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Abstract—The possibilities of resonance excitation of nuclear spins by an alternating electric field (nuclear
magnetoelectric resonance) in the Mn2Sb ferromagnet are analyzed as applied to the studying of magnetoelec-
tric effects in this compound. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A symmetry description of the magnetoelectric
effect, which manifests itself in the magnetization of a
substance by electric field E and its electric polarization
by magnetic field H [1], uses invariant (with respect to
the symmetry operations of a crystal) combinations of
the ferromagnetism M, antiferromagnetism L, and
electric polarization P vectors [2], which enter into the
equation for the thermodynamic potential in the form of
summands,

(1)

where γαβν are the magnetoelectric tensor components,
relations between which are determined by crystal
symmetry [1]. As follows from (1), polarization in elec-
tric field E, Pν = κνδEδ (where κνδ is the electric suscep-
tibility tensor components), results in the appearance of
the magnetization

(2)

where χλα is the magnetic susceptibility tensor compo-
nents. Accordingly, magnetization in a magnetic field,
Mα = χαδHδ, results in the appearance of the electric
polarization

(3)

It follows from (2) and (3) that both values, Mλ and

ΦMP γαβν Mα LβPν,–=

Heff
α ∂Φ

∂Mα-----------– LβPν∝ LβκνδEδ,= =

Mλ χλα Heff
α χλα LβκνδEδ,∝=

Eeff
ν ∂Φ

∂Pν---------– Mα Lβ∝ χ αδHδLβ,= =

Pλ κλν Eeff
ν κλνχαδHδLβ.∝=
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Pλ, are only nonzero at Lβ ≠ 0. For this reason, the mag-
netoelectric effect is easiest to study in antiferromag-
nets [2], which are characterized by large L and zero M
vectors. Conversely, in ferromagnets with two or more
sublattices, the M vector is nonzero, whereas L = 0. As
a result, the magnetoelectric effect in these substances
is related to L vector changes. These changes cannot
be recorded in static magnetic measurements, and the
magnetoelectric effect in ferromagnets cannot there-
fore be studied by the existing experimental methods.
This work is concerned with the Mn2Sb compound,
which is a four-sublattice ferromagnet [3] and whose
magnetic structure is therefore characterized by both
vectors (M and L). Nevertheless, we will show that
experimental studies of the magnetoelectric effect in
this compound involve the same difficulties as with
ferromagnets.

One of the approaches to solving this problem is
through using alternating electric E(t) and magnetic
H(t) fields with near magnetic resonance frequencies.
The feasibility of using field E(t) at the antimagnon
resonance frequency, when pure antiferromagnetism
vectors L are only excited, whereas the total magneti-
zation vector M remains constant, was discussed
in [3]. The antimagnon resonance frequency range is
determined by exchange interaction, which corre-
sponds to 102–104 GHz [3]. In this work, we also dis-
cuss the feasibility of using field E(t) at the nuclear
magnetic resonance frequency. In [4], this type of res-
onances was called nuclear magnetoelectric (NMER).
Its frequency range, like that of NMR [5], is 102–
103 MHz. The use of NMER for studying the magne-
toelectric effect in Mn2Sb is favored by the presence of
only one manganese isotope Mn55 with a large nuclear
magnetic moment of 3.5µn , where µn is the nuclear
magneton [5].
004 MAIK “Nauka/Interperiodica”
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2. THE MAGNETIC STRUCTURE
AND THERMODYNAMIC POTENTIAL

OF Mn2Sb

The Mn2Sb compound has a Curie point TC = 550 K,
easy-axis magnetic anisotropy above 240 K, and easy-
plane anisotropy at T < 240 K. Its crystallographic sym-

metry is described by the space group  ≡ P4/nmm.
The manganese ions occupy two different twofold
sites [3], MnI (site a) and MnII (site c), with different
atomic magnetic moments, µI = (2.13 ± 0.20)µB and
µII = (3.87 ± 0.40)µB . The atomic moments are ordered
ferromagnetically within the sublattices of sites a and c
and antiferromagnetically between themselves. This
corresponds to a ferrimagnetic exchange structure
whose unit cell contains four ions with the ferromag-
netism vectors Ma1, Ma2 and Mc1, Mc2 . As sites a and
c are not related by symmetry operations, this structure
can conveniently be described in terms of two ferromag-
netism (M) and two antiferromagnetism (L) vectors,

(4)

(5)

with the conditions Ma ↓↑  Mc (in addition, Mc > Ma)
and

(6)

where Ma0 = Ma1 = Ma2 and Mc0 = Mc1 = Mc2 are the
magnetizations of the sublattices. The total magnetiza-
tion of Mn2Sb is determined by the difference M =
Mc – Ma . To be specific, let the ferromagnetism vector
in the ground state M ≡ M0 be parallel to the z axis

(easy axis); that is,  = M0. In what follows, we only
consider uniform oscillations of the Lξ variables,
because ferromagnetic oscillations of the Mξ vectors
are not excited by an electric field.

The magnetoelectric effects in Mn2Sb are described
in this work using the thermodynamic potential of the
form

(7)

where

(8)

is the exchange part of the thermodynamic potential in
the approximation quadratic in Lξ . Such a form was
used in [3] to describe spin waves in Mn2Sb excited by
an alternating electric field. Work [3] also contained
equations relating the Ja and Jc coefficients to the
parameters of intra- and interstice interactions.

D4h
7

Ma Ma1 Ma2, La+ Ma1 Ma2,–= =

Mc Mc1 Mc2, Lc+ Mc1 Mc2,–= =

Mξ
2 Lξ

2+ 4Mξ0
2 , Mξ Lξ⋅ 0, ξ a c,,= = =

M0
z

Φ Φex ΦME ΦHF,+ +=

Φex
1
2
---JaLa

2 1
2
---JcLc

2+=
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The next term in (7),

(9)

describes the interactions of the antiferromagnetism
vectors of electrons (Lξ) and nuclei (lξ) with electric
field E. Here, Da, Dc, da, and dc are the corresponding

constants for these interactions. (Recall that /M0 = 1,
and this multiplier is only retained in (9) as a test for
invariance.) As distinct from (1), calculations by (9)
were simplified by using invariant combinations in
which polarization vector P components were replaced
by electric field E components. The vectors lξ are
related to the nuclear magnetizations of the sublattices,
mξ1 and mξ2, by equations similar to (5).

The last term in (7) describes hyperfine interactions
of the magnetizations mξ1 and mξ2 with Mξ and Lξ ,

(10)

The longitudinal components  =  = ±Mξ0

determine the equilibrium values of hyperfine fields at
the nuclei [5, 6],

(11)

and the eigenfrequencies of vector mξ1 and mξ2 oscilla-
tions (NMR frequencies),

(12)

where γn = 1.05 MHz /kOe is the gyromagnetic ratio for
55Mn nuclei [5]. In (11), the minus sign refers to the site
ξ = a, and the plus sign, to the site ξ = c. In review [7],
the following values were given for these frequencies:
ωna = 126.26 MHz and ωnc = 143.7 MHz. Their differ-
ence is much larger than the width of NMR lines, which
allows us to study the resonance behavior of nuclear
spins in the two sites independently. Below, we give the
results obtained for the site ξ = c, for which the ΦME

term [see (9)] is symmetric with respect to the replace-
ment of x by y. For the site ξ = a, this term is antisym-
metric with respect to this permutation. For this reason,
the NMER signals from the nuclei in sites ξ = a should
be described by the formulas given below with Ey

replaced by –Ey. For brevity, the ξ index will be omit-
ted. With these replacements, the analysis given below
is valid for a two-sublattice ferromagnet.

ΦME Da La
xEx La

yEy–( ) da la
xEx la

yEy–( )+[–=

+ Dc Lc
xEx Lc

yEy+( ) dc lc
xEx lc

yEy+( ) ]
Mz

0

M0
-------,+

Mz
0

ΦHF
1
2
--- Aξ Mξmξ Lξ lξ+( ).

ξ
∑–=

Mξ1
z Mξ2

z

Hnξ
z Aξ Mξ0,±=

ωnξ γn Hnξ
z γnAξ Mξ0,= =
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3. EFFECTIVE MAGNETIC FIELDS 
AT NUCLEI GENERATED

BY ALTERNATING ELECTRIC FIELD E(t)
In this section, we give the results obtained by cal-

culating the effective fields

(13)

that act on the nuclear magnetic moments m1 and m2
when electric field E(t) alternating at a frequency of ωnξ
[see (12), ξ = c] is switched on. It follows from (13) that

the longitudinal components  coincide with the equi-

librium hyperfine field value  [see (11)], which
determines the ωn frequency [see (12)] and does not

respond to field E(t). The transverse components 
(α = x, y) include two terms, namely,

(14)

where

(15)

is the field caused by the direct interaction between the
magnetic moment mν and field E(t), and

, (16)

which is the variable hyperfine field component caused
by vector L oscillations under the action of E(t). As
both ωnξ frequencies [see (12)] are much lower than the
eigenfrequencies of vector L oscillations, the response
of the L vector to field E(t) can be found by minimizing
thermodynamic potential (7),

(17)

Substituting the solution to (17)

(18)

into (14)–(16) and ignoring effects second-order in A
yields

(19)

This equation describes two channels of NMER signal
resonance excitation. Each of them is characterized by
its own magnetoelectric constant. Currently, only
experimental data on constant D are available. They
were obtained from static magnetoelectric effect mea-
surements and are summarized in [8]. These data were
used in [4] to estimate the excitation level of nuclear
spins under NMER conditions. For Cr2O3, this excita-
tion can attain the same values as under usual NMR
conditions in fields E(t) with an amplitude of 105 V/cm.

hν
∂Φ
∂mν
----------, ν– 1 2,= =

hν
z

Hn
z

hν
α

hν
α hν l

α hνL
α ,+=

hν l
α 1–( )ν 1– dEα=

hνL
α 1–( )ν 1– 1

2
---ALα=

∂Φ
∂Lα--------- JLα DEα t( )–

1
2
---Alα– 0.= =

Lα t( ) D
J
----Eα t( ) A

2J
------lα t( ),+=

hν
α t( ) hν l

α hνL
α+ 1–( )ν 1– d

A
2J
------D+ 

  Eα t( ).= =
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In TbPO4, the D constant is approximately 100 times
larger than in Cr2O3. At such D values, the specified
excitation level of nuclear spins should be attained at an
amplitude of 103 V/cm. As far as the d constant is con-
cerned [see (15)], estimating it requires the use of
experimental NMER data.

4. ELECTRIC POLARIZABILITY CAUSED
BY NUCLEAR SPIN OSCILLATIONS

As follows from (19), fields  and  differ only

in sign (  = – ). As a result, there is a phase shift of
π between the corresponding oscillations of the m1 and
m2 vectors. The total magnetization is therefore zero,

For this reason, the usual NMR techniques are of no use
for recording NMER signals. Nevertheless, we would
be able to detect a NMER signal in heat loss measure-
ments from the Q factor value. In the problem under
consideration, the nuclear antiferromagnetism vector

(20)

becomes nonzero. As follows from (9), electric polar-
ization P(t) oscillations are related to this vector. It is
these oscillations that can play the role of NMER sig-
nals.

We calculated P(t) from the equation

(21)

Substituting (18) for Lα(t) in (21) and retaining only the
terms with lα(t) that have resonance singularities at the
NMER frequency yields

(22)

Like (19), (22) determines two excitation channels of
P(t) oscillations. The term with d describes the direct
excitation of polarization P(t) by l(t) vector oscilla-
tions. The second term (with D) is responsible for indi-
rect excitation via the hyperfine interaction between the
L and l vectors. The Pl(t)/PL(t) ratio, as expected, coin-
cides exactly with hl(t)/hL(t),

(23)

Note that, when (21) and (22) are used to determine

, the replacements Ly  –Ly and ly  –ly should
be made.

To finally determine the resonance response to field
E(t) in the form of effective polarization (22), we must
solve the equations for m1 and m2 (or m and l) in con-
stant [Eq. (11)] and alternating [Eqs. (14)–(16)] fields.

h1
α h2

α

h1
α h2

α

m t( ) m1 t( ) m2 t( )+ 0.= =

l t( ) m1 t( ) m2 t( )–=

Pα t( ) ∂Φ
∂Eα---------– DLα t( ) dlα t( ).+= =

Pα t( ) Pl
α t( ) PL

α t( )+ d
A

2J
------D+ 

  lα t( ).= =

Pl t( )
PL t( )
-------------

hl t( )
hL t( )
------------ 2

dJ
DA
--------.= =

Pa
y
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In the linear approximation under stationary excitation
conditions, we obtain lx and ly in the form

(24)

(25)

where

(26)

is the NMR susceptibility. To determine , both the
Ey  –Ey and ωn  –ωn replacements should be
made in (25); the latter is related to the negative sign of

the hyperfine field  [see (11)].

Substituting (24) and (25) into (22) yields  and

 in the form

(27)

(28)

As has been mentioned above, it makes little sense to
quantitatively discuss these results in the absence of
experimental NMER data, because we do not know the
d values.

Equation (22) can also be applied to a pulsed nonlin-
ear regime. For this purpose, we must substitute the lα
values found in the corresponding nonlinear approxi-
mation into it.

5. CONCLUSIONS

The new physical phenomenon, namely, the excita-
tion of NMR by electric field E(t) (NMER), was pre-
dicted by one of these authors [9] for the examples of,
first, a hypothetical two-sublattice ferromagnet with
sublattices related to each other by a center of symme-
try and, secondly, an antiferromagnet without a center
of symmetry. More recently, this phenomenon was con-
sidered for several other antiferromagnets, including the
four-sublattice antiferromagnets Cr2O3, α-Fe2O3 [4],
and trirutiles Fe2TeO6 [10], which exist in reality. As
follows from this work, the Mn2Sb compound can be
classified with two-sublattice ferromagnets from the
point of view of NMER. This compound is also unusual
because magnetoelectric effects should exist in it, but,
as has been mentioned in the Introduction, they cannot
be studied by the usual magnetostatic methods. One of
the techniques for studying these effects [through excit-

lx 2χn ω( ) d
A

2J
------D+ 

  Ex i
ω
ωn

------Ey+ 
  ,=

ly 2χn ω( ) d
A

2J
------D+ 

  Ey i
ω
ωn

------Ex– 
  ,=

χn ω( ) χn 0( )
ωn

2

ωn
2 ω2–

------------------=

la
y

Hna
z

Pa
λ

Pc
λ

Px 2χn ω( ) d
A

2J
------D+ 

 
2

Ex i
ω
ωn

------Ey+ 
  ,=

Py 2χn ω( ) d
A

2J
------D+ 

 
2

Ey i
ω
ωn

------Ex– 
  .=
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ing electrically active magnons by field E(t)] was con-
sidered in [3]. This technique requires using frequen-
cies on the order of 102–104 GHz. Studies of the prop-
erties of magnetic materials in fields E(t) at the lower
boundary of this frequency range are already under
way, although for other manganese compounds
RMn2O5, where R = Eu, Er, and Gd [11]. A signal in
field E(t) was detected close to the temperature of the
structural phase transition, which is evidence of the
important role played by magnetoelastic interactions in
the formation of this signal.

The NMER technique can be used to study magne-
toelectric effects at lower frequencies. For Mn2Sb,
these frequencies are 126.3 and 143.7 MHz [7]. We
hope that the present publication will stimulate interest
in experimental NMER studies.
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Abstract—The theory of magnetization in a longitudinal magnetic field is developed for an easy-plane multi-
sublattice antiferromagnet with a singlet ground state and a strong single-ion anisotropy exceeding the magni-
tude of exchange interaction. The magnetic-field-induced phase transition from the singlet (magnetically dis-
ordered) state to a multisublattice antiferromagnetic state represents a displacive magnetic phase transition. At
T = 0, this transition proceeds continuously and belongs to second-order phase transitions, while at T ≠ 0, the
behavior changes to jumplike and the process becomes the first-order phase transition. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

The investigation of multisublattice (three-, four-
sublattice, etc.) antiferromagnets possessing easy-
plane anisotropy, despite considerable achievements in
this direction of research, still receive much attention.
Of special interest among these systems are hexagonal
antiferromagnets of the ABX3 type (where A is an alkali
metal ion, B is a transition metal ion, and X is a halo-
gen), in which the spins of magnetic B2+ ions form, on
the one hand, antiferromagnetic (AFM) chains along
the C3 axis and, on the other hand, triangle structures in
the basal plane (see reviews [1–3]). The phase transi-
tions observed in such antiferromagnets exposed to a
magnetic field are sometimes difficult to identify both
with respect to the order (first versus second) and the
type (order–disorder, etc.). 

In these hexagonal antiferromagnets, the magnetic
anisotropy always has a single-ion nature (owing to the
orbital contribution) and may vary in extent. However,
of most interest (especially from the standpoint of basic
knowledge) is the case when the anisotropy is compa-
rable to (or even stronger than) the Heisenberg
exchange interactions [4]. Such a relation between the
parameters of various spin interactions takes place, for
example, in CsFeBr3 and CsFeCl3 antiferromagnets
where (for Fe2+ ions with a pseudospin of S = 1) the
constant of single-ion anisotropy is D ≈ 20–30 K and
the constant of exchange interaction is Jch ≈ 3–5 K for
a pair of nearest ions (in the chains) belonging to adja-
cent planes and Jpl ≈ 0.3–0.4 K for the same ions in the
basal planes, and it is essential that both exchange inter-
actions exhibit the AFM character [1, 5–7]. 

For such values of the energy parameters, whereby
D @ Jch + Jpl , all ions in the magnet occur in the same
1063-7761/04/9805- $26.00 © 21006
singlet spin state and no multisublattice magnetic struc-
ture is formed in the crystal (in contrast to what would
be required by the exchange interactions if there were
no single-ion anisotropy) [1]. From the physical stand-
point, this corresponds to a situation when the lowest
state among three possible single-ion spin states with
the spin projections Sz = ±1, 0 onto the C3 axis is that
with the zero projection. This ordered state (in fact,
exhibiting no magnetic order) possesses the van Vleck
character of susceptibility whose difference from that of
usual paramagnets is especially pronounced for T < D. 

When such an antiferromagnet is exposed to an
external magnetic field H directed along the C3 axis, the
initial order of levels in the magnetic ions is gradually
altered and, as the field strength increases, another state
of the aforementioned triplet—that with nonzero spin
projection—may become the lowest (ground). This
magnetization proceeds in a self-consistent manner
because of the interplay of different interactions: the
exchange interaction and H favor the spontaneous
polarization of ions, whereas the single-ion anisotropy,
on the contrary, hinders this process [8]. Besides, the
single-ion anisotropy tends to orient the ground-state
magnetic moment of the ion perpendicularly to the hard
axis C3 and, hence, perpendicularly to H. In turn, the
field forms the average spin projection onto H, thus
producing canting of the average spin. As a result, the
field H || C3 will induce a phase transition from the
singlet state to a phase (previously called the oblique
phase [8]) with a complex magnetic order, in which
ions are spin-polarized and the spins are canted toward
the field. 

As was noted above, the spin projection in the sin-
glet state is zero (spin polarization in the ground state is
absent), all ions are identical, and the AFM exchange is
004 MAIK “Nauka/Interperiodica”
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not manifested. In the oblique phase, spontaneous
polarization of the ground state during the AFM
exchange is accompanied by the formation of a multi-
sublattice structure with different spatial orientations.
This field-induced transition from the van Vleck para-
magnetism to antiferromagnetism can be (and has to
be) classified as a displacive phase transition. The pos-
sibility of such magnetic phase transitions in the mag-
nets with a large single-ion anisotropy was recently
considered in [9, 10] (it should be noted that no any dis-
placement of ions actually takes place and the term
“displacive” only refers to the type of transition). 

It can be suggested that the singlet state and a mul-
tisublattice structure, as well as a displacive magnetic
phase transitions between these states are observed in
CsFeBr3 antiferromagnet. However, there are contra-
dictory considerations [11–14] concerning the order of
the phase transition between these states. Moreover, the
aforementioned questions concerning magnetic polar-
ization in the ground stage and its predominating role in
determining the type of the phase transition were even
not formulated. A description of the magnetization of
this antiferromagnet [8] also bypassed this important
question. 

An analysis of the phase transitions between the sin-
glet state and the multisublattice oblique phase at T = 0
showed that this process is continuous and belongs to
second-order phase transitions [5, 8]. It should be
emphasized that, in the longitudinal field (parallel to
the C3 axis) at T = 0, the singlet state has no magnetiza-
tion at all and (see above) the system occurs in a state
with the spin projection equal to zero. However, as soon
as T ≠ 0 (even when D @ T), the situation is signifi-
cantly complicated: by virtue of the paramagnetic pro-
cess, the external field produces magnetization of the
system, whereby the magnetic moments of ions in all
sublattices are equal and oriented along the hard axis.
The susceptibility of this state is much smaller as com-
pared to that of the usual antiferromagnets because the
population of levels in ions with nonzero spin projec-
tions at D @ T is exponentially small. 

Despite a small value of the magnetization, the con-
tinuous character of transition from the field-magne-
tized singlet state to the oblique phase can no longer be
retained because of different contributions to the origin
of the new order (without and with self-consistency in
the first and second case, respectively). If the continuity
were retained, a procedure of spin polarization of the
ground state would be absolutely different from that
described above and (as will be shown below) it would
imply that the magnetic moments arising with this
polarization continuously turn out of the hard axis in
the plane and then turn back to this axis in a stronger
field. Obviously, such a “nonmonotonic” orientation is
physically impermissible because the field oriented
along the hard axis and not reducing the symmetry of
the system in the course of magnetization only
decreases the role of single-ion anisotropy. It is this cir-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cumstance that allows the AFM exchange to be mani-
fested by forming a multisublattice AFM state oriented
in the basal plane, the spins of which are rotated by the
same field toward the hard axis. It should be empha-
sized that spontaneous deviation of the magnetic
moments away from the hard axis would imply that, in
the very beginning of spin flop, the exchange fields act-
ing upon the field-induced average magnetizations
(also small because of a low population of levels with
nonzero spin projections) exceed both the anisotropy
and the external field, which is impossible under real
physical conditions. 

Although the experiment of Tanaka et al. [5] does
not allow an unambiguous conclusion to be made about
the type and order of the phase transition in the ternary
halide CsFeBr3, we will proceed with consistent inves-
tigation of the model multisublattice spin system pos-
sessing a large single-ion anisotropy (exceeding
exchange fields) in the longitudinal magnetic field.
Below we will theoretically describe such a system
assuming that its parameters and the relations between
these characteristics correspond to those for CsFeBr3. 

2. MODEL HAMILTONIAN 
AND ITS EIGENSTATES

For simplicity, we restrict the consideration to bilin-
ear isotropic exchange interactions, single-ion anisot-
ropy, and Zeeman contribution. In this case, the sim-
plest model Hamiltonian of a system with a structure
analogous to that of CsFeBr3 can be written in the fol-
lowing form: 

(1)

where the subscripts α and β indicate magnetic sublat-
tices (α ≠ β), the total number of which in the system
under consideration is six; n and m are the vectors set-
ting spin positions in the sublattices; D > 0 is the con-
stant of single-ion anisotropy (easy-plane structure);
h = µβgHz is the magnetic field in energy units; and Hz

is the applied magnetic field (oriented along the crystal-
lographic axis C3 (C3 || z) and perpendicular to the easy
axis. For the given field orientation the spins of various
sublattices will be equally canted toward the field
vector. 

In CsFeBr3 (and crystals of this family), the
exchange interaction is spatially anisotropic (i.e., it
depends on the mutual arrangement of spins in the lat-
tice). The exchange constant Jpl in the basal plane dif-
fers from the value Jch in the direction of hard axis (i.e.,
in the direction of chains). With allowance of the struc-

H
1
2
--- JαβSnα Smβ⋅

n α m β, , ,
∑=

+ D Snα
Z( )2

h Snα
Z ,

n α,
∑–

n α,
∑
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tural features, the exchange constant Jch tends to estab-
lish the antiparallel orientation of spins in the neighbor-
ing planes, while Jpl orients spins closest to the easy
axis at an angle of 2π/3. As a result, the given hexagonal
antiferromagnet with a finite value of average spin per
lattice site acquires a multisublattice structure with the
total number of magnetic sublattices equal to six. 

An analysis of the possible quantum eigenstates of
Hamiltonian (1) will be performed in the self-consis-
tent field approximation, whereby the interspin fluctua-
tions are ignored and the average of the product of spin
operators of various sites is replaced by the product of
average values for these sites. In this case, the ground
state energy Egr per cell (for spins belonging to different
sublattices, three in one plane and three in the adjacent
plane) is 

(2)

where sα are the average vectors of ion spins in the
ground state; zαβ is the number of nearest neighbors
(three for spins in the same plane, two for spins in adja-
cent planes); we also introduce quantum-mechanical
average values of the squares of z-projections of spin
operators (called components of the quadrupole spin
moment Qα). 

Let us introduce coordinate systems (ξα , ηα , ζα) for
the spins of each sublattice, so that the average spin in
the α sublattice is oriented along ζα , while ξα axis lies
in the zζα plane. Then, the wave function of the ground
spin state of the α sublattice has the following form [4]: 

(3)

where |±1〉, |0〉 are the eigenfunctions of the operator

. Using (3), we calculate the average values of the
spin and the quadrupole moment components, 

(4)

where subscript “0” indicates averaging over function (3).
In expression (4), we omit the sublattice indexes
because the reduced values are independent of α for the
given field direction. 

Using the values (4), the energy (2) can be repre-
sented as 

(5)

where θ is the angle between spins of each sublattice
and the magnetic field, equal to the angle between the
crystallographic axis and ζα axes. Note that the ground

Egr
1
2
--- Jαβzαβsα sβ D Qα h sα

z ,
α
∑–

α
∑+⋅

α β,
∑=

ψα
0( ) φα 1| 〉 φα 1–| 〉 ,sin+cos=

Snα
ζ

s0 2φ, Q0
ζζcos 1, Q0

ξξ 1
2
--- 1 2φsin+( ),= = =

Egr 9Jpl 2φ 3 θ 1–cos
2( )cos

2
=

+ 6Jch 2φ 3 θcos
2

1–( )cos
2

+ 6D θ θsin
2

2
------------ 1 2φsin+( )+cos

2
6h 2φ θ,coscos–
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state energy of a crystal was also determined and mini-
mized in [5]. However, in contrast to (3), the selected
wave functions were expressed in the general form in
the crystallographic coordinate system (rather than in
the intrinsic coordinate systems of sublattices) and con-
tained the parameters of rotation of vectors |±1〉  and |0〉
in the Hilbert space, which significantly complicated
the interpretation of a relationship between the observ-
able and unknown (variational) parameters. 

Our approach is more illustrative: spin configura-
tions, determining the ground state in various possible
phases and their mutual transformations in the mag-
netic field, are found from the equations derived by
minimization of the energy (5) with respect to φ and θ: 

(6)

(7)

These equations can be reduced to the equations for
determining the ground state, which were obtained by
Ostrovskii and Loktev [4] using a self-consistent proce-
dure and special conditions of orthogonality for the
vectors of various states. Leading eventually to the
same solutions, Eqs. (6) and (7) are preferred because
they additionally determine the conditions of phase sta-
bility. 

Let us analyze the solutions of this system of equa-
tions. The first solution corresponds to a collinear fer-
romagnetic state and is realized under the conditions
sinθ = 0 and sin2φ = 0. In this case, the projections of
spins of sublattices are aligned in the field and their val-
ues are maximum and equal s0 = S = 1. The second solu-
tion corresponds to a three-sublattice AFM state with
the Loktev structure [15] symmetric in the plane, which
is valid for cosθ = 0 and sin2φ = –D/(6Jpl + 4Jch). This
solution is possible only in the absence of magnetic
field (h = 0). In the corresponding 120° spin structure,
the values of spin projections are equal and smaller than

the limit S = 1: s0 = . 

The third solution refers to the oblique phase (h ≠ 0),
in which we also have s0(h) < 1. Equation (7) directly
indicates that, in contrast to the quasi-classical solution,
the angle between the spin of sublattice and the direc-
tion of field H is a nonlinear function of the field
strength: 

(8)

As the field strength grows, the spins are more canted
toward the field direction and, hence, s0(h) increases so
that always s0 ≤ s0(h) ≤ 1. 

2φ 2φ 6Jpl 3 θcos
2

1–( ) 4Jch 2 θcos
2

1–( )+[ ]sincos

– D θ 2φ 2h 2φ θcossin–cossin
2

0,=

θ θ 9Jpl 4Jch+( ) 2φ D 1 2φsin–( )+cos
2[ ]sincos

– hcos2φsinθ 0.=

1 D2/ 6Jpl 4Jch+( )2–

θcos
h 2φcos

9Jpl 4Jch+( ) 2φ D 1 2φsin–( )+cos
2

----------------------------------------------------------------------------------------.=
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A field corresponding to the transition from the
oblique phase to the state upon complete spin-flop,
whereby all spins are parallel (oriented perpendicularly
to the easy axis), can be determined by substituting
cosθ = 1 and cos2φ = 1 into formula (8) for the canting
angle. As a result, we obtain the relation hflop = 9Jpl +
4Jch + D, which agrees with the expression for the flop
field obtained in [5] and, moreover, coincides with the
formula obtained in the quasi-classical approximation
for s0 =1. As can be seen, the value of the spin-flop field
is additive with respect to the anisotropy and exchange,
although the physical mechanisms of their action are
absolutely different. 

Finally, one more (fourth) solution is possible as
determined by the conditions cosθ = 0 and cos2φ = 0.
This solution can be realized both for nonzero magnetic
fields (h ≠ 0) and for h = 0. The reduction of spin pro-
jections in this state is maximum—up to s0 = 0, in
which case sin2φ = –1. This corresponds to the van
Vleck singlet (paramagnetic) state without magnetic
order [16], which is also called a quadrupole spin state
[17–19] because Qξξ – Qηη ≠ 0 (this difference has a
limiting value). 

It was demonstrated [9] that the phase transition
from the singlet state to the oblique phase in a ferro-
magnet can be described using methods of the Landau
theory of phase transitions. We suggest that the role of
the order parameter can be performed by the spin pro-
jection of the ground level of an ion. Below we imple-
ment this approach taking into account a multisublat-
tice character of the antiferromagnet under consider-
ation. 

3. PHASE TRANSITIONS FROM A SINGLET 
GROUND STATE TO THE OBLIQUE PHASE 

IN THE LONGITUDINAL MAGNETIC FIELD:
T = 0 

The phase transition from singlet to AFM state at
T = 0 proceeds via magnetic polarization of ions in the
ground state. This transition to a magnetically ordered
state should be classified as a displacive phase transi-
tion, with the microscopic values of spin projections
being equal to their macroscopic average values. In this
case, the formation of a magnetic structure even at T =
0 can be described in terms of the phenomenological
theory of phase transitions. Indeed, obtaining an
expression for cosθ from Eq. (7) and taking into
account that s0 = cos2φ, the expression for the ground
state energy at small values of s0 (s0 ! 1) and h (h ≠ 0)
can be presented in the form of a series analogous to the
Landau potential: 

(9)

Egr
3

2D
------- D2 D 6Jpl 4Jch+( )– h2–[ ] s0

2=

+
3

8D
------- D2 D 2 9Jpl 4Jch+( )–

D
--------------------------------------------h2– s0

4 3
16D
----------+
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As can be seen, expansion (9) does not contain the first
powers of s0 and h (second-order terms include their
products). In addition, relation (9) indicates that (simi-
lar to the case of ferromagnets) the field oriented along
the axis decreases the single-ion anisotropy. However,
in contrast to the case of a ferromagnet (where this
decrease is independent of the isotropic ferromagnetic
exchange), the process in an antiferromagnet has a
more complex character: the external field favoring the
formation of a one-sublattice ferromagnetic phase
simultaneously counteracts both the single-ion anisot-
ropy and the AFM exchange. 

The coefficient at  in expansion (9) vanishes and
then changes sign in the field h = hQP at which the sys-
tem exhibits a transition from a singlet ground state to
the oblique phase. This critical field is determined by
the formula 

(10)

Note that, in the approximation of s0 ! 1, we have
hQP ! D. This implies that, for h = hQP , the coefficients
at higher power of s0 are positive and their values vary
only slightly with the field h. Taking this into account,
we infer from relation (9) that the magnetic-field-
induced phase transition between the nonmagnetic (sin-
glet) state with s0 = 0 and a multisublattice spin-polar-
ized state with s0 ≠ 0 is a second-order phase transition
during which the magnetization varies in a continuous
manner. Thus, restricting the expansion (9) for Egr to
the fourth-order terms, we conclude that ions in the
ground state at h < hQP are not polarized (not “magne-
tized”) and s0 = 0. At the same time, for h – hQP > 0, the
average spin projection onto the quantization axis for
each sublattice is 

(11)

and the spin canting toward the hard axis in the mag-
netic field is described by the relation 

(12)

Using relations (11) and (12), we can determine mag-
netization of the crystal along the hard axis as 

(13)

× D2 D2 2 9Jpl 4Jch+( ) 9Jpl 4Jch D–+( )–

D2
----------------------------------------------------------------------------------------h2– s0

6.

s0
2

hQP D2 D 6Jpl 4Jch+( )– .=

s0 h( ) 2
hQP

1/2

D
-------- h hQP–( )1/2,=

θcos
hQP

3/2

D2
-------- h hQP–( )1/2.=

m
z

2
hQP

2

D3
-------- h hQP–( ).=
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According to the above results, the longitudinal
magnetization χ|| = ∂mz/∂h in the singlet state is zero,
while in the oblique phase it acquires a constant value 

(14)

This is an unusual result, since both spin modulus and
the canting angle in the course of spin flop are functions
of the field. 

The aforementioned oblique phase has essentially
the structure of a multisublattice antiferromagnet, in
which the spins of ions in various sublattices are canted
toward the magnetic field. In usual antiferromagnets,
the phase transition to such a canted multisublattice
state is considered as a transition of the order–disorder
type (such transitions are also called orientational
phase transitions [20]). In contrast, the above phase
transition from the singlet state without initial magnetic
order to the oblique phase with a field-induced mag-
netic order, while also being a transition of the order–
disorder type, represents a displacive magnetic phase
transition. 

4. THE FREE ENERGY OF A SINGLET GROUND 
STATE ANTIFERROMAGNET 

IN A LONGITUDINAL MAGNETIC FIELD 
The description of a field-induced phase transition

from the singlet ground state to AFM state at nonzero
temperatures is complicated because of the need for
taking into account the populations of all states of ions
now occurring not only on the singlet ground level
without magnetization, but on some other levels as
well. At T ≠ 0, the system features both the process of
spin polarization considered above and the paramag-
netic process. 

For determining the ion states, previously we used a
single-particle Hamiltonian [4] 

(15)

where  is the average (exchange) field acting on
the spin Snα of the nth ion in the α sublattice. The eigen-
states of Hamiltonian H0 will be determined by intro-
ducing (similar to the case of T = 0) the intrinsic coor-
dinate systems. At T = 0, the quantization axes were
directed along the spin projections in the ground state
of ions; now it is more convenient to orient these axes
along the thermodynamic average spin vectors of each
sublattice. It can be shown [4] that, for such coordinate
systems (even making nonzero angles with the longitu-
dinal field), the eigenstates of ions in antiferromagnets
with easy-plane anisotropy are described by the wave
functions 

(16)

χ || T 0 h hQP>,=( ) 2
hQP

2

D3
--------.=

H0 hexch
α( ) Snα– D Snα

z( )2
hSnα

z ,–+=

hexch
α( )

ψα
0( ) φα 1| 〉 φα 1–| 〉 , ψα

1( )sin+cos 0| 〉 ,= =

ψα
2( ) φα 1| 〉sin– φα 1–| 〉 .cos+=
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Using relations (16), we readily determine the partial
spin projections onto the quantization axes in each

state:  = –  = cos2φα ,  = 0; the corresponding

partial averages of the operator  are constant and
equal to 1, 0, and 1, and the averages of the operator

 are (1/2)(1 + sin2φα), 1, and (1/2)(1 – sin2φα). 

Let us write down the thermodynamic averages for
the magnetization modulus mα = |mα| and the operator

. Note that, despite different orientations of the
magnetization vectors mα in various sublattices, the
values of these observables in various sublattices are
the same: 

(17)

(18)

where ∆pα =  – , pα =  + , and  and

 are the probabilities of the ground state and the
second excited state (16), respectively. 

According to the definition, the free energy F = E –
TSen , where E is the internal energy and Sen is the
entropy. In the self- consistent field method, the entropy
is configurational. For a multisublattice spin system, it

is defined as sum Sen =  of the entropies of sub-
lattices. 

The internal energy of system (1) per particle can be
presented in the following form: 

(19)

The entropy of the α sublattice is given by the standard
expression: 

(20)

where  are the probabilities of single-ion states (16)

satisfying the obvious condition  = 1. In
terms of relations (17) and (18), the entropy can be
expressed as 

(21)

Now we can obtain the final expression for the free
energy of an antiferromagnet with S = 1 and an easy-
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plane single-ion anisotropy in a longitudinal magnetic
field: 

(22)

where the sublattice indexes (being equivalent) are
omitted. This expression for the free energy is princi-
pally different from its traditional representation,
including that used in [16, 17, 19]. Using Eq. (22), it is
possible to follow the process of polarization of single-
ion states (see below). 

5. PHASE STATES OF A SINGLET GROUND 
STATE ANTIFERROMAGNET

IN A LONGITUDINAL MAGNETIC FIELD 
AT T ≠ 0 

The equilibrium states of a singlet ground state anti-
ferromagnet correspond to a minimum of the free
energy (22). Here, the variation parameters are both φ,
θ, and p, ∆p. Differentiating Eq. (22) with respect to
these variables and equating the derivatives to zero, we
obtain the corresponding equations of state 

(23)

(24)
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(26)

Let us consider the solutions of this system of equa-
tions corresponding to the singlet state of the crystal
and the oblique phase. For the singlet solution, we have
cosθ = 1 and cos2φ = 1, while p and ∆p are determined
from the equations 

(27)

(28)

the quantization axis for this solution coincides with the
hard axis and is directed along the field. The ground
state of the ion is a singlet with the ground state func-

tion  = |0〉  (see (16)). The two other (in this case,
excited) states have limiting values of spins onto the
quantization axis ±1. Despite the fact that the spin pro-
jections in the ground state are zero, the thermody-
namic average of the system magnetization is nonzero
and equals m = ∆p (per magnetic ion). The nonzero
magnetization appears only due to a difference in the
populations of excited states (having limiting values of
spin projections). 

Differentiating Eqs. (27) and (28) with respect to h,
we obtain expressions for the longitudinal magnetic
susceptibility of the singlet state,

(29)

In the region of D ! T, the temperature dependence of
the magnetic susceptibility for h  0 will be the same
as that for usual antiferromagnets in the paramagnetic
state. Indeed, substituting ∆p = 0 and p = 1/3 into
Eq. (29), we obtain 

(30)

where Tθ = –(2Jpl + (2/3)Jch) is the paramagnetic tem-
perature. 

A significant difference of the magnetic susceptibil-
ity in the singlet state of the crystal (essentially, in the
van Vleck paramagnetic state) from the susceptibility
of the paramagnetic phase of a usual antiferromagnet
arise at low temperatures such that D/T @ 1. Under this
condition, the populations of excited states are much
lower as compared to that of the nonmagnetic ground
state, while a weak field is incapable of producing sig-
nificant differences in the populations of two excited
ion states, so that we can assume ∆p  0. Thus, the
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temperature dependence of the magnetic susceptibility
at D/T @ 1 and h  0 has the following form: 

(31)

According to this, the longitudinal magnetic suscep-
tibility of the crystal in the singlet ground state for
T  0 also tends to zero. 

It is also interesting to study the field dependence of
the magnetic susceptibility in the other limiting case,
whereby h ! D and h @ T. This implies that the temper-
ature is sufficiently low, while the field is significant
and exceeds the temperature (in the energy units
adopted). In order to justify introduction of the latter
condition, we note that the singlet state in the com-
pound CsFeBr3 is observed at temperatures from 1 to
3 K and the fields from 3 to 10 T. In this case, in con-
trast to that considered above, the magnetic field
sharply changes the populations of excited levels.
Owing to this sufficiently large magnetic field, we can
realize the limiting situation in which the probability of
the ion state with the spin projection along the field is
much greater than the probability of a state with the
opposite spin projection. As a result, for the equal pop-
ulations of these levels produced by thermal excitations
(magnetic disorder), the sufficiently large magnetic
field (h @ T) produces actually the ideal order for these
two levels. Under these conditions, the magnetic sus-
ceptibility of the singlet state is 

(32)

Apparently, this nonlinear field dependence described
by the exponential law is observed in CsFeBr3 in large
magnetic fields [5]. 

The second solution of Eqs. (23)–(26) correspond-
ing to the oblique phase exists in the fields h > hQP . Let
us analyze this solution assuming that the average mag-
netization of sublattices is m ! 1, that is, in the limit of
h  hQP . This means that the exchange field in
Hamiltonian (15) is small as compared to both h and D.
The polarization in the ground state of the ion also
depends on the temperature T but, in the case under
consideration, the magnitude of polarization is much
lower than the limiting value of unity. Under these con-
ditions, we may calculate the populations of levels in
the oblique phase with neglect of the nonlinearity
caused by the exchange interaction. Then, using
Eqs. (25) and (26), we obtain the following expressions
for the populations determined entirely by the D/T
ratio: 

(33)

The magnitude of polarization s = cos2φ in the
ground state of ions in the oblique phase and the orien-
tation of quantization axes are determined from
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Eqs. (23) and (24). Taking into account formula (33),
these equations can be written as 

(34)

(35)

As can be seen, Eqs. (34) and (35) are fully equivalent
to Eqs. (6) and (7) but contain the temperature-depen-
dent coefficients. These quantities are conveniently
designated as Jpl(T) = Jpl(∆p(T))2, Jch(T) = Jch(∆p(T))2,
and D(T) = D∆p(T). 

The part of the free energy dependent on the mag-
netic field and describing the polarization can be writ-
ten as 

(36)

Equating to zero the coefficient at s2 in this relation, we
determine the magnitude of the critical field: 

(37)

Minimizing the functional (36), we determine the mag-
nitude of polarization in the ground state: 

. (38)

Finally, using Eq. (35) we determine the spin canting
angle in the sublattices for h  0: 

(39)

Using the above expressions, we determine the crys-
tal magnetization for the given solution as the sum of
magnetization vectors of all sublattices. The magneti-
zation is directed along the hard axis and has the value
(per magnetic ion) 

(40)

According to expression (40), the magnetic susceptibil-
ity of the system corresponding to the solution for the
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oblique phase is independent of the field: 

(41)

This behavior of the magnetic susceptibility was exper-
imentally observed by Haseda et al. [21] during mea-
surements of longitudinal (along the C3 axis) magneti-
zation of CsFeCl3 and RbFeCl3 at various temperatures.
In the interval of magnetic fields 4–6 T ≤ H ≤ 10−11 T
at T ≤ 2.5 K, the susceptibility of these antiferromag-
nets has proved to be constant, while outside this inter-
val it exhibited a sharp drop—exactly as expected for
both small and large field outside the region of exist-
ence of the oblique phase. 

It should be noted that, despite the fact that the sus-
ceptibility in the singlet state is exponentially small
(see relations (31) and (32), it can still be on the same
order of magnitude as the susceptibility (41) of the
oblique phase because hQP/D ! 1 and D @ T. 

6. PHASE TRANSITIONS
IN A LONGITUDINAL MAGNETIC FIELD

AT T ≠ 0. 

The above analysis showed that the system of equa-
tions (23)–(26) has two solutions at T ≠ 0 for the fields
h ! D. The first solution corresponds to a one-sublat-
tice crystal phase with a nonmagnetic singlet ground
state and the two other states having limiting values of
the spin projections onto the quantization axis, the lat-
ter axis being directed along the field. 

In the second solution, the ion spin projections are
not equal to their limiting values and the ground state is
polarized. This corresponds to a multisublattice AFM
state; for h  hQP , the quantization axes are oriented
perpendicularly to the field. Obviously, the passage
from the first solution to the second involves a jumplike
rotation of the quantization axes. In other words, the
transition from the singlet state to the oblique phase at
T ≠ 0 is the first-order phase transition, in contrast to
the second-order phase transition at T = 0. 

The magnetic field for this phase transition can be
determined from the condition of equal free energies
for the two solutions. For h ! D, the free energy of the
singlet phase can be written as 

(42)

If the field is such that h @ T but smaller than the con-
stant of anisotropy, relation (42) can be rewritten as 

(43)

The free energy for the second solution equals the
sum of a single-ion component, which is dependent on
D/T but independent of h, and the contribution (36)
describing the magnetic-field-induced polarization of
ions in the ground state. Thus, the expression for the

χQP χ|| T h hQP>,( ) 2
hQP

2 T( )
D3

-----------------∆p T( ).= =

FSP T 1 2e D/T– h/Tcosh+( ).ln–=

FSP T2χ|| T h,( ).–=
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equilibrium free energy dependent only on h for the
oblique phase at s ! 1 is as follows: 

(44)

Taking into account expressions (37)–(41) and assuming
T/D ! 1, the expression for FQP can be transformed to 

(45)

For determining the critical field for the phase transi-
tion from the singlet state to the oblique phase, we
equate the expressions for free energies of these phase
and arrive at the transcendental equation 

(46)

where hC is the critical field for the phase transition. 
As can be seen from Eq, (46), the value of hC is

somewhat greater than hQP . This result confirms the
above conclusion that the phase transition from the sin-
glet phase to the oblique phase at T ≠ 0 is the first- order
transition and a jump in magnetization has to take place
at h = hC . It is interesting to note that, as the temperature
T decreases, the values of hC and hQP approach each
other and hC  hQP when T  0. 

7. CONCLUSIONS 

It was demonstrated that the magnetic phase transi-
tions in singlet ground state magnets can be described
using an approach based on the Landau theory of phase
transitions. The role of the order parameter is per-
formed by the spin polarization of single-particle states
of paramagnetic ions. We have shown that the ternary
magnetic halogenides ABX3 with easy-plane single-ion
magnetic anisotropy feature a phase transition from the
singlet (one- sublattice) state to an AFM phase induced
by the longitudinal magnetic field. This transition rep-
resents a displacive magnetic phase transition. An
important special feature of the system under consider-
ation is that the phase transition is continuous at T = 0
and exhibits a jumplike character at T ≠ 0. This change
in the phase transition character from the second to first
order is related to the magnetic-field-induced paramag-
netic process, which cannot be ignored in the system
studied. 

Another, also very important peculiarity of the sys-
tem under consideration is manifested in the course of
magnetization at low temperatures. First, the longitudi-
nal component of the magnetic susceptibility in the sin-
glet phase (i.e., in the initial stage of magnetization) is
strongly nonlinear, exhibiting exponential growth with
increasing external field h and decreasing with the tem-
perature T. Second, this magnetic susceptibility compo-
nent ceases to depend on h upon transition to the AFM

FQP T 1 2e D/T–+( )ln– ∆F h( ).+=

FQP T2χ|| T 0,( )–
1
2
---χQP T( ) h hQP T( )–[ ] 2.–=

T2 χ|| T hC,( ) χ|| T 0,( )–[ ]

=  
1
2
---χQP T( ) hC hQP T( )–[ ] 2,
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state at h > hC . This behavior is rather unusual. Indeed,
the magnetic susceptibility of usual antiferromagnets
(obeying the quasi-classical description) in the spin-
flop phase is constant. However, the spin-flop phase in
such a system is only the result of a change in the AFM
order caused by the external field, while the moduli of
spins of sublattices in the spin-flop phase remain essen-
tially constant in the course of canting toward the field.
In a singlet ground state magnet at h < hC , the AFM
state (including multisublattice) is absent. It is only at
h = hC that sublattices begin to form and acquire non-
zero magnetic moments increasing with h, whereby the
field also induces canting of the spins of sublattices
toward the hard axis. It is unusual that the field depen-
dence of the average spins and canting angles are such
that the magnetic susceptibility of the whole crystal in
the oblique phase is analogous to that for the quasi-clas-
sical antiferromagnets. 

The results of our investigation qualitatively well
agree with the data of recent experimental investigation
of the static magnetic properties of CsFeBr3 [5]. This
antiferromagnet exhibits a clear displacive magnetic
phase transition from the singlet state to the oblique
phase. From additional experimental data on the heat
capacity of CsFeBr3, this phase transition at T ≠ 0 is of
the first order, although the crystal magnetization pro-
ceeds smoothly and exhibits no jump. As the tempera-
ture is decreased to approach T = 0, CsFeBr3 exhibits a
clear tendency to change the transition order from first
to second [5], but this behavior requires separate exper-
imental investigation. 

The field dependence of the longitudinal magnetiza-
tion of CsFeBr3 is well consistent with the theory pro-
posed above. The magnetic susceptibility of CsFeBr3

exhibits a nonlinear (exponential) dependence on the
applied field strength in the singlet state and remains
constant at h > hC , after the transition to the oblique
phase. However, according to the available data [5], it
is still difficult to provide for a direct description of the
magnetization and susceptibility curves for a CsFeBr3

crystal. It should also be noted that continuous variation
of the magnetization of CsFeBr3 during the first-order
phase transition is not excluded, if we take into account
the possibility of formation of an intermediate state
simultaneously containing both phases [22]. However,
consideration of the possible domain formation goes
outside the scope of this study and is a subject for sep-
arate investigation. 
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Abstract—The ground state of nonellipsoidal particles can be inhomogeneous due to the effect of a demagne-
tizing field. The approach proposed here for studying such particles is based on the combination of symmetry
analysis and perturbation theory. The general formulation of this approach, which makes it possible to analyze
weakly inhomogeneous states for particles with a complex shape, is considered. The ground state of cubic par-
ticles of magnetically soft materials is calculated analytically, and the effect of small strains of cubic particles
on the magnetization distribution in the particles is investigated. It is shown for the example of magnetically
soft cubic particles that even a small deviation of the particle shape from symmetrical may result in the realiza-
tion of a special magnetic state in such particles, in which the symmetry in the magnetization distribution is
lower than the particle symmetry. A change in the parameters of a particle can substantially modify its magnetic
properties and may even induce a phase transition to a state with a different symmetry. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Advanced in sputtering technologies and electron-
beam lithography during the last decade have made it
possible to prepare artificial magnetic particles (mag-
netic dots) of a nanometer size as well as their ordered
system (superlattices [1, 2]. Magnetic dots may have
various shapes and are mainly prepared from magneti-
cally soft ferromagnets (e.g., Co, Fe, or permalloy)
deposited on a nonmagnetic substrate. The superlattices
of magnetic dots are important for practical applica-
tions, in particular, for designing new devices for high-
density magnetic recording [3, 4], magnetic field sen-
sors [5], and logical elements of computers [6].

Superlattices of magnetic dots are also interesting as
a basically new object of the fundamental physics of
magnetism. Indeed, from the standpoint of traditional
physics of magnetism, magnetic dots with a size on the
order of tens or hundreds of nanometers (which is
smaller than or comparable to the one-domain size) are
typical monodomain particles, which have been studied
for more than 50 years. However, detailed analysis of
these particles in recent years demonstrated a number
of peculiarities that have not been discussed before.
The main one is that various nonuniform distributions
of magnetization can be observed in such particles. If the
size of a particle becomes larger than a certain critical
value, but is still smaller than the one-domain size, a vor-
tex state can be realized in the particle [7]. For smaller
nonellipsoidal particles, the ground state a specific
weakly inhomogeneous magnetic configuration deter-
mined by the magnetic dipole interaction (see [8–12]). In
[8–10], a method was proposed for determining the
micromamagnetic pattern of such a distribution from
1063-7761/04/9805- $26.00 © 21015
the known average direction of the magnetic moment.
Such a simplification is possible for magnetically rigid
particles, for which the average direction of magnetiza-
tion is determined by magnetic anisotropy, and for an
elongated particle (e.g., having the shape of a cylinder
or a parallelepiped), in which the mean magnetic
moment direction is determined by a uniform demag-
netizing field (anisotropy of shape). However, magnet-
ically soft particles of a symmetric shape, viz., flat
squares (with a thickness smaller than the square side)
or cubic particles, were found to be more convenient for
application and preparation. Anisotropy in such parti-
cles is negligibly small, while a uniform demagnetizing
field possesses a high symmetry and does not determine
unambiguously the average direction of the magnetic
moment. In this case, both the average direction of
magnetization and nonuniform deviations from it are
determined by a nonuniform demagnetizing field and
the problem must be solved self-consistently. As a
result, the ground state of such quasi-monodomain par-
ticles turned out to be complicated and was treated in a
series of publications [13–16] devoted to only quadratic
permalloy and supermalloy particles. The authors of
these publications made use of the fruitful idea that the
average direction of the magnetic moment in symmet-
ric particles is determined by the weak nonuniform
component of the demagnetizing field. It was shown
experimentally and with the help of numerical simula-
tion for square particles that, depending to the ratio of
the square side to the particle thickness, the particle can
be in one of two micromagnetic states, viz., the flower
state, in which the average direction of the magnetic
moment is parallel to the side of the square, and the leaf
004 MAIK “Nauka/Interperiodica”



 

1016

        

IVANOV, TARTAKOVSKAYA

                               
state, in which the average direction of the magnetic
moment is parallel to the diagonal of the square. The
authors of [13–16] also carried out numerical variational
analysis of the corresponding micromagnetic states
choosing some simple test functions. However, the
approach developed by these authors did not permit a
generalization to the case of particles with a more com-
plex shape (e.g., cubic or rectangular). The calculations
were performed without taking into account the natural
boundary conditions for magnetization (see [17, 18]).
For this reason, the ground state of a small particle has
not been determined unambiguously even for particles
of a simple shape. The important (in our opinion) ques-
tion concerning the variation of the ground state upon
small but experimentally feasible deviations of parti-
cles from a precisely preset shape (i.e., a weak lowering
of symmetry of the uniform demagnetizing field) has
not been discussed either.

The construction of an analytic theory for micro-
magnetic states began in [10], where the micromag-
netic structure was calculated on the basis of perturba-
tion theory in small deviations relative to the known
average direction of the magnetic moment in a thin cyl-
inder. The small parameter of the theory was the
squared ratio of the particle size to the exchange length
of the material, which corresponds to the ratio of the
magnetic dipole energy to the exchange energy. Conse-
quently, the criterion of smallness for this parameter
corresponds to the fulfillment of the standard criterion
of one-domain nature of a nanoparticle. In our previous
publications [19, 20], we generalized this theory and
applied it for calculating the average direction of the
magnetic moment and corresponding micromagnetic
states in flat symmetric particles. In this theory, the cal-
culations of uniform and nonuniform demagnetizing
fields are treated, respectively, as the zeroth and first
approximations in perturbation theory. For square par-
ticles, the results of our calculations are in qualitative
agreement with the experimental data [14–16]. For flat
rectangular particles, we indicate the existence of a new
micromagnetic state, which was called the intermediate
state. The direction of the magnetic moment 〈M0〉  ≡ M0
averaged over the particle volume is not associated with
any symmetry axes of the particle for such a state. In the
range of the intermediate state, the average moment
forms an angle with the longer side of the rectangle, the
magnitude of this angle depending on the ratio of the
uniform and nonuniform components of the demagne-
tizing field, while the micromagnetic distribution con-
tains terms with symmetries corresponding to the
flower state as well as the leaf state. The results of our
calculations were completely confirmed by numerical
simulation [20].

This study is devoted to analytic calculation of the
ground state of particles with a higher symmetry as
compared to flat particles, i.e., particles of cubic shape.
The approach used here is based on the combination of
the symmetry analysis and calculations in perturbation
theory. We also studied the effect of small deformations
JOURNAL OF EXPERIMENTAL 
of cubic particles on the magnetization distribution in
these particles. In a square particle, a uniform demag-
netizing field “lays” the magnetic moment into the
plane of the square, and calculation in the next order in
perturbation theory is required only for determining the
direction of the magnetic moment in this plane, while
in a cubic particle, the direction of magnetic moment
M0 in space is determined only by the nonuniform com-
ponent of the demagnetizing field. Numerical simula-
tion carried out in [8] indicates that a flower-type state
is realized in a cubic particle; i.e., magnetic moment
vector M0 is parallel to one of the edges of the cube.

In Section 2, we give a general formulation of the
approach that makes it possible to analyze weakly inho-
mogeneous states for particles with a complex shape.
The expansion of the system energy into a power series
in components of vector M0, which naturally arises
when perturbation theory is used, is verified by the
symmetry analysis of the effective energy as a function
of M0. In Section 3, the case of cubic particles is briefly
considered. Section 4 is devoted to the determination of
the magnetic state, in particular, the average direction
of the magnetic moment in particles of a nonrectangu-
lar shape close to the cubic shape. It is shown that such
particles can exhibit a special form of the intermediate
state, in which the symmetry of magnetization distribu-
tion is lower than the particle symmetry. It should be
noted that the application of the standard method of com-
puter simulation presuming the discretization of the
problem by dividing the volume of a particle into small
domains with a shape repeating the particle shape [21] is
quite difficult in the case of nonrectangular particles.
For this reason, the calculation based on the proposed
approach is an important tool for their theoretical inves-
tigation. The concluding part of this paper contains a
discussion of the results and analysis of possible gener-
alizations of the algorithm developed here (e.g., its
applicability for describing the magnetization reversal
of particles in a weakly inhomogeneous state).

2. FORMULATION OF THE PROBLEM 
AND GENERAL RELATIONS

The energy functional for a particle in an isotropic
ferromagnet taking into account the exchange and mag-
netic dipole interactions can be written in the form

(1)

where the demagnetizing field is defined in the usual
way as

le =  is the exchange length, M0 is the saturation
magnetization, A is the nonuniform exchange constant,

W r
le
2

2
--- ∇ M( )2[ ] 1

2
---M Hm⋅–

 
 
 

,d

V

∫=

Hm
∂
∂r
----- r' M r'( ) ∂

∂r'
------- 1

r r'–
---------------,d∫–=

A/M0
2
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and integration is carried out over the particle volume.
The magnetization distribution is described by the
equation

, (2)

with the boundary conditions [17, 18]

(3)

where n is the vector of the normal to the particle sur-
face. If the characteristic size l of the particle is smaller
than the exchange length, we have

and the energy of the magnetic dipole interaction is
smaller than the exchange energy. For (l/le)  0, the
magnetization distribution becomes uniform and we
can assume that the nonuniform magnetization part δM
is small (|δM| ! M0) for (l/le) ! 1. In this case, we can
construct a recurrent procedure stemming from the fact
that the magnetization is uniform in the zeroth approx-
imation in (l/le). In this case, in the first approximation

in (l/le)2, the demagnetizing field Hm =  is calcu-

lated for uniform magnetization M0. Field  can be
written in terms of the tensor of effective demagnetiz-

ing factors Nik(r),  = Nik(r)M0, k , and magnetic field

 is a function of coordinates only by virtue of the
coordinate dependence of Nik(r).

The presence of a nonuniform field induces small
nonuniform deviations of M from M0, M = M0 + δM,
with an amplitude proportional to (l/le)2. It is these devi-
ations and the demagnetizing field associated with
these deviations that determine the type of the ground
state of a small nonellipsoidal particle. We will describe
the direction of M0 by angular variables, which can be
conveniently chosen in the form

To calculate δM, it is convenient to pass to a system
of coordinates in which the unit vector e3 is directed
along the average magnetization vector, M0e3 = M0, the
remaining unit vectors being defined by the formulas
M0e1 = ∂M0/∂θ and M0e2 = (∂M0/∂ϕ)/sinθ. In this case,
vector equation (2) in the linear approximation in δM =
m1e1 + m2e2 can easily be written in the form of two
independent equations

(4)

le
2∇ 2M Hm+( ) M× 0=

∂M/∂xi( )ni 0,=

le
2 ∇ M 2 le/l( )2M0

2
 @ MHm 4πM0

2∝ ∝

Hm
0( )

Hm
0( )

Hm i,
0( )

Hm
0( )

M0 M0 ez θsin θ ex ϕcos ey ϕsin+( )cos+[ ] .=

le
2∇ 2m1

∂
∂θ
------ M0 i, NikM0 k,( )+ 0,=

le
2∇ 2m2

∂
θ∂ϕsin

------------------ M0 i, NikM0 k,( )+ 0.=
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In this approximation, the particle energy, taking
into account Eqs. (4), can be written in the form of the
functional quadratic in m1 and m2,

(5)

To solve Eqs. (4) for the given shape of particles, we
write the components of tensor Nik(r) in the form of the
expansion in the complete orthonormal set of functions
fα(r), which are solutions to the D’Alembert equation
and satisfy boundary conditions (3) on the particle sur-
face:

(6)

Writing

we can easily obtain explicit expressions for m1 and m2

in terms of coefficients , e.g.,

(7)

Further, we can write the expression for energy W(2)

in the universal form

(8)

where tensor Λik, lm = Λki, lm = Λlm, ik is defined only by
the particle shape,

(9)

while the symmetric rank-two tensors uik and v ik are
defined as

(10)

The important properties of tensor ∆ik, lm (in particu-
lar, the number of its independent components) can be
determined without calculations from symmetry con-
siderations only. In particular, for an important case of
particles, which can densely fill the 3D space, we can
use the formal similarity of each term in formula (8)
with the expression for the elastic energy of a deformed
crystal (see [22]). In this case, the structure of tensor
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Λik, lm is the same as for the elastic moduli tensor for the
crystal with the shape of the unit cell coinciding with
the shape of the particle. However, the number of inde-
pendent components Λik, lm is actually smaller than that
of the elastic moduli tensor for the crystal since the ten-
sor components uik and v ik are connected via the obvi-
ous relations

(11)

following from the condition M2 =  = const. In fact,
the form of energy (8) for the known coefficients Λik, lm
can be simplified further, noting that the combinations
uikulm + v ikv lm (but not uikulm and v ikv lm separately)
appearing in the expression for energy are proportional
to the corresponding invariants composed of the mag-
netization components. By way of example, we con-
sider the formulas

the remaining combinations of this type can easily be
restored by transposition of indices.

Thus, in the first nontrivial approximation in small
parameter (l/le)2, the calculation of the particle energy
has been reduced to the following two problems:
(i) writing of the solution to the Klein-Gordon equation
for the scalar function fα(r) in the bulk of the particle
and (ii) the calculation of the sums in expression (9) for
Λik, lm . For many cases, the solution of this problem is
known; for example, for particles of cylindrical shape,
fα(r) can be written in the familiar form in terms of
Bessel’s functions. For the above-mentioned particles
densely filling the space, both problems can easily be
solved in general form. If the filling of the space by
translation of a particle copy results in a Bravais lattice
with translation vectors a1, a2, a3, the corresponding
complete set is determined by the inverse lattice vectors
g = mb1 + nb2 + kb3, (bi, ak) = δik. To construct this set, we
must just select the functions satisfying boundary condi-
tions (3) from the general set of the form exp(iπg · r)
(here, we have factor π instead of the standard factor 2π
since we are interested in the solutions for which the
particle size is equal to half-period). In this case, α is a
set of integers n, m, and k, and the eigenvalues are λα ≡
λn, m, k = π2(n2 + m2 + k2). For such a set, the Fourier
components of tensor Nik(r) can be determined analyti-
cally, and the sums in relation (9) converge rapidly and
can easily be calculated numerically.

3. CUBIC PARTICLE
We will apply the theory developed above to the

case of a cubic particle with a side length of 2l. We

uii v ii 0, uikuik v ikv ik 1,= = = =

M0
2

uxx
2 v xx

2+ Mx
2
M0

2
Mx

4,–=

uxxuyy v xxv yy+ Mx
2My

2
,–=

uxy
2 v xy

2+
1
4
--- Mx

2 My
2+( )M0

2
Mx

2
My

2;–=
JOURNAL OF EXPERIMENTAL 
assume that the origin of the coordinates coincides with
the center of the cube; i.e., in the previous formulas, we
have

In this case, g = (mex + ney + kez)/2l and the boundary
conditions are satisfied for real-valued solutions con-
taining cos[pπξ/l] and sin[π(p + 1/2)ξ/l], where ξ = x, y,
or z and p = m, n, or k. It is sufficient for our purpose to
calculate two independent (diagonal and nondiagonal)
Fourier components of tensor Nik(r), e.g.,

(12)

where

the remaining components can be obtained from rela-
tions (12) using the obvious cyclic permutation of vari-
ables (x, y, z) and integers m, n, and k. The integrals in
the formulas for v (m, n, k) contain only integrable singu-
larities and these coefficients can easily be determined
numerically.

In the case of the cubic symmetry, tensor Λik, lm in
formula (8) contains three independent invariants Λxx, xx,
Λxx, yy, and Λxy, xy. However, in view of relations (11),
only one of the three invariants quadratic in uik and v ik

is independent. As a result, the energy can be written in
the form

Calculation of constant C gives C = 0.61. Passing to the
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NEW MICROMAGNETIC STATES OF MAGNETICALLY SOFT NANOPARTICLES 1019
magnetization components, we find that the expression

in the brackets is equal to (  +  + );
i.e., it coincides with the standard expression for the
cubic anisotropy energy. This leads to the required
expression for the magnetic energy in the angular vari-
ables:

(13)

Since C > 0, function Wnonuniform(ϕ, θ) assumes the
minimal value (equal to zero) at six points, namely, for
M0 = ±M0ex , M0 = ±M0ey , and M0 = ±M0ez . These three
cases are obviously identical since they indicate the
average orientation of the magnetic moment along one
of the cube edges. The analytic formulas for the corre-
sponding micromagnetic state become especially
visual for θ = 0 and ϕ = 0; i.e., the average vector M0 =
M0(1, 0, 0) is parallel to the x axis. Since the sums in
relations (12) converge well [12, 20], it is sufficient for
a qualitative analysis to retain only the first terms in
these sums. Then the components of the weakly non-
uniform part of the magnetic moment in the linear
approximation in δM that we are dealing with exhibit
the coordinate dependence standard for a flower-type
state [19],

(14)

where the numerical coefficient  ≈ –4.31. As
usual, the maximal deviation of the total magnetic
moment M(r) = M0 + δM from the average direction is
observed at the vertices of a particle, while M(r) at the
center coincides with M0 (see Fig. 2a in [8]). The
micromagnetic state for the magnetic moment orienta-
tion along some other edge of the cube can be obtained
by rotating M0 through π/2 and by cyclic permutation
of x, y, and z in (14).

It should be noted that, although we calculated in
this section the particle energy for an arbitrary orienta-
tion of vector M0, the calculation could be significantly
simplified in fact, which is important when higher
orders in perturbation theory have to be employed.
Indeed, the form of the energy as an invariant of the
cubic symmetry group is beyond any doubt, and the
value of coefficient C can be determined by calculating
energy for two symmetric direction of M0.
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4. CALCULATION OF THE AVERAGE 
DIRECTION OF MAGNETIC MOMENT 

IN PARTICLES WITH A NEARLY CUBIC SHAPE

In this section, we will consider some important
examples of distortions in the cubic shape of a particle,
assuming that the deformation can be reduced to exten-
sion or compression of the particle along one of the
symmetry axes of the cube. Obviously, all such defor-
mations will induce a nonzero anisotropy of the shape
associated with the uniform part of the demagnetizing
field. The symmetry of this anisotropy is lower than the
cubic symmetry and the resultant direction of magneti-
zation is determined by the competition of these two
contributions.

It is quite easy to predict the outcome of a tetragonal
or rhombic deformation, i.e., a change in the particle
size along directions parallel to one of the edges of the
cube. The lowering of the demagnetizing field symme-
try leads to the magnetic moment orientation along the
longest edge; in other words, the flower-type state,
which was considered in detail in the previous publica-
tions [12] for the elongated parallelepiped obtained in
this way, “survives” in the system. For a considerable
compression of the cube (with the ratio of edges
exceeding 2.6–2.8), a transition to the leaf state takes
place; however, in this study we confine our analysis to
the case of small deformations of cubic particles.

A more important question, which has never been
discussed earlier, concerns the change in the direction
of the magnetic moment upon a change in the angles
determining the shape of the particle. Since a cube is
not a mechanically rigid figure, spontaneous distortions
of the shape of this type are quite feasible during the
preparation of nanoparticles. In addition such distor-
tions may take place for particles implanted in the bulk
of an amorphous nonmagnetic matrix during its elastic
deformation.

We will consider here two basically different cases
of lowering of cubic symmetry (see Fig. 1). In the first
case, the cube is stretched along the diagonal of one of
the faces (e.g., in the (110) direction), being trans-
formed into a rectangular prism with a rhombus as the
base (Fig. 1a). Another example of a deformed particle
is an equilateral rhombohedron (Fig. 1b), which can be
obtained by extending (compressing) the cube along
the principal diagonal (111). In both cases, we assume
that the length of the edge remains unchanged and the
change in the shape of the particle is described by only
one parameter. It is convenient to choose for such a
parameter the angle α between the particle edge and
diagonal (110) in the xy plane. The deformation is small
if the value of δα = α – π/4 is small.

To predict the results in specific cases, we will first
qualitatively consider the physical features of the prob-
lem. A lowering of the particle symmetry induces a uni-
form demagnetizing field orienting the magnetic
moment along a certain direction. In the case depicted
in Fig. 1a, this direction (easy anisotropy axis of the
SICS      Vol. 98      No. 5      2004
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particle shape) is oriented along the longer diagonal
(110) of the face. In the case of rhombohedral distor-
tions (Fig. 1b), the selected axis is oriented along the
principal diagonal (111) of the rhomboid. This axis
serves as the easy axis during extension of the rhom-
boid and the hard axis during its compression. In both
cases, the corresponding energy of the uniform demag-
netizing field is proportional to δα.

According to the results of calculations carried out
in the previous section, a nonuniform demagnetizing
field in a cubic particle tends to orient its magnetic
moment along an edge of the cube. The energy associ-
ated with this field contains an additional small param-
eter (l/le)2. If the particle shape is nearly cubic (i.e., δα
is on the order of (l/le)2), the contributions from the uni-
form and small nonuniform components of the mag-
netic fields can be comparable in magnitude. The com-
petition of these contributions creates conditions for the
emergence of an intermediate state, which was consid-
ered in [20] for flat particles. It was demonstrated by
comparing the numerical data and the results of calcu-
lation in perturbation theory that the results of analysis

(a)

(b)

x

y

z

~

α Φ
M

B

A

D

M

e3

θ
~

θ

α

β(α) γ(α)

α

Fig. 1. The shape of particles obtained by deforming the
cube along the symmetry directions: (a) prismatic deforma-
tion, extension along the diagonal of the face; (b) rhombo-
hedral deformation, extension along the principal diagonal
of the cube.

~

C

JOURNAL OF EXPERIMENTAL 
are also valid qualitatively for l ~ le (le ≈ 18 nm for per-
malloy). Consequently, although we will use in subse-
quent calculations the formal inequality l ! le required
for the applicability of perturbation theory, the results
can be used for larger particles as well.

Another important circumstance considerably sim-
plifying calculations is also worth noting. It will be
proved below that the range of realization of the inter-
mediate state is small (δα ~ 2°–3°) even for l ~ le . Con-
sequently, we can use the inequality δα ! 1. In the case
of small deformations we are interested in, in the main
approximation in small parameters δα and (l/le)2, it is
sufficient to use for the contribution of the nonuniform
demagnetizing field formula (13) obtained for a cubic
particle. The anisotropic contribution of the nonuni-
form field taking into account weak distortions of the
shape gives the result of the next order of smallness in
parameters δα and (l/le)2 and does not lead to any sig-
nificant effects; for this reason, this contribution will be
disregarded here.

Prismatic Deformation of a Cube 

Let us now analyze the particle shown in Fig. 1a.
First, we must find the magnetic dipole energy of uni-
form fields. The calculations are simple when the tensor
of demagnetizing coefficients contains only diagonal
components. This is observed when the coordinate axes
coincide with the symmetry axes of the system. In the
given case, it is sufficient to leave the z axis unchanged
and turn the x and y axes so that they coincide with the
perpendicular diagonals of the rhomb. We define this
rotation as shown in Fig. 1a, where the  axis coincides
with the longer diagonal. The contribution of uniform
demagnetizing fields to the magnetic energy is a qua-
dratic form in the magnetization components. To within
an insignificant constant chosen so that the energy van-
ishes for a cubic particle, this energy can be written in
the form

(15)

Here, parameters Ii are proportional to the diagonal
components Nii of the tensor of demagnetizing coeffi-
cient, integrated over the particle volume:

The corresponding integrals have only integrable sin-
gularities at the corners of the particle [23] and can eas-
ily be evaluated. To determine the average direction of
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the magnetic moment in the given system, we must find
the minimum of the total magnetic energy

where function Wnonuniform(ϕ, θ) can be calculated using
formula (13) derived for a cubic particle if we replace
ϕ   = ϕ + π/4 in accordance with the rotation of
the coordinate system. If angle α becomes smaller than
its value π/4 for the cube, parameters Ii must satisfy the
relation Ix < Iz < Iy .

Minimization of the total energy of the particle over
angle θ0 shows that only two types of solutions with
θ0 = 0 and π/2 can exist. The latter solution corresponds
to states with M0 = ±M0ez and their energy is

( V/2)(Iz – Ix). The states with θ0 = 0 correspond to
the magnetic moment orientation in the xy plane,

where the value of angle ϕ0 is determined by the extre-
mum of the function of one variable W (ϕ0, θ0 = 0).

If we disregard the weakly nonuniform field (which
can be done for very small particles), Wnonuniform !
Wuniform(ϕ0, θ0) and the energy of the demagnetizing
field is minimal for the average direction of the mag-
netic moment parallel to the  axis (i.e., for ϕ0 = 0). As
the nonuniform energy (i.e., the particle size) increases,
the energy minimum at point ϕ0 = 0 vanishes and a new
minimum appears for ϕ0 = Φ ≠ πk/2, where cos2Φ =

(Iy – Ix) /4Cl2. In this state, the direction of M0 does
not coincide with any symmetric directions of the body;
in analogy with the previous publications, we refer to
this state as the intermediate state. This state is stable in
the entire range 0 < cos2Φ < 1 of its existence; it is real-
ized for particles with the length of the edge larger than
a certain critical value 2lcrit , where lcrit =
le .

The value of lcrit is determined by the exchange
length of the material and by the strain; its value is
small for α  45°, but rapidly increases with increas-
ing strain. Thus, the possibility that the intermediate
state is realized in a right prism of a preset shape
depends on its size and the exchange length of the
prism material. We carried out calculations in perturba-
tion theory for permalloy particles. Figure 2 shows the
results for the rectangular prism depicted in Fig. 1a.
Three different values of α depend to three curves
describing the dependence of angle Φ on the particle
size, It should be noted that the value of lc is small for
small strains; it is smaller than the exchange length,
which literally corresponds to the applicability of per-
turbation theory.

Thus, in a weakly deformed cubic particle, the
direction of average magnetic moment M0 does not
coincide with any symmetry axis of the particle. How-

W ϕ θ,( ) Wuniform ϕ θ,( ) Wnonuniform ϕ θ,( ),+=

ϕ̃
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2

M0 M0 ex ϕ0cos ey ϕ0sin+( ),=

x̃

le
2

Iyy Ixx–( )/4C
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ever, as the strain increases (or, which is the same, the
linear size of the particle increases), the uniform mag-
netic field rotates vector M0 towards the symmetry axis
(the longer diagonal of the base) and the magnetic
moment remains parallel to this symmetry direction.
The reorientation of the average magnetic moment
upon a change in the particle parameters can be inter-
preted as a certain reorientation phase transition. It can
easily be seen that this phase transition is a second-
order transition, for which the order parameter is angle
Φ. Indeed, states with Φ ≠ 0 possess a lower symmetry
that the state with Φ = 0 and the dependence Φ(l) in the
vicinity of the phase transition has the typical root
dependence

(16)

This behavior is clearly shown in Fig. 2, where
curves Φ = Φ(l) in the vicinity of the value of lcrit corre-
sponding to each angle α become nearly vertical (i.e.,
these curves have an infinitely large derivative). The
pattern of phase transitions can be visualized more
clearly via the dependence of angle Φ on angle α for a
fixed size of the particle, which is depicted in Fig. 3.
Here, angles α < 45° describe extension and angles
α > 45° describe the compression of the particle along
the direction (110). The emergence of two second-order
phase transitions near which the magnetization is reori-
ented to symmetric states Φ  0 (extension) and
Φ  π/2 (compression) can be explained by the fact
that the extension along one of the diagonals of a face
in the given geometry is equivalent to compression
along the other diagonal of the same face.

Thus, when the cube is deformed along a diagonal
of its face, a symmetric state of the flower type, which
is typical of an ideal cube, is never realized. Instead of

Φ
0, l lcrit,<

l/lcrit 1– , l lcrit≥ .



=

10 15 20 2l
0

15°

30°

Φ

α = 43°

44°
44.5°

Fig. 2. Dependence of angle Φ describing the deviation of
the average magnetization from the symmetry direction on
the particle size l for three values of prismatic deformation
of the cube. Here and in the following figures, the numerical
values were obtained for permalloy.
SICS      Vol. 98      No. 5      2004



1022 IVANOV, TARTAKOVSKAYA
this state, two types of states can be observed: a more
symmetric state with Φ = 0, resembling the leaf-type
state observed earlier for flat square particles, appears
for considerable strains, while for small strains, a less
symmetric intermediate state is formed, in which the
average direction of the magnetization is not connected
with any symmetry axis of the particle.

Rhombohedral Deformation 

Let us now consider the extension or compression of
a cube along its principal diagonal (Fig. 1b corresponds
to extension). The rhomboid has a uniaxial anisotropy
with a third-order principal axis parallel to the spatial
diagonal of the cube. As before, we assume that the
parameter of the problem is angle α between the diag-
onal and the side of the rhomb at the base of the rhom-
boid. In the system with the e3 axis directed along the
principal axis of the rhomboid (segment AC in the fig-
ure), the energy of uniform demagnetizing fields

depends only on angle  between the e3 axis and the
magnetic moment. This energy can be written in the
simple form

(17)

where function B(α) is positive (negative) in the case of
the extension (compression) of the cube. In the same
system of coordinates, the energy of weakly nonuni-
form fields has the form

(18)

which is typical of the rhombohedral symmetry with
the C3 axis parallel to the e3 axis. It was mentioned
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Fig. 3. Dependence of angle Φ on the value of angle α
describing the prismatic strain of the particle for two values
of particle size l.
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above that the form of energy (18) and value of constant
C can be taken the same as for the undeformed cube.
The first two terms in the parentheses describe purely
uniaxial anisotropy, while the last term describes
anisotropy in the basal plane. The energy extremum in
the value of angle ϕ is determined by the relation

 = 0; i.e.,  = ±1. Further, the energy min-

imum corresponds to the value of  = –1;
i.e., for each value of the projection of the magnetiza-
tion on the C3 axis, triple degeneracy of the minima of

the total energy W( , ) = Wuniform( ) + Wnonuniform( ,

) arises. Without any loss of generality of the prob-
lem, we can analyze the behavior of the magnetic
moment lying in one of the three selected planes,
choosing, for example, angle  = 0; the remaining
equivalent states can be obtained by rotations about the
e3 axis through an angle of 120° and the changes in the
direction of magnetization vector M0.

Thus, we consider the rotation of the magnetic
moment in the ABCD plane passing through the princi-
pal diagonal and the corresponding diagonals of the
faces (see Fig. 1b). For such a rotation, the energy of the

magnet is defined by function W( ) ≡ W( , . It
should be noted above all that the equation

∂W( )/∂  = 0 always has the solution  = 0 describ-
ing the orientation of the average magnetization along
the C3 axis. This solution corresponds to a state of the
leaf type, which is most symmetric, but which is not
realized in a cubic particle. The type of this extremum
is determined by the sign of the strain. It should be
noted that, in the case of a rhombohedral deformation,
the extension and compression of the cube along the
principal diagonal are not physically equivalent effects
as in the case of extension and compression along the
diagonals of the faces. Let us first describe the case of
extension.

It was noted above that a state of the flower type is

stable in an undeformed cube, while solution  = 0
(magnetization distribution of the leaf type) corre-
sponds to the energy maximum. In the case of exten-
sion, the value of constant B(α) > 0; the C3 axis
becomes the easy axis of induced anisotropy (17), and

the highly symmetric state with  = 0 and a magneti-
zation parallel to this axis may become stable. A sim-

ple analysis of energy W( ) taking into account for-
mulas (17) and (18) shows that this state is stable to
small deviations from the C3 axis when the condition

B(α) > 8Cl2/3  is satisfied; i.e., for the preset strain
amplitude α, this state is stable for quite small sizes of

the particle, l < (α) = le . As the particle

size increases above the critical value (α), the action
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of nonuniform demagnetizing fields violates the stabil-
ity of this state and leads to the formation of a new state,
in which the average magnetic moment forms a certain

angle  ≠ 0 with the principal axis of the rhomboid. It
should be recalled that in fact there are six such states,
three of which are obtained by rotations about the C3
axis through an angle multiple to 120°; the remaining
states can be obtained via the substitution M0  –M0.
The rotation about the C3 axis does not change the mag-

netization in state  = 0; as a result, the symmetry of a

state with  ≠ 0 is lower than the symmetry of a state

with  = 0. Consequently, the states with  ≠ 0 are typ-
ical examples of the intermediate state. The search for

solutions to the equation ∂W( )/∂  = 0 is a cumber-
some problem. To visualize the result, it is convenient
to analyze these states qualitatively, returning to the
coordinate system with the x, y, and z axes directed
along the edges of an undeformed cube and to polar

angle θ. Angles  and θ are connected via the relation

θ =  + γ(α), where cosγ = 1/ cosα
(see Fig. 1b).

In terms of angle θ, under the condition  = 0, the
total energy of the particle W = Wuniform + Wnonuniform can
be written in the form

(19)

After the substitution θ  Θ/2, this expression
coincides with the formula for the energy of a uniaxial
ferromagnet,

,

in an external magnetic field oriented arbitrarily rela-
tive to the easy axis (z axis); the states formed in this
case are well known (see [24]). In such a system, in the

range of values  +  ≤ K2/3, there exists a region
of metastable states, while two phases with different
magnetizations differing in the sign of the z projections
coexist for Hz = 0 and Hx < K. The equality sign in this

relation (  +  = K2/3) determines the point of
stability loss for one of the phases. After substitution of
the corresponding relations from (19) into this condi-
tion, we obtain the instability condition for a phase with

 = 0 determined above, while the second root of this
equation leads to the stability loss condition for a phase

with  = 0 in the form B(α) = 3.0445Cl2/ . Thus, the
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asymmetric phase is stable for l > (α) =

0.573le . The condition B(α) = 3Cl2/  for
vanishing of the coefficient of cos2θ in formula (19)

gives the point l = lt(α), lt(α) = le  of the

coexistence of a phase with  = 0 (θ = γ(α), γ(α) 
35.3° as α  45°) and an asymmetric phase for which
θ ≈ π/2 – γ(α) at this point (θ  54.7° as α  45°).

Thus, a symmetric phase with  = 0 realizes the abso-
lute minimum of the particle energy for quite small par-
ticle size, l < lt(α), while the asymmetric case is favor-
able for l > lt(α). It should be noted that the values of

, the above value of the particle size for which the

phase with  = 0 loses stability,  ≈

0.612le , and the size lt(α) ≈ 0.577le

for which the phases coexist satisfy the inequality  <

lt(α) < .

Thus, the general pattern of states for a rhombohe-
dral particle with a preset strain (preset value of α) can
be described as follows. For small particles with l <

, only a symmetric distribution of the leaf type can

be realized. For l > , a less symmetric intermediate
phase, which was initially metastable, appears. In a nar-

row region (α) < l < (α) (this region is on the
order of 1 nm for permalloy particles with an exchange
length on the order of 18 nm), the particle has two sta-
ble states, one of which is the ground state and the other
is metastable. The transition between these states
occurs at a certain value of l = lt(α); this transition cor-
responds to an abrupt change in the direction of magne-
tization. When the length of the edge of the particle

becomes larger than the second critical value 2 (α),
the state with the average direction of the magnetic
moment along the principal diagonal loses its stability
and only one stable state (namely, the intermediate
state) remains in the system. The value of θ increases
with the size of the rhomboid, asymptotically tending
to the value π/2 – β(α), where β(α) is the angle between
the diagonal of a face and the opposite face of the par-
ticle; cosβ = cos2α/cosα (see Fig. 1b). The depen-

dence of angle  on l for the intermediate state in per-

malloy particles in the range of sizes l > (α) for
which this state is stable is depicted in Fig. 4 for three
different values of α.

Thus, as in the case of prismatic deformation, for a
strong extension of the particle along the principal
diagonal, the uniform magnetic field turns the magnetic
moment towards the strain axis, which can again be
interpreted as a reorientation phase transition upon a
change in the parameters of the particle. However, the
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situation for this deformation differs from that consid-
ered above. Although the reorientation of the average
magnetic moment occurs between the states with a
higher and a lower symmetry, this phase transition is a
typical first-order transition, for which the phase coex-

istence region is (α) < l < (α).

In the case of the compression of the cube along its
principal diagonal, induced anisotropy is an easy-plane
anisotropy and a symmetric phase with the magnetiza-
tion along the principal diagonal is never realized. In
this case, there exists only the intermediate state in
which the average magnetic moment M0 for a small
particle size asymptotically tends to the position in the

plane perpendicular to the principal diagonal,  
π/2, or θ  π/2 + γ(α). For large values of l (or for

lc
2( ) lc

1( )

θ̃

12°10° 14° 16° 18° 20° 22° 24° 2l

20°

30°

40°

50°

θ
~

α = 43°

44°

44.5°

Fig. 4. Dependence of angle  between the magnetic
moment and the principal diagonal of the particle in the
shape of an elongated rhomboid on the particle size l for the
intermediate state in the region where this state is stable.
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Fig. 5. Dependence of angle  between the magnetic
moment of the particle and the principal diagonal of the
rhomboid obtained by extension (α < 45°) or compression
(α > 45°) of the cube along its principal diagonal on angle
α for two fixed values of the particle edge.

θ̃
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small distortions of the cubic shape) the direction of M0
approaches the face of the particle, which is opposite to
the diagonal of the AD face in Fig. 1b; i.e., θ  β(α),

or   β(α) – γ(α). Consequently, in this range of the
parameters, the average magnetic moment is rotated
monotonically and the reorientation transitions do not
take place.

To visualize the pattern of the variation of the aver-
age value of the particle magnetization for various
strains, we will trace the motion of vector M0 after the
first-order phase transition for l = lt(α), which exists in
the case of extension of the cube (α < 45°) upon an
increase in the value of α to α = 45° and further upon
the subsequent compression of the cube for α > 45°.

The dependence of angle  on angle α in this case is a

monotonic function of α, assuming the value  = π/2 –
γ(45°) ≈ 54.775° for the undeformed cube (α = 45°); at

this point, the dependences (α) for all values of the

particle size intersect. The dependences (α) obtained
numerically for two fixed lengths of the edge for exten-
sion and compression of the cube (α < 45° and α > 45°,
respectively) along the principal axis are shown in
Fig. 5.

5. CONCLUDING REMARKS 
AND DISCUSSION

Using cubic magnetically soft particles as an exam-
ple, we have proved that even an insignificant deviation
of the particle shape from symmetry might cause a sig-
nificant change in the magnetic properties of the parti-
cle even up to a phase transition to another ground state
with a lower symmetry. It was shown that particles hav-
ing the same shape and made of the same material
might have different ground states depending on their
size. These conclusions are especially important for
arrays of regular particles, which can be prepared most
easily by the methods of electron-beam lithography.
Such physical objects are investigated in physical
experiments most frequently and can be used in prac-
tice [1–6]. The existence of intermediate magnetic
states described in this paper can be regarded as an
important factor affecting the properties of the array as
a whole. In all probability, the stability of information
recording on an individual particle and the presence of
such states in the range of their existence will be an
unfavorable factor for information recording devices
operating on the arrays of magnetic nanoparticles. On
the other hand, the existence of such states is interesting
from the standpoint of the fundamental physics of mag-
netism. Particles in the intermediate state must exhibit
all features known for bulk magnets in the vicinity of
reorientation phase transitions. In particular, in the
vicinity of a transition to the intermediate state, anom-
alies in the static susceptibility, softening of intrinsic
vibrational modes, and other effects must be observed.

θ̃

θ̃
θ̃

θ̃
θ̃
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These peculiarities of the physical properties of parti-
cles in the intermediate magnetic state and their ordered
arrays will probably be used in functional electronic
devices.

Let us now consider the applicability of the method
presented in this paper for describing particles with a
size of up to several tens of nanometers (we will con-
sider the estimates obtained for permalloy, which is
commonly used in applications), which exhibit the
quasi-homogeneous states considered in this paper.
(For normal permalloy particles with a size exceeding
100 nm, an eddy state with a closed magnetic flux is
realized [7]). It should be emphasized that the proposed
method is based not only on perturbation theory, but is
a self-consistent approach to studying the properties of
small magnetic particles. The calculations carried out
in the framework of perturbation theory can be treated
as the first step in this direction. In fact, we can demon-
strate as a results of this calculation that the static state
can be described on the basis of the effective energy
written in the form of a combination of powers of the
average magnetic moment components, which is
invariant to the symmetry group of the particle. A qual-
itatively identical form of energy is obviously applica-
ble for l ≥ le as well. To draw conclusions about the type
of ground state (in particular, the presence or absence of
phase transitions between the symmetry-determined
and intermediate phases and the type of these transi-
tions), often it is important to know only the sign of the
coefficients of these invariants. It is not surprising that
the results of analysis based on this method are in
accordance with the experimental data (e.g., the con-
clusion that the ground state of a cubic particle corre-
sponds to a flower-type state) as well as the result
obtained with the help of computer simulation [20].

The above analysis makes it possible to study parti-
cles with a complex shape, in particular, particles for
which discretization of the problem by dividing the par-
ticle volume into small domains whose shape repeats
the shape of the particle [21] is too complicated. It is
important to note that the symmetry approach often
leads to certain conclusions about the nature of states
prior to routine but cumbersome calculations of the cor-
responding contributions to the energy in perturbation
theory. By way of example, let us consider a cylindrical
particle with a symmetry axis coinciding with the z
axis. This particle obviously exhibits anisotropy of

shape of the  type with coefficient B depending on
the height-to-diameter ratio as well as the contribution
of a nonuniform demagnetizing field. For the latter con-
tribution, the terms in the expression for energy to
within terms on the order of (l/le)2 obviously contain the

sum of two independent invariants C1  + C2(  +

) , which is sufficient for describing reorienta-
tion of the magnetic moment from the symmetry axis to
the plane upon a change in the particle shape (i.e., coef-

BMz
2

Mz
4 Mx

2

My
2 Mz

2
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ficient B). Another example—the orientation of magne-
tization in the basal plane for a particle in the form of a
regular hexagonal prism—can be completely described
only by calculating the sixth-order terms in the mag-
netic moment components, which requires the inclu-
sion of terms on the order of (l/le)4. However, this cum-
bersome calculation can be simplified by the fact that it
is possible to determine from symmetry considerations

the form of the important term C(l4/ )[(Mx +
iMy)6 + (Mx – iMy)6]. To find this term (in fact, to calcu-
late coefficient C), it is sufficient to consider the prob-
lem only for two directions of M0 in the basal plane.

