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Abstract—Given the anomalous magnetic moments of electrons and positrons in the one-loop approximation,
we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg–Euler
Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization
of the Lagrangian is real for arbitrary magnetic fields. In a weak field, the calculated Lagrangian matches the
standard Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian com-
pletely disappears and the Lagrangian tends to a constant determined by the anomalous magnetic moments of
the particles. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The quantum corrections to the Maxwellian
Lagrangian of a constant electromagnetic field were
first calculated by Heisenberg and Euler [1] in 1936.
Radiative corrections corresponding to polarization of
an electron–positron vacuum by external electromag-
netic fields with diagrams containing different numbers
of electron loops are still the focus of attention [2–4].
Estimates suggest that the quantum (radiative) correc-
tions could reach the Maxwellian energy density of the
electromagnetic field only in exponentially strong elec-
tromagnetic fields1

 (Fc ~ exp(3π/α)Hc) [5]. The calcu-
lations by Heisenberg and Euler are known to contain
no approximations in the intensity of external electro-
magnetic fields, and their results have been repeatedly
confirmed by calculations performed in terms of differ-
ent approaches. On this basis, several authors have
identified the field intensity Fc with the validity bound-
ary of universally accepted QED. However, it is clear
that, although such quantities were greatly overesti-
mated because the corresponding scale lengths are
many orders of magnitude smaller than not only the
scale on which weak interactions manifest themselves,
but also the Planck length, determining the validity
range of traditional QED is currently of fundamental
importance. While on the subject of the physics of
extremely small distances, we cannot but say that there
is a strong analogy2 between the phenomena that arise

1 Here, we use a system of units with " = c = 1, Hc = m2/|e| =

4.41 × 1013 G is the characteristic scale of the electromagnetic
field intensity in QED, e and m are the electron charge and mass,
and α = e2 = 1/137 is the fine-structure constant.

2 This analogy was first pointed out by Migdal [6] and Ritus [2].
1063-7761/04/9803- $26.00 © 20395
for large momentum transfers and the processes in
intense electromagnetic fields [2–17]. In fact, the over-
lapping of seemingly distinctly different areas of phys-
ics is not accidental and is suggested by simple dimen-
sion considerations.

Allowance for the electromagnetic field intensity
based on the exact integrability of the equations of
motion is known to play an important role in studying
the quantum effects of the interaction between charged
particles and the electromagnetic field. In particular, the
standard Schwinger correction to the Bohr magneton

which is called the anomalous magnetic moment of a
particle,

manifests itself only in the nonrelativistic limit for
weak quasi-static fields [7]. Indeed, when the influence
of an intense external field is accurately taken into
account, the anomalous magnetic moment of a particle
calculated in QED as a one-loop radiative correction
decreases with increasing field intensity and increasing
energy of the moving particles from the Schwinger
value to zero. In particular, for magnetic fields H ~ Hc ,
the anomalous magnetic moment of an electron is
described by the asymptotic formula [7, 10]

(1)

It follows from (1) that ∆µ(H) becomes zero only at one
point while decreasing with increasing field. A similar
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expression for the anomalous magnetic moment of an
electron in an intense constant crossed field E ⊥  H
(E = H) at Hp⊥  @ mHc , where p⊥  is the electron
momentum component perpendicular to E × H, can be
represented as [11]

(2)

Note that ∆µ(E) ≠ 0 in the entire range of parameters.

Numerous calculations of the Lagrangian for an
electromagnetic field (see, e.g., [1–3, 5–7, 11]) have
been performed by assuming that the magnetic moment
of electrons is exactly equal to the Bohr magneton,3 i.e.,
at ∆µ = 0. However, the following question is of consid-
erable importance in elucidating the internal closeness
of QED: What effects will allowance for the anomalous
magnetic moments of electrons and positrons produce
when calculating the polarization of an electron–
positron vacuum by intense electromagnetic fields?

Thus, it is of interest to take the radiative corrections
to the Maxwellian Lagrangian of a constant field calcu-
lated by the traditional method and compare them with
the results that can be obtained from similar calcula-
tions by taking into account the nonzero anomalous
magnetic moments of particles. The fact that the
Lagrangian replacing the Heisenberg–Euler Lagran-
gian with nonzero anomalous magnetic moments can
be calculated by retaining the method of exact solutions
of the Dirac equation in arbitrarily intense electromag-
netic fields also deserves serious attention. In the
approach under development, the suggested theoretical
generalization initially contains no constraints on the
electromagnetic field intensity.

It should be noted that nonzero anomalous magnetic
moments also appear in some of the modified quantum
field theories (QFTs) that also describe the electromag-
netic interactions. In particular, this is true for a gener-
alization of the traditional QFT known as the theory
with “fundamental mass” (see, [12, 13] and references
therein). The starting point of this theory is the condi-
tion that the mass spectrum of elementary particles is
limited. This condition can be represented as

(3)

where the new universal parameter M is called the fun-
damental mass. Relation (3) is used as an additional
fundamental physical principle that underlies the new
QFT. A significant deviation from traditional calcula-
tions is the fact that the charged leptons in QED with
fundamental mass have magnetic moments that are not
equal to the Bohr magneton. This is because, apart from
the traditional “minimal” term, the new Lagrangian of
the electromagnetic interaction includes “nonminimal”

3 The authors of [4] took into account the anomalous magnetic
moments of particles when analyzing the equilibrium processes
in a degenerate electron–nucleon gas in a strong magnetic field.
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terms. Thus, an electron in modified QED has an anom-
alous magnetic moment from the outset:

(4)

An important aspect of the problem under consider-
ation is that the current state of the art in the develop-
ment of laser physics [14] allows one to carry out a
number of optical experiments to directly measure the
contributions from the nonlinear vacuum effects pre-
dicted by various generalizations of Maxwellian elec-
trodynamics [15]. Therefore, it should be emphasized
that experimental verification of the nonlinear vacuum
effects with a high accuracy in the presence of rela-
tively weak electromagnetic fields can also provide
valuable information about the validity of QED predic-
tions at small distances [16, 17]. Note in passing that
precision measurements of various quantities (e.g., the
anomalous magnetic moments of an electron and a
muon) at nonrelativistic energies, together with studies
of the particle interaction at high energies, are of cur-
rent interest in the same sense.

2. CORRECTION TO THE LAGRANGIAN 
OF AN ELECTROMAGNETIC FIELD 

WITH ALLOWANCE 
FOR ANOMALOUS MAGNETIC MOMENTS

OF PARTICLES

Let us consider the correction to the Lagrangian of
an electromagnetic field attributable to the polarization
of an electron–positron vacuum in the presence of an
arbitrarily strong constant magnetic field by taking into
account the nonzero anomalous magnetic moments of
the particles. To solve this problem, it is convenient, as
in the standard approach [5], to represent the electron–
positron vacuum as a system of electrons that fill “neg-
ative” energy levels. For a constant uniform magnetic
field, the Dirac–Pauli equation containing the interac-
tion of a charged lepton with the field (including the
anomalous magnetic moment of the particle) has an
exact solution [18]. In this case, the energy eigenvalues
explicitly depend on the spin orientation with respect to
the axis of symmetry specified by the magnetic field
direction. Thus, the energy spectrum of an electron that
moves in an arbitrarily intense constant uniform mag-
netic field is

(5)

where p is the electron momentum component along
the external field H; n = 0, 1, 2, … is the quantum num-
ber of the Landau levels; and ξ = ±1 characterizes the
electron spin component along the magnetic field.
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Noting that the radiative correction to the classical
density of the Lagrangian is equal, to within the sign, to
the total energy density of the electron–positron vac-
uum in the presence of an external field [5],

let us calculate WH in a constant magnetic field by tak-
ing into account the anomalous magnetic moment of
the electron. Without dwelling on the details of stan-
dard calculations, we represent WH as

(6)

where

(7)

Using the Laplace and Fourier integral transforms
for the functions that define (6) and performing summa-
tion over Landau levels, we can obtain the following
formula for +':

(8)

where we use the notation

1F2(z) is the generalized hypergeometric function. For-
mula (8) is an exact expression for the Lagrangian with
allowance for the anomalous magnetic moment calcu-
lated in the one-loop approximation in an arbitrarily
intense magnetic field. An important deviation from the
Heisenberg–Euler Lagrangian is that expression (8)
contains the additional field scale

(9)

In the theory with fundamental mass, it would be natu-
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ral to call the quantity

(10)

a fundamental field.
Passing to the limits of integration over x from zero

to ∞ in (8) and using the evenness of the function 1F2(z),
we obtain

(11)

where y = ηγ/b1 and z = –b4/64x2.
In particular, it immediately follows from (11) that

The fact that the Lagrangian +' is real for all possible
field intensities suggests the absence of unstable
modes; i.e., the vacuum in a constant uniform magnetic
field in the case under consideration, as in traditional
QED, is stable against the spontaneous production of
electron–positron pairs.

Next, let us separate out the integral over x in
expression (11). After several obvious substitutions, it
reduces to

(12)

where

Since the expansions

are valid, we obtain for (12)
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It is easy to see that the following expansion of the
function 1F2(z1) at zero may be used in a field that is
weak compared to the fundamental field :

(14)

Hence, we obtain for (13)

(15)

where y = ηγ.
Substituting (15) into (11) and performing standard

regularization of the derived integral [5] yields

(16)

Thus, it follows from (16) that in the limit of a weak
field, formula (11) matches the Heisenberg–Euler
Lagrangian [1] for an arbitrarily intense constant uni-
form magnetic field.

Next, let us consider H > . It is easy to verify
that in the limit of extremely strong fields, H @

/Hc , we may again use expansion (14) and can
obtain the following expression for integral (13):

(17)

where y = /(HcH). Results (15) and (17) have
a simple meaning: for a sufficiently wide energy gap
that separates the electron and positron states, the terms
with large numbers k make the largest contribution to
integral (13). However, for magnetic fields close to the
fundamental field, H ~ , i.e., when the gap width
is close to zero, the term with k = 0 makes the largest
contribution to the sum in the integrand of (13). In this
case, integral (13) can be calculated exactly. Our calcu-
lations yield

(18)

The estimates of integral (12) in the three ranges of
magnetic fields (H ! , H ~ , and H @ ) can
be represented as a single formula:

(19)

Substituting (19) into (11) and regularizing the remain-
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ing diverging integral,4 we obtain

(20)

where a = Hc/ .

3. ASYMPTOTIC RESULTS

In weak fields (H ! Hc) and in the limit of very

strong magnetic fields (H @ /Hc), the integrand
in (20) admits an expansion into a series. In the first
approximation,

whence it follows that

(21)

Thus, the quantum correction to the Maxwellian
Lagrangian in the limit of a weak field (H ! Hc) can be
represented as

(22)

where the first term matches the standard Heisenberg–
Euler formula. The first correction to it attributable to
the anomalous magnetic moments of the particles is
negative and quadratic in a.

In an extremely strong field (H @ /Hc), we
can also obtain from (21)

(23)

4 First, as usual [5], the part of the integral that does not contain the
magnetic field intensity and that represents the energy of the free
vacuum electrons should be discarded. Second, it is necessary to
subtract the contribution proportional to H2 that has already been
included in the unperturbed field energy. Discarding this term is
related to renormalizing the field intensity and, hence, the charge.
Finally, subtracting a contribution on the order of H4/H*4 basi-
cally corresponds to renormalizing an additional parameter of the
theory—the anomalous magnetic moment of the particle.
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According to (23), in the limit of extremely strong
fields, the Lagrangian +' ceases to depend on the field;
i.e., as the field grows, the quantum correction to the
density of the Lagrangian in the case under consider-
ation asymptotically approaches the constant

(24)

In a certain sense, the result obtained may be com-
pared with the situation observed in the standard model,
where the cross sections for several processes cease to
increase with energy if, apart from a photon, vector W±-
and Z0 bosons, an additional diagram with a Higgs
H boson is included in the analysis. Allowance made
for this diagram reduces the increasing terms in ampli-
tude and leads to a behavior of the cross sections con-
sistent with the unitary limit. Since the standard model
does not predict the mass of the H-boson, it may well
be that this particle is much heavier than the t quark, the
heaviest known elementary particle. Thus, MH ~ 1 TeV
may prove to be the critical mass that limits the mass
spectrum of elementary particles, i.e., acting as the fun-
damental mass (see (3)).5 

By comparing the correction +' with the Lagrangian
of the Maxwellian field, we can determine the field
intensity

(25)

at which +0 becomes equal to (24). For H = , the
quantum correction +' does not yet reach its asymp-
totic value of . A comparison of +0 and +' in other
field ranges clearly shows that the corrections +' are
always small compared to the Lagrangian +0. The rel-
ative corrections +'/m4 derived from (20) for the anom-
alous magnetic moments of particles ∆µ1/µ0 = 10–3,
∆µ2/µ0 = 10–3.05, and ∆µ3/µ0 = 10–3.1 are plotted against
magnetic field intensity γ = H/Hc in Fig. 1.

We estimate the Lagrangian for strong magnetic
fields by using formula (20), which we will represent
after the substitution γη/b1  x as

(26)

5 Note in this connection that the chief goal in the research at the
Large Hadron Collider (LHC) at CERN is the search for Higgs
bosons in a mass range up to 1 TeV.
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For Hc ! H ! /Hc, the range 1 ! x !

/  is important in integral (26). In this case,
the hyperbolic functions may be substituted with expo-
nentials and the integrand in (26) becomes

(27)

where

For Hc ! H <  (1 ! γ < 2/a), f1 ~ f2 = –x/γ
and we find from (26) with logarithmic accuracy that

(28)

For a  0, this formula matches the Heisenberg–
Euler Lagrangian in the limit of strong magnetic fields,
H @ Hc [5].

If  < H ! /Hc or 2/a < γ ! 4/a2, then
f1 ~ f2 = –γa2x/4. The range 1 ! x ! 4/(a2γ) gives the
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Fig. 1. Normalized Lagrangian +'/m4 versus magnetic field
intensity γ = H/Hc for various anomalous magnetic

moments of particles: 1—∆µ1/µ0 = 10–3, 2—∆µ2/µ0 =

10−3.05, and 3—∆µ3/µ0 = 10–3.1.
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largest contribution to the integral. In this case, we find
from (26) that

(29)

For H @ /Hc , we return to the cases considered
above (see (23)) where the range x ! 1 gives the largest
contribution to integral (26).

If aγ = 2, i.e., for H = , the exponent (f1) in one
of the exponentials in (27) becomes zero. It is easy to
verify that this term is attributable to the contribution
from the ground energy state ε0 (see formula (7)) in
which the dependence on particle mass completely
drops out at this field intensity. There is no such state
with a “dropping” mass in the structure of the Heisen-
berg–Euler Lagrangian for a fixed field. However, if we
consider the passage to the limit m2  0, then the
Heisenberg–Euler Lagrangian can simulate such an
effect. It is easy to see that the total contribution of the
ground state is small compared to the contribution of
the last term in (27), which owes its origin to the field
renormalization in expression (11). A similar conclu-
sion can also be reached by considering integral (16).

The following should be emphasized when com-
menting on the analogy between the limits m2  0 in
the Heisenberg–Euler Lagrangian (see formula (16))
and H   in (26). As we showed above, for H =

 in the modified Lagrangian, just as in the Heisen-
berg–Euler Lagrangian for m2 = 0, the exponent in the
terms whose contributions are vanishingly small
against the background of the contributions from the
renormalization procedure becomes zero. In other
words, in both cases, the ground states in the structure
of the integrand are equally preferential, but their con-
tribution to the integral is not dominant.

+ '
m4γ2
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Fig. 2. Lagrangian versus magnetic field intensity γ = H/Hc
with (curve 1) and without (curve 2) an allowance for the
anomalous magnetic moment of an electron.
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Neglecting the first and the second terms in (27), we
find from (26) that

This result agrees with formulas (28) and (29) from
which it can be obtained by the substitution γ = 2/a.
Thus, these functions are continuously joined at H =

.

Finally, let us estimate the Lagrangian +' in terms of
traditional QED, i.e., by taking into account the non-
zero anomalous magnetic moments of particles in
intense electromagnetic fields attributable to radiative
effects. Substituting ∆µ from (1) into the expression
b1 = 1 + (∆µH/m)2 yields an estimate of +' (26) in the
limit of extremely strong fields. For a constant mag-
netic field, γ @ µ0/∆µ,

where

In this case, the exponent in (26) is

If γ @ α2ln2(2γ), then the range 1 ! x ! γ/α2ln2(2γ)
is important in (26). Thus, we can find from (26) that

(30)

The first term in (30) is identical to its estimate in the
Heisenberg–Euler theory [5]. The relative effective
Lagrangian +'/m4 derived from the integral representa-
tion (26) (with α2 ≈ 3.4 × 10–7) is plotted against the
magnetic field intensity in Fig. 2 (curve 1). For com-
parison, the same figure also shows a plot for ∆µ = 0
(curve 2).

Note that allowance for the anomalous magnetic
moments of vacuum particles in terms of universally
accepted QED leads to a decrease in the radiative cor-
rection to the field energy density. Recall that we
reached a similar conclusion by considering the static
anomalous magnetic moment that arises, in particular,
in the modified field theory. Thus, irrespective of the
nature of the anomalous magnetic moment attributable
to the dynamic or static types of interaction, we obtain
consistent results. Our conclusions are also important
in studying the anomalous magnetic moment as the
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most accurately calculable and measurable (in numer-
ous precision experiments) characteristic of particles.

4. CONCLUSIONS

Our results can be of considerable importance in
constructing astrophysical models, in particular, in
studying extremely magnetized neutron stars—magne-
tars; interest in the existence of the latter objects has
increased appreciably in recent years (see, e.g., [4] and
references therein). According to models for the macro-
scopic magnetization of bodies composed mostly of
neutrons, the intensity of the magnetic fields frozen into
them increases from the surface to the central regions
and can reach 1015–1017 G [19].

Note also that the radiative effects can be enhanced
by external intense electromagnetic fields not only in
Abelian, but also in non-Abelian quantum field theo-
ries. For example, allowance for the influence of an
external field on such parameters as the lepton mass and
magnetic moment in terms of the standard model leads
to nontrivial results. In this case, apart from the electro-
dynamic contribution, the one-loop mass operator of a
charged lepton also contains the contributions from the
interaction of W±-, Z0-, and H bosons with a vacuum. It
is easy to see that, in the absence of an external field, the
contribution from weak interactions to the radiative
shift of the lepton mass m is suppressed by a factor of
(m/Mi)2 (i = W, Z, H) compared to the electrodynamic
contribution. However, the contributions of weak cur-
rents in the ultrarelativistic limit can dominate in
intense external fields, as was first noted in [20] (see
also [21]).

In close analogy with the quantum corrections to the
particle masses, the anomalous magnetic moments of
charged leptons in the standard model are attributable
to the vacuum radiative effects of electromagnetic and
weak interactions and contain the contribution from the
hadron polarization of the vacuum. For example, for the
anomalous magnetic moment of a muon,

According to recent theoretical estimates made in the
standard model [22], the contributions from electro-
magnetic and weak interactions can be written as

Although the calculations of the contributions from the

hadron polarization of a vacuum to  have a history

that spans almost forty years,  is currently under-
stood with the largest uncertainty (see, e.g., [23–28]).
One of the most reliable estimates for the contributions

aµ
SM aµ

QED aµ
weak aµ

had.+ +=

aµ
QED 11 658470.57 0.29( ) 10 10– ,×=

aµ
weak 15.1 0.4( ) 10 10– .×=

aµ
SM

aµ
had
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of the lowest-order hadron polarization of a vacuum
that generalizes the data on hadron τ-decay and e+e–

annihilation appears as follows [23, 24]:6 

The theoretical anomalous magnetic moment of a
muon in the standard model takes the form [28]

The results of one of the most recent (g – 2) experi-
ments aimed at measuring the anomalous magnetic
moments of positive polarized muons carried out on a
storage ring with superconducting magnets at
Brookhaven National Laboratory (BNL) can be repre-
sented as

(31)

(Both statistical and systematic errors are included
here.) The data obtained yield the difference

(32)

which exceeds the total measurement errors and the
uncertainties of the theoretical estimates. According to
the most recent reports from the BNL muon (g – 2) col-
laboration [29], the relative value of this excess is 2.6.
A twofold increase in this accuracy is expected in the
immediate future. Clearly, the solution of the muon
(g − 2) problem may lead to the appearance of a new
theory beyond the scope of the standard theory.

Recall in this connection that the anomalous mag-
netic moment of a muon in the modified theory con-
tains a contribution attributable to the new universal
parameter M from the outset. According to (4),

(33)

where mµ is the muon mass. It is easy to see that aµ(M)
is equal in order of magnitude to (32) at M ~ 1 TeV.

The principal conclusion drawn from a comparison
of the above estimates is that we cannot rule out the
possibility that the observed difference between the
theoretical and experimental values for ∆µ is equal to
aµ(M). As was pointed out above, the parameter M in
the new theory may be related to the Higgs boson mass

MH . In this case, the difference between  and 
can provide valuable information about a particle

6 See, however, [25], where the contribution of the highest orders
of hadron polarization of a vacuum were calculated, and the
recent papers [26, 27], in which the contribution from the third-

order diagrams to  attributable to photon–photon scattering

was taken into account.

aµ
had

aµ
had 692 6( ) 10 10– .×=

aµ
SM 11 659177 7( ) 10 10– .×=

aµ
exp 11659204 7( ) 5( ) 10 10– .×=

∆µ aµ
exp aµ

SM– 27 10 10– ,×= =

aµ M( )
mµ

2

2M2
----------,=

aµ
exp aµ

SM
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whose mass has not been determined in the standard
model. Substituting mµ and the anomalous magnetic
moment of a muon into (33), we can easily impose the
following constraints on the H-boson mass:

The standard model with the Higgs boson mass
MH ≥ 1 TeV entails several additional features, in par-
ticular, the impossibility of describing the weak interac-
tions in the sector of H-, W-, and Z particles in terms of
perturbation theory [30]. Naturally, the need for con-
structing a new nonperturbative theory arises in this
case. Apart from the condition for the mass spectrum
being limited, m ≤ MH (see (2)), the Higgs mechanisms
of mass formation and compensation for the discrepan-
cies can become integral elements of one of the most
promising versions of the modified theory—the stan-
dard model with fundamental mass.
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Abstract—The electron structure function method is applied to calculate model-independent QED radiative
corrections to the asymmetry of electron–proton scattering. Representations for both spin-independent and
spin-dependent parts of the cross section are derived. Master formulas include the leading corrections in all
orders and the main contribution of the second order and provide accuracy of the QED corrections at the level
of one per mill. Numerical calculations illustrate our analytic results for both elastic and deep inelastic events.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Precise polarization measurements in both inclu-
sive [1, 2] and elastic [3, 4] scattering are crucial for
understanding the structure and fundamental properties
of a nucleon.

One important component of the precise data analy-
sis is radiative effects, which always accompany the
processes of electron scattering. The first calculation of
radiative corrections to polarized deep inelastic scatter-
ing was done by Kukhto and Shumeiko [5], who
applied the covariant method of extraction of the infra-
red divergence [6, 7] to this process. The polarization
states were described by 4-vectors, which were kept in
their general forms during the calculation. This
required a tedious procedure of tensor integration over
photonic phase space and, as a result, led to a very com-
plicated structure of the final formulas for the radiative
corrections. The next step was taken in [8], where addi-
tional covariant expansion of polarization 4-vectors
over a certain basis allowed one to simplify the calcula-
tion and final results. It resulted in producing the For-
tran code POLRAD [9] and Monte Carlo generator
RADGEN [10]. These tools are widely used in all cur-
rent experiments in polarized deep inelastic. Later, the
calculation was applied to collider experiments on deep
inelastic scattering [11, 12]. We also applied this
method to the elastic processes in [13, 14].

However, the method of covariant extraction of the
infrared divergence is essentially restricted by the low-
est-order radiative corrections. All attempts to go
beyond the lowest order lead to very unwieldy formu-
las, which are difficult to cross check, or to a simple

¶This article was submitted by the authors in English.
1063-7761/04/9803- $26.00 © 20403
leading log approach [15]. The recent developments are
reviewed in [16].

The resolution can be found in applying the formal-
ism of electron structure functions (ESFs). Within this
approach, such processes as the electron–positron anni-
hilation into hadrons and the deep inelastic electron–
proton scattering in the one-photon exchange approxi-
mation can be considered as the Drell–Yan process [17]
in the annihilation or scattering channel, respectively.
Therefore, the QED radiative corrections to the corre-
sponding cross sections can be written as a contraction
of two electron structure functions and the hard part of
the cross section (see [18, 19]). Traditionally, these
radiative corrections include effects caused by loop cor-
rections and soft and hard collinear radiation of photons
and e+e– pairs. But it was shown in [19] that this method
can be improved by also including effects due to radia-
tion of one noncollinear photon. The corresponding
procedure results in a modification of the hard part of
the cross section, which takes the lowest-order correc-
tion into account exactly and allows going beyond the
leading approximation. We applied this approach to the
recoil proton polarization in elastic electron scattering
in [20]. In the present paper, we calculate radiative cor-
rections to polarized deep inelastic and elastic scatter-
ing following [20].

Section 2 gives a short introduction to the structure
function method. There, we present two known forms
of the electron structure functions, iterative and analyt-
ical, which resume singular infrared terms in all orders
into the exponent. In this section, we also obtain master
formulas for observed cross sections. Leading log
results are presented in Section 3. These results are
valid for both deep inelastic and elastic cases. We also
use the iterative form of electron structure functions to
004 MAIK “Nauka/Interperiodica”
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extract the lowest-order correction, which can provide
a crosscheck via comparison with the known results. In
Sections 4 and 5, we describe the procedure of general-
izing the results to the next-to-leading order in the deep
inelastic and elastic cases. Numerical analysis is pre-
sented in Section 6. We consider kinematical conditions
of current polarization experiments at fixed targets and
collider kinematics. Some conclusions are given in Sec-
tion 7.

2. ELECTRON STRUCTURE FUNCTIONS

A straightforward calculation based on the quasi-
real electron method [21] can be used to write the
invariant cross section of the deep inelastic scattering
process

(1)

as

(2)

where m is the electron mass and

The reduced variables that define the hard cross sec-
tion in the integrand are

(3)

The electron structure function D(z, L) includes con-
tributions due to photon emission and pair production,

(4)

where Dγ is responsible for the photon radiation and

 and  describe pair production in nonsinglet
(by single photon mechanism) and singlet (by double
photon mechanism) channels, respectively.

The structure functions on the right-hand side of
Eq. (4) satisfy the DGLAP equations [22] (see
also [18]). The respective functions D(z1, L) and
D(z2, L) are responsible for radiation of the initial and
final electrons.

There exist different representations for the photon
contribution to the structure function [18, 23, 24], but
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we here use the form given in [18] for Dγ, , and

,

(5)

(6)

(7)

where ε is the energy of the parent electron and

We note that the above form of the structure function

 includes effects due to real pair production only.
The correction caused by the virtual pair is included in
Dγ. Terms containing a contribution of the order α2L3

are canceled in the sum Dγ + .

Instead of the photon structure function given by
Eqs. (5)–(7), one can use their iterative form [23]

(8)
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The iterative form (8) of Dγ does not include any effects
caused by pair production. The corresponding nons-
inglet part of the structure due to real and virtual pair
production can be included into the iterative form of
Dγ(z, L) by replacing αL/2π on the right-hand side of
Eq. (8) with the effective electromagnetic coupling

(9)

which (within the leading accuracy) is the integral of
the running electromagnetic constant.

The lower limits of integration with respect to z1 and
z2 in the master equation (2) can be obtained from the
condition for the existence of inelastic hadronic events,

(10)

where mπ is the pion mass. This constraint can be
rewritten in terms of dimensionless variables as

(11)

which leads to

The squared matrix element of the considered pro-
cess in the one-photon exchange approximation is pro-
portional to the contraction of the leptonic and hadronic
tensors. Representation (2) reflects the properties of the
leptonic tensor. Therefore, it has a universal nature
(because of the universality of the leptonic tensor) and
can be applied to processes with different final hadronic
states. In particular, we can use the electron structure
function method to compute radiative corrections to the
elastic and deep inelastic (inclusive and semi-inclusive)
electron–proton scattering cross sections.

On the other hand, straightforward calculations in
the first order in α [5, 8, 21] and the recent calculations
of the leptonic current tensor in the second order [25–
28] for the longitudinally polarized initial electron
demonstrate that, in the leading approximation, the
spin-dependent and spin-independent parts of this ten-
sor are the same for the nonsinglet channel contribu-
tion. The latter corresponds to photon radiation and
e+e−-pair production through the single-photon mecha-
nism. The difference appears in the second order due to
the possibility of pair production in the singlet channel
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by the double-photon mechanism [28]. Therefore, rep-
resentation (2), being slightly modified, can be used for
the calculation of radiative corrections to cross sections
of different processes with a longitudinally polarized
electron beam.

In our recent paper [20], we applied the electron
structure function method to compute radiative correc-
tions to the ratio of the recoil proton polarizations
measured at CEBAF by Jefferson Lab Hall A Collab-
oration [3]. The aim of this high-precision experiment
is the measurement of the proton electric form factor
GE . In the present work, we use this method for calcu-
lation of the model-independent part of the radiative
corrections to the asymmetry in the scattering of longi-
tudinally polarized electrons on polarized protons at the
level of per mill accuracy for elastic and deep inelastic
hadronic events.

The cross section of the scattering of the longitudi-
nally polarized electron by the proton with given longi-
tudinal (||) or transverse (⊥ ) polarizations for both elas-
tic and deep inelastic events can be written as a sum of
the spin-independent and spin-dependent parts,

(12)

where S is the 4-vector of the target proton polarization
and η is the product of the electron and proton polariza-
tion degrees. Hereafter, we assume η = 1.

Master equation (2) describes the radiative correc-
tions to the spin-independent part of the cross section
on the right-hand side of Eq. (12), and the correspond-
ing equation for the spin-dependent part is given by

(13)

where

and [28]

(14)

describes the radiation of the initial polarized electron.
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This representation is valid if radiation of collinear
particles does not change the polarizations S|| and S⊥ .
Such stabilized 4-vectors of the proton polarization can
be written as [8]

(15)

where

It can be verified that, in the laboratory system, the
4-vector S|| has the components (0, n), where the 3-vec-
tor n has the orientation of the initial electron
3-momentum k1. It can also be verified that S⊥ S|| = 0
and that in the laboratory system,

where the 3-vector n⊥  belongs to the plane (k1, k2).

If the longitudinal direction L is chosen along the
3-momentum k1 – k2 in the laboratory system, which
coincides with the direction of the 3-vector q for nonra-
diative process, and we choose the transverse direction
T in the plane (k1, k2), then we have the relations

and the master formula (13) for dσ|| and dσ⊥ .

The asymmetry in elastic scattering and deep inelas-
tic scattering processes is defined as the ratio

(16)

and therefore, calculating the radiative corrections to
the asymmetry requires knowing radiative corrections
to both spin-independent and spin-dependent parts of
the cross section.
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Radiative corrections to the spin-independent part
were calculated (within the electron structure function
approach) in [19]. In the present work, we compute the
radiative corrections to the spin-dependent parts for
longitudinal and transverse polarizations of the target
proton and longitudinally polarized electron beam. For
completeness, we briefly recall the result for the unpo-
larized case.

3. THE LEADING APPROXIMATION

Within the leading accuracy (with the terms of the
order (αL)n taken into account), the electron structure
function can be computed, in principle, in all orders of
the perturbation theory. In this approximation, we have
to take the Born cross section as a hard part on the right-
hand sides of Eqs. (2) and (13).

We express the Born cross section in terms of lep-
tonic and hadronic tensors as

(17)

where α(Q2) is the running electromagnetic constant,
which accounts for the effects of vacuum polarization,
and

(18)

In Eq. (18), we assume the proton and electron polar-
ization degrees equal to 1. The spin-independent
(F1, F2) and spin-dependent (g1, g2) proton structure
functions depend on the two variables

In the Born approximation, x' = x, but these variables
differ in the general case, when radiation of photons
and electron–positron pairs is allowed.

dσ
dQ2dy
----------------

4πα2 Q2( )
VQ4

------------------------Lµν
B Hµν,=

Hµν F1g̃µν–
F2

p1q
-------- p̃1µ p̃1ν+=

– i
Meµνλρqλ

p1q
----------------------- g1 g2+( )Sρ g2

Sq
p1q
-------- p1ρ– ,

Lµν
B Q2

2
------gµν– k1µk2ν k1νk2µ iεµνλρqλk1ρ,+ + +=

g̃µν gµν
qµqν

q2
-----------, p̃1µ– p1µ

p1q

q
2

--------qµ.–= =

x'
q2–

2 p1q
------------, q2 px p1–( )2

.= =
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Because the normalization is chosen, the elastic

limit (  = M2) can be obtained by simply substituting

(19)

in the hadronic tensor, where GM and GE are the mag-
netic and electric proton form factors.

A simple calculation gives the spin-independent and
spin-dependent parts of the well-known Born cross sec-
tion in the form

(20)

(21)

(22)

Thus, within the leading accuracy, the radiatively cor-
rected cross section of process (1) is defined by Eq. (2)
(for its spin-independent part) with (20) as the hard part
of the cross section and by Eq. (13) (for its spin-depen-
dent part) with (21) or (22) as the hard part.

It is useful to extract the first-order correction to the
Born approximation, as defined by master equation (2).

px
2

F1 x' q
2,( ) 1

2
---δ 1 x'–( )GM

2
q

2( ),

F2 x' q2,( ) δ 1 x'–( )
GE

2
q2( ) λGM

2
q2( )+

1 λ+
----------------------------------------------,

g1 x' q
2,( ) 1

2
---δ 1 x'–( ) GM q

2( )GE q2( ) ---




+
λ

1 λ+
------------ GM q2( ) GE q2( )–[ ] GM q2( )





,

g2 x q
2,( ) 1

2
---δ 1 x'–( ) λ

1 λ+
------------–

× GM q2( ) GE q2( )–[ ] GM q2( ),

λ q2

4M2
----------–=

dσB

dQ2dy
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4πα2 Q2( )
Q4y

------------------------=

× 1 y– xyτ–( )F2 x Q2,( ) xy2F1 x Q2,( )+[ ] ,

dσ||
B

dQ2dy
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× τ 2 y–
2xy
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  g1 x Q2,( ) 2τ
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Q2
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y
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For this purpose, we can use the iterative form of the
photon structure function Dγ with L  L – 1 and

for D(z1, L) and

for D(z2, L), where (∆ε) is the minimal energy of a hard
collinear photon in the special system (k1 – k2 + p1 = 0).
Straightforward calculations yield the expression

(23)

where

Similar equations can be derived for the first-order
correction to the spin-dependent part of the cross sec-
tion for both longitudinal and transverse polarizations
of the target proton.

∆ ∆1
2 ∆ε( )

V 1 xy–( )
---------------------------- τ z++ ,=

z+ y 1 x–( ),
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V
-------------- ! 1=
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4. DEEP INELASTIC SCATTERING 
CROSS SECTION 

BEYOND THE LEADING ACCURACY

To go beyond the leading accuracy, we have to
improve the expressions for hard parts of the cross sec-
tions in master equations (2) and (13) in order to
include effects caused by radiation of a hard noncol-
linear photon. In principle, we can also improve the
expression for the D function in order to take collinear
next-to-leading effects in the second order of perturba-
tion theory into account. The essential part of these
effects is included in our D functions due to the replace-
ment L  L – 1. The rest can be written using the
results of the corresponding calculations for the double
photon emission [27, 30], pair production [28, 31, 32],
one-loop corrected Compton tensor [25, 26, 33], and vir-
tual correction [34]. But we restrict ourselves here to the
D functions given above in Eqs. (5), (6), (7), and (14).

To compute the improved hard cross section, we
must find the full first-order radiative corrections to the
cross section of process (1) and subtract from it (to
avoid double counting) its leading part defined by
Eq. (23) (for the unpolarized case). Therefore, the
improved hard part can be written as

(24)

where dσ(S + V) is the correction to the cross section of
process (1) due to virtual and soft photon emission and
dσH is the cross section of the radiative process

(25)

The virtual and soft corrections are factored in a sim-
ilar way for both polarized and unpolarized cases [19]
and can be written as

(26)

To calculate the cross section of radiative process (25),
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we use the corresponding leptonic tensor in the form

(27)

where ω is the energy of the radiated photon;  is
the leptonic tensor for unpolarized particles (see [33]);
and we use the notation

for kinematic invariants. The result for the unpolarized
case was derived in [19], and here we rewrite it using
standard notation as

(28)

where r = –q2/Q2 and the limits of integration with
respect to r are
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Here, we used the notation

(29)

The action of the operators  and  is defined as

The hard cross section (29) has neither collinear nor
infrared singularities. The different terms on the right-
hand side of Eq. (29) have singularities at r = r1, r = r2,
and r = 1. Singularities at the first two points are col-
linear, and the one at the third point, nonphysical,
arising at integration. Collinear singularities vanish

because of the action of the operators  and  on the
terms containing N. The nonphysical singularity can-
cels because, in the limiting case r  1, we have

To derive the hard cross section for the polarized
case, we have to use the analogue of Eq. (24) for dσ||

and dσ⊥ . Taking into account that dσV + S and dσ(1) are
the same in the polarized and unpolarized cases and
using expression (27) for the antisymmetric part of the
leptonic tensor to compute dσH in the polarized case,
we arrive at

N 2F1 x' r,( ) 2x'
rxy
-------- 1 y–

xy
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---------------- 1
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Q4
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(30)

where

The polarized hard cross section defined by Eq. (30)
is also free from collinear singularities due to the action

of the operators 1 –  and 1 – . The nonphysical sin-
gularity at r = 1 on the right-hand side of Eq. (30) can-
cels because

in this limit. We note that radiation of a photon at large
angles by the initial and final electrons increases the
range of r in (28) and (30), because r1 < r < r2 for col-
linear radiation, and now r– < r1 and r+ > r2. This may
be important if the hadron structure functions are large
in these additional regions.
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5. HARD CROSS SECTION 
FOR ELASTIC HADRONIC EVENTS

To describe the hard cross section for elastic had-
ronic events, we use the replacement defined by (19) in
Eqs. (28) and (30). We refer to Eqs. (21)–(23) for the
Born cross sections that enter these equations. The
function δ(1 – x') is used to integrate with respect to the
inelasticity z,

(31)

The final result for the unpolarized case is given by (we
do not introduce special notation for the elastic cross
section)

(32)

where
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Eq. (32) is defined as

(33)

In writing this last equation, we took into account that

The spin-dependent hard cross section for elastic
hadronic events can be written in a form very similar
to (32),

(34)
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We note that the argument of the electromagnetic form
factors in Eqs. (32) and (34) is –Q2r.

The Born cross sections on the right-hand side of
Eq. (34) are given by

(35)

for the longitudinal polarization of the target proton
and by

(36)

for the transverse one. The argument of the form factors
in (35) and (36) is –Q2.

The results in this section can be generalized to elas-
tic electron–deuteron scattering in both polarized and
unpolarized cases in a very simple way, because the

respective deuteron tensors  are connected with the

proton ones  by the relations

where , GC, and GQ are the magnetic, charged, and
quadrupole deuteron form factors, respectively.
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6. NUMERICAL ESTIMATIONS

The formulas obtained in the last section include
some operators that emphasize the physical meaning of
the transformations performed, but they are not conve-
nient in numerical analysis. Here, we present a unified
version of the formulas without any operators. For
example, the symbol P is explicitly treated as

Therefore, all cross sections given by Eqs. (28),
(30), (32), and (34) can be written by means of the uni-
fied formula

(37)

where

The index i runs over all polarization states (i = u, l, t).
The functions Ni(r) and Ti are given by
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The pole at r = 1 can be reached only in the region r1 <
r < r2, and hence there is no singularity in the terms
involving Ti1. For Ti2, this pole cancels explicitly:

In the unpolarized case, Nu = rN/x' with N from (28). In
other cases, they are
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Fig. 1. Radiative correction to unpolarized and polarized
(both longitudinal and transverse) parts of the cross section
for kinematics close to JLab experiments, V = 10 GeV2,
x = 0.5.
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and

The same formulas can be used in the elastic case.
Only Eqs. (19) and (31) are needed here. In the elastic
case, we must therefore substitute

set 

 

x

 

' = 1 and 

 

z

 

 = 0, and replace the proton structure
functions in accordance with (19).

It is believed that the formulas obtained within the
presented formalism are not convenient for numerical
analysis. There are two reasons for such an opinion.
First, the electron structure function in form (5), (6) has
a very sharp peak as 

 

z 

 

tends to unity. Second, because
absolute values appear in denominators, the integrand
cannot be a continuous function of the integration vari-
ables. This produces obstacles for numerical analysis if
it is carried out in the traditional style based on adaptive
methods of numerical integration, which is used in such
programs as TERAD/HECTOR [36] or POLRAD [9].
But it is possible to perform numerical analysis if
Monte Carlo integration is used instead of adaptive
integration and the regions with sharp peaks are
extracted into separate integration subregions. Based
on these ideas, we developed the Fortran code
ESFRAD,

 

1

 

 which allows one to perform the numerical
analysis without any serious difficulties.

We considered two radiative processes. In the first
case, the continuum of hadrons is produced, and in the
second case, the proton remains in the ground state.
Both of the effects considered contribute to the experi-
mentally observed cross section

 

2

 

 

 

of deep inelastic scat-
tering. They are usually called the radiative tails from
the continuous spectrum and the elastic peak, or simply
the inelastic and elastic radiative tails. Below, we study
the contributions of the tails numerically within kine-

1 Electron Structure Function method for RADiative corrections.
2 Here and below, we mean double differential cross section σ =

dσ/dydQ2.
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matical conditions of the current experiments on deep
inelastic scattering.

We take three typical values of V equal to 10, 50, and
105 GeV2. They correspond to JLab, HERMES, and
HERA measurements. Figures 1–3 give the radiative

0.5 1.0 0.51.0 1.00.5
y

1.0

1.5

2.0

2.5

3.0
Unpolarized Longitudinal Transverse

δt

δi δi δi

δt

Fig. 2. Radiative correction to unpolarized and polarized
(both longitudinal and transverse) parts of the cross section
for kinematics close to HERMES experiments, V =

50 GeV2, x = 0.1,  = –δt .δt

δt
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correction factor for all polarization states (unpolar-
ized, longitudinal, or transverse)

(38)

The observed double differential cross section is given
by master formulas (2) and (13), and the Born cross
section is calculated via (20), (21), and (22). Both elas-
tic and inelastic contributions must be taken for σhard. In
this case, we obtain the total radiative corrections factor
(δt). The subscripts i and t correspond to the cases
where the elastic radiative tail is included in the total
correction (δt) or the inelastic radiative tail contributes
only (δi). The elastic radiative tail may optionally not be
included, because there sometimes exist experimental
methods to separate this contribution. We note that, for
the HERA kinematics, we do not include it because it is
usually separated experimentally. Also, we can extract
a one-loop contribution in order to study the effect of
higher-order corrections. The observed cross section in
this case is given by the sum of the cross sections in
Eqs. (23) and (37). We note that this can provide an
additional cross check by comparison with POLRAD.

We use rather simple models for spin-averaged and
spin-dependent structure functions. It allows us not to
mix the pure radiative effects, which are of interest,
with the effects due to hadron structure functions. Spe-
cifically, we use the so-called D8 model for the spin-
average structure function [35] (see also discussion

δi t,
σobs

σB
---------.=
0.5 1.0 0.5 1.0 0.5 1.0
y

0.8

1.0

1.2

1.4

1.6

1.8
Unpolarized Longitudinal Transverse

Fig. 3. One-loop and total radiative corrections (dashed and solid lines) for collider kinematics (HERA); V = 105 GeV2. Lines from
top to bottom correspond to different values of x = 0.001, 0.01, and 0.1.
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Fig. 4. Radiative correction to asymmetries for the HERMES (lower plots) and JLab (upper plots) kinematics. The dotted line shows
the Born asymmetry. The full and dashed lines correspond to the total and one-loop contributions. Asymmetries with the elastic
contribution taken into account are marked by dots at the end. 
in [9]), and A1(x) = x0.725, suggested in [37]; we set
g2 = 0 (the definition of A1(x) is given below).

From these plots, we can see that the total radiative
correction is basically determined by the one-loop cor-
rection with some important effect around kinematical
boundaries. The sign and value of the higher-order
effects are in agreement with the leading log estima-
tions and calculations of the correction to the elastic
radiative tail in [38, 39]. Two regions require special
consideration: the region of higher y for the HERMES
and JLab kinematics and the region near the pion
threshold at JLab.

We define the polarization asymmetries in the stan-
dard way,

(39)

We can also define the spin asymmetry A1 as AL = DA1
(for the chosen model where g2 = 0), where D is the

AL

σ||

σ
-----, AT

σ⊥

σ
------.= =
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kinematical depolarization factor depending on the
ratio R of the longitudinal and transverse photoabsorp-
tion cross sections,

where ν = yV/2M and γ2 = Q2/ν2. For fixed x, A1 is a con-
stant within our model, and it is therefore very conve-
nient for graphical presentation and analysis of differ-
ent radiative effects. Figure 4 gives the asymmetries A1

and AT for the kinematics of HERMES and JLab up to
y = 0.95. The influence of higher-order and elastic radi-
ative effects can be seen. Figure 5 gives the total correc-

D
y 2 y–( ) 1 γ2y/2+( )

y2 1 γ2+( ) 2 1 y– γ2y
2
/4–( ) 1 R+( )+

------------------------------------------------------------------------------------------,=

R
σL

σT
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M Q2 ν2+( )

Q2ν
----------------------------

F2

F1
----- 1,–= =
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tions to the cross sections and asymmetries for the
threshold region of JLab.

7. CONCLUSIONS

We have considered model-independent QED radi-
ative correction to the polarized deep inelastic and elas-
tic electron–proton scattering. Together with the ana-
lytic expression for the radiative corrections, we give its
numerical values for different experimental situations.

Our analytic calculations are based on the electron
structure function method, which allows us to write
both the spin-independent and spin-dependent parts of
the cross section with the radiative corrections to the
leptonic part of interaction taken into account in the
form of the well-known Drell–Yan representation. The
corresponding radiative corrections explicitly include
the first-order correction as well as the leading-log con-
tribution in all orders of the perturbation theory and the
main part of the second-order next-to-leading-log con-
tribution. Moreover, any model-dependent radiative
correction to the hadronic part of the interaction can be
included in our analytic result by inserting it as an addi-
tive part of the hard cross section in the integrand sign
in master formulas (2) and (13).

To derive the radiative corrections, we take into
account the radiation of photons and e+e– pairs in col-
linear kinematics, which produces a large logarithm L
in the radiation probability (in D functions), and the
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AL, %
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102
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dσ/dydQ2, nb

Fig. 5. The cross section (lower plot) and polarization
asymmetries (both longitudinal and transverse) for the JLab
kinematics (Q2 = 1 GeV2) near the pion threshold. The dot-
ted line shows the Born cross section and asymmetry. Full
and dashed lines correspond to the total and one-loop con-
tributions.
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radiation of one noncollinear photon, which enlarges
the range of the hadron structure function arguments. It
may be important that these functions are sufficiently
sharp. In this case, the loss in the radiation probability
(the loss of L) can be compensated by the increase in
the value of the hard cross section.

We note that we extracted the explicit formulas for
the first-order contribution at both leading and next-to-
leading order levels. We found analytic agreement
between these results for the one-loop correction with
the previous results in [8], which provides the most
important test of the total correction.

On the basis of the analytic results, we constructed the
Fortran code ESFRAD.3 Because of several known rea-
sons discussed in Section 6, results obtained by the
electron structure function method are usually not very
convenient for precise numerical analysis. But we
believe that our numerical procedure based on Monte
Carlo integration allows us to overcome the obstacles.

Using the ESFRAD code, we performed numerical
analysis for kinematical conditions of the current and
future polarization experiments. We found two kine-
matical regions where the higher-order radiative cor-
rection can be important. These are the traditional
region of high y and the region around the pion thresh-
old. We gave a detailed analysis of the effects within
these regions and presented numerical results within
one of the simplest possibilities for modeling the deep
inelastic scattering structure functions. Model depen-
dence of the result is certainly an important issue
requiring separate investigation for specific applica-
tions within the experimental data analysis.
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Abstract—We reexamine the problem of n–  oscillations for ultracold neutrons confined within a trap. We
show that, for up to 103 collisions with the walls, the process can be described in terms of wave packets. The 
component grows linearly with time, with the enhancement factor depending on the reflection properties of the
walls. © 2004 MAIK “Nauka/Interperiodica”.

n
n

1. INTRODUCTION

For quite a long time, physics beyond the Standard
Model has continued to be an intriguing subject. Sev-
eral reactions that may serve as signatures for the new
physics have been discussed. One of the most elegant
proposals is to look for n–  oscillations [1] (see
also [2]). There are three possible experimental settings
aimed at observation of this process. The first is to
establish a limit on nuclear instability because  pro-
duced inside a nucleus will blow it up. The second is to
use a neutron beam from a reactor. This beam propa-
gates a long distance to the target in which the possible

 component would annihilate and, thus, is detected.
The third option, which we discuss in the present paper,
is to use ultracold neutrons (UCNs) confined in a trap.
The main question is to what extent generation of the 
component is reduced by the interaction with the trap
walls. This subject was addressed by several authors
[3–8]. In our opinion, a thorough investigation of the
problem is still lacking.

First of all, a clear formulation of the problem of
n−  oscillations in a cavity has been hitherto missing.
Two different approaches were used without presenting
sound arguments in favor of their applicability and
without tracing connections between them.

In the first approach [4, 5], n–  oscillations are con-
sidered in the basis of the discrete eigenstates of the
trap potential, with the splitting between n and  levels
and  annihilation taken into account. The density of
the trap eigenstates, which is proportional to the macro-
scopic trap volume, is huge and the states cluster
together extremely thickly. But these arguments do not
suffice to discard the discrete-state approach, because
the n–  mixing parameter is much smaller than the dis-

n

n

n

n

n

n

n
n

n
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tance between adjacent levels (see below). The true rea-
son due to which the above treatment is of little physi-
cal relevance is as follows. The spectrum of the neu-
trons provided to the trap by the source is continuous
and a certain time is needed for rearrangement of the
initial wave function into standing waves correspond-
ing to the trap eigenstates. As is shown below, this time
interval appears to be of the order of the β-decay time,
and, therefore, the standing wave regime, being inter-
esting by itself, can hardly be reached in the real phys-
ical situation.

The second approach [3, 6, 7] treats the neutrons
and antineutrons inside a trap as freely moving particles
that undergo reflections from the trap walls. Collisions
with the walls result in a reduction of the  component
compared to the case of the free-space evolution. This
suppression is due to two factors. The first is the anni-
hilation inside the walls. The second is the phase deco-
herence of the n and  components induced by the dif-
ference of the wall potentials acting on n and .
Reflections of antineutrons from the trap walls were,
for the first time, considered in [3]. The purpose of that
paper was to investigate the principal possibility of
observing n–  oscillations in a trap, and the authors
estimated the reflection coefficient for antineutrons
without paying attention to the decoherence phenom-
ena. Only a single collision with the trap wall was con-
sidered in [3]. A comprehensive study of n–  oscilla-
tions in a trap was presented in [6, 7]. Decoherence and
multiple reflections and the influence of gravitational
and magnetic fields were included. The approximate
equation for the annihilation probability after N colli-
sions obtained in [7, Eq. (3.8)] coincides with the exact
formula (59) in the present paper when N @ 1. As we
show below, the N-independent asymptotic regime set-
tles at N * 10.

Derivation of the exact equation for the annihilation
probability with an arbitrary number of collisions is not

n

n
n

n

n
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the only purpose of the present work. We already men-
tioned the problem of the relation between the eigen-
value and the wave-packet approaches. Within the
wave-packet approach, some basic notions such as the
time between successive collisions and the collision
time itself can be defined in a clear and rigorous way.
Another question within the wave-packet formalism is
the independence of the reflection coefficient from the
width of the wave packet and the applicability of the
stationary formalism to calculate reflections from the
trap walls. These and some other principal points are,
for the first time, considered in detail in the present
paper.

We also mention that an alternative approach to the
evaluation of the reflection coefficients for n and  was
outlined in [8]. It is based on the time-dependent
Hamilton formalism for the interaction of n and  with
the trap walls. This subject remains outside the scope of
the present paper.

The paper is organized as follows. In Section 2, we
recall the basic equations describing n–  oscillations
in free space. Section 3 is devoted to the optical poten-
tial approach to the interaction of n and  with the trap
walls. In Section 4, we analyze the two formalisms pro-
posed to treat n–  oscillations in the cavity, namely,
box eigenstates and wave packets. In Section 5, reflec-
tion from the trap walls is considered. Section 6 contains
the main result in this work, the time dependence of the

 component production probability. In Section 7, con-
clusions are formulated and problems to be solved out-
lined.

2. OSCILLATIONS IN FREE SPACE

We start by recalling the basic equations describing
n–  oscillations in free space. The phenomenological
Hamiltonian is a 2 × 2 matrix in the basis of the two-
component n–  wave function (we set " = 1),

(1)

where j, l = n, , Hj = k2/2m – µjB, µj is the magnetic
moment, B is the external (e.g., the Earth’s) magnetic
field, Γβ is the β-decay width, e is the n–  mixing
parameter (see below), and σx is the Pauli matrix.
Assuming the n and  wave functions to be plane
waves, we write the two-component wave function of
the n–  system as

(2)

n

n

n

n

n

n

n

n

H jl H j i
Γβ

2
-----– 

  δjl e σx( ) jl,+=

n

n

n

n

Ψ̂ x t,( ) ψn t( )
ψn t( ) 

 
 

eikx.=
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Evolution of the time-dependent part of  is then
described by the equation

(3)

The difference between En and  due to the Earth’s
magnetic field is

(4)

Diagonalizing the matrix in (3), we find ψn(t) and
 in terms of their values at t = 0,

(5)

(6)

where Ω = En + , ν = (ω2/4 + e2)1/2, and ω =  – En .

In particular, if ψn(0) = 1 and  = 0, we have

(7)

The use of this equation to test fundamental symmetries
is discussed in [9].

Without the magnetic field, i.e., for ω = 0, and for
t ! e–1, Eq. (7) yields

(8)

This law (for t ! ) has been used to establish the
lower limit on the oscillation time τ = e–1. According to
the ILL-Grenoble experiment [10],

(9)

The corresponding value of the mixing parameter is e ≈
10–23 eV. This number is used in obtaining numerical
results presented below.
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i
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2
--- iΩ Γβ+( )t– ,exp

ψn t( ) ψn 0( )ie
ν
---- νtsin– ψn 0( ) νt

iω
2ν
------ νtsin–cos 

 + 
 =

× 1
2
--- iΩ Γβ+( )t– ,exp

En En

ψn 0( )

ψn t( ) 2 4e
2

ω2 4e
2+

-------------------- Γβ– t( )exp=

× 1
2
--- ω2 4e

2+ t 
  .sin

2

ψn t( ) 2
e

2t2 Γβ– t( ).exp≈
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1–
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The Earth’s magnetic field leads to a strong suppres-
sion of the n–  oscillations. With the value of ω given
by (4), Eq. (7) leads to

(10)

where τB = (|µn|B)–1 ≈ 2 × 10–4 s. In what follows, we
assume that the magnetic field is screened.

For ω = 0 but for arbitrary initial conditions, Eqs. (5)
and (6) take the form

(11)

(12)

where E = En = .

3. OPTICAL POTENTIAL MODEL
FOR THE TRAP WALL

We remind the reader that neutrons with the energy
E < 10–7 eV are called ultracold. An excellent review of
UCN physics was given in [11] (see also [12]).

A useful relation connecting the neutron velocity v
in cm/s and E in eV is given by

(13)

For E = 10–7 eV, the velocity is v  ≈ 4.4 × 102 cm/s.
A less formal definition of UCN involves the notion

of the real part of the optical potential corresponding to
the trap material (see below). Neutrons with energies
less than the height of this potential are called ultracold.
The two definitions are essentially equivalent because,
as we see in what follows, the real part of the optical
potential is of the order 10–7 eV for most materials.

Our main interest is in strongly absorptive interac-
tion of the  component with the trap walls. We there-
fore ignore very weak absorption of UCN on the walls
[11, 12]. Due to complete reflection from the trap walls,
UCN can be stored for about 103 s (β-decay time), as
was first pointed out in [13].

To be specific, we consider UCN with E = 0.8 ×
10−7 eV, which corresponds to v  = 3.9 × 102 cm/s
(see (13)), k = 12.3 eV, and de Broglie wavelength λ ≈
10–5 cm. In the next section, we describe UCN in terms

n

ψn t( ) 2 4e
2

ω2
-------- Γβt–( ) t/τBsin

2
exp≈

≈ 10 23– t/τB,sin
2

ψn t( ) ψn 0( ) et iψn 0( ) etsin–cos( )=

× iE
Γβ

2
-----+ 

 – t ,exp

ψn t( ) i– ψn 0( ) etsin ψn 0( ) etcos+( )=

× iE
Γβ

2
-----+ 

 – t ,exp

En

v cm/s[ ] 102 109E eV[ ] /5.22( )1/2
.=

n
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of wave packets, and, hence, the above values must be
attributed to the center of the packet.

We treat the interaction of n and  with the trap
walls in terms of an energy-independent optical poten-
tial. The validity of this approach to UCN has been jus-
tified in a number of papers (see, e.g., [11, 12, 14]).
There is still an open question concerning the discrep-
ancy between theoretical prediction and experimental
data on the UCN absorption. Interesting by itself, this
problem is outside the scope of our work because, as
was already mentioned, absorption of neutrons may be
ignored in the n–  oscillation process. The low-energy
optical potential is given by

(14)

where j = n, ; m is the neutron mass; N is the number
of nuclei in a unit volume; and ajA is the j–A scattering
length, which is real for n and complex for . For neu-
trons, the scattering lengths anA are accurately known
for various materials [12]. For antineutrons, the situa-
tion is different. Experimental data on low-energy –A
interaction are absent. Only some indirect information
may be gained from level shifts in antiprotonic atoms,
and, therefore, the values of  used in [3, 6, 8, 15] as

an input in the n–  oscillation problem are similar but
not the same. We consider the set of  calculated
in [16] within the framework of the internuclear cas-
cade model as most reliable. Even this particular model
leads to several solutions, and the one that we have cho-
sen for 12C (graphite and diamond) may be called
“motivated” by [16]. To estimate the dependence on the
material of the walls and to compare our results with
those in [3], we also performed calculations for Cu.
Scattering lengths for Cu are not given in [16], and we
used the solution proposed in [3]. Our calculations
were thus performed with the –A scattering lengths

(15)

The scattering lengths for neutrons are [12]

(16)

The concentrations of atoms N entering (14) are as
follows:

In accordance with (14), the optical potentials are

n

n

U jA
2π
m
------Na jA,=

n

n

n

anA

n
anA

n

anC 3 i1–( ) fm, anCu 5 i0.5–( ) fm.= =

anC 6.65 fm, anCu 7.6 fm.= =

NC graphite( ) 1.13 10 16–  fm 3– ,×=

NC diamond( ) 1.63 10 16–  fm 3– ,×=

NCu 0.84 10 16–  fm 3– .×=
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then given by

(17)

(18)

In this paper, we consider particles (n and ) with ener-
gies below the potential barrier formed by the real part
of the potential. For  and 12C, the limiting velocity is
v  = 4.15 × 102 cm/s.

4. WAVE PACKET VERSUS STANDING WAVES

It is convenient to use the short notation

(19)

for optical potentials (17) and (18), where j = n,  and
the wall material is not indicated explicitly. We con-
sider the following model for the trap in which n–
oscillations may possibly be observed. We imagine two
walls of type (19) separated by a distance of L ~ 102 cm,
i.e., the one-dimensional potential well of the form

(20)

with θ(x) being the step function. Our goal is to follow
the time evolution of the  component in such a trap,
assuming that the initial state is a pure n one.

The first question to be answered is how to describe
the wave function of the system. Two different
approaches seem to be feasible, and both were dis-
cussed in the literature [4, 6, 8]. The first is to consider
oscillations occurring in the wave packet and to inves-
tigate to what extent reflections from the walls distort
the picture compared to the free-space regime. The sec-
ond approach is to consider the eigenvalue problem in
potential well (20), to find energy levels for n and ,
and to consider oscillations in this basis. Because of
different interactions with the walls, the levels of n and

 are split and the  levels acquire annihilation widths.
At first glance, this approach might seem inadequate

because, in a trap with L ~ 102 cm, the density of states
is very high, the characteristic quantum number corre-
sponding to the UCN energy is very large, and the split-
ting δE between adjacent n levels (or between the levels
of the n and  spectra) is extremely small. The values
of all these quantities are given below, and it follows
that δE < 10–14 eV. However, this approach cannot be

UnC gr( ) 1.95 10 7–  eV,×=

UnC diam( ) 2.8 10 7–  eV,×=

UnCu 1.66 10 7–  eV;×=

UnC gr( ) 0.9 i0.3–( ) 10 7–  eV,×=

UnC diam( ) 1.3 i0.4–( ) 10 7–  eV,×=

UnCu 2 i0.2–( ) 10 7–  eV.×=

n

n

U j V j iW jδjn–=

n

n

U j x( ) θ x– L–( ) θ x( )+{ } V j iW jδjn–{ } ,=

n

n

n n

n

JOURNAL OF EXPERIMENTAL
discarded without further analysis, because the n–
mixing parameter e ≈ 10–23 eV is much smaller than δE.

To understand the relation between the two
approaches, we note that the initial conditions corre-
spond to a beam of UCN provided by a source. The
momentum spectrum of UCN depends on the specific
experimental conditions. In order to stay on general
grounds and, at the same time, to simplify the problem,
we assume that the UCN beam entering the trap has the
form of a Gaussian wave packet. We suppose that, at
t = 0, the center of the wave packet is at x = x0, and,
hence,

(21)

where a is the width of the wave packet in coordinate
space. The normalization of wave function (21) corre-
sponds to one particle in the entire one-dimensional
space,

(22)

For E = 0.8 × 10–7 eV and the beam resolution
∆E/E = 10–3, we have

(23)

The width of wave packet (21) increases with time
according to

(24)

and becomes comparable with the trap size L for t ~
103 s. For the wave hitting the wall and the reflected
wave to be clearly resolved, the condition a'/v  ! τL or
a' ! L must be satisfied, where τL ~ 1 s is the time
between two consecutive collisions with the trap walls.
Reflection of the wave packet from the walls is consid-
ered in detail in the next section. Here, we show that t ~
103 s is the characteristic time needed for the rearrange-
ment of the initial wave packet into stationary states of
the trapping box.

We consider the eigenvalue problem for potential
well (20). The parameters of potential (20) for neutrons
are Vn ≈ 2 × 10–7 eV and L ≈ 102 cm. The number of lev-
els is

(25)

n

ψk x t 0=,( ) πa2( ) 1/4–
=

×
x x0–( )2

2a2
--------------------– ikx+

 
 
 

,exp

x ψk x t 0=,( ) 2d

∞–

+∞

∫ 1.=

k 12.3 eV, a 3.2 10 3–  cm.×= =

a' a 1
t

ma2
--------- 

  2

+
1/2 t

ma
-------≈=

M
L 2mV

π
-------------------- 108

π
--------.≈ ≈
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According to (23), the center of wave packet (21) has
the momentum k = 12.3 eV, which corresponds to a
state with the number of nodes j ≈ 2 × 107 and kjL ≈ 6 ×
107 @ 1. Positions of such highly excited levels in a
finite-depth potential are indistinguishable from the
spectrum in a potential box with infinite walls. There-
fore,

(26)

Wave functions (26) describe semiclassical states with
j @ 1 in a potential well with sharp edges. The “fre-
quency” ωj is very high compared to the width of the
wave packet in momentum space,

This implies that the wave packet spans over a large
number of levels. To determine this number, we note
that the distance between adjacent levels around the
center of the wave packet is

The highly excited levels within the energy band

corresponding to wave packet (21) are to a high accu-
racy equidistant, as they should be in the semiclassical
regime. The number of states within ∆E is

and their density in momentum space is

(27)

We can now answer the question formulated at the
beginning of this section, namely, whether the n–
oscillations in the trap should be described in terms of
the wave packet or in terms of the stationary eigenfunc-
tions. At t = 0, the wave function has the form of the
wave packet (21) provided by the UCN source. Due to
collisions with the trap walls, transitions from the initial
state (21) into discrete (or quasi-discrete for ) eigen-
states (26) occur.

The time evolution of the initial wave function (21)
proceeds according to

(28)

where G(x, t; x ', 0) is the time-dependent Green’s func-
tion for potential well (20). Using the spectral represen-

ϕ j x( ) 2
L
--- ωj x, ωjsin≈ πj

L
-----.=

ωj 6 105 cm 1–
 @ ν×≈ 1

2a
---------- 2 102 cm 1– .×≈=

δE E j 1+ E j 10 14–  eV.∼–=

∆E 10 3– E 10 10–  eV∼=

∆j ∆E/δE 104∼=

ρ ω( ) a∆j L/π 106 eV 1– .∼≈=

n

n

ψ x t,( ) x'G x t; x' 0,,( )ψk x' 0,( ),d∫=
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tation for G, we can write

(29)

In the semiclassical approximation, the distance
between the adjacent levels is δE = π/τL, and, therefore,
one may think that, at t = τL , i.e., already at the first col-
lision, the neighboring terms in (29) would cancel each
other. But this is not the case. Indeed,

Therefore, there is a constructive interference at x = ±v t
either in the first or in the second term, respectively.
This is true with the whole sum of terms in (29) taken
into account, and, hence, we can pass from summation
to integration in (29). The overlap of the wave functions
entering (29) can be easily evaluated, provided the cen-
ter of the wave packet x0 is not within the bandwidth
distance a' from the trap walls. The overlap is given by
the integral

(30)

At this step, we have omitted the exponential with the

high frequency (k +ωj). We next take (x '' + x0)/( ) as
a new variable and assume that |x0| @ a, L – |x0 | @ a (we
recall that x0 is negative because –L < x < 0). The result
is that

(31)
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iE jt–
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j

∑=
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π
L
--- x v t–( ) 

 exp+ 
 exp

– iωj x–( ) 1 i
π
L
--- x v t+( )– 

 exp+ 
  .exp

x'ϕ j* x'( )ψk x' 0,( )d∫ i

2 πLa( )1/2
----------------------------≈

× x'
x' x0–( )2

2a
2

---------------------– i k ωj–( )x'+
 
 
 

expd

L–
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Corrections to (31) are of the order of a/L. We now
consider frequency summation in (29). This summation
can be replaced by integration over ω, because the den-
sity of semiclassical states ρ(ω) is very high. We thus
arrive at

(32)

(33)

The second term in Eq. (32) describes the reflected
wave packet (see the next section). According to (21),
(28), and (32), all that happens to the wave packet in the
trap is broadening and reflections. This is true during
some initial period of its life history at least. How long
does this period last? The answer to this question may
be obtained by estimating the accuracy of performing
frequency integration instead of summation over dis-
crete states in (29).

To estimate the time scale for the rearrangement of
initial wave packet (21) into trap standing waves (26),
it is convenient to introduce the difference

between the “exact” wave function (29) and the approx-
imate integral representation (32). Whenever

(34)

we can consider oscillations as proceeding in the wave
packet basis. With

(35)
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2
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2m
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we have the estimate

(36)

From (35), we find that

(37)

Because f(ω) is a narrow Gaussian peak, we can substi-
tute g(ω) by g(k0), and then (36) results in

(38)

From (34) and (38), we have

(39)

where a' is given by (23).

Roughly speaking, the time t ~ 103 s needed for the
neutron wave function to rearrange into the trap eigen-
state is comparable to the neutron lifetime, and the neu-
tron would rather “die” than adjust to the new boundary
conditions. The wave packet formalism is therefore
used in what follows. Some additional subtleties arising
from the quantization of levels in the trapping box are
discussed in Section 7.

5. REFLECTION FROM THE TRAP WALLS

We return to one-dimensional trap (20). Let the par-
ticle moving from x = –∞ enter the trap at t = 0 through
the window at x = –L. At t = τL , it reaches the wall at
x = 0, the n component is reflected from the wall, and
the  component is partly reflected and partly

δψ x t,( ) f ωn( )
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∑ ωρ ω( ) f ω( )d∫–=

=  ωρ ω( ) f ω( ) f ωn( )–( )d
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∫
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maL
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absorbed. The wave packet describing the interaction
with the wall has the form

(40)

where j = n,  and

(41)

For the n component, ρn(k) = 1, because we neglect
very weak absorption of neutrons at the surface. The
integral (40) with the first term in (41) is trivial. To inte-
grate the second term in (41), we note that, due to the
Gaussian form factor with ak0 ~ 103 @ 1, the dominant
contribution to integral (40) comes from a narrow inter-
val of k around k0. Expanding Rj(k) at k – k0 and keeping
the leading term, we obtain

(42)

The validity of the last step for  becomes clear from
the explicit expressions for  and  presented
below.

Integration in (40) can now be easily performed,
with the result [17]

(43)

(44)
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(45)

From (43)–(45), we see that the essence of R(k) in
the wave packet formalism is the same as in the time-
independent approach. Therefore, imposing standard
boundary conditions at x = 0, we obtain the reflection
coefficients

(46)

(47)

(48)

(49)

For 12C (graphite), in particular,

(50)

The first term on the right-hand side of (45) can be
written as [–x + L – v 0(t – φ'/v 0)]2. Hence, the collision
time or time delay is [17, 18]

(51)

For neutrons, i.e., for real κn , Eq. (51) gives the well-
known result

This result is in line with the naive estimate τn, coll ~
l/v 0 ~ 10–8 s [8], where l & λ is the penetration depth.

For 12C (graphite), Eq. (51) yields

(52)

Equations (43)–(45) supplemented by the above
inequality make it possible to follow the time evolution
of the beam inside the trap. We imagine an observer
placed at a bandwidth distance from the wall, i.e., at
x = –a. According to (43)–(45), such an observer con-
cludes that the incident wave (the first term in (43))
dominates at times t ≤ τL – τa , while the reflected wave
prevails at t ≥ τL + τa . With this splitting of the time
interval around NτL , N = 1, 2, …, we use the notation
(NτL–) and (NτL+) for the moments before and after the
Nth collision. Thus, we can calculate the  production
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rate, because we have rigorous definitions of the colli-
sion time and the time interval between the two subse-
quent collisions.

6. ANNIHILATION RATE IN A TRAP

We can now inquire into the problem of time-depen-
dence of the  production probability. In free space, it

is given by  = e2t2 (see (2)), while in a trap with
the complete annihilation or total loss of coherence at

each collision, it has a linear time dependence  =
e2τLt [8].

To avoid cumbersome equations and because we

consider the time interval t ! , we omit exp(–Γβt)

factors. Production of  during the collision can also be
neglected [8]. The difference in collision times (52) for
n and  may also be ignored. In the previous section,
we have seen that the interaction of the wave packet
with the wall is described in terms of reflection coeffi-
cients (46).1 

We assume that, at t = 0, a pure-n beam enters the
trap at x = –L. After crossing the trap, i.e., at t = (τL–),
the time-dependent parts of the wave functions are
given by (12),2 

(53)

After the first reflection at t = (τL+), we have

(54)

Evolution from t = (τL+) to t = (2τL–) again proceeds in
accordance with (12),

(55)

where θ =  – φn is the decoherence phase and ρ ≡ .

1 An alternative description using time-evolution operators was
proposed in [8].

2 We state this although the Gaussian form factor in (43) also
depends on time, the corresponding terms in the time-dependent
Schrödinger equation are of the order of 1/ak0 compared to the
derivative of the exponent exp(–iEt); we also note that the form
factors are the same for n and  up to a constant multiplier.

n

ψn t( ) 2

ψn t( ) 2

Γβ
1–

n

n

n

ψn τL–( ) eτL( ) iEτL–( ),expcos=

ψn τL–( ) eτL( ) i EτL π/2+( )–[ ] .expsin=

ψn τL+( ) eτL( ) i EτL φn–( )–[ ] ,expcos=

ψn τL+( ) ρn eτL( ) i EτL φn– π/2+( )–[ ] .expsin=

ψn
1
2
--- 2eτL( ) 1 ρeiθ+( )sin=

× i 2EτL φn– π/2+( )–[ ]exp

≈ eτL 1 ρeiθ+( ) i 2EτL φn– π/2+( )–[ ] ,exp

φn ρn
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The answer for ψ(NτL–) now seems evident:

(56)

This conjecture is easy to verify by induction. For t =
(2τL–), the result was derived explicitly in (55). Evolv-
ing (56) through one reflection at t = NτL and free prop-
agation from t = (NτL+) to t = ((N + 1)τL–), we arrive
at (56) with (N + 1) instead of N. This completes the
proof.

Therefore, the admixture of  before the Nth colli-
sion, i.e., at t = NτL–, is

(57)

The annihilation probability at the jth collision is

(58)

The total annihilation probability after N collisions is
therefore given by

(59)

After several collisions, the terms proportional to ρN,
ρ2N, and ρN + 1 may be dropped, because ρ ~ 0.5
(see (50)). Then, (59) takes the form

(60)

Three different regimes may be inferred from (60).
For a very strong annihilation, i.e., ρ ! 1,

(61)

ψn NτL–( ) eτL
1 ρNeiNθ–

1 ρeiθ–
------------------------=

× i NEτL φn– π/2+( )–[ ] .exp

n

ψn NτL–( ) 2
e

2τL
2 1 ρ2N 2ρN Nθcos–+

1 ρ2 2ρ θcos–+
--------------------------------------------------.=

Pa j( ) 1 ρ2–( ) ψn jτL–( ) 2.=

Pa N( ) 1 ρ2–( ) ψn kτL( ) 2

k 1=

N

∑=

=  
e

2τL
2 1 ρ2–( )

1 ρ2
2ρ θcos–+

--------------------------------------- N
ρ2 1 ρ2N

–( )
1 ρ2–

----------------------------+


– 2ρ θcos ρ– ρN
N 1+( )θ ρ Nθcos+cos[ ]–

1 ρ2 2ρ θcos–+
------------------------------------------------------------------------------------------------

 .

Pa N( )
e

2τL
2

1 ρ2 2ρ θcos–+
---------------------------------------≈

× N 1 ρ2–( ) 1 1 ρ2–( )2

1 ρ2 2ρ θcos–+
---------------------------------------–+

 
 
 

.

Pa N( ) e
2τL

2 N e
2τLt.= =
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For the complete decoherence at each collision, i.e., for
θ = π,

(62)

For the (unrealistic) situation where θ = 0,

(63)

For the values of ρ and θ corresponding to optical
potentials (17) and (18), the quantity

calculated in accordance with the exact equation (59) is
displayed in Fig. 1. This figure shows that the linear
time dependence settles after about 10 collisions with
the trap walls. The asymptotic value of Qa(N), which
may be called the enhancement factor, is 1.5–2,
depending on the wall material.

Proposals have been discussed in the literature [6, 19]
to compensate the decoherence phase θ by applying the
external magnetic field. Assuming the ideal situation
that the regime θ = 0 may be achieved in such a way and
also assuming that the reflection coefficient ρ can be
varied in the whole range by varying the trap material,
we plot the quantity Neff(ρ) defined as

(64)

in Fig. 2. Thus defined, Neff(ρ) obviously depends also
on the number of collisions N; the results for N = 10 and
N = 50 are presented in Fig. 2. This figure shows what

Pa N( ) e
2τL

2 N
1 ρ–
1 ρ+
------------ ρ 2 ρ–( )

1 ρ+( )2
--------------------+ 

  1 ρ–
1 ρ+
------------e

2τLt.≈=

Pa N( ) e
2τL

2 N
1 ρ+
1 ρ–
------------ ρ 2 ρ+( )

1 ρ–( )2
---------------------– 

  1 ρ+
1 ρ–
------------e

2τLt.≈=

Qa N( ) e
2τL

2 N( ) 1–
e

2τLt( ) 1–
Pa N( )= =

Pa N( ) e
2τL

2 Neff ρ( )=

0 10 20 30 40

N

0.5

50

1.0

1.5

2.0

Qa

Fig. 1. Plot of the Qa(N) = (e2τLt)–1Pa(N) dependence vs.

N. The solid line corresponds to 12C (graphite); the dashed
one, to 12C (diamond); and the dotted one, to Cu.
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can be expected from the trap experiments in the most
favorable, although hardly realistic, scenario.

7. CONCLUDING REMARKS

We have reexamined the problem of n–  oscilla-
tions for UCN in a trap. Our aim was to present a clear
formulation of the problem, to calculate the amplitude
of the  component for an arbitrary observation time
and for any given reflection properties of the trap walls.
We have shown that, for the physically relevant obser-
vation time (i.e., for the time interval less than the
β-decay time), the process of n–  oscillations is
described in terms of wave packets, while the standing-
wave regime may settle only at later times. By calculat-
ing the difference between the n and  collision times,
new light has been shed on the decoherence phenom-
ena. For the first time, an exact equation has been
derived for the annihilation probability for an arbitrary
number of collisions with the trap walls. In line with the
conclusions of the previous authors on the subject, this
probability grows linearly with time. We have calcu-
lated the enhancement factor entering this linear time
dependence and found this factor to be 1.5–2, depend-
ing on the reflection properties of the wall material.

Despite the extensive investigations reviewed in this
article and the results of the present paper, the list of
problems for further work is large. The central and most
difficult task is to obtain reliable parameters of the opti-
cal potential for antineutrons. The beam of  with the
energy in the range of 10–7 eV will hardly be accessible
in the near future. Therefore, work has to be continued
along the two lines mentioned above: to deduce the
parameters of the optical potential the level shifts in
antiprotonic atoms and to construct reliable optical

n

n

n

n

n

0 0.2 0.4 0.6 0.8 ρ

200

400

600

800

Neff

Fig. 2. Plot of the Neff dependence vs. ρ at θ = 0. The solid
line is for the number of collisions N = 50; the dashed line
corresponds to N = 10.
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models that can be confronted with the available exper-
imental data on –nuclear interaction at higher ener-
gies. In a forthcoming publication, we plan to present
numerical calculation of the time evolution of a wave
packet into standing waves and to discuss some features
of n–  oscillations in the eigenfunction basis, which
were not discussed in [4]. Another task is to perform
calculation for the specific geometry of the trap and a
realistic spectrum of the neutron beam. This requires an
input corresponding to a specific experimental setting.
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Abstract—An analysis of two-dimensional spatial optical solitons in a large-aperture class A laser with a sat-
urable absorber is developed. New types of rotating asymmetric solitons are found by computing the governing
equation. The existence of weakly and strongly coupled solitons is demonstrated. Essential distinctions
between them manifest themselves in the pattern of energy flows. A strongly coupled state evolves with time
from an initial superposition of the fields of two solitons via successive bifurcations (topological changes in the
energy-flow pattern). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Optical solitons are blobs of light whose linear (dif-
fractive or dispersive) spread is balanced by nonlinear
compression. There exist optical solitons of two types.
One is the conservative soliton developing and pro-
pagating in a transparent medium with negligible losses
[1, 2]. The basic characteristics of conservative solitons
have continuous spectra. In other words, the corre-
sponding peak intensities or blob widths can vary con-
tinuously (within certain limits). The other type is the
dissipative soliton (also called autosoliton) [3]. Origi-
nally, dissipative optical solitons were predicted and
analyzed theoretically in large-aperture nonlinear inter-
ferometers [4, 5] and lasers with saturable absorbers [6].
By virtue of an additional requirement of energy bal-
ance (not imposed in the case of conservative solitons),
the basic characteristics of dissipative solitons have dis-
crete spectra. This implies substantial difference in
properties between the two types of solitons. Dissipa-
tive optical solitons are characterized by an excitation
threshold. In conjunction with the discreteness of their
spectra, this property enhances their potential utility for
data-processing technologies. Progress in experiment
and application was stimulated by the introduction of
semiconductor microcavities [7, 8]. The current status of
theory and experiment in studies of optical solitons was
discussed in reviews [9, 10] and a monograph [11].

One-, two-, and three-dimensional dissipative opti-
cal solitons can be implemented in certain lasers with
and without feedback [11, 12]. In this paper, we con-
sider the spatial solitons that arise in a large-aperture
laser with nonlinear (saturable) gain and absorption.
Since the longitudinal variation of the electric-field
envelope is slow, we can use a paraxial equation aver-
aged over this direction [13], i.e., solitons of this kind
are essentially two-dimensional. We restrict our analy-
sis to media with fast optical nonlinearity, whose
1063-7761/04/9803- $26.00 © 20427
response is determined by instantaneous values of the
electric field envelope. In other words, we neglect the
effects due to finite relaxation times (examined in [11,
14–16]). Under this assumption, field dynamics are
governed by the complex Ginzburg–Landau equation
for the envelope of electric field. The governing equa-
tion and its key properties are considered in Section 2.
Numerical solution of the governing equation reveals a
number of interesting structures that can be interpreted
as strongly coupled states of cavity solitons (see [11, 17]
and references cited therein). In this paper, we also
compute several new structures of this kind. However,
the present analysis is focused on the elucidation of the
“internal structure” of cavity solitons, which is most
obviously manifested in the pattern of energy flow. We
apply some well-known methods of the theory of non-
linear oscillations to analyze the pattern of Poynting-
vector streamlines (Section 3). The relatively simple
patterns corresponding to single solitons with axially
symmetric intensity distributions are discussed in Sec-
tion 4. In Section 5, we consider a pair of interacting
solitons and expose qualitative (topological) difference
in energy-flow pattern between widely separated
(weakly interacting) and closely spaced (strongly inter-
acting) solitons. This analysis indicates that the pattern
changes via bifurcations as the distance between the
solitons decreases. The main results are summarized in
the Conclusions Section.

