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Abstract—The possihilities of resonance excitation of nuclear spins by an alternating electric field (nuclear
magnetoel ectric resonance) in the Mn,Sb ferromagnet are analyzed as applied to the studying of magnetoel ec-

tric effects in this compound. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A symmetry description of the magnetoelectric
effect, which manifests itself in the magnetization of a
substance by electric field E and itselectric polarization
by magnetic field H [1], uses invariant (with respect to
the symmetry operations of a crystal) combinations of
the ferromagnetism M, antiferromagnetism L, and
electric polarization P vectors [2], which enter into the
equation for the thermodynamic potential intheform of
summands,

By = Y MILEP, ()

where y*® are the magnetoel ectric tensor components,
relations between which are determined by crysta
symmetry [1]. Asfollowsfrom (1), polarizationin elec-
tricfield E, P¥ = kY3E? (where k3 is the el ectric suscep-
tibility tensor components), resultsin the appearance of
the magnetization

HY = -2 O 1Pp = LR,
oM
M}\ - X)\aHgﬁ 0 X)\a LBKVBEB, (2)

where X is the magnetic susceptibility tensor compo-
nents. Accordingly, magnetization in a magnetic field,
M = x®H3, results in the appearance of the electric
polarization

Ey = -22 omeLP =x @HALP,
0

\

A

P* = kMVEY O k™™ HOLP. )

It follows from (2) and (3) that both values, M* and

P, are only nonzero at LP # 0. For thisreason, the mag-
netoelectric effect is easiest to study in antiferromag-
nets[2], which are characterized by large L and zeroM
vectors. Conversely, in ferromagnets with two or more
sublattices, the M vector isnonzero, whereasL = 0. As
aresult, the magnetoelectric effect in these substances
isrelated to L vector changes. These changes cannot
be recorded in static magnetic measurements, and the
magnetoelectric effect in ferromagnets cannot there-
fore be studied by the existing experimental methods.
This work is concerned with the Mn,Sb compound,
which is a four-sublattice ferromagnet [3] and whose
magnetic structure is therefore characterized by both
vectors (M and L). Nevertheless, we will show that
experimental studies of the magnetoelectric effect in
this compound involve the same difficulties as with
ferromagnets.

One of the approaches to solving this problem is
through using alternating electric E(t) and magnetic
H(t) fields with near magnetic resonance frequencies.
The feasibility of using field E(t) at the antimagnon
resonance frequency, when pure antiferromagnetism
vectors L are only excited, whereas the total magneti-
zation vector M remains constant, was discussed
in [3]. The antimagnon resonance frequency range is
determined by exchange interaction, which corre-
sponds to 10>-10* GHz [3]. In this work, we also dis-
cuss the feasibility of using field E(t) at the nuclear
magnetic resonance frequency. In [4], this type of res-
onances was called nuclear magnetoelectric (NMER).
Its frequency range, like that of NMR [5], is 10>
10° MHz. The use of NMER for studying the magne-
toelectric effect in Mn,Sbh isfavored by the presence of
only one manganese isotope Mn with alarge nuclear
magnetic moment of 3.54,,, where I, is the nuclear
magneton [5].

1063-7761/04/9805-1002$26.00 © 2004 MAIK “Nauka/ Interperiodica’



POSSIBLE USE OF NUCLEAR MAGNETIC RESONANCE

2. THE MAGNETIC STRUCTURE
AND THERMODYNAMIC POTENTIAL
OF Mn,Sb

The Mn,Sh compound hasa Curie point T =550 K,
easy-axis magnetic anisotropy above 240 K, and easy-
planeanisotropy at T < 240 K. Itscrystallographic sym-
metry is described by the space group DZh = P,/nmm.
The manganese ions occupy two different twofold
sites [3], Mnl (site a) and Mnll (site ¢), with different
atomic magnetic moments, p, = (2.13 = 0.20)ug and
My, = (3.87 £ 0.40)pg. The atomic moments are ordered
ferromagnetically within the sublattices of sitesa and ¢
and antiferromagnetically between themselves. This
corresponds to a ferrimagnetic exchange structure
whose unit cell contains four ions with the ferromag-
netism vectors M ;, M, and M4, M, . Assitesa and
c are not related by symmetry operations, this structure
can conveniently be described in terms of two ferromag-
netism (M) and two antiferromagnetism (L) vectors,

M a =M al +M a2

La = Mal_Maz, (4)

Mc= Mcl+Mc21 chMcl_Mcz! (5)
with the conditions M, 1t M. (in addition, M, > M,)

and
2 2 _ 2 _ -
M:+L; = 4Mg,, M [ =0, & =ac, (6)

where M, = My = M, and My, = M = M, are the
magnetizations of the sublattices. The total magnetiza-
tion of Mn,Sb is determined by the difference M =
M. —M,. To be specific, |et the ferromagnetism vector
in the ground state M = M, be parallel to the z axis

(easy axis); that is, Mgy = M,. In what follows, we only
consider uniform oscillations of the L; variables,
because ferromagnetic oscillations of the M; vectors
are not excited by an electric field.

The magnetoel ectric effectsin Mn,Sb are described
in this work using the thermodynamic potential of the
form

D = D + Py t+ Dy, (7
where
Py = 30,10+ 23 ®)

is the exchange part of the thermodynamic potential in
the approximation quadratic in L. Such a form was
used in [3] to describe spin wavesin Mn,Sb excited by
an alternating electric field. Work [3] also contained
equations relating the J, and J. coefficients to the
parameters of intra- and interstice interactions.
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Thenext termin (7),

Oye = —{Do(LiE - LIE) + dy(IE* - 3E")

X =X X=X Mg (9)
+ Dc(LcE + LZEy) + dc(lcE + |ZEy)]M—,
0

describes the interactions of the antiferromagnetism
vectors of electrons (L) and nuclei (I;) with electric
field E. Here, D,, D, d,, and d. are the corresponding

constants for these interactions. (Recall that M2 /M, = 1,

and this multiplier is only retained in (9) as a test for
invariance.) As distinct from (1), calculations by (9)
were simplified by using invariant combinations in
which polarization vector P components were replaced
by electric field E components. The vectors |; are
related to the nuclear magnetizations of the sublattices,
mg; and mg,, by equations similar to (5).

The last term in (7) describes hyperfine interactions
of the magnetizations mg; and mg, with M and L¢,

1
Py = _QZAE(MEmE"'LEIE)- (10)
g

The longitudinal components Mz; = Mg, = *Myg,
determine the equilibrium values of hyperfine fields at
the nuclei [5, 6],

Hye = +A:Mg, (12)
and the eigenfrequencies of vector mg; and mg, oscilla-
tions (NMR frequencies),

Woe = YolHa = VaAMeo, (12)

wherey, = 1.05 MHz /kOeisthe gyromagnetic ratio for
SMn nuclei [5]. In (11), the minus sign refersto the site
& =a, and the plus sign, to the site & = c. Inreview [7],
the following values were given for these frequencies:
Wy, = 126.26 MHz and w,,. = 143.7 MHz. Their differ-
enceismuch larger than thewidth of NMR lines, which
allows us to study the resonance behavior of nuclear
spinsin thetwo sitesindependently. Below, we givethe
results obtained for the site & = c, for which the ®,,c
term [see (9)] is symmetric with respect to the replace-
ment of x by y. For the site & = a, thisterm is antisym-
metric with respect to this permutation. For this reason,
the NMER signals from the nuclei in sites § = a should
be described by the formulas given below with EY
replaced by —E. For brevity, the & index will be omit-
ted. With these replacements, the analysis given below
isvalid for atwo-sublattice ferromagnet.
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3. EFFECTIVE MAGNETIC FIELDS
AT NUCLEI GENERATED
BY ALTERNATING ELECTRIC FIELD E(t)

In this section, we give the results obtained by cal-
culating the effective fields

__0% _
hv - amvf VvV = 112

(13)

that act on the nuclear magnetic moments m; and m,
when electric field E(t) alternating at afrequency of w,
[see(12), & =c] isswitched on. It follows from (13) that

thelongitudinal components hi, coincide with the equi-
librium hyperfine field value H; [see (11)], which
determines the w, frequency [see (12)] and does not

respond to field E(t). The transverse components h;
(a =X, y) include two terms, namely,

hy = hy +hj, (14)

where
hS, = (-1)"'dE® (15)

isthe field caused by the direct interaction between the
magnetic moment m,, and field E(t), and

v-1l
VL_(l)l )

which is the variable hyperfine field component caused
by vector L oscillations under the action of E(t). As
both w, frequencies [see (12)] are much lower than the
eigenfrequencies of vector L oscillations, the response
of the L vector to field E(t) can befound by minimizing
thermodynamic potential (7),

(16)

9® _ jie_pg° (t)——AI (17)
aL®
Substituting the solution to (17)
a _ 2 o A a
L7(t) = JE (t)+2JI (1), (18)

into (14)—(16) and ignoring effects second-order in A
yields

i) = K +he = ()" R+ ZOE°®). (19

This equation describes two channels of NMER signal
resonance excitation. Each of them is characterized by
its own magnetoelectric constant. Currently, only
experimental data on constant D are available. They
were obtained from static magnetoel ectric effect mea-
surements and are summarized in [8]. These data were
used in [4] to estimate the excitation level of nuclear
spins under NMER conditions. For Cr,0O;3, this excita-
tion can attain the same values as under usual NMR
conditionsin fields E(t) with an amplitude of 10°V/cm.
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In TbPO,, the D constant is approximately 100 times
larger than in Cr,0O5. At such D values, the specified
excitation level of nuclear spins should be attained at an
amplitude of 10° V/cm. Asfar as the d constant is con-
cerned [see (15)], estimating it requires the use of
experimental NMER data.

4. ELECTRIC POLARIZABILITY CAUSED
BY NUCLEAR SPIN OSCILLATIONS

As follows from (19), fields hi and h; differ only

insign (h{ =-h;). Asaresult, there is a phase shift of
Tt between the corresponding oscillations of the m; and
m, vectors. The total magnetization is therefore zero,

m(t) = my(t) + my(t) = 0.

For thisreason, the usual NM R techniques are of no use
for recording NMER signals. Nevertheless, we would
be able to detect aNMER signal in heat |oss measure-
ments from the Q factor value. In the problem under
consideration, the nuclear antiferromagnetism vector

1(t) = my(t) —m,(t) (20)

becomes nonzero. As follows from (9), electric polar-
ization P(t) oscillations are related to this vector. It is
these oscillations that can play the role of NMER sig-
nals.

We calculated P(t) from the equation

0P

PU(t) = —22 = DL%(t) +dI%(1). (21)
OE®

Substituting (18) for L%(t) in (21) and retaining only the
terms with 19(t) that have resonance singularities at the
NMER frequency yields
a a a A a

P(t) = PI(t) + PL(t) = g+ Z5DHI(V).
Like (19), (22) determines two excitation channels of
P(t) oscillations. The term with d describes the direct
excitation of polarization P(t) by I(t) vector oscilla-
tions. The second term (with D) isresponsible for indi-
rect excitation viathe hyperfine interaction between the
L and | vectors. The P,(t)/P_(t) ratio, as expected, coin-
cides exactly with h;(t)/h(t),

P(D) _ h() _ dd
P.(t)  hy(t) DA’

Note that, when (21) and (22) are used to determine
P, the replacements LY —» —L.Y and |Y —» —{¥ should

be made.

To finally determine the resonance response to field
E(t) in the form of effective polarization (22), we must
solve the equations for m; and m, (or m and ) in con-
stant [EQ. (11)] and alternating [Egs. (14)—(16)] fields.

(22)

(23)
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In the linear approximation under stationary excitation
conditions, we obtain I*Xand IY in the form

¥ = 2x () i+ EAEDE%” 2D
Y = 2xn(w)gj+%DE%y—igE%, (25)
where
Xo(®) = Xn(0) (26)
W — W

is the NMR susceptibility. To determine |2, both the

BEY — —F and w, — —w, replacements should be
made in (25); the latter is related to the negative sign of

the hyperfinefield Hy,, [see (11)].
Substituting (24) and (25) into (22) yields P} and
Pé in the form

x A T, .
P* = 2x(@) i + 55D HE +|w9EE, 27)
P =2 AP Qe 28

As has been mentioned above, it makes little sense to
quantitatively discuss these results in the absence of
experimental NMER data, because we do not know the
d values.

Equation (22) can a so be applied to a pulsed nonlin-
ear regime. For this purpose, we must substitute the [*
values found in the corresponding nonlinear approxi-
mation into it.

5. CONCLUSIONS

The new physical phenomenon, namely, the excita-
tion of NMR by electric field E(t) (NMER), was pre-
dicted by one of these authors [9] for the examples of,
first, a hypothetical two-sublattice ferromagnet with
sublattices related to each other by a center of symme-
try and, secondly, an antiferromagnet without a center
of symmetry. More recently, this phenomenon was con-
sidered for several other antiferromagnets, including the
four-sublattice antiferromagnets Cr,O;, 0-Fe,05 [4],
and trirutiles Fe,TeO, [10], which exist in redlity. As
follows from this work, the Mn,Sb compound can be
classified with two-sublattice ferromagnets from the
point of view of NMER. Thiscompound isalso unusual
because magnetoel ectric effects should exist in it, but,
as has been mentioned in the Introduction, they cannot
be studied by the usual magnetostatic methods. One of
the techniquesfor studying these effects [through excit-
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ing electrically active magnons by field E(t)] was con-
sidered in [3]. This technique requires using frequen-
cies on the order of 10°-10* GHz. Studies of the prop-
erties of magnetic materials in fields E(t) at the lower
boundary of this frequency range are already under
way, athough for other manganese compounds
RMn,Os, where R = Eu, Er, and Gd [11]. A signal in
field E(t) was detected close to the temperature of the
structural phase transition, which is evidence of the
important role played by magnetoel astic interactionsin
the formation of thissignal.

The NMER technique can be used to study magne-
toelectric effects at lower frequencies. For Mn,Sb,
these frequencies are 126.3 and 143.7 MHz [7]. We
hope that the present publication will stimulate interest
in experimental NMER studies.
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Abstract—The theory of magnetization in alongitudinal magnetic field is developed for an easy-plane multi-
sublattice antiferromagnet with a singlet ground state and a strong single-ion anisotropy exceeding the magni-
tude of exchange interaction. The magnetic-field-induced phase transition from the singlet (magnetically dis-
ordered) state to a multisublattice antiferromagnetic state represents a displacive magnetic phase transition. At
T =0, this transition proceeds continuously and belongs to second-order phase transitions, whileat T # 0, the
behavior changes to jumplike and the process becomes the first-order phase transition. © 2004 MAIK

“ Nauka/lInterperiodica” .

1. INTRODUCTION

The investigation of multisublattice (three-, four-
sublattice, etc.) antiferromagnets possessing easy-
plane anisotropy, despite considerable achievementsin
this direction of research, still receive much attention.
Of special interest among these systems are hexagonal
antiferromagnets of theABX; type (whereA isan akali
metal ion, B isatransition metal ion, and X is a halo-
gen), in which the spins of magnetic B* ions form, on
the one hand, antiferromagnetic (AFM) chains along
the C; axisand, on the other hand, triangle structuresin
the basal plane (see reviews [1-3]). The phase transi-
tions observed in such antiferromagnets exposed to a
magnetic field are sometimes difficult to identify both
with respect to the order (first versus second) and the
type (order—disorder, etc.).

In these hexagonal antiferromagnets, the magnetic
anisotropy always has a single-ion nature (owing to the
orbital contribution) and may vary in extent. However,
of most interest (especially from the standpoint of basic
knowledge) is the case when the anisotropy is compa:
rable to (or even stronger than) the Heisenberg
exchange interactions [4]. Such a relation between the
parameters of various spin interactions takes place, for
example, in CsFeBr; and CsFeCl; antiferromagnets
where (for Fe** ions with a pseudospin of S= 1) the
constant of single-ion anisotropy is D = 20-30 K and
the constant of exchange interaction is Jg4, = 3-5 K for
apair of nearest ions (in the chains) belonging to adja-
cent planes and J; = 0.3-0.4 K for the sameionsin the
basal planes, and it isessential that both exchangeinter-
actions exhibit the AFM character [1, 5-7].

For such values of the energy parameters, whereby
D > Jy + Jy, al ionsin the magnet occur in the same

singlet spin state and no multisublattice magnetic struc-
tureisformed in the crystal (in contrast to what would
be required by the exchange interactions if there were
no single-ion anisotropy) [1]. From the physical stand-
point, this corresponds to a situation when the lowest
state among three possible single-ion spin states with
the spin projections S, = 1, 0 onto the C; axis is that
with the zero projection. This ordered state (in fact,
exhibiting no magnetic order) possesses the van Vleck
character of susceptibility whose difference from that of
usual paramagnetsis especialy pronounced for T < D.

When such an antiferromagnet is exposed to an
external magneticfield H directed along the C; axis, the
initial order of levelsin the magnetic ions is gradually
altered and, asthe field strength increases, another state
of the aforementioned triplet—that with nonzero spin
projection—may become the lowest (ground). This
magnetization proceeds in a self-consistent manner
because of the interplay of different interactions. the
exchange interaction and H favor the spontaneous
polarization of ions, whereas the single-ion anisotropy,
on the contrary, hinders this process [8]. Besides, the
single-ion anisotropy tends to orient the ground-state
magnetic moment of theion perpendicularly to the hard
axis C; and, hence, perpendicularly to H. In turn, the
field forms the average spin projection onto H, thus
producing canting of the average spin. As aresult, the
field H || C; will induce a phase transition from the
singlet state to a phase (previously called the oblique
phase [8]) with a complex magnetic order, in which
ions are spin-polarized and the spins are canted toward
thefield.

As was noted above, the spin projection in the sin-
glet stateiszero (spin polarization in the ground stateis
absent), all ionsareidentical, and the AFM exchangeis

1063-7761/04/9805-1006$26.00 © 2004 MAIK “Nauka/ Interperiodica’



A MULTISUBLATTICE MAGNETIC PHASE INDUCED BY EXTERNAL FIELD

not manifested. In the oblique phase, spontaneous
polarization of the ground state during the AFM
exchange is accompanied by the formation of a multi-
sublattice structure with different spatial orientations.
This field-induced transition from the van Vleck para-
magnetism to antiferromagnetism can be (and has to
be) classified as a displacive phase transition. The pos-
sibility of such magnetic phase transitions in the mag-
nets with a large single-ion anisotropy was recently
considered in[9, 10Q] (it should be noted that no any dis-
placement of ions actually takes place and the term
“displacive” only refersto the type of transition).

It can be suggested that the singlet state and a mul-
tisublattice structure, as well as a displacive magnetic
phase transitions between these states are observed in
CsFeBr; antiferromagnet. However, there are contra-
dictory considerations [11-14] concerning the order of
the phase transition between these states. Moreover, the
aforementioned questions concerning magnetic polar-
ization in the ground stage and its predominating rolein
determining the type of the phase transition were even
not formulated. A description of the magnetization of
this antiferromagnet [8] aso bypassed this important
guestion.

An analysisof the phasetransitions between the sin-
glet state and the multisublattice oblique phaseat T=0
showed that this process is continuous and belongs to
second-order phase transitions [5, 8]. It should be
emphasized that, in the longitudinal field (parallel to
the C; axis) at T = 0, the singlet state has no magnetiza-
tion at al and (see above) the system occurs in a state
with the spin projection equal to zero. However, as soon
as T # 0 (even when D > T), the situation is signifi-
cantly complicated: by virtue of the paramagnetic pro-
cess, the external field produces magnetization of the
system, whereby the magnetic moments of ionsin al
sublattices are equal and oriented along the hard axis.
The susceptibility of this state is much smaller as com-
pared to that of the usual antiferromagnets because the
population of levels in ions with nonzero spin projec-
tionsat D > Tisexponentialy small.

Despite asmall value of the magnetization, the con-
tinuous character of transition from the field-magne-
tized singlet state to the oblique phase can no longer be
retained because of different contributionsto the origin
of the new order (without and with self-consistency in
the first and second case, respectively). If the continuity
were retained, a procedure of spin polarization of the
ground state would be absolutely different from that
described above and (as will be shown below) it would
imply that the magnetic moments arising with this
polarization continuously turn out of the hard axis in
the plane and then turn back to this axis in a stronger
field. Obvioudly, such a*“nonmonotonic” orientation is
physically impermissible because the field oriented
along the hard axis and not reducing the symmetry of
the system in the course of magnetization only
decreases the role of single-ion anisotropy. It isthiscir-
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cumstance that allows the AFM exchange to be mani-
fested by forming amultisublattice AFM state oriented
in the basal plane, the spins of which are rotated by the
same field toward the hard axis. It should be empha
sized that spontaneous deviation of the magnetic
moments away from the hard axis would imply that, in
the very beginning of spin flop, the exchange fields act-
ing upon the field-induced average magnetizations
(also small because of alow population of levels with
nonzero spin projections) exceed both the anisotropy
and the external field, which is impossible under rea
physical conditions.

Although the experiment of Tanaka et al. [5] does
not allow an unambiguous conclusion to be made about
the type and order of the phase transition in the ternary
halide CsFeBr5, we will proceed with consistent inves-
tigation of the model multisublattice spin system pos-
sessing a large single-ion anisotropy (exceeding
exchange fields) in the longitudinal magnetic field.
Below we will theoretically describe such a system
assuming that its parameters and the relations between
these characteristics correspond to those for CsFeBr;.

2. MODEL HAMILTONIAN
AND ITS EIGENSTATES

For simplicity, werestrict the consideration to bilin-
ear isotropic exchange interactions, single-ion anisot-
ropy, and Zeeman contribution. In this case, the sim-
plest model Hamiltonian of a system with a structure
analogous to that of CsFeBr; can be written in the fol-
lowing form:

Z ‘]uBSna [SmB
n,a,m,B (1)

+DY (S -hY Sk,

where the subscripts a and 3 indicate magnetic sublat-
tices (a # 3), the total number of which in the system
under consideration is six; n and m are the vectors set-
ting spin positions in the sublattices; D > 0 is the con-
stant of single-ion anisotropy (easy-plane structure);
h = pggH, is the magnetic field in energy units; and H,
isthe applied magnetic field (oriented along the crystal -
lographic axis C; (C; || 2) and perpendicular to the easy
axis. For the given field orientation the spins of various
sublattices will be equally canted toward the field
vector.

In CsFeBr; (and crystals of this family), the
exchange interaction is spatially anisotropic (i.e., it
depends on the mutual arrangement of spinsin the lat-
tice). The exchange constant J,, in the basal plane dif-
fersfrom the value J,, in the direction of hard axis (i.e.,
in the direction of chains). With allowance of the struc-
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tural features, the exchange constant J, tends to estab-
lish the antiparallel orientation of spinsin the neighbor-
ing planes, while J, orients spins closest to the easy
axisat anangleof 21v3. Asaresult, the given hexagonal
antiferromagnet with a finite value of average spin per
lattice site acquires a multisublattice structure with the
total number of magnetic sublattices equal to six.

An analysis of the possible quantum eigenstates of
Hamiltonian (1) will be performed in the self-consis-
tent field approximation, whereby the interspin fluctua-
tions are ignored and the average of the product of spin
operators of various sites is replaced by the product of
average values for these sites. In this case, the ground
state energy E,, per cell (for spins belonging to different
sublattices, three in one plane and three in the adjacent
plane) is

Ey = %;Jaszagsa 51Dy Q. -hy s @

where s, are the average vectors of ion spins in the
ground state; z, is the number of nearest neighbors
(threefor spinsin the same plane, two for spinsin adja
cent planes); we also introduce quantum-mechanical
average values of the squares of z-projections of spin
operators (called components of the quadrupole spin
moment Q).

L et usintroduce coordinate systems (€, Ng, {4) fOr
the spins of each sublattice, so that the average spinin
the a sublattice is oriented along ¢, while &, axislies
in the z{,, plane. Then, the wave function of the ground
spin state of the a sublattice hasthefollowing form [4]:

O = cosq, |10+ sing, |-10) €)

where |+1[]|0Care the eigenfunctions of the operator

S\, . Using (3), we calculate the average values of the
spin and the quadrupole moment components,

s, = cos2g, QF =1, QF = %(1+sin2cp), )
wheresubscript “0” indicates averaging over function (3).
In expression (4), we omit the sublattice indexes
because the reduced values are independent of o for the
given field direction.

Using the values (4), the energy (2) can be repre-
sented as

Eq = 93, c0322(p(3c0529— 1)

+6J. cosZZ(p(3 cos’0 — 1) 5)

.2
+ GD[COSZG + gr_12_§(1 + sin2(p)] —6hcos2¢cos6,

where 6 is the angle between spins of each sublattice
and the magnetic field, equal to the angle between the
crystallographic axis and {, axes. Note that the ground
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state energy of acrystal was also determined and mini-
mized in [5]. However, in contrast to (3), the selected
wave functions were expressed in the general form in
the crystallographic coordinate system (rather than in
the intrinsic coordinate systems of sublattices) and con-
tained the parameters of rotation of vectors |+1and |00
in the Hilbert space, which significantly complicated
the interpretation of arelationship between the observ-
able and unknown (variational) parameters.

Our approach is more illustrative: spin configura-
tions, determining the ground state in various possible
phases and their mutual transformations in the mag-
netic field, are found from the equations derived by
minimization of the energy (5) with respect to ¢ and 6:

cos2@sin2g[6J,,(3 cos’0 — 1)+ 4Jch(2c:osze -1)] ©)
—DSiHZGCOSZCp—ZhSiI’IZ(pCOSG =0,

cosBsinB[(9J, +4Jy,) 00522(p+ D(1-sin2)] 0
—hcos2¢psin® = 0.

These equations can be reduced to the equations for
determining the ground state, which were obtained by
Ostrovskii and L oktev [4] using a self-consistent proce-
dure and special conditions of orthogonality for the
vectors of various states. Leading eventualy to the
same solutions, Egs. (6) and (7) are preferred because
they additionally determine the conditions of phase sta-
bility.

Let us analyze the solutions of this system of equa-
tions. The first solution corresponds to a collinear fer-
romagnetic state and is realized under the conditions
sinB = 0 and sin2¢ = 0. In this case, the projections of
spins of sublatticesare aligned in the field and their val-
uesare maximum and equal s,=S= 1. The second solu-
tion corresponds to a three-sublattice AFM state with
the Loktev structure[15] symmetric in the plane, which
isvalid for cos® = 0 and sin2¢ = -D/(6J, + 4Jy,). This
solution is possible only in the absence of magnetic
field (h = 0). In the corresponding 120° spin structure,
the values of spin projectionsare equal and smaller than

the limit S= 1: 5= /1—D%(63, + 4J4)°.

Thethird solution refersto the oblique phase (h £ 0),
in which we also have sy(h) < 1. Equation (7) directly
indicatesthat, in contrast to the quasi-classical solution,
the angle between the spin of sublattice and the direc-

tion of field H is a nonlinear function of the field
strength:

hcos2¢
(93, +4Jy,) cos’2¢ + D(1—sin2¢)
As the field strength grows, the spins are more canted

toward the field direction and, hence, s5(h) increases so
that lways s < sp(h) < 1.

cosB = (8)
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A field corresponding to the transition from the
oblique phase to the state upon complete spin-flop,
whereby all spinsare parallel (oriented perpendicularly
to the easy axis), can be determined by substituting
cosO = 1 and cos2@ = 1 into formula (8) for the canting
angle. As a result, we obtain the relation hgo, = 93, +
4], + D, which agrees with the expression for the flop
field obtained in [5] and, moreover, coincides with the
formula obtained in the quasi-classical approximation
for 55 =1. Ascan be seen, the value of the spin-flop field
is additive with respect to the anisotropy and exchange,
although the physical mechanisms of their action are
absolutely different.