Such an approach will also be useful in other prob-
lems; in particular, for describing the behavior of the
average magnetic moment of nonellipsoidal particles in
a strong external magnetic field H0. This also applies to
the problem of reversal of magnetization of nonellip-
soidal particles, which is important for applications. It
should be noted that the inclusion of a weak field (in
particular, the study of the field-induced spin reorienta-
tion of states with close vectors M0 in the vicinity of
transitions to the intermediate state) does not present
any difficulty and can easily be carried out on the basis
of the effective energy of the type (13), (15), or (18),
supplementing it with the Zeeman term in the form
−H0 · M0. However, the presence of a strong external
field |H| ~ 4πM0 requires a certain modification of the
calculation. In particular, the structure of the opera-

tors in Eqs. (4) changes in this case (– ∇ 2m1, 2 

– ∇ 2m1, 2 + h1, 2 , where h1, 2 = H1, 2/M0 and H1 and H2

are the corresponding components of the external
field). However, such a modification can easily be car-
ried out. In particular, the eigenfunctions of the prob-
lem remain unchanged and the nature of variation of
eigenvalues of the problem is clear (the eigenvalues
increase with the field). We can easily predict the
change in the results as well; if the contribution of the
uniform demagnetizing field depends only on the parti-
cle geometry, the contribution of the next orders of per-
turbation theory, which is inversely proportional to
eigenvalues λα , effectively decreases.
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Abstract—Magnetic, optical, and magnetooptical (MO) properties of (Co45Fe45Zr10)x(SiO2)100 – x and
(Co41Fe39B20)x(SiO2)100 – x granular nanocomposites of the amorphous ferromagnetic metal–insulator type
were studied in a broad range of the magnetic component concentrations x. The MO response of nanocompos-
ites increases in the vicinity of the percolation transition. Using the experimentally determined values of optical
constants and the equatorial Kerr effect, the diagonal and nondiagonal components of the permittivity tensor of
nanocomposites were calculated for the first time. The nondiagonal components of this tensor are nonlinear
functions of x, the most pronounced variations being observed near the percolation threshold. Experimental
data on the MO effect and the permittivity tensor were theoretically modeled within the framework of the effec-
tive medium approximation and the Maxwell–Garnett approximation. The most adequate description was
obtained with the symmetrized Maxwell–Garnett approximation, which provides for a good (semiquantitative)
agreement between theory and experiment under certain assumptions about the microstructure of nanocompos-
ites. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The considerable interest in modern composite
materials is related to a variety of unusual and useful
properties, which make these materials highly promis-
ing both for practical applications and for basic
research. The magnetic granular alloys can be divided
into two types: ferromagnetic metal–nonmagnetic
metal and ferromagnetic metal–insulator. The latter
alloys are also frequently referred to as composites.
Granular alloys of the former type exhibit the phenom-
enon of giant magnetoresistance [1], while the latter
systems exhibit tunneling magnetoresistance and the
giant Hall effect [2]. The magnetooptical (MO) proper-
ties of granular alloys attract attention because these
materials can serve as magnetoactive media for perpen-
dicular magnetic recording and in contactless MO mag-
netic field sensors and temperature sensors. Recently, it
was suggested to use granular alloys as MO elements in
magnetophotonic crystals. All these applications stim-
ulate the search for optimum compositions ensuring
increased MO response.

Specific features inherent in nanodimensional
objects must be manifested not only in the magne-
totransport properties, but in the linear and nonlinear
MO effects as well, although the nature of these mani-
festations in nanostructural materials is still incom-
1063-7761/04/9805- $26.00 © 21027
pletely clear. Such effects must be sensitive to varia-
tions in the magnetic and electron structures, scattering
mechanisms, characteristic dimensions, and the shape
and topology of nanodimensional inhomogeneities.
This was evidenced by the results of recent investiga-
tions of the MO spectra of granular alloys and nano-
composites [3–11], which revealed numerous peculiar-
ities in the linear and nonlinear MO Kerr effect and
some other properties.

For example, investigations of granular systems
showed evidence of enhanced MO response [3, 4],
which could be due to variation of both the MO param-
eters and the optical characteristics. In particular, inves-
tigation of the MO spectra of a multilayer
[Co(x)/SiO2(y)]n system in the region of 3 eV [3]
showed a severalfold increase in the MO response
amplitude as compared to that for a homogeneous
cobalt film of the same thickness. An analogous reso-
nance increase in the MO effect was observed for the
MnAs/GaAs multilayers [4]. An analysis of the spectral
dependence of the permittivity tensor components of
this system showed that the main contribution to the
enhanced MO response was due to an increase in the
MO activity in a narrow spectral interval. Investigations
of the granular Co/Al2/O3 [5] and CoFeZr/SiOn [6] sys-
tems of the metal–insulator type revealed a new photo-
004 MAIK “Nauka/Interperiodica”
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refractive effect in the IR wavelength range, the magni-
tude of which was ten times greater than that of the tra-
ditional even and odd MO effects.

The MO spectra of granular alloys were described
using several calculation methods based on the effec-
tive medium approximation (EMA) [12–17]. Systems
of the metal–metal type have been successfully
described in the Bruggeman approximation [13, 14].
However, this approach is frequently inapplicable to
systems of the metal–insulator type featuring a strong
dependence of their properties on the microstructure.
This requires using a symmetrized Maxwell–Garnett
(SMG) approximation [15, 16] taking into account finer
details of the system topology.

Despite a large number of publications devoted to
the MO properties of magnetic nanocomposites, no
systematic investigations of such systems were under-
taken that would allow constructing the effective per-
mittivity tensor. Analysis of this tensor can provide
more complete information about the observed phe-
nomena. On the other hand, the MO properties of gran-
ular alloys based on amorphous components remain
almost unstudied. In the nearest future, such materials
will probably combine all the unique properties of mag-
netic composites and those of the amorphous sub-
stances.

This paper reports on the results of investigation of
the magnetic, optical, and MO properties of
(Co45Fe45Zr10)x(SiO2)100 – x and (Co41Fe39B20)x(SiO2)100 – x
granular nanocomposites of the amorphous ferromag-
netic metal–insulator type. Based on these experimen-
tal data, the permittivity tensor of nanocomposites of
this type was calculated for the first time and theoreti-
cally modeled within the framework of the Bruggeman
approximation and the Maxwell–Garnett approxima-
tion. Special attention was devoted to finding correla-
tions between the microstructure of a nanocomposite
and its MO response. The extremely strong dependence
of the MO effects on various structural parameters (in
particular, on the shape, size, and the distribution of
granules) of nanocomposites is an important advantage
of the MO methods of investigation [3, 4, 7–10].

2. SAMPLE PREPARATION
AND EXPERIMENTAL METHODS

The samples of (Co45Fe45Zr10)x(SiO2)100 – x and
(Co41Fe39B20)x(SiO2)100 – x granular nanocomposites
were prepared by ion beam sputter deposition in an
argon atmosphere [18]. This process was carried out in
a vacuum chamber equipped with three ion beam
sources and alloy or composite targets. The alloy tar-
gets (Co45Fe45Zr10 and Co41Fe39B20) were prepared by
induction melting of the alloy components in vacuum.
The components were high-purity cobalt (99.98% Co),
carbonyl iron, boron, and zirconium taken in a ratio
corresponding to the desired composition. A composite
targets comprised an alloy target with single crystal
JOURNAL OF EXPERIMENTAL 
quartz plates fastened on its surface. The thickness of
sputter-deposited film samples was varied within 0.15–
6.5 µm. The average granule size monotonically
decreased with increasing insulator content: from
5−7 nm in the composite with a high metal content (x =
56%) to 2–4 nm in the composite with x = 30% (here
and below the magnetic (metal) phase concentration x
is given in at.%). The structure of nanocomposites was
studied by transmission microscopy, and their compo-
sitions were checked by electron probe X-ray
microanalysis.

The measurements of the electric resistivity as a
function of the composition showed the presence of a
percolation threshold at xper ≈ 43%. The results of mag-
netoresistance measurements revealed the tunneling
magnetoresistance effect, whereby the magnetoresis-
tance exhibits a sharply pronounced maximum near the
percolation threshold and a decrease to zero behind this
point. For the (Co45Fe45Zr10)x(SiO2)100 – x system, room-
temperature tunneling magnetoresistance reached 4% in
a magnetic field of 11 kOe; the magnitude of this effect
in the (Co41Fe39B20)x(SiO2)100 – x system was somewhat
lower [18].

The MO properties of nanocomposites were studied
by measuring the MO Kerr effect in the equatorial
(transverse) geometry, which consists in a relative
change of the intensity of the p-wave of a linearly polar-
ized light upon reflection from samples in magnetized
and nonmagnetized states:

where I(H) and I(0) are the reflected light intensities
measured with and without applied magnetic field.

The spectral and field dependences of the transverse
Kerr effect (TKE) were measured using an automated
MO spectrometer in the range of incident photon ener-
gies from 0.5 to 4 eV. The measurements were per-
formed for several angles of incidence of the primary
light beam. The amplitude of the applied alternating
magnetic field reached up to 3.5 kOe. The response sig-
nal was detected using a dynamic technique, which
allowed measuring the relative changes of the reflected
light intensity as small as 10–5 with an error not exceed-
ing 5%. The static near-surface hysteresis loops were
measured using the MO magnetometer in a meridional
geometry at E = 1.98 eV and the angle of light inci-
dence ϕ = 70°. The optical constants n and k were deter-
mined ellipsometrically [19] in the photon energy range
from 0.5 to 3.4 eV. All measurements were performed
at room temperature.

3. EXPERIMENTAL RESULTS

Figure 1a shows the spectral dependences of the
TKE in (Co41Fe39B20)x(SiO2)100 – x nanocomposites. For
this material, as well as in other granular alloys, the MO
spectra of nanocomposites significantly differ from the

δ I H( ) I 0( )–
I 0( )

----------------------------,=
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spectrum of the corresponding homogeneous amor-
phous alloy Co41Fe39B20 (x = 100%). Indeed, the MO
response of Co41Fe39B20 monotonically decreases to
nearly zero with decreasing incident photon energy,
whereas the TKE spectrum of (Co41Fe39B20)x(SiO2)100 – x
nanocomposite measured at ϕ = 70° exhibits a change
in the sign of the response signal and has a large nega-
tive maximum in the region of E = 1.3 eV.

Analogous behavior was observed in the spectra of
samples of the (Co45Fe45Zr10)x(SiO2)100 – x system (see
Fig. 1b), the only difference being that the maximum in
the signal response at ϕ = 70° shifts to E = 1.0 eV. Fig-
ure 1b well illustrates variation of the TKE spectrum
(typical of both systems studied) depending on the light
incidence angle ϕ. A decrease in this angle to 60°
sharply changes the shape of spectrum, which becomes
closer to that for a homogeneous amorphous alloy of
the corresponding composition.

The dependence of the TKE on the concentration of
magnetic component in the nanocomposite is mani-
fested for light incidence angles close to 70°, which is
related to their proximity to the Brewster angle for
nanocomposites with x < xper . Figure 2 shows the con-
centration dependence of the TKE for nanocomposites
of the (Co41Fe39B20)x(SiO2)100 – x system. As can be seen
from these data, the TKE signal in the “red” spectral
range exhibits a nonmonotonic dependence on the fer-
romagnetic component concentration, featuring a break
at an x value close to xper . In addition, the absolute value
of TKE at 1.3 eV in (Co41Fe39B20)x(SiO2)100 – x with x =
43% amounts to 10–2, which is more than three times
the analogous value for the corresponding homoge-
neous alloy Co41Fe39B20 (x = 100%) for the same pho-
ton energy. Thus, the granular system near the percola-
tion threshold exhibits a significant increase in the TKE
magnitude in a narrow photon energy range. This
increase takes place despite an almost one-half lower
content of the ferromagnetic component in the composite
as compared to that in the homogeneous alloy. An analo-
gous result is observed for the (Co45Fe45Zr10)x(SiO2)100 – x
system, where the maximum effect also takes place in
the vicinity of xper .

Figure 3 shows the hysteresis loops observed for
samples of the (Co41Fe39B20)x(SiO2)100 – x system with
various concentrations x of the magnetic phase. For x <
xper , the dependence of the TKE on the magnetic field
strength exhibits no hysteresis and has a shape charac-
teristic of superparamagnets. The measurements per-
formed for various sample orientations showed that the
sample material occurred in the isotropic state. How-
ever, in the region of x close to xper , the magnetic prop-
erties of this system exhibit a significant change. A
sample with x = 47% exhibited anisotropic ferromag-
netic behavior of the field dependence of TKE, with a
coercive force of Hc ≈ 10 Oe and a saturation field of
Hs ≈ 30 Oe along the easy magnetization axis and Hs ≈
100 Oe along the hard magnetization axis. As the mag-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Fig. 1. The spectra of equatorial (transverse) Kerr effect
(TKE) for samples of (a) the (Co41Fe39B20)x(SiO2)100 – x
system with various x measured for the light incidence
angle ϕ = 70° and (b) the (Co45Fe45Zr10)x(SiO2)100 – x sys-
tem with x = 47% and various ϕ values.

Fig. 2. Plots of the TKE magnitude versus concentration x for
the (Co41Fe39B20)x(SiO2)100 – x system, measured for ϕ = 70°
and the incident photon energies E = 1.3 and 3.8 eV.

8

4

0

–4

–8

–12

12

8

4

0

–8

–4

1 2 3 4
E, eV

ϕ = 60°

69°

75°

T
K

E
 ×

 1
03

T
K

E
 ×

 1
03

x = 34%
39%
43%
44%
51%
61%

100%

3632 40 44 48 52 56 60 64

–8

–4

0

4

8

3.8 eV

1.3 eV

íäÖ × 103

x, %
SICS      Vol. 98      No. 5      2004



1030 GAN’SHINA et al.
ç, Oe

1.0
0.5

0
–0.5
–1.0

–100 1000

x = 58%

M/Ms

1.0
0.5

0
–0.5
–1.0

–100 1000

x = 47%

M/Ms

ç, Oe

Fig. 3. Hysteresis loops measured along the (black sym-
bols) easy and (open symbols) hard magnetization axis for
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netic phase content grows further, both Hc and Hs

increase, but the magnetic anisotropy of the system
drops.

Thus, based on the analysis of the field dependence
of TKE, we may conclude that the metal phase in nano-
composites with small x is concentrated in isolated
granules of small size and the system occurs in an iso-
tropic superparamagnetic state. As the concentration x
increases, the metal granules grow along a certain
direction occurring in the film plane and eventually
forms an anisotropic ferromagnetic phase. The value of
x corresponding to the appearance of the ferromagnetic
phase correlates with the value of xper determined from
the concentration dependence of the electric conductiv-
ity. Further increase in the metal phase content and the
growth of granules lead to a decrease in the magnetic
anisotropy. The existence of a preferred direction for
the growth of granules is probably related to some fea-
tures in the technology of film deposition, primarily, to
the application of a constant magnetic field during the
ion beam sputtering of targets [18].
Fig. 4. Spectra of the (open symbols) real part ε1 and (black symbols) imaginary part ε2 of the diagonal component of the permit-
tivity tensor for alloys of the (a, c) (Co41Fe39B20)x(SiO2)100 – x and (b, d) (Co45Fe45Zr10)x(SiO2)100 – x systems with various x.
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Fig. 5. Spectra of the (open symbols) real part  and (black symbols) imaginary part  of the nondiagonal component of the per-

mittivity tensor for alloys of the (a, c) (Co41Fe39B20)x(SiO2)100 – x and (b, d) (Co45Fe45Zr10)x(SiO2)100 – x systems with various x.
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Using the experimentally determined optical con-
stants and MO data, it is possible to calculate the diag-
onal (ε = ε1 – iε2) and nondiagonal (ε' =  – ) com-
ponents of the permittivity tensor of nanocomposites.
In the case of a gyroelectric medium magnetized along
the z axis, this tensor appears as

(1)

The corresponding TKE value is given by the for-
mula [20]

(2)

where ϕ is the light incidence angle, a = ε2(2ε1cos2ϕ –

1), b = cos2ϕ(  –  + 1) + ε1 – 1, ε1 = n2 – k2, ε2 =
2nk, n is the refraction coefficient, and k is the absorp-
tion coefficient. Using the TKE values determined for
two incidence angles and the known values on n and k,

ε1' iε2'

ε̂
ε iε' 0

iε'– ε 0

0 0 ε 
 
 
 
 

.=

δ aε1' bε2'+( ) 2ϕsin

a2 b2+
----------------,=

ε2
2 ε1

2
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we can solve the last equation and determine the com-
ponents of the permittivity tensor.

As might have been expected based on comparison of
the MO spectra of composites and the corresponding
homogeneous alloys, the components of the permittivity
tensor of granular alloys are significantly different from
the analogous values for the homogeneous samples. The
optical spectra presented in Fig. 4 show an increase in the
imaginary part ε2 of the diagonal component of the per-
mittivity tensor of nanocomposites with increasing x, this
growth being most pronounced in the near-IR spectral
range featuring a large contribution due to the conduction
electrons. This behavior is typical of all granular nano-
composites. However, the values of ε2 for both
(Co45Fe45Zr10)x(SiO2)100 – x and (Co41Fe39Zr10)x(SiO2)100 – x
systems remain significantly smaller as compared to
those for the corresponding homogeneous amorphous
alloy. In comparison to the case of homogeneous amor-
phous alloys, the real part ε1 of the diagonal component
of the permittivity tensor of nanocomposites changes sign
and remains smaller by absolute value (in the near-IR
range, by a factor of about 5).

Figure 5 shows the dispersion relations of the non-
diagonal components  and  (ε' =  – ) of theε1' ε2' ε1' iε2'
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permittivity tensor of various nanocomposites. As can
be seen, the real part  for the nanocomposites of both
systems increases with decreasing photon energy; for
(Co41Fe39B20)x(SiO2)100 – x, this value exhibits a maxi-
mum at Efet ~ 1.5 eV. In the same spectral region, the
imaginary part of the nondiagonal component  of the
permittivity tensor crosses the zero level. As the photon
energy is further decreased, the  value exhibits a

monotonic decrease, whereas  increases. This behav-
ior of the nondiagonal components of the permittivity
tensor is typical of all nanocomposites with the metal
component concentration x < xper .

For the samples of (Co45Fe45Zr10)57(SiO2)43 (x =
57% > xper), Efet sharply changes to 1 eV. Figure 6 pre-
sents the concentration dependences of ε2 and  mea-
sured for several selected energies of incident photons.
As can be seen from these data, the variation of x influ-
ences the MO properties ( ) much more significantly
than the optical properties (ε2). The most noticeable
feature in the behavior of  is observed for E = 1 eV
at x = 44%, that is, near the percolation threshold. This
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Fig. 6. Plots of the imaginary parts of the (a) nondiagonal

 and (b) diagonal ε2 components of the permittivity

tensor versus concentration x for alloys of the
(Co45Fe45Zr10)x(SiO2)100 – x system measured for the pho-
ton energies E = 1.0 and 2.5 eV.

ε2'
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behavior is probably related to a sharp change in micro-
structure of the granular alloy in the vicinity of the per-
colation transition which is most strongly manifested in
the MO spectra in the near-IR spectral region and is
expected to reveal the contribution of dimensional
effects.

It should be noted that, in contrast to the TKE spec-
tra, the spectra of the nondiagonal component of the
permittivity tensor responsible for the MO activity
show no increase in comparison to the corresponding
homogeneous amorphous alloy. Moreover, the  value
in the “red” spectral region for Co45Fe45Zr10 is more
than ten times that for the (Co45Fe45Zr10)x(SiO2)100 – x
nanocomposite with x = 43%, which showed the maxi-
mum effect in this very energy range.

4. DISCUSSION OF RESULTS

In order to interpret the experimental results, we
have modeled the TKE curves within the framework of
the Bruggeman approximation [13, 14] and the symme-
trized Maxwell–Garnett approximation [15, 16].

According to the Bruggeman theory, the MO spectra
can be calculated proceeding from the optical and MO
parameters of the alloy components, the volume filling
coefficient f for the magnetic particles, and their shape.
The calculation algorithm is as follows [8]. In the linear
approximation with respect to magnetization, the effec-
tive permittivity tensor of a granular ferromagnetic
alloy can be written as

(3)

Under the assumption of weak fields and ellipsoidal
particles, expressions for the diagonal and nondiagonal
parts of the permittivity tensor within the framework of
the Bruggeman approximation appear as

(4)

(5)

Here, ε1 =  –  and ε'1 =  –  are the diagonal
and nondiagonal parts of the permittivity tensor of the

magnetic component, respectively, and ε0 =  –  is
the permittivity of the nonmagnetic component. Solv-
ing these equations, one can readily calculate the TKE
using relation (2).

The Bruggeman approximation does not take into
account the existence of separate granules in the

ε2'

ε̂
εEMA iε'EMA 0

iε'EMA– εEMA 0

0 0 εEMA 
 
 
 
 

.=

f ε1 εEMA–( )/ εEMA ε1 εEMA–( )L j+( )

+ 1 f–( ) ε0 εEMA
–( )/ εEMA ε0 εEMA–( )L j+( ) 0,=

f ε'EMA ε'1–( )/ ε1 ε1 εEMA–( )L j+[ ] 2

+ 1 f–( )ε'EMA/ εEMA ε0 εEMA–( )L j+[ ] 2
0.=

ε1
1 iε2

1 ε1'
1

iε2'
1

ε1
0 iε2

0
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medium, which hinders the description of alloys with
microstructures possessing complicated topologies.

This disadvantage is eliminated in the Maxwell–
Garnett approximation which, as well as its symme-
trized variant [12, 17]], allows for the presence of sep-
arate particles. The symmetrized Maxwell–Garnett
approximation, in contrast to the usual one, considers
the medium as composed on the particles of two types.
One type (A) comprises a component of material 1
inside material 2, whereas another type (B) represents
component 2 inside material 1. In our case, material 1
is the metal phase and material 2 is the insulating
matrix (SiO2). The probability of encountering particles
of each type in the alloy is described by the Sheng
model [21],

,

where

,

The effective tensor of permittivity for such a micro-
structure is calculated in two stages. In the first step, the
effective permittivity tensor is calculated for the parti-
cles of each type within the framework of the Maxwell–
Garnett approximation. The first step, owing to the spe-
cial features of this approximation, reflects the presence
of separate, clearly defined granules. Then, the effec-
tive medium is composed of the particles of types A
and B and the MO spectra are calculated using the algo-
rithm based on the Bruggeman theory.

Advantages of the symmetrized Maxwell–Garnett
approximation are (i) the possibility of calculating
spectra for arbitrary values of the total content of the
metal component with allowance for the microstructure
and (ii) the accurate description of the percolation tran-
sition. These factors are very important for calculations
of the properties of systems of the metal–insulator type.

Our attempt to describe the experimental results
within the framework of the Bruggeman approximation
did not give satisfactory results. The calculated curves
did not fit the spectral dependences of TKE obtained for
the samples studied (Fig. 7). This is related to the fact
that the simple Bruggeman theory considers aggregate
rather than granular medium and does not take into
account the existence of separate particles in the nano-
composite. In order to allow for the influence of micro-
structure on the optical and MO properties of samples,
we have modeled their behavior within the framework
of the symmetrized Maxwell–Garnett approximation.
Calculations of the permittivity tensor components of
an effective medium in this approximation involve the
volume filling coefficient f. This value differs from the
total content x of the magnetic component because of
the difference between the densities of the matrix and

PA u1/ u1 u2+( )=

PB u2/ u1 u2+( ),=

u1 1 f 1/3–( )3
=

u2 1 1 f–( )1/3–[ ] 3
.=
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Fig. 7. The TKE spectra of a (Co45Fe45Zr10)47(SiO2)53
nanocomposite for ϕ = 69°: (• ) experiment; (dashed curve)
Bruggeman effective medium approximation for x = 44%
and L = 0.33; (solid curve) symmetrized Maxwell–Garnett
approximation for x = 44%, LA = 0.23, and LB = 0.43.

Fig. 8. Comparison of the experimental TKE spectra (black
symbols) of a (Co45Fe45Zr10)x(SiO2)100 – x sample with the
results of modeling using the symmetrized Maxwell–
Garnett approximation for various (a) LA and (b) LB form
factors for x = 44%, LB = 0.43 (a) and LA = 0.23 (b). Black
circles correspond to experiment. 
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Fig. 9. Comparison of the experimental TKE spectra of
(Co45Fe45Zr10)x(SiO2)100 – x samples with small x and the
results of modeling using the symmetrized Maxwell–Gar-
nett approximation: (dashed line) x = 35%, LA = 0.25, LB =
0.43, α = 0.25; (s) experiment, x = 34%, ϕ = 60°; (solid line)
x = 42%, LA = 0.18, LB = 0.25, α = 0.5; (n) experiment, x =
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the dispersed component. We recalculated x into f using
the formulas

(6)

(7)

where β = ρaPb/ρbPa; ρa, Pa and ρb, Pb are the density
and molecular weight, respectively, of the corresponding
component. For alloys of the (Co45Fe45Zr10)x(SiO2)100 – x
and (Co41Fe39B20)x(SiO2)100 – x systems, we have β =
1.12 and 1.22, respectively.

Selection of the model parameters was first per-
formed for the MO spectra measured at a light inci-
dence angle of 70°, because the MO effects are more
sensitive than optical spectra with respect to the form
factor of particles [8].

Figures 8–11 present the results of calculations per-
formed within the framework of the Maxwell–Garnett
theory and compare the model curves to the experimen-
tal TKE curves. As can be seen, variation of the form
factors (LA and LB) for the particles of both types signif-
icantly influences the shapes of the model spectra. For
example (see Fig. 8a), a change in the form factor LA
only by 0.1 toward any side from the optimum value
adequately describing the experimental data leads to a
significant deviation of model curves from the mea-
sured spectrum in the entire spectral range. Analogous
variations of the shape of type B particles (form factor
LB) also strongly change the shape of the model MO
spectra, especially in the near-IR range (Fig. 8b). Thus,
only the LA and LB values from a very narrow interval
provide for a good (i.e., both qualitative and quantita-
tive) agreement between theory and experiment. There-
fore, based on the results of modeling, it is possible to
judge on the shape of particles in a given composite. In
the aforementioned example, a sample with the compo-
sition (Co45Fe45Zr10)47(SiO2)53 (x = 47%) comprises
particles of type A with a form factor of 0.43 (almost
spherical, slightly oblate in the field direction) and
type B with LB = 0.23 (close to ellipsoids elongated in
the field direction).

It should also be noted that, for description of the
TKE spectra of samples with a low content of the metal
component (superparamagnets) within the Maxwell–
Garnett approximation, an additional coefficient α was
introduced in calculations of the nondiagonal compo-
nents of permittivity. This parameter, called the under-
magnetization factor, took into account that the samples
with a low content of the magnetic phase are far
from saturation. Using the results of modeling, it is pos-
sible to estimate the degree of undermagnetization dur-
ing the TKE measurements. For example, in
(Co45Fe45Zr10)47(SiO2)53 samples with x = 40%, the
undermagnetization to saturation was 50% (see Fig. 9),
while a sample with x = 34% had α = 0.25.

f
1

1 Vb/Va+
-----------------------,=

Vb

Va

------
1 x–

x
-----------β,=
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with allowance for the quasi-classical size effect.
A comparison of the results of modeling for the per-
mittivity tensor and the TKE spectra (Fig. 10) shows
that, even for a good quantitative coincidence of the
measured TKE spectra with calculated curves, there is
only a semiquantitative agreement between theory and
experiment for both diagonal and nondiagonal compo-
nents of the permittivity tensor. This discrepancy is
probably related to the more complicated real micro-
structure of the nanocomposites studied and the pres-
ence of a certain distribution of the grains with respect
to shape and size.

It should be noted that theoretical modeling for the
samples of (Co45Fe45Zr10)x(SiO2)100 – x nanocomposites
was performed without taking into account the quasi-
classical dimensional effect. However, allowance for
this effect (reflecting a change in the mean free time of
electron motion in the grains as compared to that in the
bulk samples) improves the agreement between theory
and experiment [22]. This is illustrated in Fig. 11 show-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ing the model TKE spectra of samples of the
(Co41Fe39B20)x(SiO2)100 – x system. These plots present
the results of calculations involving parameters of the
quasi-classical dimensional effect such as the ratio of
coefficients of the anomalous Hall effect for the surface
of granules and a massive sample (Rs/Rbulk) and the size
of metal inclusions (r). Making allowance for the quasi-
classical dimensional effect is described in detail else-
where [22]. As can be seen from Fig. 11, allowance for
this effect changes the TKE spectrum even for the sam-
ples with a high metal content (i.e., with large granules)
from that characteristic of a massive Co41Fe39B20 sam-
ple toward the spectra observed for granular nanocom-
posites of the (Co41Fe39B20)x(SiO2)100 – x system. Note
also that the size of granules used in making allowance
for the quasi-classical dimensional effect increases
with decreasing insulator content, in good agreement
with the structural data.
SICS      Vol. 98      No. 5      2004
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5. CONCLUSIONS
Based on the results of investigations, we may con-

clude that magnetic nanocomposites of the amorphous
metal–insulator type near the percolation threshold
exhibit a significant increase in the MO response in the
near-IR spectral range. A change in the microstructure
and topology of granular alloys influences their MO
spectra to a greater extent than the optical characteristics.

The concentration dependences of the nondiagonal
components of the permittivity tensor are nonlinear, the
most pronounced variations being observed near the
percolation threshold. This fact allows the xper value to
be determined by MO methods.

The observed increase in the MO response in the
vicinity of the percolation threshold for the photon
energies in the region of 1.3 eV for the
(Co41Fe39B20)x(SiO2)100 – x system and 1.0 eV for the
(Co45Fe45Zr10)x(SiO2)100 – x system is caused by a
change in the optical and MO parameters related to
variations in the topology and microstructure of the
nanocomposites, rather than by an increase in the MO
activity in the near-IR range.

The results of theoretical modeling of the spectra of
TKE and the permittivity tensor components in the
effective medium approximation showed that the best
agreement between experimental and theoretical curves
can be obtained using the symmetrized Maxwell–Gar-
nett approximation, which allows variation of the
microstructure in the granular alloys to be traced and
the parameters of microstructure to be evaluated.
Allowance for the quasi-classical dimensional effect
also improves the quality of description of the experi-
mental results.
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Abstract—The behavior of de Haas–van Alphen oscillations in the quasi-2D organic metal
(ET)8[Hg4Cl12(C6H5Cl)2] was studied in detail. The section of the Fermi surface of this metal is a two-dimen-
sional network of magnetic breakdown orbits. Only two frequencies, which corresponded to allowed closed
orbits, FA and FMB , were detected. This is in agreement with the earlier studies of Shubnikov–de Haas oscilla-
tions in this metal. The reason for the absence of other allowed frequencies remains unclear. The angular depen-
dences of the amplitudes of FA and FMB oscillations contain a series of “spin zeros.” An analysis of their posi-
tions led us to suggest that many-particle interactions were weakened in (ET)8[Hg4Cl12(C6H5Cl)2]. © 2004
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The crystalline and band structures of the organic
quasi-2D conductor (ET)8[Hg4Cl12(C6H5Cl)2] [further,
(Cl, Cl)], which has metallic properties in the tempera-
ture range 0.5–300 K, have been described in detail
in [1, 2]. Band calculations show that the initial Fermi
surface in the conducting plane of this metal consists of
two intersecting open hole orbits characteristic of low-
dimensional electronic systems. The hybridization of
molecular orbitals that form the conduction band
results in the formation of the final Fermi surface in the
form of two closed orbits, electronic (E) and hole (H)
(see Fig. 1), which have different shapes but enclose
equal areas of about 13% of the area of the first Bril-
louin zone [2]. Even the earliest studies of Shubnikov–
de Haas oscillations [3, 4] showed the presence of six
rather than one, as expected, frequencies. Depending
on the angle θ between the field direction and the nor-
mal to the conduction plane, all these frequencies are
described by the law Fi(θ) = Fi(0)/cosθ characteristic of
cylindrical Fermi surfaces, which are typical of quasi-
2D electronic systems. Among the observed oscilla-
tions, those with a frequency FA(0) = 245 T obviously
predominate. This frequency corresponds to approxi-
mately 11% of the first Brillouin zone area. These oscil-
lations were assigned to the motion of carriers in the
classical closed orbits E and H. An analysis of the tem-
perature and angular dependences of the amplitude of
Shubnikov–de Haas oscillations of frequency FA showed
1063-7761/04/9805- $26.00 © 21037
that the hole and electronic orbits were characterized by
not only equal areas but also carriers of equal masses.
The nature of the other frequencies remained unclear for
several years, primarily because of the small oscillation
amplitudes and related experimental problems.

Several years ago, high-quality (Cl, Cl) single crys-
tals were synthesized and studied in quasi-pulsed fields
of up to 35 T. The results [5, 6] not only included the
frequencies reported earlier but even increased the
spectrum of Shubnikov–de Haas oscillation frequen-
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Fig. 1. Fermi surface and the first Brillouin zone in the con-
duction plane of the organic quasi-2D metal
(ET)8[Hg4Cl12(C6H5Cl)2].
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cies to fifteen at certain field directions. An analysis of
these results led the authors of [6] to the following con-
clusions:

(1) Magnetic breakdown transitions p1 and p2
between the hole and electronic Fermi surface regions
become possible in magnetic fields on the order of 10 T
(Fig. 1). This results in the formation of a 2D network
of magnetic breakdown orbits.

(2) Both closed magnetic breakdown orbits and
open orbits, which are related to each other by magnetic
breakdown transitions and correspond to the quantum
interference effect [7], exist simultaneously for all fre-
quencies other than the FA frequency that corresponds
to two initial closed orbits E and H.

(3) Two of the frequencies observed experimentally,
FA(0) = 242 T and FMB(0) = 633 T, are only responsible
for the motion of carriers in closed orbits [FMB corre-
sponds to two closed orbits enclosing equal areas, H +
δ + H and E + δ + E (see Fig. 1), including four mag-
netic breakdown transitions each]. In any event, this
motion significantly predominates in FMB oscillations.

(4) The other frequencies make up two groups. The
first group includes the frequencies (in particular, the
frequency corresponding to 100% of the first Brillouin
zone area) that largely originate from the quantum
interference effect. The frequencies of the second group
(in particular, the frequency corresponding to area δ
between the initial Fermi surface sheets) have not been
given satisfactory explanation. In principle, they can be
described within the framework of both oscillating [8]
and fixed [9] electrochemical potentials, but neither of
these models has been substantiated experimentally.

This work presents the results of a detailed study of
de Haas–van Alphen oscillations in (Cl, Cl). These
results lend support to the versions suggested in [5, 6].
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Fig. 2. Fast Fourier transform (FFT) of de Haas–van Alphen
oscillations in the organic metal (ET)8[Hg4Cl12(C6H5Cl)2]
(the oscillations are shown in the inset). Temperature T =
0.45 K and polar angle θ = 32.5°.
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2. RESULTS AND DISCUSSION

The samples for measurements were high-quality
(Cl, Cl) single crystals of weights up to 110 µg. The de
Haas–van Alphen oscillations were studied by monitor-
ing changes in the torque moment of a capacitive sensor
[10]. A magnetic field of up to 14 T was generated by a
superconducting magnet. The temperatures that we
used were in the range 0.45–1.3 K.

De Haas–van Alphen oscillations were studied at
angles θ = (–21°–80°). Their frequencies depended on
θ according to the standard equation Fi(θ) = Fi(0)/cosθ.
At all magnetic field directions, the number of observed
frequencies did not exceed three (see Fig. 2), namely,
FA(0) ≈ 242 T, 2FA (the second harmonic of the funda-
mental frequency), and FMB(0) = 630 T. The fundamen-
tal frequency FA corresponds to charge motions in the
classical E and H orbits. Effective mass calculations for
the fundamental frequency showed that equal masses,
which amounted to mA = (1.18 ± 0.05)m0 in the conduc-
tion plane (m0 is the mass of the free electron), corre-
sponded to both orbits. The FMB frequency corresponds
to the motion of carriers in two closed magnetic break-
down orbits with equal areas [H + δ + H and E + δ + E
(see Fig. 1)]. The effective masses in these orbits were
also equal, mMB = (2.28 ± 0.05)m0 in the conduction
plane. According to the effective mass concept [11], we
can expect that the mass related to magnetic breakdown
orbits should be twice the mA mass for the main closed
orbits. This mass ratio is satisfied to within measure-
ment errors, 2mA = 2.36m0 ~ 2.28m0 = mMB .

The angular dependences of the amplitude of de
Haas–van Alphen oscillations are shown in Fig. 3. Fig-
ure 3a corresponds to oscillations at frequency FA , and
Fig. 3b, to oscillations at frequency FMB . Both depen-
dences contain minima. Curve a has two minima at
30.1° and 59.5°, and curve b, three minima at 20.6°,
47.4°, and 60.7°. These minima are called spin zeros
and originate from the splitting of Landau levels in a
magnetic field [12]. The condition of the existence of
such zeros is

where p is the harmonic number and g is the g-factor.
The presence of two or more sequential spin zeros and
the assumption that the effective mass depends on the
angle by the m(θ) = m(0)/cosθ law typical of cylindrical
Fermi surfaces allow us to unambiguously calculate the
splitting factor

where θn is the position of the nth spin zero and n = 0,
1, 2, 3, … . The splitting factor for oscillations with the
FA frequency is SA = 1.29 ± 0.04; for the FMB frequency,
it is SMB = 2.36 ± 0.04. The ratio between the effective
masses mA/mMB = 0.52 is approximately equal to the

πpmg/2m0( )cos 0,=

S gm 0( )/2m0 2n 1+( ) θncos( )/2,= =
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ratio between the splitting factors SA/SMB = 0.54, which
leads us to suggest that the splittings of the Landau lev-
els of the closed orbits under consideration are charac-
terized by equal g-factors. This is a quite expected
result, considering how these orbits are formed [2]. The
insignificant difference of the splitting factors from the
corresponding reduced masses (1.29 and 1.18 or 2.36
and 2.28) can be indirect evidence in favor of an insig-
nificant contribution of many-particle interactions in
(Cl, Cl), as has been noted earlier for some organic met-
als [13].

One more point should be mentioned. The effective
mass for the FA frequency, mA = 1.18m0, determined
from de Haas–van Alphen oscillations closely agrees
with that obtained in magnetoresistive measurements,
mA = 1.17m0 [6]. At the same time, the effective masses
for the magnetic breakdown orbits are noticeably dif-
ferent, mMB = 2.28m0 and 1.95m0 for de Haas–van
Alphen and Shubnikov–de Haas [6] oscillations,
respectively. This difference can be caused by the exist-
ence of an interferometer with a frequency equal to FMB

but a substantially lower mass in addition to the mag-
netic breakdown frequency FMB [6]. This interferometer
makes no contribution to de Haas–van Alphen oscilla-
tions, but its contribution to resistive oscillations can be
noticeable and cause effective mass underestimation.

The question of the absence of other frequencies for
which closed magnetic breakdown orbits exist in the
observed spectrum of de Haas–van Alphen oscillations
remains open. Jointly studying magnetoresistance and
magnetization oscillations in higher magnetic fields
would probably clarify the situation.
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Fig. 3. Polar angle θ dependences of the amplitude of de
Haas–van Alphen oscillations: (a) oscillations with fre-
quency FA and (b) oscillations with frequency FMB; T =
0.45 K.
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3. CONCLUSIONS

Two de Haas–van Alphen oscillation frequencies
(not counting harmonics) are only observed for the
organic metal (ET)8[Hg4Cl12(C6H5Cl)2], at least, in
fields of up to 14 T. One of these corresponds to two
classical closed orbits enclosing equal areas, and the
other, to two magnetic breakdown orbits also enclosing
equal areas. The behavior of the amplitudes of these
oscillations and the corresponding effective masses is
in reasonable agreement with the suggestion that the
Fermi surface of (ET)8[Hg4Cl12(C6H5Cl)2] is formed
through the hybridization of the orbitals that form the
conduction band. The results of this work are in close
agreement with those obtained in studying Shubnikov–
de Haas oscillations in pulsed and stationary fields. The
reason for the absence of other frequencies related to
allowed closed magnetic breakdown orbits is unclear,
and the problem requires additional study.
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Abstract—An anomalous angular dependence of the critical current is observed in niobium films. This phe-
nomenon manifests itself in the fact that, under small intensities of the external magnetic field, the critical cur-
rent attains its maximum in a slightly tilted magnetic field. It is found that the position of the maximum depends
on the external magnetic field, as well as on the initial conditions under which the samples were kept. A theo-
retical model is proposed to explain the results obtained. This model takes into account the effect of diamagnetic
properties, pinning of vortices, and the initial conditions on the vortex system in Nb films. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Niobium occupies a special position in supercon-
ductivity because the Ginzburg–Landau parameter in it
is close to unity. In a magnetic field, niobium exhibits
the characteristic features of both type-I and type-II
superconductors. Therefore, structures based on such a
superconductor may have unusual properties. For
example, an anomalous angular dependence of the crit-
ical current in Nb-based layered structures was
observed in [1], where the role of effective pinning cen-
ters was played by insulating NbOx layers. In [2], it was
found that the dependence of critical current on the
magnitude and the direction of the external magnetic
field is varied along with the initial conditions under
which these layered structures were kept. In other
words, by changing the initial position of a sample, one
can vary the angular dependence of the critical current
in such structures by rotating them in a magnetic field,
and even change the position of the maximum on this
dependence. This fact enables one to control the critical
parameters of superconductors during the experiment.
To understand the nature of the phenomena observed
in [1, 2] in greater detail, we carried out precision angu-
lar measurements of the critical current in Nb films.

2. METHOD OF MEASUREMENTS

The samples investigated in this work are narrow
superconducting strips fabricated from niobium films.
The films were produced by a dc magnetron sputtering
technique [3]. As the substrates, we used polycrystal-
line sapphire with a surface polished to a class of at
least 12. The temperature of the substrates during the
film deposition was about 350°C. Using the photoli-
thography technique, we fabricated narrow strips with
bonding pads from these films. Contact wires were
1063-7761/04/9805- $26.00 © 1040
bonded to these pads by indium. The critical tempera-
ture Tc of these films was 9.2 K and the thickness d was
0.6 µm. The width w of the strips was 10 µm, the length
L was about 100 µm, and the ratio of the room-temper-
ature resistance to the resistance at T = 10 K was
Rk/R10 = 2.9.

A magnetic field with an intensity of up to 65 kOe
was produced by a superconducting solenoid. The crit-
ical current Ic is determined from the current–voltage
characteristic as the current at which the voltage drop
on a sample reaches 1 µV. The current–voltage charac-
teristics are measured by the four-point probe tech-
nique. The detection of the critical current in our exper-
iment was fully automated. This allowed us to deter-
mine the voltage drop to an accuracy of 0.1 µV. A
sample was rotated with respect to the direction of the
external magnetic field by a precision worm-and-worm
gear, made of stainless steel, with a ratio of 30. This fact
provided an angular resolution of 0.04° for the sample
orientation. The rotating gear with a sample was placed
in a uniform magnetic field produced by a supercon-
ducting solenoid, so that the sample may rotate with
respect to the magnetic field. All of the equipment is
placed in a helium bath at a temperature of 4.2 K. In our
experiments, the current I transmitted through a sample
was always directed perpendicular to the direction of
the magnetic field.

3. RESULTS OF MEASUREMENTS

Figure 1 shows an example of the angular depen-
dence of the critical current in niobium films. One can
see that the critical current attains its maximum when a
sample is tilted to the magnetic field and the magnitude
of the shift of the peak position increases as the mag-
netic-field intensity decreases. In the present case, the
2004 MAIK “Nauka/Interperiodica”
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sample was initially situated so that its plane made an
angle of θ = θ0 ~ 30° with the direction of the magnetic
field. Then, the sample was rotated in the counterclock-
wise direction, when θ decreased up to the angle θ =
−θ0 ~ –30°, i.e., until the sample occupied a position
symmetric with respect to the initial position. Then, the
sample was rotated in the opposite, clockwise, direc-
tion until it reached the original position. In Fig.1, the
curves of Ic(θ) are plotted for various values of the
external magnetic field H = 1, 1.5, 2, 3, and 4 kOe. The
curves marked by closed symbols correspond to the
clockwise rotation (in the direction of increasing θ, the
positive direction), while the curves marked by light
symbols correspond to the rotation in the opposite
direction (in the counterclockwise, or negative direc-
tion). The solid curves correspond to the approximation
of the experimental results by the Lorentz function

where y0, A, w, x0 are fitting parameters. This approxi-
mation is used here to determine the exact position of
the maximum of the function Ic(θ). To distinguish
between “clockwise” and “counterclockwise” func-
tions, we denote them by Ic(θcl) and Ic(θacl), respec-

tively. Introduce the notation ∆θ =  – , where 

is the angle corresponding to the maximum of Ic( )

and  is the angle corresponding to the maximum of

Ic( ). The positions of the clockwise and counter-
clockwise maxima do not coincide; moreover, these
maxima are different for different values of the external
magnetic field. However, if a sample is brought into a
normal state before each measurement Ic(θcl) or Ic(θacl)
by increasing the magnetic-field intensity, then these
maxima will coincide and will be observed in a parallel
external magnetic field. An example of the dependence
obtained in this way is shown in Fig. 1 (the curve
marked by crosses for an external field of H = 1 kOe).
The difference between the clockwise and counter-
clockwise maxima as a function of the external mag-
netic field, ∆θ(H), is shown in Fig. 2. Note that the
amplitude of the maximum does not depend on the
direction of rotation of a sample, and the maximum is
always observed before the sample reaches the parallel
orientation with respect to the external magnetic field.
The position of the maximum is independent of the
direction of the transport current.

We found that the position of the maximum depends
on the initial conditions under which a sample was kept
before the measurement. The difference between the
maxima as a function of θ0—the initial deviation of the
sample from the parallel position—is shown in Fig. 3.
In this experiment, we measure the clockwise and
counterclockwise functions Ic(θ), which are similar to
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those shown in Fig. 1, except that we now reduce the
initial deviation θ0 from measurement to measurement,
thus changing the initial conditions for each subsequent
measurement. Here, we should note the specific feature
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Fig. 1. Critical current through a sample as a function of the
angle between the surface of the structure and the direction
of the external magnetic field for various values of the field
H. Dark symbols correspond to the angular dependence
recorded when the sample is rotated in the clockwise direc-
tion. Light symbols represent the experimental results
recorded when the sample is rotated in the counterclock-
wise direction.
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Fig. 2. The angular difference ∆θ between the clockwise
and counterclockwise peaks as a function of the inverse of
the magnetic field intensity.
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of the method for measuring these functions, namely,
that the initial point of each subsequent measurement
lies on the opposite curve of the preceding measure-
ment. Figure 3 shows that ∆θ decreases as the sweeping
amplitude θa = 2θ0 decreases. Thus, the positions of the
clockwise and counterclockwise maxima depend on the
initial conditions (memory effect) of a sample, as well
as on the way in which it was brought to this condition.
This result is qualitatively analogous to the result
obtained on Nb/NbOx multilayer structures [1, 2].

4. THEORETICAL MODEL

To explain the results, we apply an approach devel-
oped in [2–6]. If the external magnetic field is parallel
to the film surface, then the flux lines penetrating the
sample are parallel to this surface; however, in a
slightly tilted magnetic field, the flux lines penetrating
the sample may have different shapes due to the pres-
ence of effective pinning centers in the films, which
may have a considerable effect on the configuration of
these lines. Moreover, under the rotation of a film with
respect to the external magnetic field, the effective pin-
ning centers entrain the vortices and thus considerably
affect the new state. Therefore, the system under inves-
tigation partly remembers its previous state. As we
mentioned above, niobium, which is the basic element
of our samples, occupies a special position in supercon-
ductivity because its Ginzburg–Landau parameter is
close to unity. This gives rise to diamagnetic properties
that are inherent in type-I superconductors.
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Fig. 3. Angular dependence of the critical current for vari-
ous values of θa .
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Taking into account the aforesaid, we write the fol-
lowing equation for the Gibbs free energy density [4]:

(1)

where B is the magnetic flux density inside the film, H
is the intensity of the external magnetic field, and M is
magnetization that determines film’s memory of the
previous state and the presence of diamagnetic proper-
ties exhibited by the structure under investigation.
Here, we do not take into account the demagnetization
phenomenon because a sample is already magnetized
and we do not analyze the process of its magnetization.
Moreover, for the parameters d = 0.6 µm, w = 10 µm,
and w/d = 16.7 of the samples, the demagnetization fac-
tor is close to zero when a sample is oriented parallel to
the magnetic field. In a coordinate system that is rigidly
bound to a sample so that the z axis is perpendicular to
the plane of the sample and the y axis is parallel to the
direction of transport current, we can rewrite Eq. (1) as

(2)

Minimizing Eq. (2), we obtain the following equations
for the components Bx and Bz of the magnetic flux
density:

(3)

(4)

(5)

The density of the volume pinning force in niobium
films placed in a perpendicular magnetic field is usually
given by

(6)

When a transport current flows through the film under
investigation, the vortex lines are subject to the Lorentz
force

(7)

where c is the speed of light in vacuum and J is a current
through the film. This force tends to depin the vortices
from irregularities. The current density at which a vor-
tex is depinned from an irregularity is the critical cur-
rent density, which corresponds to the transition from a
dissipation-free flow of transport current through the
sample to a dissipation current. Taking into account that
the condition Fp = FL must hold at the transition point,
we can obtain the following expression for the critical

G
1

8π
------B B 4πM–( ) 1

4π
------HB,–=

G
1

8π
------ Bx

2 Bz
2

+( ) 1
2
---BxMx–=

–
1
2
---BzMz

H
4π
------ Bx θ Bz θsin+cos( ).=

Bx H θ 2πMx,+cos=

Bz H θ 2πMz,+sin=

B2 Bx
2 Bz

2.+=

Fp B 1 B/Hc2–( ).∼

FL
1
c
---BJ ,≈
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current density for a film placed in a perpendicular
magnetic field:

(8)

When deriving an expression for the critical current
in a slightly tilted magnetic field, we assume that the
interaction between a vortex and a surface that prevents
the former from penetrating into the film, the so-called
surface pinning, is much greater than the pinning forces
in the plane of the film. Therefore, in this case, the crit-
ical current is determined by the Lorentz force in the
plane of the film. Using Eqs. (3)–(5) and assuming that
Mx = 0 when the film is parallel to the magnetic field,
we can rewrite Eq. (8) as follows:

(9)

where

Formula (9) represents the critical current density as a
function of the angle θ for θ  0 under the assump-
tion that Mz is independent of θ.

Formula (9) determines the critical current density
that is associated with the pinning in the plane of a film
when the interaction between vortices is weak and the
concentration of pinning centers is high. One can see
that the critical current attains its maximum at θ = ∆θt

rather than at θ = 0. In this case, the magnetic field fro-
zen into the film as if neutralizes due to the diamagnetic
effect, and the flux lines are directed along the film sur-
face. Thus, in this case, the critical current is mainly
determined by the surface pinning—the interaction
between vortices and the film surface. This leads to the
boundedness of function (9) for θ ~ ∆θt . A number of
studies have been devoted to the calculation of the sur-
face pinning [7, 8]. However, for our purposes, it is suf-
ficient that this quantity is independent of angle for
small deviations of a sample from its parallel orienta-
tion in the magnetic field.

The main result obtained in the present paper is the
difference between the clockwise and counterclock-
wise maxima on the angular dependence of the critical
current for small external magnetic fields. Therefore,
we first consider how this result agrees with the model
described above. According to (9), Jc(θ) attains its max-
imum at θ = ∆θt > 0, i.e., before the structure reaches a
parallel position. Let us set ∆θt = θc (where θc is the
characteristic angular size of a sample, which is deter-
mined by the relation θc = , θt = 3.43°) in
Eq. (9) and compare the theoretical function Jc(θ) with
the experimental one. In this case, the parameters Jc0
and K are determined from the normalization condi-
tions by the experimental dependence. The theoretical
dependence is used for the clockwise rotation, while
the dependence symmetric to it is used for the counter-

Jc Jc0 1 B/Hc2–( ).=

Jc Jc0 1 K θsin ∆θtsin–( )0.5–( ),=

∆θtsin
H2 4π2Mz

2
+

4πMzH
-----------------------------– , K

4πMzH
Hc2

-----------------------.= =

D/w( )arctan
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clockwise rotation. The result obtained is shown in
Fig. 4. One can see that the experimental and theoreti-
cal curves are in good qualitative agreement. Hence, we
can conclude that the positions of the maxima on the
experimental dependence Jc(θ) are indeed determined
by the magnetic moment Mz(H) in a sample; the maxi-
mal value of this moment is directly related to θc , which
represents a geometrical characteristic of the sample
under investigation. If we associate it only to the exist-
ence of frozen vortices in the sample, then Mz(H)
should be positive and the peak on the experimental
dependence must appear after the sample passes the
parallel position. At this angle, the external magnetic
field should compensate for the magnetic moment of
frozen vortices, and the magnetic field will be parallel
to the sample surface. However, Mz(H) < 0 in our case
because the peak on the experimental angular depen-
dence leads the parallel position. Such behavior of the
magnetization can be explained by invoking the dia-
magnetic properties of niobium. Note that, in the
framework of the present approach, one can easily
account for the variation in the position of the maxi-
mum of Ic(θ) under the variation of the direction of
rotation of a sample because this variation is associated
with the variation in the magnitude and the direction of
magnetization of a sample.

Let us return to the experimental dependence shown
in Fig. 3. As we noted above, the difference ∆θ between
the clockwise and counterclockwise peaks decreases as
the angle θ0 that specifies the initial position of a sam-
ple with respect to the external magnetic field
decreases. Our model also takes this result into account.
It is obvious that the magnetization Mz is a function not
only of the intensity of the external magnetic field but
also of the angle θ0 – Mz = Mz(H, θ0); i.e., it depends on

–10° –5° 0 5° 10°
θ

140

160

180

200

220
Ic, mA

Ic

Nb, 0.6 µm

H = 1 kOe

Fig. 4. Experimental and theoretical angular dependence of
the critical current. The solid and dashed lines correspond to
the theoretical dependence.

Ic
1
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the initial conditions of the experimental problem. This
fact can easily be explained within our model because
Mz depends on the magnitude of the frozen magnetic
flux. As the sweep amplitude decreases, the magnitude
of the flux decreases because a sample approaches a
position parallel to the external magnetic field. Accord-
ing to the aforesaid, we can state that the experimental
results obtained in this work are in satisfactory agree-
ment with the model proposed.

5. CONCLUSIONS
The anomalous angular dependence of the critical

current in niobium films has been observed. This anom-
aly manifests itself in the fact that, for small intensity of
the external magnetic field, the critical current attains
its maximum in a slightly tilted magnetic field, and is
associated with the complex character of the transition
of a vortex system to the unperturbed ground state. In
standard measurements of the critical current, the vor-
tex system is in an excited metastable state. Therefore,
investigations of the critical current are complicated
because theoretical studies deal with the equilibrium
properties of the vortex system in superconductors. We
can point out the following three basic results of this
paper.

1. We have developed a new approach to the study
of nonequilibrium properties of the vortex system in
superconductors.

2. The anomalous angular dependence of critical
current observed in this study should be observed in all
superconductors. Here, one should take into account
that, in type-II superconductors with a large Ginzburg–
Landau parameter, diamagnetic properties are sup-
pressed in strong magnetic fields, and the aforemen-
tioned phenomenon should be small.
JOURNAL OF EXPERIMENTAL A
3. The results obtained show that the conventional
method for determining a parallel orientation of a sam-
ple in a magnetic field, which is based on finding the
maximum of the angular dependence of critical current,
may give erroneous results.
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Abstract—The standard Melnikov method for analyzing the onset of chaos in the vicinity of a separatrix is
used to explore the possibility of suppressing chaos of dynamical systems of a certain class. Analytical expres-
sions are obtained for external perturbations that eliminate chaotic behavior. These results are supplemented
with a numerical analysis of the Duffing–Holmes-oscillator and pendulum equations. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Intensive theoretical and experimental studies of
chaotic dynamical systems revealed their unexpected
and remarkable property: they are highly susceptible
and extremely sensitive to perturbations. This discov-
ery served as a starting point for finding a means to con-
trol the behavior of chaotic systems, i.e., to change
from chaotic regimes to required regular oscillatory
regimes by means of relatively weak perturbations.

Suppression of unstable or chaotic behavior of
dynamical systems is generally achieved via stimulated
excitation of stable (usually periodic) oscillations by
means of multiplicative or additive perturbations. In
other words, an external perturbation is required to
change from a chaotic state of a system to a regular
regime. The statement of the problem is outwardly sim-
ple, but its solution is very difficult to find for particular
dynamical systems. Moreover, even though the prob-
lem has been analyzed in numerous studies, a system-
atic and rigorous theory of suppression of chaotic
behavior has been developed only for some common
families of dynamical systems (see [1, 2] and refer-
ences therein).

Chaotic behavior can be suppressed by two different
methods. In one of these, the state of a system is
changed from chaotic to regular by perturbation with-
out feedback. In other words, this method does not
make use of the current values of dynamic variables. In
the other method, the perturbation is adjusted in accor-
dance with the required values of dynamic variables;
i.e., feedback is an integral component of the dynamical
system. By convention, the former method is called
open-loop suppression (or control) of chaotic dynam-
ics. The latter method is called feedback control of cha-
otic systems. Both methods can be implemented either
parametrically or by direct forcing.

To the best of our knowledge, the first analyses of
suppression of chaotic dynamics of certain systems
1063-7761/04/9805- $26.00 © 21045
were presented in [3, 4]. However, extensive research
along these lines was initiated by [5, 6], where it was
shown that relatively weak parametric perturbations
can be used to regularize a particular saddle orbit
embedded in a chaotic attractor. These and other results
stimulated studies of suppression of chaotic dynamics
and evoked great interest in controlling unstable sys-
tems. A vast number of numerical and experimental
studies were focused on the possibility of suppression
of chaos and implementation of periodic or other
required dynamics in various systems and maps (see [1,
2, 7–10] and references therein).

The standard Melnikov method is an effective tool
used in analytical treatments of the problem of chaos
suppression [11]. It is based on comparison of the first-
order terms in the series expansions of the solution in
terms of a perturbation parameter on stable and unsta-
ble separatrices. In particular, the Melnikov method
was applied to explore the possibility of eliminating the
chaotic dynamics of the Duffing–Holmes oscillator
[12–16] (see also [17]). It was shown that a small para-
metric perturbation of the system’s chaotic dynamics
suppresses chaos. Furthermore, the Melnikov method
was used in [18] to examine the effects of parametric
perturbations in a model of the Josephson junction.

In this paper, the Melnikov method [11, 19] is
applied to find analytical expressions for parametric
perturbations that suppress chaotic and/or unstable
behavior of dissipative dynamical systems. The Duff-
ing–Holmes oscillator and pendulum are considered as
examples.

2. THE MELNIKOV METHOD

In this section, we briefly describe the Melnikov
analytical method for identifying homoclinic or hetero-
clinic chaos, relying on the original paper [11] (see also
[19–21]).
004 MAIK “Nauka/Interperiodica”
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Consider a simple autonomous system with a single
hyperbolic point X0 subject to a periodic perturbation:

(1)

where x = (x1, x2) and f1 is a periodic function with
period T. Suppose that the unperturbed system (with
ε = 0) has a single separatrix x0(t) (see Fig. 1a):

The separatrix is split by the perturbation; i.e., it has
distinct incoming and outgoing branches. Three possi-
bilities arise as a result: the separatrices either do not
intersect (in which case one may enclose the other, see
Figs. 1b and 1c) or intersect at an infinite number of
homoclinic points. Chaotic dynamics are observed only
in the latter case (see Fig. 1d).

To find an intersection condition, one must use a
perturbation method to calculate the distance D(t, t0)
between the separatrices at an instant t0. If the outgoing
separatrix encloses the incoming one, then D(t, t0) < 0.
If the incoming separatrix encloses the outgoing one,
then D(t, t0) > 0. Only if there exists t0 such that the sep-
aratrices intersect does the sign of D(t, t0) alternate.

In the method substantiated in [11], the distance
D(t, t0) between the branches of a split separatrix is
determined by performing integration along unper-
turbed trajectories. The method is based on comparison
of the first-order terms in the series expansions of the
solution in terms of the perturbation parameter ε on sta-
ble and unstable separatrices.

To calculate D(t, t0), it is sufficient to find the solu-
tions on the stable and unstable manifolds, xs and xu.
When ε = 1, these solutions differ by the vector

The Melnikov distance is the projection of r on the
direction normal to the unperturbed separatrix x0 at an
instant t.

ẋ f 0 x( ) ε f 1 x t,( ),+=

x0 t( )
t ∞±→
lim X0.=

r t t0,( ) xs t t0,( ) xu t t0,( )– x1
s t t0,( ) x1

u t t0,( ).–= =

Fig. 1. Split separatrix loops.

(a) (b)

(c) (d)

x0
u

X0 x0
s
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Omitting intermediate calculations, we write out an
expression for D:

(2)

This function determines conditions for chaotic behav-
ior of the original system. In the domain where the sign
of D(t, t0) alternates, the separatrices intersect and the
system exhibits chaotic dynamics.

3. ELIMINATION OF CHAOTIC DYNAMICS
IN THE VICINITY OF A SEPARATRIX

We use the mathematical procedure described above
to explore the possibility of suppressing chaotic
dynamics for systems with separatrix loops described
by Eq. (1).

For this system, the Melnikov function D(t, t0) can
be written as

(3)

Suppose that the sign of D(t, t0) alternates; i.e., the
separatrices intersect (see Fig. 1d). We seek a pertur-
bation f*(ω, t) that eliminates the intersection of the
separatrices:1 

(4)

where

We denote by [s1, s2] the interval where the sign of D(t,
t0) alternates. Two cases can arise when the system is
perturbed by f*(ω, t):

(5)

or

(6)

where D*(t, t0) is the Melnikov distance for system (4).
Suppose that (5) is satisfied. (A similar analysis can be

1 We tentatively call f* a regularizing perturbation.

D t t0,( ) f 0 f 1 t.d∧
∞–

∞

∫–=

D t t0,( ) f 0 f 1 td I g x t,( )[ ] .≡∧
∞–

∞

∫–=

ẋ f 0 x( ) ε f 1 x t,( ) f * ω t,( )+[ ] ,+=

f * ω t,( ) f 1* ω t,( ) f 2* ω t,( ),( ).=

D* t t0,( ) s2>

D* t t0,( ) s1,<
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performed when inequality (6) holds.) Then,

(7)

where

By virtue of (7), there exists χ such that

Hence,

(8)

On the other hand,

(9)

Suppose that the function f*(ω, t) is absolutely integra-
ble over an infinite interval and Fourier transformable.
We define f*(ω, t) as

with  = (A(t), A(t)). Therefore,

The inverse Fourier transform yields

Hence,

The quantity A(t) can be interpreted as the amplitude of
a regularizing perturbation.

I g x t,( )[ ] I g* ω x t, ,( )[ ] s2,>+

I g* ω x t, ,( )[ ] f 0 f * t.d∧
∞–

+∞

∫–=

I g x t,( )[ ] I g* ω x t, ,( )[ ]+ s2 χ+ const,= =

χ s2 R
+
.∈,

I g* ω x t, ,( )[ ] const I g x t,( )[ ] .–=

I g* ω x t, ,( )[ ] f 0 f * t.d∧
∞–

∞

∫–=

f * ω t,( ) Re Â t( )e iωt–{ }=

Â t( )

f 0 Â t( )e iωt–{ } td∧
∞–

∞

∫– const I g x t,( )[ ] .–=

f 0 Â t( )∧ I g x t,( )[ ] const–( )eiωt ω.d

∞–

∞

∫=

A t( ) 1
f 01 x( ) f 02 x( )–
------------------------------------=

× I g x t,( )[ ] const–( )eiωt ω.d

∞–

∞

∫

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Thus, dynamics of systems that can be represented
as (1) are regularized by the perturbation

Next, we explore the possibility of suppressing
chaotic dynamics for systems governed by equations of
the form

(10)

where f(ω, t) is a periodic perturbation; P(x, y), Q(x, y),
and F(x, y) are smooth functions; and α is a damping
parameter.

We consider the most common case when a single
hyperbolic point is located at the origin (x = y = 0) and
P(x, y) = y. Let x0(t) be the solution on the separatrix.
For perturbed system (10), the Melnikov distance can
be represented as

(11)

where y0(t) = (t). As in the case of Eq. (1), we assume
that the sign of the Melnikov distance for system (10)
alternates; i.e., the separatrices intersect. We seek a per-
turbation f*(ω, t) that eliminates chaotic dynamics:

(12)

Since system (10) is parameterized by α, chaos must be
suppressed for each particular value of the parameter.
Accordingly, we can write I[g(ω)] instead of I[g(ω, α)].

For system (12),

Therefore,

Thus, a regularizing perturbation for system (12)
can be represented as

f * ω t,( )

=  Re
e iωt–

f 01 x( ) f 02 x( )–
------------------------------------ I g x t,( )[ ] const–( )eiωt ωd

∞–

∞

∫ .

ẋ P x y,( ),=

ẏ Q x y,( ) ε f ω t,( ) αF x y,( )+[ ] ,+=

D t t0,( ) y0 t t0–( )
∞–

∞

∫–=

× f ω t,( ) αF x0 y0,( )+[ ] td I g ω α,( )[ ] ,≡

ẋ0

ẋ y,=

ẏ Q x y,( ) ε f ω t,( ) αF x y,( ) f * ω t,( )+ +[ ] .+=

f 01 y, f 02 Q x y,( ), Â t( ) 0 A t( ),( ).= = =

A t( ) 1
y0 t t0–( )
--------------------- I g ω( )[ ] const–( )eiωt ω.d

∞–

∞

∫=

f * ω t,( )

=  Re
e iωt–

y0 t t0–( )
--------------------- I g ω( )[ ] const–( )eiωt ωd

∞–

∞

∫ .
SICS      Vol. 98      No. 5      2004
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Now, let us find a regularizing perturbation in the
case when the Melnikov function D(t, t0) admits an
additive shift from its critical value.

Again, we analyze the case when (5) is satisfied.
Suppose that αc corresponds to the critical value of the
Melnikov function,

Then, a subcritical Melnikov distance can be expressed
as

where a ∈  R+ is a constant. Assuming that the system
perturbed by f*(ω, t) exhibits regular behavior, we have

(13)

where

On the other hand, it is obvious that we can take any
I' a fortiori greater than Ic:

(14)

Now, equating the left-hand sides of (13) and (14), we
obtain I[g*(ω)] = 2a. Substituting

into the expression for I[g*(ω)], we find

The inverse Fourier transform yields

Hence,

Thus, dynamics of systems that admit additive shift
from the critical value of the Melnikov function D(t, t0)
are regularized by the perturbation

(15)

where δ(t) is the Dirac delta function.

Ic I g ω α α α c=,( )[ ] .=

Iout Ic α ,–=

I' Iout I g* ω( )[ ] s2,>+ +

I g* ω( )[ ] y0 t t0–( ) f * ω t,( ) t.d

∞–

+∞

∫–=

I' Ic a s2.>+=

f * ω t,( ) Re A t( )eiωt{ } ,=

eiωt A t( )y0 t t0–( ) td

∞–

∞

∫– 2a.=

A t( )y0 t t0–( ) 2a e iωt– ω.d

∞–

∞

∫–=

A t( ) 2a
y0 t t0–( )
--------------------- e iωt– ωd

∞–

∞

∫–
4πaδ t( )
y0 t t0–( )
---------------------.–= =

f * ω t,( ) 4πaδ t( )
y0 t t0–( )
--------------------- ωt( ),cos–=
JOURNAL OF EXPERIMENTAL 
In the general case, if f0 = (f01(x), f02(x)), then we
obviously obtain

4. APPLICATION TO PHYSICAL SYSTEMS

Now, we use the approach presented above to ana-
lyze the Duffing–Holmes-oscillator and pendulum
equations. Transverse intersections of stable and unsta-
ble manifolds of these unperturbed systems give rise to
homoclinic or heteroclinic orbits.

4.1. Duffing–Holmes Oscillator 

The forced Duffing–Holmes oscillator with a para-
metrically perturbed cubic term is described by the
equation

(16)

where η and Ω are the amplitude and frequency of the
parametric perturbation, respectively, and η ! 1. We
rewrite it as

(17)

The corresponding unperturbed Hamiltonian is

Setting H0, we find that system (17) has a single
hyperbolic point (x = v  = 0) with a single separatrix.
The solution on the separatrix can be represented
as [21] (see also [12–15])

(18)

(19)

Comparing this system with (1), we write

Therefore,

f * ω t,( ) 4πaδ t( )
f 01 x( ) f 02 x( )–
------------------------------------ ωt( ).cos–=

ẋ̇ x– β 1 η Ω t( )cos+[ ] x3+ ε γ ωt( )cos α ẋ–[ ] ,=

ẋ v ,=

v̇ x βx3– ε γ ωt( )cos βηx3 Ωt( )cos– αv–[ ] .+=

H0
v 2

2
------ x2

2
-----–

βx4

4
--------.+=

x0 t( ) 2

β
------- t,cosh=

v 0 t( ) ẋ0 t( ) 2

β
------- tsinh

tcosh
2

---------------.–= =

f 01 v , f 11 0,= =

f 02 x βx3,–=

f 12 γ ωt( )cos ηβx3 Ωt( )cos– αv .–=

f 0 f 1∧ v 0 γ ωt( )cos ηβx0
3 Ωt( )cos αv 0––[ ]=
AND THEORETICAL PHYSICS      Vol. 98      No. 5      2004
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and (2) becomes

(20)

Changing to the integration variable τ = t – t0, we
finally obtain [12–15]

(21)

The sign of D(t, t0) is preserved if

(22)

where p is an integer (see [12–15]). Using the left-hand
inequality in (22), we determine the critical value of the
Melnikov function:

(An analogous calculation can be performed for the
right-hand inequality.)

Then, a subcritical value

can be represented as

where a > 0 is a constant.

Since the perturbation required to regularize the
dynamics of system (16) has the form

the corresponding Melnikov distance

D t t0,( ) t γv 0 t t0–( ) ωt( )cos[d

∞–

+∞

∫–=

– ηβx0
3 t t0–( )v 0 t t0–( ) Ωt( )cos αv 0

2 t t0–( )– ] .

D t t0,( ) 2 2

β
----------πγω

ωt0( )sin
πω/2( )cosh

-----------------------------=

–
πη
6β
------- Ω4 4Ω2+( )

Ωt0( )sin
πΩ/2( )sinh

----------------------------- 4α
3β
-------.+

6βdsinh πΩ/2( )
π Ω4 4Ω2+( )

--------------------------------------- ηmin η η max≤<=

=  
1

p2
----- 6 2βγω

Ω4 4Ω2+( )
--------------------------- πΩ/2( )sinh

πω/2( )cosh
-----------------------------,

Dc t t0,( ) 2 2

β
---------- πγω

πω/2( )cosh
----------------------------- ωt0( )sin=

+
4α
3β
------- d Ωt0( )sin .–

Dout t t0,( ) Dc t t0,( ).<

Dout t t0,( ) 2 2

β
---------- πγω

πω/2( )cosh
----------------------------- ωt0( )sin=

+
4α
3β
------- d Ωt0( )sin a,––

f * Ω t,( ) Re eiΩt A t( ){ } ,=

D* t t0,( ) v 0 t t0–( ) f * Ω t,( ) t.d

∞–

+∞

∫–=
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is

(23)

To find A(t), we define

Since the perturbation f*(Ω , t) is regularizing by
assumption, it holds that

It is obvious that we can take any D'(t, t0) a fortiori
greater than Dc(t, t0):

(24)

On the other hand, we can use (23) to write

(25)

Equating (24) to (25), we have

The inverse Fourier transform yields

Therefore, dynamics of the forced Duffing–Holmes
oscillator are regularized by the perturbation

(26)

4.2. Pendulum

The analysis presented above can be extended to the
classical nonlinear pendulum, whose separatrices make
up a heteroclinic orbit in the absence of damping. A
periodically forced, damped pendulum is described by
the equation [22]

(27)

D* t t0,( ) A t( )v 0 t t0–( )eiΩt t.d

∞–

+∞

∫–=

D* t t0,( ) Dout t t0,( ) D' t t0,( ).≡+

D' t t0,( ) Dc t t0,( ).>

D' t t0,( ) 2 2

β
---------- πγω

πω/2( )cosh
----------------------------- ωt0( )sin=

+
4α
3β
------- d Ωt0( )sin a.+–

D' t t0,( ) A t( )v 0 t t0–( )e iΩt– td

∞–

+∞

∫–=

+
2 2

β
---------- πγω

πω/2( )cosh
----------------------------- ωt0( )sin 4α

3β
------- d Ωt0( )sin a.––+

A t( )v 0 t t0–( )eiΩt td

∞–

+∞

∫ 2a.–=

A t( ) 2a
v 0 t( )
------------- e iΩt– Ω.d

∞–

+∞

∫–=

f * Ω t,( ) 4πaδ t( )
v 0 t t0–( )
---------------------- Ωt( ).cos–=

ẋ̇ α ẋ xsin+ + γ ωt( ).cos=
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The corresponding unperturbed Hamiltonian is

The phase portrait of the pendulum is 2π-periodic in x,
with hyperbolic points at (±π, x) and a center at (0, 0).
The system has oscillatory, rotatory, and separatrix
solutions. We focus here on solutions of the last type:

H0
ẋ2

2
----- x.cos–=

x0 t( ) ttanh
tcosh

-------------,±=

ẋ0 t( ) 2
tcosh

-------------.±=

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
x

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

x
.

Fig. 2. Phase portrait of Duffing–Holmes oscillator (16):
α = 0.145, β = 8, η = 0.03, γ = 0.14, Ω = ω = 1.1.

–1.0 –0.5 0 0.5 1.0 1.5
x

–1.5

–1.0

–0.5

0

0.5

1.0

1.5
x
.

Fig. 4. Phase portrait of Duffing–Holmes oscillator (31):
α = 0.145, β = 8, η = 0.03, γ = 0.14, Ω = ω = 1.1, a = 2.
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The Melnikov distance corresponding to (27) is [22]

(28)

Calculating the integrals, we obtain

(29)

where B(r, s) is Euler’s beta function.

D t0 ω,( ) α ẋ0 t( )( )2 td

∞–

+∞

∫–=

± γ ωt0( ) x0 t( )( ) ẋ0 t( ) ωtcossin t.d

∞–

+∞

∫cos

D t0 ω,( ) 4αB
1
2
--- 1, 

 –
2πγ

πω
2

------- 
 cosh

------------------------- ωt0( ),cos±=
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x

–4

–3

–2

–1

0

1

2

3

4
x
.

Fig. 3. Phase portrait of pendulum (27): α = 0.04, γ = 1.35,
ω = 1.0.
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Fig. 5. Phase portrait of pendulum (32): α = 0.04, γ = 1.35,
ω = 1.0, a = 1.2.
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Fig. 6. Spectral density of a realization x(t) for (a) original Duffing–Holmes oscillator (16) with α = 0.145, β = 8, η = 0.03, γ = 0.14,
and Ω = ω = 1.1 and (b) regularized Duffing–Holmes oscillator (31) with a = 2.
Since this Melnikov function D(t0, ω) obviously
admits additive shift from its critical values, chaotic
behavior of the pendulum is suppressed by the pertur-
bation

(30)

where (t) is the solution on the unperturbed sepa-
ratrix.

f * ω t,( ) 4πaδ t( )
ẋ0 t t0–( )
--------------------- ωt( ),cos–=

ẋ0
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Physically, the results obtained here mean that
dynamics of the Duffing–Holmes oscillator and pendu-
lum are regularized by series of “kicks.”

4.3. Numerical Results

In the preceding section, it is shown that chaos in
Duffing–Holmes-oscillator and pendulum dynamics
can be suppressed by applying perturbations (26)
and (30), respectively. In this section, we present the
results of a numerical analysis.

We consider Eqs. (16) and (27). In dynamics of the
Duffing–Holmes oscillator, the onset of chaos corre-
SICS      Vol. 98      No. 5      2004
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sponds to the breakdown of a figure-of-eight separatrix.
Figure 2 illustrates the structure of a typical chaotic set
obtained in this case. The onset of chaos in pendulum
dynamics is associated with the breakdown of a hetero-
clinic trajectory (see Fig. 3).

Consider the Duffing–Holmes oscillator and pendu-
lum with additional perturbations (26) and (30), respec-
tively. The corresponding equations are

(31)

(32)

Figures 4 and 5 show numerical solutions to systems (31)
and (32), respectively. It is clear that the dynamics of

ẋ̇ x– β 1 η Ω t( )cos+[ ] x3+ ε γ ωt( )cos α ẋ-–=

+ 2π 2β
t t0–( )cosh

2

t t0–( )sinh
------------------------------aδ t( ) Ωtcos ,

ẋ̇ α ẋ xsin+ + γ ωt( )cos=

+ 2π t t0–( )aδ t( ) ωt( ).coscosh

10–3
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101
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105

S

(b)

1 10 wn
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100
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104

Fig. 7. Spectral density of a realization x(t) for (a) original
pendulum equation (27) with α = 0.04, γ = 1.35, and ω = 1.0
and (b) perturbed equation (32) with a = 1.2.

(a)
JOURNAL OF EXPERIMENTAL 
both oscillator and pendulum approach regular regimes
represented by periodic orbits.

To analyze systems (31) and (32) in more detail, we
invoke the spectral density defined as

where X(ω) is the Fourier transform of a solution x(t) to
system (16) or (27). The spectral density provides a
simple, but reliable characterization of dynamics of a
system under study. It can readily be used to find out
whether a motion is regular or chaotic.

Figures 6a and 7a show the spectral densities calcu-
lated for original systems (16) and (27), respectively;
Figs. 6b and 7b, the spectral densities for systems sub-
ject to perturbations (26) and (30), respectively. These
results demonstrate that chaos is suppressed and
dynamics of both systems are regularized.

Taking different parameter values corresponding to
chaotic behavior, one can find appropriate regularizing
perturbations (see above) and obtain qualitatively simi-
lar results, i.e., change from chaotic states to regular
oscillations.

Thus, our numerical analysis is consistent with the
analytical results obtained in Section 4.

5. CONCLUSIONS

Separatrix splitting is a very convenient method for
examining dynamical systems, because it can be used
to obtain nonintegrability conditions for many applied
problems in analytical form [23]. Currently, the prob-
lem of chaos suppression considered in this study is
mainly solved by numerical methods (e.g., see [1–10]).
However, asymptotic behavior of trajectories can be
examined analytically. As a result, the distance between
the separatrices split by a perturbation can be found in
general form by applying a perturbation method in the
vicinity of a homoclinic trajectory.

In this study, separatrix splitting is applied to
explore the possibility of chaos suppression in dissipa-
tive systems. Analytical expressions are obtained for
regularizing perturbations. These results are suffi-
ciently general to be applied to various dynamical sys-
tems that admit separatrix splitting.
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Abstract—The process of random diffusion variation of the wave function of a system with two states is ana-
lyzed. A method is developed for calculating the evolution operator and the damping increment of the proba-
bility distribution function of the state of the system on the basis of quaternion apparatus. It is proved analyti-
cally that the second moments formed from the wave function play the major role since all other statistical char-
acteristics tend to equilibrium at a higher rate. For more general models of a random action, the result remains
asymptotically the same, but the relative orders of increments may be different. Exceptional cases of incomplete
statistical equilibrium are singled out. The possible role of the given model problem in the actual problem of
state splitting in the transition from the microworld to macroworld is discussed. It is shown that, in spite of the
views expressed in modern literature, the distribution of finite probabilities in the white noise model does not
allow the well-known Schrödinger’s Cat paradox to be resolved. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of evolution of quantum systems sub-
jected to the action of a nonstationary external perturb-
ing field is undoubtedly interesting from the standpoint
of distribution of finite probabilities and, as a conse-
quence, the choice of possible quantum states for the
system. In article [1] (see also [2]), such an evolution
was studied in detail using the simple example of a two-
level system interacting with classical white noise. The
probabilities of transition of a particle from one well to
another were calculated using a double functional inte-
gral along the trajectories, which was expanded into a
power series in a small parameter. However, some fea-
tures of the evolution of the quantum system in [1]
remained unclear; we would like to analyze here these
questions more rigorously.

It should be recalled that Lesovik et al. [1] consid-
ered the dynamics of a particle in a two-well potential
(symmetric wells). The Hamiltonian of the particle has
the form

(1)

where σx , σy , and σz are the Pauli matrices, ∆ and q0 are
certain constants, and ϕ(t) is classical white noise. The
correlators connecting the initial and final states of the
particle were calculated by integrating along trajecto-
ries. However, it was not rigorously proved that second
moments must play the major role in this problem. In
addition, higher order moments must also be taken into

H t( ) "
2
---∆σx–

q0ϕ t( )
2

----------------σz,+=
1063-7761/04/9805- $26.00 © 21054
account in some cases. Finally, we cannot agree with
the opinion formulated in [1, 2] that the ultimate ine-
quality of the “weights” of two states emerging as a
result of a random action of the thermostat is associated
with the solution of the fundamental Schrödinger’s Cat
problem, i.e., with the choice of one of quantum states
upon a transition from the microworld to the macro-
world.

To solve these problems, we develop here a new
method for analyzing evolutionary quantum problems
based on the mathematical apparatus of quaternions.
Using this method, a more rigorous and compact repre-
sentation of the evolution of the state of a two-level sys-
tem subjected to white noise can be obtained. We will
not confine our analysis to a Hamiltonian of type (1)
and consider the evolution of the system with more
general Hamiltonians in Section 9.

2. FORMULATION OF THE PROBLEM

Let us consider a quantum system with two basic
states, which is described by Hamiltonian (1). Constant
∆ is reciprocal to the lifetime of the system in the given
state and characterizes the stability of this state, while
parameter q0 has the dimension of length and defines
the width of the potential barrier. The result of evolu-
tion on a time interval can be written in matrix form as

(2)ψ T( ) Dψ 0( ),=
004 MAIK “Nauka/Interperiodica”
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where

(3)

in the limit n  ∞.
It is well known [3] that complex unitary 2 × 2

matrices are closely related to operations of rigid body
rotation. As an intermediate link, it is convenient to use
the apparatus of quaternions. Multiplication of quater-
nions

(4)

where a, b, c, and d are real-valued parameters, is
equivalent [4] to the multiplication of complex matrices

(5)

which are unitary under the normalization condition

(6)

In the given case, to the required accuracy, we have

and the corresponding quaternion is given by

(7)

3. DIFFUSION EQUATION

In accordance with the general principles of using
quaternions in the problem of rigid body rotation [5, 6],
the previous expression describes a deterministic rota-
tion through angle T∆/n about the x axis during time T/n
and a random rotation through angle

about the z axis. We fix an arbitrary initial position of a
test point on a unit sphere. In accordance with the gen-
eral rules of the diffusion theory [7], the density f of

D DnDn 1– …D1,=

Dm

iH
mT
n

-------- 
  T

n"
------------------------–exp ,=

X d ai bj ck or a b c d, , ,( ),+ + +=

Dx
d ic+ b ia–( )–

b ia+ d ic– 
 
 

,=

a2 b2 c2 d2+ + + 1.=

Dm 1
iT
n"
------ "∆

2
-------σx–

q0ϕ
mT
n

-------- 
 

2
-----------------------σz+–=

–
q0

2T2

8n2
"

2
-------------- ϕ mT

n
-------- 

 
2

…+

Xm 1
T

n"
------ "∆

2
-------i

q0

2
-----ϕ mT

n
-------- 

  k++=

–
q0

2T2

8n2
"

2
-------------- ϕ mT

n
-------- 

 
2

… .+

q0T
n"
---------ϕ mT

n
-------- 

 
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subsequent images of this point at instants t > 0 obeys
the differential equation

(8)

where the notation

is used; the angle brackets indicate dispersion per unit
time and Ax , Ay , and Az are the operators of rotation
about the x, y, and z axes. Equation (8) has the obvious
steady-state solution f = const (const = 1/(4π) for the
conventional normalization of probabilities). The
remaining particular solutions attenuate with time.

4. SERIES EXPANSION OF FUNCTION f

It can easily be seen that a spherical function of any
order l preserves its order after substitution into Eq. (8).
Consequently, having fixed l, we can use the ordinary
expansion

(9)

Normalization of (complex) spherical functions is
immaterial in principle; we choose normalization to
simplify equations for quantities αk . Separating time
and introducing decrement λ, we obtain

(10)

If we replace all quantities αk by (–1)kα–k , the latter
will obviously satisfy the same system (10) with the
same λ. It follows hence that all solutions can be
divided into even solutions with

(11)

and odd solutions with

(11a)

5. LOWER BOUNDARY FOR λ
We will now try to determine the lower boundary for

λ (for all λ ≥ 1 and nontrivial α0, α1, …, αl). To do this,
we must prove that

(12)

∂f
∂t
----- ∆Ax f–

Γ
2
---Az

2 f ,+=

Γ2 q0
2

"
2

----- ϕ2〈 〉=

f α k t( )Yl
k.

k l–=

l

∑=

λ k2Γ–( )α k
∆
2
--- l k–( )α k 1+ l k+( )α k 1––[ ]+ 0,=

l k l.≤ ≤–

α k– 1–( )kα k=

α k– 1–( )k 1+ α k, α0 0.= =

Reλ Γ
2
--- Γ2

4
----- ∆2– , ∆ Γ

2
---,≤–≥

Reλ Γ
2
---, ∆ Γ

2
---.≥≥
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We begin with a simpler case of an odd solution. Mul-
tiplying each equation of system (10) with k = 1, 2, …,
l by the quantity

, (13)

summing the results, and shifting the index of summa-
tion in the last sum, we obtain

(14)

Summing relation (14) with its complex conjugate, we
find that

Obviously, at least one of the coefficients in the numer-
ator must be positive or zero. In the given case, this is
equivalent to the requirement Reλ ≥ Γ, which is even
more stringent than inequality (12).

Let us now consider the even case. Multiplying all
equations in (10) by (–1)kξk , summing the results, and
shifting the index in the last sum, we obtain

(15)

Subtracting from this relation its complex conjugate,
we obtain

(16)

Now, we must distinguish between two cases.
(a) Imλ ≠ 0. In this case, the sum over k in relation (16)

vanishes. Multiplying all equations in (10) by ξk and
summing the results, we obtain a relation similar
to (14), but with the lower limit k = –l for all sums.
Summing this relation with its complex conjugate, we
obtain

(17)

ξk

α k*

l k+( )! l k–( )!
-----------------------------------=

λ k2Γ–( ) α k
2

l k+( )! l k–( )!
-----------------------------------

∆
2
---

α k 1+ α k*

l k– 1–( )! l k+( )!
--------------------------------------------

k 1=

l 1–

∑+
k 1=

l

∑

–
∆
2
---

α kα k 1+*

l k– 1–( )! l k+( )!
--------------------------------------------

k 1=

l 1–

∑ 0.=

Reλ k2Γ–( ) α k
2

l k+( )! l k–( )!
-----------------------------------------

k 1=

l

∑ 0.=

1–( )k λ k2Γ–( ) α k
2

l k+( )! l k–( )!
-----------------------------------

k l–=

l

∑

+
∆
2
--- 1–( )k α k 1+ α k*

l k– 1–( )! l k+( )!
--------------------------------------------

k l–=

l 1–

∑

+
∆
2
--- 1–( )k α kα k 1+*

l k– 1–( )! l k+( )!
--------------------------------------------

k l–=

l 1–

∑ 0.=

Imλ 1–( )k α k
2

l k+( )! l k–( )!
-----------------------------------

k l–=

l

∑ 0.=

Reλ k
2Γ–( ) α k

2

l k+( )! l k–( )!
-----------------------------------------

k l–=

l

∑ 0.=
JOURNAL OF EXPERIMENTAL
We subtract Eq. (16) from (17), where Imλ is replaced
by Reλ. Taking into account the parity property (11),
we obtain

(18)

where symbols o and v  indicate summation over all
even and odd positive k ≤ l, respectively (the term with
k = 0 is omitted). Obviously, at least one of the coeffi-
cients of the second sum in Eq. (18) must be positive or
zero, which is equivalent to the inequality

(19)

(b) Imλ = 0. Assuming that l ≥ 2, we again multiply
Eqs. (10) by ξk (but now for k ≥ 2) and sum the results.
After summing with the complex conjugate equality,
we obtain

(20)

We write separately Eqs. (10) with k = 1 and k = 0, tak-
ing into account the symmetry condition:

This leads to the equation

(21)

If the denominator of this equation has real roots and
the value of λ is greater than or equal to the smallest of
these roots, we have

and inequality (12) holds. In other cases, the denomina-
tor in relation (21) is positive. Substituting relation (21)

k2Γ α k
2

l k+( )! l k–( )!
-----------------------------------

o

∑–

+
2Reλ k

2Γ–( ) α k
2

l k+( )! l k–( )!
--------------------------------------------

v

∑ 0,=

Reλ Γ
2
---.≥

λ k2Γ–( ) α k
2

l k+( )! l k–( )!
-----------------------------------

k 2=

l

∑ ∆ α1α2
+ α2α1

++( )
4 l 1+( )! l 2–( )!
----------------------------------------– 0.=

λ Γ–( )α1
∆
2
--- l 1–( )α2 l 1+( )α0–[ ]+ 0,=

λα 0 l∆α1+ 0.=

α1

α2
-----

∆
2
--- l 1–( )λ

λ2 Γλ– l l 1+( )∆2

2
-----------------------+

-------------------------------------------------.–=

Γ2 2l l 1+( )∆2 4∆2,>≥

λ Γ
2
---   –  Γ

 

2

 
4
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l l
 

1+ ( )∆
 

2

 
2

-----------------------– >
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into (20), we obtain

(22)

In this case also, at least one of the coefficients in
Eq. (22) must be positive (or equal to zero). If this is
valid for one of the coefficients of the sum with k ≥ 3,
we have λ ≥ 9Γ, which is even more stringent condition
than (19). It remains for us to consider the behavior of
the coefficient in the braces. It increases for

(23)

Henceforth, we assume that inequality (23) is valid
since, otherwise, λ > ∆, and this estimate is more strin-
gent than (12). Substituting the real-valued λ from ine-
quality (12), where the sign “≥” is replaced by the
equality sign, we see that the coefficient in the braces is
negative. Consequently, the actual value of λ must be
higher.