2. MODEL OF A LASER 
AND THE BASIC EQUATIONS

Consider a large-aperture laser with saturable gain
and absorption in the optical cavity between plane par-
allel mirrors. In the case of fast optical nonlinearity (for
a class A laser), the paraxial equation for the envelope
E(r⊥ , t) averaged over the longitudinal coordinate z (in
the mean-field approximation valid when the electric-
004 MAIK “Nauka/Interperiodica”
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field envelope changes weakly over the cavity length) is
the generalized complex Ginzburg–Landau equation
(see [11])

(2.1)

We use the following dimensionless notation here: t is
the time measured in units of field decay time in an
empty cavity, d is the effective diffusion coefficient
characterizing a weakly dispersive medium (0 < d ! 1),
and ∆⊥  = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace oper-
ator. The transverse coordinates x and y are measured in
units of Fresnel zone width wF = [Lc/2k(1 – |R|)]1/2,
where Lc is the cavity length, k is the wavenumber in a
linear medium, and R is the product of the amplitude
reflectivities of the cavity mirrors. The function f(|E|2)
characterizes gain and absorption saturation and
includes constant (nonresonant) losses. Without speci-
fying this function, we note here that stable localized
structures (with field amplitude rapidly decreasing
toward periphery) can exist only if

. (2.2)

Otherwise, the peripheral structure would be unstable
with respect to small perturbations.

Equation (2.1) is invariant under phase shift of the
field

(2.3)

shift in the transverse coordinates

(2.4)

(Φ0, X0, and Y0 are constants), and inversion of either
transverse coordinate, such as

(2.5)

Furthermore, Eq. (2.1) entails the following integral bal-
ance energy relation valid for localized structures [12]:

(2.6)

where the functional W'(E) is defined as

(2.7)

For steady structures (including those moving or rotat-
ing as a whole), it holds that

(2.8)

In the case of a negligible frequency detuning,  f is a real
function (Imf = 0). In the calculations presented below,

∂E
∂t
------ i d+( )∆⊥ E f E

2( )E.+=

Re f 0 Re f 0( ) 0<=

E E iΦ0( ),exp

E x y t, ,( ) E x X0+ y Y0 t,+,( )

E x y t, ,( ) E x y t,–,( ).

d
dt
----- E

2 r⊥d∫ 2W' E( ),=

W' E( ) E 2Re f E 2( ) ∇ ⊥ E 2d–[ ] r⊥ .d∫=

W' E( ) 0.=
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we used the function f corresponding to a two-level
medium with saturable gain and absorption:

(2.9)

where g0 and a0 are the linear gain and absorption coef-
ficients, respectively; b is the ratio of gain and absorp-
tion saturation intensities; and nonresonant losses are
represented by the first term on the right-hand side
(equal to  –1 on the time scale used here).

3. FLOWS OF RADIANT ENERGY

In the paraxial approximation employed here, the
Poynting vector S averaged over the period of an elec-
tromagnetic wave with constant (e.g., almost linear)
polarization is related to the envelope E, the real ampli-
tude A = |E|, and phase Ψ =  as follows [18, 19]:

(3.1)

In accordance with the laser model, we treat the z axis
as the predominant wave propagation direction, and
governing equation (2.1) involves only the transverse
coordinates r⊥  = (x, y). Therefore, the vector S⊥  =
(Sx, Sy) at a time t can be expressed as

(3.2)

The corresponding streamlines (curves with tangents
parallel to S⊥  at every point) are conveniently parame-
terized by equations written in terms of a function τ of
the arclength (cf. the ray equation in geometrical
optics):

(3.3)

Note that these streamlines would be almost every-
where described by Eq. (3.3) with the Poynting vector
replaced by the phase gradient. However, the Poynting
vector is more suitable in most cases. Indeed, whereas
the phase is not defined at the points of screw wavefront
dislocations (where the field amplitude vanishes), the
Poynting vector vanishes at these points. Note also that
both energy flow and Poynting vector have well-
defined physical meaning in the paraxial approxima-
tion. The transverse distribution of the Poynting vector
combined with the transverse intensity distribution pro-
vides an unambiguous description of the field (up to an
insignificant constant).

Equations similar to (3.3) have been analyzed in
detail in the theory of nonlinear oscillations [20, 21].
The degenerate case corresponds to conservative sys-
tems almost everywhere satisfying the relation
div⊥ S⊥  = 0. Conservative systems do not have isolated
closed orbits and are not robust. The phase portrait of

f E 2( ) 1–
g0

1 E
2

+
------------------

a0

1 b E
2

+
---------------------,–+=

Earg

S A2∇Ψ Im E*∇ E( ).= =

S⊥ A2∇ ⊥ ψ Im E*∇ ⊥ E( ).= =

dx
dτ
------ Sx x y,( ),

dy
dτ
------ Sy x y,( ).= =
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such a system consists of “cells” occupied by trajecto-
ries of similar type that can be altered by an arbitrarily
small change in Sx(x, y) and Sy(x, y) [20, 21]. Examples
of Poynting-vector streamlines for conservative optical
systems can be found in [22].

Lasers are dissipative systems (div⊥ S⊥  ≠ 0) in which
the field exchanges energy with active and absorbing
media. To divide a phase portrait into cells of similar
behavior of the trajectories described by x(τ) and y(τ),
one should find the singular (fixed) points (x0, y0) at
which Sx(x0, y0) = 0 and Sy(x0, y0) = 0. According
to (3.1), the singular points are of two types, since the
Poynting vector vanishes with field amplitude or phase
gradient. In the former case, the expansion of the com-
plex field envelope in terms of small deviations of x and
y from x0 and y0 about a singular point starts from linear
terms:

(3.4)

where the derivatives, E(x) = ∂E/∂x|x = y = 0, etc., are cal-
culated at the singular point. Then,

(3.5)

where q = Im(E(x) ), and Eqs. (3.3) become

(3.6)

Solutions to these equations correspond to trajectories
x2 + y2 = R2 in the phase plane xy. In this case, the point
is a center (i.e., not a robust one) and its type may
change when higher order terms of expansion (3.4) are
taken into account. The analysis below shows that the
point is actually a focus in the case of a cavity soliton
with an axially symmetric intensity distribution.

The expansion of the field about a singular point of
the other type contains a constant term E0 ≠ 0:

(3.7)

Here, the Poynting vector vanishes at the singular point
(x = y = 0) if Im( E(x)) = Im( E(y)) = 0, and the

E x y,( ) E x( )x E y( )y
1
2
---E xx( )x

2+ +=

+ E yy( )xy
1
2
---E yy( )y

2 …,+ +

Sx qy, Sy qx,–= =

E y( )*

dx
dτ
------ qy,

dy
dτ
------ qx.–= =

E x y,( ) E0 E x( )x E y( )y
1
2
---E xx( )x

2+ + +=

+ E xy( )xy
1
2
---E yy( )y

2 …++

E0* E0*
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energy-flow streamlines are described by the equations

(3.8)

where p = Im( E(xy)). The type of a singular point is

determined by the roots of the quadratic equation

(3.9)

with

(3.10)

When σ ≠ 0 and ∆ ≠ 0, the singular point is robust
(node, focus, or saddle point). In the general case, to
divide a phase portrait into cells, one must know not
only the singular points and their types, but also nonlo-
cal elements (periodic orbits and saddle separatrices)
[20, 21].

Energy-flow streamlines change with system
parameters, initial conditions, or time. Of particular
interest are bifurcations, i.e., topological changes in
the partition of the phase portrait into cells. All types
of bifurcations admitted by Eqs. (3.3) have been well
studied [20, 21], which facilitates analysis of energy-
flow patterns in two-dimensional solitons.

4. SOLITONS 
WITH AXIALLY SYMMETRIC INTENSITY 

DISTRIBUTIONS

For a steady soliton, the time dependence of the
envelope has the form exp(–iνt), where the frequency
shift ν is the eigenvalue of the problem. Solitons with
axially symmetric intensity distributions should be con-
sidered in polar coordinates r and ϕ (x = rcosϕ, y =
rsinϕ). Writing

(4.1)

where the integer m = 0, ±1, ±2, … is a topological
index, we obtain an equation for the complex radial
function F(r):

(4.2)

The “instantaneous” phase Ψ =  is related to the
radial phase Ψ0(r) = :

(4.3)

dx
dτ
------ Im E0*E xx( )( )x q p+( )y,+=

dy
dτ
------ p q–( )x Im E0*E yy( )( )y,+=

E0*

λ2 σλ ∆++ 0,=

σ Im E0*E xx( )( )– Im E0*E yy( )( ),–=

∆ Im E0*E xx( )( )Im E0*E yy( )( ) p2 q2+ .–=

E F r( ) imϕ( ) iνt–( ),expexp=

d2F

dr2
---------

1
r
---dF

dr
-------+

m2

r2
------F

1
i d+
----------- iν f F 2( )+[ ] F+ 0.= =

Earg
Farg

Ψ r ϕ,( ) Ψ0 r( ) mϕ .+=
SICS      Vol. 98      No. 3      2004



430 ROZANOV et al.
It is assumed that time t is fixed and Ψ0(0) = 0 since the
constant component of the phase is of no importance.
When the field amplitude is small, Eq. (4.2) reduces to
a linear equation:

(4.4)

where

(4.5)

Without loss of generality, we can assume that Rep > 0.
When m = 0, we can use (4.5) with f0  f(|F0|2),
where |F0|2 is the intensity at the center of a fundamen-
tal soliton. The solution to (4.4) can be expressed in
terms of cylinder functions. However, only their asymp-
totics can be used at r  ∞ (at the periphery of a soli-
ton) and r  0 (when m ≠ 0, since the field vanishes
at the center of the soliton in this case). As r  ∞, the
complex amplitude F, the real amplitude A = |F|, and the
radial phase Ψ0 are

(4.6)

where p' = Rep > 0 and p'' = Imp.
As r  0, the power series expansion of the solu-

tion to (4.4) with m ≠ 0 or the solution to (4.2) with
m = 0 has the form

(4.7)

Substituting (4.7) into (4.4), we find

(4.8)

which yields the lowest order term in the radial phase

(4.9)

Note that the asymptotic behavior of the radial phase is
determined by the same complex quantity p both as
r  ∞ and as r  0.

In polar coordinates (with basis vectors er and eϕ),
Poynting vector (3.2) for solitons of this type has the
form

(4.10)

d2F

dr2
---------

1
r
---dF

dr
------- m2

r2
------F– p2F–+ 0,=

p2 iν f 0+
i d+

----------------– .=

F F∞ pr–( ), A A∞ p'r–( ),exp≈exp≈
Ψ0 const p''r,–=

F F0r m 1 F2r2 …+ +( ).=

F2
p2

4 m 1+( )
------------------------,=

Ψ0 r( ) r2

4 m 1+( )
------------------------Im p2=

=  
r2

4 m 1+( )
------------------------Im

f 0 iν+
i d+

----------------.–

S⊥ A2 r( )
dΨ0

dr
----------er

m
r
----eϕ+ 
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Accordingly, Eqs. (3.3) for energy-flow streamlines are
rewritten as

(4.11)

and trajectories are described by the equations

(4.12)

The first equation in (4.11) is strictly radial (does not
contain ϕ). As τ  ±∞, the radius r(τ) tends to a con-
stant R0, where R0 is a root of the equation

whose roots include R0 = 0. When m = 0, the trajectories
are radial line segments with endpoints on circles of
radius R0. When m ≠ 0, these circles are limit cycles,
and the state point moves along them with a constant

angular velocity Ω = mA2(R0)/ . We should note that
stability analysis of energy-flow patterns developed
here has nothing to do with time evolution, because a
fixed point in time is considered. However, one can
consider “stability” with respect to increase in τ (hence
the quotation marks). Note that the singular points
(nodes or foci) and limit cycles that are “unstable” in
the limit of r  ∞ become “stable” as the sign of τ
reverses. This property can be used in calculations, in
particular, to find “unstable” limit cycles.

Since Eq. (4.2) for an axially symmetric localized
distribution is a complex one, it is equivalent to a non-
linear system of four first-order ordinary differential
equations. The equations for the real amplitude A and
the radial phase Ψ0 entailed by (4.2) are

(4.13)

Since Eqs. (4.13) do not contain the phase, the order of
the system can be reduced to three. The equivalent sys-
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Fig. 1. The eigenvalue ν for solitons with topological charge m = 1 versus (a, b) gain g0 for d = 0 and (c, d) diffusion coefficient d
for g0 = 2.13. The second loop of the spiral is shown in more detail in panels (b) and (d) as compared to (a) and (c). The numbers
at the spiral illustrate the change in (NQ, NK) across the points SN with vertical tangents. Unstable solitons are marked with circles.
The dots with arrows near the self-intersection in panel (d) (d = 0.04) correspond to the fundamental and excited solitons depicted
in Figs. 2c and 2d, respectively.
tem of equations for A(r), Q(r) = dΨ0/dr, and K(r) =
(1/A)dA/dr is

(4.14)

As r  0 and r  ∞, the asymptotics of these func-
tions can easily be determined from expressions (4.6)
and (4.7). Specifically, as r  ∞, we find that K 
–p' < 0 and Q  –p'' > 0. As r  0, both Q(r) and
K(r) – |m|/r must vanish simultaneously. These asymp-
totics can be used to calculate characteristics of the soli-
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tons with axially symmetric intensity distributions con-
sidered here.

The calculations presented below were performed
for a0 = 2 and b = 10. When all parameters are held con-
stant, every solution to Eq. (4.14) with appropriate
asymptotic behavior corresponds to an eigenvalue ν
belonging to a discrete set. The dependence of ν on a
control parameter, such as g0 or d, is graphically repre-
sented by a self-intersecting spiral with several loops
(see Fig. 1). Different branches of the spiral are charac-
terized by different numbers of zeros NQ and NK of the
functions Q(r) and K(r) at r > 0. The numbers NQ and
NK change by 1 (when m = 0) or 2 (when m is any inte-
ger) at the points SN with vertical tangents in Fig. 1
(N = 1, 2).

If m = 0, then NQ = NK = 0 for the outer loop of the
spiral (above S1) and the corresponding localized struc-
SICS      Vol. 98      No. 3      2004
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Ψ0
tures are unstable. Here, stability (without quotation
marks) is interpreted in terms of time evolution and is
determined by applying the conventional linear analy-
sis [11]. There exist stable solitons corresponding to the
segments of the next loop where NQ = 1 and NK = 0. If
m = 1 or 2, then there exist no stable solitons corre-
sponding to the outer loop, where NQ = NK = 1. Stable
solitons correspond to the segments of the next loops
where NQ = 3 and NK = 1 (fundamental soliton) and
NQ = 3 and NK = 3 (excited soliton). The dots with
arrows in Fig. 1d represent two close values of ν corre-
sponding to the same value of g0 and lying on different
loops of the spiral near its self-intersection. These
points are associated with the fundamental and excited
solitons with the radial amplitude and phase distribu-
tions illustrated by Figs. 2c and 2d, respectively.

The analysis that follows is focused on stable soli-
tons. When m = 0, the field amplitude is a monotoni-
cally decreasing function of radius. When m ≠ 0, the
radial profile of the amplitude has a single maximum
JOURNAL OF EXPERIMENTAL
and the radial phase is an oscillating function of radius
with number of oscillations depending on |m| (see
Fig. 2). Note that the fundamental and excited states of
a stable soliton (which correspond to different loops of
spirals similar to those in Fig. 1) differ only quantita-
tively (cf. Figs. 2b and 2c).

According to the foregoing analysis, the pattern of
energy flows in the phase plane is as shown in Fig. 3.
The central point, r = 0, is a “stable” node when m = 0
and a focus when m ≠ 0. In the latter case, this point is
encompassed by an odd number of limit cycles, i.e., cir-
cles of radius R0 defined by the condition

(see above). The cycles have alternating “stability”
properties: the cycle closest to the central point is the
“unstable” boundary of the basin of attraction of the

Q R0( )
dΨ0

dr
---------- R0( ) 0= =
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Fig. 4. Bound states of solitons with m1 = m2 = 0, g0 = 2.11, and d = 0.06: (a, c) instantaneous transverse intensity distributions
I(x, y) and (b, d) phase portraits for (a, b) weakly and (c, d) strongly coupled solitons. Dashed curves are separatrices associated
with saddle points S. Arrows indicate the direction of the Poynting vector.
focus, the next cycle is a “stable” one that attracts tra-
jectories as τ  ∞, and the outermost cycle is “unsta-
ble” since the trajectories lying outside it tend to infin-
ity as r  ∞. Figures 1–3 illustrate cases when m ≥ 0.
Those corresponding to m < 0 can readily be obtained
by coordinate inversion, as in (2.5). When m = 0, the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
system is not robust (degenerate). In this case, the circle
encompassing the “stable” node is a set of individual
fixed points rather than a limit cycle. A small perturba-
tion, such as a distant soliton, gives rise to two pairs of
“unstable” nodes N and saddle points S. The four circu-
lar arcs that connect them are separatrices incident to
SICS      Vol. 98      No. 3      2004
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the saddle points (see Fig. 4b). This pattern is robust
(not degenerate).

5. WEAK AND STRONG INTERACTION 
BETWEEN CAVITY SOLITONS

Suppose that the distance L between the centers of
two solitons is much greater than the size of a single
soliton, which is determined by the radius of the outer-
most limit cycle. Then, the distortion of their structure
caused by the overlap of soliton tails is weak and the
instantaneous field can be expressed as

(5.1)

For simplicity, we consider solitons whose topological
charges are equal in absolute value (|m1| = |m2|). This
implies that the solitons are associated with equal
eigenvalues ν and their amplitudes A and radial phases
Ψ0 are similar functions of radius. However, the argu-
ments of these functions are different: rn and ϕn (n = 1, 2)
are polar coordinates with origin at the center of the nth
soliton:

(5.2)

The constant phase difference ϑ  affects the interaction
between the solitons [11].

Since the degree of overlap is low, the energy flows
near the solitons’ centers change insignificantly.
Accordingly, the pattern of Poynting-vector stream-
lines determined by Eqs. (3.3) preserves all closed
orbits that encompass the fixed points representing
individual solitons (stable and unstable limit cycles, as
well as closed orbits consisting of individual separa-
trices). Additional fixed (typically, saddle) points may
arise in the intermediate regions between them. The
separatrices emanating from these points partition the
plane into cells occupied by trajectories moving away
from individual solitons. The intensity distribution and
energy-flow pattern corresponding to a steady pair of
relatively weakly coupled solitons with zero topologi-
cal charges are depicted in Figs. 4a and 4b, respectively.

Bound state (5.1) with a constant phase difference ϑ
and an arbitrary distance L between the solitons may
vary with time. The constant distances L @ R0 corre-
sponding to steady (stable or unstable) pairs of weakly
interacting solitons can be found by substituting (5.1)
into (2.8). As the distance between the solitons
decreases to L ≤ R0 in the course of time, the interaction
becomes stronger and the phase portrait becomes qual-
itatively (topologically) different from that in the case
of L @ R0. Note that this change in internal soliton
structure is due to bifurcations associated with variation

E A r1( ) iΨ r1( ) im1ϕ1+[ ]exp=
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of time (not control parameter). The corresponding
field dynamics are found numerically by solving
Eq. (2.1) with function (2.9) by a splitting method with
the use of fast Fourier transform.

Figures 4c and 4d show the instantaneous intensity
distribution and energy-flow pattern in a steady two-
hump structure rotating with a constant angular veloc-
ity. This structure can be interpreted as a strongly cou-
pled state of two fundamental cavity solitons (with zero
topological charges). Note that the phase portrait in
Fig. 4d contains only “unstable” fixed points. In other
words, the two nodes that are “stable” in the case of
weakly coupled solitons (see Fig. 4b) transform into
“unstable” nodes in the case of strongly coupled soli-
tons (see Fig. 4d). Another manifestation of strong cou-
pling is the absence of “individual” closed orbits
encompassing the nodes (characteristic of weak cou-
pling), which explains the change in “stability” of the
nodes. Almost every trajectory tends to infinity as
τ  ∞. The separatrices of the saddle point S lying
between the nodes partition the plane into cells occu-
pied by trajectories going to infinity along different
directions. The bound solitons rotate as a whole without
any dislocation of the wavefront. This demonstrates that
field asymmetry is the key condition for rotation [11].

Now, consider the interaction between two cavity
solitons with topological charges m1 = m2 = 1 (see
Fig. 5). The corresponding strongly coupled state
evolves in time from an initial superposition (5.1) of
two independent fields with certain ϑ  and L at t = 0. In
Fig. 5a, the individual solitons that make up the pair are
represented by the “stable” foci corresponding to wave-
front dislocations. (The field amplitude vanishes at
these points and remains finite at other fixed points.)
The final steadily rotating structure of a strongly cou-
pled state (see Fig. 5f) preserves only one of the three
individual limit cycles associated with each of the two
dislocations (the inner “unstable” one, see Fig. 3b).
However, the system has two “common” limit cycles
encompassing both foci, one of which is “stable” and
the other is “unstable.” The trajectories lying outside
the outer limit cycle go to infinity, whereas those inside
it either approach the “stable” common limit cycle or
tend to the stable foci (they are partitioned by the sepa-
ratrices of the saddle point S lying between the foci).
The separatrices incident to the saddle point unwind off
the individual “unstable” limit cycles, while the outgo-
ing separatrices wind to the “stable” common limit
cycle. The overall partition of the phase portrait into
cells of steady-state trajectories characterized by differ-
ent behavior is obvious from Fig. 5f. Actually, transi-
tion between the initial and final states involves a time
sequence of bifurcations of the energy-flow pattern.
Some of these are illustrated by Fig. 5. In particular, the
transition between the phase portraits shown in Figs. 5a
and 5b involves a bifurcation in which the outer two
limit cycles encompassing the left focus coalesce and
disappear. The transition from Fig. 5b to Fig. 5c can be
associated with a bifurcation at the central saddle point
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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Fig. 5. Instantaneous phase portraits of energy flows for an evolving, strongly coupled, rotating pair of solitons with m1 = m2 = 1,
g0 = 2.11, and d = 0.06 at t = 0 (a), 5.6 (b), 6 (c), 30 (d), 59 (e), and ∞ (f).
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S that gives rise to a homoclinic orbit encompassing the
right outer limit cycle. Several bifurcations, including
the last one (in transition from Fig. 5e to Fig. 5f), cor-
respond to the appearance and coalescence of two fixed
points, a node N and a noncentral saddle point S (see
Figs. 5d and 5e).

The phase portrait of a strongly coupled pair of soli-
tons with opposite topological charges (m1 = 1, m2 = −1)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is more complicated. This rotating and slowly moving
structure evolves from superposition (5.1) in a rela-
tively long time interval. The wavefront dislocations
(centers of individual solitons) are represented by the
“stable” foci in Fig. 6. In the final state, both foci are
encompassed by single “unstable” limit cycles (with
opposite senses of rotation corresponding to opposite
charges). The trajectories unwinding off these limit
cycles include separatrices of the adjacent saddle
SICS      Vol. 98      No. 3      2004
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Fig. 6. Instantaneous (a, c) transverse distributions I(x, y) and (b, c) phase portraits for pairs of solitons with m1 = 1 and m2 = –1 at
(a, b) t = 0 and (c, d) t = 10000.
points. Each of the three saddle points emits a separatrix
going to infinity. The separatrices emanating from differ-
ent saddle points asymptotically converge. In addition to
those from the two foci and three saddle points, there are
two “unstable” nodes in the phase plane. The rays ema-
nating from the nodes include saddle separatrices.

Interactions between cavity solitons can give rise to
strongly coupled states of other types. In particular,
trains of several solitons with m = 1 and two- and three-
wave trains including both fundamental and excited
solitons were computed by solving Eq. (2.1) (see
Figs. 1 and 2 in [23]). All of these states are rotating,
and their phase portraits are analogous to those dis-
cussed above.

6. CONCLUSIONS

The phase portraits of energy flows (Poynting vec-
tor) provide important information about the “internal
JOURNAL OF EXPERIMENTAL A
structure” of cavity solitons. Even in the case of an indi-
vidual soliton with an axially symmetric intensity dis-
tribution, the energy-flow plane is partitioned by con-
centric circles into several cells occupied by topologi-
cally equivalent trajectories (energy-flow streamlines).
The radius of each circle corresponds to an extremum
in the radial phase distribution. The phase portrait of a
pair of weakly interacting solitons retains some “indi-
vidual” features (fixed points and weakly distorted cir-
cular periodic orbits). The additional “collective” fea-
tures typically include a saddle point with two incident
separatrices coming from closed orbits and two separa-
trices going to infinity. The interaction is weak if the
distance between the solitons is much greater than the
diameter of the outermost “individual” closed orbit. As
the distance between the solitons decreases, a sequence
of bifurcations results in a qualitatively (topologically)
different phase portrait corresponding to strongly inter-
acting solitons. Individual elements (outer trajectories
ND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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in the first place) are replaced by “collective” ones,
such as limit cycles encompassing both solitons. Both
“stability” properties and number of fixed points may
change. Even though the bifurcations alter the distribu-
tion of light intensity, the phase portraits of energy
flows appear to be more informative.

The variety of strongly coupled soliton structures
turns out to be very wide. They include trains and pairs
characterized by strongly asymmetric fields. Analysis
of the corresponding energy flows is also an important
task. Note that analysis of energy diagrams (broadly
analogous to Poynting-vector patterns) would also be
useful in studies of dissipative solitons of different (not
only optical) nature.
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Abstract—The kinetics of atoms with degenerate energy levels in the field produced by elliptically polarized
waves is considered in the semiclassical approximation. Analytic expressions for the force acting on an atom
and for the diffusion coefficient in the momentum space are derived for the optical transition Jg = 1/2  Je =
1/2 in the slow atom approximation. These expressions are valid for an arbitrary one-dimensional configuration
of the light field and for an arbitrary intensity. The peculiarities of the atomic kinetics are investigated in detail;
these peculiarities are associated with ellipticity of light waves and are absent in particular configurations
formed by circularly or linearly polarized waves, which were considered earlier. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

At the initial stage (up to 1988), the mechanical
action of resonance radiation on atoms and, in particu-
lar, the motion of atoms in a light field were studied
comprehensively in the framework of the simplest
model of a two-level atom [1, 2]. This description has
made it possible to explain the physical mechanisms
and the origin of forces acting on an atom in a light field
and to predict the minimal temperature of laser-assisted
cooling of atoms (Doppler limit) kBTD ~ "γ, where γ is
the natural width of an excited level. Experimental
observation of temperatures below TD [3, 4] stimulated
further development of the theory. Detailed analysis
proved that sub-Doppler cooling is associated with the
degeneracy of the ground atomic state in the projection
of the angular momentum. It should be noted that, in
spite of a large number of publications concerning the
theory of sub-Doppler cooling [5, 6], only a limited
class of laser field configurations formed by linearly or
circularly polarized waves was studied. Nevertheless,
these simple examples have made it possible to single
out two main mechanisms of friction leading to sub-
Doppler cooling. In the case of counterpropagating lin-
early polarized waves, we are dealing with the
Sisyphean mechanism of friction, associated with the
action of induced light pressure, while in the case of
counterpropagating circularly polarized waves (σ+–σ–
configuration), the mechanism is of the orientation type
and is associated with the action of spontaneous light
pressure [7]. However, the analysis of these particular
cases is not exhaustive in view of the nonlinear nature
of interaction of atoms with the resonance field and
gives no idea about the motion of particles in a field
with a more general configuration. Thus, the problem
1063-7761/04/9803- $26.00 © 20438
on the kinetics of atoms in the field produced by ellip-
tically polarized waves is interesting in itself. For
example, as was proved in our earlier publication [8],
ellipticity leads to qualitative differences in the kinetics
as compared to the results obtained by using the two-
level model even in the simple case of a uniformly
polarized field.

Here, the motion of atoms in the field of a one-
dimensional configuration formed by waves with arbi-
trary elliptical polarizations is studied theoretically. In
the framework of the semiclassical approach, the kinet-
ics of atoms is described by the Fokker–Planck equa-
tion. Analytic expressions are derived for the force act-
ing on an atom as well as for the diffusion and friction
coefficients in the slow atom approximation for the
optical transition Jg = 1/2  Je = 1/2 (where Jg and Je

are total angular momenta of the ground (g) state and an
excited (e) state). These expressions are analyzed for a
number of specific field configurations; in each case,
new terms associated with the ellipticity of waves are
separated and analyzed. The physical mechanisms
leading to these new contributions are interpreted qual-
itatively.

2. FORMULATION OF THE PROBLEM

We consider the motion of atoms undergoing the
optical transition Jg  Je in a resonance monochro-
matic field

We represent the spatially inhomogeneous vector

E r t,( ) E r( )e iωt– c.c.+=
004 MAIK “Nauka/Interperiodica”
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amplitude in the form

(1)

where E(r) is the real-valued amplitude and e(r) is the
unit complex polarization vector. The field phase Φ(r)
is defined so that e(r) · e(r) = cos(2ε(r)) is a real-valued
quantity determining the local ellipticity of the light
field (ε(r) is the ellipticity parameter and  is
equal to the ratio of the semiminor axis of the polariza-
tion ellipse to its semimajor axis). The Hamiltonian of
a free atom in a rotating (in the energy pseudospin
space) basis has the form

(2)

where δ = ω – ω0 is the field frequency detuning from
the atomic transition frequency ω0, M is the mass of the
atom, and the projection operator

(3)

is constructed from the wave functions of the Zeeman
sublevels |Je, µe〉  of the excited state. In the dipole
approximation, the operator of resonant interaction
with field (1) can be written in the form

(4)

where Ω = –dE/" is the Rabi frequency, d is the reduced
matrix element, and eq(r) are contravariant components
of the polarization vector in the cyclic basis

Operator  can be expressed in terms of the 3jm
symbols:

(5)

The state of an atomic ensemble is described by the
one-particle density matrix ; the quantum-mechani-
cal kinetic equation for this matrix has the form

(6)

where  is the radiation relaxation operator. Inter-
atomic interactions will be disregarded. Since Eq. (6)
describes the evolution of external as well as internal
(translational) degrees of freedom of an atom, solving

E r( ) E r( )e r( )eiΦ r( ),=

εtan

Ĥ0
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2M
-------- "δΠ̂e,–=
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"
--- V̂ r̂( ) ρ̂,[ ] Γ̂ ρ̂{ } ,–––=

Γ̂ ρ̂{ }
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this equation is a complicated problem. However, in the
semiclassical approximation, rapid processes of order-
ing in internal degrees of freedom can be separated
from the slow processes associated with translational
motion of an atom if the following three basic condi-
tions are satisfied.

1. The dispersion ∆p of an atomic momentum con-
siderably exceeds the recoil momentum "k of a photon:

(7)

2. The time of interaction between an atom and the
field must exceed the characteristic time of evolution of
the internal degrees of freedom of the atom,

(8)

where

is the saturation parameter.
3. The recoil energy "2k2/2M is much smaller than

"τ–1,

(9)

It was shown in [1, 2, 9, 10] that, under the above con-
ditions, Eq. (6) can be reduced to the equation
0(r, p, t) = Tr{ (r, p, t)} for the atomic distribution
function in the phase space (the trace is taken over
internal states of the density matrix in the Wigner rep-
resentation):

(10)

The kinetic coefficients Fi(r, p) and Dij(r, p) are the
components of the force and the diffusion tensor in the
Cartesian basis.

3. KINETIC COEFFICIENTS 
FOR SLOW ATOMS

The kinetic coefficients of the Fokker–Planck equa-
tion can be determined from the equations derived by
the reduction of Eq. (6) to Eq. (10) and depend on the
distribution of atoms over internal states. These coeffi-
cients are often determined using the approximation of
slow atoms, which are displaced over a distance much

"k
∆p
-------  ! 1.

t @ τ max γ 1– γG( ) 1–,{ } ,=

G
Ω 2
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-----------------------------=

"k2

M
-------- ! τ 1–
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M
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shorter than the wavelength of light during the relaxation
time for internal degrees of freedom; i.e., vτ ! λ or

(11)

In this case, to take into account dissipative processes
correctly, it is sufficient to confine the analysis to the
linear approximation (in velocity v = p/M) for the force,

(12)

and to the zeroth approximation for diffusion,

(13)

Quantity F(r) is the force of light pressure acting on a
stationary atom. The asymmetric part of tensor ξij cor-
responds to the effective Lorentz force, while its sym-
metric part defines friction.

The general procedure for deriving the Fokker–
Planck equation via the semiclassical expansion in
small parameter "k/∆p is described in detail in [1, 2, 9,
10]. However, the determination of the explicit form of
the kinetic coefficients for atoms with energy levels
degenerate in the angular momentum projection in a
field of the most general form is a complex mathemati-
cal problem even for small values of angular momenta
Jg and Je . For example, in order to determine the fric-
tion and diffusion coefficients, it is necessary to calcu-
late and integrate a matrix exponential [9]. The com-
plexity of such calculations increases rapidly with the
angular momentum of atomic levels. It is probably for
this reason that the atomic kinetics was analyzed only
for several particular light field configurations formed
by linearly or circularly polarized traveling waves.

An alternative method for determining the kinetic
coefficients was proposed (without derivation) in [8].
This method, which is in line with the methods devel-
oped earlier, is more convenient in our opinion since the
search for the coefficients of friction and diffusion is
reduced to solving a single algebraic equation for an
auxiliary matrix . Here, we will use these results (the
derivation is given in Appendix A).

The gradient force acting on a stationary atom is a

quantum-mechanical mean of the force operator ,

(14)

where the density matrix  is the solution to the
optical Bloch equation

(15)

kv  ! γ γG.,
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with the normalization condition Tr{ } = 1 and
describes the steady-state distribution of atoms over
magnetic sublevels in the zeroth approximation in the
recoil parameter and the velocity of atoms. It should be
noted that the explicit analytic form of  for all dipole
transitions was determined in [11, 12].

The coefficient of friction is proportional to the spa-
tial gradient of :

(16)

The diffusion coefficient can be represented as the sum
of two terms,

(17)

the first of which,

(18)

is due to recoil in the case of spontaneous emission,
while the second term,

(19)

is determined by the operator of force fluctuation,

(20)

Matrix  used in formulas (16) and (19) satisfies the
equation (see Appendix A)

(21)

and makes it possible to write the expressions for the
friction and diffusion coefficients in a universal form.

4. ANALYTIC EXPRESSIONS
FOR KINETIC COEFFICIENTS

FOR TRANSITION Jg = 1/2  Je = 1/2

We will consider here one-dimensional configura-
tions of a light field, when the vector amplitude is a
function of only one coordinate z. In the general case,
such a field is formed by two counterpropagating trav-
eling plane waves with arbitrary intensities and ellipti-
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cal polarizations. In this case, the local vector field
amplitude (1) can be characterized by four real-valued
quantities: the real amplitude, phase, ellipticity, and the
angle of orientation of the polarization ellipse. In the
coordinate system where the z axis is orthogonal to the
polarization plane, vector e(z) in a cyclic basis can be
written in terms of the local ellipticity ε(z) of the light
field and the angle of rotation ϕ(z) of the polarization
ellipse:

(22)

For simplicity, we will henceforth consider a one-
dimensional problem. It should be noted that, in the
general case, the kinetic problem can be reduced to a
one-dimensional problem only approximately, since
recoil processes occurring during spontaneous reemis-
sion of photons of the field result in the formation of a
coupling between translational degrees of freedom of
an atom in all three directions. Coupling in the longitu-
dinal and transverse directions relative to the z axis can
be neglected when the width ∆p⊥  of the momentum dis-
tribution in the transverse direction considerably
exceeds the width ∆pz of the momentum distribution in
the longitudinal direction (∆p⊥  @ ∆pz) and the recoil
effect in the transverse direction does not lead to a
noticeable change in the momentum distribution. Such
a model is applicable, for example, for a problem on
interaction of an atomic beam with a transverse light
field. Henceforth, we will assume that the force and the
diffusion tensor are functions only of coordinate z and
the corresponding velocity component, which will be
denoted by v. In the notation adopted here, it is conve-
nient to express kinetic coefficients in terms of the gra-
dients of light field parameters: ∇ zΦ, ∇ zφ, and ∇ zε (gra-
dients of the phase, the angle of rotation of the polariza-
tion ellipse, and the ellipticity) as well of ∇ zΛ (Λ = lnE)
(gradient of the logarithm of the real part of the field
amplitude).

4.1. Force 

Using the explicit form for matrix  (15), we obtain
the following expression for force in the zeroth order in
velocity:

(23)

For the sake of simplicity, we introduced here the effec-
tive saturation parameter Gε = Gcos2(2ε). The first
term, proportional to δ, is the force of induced light
pressure emerging from the gradients of ellipticity and
light field amplitude, while the gradient of phase makes
a contribution to the force of spontaneous light pres-
sure, associated with spontaneous rescattering of pho-
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4
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4
---– 

  e iφ– e+1.cos–=
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2
--- ∇ zΦ+ .=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tons. It should be noted that expression (23) does not
contain the contribution from the gradient ∇ zφ of orien-
tation of the polarization ellipse. This is due to the spe-
cific form of matrix  for optical transitions Jg = J 
Je = J (J is a half-integer) [12, 13], for which the mag-
netic sublevels of the excited state are populated uni-
formly (isotropically).

4.2. Coefficients of Friction and Diffusion 

Coefficients of friction, ξ = ξzz , and induced diffu-

sion, D(i) = , can be written in the general form,

(24)

(25)

where summation indices β and β' correspond to {Λ, ε,
Φ, φ}, and components χββ' and $ββ' can be expressed
in the parameters of the light field. Since in the problem
under investigation we are dealing only with gradients
along the z axis, the coefficients of friction and induced
diffusion contain only symmetric combinations of non-
diagonal (β ≠ β') terms: χββ' + χβ'β and $ββ' + $β'β. It
should be noted that expressions χββ' and $ββ' are also
applicable in the 3D formulation of the problem. In this
case, it remains for us to calculate the required gradi-
ents of the light field parameters to find the tensors of
friction and diffusion. Note that, in the most general 3D
formulation of the problem, we must take into account,
in addition to the available gradients of {Λ, ε, Φ, φ}, the
two angles describing the rotation drawing from the
plane of the polarization ellipse. However, for 3D prob-
lems in which the plane of the polarization ellipse
remains unchanged, the above results are sufficient.
The expressions for the components of the coefficients
of friction χββ' and diffusion $ββ' are given in Appen-
dix B.

Spontaneous diffusion coefficient D(s) =  is pro-
portional to the total population of the excited level and
is independent of the external field gradients:

(26)

The expressions for the force and the coefficients of
friction and diffusion derived here make it possible to
describe the kinetics of slow atoms with the optical
transition Jg = 1/2  Je = 1/2, which is a simple model
for atoms with energy levels degenerate in the angular
momentum projection. It should be noted that simple
configurations of light field exist, which are character-
ized by the gradient of only one parameter. For exam-
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ple, a standing uniformly polarized wave is character-
ized by intensity gradient ∇ zΛ, a traveling uniformly
polarized wave is characterized by phase gradient ∇ zΦ,
the field of the σ+–σ– configuration is characterized by
gradient ∇ zφ of the orientation of the polarization vec-
tor, while the field of the lin ⊥  lin configuration is char-
acterized by ellipticity gradient ∇ zε. For these configu-
rations, the coefficients of friction and diffusion are
determined by the corresponding diagonal elements χββ
and $ββ.

5. UNIFORMLY POLARIZED FIELD

In a uniformly polarized field, the ellipticity and ori-
entation of the polarization ellipse are independent of
the coordinate; i.e., such a field is characterized only by
the gradients of phase and intensity. On the other hand,
precisely these gradients appear in the description of
the atomic kinetics in the nondegenerate two-level
model of an atom [1, 2]. For this reason, it would be
especially important to consider this type of light fields
separately and compare the expressions for the kinetic
coefficients (force and coefficients of friction and diffu-
sion) obtained in this way with the available results for
the two-level model of an atom. This will enable us to
determine the differences associated with the degener-
acy of atomic levels in the angular momentum projec-
tion and to single out the effects determined by the
ellipticity of a light field.

5.1. Elliptically Polarized Traveling Wave 

A simple example of a uniformly polarized configu-
ration of a light field is a traveling plane monochro-
matic wave,

(27)

Light field amplitude E0 and polarization vector e are
spatially homogeneous, while phase Φ = kz is a func-
tion of the coordinate. The force acting on an atom in
this field is proportional to phase gradient (23) and is
a force of spontaneous light pressure by nature.
Expressions (B.3) for the friction coefficient, as well as
the expressions for the force, coincide in form with the
results for a two-level atom with an effective satura-
tion parameter of Gε . The most significant difference
from the model of a two-level atom appears in expres-
sion (B.19) for the diffusion coefficient,

(28)

namely, an additional term proportional to sin2(2ε)
appears, which is significant in a low-intensity field
(Gε ! 1). It is well known that induced diffusion of
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atoms in a traveling wave is associated with fluctuation
of the number of photons scattered from an atom [1, 14].
This quantity is determined by the statistics of the num-
ber of scattered photons; for a two-level atom in a low-
intensity field (G ! 1), the distribution is of the Pois-
son type. The presence of the additional term in
expression (28) indicates a deviation from the Poisson
distribution in the statistics of the number of photons
scattered in a low-intensity field. These deviations are
due to correlation of processes of emission of photons
with the σ+ and σ– polarization in an elliptically polar-
ized field. Indeed, the scattering probability σ± of a cir-
cularly polarized quantum of the external field in a
small time interval of ∆t,

depends on the degree of ellipticity and the probability
 of finding an atom in the ground state with an angu-

lar momentum projection of µg = ±1/2 (π+ + π– = 1). Let
us suppose, for example, that a σ+ photon was scattered
in a certain interval; then, π+ = 1/3 and π– = 2/3 for a
subsequent interval in accordance with the relative
probabilities of spontaneous decay via the channels
|µe = 1/2〉  |µg = 1/2〉  and |µe = 1/2〉  |µg = –1/2〉 .
On the contrary, after the scattering of a σ– photon, we
have π+ = 2/3 and π– = 1/3. Consequently, for ε ≠ 0, the
scattering probability for a photon (of any type),

depends on the polarization of the quantum scattered
before this event; i.e., the scheme of independent trials
is violated. The average number of scattered quanta is
determined by the mean values

Consequently, the statistics of the number of photons is
not Poissonian any longer; we can conclude from rela-
tion (28) that the statistics is super-Poissonian by
nature.

5.2. Uniformly Polarized Standing Wave 

In a uniformly polarized standing wave, the real
amplitude (1) is a periodic function of coordinate
(E(z) = E0cos(kz)) and polarization vector e is spatially
homogeneous. In such a field, only the gradient of
intensity Λ differs from zero; consequently, the force
acting on a stationary atom,

F(z) = – (29)

is the force of induced light pressure. The coefficients

p± γG
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of friction and induced diffusion have the form

(30)

(31)

The case of a homogeneously polarized standing wave
with an arbitrary analyticity ε was considered in our
earlier publication [8]. Henceforth, we will consider
only some interesting features in the kinetics which had
not been analyzed earlier. In particular, we will find the
difference between our results and the results obtained
in the nondegenerate model of an atom on the basis of
spatially averaged expressions for the coefficients of
friction and diffusion.

The gradient force averaged over the spatial period
of a light field vanishes (〈F(z)〉  = 0); the friction coeffi-
cient can be represented as the sum of two contribu-
tions:

(32)

The first term,

(33)

corresponds to the expression in the two-level model of
an atom [1] with the effective saturation parameter

(34)

The second term,

(35)

is an additional contribution to friction and may be inter-
preted in terms of the probabilities of transitions between
dressed states of the atom (Sisyphus effect) [8, 15]. For
small saturation parameters (Sε < 1), the main contribu-
tion to this effect comes from transitions between
dressed states, which correspond to the Zeeman sublev-
els of the ground state; this leads to an additional con-
tribution to friction.

In the low-intensity limit of the light field (Sε ! 1),
coefficients 〈ξ 1〉  and 〈ξ 2〉  have the form

(36)

(37)
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Contribution 〈ξ 1〉  corresponds to the well-known Dop-
pler mechanism of friction [1, 2]. For large detunings
(δ @ γ), the relation

holds, which shows that, in an elliptically polarized
field (ε ≠ 0), the additional contribution can exceed the
result for the two-level model by several orders of mag-
nitude.

In intense fields (Sε @ 1), the expressions for the
coefficients assume the form

(38)

(39)

It should be noted that the sign of the friction coef-
ficient in the two-level model of an atom in a high-
intensity field is determined not only by the sign of
detuning, but also by its magnitude (38). The inclusion
of degeneracy of atomic levels leads to the following
interesting effect: for field ellipticities sin2(2ε) > 1/3, in
view of additional contribution (39), the sign of the
total friction coefficient (32) is determined only by the
sign of detuning: heating for δ > 0 and cooling for δ < 0.

The averaged coefficient of induced diffusion, as
well as the friction coefficient, can be presented as the
sum of two terms:

(40)

The first term represented the familiar result [1] for a
two-level atom with a new parameter Sε:

(41)

The second term,

(42)

is additional as compared to the two-level model of the
atom and describes the contributions from the diffusion
processes associated with Zeeman degeneracy of
energy levels.

ξ2〈 〉
ξ1〈 〉

---------- 6 2ε( )sin
2 δ2

γ2
-----≈

ξ1〈 〉 "k2 δ
4γ
------

γ2 12δ2–( ) Sε

4δ2 γ2+
------------------------------------,=

ξ2〈 〉 "k29 2ε( )sin
2 δ Sε

4γ
------------------------------------.=

D i( )〈 〉 D1
i( )〈 〉 D2

i( )〈 〉 .+=

D1
i( )〈 〉

"
2k2γSε

8
-------------------

"
2k2δ2

γ
---------------- 3

Sε

2
-----++=

–
15Sε

2 40Sε 24 γ2Sε
2 δ2 γ2/4+( ) 1–

+ + +

8 1 Sε+( )3/2
----------------------------------------------------------------------------------------- .

D2
i( )〈 〉 "

2k2 2ε( )sin
2

γ
-------------------------------=

×
3δ2Sε 4 3Sε+( )

8 1 Sε+( )2/3
------------------------------------ δ2 γ2

4
-----+ 

  1 Sε/2 1 Sε+–+

3 2ε( )cos
2

-------------------------------------------+
SICS      Vol. 98      No. 3      2004



444 PRUDNIKOV et al.
According to [1], the expressions written above for
the coefficients of friction and diffusion averaged over
the space period make it possible to estimate the tem-
perature of the atomic ensemble, kBT = –〈D〉/〈ξ〉 , with-
out taking into account localization as a function of the
field ellipticity. In a weak field (Sε ! 1), we obtain

(43)

The diffusion coefficient is positive; consequently, the
steady-state distribution of atoms is possible only for

kBT
"
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--- 9 2ε( )sin

2 δ2 γ2+( ) 4δ2 γ2+( )
6 12 2ε( )sin

2 δ2 3 2ε( )sin
2 γ2 2γ2+ +( )

-------------------------------------------------------------------------------------------.–=

–1.5–2.0 –1.0 –0.5 0
δ

0

0.2

0.4

0.6

0.8

1.0
T

Fig. 1. Temperature in units of "γ/kB as a function of detun-
ing for various ellipticities of the light field: the solid curve
corresponds to the linear polarization of the field, the
dashed curve corresponds to a field ellipticity of sin2(2ε) =
1/3, and the dotted curve is the formal limit for the circular
field polarization.
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Fig. 2. Temperature in units of "γS1/2/kB as a function of
detuning for various ellipticities of the light field: the solid
curve corresponds to the linear polarization of the field and
the dashed curve corresponds to a field ellipticity of ε = π/12.
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〈ξ〉  < 0 and the expression for temperature has sense
only for δ < 0. For the linear field polarization, the
result can be reduced to the known expression for the
Doppler temperature of laser cooling in the model of a
two-level atom,

(44)

the minimum of this temperature is attained for δ = –γ/2
and amounts to kBTD = "γ/3. In the general case, the
inclusion of the field polarization leads to a slightly dif-
ferent dependence of temperature on detuning (Fig. 1).
It can be seen that the temperature can assume values
smaller than in the case of the linear polarization of the
field. It can be verified that the lowest temperature
value is reached for a field ellipticity of |ε|  π/4 (i.e.,
for the circular polarization).

In the other limiting case of a high-intensity light
field (Sε @ 1), the atomic temperature can be estimated
using the following dependence:

(45)

Here, we can separate two different cases. In the first
case, when the light field ellipticity is sin2(2ε) ≥ 1/3, the
direction of the kinetic process is determined only by
the sign of δ (cooling for δ < 0). For a field ellipticity of
sin2(2ε) < 1/3, cooling takes place for detunings
belonging to the following two intervals:

(46)

In particular, for the linear field polarization, the
expression for temperature assumes the familiar form [1]

(47)

The dependence of temperature on the light field detun-
ing for light field ellipticities of sin2(2ε) < 1/3 is shown
in Fig. 2.

It should be emphasized once again that the estimate
for temperature is the ratio of the friction and diffusion
coefficients; i.e., this estimate is based on slow atom
approximation (11). It is well known [1], however, that
the applicability of this approximation is restricted by
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rather severe conditions even in the two-level model of
an atom in a standing wave in view of the presence of
light field nodes. In the case of a nonzero ellipticity of
the light field, this problem requires additional analysis,
which will not be carried out here.

5.3. Uniformly Polarized Field of a “Mixed” Type 

In the general case, a uniformly polarized field may
simultaneously contain the amplitude gradient and the
phase gradient. A situation of this kind arises, for exam-
ple, in the field formed by counterpropagating waves
with identical polarization ellipses, but with different
amplitudes. The friction and diffusion coefficients in
such a field contain, in addition contributions diagonal
in gradients, crossed contributions χΛΦ and $ΛΦ. It
should be noted that the additional contribution to the
friction coefficient exhibits an even dependence on
detuning δ, while the additional contribution to the dif-
fusion coefficient is an odd function of δ. Thus, in a
“mixed”-type field, an “abnormal” dependence of the
friction and diffusion coefficients on the detuning is
observed (in particular, the friction coefficient does not
vanish in the case of exact resonance, δ = 0, owing to
additional contributions χΛΦ and χΦΛ; see Appendix B).

6. NONUNIFORMLY POLARIZED FIELDS

It is well known that sub-Doppler cooling of atoms
is possible in fields with nonuniform polarization. Sim-
ple examples of this kind are fields with an ellipticity
gradient (lin ⊥  lin field configuration) and fields with an
orientation gradient (σ+–σ– field configuration). In the
former case, the field is a superposition of counterprop-
agating plane waves with linear polarizations oriented
at right angles to each other:

(48)

Here, E0 is the amplitude of each wave, while vectors ex
and ey describe linear polarization of the counterpropa-
gating waves along the x and y axes, respectively. This
expression can be reduced to formula (1) with parame-
ters E(z) = 2E0 and ellipticity ε(z) = kz. The phase and
the angle of orientation are independent of coordinate z.

A field of the σ+–σ– configuration is a superposition
of counterpropagating waves of circular polarizations
with opposite directions of rotation:

(49)

As we pass to formula (1), this gives E(z) = 2E0, ε(z) = 0,
Φ(z) = 0, and φ(z) = kz. The motion along the z axis
changes only the orientation of the polarization vector
of the light field.

It should be recalled that the expressions for the
kinetic coefficients in these configurations are deter-
mined by contributions (∇ε )2 (B.2) and (∇φ )2 (B.18) for
the lin ⊥  lin configuration and χεε (B.4) and $εε (B.20)

E z t,( ) E0 exeikz eye ikz–+( )e iωt– c.c.+=

E z t,( ) E0 e+1eikz e–1e ikz–+( )e iωt– c.c.+=
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for the σ+–σ– configuration, which are diagonal in gra-
dients χφφ and $φφ, respectively. “Simple” configura-
tions of a nonuniformly polarized field are undoubtedly
convenient for analysis of the atomic kinetics and make
it possible to explain the main mechanisms of sub-Dop-
pler cooling in low-intensity fields [7]. However, these
mechanisms do not exhaust the atomic kinetics in fields
with nonuniform polarization since, as follows from the
general results for the friction and diffusion coeffi-
cients, the presence in the field of several gradients
simultaneously leads to new interesting effects and new
mechanisms of sub-Doppler cooling. We will consider
these effects in greater detail.

6.1. The ε–θ–  Field Configuration 

A simple example of a field containing all gradients
(of intensity, ellipticity, orientation, and phase) is the
field formed by counterpropagating plane waves of the
same intensity and modulo equal ellipticities, but with
opposite directions of rotation:

(50)

Here, E0 is the amplitude of each of the counterpropa-
gating waves and vector %%%%(z) = a+e+1 + a–e–1 with cyclic
components a+(z) and a–(z) defines the local polariza-
tion ellipse, amplitude, and phase of the field,

(51)

where θ is the angle between the principal semiaxes of
the polarization ellipses of the counterpropagating
waves (Fig. 3) and parameter ε0 characterizes the
degree of ellipticity of the counterpropagating waves.
For field configuration (51), we will use the notation
ε−θ– . It should be noted that the familiar configura-
tions lin ⊥  lin (ε0 = 0, θ = π/2) and σ+–σ– (ε0 = π/4) are
special cases of the given field configuration.

6.1.1. Gradient force. For low field intensities
(G ! 1), the kinetic coefficients assume a simple form.
For example, the gradient force splits into the sum of
two contributions:

(52)
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Fig. 3. Spatial configuration ε–θ– of a light field. The field is produced by counterpropagating waves of elliptic polarization with
ellipticity parameters of ε and –ε.

ε

Here, the saturation parameter is given by

(53)

where Ω0 = –E0d/", E0 being the amplitude of the coun-
terpropagating waves. The first term, F(i), is the force of
induced light pressure (dipole force), while the second
term, F(s), is the force of spontaneous light pressure. It
can be seen that the force of spontaneous light pressure
induces in this case a periodic optical potential if the
ellipticities of the light waves differ from linear or cir-
cular ellipticities (ε0 ≠ 0, π/4) and also if angle θ ≠ 0; in
other words, the potential of familiar configurations
with linear or circular polarizations is equal to zero.
The mechanism of formation of the force of spontane-
ous light pressure is as follows: spatially inhomoge-
neous anisotropy of atoms is created by a nonuniformly
polarized field; as a result of this anisotropy, atoms res-
catter photons of counterpropagating waves with differ-
ent probabilities, which leads to disbalance of the
forces of spontaneous light pressure. It should be
emphasized that a spontaneous force in the given field
leads to a periodic optical potential that does not van-
ish in the case of exact resonance (δ = 0). It should also
be observed that F(i) is an odd function of detuning δ
and an even function of polarization parameters ε0 and

S0

Ω0
2

3 δ2 γ2/4+( )
-----------------------------,=
JOURNAL OF EXPERIMENTAL
θ, while F (s), on the contrary, is even in δ and odd in ε0
and θ.

6.1.2. Friction coefficient. Like the gradient force,
the friction coefficient slits onto two terms of different
origin:

(54)

After averaging over the spatial period, we obtain

(55)
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It is worth noting that average friction coefficients 〈ξ (i)〉
and 〈ξ (s)〉  cannot be expressed in analytic form at point
θ = 0, ε0 = 0, in the vicinity of which we have

and

Using the lin–θ–lin configuration as an example, it was
noted in [16] that such a behavior of the friction coeffi-
cient is associated with inapplicability of the slow atom
approximation in the vicinity of nodes of the field,
where, on the one hand, the local saturation parameter
is small and, on the other hand, noticeable gradients of
the field polarization arise (i.e., the field polarization

ξ i( )〈 〉 θ2

θ2 4ε0
2+( )3/2

-----------------------------∼

ξ s( )〈 〉
θε0

θ2 4ε0
2+( )3/2

-----------------------------.∼
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changes strongly over distances much smaller than
wavelength λ). Analysis of situations in these regions
requires more exact expressions for the force of fric-
tion, which would take into account all orders in the
velocity of atoms.

6.1.3. Diffusion coefficient. The spontaneous diffu-
sion coefficient has the form

(56)

It is convenient to decompose the induced diffusion
coefficients into the terms corresponding to different
degrees of detuning, D(i) = D0 + D1 + D2, where D0 is
the term independent of detuning,
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The term with an abnormal dependence on detuning
has the form

(58)

while the part of the diffusion coefficient quadratic in
detuning is given by
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(59)

After averaging over the spatial period, we obtain the
following expressions for the diffusion coefficient. The
average spontaneous diffusion coefficient has the form

(60)

The average induced diffusion coefficient is given by
〈D(i)〉  = 〈D0〉  + 〈D1〉  + 〈D2〉 , where
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For brevity, we have introduced the notation

It should be noted that the coefficients of friction
and diffusion in the ε–θ–  field configuration contain
contributions ξ(s) and D1, which are anomalous in
detuning; among other things, this may lead to cooling
in the case of exact resonance. The direction of the
kinetic process (heating or cooling) in this case is deter-
mined by the sign of ellipticity ε0 of counterpropagat-
ing light waves and by angle θ determining the mutual
orientation of polarization ellipses. The abnormal con-
tribution to friction remains significant for a nonzero
detuning as well. Consequently, heating can be
replaced by cooling or vice versa by choosing an appro-
priate ellipticity of the counterpropagating waves and
angle θ. The temperature in the cooling region is a func-
tion of ellipticity ε0 of the light waves and angle θ. Fig-
ure 4 shows the dependence of the atomic temperature
on the ellipticity of light waves for certain angles θ. It
can be seen that the shape of the curves is asymmetric
in ellipticity parameter ε0; however, for a large detun-
ing, this effect becomes less pronounced and the tem-

Q 1 2ε0( )cos
2 θcos

2
– .=

ε
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(b)
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Fig. 4. Temperature in units of "γS0/kB as a function of
ellipticity ε0 of light waves for different angles: θ = π/3
(bold curves), π/5 (fine curves), and π/10 (dashed curves);
light field detuning δ = 2γ (a) and 0 (b).
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perature minimum is attained for wave ellipticities
close to linear. The characteristic increase in the tem-
perature for ellipticities of light waves close to circular
is associated with the specific features of the optical
transition Jg = 1/2  Je = 1/2, in which the friction
coefficient is equal to zero in the limiting case of the
σ+–σ– configuration of the light field and, hence, there
is no cooling. Note that friction is present for optical
transition with larger values of angular moments in the
σ+–σ– configuration also (e.g., for the transition Jg =
1  Je = 2) [7].

6.2. The ε–θ–ε Configuration of the Light Field 

In this section, we consider an example of the light
field configuration formed by elliptically polarized
waves with equal ellipticities and the same directions of
rotation for the polarization vectors. In contrast to the
previous case, a field with the ε–θ–ε configuration con-
tains only the gradients of intensity and ellipticity of the
light field (Fig. 5). In particular cases, when angle θ
between the principal axes of the ellipses is zero, we
return to the case of a uniformly polarized standing
wave; for θ = ±π/2 and ε0 = 0, we have a field of the
lin ⊥  lin configuration, in which only the ellipticity gra-
dient differs from zero.

In the first order in the field intensity, the explicit
dependence of the force on polarization parameters ε0
and θ has the form

(62)

where the saturation parameter S0 is defined in terms of
amplitude (53) of the counterpropagating waves. It fol-
lows hence that the force averaged over a spatial period
differs from zero (effect of rectification of the dipole
force):

(63)

The mean force is an odd function of the light field
detuning; in addition, it is an odd function of angle θ
and ellipticity ε0 of the light waves, which is also
observed in the general case of an arbitrary field inten-
sity. It can be proved rigorously proceeding from the
general symmetry relations for the optical Bloch equa-
tion that such a form of the dependence of the force on
parameters δ, ε0, and θ in the ε–θ–ε field configuration
takes place for arbitrary optical transitions Jg  Je .
Note that the rectified force vanishes in the case of lin-
ear and circular polarizations ε0 = 0, ±π/4 for any θ as
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Fig. 5. Spatial configuration ε–θ–ε of a light field. The field is produced by counterpropagating waves of the same ellipticity.
well as for angles θ = 0, ±π/2 in the case of arbitrary ε0.
This becomes obvious if we use the symmetry relations
for the force acting on a stationary atom. Reflection in
the xy plane gives the following relation for the force:

(64)

It can be seen that, for the circular polarization of the
waves (ε0 = ±π/4) or for angles θ = 0, ±π/2, the reflec-
tion in the xy plane leads to the initial configuration of
the light field and, hence, 〈F〉  = 0. Another symmetry
relation for the force can be obtained using two consec-
utive reflections in the xy and xz planes:

(65)

If the field is produced by waves with the linear polar-
ization (ε0 = 0), after the spatial reflections mentioned
above, we return to the initial configuration of the light
field; i.e., 〈F〉(ε0 = 0, θ) = 0 for any θ.

The effect of rectification of the dipole force and the
mechanism for the emergence of this effect was consid-
ered in detail in our earlier publication [17]. We only
note here that the mechanism for the emergence of the
constant component of the dipole force in an ε–θ–ε
field is associated with spatially inhomogeneous optical
pumping and with the presence of the gradients of the
light field intensity and ellipticity.
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The linear (in velocity) correction to force (62) can
be defined in terms of the friction coefficient; in the
case of a low intensity of the light field (S0 ! 1), the
friction coefficient has the form

(66)

The friction coefficient averaged over the spatial period
for θ ≠ 0, π and for field polarizations other than circu-
lar, ε0 ≠ ±π/4,

(67)

determines the correction to the force for atoms per-
forming above-barrier motion in the potential created
by force (62). Figure 6 shows that the rectified force
produces an optical potential in which cold atoms can
be localized. It is important to note that, with the
appropriate choice of the sign of detuning δ, the force
of friction in the vicinity of the minima of potential
Ueff can lead to cooling of atoms. The latter circum-
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stance plays an important role for a stable localization
of atoms.

6. CONCLUSIONS

We have derived analytic expressions for the kinetic
coefficients (the force acting on a stationary atom and
coefficients of friction and diffusion) of the Fokker–
Planck equation for atoms performing the optical tran-
sition Jg = 1/2  Je = 1/2 in a field of an arbitrary con-
figuration and intensity. The expressions are analyzed
for the fields produced by elliptically polarized waves.
We have considered two important types of light fields:

(i) fields with a uniform polarization, in which the
gradients of ellipticity and spatial orientation are equal
to zero and

(ii) nonuniformly polarized fields produced by ellip-
tically polarized waves.

It was shown that, in the first case, in the absence of
gradients of the light field polarization, the kinetics of
atoms resembles the results obtained in the two-level
model of atoms (in particular, our results coincide with
the results of this model in the case of the linear ellip-
ticity of the light field). In addition, it was found that
our results differ from the predictions of the model of a
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Fig. 6. Spatial dependence of effective potential Ueff in

units of "γ (a) and the friction coefficient in units of "k2 (b)
for Ω0 = 100γ and for parameters optimal for rectification
(ε0 = 0.46, θ = 0.51, δ = 62γ).
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two-level atom in the case when a uniform polarization
of the light field does not coincide with the linear polar-
ization. For light fields of the second type, the effects
resulting from the ellipticity of traveling waves that
produce the field were demonstrated. The two most
interesting configurations were singled out: the ε–θ–
field created by counterpropagating waves of the oppo-
site ellipticities and the ε–θ–ε field created by counter-
propagating waves with the same ellipticity (θ is the
angle of mutual orientation of the polarization ellipses
for the counterpropagating waves). For example, in the
ε–θ–  field, the ellipticity of traveling waves may lead
to sub-Doppler cooling of atoms even in the case of
exact resonance (δ = 0); in addition, anomalous (rela-
tive to conventional sub-Doppler cooling) regions of
heating and cooling are formed. It was shown that, in
the field of the ε–θ–ε configuration, the ellipticity of
traveling waves leads to rectification of the dipole
force. Note that the optical transition Jg = 1/2  Je =
1/2 chosen for our analysis is a simple example of tran-
sition with energy levels degenerate in the angular
momentum projection. It should also be observed that
the effects described in Section 6 take place for transi-
tions with larger values of angular momenta Jg and Je

as well.
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APPENDIX A

Procedure of Reduction
of the Quantum-Mechanical Kinetic Equation 

for the Density Matrix to the Fokker-Planck Equation 
for Slow Atoms 

The expansion of the kinetic equation for the density
matrix in recoil parameter "k/∆p has the form

(A.1)

where (r, p) are the coordinates of a point in the phase
space. In the zeroth order in recoil effects, the evolution
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of the density matrix is determined by the operator

(A.2)

corresponding to the optical Bloch equation (15). The
first order terms,

(A.3)

can be expressed in terms of the force operator (14).
Second-order corrections contain both induced terms

proportional to the second derivative of operator 
with respect to the coordinate and the term associated
with the recoil effect in spontaneous emission:

(A.4)

In order to derive Eq. (10), we make use of the exist-
ence of characteristic time τ. Over time intervals t ≤ τ,
only the change in the internal degrees of freedom of an
atom, which strongly depend on the initial conditions,
is significant, while time intervals t @ τ correspond to
the kinetic stage of evolution; accordingly, a change in
the internal states of an atom is matched with the
change in distribution function 0 [2]. Thus, at the
kinetic stage of evolution, the density matrix is a linear
functional of the distribution function and can be repre-
sented in the form

(A.5)

Here,  is the reduced density matrix describing
the stationary state of the internal degrees of freedom of
an atom moving with velocity v,

(A.6)

with the normalization condition Tr{ } = 1.
Closed optical transitions exhibit the property

Tr{ } = 0, indicating the conservation of popula-

L̂
0( ) ρ̂{ } γ

2
--- iδ– 

  Π̂eρ̂ γ
2
--- iδ+ 

  ρ̂Π̂e+–=

–
i
"
--- V̂ r( ) ρ̂,[ ] γ 2Je 1+( ) D̂q

†ρ̂D̂q,
q

∑+

L̂i
1( ) ρ̂{ } 1

2"k
--------- F̂i r( )ρ̂ ρ̂F̂i r( )+( ),–=

V̂ r( )

L̂ij
2( ) ρ̂{ } i

8"k2
----------- ∇ i F̂ j r( ) ρ̂,[ ]

γ 2Je 1+( )
5

-------------------------+–=

× δijδnm
1
4
--- δinδjm δimδjn+( )– 

  D̂m
† ρ̂D̂n.

m n, 1 2 3, ,=

∑

ρ̂ r p t, ,( ) σ̂ r p,( )0 r p t, ,( ) χ̂ r p t, ,( ).+=

σ̂ r p,( )

td
d σ̂ r p,( ) L̂

0( ) σ̂ r p,( ){ } ,=

t∂
∂ σ̂ r p,( ) 0,=

σ̂ r p,( )

L̂
0( ) ρ̂( )
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tion. Consequently, in the zeroth order in recoil, we
have

(A.7)

i.e., the derivative of the distribution function is at least
of the first order of smallness in recoil, and the zeroth

order  can be written in the form

(A.8)

Thus, ^ is the part of the density matrix adiabatically
tracing the motion and  is a small nonadiabatic cor-
rection. Indeed, in the zeroth order in the recoil param-
eter, the equation for the density matrix has the form

(A.9)

In accordance with Eqs. (A.6) and (A.7), we find that,

in the zeroth order in recoil,  satisfies the equation

(A.10)

with the normalization condition Tr  = 0.
The solution to this equations over time periods t corre-

sponding to the kinetic stage of the evolution is  = 0;
thus, nonadiabatic correction  contains terms starting
only from the first order in recoil.

Taking the trace of expression (A.1) and retaining in
it only the terms up to the second order in recoil, we
obtain

(A.11)

The last term has a smallness of at least the second
order in recoil and contributes to the diffusion coeffi-
cient. We will not seek these nonadiabatic corrections
to the density matrix as was done, for example, in [15],
but will use an alternative approach. To this end, we

td
d

Tr ρ̂{ }
td

d
0 Tr L̂

0( ) ρ̂{ }{ } 0,= = =

ρ̂ 0( ) r p t, ,( )

ρ̂ 0( ) r p t, ,( ) σ̂ r p,( )0 0( ) r p t, ,( ).=

σ̂
χ̂

td
d σ̂0 0( )

td
d χ̂ 0( )+ L̂

0( ) σ̂{ } 0 L̂
0( ) χ̂ 0( ){ } .+=

χ̂ 0( )

td
d χ̂ 0( ) r p t, ,( ) L̂

0( ) χ̂ 0( ) r p t, ,( ){ }=

χ̂ 0( ) r p t, ,( ){ }

χ̂ 0( )

χ̂

td
d

0 "k
pi∂
∂

Tr L̂i
1( ) σ̂{ }{ } 0

i

∑=

+ "k( )2 ∂2

∂pi∂ p j

----------------Tr L̂ j
2( ) σ̂{ }{ } 0

i j,
∑

+ "k
pi∂
∂

Tr L̂i
1( ) χ̂{ }{ } .

i

∑
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supplement Eq. (A.11) with the linear combination of
Eq. (A.1),

(A.12)

where  is a matrix of dimension (2Je + 1) + (2Jg + 1).
The left-hand side of this equality has the form

(A.13)

The last term contains the second order in recoil. Over
time periods t @ τ corresponding to the kinetic stage of
evolution, d /dt = v · ∇ r ; consequently, the contribu-
tion from this term to the diffusion coefficient can be
neglected since only zero-order terms in velocity are
retained in the diffusion coefficient for slow atoms.
Subtracting expression (A.11) from (A.12) and retain-
ing terms up to the second order in recoil, we ultimately
obtain

(A.14)

Note that by choosing matrix  appropriately, we can
ensure the compensation of the contributions contain-
ing nonadiabatic correction  so that

(A.15)
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∂
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∂
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∂
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∂
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This condition leads to the equation for density matrix
 (21). Matrix  is a solution to nonhomogeneous lin-

ear equation (21) with a source in the form of the fluc-
tuation of the force operator (20). Since the force acting
on an atom should be defined in the zeroth and first
orders in velocity, while the diffusion coefficient should
be defined in the zeroth approximation, it is sufficient to
retain in expression (A.14) only the zeroth order (in
velocity) of matrix (v = 0, r) satisfying optical Bloch
equation (15) for stationary density matrix L(0){ } = 0.

APPENDIX B

Components of Friction and Diffusion Coefficients 

The diagonal elements of the friction coefficient com-
ponents are functions of only odd powers of detuning δ,

(B.1)

(B.2)

(B.3)

(B.4)

We will write the nondiagonal elements associated
with correlations of gradients of the amplitude and
phase,

(B.5)

(B.6)

ϕ̂ i ϕ̂

σ̂
σ̂

χΛΛ
2δ
γ

------
Gε

1 Gε+( )3
----------------------=

γ2

γ2/4 δ2+
---------------------

1 Gε–
2

--------------- Gε
2 3 2ε( )sin

2
+– 

  ,×

χεε
2δ
γ

------ 1

1 Gε+( )3
---------------------- 3 2ε( )-cos

2





–=

+ Gε 10 3 2ε( )cos
2

–
γ2

γ2/4 δ2+
--------------------- 2ε( )tan

2
–

+ Gε
2 6 2ε( )cos

2
–

2ε( )cos
2

------------------------------
γ2

γ2/4 δ2+
--------------------- 2ε( )tan

2
+

+ Gε
32 2ε( )cos

2
–

2ε( )cos
2

------------------------------




,

χΦΦ
δγ

γ2/4 δ2+
---------------------

Gε

1 Gε+( )2
----------------------,=

χφφ 0.=

χΛΦ
Gε

1 Gε+( )2
---------------------- Gε

γ2/4 δ2–

γ2/4 δ2+
---------------------+ 

  ,=

χΦΛ
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----------------------=
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,
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ellipticity and phase,

(B.7)

(B.8)

ellipticity and angle,

(B.9)

(B.10)

ellipticity and amplitude,

(B.11)

(B.12)

amplitude and angle,

(B.13)

, (B.14)

and phase and angle,

, (B.15)

(B.16)

The diagonal elements of the diffusion coefficient
components $ββ' , which are even functions of δ, have
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the form

(B.17)

(B.18)

(B.19)

(B.20)

It was noted above that components $ββ' are sym-
metric in indices ββ' and, hence, the expression for dif-
fusion coefficient (25) will contain only symmetric
sums $ββ' + $β'β. These are two normal nondiagonal
elements even in detuning,

(B.21)

(B.22)

Finally, we write four anomalous nondiagonal elements
leading to asymmetry in the dependence of the diffu-
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sion coefficient on δ:

(B.23)

(B.24)

(B.25)

(B.26)
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Abstract—A semiclassical method for calculating the total energy and spatial distribution of electron density
in spherically symmetric electron–ion systems is applied to atoms and both solid and hollow atomic clusters.
Both exchange–correlation interaction and second-order gradient correction are taken into account. The contri-
bution due to the fourth-order gradient correction is discussed. An expression is proposed for the oscillating
correction to the averaged electron density. An expression is obtained for the equilibrium radius of a hollow
cluster. The dependence of the equilibrium radius of an endohedral cluster on the valence of the central atom is
analyzed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spherically symmetric electron–ion systems with
fixed distributions of ions can be used to model atoms,
ions, neutral and charged atomic clusters, etc. Their
characteristics are calculated in the Hartree or Hartree–
Fock approximation or by the Kohn–Sham method in
density functional theory [1]. However, the complexity
of these calculations increases with the number of par-
ticles in the system, whereas the simpler and more
explicit semiclassical methods become more accurate.
In particular, semiclassical approximations have been
successfully applied in calculations of thermodynamic
properties [2–5] and in analytical treatments of shell
effects in the mass spectra of medium-sized and large
atomic clusters at zero and finite temperatures [6–8].

In this paper, an improved Thomas–Fermi (ITF)
model and corrections to it are used as a basis for a uni-
fied algorithm for computing local characteristics (den-
sity and potential) and electron energy in a spherically
symmetric electron–ion system. The efficiency of the
proposed algorithm is demonstrated by applying it to
atoms and atomic clusters.

Originally, the semiclassical generalization of the
Thomas–Fermi model based on an energy functional
allowing for the exchange interaction and the lowest
order (gradient) correction was applied to calculate
the energy of the electron shell of a free atom in [9].
The energy functional was minimized over the sim-
plest class of trial functions. To develop the method,
the authors of [10] proposed a quantum-statistical
model in which the electron density was calculated by
solving the Euler–Lagrange equation. This model was
used to compute an equation of state in the cell
approximation for a wide range of density at zero tem-
1063-7761/04/9803- $26.00 © 20455
perature. Its extension to nonzero temperatures was
presented in [11].

The semiclassical energy functional on a class of
trial density functions has also been applied to describe
atomic clusters [12, 13]. In [13], the fourth-order gradi-
ent correction was included in the expression for
kinetic energy. The authors claimed (referring also to
a numerical comparison made in computations of
nuclei [14]) that the use of this particular correction
made it possible to attain the best accuracy of mean
electron density.

The simplest semiclassical functional based on the
Thomas–Fermi theory was used in [15] to analyze a
hollow cluster as a model of the fullerene C60.

In the present study, a unified semiclassical ITF
model is applied to analyze the properties of these and
other systems. In Section 2, the general model equation
for electron density is written out, including the
exchange and correlation interactions and the second-
order gradient correction. The model describes average
characteristics of the system. However, it can also be
used to calculate the oscillations in electron density due
to the discrete nature of the electron spectrum. The
oscillatory effects are discussed in Section 3, where a
corresponding correction to the mean electron density
is derived. The results of computations performed for
particular atoms, solid and hollow clusters, and
fullerenes are presented and discussed in Section 4.
Finally, the principal conclusions are summarized.

Some preliminary results of this study were pub-
lished in [16, 17].

2. EQUATION FOR ELECTRON DENSITY

In the ITF model, the system of Ne electrons occu-
pying a volume V in the field Ui(r) generated by ions at
004 MAIK “Nauka/Interperiodica”
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zero temperature is described by the following energy
functional of density n = ne(r) (in atomic units)

(1)

where t(n) is the kinetic energy density including the sec-
ond-order correction to the Thomas–Fermi model [2],

(2)

is the potential generated by electrons;

(3)

are the exchange and correlation energy densities [18]
and the corresponding potentials.

The extremum condition for the functional subject
to conservation of the number of particles Ne =

 entails the Euler–Lagrange equation for

density

(4)

where the Lagrange multiplier µ is the chemical poten-
tial of the system and the effective potential U(r) is the
sum of external, electrostatic, exchange, and correla-
tion terms,

Using spherical symmetry and changing from the
radius to the dimensionless variable x = r/R (R is a ref-
erence length) and from the density to the function
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3
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--------------;–
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ν(x) = , one obtains a nonlinear integrodifferential
equation for this function and the chemical potential:

(5)

It can be solved by Newton’s method in a finite-differ-
ence approximation for 0 ≤ x ≤ L @ 1.

The ITF model can be used to evaluate the contribu-
tions due to effects ignored in the model (see [7]). In
particular, the contribution to energy due to the fourth-
order gradient correction is expressed as follows [9]

(6)

3. OSCILLATING ELECTRON DENSITY
IN A SHELL

Solving the Schrödinger equation with the potential
U(r) obtained in the ITF approximation, one can find
the spectrum and wavefunctions of electrons and use
the results to calculate the electron density for a discrete
spectrum. In what follows, this is done analytically in a
semiclassical approximation, and the expression for the
oscillating correction to electron density obtained
in [19] for an infinite atom is extended to the case of a
finite system. The analysis relies on a semiclassical
solution to the Schrödinger equation for the radial
wavefunction, the Bohr–Sommerfeld quantization con-
dition, and Poisson’s summation formula (see [2, 19]
for details). The resulting expression for the oscillating
correction is

(7)
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Here,

are the radial momentum and action, respectively;

 = σEλ( );  and REλ are the left- and right-
hand turning points, respectively; and λ = l + 1/2 (l is
the orbital quantum number).

Performing the integral by parts with respect to
energy, retaining the integrated term to the leading
order in the semiclassical parameter at E = µ, and
changing to the variable

in the integral with respect to λ2, one obtains

(8)

where

is the classical time. Note that a similar expression for
the oscillating correction is obtained if σµt(r) and τµt(r)
are replaced by the “complementary” quantities

These formulas are used in the computations for atoms
presented below.

Expression (8) for nosc(r) contains a double sum and
an integral of an oscillating function. Their values are
mainly determined by the contributions of the integra-
tion limits and the regions of slow variation of the argu-
ment of an oscillating function. An analysis shows that
the argument of the cosine in (8) varies rapidly when
s ≠ k – 1 for attractive potentials of atomic type
(U(r  0)  –Z/r, where Z is the charge number)
and when s ≠ 2k for anharmonic attractive potentials of
cluster type (U(r  0)  U(0) = const < 0). In par-
ticular, its derivative with respect to t goes to infinity as

pEλ r( ) pE
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t  1 (λ  0). Therefore, only the terms with s =
k – 1 and s = 2k are summed for atoms and clusters,
respectively.

Sums of the form

can be calculated analytically (see [20]), with i = 0 and
1 for atoms and clusters, respectively. Performing the
integral by parts and retaining the integrated term to the
leading order in the semiclassical parameter at t = 1,
one obtains an oscillating correction to the electron
density in an atom:

(9)

where

In the Thomas–Fermi model of a free atom, the radius

is infinite,  = ∞, and (9) is identical to the expression
obtained in [19]. In the case of a cluster, the oscillating
correction is

(10)
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the integrals in σµ(r) and τµ(r) with respect to r' are

taken from r to the right-hand turning point Rµ,  =

σµ(0), and  = τµ(0).

Let us briefly discuss the applicability of the expres-
sions obtained here. Integrating by parts and retaining
the integrated term, one obtains an accurate estimate for
the integral if the derivative of the argument of the
oscillating function (cosine) in (8) with respect to t is
sufficiently large. In the present case, this derivative (at

t = 1) is  for an atom and 
for a cluster. Accordingly, the domains where the esti-
mation procedure used here is not valid are determined
by the points where the factors in these products vanish.
There exist exactly three such points in the case of an

σµ
0

τµ
0

2 pµ
2 r( )r2δ̃µ r( ) 2 pµ

2 r( )r2δµ r( )

0.50 1.0 1.5 2.0 2.5 3.0 3.5

rZ1 3⁄

0.10 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

D/Z4/3

Fig. 1. Radial electron-density distribution D(r) = 4πr2n(r)
in a free atom predicted by the Thomas–Fermi model (solid
curves) and by the ITF model with Z = 10 (circles) and 80
(triangles).
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Fig. 2. Radial electron-density distribution in the central
region of the mercury atom (without exchange and correla-
tion interactions) predicted by the ITF model (dotted curve),
Hartree model (solid curve), and the ITF model with oscil-
lating correction (9) (thin curve).
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atom, r = 0, r = Rµ, and r = r0 (  = 0), which
restricts the applicability of expression (9) to 0 ! r ! r0.
In the case of a cluster, there are two such points, r = 0
and r = Rµ , and the interval of applicability is wider.

4. ATOMS, ATOMIC CLUSTERS, 
HOLLOW CLUSTERS, AND FULLERENES

In this section, the formulas obtained above are
applied to specific spherically symmetric systems:
medium-sized and large atoms, solid sodium clusters,
hollow clusters, and endohedrally doped hollow clus-
ters. The possibility of using a hollow spherical cluster
as a model of the fullerene C60 is also discussed.

