
0.1w, , and the energy emitted at a frequency of w =
2wy = 1.7 x 10% s, which is approximately 1/15 of the
laser carrier frequency, is directed at angles of 45° and
135° and has a value of W = 2.8 x 10%W = 2 x
1073W, = 2.7 x 107° J. It should be emphasized once
again that the frequency wy_ of Langmuir waves, taking
into account spatial dispersion, is equal to 1.24w, for
such values of plasma parameters.

5. CONCLUSIONS

Radiation at twice the plasma frequency may carry
information on the evolution of free small-scale local-
ized plasma oscillations (which are not sustained by
external sources) under the conditions of laser experi-
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ments. The model considered here presumes the linear-
ity of plasmawaves and, in particular, their dissipation
due to Landau damping. We have considered the energy
characteristics of radiation, its spectrum, and directivity
diagram precisely for such conditions. The discrepancy
between the results of measurements and calculations
may indicate the importance and type of nonlinear pro-
cesses disregarded in our model of evolution of plasma
waves. For example, the effects associated with the
mobility of ions (induced scattering from ions or decay
of a plasma wave into a plasma wave and an acoustic
wave) make the plasma wave spectrum and, hence,
directivity of radiation at twice the plasma frequency
more isotropic. A nonlinear dissipation mechanism
affects the shape of the radiation spectrum and the radi-
ation intensity.

In analyzing plasma waves, the linear approxima-
tion islimited to moderate intensities of laser pulses of
10%5-10% W/cm?, while modern laser technology
makes it possible to obtain pulses with a much higher
intensity of 10'-10%° W/cm?; for such intensities,
plasma waves being excited may be nonlinear and may
contain alarge number of spatial harmonics, which are
multiple of 2k,. It can be expected that the processes of
coalescence of higher order Langmuir waves will lead
to electromagnetic radiation not only at a doubled
plasma frequency, but at higher frequencies, which are
multiple of the Langmuir frequency.

Nevertheless, using such high-intensity laser pulses,
it is also possible to realize the limiting case of excita-
tion of linear plasma waves considered here. Indeed, it
follows from the results that the efficiency of plasma
wave excitation depends only on parameter e, - e.
Plasma waves are excited most effectively for parallel
polarization vectors of laser pulses; conversely, the
effect of excitation of Langmuir waves disappears for
orthogonal polarizations. By changing the angle
between the polarization vectors, it is possible to affect
the amplitudes of excited plasmawaves and, hence, the
spectrum and intensity of low-frequency radiation.

It should be noted that the radiation effects analo-
gous to that considered here might also take place in
other media [6] as well asin plasmafor other types of
waves. For example, doubled-frequency radiation
emerging as a result of coalescence of two surface
waves was considered in [12].
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APPENDIX

Let us consider a quasi-static response of a plasma,
quadratic in the rf field, by using the Vlasov kinetic
equation [7]. We will seek the electron distribution
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function f(r, v, t) in the form of a power series in the
small parameter €, which is equal to the ratio of the
electron quiver velocity V¢ to the phase velocity of elec-
tromagnetic radiation and is proportional to the high-
frequency dectric field strength E (r, 1),

f=F+f,+f,+..,

where F is the electron distribution function in the
absence of alaser pulse and f,, isthe nth order perturba-
tion of the distribution function in parameter €¢.

In the linear approximation (n = 1), the equation for
f, hasthe form

of 1 f 1. € 1 DaF _
at VY [967— ¥ mBEL+ ¢/ *Buogy =0 (AL
where B, is the high-frequency magnetic laser field,
connected with the electric field via the equation
_ 10B,
curlg, = <
Keeping in mind another small parameter, €, which is
equal to the actual ratio of the electron thermal velocity
V5 to the phase velocity of electromagnetic radiation,
we can represent the solution to Eg. (A.1) in the form
of apower seriesin the electron velocity:

2

- 9FQ oty 25
IaXJ V|V|axlaxj + N

fl -_ a_VJD—A]‘l'V

where

(A.2)

|
_ €
A= Z[dE(Y

is the high-frequency electron velocity,
t

C = [drA(r.1)

is the electron displacement in the rf field, and
t

G = [drC(r,t).

While deriving formula (A.2), we assumed that there
was no laser pulse at a given point r for t — —o0. An
expression similar to (A.2) was discussed in [13] under
the assumption that F isthe Maxwell distribution func-
tion.

In the approximation quadratic in ¢, the equation
for f, has the form

afz fz e 1 0 F_
Ewa‘z—”m%ﬁcvxsg% - .1, (A3)
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where the quantity | appearing on the right-hand side
can be expressed in terms of functions defined by the
linear approximation:

_ e 1 0

Using formula (A.2), we can write expression (A.4) in
the form

(A.4)

_ o OF o°F

' = Riaij’D”aviavj'

Here, coefficients R and D;; are proportional to the

square of the rf field and are power functions of the
electron velocity vector component:

(A.5)

R = Ri+v,§;+ (A.6)
D; = Dioj +V,Qjij + VIViPimij + (A.7)
where
o 9AOC
R = Bt ox, (A-8)
EBx, axﬂax at 0X; Dax| axD’ '
o _ 10
Dj = _Zat(AiAj)1 (A.10)
10
Qll] - z%ax JaXD EBYI(AIAJ)
(A.11)
LIPA 9 L 0A 9
* 200t ox; ot ox 1"
P = 10A 0 aA o[
I mij ZEBx,ax 6x| ax-m
19A 9 , 9A 010G
~305t ax, ot axox, (A-12)
llﬁA| +0A| a DC
“200x; 6x 0x;0xH"

In deriving tensor D;;, we took into account its symme-
try relative to permutation of indicesi and j.

We have so far not used the explicit expression for
the laser field. Consequently, formulas (A.5)—A.12)
are valid for an arbitrary dependence of E, on coordi-
nates and time.

We define the time dependence of the laser field in
theform (2.1), retaining an arbitrary coordinate depen-
dence of the amplitude. Substituting formula (2.1) into
the definitions of quantitiesA, C, and G and integrating
them with respect to time, we confine our analysis to
the first-order terms in the derivatives of the slowly
varying amplitude E, everywhere except in (A.10). We
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will also take into account the second-order terms in
small parameter €, = (1/wy)(0/0t) in the expression for

D;; . Asaresult, wefind that coefficients R and Dj] in
formula (A.5) contain terms varying slowly with fre-
guency along with the terms varying at the doubled
frequency. Accordingly, we represent distribution func-
tionf, aswell asfields E, and B, in the form of the sum
of rapidly and slowly varying terms, denoting the | atter
by angle brackets [l..[] As a result, we obtain from
Eq. (A.3)

Y M
Qat+VD5FDDf2D

+%HI2D+ %vx EBZE%[% = -00

where, in accordance with Eqg. (A.5), we have

(A.13)

oF OF
Ry, * Pigvav,

The coefficients in this formula have the form

Oo= (A.14)

RO= RO+v,{0+..., (A.15)

e [6|E0|2
4moo 0X

* a EOID
o %O'atax 0'atax D}

. 2 *
e O a a EOI * aE0||:|
AmPwg C9%; o 0%

Oi a_XiD
aEOID |

a aEOl
o %O‘ 0X; —Bagx 0X; 0" Wy
< [ZazEm 9Esi
otox;Lox,

OEO, 0 @E
ax; otdax, —

R0 =

(A.16)

ESJD: —

_ aE0|D
ox U
a Eg“:l
ax U

(A.17)

a @EOI 6E0||:| D
3o 5tax Dax, axiDJ'CC}E

[D;0= EDi(}EH'VIE(?IijI:H-VIVm[PImijDI (A.18)
D= & ie” Dl 0

*
ij 8m (.0 EP‘) at(EOJEO|

Eoi E5))

(A.19)
109
w20t

6E0| aE DD
N TR B Tl
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2 09 Carrying out the Fourier transformation in
Q0= ——22[|——(E’5i Eoj +c.c) Eqg. (A.22) in coordinates and time, we obtain the fol-
8mwg [PX lowing expression for ,(w, k, V)
i a 0E0| aE D —_ 1
— e ) A .20 wk, vl ———
T ot ax; *tEBoigx ax OO (A.20) T2l ) i(w—k Ov)
. U e 1 1. U
i 0 0Es 0Ep; nd X F=E, 0+ =vx B+ =ike(w k)] (A.24
" axtoat By -eegl 0 mC =7 g G g #
LOF, 1 0°F
_ |e Da 0E, 0E, 0 + = (p( K)so——-
[Pyl = 2 3pr, gia_xjm 0] axim_ g "oy ovioV
Using this expression, we find the Fourier component
3 ) of the electron current density,
0 3¢ d°Ex 9°Eg, +6 Eoi0Edm
% 9tax,0X; ax °Igtax,ax,  0tdx, 0X; Oi(w k)O = ejdvvinz(w, k,v)O
+a Eo 0L,  0Eq0°El, 0EG0°EL, 2D -l (A.25)
dtdx, %, = 0x; otdx,  0x; otox 27 e
where we have assumed that distribution function F is
0Ey,0°EL, _0E, 0L, DD isotropic and introduced the standard notation [7]
25 atox, 2o atax, T 0B
| i I i _ 4me’ Vi  oF
og;(w, k) = med oK [vav (A.26)

Expressions (A.13)—(A.21) allow usto consider var-
ious effects to different degrees of accuracy in small
parameters e (smallness of the thermal velocity of par-
ticles as compared with the phase velocity of waves)
and g, (smallness of the amplitude variation over a
period of the rf field) in the approximation quadratic in
the rf field. In particular, using theserelations, it is pos-
sible to analyze the problem of so-called nonstationary
ponderomoative forces, which had been considered for a
long time mainly in the framework of the hydrodynamic
description of aplasma (seethereview article [14]).

Including the largest termsin parameterse, and ez in
expression (A.14), we can write Eq. (A.13) in theform

d
Dat+vD—DDfZD

~RgEL v B

109 OF 170
a mar% m[D)t

where

2

(plj (EOJ

i + E5iEoi),
8mw, o

2
e 2
2|E0| .

®= 5,-(9.1 - 4mowy,

Quantity @isusualy referred to as the rf potential.
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It should be noted that the rf field is taken into account
in Eg. (A.22) viathe two terms on the right-hand side.
In the lowest approximation in small parameters €, and
€r, the contribution to current density (A.25) comes
only from the term proportional to the ponderomotive
potential.

Confining our analysis to potential quasi-static
fields and using expression (A.25), we find the Fourier
component of the electric field strength,

3¢ (w, k)
1+ 8¢ (w, k)

where d¢ is the partial contribution of electrons to the
longitudinal permittivity of the plasma,

E0= So(ak) (A27)

| _ 4me 1 A
(a2 Sk = T fovo i D‘;—VD. (A.28)
It should be emphasized that the approach to
describing the quasi-static response of the plasmato the
rf field developed in the Appendix can be used for ana
lyzing awider range of problems.
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Abstract—We suggest a new approach for description of the low-energy sector of spi n-% kagomé Heisenberg

antiferromagnets (KAFs). We show that a kagomé lattice can be represented as a set of blocks containing 12
spins, having the form of starsand arranged in atriangular lattice. Each of these stars hastwo degenerate singlet

ground states that can be considered in terms of pseudospin % . Taking into consideration symmetry, we show

that the KAF lower singlet band is created from these degenerate states by the interstar interaction. We demon-
strate that this band is described by the effective Hamiltonian of a magnet in the external magnetic field. The
general form of this Hamiltonian is established. The Hamiltonian parameters are cal culated up to the third order
of perturbation theory. The ground-state energy calculated in the model considered islower than those eval uated
numerically in the previousfinite clusters studies. A way of experimental verification of this picture using neu-
tron scattering is discussed. It is shown that the approach presented cannot be directly extended to KAFs with
larger spin values. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Unusua low-temperature properties of kagomeé
antiferromagnets (KAFs) have attracted much attention
from both theorists and experimenters over the last
decade. Apparently, the most intriguing features were
observed in specific heat C measurements of SrCrGaO

(spin-g kagomé material) [1]. A peak at T =5 K has

been revealed that is practically independent of mag-
netic field up to 12 T, and C appeared to be proportional
toT?at T<5K.

There is no appropriate theory describing the low-
energy KAF sector. Qualitative understanding of low-

temperature spi n—% KAF physics is based mostly on

results of humerous finite-cluster investigations [2—6].
They revealed a gap separating the ground state from
the upper triplet levels and a band of nonmagnetic sin-
glet excitations with avery small or zero gap inside the
spin gap. The number of states in the band increases
with the number of sites N as aN. For samples with up
to 36 sites, it was found that o = 1.15 and 1.18 for even
and odd N, respectively [2, 5]. It isnow believed that this
wedlth of singletsisresponsiblefor alow-T specific heat
peak and explainsits field independence[1, 7].

The origin of the singlet band and the nature of the
ground state are still under debate. Previous exact diag-

TThis article was submitted by the authorsin English.

onalization studies of clusterswith N< 36 [4, 8] reveded
an exponential decay of the spin—spin and dimer—dimer
correlation functions, and therefore the point of view that
KAFisaspinliquid iswidely accepted [2, 4-12].

A guantum dimer model (QDM) is now considered
the best candidate for description of low-energy KAF
properties [6, 9, 13-15]. In QDMs proposed for the
kagomé problem in some recent papers [6, 13-16], the
spin Hilbert space is restricted to the states in which
spins are paired into first-neighbor singlets. The main
argument to support this restriction is the coincidence
of the low-energy spectrum and the number of lower
singlet excitations in samples with up to 36 sites with
the exact diagonalization results [13, 15, 16]. At the
sametime, it was noted that further studies are required
to analyze this problem. As was recently demonstrated
in[15], an effective Hamiltonian describing the low-
energy KAF singlet sector can be written in this
approach. Unfortunately, it appearsto be quite cumber-
some and makes it possible to obtain the result under a
number of crude approximations only [14, 15].

In our recent paper [17], we suggested another
approach for spi n-% KAF that differs from the QDMs

discussed above. We proposed to consider a kagomé
lattice as a set of starswith 12 spinsarranged in atrian-
gular lattice (seeFig. 1). Numerical diagonalization has
shown that a single star has two degenerate singlet
ground states separated from the upper triplet levels by

1063-7761/04/9803-0538%$26.00 © 2004 MAIK “Nauka/ Interperiodica’



LOW-ENERGY SINGLET DYNAMICS

a gap. These states form a singlet energy band as a
result of interstar interaction. It was assumed that this
band determinesthelow-energy KAF singlet sector. We
have shown that it is described by the Hamiltonian of a
magnet in the external magnetic field where degenerate
states of the stars are represented in terms of two pro-

jections of pseudospin % .

This picture possibly reflects only the lowest part of
the lower singlet sector because the number of statesin
the band within our approach is 2V1?2 = 1.06N [17],
whereas it is now believed that it should be scaled by
the 1.15V law obtained numerically for clusters with
N < 36[13, 16].

In this, more comprehensive paper, we develop this
star concept. Using the symmetry considerations pre-
sented in Section 2, we prove that the singlet band aris-
ing from the ground states of stars determinesthe KAF
lower singlet sector. This band is studied in Section 3,
where the general form of the effective Hamiltonian is
established. The Hamiltonian parameters are calculated
up to thethird order of perturbation theory. The ground-
state energy calculated in the model considered islower
than these energies evaluated numerically in previous
finite cluster studies. A comparison between our model
and the QDM is carried out. We demonstrate that our
approach cannot be directly extended to KAFs with
larger spin values. A way to verify this picture experi-
mentally using neutron scattering is discussed. We
summarize our resultsin Section 4.

2. SYMMETRY CONSIDERATION

We start with the Hamiltonian of the spi n-% kagomé

Heisenberg antiferromagnet,

Ho =9,y SI5+3,Y SIE, (1)

4, jo (.1

where [, j0and (i, j) denote nearest and next-nearest
neighbors on the kagomé lattice, respectively, shownin
Fig. 1. The case where |J,| < J; is considered in this
paper. We discuss the possibility of both signs of the
next-nearest-neighbor interactions, ferromagnetic and
antiferromagnetic. As is shown below, athough the
second term in Eq. (1) is small, it can be important for
the low-energy properties.

A kagomé | attice can be represented as a set of stars
arranged in a triangular lattice (see Fig. 1). We first
neglect the interaction between stars and set J, = 0 in
Eq. (1). A star isasystem of 12 spins. We now consider
its propertiesin detail .
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Fig. 1. Kagomé lattice (KL). There is a spin at each lattice
site. The KL can be considered as a set of stars arranged in
atriangular lattice. Each star contains 12 spins. A unit cell
is also presented (dark region). There are four unit cells
per star.

Because Hamiltonian (1) commutes with al of the
projections of the total spin operator, all of the star lev-
els are classified by the values of S irreducible repre-
sentations (IRs) of its symmetry group, and are degen-
erate with respect to S,. The star symmetry group Cg,
contains six rotations and refl ections with respect to six
lines passing through the center. There are four one-
dimensional and two two-dimensional IRs, which are
presented in Appendix 1. In their bases, the matrix of
the Hamiltonian has a block structure. Each block has
been diagonalized numerically.

As aresult, it was found that the star has a doubly
degenerate singlet ground state separated from the
lower triplet level by a gap A = 0.26J;. Ground-state
wave functions can be represented as

_ 1

W, = —2+1/16(q>1+<p2), (2
_ 1 _

_= —2_1/16(cp1 @), (3)

where functions ¢, and ¢, are shown schematically in
Fig. 2. The bold line there represents the singlet state of
the corresponding two spins, i.e, ([tGIG -

LRI 2.

It can be shown that ¢, and ¢, are not orthogonal:
their scalar product is (@) = 1/32. They contain six
singlets, each having the energy —-S(S+ 1)J; =-3/4J;. It
can be shown that the interaction between singlets does
not contribute to the energy of the ground states which
is consequently equal to —4.5J;.

Functions ¢, and ¢, are invariant under rotations of
the star and transform into each other under reflections.
Hence, W, isinvariant under all symmetry group trans-
formations. In contrast, function W_ is invariant under
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Fig. 2. Schematic representation of the two singlet ground-
state wave functions ¢, and ¢, of astar. The bold line shows

the singlet state of two neighboring spins, i.e., (|tG¢[] -
LG 2.

(b)

Fig. 3. (8) A cluster where operator of the interaction
between stars has the same symmetry group Cg, as the

whole cluster; (b) the only configuration of three stars giv-
ing anonzero contribution to the third term in the perturba-
tion expansion.

rotations, changes sign under reflections, and is trans-
formed under representation (A.3). Therefore, the
ground state has accidental degeneracy. Asshowninthe
next section, the next-nearest-neighbor interaction,
which has the same symmetry as the original Hamilto-
nian, removes this degeneracy.

The KAF containing N noninteracting stars has an
energy spectrum with a large level degeneracy when

N > 1. For example, the ground-state degeneracy is 2N

and that of the lowest triplet level is 3N2 -9, Interac-
tion between stars gives rise to an energy band from
each such group of levels, and it isavery difficult task
to follow their evolution. On the other hand, group the-
ory makesit possible to draw certain conclusions about
the KAF low-energy sector. We now show that the sin-
glet band that stemming from the ground state cannot
be overlapped by those originating from the upper sin-
glet levels.

We consider a cluster with seven stars, shown in
Fig. 3a, and we begin with neglecting the interaction
between them. The symmetry group of the cluster is
also Cg, . Theground state has adegeneracy of 27 = 128.
The corresponding wave functions transformed under
IRs of Cg, are constructed as linear combinations of
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products containing W, or W_for each star. It is easy to
show, by using the standard procedure of constructing
bases in irreducible representations ([18, 19] and
Appendix 1), that there are at least two ground-state
wave functions of the cluster discussed that are trans-
formed under any given IR.

It is important to mention that the operator of the
interstar interaction in the cluster has the same symme-
try as the intrastar interaction, which is the sum of the
star Hamiltonians. Moreover, the interaction between
stars commutes with the square of the total spin opera-
tor. Therefore, if we increase the interstar interaction
from zero, al the levels move in energy, but their clas-
sification cannot be changed. Levels can cross each
other as the interaction rises from 0 to J;, but crossing
is forbidden for levels of the same symmetry. Thisisa
consequence of asymmetry theorem provedin[18, 19].
Hence, we can conclude that the lower singlet sector of
the cluster is formed by states that stem from the origi-
nal 128 lower levels.

We can obtain the same conclusions considering
clusters with the symmetry Cg, with alarge number of
stars. Therefore, we assume in what follows that the
KAF low-energy singlet sector is formed by the states
originating from those in which each star is in one of
the states W, or W_. Because bands with S# 0 can over-
lap the singlet bands under discussion, we have to sup-
pose that the KAF low-energy properties are deter-
mined by the lowest statesin this singlet band.

Because the interaction between stars commutes
with the square of the total spin operator, bands of dif-
ferent S can be studied independently. The KAF lower
singlet sector is considered in detail in the next section.
Investigation of stateswith S# 0 is outside the scope of
this paper.

3. SINGLET DYNAMICS

In this section, we derive the general form of the
effective Hamiltonian describing the lower singlet sec-
tor. The interstar interaction is considered a perturba-
tion. Although it is not small compared to the intrastar
interaction, there are reasons presented below to use
perturbation expansion here.

Two-star coupling. We begin with considering the
interaction between two nearest stars, till neglecting
the second term in Eq. (1). Initialy, there is afourfold
degenerate ground state with the wave functions

{‘P(n?q’fi)} (where n, = +, —, and the upper index
denotes the stars) and the energy

O _

O = EO4EY = 9y,

Ascan be seen from Fig. 4, the interaction hasthe form
V= 3y(s 087 + 85 [5). @

According to the standard theory [18], the following
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conditions should be satisfied to consider V as a per-
turbation:

NN,

‘Cmﬂ“z -

annz; mym,

(0) (0)
Enlnz - Emlmz

<1, ()

where Voo mm = SOWIVWRWET mm,
denotes excited singlet levels of the two stars, and n; =
+, — We have calculated Cnmll':f,z for n; = +, —using wave
functions obtained numerically and found that all of
these coefficients do not exceed 0.09. Conditions (5)
are, therefore, satisfied. Then, the maximum value of
the sum Z ‘Cnlnzz % s 0.28, which is also suffi-

ciently small. Thus, the interaction between stars is
considered a perturbation in what follows.

We proceed with calculations of corrections to the
initial ground-state energy of two stars. For this,
because the state is fourfold degenerate, we must solve
a secular equation [18]. The corresponding matrix ele-
mentsin the third order of perturbation theory are given
by [18]

annz? kiky

+ annz mlmZlemZ kik;
Z £0 _ 0

my, m, NNy m;m, (6)

\/
nlnz mlmz myMy; 0y 0, ¥ 01055 KKy
+
z Z ( (0) E(O) )(E(O) E(O) )

my, Mydy, g, ¥ M2 m,m, NNy 0,92

H N Ny; kyky =

where n;, k; = +, — Obvioudly, the first term in Eq. (6)
is zero, and the second term can be represented as

~5t+iE@ ¢

nnz

= —ifdte
I (7)

—it(968” + 9

x W W ve Vv e

where ?68 ) are Hamiltonians of the corresponding
stars. The third termin Eqg. (6) isto be considered later.
Using the symmetry of the functions W, and W_ dis-
cussed above and the invariance of the system under
reflection with respect to the dotted linein Fig. 4, it can
be shown that the only nonzero elements belong to the
first and to the second diagonals (i.e., with n; = k;, n, =
k, and with n; # k;, n, # k,). We have calculated them
numerically with avery high precision by expansion of
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Fig. 4. Interactions between two stars: V = J;( S(ll) . 5(12) +

sP - sPyand V =38 - s + s . s+ s

8(32) + 5(31) - 8(22)), where the superscripts label the stars.

Thesystemis symmetric under reflection with respect to the
dotted line.

the operator exponent up to the power 150.1 The results
can be represented as

H++;++ = _a1+a2_a31 (8)
H+—'+— =-—atag (9)
H.. . =-a+as, (20

H_._=-a—a,—a; (11)
where a, = 0.256J,, a, = 0.015J;, and a; = 0.0017J,.
The terms of the second diagonal H,,.__=H__., =
-H.. _,=-H_. ., =a,=-0.0002); are much smaller
than a,, a,, and a;. Therefore, the interaction shifts all
the levels by the value —a; and removes their degener-
acy. The constants a,, az, and a, determine the level
splitting. It is seen that the splitting is very small com-
pared to the shift.

Therefore, the KAF appears to be a set of two-level
interacting systems, and the low-energy singlet sector
of the Hilbert space can naturally be represented in
terms of pseudospins: |[1[C=W_and |1 (= W,. It follows
from Egs. (8)—(11) that, in these terms, the interaction
between stars is described by the Hamiltonian of afer-
romagnet in the external magnetic field,

# =5 [FSS+ JyS's]] +th +€,

0, jo

(12)

where [, jChow denotes nearest-neighbor pseudospins,
arranged in a triangular lattice formed by the stars;

1 The difference in these results from those obtained by the expan-
sion of the exponent up to a power of 149 is on the order of

107°%. So, the method gives nearly precise values. The results
would be the same if one were to use the more common expres-
sion (6) and eigenfunctions of the star obtained numerically.

No. 3 2004



542

SYROMYATNIKOV, MALEYEV

Contributions to parameters of the effective Hamiltonian (13) from the terms V2, V2, and V2 of the perturbation expansion.
Interaction J, has been taken into account in V! and V2 terms only. N' is the number of starsin the lattice

VS*
Vi V2 Totals
two-stars three-stars

$, 0 -0.007J, + 0.002J, -0.013J, 0.010J; -0.010J; + 0.002J,
Py 0 -0.001J, + 0.007J, -0.001J, 0.001J; -0.001J, + 0.007J,
P, 0 0 0.067J; 0 0.067J;
h —0.563J, —0.092J; —0.218J, —-0.161J, 0.080J; -0.173J, —0.781J,
NG** —0.009J,N —0.768J;N" + 1.5301,N -0.361J,N 0.304J,.N —-0.825J;N + 1.5213,N

* Thisterm implies two-star coupling shown in Fig. 4 and three-star interaction in the configuration presented in Fig. 3b.

** Correction to the value € = —4.5J;N for noninteracting stars.

sisthe spin—% operator; 6 = -5.268J,N; $, = 4a,

_0007\]1, }y = 4a4 = —0001\]1, and h = —6a2 =
-0.092J;. Here, N' = N/12 is the number of starsin the
lattice. The factor 6 appears in the expression for h
because each star interacts with six neighbors. We see
that the magnetic field in the effective Hamiltonian (12)
is much larger than the exchange. In this approxima
tion, stars, therefore, behave amost like free spinsin
external magnetic field and the ground state of the KAF
has a long-range singlet order, which settles on the tri-
angular star lattice and isformed by starsin W_ states.

Vcorrections. Thefield remainsthe largest termin
the effective Hamiltonian, and the KAF ground state
has the same long-range order if wetakethe Ve termsin
the perturbation series into account. For the two-star
coupling, the V2 corrections have the form given by
Eq. (6). The terms V2 imply analysis of the three-star
interaction as well. Nonzero contributions from them
have only been obtained for the configuration presented
in Fig. 3b. The secular matrix for three starsis8 x 8 in
size. We have caculated the V2 corrections with a very
high precision using the integral representation similar
to that in Eq. (7) for the second term in Eq. (6). All the
operator exponents were expanded up to a power of
150. As aresult, the low-energy properties of the KAF
are described by the effective Hamiltonian

W= 3 19S5+ 585+ 9,85

4, jo

(13)
+hzsiz+<6,

where all parameters are given in the table. It describes
two-star coupling. We omit the three pseudospin terms
in Eg. (13) that have the form ssjs; and s'ss; and
describe the three-star interaction. The corresponding
coefficients are on the order of 103J;, and 104J,,
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respectively, and are negligible in comparison with
those of the retained terms. We stress that, within our
precision, the Hamiltonian in Eq. (13) is an exact map-
ping of the origina Heisenberg model to the low-
energy sector (the excitation energy w ~ max{ $,, $,,

$.. h} < Jy).

As follows from the study of the V2 corrections in
the table, the common shift given by them remains
much larger than the level splitting in both cases of the
two- and three-star coupling. At the same time, the val-
ues of the V2 perturbation terms are approximately two
times smaller than those of the V2 ones. The change in
the effective Hamiltonian from the V3 terms is, there-
fore, significant, and analysis of the perturbation series
cannot be completed at this point for correctly estab-
lishing the effective Hamiltonian. Unfortunately, such
work requires large computer capacity that isnot at our
disposal. We must restrict ourselves to the present pre-
cision.

One can judge the applicability of the perturbation
series from the following values of the ground-state
energy of two interacting stars, shown in Fig. 4,
obtained numerically and using the first two orders of
perturbation theory. The ground-state energy of two
noninteracting stars is —9J,. That of two interacting
ones calculated numerically by power method [20] is
-9.62J;. On the other hand, the ground-state energy
obtained using tableis—9.42J; (the respective contribu-
tions of the V2 and V2 terms are -0.27J; and -0.15J,).

Effective Hamiltonian structure. Although pertur-
bation theory is unsatisfactory in the star model and
many perturbation terms are to be taken into account,
we can now provethat Eq. (13) isthe most general form
of the effective Hamiltonian assuming that n-pseu-
dospin couplings with n > 2 are small, as it was in the
case of n = 3 discussed above. We consider possible

termsof theform s's], s's;, s, and s; . In these cases,
the numbers of functions W, and W_to the right of the
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corresponding matrix elements differ from those to the
left by unity. As has been pointed out above, a kagomé
lattice contains lines of symmetry reflections, and the
star Hamiltonian and interstar interaction are invariant
under these reflections. Because W, are invariant and
Y_ changes sign under these transformations, the
matrix elements are equal to themselves with the oppo-
site sign and must, therefore, be zero. Another possible
term

X

i + + - — — 4+ + —
s = —(S’S|-S5 S5 -5S))

cannot appear in the effective Hamiltonian because the
corresponding matrix elements should be imaginary.

Ground state. Asis clear from table, $, and h are
the largest parameters of Hamiltonian (13) in our
approximation. Therefore, the KAF behaves as the
Ising antiferromagnet in the perpendicular magnetic
field. In this case, the classical value of the field at
which spin-flip occursis hy_; = $,, which is approxi-
mately 2.6 times smaller than h. The ground state must,
therefore, remain ordered with al the stars in the
Y_ state.

The ground-state energy and that of the upper edge
of the singlet band calculated using table are

(=453, + A€ +h/2+3F,/4)N = —0.452J,N

and
(-453,+ A€ -h/2+3%,/4)N = -0.437J,N,

respectively. Corrections from $, to these valuesin the
first nonzero order of perturbation theory are given by

(3/16) N $2/h and are negligible. At the same time, the
ground-state energy of the largest cluster with N = 36
that has previously been considered numericaly is
—0.438J;N [5]. Hence, we believe that clusters used in
the previous studies were too small to reflect the
Heisenberg KAF low-energy sector at J, = O properly.

Interaction J,. We now show that, in spite of its
smallness, the next-nearest neighbor interaction can
play an important role for low-energy properties. We
have calculated J, corrections to the parameters of
effective Hamiltonian (13) for the first and the second
termsin Eq. (6) only. There are 12 intrinsic J, interac-
tions in each star, which splits the doubly degenerate
ground state and, asis seen from table, makes a contri-
bution to magnetic field h and constant 6.

Asisclear from Fig. 4, the two-star coupling is how
given by the operator

U = s (2 + S (0 S (50 S (57

Corrections proportional to J, were calculated in the
same way as above and are also presented in table. It is
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clear that the contribution of the next-nearest interac-
tions to the magnetic field becomes significant if |J,| ~
0.1J;. If J, < 0 (ferromagnetic interaction), they can
even change the sign of h.

The effect of the next-nearest ferromagnetic cou-
pling for KAF properties was previously studied in [2]
numerically on finite clusters with N < 27 in a wide
range of the values of J,. It was shown there that, at

13,J/3; < 1, the ground state hasthe /3 x /3 magnetic
structure. At |J,/J; < 1, the ground state is disordered
and thereisaband of singlet excitationsinside the trip-
let gap. Aswe demonstrated above, thisband is aresult
of the star ground-state degeneracy in our approach.

T2 gpecific heat behavior. There has been much
speculation on the low-temperature dependence of the
KAF specific heat C O T? observed experimentally for
S=3/2(see[7, 21] and referencestherein). Aswefound
above, low-T properties are described by effective
Hamiltonian (13) of a magnet, which has a spectrum of

the form ¢, = J/(cq)®+A? a q < 1 and can be in
ordered or disordered phases depending on particular
values of the parameters. Small A' here implies the
proximity to the quantum critical point at which C O
T2. Such a situation arises in the singlet dynamics of
the model of interactive plaguets [21]. We do not
present the corresponding analysis here because the
parameters of the effective Hamiltonian could be
changed in subsequent orders of perturbation theory.