Finaly, one more (fourth) solution is possible as
determined by the conditions cos8 = 0 and cos2¢ = 0.
This solution can be realized both for nonzero magnetic
fields (h # 0) and for h = 0. The reduction of spin pro-
jections in this state is maximum—up to 5, = 0, in
which case sin2¢ = —1. This corresponds to the van
Vleck singlet (paramagnetic) state without magnetic
order [16], which is also called a quadrupole spin state
[17-19] because Q¥ — QM # O (this difference has a
[imiting value).

It was demonstrated [9] that the phase transition
from the singlet state to the oblique phase in a ferro-
magnet can be described using methods of the Landau
theory of phase transitions. We suggest that the role of
the order parameter can be performed by the spin pro-
jection of the ground level of an ion. Below we imple-
ment this approach taking into account a multisublat-
tice character of the antiferromagnet under consider-
ation.

3. PHASE TRANSITIONS FROM A SINGLET

GROUND STATE TO THE OBLIQUE PHASE

IN THE LONGITUDINAL MAGNETIC FIELD:
T=0

The phase transition from singlet to AFM state at
T = 0 proceeds via magnetic polarization of ionsin the
ground state. This transition to a magnetically ordered
state should be classified as a displacive phase transi-
tion, with the microscopic values of spin projections
being equal to their macroscopic average values. Inthis
case, the formation of a magnetic structureevenat T =
0 can be described in terms of the phenomenological
theory of phase transitions. Indeed, obtaining an
expression for cos® from Eq. (7) and taking into
account that s, = cos2¢, the expression for the ground
state energy at small values of s, (55 << 1) and h (h# 0)
can be presented in the form of a series analogousto the
Landau potential:

3
Ey = 55[D°~D(6J, +4Jq) —h]s;

372 D=2(93,+43y) 274, 3
+8D[D - D h}so+16D ©)
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9 [Dz_ D’ —2(9J, + 4Jch)2(9'JpI + 4, — D)hz}sg_
D

As can be seen, expansion (9) does not contain thefirst
powers of s, and h (second-order terms include their
products). In addition, relation (9) indicates that (simi-
lar to the case of ferromagnets) the field oriented along
the axis decreases the single-ion anisotropy. However,
in contrast to the case of a ferromagnet (where this
decrease is independent of the isotropic ferromagnetic
exchange), the process in an antiferromagnet has a
more complex character: the external field favoring the
formation of a one-sublattice ferromagnetic phase
simultaneously counteracts both the single-ion anisot-
ropy and the AFM exchange.

The coefficient at SS in expansion (9) vanishes and
then changes sign in the field h = hp at which the sys-
tem exhibits a transition from a singlet ground state to
the obligue phase. This critical field is determined by
the formula

hoe = J/D?=D(6J, +4Jy). (10)
Note that, in the approximation of 55 < 1, we have
hop < D. Thisimpliesthat, for h = hqp, the coefficients
at higher power of s, are positive and their values vary
only slightly with the field h. Taking this into account,
we infer from relation (9) that the magnetic-field-
induced phase transition between the nonmagnetic (sin-
glet) state with s, = 0 and a multisublattice spin-polar-
ized state with s, # 0 is a second-order phase transition
during which the magnetization varies in a continuous
manner. Thus, restricting the expansion (9) for E to
the fourth-order terms, we conclude that ions in the
ground state at h < hop are not polarized (not “magne-
tized”) and s, = 0. At the same time, for h—hgp > 0, the
average spin projection onto the quantization axis for
each sublattice is

1/2

olh) = 272 (h—hep)”, ay

and the spin canting toward the hard axis in the mag-
netic field is described by the relation

3/2

cosf = D%’(h— hop) 2. (12)

Using relations (11) and (12), we can determine mag-
netization of the crystal along the hard axis as

. _ .he
m’ = 2—§§(h-hQP). (13)

No. 5 2004



1010

According to the above results, the longitudinal
magnetization x,, = dn¥/oh in the singlet state is zero,
while in the oblique phase it acquires a constant value

2

h
X(T=0,h>hgp) = 2?’ (14)

Thisis an unusual result, since both spin modulus and
the canting anglein the course of spin flop are functions
of the field.

The aforementioned oblique phase has essentially
the structure of a multisublattice antiferromagnet, in
which the spins of ionsin various subl attices are canted
toward the magnetic field. In usual antiferromagnets,
the phase transition to such a canted multisublattice
state is considered as a transition of the order—disorder
type (such transitions are also called orientational
phase transitions [20]). In contrast, the above phase
transition from the singlet state without initial magnetic
order to the oblique phase with a field-induced mag-
netic order, while also being a transition of the order—
disorder type, represents a displacive magnetic phase
transition.

4. THE FREE ENERGY OF A SINGLET GROUND
STATE ANTIFERROMAGNET
IN A LONGITUDINAL MAGNETIC FIELD

The description of a field-induced phase transition
from the singlet ground state to AFM state at nonzero
temperatures is complicated because of the need for
taking into account the populations of al states of ions
now occurring not only on the singlet ground level
without magnetization, but on some other levels as
well. At T # 0, the system features both the process of
spin polarization considered above and the paramag-
netic process.

For determining the ion states, previously we used a
single-particle Hamiltonian [4]

2
H = _hfag():hsncx + D(Srfor) _hSix’

where h@(Ch is the average (exchange) field acting on

thespin S, of thenthioninthe a sublattice. The eigen-
states of Hamiltonian Hy will be determined by intro-
ducing (similar to the case of T = Q) the intrinsic coor-
dinate systems. At T = 0O, the quantization axes were
directed along the spin projections in the ground state
of ions; now it is more convenient to orient these axes
along the thermodynamic average spin vectors of each
sublattice. It can be shown [4] that, for such coordinate
systems (even making nonzero angles with the longitu-
dinal field), the eigenstates of ions in antiferromagnets
with easy-plane anisotropy are described by the wave
functions

(15)

W = cosq, 10+ sing,|-10 @i =

@ = _ sing, |10+ cos@, 10

0L (16)
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Using relations (16), we readily determine the partial
spin projections onto the quantization axes in each

state: s¥ = —s? = cos2q,, st = 0; the corresponding

partial averages of the operator (Sf,) are constant and
equal to 1, 0, and 1, and the averages of the operator
(Sé)2 are (1/2)(1 + sin2¢,), 1, and (1/2)(1 — sin2q,).
Let us write down the thermodynamic averages for
the magnetization modulus m, = |m,| and the operator

(Sé)z. Note that, despite different orientations of the
magnetization vectors m, in various sublattices, the

values of these observables in various sublattices are
the same;

m, = Ap,Cos2q,, a7
(85)2 = pqcoszeq
Usin’e,, o
where Ap, = pff’ pff),pa P’ + P, and p; and

pgz) are the probabilities of the ground state and the

second excited state (16), respectively.

According to the definition, the free energy F = E —
TS,,, where E is the internal energy and S,, is the
entropy. In the self- consistent field method, the entropy
is configurational. For a multisublattice spin system, it
isdefinedassum S, = Z“ S(e‘,? of the entropies of sub-
| attices.

Theinternal energy of system (1) per particle can be
presented in the following form:

1 z\2 V4
= EZJGBZ(,BmeB +DZ(S(,) —thu. (19)
a,B a a
The entropy of the a sublatticeis given by the standard

expression:

@ - Z o Inpd,

i=01,2

(20)

where p(’) arethe probabilities of single-ion states (16)

(0 =
iz012Pa = 11In
e entropy can be

satisfying the obvious condition
terms of reations (17) and (18), t
expressed as
ia) - pa +Apu|npa + Apa
" 2 2

A A (21)

Now we can obtain the final expression for the free
energy of an antiferromagnet with S= 1 and an easy-
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plane single-ion anisotropy in alongitudinal magnetic
field:

F = 9J,(Ap)°(3cos’6 — 1) cos’2¢

+6J4,(Ap)*(2c0s°0 — 1) cos’2¢

+6D Epcosze + %L—g + AEpSiI‘IZ((BSiHZ% (22)

—6hApcos2@cos 0+ 6T Dp +2Ap| 2 +2Ap
0

+RZAR)P=AP L (1 _ pyin(1- D)El
2 2 .

where the sublattice indexes (being equivalent) are
omitted. This expression for the free energy is princi-
pally different from its traditional representation,
including that used in [16, 17, 19]. Using Eq. (22), itis
possibleto follow the process of polarization of single-
ion states (see below).

5. PHASE STATES OF A SINGLET GROUND
STATE ANTIFERROMAGNET
IN A LONGITUDINAL MAGNETIC FIELD
ATTZO0

The equilibrium states of asinglet ground state anti-
ferromagnet correspond to a minimum of the free
energy (22). Here, the variation parameters are both ¢,
0, and p, Ap. Differentiating Eq. (22) with respect to
these variables and equating the derivatives to zero, we
obtain the corresponding equations of state

g; = 6{ cosZ(pan(p[GJp,(Scos 0-1)
+4J,,(2c050-1)](Ap)? (23)
+ DASiHZGCOSZ(p+ 2hApsin2¢@cos6} = 0,
gle:) = 6%—0036[(9Jp| +4J4)cos 2cp( Ap)
(24)

+2DE‘?’p 1—Apsm2q8} +hApcosZ(p[5me =0,

aaAFp - 3EQAp[3Jp|(SCOS 0—1) + 2J (20080 — 1)]
(25)
+Dsin’ Bsin2¢@—2hcos2@cos 0+ Tlng 28 =0,
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2" 4(1 p)*

Let us consider the solutions of this system of equa-
tions corresponding to the singlet state of the crystal
and the obligque phase. For the singlet solution, we have
cosB = 1 and cos2¢ = 1, while p and Ap are determined
from the equations

20p(63, +234) - 2h+TInE+AS— @D
T, p (Ap)

D+ inP—(8p) _ . 28

2" 4(1-p)’ %)

the quantization axisfor this solution coincideswith the
hard axis and is directed along the field. The ground
state of the ion is a singlet with the ground state func-

tion P{¥ = |00(see (16)). The two other (in this case,

excited) states have limiting values of spins onto the
quantization axis 1. Despite the fact that the spin pro-
jections in the ground state are zero, the thermody-
namic average of the system magnetization is nonzero
and equals m = Ap (per magnetic ion). The nonzero
magnetization appears only due to a difference in the
populations of excited states (having limiting values of
Spin projections).

Differentiating Egs. (27) and (28) with respect to h,
we obtain expressions for the longitudinal magnetic
susceptibility of the singlet state,

Xi(T.h) = —

6, + 2+ ———
p—(Ap)

In the region of D < T, the temperature dependence of
the magnetic susceptibility for h — O will bethe same
as that for usual antiferromagnets in the paramagnetic
state. Indeed, substituting Ap = 0 and p = 1/3 into
Eq. (29), we obtain

X (T,0) =

(29)

1
3A(T-Ty)

where Ty = 23y + (2/3)Jy) is the paramagnetic tem-
perature.

A significant difference of the magnetic susceptibil-
ity in the singlet state of the crystal (essentially, in the
van Vleck paramagnetic state) from the susceptibility
of the paramagnetic phase of a usual antiferromagnet
arise at low temperatures such that D/T > 1. Under this
condition, the populations of excited states are much
lower as compared to that of the nonmagnetic ground
state, while aweak field is incapable of producing sig-
nificant differences in the populations of two excited
ion states, so that we can assume Ap — 0. Thus, the

(30)
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temperature dependence of the magnetic susceptibility
at D/T > 1 and h — 0 has the following form:

2e—D/T

X (T,0) = T

According to this, the longitudinal magnetic suscep-
tibility of the crystal in the singlet ground state for
T — 0 asotendsto zero.

Itisalso interesting to study the field dependence of
the magnetic susceptibility in the other limiting case,
whereby h < D and h > T. Thisimpliesthat the temper-
ature is sufficiently low, while the field is significant
and exceeds the temperature (in the energy units
adopted). In order to justify introduction of the latter
condition, we note that the singlet state in the com-
pound CsFeBr; is observed at temperatures from 1 to
3 K and the fields from 3 to 10 T. In this case, in con-
trast to that considered above, the magnetic field
sharply changes the populations of excited levels.
Owing to this sufficiently large magnetic field, we can
realize the limiting situation in which the probability of
the ion state with the spin projection along the field is
much greater than the probability of a state with the
opposite spin projection. As aresult, for the equal pop-
ulations of these levels produced by thermal excitations
(magnetic disorder), the sufficiently large magnetic
field (h > T) produces actually the ideal order for these
two levels. Under these conditions, the magnetic sus-
ceptibility of the singlet stateis

(31)

XIT.h) = 3x,(T, 0)"". (32)
Apparently, this nonlinear field dependence described
by the exponential law is observed in CsFeBr5 in large
magnetic fields [5].

The second solution of Egs. (23)—(26) correspond-
ing to the oblique phase existsin thefieldsh > hqp. Let
us analyze this solution assuming that the average mag-
netization of sublatticesism < 1, that is, in the limit of
h — hge. This means that the exchange field in
Hamiltonian (15) issmall as compared to both h and D.
The polarization in the ground state of the ion also
depends on the temperature T but, in the case under
consideration, the magnitude of polarization is much
lower than the limiting value of unity. Under these con-
ditions, we may calculate the populations of levelsin
the oblique phase with neglect of the nonlinearity
caused by the exchange interaction. Then, using
Egs. (25) and (26), we obtain the following expressions
for the populations determined entirely by the D/T
ratio:

1_e—D/T
= — 33
P v 26" (33)
The magnitude of polarization s = cos2¢ in the
ground state of ionsin the oblique phase and the orien-

tation of quantization axes are determined from

_2+4p
p_ 3 ’
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Egs. (23) and (24). Taking into account formula (33),
these equations can be written as

cos2(sin2¢g[6Jy, (3c0326 -1)

+ 43, (2005°0 — 1)1 (Ap(T))? (34)

—DAp(T)sin’6cos — 2¢2hAp(T)sin2¢cosh = 0,
cosBsinB[ (93, +4Jy) (Ap(T))*cos’2¢
+DAp(T)(1-sin2¢)]

—hAp(T)cos2¢psinB = 0.

As can be seen, Egs. (34) and (35) are fully equivalent
to Egs. (6) and (7) but contain the temperature-depen-
dent coefficients. These quantities are conveniently

designated as Jy(T) = Ju(Ap(T))?, Jun(T) = Jen(AP(T))?,
and D(T) = DAp(T).
The part of the free energy dependent on the mag-

netic field and describing the polarization can be writ-
ten as

(35)

AF = :—;[D(T) —(63(T) +43(T))
i (36)
_%}sﬂ gD(T)S4.

Equating to zero the coefficient at s? in thisrelation, we
determine the magnitude of the critical field:

hoe(T) = D J%t—“‘"%%mm. (37)

Minimizing the functional (36), we determine the mag-
nitude of polarization in the ground state:

Jhop(T) J/h—hoe(T)
5 :

Finally, using Eg. (35) we determine the spin canting
angle in the sublatticesfor h — 0:

3/
ho

B(ZT) Jh—hoe(T).

Using the above expressions, we determinethe crys-
tal magnetization for the given solution as the sum of
magnetization vectors of all sublattices. The magneti-
zation is directed along the hard axis and has the value
(per magnetic ion)

o = 2th(T)[h—3h<gp('|')]

s(T,h) = 2 (38)

cosf = (39)

Ap(T). (40)

According to expression (40), the magnetic susceptibil-
ity of the system corresponding to the solution for the

No. 5 2004



A MULTISUBLATTICE MAGNETIC PHASE INDUCED BY EXTERNAL FIELD

oblique phase is independent of the field:

h2p(T
Xor = X(T,h>hgp) = 2 QE)(3 )

Ap(T). (41)

This behavior of the magnetic susceptibility was exper-
imentally observed by Haseda et al. [21] during mea-
surements of longitudinal (along the C; axis) magneti-
zation of CsFeCl; and RbFeCl; at varioustemperatures.
In the interval of magnetic fields4-6T<H<10-11T
at T < 25K, the susceptibility of these antiferromag-
nets has proved to be constant, while outside thisinter-
val it exhibited a sharp drop—exactly as expected for
both small and large field outside the region of exist-
ence of the oblique phase.

It should be noted that, despite the fact that the sus-
ceptibility in the singlet state is exponentially small
(seerelations (31) and (32), it can still be on the same
order of magnitude as the susceptibility (41) of the
oblique phase because hop/D < 1and D > T.

6. PHASE TRANSITIONS
IN A LONGITUDINAL MAGNETIC FIELD
AT T=#O.

The above analysis showed that the system of equa-
tions (23)—(26) hastwo solutionsat T # O for the fields
h < D. The first solution corresponds to a one-sublat-
tice crystal phase with a nonmagnetic singlet ground
state and the two other states having limiting values of
the spin projections onto the quantization axis, the lat-
ter axis being directed along the field.

In the second solution, the ion spin projections are
not equal to their limiting values and the ground stateis
polarized. This corresponds to a multisublattice AFM
state; for h — hgp, the quantization axes are oriented
perpendicularly to the field. Obvioudly, the passage
from the first solution to the second involves ajumplike
rotation of the quantization axes. In other words, the
transition from the singlet state to the oblique phase at
T#0 is the first-order phase transition, in contrast to
the second-order phase transition at T = 0.

The magnetic field for this phase transition can be
determined from the condition of equal free energies
for the two solutions. For h < D, the free energy of the
singlet phase can be written as

Fe = —TIn(1+2e ™ coshh/T). (42)

If the field is such that h > T but smaller than the con-
stant of anisotropy, relation (42) can be rewritten as

Fe = =T7X,(T, h). (43)

The free energy for the second solution equals the
sum of a single-ion component, which is dependent on
D/T but independent of h, and the contribution (36)
describing the magnetic-field-induced polarization of
ions in the ground state. Thus, the expression for the
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equilibrium free energy dependent only on h for the
oblique phase at s < 1isasfollows:

For = —TIn(1+2e™") + AF(h). (44)

Taking into account expressions (37)—41) and assuming
T/D < 1, the expression for Fop can be transformed to

For = —T2X(T, 0)_%XQP(T)[h_hQP(T)]2' (45)

For determining the critical field for the phase transi-
tion from the singlet state to the oblique phase, we
equate the expressions for free energies of these phase
and arrive at the transcendental equation

T°IX(T. he) = xy(T, 0)]
= 2Xoe(M)Ihe~hoa(T1’,

where h isthe critical field for the phase transition.

As can be seen from Eq, (46), the value of h: is
somewhat greater than hgp. This result confirms the
above conclusion that the phase transition from the sin-
glet phaseto the oblique phase at T # O isthefirst- order
transition and ajump in magnetization hasto take place
at h=hc. Itisinteresting to note that, asthetemperature
T decreases, the values of hc and hoe approach each

(46)

7. CONCLUSIONS

It was demonstrated that the magnetic phase transi-
tions in singlet ground state magnets can be described
using an approach based on the L andau theory of phase
transitions. The role of the order parameter is per-
formed by the spin polarization of single-particle states
of paramagnetic ions. We have shown that the ternary
magnetic halogenidesABX; with easy-plane single-ion
magnetic anisotropy feature a phase transition from the
singlet (one- sublattice) state to an AFM phase induced
by the longitudinal magnetic field. This transition rep-
resents a displacive magnetic phase transition. An
important special feature of the system under consider-
ation is that the phase transition is continuousat T =0
and exhibits ajumplike character at T # 0. This change
in the phase transition character from the second to first
order isrelated to the magnetic-field-induced paramag-
netic process, which cannot be ignored in the system
studied.

Another, also very important peculiarity of the sys-
tem under consideration is manifested in the course of
magnetization at low temperatures. First, the longitudi-
nal component of the magnetic susceptibility inthesin-
glet phase (i.e., in the initial stage of magnetization) is
strongly nonlinear, exhibiting exponential growth with
increasing externa field h and decreasing with the tem-
perature T. Second, this magnetic susceptibility compo-
nent ceases to depend on h upon transition to the AFM
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state at h > h¢. This behavior israther unusual. Indeed,
the magnetic susceptibility of usual antiferromagnets
(obeying the quasi-classical description) in the spin-
flop phase is constant. However, the spin-flop phase in
such asystemis only the result of achangeinthe AFM
order caused by the external field, while the moduli of
spins of sublatticesin the spin-flop phase remain essen-
tially constant in the course of canting toward the field.
In a singlet ground state magnet at h < he, the AFM
state (including multisublattice) is absent. It is only at
h = h that sublattices begin to form and acquire non-
zero magnetic moments increasing with h, whereby the
field also induces canting of the spins of sublattices
toward the hard axis. It is unusual that the field depen-
dence of the average spins and canting angles are such
that the magnetic susceptibility of the whole crystal in
the oblique phaseisanalogousto that for the quasi-clas-
sical antiferromagnets.

The results of our investigation qualitatively well
agree with the data of recent experimental investigation
of the static magnetic properties of CsFeBr; [5]. This
antiferromagnet exhibits a clear displacive magnetic
phase transition from the singlet state to the oblique
phase. From additional experimental data on the heat
capacity of CsFeBr, this phasetransitionat T # 0is of
the first order, although the crystal magnetization pro-
ceeds smoothly and exhibits no jump. As the tempera-
ture is decreased to approach T = 0, CsFeBr; exhibitsa
clear tendency to change the transition order from first
to second [5], but this behavior requires separate exper-
imental investigation.

The field dependence of thelongitudinal magnetiza-
tion of CsFeBr; iswell consistent with the theory pro-
posed above. The magnetic susceptibility of CsFeBr;
exhibits a nonlinear (exponential) dependence on the
applied field strength in the singlet state and remains
constant at h > h¢, after the transition to the oblique
phase. However, according to the available data [5], it
isstill difficult to provide for adirect description of the
magnetization and susceptibility curves for a CsFeBr,
crystal. It should also be noted that continuous variation
of the magnetization of CsFeBr; during the first-order
phase transition is not excluded, if we take into account
the possibility of formation of an intermediate state
simultaneously containing both phases [22]. However,
consideration of the possible domain formation goes
outside the scope of this study and is a subject for sep-
arate investigation.
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Abstract—The ground state of nonellipsoidal particles can be inhomogeneous due to the effect of a demagne-
tizing field. The approach proposed here for studying such particles is based on the combination of symmetry
analysis and perturbation theory. The general formulation of this approach, which makes it possible to analyze
weakly inhomogeneous states for particles with acomplex shape, is considered. The ground state of cubic par-
ticles of magnetically soft materialsis calculated analytically, and the effect of small strains of cubic particles
on the magnetization distribution in the particles is investigated. It is shown for the example of magnetically
soft cubic particlesthat even asmall deviation of the particle shape from symmetrical may result in the realiza-
tion of a special magnetic state in such particles, in which the symmetry in the magnetization distribution is
lower than the particle symmetry. A changein the parameters of a particle can substantially modify its magnetic
properties and may even induce a phase transition to a state with a different symmetry. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Advanced in sputtering technologies and electron-
beam lithography during the last decade have made it
possible to prepare artificial magnetic particles (mag-
netic dots) of a nanometer size aswell as their ordered
system (superlattices [1, 2]. Magnetic dots may have
various shapes and are mainly prepared from magneti-
cally soft ferromagnets (e.g., Co, Fe, or permalloy)
deposited on anonmagnetic substrate. The superlattices
of magnetic dots are important for practical applica-
tions, in particular, for designing new devices for high-
density magnetic recording [3, 4], magnetic field sen-
sors[5], and logical elements of computers [6].

Superlattices of magnetic dotsarea so interesting as
a basically new object of the fundamental physics of
magnetism. Indeed, from the standpoint of traditional
physics of magnetism, magnetic dots with asize on the
order of tens or hundreds of nanometers (which is
smaller than or comparable to the one-domain size) are
typical monodomain particles, which have been studied
for more than 50 years. However, detailed analysis of
these particles in recent years demonstrated a number
of peculiarities that have not been discussed before.
The main one is that various nonuniform distributions
of magnetization can be observed in such particles. If the
size of a particle becomes larger than a certain critical
value, but is still smaller than the one-domain size, avor-
tex state can be redlized in the particle [7]. For smaller
nonellipsoidal particles, the ground state a specific
weakly inhomogeneous magnetic configuration deter-
mined by the magnetic dipoleinteraction (see[8-12]). In
[8-10], a method was proposed for determining the
micromamagnetic pattern of such a distribution from

the known average direction of the magnetic moment.
Such asimplification is possible for magnetically rigid
particles, for which the average direction of magnetiza-
tion is determined by magnetic anisotropy, and for an
elongated particle (e.g., having the shape of a cylinder
or a paralelepiped), in which the mean magnetic
moment direction is determined by a uniform demag-
netizing field (anisotropy of shape). However, magnet-
ically soft particles of a symmetric shape, viz., flat
squares (with a thickness smaller than the square side)
or cubic particles, were found to be more convenient for
application and preparation. Anisotropy in such parti-
clesisnegligibly small, while auniform demagnetizing
field possesses ahigh symmetry and does not determine
unambiguoudly the average direction of the magnetic
moment. In this case, both the average direction of
magnetization and nonuniform deviations from it are
determined by a nonuniform demagnetizing field and
the problem must be solved self-consistently. As a
result, the ground state of such quasi-monodomain par-
ticlesturned out to be complicated and was treated in a
series of publications [13—-16] devoted to only quadratic
permalloy and supermalloy particles. The authors of
these publications made use of the fruitful ideathat the
average direction of the magnetic moment in symmet-
ric particles is determined by the weak nonuniform
component of the demagnetizing field. It was shown
experimentally and with the help of numerical simula-
tion for sguare particles that, depending to the ratio of
the square side to the particle thickness, the particle can
be in one of two micromagnetic states, viz., the flower
state, in which the average direction of the magnetic
moment is parallel to the side of the square, and the leaf
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state, in which the average direction of the magnetic
moment is parallel to the diagonal of the square. The
authors of [13-16] aso carried out numerical variational
andysis of the corresponding micromagnetic states
choosing some simple test functions. However, the
approach developed by these authors did not permit a
generalization to the case of particles with a more com-
plex shape (e.g., cubic or rectangular). The calculations
were performed without taking into account the natural
boundary conditions for magnetization (see [17, 18]).
For this reason, the ground state of a small particle has
not been determined unambiguously even for particles
of asimple shape. Theimportant (in our opinion) ques-
tion concerning the variation of the ground state upon
small but experimentally feasible deviations of parti-
clesfrom aprecisely preset shape (i.e., aweak lowering
of symmetry of the uniform demagnetizing field) has
not been discussed either.

The construction of an analytic theory for micro-
magnetic states began in [10], where the micromag-
netic structure was calculated on the basis of perturba-
tion theory in small deviations relative to the known
average direction of the magnetic moment in athin cyl-
inder. The small parameter of the theory was the
sguared ratio of the particle size to the exchange length
of the material, which corresponds to the ratio of the
magnetic dipole energy to the exchange energy. Conse-
quently, the criterion of smallness for this parameter
corresponds to the fulfillment of the standard criterion
of one-domain nature of ananoparticle. In our previous
publications [19, 20], we generalized this theory and
applied it for calculating the average direction of the
magnetic moment and corresponding micromagnetic
statesin flat symmetric particles. In thistheory, the cal-
culations of uniform and nonuniform demagnetizing
fields are treated, respectively, as the zeroth and first
approximations in perturbation theory. For square par-
ticles, the results of our calculations are in qualitative
agreement with the experimental data[14-16]. For flat
rectangular particles, weindicate the existence of anew
micromagnetic state, which was called the intermediate
state. The direction of the magnetic moment (M (= M
averaged over the particle volumeis not associated with
any symmetry axes of the particlefor such astate. Inthe
range of the intermediate state, the average moment
forms an angle with the longer side of the rectangle, the
magnitude of this angle depending on the ratio of the
uniform and nonuniform components of the demagne-
tizing field, while the micromagnetic distribution con-
tains terms with symmetries corresponding to the
flower state as well as the leaf state. The results of our
calculations were completely confirmed by numerical
simulation [20].