The only difference between the electron–ion sys-
tems considered in this section lies in the potential Ui(r)
generated by ions.

4.1. Atom 

The external field in an atom is generated by a
nucleus with charge number Z (Z = Ne in a neutral atom):

Figure 1 compares the radial electron-density distribu-
tions calculated by solving Eq. (5) for neon (Z = 10) and
mercury (Z = 80) with those predicted by the Thomas–
Fermi model. It is well known that the model yields a
divergent density at the origin, nTF ∝  r–3/2, and the cor-
responding radial density distribution behaves as a

square root, D(r  0) ∝  . In the ITF model, as
in [10], the effects of second order in the semiclassical
parameter are treated in a self-consistent manner, elec-
tron density is constant at the origin, and the radial den-
sity distribution is a quadratic function of radius
(D(r  0) ∝  r2). In the system of units employed
here, the Thomas–Fermi model yields the same curve
for any Z. The figure demonstrates that the ITF results
tend to this universal curve as the charge number Z
increases, while their correct behavior near the origin is
preserved (see the enlarged inset). This is a good illus-
tration of the well-known validity conditions Z–1/3 ! 1
and r > 1/Z for the semiclassical description as applied
to an atom.

Figure 2 compares the electron density in the central
region of the mercury atom predicted by the ITF model
(without exchange and correlation terms) with and
without the use of oscillating correction (9) against that
calculated in the Hartree approximation [21]. Within its
limits of applicability, the oscillating correction accu-
rately describes the oscillation associated with the con-
centration of electrons in the K, L, and M shells.

The top row in Table 1 shows the results of a self-
consistent calculation of the total electron-shell energy
for the mercury atom and some of its components,
including the exchange energy, the correlation energy,

δ̃µ r0( )

Ui r( ) Z/r.–=

r
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Table 1.  Energy of the electron shell of the mercury atom according to the ITF model

E Eex Ecorr δ2E δ4E E – Ecorr + δ4E Estat

–1.9616 × 104 –3.3196 × 102 –1.0086 × 101 1.2772 × 103 7.8599 × 102 –1.8820 × 104 –1.8400 × 104

–3.2560 × 102 –9.9442 × 100 1.2770 × 103 7.8632 × 102
and the second-order gradient correction. The bottom
row presents the exchange and correlation energies cal-
culated as additive corrections (not self-consistently)
by solving Eq. (5) without exchange and correlation
terms. It is obvious that the self-consistent and non-
self-consistent results are very close. This agrees with
the assertion in [7] about the energy correction associ-
ated with the small terms ignored in functional (1).

As noted in the Introduction, the calculations per-
formed for nuclei and clusters in [13, 14] took into
account the fourth-order gradient correction in a self-
consistent manner. This correction can also be esti-
mated for an atom by using expression (6) with the den-
sity obtained by solving Eq. (5). The resulting estimates
based on the ITF model (with and without exchange
and correlation terms) are also presented in Table 1.
First, note that the fourth-order correction is smaller
than the second-order one by only a factor of 1.5, which
implies slow convergence of the expansion. Second, the
fourth-order gradient correction cannot be used sepa-
rately, since it must be combined with quantum-
mechanical corrections to the exchange energy, which
have yet to be found (see [9, 22]). Third, the self-con-
sistent treatment of the exchange–correlation interac-
tion weakly affects the values of gradient corrections;
however, this is not true for clusters (see below).

The last two columns in Table 1 present the values
of electron energy obtained by using the ITF model
(without the correlation term and with fourth-order gra-
dient correction (6) added) and the well-known semi-
classical formula

(11)

For Z > 4, expression (11) corresponds to the depen-
dence of the electron-shell energy on Z in the Hartree–
Fock model within fractions of a percent. A comparison
of the present results with Estat shows that the error in
the calculated energy is reduced from 6.5% to 2.3% by
taking into account δ4E.

The correspondence between the corrections calcu-
lated in this study and the summands in (11) can be
explained as follows. The first term in (11) is the energy
predicted by the Thomas–Fermi model, the second one
is the Scott correction, and the third one is the sum of
the exchange energy and a finite part of the second-
order gradient correction. Subtracting the exchange
energy from the last term in (11) for Z = 80, one finds
that the finite part of the second-order quantum-
mechanical correction is much smaller than the value

Estat 0.768745Z7/3– 0.5Z2 0.2699Z5/3.–+=
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obtained in the present calculations (fourth column).
This is explained by recalling that the Scott correction
was shown in [23] to arise from the summation of a
divergent series of quantum-mechanical corrections to
energy. The divergence is due to the inapplicability of
the semiclassical approximation in the central region of
an atom. Thus, the large values of δ2E and δ4E given by
the ITF model are explained by the contributions of this
region that are responsible for the Scott correction.

4.2. Atomic Cluster 

In the jellium model of an atomic cluster, Ni ions
uniformly distributed over the volume of radius R gen-
erate the potential

where Ne = wNi (w is the valence of an atom). The
radius of a cluster is related to the number of electrons

in it: R = , where rs is the Wigner–Seitz radius.

Figure 3 takes the electron density distribution in the
cluster Na58 (rs = 3.92, R(N = 58) = 15.17) predicted
by the ITF model with and without oscillating correc-
tion (10) and compares it with the results obtained by
the Kohn–Sham method borrowed from [24]. Expres-
sion (10) provides a good approximation of the oscilla-
tion amplitude and phase outside the neighborhoods of
r = 0 and r = Rµ = 16.5, in agreement with the analysis
presented in Section 3.

Figure 4 compares the total energy per atom

for a sodium cluster with its analog for bulk metal. The
energy of ions uniformly distributed over a ball of

radius R is Ei = 0.6 /R. The energy calculated in this
study agrees (within 1–5%) with the semiclassical
results obtained in [13]. The agreement improves with
increasing number of particles, i.e., with a decreasing
semiclassical parameter (which is proportional to

Ui r( )
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). Furthermore, Fig. 4 demonstrates that the addi-
tive contribution of correction (6) is too large and a bet-
ter result is obtained without it.

The results presented in Table 2 for the cluster Na100
illustrate the contributions to the energy of electrons
due to the exchange, correlation, and gradient terms. As
in Table 1, the top and bottom rows here show, respec-

Ne
1/3–

2 40 6 8 10 12 14 16 18 20
r

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ne/ni

Fig. 3. Relative electron-density distribution in Na58 pre-
dicted by the ITF models with and without oscillating cor-
rection (10) (thick and thin solid curves, respectively) and
by the Kohn–Sham method in [24] (symbols). The dotted
curve is the distribution of ions.

20 4 6 8 10
N1/3

–1.0

–0.9

–0.8

–0.7
E/N(|ε∞|)

Fig. 4. Total energy per atom in sodium clusters in units of
the absolute value of energy per atom in a metal (|ε∞| =
2.252 eV). The dotted and solid curves correspond to the
ITF models with and without the fourth-order gradient cor-
rection (6), respectively. The symbols were obtained in self-
consistent calculations using correction (6) [13].

Table 2.  Energies of electrons and ions in the Na100 cluster

Ee Eex Ecorr δ2E δ4E Ei

–337.71 –11.254 –3.6959 0.2126 0.36 329.76

–10.577 –3.5387 0.10552 0.0478
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tively, the results predicted by the complete ITF model
and by the ITF model without exchange–correlation
terms. Additive fourth-order correction (6) calculated
for clusters according to the complete ITF model is by
a factor of 1.5 greater than the contribution of the sec-
ond-order correction (top row). However, both gradient
corrections are reduced and their ratio changes (bottom
row) by dropping the exchange–correlation terms in
Eq. (5), whereas the exchange and correlation terms
calculated self-consistently (top row) and as additive
corrections (bottom row) are similar in both cases.

Thus, exchange and correlation effects are much
more important for clusters as compared to free atoms.
When they are taken into account, the values of gradi-
ent terms are substantially modified and the use of the
fourth-order correction leads to unsatisfactory results.
Since this correction has no theoretical justification
(see Section 4.1), the good results of the self-consistent
treatment of the fourth-order correction in [13, 14]
should be interpreted as accidental and attributed to the
use of a more suitable class of trial functions.

Finally, note that the contribution of the shell-
related oscillatory effects to the energy of cluster elec-
trons can be calculated by the method described in [7].

4.3. Hollow Cluster and Fullerene 

The calculated characteristics of the hollow cluster
proposed in [15] as a model of the fullerene C60 will
now be presented. The charge of Ni ions in a hollow
cluster is “smeared out” over a spherical shell of radius
R. This distribution of ions generates the potential

which acts on mutually interacting valence electrons
(Ne = wNi, where w = 1 and Ne = Ni = 60). The energy
of ions uniformly distributed over the sphere is Ei =

/R. According to [15], the Thomas–Fermi model
of a hollow cluster does not admit any finite equilib-
rium radius R0. The finite value R0 = 7.36 close to

 = 6.75 measured for the fullerene C60 was
obtained in [15] by using the ion energy

(12)

which corresponds to the real C60 molecule with ions
located at the vertices of the truncated icosahedron of
radius R.

The calculations performed for a hollow cluster in
this study show that the equilibrium radius R0 predicted

Ui r( )
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by the ITF model is finite. Its value was determined by
minimizing the total energy of the cluster, E = Ee + Ei ,
as a function of R. As a result, a reasonable square-root
dependence of the equilibrium radius on the number of

particles was obtained: R0 =  with α = 3.743.
When this formula is applied to the fullerene, the result
is too large (R0 = 29), because the energy of ions is sub-
stantially overestimated by replacing their actual distri-
bution with a spherical shell. The corresponding radial
electron-density distribution is shown in Fig. 5. When
the actual (not self-consistent) energy of ions given
by (12) is used, the ITF model yields R0 = 5 [16].

Analysis of spherical hollow clusters based on self-
consistent modeling is of special interest because it can
elucidate, in particular, the dependence of R0 on the
valence Z of the atom located at the center of the cluster.
The real system corresponding to this model is a highly
symmetric fullerene with a central atom, such as LaC60.
In this case, the potential generated by the ions and their
energy are expressed as

where Z is the charge number of the central ion and the
number Ne of electrons includes the Z valence electrons
of the central atom. Calculations were performed for
Ne – Z = 60 electrons in a spherical shell and Z = 0, 1,

α Ne
1/2

Ui r( ) Z
r
---–

Ne Z–
R

---------------, r R≤

Ne Z–
r

---------------, r R,>
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Fig. 5. Radial electron-density distributions in a hollow
cluster (Z = 0, solid curve) and in a hollow cluster with a
trivalent central atom (Z = 3, dotted curve) (Ne – Z = 60).
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2, and 3. The resulting monotonically decreasing func-
tion is accurately approximated by the expression

Figure 5 shows the radial electron-density distribution
D(r) = 4πr2ne(r) calculated for a hollow cluster (Z = 0)
and an endohedrally doped hollow cluster with a triva-
lent central atom (Z = 3) having the corresponding equi-
librium radii.

5. CONCLUSIONS

Based on an improved semiclassical model, a uni-
fied efficient algorithm is proposed for calculating the
characteristics of a spherically symmetric many-body
electron–ion system. The Euler–Lagrange equation for
density is derived by minimizing the semiclassical
energy functional including the exchange–correlation
interaction and second-order gradient terms. This equa-
tion is applied to calculate averaged characteristics of
various physical systems, such as atoms and solid or
hollow clusters.

The proposed model can be used to calculate the
total energy of electrons and their local characteristics
(density and potential distributions). The radial
Schrödinger equation with this potential is solved ana-
lytically in the semiclassical approximation. The result-
ing expression is used to obtain an oscillating correc-
tion to density in a finite system and calculate electron-
density distributions for atoms and atomic clusters
reflecting the discreteness of their electronic spectra.
The contributions of the fourth-order corrections based
on the averaged electron densities to the energies of
these systems are evaluated. The use of these correc-
tions in calculations is shown to be unjustified.

An analysis of the properties of a hollow cluster
with ions uniformly “smeared” over a sphere is pre-
sented. In particular, the spatial density distribution is
calculated for the valence electrons, and the total
energy of a hollow cluster is determined as a function
of radius for a given number of atoms in the cluster. It
is shown that the resulting curve has a minimum at a
finite (equilibrium) value of radius. A reasonable
square-root dependence of the equilibrium radius on
the number of particles in a cluster is obtained. The
dependence of the equilibrium radius of an endohe-
drally doped hollow cluster on the valence of the atom
located at its center is analyzed. The possibility of using
hollow spherical clusters as models of the fullerenes
C60 and LaC60 is also discussed. It is shown that an ade-
quate quantitative description cannot be developed,
because the energy of ions is highly overestimated
when their actual distribution in a fullerene is approxi-
mated by a spherical shell.

R0 Z( ) R0 0( ) 0.04Z2–( ), R0 0( )exp 29.= =
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Abstract—The formalism of nonlinear transfer matrices is used to develop a phenomenological model of a
cubic nonlinear-optical response of one-dimensional photonic crystals and microcavities. It is shown that third-
harmonic generation can be resonantly enhanced by frequency-angular tuning of the fundamental wave to the pho-
tonic band-gap edges and the microcavity mode. The positions and amplitudes of third-harmonic resonances at
the edges of a photonic band gap strongly depend on the value and sign of the dispersion of refractive indexes of
the layers that constitute the photonic crystal. Model calculations elucidate the role played by phase matching
and spatial localization of the fundamental and third-harmonic fields inside a photonic crystal as the main mech-
anisms of enhancement of third-harmonic generation. The experimental spectrum of third-harmonic intensity
of a porous silicon microcavity agrees with the calculated results. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photonic crystals have been extensively studied in
recent years because of their unique dispersion proper-
ties and the possibility of modulating the spectral den-
sity of optical field modes, which manifests itself by the
formation of photonic band gaps [1]. Fundamental
interest in photonic crystals, in particular, stems from
peculiar nonlinear optical effects, such as bistability [2]
and optical switching [3] due to modulation of the
refractive index of one-dimensional photonic crystal
layers in a high-intensity field. This modulation causes
a dynamic or quasi-stationary shift of the photonic band
gap in a photonic crystal with a cubic nonlinearity. In
such crystals, one can observe four-wave mixing and
excitation of the waveguide mode at the anti-Stokes fre-
quency which propagates along interfaces [4]. In media
with modulation only of nonlinear susceptibility with a
period of the order of the wavelength, nonlinear diffrac-
tion effects are observed [5].

The use of photonic crystals for effectively generat-
ing radiation at the second harmonic frequency was
suggested in [6] and experimentally implemented for
the first time in [7]. Phase mismatch between the fun-
damental and second harmonic waves is minimized by
adding the reciprocal lattice vector of the periodic
medium to the wave vectors of the interacting waves.
When one of the frequencies is tuned to the edge of a
photonic band gap, the phase matching condition for
pumping and second harmonic waves is satisfied,
which results in the enhancement of second harmonic
generation in photonic crystals [8–11].

Third-harmonic generation (THG) in a photonic
crystal can occur either directly due to cubic suscepti-
bility or in a cascade manner as a result of quadratic
1063-7761/04/9803- $26.00 © 20463
susceptibility. The first process was considered for an
infinite photonic crystal in [12], where it was shown
that there were structure parameters at which phase
matching conditions were simultaneously satisfied for
the fundamental and second-harmonic waves and the
fundamental and third-harmonic waves. With these
parameters, the time evolution of second- and third-har-
monic intensities was studied, and it was shown that the
pump energy could not be completely transfered to the
second or third harmonic. In cascade THG by a one-
dimensional photonic crystal with quadratic suscepti-
bility [13, 14], simultaneous phase matching of the
pump with the second and third harmonics can also be
achieved by adjusting the optical thicknesses of photo-
nic crystal layers. The calculations reported in [13]
were performed for a photonic crystal with an infinite
number of layers, and only phase matching effects were
therefore studied. In [14], a photonic crystal with a
finite number of layers was considered, and effects of
the spatial localization of fields related to its finite
dimensions were taken into account. Pumping field
localization effects can be enhanced by the introduction
of a defect into a photonic crystal. In such a microcavity
with distributed mirrors, the electromagnetic field reso-
nant to the microcavity mode is effectively localized,
which enhances second [15, 16] or third [17] harmonic
generation. The enhancement of harmonic wave gener-
ation at the photonic band gap edge and in the micro-
cavity mode is a result of the combined effects of phase
matching due to the periodicity of Bragg reflectors and
field localization caused by the presence of a microcav-
ity spacer and finite photonic-crystal dimensions [11].
A key parameter that determines the enhancement of
third harmonic generation is the dispersion of refractive
indexes of layers in a photonic crystal or microcavity.
004 MAIK “Nauka/Interperiodica”
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Its compensation is the essence of the phase matching
at the photonic band gap edges in a photonic crystal and
in the microcavity mode. However, the dependence of
the magnitude and spectral position of third harmonic
resonances on the magnitude and sign of the dispersion
of layers constituting a photonic crystal or microcavity
has not been studied yet.

In this work, we study THG in one-dimensional
finite photonic crystals and microcavities characterized

by a cubic nonlinearity . The formalism of nonlin-
ear transfer matrices is used to elucidate the role played
by each of the mechanisms of the enhancement of third
harmonic generation, that is, phase matching and
pumping and third harmonic field localization when the
pumping wave is in resonance with the microcavity
mode or photonic band gap edge. The spectra of third
harmonic intensity in the spectral range containing a
photonic band gap with a microcavity mode and a pass-
band region are calculated in the approximation of a
given pumping field. The dependence of third harmonic
generation enhancement on the dispersion of the refrac-
tive indexes of the layers that constitute a photonic
crystal is studied. This dispersion determines the
mutual arrangement of photonic band gaps and micro-
cavity modes at the pump and third-harmonic wave-
lengths. The calculation results are compared with the
experimental third harmonic spectrum generated in a
microcavity made from mesoporous silicon.

2. NONLINEAR TRANSFER-MATRIX METHODS
FOR CALCULATING THIRD-HARMONIC 
GENERATION IN PHOTONIC CRYSTALS

2.1. Nonlinear Transfer-Matrix Method

There are several approaches to calculating optical
harmonic generation in one-dimensional photonic crys-
tals. One of these is via solving a system of reduced
equations obtained in the method of slowly varying
amplitudes [12–14, 18]. This approach can be used to
take into account energy transfer from the pump to the
generated harmonic; analyze simultaneous generation
of the second and third harmonics; and examine the
time evolution of the fundamental and the second- and
third-harmonic waves, which is important for studying
harmonic generation by femtosecond pulses. In the
approximation of constant fundamental field, THG is
described by a single inhomogeneous equation, which
can be directly solved using the Green function of a mul-
tilayer structure [4, 19]; the solution is constructed
based on linearly independent solutions to the homoge-
neous wave equation, which can be found using the for-
malism of transfer matrices [20]. Lastly, a convenient
method is the extension of the formalism of transfer
matrices to harmonic generation. This method is appli-
cable in the approximation of constant fundamental
wave and when the fields are stationary, that is, under
the condition that the pumping pulse width is much
greater than the time of fundamental-wave propagation

χ̂ 3( )
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across the photonic crystal. There are two equivalent
approaches. The first one, described in [21], uses the
formalism of Green functions suggested by Sipe [22].
The second approach given in [23] is based on the for-
malism of coupled and free harmonic waves introduced
by Bloembergen and Pershan [24]. Both rely on direct
solution of an inhomogeneous wave equation with the
use of the Green functions of a photonic crystal and
provide additional information about the nonlinear
optical processes under consideration, such as contribu-
tions of separate layers to the resulting third-harmonic
wave.

The method of nonlinear transfer matrices sug-
gested in [23] can conveniently be used to calculate
nonlinear-optical effects in one-dimensional photonic
crystals because of its simplicity and form optimal for
numerical calculations. The problem of THG in photo-
nic crystals can be decomposed into three sequential
stages. First, the fundamental wave propagation in a
multilayer linear structure is described taking into
account multiple-reflection interference, and the spatial
pumping field distribution within the photonic crystal is
calculated. At the second stage, cubic polarization

induced in a medium with nonzero  is determined.
Lastly, the linear problem of third harmonic wave prop-
agation in a layered structure is solved taking into
account coupled and homogeneous waves, and the
intensity of the third harmonic wave that emerges from
the photonic crystal is found.

Let the z axis be perpendicular to the surface of the
photonic crystal and xz be the plane of pumping wave
incidence (Fig. 1a). A monochromatic linearly polar-
ized fundamental wave with frequency ω, wave vector

, and amplitude  propagates in half-space 1 at
angle θ1 to the normal to the surface of the photonic
crystal. We assume that the photonic crystal is optically
inactive and nonmagnetic; s- and p-polarized waves
will therefore be considered separately. The electro-
magnetic field in the jth layer is a superposition of two
plane forward waves (propagating in the positive direc-
tion along the z axis) and backward,

(1)

where

dij is the z coordinate of the boundary between the ith
and jth layers, kj is the wave vector, and θj is the angle
of refraction of the pumping wave in the jth layer. The

exp( x – iωt) term will further be omitted because
of the translational invariance of the problem in the xy

χ̂ 3( )

k1
+ E1

+

E j
ω z t,( ) E j

+ ikz j,
ω z dij–( ) ikx j,

ω x iωt–( )+[ ]exp=

+ E j
– ikz j,

ω z dij–( )– ikx j,
ω x iωt–( )+[ ] ,exp

kz j,
ω k j θ j, kx j,

ωcos k j θ j,sin= =

ikx j,
ω
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plane and its stationary character. The field at the left
boundary of the jth layer is represented by the two-

component vector Ej ≡ (  + ); the first component
of this vector is the amplitude of the forward wave and
the second one, that of the backward wave. The relation
between Ej and Ek in the kth layer at its left boundary is
given by the two 2 × 2 matrices

(2)

Here, the first matrix contains the Fresnel reflectivity rkj

and transmissivity tkj for the wave incident from the kth
to the jth layer and relates fields to the left and right of
the kjth interface. In what follows, this matrix is
denoted by Mkj . The second Φj(dj) matrix describes
field propagation in the jth layer of thickness dj from the
left to right boundary. The fields in half-spaces 1 and l
can therefore be related. Under the assumption that the
backward wave is absent in half-space l and that a wave
with unit amplitude is incident on the 1–2 boundary, we
obtain

(3)

Here, r and t are the reflectivity and transmissivity of
the photonic crystal as a whole. They are determined
from (3), which gives

where Tαβ are the elements of the transfer matrix for the
photonic crystal as a whole, T ≡ Ml(l – 1)F(l – 1) … M21.
The fundamental field distribution within the photonic
crystal is given by

(4)

Spatial distribution (4) can be used to calculate the spa-
tial distribution of the cubic polarization wave and
inhomogeneous third harmonic can be calculated; this
is done in the next Section.

E j
+ E j

–

Ek
+

Ek
–

 
 
 
 

1/tkj rkj/tkj

rkj/tkj 1/tkj 
 
 

=

× ikz j,
ω d j( )exp 0

0 ikz j,
ω d j–( )exp 

 
 
 

E j
+

E j
–

 
 
 
 

.

t

0 
 
  T11 T12

T21 T22 
 
  1

r 
 
 

.=

r
T21

T22
-------, t–

T11T22 T12T21–
T22

-------------------------------------,= =

E j
ω z( )

=  F j z d j j 1–( )–( )M j j 1–( )F j 1–( )…M21
1

r 
 
 

.
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The third stage of solving the problem can be con-
siderably simplified. In the approximation of a given
pumping field, cubic polarization in each layer is a third
harmonic source independent of the other layers. Thus,
we can solve the problem of third-harmonic generation
and propagation for a single photonic crystal layer with
a cubic susceptibility. The third-harmonic field gener-
ated by the photonic crystal can then be obtained by
summing such partial third-harmonic outputs of all lay-
ers and taking into account their phases.

Let the jth layer be nonlinear. The interference of the
coupled E(s) and free Ej third harmonic waves is
included in the boundary conditions, which, for the ijth
and jkth boundaries, have the form

(5)

The amplitude of the inhomogeneous third-harmonic
wave in (5) is calculated in the jth nonlinear layer at its
left boundary, and all homogeneous waves are third-
harmonic waves. Matrices M with index (s) are con-
structed similarly to the usual transfer matrices, but the
Fresnel coefficients in their elements contain refractive
indexes for the inhomogeneous third-harmonic wave in
the nonlinear layer and the free third harmonic in the
layer whose number equals the lower index of the
matrix. The F(s) matrix is similar to Φj and is obtained
from the latter by replacing the wave vectors of the free
third harmonic with the wave vectors of the inhomoge-
neous wave. System (5) yields

(6)

where the vector

(7)

is singled out for convenience. The  matrix is
inverse to Fj . Equation (6) determines the third-har-
monic field in the kth layer as a superposition of the
waves transmitted from the ith layer and generated in
the jth layer by nonlinear sources. Equation (7) con-
tains the contribution of the nonlinear jth layer to the
third-harmonic wave; the term in parentheses takes into
account the interference of the homogeneous and inho-
mogeneous waves. Under the assumption that no exter-
nal field with the third-harmonic wavelength is incident
on the photonic crystal, (6) can be rewritten as

(8)

FiEi MijE j Mi
s( )E s( ),+=

MkjF jE j Mk
s( )F s( )E s( )+ Ek.=

Ek MkjF j M jiFiEi S j+( ),=

S j F jM j
s( )Φ s( ) M j

s( )–( )E s( )=

F j

R jl
El

+ j( )
0

L j1
0

E1
– j( )

– S j,=
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where the matrices

characterize the propagation of homogeneous third-
harmonic waves from half-spaces 1 and l to the jth
layer. It follows that, given Sj , we can find the ampli-

tude and phase of the third-harmonic fields  and

 generated in the jth photonic crystal layer and
emerging from the photonic crystal into the vacuum
(half-space 1) and substrate (half-space l). The total
third-harmonic field in the substrate or vacuum is the

sum of  or  taken over all layers.

2.2. Inhomogeneous Third-Harmonic Waves
in a Photonic Crystal 

Let us obtain equations describing inhomogeneous
third-harmonic waves for direct THG by means of a

cubic susceptibility . Equations for cascade THG

caused by quadratic susceptibility  can be obtained
similarly. The cascade process can be ignored when the
nonlinear medium has an inversion center. The genera-
tion of the bulk dipole second harmonic is then forbid-
den, and the second harmonic is only generated by

R jl F jM jkFkMk k 1+( )…Φ l 1–( )M l 1–( )l,≡

L j1 M jiFiMi i 1–( )…F2M21≡

E1
– j( )

El
+ j( )

El
+ j( ) E1

– j( )

χ̂ 3( )

χ̂ 2( )

1 2 . . . . . . i

i

kj

k1
–

E1
–

E1
+

k1
+

θ1

(a)

(b)

ki
+

ki
–

Ej
–

Ej
+ kj

+

kj
–

Ey
(s)

ks

E⊥
(s)

E||
(s)

l – 1 l

k

x

y z

Px
II
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II Pz

II

θII

θII

θII

θI

θ

θ
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ks
II j

Px
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Ps
I Pz

I

ks
I

Ex Ep

EsEz kω

Fig. 1. (a) Scheme of a one-dimensional photonic crystal
(layers 2 … l – 1) (half-spaces 1 and l denote the vacuum
and substrate, s-polarized fundamental wave is shown) and
(b) THG scheme in the jth nonlinear layer.
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dipole surface and bulk quadrupole sources; con-
versely, the generation of the bulk dipole third har-
monic is allowed. As a result, the cascade process
becomes less effective.

A nonlinear photonic crystal layer can be treated as
a medium rotationally isotropic in the plane of the
layer. Such a medium is characterized by the symmetry
groups ∞/mm and ∞2 (cylinders) and ∞m (a cone with
a symmetry axis of an infinite order perpendicular to
the surface of the layer). Equations for inhomogeneous
third-harmonic waves for other symmetry groups can
be obtained similarly. The tensor of dipole cubic sus-

ceptibility  invariant with respect to the ∞m, ∞2,
and ∞/mm groups and symmetrical with respect to per-
mutations of the last three indices has four independent
nonzero components [25],

(9)

Let the jth layer with cubic susceptibility be situated
between two linear layers i and k (Fig. 1). Let us deter-
mine the amplitude of the inhomogeneous third har-
monic E(s) on the jith interface from the fundamental
field amplitude Ej on the same boundary. The angle
between the fundamental wave vector

where nω is the refractive index at the fundamental fre-
quency, and the z axis is θ. Here and throughout, index
j numbering layers is omitted. The dipole cubic polar-
ization is given by the convolution

(10)

Here,  = kωcosθ is the projection of the fundamental
wave vector onto the normal to the interface. In
Eq. (10), all cubic polarization terms are divided into
two types. The terms of the first type have the z wave

vector component  =  and are obtained by the
convolution of three fundamental waves propagating in
the same direction. The other terms have the normal

projection of the wave vector  =  and are
obtained by the convolution of three fundamental

χ̂ 3( )

χ1 χxxyy≡ χyyxx
1
3
---χxxxx

1
3
---χyyyy,= = =

χ2 χyyzz≡ χxxzz,=

χ3 χzzzz≡ ,

χ4 χzzxx≡ χzzyy.=

kω nω
ω
c
----,=

P3ω χ̂ 3( ) E+ ikz
ωz( )exp E– ikz
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PI+ ikz
s I, z( )exp≡ PI– ikz
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…
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ω
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ω
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waves one of which has the z component of the wave
vector opposite to the projections of the other two
waves. The propagation of cubic polarization and inho-
mogeneous third-harmonic waves is determined by the
effective permittivity calculated as

For the waves of type I,

that is,

and the polarization wave propagates in the medium
collinearly to the fundamental wave, θI = θ. Similar cal-
culations for the polarization waves of type II give

The angle between axis z and the propagation direction
of the polarization waves of type II is different from θ;
it is given by

Taking into account nonzero components (9) of the

tensor , the projections of the two-component vec-
tors PI = (PI+, PI–) and PII = (PII+, PII–) onto the coordi-
nate axes expressed in terms of the s- and p-polarized
fundamental wave components can be written as

(11)

for PI and

(12)
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for PII. Here, we use the equation

The product of three two-component vectors is given
by the rule

(13)

for the waves of type I and by the rule

(14)

for the waves of type II. Cubic polarization can conve-
niently be decomposed into components with polari-
zation directions normal and parallel to the wave vector
of the inhomogeneous wave and the s-polarized com-
ponent,

(15)

For such components, the transition to third-harmonic
inhomogeneous waves is simple [24]:

(16)

Equations (16) for third-harmonic inhomogeneous
waves are substituted into (7). The reduction of the gen-
eral problem of THG in a photonic crystal to THG in a
photonic crystal containing a single layer with cubic
susceptibility allows partial contributions of each pho-
tonic crystal layer to the total third-harmonic wave to
be calculated. In combination with the feasibility of
calculating the fundamental field at each point in the
photonic crystal, this is a convenient tool for analyzing
the mechanisms of nonlinear-optical phenomena in
one-dimensional photonic crystals. Variation of the ini-
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tial calculation parameters, such as the fundamental-
radiation wavelength or the corresponding incidence
angle, allows us to obtain the frequency and angular
spectra of the linear reflection coefficient and the inten-
sities and phases of third harmonic waves.

Note that (11), (12), and (15) specify possible polar-
izations of third-harmonic waves. If the fundamental
wave is s-polarized, only an s-polarized third harmonic
is generated (the first term of the Py component), and if
the fundamental wave is p-polarized, the third har-
monic is also p-polarized (the first terms of the Px and
Pz components).

3. THIRD-HARMONIC GENERATION
IN PHOTONIC CRYSTALS

3.1. The Absence of Dispersion 

Calculations of the enhancement of third-harmonic
generation at the edge of the photonic band gap are per-
formed for a photonic crystal. For a microcavity, we
study THG enhancement effects that appear when the
fundamental radiation is tuned across the region in the
frequency-angle space that corresponds to the micro-
cavity mode. The influence of the microcavity layer is
weak at the edge of the photonic band gap, and third-
harmonic enhancement is similar to that characteristic
of photonic crystals. The model photonic crystal con-
sists of 20 pairs of alternating layers with refractive

indexes  = 1.93 and  = 1.61 and optical thick-
nesses λ0/4, where λ0 = 960 nm (Fig. 2). The refractive
indexes selected are close to the real refractive indexes

nω
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(‡)20 pairs
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2ω3ω ω
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Fig. 2. Dependence of the linear reflection coefficient of the
s-polarized fundamental wave on its wavelength calculated
for (a) a photonic crystal and (b) a microcavity. Photonic
crystal and microcavity schemes are shown in the insets.
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of porous silicon layers (porous silicon was used to fab-
ricate the microcavity studied experimentally in this
work). The microcavity is obtained by doubling the
thickness of the central twenty-first layer. It is assumed
that the photonic crystal and microcavity are placed
between two half-spaces, air and a linear medium with
a refractive index equal to the refractive index of sili-
con. THG from the silicon substrate is ignored. Funda-
mental radiation comes from air. The mechanisms of
THG enhancement are studied in the frequency
domain, that is, under fundamental wavelength varia-
tions, which allows both photonic band gap edges to be
observed for the same sample. This cannot be done by
means of angular third-harmonic spectroscopy with a
fixed fundamental wavelength and normal component
of the fundamental wave vector tuned by changing the
angle of incidence. All frequency spectra are calculated
at the incidence angle θ1 = 45°. The fundamental wave-
length λω is varied from 730 to 1100 nm. The refractive
indexes of photonic crystal layers are assumed to be
constant in the spectral ranges of the fundamental and
third harmonic wavelengths.

The spectra of the linear reflection coefficient of the
photonic crystal and microcavity are shown in Fig. 2.
The same figure contains the spectra of the linear reflec-
tion coefficient in the wavelength ranges of the second
(360–560 nm, this spectrum is further denoted by R2ω)
and third (240–370 nm, spectrum R3ω) harmonics. The
reflection coefficient Rω is close to unity from 820 to
940 nm, which is a manifestation of the photonic band
gap. The R3ω spectrum also contains a wavelength
region with the reflection coefficient close to unity
(photonic band gap at third-harmonic wavelengths),
whereas there is no photonic band gap in the R2ω spec-
trum, because the phase difference between the waves
reflected from layers with optical thicknesses λ/4 or
3λ/4 is πn, where n is an even integer, and the waves are
added in phase. If the optical thickness of layers is λ/2,
the phase difference between the waves reflected from
such layers is πm, where m is an odd integer, and the
waves interfere destructively. The presence of a reso-
nant layer manifests itself in the spectrum of the linear
reflection coefficient by a dip within the photonic band
gap corresponding to the microcavity mode. The micro-
cavity mode is present in both Rω and R3ω spectra.

The spatial distributions of the fundamental field
amplitude shown in Fig. 3 were calculated at the wave-
lengths corresponding to the minima in the spectrum of
the linear reflection coefficient that are closest to pho-
tonic band gap (Figs. 3b, 3c), in the region within the
photonic band gap of the photonic crystal (Fig. 3d), and
in the microcavity mode (Fig. 3a). The fundamental

field amplitude is Eω = |  + |, where  and  are

the complex components of the  two-component
pumping field vector given by (4). When λω is tuned
across the photonic band gap, the fundamental field

E j
+ E j

– E j
+ E j

–

E j
ω
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exponentially decays as the depth of penetration into
the photonic crystal increases (Fig. 3d). The fundamen-
tal wave which is in resonance with the microcavity
mode is strongly localized inside the resonant layer. At
the chosen microcavity parameters, Eω increases
approximately fourfold. At the short-wavelength and
long-wavelength edges of the photonic band gap, the
fundamental field is localized less strongly and is
enhanced 2.1–2.3 times. This effect is caused by the
finite photonic crystal length; with a larger number of
layers, the fundamental field is distributed more evenly.
The amplitude of the pumping field resonant to the
microcavity mode reaches a maximum in the microcav-
ity layer and sharply decreases in several neighboring
layers, whereas in a photonic crystal, the fundamental
field tuned to photonic band gap edges is more evenly
distributed over the photonic crystal. This means that
for effective THG in a photonic crystal, phase matching
of the homogeneous third harmonic waves generated
by various layers and having amplitudes of the same
order is important.
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Fig. 3. Fundamental field amplitude distributions inside a
photonic crystal and microcavity: (a) for the microcavity
mode, fundamental wavelength is λω = 877 nm; (b) at the
short-wavelength edge of the photonic crystal band gap,
λω = 806 nm; (c) at the long-wavelength edge of the photo-
nic band gap, λω = 966 nm; and (d) within the photonic
band gap, λω = 870 nm. The dashed line is the incident wave
amplitude equal to one.
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The third-harmonic intensity spectrum I3ω generated
in a photonic crystal in the absence of refractive index
dispersion is shown in Fig. 4. Multiple peaks located
both within the photonic band gap and near every Rω
spectrum minimum to the left and right outside the pho-
tonic band gap are observed in the third-harmonic spec-
trum. Third-harmonic enhancement is less pronounced
at the edge of the photonic band gap, but the amplitude
of third-harmonic peaks increases in the next linear
reflection coefficient minima.

When the fundamental wavelength is tuned across
the photonic band gap, the amplitude of the fundamen-
tal field decreases exponentially as the depth of pene-
tration into the photonic crystal increases and the
source of third-harmonic generation is several photonic
crystal layers near surface. Upon tuning λω to the min-
imum of the reflection coefficient, the fundamental
field effectively penetrates deep into the photonic crys-
tal and all its layers become sources of third-harmonic
waves. At the same time, the amplitudes of the peaks of
third-harmonic intensity are commensurate no matter
whether λω is tuned across the photonic band gap or the
minima of the reflection coefficient spectrum. This is
evidence of dephasing of third-harmonic waves coming
from different photonic crystal layers; these waves
destructively interfere with each other. It can be
expected that the inclusion of dispersion into calcula-
tions (when the refractive indexes of photonic crystal
layers have different values at the fundamental and
third-harmonic wavelengths) will change the phases
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Fig. 4. The third harmonic intensity spectrum of a photonic
crystal calculated for s-polarized fundamental and third har-
monic waves (SS geometry) (the thick solid line); the reflec-
tion coefficient spectra of an s-polarized wave calculated in
the regions of fundamental (solid thin line) and third-har-
monic (dashed line) wavelengths. The third-harmonic
intensity I3ω is given in arbitrary units.
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Fig. 5. (a, b) Third-harmonic intensity spectra of a photonic crystal calculated for the SS geometry in the presence of dispersion of
photonic crystal layers and (c, d) s-polarized wave reflection coefficient spectra calculated in the wavelength ranges of fundamental
waves (solid line) and the third harmonic (dashed line). Third-harmonic intensity units in Figs. 5a, 5b and 4 are incommensurate.
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of partial third-harmonic waves coming from different
layers and the peaks corresponding to the minimum of
Rω will gain in third-harmonic intensity.

3.2. Enhancement of Third-Harmonic Generation
in the Presence of Dispersion 

Characteristic third-harmonic intensity spectra cal-
culated in the presence of dispersion of the refractive
indexes of photonic crystal layers are shown in Figs. 5a
and 5b. The bottom panels show the linear reflection
coefficient spectra Rω and R3ω. Figures 5a and 5c corre-
spond to the dispersion of the refractive indexes of opti-

cally less dense photonic crystal layers ∆n3ω =  –n3ω
L
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 = −0.045, and Figs 5b and 5d, to ∆n3ω =  –  =
0.051. The refractive index at the fundamental wave-

length is taken to be  = 1.610 + i × 0.00003; that is,
absorption is virtually absent. The dispersion of the
refractive indexes of optically denser photonic crystal

layers is set equal to ∆n3ω / . The I3ω(λω) spectra

show that the third-harmonic intensity resonantly
increases in the spectral region of photonic band gap
edges. At ∆n3ω < 0, the intensity of the third harmonic
peak at the first Rω spectrum minimum to the left of the
photonic band gap (the short-wavelength edge of the
photonic band gap) increases by no less than two orders
of magnitude as compared to the intensity of the peaks

nω
L n3ω

L nω
L

nω
L

nω
H nω

L
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within the photonic band gap. At ∆n3ω > 0, the third har-
monic intensity at the long-wavelength edge of the pho-
tonic band gap increases by approximately an order of
magnitude.

The correspondence between the sign of dispersion
and the spectral position of the third-harmonic intensity
peak with respect to the photonic band gap is unambig-
uous; namely, at ∆n3ω < 0 and ∆n3ω > 0, third-harmonic
intensity resonances are observed only at the short- and
long-wavelength photonic band gap edges, respec-
tively. This is clearly seen in Fig. 6, where the depen-
dence of the amplitude of the third-harmonic intensity

peaks  on dispersion ∆n3ω are shown at the short-
and long-wavelength photonic band gap edges. The
main conclusion is that we do not observe simultaneous
enhancement of the third harmonic at both photonic

band gap edges. The (∆n3ω) dependences are oscil-
latory in character. Their maxima that appear, for
instance, at dispersion ∆n3ω values equal to 0.051,
−0.114, and –0.045 are reached when λω coincides with
the minimum of the spectrum of the reflection coeffi-
cient for the fundamental wave Rω and one of the min-
ima of the R3ω spectrum is observed at the third har-
monic wavelength (Figs. 5c, 5d). The farther from the
photonic band gap minimum of the R3ω spectra that
coincides with the photonic band gap edge in the Rω
spectrum corresponds to the weaker the third harmonic
resonance. It follows that a key factor of third-harmonic
enhancement is the coincidence of the pumping wave-
length with the photonic band gap edge and of the third-
harmonic wavelength with the minimum of the reflec-
tion coefficient R3ω.

Third-harmonic resonances are observed not only at
the photonic band gap edge but also at the fundamental
wavelengths at which the Rω spectrum has the second,
third, etc., minima. These resonances are enhanced to a
lesser degree than the peaks at the edge of the photonic
band gap. This is clearly seen from Fig. 7, where the
whole set of all third harmonic frequency spectra
obtained as ∆n3ω changed from –0.21 to 0.19 in steps of
0.002 in wavelength steps of 1 nm is shown. Peaks at
the edges of the photonic band gap are quite pro-
nounced. The enhancement at the short-wavelength
edge is more intense, and the enhancement at the other
Rω spectrum minima is much weaker.

The resonance enhancement of third-harmonic gen-
eration at the edge of the photonic band gap is deter-
mined by multiple-reflection interference of both fun-
damental and third-harmonic waves, because the stron-
gest enhancement of the third harmonic is observed
when the third-harmonic wavelength occurs at an R3ω
spectrum minimum. To elucidate the role played by
interference effects at the fundamental wavelength we
must use (4) to calculate the spatial distribution of the
amplitude of the fundamental wave within the photonic

I3ω
max

I3ω
max
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crystal (Fig. 3) and the amplitude of inhomogeneous
third harmonic waves at the boundary of each layer
[Eq. (16)]. The multiple-reflection interference effects
at the third-harmonic wavelength are determined by
comparing the amplitude and phase of the output

homogeneous third-harmonic waves  generated
separately by each jth layer [see Eq. (8)] and the ampli-
tude and phase of inhomogeneous third harmonic
waves at the boundary of each layer.

The spatial distribution of the amplitude of the inho-
mogeneous third-harmonic wave inside the photonic
crystal when λω corresponds to the edge of the photonic
band gap is shown in Fig. 8a. The shape of the E(s)( j)
dependence reproduces that of the distribution of the
fundamental wave amplitude. When the dispersion
∆n3ω is introduced into calculations, the shape of the
E(s)( j) dependence does not change and enhancement
in the middle of the photonic crystal caused by funda-
mental field localization is retained, while the ampli-
tude of the inhomogeneous wave decreases as ∆n3ω
increases. The phase distribution of the inhomogeneous
third-harmonic wave at the boundary of each layer is
determined by the fundamental field phase at the same
boundary. The phase difference between third-har-
monic fields in neighboring layers with equal refractive
indexes is close to π. For this reason, each point of the
polar diagram in which inhomogeneous third harmon-
ics are shown with their phases (Fig. 8b) has a corre-

E1
– j( )

Fig. 6. Dispersion ∆n3ω dependences of maximum third-
harmonic peak intensity at the right (thin line) and left
(thick line) edges of the photonic band gap. Arrows show
the dispersion values that correspond to the characteristic
third-harmonic intensity maxima. The region with positive
∆n3ω values is shown in the inset on an enlarged scale.
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sponding point with a comparable amplitude and an
almost opposite phase. The phase of inhomogeneous
waves does not change at ∆n3ω ≠ 0.

The dependences of the amplitudes and phases of

the third-harmonic partial waves  emerging from the
photonic crystal on the layer number j are shown in
Fig. 9. These dependences were calculated at the max-

E1
–
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ima of the (∆n3ω) dependence (Figs. 9a–9d) and at
its minimum (Figs. 9e, 9f). The amplitudes of inhomo-
geneous third-harmonic waves at the minimum and

maximum of the (∆n3ω) dependence are of the
same order of magnitude (Fig. 8), and the amplitude of
emerging free third harmonic waves at the minimum of

the (∆n3ω) dependence is by a factor no less than 3

I3ω
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I3ω
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I3ω
max
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wavelength is tuned to the edge of the photonic band gap for dispersion ∆n3ω values of (a) –0.114, (c) –0.131, and (e) –0.085 and

(b, d, f) partial third-harmonic waves with their phases. The insets show schematically the (∆n3ω) dependence shown in Fig. 6.

The points at which the calculations were made are marked by arrows.

E1
–

I3ω
max
smaller than at its maximum. This implies additional
amplitude enhancement of the emerging third harmonic
by constructive multiple-reflection interference of
third-harmonic waves; namely, the partial third har-
monic-wave generated in the jth nonlinear layer
reaches an interference maximum outside the photonic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
crystal. This is accompanied by phase matching of par-
tial third-harmonic fields outside the photonic crystal,

and the phases of the  waves become localized in a
narrow angular interval. The weakest phase matching
of partial third-harmonic waves is observed at the min-

E1
–
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imum of the (∆n3ω) dependence. The phase jump
through 2π/3 in Fig. 9d explains the reason of a maxi-
mum third-harmonic enhancement when the photonic
band gap edges in the Rω spectrum and the minima in
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Fig. 10. The intensity spectrum of the third harmonic gen-
erated in a microcavity and calculated for the SS geometry.
Shown in the inset are the reflection coefficient spectra of an
s-polarized wave calculated in the pumping (solid line) and
third harmonic (dashed line) wavelength ranges. The R3ω
spectrum is plotted on a triply enlarged wavelength scale.
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Fig. 11. Maximum intensity of third-harmonic peaks gener-
ated in the microcavity mode (thin line) and at the long-
wavelength (thick line) and short-wavelength (dot-and-dash
line) edges of the photonic band gap as a function of disper-
sion ∆n3ω; the dependences in the ∆n3ω > 0 region are
shown in the inset on an enlarged scale.
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the R3ω spectra closest to the photonic band gap coin-
cide; namely, the larger the ∆n3ω value, the larger phase
changes of partial third-harmonic waves and the stron-
ger their destructive interference. As a result, the high-
est intensity of the total emerging third harmonic is
attained because, first, the amplitude of the emerging
partial third-harmonic waves increases and, second,
their phases are matched (Figs. 9a, 9b). The smallest

 value is observed when the photonic band gap in
the Rω spectrum corresponds to the edge of the photo-
nic band gap in the R3ω spectrum (Figs. 9e, 9f). The

maximum of the  dependence for the selected
photonic crystal parameters is then shifted by six layers
toward the photonic crystal surface with respect to the
maximum of the spatial distribution of the inhomoge-
neous third-harmonic wave amplitude. This is
explained by the third-harmonic wavelength falling
within the photonic band gap in the R3ω spectrum. The
contributions of deeper photonic crystal layers to the
emerging third harmonic then exponentially decrease.

The plots in Fig. 9 were constructed for ∆n3ω < 0,
when the third harmonic resonance is observed at the
short-wavelength edge of the photonic band gap. The
dependences for ∆n3ω > 0 are similar.

4. THIRD HARMONIC GENERATION
IN MICROCAVITIES

The dependence of the intensity of the third har-
monic generated in a microcavity on its wavelength is
shown in Fig. 10. The third-harmonic spectrum has a
peak corresponding to the resonance between the fun-
damental radiation and the microcavity mode. Its inten-
sity is more than three orders of magnitude higher than
the intensity of the third harmonic in other spectral
regions. No enhancement is observed at the edge of the
photonic band gap. If ∆n3ω ≠ 0, the resonance peak
amplitude substantially changes and THG enhance-
ment at the edge of the photonic band gap arises. The

(∆n3ω) dependences of the maxima of third-har-
monic intensity peaks at the resonance between the fun-
damental radiation and the mode and between the fun-
damental radiation and the short- and long-wavelength
edges of the photonic band gap are shown in Fig. 11. If
∆n3ω < 0, the resonance amplitudes in the microcavity
mode and at the left edge of the photonic band gap
increase. If ∆n3ω > 0, we observe enhancement in the
mode and at the right edge of the photonic band gap.
THG enhancement in the microcavity mode is maxi-
mum at zero dispersion. If dispersion is nonzero, its
amplitude decreases by approximately an order of mag-
nitude and oscillates as a function of ∆n3ω.

The localization of the fundamental field resonant to
the mode results in a very substantial increase in the
amplitude of partial third-harmonic waves, which

I3ω
max

E1
– j( )

I3ω
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depend on the third power of the fundamental field
amplitude. Irrespective of the phase difference between
these waves, the minimum intensity of the emerging
third-harmonic wave is then no less than the maximum
amplitude of the third-harmonic wave generated at the
edge of the photonic band gap. The partial third-har-
monic wave amplitudes in the microcavity mode
remain almost invariant as ∆n3ω is varied, whereas their

phases change substantially. The  phases at the

(∆n3ω) peaks are nearly equal (see Fig. 12a). At the
minimum reached at ∆n3ω = –0.04 (Fig. 12b), the partial

waves  are out of phase, and their interference is
destructive.

It follows that, when the fundamental wavelength is
tuned to the photonic band gap edges and the microcav-
ity mode, the fundamental wave is localized in the
neighborhood of the cavity layer. The fundamental field
enhancement is stronger when the fundamental wave-
length is in resonance with the microcavity mode. As a
result, the amplitude of inhomogeneous partial third-
harmonic waves increases. At certain dispersion ∆n3ω
values, the amplitudes of partial homogeneous third-
harmonic waves become maximum because of multi-
ple-reflection interference and their phases are close to
each other. This results in a resonant increase in the
third-harmonic intensity. The third-harmonic intensity
peak in the microcavity mode is less sensitive to phase
matching of partial waves because of strong fundamen-
tal field amplitude enhancement. THG enhancement in
the microcavity mode is observed almost irrespective of

E1
– j( )

I3ω
max

E1
– j( )
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the dispersion value, whereas the peaks at the short-
wavelength edge of the photonic band gap appear at a
negative dispersion, and those at the long-wavelength
edge, when dispersion is positive.

5. AN EXPERIMENTAL STUDY 
OF THIRD HARMONIC GENERATION

IN MICROCAVITIES

We experimentally studied THG in microcavities.
The sample was a one-dimensional microcavity made
from mesoporous silicon by electrochemical etching of
a heavily doped p-type silicon plate with a (100) crys-
tallographic orientation in a solution of hydrofluoric
acid following the procedure described in [11]. The
sample was two one-dimensional photonic crystals
consisting of five pairs of quarter-wave (λ0 = 1300 nm)
porous silicon layers separated by a half-wave cavity
layer. The λ0 value is the spectral position of the micro-
cavity mode at the normal fundamental wave incidence.

The refractive index and thickness were  ≈ 1.93 and

dH ≈ 170 nm for optically denser layers and  ≈ 1.61
and dL ≈ 200 nm for less dense ones. The porous silicon
microcavity layer has the refractive index nL = 1.61 and
thickness dres = 400 nm. The spectral dependences of
the third harmonic intensity were measured using a tun-
able optical parametric generator. Its output linearly
polarized radiation had the following characteristics:
pulse width of 4 ns, pulse energy of about 10 mJ at a
800 nm wavelength, and tuning range of 410–690 nm
for the signal wave and 735–2200 nm for the idle wave.
We used the idler tuning range because the photonic

nω
H

nω
L
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band gap and the allowed mode of the microcavity were
within it. Third-harmonic radiation reflected from the
microcavity sample was separated by UV filters and
detected by a photoelectron multiplier. The frequency
spectra of third-harmonic intensity were measured for
fundamental and third-harmonic waves polarized in the
plane of the sample (SS geometry) at a 60° angle of fun-
damental wave incidence.

The third-harmonic intensity spectrum is shown in
Fig. 13b, and the spectrum of the linear reflection coef-
ficient for the fundamental wave is shown in Fig. 13a.
The I3ω(λω) spectral dependence has a resonance at a
fundamental wavelength of λω ≈ 1075 nm, which coin-
cides with the microcavity mode wavelength shifted to
shorter waves with respect to λ0 at an oblique angle of
incidence. We also observe resonant third-harmonic
features when λω is tuned to the spectral regions of the
photonic band gap edge and outside the gap (inset to
Fig. 13). The third-harmonic intensity in these reso-
nance peaks is three orders of magnitude lower than in
the microcavity mode. The positions of third-harmonic
intensity resonances correlate with the minima of the
spectrum of the linear reflection coefficient for the fun-
damental wave.
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Fig. 13. (a) Spectrum of the reflection coefficient of the
s-polarized pumping wave and (b) dependence of the inten-
sity of the s-polarized third harmonic wave on the wave-
length of s-polarized pumping. The sample is a microcavity
made from porous silicon with λ0 = 1300 nm.
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6. CONCLUSIONS

We developed a phenomenological model of optical
THG in one-dimensional photonic crystals and micro-
cavities. The model is based on the formalism of trans-
fer matrices. It describes the generation and propaga-
tion of third-harmonic waves through a photonic crystal
by taking into account multiple reflections of funda-
mental and third-harmonic wave at interfaces and inter-
ference between the homogeneous and inhomogeneous
third-harmonic waves. The spectra of third-harmonic
intensity in photonic crystals and microcavities were
studied for the example of nonlinear optical media with
the limiting point symmetry groups ∞2, ∞m, and ∞/mm
of layers constituting photonic crystals. The spectra
were studied in the spectral range of wavelengths and
incidence angles of fundamental waves containing the
photonic band gap and regions near its edges. At the
resonance between the fundamental wave and the
microcavity mode, the third-harmonic intensity
increases by more than three orders of magnitude.
When the fundamental wavelength coincides with pho-
tonic band gap edges, we observe resonance enhance-
ment of third-harmonic intensity, which depends on the
magnitude and sign of dispersion. If the refractive
indexes of photonic crystal layers at the third-harmonic
wavelength n3ω are smaller than the refractive indexes at
the fundamental wavelength, we observe resonant third-
harmonic enhancement by a factor exceeding 100 at the
short-wavelength edge of the photonic band gap. If
n3ω > nω, THG is enhanced at the long-wavelength edge
of the photonic band gap.

The main mechanism of resonant THG enhance-
ment in the microcavity mode is fundamental field
localization, which manifests itself by a four- to tenfold
increase in the third-harmonic amplitude. An additional
enhancement factor is phase matching of partial third-
harmonic waves from each photonic crystal layer when
they leave the microcavity. THG enhancement at the
edges of the photonic band gap is caused to a greater
extent by an increase in the amplitude of emerging par-
tial third-harmonic waves and their phase matching as
a result of multiple-reflection interference of third-har-
monic waves and, to a lesser extent, by fundamental
wave localization within the photonic crystal.

In agreement with the calculated third-harmonic
spectra, the experimental spectrum of the intensity of
the third harmonic generated in a one-dimensional
microcavity fabricated from porous silicon shows that
the intensity of the third harmonic increases approxi-
mately 1000 times in the microcavity mode. Additional
third-harmonic peaks are observed at the left edge of
the photonic band gap and outside the gap. The spectral
positions of the resonances coincide with the minima of
the linear fundamental wave reflection coefficient to
within several nanometers.
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Abstract—It is shown that a magnetic field acting on an ultrarelativistic charged particle escaping from a con-
ductor changes the intensity of transient radiation. The angular and frequency distribution of transient radiation
in the magnetic field is determined. The possibility of determining the energy of the ultrarelativistic particle
from the change in the azimuthal asymmetry of transient radiation emitted by this particle in the magnetic field
is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the energy and momentum con-
servation laws hold for the emission of a photon by a free
ultrarelativistic particle for a small longitudinal (directed
along the particle velocity) momentum transfer,

so that the wave process of radiation formation takes
place over a particle path of length

For ultrarelativistic particles, the length of radiation
formation (coherence length) may be of a macroscopic
size. On such a long path, the competing processes may
significantly change the motion of a particle in the region
of radiation formation, thus lowering the radiation inten-
sity. An example of this effect is the influence of multiple
scattering on bremsstrahlung [1–3] or the effect of polar-
ization of the medium on bremsstrahlung [4].

In the case of an ultrarelativistic particle and the
conductor-vacuum interface, transient radiation emerg-
ing when the charged particle crosses the interface
between the two media [5–7] is also formed in a spatial
region having a length of (c/ω)(E/mc2)2 and a much
smaller transverse size. In view of the large coherence
length, the action of an external field on the particle
may change the type of motion of the particle in the
course of radiation formation. This affects the process
of radiation formation since the angular distribution of
radiation changes and its intensity decreases.

∆p
hω
c

------- mc2

E
--------- 

 
2

,∼

h
∆p
-------

c
ω
---- E

mc2
--------- 

  2

.=
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In an external electric field, for a particle escaping
from a conductor along the normal to the interface, this
effect leads to the emergence of azimuthal asymmetry
in the distribution of transient radiation, which strongly
depends on the Lorentz factor γ [8]. The action of a
magnetic field on transient radiation differs from the
action of an electric field; it would hence be interesting
to estimate the effect of a magnetic field on transient
radiation emitted by an ultrarelativistic particle.

2. TRANSIENT RADIATION EMITTED 
BY A NONUNIFORMLY MOVING CHARGE

Let a particle bearing a charge e and having a veloc-
ity v  ≈ c escape at instant t = 0 from a conductor (z < 0)
into vacuum (z > 0), where it is acted upon by a constant
uniform magnetic field H parallel to the conductor sur-
face. We choose the direction of the x axis along the
magnetic field and consider transient radiation from the
particle escaping along the z axis perpendicular to the
conductor surface. The law of motion of the particle can
be written in the form

where R(t) and s(t) are the normal and tangential com-
ponents of the radius vector of the particle relative to
the surface, respectively. It is well known that, for such
a motion of the charge, the field outside the conductor
coincides with the field of two charges escaping from
the same point r = 0 at instant t = 0, viz., charge e mov-
ing according to the law r(t) and an image charge –e
moving according to the law

(see [9]).

r t( ) R t( ) s t( ),+=

r t( ) R t( )– s t( )+=
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For such motion of the two charges, the angular and
frequency distribution of the radiant energy has the
form (n = r/r, v(t) = dR/dt, u(t) = ds/dt)

(1)

The action of the field may be significant when the
terms independent of the field are partly cancelled out.
For example, in the ultrarelativistic case, the exponent
of one of the exponential functions is on the order of
ω – k · v and is smaller than the exponent of the other
exponential, which is on the order of ω + k · v. The inte-
gral with the rapidly oscillating exponential is small
and can be omitted. The effect of the external field can
be disregarded in the first approximation in all cases
when the main terms are not mutually cancelled out.
This enables us to transform relation (1) to

(2)

3. TRANSIENT RADIATION 
IN A MAGNETIC FIELD

With the above choice of the coordinate axes, the
velocity components of an ultrarelativistic particle in a
magnetic field have the form (Ω ≡ eH/mcγ)

(3)

It follows hence that the law of motion of the particle
can be written in the form

(4)

We confine our analysis to the case when the change
in the particle velocity due to the action of the magnetic
field in the region of radiation formation considered
here is small as compared to the initial velocity of the

d2E
dωdΩ
--------------- e2ω2

4π2c3
------------- td n v t( ) u t( )+{ }[ ]

0

∞

∫=

× iωt ik R t( ) ik s t( )⋅–⋅–{ }exp

+ td n v t( ) u t( )–{ }[ ]
0

∞

∫

∫ × i ω( ik R t( ) ik s t( )⋅–⋅+{ }exp

2

.

d2E
dωdΩ
--------------- e2ω2

4π2c3
------------- td n v t( ) u t( )+{ }[ ]

0

∞

∫=

∫ × i ω ik R t( ) ik s t( )⋅–⋅–({ }exp

2

.

ux t( ) = 0, uy t( ) = v 0 Ωt, v t( )sin  = v 0 Ωt.cos

x t( ) 0, y t( ) v 0/Ω( ) 1 Ωtcos–( ),= =

z t( ) v 0/Ω( ) Ωt.sin=
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particle. This means that the inequality uy ! v 0 is satis-
fied; i.e., Ωt ! 1. In this case, the law of motion of the
charge can be represented in the form

(5)

The law of motion of the image charge in this approxi-
mation has the form

(6)

Considering that v 0 @ u, we can disregard quantity u in
the preexponential factor in expression (2); in this case,
the angular and frequency distribution of the energy of
transient radiation can be written in the form (Q ≡
kyv 0Ω/2)

(7)

The integral contained in this formula cannot be
reduced to elementary functions and can be expressed
in terms of the Fresnel integrals

(8)

For Ω < 0, i.e., for ky = ksinϑ sinϕ < 0, integration gives

(9)

The angular and frequency distribution of transient
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radiation for sinϑ sinϕ < 0 has the form

(10)

For Ω > 0, i.e., for ky = ksinϑ sinϕ > 0, integration
yields

(11)

In contrast to expression (10), the angular and fre-
quency distribution of transient radiation for
sinϑ sinϕ > 0 assumes the form

(12)

For large x, Fresnel integrals C(x) and S(x) oscillate
in the vicinity of 1/2 with an amplitude decreasing
slowly upon an increase in x:

(13)

For small x, the Fresnel integrals increase rapidly from
zero for x = 0 to values on the order of unity for x ~ 1.
In the vicinity of zero, we have

(14)

We introduce auxiliary functions f(x) and g(x), defined
by the equations

(15)

(16)

For sinϑ sinϕ < 0, the radiant energy distribution (10)
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can be written as

(17)

In the region 0 ≤ x < ∞, auxiliary functions f(x) and g(x)
can be approximated with an error smaller than 2 × 10−3

by the expressions [10]

(18)

More accurate approximations can be found in [11].

4. EFFECT OF A MAGNETIC FIELD 
ON TRANSIENT RADIATION

As the magnetic field tends to zero, the argument
(ω – k · v)/2|Q|1/2 of the Fresnel integrals in expres-
sions (10) and (12) tends to infinity. Consequently, in
the range of frequencies and angles for which

the magnetic field practically does not affect transient
radiation. The angular and frequency distribution of
transient radiation is deformed by the magnetic field
when the opposite inequality holds,

(19)

For characteristic angles of ϑ  ~ 1/γ of the emission of
radiation, this inequality assumes the form

(20)

When inequalities (19) and (20) are satisfied, the argu-
ment of the Fresnel integrals is small; consequently, we
can use approximate expressions (14) for the Fresnel
integrals. In region (20), we have

(21)
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so that distribution (10) of transient radiation for
sinϕ < 0 can be written in the form

(22)

In the range of angles where sinϕ > 0, distribution (12)
of transient radiation has the form

(23)

It should be emphasized that, for small values of angle
ϕ, the conditions for applicability of expressions (22)
and (23) are violated; consequently, a direct transition
from relation (22) to (23) is ruled out.

5. AZIMUTHAL ASYMMETRY
OF RADIATION DISTRIBUTION

If a charged particle escapes from a conductor at
right angles to its surface, the angular distribution of
radiation in zero magnetic field exhibits azimuthal sym-
metry. The action of a magnetic field breaks the axial
symmetry of the angular distribution. Defining the
direction of emission of radiation by angles ϑ  and ϕ in
a spherical system of coordinates with the axis directed
along the initial velocity of the particle and considering
that the radiation emitted by the ultrarelativistic particle
is concentrated in the region of small angles ϑ , we can
represent the argument of Fresnel integrals C(x) and
S(x) in expressions (10) and (12) in the form

(24)

The limiting case in which the value given by for-
mula (24) tends to infinity corresponds to transient radi-
ation in zero magnetic field. Then the angular and fre-
quency distribution (2) is transformed into the conven-
tional distribution for transient radiation,

(25)

It can be seen from formula (24) that this limiting
case emerges for ϕ = 0 as well as for ϑ  0. However,
the region of ϑ  ! 1/γ makes a small contribution to the
radiation intensity and can be disregarded. Thus, radia-
tion emitted in the plane passing through the particle
velocity and the magnetic field (i.e., for ϕ = 0) does not
depend on the magnetic field strength on the whole.
However, the intensity of radiation propagating in the
plane perpendicular to the magnetic field and passing
through the initial velocity of the particle (i.e., for ϕ =
π/2) can noticeably decrease depending on the external
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magnetic field strength. The ratio of the intensity of
radiation emitted at angles ϕ = 0 and ϕ = π/2 is obvi-
ously close to unity if the argument of functions C(x)
and S(x) is much greater than unity. Considerable devi-
ations of this ratio from unity corresponds to small val-
ues of quantity (24), i.e., to the region in which the fol-
lowing inequality holds:

(26)

For characteristic angles ϑ  ~ 1/γ and ϕ ~ π/2, this ine-
quality assumes the form

(27)

The intensity ratio for radiation emitted at angles of
ϕ = 0 and π/2 can be obtained in the form

(28)

For very small angles ϑ , inequality (27) is violated, and
relation (28) becomes inapplicable. It follows from the
above arguments that azimuthal asymmetry in the
angular distribution of transient radiation strongly
depends on the particle energy. From the presence or
absence of azimuthal symmetry, one can judge whether
or not the field strength is high enough for affecting
transient radiation.

6. DISCUSSION

It follows hence that an external magnetic field
affects the process of formation of transient radiation
from an ultrarelativistic particle only for a large length
of radiation formation and, hence, strongly depends on
the radiation frequency and the Lorentz factor of the
particle. For example, for millimeter wavelengths and
for a Lorentz factor of 103, the coherence length is on
the order of several meters over such a length. The mag-
netic field must noticeably change the motion of a par-
ticle for the effect in question to be manifested. In this
case, for a particle escaping along the normal to the
conductor–vacuum interface in an external constant
and uniform magnetic field, azimuthal asymmetry in
transient radiation is observed if inequality (26) is sat-
isfied.

The magnetic field strength for which noticeable
asymmetry takes place is determined by inequality (27)
and strongly depends on the Lorentz factor of the parti-
cle and the radiation frequency.

Azimuthal asymmetry of transient radiation in a
magnetic field can be measured quite easily, while its
strong dependence on the Lorentz factor ensures suffi-
ciently high accuracy in energy measurements. Hence,

ω/2( ) ϑ 2 γ 2–+( ) ! Ωω/2( )ϑ ϕsin[ ] 1/2≈

ωϑ/γ( ) eH/mc( ) ϕsin[ ] 1/2.
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it can be concluded that the measurement of azimuthal
asymmetry in the angular distribution of transient radi-
ation in an external field may become a convenient
method for measuring the energy of ultrarelativistic
particles.

It is important to emphasize that we have considered
only the transient radiation formed near the surface of a
conductor over a particle path with a length on the order
of the coherence length. The action of the field on a par-
ticle also leads to emission of radiation on the subse-
quent path of the particle; however, this radiation is not
connected any longer with the intersection of the inter-
face by the particle and is conventional radiation emit-
ted by a particle moving in a magnetic field. The prop-
erties of such radiation are determined by the specific
nature of the subsequent motion of the particle in the
field and its contribution to the total radiation can be
different. In comparison with experiment, the contribu-
tion from such radiation should be taken into account,
but it is inexpedient to include it in the general analysis.
This is due to the fact that, first, such radiation depends
on the velocity of the particle and not on its energy; sec-
ond, the distribution of this radiation strongly depends
on the condition of subsequent motion of the particle in
the experimental setup.
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Abstract—An experimental investigation of the effect of linearly polarized high-energy pulsed laser light, nor-
mally incident on a carbon thin film, is reported. The material under study consists of platelike graphite crys-
tallites with basal crystallographic planes mostly oriented perpendicular to the substrate surface. An increase is
revealed in the fraction of the graphite crystallites oriented perpendicular to the polarization plane. Laser light
is found to cause significant anisotropy in diffuse scattering by the film surface. Experimental observations are
explained by a model of anisotropic evaporation of graphite-like carbon material due to polarization depen-
dence of the absorption and reflection coefficients for a rough surface. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Currently, much attention is given to analysis of var-
ious allotropic forms of carbon having unique physical
properties, such as diamond, graphite, carbon nano-
tubes, and fullerenes. In particular, it was shown in our
recent publications that some graphite-like films are
characterized by extremely low threshold electric field
strengths for electron tunneling from their surface to
vacuum [1]. The field-emission properties of these
films are analogous to those of carbon nanotubes (e.g.,
see [2–4]). One distinctive feature of graphite-like
materials with low field-emission thresholds is that the
basal crystallographic planes of the constituent well-
ordered platelike graphite crystallites are mostly ori-
ented perpendicular to the film surface [1, 2]. Structural
properties of these graphite films can manifest them-
selves in other phenomena as well. In this paper, we
present the results of a study of the effect of high-
energy laser light on the morphology and optical prop-
erties of graphite films.

It should be noted that one well-known effect of
pulsed laser light on solids is the formation of diverse
periodic surface structures (e.g., see [5–12]). Normally,
a laser-induced periodic surface structure is character-
ized by a surface height varying with a period d ~ λ,
where λ is the wavelength of the laser light [6, 7].
Moreover, large-scale roughness (with a length scale
varying from 10 to 300 µm) may develop on the surface
of an opaque material in the zone irradiated by pulsed
laser light with λ ≤ 1 µm [8, 10, 12].

2. EXPERIMENTAL

We studied specimens of carbon films obtained by
means of our standard technique of plasma deposition
from a methane–hydrogen mixture (e.g., see [1, 13]).
The films were deposited on 25 × 25 mm2 silicon sub-
1063-7761/04/9803- $26.00 © 20483
strates. A single-mode YAG:Nd3+ laser was used as a
high-power light source. The laser cavity was designed
to produce linearly polarized light at 1064 nm with
pulse energy of up to 50 mJ [14]. The half-width of
Gaussian laser pulses was about 22 ns, and the beam
diameter was 2 mm. The laser beam was directed
through a converging lens with a focal length of 10 cm
onto the film surface under study. The irradiance on the
carbon-film surface was varied gradually by varying the
lens-to-specimen distance between 12 and 35 cm. The
specimens were irradiated by one or several laser light
pulses in air.

The film structure and morphology before and after
irradiation was analyzed by means of a Neophot 32
optical microscope with a resolution of at least 0.4 µm,
a Solver P47 atomic-force microscope (AFM), and a
LEO 1550 scanning electron microscope (SEM). The
angular dependence of the efficiency of diffuse scatter-
ing by the examined carbon films was analyzed by
means of an apparatus based on an LEF-3M ellipsome-
ter (see Fig. 1), with a He–Ne laser used as a 1 mW cir-
cularly polarized light source. Diffuse scattered light b
was observed at a constant angle ϕ in the plane yz per-
pendicular to the plane xz of incidence of beam a. The
angle of incidence of beam a in the xz plane was equal
to the angle of reflection of beam b in the yz plane. We
studied the intensity IR of reflected light on the speci-
men’s orientation characterized by the angle α of rota-
tion in the xy plane at various constant angles ϕ. In the
starting position of a specimen, the sides of the silicon
substrate were aligned with the x and y axes.

3. RESULTS

In its original surface morphology, a graphite-like
film consists of platelike graphite crystallites several
tens of nanometers thick, with other dimensions vary-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Optical arrangement for studying diffuse light scat-
tering by carbon film surface: (1) He–Ne laser; (2) beam
chopper; (3) carbon film on silicon substrate; (4) photomul-
tiplier; xyz is a Cartesian coordinate system.

10 µm E

(a)

(b)

Fig. 2. Electron-microscopic images of carbon surface
(a) before and (b) after irradiation by laser light. Arrows
indicate the direction of the laser electric field vector E.
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ing from one to several microns (see Fig. 2a). The pre-
dominant orientation of the platelike crystallite planes
is parallel to the basal crystallographic plane of graph-
ite (0001) and perpendicular to the substrate. There is
no particular orientation in other directions. This orien-
tation of the crystallites explains the changes in diffuse
scattering efficiency that can be observed with the
naked eye as the angle of incidence or observation is var-
ied. Note that the diffuse reflection efficiency is invariant
with respect to rotation of the specimen about an axis
perpendicular to its surface. These observations are con-
sistent with previously reported results [1, 2, 13, 15].

Irradiation with high-energy laser light substantially
changes the film-surface morphology, as illustrated by
images obtained by means of SEM (see Fig. 2b) and
AFM (Fig. 3). After irradiation with five to ten pulses
(depending on the beam irradiance, which varied
between 10 and 30 MW/cm2), the surface had numer-
ous elements stretched along a certain direction. Appar-
ently, these were platelike graphite crystallites that had
existed on the film surface and were not strongly
affected by laser light. Comparative electron micros-
copy of the original and laser-irradiated carbon surfaces
(see Figs. 2a and 2b, respectively) leads to the follow-
ing conclusions.

I. Irradiation by laser light results in a partial disor-
dering of the graphite-like material under study, which
manifests itself in changes in its surface morphology
and in the efficiency of secondary electron emission.
The latter effect is inferred from the observed change in
SEM image contrast. Additional evidence of the disor-
dering has been obtained in Raman-scattering studies.

II. There is no indication of any periodic structure
on the surface after repeated irradiation by laser pulses
[5–7, 11]. The absence of periodic surface structure was
also noted in [7], where the effect of irradiation with
40 ns XeCl excimer laser pulses on rough diamond film
surfaces was investigated.

III. An increase is revealed in the fraction of the
graphite crystallites perpendicular to the polarization
plane. This conclusion about predominant orientation
of crystallites on the irradiated surface segment is cor-
roborated by atomic-force microscopy of surface mor-
phology (Fig. 3).

This last effect is most clearly manifested in the
AFM image of the film surface shown in Fig. 3. More-
over, the figure demonstrates that the width of an indi-
vidual crystallite at a height of 0.6 µm can be as large
as 2 µm in the A–A cross section (see Fig. 3b), whereas
its width in the perpendicular B–B cross section is
0.6 µm (Fig. 3c). Analogous characteristics are exhib-
ited by other morphological elements of the film sur-
face irradiated by laser light. All of them are parallel to
the A–A cross section. Note that the surface irradiated
by five to ten pulses of laser light changes color from
the original metallic gray to velvet black. Further
increase in the number N of irradiating pulses leads to
decrease in the height of surface elements. When N is
 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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sufficiently large, the film-surface color changes from
black back to gray and no morphological elements with
predominant orientation are observed in AFM images.

An analysis of experimental results shows that the
orientation of morphological elements in the SEM and
AFM images of the graphite film surface is perpendic-
ular to the polarization plane of the incident laser light.
An angular displacement of the irradiated specimen
about the axis of the laser beam (normal to the film
plane) results in a corresponding rotation of the pre-
dominant orientation. When the polarization plane of
laser light is changed by means of two quarter-wave
plates without rotating the specimen, the structures cre-
ated by laser irradiation on the carbon film surface
change correspondingly.

The predominant orientation of crystallites along
the direction normal to the surface is also confirmed by
the aforementioned visual observations of diffuse scat-
tering anisotropy with respect to the angle of incidence
in the plane perpendicular to the film surface [2]. More-
over, we found that the efficiency of diffuse scattering
by an irradiated surface depends on the angle of rota-
tion of the specimen about an axis perpendicular to the
substrate. This effect was analyzed in detail by measur-
ing the intensity of diffuse scattered light at various
angles of rotation of the specimen.

Figure 4 shows the intensity IR of diffuse scattered
He–Ne laser light measured as a function of the angle
of specimen rotation α. Whereas no orientational
dependence of IR on α is observed (see Fig. 4a), the
dependence IR(α) obtained after irradiation by high-
energy laser light with polarization characterized by an
angle γ1 exhibits two pronounced peaks over the inter-
val of complete revolution about the axis (Fig. 4b). For
an angle of rotation α measured relative to an arbitrary
direction, the peaks in IR(α) correspond to α11 ≈ 83° and
α12 ≈ 264°; that is, α12 – α11 ≈ 180°. By scrutinizing the
curve IR(α) obtained for the film irradiated by laser
light with a polarization angle γ2 differing from γ1 by
∆γ, it was found that the corresponding peaks in IR(α)
were observed at angles differing by ∆γ. As an example,
Fig. 4c shows the dependence IR(α) measured for ∆γ =
45°, in which case α21 ≈ 129° and α22 ≈ 309°. The fol-
lowing relations were found to hold within the mea-
surement error: α21 – α11 ≈ α22 – α12 ≈ ∆γ.

4. DISCUSSION

According to [6], the formation of periodic surface
patterns is caused by diffraction of a spatially coherent
incident light wave by a rough surface and interference
of diffracted waves with the wave that penetrates the
medium and creates a periodic temperature field on the
surface. Large-scale periodic pattern formation is asso-
ciated with instability development at the interface
between a melt and an optical-breakdown plasma, melt
displacement caused by the vaporizing target material,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
initial capillary-wave pattern formation, and other
effects [12]. As noted above, our experiments give no
indication of pattern formation on the irradiated carbon
film surface. However, we did observe stretched ele-
ments mostly oriented perpendicular to the polarization
plane of laser light. It should be noted that these parallel
elements are chaotically distributed over the film sur-
face, but their presence is clearly manifested in the
angular dependence of diffuse scattering. This can be
explained by anisotropic evaporation of platelike
graphite crystallites from the original film surface.
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Fig. 3. AFM image of carbon film after laser irradiation (a)
and the mutually perpendicular cross-sectional profiles of a
structural element on the film surface in planes A–A (b) and
B–B (c).
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To elucidate this phenomenon, let us consider the
effect of laser light on a rough film surface consisting
of hemispherical elements. Suppose that a laser beam is
normally incident on the film surface. For the laser
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Fig. 4. Intensity IR of scattered He–Ne laser light versus the
angle of rotation α of a specimen, measured at ϕ = 75°
(a) before laser irradiation and after irradiation by pulsed
laser light polarized at angles (b) γ1 and (c) γ2 differing
by 45°.
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polarization plane ψ passing through an arbitrary diam-
eter of a hemisphere, the angle of incidence β is deter-
mined by the azimuthal angle θ: β = |90° – θ| (see
Fig. 5).

The reflection efficiency and absorption coefficient
for absorbing media depend on the angle of incidence
and polarization of the beam. To evaluate the reflection
coefficients Rp and Rs , which correspond, respectively,
to polarization in the plane of incidence (p-polariza-
tion) and in the plane perpendicular to the plane of inci-
dence (s-polarization), we can use the following exact
formulas for isotropic absorbing media [16, 17]:
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2
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a2 b2 2a β βcos
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Fig. 5. Schematic illustration of interaction between a laser
beam normally incident on a surface and a hemispherical
element on the surface: (a) diametrical cross-sectional view
of the hemisphere; (b) top view of the hemispherical ele-
ment after irradiation by a laser beam polarized in the
plane ψ.
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where

with n and χ denoting the real and imaginary parts of
the complex refractive index of the absorbing medium.
Borrowing the real and imaginary parts of the permit-
tivity of graphite at 1 µm from [18], we obtain n2 = 1.3
and χ2 = 4.9 for graphite at the neodymium laser wave-
length. Then, we use the formulas written out above to
plot the absorption coefficients Ap = 1 – Rp and As = 1 – Rs

(see Fig. 6a). Figure 6b shows the dependence of Ap/As

on β plotted in a similar manner. According to Fig. 6,
Ap = As = 0.48 for β = 0 and Ap = As = 0 for β = 90°. As
β varies from 0 to 90°, the absorption coefficient As

monotonically decreases. The dependence of Ap on β
exhibits different behavior. At βmax = 66°, the absorp-
tion coefficient Ap reaches its maximum value 0.67,
whereas As = 0.23, i.e., Ap/As = 2.9. At higher values
of β, the ratio Ap/As monotonically increases.

Note that laser-induced fracture and evaporation of
the material under study are characterized by threshold
conditions depending on the absorption coefficient.
Accordingly, evaporation (or fracture) of a graphite-
like material induced by laser light with a certain irra-
diance at points on a spherical surface where θ ≤ βmax
and θ ≥ π – βmax (see Fig. 5a) is much more efficient in
the case of p-polarization as compared to s-polariza-
tion. Even though the shapes of graphite crystallites in
the examined films substantially differ from a hemi-
sphere, the analysis developed above explains the
mechanism of their selective ablation with respect to
the laser polarization direction. In the case of linearly
polarized laser light, both heating and subsequent frac-
ture of a hemispherical element are anisotropic. On the
lateral parts of such elements, spherical half-segments
of the material oriented perpendicular to the polariza-
tion plane evaporate in the first place. As a result, the
original hemispherical shape of the element change,
and its top view becomes a curvilinear trapezoid whose
parallel sides are perpendicular to the polarization
plane of the laser beam (see Fig. 5b).
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Thus, we can explain how irradiation by high-
energy laser light can cause a certain preferred direc-
tion to appear on an initially isotropic rough film sur-
face. The morphology of a real carbon film surface is
inhomogeneous and is substantially different from the
model considered above. However, the anisotropic
evaporation mechanism outlined above can obviously
manifest itself in a similar manner in this case as well.