Experimental verification. In both cases of the
ordered and disordered ground state, the approach pre-
sented in this paper can be checked by inelastic neutron
scattering: the corresponding intensity for the singlet—
triplet transitions should have a periodicity in the recip-
rocal space corresponding to the star lattice. This pic-
ture is similar to that observed in the dimerized spin-
Pairls compound CuGeO; [22]. In this case, inelastic
magnetic scattering has a periodicity that corresponds
to the dimerized lattice.

Comparison with QDMs. We point out that states
inwhich all starsareinthe W_or W, state can be repre-
sented as linear combinations of some first-neighbor
dimer states proposed in [15, 16] for QDM. However,
our approach to the kagomé problem is not equivalent
to the QDM. In particular, we take al intermediate
states into account in considering the star interaction
via perturbation theory in Eq. (6), whereasthe QDM is
restricted to the first-neighbor dimer subspace as
regards the dimer dynamics.

Unfortunately, we cannot carry out a complete com-
parison between QDM and the star approach at the
present stage. The effective Hamiltonian derivedin [15]
was analyzed under crude approximations only. At the
same time, the model presented here also requires fur-
ther studies of the applicability of perturbation theory
for description of the interstar interaction. We also note
that some present-day results obtained within these two

No. 3 2004



544

approaches contradict each other. For example, our
model gives the ordered ground state, whereas the
authors of [15] suggest that it is not ordered.

Cases of S> 1/2. We finally note that our consider-
ation of the S= 1/2 KAF cannot be extended directly to
the cases of larger spins. Although functions presented
in Fig. 2, where the bold line shows the singlet state of
the corresponding two spins, remain eigenfunctions of
the Hamiltonian for S> 1/2, we have found numerically
that they are not ground states of the star with S=1 and
S = 3/2. All details of calculations are presented in
Appendix 2. Another approach for KAFs with S> 1/2
should therefore be proposed.

4. CONCLUSIONS
In this paper, we present a model of the low-energy
physics of spi n-% KAFs. The spin lattice can be repre-

sented as a set of starsthat are arranged in a triangular
lattice and contain 12 spins (see Fig. 1). Each star has
two degenerate singlet ground states with different
symmetry, which can be described in terms of pseu-
dospin. It is shown that interaction between the stars
leads to the band of singlet excitations that determines
the low-energy KAF properties. The low-energy

dynamics is described by the Hamiltonian of a spi n—%

magnet in the external magnetic field given by Eq. (13).
The Hamiltonian parameters are calculated in the first
three orders of perturbation theory and are summarized
in the table. Within our precision, the KAF has an
ordered singlet ground state with al the stars in the
state given by Eq. (3). The ground-state energy islower
than that calculated in the previous finite cluster stud-
ies. We show that our model cannot be extended
directly to KAFswith S> 1/2.

The approach discussed in this paper can be verified
experimentally under inelastic neutron scattering: the
corresponding intensities for singlet—triplet transitions
should have periodicity in the reciprocal space corre-
sponding to the star lattice.
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APPENDIX 1

Irreducible Representations of the Group Cg,

The symmetry group Cs, contains six rotations CX
by the angles 21k/6 (k =0, 1, ..., 5) and six reflections,
which can be written as Ctu,, where u; is the operator
of areflection. One-dimensional irreducible representa-
tions can be represented as follows[18, 19]:

ck o1, u, 01, (A1)
c*O(-1)%, u,0O1, (A.2)
ck o1, u, O0-1, (A.3)
c*O(-1), u,O-1. (A.4)
For two-dimensional representations, we have [18, 19]
8, 8
ckcop® 0 g
|:| I2T[Ik |:|
0o e® O (A.5)
Og10
0100

where two inequivalent representations are given by | =
landl =2

APPENDIX 2

Sar withS= 1and S= 3/2

In this appendix, we present the details of numerical
calculations showing that functions presented in Fig. 2,
where the bold line depicts the singlet state of the cor-
responding two spins, are not ground states of the star
with S=1 and S= 3/2, asthiswasfor S= 1/2.

A simple numerical method for determining the
eigenvalue of a Hermitian operator H of the maximum
modulus (power method [20]) was used. It is based on
the following statement. We consider a state of the sys-

temf=" . c;y;, wherethe sum may not include all the
H eigenfunctions. For a given f, the eigenvalue E,, of
the maximum modulus is determined by
i FLHTIF O
im————"=
n- [fIH"|fO
This becomes evident by noting that O H"|fO =
Yy, =i
Equation (B.1) can be used in numerical calcula-

tions in the following way. The corresponding expres-
sion is calculated for n = 1, 2, ..., . Convergence

e (B.1)
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can therefore be controlled by comparing results with
different n. Studying a full set of vectors f and taking
Nmax |8rge enough to match the necessary precision, one
can find the eigenvalue of H with the largest modulus.

In the case of the star, the maximum eigenvalue of
the Hamiltonian is E,,, = 183J; (this energy has the
stateinwhich all the spinsare along the same direction)
and the energy of singlet states shownin Fig. 2isEg =
—65S+ 1)J,. Because E,, > |[Eg for S> 1/2, we have
to take H = ¥, — WI to investigate the lower #, levels,
where ¥, is the star Hamiltonian given by Eq. (1), | is
theunit matrix, and W= (Eo + Es)/2 + J; . Eigenvalues
of H are therefore shifted down relative to those of #,
by the same value W such that the H eigenvalue with the
largest modulus becomes equal to the %, ground-state
energy minus W.

We have not found the ground-state energy for the
star with S=1 and S= 3/2 by this method because the
full set of vectors f should be examined for that. This
operation requires much computer time. However,
studying a number of vectors f, we have abtained that
there are states lower than those discussed above, at
least, by the energy 1.8J,. The method yielded E,;, with
the prescribed precision to the second decimal position
at Ny, = 100-300 dependingonfand S
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Abstract—The effect of two types of spin structures on the shape of the Fermi surface and on the map of pho-
toemission intensities for the t—t'—U Hubbard model is investigated. The stripe phase with a period of 8a and
the spiral spin structure are calculated in the mean field approximation. It is shown that, in contrast to el ectron-
type doping, hole-doped models are unstable to the formation of such structures. Pseudogap anisotropy is dif-
ferent for h- and e-doping and is determined by the spin structure. In accordance with ARPES data for
La, _,Sr,CuQy,, the stripe phaseis characterized by quasi-one-dimensional FS segmentsin thevicinity of points
M(zT, 0) and by suppression of the spectral density for k, = k. It is shown that spiral structures exhibit
polarization anisotropy: different segments of the FS correspond to electrons with different spin polarizations.

© 2004 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is an effective method for studying the electron bands
and Fermi surfaces (FS) of cuprates[1, 2]. This method
provides an image of the FS projection onto the CuO,
plane. The results obtained in early studies (see [1, 2]
and the literature cited therein) corresponded to hole-
type FSs centered at point Y(1t, 13 of the two-dimen-
siona Brillouin zone. Other versions of the FS topo-
logy were also discussed later. In particul ar, the existence
of electron-type FSswith the center at point I (0, 0) was
predicted for Bi,Sr,CaCu,Og.5 (BSCCO) [3]. The
revision of the problem [4, 5] apparently confirmed the
initial assumption. At the same time, a transition from
the h-type FS to the etype FS was discovered for
La,_,Sr,CuO, (LSCO) upon a transition from the
underdoped to overdoped region of the phase diagram
[6, 7]. On the basis of ARPES data, the existence of a
d-wave superconducting (SC) gap was proved and a
pseudogap was discovered in antinodal directionsinthe
underdoped compound BSCCO. Recently, band split-
ting and the FS were observed in bilayer cuprates, and
the phase diagram boundary was discovered beyond
which such splitting disappears [8-11]. Analysis of
photoemission induced by circularly polarized light
revealed a state with time-reversal symmetry breaking
(TRSB) in the underdoped compound BSCCO [12].

Wide application of photoemission intensity maps
in the k, Kk, w space involves the determination of
matrix elements and requires methods for obtaining

T Deceased.

information on the FS from the ARPES data. The prob-
lem of matrix elements was discussed in detail
in[13, 14]. However, in strongly correlated systems,
the topology, shape, and intensities of individua (main
and shadow) segments of the FS also depend on spin
and charge structures, which ensure the lowest energy.

This study is devoted to model analysis of the effect
of various periodic spin structures on the FS shape and
their manifestations in photoemission intensities. The
analysisis based on the t-t'—U Hubbard model. In con-
trast to static structures in magnesium-based com-
pounds, cuprates are instead characterized by dynamic
structures. The lifetimes of such structures are longer
than the corresponding times t ~ 10°-10° sin u-SR
experiments. Over short time intervals and for pro-
cesses with an energy resolution of OE > #/t, local spin
structures can be treated in the static approximation. In
this case, it is natural to find the structures that corre-
spond to the FS features observed in the ARPES exper-
iments.

Experimental indications of the existence of spin
and charge structures in cuprates are incommensurate
peaks in the spin susceptibility x"(q, w — 0) for q =
(Tt £ &y, ™), (1L T £ &) in LSCO, which are obtained
from inelastic neutron scattering [15]; alinear structure
along the CuO bondswith aperiod of 4a (aisthelattice
constant), which was observed in BSCCO from the
Fourier analysis of tunnel spectra[16]; and a periodic
staggered 4a x 4a structure around vortices in the
mixed state of BSCCO [17].

In this study, we analyze the FS topology and the
intensity maps of photoemission spectra for a number

1063-7761/04/9803-0546$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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of possible spin structures in the t—t'—U Hubbard mod-
els. We will use the extremely simple language of the
mean field (MF) method for interpreting the pseudogap
(PG) to give examples of structures with different types
of PG anisotropy and to consider some properties of
photoemission of cuprates in light of the results
obtained for periodic structures. Earlier [18], current
states of the type of an orbital ferromagnet were pro-
poses as latent order parameters (OP) responsible for
the emergence of the pseudogap. In thiswork, the range
of possible latent OPs is extended to stripe structures
and spiral spin structures. Such structures are stabilized
due to the removal of degeneracy in the states of “hot
spots,” i.e., Van Hove singularities (VHS) of spectra or
the removal of degeneracy in bands located on parallel
FS segments in the case of nesting.

The article hasthe following structure. In Section 2,
the t—t'-U Hubbard model is considered and a simpli-
fies mean-field approximation isused for describing the
normal sate. The MF equations are formulated for an
arbitrary periodic structure with spin density waves
(SDW) and charge density waves (CDW). The methods
for visualizing the FS and the intensity map of ARPES
spectra are considered in Section 3. Typical examples
of FSand ARPES intensity maps are given in Section 4
for homogeneous MF solutions with the AF spin order.
On such solutions, the emergence of the pseudogap
with various types of anisotropy in h- and e-doped sys-
temsistraced. The results abtained for inhomogeneous
spin and charge structures are considered. These struc-
tures include stripe phases of antiphase AF domains
along they bonds with adomain width of 4a, spiral spin
states, and periodic 1D and 2D structures with charge
modulation. In Section 5, various degrees of stability of
homogeneous AF solutions relative to the formation of
stripe and spiral spin structuresfor e- and h-doped mod-
els are demonstrated. Features of photoemission for
these structures, the methods for their testing, and the
correspondence of these structures to some ARPES
data for cuprates are discussed in Sections 6 and 7.

2. PERIODIC SOLUTIONS
OF THE HUBBARD MODEL
IN THE FRAMEWORK
OF THE MEAN FIELD METHOD

Wewill study the effect of nesting and the formation
of periodic structures on the FS and the energy bandsin
the normal state of cuprates by applying the MF method
to theinitial Hamiltonian of the t—t'—U Hubbard model,

H=T+ zunmnnu T= zekclockcv (1)
n

o,k
€ = 2t(cosk, + cosk,) + 4t'cosk, cosk,. 2

We will assumethat t = 1 and will measure all energies
and parameters U and t' in units of t. Hamiltonian (1) is
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insufficient for describing the SC order in the MF
approximation. In accordance with some approaches,
the SC state arises due to attraction between electrons of
neighboring sites, which is of the correlation type. The
interaction of thetype of correlated jumpsin the effective
Hamiltonian was derived, for example, in[19, 20]. Inthe
empirical version, this can be, for example, Hamito-
nian (1) supplemented with the interaction between
nearest neighbors of the form

V=K 'Y CotmoCmoCno )
2.
with k < 0. In this study, however, we will analyze only
the normal state and confine the analysis to the MF
treatment of theinitial Hamiltonian (1).

Let us consider a periodic structure with the 2D
tranglation vectors
E: = (Ew Ely)i E, = (Ex E2y)' (4)

Suppose that aunit cell contains n, centers with coordi-
natesj = (j,, j,) So that an arbitrary site of the 2D lattice,

n=n(L,j)=(n,ny) = E L +EL,+(jx Jy) (5

is described by integers L,, L, (unit cell coordinates)
and by numbers j = (j,, j,) fixing a lattice site. Two-
dimensional vectors B;, B, of the reciprocal lattice sat-
isfy the equations E;B; = 2mg;. (Components E; and B;
are given in units of constants of the direct and recipro-
cal lattices.)

We denote by k the guasimomentum within the
principal Brillouin zone G of the periodic structure in
contrast to quasimomentum k varying within the Bril-
louin zone G of theinitial lattice. Theareasof G and G

amount to 41¢/n, and 41¢ and are limited by the condi-
tions

kOG:|kB|st; kOG: |k sT.  (6)

The order parameters for the periodic MF solutions are
the electron densities and the vectors of average spin for
each site of the unit cell,

=1 =1 |
= NLZE'rn(L,j)EL Sy = NLz[Su,n(L,J)D )

Here, index L enumerates the spin vector components
and N, = N/n, is the number of unit cells, n, being the
number of centersin acell.

In the MF approximation, the mean energy in
model (1) isgiven by

_ O, O
H=O0+NUS O°-S S )
P20 2%s
and the wave function is determined by the population
No.3 2004
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of the one-electron eigenstates xlA of the linearized
Hamiltonian

Hiy, = T+ NLZ{2UrJf1—2u§JjS”} = Z h. (9)
J kOG

The latter can be split into independent contributions

for each value of the reduced quasimomentum E . Here,

f; and 34,- arethe operators corresponding to one-elec-

tron mean values (7). In the momentum representation,
the eigenstates of Hamiltonian (9) can be expanded in
the set of 2n, Fermi operators,

T T Iy
Xb\ = Z CQJ, Bm, GWmc,)\(k)l
m, o

(10)
m = (m;, m,); Bm = Bm +B,m,;

A=1..2n.

Here, k varieswithin G and the set of pairs of integers

(my, m,) is such that vectors k + Bm cover the entire
phase space G. Matrix W, , of eigenvectors and vector

E;, of eigenvalues are determined by diagonal ozation

. . . t .
of matrix h; inthebasis {¢;,,  }:

(N, Wi = Wino 2B (11)
Here, we have
("m0 = OO0 € g
. (12)
+Uz¢(l’ m —m)[r;055 —S,j(0,) 50l
j
¢ (j, m) = exp[i(j—jo)Bm], (13)

Bm = B;m, + B,m,.

Thechoiceof j, (theorigin fromwhich thesitesinacell
are counted) is arbitrary and affects only the phases. In
turn, order parameters (7) themselves can be calculated
in terms of the eigenvector matrix W and Fermi func-
tionsf:

(1S =Y Y (owodutlim-m

kOoGgmsm,s

X W 3 (K)Wis, 1 (K) F(Eq, — 1)

The Pauli matrices o, and g in this expression corre-
spond to components §; and r;, respectively. Equa-
tions (11)—(14) determine the self-consistent solutions
in the MF approximation.

For a periodic structure with a definite symmetry,
the combination of equivalent atoms into groups con-
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siderably reduces the number of independent order
parameters and often reduces matrix (12) to the rea
matrix when j, is chosen at the symmetry center of the
unit cell of the structure.

3. METHODS FOR VISUALIZING
THE FERMI SURFACE
AND THE GENERALIZED FERMI SURFACE

The Fermi boundaries and the quantity that can be
called the generalized Fermi boundary (GFS) can be
determined from the ARPES data using several meth-
ods. These methods are considered in detail in [13], and
each method can be put in correspondence to a method
of constructing FS and GFS maps in model calcula-
tions.

One of these methods employs the photoemission
intensity map I (k, w) for electrons with momentum com-
ponent k in the ab plane and with energy E, = hv — w:

I(k ) = IM(K)?PAko) f(w) O Ry, (15)

1
Atkw) = =5 |Flolalf
Zuzy (16)

x (% uN)6(Ey —E,—p1-hw).
Intensity (15) is determined by the product of the
squared matrix element M(K), spectral density A(kw),
and Fermi function f. In order to compare the intensity
with the observed ARPES signal, a convolution of the
product with the Gaussian function R, [13] with
parameters characterizing the energy and momentum
resolution isusually carried out in Eg. (15). In Eg. (16),
o and y characterize the states of the entire system, 3 =
/KT, and [ is the chemical potential. The dependence
of matrix element M on k and its role were studied
in[13, 14]. Here, we assume for simplicity that the
matrix element is constant since we areinterested in the
effect of periodic structures and transition processes on
spectral density A(kw) and the photoemission intensity.

In the one-electron MF approximation, we have

A(k) = ﬁRZ > Wm0
oGmo,

(17)
x &(E;, —H—w)d, ;

k, k+Bm’

Two-dimensional index m= (my, m,) passes through all
independent transition vectors Bm = B;m; + B,m,; A =
1, ..., 2n, enumerates proper Fermi operators of linear-
ized Hamiltonian h; with reduces momentum k. We

calculate function A(kw) using the standard substitution
of the & function in Eq. (17) by a function of a finite

width Q, eg., of the form d(w) = cosh2(WQ).
Another method for introducing broadening is to use
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Fig. 1. Fermi surfaces for homogeneous AF solutions in hole- (a) and electron-doped (b) models with parametersU = 4, t' = 0.3,
8 =1-n|=0.2inthe underdoped region on plane—Tt< ky, k, < .. Hole and €electron pockets are located around points (+172, +172)

or (11, £1).

the self-energy part chosen empirically in [13]. The
construction of map I(k;, k, w=0) makesit possibleto
visualize both the main and shadow segments of the
Fermi boundary, which are manifested with a lower or
higher intensity.

It should be noted that band energies are periodic in
thek space: E; , ., = E;, forany m=(my, my). How-
ever, quantity |Wi, »(k)|* in spectral function (17)
and, accordingly, photoemission intensity (15) do not
possess such a periodicity. For this reason, different FS
segments are manifested with different intensities even
for the matrix element in Eq. (15) independent of k in
view of the compound nature of band operators (10) in
the presence of SDW and CDW structures (i.e., transi-
tion processes). In calculating I(k, w), the correspon-

dence of a given vector k to quantities k and m =
(m;, my,) is determined by the equation k = k(K) +
mB, + m,B,.

Other methods, which are adequate to the process-
ing of ARPES data, were aso proposed for visualizing

the FS in model calculations. One of such methods
employs the construction of the map of gradient g, =

|0ny of smoothed occupancy n, = n O R,. Itisaso
possible to construct the maps of intensity averaged
over a definite frequency window 2Aw:

5 @

— (o ROW— U]

IAw(ka w) = Id(x) I (K, w)RDﬁ .

Here, R is the corresponding Gaussian function of
width Aw, which imitates a finite resolution in w. The
construction of such maps involves the normalization
of afunction to its maximum value. Consequently, the
brightness and width of the Fermi boundaries on such
maps is determined by the width of smoothing function
R or frequency window Aw in Eqg. (18). In particular,
for alarge width Aw, amap of functions|,,, or g, shows
not only the actual Fermi boundarieswith a sharp occu-
pancy step, but also the boundaries with a substantial
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but smoother variation of n(k). The connection between
such segments and the emergence of a dielectric gap
and anisotropic pseudogaps will be illustrated bel ow.

4. TOPOLOGY OF THE FERMI SURFACE
AND GENERALIZED FERMI SURFACE
FOR HOMOGENEOUS ANTIFERROMAGNETIC
MEAN-FIELD SOLUTIONS

In this section, we partly repeat the well-known
results obtained in [21-28]. Homogeneous AF solu-
tions in the MF approximation are characterized by the

average alternating spind, = (—1)nx My [§,L1The corre-
sponding magnetic Brillouin zone Gar is confined by
the limits |k, + k | < . The known energies of the upper
and lower Hubbard bands are given by

€;, = 4t'cosk,cosk,

(19)

+ JUPd2 + 4t*(cosk, + cosk,)’ + const.

TheVan Hove singularity in the density of states (DOS)
of the lower Hubbard band corresponds to hot spots
M = (zm, 0), (0, £m). The shape of the FS critically
depends of parameter t' and on the doping level. For
t' =0, the band energy is constant for all values of k
along the boundary of the magnetic Brillouin zone. For
t'> 0, energy ¢, -, a points M is lower than at diago-
nal points (=172, +172). For this reason, in accordance
with the well-known pattern, the FS bounds hole pock-
ets centered at point Sfor alow doping level. Figure 1a
isamap of intensity I(k, w = 0) calculated by formu-
las (15) and (17). Since band energy e, at point M lies
below the chemical potential, photoemission of elec-
trons from such segments with k = ky requires an
energy of Apg = (U —e€y) >0, which isequal to thework
function. Accordingly, the curve describing the energy
distribution of photoelectrons (EDC) will be shifted by
—Aps. Such a shift indicates the emergence of a
pseudogap in the normal state in directionsk ~ ky, in the
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Fig. 2. Map of averaged intensity (18) with Aw = 0.05t on
plane 0 <Kk, k, < 1tfor the same electron-doped model asin

Fig. 1b. Line L1, of the generalized Fermi boundary cor-

respondsto energies below the Fermi levdl, i.e., to the emer-
gence of a PG with anisotropy differing from anisotropy of
the PG in BSCCO.

given homogeneous AF solutions. For small values of
t'/t ~ 0.1, the pseudogap disappears when the doping
level increases to a certain value of 9. At thisinstant,
the chemical potential passes through a VHS in the
DOS. The peak of the DOS at the Fermi level for & =
Oopt €Nsures the maximal value of T for such a doping
level. Simultaneously, the FS changes its topology at
0 = Oy, being transformed into a single large FS with
electron-type segments in the vicinity of hot spots. In
this case, optimal doping level 9 increases with t'.
In[21-23, 25, 27], such a behavior of phase curves
T,(0) is described and the geometrical interpretation of
the PG is given for the t—t'-U and t—t'-J models on the
basis of more rigorous approaches. In these
approaches, the value of J, is smaller than in the sim-
ple MF approximation.

When the effective attraction between electrons
from neighboring sites is included, homogeneous MF
solutions lead to an SC order with the d symmetry,
which is compatible with alocal AF order [22, 23]. For
underdoped cuprates, thetotal gap (the shift of the EDC
edgein ARPES), which depends on the PG and SC gaps
in accordance with the relation

A = Ao+ A%,

explains [26, 27] the nonlinear dependence of gap A(2)
on z = cosk, — cosk, and other features of the observed

gap [29-31].

In the case of electron doping, a similar analysis
shows that electron pockets appear around points M in

(20)
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underdoped models (Fig. 1b). The main (nonshadow)
segments of the FSin this case face point Y(Tt, ).

Figure 2 shows the map of averaged intensity (18)
with a frequency window width of Aw = 0.05t. As
Aw — 0, the maximum max | (k, w) — o onthetrue
Fermi boundaries, and segment L,—L, on the normal-
ized intensity map becomesinvisible. In addition to the
FS around the electron pockets, we can see boundary
L,-L, corresponding to the maximum of the occupancy
gradient in the diagonal direction. On this segment of
the boundary, we have g , - ,—J < 0. Thisindicatesthe
emergence of a PG on segment L;,—L, around points
ks= (2172, £172). The neighborhoods of these points
areresponsible for the formation of VHS in the DOS of
the upper Hubbard band in amodel with t' > 0. Further
e-doping transformsthe FS for homogeneous MF solu-
tionsinto asinglelarge surface around point Y(Tt, 1). AS
aresult of inclusion of a pairing interaction of type (3)
and d superconductivity combined with nonstandard
PG anisotropy for the underdoped region, the minimal
energy A, of Fermi excitations does not vanish even
in the nodal d directions of the SC gap:

min(/A + A%) #0.

As regards the behavior of such quantities as heat
capacity and A4(T) for T — 0, the finite value of the
minimal gap for Fermi excitations is perceived as the
generalized s symmetry of the SC order. In [32], the
crossover from some properties characteristic of d sym-
metry to those typical of s symmetry of the SC order
was considered for n-type cuprates X, _,Ce CuQ,, X =
Nd and Pr. Homogeneous model solutions predict
reverse evolution of these properties from those typical
of s-type superconductorsto the properties characteris-
tic of d-type superconductors upon an increase in the
doping level. In spite of this contradiction, the solution
isinteresting as an example of the fact that d supercon-
ductivity combined with nonstandard PG anisotropy
may imitate in some properties the SC order with the
generalized s symmetry.

The electron pockets around points M in n-type
underdoped cuprates, which were predicted for thefirst
timein [22, 24], were indeed observed on the ARPES
intensity mapsfor underdoped compounds NCCO [33].
The evolution of FSs from nonconnected small FSs to
alarge FS of the hole type around point Y(1t, ) was
traced. The parameters of the t—{'-t"-U model repro-
ducing the observed evolution were selected in [28].
Among other things, the assumption that effective
potential U = U(d) decreases with increasing doping
level had to be made. According to [28], such a screen-
ing of U combined with higher harmonics (~t") in the
band energy leads to the simultaneous formation of
hole pockets around point k = (172, 172) and electron
pockets around ky, from the lower and upper Hubbard
bands, respectively. For & ~ 0.2, the Mott gap in com-
pounds NCCO is closed [28]. The emergence of aPG in

Amin = (21)
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diagonal directionsin underdoped NCCO compoundsis
also confirmed by Raman scattering data[34].

Proceeding from the FS shape in underdoped mod-
els, genera considerations concerning a possible sym-
metry of the SC order in these compounds can be for-
mulated. Suppose that the SC transition is caused by
attraction of type (3) for electrons at the neighboring
sites of bonds with the x and y orientations. This inter-

action could lead to states qu)s‘d)(k)chL of cou-

pled pairs with 9 (k) = cosk, + cosk, of generalized s
or d symmetry. However, the state of a coupled pair
must be orthogonal (or nearly orthogonal) to one-site
state ¢! ¢! of the pair, which is suppressed by one-
center repulsion U. In underdoped model with h or e
doping, in which pockets of only one (electron or hole)
type are present, the d symmetry is the only possibility
to achieve orthogonality of the function of apair to the
one-center function in view of orthogonality of the
angular parts of these functions. Indeed, the main (non-
shadow) segments of the FSin this case are either com-
pletely inside the magnetic Brillouin zone boundary
(see Fig. 1a) or completely outside this boundary (see
Fig. 1b). Consequently, the s function ¢S(k) = cosk, +
cosk, of a pair does not change its sign on the main
regions of the FS and, hence, cannot be orthogonal to
the one-center function of the pair.

The situation changes for & > 0.15 in the electron-
doped models with the parameters selected in [28]. In
this case, electron pockets around point M dueto filling
of the upper Hubbard band coexist with hole pockets
around point S(z172, £172) due to partial depletion of
the lower Hubbard band. As aresult, the main segments
of the FS lie partly outside and partly inside the mag-
netic Brillouin zone boundary. Such segments corre-
spond to different signs of pair function ¢S(k) = cosk, +
cosk,, i.e., the orthogonality of the pair s-wave function
to the one-center function can be ensured dueto orthog-
onality of the “radial” parts of the functionsif we con-
ditionally refer to quantity z = cosk, + cosk, as aradial
variable. It was very important to verify experimentally
whether such an SC order of s symmetry isreaized in
NCCO and PCCO compounds for 6 > 0.15. Analogous
situations and problems may also arise during the for-
mation of periodic SDW and CDW structures since the
energy profile along the magnetic Brillouin zone
boundary changes not only upon a change in t' and t",
but also as aresult of the formation of these structures.

5. INSTABILITY TO THE FORMATION
OF SPIN STRUCTURES
IN n- AND p-TYPE CUPRATES

The degree of instability of homogeneous AF states
to the formation of periodic spin and charge structures
in doped models can be estimated on the basis of MF
calculations. Figure 3 shows the dependences of mean
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Fig. 3. (top) Dependence of the mean energy (per site) inthe
hole-doped t-t'—U model with parameters U = 4.0 and t' =
0.3 for different spin structures: for aPM state, for a homo-
geneous AF state, for a stripe phase with a period of 8a of
the structure along the x axis (dashed curve), and for spiral
states with Q = 1(n, 1) (curve 2) and Q = 1i(n, n) (curve 3)
for n = 0.8. (bottom) The energies of the same structuresin
the electron-doped model. For convenience of representa

tion, common function F(8) = U(n® — 1) is subtracted from
al energies.

energy H = HOon doping level d = |1 —n| for the nor-
mal statein hole- and electron-doped modelsfor anum-
ber of structures in comparison with the energy of
homogeneous paramagnetic (PM) and AF solutions. In
addition to the latter solutions, MF solutions were
obtained (or sought) for the following structures.

1. A dtripe structure consisting of antiphase AF
stripes parallel to the y axis with domain walls at the
bonds. The structure is characterized by aunit cell with
eight centers and vectors E; , = (4a, +a). For analogous
structures with domain walls passing through lattice
sites, the mean energy is close to but dightly higher
than the energy of thefirst structure. The Fermi surfaces
of these structures are aso similar; for this reason, we
will consider only the former structure.

2. Spiral spin structures with

(5= do[e,cosQn+e,snQn], (22)

Q=Q=T1(n, 1) or Q=Q,,=1(n, n) withn ~0.75-0.8.

3. Staggered structures with antiphase square 4a x
4a domains. We do not consider the data on these struc-
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Fig. 4. (a) Photoemission intensity map I(k, w = 0) for a stripe structure with AF stripes of width 4a, parallel to they axis, and with
domain walls centered at bonds. (b) The same averaged over two stripe structures with the x and y orientations. The model param-

etersareU =6andt' =0.1.

tures since their energies are higher than the energies of
the stripe structures and their FSs have a nonrealistic
form.

4. The current states of an orbital antiferromagnet,
which were proposed in [18], cannot be redlized in
model (1) in the MF approximation without using addi-
tiona interactions with U/t = 4-6. In the case of hole-
doping, analogous solutions with alternating spin cur-
rents in plaguets and with the rotation of the local spin
by 172 upon a transition between neighboring sites
along the perimeter of aplaquet exist only for large val-
ues of U (U/t = 5). The energies of such structures are
higher than the energy for stripe and spiral structures
and the shape of their FSsis nonrealistic. For this rea-
son, the data on these structures are not given here.

The calculations were made mainly for structures
with afixed (commensurate) period of 8a, although the
optimal size of domains or vector Q for the spiral state
depends on the doping level. Dependences Q(d) for the
spiral state were calculated by many authors (see, for
example, [35]). However, we are interested here in the
typical features of FSs and anisotropy of PGs for defi-
nite structures.

It can be seen from Fig. 3athat, in the case of h dop-
ing, homogeneous AF states are unstable to the forma-
tion of stripe structures and spiral spin states. The for-
mation of such structures extends the doping region in
which nonzero values of local spin are preserved
(08,3 0); vanishing of these values corresponds to

merging of energy H(8) for a given structure with the
energy of the PM state. At the same time, in the case of
electron doping, the MF energies of all the structures
listed above were found to be higher than the energy of
the homogeneous AF state. The higher stability of the
AF state with e doping corresponds to a broader doping
region of the long-range AF order in n-type cuprates.
The peak in the spin susceptibility for Q ~ (11, M) in
these cuprates (in contrast to incommensurate val ues of
Q in p-type cuprates) aso indicates the absence of
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stripe phases or spiral spin structures in these com-
pounds.

6. FERMI SURFACES FOR STRIPE STRUCTURES:
ANALOGY WITH THE DATA
ON COMPOUND LSCO

Figure 4a shows the intensity map I (k, w = 0) calcu-
lated by formulas (15) and (17) for a stripe structure.
Thestructure consists of AF stripesparallel tothey axis
for amodel withU/t=6,1'/t=0.1for n=0.8. Inthecase
of the homogeneousAF solution, thisdoping iscloseto
that for which the Fermi level passes through aVHS in
the DOS of the lower Hubbard band. The stripe struc-
ture parald to the y axis splits the VHS, makes hot
spots M, = (11, 0) and M, = (0, T) nonequivalent, and
forms the main and shadow horizontal segments of the
FS. Figure 4b shows an intensity map symmetrized in
structures with domains of the x and y orientations. The
FS shape is anal ogous to that obtained in other calcula
tions of stripe phases [36]. It differs considerably from
the FStypical of homogeneousAF solutionsin amodel
with t' > 0. The main difference, i.e., the absence of the
Fermi boundary in the diagonal direction, indicates the
emergence of a PG at k, = k. As a consequence, we
can expect that, even in the case of the d symmetry of
the SC state, the minimal energy of Fermi excitations
differs from zero in accordance with an equation simi-
lar to Eg. (20) for homogeneous AF solutions with e
doping. As the vaue of t' increases to 0.3, smal hole
pockets are formed additionally at points ks = (172, 172).
The major part of the previous zero Fermi boundary, in
particular, at point M, = (O, 1), becomes a PG and
dielectrized Fermi boundary; only quasi-one-dimen-
sional segments of the FS, which are normal to the
directions of stripes (y axis), are preserved. Accord-
ingly, a quasi-one-dimensional conductivity of such a
structure can also be expected. Invisible PG segments
of the generalized Fermi boundary can be visualized
while constructing smoothed intensity (18) with alarge
frequency window Acw.
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Fig. 5. (a) Self-energies Ey (K) in the MF problem as functions of quasimomentum varying along the contour Y(—Tt, T)—My/(0, 19—
Y(1t, T)—M, (1T, 0)-Y(TT, —17) for astripe structure with aperiod of 8a along thex axis. (b) Map of intensities | (k, w) for k varying along
the same contour. The map reveals the same energy levels E, (K), but with different weights determined by the structure of band
states. The parameters of the model are the same asin Fig. 4. The Fermi level is marked by the horizontal line.