This study is devoted to analytic calculation of the
ground state of particles with a higher symmetry as
compared to flat particles, i.e., particles of cubic shape.
The approach used here is based on the combination of
the symmetry analysis and calculations in perturbation
theory. We a so studied the effect of small deformations
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of cubic particles on the magnetization distribution in
these particles. In a square particle, a uniform demag-
netizing field “lays’ the magnetic moment into the
plane of the square, and calculation in the next order in
perturbation theory isrequired only for determining the
direction of the magnetic moment in this plane, while
in a cubic particle, the direction of magnetic moment
M, in spaceisdetermined only by the nonuniform com-
ponent of the demagnetizing field. Numerical simula
tion carried out in [8] indicates that a flower-type state
is realized in a cubic particle; i.e., magnetic moment
vector M is parallel to one of the edges of the cube.

In Section 2, we give a general formulation of the
approach that makesit possibleto analyze weakly inho-
mogeneous states for particles with a complex shape.
The expansion of the system energy into a power series
in components of vector Mg, which naturally arises
when perturbation theory is used, is verified by the
symmetry analysis of the effective energy as afunction
of M. In Section 3, the case of cubic particlesisbriefly
considered. Section 4 isdevoted to the determination of
the magnetic state, in particular, the average direction
of the magnetic moment in particles of a nonrectangu-
lar shape close to the cubic shape. It is shown that such
particles can exhibit a special form of the intermediate
state, in which the symmetry of magnetization distribu-
tion is lower than the particle symmetry. It should be
noted that the application of the standard method of com-
puter simulation presuming the discretization of the
problem by dividing the volume of a particle into small
domains with a shape repeating the particle shape[21] is
quite difficult in the case of nonrectangular particles.
For this reason, the calculation based on the proposed
approach isan important tool for their theoretical inves-
tigation. The concluding part of this paper contains a
discussion of the results and analysis of possible gener-
alizations of the algorithm developed here (eqg., its
applicability for describing the magnetization reversa
of particlesin aweakly inhomogeneous state).

2. FORMULATION OF THE PROBLEM
AND GENERAL RELATIONS

The energy functional for a particle in an isotropic
ferromagnet taking into account the exchange and mag-
netic dipole interactions can be written in the form

2
W = Idr%‘f[(DM)z] —%M EHrE, (1)
Y, O O

where the demagnetizing field is defined in the usual
way as

-9 M ]2
Him = _arIdr [M(r )ar'}lr —r

le= A/A/Mg isthe exchange length, M, isthe saturation
magnetization, A is the nonuniform exchange constant,
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and integration is carried out over the particle volume.
The magnetization distribution is described by the
equation

(IZ0°M +H) xM = 0, )

with the boundary conditions[17, 18]
(OM/ox)n; = 0O, (3)

where n is the vector of the normal to the particle sur-
face. If the characteristic sizel of the particleis smaller
than the exchange length, we have

12IOM 20 (1/1)°M2 > MH [0 4nM;;

and the energy of the magnetic dipole interaction is
smaller than the exchange energy. For (I/1)) — O, the
magnetization distribution becomes uniform and we
can assume that the nonuniform magnetization part &M
issmal (|oM | < M) for (I/1,) < 1. Inthis case, we can
construct a recurrent procedure stemming from the fact
that the magnetization is uniform in the zeroth approx-
imation in (I/15). In this case, in the first approximation

in (I/1)2, the demagnetizing field H,, = H'Y is calcu-

lated for uniform magnetization M. Field Hfr?) can be
written in terms of the tensor of effective demagnetiz-

ing factors Ny (r), Hfg)i = Ni(r)Mg, x, and magnetic field

H fno) is afunction of coordinates only by virtue of the
coordinate dependence of N,(r).

The presence of a nonuniform field induces small
nonuniform deviations of M from My, M = M, + oM,
with an amplitude proportional to (I/1,)2. It isthese devi-
ations and the demagnetizing field associated with
these deviations that determine the type of the ground
state of asmall nonellipsoidal particle. We will describe
the direction of M, by angular variables, which can be
conveniently chosen in the form

M, = Mg[e,sinB + cosB(e,cosd + e sing)].

To calculate M, it is convenient to pass to a system
of coordinates in which the unit vector e; is directed
along the average magnetization vector, Mye; = M, the
remaining unit vectors being defined by the formulas
Mqe, = M /08 and Mye, = (0M (/0d)/sinB. In this case,
vector equation (2) in thelinear approximationin M =
mye, + mye, can easily be written in the form of two
independent equations

I§D2m1 + aie(Mo,iNikMO, W =0,

3 (4)

242
1c0°m, + Sn0o%

(MO |N|kM0 k) - 0
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In this approximation, the particle energy, taking
into account Egs. (4), can be written in the form of the
functional quadratic in m, and my,

W = o S((Om)*+ (Om)} . (9

To solve Egs. (4) for the given shape of particles, we
write the components of tensor N, (r) in the form of the
expansion in the complete orthonormal set of functions
fo(r), which are solutions to the D’ Alembert equation
and satisfy boundary conditions (3) on the particle sur-
face:

D2, (r) + 120 fo(r) = 0,

6
[ fu(D)Tg(r) = Bap, afar(r) n = 0. ©
Writing
Ni(r) = zv“”f (r),

we can easily obtain epr|C|t expressions for m; and m,
in terms of coefficients v,k , e.0.,

zf()

Further, we can write the expression for energy W2
in the universal form

9<Mo. VieMo). (D)

10
w® = ZEE Nik im(UikUim + ViV i), (8)
where tensor Ay 1m = A im = \im ik 1S defined only by
the particle shape,
AL = L@ @ @
ik,Im Z)\ ik Im »
a

while the symmetric rank-two tensors u,, and v;, are
defined as

Uik = zae(MOIMO ks
__1 0
Vik - Zs'neaq)(MO,iMO,k)'

The important properties of tensor A, i, (in particu-
lar, the number of its independent components) can be
determined without calculations from symmetry con-
siderations only. In particular, for an important case of
particles, which can densely fill the 3D space, we can
use the formal similarity of each term in formula (8)
with the expression for the elastic energy of adeformed
crystal (see [22]). In this case, the structure of tensor

(10)
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Nk im1sthe same as for the elastic moduli tensor for the
crystal with the shape of the unit cell coinciding with
the shape of the particle. However, the number of inde-
pendent components Ay |, is actually smaller than that
of the elastic moduli tensor for the crystal sincethe ten-
sor components u,, and v;, are connected via the obvi-
ous relations

Ui = Vi =0, Ul = ViV = 1, (11)

following from the condition M?= M S = const. Infact,

the form of energy (8) for the known coefficients Ay |,
can be simplified further, noting that the combinations
Uilim + ViVim (but not uyli,, and vy v, separately)
appearing in the expression for energy are proportional
to the corresponding invariants composed of the mag-
netization components. By way of example, we con-
sider the formulas

2

2 2
wo+vi =M MO—M4

uxxuyy+ xx yy — -M M

2
Uy TV

(|v| +M2)Mg —M;MZ;
the remaining combinations of this type can easily be
restored by transposition of indices.

Thus, in the first nontrivial approximation in small
parameter (I/1,)?, the calculation of the particle energy
has been reduced to the following two problems:
(i) writing of the solution to the Klein-Gordon equation
for the scalar function f,(r) in the bulk of the particle
and (ii) the calculation of the sumsin expression (9) for
Nix 1m- For many cases, the solution of this problem is
known; for example, for particles of cylindrical shape,
fo(r) can be written in the familiar form in terms of
Bessdl’s functions. For the above-mentioned particles
densdly filling the space, both problems can easily be
solved in general form. If the filling of the space by
tranglation of a particle copy resultsin aBravais lattice
with trandation vectors a;, a,, ag, the corresponding
complete set isdetermined by the inverselattice vectors
g =mb, + nb, + kb, (b;, &) = &,.. To construct this set, we
must just select the functions satisfying boundary condi-
tions (3) from the general set of the form exp(itg - r)
(here, we have factor Ttinstead of the standard factor 21t
since we are interested in the solutions for which the
particle sizeis equal to half-period). Inthiscase, a isa
set of integersn, m, and k, and the eigenvalues are A, =
Ao mk = T8(n? + m? + k?). For such a set, the Fourier
components of tensor N, (r) can be determined analyti-
cally, and the sumsin relation (9) converge rapidly and
can easily be calculated numerically.

3. CUBIC PARTICLE

We will apply the theory developed above to the
case of a cubic particle with a side length of 2|. We
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assume that the origin of the coordinates coincideswith
the center of the cube; i.e., in the previous formulas, we
have

dr = fdx(dy[dz.

NEY
In this case, g = (me, + ne, + ke,)/2| and the boundary
conditions are satisfied for rea-valued solutions con-
taining cog[prt/1] and sin[Ti(p + 1/2)&/1], where & = x, y,
orzand p=m, n, or k. It issufficient for our purpose to
calculate two mdependent (diagonal and nondiagonal)
Fourier components of tensor N, (r), e.g.,

z y(mnk cos[mm@cos[nmcos[kmj

o) oo

m, n, k

Z V(mnk) [(2mJ2r|1)mqj (12)

m, n, k

(2n+ 1)1y (k1]
xsm o 5C0SET WAl
where

(mnig _ 1 OMTXT | COTY
N = 3J’drcosD O%°SET O

xcos[leZ[]@ dr’ J0 1

0 Dax ox|r—rY’

(mnk) _ J-d [(2m+1)Tqu

M2n+ 1)y Kmzjd
xSng—j; CSDlDaI ax|r

the remaining components can be obtained from rela-
tions (12) using the obvious cyclic permutation of vari-
ables (X, y, 2) and integersm, n, and k. The integralsin
the formulas for v(™ "X contain only integrable singu-
larities and these coefficients can easily be determined
numerically.

In the case of the cubic symmetry, tensor Ay i, in
formula (8) contains three independent invariants A\, ,y,
N yyr @ Ay . However, in view of relations (11),
onIy one of the three invariants quadratic in u,, and Vik
isindependent. As aresult, the energy can be writtenin
the form

Wnonuniform

V| 2 2 2 2 2
= (ny"‘ Uy, + Uy, + Vi + Vi + V).

IeO

Calculation of constant C gives C = 0.61. Passing to the
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magneti zation components, we find that the expression
in the bracketsis equal to (M2M2 + M2MZ + M2M?);
i.e, it coincides with the standard expression for the
cubic anisotropy energy. This leads to the required

expression for the magnetic energy in the angular vari-
ables:

Wnonuniform(q) 0 eO)

M2VI?
*——(sin“2¢ cos’d + 4sin’@) cos’.

e

(13)

=C

Since C > 0, function W, unitorm(®, 8) assumes the
minimal value (equal to zero) at six points, namely, for
Mo =£Mgg, Mo =tMg,, and M, = £tMg,. These three
cases are obviously identical since they indicate the
average orientation of the magnetic moment along one
of the cube edges. The analytic formulas for the corre-
sponding micromagnetic state become especialy
visual for 8 =0and ¢ = 0; i.e, the average vector My =
Mo(1, O, 0) is parallel to the x axis. Since the sumsin
relations (12) converge well [12, 20], it is sufficient for
a qualitative analysis to retain only the first terms in
these sums. Then the components of the weakly non-
uniform part of the magnetic moment in the linear
approximation in oM that we are dealing with exhibit
the coordinate dependence standard for a flower-type
state [19],

1
oM = =
n2
(14)
v (.00 TIX T[y ™ gnTZ]
%)sm singy, sinoysino,
where the numerical coefficient v %% = —4.31. As

usual, the maximal deviation of the total magnetic
moment M (r) = M, + &M from the average directionis
observed at the vertices of a particle, while M (r) at the
center coincides with My (see Fig. 2a in [8]). The
micromagnetic state for the magnetic moment orienta-
tion along some other edge of the cube can be obtained
by rotating M, through 172 and by cyclic permutation
of X, y, and zin (14).

It should be noted that, although we calculated in
this section the particle energy for an arbitrary orienta-
tion of vector M, the cal culation could be significantly
simplified in fact, which is important when higher
orders in perturbation theory have to be employed.
Indeed, the form of the energy as an invariant of the
cubic symmetry group is beyond any doubt, and the
value of coefficient C can be determined by calculating
energy for two symmetric direction of M.
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4. CALCULATION OF THE AVERAGE
DIRECTION OF MAGNETIC MOMENT
IN PARTICLES WITH A NEARLY CUBIC SHAPE

In this section, we will consider some important
examples of distortionsin the cubic shape of a particle,
assuming that the deformation can be reduced to exten-
sion or compression of the particle along one of the
symmetry axes of the cube. Obviously, all such defor-
mations will induce a nonzero anisotropy of the shape
associated with the uniform part of the demagnetizing
field. The symmetry of this anisotropy islower than the
cubic symmetry and the resultant direction of magneti-
zation is determined by the competition of these two
contributions.

It isquite easy to predict the outcome of atetragonal
or rhombic deformation, i.e., a change in the particle
size dong directions parallel to one of the edges of the
cube. The lowering of the demagnetizing field symme-
try leads to the magnetic moment orientation along the
longest edge; in other words, the flower-type state,
which was considered in detail in the previous publica-
tions [12] for the elongated parallelepiped obtained in
this way, “survives’ in the system. For a considerable
compression of the cube (with the ratio of edges
exceeding 2.6-2.8), a transition to the leaf state takes
place; however, in this study we confine our analysisto
the case of small deformations of cubic particles.

A more important question, which has never been
discussed earlier, concerns the change in the direction
of the magnetic moment upon a change in the angles
determining the shape of the particle. Since a cube is
not amechanically rigid figure, spontaneous distortions
of the shape of this type are quite feasible during the
preparation of nanoparticles. In addition such distor-
tions may take place for particlesimplanted in the bulk
of an amorphous nonmagnetic matrix during its elastic
deformation.

We will consider here two basically different cases
of lowering of cubic symmetry (see Fig. 1). In thefirst
case, the cube is stretched along the diagonal of one of
the faces (e.g., in the (110) direction), being trans-
formed into a rectangular prism with a rhombus as the
base (Fig. 1a). Another example of a deformed particle
is an equilateral rhombohedron (Fig. 1b), which can be
obtained by extending (compressing) the cube aong
the principal diagonal (111). In both cases, we assume
that the length of the edge remains unchanged and the
change in the shape of the particle is described by only
one parameter. It is convenient to choose for such a
parameter the angle a between the particle edge and
diagonal (110) in the xy plane. The deformationissmall
if the value of da = o — 174 issmall.

To predict the results in specific cases, we will first
qualitatively consider the physical features of the prob-
lem. A lowering of the particle symmetry inducesauni-
form demagnetizing field orienting the magnetic
moment along a certain direction. In the case depicted
in Fig. 1a, this direction (easy anisotropy axis of the
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Fig. 1. The shape of particles obtained by deforming the
cube along the symmetry directions: (a) prismatic deforma-
tion, extension aong the diagona of the face; (b) rhombo-
hedral deformation, extension along the principal diagonal
of the cube.

particle shape) is oriented along the longer diagonal
(110) of the face. In the case of rhombohedral distor-
tions (Fig. 1b), the selected axis is oriented along the
principal diagonal (111) of the rhomboid. This axis
serves as the easy axis during extension of the rhom-
boid and the hard axis during its compression. In both
cases, the corresponding energy of the uniform demag-
netizing field is proportional to &a.

According to the results of calculations carried out
in the previous section, a nonuniform demagnetizing
field in a cubic particle tends to orient its magnetic
moment along an edge of the cube. The energy associ-
ated with thisfield contains an additional small param-
eter (1/1,)%. If the particle shape is nearly cubic (i.e., da
ison the order of (I/1,)?), the contributions from the uni-
form and small nonuniform components of the mag-
netic fields can be comparable in magnitude. The com-
petition of these contributions creates conditionsfor the
emergence of an intermediate state, which was consid-
ered in [20] for flat particles. It was demonstrated by
comparing the numerical data and the results of calcu-
lation in perturbation theory that the results of analysis
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areaso valid qualitatively for | ~ I, (I, = 18 nm for per-
malloy). Consequently, although we will use in subse-
quent calculations the formal inequality | < I, required
for the applicability of perturbation theory, the results
can be used for larger particles as well.

Another important circumstance considerably sim-
plifying calculations is also worth noting. It will be
proved below that the range of realization of the inter-
mediate stateis small (da ~2°-3°) evenfor | ~1.. Con-
sequently, we can use theinequality da < 1. Inthe case
of small deformations we are interested in, in the main
approximation in small parameters da and (I/1,)?, it is
sufficient to use for the contribution of the nonuniform
demagnetizing field formula (13) obtained for a cubic
particle. The anisotropic contribution of the nonuni-
form field taking into account weak distortions of the
shape gives the result of the next order of smallnessin
parameters da and (I/1)? and does not lead to any sig-
nificant effects; for thisreason, this contribution will be
disregarded here.

Prismatic Deformation of a Cube

Let us now analyze the particle shown in Fig. la
First, we must find the magnetic dipole energy of uni-
form fields. The calcul ations are simple when the tensor
of demagnetizing coefficients contains only diagonal
components. Thisis observed when the coordinate axes
coincide with the symmetry axes of the system. In the
given casg, it is sufficient to leave the z axis unchanged
and turn the x and y axes so that they coincide with the
perpendicular diagonals of the rhomb. We define this
rotation asshownin Fig. 1a, wherethe X axis coincides
with the longer diagonal. The contribution of uniform
demagnetizing fields to the magnetic energy is a qua-
dratic form in the magneti zation components. To within
an insignificant constant chosen so that the energy van-
ishes for a cubic particle, this energy can be written in
the form

VM,

Wuniform(¢v e) = 2

x[(1,—1,)cos’8sin’$ + (I,—1,)sin’@] .

(15)

Here, parameters |; are proportiona to the diagonal
components N;; of the tensor of demagnetizing coeffi-
cient, integrated over the particle volume:

_ 4
I, = _VT[I.UN”(X’ y, z)dV.

The corresponding integrals have only integrable sin-
gularities at the corners of the particle [23] and can eas-
ily be evaluated. To determine the average direction of
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the magnetic moment in the given system, we must find
the minimum of the total magnetic energy

W((I), e) = Wuniform(q)a 9) + Wnonuniform(q)a 9),

where function W,onunitorm(®, 6) can be calculated using
formula (13) derived for a cubic particle if we replace
& — ¢ = ¢ + 174 in accordance with the rotation of
the coordinate system. If angle a becomes smaller than
itsvalue 174 for the cube, parameters |; must satisfy the
relation I, <1,<1,.

Minimization of the total energy of the particle over
angle 6, shows that only two types of solutions with
8, = 0 and 172 can exist. Thelatter solution corresponds
to states with M, = +Mge, and their energy is

(M2V/2)(1,— 1,). The states with 6, = 0 correspond to
the magnetic moment orientation in the xy plane,

My = Mo(eccost, + e sing,),

where the value of angle ¢, is determined by the extre-
mum of the function of one variable W (¢, 6, = 0).

If we disregard the weakly nonuniform field (which
can be done for very small particles), Wionunitorm <<
Wnitom(®o, 60) and the energy of the demagnetizing
field is minimal for the average direction of the mag-
netic moment parallel to the X axis (i.e., for ¢,=0). As
the nonuniform energy (i.e., the particle size) increases,
the energy minimum at point ¢, = 0 vanishes and anew
minimum appears for ¢, = O # 1k/2, where cos2d =

(1,—1,)12/4Cl2. In this state, the direction of M, does

not coincide with any symmetric directions of the body;
in analogy with the previous publications, we refer to
this state asthe intermediate state. This stateis stablein
theentirerange 0 < cos2® < 1 of itsexistence; itisreal-
ized for particles with the length of the edge larger than
a certain critica vaue 2., where Iy =

le/(T,y— 1 )/4C.

The value of | is determined by the exchange
length of the material and by the strain; its value is
small for a — 45°, but rapidly increaseswith increas-
ing strain. Thus, the possibility that the intermediate
state is realized in a right prism of a preset shape
depends on its size and the exchange length of the
prism material. We carried out calculationsin perturba-
tion theory for permalloy particles. Figure 2 shows the
results for the rectangular prism depicted in Fig. la.
Three different values of a depend to three curves
describing the dependence of angle ® on the particle
size, It should be noted that the value of | is small for
small strains; it is smaller than the exchange length,
which literally corresponds to the applicability of per-
turbation theory.

Thus, in a weakly deformed cubic particle, the
direction of average magnetic moment M, does not
coincide with any symmetry axis of the particle. How-
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Fig. 2. Dependence of angle & describing the deviation of
the average magnetization from the symmetry direction on
the particle size| for three values of prismatic deformation
of the cube. Here and in thefollowing figures, the numerical
values were obtained for permalloy.

ever, as the strain increases (or, which is the same, the
linear size of the particle increases), the uniform mag-
netic field rotates vector M ; towards the symmetry axis
(the longer diagonal of the base) and the magnetic
moment remains parallel to this symmetry direction.
The reorientation of the average magnetic moment
upon a change in the particle parameters can be inter-
preted as a certain reorientation phase transition. It can
easily be seen that this phase transition is a second-
order transition, for which the order parameter is angle
@. Indeed, states with @ # 0 possess alower symmetry
that the state with ® = 0 and the dependence ®(l) in the
vicinity of the phase transition has the typica root
dependence

|<|crit!
d =0

16
Mg —1, 1o

=1

This behavior is clearly shown in Fig. 2, where
curves @ = @(I) inthevicinity of the value of | ,;; corre-
sponding to each angle a become nearly vertical (i.e.,
these curves have an infinitely large derivative). The
pattern of phase transitions can be visualized more
clearly via the dependence of angle ® on angle a for a
fixed size of the particle, which is depicted in Fig. 3.
Here, angles a < 45° describe extension and angles
o > 45° describe the compression of the particle along
thedirection (110). The emergence of two second-order
phase transitions near which the magnetization is reori-
ented to symmetric states ® — 0 (extension) and
® — 172 (compression) can be explained by the fact
that the extension along one of the diagonals of aface
in the given geometry is equivalent to compression
along the other diagonal of the same face.

Thus, when the cube is deformed along a diagonal
of its face, a symmetric state of the flower type, which
istypical of anideal cube, is never reaized. Instead of
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Fig. 3. Dependence of angle ® on the value of angle a
describing the prismatic strain of the particle for two values
of particlesizel.

this state, two types of states can be observed: a more
symmetric state with @ = 0, resembling the leaf-type
state observed earlier for flat square particles, appears
for considerable strains, while for small strains, a less
symmetric intermediate state is formed, in which the
average direction of the magnetization is not connected
with any symmetry axis of the particle.

Rhombohedral Deformation

L et usnow consider the extension or compression of
acubealongitsprincipal diagonal (Fig. 1b corresponds
to extension). The rhomboid has a uniaxial anisotropy
with a third-order principal axis parallel to the spatial
diagonal of the cube. As before, we assume that the
parameter of the problem is angle a between the diag-
onal and the side of the rhomb at the base of the rhom-
boid. In the system with the e; axis directed along the
principal axis of the rhomboid (segment AC in the fig-
ure), the energy of uniform demagnetizing fields

depends only on angle 0 between the e; axis and the

magnetic moment. This energy can be written in the
simple form

_1,,2 .2

Wuniform(eo) - EMOVB(G)Sn 9, (17)

wherefunction B(a) is positive (negative) in the case of

the extension (compression) of the cube. In the same

system of coordinates, the energy of weakly nonuni-
form fields has the form

. = M2VI?
Wnonuniform(q)a 9) =C 0|2
e (18)
%sn 5+ 7cos ) 4ﬁcos3d>3cos@sm aa

which is typical of the rhombohedral symmetry with
the C; axis pardle to the e; axis. It was mentioned
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abovethat theform of energy (18) and value of constant
C can be taken the same as for the undeformed cube.
The first two terms in the parentheses describe purely
uniaxial anisotropy, while the last term describes
anisotropy in the basal plane. The energy extremum in
the value of angle ¢ is determined by the relation

sin3¢ =0;i.e, cos3d = =+1. Further, the energy min-

imum corresponds to the value of cosécosB(T) =1,
i.e., for each value of the projection of the magnetiza-
tion on the C; axis, triple degeneracy of the minima of

the total energy W((T) ' é) = Wuniform(é) + Wnonuniform((T) ’

0) arises. Without any loss of generality of the prob-
lem, we can analyze the behavior of the magnetic
moment lying in one of the three selected planes,
choosing, for example, angle § = 0; the remaining
equivalent states can be obtained by rotations about the
g; axis through an angle of 120° and the changesin the
direction of magnetization vector M.

Thus, we consider the rotation of the magnetic
moment in the ABCD plane passing through the princi-
pal diagonal and the corresponding diagonas of the
faces (see Fig. 1b). For such arotation, the energy of the

magnet is defined by function W(8) =W(§ , 8) - . It
should be noted above all that the equation

0W(6)/06 = 0 aways has the solution 8 = O describ-
ing the orientation of the average magnetization along
the C; axis. This solution corresponds to a state of the
leaf type, which is most symmetric, but which is not
realized in a cubic particle. The type of this extremum
is determined by the sign of the strain. It should be
noted that, in the case of arhombohedral deformation,
the extension and compression of the cube along the
principal diagonal are not physically equivalent effects
as in the case of extension and compression aong the
diagonals of the faces. Let us first describe the case of
extension.

It was noted above that a state of the flower typeis

stable in an undeformed cube, while solution 8 = 0
(magnetization distribution of the leaf type) corre-
sponds to the energy maximum. In the case of exten-
sion, the value of constant B(a) > O; the C; axis
becomes the easy axis of induced anisotropy (17), and

the highly symmetric state with 8 = 0 and a magneti-
zation parallel to this axis may become stable. A sim-

ple analysis of energy W(é) taking into account for-
mulas (17) and (18) shows that this state is stable to
small deviations from the C; axis when the condition

B(a) > 8Cl 2/3I§ is satisfied; i.e., for the preset strain
amplitude a, this state is stable for quite small sizes of
theparticle, | < I (a) =1,./3B(0)/8C . Asthe particle

sizeincreases abovethecritical value I (a), the action
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of nonuniform demagnetizing fields viol ates the stabil-
ity of thisstate and leadsto the formation of anew state,
in which the average magnetic moment forms a certain

angle 6 # 0 with the principal axis of the rhomboid. It
should be recalled that in fact there are six such states,
three of which are obtained by rotations about the Cy
axis through an angle multiple to 120°; the remaining
states can be obtained viathe substitution M ; — —M,,.
The rotation about the C; axis does not change the mag-

netization in state 0 = 0; as aresult, the symmetry of a
state with 0 # 0 is lower than the symmetry of a state

with & =0. Consequently, the stateswith 8#£0 aretyp-
ical examples of the intermediate state. The search for

solutions to the equation 0W(6)/06 = 0 is a cumber-
some problem. To visualize the result, it is convenient
to anayze these states qualitatively, returning to the
coordinate system with the x, y, and z axes directed
along the edges of an undeformed cube and to polar

angle 6. Angles 6 and 0 are connected viathe relation

8= 8 + y(a), where cosy = 1/./3cosa J4cos’a — 1
(see Fig. 1b).