In experimental studies of film structure by means
of a He–Ne laser, the angle between the incident beam
and the direction of observation of the scattered light
was 90° (see Fig. 1). Therefore, the dependence pre-
sented in Fig. 4a can be explained by diffuse scattering
by a fractal rough surface [19]. It is clear that the pat-
terns developing on an irradiated surface substantially
change the diffuse scattering function, as illustrated by
the experimental results shown in Figs. 4b and 4c.

5. CONCLUSIONS

It is demonstrated that irradiation of graphite-like
films by linearly polarized high-energy pulsed laser
light leads to the development of spatially oriented
structures. The structure orientation determined by the
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laser polarization plane is explained by anisotropic
evaporation of the carbon film.
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ATOMS, SPECTRA, 
RADIATION
Two-Scale Angular-Momentum Evolution
Induced by Elliptically Polarized Resonance Radiation

for a Two-Level Atom with Jg  Je = Jg + 1 Optical Transition
in a Constant Magnetic Field
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Abstract—The dynamics of a two-level atom with optical transition Jg  Je = Jg + 1 under the action of
elliptically polarized resonance radiation in the presence of a constant field directed along the radiation wave
vector is studied in the approximation of a semiclassical description of the angular momentum orientation. It is
shown that the atomic distribution over the angular momentum orientation exhibits a two-scale time evolution.
At the first stage, after the beginning of irradiation, the angular momenta of atoms get oriented (over compara-
tively short time intervals) along the magnetic field, as well as in the opposite direction, depending on their ini-
tial orientation and the ellipticity of radiation. At the second (longer) stage, the redistribution of atoms takes
place, as a result of which they are oriented predominantly in one of the above directions. The duration of the
second stage is an exponential function of angular momentum J. © 2004 MAIK “Nauka/Interperiodica”.
The scope of problems that involve the interaction
of atoms with resonance radiation in the presence of a
magnetic field has been expanded in recent years. We
are speaking primarily of magnetooptical traps for neu-
tral atoms [1], magnetometers based on optical pump-
ing [2, 3], and so on. A characteristic feature of such
problems is that the degeneracy of atomic states in the
angular momentum projection must be included in
view of the vector nature of the interaction of the elec-
tromagnetic field with the atoms. Even if we confine
our analysis to the model of an atom with two energy
states, the problem becomes essentially a multilevel
problem in view of the above-mentioned degeneracy
and an analytic solution can be obtained only in a few
specific cases [4–6]. The dynamics of an atom can be
traced only via numerical solution of the corresponding
equations, which can provide answers to specific ques-
tions, although it is difficult to analyze the dependences
on the parameters of the problem in this case.

However, semiclassical approaches to the descrip-
tion of rotational motion and, in particular, the angular
momentum orientation can be useful here [7]. In these
approximations, the equations for the density matrix
are simplified to such an extent that analytic solutions
can be obtained and their parametric analysis can be
carried out. A necessary condition for the validity of a
semiclassical description of rotational motion is a large
angular momentum of the quantum system, J @ 1.
However, essentially quantum effects, which are for-
1063-7761/04/9803- $26.00 © 20489
mally manifested in the presence of narrow angular
structures with a size smaller than the quantum indeter-

minacy ∆θ ~ 1/  in the angular momentum orienta-
tion in the density matrix, can also be exhibited in such
systems [7, 8]. In the present study, we consider only
such solutions which will be referred to as semiclassi-
cal and in which the characteristic scale of angular
strictures exceeds the quantum-mechanical indetermi-
nacy in the angular momentum orientation. Neverthe-
less, the results obtained when the condition J @ 1
holds remain qualitatively valid for not very large val-
ues of J ~ 3–5 as well. This remark is especially impor-
tant since atoms are mainly characterized by not very
large values of J. For example, the alkali atom Cs
exhibits a closed transition F  F + 1 from the hyper-
fine state with a total angular momentum of F = 4. Only
some atoms (e.g., Fr isotopes) possess an angular
momentum sufficient for assuming that the semiclas-
sical approximation is quite applicable for their
description.

It was shown in [8], where the classical approxima-
tion was used for describing rotational motion, that an
atom with optical transition Jg  Je = Jg + 1 in the
field of elliptically polarized resonance radiation and in
the presence of a magnetic field directed along the wave
vector orients its angular momentum either parallel or
antiparallel to the magnetic field, depending on its ini-
tial orientation and the ellipticity of the resonance field

J
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Fig. 1. Evolution of the angular momentum orientation distribution for an atom with Jg = 4, Je = 5; the ellipticity of radiation is

x0 = –0.3 and t0 = JΓ/G2. The z axis and the magnetic field are directed upwards.
polarization. However, such dynamics of the angular
momentum is observed only for a certain time interval,

where J is the angular momentum, G is the Rabi fre-
quency, and Γ is the line half-width. Numerical calcu-
lations based on the optical Bloch equations in the JM
representation for a two-level degenerate system show
that, in the case of the elliptic polarization of radiation,
one of the directions of the angular momentum is unsta-
ble. For long time intervals t @ t0, the overwhelming
majority of particles are concentrated only in the vicin-
ity of one of the possible directions of the angular
momentum (Fig. 1). The results of calculations
obtained in the JM representation are visualized with
the help of the method described in [7]. The figure
shows that, in the case of population of the lower state
with an initially isotropic distribution over the direction
of the angular momentum, an anisotropic distribution is
formed at the first stage over time intervals t ~ t0 (for the
chosen ellipticity of polarization, the angular momenta
of part of the atoms are oriented along the magnetic
field, while the angular momenta of a slightly smaller
part of atoms are oriented in the opposite direction). For
longer periods of time, the latter part becomes smaller
and smaller until the angular momenta of nearly all par-
ticles are oriented along the magnetic field (it should be
stipulated that, in view of quantum indeterminacy ∆θ ~

1/  in the angle of orientation of angular momentum,
a certain distribution of angular momentum directions

t0 JΓ /G2,=

J
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about the magnetic field direction always exists). It is
worth noting that the second stage is much longer than
the first.

The present study aims to describe this phenomenon
on the basis of a semiclassical representation of angular
momentum [9]. In particular, the factors determining
the duration of the second stage in the redistribution of
particles over the direction of angular momentum will
be clarified.

We consider a quantum system with two energy lev-
els degenerate in the angular momentum projection,
which resonantly interacts with radiation so that radia-
tion induces transitions from the lower (ground) state g
to the upper (excited) state e and back. Passing to a
semiclassical description of rotational motion, we will
use the φθα representation introduced in [9] for a rota-
tor or a spherical top. Here, angles θ and φ characterize
the polar and azimuth angles of the direction of the
angular momentum, while angle α determines the ori-
entation of the rotator axis in a plane orthogonal to the
angular momentum direction. In exact resonance with
the exciting field, the equations for the density matrix
for the quantum system considered here in the φθα rep-
resentation have the form [9]

d
dt
----- Γ e+ 

  ρee i
iŵ
2J
------ 

  Gρgeexp–=

+ i
iŵ–

2J
--------- 

  G*ρeg,exp
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(1)

Here, Γe is the constant of spontaneous decay of the
excited state to the ground state. We assume that there
exists only one decay channel for state e. Constant Γ is
the rate of coherence breaking between levels e and g.
In the absence of other mechanisms of destruction of
this coherence besides spontaneous breaking, we have
Γ = Γe/2.

We consider the case of a weak magnetic field, when
the Zeeman frequency ωH is much smaller than the
relaxation constant Γ; consequently, we disregard the
magnetic field effects in Eqs. (1) for nondiagonal ele-
ments of the density matrix and for the excited state.
The effect of rotation of the angular momentum of the
atom in the magnetic field is included only in the equa-
tion for the diagonal element of the density matrix for
the ground state. Equations (1) are written in a coordi-
nate system with the z axis directed along the magnetic
field.

Term  on the right-hand side of the equation
for the diagonal element ρgg of the density matrix
describes the arrival at the ground state due to sponta-
neous decay of excited state e. The specific form of this
term for various types of optical transitions was deter-
mined in [8]. In the particular case of transition Jg 
Je = Jg + 1, this term has the form

(2)

where ∆ is the angular Laplacian in angular variables θ
and φ.

In Eqs. (1), the following notation is used:

d
dt
-----ρgg ωH

d
dφ
------ρgg+ i

iŵ–
2J
--------- 

  Gρgeexp=

– i
iŵ
2J
------ 

  G*ρeg Γ̂ e+ ρee,exp

d
dt
----- Γ+ 

  ρeg i
iŵ
2J
------ 

  Gρggexp–=

+ i
iŵ–

2J
--------- 

  Gρee,exp

ρge ρeg* , 2J Je Jg 1.+ += =

Γ̂ eρee

Γ̂ e Γ e–
Γ e

-----------------
Je Jg–

J
---------------- 1

Je Jg–
2J

----------------+ 
  1

4J2
--------∆,+=

G φ θ α, ,( ) GσDσ Jg Je–,
1 φ θ α, ,( )

σ
∑=

=  G̃ φ θ,( ) i Je Jg–( )α( )exp ,

G̃ φ θ,( ) = GσDσ Jg Je–,
1 φ θ 0, ,( ), Gσ

σ
∑  = 

Eσdeg

" 2J 1+
-----------------------.
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Here, Eσ are the circular components of the polarization
vector of the electric field of the wave (σ = 0, ±1); deg is
the reduced matrix element of the dipole moment for

the e–g transition; and  is the Wigner rotation
matrix. We will consider the case when the direction of
propagation of radiation coincides with the direction of
the magnetic field. Operator  acts in accordance with
the rule [9]

(3)

We consider the situation when the radiation inten-
sity is not high; i.e., the Rabi frequency G ! Γ. In this
case, the population of the excited state is always much
smaller than that of the ground state and we can disre-
gard ρee as compared to ρgg as well as the time deriva-
tives in the equations for ρge and ρeg . Summing the
equations for the diagonal elements of the density
matrix in this approximation for the radiation intensity,
we arrive at the equation

(4)

In the semiclassical approximation, when it is
assumed that the angular scales of characteristic varia-
tions of the density matrix considerably exceed the

quantum indeterminacy 1/  in the angular momen-
tum orientation, we can retain only a few first terms in
the expansion of operators of the type exp( /2J) into
a Taylor series. In particular, for our subsequent analy-
sis, it is sufficient to retain in Eq. (4) for ρgg only the
terms on the order up to 1/J2; consequently, in the
expansion of the sine in Eq. (4), we retain only the
first  nonzero term. In addition, ρee and nondiagonal
elements of the density matrix can be calculated to
within 1/J:

(5)

Dσ Jg Je–,
1

ŵ

ŵPQ
∂

∂φ
------ θ ∂

∂α
-------cos– 

  P
∂

∂ θcos
---------------Q=

–
∂

∂ θcos
---------------P

∂
∂φ
------ θ ∂

∂α
-------cos– 

  Q.

∂
∂t
-----ρgg ωH

∂
∂φ
------ρgg+

=  2
ŵ
2J
------ 

  Gρge G*ρeg+( ) Γ̂ e Γ e–( )ρee.+sin

J

iŵ

ρee
i

Γ e

----- Gρge G*ρeg–( )–
ŵ

2JΓ e

------------ Gρge G*ρeg+( ),+=

ρeg
i
Γ
---Gρgg–

ŵ
2JΓ
----------Gρgg,+=

ρge
i
Γ
---G*ρgg

ŵ
2JΓ
----------G*ρgg.+=
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We assume further that the Zeeman frequency ωH is

much higher than the velocity /JΓ of rotation of the

angular momentum [8] (here,  = |G+1|2 + |G–1|2). This
allows us to assume that population ρgg has a uniform
distribution over angle φ. In this approximation, we will
study the angular momentum distribution over angle θ,

(6)

Proceeding in the same way as described in [8] and
retaining only the terns on the order of 1/J and 1/J2,
after certain calculations, we obtain

(7)

It can be seen that the dynamics of the angular momen-
tum distribution over its projection on the z axis obeys
a diffusion-drift equation, the terms proportional to 1/J

G
2

G
2

ρ 1
2π
------ ρgg φ.d

0

2π

∫=

∂
∂t
-----ρ ∂

∂ θcos
--------------- uρ D

∂
∂ θcos
---------------ρ– 

 + 0,=

u
θsin

2

2ΓJ
------------ G 1–

2 1 θcos+( ) G+1
2

1 θcos–( )–[ ] ,=

D
θsin

2

8Γ J2
------------ G 1–

2
1 θcos+( ) 3 θcos–( )[=

+ G+1
2

1 θcos–( ) 3 θcos+( ) ] .

–1.0 –0.5 0 0.5 1.0
x

–2

–1

0

1

2

Fig. 2. Normalized drift velocity uJΓ/  (solid curve), nor-

malized diffusion coefficient DJ2Γ/  (dashed curve), and
the ratio u/DJ of the drift velocity to the diffusion coef-
ficient (dotted curve). The ellipticity of polarization is
x0 = −0.3.

G
2

G
2
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determining the drift velocity u of the motion of angular
momentum in coordinate cosθ, while the terms propor-
tional to 1/J2 are responsible for diffusion.

Thus, if we consider the case when J @ 1, which is
necessary for the semiclassical description of the angu-
lar momentum to be valid, the diffusion term is of the
next order of smallness in parameter 1/J as compared to
the drift term. This means that the angular momentum
dynamics at the initial instant following the application
of laser radiation is mainly determined by the drift; at
later stages, diffusion begins to play a significant role.

To simplify the subsequent analysis, we introduce
the notation x = cosθ. In accordance with Eqs. (7),
velocity u is alternating in the range of admissible val-
ues of x (–1 ≤ x ≤ 1) and assumes zero value for

(8)

Quantity x0 also characterizes the ellipticity of the radi-
ation polarization (in particular, x0 = 0 corresponds to
the linear polarization and x0 = ±1 to the right and left cir-
cular polarization). It follows from Eqs. (7) that u > 0 for
x > x0 and, conversely, u < 0 for x < x0 (see Fig. 2). In
other words, all particles with initial coordinate x > x0

move to the right and would be accumulated at point
x = 1 in the absence of diffusion, while particles with
initial coordinate x < x0 would gather at point x = –1. If
we assume that the initial distribution of particles over
x is uniform, the number of particles gathered at points
x = 1 and x = –1 would be

(9)

respectively. We will use the following normalization
for the number of particles:

(10)

However, the steady-state solution to Eq. (7) has the
form

(11)

Using this equation to evaluate the total number of par-

x0

G+1
2 G 1–

2
–

G 1–
2 G+1

2+
---------------------------------.=

N+ 1 x0–
2

-------------, N– 1 x0+
2

--------------,= =

N+ N–+ 1.=

ρ0 x( ) 1
Z
--- u

D
---- x1d

x0

x

∫ 
 
 

,exp=

Z
u
D
---- x1d

x0

x

∫ 
 
 

x.dexp

1–

1

∫=
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ticles for x > x0 and x < x0, we obtain

(12)

which does not coincide in the general case with the ini-
tial distribution (9) for N+ and N–. It follows hence that
the initial redistribution of particles, which takes the
characteristic time

is followed by a longer process, during which a true
steady-state distribution of particles (11), (12) sets in.
The duration of this process is determined by diffusion
of particles in a region in the vicinity of point x0. Inte-
grating Eq. (7) with respect to x from x0 to 1, we obtain
the equation for the time variation of N+,

(13)

where j0 is the particle flux at point x0.

It follows from Eqs. (11) and (12) that function u/D
(the dependence of this function on x is shown in Fig. 2)
plays an important role. This function possesses the
property

(14)

which is useful for subsequent calculations. To deter-
mine the value of j0, we will use the fact that the second
stage of the redistribution of particles to the stationary
value is a slow process. From the standpoint of mathe-
matics, we are using the presence of small parameter
1/J in the problem, which in fact is manifested in that
the diffusion velocity is smaller than the drift velocity
by a factor of 1/J. This circumstance suggests that, at
large distances from point x0, in each of the regions
x > x0 and x < x0, for long time intervals, we have a
quasi-stationary distribution

(15)

(16)

N0
+ 1

Z
--- u

D
---- x1d

x0

x

∫ 
 
 

xd ,exp

x0

1

∫=

N0
– 1

Z
--- u

D
---- x1d

x0

x

∫ 
 
 

x,dexp

1–

x0

∫=

t0 1/u JΓ /G
2

= =

d
dt
-----N+ j0,=

u
D
----

x 1±=

2J ,±=

ρ+ x( ) N+

N0
+

------ρ0 x( ), x x0,>=

ρ– x( ) N–

N0
–

------ρ0 x( ), x x0.<=
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On the other hand, owing to the quasi-stationary
condition, the following equation is valid in the vicinity
of point x = x0:

(17)

The solution to this equation is obvious:

(18)

In the vicinity of point x0, we can also use the expan-
sion

(19)

and calculate explicitly the integral in the exponential
function on the right-hand side of Eq. (18):

(20)

Since the latter function rapidly attenuates, we can
rightfully take the quantity j/D outside the integral in
Eq. (18) at point x = x0 and use in the region

the following relations instead of (18):

(21)

(22)

Comparing expressions (21) and (22) with (15)

uρ D
d
dx
------ρ– j.=

ρ x( ) u
D
---- x1d

x0

x

∫ 
 
 

exp=

× ρ x0( ) j
D
---- u

D
---- x2d

x0

x1

∫–
 
 
 

x1dexp

x0

x

∫– .

u x( ) x x0–( )u', u'
du
dx
------

x x0=

,= =

u
D
---- x1d

x0

x

∫–
 
 
 

exp
u'

2D0
--------- x x0–( )2

– 
  .exp≈

x x0– 2D0/u'> 1/ J∼

ρ+ x( ) u
D
---- x1d

x0

x

∫ 
 
 

exp=

× ρ x0( )
j0

D0
------ u

D
---- x2d

x0

x1

∫–
 
 
 

x1dexp

x0

1

∫– ,

ρ– x( ) u
D
---- x1d

x0

x

∫ 
 
 

exp=

× ρ x0( )
j0

D0
------ u

D
---- x2d

x0

x1

∫–
 
 
 

x1dexp

1–

x0

∫+ .
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and (16), we find that

(23)

We will calculate  and  by using obvious
approximations, such as

(24)

On segment x0 ≤ x ≤ 1, we approximately assume that

(25)

which finally gives

(26)

Analogously, for  we obtain

(27)

Finally, using approximation (19), (20), we obtain
the following expression for j0:

(28)

Substituting this expression for flux j0 into Eq. (13)

j0

D0

Z
u
D
---- xd

x0

x

∫–
 
 
 

exp

1–

1

∫
----------------------------------------- N–

N0
–

------ N+

N0
+

------–
 
 
 

.=

N0
+ N0

–

ZN0
+ u

D
---- x1d

x0

x

∫ 
 
 

exp xd

x0

1

∫ u
D
---- xd

x0

1

∫ 
 
 

exp= =

× u
D
---- x1d

x

1

∫–
 
 
 

xd

u
D
---- xd

x0

1

∫ 
 
 

exp

2J
-----------------------------.≈exp

x0

1

∫

u
D
---- 2J

x x0–
1 x0–
-------------,≈

ZN0
+ J 1 x0–( )( )exp

2J
------------------------------------≈ .

N0
–

ZN0
– J 1 x0+( )( )exp

2J
-------------------------------------≈ .

j0 2J
D0u'
2π

----------- N– J 1 x0+( )–( )exp(=

– N+ J 1 x0–( )–( ) )exp

=  3
2πJ
---------

1 x0
2–( )3/2

2
------------------------G

2

Γ
------ N– J 1 x0+( )–( )exp(

– N+ J 1 x0–( )–( ) ).exp
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and using normalization condition (10), we obtain

(29)

It follows from this equation that the duration of the
second stage in the evolution of the angular momentum
orientation is given by

(30)

Simple estimates show that the second stage dura-
tion is t1 ≈ 40t0 for J = 5 and for ellipticity x0 = –0.3.

Thus, in the description of the angular momentum
based on the semiclassical approximation, the problem
of the interaction between a two-level atom and ellipti-
cally polarized radiation in the presence of a magnetic
field can be formally reduced to the diffusion-drift
equation of particle transfer in the coordinate corre-
sponding to the angular momentum projection on the
quantization axis. For the optical transition

Jg  Je = Jg + 1,

the drift velocity is alternating; as a result, particles are
concentrated depending on the angular momentum ori-
entation parallel or antiparallel to the magnetic field.
However, when the polarization differs from linear, one
of these directions dominates in the sense that, after a
long time, the angular momenta of most particles are
oriented in this direction. As a result of diffusion, parti-
cles are “pumped” from the less advantageous direction
of their angular momentum orientation to the opposite
direction. However, the rate of such pumping is propor-
tional to the number density of particles in the vicinity
of point x0, at which the drift velocity vanishes. In view
of the properties of the solution to the diffusion-drift
equation, the number density of particles in this region
is found to be exponentially small,

,

as compared to the number density of particles concen-
trated in the above-mentioned directions. This circum-
stance determines the slow rate of the second process.

After completion of the second stage, the numbers
of particle oriented along and against the magnetic field
satisfy the equilibrium relation

d
dt
-----N+ 3

2πJ
---------

1 x0
2–( )3/2

2
------------------------G

2

Γ
------=

× J 1 x0+( )–( ) N+–exp[

× J 1 x0+( )–( )exp J 1 x0–( )–( )exp+( ) ] .

t1 t0
2π
3J
------

1

1 x0
2–( )3/2

------------------------ eJ

Jx0( )cosh
-------------------------.=

u/D( ) xd

x0

1±

∫–
 
 
 

exp e J–∼

N0
– 2Jx0( )N0

+,exp=
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which is quite sensitive to ellipticity x0 for large values
of J.
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Abstract—The physics of stationary vacuum microarc in a wide interelectrode gap with the perveance corre-
sponding to a geometry of the Müller electron projector type and the Langmuir–Blodgett function α2 ≥ 5 is con-
sidered on a qualitative level. Under these conditions, the electric field at the cathode can exhibit a significant
(severalfold) increase due to a positive space charge of microarc, which makes field electron emission possible.
The most important features of the continuity equation, Poisson equation, and thermal conductivity equation
describing this system are considered. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electric microarc is a fundamental phenomenon
playing the role of a living cell in the complicated
“organism” of high-current arc discharge, widely used,
albeit still on the basis of empirical knowledge, in both
science and technology [1]. As is known, a vacuum arc
can be initiated in various ways, in particular, it appears
as a result of the electric discharge between two elec-
trodes in vacuum, thus restricting the maximum possi-
ble potential difference between electrodes to a level of
about 105 V per millimeter of discharge gap width.
Alternatively, a vacuum arc arises upon breakage of the
contact between current-carrying electrodes. Depend-
ing on the circuit parameters, the current of a vacuum
arc may vary from a fraction of ampere to tens and hun-
dreds of kiloamperes, while the voltage drop varies
from the ionization potential to several dozens of volts.
A vacuum arc can exist between electrodes made of any
metals (from mercury to tungsten) possessing substan-
tially different evaporation rates, thermal conductivi-
ties, and other properties.

In most cases, electric arc is studied in a discharge
gap with a width below 1 cm, where an important or
even decisive role is played by anode evaporation. A
high-current arc consists of numerous autonomous
arcs, each arising from its own cathode spot emitting
electrons. The discharge current via one cathode spot
can vary from about 0.4 A for mercury up to 102 A for
tungsten [2]. The current density measured on a cath-
ode spot may reach up to 108 A/cm2. Therefore, the
cathode spot radius can be estimated at about 5 ×
10−4 cm, the electron density is on the order of 1018 cm–3,

and the Debye radius is 5 × 10–7  cm (Te is the elec-
tron temperature expressed in electronvolts).

Thus, according to the results of observations, a vac-
uum arc with a sufficiently small current is a micro-
scopic self-sustained discharge arising from a single

Te
1063-7761/04/9803- $26.00 © 20496
cathode spot on the surface of a massive cathode. This
very type of discharge, referred to below as vacuum
microarc, is studied in this paper.

It is commonly accepted that the typical vacuum
microarc consists of three parts: (i) a cathode spot;
(ii) an active near-cathode region called the cathode
layer, from which all ions are collected in the cathode
spot to provide for continuous reproduction of the nec-
essary flow of atoms from the cathode surface, the
working temperature, the electric field strength, and the
electron emission current I; and (iii) a passive anode
layer playing the role of a conductor between the outer
surface of the cathode layer and the anode surface. In
the case of a distant anode, the anode layer is character-
ized by predominating negative space charge and by a
very low density of atoms. Ionization of atoms in the
anode layer does not play any significant role in the
mechanism of self-sustained vacuum microarc. The
conditions of existence and the properties of vacuum
microarc are fully determined by interaction of the
active cathode layer with the cathode spot surface.

The active cathode layer can be represented by a
spherical sector of solid angle Ω with a cathode spot

with an area of πR2 ≈  at the apex. The atomic flux
from the cathode spot surface, with an angular distribu-
tion described approximately by the cosine law, propa-
gates within a solid angle Ω0 > Ω irrespective of the
electric field structure. A part of the atomic flux within
the angle ∆Ω = Ω0 – Ω bypasses the active cathode
layer and does not participate in discharge.

Figure 1 shows a schematic diagram of such an ide-
alized vacuum arc with ∆Ω = 0. The outer boundary of
the active cathode layer has a potential of ϕc and is
spaced by r0 + a from the center (point O) of the spher-
ical sector. Analysis of this model, despite its simplified
character, allows the most important parameters to be
established and their interrelation to be understood.

Ωr0
2
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In the scheme of Fig. 1, unknown parameters
include the potential ϕc , the electron emission current I,
the ion current Ii to the cathode, the spot radius R, the

solid angle Ω (or the quantity  ≈ πR2/Ω), and the
cathode layer thickness a. 

All the cathode characteristics important from the
standpoint of the microarc’s existence are considered as
known. These include the evaporation rate, the rate of
cathode sputtering by ion bombardment, and the den-
sity of electron emission current as a function of the cath-
ode temperature (Tc) and the electric field strength (Ec) at
the cathode, as well as thermal conductivity, electric
conductivity, etc.

Based on the known properties of the cathode, vac-
uum microarc is described by jointly solving the equa-
tion of continuity for particle fluxes in the active cath-
ode layer, the Poisson equation, and the thermal bal-
ance equation for the cathode spot surface. Rigorous
solution of this problem is a very complicated task. For
this reason, an analysis of the scheme in Fig. 1 will be
performed using justified simplifying assumptions
implying that a stationary vacuum microarc exists in a
certain limited region of parameters.

2. THE EQUATION OF CONTINUITY 
AND THE CONDITION OF EXISTENCE 

OF VACUUM MICROARC

Let us restrict the consideration to a region of
parameters in which the ion current fraction is small:
i = Ii /I ! 1. As is known, the Langmuir collisionless

cathode layer is characterized by i ≥ , where m
and M are the electron and ion masses, respectively. For

example, the latter ratio for tungsten is  ≈ 1.7 ×
10–3. In the case of i ≥ 2 , the electric field Ec
accounts for greater than 0.7 of the value corresponding
to i @ 1 (i.e., to a cathode layer with positive space
charge). Therefore, the condition of i ! 1 does not
exclude field electron emission, provided that a field
strength on the order of Ec ≈ 107–108 V/cm is consistent
with a joint solution of the Poisson and continuity equa-
tions. Thus, the region of parameters corresponding to
i ! 1 admits the electron emission via the Richardson–
Dushman–Schottky and Fowler–Nordheim mecha-
nisms.

Under the condition of i ! 1, we may assume that
I = const in the active cathode layer. Then, the ion cur-
rent component can be expressed as Ii = IσiNg, where σi
is the average ionization cross section and Ng is the
“atomic density” in the gas phase of the cathode layer:

(1)

For obtaining estimates, we will use the well-known

r0
2

m/M

m/M

m/M

Ng ng r( ) rd

r0

r0 a+

∫ i
σi
----.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
approximated formula

where σm is the maximum ionization cross section, W =
ϕe/Ui , ϕe is the kinetic energy of electron, an Ui is the
ionization potential. For example, i = 1.7 × 10–3 and
σi = 10–16 cm2 correspond to Ng = 1.7 × 1013 cm–2. For
such a low atomic density and a transport cross section
of σT < 1015 cm2, electrons are barely scattered on
atoms in the cathode layer. It should be also noted that,
for σm = 5 × 10–16 cm2 and Ui = 8 V, the average cross
section σi = 10–16 cm2 can be obtained for two values of
W: W1 = 1.083 (ϕe ≈ 8.76 V) and W2 = 54 (ϕe ≈ 430 V).

For the known values of i and σi , formula (1) gives
a necessary condition for the existence of a stationary
discharge obeying the equation of continuity for the
fluxes of atoms, ions, and emitted electrons.

Let us consider the behavior of atoms in more detail,
assuming their radial motion at a constant velocity
of Vg. Then, atoms will travel the distance r without
losing electrons with a probability of

(2)

where

(3)

is the characteristic ionization length in the flow of
electrons with the initial current density j (at r = r0).

As a result of ionization, the density of atoms drops
faster than according to the quadratic law,

and the integration yields

(4)

where µ = µ(r0 + a). Note that, with allowance for

σi σm
2.7
W
------- W ,ln=

µ r( )
r0

x0
-----– 

  1
r0

r
----– 

  ,exp=

x0 eVg/σi j=

ng r( ) n0

r0
2

r2
----µ r( ),=

Ng
i
σi
---- n0x0 1 µ–( ),= =

O r0

a

Fig. 1. Schematic diagram of the model of vacuum microarc
(see the text for explanations).
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expression (3), formula (4) is equivalent to the relation

(5)

where k = j/eq0 and q0 = n0Vg is the density of the atomic
flux from the cathode surface at r = r0. The probability
µ(r0 + a) is naturally called the transparency of the cath-
ode layer, while the reciprocal quantity χ = µ–1 is called
the compression.

Another important process is the resonance recharge
of atoms in the counterflow of ions. With allowance for
this factor, the quantity k in relation (5) should be
replaced by

where σn is the recharge cross section. Then, relation (5)
should be rewritten as

where the coefficient h takes into account the reverse
flux of recharged ions (1 < h < 2). Since σn > 102σi , the
recharge process may significantly decrease the trans-
parency and thickness of the cathode layer, while leav-
ing Ng = const. It should be noted that, as the ion current
fraction i increases, the gas compression in the active
cathode layer takes place predominantly due to the res-
onance recharge.

The model of vacuum microarc under consider-
ation, characterized by a “zero cone transparency”
(Vg || r; ∆Ω = 0), is optimum from the standpoint of a
minimum necessary rate of reproduction of the atomic
flux from the cathode surface. An analogous situation
with negligibly small “edge transparency” is actually
possible for R @ a.

The transparency of the cathode layer can vary in
response to deformation of the spherical sector, which
leads to a change in x0, a, and/or r0. However, for a real
vacuum microarc in a stationary regime, the integral
transparency must exactly compensate for reproduction

ki 1 µ–( ),=

k k 1
σn

σi
----- i

2
---+ 

  ,≈

ki h 1 µ–( ),=

r0/a

Ij

Fig. 2. The behavior of Ij(r0/a) for vacuum microarc with
χ = const.
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of the atomic flux from the cathode spot surface by
means of evaporation and cathode sputtering. If no such
reproduction takes place, a vacuum arc can exist only in
the case of zero integral transparency or infinite com-
pression.

It is naturally assumed that ions are reflected from
the cathode in the neutral state, rather than condensed
on the cathode surface, so that the atomic flux density
q0 obeys the relation

where γi(ϕc) is the cathode sputtering coefficient and
qs(Tc) is the evaporation rate. In a stationary regime,

(6)

In particular, at a sufficiently low cathode temperature
Tc for which cathode sputtering predominates (while
still γi ! 1), we obtain

(7)

Thus, for the given values of ϕc = const and eqs !
γi ji , the microarc transparency and compression are
constant and determined by cathode sputtering. In this
case,

(8)

For σi = 10–16 cm2 and Vg = 5 × 104 cm/s, we obtain an
estimate of x0 = 80/j, for which relation (8) can be
rewritten in terms of the product of the current I and
current density j:

For  = 5 (χ ≈ 148), we obtain

(8')

In the limit of r0/a ! 1, this yields Ij  7.5 ×
105 A2/cm2 = const; in the other limiting case, r0/a @ 1,

we obtain Ij   7.5 × 105 /a2. This behavior of
Ij(r0/a) for χ = const is illustrated in Fig. 2.

Using to the results reported by Daalder for vacuum
microarc on copper cathode (see review by Harris [2]),

we obtain an estimate of R ≈ 2.8 × 10–4 cm. Taking Ij ≈
1010 A2/cm2, in relation (8'), we obtain r0/a ≈ 115. Rela-

eq0 ji 1 γi+( ) eqs,+=

µ
γi ji eqs+

eq0
----------------------.=

µ ϕc( ) γi ϕc( ) ! 1,=

χ ϕ c( ) µ 1–
 @ 1.=

a
x0
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  χ .ln=
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tion (8) for r0/a @ 1 correctly reflects the dependence of
a/x0 on , since the edge transparency can be
ignored. Then, applying relation (8) to the experimental
data of Daalder, we may conclude that the maximum
current of a field-emission microarc, I ≈ 50 A, corre-
sponds to a “degenerate” one-dimensional geometry of
the active cathode layer (r0/a @ 1).

The scheme of vacuum microarc under consider-
ation implies that the superimposed flows of atoms,
ions, and electrons inside the spherical segment pro-
ceed in the radial direction and do not intersect the cone
surface. This idealization leads to a severalfold
decrease in the lower limiting value of the microarc cur-
rent (called threshold current). The threshold current
corresponds to a certain minimum ratio (r0/a)min for
which the atomic density Ng decreases below a mini-
mum possible level (Ng < i/σ), leading to the appear-
ance of “vacuum” in the cathode layer volume and to
the quenching of arc discharge. In the vicinity of this
threshold, the discharge may be conventionally called
point microarc. It is obvious that, for (r0/a)min ≤ 1, the
threshold current coincides in order of magnitude with
that for r0/a ! 1.

In the field emission regime at j ~ 108 A/cm2, the
threshold current of a point microarc according to for-
mula (8') is approximately 7.5 × 10–3 A. It is interesting
to note that a current of the same order of magnitude is
observed for field emission from a microscopic point [3].
Therefore, the question naturally arises as to how can
the field electron emission from a microscopic point be
distinguished from that in the case of microarc.

In this context, it is necessary to emphasize the need
for taking into account the ionization and recharge pro-
cesses in the description of stationary electron emission
for j ~ 108 A/cm2, when the ionization length is x0 ~
10−6 cm, that is, much smaller than the point radius. It
is not excluded that stationary field emission in the
Müller projector can be observed for a flat cathode.

Finally, note that the above question has a physical
meaning only provided that both degenerate and point
microarcs involve an electric field strength of E ~
108 V/cm.

3. ELECTRIC POTENTIAL 
AND FIELD DISTRIBUTION

IN VACUUM MICROARC

In many investigations, it is assumed that the active
cathode layer is filled with a quasineutral plasma and
the current density obeys the “3/2 law,” which is valid
for the Langmuir collisionless cathode layer. However,
there is some doubt concerning the validity of these
assumptions in the case of vacuum microarc. At a low
density of atoms (Ng < 1014 cm–2) and a monotonic
potential distribution in the cathode layer, all electrons
travel the distance to the potential virtually without col-
liding with atoms in this layer. For this reason, the cath-

χln
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ode layer is characterized by predominating positive
space charge and the Poisson equation in the zero
approximation can be written with neglect of the space
charge of electrons. This assumption does not seem
preposterous in view of a microscopic size of vacuum
microarc.

In order to check this, let us obtain estimates for a
one-dimensional cathode layer in which

and the ion current density at a low transparency can be
expressed as

Moving toward the cathode, ions are retarded as a result
of the Coulomb interaction with the intense flow of
electrons and the resonance recharge caused by the
counterflow of atoms. Therefore, it can be reasonably
assumed that the average ion velocity is comparable
to  that of the neutral atoms, Vi ~ Vg. Then, eni =
en0exp(–x/x0), the electric field at the cathode obeys the
condition

(9)

and the voltage drop is

(10)

Formulas (9) and (10) reflect equality of the densi-
ties of atoms and ions in the cathode layer, Ng ≈ Ni , and
can be rewritten as

(9')

(10')

For i ~ 10–2 and σi = 10–16 cm2, we obtain Ng =
10−14 cm2, |Ec| ≤ 1.8 × 108 V/cm, and ϕc ! 144 V (for
Ec > 108 V/cm, the field emission current density is j @
108 A/cm2). These estimates seem to be quite realistic.

It should be also noted that, for j ~ 108 A/cm2, the
frequency of the Coulomb electron–ion collisions is
much greater than that of the electron–atom collisions.
Therefore, the electric conductivity in the cathode layer
must correspond, in order of magnitude, to the Spitzer
formula

For a negligibly small ion current fraction, inelastic
electron collisions are insignificant and the electron

ng x( ) n0 x/x0–( ),exp=

ji x( ) en0Vg x/x0–( ).exp=

Ec 4πen0x0,≤

ϕc 4πen0x0
2
.≤

Ec 1.8 10 6– Ng V/cm[ ] ,×≤

ϕc 1.44 10 4– Ng

j
------  V [ ] . ×≤

j 13Te
3/2 x( )dϕ
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------.≈
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temperature Te(x) ≈ Tc + (2/3)eϕ increases in proportion
to the potential ϕ. In this case, the electric field at the

cathode is |Ec| ≈ j/13 . For j ≈ 2 × 108 A/cm2 and Tc ≤
0.3 eV, this yields |Ec| ≥ 108 V/cm. The potential ϕ(x)
can be determined from the formula jx ≈ 2.9ϕ5/2, which
can be written for eVg/σi ≈ 102 as ϕ(x) ≈ 4(x/x0)2/5. For
a/x0 =  ≈ 5, this yields ϕc ≈ 7.6 V. The electric con-
ductivity according to Spitzer corresponds to electro-
neutrality, but the order of magnitude is retained even in
the case of a two- to threefold decompensation.

The first special feature of vacuum microarc appar-
ently consists in that the ion concentration exponen-
tially increases toward the cathode, rather than decreas-
ing in this direction. The second (and main) feature is
the positive space charge in the cathode layer. Accord-
ing to estimates, the electric field strength at the cath-
ode and the current density may reach levels typical of
the field emission at low values of ϕc . Moreover, it is
quite possible that the maximum field strength Ec at the
cathode of a microarc may exceed the values achieved
as a result of the field enhancement at a microscopic
point.

In concluding this section, it should be emphasized
that the initial assumption concerning a passive role of
the anode layer in vacuum microarc is valid provided
that the microarc current I(ϕc) is consistent with the
current Ia(La, ϕc, ϕa) limited by the perveance of the
anode volume, that is, depends on the anode potential
ϕa and the discharge gap width La . For I > Ia , a nonsta-
tionary regime can take place as a result of the field sag-
ging in the region of x > a or even an aperiodic instabil-
ity of the Pierce type can develop with the formation of
a virtual cathode and current breakage. Such processes
were considered in detail, with description of original
experiments, by Nezlin [4].

Thus, with exponential growth of the gas and ion
density toward the cathode, field emission under sta-
tionary vacuum microarc conditions seems to be quite
possible even from a flat cathode surface.

4. THERMOPHYSICS 
OF A VACUUM MICROARC CATHODE

The thermophysics of cathode spots is a very inter-
esting and complicated problem of independent basic
significance. However, judging by the available litera-
ture, this problem was never systematically nor thor-
oughly studied and was not given proper attention in
reviews. For the description of thermal processes in the
cathode spot of vacuum microarc, it will be necessary
to make simplifying assumptions as it was done in the
preceding sections.

Consider a cathode spot in the form of a hemispher-
ical well of radius r0 on the surface of a massive cathode

at a temperature of Tc . The microarc current I = 

Te
3/2

χln

2πr0
2 j
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determines the characteristic scale of the Joule power
evolved on the cathode,

Here, L = 2.45 × 10–8 is the Lorenz number, which can
be considered as a fundamental constant determining
the relationship between the thermal conductivity λ, the
electric conductivity σ, and the temperature in the
Wiedemann–Franz law λ = σTL.

A heat flux from the cathode layer via the well sur-
face is

Let us assume that no heat exchange with the gas dis-
charge volume takes place on the flat cathode surface
outside the well. Then, the temperature of the well sur-
face is determined by the thermal conductivity equation

with the boundary condition  = . A solution of

this equation can be presented in the following form:

(11)

where

The current I can be expressed in terms of α as

(12)

The angle α determines the rate of temperature
decrease in the bulk of cathode. In particular, for β = 0,
we obtain

In the regime of field emission from tungsten (λ ≈ 1)
for j ≈ 2.56 × 108 A/cm2, we obtain I ≈ α2. At a suffi-
ciently small cathode spot radius, the microarc current
can be very small (on the order of 10–2 A). For α ! 1,
formula (11) yields t ≈ 1 – βα, which implies that the
spot can be “cold” for βα ≤ 1/2.

Using the condition βα ≤ 1/2, we obtain

Since β ~ 1/2α @ 1, the ion-bombardment-induced

Q0 ITc L.=

Qλ 2πr0
2λ dT

dr
------

r0

0.>=

divgradT
j2 r( )

σ r( )λ
--------------–=

T
r  @ r0

T

t α β α ,sin–cos=

t
T
Tc
-----, β

Qλ

Q0
------, α

jr0 L
λ

---------------.= = =

Ij 2.56 108λ2α2 A2

cm2
---------.×=

T r( )
Tc

----------- α
αr0

r
--------– 

  .cos=

Qλ
Q0

2α
-------≤

αTc L
2

----------------- 8 10 5– αTc ! 1 W.×≈=
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004



VACUUM MICROARC 501
heating predominates. However, the heat flux is such
that

For i ~ 10–2, I ~ 10–2 A, Tc ≈ 600 K, and α ~  ~ 10–1,
we obtain an estimate of ϕc ≥ 40 V. This implies that a
low-current stationary microarc with I ~ 10–2 A is pos-
sible both on a big massive cathode and on a cathode
with dimensions on the order of several micrometers.
For the above estimates, the spot diameter is smaller
than the characteristic scale of the polycrystalline struc-
ture of a massive cathode. In this case, using the values
of λ from handbooks is physically meaningless and
estimation of the minimum current of a field-emission
microarc becomes a difficult problem.

In the opposite limiting case of β = Qλ/Q0 ! 1,
expression (11) implies that, for α  π/2, t  0 and
the problem has no stationary solutions. For α = π/2,
this situation takes place when

(13)

For copper (λ = 3.5), this yields (Ij)cr = 7.74 ×
109 A2/cm2. This value is in satisfactory agreement
with the result obtained by Daalder: (Ij)cr =1010 A2/cm2.
Thus, the upper limiting microarc current is probably
related to a thermal instability of the cathode spot
developed at β  0 [2].

Returning to the approximation of t ≈ 1 – αβ, note
that, irrespective of the temperature, the equality αβρ = 1
is valid for ρ determined by the temperature gradient on
the spot surface via the relation

Therefore, ρ  1 implies αβ  1 and, apparently,
a thermal instability (t  0) in a point microarc can
develop for α ! 1. It is almost impossible to study
rather complicated thermophysics of vacuum microarc
in experiments on natural microscopic objects without
recourse to modeling on specially designed setups.

5. CONCLUSIONS

It is believed that a high-current low-voltage vac-
uum arc consists of numerous fragments (“group
spots”) representing complexes of vacuum microarcs
[2, 5]. Therefore, investigation into the properties of
vacuum microarc is of primary significance. This task
can be solved both by studying natural microscopic
objects and by modeling separate processes and parts of
a microarc. For example, gas compression, potential
distribution, and stability of the quasispherical cathode
layer can probably be studied in a non-self-sustained
discharge with an incandescent cathode of macroscopic

Qλ I i ϕc U i+( ) iI ϕc U i+( ).≈≤

I

Ij( )cr 6.3 108λ2 A2/cm2.×=

dT
dr
------

r0

Tc

r0ρ
--------.=
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dimensions. The thermophysics of the microscopic
cathode spot, including the problems of thermal insta-
bility, can also be studied in detail using a probe or a
cathode filament that has been self-heated in discharge,
as was done by Pustogarov [6] for plasmatrons. Model-
ing seems to offer a quite justified method stimulating
fundamental rather than purely technological approach
to arc discharge and promising both new important
basic knowledge and effective solutions of applied
problems.

To summarize, the following conclusions can be
emphasized.

1. At a high current density, the cathode layer fea-
tures densification (described in terms of compression
χ) related to a higher probability of ionization and res-
onance recharge of atoms in the gas phase. The charac-
teristic size of the cathode layer is on the order of the
ionization length x0 ≈ 102/j (for j > 107 A/cm2, this
yields a microscopic value below 10–5 cm).

2. On the microscopic scale, the entire cathode layer
is characterized by a predominating positive space
charge. For this reason, the electric field at the cathode
Ec and the potential ϕc can be estimated by the order of
magnitude as Ec ≈ 1.8 × 10–6Ng [V/cm] and ϕc ≈ 1.4 ×
10–4Ng/j [V], where Ng = i/σi ≈ n0x0 [cm–2]. For Ng ≥
10−14 cm2, this yields Ec ≥ 108 V/cm, ϕc < 102 V, and j ≈
108 A/cm2. Therefore, a positively charged active cath-
ode layer of vacuum microarc provides conditions for
field electron emission.

3. In a stationary microarc, the compression is
inversely proportional to the rate of reproduction of the
atomic flux from the cathode spot. In the vicinity of a
cathode sputtering threshold, the compression may
reach a level of χ > 104.

4. For the cathode layer geometry modeled by a
spherical segment, the compression depends on the ion-
ization length x0, the cathode spot radius R, and the
cathode layer thickness a. For a preset constant com-
pression, there are certain possible relations between
the spatial characteristics x0, R, and a corresponding to
various stationary values of the microarc current I and
the current density j:

(i) for R @ a (degenerate one-dimensional regime),

(ii) for a @ R (point microarc regime),

For a point microarc with j ≈ 108 A/cm2, the
microarc current is on the same order of magnitude as
the current of field emission from a microscopic point.

Ij( )1 3 104 R2

a2
----- χln( )2;×≈

Ij( )2 3 104 χln( )2.×≈
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5. The ascending current–voltage characteristic and
self-sustained character of vacuum microarc, together
with the possibility of stationary states, admit the for-
mation of complexes (clusters [2]) of a large number of
microarcs on a smooth (flat) surface, arranged in a cer-
tain order and satisfying the conditions of a stable ther-
mal regime and self-sustained operation. If this hypoth-
esis is valid, it will be possible to create stationary,
high-current high-voltage field emission vacuum
diodes using smooth massive cathodes.
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Abstract—The frequencies of natural electroacoustic oscillations of aluminum oxide particles in a laminar dis-
perse aluminum flame are determined experimentally using the capacitive method. A computational model is
proposed for estimating the natural frequency of oscillations of charged particles in the smoky plasma taking
into account the Doppler effect. It is shown that, for a natural frequency of oscillations of 51 kHz, two mea-
sured maxima at frequencies of 30 and 60 kHz in the oscillation spectrum correspond to the Doppler frequen-
cies. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Combustion products obtained as a result of burning
of a metal powder in a gaseous oxidizer contain fine-
dispersed particles of metal oxide, whose size may
change depending on the combustion regime, from
hundredths of a micrometer (volumetric condensation
in the gas-phase combustion regime) to several
micrometers (heterogeneous combustion and conden-
sation) [1]. When the temperature of combustion prod-
ucts exceeds 2000 K, condensed particles are charged
as a result of thermionic emission from the particle sur-
face; consequently, the gas phase contains free elec-
trons. If the gas phase is free of easy-ionized admixture
of alkali metal atoms, the ionization of the gas can be
disregarded. Such a variety of the combustion product
plasma is sometimes referred to as a plasma sol, which
in turn is a variety of low-temperature plasma with a
condensed disperse phase (CDP) [2]. A plasma contain-
ing the condensed phase in the form of smoke grains is
called a smoky plasma [3].

A specific feature of plasmas with CDP is the ther-
modynamic interaction at the interface, as a result of
which intrinsic electric fields associated with surface
processes, the charge state, and the mobility of charged
plasma components (condensed particles, electrons,
and ions) are induced in the plasma [2, 4]. In all proba-
bility, these processes in plasmas lead to the formation
of linear chains of smoke grains [5] as well as ordered
3D structures, which were discovered in [6] and dem-
onstrated in review [7]. In standing strata of gas dis-
charge in dusty plasma, plasma–dust structures have a
more perfect shape and were hence called plasma crys-
tals [8, 9].

On the other hand, the interfacial thermodynamic
interaction in the plasma with CDP gives rise to new
modes and instabilities [10–12]. Acoustic oscillation in
1063-7761/04/9803- $26.00 © 20503
the condensed phase of a smoky plasma, which emerge
as a result of electric charge fluctuations on the surface
of grains, was studied by us for the first time in [10].
Later [11], analogous oscillations were studied in the
dusty plasma of a dc glow discharge and were inter-
preted as a consequence of the plasma–dust current
instability. The most comprehensive analysis of oscilla-
tion processes and instabilities in dusty plasmas is
given in review [12]. Unfortunately, smoky plasmas
with their specific features were outside of the author’s
interest, although some of the results considered in this
review are applicable in both cases. Thus, electroacous-
tic oscillations in smoky plasmas have not been studied
in actual practice. In addition, the above-mentioned
features of plasmas with CDP (such as the formation of
ordered structures and the emergence of vibrational–
oscillatory processes) may be interrelated.

This study is devoted to experimental investigation
of the spectrum of natural low-frequency electroacous-
tic oscillations of the condensed disperse phase in the
front of a laminar flame of aluminum powder. An
attempt is made to interpret the experimental results as
a consequence of the formation of an ordered structure
of aluminum oxide particles in the plasma flow.

First of all, we note the distinguishing features of
two common types of plasma with a CDP:

(i) The dusty plasma is formed when light dust par-
ticles are introduced into a gas discharge under a low
pressure or emerges in cosmic space in the presence of
dust particles [12]; the typical features of such plasmas
are the difference between the electron and ion temper-
atures, the insignificant role of thermionic emission
from the surface of particles during their charging, and
the collisionless nature of processes in the bulk; as a
result, the self-consistent Vlasov equation for electrons
can be applied.
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(ii) The smoky plasma contains smoke grains, i.e.,
particles formed in the combustion products in the
course of volumetric condensation or as residues of the
burning-out fuel [2]; free electrons are generated in the
gas phase due to the thermionic emission from grains or
as a result of ionization of gas atoms; the distribution of
the self-consistent electrostatic potential in the vicinity
of free charges and charged grains can be described by
the Poisson–Boltzmann equation.

Thus, the laminar flame of aluminum particles under
investigation is a typical example of a smoky plasma.

2. EXPERIMENTAL TECHNIQUE 
AND RESULTS

The experiments were performed on the setup
described in [1]. Fine-disperse aluminum powder of the
grade ASD-4 with an average grain size of 4 µm was
carried by the air flow through a metallic pipe into the
combustion zone formed above the pipe cross section
after the ignition of the air–fuel mixture. The experi-
mental technique made it possible to distribute the pow-
der uniformly in the flow and to organize a laminar dif-
fuse flame. The flame was conical in shape with a
height of L = 0.12 m and a base diameter of d = 0.028 m
at the burner throat. Two plane-parallel metallic plates
of 0.16 m in height and with a width of 0.11 m were
spaced 0.065 m apart and mounted along the flame axis.
The plates were arranged so that there was an air gap
between the plates and the flame. One of the plates was
grounded via a resistor R = 1 kΩ. A constant potential
of 4 kV relative to the grounded plate was applied to the
other plate. As the flame propagated in the electrode
gap, a voltage drop was created across resistor R and
detected by a storage oscilloscope. The same signal was
fed to a low-frequency spectrum analyzer.

10 100
f, kHz

0

0.04

0.08

0.12

0.16

0.20
I, arb.units

Fig. 1. Spectrum of low-frequency electroacoustic oscilla-
tions in the smoky plasma of aluminum oxide.
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Spectral analysis of radiation emitted by the flame in
the visible spectral range revealed that the width L of the
combustion front was approximately equal to 10–3 m and
that the combustion products contained the gaseous and
condensed phases. The gas phase contained uncontrol-
lable admixture of sodium atoms and molecules with a
high ionization potential.

The condensed phase was investigated by sampling
of the flame followed by the electron microscopic anal-
ysis. It was found that the condensed phase was repre-
sented by Al2O3 submicrometer spherical smoke grains
with a cubic mean diameter of 0.12 µm. The number
density of particles and their mean charge were deter-
mined using the techniques described in [1]. The mean
value of the number density of grains was (2 ± 1) ×
1017 m–3 and their mean charge was 30 ± 10 in units of
electron charge.

The volume-averaged temperature of grains was
determined from the continuous radiation spectrum by
the polychromatic method, while the temperature of the
gas phase was calculated from the absolute intensity of
resonance lines for Na. Experiments proved that the
temperature of the gas phase was equal to the tempera-
ture of the condensed phase to within the experimental
error and amounted to T = (3150 ± 100) K.

The processing of the experimental data on oscilla-
tion processes in a smoky plasma in the electrode gap
proved that the signal recorded from resistor R was
alternating and bipolar in spite of the fact that a con-
stant voltage was supplied to it. The averaged ampli-
tude value of the signal was U = 0.8 ± 0.2 V and the
duration of oscillations was τ = 70 ± 30 ms. The oscil-
lation process was induced periodically and at random.

The spectral composition of signal I is shown in
Fig. 1. It can be seen that the oscillation process occurs
in the frequency range from 15 to 200 kHz with two
characteristic frequencies in the vicinity of 30 and
60 kHz with clearly manifested peaks. The first peak at
a frequency of 30 kHz has a larger amplitude and low
dispersion. The half-width of the distribution function
amounts approximately to 1 kHz. The second peak with
a smaller amplitude has a larger half-width of 6 kHz.

3. DISCUSSION
OF EXPERIMENTAL RESULTS

In order to explain the observed oscillations of the
voltage drop across standard resistor R, we consider the
processes occurring in the electrode gap. The constant
voltage applied to the plates obviously does not induce
a current in the circuit since there is no contact between
the plasma and the plates. The presence of an air gap
between the plasma and the plates also ensures the
absence of conduction current in the plasma and, hence,
its polarization. In this case, current may appear in the
circuit only as a result of a change in the permittivity in
the electrode gap; i.e., oscillations are capacitive by
nature. Considering that the flame under study is sta-
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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tionary and oscillations of its size with such a frequency
are hardly probable, we can assume that oscillations
take place within the flame.

Let us determine the main plasma parameters. In the
smoky plasma under investigation, the temperature of
the electronic component is close to the gas tempera-
ture in view of a high collision rate (the pressure of the
ambient is 105 Pa) and the absence of conduction cur-
rent in the plasma flow. The gas phase is formed by
molecules with a high ionization potential value; con-
sequently, the ionization of these molecules is insignif-
icant. We can assume that free electrons appear in the
gaseous phase as a result of the thermionic emission
from the surface of Al2O3 particles. Then the number
density of free electrons can be determined from the
quasi-neutrality condition

(1)

where ne is the concentration of free electrons in the gas
phase, np is the concentration of Al2O3 particles, and Z
is the mean charge of particles in units of elementary
charge. Substituting the experimental values of the
charge and number density of particles, we obtain the
average value of the number density of free electrons,
which is equal to 6 × 1018 m–3.

The Debye screening length in such a plasma
medium is defined as the distance from the surface of a
particle at which the value of the Debye potential is
smaller than the Coulomb potential by a factor of 2.7
and is given by

This value is close to the mean distance between parti-

cles, l ≈  ≈ 1.7 × 10–6 m, and is much smaller than
the characteristic scale of the plasma (this is a necessary
condition for the existence of plasmas). The plasma fre-
quency for the electron component is 1.4 × 1010 s–1.

Clearly, electron oscillations cannot induce low-fre-
quency oscillations; hence, we assume that the oscilla-
tions are induced by smoke grains. When charged par-
ticles are displaced relative to one another, a retrieving
force appearing as a result of electrostatic interaction
leads to oscillations propagating in the condensed
phase of the smoky plasma. It can easily be verified that
the potential energy of interaction between particles is
comparable to the energy of thermal motion. Taking
into account the electric origin of the interaction
between the particles and the low-frequency nature of
oscillations, we will refer to these oscillations as elec-
troacoustic. It is interesting to note that oscillations of
particles may in turn lead to the propagation of ultra-
sound in the gas phase.

ne Znp,=

D
kT

4πe2ne

----------------- 1.6 10 6–  m.×= =

np
3–
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4. THEORETICAL DESCRIPTION

We assume that a smoky plasma exhibits a certain
ordering resembling the crystalline structure [8, 9] or
its grains form the linear chains described in [5]. Then
it becomes possible to consider a one-dimensional lin-
ear model, following the approach developed in [13],
where the problem of propagation of waves in crystal
lattices is described.

We assume that the system is monodisperse. Then a
plane wave propagating along a chain of smoke grains
can be represented in the form

(2)

where uj is the displacement of the jth particle relative
to its equilibrium position in the chain, A is the ampli-
tude of longitudinal oscillations, k is the wave number,
ω is the angular frequency, a is the mean distance
between particles, and t is the time.

Let us consider the interaction of the jth particle
with its nearest neighbors with numbers j – 1 and j + 1.
Taking into account the screening of the surface charge
of a particle by the volume charge of electrons, we can
write the expressions for the distribution of potential ϕ
in the vicinity of the particle and strength E of the elec-
tric field produced by the particle in the form

where e is the electron charge and rp is the particle
radius.

This leads to the following expression for the force
of electrostatic interaction between the jth and (j + 1)th
particles:

(3)

An analogous expression can be derived for force
Fj, j – 1.

The resultant force acting on the jth particle is

(4)

We expand expression (3) and a similar expression
for Fj, j – 1 into a Taylor series; assuming that uj – 1, uj,

u j A i kja ωt–( )[ ] ,exp=

ϕ eZ
r

------
rp r–

D
------------- 

  ,exp=

E
eZ

r2
------

rp r–
D

------------- 
 exp

ez
rD
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rp r–
D

------------- 
  ,exp+=

F j j 1+,
Z2e2

a u j 1+ u j–+( )2
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a u j 1+ u j–+
D

------------------------------– 
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Z2e2
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uj + 1 ! a, we confine our analysis to the linear terms of
the expansion. Then formula (4) is transformed to

(5)

where

(6)

The equation of motion of a particle of mass m can
be written in the form

(7)

Substituting expression (2) into (7), we obtain the
dispersion equation for longitudinal waves propagating
along a linear chain in the condensed phase of a smoky
plasma:

(8)

(9)

The plus and minus signs correspond to waves prop-
agating in opposite directions.

In the range of long waves, when ka ! 1, expres-
sion (8) assumes the form

(10)

To estimate characteristic quantities, we will use the
plasma parameters obtained from the experiment: np =
2.0 × 1017 m–3, rp = 0.06 µm, T = 3150 K, Z = 30, and
the particle density ρ = 3570 kg/m3.

Expressions (6), (9) and (10) then give

Pay attention to the rather low velocity of wave
propagation (0.33 m/s), which is due to a large mass of
particles (m ≈ 10–18 kg) as compared to the atomic
mass.

To analyze the spectral composition of oscillations,
we consider the frequency (density of states) distribu-
tion of modes. According to [13], the density of states
for a linear one-particle chain can be written in the form

(11)

F j µ 2u j u j 1+– u j 1––( ),=

µ Z2e2

a3D2
------------

rp a–
D

------------- 
  a2 2D2 2aD+ +( ).exp=

m
d2u j

dt2
---------- –µ 2u j u j 1+– u j 1––( ).=

ω ω0
ka
2

------,sin±=

ω0 2 µ
m
----.=

ω v 0k ak
µ
m
---- 

 
1/2

.= =

µ 8.4 10 8–  N/m, f 0×≈
ω0

2π
------ 51 kHz,≈=

v 0 0.33 m/s.≈

g ω( ) 1
π
--- kd

ωd
-------.=
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Taking into account expression (8), we obtain

(12)

It can be seen that the density of states exhibits an
explicit dependence on ω and turns to infinity for ω = ω0.
If we take into account the polydisperse nature of the
system, the charge distribution of particles, and energy
dissipation, the density of states will probably not turn
to infinity. However, a maximum of the frequency spec-
trum must be in the vicinity of ω0. It should be recalled
that f0 = 51 kHz. Experiments show the presence of two
peaks near 30 and 60 kHz. It should be noted in this
connection that, in spite of quantitative agreement
between the experimental results and the predictions of
such an approximate model, a serious drawback exists
since the model predicts only one peak.

To explain the results obtained here, we consider the
possibility of formation of two peaks in the oscillation
spectrum as a result of the Doppler effect. In the com-
bustion front, the smoky plasma moves at a velocity
close to v pl ≈ 0.6 m/s, which exceeds the wave velocity
v 0. For a monodisperse linear chain of particles, the
phase (v ph) and the group (v g) velocities of longitudinal
waves are given by

(13)

(14)

Taking into account Eq. (8), for ω = ω0, we obtain
sin(ka/2) = 1 and cos(ka/2) = 0. Then the group velocity
is v g = 0. Consequently, a standing wave formed at a
frequency of ω = ω0 can be represented as the result of
summation of two counterpropagating traveling waves.
In accordance with expression (13), the velocity of
these waves is v ph = 2v 0/π. One of these waves propa-
gates along the plasma flow, while the other runs in the
opposite direction. In a reference frame attached to the
setup, we determine the values of frequencies of per-
ceived signals,

where α is the angle between the direction of motion of
the plasma and the wave vector. In our case, this angle
is determined by the flame geometry: α =

, where L = 0.12 m is the flame height

g ω( ) 1
πv 0
--------- 1

ω
ω0
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ω
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and d = 0.028 m is the flame diameter at the burner
throat.

Thus, the values of frequencies obtained for oscilla-
tions of the condensed phase in a smoky plasma match
the experimental values, which leads to the conclusion
that the Doppler effect can be observed in the laminar
flame of a metallic powder.

Let us consider the dependence of the Doppler fre-
quencies of oscillations on the number density of
smoke grains of aluminum oxide, shown in Fig. 2.
Curve 1 describes the theoretical dependence of the nat-
ural frequency of oscillations in the condensed phase on
the number density of particles, while curves 2 and 3
correspond to Doppler frequencies f1 and f2, respec-
tively. Note that the oscillation frequency for charged
smoke grains depends on their number density. As the
value of np increases by a factor of three, the oscillation
frequency of particles is almost doubled. It can be seen
that the natural frequency of oscillations of particles
and the frequencies of detected Doppler waves are
determined not only by the parameters of the con-
densed phase, but also by the properties of particles,
which determine their charge state (e.g., the work func-
tion for electrons escaping from the surface of particles
to the plasma).

The horizontal dashed lines in the figure show for
comparison the experimental frequency values of 30
and 60 kHz. It can be seen from the graphs that the
experimental values of oscillation frequencies virtually
coincide to within the error in the measurements of con-
centration of smoke grains.

Thus, the above analysis leads to the conclusion that
an ordered structure of condensed submicrometer par-

1.5 × 10171017 2.0 × 1017 2.5 × 1017 3.0 × 1017

np, m–3

20

40

60

80

100
f, kHz

1

2

3

Fig. 2. Dependence of the natural frequency of oscillations (1)
and Doppler frequencies f1 (2) and f2 (3) on the number den-
sity of smoke grains.
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ticles can be formed in the front of a laminar disperse
flame. On the other hand, taking into account the
assumption concerning the arrangement of particles in
the flow in the form of chains, we can assume that the
spatial ordering of particles and their charge state are
responsible for the observed effects.

It is interesting to note that oscillations of smoke
grains are macroscopic by nature; consequently, these
oscillations may induce acoustic oscillations of the gas
phase of the flame. The latter oscillations should appar-
ently be detected by acoustic methods.
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Abstract—It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives
rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with
atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromag-
netic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their
drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are
emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics
are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases.
The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only
the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state
targets inside a skin layer. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interaction between superintense femtosecond laser
pulses and large clusters [1, 2] or solid-state targets (in
a skin layer) generates a plasma that consists of relativ-
istic electrons and multicharged atomic ions. The pro-
cess of multiple field-induced ionization is of tunneling
or above-barrier character [3] because the Keldysh
parameter γ in a superatomic field is very small:

(1)

Here, F and ω are the amplitude of the electric field
strength and the frequency of laser radiation, respec-
tively, and EZ is the ionization potential of an atomic ion
with the charge multiplicity Z. Throughout this paper,
we use the atomic system of units e = me = " = 1. The
collision ionization of atomic ions is essential only in
weak electromagnetic fields, when the electron velocity
is small. Cluster beams have definite advantages over
solid-state targets owing to the absence of a thin skin
layer and a low reflection of an electromagnetic field
from the surface.

In the case of a linearly polarized laser field, elec-
trons leave atomic ions during multiple ionization and
have an essentially nonuniform angular distribution
with respect to the drift velocities (i.e., with respect to
the initial velocities of electrons at the moment of ion-
ization). Indeed, the characteristic values of the initial
momenta of electrons along and perpendicular to the

γ
ω 2EZ

F
------------------ ! 1.=
1063-7761/04/9803- $26.00 © 0508
polarization of the laser field in the nonrelativistic case
are given by [4–6]

(2)

Of course, electrons may be ejected even with greater
drift velocities (see formula (4) below), but with lesser
probability. In the field of a titanium–sapphire laser of
intensity 1019 W/cm2 and for the ionization potential of
a multicharged atomic ion of 500 eV, we have p|| ≈
100 au (c = 137 au); i.e., a typical longitudinal drift
momentum is relativistic.

The oscillatory motion of electrons in the filed of a
superintense laser pulse is still more relativistic. The
relativistic momentum of the oscillatory motion is on
the order of

(3)

In the field of a titanium–sapphire laser of intensity
1019 W/cm2, pF ~ 300 au; i.e., the oscillatory motion of
electrons is essentially relativistic.

Collisions between electrons and multicharged
atomic ions in the presence of a laser field give rise to
an induced emission of field harmonics due to the non-
monochromatic motion of a free electron in the laser
field. The nonrelativistic case for a linearly polarized
laser field (F/ω ! c) has already been considered in
detail by Silin [7–9]. In this limit, only odd harmonics
(along the polarization vector of the laser field) are
emitted. Silin also considered the case of weak relativ-
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ism [10], when even harmonics are also emitted. How-
ever, the longitudinal field of this radiation is polarized
along the wave vector of the external laser field; there-
fore, this radiation exists only inside the plasma and is
not emitted outside. A similar case in the general rela-
tivistic statement has recently been considered in [11].

In [11], the drift momenta p|| and p⊥  were small and
therefore neglected compared to the oscillation
momentum pF. However, it was shown for the first time
in [11] that the consideration of both oscillation and
drift momenta leads to the generation of even harmon-
ics, which can be experimentally observed. Indeed, the
electric-field vector of these harmonics contains a com-
ponent directed along the electric field of the external
laser field; i.e., the field of even harmonics is transverse
and is different from zero in the wave zone outside the
plasma region. According to the results of [10, 11], this
component vanishes at p|| = p⊥  = 0.

In view of inequality (2), we assume that only the
longitudinal drift momentum p|| is different from zero.
To simplify the problem mathematically, we will not
average over the distribution of this momentum at
the moment of ionization, as it was done in Silin’s
works [7–9]; we just fix its value. Indeed, there is not
much difference between the dependence of the har-
monic yield on a current value of the longitudinal
momentum and on the longitudinal temperature defined
by formula (2). Under the tunneling ionization, the dis-
tribution over longitudinal drift momenta formally
coincides with the Maxwell distribution [4, 12]:

(4)

2. MOTION OF A RELATIVISTIC ELECTRON
IN A SUPERINTENSE LASER FIELD

When solids are irradiated by a superintense laser
field, the problem is complicated due to the fact that a
larger part of a pulse is reflected by the surface of the
skin layer. The electric field inside the thin skin layer is
very small compared to the electric field of the incident
electromagnetic wave and compared to the magnetic
field inside the skin layer. The motion of a free relativ-
istic electron inside the skin layer is essentially differ-
ent from its motion in vacuum (in the latter case, the
electron trajectory looks like figure 8 in the case of lin-
ear polarization). In particular, in the case of vacuum,
the amplitude of two-dimensional oscillations of a rel-
ativistic electron in the plane passing through the polar-
ization vector and the wave vector of the field is on the
order of c/ω. This quantity is much greater than the skin
depth c/ωp (under the standard condition of a dense

plasma, ωp @ ω), where ωp =  is the plasma fre-
quency (Ne is the concentration of free electrons). Thus,
in the case of a solid-state target, the oscillations of an
electron are substantially distorted and damped due to

w p||
2 γ3

3ω
-------– 

  .exp∝

4πNe
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the skin layer; the electron trajectory becomes similar
to a one-dimensional trajectory along the polarization
vector and closer to the surface of a solid.

One does not face such a problem when irradiating
atomic clusters (of course, one also does not face such
a problem when irradiating atomic gases; however,
because of the low density of gases, the harmonic yield
is small in the case of gas targets). The cluster radius R
(of about tens of angstroms) is less than the skin depth
(hundreds of angstroms), so that the external electro-
magnetic filed easily passes through a whole cluster.
However, the oscillation amplitude of a relativistic
electron is c/ω @ R. Therefore, the generation of har-
monics occurs only at the moments when a relativistic
electron passes through a cluster during its oscillations.
In the case of large clusters, the external ionization of
clusters is insignificant, so that there is not enough time
for a cluster to substantially expand due to the Coulomb
explosion during a femtosecond laser pulse.

Accordingly, the intensity of harmonics, calculated
for the motion of an electron in a cluster medium, must
be multiplied by a small factor ωR/c ! 1, which repre-
sents a fraction of the time that a relativistic electron
remains inside a cluster. Bearing this in mind, we con-
sider the motion of a free electron in the field of a super-
intense laser wave neglecting the effects of laser pulse
focusing. The effect of the plasma medium reduces to
the fact that the wave vector

of the laser field in the medium is different from the
wave vector of a free electron in vacuum.

The Newton equations for the motion of a relativistic
electron in the field of a linearly polarized wave can be
solved analytically (although in the implicit form) [13].
Choose axis x along the propagation direction of the
wave, axis y along its polarization, and axis z along the
direction of the magnetic field. The kinematic momen-
tum of an electron along axis y is defined by the relation

(5)

Here, p|| is the drift momentum along the polarization
axis and ϕ = ωt – kx is the phase of the electromagnetic
wave. The kinematic momentum of an electron along
axis x (when the transverse drift momentum is
neglected) is defined by

(6)

k
ω2 ωp
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Fig. 1. Coefficients (a) C1, (b) C2, (c) C3, (d) C0, (e) C4, and (f) C5 as functions of the dimensionless drift momentum u.
Here, the constant κ is given by

(7)

Finally, we set pz(t) = 0: there is no motion along mag-
netic field (again, when one neglects the transverse drift
momentum).

κ c2 p||
2 F2

2ω2
---------+ + .=
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The components of the kinematic velocities of elec-
trons along axes y and x are equal to

(8)

respectively. Finally, the time differential dt can be
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expressed in terms of the differential of the phase of the
field, dϕ, by the relation

(9)

The transport cross section of relativistic elastic
scattering of an electron by an atomic ion of charge Z at
small angles is defined by the Mott formula [14] (in
atomic units):

(10)

Here, Λ is the Coulomb logarithm and p(t) and v(t) are
the total momentum and velocity of the electron,
respectively. In the limit of large velocities, the Cou-
lomb logarithm represents a quantum logarithm [7].

The frequency of elastic electron–ion scattering is
given by

(11)

Here, Ni is the concentration of atomic ions. Multiply-
ing (11) by the velocity vector v of the electron, by the
electron concentration Ne , and by the time interval dt,
we obtain the density of the electric current of elec-
trons:

(12)

This density has components along axes x and y. Note
that this relation is also valid in the relativistic case (the
so-called Pauli formula [13]).

The component of current (12) along axis x gives
rise to the longitudinal electric field, which, as we men-
tioned above, does not exist outside the plasma region.
Therefore, below we will concentrate only on the com-
ponent of the electric current density that is directed
along axis y. Substituting the expressions for the total
velocity and momentum of the electron that were
obtained above into (12), we obtain

(13)

Here, we denote

(14)

and define the function

(15)

dt
c2 κ2 py

2
t( )+ +

2ωκ2
-----------------------------------dϕ .=

σM
4πZ2Λ

p
2

t( )v 2 t( )
--------------------------.=

νei σM N iv
4πZ2N iΛ
p2 t( )v t( )
-----------------------.= =

dj Nevνei t.d–=

d jy AFf ϕ( ) ϕ .d–=

A
4πZ2NeN iΛω

F3
----------------------------------=

f ϕ( )

=  
u ϕcos+( ) 1 s u ϕcos 1/4( ) 2ϕcos+( )+[ ]
u ϕcos+( )2 s u ϕ 1/4( ) 2ϕcos+cos( )2+[ ] 3/2

----------------------------------------------------------------------------------------------------------.
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The dimensionless constants u and s are defined by the
relations

(16)

Equation (13) implies the following expression for the
y component of the tensor of electric conductivity:

(17)

The conductivity σy is a nonlinear function of the elec-
tric field intensity F.

Expanding the integrand in (17) in terms of Fourier
series, we obtain the following set of harmonics:

(18)

Here, the coefficients Cn of the Fourier series are
defined by the following integral:

(19)

(20)

One can see that both odd and even harmonics of con-
ductivity are different from zero. They are coherent to
the field of the incident electromagnetic wave. There
also exists a zero-order harmonic, which corresponds to
a constant electric field.

3. CALCULATION OF CONDUCTIVITY
AT HARMONIC FREQUENCIES

The coefficients Cn in (19) and (20), which deter-
mine the conductivity for the harmonics of the external
electromagnetic field, were calculated numerically as
functions of the dimensionless drift momentum of an
electron (see (16))

(21)

We fixed a value of the dimensionless oscillation
momentum of the electron

(22)

s
F

ωκ
------- 

 
2

, u
p||ω
F

---------.= =

σy
1
F
--- jyd∫ A f ϕ( ) ϕ .d

0

ϕ

∫–= =

σy A Cn nϕ AC0ϕ .–sin
n 1=

∞

∑–=

Cn
1

πn
------ f ϕ( ) nϕcos ϕ ,d

0

2π

∫=

C0
1

2π
------ f ϕ( ) ϕ .d

0

2π

∫=

u p||
ω
F
----.=

w
F

ωc
-------.=
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Then, the constant s, defined by relation (16), can be
expressed in terms of u and w by the relation

Figure 1 represents the calculated values of the coef-
ficients Cn with n = 0–5 for a typical relativistic case of
w = F/ωc = 2, which corresponds to a peak intensity of
8 × 1018 W/cm2 of a titanium–sapphire laser.

Figure 1a corresponds to a field generated at the fun-
damental harmonic. For drift momenta u < 1, we have
C1 > 0, which corresponds to the normal (positive) con-
ductivity of the electron current (electrons move oppo-
site to the direction of the electric field). When u > 1,
the conductivity becomes negative (electrons move
along the field). As expected, the field of the fundamen-
tal harmonic is the greatest among the fields of all the
other harmonics. This makes it possible to determine
the Joule absorption of electromagnetic energy by an
atomic medium [15]. According to Fig. 1a, this absorp-
tion is determined by electrons with small drift veloci-
ties, which dominate in the expression for the absorp-
tion integrated over all drift velocities. The value of
C1(0) coincides with that obtained in [11] for the case
of w = 2, as expected.

In principle, an electron generated during tunneling
or above-barrier ionization by an ac field may have any
value of its drift momentum. However, the probability
of large values of the drift momentum is suppressed due
to the exponentially small probability (4) of generation
of such electrons and due to the small value of the coef-
ficient C1 for large values of p|| (see Fig. 1a).

Figure 1b shows C2 as a function of the dimension-
less drift momentum u. According to the results of [11],
the second harmonic along the polarization axis of the
field is not generated for u = 0. The probability of its
generation is maximal when u ≈ 0.5 and decreases as u
increases. The inequality C2 < 0 implies that the con-
ductivity of the second harmonic is negative (electrons
move along the electric field vector of the electromag-
netic field). Comparing Figs. 1a and 1b, we can con-
clude that the intensity of the second harmonic is not
much smaller than that of the fundamental harmonic.
However, substantial generation of the second har-
monic occurs only for relativistic values of the drift
momentum of an electron.

The coefficient C3, which represents the amplitude
of the third harmonic, is shown in Fig. 1c. The value of
C3(0) also coincides with that obtained in [11] for the
case of w = 2, as expected. When u < 0.5, the conduc-
tivity of the third harmonic is negative, whereas, for
u > 0.5, it becomes positive.

Figure 1d corresponds to the static part of conduc-
tivity. It vanishes when u = 0 in accordance with the
results of [11]. The static conductivity is mainly posi-
tive; even though its magnitude is smaller than the con-

s
1

u2 1/2 1/w2+ +
-------------------------------------.=
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ductivity at the fundamental frequency, it is still suffi-
ciently high. It slowly decreases as the drift momentum
u increases.

Figure 1e represents the coefficient C4 for the fourth
harmonic. In the large, the intensity of this harmonic
decreases as the harmonic number increases. As
expected for an even harmonic, we have C4(0) = 0.

Finally, Fig. 1f represents the coefficient C5 for the
conductivity at the fifth harmonic. The value of C5(0)
coincides with that obtained in [11] for the case of
w = 2. The conductivity at the fifth harmonic is positive
for u < 0.3 and negative for u > 0.3.

The analysis of the results obtained allows us to
draw the following conclusion. In a relativistic laser
plasma, not only odd but also even harmonics, as well
as a constant electric field along the polarization axis of
the external linearly polarized electromagnetic field,
are efficiently generated.

4. INTENSITY 
OF RELATIVISTIC HARMONICS

The expressions for the currents obtained above can
be used for determining the electromagnetic fields of the
generated harmonics according to Silin’s approach [16].
According to (18), the Maxwell equation for the pro-
jection of the vector potential onto the polarization axis
y of the external electromagnetic field (at the frequency
of the nth harmonic) is expressed as

(23)

Here,  denotes the density of the electron current
that is not associated with the collisions between elec-
trons and atomic ions but is attributed to the electro-
magnetic field of the generated harmonic (see below).
The corresponding equation for the electric-field inten-
sity at the harmonic frequency,

,

is obtained from (23) by differentiating with respect to
time:

(24)

Here, k2 = (ω2 – )/c2 is the square of the wave num-
ber for the incident electromagnetic wave.

1
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n( )d∫–=

=  
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From Newton’s second law of motion (in the nonrel-
ativistic case, from the fact that the current generated by
the field of a harmonic is small), we have

Substituting this equation into (24), we find its solution

(25)

This solution is also valid in the relativistic case ωp > ω
because the field does not decay at a distance equal to a
cluster size. Substituting the value of the constant A
from (14) into (25), we finally obtain

(26)

From (26), we obtain the following expression for the
ratio of the harmonic intensity to the intensity of the
external electromagnetic field:

(27)

This ratio decreases as the intensity of the incident
wave increases and as the harmonic number n
increases.

Evaluating F ~ ωc for the general relativistic case,
we obtain the following estimate for the generation effi-
ciency of harmonics:

(28)

Here, we recovered the charge and mass of an electron,
which we set equal to unity above. The efficiency of a
harmonic increases as the density of the atomic
medium increases (whereby clusters are more efficient
than a gaseous medium) and as the laser-field frequency
ω decreases. The estimates obtained are also valid
when the plasma frequency is greater than the laser fre-
quency.

5. CONCLUSIONS

The generation of harmonics was experimentally
observed by the authors of [17] on argon clusters (see
also the survey [3]). It was shown that odd harmonics
from the third to the ninth are generated on clusters
consisting of several thousands of argon atoms; the
generation efficiency is greater than that obtained with
a gaseous medium of the same average density by a fac-
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tor of 5. Moreover, in the case of clusters, one observed
the generation of higher order harmonics than in the
case of a gaseous medium. There was no generation of
even harmonics because the intensity of laser radiation
was less than 1018 W/cm2 in the experiment. The gener-
ation of harmonics associated with the nonlinearity of
the Mie oscillations (surface plasma oscillations of the
electron cloud in a cluster) was insignificant in view of
the small anharmonicity of the Mie oscillations. This
conclusion was confirmed by numerical calculations
for small metal clusters [18].

The results of this work can also be applied to the
irradiation of solid-state targets by superintense laser
pulses, where the aforementioned phenomena occur
inside the skin layer. Even and odd harmonics of the
laser field (from the second to the tenth) were observed
by the authors of [19] for intensities higher than
1019 W/cm2. The generation region of the harmonics
corresponded to the electron concentration ranging
from 1021 to 1023 cm–3.