Figure 5a shows one-electron energies E, (k) (eigen-
values of the MF problem) as functions of the quasimo-
mentum varying aong the contour

Y (=1, 1) — M0, ) = Y (11, T) — M, (11, 0) — Y (71, —T9.

As usual, band energies E,(k) are periodic functions
with a period of 174 on thefirst (horizontal) segment of
contour Y — M, — Y. However, the intensity map reveals
only nonshadow energy levels for a given k. Figure 5b
represents such amap on planek, wfor k varying along
the same contour. The intersection of energy levelswith
the Fermi level in the vicinity of M, corresponds to the
guasi-one-dimensional FS shown in Fig. 4a.

The conservation of the FSin the vicinity of M, and
the formation of a pseudogap in the vicinity of M, and
for k, ~ k, are due to the action of the spin-dependent
mean field; the principa harmonic of this field is
F(n) O cosQ,n with Q, = (nm, ™) (here, n = 0.75). This
field elevatesthe zero level (0, ) at point My, repelling
it from lower zero levels g, at point k = (xnTt, 0) in the
vicinity of M,. The samefield lowers (below the chem-
ical potential) zero level e(, 0) at point M,, repelling it
from higher zero levels €(+0.2511 M) near M.

The ARPES data for underdoped L SCO compound
[6, 7, 37] arein qualitative agreement with the features
of the intensity maps represented in Fig. 4. The pres-
ence of two segments of the FS with different proper-
ties (in the vicinity of points M and in diagonal direc-
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tions), systematic suppression of the spectral weight in
the vicinity of point (T2, 12) as compared to BSCCO
compounds or with overdoped LSCO samples, and
straight FS segments near point (11, 0) with awidth ~172
were aso interpreted as the proof of the existence of
inhomogeneous structures in underdoped compound
LSCO [6, 7, 37] (in particular, the combination of
order—disorder with stripe structures [38]). Another
proof of the existence of stripe structuresis the obser-
vation of neutron scattering peaks for incommensu-
rate momenta (1t £ § 1) and (1T, 1T £ § in compound
LSCO [15].

Anisotropy of the FS (see Fig. 4a) suggests a revi-
sion of the admissible symmetry of SC order compati-
blewith astripe structure. For structures symmetric rel-
ative to transposition of axes X <« Y, the d-wave SC

order Ed:lmcik,lD O (cosk, — cosk,) is expected. It
ensures the orthogonality of the pair function to one-

center pair function C;TCL suppressed by one-center
repulsion U. However, in the case of the quasi-one-
dimension FS depicted in Fig. 4a, the generalized
swave pair function Ed:l,Tcik, ,0 O (cosk, + cosk)) is
more probable. The latter function may be orthogonal
to the one-center pair function due to nodal lines k, +
k,= =1t The role of nodal lines in the angular depen-
dence of the SC gap will now be played by the nodal

lines of the “radial” part of the pair function if quantity
z = cosk, + cosk, can be treated as the radial variable.
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Fig. 6. (a) Photoemission intensity map I, (k, w = 0) for electrons with spin polarization o = 1 for a spira structure with Q =
110.8, 1). (b) The same averaged over two spin polarizationsc = 1, | and two structureswith Q = (0.8, ) and Q = (11, 0.81) inthe

model with parametersU =6andt' = 0.1.

Verification of this hypothesis requires appropriate cal-
culations.

7. SPIRAL SPIN STRUCTURES
AND SPIN POLARIZATION OF VARIOUS
SEGMENTS OF THE FERMI SURFACE

It wasfound earlier [39] that spira spin structures (22)
exhibit polarization anisotropy of the FS. Different seg-
ments of the FS correspond to electrons with different
predominant spin polarizations. Indeed, the mean field
from a spiral spin structure mixes one-electrons states

{ cly . CLQ’ .} and leads to splitting of VHS asin the
case of stripe structures. However, in contrast to stripe
structures, occupancies n , = ECEGCkUD and intensities
| ;(kw) of photoemission of electronswith afixed polar-
ization o depend on the spin polarization 0. Quantities
| ;(kw) are defined by formulas (15) and (17), but do not
contain summation over o on the right-hand side of
Eq. (17).

Figure 6 shows the intensity map I, - ; (k, w = 0) for
a spira state with Q = (0.8, 1) for spin polarization
o = 1 on the z axis perpendicular to the plane of rota-
tion of mean spins with a spiral configuration. Thus,
FSsrevealed in photoemission of electrons with polar-
ization o = 1 exhibit anisotropy. For the opposite spin
polarization, the FSis the reflection of the FS depicted
in Fig. 6ain the plane x = 0. Figure 6b shows the Fermi
surfaces symmetrized in spinsand in two types of struc-
tureswith Q = (0.81t, ) and Q = (1, 0.81). In the vicin-
ity of point M, the symmetrized FSs have the intersec-
tion with M=Y line (typica of hole-type FS) as well as
with M —T line (typical of the electron-type FS). Such
double intersections were apparently observed in the
ARPES spectra for BSCCO [1, 2, 40]. Direct compari-
son with experiment is impossible since the two-layer
splitting is disregarded in the model .

Polarization anisotropy of the FS directly reflects
the presence of spin currents J, = —J,. According
to[39], this anisotropy could be responsible for the
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effect of time-reversal symmetry breaking (TRSB) in
the dichroism of the ARPES signal observed for the
underdoped compound BSCCO [12]. (Inthe alternative
hypothesis [12, 41], the TRSB effect is explained by a
peculiar aligning of circular microcurrents.) A direct
observation of polarization anisotropy of the FS
requires selective (in spin polarization) measurement of
the photoemission intensity. |n the measurements of the
total photoemission intensity, such a sdlectivity was
achieved in the so-called spin-orbit photoemission [42].
Such measurements are also possible in principle in
ARPES. It isimportant to continue the study of TRSB
in the underdoped BSCCO compound; in particular, it
is expedient to find out whether this effect and the cur-
rent associated with it are of volume or surface nature.
For the time being, it remains unclear whether the
ground state in BSCCO can be presented as a set of
guasi-static domains with a spiral structure and with a
system of spin currents associated with this set.

8. CONCLUSIONS

The MF analysis of the normal state in the t—t'-U
Hubbard model revealed that the FS topology and PG
anisotropy in the underdoped region depend on the sign
of t', thetype of (e- or h-) doping, and the spin structure.
In hole-doped model s, the homogeneous AF mean-field
solution isfound to be unstable to the formation of two
types of spin structures, viz., the stripe phase and the
spiral spin structure. However, in models with electron
doping, the homogeneous AF solution remainsthe low-
est among the solutions considered. This corresponds
to alarge (in doping level) region of existence of theAF
order in n-type cuprates (such as NCCO and PCCO) as
well as to the commensurate peak observed in neutron
scattering for these compounds at Q = (1T, ). For homo-
geneous AF solutions in underdoped models, a PG
arisesintheantinodal directionk ~ (11, 0), (0, T7) for hole
doping and in diagonal (nodal) directions k, = k, for
electron doping. The latter solution gives example of a
system for which d-type superconductivity is combined
with afinite minimal gap of Fermi excitations. In accor-
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dance with ARPES data for the LSCO compound, the
calculation of the stripe phase showed that it is charac-
terized by quasi-one-dimensional segments of the FS,
the emergence of a PG, and the suppression of spectral
density in the diagonal direction and in the direction
paralel to stripe domains. Such anisotropy of the FS
and PG isincompatible with the d symmetry of the SC
order. For a spiral spin structure, polarization anisot-
ropy of the FSis detected when different FS segments
correspond to different spin polarizations of electrons.
This property can be used for testing spiral spin struc-
tures. Among unsolved problems, we can mention the
study of the structures of valence bonds and current
states and the transition from analysis of quasi-static
structures to dynamic fluctuations.
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Abstract—The spectral density, dispersion relations, and the position of the Fermi level for n-doped composi-
tions based on NCO and LCO were calculated within the framework of the generalized tight binding method.
Asdistinguished from L CO, the dielectric gap in NCO is nonlinear in character. We observe avirtua level both
at the bottom of the conduction band and at the top of the valence band in both compounds. However, its posi-
tion corresponds to the extreme bottom of the conduction band in LCO and is 0.1-0.2 eV above the bottom in
NCO. This explains why we observe Fermi level pinning in n-LCO as the concentration of the doping compo-
nent grows and reproduce its absence in NCCO at low doping values. We also found both compositions to be
unstable in anarrow concentration range with respect to a nonuniform charge density distribution. The relation
between the phase diagram for NCCO and the calculated electronic structure is discussed. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Superconducting n-type cuprates Nd,_,Ce,CuQ,
(NCCO) and Pr,_,Ce CuO, (PCCO) have certain spe-
cial featuresthat distinguish them from p-type cuprates.
Rare-earth metal and oxygen layers are shifted in their
crystal structure with respect to CuO, in such away that
thereisno nearest neighbor (the apical oxygen) for cop-
per dlongthec axis; that is, the structural element of the
CuO, layer isaplane CuQ, cluster, whereasit isa CuOy
octahedron in La,_,Sr,CuO, (LSCO). The phase dia-
gram of NCCO issubstantialy different from the phase
diagram of LSCO (Fig. 1). The initiadl undoped
Nd,CuO, (NCO) composition is an antiferromagnet
and dielectric. Doping with electrons rather weakly
suppresses the antiferromagnetic state [1] because of
the diamagnetic dilution mechanism [2]. The supercon-
ducting state borders on the antiferromagnetic phase
and exists in a narrow concentration range Xpi, < X <
Xmax, Where X, = 0.14 and X5« = 0.17. In the normal
state, the dectrical conduction of NCCO is described by
aFermi-liquid quadratic temperature dependence [3], as
distinguished from linear dependencesfor hole high-T.
superconductors[4]. It was shown for NCCO by angle-
resolved photoel ectron spectroscopy [5] that the dielec-
tric gap in this compound was not rectilinear. The min-
imum of the conduction band and the maximum of the
valence band belong to different Brillouin zone points,
k = (1, 0) and k = (102, 172), respectively. The disper-
sion relationsin NCCO for the top of the valence band,

however, remain virtualy identical to those in LSCO.
Angle-resolved photoelectron spectra also reveded the
appearance of intragap states when either NCCO was
doped with electrons or L SCO was doped with holes[5].
Asdistinguished from LSCO, where chemical potential
pinning occurs at low x, NCCO shows a more complex
concentration dependence of the chemical potential [6].

This is one more important difference between
NCCO and LSCO, which isrelated to the possible role
that neodymium f electrons can play in the formation of
the state of heavy fermions at low temperatures [7].
However, first, no unambiguous experimental substan-

T,K
300 L NdZ_XCexCuO4_y Laz_’\-STXCUO4_y .
T'-structure T-structure
200 + .
100 - -
ol 5 .55
0.3 0.2 0.1 0 0.1 0.2 0.3

Fig. 1. Phase diagram of LSCO and NCCO. Composition
regions. SC, superconducting phase; PS, pseudogap state;
and AFM, dielectric phase in the antiferromagnetic state.
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tiation [8] of the existence of such a state has been
obtained and no explanation of the large coefficient y
value in the linear temperature dependence of heat
capacity, ¢ = yT, where y =4J/k? for x > 0.15 [9], has
been suggested. Secondly, at alow doping level (0.05<
x < 0.14), the y value is an order of magnitude smaller,
y =0.3J/K? [9], which leads us to conclude that, even if
the state of heavy fermions of the new type does exist
in NCCO, these effects manifest themselves at higher
concentrations because of the low Nd—Cu spin—spin
coupling constant. In this work, we consider low dop-
ing levels, and, at x < 0.15, the beautiful physics of
heavy fermions [7] remains outside the scope of our
analysis.

The purpose of thiswork wasto study the electronic
structure of NCO and La,CuQO, (LCO) undoped and
weakly doped with electrons. We use the same calcula-
tion methods taking into account strong electron corre-
lation as were earlier used by usto study hole cuprates.

Note that strong electron correlation is of funda-
mental importance and should be correctly taken into
account. Indeed, one-electron band calculations give
the ground state of LCO and NCO in the form of a
metal with a haf-filled band, which is at variance with
experiment. At the same time, the simplest strong elec-
tron correlation models like the Hubbard model are
excessively simplified, and the degree of their applica-
bility to describing the band structure of a particular
substance is not known a priori. Our experience in
studying the electronic structure of high-T. cuprates
taking into account strong electron correlation shows
[10-12] that the multiband p—d model [13] is the most
suitable at excitation energies up to 3 €V inside the
valence and conduction bands. This model takes into

account two d orbitals of copper, dxz_yz = d, and
d,. . = d,. We used the generalized tight binding

method to calculate the band structure of quasi-particles
taking into account strong electron correlation [14]. In
this method, the many-electron Hamiltonian within the
cell is exactly diagonalized, many-electron molecular
orbitals are found, and Hubbard X-operators are con-
structed at the first stage. At the second stage, intercell
jumps are included and the band structure of the crystal
is calculated. Particular examples of calculations of
hole cuprates by this method are given in [11, 12, 15].

In this work, we calculated the spectral density and
dispersion for the conduction band in compounds
undoped and weakly doped with electrons. The calcu-
lations by the generalized tight binding method were
performed for NCCO with the T structure and n-type
La,CuQ, with the T structure. We show that there is a
virtual level typical of systemswith strong electron cor-
relation both at the bottom of the conduction band and
at the top of the valence band [11] in LCO and NCO.
The positions of this level in the two compounds are,
however, different. The observed asymmetry also
results in different concentration dependences of the
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Fermi level in NCCO and n-LCO. The character of
valence band dispersion remains virtually identical in
compounds of both types. All results obtained for
n-LCO have no experimental analogsand are predictive
in character, because no n-LCO materials with the T
structure have been prepared as yet. In particular,
n-type superconducting compositions La,_,CeCuQ,
obtained in [16] had the T' structure. Nevertheless,
there is a possibility of inverting p-type LCO by the
field effect, as with field-effect transistors, where
applying apositive voltage to the gate resultsin the for-
mation of an inversion layer in a p-type semiconductor
at the boundary with the gate. A theoretical study of the
electronic structure of n-LCO with the T structure is
therefore of interest.

In Section 2, we discuss the most important changes
in the generalized tight binding method for n-type
cuprates and give the initial equations for dispersion
relations and spectral density. The dispersion depen-
dences for the conduction band in NCCO in compari-
son with similar dependences for n-LCO and experi-
mental dependences are studied in Section 3. In Sec-
tion 4, we calculate the partial contributions of various
orbitals to the spectral density of the conduction band
and study the density of states at the bottom of the con-
duction band in both compounds. The positions of the
Fermi level in NCCO at various doping component
concentrations are determined in Section 5, where the
instability of the state with a uniform charge density
distribution is also studied. The results of our calcula-
tions are briefly summarized in Section 6.

2. DISPERSION RELATIONS
AND SPECTRAL DENSITY
OF QUASI-PARTICLE STATES
IN NCCO AND n-LCO

In the generalized tight binding method, the Hamil-
tonian of the CuO, layer can be written in the form

_ A1h, T
H = Zs al)\o iAo Zz z V |)\101 |}\103

iAo i, ] AA,0,0,050,
D
P T
xal)\zoz iA 04+ Z Z t |)\10 jA0"
0, jOAA 0

Here, g, is the hole annihilation operator in the Wan-
nier state on nodei (copper or oxygen) for orbital A and
spin 0. Two copper orbitals (dxz_yz and d ) and two

Py and p, orbitals on each oxygen node that form

bonds with the specified copper orbitals are included.
Among the Coulomb matrix elements, we can identify
intraatomic Hubbard elements Uy(U,) for repulsion in
one copper (oxygen) orbital between electrons with
opposite spins, interorbital Coulomb elements Vy(V,),
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Jq(J,) exchange matrix elements, and interatomic Cou-
lomb repulsion parameters V4, which we, for simplic-
ity, consider identical for al orbitals. The last term
in (1) describesinteratomic copper—oxygen jumpswith

the parameters 5 7 = t,y and 3 = tpd/ﬁ and

oxygen-oxygen jumps with the parameter t;) = t,,.
The chargetransfer energy will be denoted by Apd €& —
g4, ,» and the energy of splitting of the d level in the
uniaxial crystal field component, by Ay=¢ . —¢,, ,.
X =y
Of six O% ions, two apical ones are situated along the
c axisinthe T structure of the LCO composition. Their
effects are controlled by two calculation parameters,

pa and t,,, which are the integrals of electron jumps
from copper and in-pane oxygen to apical oxygen.

In the generalized tight binding method, the band
structure of quasi-particles including strong electron
correlation effects is calculated in two stages. At the
first stage, the CuO, layer lattice is partitioned into
many unit cells, and the Hamiltonian within one cell is
exactly diagonalized. In addition to selecting the CuOq
cluster as the unit cell, the problem of constructing the
Wannier functions of b, and a,; symmetry on the ini-
tial oxygen orbitalsis solved [11, 12]. The many-elec-
tron molecular orbitals |n, pC({wheren=0, 1, 2, ... isthe
number of holesin the cell and p denotes the set of the
other orbital and spin indices) obtained by diagonaliz-
ing the cell Hamiltonian H, are used to construct the

Hubbard operators of thiscell, X™=|n + 1, p(lIh, g, and
one-electron operators, ang = Y Yo (M) XT. . Here,
the band index of quasi-particles m numbers one-elec-
tron excitations from the initia state |n, gto the final
state |n + 1, p{17].

As distinguished from LCO, oxygen and rare-earth
metal elements in NCO are known to form their own
separate planes in the environment of the CuO, plane,

and the plane of the rare-earth metal is closest to the
CuO, plane. Inthissituation, both parameters should be

close to zero, tpd =0and t = 0. Additional changes

inthe other parameters were not introduced beforehand
and were taken from the calculations of the electronic
structure of p-type cuprates[11]. Theinitial parameters
of our Hamiltonian were:

€, = 0, & =2¢eV,

€p = 1.6 eV, €p, = 05¢eV,

t, = 046eV, t,, =0, ty=0 U;=09¢eV,
U, =46V, V, =15eV, Jy=1leV.

In the generalized tight binding method, the dis-
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persion relations and spectral density can be written in
the form [11]

(E_Qg)amn * PG
=B oy (m) TR K)yae (M) = 0, (2
FCG,(m) gVA( ) T tK)Yae() (2
Ao(kl E) = zlm(ch) = __
(€©)

x zy)\c(m)y)\c(n)lm(ch(AA) + Dis (BB)),

Amn

where

Gﬁg = D:ak)\olal)\'c[lq; = Zon(m)yI'c(n)kar?y (4)

. O 2 0
U Dys(BA) Dio(BB) U (5
Dio (AB) = [MXgy| VoML

Here, indices P and G run over the A and B antiferro-
magnetic state sublattices. Equations (2) and (3) were
obtained for the antiferromagnetic phase [11, 12] using
the equations of motion for Green function (5) in the
Hubbard | approximation for intercell jumps. The ele-
ments of the tight binding matrix

TR = TR = 25 THRYE™,

R,

2 ikR,
TRk = THRK) = =5 TR(R)e™

R,

in the five-orbital d,, d,, b, a, p, basis take the form

Tw(R)
O O
E 0 0 ZtP_dE'ii ZtP_d)\‘i 0 E
0 J3 J3 0
0 2tk 0.
= O —2tpakj NE —2tpVij 2tpXi; —2tpp&ij [
0 O
0 2t oA , 0
E 0 —'f/'-gﬂ 2tppXij  2tppVij _thpAiJE
0 . . O
o O 0 =2t,&; 2t ,A; 0 O

the W, &, Ay, vy, and X coefficients were given
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Fig. 2. Dispersion dependences for n-LCO (solid line) and
NCCO (dotted line). Doping level x = 0.03.

in[11]. Equation (2) is an analog of the dispersion
equation in the tight binding method and differsfrom it
in two respects. First, quasi-particle energies are calcu-

lated in the form Qn(i = €46 — €1p6, that is, in the form
of resonances between many-particle states from dif-
ferent configuration space sectors. Secondly, the occu-
pation number FS (m) = X2 O+ DX{; Oleads to con-
centration dependences of both dispersion and spectral
density amplitude (3). Quasi-particle states with differ-
ent m can overlap and interact, like singlet and triplet
two-hole states of p-type cupratesdo [11, 12].

559

3. DISPERSION OF BANDS

The band dispersion for n-LCO and NCCO at acon-
centration of the doping n-component of x = 0.03 in the
antiferromagnetic phase is shown in Fig. 2. Calcula-
tions only reproduce dispersion in the immediate vicin-
ity of the dielectric gap. Thisis sufficient for analyzing
the spectrum of quasi-particles involved in the super-
conducting state.

The bottom of the conduction band is formed as a
result of the dispersion of the local state with an energy
of Q. = E(1, 2by,) — E(0, &), and the top of the valence
band is formed by excitations with the participation of
the two-hole singlet Q, = E(2, A, — E(1, ?b,g) and
triplet Q) = E(2, 3Byy) — E(1, %y (Fig. 3). Both com-
pounds have avirtual level at the bottom of the conduc-
tion band. Thislevel issimilar in natureto that at thetop
of the valence band (Fig. 3) [11]. Namely, there aretwo
types of quasi-particles that correspond to possible
transitions Q. and Q,. One of the quasi-particlesin the
undoped compound corresponds to the transition
between empty states, which gives zero contributionsto
dispersion and spectral density. In the one-hole sector
of the configuration space, the empty state is one of the
components of the spin doublet in each of the sublat-
tices of the Néel antiferromagnetic state of the CuO,
layer. The vacuum sector corresponds to the a,4 singlet

state of the fully occupied péd'® shell. The existence of
two singlet states in the vacuum and two-hole sectors
(Fig. 3) isthe main reason for the existence of the dis-
persionless virtual level not only at the top of the
valence band but also at the bottom of the conduction
band in n-LCO and NCCO.

Conduction band dispersion in n-LCO was calcu-
lated with the parameter values obtained in studying the

3B1g

(a) LSCO

3

®) NCCO B,

s Ag,
al&’ Alg
Ag,
zblg
L7 1 —x
alg//
X
n=0 n=1 n=2

Fig. 3. Configuration space scheme for LSCO and NCCO. The solid lines correspond to quasi-particle transitions that form rigid

bands, and the dashed lines, to impurity bands.
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electronic structure of p-type cuprates. Mere compari-
son of the spectrafor n-LCO and NCCO in Fig. 2 shows
that the degeneracy of the spectrum of LCO at point X =
(1, 0) is accidental. Conversely, the intersection of two
conduction bands, the broad band and the band of vir-
tual level states, at point M = (172, 172) is caused by
CuO, layer symmetry and does not depend on the
parameter values used in the calculations.

The broad band and the band of virtual level states
behave differently asthe doping level increases[11, 15].
The broad bands remain virtually unchanged; they will
further be called rigid by analogy with the rigid band
model. The spectral density and dispersion for the vir-
tual level state bands increase as the degree of doping
grows, and they will be called “impurity” bands. Quo-
tation marks (further omitted) are not meaningless,
because these states have no bearing on the true local
impurity potential.

The transport of quasi-particles in the valence and
conduction bands occurs with different effective trans-
port integrals. We therefore observe different disper-
sion dependences for different bands. Indeed, calcula-

tions give t., /t., = -0.05 and t,, /t,, = —0.14 for
NCO and t;, /t., = 0.05 and t,, /t,, = —0.085 for

LCO, where t,,, (tz, ) and t,, (t,, ) are the effective

transport integrals between the nearest (next-nearest)
neighbors for the conduction and valence bands,
respectively. The most significant change in passing
from LCO to NCO is the formation of a nonlinear
dielectric gap because of the formation of a new mini-
mum at the X point of the conduction band. Calcula-
tions show that the appearance of a rectilinear gap is

also accompanied by achangeinthesign of the t;, /t.,,

ratio. There are moderate changes in the valence band,
but they do not lead to qualitative differencesin the dis-
persion dependences for the n and p materials.

The reproduction of dispersion at the bottom of the
conduction band in NCCO requires the initial parame-
tersto be changed as follows:

de = 0.2 eV,
g, = 1.6¢eV,

Edz = 2€V,
€p, = 0.5¢€V,

tp, = 0.56 €V, t,, = 0.1eV,

ty =0, Ug=9eV,

Uy =46V, V,=15eV, J4=1leV.

It follows that dispersion calculations in NCCO
largely result in changesin the t,,4 and t;,, values and,
to alesser extent, in Ay and t,,. A smaller A, value cor-
responds to a smaller dielectric gap in NCO, E; =
1.6 eV. A smaller t,, value in LCO in turn corresponds
to the presence of orthorhombic distortionsin the sys-
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tem of CuQg4 octahedra. As a consequence, a small
increase in t,, in NCCO is responsible for the conduc-
tion band minimum at point X at low electron concen-
trations. In combination, changes in precisely these
parameters qualitatively modify the dielectric gap and
make it nonlinear in NCO.

Among the known materials based on n-LCO and
having the T structure, the calculated dispersion might
be observed in LaCu;_,Zn0O, compositions [1],
because Zn?* has a completely filled d*® shell, which
formally correspondsto filling the vacuum sector, asin
n-type materials such asNCCO. However in redity, the
Zn impurity leads to a strongly bound carrier and the
violation of trandational invariance over the spin lat-
tice. It appears that, because of strong impurity effects,
photoemission measurementsfor La,Cu, _,Zn,O,, sSim-
ilar to those performed for NCCO [5], cannot be made.

4. PARTIAL CONTRIBUTIONS
TO SPECTRAL DENSITY

We calculated the spectral density A(k, E) for the
rigid and impurity bandsin NCCO (Fig. 4) at alow con-
centration of the doping component x = 0.03. The spec-
tral density is characterized by two peaks correspond-
ing to therigid and impurity bands. The dependences of
the peak amplitudes for (a) the rigid and (b) impurity
bands along the symmetrical Brillouin zone directions
are plotted in Fig. 4. Figure 5b shows how the virtual
level with zero spectral weight at x = 0 transforms into
an impurity band with spectral weight x. The over-
shooting of triplet states into the conduction band is
insignificant, and thisis one more source of asymmetry
of the states of p- and n-type carriers. Similar depen-
dences for the conduction band in n-LCO are shown in
Fig. 5. These results cannot however be compared with
experimental data because of the absence of n-type
compounds based on LCO with the T structure.

Asfollowsfrom calculations of the density of states,
there is a region with a reduced density between the
impurity and rigid bands (Fig. 6). This pseudogap van-
ishes at point M = (102, 2) (Fig. 2). For this reason,
the passage of the Fermi level from the rigid to the
impurity band may be accompanied by adecreasein the
density of states on this level. The pseudogap itself is
magnetic in nature, as follows from its absence in the
paramagnetic phase. Because of the special features
inherent in the spectrum, the pseudogap is more pro-
nounced for the density of states of NCCO.

5. THE CONCENTRATION DEPENDENCE
OF THE FERMI LEVEL

Calculations of the dependence of the Fermi level
position on doping in NCCO for the antiferromagnetic
phase exhibit considerable differences from the depen-
dence obtained for n-LCO. Indeed, at low concentra-
tions, the Fermi level in NCCO goes deep into rigid
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conduction band states and only then, at X = X, into
impurity band states. This correspondsto x, = 0.08-0.1
in Fig. 7. The Fermi level reenters rigid band states at
X, = 0.18-0.2. A similar dependence of the Fermi level
in Nn-LCO shows pinning only at low concentrations.
Indeed, already at very low concentrations, the Fermi
level accursin the zone of impurity band states that are
being formed. Because the number of states on the
Fermi level begins to grow more slowly than x
(Fig. 8b), pinning ends, and the Fermi level enters the
rigid conduction band. This occurs at x, = 0.11-0.12.
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The calculated concentration dependence of the
Fermi level contains a Ax interval where the rate of
growth of the number of states in the impurity band
exceeds the rate of increasing the number of carriers
Op/ox = (02®/0x?)1 p < 0, which is evidence of possible
phase stratification at the given doping level. Such com-
positions cannaot be stably homogeneous, because the
sought distribution corresponds to the thermodynamic
potential ® maximum. For instance, the dependence of
dp/ox on x for NCCO (Fig. 9) shows that ®(x) has an
instability region Ax = 0.03 wide. Thisregion separates
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two regions with thermodynamic potential minima.
Even at small dopant concentrations, n-LCO occursin
the Ax = 0.05 region with a maximum thermodynamic
potential. Although the materials under consideration
are systems with fixed numbers of carriers, both sys-
tems can either be divided into macroscopic regions
capable of exchanging particles or experience the tran-
sition to the superconducting state, where the number
of particles is no longer conserved. The origin of the
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Fig. 7. Dependence of the chemical potential shift Ap(x) on
the concentration of the doping n-component in NCCO and
n-LCO. The experimental data on NCCO and LSCO were
taken from [6].
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instability of the homogeneous normal state is related
to the presence of antiferromagnetic order, because the
impurity band disappears in the paramagnetic phase. It
followsthat we observe an unusual relation between the
nonuniform charge density distribution and the pres-
ence of antiferromagnetic ordering. The inclusion of
zero spin fluctuations causes instability region Ax nar-
rowing, but does not negate its existence [15].

We aso observe a qualitative correlation between
Fermi level movement to the antiferromagnetic state
and the phase diagram of NCCO. Indeed, the concen-
tration region of Fermi level residence in the impurity
band, or, which is the same, in the pseudogap region
correlates with the superconducting region in the phase
diagram. In NCCO and n-LCO, the Fermi level reaches
the pseudogap at different dopant concentrations
X1(NCCO) > x;(n-LO) = 0. In NCCO, the Fermi level
entersimpurity band states with an already well-devel-
oped spectral density. Thisis seen from Fig. 8a, where
the spectral density in the impurity band is nonzero
aready at x = X, . It follows that the presence of afinite
spectral density of impurity band states at the Fermi
level corresponds to the superconducting region in the
phase diagram of NCCO. The immediate consequence
of acorrelation of this type would be the beginning of
the superconducting region in the phase diagram of
NCCO at T higher than T for n-LCO, this region
being narrower on the concentration scale. Accord-
ingly, we also have X, = %,. Such an equality was
observed for PCCO in[18], whose authors were able to

0.25 — —
{ () )

o r’ e
€ 0.201 . - .
E 0.15 1 T @
g 5
ks o
5 0.10 *g
o) [&]
£ \ 5
3 \ §

0.05 NCCO

1312
0'25 M\\\\
0.2

0.4 0 0.2 0.4
Concentration of carriers

0

Fig. 8. Dependence of the total number of states on the con-
centration of the doping component for the impurity bands
in NCCO and n-LCO; x4 and x, correspond to the entrance
to and exit from the band of virtual level states, respectively.
The solid line shows the number of states, and the dashed
line, the concentration of electrons x. The shaded region in
(a) corresponds to the contribution of the rigid band.
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Fig. 9. Dependence of the second thermodynamic potential derivative 8%®/dx2 on the concentration of the doping component in
NCCO and n-LCO; x, corresponds to the exit of the Fermi level from the impurity band.

study the T*(x) dependence of the characteristic tem-
perature for the pseudogap state in the superconducting
phase of PCCO in magnetic fields higher than Hg,. In
our calculations, the pseudogap state is an attribute of
theimpurity band rather than the precursor of the super-
conducting state. It can beidentified asa special feature
of the electronic structure of materialswith strong elec-
tron correlation in the antiferromagnetic phase and with
asinglet ground state in one of the configuration space
sectors of the unit cell of the material under study.

6. CONCLUSIONS

The results of our calculations can be summarized
as follows:

(1) Common to the dispersion dependences for
NCCO and n-LCO is the presence of avirtua level at
the bottom of the conduction band and at the top of the
valence band in the antiferromagnetic phase. The rea-
son for its existence is the presence of singlet statesin
the vacuum (a,4 isaclosed shell) and two-particle (A,g)
configuration space sectors of both compounds. The
rigid conduction band in NCCO has a minimum at
point X of the Brillouin zone at low doping levels.
Because of accidental degeneracy of therigid band and
virtual level at point X in n-LCO, its dielectric gap is
rectilinear, whereas the gap in NCCO is not. The last
conclusion is in agreement with the angle-resolved
photoelectron spectroscopy data on weakly doped
NCCO compounds [5].