In the simples case when l = 1, system (10) has the
form

Equating the determinant to zero, we obtain

(24)

Solution (24) has already been obtained in a differ-
ent way in [1] and satisfies inequality (12) as exact
equality for one or both (for ∆ ≥ 2Γ) roots (24). Thus,
inequality (12) holds in all cases.

6. ROTATION OF THE 4-SPACE

From the behavior of a test point, we pass to rotation
of the space as a whole, which is described by the prod-
uct of random quaternions:

(25)

In accordance with the general rules [5, 6], the trans-
formation of the radius vector of the test point, which is
formally treated as a purely vectorial quaternion R =

λ 4Γ– ∆2 l 1–( ) l 2+( )λ

4 λ2 Γλ– l l 1+( )∆2

2
-----------------------+

---------------------------------------------------------+

 
 
 
 
 

×
α2

2

l 2+( )! l 2–( )!
------------------------------------

λ k2Γ–( ) α k
2

l k+( )! l k–( )!
-----------------------------------

k 3=

l

∑+ 0.=

λ ∆ l l 1+( )
2

-----------------.<

λ Γ–( )α1 ∆α0– 0, λα 0 ∆α1+ 0.= =

λ1 2,
Γ
2
--- Γ2

4
----- ∆2– .±=

X XnXn 1– …X1.=
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xi + yj + zk, is described by the quaternion multipli-
cation,

(26)

Here, quaternion R' (which is obtained in a purely vec-
torial form) corresponds to a changed position of the
test point on the sphere. Quaternion X normalized by
condition (6) depends on three parameters, while vector
R', which is also normalized to unity, depends only on
two parameters. Consequently, X is not defined unam-
biguously from R and R'; there remains one more
degree of freedom, which is manifested, as can easily
be seen, in the possibility of replacing X by X(cosσ +
Rsinσ) for a fixed R. In addition, it is possible to carry
out the discrete substitution X  –X in relation (26).
To within these transformations, the inverse determina-
tion of X from R' or, in expanded form (e.g., for R = k),
the solution of the equations

with allowance for relation (6) can be carried out unam-
biguously. Thus, the relation between the behavior of a
random point on the sphere and product (25) of random
quaternions is clarified. In both cases, we are dealing
with a Markov chain with values on a sphere in a 3D or
4D space, respectively. The density f of distribution in
the former case is connected with the density in the lat-
ter case via the integral relation

(27)

where the angle brackets indicate averaging over the
rotational angle σ introduced above and over the inver-
sion of the quaternion (from symmetry considerations,
we conclude that the weights are equal). In the particu-
lar case, when R = k, the rotation in expanded form is
expressed via the relations

In the general case, we are dealing with rotation in a
4D space about a movable “axis,” which, however, has
the form of a 2D manifold constructed on quaternions 1
and R.

Let us prove the following lemma.

Lemma. An arbitrary function defined in the form
of an even-degree polynomial of a, b, c, and d on a 4D
sphere can be represented in the form of the sum of a
finite number of polynomial functions of the same or
lower degrees, which are a priori symmetric relative to

R' XRX 1– .=

2 ac bd+( ) = x', 2 bc ad–( ) = y',

d2 c2 a2 b2––+ r'=

f p〈 〉 R,=

a b c d, , , a ψ d ψ b ψ c ψ,sin+cos,sin–cos(
c ψ b ψ d ψ a+ ψ ),sincos,sin–cos

0 ψ 2π.≤ ≤
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the above averaging carried out over in generally differ-
ent axes.

The lemma will be proved by induction. For a zero-
degree polynomial, the statement is obvious.

The expression

(28)

has a symmetric structure. Quaternion k playing the
role of an axis can be replaced by αi + βj + γk = 1,
where α, β, and γ are connected only via the condition
α2 + β2 + γ2 = 1. The relation

is symmetric relative to this new axis.
By virtue of condition (6), we have

(29)

consequently, to within the terms of a degree smaller
than 2m, the expression for F coincides with

(30)

We assume that polynomials of a degree lower than or
equal to 2m – 2 are already represented in the required
form; for this reason, we can consider N instead of F.
First, we take the point α = β = 0, γ = 1, at which

We define polar angle θ1 and azimuth ψ1 on the
sphere α2 + β2 + γ2 = 1 and spherical coordinates θ, ψ,
and ρ in the abc space. To expand the function

in the Legendre polynomials in t = cosθ, we use the
identity

Consequently, in the special case of γ = 1, we have

where

d2 c2+( )m
, m 1 2 …, ,=

F d
2 αa βb γc+ +( )2+[ ]

m
=

d2 1 a2 b2– c2;––=

N αa βb γc+ +( )2 a
2

b
2

– c2––[ ]
m

.=

N a
2

– b
2

–( )
m

.=

a2– b2–( )m θsin
2

–( )
m

t2 1–( )m
= =

1 x2–( )m
P2n x( ) xd

1–

1

∫

=  2 1–( )n 2n 1–( )!! 2m( )!![ ] 2

2n( )!! 2n 2m 1+ +( )!! 2m 2n–( )!!
------------------------------------------------------------------------------------, m n.≥

N 1–( )m n– hnmρ2mP2n θ1cos( )P2n θcos( ),
n 0=

m

∑=

hnm
2n 1+( )!! 2m( )!![ ] 2

2n( )!! 2n 2m 1+ +( )!! 2m 2n–( )!!
------------------------------------------------------------------------------------, m n,≥=

hmn 0, m n.<=
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In the general case, we obtain

(31)

where ξ is the angle between the vectors with compo-
nents (a, b, c) and (α, β, γ). The validity of relation (31)
is associated with the obvious invariance of ξ relative to
joint rotations of spaces abc and αβγ.

Spherical functions are mutually independent in
view of their orthogonality. For each specific m, we are
dealing only with a finite system of such functions;
their independence must be manifested even on a finite
set of points (αj, βj, γj) on a sphere. Taking an appropri-
ate linear combination from corresponding functions N,
we can always separate in this way the term with a sin-
gle spherical function of λ1 and θ1 in relation (31). If we
eliminate nonzero numerical factors, the coefficient of
this term can be represented as

(32)

where the brackets contain various harmonic polyno-
mials of degree n = 0, 1, 2, …, m. It can easily be seen
that these polynomials form a complete system in the
class of all homogeneous polynomials of a, b, c of
degree 2n; for all these polynomials, we can obtain the
required representation using a superposition of aver-
aged functions.

Analogously to relation (28), the expression

(33)

is symmetric. Instead of a, b, and c, we can substitute
into this relation the new orthogonal components βa –
αb, –(αa + βb)γ + (α2 + β2)c, αa + βb +γc. If we sub-
stitute a, b, and c for d2, expression (33) will contain, in
addition to terms of the type that has already been
investigated, the term

N 1–( )m n– hnmρ2mP2n ξcos( )
n 0=

m

∑=

=  1–( )m n– hnmρ2m P2n θcos( )P2n θ1cos( ) ∫



n 0=

m

∑

+ 2
2n k–( )!
2n k+( )!

----------------------P2n
k( ) θcos( )

k 0=

2n

∑

× P2n
k( ) θ1cos( ) k ψ ψ1–( )[ ]cos





,

ρ2 m n–( )

× ρ2nP2n
k( ) θcos( )

kψ( ), 0 k 2n≤ ≤cos

kψ( ), 1 k 2n≤ ≤sin



,

d2 c
2

+( )
m

ad bc+( )

N1 dN βa αb–( ).=
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On the sphere a2 + b2 + c2 = 1, we have

and the application of the rotation operator in the abc
space gives

Using the familiar identity

we obtain the following expression for any a, b, and c:

After simple combination of terms, taking into account
expression (31), we obtain

(34)

Arguing in the same way as in the previous case, we
must only stipulate that expression (34) does not con-
tain harmonic polynomials with k = 0. However, this
does not affect the final result since the “band” har-
monic polynomial (k = 0) can be obtained from any
other polynomial appearing in expression (34) by aver-
aging over 2n orientations for rotation about any axis
along which this selected polynomial does not vanish.
Thus, the polynomials of degree 2(m + 1), which con-
tain one factor d, also possess the required property.
Since higher powers of d (d ≥ 2) can be eliminated, the
lemma is completely proved.

7. REPRESENTATION OF ROTATIONS
BY MULTIPLICATION OF QUATERNIONS

We can now easily establish the relation between the
superposition of rotations of a fixed “tag” and the
quaternion multiplication that carried more informa-
tion. After addition of new random cofactors Xn , prod-
uct (25) again behaves as a Markov chain. The degree
of the polynomial describing the density of distribution
over sphere (6) is also preserved. The entire process can
be described using the polynomial eigenfunctions pj(a,
b c, d) with corresponding decrements λj . In accor-

ξ  =  α a β b γ c + +cos

∂
∂ψ
-------P2n ξcos( ) a

∂
∂b
------ b

∂
∂a
------– 

  P2n αa βb γc+ +( )=

=  aβ bα–( )P2n' ξcos( ).

PN t( )
PN 1+' PN 1–' t( )–

2N 1+
--------------------------------------, N 1,≥=

aβ bα–( )P2n ξcos( )

=  
ρ

4n 1+
--------------- ∂

∂ψ
------- P2n 1+ ξcos( ) P2n 1– ξcos( )–[ ] .

N1 2dρ2m 1+ 1–( )m n– hnm

4n 1+
---------------

hn 1+ m,

4n 5+
---------------+ 

 
n 0=

m

∑=

× k
2n 1 k–+( )!
2n 1 k+ +( )!

-------------------------------
k 1=

2n 1+

∑

× P2n 1+
k( ) θcos( )P2n 1+

k( ) θ1cos( ) k ψ1 ψ–( )[ ] .sin
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dance with the lemma, for an even-degree polynomial
p, an expansion of the type

must exist, where polynomial qi is symmetric relative to
rotation about the Ri axis. If we denote by dω an ele-
ment of a sphere in the 4D space, we can write

(35)

The left-hand side of this expression is positive;
consequently, at least one of the functions

 on the right-hand side is not identi-
cally equal to zero. Earlier, we demonstrated the rela-
tion (which is linear for densities) between the rotation
of a sphere with a tagged point Ri and a superposition
of quaternions. Consequently, for densities of even
powers of a, b, c, and d, the values of decrement λ are
chosen in the same way as for rotations with a tagged
point.

A different situation is observed for polynomials of
odd powers of a, b, c, and d, which may correspond to
a wider set of decrements. If, however, we return to the
initial appearance of quaternions in (5), it can be seen
that simultaneous sign reversals in a, b, c, and d lead
only to the substitution of –ψ for ψ. This cannot have
any statistical consequences and, hence, the difference
between (a, b, c, d) and (–a, –b, –c, –d) is not informa-
tive in the given formulation of the problem.

8. QUANTUM PROBABILITIES

We can easily find the final distribution of the
squared modulus for any of two components of the
wave function. Since the result cannot depend on the
initial distribution, we assume that at least ψ1(0) = 1 and
ψ2(0) = 0 for t = 0; in this case, from relation (5) we
obtain

As T  ∞, the distribution on sphere (6) tends to a
uniform distribution in view of symmetry. Taking the
parametrization in the form

p a b c d, , ,( ) qi a b c d, , ,( )
i 1=

N

∑=

p a b c d, , ,( ) 2 ωd∫

=  p a b c d, , ,( )qi
+ a b c d, , ,( ) ωd∫

i 1=

N

∑

=  p a b c d, , ,( )〈 〉 Ri
qi

+ a b c d, , ,( ) ω.d∫
i 1=

N

∑

p a b c d, , ,( )〈 〉 Ri

ψ1 T( ) d ic, ψ1 T( ) 2+ c2 d2.+= =

a η δ, bcoscos η δ, csincos η ε ,cossin= = =

d η ε , dωsinsin η η dηdδdε,cossin= =
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we obtain for the inequality

or

a probability proportional to dQ; in other words, for
|ψ1|2 as well as, naturally, for |ψ2|2, we obtain a uniform
distribution in the limit. This result was also noted
in [1].

9. A MORE GENERAL FORMULATION
OF THE PROBLEM

Our method permits a generalization of the problem
when the form of the Hamiltonian (see expression (1))
is not specified; we only assume that random parame-
ters appearing in this Hamiltonian are independent of
one another on sequential intervals of time.

The relation with quaternions and with rotation of
the sphere remains the same. It is sufficient to consider

again the density  on a sphere in a 3D space in
polar coordinates as a superposition of spherical func-
tions of a fixed principal index l ≥ 1; i.e.,

(36)

Here, k1 and k2 stand for the largest and smallest values
of index k from those for which ck ≠ 0. (Normalization

of  in this case differs from that in relation (9), but
this is immaterial.)

We consider functions (36) as eigenfunctions. As in
particular example (1), the corresponding values of
Reλ are generally positive. It will be proved below
that exceptions (i.e., the existence of undamped solu-
tions (36)) with λ = 0 or purely imaginary λ are
observed only for models from the following two cate-
gories.

(a) Rotations of a sphere are reduced to rotations
about the same (not random) axis, these rotations being
probably combined with its inversion.

(b) Admissible rotations transform a definite regular
polyhedron into itself.

To prove these statements, we again denote the
tagged point on the sphere by R and possible rotations
on each step by L1, L2, …, Ls; irrespective of the step
number, we ascribe probabilities Q1, Q2, …, Qs to these
rotations. (This latter discretization is fully immaterial
and only makes verbal formulation more convenient.)

Q c2 d2 Q dQ, 0 Q 1,< <+<+<

Q η Q
dQ

2 Q
-----------+<sin<

f θ̃ ψ̃,( )

f cke
ikψPl

k( ) θ̃cos( ).
k k1=

k2

∑=

Yl
k( )
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Eigenfunction (36) must satisfy the basic relation for
Markov chains, which in our case has the form

(37)

In accordance with the Buniakowski inequality, we
have

(38)

Introducing a spherical element dΩ , evaluating the
integrals over the entire sphere, and taking into account
relation (37), as well as the natural normalization con-
dition

,

we obtain

(39)

In the case of zero or a purely imaginary λ in this
relation, we are ultimately dealing with an equality.
However, the exact equality in relation (38) is attained,
in accordance with the general rule, only when all func-

tions , q = 1, 2, …, s coincide to within
numerical (complex-valued) coefficients. By virtue of
relation (37), the relations

with complex constants σq are valid. In view of conser-
vation of the integral of |f |2 upon rotation, we must have
|σq| = 1 so that

Thus, a certain body is invariant to all admissible
rotations L1, …, Ls (for better visualization, we imagine
the surface r = |f(R)|. If it is a body of revolution other
than a sphere, its axis must remain unchanged to within
inversion, and we arrive at case (a). If we are not deal-
ing with a body of revolution, it coincides with itself
only in a finite number of ways so that not only L1, …,
Lq , but also all their combinations of any number and
order belong to the symmetry group of the body. How-
ever, such finite groups of rotation (unless they have a

λT
n

-------– 
  f R( )exp Qq f Lq

1– R( ).
q 1=

s

∑=

Qq f Lq
1– R( )

q 1=

s

∑
2

Qq Qq f Lq
1– R( )

2
.

q 1=

s

∑
q 1=

s

∑≤

Qq

q 1=

s

∑ 1=

2TReλ
n

-----------------– 
  f 2 Ωd∫exp

≤  Q q f L q 
1– R ( ) 

2
 Ω d ∫ 

q

 

1=

 

s

 ∑

=  Qq f 2 Ωd∫
q 1=

s

∑ f 2 Ω.d∫=

f Lq
1– R( )

f Lq
1– R( ) σq f R( ), q 1 2 … s, , ,= =

f Lq
1– R( ) f R( ) , q 1 2 … s., , ,= =
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unique invariant axis) are necessarily connected with a
regular polyhedron [4] and we arrive at case (b).

It remains for us to consider the possibility of |f | =
const. In accordance with relation (36), the expansion
of |f |2 into a complex Fourier series contains the last
term of the form

This term cannot be reduced to a constant for any l ≥ 1.

For k1 ≠ k2, the dependence on  remains, while for
k1 = k2, the dependence on  takes place. Thus, this
case is irrelevant, which completes the proof.

As before, the result is automatically extended to the
multiplication of quaternions Xm for indistinguishable
X and –X. As applied to the evolution of the wave func-
tion, exceptional cases can be reformulated as follows:

(a) all realizations of matrices Dm commute with one
another (an analog of rotation about the same axis);

(b) all realizations of matrices Dm belong to a finite
group.

Since there are no infinitesimal rotations in case (b),
it is irrelevant in the presence of diffusion, as in the case
of Hamiltonian (1). Case (a) is formally realized in
model (1) for ∆ = 0 and Γ = 0.

The following qualitative remark is also appropriate
here. In contrast to particular example (1), other models
do not contain an analog of inequality (12) ensuring the
prevailing role of deviations from equilibrium with
l = 1 over long time intervals. On the contrary, zero can
now become the point of condensation of values of λ
for large values of l. In this case, although densities f(R)
converge (except in the above-mentioned cases (a) and
(b)) to a constant for t  ∞ due to the possibility of
indefinitely exact approximation of any function con-
tinuous on a sphere by a polynomial, the establishment
of statistical equilibrium can generally occur at a rate
which is generally slower than that defined by any
exponential function.

10. DISCUSSION OF THE PROBLEM

It was proposed in [1, 2, 8] that the inequality of
“weights” of two states due to a random action of the
thermostat (even if these weights were initially equal),
which was noted in these publications and repeatedly
discussed here, is related to the problem of choosing
one of the possible quantum states in a transition to the
macroworld. It was concluded in this connection [2]
that the well-known Schrödinger’s Cat paradox could
be resolved in this way. However, this opinion is erro-
neous. As a matter of fact, to resolve the paradox in the
macroworld, only one of the two components of the
wave function, which is responsible for the readings of
a macroinstrument, must remain. But the model with

f 2

=  … ck1
ck2
*e

i k1 k2–( )ψ̃
Pl

k1( )
θ̃cos( )Pl

k2( )
θ̃cos( ).+

θ̃
ψ̃
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white noise obviously does not meet precisely this
requirement. Indeed, for large values of t, the probabil-
ity that, for example, one of the weights |ψ1|2 and |ψ2|2
becomes twice as large as the other amounts approxi-
mately to 2/3; however, this probability does not
increase with time and cannot become equal to unity in
any way. Meanwhile, to resolve the paradox of
Schrödinger’s Cat, the total (or asymptotic) exclusion
of states is required.

It was found that a generalization to a wider class of
models with a random Hamiltonian does not open any
new opportunities since the statistical distribution for
large t remains unchanged except for obviously degen-
erate situations.

By the way, it is mathematically obvious that the
limiting probability distribution itself can also be
obtained without using any quaternions, just by defin-
ing equal probability on the complex circle

analogously to calculations in statistical mechanics [9]
(only not for an indefinitely increasing, but for a finite
number of degrees of freedom). However, equilibrium
probability distribution is presumed in [9] and in calcu-
lations based on traditional statistical mechanics in
general, while we consider here the evolution to the
equilibrium state. However, the results (and this is
important) match. Internal correlations in Hamiltonian
H(t) can hardly change the situation since the processes
that are treated as random can be split into almost inde-
pendent segments. In principle, we can imagine such a
correlation of phenomena in a reservoir with the quan-
tum state of an isolated system, such that the system
tends to a “pure” state in the sense of the choice
between ψ2  0 and ψ1  0. However, it can be
analogously stated that black and white grains con-
tained in a box can be separated and gathered in oppo-
site parts of the box by shaking it if this shaking corre-
lates in some intricate manner with the initial positions
of the grains. In both cases, we would have a thermody-
namic miracle, which is ruled out by our knowledge of
the role of probability in the world [10, 11].

Consequently, we arrive at the conclusion that the
necessary condition stating that “wave functions do not
permit a superposition according to macroscopic fea-
tures” cannot be expressed in a linear form. For this rea-
son, any solution of the problem of transition from the
microworld to the macroworld includes nonlinearity.
However, the considerations formulated by Menskiœ [12]
and in the discussion concerning this publication do not
provide a correct answer to crucial questions. It would
be apparently erroneous to state that each quantum
experiment should be completed at the boundary of the
microworld. At present, this appears as archaic in the
light of the studies carried out on an intermediate scale
without an abrupt termination or a clearly manifested
“observer.” This suggests that nonlinearity should be
treated as an inherent property of the equation describing

ψ1
2 ψ2

2+ 1,=
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the evolution of the wave function in the intermediate
region between the micro- and the macroworld [10, 13].

In the approach developed in [13], the main feature,
apart from nonlinearity, is the interaction with a certain
reservoir of cosmic origin. It is significant, however,
that it cannot be referred to as a thermostat in our case
since this cosmic reservoir must have two auxiliary
functions; i.e., it must be a source of fluctuations and
absorb excessive indeterminacy. From the standpoint of
physics, this situation resembles the role of solar radia-
tion and open cosmic space in life on the Earth.

The following is also worth noting. It was shown
in [13] that the separation of a superposition of states
under these assumptions can be carried out, but the role
of the cosmic factor turns out to be only auxiliary and it
does not carry any a priori information on the result of
splitting. An appropriate analog here can be symmetric
diffusion of a molecule between two cold walls to one
of which the molecule ultimately sticks. In order to
achieve the same result in the interaction between a
quantum system and a thermostat, the latter must pos-
sess miraculous properties in each (!) specific experi-
ment. This constitutes the principal difference between
the model with a thermostat described in [8] and the
model considered in [13].
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Abstract—The post-post-Newtonian equations of motion for point particles are derived from the Einstein grav-
itational field equations by using the Einstein–Infeld–Hoffmann method with the help of the energy-momentum
tensor proposed by Infeld and Plebanski [5, 6]. The obtained equations of motion coincide with the equations
derived by Kopeikin [10] by using the Fock method. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Einstein, Infeld, and Hoffmann and, independently,
Fock developed two methods for deriving the Newto-
nian and post-Newtonian equations of motion for point
particles from the Einstein gravitational field equations.
These methods are described in detail in the monograph
by Fock [1] (Chapter 6) and in the book by Infeld and
Plebanski [2] (Chapter 3).

The main features of the Fock method are as fol-
lows: (i) the field equations with the energy-momentum
tensor of the continuous medium are used; (ii) the met-
ric tensor is expanded into series in a small parameter,
which formally corresponds to the series expansion in
the reciprocal velocity of light; (iii) in harmonic coor-
dinates, these expansions reduce the approximate field
equations to wave equations; (iv) in the solutions to
these wave equations, retardation corrections are taken
into account; (v) the equations of motion are derived
from the condition of integrability of the field equations
in the form of covariant laws of conservation for the
energy-momentum tensor, which follow from the Bian-
chi identities (in particular, point particles are defined
as centers of mass of elastic spherically symmetric non-
rotating bodies with sizes smaller than the distances
between them); and (vi) the final values of the metric
tensor on the world lines of centers of mass are
obtained by using the equations describing the internal
structure of the bodies. In pioneering works [3, 4], the
equations of motion are derived not from the covariant
laws of conservation for the energy-momentum tensor,
but from the equations defining harmonic coordinates.

In the Einstein–Infeld–Hoffmann (EIH) method, as
in the Fock method, the metric tensor is expanded into
reciprocal power series in the velocity of light. In addi-
tion, it is assumed that the derivatives of the metric ten-
sor expansion coefficients with respect to time and spa-
tial coordinates do not change their order of smallness.
This additional assumption, which forms the essence of
1063-7761/04/9805- $26.00 © 20837
the EIH method of successive approximations, makes it
possible to reduce the approximate field equations to
equations of the Poisson type. The equations of motion
are derived from covariant laws of conservation for the
energy-momentum tensor. In particular, point particles
are defined as singularities of the metric tensor, which
satisfies the field equations with the energy-momentum

tensor containing the Infeld–Plebanski  functions [5, 6].

These  functions also ensure regularization of the
metric tensor on the world lines of singularities. In their
earlier publications [7–9], Einstein, Infeld, and Hoff-
mann derived the equations of motion not from the
covariant laws of conservation for the energy-momen-
tum tensor, but from the integrability conditions for the
field equations in the form of two-dimensional surface
integrals surrounding singularities.

Kopeikin [10], who extended the Fock method,
derived from the field equations the post-post-Newto-
nian equations of motion for point particles with radia-
tion corrections to these equations.

Here, we derive the post-post-Newtonian equations
of motion for point particles with the Infeld–Plebanski
energy-momentum tensor using the EIH method of suc-
cessive approximation.

The equations of motion derived by Kopeikin and
by us coincide with the equations of motion obtained
earlier in [11, 12], in which the Hadamard partie finie
method of regularization is employed.

The equations of motion can also be derived using
the Arnowitt–Deser–Misner (ADM) method [13, 14].
For example, publications [15, 16] are in line with this
approach. Since the harmonic coordinates used by
Kopeikin [10] and by us are not admitted in this
method, the resultant post-post-Newtonian equations of
motion are different.

δ̂
δ̂
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2. BASIC CONCEPTS AND NOTATION

We will write the Einstein equations for the gravita-
tional field in the form

(2.1)

where

In the harmonic coordinates defined by the equations

(2.2)

the Ricci tensor has the form

(2.3)

where

For N point particles, the energy-momentum tensor
proposed by Infeld and Plebanski [2], Chapter 1, is
given by

(2.4)

Field equations (2.1) and Bianchi’s identities lead to
the following equations of motion for point particles
treated as singularities of the metric tensor (see [2],
Chapter 1):

(2.5)

We are using the following notation: k is the gravi-
tational constant; c is the velocity of light; Greek indi-
ces assume the values of 0, 1, 2, and 3, while Latin indi-
ces (unless other values are specified) assume the val-
ues of 1, 2, 3; recurring indices indicating the
corresponding summation; indices A, B, and C assume
values of 1, 2, …, N, where N is the number of particles;
( ) = (xa) and x0 = ct correspond to spatial and time

coordinates of a point in the field, respectively; ( ) =

Rµν
8πk

c2
---------Tµν* ,–=

Tµν* gµρgνσ
1
2
---gµνgρσ– 

  Tρσ.=

∂α g– gαβ( ) 0,=

Rµν
1
2
---gαβ∂α∂βgµν=

– gαβgρσ ΓρµαΓσνβ ΓµραΓσνβ ΓνραΓσµβ+ +( ),

Γρµν
1
2
--- ∂µgνρ ∂νgµρ ∂ρgµν–+( ).=

g– Tµν mAδ̂ x ξ A–( )
A

∑=

× gρσ
dξ A

ρ

dx0
---------

dξ A
σ

dx0
---------

 
 
 

–1/2
dξ A

µ

dx0
---------

dξ A
ν

dx0
---------.

d2ξ A
a

dx0( )2
--------------- Γµν

a dξ A
a

dx0
---------Γµν

0–
 
 
  dξ A

µ

dx0
---------

dξ A
ν

dx0
---------+ 0.=

AA

x

ξ A
JOURNAL OF EXPERIMENTAL
( ) and  = x0 are the spatial and time coordinates of
point particles, respectively;

∆ = ∂a∂a; ∂µ are the derivatives with respect to coordi-

nates xµ;  are the derivatives with respect to coordi-

nates ; the dot on the function indicates the deriva-
tive with respect to time t; and the signature of the met-
ric tensor coincides with the signature of the
Minkowski tensor, which is equal to (+, –, –, –).

The  function introduced by Infeld and Plebanski
possesses all properties of the Dirac δ function as well
as the additional property (see Appendix in [2])

(2.6)

We will also use the following notation:

We will seek the solutions to field equations (2.1) by
the EIH method of successive approximations, assum-
ing that

(a) the metric tensor can be expanded into the power
series

(2.7)

(b) the derivative of the expansion coefficients of the
metric tensor with respect to time t and with respect to
spatial coordinates xa do not change their order of
smallness:

(2.8)

Propositions (a) and (b) make it possible to reduce the
approximate field equations to equations of the Poisson
type with a generally unlimited carrier of field sources.

ξ A
a ξ A

0

x r, x ξ A– rA, x ξ A– rA,= = =

ξ A ξB– rAB, ξ A ξB– rAB,= =

NA
a rA

1– xa ξ A
a–( ), NAB

a rA
1– ξ A

a ξB
a–( ),= =

V A
a dξ A

a

dt
---------, W A

a d2ξ A
a

dt2
-----------,= =

∂a
A

ξ A
a

δ̂

δ̂ rA( )rA
p– xd( )∫ 0, p 1 2 … L., , ,= =

…( ) …( )δ̂ rA( ) xd( ).∫=
A

g00 1 c 2– h00
2( )

c 4– h00
4( )

c 6– h00
6( )

…,+ + ++=

g0n c 3– h0n
3( )

c 5– h0n
5( )

…,+ +=

gmn δmn c 2– hmn
2( )

c 4– hmn
4( )

…;++ +–=

hµν
i( ) t∂

∂
hµν

i( ) xa∂
∂

hµν
i( )

.∼ ∼
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Instead of expansion (2.7), we can use a more gen-
eral expansion,

(2.9)

however, in the harmonic system of coordinates [17, 18],
the field equations give

while the equalities

are the propositions used in the EIH method, which
takes into account only standing waves [7–9, 19].

In order to reduce the approximate field equations to
the Poisson equations with a limited carrier of field
sources, we will use the identities

(2.10)

(2.11)

For singular functions f and g, these identities define
the derivatives of the products of the functions in terms
of the product of the derivatives of these functions. We
will apply identities (2.10) and (2.11) (see Appendix A)
to the singular functions

.

3. POST-NEWTONIAN APPROXIMATION

Using formulas (2.3), (2.4), (2.7), and (2.8), we obtain
the following equations from field equations (2.1):

(3.1)

The solutions to these equations have the form

(3.2)

gµν gµν
0( )

c i– hµν
i( )

;
i 1=

∞

∑+=

gµν
0( )

ηµν,=

h00 0, h0n
2i( )

0, hmn 0, i 1 2 …, ,= = = =
(2i – 1)(2i – 1)

∂a fg( ) f ∂ag f ∂a f ,+≡

∂a∂b fg( )
≡ f ∂a∂bg g∂a∂b f ∂a f ∂bg ∂ag∂b f .+ + +

f rA
1– rA

2– …, g, , rB
1– rB

2– …, ,= =

∆h00
2( )

8πk mAδ̂ rA( ),
A

∑=

∆hmn
2( )

8πk mAδ̂ rA( )δmn,
A

∑=

∆h0n
3( )

16πk mAδ̂ rA( )V A
n .

A

∑–=

h00
2( )

2Φ, hmn
2( )

– 2Φδmn,–= =

h0n
3( )

4Φn,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where

(3.3)

Using relations (2.3), (2.4), (2.7), and (2.8), as well
as solutions (3.2), we obtain from Eqs. (2.1)

(3.4)

Considering that

(3.5)

(3.6)

and taking into account the identity

which follows from relations (A.5) and (A.6), we
obtain

(3.7)

To solve this equation taking into account the first
expression from (3.3), we consider the integral

(3.8)

The first integral on the right-hand side gives a nonzero

contribution only for  –  = 0. To evaluate this

integral, we expand  into a series in  =

 ≈ 0:

(3.9)

where  are the Legendre polynomials. Prop-

Φ k mArA
1– , Φn

A

∑ k mAV A
n rA

1– .
A

∑= =

∆h00
4( )

2Φ̇̇ 4Φ∆Φ 4∂kΦ∂kΦ–+ +

=  16πk mAδ̂ rA( )
3
4
---V A

2 5
2
---Φ– 

  .
A

∑

Φ̇̇ 1
2
---∆χ̇̇ , χ k mArA,

A

∑= =

∆Φ 4π mAδ̂ rA( ),
A

∑–=

∆Φ2 2Φ∆Φ 2∂kΦ∂kΦ,+≡

∆ h00
4( )

χ̇̇ 2Φ2–+( ) 16πk mAδ̂ rA( )
A

∑=

× 3
4
---V A

2 1
2
---Φ– 

  .

δ̂ x' ξ A–( )Φ' x x'– 1– x'd( )∫
=  kmA δ̂ x' ξ A–( )rA'

1–
x x'– 1– x'd( )∫

+ k mB δ̂ x' ξ A–( )rB'
1–

x x'– 1– x'd( ).∫
B

B A≠

∑

x' ξ A

x x'– 1– rA'

x' ξ A–

x x'– 1– Pm NA
k NA'

k( )rA
m 1+( )– rA'

m
,

m 0=

∞

∑=

Pm NA
k NA'

k
( )
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erty (2.6) of the  function leads to the equality

(3.10)

since  =  is an odd function of vari-

able . The second integral on the right-hand side of
relation (3.8) can easily be evaluated since the inte-

grand is continuous for  = . Thus, we can write

(3.11)

where

Taking into account relations (3.10) and (3.11) we
obtain from Eq. (3.7)

(3.12)

Solutions (3.2) and (3.12) are sufficient for deriving the
post-Newtonian equations of motion.

From formulas (2.5) and (2.7), in the post-Newto-
nian approximation, we have

(3.13)

where

(3.14)

(3.15)

Substituting solutions (3.2) and (3.12) into
Eq. (3.15), we obtain the following integrals with sin-

δ̂

δ̂ x' ξ A–( )rA'
1–

x x'– 1– x'd( )∫
=  δ̂ x' ξ A–( )P1 NA

k NA'
k( )rA

2– x'd( )∫ 0,=

P1 NA
k NA'

k
( ) NA

k NA'
k

rA'

x' ξ A

δ̂ x' ξ A–( )Φ' x x'– 1– x'd( )∫ ΦrA
1– ,=

A

Φ k mBrAB
1– .

B
B A≠

∑=
A

h00
4( )

2Φ2 χ̇̇– k mA 2Φ 3V A
2–( )rA

1– .
A

∑+=
A

d2ξ A
n

dt2
----------- FA

n c 2– FA
n ,+=

(0) (2)

FA
n 1

2
---∂nh00,–=

(0) (2)

A

FA
n 1

2
--- A

∂nh00
------------ 1

2
--- A

hnk∂kh00
------------------- A

ḣ0n

-------
1
2
--- A

ḣ0 0( )
----------V A

n A

ḣnk

-------V A
k+ + +––=

(2)
(4) (2) (2) (3) (2) (2)

–
A

∂nh0k

------------V A
k A

∂kh0n

------------V A
k A

∂kh00
------------V A

k V A
n+ +

(3) (3) (2)

–
1
2
--- A

∂nhks

------------V A
k V A

s A
∂khns

------------V A
k V A

s .+

(2) (2)
JOURNAL OF EXPERIMENTAL A
gular functions, which after integration give

The first two integrals are equal to zero because the
integrands are odd functions, while the third integral is

equal to zero due to property (2.6) of the  function and
the evenness of the integrands. The last two integrals

can be evaluated using a series expansion of  in
rA ≈ 0:

(3.16)

where  are the Gegenbauer polynomials.

Thus, using solutions (3.2) and (3.12) and taking
into account relations (3.13)–(3.15), we obtain

(3.17)

δ̂ rA( )rA
2– NA

k xd( )∫ 0,=

δ̂ rA( )rA
3– NA

k NA
b NA

s xd( )∫ 0,=

δ̂ rA( )rA
2– NA

k NA
b xd( )∫ 1

3
---δkb δ rA( )rA

2– xd( )∫ 0,= =

δ̂ rA( )rA
1– rB

2– NB
k xd( )∫ 0, A B,≠=

δ̂ rA( )rA
2– rB

1– NA
n xd( )∫ 0, A B.≠=

δ̂

rB
M–

rB
L– Cm

1
2
--- L

NA
k NBA

k( )
rA

m

rAB
m L+

-----------,
m 0=

∞

∑=

Cm
L NA

k NBA
k( )

d2ξ A
n

dt2
----------- k mA∂n

ArAB
1–

B
B A≠

∑=

+ c 2– k mB
1
2
---V B

k V B
s ∂n

A∂k
A∂s

ArAB

B
B A≠

∑






+ 4V B
n V A

k 4V A
n V A

k– 4V B
n V B

k– 3V A
n V B

k+( )∂k
ArAB

1–

+ V A
2 4V A

k V B
k–

3
2
---V B

2+ 
  ∂n

ArAB
1–

– k 5mA 4mB+( )rAB
1– ∂n

ArAB
1–

–
1
2
---k2 mBmC ∂k

B
rBC

1– ∂k
B∂n

BrAB 8rAB
1– ∂n

BrBC
1––(

C
C A≠

∑
B

B A≠
B C≠

∑

– 2rBC
1– ∂n

BrAB
1– 8rAB

1– ∂n
C
rAC

1– )–







.
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For two bodies (N = 2), we obtain from relation (3.17)

(3.18)

Substituting index 2 for 1 into this equation, we
obtain the equation of motion for the second body.
Equations (3.18) were derived for the first time by Ein-
stein, Infeld, and Hoffmann [7] from the field equations
in the coordinates defined by the conditions

(3.19)

where

and by Petrova [4], who used the Fock method in the
harmonic coordinates.

4. SOLUTION OF FIELD EQUATIONS
IN THE POST-NEWTONIAN APPROXIMATION

Taking into account solutions (3.2) and (3.12), as
well as formulas (2.3), (2.4), (2.7), and (2.8), we obtain
from Eq. (2.1)

(4.1)

We transform these equations using the formulas

(4.2)

(4.3)

(4.4)

as well as the identity following from (A.3) for L = 2,

(4.5)

Using expressions (4.2)–(4.5) and the first expression

d2ξ1
n

dt2
---------- km2∂n

1r12
1– c 2– km2

1
2
---V2

kV2
s ∂n

1∂k
1∂s

2r12




+=

+ 4V2
nV1

k 4V1
nV1

k– 4V2
nV2

k– 3V1
nV2

k )∂k
1r12

1–+(

+ V1
2 4V1

kV2
k–

3
2
---V2

2+ 
  ∂n

1r12
1–

--– k 5m1 4m2+( )r12
1– ∂n

1r12
1–





.

∂mγmn 0, ∂mγm0 c 1– γ̇00– 0,= =

γµν hµν
1
2
---ηαβhαβηµν;–=

∆hmn
4( )

4Φ∆Φδmn 4∂kΦ∂kΦδmn+ +

– 4∂mΦ∂nΦ 2Φ̇̇δmn+ 16πk=

× mAδ̂ rA( ) V A
mV A

n 1
4
---V A

2 δmn–
1
2
---Φδmn– .

A

∑

∆ SAbln rA
1– rB

1– , SAB rA rB rAB,+ += =

∆ rAln rA
2– ,=

∂a∂brA
1– rA

3– 3NA
a NA

b δab–( ) 4
3
---πδ̂ rA( )δab,–=

∂a∂brA
2– 2∂arA

1– ∂brA
1– 2rA

1– ∂a∂brA
1– .+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
from formula (3.3), as well as relation (A.13), we obtain

(4.6)

Using expressions (3.5) and (4.6), we obtain from
Eq. (4.1)

(4.7)

Taking into account formula (3.10), we can write the
solution to Eq. (4.7) in the form

(4.8)

Using solution (3.2) and formulas (2.3), (2.4), (2.7),
and (2.8), we obtain from Eq. (2.1)

(4.9)

∂mΦ∂nΦ ∆ k2 mAmB∂m
A∂n

B
SABln

B
B A≠

∑
A

∑=

+
1
8
---k2 mA

2 ∂m∂n rAln rA
2– δmn+( )

A

∑

+
4
3
---πk2 mA

2 δ̂ rA( )rA
1– δmn.

A

∑

∆ hmn
4( )

χ̇̇δmn 2Φ2δmn 4k2 mAmB∂m
A∂n

b SABln
B

B A≠

∑
A

∑–+ +

–
1
2
---k2 mA

2 ∂m∂n rA rA
2– δmn+ln( )

A

∑

=  
16
3
------πk2 mA

2 δ̂ rA( )rA
1– δmn

A

∑

+ 16πk mAδ̂ rA( ) V A
n V A

m 1
4
---V A

2 δmn–
1
2
---Φδmn– .

A

∑

hmn
4( )

χ̇̇δmn– 2Φ2δmn–=

+ 4k2 mAmB∂m
A∂n

B SABln
B

B A≠

∑
A

∑

+
1
2
---k2 mA

2 ∂m∂n rA rA
2– δmn+ln( )

A

∑

– k mA 4rA
1– V A

mV A
n 2 Φ 1

2
---V A

2+ 
  rA

1– δmn– .
A

∑
A

∆h0n
5( )

4Φ̇̇n– 16∂kΦ∂nΦk 12Φ̇∂nΦ 8Φ∆Φn–+ +

=  16πk mAδ̂ rA( ) ΦV A
n 2Φn

1
2
---V A

2 V A
n–+ .

A

∑
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Analogously to Eq. (4.6), we transform consecutively
the third and fourth terms on the left-hand side of
Eq. (4.9):

(4.10)

(4.11)

In addition, we have

(4.12)

(4.13)

Substituting expressions (4.10), (4.11), and (4.13) into
Eq. (4.9), we obtain

(4.14)

∂kΦ∂nΦk ∆ k2 mAmB∂k
A∂n

B SABV A
kln

B
B A≠

∑
A

∑=

+
1
8
---k2 mA

2 ∂k∂n rAln rA
2– δkn+( )V A

k

A

∑

+
4
3
---πk2 mA

2 δ̂ rA( )rA
1– V A

n ,
A

∑

Φ̇∂nΦ ∆ k2 mAmB∂k
A∂n

B SABV A
kln

B
B A≠

∑
A

∑–=

–
1
8
---k2 mA

2 ∂k∂n rAln rA
2– δkn+( )V A

k

A

∑

–
4
3
---πk2 mA

2 δ̂ rA( )rA
1– V A

n .
A

∑

Φn
1
2
---∆χn, χn k mAV A

n rA,
A

∑= =

Φ̇̇n
1
2
---∆χ̇̇n.=

∆ h0n
5( )

2 χ̇̇n– 4k2 mAmB∂k
A∂n

B SAB 4V B
k 3V A

k–( )ln
B

B A≠

∑
A

∑+

+
1
2
---k2 mA

2 ∂k∂n rAln rA
2– δkn+( )V A

k

A

∑

=  
16
3
------πk2 mA

2 δ rA( )rA
1– V A

n

A

∑–

+ 16πk mAδ rA( ) 2Φn ΦV A
n–

1
2
---V A

2 V A
n– .

A

∑

JOURNAL OF EXPERIMENTAL 
Using formula (3.11) and similar formulas for , we
obtain the solution to Eq. (4.14) in the form

(4.15)

It is slightly more difficult to evaluate . Taking

into account expressions (3.2), (3.12), (4.8), and (4.15),
as well as (2.2)–(2.4), (2.7), and (2.8), we obtain from
Eq. (2.1)

(4.16)

Φn

h0n
5( )

2 χ̇̇n 2k mArA
1– V A

2 V A
n

A

∑+=

–
1
2
---k2 mA

2 ∂k∂n rAln rA
2– δkn+( )V A

k

A

∑

– 4k2 mAmB ∂k
A∂n

B SAB 4V B
k 3V A

k–( )ln[
B

B A≠

∑
A

∑

– rA
1– rAB

1– V A
n 2V B

n–( ) ] .

h00
6( )

∆h00
6( )

12Φ̇Φ̇ 16∂kΦs∂sΦk– 4ΦΦ̇̇ 16Φk∂kΦ̇+ + +

– 4∂kΦ∂k χ̇̇ 16∂kΦs∂kΦs 8Φ∂kΦ∂kΦ χ( )....+ + +

– 12Φ2∆Φ 2 χ̇̇∆Φ+

+ 8k mArA
1– ∂k∂sΦV A

k V A
s

A

∑

+ 4k mA 2Φ 3V A
2–( )∂kΦ∂krA

1–

A

A

∑

– k mA 2Φ 3V A
2–( )rA

1–

A

A

∑
..

4k3 mA
3 rA

5–

A

∑+

– 2k mA 2Φ 3V A
2–( )Φ∆rA

1–

A

A

∑

– 4k mA Φ 1
2
---V A

2+ 
  rA

1– ∆Φ
A

A

∑

– k3 mA
2 mB∂k∂srB

1– ∂k∂s rAln
B

B A≠

∑
A

∑

– 8k2 mAmB∂k∂sΦ∂k
A∂s

B SABln
B

B A≠

∑
A

∑
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Using formulas (4.2)–(4.4), as well as (A.9) and (A.13),
we can transform the expressions on the left-hand side
of Eq. (4.16). Indeed, in the increasing numbers of
terms on the left-hand side of Eq. (4.16), we obtain

(4.17)

for the second term,

(4.18)

=  16πk mAδ̂ rA( )
25
4
------Φ2 3

4
---ΦV A

2–
5
4
--- χ̇̇– 2ΦkV A

k+







A

∑

+
7
16
------V A

4 1
2
---k mB 5Φ 7

2
---V B

2– 
  rB

1–

B
B A≠

B

∑+

+
1
2
---kmA 5Φ 7

2
---V A

2– 
  rA

1– 1
4
---k2 mB

2 rB
2–

B
B A≠

A

∑ 1
2
---k2mA

2 rA
2–+ +

+
1
2
---k2 mBmC rB

1– rC
1– rB

1– rBC
1–– rC

1– rBC
1––( )

C
C B≠

∑
B

∑






.

Φ̇Φ̇ ∆ k2 mAmB∂k
A∂s

B SABV A
k V B

sln
B

B A≠

∑
A

∑






=

+
1
8
---k2 mA

2 ∂k∂s rAV A
s V A

kln rA
2– V A
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for the third term,

(4.19)

for the fourth term,

(4.20)

for the fifth term, and

(4.21)

for the twelfth term.

We transform the sixth, seventh, eighth, and thir-
teenth terms on the left-hand side of formula (4.16) tak-

ΦΦ̇̇ ∆ k2 mAmB ∂k
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

=
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

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
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
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
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ing into account expressions (3.5) and (4.12). In accor-
dance with formulas (A.1)–(A.6), we have

(4.22)

Using formula (3.5), we obtain the following expres-
sion for the fourteenth term on the left-hand side of
Eq. (4.16):

(4.23)

Taking into account formula (A.13), we can write the
ninth and fifteenth terms on the left-hand side of
Eq. (4.16) in the form

(4.24)

∂kΦ∂k χ̇̇
1
2
---∆ Φχ̇̇( ) 1

2
--- χ̇̇∆Φ–

1
2
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1
2
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2
--- χ̇̇∆Φ– ΦΦ̇̇,–

∂kΦs∂kΦs
1
2
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2 Φk∆Φk,–=

Φ∂kΦ∂kΦ
1
6
---∆Φ3 1

2
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∑
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∑

JOURNAL OF EXPERIMENTAL 
To transform the expression (see [12])

,

we again take into account identity (A.14) as well as the
dependences

(4.25)

This gives

(4.26)

The remaining terms in Eq. (4.16) (except the nine-

teenth term) contain the  function in the integrand.
Substituting relations (4.17)–(4.24) and (4.26) into

Eq. (4.16), we obtain the final equation for  in the

form

mA
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∑
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NA
k NB

k 1
2
--- rA

1– rB rB
1– rA rAB

2 rA
1– rB

1––+( ).=

mA
2 mB∂k∂srB
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
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(4.27)

To solve this equation, we must carry out regulariza-
tion of the following integrals containing singular
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1
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∑
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4
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functions:

(4.28)

It follows from expansions (3.9) and (3.16), as well as

from property (2.6) of the  function, that integrals (4.28)
are equal to zero.

Thus, the solution to Eq. (4.27) can be written in the
form

(4.29)

δ̂ rA'( )rA'
1–
NA'

k
NA'

s
x x'– 1– x'd( )∫ ,
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∑
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where H is the solution to the equation

(4.30)

We will carry out subsequent calculations for a system
of two bodies (N = 2). In this case, function H has the
form [12]

(4.31)

The above expression for two bodies was derived tak-
ing into account identity (A.14) and formulas (4.2) and

(4.3), as well as the expression  =  and
the dependences

Finally, for the two bodies in question, solutions (3.2),
(3.12), (4.8), (4.15), and (4.30) assume the form

(4.32)

(4.33)
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∑
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∑
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∑
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∑
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(4.34)
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(4.36)

where

–
7
4
---r2

1– r12
1– 16S12

2– 16r12
1– S12

1–+ +

+ N12V1( ) N12V2( ) 15
4
------r1

2r2r12
5– 15

4
------r1

3r12
5––

+
9
4
---r1r12

3– 12S12
2–– 12r12S12

1––

+ N1V1( )2 3
4
---r2

2r1
1– r12

3– 2r2
1– r1

1––
1
4
---r1r12

3–+

–
7
4
---r1

1– r12
1– 8S12

2– 8r1
1– S12

1–+ +

– N1V1( ) N1V2( ) r1r12
3– 16S12

2– 16r1
1– S12

1–+ +[ ]

+ N1V2( )2 8S12
2– 8r1

1– S12
1–+[ ]

+ N12V1( ) N1V1( ) 3r1
2r12

4– 3
4
---r2

2r12
4––

3
2
---r12

2– 16S12
2–––

+ N12V2( ) N1V1( ) 3r1
2r12

4––
3
2
---r2

2r12
4– 13

2
------r12

2–– 40S12
2–+ +

+ N12V1( ) N1V2( ) 3
2
---r1

2r12
4–– 4r12

2–– 16S12
2––

+ N12V2( ) N1V2( ) 3
2
---r1

2r12
4– 3r12

2– 16S12
2––+

– 16S12
2– N1V2( ) N2V1( ) 12S12

2– N1V1( ) N2V2( )+

– 2k3m1
3r1

3– k3m1
2m2

1
4
---r1

3r12
6– 4r1

3– 1
2
---r2

3––
9
2
---r1

2– r2
1–––+

–
3
16
------r1

4r2
1– r12

6– 1
8
---r1

2r2r12
6– 1

4
---r2

2r1r12
6– 1

16
------r2

3r12
6– 5

4
---r1r12

4––+–+

+
23
8
------r1

2r2
1– r12

4– 43
8
------r2r12

4– 5
2
---r2

2r1
1– r12

4– 3r12
3– 3r1r2

1– r12
3––+ +–

– r2r1
1– r12

3– 5r2
2r1

2– r12
3– 4r2

3r1
3– r12

3––
3
2
---r1

1– r12
2– 1

4
---r1

2r2
3– r12

2–+ + +

–
3
16
------r2

1– r12
2– 15

4
------r2r1

2– r12
2– 4r2

2r1
3– r12

2– 5r1
2– r12

1––+–

– 5r1
1– r2

1– r12
1– 4r2r1

3– r12
1– 1

4
---r1

2– r2
3– r12

2+ +




1 2( ),+

NAV A( ) NA
k V A

k , NAV B( ) NA
k V B

k ,≡≡

NABV B( ) NAB
k V B

k , V AV B( ) V A
k V B

k .≡≡
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Solutions (4.32)–(4.36) obtained here coincide with
the solutions given in [12].

5. POST-POST-NEWTONIAN EQUATIONS
OF MOTION

The equations of motion in the post-post-Newtonian
approximation can be written in the form

(5.1)

where the equalities

(5.2)

follow from the expressions for  and , respec-

tively, appearing in .

For , we obtain from Eqs. (2.5) and (2.7)

(5.3)
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k , F1''
n

– 4km2r2
1– W2

n= =
(2) (4) (2)(4)

1 1

∂nh00

1

ḣ0n

1

F1
n

F1'''
n

(4)

F1
4( )
'''n 1

2
---∂nh00

6( )

1
2
---hnk

2( )
∂kh00

4( )
ḣ0n
5( )

1
2
--- ḣ00

4( )
V1

n+ +––=

1 1 1 1

+ ḣnk
4( )

V1
k ∂nh0k

5( )
V1

k ∂kh0n
5( )

V1
k+– ∂kh00

4( )
V1

kV1
n+

111 1

–
1
2
---∂nhks

4( )
V1

kV1
s ∂khns

4( )
V1

kV1
s 1

2
---h0n

3( )
ḣ00

2( )
hnk

2( )
ḣ0k

3( )
+–+

1 1 A 1

+ hnk
2( )

ḣks
2( )

V1
s 1

2
---hnk

4( )
∂kh00

2( )
–

1
2
---h00

2( )
ḣ00

2( )
V1

n–

–
1
2
---h0k

3( )
∂kh00

2( )
V1

n h00
2( )

∂kh00
2( )

V1
kV1

n– h0n
2( )

∂kh00
2( )

V1
k–

111

111

+ hnk
2( )

∂sh0k
3( )

V1
s hnk

2( )
∂kh0s

3( )
V1

s– hna
2( )

∂khas
2( )

V1
kV1

s+
1 1 1

+ ∂kh0s
3( )

V1
s V1

kV1
n 1

2
--- ḣks

2( )
V1

kV1
s V1

n–

11

–
1
2
---hnk

2( )
hks

2( )
∂sh00

2( )

1
2
---hna

2( )
∂ahks

2( )
V1

kV1
s .–
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integrals (see Appendix B), we obtain

(5.4)

To evaluate , we will use solutions (4.33)–

(4.37) as well as formula (5.3). After regularization (see
Appendix B), we have

F1'
n 1

2
---k2m1m2 3N12

n N12V1( )2 4N12
n N12V2( )2+[–=

(4)

– 7N12
n N12V1( ) N12V2( ) 4V1

n N12V2( ) 4V2
n N12V2( )–+

– 3V1
n N12V1( ) 3V2

n N12V1( ) ] ,+

F1''
n

16k3m1
2m2r12

4– N12
n– 20k3m2

2m1r12
4– N12

n–=
(4)

– k2m1m2r12
3– 8N12

n V1
2– 4N12

n V2
2– 16N12

n V1V2( )+[

+ 6N12
n N12V1( )2 16V2

n N12V2( ) 16V1
n N12V2( )–+

– 12V2
n N12V1( ) 12V1

n N12V1( )+ ] .

F1'''
n

(4)

1
2
---∂nh00

6( )
3k3m2

3r12
4– N12

n 7
4
---k3m1

2m2r12
4– N12

n–=
1

+
23
2
------k3m2

2m1r12
4– N12

n

+ k2m2
2r12

3– –N12
n V2

2 6N12
n N12V2( )2 3V2

n N12V2( )–+[ ]

+ k2m1m2r12
3– 3

4
---N12

n V1
2 35

4
------N12

n V2
2 5

2
---N12

n V1V2( )–+

–
23
2
------N12

n N12V1( )2 37
2
------N12

n N12V2( )2–

+ 25N12
n N12V2( ) N12V1( ) 31

4
------V2

n N12V2( )+

–
39
4
------V1

n N12V2( ) 3
4
---V2

n N12V1( ) 31
4
------V1

n N12V1( )+–

+ km2r12
2– 9

2
---N12

n N12V2( )2V2
2– 3V2

n N12V2( )V2
2+

+ 2N12
n V A

4 15
8
------N12

n N12V2( )4 3
2
---V2

n N12V2( )3–+ ,

1
2
---hnk

2( )
∂kh00

4( )
4k3m2

3r12
4– N12

n 2k3m2
2m1r12

4– N12
n+=

1

+ k2m2
2r12

3– 3N12
n N12V2( )

2
2V2

n N12V2( )– 4N12
n V2

2–[ ] ,

1
2
---hnk

4( )
∂kh00

2( )
2k3m2

3r12
4– N12

n– 7k3m2
2m1r12

4– N12
n+=

+ k2m2
2r12

3– N12
n N12V2( )

2
4V2

n N12V2( )–[ ] ,

1
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1
2
---hnm

2( )
hmb

2( )
∂bh00

2( )
4k3m2

3r12
4– N12

n ,=
1

hnk
2( )

ḣ0k
3( )

8k3m2
2m1r12

4– N12
n 8k2m2

2r12
3– V2

n N12V2( ),–=
1

1
2
---h0n

2( )
ḣ00

2( )
4k2m2

2r12
3– V2

n N12V2( ),–=

1

ḣ0n
5( )

– 14k3m2
2m1r12

4– N12
n–=

1

+ k2m2
2r12

3– N12
n V2

2 4N12
n N12V2( )

2
– 3V2

n N12V2( )+[ ]

+ k2m2m1r12
3– 6N12

n V2
2– 10N12

n N12V2( )2+[[ ]

– 10V2
n N12V2( ) 17N12

n V2V1( ) 42N12
n N12V1( )2––

+ 12N12
n V1

2 46N12
n N12V2( ) N12V1( )+

+ 12V1
n N12V2( ) 21V2

n N12V1( )– 6V1
n N12V1( ) ]+

+ km2r12
2– –8V2

n N12V2( )V1
2 6V2

n N12V2( )3+[ ] ,

1
2
--- ḣ00

4( )
V1

n– k2m1m2r12
3– V1

n N12V1( )=

– 2k2m2
2r12

3– V1
n N12V2( )

+ km2r12
2– 3V1

nV2
2 N12V2( )2 3

2
---V1

n N12V2( )+ ,

1

1
2
---h00

2( )
ḣ00

2( )
V1

n 2k2m2
2r12

3– V1
n N12V2( ),=

1

1
2
---h0k

3( )
∂kh00

2( )
V1

n 4k2m2
2r12

3– V1
n N12V2( ),=

1

h0n
3( )

∂kh00
2( )

V1
k 8k2m2

2r12
3– V2

n N12V1( ),=
A

hnb
2( )

∂kh0b
3( )

– V1
k 8k2m2

2r12
3– V2

n N12V1( ),–=
1

hnb
2( )

∂bh0k
3( )

V1
k 8k2m2

2r12
3– N12

n V1V2( ),=
1

hnk
2( )

ḣkb
2( )

– V1
b 4k2m2

2r12
3– V1

n N12V2( ),–=
1

–ḣnk
4( )

V1
k k2m2

2r12
3– V2

n N12V1( )– N12
n V1V2( )–[=

1

+ 4N12
n N12V2( ) N12V1( ) 2V1

n N12V2( ) ]+
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+ k2m1m2r12
3– 5N12

n V1
2– 12N12

n V1V2( )+[

+ 24N12
n N12V1( )

2
32N12

n N12V2( ) N12V1( )–

– 7V1
n N12V1( ) 12V2

n N12V1( )+ ]

+ km2r12
2– 3V1

n N12V2( )
3

–[

+ 2V1
n N12V2( )V2

2 4V2
n N12V2( ) V1V2( ) ] ,+

∂nh0k
5( )

V1
k   ∂ k h 0 n 

5
 
( )
 –  V 1 

k
 

1 1

=  k2m2
2r12

3– –V2
n N12V1( ) N12

n V1V2( )+[ ]

+ k2m1m2r12
3– 7N12

n V1
2 6N12

n V2V1( ) 7V1
n N12V1( )––[

+ 6V2
N N12V1( ) ] km2r12

2– 4V2
n N12V1( )V2

2[+

– 4N12
n V2

2 V1V2( ) 6N12
n N12V2( ) V1V2( )+

– 6V2
n N12V1( ) N12V2( ) 2N12

n V2
2 V1V2( )– ] ,

∂kh00
4( )

V1
kV1

n– km2r12
2– 4V1

n N12V1( )V2
2–[=

1

– 2V1
n N12V2( ) V1V2( ) 3V1

n N12V1( ) N12V2( )2 ]+

+ 4k2m2
2r12

3– V1
n N12V1( ) 2k2m2m1r12

3– V1
n N12V1( ),+

h00
2( )

∂kh00
2( )

V1
kV1

n 4k2m2m1r12
3– V1

n N12V1( ),–=
1

1
2
---∂nhmk

4( )
V1

kV1
m

=  k2m2
2r12

3– V1
n N12V1( )– N12

n V1
2 2N12

n N12V1( )2+ +[ ]

1

+ k2m1m2r12
3– 4N12

n N12V1( )2– 3V1
n N12V1( )+[ ]

+ km2r12
2– V2

n N12V2( )V1
2---

–
3
2
---N12

n N12V2( )2V1
2 2N12

n V1V2( )2+ ,

∂bhnk
4( )

V1
kV1

b–

=  k2m2
2r12

3– –V1
n N12V1( ) N12

n V1
2 4N12

n N12V1( )2–+[ ]

1

+ k2m1m2r12
3– 8N12

n N12V1( )2 3V1
n N12V1( )– 3N12

n V1
2–[ ]

+ km2r12
2– 3V1

n N12V2( )2 N12V1( )[

– 4V2
n N12V1( ) V1V2( ) 2V1

n V1V2( ) N12V2( ) ] ,–
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(5.5)

We have introduced the following notation:

Expressions (3.18), (5.1) and (5.4), (5.5) lead to the
post-post-Newtonian equations of motion for two point
particles:

(5.6)

1
2
---hns

2( )
∂shkb

2( )
V1

kV1
b 2k2m2

2r12
3– N12

n V1
2,–=

1

hns
2( )

∂mhks
2( )

V1
kV1

m– 4k2m2
2r12

3– V1
n N12V1( ),=

∂sh0b
3( )

V1
bV1

s V1
n– 4km2r12

2– V1V2( )V1
n N12V1( ),=

1

1

1
2
--- ḣmk

2( )
V1

mV1
nV1

k– km2r12
2– V1

2V1
n N12V2( ).–=

1

N12V2( ) N12
k V2

k , V1V2( ) V1
kV2

k .≡≡

d2ξ1
n

dt2
---------- km2r12

2– N12
n–=

+ c 2– km2r12
2– 3

2
---N12

n N12V2( )2 2N12
n V2

2–




+ 4N12
n V1V2( ) N12

n V1
2– 3V2

n N12V2( ) 4V2
n N12V1( )–+

--+ 4V1
n N12V1( ) 3V1

n N12V2( )–

--+ k2m2 5m1 4m2+( )r12
3– N12

n





+ c 4– km2r12
2– 4N12

n V2
2 V1

kV2
k( ) 2N12

n V2
4-–





– 2N12
n V1

kV2
k( )2 3

2
---N12

n V1
2 N12V2( )2 9

2
---N12

n V2
2 N12V2( )2+ +

– 6N12
n V1

kV2
k( ) N12V2( )2 15

8
------N12

n N12V2( )4–

+ 5V1
nV2

2 N12V2( ) 3V2
nV1

2 N12V2( ) V1
nV1

2 N12V2( )+–

+ 4V1
nV2

2 N12V1( ) 4V2
nV2

2 N12V1( ) 5V2
nV2

2 N12V2( )+–

– 4V1
n V1

kV2
k( ) N12V1( ) 4V2

n V1
kV2

k( ) N12V1( )+

+ 4V1
n V1

kV2
k( ) N12V2( ) 4V1

n V1
kV2

k( ) N12V2( )–

+ 6V2
n N12V1( ) N12V2( )2 6V1

n N12V1( ) N12V2( )2–
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The equations of motion for the second particle can be
obtained by substituting subscript 2 for 1.

6. CONCLUSIONS

Equations of motion (5.6), derived here by the EIH
method, coincide with the equations obtained by
Kopeikin [10], who used the Fock method. Thus, we
have proved that both methods (the EIH method and the
Fock method), which can be regarded as classical, give
not only identical post-Newtonian, but also post-post-
Newtonian equations of motion for point particles in
the harmonic coordinates.

It should be noted that the definition of point parti-
cles in the Fock method is very clear from the stand-
point of physics. In the EIH method, clarity is lost, but
mathematical calculations are simplified. We give here
almost all calculations (except very simple ones).

If we take retarded waves instead of standing waves
in the expansions of metric tensor (2.9), the post-post-
Newtonian equations of motion for point particles will
not change; a difference will appear only in the next
approximations.

+
9
2
---V1

n N12V2( )3 9
2
---V2

n N12V2( )3–

+ k2m1m2r12
3– 15

4
------N12

n V1
2–

5
4
---N12

n V2
2 5

2
---N12

n V2
kV1

k–+

+
39
2
------N12

n N12V1( )2 17
2
------N12

n N12V2( )2+

– 39N12
n N12V2( ) N12V1( ) 55

4
------V2

n N12V2( )–

+
55
4
------V1

n N12V2( ) 63
4
------V2

n N12V1( ) 63
4
------V1

n N12V1( )–+

+ k2m2
2r12

3– 4N12
n V2

2 8N12
n V1V2( ) 6N12

n N12V2( )
2

––[

+ 2N12
n N12V1( )2 4N12

n N12V2( ) N12V1( )–

+ 2V2
n N12V2( ) 2V1

n N12V2( ) 2V2
n N12V1( )+–

– 2V1
n N12V1( ) ] 9k3m2

3r12
4– N12

n–

–
57
4
------k3m1

2m2r12
4– N12

n 69
2
------k3m2

2m1r12
4– N12

n–




.
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APPENDIX A

Derivatives of the Products of Singular Functions 

We apply identities (2.10) and (2.11) to singular

functions , , L = 1, 2, 3, …, M = 1, 2, 3, … .

Substituting f =  and, successively, g = , ,
… into identity (2.10), we obtain

(A.1)

Substituting  and  into identity (2.10) and
using (A.1), we obtain

(A.2)

A similar substitution of functions f =  and g = ,

, … into identity (A.1) gives

(A.3)

Using identities (2.11) and (A.1)–(A.3), we obtain the

following expressions for  and :

(A.4)

In particular, formulas (A.3) and (A.4) give

(A.5)

(A.6)

Substituting the formulas

(A.7)

(A.8)

(which are borrowed, as in [10, 16], from the theory of
generalized functions [20]) into identities (A.1)–(A.6),
we obtain the following formulas defining the deriva-

rA
L– rB

M–

rA
1– rA

1– rA
2–

∂arA
L– LrA

L– 1+ ∂arA
1– .≡

rA
L– rB

M–

∂a rA
L– rB

M–( ) LrB
M– rA

L– 1+ ∂arA
1–≡

+ MrA
L– rB

M– 1+ ∂arB
1– .

rA
L– rA

1–

rA
2–

∂a∂brA
L– L L 1–( )rA

L– 2+ ∂arA
1– ∂brA

1–≡

+ LrA
L– 1+ ∂a∂brA

1– .

rA
L– rB

M–

∂a∂b rA
L– rB

M–( ) LrB
M– rA

L– 1+ ∂a∂brA
1–≡

+ MrA
L– rB

M– 1+ ∂a∂brB
1– L L 1–( )rB

M– rA
L– 2+ ∂arA

1– ∂brA
1–+

+ M M 1–( )rA
L– rB

M– 2+ ∂arB
1– ∂brB

1–

+ LMrA
L– 1+ rB

M– 1+ ∂arA
1– ∂brB

1– ∂arB
1– ∂brA

1–+[ ] .

∆rA
L– L L 1–( )rA

L– 2+ ∂arA
1– ∂arA

1– LrA
L– 1+ ∆rA

1– ,+≡

∆ rA
L– rB

M–( ) LrB
M– rA

L– 1+ ∆rA
1– MrA

L– rB
M– 1+ ∆rB

1–+≡

+ L L 1–( )rB
M– rA

L– 2+ ∂arA
1– ∂arA

1–

+ M M 1–( )rA
L– rB

M– 2+ ∂arB
1– ∂arB

1–

+ 2LMrA
L– 1+ rB

M– 1+ ∂arA
1– ∂arB

1– .

∂arA
1– rA

2– NA
a ,–=

∂a∂brA
1– rA

3– 3NA
a NA

b δab–[ ] 4
3
---πδ rA( )δab–=
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tives of the products of functions  and  in terms
of the products of the derivatives of these functions:

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

APPENDIX B

Regularization of Diverging Integrals 

To derive equations of motion (5.6), we must evalu-
ate the following diverging integrals in formulas (5.2)
and (5.3):

(B.1)

rA
L– rB

M–

∂arA
L– LrA

L– 1– NA
a ,–=

∂a rA
L– rB

M–( ) LrB
M– rA

L– 1– NA
a–=

– MrA
L– rB

M– 1– NB
a ,

∂a∂brA
L– LrA

L– 2– L 2+( )NA
a NA

b δab–[ ]=

–
4
3
---πLrA

L– 1+ δ rA( )δab,

∂a∂b rA
L– rB

M–( ) LMrA
L– 1– rB

M– 1– NA
a NB

b NA
b NB

a+( )=

+ MrA
L– rB

M– 2– M 2+( )NB
a NB

b δab–[ ]

+ LrB
M– rA

L 2–– L 2+( )NA
a NA

b δab–[ ]

–
4
3
---πMrA

L– rB
M– 1+ δ rB( )δab

4
3
---πLrB

M– rA
L– 1+ δ rA( )δab,–

∆rA
L– L L 1–( )rA

L– 2– 4πLrA
L– 1+ δ rA( ),–=

∆ rA
L– rB

M–( ) L L 1–( )rB
M– rA

L– 2– M M 1–( )rA
L– rB

M– 2–+=

– 4πLrB
M– rA

L– 1+ δ rA( ) 4πMrA
L– rB

M– 1+ δ rB( ).–

δ̂ rA( )rA
KrB

M x( )d∫ , δ̂ rA( )rA
KrB

M NA
n x( )d ,∫

δ̂ rA( )rA
KrB

M NB
n x( )d , δ̂ rA( )rA

KrB
M NA

n NA
k x( ),d∫∫

δ̂ rA( )rA
KrB

M NA
n NB

k x( ), δ̂ rA( )rA
KrB

M NB
n NB

k x( ),d∫d∫
δ̂ rA( )rA

KrB
M NA

n NA
k NA

s x( ), δ̂ rA( )rA
KrB

M NA
n NA

k NB
s x( ),d∫d∫

δ̂ rA( )rA
KrB

M NA
n NB

k NB
s x( ), δ̂ rA( )rA

KrB
M NB

n NB
k NB

s x( ),d∫d∫
δ̂ rA( )∂n∂b

A SAB xd( ), δ̂ rA( )∂n∂b
B SAB xd( ),ln∫ln∫

δ̂ rA( )∂n∂k
A∂b

B SAB xd( ), δ̂ rA( )∂n
B∂k

A∂b
A SAB xd( ),ln∫ln∫

δ̂ rA( )∂n
B∂k

B∂b
A SAB xd( ),ln∫

δ̂ rA( )rA
2– NA

a ∂n
B∂a

A SAB xd( ),ln∫
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for K = –4, –3, –2, –1, 0, 1 and M = –4, –3, –2, –1, 0, 1.
Taking into account relation (3.16), we obtain the

expansion of  and  into power series in rA ≈ 0:

(B.2)

(B.3)

δ̂ rA( )rB
2– NB

a ∂n
B∂a

A SAB xd( ),ln∫
δ̂ rA( )rA

2– NA
a ∂n

A∂a
B SAB xd( ),ln∫

δ̂ rA( )rB
2– NA

a ∂n
A∂a

B SAB xd( )ln∫

rB
K NB
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Using the formulas [1]

and property (2.6) of the  function, we obtain the fol-
lowing integral making nonzero contributions to equa-
tions of motion (5.6):

(B.4)
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NUCLEI, PARTICLES, 
AND THEIR INTERACTION

  
Radiative Corrections to Polarization Observables
in Elastic Electron–Deuteron Scattering 

in Hadronic Variables¶

G. I. Gakh and N. P. Merenkov
National Science Center Kharkov Institute of Physics and Technology, Kharkov, 61108 Ukraine

e-mail: merenkov@kipt.kharkov.ua
Received November 17, 2003

Abstract—Model-independent QED radiative corrections to polarization observables in the elastic scattering
of unpolarized and longitudinally polarized electron beam by a deuteron target are calculated. Two experimen-
tal setups are considered: the deuteron target is arbitrarily polarized, or the vector and/or tensor polarization of
the recoil deuteron is measured. The calculations are based on taking all essential Feynman diagrams into
account and using the covariant parametrization of the deuteron polarization state. The radiative corrections are
calculated for the hadronic variables using invariant integration of the leptonic tensor. Numerical estimates of
the radiative corrections to the polarization observables are made for various values of the kinematical vari-
ables. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent progress in electron-scattering experiments
has made it possible to measure various polarization
observables in the region of momentum transfers,
where they can help to discriminate between different
theoretical predictions. Much of this progress has been
made possible by modern high-energy electron acceler-
ators with a high duty cycle, such as MAMI or JLAB,
and by the development of polarized sources, targets,
and polarimeters.

Electron scattering by few-body systems has shown
that the two-body terms of the nuclear electromagnetic
operators make important contributions to the observ-
ables.

The deuteron, the only bound two-nucleon system,
is one of the fundamental systems of nuclear physics.
Accordingly, many studies, both experimental and the-
oretical, have been devoted to it. Of particular interest
today is the degree to which the deuteron can be under-
stood as a system of two nucleons interacting via the
known nucleon–nucleon interaction.

When addressing the electromagnetic properties of
the deuteron more specifically, the corresponding ques-
tion concerns the ability to predict the three deuteron
form factors starting from the calculated deuteron
wavefunction and the nucleon form factors known from
the electron–nucleon scattering. At low momentum
transfers, predictions and data agree quite well when
only one-body terms are taken into account; at higher
momentum transfers, two-body contributions are
important. Whether it is necessary to make allowance

¶This article was submitted by the authors in English.
1063-7761/04/9805- $26.00 © 20853
for quark degrees of freedom is still a matter of debate.
An up-to-date status of the experimental and theoretical
research into the deuteron can be found in reviews [1].

The deuteron electromagnetic form factors most
often are studied in order to check our understanding of
the two-nucleon system. In parallel, however, the deu-
teron form factors are also exploited to get a better han-
dle on the neutron form factors. In the past, much of our
knowledge on the neutron charge form factor GEn(q2)
came from precision studies of the deuteron structure
function A(q2) (see Eq. (16) for the definition). Only
very recently have experiments involving both polar-
ized electrons and polarized target/recoil nuclei made it
possible to access GEn via other observables. At large
q2, however, GEn is still largely unknown, which repre-
sents a serious handicap to quantitative understanding
of the deuteron charge form factors.

Elastic electron–deuteron scattering has been inves-
tigated in many experiments, and the cross-sectional
data today cover a large range of momentum transfers
(see review [2]). Some of these data are obviously not
very precise; other data, mainly more recent, have
reached accuracies that have achieved a level 1%. Over
the last few years, it has increasingly become possible
to measure not only cross sections, but also spin
observables. The knowledge of these spin observables
is imperative if one wants to separate the contributions
of the different form factors to the A(q2) structure func-
tion. In terms of experiment, good progress has been
made. In particular, we now have a reasonably com-
plete set of polarization data for electron–deuteron
scattering that allows us to separate the deuteron charge
and quadrupole form factors.
004 MAIK “Nauka/Interperiodica”
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Two techniques are basically available to measure
such spin observables.

(1) With storage rings, one can use polarized, internal
deuteron gas targets from an atomic beam source [3].
The high intensity of the circulating electron beam
allows one to achieve acceptable luminosities despite
the very low thickness of the gas target.

(2) At facilities with external beams, one can use
polarimeters to measure the polarization of the recoil
deuterons. High beam intensities are a prerequisite
because the measurement of polarization, which
requires a second reaction of the deuteron, involves the
loss of a few orders of magnitude in the counting rate.

Current experiments at modern accelerators have
reached a new level of precision; this requires a new
approach to data analysis and inclusion of all possible
systematic uncertainties. An important source of such
uncertainties is the electromagnetic radiative effects
caused by physical processes that occur in higher
orders of perturbation theory with respect to electro-
magnetic interaction. Previously, we calculated the
radiative corrections to the polarization observables in
deep inelastic scattering (due to a tensor-polarized deu-
teron target) [4] and in semi-inclusive deep inelastic
scattering (due to the vector polarization of the target
and/or outgoing hadron) [5].

In the present paper, we calculate the model-inde-
pendent O(α) QED corrections to the polarization
observables in the scattering of the unpolarized or lon-
gitudinally polarized electron beam off a vector- or ten-
sor-polarized deuteron target (or production of an arbi-
trarily polarized final deuteron),

(1)

The experimental setups also make it possible to mea-
sure the tensor polarization observables under scatter-
ing off the polarized deuteron target as well as by deter-
mination of the recoil deuteron polarizations. Different
aspects of respective approaches [6] in JLAB have been
discussed recently in [7].

For polarized-target experiments, a scattered elec-
tron is usually detected, although the measurement of
the recoil deuteron is also possible. In the first case, lep-
tonic variables, and in the second case, hadronic ones
are used to calculate radiative corrections. In the lep-
tonic variables, the virtuality of the heavy intermediate
photon is not fixed due to the possibility to radiate a
photon by the initial or scattered electron. As a result,
the corresponding radiative correction involves certain
integrals with deuteron form factors over the intermedi-
ate photon mass that cannot be computed in a model-
independent way (without knowing the form factors).
On the contrary, in hadron variables, the heavy photon
mass is fixed and the respective radiative correction
caused by electromagnetic effects in the lepton part of
the interaction can be calculated, in principle, in a

e– k1( ) D p1( ) e– k2( ) D p2( ).+ +
JOURNAL OF EXPERIMENTAL 
model-independent way in any order of perturbation
theory.

The measurement of the recoil-deuteron polariza-
tion requires the analysis of the second scattering,
which, in turn, suggests knowledge of the recoil-deu-
teron 3-momentum. Therefore, calculation of the radi-
ative correction in this experimental setup requires
using the hadronic variables, which we consider in this
work. Our approach is based on the covariant parame-
trization of the polarization state of the deuteron target
or recoil deuteron in terms of the 4-momenta of the par-
ticles in process (1), used first in [8–10] and recently
in [4, 5]. In addition, we use invariant integration of the
leptonic tensor to calculate the contribution to the radi-
ative correction caused by the hard-photon radiation.
Derived this way, the first-order QED correction is gen-
eralized by exponentiation of the most singular terms in
the limiting case where the real photon energy is small.
Our analytical final results are simple enough and have
a physically transparent form.

2. BORN APPROXIMATION

Different polarization observables in the electron–
deuteron elastic scattering have been studied in [11–16]
and other papers, where the results were expressed in
terms of the deuteron electromagnetic form factors.
Here, we reproduce most of these results using the
method of covariant parametrization of the deuteron
polarization state in terms of the particle 4-momenta
and demonstrate the advantage of this approach.

We first consider the scattering off the polarized
deuteron target. In the one-photon exchange approxi-
mation, we define the cross section of process (1) in
terms of the contraction of the leptonic Lµν and had-
ronic Hµν tensors (we neglect the electron mass wher-
ever possible),

(2)

where V = 2k1p1, ε2 and E2 are the respective energies
of the scattered electron and the recoil deuteron, and
q = k1 – k2 = p2 – p1 is the 4-momentum of the heavy vir-
tual photon that probes the deuteron. For a longitudi-
nally polarized electron beam, the leptonic tensor in the
Born approximation is given by

(3)

where λ is the degree of the beam polarization (in what
follows, we assume that the electron beam is com-
pletely polarized, and, consequently, λ = 1).

dσ α2

2Vq4
------------Lµν

B Hµν
d3k2

ε2
----------

d3 p2

E2
-----------δ k1 p1 k2– p2–+( ),=

Lµν
B q2gµν 2 k1µk2ν k2µk1ν+( ) 2iλ µνqk1( ),+ +=

µναb( ) εµνλρaλbρ,=
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The hadronic tensor can be expressed via the deu-
teron electromagnetic current Jµ describing the transi-
tion γ*d  d as

(4)

Because the deuteron is a spin-one nucleus, its elec-
tromagnetic current is completely described by three
form factors. Assuming the P- and C-invariance of the
hadron electromagnetic interaction, we can write this
current as [17]

(5)

where U1µ(U2µ) is the wavefunction of the initial
(recoil) deuteron, M is the deuteron mass, and Gi (i = 1,
2, 3) are the deuteron electromagnetic form factors.
Due to the current hermiticity, the form factors Gi(q2)
are real functions in the region of spacelike momentum
transfer. They can be related to the standard deuteron
form factors, GC (the charge monopole), GM (the mag-
netic dipole), and GQ (the quadrupole), as

(6)

The standard form factors have the normalizations

(7)

where mn is the nucleon mass, µd(Qd) is deuteron mag-
netic (quadrupole) moment, and their values are

In calculating the expression for the hadron tensor
Hµν in terms of the deuteron electromagnetic form
factors, using the explicit form of electromagnetic cur-
rent (5), one has to use the spin-density matrix of the
initial and final deuterons

(8)

if the deuteron target is polarized and the polarization
of the recoil deuteron is not measured. Here, Wα and

Hµν JµJν*.=

Jµ p1 p2+( )µ=

× G1U1U2*–
G3

M2
------- U1qU2*q

q2

2
-----U1U2*– 

 +

+ G2 U1µU2*q U2µ* U1q–( ),

GM G2, GQ– G1 G2 2G3,+ += =

GC
ρ
6τ
----- G2 G3–( ) 1 ρ

6τ
-----+ 

  G1,+=

ρ q2

V
-----, τ–

M2

V
-------.= =

GC 0( ) 1, GM 0( )
M
mn

------µd,= =

GQ 0( ) M2Qd,=

µd 0.857, Qd 0.2859 f m2.= =

U1αU1β* 1
3
--- gαβ

p1α p1β

M2
----------------– 

 –
i

2M
-------- αβW p1( ) Qαβ,+–=

U2αU2β* gαβ
p2α p2β

M2
----------------– 

 –=
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Qαβ are the target-deuteron polarization 4-vector and
the quadrupole tensor, respectively.

Taking Eqs. (4), (5), and (8) into account, we can
write the hadronic tensor in the general case as

(9)

where Hµν(0) corresponds to the unpolarized case and
Hµν(V) (Hµν(T)) corresponds to the case of the vector
(tensor) polarization of the deuteron target. The Hµν(0)
term has the form

(10)

In the case under consideration, the term Hµν(V),
responsible for the vector polarization of the deuteron
target, can be written as

(11)

where the 4-vector of the target deuteron polarization
satisfies the conditions

For the tensor-polarized deuteron target, Hµν(T)
can be written in terms of the electromagnetic form
factors as

(12)

Hµν Hµν 0( ) Hµν V( ) Hµν T( ),+ +=

Hµν 0( ) W1g̃µν
W2

M2
------- p̃1µ p̃1ν,+–=

g̃µν gµν
qµqν

q2
-----------, p̃1µ– p1µ

p1q

q2
--------qµ,–= =

W1
2q2

3
-------- 1 ρ

4τ
-----+ 

  Gµ
2 ,–=

W2 4M2 ρ
6τ
-----GM

2 GC
2 ρ2

18τ2
-----------GQ

2+ + 
  .=

Hµν V( )
iGM

2M
--------- GM G–( ) W p2( ) µνq p1( ) ---=

+ 2M2 1 ρ
4τ
-----+ 

  G µνqW( ) ,

G 2GC
ρ
6τ
-----GQ,+=

W2 1, W p1– 0.= =

Hµν T( ) QGM
2 g̃µν–

Q

M2
-------+=

× GM
2 4 1 η+( ) 1– GQ GC

η
3
---GQ ηGM+ + 

 +

× p̃1µ p̃1ν 2ηGM GM 2GQ+( ) p̃1µQ̃ν p̃1νQ̃µ+( )–

– q2 1 η+( )GM
2 Q̃µν,
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where

(13)

The target deuteron quadrupole polarization tensor Qµν
satisfies the conditions

(14)

Using the definitions of cross section (2) and lep-
tonic (3) and hadronic (9) tensors, we can easily derive
the expression for the unpolarized differential cross
section in terms of the invariant variables suitable for
the calculation of the radiative corrections,

(15)

In the laboratory system, this expression can be written
in a more familiar form,

(16)

where θe is the electron scattering angle, σNS is the Mott
cross section multiplied by the deuteron recoil factor

and ε1 is the electron beam energy. The two structure
functions A(Q2) and B(Q2) are quadratic combinations
of the three electromagnetic form factors describing the
deuteron structure,

Before writing similar distributions for the scatter-
ing of polarized particles, we note that, in this case,
there may exist, in general, an azimuthal correlation
between the reaction plane and the plane (p2, W) if the
recoil deuteron is detected (here, W is 3-vector of the
deuteron polarization). However, in the Born approxi-

Q̃µ Qµνqν
qµ

q2
-----Q, Q̃µqµ– 0,= =

Q̃µν Qµν
qµqν

q4
-----------Q

qνqα

q2
-----------Qµα
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Qµν Qνµ, Qµµ 0, p1µQµν 0.= = =

dσb
un

dQ2
-----------

πα2

Q4
--------- 2ρ

V
------W1

W2

Vτ
------- 1 ρ 1 τ+( )–[ ]+

 
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 

,=

Q2 q2– 2k1k2.= =

dσb
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dΩ
----------- σNS A Q2( ) B Q2( )

θe

2
-----tan

2
+

 
 
 

,=

1 2 ε1/M( )
θe

2
-----sin

2
+ 

 
1–

,

A Q2( ) GC
2 Q2( ) 8

9
---η2GQ

2 Q2( ) 2
3
---ηGM

2 Q2( ),+ +=

B Q2( )
4
3
---η 1 η+( )GM

2 Q2( ), η Q2

4M2
----------.= =
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mation, with the P-invariance of the electromagnetic
interaction taken into account, such a correlation is
absent. In what follows, we consider the situation
where the vector W belongs to the reaction plane and
the corresponding azimuthal angle equals to zero.
Therefore, there exist only two independent compo-
nents of W, which we call the longitudinal and trans-
verse ones. It is convenient to use the covariant param-
etrization of the deuteron polarization 4-vector in terms
of the 4-momenta of the particles in the reaction. This
parametrization is ambiguous and depends on the
directions along which the longitudinal and transverse
components of the deuteron polarization in its rest
frame are defined.

As mentioned above, we have to define the longitu-
dinal WL and transverse W T 4-vectors. In our case, it is
natural to choose the longitudinal direction in the labo-
ratory system along the 3-momentum q and the trans-
verse direction perpendicular to the longitudinal one in
the reaction plane. The corresponding 4-vectors can be
written as [5]

(17)

This leads to simple expressions for the corresponding
part of the hadronic tensor,

(18)

The polarization-dependent parts of the cross sec-
tion, due to the vector polarization of the deuteron tar-
get, are given by

(19)

(20)

where we assumed that λ in Eq. (3) is equal to one and
the deuteron-target polarization degree (longitudinal or
transverse) is 100%.

Wµ
L( ) 2τqµ ρp1µ–

M ρ 4τ ρ+( )
--------------------------------,=
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T( ) 4τ ρ+( )k1µ 1 2τ+( )qµ– 2 ρ–( )p1µ–

V 4τ ρ+( ) 1 ρ– ρτ–( )
-------------------------------------------------------------------------------------------.=

Hµν
L V( )

iGM
2

4τ
--------- µνq p1( ) ρ 4τ ρ+( ),–=

Hµν
T V( )

iGMG
4

-------------- 4τ ρ+( ) µνqk1( )[–=

– 2 ρ–( ) µνq p1( ) ] 4τ ρ+( )
τ 1 ρ– ρτ–( )
--------------------------------.

dσb
L

dQ2
---------

πα2

4τV2
------------2 ρ–

ρ
------------ ρ 4τ ρ+( )GM

2 ,=

dσb
T

dQ2
---------

πα2

VQ2
---------- 4τ ρ+( ) 1 ρ– ρτ–( )

τ
--------------------------------------------------GMG,=
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In the laboratory system, these parts of the cross sec-
tion can be written as

(21)

(22)

where ε2 is the scattered electron energy.

It is worth noting that the ratio of the longitudinal

polarization asymmetry AL = d /dσb to the transverse

one, AT = d /dσb ,

(23)

is expressed in terms of the deuteron form factors GM

and G in the same way as the corresponding ratio in the
case of elastic electron–proton scattering is expressed
via the proton electromagnetic form factors GMp and
GEp [17, 18]. This is a direct consequence of the relation

between the proton  and deuteron Hµν(V) had-
ronic tensors, which depend on the proton and deuteron
vector polarization, respectively,

(24)

We now consider the tensor-polarized deuteron tar-
get. For completeness, we introduce the 4-vector

(25)

which is orthogonal to the reaction plane. It can then be

verified that the set of the 4-vectors , I = L, T, N,
satisfies the conditions

If one more 4-vector  = p1µ/M is added to the set
of the 4-vectors defined by Eqs. (17) and (25), we
obtain the complete set of orthogonal 4-vectors with the
properties

(26)

This allows us to express the deuteron quadrupole

dσb
L

dQ2
---------

π
ε2

2
----ησNS 1 η+( ) 1 η

θe

2
-----sin

2
+ 

 =

×
θe

2
-----

θe

2
-----GM

2 ,sectan

dσb
T

dQ2
--------- 2

π
ε2

2
----σNS

θe

2
----- η 1 η+( )GM GC

η
3
---GQ+ 

  ,tan=

σb
L

σb
T

AL

AT
------

2 ρ–
4

------------ ρ
τ 1 ρ– ρτ–( )
-------------------------------

GM

G
-------=

Hµν
p V( )

Hµν V( ) GM G,( ) 4τ ρ+
8τ

---------------Hµν
p V( ) GMp GEp,( ).–=

Wµ
N( ) 2εµλρσ p1λk1ρk2σ

V Vρ 1 ρ– ρτ–( )
---------------------------------------------,=

Wµ
I( )

Wµ
α( )Wµ

β( ) δαβ, Wµ
α( ) p1µ– 0, α β, L T N ., ,= = =

Wµ
0( )

Wµ
m( )Wν

m( ) gµν, Wµ
m( )Wµ

n( ) gmn,= =

m n, 0 L T N ., , ,=
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polarization tensor in the general case as

(27)

because the components R00, R0α, and Rα0 are identi-
cally equal to zero due to the condition Qµνp1ν = 0. The
quantities Rαβ are in fact the degrees of the tensor polar-
ization of the deuteron target. In the Born approxima-
tion, the components RNL and RNT do not contribute and
expansion (27) can be rewritten in the standard form

(28)

where we took into account that

The part of the cross section that depends on the ten-
sor polarization of the deuteron target can be written as

(29)

where

(30)

(31)

(32)

In the laboratory frame, this part of the cross section
can be written as

(33)

Qµν Wµ
m( )

Wν
n( )

Rmn= Wµ
α( )Wν

β( )Rαβ,≡
Rαβ Rβα, Rαα 0,= =

Qµν Wµ
L( )Wν

L( ) 1
2
---Wµ

T( )Wν
T( )– RLL=

+
1
2
---Wµ

T( )Wν
T( ) RTT RNN–( )

+ Wµ
L( )Wν

T( ) Wµ
T( )Wν

L( )+( )RLT ,

RLL RTT RNN+ + 0.=

dσb
Q

dQ2
----------

dσb
LL

dQ2
-----------RLL

dσb
TT

dQ2
------------ RTT RNN–( )

dσb
LT

dQ2
------------RLT ,+ +=

dσb
LL

dQ2
-----------

πα2

Q4
---------2 1 ρ– τρ–( )=

× η 8GCGQ
8
3
---ηGQ

2 2 2ρ– 2τρ ρ2+ +
2 1 ρ– τρ–( )

-------------------------------------------GM
2+ +

 
 
 

,

dσb
TT

dQ2
------------

πα2

Q4
---------2η 1 ρ– τρ–( )GM

2 ,=

dσb
LT

dQ2
------------

πα2

Q4
---------4η 2 ρ–( ) ρ 1 ρ– τρ–( )

τ
-------------------------------GQGM.–=

dσb
Q

dQ2
----------

π
ε2

2
----=

× σNS SLLRLL STT RTT RNN–( ) SLT RLT+ +[ ] ,
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where

(34)

(35)

(36)

If the longitudinal direction is determined by the
recoil deuteron 3-momentum, relations (18) and (21)
are not affected by hard photon radiation in the lepton
part of the interaction (this corresponds to the use of the
so-called hadronic variables, see below) because

However, when this direction is reconstructed using the
3-momentum of the scattered electron (lepton vari-
ables), these relations break down because

in this case. This means that, in the leptonic variables,
parametrization (17) is unstable and radiation of a hard
photon by the electron leads to a mixture of the longi-
tudinal and transverse polarizations.