The results obtained in the present study show that
the generation of even harmonics is determined by the
drift velocity of electrons. During above-barrier ioniza-
tion, an electron may acquire a sufficiently high drift
velocity. Of course, in a superintense laser field, this
velocity is not given by relation (2) but must be deter-
mined from relativistic theory. Preliminary estimates
show that, even at intensities on the order of
1020 W/cm2, this velocity is nonrelativistic in contrast
to the oscillation velocity of electrons. However, an
electron may acquire relativistic energy during a laser
pulse when heating a plasma. This heating is attributed
to the induced inverse bremsstrahlung of laser energy
during collisions between electrons and multicharged
atomic ions, reflections from the inner surface of a clus-
ter, elastic scattering by charged clusters, excitation of
surface plasma oscillations (Mie oscillations), etc.
However, electron heating in a plasma always
decreases as the kinetic energy of electrons increases
because the collision rate of electrons with other
objects decreases. The experimental results of [20] on
the irradiation of argon clusters by a superintense fem-
tosecond laser pulse have shown that the typical elec-
tron temperature is several keV. The energy spectra of
electrons were measured in [21, 22] under the irradia-
tion of xenon clusters by a 150-fs laser pulse with a
peak intensity of 2 × 1016 W/cm2. The mean energy of
electrons was no greater than 2 keV. In spite of the fact
that the drift velocity of electrons is small, it is this
velocity that is responsible for the generation of even
harmonics in a relativistic laser plasma.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 02-02-16678 and
04-02-16499), by the BRHE (project no. MO-011-0),
and by the ISTC (project no. 2155).
ICS      Vol. 98      No. 3      2004



514 KRAŒNOV, RASTUNKOV
REFERENCES

1. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys.
Rev. A 53, 3379 (1996).

2. G. Grillon, Ph. Balcou, J.-P. Chamberlet, et al., Phys.
Rev. Lett. 89, 065005 (2002).

3. V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237
(2002).

4. P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev.
Lett. 62, 1259 (1989).

5. N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8,
1207 (1991).

6. V. P. Krainov, J. Phys. B: At. Mol. Opt. Phys. 36, L169
(2003).

7. V. P. Silin, Kvantovaya Élektron. (Moscow) 27, 283
(1999).

8. V. P. Silin, Zh. Éksp. Teor. Fiz. 114, 864 (1998) [JETP
87, 468 (1998)].

9. V. P. Silin, Zh. Éksp. Teor. Fiz. 117, 926 (2000) [JETP
90, 805 (2000)].

10. V. P. Silin, Kratk. Soobshch. Fiz. 8, 32 (1998).
11. V. P. Krainov, Phys. Rev. E 68, 027401 (2003).
12. N. B. Delone and V. P. Krainov, Multiphoton Processes

in Atoms, 2nd ed. (Springer, Berlin, 2000).
JOURNAL OF EXPERIMENTAL 
13. L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields, 7th ed. (Nauka, Moscow, 1988; Pergamon
Press, Oxford, 1975).

14. V. B. Berestetskiœ, E. M. Lifshitz, and L. P. Pitaevskiœ,
Quantum Electrodynamics, 3rd ed. (Nauka, Moscow,
1989; Pergamon Press, Oxford, 1982).

15. G. Ferrante, M. Zarcone, and S. A. Uryupin, Phys. Plas-
mas 8, 4745 (2001).

16. V. P. Silin, Zh. Éksp. Teor. Fiz. 47, 2254 (1964) [Sov.
Phys. JETP 20, 1510 (1964)].

17. T. D. Donnelly, T. Ditmire, K. Neumann, et al., Phys.
Rev. Lett. 76, 2472 (1996).

18. F. Calvayrac, P.-G. Reinhard, and E. Suraud, J. Phys. B:
At. Mol. Opt. Phys. 31, 1367 (1998).

19. M. Tatarakis, A. Gopal, I. Watts, et al., Phys. Plasmas 9,
2244 (2002).

20. T. Auguste, P. D’Oliveœra, S. Hulin, et al., Pis’ma Zh.
Éksp. Teor. Fiz. 72, 54 (2000) [JETP Lett. 72, 38
(2000)].

21. T. Ditmire, E. Springate, J. W. G. Tisch, et al., Phys. Rev.
A 57, 369 (1998).

22. R. A. Smith, J. W. G. Tisch, T. Ditmire, et al., Phys. Scr.
80, 35 (1999).

Translated by I. Nikitin
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004



  

Journal of Experimental and Theoretical Physics, Vol. 98, No. 3, 2004, pp. 515–526.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 125, No. 3, 2004, pp. 584–597.
Original Russian Text Copyright © 2004 by Vaulina, Petrov, Fortov.

                                                                                                                                             

PLASMA, 
GASES
Analysis of Pair Correlation Functions 
for Macroscopic Particles in Dusty Plasmas: 

Numerical Simulation and Experiment
O. S. Vaulina*, O. F. Petrov, and V. E. Fortov

Institute for High Energy Densities, Joint Institute for High Temperatures, Russian Academy of Sciences,
Moscow, 127412 Russia

*e-mail: industpl@redline.ru
Received August 29, 2003

Abstract—Pair correlation is analyzed for systems of macroscopic particles with various isotropic interaction
potentials. Under certain conditions, the behavior of the pair correlation function is determined by an effective
order parameter and its decrease toward infinity follows an asymptotic power law. When the effective parameter
is smaller than a certain critical value, the decay of pair correlation is much steeper. Experimental results con-
cerning the form of the pair correlation function are presented for liquid-like dust structures localized in the
near-electrode plasma sheath of a high-frequency capacitive discharge. An analysis of numerical and experi-
mental results shows that melting dynamics in these systems are analogous to those characteristic of a topolog-
ical phase transition. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Laboratory dusty plasmas are partially ionized gases
containing micrometer-sized dust particles, which can
have large negative or positive charges (103–105e) and
combine into quasi-steady liquid- or crystal-like struc-
tures [1–5]. These plasma-dust structures provide a
unique tool both for analyzing the properties of essen-
tially nonideal plasmas and for gaining deeper under-
standing of self-organization of matter. Studies of the
properties of nonideal dusty plasmas play an important
role in developing new phenomenological models of
liquid-like systems. These studies are particularly
important because strong interaction between particles
in liquids makes it impossible to develop an analytical
description of their thermodynamic characteristics
based on the use of a small parameter, as done in the
theory of gases [6–10].

The equilibrium properties of a liquid are compre-
hensively described by a set of probability density func-
tions gs(r1, r2, …, rs) for particles at points r1, r2, …, rs .
In the case of an isotropic binary interaction, the phys-
ical properties of a liquid (such as pressure, density,
energy density, and compressibility) are determined by
a pair correlation function g(r) = g2(|r1 – r2|) [6–9]. This
function can be expressed as follows [10]:

(1)

where U(r) is the potential energy of binary interaction,
T is the kinetic energy of chaotic (thermal) motion of
particles, N(r) is determined by the functions g1(r1) and

g r( ) U r( )/T[ ]– N r( ) B r( )+ +( ),exp=
1063-7761/04/9803- $26.00 © 20515
g(r), and B(r) represents the effects due to higher order
correlations and has the form of a complicated integral
of gs(r1, r2, …, rs) if s > 2. In the popular hypernetted
chain approximation, B(r) = 0, and N(r) is determined
using the Ornstein–Zernike relation [9, 10]. However,
numerical studies have shown that the use of the hyper-
netted chain approximation leads to unsatisfactory
results even for weakly nonideal systems [9–13]. Only
allowance for higher order correlations (calculation of
B(r) ≠ 0) ensures agreement with numerical simula-
tions [10]. Thus, determination of g(r) generally
requires not only information about the binary interac-
tion potential, but also knowledge of the behavior of
gs(r1, r2, …, rs) for s > 2 or use of some approximations
of these correlation functions.

Unlike real fluids, laboratory dusty plasmas provide
a good model for examining physical properties of non-
ideal systems, because dust particles are large enough
to be imaged, which facilitates application of direct
nonintrusive diagnostic methods. Interaction between
dust particles in plasmas is commonly described by the
Yukawa-type screened Coulomb potential

(2)

where r is distance, λ is the screening radius, ϕc = eZp/r
is the Coulomb potential, and Zp is the dust-particle
charge. This assumption is consistent both with measure-
ments of forces acting between two dust particles [14]
and with a computed structure of a screening cloud [15]
only at relatively short distances from the particle
(r < 5λ). The screening weakens with increasing r, and

ϕ ϕ c r/λ–( ),exp=
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the asymptotic behavior of ϕ at r @ λD is governed by
the power law [16]

The results reported in [14–16] were obtained for iso-
lated dust particles in plasmas. However, it remains
unclear how the potential of interaction between two
particles is modified by influence of other particles in a
dense dust cloud, ionization of gas both in the cloud and
outside it, collisions of electrons or ions with neutrals
in the ambient gas, and other factors. Thus, the real
potentials of interaction between particles are not
known for dust grains in plasmas, and neither are they
for many other physical systems in which interparticle
interaction forces play an essential role.

Determination of the parameters responsible for the
state of a system of interacting particles is an important
task in the physics of nonideal dusty plasmas, as well as
in other natural sciences. In particular, two dimension-
less parameters responsible for mass transfer and phase
state in Yukawa dissipative systems (with κ = rp/λ < 6)
were found in [17, 18]: the effective “nonideality”
parameter

and the scaling parameter

where np is the particle concentration, Γ = (Zpe)2/Trp is
the Coulomb coupling parameter, νfr is the friction

coefficient for dust particles, and rp =  is the mean
distance between particles. A numerical model was
tested against the laboratory experimental conditions in
various dusty gas-discharge plasmas in [19–21]. Experi-
mental studies showed that dust-particle dynamics in
these plasmas can be described in terms of the parame-
ters Γ* and ξ. However, the parameters of the potential
of interaction between particles can be determined only
if additional information about its form is available.

The behavior of the pair correlation function reflects
the phase state of a system. For example, liquid-like
nonideal systems are characterized by short-range
ordering of particles, whereas the functions g(r) used
for crystalline lattices describe long-range ordering.
Numerical simulations showed that the effective
parameter Γ* of a Yukawa system (with κ < 6) com-
pletely determines the pair correlation function g(r)
(describing both long- and short-range ordering) in the
interval from Γ* < 1 to the point of crystallization into
a body-centered cubic (BCC) lattice at Γ*  106.
Thus, it was noted that the spatial correlation of parti-
cles in three-dimensional Yukawa systems with κ < 6
depends only on the ratio of the second derivative ϕ'' of

ϕ eZpap/r2.≈

Γ* Γ 1 κ κ 2/2+ +( ) κ–( )exp{ } 1/2
=

ξ ν fr
1– eZp 1 κ κ 2/2+ +( ) κ–( )np/πmpexp{ } 1/2

,=

np
1/3–
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the binary interaction potential ϕ(r) at rp to the particle
temperature T. Moreover, both melting and crystalliza-
tion processes (at Γ* ≈ 102–106) and formation of well-
ordered clusters of dust grains (at Γ* ≈ 22–25) occur at
nearly constant values of Γ* [17, 18]. One may reason-
ably assume that this property holds under certain con-
ditions for potentials of more general form describing
binary interactions in many-particle systems. In the
present study, we examine this assumption by analyz-
ing pair correlation functions and conditions for phase
transitions in systems characterized by various repul-
sive potentials.

Certain physical systems exhibit topological phase
transitions between low- and high-temperature phases
[22–30]. Topological phase transitions are more com-
monly observed in low-dimensional systems. Such a
transition can be interpreted as a kind of “melting” that
eliminates the positional ordering of the low-tempera-
ture phase at T > Tm and preserves its orientational
ordering (which breaks down at T > T0 > Tm). Physi-
cally, this phase transition is explained by the formation
of topological defects (dislocations and disclinations)
in crystalline lattices. In a theory of this phenomenon
developed for two-dimensional systems, melting is
interpreted as transformation of a crystal into an isotro-
pic liquid via an intermediate hexatic phase [22]. The
theory was corroborated both by experimental studies
of quasi-two-dimensional nonideal systems and by
recent numerical simulations of extended two-dimen-
sional many-particle systems with various binary inter-
action potentials [23–30]. In real monolayers of macro-
scopic particles, the topological mechanism of melting
frequently manifests itself as topological excitations
(vortices and antivortices) characteristic of finite two-
dimensional systems [22]. Experimental investigation
of topological phase transitions is a difficult task,
because essential qualitative changes in real systems
may be obscured by quasi-two-dimensional effects
induced by small perturbations [23–26]. Nevertheless,
short-range orientational ordering is observed not only
in dust subsystems consisting of several (four to ten)
dust layers, but also in simulated three-dimensional liq-
uid-like structures. An analysis of three-particle corre-
lation in systems of macroscopic particles with
screened interaction potential (2) has revealed the for-
mation of well-ordered clusters at Γ* > 25 [31]. This
observation is in good agreement with numerical
results [17]. The qualitative changes can be attributed to
topological defects of a three-dimensional lattice, and
the transition can be associated with the existence of
two distinct liquid phases by analogy with the topolog-
ical phase transitions in two-dimensional systems.

Orientational ordering is commonly analyzed in
terms of boundary angular autocorrelation functions
g6(t) and static correlation functions g6(r) and g(r)
(see [23–30]). The correlation functions of two-dimen-
sional systems were found to exhibit universal behavior
in topological phase transitions [22]: their decay with
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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increasing r follows exponential and power laws in the
high- and low-temperature phases, respectively. Thus,
the existence of two liquid phases must be manifested
as a different variation of the correlation with distance
between particles. In this paper, we present numerical
results concerning the spatial asymptotics of pair corre-
lation of interacting dust grains over a wide range of an
“order” parameter and examine the experimental pair
correlation functions obtained for liquid-like dust struc-
tures in the near-electrode plasma sheath of a high-fre-
quency capacitive discharge.

2. NUMERICAL SIMULATION

2.1. Parameters of the Numerical Analysis 

Correct simulation of plasma-dust particle transport
must rely on a molecular-dynamics method, in which a
system of ordinary differential equations containing a
Langevin force Fbr is solved. This force represents ran-
dom impacts by molecules of the ambient gas or other
random processes that underlie the relaxation of the
kinetic temperature T of dust grains to the equilibrium
value characterizing the energy of their stochastic
motion [32–34]. Microscopic processes in homoge-
neous extended clouds of interacting macroscopic par-
ticles are simulated by setting periodic boundary condi-
tions and taking into account not only the random force
Fbr responsible for thermal motion, but also the forces
Fint acting between pairs of particles [17–21]:

(3)

where l = |lk – lj | is the separation between particles, mp
is the particle mass, νfr is the friction coefficient associ-
ated with collisions between dust particles and ambi-
ent-gas neutrals [35, 36], and ϕ is the potential of inter-
action between particles (the interaction energy is
U(r) ~ eZpϕ(r)). Computations were performed for the
Yukawa potential with κ = 2.4 and 4.8. Correct simula-
tion of molecular dynamics was ensured by using dis-
cretization cells of size R @ λ [37]. In our computa-

tions, R ≈  > (12–24)λ. Additional computations
were performed for the following combinations of power
and exponential laws frequently used to model repulsion
in kinetics of interacting particles [34, 38, 39]:

(4)

(5)

(6)

mp

d2lk

dt2
--------- Fint l( ) l lk l j–=

j

∑ lk l j–
lk l j–
--------------- mpνfr

dlk

dt
------- Fbr,+–=

Fint l( ) eZp
∂ϕ
∂l
------,–=

5np
1/3–

ϕ ϕ cb rp/r( )n,=

ϕ ϕ c a κ1r/rp–( )exp b κ2r/rp–( )exp+{ } ,=

ϕ ϕ c a κ1r/rp–( )exp b rp/r( )n+{ } ,=
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where a, b, κ1, and κ2, and n are parameters. Both
potential (2) and models (5) and (6) (with n = 1 in the
latter) are of special interest in the physics of dusty
plasmas. They can be used to allow for weaker screen-
ing at relatively large distances between dust grains
[14–16]. These models have also been applied to
describe repulsion between atoms in covalent metals
[38, 39] or polymers [34, 38].

To analyze pair correlations in systems of particles
with isotropic interaction potentials (4)–(6), three-
dimensional equations of motion (3) were solved for
specific values of parameters defined by analogy with
those characterizing Yukawa systems: the effective
order parameter

(7)

and the scaling parameter

(8)

where the frequency of collisions between macroscopic
particles is calculated as

(9)

and the effective particle charge is

(10)

Note that the effective particle charge does not have any
particular physical meaning here. However, the use
of (10) makes it possible to retain Γ*, ξ, and ω* as uni-
versally applicable parameters in models with interac-
tion potentials of any type.

The computations were performed for 125 indepen-
dent particles in the central cell, while the number of
particles taken into account in computing binary inter-
actions reached approximately 3000. The binary inter-
action potential was cut off at the distance Lcut = 4lp. To
ensure that numerical results are independent of the
number of particles and cut-off distance, we performed
additional computations for 512 actual particles for
Lcut = 7lp with Γ* = 1.5, 17.5, 25, 49, and 92. A detailed
description of the numerical procedure can be found
in [18, 21]. The value of ξ was varied between 0.04 and
3.6, i.e., within the limits characteristic of the experi-
mental conditions in gas-discharge plasmas. The value
of Γ* was varied between 1 and 110.

Our computations showed that the effective para-
meter Γ* completely characterizes the ordering and
phase states of the simulated particle systems if the

Γ* Zp*e( )2
/Trp,=

ξ ω*/v fr,=

ω* eZp* np/πmp( )1/2=

Zp*e Zpeϕ''/2np{ } 1/2.=
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Fig. 1. Pair correlation functions g(r/rp) for Yukawa systems (κ < 6) for several values of Γ* indicated at the curves.
following empirical condition for long-range interac-
tion is satisfied:

(11)

In the first (linear) approximation, this criterion
specifies conditions under which the force acting
between two particles separated by the mean interparti-
cle distance is greater than the force typically arising in
collisions of macroscopic particles.

2.2. Ordering in Dissipative Dust-Particle Systems 
with Various Isotropic Repulsive Potentials 

Ordering in the simulated systems was analyzed by
using the pair correlation function g(r) and the structure
factor S(q). Figure 1 shows the pair correlation func-
tions obtained for Yukawa systems in a wide range of
Γ*. Figure 2 compares these functions with the func-
tions g(r) computed using various potentials subject to
empirical condition (11) for two values of Γ* and two
values of ξ. Figures 3 and 4 illustrate the dependence of
the first maxima g1 and S1 of the functions g(r) and S(q)
and the corresponding distances r = dg1 and q = dS1 on
Γ*. Here, vertical bars represent the absolute deviations
of these quantities for ξ = 0.04–3.6 and for various
potentials satisfying (11). To compare the pair correla-
tions computed for dissipative systems (v fr ≠ 0) with
solutions to reversible equations of motion for nondis-
sipative Yukawa systems (v fr = 0) and with results
obtained for a one-component plasma model, Fig. 3

2π ϕ' rp( ) ϕ'' rp( ) rp.>
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also shows the maximum values of g(r) and S(q) found
in [10, 40].

Our numerical study shows that spatial correlation
of dust grains in the simulated systems is independent
of friction (v fr) and is determined by the value of Γ*
under conditions ranging from a gaseous state (Γ* ~ 1)
to the point of crystallization into a BCC lattice (Γ* ≈

Γ* = 77

Γ* = 17.5

2

1

1 20 r/rp

g

Fig. 2. Comparison of g(r/rp) for several model potentials
and several values of ξ and Γ*. For Γ* = 77, the solid curve,
triangles, and circles correspond to ξ = 0.14 and ϕ/ϕc =
exp(–4.8r/rp), ξ = 0.14 and ϕ/ϕc = 0.1exp(–2.4r/rp) +
exp(−4.8r/rp), and ξ = 1.22 and ϕ/ϕc = exp(–4.8r/rp) +
0.05rp/r, respectively. For Γ* = 17.5, the solid curve, trian-
gles, and circles correspond to ξ = 1.22 and ϕ/ϕc =
exp(−2.4r/rp), ξ = 1.22 and ϕ/ϕc = 0.1exp(–2.4r/rp) +

exp(−4.8r/rp), and ξ = 0.14 and ϕ/ϕc = 0.05(rp/r)3, respec-
tively.
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102–104). Indeed, the first maximum points of the
functions g and S corresponding to crystalline structure
are characteristic of the BCC lattice: dq1 ≈ r1 =

( /4np)1/3, dS1 ≈ q1 = 2π( np)1/3, and kp = 2π(np)1/3

(see Fig. 4). Jumps in the values of the first maxima of
g(r) and S(q) from 2.65 to 3.1 are observed as the nor-
malized order parameter Γ* varies from the crystalliza-
tion point  ≈ 102–104 to the melting point  ≈
106–107 (see Fig. 3). Thus,  ≈ 104.5(±2) can be
interpreted as the point of phase transition between a
liquid-like state and a BCC lattice.

Since  ≈ 104.5 (±2%) is independent of the
ambient viscosity, this result is consistent with molecu-
lar-dynamics simulations of crystallization in Yukawa
systems with zero friction [40–42]. The deviations of
their results from  ≈ 104.5 vary within ±5% and
can be attributed to difference in numerical procedures
(number of particles, integration step, etc.) and to
choice of Γ* associated with either melting or crystalli-
zation point of the system. It should be noted that

 ≈ 104.5(±2%) agrees with the theoretical results
obtained in [43], where the value of the order parameter
on the phase-transition line in the BCC model was
105(±3%). (The latter value is consistent with numeri-
cal results based on various criteria for crystallization
[44] and melting [45].)

Note also that the form of a correlation function g(r)
satisfying condition (11) is determined by the value of
Γ*. Therefore, the methods for determining the poten-
tial of interaction between particles from measurements
of the structure factor based on the hypernetted chain
approximation (using direct relations between g(r),
S(q), and ϕ(r) [8–10]) cannot be applied to the systems
in question. Furthermore, the result obtained here can
explain the widespread use of various phenomenologi-
cal melting and crystallization criteria specifying the
maximum values of correlation functions or the ratios
of their maximum and minimum values on phase-tran-
sition lines (when r ≠ 0) irrespective of the interparticle
interaction potential. In particular, one can use the sim-
ilarity of pair correlation functions (see Section 2.3)
and the numerical values of their maxima g1 (see Fig. 3)
to obtain the well-known ratio of g1 to the first mini-
mum of g(r), equal to 5, on the crystallization line.

2.3. Pair Correlation in Liquid-Like Particle Systems 
and Dust Cluster Formation 

To analyze the asymptotic decay of pair correlation
with increasing distance between particles, we normal-
ized the correlation function h(r) = g(r) – 1 to h1 =
max(h(r)). Figure 5 shows the results obtained for sev-
eral values of Γ*. An analysis of numerical results
shows that h(r) has pronounced maxima when Γ* >

3 3 2

Γ jump* Γm*

Γ jumpm*

Γ jumpm*

Γ jumpm*

Γ jumpm*
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3−5. For Γ* between 28 and 102, the behavior of h(r)/h1

is determined by the value of Γ* (see Section 2.2). Its
decay with increasing distance follows an asymptotic
power law. At r > rp, it can be approximated by the
function (see Fig. 5a)

(12)h r/rp( )/h1 βrp/r( )2.75 2πβ r/rp β 1–+( )( ),sin≈

1.15

1.05

0.95
0 20 40 60 80 100 120

Γ*

dS1/kp, dg1/rp

Fig. 4. Relative locations of the maximum of S1, dS1/kp
(thin curve), and the maximum of g1, dg1/rp (thick curve),
versus Γ*. Dashed curves represent the maximum points of
the correlation function for BCC lattice. Vertical bars are the
absolute deviations for ξ = 0.04–3.6 and for various poten-
tials satisfying (11).

3

2

1
0 20 40 60 80 100 120

Γ*

S1, g1

Fig. 3. First maxima of structure factor S1 (thin curve) and
pair correlation function g1 (thick curve) vs. Γ*: closed tri-
angles represent g1 in the nondissipative Yukawa model
(v fr = 0) [40]; open triangles, g1 in the BCC model [10];
open circles, S1 in the BCC model [10]. Vertical bars are the
absolute deviations for ξ = 0.04–3.6 and for various poten-
tials satisfying (11).
ICS      Vol. 98      No. 3      2004



520 VAULINA et al.
–0.5

0

0.5

1.0
h/h1

Γ* = 101
Γ* = 77
Γ* = 49
Γ* = 28

Γ* = 21
(a) (b)

1.00.5 1.5 2.0 2.5 3.0 3.5

Γ* = 18
Γ* = 10
Γ* = 6

Γ* = 115

1.0

Γ* = 107

0.5 1.5 2.0 2.5 3.0 3.5
r/rp

–0.5

0

0.5

1.0

(c) (d)

1.91.3 2.5 3.1
r/rp

–0.4

–0.2

0

0.2

–0.5

0

0.5

1.0
h/h1

Γ* = 101
Γ* = 28
Γ* = 21
Γ* = 6

Fig. 5. Normalized pair correlation functions h(r/rp)/h1 for Yukawa systems with Γ* indicated in the panels, approximations (12)
and (13) (thick and thin curves, respectively), and (d) an enlarged fragment comparing the numerical results obtained for several
values of Γ*.
where β ≈ 1.07. When the effective order parameter is
smaller than Γ* ~ 21, the decrease in pair correlation is
much steeper and can be approximated by an exponen-
tial (see Fig. 5b):

(13)

Note that approximation of the pair correlation function

h r/rp( )/h1 2.75 β r/rp–( ){ }exp≈
× 2πβ r/rp β 1–+( )( ).sin
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is a difficult task, because the high-frequency thermal
fluctuations due to stochastic motion of dust grains
affect the measured value of h(r)/h1, particularly when
r is large and the fluctuation-induced error is compara-
ble to h(r)/h1 (see Fig. 5d). In the present case, one can
hardly use a more suitable function to approximate
numerical data for practical applications, because the
dust-subsystem correlation functions measured in
actual experiments exhibit stochastic variations due
both to fluctuations in the ambient plasma and to instru-
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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mentation noise. Nevertheless, substantial qualitative
difference in asymptotic behavior of pair correlations is
found between weakly (Γ* ≤ 21) and strongly (Γ* ≥ 28)
nonideal systems. When Γ* ≥ 28, the decay of the pair
correlation with increasing distance follows power
law (12). When the effective parameter is smaller than
a certain critical value Γ* ~ 21, the decrease in pair cor-
relation can be approximated by exponential law (13).
Note that this result disagrees with experimental obser-
vations reported in [30], where g(r) was found to decay
exponentially for both hexatic and isotropic liquid
phases in a monolayer, and a power-law approximation
was obtained only for a crystalline phase. This dis-
agreement can be explained by the essentially two-
dimensional structure of the monolayer (distinct from
the three-dimensional system analyzed here). The

Γ* = 21
Γ* = 28
Γ* = 101

Γ* = 6

0.2

0

–0.2

–0.4
1.3 1.9 2.5 3.1

h/h1

r/rp

Fig. 6. Functions h(r/rp)/h1 for Yukawa systems with Γ*
indicated in the panels and approximations (14) and (15)
(thick and thin curves, respectively). Shift between curves
corresponding to different Γ* is due to change in the loca-
tion of the maximum of g1 (see Fig. 4).
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behavior of the correlation function predicted for a
crystalline phase by simulating three-dimensional sys-
tems of interacting particles is illustrated by Fig. 5c. It
is obvious that the decay of pair correlation is much
steeper here, as compared to that characteristic of liq-
uid-like systems.

Improvement of the accuracy of approximations of
g(r) by numerical fitting would not be physically justi-
fied. However, such approximations may facilitate
computations of thermodynamic characteristics of liq-
uid-like systems determined by the pair correlation
function g(r), such as pressure, energy density, and
compressibility (see [9, 10]). A detailed analysis of
approximating functions for g(r) curves at 0 ≤ r ≤ rp was
presented in [10]. The following functions can be sug-

Γ* = 29

Γ* = 24

Γ* = 38

Γ* = 22

Γ* = 17

2.0

1.5

1.0

0.5
0.8 1.0 1.3 1.5

r/rp

g

Fig. 7. Maxima of pair correlation functions for Γ* ≈ 17–40.
Thick curves correspond to Γ* = 24 and 29.
dgl

(‡) (b) (c)

Fig. 8. Slices of three-particle correlation functions g3 obtained by numerical simulation for Γ* = 37.5 (a), 17.5 (b), and 1.5 (c).
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gested as approximations of h(r) at r ≥ rp (see Fig. 6):

(14)

(15)

These functions allow for the shift in g(r) associated

h r/rp( )/h1 βrp/r( )2.5≈
× 2πdg1 r/rp β 1–+( )( )sin 0.1+( )/g1,

28 Γ* 102,≤ ≤

h r/rp( )/h1 2.25 β r/rp–( ){ }exp≈
× 2πdg1 r/rp β 1–+( )( )sin 0.1+( )/g1,

4 Γ* 21.≤ ≤

CCD camera

RF

Laser

Particles

Ring

Fig. 9. Experiment in high-frequency capacitive discharge.
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with change in the location of its maximum g1 as a
function of Γ* (see Fig. 4).

The difference in the asymptotics of the pair corre-
lation functions corresponding to different values of the

(‡)

(b)

(c)

Fig. 10. Images of dust-cloud particles in the near-electrode
plasma sheath of discharge for (a) P = 3 Pa and W = 10 W,
(b) P = 3 Pa and W = 2 W, and (c) P = 7 Pa and W = 10 W.
(‡)

(b)

Fig. 11. Trajectories of dust grains over the averaging time interval for pair correlation functions for (a) P = 3 Pa and W = 10 W and
(b) P = 7 Pa and W = 10 W.
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order parameter can be compared with the results of
numerical experiments reported in [17, 31]. In particu-
lar, formation of groups (clusters) of macroscopic par-
ticles was observed in [17] at Γ* ≈ 22–24. This phe-
nomenon was accompanied by a sharp decrease in dif-
fusivity D and a shift in the location of the first
maximum of g(r) (see Fig. 4), and the system’s proper-
ties changed qualitatively at this point (at least, those
analogous to properties of a solid). Figure 7 illustrates
the behavior of the maximum of g(r) at Γ* ≈ 22–24 for
three-dimensional Yukawa systems. The critical value
Γ* ≈ 23.5 corresponds to the condition of one particle
per sphere of Wigner–Seitz radius

(g(r) = 0 at r < aWS), and the mean free path

for particle–particle collisions is close to aWS.

Subsequently, the formation of well-ordered clus-
ters of macroscopic particles at Γ* > 22–24 was
revealed in numerical simulations and laboratory
experiments by analyzing three-particle correlation
functions [31]. Figure 8 shows slices of three-particle
correlation functions g3(r12, r23, r31) (rij = |ri – rj|) at
r12 = dg1 computed for several values of Γ*. To facilitate
comparison, the slices are normalized to the maximum
of g3(r12, r23, r31) (black and white areas correspond to
g3 = 1 and 0, respectively).

The formation of well-ordered dust clusters can be
interpreted as the onset of orientational (short-range)
ordering in the systems in question with increasing
order parameter (see Fig. 8a). The observed qualitative
changes can be attributed to the topological defects of
three-dimensional crystalline structure responsible for
the existence of two distinct (isotropic and orientation-
ally ordered) liquid-like phases (by analogy with topo-
logical phase transitions in two-dimensional systems).
Therefore, with increasing Γ*, the simulated system
should exhibit a solid-like dynamical behavior that can
be described by the jump model developed for molecu-
lar liquids [6]. In this model, a liquid-phase molecule
resides in an equilibrium position (site) until its energy
becomes sufficiently large for the molecule to break
free from the potential bonding with adjacent mole-
cules and jump into a new site surrounded by different
molecules. Agreement of the dynamics of Yukawa sys-
tems with predictions of this model at Γ* > 40–50 is
supported by numerical results [17]. To elucidate the
nature of the observed effects, quantitative charac-
teristics of orientational ordering (mean time of spe-
cific orientation of macroscopic particles, topological

aWS 4πnp/3( ) 1/3–=

rp–p 3T /ω*2mp( )1/2≈
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entropy, rates of variation of autocorrelation func-
tions, etc.) must be determined as functions of the
order parameter.

3. EXPERIMENT

The setup used to study pair correlations of dust par-
ticles in the near-electrode plasma sheath of a high-fre-
quency capacitive discharge is schematized in Fig. 9.
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Fig. 12. Measured g(r/rp) (a) and h(r/rp)/h1 (b, c) for P =
3 Pa and W = 10 W (diamonds), P = 3 Pa and W = 2 W (cir-
cles), and P = 7 Pa and W = 10 W (triangles). Solid curves
are (a) g(r/rp) computed for several Γ* and (b, c) approxi-
mations (12) and (13) (thick and thin curves, respectively).
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dgl

(‡) (b) (c)

Fig. 13. Slices of three-particle correlation functions g3 obtained in experiments for (a) P = 7 Pa and W = 10 W, (b) P = 3 Pa and
W = 2 W, and (c) P = 3 Pa and W = 10 W.
The experiments were conducted in argon at a pressure
of P = 2–10 Pa and discharge power of W ≈ 2–10 W.
Monodisperse melamine-formaldehyde particles of
radius ap ≈ 1.7 µm and density ρp ≈ 1.5 g cm–3 were
used as the dust component. Four to ten layers of dust
particles were observed. The dust cloud was sliced with
a 200–300 µm thick He–Ne laser sheet and its images
were recorded with a CCD camera at a framing speed
of 25 fps. Figure 10 shows fragments of dust-cloud
images obtained under different experimental condi-
tions.

The images were processed by means of a special
computer program that determined the locations and
displacements of individual particles in dust structures.
In all cases under analysis, we observed quasi-steady
liquid-like structures. The mean distance rp between
dust grains in these structures varied from 260 to
350 µm. Since the structures under analysis consisted
of several layers of macroscopic particles, no large-
scale vortices analogous to those observed in [24, 25]
were observed. Figure 11 shows the trajectories of
grains recorded during the averaging time interval for
pair correlation functions (between 1 and 2 s).

The images were processed to obtain correlation
functions g(r) and g3(r12, r23, r31) averaged over 1 to 2 s
under constant experimental conditions. Figure 12a
shows g(r/rp) obtained for several values of P and W.
Figure 12b compares measured functions h(r)/h1 with
approximations (12) and (13) found in numerical
experiments. It is clear that the measured pair correla-
tion functions agree with the functions g(r) obtained for
the simulated systems with Γ* ≈ 17.5 and Γ* > 37, even
though the actual experimental conditions differed
from those set in the computed homogeneous problem.
Note that the decay of spatial correlation of macro-
scopic particles follows a power law when Γ* > 37 and
is approximately exponential when Γ* ≈ 17.5.

Despite the difference between parameters of the
three-dimensional homogeneous problem and the
JOURNAL OF EXPERIMENTAL
experimental conditions, the measured three-particle
correlation functions are also consistent with those
obtained by numerical simulation (see Fig. 8). Figure 13
shows slices of measured three-particle correlation
functions g3(r12, r23, r31) for r12 = dg1 (most probable
interparticle distance determined as the point of maxi-
mum for measured g(r)). A comparison of the results
presented here for several values of discharge parame-
ters reveals a short-range orientational ordering in the
dust structures, which is manifested by the maxima of
g3(r12, r23, r31) at the vertices of the hexagonal clusters
depicted by dashed lines in Figs. 13a and 13b. As the
maximum of the pair correlation function increases,
these maxima (separated by a distance r nearly equal
to dg1) grow and additional maxima, separated by a dis-
tance r ≈ 2dg1, appear (see Fig. 13a).

Thus, our analysis of the spatial correlation of mac-
roscopic particles suggests that the behavior of pair cor-
relation functions in experimentally observed dust
structures should be independent of the binary interac-
tion potential. At Γ* ≈ 22–24, the dust subsystem
appears to exhibit a transformation into an isotropic liq-
uid analogous to the topological phase transition in
two-dimensional systems. This conjecture can be sup-
ported by experimental studies of boundary angular
autocorrelation and spatial correlation functions (g6(t),
g6(r)) and by measurements of topological entropy.

4. CONCLUSIONS

A numerical analysis of correlation functions is per-
formed for extended three-dimensional many-particle
systems with various binary interaction potentials. It is
shown that the form of the pair correlation function is
determined by the value of Γ* for systems character-
ized by various repulsive potentials. This implies that
the form and parameters of the potentials cannot be
determined by inverting g(r). Our results show that pair
correlation of particles with interaction potentials con-
 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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sidered in this study can be described (and, therefore,
certain thermodynamic characteristics of liquid-like
systems can be determined) without performing the
complicated calculations required to find spatial clo-
sure approximations. For a system of this kind, the pair
correlation function can be approximated by a function
depending on two dimensionless parameters (Γ* and
r/rp). Furthermore, substantially different forms of this
function at r/rp > 1 will be obtained only for weakly
correlated and strongly nonideal structures (when Γ* <
22 and Γ* > 28, respectively).

The behavior of h(r)/h1 = (g(r) – 1)/(g1 – 1) for liq-
uid-like systems at Γ* ≥ 28 and Γ* ≤ 22 weakly
depends on the order parameter if r ≥ rp, in which case
h(r)/h1 can be approximated by the product of a har-
monic function with a function describing the decay of
spatial correlation. In strongly correlated systems (at
Γ* ≥ 28), the asymptotic decay of pair correlation fol-
lows a power law. When the effective order parameter
is smaller than a certain critical Γ* ≈ 22, the decay of
the correlation function can be described by an expo-
nential law. The pair correlation of macroscopic parti-
cles measured in liquid-like dust structures localized in
the near-electrode plasma sheath of a high-frequency
capacitive discharge is in good agreement with numer-
ical results. The change in the decay of the pair correla-
tion function observed in both numerical and experi-
mental studies can be attributed to the existence of two
distinct liquid phases: an isotropic phase and a phase
characterized by short-range orientational ordering.
This conjecture is supported by observations of well-
ordered clusters of dust grains.
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Abstract—We study the electromagnetic radiation at twice the plasma frequency, which emerges because of
the interaction of two identical counterpropagating short laser pulses in a rarefied plasma and caused by exci-
tation of small-scale standing plasma waves in the pulse overlap region. The energy, spectral, and angular char-
acteristics of radiation are investigated, and the dependence of these characteristics on the parameters of the
laser pulses is analyzed. The possibility of applying this effect for diagnostics of localized plasma oscillations
is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our previous publication [1], we considered the
possibility of “impact” excitation of localized coherent
small-scale plasma oscillations in a rarefied plasma by
counterpropagating short laser pulses. These oscilla-
tions could become an attractive object for studying
both laser pulses and the processes determining the
evolution of plasma oscillations (destruction of oscilla-
tion coherence, wave breaking, and the development of
Langmuir turbulence). Here, we consider a possible
method for diagnostics of localized plasma waves from
radiation produced by these waves in the vicinity of a
twofold plasma frequency 2ωp .

Radiation at a frequency of 2ωp has been widely dis-
cussed starting from 1950s in connection with solar
flares [2]. A possible physical mechanism responsible
for this radiation, which is now commonly referred to
as coalescence of two plasmons, was mentioned for the
first time in [3]. Since the end of the 1960s, this effect
has attracted the attention of researchers in connection
with general problems of strong Langmuir turbulence
(see, for example, [4]). Some of the observed singular-
ities in the spectrum of radiation reflected from an inho-
mogeneous laser plasma in the region of the twofold
laser frequency 2ω0 were also attributed to two-plas-
mon fusion [5].

The effect considered here is also based on elemen-
tary nonlinear coalescence of two plasmons accompa-
nied by the generation of photons. The actually
observed characteristics of the radiation at twice the
plasma frequency (such as intensity, directivity dia-
gram, polarization, and linewidth) are determined by
the superposition of the fields of transverse waves (pho-
1063-7761/04/9803- $26.00 © 0527
tons) originating from a large number of elementary
processes and depend on the properties of plasma
waves (their spatial structure, damping, degree of
coherence, and method of excitation).

In this paper, we consider the radiation at twice the
plasma frequency resulting from localized small-scale
standing plasma waves excited in a plasma by the inter-
action of two short laser pulses. It was shown in [1] that
the collision of such pulses in the plasma gives rise to a
short-lived standing electromagnetic wave in the region
where these pulses overlap, producing ponderomotive
forces, which vary periodically in space with a wave
number of 2k0, where k0 is the wave number of laser
radiation. Under the action of these forces, small-scale
coherent plasma perturbations are formed. The time
evolution of these perturbations depends on the dura-
tion of the pulses. If the pulse duration τ is longer than

the reciprocal plasma frequency , these perturba-
tions exist only during the time of interaction of the
pulses and disappear as the pulses move apart. If the
pulse duration is on the order of or smaller than the
plasma period, such plasma oscillations persist even
after termination of the interaction between the pulses
in the form of a localized coherent plasma wave. It will
be shown below that, as a result of such an impact exci-
tation, the electromagnetic radiation at twice the
plasma frequency can be emitted from the region of
localization of plasma oscillations. The intensity of this
radiation and its directivity diagram are essentially
determined by the parameters of interacting pulses and
carry information both on the pulses propagating in the
plasma and on the Langmuir waves remaining in the
region of their interaction.

ωp
1–
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It should be noted that the effect of radiation at twice
the plasma frequency from a localized standing Lang-
muir wave considered here is analogous in a certain
sense to the effect of generation of second harmonic
radiation from counterpropagating surface polaritons,
which is known in solid-state physics [6].

2. EXCITATION OF PLASMA OSCILLATIONS 
DURING THE INTERACTION OF LASER PULSES

In our previous publication [1], we studied the exci-
tation of small-scale plasma oscillations during the
interaction of two identical short laser pulses in the
hydrodynamic nondissipative approximation. The infi-
nitely long lifetime of oscillations emerging in this
model leads to a singularity in the spectral density of
the energy radiated. To avoid this difficulty, we must
take into account the damping of plasma oscillations,
which is possible only in the framework of the kinetic
theory. For this reason, in this section, as well as in the
Appendix, we will develop a kinetic approach to
describing the interaction of short laser pulses.

We consider two identical laser pulses propagating
in a plasma towards each other along the z axis. We
write the electric field EL of the pulses in the form

(2.1)

Here, ω0 is the laser frequency and E0 is the complex

amplitude varying slowly with time on the  scale
and exhibiting the coordinate dependence

(2.2)

where k0 is the longitudinal wave number connected
with frequency ω0 via the dispersion relation k0c =

, ωp =  being the plasma fre-
quency, which is assumed to be smaller than ω0; e, m,
and N0e are the charge, mass, and concentration of elec-
trons in the plasma; and E±(r, t) are the amplitudes of
laser pulses propagating from left to right (plus sign)
and from right to left (minus sign), which change in

space insignificantly over a scale of .

In the course of interaction, the pulses generate a
standing electromagnetic wave associated with quasi-
static small-scale ponderomotive forces. These forces
induce periodic electron density perturbations (with a
wave number of 2k0) and small-scale quasi-static elec-
tric fields in the plasma. Substituting formula (2.2) into

EL r t,( ) 1
2
---=

× E0 r t,( ) iω0t–( )exp E0* r t,( ) iω0t( )exp+{ } .

ω0
1–

E0 r t,( ) E+ r t,( ) ik0z( )exp=

+ E– r t,( ) ik0z–( ),exp

ω0
2 ωp

2– 4πe2N0e/m

k0
1–
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definition (A.23) of the high-density potential and sep-
arating the terms proportional to exp(±2ik0z), we obtain

(2.3)

We assume that the electric field amplitude of the
laser pulses in the region of their interaction has an axi-
ally symmetric Gaussian form,

(2.4)

where ξ = z – Vgt and η = z + Vgt are the longitudinal
coordinates in the systems comoving with the pulses,
Vg = c2k0/ω0 is the group velocity of the pulses, L is the
length of a pulse connected with its duration via the

relation τ = L/Vg , ρ =  is the transverse coordi-
nate, R is the pulse width, E0L is the maximal value of
the electric field amplitude, and e+ and e– are the vectors
determining the polarization of the laser pulses.

The Fourier component of the electric field of
plasma perturbations can be expressed in terms of the
corresponding component of the ponderomotive poten-
tial with the help of formula (A.27) (see Appendix). In
accordance with formula (2.4), the latter component
has the form

(2.5)

where VE = eE0L/mω0.

Bearing in mind that we are dealing with short laser

pulses of duration τ on the order of , we will study
plasma oscillations remaining in the overlap region of
the pulses after termination of their interaction. Since
ponderomotive forces in this case are equal to zero,
only free plasma oscillations can exist in the plasma;

φ r t,( ) e2

4mω0
2

-------------- 2ik0z( ) E+ E–*⋅( )exp{=

+ 2ik0z–( ) E– E–*⋅( ) } .exp

E+ r t,( ) e+E0L
ξ2

2L2
---------– ρ2

2R2
---------– 

  ,exp=

E– r t,( ) e–E0L
η2

2L2
---------– ρ2

2R2
---------– 

  ,exp=

x2 y2+

φ ω k,( )
mVE

2 π2R2Lτ e+ e–⋅( )
4

-------------------------------------------------=

× ω2τ2

4
-----------–

k ⊥
2 R2

4
-----------– 

 exp

×
kz 2k0–( )2L2

4
-------------------------------– 

 exp
kz 2k0+( )2L2

4
-------------------------------– 

 exp+ ,

ωp
1–
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the frequency ω and the wave vector k of these oscilla-
tions are connected via the dispersion relation [7]

(2.6)

If the thermal velocity of electrons, VT =  (T is the
electron temperature), is smaller than the phase veloc-
ity (ω/k) of plasma waves for the Maxwellian distribu-
tion function F, expression (A.28) leads to the follow-
ing relation [7]:

(2.7)

Bearing in mind that the ratio of the thermal velocity of
electrons to the phase velocity of a plasma wave is
small (in our case, this corresponds to the inequality
2VT/c < ωp/ω0), we can represent the Fourier compo-
nent (A.27) of plasma waves in the form

(2.8)

where

(2.9)

and rD = VT/ωp is the Debye radius for electrons.
In contrast to the hydrodynamic result [1], expres-

sion (2.8) takes into account the thermal correction in
the dispersion relation for Langmuir waves as well as
Landau damping. Although both these effects are weak
in the given approximation, consistent inclusion of
damping plays a fundamental role, limiting the lifetime
of excited plasma waves and removing the singularity
in the frequency spectrum of the radiation at twice the
plasma frequency.

Formula (2.8) combined with relation (2.5) defines
the electric field of a small-scale standing plasma wave
excited by the pulses in their overlap region. The life-
time of such a wave is characterized by decrement
γL(2k0), and the range of wave vectors in the transverse
and longitudinal directions is characterized, respec-
tively, by the transverse and longitudinal sizes R and L
of the pulses. Considering that the laser wavelength is

εl ω k,( ) 1 δεl ω k,( )+ 0.= =

T /m

δεl ε k,( )
ωp

2

ω2
------ 1 3

k2VT
2

ω2
-----------+

 
 
 

–=

+ i
π
2
---

ωωp
2

k3VT
3

----------- ω2

2k2VT
2

---------------–
 
 
 

.exp

E2 ω k,( )〈 〉 ik
2e
------φ ωL k,( )ωL–=

× 1
ω ωL iγL+–
------------------------------ 1

ω ωL iγL+ +
------------------------------– 

  ,

ωL k( ) ωp 1
3
2
---k2rD

2+ 
  ,=

γL k( ) π
8
---

ωP

k3rD
3

---------- 3
2
---– 1

2k2rD
2

--------------– 
  ,exp=
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small as compared to the pulse sizes, we will hence-
forth assume that k = 2k0 in formulas (2.9).

3. ELECTRIC FIELD 
OF LOW-FREQUENCY RADIATION

The interaction between plasma waves induces a
nonlinear current. In the approximation quadratic in the
wave fields, the Fourier component of current density j2
in the general form can be written as [8]

(3.1)

where ω'' = ω – ω', k'' = k – k', and E(ω, k) = 〈E2(ω, k)〉 .
In the case we are interested in, when the phase veloci-
ties of interacting waves are larger than the thermal
velocity of electrons (ω > kVT, ω' > k 'VT, ω'' > k''VT),
tensor Sijs(ω, k, ω', k') has the form [8]

(3.2)

Using formula (2.8), we obtain the nonlinear current (3.1)
of a standing plasma wave:

(3.3)

Current (3.3) is proportional to the squared intensity of
the plasma wave field or the fourth power of the laser
field.

The radiation field is generated only by the vortex
part of current (3.3). Separating this part, we obtain
from the Maxwell equations the spectral density of the
vortex electric field Etr(ω, r),

(3.4)

ji ω k,( ) iω
8π
------ ω' k'dd

2π( )4
---------------∫–=

× Sijs ω k ω' k', , ,( )E j ω'' k'',( )Es ω' k',( ),

Sijs ω k ω' k', , ,( )
4πie3N0e

m2ωω'ω''
-----------------------–=

×
ki

ω
----δjs

k j''

ω''
------δis

ks'

ω'
-----δij+ + .

j ω k,( )
ωp

2

32πem
----------------- ω' k'dd

2π( )4
---------------

ωL
2 φ ωL k',( )φ ωL k'',( )

ω'ω''
----------------------------------------------------∫=

× k
ω
---- k' k''⋅( ) k'

ω''
------k''2

k''
ω'
-----k'2+ +

× 1
ω' ωL– iγL+
------------------------------- 1

ω' ωL iγL+ +
-------------------------------– 

 

× 1
ω'' ωL– iγL+
-------------------------------- 1

ω'' ωL iγL+ +
--------------------------------– 

  .

Etr ω r,( )

=  4πiωcurlcurl
kd

2π( )3
------------- ik r⋅( )exp

k2T ω k,( )
-------------------------- j ω k,( ),∫–
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where T(ω, k) = ω2ε(ω) – c2k2 and ε(ω) = 1 – /ω2 is
the transverse permittivity of the plasma. Relations (3.3)
and (3.4) determine the low-frequency electromagnetic
field induced in a rarefied plasma as a result of collision
of two short laser pulses.

Substituting relation (3.3) into (3.4), integrating
with respect to frequencies ω' and wave vectors k', and
discarding the small terms proportional to

, we obtain

(3.5)

where

is the probability integral of the complex argument, ez

is the unit vector in the direction of the z axis, ωL =

ωp(1 + ) is the plasma oscillation frequency tak-
ing into account spatial dispersion, and

We are naturally interested in the radiation field in
the wave zone at large distances from the region of
localization of plasma oscillations (r @ R, L). In this
case, the integral over wave vectors in expression (3.5)
can be evaluated by the steepest descent method. Tak-
ing into account the contribution from the pole, k =

, we arrive at the following expression for

ωp
2

k0
2
L

2
–( )exp

Etr ω r,( )
iωωp

em
-------------

π5/2m2VE
4 k0

2R2Lτ2

16 2
------------------------------------------- e+ e–⋅( )2–=

× ω2τ2

8
-----------– 

  curlcurlez
∂
∂z
-----exp

× kd

2π( )3
------------- 1

k2T ω k,( )
----------------------- ik r⋅

kz
2L2

8
----------–

k ⊥
2 R2

8
-----------– 

 exp∫

×
1 erf

i ω 2ωL–( )τ
8

----------------------------- 
 +

ω 2ωL– 2iγL+
---------------------------------------------------







ω 2ωL–( )2τ2

8
--------------------------------–exp

–

1 erf
i ω 2ωL+( )τ

8
------------------------------ 

 +

ω 2ωL 2iγL+ +
----------------------------------------------------

ω 2ωL+( )2τ2

8
--------------------------------–exp







,

erf z( ) 2

π
------- t t2–( )expd

0

z
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6k0
2rD

2

γL
π
8
---

ωp

8k0
3rD

3
-------------- 3

2
---– 1

8k0
2rD

2
--------------– 

  .exp=

ε ω( )ω/c
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the spectral density of the electric field of low-fre-
quency electromagnetic radiation:

(3.6)

where θ is the angle between the z axis and the direction
of radius vector r and eθ is the unit vector in the merid-
ional direction.

In order to find the space–time dependence of the
low-frequency electric field in the wave zone, we carry
out the inverse Fourier transformation in time. Taking
into account the contributions from poles ω = ±2ωL –
2iγL , we obtain from relation (3.6)

(3.7)

This relation describes a diverging spherical electro-
magnetic wave having a doubled plasma frequency and
polarized in the meridional direction. It should be noted
that expression (3.7) holds only at large distances from
the region of localization of small-scale plasma oscilla-

Etr ω r,( ) π3/2ω2τ2

8 2
--------------------
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VE
3

8c3
--------E0L=

×
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tions (r @ R, L). In addition, it becomes valid only after
some time following the passage of the leading front of
radiation through a given point (for t – r/c @ ωpτ2,
ωpR2/c2).

4. ANGULAR, SPECTRAL,
AND ENERGY CHARACTERISTICS

OF RADIATION

The energy emitted in unit interval of frequencies
dω into unit solid angle do is connected with spectral
density (3.6) of the electric field through the relation [9]

(4.1)

where frequency ω is regarded as positive.

Using relation (3.6), we can write the expression for
low-frequency radiation energy (4.1) in the form

(4.2)

where

is the energy of a laser pulse. For weakly damped
plasma oscillations (ωp @ γL), expression (4.2) has a
sharp peak in the vicinity of frequency ω = 2ωL , corre-
sponding to the emission of electromagnetic waves at a
doubled plasma frequency. In the vicinity of resonance

dW
dωdo
--------------
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4π2

-------------------r2 Etr ω r,( ) 2
,=
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2τ2ω4τ3
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------------------------------- e+ e–⋅( )4k0
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 exp

–

1 erf
i ω 2ωL+( )τ

8
------------------------------ 

 +

ω 2ωL 2iγL+ +
----------------------------------------------------

ω 2ωL+( )2τ2

8
--------------------------------– 

 exp

2

,

WL

E0L
2 π3/2R2L

8π
---------------------------=
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(ω = 2ωL), formula (4.2) can be noticeably simplified
and assumes the form

(4.3)

It follows from this formula that, for a fixed angle, both
the radiation intensity and the linewidth depend on the
damping rate of plasma oscillations as well as on the
pulse duration τ. The reason for such dependence is that
the pulse duration determines not only the efficiency of
excitation of plasma waves, but also the longitudinal
size of the region of their interaction. This size is asso-
ciated with the spread in the longitudinal components
of the wave vectors of excited plasma oscillations and
with the possibility that the condition for the merging of
two plasma waves with the formation of a transverse
electromagnetic wave will be fulfilled.
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Fig. 1. Dependence of the dimensionless energy spectrum I
of radiation emitted at angles of 45° and 135° on the dimen-
sionless frequency x = ω/2ωL for γL/ωL = 0.1 and for fixed
intensity and radius of laser pulses for three values of
parameter β = (ωLτ)2/2, characterizing the pulse duration:
β = 0.25 (1), 1 (2), and 2 (3).
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Figure 1 shows the dependence of the dimensionless
radiation energy spectrum,

at angles of θ = 45° and 135° for three values of param-

eter  characterizing the duration of pulses for
their fixed intensity and radius. The pulse duration
mainly affects the efficiency of plasma wave excitation
and, hence, the radiation intensity. In addition, a rela-
tively weak influence of the pulse duration on the radi-
ation linewidth is observed. The shorter the pulses, the
wider the spread in the longitudinal components of the
plasma waves excited by these pulses and the larger the
possible number of elementary processes of plasmon
coalescence. It should be recalled that the coalescence
of two plasmons with opposite wave vectors into one is
possible only if these vectors differ in magnitude by a
value on the order of ωL/c.

Integrating expression (4.3) with respect to fre-
quency, we obtain the angular distribution of the radi-
ated energy:

(4.4)

Let us analyze the dependence of the directivity dia-
gram of the low-frequency electromagnetic radiation
on the relation between the longitudinal and transverse
sizes of laser pulses. The equation for the optimal angle
θmax corresponding to the maximum radiation energy
follows from relation (4.4) and has the form

(4.5)
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If the pulses have identical or nearly identical longi-

tudinal and transverse sizes (such that (R2 – L2) ! 1),
Eq. (4.5) leads to sin2θmax = 0.5, which corresponds to
the following values of the angles:

(4.6)

Radiation is concentrated in narrow cones with angles
of 45° and 135° relative to the axis along which the
pulses propagate. This result coincides with that
obtained in [10, 11] from analysis of radiation emitted
from solar flares in the approximation such that the
spectrum of Langmuir noise in the wave vector space is
concentrated in a small neighborhood of two opposite
and rather long wave vectors.

When pulses with transverse sizes much larger than
their longitudinal sizes (R @ L) collide, the angular
directivity of low-frequency radiation essentially
depends on the parameter kpR. For narrow pulses
(kpR ! 1), the radiation intensity has the maximal value
for angles defined by relation (4.6). If, however, pulses
have large transverse sizes, Eq. (4.5) leads to

(4.7)

In this case, radiation is emitted at small angles relative
to the direction of pulse propagation. However, the
radiation intensity is small in accordance with (4.4).

If the longitudinal size of colliding pulses exceeds
their transverse size (L @ R), the radiant energy attains
its maximal value for angles (4.6) provided that ωpτ !
1. If the opposite inequality (ωpτ > 1) holds, Eq. (4.5)
leads to

(4.8)

In this case, radiation is emitted in the direction perpen-
dicular to the direction of pulse propagation, but the
value of radiant energy is exponentially small.

Figure 2 shows the angular dependences of dimen-
sionless energy of the radiation at twice the plasma fre-
quency for three values of parameter (R/L)2, character-
izing the radii of laser pulses, for their fixed energy and
duration:
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It can be seen that the radiated energy decreases
with increasing pulse radius and the directivity diagram
becomes narrower. These effects are due to the fact that
an increase in the pulse radius narrows the angular
spread in the wave vectors of the excited plasma waves
and reduces the number of elementary events of their
coalescence (cf. [10, 11]). In addition, in accordance
with results (4.7), optimal angle θmax decreases with
increasing transverse size of a laser pulse.

The total energy of low-frequency electromagnetic
radiation can be determined from relation (4.4) by inte-
grating over solid angle do. For pulses with identical
spatial sizes L = R, integration is carried out analyti-
cally and the total energy has the form

(4.9)

The low-frequency radiant energy (4.9) attains its max-
imal value

(4.10)

in the case of collision of two laser pulses with a dura-
tion equal to

(4.11)

In spite of the fact that expression (4.10) for the
energy contains the product of two large parameters

 @ 1 and ωp/γL @ 1, the energy value must be
smaller than the energy of a small-scale standing
plasma wave [1],

(4.12)

Comparing expression (4.12) with formula (4.10), we
find that our treatment is valid provided that

(4.13)

Another limitation on the plasma parameters is con-
nected with the condition of smallness of the Landau
damping for small-scale plasma oscillations (γL ! ωL).
For values of parameter k0rD < 0.2, ratio γL/ωL does not
exceed 0.1 and plasma oscillations are weakly damped.
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For example, for k0rD = 0.2, the damping decrement
amounts to γL = 0.1ωL and the plasma oscillation fre-
quency ωL is equal to 1.24ωp on account of spatial dis-
persion.

Let us estimate the value of energy emitted upon the
collision of two short laser pulses of intensity IL =
1016 W/cm2, wavelength λ0 = 0.8 µm (ω0 = 2.4 × 1015 s–1),
duration τ = 27 fs, and focal spot diameter 2R = 16 µm
in a rarefied plasma of density N0e = 1.7 × 1019 cm–3 and
temperature Te = 20 eV. For such parameters, the energy
of the laser pulses amounts to WL = 0.96 × 10–3 J, while
the energy of a small-scale standing plasma wave is
Wp = 1.4 × 10–3WL . In this case, small-scale plasma
oscillations attenuate weakly with a decrement of γL =
0.1ωL , and the energy emitted at a frequency of ω =
2ωL = 1.7 × 1014 s–1, which is approximately 1/15 of the
laser carrier frequency, is directed at angles of 45° and
135° and has a value of W = 2.8 × 10–6WL = 2 ×
10−3Wp = 2.7 × 10–9 J. It should be emphasized once
again that the frequency ωL of Langmuir waves, taking
into account spatial dispersion, is equal to 1.24ωp for
such values of plasma parameters.

5. CONCLUSIONS

Radiation at twice the plasma frequency may carry
information on the evolution of free small-scale local-
ized plasma oscillations (which are not sustained by
external sources) under the conditions of laser experi-

Fig. 2. Angular dependence of the dimensionless energy g
of the radiation at twice the plasma frequency for short laser

pulses (ωpτ = ) for various values of parameter α =

(R/L)2 characterizing the pulse width: α =  (1), 1 (2), and

1/  (3).
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ments. The model considered here presumes the linear-
ity of plasma waves and, in particular, their dissipation
due to Landau damping. We have considered the energy
characteristics of radiation, its spectrum, and directivity
diagram precisely for such conditions. The discrepancy
between the results of measurements and calculations
may indicate the importance and type of nonlinear pro-
cesses disregarded in our model of evolution of plasma
waves. For example, the effects associated with the
mobility of ions (induced scattering from ions or decay
of a plasma wave into a plasma wave and an acoustic
wave) make the plasma wave spectrum and, hence,
directivity of radiation at twice the plasma frequency
more isotropic. A nonlinear dissipation mechanism
affects the shape of the radiation spectrum and the radi-
ation intensity.

In analyzing plasma waves, the linear approxima-
tion is limited to moderate intensities of laser pulses of
1015−1016 W/cm2, while modern laser technology
makes it possible to obtain pulses with a much higher
intensity of 1018−1020 W/cm2; for such intensities,
plasma waves being excited may be nonlinear and may
contain a large number of spatial harmonics, which are
multiple of 2k0. It can be expected that the processes of
coalescence of higher order Langmuir waves will lead
to electromagnetic radiation not only at a doubled
plasma frequency, but at higher frequencies, which are
multiple of the Langmuir frequency.

Nevertheless, using such high-intensity laser pulses,
it is also possible to realize the limiting case of excita-
tion of linear plasma waves considered here. Indeed, it
follows from the results that the efficiency of plasma
wave excitation depends only on parameter e+ · e–.
Plasma waves are excited most effectively for parallel
polarization vectors of laser pulses; conversely, the
effect of excitation of Langmuir waves disappears for
orthogonal polarizations. By changing the angle
between the polarization vectors, it is possible to affect
the amplitudes of excited plasma waves and, hence, the
spectrum and intensity of low-frequency radiation.

It should be noted that the radiation effects analo-
gous to that considered here might also take place in
other media [6] as well as in plasma for other types of
waves. For example, doubled-frequency radiation
emerging as a result of coalescence of two surface
waves was considered in [12].
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APPENDIX

Let us consider a quasi-static response of a plasma,
quadratic in the rf field, by using the Vlasov kinetic
equation [7]. We will seek the electron distribution
JOURNAL OF EXPERIMENTAL 
function f(r, v, t) in the form of a power series in the
small parameter εE , which is equal to the ratio of the
electron quiver velocity VE to the phase velocity of elec-
tromagnetic radiation and is proportional to the high-
frequency electric field strength EL(r, t),

where F is the electron distribution function in the
absence of a laser pulse and fn is the nth order perturba-
tion of the distribution function in parameter εE .

In the linear approximation (n = 1), the equation for
f1 has the form

(A.1)

where BL is the high-frequency magnetic laser field,
connected with the electric field via the equation

Keeping in mind another small parameter, εT , which is
equal to the actual ratio of the electron thermal velocity
VT to the phase velocity of electromagnetic radiation,
we can represent the solution to Eq. (A.1) in the form
of a power series in the electron velocity:

(A.2)

where

is the high-frequency electron velocity,

is the electron displacement in the rf field, and

While deriving formula (A.2), we assumed that there
was no laser pulse at a given point r for t  –∞. An
expression similar to (A.2) was discussed in [13] under
the assumption that F is the Maxwell distribution func-
tion.

In the approximation quadratic in εE , the equation
for f2 has the form

(A.3)
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where the quantity I appearing on the right-hand side
can be expressed in terms of functions defined by the
linear approximation:

(A.4)

Using formula (A.2), we can write expression (A.4) in
the form

(A.5)

Here, coefficients Rj and Dij are proportional to the
square of the rf field and are power functions of the
electron velocity vector component:

(A.6)

(A.7)

where

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

In deriving tensor Dij , we took into account its symme-
try relative to permutation of indices i and j.

We have so far not used the explicit expression for
the laser field. Consequently, formulas (A.5)–(A.12)
are valid for an arbitrary dependence of EL on coordi-
nates and time.

We define the time dependence of the laser field in
the form (2.1), retaining an arbitrary coordinate depen-
dence of the amplitude. Substituting formula (2.1) into
the definitions of quantities A, C, and G and integrating
them with respect to time, we confine our analysis to
the first-order terms in the derivatives of the slowly
varying amplitude E0 everywhere except in (A.10). We
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will also take into account the second-order terms in
small parameter εt = (1/ω0)(∂/∂t) in the expression for

. As a result, we find that coefficients Rj and  in
formula (A.5) contain terms varying slowly with fre-
quency along with the terms varying at the doubled
frequency. Accordingly, we represent distribution func-
tion f2 as well as fields E2 and B2 in the form of the sum
of rapidly and slowly varying terms, denoting the latter
by angle brackets 〈…〉 . As a result, we obtain from
Eq. (A.3)

(A.13)

where, in accordance with Eq. (A.5), we have

(A.14)
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(A.20)

(A.21)

Expressions (A.13)–(A.21) allow us to consider var-
ious effects to different degrees of accuracy in small
parameters εT (smallness of the thermal velocity of par-
ticles as compared with the phase velocity of waves)
and εt (smallness of the amplitude variation over a
period of the rf field) in the approximation quadratic in
the rf field. In particular, using these relations, it is pos-
sible to analyze the problem of so-called nonstationary
ponderomotive forces, which had been considered for a
long time mainly in the framework of the hydrodynamic
description of a plasma (see the review article [14]).

Including the largest terms in parameters εt and εE in
expression (A.14), we can write Eq. (A.13) in the form

(A.22)
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Quantity φ is usually referred to as the rf potential.
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Carrying out the Fourier transformation in
Eq. (A.22) in coordinates and time, we obtain the fol-
lowing expression for 〈 f2(ω, k, v)〉:

(A.24)

Using this expression, we find the Fourier component
of the electron current density,

(A.25)

where we have assumed that distribution function F is
isotropic and introduced the standard notation [7]

(A.26)

It should be noted that the rf field is taken into account
in Eq. (A.22) via the two terms on the right-hand side.
In the lowest approximation in small parameters εt and
εT , the contribution to current density (A.25) comes
only from the term proportional to the ponderomotive
potential.

Confining our analysis to potential quasi-static
fields and using expression (A.25), we find the Fourier
component of the electric field strength,

(A.27)

where δεl is the partial contribution of electrons to the
longitudinal permittivity of the plasma,

(A.28)

It should be emphasized that the approach to
describing the quasi-static response of the plasma to the
rf field developed in the Appendix can be used for ana-
lyzing a wider range of problems.
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Abstract—We suggest a new approach for description of the low-energy sector of spin-  kagomé Heisenberg

antiferromagnets (KAFs). We show that a kagomé lattice can be represented as a set of blocks containing 12
spins, having the form of stars and arranged in a triangular lattice. Each of these stars has two degenerate singlet

ground states that can be considered in terms of pseudospin . Taking into consideration symmetry, we show

that the KAF lower singlet band is created from these degenerate states by the interstar interaction. We demon-
strate that this band is described by the effective Hamiltonian of a magnet in the external magnetic field. The
general form of this Hamiltonian is established. The Hamiltonian parameters are calculated up to the third order
of perturbation theory. The ground-state energy calculated in the model considered is lower than those evaluated
numerically in the previous finite clusters studies. A way of experimental verification of this picture using neu-
tron scattering is discussed. It is shown that the approach presented cannot be directly extended to KAFs with
larger spin values. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Unusual low-temperature properties of kagomé
antiferromagnets (KAFs) have attracted much attention
from both theorists and experimenters over the last
decade. Apparently, the most intriguing features were
observed in specific heat C measurements of SrCrGaO

(spin-  kagomé material) [1]. A peak at T ≈ 5 K has

been revealed that is practically independent of mag-
netic field up to 12 T, and C appeared to be proportional
to T2 at T & 5 K.

There is no appropriate theory describing the low-
energy KAF sector. Qualitative understanding of low-

temperature spin-  KAF physics is based mostly on

results of numerous finite-cluster investigations [2–6].
They revealed a gap separating the ground state from
the upper triplet levels and a band of nonmagnetic sin-
glet excitations with a very small or zero gap inside the
spin gap. The number of states in the band increases
with the number of sites N as αN. For samples with up
to 36 sites, it was found that α = 1.15 and 1.18 for even
and odd N, respectively [2, 5]. It is now believed that this
wealth of singlets is responsible for a low-T specific heat
peak and explains its field independence [1, 7].

The origin of the singlet band and the nature of the
ground state are still under debate. Previous exact diag-

3
2
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1
2
---

¶This article was submitted by the authors in English.
1063-7761/04/9803- $26.00 © 20538
onalization studies of clusters with N ≤ 36 [4, 8] revealed
an exponential decay of the spin–spin and dimer–dimer
correlation functions, and therefore the point of view that
KAF is a spin liquid is widely accepted [2, 4–12].

A quantum dimer model (QDM) is now considered
the best candidate for description of low-energy KAF
properties [6, 9, 13–15]. In QDMs proposed for the
kagomé problem in some recent papers [6, 13–16], the
spin Hilbert space is restricted to the states in which
spins are paired into first-neighbor singlets. The main
argument to support this restriction is the coincidence
of the low-energy spectrum and the number of lower
singlet excitations in samples with up to 36 sites with
the exact diagonalization results [13, 15, 16]. At the
same time, it was noted that further studies are required
to analyze this problem. As was recently demonstrated
in [15], an effective Hamiltonian describing the low-
energy KAF singlet sector can be written in this
approach. Unfortunately, it appears to be quite cumber-
some and makes it possible to obtain the result under a
number of crude approximations only [14, 15].

In our recent paper [17], we suggested another

approach for spin-  KAF that differs from the QDMs

discussed above. We proposed to consider a kagomé
lattice as a set of stars with 12 spins arranged in a trian-
gular lattice (see Fig. 1). Numerical diagonalization has
shown that a single star has two degenerate singlet
ground states separated from the upper triplet levels by

1
2
---
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a gap. These states form a singlet energy band as a
result of interstar interaction. It was assumed that this
band determines the low-energy KAF singlet sector. We
have shown that it is described by the Hamiltonian of a
magnet in the external magnetic field where degenerate
states of the stars are represented in terms of two pro-

jections of pseudospin .

This picture possibly reflects only the lowest part of
the lower singlet sector because the number of states in
the band within our approach is 2N/12 ≈ 1.06N [17],
whereas it is now believed that it should be scaled by
the 1.15N law obtained numerically for clusters with
N ≤ 36 [13, 16].

In this, more comprehensive paper, we develop this
star concept. Using the symmetry considerations pre-
sented in Section 2, we prove that the singlet band aris-
ing from the ground states of stars determines the KAF
lower singlet sector. This band is studied in Section 3,
where the general form of the effective Hamiltonian is
established. The Hamiltonian parameters are calculated
up to the third order of perturbation theory. The ground-
state energy calculated in the model considered is lower
than these energies evaluated numerically in previous
finite cluster studies. A comparison between our model
and the QDM is carried out. We demonstrate that our
approach cannot be directly extended to KAFs with
larger spin values. A way to verify this picture experi-
mentally using neutron scattering is discussed. We
summarize our results in Section 4.

2. SYMMETRY CONSIDERATION

We start with the Hamiltonian of the spin-  kagomé

Heisenberg antiferromagnet,

(1)

where 〈i, j〉  and (i, j) denote nearest and next-nearest
neighbors on the kagomé lattice, respectively, shown in
Fig. 1. The case where |J2| ! J1 is considered in this
paper. We discuss the possibility of both signs of the
next-nearest-neighbor interactions, ferromagnetic and
antiferromagnetic. As is shown below, although the
second term in Eq. (1) is small, it can be important for
the low-energy properties.

A kagomé lattice can be represented as a set of stars
arranged in a triangular lattice (see Fig. 1). We first
neglect the interaction between stars and set J2 = 0 in
Eq. (1). A star is a system of 12 spins. We now consider
its properties in detail.

1
2
---

1
2
---

*0 J1 Si S j J2 Si S j,⋅
i j,( )
∑+⋅

i j,〈 〉
∑=
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Because Hamiltonian (1) commutes with all of the
projections of the total spin operator, all of the star lev-
els are classified by the values of S, irreducible repre-
sentations (IRs) of its symmetry group, and are degen-
erate with respect to Sz . The star symmetry group C6v

contains six rotations and reflections with respect to six
lines passing through the center. There are four one-
dimensional and two two-dimensional IRs, which are
presented in Appendix 1. In their bases, the matrix of
the Hamiltonian has a block structure. Each block has
been diagonalized numerically.

As a result, it was found that the star has a doubly
degenerate singlet ground state separated from the
lower triplet level by a gap ∆ ≈ 0.26J1. Ground-state
wave functions can be represented as

(2)

(3)

where functions φ1 and φ2 are shown schematically in
Fig. 2. The bold line there represents the singlet state of
the corresponding two spins, i.e., (|↑〉 i |↓〉 j –

|↓〉 i |↑〉 j )/ .
It can be shown that φ1 and φ2 are not orthogonal:

their scalar product is (φ1φ2) = 1/32. They contain six
singlets, each having the energy –S(S + 1)J1 = –3/4J1. It
can be shown that the interaction between singlets does
not contribute to the energy of the ground states which
is consequently equal to –4.5J1.

Functions φ1 and φ2 are invariant under rotations of
the star and transform into each other under reflections.
Hence, Ψ+ is invariant under all symmetry group trans-
formations. In contrast, function Ψ– is invariant under

Ψ+
1

2 1/16+
------------------------ φ1 φ2+( ),=

Ψ–
1

2 1/16–
------------------------ φ1 φ2–( ),=

2

Fig. 1. Kagomé lattice (KL). There is a spin at each lattice
site. The KL can be considered as a set of stars arranged in
a triangular lattice. Each star contains 12 spins. A unit cell
is also presented (dark region). There are four unit cells
per star.
SICS      Vol. 98      No. 3      2004
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rotations, changes sign under reflections, and is trans-
formed under representation (A.3). Therefore, the
ground state has accidental degeneracy. As shown in the
next section, the next-nearest-neighbor interaction,
which has the same symmetry as the original Hamilto-
nian, removes this degeneracy.

The KAF containing 1 noninteracting stars has an
energy spectrum with a large level degeneracy when
1 @ 1. For example, the ground-state degeneracy is 21

and that of the lowest triplet level is 312(1 – 1). Interac-
tion between stars gives rise to an energy band from
each such group of levels, and it is a very difficult task
to follow their evolution. On the other hand, group the-
ory makes it possible to draw certain conclusions about
the KAF low-energy sector. We now show that the sin-
glet band that stemming from the ground state cannot
be overlapped by those originating from the upper sin-
glet levels.

We consider a cluster with seven stars, shown in
Fig. 3a, and we begin with neglecting the interaction
between them. The symmetry group of the cluster is
also C6v . The ground state has a degeneracy of 27 = 128.
The corresponding wave functions transformed under
IRs of C6v are constructed as linear combinations of

1

2

34

5

67

φ2 = 8

9 10

11

121

2

34

5

6 7

φ1 = 8

910

11

12

Fig. 2. Schematic representation of the two singlet ground-
state wave functions φ1 and φ2 of a star. The bold line shows
the singlet state of two neighboring spins, i.e., (|↑〉 i |↓〉 j –

|↓〉 i |↑〉 j)/ .2

(a) (b)

Fig. 3. (a) A cluster where operator of the interaction
between stars has the same symmetry group C6v  as the
whole cluster; (b) the only configuration of three stars giv-
ing a nonzero contribution to the third term in the perturba-
tion expansion.
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products containing Ψ+ or Ψ– for each star. It is easy to
show, by using the standard procedure of constructing
bases in irreducible representations ([18, 19] and
Appendix 1), that there are at least two ground-state
wave functions of the cluster discussed that are trans-
formed under any given IR.

It is important to mention that the operator of the
interstar interaction in the cluster has the same symme-
try as the intrastar interaction, which is the sum of the
star Hamiltonians. Moreover, the interaction between
stars commutes with the square of the total spin opera-
tor. Therefore, if we increase the interstar interaction
from zero, all the levels move in energy, but their clas-
sification cannot be changed. Levels can cross each
other as the interaction rises from 0 to J1, but crossing
is forbidden for levels of the same symmetry. This is a
consequence of a symmetry theorem proved in [18, 19].
Hence, we can conclude that the lower singlet sector of
the cluster is formed by states that stem from the origi-
nal 128 lower levels.

We can obtain the same conclusions considering
clusters with the symmetry C6v with a large number of
stars. Therefore, we assume in what follows that the
KAF low-energy singlet sector is formed by the states
originating from those in which each star is in one of
the states Ψ+ or Ψ–. Because bands with S ≠ 0 can over-
lap the singlet bands under discussion, we have to sup-
pose that the KAF low-energy properties are deter-
mined by the lowest states in this singlet band.

Because the interaction between stars commutes
with the square of the total spin operator, bands of dif-
ferent S can be studied independently. The KAF lower
singlet sector is considered in detail in the next section.
Investigation of states with S ≠ 0 is outside the scope of
this paper.

3. SINGLET DYNAMICS
In this section, we derive the general form of the

effective Hamiltonian describing the lower singlet sec-
tor. The interstar interaction is considered a perturba-
tion. Although it is not small compared to the intrastar
interaction, there are reasons presented below to use
perturbation expansion here.

Two-star coupling. We begin with considering the
interaction between two nearest stars, still neglecting
the second term in Eq. (1). Initially, there is a fourfold
degenerate ground state with the wave functions

 (where ni = +, –, and the upper index
denotes the stars) and the energy

As can be seen from Fig. 4, the interaction has the form

(4)

According to the standard theory [18], the following

Ψn1

1( )Ψn2

2( ){ }

En1n2

0( ) En1

0( ) En2

0( )+ 9J1.–= =

V J1 S1
1( ) S1

2( ) S3
1( ) S3

2( )⋅+⋅( ).=
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conditions should be satisfied to consider V as a per-
turbation:

(5)

where  = , m1m2

denotes excited singlet levels of the two stars, and ni =

+, –. We have calculated  for ni = +, – using wave

functions obtained numerically and found that all of
these coefficients do not exceed 0.09. Conditions (5)
are, therefore, satisfied. Then, the maximum value of

the sum  is 0.28, which is also suffi-

ciently small. Thus, the interaction between stars is
considered a perturbation in what follows.

We proceed with calculations of corrections to the
initial ground-state energy of two stars. For this,
because the state is fourfold degenerate, we must solve
a secular equation [18]. The corresponding matrix ele-
ments in the third order of perturbation theory are given
by [18]

(6)

where ni , ki = +, –. Obviously, the first term in Eq. (6)
is zero, and the second term can be represented as

(7)

where  are Hamiltonians of the corresponding
stars. The third term in Eq. (6) is to be considered later.
Using the symmetry of the functions Ψ+ and Ψ– dis-
cussed above and the invariance of the system under
reflection with respect to the dotted line in Fig. 4, it can
be shown that the only nonzero elements belong to the
first and to the second diagonals (i.e., with n1 = k1, n2 =
k2 and with n1 ≠ k1, n2 ≠ k2). We have calculated them
numerically with a very high precision by expansion of

Cm1m2
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-----------------------------  ! 1,=
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∑
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∑
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the operator exponent up to the power 150.1 The results
can be represented as

(8)

(9)

(10)

(11)

where a1 = 0.256J1, a2 = 0.015J1, and a3 = 0.0017J1.
The terms of the second diagonal H++; – – = H– –; ++ =
−H+–; –+ = –H–+; + – = a4 = –0.0002J1 are much smaller
than a1, a2, and a3. Therefore, the interaction shifts all
the levels by the value –a1 and removes their degener-
acy. The constants a2, a3, and a4 determine the level
splitting. It is seen that the splitting is very small com-
pared to the shift.

Therefore, the KAF appears to be a set of two-level
interacting systems, and the low-energy singlet sector
of the Hilbert space can naturally be represented in
terms of pseudospins: |↑〉  = Ψ– and |↓〉  = Ψ+. It follows
from Eqs. (8)–(11) that, in these terms, the interaction
between stars is described by the Hamiltonian of a fer-
romagnet in the external magnetic field,

, (12)

where 〈i, j〉  now denotes nearest-neighbor pseudospins,
arranged in a triangular lattice formed by the stars;

1 The difference in these results from those obtained by the expan-
sion of the exponent up to a power of 149 is on the order of
10−5%. So, the method gives nearly precise values. The results
would be the same if one were to use the more common expres-
sion (6) and eigenfunctions of the star obtained numerically.

H++; ++ a1– a2 a3,–+=

H+–; +– a1– a3,+=

H–+; –+ a1 a3,+–=

H––; –– a1– a2 a3,––=

* )zsi
zs j

z )ysi
ys j

y+[ ]
i j,〈 〉
∑ h si

z #+
i

∑+=

1

2

3 4

5

6 7

8

910

11

121

2

34

5

67

8

9 10

11

12

1 2

Fig. 4. Interactions between two stars: V = J1(  ·  +

 · ) and  = J2(  ·  +  ·  +  ·

 +  · ), where the superscripts label the stars.

The system is symmetric under reflection with respect to the
dotted line. 