(2) The concentration dependences of the Fermi
level for NCCO with the T' structure and n-type LCO
with the T structure are not symmetrical. We explain
this asymmetry by the different positions of the virtual
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level with respect to the bottom of the rigid conduction
band in these compositions. As a conseguence, we
observe pinning of the Fermi level by states devel oped
on the virtual level in n-type LCO at low dopant con-
centrations. In NCCO, the Fermi level is immediately
immersed into rigid conduction band states and only
enters impurity band states when the degree of doping
increases further. The probability of pinning the Fermi
level by them, however, actually decreases as the dop-
ing level grows.

(3) We observed that, in our calculations, the regions
of Fermi level pinning by the impurity band were virtu-
aly Ax regions with an instability of the form
(0%®/0x?); p < 0, which could be the reason for a non-
uniform charge density distribution in the compositions
under consideration.

(4) A gualitative correspondence exists between the
phase diagram of NCCO and the concentration depen-
dence of the Fermi level: namely, the concentration
region of Fermi level residence in the impurity band
correlates with the concentration region of the super-
conducting state in these compounds. There is no such
correspondence for n-LCO because of the absence of
the corresponding materials with the T structure. Our
results, however, show that the hypothetical phase dia-
gram for LCO of the p/n type with the T structure
should be more symmetrical than the diagram of
NCCO/LSCO.
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Abstract—First-principle cal culations of the electronic structure and el ectronic susceptibility were performed
to study the relation between the nesting properties of the Fermi surface and the character of the temperature
dependence of long-period structures of two types exemplified by AgsMg and Al;Ti aloys. The observed tem-
perature dependence of the long period length 2M in the Al;Ti alloy was analyzed. It was shown that the tem-
perature dependence of the size of the antiphase domain in long-period commensurate structures was deter-
mined by the special features of the electronic structure of the system, in particular, by the geometry of Fermi
surface nesting regions. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Ordered alloys with long-period structures are one
of the interesting and promising classes of metalic
aloys. They differ from the usual ordered systemswith
simple superstructures by the presence of antiphase
boundaries, which periodically or quasi-periodically
disturb the ordered arrangement of atoms. Antiphase
boundaries, which are usually energetically unfavor-
able in ordered alloys, are equilibrium structure ele-
ments in systems with long-period structures. Ordered
aloys with long-period structures have quite definite
stability regions in temperature-composition phase
diagrams[1].

Studies of the mechanical properties of such aloys
showed [2—4] that strengthening against the decay of
the supersaturated solid solution could effectively be
combined with strengthening against atomic ordering.
This allows unusual disperse stable decay structures to
be formed. Their alloys possess high mechanical prop-
erties, which are stable over the whole temperature
range in which the ordered state of the matrix is
retained [5, 6].

According to their character, long-period structures
can be divided into two groups, namely, incommensu-
rate and commensurate structures. Incommensurate
structures are, for instance, formed in the CuAu,
CusAu, AugCu, CusPd, and CugPt aloys[7]. They are
characterized by random distances M between
antiphase boundaries (antiphase domains of different
lengths are stochasticaly distributed along the [M01[]
direction). When the composition and temperature are

varied, the half-period M averaged over the chaotic

ensemble changes continuously and takes on various
values, including irrational .

In our preceding works[8, 9] we studied the special
features of the eectronic structure of the Cu—Au, Cu—
Pd, and Cu—Pt alloys and answered the question of why
incommensurate long-period structures characterized
by irrational periods and smeared antiphase boundaries
are formed in them. The reasons for the existence of
such long-period structures only in a narrow tempera-
ture range were elucidated. We aso explained the
observed dependence of the period length on the degree
of long-range ordering n inthe Cu—Au alloy [8] and the
reasons for the formation of two-dimensiona long-
period structures in the AusCu and CugPd alloys[9].

Consider the specia features of aloys with com-
mensurate long-period structures, such as AgsMg,
CusAl, AusCd, Al;Ti, PV, etc.

It was found in studying AgsMg aloys with various
magnesium contents that the antiphase half-period was
constant, M = 2, in a certain concentration range that
corresponded to the D0,; superstructure [10, 11] or M
dlightly decreased as the concentration of magnesium
increased [12]. Importantly, the antiphase boundaries
were sharply defined, and M remained virtually con-
stant as temperature varied. This type of alloys also
includes AusZn, Au;Cd, and AusMn [13].

Somewhat different results were obtained for Al;Ti
aloys [14-17], for which high- and low-temperature
phases with long-period structures were observed [14].
Several comparatively simple commensurate structures
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were formed at low temperatures, whereas a series of
fairly complex configurations were identified at high
temperatures. For instance, the [2110 configuration
(this notation corresponds to the 2-1-1 sequence of
domains, where 2 and 1 stand for domains with M = 2
and M = 1, respectively) was observed at T = 700°C,
which corresponded to M = 1.33. At T = 900°C, the
configuration was [21[] and, accordingly, M = 1.5; at
T = 1150°C, it was 2210with M = 1.68, and, at T =
1200°C, the [222210configuration with M = 1.76

formed. Note that M obviously tends to increase as
temperature grows, whereas the low-temperature phase
isformed as amixture of antiphase domainswithM = 2
and M = 1 with obvious predominance of DO,, super-
structure elements (M = 1). The simplest long-period
structure DO,, was observed in the alloy of the stoichi-
ometric composition [15]. At a 60-73 at. % Al, struc-

tureswith 4/3< M < 2 were observed and the M value

was temperature-dependent. The dependence of M on
the composition and temperature of annealing was also
reported in [16, 17]. In [18], Pt—V aloys with long-
period structures at compositions close to Pt;V were
studied. During annealing at 930°C, the DO,, ordered
structure (of the Al;Ti type) transformed into astructure
with L1,-type ordering, and, at 1036°C, a disordered
state was formed. It is directly stated in [19] that the
high-temperature (above 1000°C) phase has the L1,
structure, and the low-temperature one (below 900°C),

the DO,, structure. Anincreasein M with temperature
was observed.

To summarize, the most characteristic features of
commensurate structures are as follows:

(1) the low-temperature phase is formed as a com-
mensurate superstructure;

(2) the high-temperature state is a mixture of com-
mensurate elements,

(3) the antiphase boundaries are sharply defined
planes near which there is no essential structural pecu-
liarities;

(4) the “mean” antiphase domain size runs over
rational values as the composition of alloys changes.

Nevertheless, we can distinguish between two
groups of commensurate long-period structures. The
first group includes such aloys as AgsMg, CusAl,
AusCd, AugZn, and AusMn. The mean half-period
remains virtually constant in these aloys as tempera-
ture varies. The second group includes the Al;Ti,
Au,Zn, and Pt;V aloys. These alloys sometimes show
avery substantial temperature dependence of the mean
domain size.

In thiswork, we study the differencesin the temper-
ature dependences of domain dimensions in two types
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of commensurate long-period structures exemplified by
the AgsMg and Al;Ti alloys.

2. CALCULATION DETAILS

The principal value calculated in our approach isthe
generalized susceptibility of noninteracting electrons

x(q),

2Q
(2m)°

fler(k)[1—flex(k +a))l
ex(k +q)—gy(k)

X(a) =

x [d’k
JokS

Thisvalueis calculated from the electron energy spec-
trum of the dloy. If the system contains plane Fermi
surface regions or Fermi surface regions whose shapes
coincide and these regions are separated by the nesting
vector 2kg, the x(q) function has some singularity at
the same vector. Depending on the “quality” of nesting
(that is, on the degree of similarity of the coinciding
regions), the electronic susceptibility singularity may
be akink, astep, or even a peak. The more pronounced
the singularity of x(q), the larger the energy gain of the
formation of along-period structure.

The electron energy spectrum was calculated by the
full-potential linear muffin-tin orbital (LMTO) method
in the local electron density approximation [20]. The
exchange-correlation potential was taken according to
Barth and Hedin [21], the integration over occupied
states was performed by the tetrahedron method [22],
165 (AgsMg) and 126 (Al;Ti) reference points were
used in self-consistent calculations of the ¢, (k) spec-
trum, and 1771 (AgsMg) and 4851 (Al;Ti) pointsin the
irreducible part of the Brillouin zone were used in elec-
tronic susceptibility x(q) calculations. The generalized
susceptibility of noninteracting electrons x(q) was cal-
culated only taking into account the energy bands that
intersected the Fermi level and determined the behavior
of this value. The lattice parameter a was set equal to
7.766 au for AgsMg and 7.264 au for Al;Ti with
cla=2.23.

3. RESULTS AND DISCUSSION

The electron energy spectrum g(k) calculated for a
hypothetical AgsMg aloy with L1,-type ordering is
showninFig. 1. Its characteristic feature, like that of al
noble metal-based aloys, is a bright Ag d-band local-
ized below the Fermi level in such away that the geom-
etry of the Fermi surface is determined by the 17, 18,
and 19 bands, which are virtually fully sand p states of
Agand Mg.

The susceptibility x(q) calculated along the M'-X
Brillouin zone direction for the Ag;Mg aloy with
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Fig. 1. Electron energy spectrum (k) and the density of electronic states n(€) of the AgzsMg alloy with the L1, structure.

L1,-typeorderingisshownin Fig. 2. It hasasharp max-
imum at the wave vector g, = 217a [0.284, 0, 0], which
is evidence of the instability of the hypothetical L1,
phase with respect to the formation of a long-period

structure with half-period M = 1.76. This corresponds
with experimental observations. Indeed, the Ag;Mg
system has never been observed to have the L1, struc-
ture, it undergoes the transition immediately from the
disordered to the long-period state characterized by a
mixture of domains with the DO,, (M = 1) and DO,
(M = 2) ordering types. The elements of the DO,; super-
structures are more numerous, and the mean half-

period of the antiphase domain M is 1.75 [10], which
is in excellent agreement with the calculated value
specified above (1.76).

An analysis of the partial contributions to the total
susceptibility x(q) showed that the susceptibility maxi-
mum appeared because of theinterband el ectron transi-
tions 18-19 and 19-18 (Fig. 2). Ultimately, this maxi-
mum is caused by the geometric features of the Fermi
surface shown in Fig. 3. In the vicinity of the Brillouin
zone point M, there are two vast electronic regions of
the 18th and 19th Fermi surface sheets which virtually
coincide in shape and are separated by the q, = 2Wa
[0.284, 0, Q] vector mentioned above. This high degree
of similarity is responsible for the well-defined x(q)
maximum. It can therefore be suggested that the speci-
fied special features of the geometry of the Fermi sur-
face and, ultimately, the electronic structureinherent in
the hypothetical AgsMg phase with L1,-type ordering
contribute to the experimentally observed mixture of
domains with the DO,, and DO,; superstructures.
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The electron energy spectrum g(k) of the Al;Ti alloy
with the L1, structure is shown in Fig. 4. The x(q) sus-
ceptibility along the [100CBrillouin zone direction cal-

X
30 . . . .
sl  AZMg )
28 -
27 C 1
18—19
5 - -
19-18
1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

q000

Fig. 2. Electronic susceptibility x(q) (the upper curve) and
its partial contributions calculated for AgsMg in the (1000

direction.
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M

Fig. 3. Fragments of Fermi surface sections for AgzMg: (a) in the z= 0 plane and (b) in the z= 0.5(2m)/a plane. The nesting vector

is shown by the arrow.
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Fig. 4. Electron energy spectrum (k) and the density of electronic states n(g) of the Al3Ti aloy with the L1, structure.

culated from the electron energy spectrum of Al;Ti is
shown in Fig. 5. Of interest is the local susceptibility
maximum at g, = 0.35; it characterizes the instability of
this system with respect to long period formation with

M =1.47. Ananalysisof the partial contributionsto the
total x(q) susceptibility shows that the contribution of
7—7 intraband transitions shown in Fig. 5 is fully
responsible for thislocal susceptibility maximum. One
can see that, at q,, = 0.35, this contribution has a pro-
nounced maximum, which is evidence of the presence
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of coinciding Fermi surface regions separated by the
vector q,, = 0.35(2r7a)[001J(Fig. 6).

Notethat the observed low-temperature DO,, structure
has afairly high degree of tetragonality c/a=2.23[23]. It
would therefore be reasonable to calculate the electron
energy spectrum and susceptibility for the L1, structure
with a tetragonal distortion equal to that in the DO,,
structure, that is, ¢/a = 1.115. One point should be men-
tioned. It can be suggested from general considerations
that thelarger thelong period length, the smaller should
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X the usual cubic L1, structure. On the other hand, the
70 . . . . greatest degree of tetragonality should be characteristic
ALTIL1y) cla=10 of the simplest long-period structure of Al;Ti, that is,
68 DO,,. It follows that, for completeness, we must also
study structures with intermediate tetragonal distortion
661 degrees.

We analyzed the dependence of x(q) on the c/a
64+ parameter in the range of parameter values from 1 to
1.115. The singularity observed in the cubic L1, struc-
621 ture at g, = 0.35(2rva)[0010shifts to the right as c/a
increases and gradually vanishes (see Fig. 7). A new
6ol singularity at q,,= 0.42(21a), however, appearsat c/a =
b 1.10. Thissingularity not only shiftsto theright but also
fairly sharply increases as the degree of tetragonality
18+ becomes dtill larger. At the experimental degree of tet-
ragonality, this singularity corresponds to the vector
161 g, = 0.46(217a), which in turn corresponds to the half-
period of length M = 1.1. There exist coinciding Fermi

141 surface regions for all the vectors specified above.
The above results can be represented in the form of
12r ) the dependence of the mean half-period length M on
the tetragonality parameter c/a of the base L1, cell. At
10, o1 02 03 04 os  the experimentally observed degree of tetragondlity,
q000] calculations give M = 1.1, which is very close to the

Fig. 5. Electronic susceptibility x(q) of the Al3Ti alloy cal-
culated for the L1, structure in the [010direction. The
lower curveisthe partial contribution of intraband 77 elec-
tronic transitions. The arrow indicates the local susceptibil-
ity maximum.

true low-temperature DO,, structure (M = 1). The
antiphase domain size increases as the degree of tetrag-

onality decreases, and M approximates 1.5 in the cubic

structure. Here, (c/a)™ plays the role of something like
temperature. The lower the degree of tetragonality, the
higher the temperature and the longer the long period of

the long-period structure. These results can be put in
qualitative correspondence with the experimental tem-

perature dependence of M [14].

be the degree of tetragonality of the base cells that con-
stitute the given structure. In the limit of an infinitely
long period, this long-period structure transforms into

(a) b)

X X O7eiO
@@ :

Fig. 6. Fragments of Fermi surface sections for the Al3Ti aloy in two mutually orthogonal planes: (a) z= 0 and (b) y = 0.23(217a).
The nesting vector is shown by the arrow.
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ALTi cla=1.0 AL;Ti cla=1.08
631 70l
661
681
641
62l 661
60 C 641 g
18- 181 i
t6 j
17+ .
14 T
L 16
10 1 1 1 1 15 1 1 1 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
q0010 q0010
72 T T 72 T T T T
ALLTi cla=1.10 ALLTi c/a=1.115 (exp.)
70
631
661
18}
17+
16
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q0010 q0010

Fig. 7. Electronic susceptibility x(q) of the Al3Ti aloy in the cubic L1, structure at various degrees of tetragonality (the upper
curves) and the partial contributions of the 7—7 intraband transitions (the lower curves). Loca susceptibility maxima are indicated

by the arrows.

To summarize, the temperature dependence of the
size of antiphase domains in commensurate long-
period structures is determined by the special features
of the electronic structure of the system, in particular,
by the geometry of the nesting Fermi surface regions.
The degree of coincidence of the flattened Fermi sur-

JOURNAL OF EXPERIMENTAL

face sheetsishighintheAg;Mgalloy, and afairly sharp
X(g) maximum is formed. The nesting quality is lower
inAl;Ti, and the susceptibility singularity does not have
apronounced peak. The shape of the Fermi surface and
the nesting vector length change as temperature
decreases (the degree of tetragonality increases). In
AND THEORETICAL PHYSICS Vol. 98
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contrast, no nesting changes occur in AgsMg, and long-
period structures remain stable even at low tempera
tures. In our view, this difference explains the differ-
ence in stability of commensurate long-period struc-
tures under temperature variations.
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Abstract—The temperature and magnetic field dependence of the resistivity, magnetoresi stance, and magnetic
susceptibility of phase-separated manganites in the temperature range corresponding to nonmetallic behavior
are considered within the framework of a model of inhomogeneous state with allowance for the existence of
ferromagnetically correlated regions even in the absence of long-range magnetic order. The main attention
isgiven to theinterval of high temperatures and weak fields. The main characteristics of the phase-separated
state of manganites are evaluated from a comparison of the theoretical results with available experimental data.
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1. INTRODUCTION

Unusual properties and a rich phase diagram of
manganites inspired a large number of papers devoted
to various aspects of the physics of these compounds.
The specia interest in manganites in recent years is
related to the possible existence of various inhomoge-
neous charge and spin states such as lattice and mag-
netic polarons, droplet and stripe structures, etc. [1-3].
Anaogous phenomena are inherent in many strongly
correlated systems where the el ectron—€l ectron interac-
tion energy isgreater than the kinetic energy. One of the
most spectacular manifestations of such a behavior is
the formation of ferromagnetic (FM) droplets (ferrons)
in dightly doped antiferromagnetic (AFM) semicon-
ductors [4]. Another example is the formation of a
string (linear trace of frustrated spins) during the
motion of aholein an AFM insulator [5].

The above examples refer to the so-called electron
phase separation, whereby a single charge carrier
changesits local electronic environment. In addition to
such a small-scale phase separation, manganites can
also feature a large-scale phase separation correspond-
ing to the coexistence of different phases characteristic
of first-order phase transitions (e.g., of the transition
between AFM and FM states). An example of large-
scale phase separation is the formation of relatively
large FM droplets in an AFM matrix. Such droplets
with linear dimensions on the order of 100-1000 A
were observed, in particular, by the method of neutron
diffraction [6]. Note also that the attraction between
one-electron FM droplets (mediated by either elastic or

magnetic dipole interactions) can result in merging of
the ferrons and the formation of intermediate- to large-
scaleinhomogeneities[7]. There are clear experimental
indications suggesting that the phase separation is
inherent in both magnetically ordered phases and the
paramagnetic (PM) state [1-3, 8]. Therefore, the for-
mation of inhomogeneous states has proved to be a phe-
nomenon typical of manganitesin various parts of their
phase diagrams. Moreover, the phase separation must
strongly influence the magnetic and transport proper-
ties of manganites.

The role of phase separation is most often consid-
ered intheregion of theAFM state and especially inthe
vicinity of the transition between AFM and FM states.
However, as mentioned above, manganites can beinho-
mogeneous even in the PM dstate, at temperatures
exceeding the corresponding phase transition tempera-
ture. An analysis of the available experimental data
reveals a substantial similarity in the high-temperature
behavior of the resistivity, magnetoresistance, and mag-
netic susceptibility of various manganites with different
low-temperature states [9-12]. In addition, the magne-
toresistance turns out to be rather large far from the
FM—-AFM transition and even in the PM region. Fur-
thermore, the magnetic susceptibility of manganitesis
significantly higher than that for typical antiferromag-
nets. These experimental data clearly indicate the exist-
ence of significant FM correlations in the high-temper-
ature range.

Wewill proceed from the assumption that ferromag-
netically correlated regions exist in manganites above
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the temperatures characterizing the onset of long-range
magnetic (FM or AFM) ordering. This assumption
allows us to describe the characteristic features of the
resistivity, magnetoresistance, and magnetic suscepti-
bility of manganites in a nonmetallic state within the
framework of a common model. The consideration
below is based on the model of conductivity in phase-
separated manganites developed in [9, 13-15] and
makes use of the experimental data for manganites of
various compositions reported in [9-12]. However, this
paper is not restricted to considering only one-electron
magnetic droplets (ferrons). A part of the previously
obtained results will be generalized to the case of an
arbitrary number of electronsin ferromagnetically cor-
related regions.

In Section 2, the temperature dependence of the
resistivity is analyzed for an inhomogeneous state with
the density of the ferromagnetically correlated regions
far from the percolation threshold. In Sections 3 and 4,
we discuss within the same assumptions the magne-
toresistance of manganites and their magnetic suscepti-
bility, respectively. It will be shown that the proposed
model of the inhomogeneous state provides for an ade-
guate description of the high-temperature behavior of
manganites. A comparison of the theoretical resultsand
experimental dataallows usto determine the main char-
acteristics of ferromagnetically correlated regions in
manganites.

2. RESISTIVITY

The temperature dependence of the resistivity of
manganites will be analyzed based on the notions
developed previously [13].

This physical picture is essentialy as follows. We
consider a system comprising small ferromagnetic
droplets dispersed in a nonferromagnetic insulating
matrix, in which charge is transferred via tunneling of
the charge carriers from one droplet to another. In the
general case, the tunneling probability depends on an
external magnetic field. We assume that the droplets do
not overlap and the whole system isfar from the perco-
lation threshold. Each droplet may contain k charge car-
riers. Every new charge carrier tunneling to a given
droplet experiences Coulomb repulsion from the carri-
ers aready occurring in this droplet. The repulsion
energy A isassumed to berelatively large (A > kgT), so
that the main contribution to the conductivity is related
to the processes involving droplets containing k, k + 1,
and k—1 carriers.

Under these conditions, an expression for the resis-
tivity p(T) has the following form;

_ kg Texp(A/2kgT)
128me’w,l°kn’

(D

where e isthe electron charge, wy, is afrequency corre-
sponding to the characteristic energy of electronsin a
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Fig. 1. Temperature dependence of the resistivity of
(Lag - yPry)o7C33MNn0O3 [9]: (squares) y = 1, with
160 — 180 isotope substitution; (triangles) y = 0.75, with
160 —» 180 jsotope substitution; (circles) y = 0.75, with

160 isotope. The solid curve shows the results of calcula
tions using formula (1).

droplet, | isthe characteristic tunneling length, and nis
the concentration of FM droplets. Formula (1) can be
readily derived as described in [13] (see Appendix).
This expression is a straightforward generalization of
the formula obtained in [13] for the conductivity of
one-electron droplets. Theresistivity (1) exhibitsather-
moactivation behavior, whereby the activation energy
isequal to a half of the Coulomb repulsion energy (for
more detail, see[13]).

Expression (1) providesfor afairly good description
of the temperature dependence of theresistivity for var-
ious manganites. Thisisillustrated in Figs. 1-4, show-
ing the p(T) curves for six manganites, constructed
using the experimental results reported in [9-12]
(detailed numerical data were kindly provided by the
authors of these papers). As can be seen from these
data, the samples differ in chemical composition, the
typeof crystal structure, the magnitude of theresistivity
(at a fixed temperature, the latter varies for different
samples by more than two orders of magnitude), and
the low-temperature behavior (some of the samples
behave as metals and the other, as insulators). In the
high-temperature range (above the point of the FM
phase transition), p(T) exhibits identical behavior
for al samples and is well described by the universal
relation

p(T) O Texp(A/2kgT)

represented by solid curvesin Figs. 1-4.
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Fig. 2. Temperature dependence of the resistivity of
Prg.71Cag.29MnO3: (circles) experimental data [10]; (solid
curve) calculation using formula (1).

Using Eq. (1) and experimental data, itispossibleto
determine some quantitative characteristics of the
phase-separated state. In particular, an analysis carried
out by Zhao et al. [12, 16] demonstrated that interpre-
tation of the experimental data in terms of thisrelation
gives an accurate estimate of the Coulomb energy A.
For example, the data presented in Figs. 1-4 allow the
Coulomb barrier A to be determined with an accuracy
of 2—3%; for the compounds under consideration, this
value falls within a rather narrow range from 3500 to
3700 K (see Table 1). As for the characteristic fre-
guency wy, entering into formula (1), it was pointed out
in [12, 13, 16] that this quantity varies within a very
restricted interval of 10310 Hz. This estimate can be
obtained, for example, from the uncertainty principle:
fiwy ~ h?2ma?, where a is the characteristic size of the
droplet and m is the electron mass. Indeed, assuming
that a = 1-2 nm, we arrive at the latter interval. These
values of the droplet size provide for a correct (to
within an order of magnitude) estimate of the Coulomb
barrier energy A: taking into account that this energy is
on the order of €?/ea and substituting permittivity € ~ 10
we obtain the value of A consistent with the experimen-
tal data.

It israther difficult to estimate the tunneling length |.
However, we can ascertain that, in the domain of appli-
cability of relation (1), this length cannot be much
smaller than the distance between droplets [13]. Other-
wise, the behavior of the resistivity would be different.
In the quasiclassical approximation, the tunneling
length is on the order of the characteristic size of the
wave function, provided that the barrier height is com-
parable to the depth of the potential well. In our case,
the size of the electron wave function is on the order of
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Fig. 3. Temperature dependence of the resistivity of alay-
ered manganite with the composition
(Lag 4Pro.6)1.25r1 gMN,0O7: (circles) experimental data[11];
(solid curve) calculation using formula (1).

the ferron size and the height of the barrier virtualy
coincides with the depth of the potential well. Thelatter
naturally follows from the adopted model of ferron for-
mation [2]. Therefore, it is reasonable to suggest that
the tunneling length is on the order of the ferron size
(several nanometers), athough in the general case it
can substantialy differ from a.

Another nontrivial task isto estimate the concentra-
tion n of ferrons. On the one hand, following Zhao et al.
[12, 16], the concentration n could be determined via
the dopant concentration x as n = x/d®. However, this

p, Qcm
107 . | .

10°E-

...................................

10 N

10L i : :

100 150 200 250 300
T,K

Fig. 4. Temperature dependence of the resistivity of
LaggMgg,MnO3: (circles) experimental data [12]; (solid
curve) calculation using formula (1).
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Table 1. The Coulomb energy A, theresistivity p (at 200 K), and the product 1°n%k for some manganites, estimated using for-

mula (1) and the experimental data presented in Figs. 1-4

Manganite composition A K p(200 K), Q cm 15n%k, cm™t Ref.
(Lay_,Pr,)07CagsMnO; 3650 1.25 2% 105 [9] (see Fig. 1)
Pro.71Ca5.20MNO5 3500 0.57 3% 10° [10] (see Fig. 2)
(Lag4Proe)12Sr1 M nZO’; 3600 15 15x 10° [11] (seeFig. 3)
L&y gMgo,MnO; 3700 283 1% 103 [12] (see Fig. 4)

* The general chemical formula of this system is (Lag 4Prg.6)2 — 2xSr1 + 2xMNoOy7.

approach leads to at least two discrepancies. First, even
for amoderate concentration of a divalent element, x =
0.1-0.2, the droplets would overlap to form a continu-
ous FM metallic cluster. However, the material can be
insulating even at higher dopant concentrations of x =
0.5-0.6, at least in a high-temperature range. Second,
as can be seen from the experimenta data, a relation
between the dopant concentration and the conductivity
of manganites is rather complicated. For some com-
pounds, atwofold variation of x can changetheresistiv-
ity by two orders of magnitude [12, 16], while in some
other cases, p(x) exhibits a nonmonotonic behavior
within a certain concentration range.

It should be noted that these difficulties are inherent
not only in our model of phase separation, but also arise
in other models attempting to describe the properties of
manganites (e.g., in polaronic models[17, 18]). Unfor-
tunately, this circumstance was not given proper atten-
tion in [12, 16] in the interpretation of experimental
datain terms of the existing models of the conductivity
in manganites. The natural conclusion is that the num-
ber of carriers involved in the charge transfer process
does not coincide with the concentration x of adivalent
dopant. Thisis especially obviousin the case of charge
ordering, when part of the charge carriersintroduced by
doping are localized and form a periodic structure.

Therefore, using expression (1) and experimental
data, it is possible to evaluate the combination 15n%k.
Table 1 summarizesthe values of the Coulomb energy A,
the resistivity p (at 200 K), and the product 1°n%k esti-
mated using formula (1) and the experimental data pre-
sented in Figs. 1-4. Note that, while the estimate for A
is accurate to within £50 K, the combination 1°n?k can
be estimated only by the order of magnitude (at least,
such is the uncertainty of the value of ).

3. MAGNETORESISTANCE

Previoudly [9, 14, 15], it was demonstrated that the
model of phase separation adopted hereleadsto arather
unusual dependence of the magnetoresistance
MR(T, H) on thetemperature and magneticfield. At rel-
atively high temperatures and not very strong magnetic
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fields, the magnetoresistance is described by the for-
mula (see Appendix)

ssNi}fzzgsfHaHz

H3
MR=5x10°=2 -
(ksT)

)

Here, |z isthe Bohr magneton, Sis the average spin of
a manganese ion, Ny is the number of manganese
atomsin adroplet, Zisthe number of nearest neighbors
of a manganese ion, g is the Landé factor, J is the
exchange integral of the FM interaction, and H, is the
effective magnetic anisotropy field of a droplet. The
lav MR O H%T® was experimentally observed for a
number of manganites in the region of their nonmetal -
lic behavior [9, 10]. The same high-temperature behav-
ior of the magnetoresistance can be obtained by pro-
cessing the experimental datareported in[11, 12] (see
Figs. 5-8].

Thevalue of Sdepends on therelative content of the
trivalent and tetravalent manganese ions and varies
from 3/2 to 2. For purposes of estimation, we assume
that S= 2. Thevaueof Zis, in fact, the number of man-
ganese ions interacting with a conduction electron
occurring in adroplet. It is reasonable to assume that Z
is of the same order of magnitude as the number of
nearest neighbors for a manganese ion, that is, Z = 6.
The Landé factor g is determined from experimental
data. For manganese, g is usually assumed to be close
to that in the pure spin case (g = 2). The exchange inte-
gral J characterizes the magnetic interaction between a
conduction electron and a molecular field generated by
ferromagnetically correlated spins in a droplet. This
molecular field accounts for the low-temperature ferro-
magnetism. Therefore, we can evaluate J using the
well-known relationship of the molecular field theory,
S(S+1)Z2J/3~KkgTc, where T, isthe Curietemperature.
The latter parameter is determined from experiment
(e.g., neutron diffraction or magnetization measure-
ments). For example, T of manganites of the La—Pr—Ca
system is about 100-120 K [6].

The magnetic anisotropy of manganites related to
the crystal structure of these compounds is usually not
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Fig. 5. Temperature dependence of the MR/H? ratio for
(Lag _yPry)o.7Cap3MnO3 [9]: (circles) y = 0.75; (squares)
y = 0.75, with 30% of 160 — 180 isotope substitution;
(triangles) y = 0.75, with 60 —— 180 isotope substitution;
(diamonds) y = 1; (asterisks) y = 1, with 160 — 180 jso-
tope substitution. The solid curve shows the results of cal-
culations using relation (2): MR O /T°.

too high. Thisimplies that the main contribution to the
effective magnetic anisotropy field H, is related to the
droplet shape anisotropy and can be evaluated as H, =

(1l - SN)MS, where N is the demagnetization factor
of the droplet (along the main axis) and M is the mag-
netic moment per unit volume of the droplet. Below, we

102 i

i i i
120 140 160 180 200

T,K
Fig. 6. Temperature dependence of the magnetoresi stance

of Prg71Cag29MnO; for H = 2 T (triangles) experimental
data[10]; (solid curve) calculation using formula (2).
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assume that the droplet israther elongated (N < ) and
M, = SgusTVd®, so that H, = 2 kOe.

The value of Ny is naturally determined by the size
of adroplet and, in principle, it could be found from the
neutron diffraction experiments. However, to the best
of our knowledge, no such measurements were per-
formed in a wide temperature range for the systems
under consideration. For thisreason, Ng; is treated here
as afitting parameter. Using Eq. (2) and the above esti-
mates, we can determine the N value from experimen-
tal data on the magnetoresistance (in the range of
parameters corresponding to MR ~ H%/T%). The results
of such data processing are summarized in Table 2. In
Figs. 5-8, solid curves show the data used in the fitting
procedure. The value of T was taken to be equal to
120 K.

Thus, the size of the ferromagnetically correlated
regions for all manganite compositions under consider-
ation turns out to be nearly the same at temperatures of
200-300 K. The volume of these regions is approxi-
mately equal to that of aball with adiameter of 7-8 lat-
tice periods. It can naturally be assumed that, within a
droplet volume, the number of charge carriersinvolved
in the tunneling process equals the number of dopant
atoms. Hence, we can writethat k = NgX, where x isthe
atomic fraction of the dopant. The values of x and k are
presented in Table 2.

4. MAGNETIC SUSCEPTIBILITY

The concentration of droplets can be evaluated
based on the magnetic susceptibility data, by assuming
that the main contribution to the susceptibility comes
from the ferromagnetically correlated regions. At high

MR
107

i
120 140 160 180 200 220 240 260 280 300

103

T,K

Fig. 7. Temperature dependence of the magnetoresistance
of (Lag4Prgg)1.25r1gMn,0; for H=1T (triangles) experi-
mental data[11]; (solid curve) calculation using formula (2).
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temperatures (KsT > PUgONH, Hgg:N:H,), the sus-
ceptibility x(T) can be written as

n(HBQSNeﬁ)Z

3kg(T-09) ' &

X(T) =

where © is the Curie-\Weiss constant.