In terms of angle 8, under the condition cT) =0, the
total energy of the particle W =W, itorm + Whonuniform €aN
be written in the form

wo) _ o

sin20 — —DcosZ(—)
VM2 %2 2

410
(19)
2
+ %snzza
le
After the substitution 8 —= ©/2, this expression
coincides with the formulafor the energy of a uniaxial
ferromagnet,

K. o2
Esm o,

in an external magnetic field oriented arbitrarily rela-
tive to the easy axis (z axis); the states formed in this
case arewell known (see[24]). In such asystem, in the
range of values HZ® + H® < K23, there exists aregion

of metastable states, while two phases with different
magnetizations differing in the sign of the z projections
coexist for H,= 0 and H, < K. The equality sign in this

relation (H2® + H?® = K?3) determines the point of

stability lossfor one of the phases. After substitution of
the corresponding relations from (19) into this condi-
tion, we obtain theinstability condition for aphasewith

9 = 0 determined above, while the second root of this
equatl on leadsto the stability loss condition for a phase

with 8 = 0in the form B(a) = 3.0445CI%/1Z . Thus, the

W,.(®) = -H,c0s© —H,sin® +
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asymmetric phase is stable for | > Iff)(a) =

0.573l.4/B(a)/C. The condition B(a) = 3Cl 2/I§ for
vanishing of the coefficient of cos26 in formula (19)

gives the point | = I, (a), l(a) = I./B(a)/3C of the
coexistence of a phase with 8 =0 (8 = y(a), y(a) —

35.3° asa — 45°) and an asymmetric phasefor which
0=T172-y(0) at thispoint (B — 54.7° asa — 45°).
Thus, a symmetric phase with 6 = 0 redlizes the abso-
[ute minimum of the particle energy for quite small par-
ticlesize, | <ly(a), while the asymmetric case is favor-
able for | > [(a). It should be noted that the values of

Iff) , the above value of the particle size for which the
1Y

phase with 6 = O loses stability,
0.612l../B(a)/C, andthesizel(a) =0.5771../B(a)/C

for which the phases coexist satisfy theinequality 1 <

(o) < 187

Thus, the general pattern of states for a rhombohe-
dral particle with a preset strain (preset value of a) can
be described as follows. For small particles with | <
1¥ | only a symmetric distribution of the leaf type can

be realized. For | > 1?), aless symmetric intermediate
phase, which wasinitially metastable, appears. In anar-
row region Iff) (o) <l < If:l) (a) (this region is on the
order of 1 nm for permalloy particles with an exchange
length on the order of 18 nm), the particle has two sta-
ble states, one of which isthe ground state and the other
is metastable. The transition between these states
occurs at acertain value of | = I,(a); thistransition cor-
respondsto an abrupt change in the direction of magne-
tization. When the length of the edge of the particle

becomes larger than the second critical value 2| f:l) (),

the state with the average direction of the magnetic
moment along the principal diagonal loses its stability
and only one stable state (namely, the intermediate
state) remains in the system. The value of 6 increases
with the size of the rhomboid, asymptotically tending
tothevalue 72— (), where 3(a) isthe angle between
the diagonal of aface and the opposite face of the par-
ticle; cos3 = cos2a/cosa (see Fig. 1b). The depen-

dence of angle 8 on | for the intermediate state in per-

malloy particles in the range of sizes | > Iff) (a) for

which this state is stable is depicted in Fig. 4 for three
different values of a.

Thus, asin the case of prismatic deformation, for a
strong extension of the particle along the principal
diagonal, the uniform magnetic field turnsthe magnetic
moment towards the strain axis, which can again be
interpreted as a reorientation phase transition upon a
change in the parameters of the particle. However, the
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Fig. 4. Dependence of angle 0 between the magnetic
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shape of an elongated rhomboid on the particle sizel for the
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Fig. 5. Dependence of angle 6 between the magnetic
moment of the particle and the principal diagona of the
rhomboid obtained by extension (a < 45°) or compression
(a > 45°) of the cube along its principal diagonal on angle

a for two fixed values of the particle edge.

situation for this deformation differs from that consid-
ered above. Although the reorientation of the average
magnetic moment occurs between the states with a
higher and alower symmetry, this phase transition is a
typical first-order transition, for which the phase coex-

istence regionis 12 (a) <1 < I (a).

In the case of the compression of the cube along its
principal diagonal, induced anisotropy is an easy-plane
anisotropy and a symmetric phase with the magnetiza-
tion along the principa diagona is never redized. In
this case, there exists only the intermediate state in
which the average magnetic moment M, for a small
particle size asymptotically tends to the position in the

plane perpendicular to the principal diagonal, 8 —
102, or 8 — 102 + y(a). For large values of | (or for
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small distortions of the cubic shape) the direction of M,
approaches the face of the particle, which is opposite to
the diagonal of the AD facein Fig. 1b; i.e.,, 8 — B(a),

or 8 — fB(a) —y(a). Consequently, inthisrange of the
parameters, the average magnetic moment is rotated
monotonically and the reorientation transitions do not
take place.

To visualize the pattern of the variation of the aver-
age value of the particle magnetization for various
strains, we will trace the motion of vector M, after the
first-order phase transition for | = I,(a), which existsin
the case of extension of the cube (o < 45°) upon an
increase in the value of a to a = 45° and further upon
the subsequent compression of the cube for a > 45°.

The dependence of angle 6 on anglea inthiscaseisa

monotonic function of a, assuming thevalue 6 =172 —
y(45°) = 54.775° for the undeformed cube (a = 45°); at

this point, the dependences é(a) for al values of the

particle size intersect. The dependences 6 (a) obtained
numerically for two fixed lengths of the edge for exten-
sion and compression of the cube (a < 45° and o > 45°,
respectively) along the principal axis are shown in
Fig. 5.

5. CONCLUDING REMARKS
AND DISCUSSION

Using cubic magnetically soft particles as an exam-
ple, we have proved that even an insignificant deviation
of the particle shape from symmetry might cause asig-
nificant change in the magnetic properties of the parti-
cle even up to a phase transition to another ground state
with alower symmetry. It was shown that particles hav-
ing the same shape and made of the same material
might have different ground states depending on their
size. These conclusions are especially important for
arrays of regular particles, which can be prepared most
easily by the methods of electron-beam lithography.
Such physical objects are investigated in physica
experiments most frequently and can be used in prac-
tice [1-6]. The existence of intermediate magnetic
states described in this paper can be regarded as an
important factor affecting the properties of the array as
awhole. In al probability, the stability of information
recording on an individual particle and the presence of
such states in the range of their existence will be an
unfavorable factor for information recording devices
operating on the arrays of magnetic nanoparticles. On
the other hand, the existence of such statesisinteresting
from the standpoint of the fundamental physics of mag-
netism. Particles in the intermediate state must exhibit
all features known for bulk magnets in the vicinity of
reorientation phase transitions. In particular, in the
vicinity of atransition to the intermediate state, anom-
alies in the static susceptibility, softening of intrinsic
vibrational modes, and other effects must be observed.
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These peculiarities of the physical properties of parti-
clesintheintermediate magnetic state and their ordered
arrays will probably be used in functional electronic
devices.

Let us now consider the applicability of the method
presented in this paper for describing particles with a
size of up to severa tens of nanometers (we will con-
sider the estimates obtained for permalloy, which is
commonly used in applications), which exhibit the
guasi-homogeneous states considered in this paper.
(For normal permalloy particles with a size exceeding
100 nm, an eddy state with a closed magnetic flux is
realized [7]). It should be emphasized that the proposed
method is based not only on perturbation theory, but is
a self-consistent approach to studying the properties of
small magnetic particles. The calculations carried out
in the framework of perturbation theory can be treated
asthefirst step inthisdirection. In fact, we can demon-
strate as aresults of this calculation that the static state
can be described on the basis of the effective energy
written in the form of a combination of powers of the
average magnetic moment components, which is
invariant to the symmetry group of the particle. A qual-
itatively identical form of energy is obviously applica-
blefor | =1, aswell. To draw conclusions about the type
of ground state (in particul ar, the presence or absence of
phase transitions between the symmetry-determined
and intermediate phases and the type of these transi-
tions), often it isimportant to know only the sign of the
coefficients of these invariants. It is not surprising that
the results of analysis based on this method are in
accordance with the experimental data (e.g., the con-
clusion that the ground state of a cubic particle corre-
sponds to a flower-type state) as well as the result
obtained with the help of computer simulation [20].

The above analysis makes it possible to study parti-
cles with a complex shape, in particular, particles for
which discretization of the problem by dividing the par-
ticle volume into small domains whose shape repeats
the shape of the particle [21] is too complicated. It is
important to note that the symmetry approach often
leads to certain conclusions about the nature of states
prior to routine but cumbersome cal culations of the cor-
responding contributions to the energy in perturbation
theory. By way of example, let usconsider acylindrical
particle with a symmetry axis coinciding with the z
axis. This particle obviously exhibits anisotropy of

shape of the B Mf typewith coefficient B depending on

the height-to-diameter ratio as well as the contribution
of anonuniform demagnetizing field. For thelatter con-
tribution, the terms in the expression for energy to
withintermson the order of (I/1,)? obviously contain the

sum of two independent invariants C,M; + C,(M> +
MZ)M3, which is sufficient for describing reorienta-

tion of the magnetic moment from the symmetry axisto
the plane upon a changein the particle shape (i.e., coef-
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ficient B). Another example—the orientation of magne-
tization in the basal plane for aparticle in the form of a
regular hexagonal prism—can be completely described
only by calculating the sixth-order terms in the mag-
netic moment components, which requires the inclu-
sion of terms on the order of (I/1,)*. However, this cum-
bersome cal culation can be simplified by the fact that it
is possible to determine from symmetry considerations

the form of the important term C(I4Mgl2)[(M, +
iM,)® + (M, —iM,)®]. To find this term (in fact, to calcu-
late coefficient C), it is sufficient to consider the prob-
lem only for two directions of M in the basal plane.

Such an approach will aso be useful in other prob-
lems; in particular, for describing the behavior of the
average magnetic moment of nonellipsoidal particlesin
astrong external magnetic field H,. Thisalso appliesto
the problem of reversal of magnetization of nonellip-
soidal particles, which is important for applications. It
should be noted that the inclusion of a weak field (in
particular, the study of the field-induced spin reorienta-
tion of states with close vectors My, in the vicinity of
transitions to the intermediate state) does not present
any difficulty and can easily be carried out on the basis
of the effective energy of the type (13), (15), or (18),
supplementing it with the Zeeman term in the form
-Hg, - M. However, the presence of a strong external
field |H| ~ 4riM,, requires a certain modification of the
calculation. In particular, the structure of the opera-

torsin Egs. (4) changes in this case (—I§ 02my , —»

_|§ 02my , + hy ,, where b, , = H; »/My and H; and H,
are the corresponding components of the externa
field). However, such a modification can easily be car-
ried out. In particular, the eigenfunctions of the prob-
lem remain unchanged and the nature of variation of
eigenvalues of the problem is clear (the eigenvalues
increase with the field). We can easily predict the
change in the results as well; if the contribution of the
uniform demagnetizing field depends only on the parti-
cle geometry, the contribution of the next orders of per-
turbation theory, which is inversely proportional to
eigenvalues A, effectively decreases.
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Abstract—Magnetic, optical, and magnetoopticadl (MO) properties of (CogsFessZr10)x(Si02)100-x and
(Co41Fe39Bo0)x(SI05) 100 x granular nanocomposites of the amorphous ferromagnetic metal—insulator type
were studied in a broad range of the magnetic component concentrations x. The MO response of nanocompos-
itesincreasesin thevicinity of the percolation transition. Using the experimentally determined values of optical
constants and the equatorial Kerr effect, the diagonal and nondiagonal components of the permittivity tensor of
nanocomposites were calculated for the first time. The nondiagonal components of this tensor are nonlinear
functions of x, the most pronounced variations being observed near the percolation threshold. Experimental
dataon the MO effect and the permittivity tensor were theoretically modeled within the framework of the effec-
tive medium approximation and the Maxwell-Garnett approximation. The most adequate description was
obtained with the symmetrized Maxwell-Garnett approximation, which provides for agood (semiquantitative)
agreement between theory and experiment under certain assumptions about the microstructure of nanocompos-

ites. © 2004 MAIK “ Nauka/lInterperiodica”

1. INTRODUCTION

The considerable interest in modern composite
materials is related to a variety of unusual and useful
properties, which make these materials highly promis-
ing both for practica applications and for basic
research. The magnetic granular alloys can be divided
into two types. ferromagnetic metal-nonmagnetic
metal and ferromagnetic metal—insulator. The latter
aloys are aso frequently referred to as composites.
Granular alloys of the former type exhibit the phenom-
enon of giant magnetoresistance [1], while the latter
systems exhibit tunneling magnetoresistance and the
giant Hall effect [2]. The magnetooptical (MO) proper-
ties of granular aloys attract attention because these
materials can serve as magnetoactive mediafor perpen-
dicular magnetic recording and in contactless MO mag-
netic field sensors and temperature sensors. Recently, it
was suggested to use granular alloysasMO elementsin
magnetophotonic crystals. All these applications stim-
ulate the search for optimum compositions ensuring
increased MO response.

Specific features inherent in nanodimensional
objects must be manifested not only in the magne-
totransport properties, but in the linear and nonlinear
MO effects as well, although the nature of these mani-
festations in nanostructural materials is still incom-

pletely clear. Such effects must be sensitive to varia-
tionsin the magnetic and electron structures, scattering
mechanisms, characteristic dimensions, and the shape
and topology of nanodimensional inhomogeneities.
This was evidenced by the results of recent investiga-
tions of the MO spectra of granular alloys and nano-
composites [3—11], which revealed numerous peculiar-
ities in the linear and nonlinear MO Kerr effect and
some other properties.

For example, investigations of granular systems
showed evidence of enhanced MO response [3, 4],
which could be due to variation of both the MO param-
etersand the optical characteristics. In particular, inves-
tigation of the MO spectra of a multilayer
[Co(X)/SIO,(Y)],, system in the region of 3 eV [3]
showed a severafold increase in the MO response
amplitude as compared to that for a homogeneous
cobalt film of the same thickness. An analogous reso-
nance increase in the MO effect was observed for the
MnAs/GaAsmultilayers[4]. An analysis of the spectral
dependence of the permittivity tensor components of
this system showed that the main contribution to the
enhanced MO response was due to an increase in the
MO activity inanarrow spectral interval. Investigations
of the granular Co/Al,/O;[5] and CoFeZr/SiO,, [6] sys-
tems of the metal—insulator type revealed a new photo-
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refractive effect in the IR wavel ength range, the magni-
tude of which was ten times greater than that of the tra-
ditional even and odd MO effects.

The MO spectra of granular aloys were described
using severa calculation methods based on the effec-
tive medium approximation (EMA) [12-17]. Systems
of the meta-metal type have been successfully
described in the Bruggeman approximation [13, 14].
However, this approach is frequently inapplicable to
systems of the metal—insulator type featuring a strong
dependence of their properties on the microstructure.
This requires using a symmetrized Maxwell-Garnett
(SMG) approximation [15, 16] taking into account finer
details of the system topol ogy.

Despite a large number of publications devoted to
the MO properties of magnetic hanocomposites, no
systematic investigations of such systems were under-
taken that would allow constructing the effective per-
mittivity tensor. Analysis of this tensor can provide
more complete information about the observed phe-
nomena. On the other hand, the MO properties of gran-
ular aloys based on amorphous components remain
amost unstudied. In the nearest future, such materials
will probably combineall the unique properties of mag-
netic composites and those of the amorphous sub-
stances.

This paper reports on the results of investigation of
the magnetic, optica, and MO properties of
(CossFessZr10) (S 02)100—x AN (C041FE39B20) (S O2) 100«
granular nanocomposites of the amorphous ferromag-
netic metal—nsulator type. Based on these experimen-
tal data, the permittivity tensor of nanocomposites of
this type was calculated for the first time and theoreti-
cally modeled within the framework of the Bruggeman
approximation and the Maxwell-Garnett approxima-
tion. Special attention was devoted to finding correla
tions between the microstructure of a nanocomposite
and its MO response. The extremely strong dependence
of the MO effects on various structural parameters (in
particular, on the shape, size, and the distribution of
granules) of nanocomposites is an important advantage
of the MO methods of investigation [3, 4, 7-10].

2. SAMPLE PREPARATION
AND EXPERIMENTAL METHODS

The samples of (CosFesZri0)(Si0)100-x and
(CoyFe39B ), (SO5)100—x  granular nanocomposites
were prepared by ion beam sputter deposition in an
argon atmosphere [18]. This process was carried out in
a vacuum chamber equipped with three ion beam
sources and alloy or composite targets. The aloy tar-
gets (CoysFessZriy and CoyyFessByg) were prepared by
induction melting of the alloy components in vacuum.
The components were high-purity cobalt (99.98% Co),
carbonyl iron, boron, and zirconium taken in a ratio
corresponding to the desired composition. A composite
targets comprised an alloy target with single crystal
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guartz plates fastened on its surface. The thickness of
sputter-deposited film samples was varied within 0.15—
6.5 pum. The average granule size monotonically
decreased with increasing insulator content: from
5-7 nmin the composite with ahigh metal content (x =
56%) to 2—4 nm in the composite with x = 30% (here
and below the magnetic (metal) phase concentration x
isgiven in at.%). The structure of nanocomposites was
studied by transmission microscopy, and their compo-
sitions were checked by electron probe X-ray
microanalysis.

The measurements of the electric resistivity as a
function of the composition showed the presence of a
percolation threshold at X, = 43%. The results of mag-
netoresistance measurements revealed the tunneling
magnetoresistance effect, whereby the magnetoresis-
tance exhibits a sharply pronounced maximum near the
percolation threshold and a decrease to zero behind this
point. For the (Co,gFe5Zr10)(SI05)100 —x System, room-
temperature tunneling magnetoresi stance reached 4% in
amagnetic field of 11 kOe; the magnitude of this effect
in the (CoyFeBp)«(SI0,) 100« System was somewhat
lower [18].

The MO properties of nanocomposites were studied
by measuring the MO Kerr effect in the equatorial
(transverse) geometry, which consists in a relative
change of theintensity of the p-wave of alinearly polar-
ized light upon reflection from samples in magnetized
and nonmagnetized states.

_ I(H)-1(0)
N TN

where I(H) and 1(0) are the reflected light intensities
measured with and without applied magnetic field.

The spectral and field dependences of the transverse
Kerr effect (TKE) were measured using an automated
MO spectrometer in the range of incident photon ener-
gies from 0.5 to 4 eV. The measurements were per-
formed for several angles of incidence of the primary
light beam. The amplitude of the applied alternating
magnetic field reached up to 3.5 kOe. The response sig-
nal was detected using a dynamic technique, which
allowed measuring the relative changes of the reflected
light intensity as small as 10~ with an error not exceed-
ing 5%. The static near-surface hysteresis loops were
measured using the MO magnetometer in a meridional
geometry at E = 1.98 eV and the angle of light inci-
dence ¢ = 70°. The optical constantsn and k were deter-
mined ellipsometrically [19] in the photon energy range
from 0.5 to 3.4 eV. All measurements were performed
at room temperature.

3. EXPERIMENTAL RESULTS

Figure la shows the spectral dependences of the
TKE in (CoFe3gB20)(Si05) 100 x NANOCOMposites. For
thismaterial, aswell asin other granular alloys, the MO
spectra of nanocomposites significantly differ from the
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spectrum of the corresponding homogeneous amor-
phous aloy Co,Fe;qB,, (X = 100%). Indeed, the MO
response of CoyFe;B,, monotonicaly decreases to
nearly zero with decreasing incident photon energy,
whereas the TKE spectrum of (Co,;Fe39B20)(S10%)100—«
nanocomposite measured at ¢ = 70° exhibits a change
in the sign of the response signal and has a large nega-
tive maximum in the region of E = 1.3 €V.

Analogous behavior was observed in the spectra of
samples of the (Co,sFe452r10)x(SIO05) 100« SYStem (see
Fig. 1b), the only difference being that the maximum in
the signal response at ¢ = 70° shiftsto E = 1.0 eV. Fig-
ure 1b well illustrates variation of the TKE spectrum
(typical of both systems studied) depending on thelight
incidence angle ¢. A decrease in this angle to 60°
sharply changes the shape of spectrum, which becomes
closer to that for a homogeneous amorphous alloy of
the corresponding composition.

The dependence of the TKE on the concentration of
magnetic component in the nanocomposite is mani-
fested for light incidence angles close to 70°, which is
related to their proximity to the Brewster angle for
nanocomposites with x < X, Figure 2 shows the con-
centration dependence of the TKE for nanocomposites
of the (Co4Fe39B20)«(SI05) 100 x System. As can be seen
from these data, the TKE signal in the “red” spectral
range exhibits a nonmonotonic dependence on the fer-
romagnetic component concentration, featuring abreak
at an x valuecloseto Xoer+ IN addition, the absolute value
of TKE at 1.3 eV in (Coy1Fes9B,0)(Si0,) 100 _x With X =

43% amounts to 102, which is more than three times
the analogous value for the corresponding homoge-
neous alloy Coy;FesB, (X = 100%) for the same pho-
ton energy. Thus, the granular system near the percola-
tion threshold exhibitsasignificant increasein the TKE
magnitude in a narrow photon energy range. This
increase takes place despite an almost one-half lower
content of the ferromagnetic component in the composite
as compared to that in the homogeneous alloy. An analo-
gous result is observed for the (CossFessZr10)(SI02) 100 x
system, where the maximum effect also takes place in
the vicinity of X,

Figure 3 shows the hysteresis loops observed for
samples of the (Coy;FesB o) (SI0,) 100« System with
various concentrations x of the magnetic phase. For x <
Xoer» the dependence of the TKE on the magnetic field
strength exhibits no hysteresis and has a shape charac-
teristic of superparamagnets. The measurements per-
formed for various sample orientations showed that the
sample material occurred in the isotropic state. How-
ever, in the region of x close to X, the magnetic prop-
erties of this system exhibit a significant change. A
sample with x = 47% exhibited anisotropic ferromag-
netic behavior of the field dependence of TKE, with a
coercive force of H, = 10 Oe and a saturation field of
H, = 30 Oe along the easy magnetization axis and Hg =
100 Oe aong the hard magnetization axis. As the mag-
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E, eV

Fig. 1. The spectra of equatoria (transverse) Kerr effect
(TKE) for samples of (a) the (CozqFe39Bo0)x(Si02)100 —x
system with various x measured for the light incidence
angle ¢ =70° and (b) the (CogsFessZr10)x(SiO02)100 - x Y-
tem with x = 47% and various ¢ values.

TKE x 103

8

~

_8tk

1.3eV 7

1
32 36 40 44 48 52 56 60 64

x, %

Fig. 2. Plots of the TKE magnitude versus concentration x for
the (Cog1Fe39B20)(SI02) 100 — x System, measured for ¢ = 70°
and the incident photon energiesE = 1.3 and 3.8 eV.
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Fig. 3. Hysteresis loops measured along the (black sym-
bols) easy and (open symbols) hard magnetization axis for
samples of the (CogiFesgBog)(Si02)100—x System with
various concentrations X.
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netic phase content grows further, both H, and H,
increase, but the magnetic anisotropy of the system
drops.

Thus, based on the analysis of the field dependence
of TKE, we may conclude that the metal phase in nano-
composites with small x is concentrated in isolated
granules of small size and the system occursin an iso-
tropic superparamagnetic state. As the concentration x
increases, the metal granules grow along a certain
direction occurring in the film plane and eventually
forms an anisotropic ferromagnetic phase. The value of
X corresponding to the appearance of the ferromagnetic
phase correlates with the value of X, determined from
the concentration dependence of the electric conductiv-
ity. Further increase in the metal phase content and the
growth of granules lead to a decrease in the magnetic
anisotropy. The existence of a preferred direction for
the growth of granulesis probably related to some fea-
tures in the technology of film deposition, primarily, to
the application of a constant magnetic field during the
ion beam sputtering of targets [18].

T T T

* % X = 34% |
(b) o 40%

vo 4%

an  5T%

60} 1 F i

©) x=100% (d) x=100%
40F = 1 F & -
201 1 F -
0 o -
i . 1L " 1
20+ - - -

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 1 2 3
E, eV E, eV

Fig. 4. Spectra of the (open symbols) real part €1 and (black symbols) imaginary part €, of the diagonal component of the permit-
tivity tensor for alloys of the (a, ¢) (Cos1Fe3gBog)(SIO2)100— x @nd (b, d) (CogsFess2r10)(SiO) 100 — x Systems with various x.
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£, € €1, &
T T T T
0.2 ) Y ¥ X =38% —40.2F .
B D 43% K
vy 46% Y ¥ =34%
"W LA A 66% B O 40%
0.1 I~ — 0.1 _v v 47% .
A A 57%
I
0 - XS 4 i eI T ol PR ACROARREIICION - - - - - =4 O ===

E,eV

E, eV

Fig. 5. Spectra of the (open symbols) real part s'l and (black symbols) imaginary part 8'2 of the nondiagonal component of the per-
mittivity tensor for aloys of the (a, ¢) (Co1Fe39B20)x(S102) 100 —x @d (b, d) (CozsFessZr10)x(SI02) 100 — x SyStems with various x.

Using the experimentally determined optical con-
stantsand MO data, it is possible to calculate the diag-
onal (€ = ¢, —ig,) and nondiagonal (¢' = €] —i€,) com-
ponents of the permittivity tensor of nanocomposites.

In the case of a gyroelectric medium magnetized along
the z axis, this tensor appears as

E € |£'OE
€= E—IS' e o0 1
00 0 e

The corresponding TKE value is given by the for-
mula[20]

5 = (ae, + bey) 320 @)
a +

b”’
where ¢ isthe light incidence angle, a = €,(2¢,cos?¢ —
1),b=cos?dp(es — €& +1) +&, -1, &= -k, &=
2nk, nisthe refraction coefficient, and k is the absorp-

tion coefficient. Using the TKE values determined for
two incidence angles and the known values on n and k,
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we can solve the last equation and determine the com-
ponents of the permittivity tensor.

Asmight have been expected based on comparison of
the MO gpectra of composites and the corresponding
homogeneous alloys, the components of the permittivity
tensor of granular aloys are significantly different from
the anal ogous values for the homogeneous samples. The
optical spectrapresented in Fig. 4 show anincreasein the
imaginary part €, of the diagonal component of the per-
mittivity tensor of nanocompositeswith increasing x, this
growth being most pronounced in the near-IR spectra
range featuring alarge contribution due to the conduction
electrons. This behavior is typica of al granular nano-
composites. However, the values of ¢, for both
(CogsFessZr10) (S O2)100 -x AN (C04,FE352110),(S Oy) 100
systems remain significantly smaller as compared to
those for the corresponding homogeneous amorphous
aloy. In comparison to the case of homogeneous amor-
phous aloys, the real part €, of the diagonal component
of the permittivity tensor of nanocomposites changessign
and remains smaller by absolute value (in the near-IR
range, by afactor of about 5).

Figure 5 shows the dispersion relations of the non-
diagonal components €; and €, (¢' = €] —ig,) of the
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Fig. 6. Plots of the imaginary parts of the (a) nondiagonal
8'2 and (b) diagonal &, components of the permittivity

tensor versus concentration x for alloys of the
(CoysFessZr10)x(Si02) 100 — x System measured for the pho-
tonenergiessE=1.0and 2.5 eV.

permittivity tensor of various nanocomposites. As can
be seen, thereal part €; for the nanocomposites of both
systems increases with decreasing photon energy; for
(CoFe39B 1), (SO,) 100« this value exhibits a maxi-
mum at E;, ~ 1.5 eV. In the same spectral region, the
imaginary part of the nondiagonal component €, of the
permittivity tensor crosses the zero level. Asthe photon
energy is further decreased, the €; value exhibits a

monotonic decrease, whereas €, increases. Thisbehav-

ior of the nondiagonal components of the permittivity
tensor is typical of all nanocomposites with the metal
component concentration X < Xoe .

For the samples of (CosFesZrig)s(Si0,)ss (X =
57% > X), Ere sharply changesto 1 eV. Figure 6 pre-
sents the concentration dependences of €, and €, mea-

sured for several selected energies of incident photons.
As can be seen from these data, the variation of x influ-

ences the MO properties (€, ) much more significantly
than the optical properties (g,). The most noticeable
feature in the behavior of €, is observed for E=1 eV
at x = 44%, that is, near the percolation threshold. This
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behavior is probably related to a sharp changein micro-
structure of the granular alloy in the vicinity of the per-
colation transition which ismost strongly manifestedin
the MO spectra in the near-IR spectral region and is
expected to reveal the contribution of dimensiona
effects.