This mixture can be eliminated by taking the longi-
tudinal direction along the 3-momentum of the initial
electron. The corresponding parametrization of the 4-
vector polarizations is [19]

(37)

The hadronic tensors  then have the form

(38)

SLL
1
2
--- 8ηGCGQ

8
3
---η2GQ

2+




=

+ η 1 2 1 η+( )
θe

2
-----tan

2
+ GM

2





,

STT
1
2
---ηGM

2 ,=

SLT 4η η η 2 θe

2
-----sin

2
+

θe

2
-----sec GQGM.–=

q p2 p1.–=

q k1 k2–≠

Wµ
l( ) 2τk1µ p1µ–

M
---------------------------,=

Wµ
t( ) k2µ 1 ρ– 2ρτ–( )k1µ ρp1µ––

Vρ 1 ρ– ρτ–( )
-----------------------------------------------------------------------.=

Hµν
l t,

Hµν
l i

4τ ρ+
4τ

---------------–=

× G 2τ µνqk1( )– 2τ 2 ρ–( )
4τ ρ+

-----------------------+ µνq p1( )




+ GM
ρ 1 2τ+( )

4τ ρ+
---------------------- µνq p1( )





GM,
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(39)

In the case of scattering off a polarized target, the

tensors  and  are connected by the trivial rela-
tions

(40)

Using these relations, we can write the polarization-
dependent parts of the Born cross section, which corre-
spond to parametrization (37), as

(41)

where /dQ2 and /dQ2 are defined by Eqs. (19)
and (20). Therefore, we can write

(42)

(43)

In the case of the tensor polarization, the relations
that represent an analog of Eq. (41) become

(44)

where the partial cross sections /dQ2 are defined
by Eq. (29) as the coefficients in front of the respective

Hµν
t i

ρτ
1 ρ– ρτ–
------------------------–=

× G 1 2τ+( )
2 ρ–

4τ
------------ µνq p1( ) 4τ ρ+

4τ
--------------- µνqk1( )–





– GM
1 ρ– ρτ–

2τ
------------------------ µνq p1( )





GM.

Hµν
L T, Hµν

l t,

Hµν
L θHµν

l θHµν
t ,sin+cos=

Hµν
T θHµν

l θHµν
t ,cos+sin–=

θcos W L( )W l( )( )–
ρ 1 2τ+( )
ρ 4τ ρ+( )

----------------------------,= =

θsin W L( )W t( )( )– 2 τ 1 ρ– ρτ–( )
4τ ρ+

--------------------------------.–= =

dσb
l

dQ2
--------- θ

dσb
L

dQ2
---------cos θ

dσb
T

dQ2
---------,sin–=

dσb
t

dQ2
--------- θsin

dσb
L

dQ2
--------- θcos

dσb
T

dQ2
---------,+=

dσb
L dσb

T

dσb
l

dQ2
---------

πα2

V2
---------=

× 1 2τ+
4τ

--------------- 2 ρ–( )GM
2
ρ
--- 1 ρ– ρτ–( )G+ GM,

dσb
t

dQ2
---------

πα2

VQ2
---------- ρ 1 ρ– ρτ–( )

τ
--------------------------------=

× 1
2
--- 2 ρ–( )GM– 1 2τ+( )G+ GM.

dσb
Q

dQ2
---------- XIJ

dσb
IJ

dQ2
----------, I J, L T ,,= =

dσb
IJ
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quantities RLL , RTT – RNN , and RLN , and the entries of the
matrix XIJ are

(45)

As we can see, the polarization-dependent part of the
cross section is now expressed in terms of the new
polarization parameters Rll , Rtt – Rnn , and Rlt defined in
accordance with the directions given by Eq. (37), and
the coefficients in front of these quantities in the right-
hand side of Eq. (44) determine the corresponding par-

tial cross sections /dQ2.

We now consider the scattering off the unpolarized
target in the case where the recoil deuteron polarization
is measured. In this case, we can obtain both the vector
and tensor polarizations of the recoil deuteron using the
results given above. For this, we note that the longitudi-
nal and transverse 4-vectors S(L) and S(T), which satisfy
the relations S2 = –1 and (Sp2) = 0, are

(46)

The part Hµν(V) of the hadronic tensor can be
derived from Eq. (11) by the substitution W  S,
p1  –p2. This actually means that we have to replace
(Wp2) in the right-hand side of Eq. (11) with (Sp1). The
vector polarization of the recoil deuteron (longitudinal
PL or transverse PT) is defined as the ratio of the polar-
ization-dependent part of the cross section to the unpo-
larized part. Taking into account that (SLp1) = –(WLp2),
we conclude that

(47)

where AL and AT are the respective asymmetries for the
scattering off the 100%-polarized deuteron target.

Here, we want to draw the reader’s attention to the
fact that determination of GM/G by measuring the ratio
AL/AT in the scattering off a polarized deuteron target is
more attractive than by measuring the ratio PL/PT in the
polarization transfer process because the second scat-
tering is necessary in the latter case. This decreases the
corresponding event number by about two orders [20],
substantially increasing the statistical error. The prob-

XLL
1
4
--- 1 3 2θcos+( )Rll=

+
1
4
--- 1 2θcos–( ) Rtt Rnn–( ) 2θRlt,sin+

XTT
3
4
--- 1 2θcos–( )Rll=

+
1
4
--- 3 2θcos+( ) Rtt Rnn–( ) 2θRlt,sin–

Xlt
1
4
--- 2θ 3Rll Rtt Rnn–( )–[ ]sin 2θRlt.cos+–=

dσb
ij

S L( ) 2τqµ ρp2µ+

M ρ 4τ ρ+( )
--------------------------------, S T( ) W T( ).= =

     

PL AL, PT– AT ,= =
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lem with the depolarization effect that appears in the
scattering of a high-intensity electron beam on the
polarized solid target can be avoided using the polar-
ized gas deuteron target [3].

By analogy, the components of the tensor polariza-
tion of the recoil deuteron are defined by the ratios of
the corresponding partial cross sections to the unpolar-
ized one,

(48)

Part Hµν(T) of the hadronic tensor can be derived from
Eq. (12) by changing the sign in the term proportional
to GM(GM + 2GQ). Straightforward calculations using
this updated tensor and parametrization (46) lead to the
following results. First, both diagonal partial cross sec-
tions in the right-hand side of Eq. (48) are the same as
defined by Eq. (29) for the scattering off the polarized

target, and second, the partial cross section /dQ2

changes sign compared with the cross section in
Eq. (29).

3. RADIATIVE CORRECTIONS

The total radiative correction can be divided into
model-independent and model-dependent contribu-
tions. The model-independent radiative correction
includes all QED corrections to the lepton part of the
interaction and insertion of the vacuum polarization
into the exchange photon propagator. The model-
dependent radiative correction involves additional cou-
plings of the photon with the off-mass-shell hadron and
comes from box-type diagrams, hadronic vertex func-
tions, hadron contribution to vacuum polarization, etc.
It can be analyzed at the level allowed by the current
knowledge of the hadronic structure; as a rule, the cor-
responding contribution is added to the systematic
error.

The standard practice of data analysis in ep and ed
scatterings is that the model-independent radiative cor-
rection is taken into account with the accuracy allowed
by theoretical calculations. The reason is that it makes
the main contribution due to the smallness of the elec-
tron mass and can be calculated without any additional
assumptions. Therefore, the model-independent radia-
tive correction is calculated theoretically and simply
subtracted from the observed quantities, or Monte
Carlo generators constructed on the basis of these cal-
culations are implemented into the codes of the data
analysis. In this paper, we calculate only the model-
independent radiative correction; we bear this in mind
in what follows.

R̃LL
dσb

LL

dσb
un

-----------, R̃LT
dσb

LT

dσb
un

------------,= =

R̃TT R̃NN–
dσb

TT

dσb
un

------------.=

dσb
LT
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There exist two sources of radiative corrections
when the corrections of order 

 

α

 

 are taken into account.
The first is caused by virtual and soft photon emission
that cannot affect the kinematics of process (1). The sec-
ond arises due to the radiation of a hard photon,

(49)

because cuts on the event selection used in the current
experiments allow photons to be radiated with an
energy of about 100 MeV or even more [6, 20]. Such
photons cannot be interpreted as “soft.” The form of the
radiative correction caused by the contribution due to
the hard photon emission depends strongly on the
choice of variables used to describe process (49) [21].

The hadronic variables were used formerly to com-
pute the radiative correction in the elastic and deep-
inelastic polarized electron–proton scattering [21, 22].
As noted in [21], the form and value of the radiative
correction in the hadronic variables differ substantially
from the radiative correction calculated in the leptonic
variables. We want to point out that the results in [22] can
be used for the elastic

 

 ep

 

 scattering and relations (10) and
(22) can be used to calculate the radiative correction in
the elastic unpolarized and polarized 

 

ed 

 

scattering in
the case of the deuteron vector polarization. Here, we
also calculate the radiative correction in the case of the
deuteron tensor polarization, which is absent in [22]
because the proton has spin 1/2. Our goal is to obtain
physically transparent formulas for the radiatively cor-
rected cross sections, which are absent in [22], and to
generalize them with the higher orders of the coupling
constant 

 

α

 

 taken into account by simple exponentiation
of the leading contributions.

In contrast to [22], we assume at the very beginning
that, in reaction (49), the recoil deuteron is detected and
the 4-momentum

is fixed. Because neither the scattered electron nor the
hard photon is detected, the complete integration over
the 3-momenta of these undetected particles must be
performed.

In calculating the radiative correction using the had-
ronic variables, it is very convenient to use the method
of invariant integration. In this method, integration of

the leptonic tensor  (with the emission of an addi-
tional photon taken into account) over the variables of
the scattered electron and the emitted additional photon
is performed before the contraction of the leptonic and
hadronic tensors. At the beginning, we use the overall
4-dimension 

 

δ

 

-function to eliminate the k2 momentum
and then perform analytic integration with respect to
the photon 3-momentum in the special system where

It is convenient to introduce the dimensionless had-

e– k1( ) D p1( ) e– k2( ) γ k( ) D p2( ),+ + +

q p2 p1– k1 k2– k–= =

Lµν
γ

k1 p1 p2–+ 0.=
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ronic variables

(50)

which characterize inelasticity due to the hard-photon
emission in the lepton block: if the photon is not radi-
ated, then 

 

x

 

 = 1 and 

 

y

 

 = 

 

ρ

 

. The quantity 1 – 

 

x

 

 actually
represents the energy fraction of the collinear photon
radiated by the initial-state electron. It is easy to verify
this statement because

in this case.
The use of these variables in the framework of our

approach allows us to bypass the complication that
comes from the Gram determinant and appears in the
standard method developed in [23] and used later
in [22, 24]. This makes it possible to simplify the calcu-
lations and write physically transparent expressions for
both polarized and unpolarized cross sections.

Using the above strategy, we start from the follow-
ing expression for the cross section of process (49) in
the hadronic variables:

(51)

Here, 

 

ω

 

 is the photon energy and 

 

m

 

 is the electron mass.
The leptonic tensor corresponding to the hard-photon
radiation is well known [25, 26]. It can be written as

Its unpolarized symmetric part is

(52)

and the antisymmetric part, arising due to the longitu-
dinal beam polarization, is

(53)

After removing the overall 

 

δ

 

-function, it is necessary to

x
q2

2k1q
-----------, y

2k1q
V

-----------, xy– ρ,= = =

q xk1 k2, k2
2– k1

2 0≈= =

dσ α2

VQ4
----------Lµν

γ Hµν
d3 p2

E2
----------- α

4π2
--------d3k

ω
--------δ k2

2 m2–( ).=

Lµν
γ Lµν

un Lµν
p .+=

Lµν
un 2 q2 t–( )2

q2 s–( )2
+
st

---------------------------------------------- 2m2q2 1

s2
---- 1

t2
---+ 

 – g̃µν=

+ 8 q2

st
----- 2m2

s2
---------– 

  k̃1µk̃1ν 8 q2

st
----- 2m2

t2
---------– 

  k̃2µk̃2ν,+

Lµν
p 4i µνqρ( ) k1ρ

q2 s–
st

------------- 2m2 1

s2
---- 1

t2
---+ 

 –




=

+ k2ρ
q2 t–

st
------------ 2m2s

q2 s–( )t2
----------------------–





,

t 2kk1, s– 2kk2 Q2– Vy,+= = =

ãµ aµ
aq

q2
------qµ.–=
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calculate the quantity

We calculate it using the method of invariant integra-
tion. We first consider the case of the unpolarized elec-
tron beam. With the P-invariance of the electromag-
netic interaction and gauge invariance of the quantity

 taken into account, we can represent this quantity
in the general form as

(54)

The two functions A and B can be obtained by contract-
ing the left- and right-hand sides of this equation with

the respective tensors  and . As a result, we
obtain two equations for the two unknowns A and B,

(55)

where we introduce the notation

Next, we must integrate over the photon phase space

in the integrals I1 and I2. Because the quantity δ(  –
m2)d3k/ω that enters the integrands in I1 and I2 is
Lorentz invariant, we can take any coordinate system to
do this integration. The most convenient one is the
coordinate system where

In fact, this is the center-of-mass system for the radiated
photon and the scattered electron, and, therefore, the
polar (ϑ) and azimuthal (φ) angles of the radiated pho-
ton cover the entire phase space. We therefore have

(56)

where the z axis is chosen along the direction of the ini-
tial electron 3-momentum. In writing the quantity Rx ,
we set x = 1 in the coefficient in front of m2/Q2.

Lµν
i Lµν

γ k3d
ω

-------δ k2
2 m2–( ).∫=

Lµν
i

Lµν
iun Ag̃µν Bk̃1µk̃1ν.+=

g̃µν k̃1µk̃1ν

I1 3A
q2 s–( )2

4q2
--------------------B,–=

I2
q2 s–( )2

4q2
-------------------- A–

q2 s–( )2

4q2
--------------------B+ ,=

I1 Lµν
un g̃µν

k3d
ω

-------δ k2
2 m2–( ),∫=

I2 Lµν
un k̃1µk̃1ν

k3d
ω

-------δ k2
2 m2–( ).∫=

k2
2

k1 p1 p2–+ 0.=

k3d
ω

-------δ k2
2 m2–( ) 1 x–

4Rx

-----------dφd ϑ ,cos=

0 φ 2π,< <

1 ϑ 1, Rx<cos<– 1 x–
m2

Q2
------,+=
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The energies of all particles and the polar angle of
the initial deuteron in this system can be expressed in
terms of the invariant variables as

(57)

where ε1 and E1 (ε2 and E2) are the respective energies
of the initial (final) electron and deuteron.

The necessary angular integrals are given by

(58)

where we use the short notation for definite integral and
the quantity L,

and neglect the terms of order (m2/Q2) whenever possible.

Calculating the integrals I1 and I2 as described above
and solving the system of two equations (55), we find

ω Vy 1 x–( )
2 R

-----------------------, ε1
Vy 2m2+

2 R
----------------------,= =

ε2
Vy 1 x–( ) 2m2+

2 R
---------------------------------------, E1

V 1 ρ–( )
2 R

---------------------,= =

E2
V 1 y– ρ+( )

2 R
------------------------------, θ1cos

2E1ε1 V–
2 p1 k1

------------------------,= =

R VyRx,=

1
t–

----∫
2Rx

Vy 1 x–( )
-----------------------L,=

2χ
t–

------∫ 2
y
--- Rx L 2–( ) 1 ρ–+[ ] ,=

t∫ Vy 1 x–( )
Rx

-----------------------,–=

4χ2

t–
--------∫ 2V 1 x–( )

y
------------------------=

× Rx L 3–( ) 1 ρ–( )2

2Rx

------------------- 1 ρ– yτ–+ + ,

2χ∫ V 1 x–( ) 1 ρ–( )
Rx

--------------------------------------,=

2m2

t2
---------∫

4Rx

Vy 1 x–( )2
-------------------------, χ k p1,= =

∫ φd
2π
------ ϑ , Lcosd

1–

1

∫
0

2π

∫≡ Q2

m2xRx

---------------,ln=
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that the functions A and B are given by

(59)

The contraction of the unpolarized parts of the lep-
tonic tensor (integrated over the photon phase space)
and the hadronic tensor for radiative process (49) is
given by

(60)

To write the respective contractions in the polarized
case, we have to take into account that the parametriza-
tion of the polarization 4-vectors S(L, T) in the radiative
process differs somewhat from the Born expressions
given by Eq. (46) (we here consider the polarized recoil
deuteron for definiteness). Formally, they can be
derived by the substitution

(61)

in Eq. (46).

The contraction of the unpolarized part of the lep-
tonic tensor (integrated over the photon phase space) and
the hadronic Hµν(T) tensor for radiative process (49) is
given by

(62)

where

A 2π Fp x Q2/m2,( ) 3 1 x–( )+[ ] ,–=

B 8πx2

Q2
------ Fp x Q2/m2,( ) 3 x+ +[ ] ,=

Fp x Q2/m2,( )
1 x2+
1 x–
-------------- Q2

m2xRx

---------------
4

1 x–
-----------–ln=

+
1

2Rx

--------- m2

2Q2Rx
2

---------------- 1 4x.+ +–

Lµν
iunHµν 0( ) 3A

V y2

4ρ
---------B+ 

  W1–=

+ 1 η+( )A
V 2 y–( )2

16τ
-----------------------B+ W2.

ρ y, k1 xk1, τ τ /x, V xV

Lµν
iunHµν T( ) AQ– VB

1 y–( )2

4τ
------------------Q+





=

---+ 2η 1 η–( ) y–( )Q1 ρ 1 η+( )Q11+




GM
2

+ 2 y–( )VB 2ηQ1
y 2η 1 y–( )–

4τ ρ+
--------------------------------Q– GMGQ

+
Q
2
---- 4A

2 y–( )2

4τ ρ+
------------------VB+ GQG,

Q1 Qµνqµk1ν, Q11 Qµνk1µk1ν.= =
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Taking into account the relation

,

which holds for the recoil-deuteron phase space, after
some algebra, we derive the following representation
for unpolarized cross section of reaction (49):

(63)

Here, ∆ is the minimum-energy fraction of the hard
photon and xm depends on the experimental cuts for the
photon energy.

For the partial cross sections in the case of tensor
polarization of the recoil deuteron in radiative pro-
cess (49), we obtain the expressions

(64)

where

We now consider the case of the longitudinally
polarized electron beam and calculate the necessary

integral, where  = , using the method of invari-
ant integration. Taking the P-invariance of the electro-
magnetic interaction and gauge invariance of the quan-

d3 p2

E2
----------- πρdQ2dx

x2
------=

dσH
un

dQ2
----------- k1( ) α

2π
------

σb
und

Q2d
---------- xk1( )Fun x Q2/m2,( )

xm

1 ∆–

∫=

+
πα2

Q4
---------

W2

M2
------- f x ρ τ, ,( ) dx,

Fun x Q2/m2,( ) Fp x Q2/m2,( ) 3 4x,–+=

f x ρ τ, ,( ) 3 x ρ–( ) ρ
x
--- ρ

2
--- τ– 

  .+=

dσH
LL

dQ2
----------- k1( ) α3

V2
------ 1 η+( )lnxm GM

2 2GQG–( )=

+
α
2π
------

σb
LLd

Q2d
----------- xk1( )FT x Q2/m2,( ) x,d

xm

1 ∆–

∫

σH
TTd

Q2d
----------- k1( ) α

2π
------

σb
TTd

Q2d
----------- xk1( )FT x Q2/m2,( ) x,d

xm

1 ∆–

∫=

σH
LTd

Q2d
----------- k1( ) α

2π
------

σb
LTd

Q2d
----------- xk1( )FT x Q2/m2,( ) x,d

xm

1 ∆–

∫=

FT x Q2/m2,( ) FP x Q2/m2,( ) 3 x.–+=

Lµν
γ Lµν

p
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tity  into account, we can represent this quantity in
the general form as

(65)

The unknown function C can be obtained by contract-
ing the left- and right-hand sides of this equation with
the tensor (µνqk1). As a result, we obtain the following
expression for C:

(66)

Calculating this integral as explained above, we obtain

The contraction of the polarized part of the leptonic
tensor (integrated over the photon phase space) and the
hadronic Hµν(V) tensor for radiative process (49) is
given by

(67)

(68)

After some algebra, we derive the following repre-
sentation for the parts of the cross section that depend
on the vector polarization of the recoil deuteron:

(69)

The infrared auxiliary parameter ∆ ! 1 is related to
the minimal energy of the hard photon in the chosen
coordinate system, and the lower integration limit is
defined by its maximum value, which depends on the
experimental cuts on the event selection in the experi-
mental measurement of the observables in elastic elec-
tron–deuteron scattering:

For example, if the lost invariant mass Mmax (of the scat-
tered electron and the undetected additional hard pho-
ton) is allowed,

Lµν
i

Lµν
ip iC µνqk1( ).=

i
2
--- q2 s–( )C Lµν

p µνqk1( ) k3d
ω

-------δ k2
2 m2–( ).∫=

C
2πx

Q2
---------Fp x Q2/m2,( ).=

Lµν
ip Hµν

L 1
2
--- 2 y–( )ηV2C ρ 4τ ρ+( )GM

2 ,–=

Lµν
ip Hµν

T 1
4
---V2C 2ρ 1 y–( ) y2 ρ 2τ+( )+[ ]–=

× x 4τ ρ+( )
τ x ρ yτ––( )
------------------------------GMG.

dσH
L T,

dQ2
------------- k1( ) α

2π
------=

×
σb

L T,d

Q2d
------------- xk1( )Fp x Q2/m2,( ) x.d

xm

1 ∆–

∫

∆
ωmin

ε1
----------, xm 1

ωmax

ε1
----------.–= =

k1 p1 p2–+( )2 Mmax
2 ,≤
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then

On the other hand, the quantity xm cannot be arbi-
trary (but must, of course, be smaller than unity) even if
no experimental constraints on the event selection are
used. The restriction on xm follows from the inequality

which reflects the obvious relation

for radiative process (49). In any case, we therefore
have

We note one interesting point regarding formula (69).
It looks very similar to the corresponding result in the
quasireal electron approximation [27] for the descrip-
tion of the collinear photon radiation (θγ < θ0, θ0 ! 1)
by the longitudinally polarized electron, which is suit-
able for the leptonic variables,

(70)

where dσb is the cross section of the radiationless pro-
cess. It is not surprising that the function Fp differs
from P in Eq. (70) because it also has to contain traces
from the final electron radiation.

Formulas (63), (64), and (69) describe the distribu-
tion over the momentum transfer squared in reaction (49)
and define the respective radiative correction due to the
hard photon emission. To compute the total radiative
correction, we must also add the contribution due to
emission of the virtual photon and the real soft photon
(with the energy less than ∆ε1). This contribution is the
same for polarized and unpolarized scattering,

(71)

The virtual correction is standard [28],

(72)

xm
Q2

Q2 Mmax
2+

------------------------.=

x2 xρ– ρτ 0,>–

q2 qmax
2–<– x2V2

xV M2+
--------------------=

xm
ρ
2
--- 1 1 4τ

ρ
-----++ 

  .>

dσ k1 k,( )
α
2π
------ σb xk1( )P x L0,( )d( ) x,d∫=

k 1 x–( )k1,=

P x L0,( )
1 x2+
1 x–
--------------L0

2 1 x– x2+( )
1 x–

------------------------------, L0–
ε1

2θ0
2

m2
----------,ln= =

dσS V+

dQ2
---------------

dσb

dQ2
--------- α

2π
------ δV δS+( ).=

δV 4 LQ 1–( ) λ
m
----ln LQ

2– 3LQ
π2

3
----- 4,–+ +=

LQ
Q2

m2
------,ln=
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where λ is the “photon mass,” while the soft-photon
correction has some specification in the hadronic vari-
ables

(73)

It can be seen that the terms proportional to  do
not vanish in the sum δV + δS (as they do for the leptonic
variables) and the contribution of the hard photon emis-
sion has to be taken into account to cancel them (due to
the terms with lnRx/(1 – x) in the functions Fp, FT,
and Fun).

The observed cross sections, which take the total
radiative correction into account, do not depend on the
auxiliary infrared parameter ∆ and can be written in the
form suitable for numerical integration as

(74)

(75)

The partial cross sections in the case of the tensor polar-
ization of the recoil deuteron are defined by the formula

(76)

where

δS 4 LQ 1–( ) m∆
λ

-------- 2LQ
2 2LQ

π2

3
-----– 2.+–+ln=

LQ
2

dσun

Q2
----------- k1( )

dσb
un

Q2
----------- k1( ) 1

α
2π
------δ+ 

 =

+
α
2π
------

∆σb
und

Q2d
--------------

f ∆

1 x–
-----------

σb
und

Q2d
---------- xk1( )F̃

un
+

xm

1

∫

+
πα2

Q4
---------

W2

M2
------- f x ρ τ, ,( ) dx,

dσL T,

Q2
------------- k1( )

dσb
L T,

Q2
------------- k1( ) 1

α
2π
------δ+ 

 =

+
α
2π
------

∆σb
L T,d

Q2d
-----------------

f ∆

1 x–
-----------

σb
L T,d

Q2d
------------- xk1( )F̃

p
+ x.d

xm

1

∫

dσIJ

Q2
---------- k1( )

dσb
IJ

Q2
---------- k1( ) 1

α
2π
------δ+ 

 =

+
α
2π
------

∆σb
IJd

Q2d
--------------

f ∆

1 x–
-----------

σb
IJd

Q2d
---------- xk1( )F̃

T
+ xd

xm

1

∫

+
α3

V2
------ 1 η+( ) xm GM

2 2GQG–( )δILδJL,ln

I J, L T ,,=

d∆σb dσb xk1( ) dσb k1( )–=
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for both polarized and unpolarized cases and

(77)

The singularity at x = 1 in the integrands of Eqs. (74)–
(76) cancels by the corresponding quantity d∆σb/dQ2.
For example, in the simplest unpolarized case, we have

It is well known that the leading logarithmic contri-
butions to the radiative correction of order (αLQ)n, n =
1, 2, … are controlled by the electron structure function
D(x, LQ),

(78)

It can be verified that the leading part of the first-order
correction defined by Eqs. (74)–(76) can be derived
using representation (78) at

Thus, we can improve our result by insertion of the
higher order leading contributions using Eq. (78) and
the known expressions for the functions Pn(x) [29]. This
improvement results in modification of the quantities δ,

δ 3
2
--- 2 1 xm–( )ln+ 

  LQ
7
2
--- 1 xm–( )ln–=

– 1 xm–( )ln
2 5

2
---–

π2

3
-----,–

f ∆ 2LQ 2 1 x–( )ln
7
2
---,––=

F̃
p

1 x+( )LQ–
1 x2+
1 x–
-------------- xln–=

+ 1 x+( ) 1 x–( ) 1 4x,+ +ln

F̃
un

F̃
p

3 4x,–+=

F̃
T

F̃
p

3 x.–+=

d∆σb
un

dQ2
---------------

πα2

Q2V2x2
------------------=

× 2 1 x+( )W1

W2

τ
------- x τ 1 x+( )+( )– 1 x–( ).

dσlead

dQ2
------------- D x LQ,( )

σbd

Q2d
--------- xk1( ) x,d

xm

1

∫=

D x LQ,( ) = δ 1 x–( )
α LQ

2π
----------P1 x( )

1
2
---

α LQ

2π
---------- 

 
2

P2 x( ) … .+ + +

D x LQ,( )
α LQ

2π
----------P1 x( ),=

P1 x( )
1 x2+
1 x–
--------------Θ 1 x– ∆–( ) δ 1 x–( ) 2 ∆ 3

2
---+ln 

  .+=
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f∆ , and  in the right-hand sides of Eqs. (74)–(76). For
example, to account for the corresponding second-
order terms, we must use the substitutions

(79)

On the other hand, there exists a simple method of
summation of all the singularities at x = 1 in the total
radiative correction, which goes beyond the leading
logarithmic approximation (see, e.g., [30]). It consists
in using the exponential form of the electron structure
function and, in our case, can be introduced as

(80)

where

C is the Euler constant, and Γ(x) is the gamma function.
This procedure leads to a redefinition of δ and f∆ in
Eqs. (74)–(76),

and to the appearance of an additional term

F̃
p

δ δ γδ1, f ∆ f ∆ γ f ∆1,+ +

F̃
p

F̃
p γF̃1

p
, γ+

α LQ
2

2π
----------,=

δ1
9
8
--- π2

3
-----– 3 1 xm–( )ln 2 1 xm–( ),ln

2
+ +=

f ∆1 3 4 1 x–( ),ln+=

F̃1
p

2 1 x+( ) 1 x–( ) 1 3x2+
2 1 x–( )
------------------- x

5 x+
2

------------.–ln–ln–=

δ 1 x–( ) β 1
1 x–
-----------θ 1 ∆– x–( ) δ 1 x–( ) ∆ln++

β 1 x–( )β 1–

Γ 1 β+( )
--------------------------- β 3

4
--- C– 

  ,exp

β α
π
--- LQ 1–( ),=

δ δexp 3
2
--- LQ 1 xm–( )ln–( )=

– 1 xm–( )ln
2 5

2
---–

π2

3
-----,–

f ∆ f ∆
exp 3

2
---– 2 1 x–( ),ln–=

σbd

Q2d
--------- xk1( )β 1 x–( )β 1–

β 3
4
--- C– 

 exp

Γ 1 β+( )
------------------------------------- xd

xm

1

∫
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that absorbs the purely Born cross section and a part of
the radiative corrections. For example, partial cross sec-
tions (76) become

(81)

4. NUMERICAL ESTIMATIONS

There are different approaches to the analysis of
polarization observables. If the experimental informa-
tion is extracted directly from the spin-dependent part
of the cross section (see [31] for the corresponding
experimental method), the radiative correction can be
large due to the contribution of factored virtual and soft
corrections. The nonfactored contribution to the radia-
tive correction, caused by the hard photon emission,
cannot be large in elastic scattering because the phase
space of such a photon is strongly suppressed by
restrictions on the event selection. The effect of the
radiative correction in this case is demonstrated in
Figs. 1–4 for the ratios

(82)

in the unpolarized case and for vector polarization of
the recoil deuteron, and for the ratios

(83)

in the case of tensor polarization. We note that, if the
radiative correction is ignored, all the quantities defined
by Eqs. (82) and (83) are equal to zero. The quantities
δR and δRQ are very important physical values because
they can be used for an independent determination of
the ratios of form factors such as GM/G and GM/GQ (see
Eqs. (19), (20), (31), (32), and (48)).

The observed cross sections in Eqs. (82) and (83)
are defined by Eqs. (74)–(76) or their exponential mod-
ification (as in Eq. (81)). We consider two different

dσIJ

Q2
---------- k1( )

σb
IJd

Q2d
---------- xk1( ) β 1 x–( )β 1–

Γ 1 β+( )
--------------------------- β 3

4
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 exp

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1

∫=

+
α
2π
------ F̃

T


 α

2π
------

d∆σb
IJ

dQ2
--------------

f ∆
exp

1 x–
-----------+ dx

α
2π
------δexpdσb

IJ

Q2
---------- k1( )+

+
α3

V2
------ 1 η+( ) xm GM

2 2GQG–( )δILδJL.ln

δu
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und

σb
und

------------ 1, δL T,–
Pobs

L T,

Pb
L T,---------- 1,–= =

δR

Pobs
T Pb

L

Pobs
L Pb

T
--------------- 1–=

δIJ

dσobs
IJ dσb

un

dσobs
un dσb

IJ
------------------------ 1, δRQ–

dσobs
TT dσb

LT

dσobs
LT dσb
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------------------------- 1–= =
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Fig. 1. The effect of the radiative correction on the unpolarized cross section and vector polarizations of the recoil deuteron given
by Eqs. (74), (75) and Eq. (82) at V = 8 GeV2. The solid curves correspond to Q2 = 1 GeV2, and the dashed ones, to Q2 = 3 GeV2.
Parametrization I is used for the deuteron electromagnetic form factors [32].

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xm

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xm
parametrizations of the deuteron electromagnetic form
factors given in [32] and label them I and II.

As can be seen from Fig. 1, the radiative corrections
to the unpolarized cross section depends strongly on the
value xm that is connected with the energy of the hard
photon in process (49). If xm is close to unity (xm ≈ 1),
the total radiative correction, being negative, can reach
10% or even more. As xm decreases, the total radiative
correction becomes much smaller. Such behavior of the
radiative correction has a simple physical interpreta-
tion. If xm ≈ 1, the energy of the photon in process (49)
is sufficiently small and the positive contribution into
the radiative correction due to the hard photon emission
cannot compensate the factored negative contribution
caused by virtual and soft photon corrections that
accompany process (1). As the hard-photon energy
increases, such compensation occurs and the absolute
value of the total radiative correction decreases. The
JOURNAL OF EXPERIMENTAL 
same behavior is also exhibited by polarization-depen-
dent parts of the cross section in the case of vector
polarization of the recoil deuteron and by partial cross
sections in the case of tensor polarization.

However, the effect of the radiative corrections is
precisely the opposite for the ratios defined by Eqs. (82)
and (83). At xm ≈ 1, the total radiative correction is
defined mainly by its factored part, which is the same
for the polarization-dependent and unpolarized cross
sections. Therefore, the radiative correction in fact can-
cels in this region for such ratios. On the contrary, at
smaller values of xm , the nonfactored part of the radia-
tive correction becomes significant and the total radia-
tive correction increases. An unexpected fact is that the
ratios δIJ in (83) are approximately one order smaller
than δL, T in (82).

As our calculations show, the sensitivity of the radi-
ative correction to two different parametrizations of the
AND THEORETICAL PHYSICS      Vol. 98      No. 5      2004
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Fig. 2. The effect of the radiative correction in the case of tensor polarization of the recoil deuteron. The partial cross sections in
Eq. (83) are calculated using Eq. (76). Kinematical conditions and parametrization of the form factors are the same as in Fig. 1.
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Fig. 3. The influence of different parametrizations of the deuteron electromagnetic form factors on the radiative correction. The solid
(dashed) curve corresponds to parametrization I (II) [32]. The kinematical conditions are V = 8 GeV2 and Q2 = 1 GeV2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
deuteron electromagnetic form factors [32] at relevant
values of energies and momentum transfers is practi-
cally negligible. In fact, the respective curves coincide
in the entire range of xm (see Fig. 3).
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The influence of the higher order corrections, calcu-
lated by summing the leading contributions by the
exponentiation procedure, is demonstrated in Fig. 4 for
the tensor polarization ratios. The corresponding curves
SICS      Vol. 98      No. 5      2004
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Fig. 4. Comparison of the total radiative corrections in the case of tensor polarization calculated by Eq. (76) (solid curve) and
Eq. (81) (dashed curve) at V = 8 GeV2 and Q2 = 1 GeV2.
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xm
for the vector ones are very similar. We see that the
effect is small and cannot even exhibit itself at small xm ,
where the nonfactored radiative correction contributes.
As usual, the large correction factor caused by expo-
nentiation of the higher order leading radiative correc-
tions at xm ≈ 1 to the unpolarized and polarized parts of
the cross section cancels in their ratios.
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Abstract—Topological features of the self-intersection of wave surfaces near singular optical axes of an
absorbing crystal are investigated. Distributions of complex polarization fields in the neighborhood of singular
directions are obtained. It is shown that, when the wave normal m circumvents an optical axis, the correspond-
ing rotation of polarization ellipses is characterized by the Poincaré index n = 1/4. Using the example of an
orthorhombic crystal, a wedge refraction of electromagnetic waves on the intersection line of the sheets of the
surface of refractive indices is predicted and theoretically investigated. It is shown that the directions of the
mean energy fluxes  are close to the direction of normals n± to the refraction surface only in the central
region of a wedge, i.e., only in the domain where the polarization is almost linear and the group velocity of
waves is well defined. When m moves to singular axes, the ellipticity of the polarization increases at the ends
of the edge of the wedge and the orientations of the vectors  and n± gradually diverge, yet remain in the same

plane that is orthogonal to the edge. The angle between  and  monotonically decreases, and  ||  for
the propagation along singular axes; in this case, the angle between n+ and n– increases, and they have a plane-
fan-type orientational singularity along the optical axes. When m is scanned along the edge of the wedge, the
unaveraged vectors P± describe per period the same conical surface that coincides with the refraction cone of a
transparent crystal, while the endpoints of the vectors P± run over elliptic orbits whose shape and slope depend
on m. The possibilities of observing a wedge refraction are analyzed. © 2004 MAIK “Nauka/Interperiodica”.

P±

P±

P+ P– P+ P–
1. INTRODUCTION

The conical refraction of electromagnetic waves in
transparent crystals is a well-known phenomenon [1–3].
It arises in biaxial crystals when waves propagate along
any of the two existing optical axes; henceforth, the
directions of these axes will be denoted by m(1) and
m(2). When the wave normal m coincides with the
directions m(1, 2), the phase velocities v = vm of the
waves of independent polarizations degenerate (here,
v  = c/n, where n is the refractive index and c is the
speed of light in vacuum). In this case, allowed orienta-
tions of polarization vectors form a whole continuum
along the optical axis. Each polarization corresponds to
its own energy-flux vector P, the Poynting vector, ori-
ented along an appropriate generator of the refraction
cone. Therefore, for example, a circularly polarized
wave directed along m( j ) (j = 1, 2) should distribute
energy over the cone. It is well known that the vector P
in transparent crystals is collinear to the group velocity
u = un. Here, n is a unit normal to the surface of refrac-
tive indices n(m). This surface has a conical singularity
at the point m = m( j ). The normals n defined in the
immediate vicinity of the direction m( j ) coincide with
the directions P and form a classical refraction cone in
the limit; geometrically, this cone is exactly the same as
1063-7761/04/9805- $26.00 © 200870
the cone formed by the vectors P. Such cones were
experimentally observed as early as the 19th century [2].

A similar phenomenon exists in crystal acoustics,
where the conical refraction was experimentally and
theoretically studied much later [2]. Interestingly, there
is another type of refraction in crystal acoustics, the so-
called wedge refraction, which was theoretically pre-
dicted in [4] and experimentally observed in [5]. This
phenomenon is observed in hexagonal crystals in which
two slowness surfaces of acoustic waves intersect. Near
the intersection lines of the sheets of the slowness sur-
face, the normals to these surfaces form a specific
wedge of directions of group velocities.

In contrast to acoustics, where the wedge refraction
occurs even in the absence of absorption, the wedge
refraction in the optics of transparent crystals is impos-
sible. However, in absorbing crystals, the situation
changes. When the absorption is “switched on,” each
optical axis of a transparent biaxial crystal splits into

two axes, m( j )  , which are called singular axes
[1, 6]. The crystal becomes optically tetraaxial. The
sheets of the double-sheeted surface of refractive indi-
ces intersect along the lines that connect the directions
of split axes. The surface of refractive indices has
wedgelike singularities at which the intersection line of

m±
j( )
04 MAIK “Nauka/Interperiodica”



 

J

       

WEDGE REFRACTION OF ELECTROMAGNETIC WAVES IN ABSORBING CRYSTALS 871

                                                                                           
(a) (b)

ε1

ε3 ε2 ε2 ε3

z

n–

n+

n+

n–

m(1)m(2) n–

n+

q x2 || y

2χ0

m+
(1)m–

(1)
n–

n+ n+

n–

x3

m(1)

n+ = n–

2θ0

Fig. 1. Sections of the surfaces n±(m) by the planes containing optical axes; (a) transparent crystal and (b) absorbing crystal.

x

the sheets represents the edge of the wedge. It can nat-
urally be expected that the switching on of absorption
modifies the classical conical refraction of a transparent
crystal, turning it into a qualitatively new phenomenon,
a wedge refraction.

The present paper is devoted to the analysis of this
very problem. We will thoroughly investigate the com-
plex geometry of the self-intersection of the surface of
refractive indices and analyze the distribution of energy
fluxes of eigenwaves in the self-intersection region. We
will study the behavior of the Poynting vectors on the
intersection line of sheets and the behavior of geomet-
ric normals to the surface of refractive indices, which
determine the directions of group velocities in transpar-
ent crystals. We will see that these two vector character-
istics, P(m) and n(m), exhibit radically different types
of behavior near the singular axes. This fact is associ-
ated with the strong ellipticity of the wave fields in this
region and makes the introduction of such a character-
istic of wave fields as the group velocity impossible [7].
On the other hand, there always exists a line between
singular axes on the unit sphere of directions m · m = 1
on which the ellipticity is equal to zero and the group
velocity is rigorously defined. We will see below that
the directions of the energy-flux P and the normal n nat-
urally coincide on this line, and the character of wedge
refraction near this line is similar to the related phe-
nomenon in the acoustics of nonabsorbing crystals.
When moving away from this region along the edge of
the wedge, the ellipticity of polarization increases,
while the energy flux P(m) rotates along different sec-
tions of the universal cone, which coincides with the
refraction cone of a transparent crystal. At the ends of
the wedge, these rotations occur in opposite directions
along circular sections of the same cone. Thus, the
behavior of the energy flux along singular axes actually
coincides with the conical refraction in a transparent
crystal for a circularly polarized wave. Below, we will
show that these absorption-induced features, which are
characterized by a smooth transition from one refrac-
tion cone to another at the ends of the wedge through a
narrow area of pure wedge refraction, permit experi-
mental observation even in the case of small absorption.
OURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Analysis of topological anomalies in the distribution
of complex vector fields of polarization in the neigh-
borhood of the singular axes presents a separate non-
trivial problem. According to [8], these features can be
characterized by “topological charge,” the Poincaré
index n = 1/4. This important result, a brief account of
which was earlier published by one of the authors of
this paper in a nearly inaccessible publication [8], has
unfortunately been overlooked by specialists in the
field. Therefore, we also touch upon this problem
below.

2. STATEMENT OF THE PROBLEM 
AND THE BASIC EQUATIONS

First, we consider a transparent triclinic crystal
characterized by a real permittivity tensor e or by its
inverse h = e–1. If we assume, for definiteness, that ε1 <
ε2 < ε3, then, in a standard crystallophysical system of
coordinates in which the tenors e and h are diagonal,
the optical axes will lie in the plane xz. In each singular
direction m( j ), the sheets of the surface of refractive
indices n±(m) have a conical contact point at m(1, 2):
n+(m( j )) = n–(m( j )). Here, the subscripts (±) denote two
different sheets of the surface of refractive indices, the
external (+) and the internal (–) sheets, which corre-
spond to independent isonormal electromagnetic
waves. The orientations of the directions m( j ) are
defined by the angle θ0 (Fig. 1a), which is easily deter-
mined when one considers the cross section of the sur-
face of refractive indices by the xz plane:

(1)

Thus, in the chosen crystallophysical system of coordi-
nates {x, y, z}, the orientations of optical axes are
defined by the directions

(2)

When the absorption is switched on, the material
tensors e and h are formally complemented by imagi-
nary components: e  e + ie' and h  h – ih'.
Accordingly, it is convenient to combine refractive
indices n± and absorption indices  by introducing

θ0tan d12/d23, dij η i η j.–= =

m 1 2,( ) θ0 θ0cos,sin±( ).=

n±'
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complex refractive indices N± = n± + i . In terms of
these indices, isonormal electromagnetic waves of fre-
quency ω are expressed in a form similar to the case of
a transparent crystal:

(3)

The relation between the wave fields (3) and the com-
plex refractive indices N± , on the one hand, and the
direction m and the material constants, on the other, is
well known [1–3, 6]. As applied to our problem, it is
convenient to make use of the Fedorov invariant equa-
tions [6], which explicitly depend on m:

(4)

(5)

where pi = m × c(i) and the parameters a, b, and c(i)

define a dyadic form of the complex tensor

(6)

Note that the transition from H(±) to H± and from N(±) =
n(±) + i  to N± = n± + i  in (4), (5) requires addi-
tional sorting of sheets into external and internal ones.
In (6), I is the identity tensor. A specific relation
between the parameters a, b, and c(i) entering in (6) and
the components of the usual matrix form of the tensor
h – ih' in the crystallophysical system of coordinates
was considered in [9]. Here, we present these parame-
ters in the explicit form only for a particular case of
crystals of orthorhombic symmetry, which guarantees
the diagonalization of the real and imaginary parts of
the tensors e + ie' and h – ih' in the same system of
coordinates. In the latter case,

(7)

where, by analogy with (1), we denoted  =  – 
and introduced the parameters

(8)

The condition under which the complex refractive
indices coincide, N+ = N– = N0, corresponds to the
directions of optical axes and is satisfied when p1 · p1 =
0 and p2 · p2 = 0. Each of these two complex equations
determines a pair of singular directions, so that, in gen-
eral, there exist four optical (singular) axes in absorbing
crystals [1, 6].

Here, we should make one important remark.
Although no special restrictions are imposed on the

n±'

E± r t,( )
H± r t,( ) 

 
  E±

0

H±
0 

 
 

iω
N±

c
------m r t–⋅ 

  .exp=

E± h ih'–( ) H± m×[ ] ,=

H ±( ) || p1 p2 p2⋅ p2 p1 p1⋅ ,±

N ±( ) a b p1 p2 p1 p1⋅( ) p2 p2⋅( )±⋅[ ]+{ } 1/2–
,=

h ih'– aI b c 1( ) c 2( )⊗ c 2( ) c 1( )⊗+( ).+=

n ±( )' n±'

a η2 iη2' , b– d13– id13' ,+= =

c 1( ) c1 0 c3, ,( ), c 2( ) c1– 0 c3, ,( ),= =

dij' η i' η j'

c1
d12 id12'–

d13 id13'–
----------------------, c3

d23 id23'–

d13 id13'–
----------------------.= =
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absorption level in the above formulas, in the class of
problems under consideration, we will focus on a suffi-
ciently low level of absorption such that an electromag-
netic wave preserves its wave structure as it propagates
over distances much greater than the wavelength. We
are dealing with the cases when each optical axis of a
transparent biaxial crystal splits, under the influence of
weak anisotropic absorption, into two new axes:

m( j )   = m( j ) + ∆ . Of course, under weak
absorption, such splitting must be small.1 For example,
for an orthorhombic crystal, the equations p1 · p1 = 0
and p2 · p2 = 0 with regard to (7) and (8) yield
m( j ) || Rec( j ), which, as can easily be verified, corre-
sponds to (2), and

(9)

This symmetric splitting, shown in Fig. 1b, is quite nat-
ural because the original axes m(1, 2) lie in the xz plane,
which is a symmetry plane.

According to (4), the complex polarization vectors
of isonormal waves of magnetic field are orthogonal:
H+ · H– = 0. This means that the corresponding polar-
ization ellipses are orthogonal and the directions of
their circumvention are identical. The eccentricities of
isonormal ellipses are also identical. Let a± and b± be
the lengths of the semiaxes of the polarization ellipses
of isonormal waves. The orientations of these semiaxes
are given by the formula

(10)

When a wave propagates along singular axes, when
p1 · p1 = 0 or p2 · p2 = 0 and, accordingly, the fields H±
are parallel to p1 and p2 (up to a complex scalar factor,
see (4)), the eccentricity of the polarization ellipses of
the wave of magnetic field vanishes, i.e., the polariza-
tion is circular. Therefore, singular axes are sometimes
called circular axes. However, according to (4), the
electric component of the wave in this cases remains
elliptic.

3. WAVE CHARACTERISTICS 
IN THE NEIGHBORHOOD OF A SINGULAR AXIS

Consider in greater detail the wave characteristics
near a singular optical axis in a crystal with arbitrary

anisotropy. Choose any of the four axes  and
denote its direction by m0 for short. Assume, for defi-
niteness, that m0 is a solution to the equation p1 · p1 =

1 However, as is shown in [10, 11], under a small anisotropy com-
parable to the absorption level, the splitting is determined by the
ratio of small parameters and may not be small. Below, we will
not consider such special cases.

m±
j( ) m±

j( )

∆m±
j( ) ∆m±≡ 0 χ0± 0, ,( ),=

χ0

d12d23

2d13
------------------

d12'

d12
-------

d23'

d23
-------– .=

a± ib± || H±/ H± H±⋅ .+

m±
1 2,( )
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0. It can easily be shown that the vector c(1) in this case
can be represented as c(1) = J + gm0, where J is a circu-
lar vector orthogonal to m0 (J · J = 0 and J · m0 = 0). In
a local system of coordinates {x1, x2, x3} with the axis
x3 directed along m0, the vector J has the following
components: J = (1, i, 0). By an appropriate choice of
the parameter b in (6), one can reduce the vector c(2) to
the form c(2) = (1, , ). Since the vectors c(1) and c(2)

are fully determined by the material tensor h – ih' (6),
the parameters g, , and  can be considered known.
In this notation, the complex refractive index for the
singular direction m0 is given by

(11)

Our primary interest, however, lies in the behavior of
the wave characteristics in the neighborhood of a singu-
lar direction where

(12)

Here, θ is the angle of deviation of the wave normal
from the singular axis, and the polar angle ϕ is mea-
sured from the axis x1. Calculations based on general
expression (5) yield the following expressions:

(13)

where |P| and ϕ0 are given by

(14)

In a similar way, applying (4), we obtain the following
expressions for the complex amplitudes of the magnetic
component of the wave:

(15)

(16)

In (15), C± are amplitude coefficients. As is clear
from (15), when the propagation direction deviates
from the singular axis (θ ≠ 0), the wave polarization
ceases to be circular; ellipses arise whose eccentricities
are the smaller, the smaller θ is,

(17)

and with the orientations of the semiaxes given by (10),

(18)

c̃2 c̃3

c̃2 c̃3

N0 n0 in0'+ a b 1 ic̃2+( )+[ ] 1/2– .= =

m m0 θ ϕ ϕ 0,sin,cos( ), 0 θ ! 1.≤+=

n ±( ) n0 θ P
ϕ ϕ 0–

2
---------------,cos±=

n ±( )' n0' θ P
ϕ ϕ 0–

2
---------------,sin±=

P P
iϕ0

2
-------– 

 exp≡ ib g
1 c̃2

2+
2

-------------- 
 

1/2

N0
3.=

H ±( )
0 C± J θR iϕ /2( )exp±[ ] ,=

R A c̃2– 1 θ, ,( ), A 2g/ 1 c̃2
2+( ).= =

e2 1 b±
2/a±

2– θ Q ,= =

a +( ) || 
1
4
--- ϕ ϕ 0–( )cos

1
4
--- ϕ ϕ 0–( )sin 0, , 

  ,

a –( ) || 
1
4
---sin ϕ ϕ 0–( )– 1

4
---cos ϕ ϕ 0–( ) 0, , 

  .
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In these formulas, |Q| and ϕ0 are defined by

(19)

Formulas (13) completely describe the wave sur-
faces n(m) and n'(m) in the neighborhood of a singular
axis. Locally, these surfaces are completely similar and
differ only in the scale and the rotation through angle π
around m0. Indeed, the difference n(±) – n0 coincides
with  –  when ϕ is replaced by ϕ + π. Each of the
surfaces n(m) and n'(m) has a self-intersection line that
emanates from a singular axis. The refractive indices
degenerate on the line ϕ = ϕ0 + π (n+ = n–), while the
absorption indices degenerate on the line ϕ = ϕ0 (  =

) (see Fig. 2). On the other hand, a full rotation
around m0, i.e., the replacement of ϕ by ϕ + 2π,
reverses the signs ± in (13), which means a simulta-
neous change of the branches: n+ +   n– + 
(see the relevant contours in Fig. 2). In this case, the
physical equivalence of the position rotated through 2π
is guaranteed by the fact that, according to (18), the
polarization ellipses of isonormal waves also change
places, a+ + ib+  a– + ib–, so that the mutually
orthogonal pairs of ellipses coincide after the rotation.

Q Q iϕ0/2–( )exp≡ 2A i c̃2–( ).=

n ±( )' n0'
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the neighborhood of a singular axis. The heavy lines show a
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As a result, after a full rotation around m0, the above
pairs rotate in the same direction through a resulting
angle of π/2, which corresponds to the Poincaré index
1/4 mentioned in the Introduction (see Fig. 3).

In [12], we showed that a similar topological sce-
nario takes place in the description of the propagation
of elastic waves in absorbing crystals. However, in this
case, the Poincaré index of the appropriate distributions
of polarization fields may be of either sign: n = ±1/4.

4. GEOMETRY OF THE SURFACE
OF REFRACTIVE INDICES

IN ORTHORHOMBIC CRYSTALS

Now, we proceed to the description of wedge refrac-
tion in the neighborhood of the self-intersection line of

Fig. 3. Rotation of polarization ellipses under a complete
circumvention of a singular axis; the small upper circle indi-
cates the beginning and the end of circumvention.

Fig. 4. Self-intersection of the surface n±(m).
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the surface of refractive indices. The general configura-
tion of the surface 

 

n

 

±

 

(

 

m

 

) in this neighborhood follows
from the previous description and is shown in Fig. 4.
However, further analysis requires more detailed infor-
mation about the geometry of this surface. This analysis
is beyond the applicability of formula (13), which is
only valid near one of the split axes. However, for small
absorption and, accordingly, small splitting, one can
describe at once the whole neighborhood of the pair of

axes . Below, we do so for the neighborhood of the

pair  in an orthorhombic crystal.

Arrange the Cartesian system of coordinates {

 

x

 

1

 

, 

 

x

 

2

 

,

 

x

 

3

 

} introduced above so that 

 

x

 

3

 

 

 

||

 

 

 

m

 

(1)

 

 and assume that
the 

 

x

 

2

 

 axis is parallel to the 

 

y

 

 axis of the original crys-
tallophysical system of coordinates, as is shown in
Fig. 1b. In other words, we choose the vectors 

 

p

 

, 

 

q

 

, and

 

m

 

(1)

 

 as unit vectors of the system {

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

}; in the orig-
inal system of coordinates, these vectors are given by

(20)

It is convenient to represent the wave normal 

 

m

 

 in the
new system of coordinates as

(21)

Combining (5) and (7) and taking into account that
the absorption is weak, after rather tedious calculations
we obtain

(22)

Here,

(23)

In (22) and (23), 

 

χ

 

1

 

 is defined by (9) in which the sign
of modulus should be changed by mere brackets. The
condition Re

 

r

 

 = 0, which reduces to the relations

(24)

determines the self-intersection line of the surface

 

n

 

±

 

(m) on which n+ = n– (Fig. 4). On the other hand, the
condition Imr = 0 yields the two relations

(25)

which determine two self-intersection lines of the sur-

m±
j( )

m±
1( )

p θ0cos 0 θ0sin–, ,( ),=

q 0 1 0, ,( ),=

m 1( ) θ0sin 0 θ0cos, ,( ).=

m m 1( ) ∆m, ∆m+ m1 m2 0, ,( ),= =

m1
2

m2
2
 ! 1.,

n ±( ) n0 D ε2Rer, n0± ε2 1 Dm1+( ),= =

n ±( )' n0' Imr( )D ε2,±=

n0' η2' /2η2 χ1D+( ) ε2.=

D d12d23/2η2,=

r m1
2 m2

2 χ1
2– 2iχ1m1+ + .=

m1 0, χ0 m2 χ0,≤ ≤–=

m1 0, m2 χ0 and m1–≤ 0, m2 χ0,≥= =
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face (m) such that  = . On the unit sphere of
directions m · m = 1, the lines (25) continue the line (24).
At the endpoints of the segment (24) (at the points m2 =
±χ0), both the refractive indices and the absorption indi-
ces coincide. These points define the directions of sin-
gular axes. The absorption splits the optical axis m(1) of
a transparent crystal, thus giving rise to a pair of singu-

lar axes  and  that make an angle of 2χ0 (in
radians) (see (9) and Fig. 1b). The system of coordi-
nates used in this work has proved to be convenient for
describing the local geometry of the contact of sheets
because the x2 axis is parallel to the self-intersection
lines.

The line (24) represents a wedge singularity of the
surface of refractive indices of absorbing crystals. The
geometric normals n± can be defined for each sheet
n±(m):

(26)

We will focus on the orientation of n± in the immediate
vicinity of the self-intersection lines. When speaking of
such normals on the line (24), we will mean that they
are defined in the limit of infinitely close vicinity of this
line. Here, it is obvious that n±(m1 > 0) || ;
therefore, a single isonormal pair n± characterizes both
faces of the wedge surface, on the upper (+) and the
lower (–) sheets. Assume, for definiteness, that n± ≡ n±
(m1 > 0).

In a particular case of transparent crystals (χ0 = 0),
when the line (24) shrinks to a point m1 = m2 = 0, we
obtain the following expressions for the refractive indi-
ces n± near this point and the cone of normals n0(m) to
the surface:

(27)

Here, we used the polar coordinates (χ, ψ): m1 = χcosψ
and m2 = χsinψ. It is this cone of normals n0(ψ) that is
shown in Fig. 5. In the case of zero absorption consid-
ered here, this cone is simultaneously a cone of group
velocities and Poynting vectors; i.e., it represents a
refraction cone. In the plane x1x2 perpendicular to the
direction of m(1), this cone has a circular cross section.
The angular dimensions α0 and β0 of this cone in two
perpendicular cross sections passing through its geo-
metric axis (see Fig. 5) are given by

(28)

where D is defined by (23). It is obvious that β0 > α0

n±' n+' n–'

m+
1( ) m–

1( )

n± || 
∂n±

∂m
--------.

n+− m1 0<( )

n± ε2 1 χD ψcos 1±( )+[ ] ,=

n0 || D ψ 1–cos( )p qD ψ m 1( ).+sin+

α0tan 2D,
β0

2
-----tan

1
2
---

α0

2
----- α0tantan ,= =
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always; i.e., the cone is not circular. However, the less
D is, the closer the cone is to a circular cone with small
opening: β0 ≈ α0 ≈ 2D ! 1. In practice, the latter con-
dition is usually fulfilled because, as a rule, 2D in most
crystals is no greater than 0.1; therefore, the opening α0
of the refraction cone is very small even for record-
breaking crystals. For instance, α0 = 4°51′ in ammo-
nium oxalate and α0 = 3°18′ in iodic acid [3].

In absorbing crystals near the line (24), when |m1| !
1, the relief of the surface of refractive indices (22) and
the field of geometric normals are given by

(29)

Here, the following parameters are introduced:

(30)

When deriving these formulas, we assumed that |m1| !
(  – )/2χ0. When m1 changes its sign, a transition
n+  n– occurs, which means that there is a kink of
the surface n±(m) on the line (24); in this case, the vec-
tors n± change their direction stepwise, thus forming

n±

ε2

--------
1 γ±m1, m1 0,>+

1 γ+− m1, m1 0,<+


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n± || m 1( ) Dγ±p.–

γ± 1 1/ 1 m2
2
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(a) (b)

n+(m2)
n–(m2) α (m2)

n–(m)α 0

x3

m+
(1)

χ0
m(1)

q

p

x2

x1

α 0

p+(m2)
p–(m2)

γ(m2)

Fig. 6. Schematic distribution of the vector characteristics of wedge refraction; (a) normals n± on the intersection line of sheets and

(b) normalized Poynting vectors p± = /| | along the edge of the refraction wedge on the wave sheet n–(m) (dark quadrangles
denote right angles).

P± P±
a wedge of orientations (see Fig. 6a). The opening
angle α of this wedge is defined by

(31)

as a function of the coordinate. At the center of the
intersection line of the sheets, where m2 = 0, the angle
α (31) coincides with α0 (28) and proves to be the min-
imal opening angle of the wedge of geometric normals
(see Fig. 6a). Away from the center, the angle between
the normals increases, while the kink of the sheets

n±(m) becomes still sharper. When /  ! 1, we
have

(32)

Below, we will see that, under a small deviation from
the center of the intersection line of the sheets, the wave
polarization is slightly different from a linear polariza-
tion; therefore, formulas (32) for n± approximately
characterize the direction of group velocities u± as well.

A sufficiently smooth increase in angle α with m2 at
the center of the wedge changes into a sharp increase in

αtan
D γ+ γ––( )
1 D2γ+γ–+
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2D 1 m2
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1 1 D2+( )m2
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2
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 
 
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2
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 
 

Dp m 1( ).+










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the vicinity of the direction . Let us evaluate the
region of the anomalous growth of α. The angle α
increases by a factor of two from α0 to 2α0 for m2/χ0 ≈

/2 ≈ 0.86. In this region, χ0 – m2 ! χ0, and it is con-
venient to use the notation m2 = χ0 – µ, 0 ≤ µ ! χ0.

Then, α = π/2 for µ/χ0 ≈ /8. For α0 = 0.1, this equal-
ity holds at µ/χ0 ~ 10–3. A further decrease in µ/χ0 to
zero leads to a still sharper increase in α from π/2 to π.

A neighborhood of a specific direction of the singu-
lar axis requires a separate consideration. Here, it is
convenient to introduce polar coordinates µ,  with the

origin corresponding to the direction : m2 = χ0 +

µcos , m1 = µsin . In this case, we obtain the follow-
ing expressions from (22) and (26):

(33)

Expression (33) shows that, for m2 = χ0 (propagation

along the singular axis ) the surface n±(m) has a
pointed-tip-type singularity (see Fig. 6a). In this case,
in contrast to the pronounced asymmetry at the center
of the edge, the shape of the wedge at the ends of the
edge proves to be symmetric with respect to the plane
x2x3 that passes through the edge of the wedge and

m+
1( )

3

α0
2

ψ̃
m+

1( )

ψ̃ ψ̃

n± ε2 δ ψ̃
2
----, δcos±≈ 2µχ0ε2( )1/2D,=

n+ n– n0≈ ≈ p ψ̃
2
---- q

ψ̃
2
----.cos+sin=

m+
1( )
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locally coincides with both faces of the wedge at the
singular points m1 = 0 and m2 = ±χ0. Accordingly, the
geometric normals at the ends of the edge of the wedge
have a fan-type singularity that is parallel to the x1x2
plane and symmetric with respect to the x2x3 plane
(Fig. 6a).

5. WEDGE REFRACTION 
OF ELECTROMAGNETIC WAVES 

ON THE SELF-INTERSECTION LINE 
OF THE SURFACE n±(m)

Below, we will see that the polarization of waves
near the self-intersection line of the surface n±(m) is
linear only on the central x1x3 plane, whereas, in other
places, it is elliptic. Therefore, the group velocity of the
waves can be defined only in a relatively narrow area
surrounding the x1x3 plane. Hence, it is clear that the
field of normals n±(m) determined above can hardly
serve as a characteristic of the wedge refraction of
waves considered here. To describe the latter, one has to
determine a field of Poynting vectors

(34)

For complex vector amplitudes of electric and mag-
netic fields near the intersection line of the sheets
n±(m), we obtain the following expressions from (4)
and (7), which complement formulas (22):

(35)

Here, G = p + 2Dm(1). On the intersection line of the
sheets (24), when m1 = 0, we have the following expres-
sions for ac electric and magnetic fields:

(36)

Here,

(37)

 is a phase that depends on time t and the coordinate

r:  = ϕ~ – , ϕ~ = k · r – ωt, and  is the reference
point of the phase. Formulas (36) describe an elliptic
polarization of isonormal waves; in the present case,
they have identical phase velocities but different

absorption indices. The coefficients of sin  and

cos  in (36) define the vectors a± and b± of semiaxes
of appropriate ellipses.

P± ReE± ReH±.×=

E±
0  || m2q m1 iχ1 r±+( )G,+

H±
0  || m2p m1 iχ1 r±+( )q.–

ReE± || g±G ϕ±
~sin

m2

χ1
------q ϕ±

~,cos–

ReH± || g±q ϕ±
~sin

m2

χ1
------p ϕ±

~.cos+

g± 1 1 m2/χ0( )2
– ,±=

ϕ±
~

ϕ±
~ ϕ±

0 ϕ±
0

ϕ±
~

ϕ±
~
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Near the midpoint of the intersection line of the
sheets, when |m2| ! χ0 ≡ |χ1|, from (36) and (37) we
obtain

(38)

These formulas show that, at the center of the wedge,
where m2 = 0, the wave polarization is linear, whereas,
a little ways from the center, weak ellipticity arises.
Finally, when a wave propagates strictly along a singu-
lar axis, the electric and magnetic fields are polarized
elliptically and circularly, respectively:

(39)

The Poynting vector P± (34) can be represented as a
sum of time-independent (averaged over a period)

energy flux  and a time-dependent flux :

(40)

Here, c± and d± are the semiaxes of the corresponding
ellipses. According to (34) and (36), on the intersection
line of the sheets (24), these vectors are defined by

(41)

We omitted identical factors in the expressions for 
and . One can see from (41) that the two time-aver-

aged middle vectors  and , whose orientations
can also be represented as

(42)
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m(1)

q
p x1

x2

x3

±c+ ±c–

P~
+
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P+
–

P~
–

P–

P–
–

P
– P

P~

Fig. 7. Trajectories of the endpoints of the Poynting vectors P± of isonormal waves on the universal refraction cone (Fig. 5) for three

directions of the wave normal on the self-intersection line of the surface n±(m): a – m || m(1) (m2 = 0), heavy dots indicate the posi-

tions of the endpoints of ; (b) intermediate orientation, 0 < m2 < χ0, two elliptic sections of the cone are parallel to the vector q

(to the edge of the wedge); (c) m ||  (m2 = χ0), the horizontal circle in the section corresponds to the merging of two ellipses
for a singular direction.

P±

m+
1( )

(a) (b) (c)
always lie in the plane x1x3, which is orthogonal to the
edge of the wedge, while the orientations of these vec-
tors smoothly vary as the coordinate m2 is varied, mak-
ing an angle of γ (Fig. 6b):

(43)

It is interesting to note that expressions (42) and (43)
are similar to (29) and (31).

The ends of the vectors  correspond to the centers
of elliptic trajectories described by the ends of the vec-

tors  and . The minor semiaxes of the ellipses are
parallel to the edge of the wedge, d± || q, while their
eccentricity monotonically decreases from unity to zero
as m2 increases from 0 to χ0. Simultaneously, the slope
of the major semiaxes c± with respect to the horizontal
plane decreases to zero: for m2 = χ0, we have c± || p. A
rather tedious analysis leads to a very interesting pic-
ture: all elliptic orbits can be represented as lines that
arise in the plane sections of a universal cone that coin-
cides with the cone of refraction of a transparent crystal
(see formulas (28) and Fig. 5). A variation in m2
changes only the orientations of the secant planes,
which remain parallel to the edge of the wedge, i.e., to
the vector q. In this case, the full energy-flux vectors P±

γtan
D g+ g––( )
1 D2g+g–+
---------------------------

2D 1 m2
2
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2
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1 D2m2
2
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2
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------------------------------------.= =
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P+
~ P–

~
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traverse all the generators of the universal cone, run-
ning over the corresponding elliptic orbits (see Fig. 7).

Consider the behavior of the characteristics of interest
near the midpoint and at the ends of the intersection line
of the sheets in greater detail. When |m2| ! χ0, the energy
fluxes of isonormal waves are given by the relations

(44)

(45)
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These formulas show that the time-averaged vectors 

and  of two isonormal waves start to converge as
they move away from the wedge center. Moreover, as
we expected, the initial orientations of these vectors for
m2 = 0 coincide with the corresponding directions of the
normals n± (see (32)); however, the latter, unlike the

fluxes , diverge as m2 increases, rather than converge
(Fig. 6).

Near the singular axis, when m2 = χ0 – µ, 0 ≤ µ !
χ0, the energy fluxes are characterized by the expres-
sions

(46)

These relations show that, for a wave propagating
strictly along a singular axis, when µ = 0, the directions
of the mean fluxes of isonormal waves coincide,  ||

 || , while their endpoints represent the centers of

appropriate circles that the vectors  and  describe

in the x1x2 plane (Fig. 7c). The full vectors P =  + 
behave in exactly the same way as the flux vectors in
transparent crystals when a circularly polarized wave
propagates along the optical axis (Fig. 5). Formulas (46)
show that the average flux vector  retains its asym-
metric orientation in the x1x3 plane.

Away from the singular axis, when the waves lose
their circular polarization, the vectors  and 
diverge more and more as µ increases (Fig. 6b). In this

case, the circles described by the vectors  and  for
µ = 0 turn into gradually elongating ellipses. The angle
γ (43) between the vectors  and  smoothly
increases when moving toward the wedge center: it
attains its maximum equal to α0 at the center; i.e., as we
have already pointed out above, it coincides with the
angle between the normals n± (see Fig. 6).

6. DISCUSSION

Thus, absorption gives rise to quite nontrivial topo-
logical features both in the geometry of a contact
between degenerate wave surfaces (Figs. 2 and 4) and
in the distribution of complex vector polarization fields
that are characterized by the Poincaré index n = 1/4 in

P+

P–

P±

P± || P0
2µ
χ0
------ 2Dp m 1( )+–( ),±

P0 Dp– m 1( ),+=

c± || Dp 2µ
χ0
------ 2Dp m 1( )–( ),±

d± || D 1 2µ
χ0
------± 

  q.

P+

P– P0

P+
~ P–

~

P P~

P0

P+ P–

P+
~ P–

~

P+ P–
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the vicinity of singular axes (Fig. 3). In the propagation
directions that are close to the self-intersection lines of
the surfaces of refractive indices, internal wedge refrac-
tion is predicted. Analysis has shown that the character
of refraction is analogous to a similar phenomenon in
the acoustics of nonabsorbing crystals only in the cen-
tral region of a wedge, where the polarization is close
to a linear polarization. Away from this region, the
ellipticity of polarization increases, while the direction
of the Poynting vector averaged over a period, ,
deviates more and more from the corresponding normal
n± toward the surface of refractive indices. In this case,
the nonaveraged Poynting vectors P± on the entire edge
of the wedge rotate along the same cone of directions,
which coincides with the refraction cone of a transpar-
ent crystal, whereas the endpoints of these vectors run
over different plane (elliptic) sections of the cone that
depend on the position of the wave normal on the edge
of the wedge. Along singular axes (at the ends of the
edge of the wedge), these sections become circular,
while the refraction pattern fully reproduces the conical
refraction of circularly polarized waves in a transparent
crystal (Fig. 5).

In the last sections of this paper, when analyzing the
geometry of the self-intersection of the surface of
refractive indices and discussing the specific features of
the wedge refraction of electromagnetic waves, we
restricted ourselves to the analysis of orthorhombic
crystals. In this case, the x1x3 plane passing through the
center of the wedge represents a symmetry plane, and
the pictures on either side of this plane are equivalent.
The center of the wedge corresponds to a linear polar-
ization of waves, which is preserved on the whole this
plane, while the signs of rotation of elliptically polar-
ized waves on different sides of the symmetry plane are
opposite. Obviously, the signs of rotation of circularly
polarized waves that propagate along the crystallo-

graphically equivalent singular axes  and  are
also opposite in this case. Naturally, in monoclinic and
triclinic crystals that have no such symmetry plane
connecting the singular directions, these directions
are not equivalent, and the general picture is some-
what distorted. Nevertheless, according to analysis, all
the main features of the phenomenon are qualitatively
the same even in the absence of symmetry. In particu-
lar, a triclinic perturbation of symmetry does not
remove the line of orientations for the propagation of
linearly polarized waves on the unit sphere of direc-
tions m · m = 1 but distorts it. Such lines are well known
in absorbing crystals of arbitrary anisotropy [13, 14] and
do not disappear even under the additional switching on
of optical activity [15].

Let us touch upon the possibility of experimental
observation of wedge refraction in absorbing crystals.
In the experiment, the physical parameter with which
one should compare the splitting angle of optical axes
is the divergence of the optical beam. In particular,

P±

m+
j( ) m–

j( )
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n = 1

n = 1/2 n = 1/2

1/4

1/4

1/4

1/4

(c)(b)(a)

Fig. 8. Vector polarization fields in one of isonormal branches around (a) a tangency point of degeneracy in a uniaxial crystal,
(b) a pair of conical points in a biaxial transparent crystal, and (c) a quadruple of singular axes in an absorbing crystal (the rotation
of the major semiaxes of polarization ellipses are shown near singular points).
when a light beam is transmitted along the direction
m(1) (or m(2)) with the divergence ∆ϑ  much greater than
the angular splitting 2χ0 of optical axes, the pattern
observed differs only slightly from the ordinary conical
refraction: the fine details associated with the absorp-
tion do not manifest themselves. However, if we choose
a laser beam with a divergence much less than the angu-
lar splitting of axes, then it becomes possible to observe
a wedge refraction as well as the anomalies described
above near new positions of optical axes. Since the
divergence of a laser beam may be very small, ∆ϑ  ~ 1',
the corresponding estimate of admissible relations
between the material parameters, 2χ0 @ ∆ϑ , yields the
inequality η'/d @ 3 × 10–4, which leads to inessential
restrictions on the choice of the objects of investigation.

Let us dwell on an interesting topological aspect of
the problem. It is well known that, in optically uniaxial
crystals, the degeneracy corresponding to the tangency
of the wave sheets and characterized by the Poincaré
index n = 1 (Fig. 8a) is unstable with respect to any real
perturbation δe of the “uniaxial” symmetry of the ten-
sor e. Any such perturbation (due to external actions on
a crystal or a phase transformation) splits the tangent
degeneracy into two conical ones each of which has
topological “charge” n = 1/2, so that the total Poincaré
index remains equal to the original one (Fig. 8b). Con-
ical degeneracies are stable with respect to the varia-
tions of anisotropy, which only shift the degeneracy
points but do not change their index n. However, as we
have seen, this stability does not apply to imaginary
perturbations δe = iδe', which correspond to absorp-
tion. According to the results obtained above, the
switching on of absorption also splits conical degener-
acies into two pairs of singular points with indices n =
JOURNAL OF EXPERIMENTAL A
1/4 (Fig. 8c), so that the conservation of the original

index again holds:  × 4 = 1. It is this fact that guaran-

tees a continual switching off of the two types of pertur-
bation considered above; as a result, the regions with
split axes shown in Figs. 8b and 8c (in the circles drawn
by dotted lines) shrink to points, and we return to the
original pattern of a transparent biaxial, and then also
uniaxial, crystal.
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Abstract—Bound states of a particle in the field of two pointlike δ centers are considered in the 3D problem.
The exact solution to the Schrödinger equation is obtained for a system of scattered centers. © 2004 MAIK
“Nauka/Interperiodica”.
Point (zero-range) potentials were used for the first
time by Fermi [1] in the 1D problem to study the shift
of spectral lines. The application of the δ function as the
potential in the Schrödinger equation makes it possible
to obtain a compact analytic solution. This facilitated
subsequent wide application of point potentials. In
addition, actual forces (e.g., nuclear forces or the forces
emerging during the screening of the Coulomb poten-
tial) can often be treated as short-range forces.

The method of zero-range potential has been suc-
cessfully used in various branches of physics. In
nuclear physics, this method was employed for study-
ing the scattering of particles (including that by two sta-
tionary centers). Point interactions were used for solv-
ing three-body problems and for studying nucleon tun-
neling. The method is also extensively used in atomic
physics. It was employed for describing molecular sys-
tems, in the theory of atomic collisions (e.g., in study-
ing charge exchange and neutralization of atomic parti-
cles), and in solid-state theory.

Extensive literature on this problem is presently
available. Steady-state solvable point models were con-
sidered in monograph [2] in 1D, 2D, and 3D cases.
One-dimensional steady-state equations with δ and δ'
potentials were studied in [3]. A number of questions
associated with 3D point potentials were studied in
detail in monographs [4, 5].

The models with pointlike interactions are distin-
guished, among other things, by their applicability for
constructing exact solutions of nonstationary problems.
Breit [6] was apparently the first to study nucleon tun-
neling with the help of a nonstationary 1D model.
Nucleon tunneling was also analyzed in [7, 8].

An analogous nonstationary model equation with
scattered δ potentials was studied in [9–15]. The exact
solution describing a “bound” state (i.e., the state
described by a rapidly (exponentially) decreasing func-
tion of coordinates in the case of identical constants
characterizing the depth of the levels of pointlike cen-
ters) was obtained for the first time in [9]. In addition,
an important feature of the problem on scattering of
1063-7761/04/9805- $26.00 © 20882
pointlike centers with a constant velocity was also con-
sidered in [9]. If the Schrödinger equation is used in
integral form, an equation with a difference kernel
appears under a certain substitution of variables. This
makes it possible to obtain exact solutions for a wide
class of problems. A relation for the charge-exchange
probability was obtained in [10] for an arbitrary rela-
tion between the relative velocity v  and parameter α
characterizing the level depth. A compact expression
for the recharging probability amplitude for δ wells
characterized by different depths α and β is given
in [11]. This expression is valid for any relation
between quantities α, β, and v. A solution with an oscil-
latory asymptotic form was obtained (i.e., “free” states
were determined) in [12] for scattering of identical
wells. The Cauchy problem for different wells and for
scattering of δ centers from different points was also
solved in [12]. The “bound” state of dispersing centers
characterized by different depths of a single bound
level was determined in [13]. In [14], the propagator in
the field of two dispersing centers of various depths was
determined for the first time. The same problem was
solved later in [15].

This communication is devoted to analysis of point-
like 3D systems. In Section 1, the form of the potential
operator for a moving 3D well is determined. In Sec-
tions 2 and 3, the bound states for two stationary wells
(including those with different depths) are determined.
The exact solution to the Schrödinger equation for
identical dispersing wells is obtained in Sections 4
and 5, where the “bound” state (i.e., the state described
by a rapidly decreasing ψ function of coordinates) is
determined. The solution in the case of dispersal from
different points is also obtained. The results are dis-
cussed in Section 6.

1. In the spherically symmetric case, the bound state
of a δ center resting at the origin can be described by the
Schrödinger equation of the form

(1)i
∂ψ
∂t
------- 1

2
---∆ψ+

2π
κ

------δ r( ) ψ r∇ψ+( ),=
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where ψ(r, t) is the psi function; in the system of units
used here, " = m = e = 1, " is Planck’s constant, m is the
mass, and e is the charge.

The solution to Eq. (1) describing a bound state has
the form

(2)

The validity of relation (2) can be verified, for example,
by substituting this solution into Eq. (1) written in inte-
gral form:

(3)

where G(+) is the retarded Green function (see [4, 5]),

(4)

Here, σ(x) = 0 if x < 0 and σ(x) = 1 for x ≥ 0.

If we have a δ center moving with velocity v, we
must modify the right-hand side of Eq. (1) and write the
equation as follows:

(5)

This equation has the solution

(6)

2. Let us consider the case of two stationary centers
located at points r = r0 and r = –r0. The corresponding
Schrödinger equation has the form

(7)

Here, the quantities κ and r0 determine the energy
level κ0. Representing the equation in integral form

ψ const
r

------------ κr–
iκ2

2
-------t+ 

  .exp=

ψ 2π
κ

------ t r'G +( ) r r' t t'–,–( )d∫d

∞–

t

∫=

× δ r'( ) ψ r' t',( ) r'∇ψ r' t',( )+[ ] ,

G +( ) iσ t t'–( )
2πi t t'–( )[ ] 3/2

---------------------------------- i
r r'–( )2

2 t t'–( )
------------------- .exp–=

i
∂ψ
∂t
------- 1

2
---∆ψ+

=  
2π
κ

------δ r vt–( ) ψ 1 iv r vt–( )–[ ] r vt–( )∇ψ+{ } .

ψ const
r vt–
----------------=

× κ r vt––
it
2
---κ2 iv r vt–( )+ iv 2t

2
----------+ +

 
 
 

.exp

i
∂ψ
∂t
------- 1

2
---∆ψ+

2π
κ

------ δ r r0–( ) ψ r r0–( )∇ψ+( )[=

+ δ r r0+( ) ψ r r0+( )∇ψ+( ) ] .
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with the help of the retarded Green function, we obtain

(8)

While deriving this equation, we took into account
the boundary condition

Applying the operator [ψ + (r – r0)∇  to expres-
sion (8), we obtain the following equation for C(t):

Before we set r = r0 in the first term, we must carry
out integration by parts, assuming that the substitution

is equal to zero. For t'  t, this equality can be
ensured by the presence of the exponential factor. Rep-
resenting the exponent i(r – r0)2/2(t – t') in dimensional
variables, we obtain im(r – r0)2/2"(t – t') (see [5]). In
our calculation, we must carry out the substitution
"  (1 – iε), where the positive quantity ε  0;
before proceeding to the limit ε  0, we must ensure
that t'  t. Quantity ε does not appear subsequently in
the final expressions. This operation is essentially sim-
ilar to the operation “subtraction of diverging terms”
proposed in [4]. For C(t), we have the equation

(9)

ψ 1

2πi( )1/2κ
----------------------

t'κ0C t'( )d

t t'–( )3/2
-----------------------

∞–

t

∫=

×
i r r0–( )2

2 t t'–( )
----------------------exp

i r r0+( )
2 t t'–( )
--------------------exp+

 
 
 

.

ψ r r0–( )∇ψ+[ ] r r0→

=  ψ r r0+( )∇ψ+[ ] r r0–→ κ0C t( ).–=

ψ ]r r0→

κ0C t( )–
1

κ 2πi
---------------- t'C t'( )d

t t'–( )3/2
--------------------κ0

∞–

t

∫=

×
i r r0–( )2

2 t t'–( )
---------------------- 1

i r r0–( )
t t'–

--------------------+ 
 

r r0→
exp

+
1

κ 2πi
---------------- t'C t'( )d

t t'–( )3/2
--------------------κ0

2ir0
2

t t'–
---------- 

  .exp

∞–

t

∫

C t'( )
i r r0–( )2

2 t t'–( )
----------------------exp

t t'–
-------------------------------------------------

t' ∞–=

t' t=

C t( ) 2

κ 2πi
---------------- t'C t'( )d

t t'–
------------------

∞–

t

∫=

–
1

κ 2πi
----------------

t'C t'( )
2ir0

2

t t'–
---------- 

 expd

t t'–( )3/2
--------------------------------------------.

∞–

t

∫
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If we set in this equation

we obtain the relation

(10)

The depth of the bound level κ0 depends not only on
κ, but also on the distance 2r0 between the centers. For
r0  0, a smooth transition of solution (7) to the solu-
tion for a single δ center does not exist. This distin-
guishes the problem considered here from the 1D case,
in which such a smooth transition is possible (see [15]).
Solution (8) has the form

(11)

If we seek the solution to Eq. (7) in form (11), we can
readily obtain relation (10) also.

3. In the case of two stationary δ centers, bound
states with two different values of parameters κ1 and κ2
characterizing the level depth can exist.

We assume that the solution for the ψ function has
the form of the sum of four terms:

(12)

This gives

C t( )
iκ0

2
t

2
--------- 

  ,exp=

κ κ 0

2κ0r0–( )exp
2r0

-------------------------------.–=

ψ const
κ0 r r0––( )exp

r r0–
---------------------------------------

κ0 r r0+–( )exp
r r0+

----------------------------------------+
 
 
 

=

×
iκ0

2t
2

--------- 
  .exp

ψ α1

iκ1
2
t

2
--------- κ1 r r0–– 

 exp

r r0–
-----------------------------------------------------=

+ α2

iκ2
2
t

2
--------- κ2 r r0–– 

 exp

r r0–
-----------------------------------------------------

+ β1

iκ1
2t

2
--------- κ1 r r0+– 

 exp

r r0+
-----------------------------------------------------

+ β2

iκ2
2t

2
--------- κ2 r r0+– 

 exp

r r0+
-----------------------------------------------------.

i
∂ψ
∂t
------- 1

2
---∆ψ+

=  2π α1

iκ1
2
t

2
--------- 

 exp α2

iκ2
2
t

2
--------- 

 exp+ δ r r0–( )




–
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The right-hand side of this equation can be written in
the form

The substitution of expression (12) into this relation
ultimately leads to the system of four equations,

(13)

From the condition of existence of nonzero solution
of system (13), we can find two equations for determin-
ing constants C1 and C2:

(14)

(15)

These equations define the values of C1 and C2 in
terms of κ1, κ2, and r0. It should be noted that the equal-
ity C1 = C2 is possible only for κ1 = κ2.

4. Let us now consider a more complex case of mov-
ing δ centers. We assume that the centers are scattered
from point r = 0 with equal and opposite velocities. The
Schrödinger equation can be written in the form

(16)

Using the advanced Green function

+ β1

iκ1
2t

2
--------- 

 exp β2

iκ2
2
t

2
--------- 

 exp+ δ r r0+( )




.

C1δ r r0–( ) ψ r r0–( )+
∂ψ
∂r
-------⋅

+ C2δ r r0+( ) ψ r r0+( )+
∂ψ
∂r
-------⋅ .

2πα1– κ1α1– β1

2κ1r0–( )exp
2r0

-------------------------------+ 
  C1,=

2πα2– κ2α2– β2

2κ2r0–( )exp
2r0

-------------------------------+ 
  C1,=

2πβ1– κ1β1– α1

2κ1r0–( )exp
2r0

-------------------------------+ 
  C2,=

2πβ2– κ2β2– α2

2κ2r0–( )exp
2r0

-------------------------------+ 
  C2.=

1
κ1C1

2π
-----------– 

  1
κ1C2

2π
-----------– 

  C1C2

4κ1r0–( )exp

4r0
2

-------------------------------,=

1
κ2C1

2π
-----------– 

  1
κ2C2

2π
-----------– 

  C1C2

4κ2r0–( )exp

4r0
2

-------------------------------.=

i
∂ψ
∂t
------- 1

2
---∆ψ+

2π
κ

------ δ r vt–( ) ψ 1 iv– r vt–( )⋅( )[{=

+ r vt–( )∇ψ ] δ r vt+( )+

× ψ 1 iv+ r vt+( )⋅( ) r vt+( )∇ψ+[ ] } .

G –( ) iσ t' t–( )
2πi t t'–( )( )3/2

---------------------------------- i r r'–( )2

2 t' t–( )
---------------------–exp–=
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(see [5]) and the boundary conditions at points r = ±vt,

we can write Eq. (16) in integral form:

(17)

We denote

Analogously to the procedure used in Section 2, we can
obtain the following expression for g(t) from Eq. (17):

(18)

While deriving this expression, we also integrated by
parts and assumed that

which is possible under the substitution "  "(1 + iε)
and ε  0. We set

Equation (18) leads to

(19)

This equation can be solved using the Laplace transfor-
mation in the same way as in the case of the 1D nonsta-
tionary problem (see [9, 11, 12]). Assuming that

ψ C t( ) 1
r vt±
---------------- κ– 

  ,≈

ψ i

2πi–( )3/2
----------------------2π

κ
------ t'C t'( )d

t' t–( )3/2
--------------------

t

∞

∫=

× κ i r vt'–( )2

2 t' t–( )
-----------------------–exp– κ i r vt+( )2

2 t' t–( )
-----------------------–exp–

 
 
 

.

C t( ) iv 2t
2

----------– 
 exp g t( ).=

g t( ) 2i

κ 2πi
---------------- ġ t'( ) t'd

t' t–
-----------------

t

∞

∫–=

–
i

κ 2πi
---------------- g t'( ) t'd

t' t–( )3/2
-------------------- 2iv 2tt'

t' t–
----------------– 

  .exp

t

∞

∫

2

t' t–
-------------- iv 2t'

2
----------- r r'–( )2

2 t' t–( )
-------------------–

 
 
 

t' t=

t' ∞=

exp 0,=

h τ( )
g

1
τ
--- 

 

τ
------------, τ 1

t
---, τ'

1
t'
---.= = =

h τ( ) i

κ 2πi
---------------- τ' 2h τ'( )τ' h τ'( )+( )d

τ τ '–
-------------------------------------------------

0

τ

∫=

–
τ

κ 2πi
---------------- τ'h τ'( )d

τ τ '–( )3/2
---------------------- 2iv 2

τ τ '–
------------– 

  .exp

0

τ

∫

H p( ) h τ( ) pτ–( ) τ ,dexp

0

∞

∫=
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we can obtain from Eq. (19)

(20)

If we set p = q2/2i, we can obtain from expression (20)
the solution for H in the form

(21)

where

For g(t), we obtain the following expression:

(22)

Path L may have the form of two rays located in the sec-
ond and fourth quadrants of complex plane q and will
be defined more exactly below. Since

the solution to the Schrödinger equation is given by

(23)

The integrals defining Ψ± can be transformed to the
simpler integrals

(24)

κH p( ) i

2πi
------------ π

p
--- H p( ) 2 p

dH
dp
-------+–=

–
i

2πi
------------ π

2iv 2
-----------

d
dp
------ 2v 2ip–( )H p( )exp[ ] .

H q( ) const
a q( )
------------ iκ q' q'd

a q'( )
------------

0

q

∫ 
 
 

,exp=

a q( ) q
2v q–( )exp

2v
---------------------------.–=

g t( ) const

t
------------ q qH q( ) iq2

2t
-------– 

  .expd

L

∫=

C t( ) g t( ) iv 2t
2

---------- 
  ,exp=

ψ r t,( ) const
t'

iv 2t'
2

----------- 
 expd

t' t–( )3/2 t'
--------------------------------

t

∞

∫=

× q qd

L

∫ iq2

2t'
-------– 

  1
a q( )
----------- iκ q' q'd

a q'( )
------------

0

q

∫ 
 
 

expexp

× i r vt'–( )2

2 t' t–( )
-----------------------

 
 
 

exp i r vt'+( )2

2 t' t–( )
------------------------–

 
 
 

exp+

=  const Ψ– Ψ++{ } .

Ψ±

iv 2t
2

---------- iv r±⋅+− 
 exp

r± t
----------------------------------------------=

× q qd
a q( )
-----------

i q ir±–( )2

2t
------------------------– iκ q' q'd

a q'( )
------------

0

q

∫+
 
 
 

.exp

L

∫
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Here, r± = r ± vt, r± = |r±|, and

The sum Ψ+ + Ψ– satisfies the initial equation (16); this
can be verified by direct substitution.

Let us now determine more exactly the path of inte-
gration L. Let us suppose that q = q1 + iq2, where q1 and
q2 are real numbers. Path L consists of the imaginary
axis (q1 = 0), where q2 varies from ∞ to 0, and the real
axis (q2 = 0), where q1 varies from 0 to ∞. On the imag-
inary axis, the integrand function has no singularities
and exponentially decreases for q2  ∞; on the real
axis, a pole exists for 2vq1 = exp(–2vq1) and we assume
that contour L bypasses this pole from above. The inte-
grand function in expression (24) decreases exponen-
tially for q1  ∞ on the real axis as well. It is impor-
tant for the next section to note that contour L for
q1  ∞ can be displaced to region q2 < 0, which
ensures the convergence of the integral.