The results of the experimental data processing in
terms of relation (3) are presented in Table 3. The
experimental temperature dependences of the magnetic
susceptibility of manganites are shown in Figs. 9-12,
where solid curves illustrate the fitting procedure.
Using these results, we can also estimate the concentra-
tion of the FM phase as p = NN d®. For all samples, the
value of lattice parameter d was taken to be equal to
3.9 A. Based on the data in Tables 1-3, it is also pos-
sible to estimate the carrier tunneling length 1.

5. DISCUSSION

The analysis performed in the previous sections
demonstrates that a simple model of electron tunneling
between the ferromagnetically correlated regions (FM
droplets) provides a description of the conductivity and
the magnetoresi stance data for awide class of mangan-
ites. A comparison of the theoretical predictions with
the experimental data on the temperature dependence
of the resistivity, magnetoresistance, and magnetic sus-
ceptibility allowed us to determine various characteris-
tics of the phase-separated state, such asthe size of FM
droplets, their concentration, and the number of elec-
tronsin adroplet, and to estimate the characteristic tun-
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Fig. 8. Temperature dependence of the magnetoresistance

of LaggMgg,MnO5 for H= 15T (triangles) experimental
data[12]; (solid curve) calculation using formula (2).

neling length of the charge carriers. The obtained val-
ues of parameters seem to be quite reasonable. Indeed,
the characteristic tunneling length is on the order of the
FM droplet size, while the concentration of the FM
phase in the high-temperature range is substantially
smaller than the percolation threshold and varies from
about 1 to 7%. Note aso that the droplets contain 50—
100 charge carriers and the parameter A evaluated from
the experimental data agreesin order of magnitude with
the Coulomb energy of an extra electron in ametal ball

Table 2. The effective number Ng; of manganese atoms, the number of electronsk in adroplet, and the dopant fraction x for
some manganites, estimated using formula (2) and the experimental data presented in Figs. 5-8

Manganite composition Nest X k Ref.
(Lay _yPry)o7CapsMNO; 250 0.3 75 [9] (see Fig. 5)
Pro71Ca920MNO4 200 0.29 58 [10] (see Fig. 6)
(Lay4Pro6)1.25r1gMN0; 250 0.4 100 [11] (see Fig. 7)
LaggMgo,MnO5 265 0.2 53 [12] (see Fig. 8)

Table 3. The Curie-Weiss constant ©, the density of ferrons n, the FM phase fraction p, and the effective tunneling length |
for some manganites, estimated using formula (3) and the experimental data presented in Figs. 9-12

Manganite composition 0,K n, cm3 p I, A Ref.
(Lay _yPry)7Cag3MnO; 55 1.8 x 10 0.03 24 [9] (seeFig. 9)
Pro7,.Can20MNnO; 105 6 x 1018 0.07 17 [10] (see Fig. 10)
(L8ay.4Pro6)1 2571 sMN,0; 255 25 x 108 0.04 19 [11] (see Fig. 11)
LaggMgg,MNnO; 150 0.6 x 10%8 0.01 14 [12] (see Fig. 12)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No.3 2004
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Fig. 9. Temperature dependence of the inverse magnetic
susceptibility of (Lay _Pry)g7Cag3MnO3 with y = 1: (tri-
angles) experimental data [9]; (solid curve) calculations
using relation (3). The other manganites of this group
exhibit analogous behavior of X(T) in the high-temperature
range (see[9)]).

(7-8)d in diameter. The obtained estimates of the drop-
let parameters (characteristic tunneling barrier, size,
and tunneling length) are close for manganites with
strongly different transport properties.

Another characteristic feature of the phase-sepa-
rated manganitesisalarge magnitude of the 1/f noisein
the temperature range corresponding to the dielectric
state[19, 20]. In the framework of the phase separation

X~ 1 mol/emu
300

250

200

150

100

50

Fig. 10. Temperature dependence of the inverse magnetic
susceptibility of Prg7,CagogMnO3:  (triangles) expe-
rimental data [10]; (solid curve) calculation using for-
mula (3). The density of a porous sample was assumed to
be 0.8 of the theoretical value.
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model adopted here, the following expression was
derived for the Hooge constant [13, 14],

"= %évsw = oI’ (9
U
dc

where [BU2[} is the spectral density of the voltage fluc-
tuations, V; is the sample volume, U, is the applied
voltage, and @, = wyexp(A/2ksT). Substituting esti-
mated values of the parameters presented in the tables
and in the text, we obtain o, = 1076 cm?® at atempera-
ture of 100-200 K and frequencies within 1-1000 s™.
Thisvalue of ay, is3-5 orders of magnitude higher than
the corresponding values for semiconductors.

Thus, we have arather consistent scheme describing
the transport properties of manganites under conditions
when the ferromagnetically correlated regions do not
form a percolation cluster. Moreover, the proposed
approach proves to be valid for a fairly wide range of
dopant concentrations. However, as mentioned above, a
relationship between the concentration of FM droplets
and the doping level is still incompletely clear. If the
above picture of the phase separation is valid, it
becomes evident that not all electrons or holes intro-
duced by doping participate in the transport processes.
Now we will try to find some qualitative arguments
illustrating the possible differencesin the effective con-
centrations of charge carriers below and above the tran-
sition from PM to magnetically ordered state.

The phase diagram of atypical manganite contains
aregion of the AFM state with FM phase inclusionsin
the range of low temperatures and low doping levels.

X!, kg/cm?
0.5

0.4 LGV
03 : o N

0.2 4 A A

300
T,K

Fig. 11. Temperature dependence of the inverse magnetic
susceptibility of (Lag4Proe)1.0Sr1gMNn,0O7:  (triangles)
experimental data [11]; (solid curve) calculation using for-
mula (3).
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i i
200 250 300

T,K
Fig. 12. Temperature dependence of the magnetoresistance
of LaggMgg,MnO3: (triangles) experimental data [12];
(solid curve) calculation using formula (3).

When the doping level isincreased, the transition from
AFM to FM phase is observed. At high temperatures,
manganites are in the PM state. As the temperature
decreases, the transition from PM to AFM or FM state
takes place depending on the doping level. Let us con-
sider the behavior of such a system in the vicinity of a
triple point. In the AFM phase, the radius R of aregion
converted by one el ectron into the FM state can be esti-
mated as [ 3]

R = d(mt/4d,52)",

where J; isthe AFM interaction constant. For the high-
temperature PM phase, the radius R; of aregion con-
verted by one electron into the FM state corresponds to
the size of the so-called temperature ferron and equals
to Ry = d(t/4kg TIn(2S+ 1))¥5 [3].

Thecritical concentration x. = 0.15 corresponding to
overlap of the low-temperature ferrons can be esti-
mated as x, ~ (3/4m)(d/R)3. For the high-temperature
ferrons, the corresponding estimate is o, ~
(3/4m)(d/Ry)3. Substituting the expressions for the radii
of high- and low-temperature ferrons, we can estimate
the ratio x/d. in the vicinity of the triple point corre-
sponding to the coexistence of FM, AFM, and PM
phases:

Xe o[ TIN(2S+1)7%5_ TcIn(2S+1)7%°
6cD[ ZJffS2 } D[ Ty } ' ©)

where T and Ty, are the Curie and the Néel tempera-
tures, respectively. For the manganites under consider-
ation, we have Tc ~ Ty ~ 120150 K and In(2S+ 1) ~
1.6 for S= 2, hence 3, < x;. This is consistent with
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experimental data showing that & ~ 1-7%. Thus,
athough formula (5) correctly reflects the observed
tendency, the nature of the charge disbalancein the PM
regionisincompletely clear. Probably, for x > x. (in real
manganites, the concentration x can reach a level of
about 50%), the residual charge islocalized in the PM
matrix outside the temperature ferrons. A detailed study
of this problem will be presented elsewhere.
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APPENDIX

We present a short derivation of formulas for the
resistivity (1) and the magnetoresistance (2). Consider
asystem of small ferromagnetic dropletsdispersedin a
dielectric matrix exposed to an electricfield E, inwhich
chargeistransferred viatunneling of the charge carriers
from one droplet to another. In the ground state, each
droplet contains k charge carriers. Every new charge
carrier tunneling to a given droplet experiences the
Coulomb repulsion from the carriers already occurring
inthisdroplet. The repulsion energy A is assumed to be
relatively large (A > kgT), so that the main contribution
to the conductivity isrelated to the processes involving
droplets containing k, k + 1, and k — 1 carriers.

Let N be the total number of dropletsin the system
and N, N,, and N; be the numbers of droplets contain-
ing k, k+ 1, and k — 1 carriers, respectively. Assuming
the total number of droplets in the system to be con-
stant, sothat N, = Ny and N; + 2N, = N, we can writethe
partition function of the system [13],

N/2
m-~m A
Z = CnChom&Xp(—mpB), = —, 6
z pC-mB). B=i5. O

where Cy are the binomial coefficients. Using the
Stirling formula, replacing summation by integration,
and cal culating the corresponding integral by the steep-
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est descent method, we obtain the following expres-
sionsfor the average vales of N;, N,, and Nj:

_ A
= No = Nexppim=<
B

Zl
N

(7)

N, = N—2N, = N[l 2explt- ZkATg]

According to our model, electron tunneling implies
one of the four possible events: (i) two droplets with
k electrons are converted into droplets with k + 1 and
k — 1 electrons; (ii) process inverse to that in the previ-
ous case; (iii) droplets with k and k + 1 electrons
exchange sites with each other; (iv) the same for drop-
letswith kand k — 1 electrons. Thetotal current density
is given by the sum of the contributions from all these
processes. j = j; + jo + j3 + ja. AS was demonstrated
in[13], al the four processes equally contribute to the
total current.

For example, consider the third process. The density
of electrons involved in this exchange is (k + 1)n,,
where n, is the concentration of droplets with k + 1
electrons. Assuming that k > 1, we obtain

j3 = ekn2< Z Vi> = ekn2< z _:I((r:?se?l)>’ (8)

where [..[denotes the statistical average with the sum
taken over al droplets with k + 1 electrons, V' Cis the
average velocity of electrons along the electric field E,
r' is the distance between droplets involved in this pro-
cess, 0 is the angle between vector E and the direction
of electron motion, and T(r', ©) is the characteristic
tunneling time. The standard expression for t is asfol-
lows[21]:

eEr cos6
keT O

(r, 8) = mglexp%— (9)

where | is the tunneling length and wy, is the character-
istic frequency. Far from the percolation threshold, the
average in relation (8) is the spatial average of the
velocity v multiplied by the number N, of droplets
accessible for the jump.

Assuming the electric field strength to be small
(eEl/ksT < 1) and the repulsion energy A to be large
(A/kgT > 1), we obtain in thefirst order with respect to
thefield E:

. E _
zv' = QN T 2008067, (10)
kg T
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where [..[} denotes the average over the sample vol-
ume. Substituting Eq. (10) into relation (8) and inte-
grating over space, we determine the corresponding
current component. Taking into account the obvious
relation p = j4/4E, we arrive at formula (1). As can be
seen, the resistivity decreases with the temperature
according to the law

p(T) DO TexpEQk TD

which is characteristic of the systems with tunneling
conductivity [21].

Now let us proceed to the calculation of magnetore-
sistance MR. The probability of tunneling depends, in
particular, on the mutual orientation of the electron spin
and the magnetic moment of a droplet. Orientation of
the ferromagnetically correlated regions in the mag-
netic field H leads to an increase in the transition prob-
ability and, hence, to a decrease in the resistance with
increasing field strength—in agreement with experi-
ment. The conductivity of the system can be repre-
sented as o(H) = gy X (H)[) where Z(H) is the “spin”
contribution to the probability of electron tunneling.
For this definition, MR = X (H) [~ 1.

Denoting the effective magnetic moment of a drop-
let by M = pggNgS and assuming the interaction
between droplets to be negligibly small, we write the
free energy of adroplet in the magnetic field in the fol-
lowing form:

U(H) = U(0)=M(Hcosb + H,cos’y),  (11)
where 8 isthe angle between the applied field H and the
magnetic moment M, H, is the anisotropy field, and
is the angle between the anisotropy axis and the direc-
tion of the magnetic moment (for the sake of simplicity,
we consider the case of uniaxial anisotropy). Let H be
parallel to the z axis, and let the anisotropy axis lie in
the (X, 2) plane and make the angle 3 with vector H. In
this configuration,

cosy = sinBsinf3cos¢ + cosBcos,

where ¢ is the angle between the x axis and the projec-
tion of M onto the (X, y) plane.

Intheclassical limit, agiven orientation of vector M
corresponds to the probability

P(H, 6, ¢)

- A(Hecp| M0 Hacos (e, ) 12

where A(H) isthe normalization factor. The elgenstates
of an electron correspond to conservation of the spin
projection s = £1/2 onto the effective field direction in
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a ferromagnetically correlated region. Let an electron
interact with Z magnetic moments in the droplet. The
energy of thisinteraction is E; = -JSZs. Since the prod-
uct JSZ is on the order of the Curie temperature, E; is
much greater than the energy of interaction between the
electron spin and the magnetic field, provided that H <
100 T. In this case, the effective field direction coin-
cideswith the direction of vector M and the praobability
for the electron spin projection to be s can be written as

_ exp(-EJkgT)
S 2cosh(EdkgT)’ (13)
Upon transfer from droplet 1 to droplet 2, an elec-

tron occursin an effective field making an angle v with
that in theinitia state, for which

cosv = cosB,cosh, + sinB,sinB,cos(¢, —¢,)

(indices 1 and 2 refer to the droplet number). Then, the
work performed for the electron transfer from droplet 1
to droplet 2 is AEg = E((1 — cosv). Accordingly, the
probability of this transfer is proportiona to
exp(—AEJ/KkgT). Taking into account al the probability
factors introduced above, the final expression can be
written as

2n 2n T

E(H)D= [db, [db,[sin,de,
0 0 0

T

XJ’SineszZP(el, $1)P(0, ¢,) (14)
0

AE
x Z Psexp E_Eﬁ%

s=+1/2

In the high-temperature range, where kgT is much
greater compared to the Zeeman energy HggSNgH
and the magnetic anisotropy energy UggNg;H,, rela
tions (12)—(14) yield formula (2).

The limits of applicability of the above expressions
for the resistivity and magnetoresistance of manganites
are considered in more detail elsewhere [13-15].
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Abstract—A theoretical study is reported of stimulated light scattering, including wave-vector reversal and
anomalous transmission, by a coherent phase in electron—hole (e-h) systems of low and high charge-carrier
density. For these two cases the coherent phaseistaken to be a Bose—Einstein condensate of excitonsor aBCS-
like state of e-h pairs, respectively. The scattering mechanism is laser-induced coherent recombination of two
excitons or two coherent e-h pairs, respectively. The e-h system is assumed to exist within a GaAg/AlGaAs
double quantum well or bulk GaAs. The emission rate of two photons with antiparallel momentais estimated.
Multiphoton emission due to multiexciton coherent recombination is covered. Methods for detecting the effects
predicted are proposed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Theory tells us that macroscopic quantum coher-
ence will arise in the electron—hole (e-h) system of a
semiconductor or semimetal if its temperature is
decreased to below a certain point [1-8]. Considerable
interest has been shown in the detection of the phenom-
enon in both three-dimensional (3D) and two-dimen-
siona (2D) systems. Recent years have seen significant
experimental advances in this field, especialy for the
quasi-2D system of crossed excitons in a double quan-
tum well (DQW) [9-12]. The predictions that had been
made about their behavior include anomal ous transport,
superfluidity, drag, and quasi-Josephson phenomena
[13-31].

Let n be the charge-carrier density. Two extreme
casesare generally considered. The high-density caseis

nay > 1[1] or na; > 1[13] for 3D or 2D systems,
respectively. The low-density caseis nas < 1[3, 4] or

na3 < 1[14] for 3D or 2D systems, respectively. Here,
ag isthe Bohr radius.

In the low-density case, e-h systems can contain
excitons that should passto a coherent state if cooled to
asufficiently low temperature. For 3D systems a coher-
ent phase may be formed by Bose-Einstein (BE) con-
densation [3, 4]. A 2D system first displays alocalized
BE condensate, which can be characterized by an order
parameter of fluctuating phase; this state then changes
into the low-temperature Berezinski—Kosterlitz—Thou-

less phase, which shows quasi-long-range order
(see[15] and references therein).

In the high-density case, coherent pairing should
arise between an electron and aholein amanner resem-
bling the Bardeen—Cooper—Schrieffer (BCS) mecha
nism,! the size of the e-h pairs being much greater than
the mean distance betweenthem[1, 2, 6]. The BCS-like
state of quasi-2D e-h systems was studied in [13, 15].
In particular, the case where electrons are spatially sep-
arated from holes was covered [13]. Later on, detailed
research was conducted into phenomena possible in
dense e-h systems, such as superfluidity, phase equi-
librium, tunneling, quasi-Josephson phenomena, and
drag [13-30].

For intermediate charge-carrier densties, a liquid
exciton phase was investigated in quasi-2D [17] and 3D
[35] systems. The phase diagram and properties of a
quasi-2D system bel ow the transition point were exam-
inedin[13, 15].

The formation of a coherent phase should confer
new optical properties on the e-h system [36-40]. One

1 Consider a quasi-equilibrium dense e-h system, which may be
found in asemimetal or created by laser irradiation. It can display
acoherent phase only if the respective Fermi surfaces of electrons
and holes fulfill the nesting condition vidp < A, where v isthe
Fermi velocity, dp is the Fermi-surface separation for the pairing
particles, and A is the energy gap due to pairing. The transition
point fallsfairly slowly with decreasing size of the nesting Fermi-
surface parts[7]. Over anarrow range of dp a state with anonuni-
form gap may also exist [32, 33]. A competing type of ground
state is aliquid metallic phase in the form of e-h droplets, which
are more stable in multivalley semiconductors such as Ge and
Si [34].
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of themisastrong, narrow luminescence linerelated to
exciton recombination in the BE condensate; its inten-
sity is proportional to the density n, of the BE conden-
sate. However, with strong exciton—exciton interaction,
the ground state is characterized by afairly large den-
sity of uncondensed excitons, whose radiative recombi-
nation makes it very difficult to detect the condensate
line. It is therefore desirable that a better indicator be
found of a coherent phasein e-h systems.

This paper theoretically treats two-photon emission
due to coherent recombination of two excitons or two
coherent e-h pairsin the coherent phase of an e-h sys-
tem in the low- and the high-density case, respectively.
The emission should provide a clear indication of a
coherent phase being present in the e-h system because
the recombination can be represented in terms of the
anomalous Green functions.

In the low-density case the coherent phase is taken
to be a BE condensate of excitons [40]. Although the
two-exciton recombination is a second-order process
with respect to exciton—photon interaction, its weak-

ness is compensated for by itsrate varying as né rather
than n, as with one-exciton recombination.

In 3D systems the total momentum of the emitted
photons must be zero, because both excitons have zero
momentum. The photon momentaare therefore antipar-
alel. With 2D systems, the argument applies only to
photon momentum components parallel to the plane of
the system. This feature could be detected from the
time-dependent angular correlation of photocounts
measured with appropriately arranged photon counters
[37, 41], asin the Brown-Twiss experiment.

If the two-exciton coherent recombination in a 3D
system is induced by laser photons of momentum Kk, it
must produce two photonswith the respective momenta
k and —k. The same is true of in-plane photon momen-
tum components in 2D systems. This phenomenon
might be seen asthereversal of the wave vector by pho-
toinduced coherent recombination of excitons. In 2D
systems, in-plane reversal isresponsible for two anom-
alous beams: reversed and transmitted (Fig. 5). Further-
more, BE-condensed excitons should exhibit multipho-
ton effects linked to multiexciton coherent recombina-
tion [40]. They are considered in what follows.

Three main topics are addressed in this study. First,
we examine stimulated light scattering by a 2D coher-
ent phasein aGaAs/AlGaAs DQW (Fig. 1) for thetwo
extreme cases. Second, we investigate optical wave-
vector reversal for bulk GaAs in the high-density case.
Third, we explore three- and four-exciton coherent
recombination in a BE condensate of excitonsin Cu,O.
Thisline of researchistaken up inlight of experimental
efforts to bring about the BE condensation of excitons
in Cu,0O[7, 8, 39, 42-49].
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2. COHERENT OPTICAL PROCESSES
AND THE ANOMALOUS GREEN FUNCTIONS

It iswell known that laser irradiation of a semicon-
ductor can generate e-h pairs with adensity dependent
on theradiation intensity. If the lifetime of such excita-
tionsisfar longer than their energy relaxation time, the
e-h system can be in a quasi-equilibrium state and dis-
play a number of equilibrium phases. The recombina-
tion of an e-h pair in adirect-gap semiconductor, such
as GaAs, involves emitting a photon. If the temperature
islow enough, a coherent phase should arise in the e-h
system, which would be manifested in nonzero means
that relate oneparticle states having antiparallel
momenta. It is this anomaly that makes it possible to
produce two photons with antiparallel momenta (in 3D
systems) by annihilation of two excitons or two coher-
ent e-h pairs. This process can also be induced by res-
onant laser irradiation.

The presence of a coherent phase is indicated by a
nonvanishing anomalous Green function. In the low-
density case this Green functionis

G(w, p) = i J’dtei‘”tDI'ap(t)a_p(O)D

- B
~ [o=(&(p) =iy)l[w + ((p) —iy)I’

where a, is the annihilation operator for an exciton of
momentum p; T is the Wick time-ordering operator;
€(p) = ¢, and y are the dispersion relation and the
inverse lifetime of elementary excitations in the e-h
system, respectively; and B = peonaVo, With peong @nd Vg
denoting the spatial density of the exciton BE conden-
sate and the zeroth Fourier coefficient of exciton—exci-
ton interaction, respectively. From here on, we set # =
1 by taking suitable units. For simplicity, we assume
that y does not depend on the energy or momentum of
an elementary excitation.

For GaAsthe dispersion relation is

2

2 2 2
e = vk, Ok O (1)

PN M MO

where v = /B/M is the speed of sound and M is the
exciton mass.

Fig. 1. GaAg/AlGaAs double quantum well, with layers A
and B separated by a tunnel-thin barrier.
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Fig. 2. Two-exciton recombination in GaAs.

In the high-density case the anomal ous Green func-
tionis

F(w,p) = i J’dte‘“"mrep(t)h_p(O)D

) 1 e 2
= o[ [0-3lexe) + o) £ E(p) +im) |

where g, and h,, are the respective annihilation opera-
tors for an electron and ahole and ¢(p) = ¢, isthe dis-
persion relation of an elementary excitation in the e-h
system. As with the BCS theory, we take

&, = JO2+ (e4(p) —x(P))",

where A isthe gap and g,(p) and £,(p) arethe respective
electron dispersion relations for the electron band of the
layer A and the hole band of the layer B, assuming zero
interaction. From here on the electron and the hole band
will be referred to as band 1 and band 2, respectively.
The electron dispersion relations are taken as

2 2
a(p) = (' L+ 2

a o

where m; and m, are the effective electron masses for
the bandsindicated and pr isthe Fermi momentum; this
is determined by the density of excited electrons.

In quasi-2D systems, only an in-plane momentum
component is conserved, so that the normal component
of photon momentum is subject to energy conservation
only.

Let us consider the emission of two photons with
respective in-plane momentum components k,; and k,
such that k; = —k,=k;. The indices a and b will mean
that the corresponding quantity refersto the low- or the
high-density case, respectively.

The emission rateis given by

Wa by, = I27T5( @ + W) [ M 5y (00, k||)|2
dks,, @

xl_l 2’

i=12

where i, p(w k) isthetransition matrix element, ko ;
isthe vertical coordinate of the ith photon momentum,
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and w, is the ith photon energy as reckoned from the
chemical potential | of the e-h system:

W (kp ko) = ek +K3 —H.

In the two extreme cases, U = W, = E;—Epand p =, =
Eq + He *+ Uy, Where E isthe semiconductor energy gap;
E, is the exciton binding energy; p. and W, are the
chemical potentials of charge carriers relative to the
conduction and the valence band, respectively. Since E
exceeds E,, Ue, and W, by several orders of magnitude,
we have Y, = W, = Ey.

3. STIMULATED LIGHT SCATTERING
BY A 2D COHERENT PHASE:
THE LOW-DENSITY CASE

Let us investigate two-exciton coherent recombina
tion for aGaAgAlGaAs DQW in the low-density case.
The Hamiltonian of exciton—photon interaction is

HE = z&alck +H.c., (4)
k

JL

where g, isthe coupling constant and L isthe thickness
of a congtituent quantum well. Since L will not appear
in the final formula, we conveniently set L = 1.

Consider asystem of excitonsthat interact with each
other, Ng[Ibeing the total number of excitons before
the recombination. This process (Fig. 2) is the transi-
tion from the state

|Po0= [NgHOL
to the state
| 0= |(N _2)a<c|:l]1k11 1.0

where |N,,.[sthe exciton ground state; |0C0 s the photon
ground state; and |1, , 1,,0= ¢} ¢y [0Dwith ¢, denot-

ing the creation operator for a photon of momentum
(k1, kg, 1)- To the lowest order the matrix element of the
transitionis

1
s = Z[@leFSB(tl)Hf:B(tz) |, it dt,

= Ma(w, k) By + ) = g°G (00, ky)3(wy + w,).

©)

Notice that the matrix element is nonzero only if k; =
-k, = k|, for the in-plane photon momentum compo-
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nents. If y < €, We can use the approximation

2 T[gABZ
|Ma(w, k)" = V—(4€§” vy Z d(wt g).  (6)

Asaresult, Eq. (3) becomes

BZ
y(4eg +Y9)

x |'| [gZIZTré( W &l)i—kﬂ,

where w must be regarded as a function of k; and k.
The quantity in brackets is the inverse lifetime of an
exciton with the momentum k. Approximation (6)
implies that the two photons differ in energy by an
amount on the order of €k, which is small compared
with u. It follows that the magnitudes of the photon
momenta are very close to k; = Ej/c. Thus, the photon
momenta make almost the same angles with the plane
of the DQW.

The emission rate for one photon with the in-plane
momentum component kK is given by W, , = nkTgl,
where n, = B/2¢, is the total number of excitons with
the momentum k.

The above formulas enable usto quantitatively com-

pare the respective rates of the one- and the two-photon
emission:

ak

(7)

a. = Wa,k —
a = =
Wa,k

2B
y(4ef +y)T,

Let ustake 3 =0.8x 108s?1=05x%x 10% eV and 1, =
108 s. Also, the effective exciton mass in GaAs is
0.22 times the free-electron mass. The speed of sound v
in BE-condensed excitonsis then close to 2 x 10° cn/s.
Assuming that y ~ v/I = 108-10° s, where | is the exci-
ton mean free path, we find that y is between 108 and
10° s™%. Thus, a, varies from 0 to 10, depending on k.

4. STIMULATED LIGHT SCATTERING
BY A 2D COHERENT PHASE:
THE HIGH-DENSITY CASE

We now proceed to the coherent recombination of
two e-h pairs for the same heterostructure in the high-
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Fig. 3. Coherent recombination of two e-h pairsin GaAs.

density case, naé > 1. Consider a system of coherent

e-h pairs with the volume V, which initially consists of
N such pairs. The Hamiltonian of electron—hole—pho-
toninteractionis

f
HE = Zike;hl_qck +H.c. (8)
g,k

WV

Since f,, \ is amost independent of ¢, we shall neglect
the dependence and simply write f,. Further, we set
V=1

The recombination is the transition from the state

|Po= W %)|OE

to the state
|P; 0= |Wldy _Z)IlklflllkZD

where | [y, isthe ground-state wave function, an ana-
log of the one in the BCS theory [6]. This process

involves emission of two photons (Fig. 3). The corre-
sponding matrix element iswritten as
1
Yo = SR (6) Hin (1) 9o Dt

= Mp(wy, ki)3(wy +wy),

Mp(o, k) = inAzfﬁf(
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Eo+im)(Ep+ M= 0y )2 = (& + & _p +2iN)7 (21)°

J‘/Lb((,k),k)
d 10
:fiJ'F((;op,p)F(co—(.op,k—p)(—z—]—%gdoop. (19
Integration with respect to w, yields
[0k, p(&p + & p) + (§p+ & p+2IN)(§, &k p—W)] dp (11)
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ML, (w)?

Fig. 4. Graphs of |‘/I/Lb(oo)|2 vs. X = w/A for n/A equal to
(1) 0.1and (2) 0.01.

where

€1(P) +&x(p) _&x(k—P) +&(k—p)

Tp = 735 2

AsEQ. (11) includes acumbersomeintegrand, we focus
onthecasek =0, in which the emitted photon momenta
are perpendicular to the plane of the DQW. In qualita-
tivetermsthe result should also work for reasonable [K|.

With k =0, Eq. (11) becomes

Mp(w, 0) = My(w)
1 d
T[Azfgj' . > — P 3
(§p +in)(w™ —4(&, +in)°)(2m)
The integrand being actually a function of [p| =p only,

we change to the variable € = p%2M,, where M, =
2mym,/(m, + my,). The resultant single integral can be

calculated in analytical form. For A < pZ/2M,, wethus
obtain

My(w) = zfngIn(a [32/(o;r[3)+AD
AIn(aB/aB) ADQ
20r 0

where

r = J(w?—4A°—4n?)’ + 16w’

+ 1 2 2 2
A = —A/ri W —4A"-4n"),
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+ _ w, A A
B J 330 A 20
= et 0 A2 L A-w-A"/2
D = arcsinp pr m-acsng - u
O - O ] B* O

Let us examine the function |/,(w)[?. Figure 4 shows
itsgraphsfor different n/A. Notice that |M,(w)|* isnon-
zero only near the points w = £2A. Owing to the fact
that these regions disappear as /A — 0, we take the
approximation

|My(w)[?

12
= EM]DAfOSh[ES(w 20) + 3(w+ 20)], (12

where §, = 0.3In(n/A) . Approximation (12) enables
usto estimate the rate of two-photon emission in the nor-
mal direction. As with Eq. (7), we calculate integral (3)
to obtain

(13)

where W, is the rate of one-photon emission. Let us set

n~ 10 cm?, A ~0.001 eV, n/A ~0.001, W, ~ 10® s%,
and M; = 0.1m,. Then
a, = Wy/W, 010°-107°. (14)

If the recombination isinduced by resonant laser radia-
tion with N, photons per mode, the rate of emission in
the opposite direction to the incident beam is given by

opp (NO + 1)0Wb (15)

If Ny ~ 10°-106, the emission rate Wopp Will be compar
rable with the rate of one-photon emission, so that the
former effect is, in principle, detectable.

Also note that in both extreme cases the 2D nature
of the e-h system impliesthat alaser mode will induce
the emission of photons with the wave vectors
(kyp £Ko, 1) and (K, £k o), wherek ; = kg ,. Itfollows
that aside from backscattering the laser-induced recom-
bination can produce photons with a reversed in-plane
momentum component that will cross the DQW (see
beam 4 of Fig. 5). This phenomenon might be seen as
anomalous transmission.
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5. OPTICAL WAVE-VECTOR REVERSAL
BY A 3D COHERENT PHASE
IN THE HIGH-DENSITY CASE

Let us consider stimulated light scattering by bulk
GaAs in the high-density case (nad > 1). The Hamil-
tonian of electron-hole—photon interaction and the
transition matrix element are again given by Egs. (8)
and (9), respectively; however, k and p are now 3D vec-
tors in (10). Note that both the magnitudes and the
directions of the emitted photon momentaare subject to
momentum and energy conservation, so that the two

photon momentamust be antiparallel and equal in mag-
nitude.

Let us caculate My(w, k) = My(K). As in the 2D
case, integration with respect to wy, yields Eq. (11). The
z axis being aligned with k, we recast Eq. (11) to

My(k) = (2My)P2/BTE1(p),

Here, I(p) is an appropriate integral with the dimen-
sionless parameters

i=1..6 (16)

P = K p L p Mk
toama TPamat R 2M2A
pé g n

where M, = 2mym,/(m, —m,) withm; #m,. It can becal-
culated numerically.

With bulk GaAs, we have E;= 1.5 eV, n = 102 cm3,
pe = 3 x 107 cmr?, M, = 0.2m,, A = 0.2p2/2M, , and
lk|= Eg/c. Calculating p;, we obtain [I(p)P? = 250.
The rate of two-photon emission is thus estimated as
oWb‘k25X 10215_1.