It should be noted that, in contrast to the TKE spec-
tra, the spectra of the nondiagonal component of the
permittivity tensor responsible for the MO activity
show no increase in comparison to the corresponding

homogeneous amorphous alloy. Moreover, the €, value

in the “red” spectral region for CoysFe,sZr,, is more
than ten times that for the (Co,sFessZr10)x(SI0) 100«
nanocomposite with x = 43%, which showed the maxi-
mum effect in this very energy range.

4. DISCUSSION OF RESULTS

In order to interpret the experimental results, we
have modeled the TKE curves within the framework of
the Bruggeman approximation [13, 14] and the symme-
trized Maxwell-Garnett approximation [15, 16].

According to the Bruggeman theory, the MO spectra
can be calculated proceeding from the optical and MO
parameters of the alloy components, the volume filling
coefficient f for the magnetic particles, and their shape.
The calculation algorithmisasfollows[8]. In thelinear
approximation with respect to magnetization, the effec-
tive permittivity tensor of a granular ferromagnetic
aloy can be written as

EMA . ,EMA
O e 0

1€
EMA
0

©)

£ E EMA
€= [0O_jg

0 1€

O o 0 &PMAD

Under the assumption of weak fields and ellipsoidal
particles, expressions for the diagonal and nondiagonal
parts of the permittivity tensor within the framework of
the Bruggeman approximation appear as

f(sl—EEMA)/(sEMA + (Sl—EEMA) LJ)

0 EMA EMA 0 EMA (4)

+(1-f)(e - )/(e+(e—e)L)) =0,
|EMA_ 1 1 l_ EMA ) 2

f(e eNle+(e - )L] 5

+(1-1)e™M[e™ + (°-e™L]" = 0.

Here, el= €l —iel andel=¢| —i¢, arethediagonal
and nondiagonal parts of the permittivity tensor of the
magnetic component, respectively, and € = €5 — i€ is
the permittivity of the nonmagnetic component. Solv-
ing these equations, one can readily calculate the TKE
using relation (2).

The Bruggeman approximation does not take into
account the existence of separate granules in the
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medium, which hinders the description of aloys with
microstructures possessing complicated topologies.

This disadvantage is eliminated in the Maxwell—
Garnett approximation which, as well as its symme-
trized variant [12, 17]], allows for the presence of sep-
arate particles. The symmetrized Maxwell-Garnett
approximation, in contrast to the usual one, considers
the medium as composed on the particles of two types.
One type (A) comprises a component of material 1
inside material 2, whereas another type (B) represents
component 2 inside material 1. In our case, material 1
is the metal phase and material 2 is the insulating
matrix (SiO,). The probability of encountering particles
of each type in the alloy is described by the Sheng
model [21],

Pa = Uy/(u; +Uy),

Pg

Uy/ (U + Up),

where
u = (1-1"%)°,

u, = [1—(1-)*3°.

The effective tensor of permittivity for such a micro-
structureiscalculated in two stages. In thefirst step, the
effective permittivity tensor is calculated for the parti-
clesof each typewithin the framework of the Maxwell—
Garnett approximation. Thefirst step, owing to the spe-
cial features of thisapproximation, reflectsthe presence
of separate, clearly defined granules. Then, the effec-
tive medium is composed of the particles of typesA
and B and the MO spectraare calculated using the algo-
rithm based on the Bruggeman theory.

Advantages of the symmetrized Maxwell-Garnett
approximation are (i) the possibility of calculating
spectra for arbitrary values of the total content of the
metal component with allowance for the microstructure
and (i) the accurate description of the percolation tran-
sition. These factors are very important for calculations
of the properties of systems of the metal—insulator type.

Our attempt to describe the experimental results
within the framework of the Bruggeman approximation
did not give satisfactory results. The calculated curves
did not fit the spectral dependences of TKE obtained for
the samples studied (Fig. 7). Thisis related to the fact
that the simple Bruggeman theory considers aggregate
rather than granular medium and does not take into
account the existence of separate particles in the nano-
composite. In order to allow for the influence of micro-
structure on the optical and MO properties of samples,
we have modeled their behavior within the framework
of the symmetrized Maxwell-Garnett approximation.
Calculations of the permittivity tensor components of
an effective medium in this approximation involve the
volume filling coefficient f. This value differs from the
total content x of the magnetic component because of
the difference between the densities of the matrix and
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Fig. 7. The TKE spectra of a (CO45F€45Zr10)47(SiOz)53
nanocomposite for ¢ = 69°: (») experiment; (dashed curve)
Bruggeman effective medium approximation for x = 44%
and L = 0.33; (solid curve) symmetrized Maxwell-Garnett
approximation for x = 44%, L, = 0.23, and Lg = 0.43.
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Fig. 8. Comparison of the experimental TKE spectra (black
symbols) of a(CoysFes52r10)x(SI02)100 — x SAMPle with the
results of modeling using the symmetrized Maxwell—
Garnett approximation for various (a) Ly and (b) Lg form
factorsfor x = 44%, Lg = 0.43 (a) and L = 0.23 (b). Black
circles correspond to experiment.
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Fig. 9. Comparison of the experimental TKE spectra of
(CO45Fe45Zr10)X(Si OZ)lOO—X samples with small x and the
results of modeling using the symmetrized Maxwell-Gar-
nett approximation: (dashed line) x = 35%, Ly =0.25, Lg =
0.43, a = 0.25; (o) experiment, x = 34%, ¢ = 60°; (solid line)
X=42%, Ly =0.18, Lg = 0.25, a = 0.5; (») experiment, x =

40%, ¢ = 75°.
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Fig. 10. Comparison of the experimental (black symbols)
optical and TKE spectra of a (CosFes52r10)47(S105)53
sample with the results of modeling (solid and dashed
curves) using symmetrized Maxwell-Garnett approxima-
tion for x = 44%, L, = 0.23, and Lg = 0.43.
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the dispersed component. We recal culated x into f using
the formulas

-1
r= 1+V /v, ©)
Vb _ 1=X

V.- X B, (7

where 3 = p,Py/puPa Pa, Pa @nd py, P, are the density
and molecular weight, respectively, of the corresponding
component. For aIons of the (CogF€45Zr10)(SI02)100x
and (Coy;FesgB20)(S102)100-x Systems, we have B =
1.12 and 1.22, respectively.

Selection of the model parameters was first per-
formed for the MO spectra measured at a light inci-
dence angle of 70°, because the MO effects are more
sensitive than optical spectra with respect to the form
factor of particles[8].

Figures 8-11 present the results of calculations per-
formed within the framework of the Maxwel|-Garnett
theory and compare the model curvesto the experimen-
tal TKE curves. As can be seen, variation of the form
factors (L, and L) for the particles of both typessignif-
icantly influences the shapes of the model spectra. For
example (see Fig. 8a), a change in the form factor L,
only by 0.1 toward any side from the optimum value
adequately describing the experimental dataleadsto a
significant deviation of model curves from the mea-
sured spectrum in the entire spectral range. Analogous
variations of the shape of type B particles (form factor
Lg) also strongly change the shape of the model MO
spectra, especially in the near-IR range (Fig. 8b). Thus,
only the L, and Lg values from a very narrow interval
provide for a good (i.e., both qualitative and quantita-
tive) agreement between theory and experiment. There-
fore, based on the results of modeling, it is possible to
judge on the shape of particlesin agiven composite. In
the af orementioned exampl e, a sample with the compo-
sition (CoysFe,52r10)47(SI0,)s5 (X = 47%) comprises
particles of type A with a form factor of 0.43 (almost
spherical, slightly oblate in the field direction) and
type B with Lg = 0.23 (close to ellipsoids elongated in
the field direction).

It should also be noted that, for description of the
TKE spectra of sampleswith alow content of the metal
component (superparamagnets) within the Maxwell—
Garnett approximation, an additional coefficient a was
introduced in calculations of the nondiagonal compo-
nents of permittivity. This parameter, called the under-
magneti zation factor, took into account that the samples
with a low content of the magnetic phase are far
from saturation. Using the results of modedling, it is pos-
sible to estimate the degree of undermagnetization dur-
ing the TKE measurements. For example, in
(CogsFessZrig)(Si0,)s3 samples with x = 40%, the
undermagneti zation to saturation was 50% (see Fig. 9),
while a sample with x = 34% had a = 0.25.
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Fig. 11. Comparison of the experimental TKE spectra (black circles correspond to experiment) of (CosqFezgBo0)x(Si05) 100 — x SAM-
ples with various x and the results of modeling (solid and dashed curves) using the symmetrized Maxwell-Garnett approximation

with allowance for the quasi-classical size effect.

A comparison of the results of modeling for the per-
mittivity tensor and the TKE spectra (Fig. 10) shows
that, even for a good quantitative coincidence of the
measured TKE spectra with calculated curves, there is
only a semiquantitative agreement between theory and
experiment for both diagonal and nondiagonal compo-
nents of the permittivity tensor. This discrepancy is
probably related to the more complicated real micro-
structure of the nanocomposites studied and the pres-
ence of a certain distribution of the grains with respect
to shape and size.

It should be noted that theoretical modeling for the
samples of (CosFe 52r10)x(SI05) 100 - x NANOCOMpOSites
was performed without taking into account the quasi-
classical dimensiona effect. However, alowance for
this effect (reflecting a change in the mean free time of
electron motion in the grains as compared to that in the
bulk samples) improves the agreement between theory
and experiment [22]. Thisisillustrated in Fig. 11 show-
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ing the model TKE spectra of samples of the
(Coy1Fe39B0)(SI0,) 100 _x System. These plots present
the results of calculations involving parameters of the
quasi-classical dimensional effect such as the ratio of
coefficients of the anomalous Hall effect for the surface
of granules and amassive sample (R/R,,) and the size
of metal inclusions(r). Making allowance for the quasi-
classical dimensional effect is described in detail else-
where[22]. As can be seen from Fig. 11, allowance for
this effect changes the TKE spectrum even for the sam-
pleswith ahigh metal content (i.e., with large granules)
from that characteristic of a massive Co,;Fe;gB,, sam-
ple toward the spectra observed for granular nanocom-
posites of the (CoyFeB0)(SI0,)100-x System. Note
also that the size of granules used in making allowance
for the quasi-classical dimensiona effect increases
with decreasing insulator content, in good agreement
with the structural data.
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5. CONCLUSIONS

Based on the results of investigations, we may con-
clude that magnetic nanocomposites of the amorphous
metal-insulator type near the percolation threshold
exhibit a significant increase in the MO response in the
near-IR spectral range. A change in the microstructure
and topology of granular alloys influences their MO
spectrato agreater extent than the optical characteristics.

The concentration dependences of the nondiagonal
components of the permittivity tensor are nonlinear, the
most pronounced variations being observed near the
percolation threshold. This fact allows the X, value to
be determined by MO methods.

The observed increase in the MO response in the
vicinity of the percolation threshold for the photon
energies in the region of 1.3 eV for the
(Co4Fe39B 1), (SIO,)100_x System and 1.0 eV for the
(CoysFessZrin)(Si0y100-x System is caused by a
change in the optica and MO parameters related to
variations in the topology and microstructure of the
nanocomposites, rather than by an increase in the MO
activity in the near-IR range.

Theresults of theoretical modeling of the spectra of
TKE and the permittivity tensor components in the
effective medium approximation showed that the best
agreement between experimental and theoretical curves
can be obtained using the symmetrized Maxwel|-Gar-
nett approximation, which alows variation of the
microstructure in the granular alloys to be traced and
the parameters of microstructure to be evaluated.
Allowance for the quasi-classical dimensional effect
also improves the quality of description of the experi-
mental results.
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Abstract—The behavior

of de Haas—van Alphen oscillations in the quasi-2D organic metal

(ET)g[Hg4Cl15(CgHsCl),] was studied in detail. The section of the Fermi surface of this metal is a two-dimen-
sional network of magnetic breakdown orbits. Only two frequencies, which corresponded to allowed closed
orbits, F, and Fy,g, were detected. Thisisin agreement with the earlier studies of Shubnikov—de Haas oscilla-
tionsin thismetal. The reason for the absence of other allowed frequenciesremains unclear. The angular depen-
dences of the amplitudes of F, and Fyg oscillations contain a series of “spin zeros” An analysis of their posi-
tions led us to suggest that many-particle interactions were weakened in (ET)g[Hg,Cl15(CgHsCl),]. © 2004

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The crystalline and band structures of the organic
quasi-2D conductor (ET)g[Hg,Cl15(CgHsCl),] [further,
(Cl, CI], which has metallic propertiesin the tempera-
ture range 0.5-300 K, have been described in detall
in[1, 2]. Band calculations show that the initial Fermi
surfacein the conducting plane of this metal consists of
two intersecting open hole orbits characteristic of low-
dimensional eectronic systems. The hybridization of
molecular orbitals that form the conduction band
resultsin the formation of the final Fermi surfacein the
form of two closed orbits, electronic (E) and hole (H)
(see Fig. 1), which have different shapes but enclose
equal areas of about 13% of the area of the first Bril-
louin zone [2]. Even the earliest studies of Shubnikov—
de Haas oscillations [3, 4] showed the presence of six
rather than one, as expected, frequencies. Depending
on the angle 6 between the field direction and the nor-
mal to the conduction plane, all these frequencies are
described by thelaw F;(6) = F;(0)/cosB characteristic of
cylindrical Fermi surfaces, which are typical of quasi-
2D electronic systems. Among the observed oscilla-
tions, those with a frequency FA(0) = 245 T obviously
predominate. This frequency corresponds to approxi-
mately 11% of thefirst Brillouin zone area. These oscil-
lations were assighed to the motion of carriers in the
classical closed orbits E and H. An analysis of the tem-
perature and angular dependences of the amplitude of
Shubnikov—de Haas oscillations of frequency F, showed

that the hole and electronic orbits were characterized by
not only equal areas but also carriers of equal masses.
The nature of the other frequencies remained unclear for
several years, primarily because of the small oscillation
amplitudes and related experimental problems.

Severa years ago, high-quality (Cl, Cl) single crys-
tals were synthesized and studied in quasi-pul sed fields
of upto 35 T. The results [5, 6] not only included the
frequencies reported earlier but even increased the
spectrum of Shubnikov—de Haas oscillation frequen-

Fig. 1. Fermi surface and thefirst Brillouin zone in the con-

duction plane of the organic
(ET)g[Hg4Cl12(CeHsCl) ]

quasi-2D  metal

1063-7761/04/9805-1037$26.00 © 2004 MAIK “Nauka/ Interperiodica’



1038

T T T
n i 1150 -
N g 1.149 7
o | S 1.148 T
< s _
Ea S 1147F i
E« i S 1.146F -
@]
< | 1145 | | | 1 1 1 _
=l 78 9 10111213 14
[ H,T ]
{/\J ! 1 ]
0 500 1000 1500 2000
H, T

Fig. 2. Fast Fourier transform (FFT) of de Haas—van Alphen
oscillations in the organic metal (ET)g[Hg,Cl;5(CgHsCl),)
(the oscillations are shown in the inset). Temperature T =
0.45K and polar angle 6 = 32.5°.

ciesto fifteen at certain field directions. An analysis of
these resultsled the authors of [6] to the following con-
clusions:

(1) Magnetic breakdown transitions pl and p2
between the hole and electronic Fermi surface regions
become possiblein magnetic fieldson the order of 10 T
(Fig. 1). Thisresultsin the formation of a 2D network
of magnetic breakdown orbits.

(2) Both closed magnetic breakdown orbits and
open orbits, which arerelated to each other by magnetic
breakdown transitions and correspond to the quantum
interference effect [7], exist simultaneoudly for al fre-
guencies other than the F, frequency that corresponds
to two initial closed orbits E and H.

(3) Two of the frequencies observed experimentally,
FA(0) =242 T and Fy5(0) = 633 T, are only responsible
for the motion of carriers in closed orbits [F,,z corre-
sponds to two closed orbits enclosing equal areas, H +
0+HandE + &+ E (see Fig. 1), including four mag-
netic breakdown transitions each]. In any event, this
motion significantly predominatesin Fyg oscillations.

(4) The other frequencies make up two groups. The
first group includes the frequencies (in particular, the
frequency corresponding to 100% of the first Brillouin
zone ared) that largely originate from the quantum
interference effect. The frequencies of the second group
(in particular, the frequency corresponding to area o
between the initial Fermi surface sheets) have not been
given satisfactory explanation. In principle, they can be
described within the framework of both oscillating [8]
and fixed [9] electrochemical potentials, but neither of
these models has been substantiated experimentally.

Thiswork presents the results of a detailed study of
de Haas—van Alphen oscillations in (Cl, Cl). These
results lend support to the versions suggested in [5, 6].
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2. RESULTS AND DISCUSSION

The samples for measurements were high-quality
(Cl, CI) single crystals of weights up to 110 pg. The de
Haas—van Alphen oscill ations were studied by monitor-
ing changesin the torque moment of a capacitive sensor
[10]. A magnetic field of up to 14 T was generated by a
superconducting magnet. The temperatures that we
used were in the range 0.45-1.3 K.

De Haas-van Alphen oscillations were studied at
angles 6 = (-21°-80°). Their frequencies depended on
8 according to the standard equation F;(8) = F;(0)/cos8.
At all magnetic field directions, the number of observed
frequencies did not exceed three (see Fig. 2), namely,
FA(0) = 242 T, 2F, (the second harmonic of the funda
mental frequency), and Fy,5(0) = 630 T. The fundamen-
tal frequency F, corresponds to charge motions in the
classical E and H orbits. Effective mass calcul ationsfor
the fundamental frequency showed that equal masses,
which amounted to m, = (1.18 £ 0.05)m, in the conduc-
tion plane (my, is the mass of the free electron), corre-
sponded to both orbits. The Fy,z frequency corresponds
to the motion of carriersin two closed magnetic break-
down orbits with equal areas[H+d+HandE+d+E
(see Fig. 1)]. The effective masses in these orbits were
also equal, myz = (2.28 = 0.05)m, in the conduction
plane. According to the effective mass concept [11], we
can expect that the mass related to magnetic breakdown
orbits should be twice the m, mass for the main closed
orbits. This mass ratio is satisfied to within measure-
ment errors, 2m, = 2.36m, ~ 2.28m, = Myg.

The angular dependences of the amplitude of de
Haas—van Alphen oscillations are shown in Fig. 3. Fig-
ure 3a corresponds to oscillations at frequency F,, and
Fig. 3b, to oscillations at frequency F,,5. Both depen-
dences contain minima. Curve a has two minima at
30.1° and 59.5°, and curve b, three minima at 20.6°,
47.4°, and 60.7°. These minima are called spin zeros
and originate from the splitting of Landau levelsin a
magnetic field [12]. The condition of the existence of
such zeros is

cos(mipmg/2m,) = 0,

where p is the harmonic number and g is the g-factor.
The presence of two or more sequential spin zeros and
the assumption that the effective mass depends on the
angle by them(8) = m(0)/cosB law typical of cylindrical
Fermi surfaces allow usto unambiguously calculate the
splitting factor

S = gm(0)/2m, = ((2n+ 1)cos6,)/2,

where 6, is the position of the nth spin zero and n = 0,
1,2, 3,.... The splitting factor for oscillations with the
Fa frequency is S, = 1.29 + 0.04; for the Fy,g frequency,
itis Syg = 2.36 + 0.04. The ratio between the effective
masses my/myz = 0.52 is approximately equal to the
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Fig. 3. Polar angle 6 dependences of the amplitude of de
Haas-van Alphen oscillations: (a) oscillations with fre-
quency Fa and (b) oscillations with frequency Fyg; T =
0.45K.
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ratio between the splitting factors S,/S,5 = 0.54, which
leads us to suggest that the splittings of the Landau lev-
els of the closed orbits under consideration are charac-
terized by equal g-factors. This is a quite expected
result, considering how these orbitsareformed [2]. The
insignificant difference of the splitting factors from the
corresponding reduced masses (1.29 and 1.18 or 2.36
and 2.28) can be indirect evidence in favor of aninsig-
nificant contribution of many-particle interactions in
(ClI, CI), as has been noted earlier for some organic met-
as[13].

One more point should be mentioned. The effective
mass for the F, frequency, m, = 1.18m,, determined
from de Haas—van Alphen oscillations closely agrees
with that obtained in magnetoresistive measurements,
m, = 1.17m, [6]. At the same time, the effective masses
for the magnetic breakdown orbits are noticeably dif-
ferent, myz = 2.28m, and 1.95m, for de Haas-van
Alphen and Shubnikov—de Haas [6] oscillations,
respectively. Thisdifference can be caused by the exist-
ence of an interferometer with afrequency equal to Fyg
but a substantially lower mass in addition to the mag-
netic breakdown frequency Fyg [6]. This interferometer
makes no contribution to de Haas—van Alphen oscilla-
tions, but its contribution to resistive oscillations can be
noticeable and cause effective mass underestimation.

The question of the absence of other frequenciesfor
which closed magnetic breakdown orbits exist in the
observed spectrum of de Haas—van Alphen oscillations
remains open. Jointly studying magnetoresistance and
magnetization oscillations in higher magnetic fields
would probably clarify the situation.
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3. CONCLUSIONS

Two de Haas-van Alphen oscillation frequencies
(not counting harmonics) are only observed for the
organic metal (ET)g[Hg,Cl15(CsHsCl),], at least, in
fields of up to 14 T. One of these corresponds to two
classical closed orbits enclosing equal areas, and the
other, to two magnetic breakdown orbits also enclosing
equal areas. The behavior of the amplitudes of these
oscillations and the corresponding effective masses is
in reasonable agreement with the suggestion that the
Fermi surface of (ET)g[Hg,Cl2(CgHsCl),] is formed
through the hybridization of the orbitals that form the
conduction band. The results of this work are in close
agreement with those obtained in studying Shubnikov—
de Haas oscillationsin pulsed and stationary fields. The
reason for the absence of other frequencies related to
allowed closed magnetic breakdown orbits is unclear,
and the problem requires additional study.
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Abstract—An anomalous angular dependence of the critical current is observed in niobium films. This phe-
nomenon manifestsitself in the fact that, under small intensities of the external magnetic field, the critical cur-
rent attainsits maximum in aslightly tilted magnetic field. It isfound that the position of the maximum depends
on the external magnetic field, aswell as on theinitial conditions under which the samples were kept. A theo-
retical model is proposed to explain the results obtained. Thismodel takesinto account the effect of diamagnetic
properties, pinning of vortices, and the initial conditions on the vortex system in Nb films. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Niobium occupies a specia position in supercon-
ductivity because the Ginzburg-Landau parameter in it
is close to unity. In a magnetic field, niobium exhibits
the characteristic features of both type-l and type-l|
superconductors. Therefore, structures based on such a
superconductor may have unusua properties. For
example, an anomalous angular dependence of the crit-
ical current in Nb-based layered structures was
observedin [1], wheretherole of effective pinning cen-
terswas played by insulating NbO, layers. In[2], it was
found that the dependence of critical current on the
magnitude and the direction of the external magnetic
field is varied aong with the initial conditions under
which these layered structures were kept. In other
words, by changing theinitial position of a sample, one
can vary the angular dependence of the critical current
in such structures by rotating them in a magnetic field,
and even change the position of the maximum on this
dependence. Thisfact enablesoneto control the critical
parameters of superconductors during the experiment.
To understand the nature of the phenomena observed
in[1, 2] ingreater detail, we carried out precision angu-
lar measurements of the critical current in Nb films.

2. METHOD OF MEASUREMENTS

The samples investigated in this work are narrow
superconducting strips fabricated from niobium films.
The films were produced by a dc magnetron sputtering
technique [3]. As the substrates, we used polycrystal-
line sapphire with a surface polished to a class of at
least 12. The temperature of the substrates during the
film deposition was about 350°C. Using the photoli-
thography technique, we fabricated narrow strips with
bonding pads from these films. Contact wires were

bonded to these pads by indium. The critical tempera-
ture T, of these filmswas 9.2 K and the thicknessd was
0.6 um. Thewidth w of the stripswas 10 um, the length
L was about 100 pm, and the ratio of the room-temper-
ature resistance to the resistance at T = 10 K was
R/Ryp=2.9.

A magnetic field with an intensity of up to 65 kOe
was produced by a superconducting solenoid. The crit-
ical current |, is determined from the current—voltage
characteristic as the current at which the voltage drop
on asample reaches 1 pV. The current—voltage charac-
teristics are measured by the four-point probe tech-
nigue. The detection of the critical current in our exper-
iment was fully automated. This allowed us to deter-
mine the voltage drop to an accuracy of 0.1 pV. A
sample was rotated with respect to the direction of the
external magnetic field by a precision worm-and-worm
gear, made of stainlesssteel, with aratio of 30. Thisfact
provided an angular resolution of 0.04° for the sample
orientation. The rotating gear with a sample was placed
in a uniform magnetic field produced by a supercon-
ducting solenoid, so that the sample may rotate with
respect to the magnetic field. All of the equipment is
placed in ahelium bath at atemperature of 4.2 K. In our
experiments, the current | transmitted through asample
was always directed perpendicular to the direction of
the magnetic field.

3. RESULTS OF MEASUREMENTS

Figure 1 shows an example of the angular depen-
dence of the critical current in niobium films. One can
see that the critical current attains its maximum when a
sampleistilted to the magnetic field and the magnitude
of the shift of the peak position increases as the mag-
netic-field intensity decreases. In the present case, the
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sample was initially situated so that its plane made an
angle of 8 = 6, ~ 30° with the direction of the magnetic
field. Then, the sample was rotated in the counterclock-
wise direction, when 6 decreased up to the angle 6 =
-6, ~ =30°, i.e,, until the sample occupied a position
symmetric with respect to theinitial position. Then, the
sample was rotated in the opposite, clockwise, direc-
tion until it reached the original position. In Fig.1, the
curves of 1(8) are plotted for various values of the
external magnetic fieldH =1, 1.5, 2, 3, and 4 kOe. The
curves marked by closed symbols correspond to the
clockwise rotation (in the direction of increasing 6, the
positive direction), while the curves marked by light
symbols correspond to the rotation in the opposite
direction (in the counterclockwise, or negative direc-
tion). The solid curves correspond to the approximation
of the experimental results by the Lorentz function

y= y0+2_A+2’
TUA(X—Xg) +W

whereyy, A, w, X, are fitting parameters. This approxi-
mation is used here to determine the exact position of
the maximum of the function 1,(8). To distinguish
between “clockwise” and *“counterclockwise” func-
tions, we denote them by 14(6,) and 1(8.y), respec-

tively. Introduce the notation A = 8} — B4y , where 0

is the angle corresponding to the maximum of 1,(07)
and 0, isthe angle corresponding to the maximum of

1.(65y ). The positions of the clockwise and counter-

clockwise maxima do not coincide; moreover, these
maximaare different for different values of the external
magnetic field. However, if a sample is brought into a
normal state before each measurement 1(6) or 1(0)
by increasing the magnetic-field intensity, then these
maximawill coincide and will be observed in aparallel
external magnetic field. An example of the dependence
obtained in this way is shown in Fig. 1 (the curve
marked by crosses for an external field of H = 1 kOe).
The difference between the clockwise and counter-
clockwise maxima as a function of the external mag-
netic field, AB(H), is shown in Fig. 2. Note that the
amplitude of the maximum does not depend on the
direction of rotation of a sample, and the maximum is
always observed before the sample reaches the parallel
orientation with respect to the external magnetic field.
The position of the maximum is independent of the
direction of the transport current.

We found that the position of the maximum depends
ontheinitial conditions under which asample was kept
before the measurement. The difference between the
maxima as afunction of 6,—theinitial deviation of the
sample from the parallel position—is shown in Fig. 3.
In this experiment, we measure the clockwise and
counterclockwise functions | (8), which are similar to
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the magnetic field intensity.

those shown in Fig. 1, except that we now reduce the
initial deviation 8, from measurement to measurement,
thus changing theinitial conditionsfor each subsequent
measurement. Here, we should note the specific feature
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Fig. 3. Angular dependence of the critical current for vari-
ous values of 6.

of the method for measuring these functions, namely,
that the initial point of each subsequent measurement
lies on the opposite curve of the preceding measure-
ment. Figure 3 showsthat AB decreases asthe sweeping
amplitude 6, = 26, decreases. Thus, the positions of the
clockwise and counterclockwise maximadepend onthe
initial conditions (memory effect) of a sample, as well
as on the way in which it was brought to this condition.
This result is qualitatively analogous to the result
obtained on Nb/NbO, multilayer structures[1, 2].