5. After certain modifications, relations (23) and
(24) give the solution of a more complex problem, viz.,
scattering from different points. We assume that the δ
centers are located at points r = ±r0 at t = 0. The veloc-
ities of the centers are directed along +r0 and –r0,
respectively. In this case, we must replace r – vt by
r − vt – r0 = r– and r + vt by r + vt + r0 = r+ in Eq. (16).
We denote

This gives

(25)

We represent the Ψ function in the form

(26)

Substituting this expression into Eq. (16) modified in
accordance with the above arguments, we obtain the

a q( ) q
2v q–( )exp

2v
---------------------------.–=

Qq
± r t,( )

iv 2t
2

---------- iv r±⋅+− 
 exp

r± t
r0

v
----+

----------------------------------------------
i q ir±–( )2

2 t
r0

v
----+ 

 
------------------------–

 
 
 
 
 

.exp=

i
∂Q±

∂t
--------- 1

2
---∆Q±+ 2πδ r±( )–=

× iv 2t
2

---------- iq2

2 t
r0

v
----+ 

 
---------------------–

 
 
 
 
 

1

t
r0

v
----+

----------------.exp

Ψ Qq
+ Qq

–+( )S q( ) q.d

L

∫=
JOURNAL OF EXPERIMENTAL 
following equation for S(q):

(27)

This equation has the solution

(28)

Substitution of expression (28) into Eq. (27) and
integration of the right-hand side of the resultant equa-
tion by parts lead to an identity. The form of Eqs. (26),
(27), and (28) implies that relations (23) and (24) give
the solution of the problem of δ centers scattered from
different points (r = ±r0) if we carry out the following
substitution in these relations:

Constant C∗  depends on v, κ, and r0, the complex
form of the dependence complicating the passage to the
steady-state limit v   0. To determine the solution
for v   0, we will seek S(q) in the form S(q) =
exp(iκ0q). In this case, we can obtain from Eq. (27)

(29)

Proceeding to the limit v   0, we obtain the equality

coinciding with relation (10). In accordance with this
equality, the steady-state solution is defined by for-
mula (11). It should be noted, however, that the form of
function S(q) used here does not provide a solution for
v  ≠ 0.

6. Solution (23), (24) is basically analogous to the
solution obtained in [9] for the bound state of scattered
centers in the 1D problem. In both cases, the solution is
the sum of two expressions corresponding to the direc-
tion of motion of the center and affecting each other.
However, the 3D problem exhibits a number of pecu-

q
iq2

2 t
r0

v
----+ 

 
---------------------–

 
 
 
 
 

S q( )expd

L

∫ 1

κ t
r0

v
----+ 

 
---------------------=

× q
iq2

2 t
r0

v
----+ 

 
---------------------–

 
 
 
 
 

a q( )S q( ).expd

L

∫

S q( ) q
a q( )
-----------C* iκ q' q'd

a q'( )
------------

0

q

∫ 
 
 

.exp=

t t
r0

v
----, r± r vt r0+( )± .+

iκ0

2
------- t

r0

v
----+ 

 exp
κ0

κ
-----

iκ0
2

2
------- t

r0

v
----+ 

 exp=

–
κ0

κ
----- 1

2v t
r0

v
----+ 

 
-------------------------

i κ0 2iv+( )2

2
------------------------------ t

r0

v
----+ 

  .exp

κ κ 0

2κ0r0–( )exp
2r0

-------------------------------,–=
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liarities. The bound state in this case cannot be repre-
sented in the form of a discrete series of “metastable”
decaying levels. In the case of scattering from the same
point in the 1D problem, in the limit v   0, the state
continuously transforms into the state of a single δ cen-
ter, while no such transition can be made in the 3D
problem. This is due to the fact that there is no contin-
uous transition to the state of one center in the steady-
state two-point problem upon a limiting transition to
zero of the separation between the centers. In mono-
graph [4], the existence of relative motion is simulated
by the presence of bound levels with a time-dependent
depth. Apparently, it is possible to construct more real-
istic solvable models of various nonstationary quan-
tum-mechanical processes such as, for example, the
tunneling of nucleons or charge exchange of atomic
particles. In this connection, nonstationary problems
with 3D pointlike δ centers are of special significance.
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Abstract—A new three-dimensional scheme for rectifying a gradient force is proposed and analyzed. The
scheme is based on the use of a strong, partially coherent optical field involving a component with a fluctuating
phase. It is shown that the rectification of a gradient force acting on atoms with a nondegenerate ground state
is a second-order effect with respect to field strength in this scheme, whereas an analogous effect is third-order
in coherent bichromatic fields. Conditions for three-dimensional confinement of atoms are obtained by using
the velocity dependence of the rectified radiative force. For a large class of atoms, such as even-even isotopes
of ytterbium and alkaline-earth elements, these conditions can be implemented at a relatively high effective
temperature (of the particle ensemble) of about 10 K. This finding can be used to widen substantially the range
of energies of atoms amenable to effective three-dimensional optical manipulation. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Resonant atoms placed in a strong nonmonochro-
matic nonuniform optical field (as a standing wave)
are subjected to a strong rectified gradient force
(RGF) [1–5]. Its sign remains invariant over a distance
much larger than the optical wavelength λ. The force
does not saturate with increasing field intensity (in con-
trast to spontaneous radiation pressure).

Various theoretical aspects and implementation
schemes for rectifying radiative forces were considered
in numerous studies (e.g., see [6–11] and references
cited therein). In particular, their results suggest that
RGF can be used to create extremely deep potential
wells [12] and provide dissipative optical traps for con-
fining relatively “hot” atoms with energies well above
typical lower limits for laser cooling. Their practical
implementation can substantially widen the range of
energies of atoms amenable to effective three-dimen-
sional optical manipulation. However, optimization of
necessary physical conditions must rely on an analysis
of three-dimensional models of rectification that allow
for polarization phenomena in mechanical effects of
light [4].

In this paper, we propose and analyze a new three-
dimensional scheme for rectifying a gradient force in a
strong nonmonochromatic field involving a component
with a fluctuating phase. The analysis is performed for
atoms with J = 0  J = 1 transitions (as even–even Yb
and alkaline-earth isotopes), which are deemed pro-
mising for new experiments on laser cooling (e.g.,
see 13–16] and references cited therein). In this
scheme, the effects due to the RGF and the delayed gra-
1063-7761/04/9805- $26.00 © 20888
dient force (radiative friction) are only of sixth order (!)
in the amplitude of the acting field in the limit case of
weakly saturated population of excited levels when a
coherent field is used [1–4]. For this reason, analysis is
complicated and the radiative force has to be modified.
The scheme differs from those with atoms with degen-
erate ground states [8, 17].

We show that rectification of a gradient force in a
strong, partially coherent field is a fourth-order effect
with respect to the field amplitude (i.e., a second-order
one in intensity). We derive expressions for RGF and
delayed gradient force (DGF) in a 3D nonmonochro-
matic field and use them to determine conditions for
stable 3D confinement of resonant particles with an
effective temperature T of at least several kelvins (much
higher than the known lower limits for laser cooling in
similar problems).

We note that the opposite limit case of weak coher-
ent bichromatic field and particles with T ! 1 K was
considered in previous studies [18, 19] (also devoted to
three-dimensional rectification of radiative forces for
atoms with strong singlet–singlet transitions and weak
J = 0  J = 1 transitions).

2. MODEL

Consider an atom of mass m moving with velocity v
in an electromagnetic field

with carrier frequency ω0 tuned to resonance with the
|Jg = 0, Mg = 0〉  |Je = 1, Me = 0, ±1〉 atomic transi-

E r t,( )e
iω0t–

c.c.+
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tion, where Jα is the total angular moment and Mα
denotes its projections in the ground (α = g) and excited
(α = e) states.

The field is the superposition of coherent quasi-res-
onant components with three different frequencies
polarized in mutually perpendicular directions and a
partially coherent (fluctuating) resonant field E ' with a
bandwidth Γ:

(2.1)

where ej denotes the unit basis vectors of a Cartesian
coordinate system and ∆j is the detuning from the reso-
nant frequency ω0.

In accordance with the original concept of gradient-
force rectification [1], assume the following hierarchy
of characteristic frequencies:

(2.2)

(2.3)

where l and j ≠ l denote indices x, y, or z; Vj1(r) and
Uj(r, t) are the Rabi frequencies defined as

with d = ||d||/  (||d|| is the reduced dipole transition
matrix element); k = ω0/c is the wave number; γ is the
decay rate for the excited state; and δ is the fluctuating-
component detuning from the resonant frequency. Ine-
quality (2.2) implies that the coherent components of
E1 are “quasi-resonant,” i.e., give rise to a spatially non-
uniform Stark shift, and the fluctuating component is
“resonant,” i.e., ensures excitation of the atom.1 Condi-
tion (2.3) means that the coherent field E1 is sufficiently
strong to ensure that the light-induced Stark shifts
exceed the optical resonance width. The opposite limit
of a weak coherent bichromatic field was considered
in [18, 19]. Note that superposition (2.1) a fortiori
admits a 3D acting-field configuration (cf. [1–3]).

An atom placed in field (2.1) is driven by the force
[4, 20]

(2.4)

where

1 In the scheme considered in [1], this is achieved by using a “con-
trolling” coherent field component with a small detuning.

E r t,( ) E j1e j i∆ jt–[ ] E' r t,( ),+exp
j x y z, ,=

∑=

∆ j , ∆ j ∆l–  @ V j1 ,

Γ  @ U j ,
V j1

2

∆ j

------------, δ ,

V j1
2

∆ j

------------ @ γ, kv ,
U j

2

Γ
-----------,

V j1

dE j1

"
-----------, U j

d e jE' r t,( )( )
"

------------------------------,= =

3

F " ρ j∇ V̂ j* c.c.+( ),
j

∑=

V̂ j r t,( ) V j1 i∆ jt–( )exp U j,+=
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and ρj denotes the projections of the induced dipole
moment measured in d, which are determined by solv-
ing the optical Bloch equations written for a prescribed
unperturbed classical trajectory r = vt. In the “Carte-
sian” representation adapted to the present problem [4,
19, 21], these equations and the expression for the force
are averaged over oscillations of frequency ∆j (cf. [22])
to obtain (using the same notation for averaged quan-
tities)

(2.5)

(2.6)

where qij is the population difference between the
excited and ground states, qij (with i ≠ j) characterize
the coherence of excited atomic states,

are the effective spatially nonuniform detunings due to
light-induced Stark shifts, and

Next, Eqs. (2.5) and (2.6) are averaged over fluc-
tuations of E'.2 Bloch equations (2.5) constitute a sys-
tem of multiplicative linear equations, and the averag-
ing over the ensemble of random processes Uj condi-
tioned on the right-hand inequality in (2.2) can be
performed by using the expansions of their solution in
terms of ζ ! 1, which is proportional to the autocorre-
lation time τc ~ Γ–1 [25]:

By assuming that 〈〈 Uj〉〉  = 0 and the E' components with
different polarizations fluctuate independently, i.e.,

.

2 In the theory of resonant radiation pressure, radiative forces due
to fluctuating fields with finite bandwidths were originally con-
sidered in [23, 24].

i
d
dt
----- γ⊥ i∆̂i r( )–+ 

  ρi qijU j,
j

∑=

j i, x y z,, ,=

i
d
dt
----- γ i∆̂ij r( )–+ 

  qij iγδij–=

+ ρiU j* Uiρ j*–( ) δij ρl*Ul c.c.–( ),
l x y z, ,=

∑–

F " ρ j∇ U j* c.c.+( )
j

∑ " q jj

∇ V j1
2

∆ j

-----------------,
j

∑+=

∆̂ i r( )
2 Vi1 r( ) 2

∆i

-----------------------=
Vl1 r( ) 2

∆l

--------------------
l i≠
∑+

∆̂ij r( ) ∆̂i r( ) ∆̂ j r( ).–=

U j τc, ∆̂ j τc, kv τc, γτc ζ  ! 1.≤

Uj r t,( )Ui r t τ+,( )〈 〉〈 〉  = Uj r t,( )Ui* r t, τ+( )〈 〉〈 〉  = 0,

i j≠
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Eqs. (2.5) and (2.6) are reduced to

(2.7)

(2.8)

(2.9)

where Qi = 〈〈 qii〉〉  and the rate constants for transitions
between the ground and excited atomic states induced
by the field E' are determined by the correlators

(2.10)

Note also that Uj is treated as a stationary random
process and only first-order terms in ζ ! 1 are retained
in the reduced equations.

Equations (2.7)–(2.9) show that, under condition (2.3)
of strong quasi-resonant field,

,

the radiative force Fs exerted on the atom by the fluctu-
ating field is weak as compared to the gradient force Fg,
which is proportional to the sum of the population dif-
ferences multiplied by the gradients of Ej1 components:

Accordingly, Eqs. (2.7)–(2.9) expose the roles played
by the fields E1 and E' in the present model. The fluctu-
ating field E' is responsible for incoherent mixing of
atomic states, and the quasi-resonant coherent field E1
induces the effective potentials that determine the
motion of the atom: the excited atom moves in the field
with

the unexcited one, in the field with

An analogous model (in the basis of adiabatic states)
describes a two-level atom moving in a coherent
bichromatic field [3, 22]. It is obvious that a rectified
force

(2.11)

F F〈 〉〈 〉 Fg Fs,+= =

Fg

∇ Vi1
2

∆i

-----------------Qi,
i

∑=

Fs –"i=

× Qi τ ∇ Ui* r t,( )Ui r t τ+,( )〈 〉〈 〉 c.c.–d

∞–

0

∫ 
 
 

,
i

∑
d
dt
----- γ 2Ri r( )+ + Qi Re r( )Qe

l i≠
∑+ γ,–=

R j r( ) 2Re U j r t,( )U j* r t τ+,( )〈 〉〈 〉 τ .d

∞–

0

∫=

V j1
2 /∆ j1  @ Ue

2/Γ

Fs  ! Fg .

Vi1 r( ) 2/∆i1, i x y z;, ,=

Vi1 r( ) 2/∆i1, i
i

∑– x y z., ,=

FR Fg〈 〉 Qi

∇ Vi1
2

∆i

-----------------
i

∑  ò 0= =
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exists when Ri = Ri(r) (transition rates are spatially
modulated), which is possible only if the coherent field
has mutually interfering components. (Hereinafter,
angle brackets denote averaging over oscillations with
periods comparable to the optical wavelength.)

Finally, note that Eqs. (2.9), where the effect of E1
on transition saturation is ignored, are derived under
conditions (2.2) and (2.3) supplemented with a refined
quasi-resonance condition for E1:

This makes it possible to restrict analysis to the first
approximation (i.e., Eqs. (2.5)) in averaging the origi-
nal Bloch equations over oscillations with frequencies
comparable to ∆j (higher order approximations for a
related problem were discussed in [22]).

3. RECTIFIED GRADIENT FORCE 
AND THREE-DIMENSIONAL CONFINEMENT

To obtain expressions for the RGF, we specify the
fields E' and E1 as superpositions of plane waves (j = x,
y, z):

(3.1)

(3.2)

where Vj and ηjα are the amplitudes and initial phases
of the coherent field components, and φj(t) and ψj(t) are
independent fluctuating phases (with delta-correlated
zero-mean derivatives), which determine the correla-
tors of E' components by the relations

(3.3)

in a model of radiation with phase diffusion [23, 26].
Thus, each Cartesian component of E' consists of

two independent fluctuating components. Their struc-
ture implies that Fs = 0 (in approximation (2.8)), and
the field E' has a Lorentzian spectral profile with band-
width Γ:

Note that representation (3.1) in the region occupied

V j1

∆ j

-------
2

g j
2
 ! 

R j

γ
-----.∼

U j r t,( ) U
2
----=

× iφj t( )( ) ik j1 r⋅( )exp ik j2 r⋅( )exp+[ ]exp{

+ iψ j t( )( )exp ik j1– r⋅( )exp ik j2– r⋅( )exp+[ ] } ,

V j1 r( )
V j

2
----- i q j1 r⋅( ) η j1+( )exp[=

+ i q j2 r⋅ η j2+( )( ) ] ,exp

i φj t( ) φj t τ+( )–[ ]exp〈 〉〈 〉

=  i ψ j t( ) ψ j τ τ+( )–[ ]exp〈 〉〈 〉 Γ τ–( ),exp=

i ψ j t( ) φj t τ+( )–[ ]exp〈 〉〈 〉 0=

I ω( ) 2Γ
ω ω0–( )2 Γ2+

-----------------------------------.∝
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by atoms is valid only if the coherence length

is much greater than the diameter of the region:

(see [23]). Moreover, if correlated light beams with
wave vectors kj1 and kj2 are obtained from the same
source by using an appropriate optical system, then the
optical path difference between them must also be
much smaller than lc.

The vectors kjα and qjα in (3.1) and (3.2), with the
magnitudes

lie in the planes perpendicular to the corresponding
basis vectors of the Cartesian coordinate system:

To be specific, suppose that

(3.4)

(3.5)

where

and the values of ∆q , ∆k, and δk are determined by pre-
scribing the angles β and βj between the wave propaga-
tion directions in (3.1) and (3.2), i.e., between the pairs
{kj2, kj1} and {qj2, qj1}:

Consequently, the “microscopic” and “macroscopic”
length scales, λM and Λ (λM ! Λ, see [3, 22]), are esti-
mated as λM = π/∆q ~ λ and Λ = π/δk in this problem
and are parameters that can be adjusted by choosing
values β and βj . The optical field configuration is sche-
matized in the figure.

Expressions for the transition rates Rj(r) and the
effective potentials |Vj1(r)|2/∆j are obtained by combin-
ing (2.10), (3.1), and (3.2):

(3.6)

lc cτc c/Γ= =

lc @ b

k jα k ω0/c, q jα q j ω0 ∆ j+ /c= = = =

k jα e j⋅ q jα e j⋅ 0.= =

∆qx ∆qey, ∆qy ∆qez, ∆qz ∆qex,= = =

∆kx ∆key, ∆ky ∆kez, ∆kz ∆kex,= = =

δk  ! ∆k , ∆q ,

δk ∆q ∆k, ∆q j– q j2 q j1–[ ] /2,= =

∆k j k j2 k j1–[ ] /2,=

∆k k β/2( ), ∆q jsin q j β j/2( ).sin= =

R j r( ) R ∆k j r⋅( ), Rcos
2

4 U 2/Γ ,= =

V j1 r( ) 2

∆ j

------------------- = 
V j

2

∆ j

---------- ∆q j r ξ j+⋅[ ] , ξ jcos
2

 = η j2 η j1–[ ] /2.
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When the transition is not saturated, i.e.,

the steady-state solution to Eqs. (2.9) (at t > γ–1) can be
represented as a convergent series in powers of the E'
wave intensity:

(3.7)

where (r) are defined by the recursive relations

(3.8)

In the linear approximation with respect to the E'
wave intensity, (3.7) and (3.8) yield an expression for
the population difference,

which can be combined with (2.7), (3.4), and (3.5) to
find the rectified radiative force (after averaging  over
spatial oscillations of period λM):

(3.9)

In accordance with (3.4), the pairs of indices (i, j) are

4R/γ 1,<

Q j Q j
n( ), Q j

0( )

j 0=

∞

∑ 1,–= =

Q j
n( )

Q j
n( ) r( ) 2R j r vτ+( )Q j

n 1–( ) r vτ+( ) ∫
∞–

0

∫–=

+ Rl r vτ+( )Ql
n 1–( ) r vτ+( )

l j≠
∑ eγτ τ .d

Q j r( ) γ2R

γ2 4 ∆k j v⋅( )2+( )
-------------------------------------------≈

× 1
γ
--- 2∆k j r⋅( )cos

2∆k j v⋅
γ2

------------------- 2∆k j r⋅( )sin+

+
γ2R

2 γ2 4 ∆kl v⋅( )2+( )
---------------------------------------------

l j≠
∑

× 1
γ
--- 2∆kl r⋅( )cos

2∆kl v⋅
γ2

------------------- 2∆kl r⋅( )sin+ ,

F

FR F〈 〉 F0i F1i+( )
i

∑ ei,= =

F0i

"∆k∆ j

1 v i/v c( )2+
------------------------------ R

2γ
------g j

2 Φi,sin–=

Φi 2δkri 2ξ j,+=

F1i

mχ iv i

1 v i/v c( )2+
------------------------------, χ i– κ i Φi,cos= =

κ i

"∆k2g j
2
R∆ j

mγ2
----------------------------.=
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z

qx2

kx2

kx1 qx1

xz

β

βx

x

y xyxy

qz1

qz2

kz2
kz1

β

βz

βy

ky1

ky2 qy2

qy1

xz

zy

β

Three-dimensional optical field configuration corresponding to superposition (3.1), (3.2) and satisfying conditions (3.4): long
dashed and solid arrows indicate the directions of propagation of partially coherent and coherent waves (with wave vectors ±kj1,
±kj2 and qj1, qj2), respectively; short arrows, polarization directions; β and βj are angular widths.

zy
(x, z), (y, x), or (z, y),

F0 is the rectified gradient force, and F1 is the delayed
gradient force (radiative friction) (by the terminology
of [4]).

It is clear from (3.9) that both RGF and DGF are
second-order quantities with respect to field strength
here, whereas third-order analogous quantities are
obtained in coherent bichromatic fields [3, 4]. The
velocity dependence of RGF has a Lorentzian profile

g j
2 V j/∆ j

2,=

ri ei r, rx⋅ x, ry y, rz z,= = = =

v i ei v, v c⋅ γ/2∆k,= =
JOURNAL OF EXPERIMENTAL
with a width determined by the “microscopic” length
scale:

When v i @ v c, the RGF scales with the inverse
square of particle velocity; when v i ! v c , it is virtually
independent of the velocity. In the latter case, macro-
scopic potential wells are created, with depths greater
than the characteristic depth "|Vj1|2/∆j of microscopic
potential wells. Note also that the DGF is a nonlinear
function of both velocity and coordinate of the atom.

It is remarkable that the “macroscopic” motions of
particles along the axes of the Cartesian coordinate sys-
tem induced by RGF and DGF are mutually indepen-
dent. When

,

v c γλM/2π.=

mv i
2/2 Ti @ " V j1

2/∆ j=
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they are governed by the equations

(3.10)

i.e., by the Newton equations with a “renormalized”
(velocity-dependent) mass, where

Is = "ω0γk2/6π is the wave intensity that saturates the

atomic transition, I = Ix , g2 = , Ii denotes the intensity
of a plane-wave component in superposition (3.2)
polarized along ej , and ∆k > 0. Furthermore, all detun-
ings ∆j > 0 induced by the RGF also supposed to be
similarly distributed along each Cartesian coordinate
axis:

Therefore,

for every pair of indices l and i, and

Thus, the model of three-dimensional confinement
is reformulated as a nonlinear model of one-dimen-
sional motion. Under the conditions ∆j > 0, the minima
of the potential Π(r) are found by solving the equation

It is clear that each point Am with phase-space coordi-
nates (ri = rm, v i = 0) is a stable stationary point (attrac-
tor) of system (3.10). However, a particle moving in the
vicinity of the RGF node located at rm is confined in its
region of attraction Gm only if its kinetic energy

/2 = Ti does not exceed a certain critical Tk deter-
mined not only by the potential-barrier height 2Π0, but
also by the profile width of the RGF as a function of

velocity. If /2 = Tc ! Π0, then Tk ! Π0 (since the
RGF rapidly decreases at v i @ v c). If Tc @ Π0, then Tk

is comparable to Π0, but is substantially lower than Tc .
Both Gm and Tk are difficult to determine because the
sign of the friction coefficient depends on the particle’s
location.

Let us find sufficient conditions for three-dimen-
sional confinement of atoms and estimate Tk , using the
fact that DGF plays the role of friction only in the
regions Ωm where

(3.11)

m 1
v i

2

v c
2

------+
dv i

dt
--------

∂Π ri( )
∂ri

----------------– mκv i Φi,cos–=

dri

dt
------- v i, i x y z,, ,= =

Π ri( ) Π0 1 Φicos–( ), Π0 "ω0
RΛ∆k
4πck
--------------- Ig2

Is
-------,= =

gx
2

Vl
2/∆l Vi

2/∆i.=

Ilgl
2 Iigi

2 Ig2= =

κ i κ .≡

Φi rm( )cos 1.=

mv i
2

mv c
2

κ Φi 0,>cos
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i.e., when

Define the generalized energy

(3.12)

(when κ = 0, % is an integral of motion). Alternatively, %
is interpreted as the Lyapunov function of system (3.10)
in the phase-space domain Nm bounded by the closed
contour %(ri, v i) = Π0 encompassing the attractor Am .
Indeed, (3.10) implies that its derivative along the tra-
jectory ri = ri(t), v i = v i(t) almost everywhere in Nm

(except for Am) satisfies the differential inequality

(3.13)

because the condition for particle confinement inside Nm,

(3.14)

entails (3.11) and, therefore, ri ∈  Ωm . Note that the
function % is positive definite everywhere in Nm except
for Am (where % = 0).

Thus, every trajectory passing through Nm asymp-
totically approaches the point Am as t  ∞, crossing
the closed contours of constant % inwards, and inequal-
ity (3.14) is a sufficient condition for confinement of
atoms at the nodes of RGF. Note that, even though
Nm ∈  Gm (i.e., Nm is just a subregion of the region of
attraction of Am , as shown numerically), the availability
of analytical representation (3.14) facilitates analysis of
the confinement conditions.

Condition (3.14) entails a constraint on the kinetic
energy of particles and an estimate for Tk:

This means that an atom that passes through the
RGF node located at rm and has an energy not higher
than TM will be trapped in its vicinity. On the other
hand, an atom with energy Ti ! TM confined in a small
neighborhood of an RGF node cannot be released from
the region of attraction by a sudden perturbation (e.g.,
by a single collision with a “hot” particle) if the result-
ing increase in its energy is not greater than TM .

Since

the quantity TM = TM(∆k) as a function of the parameter
∆k = π/λM reaches a maximum value , which can be

ri rm π/4δk rm π/4δk+,–( ).∈

% ri v i,( ) Ti 1 Ti/2Tc+( ) Π ri( )+=

d% ri v i,( )
dt

------------------------ 2κTi Φi 0,<cos–=

% ri v i,( ) Π0,<

Ti TM<
2Π0

1 1 2Π0/Tc++
---------------------------------------- Tk.<=

Π0 ∆k/k, Π0/Tc ∆k/k( )3,∝ ∝

TM'
SICS      Vol. 98      No. 5      2004



894 KRASNOV
expressed in a form suitable for estimation:

(3.15)

where T0 = mγ2/2k2.

The maximum is reached when

and is associated with a specific relation between the
profile width of the RGF as a function of velocity and
its magnitude:

By solving Eq. (3.10) numerically, a simple relation is
found:

Note that the value of Tk is lower than maxΠ(ri) = 2Π0
approximately by half in the optimal regime considered
here.

Thus, under an optimal choice of the field configu-
ration, the RGF can be used to confine particles in
three-dimensional traps of size smaller than Λ if their
effective temperature satisfies the condition

where kB is the Boltzmann constant,  is defined
by (3.15), and η ~ 2.

It is important that T increases with the coherent-
field intensity even when both g and R/γ are held con-
stant. As an example consider an ytterbium atom with
the 1S0–1P1 singlet–singlet transition (λ = 398.8 nm, γ =
1.8 × 108 s–1). If R/γ ≈ 0.2 and g2 ≈ 0.05 are taken as esti-
mated values, then (3.15) yields a simple expression for
the limit temperature (in kelvins) for atoms confined by
means of the RGF:

where I and Is are measured in W/cm2 and Λ in centi-
meters. In particular, if Λ ≈ 0.5 cm, I/Is = 103, and Λ2I ≈
25 W, then T ≈ 12 K. In this case, ∆k/k ~ 0.38, ∆j * 2 ×
1010 s–1, and all starting conditions of the problem are
satisfied if the fluctuating-field intensity is I ' ≈ 5Is and
its bandwidth is Γ ≈ 5 × 109 s–1. For comparison, note
that T0 ≈ 1.5 K in the example considered here, whereas
the lower temperature limit for confined atoms corre-
sponding to quantum fluctuations of radiative forces
does not exceed

TM
∆k

max TM'
T0

3.2
-------

"ω0Rg
2πT0c
-----------------

2/3 IΛ2

Is
--------

1/3

,≈=

∆k/k T0/2TM' 1<=

Π0 4Tc.=

Tk/TM' η 2.07.≈=

Teff T< 2ηTM' /kB,=

TM'

T 2
IΛ2

Is
--------

1/3

,≈

T1 " Vi1
2/∆i 0.01 K.≈ ≈
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4. CONCLUSIONS

The scheme of the ponderomotive effect of a strong,
partially coherent field on atoms with a J = 0  J = 1
transition analyzed here is remarkable in two respects.
First, both rectified gradient force and friction force are
second-order quantities with respect to the field inten-
sity. Second, the light-induced motion of a particle is
(on a macroscopic scale) a superposition of indepen-
dent one-dimensional motions along three mutually
orthogonal axes. Each of these motions is controlled
only by field components having a certain polarization
in the plane perpendicular to the direction of motion.3

This finding can be used to simplify optical control of
three-dimensional particle motion by independently
varying the parameters and geometry of field compo-
nents with mutually orthogonal polarizations.

In principle, the proposed scheme for rectifying the
gradient force makes it possible to implement three-
dimensional confinement of relatively “hot” particles
with temperatures as high as several kelvins under an
optimal choice of the optical field geometry and param-
eters. In particular, deep traps of this kind may help to
solve the challenging problem of optical trapping of an
ultracold electron–ion plasma with ions in resonance
with laser light, because its electron subsystem may
have a relatively high temperature of 1 to 10 K (even
when its density is low) [27].
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Abstract—Certain feedback loops can be used in photorefractive optical schemes to implement periodic states
and create spatial gratings characterized by extremely high or low diffraction efficiencies. This highly nonlinear
phenomenon is studied both experimentally and numerically. An analytical method is developed for analyzing
periodic states with the use of symmetries of time-dependent diffraction equations and fast feedback response.
The method is applied to describe the properties of periodic states, including their spatial structure, diffraction-
efficiency oscillation period and amplitude, and characteristics of feedback-controlled strong phase modula-
tion. © 2004 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Photorefractive beam coupling has been the subject
of intensive theoretical and experimental studies over
the last twenty years [1–3]. This is explained by the
diversity and strength of photorefractive nonlinear
effects and by their potential applicability in various
optical devices [2, 4].

Photorefractive nonlinearity is caused by photoin-
duced charge separation and change in optical permit-
tivity due to the linear electro-optic effect [3]. Gain sat-
uration (at 101–102 cm–1) is frequently observed even
for intensities of about a milliwatt, when the photoin-
duced contribution begins to play a dominant role in
conductivity. The nonlinear response time decreases
with increasing intensity, varying between 102 and 10–3

s in experiments with continuous radiation.
The most widely known photorefractive nonlinear

effects include optical gain [5], phase conjugation [6],
optical emission [7, 8], soliton propagation [9], record-
ing and fixing of volume gratings [10], and nonlinear
scattering [11]. In recent years, particular interest is
taken in combined effects of optical and material nonlin-
earities, including spatial subharmonic generation [12],
critical enhancement of nonlinear response [13], and
space-charge singularities [14].

Control of nonlinear optical properties by means of
electronic feedback has also become increasingly
important in the past few years [15–20]. A basic exper-
iment is schematized in Fig. 1. The phase ϕs of the input
signal wave is coupled to the corresponding output
intensity by a certain relation (see details below). This

1 Permanent address: Institute of Crystallography, Russian Acad-
emy of Sciences, Moscow, 117333 Russia.
1063-7761/04/9805- $26.00 © 20896
leads to a drastic change in characteristics of two-beam
coupling.

The historical background is as follows. Initially,
feedback was introduced to eliminate effects due to
fluctuations of input phase difference, i.e., fluctuations
of the optical interference pattern in a nonlinear
medium. However, experiments demonstrated that
feedback effects by far exceed all expectations. In par-
ticular, feedback resulted in 100% diffraction efficiency
of the light-induced refractive-index grating and a dras-
tic change in the energy exchange between the beams
[15–17]. The first attempts to explain the observed
effects by assuming that the induced refractive-index

R0

R(x0)

S(x0)

S0eiϕs

0 x0

1

2

3

Fig. 1. Experiment on feedback-controlled two-beam cou-
pling: 1—piezomounted mirror, 2—photodetector, 3—
feedback control system. Curved line segments represent
grating fringes.
004 MAIK “Nauka/Interperiodica”
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grating is spatially uniform have failed. However, these
attempts involved the correct conjecture that feedback
tends to induce a phase shift of ±π/2 between the dif-
fracted and transmitted components of the output sig-
nal (S) wave.

Equations that adequately describe beam coupling
controlled by ±π/2 feedback, including nonlocal
boundary conditions, were formulated in [18], where a
direct numerical simulation was also reported. It was
found that the perfect ±π/2 feedback did produce a
clear-cut maximizing effect. Under reasonable assump-
tions about the parameters of a nonlinear crystal, the
feedback induced a refractive-index grating character-
ized by either 100% or zero diffraction efficiency. How-
ever, perfect feedback is not beneficial when these
extreme states are obtained. In other words, the formu-
lated ideal model remained correct only for a limited
time interval beyond which the formulated equations
failed to describe a continuously operating real device.

Subsequently, it was established that feedback delay
is responsible for continuous operation and is substan-
tial only near extreme states [19]. Numerical simula-
tions showed that, because of feedback delay, a nonlin-
ear system reaches a periodic state (attractor) in which
the phase ϕs(t) of the input signal wave exhibits fast
large-amplitude oscillations combined with a slow drift
[19, 20]. This behavior carries over to output beam
characteristics. Moreover, numerical simulations
revealed that variations of crystal thickness and input-
wave intensity ratio induce transitions between peri-
odic states with different characteristics and periods of
ϕs(t) oscillations. Specially designed experiments con-
firmed that multiple periodic states exist [19].

It should be noted that, while the nonlinear effects
discussed here are obviously of importance for experi-
ment and applications, they present a nontrivial prob-
lem. As far as we know, no close analogy can be found
in nonlinear physics. This is special because nonlinear
evolution equations for waves inside a crystal are sup-
plemented with a nonlocal nonlinear feedback condi-
tion. The results of direct numerical simulations stimu-
late theoretical analysis rather than provide alternative
solutions.

In this paper, we develop an analytical method to
describe beam coupling controlled by ±π/2 feedback
and demonstrate that it can be effectively used to obtain
various results. The key point in the theory is the aver-
aging over fast phase oscillations [21]. This procedure
makes use of the only available small parameter, viz.,
the ratio of the feedback response time to the nonlinear
response time, and some general symmetries of the
nonlinear wave equations.

The theory developed here is restricted to an analy-
sis of local nonlinear response, which is both easiest to
examine and most important for experiment. However,
this restriction is not essential. The results obtained can
be extended to other photorefractive nonlinearities of
practical interest (e.g., see [1–3]). From a more general
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
perspective, these results are of interest for analysis of
media characterized by nonlinear response times, such
as liquid crystals [22]. Owing to nonlinear response,
feedback loops can be used to perform various optical
functions. Maximization and minimization of diffrac-
tion efficiency of spatial gratings can be viewed as
examples of such functions.

2. BASIC RELATIONS

2.1. Two-Beam Coupling Equations 

The starting system of equations for the wave ampli-
tudes S and R and the amplitude E of the field generated
by space charge (see Fig. 1) is written in dimensionless
form as

(1)

(2)

(3)

The subscripts x and t denote derivatives with respect to
dimensionless coordinate and time, respectively. The
coordinate x is normalized to the nonlinearity length
scale (independent of light intensity), and t is normal-
ized to the nonlinear response time (inversely propor-
tional to the total wave intensity).

Equations (1) and (2) are derived from Maxwell’s
equations to describe Bragg diffraction of the R- and
S-waves by a refractive-index grating. They do not con-
tain time derivatives because of slow nonlinear
response (light intensity is fully controlled by variation
of E(t)). The total wave intensity is conserved: (|S|2 +
|R|2)x = 0. Since the input intensities (at x = 0) are inde-
pendent of time in the problem considered here, the
total intensity is independent of both x and t. Therefore,
R and S can be normalized so that

Equation (3) describes the slow development of a
light-induced grating and reflects the material proper-
ties of the crystal. The absolute value of the product
RS* on the right-hand side of (3) is equal to half the
contrast of the interference pattern. Note that the mate-
rial equation used here is obtained in various micro-
scopic models of photorefractive response [3, 18].

According to (3), E = RS* under steady-state condi-
tions; i.e., the maxima of the static refractive-index
grating coincide with the maxima of the interference
pattern. This property is the locality of nonlinear
response assumed here. In the general case, these peri-
odic distributions differ by a shift in space [3]. How-
ever, the theory becomes too cumbersome when it is
taken into account, and allowance for the shift is not
essential for actual experiments.

Rx iES,=

Sx iE*R,=

Et E+ RS*.=

R x t,( ) 2 S x t,( ) 2+ 1.=
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2.2. Fundamental Solutions 

The spatial distributions of the amplitudes R and S
are determined by their input values R(0, t) and S(0, t)
and by the grating-amplitude profile E(x, t). These fac-
tors characterize readout and recording conditions,
respectively. In other words, the same grating recorded
by an instant t can be read by different methods when
the input values are rapidly varied. This property
reflects the structure of Eqs. (1)–(3): the first two equa-
tions contain time as a parameter in E(x, t), and the last
one ensures weak variation of E over t ! 1.

It is important for further analysis that the recording
and readout processes are separated as much as possi-
ble. To do this, we first consider Eqs. (1) and (2). These
equations are linear and homogeneous in R and S. Their
common solution (for prescribed E(x)) can be repre-
sented as a linear combination of two independent par-
ticular solutions constituting a basis.

One of the basis vectors is defined as the pair RF(x),
SF(x) corresponding to the input amplitudes RF(0) = 1
and SF(0) = 0. This fundamental solution corresponds
to the process of reading the grating with an R-beam of
unit amplitude. Since the grating amplitude varies with
time, the fundamental amplitudes are parameterized by
t. Next, it is readily verified that the pair R = – (x),

S = (x) also solves Eqs. (1) and (2). The latter par-
ticular solution corresponds to the process of reading
the grating with an S-beam of unit amplitude. It is lin-
early independent of the former one and can be chosen
as the second basis vector. The existence of a basis con-
sisting of only two fundamental amplitudes, RF(x) and
SF(x), reflects the symmetry properties of system (1), (2).

Thus, the solution R(x, t), S(x, t) subject to the input
conditions R0(t), S0(t) can be represented as

(4)

The fundamental amplitudes RF(x, t) and SF(x, t) com-
pletely characterize the diffraction properties of the
grating. Equations (4) can be solved algebraically for
RF and SF . In other words, the fundamental solutions
can easily be calculated when the amplitudes RF(x, t)
and SF(x, t) corresponding to a readout process are
known and it is kept in mind that |RF(x, t)|2 +
|SF(t, x)|2 = 1.

A necessary step in formulating feedback condi-
tions is the expansion of R and S into transmitted (T)
and diffracted (D) components. According to Eqs. (4)
(see also Fig. 1), the contribution RFR0 to the amplitude
R is precisely the transmitted part of the input R-beam,
while – S0 is the diffracted part of the input S-beam.

Similarly, SFR0 and S0 are the D and T components
of S(x, t).

SF*

RF*

R x t,( ) RF x t,( )R0 t( )= SF* x t,( )S0 t( ),–

S x t,( ) SF x t,( )R0 t( )= RF* x t,( )S0 t( ).+

SF*

RF*
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Finally, we note that

is an important observable characteristic (diffraction
efficiency) of a grating. It can be determined experi-
mentally by shutting off either R- or S-beam momen-
tarily and calculating the ratio |R(x0, t)|2/|S(0, t)|2 or
|S(x0, t)|2/|R(0, t)|2, respectively.

2.3. Feedback Conditions 

Hereinafter, we assume that the input R-wave ampli-
tude is constant and represent the input S-wave ampli-
tude as S(0, t) = S0exp(iϕs), where S0 = const and ϕs =
ϕs(t) is the feedback-controlled phase. The time depen-
dence of this phase determines the observed properties
of the system. The dimensionless crystal thickness x0

and the input intensity ratio r0 = |R0|2/|S0|2 are used as
adjustable parameters.

The phase shift between the diffracted and transmit-
ted components of S, SF(x0)R0 and (x0)S0exp(iϕs), at
the output end of the crystal is

(5)

The conditions Φs = ±π/2 are called perfect feedback
conditions. They can be satisfied by an appropriate
choice of the input phase ϕs. Since the fundamental
amplitudes RF(x0) and SF(x0) can be expressed as alge-
braic functions of R(x0) and S(x0), the conditions Φs =
±π/2 can be interpreted as a nonlinear relation between
ϕs and the output amplitudes of recording waves. The
quantity Φs is well defined only if η ≠ 0, 1

(|SF(x0)RF(x0)| ≡  does not vanish).
In experiments, the feedback is implemented by

using a fast and weak input-phase modulation δϕs =
ψdsin(ωt), where ψd ! 1 and ω @ 1. Such oscillations
of ϕs do not affect the recording process and serve as a
marker of the T component of the signal wave. Owing
to interference of the D and T components, the output
intensity |S(x0)|2 has a component that oscillates with
double frequency as cos(2ωt) and amplitude

Using ±I2ω as an error signal, one can adjust the input
phase so that Φs = ±π/2. This method is effective so
long as the product η(1 – η) is not too close to zero. It
is important that the present characterization of the
feedback relies only on general properties of the funda-
mental amplitudes RF and SF , while the refractive-index
grating may be spatially nonuniform.

It was shown experimentally that the +π/2 feedback
can be used (under certain constraints on x0 and r0) to

η SF x0 t,( ) 2 1 RF x0 t,( ) 2–≡=

RF*

Φs R0S0*RF x0( )SF x0( ) iϕ s–( )exp[ ] .arg=

η 1 η–( )

I2ω
1
2
--- R0S0 η 1 η–( )ψd

2 Φs.cos=
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attain η as high as η ≈ 1 and hold it at this level [15].
When the feedback sign is reversed, the diffraction effi-
ciency falls to zero. On the other hand, a numerical
analysis showed [18] that the diffraction efficiency
reaches a value of 1 or 0 in a time t ≈ 1. After that, the
use of the conditions Φs = ±π/2 is not beneficial. Thus,
the perfect feedback conditions should be applied to
describe the initial evolution of the system and should
be modified when its continuous operation is to be
described.

It was supposed in [19] that inertia of the feedback
loop ensures continuous operation of the system. To
make use of the inertia, the perfect conditions Φs = ±π/2
were replaced with the time-dependent relation

(6)

where tf ! 1 is the feedback-loop response time and a
dot denotes an ordinary time derivative. This relation
admits a simple interpretation. So long as the coefficient
of cosΦs is large as compared to unity, i.e., η(1 – η) is
not too close to zero, the input phase ϕs rapidly
approaches a value ensuring that Φs ≈ const – ϕs ≈ ±π/2,
and relation (6) is almost equivalent to the perfect feed-
back conditions. As the value of η(1 – η) approaches
zero, inertia plays an increasingly important role and
the value of Φs may deviate substantially from ±π/2.

According to numerical simulations [19, 20], the
use of (6) instead of the perfect conditions Φs = ±π/2
ensures continuous operation of the system. After an
extremal is reached, the diffraction efficiency oscillates
about either unity or zero, while the phase factor
exp(iϕs) exhibits a fast periodic variation superimposed
on a linear drift,

(7)

The part of Ω that is a multiple of 2π/T can be sub-
sumed under the phase factor exp(iϕp). The correspond-
ing periodic oscillation is neither small nor harmonic,
and its period T decreases with tf . Furthermore, compu-
tations showed that the periodic state (attractor)
changes qualitatively as x0 and r0 are varied. The quali-
tative changes are observed in detuning Ω , period T,
and shape of the “periodic” component ϕp(t).

The most important theoretical predictions were
confirmed in special experiments conducted to measure
ϕs(t) [19]. It was also shown that the frequency
response of the feedback is in good agreement with
Eq. (6) [20]. Thus, substantial evidence was obtained in
favor of the inertial feedback condition. The feedback-
loop response time was estimated as tf ~ 10–3.

3. ANALYTICAL METHOD

The presence of fast oscillations (with period T ! 1)
makes it possible to develop a perturbation theory by

ϕ̇ s tf
1– R0S0 η 1 η–( ) Φs,cos+−=

ϕ s Ωt ϕp t( ).+=
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using an averaging method. In view of expression (7)
for the input phase ϕs , we write

(8)

(9)

(10)

where the amplitudes , , and  are independent

of time and , , and  are T-periodic functions of
time. The recording-wave amplitudes R and S can be
represented in similar form. The frequency shift should
be attributed to slow variations (|Ω| & 1).

Because of the recording inertia, the fast component

of the grating amplitude is small:  ! . Since the
fundamental amplitudes RF and SF characterize instan-
taneous diffraction by the grating, it also holds that

 !  and  ! . However, the fast components

of the recording waves,  and , are not small as com-

pared to the slow ones,  and , because fast oscilla-
tions of the input amplitude S(0, t) = S0exp[iϕs(t)] are
instantly transferred into the crystal by diffraction on a
static (or quasistatic) grating. These fast components

contribute substantially to , because the product 
appearing on the right-hand side of (3) has a constant
component that is not small.

As a first step in developing a perturbation theory,
we derive a closed system of equations for the slow
amplitudes. Using (4) to express the amplitudes R and
S * in terms of RF and SF , substituting the results
into (3), neglecting the fast components of the funda-
mental amplitudes, and retaining their slow compo-
nents, we obtain

(11)

where

is the input intensity difference and ε = 〈exp(iϕp(t))〉  is
obtained by averaging over T. Since ϕp is defined up to
a constant, we can choose a suitable value of argε. Let
us choose ε = |ε|. The admissible values of the modula-
tion parameter ε lie between zero and unity. Its lowest
value corresponds to an extremely strong effect of peri-
odic phase modulation; the highest one, to the absence
of modulation.

The differential equations for  and  differ from
Eqs. (1) and (2) for R and S only by the replacement of
E with . They can be solved simultaneously with (11)
(see next section). As a result, we obtain expressions for

RF x t,( ) RF x( ) R̃F x t,( ),+=

SF x t,( ) iΩt( ) SF x( ) S̃F x t,( )+[ ] ,exp=

E x t,( ) iΩt–( ) E x( ) Ẽ x t,( )+[ ] ,exp=

RF SF E

Ẽ R̃ S̃

Ẽ E

R̃F RF S̃F SF

R̃ S̃

R S

E R̃S̃*

E 1 iΩ–( ) 1–=

× W0RFSF* ε R0S0 RF
2

SF
*2

–( )+[ ] ,

W0 R0
2   S 0

2 –  
r

 
0 

1–
 

r
 

0

 
1+

------------- ≡ =

RF SF

E
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, , and  as functions of x parameterized by arbi-
trary x0, r0, Ω , and ε. The limit case of ε = 1 corre-
sponds to time-independent beam coupling in the
absence of periodic modulation and in the presence of
detuning Ω .

The importance of relations for averaged amplitudes
is explained as follows. The parameters Ω and ε can be
adjusted to satisfy the complex relation (x0) = 0 or

(x0) = 0, i.e., to implement a periodic state with η =
1 or 0, respectively. This cannot be done without peri-
odic modulation. Thus, the first-order perturbation the-
ory can be used to find the required averaged feedback
characteristics, but it does not provide a complete
description of periodic states. This can be done in the
next order of perturbation theory. It is also important
that the slow amplitude  corresponding to η = 1 or 0
strongly depends on x. This property rules out the use
of a spatially uniform model of the grating and plays an
important role in substantiating the theory.

We schematically describe the calculations performed
in second-order perturbation theory. Equations (3) and
(8)–(10) are used to derive an equation for the fast grat-
ing amplitude:

(12)

Here, we neglect the terms that are small with
respect to T and make use of 〈cosϕp〉  = ε and
〈sinϕp〉  = 0. On the right-hand side of (12) (which is
interpreted as a fast-oscillating driving force), the
space- and time-dependent functions are completely
uncoupled, and this equation is easily solved.

The fast components of the fundamental amplitudes
obey an inhomogeneous linear system of equations,
which is derived from (1) and (2) and solved by varia-
tion of constants. As a result, we have

(13)

where

(14)

When the output (x0, t) and (x0, t) are known, the
feedback conditions can be used to find the function
ϕp(t) (see Section 5). Thus, the theory of periodic states

E RF SF

RF

SF

E

Ẽt R0S0 RF
2

SF*
2

–( ) ϕpcos ε–( )[=

– i ϕp RF
2

SF*
2

+( ) ] .sin

R̃F x t,( ) A x t,( )RF x( ) B x t,( )SF* x( ),–=

S̃F x t,( ) A x t,( )SF x( ) B x t,( )RF* x( ),+=

A x t,( ) 2i Re Ẽ x' t,( )RF* x'( )SF x'( )[ ] x',d

0

x

∫=

B x t,( ) i Ẽ* x' t,( )RF
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x'( )[
0

x

∫=

– Ẽ x t,( )SF
2

x'( ) ] x'.d

R̃F S̃F
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is made self-consistent. It is important that either
(x0) or (x0) vanishes, depending on the feedback

sign.

4. CHARACTERIZATION OF SLOW MOTIONS

4.1. Fundamental Amplitudes  and  

According to the foregoing analysis, the amplitudes
(x) and (x) obey system (1), (2) (with E replaced

by ) and satisfy the boundary conditions (0) = 1

and (0) = 0. The grating amplitude  is given

by (11) as a quadratic form of  and .

To find  and , we use the fact that the system
is invariant under the linear unitary transformation

(15)

to new amplitudes  and , where the complex
parameters Q± satisfy the condition |Q+|2 + |Q–|2 = 1. In
physical terms, the invariance means that a variety of
wave pairs (corresponding to various boundary condi-
tions), rather than one, can be coupled by diffraction on
the same grating. It is important for the present study
that the quadratic form ( , ) can be transformed

by (15) into  ∝   under an appropriate choice of

Q±. The differential equations for  and  thus
obtained are easily solved, because they are formally
identical to those describing the two-beam coupling
due to photorefractive nonlinearity [2, 3]. The inverse
transformation is used to obtain the required expres-
sions for the fundamental amplitudes.

For present purposes, we can write

(16)

where, again, W0 = |R0|2 – |S0|2 and

(17)

is a positive parameter. It is obvious that g ≥ |W0|, where
g = 1 in the absence of phase modulation.

In the new representation, we have  = iγ ,
where

(18)

is interpreted as the complex optical gain exponent. The
corresponding input amplitudes are (0) = Q– and

RF SF

RF SF

RF SF

E RF

SF E

RF SF*

RF SF

RF Q–R1 Q+*S1*,+=
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R1 S1
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-------+− 
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γ g i Ω+( ) 1–=

R1
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(0) = Q+, and  and  as functions of x are
expressed as

(19)

Hence, the required expressions for  and  are

(20)

(21)

In the general case, both  and  are complex quan-
tities, and it can be shown that the sum of their squared
magnitudes is unity. When ε = 1, expressions (20) and
(21) correspond to the fundamental amplitudes in the
absence of phase modulation and in the presence of a
frequency shift Ω between the input waves.

4.2. Conditions for 100%
and Zero Diffraction Efficiency 

The values η = |SF(x0)|2 and 1 – η = |RF(x0)|2 quan-
tify the diffraction efficiency and transmittance of a
grating. 100% diffraction efficiency (i.e., zero transmis-
sion) is ensured by the condition RF(x0) = 0, whereas
the condition for zero diffraction efficiency (100%
transmission) is SF(x0) = 0. Since expressions (20) and

(21) for  and  contain two feedback-controlled
parameters, Ω and ε, both η = 1 and η = 0 can be
attained in the leading order of perturbation theory.

Using (20), one can readily show that the condition
(x0) = 0 (η ≈ 1) is equivalent to

(22)

where 

and j = 1, 3, … is a positive odd number. Since g =
g(ε, W0), the first relation in (22) defines a sequence of
branches of the function εj(x0, W0), while the second
one determines the frequency detuning as a function of
x0 and W0 for the jth branch. Here, ε and Ω are even and
odd functions of W0, respectively. Figure 2a shows ε
versus the input intensity ratio r0 ≡ (1 + W0)/(1 – W0)
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----------------ln ,=
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(which is better suited for representation) for the branch
with j = 1 and several values of x0. Finally, note that the
actual values of |Ω| do not exceed 1.5.

Since ε ≤ 1, the admissible values of x0 and |lnr0| are
bounded from below and above, respectively. Setting
ε = 1 in (17) and (22), we obtain

(23)

This relation determines the boundary of the domain of
x0 and r0 where η = 1. The minimal admissible crystal

thickness,  = π, corresponds to r0 = 1 and the
branch with j = 1. For this branch, |lnr0|max =

; i.e., the range of admissible input intensity
ratios rapidly increases with x0. Figure 3 shows the
function x0(r0) for j = 1, 3, and 5. This demonstrates that
the branch with j = 1 is the lowest in a wide range of
parameters, π ≤ x0 & 12.5 and |lnr0| & 2. This branch is
of primary interest.

x0 πj
r0ln

2

πj
------------.+=
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Fig. 2. Phase modulation parameter ε versus input intensity
ratio r0 = |R(0)|2/|S(0)|2 for several values of crystal thick-
ness x0: (a) +π/2 feedback; (b) –π/2 feedback.
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Now, consider the condition (x0) = 0 (η ≈ 0).
According to (21), it implies that γ' = 0 and γ''x0 = –πj ',
where j ' = 2, 4, …. These relations are equivalent to

(24)

The minimal admissible thickness,  = 2π, corre-
sponds to j ' = 2 and W0 = 0 (r0 = 1), twice as large as
that obtained above. Figure 2b shows the ε(r0) for j ' = 2
and several values of x0. Also being an even function, it
is characterized by some new properties. The value of ε
decreases not only with increasing x0, but also with
increasing | |. This means that the range of admis-
sible values of r0 is reduced by increasing the thickness
x0. Setting ε = 0, we obtain |W0| ≤ 2π/x0 for this interval.

Finally, we note that the condition (x0) = 0 is always
satisfied when ε = 0 (the grating amplitude vanishes).
Outside the interval indicated above, this trivial result is
the only possible one.

When the growth exponent is an imaginary number
(γ' = 0), there is no energy exchange between light

waves, and expressions (20) and (21) for  and 
are substantially simplified. For j ' = 2, they reduce to

SF

ε2 πj'/x0( )2
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2
–

1 W0
2

–
-----------------------------------, Ω 0.= =

x0
min

r0log

SF

RF SF*

RF
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Fig. 3. Threshold curves of x0(r0) for +π/2 feedback and
j = 1, 3, 5.
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4.3. Spatial Distribution of the Grating Amplitude 

Using (11), (20), and (21), one can easily find

(25)

The parameter  is defined by the relation W0 =
. It can be positive or negative, depending on

W0 and x0. The use of  is dictated by convenience con-
siderations. The coefficient that multiplies the brackets
is (0).

Conditions (22) or (24) set the feedback parameters
Ω and ε (and hence ) and make the distribution (x)
dependent only on W0 (or r0) and x0 for each jth or j 'th
branch. We restrict our analysis to the most important
branches, j = 1 and j ' = 2. Note also that the real func-
tions | (x)| and  are important quantitative
and qualitative characteristics of the system describing
the grating amplitude and the corresponding fringe dis-
tribution, respectively.

When η = 1, (22) yields the following simplifying
relations: γ'x0 = –L =  and Ω = /π. Then, (25)
reduces to

(26)

(27)

where the input parameters are expressed as

(28)

According to (26), the profile | (x)| is symmetric about

the center of the crystal and | (x)|/| (0)| increases
from 1 to  from the boundaries (x = 0, x0) toward
the center (x = x0/2). Thus,  can be interpreted as
the degree of spatial nonuniformity of the grating pro-
file. The spatial distribution of the grating phase is also
symmetric about the center of the crystal. The corre-
sponding degree of spatial nonuniformity is quantified
by (π/ )ln( ). Note that, by the definition of ,
it vanishes when W0 = 0, i.e., when the input intensities
are equal. In this special case, the grating is spatially
uniform.

Figure 4 shows | (x0/2)/ (0)| and

 as functions of r0 for several val-
ues of crystal thickness. It demonstrates that the effects
due to nonuniformity, including fringe modulation and
curvature, increase substantially with | |.
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The input parameter | (0)| is an even function of
 with a maximum at  = 0. As x0 increases

from 4 to 10, the maximum values decreases from 0.19
to 0.075. The parameter  is an odd function of

logr0 close to – .

When η = 0 (γ' = Ω = 0), the grating is spatially uni-
form and stationary for every admissible W0 and x0.
According to (25), its amplitude (for j ' = 2) is

(29)

This case is much simpler than the preceding one.

At first glance, the combination of a nonzero grating
amplitude with zero diffraction efficiency is a paradox.
However, it is consistent with general principles and is
explained by energy exchange between the R- and
S-waves. In contrast to the well-known Kogelnik for-
mula η = sin2(|E|x0), which is valid for a grating with a
constant amplitude (E = const), the relations obtained
here demonstrate the feasibility of gratings with η = 0
in a wide range of x0 and r0.

5. PERIODIC STATES

To derive closed equations for the “fast periodic”
phase ϕp(t), one must calculate the product

which is contained in feedback condition (6) by virtue
of (5). Using (8), (9), (13), (14), and the fact that either

(x0) or (x0) vanishes for the periodic states con-
trolled by the ±π/2 feedback, we have

(30)

The fast amplitude  contained in the expression for B
in (14) is determined from (12):

(31)

The known amplitudes  and  depend on x, and the
periodic functions u and v  of time are related to ϕp(t) by
the equations

(32)

Substituting (31) into (14), we obtain

(33)
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where the coefficients

(34)

depend only on x0 and r0. The amplitudes (x) and

(x) contained in the integrand are such that either
η = 1 or η = 0. It is important that the coefficients c± are
real. To demonstrate this and calculate some integrals,
we recall the results obtained in the preceding section.

Using (20)–(22) and (24), one can readily show that

(35)
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Fig. 4. Amplitude and phase distortion characteristics
| (x0/2)|/| (0)| (a) and  (b) versus

input intensity ratio for x = 4 (1), 6 (2), 8 (3), and 10 (4) in
the case of +π/2 feedback.

E E E x0/2( )/E 0( )[ ]arg
ICS      Vol. 98      No. 5      2004



904 PODIVILOV et al.
for η ≈ 1, j = 1 and

(36)

for η ≈ 0, j ' = 2. In both cases, the real and imaginary
parts of (x) (x) have opposite parities with respect
to the center of the crystal. This implies that the coeffi-
cients c± are real. Figure 5 shows c±(r0) for several val-
ues of x0 when η = 1 and 0. If r0 = 1, then c+ = x0/8 and
c– = x0/4. The curves presented here do not exhibit sin-
gular behavior of any type near the boundaries of the
admissibility intervals. If η ≈ 1, then c+/c– monotoni-
cally increases with x0 and | | from 0.5 to approx-
imately 0.7. If η ≈ 0, this ratio can be as high as 1.0–1.2.

Finally, we use (5), (6), (30), and (33) to derive and
equation for ϕp:

(37)

RFSF
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2πx
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Fig. 5. Coefficients c± versus r0 for several values of x0: (a)
+π/2 feedback; (b) –π/2 feedback. Solid curves and dashed
curves represent c– and c+, respectively; (a) x0 = 4 (1), 6 (2),
8 (3), and 10 (4); (b) x0 = 7 (1), 8 (2), and 9 (3); symbols cor-
respond to the endpoints of intervals of admissible values.
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It is independent of the feedback sign. Proportional
variation of c+ and c– is equivalent to renormalization of
tf . Ordinary differential equations (32) and (37) make
up a closed system for the periodic functions ϕp, u, and
v. This system is essentially nonlinear.

Note that (x0) ≈ –i and RF(x0, t) ≈ –iB(x0, t) in the
case of +π/2 feedback. The periodic function of time

defines a closed trajectory on the complex plane in the
neighborhood of the origin. This trajectory provides a
convenient representation of the system’s dynamics
(related to experiment). In the case of –π/2 feedback,
the trajectory of the system is described by the periodic
function

close to zero.
It is understood that both period T and maximal

deviation δηmax of diffraction efficiency from 1 or 0
depend on the feedback response time tf . The equations
of motion obtained here can easily be used to determine
these dependences. By normalizing t and the variables

u and v to  (i.e., by changing to intrinsic reference
values), the small parameter tf  is eliminated from the
equation of motion. Hence, we have the scaling rela-
tions

(38)

They are consistent with results obtained by direct
numerical simulation [19, 20]. The proportionality
coefficients in (38) depend on the type of periodic state.

Finally, we describe some useful symmetry proper-
ties of system (32), (37). If it is solved by ϕp(t), u(t), and
v (t), then the combination of –ϕp(t), u(t), and –v(t)
provides another solution. Furthermore, time inversion
is equivalent to sign reversal in u and v.

Since the system under analysis is autonomous, its
order can be reduced. Setting u(t) = u(ϕp(t)) and v (t) =
v (ϕp(t)), we obtain

(39)

Next, we note that periodic conditions can be classified
by the condition ϕp(t + T) – ϕp(t) = 2πN, where N = 0,
±1, … is an integer. Accordingly, the period of u(ϕp)
and v (ϕp) is 2πN. When ϕp(t) is not a monotonic func-
tion (e.g., when N = 0), the functions u(ϕp) and v(ϕp)
are two-valued. Since solutions with nonzero N and –N

SF
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are subject to the symmetry conditions indicated above,
it is sufficient to consider the cases with N ≥ 0. If the
periodic functions u(ϕp) and v(ϕp) are known, then
ϕp(t) can be found by solving Eq. (37).

Nonlinear equations (39) cannot be integrated ana-
lytically. However, this can easily done numerically,
e.g., by using the standard Mathematica system.
Numerical integration is virtually equivalent to com-
plete analysis of solutions.
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Fig. 6. Closed contours in the complex plane illustrating the
time dependence of RF(x0) for x0 = 6.6 in the case of +π/2
feedback: N = 3 (a), 0 (b), and 1 (c); r0 = 1 (a), 6 (b), and
1 (c).
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Figure 6a shows the closed contour of RF(x0, t)/
in the complex plane calculated for η ≈ 1, x0 = 6.6, r0 =

1, and N = 3. Over the period T ≈ 30.7 , the phase

ϕp changes by 6π. Here, value of δηmax = |RF(x0, 
is approximately equal to ≈64.5tf. The corresponding
time-dependent input phase ϕs is shown in Fig. 7a.
Since Ω = 0, it is similar to ϕp(t). The phase exhibits
three pronounced jumps within a period. These results
are in good agreement with the results of direct numerical
simulations and experimental measurements [19, 20].
Analogous behavior of SF(x0, t) and ϕp(t) is predicted
for η = 0.

Figure 6b shows the contour calculated for η = 1,
x0 = 6.6, r0 = 6, and N = 0. Here, the phase ϕp is periodic

with period T ≈ 10.5 , and δηmax ≈ 3.2tf . The fre-
quency detuning Ω is approximately 0.85 in this case.
Owing to the detuning, the periodic oscillation of the
input phase ϕs is superimposed on a linear growth (see

tf

τ f

t ) max
2

tf

0

2

4

ϕs/2π

(a)

(b)

(c)

–0.2

0

0.2

0.4

100 20 30 40 50

2

4

6

t/tf
1/2

Fig. 7. Time dependence of input phase ϕs for the periodic
states illustrated by Fig. 6.
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Fig. 7b). These trends are also consistent with numeri-
cal and experimental results.

Our calculations show that, generally, there exist
periodic states with N = 0, 1, 2, … corresponding to the
same values of x0 and r0. In other words, periodic solu-
tions to system (32), (37) are not unique. Figures 6c and
7c show, respectively, the closed contour and ϕs(t) cor-
responding to N = 1, x0 = 6.6, and r0 = 1. The contour
has a single-lobed shape, the phase exhibits one jump

over the period T ≈ 8.0 , and δη ≈ 17.5tf .

The number of solutions increases with distance
from the threshold, i.e., from the boundary of the
domain of periodic states (see Fig. 3). For simplicity, let
us consider the case of η ≈ 1 and r0 = 1, when x0 – π =
π(ε–1 – 1) is an intrinsic supercriticality parameter. In
the near-threshold interval π < x0 & 4.2, where ε varies
from 1 to approximately 0.74, the periodic state with
N = 0 is unique. As the threshold is approached, the
amplitude of phase oscillation goes to zero as (x0 – π)1/2,
while the period T decreases insignificantly. The
absence of solutions with N ≠ 0 in the near-threshold
region should be expected, because the effects due to
phase modulations would be eliminated via abrupt
changes in ϕs (by multiples of 2π) and the system’s
inertia would preclude such jumps.

When x0 * 4.2, there exists a solution with N = 1 (in
addition to one with N = 0). As x0 approaches the lower
boundary of the interval, it does not exhibit any thresh-
old singularity and disappears via loss of stability.
When x0 * 5.7 (ε & 0.54), there exists a periodic state
with N = 3. As x0 increases, it softly splits off from the
state with N = 1 via period tripling (see also Figs. 6
and 7). When x0 ≈ 6.7 (ε ≈ 0.47), a state with N = 2 splits
off from the one with N = 1 via period doubling.

Analogous behavior is exhibited by the system
when the distance from the separatrix is increased with
decreasing | |. The trends described above provide
a basis for understanding the results of numerical and
physical experiments presented in [19]. For thick crys-
tals with x0 * 12.5, additional manifestations of thresh-
old singularity can be expected as the branches with
j = 1 and 2 are crossed (see Fig. 3) if the input intensity
ratio is sufficiently large (| | * 2.1).

6. CONCLUSIONS

We have developed an efficient method for analyz-
ing a new highly nonlinear model of feedback-con-
trolled beam coupling and recording of gratings. The
method makes use of the symmetries of time-depen-
dent diffraction equations and fast response of the feed-
back. No close analogy can be found in the physics of
nonlinear distributed systems. The method relies on a
number of new concepts.

tf

r0log

r0log
JOURNAL OF EXPERIMENTAL 
The new method is used to analyze the spatial struc-
ture of the refractive-index gratings corresponding to
η = 1 and 0. Scaling relations are obtained for the oscil-
lation period T and the oscillation amplitude δηmax.
Some observable properties of various periodic states
are described. A close relationship between the regimes
with η ≈ 1 and η = 0 is established. The scenario of the
elimination of periodic states observed as the separatrix
is approached is elucidated. These results supplement
those obtained by direct numerical simulation.

It is remarkable that periodic states may not be
unique. When the distance from the threshold is suffi-
ciently large, there exist several periodic solutions char-
acterized by different manifestations for the same input
parameters. This finding suggests that stability of the
periodic states should be examined. Moreover, we can-
not rule out the possibility that memory effects are
essential for implementation of a particular regime.

The local nonlinear response considered here is
most pronounced in LiNbO3 crystals, where photovol-
taic charge transport plays a dominant role in grating
formation [23]. This material is utilized in development
of various devices based on diffraction effects and in
most experiments on optical feedback. The typical
dimensionless thickness of the crystals does not exceed
10, which corresponds to an actual thickness of several
millimeters. Therefore, the branches with j = 1 and j ' =
0 and 2 are most relevant, which justifies certain restric-
tions imposed in the course of our theoretical analysis.

Theoretical considerations suggest that experiments
on LiNbO3:Fe crystals of variable thickness with con-
stant concentrations of Fe2+ and Fe3+ ions should be
conducted to verify the predicted successive onset of
new periodic states with increasing supercriticality
parameter. The scaling relations for T and δηmax should
also be relatively easy to verify experimentally by vary-
ing the electronic circuit parameters that determine the
feedback response time.

Nonlocal photorefractive response is associated
with diffusive transport and is described by Eq. (3) with
imaginary unit on the right-hand side. It is of particular
interest for enhancement of optical gain. In systems
based on this phenomenon, periodic states with η ≈ 1
can be implemented under more stringent requirements
for crystal parameters and experimental conditions.
Analysis of these states must rely on a refined theory.

We believe that the systems with maximized and
minimized diffraction efficiency examined above
exemplify a more general class of optical devices, in
which electronic feedback loops are responsible for
implementation of useful functions. Development of an
appropriate theory is a challenging task of great practi-
cal importance.
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Abstract—Solutions to the Gross–Pitaevskii equations are obtained in the hydrodynamic approximation for a
repulsive Bose gas that expands after a quasi-one-dimensional or quasi-two-dimensional trap is removed. The
results are expressed in terms of measurable parameters, such as the initial condensate size and the oscillation
frequencies of trapped particles. Three-dimensional effects are calculated by a variational method. The analyt-
ical results are in good agreement with available experimental data. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of a Bose–Einstein condensate in
which particle motion is “frozen” or reduced to zero-
point oscillations in one or two directions are the sub-
ject of intensive studies [1–14]. In experiments, cigar-
shaped quasi-one-dimensional condensates are created
by using optical dipole traps [1]. A quasi-two-dimen-
sional condensate was created in an array of disc-
shaped traps provided by the periodic potential of a
laser beam [2]. When the traps are sufficiently deep, the
motion along the array is frozen and the condensate
splits into several independent condensates confined in
separate potential wells.

Important experimental information about the prop-
erties of a Bose–Einstein condensate confined in a
three-dimensional trap can be extracted by measuring
the time-dependent density of the expanding atomic
cloud after the trapping potential is switched off. In the
mean-field approximation, the dynamics of a dilute
condensate is described by the Gross–Pitaevskii equa-
tion [14]

(1)

where

is the trapping potential,

(2)

is the nonlinear coupling constant associated with an
atom–atom scattering length as , and the condensate
wave function ψ is normalized to the number of atoms

(3)

i"
∂ψ
∂t
------- "

2

2m
-------∆ψ– Vext r( )ψ g ψ 2ψ,+ +=

V ext r( )
1
2
---m ωx

2x2 ωy
2y2 ωz

2z2+ +( )=

g 4π"
2as/m=

ψ 2 rd∫ N .=
1063-7761/04/9805- $26.00 © 20908
If the number of atoms is sufficiently large, then the
Gross–Pitaevskii equation can be transformed into
hydrodynamic equations that admit simple self-similar
solutions describing both oscillations of a gas in a par-
abolic trapping potential and its free three-dimensional
expansion after the potential is switched off [15–18].
This theory is perfectly consistent with experiment.

A different situation arises when some degrees of
freedom of the expanding condensate remain frozen.
Recently, condensate expansion was investigated in
quasi-one-dimensional waveguides [1] and in systems
of two-dimensional discs [2]. This promising line of
research was pursued in several studies. In [19], quasi-
one-dimensional condensate expansion was analyzed
without taking into account the transverse “quantum
pressure.” In [20], the effects due to quantum pressure
were taken into account for steady states, in which case
only the two transverse modes contribute to the pres-
sure. In [13], the ground states of condensates confined
in cigar- and disc-shaped traps were calculated by a
variational method, but no analysis of the dynamics of
condensate expansion was presented.

In this paper, an analytical study of quasi-one-
dimensional and quasi-two-dimensional condensate
expansion is presented. Conditions are formulated
under which the three-dimensional Gross–Pitaevskii
equation can be reduced to analogous equations in
fewer coordinates. These equations are solved in the
hydrodynamic approximation under initial conditions
corresponding to a trapped condensate in equilibrium
before the trap is switched off. The condensate expands
either along the axis of a quasi-one-dimensional
waveguide or in the plane of a quasi-two-dimensional
trap. However, if the conditions for reduction to Gross–
Pitaevskii equations of lower dimension are violated,
then the gas flow is three-dimensional. Three-dimen-
sional effects in the flow are calculated by a variational
004 MAIK “Nauka/Interperiodica”
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method. Finally, it is shown that the theoretical results
agree with experiment.

2. QUASI-ONE-DIMENSIONAL 
AND QUASI-TWO-DIMENSIONAL 

CONDENSATE EXPANSION
WITHOUT THREE-DIMENSIONAL EFFECTS

It is well known that the Gross–Pitaevskii equation
can be formulated as a principle of least action with the
action functional

(4)

where the Lagrangian density is

(5)

In the case of a cigar- or disc-shaped trap, one can
readily find conditions under which the tightly
restrained degrees of freedom are frozen and the
Gross–Pitaevskii equation reduces to a one- or two-
dimensional equation, respectively. Even though this
problem has been considered more than once, we
briefly review here the basic points of the derivation in
order to identify the essential parameters of the theory
and formulate conditions for its applicability.

2.1. One-Dimensional Expansion 

If the longitudinal frequency ωz for an axially sym-
metric trap is much less than the transverse trap fre-
quency ω⊥ ,

(6)

and the transverse zero-point energy is much higher
than the nonlinear interaction energy per atom, then the
transverse motion reduces to the ground state of parti-
cle oscillation, with the amplitude

Denoting by Z0 the characteristic size of the condensate
along the axis of a cigar-shaped trap, one can use the
estimate

(see (3)) to write the corresponding condition as fol-
lows (e.g., see [11]):

(7)

If this condition is satisfied, then the condensate wave
function can be factorized:

(8)

S L t, Ld∫ + r,d∫= =

+
i"
2
----- ψt*ψ ψtψ∗–( ) "

2

2m
------- ∇ψ 2+=

+ V ext ψ 2 1
2
---g ψ 4.+

λ ωz/ω⊥  ! 1,=

a⊥ "/mω⊥( )1/2.=

N ψ 2a⊥
2 Z0∼

Nas/Z0 ! 1.

ψ r t,( ) φ x y,( )Ψ z t,( ),=
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where

(9)

is the wave function of the ground state of transverse
motion. Substituting (8) and (9) into (4) and (5) and
integrating the result over the condensate’s cross sec-
tion, one obtains the action expressed in terms of the
one-dimensional Lagrangian density

(10)

Then, the evolution of Ψ(z, t) obeys the one-dimen-
sional Gross–Pitaevskii equation

(11)

where

(12)

is an effective coupling constant and Ψ is normalized as

(13)

Equation (11) determines the longitudinal dynamics of
a condensate in a cigar-shaped trap.

By the well-known substitution

, (14)

Eq. (11) is transformed into the system

(15)

(16)

In Eq. (16), the last term (“quantum pressure”) can be
neglected if it is much smaller than the nonlinear term,
i.e., if

(17)

Then, Eq. (16) reduces to

. (18)
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Combined with Eq. (15), it constitutes the hydrody-
namic approximation describing the evolution of a con-
densate.

The time-independent solution of the hydrodynamic
equations is the well-known Thomas–Fermi distribu-
tion of a one-dimensional condensate:

(19)

where the integration constant Z0 (longitudinal half-
length of the condensate) can be expressed in terms of
the number of atoms N as

(20)

Applicability conditions (7) and (17) for the one-
dimensional hydrodynamic approximation can be
rewritten by substituting (20) as follows (see [11]):

(21)

Now, assume that the longitudinal trapping potential
is switched off and the condensate can freely expand
along the longitudinal axis. At the same time, it remains
transversely confined, and its transverse motion
remains frozen in ground state (9). Accordingly, the
expansion can be described by hydrodynamic equa-
tions (15) and (18) subject to initial conditions (19). An
analogous problem in nonlinear optics was solved long
ago [22], with a “pressure” ρz in (18) having the opposite
sign, and its solution was recently applied to describe
three-dimensional condensate expansion [15–18]. This
approach is used here to analyze the case when the con-
densate expands into a “waveguide.” A solution to
Eqs. (15) and (18) is sought in the form

(22)

where bz(t) and αz(t) satisfy the conditions

(23)

Substituting (22) into (15) and (18) yields

(24)

and the equation

(25)

for bz(t). The latter equation can easily be integrated to
obtain an implicit formula for bz as a function of t:

(26)
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(see [23], where this solution was applied to describe
the quasi-one-dimensional initial stage of the conden-
sate expansion that follows after a disc-shaped trap is
switched off). The expression for α(t) in terms of bz(t)
yields the velocity field:

(27)

The leading edge of the density distribution moves as

(28)

with the maximum velocity

(29)

At ,

(30)

the density and velocity distributions simplify to

(31)

and the maximum velocity tends to the constant value

(32)

These formulas describe inertial motion when the den-
sity is so small that the nonlinear pressure does not
accelerate the gas any longer. Formula (32) is suitable
for comparison with experiment, because the asymp-
totic value of the maximum velocity is expressed in
terms of measurable parameters: the longitudinal trap
frequency ωz and the initial half-width Z0 of the longi-
tudinal Thomas–Fermi profile.

Expression (31) yields the asymptotic velocity dis-
tribution

(33)

The mean kinetic energy is

(34)

2.2. Two-Dimensional Expansion 

Two-dimensional condensate dynamics are
observed when the longitudinal trap frequency ωz is
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much higher than the radial trap frequency ω⊥ , i.e.,
when inequality (6) is replaced with the reverse one:

(35)

Now, assume that the motion along the z axis is frozen,
i.e., the zero-point energy associated with the oscilla-
tion amplitude az = ("/mωz)1/2 is much higher than the
nonlinear energy. By virtue of the estimate

where R0 is the radius of the density distribution in the
plane (x, y) of the trap, this condition leads to the ine-
quality

(36)

If it holds, the condensate wave function can again be
factorized:

(37)

where

(38)

is the longitudinal ground-state wave function. By sub-
stituting (37) and (38) into (4) and (5) and integrating
the result over the longitudinal coordinate, the action is
expressed in terms of the effective two-dimensional
Lagrangian density

(39)

The corresponding Euler–Lagrange equation is the
two-dimensional Gross–Pitaevskii equation

(40)

where ∆⊥  =  +  is the transverse Laplace operator,
g2D is an effective coupling constant expressed as

(41)

and Ψ is normalized as

(42)

Equation (40) describes the two-dimensional transverse
dynamics of a condensate in a disc-shaped trap.
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By the substitution

(43)

where r⊥  = (x, y) and v = (v x, v y), Eq. (40) is trans-
formed into the system

(44)

(45)

where ∇ ⊥  = (∂x, ∂y) is the transverse gradient operator.
The quantum pressure can be neglected if it is much
lower than the nonlinear pressure, i.e.,

(46)

Then, Eq. (45) reduces to the hydrodynamic equation

(47)

The time-independent solution of the hydrodynamic
equations is the Thomas–Fermi profile

(48)

where r2 = x2 + y2 and the radius R0 of the density dis-
tribution is determined by the number of atoms N:

(49)

This inequality can be used to rewrite inequality (36) in
a more convenient form, and the applicability condition
for the two-dimensional Thomas–Fermi approximation
becomes

(50)

After the transverse trapping potential is switched
off, the condensate begins to expand radially, remain-
ing bounded longitudinally. The radial expansion is
described by hydrodynamic equations (44) and (47)
subject to initial conditions (48). Now, the solution is
sought in the form

(51)
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α⊥ (t) satisfy the initial conditions

(52)

The substitution of (51) into (44) and (47) yields an
equation relating b⊥ (t) to α⊥ (t),

and a differential equation for b⊥ (t),

(53)

The last equation is solved under the initial conditions

to obtain

(54)

and hence

Thus, simple expressions are obtained for the radial
density and velocity distributions:

(55)

The leading edge of the radial density distribution
moves as

(56)

with the maximum velocity

(57)

At t @ ,

(58)

where

(59)

As in the one-dimensional case, these formulas
describe inertial motion. Again, the maximum velocity
is expressed in terms of measurable parameters, the
radial frequency ω⊥  of the trap before it was switched
off and the initial Thomas–Fermi radius R0.
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-------------------------------–

 
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------------------------.= =
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The asymptotic velocity distribution is

(60)

and the mean energy is

(61)

3. THREE-DIMENSIONAL EFFECTS: 
A VARIATIONAL APPROACH

If condition (7) or (36) is violated, then motion
along the smaller dimension of the condensate is not
frozen and must be taken into account. As shown
in [24], this can be done by applying a simple varia-
tional method. However, when the trap is highly aniso-
tropic and the number of atoms in the condensate is suf-
ficiently large, the trial distribution along the larger
dimension should be the equilibrium Thomas–Fermi
profile, which differs substantially from the Gaussian
distribution assumed in [24]. This method was applied
to calculate the ground states of condensates in [13].
Here, it is applied to condensate dynamics.

3.1. Cigar-Shaped Trap 

In the case of a cigar-shaped trap with Thomas–
Fermi axial density distribution, the variational conden-
sate wave function has the form

(62)

where the parameters A, w⊥ , wz, α⊥ , and αz are functions
of time. It is assumed that Nas/Z0 ~ 1, i.e., the Thomas–
Fermi limit radial profile is not reached and the radial
wave function can be well approximated by a Gaussian
distribution. The parameter A is related to the widths w⊥
and wz by normalization condition (3), which yields

(63)

Substituting (62) into (4) and (5) and integrating the
result, one obtains the averaged Lagrangian

(64)

ρ v( )dv
4N

v max
2

---------- 1 v 2

v max
2

----------–
 
 
 

v dv ,=

E
1
3
---Emax, Emax

1
2
---mv max

2 .= =

ψ A
r2

2w⊥
2

----------–
 
 
 

1 z2

wz
2

------–exp=

× i
2
--- α⊥

2 r2 α z
2z2+( ) ,exp

A
3N

4πw⊥
2 wz

------------------- 
  1/2

.=

L
N
----

"
2

2
-----

dα⊥

dt
---------- "

2

2m
------- 1

w⊥
4

------ α⊥
2+ 

  1
2
---mω⊥

2+ + w⊥
2=

+
"

2

2
-----

dα z
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-------- "

2

2m
-------α z

2 1
2
---mω⊥

2 λ2+ + 
  wz

2
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5m
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where the 1/  term is neglected. Indeed, this term is

much less than , because the estimates

imply that the condition 1/  ! αz is equivalent to the
condition λ1/2 ! Nas/a⊥  for the applicability of the Tho-
mas–Fermi approximation in the longitudinal direction
(see (21)).

Lagrangian (64) entails the well-known expressions

(65)

and the equations of motion for the widths

(66)

(67)

These equations differ from those derived in [24] by
numerical factors and by the absence of the term corre-
sponding to longitudinal quantum pressure (it would be
incorrect to retain this term in the approximation
employed here). In the dimensionless variables

(68)

Eqs. (66) and (67) are rewritten as

(69)

(70)

where the parameter

(71)

characterizes the radial nonlinear pressure. If q ! 1,
then the second term on the right-hand side of (69) can
be neglected to obtain the time-independent solution
b⊥ 0 = bz0 = 1, which corresponds to the one-dimensional
approximation (see Section 2). In this case, Eq. (70)
describing free longitudinal expansion obviously
reduces to Eq. (25).

The equilibrium values of b⊥  and bz are determined
by the equations

(72)

which differ from analogous equations obtained in [21]
only by notation. They describe the state of the conden-
sate before expansion.

wz
4

α z
2

wz Z0, α z m/"( )ẇz/wz mωz/" λ /a⊥
2∼∼∼∼

wz
2

α⊥
m
"
---- 1

w⊥
------

dw⊥

dt
----------, α z

m
"
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wz

-----
dwz

dt
---------= =

ẇ̇⊥ ω⊥
2 w⊥+ "

2

m2w⊥
3

-------------
6Nas"

2

5m2
------------------ 1

w⊥
3 wz

------------,+=

ẇ̇z λ2ω⊥
2 wz+

3Nas"
2

m2
------------------ 1

w⊥
2 wz

2
-------------.=

b⊥ w⊥ /a⊥ , bz wz/Z0, τ ω⊥ t= = =

d2b⊥

dτ2
----------- b⊥+ 1

b⊥
3

-----
2q
5

------ 1

b⊥
3 bz

----------,+=

d2bz

dτ2
---------- λ2bz+

λ2

b⊥
2 bz

2
-----------,=

q λZ0/a⊥( )2=

b⊥ 0 bz0
–3/2,

1

bz0
6

------ 1
2q
5

------ 1
bz0
------,+= =
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The condensate expansion that follows after the lon-
gitudinal potential is switched off is described by the
equations

(73)

They can readily be solved numerically under the initial
conditions

(74)

where b⊥ 0 and bz0 are determined by (72). Figure 1
shows the functions of time

,

where Z = Z0bz0 is the initial half-width of the conden-
sate, for several values of N. When

,

we have the analytical solution obtained in Section 2. If

then the expansion starts from a radius larger than the
zero-point oscillation amplitude a⊥ , and b⊥   1 as
τ  ∞. At τ @ 1, the longitudinal expansion
approaches an inertial motion characterized by constant
velocities of atoms. The maximum velocity is readily
found by using the conservation law corresponding to
Eq. (73):

(75)

At τ = 0, it yields the initial values in (74). As τ  ∞,

and therefore

(76)

Then, Eqs. (72) are used to find

(77)

When q ! 1, i.e., b⊥ 0 = 1 and Z = Z0, this expression
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N a⊥ / λas( ),>

1
2
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 
2 5λ2
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5
q
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Fig. 1. Radius b⊥  = w⊥ /a⊥  (a) and longitudinal size zmax (b) vs. time τ = tωz for a one-dimensional expanding condensate in a cigar-

shaped trap at a⊥  = 5 µm, as = 5 nm, and λ = 0.05. Curves 1, 2, and 3 correspond to N = 103, 104, and 105, respectively.
yields the one-dimensional velocity given by (32).
When q @ 1, i.e., b⊥ 0 @ 1, it reduces to

Thus, not only the longitudinal condensate size
increases, but also the ratio of vmax to ωzR increases

from  to 2 as the number of atoms in the condensate
increase.

Both asymptotic velocity distribution and expres-
sion for the mean energy retain their form given by (33)
and (34), respectively, where vmax is now given by (77).
Figure 2 illustrates the dependence of the mean energy
on N.

3.2. Disc-Shaped Trap 

In the case of a disc-shaped trap with Thomas–
Fermi radial density distribution, the variational wave
function has the form

(78)

where the time-dependent parameters A, w⊥ , wz , α⊥ ,
and αz are related by normalization condition (3):

(79)

Substituting (78) into (4) and (5) and integrating the

v max 2ωzZ .≈

2

ψ A 1 r2

w⊥
2

------– z2

2wz
2

---------–
 
 
 

exp=

× i
2
--- α⊥

2 r2 α z
2z2+( ) ,exp

A
2N

π3/2
-------- 1

w⊥
2 wz

------------ 
  1/2

.=
JOURNAL OF EXPERIMENTAL A
result, one obtains the Lagrangian

(80)

where the 1/  term is neglected, because this term is

L
N
----

"
2

2
-----

dα⊥

dt
---------- "

2

2m
-------α⊥

2 1
2
---mω⊥

2+ + 
  w⊥

2

3
------=

+
"

2

2
-----

dα z

dt
-------- "

2

2m
------- 1

wz
4

------ α z
2+ 

  1
2
---mω⊥

2 λ2+ +
wz

2

2
------

+
8

3 2π
--------------

Nas"
2

m
--------------- 1

w⊥
2 wz

------------,

w⊥
4
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–

Fig. 2. Mean energy of atoms in a condensate (measured in
energy quanta "ωz of longitudinal oscillations) after one-
dimensional expansion in a cigar-shaped trap vs. number of
atoms.
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Fig. 3. Radius Rmax (a) and longitudinal size bz = wz/az (b) vs. time τ = tω⊥  for a two-dimensional expanding condensate in a disc-

shaped trap at az = 5 µm, as = 5 nm, and λ = 20. Curves 1, 2, and 3 correspond to N = 103, 104, and 105, respectively.
much less than  by virtue of the applicability condi-
tion Nas/az @ 1 for the radial Thomas–Fermi approxi-
mation.

Lagrangian (80) entails expressions (65) and the
equations of motion for the widths

(81)

(82)

which are rewritten in the dimensionless variables

(83)

where az = a⊥ / , as

(84)

(85)

The parameter

(86)

characterizes the longitudinal nonlinear pressure. If
q ! 1, then the second term on the right-hand side
of (85) can be neglected to obtain the time-independent
solution
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which corresponds to the two-dimensional approxima-
tion considered in Section 2. In this case, Eq. (84) obvi-
ously reduces to (53).

The equilibrium values of b⊥  and bz are determined
by the equations

(87)

which again are identical to the equations obtained
in [21], except for notation. They describe the state of
the condensate before expansion. The expansion in the
plane of the trap is described by the equations

(88)

They can readily be solved numerically under initial
conditions (74), where b⊥ 0 and bz0 are determined
by (87). Figure 3 shows the functions of time

where R = R0b⊥ 0 is the initial radius of the condensate,
for several values of N. When

,

we have the analytical solution obtained in Section 2. If

then the expansion starts from a longitudinal size wz0
larger than the zero-point oscillation amplitude az (i.e.,
bz0 > 1), and bz  1 as τ  ∞. At τ @ 1, the radial
expansion approaches an inertial motion characterized
by constant velocities of atoms. The maximum velocity

bz0 b⊥ 0
4– ,

1

b⊥ 0
16

------- 1
q
3
--- 1
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6

-------,+= =

d2b⊥
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1
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3 bz

----------,
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dτ2
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3
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λ2q
3
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2 bz

2
-----------.+= =

Rmax Rb⊥ t( )/b⊥ 0, bz wz/az,= =

az/as ! N  ! azλ
2/as

N azλ
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is found by using the conservation law corresponding to
Eq. (88):

(89)

which yields

(90)

Accordingly,

(91)

When q ! 1, i.e., bz0 = 1 and R = R0, this expression
yields the two-dimensional velocity given by (59).
When q @ 1, i.e., bz0 @ 1, it reduces to

Both the asymptotic velocity distribution and expres-
sion for the mean energy retain their form given by (60)
and (61), respectively, where vmax is now given by (91).
Figure 4 illustrates the dependence of the mean energy
on N.
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Fig. 4. Mean energy of atoms in a condensate (measured in
energy quanta "ω⊥  of longitudinal oscillations) after two-
dimensional expansion in a disc-shaped trap vs. number of
atoms.
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4. DISCUSSION

Let us compare the theoretical results with available
experimental data.

An experimental study of condensate expansion in a
quasi-one-dimensional trap was reported in [1], where
the longitudinal half-length of the condensate was Z ≈
100 µm and the time of transition to inertial motion was
approximately 20 ms, which corresponds to the trap
frequency wz ≈ 50 s–1. Under these conditions, expres-
sion (32) yields

In view of the assumptions made, good agreement
between this estimate and the experimental value
vmax ≈ 5.9 mm/s is achieved without introducing any
adjustable parameters.