6. MULTIEXCITON COHERENT
RECOMBINATION
IN A BOSE-EINSTEIN CONDENSATE:
THE CASE OF Cu,0O

This section is concerned with the coherent recom-
bination of three or four BE-condensed excitonsin bulk
Cu,0. The processes will be investigated by generaliz-
ing the above results concerning two-exciton recombi-
nation. The rate of direct e-h recombination being very
low in Cu,O, an exciton decays mostly by emission of
a photon and an optical phonon. The Hamiltonian of
exciton—photon—phonon interaction is

A
—de Qb+ H.c.,

WV

vt = (17)

p-k-gq=0
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DQW

Fig. 5. Stimulated light scattering from a 2D system involv-
ing two-photon emission: (1) incident beam; (2) ordinary
transmitted beam, (k|, kp); (3) reversed beam, <k, kp);
(4) anomaloustransmitted beam, (—;,, kn); and (5) ordinary
reflected beam, (k|, ko). The anglesare 8, = 6, = 83 = 6.

where by, is the annihilation operator for a phonon of
momentum g and A is the effective coupling constant.

If the BE condensate experiences N-exciton recom-
bination creating N photons, it makes the transition

v@ N _
(] —c,...C ] = O].

As with two-exciton recombination, the processes
could be detected by Brown-Twiss measurements
using a coincidence circuit with N photon counters.
However, we here consider an alternative approach
based on multibeam laser-induced recombination.

Since BE-condensed excitons have zero momen-
tum, so must be the total momentum of the N photons
created:

(18)

Recall that we reckon photon energy from the exciton
chemical potential |4, so that the photon dispersion rela-
tionis

W = ck—p=c(k—ky).
BE-condensed excitons are thus assigned zero energy

(1 =0). Dueto energy conservation the photon energies
), must obey the constraint

N
Zwi =0, W=w.

i=1

(19)

If N-exciton recombination is induced by N — 1 laser
beamswith respectivewave vectorsk; (i =1, ..., N-1),
it should produce a plane outgoing wave whose wave
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-

Fig. 6. Three-exciton recombination in a BE condensate.

vector ky and photon energy wy are subject to con-
straints (18) and (19), respectively:

Kn (20)

N-1
— kiv
2

(21)

N-1
Wy = —Zcoi.
i=1

As compared with concurrent spontaneous emission,
the intensity of the stimulated emission is higher by a
factor of

N-1

[T+, @)

where N; is the mean number of photons per mode for
theith incident beam.

L et us determine conditionsfor an outgoing waveto
be detectable. Aswith two-exciton recombination, one-
exciton stimulated recombination will not contribute to
the photoluminescence in the direction of the outgoing
waveif theincident wave vectors are oriented appropri-
ately. Accordingly, the background emission in the out-
going-wave direction isdue to one-exciton spontaneous
recombination only. The rate Wy, of N-exciton stimu-
lated recombination should therefore be compared with
the rate W, of one-exciton spontaneous recombination.

Assume that each incident beam has 10° photons per
mode. The detection is possible if

10°* ™" PDw > Wy, (23)
where

Wl = pcond/T1 (24)

with T = TUA2k; = 105 s being the exciton lifetime in
Cu,O; hence A = 2.5 x 10?2 st cm?3”2,
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Three-exciton recombination is also connected with
phonon—exciton interaction (see below). The corre-
sponding Hamiltonian is

gk,qa

'\/\_/ p+q

Assume that the coupling constant is g = 10°A. This
impliesthat the rate of phonon exchange between exci-
tons is higher than that of photon emission by four
orders of magnitude (so that the characteristic time is
about 109).

Using the Fermi golden rule, we find that photons
are created at the rate

v =
p-k-gq=0

a,by +H.c. (25)

N

N = NIZT[(SD u}%
=1 O
(26)
x| M (Ky.. k) V" |_|(2 )3,

where Jly, is the matrix element of the process and the
prefactor N is due to N photons being created in every
elementary process. Note that .l can be expanded in
terms of N factors of the form VY2, so that W, is actu-
aly independent of V. Thisallowsusto set V = 1.

6.1. Three-Exciton Recombination

The matrix element Jl4(k,, Kk, k3) of three-exciton
recombination is the sum of matrix elements obtained
from the one from Fig. 6 by all possible permutations
of the photon-vertex arguments:

Mk, ko k)

= APy GU@)G(0)Co (@), (2D
iz
ihj =123,
where G(w, k) isthe exciton Green function,
2 2
G(w, k) = WryaE*TE o
[w—(&—iy)][w + (g —iY)]
and %(w) is the phonon Green function,
G(w) = 2Q (29)

[W=(Q=-i0)][w +(Q—-id)]"
The latter is assumed to be independent of k because
the magnitude of any wave vector involved is of the
order of Kk, (see Section 3), which is small in terms of
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the Brillouin zone; with such wave vectors, the optical-
phonon energy can be regarded as a constant.

The rate of the process is mainly determined by the
photon-energy regions in which virtual particles are
closest to their mass surfaces, at which resonance
occurs. The photon energies (with the dispersion rela-
tion selected) are of the order of the elementary-excita-
tion energy €, in the BE condensate or the optical-
phonon energy Q (see (31)). The orders of magnitude
of g, and Q are much lessthan that of the exciton chem-
ical potential 1 = E4 as reckoned from the valence-band
maximum. We therefore take k, as an approximation to
the magnitudes of photon wave vectors (see Appendix
for details). Accordingly, JMs(k,, k,, kg) in (27)
becomes a function of photon energies only. Assuming
that d < Q andy < g, where g, isthe elementary-

excitation energy, we apply the pole expansion to |l 4?
and obtain the sum of six equal resonant terms:

[ M3, @, 003)]* = BGEA° P | G(00) G(wy) Gy (o).

Owing to the above approximation the rate W; of three-
exciton stimulated recombination is expressed as

246 _3 3
_ g A pcondko 26L)1
W; = 18—1TC3 J'|(§(001)Gk0(001)| Tt
dw
SinceQ=1072eV > g, =10*eV, wearrive a
246 _3 3 0 2|:|
W3 — 189 A pc;)ndkoiz 1—+1-Eﬂ_+ BZD
e’ Q%0 YO 20

= 189_ 2}\4p§ondko|:l 10

B°d
=+ =0+ = |W,.
Qs [0 YO 2¢l] } '
To estimate W;, we take the exciton mass as 2.7m, and
the other parameters as 3 = 0.5 meV (0.5 x 10%? s7),
Peond = 10 cm3, y =0.1B, and 8 = 10° sL. Therelative
permittivity and energy gap of Cu,0O are € = 9 and

E,=2eV, sothat ¢ = ¢/ /& = 10 cm/sand ky = 3 x
10° cm™. Thus,

W, = 10°W,;

that is, one out of a hundred excitons decays by three-
exciton stimulated recombination. Noting that the rate
is high enough to meet requirement (23), we conclude
that the processisin principle detectable.

Three-exciton stimulated recombination could be
produced and detected by illuminating the BE conden-
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ks k,

Fig. 7. Four-exciton recombination in a BE condensate.

sate with two laser beams making an angle of 2173 with
one another (see Appendix); the wave vector of the out-
going beam will be coplanar with the incoming wave
vectors and will make the stated angle with each of
them.

As dready noted, the recombination rate is mainly
determined by the photon-energy regions in which vir-
tual particles are closest to their mass surfaces. Specif-
icaly, the corresponding energies of the three emitted
photons are close to any of the following sets

(H+Qvu_Q,|~l),

(M+Q ute , L-QFg), (31

(M—Q uFe, u+tQxeg),

where U is the exciton chemical potential. The first set
corresponds to the first term in brackets appearing
in (30), so that the resonant condition is fulfilled by a
virtual optical phonon. The other sets correspond to the
second term, implying that an elementary excitation of
the BE condensate will be at resonance.

Thus, the recombination rate can be increased by
setting the respective photon energies of the laser
beams to any two members of any energy set in (31),
the outgoing photon energy being equal to the remain-
ing member.

6.2. Four-Exciton Recombination

To the lowest order with respect to exciton—phonon—
photon interaction, the matrix element of four-exciton
stimulated recombination is given by

May(Ky...Kg) = Poong’

X z Fi, vk ) (00 + 0)) G () G (—w,),

I#Zm
m#n
nzl

I,mn=1,...,4.

It corresponds to 12 diagrams constructed from that of
Fig. 7 by photon-vertex permutation. The two exciton
linesthat are not shownin Fig. 7 areimplicitly included
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k; +k,

Fig. 8. The magnitude of an outgoing wave vector ky rela-

tive to the mutual orientation of the incoming ones with a
fixed magnitude, for (a) N =3 and (b) N = 4.

in the anomalous Green function of BE-condensed
excitons.

Applying the pole expansion to |il,[?, we obtain the
sum of 12 equal resonant terms:

*
2 8 , (32)
= 12Pgonah |F\kl+k2\(°31+(*)z)cg(wl)cg(wan :

Aswith three-exciton recombination, we take the mag-
nitudes of photon wave vectors to be k, (see Appendix
for details), so that the recombination rate W, is
expressed as

_ 2 .8 kg du ’ 2
W4 - 48pcond)\ 2T[2C4J-2T[I dk“:k(u)'

dw, d
I”M(MJ“@&%ﬁ,

whereu = w; + w, and k = |k, + k,|. Assuming that y is
independent of k and is much less than €, , we see that

[ J’dle(u)I - IE

With v = 0.5 x 108 cm/s, we arrive at

_ 3Poone?"BKo _ 3Poonsh Bk
W, = 452 2 222W1' (33)
TIc,C Oy c,C0°y
Calculation yields

W, = 5x 10°W,;
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that is, one out of two hundred excitons decays by four-
exciton stimulated recombination. Noting that the rate
is high enough to meet requirement (23), we conclude
that the processis, in principle, detectable.

Thewave vectors of the photons created are oriented
as in Fig. 8b of Appendix. Due to condition (18) the
total momentum of any two photons is in the opposite
direction to that of the others. Also, the angle between
any two wave vectors is the same as that between the
other two. However, the wave vectors are not generally
coplanar.

Four-exciton stimulated recombination could be
produced and detected by illuminating the BE conden-
sate with three laser beams. The wave vectors of the
incoming beams should be oriented as described above,
the outgoing wave vector being given by Eqg. (20).

As with three-exciton recombination, the rate of
four-exciton recombination is highest if the photon
energies are equal to the members of the set

(H+QUu-Qtg ,u-Q u+QFeg).

Accordingly, the recombination rate can be increased
by setting the respective photon energies of the laser
beams to any three members of the set, the outgoing
photon energy being equal to the remaining member.

7. CONCLUSIONS

We investigated stimulated light scattering, includ-
ing wave-vector reversal, from an e-h coherent phasein
a GaAgAlIGaAs DQW and bulk GaAs in the low- and
the high-density case, the scattering mechanism being
the coherent recombination of two excitons or two e-h
pairs, respectively. The estimated rates of two-photon
emission indicate that the scattering is detectable in
both of the extreme cases. If the incident laser radiation
provides 10>-10° photons per mode, the rate of two-
photon emission will be comparableto that of one-pho-
ton emission. We also considered multiexciton coher-
ent recombination, for bulk Cu,O. Similarly, the coher-
ent recombination of multiple correlated e-h pairs is
possible in the high-density case.

Four-wave mixing is another candidate way of
studying BE-condensed excitons [50-52]. However, it
isimportant to note that this method creates a coherent
exciton system (in the form of exciton density waves)
before it is examined, whereas our approach deals with
an existing one.

It should be emphasized that stimulated light scat-
tering by an e-h system is possible only if the system
contains a coherent phase; therefore, this optica phe-
nomenon could serve as an indicator of the presence of
such phase. Another potential test for a coherent phase
isthe detection of apair of correlated photonswith anti-
parallel momentathat have been produced by coherent
recombination of two excitons or two e-h pairs in the
coherent phase. This could be done by Brown-Twiss
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measurements with two appropriately positioned detec-
tors. A similar method should work for multiexciton
coherent recombination.
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APPENDIX

Ingenera, theintegral in Eg. (26) isto betaken with
respect to N — 1 wave vectorsin a 3D space. It is possi-
ble to reduce the total number of variables of integra-
tionif wecansetk =kyfori=1, ..., N—1, wherek; is
the magnitude of the ith wave vector. Specificaly, we
introduce spherical coordinates in the 3D space and so
bring the integral to the form

k dw, dcos6; d(p
2ndy c(k —k 34
[- Sz ( o)m|‘| e
the wave vectors being represented as
ki = k;(cos6;; sinB;cos@; sin,sing,). (35)

With k; = k, for each i, the product terms become
k2doo dcos8;de
c(2m)’

and the delta-function term isrecast to

1 N-1
Bl k-

With this approximation, energy conservation dictates
that the incoming wave vectors be oriented so that the
outgoing wave vectors as given by Eg. (20) have the
magnitude k;.

(36)

Three-Photon Case

Without loss of generality, we introduce spherical
coordinates according to Fig. 8a. Consequently,

|ky+ Ky = koa/2(1+ cosB,)

and expression (36) becomes

= 2L S(./2(1+cos8y) 1) = —6%0562+ =
0
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Integration with respect to the angles brings expres-
sion (34) to asimpler form:

kS 2 doy;
n_;f"ﬂﬁ'

The fact that cosB, = —1/2 implies that the angle
between the wave vectorsis 2173.

(37)

Four-Photon Case

In the four-photon case the matrix element depends
on the photon energiesand |k, + k,|. To reduce the num-
ber of integrationsin (26), we represent the orientation
of kyintermsof itsangle with k; + k, (Fig. 8b), so that

| = WKy +Kof? + K2 + 2Ko|ky + k| 0SB,

Expression (36) thus becomes

GO [y + k|2 + k2 + 2ko|ky + K| COSO; — ko)
= (clky +k,|) "3(cos8; - X),

where X = «(2k,) |k, + k,| O [-1, Q]. Integration with
respect to 85 transforms (34) into

K dws — kidw,

I"'c2|k1 +k,| (2T0), |—| L c(2m)’®

~dcos6;dg,.

Next, we represent the orientation of k, in terms of its
angle with k; (Fig. 8b), so that

|ki+ky = kouf2(1+ cosB,).

Changing from cosB, to |k; + k,| as a variable of
integration,

dcosB, _ d(|ky+ky)
k1 + Ky K

k1 + k| O(0, 2ko),

brings (34) to the form
kg ° do,
2_1-[204‘[ . d|kl + k2| iljlﬁ
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Abstract—A mode is formulated for the analytic description of vortices in a system consisting of a long
Josephson junction (JJ) and a waveguide that is magnetically coupled to this junction. The application of this
model made it possible to determine the allowed range of velocities of avortex. It is established that afree vor-
tex can move with avelocity much greater than the Swihart velocity of a Josephson junction. Such avortex is
called fast. The effect of the waveguide on the forced motion of vorticesis studied. It is shown that fast vortices
can be generated at relatively small values of current. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Model equations for the difference between the
phases of a condensate wave function on different sides
of a Josephson junction (JJ) (see, for example, [1-6])
are widely used for the description of the properties of
Josephson vortices. The main simplification of the the-
ory in model approachesliesin replacing asine nonlin-
earity by relatively ssimple piecewise linear functions.
The efficiency of the application of model approaches
has been demonstrated both while describing vortices
that carry a single quantum of a magnetic flux [7] and
while describing more complicated multivortex struc-
tures[8, 9]. Up to now, the model description has been
used for studying vortices either in an isolated JJ or in
two magnetically coupled JJs [10]. Since the applica-
tion of model approaches in the theory of simple
Josephson structures proved to be efficient, it seems
expedient to use amodel approach in the theory of vor-
tices in a structure consisting of a JJ coupled to a
waveguide. The statement of such a problem was given
in [11]. According to this statement, in the present
study, we consider vortices in a JJ coupled to a planar
waveguide. To obtain analytic characteristics, we apply
the Sakai—Tateno—Pedersen model in which the sine of
the phase difference is simulated by a sawtooth func-
tion of form (2.12) (see below). The application of this
model, on the one hand, allows one to correctly
describe the allowed and forbidden velocity bands for a
freely moving vortex (these bands were determined
in [12] in atheory that does not take into account dissi-
pation and does not use an approximate representation
for the sine of the phase difference) and, on the other
hand, allows one to construct an analytic solution to a
system of coupled equations for the phase differences
in the JJ and in the waveguide even when dissipation is
significant. The latter fact is of interest for the problem
of the motion of a vortex under a transport current. A

remarkable property of the Sakai—Tateno—Pedersen
model is the possibility of describing the role of the
Cherenkov effect in aJJ.

In the present paper, we set up a problem of the
velocity of a Josephson vortex in a JJ to which a mag-
netically coupled waveguide is connected. An analytic
examination of such aproblem is possible owing to the
model consideration of the coupling between the JJand
the waveguide. We show that the coupling to a
waveguide characterized by the large Swihart velocity
allows one to obtain a Josephson vortex moving with a
velocity that may be much greater than that of an iso-
lated JJ. This opens up the possibility of implementing
fast Josephson vortices.

The results of the model approach are described as
follows. In Section 2, relying on the equations that
describe a JJ coupled to awaveguide, we describe afree
motion of an elementary vortex in such a system. We
indicate the range of velocities in which afast Joseph-
son vortex may exist. The existence of this range of
velocitiesis associated with the effect of the waveguide
onthe JJ. In Section 3, weinvestigate the forced motion
of thisvortex dueto atransport current. For sufficiently
small losses, we determine the phase differences on the
JJ and on the waveguide walls within the Sakai—
Tateno—Pedersen model. The use of the model
approach has allowed usto determine the contributions,
to the phase differences, of the terms that vary over a
relatively large scale determined by dissipation. We
show how this scale manifests itself in the structure of
avortex and determine the contributions of dissipation
in the JJ and the waveguide to the relation between the
vortex velocity and current. We show that the forced
motion of afast Josephson vortex may occur under rela-
tively low densities of the transport current. In Section 4,
we describe the effect of Cherenkov losses in the JJ
coupled to awaveguide on the transport current. In Sec-
tion 5, we discuss the final results.
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2. A FREE VORTEX

Consider a double-sandwich-type layered system
that consists of three superconducting layers S, S, and
S; and two nonsuperconducting layers | and W. The
superconducting layers occupy the domainsx < —d, d <
x<d+L,andx>d+L =2d, and have the London
depthsA,, A5, and A5, respectively. The substancein the
layer | of thickness 2d, which is sandwiched between
the layers S, and S,, has dielectric permittivity e and
conductivity o. The layer W of thickness 2d,,, which
separates the superconductors S, and S;, has dielectric
permittivity €, and conductivity o,,. Assume that the
layer | is thin enough that Cooper pairs may tunnel
through it, thus creating a Josephson current of critical
density j.. The thickness of the layer W is assumed to
be so large that one can neglect the Josephson current
through W compared to the displacement and conduc-
tivity currents. This fact allows us to treat the system
considered as a JJ magnetically coupled to a
waveguide.

Let ¢ be the phase difference of the condensate
wave functions of the superconductors S; and S, on
their boundariesx =—d and x = d with the layer | and ¢,
be the phase difference of the condensate wave func-
tions of the superconductors S, and S; on their bound-
ariesx=d+ L andx=d+ L + 2d,, with the waveguide
W. Assume that the characteristic space scales of varia-
tions of ¢ and ¢,, are large compared to the London
lengths. Then, following [13, 14], we obtain the follow-
ing system of equations for ¢ and ¢,, (cf. [11, 12]):

WF10(z, 0] + L2
ot

, ) (2.1)
via ¢(§, B, SV§6 ¢W(22, t),
07 07
9z t) _ 2 w2l , ¢\ O ¢<z ) (o
ot? Voo TSV 22
Here,

2 220As+ 20, + Ayc0th(L/A)

Ve - A (2.3)
and
V2 = (220D s + 2d + A;coth(L/A,) 2.

€y A

are the Swihart velocities in the JJ and the waveguide,
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respectively, where

A= Q\ +2d+ ), cothMj

%\+2d +A, coth )\cosech——>0

7\43 Az

the coupling constants between the JJ and the
waveguide that appear on the right-hand sides of (2.1)
and (2.2) are given by

A,cosech(L/A,)

S= X7 2d, + Apcoth(Liny)’

(2.5)

and

_ __ Ajcosech(L/A)
Su = A, +2d + A,coth(L/A,)’

(2.6)

respectively;  is the Josephson frequency of the JJ;
and F[¢] is the density of the Josephson current nor-
malized by j.. We emphasize that the expressionsfor V,
and Vg, contain the thickness L of the superconducting
layer S, through which the JJ is coupled to the
waveguide. This means that Vg and Vg, determine the
Swihart velocities with regard to the above coupling. In
thelimit asL — oo, (2.3) and (2.4) reduce to

s ST UNeA + A+ 2d

1 2d,,
€ N, + Az +2d,

and

Ve — Vgw=C

respectively. The quantities v and v, are the Swihart
velocities of noninteracting isolated JJ and waveguide,
respectively.

For vortex structures propagating with constant

velocity v when ¢(z, t) = Y(¢) and ¢,,(z t) = P(0), { =
z—vt, Egs. (2.1) and (2.2) yield

W FIWQ)] = (Vi= v Q) = VL), (2.7)
~(Va = VOWN(L) = SVa ().

Setting (-) = Y,,(~e2) = 0 and Y'(—o) = Y, () =0,
from (2.8) we obtain

(2.8)

_ o Ve
Wa(Q) = Sz (Q).

sw

(2.9)
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Substituting (2.9) into (2.7), we obtain the following
equation for the phase difference Y on the JJ:

(vi-v?)(vi—v?)

W F[W(Q)] = N

SwW

(), (210)

where the vel ocities v; and v, are defined by

Vm

V242 (V2-V2 )’ )
#—————S =+ (1) [ 4S8, VIV, >0,

m= 12 (2.11)

Below, in the main body of the paper, we will apply the
Sakai—Tateno—Pedersen model [1-3] with the follow-
ing sawtooth function F[]:

F[W] = FsrplW]

E(Z/Tr)tu, T2 <Y <TU2, (212)
= 02m(n-y), W2<y<31w2,
Ha/my(p-2m), 3m2<y <5m2.

According to (2.12) and Egs. (2.7) and (2.8), the wave-
numbers of small perturbations of the phase difference
that are characterized by the coordinate dependence
exp(ikq) are determined by the equation

2 2y, 2 2
2+(V1—V )(va—Vv")
: ng_vz

kK> =0,

2
+ =
=W (2.13)

where the “+" corresponds to the perturbations of
near ) = 0 or 2rtand the “—" corresponds to the pertur-
bations of Y near Y = 11 Equation (2.13) can be rewrit-
ten in the following equivalent form:

SR L R

= S, VA2 K.

This equation corresponds to the coupling between the
ordinary (for the “+”) and extraordinary (for “—") Swi-
hart waves of the JJ and an electromagnetic wave in the
waveguide.

Inthe case of “+,” we obtain k = *ik(v) from (2.13),
and, in the case of “~” we obtain k = £k(v), where

k.
)= [ /\/(Vl—V )(V2—V )

(2.15)
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Using ki(v), we rewrite Eq. (2.10) for () as
Frel0(Q] = SV Q). (219)

The formal similarity between this equation and the
equation corresponding to the isolated JJ [7] makes it
possible to write out the following solution to Eq.
(2.16) that describes an elementary vortex (a 2rtkink):

W) = Fep[K(NT+E | L<—les (217)
J

W(Q) = T+ Lesin[k,(v)],

& . (2.18)
Tt
() Ak vy
W(Q) = 2n-Jexp| (V)L + 7],
(2.19)
Tt
rms

The phase difference y,, on the waveguide walls that
corresponds to this vortex is determined from (2.9) and
is expressed as

Vau
bu(Q) = 2

Sw

(<~

Tt
b k()T + 7],
_mn
4k;(v)’
SNVSW I SNVSW
TNV TRy

Tt Tt
T2k (v) Iy

Pu(Q) =

zsinfk;(v){],

sN &, T SWVa
—V2 2V§W_

Tt
A ram)

lJJW(Z) - _ZT[

exp| (V)L + 7],

SW

For the solution (2.17)—(2.19) to describe a solitary
vortex, i.e., for the equalities (—) = 0 and () = 211
to hold, it is necessary that k(v) be real and given
by (2.15). This requirement implies that the values of
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the vortex velocity may only belong to the two allowed
bands

O<v<vy, (2.20)

Vg <V <V, (2.21)
On the contrary, intheinterval (v, Vg,) and for v > v,,
ki(v) is pure imaginary, which does not correspond to
the motion of a solitary vortex. Recall that, in an iso-
lated JJ, a vortex may move with arbitrary velocities
below the Swihart velocity v,. The splitting of the
domain of admissible velocities of a vortex and the
appearance of theforbidden band [v,, V,] isassociated
with the effect of the waveguide on the JJ.

The expressions for the velocities v; and v, that
determine the right boundaries of the allowed bands
have an especially simpleform in the case of weak cou-
pling between the JJ and the waveguide, when the cou-
pling constants Sand S, are small. When V, < V,, we
have

g 1 V§ U

v,= 1 -35SS,—5—5 Ve (2.22)
O 2 “Vi-viQ
a 1 ng U

Vo= [ +35SS, 52—V, (2.23)
O 2 "Vi-Vi[Q

In particular, when Vg, < V,, this implies that the
allowed band (2.20) extends from zero to nearly the
Swihart velocity of the waveguide; this band is fol-
lowed by arelatively narrow forbidden band (Vg, — v, =
SS, Ve, /2), which, inturn, isfollowed by the broad sec-
ond alowed band (2.21) extending from the Swihart
velocity of the waveguide to a velocity slightly greater
than the Swihart velocity of the JJ. In other words,
when the Swihart velocity of the waveguide is small
compared with the Swihart velocity of the JJ, the effect
of the waveguide manifestsitself in adlight increasein
the limit velocity of a vortex compared with Vg and in
the emergence of a narrow (compared with both V and
Vg, forbidden band for velocities.

When V,,, = V, and the coupling between the JJ and
the waveguide is weak, we have

Vi= %_%E\EVS’
V,= %L + %E&VS.

These formulas show that the width of the first allowed
band is close to V,, while the forbidden band and the
second allowed band are relatively narrow: Vg, — v, =
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V,— Vg, = ,/SS, VJ2. Thismeansthat, just asin the pre-
vious case, the effect of the waveguide manifestsitself,
first, inadlight increasein the limit velocity of avortex
compared with V, and, second, in the emergence of a
narrow, compared with Vg, forbidden band for velo-
cities.

Finally, when Vg, >V, and the coupling between the
JJ and the waveguide is still weak, from (2.11) we
obtain

v,~0-1ss, Vou B (2.24)
2

v ~E11+1ssw-——%vs v (2.25)

2 |:| 2 V§W—VS swe .

In particular, in the most interesting case when Vg, >
Vs, the first allowed band extends from zero to nearly
the Swihart velocity of the JJ, which is followed by a
relatively broad forbidden band (1 — SS,/2)V,< v <
Vg, Which, in turn, is followed by the second allowed
band

O 1 VviO
Veu <V <V, =+ 5S§,—1Vg,. (2.26)
0 2 v

The width of thisband is small compared with both Vg,
and V. Since thisregion lies near the Swihart velocity
of the waveguide, which was assumed to be large com-
pared with the Swihart velocity of the JJ, it can be
called the existence region of afast Josephson vortex.

As aready mentioned, in an isolated JJ, a vortex
may movewith avelocity lessthan the Swihart velocity
Vsinthe JJ. When the JJis connected to awaveguide, a
new phenomenon arises, a fast Josephson vortex. This
vortex moves with velocity much greater than the Swi-
hart velocity of the JJ. Such an increase in the vortex
velocity is attractive since the Swihart velocity of the

waveguide may be close to the velocity of light ¢/ /g,

in the substance that fills the waveguide. Thus, for-
mula (2.26) points to the following interesting fact: a
Josephson vortex may move with very high velocity
that is close to the velocity of light in the dielectric that
fills the waveguide.

Thus, when the Swihart velocity of the waveguideis
large compared with the Swihart velocity of the JJ, the
effect of the waveguide is manifested in the fact that,
first, the right boundary of the first allowed band
dlightly decreases compared with V, second, the for-
bidden band, which extends nearly from V; to Vg,, is
broader than both allowed bands, and, third, there
appears a region of a fast vortex that moves with a
velocity close to the Swihart velocity of the waveguide.
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We emphasize that the splitting of the range of
velocities in which a Josephson 2t kink may exist and
the emergence of a forbidden velocity band are not
related to the choice of the Sakai—Tateno—Pedersen
nonlinearity but are attributed to the effect of the
waveguide on the JJ and also occur, for example, in the
conventional model with sine nonlinearity (see Appen-
dix 1).

3. FORCED MOTION OF A VORTEX

In this section, we consider aforced motion of avor-
tex under the action of adc transport current of density
j that flows through the JJ. As in the previous section,
we consider auniformly moving vortex when the accel-
erating effect of thetransport current iscompensated by
dissipative losses.

Using B = 4ntde and 3,, = 41g, /e, instead of (2.1)
and (2.2) to describe the losses in the JJ and the
waveguide, respectively, we obtain (cf. [11])

WFlo(z ] + L2 D ¢(z t +w21 +B0¢(z )
ot’

(3.1)
20 ’d(z 1) . sza “0u(z, t)
07 07
°0,(z 1) |, 09u(z1)
at2 * BW ot
(3.2)
=22 %zl 9’9, (Z t) +s,V2 °d(z t)
sw— . 2 sw aZz '

In the case of a steady motion at a constant velocity v,
from (3.1) and (3.2), we obtain

W F[W(Q)] - (Ve vy (Z)+<0

= SVif'(Q),

—Bvy(Q)
(33)

— (V& =V Q) -Buv(2) = S\VaW" (),

where f(2) = ,,(0).

When F[)] isused intheform (2.12) corresponding
to the Sakai—Tateno—Pedersen model, the wave vectors
of small perturbations of Y and f are determined from
the equation

(3.4)

2 2 .
[+ S + (V- VAR - |ka} 5

x[(Va,—vAk=iB,V] = SS,VIVZK,

in which the “+” and “—~" have the same meaning as in
Egs. (2.13) and (2.14). In contrast to the dissipationless
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case, Eqg. (3.5) has three solutions. Let us write out
these solutions on the assumption that dissipation is
small.

When the left-hand side of Eq. (3.5) hasa“+,” two
roots k = ikj(v) +iak(v) of this equation, where

§ 2 TRWBY) 6
4 (0]
B(v) = B+ 55, —YeVar Vo g, 37)
V2, —v?)

differ from the roots k = =ik, (v) of the dissipationless
equation (2.14) by asmall dissipativetermiak;(v). The
third root of Eq. (3.5) with a“+" on the left-hand side,

which is associated with dissipation, isk=i(1—a,)k,,
where
I(W = 2V BW 27 (38)
Vo —V
2\ 42 2
e VAVA, ki _
oy = ZSSNV;V_ vzoojz < 1. (3.9)

When the left-hand side of Eq. (3.5) hasa“—,” inthe
low-loss limit, this equation has the followmg solu-
tions: k =k (v) +iak(v), i(1+ ay)ky.

Conditions(3.6) and (3.9) for the smallness of a and
0, agree with our assumption that dissipation is small.

Let us write a solution to the system of Egs. (3.3)
and (3.4), which describes a Josephson 2t kink and the
associated field in the waveguide in the first allowed
velocity band (2.20), for k,, > 0. Assume that Yi({) takes
the values 172 and 3172 at points { = —(, and { = {,,
respectively.

We will seek a solution to systems (3.3), (3.4) asa
superposition of constants and terms of the form
exp(ik¢), where k is a solution to Eq. (3.5). Then,
requiring that the solution do not contain terms that
grow exponentially as [{| — o, we obtain

Q) = 210 2% (3.10)
><eX|O[(1—0t)kJ-(V)(Z+Zo)],
Wu(Q) = Avexp[(1-a)kj(v)(C+Qo)]  (311)

in the tail of the vortex ({ < —(,), where —Tij/2j, <
Y <12

W) =
x exp[—ak;(v){] + Dexp[—(1+a,)k,d],

T+ gjl +{Bsin[k(v)] + Ccos[k(v){}
. (3.12)
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Wu(Q) = {Bysin[k;(v){] + C,cos[k;(v){]}

(3.13)
x exp[—ak;(v){] + D, exp[—(1 + a,)k,d]

in the middle part of the vortex (—{y < { < (), where
-T2 < Y < 31v2; and

_ mj in
Q) = 2n-58 - -4

*Eepl-(1+ k(@ -Lal +B-1F @19
x HE - THexp[-(1- a,)ku({ ~2o)],
W) = Evepl-(1+ Ok (E =T o

+ Fuexp[—(1-0ay)ky({={o)]

inthe head of the vortex ({ > (), where3r/2 < ) < 21—
(T9/2),).