S1
1( ) S1

2( )

S3
1( ) S3

2( )
Ṽ S1

1( ) S2
2( ) S2

1( ) S1
2( ) S1

2( )

S3
2( ) S3

1( ) S2
2( )
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Contributions to parameters of the effective Hamiltonian (13) from the terms V1, V2, and V3 of the perturbation expansion.
Interaction J2 has been taken into account in V1 and V2 terms only. 1 is the number of stars in the lattice

V1 V2
V3*

Totals
two-stars three-stars

)z 0 –0.007J1 + 0.002J2 –0.013J1 0.010J1 –0.010J1 + 0.002J2

)y 0 –0.001J1 + 0.007J2 –0.001J1 0.001J1 –0.001J1 + 0.007J2

)x 0 0 0.067J1 0 0.067J1

h –0.563J2 –0.092J1 – 0.218J2 –0.161J1 0.080J1 –0.173J1 – 0.781J2

∆#** –0.009J21 –0.768J11 + 1.530J21 –0.361J11 0.304J11 –0.825J11 + 1.521J21

  * This term implies two-star coupling shown in Fig. 4 and three-star interaction in the configuration presented in Fig. 3b.
** Correction to the value #0 = –4.5J11 for noninteracting stars.
s is the spin-  operator; # = –5.268J11; )z = 4a3 =

−0.007J1; )y = 4a4 = –0.001J1; and h = –6a2 =
−0.092J1. Here, 1 = N/12 is the number of stars in the
lattice. The factor 6 appears in the expression for h
because each star interacts with six neighbors. We see
that the magnetic field in the effective Hamiltonian (12)
is much larger than the exchange. In this approxima-
tion, stars, therefore, behave almost like free spins in
external magnetic field and the ground state of the KAF
has a long-range singlet order, which settles on the tri-
angular star lattice and is formed by stars in Ψ– states.

V3 corrections. The field remains the largest term in
the effective Hamiltonian, and the KAF ground state
has the same long-range order if we take the V3 terms in
the perturbation series into account. For the two-star
coupling, the V3 corrections have the form given by
Eq. (6). The terms V3 imply analysis of the three-star
interaction as well. Nonzero contributions from them
have only been obtained for the configuration presented
in Fig. 3b. The secular matrix for three stars is 8 × 8 in
size. We have calculated the V3 corrections with a very
high precision using the integral representation similar
to that in Eq. (7) for the second term in Eq. (6). All the
operator exponents were expanded up to a power of
150. As a result, the low-energy properties of the KAF
are described by the effective Hamiltonian

(13)

where all parameters are given in the table. It describes
two-star coupling. We omit the three pseudospin terms

in Eq. (13) that have the form  and  and
describe the three-star interaction. The corresponding
coefficients are on the order of 10–3J1 and 10–4J1,

1
2
---

* )zsi
zs j

z )xsi
xs j

x )ysi
ys j

y+ +[ ]
i j,〈 〉
∑=

+ h si
z #,+

i

∑

si
zs j

zsk
z si

zs j
ysk

y
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respectively, and are negligible in comparison with
those of the retained terms. We stress that, within our
precision, the Hamiltonian in Eq. (13) is an exact map-
ping of the original Heisenberg model to the low-
energy sector (the excitation energy ω ~ max{)z, )y,
)x, h} ! J1).

As follows from the study of the V3 corrections in
the table, the common shift given by them remains
much larger than the level splitting in both cases of the
two- and three-star coupling. At the same time, the val-
ues of the V3 perturbation terms are approximately two
times smaller than those of the V2 ones. The change in
the effective Hamiltonian from the V3 terms is, there-
fore, significant, and analysis of the perturbation series
cannot be completed at this point for correctly estab-
lishing the effective Hamiltonian. Unfortunately, such
work requires large computer capacity that is not at our
disposal. We must restrict ourselves to the present pre-
cision.

One can judge the applicability of the perturbation
series from the following values of the ground-state
energy of two interacting stars, shown in Fig. 4,
obtained numerically and using the first two orders of
perturbation theory. The ground-state energy of two
noninteracting stars is –9J1. That of two interacting
ones calculated numerically by power method [20] is
−9.62J1. On the other hand, the ground-state energy
obtained using table is –9.42J1 (the respective contribu-
tions of the V2 and V3 terms are –0.27J1 and –0.15J1).

Effective Hamiltonian structure. Although pertur-
bation theory is unsatisfactory in the star model and
many perturbation terms are to be taken into account,
we can now prove that Eq. (13) is the most general form
of the effective Hamiltonian assuming that n-pseu-
dospin couplings with n > 2 are small, as it was in the
case of n = 3 discussed above. We consider possible

terms of the form , , , and . In these cases,
the numbers of functions Ψ+ and Ψ– to the right of the

si
zs j

+ si
zs j

– si
+ si

–
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corresponding matrix elements differ from those to the
left by unity. As has been pointed out above, a kagomé
lattice contains lines of symmetry reflections, and the
star Hamiltonian and interstar interaction are invariant
under these reflections. Because Ψ+ are invariant and
Ψ– changes sign under these transformations, the
matrix elements are equal to themselves with the oppo-
site sign and must, therefore, be zero. Another possible
term

cannot appear in the effective Hamiltonian because the
corresponding matrix elements should be imaginary.

Ground state. As is clear from table, )x and h are
the largest parameters of Hamiltonian (13) in our
approximation. Therefore, the KAF behaves as the
Ising antiferromagnet in the perpendicular magnetic
field. In this case, the classical value of the field at
which spin-flip occurs is hs – f = )x , which is approxi-
mately 2.6 times smaller than h. The ground state must,
therefore, remain ordered with all the stars in the
Ψ− state.

The ground-state energy and that of the upper edge
of the singlet band calculated using table are

and

respectively. Corrections from )x to these values in the
first nonzero order of perturbation theory are given by

(3/16) /h and are negligible. At the same time, the
ground-state energy of the largest cluster with N = 36
that has previously been considered numerically is
−0.438J1N [5]. Hence, we believe that clusters used in
the previous studies were too small to reflect the
Heisenberg KAF low-energy sector at J2 = 0 properly.

Interaction J2. We now show that, in spite of its
smallness, the next-nearest neighbor interaction can
play an important role for low-energy properties. We
have calculated J2 corrections to the parameters of
effective Hamiltonian (13) for the first and the second
terms in Eq. (6) only. There are 12 intrinsic J2 interac-
tions in each star, which splits the doubly degenerate
ground state and, as is seen from table, makes a contri-
bution to magnetic field h and constant #.

As is clear from Fig. 4, the two-star coupling is now
given by the operator

Corrections proportional to J2 were calculated in the
same way as above and are also presented in table. It is

si
xs j

y i
4
--- si

+s j
+ si

–s j
–– si

–s j
+ si

+s j
––+( )–=

4.5– J1 ∆# h/2 3)z/4+ + +( )1 0.452J1N–=
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1)x
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clear that the contribution of the next-nearest interac-
tions to the magnetic field becomes significant if |J2| ~
0.1J1. If J2 < 0 (ferromagnetic interaction), they can
even change the sign of h.

The effect of the next-nearest ferromagnetic cou-
pling for KAF properties was previously studied in [2]
numerically on finite clusters with N ≤ 27 in a wide
range of the values of J2. It was shown there that, at

|J2|/J1 ! 1, the ground state has the  ×  magnetic
structure. At |J2|/J1 ! 1, the ground state is disordered
and there is a band of singlet excitations inside the trip-
let gap. As we demonstrated above, this band is a result
of the star ground-state degeneracy in our approach.

T2 specific heat behavior. There has been much
speculation on the low-temperature dependence of the
KAF specific heat C ∝  T2 observed experimentally for
S = 3/2 (see [7, 21] and references therein). As we found
above, low-T properties are described by effective
Hamiltonian (13) of a magnet, which has a spectrum of

the form eq =  at q ! 1 and can be in
ordered or disordered phases depending on particular
values of the parameters. Small ∆' here implies the
proximity to the quantum critical point at which C ∝
T 2. Such a situation arises in the singlet dynamics of
the model of interactive plaquets [21]. We do not
present the corresponding analysis here because the
parameters of the effective Hamiltonian could be
changed in subsequent orders of perturbation theory.

Experimental verification. In both cases of the
ordered and disordered ground state, the approach pre-
sented in this paper can be checked by inelastic neutron
scattering: the corresponding intensity for the singlet–
triplet transitions should have a periodicity in the recip-
rocal space corresponding to the star lattice. This pic-
ture is similar to that observed in the dimerized spin-
Pairls compound CuGeO3 [22]. In this case, inelastic
magnetic scattering has a periodicity that corresponds
to the dimerized lattice.

Comparison with QDMs. We point out that states
in which all stars are in the Ψ– or Ψ+ state can be repre-
sented as linear combinations of some first-neighbor
dimer states proposed in [15, 16] for QDM. However,
our approach to the kagomé problem is not equivalent
to the QDM. In particular, we take all intermediate
states into account in considering the star interaction
via perturbation theory in Eq. (6), whereas the QDM is
restricted to the first-neighbor dimer subspace as
regards the dimer dynamics.

Unfortunately, we cannot carry out a complete com-
parison between QDM and the star approach at the
present stage. The effective Hamiltonian derived in [15]
was analyzed under crude approximations only. At the
same time, the model presented here also requires fur-
ther studies of the applicability of perturbation theory
for description of the interstar interaction. We also note
that some present-day results obtained within these two

3 3

cq( )2 ∆'2+
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approaches contradict each other. For example, our
model gives the ordered ground state, whereas the
authors of [15] suggest that it is not ordered.

Cases of S > 1/2. We finally note that our consider-
ation of the S = 1/2 KAF cannot be extended directly to
the cases of larger spins. Although functions presented
in Fig. 2, where the bold line shows the singlet state of
the corresponding two spins, remain eigenfunctions of
the Hamiltonian for S > 1/2, we have found numerically
that they are not ground states of the star with S = 1 and
S = 3/2. All details of calculations are presented in
Appendix 2. Another approach for KAFs with S > 1/2
should therefore be proposed.

4. CONCLUSIONS

In this paper, we present a model of the low-energy

physics of spin-  KAFs. The spin lattice can be repre-

sented as a set of stars that are arranged in a triangular
lattice and contain 12 spins (see Fig. 1). Each star has
two degenerate singlet ground states with different
symmetry, which can be described in terms of pseu-
dospin. It is shown that interaction between the stars
leads to the band of singlet excitations that determines
the low-energy KAF properties. The low-energy

dynamics is described by the Hamiltonian of a spin-

magnet in the external magnetic field given by Eq. (13).
The Hamiltonian parameters are calculated in the first
three orders of perturbation theory and are summarized
in the table. Within our precision, the KAF has an
ordered singlet ground state with all the stars in the
state given by Eq. (3). The ground-state energy is lower
than that calculated in the previous finite cluster stud-
ies. We show that our model cannot be extended
directly to KAFs with S > 1/2.

The approach discussed in this paper can be verified
experimentally under inelastic neutron scattering: the
corresponding intensities for singlet–triplet transitions
should have periodicity in the reciprocal space corre-
sponding to the star lattice.
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APPENDIX 1

Irreducible Representations of the Group C6v 

The symmetry group C6v contains six rotations Ck

by the angles 2πk/6 (k = 0, 1, ..., 5) and six reflections,
which can be written as Cku1, where u1 is the operator
of a reflection. One-dimensional irreducible representa-
tions can be represented as follows [18, 19]:

(A.1)

(A.2)

(A.3)

(A.4)

For two-dimensional representations, we have [18, 19]

(A.5)

where two inequivalent representations are given by l =
1 and l = 2.

APPENDIX 2

Star with S = 1 and S = 3/2 

In this appendix, we present the details of numerical
calculations showing that functions presented in Fig. 2,
where the bold line depicts the singlet state of the cor-
responding two spins, are not ground states of the star
with S = 1 and S = 3/2, as this was for S = 1/2.

A simple numerical method for determining the
eigenvalue of a Hermitian operator H of the maximum
modulus (power method [20]) was used. It is based on
the following statement. We consider a state of the sys-
tem f = , where the sum may not include all the
H eigenfunctions. For a given f, the eigenvalue Eextr of
the maximum modulus is determined by

(B.1)

This becomes evident by noting that 〈 f |Hn|f 〉  =

.

Equation (B.1) can be used in numerical calcula-
tions in the following way. The corresponding expres-
sion is calculated for n = 1, 2, …, nmax. Convergence

Ck 1,        u 1 1, ∼∼

Ck 1–( )k, u1 1,∼∼

Ck 1,        u 1 1– , ∼∼
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Ck e
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can therefore be controlled by comparing results with
different n. Studying a full set of vectors f and taking
nmax large enough to match the necessary precision, one
can find the eigenvalue of H with the largest modulus.

In the case of the star, the maximum eigenvalue of
the Hamiltonian is Emax = 18S2J1 (this energy has the
state in which all the spins are along the same direction)
and the energy of singlet states shown in Fig. 2 is Ess =
–6S(S + 1)J1. Because Emax > |Ess| for S > 1/2, we have
to take H = *0 – WI to investigate the lower *0 levels,
where *0 is the star Hamiltonian given by Eq. (1), I is
the unit matrix, and W = (Emax + Ess)/2 + J1. Eigenvalues
of H are therefore shifted down relative to those of *0
by the same value W such that the H eigenvalue with the
largest modulus becomes equal to the *0 ground-state
energy minus W.

We have not found the ground-state energy for the
star with S = 1 and S = 3/2 by this method because the
full set of vectors f should be examined for that. This
operation requires much computer time. However,
studying a number of vectors f, we have obtained that
there are states lower than those discussed above, at
least, by the energy 1.8J1. The method yielded Eextr with
the prescribed precision to the second decimal position
at nmax = 100–300 depending on f and S.
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Abstract—The effect of two types of spin structures on the shape of the Fermi surface and on the map of pho-
toemission intensities for the t–t'–U Hubbard model is investigated. The stripe phase with a period of 8a and
the spiral spin structure are calculated in the mean field approximation. It is shown that, in contrast to electron-
type doping, hole-doped models are unstable to the formation of such structures. Pseudogap anisotropy is dif-
ferent for h- and e-doping and is determined by the spin structure. In accordance with ARPES data for
La2 − xSrxCuO4, the stripe phase is characterized by quasi-one-dimensional FS segments in the vicinity of points
M(±π, 0) and by suppression of the spectral density for kx = ky . It is shown that spiral structures exhibit
polarization anisotropy: different segments of the FS correspond to electrons with different spin polarizations.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is an effective method for studying the electron bands
and Fermi surfaces (FS) of cuprates [1, 2]. This method
provides an image of the FS projection onto the CuO2
plane. The results obtained in early studies (see [1, 2]
and the literature cited therein) corresponded to hole-
type FSs centered at point Y(π, π) of the two-dimen-
sional Brillouin zone. Other versions of the FS topo-
logy were also discussed later. In particular, the existence
of electron-type FSs with the center at point Γ(0, 0) was
predicted for Bi2Sr2CaCu2O8 + δ (BSCCO) [3]. The
revision of the problem [4, 5] apparently confirmed the
initial assumption. At the same time, a transition from
the h-type FS to the e-type FS was discovered for
La2 − xSrxCuO2 (LSCO) upon a transition from the
underdoped to overdoped region of the phase diagram
[6, 7]. On the basis of ARPES data, the existence of a
d-wave superconducting (SC) gap was proved and a
pseudogap was discovered in antinodal directions in the
underdoped compound BSCCO. Recently, band split-
ting and the FS were observed in bilayer cuprates, and
the phase diagram boundary was discovered beyond
which such splitting disappears [8–11]. Analysis of
photoemission induced by circularly polarized light
revealed a state with time-reversal symmetry breaking
(TRSB) in the underdoped compound BSCCO [12].

Wide application of photoemission intensity maps
in the kx , ky , ω space involves the determination of
matrix elements and requires methods for obtaining

† Deceased.
1063-7761/04/9803- $26.00 © 20546
information on the FS from the ARPES data. The prob-
lem of matrix elements was discussed in detail
in [13, 14]. However, in strongly correlated systems,
the topology, shape, and intensities of individual (main
and shadow) segments of the FS also depend on spin
and charge structures, which ensure the lowest energy.

This study is devoted to model analysis of the effect
of various periodic spin structures on the FS shape and
their manifestations in photoemission intensities. The
analysis is based on the t–t'–U Hubbard model. In con-
trast to static structures in magnesium-based com-
pounds, cuprates are instead characterized by dynamic
structures. The lifetimes of such structures are longer
than the corresponding times t ~ 10–6–10–9 s in µ-SR
experiments. Over short time intervals and for pro-
cesses with an energy resolution of δE > "/t, local spin
structures can be treated in the static approximation. In
this case, it is natural to find the structures that corre-
spond to the FS features observed in the ARPES exper-
iments.

Experimental indications of the existence of spin
and charge structures in cuprates are incommensurate
peaks in the spin susceptibility χ''(q, ω  0) for q =
(π ± δq, π), (π, π ± δq) in LSCO, which are obtained
from inelastic neutron scattering [15]; a linear structure
along the CuO bonds with a period of 4a (a is the lattice
constant), which was observed in BSCCO from the
Fourier analysis of tunnel spectra [16]; and a periodic
staggered 4a × 4a structure around vortices in the
mixed state of BSCCO [17].

In this study, we analyze the FS topology and the
intensity maps of photoemission spectra for a number
004 MAIK “Nauka/Interperiodica”
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of possible spin structures in the t–t'–U Hubbard mod-
els. We will use the extremely simple language of the
mean field (MF) method for interpreting the pseudogap
(PG) to give examples of structures with different types
of PG anisotropy and to consider some properties of
photoemission of cuprates in light of the results
obtained for periodic structures. Earlier [18], current
states of the type of an orbital ferromagnet were pro-
poses as latent order parameters (OP) responsible for
the emergence of the pseudogap. In this work, the range
of possible latent OPs is extended to stripe structures
and spiral spin structures. Such structures are stabilized
due to the removal of degeneracy in the states of “hot
spots,” i.e., Van Hove singularities (VHS) of spectra or
the removal of degeneracy in bands located on parallel
FS segments in the case of nesting.

The article has the following structure. In Section 2,
the t–t'–U Hubbard model is considered and a simpli-
fies mean-field approximation is used for describing the
normal sate. The MF equations are formulated for an
arbitrary periodic structure with spin density waves
(SDW) and charge density waves (CDW). The methods
for visualizing the FS and the intensity map of ARPES
spectra are considered in Section 3. Typical examples
of FS and ARPES intensity maps are given in Section 4
for homogeneous MF solutions with the AF spin order.
On such solutions, the emergence of the pseudogap
with various types of anisotropy in h- and e-doped sys-
tems is traced. The results obtained for inhomogeneous
spin and charge structures are considered. These struc-
tures include stripe phases of antiphase AF domains
along the y bonds with a domain width of 4a, spiral spin
states, and periodic 1D and 2D structures with charge
modulation. In Section 5, various degrees of stability of
homogeneous AF solutions relative to the formation of
stripe and spiral spin structures for e- and h-doped mod-
els are demonstrated. Features of photoemission for
these structures, the methods for their testing, and the
correspondence of these structures to some ARPES
data for cuprates are discussed in Sections 6 and 7.

2. PERIODIC SOLUTIONS 
OF THE HUBBARD MODEL 

IN THE FRAMEWORK
OF THE MEAN FIELD METHOD

We will study the effect of nesting and the formation
of periodic structures on the FS and the energy bands in
the normal state of cuprates by applying the MF method
to the initial Hamiltonian of the t–t'–U Hubbard model,

(1)

(2)

We will assume that t = 1 and will measure all energies
and parameters U and t' in units of t. Hamiltonian (1) is

H T Unn↑ nn↓ , T
n

∑+ ekckσ
† ckσ,

σ k,
∑= =

ek 2t kxcos kycos+( ) 4t' kx ky.coscos+=
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insufficient for describing the SC order in the MF
approximation. In accordance with some approaches,
the SC state arises due to attraction between electrons of
neighboring sites, which is of the correlation type. The
interaction of the type of correlated jumps in the effective
Hamiltonian was derived, for example, in [19, 20]. In the
empirical version, this can be, for example, Hamito-
nian (1) supplemented with the interaction between
nearest neighbors of the form

(3)

with κ < 0. In this study, however, we will analyze only
the normal state and confine the analysis to the MF
treatment of the initial Hamiltonian (1).

Let us consider a periodic structure with the 2D
translation vectors

(4)

Suppose that a unit cell contains nc centers with coordi-
nates j = (jx, jy) so that an arbitrary site of the 2D lattice,

(5)

is described by integers L1, L2 (unit cell coordinates)
and by numbers j = (jx, jy) fixing a lattice site. Two-
dimensional vectors B1, B2 of the reciprocal lattice sat-
isfy the equations EiBj = 2πδij . (Components Ei and Bj

are given in units of constants of the direct and recipro-
cal lattices.)

We denote by  the quasimomentum within the

principal Brillouin zone  of the periodic structure in
contrast to quasimomentum k varying within the Bril-

louin zone G of the initial lattice. The areas of  and G
amount to 4π2/nc and 4π2 and are limited by the condi-
tions

(6)

The order parameters for the periodic MF solutions are
the electron densities and the vectors of average spin for
each site of the unit cell,

(7)

Here, index µ enumerates the spin vector components
and NL = N/nc is the number of unit cells, nc being the
number of centers in a cell.

In the MF approximation, the mean energy in
model (1) is given by

(8)

and the wave function is determined by the population

V κ cnσ
† cm σ–,

† cm σ–, cn σ,

nm〈 〉 σ,
∑=

E1 E1x E1y,( ), E2 E2x E2y,( ).= =

n n L j,( ) n1 n2,( ) E1L1 E2L2 jx jy,( )+ += = =

k̃

G̃

G̃

k̃ G ˜ : k̃Bi∈ π ; k G : kx y( )∈ π .≤≤

r j
1

NL

------ rn L j,( )〈 〉 , Sµj

L

∑ 1
NL

------ Sµ n L j,( ),〈 〉 .
L

∑= =

H T〈 〉 NLU r j
2 S jµ

2

µ
∑–

 
 
 

j

∑+=
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of the one-electron eigenstates  of the linearized
Hamiltonian

(9)

The latter can be split into independent contributions

for each value of the reduced quasimomentum . Here,

 and  are the operators corresponding to one-elec-
tron mean values (7). In the momentum representation,
the eigenstates of Hamiltonian (9) can be expanded in
the set of 2nc Fermi operators,

(10)

Here,  varies within  and the set of pairs of integers

(m1, m2) is such that vectors  + Bm cover the entire
phase space G. Matrix Wmσ, λ of eigenvectors and vector

 of eigenvalues are determined by diagonalozation

of matrix  in the basis :

(11)

Here, we have

(12)

(13)

The choice of j0 (the origin from which the sites in a cell
are counted) is arbitrary and affects only the phases. In
turn, order parameters (7) themselves can be calculated
in terms of the eigenvector matrix W and Fermi func-
tions f:

(14)

The Pauli matrices σµ and σ0 in this expression corre-
spond to components Sµj and rj , respectively. Equa-
tions (11)−(14) determine the self-consistent solutions
in the MF approximation.

For a periodic structure with a definite symmetry,
the combination of equivalent atoms into groups con-

χkλ
†

Hlin T NL 2Ur jr̂ j 2USµjŜµj–{ }
j

∑+ ĥk̃.

k̃ G̃∈

∑= =

k̃

r̂ j Ŝµj

χ
k̃λ
† c

k̃ Bm+ σ,
† Wmσ λ, k̃( ),

m σ,
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m m1 m2,( ); Bm B1m1 B2m2;+= =
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siderably reduces the number of independent order
parameters and often reduces matrix (12) to the real
matrix when j0 is chosen at the symmetry center of the
unit cell of the structure.

3. METHODS FOR VISUALIZING 
THE FERMI SURFACE 

AND THE GENERALIZED FERMI SURFACE

The Fermi boundaries and the quantity that can be
called the generalized Fermi boundary (GFS) can be
determined from the ARPES data using several meth-
ods. These methods are considered in detail in [13], and
each method can be put in correspondence to a method
of constructing FS and GFS maps in model calcula-
tions.

One of these methods employs the photoemission
intensity map I(k, ω) for electrons with momentum com-
ponent k in the ab plane and with energy Ee = hν – ω:

(15)

(16)

Intensity (15) is determined by the product of the
squared matrix element M(k), spectral density A(kω),
and Fermi function f. In order to compare the intensity
with the observed ARPES signal, a convolution of the
product with the Gaussian function Rωk [13] with
parameters characterizing the energy and momentum
resolution is usually carried out in Eq. (15). In Eq. (16),
α and γ characterize the states of the entire system, β =
1/kT, and µ is the chemical potential. The dependence
of matrix element M on k and its role were studied
in [13, 14]. Here, we assume for simplicity that the
matrix element is constant since we are interested in the
effect of periodic structures and transition processes on
spectral density A(kω) and the photoemission intensity.

In the one-electron MF approximation, we have

(17)

Two-dimensional index m = (m1, m2) passes through all
independent transition vectors Bm = B1m1 + B2m2; λ =
1, …, 2nc enumerates proper Fermi operators of linear-

ized Hamiltonian  with reduces momentum . We
calculate function A(kω) using the standard substitution
of the δ function in Eq. (17) by a function of a finite

width Ω , e.g., of the form  = cosh–2(ω/Ω).
Another method for introducing broadening is to use
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(‡) (b)

Fig. 1. Fermi surfaces for homogeneous AF solutions in hole- (a) and electron-doped (b) models with parameters U = 4, t' = 0.3,
δ = |1 – n| = 0.2 in the underdoped region on plane –π < kx , ky < π. Hole and electron pockets are located around points (±π/2, ±π/2)
or (±π, ±π).
                    
the self-energy part chosen empirically in [13]. The
construction of map I(kx, ky, ω = 0) makes it possible to
visualize both the main and shadow segments of the
Fermi boundary, which are manifested with a lower or
higher intensity.

It should be noted that band energies are periodic in
the k space:  =  for any m = (m1, m2). How-

ever, quantity  in spectral function (17)
and, accordingly, photoemission intensity (15) do not
possess such a periodicity. For this reason, different FS
segments are manifested with different intensities even
for the matrix element in Eq. (15) independent of k in
view of the compound nature of band operators (10) in
the presence of SDW and CDW structures (i.e., transi-
tion processes). In calculating I(k, ω), the correspon-

dence of a given vector k to quantities  and m =

(m1, m2) is determined by the equation k = (k) +
m1B1 + m2B2.

Other methods, which are adequate to the process-
ing of ARPES data, were also proposed for visualizing
the FS in model calculations. One of such methods
employs the construction of the map of gradient gk =

 of smoothed occupancy  = nk ⊗  Rk . It is also
possible to construct the maps of intensity averaged
over a definite frequency window 2∆ω:

(18)

Here, R is the corresponding Gaussian function of
width ∆ω, which imitates a finite resolution in ω. The
construction of such maps involves the normalization
of a function to its maximum value. Consequently, the
brightness and width of the Fermi boundaries on such
maps is determined by the width of smoothing function
Rk or frequency window ∆ω in Eq. (18). In particular,
for a large width ∆ω, a map of functions I∆ω or gk shows
not only the actual Fermi boundaries with a sharp occu-
pancy step, but also the boundaries with a substantial

E
k̃ Bm+ λ, E

k̃ λ,

Wmσ λ, k̃( ) 2

k̃
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∇ knk nk
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but smoother variation of n(k). The connection between
such segments and the emergence of a dielectric gap
and anisotropic pseudogaps will be illustrated below.

4. TOPOLOGY OF THE FERMI SURFACE 
AND GENERALIZED FERMI SURFACE 

FOR HOMOGENEOUS ANTIFERROMAGNETIC 
MEAN-FIELD SOLUTIONS

In this section, we partly repeat the well-known
results obtained in [21–28]. Homogeneous AF solu-
tions in the MF approximation are characterized by the

average alternating spin d0 = 〈Snz〉 . The corre-

sponding magnetic Brillouin zone  is confined by
the limits |kx ± ky| ≤ π. The known energies of the upper
and lower Hubbard bands are given by

(19)

The Van Hove singularity in the density of states (DOS)
of the lower Hubbard band corresponds to hot spots
M = (±π, 0), (0, 
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given homogeneous AF solutions. For small values of
t'/t ~ 0.1, the pseudogap disappears when the doping
level increases to a certain value of δopt . At this instant,
the chemical potential passes through a VHS in the
DOS. The peak of the DOS at the Fermi level for δ =
δopt ensures the maximal value of Tc for such a doping
level. Simultaneously, the FS changes its topology at
δ = δopt , being transformed into a single large FS with
electron-type segments in the vicinity of hot spots. In
this case, optimal doping level δopt increases with t'.
In [21−23, 25, 27], such a behavior of phase curves
Tc(δ) is described and the geometrical interpretation of
the PG is given for the t–t'–U and t–t'–J models on the
basis of more rigorous approaches. In these
approaches, the value of δopt is smaller than in the sim-
ple MF approximation.

When the effective attraction between electrons
from neighboring sites is included, homogeneous MF
solutions lead to an SC order with the d symmetry,
which is compatible with a local AF order [22, 23]. For
underdoped cuprates, the total gap (the shift of the EDC
edge in ARPES), which depends on the PG and SC gaps
in accordance with the relation

(20)

explains [26, 27] the nonlinear dependence of gap ∆(z)
on z = coskx – cosky and other features of the observed
gap [29−31].

In the case of electron doping, a similar analysis
shows that electron pockets appear around points M in

∆ ∆PG
2 ∆SC

2+ ,=

My

Mx

L1

L2

Y

Fig. 2. Map of averaged intensity (18) with ∆ω = 0.05t on
plane 0 < kx , ky < π for the same electron-doped model as in
Fig. 1b. Line L1–L2 of the generalized Fermi boundary cor-
responds to energies below the Fermi level, i.e., to the emer-
gence of a PG with anisotropy differing from anisotropy of
the PG in BSCCO.
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underdoped models (Fig. 1b). The main (nonshadow)
segments of the FS in this case face point Y(π, π).

Figure 2 shows the map of averaged intensity (18)
with a frequency window width of ∆ω = 0.05t. As
∆ω  0, the maximum maxI(k, ω)  ∞ on the true
Fermi boundaries, and segment L1–L2 on the normal-
ized intensity map becomes invisible. In addition to the
FS around the electron pockets, we can see boundary
L1−L2 corresponding to the maximum of the occupancy
gradient in the diagonal direction. On this segment of
the boundary, we have ek, λ = 2 – µ < 0. This indicates the
emergence of a PG on segment L1−L2 around points
kS = (±π/2, ±π/2). The neighborhoods of these points
are responsible for the formation of VHS in the DOS of
the upper Hubbard band in a model with t' > 0. Further
e-doping transforms the FS for homogeneous MF solu-
tions into a single large surface around point Y(π, π). As
a result of inclusion of a pairing interaction of type (3)
and d superconductivity combined with nonstandard
PG anisotropy for the underdoped region, the minimal
energy ∆min of Fermi excitations does not vanish even
in the nodal d directions of the SC gap:

(21)

As regards the behavior of such quantities as heat
capacity and λ–2(T) for T  0, the finite value of the
minimal gap for Fermi excitations is perceived as the
generalized s symmetry of the SC order. In [32], the
crossover from some properties characteristic of d sym-
metry to those typical of s symmetry of the SC order
was considered for n-type cuprates X2 – xCexCuO4, X =
Nd and Pr. Homogeneous model solutions predict
reverse evolution of these properties from those typical
of s-type superconductors to the properties characteris-
tic of d-type superconductors upon an increase in the
doping level. In spite of this contradiction, the solution
is interesting as an example of the fact that d supercon-
ductivity combined with nonstandard PG anisotropy
may imitate in some properties the SC order with the
generalized s symmetry.

The electron pockets around points M in n-type
underdoped cuprates, which were predicted for the first
time in [22, 24], were indeed observed on the ARPES
intensity maps for underdoped compounds NCCO [33].
The evolution of FSs from nonconnected small FSs to
a large FS of the hole type around point Y(π, π) was
traced. The parameters of the t–t'–t''–U model repro-
ducing the observed evolution were selected in [28].
Among other things, the assumption that effective
potential U = U(δ) decreases with increasing doping
level had to be made. According to [28], such a screen-
ing of U combined with higher harmonics (~t '') in the
band energy leads to the simultaneous formation of
hole pockets around point k = (π/2, π/2) and electron
pockets around kM from the lower and upper Hubbard
bands, respectively. For δ ~ 0.2, the Mott gap in com-
pounds NCCO is closed [28]. The emergence of a PG in

∆min min ∆PG
2 ∆SC

2+( ) 0.≠=
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diagonal directions in underdoped NCCO compounds is
also confirmed by Raman scattering data [34].

Proceeding from the FS shape in underdoped mod-
els, general considerations concerning a possible sym-
metry of the SC order in these compounds can be for-
mulated. Suppose that the SC transition is caused by
attraction of type (3) for electrons at the neighboring
sites of bonds with the x and y orientations. This inter-

action could lead to states  of cou-

pled pairs with ϕs(d)(k) = coskx ± cosky of generalized s
or d symmetry. However, the state of a coupled pair
must be orthogonal (or nearly orthogonal) to one-site

state  of the pair, which is suppressed by one-
center repulsion U. In underdoped model with h or e
doping, in which pockets of only one (electron or hole)
type are present, the d symmetry is the only possibility
to achieve orthogonality of the function of a pair to the
one-center function in view of orthogonality of the
angular parts of these functions. Indeed, the main (non-
shadow) segments of the FS in this case are either com-
pletely inside the magnetic Brillouin zone boundary
(see Fig. 1a) or completely outside this boundary (see
Fig. 1b). Consequently, the s function ϕs(k) = coskx +
cosky of a pair does not change its sign on the main
regions of the FS and, hence, cannot be orthogonal to
the one-center function of the pair.

The situation changes for δ > 0.15 in the electron-
doped models with the parameters selected in [28]. In
this case, electron pockets around point M due to filling
of the upper Hubbard band coexist with hole pockets
around point S(±π/2, ±π/2) due to partial depletion of
the lower Hubbard band. As a result, the main segments
of the FS lie partly outside and partly inside the mag-
netic Brillouin zone boundary. Such segments corre-
spond to different signs of pair function ϕs(k) = coskx +
cosky; i.e., the orthogonality of the pair s-wave function
to the one-center function can be ensured due to orthog-
onality of the “radial” parts of the functions if we con-
ditionally refer to quantity z = coskx + cosky as a radial
variable. It was very important to verify experimentally
whether such an SC order of s symmetry is realized in
NCCO and PCCO compounds for δ > 0.15. Analogous
situations and problems may also arise during the for-
mation of periodic SDW and CDW structures since the
energy profile along the magnetic Brillouin zone
boundary changes not only upon a change in t' and t'',
but also as a result of the formation of these structures.

5. INSTABILITY TO THE FORMATION
OF SPIN STRUCTURES 

IN n- AND p-TYPE CUPRATES

The degree of instability of homogeneous AF states
to the formation of periodic spin and charge structures
in doped models can be estimated on the basis of MF
calculations. Figure 3 shows the dependences of mean

ϕ s d( ) k( )ck↑
† ck↓

†

k∑

cn↑
† cn↓

†
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energy  = 〈H〉  on doping level δ = |1 – n| for the nor-
mal state in hole- and electron-doped models for a num-
ber of structures in comparison with the energy of
homogeneous paramagnetic (PM) and AF solutions. In
addition to the latter solutions, MF solutions were
obtained (or sought) for the following structures.

1. A stripe structure consisting of antiphase AF
stripes parallel to the y axis with domain walls at the
bonds. The structure is characterized by a unit cell with
eight centers and vectors E1,2 = (4a, ±a). For analogous
structures with domain walls passing through lattice
sites, the mean energy is close to but slightly higher
than the energy of the first structure. The Fermi surfaces
of these structures are also similar; for this reason, we
will consider only the former structure.

2. Spiral spin structures with

, (22)

Q = Qx = π(η, 1) or Q = Qxy = π(η, η) with η ~ 0.75–0.8.

3. Staggered structures with antiphase square 4a ×
4a domains. We do not consider the data on these struc-

H

Sn〈 〉 d0 ex Qn ey Qnsin+cos[ ]=
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Fig. 3. (top) Dependence of the mean energy (per site) in the
hole-doped t–t'–U model with parameters U = 4.0 and t' =
0.3 for different spin structures: for a PM state, for a homo-
geneous AF state, for a stripe phase with a period of 8a of
the structure along the x axis (dashed curve), and for spiral
states with Q = π(η, 1) (curve 2) and Q = π(η, η) (curve 3)
for η = 0.8. (bottom) The energies of the same structures in
the electron-doped model. For convenience of representa-
tion, common function F(δ) = U(n2 – 1) is subtracted from
all energies.
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(‡) (b)

Fig. 4. (a) Photoemission intensity map I(k, ω = 0) for a stripe structure with AF stripes of width 4a, parallel to the y axis, and with
domain walls centered at bonds. (b) The same averaged over two stripe structures with the x and y orientations. The model param-
eters are U = 6 and t' = 0.1.
tures since their energies are higher than the energies of
the stripe structures and their FSs have a nonrealistic
form.

4. The current states of an orbital antiferromagnet,
which were proposed in [18], cannot be realized in
model (1) in the MF approximation without using addi-
tional interactions with U/t = 4–6. In the case of hole-
doping, analogous solutions with alternating spin cur-
rents in plaquets and with the rotation of the local spin
by π/2 upon a transition between neighboring sites
along the perimeter of a plaquet exist only for large val-
ues of U (U/t ≥ 5). The energies of such structures are
higher than the energy for stripe and spiral structures
and the shape of their FSs is nonrealistic. For this rea-
son, the data on these structures are not given here.

The calculations were made mainly for structures
with a fixed (commensurate) period of 8a, although the
optimal size of domains or vector Q for the spiral state
depends on the doping level. Dependences Q(δ) for the
spiral state were calculated by many authors (see, for
example, [35]). However, we are interested here in the
typical features of FSs and anisotropy of PGs for defi-
nite structures.

It can be seen from Fig. 3a that, in the case of h dop-
ing, homogeneous AF states are unstable to the forma-
tion of stripe structures and spiral spin states. The for-
mation of such structures extends the doping region in
which nonzero values of local spin are preserved
(〈Sn〉 ≠ 0); vanishing of these values corresponds to

merging of energy  for a given structure with the
energy of the PM state. At the same time, in the case of
electron doping, the MF energies of all the structures
listed above were found to be higher than the energy of
the homogeneous AF state. The higher stability of the
AF state with e doping corresponds to a broader doping
region of the long-range AF order in n-type cuprates.
The peak in the spin susceptibility for Q ~ (π, π) in
these cuprates (in contrast to incommensurate values of
Q in p-type cuprates) also indicates the absence of

H δ( )
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stripe phases or spiral spin structures in these com-
pounds.

6. FERMI SURFACES FOR STRIPE STRUCTURES:
ANALOGY WITH THE DATA 

ON COMPOUND LSCO

Figure 4a shows the intensity map I(k, ω = 0) calcu-
lated by formulas (15) and (17) for a stripe structure.
The structure consists of AF stripes parallel to the y axis
for a model with U/t = 6, t '/t = 0.1 for n = 0.8. In the case
of the homogeneous AF solution, this doping is close to
that for which the Fermi level passes through a VHS in
the DOS of the lower Hubbard band. The stripe struc-
ture parallel to the y axis splits the VHS, makes hot
spots Mx = (π, 0) and My = (0, π) nonequivalent, and
forms the main and shadow horizontal segments of the
FS. Figure 4b shows an intensity map symmetrized in
structures with domains of the x and y orientations. The
FS shape is analogous to that obtained in other calcula-
tions of stripe phases [36]. It differs considerably from
the FS typical of homogeneous AF solutions in a model
with t' > 0. The main difference, i.e., the absence of the
Fermi boundary in the diagonal direction, indicates the
emergence of a PG at kx = ±ky . As a consequence, we
can expect that, even in the case of the d symmetry of
the SC state, the minimal energy of Fermi excitations
differs from zero in accordance with an equation simi-
lar to Eq. (20) for homogeneous AF solutions with e
doping. As the value of t' increases to 0.3, small hole
pockets are formed additionally at points kS = (π/2, π/2).
The major part of the previous zero Fermi boundary, in
particular, at point My = (0, π), becomes a PG and
dielectrized Fermi boundary; only quasi-one-dimen-
sional segments of the FS, which are normal to the
directions of stripes (y axis), are preserved. Accord-
ingly, a quasi-one-dimensional conductivity of such a
structure can also be expected. Invisible PG segments
of the generalized Fermi boundary can be visualized
while constructing smoothed intensity (18) with a large
frequency window ∆ω.
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Fig. 5. (a) Self-energies Eλ(k) in the MF problem as functions of quasimomentum varying along the contour Y(–π, π)–My(0, π)–
Y(π, π)–Mx(π, 0)–Y(π, –π) for a stripe structure with a period of 8a along the x axis. (b) Map of intensities I(k, ω) for k varying along
the same contour. The map reveals the same energy levels Eλ(k), but with different weights determined by the structure of band
states. The parameters of the model are the same as in Fig. 4. The Fermi level is marked by the horizontal line.
                    
Figure 5a shows one-electron energies Eλ(k) (eigen-
values of the MF problem) as functions of the quasimo-
mentum varying along the contour

As usual, band energies Eλ(k) are periodic functions
with a period of π/4 on the first (horizontal) segment of
contour Y – My – Y. However, the intensity map reveals
only nonshadow energy levels for a given k. Figure 5b
represents such a map on plane k, ω for k varying along
the same contour. The intersection of energy levels with
the Fermi level in the vicinity of Mx corresponds to the
quasi-one-dimensional FS shown in Fig. 4a.

The conservation of the FS in the vicinity of Mx and
the formation of a pseudogap in the vicinity of My and
for kx ~ ky are due to the action of the spin-dependent
mean field; the principal harmonic of this field is
F(n) ∝  cosQηn with Qη = (ηπ, π) (here, η = 0.75). This
field elevates the zero level e(0, π) at point My , repelling
it from lower zero levels ek at point k = (±ηπ, 0) in the
vicinity of Mx . The same field lowers (below the chem-
ical potential) zero level e(π, 0) at point Mx , repelling it
from higher zero levels e(±0.25π, π) near My .

The ARPES data for underdoped LSCO compound
[6, 7, 37] are in qualitative agreement with the features
of the intensity maps represented in Fig. 4. The pres-
ence of two segments of the FS with different proper-
ties (in the vicinity of points M and in diagonal direc-

Y π– π,( ) My 0 π,( )– Y π π,( )– Mx π 0,( )– Y π π–,( ).–
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tions), systematic suppression of the spectral weight in
the vicinity of point (π/2, π/2) as compared to BSCCO
compounds or with overdoped LSCO samples, and
straight FS segments near point (π, 0) with a width ~π/2
were also interpreted as the proof of the existence of
inhomogeneous structures in underdoped compound
LSCO [6, 7, 37] (in particular, the combination of
order–disorder with stripe structures [38]). Another
proof of the existence of stripe structures is the obser-
vation of neutron scattering peaks for incommensu-
rate momenta (π ± δ, π) and (π, π ± δ) in compound
LSCO [15].

Anisotropy of the FS (see Fig. 4a) suggests a revi-
sion of the admissible symmetry of SC order compati-
ble with a stripe structure. For structures symmetric rel-
ative to transposition of axes x  y, the d-wave SC

order  ∝  (coskx – cosky) is expected. It
ensures the orthogonality of the pair function to one-

center pair function  suppressed by one-center
repulsion U. However, in the case of the quasi-one-
dimension FS depicted in Fig. 4a, the generalized

s-wave pair function  ∝  (coskx + cosky) is
more probable. The latter function may be orthogonal
to the one-center pair function due to nodal lines kx ±
ky = ±π. The role of nodal lines in the angular depen-
dence of the SC gap will now be played by the nodal
lines of the “radial” part of the pair function if quantity
z = coskx + cosky can be treated as the radial variable.
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Fig. 6. (a) Photoemission intensity map I↑(k, ω = 0) for electrons with spin polarization σ = ↑  for a spiral structure with Q =
π(0.8, 1). (b) The same averaged over two spin polarizations σ = ↑ , ↓  and two structures with Q = (0.8π, π) and Q = (π, 0.8π) in the
model with parameters U = 6 and t' = 0.1.
Verification of this hypothesis requires appropriate cal-
culations.

7. SPIRAL SPIN STRUCTURES 
AND SPIN POLARIZATION OF VARIOUS 

SEGMENTS OF THE FERMI SURFACE

It was found earlier [39] that spiral spin structures (22)
exhibit polarization anisotropy of the FS. Different seg-
ments of the FS correspond to electrons with different
predominant spin polarizations. Indeed, the mean field
from a spiral spin structure mixes one-electrons states

 and leads to splitting of VHS as in the
case of stripe structures. However, in contrast to stripe

structures, occupancies nk, σ =  and intensities
Iσ(kω) of photoemission of electrons with a fixed polar-
ization σ depend on the spin polarization σ. Quantities
Iσ(kω) are defined by formulas (15) and (17), but do not
contain summation over σ on the right-hand side of
Eq. (17).

Figure 6 shows the intensity map Iσ = ↑(k, ω = 0) for
a spiral state with Q = (0.8π, π) for spin polarization
σ = ↑  on the z axis perpendicular to the plane of rota-
tion of mean spins with a spiral configuration. Thus,
FSs revealed in photoemission of electrons with polar-
ization σ = ↑  exhibit anisotropy. For the opposite spin
polarization, the FS is the reflection of the FS depicted
in Fig. 6a in the plane x = 0. Figure 6b shows the Fermi
surfaces symmetrized in spins and in two types of struc-
tures with Q = (0.8π, π) and Q = (π, 0.8π). In the vicin-
ity of point M, the symmetrized FSs have the intersec-
tion with M–Y line (typical of hole-type FS) as well as
with M – Γ line (typical of the electron-type FS). Such
double intersections were apparently observed in the
ARPES spectra for BSCCO [1, 2, 40]. Direct compari-
son with experiment is impossible since the two-layer
splitting is disregarded in the model.

Polarization anisotropy of the FS directly reflects
the presence of spin currents J↑ = –J↓ . According
to [39], this anisotropy could be responsible for the

ck ↑,
† ck Q+ ↓,

†,{ }

ckσ
† ckσ〈 〉
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effect of time-reversal symmetry breaking (TRSB) in
the dichroism of the ARPES signal observed for the
underdoped compound BSCCO [12]. (In the alternative
hypothesis [12, 41], the TRSB effect is explained by a
peculiar aligning of circular microcurrents.) A direct
observation of polarization anisotropy of the FS
requires selective (in spin polarization) measurement of
the photoemission intensity. In the measurements of the
total photoemission intensity, such a selectivity was
achieved in the so-called spin-orbit photoemission [42].
Such measurements are also possible in principle in
ARPES. It is important to continue the study of TRSB
in the underdoped BSCCO compound; in particular, it
is expedient to find out whether this effect and the cur-
rent associated with it are of volume or surface nature.
For the time being, it remains unclear whether the
ground state in BSCCO can be presented as a set of
quasi-static domains with a spiral structure and with a
system of spin currents associated with this set.

8. CONCLUSIONS

The MF analysis of the normal state in the t–t'–U
Hubbard model revealed that the FS topology and PG
anisotropy in the underdoped region depend on the sign
of t', the type of (e- or h-) doping, and the spin structure.
In hole-doped models, the homogeneous AF mean-field
solution is found to be unstable to the formation of two
types of spin structures, viz., the stripe phase and the
spiral spin structure. However, in models with electron
doping, the homogeneous AF solution remains the low-
est among the solutions considered. This corresponds
to a large (in doping level) region of existence of the AF
order in n-type cuprates (such as NCCO and PCCO) as
well as to the commensurate peak observed in neutron
scattering for these compounds at Q = (π, π). For homo-
geneous AF solutions in underdoped models, a PG
arises in the antinodal direction k ~ (π, 0), (0, π) for hole
doping and in diagonal (nodal) directions kx = ky for
electron doping. The latter solution gives example of a
system for which d-type superconductivity is combined
with a finite minimal gap of Fermi excitations. In accor-
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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dance with ARPES data for the LSCO compound, the
calculation of the stripe phase showed that it is charac-
terized by quasi-one-dimensional segments of the FS,
the emergence of a PG, and the suppression of spectral
density in the diagonal direction and in the direction
parallel to stripe domains. Such anisotropy of the FS
and PG is incompatible with the d symmetry of the SC
order. For a spiral spin structure, polarization anisot-
ropy of the FS is detected when different FS segments
correspond to different spin polarizations of electrons.
This property can be used for testing spiral spin struc-
tures. Among unsolved problems, we can mention the
study of the structures of valence bonds and current
states and the transition from analysis of quasi-static
structures to dynamic fluctuations.
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Abstract—The spectral density, dispersion relations, and the position of the Fermi level for n-doped composi-
tions based on NCO and LCO were calculated within the framework of the generalized tight binding method.
As distinguished from LCO, the dielectric gap in NCO is nonlinear in character. We observe a virtual level both
at the bottom of the conduction band and at the top of the valence band in both compounds. However, its posi-
tion corresponds to the extreme bottom of the conduction band in LCO and is 0.1–0.2 eV above the bottom in
NCO. This explains why we observe Fermi level pinning in n-LCO as the concentration of the doping compo-
nent grows and reproduce its absence in NCCO at low doping values. We also found both compositions to be
unstable in a narrow concentration range with respect to a nonuniform charge density distribution. The relation
between the phase diagram for NCCO and the calculated electronic structure is discussed. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Superconducting n-type cuprates Nd2 – xCexCuO4
(NCCO) and Pr2 – xCexCuO4 (PCCO) have certain spe-
cial features that distinguish them from p-type cuprates.
Rare-earth metal and oxygen layers are shifted in their
crystal structure with respect to CuO2 in such a way that
there is no nearest neighbor (the apical oxygen) for cop-
per along the c axis; that is, the structural element of the
CuO2 layer is a plane CuO4 cluster, whereas it is a CuO6
octahedron in La2 – xSrxCuO4 (LSCO). The phase dia-
gram of NCCO is substantially different from the phase
diagram of LSCO (Fig. 1). The initial undoped
Nd2CuO4 (NCO) composition is an antiferromagnet
and dielectric. Doping with electrons rather weakly
suppresses the antiferromagnetic state [1] because of
the diamagnetic dilution mechanism [2]. The supercon-
ducting state borders on the antiferromagnetic phase
and exists in a narrow concentration range xmin < x <
xmax, where xmin = 0.14 and xmax = 0.17. In the normal
state, the electrical conduction of NCCO is described by
a Fermi-liquid quadratic temperature dependence [3], as
distinguished from linear dependences for hole high-TC
superconductors [4]. It was shown for NCCO by angle-
resolved photoelectron spectroscopy [5] that the dielec-
tric gap in this compound was not rectilinear. The min-
imum of the conduction band and the maximum of the
valence band belong to different Brillouin zone points,
k = (π, 0) and k = (π/2, π/2), respectively. The disper-
sion relations in NCCO for the top of the valence band,
1063-7761/04/9803- $26.00 © 20556
however, remain virtually identical to those in LSCO.
Angle-resolved photoelectron spectra also revealed the
appearance of intragap states when either NCCO was
doped with electrons or LSCO was doped with holes [5].
As distinguished from LSCO, where chemical potential
pinning occurs at low x, NCCO shows a more complex
concentration dependence of the chemical potential [6].

This is one more important difference between
NCCO and LSCO, which is related to the possible role
that neodymium f electrons can play in the formation of
the state of heavy fermions at low temperatures [7].
However, first, no unambiguous experimental substan-

T, K
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T-structure

x

SC

Fig. 1. Phase diagram of LSCO and NCCO. Composition
regions: SC, superconducting phase; PS, pseudogap state;
and AFM, dielectric phase in the antiferromagnetic state.
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tiation [8] of the existence of such a state has been
obtained and no explanation of the large coefficient γ
value in the linear temperature dependence of heat
capacity, c = γT, where γ ≈ 4J/k2 for x > 0.15 [9], has
been suggested. Secondly, at a low doping level (0.05 ≤
x < 0.14), the γ value is an order of magnitude smaller,
γ = 0.3J/k2 [9], which leads us to conclude that, even if
the state of heavy fermions of the new type does exist
in NCCO, these effects manifest themselves at higher
concentrations because of the low Nd–Cu spin–spin
coupling constant. In this work, we consider low dop-
ing levels, and, at x < 0.15, the beautiful physics of
heavy fermions [7] remains outside the scope of our
analysis.

The purpose of this work was to study the electronic
structure of NCO and La2CuO4 (LCO) undoped and
weakly doped with electrons. We use the same calcula-
tion methods taking into account strong electron corre-
lation as were earlier used by us to study hole cuprates.

Note that strong electron correlation is of funda-
mental importance and should be correctly taken into
account. Indeed, one-electron band calculations give
the ground state of LCO and NCO in the form of a
metal with a half-filled band, which is at variance with
experiment. At the same time, the simplest strong elec-
tron correlation models like the Hubbard model are
excessively simplified, and the degree of their applica-
bility to describing the band structure of a particular
substance is not known a priori. Our experience in
studying the electronic structure of high-TC cuprates
taking into account strong electron correlation shows
[10–12] that the multiband p–d model [13] is the most
suitable at excitation energies up to 3 eV inside the
valence and conduction bands. This model takes into
account two d orbitals of copper,  ≡ dx and

 ≡ dz . We used the generalized tight binding

method to calculate the band structure of quasi-particles
taking into account strong electron correlation [14]. In
this method, the many-electron Hamiltonian within the
cell is exactly diagonalized, many-electron molecular
orbitals are found, and Hubbard X-operators are con-
structed at the first stage. At the second stage, intercell
jumps are included and the band structure of the crystal
is calculated. Particular examples of calculations of
hole cuprates by this method are given in [11, 12, 15].

In this work, we calculated the spectral density and
dispersion for the conduction band in compounds
undoped and weakly doped with electrons. The calcu-
lations by the generalized tight binding method were
performed for NCCO with the T ' structure and n-type
La2CuO4 with the T structure. We show that there is a
virtual level typical of systems with strong electron cor-
relation both at the bottom of the conduction band and
at the top of the valence band [11] in LCO and NCO.
The positions of this level in the two compounds are,
however, different. The observed asymmetry also
results in different concentration dependences of the

d
x

2
y

2–

d
3z

2
r

2–
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Fermi level in NCCO and n-LCO. The character of
valence band dispersion remains virtually identical in
compounds of both types. All results obtained for
n-LCO have no experimental analogs and are predictive
in character, because no n-LCO materials with the T
structure have been prepared as yet. In particular,
n-type superconducting compositions La2 – xCexCuO4
obtained in [16] had the T ' structure. Nevertheless,
there is a possibility of inverting p-type LCO by the
field effect, as with field-effect transistors, where
applying a positive voltage to the gate results in the for-
mation of an inversion layer in a p-type semiconductor
at the boundary with the gate. A theoretical study of the
electronic structure of n-LCO with the T structure is
therefore of interest.

In Section 2, we discuss the most important changes
in the generalized tight binding method for n-type
cuprates and give the initial equations for dispersion
relations and spectral density. The dispersion depen-
dences for the conduction band in NCCO in compari-
son with similar dependences for n-LCO and experi-
mental dependences are studied in Section 3. In Sec-
tion 4, we calculate the partial contributions of various
orbitals to the spectral density of the conduction band
and study the density of states at the bottom of the con-
duction band in both compounds. The positions of the
Fermi level in NCCO at various doping component
concentrations are determined in Section 5, where the
instability of the state with a uniform charge density
distribution is also studied. The results of our calcula-
tions are briefly summarized in Section 6.

2. DISPERSION RELATIONS
AND SPECTRAL DENSITY 

OF QUASI-PARTICLE STATES
IN NCCO AND n-LCO

In the generalized tight binding method, the Hamil-
tonian of the CuO2 layer can be written in the form

(1)

Here, aiλσ is the hole annihilation operator in the Wan-
nier state on node i (copper or oxygen) for orbital λ and
spin σ. Two copper orbitals (  and ) and two

 and pz orbitals on each oxygen node that form σ
bonds with the specified copper orbitals are included.
Among the Coulomb matrix elements, we can identify
intraatomic Hubbard elements Ud(Up) for repulsion in
one copper (oxygen) orbital between electrons with
opposite spins, interorbital Coulomb elements Vd(Vp),

H εi
λaiλσ

† aiλσ

iλσ
∑ 1

2
--- Vij

λ1λ2aiλ1σ1

† aiλ1σ3

λ1λ2σ1σ2σ3σ4

∑
i j,
∑+=

× aiλ2σ2

† aiλ2σ4
tij
λ1λ2aiλ1σ

† a jλ2σ.
λ2λ2σ
∑

i j,〈 〉
∑+

d
x

2
y

2–
d

z
2

p
x/y

–
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Jd(Jp) exchange matrix elements, and interatomic Cou-
lomb repulsion parameters Vpd , which we, for simplic-
ity, consider identical for all orbitals. The last term
in (1) describes interatomic copper–oxygen jumps with

the parameters  ≡ tpd and  ≡ tpd /  and

oxygen–oxygen jumps with the parameter  ≡ tpp .
The charge transfer energy will be denoted by ∆pd = εp –

, and the energy of splitting of the d level in the

uniaxial crystal field component, by ∆d =  – .

Of six O2– ions, two apical ones are situated along the
c axis in the T structure of the LCO composition. Their
effects are controlled by two calculation parameters,

 and , which are the integrals of electron jumps
from copper and in-pane oxygen to apical oxygen.

In the generalized tight binding method, the band
structure of quasi-particles including strong electron
correlation effects is calculated in two stages. At the
first stage, the CuO2 layer lattice is partitioned into
many unit cells, and the Hamiltonian within one cell is
exactly diagonalized. In addition to selecting the CuO6
cluster as the unit cell, the problem of constructing the
Wannier functions of b1g and a1g symmetry on the ini-
tial oxygen orbitals is solved [11, 12]. The many-elec-
tron molecular orbitals |n, p〉  (where n = 0, 1, 2, … is the
number of holes in the cell and p denotes the set of the
other orbital and spin indices) obtained by diagonaliz-
ing the cell Hamiltonian H0 are used to construct the
Hubbard operators of this cell, Xm = |n + 1, p〉〈 n, q|, and

one-electron operators, afλσ = (m) . Here,
the band index of quasi-particles m numbers one-elec-
tron excitations from the initial state |n, q〉  to the final
state |n + 1, p〉  [17].

As distinguished from LCO, oxygen and rare-earth
metal elements in NCO are known to form their own
separate planes in the environment of the CuO2 plane,
and the plane of the rare-earth metal is closest to the
CuO2 plane. In this situation, both parameters should be
close to zero,  = 0 and  = 0. Additional changes
in the other parameters were not introduced beforehand
and were taken from the calculations of the electronic
structure of p-type cuprates [11]. The initial parameters
of our Hamiltonian were:

In the generalized tight binding method, the dis-

t pd
x

2
y

2– x/y, t pd
z

2
x, 3

t pp
x y,

εd
x
2

y
2

–

ε
dz

2 εd
x
2

y
2

–

t pd' t pp'

γλσm∑ X fσ
m

tpd' t pp'

εdx
0, εdz

2  eV,= =  

ε

 

p

 

1.6  eV, ε p 
z

 0.5  eV,= =

t pp 0.46  eV, t pp ' 0, t pd ' 0, U d 9  eV,= = = =

U p 4  eV, V pd 1.5  eV, J d 1  eV.= = =                  
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persion relations and spectral density can be written in
the form [11]

(2)

(3)

where

(4)

(5)

Here, indices P and G run over the A and B antiferro-
magnetic state sublattices. Equations (2) and (3) were
obtained for the antiferromagnetic phase [11, 12] using
the equations of motion for Green function (5) in the
Hubbard I approximation for intercell jumps. The ele-
ments of the tight binding matrix

in the five-orbital dx , dz , b, 

 

a

 

, 

 

p

 

z

 

 basis take the form

(6)

the 
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 coefficients were given
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in [11]. Equation (2) is an analog of the dispersion
equation in the tight binding method and differs from it
in two respects. First, quasi-particle energies are calcu-

lated in the form  = ε2qG – ε1pG , that is, in the form
of resonances between many-particle states from dif-
ferent configuration space sectors. Secondly, the occu-

pation number (m) = 〈 〉  + 〈 〉  leads to con-

centration dependences of both dispersion and spectral
density amplitude (3). Quasi-particle states with differ-
ent m can overlap and interact, like singlet and triplet
two-hole states of p-type cuprates do [11, 12].

Ωm
G

Fσ
G X f Gσ

pp X f Gσ
qq

–1.0

–0.5

0

0.5

1.0

1.5

2.0

(0, 0) (π, π) (π, 0) (0, 0) (π, 0) (0, π)

Energy, eV

kx, ky

Fig. 2. Dispersion dependences for n-LCO (solid line) and
NCCO (dotted line). Doping level x = 0.03.
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3. DISPERSION OF BANDS

The band dispersion for n-LCO and NCCO at a con-
centration of the doping n-component of x = 0.03 in the
antiferromagnetic phase is shown in Fig. 2. Calcula-
tions only reproduce dispersion in the immediate vicin-
ity of the dielectric gap. This is sufficient for analyzing
the spectrum of quasi-particles involved in the super-
conducting state.

The bottom of the conduction band is formed as a
result of the dispersion of the local state with an energy
of Ωc = E(1, 2b1g) – E(0, a1g), and the top of the valence
band is formed by excitations with the participation of
the two-hole singlet Ων = E(2, 1A1g) – E(1, 2b1g) and

triplet  = E(2, 3B1g) – E(1, 2b1g) (Fig. 3). Both com-
pounds have a virtual level at the bottom of the conduc-
tion band. This level is similar in nature to that at the top
of the valence band (Fig. 3) [11]. Namely, there are two
types of quasi-particles that correspond to possible
transitions Ωc and Ων . One of the quasi-particles in the
undoped compound corresponds to the transition
between empty states, which gives zero contributions to
dispersion and spectral density. In the one-hole sector
of the configuration space, the empty state is one of the
components of the spin doublet in each of the sublat-
tices of the Néel antiferromagnetic state of the CuO2
layer. The vacuum sector corresponds to the a1g singlet
state of the fully occupied p6d10 shell. The existence of
two singlet states in the vacuum and two-hole sectors
(Fig. 3) is the main reason for the existence of the dis-
persionless virtual level not only at the top of the
valence band but also at the bottom of the conduction
band in n-LCO and NCCO.

Conduction band dispersion in n-LCO was calcu-
lated with the parameter values obtained in studying the

Ων
1

3B1gLSCO

2a1g

a1g

∆ε1

2b1g

∆ε2
A1g

1 – x

x

n = 0 n = 1 n = 2

(a)

n = 2n = 1n = 0
x

a1g

1 – x

2b1g

∆ε1

2a1g

∆ε2
A1g

3B1gNCCO(b)

Fig. 3. Configuration space scheme for LSCO and NCCO. The solid lines correspond to quasi-particle transitions that form rigid
bands, and the dashed lines, to impurity bands.
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electronic structure of p-type cuprates. Mere compari-
son of the spectra for n-LCO and NCCO in Fig. 2 shows
that the degeneracy of the spectrum of LCO at point X =
(π, 0) is accidental. Conversely, the intersection of two
conduction bands, the broad band and the band of vir-
tual level states, at point M = (π/2, π/2) is caused by
CuO2 layer symmetry and does not depend on the
parameter values used in the calculations.

The broad band and the band of virtual level states
behave differently as the doping level increases [11, 15].
The broad bands remain virtually unchanged; they will
further be called rigid by analogy with the rigid band
model. The spectral density and dispersion for the vir-
tual level state bands increase as the degree of doping
grows, and they will be called “impurity” bands. Quo-
tation marks (further omitted) are not meaningless,
because these states have no bearing on the true local
impurity potential.

The transport of quasi-particles in the valence and
conduction bands occurs with different effective trans-
port integrals. We therefore observe different disper-
sion dependences for different bands. Indeed, calcula-
tions give /tc.b. = –0.05 and /tν.b. = –0.14 for

NCO and /tc.b. = 0.05 and /tν.b. = –0.085 for

LCO, where tc.b. ( ) and tν.b. ( ) are the effective
transport integrals between the nearest (next-nearest)
neighbors for the conduction and valence bands,
respectively. The most significant change in passing
from LCO to NCO is the formation of a nonlinear
dielectric gap because of the formation of a new mini-
mum at the X point of the conduction band. Calcula-
tions show that the appearance of a rectilinear gap is
also accompanied by a change in the sign of the /tc.b.

ratio. There are moderate changes in the valence band,
but they do not lead to qualitative differences in the dis-
persion dependences for the n and p materials.

The reproduction of dispersion at the bottom of the
conduction band in NCCO requires the initial parame-
ters to be changed as follows:

It follows that dispersion calculations in NCCO
largely result in changes in the  and  values and,
to a lesser extent, in ∆pd and tpp . A smaller ∆pd value cor-
responds to a smaller dielectric gap in NCO, Eg =
1.6 eV. A smaller tpp value in LCO in turn corresponds
to the presence of orthorhombic distortions in the sys-

tc.b.' tν .b.'

tc.b.' tν .b.'

tc.b.' tν .b.'
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εdx
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9  eV,= =
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t pd' t pp'
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tem of CuO6 octahedra. As a consequence, a small
increase in tpp in NCCO is responsible for the conduc-
tion band minimum at point X at low electron concen-
trations. In combination, changes in precisely these
parameters qualitatively modify the dielectric gap and
make it nonlinear in NCO.

Among the known materials based on n-LCO and
having the T structure, the calculated dispersion might
be observed in La

 

2

 

Cu

 

1 – 

 

x

 

Zn

 

x

 

O

 

4

 

 compositions [1],
because Zn

 

2+

 

 has a completely filled 

 

d

 

10

 

 shell, which
formally corresponds to filling the vacuum sector, as in

 

n

 

-type materials such as NCCO. However in reality, the
Zn impurity leads to a strongly bound carrier and the
violation of translational invariance over the spin lat-
tice. It appears that, because of strong impurity effects,
photoemission measurements for La

 

2

 

Cu

 

1 – 

 

x

 

Zn

 

x

 

O

 

4

 

, sim-
ilar to those performed for NCCO [5], cannot be made.

4. PARTIAL CONTRIBUTIONS
TO SPECTRAL DENSITY

We calculated the spectral density 

 

A

 

(

 

k

 

, 

 

E

 

) for the
rigid and impurity bands in NCCO (Fig. 4) at a low con-
centration of the doping component 

 

x 

 

= 0.03. The spec-
tral density is characterized by two peaks correspond-
ing to the rigid and impurity bands. The dependences of
the peak amplitudes for (a) the rigid and (b) impurity
bands along the symmetrical Brillouin zone directions
are plotted in Fig. 4. Figure 5b shows how the virtual
level with zero spectral weight at 

 

x

 

 = 0 transforms into
an impurity band with spectral weight 

 

x.

 

 The over-
shooting of triplet states into the conduction band is
insignificant, and this is one more source of asymmetry
of the states of 

 

p-

 

 and 

 

n

 

-type carriers. Similar depen-
dences for the conduction band in 

 

n

 

-LCO are shown in
Fig. 5. These results cannot however be compared with
experimental data because of the absence of 

 

n

 

-type
compounds based on LCO with the 

 

T

 

 structure.
As follows from calculations of the density of states,

there is a region with a reduced density between the
impurity and rigid bands (Fig. 6). This pseudogap van-
ishes at point  = (

 

π

 

/2, 

 

π

 

/2) (Fig. 2). For this reason,
the passage of the Fermi level from the rigid to the
impurity band may be accompanied by a decrease in the
density of states on this level. The pseudogap itself is
magnetic in nature, as follows from its absence in the
paramagnetic phase. Because of the special features
inherent in the spectrum, the pseudogap is more pro-
nounced for the density of states of NCCO.

5. THE CONCENTRATION DEPENDENCE 
OF THE FERMI LEVEL

Calculations of the dependence of the Fermi level
position on doping in NCCO for the antiferromagnetic
phase exhibit considerable differences from the depen-
dence obtained for 

 

n

 

-LCO. Indeed, at low concentra-
tions, the Fermi level in NCCO goes deep into rigid

M
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Fig. 4. Spectral density of quasi-particle states along symmetrical Brillouin zone directions in NCO (a) for the rigid conduction band
and (b) for the band of virtual level states.
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Fig. 5. Spectral density of quasi-particle states along symmetrical Brillouin zone directions in n-LCO (a) for the rigid conduction
band and (b) for the impurity band.
                
conduction band states and only then, at x = x1, into
impurity band states. This corresponds to x1 = 0.08–0.1
in Fig. 7. The Fermi level reenters rigid band states at
x2 = 0.18–0.2. A similar dependence of the Fermi level
in n-LCO shows pinning only at low concentrations.
Indeed, already at very low concentrations, the Fermi
level occurs in the zone of impurity band states that are
being formed. Because the number of states on the
Fermi level begins to grow more slowly than x
(Fig. 8b), pinning ends, and the Fermi level enters the
rigid conduction band. This occurs at x2 = 0.11−0.12.
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The calculated concentration dependence of the
Fermi level contains a 

 

∆

 

x

 

 interval where the rate of
growth of the number of states in the impurity band
exceeds the rate of increasing the number of carriers 
∂

 
µ

 
/

 
∂

 
x

 
 = (

 
∂

 
2

 
Φ

 
/

 
∂

 
x

 
2

 
)T, P < 0, which is evidence of possible

phase stratification at the given doping level. Such com-
positions cannot be stably homogeneous, because the
sought distribution corresponds to the thermodynamic
potential Φ maximum. For instance, the dependence of
∂µ/∂x on x for NCCO (Fig. 9) shows that Φ(x) has an
instability region ∆x ≈ 0.03 wide. This region separates
SICS      Vol. 98      No. 3      2004
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two regions with thermodynamic potential minima.
Even at small dopant concentrations, n-LCO occurs in
the ∆x ≈ 0.05 region with a maximum thermodynamic
potential. Although the materials under consideration
are systems with fixed numbers of carriers, both sys-
tems can either be divided into macroscopic regions
capable of exchanging particles or experience the tran-
sition to the superconducting state, where the number
of particles is no longer conserved. The origin of the
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Fig. 6. Density of states at the bottom of the conduction
band in NCCO and n-LCO. The vertical line indicates the
region with a reduced density of states (pseudogap).
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Fig. 7. Dependence of the chemical potential shift ∆µ(x) on
the concentration of the doping n-component in NCCO and
n-LCO. The experimental data on NCCO and LSCO were
taken from [6].
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instability of the homogeneous normal state is related
to the presence of antiferromagnetic order, because the
impurity band disappears in the paramagnetic phase. It
follows that we observe an unusual relation between the
nonuniform charge density distribution and the pres-
ence of antiferromagnetic ordering. The inclusion of
zero spin fluctuations causes instability region ∆x nar-
rowing, but does not negate its existence [15].

We also observe a qualitative correlation between
Fermi level movement to the antiferromagnetic state
and the phase diagram of NCCO. Indeed, the concen-
tration region of Fermi level residence in the impurity
band, or, which is the same, in the pseudogap region
correlates with the superconducting region in the phase
diagram. In NCCO and n-LCO, the Fermi level reaches
the pseudogap at different dopant concentrations
x1(NCCO) > x1(n-LO) = 0. In NCCO, the Fermi level
enters impurity band states with an already well-devel-
oped spectral density. This is seen from Fig. 8a, where
the spectral density in the impurity band is nonzero
already at x = x1. It follows that the presence of a finite
spectral density of impurity band states at the Fermi
level corresponds to the superconducting region in the
phase diagram of NCCO. The immediate consequence
of a correlation of this type would be the beginning of
the superconducting region in the phase diagram of
NCCO at TC higher than TC for n-LCO, this region
being narrower on the concentration scale. Accord-
ingly, we also have xmax ≈ x2. Such an equality was
observed for PCCO in [18], whose authors were able to
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Fig. 8. Dependence of the total number of states on the con-
centration of the doping component for the impurity bands
in NCCO and n-LCO; x1 and x2 correspond to the entrance
to and exit from the band of virtual level states, respectively.
The solid line shows the number of states, and the dashed
line, the concentration of electrons x. The shaded region in
(a) corresponds to the contribution of the rigid band.
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Fig. 9. Dependence of the second thermodynamic potential derivative ∂2Φ/∂x2 on the concentration of the doping component in
NCCO and n-LCO; x2 corresponds to the exit of the Fermi level from the impurity band.

x

study the T*(x) dependence of the characteristic tem-
perature for the pseudogap state in the superconducting
phase of PCCO in magnetic fields higher than Hc2. In
our calculations, the pseudogap state is an attribute of
the impurity band rather than the precursor of the super-
conducting state. It can be identified as a special feature
of the electronic structure of materials with strong elec-
tron correlation in the antiferromagnetic phase and with
a singlet ground state in one of the configuration space
sectors of the unit cell of the material under study.

6. CONCLUSIONS

The results of our calculations can be summarized
as follows:

(1) Common to the dispersion dependences for
NCCO and n-LCO is the presence of a virtual level at
the bottom of the conduction band and at the top of the
valence band in the antiferromagnetic phase. The rea-
son for its existence is the presence of singlet states in
the vacuum (a1g is a closed shell) and two-particle (A1g)
configuration space sectors of both compounds. The
rigid conduction band in NCCO has a minimum at
point X of the Brillouin zone at low doping levels.
Because of accidental degeneracy of the rigid band and
virtual level at point X in n-LCO, its dielectric gap is
rectilinear, whereas the gap in NCCO is not. The last
conclusion is in agreement with the angle-resolved
photoelectron spectroscopy data on weakly doped
NCCO compounds [5].

(2) The concentration dependences of the Fermi
level for NCCO with the T ' structure and n-type LCO
with the T structure are not symmetrical. We explain
this asymmetry by the different positions of the virtual
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
level with respect to the bottom of the rigid conduction
band in these compositions. As a consequence, we
observe pinning of the Fermi level by states developed
on the virtual level in n-type LCO at low dopant con-
centrations. In NCCO, the Fermi level is immediately
immersed into rigid conduction band states and only
enters impurity band states when the degree of doping
increases further. The probability of pinning the Fermi
level by them, however, actually decreases as the dop-
ing level grows.

(3) We observed that, in our calculations, the regions
of Fermi level pinning by the impurity band were virtu-
ally ∆x regions with an instability of the form
(∂2Φ/∂x2)T, P < 0, which could be the reason for a non-
uniform charge density distribution in the compositions
under consideration.

(4) A qualitative correspondence exists between the
phase diagram of NCCO and the concentration depen-
dence of the Fermi level: namely, the concentration
region of Fermi level residence in the impurity band
correlates with the concentration region of the super-
conducting state in these compounds. There is no such
correspondence for n-LCO because of the absence of
the corresponding materials with the T structure. Our
results, however, show that the hypothetical phase dia-
gram for LCO of the p/n type with the T structure
should be more symmetrical than the diagram of
NCCO/LSCO.
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Abstract—First-principle calculations of the electronic structure and electronic susceptibility were performed
to study the relation between the nesting properties of the Fermi surface and the character of the temperature
dependence of long-period structures of two types exemplified by Ag3Mg and Al3Ti alloys. The observed tem-
perature dependence of the long period length 2M in the Al3Ti alloy was analyzed. It was shown that the tem-
perature dependence of the size of the antiphase domain in long-period commensurate structures was deter-
mined by the special features of the electronic structure of the system, in particular, by the geometry of Fermi
surface nesting regions. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ordered alloys with long-period structures are one
of the interesting and promising classes of metallic
alloys. They differ from the usual ordered systems with
simple superstructures by the presence of antiphase
boundaries, which periodically or quasi-periodically
disturb the ordered arrangement of atoms. Antiphase
boundaries, which are usually energetically unfavor-
able in ordered alloys, are equilibrium structure ele-
ments in systems with long-period structures. Ordered
alloys with long-period structures have quite definite
stability regions in temperature–composition phase
diagrams [1].

Studies of the mechanical properties of such alloys
showed [2–4] that strengthening against the decay of
the supersaturated solid solution could effectively be
combined with strengthening against atomic ordering.
This allows unusual disperse stable decay structures to
be formed. Their alloys possess high mechanical prop-
erties, which are stable over the whole temperature
range in which the ordered state of the matrix is
retained [5, 6].

According to their character, long-period structures
can be divided into two groups, namely, incommensu-
rate and commensurate structures. Incommensurate
structures are, for instance, formed in the CuAu,
Cu3Au, Au3Cu, Cu3Pd, and Cu3Pt alloys [7]. They are
characterized by random distances M between
antiphase boundaries (antiphase domains of different
lengths are stochastically distributed along the 〈001〉
direction). When the composition and temperature are
varied, the half-period  averaged over the chaoticM
1063-7761/04/9803- $26.00 © 20565
ensemble changes continuously and takes on various
values, including irrational.

In our preceding works [8, 9] we studied the special
features of the electronic structure of the Cu–Au, Cu–
Pd, and Cu–Pt alloys and answered the question of why
incommensurate long-period structures characterized
by irrational periods and smeared antiphase boundaries
are formed in them. The reasons for the existence of
such long-period structures only in a narrow tempera-
ture range were elucidated. We also explained the
observed dependence of the period length on the degree
of long-range ordering η in the Cu–Au alloy [8] and the
reasons for the formation of two-dimensional long-
period structures in the Au3Cu and Cu3Pd alloys [9].

Consider the special features of alloys with com-
mensurate long-period structures, such as Ag3Mg,
Cu3Al, Au3Cd, Al3Ti, Pt3V, etc.

It was found in studying Ag3Mg alloys with various
magnesium contents that the antiphase half-period was
constant, M = 2, in a certain concentration range that
corresponded to the D023 superstructure [10, 11] or 
slightly decreased as the concentration of magnesium
increased [12]. Importantly, the antiphase boundaries
were sharply defined, and  remained virtually con-
stant as temperature varied. This type of alloys also
includes Au3Zn, Au3Cd, and Au3Mn [13].

Somewhat different results were obtained for Al3Ti
alloys [14–17], for which high- and low-temperature
phases with long-period structures were observed [14].
Several comparatively simple commensurate structures
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were formed at low temperatures, whereas a series of
fairly complex configurations were identified at high
temperatures. For instance, the 〈211〉  configuration
(this notation corresponds to the 2–1–1 sequence of
domains, where 2 and 1 stand for domains with M = 2
and M = 1, respectively) was observed at T = 700°C,
which corresponded to  ≈ 1.33. At T = 900°C, the

configuration was 〈21〉 , and, accordingly,  ≈ 1.5; at

T = 1150°C, it was 〈221〉  with  ≈ 1.68, and, at T =

1200°C, the 〈22221〉  configuration with  ≈ 1.76

formed. Note that  obviously tends to increase as
temperature grows, whereas the low-temperature phase
is formed as a mixture of antiphase domains with M = 2
and M = 1 with obvious predominance of D022 super-
structure elements (M = 1). The simplest long-period
structure D022 was observed in the alloy of the stoichi-
ometric composition [15]. At a 60–73 at. % Al, struc-
tures with 4/3 ≤  ≤ 2 were observed and the  value

was temperature-dependent. The dependence of  on
the composition and temperature of annealing was also
reported in [16, 17]. In [18], Pt–V alloys with long-
period structures at compositions close to Pt3V were
studied. During annealing at 930°C, the D022 ordered
structure (of the Al3Ti type) transformed into a structure
with L12-type ordering, and, at 1036°C, a disordered
state was formed. It is directly stated in [19] that the
high-temperature (above 1000°C) phase has the L12
structure, and the low-temperature one (below 900°C),
the D022 structure. An increase in  with temperature
was observed.

To summarize, the most characteristic features of
commensurate structures are as follows:

(1) the low-temperature phase is formed as a com-
mensurate superstructure;

(2) the high-temperature state is a mixture of com-
mensurate elements;

(3) the antiphase boundaries are sharply defined
planes near which there is no essential structural pecu-
liarities;

(4) the “mean” antiphase domain size runs over
rational values as the composition of alloys changes.

Nevertheless, we can distinguish between two
groups of commensurate long-period structures. The
first group includes such alloys as Ag3Mg, Cu3Al,
Au3Cd, Au3Zn, and Au3Mn. The mean half-period
remains virtually constant in these alloys as tempera-
ture varies. The second group includes the Al3Ti,
Au4Zn, and Pt3V alloys. These alloys sometimes show
a very substantial temperature dependence of the mean
domain size.

In this work, we study the differences in the temper-
ature dependences of domain dimensions in two types

M

M

M

M

M

M M

M

M
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of commensurate long-period structures exemplified by
the Ag3Mg and Al3Ti alloys.

2. CALCULATION DETAILS

The principal value calculated in our approach is the
generalized susceptibility of noninteracting electrons
χ(q),

This value is calculated from the electron energy spec-
trum of the alloy. If the system contains plane Fermi
surface regions or Fermi surface regions whose shapes
coincide and these regions are separated by the nesting
vector 2kF , the χ(q) function has some singularity at
the same vector. Depending on the “quality” of nesting
(that is, on the degree of similarity of the coinciding
regions), the electronic susceptibility singularity may
be a kink, a step, or even a peak. The more pronounced
the singularity of χ(q), the larger the energy gain of the
formation of a long-period structure.

The electron energy spectrum was calculated by the
full-potential linear muffin-tin orbital (LMTO) method
in the local electron density approximation [20]. The
exchange-correlation potential was taken according to
Barth and Hedin [21], the integration over occupied
states was performed by the tetrahedron method [22],
165 (Ag3Mg) and 126 (Al3Ti) reference points were
used in self-consistent calculations of the ελ(k) spec-
trum, and 1771 (Ag3Mg) and 4851 (Al3Ti) points in the
irreducible part of the Brillouin zone were used in elec-
tronic susceptibility χ(q) calculations. The generalized
susceptibility of noninteracting electrons χ(q) was cal-
culated only taking into account the energy bands that
intersected the Fermi level and determined the behavior
of this value. The lattice parameter a was set equal to
7.766 au for Ag3Mg and 7.264 au for Al3Ti with
c/a = 2.23.