Expansion of a Bose–Einstein condensate in a sys-
tem of two-dimensional disc-shaped traps was investi-
gated in [2]. The results of that study showed that no
longitudinal expansion took place, and the condensate
was effectively divided into separate condensate “pan-
cakes” confined in separate potential wells. Therefore,
the two-dimensional theory can be applied to describe
the radial expansion of each particular condensate.
According to [2], the maximum radial velocity was
vmax ≈ 1.5–1.7 mm/s when the initial radius was R ≈
13 µm and the radial trap frequency was ω⊥  ≈ 132 s–1.
Expression (59) predicts

which is in good agreement with the experimental
value. Thus, the mean-field theory provides a good
description of condensate expansion in fewer coordi-
nates as well. Deviations from the theoretical predic-
tions would point to the existence of a condensate that
could not be described by the mean-field theory.
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Abstract—We study the cross sections σi, i – 1 , σi, i – 2 , and σi, i – 3 of capture of one, two, and three electrons by
boron ions with charges i = 1–5 and velocities V = (1.83–5.50)V0 in gaseous media with atomic numbers Zt
varying from 1 to 54. The oscillatory form of the Zt dependence of electron capture cross section by boron ions,
which has been established for lighter ions, is confirmed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Theoretical estimates of electron capture cross sec-
tions σi, i – 1 by various ions of light elements, based on
the Thomas–Fermi statistical model, proved that the
cross sections increase monotonically with the nuclear
charge Zt of atoms in the medium [1, 2]. Analysis of
experimental data in the range of relatively low veloci-
ties V = (1–2)V0 (V0 = 2.19 × 108 cm/s), for which the
electron capture cross sections attain their maximal
value, also indicates that cross sections σi, i – 1 on the aver-

age increase monotonically in proportion to  [2].
However, subsequent experimental studies revealed
certain deviations from this type of dependence of
σi, i − 1 on Zt . The cross sections of electron capture by
boron ions with velocity V = 1.83V0 in neon, deter-
mined from experimental data, are smaller than the cor-
responding values in nitrogen by a factor of 1.5−2 [3].
Analogous deviations are also observed for higher
velocities of ions. Analysis of the electron capture cross
section by nitrogen and neon ions for V = 3.65V0 indi-
cates that the corresponding cross sections in neon are
considerably higher than in nitrogen and argon [4, 5].
Investigations of electron capture cross sections by
hydrogen and helium ions in various media in a wide
range of ion velocities proved that the variation of the
value of cross sections σi, i – 1 upon an increase in Zt has
the form of oscillations [6, 7]. Thus, we can assume that
the actual Zt dependence of the electron capture cross
section by light ions in the velocity range V > 2V0 sub-
stantially differs from a monotonic dependence, which
is apparently due to the shell structure of atoms of the
medium.

In this study, we investigate the effect of structural
features of atoms of the medium on the electron capture
cross sections σi, i – 1 measured for boron ions with
charges i = 1–5 for velocities V = (1.83–5.50)V0 in
gases H2, He, N2, Ne, Ar, Kr, and Xe; we also calculate

Zt
1/3
1063-7761/04/9805- $26.00 © 20918
theoretically the electron capture cross sections by the
same ions in media with Zt = 1–54. This work continues
our experiments with boron ions reported in [3]. The
ion velocities V will be given in atomic units of V0.

2. EXPERIMENTAL TECHNIQUE

Experiments with boron ions were carried out on the
setup described in [3, 8]. Boron ions 11B with charges
i = 1, 2, and 3 and velocities V = 1.83, 2.74, 3.65, and
5.50 were extracted from an accelerator and directed to
the collision chamber after their passage through a
recharging device, where the primary ions were trans-
formed into beams of boron atoms Bi+ with charges i =
1–5. The charge distribution of boron ions after their
passage through the collision chamber was measured
with the help of a detection system consisting of a mag-
netic analyzer and a block of identical counters. The
capture cross sections σi, i – m for one, two, and three
electrons, where m = 1, 2, 3, were determined from the
obtained charge distributions using the method
described in [9]. The errors in determining the cross
sections were mainly determined by the errors in esti-
mating the gas layer thickness in the collision chamber
(~10%) and by the statistical spread in the results of
several sets of measurements, which amounted on aver-
age to 10–15% in the capture cross sections for one
electron, 20–30% in the capture cross sections for two
electrons, and 50–70% in the capture cross section for
three electrons. The cross sections of electron capture
by boron ions for all above-mentioned velocities in
atomic and molecular hydrogen [10] and in He, N2, Ar,
as well as Kr, were measured earlier [9, 11]. All cross
sections σi, i – m for boron ions in Ne and Xe were deter-
mined for the first time in this study. The values of cross
sections σi, i – m for ion velocities V = 2.74, 3.65, and
5.50 are given in the table. Since the values of cross sec-
tions obtained in the present study and in [9, 11] coin-
004 MAIK “Nauka/Interperiodica”
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Cross sections σi, i – m of electron capture (in units of 10–16 cm2/at)

i, i – m H2 He N2 Ne Ar Kr Xe

V = 2.75

1, 0 0.018 0.09 0.04 0.19 0.10

2, 1 0.08 0.36 0.43 0.85 0.63 0.9

2, 0 0.0036 0.3 0.018 0.004

3, 2 0.29 0.8 1.0 1.60 1.7 2.3

3, 1 0.0017 0.04 0.04 0.07 0.05 0.1

4, 3 0.54 2.0 2.1 3.6 4.0

4, 2 0.05 0.1 0.24 0.22

4, 1 0.02 0.01

V = 3.65

1, 0 0.012 0.03

2, 1 0.008 0.05 0.09 0.18 0.10 0.13 0.16

2, 0 0.01 0.01

3, 2 0.016 0.12 0.24 0.5 0.35 0.50 0.80

3, 1 0.003 0.012 0.007 0.015 0.03

4, 3 0.05 0.40 0.80 1.9 1.0 1.60 2.4

4, 2 0.03 0.03 0.09 0.063 0.14 0.2

4, 1 0.005 0.01 0.03 0.012

5, 4 0.12 0.70 1.4 3.0 1.80 2.1 3.0

5, 3 0.2 0.16 0.35 0.30 0.60 0.71

5, 2 0.03 0.04 0.1 0.1

V = 5.50

3, 2 0.002 0.008 0.03 0.13 0.035

3, 1 0.001

4, 3 0.0043 0.03 0.13 0.30 0.35 0.48

4, 2 0.0002 0.0035 0.004 0.016 0.027

5, 4 0.009 0.07 0.25 0.70 0.50 0.83

5, 3 0.0006 0.0012 0.045 0.055 0.18

5, 2 0.0008 0.006 0.014
cided to within 20–30%, the table contains the averaged
values of cross sections.

3. THEORETICAL MODELS 
FOR CALCULATING ELECTRON CAPTURE 

CROSS SECTIONS

In accordance with the analysis carried out in [3],
the total cross section of electron capture by an ion with
charge i and velocity V ~ 1–2 is proportional to the
number of vacancies pi – 1(n) in the unfilled electron
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
shell closest to the nucleus and characterized by the
principal quantum number n:

(1)

where Ii – 1 is the binding energy of the electron being
captured, I0 = 13.6 eV, and a0 = 5.29 × 10–9 cm.

For boron ions, the values of pi – 1(n) decrease from
p2(2) = 8 for B3+ ions to p0(2) = 6 for B+ ions. As the ion
velocity subsequently increases to V ~ 3–5, the values

σi i 1–, pi 1– n( )πa0
2 Ii 1–

I0
---------Zt

1/3V 3– ,=
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of cross sections σi, i – 1 can be estimated from the Bohr
formula for the cross sections of electron capture by
light ions in media with Zt ≥ 2 [1, 2, 12]:

(2)

In the case of electron capture by a fast ion from the
filled shell nt of an atom of the medium to the ion shell
nf , the partial cross section σi, i – 1(nt  nf) can be cal-
culated in the Oppenheimer–Brinkman–Kramers

(OBK) approximation [13, 14]. The values of 
were calculated for the cross sections of electron cap-
ture by boron ions with charges i = 1–5 and velocities
V = 1.83, 2.74, 3.65, and 5.50 in media with Zt = 1–54.
The method for calculating cross sections is analogous
to that proposed in [6] for helium ions.

The main drawback in the OBK approximation is
that it gives exaggerated values of calculated electron
capture cross sections as compared to the experimental
values. For this reason, the calculated values of cross
sections were normalized to the experimental data
obtained for boron ions for the above velocities in nitro-
gen. The normalization coefficient

for velocities V = 1.83, 2.74, 3.65, and 5.50 for boron
ions is R(V, 5) = 0.03, 0.06, 0.09, and 0.15, respectively.
It is known from previous studies that the value of
R(V, 1) for hydrogen (Z = 1) varies from 0.13 for V =
3.65 to 0.18 for V = 5.50 [6]. For helium ions (Z = 2),
the value of R(V, 2) increases from 0.04 for V = 1.2 to
0.18 for V = 3.65–10 [7]. These data have made it pos-
sible to represent the normalization coefficient in the
form of the empirical expression

(3)

The values of R(V, Z) determined using formula (3) are
in accordance with the most of the above values of
R(V, Z) to within ±30%. Formula (3) is a modification
of the analogous expression from [14].

4. ANALYSIS OF OBTAINED RESULTS

Figure 1 shows the values of the electron capture
cross sections σi, i – 1 as a function of Zt , obtained in
experiments and calculated using various approxima-
tions. For velocity V = 1.83, cross sections σi, i – 1 for
boron ions with charges i = 2, 3 increase with Zt in pro-

portion to . The values of cross sections deter-
mined on the basis of formula (1) are in satisfactory
agreement with the experimental data. A noticeable dis-
crepancy is observed only for cross sections of electron

σi i 1–, 4πa0
2i3Zt

1/3V 5– .=

σi i 1–,
OBK

R V Z,( )
σi i 1–,

exp

σi i 1–,
OBK

-------------=

R V Z,( ) 0.295 0.54V /Z( ) 1.6– 1+[ ] 1–
.=

Zt
1/3
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capture by B2+ ions in nitrogen and neon. The calcula-
tions of the electron capture cross sections carried out
in the OBK approximation lead to a qualitatively differ-
ent dependence, which is not monotonic, but has the
form of alternating maxima and minima with the gen-
eral increase in the value of σi, i – 1 with Zt in proportion

to . Calculations carried out in the OBK approxi-
mation make it possible to describe the deviation of the
electron capture cross section from those calculated by
formula (1) for nitrogen and neon (see Fig. 1a). As the
ion velocity increases, the dependence of the electron
capture cross section on Zt becomes essentially non-
monotonic. The deviation of the experimental data
from the results calculated by formula (2) for an ion
velocity of V = 3.65 increases, especially upon an
increase in the ion charge. The applicability of the OBK
approximation is more justified for increasing ion
velocity [6]; Figs. 1b and 1c clearly demonstrate the
improvement in matching calculated electron capture
cross sections with experimental data for V = 5.5.

The results of this study show that maxima are
formed due to the shell structure of atoms of the
medium and the resonant nature of the dependence of
total cross sections σi, i – 1 on Zt . Each of these maxima
corresponds to the maximal contribution of partial elec-
tron capture cross sections from individual atomic
shells K, L, and M of the medium. The results presented
in Fig. 1 confirm this conclusion for boron ions. In the
framework of the OBK approximation, it is also possi-
ble to explain the shift of the maxima towards high val-
ues of Zt with increasing ion velocity. Indeed, the OBK
cross sections attain their maximal values when the
electron binding energy in one of the atomic shells of
the medium becomes equal to It = (IV + 2Iion)/3, where
It and Iion are the electron binding energy in the target
atom and the fast ion, respectively, and IV = µV2/2 is the
energy transferred by an electron [6, 7]. With increasing
ion velocity, the value of It for which the electron cap-
ture cross section is maximal increases, leading to the
corresponding increase in the value of Zt at which the
given maximum is observed.

The emergence of oscillations in the dependence of
the electron capture cross section on Zt is mainly due to
the enhancement of the effect of internal and external
screening on the average orbital velocity of electrons
from outer shells of atoms in the medium upon an
increase in the principal quantum number n. This leads
to an increase in the relative difference between the
cross sections for states with adjacent values of n.
Incomplete filling of outer electron shells deepens the
minima in the dependence of cross sections σi, i – 1 on
Zt . It can be seen from the above results that the largest
amplitude of oscillations (i.e., the difference between
the maximal and minimal values of cross sections) for
boron ions in the range of Zt = 7–18 (N, Ne, Ar) is
observed for an ion velocity of V = 3.65. In this case,

Zt
1/3
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Fig. 1. Dependence of cross sections σi, i – 1 of electron capture by boron ions (a) B2+, (b) B3+, and (c) B4+ on Zt . Symbols corre-
spond to experimental values; solid curves describe the results of normalized calculations in the OBK approximation; dot-and-dash
lines correspond to calculations by formula (1) for V = 1.83, and dashed lines, to calculations by formula (2) for V = 3.65. The values
of velocities V (in units of V0) are shown on the curves.
the amplitude of oscillations decreases with increasing
boron ion charge and attains its lowest value for nuclei
of B5+ (Figs. 1 and 2) With a further increase in the
velocity of ions, the oscillatory dependence of the cross
sections on Zt is gradually weakened and becomes vir-
tually monotonic again for V > 20 [6].

Figure 2 shows for comparison the available exper-
imental and theoretical values of cross sections σZ, Z – 1

of electron capture by nuclei of hydrogen H+ [6],
helium He2+ [7], boron B5+, and nitrogen N7+ [5] for
a velocity of V = 3.65 in various media. In the range of
Zt = 2–54, the values of σZ, Z – 1 increase on average in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
proportion to , approximately in accordance with
the results of calculations based on the Bohr formula (2).
However, the figure shows the deviation of the experi-
mental data from this dependence. For example, for
Zt = 1, the values of cross sections σZ, Z – 1 for the nuclei
in question differ from those calculated by formula (2)
approximately by an order of magnitude. In contrast to
the model of independent electrons, the calculations
carried out in the OBK approximation are in qualitative
agreement with the experimental dependence of cross
sections σZ, Z – 1 on Zt (including the case of Zt = 1). The
above results show that the dependence of the electron
capture cross sections on Zt for the nuclei in question

Zt
1/3
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exhibits oscillations with the amplitude decreasing with
increasing the nuclear charge Z of the ion.

An analysis of capture cross sections of two elec-
trons was also carried out using the experimental data
for boron ions with velocities of V = 1.19 and 1.82. We
calculated the ratio η2 = σi, i – 2/σi, i – 1 of cross section of
capture of two electrons to the cross sections of capture
of one electron by boron ions. Within the experimental
error, these ratios remain constant for the electron cap-
ture cross sections in all gaseous media studied, except
krypton and xenon. This enabled us to average η2 over
various media; as a result, the minimal value of η2 =
0.004 ± 0.001 was obtained for capture of two electrons
by B+ ions with the formation of negative B– ions. For
boron ions with charges i = 2–5, ratio η2 is 0.09 ± 0.05.

The cross section σi, i – 3 of capture of three electrons
is 3–5 times smaller than the cross section σi, i – 2 for
capture of two electrons. The ratios η3 = σi, i – 3/σi, i – 1
for capture of three electrons were obtained only for
boron ion velocities of V = 3.65 and 5.50 and were
approximately equal to 0.02 ± 0.01.

5. CONCLUSIONS

It has been established that the values of cross sec-
tions σi, i – 1 obtained from the experimental data

increase on the average with Zt in proportion to Zt
1/3

1 10 102

Zt

10–4

10–3

10–2

10–1

1

10
σZ, Z – 1, 10–16 cm–1/at

Fig. 2. Cross sections σZ, Z – 1 of electron capture by nuclei
of hydrogen, helium, boron, and nitrogen as functions of Zt

for velocity V = 3.65. Experiment: (j) H+ [4], (.) He2+ [3],
(s) B5+, our results, and (d) N7+ [5]. Solid curves corre-
spond to the results of normalized calculations in the OBK
approximation; dashed straight lines correspond to calcula-
tions based on formula (2).
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and can be successfully described by the model of inde-
pendent electrons in the low-velocity range. However,
the analysis of experimental data revealed deviations
from the monotonic dependence of σi, i – 1 on Zt: in the
range of low velocities, the cross sections in neon are
smaller than the corresponding values in nitrogen and
argon by a factor of 2–3. As the ion velocity increases,
the dependence of the electron capture cross section on
Zt becomes essentially nonmonotonic.

The calculations carried out in the OBK approxima-
tion successfully describe the oscillations observed in
the dependence of cross sections σi, i – 1 on Zt . We pro-
posed a unified empirical formula for various ions of
light elements to normalize the electron capture cross
sections σi, i – 1 calculated in the OBK approximation.

The results of our calculations make it possible to
analyze the variation of oscillations in the cross section
upon a change in the ion charge and velocity. With
increasing V, the position of the extrema in the depen-
dence of cross sections σi, i – 1 on Zt is shifted towards
higher values of Zt . The amplitude of oscillation
depends both on the ion charge i and on the nuclear
charge Z of the ion. An increase in the ion charge
reduces the amplitude of oscillations, which attains its
minimal value for nuclei. With increasing nuclear
charge of the ion, the amplitude of oscillations also
decreases if we consider the cross sections of electron
capture by the nuclei of the elements; in this case, for
electron capture by ions, the dependence of cross sec-
tions on Z is more complicated. Analysis of the depen-
dence of the oscillation amplitude on velocity V makes
it possible to determine the velocity range in which
oscillations must be taken into account in the depen-
dence of σi, i – 1 on Zt .

Thus, it has been established that the cross sections
of electron capture by light ions (Z = 1–7) with veloci-
ties V = 2–10 as a function of Zt exhibit oscillations due
to peculiarities of the shell structure of atoms of the
medium.
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Abstract—Drift of an excess electron in dense and condensed inert gases in external electric field and excita-
tion of atoms by electron impact in these systems are analyzed. The effective potential energy surface for an
excess electron at a given electric field strength consists of wells and hills, and the actions of neighboring atoms
are therefore separated by saddles of the potential energy. At such atomic densities that the difference of inter-
action potentials for an excess electron between neighboring wells and hills of the potential energy surface
becomes small, the electron mobility is large. This is realized for heavy inert gases (Ar, Kr, Xe) with a negative
scattering length of an electron on individual atoms. In these cases, the average potential energy of the electron
interaction with atoms corresponds to attraction at low atomic densities and to repulsion at high densities. The
transition from attraction to repulsion at moderate atomic densities leads to a maximum of the electron mobility.
A gas model for electron drift in condensed inert gases is constructed on the basis of this character of interac-
tion. Due to high electron mobility, condensed inert gases provide high efficiency of transformation of the elec-
tric field energy into the energy of emitting photons through drifting electrons. It is shown that, although the
role of formation of autodetaching states in the course of electron drift is more important for condensed inert
gases than for rare gases, this effect acts weakly on exciton production at optimal atomic densities. The param-
eters of a self-maintained electric discharge in condensed inert gases as a source of ultraviolet radiation are dis-
cussed from the standpoint of electron drift processes. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mobility K and drift velocity w of a free electron
in gases is inversely proportional to the number density
N of atoms, i.e., the quantities KN and wN in a gas are
independent of its density. At high densities, this law is
violated because of two reasons. First, electron scatter-
ing proceeds simultaneously on several atoms, and sec-
ond, the interaction between atoms changes the atomic
system, which affects the character of the electron
interaction in this system. For inert gases, where atoms
conserve their individuality in a condensed system, the
behavior of an excess electron injected in a condensed
gas is different depending on its sort. In light inert
gases, He and Ne, an excess electron compels to dis-
place the surrounding atoms. This structure change
moves together with the electron, and, therefore, the
electron effective mass is on the order of the atomic
mass, and, hence, the reduced electron mobility KN in
these condensed gases (He and Ne) is substantially
lower than in gases.

As follows from experiments [1–15], different
behavior of the reduced electron mobility occurs in
heavy inert gases, Ar, Kr, and Xe. The electron effective
mass in condensed heavy inert gases is on the order of

¶This article was submitted by the authors in English.
1063-7761/04/9805- $26.00 © 20924
the free electron mass, and as the atomic number den-
sity increases, the reduced mobility has a tendency to
decrease; it experiences a sharp jump in a narrow range
of the atomic number densities (see Fig. 1 for the case
of xenon [7, 11]). Table 1 [16] demonstrates this behav-
ior of the mobility of the excess electron. In Table 1,
Kgas is the electron zero-field mobility in gases at room
temperature, Ktr is the electron zero-field mobility at the
triple point, and Kmax is the maximum electron zero-

Table 1.  Parameters of drift of an excess electron in rare
gases

Ar Kr Xe

Tmax, K 155 170 223

Nmax, 1022 cm–3 1.2 1.4 1.2

KmaxNmax, 1024 (cm V s)–1 [14] 22 64 72

Ttr, K 85 117 163

Nliq, 1022 cm–3 2.1 1.8 1.4

KtrNliq, 1024 (cm V s)–1

[1–6, 8, 10, 14]
10 ± 1 29 ± 5 28 ± 10

V0, V [9, 12, 13, 15] –0.3 –0.5 –0.8

KgasN, 1023 (cm V s)–1 [16] 12 0.62 0.17
004 MAIK “Nauka/Interperiodica”
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field mobility for the liquid state. This table also con-
tains the temperatures Tmax of the maximum electron
mobility, the triple point temperatures Ttr , and the num-
ber densities of atoms Nmax, Nliq corresponding to these
temperatures. We note that the difference in the electron
mobilities for solid and liquid inert gases is not signifi-
cant; i.e., high mobility of an excess electron cannot be
explained by the order distribution of atoms. The quan-
tity V0 in Table 1 is the maximum difference of the elec-
tric potentials acting on the electron located inside and
outside a condensed inert gas. It is energetically profit-
able for an excess electron to be located inside the inert
gas, and the minimum of V0 corresponds to the atomic
number densities that are related to the maximum of the
electron mobility. In addition, high mobility of an
excess electron is observed only in a narrow range of
atomic number densities, to be considered below. As
follows from the data in Table 1, the maximum reduced
mobilities of the excess electrons in inert gases, as well
as the reduced mobilities at the triple point, signifi-
cantly exceed those at gaseous densities. This differ-
ence is especially high for xenon, which is the main
object of our consideration. In addition, the maximum
reduced electron mobilities in inert gases exceed those
in metals of high conductivity. Indeed, the reduced
electron mobility KeNa is equal to 2.9 and 3.1 in the
units 1024 (cm V s)–1 for copper and silver, respectively.
We note that, because electrons are degenerate in these
metals, a typical electron velocity near the Fermi sur-
face is much greater than the thermal velocity of a free
electron. Therefore, although the specific mobilities of
an excess electron in condensed inert gases signifi-
cantly exceed those in metals, the ratios of the electron
free mean path to the distance between nearest atoms
(or the lattice constant) have the same order of magni-
tude for both condensed inert gases and metals.

Some theories [17–21] explain the high mobility of
an excess electron by the Ramsauer effect in electron
scattering on an individual atom, but such approaches
are just models because they are correct only for gases.
Of course, the gaseous approach for the electron scat-
tering is the simplest one, but it does not allow us to
describe the electron behavior in a wide range of atomic
number densities with a small number of fitting param-
eters. The high mobility of an excess electron in con-
densed inert gases has a fundamental meaning because
it is evidence of a weak interaction between the electron
and this matter at such densities. In what follows, we
consider just this range of the atom number densities
corresponding to high values of the electron mobility,
and our task is to explain the nature of this phenome-
non. Analyzing the properties of the total potential
energy that acts on the electron from a condensed inert
gas, we show that it varies, on average, from attraction
to repulsion as the atomic number density increases.
The maximum electron mobility corresponds to the
transition from attraction to repulsion, and in what fol-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lows, we analyze the problem of drift of an excess elec-
tron in condensed inert gases from this standpoint.

The high mobility of excess electrons corresponds
to a low resistance of condensed inert gases at such
atom number densities if the excess electrons propagate
in this matter under the action of an external electric
field. When the electron energy reaches the threshold of
atom excitation, it is consumed in the formation of exci-
tons; in this range of atom number densities, formation
of excitons by electron impact is an effective process.
But formation of autodetachment states may affect the
efficiency and rate of exciton formation in condensed
inert gases. These autodetachment states are bound
states of excited and excess electrons with a binding
energy of about 0.4 eV [22]. Formation of autodetach-
ment states of inert gas atoms impedes excitation of
atoms, and we consider this problem below.

The high electron mobility in condensed inert gases
has fundamental meaning and can be applied to trans-
form the energy of an external electric field into the
energy of photons in the vacuum ultraviolet (VUV)
spectral range through excess electrons moving in con-
densed inert gases. This method, which requires the
creation of a self-maintaining electric discharge in con-
densed inert gases, was suggested in [23, 24] and was
then experimentally proved for xenon [25–27].
Because the excited inert gas atoms are characterized
by a high excitation energy, such a method makes it
possible to effectively convert the electric energy into

10201019 1021 1022

N, cm–3
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Ke/Kgas

Fig. 1. The dependence of reduced electron mobility in xenon
on the density of atoms according to experiments [7, 11].
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radiation because elastic scattering of electrons is
weak. This problem of energy conversion is analyzed in
this paper in the context of the behavior of excess elec-
trons in condensed inert gases.

2. INTERACTION OF AN EXCESS ELECTRON
IN CONDENSED INERT GASES

A feature of condensed inert gases is the small bind-
ing energy between atoms in comparison with typical
atomic energies. This implies that the interaction
between neighboring atoms in solid and liquid inert
gases is relatively small and allows us to use the simi-
larity law for various parameters of dense and con-
densed inert gases [28]. The reason for this is that the
parameters of inert gases are governed by pairwise
interactions of atoms, and the pair interaction potentials

Table 2.  Parameters of the interaction potential of two iden-
tical atoms of inert gases (Re, D) and reduced parameters of
condensed inert gases near the triple point [28]

Ar Kr Xe Average

Re, Å 3.76 4.01 4.36 –

D, K 143 200 278 –

a, Å 3.755 3.992 4.335 –

a/Re 1.00 0.99 1.01 1.005 ± 0.013

, 

1022 cm–3
1.88 1.55 1.21 –

Ttr/D 0.587 0.578 0.570 0.579 ± 0.007

, 10–3 1.9 1.7 1.7 1.9 ± 0.2

0.879 0.884 0.855 0.88 ± 0.02

0.77 0.76 0.74 0.76 ± 0.01

εsub/D 6.5 6.7 6.7 6.5 ± 0.3

∆Hfus/D 0.990 0.980 0.977 0.98 ± 0.02

∆Sfus 1.69 1.70 1.71 1.68 ± 0.03

rW/Re 0.639 0.641 0.627 0.64 ± 0.01

N0 Re
3–=

ptrRe
3/D

V liq/Re
3

V sol/Re
3

Table 3.  Reduced parameters of an excess electron in con-
densed inert gases

Ar Kr Xe

Nsol/N0 1.30 1.31 1.34

Nliq/N0 1.13 1.13 1.17

Nmax/N0 0.68 0.90 0.99

N*/N0 2.05 1.54 1.38

eV0/εsub –3.8 –4.3 –4.9
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are known for inert gas atoms with a high (several per-
cent) accuracy [29–32]. The pair character of atom
interaction makes it possible to express certain param-
eters of inert gases via the parameters of the interaction
potential of two atoms and ensures validity of the scal-
ing laws for various parameters of bulk inert gases.
Representing the pair interaction potential of two atoms
in the form of a potential well, we use two interaction
parameters, the depth D of this potential well and the
equilibrium interatomic distance Re that corresponds to
the minimum of the interaction potential. Table 2 gives
some reduced parameters of heavy inert gases [28] and
confirms the validity of the similarity law for them.
Here, a is the lattice constant, and all the inert gases
have the face-centered cubic lattice; Ttr is the triple
point temperature; Vliq and Vsol are the specific volumes
per atom for the liquid and solid states, respectively, at
the triple point; εsub is the sublimation energy per atom
for the crystal at the triple point; ∆Hfus is the fusion
energy (the energy consumed in melting) per atom;
∆Sfus is the entropy jump per atom at melting; and rW is
the Wigner–Seitz radius for the liquid state. As follows
from Table 2, the reduced parameters are the same for
different rare gases within the accuracy of several per-
cent. Hence, the bound systems of inert gas atoms have
a simple nature and can be treated as systems of classi-
cal bound atoms. We use this in the subsequent ana-
lysis.

Although scaling is not valid for an electron in con-
densed inert gases, it is convenient to express the
reduced parameters of an excess electron, which allows
us to compare the electron parameters with those for the
interaction of atoms. The number densities Nsol and Nliq
(where Nsol = 1/Vsol and Nliq = 1/Vliq) in Table 3 corre-
spond to the solid and liquid states of inert gases at the
triple point, Nmax is the number density in Table 1 at
which the zero-field electron mobility has a maximum,

N0 = , and N∗  = /( )3, where  is the mean
radius of the valence electron in a given atom and the
values of these radii are taken from [33–35]. Hence, N∗
is the number density of balls of radius  if these balls
form a close-packed crystal lattice. In accordance with
the Pauli exchange interaction, an excess electron can-
not be located inside atoms, and, as follows from the
data in Table 3, the excluded volume for the location of
an excess electron is comparable to the total volume
inside condensed inert gases at the triple point. As can
be seen, the similarity law is not valid for N∗ /N0. In
addition, the ratio Nliq/N∗  grows as we transfer from Ar
to Xe; this ratio expresses a typical part of space inside
a liquid inert gas where an excess electron may not be
located.

We now consider the problem of interaction of an
excess electron inside a liquid inert gas from another
standpoint, analyzing the behavior of the potential
energy surface for this electron as the atom density

Re
–3 2 2r r

r
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increases starting from low values. At low atomic den-
sities, when an electron is located in a gas, it interacts
with individual atoms independently. In regions
between atoms far from them, the interaction potential
is zero and nonzero interaction occurs only near
regions occupied by atoms. On the basis of the Fermi
formula [36], the interaction potential between the elec-
tron and atoms can be represented as

(1)

where, r is the electron coordinate, Ri is the coordinate
of the ith atom, and L is the electron–atom scattering
length. Because the scattering length is negative for Ar,
Kr, and Xe, this interaction potential corresponds to
attraction in regions where atoms are located. There-
fore, the potential energy surface consists of regions
inside atoms with a sharp electron repulsion, regions
near each atom with electron attraction, and regions
between atoms with zero interaction potential. The
region between atoms with zero interaction potential
shrinks as the number density of atoms increases, and
when the distance between nearest neighbors is compa-
rable with the electron orbit size, the potential energy
surface takes the form of wells and saddles, which sep-
arate regions of individual atoms. This potential energy
surface resembles that describing interaction of bound
atoms in clusters [37, 38]. In reality, attraction corre-
sponds only to an average interaction of an electron of
zero energy with an individual atom in a gas, and it
leads to a redshift of spectral lines emitted by excited
atoms located in inert gases [39]. The exchange interac-
tion of a test electron with electrons of the inert gas
atoms is accompanied by repulsion if this electron pen-
etrates an internal atom region occupied by other elec-
trons. The volume of repulsion near each atom is
approximately 1/N∗ , where the values of N∗  are given
in Table 3, and this implies that high electron mobility
is absent at high gas pressures.

The interaction potential between a test electron and
an individual inert gas atom can therefore be repulsion
at small distances from the atom and attraction at longer
distances, which are of the order of the electron scatter-
ing length. Correspondingly, the attraction in the region
of location of individual atoms dominates in the inter-
action potential of a test electron with the system of
inert gas atoms at low densities of atoms. Evidently, as
the number density of atoms increases, the attraction
part of the interaction potential disappears, and, there-
fore, there is an atomic density when an average inter-
action potential becomes zero. This atomic density cor-
responds to the transition from attraction to repulsion
for the total interaction potential, and the mobility of
slow electrons obtains a maximum, because a typical
energy difference between wells or hills in the potential
energy becomes minimal at such an atomic density.

U r( ) 2π"
2

me

------------Lδ r Ri–( ),
i

∑=
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This electron behavior is expected, however, if the elec-
tron scattering length on an individual atom is negative,
i.e., for Ar, Kr, and Xe.

Thus, there is a strong repulsion of an excess elec-
tron in heavy inert gases near each core due to the
exchange interaction with internal atomic electrons,
and a test electron does not penetrate the atom because
of the Pauli exclusion principle. Average electron inter-
action with an individual atom corresponds to attraction
because of the negative electron–atom scattering
length. At intermediate atomic densities, these interac-
tions compensate each other, on average, and the elec-
tron mobility has a maximum at such densities. We are
guided by the liquid state of condensed inert gases,
because the order distribution of atoms is not important
for the nature of this high electron mobility. Therefore,
the electron mobilities for the solid and liquid states do
not differ, in principle, but this mechanism of high elec-
tron mobility corresponds to a narrow density range,
while high mobility of a solid inert gas can be observed
in a wide range of atomic densities.

3. DRIFT AND MOBILITY 
OF AN EXCESS ELECTRON

IN HEAVY INERT GASES

Guided by a range of high mobilities of an excess
electron in condensed inert gases where the interaction
of this electron with the environment is weak, we use a
gas approach for electron scattering. Keeping in mind
that the potential energy surface for an individual elec-
tron consists of wells and hills, and that hills separate
the action of an individual core, we use the gaseous
approach for electron scattering where each core is a
scattering center for an excess electron. If the cross sec-
tion for scattering on an individual core is small com-
pared to the square atom size, we reduce the problem of
electron motion inside a condensed inert gas to scatter-
ing on individual cores, as takes place in gases. We note
that this model is valid only in the case of high electron
mobility in a condensed system if the electron interac-
tion with this system is weak.

In the case of electron motion in a gas, when a test
electron is scattered subsequently on individual atoms,
the zero-field electron mobility Ke is given by [40, 41]

(2)

where me is the electron mass; v  is the electron veloc-
ity; averaging is taken over the distribution of electrons
with respect to velocities; ν = Nvσ* is the rate of the
electron–atom scattering, with N being the atom num-
ber density; and σ* is the diffusion cross section of the
electron–atom elastic scattering. For simplicity, we
consider below the case where the cross section is inde-

Ke
e

3me

--------- 1

v 2
------ d

dv
------- v 3

ν
------ 

  ,=
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pendent of the collision velocity and formula (2) takes
the form [40, 41]

(3)

where λ = (Nσ*)–1 is the mean free path of an electron
in a gas and T is the temperature. This connection of the
reduced electron mobility and the scattering cross sec-
tion allows us to express the diffusion cross section σ*
of the electron–atom scattering in a gas via the reduced
mobility, which is given by

(4)

In particular, applying this gas model to gaseous xenon
and using the experimental values [7] of the reduced
mobility KeN = 3 × 1022 (cm V s)–1 at the temperature
T = 236 K, we obtain from formula (4) the diffusion
cross section σ* = 52 Å2 at this temperature. We intro-
duce the critical number density of atoms Ncr that char-
acterizes the transition from the gaseous system to the
condensed one and corresponds to the relation σ* =

, where rW is the Wigner–Seitz radius (  = 2.3 ×
10–15 cm2 for liquid xenon). According to formula (4),
the critical number density is

(5)

and it is equal to Ncr = 4 × 1021 cm–3 for xenon. This is
the transient gas–liquid number density for xenon.

We treat the density range of the maximum electron
mobility in xenon on the basis of the gas model. Taking
the maximum zero-field electron mobility from Table 1
(KeN = 7.2 × 1025 (cm V s)–1 at the atom number density
Nmax = 1.2 × 1022 cm–3), we obtain on the basis of for-
mula (4) σ* = 1.4 × 10–18 cm2, which is small in com-

parison with  = 2.3 × 10–15 cm2, and, hence, the gas
model is applicable in this case. Thus, composing elec-
tron scattering in a condensed inert gas at the atomic
density of the maximum electron mobility as a result of
the electron interaction with small independent scatterers

Ke 0.53
eλ
meT

--------------, or KeN 0.53
e

σ* meT
---------------------,= =

σ*
0.5

meTKeN
-------------------------.=

πrW
2 πrW

2

Ncr
3 π

4 σ*( )3/2
--------------------,=

πrW
2

Table 4.  Parameters of the gas model for drift of an excess
electron in liquid rare gases [16]

Ar Kr Xe

0.012 0.005 0.005

0.004 0.002 0.002

λtr/atr 65 150 170

λmax/amax 200 450 480

σtr/πatr
2

σmax/πamax
2
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located on atom cores, we use formula (4) to find the dif-
fusion cross sections for electron scattering σmax and σtr
that correspond to the atom number densities Nmax and
Ntr (see Table 1). These cross sections are given in
Table 4 [16], where atr and amax are the distances
between nearest neighbors at these atomic densities,
and λmax and λtr are the electron mean free paths for
these densities. As can be seen, the gas approach is
valid because the effective cross sections are relatively
small, whereas the mean free paths for electrons are rel-
atively large.

We consider the data in Table 1 from another stand-
point, composing the potential energy surface for an
excess electron in the form of wells and hills near each
core if the well depth is relatively small. We take the
interaction potential of the electron with each atomic
center in the form

(6)

where r is the distance from the atom’s center, a is the
range of atomic forces, and rW is the Wigner–Seitz
radius for the condensed system. The electron scatter-
ing on an individual center is weak if U0 ! ε, where ε
is the electron energy. We can then use perturbation the-
ory for electron scattering (the Born approximation),
and the differential cross section of the electron scatter-
ing on an individual center in the Born approximation
for the interaction electron–core potential (6) is [42]

(7)

where

is the variation of the electron wave vector as a result of
scattering, θ is the scattering angle, q is the initial elec-
tron wave vector, and

is the solid angle element. From this, we have the diffu-
sion cross section of elastic scattering on each scattered
center, given by

(8)

This consideration is valid for U0 ! ε, i.e., in the range
of parameters where the electron mobility is high in a
condensed system. In the case of xenon at the atomic
density of the maximum electron mobility, we obtain
U0/ε = 0.05 if a = rW in the interaction potential (6).
Thus, from different standpoints, we find that the inter-
action of an excess electron with the environment is rel-
atively weak at atomic densities where the electron

U r( ) U0
r2

a2
-----– 

  , a rW ,≤exp–=

dσ πa2

4
--------

meU0a2

"
2

------------------
 
 
 

2

K2a
2

2
-----------– 

 exp Ω,d=

K 2q θ/2( )sin=

dΩ πd θcos=

σ*
π2a2

16
----------

U0

ε
------ 

 
2

.=
ND THEORETICAL PHYSICS      Vol. 98      No. 5      2004



PROCESSES IN CONDENSED INERT GASES INVOLVING EXCESS ELECTRONS 929
mobility has a maximum and the diffusion cross section
of the electron at each core is also relatively small.

As follows from the above analysis, the gas model
can be valid for the mobility of an excess electron in
condensed inert gases in some range of atomic densi-
ties. This means that, in the case where we compose the
potential energy surface for an individual electron
inside a condensed inert gas in the form of wells and
hills, the amplitude of the electron scattering on an indi-
vidual well or hill is less than the distance between the
nearest neighboring atoms. We can also use another cri-
terion of the gas model validity: when the electron
mean free path in a condensed inert gas is large com-
pared to the distance between neighboring atoms. This
allows us to use the gas model for electron scattering,
according to which an electron is scattered indepen-
dently on neighboring nonuniformities of the potential
energy surface. This leads to the classical theory of
electron kinetics in gases in an external electric field in
this case of an excess electron in condensed inert gases.
This theory was elaborated for kinetics of electrons in
semiconductors and gases [44–50]. It is represented in
contemporary publications [41, 51, 52], and we use this
theory below for excitation of atoms in condensed inert
gases.

Although the criterion for the weakness of the inter-
action of an excess electron in condensed inert gases at
high electron mobilities is fulfilled, as well as the crite-
rion for the gas approach for propagation of an excess
electron, the character of electron motion is in reality
more complex. Indeed, due to the exchange interaction
of an excess electron with atomic electrons, an excess
electron cannot penetrate the atoms. Hence, if we con-
sider electron scattering at atomic cores to be indepen-
dent, the cross section of scattering at each core is on
the order of the atomic radius squared, which signifi-
cantly exceeds the values in Table 4 that follow from
the mobility data. Therefore, a large mean free path for
electrons inside liquid inert gases may be explained by
collective effects in simultaneous electron scattering on
several cores, and the above gas model has a qualitative
character. Nevertheless, because of its simplicity, we
use the above gas model for the electron scattering in
liquid inert gases as a result of the interaction with inde-
pendent scatterers.

4. EXCITATIONS IN CONDENSED INERT GASES 
BY ELECTRONS DRIFTING 

IN AN EXTERNAL ELECTRIC FIELD

In analyzing the electron behavior in a gas of inde-
pendent scatterers, we use the classical theory [44–50]
of electron motion in gases under the action of an exter-
nal electric field. The basis of this theory is the small
change in electron energy when there is a significant
change in the electron momentum as a result of elastic
electron–atom scattering due to the small ratio of the
electron and atomic masses. This allows us to expand
the velocity distribution function of the electron f(v)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
over the spherical harmonics, and this distribution func-
tion has the form

(9)

where v x is the electron velocity component along the
electric field and v f1(v) ! f0(v) according to the basic
concept. Although the antisymmetric part of the distri-
bution function f1(v) is small, it is of importance
because the electric field acts on electrons via this com-
ponent of the distribution function. The set of equations
for the distribution function in the case of only the elas-
tic electron–atom scattering and in neglecting inelastic
processes has the form (see, e.g., [51])

(10)

in the stationary case, where a = eE/me , E is the electric
field strength, ν = Nvσ(v) is the rate of electron colli-
sions with atoms, and Iea( f ) is the electron–atom colli-
sion integral. This implies a general expression (2) for
the electron mobility, where an average is taken over
the spherical component f0 of the distribution function.

We consider the simplest case where σ(v ) ~ 1/v  and
the rate ν is independent of v. We then obtain the
expressions

(11)

where ε is the electron energy (which is to be used
along with the electron velocity) and T is the gas tem-
perature. We note that we ignore collisions between
electrons and that the parameter Te does not correspond
to the definition of the electron temperature, but
coincides with it in the expression for distribution func-
tion (11). The drift velocity is proportional to the elec-
tric field strength, and this dependence is related to liq-
uid xenon as long as inelastic collisions are weak [53].
Hence, this simple dependence ν(v) describes the elec-
tron behavior in liquid xenon. On the contrary, the elec-
tron behavior in gaseous xenon is more complex
because of a nonmonotonic velocity dependence for the
electron–atom cross section due to the Ramsauer effect.
Such a dependence leads to the maximum of the
electron mobility as a function of the electric field
strength [7], which also follows from detailed calcula-
tions [54] for gaseous xenon. Below, we use the sim-
plest dependence σ(v ) ~ 1/v  for the analysis of electron
kinetics in liquid xenon.

Also taking into consideration excitation of atoms
by electron impact and assuming that, above the excita-
tion threshold ∆ε, the electron loses the energy by atom
excitation, we find that the distribution function is zero at
the excitation threshold f0(∆ε) = 0. This gives the energy

f v( ) f 0 v( ) v x f 1 v( ),+=

a
d f 0

dv
-------- νv f 1,

a

3v 2
--------- d

dv
------- v 3 f 1( )– Iea f 0( )= =

f 0 ε( ) ε
Te

-----– 
  , wexp∼ a

ν
---

eE
meν
---------,= =

Te T
Ma

2

3ν2
----------,+=
SICS      Vol. 98      No. 5      2004



930 GORDON, SMIRNOV
distribution function f0(ε) of an excess electron [55] in
the form

(12)

where C is the normalization constant and ϕ0(ε) is given
by formula (11),

(13)

In the regime under consideration, the drift velocity
is proportional to the electric field strength E even at
high fields and the parameter Te ~ E2 at high fields,
while the average electron energy is restricted by the
value (3/7)∆ε in the limit of high electric fields. In this
regime, electrons acquire energy from the external field
and lose it in elastic collisions with atoms. When an
electron reaches the excitation energy ∆ε, a forming
excited atom emits a photon. The electron energy
becomes zero after atom excitation, and the process of
the increase of the electron energy repeats. Therefore,
the rate of atom excitation is determined by the flux in
the energy space, and, on the basis of the indicated
energy balance, we have the rate of atom excitation
given by [16]

(14)

where N∗  is the number density of excited atoms, Ne is
the number density of excess electrons, and ∆ε is the
excitation energy.

We now find the portion γ of the power acquired by
the electrons from the external electric field and lost to

f 0 ε( )
C ϕ0 ε( ) ϕ0 ∆ε( )–[ ] ε ∆ε ,≤
0, ε ∆ε,≥




=

ϕ0 ε( ) ε
Te

-----– 
  .exp=

dN*
dt
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4

π
------- ∆ε

Te
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Fig. 2. The efficiency of excitation of atoms in an atomic
system if the rate ν of the electron–atom elastic scattering is
independent of the electron velocity v. 
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atom excitation. We assume that the power acquired
from the field is transformed below the excitation
threshold mostly into the atom thermal energy as a
result of elastic collisions between electrons and atoms,
and this power per one electron is eEw, where w is the
electron drift velocity. From formula (14), we then have

(15)

where

is the effective electron temperature. Figure 2 gives the
dependence of the efficiency of atom excitation γ on the
electron energy  = 3Te/2 under these conditions [16].
Formally, this expression has a maximum at Te = 2∆ε/5,
where ξ = 0.61, but because ε ≤ 3∆ε/7, the above con-
sideration is valid below this limit. It follows from (15)
that the transformation efficiency γ is significant even at
low values of Te/∆ε.

In this consideration, we implicitly use the criterion

where νex is a typical excitation rate of atoms in colli-
sions with a test electron. To obtain a more specific cri-
terion, we analyze the other limiting case of slow atom
excitation. The energy distribution function then has
the form

and differs from that in formula (9) by the absence of
decay of fast electrons in the excitation process. Corre-
spondingly, the rate of the atom excitation is equal
to [16, 41]

(16)

where kq is the rate constant of quenching resonantly
excited atoms by a slow electron, and g0 and g∗  are the
statistical weights of the ground and excited atomic
states. We have used the principle of detailed balance
between the excitation and inverse quenching pro-
cesses [51, 56], which is convenient because the
quenching rate constant is independent of the electron
energy for a slow electron (Te ! ∆ε). The values of the
quenching rate constants for resonantly excited atoms
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Table 5.  Parameters of the lowest resonantly excited states of inert gas atoms [16, 56]

Atom (state) ∆ε, eV J*, eV τ, ns kq, 10–9 cm3/s
1/kqτ,

1016 cm–3 kel, 10–8 cm3/s
(me/M)kel,

10–14 cm3/s

Ar (1s2) 11.62 4.14 10 0.82 12 0.15 2.0

Ar (1s4) 11.83 3.93 2 3.9 13

Kr (1s2) 10.03 3.97 3.5 3.9 7.3 2.8 18

Kr (1s4) 10.64 3.36 3.2 3.5 8.9

Xe (1s2) 8.44 3.69 3.6 7.0 4.0 10 43

Xe (1s4) 9.57 3.43 3.5 4.6 6.2
of inert gases are given in Table 5. We there give the val-
ues of kel for thermal collisions on the basis of the elec-
tron mobilities in gases according to the data in Table 1.

Comparing the excitation rates according to formu-
las (13) and (16), we find them to be simultaneously
valid if the criterion

(17)

is satisfied, where the rate constant of the elastic elec-
tron–atom scattering is introduced as kel = ν/Na . Using
the gas model for elastic scattering of electrons on
atoms, we take the quenching rate constants for elec-
tron–atom collisions and radiative times of excited
atoms in a condensed inert gas to be close to those in a
gas, whereas the rate constants for the elastic electron
scattering are much less in condensed state. This means
that criterion (17) is even more valid for condensed
inert gases than for their gaseous phase. In addition, this
leads to a high efficiency of transformation of the elec-
tric field energy into excitations in electronic excitation
for condensed inert gases.

We note [57] that, in spite of the simplicity of con-
densed inert gases as a system of bound atoms in the
ground state (see Table 2), elementary excitations in
this system—excitons—have a complex structure. One
more peculiarity of excitons in condensed inert gases in
comparison with excitations in a gaseous system is due
to the interaction of an excited atom with the environ-
ment. In gases, excited atoms are formed as a result of
the electron impact, and these excited atoms emit radi-
ation. In condensed inert gases, an excited atom is
transformed very fast into a diatomic excimer molecule
and lives in such a form. Therefore, radiation of a con-
densed inert gas is characterized by a broad band for a
quasimolecular exciton, and luminescence is redshifted
in comparison with the spectral line of atom emission,
and one can expect the luminescence quantum yield to
be close to unity.

There are two types of quasimolecular excitons
depending on the total spin of an excited electron and
the core. Because the electron spin is zero for the

kq @ 
me

M
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Te

------ 
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ground state, the radiative time of an exciton with the
total spin one is much greater than the radiative time of
an exciton with zero total spin [58]. This fact is taken
into account in the analysis of exciton kinetics.

5. ROLE OF AUTODETACHING STATES
IN GENERATION OF EXCITONS

Because of weak electron–atom interaction in con-
densed inert gases for atomic densities of high electron
mobility, an excess electron experiences a weak friction
when it is drifting in an external electric field. There-
fore, the efficiency is high for conversion of the electron
energy obtained from the field into excitation of atoms.
But this weak electron–matter interaction is the reason
for the increased role of autodetaching states in the for-
mation of excitons. We consider this problem in what
follows.

Excitation and decay of autodetaching states in the
course of motion of an excess electron in condensed
inert gases proceeds according to the scheme

(18)

where A is the inert gas atom. The parameters of auto-
detaching states (A–)** of inert gas negative ions are
analogous to those of H–(2s2) [59], where the autode-
taching state is placed about 0.4 eV lower than the atom
excitation energy and the lifetime of these autodetach-
ing states is approximately 10–14–10–13 s. Because the
typical time of radiative decay of an ionic state via the
emission of a UV photon is about 10–9–10–8 s, its prob-
ability of occurring during the decay of an autodetach-
ing state is small. However, this process can be
repeated, and the process of photon emission through
channel (18) may be significant. If channel (18) is real-
ized, the spectrum of radiation is characterized by
longer wavelengths than that from A* but shorter than
from  [22].

Electron capture in an autodetaching state leads to
an additional decrease in the electron distribution func-

e A A–( )**,+

A2*
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tion, and the capture cross section σres is given by the
Breight–Wigner formula [42]

(19)

where Γ is the width of the autodetaching level and εres
is the electron energy for this resonance. We first deter-
mine formally a decrease in the energy distribution
function of electrons, considering electron capture on
the autodetaching level as the elastic electron scatter-
ing. We can then represent the cross section of the elec-
tron–atom elastic scattering as the sum of two parts,

(20)

where σ0 smoothly depends on the electron energy and
σres is the resonant part of the elastic cross section.
Restricting ourselves to the Druyvesteyn case of the
electron distribution function [44], where the typical
electron energy significantly exceeds the thermal
energy of atoms, we find that, instead of formula (12),
the distribution function is given by

(21)

If we assume the rate of elastic electron–atom scatter-
ing ν to be independent of the electron energy, for-
mula (19) transforms to formula (12) when the resonant
part of electron scattering is neglected.

The character of the electron interaction with an
autodetaching state consists in the electron capture on
this level and in the subsequent decay of the resonance
level, which can lead to a change in the direction of the
electron velocity. Thus, the capture of an electron on
the resonance level is similar to elastic scattering of the
electron with a change in the direction of its motion.
Assuming that σres @ σ0 at the resonance, we find that
formation of the autodetaching state under the above
consideration leads to a jump in the exponent (19), and
this jump is equal to

(22)

where νres = Nvσres , which implies that, above the res-
onance, the distribution function acquires the factor
exp(–ξ). This means that distribution function (13)
transforms into 

σres
π"

2

2meε
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Under the assumption that the rate ν of the electron–
atom scattering is independent of ε, the exponent is
given by

(23)

where

(24)

In particular, for σres = 8 eV (xenon), we obtain kres =
1.4 × 10–7 cm3/s and this estimate is valid for both gas-
eous and condensed states when the gas model is appli-
cable.

Thus, the role of the autodetaching level in electron
kinetics is governed by exponent (23). Taking kel =
ν/Na , where kel is the rate constant of the elastic elec-
tron–atom scattering aside the resonance, we obtain

(25)

Using formula (25) for the estimate in gaseous and con-
densed xenon, we take Γ ≈ 0.01 eV, Te ~ 3 eV, σres ≈
8 eV, and the value of kel from Table 5. This gives ξ ≈
0.005 for gaseous xenon; i.e., autodetaching states do
not affect the electron distribution function there.
Applying the gas model to condensed xenon, we can
evaluate the rate constant of the electron–atom scatter-
ing from the known zero-field mobility of electrons as
kel = 2.4 × 10–11 cm3/s at the number density corre-
sponding to the mobility maximum. Substituting this
small rate constant in (25), we obtain ξ ~ 105. Thus, as
supposed in [22], formation of autodetaching states is
not essential for excitation of atoms in gases even at
high atomic densities. However, it may be important in
condensed inert gases at densities where the electron
mobility is high.

The autodetaching states are of importance in elec-
tron kinetics and atom excitation if ξ @ 1; we determine
this limit below. The probability dw(ε) of the electron
energy being in a range from ε to ε + dε after the decay
of an autodetaching state according to formula (19) is
given by

(26)

We suppose that autodetaching is not essential if σres ≤
σ0, i.e., if

(27)

and the probability w that s ≥ s0, when the autodetach-

ξ 3 εd
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4Ma2
-------------- Nkres( )2,= =

kres
4π"

2

v res
------------, v res

2εres

me

----------.= =

ξ πΓ
4Te

--------
kres

kel
------- 

 
2

.=

dw
ds

π 1 s
2

+( )
----------------------, s

2 ε εres–( )
Γ

------------------------.= =

s2 s0
2≥ 2π"

2

meεresσ0
--------------------,=
AND THEORETICAL PHYSICS      Vol. 98      No. 5      2004



PROCESSES IN CONDENSED INERT GASES INVOLVING EXCESS ELECTRONS 933
ing state can be ignored, is equal to

(28)

In particular, for xenon at the atomic number density of
the maximum electron mobility, we have s0 ≈ 14. The
presence of an autodetaching state therefore acts as a
barrier in the kinetics of electrons in the space of elec-
tron energy. In the case of xenon, the probability of
passing through this barrier is approximately 0.02. Of
course, this decreases the efficiency of transformation
of the energy of the external electric field into the
energy of emitting photons through electrons that
excite atoms in condensed inert gases.

This effect decreases the efficiency γ of transforma-
tion of the electric field energy into the energy of VUV
photons because it leads to a drop in the distribution
function. However, in the limit

(29)

this influence on the efficiency coefficient γ is small if
the criterion

(30)

is satisfied instead of criterion (17). Indeed, because
∆ε – εres ≈ 0.4 eV, criterion (29) is valid if the efficiency
γ is not small. Next, both the influence of electron cap-
ture in the autodetaching state and the atom excitation
lead to a decrease of the distribution function, but
because these effects are not separated, all the fast elec-
trons lose their energy for the excitation of atoms due to
criterion (30). Thus, although autodetaching states
affect the efficiency of exciton production by drifting
the excess electrons in condensed inert gases, this is
evidently inessential at optimal atomic densities. An
indirect confirmation of this is the efficiency of 18% for
conversion of the electric energy into VUV radiation
that is observed in solid xenon [26, 27]. Formula (15)
gives this value at Te = 2.5 eV (∆ε/Te = 3.2).

Because of high efficiency, it is advantageous to cre-
ate a self-maintaining electric discharge in condensed
inert gases for generation of VUV photons, as sug-
gested in [23, 24]. Such an emission was observed in
liquid xenon [25] in the form of a broad line near the
central wavelength of 175 nm, when electrons were
transported from a cold field-emission cathode at moder-
ate electric field strengths. Generation of VUV photons
in solid xenon was achieved in experiments [26, 27]. As
follows from the above analysis, the energy distribution
function of the excess electrons is zero at electron ener-
gies above the excitation threshold, and, hence, the
direct ionization of atoms by electron impact is impos-
sible in condensed inert gases. In addition, the number
density of the excess electrons is relatively small, and
stepwise ionization does not proceed in condensed inert

w wd

s0

∞

∫ 1
πs0
--------.= =

Te @ ∆ε εres,–

wkq @ 
me

M
------ ∆ε
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------ 
  3/2

kel
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gases. Therefore, to support a discharge, ionization pro-
cesses are required outside a condensed inert gas. In
particular, within the framework of the experimental
scheme of [26, 27], a photocathode is placed near solid
xenon and secondary electrons form as a result of
absorption of VUV photons by the photocathode. A gap
filled with gaseous xenon makes it possible to avoid the
self-diffusion effect that decreases by several orders of
magnitude the probability of an electron entering a
media in the case of a photocathode in direct contact
with condensed matter [60]. In solid xenon 1 mm thick
at an electric tension of 1 kV, approximately 20 photons
may be formed per one electron. As a result, a self-
maintaining discharge is created in this scheme.

We now make some evaluations for this scheme
with a layer of condensed xenon and a layer of gaseous
xenon that are governed separately because of using a
grid. For definiteness, we take xenon at the triple point,
such that the temperature is equal to 163 K and the pres-
sure of gaseous xenon is 0.8 atm, which corresponds to
the number density of xenon atoms approximately 4 ×
1019 cm–3. Taking the characteristic energy in liquid
xenon about 3 eV, which provides an efficiency of con-
version of the electric energy into VUV radiation of
about 20%, we obtain the electric field strength for liq-
uid xenon approximately 100 V/cm. After passing the
liquid layer, each electron creates five VUV photons per
centimeter of its path. The drift velocity of electrons in
liquid xenon is 2 × 105 cm/s under these conditions. In
the gaseous layer, an average energy of 2 eV is attained
at a reduced electric field strength of E/N ≈ 1 Td [54],
which corresponds to 400 V/cm. We note that the num-
ber k of electrons forming per electron in a condensed
inert gas is equal to

(31)

where l is the layer thickness. Therefore, it is advanta-
geous to increase the electric field strength in a layer of
a condensed inert gas. This is not valid for a gaseous
layer, because, along with excitation processes, direct
ionization of atoms by electron impact proceeds, which
restricts both the layer thickness and the electric field
strength. The total electric current density is limited by
heat transport processes, and this value is measured
in µA/cm2.

On the basis of the experience of experimental study
[25–27] and from the above analysis, one can simplify
the scheme of a self-maintaining electric discharge in a
condensed inert gas and improve the discharge param-
eters if the electric discharge is a generator of VUV
radiation. First, a CsI photocathode is useful for this
goal, because its efficiency for the electron emission is
almost three orders of magnitude higher at λ = 172 nm
than that for a zinc photocathode [60] that was used in
experiments [26, 27]. Second, it is convenient to apply
an alternating voltage to a layer from condensed inert
gases. In this manner, using a suitable frequency of the

k
γEl
∆ε
--------,=
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electric field (f ≈ 1 MHz), one can increase the path that
an electron passes in a layer. As a result, in a layer with
a thickness of several millimeters, an electron traverses
a path of several meters. Next, due to the increase in the
electron lifetime in a discharge, stepwise ionization
processes may be important, increasing the electron
number density. This makes it possible to improve the
parameters of a self-maintaining electric discharge.

6. CONCLUSIONS

High electron mobility is observed in heavy con-
densed inert gases (Ar, Kr, Xe) in a narrow range of
atomic densities. The widespread explanation of this
effect [17–21] by the Ramsauer effect in the electron
scattering on an individual atom is not correct because
of the large distance of the electron–atom scattering in
comparison with the distance between neighboring
atoms at these atomic densities. We have shown that the
nature of high electron mobility is connected to the
transition from an attracting interaction potential to a
repulsing one between an excess electron and an atom
ensemble. High electron mobility is accompanied by
weak electron interaction with atoms of a condensed
inert gas, which allows us to use a gas model for elec-
tron scattering inside this system. In reality, electron
scattering in condensed inert gases is not reduced to
scattering on individual cores, i.e., collective effects are
important in these processes. Therefore, a quantitative
description is used in experimental results, and the
parameters corresponding to the electron mobility max-
imum do not admit similarity law for different inert
gases. In addition, the analysis of electron kinetics in
condensed inert gases in external fields shows that the
processes of formation of autodetaching states lead to a
decrease in the electron energy distribution function
with increasing electron energy. Nevertheless, forma-
tion of autodetaching states may be not essential for the
transformation of the electric field energy into vacuum
ultraviolet radiation if a condensed inert gas is transpar-
ent to electron drift.

The results of this analysis can be used for creating
a self-maintaining electric discharge in condensed inert
gases to generate ultraviolet radiation. The basis for this
is the existing versions of such a discharge [25–27]
together with the above analysis of the nature of pro-
cesses involving electrons. This allows us to take the
next step in constructing a new version of self-main-
taining electric discharge in condensed inert gases.
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Abstract—The process of cumulation of the dynamic order parameters (E/N and ne /N) in dissipative structures
of a gas-discharge plasma is simulated using the model of ambipolar drift and ionization. The model is appli-
cable for explaining the onset of electric energy cumulation (for E2/8π @ H2/8π) at the periphery of electric
arcs; beaded, ball, and streak lightning; cathode spots; and other spherical, cylindrical, conical, and planar dis-
sipative plasma structures, viz., the plasmoids previously observed in “enigmatic” phenomena and in experi-
ments with nonequilibrium gas-discharge plasmas. It is shown that, in contrast to Turing regular dissipative
structures (1952), the nonlinear profiles of the dynamic order parameters in cumulative–dissipative structures
(Vysikaœlo, 1996) are described not by diffusion processes, but by convective processes of ambipolar drift
focusing the electric field density (E2/8π). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The methods for the obtaining and prolonged con-
finement of extremal states of matter are being
intensely studied. The knowledge of such states is
essential, for example, for developing new technologies
and for synthesizing new materials. The study of Cou-
lomb cumulators (i.e., dissipative plasma structures in
which cumulation of energy, mass, and electric field
occurs in charged focused mass flows) as the most pow-
erful attractors in connection with focusing electric
forces for E2/8π @ H2/8π is essential.

The role of cumulation is apparently decisive in pro-
cesses of energy and mass transfer through the interface
between different media (with different phase and other
1063-7761/04/9805- $26.00 © 20936
states). It is for this reason that cathode and anode spots
are formed at the metal–gas, metal–liquid, and other
interfaces. In dissipative structures self-formed at the
interfaces between different media, the corresponding
cumulative processes responsible for a peculiar geome-
try of transition layers take place. These layers focus
the energy and mass flows. Such a structural (anisotro-
pic) activation of media renders the characteristics
(dynamic order parameter) closer. This constitutes the
goal of formation of cumulative-dissipative structures
(plasma electrode spots) in the media. Dynamic plasma
structures (cathode spots, lightning, and arcs) are plas-
madynamic analogs of hydro- and gasdynamic regular
systems such as a sandstorm, tornado, hurricane, drain,
gully, swirl, etc. (see Figs. 1–3).
1 2 3 4 5 6 7

(c)

(b)

(a)

Fig. 1. Evolution of the width of a cylindrical self-focused discharge with increasing current (from left to right); positive column (a),
Faraday dark space (b), and cathode glow and its reflection in a mirror-polished copper cathode (c).
004 MAIK “Nauka/Interperiodica”
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In the absence of a cathode spot, the conductivity of
the medium is negligibly small (for a current density of
~10–10 A cm–2), while the density of the strongest cur-
rent in the spot can attain a value of 108 A cm–2 [1]. The
cumulation coefficient λ for current density (j) in the
spot relative to a nonactivated and nonstructured
medium can be as high as λj = j/j0 = 1018. What pro-
cesses are responsible for such cumulation? It appeared
that this effect confirms the decisive role of microex-
plosions of cathode regions, viz., explosive emission of
electrons [1]. In accordance with the theory of ectons
(portions of electrons from cathode spots), the reason
for microexplosions is Joule heating of microtips (inho-
mogeneities of the cathode). Then why is a cathode
spot with a normal current density formed on a mirror-
finished electrode (see Fig. 1 from [2])? The effect
apparently cannot be explained only by the tip geome-
try and Joule heating. Joule heating and the explosion
of a cathode region are rather consequences of current
density cumulation that the reason for this effect. How
can we explain the processes of temporal and spatial
proportionality in all dissipative plasma structures? The
proportionality for cathode spots in space and time has
been established experimentally by Kesaev [3]. The
“reciprocal” displacement of a cathode spot in a trans-
verse magnetic field (Stark, 1903) remains enigmatic
both in the one-dimensional classical model and in the
ecton theory [1]. This effect discovered by Stark clearly
showed that the cathode spot plasma contains electrons
moving not only to the positive, but also to the negative
electrode (cathode). (It is these electrons that determine
the displacement of the cathode spot as an integral dis-
sipative plasma structure (plasmoid) and not a cumula-
tive jet (high-energy electron beam directed to the
anode).) The nearly spherical geometry of the cathode
spot and the geometry of the Faraday dark space, coin-
ciding with the hourglass geometry or with the classical
Laval nozzle geometry remain unclear (see Figs. 1, 3).

The electric field cumulation and the corresponding
focusing of energy and mass flows in dissipative
plasma structures (including cathode spots) have been
investigated insufficiently. In accordance with the prop-
ositions formulated by the author in [4], all dissipative
structures cumulate energy–mass flows, forming the
regions of focusing or attraction (attractors) in the bulk.
In these extended cumulative structures, the type of ele-
ments of flows being focused changes under the action
of the self-focusing field. The specific energy received
from an external force or energy field is enhanced and
redistributed in attractors and new degrees of freedom
are excited in the medium. Only after this do the
energy–mass flows dissipate to the surroundings in a
new form. The flows activated in cumulators of dissipa-
tive structures are anisotropic and ordered.

In simulating experimental observations for ele-
vated gas pressures under the condition E2/8π @ H2/8π,
where E and H are the electric and magnetic field
strength, transitions layers or lenses focusing the elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
tric field and the corresponding flows of charged parti-
cles will appear only if the ambipolar drift is taken into
consideration. The ambipolar drift leading to focusing
effects of this type under elevated gas pressures, when
the role of diffusion is small, was disregarded in the
models considered earlier [5, 6].

In 1970s, Prigogine used the term dissipative struc-
tures as applied to the energy–mass flows ordered by an
external force into structures. At present, brilliant
examples of chemical dissipative structures breaking
spatial symmetry are known. These are Turing struc-
tures, in memory of A. Turing, who was the first to put
forth (in 1952) the hypothesis that the interaction

k = 2

1
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(a)

(b)
(c)

e +

+

+

e
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Fig. 2. Cathode spots. (a) Example of a possible arrange-
ment of structured plasmoids with different symmetries
(k = 0 correspond to planar, 1 to cylindrical, and 2 to spher-
ical symmetry). (b) Arrows indicate the directions of cumu-
lation of electron flows and of the reduced electric field,
which explain the reciprocal motion of the cathode spot in
a transverse magnetic field as a result of cumulation and for-
mation of a cumulative electron jet responsible for the Fara-
day dark space. Electrons appear in the bulk in the spot
region, for example, due to UV preionization. (c) Corre-
sponding diagram of cumulation of ion flows to the cathode
spot.

Fig. 3. Discharge in a tube with increasing discharge cur-
rent. Comparison of the photographs shows the evolution of
the jump width with increasing current (from top to bottom)
[15, 16]. The arrow marks the region of self-formation of a
conical discharge. The gas flow velocity is directed oppo-
sitely and amounted to U = 50 m/s.
ICS      Vol. 98      No. 5      2004
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between nonlinear chemical reactions and diffusion
may lead to the formation of ordered spatial structures
differing in the concentrations of reagents [7]. Numeri-
cal simulations performed on the basis of a brusselator
(a very simple model of chemical reactions, which sat-
isfies all the requirements necessary to the formation of
dissipative structures) makes it possible to trace the
transition from a spatially homogeneous system to spa-
tially structured states upon a deviation of the system
from thermodynamic equilibrium and the emergence of
various alternating geometric structures, each of which
possesses a quite definite dynamic stability and spatial
symmetry.

Cathode spots, as well as Turing structures, may
organize regular structures [3, 8]. In regular dissipative
systems of cathode spots, elements of dissipative struc-
tures (individual spots) are arranged at equal or nonlin-
early ordered distances [8]. Nonlinearities in transfer
processes, as well as in sources and sinks of charged
particles (in particular, the difference in the electric
field dependences of the mobilities of electrons and
ions and the internal electric field which prevents
charge separation), lead to ambipolar drift via which
various phases are formed and matched in a regular sys-
tem. Transient profiles between different phase states of
the medium under elevated pressures P > 10 torr and
ne ~ 1010 cm–3 are described by ambipolar drift. Its
velocity is similar to that of the velocity of sound.

It was proposed in [4, 9–11] that systems of dissipa-
tive structures forming a single entity be referred to as
dissipative crystals. Publication [12], in which the con-
cepts of quasi-crystals and turbulent crystals were
introduced for ordered flows in liquids, is also worth
mentioning. The structurization of the medium in such
systems ensures geometrical focusing (cumulation) of
energy–mass flows in definite directions. This process
is associated with self-formation of transition layers fil-
tering, discriminating, selecting, ordering, and focusing
the energy, momentum, and mass flows (such layers
play the role of semi-penetrable membranes, walls,
etc.) as well as cumulative jets (channels subdivided
into stings and jets). In these layers and cumulative jets,
cumulation of not only flows, but also of reduced force
field takes place (in a gas-discharge plasma, this is the
parameter E/N, where N is the density of the gas). In
real focusing processes, cumulation with the spherical,
cylindrical, and planar symmetry can take place.

Accordingly, several types of symmetry can be dis-
tinguished in attractive structures and their cumulative–
dissipative regular systems formed by dissipative struc-
tures in a plasma (see Fig. 2). Several varieties of struc-
tural or cumulative thermal conductivity, electrical con-
ductivity, etc., are also possible. For example, a layered
structural cumulative conductivity arises in plasmas,
which is manifested in the form of glowing strata par-
allel to plane electrodes. An arc, lightning, or a linear
crack in a metal appears in the case of cylindrical cumu-
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lation. Cylindrical cumulation in lightning facilitates
the formation of a cumulative “enigmatic” jet of elec-
trons with an energy of several megaelectronvolts,
which propagates continuously or in pulses in front of
a glowing cumulative-dissipative regular linear system
with L @ r, where L and r are the longitudinal and radial
dimensions [13]. In the approach proposed here, a cath-
ode spot is a spherical cumulator. In a hydrogen dis-
charge plasma, the author and Shashkov observed
cumulation of the cup-in-cup type, where bright cylin-
drical layers were parallel to one another with the axis
perpendicular to plane electrodes.

Focusing (attractive) structures with various types
of symmetry form complex geometrical cascades (see
Fig. 3).

In plasma-type (charged) cumulators, the collapse
of energy–mass flows may result in the penetration of
the Coulomb barrier by nuclei; i.e., “cold” transmuta-
tion of nuclei as a result of globally local resonances
can take place in cumulative-dissipative systems.

The importance of studying extended cumulative
Coulomb dissipative structures (collapsing energy–
mass flows) and their cumulative–dissipative regular
systems, as well as profiles of dynamic order parame-
ters and their discontinuities playing the role of chan-
nels, membranes, and potential walls in such systems,
becomes obvious and the practical value of investiga-
tions in this field may turn out to be unlimited.

2. FORMULATION OF THE PROBLEM

Comprehensive numerical simulation of dynamic
self-consistency of all processes associated with pas-
sage of current in the formation of the geometry of a
cathode spot, Faraday dark space, anode region, and
cumulative jets from the cathode, which participate in
the formation of these objects, remains an extremely
cumbersome and complicated three-dimensional non-
stationary problem that has not been correctly formu-
lated and solved so far. For this reason, it is expedient
to study simple one-dimensional models of discharge
elements possessing a certain spatial symmetry accord-
ing to the results of experimental observations, which,
however, help to clarify the role of ambipolar drift in
cumulation of the electric field.

Here, we will study planar as well as spherically and
cylindrically symmetric stationary cumulation of the
dynamic order parameters (E/N and ne/N) in plasmoids,
which is associated with ambipolar drift (convective
ambipolar flows arising due to nonlinearities in trans-
port processes) [2, 14–22].

The model proposed here can be used for describing
the processes of the formation of transition layers or
focusing membranes in a cathode spot having the visu-
ally observed shape of a hemisphere or cone. The elec-
tron and ion current are focussed precisely on this spot
in structurally different ways (since electrons and ions
AND THEORETICAL PHYSICS      Vol. 98      No. 5      2004
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move in opposite directions). As current collapse
progresses, a new state of the plasma with a normal cur-
rent density is formed, which is visualized differently
(in the form of a bright glow) [4]. Formally, it is
assumed that the electron current from the cumulation
center is connected by a narrow high-conductivity
cumulative jet (defocusing cumulative electron jet) to
the positive column (see the diagram in Fig. 2 and
Fig. 1). The geometrical size r of the jet is related to the
part R of the cathode spot accumulating electrons via
the current conservation law. The jet, together with
recombination processes and ambipolar drift, deter-
mines the geometry of the Faraday dark space [4]. The
cathode spot openness parameter for electrons is χ ~
(r/R)2. In solving problems with radial cumulation, the
size of the sting (transformed into a jet) can be disre-
garded as compared to the radial size of the self-formed
plasmoid (χ ! 1). In the region of the electron jet at the
cathode spot, an ion flow focusing element is formed.
The characteristic size of this quasi-neutral region will
be obtained analytically in this study. The process of
mutual focusing of the electron and ion flows in this
region leads to the formation of a compact (self-focus-
ing) cathode spot.

The production of electrons and ions in the region
with appreciable radial fields is ensured by direct ion-
ization; at the periphery of the structure, the UV preion-
ization of impurities probably plays an important role.
Cumulation of profiles in the region of radial fields in
the proposed model is determined by ambipolar drift of
the plasma due to different electric field dependences of
the electron and ion mobilities [2, 14–22] and a sharp
(exponential) electric field dependence of the ioniza-
tion rate. The model of a high-conductivity cumulative
sting was formulated for the first time in 1996 in [17],
where the corresponding estimates were given in the
ambipolar drift-diffusion approximation. This model
differs from conventional 2D models in the boundary
conditions at the center of the structure being simu-
lated. (In conventional models, e.g., with cylindrical
symmetry, the condition leading to the Bessel or diffu-
sion profiles of the dynamic order parameter at the cen-
ter of the structure is imposed, while the model pro-
posed here accounts for possible unlimited cumulation
of energy and mass flows and the dynamic order param-
eter to the cumulation center.) Let us consider the emer-
gence of cumulation of the dynamic order parameter in
detail. We proceed from the basic kinetic concepts
using the Boltzmann equations for a system of charged
particles in a gas-discharge plasma.

The complete system of Maxwell equations and the
kinetic transport equations for electrons and ions in the
bulk of a simple gas-discharge plasma at a large dis-
tance from the electrodes (and, hence, without a num-
ber of familiar problems associated with the boundary
conditions at the cathode) are usually solved in pertur-
bation theory disregarding displacement currents (see,
for example, [14]). The following ratios play the role of
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small dimensionless parameters: lu/L, lE/L, ωτM , µi/µe ,
and ji /je ! 1. Here, L is the characteristic size and ω is
the characteristic frequency of inhomogeneities under
investigation; lu = ε/eE is the energy length over which
electrons acquire the characteristic energy ε; lE =
E/(4πene) is the vectored length of variation of the elec-
tric field strength E; e is the electron charge, τM =
1/(4πeneµe) is the Maxwell time; and µe , je , µi and ji are
the mobilities and current densities for electrons and
ions, respectively. The vectored characteristic length of
variation of the electric field strength is determined by
the concentration of electrons [18] and not ions, as erro-
neously assumed in [19]. Under definite conditions (in
the regions where the neutrality is noticeably violated),
this inaccuracy leads to an analytic errors of several
order of magnitude in the size of the Coulomb structure
or its transient profiles. We apply the terms “Coulomb
structure” or “Coulomb cumulator” to a dissipative
structure in a gas-discharge plasma, in which the elec-
tric field is focused and the role of the magnetic field in
this case is insignificant.

3. ANALYTIC MODELS 
AND NUMERICAL CALCULATIONS

In stationary and quasi-stationary plasmoids (in
which displacement currents can be neglected and the
plasma consists of electrons and one species of ions),
the profile dynamics of the dynamic order parameters
(E/N and ne/N) can be reduced to a single nonlinear
Burgers-type equation [14, 18, 20]

(1)

where

Di , De , µi , and µe are the diffusion coefficients and
mobilities of ions and electrons, Gj and Ge are the fluxes
of these quantities, and G0 = j0/e, j0 being the preset cur-
rent density. The condition G0 = Gi + Ge = const deter-
mines the relation between the electric field strength
and the electron concentration, while the quantity Qk

describes the creation and annihilation of electrons. In
the proposed model, it is the product G0 · ∇ (µi/µe) that
determines the ambipolar drift convective focusing of
the electric field or the entrainment of the plasma pro-
files by ambipolar drift. This term differs from zero if
the field dependences of the mobilities of electrons and
ions are different; in this way, nonlinearity in transport
processes occurring in a heterogeneous plasmoid is
manifested.

Ambipolar drift (and, hence, convective focusing)
may be due to nonuniform and nonstationary form of
the electron distribution function in sources and sinks

∂ne

∂t
--------

∂lE

∂t
------- ∇ ne⋅– G0 ∇⋅

µi
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----- 
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of ions (in Qk) [20], plasmachemical reactions involv-
ing ions [18], violation of neutrality in an inhomoge-
neous and nonstationary plasma (second term in
Eq. (1)) [14], the presence of gas circulation, external
magnetic field [21], etc. The quantity ∇ E can be
expressed in terms of ∇ ne only in the 1D approximation
in x [14, 18, 19] or in r [4, 9–11, 17].

In the approximation of reaction–ambipolar drift
transport, a stationary quasi-neutral profile is described
by the differential equations following from Eq. (1):

(2)

where k = 0, 1, and 2 describes the planar, cylindrical,
and spherical symmetry, respectively. The reaction is
accounted for in Eq. (2), first, in the form of direct ion-
ization by an electron impact with frequency ν and, sec-
ond, under the assumption that the destruction of the
plasma is determined by dissociative recombination
with effective coefficient β.

d Brkneγ( )
dr

------------------------- rkne ν βne–( ),–=

1.0

1.2

1.4

1.6

1.8

γ/γ0

(a)

(b)

0.92 0.94 0.96 0.98 1.00

r/r0

0.7

0.8

0.9

1.0

n/n0

k = 0

1
2

0.92 0.94 0.96 0.98 1.00
r/r0

Fig. 4. Profiles of (a) electric field strength E/E0 = γ/γ0 and
(b) reduced electron concentration as functions of r/r0 in the
ambipolar drift–ionization approximation for various val-
ues of k (profiles for k = 0, 1, 2 in (a) coincide).
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Equation (2) makes it possible to numerically calcu-
late the coefficients of quasi-neutral cumulation of the
electron (and ion) concentration and the reduced elec-
tric field strength (γ(r) = E/N × 1017 Td–1) as functions
of r. It should be noted that the effective coefficient β of
recombination of electrons with ions sharply decreases
for γ(r) > 40, which enables us to disregard recombina-
tion in the region of stationary quasi-neutral cumulation
of parameter γ. If we represent the drift velocities of
electrons and ions in the form µeE = Cγα and µiE = Bγ
(where C = const and B = const), we can analytically
derive from Eq. (2) the reduced field profile γ(r) in the
quasi-neutral approximation:

(3)

It can be seen from this relation that, for

,

the value of γ(r1) = ∞. The size of the region of transi-
tion from γ(0) to γ(r1) = ∞,

,

is determined by the ion mobility (parameter B), the
index (1 – α) of nonlinearity of drift flows of electrons
and ions relative to each other, the strength of the elec-
tric field dependence of the direct ionization rate on the
(parameter A), and the value of the ionization frequency
ν0exp(Aγ(0)) for r0.

Consequently, if the nonlinear process of ambipolar
drift–ionization determines the cathode spot radius, the
size of the cathode spot must vary in accordance with
the above-mentioned parameters; with increasing pres-
sure, the spot radius must sharply decrease. Cumulation
coefficient λn of plasma concentration is determined in
accordance with Eq. (3) and follows from the condition
of conservation for the electron current (in the approx-
imation ji/je ! 1):

(4)

For α = 1, ambipolar drift becomes equal to zero and
cumulation profiles of the order parameters disappear.
In this case, other transport processes must be taken
into account for describing experimental profiles.

In accordance with Eq. (3), the reduced field cumu-
lation (λγ = γ/γ(0)) is independent of the symmetry type
or the geometry of the Coulomb (E2/8π @ H2/8π)
plasma cumulator (k = 0, 1, 2). Figure 4a shows the pro-
file of the reduced field cumulation coefficient λγ,
which qualitatively reflects dependence (3). In accor-
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dance with relation (4), the cumulation of concentration
or the degree of ionization of the gas is determined to a
considerable extent by the symmetry type and depends
on k (see Fig. 4b). For the three one-dimensional cases
strongly differing in the electron concentration profiles,
we analytically derived the same reduced field profile,
which is close to the linear profile (in space) at the
boundary of the cathode layer. Thus, relation (3) is
based on the assumption made in the Engel–Steenbeck
model concerning the linearity of the reduced electric
force profile (E/N) in the region of its cumulation at the
cathode (see Fig. 4a).

It should be noted that the analytic solution to
Eq. (2) in the ambipolar drift–recombination approxi-
mation, which describes the Faraday dark space, were
obtained earlier in [22] for k = 0.

Here, we obtain analytic and numerical solutions for
k = 1 and 2. The solution can also be sought in the form
of a profile γ ~ rη; in this case,

(5)

In the nitrogen gas-discharge plasma, α = 3/4, and in
the planar symmetry (k = 0), η = 4/7 in accordance with
relation (5). The solution in [22] was obtained for η =
1. This is associated with a less accurate approximation
of ambipolar drift as a function of γ, which was chosen
by the author in [22]. For k = 1, we have η = 0, while
for k = 2, the value of η becomes negative, but cumula-
tion of γ does not arise; in all these cases, only the deriv-
atives of γ and ne increase (see Fig. 5).

Model (2) is applicable for describing nonuniform
profiles of the dynamic order parameter and current
collapse in the range 10–2 < γ < 200 and encompasses a
wide spectrum of nonlinear dynamic effects, including
electric field cumulation in a nonequilibrium gas-dis-
charge plasma.

4. DISCUSSION
In analytic and numerical calculations, it was

assumed that the model operates in the case of cylindri-
cal symmetry also and can be used for describing pro-
cesses of radial cumulation in a nonequilibrium plasma
at the periphery of lightning or an extended arc. In this
case, a high-conductivity cumulative jet must be
formed in a real physical object; radial electron flows
collapse to this jet in the region of the cumulator. The
model proposed here precisely describes the character-
istic radial profiles in such an attractor.

We have demonstrated here that cumulative pro-
cesses or Coulomb (E2/8π @ H2/8π) self-focusing of
the electric field in plasmoids not only exist, but can
also be simulated analytically and numerically in the
1D approximation. Qualitative dependences of cumu-
lating profiles of the dynamic order parameters (γ/γ0
and n/n0 on r/r0) are shown in Figs. 4 and 5. It can be
seen that, in the given formulation of the problem,

η 1 k–
1 α+
-------------.=
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simultaneous cumulation of plasma concentration n
and reduced field γ in a Coulomb cumulator is possible
only in the case of spherical symmetry (k = 2).

The established electric field cumulation in a plasma
accompanied by the simultaneous mutual organization
of substructures with different symmetries is of special
practical importance. Even Eq. (5) and Figs. 1 and 3
demonstrate that a complex play of self-organizing
structures and their sizes with various cumulation pro-
files and defocusing of the dynamic order parameters is
possible. The mode of formation of cumulative jets in
plasmoids in the dynamics of media self-organization
needs to be determined. Nature optimally decides itself
which bricks, cylinders, cones, or balls are more suit-
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Fig. 5. Profiles of (a) electric field strength E/E0 = γ/γ0 and
(b) reduced electron concentration as functions of r/r0 in the
ambipolar drift–recombination approximation for various
values of k.
SICS      Vol. 98      No. 5      2004



942 VYSIKAŒLO
able to be assembled into structures and their ordered
systems, viz., cumulative–dissipative “crystals” with
elements possessing different types of symmetry (see
Figs. 1–3). The problems of self-consistency of charac-
teristic sizes, frequencies, nonlinear resonances, pulsa-
tion, and other dynamic order parameters have to be
solved by researchers. However, even analysis of sim-
ple 1D models shows that, for different values of k = 0,
1, 2, an activated medium may change the profiles of
dynamic order parameters (including characteristic
sizes and frequencies) in the bulk of a gas-discharge
plasma (see Figs. 3, 4b, and 5).

In accordance with the generalized Gauss theorem,
characteristic sizes r, fields (Fm ~ 1/rη), forces (F ~
1/rη), and, by virtue of Newton’s second law (ω(r) =
(Fm/r)0.5), the characteristic frequencies of processes,
ω ~ 1/(rη + 1)0.5, cumulate in cumulators (in the regions
of attraction and focussing) [10, 11]. The law of cumu-
lation (η) changes with the excitation of new degrees of
freedom (and in the course of electric field cumulation).

In the general case, the presence of ambipolar diffu-
sion, as well as diffusion caused by neutrality violation
(see Eq. (1)), does not eliminate the electric field cumu-
lation altogether [11]. However, the length of the attrac-
tor region changes accordingly. From the balance of
gradients (in the model of ambipolar drift and ambipo-
lar diffusion associated with violation of neutrality), at
the boundary of the cathode spot, we can derive the
equations of topoenergy and tempoenergy states of a
plasmoid element (or elements of a cumulative–dissi-
pative regular system):

Here, the cathode spot radius rE is measured in cm, E
in V cm–1, N and ne in cm–3, and DE is the diffusion
coefficient associated with violation of neutrality [14].
In this limit, a cathode spot radius differing from rν was
obtained in [4, 17]. When the dynamic order parame-
ters attain their critical values, nonlinear media gener-
ally exhibit complication of the geometry of flows (with
new degrees of freedom) in space and time as well as
stratification with a constant characteristic size or inter-
val (macroquantization in space and time) accompa-
nied by the formation of cumulative–dissipative regular
systems.

The presence of several types of diffusion processes
(classical ambipolar diffusion and the diffusion associ-
ated with neutrality violation) in a plasma may lead, in
view of dispersion, to structurization of space-time
structures in a gas-discharge plasma as in the case of
plankton distribution in the presence of two types of
diffusion [23]. For this reason, structured energy and
mass transfer and consecutive modification of energy
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and mass flows can take place in cumulative–dissipa-
tive regular systems. In alternating attractors (regions
of focusing, or attraction, of flows), cumulative jets
(stings and jets) possessing cumulative properties are
formed in this case. It is cumulative jets (high-energy
beams) and the geometry of structural cumulation of
dynamic order parameters that are responsible for the
Faraday dark space and its geometry similar to that of
the Laval nozzle (hourglass). Cumulative–dissipative
processes may form a pulse-periodic, coherent, station-
ary, or chaotic pattern in the phase space-time with a
symmetry of self-organizing structures, which varies in
space and time (see Fig. 2).

Thus, we return to the ideas formulated by Kesaev,
according to which the cathode spot (as a new dynamic
state of plasma cumulating energy and mass flows) is
discrete in space and time [1–3] and is characterized by
resonance frequencies, nonlinear resonances in space
and time, and a hierarchy of internal sizes.

In accordance with the model proposed here, it is the
electric field cumulation in the spot associated with
ambipolar drift that leads to the explosion of cathode
inhomogeneities; this in turn ensures electron emission.
Cathode spots and their systems form a multihierarchic
cumulative–dissipative regular system with nonlinear
resonances associated with cumulative processes in
Coulomb attractors.

Analysis of experimental observations and numeri-
cal calculations leads to the conclusion that radial
ambipolar drift (Var) may be responsible for the initial
stage of cumulation of the dynamic order parameter in
the cathode spot plasma [4, 9–11, 17, 20].

The cumulative–dissipative model describes the
normal current density at the cathode spot (j* =

(E/N*)). The model enables us to estimate the
total current in lightning or arcs (I = Sj*, where S is the
area of the lightning surface) from the visual character-
istics. Using this model, we can explain the reciprocal
motion of the cathode spot in a transverse magnetic
field (see Fig. 2), estimate its velocity (Va ≈ µi[  ×
H]/c), and calculate the spectral power (W = F*V ~
1/ωα, α = –(3η – 1)/(η + 1) for F ~ 1/rη) of flicker noise
from the operation of cathode spots and other Coulomb
attractors (plasmoids) with a focused electric field and
charge particle flows [4, 10]. In the framework of
cumulative–dissipative dynamics, we can consider the
cumulation of electrons into a cumulative jet (see
Fig. 2).

The cumulative–dissipative approach developed
here can be used for studying a number of enigmatic
phenomena with cylindrical symmetry existing in gas-
discharge plasmas. For example, the concentration of
energy in the bulk of lightning, which obviously corre-
sponds to its luminous intensity, can be attributed to
cumulative radial processes induced by radial ambipo-
lar drift. The existence of radial cumulation of the elec-
tric field also explains the emergence at the center of a

ene*Ve

Ve*
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lightning of electrons having energies on the order of
megaelectronvolts, causing a 10-m long air breakdown
under the atmospheric pressure [13] (for a high-energy
electron beam degradation on the order of 1 MeV m–1).
There are no exploding microtips in the sky, which
would ensure the emission of such electrons. However,
such energy may appear as a result of geometrical
cumulation of the electric field in extended Coulomb
attractors. Processes of radial electric field cumulation
at the periphery of lightning also explain the fact that a
1-km long flash of lightning preserves its transverse
size.

From the standpoint of cumulative dynamics, the
Lawrence and Dennington experiments (1930–1931),
as well as the Nagaoka and Siguira experiments (1924),
become less enigmatic (see [13], pp. 514–518). In these
experiments, the broadening of the Zn line was discov-
ered, which corresponds to electric field strengths on
the order of 105 V cm–1 (if we attribute this broadening
to the Stark effect). Such field strengths were observed
in a spark channel with a width approximately equal to
r = 0.02 cm for a discharge gap of L = 1 cm at a voltage
of a few kilovolts (U = 2 × 103 V) applied to the elec-
trodes. This can be transverse electric fields (Er ~ U/r ~
105 V cm–1) rather than longitudinal fields. Both trans-
verse and longitudinal fields lead to the Stark effect, but
transverse fields (focused to the center of the regular
cylindrical system, viz., electric arc) should not be inte-
grated over the gap as in the case of longitudinal fields

, as was done by Nagaoka and Siguira

[13]. Such errors are obvious in the formation of trans-
verse pressure gradients or transverse hydrodynamic
fields in a drain (cylindrical hydrodynamic attractor or
cumulator of energy and mass flows). The hydrody-
namic analogy suggests that radial cumulation of elec-
tric fields in plasmoids (visualized in space and time in
the form of dissipative–cumulative regular systems
ordered at large distances) is possible in an electric arc
as well (see Figs. 1 and 3).