When writing Egs. (3.10) and (3.14), we took into
account that P(—C, —0) = 172 and (¢, + 0) = 3172,

From the continuity condition for the functions
P(Q), ¥'(Q), and Y,,(Q) at { =+Lyandfromtherelations
between the quantities B, C, D, E, A,, B,,, C,, Dy, E»
and F,, that arise under the substitution of (3.10)—3.15)
into any of the equations of the system (3.3), (3.4), we
obtain a system of 12 equations from which we can
determine the size of the middle region 2¢,, therelation
between the current density j and the velocity of avortex
structure, and the coefficients of the exponential and trig-
onometric functionsin (3.10)«3.15). From this system
of equations, in the linear approximation in dissipation,
we obtain

- vki(v)B(v)
2. 7 et

jc 00]2
/\/ﬁ V§W_V2
C2f2 4D‘”J(vi—vz)(vé—vz) 19
2\ ,2
[B+SSNLB}
(sz_vz)
&= gy OB B BR). (1D

Again, under the assumption that a and a,, are small,
we obtain the expressions, given in Appendix 2, for the

coefficients that define the functions Y(¢) and () .
Substituting (3.17) and the corresponding expres-

sions from Appendix 2 into (3.10)—3.15), we obtain
the following expressions for a Josephson 2t kink and

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

599

the associated field in the waveguide in the allowed
velocity band (2.20) to the lowest order in small dissi-
pation:

Q=51+ 3R+ E
. (3.18)
x exp(1— )k _m
epL(1-a)k(V)| 3+ s B
UlQ) = RS2k (v)[ 1+ B
sw J
(3.19)

N O B . T ]
expL(1-a)k (V)| 4+ gt

in thetail of the vortex ({ < -174k(v)), where —Tj/2j, <
P <12

W@ =m+ 5L

+ r/-]T-{Sin[kj(V)Z] —acosk;(v)(J exp[-a k;(v)(]
(3.20)

"Z—S—S—‘”Y——ﬂ”—k exp[~(1+ a,)kn],
w (VSW
V§W
W=, v

x {kysin[kj(v){] —kj(V)COS[kj(V)Z]}

, (3.21)

x exp[—-ak;(v){] + S, —

sw

x exp[—(1+ ay)ky{]

in the middle part of the vortex (—174k(v) < { <
TW4k(v)), where —Tv2 < ) < 3172; and

ZkW

0
x eXpLH(L+ o)k (V)] L~ s
0 i
3.22
VeVau 2 522

2 ‘W
[(Va,—v?)

—17SS,

w

O nm U
< @PLHL -k 3~ s |
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W,(0)

Tt sz kW
== _—SN + i|
2z _ (V)

nmn U
4kj(v)}5 (323)

nm U
4kj(v)}5

in the head of the vortex ({ > 174ki(v)), where 3172 <
Y < 2m—(19/2)).

In the second allowed velocity band (2.21) of avor-
tex, when k,, < 0, asolution to the system of Egs. (3.3),
(3.4) is sought in aform similar to (3.10)—3.15) with
the difference that the contributions (associated with the
dissipation) of the third rootsi(1 = a,)k, of Egs. (3.5)
arise in the middle part and the tail of a vortex rather
than in the middle part and the head. This solution has a
formsimilar to (3.18)—3.23) (seeAppendix 3). Here, the
relation between the transport current and the vortex
velocity in alinear approximation in 3 and 3, is given
by (3.16) as before.

To conclude this section, we note that, to obtain for-
mula (3.16), we can apply a method that involves the
approximate solution of Egs. (3.3) and (3.4) (see
Appendix 4). Thismethod allows one to write the func-
tionj(v), which differsfrom (3.16) only by anumerical
factor, in the model with sine nonlinearity as well (see
Appendix 4):

2k,—(v)[l—T[Ta

< exp-(L+ a)ky(v)[ -
]

+ 215, —

2
K expg—(l a,)k, [
V

sw

i) ika () .

J

4. THE EFFECT OF CHERENKOV LOSSES
ON THE FORCED MOTION OF A VORTEX

A remarkable property of the Sakai—Tateno—Peder-
sen approach isthe fact that it makesit possible to con-
sider the effect of Cherenkov losses on the motion of a
vortex. The results of this analysis are presented in this
section as applied to the conditions under which V, <
Vg, and there exists afast vortex. When V, < Vg, there
are two velocity rangesin each of which vortices exist.

First, consider arange of small velocities when one
can speak of the motion of arelatively slow vortex with
avelocity of v < v; = (1 - SS,)Y?V,. To describe the
Cherenkov losses of aslow vortex, it issufficient to take
into account the spatial dispersion of the JJ. Let us
restrict the analysis to the limit of relatively weak spa
tial dispersion of the JJ, which is possible when the vor-
tex velocity satisfies the condition

1—(viv,)® < 1. (4.1)
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In addition, when considering the Cherenkov losses, we
will neglect dissipation in the JJ and the waveguide.
This approach isjustified for low dissipation and small
Cherenkov losses, when their effect on the motion of a
vortex is additive. Under these conditions, the forced
motion of a slow vortex is described by Egs. (3.1) and
(3.2) with 3 = 3,,= O when aterm of the form

1 o’ z t
2o ez 0z 1) (4.2)
where A = vdw and A5 = (A + A;)(Ay + A, + 2d) %, is
added to theright-hand side of (3.1) to take into account
the weak spatial dispersion of the JJ. In writing the
small term (4.2), we neglect the interaction between the
JJ and the waveguide. Taking into account the above
changes in Egs. (3.1) and (3.2), we use the following
equation to describe the forced motion of aslow vortex:

2, - " 1 '
FIWQ] = S5 U@+ 070 -4, (43)
where ka (v)=(2mn) wjz (v f — v, Equation (4.3) for-
mally differsfrom the equation considered in[7] in that
the coefficients A2 arereplaced by A and (vZ —v?) w;”
isreplaced by (2/) kj_2 (v). Thisalowsoneto make use

of the mathematical result of [7]. For instance, follow-
ing [7], for the velocities of a slow vortex that satisfy
the condition

25 27\32 2)\.]2
«/1_1 sﬁT"

we obtain the following relation between the current
and the vortex velocity:

vf > vf (4.9

1= L
i 8%" > COSZSD (4.5

where € = JTANK (v) < 1. Formula (4.5) gives an
oscillatory relation between the current and the vortex
velocity, which is established when there is balance
between the effects of current and Cherenkov losses
due to the irradiation of waves by the vortex. In this
case, the minima of the function (4.5) correspond to a
discrete set of eigenvelocities v, of a free motion of a
Josephson vortex; this set is associated with theinternal
structure, of the vortex, created by extraordinary Swi-
hart waves Cherenkov-trapped by the vortex (see [7]).
In the case of aslow vortex, the discrete set of velocities
v, isgiven by

%l = A (4.6)
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where, according to inequalities (4.4), positive integers
nlieintheinterval 1 < n < Aj/A,.

Let us consider the range of velocities of afast vor-

tex when V, < V < v, = Vg, + (SS,/2)(V2 V). The
properties of afast vortex are primarily determined by
the waveguide. This means that, when considering the
Cherenkov losses of afast vortex, it sufficesto takeinto
account the spatial dispersion of the waveguide. As in
the case of aslow vortex, we will neglect the small dis-
sipation in the JJ and the waveguide. Then, to describe
the Cherenkov losses of a fast vortex, we have
Egs. (3.1) and (3.2) with 3 = 3,, = 0 when aterm of the
form

20°0u(2 1)

1.
2V 07"

, 4.7

where A2, = (A3 + AJ)(\, + A; + 2d,) L is added to the
right-hand side of Eq. (3.2). The small term (4.7) does
not take into account weak interaction between the JJ
and the waveguide. When the velocity of afast vortex
sati sfies the condition

vi—v? < SS,V2 (4.8)
modified equation (3.2) enables one to express Y, in
terms of Y and write the following equation for the
phase difference of the fast vortex:

FIO@) = 2K )W)+ G @ - L. 49)

where the effective length A depends on the vortex
velocity:

A 2D o Vs
w2 swlswy

Aett =
2 0.
v —Vg, i

(4.10)

Ve
:JS_SNVZ_

sw

Since v = V2, +SS,V2, inequality (4.8) impliesthat

v2—v2, = S5, V2. For such velocities of avortex, the
effective length A remains finite. However, owing to

thecondition Vg, 3 Vs, At = A\ V2, V2, /SS,, may sub-
stantialy exceed A;; this makes ir possible to neglect
the dispersion of the JJ when considering the Cheren-
kov losses of afast vortex. A formal similarity between
Egs. (4.3) and (4.9) implies that the relation between
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the current and the velocity of afast vortex isalso given
by (4.5), which now contains a new small parameter

2 sz)\w

£ = JTIANGK (V) =
IV eff N ﬁ[vm)\J

(4.12)

Setting v, = V,, and v, = V,, we can see that condi-
tions (4.8) and (4.11) are consistent if
40
SS, > - nD\ 0- (4.12)

Inthe case of afast vortex, the minimaof the oscillation
function (4.5) are attained at a velocity close to the
eigenvelocities of freely moving fast vortices, which
are approximately given by

~ 2 Ay
Vn= —EJS_SNA—

Here, according to inequalities (4.8) and (4.11), posi-
tiveintegersnlieintheinterval 1 < n < ,/SS, (Aj/A,).

()

I\)le N

O
rOv (4.13)
O

5. DISCUSSION

Note that Eq. (3.16) differs from the function j(v)
for anisolated JJ[7],

j(v) _ Jm

e zﬁ% 4DJ7

by the velocity dependence of the term associated with
losses in the JJ and by the presence of a term deter-
mined by the losses in the waveguide. We emphasize
that the terms in (3.16) that contain 3 and (3,,, which
characterize the dissipation in the JJ and the waveguide,
respectively, depend differently on velocity.

For the most interesting case of afast Josephson vor-
tex, whose vel ocity isgiven by (2.26), thefunction (3.16)
can approximately be represented as

vy Jmg ,ml
i 2ﬁ%l+45

& v_V
= 2BWi| SW!

(V_sz) VoV

X{B+%SSN

2
O
Vg, <V < 4 ssw—mvsw
O v
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Under the condition

2
sz

SSNV

the dissipation is mainly determined by losses in the
waveguide. In this case, we have

B< 3B

iv)
ic 82

TDBW Vg
%l J(vz V(v -V

For v = (Vg + 3vo)/l4=[1+ (3/8)SS,(V2 IV, )] Vs, the
function on the right-hand side attains its minimum,
equal to

m 1 sz Bw

jmm 4
L ot

lc  3./3

Thus, the motion of a fast Josephson vortex may be
realized when the transport current is greater than j .,
This means that the forced motion of a fast vortex,
which occurs dueto the coupling between the JJand the
waveguide, does not require large values of current.

Theexpression for Y,(¢) andthetermsin () that
do not contain the small quantity k,, in the arguments of

the exponential functions are expressed to the first
order in 3 and 3,,. The coefficients of exp[(1 + a,,)K,{]

in the expressions for Y({) are proportional to kfv . Tak-

ing into account these small contributions to Y({) does
overlap the accuracy limit because precisely these con-
tributions make it possible to write correct expressions

for Y, (2). In (3.22), the last small dissipative term
(OKZ) is localized within the scale ~k;", which is

much greater than the scale ~ kj_1 (v), inwhich the third

term is localized. We emphasize that, despite the fact
that the terms in the phase differences that correspond
to the small third roots of Egs. (3.5) are localized in a
large spatial region, they give small corrections to the
law (3.16). Toillustrate thisfact, we write the energy of
the system (per unit length of axisy) as

zllJ(Z)
H = 32n3c2.IdZD——l I dyFerp[ W]
2 2
P V) g« S Va2

w

1 eVs2 EWVSZ , 0
ag TS, OO
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Since a vortex moves uniformly, its energy is con-
served. Therefore, taking into account (3.3) and (3.4),
calculating the derivative dH/dt, and equating it to zero,
we obtain the following relation:

Qi(V)V _ v’
C 321

DE ' 2 €y ' ﬂ
dei%ﬁ[w(l)l +EVBW[UJW(Z)] H

The left-hand side of Eq. (5.1) represents the power of
the Lorenz force associated with the effect of the trans-
port current on the vortex. The right-hand side of (5.1)
containsthe power of friction forces associated with the
bulk ohmic losses in the JJ and in the waveguide. Sub-
stituting the terms of () and ., (¢) that contain

exp[(1 + a,,)k,{] into (5.1), we obtain

®% € SiVau

V3BZ
16mc’dw(V2, —v?)

This expression showsthat the energy losses of avortex
per unit time that are associated with the excitation of

large-scale perturbations (whose scale ~k;,1 O B;,l is

determined by dissipation) are proportiona to va. In
other words, in a linear approximation in dissipation,
dissipative contributions, to the phase difference, local-
ized on large scales are inessential for the dependence
j(v). The possibility of drawing such a conclusion is
one of advantages of our analysis, which is due to the
use of the model description.

If we ignore the effect of dissipation on the coordi-
nate dependence of the phase differences, we can
obtain formula (3.16) by substituting dissipationless
expressions (2.9) and (2.17)«2.19) into (5.1). The
dependence j(v) in alinear approximation in the case
of sine nonlinearity can be obtained similarly: substi-
tuting (2.9) and (A1.2) into (5.1), which isindependent
of the form of the nonlinearity F[y], we obtain expres-
sion (3.24).

Finaly, we established the influence of the Cheren-
kov losses on the transport current in the Sakai—Tateno—
Pedersen model, which manifests itself both for vortex
velacitieslessthan the Swihart vel ocity of the JJand for
velocities of a fast vortex. In either case, the function
j(v) exhibits oscillatory behavior, which was earlier
established for asimple case of anisolated JJ. The min-
imaof j(v) correspond to the velacities of afree motion
of both slow (cf. [7]) and fast Josephson vortices. Under
the conditions of small dissipation and low Cherenkov
losses, the oscillating part of j(v) is added to the mono-
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tonic part of j(v) associated with dissipation in the JJ
and the waveguide.

6. CONCLUSIONS

Thus, we have formulated a theory for the effect of
a magnetically coupled waveguide on the vortex in a
Josephson junction. We have established the properties
in afast Josephson vortex with a vel ocity much greater
than the Swihart velocity of the JJ.
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APPENDIX 1

The analysis presented in Section 2 can be extended
to the case of astandard sine nonlinearity when the den-
sity of the Josephson current depends on ¢ by the law
jcSIN®(z t); then, instead of Eq. (2.16), we have

SnY() = 2. (A1)

Thisequation differsfrom the well-known sine-Gordon
equation in that the coefficient of the second derivative
depends on velocity. A solution to (A1.1) correspond-
ing to a2rtkink is given by

_ U T U
w() = 4arctangexp[[2k,(v)z}g. (A.12)

For solution (A1.2) to describe a vortex, the quantity
ki(v) should be real, or, which is equivaent, the vortex
velocity should take values only within two allowed
bands (2.20) and (2.21). The latter means that, in the
model with sine nonlinearity, the range of alowed
velocities of a2rkink in the JJ coupled to awaveguide
also splits into two regions separated by a forbidden
band. Thus, the emergence of the forbidden velocity
band is not associated with the Sakai—Tateno—Pedersen
nonlinearity that we chose in the main body of the text
but is determined by the coupling between an eigen
electromagnetic mode of the waveguide and the Swi-
hart wave of the JJ.
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APPENDIX 2

The coefficientsin the expressions (3.11)—3.15) for
the phase differences are given by

_ T
Aw~—§sw(v)[1+—4— I((V)}k( ),
B = %+0(BZ, B2, BBy,

_n nzssN(v)v
C= ﬁa, D= > w,— k

=1L
BW - ﬁSN(V)kW!

Cu = —%zsm(v)km +O(B% B2, BBW).

(v)V

D, =TS, (V)kK,, eI K2,
2 w?

j
o o, Ky
_zsw(v)kj(v)[l—Ter}
F., =21S,(v)k,,
where S,(v) = S, V2, /(V3, — V2.

APPENDIX 3

For low dissipation, asolution to Egs. (3.3) and (3.4)
corresponding to the motion of an elementary vortex in
aJJwith velocities Vs < v < v, hasthe form

Ledf+]

() =—

" U B . T U
exp(1 a)kj(v)[z+4kj(v)]%

YAV 2

1SS, ——"—k;
! SS”wf(Viw—vz)

0 n U
< @PLHL -k + g B

2

Tt Vew
= —— SN >
2 sz -

P(0)

2ki(V)[l + HTO(—ijZV\V/)}
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N O B . T ]
expE](l a)kj(v)[z + 4kj(v)}%

-2ms,— L E

K eXpD—(l @k 3+ 75 (75 0
J

SW

inthe tail of the vortex (¢ < -14k;(v)) and

n}D

0
*ePLH(L+ a)ki(V)| = g5

¥ kjl?\v/)}

nmn U
4kj(v)}5

. Va
W@ =58k ()| 1T

 exp (L +a)ky(v)[ -
[l

in the head of the vortex (¢ > 174k (v)); in the middle
part of the vortex, a solution in the second alowed
velocity band is obtained from (3.20) and (3.21) by
changing the signs of the last terms.

APPENDIX 4

If dissipationissufficiently small, one can obtain the
following approximate expression for f(¢) from (3.4):

2

f(0) ~—SN [llJ () -kw(Q]. (A4D

SW

Substituting (A4.1) into (3.3), by analogy with the dis-
sipationless case, we obtain the following equation

for g(0):
FLul - 220w @) = L+ LYy @), a2

Je (;oj
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When F[U] corresponds to the nonlinearity in the
Sakai—Tateno—Pedersen model, Eq. (A4.2) differsfrom
that considered in [7] only in that the coefficients k(v)
and 3(v) depend on velocity. The similarity between
Eqg. (A4.2) and Eq. (2.1) from [7] allows one to use the
results of [7] and write the dependence (3.16) j(v) to a
linear approximation in dissipation.

If F[@] = siny, then the formal similarity between
Eqg. (A4.2) and Eg. (2.5) from [15] allows oneto usethe
results of [15] and write out the dependence (3.24).
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Abstract—The problem of the time evolution of an electron wave packet in a symmetric double quantum dot
under the action of a strong alternating electric field and a slowly varying bias voltage is solved theoretically
under the conditions when the el ectron subsystem can transfer its energy to asingle resonator mode. It is shown
that the possibility of energy exchange between the electron subsystem and the resonator does not hamper the
formation of stable electronic states localized in the left or right quantum dot (i.e., polarized states possessing
a positive or negative dipole moment). An adiabatic change in the bias voltage may alter the direction of the
dipole moment of the given state (which corresponds to an electron transition from one quantum dot to the

other). © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Considerable advances in nanotechnologies neces-
sitate the development of new devices operating in the
single-electron mode. In such devices, it is essentia to
control the wave function of an individual e ectron
using, for example, aternating external electromag-
netic fields. The control of charge or spin dynamics of
individual electrons by external alternating fields can
be referred to as the dynamic control of electronic
states.

Suitable objects for investigations in this field
include structures consisting of severa tunnel-coupled
guantum dots. In particular, the possibility of creating
electronic states localized within a quantum dot and
subsequent controllable transfer of such a localized
state to a neighboring quantum dot or well was con-
sidered earlier as applied to double quantum dots [1]
and wells[2—4] aswell aslattices of quantum wellsor
dots[5].

Generally speaking, thestudiesinthisfield began with
the works on the dynamic localization effect in lattices of
quantum wellsand in double quantum wells[6-9]. It was
shown in these publications that in order to “lock” the
electron density in a quantum well, a strong alternating
field with a definite relation between the amplitude and
frequency isrequired asarule. For thisreason, astrong
aternating field with a dlowly varying amplitude [2, 3]
was proposed in [1-5] for controlling an electron wave
packet for its transfer from one site to a neighboring
site; dternatively, in addition to a strong harmonic field
with a constant amplitude, it was proposed that an adi-
abatically varying bias voltage be applied [1, 4, 5].

It should be emphasized that the results obtained in
the above-mentioned publications corresponded to a
completely coherent mode of evolution of a wave
packet. Dissipative processes associated with the inter-
action of the electron subsystem with radiation fields
were completely disregarded. This study aims at theo-
retical analysis of the effect of weak dissipation on the
possibility of adynamic control of electronic statein a
double quantum dot. For this purpose, we will consider
amodel in which an electron located in a double quan-
tum dot interacts with the resonator and can emit
energy into one of the resonator modes (in actual prac-
tice, this can correspond, for example, to the phonon
mode of an impurity center in a quantum dot).

2. BASIC EQUATIONS OF THE PROBLEM

Let us consider a symmetric double quantum dot in
a slowly and monotonically varying electric field E(t)
and in an aternating electric field Fcoswt with a con-
stant amplitude. We assumethat, in zero field, the split-
ting energy #A for the ground level of size quantization
in the double quantum dot (splitting is due to weak tun-
nel coupling between the dots) is much lower than the
Size quantization energy. The wave functions X 4(r) of
the stationary states of two lower levels with energies
+hA/2 are symmetric and antisymmetric, respectively,
to the sign reversal of coordinate z (we assume that the
centers of the quantum dots lie on the z axis at a dis-
tance of L from the origin).

We assume that an electron in the quantum dot can
exchange energy with the resonator. For simplicity, we
will consider energy radiation to a single resonator
mode, which will be simulated here (following [10]) by
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Fig. 1. Energy diagram of atwo-level double quantum dot interacting with an oscillator of frequency Q.

a harmonic oscillator of mass m and frequency Q (see
Fig. 1). The operator of the interaction is linear in dis-
placement q of the oscillator from the equilibrium posi-
tion and is proportional to the electron dipole moment
D(2) in the double quantum dot (i.e., this operator isan
antisymmetric function of coordinate z).

The total Hamiltonian of the system has the form
H = Ae(r) + H (q) + ez(E(t) + Fcoswt) + CqD(2), (1)

where He(r) isthe electron Hamiltonian, H, (q) isthe
Hamiltonian of the harmonic oscillator of frequency Q,
C isthe constant of interaction of the electron with the
oscillator field, and —e is the electron charge. We
assume that fields E(t) and F are quite strong in the
sense that the characteristic value of the electron poten-
tial energy in the electric field is much higher than the
splitting energy (eLF, eLE(t) > AA). At the same time,
we assume that the values of eLF and eLE(t) are much
smaller than the characteristic energy of size quantiza-
tion in the quantum dot, which is of the same order of
magnitude as the potential barrier height. The latter
condition enables usto disregard the probability of sys-
tem excitation to the upper levels. As aresult, the elec-
tron quantum dynamics essentially affects only two
lower levels with energies +AA/2. These assumptions
enable us to use the two-level approximation for the
electron Hamiltonian.

In order to determine the wave function W(q, r, t) of
the system, we must solve the Schrédinger equation

N
ihse = AW @)

with Hamiltonian (1). We will seek the wave function
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of the system in the form of the following expansion:

Y(q,r,t)

= )(L(r)exp%%i—LIE(t)dHigliE
O

'nooq%
A0 0

- O . ]_DD
x § 1(t)®, Qe +3 3
nzzo (D9(Q) expL o 710 3)

O .eL .eLF . O
+ r)ex i—(E(t)dt —i=—shw

. 0. 0
x Z rn(t)dbn(q)expg—lQEw + %ﬂg

n=0

Here, I(t) and r.(t) are unknown expansion coeffi-
cients, ®,(q) are the stationary eigenfunctions of the
oscillator Hamiltonian, and X, g(r) are orthonormal
functions connected with X, 4(r) viathe relations

X (1) = XO(r)_Xl(r), Xo(r)"'Xl(r).

2 N2

The expansion in basis X, g(r) is more convenient for
us than the expansion in basis X, 4(r) of stationary
states since functions X, r(r) are amost completely
localized in the left and right quantum dots, respec-
tively. Consequently, the squares of the moduli of coef-
ficients|,andr, arethejoint probabilities of an electron
being in theleft or right quantum dot and of the oscilla-
tor being in the nth state.

Xr(r) =

No. 3 2004



DYNAMIC CONTROL OF ELECTRONIC STATES IN A DOUBLE QUANTUM DOT

The substitution of wave function (3) into
Schrddinger equation (2) leads to equations of the form

dI _ A .2el 2eLF
i = 3 B—I J’E(t)dt— P smcouj
—Bw(/nl,_exp{iQt +./n+1l,, exp{-iQf ),

dr_ A
gt T 2

D 2el 2elLF O 4

l,ex -—-—J’E(t)dt+ P smoou]

+Ba(/nr,_exp{iQf +./n+1r,. exp{-iQf),

where the dimensionless coupling parameter

_~[ 2 XAD(2)IxrD
B=C 2mQ fw

is introduced. In all subsequent calculations, we will
assumethat 3 < 1, which indicates aweak coupling of
the electron subsystem with the resonator.

Let us suppose that field E(t) varies with time
according to the law

E(t) = Eo(1+uwt), ()

where the dimensionless parameter | characterizes the
rate of variation of field E(t) and is small. The E(t)
dependence in form (5) is naturally not the single pos-
sible dependence. We choose this dependence as the
simplest from an infinite set of various monotonic
dependences.

Note that in the case when an electron experiences
the action of a constant field alone (i.e., for u = F =0),
the two-well potential becomes asymmetric, the energy
levels in the double quantum dot diverge by

JH2D® + 4€°L°E}, and the wave functions of station-

ary statesarelocalized in each potential well separately.
In the limit of a strong field, the quantum transition
energy approaches avalue of 2el E, and the wave func-
tions corresponding to each of these energy levels
become equal to X g(r) asshown in Fig. 1. If we now
“switch on” an aternating field of frequency w, the
guantum system can attain resonance when

2eLE, = hws, (6)

where sis an arbitrary integer.

For u # 0, with an appropriate choice of thetime ori-
gin, we can always make the constant component of
field E(t) exactly satisfy the resonance condition, e.g.,
with s = 1. Assuming that instant t = O is chosen pre-
cisely inthisway, wewill consider, without |oss of gen-
erality, the fact that E, satisfies the resonance condition
with s= 1. Then, Egs. (4) can be written in the follow-
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Fig. 2. Probahility of population of the left quantum dot for
B=0,A=7.7u=10"% and A= 0.2.

ing form, where the resonance terms with different val-
ues of sare explicitly separated:

dl, O |u1’
Ia = eXpD—

_B('\/ﬁln—
+/n+1,exp{-i(1+n)Y ),

D Z d.exp{—i(s+ 1)y

1&xp{i(l+n)T

dr,, (7
5 = - ex IOD——-D Z d.exp{i(s+ 1)1}

s——oo

+B(/nr,_sexp{i(1+n)7}
N+ 1, exp{-i(1+n)t ).

Here, we introduced the dimensionless time T = wX;
parameter n = Q/w — 1 characterizes the closeness of
the oscillator frequency to the resonance value, o, =
J(A)A2w < 1, and A = 2eLF/hw.

In the subsequent numerical calculations (whose
results are presented in Figs. 2-6), we assume every-
where that A = 7.7, u = 107, and A/w = 0.2. Choosing
energy #Q =102 eV (which correspondsto the charac-
teristic values of phonon frequencies) and distance L =
10 nm and taking into account the fact that frequency w
is close to oscillator frequency Q, we obtain avalue of
the alternating field amplitude F approximately equal
to 40 kV/cm. The resonance value of field E; in this
case is close to 5 kV/cm, which corresponds to bias
voltages in the structure equal to 0.1-0.01V. The split-
ting energy #A isfound to be2 meV; i.e., itisthesmall-
est energy scale of the problem, which was presumed
earlier. It should be noted that the chosen value of
parameter | corresponds to the increase in field E(t)
from the first resonance value (s = 1) to the second one
(s = 2) over atime approximately equal to 10° s. As
regards the coupling parameter 3, its value is deter-
mined by a specific type of interaction and may vary
over awideinterval (from nearly indefinitely small val-
uesto severa units).
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For i = 0, the two-level electron system can be in
exact resonance with the alternating electric field for an
infinitely long time. For p # O, for each instant, we can
introduce the concept of instantaneous energy of level
splitting, which is approximately equal to 2eLE(t) in a
strong field. In this case, the quantum system is effec-
tively close to resonance (when the action of the exter-
nal field isthe strongest) for acertain finitetimeinterval
determined by expression (5) and the relation between
parameters Y and 8. After this time, the two-level sys-
tem deviates from resonance and the type of the action
of the alternating electric field on this system changes.

We will now consider the solution of system (7). We
assume that, at the initial instant (here, this instant
should be acertain timet = —t, exceeding all character-
istic time scales of the problem, but not large enough
for the field E(—T,) to be negative), the oscillator is not
excited and the left quantum dot is populated, while the
right dot is absolutely freeg; i.e., we assume that

lo(=To) = 1, 1,(-T9) = O,
r.(-t,) =0, n=0.

n=1,

(8)

Obvioudly, initial condition (8) correspondsto the min-
imum energy of the electron + oscillator system.

3. DYNAMICS OF POPULATION
OF QUANTUM STATES OF THE SYSTEM

In the simplest case, when there is no coupling
between the double quantum dot and the resonator
(B=0), system (7) splits into independent pairs of
equations for amplitudes|,(t) and r (1) at each level of
the oscillator. To find the solution in the vicinity of res-
onance, it is sufficient to retain only one term with
s=-1ineach sum over sin Egs. (7). All these pairs of
equations are completely identical and can be reduced to
asingle second-order equation, say, for coefficient 1,(1),

dil, . dl, 5
e +|“TE+6 I, =0 9

(we have omitted index —1 on J).

An approximate solution to Eq. (9) was obtained
earlier in [4] by using the WKB method; here, we give
only thefinal expression for the total probability of fill-
ing for the left quantum dot:

45° + uztz — T
2,/48% + pzrz

While deriving this relation, we chose the value of 1,
equal to infinity since Eq. (9) was derived in the single-
resonance approximation. Expression (10) describes
the transfer of the electron density from the left to the

right quantum dot during an adiabatic transition of the
two-level electron system through a resonance.

W (1) =

(10)
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Thus, for T < 0, the separation between two lower
levels of the double quantum dot (the instantaneous
value of this quantity is 2el E(t)) isfound to be smaller
than energy 7w of an alternating field quantum. The
larger the value of |1], the farther the two-level system
from resonance and the higher the probability (10) of
occupation of the left quantum dot. With increasing
time, the separation between the energy levels of the
double quantum dot increases and, for T = 0, this sepa-
ration coincides with 7w, which means that the two-
level systemisin strict resonance (6). In this case, prob-
ability W, is equal to 1/2. A further increasein T leads
to further divergence of the energy levelsand to agrad-
ual withdrawal of the system from resonance. This pro-
cess is accompanied by a decrease in probability W, to
zero and virtually complete relocation of the electron
density to the right quantum dot. The characteristic
trangition time is determined by ratio &/, which
amounts to a value on the order of 107° s in dimen-
siona units.

Note that the exact solution to Eq. (9) represented in
Fig. 2 dlightly differs from the approximate solution
described by expression (10). Thisis due to the follow-
ing two circumstances. First, the numerical calculations
were made for a wider range of time T embracing two
neighboring resonanceswith s= 1 and s= 2, while solu-
tion (10) isvalid only in the vicinity of one resonance.
Second, as can be seen from Fig. 2, probability W, (1)
rapidly oscillates, although the amplitude of these
oscillations is small. Obviously, expression (10)
describing a smooth decreasing function is the result of
averaging of the exact solution over these rapid oscilla-
tionsin the region of the first resonance.

The oscillations observed in the exact solution arein
fact analogous to Rabi oscillations, which now occur in
astrong alternating field. If field E(t) were strictly con-
stant, the solution to Eq. (9) would havetheform (1) =
cosoT. In accordance with this solution, the electron
wave packet would oscillate between the two quantum
dots with constant frequency &, which has the meaning
of the Rabi frequency in astrong field (sincethefieldis
strong, frequency & is not linear in field amplitude F).
However, in view of variability of field E(t), the cosinu-
soidal dependenceisobserved only for times|t| < &/;
for chosen values of 6 and p (see the caption to Fig. 2),
the value of this time is on the order of unity. For T >
&%/, the second term that “quenches’ the amplitude of
oscillations dominates in Eq. (9). Since the value of
&%/u if found to be much smaller than the period 2175 of
Rabi oscillations, not asingle oscillation with complete
transfer of charge from the left to the right quantum dot
is observed.

Let us now consider a more interesting situation
when the electron subsystem interacts with the resona-
tor field; i.e., B # 0. The interaction with the resonator
can obvioudly break the dynamic control in the system
since it becomes possible for the electron located, say, in
theright quantum dot in astate di sadvantageous from the
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energy point of view to transfer its excess energy to the
resonator. As aresult, the resonator is excited and leaves
its ground state, while the electronic state that initially
possessed a certain polarization can be destroyed.

In order to find out whether it is possible to preserve
the dynamic control of the electron distribution in a
double quantum dot under the conditions of energy
exchange with the resonator, we must solve system (7)
for B # 0. In this case, system (7) obviously cannot be
represented in a closed form and can be solved only
numerically. At acertain step, it isnecessary to truncate
Egs. (7), which corresponds to the replacement of the
oscillator by an N-level system with an equidistant
spectrum.

Calculations show that the number of retained
energy levels of the oscillator and the solutions to
Egs. (7) themselves differ significantly for different
values of parametersn and (3. Further, we consider two
basically different cases, i.e., the nonresonance case,
when the frequency of the oscillator significantly dif-
fersfrom the frequency of the external alternating field
(i.e,, n #0), and the resonance case, whenn = 0.