3. RESULTS AND DISCUSSION

The electron energy spectrum ε(k) calculated for a
hypothetical Ag3Mg alloy with L12-type ordering is
shown in Fig. 1. Its characteristic feature, like that of all
noble metal-based alloys, is a bright Ag d-band local-
ized below the Fermi level in such a way that the geom-
etry of the Fermi surface is determined by the 17, 18,
and 19 bands, which are virtually fully s and p states of
Ag and Mg.

The susceptibility χ(q) calculated along the Γ–X
Brillouin zone direction for the Ag3Mg alloy with

χ q( ) 2Ω
2π( )3

-------------=

× d3k
f ελ k( )( ) 1 f ελ' k q+( )( )–[ ]

ελ' k q+( ) ελ k( )–
--------------------------------------------------------------------.

λ λ ',
∑∫
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Fig. 1. Electron energy spectrum ε(k) and the density of electronic states n(ε) of the Ag3Mg alloy with the L12 structure.
L12-type ordering is shown in Fig. 2. It has a sharp max-
imum at the wave vector qn = 2π/a [0.284, 0, 0], which
is evidence of the instability of the hypothetical L12

phase with respect to the formation of a long-period
structure with half-period  = 1.76. This corresponds
with experimental observations. Indeed, the Ag3Mg
system has never been observed to have the L12 struc-
ture, it undergoes the transition immediately from the
disordered to the long-period state characterized by a
mixture of domains with the D022 (M = 1) and D023

(M = 2) ordering types. The elements of the D023 super-
structures are more numerous, and the mean half-
period of the antiphase domain  is 1.75 [10], which
is in excellent agreement with the calculated value
specified above (1.76).

An analysis of the partial contributions to the total
susceptibility χ(q) showed that the susceptibility maxi-
mum appeared because of the interband electron transi-
tions 18–19 and 19–18 (Fig. 2). Ultimately, this maxi-
mum is caused by the geometric features of the Fermi
surface shown in Fig. 3. In the vicinity of the Brillouin
zone point M, there are two vast electronic regions of
the 18th and 19th Fermi surface sheets which virtually
coincide in shape and are separated by the qn = 2π/a
[0.284, 0, 0] vector mentioned above. This high degree
of similarity is responsible for the well-defined χ(q)
maximum. It can therefore be suggested that the speci-
fied special features of the geometry of the Fermi sur-
face and, ultimately, the electronic structure inherent in
the hypothetical Ag3Mg phase with L12-type ordering
contribute to the experimentally observed mixture of
domains with the D022 and D023 superstructures.

M

M
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The electron energy spectrum ε(k) of the Al3Ti alloy
with the L12 structure is shown in Fig. 4. The χ(q) sus-
ceptibility along the 〈100〉  Brillouin zone direction cal-