Self-organization of the attractor described by
Eq. (2) occurs under the action of an external electric
force or an energy difference. The external generalized
(electric in the present case) force sets the activated ele-
ments of the medium in motion and orders their convec-
tive (ambipolar in the case of a plasma) flows. The acti-
vated elements are ordered by this force to such an
extent that the reduced force itself is cumulated in the
attractor or cumulator formed by it. The cumulative or
explosive profile of the electric field is described by
Eq. (3). Such organization–self-organization processes
lead to complex cumulation of dynamic order parame-
ters of external factor (the reduced external force E/N in
our case) in an activated nonlinear medium as well as of
dynamic order parameters determining the extent of
activation of medium elements (the temperature of var-
ious degrees of freedom, the degree of ionization, etc.).

Ex x U L( )=d

0

L

∫
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Convective processes of ambipolar drift in a nonequi-
librium gas-discharge plasma ensure the cumulative–
dissipative self-organization of the medium and cumu-
lation of the electric field strength. The remaining pro-
cesses (including the formation of tips at the subse-
quently exploding electrodes) may be secondary pro-
cesses relative to self-cumulation of the electric field
strength.

Thus, in the case of self-organization of a continu-
ous medium (including nonequilibrium gas-discharge
plasmas), external forces induce in the medium not
only opposing forces (in accordance with the Le Chat-
elier principle), but also orthogonal forces, which can
locally exceed considerably the mean values of forces
distributed over the entire activated volume of the
medium in the attractor or cumulator formed by these
forces.

On the basis of available experimental observations
in gas-discharge plasmas, it can be concluded that
regions with longitudinal electric field, as well as with
transverse or radial (relative to the total current vector)
fields, can appear during the formation of plasma struc-
tures. After the attainment of critical values, cumulation
of the reduced force excites new degrees of freedom in
elements of the medium being activated and forms dis-
sipative structures as well as their systems, viz., “dissi-
pative channels” with cumulative jets (or stings). The
fields collapsing towards the center in the radial direc-
tions form cumulative focused stings. In regular cumu-
lative–dissipative systems, the elements of the activated
medium (especially in stings) acquire cumulative
(hyper) properties [4, 9–11].

In this study, a simple ambipolar drift mechanism
has been proposed and tested. The mechanism
describes self-cumulation of the electric field strength
or volume charge in a gas-discharge current-carrying
plasma for low concentrations of plasma particles.
Such an ambipolar focusing mechanism can be associ-
ated, for example, with different electric field depen-
dences of mobilities of electrons and ions. The author
believes that this mechanism operates in the formation
of the periphery of cathode spots, arcs, lightnings, etc.
It is well known that the formation of a cathode spot is
accompanied by pulsed (cumulative) transport of the
cathode material to the interelectrode gap [3, 8]. This
effect is associated with electric energy cumulation in
dissipative plasma structures and is successfully
explained by the model proposed here. In contrast to
the Turing model, the transport is executed not by dif-
fusion, but by ambipolar drift.

However, further studies of electric field cumulation
in a medium activated by the field and of the formation
of extended Coulomb cumulators and their dissipative
crystals, viz., regular systems in a gas-discharge
plasma, are required.

Arcs and other cumulative–dissipative crystalline
systems exist in a medium, while a medium with cumu-
SICS      Vol. 98      No. 5      2004
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lative stings and with boundaries cumulating energy
and mass flows is self-formed even in vacuum.

The formation of attractors (or regions of focusing
of energy and mass flows) is a multidimensional prop-
erty of any continuous nonlinear medium. A more
detailed study of volume charge cumulation in cathode
spots will make it possible to clearly visualize and
explain the effects of convective Coulomb focusing of
electric field as a form of energy in remote stars, molec-
ular and atomic clusters, and even in nuclei of micro-
scopic structures.

The analytic treatment of static cumulation of the
dynamic order parameters in a gas-discharge plasma
has been carried out in complete accordance with [24]
and can be generalized to the processes of electric field
dynamic cumulation. The Coulomb self-focusing exists
and cannot be absent since the existence of Coulomb
forces is evident.
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Abstract—A general solution to the stochastic advection–diffusion problem is obtained for a fractal medium
with long-range correlated spatial fluctuations. A particular transport regime is determined by two basic param-
eters: the exponent 2h of power-law decay of the two-point velocity correlation function and the mean advection
velocity u. The values of these parameters corresponding to anomalous diffusion are determined, and anoma-
lous behavior of the tracer distribution is analyzed for various combinations of u and h. The tracer concentration
is shown to decrease exponentially at large distances, whereas power-law decay is predicted by fractional dif-
ferential equations. Equations that describe the essential characteristics of the solution are written in terms of
coupled space-time fractional differential operators. The analysis relies on a diagrammatic technique and makes
use of scale-invariant properties of the medium. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In many situations, transport in highly disordered
media cannot be described by the classical diffusion
equation [1]. In particular, this is the case with fractal
media characterized by long-range spatial correlations
of fluctuating characteristics. One approach to prob-
lems of this kind is based on the use of fractional differ-
ential equations (e.g., see [2–4]). They admit solutions
characterized by anomalous time dependence of the
tracer-cloud radius R at long times (R ∝  tγ with γ ≠ 1/2)
and power-law (instead of Gaussian) decay of tracer
concentration at long distances (at r @ R). “Heavy”
(power-law) tails in tracer distributions are extremely
important for applications (e.g., for substantiating the
reliability of radioactive waste disposal sites) in view of
the huge difference between power-law and Gaussian
decay. However, the standard fractional-diffusion
approach relies on a formal analysis and requires both
further mathematical substantiation (e.g., see [5, 6])
and generalization (see [6–12]). Therefore, the ensuing
conclusions must be tested against specific physical
models.

The stochastic advection–diffusion model with a
slow (power-law) long-distance decay of correlations is
one such model. The results of its analysis performed
in [12, 13] under simplifying assumptions are consis-
tent with those obtained by solving fractional-diffusion
equations. (A review of the relationship between these
approaches and relevant bibliography can be found
in [14]). However, one may question the sensitivity of
these results to the approximations employed and their
agreement with the exact solution to the advection–dif-
fusion problem.
1063-7761/04/9805- $26.00 © 20945
In this paper, this solution is obtained in a general
form by analyzing a group of scaling transformations
[15] with the use of the Feynman diagrammatic tech-
nique [16], which was applied to transport in random
media in [17–19].

In Section 2, the problem is stated and a diagram-
matic representation of the Green function is con-
structed. In Section 3, the behavior of the tracer concen-
tration at long and short distances is analyzed in the
case of zero mean advection velocity. In Section 4, we
analyze the case when this velocity is finite. The main
results are summarized and discussed in the final
section.

2. STATEMENT OF THE PROBLEM

The model is based on an equation describing advec-
tion and molecular diffusion of concentration c (r, t):

(1)

where both advection velocity v = v(r) and diffusivity
D(r) are random functions of coordinates. Hereinafter,
we consider the problem with a tracer distribution pre-
scribed at the initial moment t = 0 in the absence of
sources (sources can readily be taken into account).

The medium is statistically homogeneous and iso-
tropic, and both v and D are represented as

(2)

where u = 〈v(r)〉  and  = 〈D(r)〉  are ensemble-aver-
aged quantities independent of coordinates, and v'(r)
and D'(r) are the fluctuating velocity and diffusivity,
respectively (〈v'(r)〉  = 0, 〈D'(r)〉  = 0).

∂c
∂t
----- ∇ v D∇–( )c+ 0,=

v r( ) u v' r( ), D r( )+ D D' r( ),+= =

D
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The velocity field satisfies the incompressibility
condition:

(3)

Since a fractal medium is considered, fluctuations of
its characteristics are long-range correlated; i.e., the
long-distance decay of the correlation functions of the
random v' and D' follows power laws. In particular, the
two-point velocity correlation function,

(4)

behaves as follows when |r1 – r2| @ a:

(5)

where h > 0, a is the short-range cutoff radius, and V2

is the characteristic value of  for |r| & a. Thus,

 is a homogeneous function of degree –2h for
|r| @ a. Similarly, the n-point velocity correlation
function,

(6)

satisfies the following relation when |ri – rj | @ a for any
pair of ri and rj:

(7)

By analogy with the theory of critical phenomena [15],
the parameter h is called the scaling dimension of
velocity fluctuation v'. According to (7), the Fourier
transform of the n-point correlation function,

(8)

satisfies the scaling relation

(9)

The power exponent n(h – 3) on the right-hand side

of (9) is called the scaling exponent of {k1, k2,
…, kn}.

divv divv' 0.= =

Kij
2( ) r1 r2–( ) v i' r1( )v j' r2( )〈 〉 ,=

Kii
2( ) r1 r2–( ) V2 a

r1 r2–
------------------ 

  2h

,∝

Kij
2( ) r( )

Kij
2( ) r( )

Ki1i2…in

n( ) r1 r2 … rn, , ,( )

=  v i1
' r1( )v i2

' r2( )…v in
' rn( )〈 〉 ,

Ki1i2…in

n( ) λr1 λr2 … λrn, , ,( )

=  λ nh– Ki1i2…in

n( ) r1 r2 … rn, , ,( ).

Ki1i2…in

n( ) k1 k2 … kn, , ,{ } r1 r2… rnddd∫=

× i k1 r1 k2 r2 … kn rn⋅+ +⋅+⋅( )–[ ]exp

× Ki1i2…in

n( ) r1 r2 … rn, , ,( )

≡ 2π( )3δ k1 k2 … kn+ + +( )

× K̃i1i2…in

n( )
k1 k2 … kn 1–, , ,( ),

Ki1i2…in

n( ) λk1 λk2 … λkn, ,,{ }

=  λn h 3–( )Ki1i2…in

n( ) k1 k2 … kn, , ,{ } .

Ki1i2…in

n( )
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Combining (5) with (9), we find that the Fourier
transform of the two-point correlation function behaves
as follows when ka ! 1 (k ≡ |k|):

(10)

Relations analogous to (4)–(10) can also be written
out for the correlation functions of diffusivity fluctua-
tions.

The concentration satisfying Eq. (1) at an arbitrary
instant can be expressed in terms of its initial distribu-
tion as

(11)

where the Green function G(r, r'; t) solves the equation

(12)

subject to the initial condition

(13)

Of practical interest is the tracer concentration aver-
aged over the ensemble of realizations of the medium,

(r, t) ≡ 〈c(r, t)〉 . It satisfies the equation obtained from

(11) by replacing c with  and G with , where (r –
r', t) ≡ 〈G(r, r'; t)〉  is the ensemble-averaged Green
function (henceforth called Green function for simplic-
ity). The calculation of (r – r', t) is facilitated by
invoking the “cross” diagrammatic technique devel-
oped in [17] and applied to transport theory for disor-
dered media in [18, 19].

Performing Fourier and Laplace transforms in space
and time, respectively, and using Eq. (12), initial condi-
tion (13), and expressions (2), we obtain

(14)

where k and p are the Fourier and Laplace variables,
respectively, and M(k, p) is the “self-energy” opera-
tor expressed as the sum of irreducible skeleton dia-
grams [16]:

(15)

Here, horizontal lines and crosses represent, respec-
tively, functions  and perturbation operators of the
form

(16)

Each dashed line joins the crosses relating to a particu-
lar cumulant. (Expansion in terms of cumulants plays a

K̃ii
2( )

k( ) V2a2hk2h 3– .∼

c r t,( ) r'G r r'; t,( )c r' 0,( ),d∫=

∂
∂t
-----

∂
∂xi

-------v i r( ) ∂
∂xi

-------D
∂

∂xi

-------–+
 
 
 

G r r'; t,( ) 0=

G r r'; 0,( ) δ r r'–( ).=

c

c G G

G

G k p,{ } 1

p ik u Dk
2

M k p,( )–+⋅+
-----------------------------------------------------------------,=

M k p,( ) +=

+ … .+ +

G

T̂ v i' r( ) ∂
∂xi

-------
∂

∂xi

-------D' r( ) ∂
∂xi

-------.+–=
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key role in ensemble averaging.) By definition (16),
each cross contains gradients, as well as velocity and
diffusivity fluctuations. In the Fourier representation,
gradients are replaced by wave vectors. In particular,
the D' term contains the product of the wave vectors
relating to respective G lines adjoining the cross on its
right and left, while the v ' term contains a single wave
vector associated with either line by virtue of (3). Each
dashed line emanating from a cross is associated with a
wave vector over which integration is performed. Sub-
stituting (14) into diagrammatic expansion (15), one
obtains an integral equation for M(k, p).

The sections that follow present an analysis of its
solutions.

3. TRANSPORT 
WITH ZERO MEAN ADVECTION

First, we analyze the role played by diffusivity fluc-
tuations. The analysis is performed here for the first
diagram in self-energy operator (15). By virtue of (16),
it can be represented as the sum

The summands represent the contributions due to
advection-velocity and diffusivity fluctuations. Up to
constant factors, they are expressed as

(17)

(18)

Here, two-point velocity and diffusivity correlation
functions are replaced with their respective asymptotics
corresponding to small wave vectors. Since g in (18) is
the scaling dimension of diffusivity, it holds that g > 0.
If M(q, p) ~ q2 for small wave vectors, then the integral
in (18) is convergent as q goes to zero even if k = 0 and
p = 0. The apparent divergence of the integral for large
wave vectors is explained by the fact that the long-
wavelength asymptotic expression for the two-point
correlation function used in the integrand fails in this
limit. This means that the integral is constant up to
small corrections under the condition k (k ! a–1) of

interest here, and (18) implies that (k, p) ~ k2. The

term (k, p) ~ k2 in expression (14) for the Green

function can be combined with  to obtain a renor-
malized mean diffusivity. This can also be done when
all higher order diagrams are taken into account. For
this reason, we retain only the contributions due to
advection-velocity fluctuations to the expansion of the
self-energy operator (i.e., only the first term in (16)).

M2 M2
A( ) M2

D( ).+=

M2
A( ) k2 q

k q– 2h 3–

p Dq2 M q p,( )–+
---------------------------------------------,d∫∼

M2
D( ) k2 q

q2 k q–
2g 3–

p Dq2 M q p,( )–+
---------------------------------------------.d∫∼

M2
D( )

M2
D( )

Dk
2
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Similarly, expression (17) implies that (k, p) ~
k2 for small wave vectors when h > 1. Since this depen-
dence holds in all higher order diagrams, the stochastic
diffusion model can also be reduced to normal diffusion
in this case.

Thus, velocity fluctuations with scaling dimension
h  >  1, as well as diffusivity fluctuations with any
dimension, are irrelevant with respect to deviation from
normal diffusion. When h ≤ 1, an essentially different
behavior is observed.

The cases when h < 1 and h = 1 are analyzed sepa-
rately below.

3.1. h < 1 

If M(q, p) ~ q2 in the integrand of (17) as p  0,
then the integral is divergent at the lower wave-vector
limit as k, p  0. Since it is convergent at the higher
wave-vector limit, the use of long-wavelength asymp-
totics of the velocity correlation function is justified,
and the divergence indicated above implies that

M(q, p) @  as k, p  0. Therefore, further
analysis of the case when u = 0 (see (14)) can be per-
formed for

(19)

Equation (15) is the diagrammatic expansion of the
self-energy operator in terms of correlation functions
that are scale-invariant by virtue of (9). Accordingly,
we may assume (and subsequently prove) that both
self-energy operator and Green function have analo-
gous properties. Expression (19) implies that the scal-
ing exponents of the self-energy operator and the
Laplace variable p are equal. Therefore, the scaling
relations for M(k, p) and {k, p} must have the form

(20)

(21)

where ∆ is a scaling exponent to be determined.
To prove (20) and (21), we use diagrammatic repre-

sentation (15) to write M(k, p) as a sum in which the nth
summand is the contribution of all diagrams containing
n crosses:

(22)

The factor k2 corresponds to the gradients in the
extreme right and left crosses. The scaling exponent of
the nth term in (22), ∆n , is the sum of the exponents of
the elements of the corresponding diagram. These ele-
ments include a combination of n-point velocity corre-
lators, n gradients, n – 1 Green functions, and the
3n-dimensional differential of wave vectors. The corre-

M2
A( )

Dk
2

G k p,{ } 1
p M k p,( )–
-----------------------------.=

G

M λk λ∆ p,( ) λ∆M k p,( ),=

G λk λ∆ p,( ) λ ∆– G k p,( ),=

M k p,( ) k
2
L k p,( ) k

2
Ln k p,( ).

n 2=

∞

∑= =
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sponding exponents are n(h – 3), n, –(n – 1)∆, and 3n,
respectively. (Since the wave vectors used as integra-
tion variables are combined additively with k, the cor-
responding scaling exponents are equal to that of k.)
Equating the sum of the exponents enumerated above to
the exponent ∆ of the operator M, we obtain

(23)

which yields a self-energy scaling exponent indepen-
dent of the order of a diagram:

(24)

Since (20) with ∆ = 1 + h is thus valid for each sum-
mand in (22), it holds for the series as a whole. By vir-
tue of (24), relation (20) entails the representation

(25)

where ϕ(ξ) is a dimensionless function of the dimen-
sionless scaling variable

(26)

The factor Vah in (25) and (26) is obtained by using (5).
Next, we analyze the behavior of ϕ(ξ) at large and

small values of its argument. It is obvious that ϕ(ξ)
must approach a finite limit as ξ  0. Indeed, if

 = ∞, then (25), (26), and (19) would imply

that M(k, 0) = ∞ and {k, 0} = 0. However, diagram-
matic expansion (15) would then yield M(k, 0) = 0,
which contradicts the assumption that  = ∞. It

can be proved in a similar manner that  ≠ 0.

Thus, we have  = A ~ 1 and

(27)

Comparing this result with (22), we find that Ln(k, 0) ∝
k–(1 – h). The ensuing divergence of the integrals in
Ln(k, p) for p = 0 as k  0 implies that they are con-
vergent at qi ! a–1 for finite k and p; i.e., the asymptotic
expressions for velocity correlation functions corre-
sponding to this limit are valid. Expression (27)
obtained for ξ = 0 can be extended to nonzero p such
that ξ ! 1. The next term in the expansion of M(k, 0) in
terms of ξ either is p up to a constant factor if h < 1/2
(in which case the scaling of the denominator in (19)
does not change) or scales with k2h – 1p(2 – h)/(1 + h) if h >
1/2, prevailing over p in (19) in order of magnitude.
(Recall that p corresponds to the first time derivative in
the fractional-diffusion approach.)

In the opposite limit of ξ @ 1 (k1 + h goes to zero
faster than p), the first approximation of (22) with
respect to k can be used:

(28)

nh n n 1–( )∆+ + ∆,=

∆ 1 h.+=

M k p,( ) Vahk1 h+ ϕ ξ( ),=

ξ p

Vahk1 h+
--------------------.=

ϕ ξ( )
ξ 0→
lim

G

ϕ ξ( )
ξ 0→
lim

ϕ ξ( )
ξ 0→
lim

ϕ ξ( )
ξ 0→
lim

M k 0,( ) AVahk
1 h+

.=

M k p,( ) k2L 0 p,( ).≈
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Here, the function L(0, p) can be found by combining
scaling relation (20) with (24):

(29)

In this case, the self-energy operator behaves asymptot-
ically as M ∝  k2p–(1 – h)/(1 + h) at p @ Vahk1 + h. (However,
this clearly does not entail any singularity of M as
p  0.) By virtue of (25) and (26), it follows that the
first term in the expansion of ϕ(ξ) is

(30)

Since k = 0 is not a singular point of the integrals in
Ln(k, p) when p ≠ 0, we have an analytic expansion in
integer powers of k2 as k  0, and relations (20) and
(24) imply that the function

(31)

can be represented as

(32)

where bn are dimensionless coefficients. We emphasize
that (32) corresponds to an analytic expansion of
M(k, p) in terms of the vector k that holds at ξ @ 1
(see (26)). Comparing this result with expression (27)
for M(k, p) at large k, we conclude that M(k, p) has a
branch point at

(which corresponds to a branch point of f(ξ) at |ξ| ~ 1).
In other words, the scaling of propagator (19) can be
essentially different, depending on the ratio of p and
k1 + h even in the Fourier–Laplace domain where both
variables are small (this behavior is analogous to the
behavior of vertices in the Landau theory of Fermi liq-
uids [20]). To the best of our knowledge, this behavior
of a completely scale-invariant propagator is not pre-
dicted by any model based on the standard fractional-
diffusion equations [2, 3], but is possible in generaliza-
tions involving coupled space-time fractional-differen-
tial operators (as in [9, 11]).

In the present model, one can easily construct inter-
polation operators having the asymptotic properties of
the propagator considered here. For example, we can

use  if h < 1/2 and

 if h > 1/2, where 
denotes a time derivative and D is a linear combination

of  and a Laplace operator multiplied by a fac-
tor of dimension (Vah)2/(1 + h).

L 0 p,( ) p 1 h–( )/ 1 h+( )– .∝

ϕ ξ( ) ξ 1 h–( )/ 1 h+( )–  at ξ  @ 1.∼

f ξ( ) ϕ ξ( )
ξ

----------- M k p,( )
p

--------------------≡ ≡

f ξ( ) bnξ
2n/ 1 h+( )

, ξ  @ 1,
n 1=

∞

∑=

k
p

Vah
--------- 

  1/ 1 h+( )
∼

∂t D
1 h+( ) 2⁄–

∂t
2 h–( ) 1 h+( )⁄

D
h 1 2⁄–

D
1 h+( ) 2⁄– ∂t

∂t
2 1 h+( )⁄
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Next, we analyze the behavior of the Green function
in a space-time representation. The inverse Fourier–
Laplace transform of (19) yields

(33)

where

(34)

Combining (33) and (34), we obtain a general expres-
sion for the Green function:

(35)

where the argument of Φ(x) scales with unity and
Φ(0) ~ 1. In particular, this implies that the tracer cloud
radius behaves as

(36)

at long times. At short distances from the origin such
that r ! (Vaht)1/(1 + h), the exponential in (33) can be
ignored to obtain

(37)

which can also be derived from (36) by using the con-
servation of the total number of tracer particles. Expres-
sion (37) estimates the long-time decay of concentra-
tion at a fixed point in space.

Let us now elucidate the asymptotic form of the
Green function at distances much greater than R, i.e., at
r @ (Vaht)1/(1 + h). According to (33), the possibility
(or impossibility) of power-law decay of (r, t) is
determined by the behavior of I(s) at s ! 1. By sub-
stituting (32) into (34), the function I(s) is rewritten as

(38)

Substituting this formula into (33), we express  as a
sum in which the first term is δ(r) and the nth term is
proportional to the result obtained by applying the
Laplace operator to δ(r) n times. In other words, each
summand is zero at r ≠ 0. Mathematically, this implies
that r1 + h/Vaht = ∞ is an essentially singular point of the
function Φ(x) and the Green function cannot be repre-
sented as a series expansion in inverse powers of
r1 + h/Vaht.

The asymptotic form of  at r @ (Vaht)1/(1 + h) can be
found by shifting the contour of integration with
respect to k in (33) from the real axis into the upper

G r t,( ) d3k

2π( )3
-------------eik r⋅ I Vahk

1 h+
t( ),∫=

I s( ) 1
2πi
-------- dξ

ξ
------ eisξ

1 f ξ( )+
--------------------, ξ0 0.>

ξ0 i∞–

ξ0 i∞+

∫=

G r t,( ) Vaht( ) 3/ 1 h+( )– Φ r1 h+

Vaht
----------- 

  ,=

R Vaht( )1/ 1 h+( )∼

G r t,( ) Vaht( ) 3/ 1 h+( )–
,∼

G

I s( ) dns2n/ 1 h+( )

n 0=

∞

∑ dn Vaht( )2/ 1 h+( )
k2[ ]

n
.

n 0=

∞

∑≡=

G

G
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half-plane (after performing the integral over the angu-
lar variables). In the limit considered here, this yields

(39)

where ks is the singular point of I(Vahk1 + ht) in the upper
half-plane of k that is nearest to the real axis. Since
the function  associated with concentration by defini-
tion (11)–(13) can only be positive, the exponent in (39)
must be a real quantity. Therefore, ks lies on the imagi-
nary axis and Imks ~ (Vaht)–1/(1 + h) in accordance with
expansion (38). As a result, we have an asymptotic
expression for the Green function at large r:

(40)

Combined with the normalization factor (Vaht)–3/(1 + h)

in (35), this formula determines the behavior of con-
centration at r @ (Vaht)1/(1 + h), i.e., its growth at a fixed
distant point and its instantaneous profile. Thus, the
spatial tracer distribution predicted by the stochastic
advection model does not have a “heavy” (power-law)
tail even if the power-law decay of the velocity correla-
tor is slow (with h < 1).

3.2. h = 1 

When h = 1, expression (17) with M(q, p) ~ q2 sub-
stituted into the integral yields a logarithmically diver-

gent quantity:  ~ Vak2lnµ, where

(41)

This suggests that a logarithmic approximation of the
self-energy operator should be sought in the form

(42)

with α > 0. The integral over the wave vectors in an
arbitrary diagram of order n > 2 also yields a logarithm.
However, such a diagram contains the product of n – 2
additional functions , as compared to the second-
order one. According to (42) and (19), this results in a
small factor ln–α(n – 2)µ. Therefore, calculation of the
self-energy operator can be restricted to the skeleton
diagram with two crosses, and Eq. (17) reduces to

(43)

Combined with (42), this yields α = 1 – α, i.e., α = 1/2.
Thus, when the velocity scaling dimension is h = 1, the
Green function is

(44)

G r t,( ) iksr( ),exp∝

G

G r t,( ) Br

Vaht( )1/ 1 h+( )-------------------------------– , B 1.∼exp∝

M2
A( )

µ max
pa
V
------,  ka ( ) 

2 
 
 
 

 
 
 

 

1–

 .=

M k p,( ) Vak2 µln
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M k p,( ) k2V2a2 q
k q– 1–
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where the argument of the logarithm is given by (41)
and Def ~ Va. Following the derivation of (36), we find
that the tracer cloud radius behaves as

(45)

at long times and conclude that the long-distance
expansion of the tracer concentration does not contain
any power-law terms.

4. TRANSPORT WITH NONZERO MEAN 
ADVECTION (u ≠ 0)

Advection by mean flow is a fortiori much more
effective than transport by velocity fluctuations. For
this reason, we consider the case when

(46)

We introduce the new variable

(47)

instead of p for convenience, i.e., use a reference frame
moving with a velocity u: r  r' ≡ r – ut. Green func-
tion (14) is expressed in terms of p' as follows:

(48)

In the general case, a nonzero mean advection velocity
violates the scale invariance expressed by (20) and (21).
However, the problem can be analyzed in two important
limit cases.

If k and p' are such that

(49)

then the term –iq · u can be neglected in the denomina-
tor of a Green function having the form

Accordingly, the results obtained above remain valid
for u ≠ 0 irrespective of the scaling dimension h. Using

expression (27) as an estimate for (k, p'), we can
write

(50)

instead of (49), where

(51)

This result means that tracer propagation at t ! t∗  ≡
(uk∗ )–1 obeys the laws of advection with zero mean
velocity. In this case, the tracer cloud radius is greater
than the corresponding displacement by the mean flow
(R @ ut).

R Vat( )1/2 Vt
a
----- 
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 
1/h

.∼
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When max{k, |p'|/u} ! k∗ , the behavior of the self-
energy operator is essentially different for h > 1/2, h <
1/2, and h = 1/2. We analyze each of these cases sepa-
rately.

Case 1: max{k, |p'|/u} ! k∗ , h > 1/2.

The integrals in the expressions for (k, p') are
dominated by the contributions from |qi| > k∗ . There-

fore, the quantity (k, p') analogous to L(k, p') in (22)

is independent of k and p' and  ~ Vah  ~ u2t∗ .
Accordingly,

(52)

Thus, advection at t @ t∗  obeys the laws of normal dif-
fusion when h > 1/2.

Case 2: max{k, |p'|/u} ! k∗ , h < 1/2.

An analysis of the diagram with two crosses shows
that the integrals over wave vectors are convergent
when |qi| ! k. Therefore, Green functions of the form

can be approximated as follows:

(53)

Similarly, the factors k – q corresponding to the gradi-
ents in (16) can be simplified:

(54)

As a result, the scale invariance expressed by (20) and
(21) is restored, but the scaling exponent ∆ is obviously
different. To calculate ∆, we must take into account one
distinction from the case of u = 0. In view of (53)
and (54), the wave vectors used as integration variables
should be associated with the scaling exponent ∆. Thus,
the scaling exponent ∆ of the nth-order diagram in

(k, p') is the sum of n, n(h – 3), n(h – 3)∆, –(n – 1)∆,
and 3n∆, which correspond to the n factors k due to the
gradients in crosses, a combination of n-point velocity
correlators, the product of n – 1 Green functions, and
the product of differentials, respectively. As a result, we
have the equation

(55)

which yields

(56)

Relations (20) and (56) can be used to represent the
self-energy operator, by analogy with (25), as

(57)

where ψ(ζ) is a dimensionless function of the dimen-

M̃
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L̃ k*
h 1–

M̃ u2t*k2.∼

G
˜ k q– p',{ } p' iq– u M̃ k q p',–( )–⋅[ ] 1–
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G
˜ k q p',–{ } p' iq– u M̃ k p',( )–⋅[ ] 1–

.≈

k q k.–

M̃

n nh∆ n 1–( )∆–+ ∆,=

∆ 1
1 h–
-----------.=

M̃
1
t*
---- ut*k( )1/ 1 h–( )ψ ζ( ),∼
ND THEORETICAL PHYSICS      Vol. 98      No. 5      2004



ANOMALOUS TRANSPORT REGIMES 951
sionless variable

(58)

In the limit case of ζ ! 1, when  @ p', we should

drop p' in denominator (53). Then, (k, p') becomes
independent of p' and can be determined up to a numer-
ical factor of order unity by combining (57) with (58):

(59)

In the opposite limit of ζ @ 1, when  ! p', the
leading-order contribution to the self-energy operator is
due to the diagram with two crosses, where the Green
function can be approximated as follows: (k – q,
p') ≈ (p' – iq · u)–1. Calculating this diagram, we obtain

(60)

The structure of expressions (57)–(60) is analogous
to that of (25)–(29). Following the derivation of (35),
(36), and (40), we use (47), (57), and (58) to calculate
the inverse Fourier–Laplace transform of (48). As a
result, we obtain an expression for the Green function
that is valid at t @ t∗  when h < 1/2:

(61)

where the argument of Ψ(x) scales with unity and
Ψ(0) ~ 1. This implies that the tracer cloud radius
behaves as

(62)

at long times. Within the cloud (at r' ! ut∗ (t/t∗ )1 – h),

(63)

To elucidate the behavior of the Green function at
longer distances, we follow the analysis of the case of
u = 0. Since the singular point of the Fourier transform
of  as a function of k nearest to the real axis is

the asymptotic form of the Green function at large r' is

(64)

Case 3: max{k, |p'|/u} ! k∗ , h = 1/2.

When u ≠ 0 and h = 1/2, the equations are similar to
those obtained for u = 0 and h = 1, except that the inte-
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grand is independent of (q, p') in the region of loga-
rithmic behavior. Finally, we have

(65)

(Again, this result can be obtained by solving a trun-
cated equation with a two-cross diagram.) Following
the derivation of (45), we find an estimate valid at
t @ t∗ :

(66)

5. CONCLUSIONS

We made use of a diagrammatic technique and scale
invariance to obtain a number of important results con-
cerning passive-scalar transport in long-range corre-
lated highly disordered media without invoking any
simplifying assumptions.

The predicted behavior strongly depends on the
scaling dimension of spatial velocity fluctuations,
which is determined by the power exponents in velocity
correlation functions. Velocity fluctuations with a scal-
ing dimension h > 1, as well as diffusivity fluctuations
of any dimension, do not cause any deviation from nor-
mal diffusion.

For a flow with velocity correlations characterized
by a dimension h < 1, a superdiffusive regime is pre-
dicted. In particular, when the advection velocity is
zero, the tracer cloud radius increases as R ∝  t1/(1 + h),
i.e., faster than in the case of normal diffusion. This
scaling is qualitatively similar to that predicted by the
fractional-diffusion model, where the transport equa-
tion contains a time derivative and a derivative of order
(1 + h) with respect to coordinates (e.g., in contrast
to [21]). However, both models lead to essentially dif-
ferent results in the long-distance limit (r @ R).
Whereas the fractional-diffusion model predicts a
power-law of concentration decay in this limit (e.g.,
see [2, 14]), our analysis shows that the concentration
decreases exponentially with an exponent ~–(r/R). In
other words, the stochastic advection model does not
admit any power-law tail in the tracer distribution even
when velocity is long-range correlated.

We believe that this discrepancy is not accidental.
The physically well-motivated stochastic advection
model takes into account the very low probability of
high velocities, which rules out slow (power-law) decay
of concentration at long distances. Both the standard
fractional-diffusion model [2, 3] and its generalizations
with arbitrary parameters [11] (but not the model pro-
posed in [9]), being purely mathematical, ignore this
physical observation and impose no restrictions on the
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law of concentration decay at long distances. In the the-
ory of Lévy processes, the problem analyzed here cor-
responds to a class of jump probabilities for which
dependence on coupled space-time variables cannot be
expressed in terms of delta functions.

The results obtained here for nonzero mean advec-
tion velocity (u ≠ 0) are summarized as follows. At
short times (t ! t∗ ), when anomalous diffusion prevails
over advection (R @ ut), transport is similar to the case
of u = 0, whereas different behavior is predicted in the
long-time limit (t @ t∗ ), when advection plays a domi-
nant role (R ! ut). In the latter case, transport in the
moving reference frame depends on the relation
between h and 1/2. If h > 1/2, then the tracer cloud
spreads according to the law of normal diffusion, with
an effective diffusivity depending on u. If h < 1/2, then
a superdiffusive regime is obtained, with R ∝  t1 – h.

In the transport regimes separating those described
above (h = 1 and h = 1/2 when u = 0 and u ≠ 0, respec-
tively), the power laws for R(t) are modified by loga-
rithmic factors.
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Abstract—We have measured the shape of the Autler–Townes doublet and the peak of electromagnetically
induced transparency (EIT) under plasma conditions. We compare the experimental results with the calculated
spectrum of the probe field of a three-level ArII Λ-scheme by taking into account Coulomb collisions. We show
that the Coulomb broadening of the EIT peak is small (less than 40%), while the saturation resonance is broad-
ened under the experimental conditions by a factor of 3. In contrast to the saturation resonance attributable to
the Bennett dip in the velocity distribution of the population, the EIT peak is a coherent effect and is broadened
mainly through Coulomb dephasing. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A strong resonant monochromatic wave can split the
energy levels and, accordingly, the emission (absorp-
tion) spectrum at transitions involving these states—an
effect that has long been known and that was initially
called the dynamic Stark effect [1]. Subsequently, the
splitting of the spectrum into two components was
called the Autler–Townes splitting (doublet). In nonlin-
ear gas spectroscopy, field splitting is a basic effect in
the classification of perturbation theory [2]; allowance
1063-7761/04/9805- $26.00 © 20953
for the thermal motion of particles significantly
changes its spectral manifestations. For example, in a
Raman scattering scheme (see inset to Fig. 1) with large
Doppler broadening, the field splitting of the probe-
field spectrum manifests itself only for coaxial waves in
the Stokes case, i.e., at kµ < k. If only the probe level l
is populated, then other nonlinear effects induced by a
strong field, in particular, the saturation effect and the
nonlinear interference effect (NIEF) do not show up. In
this case, the absorption spectrum of the probe field
describes the field splitting in pure form.
Fig. 1. Experimental setup to study field splitting: 1—discharge tube, 2 and 3—mirrors, 4—Brewster plate, 5—etalon, 6—dia-
phragm, 7—obturator, 8—diffraction grating, 9—scanning interferometer, 10—photodetector, 11—synchronous detector, 12—tun-
able dye laser, 13—wavelength meter, 14—oscillograph, 15—lens, and 16—computer.
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Due to quantum interference, the field splitting of
the absorption spectrum induced by a strong wave at
the adjacent transition is accompanied by a significant
reduction or, ideally, complete elimination of the
probe-wave absorption at the frequencies correspond-
ing to the spectral region between the split components.
This effect, which was called electromagnetically
induced transparency (EIT), has been actively studied
in recent years (see, e.g., [3, 4] and references therein).
The possibility of the elimination of light absorption
under resonance conditions via the EIT effect is being
actively used in various problems. In particular, the effi-
ciency of the resonant laser frequency transformation
by nonlinear optical methods [5] increases signifi-
cantly, which makes it possible to use not only pulsed,
but also relatively weak continuous laser emission (see,
e.g., [6, 7]). In many applications, it is important to
obtain the narrowest possible EIT peak, but level relax-
ation, and field and Doppler broadenings affect the
shape of the EIT resonance [8].

In this work, we observed the Autler–Townes dou-
blet and the EIT peak at ionic transitions in a low-tem-
perature plasma for the first time. Ion–ion Coulomb
scattering was found to also affect the shape of the peak
under plasma conditions. The influence of Coulomb
scattering on the shape of the resonances due to the sat-
uration and NIEF effects under ion laser plasma condi-
tions was studied in detail previously [9–11]. The Cou-
lomb broadening of the EIT peak measured in this work
proved to be much smaller than the Coulomb broaden-
ing of the saturation resonances. Our experimental and
theoretical studies allowed us to quantitatively describe
the influence of Coulomb ion–ion interaction on the
field splitting and to explain the observed features.

2. EXPERIMENT

Previously, the nonlinear resonances in a Λ-scheme
attributable to field splitting were experimentally stud-
ied mainly in molecular spectra (see, e.g., [12]) by
using molecular Raman lasers. In this case, the
observed and calculated resonance shapes are difficult
to compare, because, apart from field splitting, other
nonlinear effects (saturation and NIEF) contribute sig-
nificantly to the total profile due to the large population
of the lower level n. However, the measured spectrum
splitting, which is proportional to the strong-field Rabi
frequency

(|E| is the amplitude of the electric field, and " is the
Planck constant), allowed the dipole moment dmn of the
m–n transition to be determined directly. The measure-
ments were carried out at G values much larger than the
relaxation constants Γij (i, j = m, n, l).

As we noted above, for the profile of the Autler–
Townes doublet in the Λ-scheme (see Fig. 1) to be
recorded free from other nonlinear effects, the probe

G E dmn/2"=
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wave must propagate coaxially with the strong wave,
and its frequency must be lower than the strong-field
frequency (the Stokes case); at the same time, only the
probe level l must be populated, while the levels m and
n must be ideally empty. In contrast to thermally popu-
lated rovibrational molecular levels, ionic levels in a
plasma allow the required conditions to be realized. In
particular, a similar case is realized when the strong and
probe fields are resonant, respectively, to the ArII laser
transition and the transition to a metastable state with a
large population. We chose a scheme with the following
levels:

The corresponding relaxation constants and Einstein
coefficients (in units of 107 s–1) are

The characteristic level populations in an argon laser
plasma are Nn ~ 1, Nm ~ 5, and Nl ~ 100 (in units of
109 cm–3) [9, 11]. Thus, the following relations hold for
the level scheme chosen:

for the relaxation constants and

for the level populations.
Under argon laser plasma conditions, some of the

manifestations of field splitting have been observed
previously when studying the generation at coupled
laser transitions in a V-scheme: when the frequency of
the Stokes radiation was detuned, a decoupled reso-
nance was observed for large detunings of the high-fre-
quency laser field, and complex resonance structures
were observed near the exact resonance for the Stokes
radiation when it was tuned to the line center [13, 14].
The shape of the Autler–Townes doublet and the influ-
ence of Coulomb diffusion on it have not been investi-
gated.

In our experiments, we studied the spectrum of a
Stokes probe field in the presence of a strong field at the
adjacent transition (the Λ-scheme, Fig. 1). We mea-
sured the difference between the absorption coefficients
for the probe field in the absence and in the presence of
a strong field that corresponded to the nonlinear correc-
tion to the probe-field work ∆3µ . For a signal of suffi-
cient amplitude to be produced, the intensity of the
strong field must be large (G * 100 MHz). The intrac-
avity field of a single-frequency 457.9-nm line
(4p2S1/2–4s2P1/2) ion laser with minimum angular
momentum (jm = jn = 1/2) was used to achieve these val-
ues. As a result, we measured the Autler–Townes dou-
blet shape under argon laser plasma conditions without

n| 〉 4s2P1/2, m| 〉 4 p2S1/2, l| 〉 3d2P3/2.= = =

Γn 300, Γm 15, Γ l 8, Amn 9, Aml 1.= = = = =

Γ l & Γm ! Γn ! kv T

Nl @ Nm * Nn
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the Doppler base with an accuracy high enough to make
a comparison with the theory.

The experimental setup is shown in Fig. 1. An argon
laser discharge tube 1 (length l = 50 cm, channel diam-
eter d = 7 mm, and working current I ~ 100 A) was
placed in a cavity with entrance (2) and exit (3) mirrors
opaque for the generated emission, but transparent for
the probe emission. Thus, there were two waves in the
cavity: a standing linearly polarized generated wave
and a traveling linearly polarized probe wave. Etalon 5
provided the selection of one longitudinal mode and
smooth tuning of the generation frequency, while dia-
phragm 6 separated out the TEM00 mode. The cavity
mirrors selected the line with a wavelength λ ≈ 458 nm;
the transmission losses in the cavity at this line were
≈0.3%, which provided a high field intensity inside the
cavity. The emergent emission from the argon laser was
directed by the mirror to a diffraction grating 8. One
order from this grating was entered into a scanning
Fabry–Perot interferometer 9, which was used to con-
trol the mode composition of the emission and to deter-
mine the strong-field detuning from the resonance,
while the other order was diverted to photodetector 10,
the signal from which was the reference one for a syn-
chronous detector 11.

A dye laser 12 whose wavelength (λµ ≈ 648 nm) was
recorded by a wavelength meter 13 was used as the
probe-field source. The automatic frequency control
(AFC) system [15] allowed us to tie the cavity mode to
the selector peak and to smoothly change the probe-
field frequency over a range up to 4.5 GHz. The fre-
quency was tuned with computer 16 at discrete steps of
less than 20 MHz; the step approached the emission
line width (about 10 MHz). The dye-laser spectrum was
recorded by the scanning interferometer 9 with a free
dispersion range of 5 GHz connected to an oscillo-
graph, which was used to control the mode composition
of the emission. Before being entered into the discharge
tube, the probe field was prefocused by lens 15 to pro-
vide the maximum possible field uniformity in the cav-
ity. After the passage through the discharge tune, the
probe-field beam was reflected from an additional
plate 4 and diverted by the mirrors to photodetector 10
connected to the synchronous detector 11. The angle
between the beams of the probe field and the generated
emission was ~10–3 rad, which allowed the feedback to
be avoided. The strong field was modulated at a fre-
quency of ~1 kHz with obturator 7; the synchronous
detection at the modulation frequency allowed us to
automatically subtract the Doppler base and to separate
out the nonlinear corrections induced by the strong
field. The personal computer 16, to which all of the
measuring instruments were connected through an
ADC, was used for controlling the experiment and for
synchronous data acquisition and recording.

To separate in frequency the resonances from the
oppositely directed standing-wave components and to
observe the field splitting induced by the traveling
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(coaxial) wave in pure form, the strong field must be
detuned from the resonance by a value larger than the
population resonance width. An experimental fre-
quency profile of the nonlinear correction to the probe-
field absorption coefficient for a strong-field detuning
Ω = ω – ωmn ≈ 1.6 GHz is shown in Fig. 2. The negative
values on the plot correspond to an increase in probe-
field absorption induced by the strong field, while the
positive values correspond to a decrease in absorption,
which is equivalent to electromagnetically induced
transparency. A sharp structure attributable to field
splitting is observed for the coaxial component: the
split low-amplitude absorption profile with a splitting
of about 0.5 GHz and the high-amplitude EIT peak cen-
tered at a frequency Ωµ = Ωk/kµ ≈ 1.1 GHz between the
split components. A wide (with a FWHM of about
1.3 GHz) population resonance with a low amplitude in
accordance with the level population ratio is seen
symmetric about the line center at a frequency Ωµ =
−Ωk/kµ ≈ –1.1 GHz. The small peak at Ωµ = 0 corre-
sponds to the effect of higher order spatial harmonics,
which is most pronounced at the exact resonance for the
strong field (Ω = 0) [16]; it is not considered here.

Since the contribution of the saturation effect that
forms the population resonance is the same for the
oppositely directed and coaxial components, we sub-
tracted the left part of the plot (Ωµ < 0) from its right
part (Ωµ > 0) to separate out the field splitting effect in
pure form. The Autler–Townes doublet profile cor-
rected in this way is shown in Fig. 3 together with the-
oretical curves computed without and with Coulomb
ion–ion interaction. Since the amplitude of the doublet
components for our parameters is small compared to
the amplitude of the peak, it would be more precise to

0–2.0 –1.5 –1.0 –0.5 0.5 1.0 1.5 2.0

Ωµ, GHz

–0.5

0

0.5

1.0

∆3µ, arb. units

Fig. 2. Experimental profile for the nonlinear correction in
the probe-field spectrum for the strong-field parameters G ≈
100 MHz and Ω ≈ 1.6 GHz.
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use the term “EIT peak profile.” Below, we compare the
experimental and theoretical results.

3. THEORY

The nonlinear correction to the probe-field work for
the Λ-scheme (Fig. 1) with Nm = Nn ! Nl calculated in
the model of relaxation constants using the perturbation
theory (G ! Γij) is [2]

(1)

where |G| and |Gµ| are the Rabi frequencies of the strong
and probe fields, k and kµ are their wave vectors, Ω =
ω – ωmn and Ωµ = ωµ – ωml are the field frequency
detunings relative to the corresponding resonance, vT =

 is the thermal velocity, and Nl is the population
of level l.

This formula describes the Autler–Townes doublet
in absorption with the EIT peak centered at the probe-
field frequency Ωµ = kµΩ/k with the width

(2)

∆3µ
1( ) 3µ

1( )
0( ) 3µ

1( )
G( )–=

=  4"ωµ Gµ
2 G 2 πNl Ωµ

2
/kµ

2
v T

2
–( ) k kµ–( )exp

k
2
v T

------------------------------------------------------------------------

× Re
1

Γ p i Ωµ kµΩ/k–( )–( )2
------------------------------------------------------,

2T /M

Γ p kµΓnl k kµ–( )Γml+( )/k.=

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Ωµ, GHz

–0.2

0

0.2

0.4

0.6

0.8

1.0
∆3µ, arb. units

Fig. 3. Nonlinear correction in the probe-field spectrum
∆3(Ωµ) corresponding to the field splitting effect for the
following strong-field parameters: G = 100 MHz, Ω =
1.59 GHz, and kvT = 4.9 GHz; the short and long dashes
represent the calculations using the perturbation theory
without diffusion (4) and with diffusion (ν = 2 × 107 s–1),
respectively; the solid line and the dots represent the numer-
ically calculated and experimental values, respectively.
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In this approximation, the splitting ∆AT ≈ 2Γp does not
depend on the strong-wave intensity and is determined
by the relaxation constant of the forbidden transition Γnl

for close magnitudes of the wave vectors. On the other
hand, it is well known that in a strong field |G| @ Γij

(when the contribution of the relaxation constants may
be ignored), the splitting for stationary atoms is deter-
mined by its Rabi frequency |G|, while allowance for the
thermal motion leads to the addition of a scaling factor
that depends on the relation between the wave vectors of
the probe and strong fields (see, e.g., 12, 17]):

(3)

For an arbitrary relation between |G| and Γij , the
expression for the nonlinear correction calculated in the
Doppler limit (|G|, Γij ! kvT) is [17]

(4)

In the limit |G| ! Γij , this expression reduces to (1), a
result of perturbation theory. As the field amplitude
increases, the splitting increases and is described by
Eq. (3) in the limit |G| @ Γij .

Under the experimental conditions (|G| ≈ 100 MHz,
Γmn ≈ Γnl ≈ 280 MHz, Γml ≈ 25 MHz), the approxima-
tion of perturbation theory (|G| ! Γmn, Γnl) holds well.
The profile calculated using formula (4) with the field
splitting (determined by the Rabi frequency |G|) is vir-
tually identical to result (1) of perturbation theory—the
latter curve is indicated by short dashes in Fig. 3. The
FWHM of the EIT peak (and, accordingly, the splitting)
in this approximation is determined by the relaxation
constant of the forbidden transition

The calculated curve qualitatively agrees with the
experimental curve, but the width of the EIT peak in the
experiment is appreciably larger (by about 40%);
allowance for the field broadening yields no such
broadening.

Coulomb ion scattering [9] is known to be mainly
responsible for the broadening of nonlinear resonances
in an ion laser plasma. This scattering is satisfactorily

∆AT 4 G 1 kµ/k–( )kµ/k.=

∆3µ 2"ωµ Gµ
2 πNl Ωµ

2
– /kµ

2
v T

2( )exp
kµv T

-----------------------------------------------------=

× 1 Re
Γ p i Ωµ kµΩ/k–( )–

Γ p i Ωµ kµΩ/k–( )–( )2 4kµ k kµ–( ) G 2

k2
-------------------------------------+

------------------------------------------------------------------------------------------------------–

 
 
 
 
 
 

.

∆AT 2Γ p 2Γnlkµ/k 400 MHz.≈ ≈∼
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described by a model of diffusion in velocity space with
a velocity-independent coefficient [18, 19]:

(5)

where ν is the effective ion–ion collision frequency;

vT =  is the thermal velocity; Ze and M are the
charge and mass of the active ions, respectively; N is
the effective number density of the perturbing ions; and
Λ is the Coulomb logarithm.

The Coulomb broadening of the resonances due to
saturation was studied in detail in an experiment; in
particular, it was shown that the Coulomb broadening
could reach a factor of 100 with respect to the radiative
width for long-lived metastable levels [11]. The pattern
of the diffusive broadening of population resonances is
fairly easy to understand: a strong monochromatic
wave produces Bennett structures with a width Γmn/k !
vT against the background of a Maxwellian velocity
distribution for the population of level j = m, n with
width vT . Diffusion in velocity space tends to level off
the nonequilibrium, causing the resonant structure to be
broadened. The characteristic change in velocity
increases with time t following the diffusion law

Over the level lifetime , diffusion in velocities
causes the saturation resonance in the spectrum to be
broadened by

(6)

i.e., the longer the level lifetime, the larger the broaden-
ing of the saturation resonance, as distinct from the
model of relaxation constants. For laser transitions, the
Bennett dip is broadened predominantly at the rela-
tively long-lived upper level. For our level scheme, the
characteristic broadening of the saturation resonance is
∆j/Γmn ~ 3; accordingly, the width of the population res-
onance observed for the oppositely directed strong and
probe waves centered at Ωµ ≈ –1.1 GHz (see Fig. 2) is
larger by a factor of about 3 than the width of the EIT
peak.

Since the EIT peak is produced by coherent effects,
the Coulomb broadening mechanism in this case differs
fundamentally from the broadening mechanism of pop-
ulation resonances. Apart from a change in the popula-
tion distribution, diffusion in the velocity space also
leads to dephasing (phase diffusion) of the nondiagonal
density (coherence) matrix element through a random
change in the ion coordinate:

D νv T
2 /2, ν 16 πNZ2e4Λ

3M2v T
3

----------------------------------,= =

2Ti/M

∆v j Dt.∼

Γ j
1–

∆ j k∆v j

kv T

2
--------- v /Γ j, j≈ m n;,= =

∆r2〈 〉 ∆ v 2t2 Dt3,∼ ∼
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which corresponds to the change in phase

The dephasing is significant when ∆ϕ ~ 1. Hence, we
can estimate the dephasing time scale τD and the related
correction to the homogeneous transition width:

(7)

Accordingly, the correction to the width of the EIT
peak (2) under experimental conditions is estimated as

kµ /k ≈ 300 MHz, which is appreciably larger than
Γp ≈ 200 MHz. This value is in conflict with the exper-
iment, in which the observed broadening is appreciably
smaller than Γp .

Since perturbation theory may be used to describe
the experiment, the effect can be analyzed in more
detail. For coaxial strong and probe waves in the Stokes
case (kµ < k), we may use the nonlinear correction in the
probe-field spectrum calculated using perturbation the-
ory up to the second order in |G| with diffusion in veloc-
ities [20]. Reducing the expression to a more familiar
form for nonlinear spectroscopy, we obtain the line pro-
file that corresponds to the field splitting:

(8)

Here, we ignore the force of friction, because the reso-
nant velocity is less than 0.4vT . The phase diffusion is
determined not by the factor Dk2, as suggested by esti-

mate (7), but by a factor of (k – kµ)2 /k4 smaller quan-
tity. Accordingly, the diffusion width of the field-split-
ting resonance may be expressed as

(9)

In the experiment,

Thus, the diffusion width of the field-splitting reso-
nance, ΓD ≈ 100 MHz, is by a factor of about 3 smaller
than (Dk2)1/3; the diffusive broadening is small, ΓD < Γp .
In the limit D  0, the expression for the profile

∆ϕ2〈 〉 k2 ∆r2〈 〉 Dk2t3.∼=

τD
1– Dk2( ) 1/3– ν kv T( )2( )

1/3–
.≈∼

τD
1–

∆3 Ωµ( )
4 π"ωµ Gµ

2
G 2Nl k kµ–( )

k2v T

--------------------------------------------------------------------=

× Re t iΩµt( )Φ t( )expd

0

∞

∫ 
 
 

2

,

Φ t( ) Γ p iΩkµ/k+( )t–{exp=

– D k kµ–( )2 kµ/k( )2
t3/3 } .

kµ
2

Γ D D k kµ–( )2kµ
2 /k

2[ ]
1/3–

.≈

kµ/k 0.7, k kµ–( )2kµ
2
/k4 0.04.≈ ≈
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shape reduces to (1). The result of our calculation using
formula (8) of perturbation theory with Coulomb diffu-
sion for experimental conditions is indicated by long
dashes in Fig. 3. The curve satisfactorily describes the
experiment; the slight deviations are attributable
mainly to asymmetry in the experimental profile. The
curve (solid line) calculated numerically from the sys-
tem of equations for the density matrix with the diffu-
sive and field broadenings and with the force of Cou-
lomb friction is also shown in the figure. This curve is
in even better agreement with the experiment; it also
describes the asymmetry. On the right slope of the EIT
peak, the results of our numerical calculations and cal-
culations using perturbation theory with diffusion are in
close agreement; deviations are clearly seen only on the
left slope.

4. DISCUSSION

Our comparison of the experimental and calculated
curves shows that, in contrast to the saturation reso-
nances, population diffusion in velocities does not lead
to any significant broadening of the resonance due to
field splitting. A good approximation to describe the
experiment is perturbation theory with diffusion; in this
case, the field broadening is negligible. The opposite
limiting case was analyzed in [21]: the diffusion shape
of the Autler–Townes doublet components was calcu-
lated for a field splitting |G| much larger than the reso-
nance width. In this case, the diffusion width of the split

components was found to be ~ , i.e., it
decreases with increasing |G|, and no appreciable
broadening of the resonances was observed in an exper-
iment with strong fields in the V-scheme [13, 14].

Dk
2
/ G

0–0.4 –0.2 0.2 0.4 0.6 0.8 1.0
v /vT

–2

–1

0

1

2

3

4
Ωµ, GHz

Fig. 4. Frequency branches calculated using formula (10)
for the following experimental conditions: Ω ≈ 100 MHz
and Ω = 1.59 GHz.
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Since the amplitude of the Autler–Townes doublet
components in our case is small compared to the ampli-
tude of the EIT peak, it is of considerable interest to dis-
cuss the influence of Coulomb diffusion on the shape of
the EIT peak—its relative broadening under experi-
mental conditions did not exceed 40%. Qualitatively,
such a weak influence can be understood by using the
pattern of frequency branches: the velocity dependence
of the resonant frequencies of the split components
(see, e.g., [13]). The resonant frequencies when the
homogeneous width is ignored are described in our
case by the expression

(10)

The results of our calculation using formula (10) for
experimental parameters are shown in Fig. 4. When
averaged over velocities, the integral is accumulated in
the vicinity of the extrema of the function Ωµ(v), called
turning frequencies [13]. The size of the vicinity that
gives a significant contribution is determined by the
slope of the function, dΩµ/dv—the asymptotic behav-
ior at large velocities is determined by the coefficients
kµ and (kµ – k), which differ greatly in our case. There-
fore, the integral is accumulated at velocities v  > 0.4vT

for the resonance  < 1 GHz and at v  < 0.4vT for the

second resonance  < 1 GHz. Given the Max-
wellian distribution function, this leads to a larger
amplitude of the resonance that is farther from the
center of the line, as confirmed by the experiment (see
Fig. 2). Formulas (1), (4), and (8) derived in the Dop-
pler limit do not describe the asymmetry. The role of
Coulomb population diffusion under these conditions
reduces to the walk of particles on the frequency branch
along the velocity axis in a vicinity of the order

whose size does not exceed the size of the region that
contributes to the integral; therefore, this effect is weak,
with the influence of diffusion on the wing shape being
stronger than on the width of the EIT peak. The asym-
metry in the doublet components is the result of averag-
ing over velocities with allowance made for the finite
Doppler width and is virtually independent of diffu-
sion. Thus, the main broadening mechanism in this case
is Coulomb dephasing (phase diffusion), whose effect,

in turn, is weakened by a factor of [(k – kµ)2 /k4]–1/3 ~
3 under experimental conditions. As a result, the Cou-
lomb broadening of the EIT peak does not exceed 40%.

The experiment also allows us to determine the
width of the population resonance (attributable to the
Bennett dip at the upper level m), which is observed for
oppositely directed probe and strong fields—the nega-
tive detuning range in Fig. 2. It is of considerable inter-
est to compare our result with the data of previous

Ωµ v( )

=  kµv Ω kv–( )/2 Ω kv–( )2/4 G 2+ .±+

Ωµ
1

Ωµ
2

∆v j v T ν ii/2Γ j, j∼ m n,,=

kµ
2
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experiments on the Lamb dip and the spontaneous
emission spectrum (see, e.g., [9]). The FWHM of the
saturation resonance in our case is ∆ ≈ 1.3 GHz, which
corresponds to a relative broadening of the Bennett dip
by a factor of γ = (∆/2Γmn)(k/kµ) ≈ 3.7. This value is
slightly larger than that yielded by measurements of the
spontaneous emission spectrum under the same condi-
tions (see [9]). In contrast to previous measurements,
the field broadening of the population resonance in our
experimental conditions was large and it could not be
ignored. Our estimation of the characteristic values
yields the following Coulomb, homogeneous, and field
widths of the saturation resonance under experimental
conditions:

(∆D = 2ln2∆m ≈ 1 GHz is the FWHM),

Consequently, the diffusion and field widths are com-
parable in magnitude and are appreciably larger than
the homogeneous width: ∆D * ∆G > 2Γmnkµ/k. As was
shown in [9, 22], the squares of the field and diffusion
widths are added in these conditions; i.e., the total
width may be expressed as

(11)

in good agreement with the measurements.

5. CONCLUSIONS

Thus, we have measured for the first time the shape
of the nonlinear resonance due to field splitting under
plasma conditions. Our experimental and theoretical
studies of this effect at relatively low field intensities
(|G| < Γnl) show that Coulomb ion–ion scattering,
which leads to ion diffusion in the velocity space,
affects the Autler–Townes doublet profile and the width
of the EIT peak only slightly. This influence reduces to
a small (about 40%) broadening of the peak and to a
change in the wing shape of the split components. The
main broadening mechanism is Coulomb dephasing
(phase diffusion), which causes an effective increase in
the homogeneous width by ΓD described by (9). We
have shown that the broadening of the saturation reso-
nance via Coulomb population diffusion under these
conditions is almost an order of magnitude larger; the
field broadening in this case also gives a significant
contribution.
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Abstract—Capillary instability of isothermal incompressible liquid-crystal (LC) jets is considered within the
linear hydrodynamics of uniaxial nematic LCs. Free boundary conditions with strong tangential anchoring of
director n at the surface are formulated in terms of the mean surface curvature * and the Gaussian surface cur-
vature &. The static version of the capillary instability is shown to depend on the elasticity modulus K, the sur-
face tension σ0, and the radius r0 of the LC jet, expressed in terms of the characteristic parameter κ = K/σ0r0.
The problem of the capillary instability in LC jets is solved exactly, and a dispersion relation that reflects the
effect of elasticity is derived. It is shown that increase in the elasticity modulus results in decrease in both the
cut-off wavenumber k and the disturbance growth rate s. This implies an enhanced stability of LC jets in com-
parison to ordinary liquids. In the specific case where the hydrodynamic and orientational LC modes can be
decoupled, the dispersion equation is given in a closed form. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The breakup of liquid jets injected via a circular
nozzle into stagnant fluids has been the subject of wide-
spread research over the years. Previous studies that
followed the seminal works of Lord Rayleigh have
established that a complex jet flow is influenced by a
large number of parameters. These include nozzle inter-
nal flow effects, the jet velocity profile V(r), and the
physical state of both liquid and gas. Although the
hydrodynamic equations are nonlinear, the linear sta-
bility theory can provide qualitative descriptions of the
breakup phenomena and predict the existence of differ-
ent breakup regimes.

Using a linear theory, Rayleigh showed [1] that the
jet breakup is a consequence of the hydrodynamic
instability, or more exactly, the capillary instability.
Neglecting the effect of the ambient fluid, the viscosity
of the jet liquid, and gravity, he demonstrated that a
cylindrical liquid jet is unstable with respect to distur-
bances characterized by wavelengths larger than the jet
circumference. Rayleigh also considered the case of a
viscous jet in an inviscid gas and an inviscid gas jet in
an inviscid liquid [2]. Weber [3] extended Rayleigh’s
result to Newtonian viscous fluids and showed that vis-
cosity tends to reduce the breakage rate and increase the
drop size. Chandrasekhar [4] considered the effect of a
uniform magnetic field on the capillary instability of a
liquid jet. A mechanism of bending disturbances and of
buckling, slowly moving, highly viscous jets was pre-
sented by Taylor [5]. Further developments of the the-
ory in Newtonian liquids was concerned with addi-
tional factors such as the dynamic action of the ambient

¶This article was submitted by the authors in English.
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gas (leading to atomization of the jet), the nonlinear
interaction of growing modes that lead to satellite drop
formation, and the spatial character of instability [6, 7].

The capillary instability in jets of non-Newtonian
suspensions and emulsions presents a different cate-
gory of cases governed by power-law (pseudoplastic
and dilatant) liquids. The effective viscosity of the
pseudoplastic liquid decreases with increasing strain
rate, whereas in dilatant liquids, it increases [7]. The
behavior of capillary jets of dilute and concentrated
polymer solutions suggests a strong influence of the
macromolecular coils on their flow patterns [7]. Free
jets of polymeric liquids that exhibit oscillations are
reported in [8].

The idea of the Rayleigh instability was applied to
tubular membranes in dilute lyotropic phases [9]. Their
relaxation, following optical excitation, is character-
ized by a long time and can be described by means of
the hydrodynamic approach [10]. Bending deforma-
tions of such membranes are governed by the Helfrich
energy [11], which depends on the curvature of the
tube. Thus, competition between the surface tension
and curvature energy of the membrane that has been
immersed in water renders the initial shape of the tube
unstable. The hydrodynamic formalism used in [10]
and the hydrodynamics of fluids with an inner order
such as liquid crystals (LCs) [12] have similar features.
In [10], the order parameter is a unit vector normal to
the membrane surface. In contrast, the order parameter
Q of an LC fluid is defined throughout the space it
occupies.

The continuum theory of LC phases has emerged as
a rigorous part of condensed matter theory. The hydro-
dynamics of the nematic LC phases was developed dur-
ing the 1960s–1970s in the pioneering works of Erick-
004 MAIK “Nauka/Interperiodica”



        

RAYLEIGH INSTABILITY IN LIQUID-CRYSTAL JETS 961

                                                                                                                                                                                          
Table 1.  The basic physical parameters αi, ρ, K, and σ0 and their derivatives ηi, βi, γi, Bi, µi, λ, and νi for nematic LC 4-meth-
oxybenzylidene-4-butylaniline (MBBA) at 25°C taken from [23, 30]

α1, mPa s α2, mPa s α3, mPa s α4, mPa s α5, mPa s α6, mPa s

7 –78 –1 84 46 –33

η1, mPa s η3, mPa s η5, mPa s λ µ1 µ2

42 50 104 1.026 1.013 0.013

β1, mPa s β2, mPa s β3, mPa s β4, mPa s γ1, mPa s γ2, mPa s

42 25 79 59 77 –79

B1, mPa s B2, mPa s B3, mPa s B4, mPa s @ ϑ , m2/s

58 104 25 78 5.92 1.2 × 10–10

ρ, kg/m3 K, N σ0, N/m l = K/σ0, m νi, m
2/s ϑ /νi

1.2 × 103 9 × 10–12 38 × 10–3 2.4 × 10–10 10–5–10–4 10–6–10–5

Table 2.  The basic physical parameters αi, ρ, K, and σ0 and their derivatives ηi, βi, γi, Bi, µi, λ, and νi for LC paraazoxyanisole
(PAA) at 122°C taken from [23, 30]

α1, mPa s α2, mPa s α3, mPa s α4, mPa s α5, mPa s α6, mPa s

4 –6.9 –0.2 6.8 5 –2.1

η1, mPa s η3, mPa s η5, mPa s λ µ1 µ2

3.4 4.5 13.7 1.06 1.03 0.03

β1, mPa s β2, mPa s β3, mPa s β4, mPa s γ1, mPa s γ2, mPa s

3.4 2.25 11.45 4.55 6.7 –7.1

B1, mPa s B2, mPa s B3, mPa s B4, mPa s @ ϑ , m2/s

4.34 9.36 2.26 11.24 7.11 1.8 × 10–9

ρ, kg/m3 K, N σ0, N/m l = K/σ0, m νi, m
2/s ϑ /νi

1.4 × 103 11.9 × 10–12 40 × 10–3 3 × 10–10 10–6–10–5 10–4–10–3
sen [13, 14], Leslie [15 16], Parodi [17], and the Har-
vard Group [18],1 and its predictions were successfully
confirmed in many experimental observations. The
combination of viscous and elastic properties is likely
to produce new evolution patterns of hydrodynamic
instabilities, in terms of Benard–Rayleigh, Marangoni,
and electrohydrodynamic effects [19], which cannot
occur in ordinary liquids. In particular, we refer to non-
steady-state (oscillatory) evolution of the instability
that appears via the Hopf bifurcation [20]. The instabil-
ity of an LC jet poses an additional challenge with
respect to the effects listed above. This already is
already applicable in the framework of the linear stabil-
ity theory.

Linear analysis of the capillary instability in a thin
nematic LC fiber was recently performed in [21] under

1 The name Harvard Group was proposed by De Gennes [19] and
denotes five authors (see [18]).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the assumption that the director field n(r) is fixed and
does not change even if the fiber shape evolves via the
linear instability process. In this analysis, the only
influence of the LC nematicity is due to the anisotropy
of the elastic surface energy and the anisotropy of vis-
cous LC moduli. The above assumption stipulates the
predominance of elastic forces over the surface tension
(l @ r0) and over hydrodynamic forces (Er ! 1), where
l = K/σ and Er = ηVr0/K denote the anchoring extrapo-
lation length [22] and the Ericksen number [19],
respectively; η and K are viscous and elastic moduli;
V is the LC velocity; and r0 stands for the geometric
length scale, i.e., the radius of the LC jet. The first con-
dition (l @ r0) is difficult to implement for most known
nematic LCs with well-studied physical parameters.
Indeed, classical nematic LCs, also known as MBBA
and PAA, have an anchoring extrapolation length of l ≈
3 × 10–10 m (Tables 1 and 2). This value indicates strong
SICS      Vol. 98      No. 5      2004
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anchoring at the surface.2 Otherwise, the radius of the
jet must be decreased to the molecular scale. In the case
of strong director anchoring at the surface, the second
requirement, Er ! 1, does not allow a continuous tran-
sition to ordinary liquids (the classical Rayleigh–Weber
theory) which is an important benchmark in the theory.
We note that as the elasticity tends to zero, K  0 then
Er  ∞. Moreover, disregarding the bulk elasticity
effects in LCs excludes the competition between the
bulk forces and surface tension that is crucial for the
physical picture of thin LC films (see Section 3). In this
context [21], the Leslie–Ericksen equation of angular
motion of the director n(r, t) was neglected and the
elastically induced nondissipative contributions to the
Navier–Stokes equation were not included in the LC
hydrodynamics.

A more realistic setup of the problem consists of a
rigid boundary condition of strong director anchoring
at the free surface of LC jets. The simplest case consti-
tutes a tangential orientation of the director at the surface,
n · e = 0, where e is a unit vector normal to the jet surface.
Such orientation, having strong anchoring and tempera-
ture independence, is observed at the free surface of the
classical nematic PAA mentioned above [24–26].
Assuming that the scale of deformation of the initial
surface is much larger than the molecular length
of LCs, we conclude that if the orientation of the
director n is set tangential to the undisturbed surface,
then it must also remain tangential when the surface is
smoothly disturbed.

The elastic properties of LCs are expected to change
the evolution patterns of jets that are made from them.
In this paper, we derive a rigorous mathematical model
of capillary instability for isothermal incompressible
nematic LC jets in the single elastic approximation.
This model shows how the combined viscous and elas-
tic properties of LC fluids determine the boundary con-
ditions at the free surface with strong tangential anchor-
ing of the director and the range where instability pre-
vails.

2. HYDRODYNAMICS OF AN LC JET

In this section, we first formulate the problem of
capillary instability and then derive the basic equations
that govern the linear hydrodynamics of an LC jet. The

2 On the basis of an heuristic argument, De Gennes [19] noted that
if the anisotropic interaction at a nematic-substrate interface is as
large as that acting between nematic molecules, the anchoring
energy σ can be roughly estimated as σ ~ K/a, where K is the
Frank modulus and a is the molecular dimension; hence, taking
K ≈ 8 × 10–12 N and a ≈ 5 × 10–10 m, we find σ ≈ 1.6 × 10–2 N/m,
which corresponds to the strong anchoring in virtually all practi-
cal cases. An extensive review by Cognard [23] lists sixteen of
the most studied nematic LCs with corresponding σ measured at
equilibrium with air (see Table 9 in [23]). All values lie in the
range between 2.45 × 10–2 N/m for MPPB and 4 × 10–2 N/m for
5CB, which well supports the qualitative consideration of De
Gennes.
JOURNAL OF EXPERIMENTAL
incompressible flow of a nematic LC is described by a
set of differential equations: the continuity equation,
the Nayier–Stokes equation for viscoelastic LCs, and
the Leslie–Ericksen equation of angular motion of the
director n(r, t). They are supplemented by boundary
conditions on the LC free surface with strong tangential
anchoring of the director.

The basic notation and linear hydrodynamic equa-
tions for uniaxial nematic LCs follow the theory given
in [18] (the so-called Harvard Group approach), which
has become standard in many monographs, e.g.,
[12, 27]. We note that the Harvard Group and Ericksen–
Leslie–Parodi approaches are in full agreement (a
detailed discussion is given in [19]).

2.1. Basic Notation and Variables

The following basic variables describe the nematic
LC medium: velocity V(r, t), pressure P(r, t), and direc-
tor n(r, t), n2 = 1. The initial values of the functions are
denoted by “0,” either as a subscript or superscript. The
following notation, which is commonly accepted in the
theory of LCs, is used henceforth:

1. The free energy density Ed of a deformed non-
chiral uniaxial nematic LC, given in the quadratic
approximation in terms of the derivatives ∂n/∂xj and in
the single elastic approximation, has the form

(1)

where K ≥ 0 is known as the Frank elasticity modulus.
In the vicinity of a phase transition, K ∝  Q2 [19], and in
the isotropic phase, it vanishes.

2. The bulk molecular field F and the Ericksen elas-
tic stress tensor τki , which set the equilibrium distribu-
tion of the n field in an LC, are determined by the vari-
ational derivatives:3 

(2)

where

(3)

i.e.,

(4)

where emki is a completely antisymmetric unit tensor of
the third rank (the Levi-Civita tensor).

3 Here and throughout, unless noted otherwise, we apply the sum-
mation rule over indices repeated in a tensor product, e.g., aijbjk =

.

Ed
K
2
---- div2n rot2n+( ),=

aijb jkj∑

F M n n M,〈 〉 , or Fi– δij nin j–( )M j,= =

Mi
∂

∂xk

--------
∂Ed

∂ ∂kni( )
-----------------

∂Ed

∂ni

---------,–=

τki

∂Ed

∂ ∂kni( )
-----------------, ∂k

∂
∂xk

--------,= =

M K∆3n, τki K δkidivn n rotn⋅( )nmemki+(= =

+ n rotn×[ ] n×[ ] memki ),
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3. If the deviations of the director n = n0 + n1 from
its initial orientation n0 along the z direction are small,
then

(5)

and simple algebra yields the linear approximation

(6)

where ∆3 is the three-dimensional Laplacian. Similar
considerations regarding the Ericksen stress tensor τki

give

(7)

The stresses given by Eqs. (7) do not contribute to the

nondissipative stress tensor  used in the linear
hydrodynamics of LCs (see Eq. (8) below).

4. The reactive (nondissipative)  and dissipative

 stress tensors are defined as

(8)

(9)

where the antisymmetric Ωik (vorticity) and symmetric
ϒik parts of the derivative ∂kVi are given by

(10)

Three independent viscous moduli ηj , the kinetic coef-
ficient λ, and the rotational viscosity γ1 determine the

dissipative stress tensor , the fourth-rank viscosity

nx
0 ny

0 0, nz
0 1,= = =

1 @ nx
1,  n y 

1
  @  n z 

1
 n x 

1 ( ) 
2

 n y 
1 ( ) 

2
 , ,∼

Fx K∆3nx
1
, Fy K∆3ny

1
, Fz 0,= = =

τ xx τ yy τ zz Kdivn1,= = =

τ xy τ yx– K
∂ny

1

∂x
--------

∂nx
1

∂y
--------– 

  ,= =

τ yz τ zy– K
∂nz

1

∂y
--------

∂ny
1

∂z
--------– 

  ,= =

τ zx τ xz– K
∂nx

1

∂z
--------

∂nz
1

∂x
--------– 

  .= =

Tik
r( )

Tik
r( )

Tik
d( )

Tik
r( ) Pδik– τkj

∂n j

∂xi

--------–
λ
2
--- niFk nkFi+( )–=

+
1
2
--- niFk nkFi–( ),

Tik
d( ) 2η1ϒik η3 2η1–( ) niϒkjn j nkϒijn j+( )+=

+ 2η1 η5 2η3–+( )ninkn jnmϒjm,

Ωik
1
2
---

∂Vk

∂xi

---------
∂Vi

∂xk

--------– 
  ,=

ϒik
1
2
---

∂Vk

∂xi

---------
∂Vi

∂xk

--------+ 
  .=

Tik
d( )
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tensor ηikjm , and the dissipative function D in the
absence of heat fluxes,

(11)

The tensor ηikjm consists of three independent uniaxial
invariants [12] and is highly symmetric, ηikjm = ηkimj =
ηjmik . The requirement that D is positive becomes

(12)

The parameter λ is close to +1 or –1 for rodlike or
disklike molecules, respectively. If the liquid is vis-
coisotropic, then λ = 0.

5. The hydrodynamic reactive (nondissipative) m(r)

and dissipative m(d) fields are defined as

(13)

where ∇ 3 is the three-dimensional gradient operator,
(∇ 3)2 = ∆3.

6. The surface tension σ of a nematic LC is given
by [28]

(14)

where σ0 and σ1 are isotropic and anisotropic surface
tension moduli respectively, and e is a unit vector nor-
mal to the LC surface.

7. Another system of viscous moduli αi (called the
Leslie viscosities) relate the dissipative and kinetic
moduli as4 

(15)

4 The correct expression for η5 is given in [18].

D η ikjmϒikϒjm
1
γ1
-----F2, Tik

d( )+ η ikjmϒjm,= =

η ikjm η1 ξ ijξkm ξkjξ im+( )=

+
η3

2
----- nin jξkm nkn jξ im ninmξkj nknmξ ij+ + +( )

+ η5ninkn jnm.

η1 0, η3 0, η5 0, γ1 0.≥≥≥≥

mi
r( ) V ∇ 3⋅( )ni nkΩki λξ ijϒjknk,+ +–=

m d( ) 1
γ1
-----F,=

σ σ0 σ1 n e,〈 〉 2,+=

η1 α4/2, λ γ2/γ1,–= =

η5 α1 α4 α5 α6,+ + +=

γ1 α3 α2, γ2– α3 α2,+= =

η3 2η1– α5 α2λ ,+=

2η1 η5 2η3–+ α1 γ2
2/γ1,+=
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with the support of the Onsager–Parodi relation [17] as
α3 + α2 = α6 – α5. In the vicinity of a phase transition,
the viscous moduli αi have different dependences on
order parameter Q: α1 ∝  Q2, α2, α3, α5, α6 ∝  Q, and
α4 ∝  Q0 [19].

Tables 1 and 2 (see above) summarize viscosities
and other physical parameters that characterize the
most frequently used and well-studied nematic LCs,
also known as MBBA and PAA.

2.2. Basic Equations 

The complete system of hydrodynamic equations
for the isothermal incompressible nematic LC reflects
the conservation laws of mass and of linear and angular
momenta.

1. The continuity equation

(16)

2. The Navier–Stokes equation for viscoelastic LC,

(17)

3. The Leslie–Ericksen equation of angular motion of
the director n(r, t),

(18)

The last equation is written for a negligible specific
angular moment of inertia +LC of the LC, namely,

+LC ! , where r0 is the characteristic size of the
system. This is true in our case, where r0 is the radius of
the jet.

We consider an isothermal incompressible jet flow-
ing along the z axis out of a nozzle at velocity V. The
initial orientation of director n0 is assumed to be col-
linear with V. Deviations from the initial values of the
director and pressure are defined as n1 = n – n0 and P1 =
P – P0, respectively, where P0 = σ0/r0 is the unperturbed
pressure within the cylindrical jet. In the linear approx-
imation, |n1| ! 1, Eqs. (16)–(18) are simplified as

(19)

divV 0.=

ρ
∂Vi

∂t
-------- ρ V ∇ 3⋅( )Vi+

∂
∂xk

-------- Tik
r( ) Tik

d( )+( ).=

∂n
∂t
------ m r( ) m d( ).+=

ρr0
2

divV 0, ρ
∂Vi

∂t
--------

∂P1

∂xi

---------–
∂Tik

d( )

∂xk

------------+= =

+
1 λ–

2
------------ni

0divF
1 λ+

2
------------ n0 ∇ 3⋅( )Fi,–

∂ni
1

∂t
-------- nk

0Ωki λξ ij
0 ϒjknk

0 1
γ1
-----Fi,++=

ξ ij
0 δij ni

0n j
0, i j k, ,– x y z., ,= =
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Choosing  = 1 gives Fz = 0, and hence,

(20)

(21)

(22)

where ∆2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional
Laplacian, β1 = η1, β2 = η3/2, β3 = η5 – η3/2, and Fx and
Fy are given in (6). Because isotropic viscosity implies
that βi = β, the LCs MBBA and PAA mentioned above
are clearly far from isotropic (see Tables 1 and 2).

To make the problem more specific and easier to
solve, we consider axisymmetric disturbances in the
system of a cylindrical LC jet with radius r0. In this
case,

(23)

(24)

(25)

nz
0

∂V x

∂x
---------

∂Vy

∂y
---------

∂Vz

∂z
--------+ + 0,=

ρ
∂V x
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---------

∂P1

∂x
---------– β1∆2 β2
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-------+ 
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ρ
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∂Fy
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ρ
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1
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γ1
-----,++=

∂nz
1

∂t
-------- 0,=

∂Vz

∂z
--------

∂Vr

∂r
--------

Vr
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∂Vr
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1
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(26)

where

(27)

Equations (23)–(26) describe the ordinary linear
hydrodynamic behavior of isotropic incompressible
liquids if the LC properties vanish: K, γ1  0 and
βi = β. The result is the well-known continuity equation
and the linearized Navier–Stokes equation,

(28)

2.3. Boundary Conditions at the Free Surface 

Boundary conditions at the free surface of an LC
state that the jump in normal stress consists of two
parts: one depends on the surface tension σ and the
other on the elastic disturbance Welast of the uniform
director field n0(r). Assuming that no tangential
stresses exist at the free surface, we can express the
boundary conditions at r = r0 as

(29)

where ei are the components of the normal unit vector e
in the reference frame of the LC cylinder and * =
(1/R1 + 1/R2)/2 denotes the mean surface curvature with
the principal radii R1 and R2.

The nonhydrodynamic part of the boundary condi-
tions with strong tangential anchoring of the director at
the free surface holds if the scale of deformation of the
initial surface is much larger than the molecular length
of LCs.5 This determines the tangential behavior of a
smoothly disturbed director n at the free surface, ez !
er ~ 1:

(30)

The last constraint cancels the gradient term in Eq. (29).
We finally obtain the boundary conditions in the linear

5 Strictly speaking, this assumption is correct when the equilibrium
distribution of the director field n(r) is free of singularities. The
problem of the minimal surface of an LC drop presents another
situation where a substantial rearrangement of the field n(r) at the
surface can decrease the total energy by destroying the disclina-
tion core within the drop.
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∂nr
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∂t
-------- γ1µ1

∂Vr

∂z
-------- γ1µ2

∂Vz

∂r
-------- Fr, nz

1+ + 0,= =
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1
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------------.= =

divV 0, ρ∂V
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-------++ 0,=
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1
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approximation of the variables , Vr , Vz , and P1,

(31)

Substitution of the expressions for the reactive and dis-
sipative stress tensors gives

(32)

where *0 = (2r0)–1 is the initial mean curvature of the
LC cylinder. The equations for the jet surface—dis-
turbed by a wave ζ(z, t)—and its radial velocity ∂ζ/∂t
are given by

(33)

where ζ ! r0 is the radial displacement of a surface
point. The principal radii of the surface curvature, in the
linear approximation with respect to ζ, and its deriva-
tives can be expressed as

(34)

This transforms the boundary conditions given by
Eqs. (30) and (32) into

(35)

(36)

(37)

The term Welast deserves further discussion. It reflects
the existence of normal stresses at the surface, which
arise due to the resistance of the uniformly orientated
continuous LC media to the surface disturbance. The
term Welast vanishes in undisturbed LC jets and depends
linearly on the elastic modulus K, the radius r0, and the
derivatives of ζ. Moreover, the invariance of the prob-
lem under inversion of the 

 

z

 

 axis requires dependence
on derivatives of only even orders. An explicit expres-
sion for 
 

W
 

elast

 
 is derived in Section 3.1.

3. PLATEAU INSTABILITY
IN AN LC CYLINDER

Before considering the sophisticated mathematics
of Eqs. (23)–(26) supplemented by boundary condi-
tions (35)–(37), we discuss capillary instability of the
LC cylinder. This is done by applying the Plateau con-
siderations [29] on the shape of a liquid mass with-
drawn from the action of gravity.
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 
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We consider an LC cylinder with surface disturbed
in accordance with (33), where ζ = ζ0coskz, ζ0 is small
compared to r0, and k = 2π/Λ, with Λ being the distur-
bance wavelength. The idea of Plateau, applied here, is
to find the cut-off wavelength Λs of the disturbance that
determines breakage of the cylinder into droplets with
due decrease in the total energy.

The average volume v   over one wavelength Λ in
the z direction is given by

(38)

where r0 in the right-hand side is given as a second-
order expansion in ζ0. The total energy % of the LC cyl-
inder per unit wavelength with a disturbed director field
n(r) is given by

(39)

The static director field n(r) can be found from Eq. (27)
and the associated boundary condition (35),

(40)

Equation (40) has the solution

(41)

which is finite at r = 0, where Im(x) is the modified
Bessel function of order m. The contribution of elastic
forces is determined by

(42)

where

v
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∫d
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2 1

2
---ζ0

2
+ 
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v
π
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1
4
---

πζ0
2

v
---------– 

  ,=

% σ0 s
K
2
---- z div2n rot2n+( ) s.d

s

∫d

0

Λ

∫+d

s

∫=

nz
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2 kr( ) kz A2
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2[ ] ,
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Simple integration of Eq. (39) gives

(43)

Inserting

 

 r

 

0

 

 from Eq. (38) into the first term above, we
obtain

(44)

The positive root 

 

ϖ

 

s

 

 = 

 

k

 

s

 

r

 

0

 

 of the expression in the right-
hand side of Eq. (44) determines the cut-off wavelength

 

Λ

 

s

 

 of capillary disturbances that renders the LC cylin-
der unstable.

The quadratic approximation with respect to the
derivatives 

 

∂

 

n

 

/

 

∂

 

x

 

j

 

 in Eq. (1), which provides the basis
for the Frank theory, makes expression (44) correct
only in terms of the 

 

ϖ

 

2

 

 approximation. Indeed, the
power of 

 

ϖ

 

 in Eq. (44) must not exceed 2, otherwise
calculation becomes inconsistent. We thus obtain

(45)

where the subscript 

 

s

 

 denotes the static nature of the
Plateau instability. The asymptotic behavior of 

 

ϖ

 

s

 

(

 

κ

 

)
shows two important limits:

(46)

Figure 1 shows a plot of 
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r

 

0

 

 versus 

 

κ

 

 for the Plateau
instabilities in the LC and in ordinary liquid.

The corresponding asymptotic cut-off wavelength

 

Λ

 

s

 

 is obtained as

(47)

This result shows that 

 

k

 

 

 

≥

 

 ks increases the total energy
% of the disturbed system, whereas k < ks decreases it.
According to (46), there are two marginal regimes of
instability.
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1. The capillary regime r0 @ K/s0. Here, Λs is close
to the circumference of the cylinder and the elastic

deformation contribution  to the total energy %

is negligible. This regime should apply to a wide range
of nematic LCs, because the common values of K ~
10−11 J/m [19] and σ0 ~ 10–2 J/m2 [23] lead to K/σ0 ~
10−9 m. This value is evidently smaller than the pres-
ently attainable radii of the jet.

2. The elastic regime r0 ! K/s0. This case reflects
the dominance of elastic deformation and predicts an

unusual behavior for Λs ∝  . This regime cannot be
reached by a simple increase of the elastic moduli,
because their magnitude is determined by K ~ κBT/a,
where κBT ≈ 4 × 10–21 J is the Boltzmann thermal
energy at room temperature and a ≈ 5 × 10–10 m is the
molecular length of the LC. In contrast, the effect of
surface tension can be diminished by surfactants or by
charging the surface of the liquid. In the latter case, the
charge can virtually eliminate the effect of surface ten-
sion and provide conditions under which elastic forces
predominate.

3.1. Welast and the Gaussian Surface Curvature 

A straightforward way to derive an expression for
Welast is to solve the elastic problem for the stresses
existing on a deformed axisymmetric surface of an LC
cylinder. This is related to the Plateau instability, which
obviates the need to repeat the entire procedure.

When we turn from Plateau considerations regard-
ing the static instability of LC cylinders to the capillary
instability of LC jets, the question is whether the cut-off
wavelengths of the static (Λs) and hydrodynamic (Λd)
problems coincide. This question was neglected by
Rayleigh in his studies on isotropic viscous liquids,
because the cut-off wavelengths always coincide for
ordinary liquids, Λs ≡ Λd . This identity reflects a deep
equivalence principle of the bifurcation point for a non-
trivial steady state of a dynamic system and the thresh-
old of static instability related to the minimum of its
free energy % [4].

Using this Λs ≡ Λd , we construct the term Welast ,
which enters boundary condition (37). For this, we
examine and represent the total energy (45) as

(48)

Next, we compare the expression in the brackets with
the right-hand side of Eq. (37). This gives Welast , which
generates the elastic contribution in (48),

(49)

Eddv∫

r0

% 2σ0 πv–

=  
πζ0r0

2
------------- σ0

ζ0

r0
2

----- ζ0k
2

– 
 – 2K

ζ0

r0
-----k

2
+ .

Welast 2K&, & 1
R1R2
------------

1
r0
----∂2ζ

∂z2
--------,–= = =
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where & is the Gaussian surface curvature in accor-
dance with (34). Thus, the final expression for bound-
ary conditions (29) is based on two fundamental invari-
ants of the surface curvature, the mean surface curva-
ture * and the Gaussian surface curvature &.

4. DISPERSION RELATION

Rayleigh was the first to observe [1] that the insta-
bility problem is not so definite, contrary to the Plateau
theory. The mode whereby a system deviates from
unstable equilibrium must depend on the nature and
characteristics of small displacements to which this
system is subjected. In the absence of such displace-
ment, any system, however unstable, cannot depart
from equilibrium. These characteristics, being hydro-
dynamic, reflect the effect of viscosity, which predom-
inates over inertia. For ordinary liquids, the mode of the
maximum instability, which corresponds to the wave-
length ΛR = 4.508 × 2r0, exceeds the circumference of
the liquid cylinder. We anticipate that the instability of
LC jets has similar features.

The fact that the velocity potential does not exist in
an anisotropic viscoelastic liquid dictates a standard
approach to this problem that was first elaborated by
Rayleigh [2]. We define the Stokes stream function
Ψ(r, t) and the director potential Θ(r, t) as

(50)

such that continuity equation (23) holds. From the other

Vr
1
r
---∂Ψ

∂z
--------, Vz–

1
r
---∂Ψ

∂r
--------, nr

1 ∂Θ
∂r
-------,= = =

0 2 4 6 8 10
κ

0.2

0.4

0.6

0.8

1.0

ksr0

Fig. 1. Universal plots of ksr0 versus κ for the Plateau insta-
bilities in an LC cylinder (solid line), and in ordinary liquid,
ksr0 = 1 (dashed line).
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three equations, (24)–(26), we have

(51)

(52)

(53)

Applying the commutation rules gives

which facilitates simplification of the above equations.
Assuming that an axisymmetric disturbance character-
ized by the wavelength 2π/k increases exponentially in
time with the growth rate s gives

(54)

Inserting (54) in (51)–(53) leads to the amplitude equa-
tions

(55)

(56)

(57)

The new variables in (54) require reformulating
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boundary conditions (35)–(37) as

(58)

where

The real forms of amplitude equations (55)–(57) and
boundary conditions (58) imply that expression (54)
divides the five variables into two groups: P1, ζ, and Ψ,
Θ, Fr . These groups are shifted with respect to each
other by the phase angle π/2.