4. THEORETICAL MODEL

To explain the results, we apply an approach devel-
oped in [2-6]. If the external magnetic field is parallel
to the film surface, then the flux lines penetrating the
sample are parald to this surface; however, in a
dlightly tilted magnetic field, the flux lines penetrating
the sample may have different shapes due to the pres-
ence of effective pinning centers in the films, which
may have a considerable effect on the configuration of
these lines. Moreover, under the rotation of afilm with
respect to the external magnetic field, the effective pin-
ning centers entrain the vortices and thus considerably
affect the new state. Therefore, the system under inves-
tigation partly remembers its previous state. As we
mentioned above, niobium, which is the basic element
of our samples, occupiesaspecial position in supercon-
ductivity because its Ginzburg—Landau parameter is
close to unity. This givesrise to diamagnetic properties
that are inherent in type-l superconductors.
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Taking into account the aforesaid, we write the fol-
lowing equation for the Gibbs free energy density [4]:

- 1o _1
G = £-B(B~4mM) - -HB, )

where B is the magnetic flux density inside the film, H
isthe intensity of the external magnetic field, and M is
magnetization that determines film's memory of the
previous state and the presence of diamagnetic proper-
ties exhibited by the structure under investigation.
Here, we do not take into account the demagnetization
phenomenon because a sample is already magnetized
and we do not analyze the process of its magnetization.
Moreover, for the parameters d = 0.6 um, w = 10 pm,
and w/d = 16.7 of the samples, the demagneti zation fac-
tor iscloseto zero when asampleisoriented parallel to
the magnetic field. In acoordinate system that isrigidly
bound to a sample so that the z axisis perpendicular to
the plane of the sample and the y axisis paralél to the
direction of transport current, we can rewrite Eq. (1) as

G = = (B2+B)-1BM,
811 2
. @
__BzMz =

H .
5 4—T[(BXCOSG+ B,sing).

Minimizing Eqg. (2), we obtain the following equations
for the components B, and B, of the magnetic flux
density:

B, = HcosO + 21iM,, (©)]
B, = HsinB + 21tM,, 4
B* = B2+ B.. (5)

The density of the volume pinning force in niobium
films placed in aperpendicular magneticfield isusually
given by

F, OB(1—B/H,,). (6)

When atransport current flows through the film under
investigation, the vortex lines are subject to the Lorentz
force

F = %BJ, @)

where cisthe speed of light in vacuum and Jisacurrent
through the film. This force tends to depin the vortices
from irregularities. The current density at which a vor-
tex is depinned from an irregularity is the critical cur-
rent density, which corresponds to the transition from a
dissipation-free flow of transport current through the
sampleto adissipation current. Taking into account that
the condition F, = F| must hold at the transition point,
we can obtain the following expression for the critical
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current density for a film placed in a perpendicular
magnetic field:

‘]c = ‘]cO(l_ B/Hc2)- (8)

When deriving an expression for the critical current
in a dightly tilted magnetic field, we assume that the
interaction between avortex and a surface that prevents
the former from penetrating into the film, the so-called
surface pinning, is much greater than the pinning forces
in the plane of the film. Therefore, in this case, the crit-
ical current is determined by the Lorentz force in the
plane of the film. Using Egs. (3)—(5) and assuming that
M, = 0 when the film is parald to the magnetic field,
we can rewrite Eq. (8) asfollows:

Je = Jo(1—-K(|sin@—sinAB)™), 9)
where
2 2
SnAe, = _H®+ 4™, K = JATMH

ATM,H He,

Formula (9) represents the critical current density as a
function of the angle 6 for 8 — 0 under the assump-
tion that M, is independent of 6.

Formula (9) determines the critical current density
that is associated with the pinning in the plane of afilm
when the interaction between vortices is weak and the
concentration of pinning centers is high. One can see
that the critical current attains its maximum at 6 = A6,
rather than at 8 = 0. In this case, the magnetic field fro-
zeninto thefilm asif neutralizes due to the diamagnetic
effect, and the flux lines are directed along the film sur-
face. Thus, in this case, the critical current is mainly
determined by the surface pinning—the interaction
between vortices and the film surface. Thisleadsto the
boundedness of function (9) for 8 ~ A8,. A number of
studies have been devoted to the calculation of the sur-
face pinning [7, 8]. However, for our purposes, it is suf-
ficient that this quantity is independent of angle for
small deviations of a sample from its parallel orienta-
tion in the magnetic field.

The main result obtained in the present paper is the
difference between the clockwise and counterclock-
wise maxima on the angular dependence of the critical
current for small external magnetic fields. Therefore,
we first consider how this result agrees with the model
described above. Accordingto (9), J.(6) attainsits max-
imum at 8 = A6, > 0, i.e., before the structure reaches a
parallel position. Let us set A6, = 6. (where 6, is the
characteristic angular size of a sample, which is deter-
mined by therelation 6, = arctan(D/w) , 6, = 3.43°) in
Eq. (9) and compare the theoretical function J.(8) with
the experimental one. In this case, the parameters Jg,
and K are determined from the normalization condi-
tions by the experimental dependence. The theoretical
dependence is used for the clockwise rotation, while
the dependence symmetric to it is used for the counter-
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clockwise rotation. The result obtained is shown in
Fig. 4. One can see that the experimental and theoreti-
cal curvesarein good qualitative agreement. Hence, we
can conclude that the positions of the maxima on the
experimental dependence J(6) are indeed determined
by the magnetic moment M,(H) in a sample; the maxi-
mal value of thismoment isdirectly related to 6, which
represents a geometrical characteristic of the sample
under investigation. If we associate it only to the exist-
ence of frozen vortices in the sample, then M, (H)
should be positive and the peak on the experimental
dependence must appear after the sample passes the
paralel position. At this angle, the external magnetic
field should compensate for the magnetic moment of
frozen vortices, and the magnetic field will be parallel
to the sample surface. However, M,(H) < 0 in our case
because the peak on the experimental angular depen-
dence leads the parallel position. Such behavior of the
magnetization can be explained by invoking the dia-
magnetic properties of niobium. Note that, in the
framework of the present approach, one can easly
account for the variation in the position of the maxi-
mum of 1,(0) under the variation of the direction of
rotation of a sample because this variation is associated
with the variation in the magnitude and the direction of
magnetization of a sample.

Let usreturn to the experimental dependence shown
inFig. 3. Aswe noted above, the difference AB between
the clockwise and counterclockwise peaks decreases as
the angle 8, that specifies the initial position of a sam-
ple with respect to the external magnetic field
decreases. Our model also takesthisresult into account.
It is obvious that the magnetization M, is afunction not
only of the intensity of the external magnetic field but
also of theangle 6,— M, =M, (H, 8,); i.e., it depends on
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theinitial conditions of the experimental problem. This
fact can easily be explained within our model because
M, depends on the magnitude of the frozen magnetic
flux. As the sweep amplitude decreases, the magnitude
of the flux decreases because a sample approaches a
position parallel to the external magnetic field. Accord-
ing to the aforesaid, we can state that the experimental
results obtained in this work are in satisfactory agree-
ment with the model proposed.

5. CONCLUSIONS

The anomalous angular dependence of the critical
current in niobium films has been observed. Thisanom-
aly manifestsitself in thefact that, for small intensity of
the external magnetic field, the critical current attains
its maximum in a dightly tilted magnetic field, and is
associated with the complex character of the transition
of avortex system to the unperturbed ground state. In
standard measurements of the critical current, the vor-
tex system isin an excited metastable state. Therefore,
investigations of the critical current are complicated
because theoretical studies deal with the equilibrium
properties of the vortex system in superconductors. We
can point out the following three basic results of this
paper.

1. We have developed a new approach to the study
of nonequilibrium properties of the vortex system in
superconductors.

2. The anomalous angular dependence of critica
current observed in this study should be observed in al
superconductors. Here, one should take into account
that, in type-1l superconductors with alarge Ginzburg—
Landau parameter, diamagnetic properties are sup-
pressed in strong magnetic fields, and the aforemen-
tioned phenomenon should be small.
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3. The results obtained show that the conventional
method for determining aparallel orientation of a sam-
ple in a magnetic field, which is based on finding the
maximum of the angular dependence of critical current,
may give erroneous results.
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Abstract—The standard Melnikov method for analyzing the onset of chaos in the vicinity of a separatrix is
used to explore the possibility of suppressing chaos of dynamical systems of acertain class. Analytical expres-
sions are obtained for external perturbations that eliminate chaotic behavior. These results are supplemented
with a numerical analysis of the Duffing-Holmes-oscillator and pendulum eguations. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Intensive theoretical and experimental studies of
chaotic dynamical systems revealed their unexpected
and remarkable property: they are highly susceptible
and extremely sensitive to perturbations. This discov-
ery served asastarting point for finding ameansto con-
trol the behavior of chaotic systems, i.e., to change
from chaotic regimes to required regular oscillatory
regimes by means of relatively weak perturbations.

Suppression of unstable or chaotic behavior of
dynamical systemsisgenerally achieved via stimulated
excitation of stable (usually periodic) oscillations by
means of multiplicative or additive perturbations. In
other words, an externa perturbation is required to
change from a chaotic state of a system to a regular
regime. The statement of the problem isoutwardly sim-
ple, but its solution is very difficult to find for particular
dynamical systems. Moreover, even though the prob-
lem has been analyzed in numerous studies, a system-
atic and rigorous theory of suppression of chaotic
behavior has been developed only for some common
families of dynamical systems (see [1, 2] and refer-
ences therein).

Chaotic behavior can be suppressed by two different
methods. In one of these, the state of a system is
changed from chaotic to regular by perturbation with-
out feedback. In other words, this method does not
make use of the current values of dynamic variables. In
the other method, the perturbation is adjusted in accor-
dance with the required values of dynamic variables;
i.e., feedback isanintegral component of the dynamical
system. By convention, the former method is called
open-loop suppression (or control) of chaotic dynam-
ics. Thelatter method is called feedback control of cha
otic systems. Both methods can be implemented either
parametrically or by direct forcing.

To the best of our knowledge, the first analyses of
suppression of chaotic dynamics of certain systems

were presented in [3, 4]. However, extensive research
along these lines was initiated by [5, 6], where it was
shown that relatively weak parametric perturbations
can be used to regularize a particular saddle orbit
embedded in a chaotic attractor. These and other results
stimulated studies of suppression of chaotic dynamics
and evoked great interest in controlling unstable sys-
tems. A vast nhumber of numerical and experimental
studies were focused on the possibility of suppression
of chaos and implementation of periodic or other
required dynamicsin various systems and maps (see|[1,
2, 7-10] and references therein).

The standard Melnikov method is an effective tool
used in analytical treatments of the problem of chaos
suppression [11]. It is based on comparison of the first-
order terms in the series expansions of the solution in
terms of a perturbation parameter on stable and unsta-
ble separatrices. In particular, the Melnikov method
was applied to explore the possibility of eliminating the
chaotic dynamics of the Duffing—Holmes oscillator
[12-16] (seedso[17]). It was shown that asmall para
metric perturbation of the system’s chaotic dynamics
suppresses chaos. Furthermore, the Melnikov method
was used in [18] to examine the effects of parametric
perturbationsin amodel of the Josephson junction.

In this paper, the Melnikov method [11, 19] is
applied to find analytical expressions for parametric
perturbations that suppress chaotic and/or unstable
behavior of dissipative dynamical systems. The Duff-
ing—Holmes oscillator and pendulum are considered as
examples.

2. THE MELNIKOV METHOD

In this section, we briefly describe the Melnikov
analytical method for identifying homaclinic or hetero-
clinic chaos, relying on the original paper [11] (seealso
[19-21]).
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Fig. 1. Split separatrix loops.

Consider asimple autonomous system with asingle
hyperbolic point X, subject to a periodic perturbation:

X = fo(x)+ef(xt), (1)

where X = (Xq, X,) and f; is a periodic function with
period T. Suppose that the unperturbed system (with
€ = 0) hasasingle separatrix X(t) (see Fig. 1a):

lim xo(t) = Xo.

t - too

The separatrix is split by the perturbation; i.e., it has
distinct incoming and outgoing branches. Three possi-
bilities arise as a result: the separatrices either do not
intersect (in which case one may enclose the other, see
Figs. 1b and 1c) or intersect at an infinite number of
homoclinic points. Chaotic dynamics are observed only
in the latter case (see Fig. 1d).

To find an intersection condition, one must use a
perturbation method to calculate the distance D(t, t,)
between the separatrices at an instant t,. If the outgoing
separatrix encloses the incoming one, then D(t, ty) <O.
If the incoming separatrix encloses the outgoing one,
then D(t, tp) > 0. Only if there existst, such that the sep-
aratrices intersect does the sign of D(t, t;) alternate.

In the method substantiated in [11], the distance
D(t, ty) between the branches of a split separatrix is
determined by performing integration along unper-
turbed trajectories. The method is based on comparison
of the first-order terms in the series expansions of the
solution in terms of the perturbation parameter € on sta-
ble and unstable separatrices.

To caculate D(t, ty), it is sufficient to find the solu-

tions on the stable and unstable manifolds, x° and x.
When ¢ = 1, these solutions differ by the vector
r(t to) = X°(t to) =X (t, to) = X3(t, to) = x4 (1, to).

The Melnikov distance is the projection of r on the
direction normal to the unperturbed separatrix X, at an
instant t.
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Omitting intermediate calculations, we write out an
expression for D:

00

D(ttg) = ~[ fo O fdt. @)

This function determines conditions for chaotic behav-
ior of the original system. In the domain wherethe sign
of D(t, ty) aternates, the separatrices intersect and the
system exhibits chaotic dynamics.

3. ELIMINATION OF CHAQOTIC DYNAMICS
IN THE VICINITY OF A SEPARATRIX

We use the mathematical procedure described above
to explore the possibility of suppressing chaotic
dynamics for systems with separatrix loops described
by Eqg. (2).

For this system, the Melnikov function D(t, ty) can
be written as

00

D(t,to) = ~[ fo I fydt=1g(x,1)]. 3)

Suppose that the sign of D(t, ty) alternates; i.e., the
separatrices intersect (see Fig. 1d). We seek a pertur-
bation f*(cw, t) that eliminates the intersection of the
separatrices:!

x = fo(x) +e[fi(xt) + f*(w 1)], (4)
where

f* (0 t) = (fI(w 1), f3(w,1)).

We denote by [s,, ;] theinterval where the sign of D(t,

ty) aternates. Two cases can arise when the system is
perturbed by * (w, t):

D*(t, 1)) > s, ()
or
D* (t1 tO) < sl! (6)

where D*(t, t,) isthe Melnikov distance for system (4).
Suppose that (5) is satisfied. (A similar analysis can be

Twe tentatively call f* aregularizing perturbation.
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performed when inequality (6) holds.) Then,

I{g(x, )] + 1[g* (w, X, 1)] >s,, (7)
where

+o00

19" (0. %,B)] =~ foO .

By virtue of (7), there exists x such that

ITg(x )] +1[g* (w, x,t)] = s, +X = condt,

X, s, OR".
Hence,
I{g*(w, X,t)] = const—1[g(x, t)]. (8
On the other hand,
Ig*(w, x,1)] = —IfODf*dt. 9

Suppose that the function f* (w, t) is absolutely integra-
ble over an infinite interval and Fourier transformable.
We define f*(w, t) as

f*(wt) = Re{A(t)e’™}

with A(t) = (A(t), A(t)). Therefore,

—J' fo O{A(t)e™®} dt = const—I[g(x,t)].

The inverse Fourier transform yields

fo OA(t) = J’(I [g(x, t)] — const)e'“ de.

Hence,

1

A = 0= T

00

x I(l [g(x, t)] —const)e'“ dw.

The quantity A(t) can be interpreted as the amplitude of
aregularizing perturbation.
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Thus, dynamics of systems that can be represented
as (1) areregularized by the perturbation

f*(w,t)
—i wt i

e i ot
02(X):[)(I[g(x, t)] —const)e “dw |.

= Re| —————
fo () —

Next, we explore the possibility of suppressing
chaotic dynamicsfor systems governed by equations of
the form

X = P(x,y),
y = Q(xy) +e[f(wt) +aF(x y),

where f(w, t) is a periodic perturbation; P(x, y), Q(X, ¥),
and F(x, y) are smooth functions; and a is a damping
parameter.

We consider the most common case when a single
hyperbolic point is located at the origin (x =y = 0) and
P(x, y) = V. Let x(t) be the solution on the separatrix.
For perturbed system (10), the Melnikov distance can
be represented as

(10)

00

D(t, tp) = —I Yo(t —to) (11)

x[f(w, t) + aF (X Yo)ldt = 1[g(w, a)],

wherey,(t) = X, (t). Asinthe case of Eq. (1), we assume

that the sign of the Melnikov distance for system (10)
aternates; i.e., the separatricesintersect. We seek a per-
turbation f* (c, t) that eliminates chaotic dynamics.

| X=Y (12)
J = QU y) el F(@ 1) +aF(x y) + (1)

Since system (10) is parameterized by o, chaos must be
suppressed for each particular value of the parameter.
Accordingly, we can write I[g(w)] instead of I[g(w, a)].

For system (12),

fe = QM Y), A(t) = (0, AY)).

fOl = yv
Therefore,

A(t) = m‘r(l [g(w)] — const) e dw.

Thus, a regularizing perturbation for system (12)
can be represented as

£* (0, t)

[

_ e_i“’t j oot
= Re[yo(t_to):[o(l[g(w)] —const)e doo}.
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Now, let us find a regularizing perturbation in the
case when the Melnikov function D(t, t;) admits an
additive shift from its critical value.

Again, we analyze the case when (5) is satisfied.
Suppose that o, corresponds to the critical value of the
Melnikov function,

le = I{g(w, g =g )]

Then, asubcritical Melnikov distance can be expressed
as

Iout = Ic_a!

where a [0 R* is a constant. Assuming that the system
perturbed by f* (w, t) exhibits regular behavior, we have

I+ o+ 1[g* ()] > s, (13)

where

+00

I{g* (w)] = —I Yo(t —to) F* (o, t)dt.
On the other hand, it is obvious that we can take any
I" afortiori greater than |
I'=I,+a>s,. (14)

Now, equating the left-hand sides of (13) and (14), we
obtain I[g* (w)] = 2a. Substituting

f*(wt) = Re{ A(t)e™Y,

into the expression for 1[g* (w)], we find
- Iei“’tA(t)yo(t—to)dt = 2a.

The inverse Fourier transform yields

A(t)Yo(t—ty) = —2a Ie‘mdw.
Hence,

2
Yo(t

_4mad(t)
Yo(t—to)’

a —i ot
A(t) = — e dw =

Thus, dynamics of systems that admit additive shift
from the critical value of the Melnikov function D(t, tg)
are regularized by the perturbation

_4mad(t)
Yo(t—1o)

where &(t) isthe Dirac delta function.

f*(wt) = cos(wt), (15)
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In the general case, if fy = (fy(X), foa(X)), then we
obvioudly obtain

41ad(t)

PO = 10— fo)

cos(wt).

4. APPLICATION TO PHYSICAL SYSTEMS

Now, we use the approach presented above to ana
lyze the Duffing—Holmes-oscillator and pendulum
equations. Transverse intersections of stable and unsta-
ble manifolds of these unperturbed systems giveriseto
homoclinic or heteroclinic orbits.

4.1. Duffing—Holmes Oscillator

The forced Duffing—Holmes oscillator with a para-
metrically perturbed cubic term is described by the
equation

X—x+B[L+ncos(Qt)]x* = g[ycos(wt) —ax],(16)

where n and Q are the amplitude and frequency of the
parametric perturbation, respectively, and n < 1. We
rewriteit as

x=v (17)
v = x—Bx +e[ycos(wt) —Bnx>cos(Qt) —av].

The corresponding unperturbed Hamiltonian is

2 2 4
v® X BX

= — =+
Ho= 5 -5+ %

Setting Hy, we find that system (17) has a single
hyperbolic point (x = v = 0) with a single separatrix.

The solution on the separatrix can be represented
as[21] (seedso[12-15])

J2
Xo(t) = *=cosht, (18)
B
. J2 sinht
Vo(t) = Xo(t) = —= . (29
° ° Jﬁcomzt
Comparing this system with (1), we write
fo=v, fiy =0,

foo = x—Bxg,
f,, = ycos(wt) —nPRx’cos(Qt) —av.
Therefore,
foOf, = vg[ycos(wt) —nPxocos(Qt) —a v,
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and (2) becomes

+o00

D(t, ty) = —I dt[yv(t —t,) cos(wt) 20)

—NBXa(t —to) Vo(t —to) cOS(QL) —a vt —to)].
Changing to the integration variable T = t — ty, we
finally obtain [12-15]
2.2 sin(wt)
5 “eosh(wl2)
_T[_r](Q4 .Sm(Qto) +‘ﬂ.
63 snh(mtY/2) 3B
Thesign of D(t, ty) is preserved if
6[3dsmh(n§y2) - N
(@' +4Q%) m
_ 1 _6/2Byw sinh(my2)
p’(Q* +4Q%) cosh(Tw'2)’

where pisaninteger (see[12-15]). Using the left-hand
inequality in (22), we determine the critical value of the
Melnikov function:

D(t, tp) =

(21)
+4Q%)

<N =N
(22)

22 myw
[ cosh(mtw'2)

D(t, to) = sin(wt,)

+ 3_5 —dsm(QtO)

(An analogous calculation can be performed for the
right-hand inequality.)

Then, asubcritical value
Dout(t, to) < Dg(t, to).
can be represented as

22 myw
JB cosh(Ttw/'2)

Dout(ti 1:O) = S' n(wto)

+ ‘;—B —dsin(Qty) —a,
where a > 0 isaconstant.
Since the perturbation required to regularize the
dynamics of system (16) has the form
f*(Q,1) = Re{e™A(t)},
the corresponding Melnikov distance

+o00

D*(t,16) = [ Volt—to) *(Q, )ck.
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is
+o0

D*(t,t,) = — J’ A(t) Vot —t,) e dt. (23)

To find A(t), we define
D*(t, to) + Dou(t, to) = D'(t, to).

Since the perturbation *(Q, t) is regularizing by
assumption, it holds that

D'(t, ty) > D(t, to).

It is obvious that we can take any D'(t, ty) afortiori
greater than D(t, ty):

22 myw
JB cosh(Ttw'2)
Ao

+ — —dsin(Qt,) +a.

3p

On the other hand, we can use (23) to write

D'(t, ty) =

sin(wt,)
(24)

D'(t, t,) = — f A Vo(t—t,)e at
(25)

+2“/é nyow —dsin(Qt,) —a.

JB cosh(Ttw'2)
Equating (24) to (25), we have

sin(wtg) +4a

B

+o00

IA(t)vo(t —t,)e%dt = —2a.
The inverse Fourier transform yields

A(t) =

o(t)I ¢ 0.

Therefore, dynamics of the forced Duffing—Holmes
oscillator are regularized by the perturbation

4na6(t)

Q1) = =

cos(Qt). (26)

4.2. Pendulum

The analysis presented above can be extended to the
classical nonlinear pendulum, whose separatrices make
up a heteroclinic orbit in the absence of damping. A
periodically forced, damped pendulum is described by
the equation [22]

X+0ox+snx = ycos(wt). (27)
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Fig. 2. Phase portrait of Duffing-Holmes oscillator (16):
a=0145p=8,n=003,y=014,Q=w=11.
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Fig. 4. Phase portrait of Duffing-Holmes oscillator (31):
0=0145p3=8,n=003,y=014,Q=w=11,a=2

The corresponding unperturbed Hamiltonian is

.2

X
H, = — — cosxX.
°" 2

The phase portrait of the pendulum is 2re-periodic in x,
with hyperbolic points at (11, X) and a center at (0, 0).
The system has oscillatory, rotatory, and separatrix
solutions. We focus here on solutions of the last type:

tanht

= +—

Xo(t) ~cosht’
. _ 2

Xo(t) = i_cosht'
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Fig. 3. Phase portrait of pendulum (27): a = 0.04, y = 1.35,
w=10.

1 1 1 1
-32 -31 -30 -29 -28
X

1 1
-34 -33

Fig. 5. Phase portrait of pendulum (32): a = 0.04, y = 1.35,
w=10a=12

The Melnikov distance corresponding to (27) is[22]

+o00

D(ty, w) = —a J’()’(O(t))zdt
» - (28)
J_rycos(wto)I sin(xq(t))Xq(t) coswtdt.

—00

Calculating the integrals, we abtain

D(t, w) = —40(8%, lgt %cos(wto), (29)

cosh 050
where B(r, s) is Euler’s beta function.
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Fig. 6. Spectral density of arealization x(t) for (a) original Duffing—Holmes oscillator (16) with a =0.145, 3 =8, =0.03, y=0.14,
and Q = w= 1.1 and (b) regularized Duffing—Holmes oscillator (31) witha = 2.

Since this Melnikov function D(t, w) obviously
admits additive shift from its critical values, chaotic
behavior of the pendulum is suppressed by the pertur-
bation

_4mad(t)

PO = 5t

cos(wt), (30)

where X, (t) is the solution on the unperturbed sepa-
ratrix.
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Physically, the results obtained here mean that
dynamics of the Duffing—Holmes oscillator and pendu-
lum are regularized by series of “kicks.”

4.3. Numerical Results

In the preceding section, it is shown that chaos in
Duffing—Holmes-oscillator and pendulum dynamics
can be suppressed by applying perturbations (26)
and (30), respectively. In this section, we present the
results of anumerical analysis.

We consider Egs. (16) and (27). In dynamics of the
Duffing—Holmes oscillator, the onset of chaos corre-
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Fig. 7. Spectral density of arealization x(t) for (a) original
pendulum equation (27) witha =0.04, y=1.35,and w=1.0
and (b) perturbed eguation (32) witha =1.2.

spondsto the breakdown of afigure-of-eight separatrix.
Figure 2 illustrates the structure of atypical chaotic set
obtained in this case. The onset of chaos in pendulum
dynamicsis associated with the breakdown of a hetero-
clinic trgjectory (see Fig. 3).

Consider the Duffing—Holmes oscillator and pendu-
lum with additional perturbations (26) and (30), respec-
tively. The corresponding equations are

X—x+B[L+ncos(Qt)]x° = s[ycos(wt) —ox

cosh’ (t—t,) D
+ ZH@W,[__t(Saé(t)coth},
X+ ax+sinx = ycos(wt) 32)

+ 2mcosh(t —ty)ad(t) cos(wt).

Figures4 and 5 show numerical solutionsto systems(31)
and (32), respectively. It is clear that the dynamics of
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both oscillator and pendulum approach regular regimes
represented by periodic orbits.

To analyze systems (31) and (32) in more detail, we
invoke the spectral density defined as

S(®) = lim = IX(@),

where X(w) isthe Fourier transform of asolution x(t) to
system (16) or (27). The spectral density provides a
simple, but reliable characterization of dynamics of a
system under study. It can readily be used to find out
whether amoation isregular or chaotic.

Figures 6a and 7a show the spectral densities calcu-
lated for original systems (16) and (27), respectively;
Figs. 6b and 7b, the spectral densities for systems sub-
ject to perturbations (26) and (30), respectively. These
results demonstrate that chaos is suppressed and
dynamics of both systems are regularized.

Taking different parameter values corresponding to
chaotic behavior, one can find appropriate regularizing
perturbations (see above) and obtain qualitatively simi-
lar results, i.e., change from chaotic states to regular
oscillations.

Thus, our numerical analysis is consistent with the
analytical results obtained in Section 4.