Fig. 2. Electronic susceptibility χ(q) (the upper curve) and
its partial contributions calculated for Ag3Mg in the 〈100〉
direction.

~~~~
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Fig. 3. Fragments of Fermi surface sections for Ag3Mg: (a) in the z = 0 plane and (b) in the z = 0.5(2π)/a plane. The nesting vector
is shown by the arrow.
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Fig. 4. Electron energy spectrum ε(k) and the density of electronic states n(ε) of the Al3Ti alloy with the L12 structure.

17h
culated from the electron energy spectrum of Al3Ti is
shown in Fig. 5. Of interest is the local susceptibility
maximum at qn = 0.35; it characterizes the instability of
this system with respect to long period formation with

 = 1.47. An analysis of the partial contributions to the
total χ(q) susceptibility shows that the contribution of
7–7 intraband transitions shown in Fig. 5 is fully
responsible for this local susceptibility maximum. One
can see that, at qn = 0.35, this contribution has a pro-
nounced maximum, which is evidence of the presence

M
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of coinciding Fermi surface regions separated by the
vector qn = 0.35(2π/a)〈001〉  (Fig. 6).

Note that the observed low-temperature D022 structure
has a fairly high degree of tetragonality c/a = 2.23 [23]. It
would therefore be reasonable to calculate the electron
energy spectrum and susceptibility for the L12 structure
with a tetragonal distortion equal to that in the D022

structure, that is, c/a = 1.115. One point should be men-
tioned. It can be suggested from general considerations
that the larger the long period length, the smaller should
 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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be the degree of tetragonality of the base cells that con-
stitute the given structure. In the limit of an infinitely
long period, this long-period structure transforms into

~~ ~~

0.10 0.2 0.3 0.4 0.5
q〈100〉

12

14

16

18

60

62

64

66

68

70

10

χ

Al3Ti(L12) c/a = 1.0

M = 1.47
7–7

Fig. 5. Electronic susceptibility χ(q) of the Al3Ti alloy cal-
culated for the L12 structure in the 〈001〉  direction. The
lower curve is the partial contribution of intraband 7–7 elec-
tronic transitions. The arrow indicates the local susceptibil-
ity maximum.
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the usual cubic L12 structure. On the other hand, the
greatest degree of tetragonality should be characteristic
of the simplest long-period structure of Al3Ti, that is,
D022. It follows that, for completeness, we must also
study structures with intermediate tetragonal distortion
degrees.

We analyzed the dependence of χ(q) on the c/a
parameter in the range of parameter values from 1 to
1.115. The singularity observed in the cubic L12 struc-
ture at qn = 0.35(2π/a)〈001〉  shifts to the right as c/a
increases and gradually vanishes (see Fig. 7). A new
singularity at qn = 0.42(2π/a), however, appears at c/a =
1.10. This singularity not only shifts to the right but also
fairly sharply increases as the degree of tetragonality
becomes still larger. At the experimental degree of tet-
ragonality, this singularity corresponds to the vector
qn = 0.46(2π/a), which in turn corresponds to the half-

period of length  = 1.1. There exist coinciding Fermi
surface regions for all the vectors specified above.

The above results can be represented in the form of
the dependence of the mean half-period length  on
the tetragonality parameter c/a of the base L12 cell. At
the experimentally observed degree of tetragonality,
calculations give  = 1.1, which is very close to the
true low-temperature D022 structure (M = 1). The
antiphase domain size increases as the degree of tetrag-
onality decreases, and  approximates 1.5 in the cubic
structure. Here, (c/a)–1 plays the role of something like
temperature. The lower the degree of tetragonality, the
higher the temperature and the longer the long period of
the long-period structure. These results can be put in
qualitative correspondence with the experimental tem-
perature dependence of  [14].
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Γ

(a) (b)

Fig. 6. Fragments of Fermi surface sections for the Al3Ti alloy in two mutually orthogonal planes: (a) z = 0 and (b) y = 0.23(2π/a).
The nesting vector is shown by the arrow.
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Fig. 7. Electronic susceptibility χ(q) of the Al3Ti alloy in the cubic L12 structure at various degrees of tetragonality (the upper
curves) and the partial contributions of the 7–7 intraband transitions (the lower curves). Local susceptibility maxima are indicated
by the arrows.
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To summarize, the temperature dependence of the
size of antiphase domains in commensurate long-
period structures is determined by the special features
of the electronic structure of the system, in particular,
by the geometry of the nesting Fermi surface regions.
The degree of coincidence of the flattened Fermi sur-
JOURNAL OF EXPERIMENTAL
face sheets is high in the Ag3Mg alloy, and a fairly sharp
χ(q) maximum is formed. The nesting quality is lower
in Al3Ti, and the susceptibility singularity does not have
a pronounced peak. The shape of the Fermi surface and
the nesting vector length change as temperature
decreases (the degree of tetragonality increases). In
 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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contrast, no nesting changes occur in Ag3Mg, and long-
period structures remain stable even at low tempera-
tures. In our view, this difference explains the differ-
ence in stability of commensurate long-period struc-
tures under temperature variations.
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Abstract—The temperature and magnetic field dependence of the resistivity, magnetoresistance, and magnetic
susceptibility of phase-separated manganites in the temperature range corresponding to nonmetallic behavior
are considered within the framework of a model of inhomogeneous state with allowance for the existence of
ferromagnetically correlated regions even in the absence of long-range magnetic order. The main attention
is given to the interval of high temperatures and weak fields. The main characteristics of the phase-separated
state of manganites are evaluated from a comparison of the theoretical results with available experimental data.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Unusual properties and a rich phase diagram of
manganites inspired a large number of papers devoted
to various aspects of the physics of these compounds.
The special interest in manganites in recent years is
related to the possible existence of various inhomoge-
neous charge and spin states such as lattice and mag-
netic polarons, droplet and stripe structures, etc. [1–3].
Analogous phenomena are inherent in many strongly
correlated systems where the electron–electron interac-
tion energy is greater than the kinetic energy. One of the
most spectacular manifestations of such a behavior is
the formation of ferromagnetic (FM) droplets (ferrons)
in slightly doped antiferromagnetic (AFM) semicon-
ductors [4]. Another example is the formation of a
string (linear trace of frustrated spins) during the
motion of a hole in an AFM insulator [5].

The above examples refer to the so-called electron
phase separation, whereby a single charge carrier
changes its local electronic environment. In addition to
such a small-scale phase separation, manganites can
also feature a large-scale phase separation correspond-
ing to the coexistence of different phases characteristic
of first-order phase transitions (e.g., of the transition
between AFM and FM states). An example of large-
scale phase separation is the formation of relatively
large FM droplets in an AFM matrix. Such droplets
with linear dimensions on the order of 100–1000 Å
were observed, in particular, by the method of neutron
diffraction [6]. Note also that the attraction between
one-electron FM droplets (mediated by either elastic or
1063-7761/04/9803- $26.00 © 20572
magnetic dipole interactions) can result in merging of
the ferrons and the formation of intermediate- to large-
scale inhomogeneities [7]. There are clear experimental
indications suggesting that the phase separation is
inherent in both magnetically ordered phases and the
paramagnetic (PM) state [1–3, 8]. Therefore, the for-
mation of inhomogeneous states has proved to be a phe-
nomenon typical of manganites in various parts of their
phase diagrams. Moreover, the phase separation must
strongly influence the magnetic and transport proper-
ties of manganites.

The role of phase separation is most often consid-
ered in the region of the AFM state and especially in the
vicinity of the transition between AFM and FM states.
However, as mentioned above, manganites can be inho-
mogeneous even in the PM state, at temperatures
exceeding the corresponding phase transition tempera-
ture. An analysis of the available experimental data
reveals a substantial similarity in the high-temperature
behavior of the resistivity, magnetoresistance, and mag-
netic susceptibility of various manganites with different
low-temperature states [9–12]. In addition, the magne-
toresistance turns out to be rather large far from the
FM–AFM transition and even in the PM region. Fur-
thermore, the magnetic susceptibility of manganites is
significantly higher than that for typical antiferromag-
nets. These experimental data clearly indicate the exist-
ence of significant FM correlations in the high-temper-
ature range.

We will proceed from the assumption that ferromag-
netically correlated regions exist in manganites above
004 MAIK “Nauka/Interperiodica”
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the temperatures characterizing the onset of long-range
magnetic (FM or AFM) ordering. This assumption
allows us to describe the characteristic features of the
resistivity, magnetoresistance, and magnetic suscepti-
bility of manganites in a nonmetallic state within the
framework of a common model. The consideration
below is based on the model of conductivity in phase-
separated manganites developed in [9, 13–15] and
makes use of the experimental data for manganites of
various compositions reported in [9–12]. However, this
paper is not restricted to considering only one-electron
magnetic droplets (ferrons). A part of the previously
obtained results will be generalized to the case of an
arbitrary number of electrons in ferromagnetically cor-
related regions.

In Section 2, the temperature dependence of the
resistivity is analyzed for an inhomogeneous state with
the density of the ferromagnetically correlated regions
far from the percolation threshold. In Sections 3 and 4,
we discuss within the same assumptions the magne-
toresistance of manganites and their magnetic suscepti-
bility, respectively. It will be shown that the proposed
model of the inhomogeneous state provides for an ade-
quate description of the high-temperature behavior of
manganites. A comparison of the theoretical results and
experimental data allows us to determine the main char-
acteristics of ferromagnetically correlated regions in
manganites.

2. RESISTIVITY

The temperature dependence of the resistivity of
manganites will be analyzed based on the notions
developed previously [13].

This physical picture is essentially as follows. We
consider a system comprising small ferromagnetic
droplets dispersed in a nonferromagnetic insulating
matrix, in which charge is transferred via tunneling of
the charge carriers from one droplet to another. In the
general case, the tunneling probability depends on an
external magnetic field. We assume that the droplets do
not overlap and the whole system is far from the perco-
lation threshold. Each droplet may contain k charge car-
riers. Every new charge carrier tunneling to a given
droplet experiences Coulomb repulsion from the carri-
ers already occurring in this droplet. The repulsion
energy A is assumed to be relatively large (A > kBT), so
that the main contribution to the conductivity is related
to the processes involving droplets containing k, k + 1,
and k – 1 carriers.

Under these conditions, an expression for the resis-
tivity ρ(T) has the following form:

(1)

where e is the electron charge, ω0 is a frequency corre-
sponding to the characteristic energy of electrons in a

ρ
kBT A/2kBT( )exp

128πe2ω0l5kn2
-------------------------------------------,=
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droplet, l is the characteristic tunneling length, and n is
the concentration of FM droplets. Formula (1) can be
readily derived as described in [13] (see Appendix).
This expression is a straightforward generalization of
the formula obtained in [13] for the conductivity of
one-electron droplets. The resistivity (1) exhibits a ther-
moactivation behavior, whereby the activation energy
is equal to a half of the Coulomb repulsion energy (for
more detail, see [13]).

Expression (1) provides for a fairly good description
of the temperature dependence of the resistivity for var-
ious manganites. This is illustrated in Figs. 1–4, show-
ing the ρ(T) curves for six manganites, constructed
using the experimental results reported in [9–12]
(detailed numerical data were kindly provided by the
authors of these papers). As can be seen from these
data, the samples differ in chemical composition, the
type of crystal structure, the magnitude of the resistivity
(at a fixed temperature, the latter varies for different
samples by more than two orders of magnitude), and
the low-temperature behavior (some of the samples
behave as metals and the other, as insulators). In the
high-temperature range (above the point of the FM
phase transition), ρ(T) exhibits identical behavior
for all samples and is well described by the universal
relation

represented by solid curves in Figs. 1–4.

ρ T( ) T A/2kBT( )exp∝

10050 150 200 250 300

T, K

10–2

1

102

104

106
ρ, Ω cm

Fig. 1. Temperature dependence of the resistivity of
(La1 − yPry)0.7Ca0.3MnO3 [9]: (squares) y = 1, with
16O  18O isotope substitution; (triangles) y = 0.75, with
16O  18O isotope substitution; (circles) y = 0.75, with
16O isotope. The solid curve shows the results of calcula-
tions using formula (1).
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Using Eq. (1) and experimental data, it is possible to
determine some quantitative characteristics of the
phase-separated state. In particular, an analysis carried
out by Zhao et al. [12, 16] demonstrated that interpre-
tation of the experimental data in terms of this relation
gives an accurate estimate of the Coulomb energy A.
For example, the data presented in Figs. 1–4 allow the
Coulomb barrier A to be determined with an accuracy
of 2–3%; for the compounds under consideration, this
value falls within a rather narrow range from 3500 to
3700 K (see Table 1). As for the characteristic fre-
quency ω0 entering into formula (1), it was pointed out
in [12, 13, 16] that this quantity varies within a very
restricted interval of 1013–1014 Hz. This estimate can be
obtained, for example, from the uncertainty principle:
"ω0 ~ "2/2ma2, where a is the characteristic size of the
droplet and m is the electron mass. Indeed, assuming
that a ≈ 1–2 nm, we arrive at the latter interval. These
values of the droplet size provide for a correct (to
within an order of magnitude) estimate of the Coulomb
barrier energy A: taking into account that this energy is
on the order of e2/εa and substituting permittivity ε ~ 10
we obtain the value of A consistent with the experimen-
tal data.

It is rather difficult to estimate the tunneling length l.
However, we can ascertain that, in the domain of appli-
cability of relation (1), this length cannot be much
smaller than the distance between droplets [13]. Other-
wise, the behavior of the resistivity would be different.
In the quasiclassical approximation, the tunneling
length is on the order of the characteristic size of the
wave function, provided that the barrier height is com-
parable to the depth of the potential well. In our case,
the size of the electron wave function is on the order of

10050 150 200 250 300

T, K

10–2

1

102

104
ρ, Ω cm

Fig. 2. Temperature dependence of the resistivity of
Pr0.71Ca0.29MnO3: (circles) experimental data [10]; (solid
curve) calculation using formula (1).
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the ferron size and the height of the barrier virtually
coincides with the depth of the potential well. The latter
naturally follows from the adopted model of ferron for-
mation [2]. Therefore, it is reasonable to suggest that
the tunneling length is on the order of the ferron size
(several nanometers), although in the general case it
can substantially differ from a.

Another nontrivial task is to estimate the concentra-
tion n of ferrons. On the one hand, following Zhao et al.
[12, 16], the concentration n could be determined via
the dopant concentration x as n ≈ x/d3. However, this

220200 240 260 280 300

T, K

10–1

1

ρ, Ω cm

Fig. 3. Temperature dependence of the resistivity of a lay-
ered manganite with the composition
(La0.4Pr0.6)1.2Sr1.8Mn2O7: (circles) experimental data [11];
(solid curve) calculation using formula (1).
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Fig. 4. Temperature dependence of the resistivity of
La0.8Mg0.2MnO3: (circles) experimental data [12]; (solid
curve) calculation using formula (1).
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Table 1.  The Coulomb energy A, the resistivity ρ (at 200 K), and the product l5n2k for some manganites, estimated using for-
mula (1) and the experimental data presented in Figs. 1–4

Manganite composition A, K ρ(200 K), Ω cm l5n2k, cm–1 Ref.

(La1 – yPry)0.7Ca0.3MnO3 3650 1.25 2 × 105 [9] (see Fig. 1)

Pr0.71Ca0.29MnO3 3500 0.57 3 × 105 [10] (see Fig. 2)

(La0.4Pr0.6)1.2Sr1.8Mn2 3600 1.5 1.5 × 105 [11] (see Fig. 3)

La0.8Mg0.2MnO3 3700 283 1 × 103 [12] (see Fig. 4)

* The general chemical formula of this system is (La0.4Pr0.6)2 – 2xSr1 + 2xMn2O7.

O7
*

approach leads to at least two discrepancies. First, even
for a moderate concentration of a divalent element, x =
0.1–0.2, the droplets would overlap to form a continu-
ous FM metallic cluster. However, the material can be
insulating even at higher dopant concentrations of x =
0.5–0.6, at least in a high-temperature range. Second,
as can be seen from the experimental data, a relation
between the dopant concentration and the conductivity
of manganites is rather complicated. For some com-
pounds, a twofold variation of x can change the resistiv-
ity by two orders of magnitude [12, 16], while in some
other cases, ρ(x) exhibits a nonmonotonic behavior
within a certain concentration range.

It should be noted that these difficulties are inherent
not only in our model of phase separation, but also arise
in other models attempting to describe the properties of
manganites (e.g., in polaronic models [17, 18]). Unfor-
tunately, this circumstance was not given proper atten-
tion in [12, 16] in the interpretation of experimental
data in terms of the existing models of the conductivity
in manganites. The natural conclusion is that the num-
ber of carriers involved in the charge transfer process
does not coincide with the concentration x of a divalent
dopant. This is especially obvious in the case of charge
ordering, when part of the charge carriers introduced by
doping are localized and form a periodic structure.

Therefore, using expression (1) and experimental
data, it is possible to evaluate the combination l5n2k.
Table 1 summarizes the values of the Coulomb energy A,
the resistivity ρ (at 200 K), and the product l5n2k esti-
mated using formula (1) and the experimental data pre-
sented in Figs. 1–4. Note that, while the estimate for A
is accurate to within ±50 K, the combination l5n2k can
be estimated only by the order of magnitude (at least,
such is the uncertainty of the value of ω0).

3. MAGNETORESISTANCE

Previously [9, 14, 15], it was demonstrated that the
model of phase separation adopted here leads to a rather
unusual dependence of the magnetoresistance
MR(T, H) on the temperature and magnetic field. At rel-
atively high temperatures and not very strong magnetic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
fields, the magnetoresistance is described by the for-
mula (see Appendix)

(2)

Here, µB is the Bohr magneton, S is the average spin of
a manganese ion, Neff is the number of manganese
atoms in a droplet, Z is the number of nearest neighbors
of a manganese ion, g is the Landé factor, J is the
exchange integral of the FM interaction, and Ha is the
effective magnetic anisotropy field of a droplet. The
law MR ∝  H2/T5 was experimentally observed for a
number of manganites in the region of their nonmetal-
lic behavior [9, 10]. The same high-temperature behav-
ior of the magnetoresistance can be obtained by pro-
cessing the experimental data reported in [11, 12] (see
Figs. 5–8].

The value of S depends on the relative content of the
trivalent and tetravalent manganese ions and varies
from 3/2 to 2. For purposes of estimation, we assume
that S = 2. The value of Z is, in fact, the number of man-
ganese ions interacting with a conduction electron
occurring in a droplet. It is reasonable to assume that Z
is of the same order of magnitude as the number of
nearest neighbors for a manganese ion, that is, Z ≈ 6.
The Landé factor g is determined from experimental
data. For manganese, g is usually assumed to be close
to that in the pure spin case (g = 2). The exchange inte-
gral J characterizes the magnetic interaction between a
conduction electron and a molecular field generated by
ferromagnetically correlated spins in a droplet. This
molecular field accounts for the low-temperature ferro-
magnetism. Therefore, we can evaluate J using the
well-known relationship of the molecular field theory,
S(S + 1)ZJ/3 ~ kBTC , where TC  is the Curie temperature.
The latter parameter is determined from experiment
(e.g., neutron diffraction or magnetization measure-
ments). For example, TC of manganites of the La–Pr–Ca
system is about 100–120 K [6].

The magnetic anisotropy of manganites related to
the crystal structure of these compounds is usually not

MR 5 10 3– µB
3 S5Neff

3 Z2g3J2Ha

kBT( )5
--------------------------------------------H2.×≈
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too high. This implies that the main contribution to the
effective magnetic anisotropy field Ha is related to the
droplet shape anisotropy and can be evaluated as Ha =

π(1 – )Ms , where  is the demagnetization factor
of the droplet (along the main axis) and Ms is the mag-
netic moment per unit volume of the droplet. Below, we

3Ñ Ñ

10050 150 200 250 300

T, K

10–3

10–1

10
MR/H2, í–2

Fig. 5. Temperature dependence of the MR/H2 ratio for
(La1 – yPry)0.7Ca0.3MnO3 [9]: (circles) y = 0.75; (squares)

y = 0.75, with 30% of 16O  18O isotope substitution;
(triangles) y = 0.75, with 16O  18O isotope substitution;
(diamonds) y = 1; (asterisks) y = 1, with 16O  18O iso-
tope substitution. The solid curve shows the results of cal-
culations using relation (2): MR ∝  1/T5.

120 140 160 180 200

T, K

10–2

10–1

1
MR

Fig. 6. Temperature dependence of the magnetoresistance
of Pr0.71Ca0.29MnO3 for H = 2 T (triangles) experimental
data [10]; (solid curve) calculation using formula (2).
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assume that the droplet is rather elongated (  ! l) and
Ms = SgµBπ/d3, so that Ha ≈ 2 kOe.

The value of Neff is naturally determined by the size
of a droplet and, in principle, it could be found from the
neutron diffraction experiments. However, to the best
of our knowledge, no such measurements were per-
formed in a wide temperature range for the systems
under consideration. For this reason, Neff is treated here
as a fitting parameter. Using Eq. (2) and the above esti-
mates, we can determine the Neff value from experimen-
tal data on the magnetoresistance (in the range of
parameters corresponding to MR ~ H2/T5). The results
of such data processing are summarized in Table 2. In
Figs. 5–8, solid curves show the data used in the fitting
procedure. The value of TC was taken to be equal to
120 K.

Thus, the size of the ferromagnetically correlated
regions for all manganite compositions under consider-
ation turns out to be nearly the same at temperatures of
200–300 K. The volume of these regions is approxi-
mately equal to that of a ball with a diameter of 7–8 lat-
tice periods. It can naturally be assumed that, within a
droplet volume, the number of charge carriers involved
in the tunneling process equals the number of dopant
atoms. Hence, we can write that k = Neffx, where x is the
atomic fraction of the dopant. The values of x and k are
presented in Table 2.

4. MAGNETIC SUSCEPTIBILITY

The concentration of droplets can be evaluated
based on the magnetic susceptibility data, by assuming
that the main contribution to the susceptibility comes
from the ferromagnetically correlated regions. At high

Ñ

140120 160 180 200 220 240 260 280 300

T, K

10–3

10–2

10–1

MR

Fig. 7. Temperature dependence of the magnetoresistance
of (La0.4Pr0.6)1.2Sr1.8Mn2O7 for H = 1 T (triangles) experi-
mental data [11]; (solid curve) calculation using formula (2).
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temperatures (kBT @ µBgSNeffH, µBgSNeffHa), the sus-
ceptibility χ(T) can be written as

(3)

where Θ is the Curie–Weiss constant.
The results of the experimental data processing in

terms of relation (3) are presented in Table 3. The
experimental temperature dependences of the magnetic
susceptibility of manganites are shown in Figs. 9–12,
where solid curves illustrate the fitting procedure.
Using these results, we can also estimate the concentra-
tion of the FM phase as p = nNeffd3. For all samples, the
value of lattice parameter d was taken to be equal to
3.9 Å. Based on the data in Tables 1–3, it is also pos-
sible to estimate the carrier tunneling length l.

5. DISCUSSION

The analysis performed in the previous sections
demonstrates that a simple model of electron tunneling
between the ferromagnetically correlated regions (FM
droplets) provides a description of the conductivity and
the magnetoresistance data for a wide class of mangan-
ites. A comparison of the theoretical predictions with
the experimental data on the temperature dependence
of the resistivity, magnetoresistance, and magnetic sus-
ceptibility allowed us to determine various characteris-
tics of the phase-separated state, such as the size of FM
droplets, their concentration, and the number of elec-
trons in a droplet, and to estimate the characteristic tun-

χ T( )
n µBgSNeff( )2

3kB T Θ–( )
--------------------------------,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
neling length of the charge carriers. The obtained val-
ues of parameters seem to be quite reasonable. Indeed,
the characteristic tunneling length is on the order of the
FM droplet size, while the concentration of the FM
phase in the high-temperature range is substantially
smaller than the percolation threshold and varies from
about 1 to 7%. Note also that the droplets contain 50–
100 charge carriers and the parameter A evaluated from
the experimental data agrees in order of magnitude with
the Coulomb energy of an extra electron in a metal ball

180170 190 200

T, K

0.03

0.04

0.05

0.06

0.07

0.08

0.09
0.10
MR

Fig. 8. Temperature dependence of the magnetoresistance
of La0.8Mg0.2MnO3 for H = 1.5 T (triangles) experimental
data [12]; (solid curve) calculation using formula (2).
Table 2.  The effective number Neff of manganese atoms, the number of electrons k in a droplet, and the dopant fraction x for
some manganites, estimated using formula (2) and the experimental data presented in Figs. 5–8

Manganite composition Neff x k Ref.

(La1 – yPry)0.7Ca0.3MnO3 250 0.3 75 [9] (see Fig. 5)

Pr0.71Ca0.29MnO3 200 0.29 58 [10] (see Fig. 6)

(La0.4Pr0.6)1.2Sr1.8Mn2O7 250 0.4 100 [11] (see Fig. 7)

La0.8Mg0.2MnO3 265 0.2 53 [12] (see Fig. 8)

Table 3.  The Curie–Weiss constant Θ, the density of ferrons n, the FM phase fraction p, and the effective tunneling length l
for some manganites, estimated using formula (3) and the experimental data presented in Figs. 9–12

Manganite composition Θ, K n, cm–3 p l, Å Ref.

(La1 – yPry)0.7Ca0.3MnO3 55 1.8 × 1018 0.03 24 [9] (see Fig. 9)

Pr0.71Ca0.29MnO3 105 6 × 1018 0.07 17 [10] (see Fig. 10)

(La0.4Pr0.6)1.2Sr1.8Mn2O7 255 2.5 × 1018 0.04 19 [11] (see Fig. 11)

La0.8Mg0.2MnO3 150 0.6 × 1018 0.01 14 [12] (see Fig. 12)
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(7–8)d in diameter. The obtained estimates of the drop-
let parameters (characteristic tunneling barrier, size,
and tunneling length) are close for manganites with
strongly different transport properties.

Another characteristic feature of the phase-sepa-
rated manganites is a large magnitude of the 1/f noise in
the temperature range corresponding to the dielectric
state [19, 20]. In the framework of the phase separation

150100 200 250 300

T, K

0

50

100

150

200

250

300
χ–1, mol/emu

Fig. 10. Temperature dependence of the inverse magnetic
susceptibility of Pr0.71Ca0.29MnO3: (triangles) expe-
rimental data [10]; (solid curve) calculation using for-
mula (3). The density of a porous sample was assumed to
be 0.8 of the theoretical value.
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Fig. 9. Temperature dependence of the inverse magnetic
susceptibility of (La1 – yPry)0.7Ca0.3MnO3 with y = 1: (tri-
angles) experimental data [9]; (solid curve) calculations
using relation (3). The other manganites of this group
exhibit analogous behavior of χ(T) in the high-temperature
range (see [9]).
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model adopted here, the following expression was
derived for the Hooge constant [13, 14],

(4)

where 〈δU2〉ω is the spectral density of the voltage fluc-
tuations, Vs is the sample volume, Udc is the applied
voltage, and  = ω0exp(A/2kBT). Substituting esti-
mated values of the parameters presented in the tables
and in the text, we obtain αH ≈ 10–16 cm3 at a tempera-
ture of 100–200 K and frequencies within 1–1000 s–1.
This value of αH is 3–5 orders of magnitude higher than
the corresponding values for semiconductors.

Thus, we have a rather consistent scheme describing
the transport properties of manganites under conditions
when the ferromagnetically correlated regions do not
form a percolation cluster. Moreover, the proposed
approach proves to be valid for a fairly wide range of
dopant concentrations. However, as mentioned above, a
relationship between the concentration of FM droplets
and the doping level is still incompletely clear. If the
above picture of the phase separation is valid, it
becomes evident that not all electrons or holes intro-
duced by doping participate in the transport processes.
Now we will try to find some qualitative arguments
illustrating the possible differences in the effective con-
centrations of charge carriers below and above the tran-
sition from PM to magnetically ordered state.

The phase diagram of a typical manganite contains
a region of the AFM state with FM phase inclusions in
the range of low temperatures and low doping levels.

αH
δU2〈 〉 ωV sω

Udc
2

---------------------------- 2π2l3 ω̃0

ω
------ 

  ,ln
2

= =

ω̃0
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Fig. 11. Temperature dependence of the inverse magnetic
susceptibility of (La0.4Pr0.6)1.2Sr1.8Mn2O7: (triangles)
experimental data [11]; (solid curve) calculation using for-
mula (3).
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When the doping level is increased, the transition from
AFM to FM phase is observed. At high temperatures,
manganites are in the PM state. As the temperature
decreases, the transition from PM to AFM or FM state
takes place depending on the doping level. Let us con-
sider the behavior of such a system in the vicinity of a
triple point. In the AFM phase, the radius R of a region
converted by one electron into the FM state can be esti-
mated as [3]

where Jff is the AFM interaction constant. For the high-
temperature PM phase, the radius RT of a region con-
verted by one electron into the FM state corresponds to
the size of the so-called temperature ferron and equals
to RT = d(πt/4kBTln(2S + 1))1/5 [3].

The critical concentration xc ≈ 0.15 corresponding to
overlap of the low-temperature ferrons can be esti-
mated as xc ~ (3/4π)(d/R)3. For the high-temperature
ferrons, the corresponding estimate is δc ~
(3/4π)(d/RT)3. Substituting the expressions for the radii
of high- and low-temperature ferrons, we can estimate
the ratio xc/δc in the vicinity of the triple point corre-
sponding to the coexistence of FM, AFM, and PM
phases:

(5)

where TC and TN are the Curie and the Néel tempera-
tures, respectively. For the manganites under consider-
ation, we have TC ~ TN ~ 120–150 K and ln(2S + 1) ~
1.6 for S = 2, hence δc ≤ xc . This is consistent with

R d πt/4J ff S
2Z( )1/5

,=

xc

δc
---- T 2S 1+( )ln

zJ ff S
2

------------------------------
3/5 TC 2S 1+( )ln

TN
--------------------------------

3/5

,∼ ∼
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Fig. 12. Temperature dependence of the magnetoresistance
of La0.8Mg0.2MnO3: (triangles) experimental data [12];
(solid curve) calculation using formula (3).
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experimental data showing that δ ~ 1–7%. Thus,
although formula (5) correctly reflects the observed
tendency, the nature of the charge disbalance in the PM
region is incompletely clear. Probably, for x > xc (in real
manganites, the concentration x can reach a level of
about 50%), the residual charge is localized in the PM
matrix outside the temperature ferrons. A detailed study
of this problem will be presented elsewhere.
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APPENDIX

We present a short derivation of formulas for the
resistivity (1) and the magnetoresistance (2). Consider
a system of small ferromagnetic droplets dispersed in a
dielectric matrix exposed to an electric field E, in which
charge is transferred via tunneling of the charge carriers
from one droplet to another. In the ground state, each
droplet contains k charge carriers. Every new charge
carrier tunneling to a given droplet experiences the
Coulomb repulsion from the carriers already occurring
in this droplet. The repulsion energy A is assumed to be
relatively large (A > kBT), so that the main contribution
to the conductivity is related to the processes involving
droplets containing k, k + 1, and k – 1 carriers.

Let N be the total number of droplets in the system
and N1, N2, and N3 be the numbers of droplets contain-
ing k, k + 1, and k – 1 carriers, respectively. Assuming
the total number of droplets in the system to be con-
stant, so that N2 = N3 and N1 + 2N2 = N, we can write the
partition function of the system [13],

(6)

where  are the binomial coefficients. Using the
Stirling formula, replacing summation by integration,
and calculating the corresponding integral by the steep-

Z CN
mCN m–

m mβ–( ), βexp
m 0=

N /2

∑ A
kBT
---------,= =

CN
m
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est descent method, we obtain the following expres-
sions for the average vales of N1, N2, and N3:

(7)

According to our model, electron tunneling implies
one of the four possible events: (i) two droplets with
k electrons are converted into droplets with k + 1 and
k − 1 electrons; (ii) process inverse to that in the previ-
ous case; (iii) droplets with k and k + 1 electrons
exchange sites with each other; (iv) the same for drop-
lets with k and k − 1 electrons. The total current density
is given by the sum of the contributions from all these
processes: j = j1 + j2 + j3 + j4. As was demonstrated
in [13], all the four processes equally contribute to the
total current. 

For example, consider the third process. The density
of electrons involved in this exchange is (k + 1)n2,
where n2 is the concentration of droplets with k + 1
electrons. Assuming that k @ 1, we obtain

(8)

where 〈…〉  denotes the statistical average with the sum
taken over all droplets with k + 1 electrons, 〈v i 〉  is the
average velocity of electrons along the electric field E,
ri is the distance between droplets involved in this pro-
cess, θi is the angle between vector E and the direction
of electron motion, and τ(ri, θi) is the characteristic
tunneling time. The standard expression for τ is as fol-
lows [21]:

(9)

where l is the tunneling length and ω0 is the character-
istic frequency. Far from the percolation threshold, the
average in relation (8) is the spatial average of the
velocity v i multiplied by the number N1 of droplets
accessible for the jump.

Assuming the electric field strength to be small
(eEl/kBT ! 1) and the repulsion energy A to be large
(A/kBT @ 1), we obtain in the first order with respect to
the field E:

(10)

N2 N3 N
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2kBT
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kBT
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kBT
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r2 θe r/l–cos
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where 〈…〉V denotes the average over the sample vol-
ume. Substituting Eq. (10) into relation (8) and inte-
grating over space, we determine the corresponding
current component. Taking into account the obvious
relation ρ = j3/4E, we arrive at formula (1). As can be
seen, the resistivity decreases with the temperature
according to the law

which is characteristic of the systems with tunneling
conductivity [21].

Now let us proceed to the calculation of magnetore-
sistance MR. The probability of tunneling depends, in
particular, on the mutual orientation of the electron spin
and the magnetic moment of a droplet. Orientation of
the ferromagnetically correlated regions in the mag-
netic field H leads to an increase in the transition prob-
ability and, hence, to a decrease in the resistance with
increasing field strength—in agreement with experi-
ment. The conductivity of the system can be repre-
sented as σ(H) = σ0〈Σ(H)〉 , where Σ(H) is the “spin”
contribution to the probability of electron tunneling.
For this definition, MR = 〈Σ(H)〉  – 1.

Denoting the effective magnetic moment of a drop-
let by M = µBgNeffS and assuming the interaction
between droplets to be negligibly small, we write the
free energy of a droplet in the magnetic field in the fol-
lowing form:

(11)

where θ is the angle between the applied field H and the
magnetic moment M, Ha is the anisotropy field, and ψ
is the angle between the anisotropy axis and the direc-
tion of the magnetic moment (for the sake of simplicity,
we consider the case of uniaxial anisotropy). Let H be
parallel to the z axis, and let the anisotropy axis lie in
the (x, z) plane and make the angle β with vector H. In
this configuration,

where ϕ is the angle between the x axis and the projec-
tion of M onto the (x, y) plane.

In the classical limit, a given orientation of vector M
corresponds to the probability

(12)

where A(H) is the normalization factor. The eigenstates
of an electron correspond to conservation of the spin
projection s = ±1/2 onto the effective field direction in

ρ T( ) T
A

2kBT
------------ 

  ,exp∝

U H( ) U 0( ) M H θcos Ha ψcos
2

+( ),–=

ψcos θ β ϕ θ β,coscos+cossinsin=

P H θ ϕ, ,( )

=  A H( )
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2
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kBT
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 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004



CHARACTERISTICS OF THE PHASE-SEPARATED STATE IN MANGANITES 581
a ferromagnetically correlated region. Let an electron
interact with Z magnetic moments in the droplet. The
energy of this interaction is Es = –JSZs. Since the prod-
uct JSZ is on the order of the Curie temperature, Es is
much greater than the energy of interaction between the
electron spin and the magnetic field, provided that H !
100 T. In this case, the effective field direction coin-
cides with the direction of vector M and the probability
for the electron spin projection to be s can be written as

(13)

Upon transfer from droplet 1 to droplet 2, an elec-
tron occurs in an effective field making an angle ν with
that in the initial state, for which

(indices 1 and 2 refer to the droplet number). Then, the
work performed for the electron transfer from droplet 1
to droplet 2 is ∆Es = Es(1 – cosν). Accordingly, the
probability of this transfer is proportional to
exp(−∆Es/kBT). Taking into account all the probability
factors introduced above, the final expression can be
written as

(14)

In the high-temperature range, where kBT is much
greater compared to the Zeeman energy µBgSNeffH
and the magnetic anisotropy energy µBgSNeffHa , rela-
tions (12)–(14) yield formula (2).

The limits of applicability of the above expressions
for the resistivity and magnetoresistance of manganites
are considered in more detail elsewhere [13–15].

Ps

Es/kBT–( )exp
2 Es/kBT( )cosh
-------------------------------------.=

νcos θ1 θ2coscos θ1sin θ2 ϕ1 ϕ2–( )cossin+=

Σ H( )〈 〉 ϕ 1 ϕ2 θ1 θ1dsin

0

π

∫d

0

2π

∫d

0

2π

∫=

× θ2 θ2P θ1 ϕ1,( )P θ2 ϕ2,( )dsin

0

π

∫

× Ps

∆Es

kBT
---------– 

  .exp
s 1/2±=

∑

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
REFERENCES
1. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1

(2001).
2. E. L. Nagaev, Phys. Rep. 346, 387 (2001).
3. M. Yu. Kagan and K. I. Kugel’, Usp. Fiz. Nauk 171, 577

(2001) [Phys. Usp. 44, 553 (2001)].
4. É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6, 484 (1967)

[JETP Lett. 6, 18 (1967)].
5. L. N. Bulaevskiœ, É. L. Nagaev, and D. I. Khomskiœ, Zh.

Éksp. Teor. Fiz. 54, 1562 (1968) [Sov. Phys. JETP 27,
836 (1968)].

6. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov,
et al., Phys. Rev. B 64, 024420 (2001).

7. J. Lorenzana, C. Castellani, and C. Di Castro, Phys. Rev.
B 64, 235127 (2001); Phys. Rev. B 64, 235128 (2001).

8. N. I. Solin, V. V. Mashkautsan, A. V. Korolev, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 77, 275 (2003) [JETP Lett.
77, 230 (2003)].

9. N. A. Babushkina, E. A. Chistotina, K. I. Kugel’, et al.,
Fiz. Tverd. Tela (St. Petersburg) 45, 480 (2003) [Phys.
Solid State 45, 508 (2003)].

10. L. M. Fisher, A. V. Kalinov, I. F. Voloshin, et al., Phys.
Rev. B 68, 174403 (2003).

11. P. Wagner, I. Gordon, V. V. Moshchalkov, et al., Euro-
phys. Lett. 58, 285 (2002).

12. J. H. Zhao, H. P. Kunkel, X. Z. Zhou, and G. Williams,
J. Phys.: Condens. Matter 13, 9349 (2001).

13. A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, and
M. Yu. Kagan, Phys. Rev. B 63, 174424 (2001).

14. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, et al.,
Zh. Éksp. Teor. Fiz. 122, 869 (2002) [JETP 95, 753
(2002)].

15. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel, et al.,
J. Phys.: Condens. Matter 15, 1705 (2003).

16. J. H. Zhao, H. P. Kunkel, X. Z. Zhou, and G. Williams,
Phys. Rev. B 66, 184428 (2002).

17. M. Ziese and C. Srinitiwarawong, Phys. Rev. B 58,
11519 (1998).

18. G. Jakob, W. Westerburg, F. Martin, and H. Adrian, Phys.
Rev. B 58, 14966 (1998).

19. V. Podzorov, M. Uehara, M. E. Gershenson, et al., Phys.
Rev. B 61, R3784 (2000).

20. V. Podzorov, M. E. Gershenson, M. Uehara, and
S.-W. Cheong, Phys. Rev. B 64, 115113 (2001).

21. N. F. Mott and E. A. Davis, Electronic Processes in Non-
Crystalline Materials, 2nd ed. (Clarendon Press,
Oxford, 1979; Mir, Moscow, 1982).

Translated by P. Pozdeev
SICS      Vol. 98      No. 3      2004



  

Journal of Experimental and Theoretical Physics, Vol. 98, No. 3, 2004, pp. 582–593.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 125, No. 3, 2004, pp. 659–672.
Original Russian Text Copyright © 2004 by Lozovik, Ovchinnikov, Sharapov.

                                             

SOLIDS
Electronic Properties
Optical Properties of a Coherent Phase
in Electron–Hole Systems: Stimulated Light Scattering

and Multibeam Processes
Yu. E. Lozovik, I. V. Ovchinnikov, and V. A. Sharapov

Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow oblast, 142190 Russia
e-mail: lozovik@isan.troitsk.ru

Received September 5, 2003

Abstract—A theoretical study is reported of stimulated light scattering, including wave-vector reversal and
anomalous transmission, by a coherent phase in electron–hole (e–h) systems of low and high charge-carrier
density. For these two cases the coherent phase is taken to be a Bose–Einstein condensate of excitons or a BCS-
like state of e–h pairs, respectively. The scattering mechanism is laser-induced coherent recombination of two
excitons or two coherent e–h pairs, respectively. The e–h system is assumed to exist within a GaAs/AlGaAs
double quantum well or bulk GaAs. The emission rate of two photons with antiparallel momenta is estimated.
Multiphoton emission due to multiexciton coherent recombination is covered. Methods for detecting the effects
predicted are proposed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Theory tells us that macroscopic quantum coher-
ence will arise in the electron–hole (e–h) system of a
semiconductor or semimetal if its temperature is
decreased to below a certain point [1–8]. Considerable
interest has been shown in the detection of the phenom-
enon in both three-dimensional (3D) and two-dimen-
sional (2D) systems. Recent years have seen significant
experimental advances in this field, especially for the
quasi-2D system of crossed excitons in a double quan-
tum well (DQW) [9–12]. The predictions that had been
made about their behavior include anomalous transport,
superfluidity, drag, and quasi-Josephson phenomena
[13–31].

Let n be the charge-carrier density. Two extreme
cases are generally considered. The high-density case is

 @ 1 [1] or  @ 1 [13] for 3D or 2D systems,

respectively. The low-density case is  ! 1 [3, 4] or

 ! 1 [14] for 3D or 2D systems, respectively. Here,
aB is the Bohr radius.

In the low-density case, e–h systems can contain
excitons that should pass to a coherent state if cooled to
a sufficiently low temperature. For 3D systems a coher-
ent phase may be formed by Bose–Einstein (BE) con-
densation [3, 4]. A 2D system first displays a localized
BE condensate, which can be characterized by an order
parameter of fluctuating phase; this state then changes
into the low-temperature Berezinski–Kosterlitz–Thou-

naB
3 naB

2

naB
3

naB
2
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less phase, which shows quasi-long-range order
(see [15] and references therein).

In the high-density case, coherent pairing should
arise between an electron and a hole in a manner resem-
bling the Bardeen–Cooper–Schrieffer (BCS) mecha-
nism,1 the size of the e–h pairs being much greater than
the mean distance between them [1, 2, 6]. The BCS-like
state of quasi-2D e–h systems was studied in [13, 15].
In particular, the case where electrons are spatially sep-
arated from holes was covered [13]. Later on, detailed
research was conducted into phenomena possible in
dense e–h systems, such as superfluidity, phase equi-
librium, tunneling, quasi-Josephson phenomena, and
drag [13–30].

For intermediate charge-carrier densities, a liquid
exciton phase was investigated in quasi-2D [17] and 3D
[35] systems. The phase diagram and properties of a
quasi-2D system below the transition point were exam-
ined in [13, 15].

The formation of a coherent phase should confer
new optical properties on the e–h system [36–40]. One

1 Consider a quasi-equilibrium dense e–h system, which may be
found in a semimetal or created by laser irradiation. It can display
a coherent phase only if the respective Fermi surfaces of electrons
and holes fulfill the nesting condition vFδp < ∆, where vF is the
Fermi velocity, δp is the Fermi-surface separation for the pairing
particles, and ∆ is the energy gap due to pairing. The transition
point falls fairly slowly with decreasing size of the nesting Fermi-
surface parts [7]. Over a narrow range of δp a state with a nonuni-
form gap may also exist [32, 33]. A competing type of ground
state is a liquid metallic phase in the form of e–h droplets, which
are more stable in multivalley semiconductors such as Ge and
Si [34].
004 MAIK “Nauka/Interperiodica”
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of them is a strong, narrow luminescence line related to
exciton recombination in the BE condensate; its inten-
sity is proportional to the density n0 of the BE conden-
sate. However, with strong exciton–exciton interaction,
the ground state is characterized by a fairly large den-
sity of uncondensed excitons, whose radiative recombi-
nation makes it very difficult to detect the condensate
line. It is therefore desirable that a better indicator be
found of a coherent phase in e–h systems.

This paper theoretically treats two-photon emission
due to coherent recombination of two excitons or two
coherent e–h pairs in the coherent phase of an e–h sys-
tem in the low- and the high-density case, respectively.
The emission should provide a clear indication of a
coherent phase being present in the e–h system because
the recombination can be represented in terms of the
anomalous Green functions.

In the low-density case the coherent phase is taken
to be a BE condensate of excitons [40]. Although the
two-exciton recombination is a second-order process
with respect to exciton–photon interaction, its weak-

ness is compensated for by its rate varying as  rather
than n0 as with one-exciton recombination.

In 3D systems the total momentum of the emitted
photons must be zero, because both excitons have zero
momentum. The photon momenta are therefore antipar-
allel. With 2D systems, the argument applies only to
photon momentum components parallel to the plane of
the system. This feature could be detected from the
time-dependent angular correlation of photocounts
measured with appropriately arranged photon counters
[37, 41], as in the Brown–Twiss experiment.

If the two-exciton coherent recombination in a 3D
system is induced by laser photons of momentum k, it
must produce two photons with the respective momenta
k and –k. The same is true of in-plane photon momen-
tum components in 2D systems. This phenomenon
might be seen as the reversal of the wave vector by pho-
toinduced coherent recombination of excitons. In 2D
systems, in-plane reversal is responsible for two anom-
alous beams: reversed and transmitted (Fig. 5). Further-
more, BE-condensed excitons should exhibit multipho-
ton effects linked to multiexciton coherent recombina-
tion [40]. They are considered in what follows.

Three main topics are addressed in this study. First,
we examine stimulated light scattering by a 2D coher-
ent phase in a GaAs/AlGaAs DQW (Fig. 1) for the two
extreme cases. Second, we investigate optical wave-
vector reversal for bulk GaAs in the high-density case.
Third, we explore three- and four-exciton coherent
recombination in a BE condensate of excitons in Cu2O.
This line of research is taken up in light of experimental
efforts to bring about the BE condensation of excitons
in Cu2O [7, 8, 39, 42–49].

n0
2
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2. COHERENT OPTICAL PROCESSES 
AND THE ANOMALOUS GREEN FUNCTIONS

It is well known that laser irradiation of a semicon-
ductor can generate e–h pairs with a density dependent
on the radiation intensity. If the lifetime of such excita-
tions is far longer than their energy relaxation time, the
e–h system can be in a quasi-equilibrium state and dis-
play a number of equilibrium phases. The recombina-
tion of an e–h pair in a direct-gap semiconductor, such
as GaAs, involves emitting a photon. If the temperature
is low enough, a coherent phase should arise in the e–h
system, which would be manifested in nonzero means
that relate one-particle states having antiparallel
momenta. It is this anomaly that makes it possible to
produce two photons with antiparallel momenta (in 3D
systems) by annihilation of two excitons or two coher-
ent e–h pairs. This process can also be induced by res-
onant laser irradiation.

The presence of a coherent phase is indicated by a
nonvanishing anomalous Green function. In the low-
density case this Green function is

where ap is the annihilation operator for an exciton of
momentum p; T is the Wick time-ordering operator;
ε(p) ≡ εp and γ are the dispersion relation and the
inverse lifetime of elementary excitations in the e–h
system, respectively; and β = ρcondV0, with ρcond and V0
denoting the spatial density of the exciton BE conden-
sate and the zeroth Fourier coefficient of exciton–exci-
ton interaction, respectively. From here on, we set " =
1 by taking suitable units. For simplicity, we assume
that γ does not depend on the energy or momentum of
an elementary excitation.

For GaAs the dispersion relation is

(1)

where v  =  is the speed of sound and M is the
exciton mass.

Ĝ ω p,( ) i teiωt Tap t( )a p– 0( )〈 〉d∫–=

=  
β

ω ε p( ) iγ–( )–[ ] ω ε p( ) iγ–( )+[ ]
------------------------------------------------------------------------------------,–

εp
v 2k2

M
-----------

k2

2M
-------- 

 
2

+ ,=

β/M

+

–

A

B

Fig. 1. GaAs/AlGaAs double quantum well, with layers A
and B separated by a tunnel-thin barrier.
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In the high-density case the anomalous Green func-
tion is

(2)

where ep and hp are the respective annihilation opera-
tors for an electron and a hole and ξ(p) ≡ ξp is the dis-
persion relation of an elementary excitation in the e–h
system. As with the BCS theory, we take

where ∆ is the gap and ε1(p) and ε2(p) are the respective
electron dispersion relations for the electron band of the
layer A and the hole band of the layer B, assuming zero
interaction. From here on the electron and the hole band
will be referred to as band 1 and band 2, respectively.
The electron dispersion relations are taken as

where m1 and m2 are the effective electron masses for
the bands indicated and pF is the Fermi momentum; this
is determined by the density of excited electrons.

In quasi-2D systems, only an in-plane momentum
component is conserved, so that the normal component
of photon momentum is subject to energy conservation
only.

Let us consider the emission of two photons with
respective in-plane momentum components k1 and k2
such that k1 = –k2 = k||. The indices a and b will mean
that the corresponding quantity refers to the low- or the
high-density case, respectively.

The emission rate is given by

(3)

where }(a, b)(ω, k||) is the transition matrix element, k⊥ , i
is the vertical coordinate of the ith photon momentum,

F ω p,( ) i teiωt Tep t( )h–p 0( )〈 〉d∫–=

=  ∆ ω 1
2
--- ε1 p( ) ε2 p( )+[ ]– ξ p( ) iη+( )±

1–

,
±

∏

ξp ∆2 ε1 p( ) ε2 p( )–( )2+ ,=

εα p( ) 1–( )α p2

2mα
----------–

pF
2

2mα
----------+ 

  ,=

0 a b,( ) k||, 2πδ ω1 ω2+( ) } a b,( ) ω1 k||,( ) 2∫=

×
dk ⊥ i,

2π
-----------,

i 1 2,=

∏

–k|| k||G
∧

Fig. 2. Two-exciton recombination in GaAs.
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and ωi is the ith photon energy as reckoned from the
chemical potential µ of the e–h system:

.

In the two extreme cases, µ = µa = Eg – Eb and µ = µb =
Eg + µe + µh, where Eg is the semiconductor energy gap;
Eb is the exciton binding energy; µe and µh are the
chemical potentials of charge carriers relative to the
conduction and the valence band, respectively. Since Eg
exceeds Eb, µe , and µh by several orders of magnitude,
we have µa ≈ µb ≈ Eg.

3. STIMULATED LIGHT SCATTERING 
BY A 2D COHERENT PHASE: 

THE LOW-DENSITY CASE

Let us investigate two-exciton coherent recombina-
tion for a GaAs/AlGaAs DQW in the low-density case.
The Hamiltonian of exciton–photon interaction is

(4)

where gk is the coupling constant and L is the thickness
of a constituent quantum well. Since L will not appear
in the final formula, we conveniently set L = 1.

Consider a system of excitons that interact with each
other, Nexc〉  being the total number of excitons before
the recombination. This process (Fig. 2) is the transi-
tion from the state

to the state

where |Nexc〉  is the exciton ground state; |0〉  is the photon

ground state; and  = |0〉 , with  denot-
ing the creation operator for a photon of momentum
(k1, k⊥ , 1). To the lowest order the matrix element of the
transition is

(5)

Notice that the matrix element is nonzero only if k1 =
−k2 = k|| for the in-plane photon momentum compo-

ωi k|| k ⊥ i,,( ) c k||
2 k ⊥ i,

2+ µ–=

H int
a( ) gk

L
-------ak

†ck

k

∑ H.c.,+=

Φ0| 〉 Nexc| 〉 0| 〉=

Φf| 〉 N 2–( )exc| 〉 1k1
1k2

,| 〉 ,=

1k1
1k2

,| 〉 ck1

† ck2

† ck1

†

S0 f→
a( ) 1

2
--- Φf〈 |H int

a( ) t1( )H int
a( ) t2( ) Φ0| 〉 t1 t2dd∫=

=  }a ω k||,( )δ ω1 ω2+( ) g2Ĝ ω k||,( )δ ω1 ω2+( ).=
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nents. If γ ! , we can use the approximation

(6)

As a result, Eq. (3) becomes

(7)

where ω must be regarded as a function of k|| and k⊥ .
The quantity in brackets is the inverse lifetime of an
exciton with the momentum k. Approximation (6)
implies that the two photons differ in energy by an
amount on the order of , which is small compared
with µ. It follows that the magnitudes of the photon
momenta are very close to k0 ≈ Eg/c. Thus, the photon
momenta make almost the same angles with the plane
of the DQW.

The emission rate for one photon with the in-plane
momentum component k is given by Wa, k = nk ,

where nk = β/2εk is the total number of excitons with
the momentum k.

The above formulas enable us to quantitatively com-
pare the respective rates of the one- and the two-photon
emission:

Let us take β = 0.8 × 1013 s–1 ≡ 0.5 × 10–3 eV and τk ≈
10–8 s. Also, the effective exciton mass in GaAs is
0.22 times the free-electron mass. The speed of sound v
in BE-condensed excitons is then close to 2 × 105 cm/s.
Assuming that γ ~ v /l ≈ 108–109 s–1, where l is the exci-
ton mean free path, we find that γ is between 108 and
109 s−1. Thus, αa varies from 0 to 10, depending on k.

4. STIMULATED LIGHT SCATTERING 
BY A 2D COHERENT PHASE: 

THE HIGH-DENSITY CASE

We now proceed to the coherent recombination of
two e–h pairs for the same heterostructure in the high-

εk||

}a ω k||,( ) 2 πg4β2

γ 4εk||

2 γ2+( )
---------------------------- δ ω εk||

±( ).
±
∑≈

0a k||,
β2

γ 4εk||

2 γ2+( )
----------------------------=

× g2 2πδ ω εk||
±( )

k ⊥d
2π
--------∫ ,

±
∏

εk||

τk
1–

αa
0a k,

Wa k,
------------

2εkβ
γ 4εk

2 γ2+( )τk

---------------------------------.= =
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density case,  @ 1. Consider a system of coherent
e–h pairs with the volume V, which initially consists of
N such pairs. The Hamiltonian of electron–hole–pho-
ton interaction is

(8)

Since fq, k is almost independent of q, we shall neglect
the dependence and simply write fk . Further, we set
V = 1.

The recombination is the transition from the state

to the state

where  is the ground-state wave function, an ana-
log of the one in the BCS theory [6]. This process
involves emission of two photons (Fig. 3). The corre-
sponding matrix element is written as

(9)

(10)

Integration with respect to ωp yields

naB
2

H int
b( ) f q k,

V
---------eq

†hk q–
† ck H.c.+

q k,
∑=

Φ0| 〉 ψ| 〉 N( ) 0| 〉=

Φf| 〉 ψ| 〉 N 2–( ) 1k1
| 〉 1k2

| 〉 ,=

ψ| 〉 N( )

S0 f→
b( ) 1

2
--- Φf〈 |H int

b( ) t1( )H int
b( ) t2( ) Φ0| 〉 t1 t2dd∫=

=  }b ω1 k1,( )δ ω1 ω2+( ),

}b ω k,( )

=  f k 
2 F ω p p ,( ) ∫  F ω ω p – k p – ,( ) 

d
 

p
 

2
 

π( )
 3 ------------- ω p . d 

–p p–k|| k||

p–k|| k||–p

F

F

Fig. 3. Coherent recombination of two e–h pairs in GaAs.
(11)}b ω k,( ) iπ∆2 f k
2 αk p, ξp ξk p–+( ) ξp ξk p– 2iη+ +( ) ξp ξk p– ω––( )+[ ]

ξp iη+( ) ξk p– iη+( ) ω αk p,–( )2 ξp ξk p– 2iη+ +( )2–[ ]
------------------------------------------------------------------------------------------------------------------------------------- pd

2π( )3
-------------,∫=
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where

As Eq. (11) includes a cumbersome integrand, we focus
on the case k = 0, in which the emitted photon momenta
are perpendicular to the plane of the DQW. In qualita-
tive terms the result should also work for reasonable |k|.

With k = 0, Eq. (11) becomes

The integrand being actually a function of |p| ≡ p only,
we change to the variable ε = p2/2M1, where M1 =
2m1m2/(m1 + m2). The resultant single integral can be

calculated in analytical form. For ∆ ! /2M1, we thus
obtain

where

αk p,
ε1 p( ) ε2 p( )+

2
--------------------------------

ε1 k p–( ) ε2 k p–( )+
2

---------------------------------------------------.–=

}b ω 0,( ) }b ω( )≡

=  iπ∆2 f 0
2 1

ξp iη+( ) ω'2 4 ξp iη+( )2–( )
-------------------------------------------------------------------- pd

2π( )3
-------------.∫

pF
2

}b ω( )
M1

2π
-------∆2 f 0

2 A– α–β+/α+β–( )ln A+D+
2ωr

------------------------------------------------------------–
=

+ i
A+ α–β+/α+β–( )ln A–D–

2ωr
------------------------------------------------------------

 ,

r ω'2 4∆2– 4η2–( )2
16ω'2η2+ ,=

A± 1

2
------- r ω'2 4∆2– 4η2–( )± ,=

–3 –2 –1 0 1 2 3
x

0

1

2

3

4

5

6

7

|}b(ω)|2

1

2

Fig. 4. Graphs of |}b(ω)|2 vs. x ≡ ω/∆ for η/∆ equal to
(1) 0.1 and (2) 0.01.
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Let us examine the function |}b(ω)|2. Figure 4 shows
its graphs for different η/∆. Notice that |}b(ω)|2 is non-
zero only near the points ω = ±2∆. Owing to the fact
that these regions disappear as η/∆  0, we take the
approximation

(12)

where Sη ≈ 0.3 . Approximation (12) enables
us to estimate the rate of two-photon emission in the nor-
mal direction. As with Eq. (7), we calculate integral (3)
to obtain

(13)

where Wb is the rate of one-photon emission. Let us set
n ~ 1012 cm–2, ∆ ~ 0.001 eV, η/∆ ~ 0.001, Wb ~ 108 s–1,
and M1 = 0.1me. Then

(14)

If the recombination is induced by resonant laser radia-
tion with N0 photons per mode, the rate of emission in
the opposite direction to the incident beam is given by

(15)

If N0 ~ 105–106, the emission rate Wopp will be compa-
rable with the rate of one-photon emission, so that the
former effect is, in principle, detectable.

Also note that in both extreme cases the 2D nature
of the e–h system implies that a laser mode will induce
the emission of photons with the wave vectors
(k||, ±k⊥ , 1) and (–k||, ±k⊥ , 2), where k⊥ , 1 ≈ k⊥ , 2 . It follows
that aside from backscattering the laser-induced recom-
bination can produce photons with a reversed in-plane
momentum component that will cross the DQW (see
beam 4 of Fig. 5). This phenomenon might be seen as
anomalous transmission.

α± ∆ ω
2
---- A+

2
------–± 

 
2

η A–

2
------+ 

 
2

+ ,=

β± ∆ ω
2
---- A+

2
------+± 

 
2

η A–

2
------– 

 
2

+ ,=

D
∆ ω A+/2–+

α+
------------------------------- 

 arcsin
∆ ω– A+/2–

α–
------------------------------- 

 arcsin–=

+
∆ ω– A+/2+

β–
------------------------------- 

 arccos
∆ ω A+/2+ +

β+
-------------------------------- 

  .arccos–

}b ω( ) 2

=  
M1

2π
------- 

 
2

∆ f 0
4Sη δ ω 2∆–( ) δ ω 2∆+( )+[ ] ,

η /∆( )ln

0b

M1

2π
------- 

 
2∆Sη

n2
---------Wb

2,=

αb 0b/Wb 10 6– –10 5– .∼=

Wopp N0 1+( )0b.=
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5. OPTICAL WAVE-VECTOR REVERSAL
BY A 3D COHERENT PHASE 
IN THE HIGH-DENSITY CASE

Let us consider stimulated light scattering by bulk

GaAs in the high-density case (  @ 1). The Hamil-
tonian of electron–hole–photon interaction and the
transition matrix element are again given by Eqs. (8)
and (9), respectively; however, k and p are now 3D vec-
tors in (10). Note that both the magnitudes and the
directions of the emitted photon momenta are subject to
momentum and energy conservation, so that the two
photon momenta must be antiparallel and equal in mag-
nitude.

Let us calculate }b(ω, k) ≡ }b(k). As in the 2D
case, integration with respect to ωp yields Eq. (11). The
z axis being aligned with k, we recast Eq. (11) to

(16)

Here, I(pi) is an appropriate integral with the dimen-
sionless parameters

where M2 = 2m1m2/(m2 – m1) with m1 ≠ m2. It can be cal-
culated numerically.

With bulk GaAs, we have Eg ≈ 1.5 eV, n = 1021 cm–3,

pF = 3 × 107 cm–1, M2 ≈ 0.2me , ∆ = , and
|k| ≈ Eg/c. Calculating pi , we obtain |I(pi)|2 ≈ 250.
The rate of two-photon emission is thus estimated as
0b, k ≈ 5 × 1021 s–1.

6. MULTIEXCITON COHERENT 
RECOMBINATION 

IN A BOSE–EINSTEIN CONDENSATE:
THE CASE OF Cu2O

This section is concerned with the coherent recom-
bination of three or four BE-condensed excitons in bulk
Cu2O. The processes will be investigated by generaliz-
ing the above results concerning two-exciton recombi-
nation. The rate of direct e–h recombination being very
low in Cu2O, an exciton decays mostly by emission of
a photon and an optical phonon. The Hamiltonian of
exciton–photon–phonon interaction is

(17)

naB
3

}b k( ) 2M1( )3/2 ∆ f k
2 I pi( ), i 1 … 6., ,= =

p1
k2

2M1∆
--------------, p2

k2

2M2∆
--------------, p3

M1k2

2M2
2∆

--------------,===

p4

pF
2

2M1∆
--------------, p5

ω
∆
----

Eg

∆
-----, p6≈ η

∆
---,= = =

0.2 pF
2 /2M1
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where bq is the annihilation operator for a phonon of
momentum q and λ is the effective coupling constant.

If the BE condensate experiences N-exciton recom-
bination creating N photons, it makes the transition

As with two-exciton recombination, the processes
could be detected by Brown–Twiss measurements
using a coincidence circuit with N photon counters.
However, we here consider an alternative approach
based on multibeam laser-induced recombination.

Since BE-condensed excitons have zero momen-
tum, so must be the total momentum of the N photons
created:

(18)

Recall that we reckon photon energy from the exciton
chemical potential µ, so that the photon dispersion rela-
tion is

BE-condensed excitons are thus assigned zero energy
(µ = 0). Due to energy conservation the photon energies
ωi must obey the constraint

(19)

If N-exciton recombination is induced by N – 1 laser
beams with respective wave vectors ki (i = 1, …, N – 1),
it should produce a plane outgoing wave whose wave

i〈 | ck1
…ckN

a0
N i〈 | f〈 | .=V (1)

ki

i 1=

N

∑ 0.=

ωk ck µ c k k0–( ).≡–=

ωi

i 1=

N

∑ 0, ωi ωki
.≡=

θ1 θ2

θ3 θ4

DQW

1
2

3

4

5

Fig. 5. Stimulated light scattering from a 2D system involv-
ing two-photon emission: (1) incident beam; (2) ordinary
transmitted beam, (k||, k⊥ ); (3) reversed beam, –(k||, k⊥ );
(4) anomalous transmitted beam, (–k||, k⊥ ); and (5) ordinary
reflected beam, (k||, –k⊥ ). The angles are θ1 = θ2 = θ3 = θ4.
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vector kN and photon energy ωN are subject to con-
straints (18) and (19), respectively:

(20)

(21)

As compared with concurrent spontaneous emission,
the intensity of the stimulated emission is higher by a
factor of 

, (22)

where Ni is the mean number of photons per mode for
the ith incident beam.

Let us determine conditions for an outgoing wave to
be detectable. As with two-exciton recombination, one-
exciton stimulated recombination will not contribute to
the photoluminescence in the direction of the outgoing
wave if the incident wave vectors are oriented appropri-
ately. Accordingly, the background emission in the out-
going-wave direction is due to one-exciton spontaneous
recombination only. The rate WN of N-exciton stimu-
lated recombination should therefore be compared with
the rate W1 of one-exciton spontaneous recombination.
Assume that each incident beam has 103 photons per
mode. The detection is possible if

(23)

where

, (24)

with τ = π/λ2  ≈ 10–5 s being the exciton lifetime in
Cu2O; hence λ ≈ 2.5 × 102 s–1 cm3/2.

kN ki,
i 1=

N 1–

∑–=

ωN ωi.
i 1=

N 1–

∑–=

Ni 1+( )
i 1=

N 1–

∏

103 N 1–( )WN W1,>

W1 ρcond/τ=

k0
2

k1

k2

k3

Fig. 6. Three-exciton recombination in a BE condensate.
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Three-exciton recombination is also connected with
phonon–exciton interaction (see below). The corre-
sponding Hamiltonian is

(25)

Assume that the coupling constant is g = 102λ. This
implies that the rate of phonon exchange between exci-
tons is higher than that of photon emission by four
orders of magnitude (so that the characteristic time is
about 10–10 s).

Using the Fermi golden rule, we find that photons
are created at the rate

(26)

where }N is the matrix element of the process and the
prefactor N is due to N photons being created in every
elementary process. Note that }N can be expanded in
terms of N factors of the form V–1/2, so that WN is actu-
ally independent of V. This allows us to set V = 1.

6.1. Three-Exciton Recombination 

The matrix element }3(k1, k2, k3) of three-exciton
recombination is the sum of matrix elements obtained
from the one from Fig. 6 by all possible permutations
of the photon-vertex arguments:

(27)

where G(ω, k) is the exciton Green function,

(28)

and &(ω) is the phonon Green function,

(29)

The latter is assumed to be independent of k because
the magnitude of any wave vector involved is of the
order of k0 (see Section 3), which is small in terms of

V 2( ) gk q,

V
---------ap q+ apbq H.c.+

p k q–– 0=

∑=

WN N 2πδ ωi

i 1=

N

∑ 
 
 

∫=

× }N k1…kN( ) 2
V N kid

2π( )3
-------------,

i 1=

N 1–

∏

}3 k1 k2 k3, ,( )

=  gλ3ρcond
3/2 & ωi( )& ωj( )G k j– ωj( ),

i j≠
∑
i j, 1 2 3,, ,=

G ω k,( )
ω εk

2 β2++
ω εk iγ–( )–[ ] ω εk iγ–( )+[ ]

-----------------------------------------------------------------------,=

& ω( ) 2Ω
ω Ω iδ–( )–[ ] ω Ω iδ–( )+[ ]

-----------------------------------------------------------------------.=
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the Brillouin zone; with such wave vectors, the optical-
phonon energy can be regarded as a constant.

The rate of the process is mainly determined by the
photon-energy regions in which virtual particles are
closest to their mass surfaces, at which resonance
occurs. The photon energies (with the dispersion rela-
tion selected) are of the order of the elementary-excita-
tion energy εk in the BE condensate or the optical-
phonon energy Ω (see (31)). The orders of magnitude
of εk and Ω are much less than that of the exciton chem-
ical potential µ ≈ Eg as reckoned from the valence-band
maximum. We therefore take k0 as an approximation to
the magnitudes of photon wave vectors (see Appendix
for details). Accordingly, }3(k1, k2, k3) in (27)
becomes a function of photon energies only. Assuming
that δ ! Ω and γ ! , where  is the elementary-

excitation energy, we apply the pole expansion to |}3|2
and obtain the sum of six equal resonant terms:

Owing to the above approximation the rate W3 of three-
exciton stimulated recombination is expressed as

Since Ω ≈ 10–2 eV @  ≈ 10–4 eV, we arrive at

(30)

To estimate W3, we take the exciton mass as 2.7me and
the other parameters as β ≈ 0.5 meV (0.5 × 1012 s–1),
ρcond ≈ 1019 cm–3, γ ≈ 0.1β, and δ ≈ 109 s–1. The relative
permittivity and energy gap of Cu2O are ε ≈ 9 and

Eg ≈ 2 eV, so that c = c0/  ≈ 1010 cm/s and k0 = 3 ×
105 cm–1. Thus,

that is, one out of a hundred excitons decays by three-
exciton stimulated recombination. Noting that the rate
is high enough to meet requirement (23), we conclude
that the process is in principle detectable.

Three-exciton stimulated recombination could be
produced and detected by illuminating the BE conden-

εk0
εk0

}3 ω1 ω2 ω3, ,( )
2

6g2λ6ρcond
3 & ω2( )& ω1( )Gk0

ω1( )
2
.≈

W3 18
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3 k0
3

πc3
--------------------------- & ω1( )Gk0

ω1( ) 2δω1

2π
---------∫=

× & ω2( ) 2 ω2d
2π
---------.∫

εk0

W3 18
g2λ6ρcond

3 k0
3

πc3
--------------------------- 1

Ω2δ
---------- 1

δ
---

1
γ
--- 1 β2

2εk0

2
---------+

 
 
 

+=

=  18
g2λ4ρcond

2 k0

c2Ω2δ
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1
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--- 1 β2
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2
---------+

 
 
 

+ W1.

ε

W3 10 2– W1;≈
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sate with two laser beams making an angle of 2π/3 with
one another (see Appendix); the wave vector of the out-
going beam will be coplanar with the incoming wave
vectors and will make the stated angle with each of
them.

As already noted, the recombination rate is mainly
determined by the photon-energy regions in which vir-
tual particles are closest to their mass surfaces. Specif-
ically, the corresponding energies of the three emitted
photons are close to any of the following sets

(31)

where µ is the exciton chemical potential. The first set
corresponds to the first term in brackets appearing
in (30), so that the resonant condition is fulfilled by a
virtual optical phonon. The other sets correspond to the
second term, implying that an elementary excitation of
the BE condensate will be at resonance.

Thus, the recombination rate can be increased by
setting the respective photon energies of the laser
beams to any two members of any energy set in (31),
the outgoing photon energy being equal to the remain-
ing member.

6.2. Four-Exciton Recombination 

To the lowest order with respect to exciton–phonon–
photon interaction, the matrix element of four-exciton
stimulated recombination is given by

It corresponds to 12 diagrams constructed from that of
Fig. 7 by photon-vertex permutation. The two exciton
lines that are not shown in Fig. 7 are implicitly included

µ Ω µ Ω µ,–,+( ),

µ Ω µ εk0
± µ Ω εk0

+−–, ,+( ),

µ Ω– µ εk0
+− µ Ω εk0

±+, ,( ),

}4 k1…k4( ) ρcondλ
4=

× F– k1 km+( ) ωl ωm+( )–( )& ωl–( )& ωn–( ),
l m≠
m n≠
n l≠

∑

l m n, , 1 … 4., ,=

k1

k2k3

k4

Fig. 7. Four-exciton recombination in a BE condensate.
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in the anomalous Green function of BE-condensed
excitons.

Applying the pole expansion to |}4|2, we obtain the
sum of 12 equal resonant terms:

(32)

As with three-exciton recombination, we take the mag-
nitudes of photon wave vectors to be k0 (see Appendix
for details), so that the recombination rate W4 is
expressed as

where u = ω1 + ω2 and k = |k1 + k2|. Assuming that γ is
independent of k and is much less than , we see that

With v  ≈ 0.5 × 106 cm/s, we arrive at

(33)

Calculation yields

}4
2

=  12ρcond
2 λ8 F k1 k2+ ω1 ω2+( )& ω1( )& ω3( ) 2

.

W4 48ρcond
2 λ8 k0

4

2π2c4
------------- ud

2π
------ k Fk u( ) 2d

0

2k0

∫∫=

×
ω1d

2π
--------- & ω1( ) 2 ω3d

2π
--------- & ω3( ) 2

,∫∫

εk0

ud
2π
------ k Fk u( ) 2d

0

2k0

∫∫ πβ2

8γ2v
------------.=

W4
3ρcond

2 λ8β2k0
4

πcv c4δ2γ2
-------------------------------

3ρcondλ
6β2k0

2

cv c2δ2γ2
-------------------------------W1.= =

W4 5 10 3– W1;×=

(a) (b)

k1

k2

k3

k1

k1 + k2

k2

k3

k4

q2

q2
q3

Fig. 8. The magnitude of an outgoing wave vector kN rela-
tive to the mutual orientation of the incoming ones with a
fixed magnitude, for (a) N = 3 and (b) N = 4.
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that is, one out of two hundred excitons decays by four-
exciton stimulated recombination. Noting that the rate
is high enough to meet requirement (23), we conclude
that the process is, in principle, detectable.

The wave vectors of the photons created are oriented
as in Fig. 8b of Appendix. Due to condition (18) the
total momentum of any two photons is in the opposite
direction to that of the others. Also, the angle between
any two wave vectors is the same as that between the
other two. However, the wave vectors are not generally
coplanar.

Four-exciton stimulated recombination could be
produced and detected by illuminating the BE conden-
sate with three laser beams. The wave vectors of the
incoming beams should be oriented as described above,
the outgoing wave vector being given by Eq. (20).

As with three-exciton recombination, the rate of
four-exciton recombination is highest if the photon
energies are equal to the members of the set

Accordingly, the recombination rate can be increased
by setting the respective photon energies of the laser
beams to any three members of the set, the outgoing
photon energy being equal to the remaining member.

7. CONCLUSIONS

We investigated stimulated light scattering, includ-
ing wave-vector reversal, from an e–h coherent phase in
a GaAs/AlGaAs DQW and bulk GaAs in the low- and
the high-density case, the scattering mechanism being
the coherent recombination of two excitons or two e–h
pairs, respectively. The estimated rates of two-photon
emission indicate that the scattering is detectable in
both of the extreme cases. If the incident laser radiation
provides 102–105 photons per mode, the rate of two-
photon emission will be comparable to that of one-pho-
ton emission. We also considered multiexciton coher-
ent recombination, for bulk Cu2O. Similarly, the coher-
ent recombination of multiple correlated e–h pairs is
possible in the high-density case.

Four-wave mixing is another candidate way of
studying BE-condensed excitons [50–52]. However, it
is important to note that this method creates a coherent
exciton system (in the form of exciton density waves)
before it is examined, whereas our approach deals with
an existing one.

It should be emphasized that stimulated light scat-
tering by an e–h system is possible only if the system
contains a coherent phase; therefore, this optical phe-
nomenon could serve as an indicator of the presence of
such phase. Another potential test for a coherent phase
is the detection of a pair of correlated photons with anti-
parallel momenta that have been produced by coherent
recombination of two excitons or two e–h pairs in the
coherent phase. This could be done by Brown–Twiss

µ Ω µ Ω εk0
±– µ Ω µ Ω εk0

+−+,–, ,+( ).
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measurements with two appropriately positioned detec-
tors. A similar method should work for multiexciton
coherent recombination.
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APPENDIX

In general, the integral in Eq. (26) is to be taken with
respect to N – 1 wave vectors in a 3D space. It is possi-
ble to reduce the total number of variables of integra-
tion if we can set ki = k0 for i = 1, …, N – 1, where ki is
the magnitude of the ith wave vector. Specifically, we
introduce spherical coordinates in the 3D space and so
bring the integral to the form

(34)

the wave vectors being represented as

(35)

With ki = k0 for each i, the product terms become

and the delta-function term is recast to

(36)

With this approximation, energy conservation dictates
that the incoming wave vectors be oriented so that the
outgoing wave vectors as given by Eq. (20) have the
magnitude k0.

Three-Photon Case 

Without loss of generality, we introduce spherical
coordinates according to Fig. 8a. Consequently,

and expression (36) becomes

…2πδ c ki k0–( )
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 
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2 ωi θi φidcosdd

c 2π( )3
--------------------------------------,

i 1=

N 1–
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ki ki θi; θi φi; θi φisinsincossincos( ).=

k0
2 ωi θi φidcosdd
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1
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1
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-------δ 2 1 θ2cos+( ) 1–( ) 1

ck0
-------δ θ2cos 1

2
---+ 
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Integration with respect to the angles brings expres-
sion (34) to a simpler form:

(37)

The fact that cosθ2 = –1/2 implies that the angle
between the wave vectors is 2π/3.

Four-Photon Case 

In the four-photon case the matrix element depends
on the photon energies and |k1 + k2|. To reduce the num-
ber of integrations in (26), we represent the orientation
of k3 in terms of its angle with k1 + k2 (Fig. 8b), so that

Expression (36) thus becomes

where X = –(2k0)–1|k1 + k2| ∈  [–1, 0]. Integration with
respect to θ3 transforms (34) into

Next, we represent the orientation of k2 in terms of its
angle with k1 (Fig. 8b), so that

.

Changing from cosθ2 to |k1 + k2| as a variable of
integration,

brings (34) to the form
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Abstract—A model is formulated for the analytic description of vortices in a system consisting of a long
Josephson junction (JJ) and a waveguide that is magnetically coupled to this junction. The application of this
model made it possible to determine the allowed range of velocities of a vortex. It is established that a free vor-
tex can move with a velocity much greater than the Swihart velocity of a Josephson junction. Such a vortex is
called fast. The effect of the waveguide on the forced motion of vortices is studied. It is shown that fast vortices
can be generated at relatively small values of current. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Model equations for the difference between the
phases of a condensate wave function on different sides
of a Josephson junction (JJ) (see, for example, [1–6])
are widely used for the description of the properties of
Josephson vortices. The main simplification of the the-
ory in model approaches lies in replacing a sine nonlin-
earity by relatively simple piecewise linear functions.
The efficiency of the application of model approaches
has been demonstrated both while describing vortices
that carry a single quantum of a magnetic flux [7] and
while describing more complicated multivortex struc-
tures [8, 9]. Up to now, the model description has been
used for studying vortices either in an isolated JJ or in
two magnetically coupled JJs [10]. Since the applica-
tion of model approaches in the theory of simple
Josephson structures proved to be efficient, it seems
expedient to use a model approach in the theory of vor-
tices in a structure consisting of a JJ coupled to a
waveguide. The statement of such a problem was given
in [11]. According to this statement, in the present
study, we consider vortices in a JJ coupled to a planar
waveguide. To obtain analytic characteristics, we apply
the Sakai–Tateno–Pedersen model in which the sine of
the phase difference is simulated by a sawtooth func-
tion of form (2.12) (see below). The application of this
model, on the one hand, allows one to correctly
describe the allowed and forbidden velocity bands for a
freely moving vortex (these bands were determined
in [12] in a theory that does not take into account dissi-
pation and does not use an approximate representation
for the sine of the phase difference) and, on the other
hand, allows one to construct an analytic solution to a
system of coupled equations for the phase differences
in the JJ and in the waveguide even when dissipation is
significant. The latter fact is of interest for the problem
of the motion of a vortex under a transport current. A
1063-7761/04/9803- $26.00 © 20594
remarkable property of the Sakai–Tateno–Pedersen
model is the possibility of describing the role of the
Cherenkov effect in a JJ.

In the present paper, we set up a problem of the
velocity of a Josephson vortex in a JJ to which a mag-
netically coupled waveguide is connected. An analytic
examination of such a problem is possible owing to the
model consideration of the coupling between the JJ and
the waveguide. We show that the coupling to a
waveguide characterized by the large Swihart velocity
allows one to obtain a Josephson vortex moving with a
velocity that may be much greater than that of an iso-
lated JJ. This opens up the possibility of implementing
fast Josephson vortices.

The results of the model approach are described as
follows. In Section 2, relying on the equations that
describe a JJ coupled to a waveguide, we describe a free
motion of an elementary vortex in such a system. We
indicate the range of velocities in which a fast Joseph-
son vortex may exist. The existence of this range of
velocities is associated with the effect of the waveguide
on the JJ. In Section 3, we investigate the forced motion
of this vortex due to a transport current. For sufficiently
small losses, we determine the phase differences on the
JJ and on the waveguide walls within the Sakai–
Tateno–Pedersen model. The use of the model
approach has allowed us to determine the contributions,
to the phase differences, of the terms that vary over a
relatively large scale determined by dissipation. We
show how this scale manifests itself in the structure of
a vortex and determine the contributions of dissipation
in the JJ and the waveguide to the relation between the
vortex velocity and current. We show that the forced
motion of a fast Josephson vortex may occur under rela-
tively low densities of the transport current. In Section 4,
we describe the effect of Cherenkov losses in the JJ
coupled to a waveguide on the transport current. In Sec-
tion 5, we discuss the final results.
004 MAIK “Nauka/Interperiodica”
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2. A FREE VORTEX

Consider a double-sandwich-type layered system
that consists of three superconducting layers S1, S2, and
S3 and two nonsuperconducting layers I and W. The
superconducting layers occupy the domains x < –d, d <
x < d + L, and x > d + L = 2dw and have the London
depths λ1, λ2, and λ3, respectively. The substance in the
layer I of thickness 2d, which is sandwiched between
the layers S1 and S2, has dielectric permittivity e and
conductivity σ. The layer W of thickness 2dw, which
separates the superconductors S2 and S3, has dielectric
permittivity ew and conductivity σw. Assume that the
layer I is thin enough that Cooper pairs may tunnel
through it, thus creating a Josephson current of critical
density jc . The thickness of the layer W is assumed to
be so large that one can neglect the Josephson current
through W compared to the displacement and conduc-
tivity currents. This fact allows us to treat the system
considered as a JJ magnetically coupled to a
waveguide.

Let ϕ be the phase difference of the condensate
wave functions of the superconductors S1 and S2 on
their boundaries x = –d and x = d with the layer I and ϕw
be the phase difference of the condensate wave func-
tions of the superconductors S2 and S3 on their bound-
aries x = d + L and x = d + L + 2dw with the waveguide
W. Assume that the characteristic space scales of varia-
tions of ϕ and ϕw are large compared to the London
lengths. Then, following [13, 14], we obtain the follow-
ing system of equations for ϕ and ϕw (cf. [11, 12]):

(2.1)

(2.2)

Here,

(2.3)

and

(2.4)

are the Swihart velocities in the JJ and the waveguide,

ωj
2F ϕ z t,( )[ ] ∂2ϕ z t,( )

∂t2
---------------------+

=  V s
2∂2ϕ z t,( )

∂z2
--------------------- SV s

2∂2ϕw z t,( )
∂z2

------------------------,+

∂2ϕw z t,( )
∂t2

------------------------ V sw
2 ∂2ϕw z t,( )

∂z2
------------------------ SwV sw

2 ∂2ϕ z t,( )
∂z2

---------------------.+=

V s
2

c22d
e

------
λ3 2dw λ2 L/λ2( )coth+ +

∆
------------------------------------------------------------≡

V sw
2

c22dw

ew
---------

λ1 2d λ2 L/λ2( )coth+ +
∆

---------------------------------------------------------≡
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respectively, where

the coupling constants between the JJ and the
waveguide that appear on the right-hand sides of (2.1)
and (2.2) are given by

(2.5)

and

(2.6)

respectively; ωj is the Josephson frequency of the JJ;
and F[ϕ] is the density of the Josephson current nor-
malized by jc . We emphasize that the expressions for Vs
and Vsw contain the thickness L of the superconducting
layer S2 through which the JJ is coupled to the
waveguide. This means that Vs and Vsw determine the
Swihart velocities with regard to the above coupling. In
the limit as L  ∞, (2.3) and (2.4) reduce to

and

respectively. The quantities v s and v sw are the Swihart
velocities of noninteracting isolated JJ and waveguide,
respectively.

For vortex structures propagating with constant
velocity v  when ϕ(z, t) = ψ(ζ) and ϕw(z, t) = ψw(ζ), ζ ≡
z – v t, Eqs. (2.1) and (2.2) yield

(2.7)

(2.8)

Setting ψ(–∞) = ψw(–∞) = 0 and ψ'(–∞) = (–∞) = 0,
from (2.8) we obtain

(2.9)

∆ λ1 2d λ2
L
λ2
-----coth+ + 

 ≡

× λ3 2dw λ2
L
λ2
-----coth+ + 

  λ2
2 L

λ2
-----cosech

2
0,>–

S
λ2 L/λ2( )cosech

λ3 2dw λ2 L/λ2( )coth+ +
------------------------------------------------------------,≡

Sw

λ2 L/λ2( )cosech
λ1 2d λ2 L/λ2( )coth+ +
---------------------------------------------------------,≡

V s v s c
1
e
--- 2d

λ1 λ2 2d+ +
-----------------------------,≡

V sw v sw c
1
ew
-----

2dw

λ2 λ3 2dw+ +
--------------------------------,≡

ωj
2F ψ ζ( )[ ] V s

2 v 2–( )ψ'' ζ( )– SV s
2ψw'' ζ( ),=

V sw
2 v 2–( )ψw'' ζ( )– SwV sw

2 ψ'' ζ( ).=

ψw'

ψw ζ( ) Sw

V sw
2

V sw
2 v 2–

--------------------ψ ζ( ).–=
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Substituting (2.9) into (2.7), we obtain the following
equation for the phase difference ψ on the JJ:

(2.10)

where the velocities v 1 and v 2 are defined by

(2.11)

Below, in the main body of the paper, we will apply the
Sakai–Tateno–Pedersen model [1–3] with the follow-
ing sawtooth function F[ψ]:

(2.12)

According to (2.12) and Eqs. (2.7) and (2.8), the wave-
numbers of small perturbations of the phase difference
that are characterized by the coordinate dependence
exp(ikζ) are determined by the equation

(2.13)

where the “+” corresponds to the perturbations of ψ
near ψ = 0 or 2π and the “–” corresponds to the pertur-
bations of ψ near ψ = π. Equation (2.13) can be rewrit-
ten in the following equivalent form:

(2.14)

This equation corresponds to the coupling between the
ordinary (for the “+”) and extraordinary (for “–”) Swi-
hart waves of the JJ and an electromagnetic wave in the
waveguide.

In the case of “+,” we obtain k = ±ikj(v) from (2.13),
and, in the case of “–,” we obtain k = ±kj(v), where

(2.15)

ωj
2F ψ ζ( )[ ]

v 1
2 v 2–( ) v 2

2
v 2–( )

V sw
2 v 2–

-----------------------------------------------ψ'' ζ( ),=

v m

≡
V s

2 V sw
2+

2
--------------------- 1–( )m V s

2 V sw
2–( )2

4
--------------------------- SSwV s

2
V sw

2+ + 0,>

m 1 2.,=

F ψ[ ] FSTP ψ[ ]=

=  

2/π( )ψ,     π /2 ψ π /2, < < –

2/

 
π( ) π ψ

 

–

 
( )

 

,

 
π

 

/2
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3

 
π

 

/2,

 
< <

 

2/

 

π( ) ψ

 

2

 

π

 

–

 

( )

 

, 3

 

π

 

/2

 

ψ

 

5

 

π

 

/2.< <





2
π
---ωj

2±
v 1

2
v 2–( ) v 2

2 v 2–( )
V sw

2 v 2–
-----------------------------------------------k2+ 0,=

2
π
---ωj

2± V s
2 v 2–( )k2+ V sw

2 v 2–( )

=  SSwV s
2V sw

2 k
2
.

k j v( ) 2
π
---ωj
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2 v 2–( )
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Using 

 

k

 

j

 

(

 

v

 

), we rewrite Eq. (2.10) for 

 

ψ

 

(

 

ζ

 

) as

(2.16)

The formal similarity between this equation and the
equation corresponding to the isolated JJ [7] makes it
possible to write out the following solution to Eq.
(2.16) that describes an elementary vortex (a 2

 

π

 

 kink):

(2.17)

(2.18)

(2.19)

The phase difference 

 

ψ

 

w

 

 on the waveguide walls that
corresponds to this vortex is determined from (2.9) and
is expressed as

For the solution (2.17)–(2.19) to describe a solitary
vortex, i.e., for the equalities ψ(–∞) = 0 and ψ(∞) = 2π
to hold, it is necessary that kj(v) be real and given
by (2.15). This requirement implies that the values of

FSTP ψ ζ( )[ ] 2
π
---k j

2– v( )ψ'' ζ( ).=

ψ ζ( ) π
2
--- k j v( )ζ π

4
---+ , ζ π

4k j v( )
-----------------,–<exp=

ψ ζ( ) π π
2

------- k j v( )ζ[ ] ,sin+=

π
4k j v( )
-----------------– ζ π

4k j v( )
-----------------,< <

ψ ζ( ) 2π π
2
---exp k– j v( )ζ π

4
---+ ,–=

ζ π
4k j v( )
-----------------.>

ψw ζ( ) π
2
---

SwV sw
2

V sw
2 v 2–

-------------------- k j v( )ζ π
4
---+ ,exp–=

ζ π
4k j v( )
-----------------,–<

ψw ζ( ) π
SwV sw

2

V sw
2 v 2–

--------------------–
π
2

-------
SwV sw

2

V sw
2 v 2–

-------------------- k j v( )ζ[ ]sin ,–=

π
4k j v( )
-----------------– ζ π

4k j v( )
-----------------,< <

ψw ζ( ) = 2π
SwV sw

2

V sw
2 v 2–

--------------------
π
2
---

SwV sw
2

V sw
2 v 2–

--------------------+ k j v( )ζ π
4
---+– ,exp–

ζ π
4k j v( )
-----------------.>
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the vortex velocity may only belong to the two allowed
bands

(2.20)

(2.21)

On the contrary, in the interval (v 1, Vsw) and for v  > v 2,
kj(v) is pure imaginary, which does not correspond to
the motion of a solitary vortex. Recall that, in an iso-
lated JJ, a vortex may move with arbitrary velocities
below the Swihart velocity v s . The splitting of the
domain of admissible velocities of a vortex and the
appearance of the forbidden band [v 1, Vsw] is associated
with the effect of the waveguide on the JJ.

The expressions for the velocities v 1 and v 2 that
determine the right boundaries of the allowed bands
have an especially simple form in the case of weak cou-
pling between the JJ and the waveguide, when the cou-
pling constants S and Sw are small. When Vsw < Vs , we
have

(2.22)

(2.23)

In particular, when Vsw ! Vs , this implies that the
allowed band (2.20) extends from zero to nearly the
Swihart velocity of the waveguide; this band is fol-
lowed by a relatively narrow forbidden band (Vsw – v 1 ≈
SSwVsw/2), which, in turn, is followed by the broad sec-
ond allowed band (2.21) extending from the Swihart
velocity of the waveguide to a velocity slightly greater
than the Swihart velocity of the JJ. In other words,
when the Swihart velocity of the waveguide is small
compared with the Swihart velocity of the JJ, the effect
of the waveguide manifests itself in a slight increase in
the limit velocity of a vortex compared with Vs and in
the emergence of a narrow (compared with both Vs and
Vsw) forbidden band for velocities.

When Vsw = Vs and the coupling between the JJ and
the waveguide is weak, we have

These formulas show that the width of the first allowed
band is close to Vs , while the forbidden band and the
second allowed band are relatively narrow: Vsw – v 1 ≈

0 v v 1,< <

V sw v v 2.< <

v 1 1
1
2
---SSw

V s
2

V s
2 V sw

2–
--------------------–

 
 
 

V sw,≈

v 2 1
1
2
---SSw

V sw
2

V s
2 V sw

2–
--------------------+

 
 
 

V s.≈

v 1 1
1
2
--- SSw– 

  V s,≈

v 2 1
1
2
--- SSw+ 

  V s.≈
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v 2 – Vsw ≈ Vs/2. This means that, just as in the pre-
vious case, the effect of the waveguide manifests itself,
first, in a slight increase in the limit velocity of a vortex
compared with Vs and, second, in the emergence of a
narrow, compared with Vs , forbidden band for velo-
cities.

Finally, when Vsw >Vs and the coupling between the
JJ and the waveguide is still weak, from (2.11) we
obtain

(2.24)

(2.25)

In particular, in the most interesting case when Vsw @
Vs , the first allowed band extends from zero to nearly
the Swihart velocity of the JJ, which is followed by a
relatively broad forbidden band (1 – SSw/2)Vs ≤ v ≤
Vsw, which, in turn, is followed by the second allowed
band

(2.26)

The width of this band is small compared with both Vsw
and Vs . Since this region lies near the Swihart velocity
of the waveguide, which was assumed to be large com-
pared with the Swihart velocity of the JJ, it can be
called the existence region of a fast Josephson vortex.

As already mentioned, in an isolated JJ, a vortex
may move with a velocity less than the Swihart velocity
v s in the JJ. When the JJ is connected to a waveguide, a
new phenomenon arises, a fast Josephson vortex. This
vortex moves with velocity much greater than the Swi-
hart velocity of the JJ. Such an increase in the vortex
velocity is attractive since the Swihart velocity of the

waveguide may be close to the velocity of light c/
in the substance that fills the waveguide. Thus, for-
mula (2.26) points to the following interesting fact: a
Josephson vortex may move with very high velocity
that is close to the velocity of light in the dielectric that
fills the waveguide.

Thus, when the Swihart velocity of the waveguide is
large compared with the Swihart velocity of the JJ, the
effect of the waveguide is manifested in the fact that,
first, the right boundary of the first allowed band
slightly decreases compared with Vs , second, the for-
bidden band, which extends nearly from Vs to Vsw, is
broader than both allowed bands, and, third, there
appears a region of a fast vortex that moves with a
velocity close to the Swihart velocity of the waveguide.

SSw

v 1 1
1
2
---SSw

V sw
2

V sw
2 V s

2
–

---------------------–
 
 
 

V s,≈

v 2 1
1
2
---SSw

V s
2

V sw
2 V s

2
–

---------------------+
 
 
 

V sw.≈

V sw v v 2 1
1
2
---SSw

V s
2

V sw
2

--------+
 
 
 

V sw.≈< <

εw
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We emphasize that the splitting of the range of
velocities in which a Josephson 2π kink may exist and
the emergence of a forbidden velocity band are not
related to the choice of the Sakai–Tateno–Pedersen
nonlinearity but are attributed to the effect of the
waveguide on the JJ and also occur, for example, in the
conventional model with sine nonlinearity (see Appen-
dix 1).

3. FORCED MOTION OF A VORTEX
In this section, we consider a forced motion of a vor-

tex under the action of a dc transport current of density
j that flows through the JJ. As in the previous section,
we consider a uniformly moving vortex when the accel-
erating effect of the transport current is compensated by
dissipative losses.

Using β ≡ 4πσ/e and βw ≡ 4πσw/ew instead of (2.1)
and (2.2) to describe the losses in the JJ and the
waveguide, respectively, we obtain (cf. [11])

(3.1)

(3.2)

In the case of a steady motion at a constant velocity v,
from (3.1) and (3.2), we obtain

(3.3)

(3.4)

where f(ζ) ≡ .

When F[ψ] is used in the form (2.12) corresponding
to the Sakai–Tateno–Pedersen model, the wave vectors
of small perturbations of ψ and f are determined from
the equation

(3.5)

in which the “+” and “–” have the same meaning as in
Eqs. (2.13) and (2.14). In contrast to the dissipationless

ωj
2F ϕ z t,( )[ ] ∂2ϕ z t,( )

∂t2
--------------------- ωj

2 j
jc
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∂t
-------------------+ + +

=  V s
2∂2ϕ z t,( )

∂z2
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2∂2ϕw z t,( )
∂z2

------------------------,+

∂2ϕw z t,( )
∂t2

------------------------ βw

∂ϕw z t,( )
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----------------------+

=  V sw
2 ∂2ϕw z t,( )

∂z2
------------------------ SwV sw

2 ∂2ϕ z t,( )
∂z2

---------------------.+

ωj
2F ψ ζ( )[ ] V s

2 v 2–( )ψ'' ζ( )– ωj
2 j

jc
---- βv ψ' ζ( )–+

=  SV s
2 f ' ζ( ),

V sw
2 v 2–( ) f ' ζ( )– βwv f ζ( )– SwV sw

2 ψ'' ζ( ),=

ψw' ζ( )

2
π
---ωj

2± V s
2 v 2–( )k2 iβv k–+

× V sw
2 v 2–( )k iβwv–[ ] SSwV s

2
V sw

2 k3,=
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case, Eq. (3.5) has three solutions. Let us write out
these solutions on the assumption that dissipation is
small.

When the left-hand side of Eq. (3.5) has a “+,” two
roots k = ±ikj(v ) + iαkj(v) of this equation, where

(3.6)

(3.7)

differ from the roots k = ±ikj (v) of the dissipationless
equation (2.14) by a small dissipative term iαkj(v ). The
third root of Eq. (3.5) with a “+” on the left-hand side,
which is associated with dissipation, is k = i(1 – αw)kw,
where

(3.8)

(3.9)

When the left-hand side of Eq. (3.5) has a “–,” in the
low-loss limit, this equation has the following solu-
tions: k = ±kj(v) + iαkj(v), i(1 + αw)kw.

Conditions (3.6) and (3.9) for the smallness of α and
αw agree with our assumption that dissipation is small.

Let us write a solution to the system of Eqs. (3.3)
and (3.4), which describes a Josephson 2π kink and the
associated field in the waveguide in the first allowed
velocity band (2.20), for kw > 0. Assume that ψ(ζ) takes
the values π/2 and 3π/2 at points ζ = –ζ0 and ζ = ζ0,
respectively.

We will seek a solution to systems (3.3), (3.4) as a
superposition of constants and terms of the form
exp(ikζ), where k is a solution to Eq. (3.5). Then,
requiring that the solution do not contain terms that
grow exponentially as |ζ|  ∞, we obtain

(3.10)

(3.11)

in the tail of the vortex (ζ < –ζ0), where –πj/2jc <
ψ < π/2;

(3.12)
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(3.13)

in the middle part of the vortex (–ζ0 < ζ < ζ0), where
−π/2 < ψ < 3π/2; and

(3.14)

(3.15)

in the head of the vortex (ζ > ζ0), where 3π/2 < ψ < 2π –
(πj/2jc).

When writing Eqs. (3.10) and (3.14), we took into
account that ψ(–ζ0 – 0) = π/2 and ψ(ζ0 + 0) = 3π/2.

From the continuity condition for the functions
ψ(ζ), ψ'(ζ), and  at ζ = ±ζ0 and from the relations
between the quantities B, C, D, E, Aw, Bw, Cw, Dw, Ew,
and Fw that arise under the substitution of (3.10)–(3.15)
into any of the equations of the system (3.3), (3.4), we
obtain a system of 12 equations from which we can
determine the size of the middle region 2ζ0, the relation
between the current density j and the velocity of a vortex
structure, and the coefficients of the exponential and trig-
onometric functions in (3.10)–(3.15). From this system
of equations, in the linear approximation in dissipation,
we obtain

(3.16)

(3.17)

Again, under the assumption that α and αw are small,
we obtain the expressions, given in Appendix 2, for the
coefficients that define the functions ψ(ζ) and .

Substituting (3.17) and the corresponding expres-
sions from Appendix 2 into (3.10)–(3.15), we obtain
the following expressions for a Josephson 2π kink and
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the associated field in the waveguide in the allowed
velocity band (2.20) to the lowest order in small dissi-
pation:

(3.18)

(3.19)

in the tail of the vortex (ζ < –π/4kj(v)), where –πj/2jc <
ψ < π/2;

(3.20)

(3.21)

in the middle part of the vortex (–π/4kj(v) < ζ <
π/4kj(v)), where –π/2 < ψ < 3π/2; and

(3.22)
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(3.23)

in the head of the vortex (ζ > π/4kj(v)), where 3π/2 <
ψ < 2π – (πj/2jc).

In the second allowed velocity band (2.21) of a vor-
tex, when kw < 0, a solution to the system of Eqs. (3.3),
(3.4) is sought in a form similar to (3.10)–(3.15) with
the difference that the contributions (associated with the
dissipation) of the third roots i(1 ± αw)kw of Eqs. (3.5)
arise in the middle part and the tail of a vortex rather
than in the middle part and the head. This solution has a
form similar to (3.18)–(3.23) (see Appendix 3). Here, the
relation between the transport current and the vortex
velocity in a linear approximation in β and βw is given
by (3.16) as before.

To conclude this section, we note that, to obtain for-
mula (3.16), we can apply a method that involves the
approximate solution of Eqs. (3.3) and (3.4) (see
Appendix 4). This method allows one to write the func-
tion j(v), which differs from (3.16) only by a numerical
factor, in the model with sine nonlinearity as well (see
Appendix 4):

(3.24)

4. THE EFFECT OF CHERENKOV LOSSES 
ON THE FORCED MOTION OF A VORTEX

A remarkable property of the Sakai–Tateno–Peder-
sen approach is the fact that it makes it possible to con-
sider the effect of Cherenkov losses on the motion of a
vortex. The results of this analysis are presented in this
section as applied to the conditions under which Vs !
Vsw and there exists a fast vortex. When Vs ! Vsw, there
are two velocity ranges in each of which vortices exist.

First, consider a range of small velocities when one
can speak of the motion of a relatively slow vortex with
a velocity of v  < v 1 ≈ (1 – SSw)1/2Vs. To describe the
Cherenkov losses of a slow vortex, it is sufficient to take
into account the spatial dispersion of the JJ. Let us
restrict the analysis to the limit of relatively weak spa-
tial dispersion of the JJ, which is possible when the vor-
tex velocity satisfies the condition
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In addition, when considering the Cherenkov losses, we
will neglect dissipation in the JJ and the waveguide.
This approach is justified for low dissipation and small
Cherenkov losses, when their effect on the motion of a
vortex is additive. Under these conditions, the forced
motion of a slow vortex is described by Eqs. (3.1) and
(3.2) with β = βw = 0 when a term of the form

(4.2)

where λj ≡ v s/ωj and  ≡ (  + )(λ1 + 
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2

 

 + 2

 

d

 

)

 

–1

 

, is
added to the right-hand side of (3.1) to take into account
the weak spatial dispersion of the JJ. In writing the
small term (4.2), we neglect the interaction between the
JJ and the waveguide. Taking into account the above
changes in Eqs. (3.1) and (3.2), we use the following
equation to describe the forced motion of a slow vortex:

(4.3)
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. Equation (4.3) for-
mally differs from the equation considered in [7] in that
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 are replaced by  and (  – 
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)

is replaced by (2/

 

π

 

) (

 

v

 

). This allows one to make use
of the mathematical result of [7]. For instance, follow-
ing [7], for the velocities of a slow vortex that satisfy
the condition

(4.4)

we obtain the following relation between the current
and the vortex velocity:
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1. Formula (4.5) gives an
oscillatory relation between the current and the vortex
velocity, which is established when there is balance
between the effects of current and Cherenkov losses
due to the irradiation of waves by the vortex. In this
case, the minima of the function (4.5) correspond to a
discrete set of eigenvelocities 

 

v

 

n

 

 of a free motion of a
Josephson vortex; this set is associated with the internal
structure, of the vortex, created by extraordinary Swi-
hart waves Cherenkov-trapped by the vortex (see [7]).
In the case of a slow vortex, the discrete set of velocities
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n

 

 is given by

(4.6)
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where, according to inequalities (4.4), positive integers
n lie in the interval 1 ! n ! λj/λJ.

Let us consider the range of velocities of a fast vor-

tex when Vsw < v  < v 2 ≈ Vsw + (SSw/2)( /Vsw). The
properties of a fast vortex are primarily determined by
the waveguide. This means that, when considering the
Cherenkov losses of a fast vortex, it suffices to take into
account the spatial dispersion of the waveguide. As in
the case of a slow vortex, we will neglect the small dis-
sipation in the JJ and the waveguide. Then, to describe
the Cherenkov losses of a fast vortex, we have
Eqs. (3.1) and (3.2) with β = βw = 0 when a term of the
form

(4.7)

where  ≡ (  + )(λ2 + λ3 + 2dw)–1 is added to the
right-hand side of Eq. (3.2). The small term (4.7) does
not take into account weak interaction between the JJ
and the waveguide. When the velocity of a fast vortex
satisfies the condition

(4.8)

modified equation (3.2) enables one to express ψw in
terms of ψ and write the following equation for the
phase difference of the fast vortex:

(4.9)

where the effective length λeff depends on the vortex
velocity:

(4.10)

Since  ≈  + SSw , inequality (4.8) implies that

v 2 –  ≈ SSw . For such velocities of a vortex, the
effective length λeff remains finite. However, owing to

the condition Vsw @ Vs , λeff ≈ λw /  may sub-
stantially exceed λJ; this makes ir possible to neglect
the dispersion of the JJ when considering the Cheren-
kov losses of a fast vortex. A formal similarity between
Eqs. (4.3) and (4.9) implies that the relation between
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the current and the velocity of a fast vortex is also given
by (4.5), which now contains a new small parameter

(4.11)

Setting v sw ≈ Vsw and v s ≈ Vs, we can see that condi-
tions (4.8) and (4.11) are consistent if

(4.12)

In the case of a fast vortex, the minima of the oscillation
function (4.5) are attained at a velocity close to the
eigenvelocities of freely moving fast vortices, which
are approximately given by

(4.13)

Here, according to inequalities (4.8) and (4.11), posi-

tive integers n lie in the interval 1 ! n ! (λj/λw).

5. DISCUSSION

Note that Eq. (3.16) differs from the function j(v )
for an isolated JJ [7],

,

by the velocity dependence of the term associated with
losses in the JJ and by the presence of a term deter-
mined by the losses in the waveguide. We emphasize
that the terms in (3.16) that contain β and βw, which
characterize the dissipation in the JJ and the waveguide,
respectively, depend differently on velocity.

For the most interesting case of a fast Josephson vor-
tex, whose velocity is given by (2.26), the function (3.16)
can approximately be represented as
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Under the condition

,

the dissipation is mainly determined by losses in the
waveguide. In this case, we have

For v  = (Vsw + 3v 2)/4 ≈ [1 + (3/8)SSw( / )]Vsw, the
function on the right-hand side attains its minimum,
equal to

Thus, the motion of a fast Josephson vortex may be
realized when the transport current is greater than jmin.
This means that the forced motion of a fast vortex,
which occurs due to the coupling between the JJ and the
waveguide, does not require large values of current.

The expression for  and the terms in ψ(ζ) that
do not contain the small quantity kw in the arguments of
the exponential functions are expressed to the first
order in β and βw. The coefficients of exp[(1 + αw)kwζ]

in the expressions for ψ(ζ) are proportional to . Tak-
ing into account these small contributions to ψ(ζ) does
overlap the accuracy limit because precisely these con-
tributions make it possible to write correct expressions
for . In (3.22), the last small dissipative term

(∝ ) is localized within the scale ~ , which is

much greater than the scale ~ (v ), in which the third
term is localized. We emphasize that, despite the fact
that the terms in the phase differences that correspond
to the small third roots of Eqs. (3.5) are localized in a
large spatial region, they give small corrections to the
law (3.16). To illustrate this fact, we write the energy of
the system (per unit length of axis y) as
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Since a vortex moves uniformly, its energy is con-
served. Therefore, taking into account (3.3) and (3.4),
calculating the derivative dH/dt, and equating it to zero,
we obtain the following relation:

(5.1)

The left-hand side of Eq. (5.1) represents the power of
the Lorenz force associated with the effect of the trans-
port current on the vortex. The right-hand side of (5.1)
contains the power of friction forces associated with the
bulk ohmic losses in the JJ and in the waveguide. Sub-
stituting the terms of ψ(ζ) and  that contain
exp[(1 ± αw)kwζ] into (5.1), we obtain

This expression shows that the energy losses of a vortex
per unit time that are associated with the excitation of

large-scale perturbations (whose scale ~  ∝   is

determined by dissipation) are proportional to . In
other words, in a linear approximation in dissipation,
dissipative contributions, to the phase difference, local-
ized on large scales are inessential for the dependence
j(v). The possibility of drawing such a conclusion is
one of advantages of our analysis, which is due to the
use of the model description.

If we ignore the effect of dissipation on the coordi-
nate dependence of the phase differences, we can
obtain formula (3.16) by substituting dissipationless
expressions (2.9) and (2.17)–(2.19) into (5.1). The
dependence j(v ) in a linear approximation in the case
of sine nonlinearity can be obtained similarly: substi-
tuting (2.9) and (A1.2) into (5.1), which is independent
of the form of the nonlinearity F[ψ], we obtain expres-
sion (3.24).

Finally, we established the influence of the Cheren-
kov losses on the transport current in the Sakai–Tateno–
Pedersen model, which manifests itself both for vortex
velocities less than the Swihart velocity of the JJ and for
velocities of a fast vortex. In either case, the function
j(v) exhibits oscillatory behavior, which was earlier
established for a simple case of an isolated JJ. The min-
ima of j(v ) correspond to the velocities of a free motion
of both slow (cf. [7]) and fast Josephson vortices. Under
the conditions of small dissipation and low Cherenkov
losses, the oscillating part of j(v ) is added to the mono-
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tonic part of j(v) associated with dissipation in the JJ
and the waveguide.

6. CONCLUSIONS

Thus, we have formulated a theory for the effect of
a magnetically coupled waveguide on the vortex in a
Josephson junction. We have established the properties
in a fast Josephson vortex with a velocity much greater
than the Swihart velocity of the JJ.
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APPENDIX 1

The analysis presented in Section 2 can be extended
to the case of a standard sine nonlinearity when the den-
sity of the Josephson current depends on ϕ by the law
jcsinϕ(z, t); then, instead of Eq. (2.16), we have

(A.1.1)

This equation differs from the well-known sine-Gordon
equation in that the coefficient of the second derivative
depends on velocity. A solution to (A1.1) correspond-
ing to a 2π kink is given by

(A.1.2)

For solution (A1.2) to describe a vortex, the quantity
kj(v) should be real, or, which is equivalent, the vortex
velocity should take values only within two allowed
bands (2.20) and (2.21). The latter means that, in the
model with sine nonlinearity, the range of allowed
velocities of a 2π kink in the JJ coupled to a waveguide
also splits into two regions separated by a forbidden
band. Thus, the emergence of the forbidden velocity
band is not associated with the Sakai–Tateno–Pedersen
nonlinearity that we chose in the main body of the text
but is determined by the coupling between an eigen
electromagnetic mode of the waveguide and the Swi-
hart wave of the JJ.
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APPENDIX 2

The coefficients in the expressions (3.11)–(3.15) for
the phase differences are given by

where Sw(v ) ≡ Sw /(  – v 2).

APPENDIX 3

For low dissipation, a solution to Eqs. (3.3) and (3.4)
corresponding to the motion of an elementary vortex in
a JJ with velocities Vws < v  < v 2 has the form
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in the tail of the vortex (ζ < –π/4kj(v)) and

in the head of the vortex (ζ > π/4kj(v)); in the middle
part of the vortex, a solution in the second allowed
velocity band is obtained from (3.20) and (3.21) by
changing the signs of the last terms.

APPENDIX 4

If dissipation is sufficiently small, one can obtain the
following approximate expression for f(ζ) from (3.4):

(A.4.1)

Substituting (A4.1) into (3.3), by analogy with the dis-
sipationless case, we obtain the following equation
for ψ(ζ):

(A.4.2)
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When F[ψ] corresponds to the nonlinearity in the
Sakai–Tateno–Pedersen model, Eq. (A4.2) differs from
that considered in [7] only in that the coefficients kj(v)
and β(v ) depend on velocity. The similarity between
Eq. (A4.2) and Eq. (2.1) from [7] allows one to use the
results of [7] and write the dependence (3.16) j(v) to a
linear approximation in dissipation.

If F[ψ] = sinψ, then the formal similarity between
Eq. (A4.2) and Eq. (2.5) from [15] allows one to use the
results of [15] and write out the dependence (3.24).
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Abstract—The problem of the time evolution of an electron wave packet in a symmetric double quantum dot
under the action of a strong alternating electric field and a slowly varying bias voltage is solved theoretically
under the conditions when the electron subsystem can transfer its energy to a single resonator mode. It is shown
that the possibility of energy exchange between the electron subsystem and the resonator does not hamper the
formation of stable electronic states localized in the left or right quantum dot (i.e., polarized states possessing
a positive or negative dipole moment). An adiabatic change in the bias voltage may alter the direction of the
dipole moment of the given state (which corresponds to an electron transition from one quantum dot to the
other). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable advances in nanotechnologies neces-
sitate the development of new devices operating in the
single-electron mode. In such devices, it is essential to
control the wave function of an individual electron
using, for example, alternating external electromag-
netic fields. The control of charge or spin dynamics of
individual electrons by external alternating fields can
be referred to as the dynamic control of electronic
states.

Suitable objects for investigations in this field
include structures consisting of several tunnel-coupled
quantum dots. In particular, the possibility of creating
electronic states localized within a quantum dot and
subsequent controllable transfer of such a localized
state to a neighboring quantum dot or well was con-
sidered earlier as applied to double quantum dots [1]
and wells [2–4] as well as lattices of quantum wells or
dots [5].

Generally speaking, the studies in this field began with
the works on the dynamic localization effect in lattices of
quantum wells and in double quantum wells [6−9]. It was
shown in these publications that in order to “lock” the
electron density in a quantum well, a strong alternating
field with a definite relation between the amplitude and
frequency is required as a rule. For this reason, a strong
alternating field with a slowly varying amplitude [2, 3]
was proposed in [1–5] for controlling an electron wave
packet for its transfer from one site to a neighboring
site; alternatively, in addition to a strong harmonic field
with a constant amplitude, it was proposed that an adi-
abatically varying bias voltage be applied [1, 4, 5].
1063-7761/04/9803- $26.00 © 20605
It should be emphasized that the results obtained in
the above-mentioned publications corresponded to a
completely coherent mode of evolution of a wave
packet. Dissipative processes associated with the inter-
action of the electron subsystem with radiation fields
were completely disregarded. This study aims at theo-
retical analysis of the effect of weak dissipation on the
possibility of a dynamic control of electronic state in a
double quantum dot. For this purpose, we will consider
a model in which an electron located in a double quan-
tum dot interacts with the resonator and can emit
energy into one of the resonator modes (in actual prac-
tice, this can correspond, for example, to the phonon
mode of an impurity center in a quantum dot).

2. BASIC EQUATIONS OF THE PROBLEM

Let us consider a symmetric double quantum dot in
a slowly and monotonically varying electric field E(t)
and in an alternating electric field Fcosωt with a con-
stant amplitude. We assume that, in zero field, the split-
ting energy "∆ for the ground level of size quantization
in the double quantum dot (splitting is due to weak tun-
nel coupling between the dots) is much lower than the
size quantization energy. The wave functions χ0, 1(r) of
the stationary states of two lower levels with energies
±"∆/2 are symmetric and antisymmetric, respectively,
to the sign reversal of coordinate z (we assume that the
centers of the quantum dots lie on the z axis at a dis-
tance of ±L from the origin).

We assume that an electron in the quantum dot can
exchange energy with the resonator. For simplicity, we
will consider energy radiation to a single resonator
mode, which will be simulated here (following [10]) by
004 MAIK “Nauka/Interperiodica”
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E0

χL (r)

E1

χR (r)

2eLE(t)

"ω

β

"Ω

"Ω Φ1(q)

Φ0(q)

Fig. 1. Energy diagram of a two-level double quantum dot interacting with an oscillator of frequency Ω .
a harmonic oscillator of mass m and frequency Ω (see
Fig. 1). The operator of the interaction is linear in dis-
placement q of the oscillator from the equilibrium posi-
tion and is proportional to the electron dipole moment
D(z) in the double quantum dot (i.e., this operator is an
antisymmetric function of coordinate z).

The total Hamiltonian of the system has the form

(1)

where  is the electron Hamiltonian,  is the
Hamiltonian of the harmonic oscillator of frequency Ω ,
C is the constant of interaction of the electron with the
oscillator field, and –e is the electron charge. We
assume that fields E(t) and F are quite strong in the
sense that the characteristic value of the electron poten-
tial energy in the electric field is much higher than the
splitting energy (eLF, eLE(t) @ "∆). At the same time,
we assume that the values of eLF and eLE(t) are much
smaller than the characteristic energy of size quantiza-
tion in the quantum dot, which is of the same order of
magnitude as the potential barrier height. The latter
condition enables us to disregard the probability of sys-
tem excitation to the upper levels. As a result, the elec-
tron quantum dynamics essentially affects only two
lower levels with energies ±"∆/2. These assumptions
enable us to use the two-level approximation for the
electron Hamiltonian.

In order to determine the wave function Ψ(q, r, t) of
the system, we must solve the Schrödinger equation

(2)

with Hamiltonian (1). We will seek the wave function

Ĥ  = Ĥe r( ) Ĥv q( ) ez E t( ) F ωtcos+( ) CqD z( ),+ + +

Ĥe r( ) Ĥv q( )

i"
∂Ψ
∂t

-------- ĤΨ=
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of the system in the form of the following expansion:

(3)

Here, ln(t) and rn(t) are unknown expansion coeffi-
cients, Φn(q) are the stationary eigenfunctions of the
oscillator Hamiltonian, and χL, R(r) are orthonormal
functions connected with χ0, 1(r) via the relations

The expansion in basis χL, R(r) is more convenient for
us than the expansion in basis χ0, 1(r) of stationary
states since functions χL, R(r) are almost completely
localized in the left and right quantum dots, respec-
tively. Consequently, the squares of the moduli of coef-
ficients ln and rn are the joint probabilities of an electron
being in the left or right quantum dot and of the oscilla-
tor being in the nth state.

Ψ q r t, ,( )
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The substitution of wave function (3) into
Schrödinger equation (2) leads to equations of the form

(4)

where the dimensionless coupling parameter

is introduced. In all subsequent calculations, we will
assume that β ! 1, which indicates a weak coupling of
the electron subsystem with the resonator.

Let us suppose that field E(t) varies with time
according to the law

(5)

where the dimensionless parameter µ characterizes the
rate of variation of field E(t) and is small. The E(t)
dependence in form (5) is naturally not the single pos-
sible dependence. We choose this dependence as the
simplest from an infinite set of various monotonic
dependences.

Note that in the case when an electron experiences
the action of a constant field alone (i.e., for µ = F = 0),
the two-well potential becomes asymmetric, the energy
levels in the double quantum dot diverge by

, and the wave functions of station-
ary states are localized in each potential well separately.
In the limit of a strong field, the quantum transition
energy approaches a value of 2eLE0 and the wave func-
tions corresponding to each of these energy levels
become equal to χL, R(r) as shown in Fig. 1. If we now
“switch on” an alternating field of frequency ω, the
quantum system can attain resonance when

(6)

where s is an arbitrary integer.
For µ ≠ 0, with an appropriate choice of the time ori-

gin, we can always make the constant component of
field E(t) exactly satisfy the resonance condition, e.g.,
with s = 1. Assuming that instant t = 0 is chosen pre-
cisely in this way, we will consider, without loss of gen-
erality, the fact that E0 satisfies the resonance condition
with s = 1. Then, Eqs. (4) can be written in the follow-

i
dln

dt
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2
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ing form, where the resonance terms with different val-
ues of s are explicitly separated:

(7)

Here, we introduced the dimensionless time τ = ωt;
parameter η = Ω/ω – 1 characterizes the closeness of
the oscillator frequency to the resonance value, δs =
Js(λ)∆/2ω ! 1, and λ = 2eLF/"ω.

In the subsequent numerical calculations (whose
results are presented in Figs. 2–6), we assume every-
where that λ = 7.7, µ = 10–4, and ∆/ω = 0.2. Choosing
energy "Ω = 10–2 eV (which corresponds to the charac-
teristic values of phonon frequencies) and distance L =
10 nm and taking into account the fact that frequency ω
is close to oscillator frequency Ω , we obtain a value of
the alternating field amplitude F approximately equal
to 40 kV/cm. The resonance value of field E0 in this
case is close to 5 kV/cm, which corresponds to bias
voltages in the structure equal to 0.1–0.01 V. The split-
ting energy "∆ is found to be 2 meV; i.e., it is the small-
est energy scale of the problem, which was presumed
earlier. It should be noted that the chosen value of
parameter µ corresponds to the increase in field E(t)
from the first resonance value (s = 1) to the second one
(s = 2) over a time approximately equal to 10–9 s. As
regards the coupling parameter β, its value is deter-
mined by a specific type of interaction and may vary
over a wide interval (from nearly indefinitely small val-
ues to several units).

i
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------- rn

iµτ2

2
----------–
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∞
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– β nln 1– i 1 η+( )τ{ }exp(

+ n 1+ ln 1+ i 1 η+( )τ–{ }exp ),

i
drn

dτ
------- ln

iµτ2

2
----------

 
 
 

δs i s 1+( )τ{ }exp
s ∞–=

∞

∑exp–=

+ β nrn 1– i 1 η+( )τ{ }exp(

+ n 1+ rn 1+ i 1 η+( )τ–{ }exp ).
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0
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WL

Fig. 2. Probability of population of the left quantum dot for
β = 0, λ = 7.7, µ = 10–4, and ∆/ω = 0.2.
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For µ = 0, the two-level electron system can be in
exact resonance with the alternating electric field for an
infinitely long time. For µ ≠ 0, for each instant, we can
introduce the concept of instantaneous energy of level
splitting, which is approximately equal to 2eLE(t) in a
strong field. In this case, the quantum system is effec-
tively close to resonance (when the action of the exter-
nal field is the strongest) for a certain finite time interval
determined by expression (5) and the relation between
parameters µ and δ. After this time, the two-level sys-
tem deviates from resonance and the type of the action
of the alternating electric field on this system changes.

We will now consider the solution of system (7). We
assume that, at the initial instant (here, this instant
should be a certain time τ = –τ0 exceeding all character-
istic time scales of the problem, but not large enough
for the field E(–τ0) to be negative), the oscillator is not
excited and the left quantum dot is populated, while the
right dot is absolutely free; i.e., we assume that

(8)

Obviously, initial condition (8) corresponds to the min-
imum energy of the electron + oscillator system.

3. DYNAMICS OF POPULATION
OF QUANTUM STATES OF THE SYSTEM

In the simplest case, when there is no coupling
between the double quantum dot and the resonator
(β = 0), system (7) splits into independent pairs of
equations for amplitudes ln(τ) and rn(τ) at each level of
the oscillator. To find the solution in the vicinity of res-
onance, it is sufficient to retain only one term with
s = −1 in each sum over s in Eqs. (7). All these pairs of
equations are completely identical and can be reduced to
a single second-order equation, say, for coefficient ln(τ),

(9)

(we have omitted index –1 on δ).

An approximate solution to Eq. (9) was obtained
earlier in [4] by using the WKB method; here, we give
only the final expression for the total probability of fill-
ing for the left quantum dot:

(10)

While deriving this relation, we chose the value of τ0
equal to infinity since Eq. (9) was derived in the single-
resonance approximation. Expression (10) describes
the transfer of the electron density from the left to the
right quantum dot during an adiabatic transition of the
two-level electron system through a resonance.

l0 τ0–( ) 1, ln τ0–( ) 0, n 1,≥= =

rn τ0–( ) 0, n 0.≥=

d2ln

dτ2
--------- iµτ

dln

dτ
------- δ2ln+ + 0=

WL τ( ) 4δ2 µ2τ2+ µτ–

2 4δ2 µ2τ2+
------------------------------------------.=
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Thus, for τ < 0, the separation between two lower
levels of the double quantum dot (the instantaneous
value of this quantity is 2eLE(t)) is found to be smaller
than energy "ω of an alternating field quantum. The
larger the value of |τ|, the farther the two-level system
from resonance and the higher the probability (10) of
occupation of the left quantum dot. With increasing
time, the separation between the energy levels of the
double quantum dot increases and, for τ = 0, this sepa-
ration coincides with "ω, which means that the two-
level system is in strict resonance (6). In this case, prob-
ability WL is equal to 1/2. A further increase in τ leads
to further divergence of the energy levels and to a grad-
ual withdrawal of the system from resonance. This pro-
cess is accompanied by a decrease in probability WL to
zero and virtually complete relocation of the electron
density to the right quantum dot. The characteristic
transition time is determined by ratio δ/µ, which
amounts to a value on the order of 10–10 s in dimen-
sional units.

Note that the exact solution to Eq. (9) represented in
Fig. 2 slightly differs from the approximate solution
described by expression (10). This is due to the follow-
ing two circumstances. First, the numerical calculations
were made for a wider range of time τ embracing two
neighboring resonances with s = 1 and s = 2, while solu-
tion (10) is valid only in the vicinity of one resonance.
Second, as can be seen from Fig. 2, probability WL(τ)
rapidly oscillates, although the amplitude of these
oscillations is small. Obviously, expression (10)
describing a smooth decreasing function is the result of
averaging of the exact solution over these rapid oscilla-
tions in the region of the first resonance.

The oscillations observed in the exact solution are in
fact analogous to Rabi oscillations, which now occur in
a strong alternating field. If field E(t) were strictly con-
stant, the solution to Eq. (9) would have the form l0(τ) =
cosδτ. In accordance with this solution, the electron
wave packet would oscillate between the two quantum
dots with constant frequency δ, which has the meaning
of the Rabi frequency in a strong field (since the field is
strong, frequency δ is not linear in field amplitude F).
However, in view of variability of field E(t), the cosinu-
soidal dependence is observed only for times |τ| & δ2/µ;
for chosen values of δ and µ (see the caption to Fig. 2),
the value of this time is on the order of unity. For τ >
δ2/µ, the second term that “quenches” the amplitude of
oscillations dominates in Eq. (9). Since the value of
δ2/µ if found to be much smaller than the period 2π/δ of
Rabi oscillations, not a single oscillation with complete
transfer of charge from the left to the right quantum dot
is observed.

Let us now consider a more interesting situation
when the electron subsystem interacts with the resona-
tor field; i.e., β ≠ 0. The interaction with the resonator
can obviously break the dynamic control in the system
since it becomes possible for the electron located, say, in
the right quantum dot in a state disadvantageous from the
 AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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energy point of view to transfer its excess energy to the
resonator. As a result, the resonator is excited and leaves
its ground state, while the electronic state that initially
possessed a certain polarization can be destroyed.

In order to find out whether it is possible to preserve
the dynamic control of the electron distribution in a
double quantum dot under the conditions of energy
exchange with the resonator, we must solve system (7)
for β ≠ 0. In this case, system (7) obviously cannot be
represented in a closed form and can be solved only
numerically. At a certain step, it is necessary to truncate
Eqs. (7), which corresponds to the replacement of the
oscillator by an N-level system with an equidistant
spectrum.

Calculations show that the number of retained
energy levels of the oscillator and the solutions to
Eqs. (7) themselves differ significantly for different
values of parameters η and β. Further, we consider two
basically different cases, i.e., the nonresonance case,
when the frequency of the oscillator significantly dif-
fers from the frequency of the external alternating field
(i.e., η ≠ 0), and the resonance case, when η = 0.

The main problem is to evaluate the total (i.e.,
summed over all states of the oscillator) probability of
population of any of quantum dots (e.g., left) as a func-
tion of time, which is now defined as

(11)

Further, we calculate and discuss the behavior of indi-
vidual probabilities |ln(τ)|2 and |rn(τ)|2, which are essen-
tial for determining the sum in Eq. (11).

Let us begin with the nonresonance case. Figure 3
shows the probability of exciting the oscillator to the
first level for η = 0.1. It can be seen from the figure that
it is as though probabilities |l1(τ)|2 and |r1(τ)|2 alternate
on the τ axis: when one probability decreases, the other
starts to increase, and vice versa. As regards the oscilla-
tor, it is excited most strongly when the two-level elec-
tron system is in the vicinity of the second resonance
for τ ~ 104. Outside this neighborhood, probabilities
|ln(τ)|2 and |rn(τ)|2 decrease by one or two orders of mag-
nitude. However, the excitation probability does not
exceed a few thousandths in the vicinity of the reso-
nance as well. Calculations show that the probabilities
of excitation of the oscillator to higher levels have val-
ues rapidly decreasing with increasing level number.
For example, the probabilities of excitation of the oscil-
lator to the second level turn out to be lower than the
probabilities represented in Fig. 3 by 3–4 orders of
magnitude. Consequently, the oscillator is almost
always unexcited and, hence, hardly affects the electron
distribution in quantum dots.

Calculating the probabilities in the nonresonance
case (η = 0.1), we replaced the oscillator by a four-level
system; i.e., 0 ≤ n ≤ 3. The addition of the fifth level leads

WL τ( ) ln τ( ) 2
.

n 0=

∞

∑=
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to corrections on the order of 10–10 to the values of prob-
abilities, which is beyond the required accuracy limits.

We also calculated the total probability (11) of pop-
ulating the left quantum dot with an electron; in the
nonresonance case, this probability coincides with
|l0(τ)|2 to within fractions of percent (see Fig. 3). Calcu-
lations proved that the difference of the probabilities

remains small everywhere and amounts to ~10–4. It can
be proved analytically that this difference in the nonres-
onance case must be determined by the second power
of coupling parameter β, which is confirmed by the
results of calculations.

Consequently, the dynamics of the electron density
remains the same as in the absence of coupling with the
resonator. Upon each passage of the two-level system
through the resonance, the double quantum dot reverses
the direction of polarization since the electron density
performs transition from one quantum dot to the other.

Let us now consider the resonance situation, when
η = 0. Figure 4 shows the joint probabilities of populat-
ing one of the quantum dots by an electron and of the
oscillator being in one of its states for β = 0.01 and λ =
7.7. It can be seen from Fig. 4 that, after the transition
from the first resonance s = 1, probabilities |ln(τ)|2
decrease to values close to zero until the two-level sys-
tem finds itself in the vicinity of the next resonance
with s = 2. Conversely, probabilities |rn(τ)|2 increase in
this range of τ from almost zero values to a few tenths
for several first energy levels of the oscillator.

After the passage through the second resonance, the
probabilities of populating the right quantum dot
decrease to zero for all levels of the oscillator, while
probabilities |ln(τ)|2 increase. Upon the passage through
each next resonance, an increase or a decrease in the
probabilities obviously changes to a decrease or an
increase, respectively. The following tendency can be

∆WL τ( ) WL τ β 0.01=,( ) WL τ β 0=,( )–=

–5000 5000 10000 15000

0.002

0.004
|l1|2 |r1|2

|l1|2 0.00007 |r1|2

–2000 –1000 0 1000 2000

τ

Fig. 3. Probability of excitation of the oscillator to the first
level for η = 0.1, β = 0.01, λ = 7.7, µ = 10–4, and ∆/ω = 0.2.
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Fig. 4. Dynamics of excitation of the oscillator in the resonance case (η = 0) for β = 0.01, λ = 7.7, µ = 10–4, and ∆/ω = 0.2.
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Fig. 5. Dynamics of excitation of the oscillator for β = 0.001. The values of the remaining parameters are the same as in Fig. 3.
traced: the longer the time of interaction between the
electron subsystem and the resonator, the higher the
degree of resonator excitation; i.e., higher and higher
energy levels of the oscillator become involved in the
process of energy exchange between the resonator and
the external alternating field. For this reason, the num-
ber N of oscillator levels that should be retained in the
calculations obviously depends on the time interval
during which we are going to observe the system. For
instance, for the time interval –5000 < τ < 15000 over
which our calculations were made (see Fig. 4), the
number of energy levels of the oscillator was N = 8.

Figure 5 illustrates the case of a weaker coupling
(β = 10–3 for λ = 7.7). It can be seen that the general
form of the dependence of probabilities |ln|2 and |rn|2 on
time τ does not change as compared to the case when
β = 0.01. As before, the oscillator is gradually excited
with time to its higher levels, but the process of its exci-
tation occurs much more slowly in view of a weaker
coupling with the electron subsystem. For this reason,
in the interval of time variation shown in Fig. 5, coeffi-
cients l0(τ) and r0(τ) play the major role, while all
remaining amplitudes still have no time to increase
JOURNAL OF EXPERIMENTAL 
appreciably. In the region –5000 < τ < 15000, the values
of probabilities |ln(τ)|2 and |rn(τ)|2 for β = 0.001 differ
insignificantly from their values in the case of complete
absence of coupling. However, with increasing τ, these
differences gradually accumulate and the behavior of
probabilities for β = 0.01 qualitatively repeats the
dependences shown in Fig. 4 for β = 0.01.

As in the nonresonance case, we calculate the total
probability WL(τ) by using formula (11). The results of
calculation for β = 0.01 are shown in Fig. 6, where the
probability difference ∆WL(τ) is depicted. It can be seen
that the difference is extremely small in region τ < 0 (up
to resonance region), constituting a small fraction of a
percent of the probability WL(τ) proper, which is shown
in Fig. 2. In the vicinity of the resonance, the difference
noticeably increases and reaches several percent. Fur-
ther, in region τ > 0, as we move away from the reso-
nance, the value of WL(τ) itself is insignificant, while
difference ∆WL(τ), whose absolute value slightly
decreases in this region, nevertheless becomes of the
order of probability WL(τ) itself.

In the region of the second resonance, a noticeable
“spike” of ∆WL(τ) is observed (although the probability
AND THEORETICAL PHYSICS      Vol. 98      No. 3      2004
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Fig. 6. Variation of population probability for the left quantum dot, associated with the interaction between the electron subsystem
and the resonator, in the resonance case for λ = 7.7, µ = 10–4, and ∆/ω = 0.2.
WL(τ) itself sharply increases in this region), after
which the difference decreases again. On the whole, as
follows from Fig. 6, the deviation of probability WL(τ)
from its value calculated for β = 0 does not exceed 0.1
in absolute value. It should be noted that, in contrast to
the nonresonance case, the difference is two orders of
magnitude larger and is apparently determined by the
first power of coupling parameter β.

It should be noted that the value of difference
∆WL(τ) for β = 0.001 turns out to be one or two orders
of magnitude smaller than for β = 0.01. For this reason,
dependence WL(τ) repeats the dependence shown in
Fig. 2 even to a higher degree of accuracy.

Thus, probability WL(τ) of populating the left quan-
tum dot for various values of parameter β remains vir-
tually the same as in the absence of coupling both in the
nonresonance (η = 0) and in the resonance (η = 0.1)
cases. Such a behavior indicates that the electron den-
sity, as before, performs transitions (as in the case when
β = 0) from one quantum dot to the other upon an adia-
batic passage of the two-level electron system through
resonance. Even in the case when an electron wave
packet is localized in the right quantum dot, such an
“energetically disadvantageous” electronic state polar-
ized against the external field E(t) is found to be stable. Its
stability is due to the “locking” effect of the strong alter-
nating field, which confines the electron density in the
right quantum dot despite the possible energy exchange
between the electron subsystem and the resonator.

On the whole, it can be concluded that the interaction
of the electron subsystem with the resonator does not dis-
turb the dynamic control over electron states. This is
mainly due to the fact that the external alternating field in
our model possesses an infinitely large energy, whose
finite part is transferred via the two-level electron system
to the resonator. The state of the “transmitter” itself does
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
not change in this case since any energy losses in it are
compensated by the strong alternating field.
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Abstract—Thin epitaxial films of Re0.6Ba0.4MnO3 (Re = La, Pr, Nd, Gd) on (001)-oriented single crystal
SrTiO3 and ZrO2(Y2O3) substrates have been prepared and studied. All films possess a cubic perovskite struc-
ture, except for the film with Re = La, which exhibited a rhombohedral distortion of the perovskite lattice. The
results show evidence for the presence of two magnetic phases, ferromagnetic (FM) and antiferromagnetic
(AFM), in the films studied: (i) the magnetization isotherm M(H) appears as a superposition of a linear compo-
nent (characteristic of antiferromagnets) and a small spontaneous magnetization component; (ii) the magnetic
moment per formula unit is significantly reduced as compared to the value expected for the complete FM or
ferrimagnetic ordering; (iii) there is a difference between magnetizations of the samples cooled with and with-
out an applied magnetic field, which is preserved in the entire range of magnetic fields studied (50 kOe); (iv) the
temperature dependence of the magnetization M(T) in strong magnetic fields is close to linear (for the compo-
sition with Re = Gd, M(T) is described by a Langevin function for superparamagnets with a cluster moment
of 22µB); and (v) the magnetization hysteresis loops of the field-cooled samples are shifted along the field axis.
The exchange integral (characterizing the Mn–O–Mn coupling via the FM–AFM phase boundary) estimated
from the latter shift is |J| = 10–6 eV. This value is two orders of magnitude lower than the negative exchange
integral between the FM layers in ReMnO3, which makes the presence of a transition layer at the FM–AFM
phase boundary unlikely. The temperature dependences of electrical resistance and magnetoresistance exhibit
maxima at the Curie temperature (TC), where the magnetoresistance reaches a colossal value. This behavior
indicates that the two-phase magnetic state is caused by a strong s–d exchange. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In recent years, much attention has been devoted to
manganites of the Re1 – xAxMnO3 system, where Re is a
rare earth ion and A = Ca, Sr, or Ba. This interest is
related to the phenomenon of colossal magnetoresis-
tance observed in some of these compounds at room
temperature. The compounds with A = Sr and Ca were
studied most thoroughly, while Re1 – xBaxMnO3 compo-
sitions were characterized to a much lower extent, espe-
cially in the case of thin films. Only thin films of the
La1 – xBaxMnO3 system with x = 0.2 and 0.33 were stud-
ied [1–3], in which the room-temperature magnetore-
sistance R0/RH reached about 50% at H = 0.8 and 5 T for
the former and latter composition, respectively. It was
also reported [4] that the magnetoresistance of the com-
pound with x = 0.33 strongly depends on the degree of
nonstoichiometry with respect to oxygen.

Compounds of the La1 – xBaxMnO3 system are of
considerable interest because of very high Curie tem-
peratures: TC = 362 was observed for x = 0.3 [5–7].
Such a high TC value is due to a relatively large average
1063-7761/04/9803- $26.00 © 20612
radius 〈rA〉  of A cations, since it is known that the Curie
temperature of manganites of the ABO3 type increases
with 〈rA〉  value [8, 9]. At the same time, there is an
opposite trend (so-called misfit effect) related to a dif-
ference between the radii of different A cations (Re3+

and Ba2+), which decreases the Curie temperature [10].
At present, there is no commonly accepted opinion

about the crystal structure of Re1 – xBaxMnO3 com-
pounds. In La1 – xBaxMnO3 compositions with 0.2 ≤ x ≤
0.4, Radaelli et al. observed a hexagonal structure

(space group, ), while Barnabe et al. [7] reported
on a more complicated crystal structure (in agreement
with the neutron diffraction data [11]) in stoichiometric
compositions of the Re1 – xBaxMnO3 systems (Re = La,
Pr) with x = 0.4. At the same time, Raman spectroscopy
and X-ray data [12] for polycrystalline samples of the
La1 – xBaxMnO3 system with x ≥ 0.35 showed evidence
of a phase separation into cubic La0.65Ba0.35MnO3 and
hexagonal BaMnO3 phases. It was suggested [12] that
the structure of compounds with x ≥ 0.35 cannot
accommodate Ba2+ ions because of their large size.

R3c
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We have studied the crystal structure and the mag-
netic and electrical properties of thin epitaxial films of
Re1 – xBaxMnO3 compounds (Re = La, Pr, Nd, Gd). The
observed features have been interpreted within the
framework of the modern theory of magnetic semicon-
ductors. As was noted above, only films of the
La1 − xBaxMnO3 system were reported previously [1–3].
The films of Re1 – xBaxMnO3 with other rare earth ele-
ments have been prepared and characterized for the first
time.

2. EXPERIMENTAL METHODS

All films were grown by metalorganic chemical
vapor deposition (MOCVD) using aerosols of volatile
organometallic compounds. The aerosols of diglyme
solutions of the initial compounds with a total concen-
tration of 0.02 mol/l were produced by an ultrasonic
source. The initial compounds for MOCVD were
R(thd)3 (R = La, Pr, Nd, Gd), Mn(thd)3, and
Ba(thd)2(Phen)2, where thd = 2,2,6,6-tetramethylhep-
tane-3,5-dionate and Phen = o-phenanthroline. The
samples were prepared in a reactor with an induction
heated substrate holder at a substrate temperature of
800°C, an oxygen partial pressure of 3 mbar, and a total
pressure of 6 mbar. The deposition rate was 1 µm/h and
the film thicknesses ranged within 300–400 nm. The
films were deposited onto (001)-oriented single crystal
SrTiO3 and ZrO2(Y2O3) substrates.

The films were studied by scanning electron micros-
copy (in combination with electron probe microanaly-
sis) and by X-ray diffraction. The magnetization of thin
films was measured with a SQUID magnetometer and
the electric resistance was determined by the conven-
tional four-point-probe technique.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

3.1. Structural Characteristics of Thin Films 

According to the X-ray diffraction data, the films
obtained on (001)-oriented SrTiO3 substrates repre-
sented single-phase perovskites epitaxially grown in
the “cube over cube” mode. The pseudocubic lattice
parameter of the perovskite phase monotonically
decreased with the ion radius of Re3+. Only the X-ray
diffraction pattern of the film of La0.6Ba0.4MnO3 exhib-
ited weak superstructural reflections and splitting of the
pseudocubic reflections expected for a rhombohedral

distortion of the perovskite lattice (space group, ),
in accordance with the behavior of this material in the
ceramic state [7]. In all other Re0.6Ba0.4MnO3 films, we
observed neither peak splitting nor superstructural
reflections characteristic of the rhombohedral, tetrago-
nal, or orthorhombic distortions encountered in the per-
ovskite structures of rare earth manganites described in
the literature. The increase in symmetry up to the cubic

R3c
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type can be explained by an increase in the parameter
of disorder with decreasing radius of the rare earth ion
(and, accordingly, by an increase in the difference of
ion radii of the rare earth element and barium statisti-
cally occupying the A sublattice sites in the perovskite
structure). This effect should be most pronounced in
compositions with the level of barium doping
approaching 0.5.

The films grown on (001)-oriented ZrO2(Y2O3) sub-
strates exhibited simultaneous growth in two direc-
tions, (001) and (110). In the films of perovskite man-
ganites studied previously, we usually observed only
one of these orientations, namely, (110) [13, 14]. The
appearance of another type we explain by an increase in
the lattice parameter of barium-doped perovskite,
which leads to a change in the lattice mismatch between
film and substrate.

3.2. Magnetic Properties 

Figure 1 shows the temperature dependence of the
magnetization M(T) measured in various magnetic
fields for films of the PrBaMnO and GdBaMnO sys-
tems with x = 0.4 on SrTiO3 substrates (below, this sub-
script will be omitted). The M(T) curves of the
LaBaMnO and NdBaMnO films on the SrTiO3 sub-
strates, as well as of the NdBaMnO film on the
ZrO2(Y2O3) substrate, were very much like those
depicted in Fig. 1a for PrBaMnO films on the SrTiO3
substrates. These magnetization measurements were
performed in two modes. The upper curves for each
field strength H were obtained by initially cooling a
sample from T = 300 to 5 K in the given field, after
which the temperature variation of the magnetization
was measured in the course of heating of this field-
cooled (FC) sample. The lower curves were obtained
for a sample cooled in the absence of a magnetic field,
after which the field was applied and the M(T) curve of
the zero-field-cooled (ZFC) sample was measured in
the heating mode.

The data in Fig. 1 reveal differences between the
temperature dependences of the magnetization for the
FC and ZFC samples. The magnetization of FC sam-
ples is higher than that of the otherwise identical ZFC
samples. This difference increases with decreasing
temperature and is more pronounced in lower magnetic
fields. The M(T) curves of the ZFC samples studied in
small fields exhibit maxima at a certain temperature Tf;
at T > Tf , the curves of the FC and ZFC samples coin-
cide. In sufficiently large fields, the maximum in the
M(T) curves of the ZFC samples is not observed, but a
difference between the cures of FC and ZFC samples is
retained in the entire range of magnetic fields studied
(up to 50 kOe). The only exception was the GdBaMnO
film, for which the difference disappeared at H < 6 kOe
(see the inset to Fig. 1b).

Figure 2 shows the magnetization isotherms mea-
sured at various temperatures for the FC samples of
SICS      Vol. 98      No. 3      2004
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Fig. 1. Temperature dependence of the magnetization M(T)
of thin films of Re0.6Ba0.4MnO3 with Re = Pr (a) and Gd (b)
on SrTiO3 substrates measured in various magnetic fields.
The upper and lower curves for each field strength H refer
to the FC and ZFC samples, respectively (see the text).
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Fig. 2. Magnetization isotherms of Nd0.6Ba0.4MnO3 films
on SrTiO3 substrates measured at various temperatures.
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NdBaMnO films on SrTiO3 substrates. The magnetiza-
tion isotherms of the other films studied in our experi-
ments were analogous to those presented in Fig. 2. As
can be seen, the M(H) curves appear as superpositions
of a small spontaneous magnetization component and a
linear component characteristic of antiferromagnets.
By extrapolating the linear parts of the M(H) curves to
intersection with the M axis, we determined the sponta-
neous magnetization component and calculated the
experimental magnetic moments µexp (expressed in
Bohr magnetons per formula unit, µB/FU). The values
of µexp at T = 5 K for the films of all studied composi-
tions are given in the table. For comparison, we also
present the values of theoretical magnetic moments µth
(µB/FU) calculated for three variants of spin ordering
for Mn3+, Mn4+, and Re3+ ions: the first value refers to
FM ordering only between Mn3+ and Mn4+; the second,
to FM ordering of Mn3+, Mn4+, and Re3+; and the third,
to FM ordering of Mn3+ and Mn4+, and AFM ordering
of Re3+. These values were calculated using the follow-
ing pure spin moments of the rare earth ions: 2µB (Pr3+),
3µB (Nd3+), and 7µB (Gd3+). As can be seen, the values
of µexp are much lower than µth in all cases. This exper-
imental fact also provides evidence for the presence of
two magnetic phases in the films under consideration.

In the films with Re = La, Pr, and Nd, the behavior
of M(T) in strong magnetic fields is close to linear (see
Fig. 1a for the PrBaMnO films), which is untypical of
ferromagnets. As is known, the temperature depen-
dence of the magnetization in ferromagnets is
described by the Brillouin function [15]. Obviously, the
exact value of the Curie temperature can be determined
only in experiments performed in the absence of exter-
nal magnetic fields, because such a field suppresses and
smears the phase transition. In practice, however, the
Curie temperature is frequently determined by extrapo-
lating the steepest (upper) part of the M(T) curve to the
temperature axis. In the general case, this yields a cer-
tain characteristic temperature  that is close to the
Curie temperature. The characteristic temperatures
determined in this way for the films studied in our
experiments strongly depend on the field applied during
the M(T) measurements. The values of  obtained by
this method are listed in the table. As can be seen, the

 value significantly increases with increasing H. For

example, the  values for the LaBaMnO film in a field
of 100 Oe is 283 K and that in a field of 50 kOe is 90 K
higher, amounting to 373 K. In magnetically homoge-
neous materials possessing spontaneous magnetization
(for example, in ferromagnets) this difference does not
exceed 10 K.

As can be seen from Fig. 1b, the film of GdBaMnO
exhibits a difference between magnetizations of the FC
and ZFC samples only in sufficiently small fields: no
such difference is observed for H = 6 kOe. The shape of

TC'

TC'

TC'

TC'
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Magnetic properties of thin epitaxial films of Re0.6Ba0.4MnO3 (Re = La, Pr, Nd, Gd) on (001)-oriented SrTiO3 and
ZrO2(Y2O3) substrates

Re La Pr Nd Nd Gd

Substrate SrTiO3 SrTiO3 SrTiO3 ZrO2(Y2O3) SrTiO3

µexp, µB/FU 1.93 1.15 1.52 1.35 3.28

µth, µB/FU 3.6 3.6, 4.8, 2.4 3.6, 5.4, 1.8 3.6, 5.4, 1.8 3.6, 7.8, 0.6

∆H, Oe 57 400 230 300 380

Ku, erg/cm3 104 1.9 × 104 1.2 × 104 3.2 × 104 2.7 × 104

, K (H = 100 Oe) 283 160 142 145 75

, K (H = 6 kOe) 308 213 170 210 26

, K (H = 50 kOe) 373 369 260 50

Tf, K (H = 100 Oe) 100 95 73 75

Tf, K (H = 6 kOe) 50 50 41 38

Tf, K (H = 50 kOe) 30 33 33

Tρ(max), K 284 116

TC
'

TC
'

TC
'

the M(T) curves for this film also differs from that of the
curves in Fig. 1a (the latter are also typical of the films
of other compounds studied). In weak fields, the M(T)
curves of the ZFC samples of GdBaMnO (Fig. 1b) pass
through a maximum and then exhibit a minimum fol-
lowed by a sharp increase. The curves of the FC sam-
ples exhibit only an inflection point (instead of the max-
imum and minimum observed for the ZFC samples)
followed by a sharp growth with decreasing tempera-
ture. In a field of H > 6 kOe, the difference between
M(T) curves of the FC and ZFC samples disappears and
the magnetization in both cases monotonically
decreases with increasing temperature, showing no sin-
gularities observed in lower fields. The magnetic
moment of the film measured at 5 K in a field of 50 kOe
is 3.28µB/FU.

At the same time, the M(T) curves measured in the
fields H < 6 kOe resemble those of a ferrimagnet with
the compensation point. In this case, the theoretical
low-temperature magnetic moment µth per formula unit
at low temperatures must be equal to the difference
between the magnetic moments of Gd3+ and manganese
ions, that is, to 0.6µB/FU. The experimentally observed
magnetic moment at H = 500 Oe, where the compensa-
tion point is still observed, does not exceed 0.08µB/FU,
which is lower than µth by a factor of 7.5. This suggests
that only a part of the sample (about 13%) is ferrimag-
netic, while the remaining part is antiferromagnetic. It
should be noted that the ferrimagnetic state with a com-
pensation point was previously observed in the related
compound Gd0.67Ca0.33MnO3 [16]. The presence of an
AFM phase in the GdBaMnO film is also evidenced, as
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
was noted above, by the magnetization curves. For H ≥
6 kOe, the compensation point in the M(T) curves is no
longer observed and the magnetization strongly
increases, so that the magnetic moment reaches
3.28µB/FU at 5 K in a field of 50 kOe. This value is sig-
nificantly greater than that in a sample with complete
ferrimagnetic ordering (0.6µB/FU), but still markedly
smaller that the magnetic moment in the case of
complete FM ordering (7.8µB/FU. Apparently, the
moments of Gd3+ and manganese ions exhibit FM
ordering, but the FM phase occupies only a part of the
sample volume.

The above considerations suggest that the phase
with spontaneous magnetization in a GdBaMnO film
occurring in a two-phase magnetic state exhibits a mag-
netic field-induced transition from ferrimagnetic to FM
ordering. The experimental M(T) curve observed in a
field of 50 kOe is well described by the Langevin func-
tion for an ensemble of superparamagnetic clusters
with a ferromagnetic moment of µ = 22µB and a true
magnetization of M0 = 73.6 emu/g,

(1)

where M is the magnetization at a given temperature
and M0 is the true magnetization. This is illustrated in
Fig. 3, showing a good fit of experimental data (sym-
bols) to a theoretical curve constructed according to
relation (1). Assuming that the spins of Gd3+ and man-
ganese ions in a cluster are ferromagnetically ordered,
the cluster includes approximately three formula units.
These results also provide evidence that a two-phase
(FM–AFM) magnetic state exists in the GdBaMnO

M/M0 µH/kT( )coth= kT /µH ,–
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film, with the magnetic moment of the FM cluster
amounting to approximately 22µB in a magnetic field of
50 kOe.

The existence of a two-phase magnetic state in the
films under consideration is also confirmed by the fact
that the magnetization hysteresis loops of FC samples
are shifted along the field axis. This is illustrated in
Fig. 4, showing such shifted loops for PrBaMnO and
GdBaMnO films. An analogous shift of the hysteresis

M, emu/g

T, K

50 100 150 2000

20

40

60

80

Fig. 3. Temperature dependence of the magnetization M(T)
of a thin film of Gd0.6Ba0.4MnO3 on a SrTiO3 substrates
measured in a magnetic field of H = 50 kOe (black squares).
Solid curve shows the Langevin function calculated for an
ensemble of superparamagnetic clusters with the magnetic
moment µ = 22µB and the true magnetization M0 =
73.6 emu/g.
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Fig. 4. Magnetization hysteresis loop of a thin film of
Pr0.6Ba0.4MnO3 on a SrTiO3 substrates measured at 5 K
upon cooling the sample in a magnetic field of 4 kOe. The
inset shows the same for a thin film of Gd0.6Ba0.4MnO3 on
a SrTiO3 substrate.
JOURNAL OF EXPERIMENTAL
loop was originally observed in partly oxidized cobalt
[17], where it was attributed to the exchange interaction
between FM Co particles and their AFM shells of CoO.
This phenomenon was called exchange anisotropy.
Later, the shift of hysteresis loops in the samples cooled
in a weak magnetic field was considered evidence for
a spin glass state. Nevertheless, this phenomenon has
been explained only for cluster spin glasses and must be
absent in a true spin glass containing only randomly
oriented spins. Kouvel [18] explained the shift of the
magnetization hysteresis loops observed in CuMn and
AgMn spin glasses by an inhomogeneous distribution
of manganese ions: the regions depleted of Mn were
assumed to be ferromagnetic, while the Mn-rich
regions featuring exchange interaction were considered
antiferromagnetic.

The shift of the magnetization hysteresis loops
observed in our samples unambiguously point to the
existence of a two-phase (FM–AFM) magnetic state
with exchange interact ion between the FM and AFM
regions of the films. This shift can be expressed as

(2)

where Ku is the exchange anisotropy constant and Ms is
the saturation magnetization. The exchange anisotropy
constants Ku calculated for all films have proved to be
on the order of 104 erg/cm3 (see table). Using these val-
ues, it is possible to determine exchange integral J char-
acterizing the Mn–O–Mn coupling via the FM–AFM
phase boundary, provided that the area of this interface
is known. Unfortunately, no such data are available at
present.

3.3. Electrical Properties 

The resistivity ρ and magnetoresistance ∆ρ/ρ =
(ρH  –  ρH = 0)/ρH = 0 of LaBaMnO, PrBaMnO, and
NdBaMnO films on SrTiO3 substrates were studied at
T  >  78 K and H ≤ 8.2 kOe. The resistances of
GdBaMnO films on SrTiO3 and NdBaMnO films on
ZrO2(Y2O3) were so high (because of very small film
thicknesses) that we failed to measure the ρ values
below TC by the four-point-probe technique. Figure 5
shows the ρ(T) curves of the films studied. Figure 6 pre-
sents data on the behavior of {∆ρ/ρ}(T) for PrBaMnO
and LaBaMnO. The magnetoresistance is negative and
the ρ(T) and |{∆ρ/ρ}|(T) curves exhibit maxima. The
temperatures of maxima for the latter curves are lower
than those for the former ones, which is typical of mag-
netic semiconductors. The resistivities at maxima were
as follows: ~10–3 Ω cm for PrBaMnO and NdBaMnO,
and ~10–5 Ω cm for LaBaMnO. The magnetoresistance
at maximum is very large, reaching 43% for PrBaMnO.

The presence of peaks in the temperature depen-
dences of ρ and ∆ρ/ρ, together with the colossal mag-
netoresistance, are indicative of the existence of a two-
phase magnetic state related to a strong s–d exchange in
the films studied. Evidently, these manganites are

∆H Ku/Ms,=
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essentially the AFM semiconductors LaMnO3,
PrMnO3, NdMnO3, and GdMnO3 doped with Ba2+

ions. Judging by the resistivity ρ, the films of
LaBaMnO, PrBaMnO, and NdBaMnO on SrTiO3 sub-
strates occur in a conducting two-phase magnetic state
with AFM clusters deprived of charge carriers (holes) are
dispersed in a conducting FM matrix. This conducting
two-phase magnetic state related to a strong s–d
exchange has been described in review [19]. This state is
characterized by a sharp increase in resistivity in the
vicinity of the Curie point. There are two mechanisms by
which the impurity magnetism influences the resistance:
the scattering of charge carriers (decreasing their mobil-
ity) and the formation of a tail (representing localized
states) in the conduction band. In the vicinity of the Curie
point, charge carriers sharply lose the mobility and
exhibit partial localization in the band tail, which
explains the appearance of a maximum in ρ(T) near TC.
Under the action of a magnetic field, these charge carri-
ers are delocalized from the band tail and their mobility
increases that leads to a colossal magnetoresistance.

As can be seen from Fig. 5, the film of GdBaMnO
possesses the maximum resistivity among the samples
studied, exceeding 1 Ω m at T = 150 K (i.e., signifi-
cantly above TC). This suggests the presence of an insu-
lating two-phase magnetic state comprising FM drops,
where charge carriers (holes) are concentrated due to an
s–d exchange energy gain [19], dispersed in an insulat-
ing AFM matrix.

4. CONCLUSIONS

The magnetic properties of the films described
above resemble those of cluster spin glasses. Indeed,
there are differences between magnetizations of the FC
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Fig. 5. Temperature dependence of the resistivity ρ of thin
films of Re0.6Ba0.4MnO3 with Re = Gd (1), Nd (2), Pr (3),
and La (4) on SrTiO3 substrates.
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and ZFC samples (Fig. 1), the magnetic moment per
formula unit at 5 K is strongly reduced (see table), and
the M(T) curve shape differs from that of the Brillouin
function. On the other hand, there are significant dis-
tinctions as well. First, the M values of the FC samples
of spin glasses are independent of the temperature at
T < Tf , provided that the cluster size does not vary with
the temperature (this condition is usually valid for spin
glasses). In contrast, the magnetizations of our FC sam-
ples increase with decreasing temperature. Second, in
spin glasses, the behavior of the magnetization in FC
and ZFC samples differs only in small fields not
exceeding several kOe, whereas our films (except
GdBaMnO) exhibit this difference in the entire range of
magnetic fields studied (up to 50 kOe). These facts can
be explained assuming that a decrease in the tempera-
ture leads to an increase in the volume of the FM phase
in the two-phase magnetic state. The same factor can
account for the difference between the M(T) curve and
the Brillouin function. Third, the magnetization iso-
therms of spin glasses are substantially nonlinear (see
Fig. 2), while those of our films are superpositions of a
small spontaneous magnetization component and the
linear component characteristic of antiferromagnets.

The shift ∆H of the magnetization hysteresis loops
of the FC samples along the H axis is unambiguous evi-
dence in favor of the two-phase magnetic state,
although this state is also observed in spin glasses
(where it is entirely due to the presence of FM and AFM
regions and the exchange interaction between them, as
was pointed out by Kouvel [18]). Using the field shift
∆H, we have estimated the exchange integral J charac-
terizing the Mn–O–Mn coupling via the FM–AFM
phase boundary in some manganites occurring in an
insulating two-phase (FM–AFM) magnetic state [20].
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Fig. 6. Temperature dependence of the magnetoresistance
of thin Pr0.6Ba0.4MnO3 and La0.6Ba0.4MnO3 films on
SrTiO3 substrates measured in a magnetic field of 8.5 kOe.
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618 GORBENKO et al.
It was found that |J | ~ 10–6 eV. This value is two orders
of magnitude lower than a negative exchange integral
between the FM layers in LaMnO3 (|J1| = 5.8 × 10–4 eV)
determined from the neutron scattering data [21]. This
result indicates that the presence of a transition layer
with tilted spins at the FM–AFM phase boundary is
unlikely.

In the material occurring in a two-phase magnetic
state, the charge carriers are concentrated in the FM
phase and are absent from the AFM phase. For this rea-
son, the topology of the two-phase magnetic state is
determined by the Coulomb forces and the interfacial
energy. As can be seen from data presented in the table,
the FM phase volume in LaBaMnO, PrBaMnO, and
NdBaMnO on SrTiO3 substrates occur in a conducting
two-phase magnetic state with the FM phase filling the
space between insulating AFM spheres. Since the Ku

values are on the same order of magnitude for all the
films studied (a part of which occur in the conducting
two-phase magnetic state) and for the manganites
reported in [20] (occurring in an insulating two-phase
magnetic state), we may suggest that the area of the
FM–AFM phase boundary in the two cases is also com-
parable. Therefore, the conclusions made in [20] can be
expanded to include the films considered above, so that
the presence of a transition layer with tilted spins at the
FM–AFM phase boundary is unlikely. The GdBaMnO
films apparently occur in an insulating two-phase mag-
netic state. For this material, the magnetic moment of the
FM clusters estimated using the Langevin function (1)
for H = 50 kOe is 22 µB, which corresponds to three for-
mula units.
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