The main problem is to evaluate the total (i.e.,
summed over al states of the oscillator) probability of
population of any of quantum dots (e.g., left) asafunc-
tion of time, which is now defined as

W (D) = 5 (o) (1)
n=0

Further, we calculate and discuss the behavior of indi-
vidual probabilities |l (t)[? and |r(T)[?, which are essen-
tial for determining the sum in Eq. (11).

Let us begin with the nonresonance case. Figure 3
shows the probability of exciting the oscillator to the
first level for n = 0.1. It can be seen from the figure that
it is as though probabilities |I,(T)[? and |r,(T)]? alternate
on the T axis: when one probability decreases, the other
startsto increase, and vice versa. Asregardsthe oscilla-
tor, it is excited most strongly when the two-level elec-
tron system is in the vicinity of the second resonance
for T ~ 10% Outside this neighborhood, probabilities
I,(T)|? and |r,(t) ] decrease by one or two orders of mag-
nitude. However, the excitation probability does not
exceed a few thousandths in the vicinity of the reso-
nance as well. Calculations show that the probabilities
of excitation of the oscillator to higher levels have val-
ues rapidly decreasing with increasing level number.
For exampl e, the probabilities of excitation of the oscil-
lator to the second level turn out to be lower than the
probabilities represented in Fig. 3 by 3—4 orders of
magnitude. Consequently, the oscillator is amost
always unexcited and, hence, hardly affectsthe electron
distribution in quantum dots.

Calculating the probabilities in the nonresonance
case (N = 0.1), we replaced the oscillator by afour-level
system; i.e., 0< n< 3. Theaddition of thefifth level leads
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Fig. 3. Probability of excitation of the oscillator to the first
level forn =0.1, =0.01, A = 7.7, p = 1074, and ANw = 0.2.

to corrections on the order of 1010 to the values of prob-
abilities, which is beyond the required accuracy limits.
We also calculated the total probability (11) of pop-
ulating the left quantum dot with an electron; in the
nonresonance case, this probability coincides with
[lo(T)[? to within fractions of percent (see Fig. 3). Calcu-
lations proved that the difference of the probabilities

AW, (T) = W, (1, = 0.01) —W, (1, B = 0)

remains small everywhere and amountsto ~10. It can
be proved analytically that this differencein the nonres-
onance case must be determined by the second power
of coupling parameter (3, which is confirmed by the
results of calculations.

Consequently, the dynamics of the electron density
remainsthe same asin the absence of coupling with the
resonator. Upon each passage of the two-level system
through the resonance, the double quantum dot reverses
the direction of polarization since the electron density
performs transition from one quantum dot to the other.

Let us now consider the resonance situation, when
n = 0. Figure 4 showsthe joint probabilities of popul at-
ing one of the quantum dots by an electron and of the
oscillator being in one of itsstatesfor 3 = 0.01 and A =
7.7. It can be seen from Fig. 4 that, after the transition
from the first resonance s = 1, probabilities |I(T)]?
decrease to values close to zero until the two-level sys-
tem finds itself in the vicinity of the next resonance
with s = 2. Conversely, probabilities |r(t)J? increase in
this range of T from amost zero values to a few tenths
for several first energy levels of the oscillator.

After the passage through the second resonance, the
probabilities of populating the right quantum dot
decrease to zero for al levels of the oscillator, while
probabilities |I,(T)J? increase. Upon the passage through
each next resonance, an increase or a decrease in the
probabilities obviously changes to a decrease or an
increase, respectively. The following tendency can be
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Fig. 5. Dynamics of excitation of the oscillator for 3 = 0.001. The values of the remaining parameters are the same asin Fig. 3.

traced: the longer the time of interaction between the
electron subsystem and the resonator, the higher the
degree of resonator excitation; i.e., higher and higher
energy levels of the oscillator become involved in the
process of energy exchange between the resonator and
the external alternating field. For this reason, the num-
ber N of oscillator levels that should be retained in the
calculations obviously depends on the time interval
during which we are going to observe the system. For
instance, for the time interval 5000 < T < 15000 over
which our calculations were made (see Fig. 4), the
number of energy levels of the oscillator was N = 8.

Figure 5 illustrates the case of a weaker coupling
(B= 1073 for A = 7.7). It can be seen that the general
form of the dependence of probabilities |l J* and |r,|° on
time T does not change as compared to the case when
3 = 0.01. As before, the oscillator is gradually excited
with timeto itshigher levels, but the process of its exci-
tation occurs much more slowly in view of a weaker
coupling with the electron subsystem. For this reason,
in theinterval of time variation shownin Fig. 5, coeffi-
cients lo(t) and ry(t) play the major role, while al
remaining amplitudes still have no time to increase
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appreciably. Intheregion—-5000 < T < 15000, the values
of probabilities |I,(T)[? and |r(T)]? for B = 0.001 differ
insignificantly from their valuesin the case of complete
absence of coupling. However, with increasing 1, these
differences gradually accumulate and the behavior of
probabilities for B = 0.01 qudlitatively repeats the
dependences shown in Fig. 4 for 3 = 0.01.

As in the nonresonance case, we calculate the totd
probability W, (1) by using formula (11). The results of
calculation for 3 = 0.01 are shown in Fig. 6, where the
probability difference AW, (1) isdepicted. It can be seen
that the differenceisextremely small inregiont < 0 (up
to resonance region), constituting a small fraction of a
percent of the probability W, (1) proper, which is shown
inFig. 2. Inthe vicinity of the resonance, the difference
noticeably increases and reaches several percent. Fur-
ther, in region T > 0, as we move away from the reso-
nance, the value of W\ (1) itself is insignificant, while
difference AW, (1), whose absolute value dightly
decreases in this region, nevertheless becomes of the
order of probability W, (1) itself.

In the region of the second resonance, a noticeable
“spike” of AW, (1) isobserved (although the probability
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Fig. 6. Variation of population probability for the left quantum dot, associated with the interaction between the el ectron subsystem
and the resonator, in the resonance case for A = 7.7, p = 10, and A/w = 0.2.

W, (1) itself sharply increases in this region), after
which the difference decreases again. On the whole, as
follows from Fig. 6, the deviation of probability W, (T)
from its value calculated for 3 = 0 does not exceed 0.1
in absolute value. It should be noted that, in contrast to
the nonresonance case, the difference is two orders of
magnitude larger and is apparently determined by the
first power of coupling parameter [3.

It should be noted that the value of difference
AW, (1) for = 0.001 turns out to be one or two orders
of magnitude smaller than for 3 = 0.01. For thisreason,
dependence W, (1) repeats the dependence shown in
Fig. 2 even to a higher degree of accuracy.

Thus, probability W, (t) of populating the left quan-
tum dot for various values of parameter 3 remains vir-
tually the same asin the absence of coupling both inthe
nonresonance (N = 0) and in the resonance (n = 0.1)
cases. Such a behavior indicates that the electron den-
sity, asbefore, performstransitions (asin the case when
3 = 0) from one quantum dot to the other upon an adia-
batic passage of the two-level eectron system through
resonance. Even in the case when an eectron wave
packet is localized in the right quantum dot, such an
“energetically disadvantageous’ electronic state polar-
ized againgt the externd field E(t) isfound to be stable. Its
stahility is due to the “locking” effect of the strong alter-
nating field, which confines the electron density in the
right quantum dot despite the possible energy exchange
between the el ectron subsystem and the resonator.

Onthewhole, it can be concluded that theinteraction
of theelectron subsystem with theresonator doesnot dis-
turb the dynamic control over electron states. This is
mainly duetothefact that the externa alternating field in
our model possesses an infinitely large energy, whose
finite part istransferred viathe two-level electron system
to the resonator. The state of the “transmitter” itself does
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not change in this case since any energy losses in it are
compensated by the strong dternating field.
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Abstract—Thin epitaxial films of Rey¢Bay4,MnO; (Re = La, Pr, Nd, Gd) on (001)-oriented single crystal
SrTiOz and ZrO,(Y ,O3) substrates have been prepared and studied. All films possess a cubic perovskite struc-
ture, except for the film with Re = La, which exhibited arhombohedral distortion of the perovskite lattice. The
results show evidence for the presence of two magnetic phases, ferromagnetic (FM) and antiferromagnetic
(AFM), inthefilms studied: (i) the magnetization isotherm M(H) appears as a superposition of alinear compo-
nent (characteristic of antiferromagnets) and a small spontaneous magnetization component; (ii) the magnetic
moment per formula unit is significantly reduced as compared to the value expected for the complete FM or
ferrimagnetic ordering; (iii) there is a difference between magnetizations of the samples cooled with and with-
out an applied magnetic field, which is preserved in the entire range of magnetic fields studied (50 kOe); (iv) the
temperature dependence of the magnetization M(T) in strong magnetic fieldsis close to linear (for the compo-
sition with Re = Gd, M(T) is described by a Langevin function for superparamagnets with a cluster moment
of 22ug); and (v) the magnetization hysteresis loops of the field-cooled samples are shifted along the field axis.
The exchange integral (characterizing the Mn—-O-Mn coupling via the FM—AFM phase boundary) estimated
from the latter shift is |J| = 1076 eV. This value is two orders of magnitude lower than the negative exchange
integral between the FM layers in ReMnO;, which makes the presence of atransition layer at the FM—-AFM
phase boundary unlikely. The temperature dependences of electrical resistance and magnetoresistance exhibit
maxima at the Curie temperature (T¢), where the magnetoresistance reaches a colossal value. This behavior
indicates that the two-phase magnetic state is caused by a strong s—d exchange. © 2004 MAIK “ Nauka/| nter-

periodica” .

1. INTRODUCTION

In recent years, much attention has been devoted to
manganites of the Re; _,A,MnO; system, where Reisa
rare earth ion and A = Ca, Sr, or Ba. This interest is
related to the phenomenon of colossal magnetoresis-
tance observed in some of these compounds at room
temperature. The compounds with A = Sr and Cawere
studied most thoroughly, while Re; _,BaMnO; compo-
sitionswere characterized to amuch lower extent, espe-
cialy in the case of thin films. Only thin films of the
La, _,BaMnO; system with x=0.2 and 0.33 were stud-
ied [1-3], in which the room-temperature magnetore-
sistance RyR, reached about 50% at H=0.8and 5T for
the former and latter composition, respectively. It was
also reported [4] that the magnetoresi stance of the com-
pound with x = 0.33 strongly depends on the degree of
nonstoi chiometry with respect to oxygen.

Compounds of the La, _,BaMnO; system are of
considerable interest because of very high Curie tem-
peratures. T = 362 was observed for x = 0.3 [5-7].
Such ahigh T valueisdueto arelatively large average

radius [,[of A cations, sinceit is known that the Curie
temperature of manganites of the ABO; type increases
with M Ovaue [8, 9]. At the same time, there is an
opposite trend (so-called misfit effect) related to a dif-
ference between the radii of different A cations (Re**
and Ba?*), which decreases the Curie temperature [10].

At present, there is no commonly accepted opinion
about the crystal structure of Re;_,BaMnO; com-
pounds. InLa, _,BaMnO; compositionswith 0.2 < x <
0.4, Radadlli et al. observed a hexagona structure

(space group, R3c), while Barnabe et al. [7] reported
on amore complicated crystal structure (in agreement
with the neutron diffraction data[11]) in stoichiometric
compositions of the Re; _,BaMnO; systems (Re=La,
Pr) with x = 0.4. At the same time, Raman spectroscopy
and X-ray data[12] for polycrystaline samples of the
La _,BaMnO; system with x = 0.35 showed evidence
of a phase separation into cubic La,gBay :sMnO; and
hexagonal BaMnO; phases. It was suggested [12] that
the structure of compounds with x = 0.35 cannot
accommodate Ba?* ions because of their large size.
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We have studied the crystal structure and the mag-
netic and electrical properties of thin epitaxial films of
Re, _,BaMnO; compounds (Re= La, Pr, Nd, Gd). The
observed features have been interpreted within the
framework of the modern theory of magnetic semicon-
ductors. As was noted above, only films of the
La _,BaMnO; system were reported previously [1-3].
The films of Re; _,BaMnO; with other rare earth ele-
ments have been prepared and characterized for thefirst
time.

2. EXPERIMENTAL METHODS

All films were grown by metalorganic chemical
vapor deposition (MOCVD) using aerosols of volatile
organometallic compounds. The aerosols of diglyme
solutions of the initial compounds with atotal concen-
tration of 0.02 mol/l were produced by an ultrasonic
source. The initial compounds for MOCVD were
R(thd); (R = La Pr, Nd, Gd), Mn(thd);, and
Ba(thd),(Phen),, where thd = 2,2,6,6-tetramethylhep-
tane-3,5-dionate and Phen = o-phenanthroline. The
samples were prepared in a reactor with an induction
heated substrate holder at a substrate temperature of
800°C, an oxygen partial pressure of 3 mbar, and atotal
pressure of 6 mbar. The deposition ratewas 1 um/h and
the film thicknesses ranged within 300—-400 nm. The
films were deposited onto (001)-oriented single crystal
SITiO; and ZrO,(Y ,04) substrates.

Thefilmswere studied by scanning electron micros-
copy (in combination with electron probe microanaly-
sis) and by X-ray diffraction. The magnetization of thin
films was measured with a SQUID magnetometer and
the electric resistance was determined by the conven-
tional four-point-probe technique.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

3.1. Sructural Characteristics of Thin Films

According to the X-ray diffraction data, the films
obtained on (001)-oriented SITiO; substrates repre-
sented single-phase perovskites epitaxially grown in
the “cube over cube’ mode. The pseudocubic lattice
parameter of the perovskite phase monotonically
decreased with the ion radius of Re**. Only the X-ray
diffraction pattern of the film of La, Ba, sMNnO; exhib-
ited weak superstructural reflections and splitting of the
pseudocubic reflections expected for a rhombohedral

distortion of the perovskite lattice (space group, R3c),
in accordance with the behavior of this material in the
ceramic state [7]. In all other Rey ¢Bay sMnNO; films, we
observed neither peak splitting nor superstructural
reflections characteristic of the rhombohedral, tetrago-
nal, or orthorhombic distortions encountered in the per-
ovskite structures of rare earth manganites described in
the literature. The increase in symmetry up to the cubic
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type can be explained by an increase in the parameter
of disorder with decreasing radius of the rare earth ion
(and, accordingly, by an increase in the difference of
ion radii of the rare earth element and barium statisti-
cally occupying the A sublattice sites in the perovskite
structure). This effect should be most pronounced in
compositions with the level of barium doping
approaching 0.5.

Thefilms grown on (001)-oriented ZrO,(Y ,03) sub-
strates exhibited simultaneous growth in two direc-
tions, (001) and (110). In the films of perovskite man-
ganites studied previously, we usually observed only
one of these orientations, namely, (110) [13, 14]. The
appearance of another typewe explain by anincreasein
the lattice parameter of barium-doped perovskite,
which leadsto achangein thelattice mismatch between
film and substrate.

3.2. Magnetic Properties

Figure 1 shows the temperature dependence of the
magnetization M(T) measured in various magnetic
fields for films of the PrBaMnO and GdBaMnO sys-
temswith x = 0.4 on SrTiO; substrates (bel ow, this sub-
script will be omitted). The M(T) curves of the
LaBaMnO and NdBaMnO films on the SrTiO; sub-
strates, as well as of the NdBaMnO film on the
ZrO,(Y,03) substrate, were very much like those
depicted in Fig. 1a for PrBaMnO films on the SITiO;
substrates. These magnetization measurements were
performed in two modes. The upper curves for each
field strength H were obtained by initialy cooling a
sample from T = 300 to 5 K in the given field, after
which the temperature variation of the magnetization
was measured in the course of heating of this field-
cooled (FC) sample. The lower curves were obtained
for a sample cooled in the absence of a magnetic field,
after which the field was applied and the M(T) curve of
the zero-field-cooled (ZFC) sample was measured in
the heating mode.

The data in Fig. 1 reveal differences between the
temperature dependences of the magnetization for the
FC and ZFC samples. The magnetization of FC sam-
ples is higher than that of the otherwise identical ZFC
samples. This difference increases with decreasing
temperature and is more pronounced in lower magnetic
fields. The M(T) curves of the ZFC samples studied in
small fields exhibit maxima at a certain temperature T;;
at T > T;, the curves of the FC and ZFC samples coin-
cide. In sufficiently large fields, the maximum in the
M(T) curves of the ZFC samplesis not observed, but a
difference between the cures of FC and ZFC samplesis
retained in the entire range of magnetic fields studied
(up to 50 kOe). The only exception was the GdBaMnO
film, for which the difference disappeared at H < 6 kOe
(seetheinset to Fig. 1b).

Figure 2 shows the magnetization isotherms mea-
sured at various temperatures for the FC samples of

No. 3 2004



614 GORBENKO et al.

.. |-

- H=50kOe™ e, 17

"y

1 1
100 200 300

S H=5000e 70"
e} .
2.51% 6ol ]

o 250~ -

T,K

Fig. 1. Temperature dependence of the magnetization M(T)
of thinfilms of Rey gBag 4sMnNO3with Re=Pr (a) and Gd (b)

on SrTiO3 substrates measured in various magnetic fields.

The upper and lower curves for each field strength H refer
to the FC and ZFC samples, respectively (see the text).
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Fig. 2. Magnetization isotherms of Ndg gBag 4sMnO; films
on SrTiO3 substrates measured at various temperatures.

NdBaMnO films on SrTiO; substrates. The magnetiza-
tion isotherms of the other films studied in our experi-
ments were analogous to those presented in Fig. 2. As
can be seen, the M(H) curves appear as superpositions
of asmall spontaneous magnetization component and a
linear component characteristic of antiferromagnets.
By extrapolating the linear parts of the M(H) curves to
intersection with the M axis, we determined the sponta-
neous magnetization component and calculated the
experimental magnetic moments e, (expressed in
Bohr magnetons per formula unit, pg/FU). The values
of Hep @ T =5 K for the films of all studied composi-
tions are given in the table. For comparison, we also
present the values of theoretical magnetic moments
(Ug/FU) calculated for three variants of spin ordering
for Mn3, Mn*", and Re3* ions:; the first value refers to
FM ordering only between Mn®* and Mn**; the second,
to FM ordering of Mn®*, Mn*, and Re**; and the third,
to FM ordering of Mn** and Mn*, and AFM ordering
of Re*". These values were cal cul ated using the follow-
ing pure spin moments of therare earth ions: 25 (Pr3*),
3ug (Nd®), and 7ug (Gd®*). As can be seen, the values
Of Uey, are much lower than py, in al cases. This exper-
imental fact also provides evidence for the presence of
two magnetic phases in the films under consideration.

In the films with Re = La, Pr, and Nd, the behavior
of M(T) in strong magnetic fieldsis closeto linear (see
Fig. lafor the PrBaMnO films), which is untypica of
ferromagnets. As is known, the temperature depen-
dence of the magnetization in ferromagnets is
described by the Brillouin function [15]. Obviously, the
exact value of the Curie temperature can be determined
only in experiments performed in the absence of exter-
nal magnetic fields, because such afield suppresses and
smears the phase transition. In practice, however, the
Curietemperature is frequently determined by extrapo-
lating the steepest (upper) part of the M(T) curveto the
temperature axis. In the general case, this yields a cer-

tain characteristic temperature T that is close to the
Curie temperature. The characteristic temperatures
determined in this way for the films studied in our
experiments strongly depend on thefield applied during
the M(T) measurements. The values of T obtained by
this method are listed in the table. As can be seen, the

T, vauesignificantly increases with increasing H. For

example, the T valuesfor theLaBaMnO filminafield

of 100 Oeis283 K and that in afield of 50 kOeis 90 K
higher, amounting to 373 K. In magnetically homoge-
neous materials possessing spontaneous magnetization
(for example, in ferromagnets) this difference does not
exceed 10 K.

As can be seen from Fig. 1b, the film of GdBaMnO
exhibits a difference between magnetizations of the FC
and ZFC samples only in sufficiently small fields: no
such differenceis observed for H = 6 kOe. The shape of
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Magnetic properties of thin epitaxial films of ReygBaysMnO; (Re = La, Pr, Nd, Gd) on (001)-oriented SrTiO; and

ZrOy(Y ,0,) substrates

Re La Pr Nd Nd Gd
Substrate SITiO; SITiO; SITiO; ZrO,(Y,03) SITiO;

Hexp: Hg/FU 1.93 1.15 1.52 1.35 3.28
Heh, Mg/FU 36 36,48 24 36,5.4,18 36,5.4,18 3.6,7.8,0.6
AH, Oe 57 400 230 300 380
K,, erg/cm® 10* 1.9 x 10* 1.2x10* 3.2x10* 2.7 x 10*
Te, K (H=1000e¢) 283 160 142 145 75
Te, K (H=6kOe) 308 213 170 210 26
Te, K (H=50kO0e) 373 369 260 50
T;, K (H = 100 Oe) 100 95 73 75
T;, K (H =6 kOeg) 50 50 41 38
T;, K (H = 50 kOe) 30 33 33
To(maxy: K 284 116

the M(T) curvesfor thisfilm also differsfrom that of the
curvesin Fig. la (the latter are also typical of the films
of other compounds studied). In weak fields, the M(T)
curves of the ZFC samples of GdBaMnO (Fig. 1b) pass
through a maximum and then exhibit a minimum fol-
lowed by a sharp increase. The curves of the FC sam-
plesexhibit only an inflection point (instead of the max-
imum and minimum observed for the ZFC samples)
followed by a sharp growth with decreasing tempera-
ture. In afield of H > 6 kOe, the difference between
M(T) curves of the FC and ZFC samples disappears and
the magnetization in both cases monotonicaly
decreases with increasing temperature, showing no sin-
gularities observed in lower fields. The magnetic
moment of the film measured at 5 K inafield of 50 kOe
is 3.28ug/FU.

At the same time, the M(T) curves measured in the
fields H < 6 kOe resemble those of a ferrimagnet with
the compensation point. In this case, the theoretical
low-temperature magnetic moment i, per formula unit
at low temperatures must be equal to the difference
between the magnetic moments of Gd** and manganese
ions, that is, to 0.6pg/FU. The experimentally observed
magnetic moment at H = 500 Oe, where the compensa-
tion point is still observed, does not exceed 0.085/FU,
which islower than 1, by afactor of 7.5. This suggests
that only a part of the sample (about 13%) is ferrimag-
netic, while the remaining part is antiferromagnetic. It
should be noted that the ferrimagnetic state with acom-
pensation point was previously observed in the related
compound Gd, g;Ca, 3sMnO; [16]. The presence of an
AFM phasein the GdBaMnO film is also evidenced, as

was noted above, by the magnetization curves. For H =
6 kOe, the compensation point in the M(T) curvesisno
longer observed and the magnetization strongly
increases, so that the magnetic moment reaches
3.28lp/FU at 5K inafield of 50 kOe. Thisvaueissig-
nificantly greater than that in a sample with complete
ferrimagnetic ordering (0.6pg/FU), but still markedly
smaller that the magnetic moment in the case of
complete FM ordering (7.8ug/FU. Apparently, the
moments of Gd® and manganese ions exhibit FM
ordering, but the FM phase occupies only a part of the
sample volume.

The above considerations suggest that the phase
with spontaneous magnetization in a GdBaMnO film
occurring in atwo-phase magnetic state exhibits amag-
netic field-induced transition from ferrimagnetic to FM
ordering. The experimental M(T) curve observed in a
field of 50 kOeiswell described by the Langevin func-
tion for an ensemble of superparamagnetic clusters
with a ferromagnetic moment of u = 22U, and a true
magnetization of My = 73.6 emu/g,

M/M, = coth(py/KT) —KT/pH, )

where M is the magnetization at a given temperature
and My, is the true magnetization. Thisisillustrated in
Fig. 3, showing a good fit of experimental data (sym-
bols) to a theoretical curve constructed according to
relation (1). Assuming that the spins of Gd** and man-
ganese ionsin a cluster are ferromagnetically ordered,
the cluster includes approximately three formula units.
These results also provide evidence that a two-phase
(FM-AFM) magnetic state exists in the GdBaMnO

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No. 3 2004



616

M, emulg
80 T T T T

60 .

40 ]

201 .

0 50

1 1 1
100 150 200
T,.K
Fig. 3. Temperature dependence of the magnetization M(T)
of athin film of GdpgBag4MnO3 on a SrTiO3 substrates
measured in amagnetic field of H = 50 kOe (black squares).
Solid curve shows the Langevin function calculated for an
ensemble of superparamagnetic clusters with the magnetic
moment p = 22ug and the true magnetization My =

73.6 emu/g.
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Fig. 4. Magnetization hysteresis loop of a thin film of
Pro.6Bag4MnO3 on a SiTiO3 substrates measured at 5 K

upon cooling the sample in a magnetic field of 4 kOe. The
inset shows the same for athin film of Gdg gBag 4sMnNO3 on

a SrTiO5 substrate.

film, with the magnetic moment of the FM cluster
amounting to approximately 22 in amagnetic field of
50 kOe.

The existence of a two-phase magnetic state in the
films under consideration is also confirmed by the fact
that the magnetization hysteresis loops of FC samples
are shifted along the field axis. This is illustrated in
Fig. 4, showing such shifted loops for PrBaMnO and
GdBaMnO films. An analogous shift of the hysteresis
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loop was originally observed in partly oxidized cobalt
[17], whereit was attributed to the exchange interaction
between FM Co particles and their AFM shells of CoO.
This phenomenon was caled exchange anisotropy.
Later, the shift of hysteresisloopsin the samples cooled
in a weak magnetic field was considered evidence for
aspin glass state. Nevertheless, this phenomenon has
been explained only for cluster spin glasses and must be
absent in a true spin glass containing only randomly
oriented spins. Kouvel [18] explained the shift of the
magnetization hysteresis loops observed in CuMn and
AgMn spin glasses by an inhomogeneous distribution
of manganese ions: the regions depleted of Mn were
assumed to be ferromagnetic, while the Mn-rich
regions featuring exchange interaction were considered
antiferromagnetic.

The shift of the magnetization hysteresis loops
observed in our samples unambiguously point to the
existence of a two-phase (FM—-AFM) magnetic state
with exchange interact ion between the FM and AFM
regions of the films. This shift can be expressed as

AH = K /M, (2

where K, is the exchange anisotropy constant and M is
the saturation magnetization. The exchange anisotropy
constants K, calculated for all films have proved to be
on the order of 10* erg/cm? (see tabl€). Using these val-
ues, it is possible to determine exchange integral J char-
acterizing the Mn—-O-Mn coupling via the FM-AFM
phase boundary, provided that the area of thisinterface
is known. Unfortunately, no such data are available at
present.

3.3. Electrical Properties

The resigtivity p and magnetoresistance Ap/p =
Py — Pu=0)pPy=o Of LaBaMnO, PrBaMnO, and
NdBaMnO films on SrTiO; substrates were studied at
T>78 K and H < 82 kOe. The resistances of
GdBaMnO films on SITiO; and NdBaMnO films on
ZrO,(Y ,0O3) were so high (because of very small film
thicknesses) that we failed to measure the p values
below T by the four-point-probe technique. Figure 5
showsthe p(T) curves of thefilms studied. Figure 6 pre-
sents data on the behavior of {Ap/p}(T) for PrBaMnO
and LaBaMnO. The magnetoresistance is negative and
the p(T) and [{Ap/p}|(T) curves exhibit maxima. The
temperatures of maxima for the latter curves are lower
than those for the former ones, which istypical of mag-
netic semiconductors. The resistivities at maximawere
as follows: ~10-3 Q cm for PrBaMnO and NdBaMnO,
and ~10° Q cm for LaBaMnO. The magnetoresistance
at maximum isvery large, reaching 43% for PrBaMnO.

The presence of peaks in the temperature depen-
dences of p and Ap/p, together with the colossal mag-
netoresistance, are indicative of the existence of atwo-
phase magnetic state related to astrong s-d exchangein
the films studied. Evidently, these manganites are
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Fig. 5. Temperature dependence of the resistivity p of thin
films of Rey gBag 4MnO3 with Re = Gd (1), Nd (2), Pr (3),
and La (4) on SrTiO3 substrates.

essentially the AFM  semiconductors LaMnOs,
PrMnO;, NdMnQO;, and GdMnO; doped with Ba?*
ions. Judging by the resistivity p, the films of
LaBaMnO, PrBaMnO, and NdBaMnO on SrTiO; sub-
strates occur in a conducting two-phase magnetic state
withAFM clustersdeprived of charge carriers (holes) are
dispersed in a conducting FM matrix. This conducting
two-phase magnetic state related to a strong s-d
exchange has been described in review [19]. This stateis
characterized by a sharp increase in resistivity in the
vicinity of the Curie point. There are two mechanisms by
which the impurity magnetism influences the resistance:
the scattering of charge carriers (decreasing their mobil-
ity) and the formation of a tail (representing localized
states) in the conduction band. Inthevicinity of the Curie
point, charge carriers sharply lose the mobility and
exhibit partia localization in the band tail, which
explains the appearance of a maximum in p(T) near Tc.
Under the action of a magnetic field, these charge carri-
ers are delocalized from the band tail and their mobility
increases that leads to a colossal magnetoresi stance.

As can be seen from Fig. 5, the film of GdBaMnO
possesses the maximum resistivity among the samples
studied, exceeding 1 Q mat T = 150 K (i.e., signifi-
cantly above T). This suggests the presence of an insu-
lating two-phase magnetic state comprising FM drops,
where charge carriers (holes) are concentrated dueto an
s—d exchange energy gain [19], dispersed in an insul at-
ing AFM matrix.

4. CONCLUSIONS

The magnetic properties of the films described
above resemble those of cluster spin glasses. Indeed,
there are differences between magnetizations of the FC
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Fig. 6. Temperature dependence of the magnetoresistance
of thin PrggBagsMnO3; and LaggBag4MnO3 films on

SrTiO3 substrates measured in a magnetic field of 8.5 kOe.

and ZFC samples (Fig. 1), the magnetic moment per
formulaunit at 5 K is strongly reduced (see table), and
the M(T) curve shape differs from that of the Brillouin
function. On the other hand, there are significant dis-
tinctions aswell. First, the M values of the FC samples
of spin glasses are independent of the temperature at
T < T;, provided that the cluster size does not vary with
the temperature (this condition is usually valid for spin
glasses). In contrast, the magneti zations of our FC sam-
ples increase with decreasing temperature. Second, in
spin glasses, the behavior of the magnetization in FC
and ZFC samples differs only in small fields not
exceeding several kOe, whereas our films (except
GdBaMnO) exhibit thisdifferencein the entire range of
magnetic fields studied (up to 50 kOe). These facts can
be explained assuming that a decrease in the tempera-
ture leads to an increase in the volume of the FM phase
in the two-phase magnetic state. The same factor can
account for the difference between the M(T) curve and
the Brillouin function. Third, the magnetization iso-
therms of spin glasses are substantially nonlinear (see
Fig. 2), while those of our films are superpositions of a
small spontaneous magnetization component and the
linear component characteristic of antiferromagnets.

The shift AH of the magnetization hysteresis loops
of the FC samples along the H axisis unambiguous evi-
dence in favor of the two-phase magnetic state,
although this state is also observed in spin glasses
(whereitisentirely dueto the presence of FM and AFM
regions and the exchange interaction between them, as
was pointed out by Kouvel [18]). Using the field shift
AH, we have estimated the exchange integral J charac-
terizing the Mn—O-Mn coupling via the FM-AFM
phase boundary in some manganites occurring in an
insulating two-phase (FM-AFM) magnetic state [20].
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It was found that |J| ~ 1076 eV. This value is two orders
of magnitude lower than a negative exchange integral
between the FM layersin LaMnO; (|J;| = 5.8 x 10*eV)
determined from the neutron scattering data [21]. This
result indicates that the presence of a transition layer
with tilted spins at the FM—AFM phase boundary is
unlikely.

In the material occurring in a two-phase magnetic
state, the charge carriers are concentrated in the FM
phase and are absent from the AFM phase. For thisrea-
son, the topology of the two-phase magnetic state is
determined by the Coulomb forces and the interfacial
energy. As can be seen from data presented in the table,
the FM phase volume in LaBaMnO, PrBaMnO, and
NdBaMnO on SrTiO; substrates occur in a conducting
two-phase magnetic state with the FM phase filling the
space between insulating AFM spheres. Since the K,
values are on the same order of magnitude for all the
films studied (a part of which occur in the conducting
two-phase magnetic state) and for the manganites
reported in [20] (occurring in an insulating two-phase
magnetic state), we may suggest that the area of the
FM—-AFM phase boundary in thetwo casesisalso com-
parable. Therefore, the conclusions madein [20] can be
expanded to include the films considered above, so that
the presence of atransition layer with tilted spins at the
FM—-AFM phase boundary is unlikely. The GdBaMnO
films apparently occur in an insulating two-phase mag-
netic state. For this material, the magnetic moment of the
FM clusters estimated using the Langevin function (1)
for H=50kOeis 22 iz, which correspondsto threefor-
mula units.
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