5. CONCLUSIONS

Separatrix splitting is a very convenient method for
examining dynamical systems, because it can be used
to obtain nonintegrability conditions for many applied
problems in analytical form [23]. Currently, the prob-
lem of chaos suppression considered in this study is
mainly solved by numerical methods (e.g., see [1-10]).
However, asymptotic behavior of trajectories can be
examined analytically. Asaresult, the distance between
the separatrices split by a perturbation can be found in
general form by applying a perturbation method in the
vicinity of ahomoclinic trajectory.

In this study, separatrix splitting is applied to
explore the possibility of chaos suppression in dissipa-
tive systems. Analytical expressions are obtained for
regularizing perturbations. These results are suffi-
ciently general to be applied to various dynamical sys-
tems that admit separatrix splitting.
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Abstract—The process of random diffusion variation of the wave function of a system with two statesis ana-
lyzed. A method is developed for calculating the evolution operator and the damping increment of the proba-
bility distribution function of the state of the system on the basis of quaternion apparatus. It is proved analyti-
cally that the second moments formed from the wave function play the major role since all other statistical char-
acteristics tend to equilibrium at a higher rate. For more general models of arandom action, the result remains
asymptotically the same, but the relative orders of increments may be different. Exceptional cases of incomplete
statistical equilibrium are singled out. The possible role of the given model problem in the actual problem of
state splitting in the transition from the microworld to macroworld is discussed. It is shown that, in spite of the
views expressed in modern literature, the distribution of finite probabilities in the white noise model does not
allow the well-known Schrédinger’s Cat paradox to be resolved. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The study of evolution of quantum systems sub-
jected to the action of a nonstationary external perturb-
ing field is undoubtedly interesting from the standpoint
of distribution of finite probabilities and, as a conse-
guence, the choice of possible quantum states for the
system. In article [1] (see aso [2]), such an evolution
was studied in detail using the simple example of atwo-
level system interacting with classical white noise. The
probabilities of transition of aparticle from onewell to
another were calculated using a double functional inte-
gral along the trgjectories, which was expanded into a
power seriesin asmall parameter. However, some fea
tures of the evolution of the quantum system in [1]
remained unclear; we would like to analyze here these
questions more rigorously.

It should be recalled that Lesovik et al. [1] consid-
ered the dynamics of a particle in atwo-well potential
(symmetric wells). The Hamiltonian of the particle has
the form

— ﬁon + qoq;(t)oz,

H(t) = -3

)

where g,, 0, and o, are the Pauli matrices, A and q, are
certain constants, and ¢(t) is classical white noise. The
correlators connecting the initial and final states of the
particle were calculated by integrating along trajecto-
ries. However, it was not rigorously proved that second
moments must play the major role in this problem. In
addition, higher order moments must also be taken into

account in some cases. Finally, we cannot agree with
the opinion formulated in [1, 2] that the ultimate ine-
quality of the “weights’ of two states emerging as a
result of arandom action of the thermostat is associated
with the solution of the fundamental Schrodinger’s Cat
problem, i.e., with the choice of one of quantum states
upon a transition from the microworld to the macro-
world.

To solve these problems, we develop here a new
method for analyzing evolutionary quantum problems
based on the mathematical apparatus of quaternions.
Using this method, a more rigorous and compact repre-
sentation of the evolution of the state of atwo-level sys-
tem subjected to white noise can be obtained. We will
not confine our analysis to a Hamiltonian of type (1)
and consider the evolution of the system with more
general Hamiltonians in Section 9.

2. FORMULATION OF THE PROBLEM

Let us consider a quantum system with two basic
states, which is described by Hamiltonian (1). Constant
Aisreciprocal to the lifetime of the system in the given
state and characterizes the stability of this state, while
parameter g, has the dimension of length and defines
the width of the potential barrier. The result of evolu-
tion on atime interval can be written in matrix form as

W(T) = DY(0), )

1063-7761/04/9805-1054%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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where
D =D,D,_;...Dy,
maulls
S HE T 3)
nT P T

inthelimit n — oo,

It is well known [3] that complex unitary 2 x 2
matrices are closely related to operations of rigid body
rotation. As an intermediatelink, it is convenient to use
the apparatus of quaternions. Multiplication of quater-
nions

X =d+ai+bj+ckor(ab,c,d), (@]
where a, b, ¢, and d are real-valued parameters, is
equivalent [4] to the multiplication of complex matrices

Od+ic —(b—ia)d
D, = nd*ic~b-ia)g ®)
Ob+ia d-ic O

which are unitary under the normalization condition
a’+b*+c*+d” = 1. (6)
In the given case, to the required accuracy, we have

mulln
D - 1_E _ﬁ_AO' +%0‘
m - n#A 2 X 2 z
quz [¢U“TD}
© 8n?H? O

and the corresponding quaternion is given by

X =1+ nh[ﬁA q0¢ U“ka}

A+ -

(7)
QOT

3. DIFFUSION EQUATION

In accordance with the general principles of using
guaternionsin the problem of rigid body rotation [5, 6],
the previous expression describes a deterministic rota-
tion through angle TA/n about the x axisduring time T/n
and arandom rotation through angle

qOT [mTD
7 0
about the z axis. We fix an arbitrary initial position of a

test point on a unit sphere. In accordance with the gen-
eral rules of the diffusion theory [7], the density f of
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subsequent images of this point at instantst > 0 obeys
the differential equation

of _
5= —LAf 2A f, (8)

where the notation
q2
2 _ Mo
r? = ;L-zapzm

is used; the angle brackets indicate dispersion per unit
time and A,, A, and A, are the operators of rotation
about the X, y, and z axes. Equation (8) has the obvious
steady-state solution f = const (const = 1/(4m) for the
conventional normalization of probabilities). The
remaining particular solutions attenuate with time.

4. SERIES EXPANSION OF FUNCTION f

It can easily be seen that a spherical function of any
order | preservesitsorder after substitution into Eq. (8).
Consequently, having fixed I, we can use the ordinary
expansion

|
f=3 RO )

k=-

Normalization of (complex) spherical functions is
immaterial in principle; we choose normalization to
simplify equations for quantities a,. Separating time
and introducing decrement A, we obtain

2 A _
(A =k Da+ S =k)a., = (1 + ko] =0, (10)

-l <k<l.

If we replace all quantities o, by (—1)ka_,, the latter
will obviousdly satisfy the same system (10) with the
same A. It follows hence that al solutions can be
divided into even solutions with

ay = (—1)k0‘k (11)
and odd solutions with
o, = (-1)"*a,, o, = 0. (11a)

5. LOWER BOUNDARY FOR A
Wewill now try to determinethe lower boundary for

A (for al A = 1 and nontrivia ag, a4, ..., d)). Todo this,
we must prove that
2
ReA g /%—AZ, Asg,
(12)
r r
>— > —
ReA > > A= 5
No.5 2004



1056

We begin with asimpler case of an odd solution. Mul-
tiplying each equation of system (10) withk=1, 2, ...,
| by the quantity

O
(I+K)!I(I=k)!’
summing the results, and shifting the index of summa-
tion in the last sum, we obtain

& = (13)

(A —KT)|at?
Z(|+k)l(|—kk)l

*
Oy, 10y

ZZ(I—k DI +K)!

(14)
a0 41

_Ek;(l—k—l)!(uk)!

= 0.
Summing relation (14) with its complex conjugate, we
find that

(Reh — KT )|ar?
Z (I+k)!(|—k)k!

= 0.

Obviously, at least one of the coefficients in the numer-
ator must be positive or zero. In the given case, thisis
equivalent to the requirement ReA = I, which is even
more stringent than inequality (12).

Let us now consider the even case. Multiplying all
equations in (10) by (=1)%€,, summing the results, and
shifting the index in the last sum, we obtain

A =K°N)]ay?
_Z_l( Yot
A'c Kk Oy qOg
zk;(-l) ( —k—kl)!(ll(+k)! (15)
-1 %
A K OOy _
+zk:Z_|<-1> (|—k—k1)k!(| o1 - 0

Subtracting from this relation its complex conjugate,
we obtain

|°‘k|2

|
k
'mAk:Z_I(‘l) T+ R —K)!

Now, we must distinguish between two cases.

(@ ImA #£0. Inthiscase, thesum over kinrelation (16)
vanishes. Multiplying al equations in (10) by &, and
summing the results, we obtain a relation similar
to (14), but with the lower limit k = - for all sums.
Summing this relation with its complex conjugate, we
obtain

= 0. (16)

(Reh —Kk°M)|ay® _
Z (I+k)!(|—k)k!

= 0. (17)
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We subtract Eg. (16) from (17), where ImA is replaced
by ReA. Taking into account the parity property (11),
we obtain

(o]

K o |

Z(I +k)'(|k—k)|
(18)

(2ReA — K F)|0(k|

Z (I+k)(1-k! =0

where symbols o0 and v indicate summation over all
even and odd positive k < |, respectively (the term with
k = 0 is omitted). Obviously, at least one of the coeffi-
cients of the second sum in Eqg. (18) must be positive or
zero, which is equivalent to the inequality

ReA =

Nl_l

(19)

(b) ImA = 0. Assuming that | = 2, we again multiply
Egs. (10) by &, (but now for k = 2) and sum the results.
After summing with the complex conjugate equality,
we obtain

(A —K°T) o2
Z(|+k)!(|—kk)!

A(a,0; +0,0;)
A0+ 1)I(1=2)!

=0. (20

We write separately Egs. (10) withk=1and k=0, tak-
ing into account the symmetry condition:

(A=T)ay+ 511 -1)a,—(1+ ag] =0,
Ao+ 1Aa; = 0.
This leads to the equation
A
a, S0 -DA

g . (21)
2
O 2y, 10 +21)A

If the denominator of this equation has real roots and
the value of A is greater than or equal to the smallest of
these roots, we have

22 21(1 + 1)A* > 410,

N ()N
2 4 2

and inequality (12) holds. In other cases, the denomina-
tor inrelation (21) is positive. Substituting relation (21)
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into (20), we obtain

O O
g}\ L+ A*(1=1)(1 + 2)A g
0 2 1(I + 1)A* 0
u 4[2\ LS }D )
o e =KD’ _ 0
(1 +2)1(1=2)! (T+K)I(=K! ~

k=3

In this case also, at least one of the coefficients in
Eqg. (22) must be positive (or equal to zero). If thisis
valid for one of the coefficients of the sum with k > 3,
wehave A = 9, which is even more stringent condition
than (19). It remains for us to consider the behavior of
the coefficient in the braces. It increases for

I+ 1)
—=. (23)

A <A
Henceforth, we assume that inequality (23) is valid
since, otherwise, A > A, and this estimate is more strin-
gent than (12). Substituting the real-valued A from ine-
quality (12), where the sign “=" is replaced by the
equality sign, we see that the coefficient in the bracesis
negative. Consequently, the actual value of A must be
higher.

In the simples case when | = 1, system (10) has the
form

(A-T)a,;—Aa, = 0, Aoy+Aa; = 0.

Equating the determinant to zero, we obtain

rorz .
A, = =+ [——A%
) 4

(24)

Solution (24) has aready been obtained in a differ-
ent way in [1] and satisfies inequality (12) as exact
equality for one or both (for A = 2I') roots (24). Thus,
inequality (12) holdsin al cases.

6. ROTATION OF THE 4-SPACE

From the behavior of atest point, we passto rotation
of the space as awhole, which is described by the prod-
uct of random quaternions:

X = X Xp_g--- Xy (25)
In accordance with the general rules[5, 6], thetrans-

formation of the radius vector of thetest point, whichis
formally treated as a purely vectorial quaternion R =

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

1057

Xi +Vj + ZK, is described by the quaternion multipli-
cation,

R = XRX™. (26)
Here, quaternion R (which is obtained in a purely vec-
torial form) corresponds to a changed position of the
test point on the sphere. Quaternion X normalized by
condition (6) depends on three parameters, while vector
R, which is also normalized to unity, depends only on
two parameters. Consequently, X is not defined unam-
biguoudy from R and R’; there remains one more
degree of freedom, which is manifested, as can easily
be seen, in the possibility of replacing X by X(coso +
Rsino) for afixed R. In addition, it is possible to carry
out the discrete substitution X — —Xin relation (26).
To within these transformations, the inverse determina-

tion of X from R’ or, in expanded form (e.g., for R=K),
the solution of the equations

2(ac+bd) =x, 2(bc—ad) =y,

d2+C2_a2_b2 =r

with allowancefor relation (6) can be carried out unam-
biguoudly. Thus, the relation between the behavior of a
random point on the sphere and product (25) of random
quaternions is clarified. In both cases, we are dealing
with aMarkov chain with values on aspherein a 3D or
4D space, respectively. The density f of distribution in
the former caseis connected with the density in the lat-
ter case viatheintegra relation
Lk, (27)
where the angle brackets indicate averaging over the
rotational angle o introduced above and over the inver-
sion of the quaternion (from symmetry considerations,
we conclude that the weights are equal). In the particu-
lar case, when R = k, the rotation in expanded form is
expressed viathe relations

a, b, c,d — (acosy —dsiny, bcosy + csiny,
ccosy —bsiny, dcosy + asinyy),
O<sy<2m

In the general case, we are dealing with rotationin a
4D space about a movable “axis,” which, however, has
the form of a 2D manifold constructed on quaternions 1
and R.

Let us prove the following lemma.

Lemma. An arbitrary function defined in the form
of an even-degree polynomial of a, b, ¢, and d on a4D
sphere can be represented in the form of the sum of a
finite number of polynomial functions of the same or
lower degrees, which are a priori symmetric relative to
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the above averaging carried out over in generaly differ-
ent axes.

The lemmawill be proved by induction. For a zero-
degree polynomial, the statement is obvious.

The expression

(d*+c)", m=12, ... (28)

has a symmetric structure. Quaternion k playing the
role of an axis can be replaced by ai + j + yk = 1,
where a, 3, and y are connected only via the condition
0+ %+ vy =1 Therelation

F = [d*+(aa+Bb+yc)]"
is symmetric relative to this new axis.
By virtue of condition (6), we have
d° = 1-a°—b°—c* (29)

consequently, to within the terms of a degree smaller
than 2m, the expression for F coincides with

N = [(0a+Bb+yc)’—a’-b°-c?".  (30)

We assume that polynomials of a degree lower than or
equal to 2m— 2 are already represented in the required
form; for this reason, we can consider N instead of F.
First, we takethe point a =3 =0, y=1, a which

N = (-a"=b)"

We define polar angle 8, and azimuth y; on the

sphere a? + 32 + y? = 1 and spherical coordinates 0, |,
and p in the abc space. To expand the function

(—a*=b*)" = (=sin’9)" = (*-1)"
in the Legendre polynomials in t = cosB, we use the
identity
1

J’(l—xz)mPZH(x)dx

_ (2n-1)I[(2m)!1]?
= 2D Zonzn s am+ D @m—zmn MmN

Consequently, in the special case of y=1, we have

N =3 (-1)" "hyup""P20(c0S6;) Py c0SB),
=0

where

(2n+ Lyl (2m)!1]*

lom = (2nm!(2n+2m+ 1)1 (2m-2n)!!’

mzn,

h,, =0, m<n.
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In the general case, we obtain

N =5 (-1)" "hyup”"Poy( coSE)

Y (=)™ """ P 20( 00SB) Py C0S6)
= 0
i (31)

P (cosB)

(2n-Kk)!
t2 Z (2n+ k)l
x PS)(cos8,) cos[ k(Y — W,)] D

where ¢ is the angle between the vectors with compo-
nents (a, b, ¢) and (a, B, y). Thevalidity of relation (31)
is associated with the obvious invariance of € relativeto
joint rotations of spaces abc and af3y.

Spherical functions are mutually independent in
view of their orthogonality. For each specific m, we are
dealing only with a finite system of such functions;
their independence must be manifested even on afinite
set of points (aj, B;, ;) on asphere. Taking an appropri-
atelinear combination from corresponding functions N,
we can always separate in this way the term with asin-
glespherical function of A, and 8, inrelation (31). If we
eliminate nonzero numerical factors, the coefficient of
thisterm can be represented as

p2(m—n)
20 (K) os(ky), 0<k<2n (32
[p Panlc0 e)D n(kyp), 1<sks<2n |

where the brackets contain various harmonic polyno-
mials of degreen=0, 1, 2, ..., m. It can easily be seen
that these polynomials form a complete system in the
class of al homogeneous polynomias of a, b, ¢ of
degree 2n; for all these polynomials, we can obtain the
required representation using a superposition of aver-
aged functions.

Analogously to relation (28), the expression

(d*+¢®)"(ad + bc) (33)

is symmetric. Instead of a, b, and ¢, we can substitute
into this relation the new orthogona components a —
ab, —(aa + Bb)y + (a2 + B?)c, aa + Bb +yc. If we sub-
stitute a, b, and c for d?, expression (33) will contain, in
addition to terms of the type that has already been
investigated, the term

N, = dN(Ba—ab).
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On the sphere a® + b? + ¢? = 1, we have

cosé =aa+pb+yc
and the application of the rotation operator in the abc
space gives

0 _ 00 o[
3 Pn(008) = g ~b7Pan(aa+ b+ ye)

= (aB—ba)P,,(cost).
Using the familiar identity

Pn+1—Pnoa(t)
2N+1
we obtain the following expression for any a, b, and c:

(aB —ba)P,,(cost)

Py(t) = N1,

= 4np+ 1(%[P2n+1(cosi) —P,,_1(cosE)].

After simple combination of terms, taking into account
expression (31), we obtain

m

_ 2m+1 _1y"-nJ hnm hn+1,nD
N, = 2dp ZO( 1 n+1 an+ 50
x2n+lk(2n+1—k)! ()
Z (2n+1+k)!

k=1
Q Q :
% P2q.+1(C0S8) P31 (cosB,) sin[k(W, —y)].

Arguing inthe same way asin the previous case, we
must only stipulate that expression (34) does not con-
tain harmonic polynomials with k = 0. However, this
does not affect the final result since the “band” har-
monic polynomia (k = 0) can be obtained from any
other polynomial appearing in expression (34) by aver-
aging over 2n orientations for rotation about any axis
along which this selected polynomial does not vanish.
Thus, the polynomials of degree 2(m + 1), which con-
tain one factor d, also possess the required property.
Since higher powers of d (d = 2) can be eiminated, the
lemmais completely proved.

7. REPRESENTATION OF ROTATIONS
BY MULTIPLICATION OF QUATERNIONS

We can now easily establish the relation between the
superposition of rotations of a fixed “tag” and the
guaternion multiplication that carried more informa-
tion. After addition of new random cofactors X,,, prod-
uct (25) again behaves as a Markov chain. The degree
of the polynomial describing the density of distribution
over sphere (6) isalso preserved. The entire process can
be described using the polynomial eigenfunctions p;(a,
b ¢, d) with corresponding decrements A;. In accor-
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dance with the lemma, for an even-degree polynomial
p, an expansion of the type

N

p(a, b,c,d) = z g(a b, c,d)

i=1

must exist, where polynomial g; issymmetric relativeto
rotation about the R, axis. If we denote by dw an ele-
ment of a sphere in the 4D space, we can write

Il p(a, b, ¢, d)|*dw

N

ZJ’p(a, b,c,d)q (a, b, c,d)dw

(35)

N

ZIEp(a, b, ¢, d)Ck i (a, b, ¢, d)do.

i=1

The left-hand side of this expression is positive;
consequently, at least one of the functions
[p(a, b, c,d)Ck on the right-hand side is not identi-

cally equal to zero. Earlier, we demonstrated the rela-
tion (which islinear for densities) between the rotation
of a sphere with atagged point R and a superposition
of quaternions. Consequently, for densities of even
powers of a, b, ¢, and d, the values of decrement A are
chosen in the same way as for rotations with a tagged
point.

A different situation is observed for polynomials of
odd powers of a, b, ¢, and d, which may correspond to
awider set of decrements. If, however, we return to the
initial appearance of quaternionsin (5), it can be seen
that simultaneous sign reversalsin a, b, ¢, and d lead
only to the substitution of — for Y. This cannot have
any statistical consequences and, hence, the difference
between (a, b, ¢, d) and (—a, —b, —¢, —d) is not informa-
tive in the given formulation of the problem.

8. QUANTUM PROBABILITIES

We can easily find the fina distribution of the
squared modulus for any of two components of the
wave function. Since the result cannot depend on the
initial distribution, we assumethat at least |J;(0) =1 and
P,(0) = 0 for t = 0; in this case, from relation (5) we
obtain

W(T) = d+ic, |Wy(T)° = ¢®+d”

As T — oo, the distribution on sphere (6) tends to a
uniform distribution in view of symmetry. Taking the

parametrization in the form
a = cosncosd, b = cosnsind, c = sinncosg,

d = sinnsing, dw = sinncosndnddde,
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we obtain for the inequality

Q<c®+d*’<Q+dQ, 0<Q<1,

or

: dQ
JQ<snn<./Q+—<
2.JQ
a probability proportional to dQ; in other words, for
|un > aswell as, naturally, for |ys,[?, we obtain auniform

distribution in the limit. This result was also noted
in[1].

9. A MORE GENERAL FORMULATION
OF THE PROBLEM

Our method permits a generalization of the problem
when the form of the Hamiltonian (see expression (1))
is not specified; we only assume that random parame-
ters appearing in this Hamiltonian are independent of
one another on sequentia intervals of time.

The relation with quaternions and with rotation of
the sphere remains the same. It is sufficient to consider

again the density f(é, () onasphereina3D spacein

polar coordinates as a superposition of spherical func-

tions of afixed principal index | = 1; i.e,,
ks

z c.e P (cosh).

k=k,

(36)

Here, k; and k, stand for the largest and smallest values
of index k from those for which ¢, # 0. (Normalization

of Y® in this case differs from that in relation (9), but
thisisimmaterial.)

We consider functions (36) as eigenfunctions. Asin
particular example (1), the corresponding values of
ReA are generally positive. It will be proved below
that exceptions (i.e., the existence of undamped solu-
tions (36)) with A = 0 or purely imaginary A are
observed only for models from the following two cate-
gories.

(a) Rotations of a sphere are reduced to rotations
about the same (not random) axis, these rotations being
probably combined with itsinversion.

(b) Admissible rotations transform a definite regular
polyhedron into itself.

To prove these statements, we again denote the
tagged point on the sphere by R and possible rotations
on each step by L4, L,, ..., Lg irrespective of the step
number, we ascribe probabilities Q;, Q,, ..., Qs to these
rotations. (This latter discretization is fully immaterial
and only makes verbal formulation more convenient.)
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Eigenfunction (36) must satisfy the basic relation for
Markov chains, which in our case has the form

expt )\r;er(R) = 3 Qf(LFR). 37)

In accordance with the Buniakowski inequality, we
have

quf(LalR)
g=1

Z Q Z it @9
q=1 =

Introducing a spherical element dQ, evaluating the
integrals over the entire sphere, and taking into account
relation (37), as well as the natural normalization con-
dition

S
> Q=1
q=1
we obtain
n

Q, _[I f(Lg"R) dQ (39)

= SQ |f1°dQ = [If|*dQ.
3 Qfiffan =y

In the case of zero or a purely imaginary A in this
relation, we are ultimately dealing with an equality.
However, the exact equality in relation (38) is attained,
in accordance with the general rule, only when all func-

tions f(Lg'R), g =1, 2, ..., s coincide to within

numerical (complex-valued) coefficients. By virtue of
relation (37), the relations

(LR = 0,f(R), q=1,2..,s

with complex constants o, are valid. In view of conser-

vation of theintegral of |f |? upon rotation, we must have
|ogl = 1 so that

[f(LR)| = If(RI, q=12..5

Thus, a certain body is invariant to al admissible
rotationsL,, ..., L (for better visualization, we imagine
the surfacer = |f(R)|. If it isa body of revolution other
than a sphere, its axis must remain unchanged to within
inversion, and we arrive at case (a). If we are not deal-
ing with a body of revolution, it coincides with itself
only in afinite number of ways so that not only L, ...,
L, but aso al their combinations of any number and
order belong to the symmetry group of the body. How-
ever, such finite groups of rotation (unless they have a
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unique invariant axis) are necessarily connected with a
regular polyhedron [4] and we arrive at case (b).

It remains for us to consider the possibility of |f| =
const. In accordance with relation (36), the expansion
of |f|? into a complex Fourier series contains the last
term of the form

ik

* i(ki—ko) P S (Jky[)

- (Ika])
= ... tg.Ce P,

(cosé) P, (cosé).

Thisterm cannot be reduced to a constant for any | = 1.
For k; # k,, the dependence on 6 remains, while for

k, = k,, the dependence on () takes place. Thus, this
case isirrelevant, which completes the proof.

Asbefore, theresult isautomatically extended to the
multiplication of quaternions X, for indistinguishable
X and —X. As applied to the evolution of the wave func-
tion, exceptional cases can be reformulated as follows:

(a) all realizations of matrices D, commutewith one
another (an analog of rotation about the same axis);

(b) al realizations of matrices D,,, belong to a finite
group.

Since there are no infinitesimal rotationsin case (b),
itisirrelevant in the presence of diffusion, asinthe case
of Hamiltonian (1). Case (@) is formally realized in
model (1) forA=0andl =0.

Thefollowing qualitative remark is a so appropriate
here. In contrast to particular example (1), other models
do not contain an anal og of inequality (12) ensuring the
prevailing role of deviations from equilibrium with
| =1 over long timeintervals. On the contrary, zero can
now become the point of condensation of values of A
for largevalues of |. In this case, although densities f(R)
converge (except in the above-mentioned cases (a) and
(b)) to a constant for t — o due to the possibility of
indefinitely exact approximation of any function con-
tinuous on a sphere by a polynomial, the establishment
of statistical equilibrium can generally occur at a rate
which is generally dower than that defined by any
exponential function.

10. DISCUSSION OF THE PROBLEM

It was proposed in [1, 2, 8] that the inequality of
“weights’ of two states due to a random action of the
thermostat (even if these weights were initialy equal),
which was noted in these publications and repeatedly
discussed here, is related to the problem of choosing
one of the possible quantum states in atransition to the
macroworld. It was concluded in this connection [2]
that the well-known Schrddinger’s Cat paradox could
be resolved in this way. However, this opinion is erro-
neous. As amatter of fact, to resolve the paradox in the
macroworld, only one of the two components of the
wave function, which is responsible for the readings of
a macroinstrument, must remain. But the model with
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white noise obviously does not meet precisely this
requirement. Indeed, for large values of t, the probabil-
ity that, for example, one of the weights |y > and |,
becomes twice as large as the other amounts approxi-
mately to 2/3; however, this probability does not
increase with time and cannot become equal to unity in
any way. Meanwhile, to resolve the paradox of
Schrddinger’s Cat, the total (or asymptotic) exclusion
of statesis required.

It was found that a generalization to awider class of
models with a random Hamiltonian does not open any
new opportunities since the statistical distribution for
large t remains unchanged except for obviously degen-
erate situations.

By the way, it is mathematically obvious that the
limiting probability distribution itself can also be
obtained without using any quaternions, just by defin-
ing equal probability on the complex circle

lWy?+ Wy = 1,

analogously to calculationsin statistical mechanics [9]
(only not for an indefinitely increasing, but for a finite
number of degrees of freedom). However, equilibrium
probability distributionispresumedin [9] and in calcu-
lations based on traditional statistical mechanics in
general, while we consider here the evolution to the
equilibrium state. However, the results (and this is
important) match. Internal correlations in Hamiltonian
H(t) can hardly change the situation since the processes
that are treated as random can be split into almost inde-
pendent segments. In principle, we can imagine such a
correlation of phenomenain areservoir with the quan-
tum state of an isolated system, such that the system
tends to a “pure’ state in the sense of the choice
between Y, — 0 and ), — 0. However, it can be
analogously stated that black and white grains con-
tained in abox can be separated and gathered in oppo-
site parts of the box by shaking it if this shaking corre-
lates in some intricate manner with the initial positions
of the grains. In both cases, we would have a thermody-
namic miracle, which is ruled out by our knowledge of
therole of probability in the world [10, 11].