4.1. Reduction of the Amplitude Equations 

In this section, we perform the standard procedure
for the simplification of amplitude equations (55)–(57).
Substituting f from (57) in the other amplitude equa-
tions, we obtain

(59)

(60)

(61)

where

(62)

and B2 > 0, B3 > 0 by virtue of conditions (12). Let a
new stream function χ be defined as ψ = r∂χ/∂r. The
orientational (ϑ) and kinematic (νi) viscosities, as well
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as the other auxiliary functions, are defined by the rela-
tions

(63)

where the first inequality in (63) applies to the known
nematic LC fluids (see Tables 1 and 2). Using the new
notation, we find the first integrals of the amplitude
equations,

(64)

(65)

(66)

Next, we eliminate the pressure amplitude p from
Eqs. (64) and (65). This gives

(67)

(68)

Diagonalizing the matrix of operators in (67) and (68),
we obtain homogeneous equations for the functions
χ(r) and θ(r),

(69)

where

(70)

It is easy to verify that all coefficients Dj are positive if
the conditions Bi > 0 and µ2 ! 1, ϑ /νi ! 1 are satisfied
(for all i). The latter conditions are in good agreement
with numerous observations in nematic LCs [19].

Factoring the polynomial differential operator fur-
ther (recalling that D3 > 0) gives

(71)

Equation (71) facilitates finding the finite solutions of
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Eq. (69),

(72)

where the second fundamental solutions that diverge at
r = 0 have been excluded, Cj and Gj are indeterminate

coefficients, and  are three generic6 roots of the
cubic equation

(73)

The coefficients Gj can be expressed via Cj after insert-
ing solutions (72) into Eq. (68):

(74)

The amplitude of the pressure p(r), the stream function
ψ(r), and the displacement ς(r0) of a point on the sur-
face are easily found from Eqs. (57), (64), (68),
and (74) as

(75)

6 The freedom to choose the physical parameters of the LC seems
to admit a degeneration of cubic equation (73), when some of the

roots  can coincide in different ways. This coincidence is not

important because it can occur only at specific wave vectors k* on
which the coefficients D2, D1, and D0 depend. On the other hand,
this kind of degeneration might be interesting if k* is accidentally
close to the cut-off wave vector kd at which the breakage of the
LC jet develops.
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Before proceeding, we discuss the distribution of the

roots  of cubic equation (73) in the complex plane.

First,  is always positive because Dj > 0, as men-
tioned above and as follows from the Descartes rule of
sign interchange in the sequence of coefficients for real

algebraic equations. The other two roots  are either
positive or complex conjugate with positive real parts.
The last case leads to Bessel functions of complex argu-
ments in (72). This fact can indicate that the separation
of the two groups of functions P1, ζ and Ψ, Θ, Fr by the
phase angle π/2 is more elaborate than assumed in (54).
Another consequence of the existence of complex con-

jugate roots , which is more important from the
physical standpoint, is the appearance of imaginary
contributions to the dispersion equation. This can lead
to a complex value of the growth rate s =  + iω as its
solution and to the nonsteady (oscillatory) evolution of
the jet, e.g.,

where ω is the frequency of oscillations.

4.2. Dispersion Equation 

In what follows, we derive the dispersion equation
s = s(kr0) that determines the evolution of the Rayleigh
instability in LC jets. The revised version of boundary
conditions (58) at r = r0, which utilizes the new stream
function χ(r), is given by

(76)

where B5 = β2 + γ1µ1µ2. Substituting (72) and (75) into
(76) and eliminating the coefficients C1, C2, and C3
from the linear equations leads to a (3 × 3)-determinant
equation:

(77)

where
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and  = dI1(y)/dy. Equation (77) is an implicit form
of the exact dispersion relation, which is highly com-
plex and cannot be solved analytically in the general
case. Nevertheless, here we can verify that the cut-off
wavelength Λd coincides with Λs obtained from the Pla-
teau theory. Indeed, the cut-off regime corresponds to
boundary conditions (76) when s = 0 and is satisfied for
Γ = 0, i.e., Λd = Λs . The implications of Eq. (77) can be
extended further, for the study of different modes of the
LC flow, including oscillations, and in order to describe
the asymptotic behavior of LC jets. This is outside the
scope of this paper. In the next section, we consider a
case that facilitates decoupling of hydrodynamic and
orientational modes, and consequently the solution of
the Rayleigh instability problem in a closed form.

5. DECOUPLING OF HYDRODYNAMIC 
AND ORIENTATIONAL MODES

In this section, we discuss the case in which disper-
sion equation (77) becomes solvable. Here, we encoun-
ter another problem: the elasticity of the LC and anisot-
ropy of its viscous properties have the same origin and
therefore cannot be considered separately. Nevertheless,
we investigate the case where dispersion equation (77)
can be simplified. The large number of physical param-
eters involved (three viscous moduli, two kinetic coef-
ficients, λ and γ1, orientational (ϑ) and kinematic (νi)
viscosities, and the dimensionless parameter κ) call for
such a treatment.

We consider an LC with rodlike molecules (λ ≈ 1)
and low orientational viscosity ϑ

(79)

where the first three relations apply to known nematic
LC fluids (see Tables 1 and 2). The last inequality
in (79) applies to the low-viscosity limit, which was
considered for the kinematic viscosity in ordinary liq-
uids by Rayleigh [1].

In this case, characteristic equation (73) reduces to

(80)
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The three roots  of Eq. (73) become

(81)

A simple analysis of the last expression shows that the
dimensionless parameter @ has a critical value of 2 that
separates two different evolution scenarios of the LC

jet. If @ > 2, both roots,  and , are positive and
the capillary instability always appears via trivial bifur-
cation (steady-state instability). This scenario applies to
MBBA and PAA LCs with @MBBA = 5.92 and @PAA =
7.11 (see Tables 1 and 2). In the opposite case, @ < 2,
we can find the regime where the above roots are com-
plex conjugate. This leads to the oscillatory evolution
of the jet, which appears via the Hopf bifurcation (see
Section 4.1).

Significant simplification can be obtained if we
assume degeneration of the three viscosities at the crit-
ical value @∗  = 2. Indeed, if the viscous moduli βj sat-
isfy the relation

(82)

the three roots  of Eq. (73) are

(83)

We note that relation (82) cancels the last term in (9).
Expressions (83) indicate that the problem is decom-
posed into two parts, or, in other words, the cross terms
in Eqs. (67) and (68) are dropped. Thus, the first part of
the problem is associated with the Rayleigh instability,
described by

(84)

with boundary conditions that account for elasticity,

(85)

The second part is associated with an orientational
instability of the director field n(r, t),
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with the boundary condition

(86)

The solutions of Eqs. (84) and (86) are

(87)

With these solutions, the hydrodynamic pressure 
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),
stream function 
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), and surface displacement 
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)
are obtained as

where the only indeterminates are 
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 and 
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2

 

, while 
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3

 

can be expressed as their linear combination,

(88)

provided that 

 

s

 

 = 

 

s

 

(

 

kr

 

0

 

) satisfies the dispersion relation
that follows from (85) and (87),
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Fig. 2. A plot of the rescaled growth rate S versus kr0 for low

viscosity s–(kr0) (solid curves) and high viscosity

2β2r0/σ0 s+(kr0) (dashed curves) for different values of κ in
descending order from top down, κ = 0, 0.25, 1, 5. If ϑ /ν =
4κ, then the scaling for both viscous regimes is the same. 
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(89)

If κ = 0 and  = , Eq. (89) is known as the Weber
equation for a viscous isotropic liquid [6]. For low vis-

cosity,7 β1 ~ β2 ! , a Rayleigh-type expression
is obtained (see Fig. 2),

(90)

where the subscript “–” denotes low viscosity.

The maximum  in Eq. (90), which corresponds

to the wave number , leads to evolution of the larg-
est capillary instability. Numerical calculations show

that  and  are both proportional to (1 + 2κ)–1/2:

(91)

When high viscosity prevails, β1 ~ β2 @ , the
dispersion equation is given by (see Fig. 2)

(92)

where the subscript “+” denotes high viscosity. In this
limit, similar to ordinary liquids [4], there is no finite
mode of the maximum instability for any κ. In this case,
we have

(93)

7 In the theory of viscoisotropic liquid jets, this case is known [7]
to pertain to the range of low Ohnesorge numbers Oh =

η/  that determine the competition between the hydrody-

namic and surface tension forces. Expression (92) corresponds to
the case of high Ohnesorge numbers.
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Nevertheless, there exists a continuous range [0, (1 +

2κ)–1/2 ] of wave numbers k with a finite disturbance
growth rate s+(kr0), which affect the cylindrical jet.

We note that the dispersion curves shown in Fig. 2
and those in Fig. 5 in [21] appear to be similar, but are
characterized by different physical parameters. The
reason for this observation is the similarity between
Weber equation (89) and dispersion equation (36)
in [21], which are obtained from different models. Our
approach was to develop a general axisymmetric solu-
tion in the framework of the three-dimensional model.
This model dates back to the Rayleigh–Weber theory
[2, 3] and accounts for the radial inhomogeneity of the
disturbed director field. The implicit solutions of
Eq. (77) reflect the radial dependence of both the
hydrodynamic V(r, z, t) and orientational n(r, z, t)
modes, and they include all types of LC jet evolution. A
specific case where the hydrodynamic and orientational
modes are decoupled exhibits this radial dependence
and yields dispersion equation (89) in explicit form.

In contrast, the one-dimensional analysis of the LC
jet evolution, used in [21], is hardly compatible with the
distortion of the director field n(r, z, t), and therefore
must be supported by assuming a fixed axial direction
of n0 (see detailed comments in Section 1). This
endows their model with an inherent “decoupling” that
results from the a priori elimination of elastic forces.
Obviously, the similarity between the above-mentioned
dispersion curves disappears if we consider the general
solution given by (77).

5.1. Hydrodynamic Influence 
on the Orientational Instability of LCs 

We conclude this section with a brief discussion
regarding the hydrodynamic influence on the orienta-
tional instability of the director field n(r, t). As the
effect of hydrodynamics changes the wave number ks of
the Plateau instability to kmax, the flow drives the orien-
tational instability (41) of the director field n(r, t).
Indeed, in accordance with (87),

(94)

It is convenient to consider the following two marginal
viscous regimes.

1. The low-viscosity limit,

(95)

where ε ~ 10–6–10–4 is a small dimensionless para-
meter.

2. The high-viscosity limit,

(96)
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In both limits, the distribution of the director field
n(r, t) in the jet is always nontrivial and definitely far
from static distribution (41).

6. CONCLUSIONS

1. The capillary instability of an LC jet with a strong
tangential anchoring of the director at the surface is
considered within the linear hydrodynamics of the
uniaxial nematic LC. Its static version, which is called
the Plateau instability and corresponds to the varia-
tional problem of minimal free energy, predicts a sub-
stantial dependence of the disturbance cut-off wave-
length on the dimensionless parameter κ = K/σ0r0.

2. The hydrodynamic problem of the capillary insta-
bility in LC jets is solved exactly and the dispersion
relation is derived. This relation, which is represented
as a determinant equation, implicitly expresses the dis-
persion s = s(k) of the growth rate s as a function of the
wave number k of axisymmetric disturbances of the jet.

3. The case where the dispersion equation becomes
explicitly solvable is considered in detail. It corre-
sponds to the regime in which the hydrodynamic and
orientational modes become decoupled. The hydrody-
namics changes the wave number ks of the Plateau
instability into kmax, which produces evolution of the
largest capillary instability. Similarly, a hydrodynamic
flow influences the static orientational instability of the
director field n(r, t).

4. The present theory can easily be extended to non-
uniaxial nematic LCs that possess finite point symme-
try groups G ⊂  O(3) as distinguished from the uniaxial
group D∞h The corresponding expressions for the free
energy density Ed(G) and the dissipative function D(G)
were derived in [31].

5. In this work, the effect of external fields was not
considered. However, the theory developed here facili-
tates the treatment of the Rayleigh instability in nem-
atic LCs in the presence of static electromagnetic fields.
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Abstract—A criterion for selecting the order parameter in the immediate vicinity of the transition temperature
is derived within the framework of a phenomenological description of superfluid 3He in aerogel. The order
parameter of the BW phase of pure 3He satisfies this criterion, whereas that of the ABM phase does not. A class
of order parameters that could be used to describe the properties of the A-like phase of 3He observed in aerogel
was found. The influence of a magnetic field on the order parameters from this class is considered. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Superfluid 3He phases are the most thoroughly stud-
ied example of unconventional Cooper pairing. Pairing
is considered unconventional if, in addition to gauge
symmetry, other symmetries of the normal phase are
broken by the pairing-induced phase transition. The
introduction of aerogel into liquid 3He makes it possi-
ble to use 3He for studying the influence of impurities
on unconventional Cooper pairing [1]. These studies
may be of interest for understanding the properties of
metallic superconductors with unconventional Cooper
pairing, such as UPt3, UBe13, Sr2Ru2O4, UGe2, etc.,
which unavoidably contain impurities. Aerogel can be
thought of as a rigid frame formed by strands approxi-
mately 30 Å thick. The estimated mean distance
between aerogel strands is 200 Å; this is close to the
correlation length ξ0 in superfluid 3He, which changes
in the range 160–500 Å depending on pressure. Like
usual impurities, aerogel limits the mean free path l of
Fermi quasi-particles in liquid 3He. According to esti-
mates, l ~ 1500–1800 Å for 98%-porous aerogel, which
fills less than 2% of its total volume. This length is large
compared with ξ0. According to the theory of supercon-
ducting alloys [2], impurities decrease the superfluid
transition temperature Tc proportionally to ξ0/l [3]. Two
superfluid phases are observed in the 3He + aerogel sys-
tem below Tc [4]. By analogy with pure (free of aerogel)
3He, these phases are called A- and B-like. This implies
correspondence, which is exact for the B-like phase.
The observation of a uniformly precessing domain in
it [5] shows that the difference between its order
parameter and that of the BW phase is small if any. The
observed properties of the A-like phase differ more sub-
stantially from those of the A phase of pure 3He. To
identify this phase, we must answer the question of
whether or not aerogel can influence the form of the
1063-7761/04/9805- $26.00 © 20974
order parameter, and if it can, then what phases are
admissible. The purpose of this work was to answer this
question. Next, we will formulate a procedure for deter-
mining the order parameters of the superfluid 3He
phases in aerogel in the vicinity of the transition point
Tc . This procedure will be applied to the A-like phase.

2. AEROGEL INTERACTION 
WITH THE ORDER PARAMETER

Under the conditions of Cooper pairing with l ≠ 0,
we must expect effects that arise because of fluctuations
in the arrangement of aerogel strands in addition to the
already mentioned overall decrease in Tc determined by
the mean free path. Near Tc , these effects can be
described phenomenologically on the assumption that
gel creates a random field that acts on the order param-
eter. The corresponding change in the free energy of
superfluid phases is found from symmetry consider-
ations and supposed aerogel properties. Pairing occurs
in 3He with orbital momentum l = 1 and spin s = 1. The
corresponding order parameter is a complex 3 × 3
matrix Aµj , where µ and j are the spin and orbital indi-
ces, respectively. The interaction of 3He with aerogel
strands arises because of the scattering of quasi-parti-
cles on them. Scattering changes quasi-particle
momenta, and this is the mechanism of aerogel interac-
tions with the orbital part of Aµj . Aerogel can also inter-
act with the spin part of the order parameter. The aero-
gel material (SiO2) is nonmagnetic, but when aerogel is
immersed into liquid 3He, aerogel strands become cov-
ered with a layer of localized 3He atoms that can partic-
ipate in spin exchange with scattered quasi-particles. To
“switch off” interactions with spin, an admixture of 4He
is added into the cell for measurements. The atoms that
are first deposited on the strands are then 4He, and, if
present in a sufficient concentration, they fully replace
004 MAIK “Nauka/Interperiodica”



        

SUPERFLUID 

 

3

 

He PHASES IN AEROGEL 975

                                                                                                       
localized 3He atoms. It follows that 3He in aerogel with
and without an admixture of 4He can have different
properties. Its magnetic properties should differ the
most strongly. Everywhere below, we assume that aero-
gel strands are covered by a layer of 4He. Aerogel then
only acts on the orbital part of Aµj , and, in the principal
order in Aµj , the corresponding free energy increment
can be written in the form [6]

(1)

where N(0) is the density of states at the Fermi bound-
ary and ηjl(r) is the random static tensor field. Because
of the t  –t invariance, the ηjl(r) tensor is real and
symmetrical, and its isotropic part (1/3)ηll(r)δjl

describes the local change in Tc = Tc(r) caused by scat-
terer density fluctuations. The anisotropic part

describes the local splitting of Tc caused by spherical
symmetry violation by gel strands. The isotropic ran-
dom field part will further be considered included into
Tc = Tc(r). The results obtained in [7] allow the random
field to be estimated as

where l is the mean free path, R is the strand radius, and
x is the volume fraction occupied by aerogel. This esti-
mate gives the correct order of magnitude. For 98%-
porous aerogel, ξ0/l ~ 1/10. The spatial scale of field
ηjl(r) changes is the distance between strands d ~

R/ ; this distance is comparable to ξ0 in 98%-porous
aerogel. If the order parameter is deformed on a scale
of the order of d, the relative gradient energy loss is of
about (ξ0/d)2 and larger than the energy gain from the
interaction with the field ηjl(r) by a factor proportional
to ξ0/R @ 1. It is unfavorable for the order parameter to
follow field changes or form states localized on a scale
of the order of d. The weakness of field ηjl(r) does not
rule out the possibility of formation of localized states
on a scale of L @ d. This possibility exists because the
mean order parameter  is degenerate with respect to
orbital rotations. According to Imry and Ma [8], contin-
uous degeneracy of the order parameter can be respon-
sible for disordering under the action of a random field.
In particular, Imry and Ma show that an arbitrarily
weak field destroys long-range order for the vector
order parameter s(r) that interacts with random field
h(r) as

(2)

Indeed, the mean random field h(r) value vanishes; that

is, (1/L3) d3r  0 as L  ∞, where L is the lin-

Fη N 0( ) η jl r( )Aµj Aµl* d3r,∫=

η jl r( ) 1
3
---η ll r( )δjl η jl

a( )≡–

η jl xξ0/R ξ0/l,∼ ∼

x

Aµj

FIM s r( ) h r( )d3r.⋅∫–=

h r( )∫
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ear dimension of the region over which the integration
is performed. The mean h(r) value tends to zero propor-
tionally to (d/L)3/2. The energy gain of the orientation of
the order parameter along the mean field in the region
with linear dimension on the order of L tends to zero by
the same law. The energy loss decreases faster, by the
law (ξ0/L)2, and, at large L, partitioning into domains
becomes favorable. This partitioning destroys long-
range order. When this general argument is applied to
superfluid 3He in aerogel, it should be borne in mind
that interaction Fη differs from FIM; namely, there exist

nonzero  for which Fη vanishes at all admissible

. These  are found from the equation

(3)

Its solutions satisfy the equation

(4)

which is independent of ηjl . Equation (4) determines

the real part of the  product, its imaginary part
may be an arbitrary antisymmetric tensor. When inter-
action with a random field vanishes, changes in the ori-
entation of the order parameter give no energy gain and
long-range order is not destroyed. Already these quali-
tative arguments are evidence that condition (3) is a
necessary criterion of the stability of the corresponding
value  with respect to random field ηjl(r) if order
parameter fluctuations can be ignored [9].

In the next section, we formulate a procedure for
finding the order parameter in the presence of random
field ηjl(r).

3. THE SELECTION
OF SUPERFLUID PHASES

The Ginzburg–Landau functional including interac-
tion (1) is written as

(5)

where τ = (T – Tc)/Tc and Is is the nth fourth-order
invariant in the expansion of free energy in Aµj; we will

Aµj

η jl
a( ) Aµj

η jl
a( )Aµj Aµl* 0.=

AµlAµj* Aµj Aµl*+ δjl const⋅=

Aµj Aµl*

Aµj

FGL N 0( ) d3r τ Aµj Aµj
* η jl r( )Aµj Aµl

* 1
2
--- βsIs

s 1=

5

∑+ +∫=

+
1
2
--- K1

∂Aµl

∂x j

-----------
∂Aµl*

∂x j

----------- K2

∂Aµl

∂x j

-----------
∂Aµj*

∂xl

-----------+


+ K3

∂Aµj

∂x j

-----------
∂Aµl*

∂xl

-----------
 ,
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not need expressions for Is (see [10]) here. The coeffi-
cients β1, …, β5 and K1, K2, and K3 are phenomenolog-
ical constants. In what follows, we assume that K1 =
K2 = K3 ≡ K, in accordance with the weak-coupling
approximation. The gradient terms can also contain
random components, for instance, of the form
uj(r)Aµl∂ /∂xj , where uj(r) is a random vector.1 The
component written above is, by its meaning, the local
random velocity to within a factor of "/m. All terms of
this type are obtained by “elongating” the derivatives,

,

in energy equation (5). Further reasoning shows that
these terms do not influence the selection of phases; for
this reason, they are not taken into account here. The
variation of functional (5) with respect to  gives the
following equation for the equilibrium order parameter:

(6)

The variation in Amj gives the equation complex conju-
gate to (6). According to the estimate given above, ran-
dom field ηjl(r) is low. Larkin and Ovchinnikov [11]
estimated the influence of a low random field on a one-
component order parameter (conventional pairing) near
Tc . We will use similar reasoning. A more complex
form of the order parameter and the degeneracy men-
tioned above, however, require the introduction of non-
trivial changes into the procedure used in [11].

A random field causes order parameter fluctuations
aµj about its mean value,

The condition  ≠ 0 is the criterion of long-range
ordering, and it determines the transition temperature Tc.
Not too close to Tc, aµj can be considered a value of the
first order of smallness with respect to ηjl. We restrict our
consideration to such temperatures. Let us expand (6) in
this temperature region in the vicinity of Aµj =  and

1 It was V.I. Marchenko who brought the existence of such energy
terms to my attention.

Aµl*

∂
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------- ∂
∂x j
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Aµj*

τ Aµj
1
2
--- βs

∂Is

∂Aµj*
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s 1=
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---------------+
 
 
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Aµlη lj.–=

Aµj r( ) Aµj aµj r( ).+=

Aµj

Aµj
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retain terms up to second order in aµj and ηjl in this
expansion,

(7)

Averaging (7) over scales much larger than the mean
distance between aerogel strands yields

(8)

Along with , (8) contains the mean products of fluc-
tuation components 〈aνnaβl〉, etc. In order to determine
these components, we must gather the rapidly varying
terms in (7) and in its complex conjugate,

(9)

(10)

This is a linear inhomogeneous system of equations.
Because of the degeneracy of  mentioned above, the
corresponding homogeneous system has solutions.
These are the increments of  and  that corre-
spond to small rotation Ωq ,

(11)

where ejqr is the absolutely antisymmetric tensor. To
solve (9), (10), we must pass to Fourier transforms of
ηjl(k) and aµj(k) in these equations. In what follows, the
character of the singularity of aµj(k) as k  0 will only

τ Aµj τaµj+

+
1
2
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∂Is

∂Aµj*
-----------
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∂Aµj* ∂Aνn
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s 1=

5
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+
1
2
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* ∂Aνn∂Aβl

----------------------------------aνnaβl 2
∂3Is
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* ∂Aβl

----------------------------------aνn
*

aβl+
 
 
 

–
1
2
---K

∂2aµj

∂xl
2
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∂2aµl

∂xl∂x j

---------------+
 
 
 

Aµlη lj– aµlη lj.–=
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2
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1
2
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----------------------------------- aνnaβl〈 〉




+
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5

∑+

+ 2
∂3Is

∂Aµj* ∂Aνn* ∂Aβl

----------------------------------- aνn* aβl〈 〉




aµlη lj〈 〉 .–=

Aµj

τaµj
1
2
--- βs

∂2Is

∂Aµj* ∂Aνn

-----------------------aνn

∂2Is

∂Aµj* ∂Aνn*
-----------------------aνn*+

s 1=

5

∑+

–
1
2
---K

∂2aµj

∂xl
2

------------ 2
∂2aµl

∂xl∂x j

---------------+
 
 
 

Aµlη lj,–=

τaµj* 1
2
--- βs

∂2Is

∂Aµj∂Aνn*
-----------------------aνn*

∂2Is

∂Aµj∂Aνn

-----------------------aνn+
s 1=

5

∑+

–
1
2
---K

∂2aµj*

∂xl
2

------------ 2
∂2aµl*

∂xl∂x j

---------------+
 
 
 

Aµl* η lj,–=

Aµj

Aµj Aµj*

ωµj Ωqe jqr Aµr, ωµj* Ωqe jqr Aµr* ,= =
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be essential; the anisotropy of the gradient terms can
therefore be ignored. This allows us to replace the terms
with the derivatives

and

by

and

respectively, in (9) and (10). Multiplying both sides
of (9) and (10) by  and ωµj , respectively, and sum-
ming the resulting equations yields

(12)

for the projection aµj(k)  + (k)ωµj ≡ aω(k). In cal-
culating the means 〈aνnaβl〉 , the aµj components parallel
to ωµj give the contribution proportional to

This integral diverges at the lower limit. The diverging
terms cannot be excluded by renormalizing the con-
stants in the equation for the energy. For a solution
to (8) to exist, it is necessary that the coefficient of the
integral vanish; that is,

(13)

where Qrl =  + . Because Ωn is selected
arbitrarily, it follows from (13) that

(14)

The Qrl matrix is Hermitian and can therefore be
transformed to the diagonal form with real diagonal
matrix elements qr . In the corresponding basis, (14) can
then be rewritten as

1
2
---K

∂2aµj

∂xl
2

------------ 2
∂2aµl

∂xl∂x j

---------------+
 
 
 

1
2
---K

∂2aµj*

∂xl
2

------------ 2
∂2aµl*

∂xl∂x j

---------------+
 
 
 

1
2
---K

∂2aµj

∂xl
2

------------
 
 
 

1
2
---K

∂2aµj*

∂xl
2

------------
 
 
 

,

ωµj*

aω k( ) 2
K
----

ωµj* Aµl ωµj Aµl*+( )η lj
a( )

k2
----------------------------------------------------–=

ωµj* aµj*

ωµj* Aµl ωµj Aµl*+( )η lj
a( )[ ] 2 d3k

k4
--------.∫

Ωne jnrQrlη lj
a( ) 0,=

Aµr Aµl* AµlAµr*

Qrlη lj
a( ) Q jlη lr

a( ).=

qr q j–( )η rj
a( ) 0.=
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This equality should be satisfied at all admissible 
values. It follows that all qr are equal; that is,

which coincides with condition (4).

The order parameters that satisfy (4) can naturally
be called “quasi-isotropic,” because the energy of their
interaction with aerogel does not change under arbi-
trary orbital rotations; that is, continuous degeneracy is
also retained when random tensor field ηjl(r) is taken
into account. Also note that the order parameter Aµj

enters into the tensor of superfluid densities in the com-
bination Aµl  + Aµj ; that is, condition (4) is a
requirement that this tensor be isotropic.

It follows that random field ηjl(r) does not destroy
long-range order only of those 3He phases that have a
quasi-isotropic order parameter. The procedure for
finding order parameters that correspond to the
observed or possible superfluid phases should therefore
begin with selecting a family of  matrices that sat-
isfy condition (4). These matrices are “the correct
zeroth approximation” to the sought order parameter.
Next, we must use (9) and (10) to express aµj and 

via  and ηjl(r). In practice, the Fourier components
of aµj(k) can be found more conveniently. After calcu-
lating the means 〈aνnaβl〉, etc., and substituting them
into (8), (8) becomes a closed equation for determining

. The coefficients β1, …, β5 and K and the cor-
relation functions 〈η νn(k)ηβl(–k)〉  that (8) contains
should be considered given. At ηjl(r) = 0, we return to
the usual equation for determining free energy extrema
for pure 3He.

The order parameter of the BW phase,

(15)

where Rµj is a real orthogonal matrix, satisfies condi-
tion (4). Ignoring dipole interactions allows Rµj to be
transformed into an identity matrix by rotating the spin
axes with respect to the orbital axes. Aerogel can natu-
rally be considered uniform and isotropic. The tensor
structure of the 〈η νn(k)ηβl(–k)〉  correlation functions is
then determined by symmetry [6]. It is also clear from
symmetry considerations that the order parameter,
which is proportional to the unit matrix, satisfies (8). It
follows that the BW phase remains stable in the pres-
ence of aerogel. Compared with pure 3He, the phenom-
enological coefficients β1, …, β5 change in the BW
phase. This influences the region of BW phase stability
and the thermodynamic properties of the phase, which
depend on these coefficients. We will, however, omit
explicit calculations of such fluctuation corrections to
the β1, …, β5 coefficients.

η rn
a( )

Aνr Aν j* Aν j Aνr*+ qδrj,=

Aµj* Aµl*

Aµj

aµj*

Aµj

Aµj

Aµj
BW ∆eiϕ Rµj,=
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The order parameter of the ABM phase,

(16)

does not satisfy criterion (4). This raises the question of
the search for the order parameter that would be capa-
ble of describing the observed properties of the A-like
phase.

4. THE ZEROTH APPROXIMATION
FOR THE ESP PHASES

The measured magnetic susceptibility of the A
phase equals that of the normal phase [4]. It follows that
this phase does not contain Cooper pairs with a zero
spin projection onto the magnetic field direction; that
is, it is an equal spin pairing (ESP) phase. The order
parameter of an arbitrary ESP phase can be written as

(17)

where  and  are the mutually orthogonal unit vec-
tors and the mj , nj , lj , and pj vectors are arbitrary at
this stage. Substituting order parameter (17) into con-
dition (4) shows that, for this condition to be met, the
mj , nj , lj , and pj vectors should satisfy the equation

(18)

It is assumed that the order parameter is normalized by
the condition Aµj  = ∆2. One of the solutions to (18)
(p = 0 and m, n, and l are the set of three orthonormal-
ized vectors) was discussed in detail in [9]. All solu-
tions can conveniently be found using the following
procedure. Consider four four-dimensional vectors Ms ,
Ns , Ls , and Ps (s = 1, 2, 3, 4) that satisfy the equation

(19)

To within collective rotations and reflections, the only

solution to (19) is a set of four vectors  such that

 ·  = δab. Let us select an arbitrary four-dimen-
sional unit vector  = (ν1, ν2, ν3, ν4) and project the

 vectors onto the three-dimensional hyperplane
orthogonal to . This yields the four three-dimensional
vectors

(20)

Multiplying the combination mjml + njnl + lj ll + pjpl by
an arbitrary vector al normal to  and using (20) for m,
n, l, and p shows that these vectors satisfy (18). Equa-

Aµj ∆ 1

2
------- d̂µ m̂ j in̂ j+( ),=

Aµj ∆ 1

3
------- d̂µ m j in j+( ) êµ l j i p j+( )+[ ] ,=

d̂µ êµ

m jml n jnl l jll p j pl+ + + δjl.=

Aµj*

MrMs NrNs LrLs PrPs+ + + δrs.=

q̂ a( )

q̂ a( ) q̂ b( )

ν̂
q̂ a( )

ν̂

m q̂ 1( ) ν1ν̂ , n– q̂ 2( ) ν2ν̂ ,–= =

l q̂ 3( ) ν3ν̂ , p– q̂ 4( ) ν4ν̂ .–= =

ν̂
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tions (20) allow us to find some other properties of the
vectors m, n, l, and p, namely,

(21)

(22)

. (23)

Property (22) can be used to show that [m × n] · [l ×
p] = 0; that is, the normals to the planes spanned by the
m, n and l, p pairs of vectors, respectively, are mutually
perpendicular. This property is retained for all pairs
selected from the set of four vectors m, n, l, and p. It
follows that (17) with the vectors m, n, l, and p given
by (20) determines a three-parameter family of quasi-
isotropic order parameters of the ESP type. Substituting
these order parameters into (5) yields their energies in
the zeroth approximation with respect to ηjl(r),

(24)

The ν1, ν2, ν3, and ν4 parameters appear in (24) only in
the combination Λ ≡ ν1ν4 – ν2ν3. If β1 + β5 ≡ β15 < 0,
the free energy minimum is reached at Λ = 0, that is, at

(25)

In the weak coupling approximation, both coefficients
β1 and β5 are negative, and the inequality β1 + β5 < 0 is
satisfied with a large safety margin. Condition (25) has
simple physical meaning. The order parameters deter-
mined by (17) are not unitary. The phases that corre-
spond to them may have spin densities proportional to

eµνλ Aµj , that is, to (2∆2/3)[  × ][n · l – m · p] for
the order parameter given by (17). Property (22) allows
us to easily ascertain that spontaneous spin density van-
ishes if condition (25) is satisfied. This condition deter-
mines a two-parameter family of nonferromagnetic
quasi-isotropic phases that may include the A-like
phase. This family can be parameterized as follows:
ν1 = sinα sinβ, ν2 = sinα cosβ, ν3 = cosα sinβ, and ν4 =
cosα cosβ. The parameters α = π/4 and β = π/4 corre-
spond to the most symmetrical nonferromagnetic con-
figuration. We then have ν1 = ν2 = ν3 = ν4 = 1/2, the
lengths of the m, n, l, and p vectors are all equal to

/2, and the angles between two arbitrary vectors of
this set are also equal. The vectors connecting the cen-
ter of a regular tetrahedron and its vertices constitute
such a set of four vectors.

If β15 > 0, the Λ2 value should be as large as possible
in the equilibrium state. The maximum Λ2 value is 1/4
and is attained at ν1 = ν4, ν2 = –ν3 or ν1 = –ν4, ν2 = ν3.

m2 n
2

l2 p
2

+ + + 3,=

m n⋅ ν1ν2, m l⋅– ν1ν3,–= =

n l⋅ ν2ν3 … ,,–=

m2 1 ν1
2, n2– 1 ν2

2 …,–= =

FGL
0( )

N 0( )
------------ τ∆2 ∆4

18
------ β1 9β2 β3 5 β4 β5+( )+ + +[+=

– 4 β1 β5+( ) ν1ν4 ν2ν3–( )2 ] .

ν1ν4 ν2ν3.=

Aν j* d̂ ê

3
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The solutions make up a one-parameter family. In the

first case, it can be parameterized as ν1 = ν4 = 

and ν2 = –ν3 = . For instance, the set ν1 = –1/2,

ν2 = ν3 = ν4 = 1/2 corresponds to the most symmetrical
ferromagnetic solution; that is, this solution is obtained
from the most symmetrical nonferromagnetic solution
mj , nj , lj , pj by reversing one of the vectors.

5. MAGNETIC FIELD EFFECTS

In a magnetic field, two terms should be added to the
free energy. One of these is quadratic in the field,

(26)

By the definition of ESP phases, one of the principal
values of the magnetic susceptibility tensor χµν coin-
cides with the susceptibility of the normal phase χn .
Near Tc , the form of the χµν tensor is determined from
symmetry considerations, χµν = χnδµν – κ(Aµj  +

Aνj ). The second term on the right-hand side
describes a decrease in the transverse susceptibility
compared with χn . This is a two-dimensional tensor
with the principal values 2∆2λ1, 2/3, where λ1, 2 are the
roots of the equation

In the nonferromagnetic phase, Λ = 0 and, in addition,
λ1 = 2 and λ2 = 1; that is, the transverse susceptibility is
anisotropic. In the ferromagnetic phase, Λ2 = 1/4, one
obtains λ1 = λ2 = 3/2, and the transverse susceptibility
is isotropic. In the equilibrium state, the order parame-
ter is oriented in such a way that the largest principal
value of χµν corresponds to the magnetic field direction.
Additional energy (26) then has equal values for all
A-like phases.

Apart from the term quadratic in field, the free
energy contains the linear term

(27)

In pure 3He, this term splits the transition to the A phase
into two transitions closely spaced along the tempera-
ture axis. First, a ferromagnetic A1 phase is formed.
This phase only contains Cooper pairs with a single
spin projection. At a lower temperature, the transition
to an A2 phase occurs. In this phase, both spin projec-
tions are present. The ζ coefficient is proportional to the
derivative of the density of states with respect to the
energy, and the temperature interval in which the A1
phase exists is narrow in measure of the smallness of
µH/εF , where µ is the magnetic moment of the 3He
nucleus and εF is the Fermi energy.

1

2
------- γsin

1

2
------- γcos

f H
2( ) 1

2
---χµνHµHν.–=

Aν j*

Aµj*

λ2 3λ– 2 Λ2+ + 0.=

f H
1( ) iζeµνλ Aµj Aν j* Hλ .=
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In aerogel, the term linear in field also influences the
sequence of phase transitions. Let us include it into
energy (24),

(28)

This equation should be minimized with respect to Λ
and ∆2. The result depends on the sign of the sum of β15.
If β15 > 0, the energy minimum is reached at |Λ| = 1/2
at all ∆2; that is, the ferromagnetic phase is stable. The
transition to the superfluid state occurs at τ = ζH/6. At
τ < ζH/6, we have ∆2 = –9τH/B, where τH = τ – ζH/6 and
B = 9β2 + β3 + 5β4 + 4β5. The magnetic moment
includes a small component M = N(0)ζ∆2/6, which is
independent of the field but proportional to ∆2.

However, if β15 < 0, the ferromagnetic phase corre-
sponds to the minimum of energy (28) only in the tem-
perature range (B/β15)(ζH/6) < τ < ζH/6. At τ2 =
ζHB/6β15, the transition to another phase with Λ =
−3ζH/4β15∆2 occurs. As the temperature departs from
τ2, Λ tends to zero; that is, the additional magnetic
moment vanishes. The transition at τ = τ2 is similar to
the A1  A2 transition in pure 3He. It follows that the
ferromagnetic phases considered above are similar to
the A1 phase of pure 3He. The pairing amplitudes for
both spin projections s = 1 and s = –1 are, however,
nonzero.

6. DISCUSSION

To summarize, the superfluid 3He phases whose
order parameter satisfies condition (4) can only form in
aerogel. It was shown for the example of the A-like and
A1-like phases that this condition does not determine

the  matrix unambiguously but specifies quite a
family of such matrices. The order parameter most
favorable energetically can be selected by using an
approximation of a higher order in ηjl(r). The proce-
dure for finding the solution becomes substantially
more complex, and the solution then explicitly depends
on the unknown correlation functions of the random
field ηjl(r). An attempt can be made to narrow the class
of admissible solutions based on the physical properties
of the observed superfluid phases. For instance, transi-
tion splitting in a magnetic field would be evidence that,
of the two possibilities considered in the preceding sec-
tion, we have β15 < 0 and the nonferromagnetic phase is
stable far from Tc . Conversely, if the A1  A2 transi-
tion is absent, the stable phase is ferromagnetic
(β15 > 0). No definite data on this point are available. In
the main approximation with respect to the random
field, all quasi-isotropic phases have an isotropic tensor

FGL
0( )

N 0( )
------------ τ ζHΛ

3
------------– 

  ∆2 2∆4

9
---------β15Λ

2–=

+
∆4

18
------ β1 9β2 β3 5 β4 β5+( )+ + +[ ] .

Aµj
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of superfluid densities. In particular, this feature should
distinguish the A-like phase from the ABM phase of
pure 3He.
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Abstract—Lattice vibrations of the wurtzite-type AIN have been studied by Raman spectroscopy under high-

pressure up to the phase transition to the rock salt structure at 20 GPa. Five fundamental bands , A1(TO),

E1(TO), A1(LO), and E1(LO) have a strong, positive pressure shift, whereas the shift of the low-frequency 

band is weakly positive. We have found that the bond-bending  mode has a positive mode Grüneisen param-
eter γi = 0.04, which is qualitatively consistent with the recently reported value γi = 0.12 [21]. Thus, we confirm
that AIN remains stable with respect to the bond-bending mode, while in most tetrahedral semiconductors,
bond-bending modes soften on compression. Experimental results are compared with the first-principle calcu-
lations. © 2004 MAIK “Nauka/Interperiodica”.

E2
2

E2
1

E2
1

The pressure-induced phonon softening is a signifi-
cant characteristic property of tetrahedral semiconduc-
tors and has been reported in many experimental [1–10]
and theoretical [11–18] works. Negative frequency
shift of the low-energy modes of tetrahedral semicon-
ductors on compression manifests itself in their well-
known negative thermal expansions at low tempera-
tures. These “soft” modes are shearing modes, involv-
ing bond bending in the first order of the strain [15, 18].
Phonon frequency drop, more pronounced for high-Z
materials, reaches about 30% at the threshold of the
pressure-induced phase transitions, when covalent tet-
rahedral structures lose their stability and transform
into more densely packed arrangements. Experimen-
tally, it has been found that the stability of tetrahedral
structures with respect to the bond-bending modes cor-
relates with their absolute stability under pressure to
such an extent that the drop in frequency is faster for
less stable compounds. Weinstein [4, 6] has found that
for six diamond and zinc-blende structure ZnTe, Ge, Si,
ZnSe, ZnS, and GaP semiconductors, there is a remark-
able linearity between the mode Grüneisen parameter

(where νi is the frequency of the mode i and V is the vol-
ume) for the purely bond-bending T A(X) mode and the
transition pressure Ptr for these materials.

γi

d ν iln
d Vln
-------------–=

¶This article was submitted by the authors in English.
1063-7761/04/9805- $26.00 © 20981
Previously, the only known experimental examples
of bond-bending modes with a positive pressure shift
were the bond-bending T A(X) mode of diamond [19]1

and the  mode of wurtzite-type BeO [20]. This
behavior might be regarded as characteristic of the low-
Z second-row semiconductors; however, recent Raman

measurements found a similar behavior for the 
mode of the wurtzite-type AIN (w-AIN) at pressures up
to 6 GPa [21]. Previous high-pressure Raman studies of
w-AIN [22, 23] failed to measure the pressure shift of

the  mode, most probably due to the lack of high-
quality crystals. We believe that this problem deserves
special attention, because the bond-bending elasticity is
one of the most prominent manifestations of directional
covalent bonding and its pressure behavior should be
studied in depth. From the fundamental standpoint,
AIN represents an interesting and complicated case of
covalent versus ionic bonding [24]: although its valence
charge distribution is highly ionic [25], AIN adopts the
tetrahedrally coordinated wurtzite structure and there-
fore belongs to covalent materials [26]. To ensure that

the pressure coefficient of the  mode of AIN is
indeed positive, we have taken a complementary high-
pressure Raman study of AIN up to its stability limit at

1 We note that the experimental error bar for γTA(X) for diamond
obtained in this work is twice the value of γTA(X) itself. However,
the positive sign of γTA(X) is indirectly corroborated by the posi-
tive thermal expansion coefficient of diamond at low tempera-
tures.
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Fig. 1. Raman spectra of AIN as a function of pressure in the low-energy region (a) and in the high-energy region (b). The spectral
resolution is 0.5 cm–1. Ethanol–methanol mixture was used as a pressure transmitting medium.

E1(TO)
about 20 GPa. The pressure dependence of the low-fre-

quency bond-bending  mode was traced up to the
threshold of the pressure-induced phase transition for
the first time.

The AIN samples were 20-µm-thick crystals grown
on a sapphire substrate by vapor phase epitaxy. Pres-
sure was produced using a diamond-anvil pressure cell.
Compressed helium and a methanol–ethanol mixture
were used as a pressure-transmitting medium in the first
and in the second experimental run, respectively. Pres-
sure was measured in situ by the ruby luminescence
technique. The Raman spectra were measured using a
THR-1000 triple spectrometer equipped with an
OSMA detector (the first run), and a Dilor XY double
spectrometer equipped with a CCD detector (the sec-
ond run). An Ar+ laser (λ = 514.5 nm) was used as the
source of excitation. All spectra were recorded in the
backscattering geometry at ambient temperature.

For the hexagonal wurtzite structure with the space
group P63mc (Z = 2), factor-group analysis predicts six
sets of optical modes at k = 0 [27],

where A1, E1, and E2 are Raman active modes and B1
modes are silent. A1 and E1 are also infrared active and
split into longitudinal and transverse components (LO

E2
1

Γop A1 2B1 E1 2E2,+ + +=
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Fig. 2. Raman band width (FMHW) for the  and 

modes of AIN as a function of pressure. An ethanol–metha-
nol mixture was used as a pressure-transmitting medium.
The dashed horizontal lines are drawn to guide the eye.
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and TO). The lowest frequency mode  is a bond-
bending mode.

The Raman spectrum of w-AIN has been measured
previously under ambient conditions and has been ana-
lyzed in some detail, including the effects of polariza-
tion and anisotropy [28–30]. Our ambient pressure
Raman frequencies are 249, 610, 657, 669, 890, and

910 cm–1 for the respective modes , A1(TO), ,
E1(TO), A1(LO), and E1(LO). These values agree with
very reliable data [28–30] to within 1%. On an increase
in pressure, all Raman bands shift continuously to
higher phonon energy, with neither broadening nor
intensity loss, to about 18 GPa. Above 18 GPa, the
bands weaken and disappear at about 21 GPa in both
experimental runs due to the phase transition to the rock
salt structure [31, 32]. Representative Raman spectra of

E2
1

E2
1 E2

2

0 5 10 15 20

Pressure, GPa

244

246

248

250

252

254

256
Frequency, cm–1

AlN

E2
1 mode

1

2

3

4

5

Fig. 3. Comparison of the measured and calculated pressure

dependence of the Raman frequency for the  mode of

AIN. The squares are the first run data, obtained with com-
pressed helium as a pressure-transmitting medium. The tri-
angles are the second run data, obtained with the ethanol–
methanol mixture as a pressure transmitting medium. Solid
line 1 is a linear fit of the first run data. Dotted line 2 is a
guide for the eye. Line 3 is the experimental dependence
obtained in [21]. Lines 4 and 5 are the calculated depen-
dences obtained in [21] and [33], respectively. All data are
shifted along the vertical axis in order that the ambient pres-
sure frequencies coincide with the value of 249 cm–1

obtained in our experiment.

E2
1
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AIN in the low- and high-energy region as a function of
pressure are shown in Fig. 1. Pressure dependences of

the  and  bandwidths are shown in Fig. 2.

Figure 3 compares measured and calculated pres-

sure dependences of the Raman frequency for the 
mode of AIN. In our experiment, the pressure depen-

dence of the  frequency is weak but apparently pos-
itive and linear up to 13 GPa in both runs. Above
13 GPa, the first-run data fall well on the low-pressure
dependence, while the second-run data indicate a sud-

den rise of the  frequency. This is possibly associ-
ated with solidification of the ethanol–methanol
medium, resulting in nonhydrostatic sample stress.
Therefore, above 13 GPa, the first run data obtained in
hydrostatic conditions with compressed helium as a
pressure-transmitting medium are the most reliable. We
note that solidification of the ethanol–methanol
medium did not result in any detectable anomaly in the
pressure dependence of the high-frequency bond-
stretching modes (see Fig. 4). We believe that the non-

E2
1 E2

2

E2
1

E2
1

E2
1

0 5 10 15 20
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Fig. 4. The measured pressure dependence of the Raman

frequency for the  and TO modes of AIN. The squares

and circles are the first run data, obtained with compressed
helium as a pressure-transmitting medium. The triangles are
the second run data, obtained with the ethanol–methanol
mixture as a pressure-transmitting medium. The solid lines
are linear fits of the first run data.

E2
2
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Table 1.  Measured and calculated linear pressure coefficients  [cm–1 GPa–1] obtained for the AIN Raman frequencies

A1(TO) E1(TO) A1(LO) E1(LO)

Experiment

Present 1 0.05(1) 3.8(2) 4.9(2) 4.5(1) – –

Present 2 0.05(1) 4.3(2) 4.65(3) 4.55(6) 4.0(1) 3.6(7)

[21] 0.12(5) 4.4(1) 4.99(3) 4.55(3) – 4.6(1)

Calculations

[33] –0.29 4.29 4.79 4.36 – –

[21] –0.03 3.0 4.2 3.8 3.5 4.0

νi'

E2
1 E2

2

hydrostatic stresses result in a much weaker response of
these modes in comparison to their strong dependence
on the high hydrostatic pressure.

The mode pressure coefficients  calculated using
the linear least-square fit

where νi is the frequency of the mode i at the pressure

P, are listed in Table 1. The  frequency in the second
run was fitted only to 12 GPa. Our mode pressure coef-
ficients  are consistent with the results reported
in [21], although with somewhat lower pressure slope

for the  frequency (see Table 1).

Ab initio calculations [21, 33] give a weak negative

pressure shift for the  mode of AIN. Nevertheless,

the pressure coefficient of the  mode is nearly zero,
and the differences between experimental and calcu-
lated pressure shifts are quite small on the absolute
scale. The agreement between measured and calculated

coefficients of the , TO, and LO modes is quite sat-
isfactory (see Table 1).

As mentioned earlier, the bond-bending phonon
modes of most tetrahedral semiconductors soften under
compression and thus have negative Grüneisen param-
eters γi . Table 2 compiles experimental mode Grü-
neisen parameters obtained on the basis of the first- and
the second-order Raman measurements and inelastic
neutron scattering for the bond-bending modes in a
series of tetrahedral compounds. The calculated Grü-
neisen parameters for diamond and BP are also dis-
played. A negative value of γi is observed in most cases
except for diamond, BeO, and AIN. For BP, calcula-
tions [36] predict an exotic combination of a negative γi

for the bond-bending T A(X) mode and a positive γi for
the bond-bending T A(L) mode. The E2 mode of SiC-6H
has zero pressure slope and hence zero γi , but the qua-
dratic pressure coefficient of the mode frequency is

ν i'

ν i ν i0 ν i'P,+=

E2
1

ν i'

E2
1

E2
1

E2
1

E2
2
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Table 2.  Mode-Grüneisen parameters γi for the bond-bend-
ing modes in a series of ANB8–N compounds (W—wurtzite
structure, ZB—zinc blende structure, D—diamond structure,
L—hexagonal diamond structure)

Material Structure Mode γi Reference

Experiment

CdS W –2.7 [6]

InP ZB TA(L) –2.0 [6]

ZnO W –1.8 [6]

GaAs ZB TA(L) –1.7 [6]

ZnSe ZB TA(L) –1.5 [6]

ZnS ZB TA(L) –1.5 [6]

Ge D TA(L) –1.52 [10]

Si D TA(L) –1.3 [3]

ZnTe ZB TA(L) –1.0 [6]

GaP ZB TA(L) –0.81 [2]

GaN W –0.426 [8]

SiC–6H Hex. E2 0.0 [7]

BeO W 0.04 [20]

AlN W 0.04 This study

0.10 [21]

C D TA(X) 0.4 [19]

Calculations

C D TA(X) 0.3 [34]

C D TA(L) 0.17 [34]

C L E2u 0.16 [35]

BP ZB TA(X) –0.64 [36]

–0.27 [37]

BP ZB TA(L) 0.121 [36]

E2
1

E2
1

E2
1

E2
1

E2
1
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negative [7]. We see that AIN is one of the most stable
materials with respect to the bond-bending mode on
compression.

Despite this, w-AIN undergoes a first-order phase
transition to the rock-salt structure at a rather low pres-
sure of 20 GPa. At the same time, SiC-6H and w-BeO,
which have nearly the same values of γi for the bond-
bending E2 modes as AIN does, preserve the tetrahedral
structures up to the pressures as high as 100 GPa [38]
and 140 GPa [39], respectively. This obviously indi-
cates that the applicability of Weinstein’s empirical cor-
relation rule [4, 6] is limited.

The pressure behavior of the bond-bending modes
of tetrahedral semiconductors can be elucidated in
terms of the pressure-sensitive balance between stabi-
lizing and destabilizing contributions to the restoring
force constants [15]. This balance, in turn, can be traced
back to the atomic configuration of the constituent
atoms, as has been done in the analysis of the thermody-
namical stability of the diamond phase of carbon [40].
However, this issue is beyond the scope of the present
report and will be discussed in a subsequent paper.

The authors wish to thank A. Dobrynin for growing
the AI1N crystals. E. V. Yakovenko is grateful to
A.F. Goncharov for his assistance in Raman measure-
ments.
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Abstract—We present the first weakly nonlinear analysis of the morphological stability of a two-dimensional
cylindrical crystal growing from solution in an arbitrary regime (with the growth rate proportional to supersat-
uration). A quadratic (with respect to the perturbation amplitude) correction to the critical radius of a stable
crystal determined in the linear theory is obtained in an analytical form and studied as a function of the per-
turbation frequency and the growth regime. It is established that an increase in the perturbation amplitude vir-
tually always leads to a decrease in the critical radius. Factors accounting for this nontrivial effect are consid-
ered. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Problems pertaining to the morphological stability
of growing crystals are of importance both in practical
applications (e.g., for predicting the microstructure of
solidifying ingots) and in basic science (e.g., for
describing dissipative structures formed under non-
equilibrium conditions). After the classical study of
Mullins and Sekerka [1], presenting an original linear
analysis of the morphological stability for a growing
spherical crystal, this approach was extended to other
geometries and more general conditions (including
attachment kinetics, surface self-diffusion, etc.) [2].
The results of this linear analysis of stability were qual-
itatively and quantitatively confirmed by the results of
numerous experiments [2–5].

Hardy and Coriell [3] studied the growth of pertur-
bations in a cylindrical crystal of ice growing from dis-
tilled water under conditions of low supercooling. Ini-
tially, the crystal grew in the form of a smooth cylinder.
Then, when the crystal reached certain critical sizes, its
shape had visible, rapidly growing distortions. The
experimentally measured critical radius of a stable
cylindrical crystal was in good agreement with the
value predicted by the theory, which allowed a rather
accurate method to be developed for the indirect deter-
mination of the interfacial free energy of the water–ice
system.

However, experiments revealed an interesting pecu-
liarity that could not be described within the framework
of the linear analysis of stability: the possible coexist-
ence of particles in various forms (morphological
phases) in some regions of the control parameters (e.g.,
supersaturation) [6–8]. Analysis of this and some other
experimental features [9–11] led to the idea that the
1063-7761/04/9805- $26.00 © 20986
morphological transition from one crystal shape to
another can be considered by analogy with the usual
phase transitions of the first order. In the case of non-
equilibrium crystallization, the role of thermodynamic
potential is played by the production of entropy.

The results of our recent calculations [11–13] per-
formed within a linear analysis of the morphological
stability, with determination of the production of
entropy, allowed the boundaries of metastable regions
(the regions of coexistence of various morphological
phases) to be determined for the first time. In this con-
text, there is the need for independent theoretical veri-
fication and justification of the main hypotheses under-
lying the calculations [11–13]. One of these hypotheses
is that an increase in the amplitude of perturbations
(experimentally implemented by applying thermal or
acoustic action, introducing special impurities, etc.) on
the initially smooth crystal surface, leads to a decrease
in the critical radius of a stable crystal.

The most natural way of considering the critical
radius as dependent on the perturbation amplitude is to
perform an analysis of stability at higher (second and
above) orders of perturbation theory. Only a few such
attempts (using shape perturbations with harmonics of
small but finite amplitude) have been made because of
complex and tedious calculations [14–16]. The weakly
nonlinear analysis of diffusion-limited growth was per-
formed in these investigations up to the third order with
respect to a small parameter. It was confirmed that an
increase in the perturbation amplitude almost always
leads to a decrease in the critical radius of a stable crys-
tal [14–16]. However, the assumption of a diffusion-
limited crystal growth regime used in these investiga-
tions posed a significant limitation upon their general-
ity: the question naturally arises as to whether the above
004 MAIK “Nauka/Interperiodica”
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important result has a universal character, rather than
being related to the specific growth regime.

The study was aimed at performing a weakly non-
linear analysis of the morphological stability of a two-
dimensional cylindrical crystal growing from solution
in an arbitrary regime (with the local growth rate pro-
portional to supersaturation). This would significantly
generalize the results obtained in [14], showing how
universal is the dependence of the critical radius of a
stable crystal on the perturbation amplitude, which is
very important for justification of the approach devel-
oped in [11].

2. FORMULATION OF THE PROBLEM

We consider the growth of an initially smooth,
round single two-dimensional crystal from a supersatu-
rated solution. The main assumptions are as follows.

(i) Crystallization proceeds under isothermal–iso-
baric conditions and both the free surface energy and
the kinetic coefficient are isotropic.

(ii) The field of concentrations C is described by the
Laplace equation

(1)

where the symbol ∇  denotes the nabla operator.
(iii) It is assumed that an arbitrarily small distortion

of the circle can be represented as a superposition of
harmonic functions of the type coskϕ, where ϕ is the
polar angle and k is a positive integer.

(iv) The solution concentration obeys the following
boundary conditions:

(2)

(3)

(4)

Here,  = R + acoskϕ is the shape of a distorted circular
boundary, R is the radius of the unperturbed circle, a(t)
is the perturbation amplitude (a ! R), t is the current
time, D is the diffusion coefficient, β is the kinetic coef-
ficient of crystallization, C∞ is the solution concentra-
tion at a large distance Rλ (Rλ @ R) from the crystal sur-
face, CS is the equilibrium solution concentration near
an arbitrary boundary, C0 is the equilibrium solution
concentration near a plane boundary, Γ is the coeffi-

cient of surface tension, and  is the curvature.
There are two important remarks concerning the

boundary conditions. 
(i) Condition (2) can be given two interpretations.

First, we can assume that concentration C∞ is main-

∇ 2C 0,=

C Rλ( ) C∞,=

D∂C
∂ñ
-------

r̃ R a kϕcos+=

β C r̃ R a kϕcos+= CS–( ),=

GS C0 C0Γ K̃ ,+=

K̃
r̃2 2 ∂r̃/∂ϕ( )2 r̃∂2r̃/∂ϕ2–+

r̃2 ∂r̃/∂ϕ( )2+( )3/2
---------------------------------------------------------------.=

r̃

K̃
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tained at a certain distance Rλ and seek a stationary con-
centration distribution satisfying Eqs. (1)–(3). How-
ever, another possible interpretation is more useful
from the standpoint of analysis of the loss of stability.
It was demonstrated [17, 18] that, under conditions of
low supersaturation, the solution of the nonstationary
problem with the boundary conditions C(∞) = C∞
and (3) coincides with the solution of problem (1)–(3),
provided that Rλ corresponds to a certain boundary
determined by the relations

Here, S = (C∞ – CS)/(Csol – CS), Csol is the crystal den-
sity, λ is a parameter, and lnν2 = 0.5772 is the Euler
constant.

(ii) Boundary condition (3) describes the balance of
a substance under the assumption that the solution con-
centration is negligibly small as compared to the crystal
density. This assumption, significantly simplifying the
problem, is well satisfied in many real systems featur-
ing crystallization from solution.

For the convenience of calculations, we will pass to
dimensionless variables in Eqs. (1)–(4), by scaling dis-
tances to the radius of nucleation in a saturated solu-
tion, R* = C0Γ/(C∞ – C0) [17] and representing the con-
centration field as u = (C – C0)/C0. In these variables,
the Laplace equation is written as

(5)

and the boundary conditions appear as

(6)

(7)

Here, n = /R*, r = /R*, ρ = R/R*, δ(t) = a(t)/R*, ∆ =

(C∞ – C0)/C0 is the degree of supersaturation, K = ,
ρλ = Rλ/R*, and α = D/βR*.

In boundary condition (7), we can pass from the
operator ∂/∂n to the vector components using the
relation

where

and en is the unit vector normal to the surface Φ = 0. As

Rλ R/νλ , λ2 ν2λ2( )ln S+ 0.= =

∇ 2u 0,=

u ρλ( ) ∆,=

α ∂u
∂n
------

r ρ δ kϕcos+=

u r ρ δ kϕcos+= us,–=

us K∆.=

ñ r̃

K̃R*

∂u
∂n
------ ∇ u en,⋅=

∇ u
∂u
∂r
------ir

1
r
--- ∂u

∂ϕ
------iϕ ,+=

en
∇Φ
∇Φ
------------, Φ r ρ– δ kϕ ,cos–= =
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a result, condition (7) transforms to

(8)

3. WEAKLY NONLINEAR ANALYSIS
OF THE MORPHOLOGICAL STABILITY

3.1. Calculation of the Concentration Field

Let us expand the concentration field into series in
powers of δ,

(9)

where u0, …, u3 are the expansion coefficients. Substi-
tuting expression (9) into the initial equation (5) and the
boundary conditions (6) and (8), we expand each term
into Taylor’s series in δ up to the third power in the
vicinity of ρ. The curvature is expressed as

(10)

where K0, K1, K2, and K3 are the coefficients calculated
in the Appendix. Equating the coefficients at like pow-
ers of δ, we obtain four sets of equations for determin-
ing the functions u0(r), u1(r, ϕ), u2(r, ϕ), and u3(r, ϕ):

1. 

(11)

2. 

(12)

3.

(13)

α

1
δ2k

2

r2
---------- kϕsin

2
+

---------------------------------------- ∂u
∂r
------

δk

r
2

------ kϕ ∂u
∂ϕ
------sin+ 

 
r

 = u r us.–

u r ϕ,( )  = u0 r( ) u1 r ϕ,( )δ u2 r ϕ,( )δ2 u3+ r ϕ,( )δ3,+ +

K K0 K1δ K2δ
2 K3δ

3,+ + +=

∇ 2u0 0,=

u0 ρλ( ) ∆,=

α∂u0

∂r
--------

ρ

u0 ρ– K0∆;=

∇ 2u1 0,=

u1 ρλ( ) 0,=

α∂u1

∂r
--------

ρ

u1 ρ– ∂u0

∂r
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ρ

α∂2u0
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 
 
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ρ
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1
2
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∂r
2
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ρ

α∂3u0

∂r
3
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ρ

–
 
 
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kϕcos
2

=

+
αk2 kϕsin

2

2ρ2
-------------------------∂u0

∂r
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ρ
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4.

(14)

The solution of the Laplace equation in the ring (ρ <
r < ρλ) for each ith system can be written in the follow-
ing form [19]:

(15)

where i = 0, 1, 2, or 3.

3.1.1. Unperturbed solution (zero order). Substitut-
ing expression (15) for i = 0 into Eqs. (11) and equating
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the coefficient at the like trigonometric functions, we
obtain

(16)

(17)

(18)

where Aλ = ln(ρλ/ρ). A solution to the problem in the
zero approximation is

(19)

3.1.2. First-order perturbation solution. Substitut-
ing expression (15) for i = 1 into the boundary condi-
tions of set (12) and equating the coefficients at like
trigonometric functions for the same harmonic num-
bers, we obtain two nonzero constants of the first-order
approximation for n = k:

(20)

(21)

where

The solution to Eqs. (12) is

(22)

3.1.3. Second-order perturbation solution. Substi-
tuting expression (15) for i = 2 into the boundary con-
ditions of set (13), expressing the powers of trigono-
metric functions via trigonometric functions of the cor-
responding multiple arguments, and equating the
coefficients at the same harmonic numbers, we obtain
four nonzero constants of the second-order approxima-
tion for n = 0 and n = 2k:

(23)

(24)

(25)

(26)

where the expression for A2 is given in the Appendix.
Substituting formulas (23)–(26) into Eqs. (15), for i = 2
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we obtain a solution to Eqs. (13):

(27)

3.1.4. Third-order perturbation solution. Substitut-
ing expression (15) for i = 3 into the boundary condi-
tions of set (14), expressing the powers of trigonomet-
ric functions via trigonometric functions of the corre-
sponding multiple arguments, and equating the
coefficients at the same harmonic numbers, we obtain
four nonzero constants of the third-order approxima-
tion for n = k and n = 3k:

(28)

(29)

where the expressions for A3, k and A3, 3k via the con-
stants of previous orders are presented in Appendix.
Substituting these quantities into Eqs. (15) for i = 3, we
eventually obtain the solution to Eqs. (14):

(30)

Finally, substituting solutions (19), (22), (27), and
(30) into expansion (9), we obtain an expression for the
concentration field u(r, ϕ) in the form of a series in
powers of δ.

3.2. Calculation of the Radius of Stability
of a Circular Crystal

Once the concentration field is known, we can deter-
mine the radius of a stable crystal. To within a positive
constant factor, the local crystal growth rate V can be
written as

(31)

Substituting the above expression for u(r, ϕ) into
Eq. (31) and expanding the resulting expression into
series in δ in the vicinity of ρ, we can eventually repre-
sent the growth rate as
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where

(33)

(34)

(35)

(36)

Let us consider the initial stage of the loss of mor-
phological stability of the growing particle upon the
onset of perturbation on the boundary and determine
the critical particle radius for which the perturbation
amplitude will grow. To this end, following [14–16], we
have to solve for ρ the equation

(37)

This will determine the critical radius above which the
rate of variation of the amplitude of the basic (initially
applied) harmonic coskϕ changes sign from minus
(corresponding to decay) to plus (corresponding to
increase). Obviously, an increase in the amplitude of
the basic harmonic will lead to the appearance of sec-
ondary harmonics of the other frequencies (see, e.g.,
Eq. (32)). Thus, from the standpoint of the initial stage
of the loss of stability, behavior of the basic harmonic
is the determining factor.

Let us seek for a solution of Eq. (37) in the following
form: 

(38)

where g and g1 are the expansion coefficients. In this
expression, the term proportional to δ is omitted
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JOURNAL OF EXPERIMENTAL 
because its presence in Eq. (37) has no physical mean-
ing for symmetry considerations. Indeed, in the pres-
ence of a term proportional to δ, a half-period transla-
tion of the coskϕ perturbation (equivalent to alternation
in the amplitude sign) would lead to a change in the
critical radius for stable growth in the isotropic
medium.

Substituting ansatz (38) into the explicit expres-
sion (37) and expanding it into series in powers of δ up
to the third-order term, we arrive at an expression con-
taining δ to the first and third powers. Grouping and
equating the terms at like powers, we obtain two equa-
tions for determining g and g1. The first quantity cannot
be expressed explicitly and is determined from the
equation

(39)

The second coefficient can be explicitly expressed as

(40)

where h = gk/ , L = ln(ρλ/g), and the expressions
for coefficients M1, M2, …, M8 are presented in the
Appendix.

It should be noted that Eq. (39) for g in the diffusion
limit (α  0) coincides with an analogous equation
derived in [14].

4. DISCUSSION OF RESULTS

Figures 1 and 2 show the plots of the linear radius of
stability g and the correction of the second order of
smallness g1 versus the parameters α and k (the value of
ρλ was selected following [14]). The g and g1 values
numerically calculated for the diffusion-controlled
growth (α = 0) (see Figs. 1 and 2) coincide with the
analogous values reported in [14], which is additional
evidence in favor of correctness of our calculation.

According to the results of calculations (Figs. 1a
and 2a), the linear radius of stability (g) increases with
the harmonic frequency (number) and the parameter α.
This behavior can be explained as follows. According
to the classical results [1], the main factor responsible
for the loss of stability is the inhomogeneity of the con-
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centration field at the crystal boundary: the supersatu-
ration increases with distance from the crystal. For this
reason, a perturbation arising on the crystal surface
occurs under more favorable conditions and can
develop more rapidly. The main stabilizing factor is the
curvature (i.e., the surface energy): the greater the cur-
vature at the appearing protrusion, the more readily it
can be dissipated. Thus, for two nuclei with perturba-
tions of the same amplitude but different frequencies,
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Fig. 1. Plots of (a) the linear critical radius of stability g and
(b) the quadratic correction g1 versus parameter α for various

perturbation frequencies (harmonic numbers) k for ρλ = 108.
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the curvature is greater for the nucleus with a higher
frequency and, accordingly, the stabilizing factor is
stronger here. As a result, the nucleus loses stability
under this perturbation at a greater critical radius. As
the α value increases, the field at the crystal becomes
more homogeneous and, accordingly, the destabilizing
factor decreases and the critical radius g increases.

In contrast to the behavior of g, the character of vari-
ation and the sign of g1 are not as obvious. As can be
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Fig. 2. Plots of (a) the linear critical radius of stability g and
(b) the quadratic correction g1 versus perturbation fre-

quency k for ρλ = 108 and various parameters α: (+) 0;
(o) 100; (h) 1000; (e) 10000.
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seen from Figs. 1b and 2b, an increase in the perturba-
tion amplitude leads in most cases to a decrease in the
critical radius as compared to that in the linear case (an
increase is observed only in the diffusion-controlled
growth regime for the harmonic with k = 2). However,
with an increase in the perturbation amplitude (for fixed
parameters of α and k), the perturbation falls within a
region of higher supersaturation (i.e., a stronger desta-
bilizing factor) and greater curvature (i.e., a stronger
stabilizing factor). The fact that, in the competition of
two factors, the former almost always predominates
(even in the kinetically controlled growth regime with
α @ 1) is a very interesting result.
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Fig. 3. Plots of (+) δ*/g and (o) δ*/ρb versus perturbation
frequency k for ρλ = 108.
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A decrease in the critical radius with increasing per-
turbation amplitude allows us to explain the phenome-
non of coexistence of two different morphological
phases, which is frequently observed in experiment.
Indeed, consider two round crystal nuclei growing at a
sufficiently large distance from each other in a supersat-
urated solution. Since the appearance of fluctuations in
solutions is, in the general case, a stochastic process, let
a fluctuation of small but finite amplitude δ to arise at
one of the two particles. According to the above calcu-
lations, this nucleus will lose stability when its radius
will increase to the critical value of ρ, while the other
nucleus may still retain its round shape. Thus, in the
growth interval from ρ to g, we can observe both the
crystals of round shape and those with developing per-
turbations corresponding to the kth harmonic. When the
radius of a round nucleus will increase to g according
to the linear analysis, it will lose stability to even a neg-
ligibly small fluctuation.

This provides ground for one of the main assump-
tions used in our calculations of the boundaries of meta-
stable regions [11–13]. It would be also interesting to
use the above results for qualitatively evaluating the
perturbation amplitude for which the crystal radius
reaches a value ρb called binodal. This value was previ-
ously determined via a calculation of the production of
entropy based on the linear analysis [13] as

(41)

According to formula (38), the amplitude of this
perturbation is

(42)

Figure 3 shows plots of the ratios of the perturbation
amplitude δ* to the above characteristic dimensions g
and ρb versus k for the diffusion and kinetic growth
regimes. These data reveal an interesting fact: the size
ρb found in [13] corresponds to the perturbation ampli-
tudes comparable to the radius of stability of the crys-
tal. This result indicates that, from the standpoint of the
above weakly nonlinear analysis, ρb represents the crit-
ical radius with respect to the maximum perturbations
δ* of the crystal radius (whereby the perturbation
amplitude is comparable to the crystal size), which jus-
tifies use of the name “binodal radius.”

Let us specially consider the cases of k = 1 and k =
2. According to the results of numerical analysis, repre-
senting the solution in the form (38) for k = 1 is not jus-
tified because a correction to the solution in the linear
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approximation is much greater: g1δ2/g ~ 1017δ2 for α =
0–100). This violates the main assumption of perturba-
tion theory (introducing a so-called inhomogeneity of
the expansion [20]). The perturbation with k = 2, for
which the g1 correction is positive at α < 73, is the next
neighboring case to that of k = 1. Does this fact account
for the special behavior (see Figs. 1b and 2b) because
the point occurs in the region of inhomogeneous expan-
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Fig. 4. Plots of (a) the linear critical radius of stability g and
(b) the quadratic correction g1 versus parameter α for various
perturbation frequencies (harmonic numbers) k for S = 0.05.
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sion [20], or is everything correct from the mathemati-
cal standpoint and the result has a physical meaning?
These questions require additional investigation.

The data considered above (Figs. 1 and 2) are
related to a constant ρλ , which is not convenient from
the standpoint of experiment. As was pointed out in Sec-
tion 2, the quantity ρλ appears as a fitting parameter on
the passage from nonstationary to stationary diffusion
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Fig. 5. Plots of (a) the linear critical radius of stability g and
(b) the quadratic correction g1 versus perturbation fre-
quency k for S = 0.05 and various parameters α: (+) 0;
(o) 100; (h) 1000; (e) 10000.
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problem. This parameter is directly related to the quan-
tity S, which has a clear physical meaning and can be
readily determined for any supersaturation solution. In
connection with this, Figs. 4 and 5 present analogs of
Figs. 1 and 2, respectively, plotted as a fixed S. A com-
parison between these representations shows that the
character of dependences is qualitatively the same.

5. CONCLUSIONS

We have carried out a weakly nonlinear analysis of
morphological stability for a round crystal growing in
an arbitrary regime from a supersaturated solution. It
was found that, similar to the diffusion-controlled
growth considered in [14–16], an increase in the ampli-
tude of perturbations leads to a decrease in the critical
radius of stable crystal. This behavior is an additional
argument in favor of the hypothesis that such a depen-
dence of the critical radius on the perturbation ampli-
tude is rather universal and may be considered as evi-
dence that this nonequilibrium transition belongs to
first-order phase transitions.

We would like to make a final remark concerning
the possibility of comparing the values of critical radii
calculated in this study to the experimental data. At the
present time, it is hardly possible to speak of such ver-
ification due to both the technical complexity of the
experiment and the still relatively large number of sim-
plifying assumptions made in the theory. The main task
at this stage is to provide qualitative explanation and to
JOURNAL OF EXPERIMENTAL 
propose a method for analytically calculating the exper-
imentally observed phenomenon of coexisting mor-
phologies during crystallization under identical condi-
tions. We believe that the results reported above are an
important step in this direction.
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M4 2g 4( g4k2 2αg3 4g3k2– 10g3L– 6α3k2+ +=

15α3k4– 6αg2– 5α3k6– 2g4– 2g3 15k2αg2+ +

+ 23g3k2L 12g3L2k2– 18g3L2k4 4αk4g2– 4g3Lk4–+

10Lα2k6g– 22k4α2Lg– 12Lα2k2g 7L2αk4g2–+

+ 6L2k2αg2 14k2αLg2– 32Lαk4g2 5g2α L2k6–+

– 2k2α2g 12α2k4g 6g4L 10k2α2g2 8α2k4g2+–+ +
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Abstract—Lifshitz invariants emerging in the presence of external effects in a crystal are considered for 2D
irreducible representations of the D4h class. It is shown that, for a 2D irreducible vector representation, the elec-
tric field exceeding a critical value leads to the formation of an incommensurate phase on the phase diagram.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In studying incommensurate (I) phases and phase
transitions (see reviews [1–3]), two types of such tran-
sitions are distinguished. The first type is associated
with the presence of the Lifshitz (L) invariant in the
thermodynamic potential, while the second type is
characterized by the presence of a Lifshitz-type (LT)
invariant. Here, we consider the first type of transitions.
In the case when a multidimensional representation of
the symmetry group of the initial phase in the crystal
rules out the existence of an L invariant, the incommen-
surate invariant (abbreviated below as IL) can be
induced by appropriate effects exerted on a crystal
(electric or magnetic fields, mechanical stresses, etc.).
The coefficient of the IL invariant is the external factor
itself. This problem was considered for the first time
in [4], where the phase diagram with an I phase was
constructed from general considerations. However,
apparently not a single specific case has been investi-
gates as yet.

The goal of this study is analysis of a 2D vector rep-
resentation of the crystal symmetry class D4h , the deter-
mination of possible IL invariants for this representa-
tion, and the calculation of the corresponding phase
diagrams. To run a few steps ahead, we can state that
the induction of I phases on these diagram is not as
obvious and simple as appears at first glance and the
results of our analysis differ from those described in [4].

2. TWO-DIMENSIONAL REPRESENTATIONS
OF SYMMETRY CLASS D4h

The choice of the crystal symmetry class D4h is dic-
tated by the existence of two irreducible representa-
tions, each of which permits two independent invariants
of the second and fourth order in the bases of the repre-
sentations. The latter circumstance determines the sim-
plest algebra of these representations among all non-
one-dimensional representations of crystal symmetry
1063-7761/04/9805- $26.00 © 0997
groups. The table shows the representations of class
D4h , according to which the components of vector xi =
{x, y, z} and rank two tensor {uα} are transformed (we
use the matrix form of notation: α = 1, …, 6). The
polarization vector components Pi , which will be
treated as the order parameter for representation of Eu ,
is transformed like the components of vector xi; uα
stands for components of the strain tensor uij (in partic-
ular, u4 = 2uyz and u5 = 2uzx). The existence of two rep-
resentations instead of one as in classes D4, C4v , and
D2d (with the same independent invariants) rules out the
existence of the piezoelectric effect in the initial phase
of the crystal, which simplifies the problem.

None of 2D representations of Eu and Eg permits an
L invariant. We will consider external forces (electric
field Ei and mechanical stresses σα) that can induce IL
invariants (we confine our analysis only to invariants
linear in forces). Using the table, we can obtain two IL
invariants for the Eu and Eg representations, respec-
tively:

(1)

Since invariants (1) contain the electric field compo-
nents Ex and Ey , we will find the invariants which are
linear in Ex , Ey and also linear in Px , Py and u4, u5.
There exists only one such invariant (the energy of
interaction of polarization with the electric field):

(2)

There are no invariants linear in Ex , Ey and quadratic in
Px , Py or quadratic in u4, u5. We will confine our subse-

Ex Px Py,{ } y Ey Px Py,{ } x,–

Ex u4 u5,{ } y Ey u4 u5,{ } x,–

η ξ,{ } z η∂ zξ ξ∂ zη , ∂z ∂/∂z.≡–≡

ExPx– EyPy.–
2004 MAIK “Nauka/Interperiodica”
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quent analysis to the vector representation of Eu only.

3. HOMOGENEOUS THERMODYNAMIC 
POTENTIAL

It is convenient to represent components Px and Py

of the order parameter in polar coordinates:

(3)

In the simplest case and in the absence of fields (Ex = 0
and Ey = 0), the homogeneous thermodynamic potential
(containing no gradient invariants) has the form

(4)

We assume that we are dealing with second-order tran-
sitions; i.e., coefficients β > 0 and β – |β'| > 0.

From the conditions of minimum for potential (4) in
variables ρ and ϕ, we obtain the three solutions

(5)

corresponding to three phases with symmetry groups

Px ρ ϕ , Pycos ρ ϕ .sin= =

Φ αρ2 βρ4 β'ρ4 4ϕ .cos++=

G0: ρ 0,=

G1: 4ϕcos 1, ρ2– α / β β'–( ),–= =

G2: 4ϕcos 1, ρ2 α / β β'+( ),–= =

α = α2

α = α0

α = αc G2

G3

I2

I2

1

0 α/αE

β'/β

Fig. 1. Phase diagram on the αβ' plane for F > F0 (∆ > 0).
The curves demarcate the regions of existence of phases G2,
G3, and I2 (see relations (6), (13), and (17)); αE ≡
2(2βE2)1/3.

Irreducible representations of crystal symmetry class D4h

A1g u1 + u2 A1u

u3

A2g A2u z

Eu x Eg u4

y –u5

B1g u1 – u2 B1u

B2g u6 B2u

–
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G0 = D4h = 4/mmm (initial phase), G1 = C2v = 2xy mz ,

and G2 = C2v = 2xmymz (see, for example, [5]). Phase G0
is stable for α > 0, and G1 is stable for α < 0 and β' > 0,
while G2 exhibits stability for α < 0 and β' < 0 (the same
notation of phases and their groups should not lead to
misunderstanding). Group G3 = Cs = mz is one more
subgroup of group G0 (as well as of groups G1 and G2)
in the Eu representation. The solution for phase G3 can
be obtained if we take into account the second-order
invariant in ρ4cos4ϕ in expression (4). It should be
noted that phase G1, as well as phase G2, has four dif-
ferent domains with different orientations of compo-
nents Px and Py (different values of angle ϕ; see rela-
tions (5)).

We now supplement potential (4) with invariant (2).
In the case of a one-component order parameter (e.g.,
Pz) transformed in accordance with a one-dimensional
representation (A2u; see table), field Ez conjugate to it
leads to disappearance of the second-order phase tran-
sition. In other words, the symmetry groups of the ini-
tial and polar phases become identical. Characteristic
anomalies in physical quantities are smoothed. In the
case of a 2D representation, however, we can always
choose the field orientation such that one of the second-
order phase transitions is preserved. Fields with orien-
tation Ex = 0 or Ey = 0 lower the symmetry of the G0 and
G1 phases to the symmetry of the G2 and G3 phases,
respectively. Consequently, transition G0(2)  G1(3) is
preserved (the index of the group to which the group of
the corresponding phase is lowered in the presence of
the field is given in parentheses). Fields with orienta-
tion Ex = ±Ey lower the symmetry of the G0 and G2
phases to the symmetry of the G1 and G3 phases,
respectively. Consequently, transition G0(1)  G2(3) is
preserved. It is sufficient to consider one of these cases.
We choose Ey = 0 and Ex = E.

The phase diagram corresponding to potential (4),
(2) is depicted in Fig. 1 (so far we ignore the presence
of the I phase, which will follow from the subsequent
analysis). The curve α = α0 describing the second-order
phase transition between phases G2 and G3 (here, we
simplify the notation of phases: G2 ≡ G0(2) and G3 ≡
G1(3)) is defined by the expression

(6)

where the expression for ρ on this curve is also given
and a convenient new notation F for field E is intro-
duced (we note that the value of F depends on β' and
that β' > 0; see Fig. 1).

The solution for phases G2 and G3 in field E can be
obtained in a small neighborhood of transition curve (6).

α 1
2
--- 3β' β–( )F2 α0, ρ≡ 1

2
---F ρ0,≡= =

E 2β'F3,=
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In the G2 phase, one of four domains is preserved (see
above), in which vector Pi is directed along field Ei:

(7)

Here, we also have the expression for thermodynamic
potential Φ2 in the form of a series expansion in α – α0
(to be more precise, in ∆2). The region of validity of
solutions (7) is defined by the inequality ∆2 ! 1. In the
G3 phase, two of four domains are preserved:

(8)

Solutions (8) are valid for ∆3 ! 1.
It can be seen from relations (7) and (8) that the sec-

ond-order phase transition G2  G3 consists in the
rotation of vector Pi (which is directed along the x axis
in the G2 phase) through small angles ±ϕ about the x
axis; in other words, the component Py having opposite
directions in the two domains of phase G3 appears in
this phase.

4. PHASE TRANSITION G2  I2

We now supplement potential (4), (2) with IL invari-
ant (1) with coefficient σ,

(9)

as well as with the invariants quadratic in the deriva-
tives and in components Px and Py:

(10)

(see, for example, [6], where both terms, the L invari-
ants and LT invariant, were introduced simultaneously
for the first time).

We analyze the loss of stability in the G2 and G3
phases relative to harmonic displacements, which
determine the possibility of transitions from these
phases to I phases. We write Px and Py in the form

(11)

Quantities ρ and ϕ are defined in accordance with rela-
tions (7) and (8). It should be noted that, in the presence

ϕsin 0, ϕcos 1, ρ ρ0 1 ∆2–( ),= = =

α α 0– β 3β'+( )F2∆2,=

Φ2
1
16
------ β 9β'+( )F4–

1
4
--- α α 0–( )F2 α α 0–( )2

4 β 3β'+( )
-------------------------.–+=

ϕsin
2 6

5
---∆3, ρ ρ0 1 ∆3+( ),= =

α0 α–
1
5
--- 5β 3β'–( )F2∆3,=

Φ3
1
16
------ β 9β'+( )F4 1

4
--- α0 α–( )F2–

5 α0 α–( )2

4 5β 3β'–( )
----------------------------.––=

σE Px Py,{ } y,

δ1 ∂xPx( )2 ∂yPy( )2+[ ] δ2 ∂yPx( )2 ∂xPy( )2
+[ ]+

+ 2δ3 ∂xPx( ) ∂yPy( ) 2δ4 ∂yPx( ) ∂xPy( )+

Px ρ ϕ ρ1 qxx qyy+( ),cos+cos=

Py ρ ϕ ρ2 qxx qyy ψ+ +( )cos .+sin=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of field E, quantities Px and Py are transformed accord-
ing to different 1D representations of the G2 and G3
groups; for this reason, the values of ρ1 and ρ2, as well
as the constant phase shifts ψ in relations (11), are dif-
ferent.

We substitute expressions (11) into thermodynamic
potential (2), (4), (9), and (10), integrate the result with
respect to coordinates x and y, and minimize the part of
the integral obtained, which is quadratic in ρ1 and ρ2,
with respect to ρ1, ρ2, qx , qy , and ψ. Calculations lead
to the following results for phases G2 and G3.

Let us first consider the G2 phase. This phase loses
stability relative to harmonic displacements (11) (and
experiences a second-order phase transition to phase I2)
for values of F exceeding the critical value F0:

(12)

Wave vector qi of the superstructure formed in this way
and the stability loss (α = ) of the G2 phase are deter-
mined by the expressions

(13)

which were derived for ∆ ! 1.
The phase transition from the G2 phase to incom-

mensurate phase I2 involves the emergence of harmonic
components Px and Py with amplitudes ρ1 and ρ2,
respectively. It should be emphasized that the homoge-
neous component Px , which is present in the G2 phase,
is preserved in phase I2; in other words, the I2 phase has
a peculiar structure (see relations (11)). (On possible
incommensurate polar phases, see [7].)

In the I2 phase, potential Φ2 (7) associated with the
presence of a homogeneous part of component Px is

supplemented with potential  associated with inho-
mogeneous (harmonic) parts of components Px and Py

with amplitudes ρ1 and ρ2:

(14)

5. PHASE TRANSITIONS
G3  I3 AND I2  G3

Let us now consider the G3 phase. Performing cal-
culations analogous to those for phase G2, we obtain
the following results. Phase G3 loses stability to har-
monic displacements (11) (and experiences a second-
order phase transition to phase I3) for values of field F
exceeding the critical value F0 [see (12)]. The value of
wave vector q of the superstructure formed in this way

F0
4 β 3β'+( )δ1/ 2β'σ( )2.=

α

q2 β 3β'+( )F0
2∆/δ2 qy

2, qx 0, ψ 0,= = = =

∆ F2 F0
2

–( )/F0
2
, α≡ α2 α0 ∆2,+≡=

∆2 β 3β'+( )2δ1F0
2∆2/6β'δ2,=

Φ2

Φ2
6β'

2 α2 α–( )2

β β'+( ) β 3β'+( )2
-------------------------------------------.–=
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coincides with expression (13). Vector qi is found to be
perpendicular to vector Pi in each of the two domains of
phase I3 (note that wave vector qi is perpendicular to
vector Pi in phase G2 as well):

(15)

These expressions, as well as relations (13), were
derived for ∆ ! 1; in formulas (15), ∆ coincides with
that in formulas (13). Angle ϕ, as well as phase shift ψ,
assumes two values corresponding to two domains of
phase I3.

The phase transition from phase G3 to incommensu-
rate phase I3 involves the emergence of harmonic parts
in components Px and Py with amplitudes ρ1 and ρ2. In
domains of phase I3, homogeneous component Px and
Py , which are present in domains of phase G3, are pre-
served. In contrast to the I2 phase, phase I3 experiences
a constant phase shift ψ between the harmonic compo-
nents Px and Py . The structure of phase I3 turns out to be
even more peculiar and intricate than the structure of
phase I2.

qx q ϕ , qysin– q ϕ ,cos= =

α α 3 α0 ∆3,–≡=

∆3
β 3β'+( )2δ1F0

2∆2

12β'δ2
------------------------------------------

1
2
---∆2,= =

ϕsin
2 6∆3

5β 3β'–( )F0
2

-------------------------------, ψsin
2 β 3β'–( )2∆

2β' 5β 3β'–( )
---------------------------------.= =

G2

G3

I2

I2

I3

αÒ α0
α

î

α3
α2

Fig. 2. Dependence of the thermodynamic potentials of
phases G2, G3, I2, and I3 on α for F > F0 (∆ > 0) (see rela-
tions (7), (8), (14), and (16)).
JOURNAL OF EXPERIMENTAL 
In phase I3, potential Φ3 (8) associated with the
presence of homogeneous parts of components Px and

Py is supplemented with potential  associated with
inhomogeneous (harmonic) parts of components Px and
Py with amplitudes ρ1 and ρ2:

(16)

Although the formation of phases I2 and I3 is almost
symmetric (cf. relations (13) and (15)), phase I3 turns
out to be metastable in the entire range where it exists.
Figure 2 shows the dependence of the thermodynamic
potentials of phases G2, G3, I2, and I3 on α. The poten-
tial of the I2 phase passes below the potential of the I3
phase. The intersection of the potential of the I2 phase
with the potential of the G3 phase, which is determined

by the equality Φ2 +  = Φ3 (see relations (7), (8),
and (14)) takes place at α = αc , where

(17)

It should be noted that we are using here the one-
harmonic approximation for phases I. Analysis shows
that the inclusion of higher harmonics affects only
slightly the dependence of the potential of phase I2 on
α, while the corresponding dependence for the poten-
tial of the I3 phase changes significantly. The dashed
curve in Fig. 2 shows the predicted dependence of the
potentials of phases I2 and I3 on α.

6. PHASE DIAGRAMS

Thus, there exists a critical field E0 = 2β'  (see
relation (6)) above which (E > E0) the incommensurate
phase I2 appears on the phase diagram. This is due to
the existence of IL invariant (1), while the existence of
the critical field is associated with the presence of
invariant (2), i.e., with the linear interaction of the field
with the order parameter.

It is convenient to plot the phase diagram with the I2
phase on the αβ' plane for F > F0 (see Fig. 1). Phase I2
lies on both sides of the line α = α0 (see relation (6)).
The phase diagram plotted on the αF2 plane is even more
illustrative (Fig. 3). On the diagrams depicted in Figs. 1
and 3, the domains of phase I2 expand with increasing F2

in proportion to (F2 – )2 (see relations (13) and (17)).

It should also be verified that possible but disre-
garded invariants cannot appreciably affect the results

Φ3

Φ3
24β'2 α α 3–( )2

β β'+( ) β 3β'+( )2
-------------------------------------------.–=

Φ2

α c α0 ∆2
3 β β'+( ) β 3β'+( )

4β' 5β 3β'–( )
-------------------------------------------- 1–

1–

.–=

F0
3

F0
2
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obtained above. The potential can be supplemented
with homogeneous invariants of the form

(18)

However, the elimination of these invariants by varying
the potential in variables u1 ± u2, u3, and u6 would result
to renormalization of coefficients of β and β', which can
be assumed to have been performed in relation (4).

The potential can be supplemented with invariants
of the form

(19)

u1 u2±( ) Px
2 Py

2±( ), u3 Px
2 Py

2+( ),

u6 PxPy PyPx+( ).

Ex
2 Ey

2±( ) Px
2 Py

2±( ),

ExEy EyEx+( ) PxPy PyPx+( ),

G3

I2

G2

F 2/F 2
0

1

α/α00

0.250

Fig. 3. Phase diagram on the αF2 plane (3β' > β). The
curves demarcate the regions of existence of phases G2, G3,

and I2 (see relations (6), (13), and (17)); α00 ≡ 2β .F0
2
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which are quadratic in the field and quadratic in Px and
Py , as well as with invariants of the type

(20)

,

which are linear in the field and cubic in Px and Py ,
along with those cubic in field and linear in Px and Py .

All invariants (19) and (20) are characterized by
higher orders in the field or in the components of the
order parameter as compared to the invariants included
in the potential. In these invariants, series expansions
can be carried out. Calculations show that this does not
significantly change the results obtained above.
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