Consequently, we arrive at the conclusion that the
necessary condition stating that “wave functions do not
permit a superposition according to macroscopic fea-
tures’ cannot be expressed in alinear form. For thisrea-
son, any solution of the problem of transition from the
microworld to the macroworld includes nonlinearity.
However, the considerations formulated by Menskii [12]
and in the discussion concerning this publication do not
provide a correct answer to crucial questions. It would
be apparently erroneous to state that each quantum
experiment should be completed at the boundary of the
microworld. At present, this appears as archaic in the
light of the studies carried out on an intermediate scale
without an abrupt termination or a clearly manifested
“observer” This suggests that nonlinearity should be
treated as an inherent property of the equation describing
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the evolution of the wave function in the intermediate
region between the micro- and the macroworld [10, 13].

In the approach developed in [13], the main feature,
apart from nonlinearity, isthe interaction with acertain
reservoir of cosmic origin. It is significant, however,
that it cannot be referred to as a thermostat in our case
since this cosmic reservoir must have two auxiliary
functions; i.e., it must be a source of fluctuations and
absorb excessive indeterminacy. From the standpoint of
physics, this situation resembles the role of solar radia-
tion and open cosmic space in life on the Earth.

The following is aso worth noting. It was shown
in [13] that the separation of a superposition of states
under these assumptions can be carried out, but the role
of the cosmic factor turns out to be only auxiliary and it
does not carry any a priori information on the result of
splitting. An appropriate analog here can be symmetric
diffusion of a molecule between two cold walls to one
of which the molecule ultimately sticks. In order to
achieve the same result in the interaction between a
guantum system and a thermostat, the latter must pos-
sess miraculous properties in each (1) specific experi-
ment. This constitutes the principal difference between
the model with a thermostat described in [8] and the
model considered in [13].
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Abstract—T he post-post-Newtonian equations of motion for point particles are derived from the Einstein grav-
itationa field equations by using the Einstei n- nfel d-Hoff mann method with the help of the energy-momentum
tensor proposed by Infeld and Plebanski [5, 6]. The obtained equations of motion coincide with the equations
derived by Kopeikin [10] by using the Fock method. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Einstein, Infeld, and Hoffmann and, independently,
Fock developed two methods for deriving the Newto-
nian and post-Newtonian equations of motion for point
particlesfrom the Einstein gravitational field equations.
These methods are described in detail in the monograph
by Fock [1] (Chapter 6) and in the book by Infeld and
Plebanski [2] (Chapter 3).

The main features of the Fock method are as fol-
lows: (i) the field equations with the energy-momentum
tensor of the continuous medium are used; (ii) the met-
ric tensor is expanded into series in a small parameter,
which formally corresponds to the series expansion in
the reciprocal velocity of light; (iii) in harmonic coor-
dinates, these expansions reduce the approximate field
equations to wave eguations; (iv) in the solutions to
these wave eguations, retardation corrections are taken
into account; (v) the eguations of motion are derived
from the condition of integrability of thefield equations
in the form of covariant laws of conservation for the
energy-momentum tensor, which follow from the Bian-
chi identities (in particular, point particles are defined
as centers of mass of elastic spherically symmetric non-
rotating bodies with sizes smaller than the distances
between them); and (vi) the final values of the metric
tensor on the world lines of centers of mass are
obtained by using the equations describing the internal
structure of the bodies. In pioneering works [3, 4], the
equations of motion are derived not from the covariant
laws of conservation for the energy-momentum tensor,
but from the equations defining harmonic coordinates.

In the Einstein—I nfeld-Hoffmann (EIH) method, as
in the Fock method, the metric tensor is expanded into
reciprocal power seriesin the velocity of light. In addi-
tion, it isassumed that the derivatives of the metric ten-
sor expansion coefficients with respect to time and spa-
tial coordinates do not change their order of smallness.
Thisadditional assumption, which formsthe essence of

the EIH method of successive approximations, makesit
possible to reduce the approximate field equations to
equations of the Poisson type. The equations of motion
are derived from covariant laws of conservation for the
energy-momentum tensor. In particular, point particles
are defined as singularities of the metric tensor, which
satisfies the field eguations with the energy-momentum

tensor containing the Infel d—Plebanski & functions [5, 6].

These & functions also ensure regularization of the
metric tensor on theworld lines of singularities. Intheir
earlier publications [7-9], Einstein, Infeld, and Hoff-
mann derived the equations of motion not from the
covariant laws of conservation for the energy-momen-
tum tensor, but from the integrability conditionsfor the
field equations in the form of two-dimensional surface
integrals surrounding singularities.

Kopeikin [10], who extended the Fock method,
derived from the field equations the post-post-Newto-
nian eguations of motion for point particles with radia-
tion corrections to these equations.

Here, we derive the post-post-Newtonian equations
of motion for point particles with the Infeld—Plebanski
energy-momentum tensor using the EIH method of suc-
cessive approximation.

The equations of motion derived by Kopeikin and
by us coincide with the equations of motion obtained
earlier in [11, 12], in which the Hadamard partie finie
method of regularization is employed.

The equations of mation can aso be derived using
the Arnowitt—-Deser—-Misner (ADM) method [13, 14].
For example, publications[15, 16] arein line with this
approach. Since the harmonic coordinates used by
Kopeikin [10] and by us are not admitted in this
method, the resultant post-post-Newtonian equations of
motion are different.

1063-7761/04/9805-0837$26.00 © 2004 MAIK “Nauka/ Interperiodica’



838

2. BASIC CONCEPTS AND NOTATION

We will write the Einstein equations for the gravita-
tional field in the form

_ 8k,

v 2 | uv
C

R (2.1)

where

1
T:v = %upgvo_éguvgpq%-rpc-

In the harmonic coordinates defined by the equations

9.(/-99") = 0, (22)
the Ricci tensor has the form
1 ap
R v=39 aaa Ouv
1 2 BIu 2.3)

_gangc(rpparch + ruparch + rvparch)i

where

1
rpuv = z(augvp + avgpp _apgpv)-

For N point particles, the energy-momentum tensor
proposed by Infeld and Plebanski [2], Chapter 1, is
given by

ST = S mad(x—E)
A
o , (2.9
(5 dEAdET] dELdE,
0°7dx%dx D dx®dx®
Field equations (2.1) and Bianchi’sidentitieslead to
the following equations of motion for point particles

treated as singularities of the metric tensor (see [2],
Chapter 1):

A
d’g; |, B
(dXO)Z 0 Hv

_ &y o OdEndeE,

— =0.
dx® "'Odx’dx°

(2.5)

We are using the following notation: k is the gravi-
tational constant; c is the velocity of light; Greek indi-
cesassumethevauesof 0, 1, 2, and 3, while Latin indi-
ces (unless other values are specified) assume the val-
ues of 1, 2, 3; recurring indices indicating the
corresponding summation; indices A, B, and C assume
valuesof 1, 2, ..., N, where N isthe number of particles;

(X) = (< and x° = ct correspond to spatial and time
coordinates of a point in the field, respectively; () =
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(§%) and E(,i = x? arethe spatial and time coordinates of
point particles, respectively;

IX =, )_(—EA = T |)_(—EA| = Tas

EA—EB = Thss |EA—EB| = I'ap»

Ny = ra( =2, Nis = raa—£&a),

d

a _
VA_dtl

d’e

A = 9,0,, 0, are the derivatives with respect to coordi-
nates x; 94 are the derivatives with respect to coordi-

nates &5 ; the dot on the function indicates the deriva-

tive with respect to timet; and the signature of the met-
ric tensor coincides with the signature of the
Minkowski tensor, which is equal to (+, —, —, -).

The & function introduced by Infeld and Plebanski
possesses all properties of the Dirac & function as well
as the additional property (see Appendix in[2])

IS(rA)r;"(dx) =0, p=12..,L. (2.6)

We will also use the following notation:;

A ~
(..) = I(...)E)(FA)(dX).

We will seek the solutionsto field equations (2.1) by
the EIH method of successive approximations, assum-
ing that

(8) the metric tensor can be expanded into the power
series

Joo = 1+Chy +C *hy +C°hy + ...,
2 ) (6)
Jon = € °hgy +Chg, + ..., (2.7)
3 (5)

Omn = _6mn + C_thn + C_4hmn T
(2) (4)

(b) the derivative of the expansion coefficients of the
metric tensor with respect to timet and with respect to
gpatial coordinates X2 do not change their order of
smallness:

d d
hy O2h,,0 -Lh

B ot axd )

(2.8)
Propositions (a) and (b) make it possible to reduce the
approximate field equations to equations of the Poisson
type with agenerally unlimited carrier of field sources.

No. 5 2004



POST-POST-NEWTONIAN EQUATIONS OF MOTION FOR POINT PARTICLES

Instead of expansion (2.7), we can use a more gen-
eral expansion,

(2.9)

however, in the harmonic system of coordinates[17, 18],
the field equations give

guv = nu\u
©)
while the equalities
ho =0, hy, =0, h,, =0, i=12,..
(2i-1) (2i) (2i-1)

are the propositions used in the EIH method, which
takes into account only standing waves [7-9, 19].

In order to reduce the approximate field equationsto
the Poisson equations with a limited carrier of field
sources, we will use the identities

d,(fg)y=foa,g+ fo,f,

0,0,(f9)
=f0,0,9+90,0,f +0,fd,g+0,90,f.

(2.10)

(2.11)

For singular functionsf and g, these identities define
the derivatives of the products of the functionsin terms
of the product of the derivatives of these functions. We
will apply identities (2.10) and (2.11) (see Appendix A)
to the singular functions

-1 2 -1 -2
f=ra,ra,..., Q=Tg,lg,....

3. POST-NEWTONIAN APPROXIMATION

Using formulas (2.3), (2.4), (2.7), and (2.8), we obtain
the following equations from field equations (2.1):

Ahg, = BTKY MAd(7 ),
(2) ~

Ahy, = 8T MAS(T ) S (3.1)
@) =

Ahg, = ~16Tky MAS(F ) Vh.
® =

The solutions to these equations have the form
he = -2®, hy, = 293,
@) @) (3.2)
hy, = 49,

(3
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where

® = kz Mmara, ®, = kz mVara.  (3.3)
A A

Using relations (2.3), (2.4), (2.7), and (2.8), as well
as solutions (3.2), we obtain from Egs. (2.1)

Ahg, + 20 + 4OAD - 49, D D
(4)
. 3.4)
= r E§ 2_§ (
16nkZ mAZS(rA)DlVA 5%
Considering that

.. 1. ..
d = éAx, X = kz Mal A, (3.5)
A

A® = -4y mMAd(7 ), (3.6)

and taking into account the identity
AD® = 20AD + 20,9, P,

which follows from relations (A.5) and (A.6), we
obtain

A(hg + X —29%) = 16k y MA(F )
@ A (3.7)

1

XgVi—E .

To solve this equation taking into account the first
expression from (3.3), we consider the integral

[B(x ~EAPIx x| (%)
= kmAIS(fc—EA)r',;1|>-<—>-<'|‘1(d>-<')
(3.9)
kY mBJ'S(X' —EAS X =xH(dR).

Thefirst integral on the right-hand side gives anonzero

contribution only for X — & = 0. To evaluate this
integral, we expand |[x—X|™ into a series in ry =
|)_('—EA| =0;
x=xI" = 5 Po(NGN™ Ol (39)
m=20

where Pm(N',iN',f) are the Legendre polynomials. Prop-
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erty (2.6) of the & function leads to the equality

J'S()'(' —E)rn Ix—x|7(dx)
(3.10)
= j&f—EA)Pl(NE\N;\k)ri(dX') =0,

since P(NKNL) = NXN is an odd function of vari-
able ). The second integral on the right-hand side of
relation (3.8) can easily be evaluated since the inte-
grand is continuous for X' = & . Thus, we can write

J’S(x' —EA)P|x— x| (dx) = %r;&, (3.11)

where

Taking into account relations (3.10) and (3.11) we
obtain from Eq. (3.7)

A
he = 20°—¥ + kS ma(2® —3VAE. (312
(4)

A

Solutions (3.2) and (3.12) are sufficient for deriving the
post-Newtonian equations of motion.

From formulas (2.5) and (2.7), in the post-Newto-
nian approximation, we have

d’e’, _
EZA = Fp+C°Fj, (3.13)
dt 0 2
where
N 1-A
FA = __anhoo, (314)
0) 2
1A 1 A A 1A n, Ak
Fa=-—3 -z +—+—Va+—V
(2? 20,hg  2h,d¢hgg hon 2ho(o) A hnk A
4 @ @ 3) 2 2
A |k A |k A | kyn
— + + .
3o A o A o YA B9
3 3 2
1 A ky /S A Ky /S
—=——V, V1 + ——V,V..
2anhks ATA akhns ATA

@ @

Substituting solutions (3.2) and (3.12) into
Eqg. (3.15), we obtain the following integrals with sin-
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gular functions, which after integration give
[3 AN = 0,
[ ANANANA(dX) = O,
[BAENAN (@) = %6kbj’6(rA)r;\2(d>‘<) =0,
IS(rA)r;\lrgszB(dx) =0, A#B,
IS(rA)r;\Zr;Ng(dx) =0, A%B.

The first two integrals are equal to zero because the
integrands are odd functions, while the third integral is
equal to zero dueto property (2.6) of the & functionand
the evenness of the integrands. The last two integrals
can be evaluated using a series expansion of rg" in
ry=0:

00 1 m
_ 5L r
rs = Y Ch (NaNsw) =31, (3.16)
r
m=0 AB

where C;(N‘;NEA) are the Gegenbauer polynomials.

Thus, using solutions (3.2) and (3.12) and taking
into account relations (3.13)—3.15), we obtain

2¢n
2=k Y madh
a2 4

BZA

—2

+C Z mB[%VEVSéar?aCagrAB

B
%

I

BzA

+(AVEVE — 4VAiVE —4VEVE + 3VIVE) o s

+EVA-AVLVE + g’v%a{?r;ls (3.17)

—k(5m, + 4mB)rxlBa£r:3B}

1 B _ _ _
_ékzg Z mBmC(akrBlcaEar?rAB_grAlBar?rBlc

B#AC# A

B%C
0

1 4B -1 1 ,C 1
—2rgc0nT A —8Mag0nT'ac) O

ad
4
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For two bodies (N = 2), we obtain from relation (3.17)

1 = ki + ¢ D BViVoiololr

+(AVOVE —aVIVE — aViVE + 3VIVE) ot
3 ) (3.18)
+Hi-aviv+ évgaﬁr;

_ 41 d
—k(5m, + 4m2)r1;6ir1;] O
O

Substituting index 2 for 1 into this equation, we
obtain the equation of motion for the second body.
Equations (3.18) were derived for thefirst time by Ein-
stein, Infeld, and Hoffmann [ 7] from the field equations
in the coordinates defined by the conditions

amYmn = 0: ameO_C_lIVOO = O, (319)

where

1
Y = hpv _énuBhaBnuv;

and by Petrova [4], who used the Fock method in the
harmonic coordinates.

4. SOLUTION OF FIELD EQUATIONS
IN THE POST-NEWTONIAN APPROXIMATION

Taking into account solutions (3.2) and (3.12), as
well asformulas (2.3), (2.4), (2.7), and (2.8), we obtain
from Eqg. (2.1)

Ahy, + 4DADY,,, + 40, P, P,

) .
-40,90,P + 2095, = 161K
(4.1)

. 1 1
xS MAB(1 )| VAVA = 3Va8m = 5®8m|.
A

We transform these equations using the formulas

AINS,, = ATy, Sag = Fatla+las, (4.2
Alnr, = 17, (4.3)

_ _ 4 -
0a05Ta = T (BNANR—8p) — 3T ) Bp,  (4.4)

as well asthe identity following from (A.3) for L = 2,
00,1 x> = 20, A0yl A + 202 0,0, A~ (4.5)

Using expressions (4.2)—«4.5) and the first expression
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from formula (3.3), aswell asredation (A.13), we obtain

0,09,® = Al K MAMedn0-INSyg
22

BZA

1 _
+ ékzz Ma(0,.0,Inr x +1:28..) (4.6)

4 A
+ énkzg MAd(F ) A

Using expressions (3.5) and (4.6), we obtain from
Eq. (4.1)

Al + X8, + 2q>25mn-4kzz > MaMg020°INS,g
(4) ~ B

B#A

1 )
—Ekzg M2 (0,0, 11 5+ 1228,)
(4.7)

16 .
= Enkzgmié(rA)rAlémn

+ 161y m,3(r) [vivf - %viesmn - %cpamn]
A

Taking into account formula (3.10), we can write the
solutionto Eq. (4.7) inthe form

hmn = - Xémn - 2q)Zémn

C)

+ 4K MAMEdh0R INS,g
33

BzA

(4.8

1 _
+ ékzz M2(0,.0,INr 5 + 1 228,,)

A
kY mA[4r;§v;”v”A ~2lp+ %Vi%r;lémn]
A
Using solution (3.2) and formulas (2.3), (2.4), (2.7),
and (2.8), we obtain from Eq. (2.1)
Apgn — 4, + 160,D0, P, + 1209, ® — 8DAD,
5

. i L, 1 (49
= 167k Y m,3(7) [qnvA +20, - évAvA}.
A
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Analogously to Eq. (4.6), we transform consecutively
the third and fourth terms on the left-hand side of
Eq. (4.9):

0,09, d, = A kzz > MaMgd; 05 INSpsV

BZA

¥ %kzz (0,0, InT 5 + 128, ) VK (4.10)
A
+4 12 250 V"
én zmA (TATAVa
A
®o,d = A —kzz > MAMgd5 05 INSpeV
B#A
-gKY M@+ SV | @D
A
— ?—;'Trk2 > MAS(F )T A V.
A
In addition, we have
1
®y = SBXn Xn = kz MAVA A, (4.12)
A
. 1 ..
By = 505 (4.13)

Substituting expressions (4.10), (4.11), and (4.13) into
Eqg. (4.9), weobtain

Al hgy— 2% +4kzz S MaMgdraC INSya(4VE —3VK)
(5)
B£A
¥ %kzz (0,0, INf 5 + 1728, )VE
g (4.14)

= ——nk ZmAé(r ADrava

+ 167Ky M3 (1) [2cpn — oV — %vivg}.
A
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Using formula (3.11) and similar formulas for ®,,, we
obtain the solution to Eq. (4.14) in the form

g = 2+ 2Ky Mara VAV,
()

1 _
- zkzg M2 (3B, INT A+ 1728) V

(4.15)
—4kzz > MAMg[ 005 1NSxs(4VE — 3VK)

Bz A
- ererls(VA —-2Vp)].

It is dlightly more difficult to evaluate hg, . Taking

(6)
into account expressions (3.2), (3.12), (4.8), and (4.15),
aswell as (2.2)—(2.4), (2.7), and (2.8), we obtain from
Eqg. (2.1)

Ahyy + 120D — 160, D 0. D, + 4D D + 16D, 0, D
(6)

— 40,9, + 160,P0, D + 8D DI, P + (X)
—120°AD + 2XAD

+8kZmArA 0,0, DVEVS
A 2 1
A
gt 2y.-1 ” 3 3 -5
A A

A
-2ky MA(2®P — 3V3) DAr L

(4.16)
—4kz mAﬁ + vZD A
3 2 -1

-k z Z MaMgd, 0.5 0,0.INr ,

B#A
_SkZZ z mAmBakasq)afasBlnSAB

B#A
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0
- 16nkz M A)D—cp —gqnvA 2%+ 20,4
.

vA+ L Z mBgsqa 2v2D N

B¢A

2 2 -2

+= kmASSCD V2D 1,1 k Zmér_32+ K*mar »

B2 A

O

+ 1k2 T R R R O B
> z z MgMc(rgTe —TIg Mec—rcec) O
B C U

Cc#B U

Using formulas (4.2)—«4.4), aswell as(A.9) and (A.13),
we can transform the expressions on the left-hand side
of EQ. (4.16). Indeed, in the increasing numbers of
terms on the left-hand side of Eq. (4.16), we obtain

O

b = A§<ZZ S MamedfainS,eViv

BzA

+ %kzz M08, VAV + 172V2) (4.17)
A

o o

4 1%,
+ §"k2; Mt A O(F ) Va

for the second term,

0, PID, = ACK MyMgdL 05 INS,eVEVE
>3

B
%

I:II:IIQJ:II:I

B#A

¥ %kzz M2 (0, 0.nr VEVE +12V2) E (4.18)

o

4 e _
+ énkzz MAd(F ) Var s
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for the third term,

= A 22 > MaMg[ 0505 INS\EVEVE
A

B
%

I

BZA

+0pInS,eWE] + k ZmA[ B?ka Inr VAVA - é rAVa E
: (4.19)
1 4 S
_éaklnrAW‘;} E— énkzz MaS(F ) Var o
0

for the fourth term,

®,0,d = A —kzz z MAMgdE0°INS, eV VE

BzA

3 1-
_ ékzg M9 dsInr VAV - ,fvig (4.20)

4 o _
+ énkzz Mad(F ) Vara
A
for the fifth term, and

kS Ml 20,0, PVEVS,

OJ
= A%(ZZ Z MaMgdE0C NS,V VS
D A B
O BZA
(4.21)
g
+ gkzz mi%)kaslnrAV';Vs,; %rA vigg
O

4 . )
- §nk2; Mad(F 4) Vara

for the twelfth term.

We transform the sixth, seventh, eighth, and thir-
teenth terms on the left-hand side of formula (4.16) tak-
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ing into account expressions (3.5) and (4.12). In accor- To transform the expression (see[12)])
dance with formulas (A.1)—(A.6), we have

z z Mamgd, <50, 0N 5,

. 1 .. 1.. 1. ..
0, PoxX = EA(de)—éxAdJ—édJAx =

BZA
1., ... 1. y
= 508(®X) —5XAP -0, we again takeinto account identity (A.14) aswell asthe
dependences
0 DPDD, = SAG-BAD, 8(r)Inrs = 8(F.)INras, A%B,
KK 4 (4.25)
1 1 NaNg = (rArB+rBrA_rABrArB)
®9, PP = éAdJB—ECDAqJ,
X (4.22) This gives
= 2 -1
kz MA(2P —3V,)0, POyl o Z z MaMgd, o5 0,d<INT 4
A A B
BZA
A
al 0
= 200k m (20 -3v3)or,T 0
0 _ _
0K . }Agz Z mimB[afaE(rallnrA—rBllnrAB)
2 |:lA B
1 A 2. 4 U Bza
A :
1 1 1
1 A —érEaer2 2rA2|3rB + 2rBrA rABi| 0
3K Ma(20-3V3)DAry. .
oyl - -1
Using formula (3.5), we obtain the following expres- AT A (Tl ae—T5)-
sion for the fourteenth term on the left-hand side of The remaining termsin Eq. (4.16) (except the nine-
Eq. (4.16): teenth term) contain the & function in the integrand.
A } Substituting relations (4.17)—4.24) and (4.26) into
[kz ma(2® _3vi)rj} Eq. (4.16), we obtain the final equation for hy, in the
(6)
’ (423 form
= 1a kS A2 —3V2)r Ahy, + 802+ 20— 200 + lkz ma(r3)”™
2 n D(é))o 3 12 4 AT A

Taking into account formula (A.13), we can write the 3 -3 2 2
ninth and fifteenth terms on the left-hand side of *3 k Zm —4K°y mad,Inr Wi
Eq. (4.16) in the form A

- %kzz M2 (3,0, VKV, + r2V2)
A

x) = __Akz mA(rA)
A
pa 2 -1
K zm3 S5 Ak Zm3 3 (4.24) +2kZmA(2¢'3VA)¢rA
3 3 2% z 1 a 2 "
A A
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1. 2 AAB, -1 -1
_Ek z z mAmB[akak(rB Inr,—rg INr,g)
A B
BZA
1 1o 1 -
_érB rA + 2rABrB 2rBrA rABi|

—kzz > mamg[ (16V3VE — 12V V3) 0505 INS, g
BZA

+(16VaVK —8VaVE —8VaVK)0ra8 IS,

— 80P InS, W] E: l6mky m.o(fy)  (4.27)
D A

O )
x @2 + gmvi—%x —2¢, Vi + %

7 4

+= kz mB% 2VZD . k zszrE‘Z
B¢A

B#A

4
Va

2 11
-2k z MMl s T AR
BZA
1k2 4.1 11 11
5 z z McMg(rg e —Igec—Ic ee)

BzZACZ#A
C#B

+ %kz Z MAMg! A (Mgl as + 1515 — 161 45)

BZA

-4
+kmA§ 3VZD Tz kzmirAzm

_16m mAaaS(rA)xa+—nk Mad(F 4) Var A
> >
—871* S MAd(F )1
2

+ 8k22 Z MaMgd, 0. P, 05 INS,g.
BZA

To solve this equation, we must carry out regulariza-
tion of the following integrals containing singular
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functions:
Ia(mrA "NANZIx - | (dx),
J'a(r'A)r'A‘ ry 1x—%|™(dx), (4.28)
[OEIrIx =1 ().

It follows from expansions (3.9) and (3.16), as well as

from property (2.6) of the 5 function, that integrals (4.28)
are equal to zero.

Thus, the solution to Eq. (4.27) can bewrittenin the
form

heo = 2PX —8®F —
(6)

12kz mA(rA)
3 —3 7 4 -1
A
A
-2ky mMa(20 — 3V, ) Pr + 4kzz mad, Inr JW
A A
+ %kzz Ma(8,0Inr ,VEVS + 12VA3)
A
é ﬁ
1 2 2 ” £
A A

-2 >3 mamef — SV
B#zA
+4K° Z Z Mamgl aal & — 2k z Z MAMGE ol A

(4.29)

B#A B¢A

+ kzz > mMaMg[ (16V3VE — 12VKV3) 005 InS,s

BZA

+(16VEVE —8VAVE —8V5VX)0 0 IS,

B k1,1 2 2
B#A
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A~B, -1 -1 1.1 2
x[akak(rB Inr,—rg InrAB)—érBrA

32 1.1 2o
+ =lyglg + =lglal
5rasls ¥ 5MeMA ABi|

3 41 1
+4k z Z z MaAMgMcI aglBcl A
A B C
BzAC%A
c#B

3 -1 -1 -1
-2k z z z MAMgMcl 2l acl 4 + H,
A B C
BZACZA

where H isthe solution to the equation

AH = 8k22 Z MaMgd, 0. P03, 05INS,s.  (4.30)
A B

B#A

We will carry out subsequent calculations for a system
of two bodies (N = 2). In this case, function H has the
form [12]

H = K'mimy{ 40,0,0;[ (1, +r1,) InSy,]
+ 80, INSL0L T s — AT, I T o+ Arar — 2rary (4.31)
AT T+ I T —Ar T —6rp ) + (1~ 2).

The above expression for two bodies was derived tak-
ing into account identity (A.14) and formulas (4.2) and

(4.3), as well as the expression 8(Fl)r2 = S(Fl)rlz and
the dependences

a4
AInS;, = 1717,

SH(L+NENG) = 50171+ 17" = rpori3),

142 1, 19 11 a1
0,0kInS;, = é(rl ry —=rirp—=ryrg).

Finally, for the two bodiesin question, solutions (3.2),
(3.12), (4.8), (4.15), and (4.30) assume the form

hye = —2kmk;' — 2kmyry,
(2)

hoy = —2km, 78, — 2kmyr5'd,.,

(4.32)
(2)

ho, = 4kmyr;'V5 + 4kmyr;'V),

(3)
he = kmyr [(N,V,)* =4V + 2K°miry
(4)

+ kzmlmz[err;l + %rlrﬁ (4.33)
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+ érzlré— irirzlré’} +(1-— 2),

hpn = kmyrz (NgV;)?8, — 4kmyriVIV]
(4)

(8 + NING +Kmymy] Forrsd + 2r'r
' e - A, (439)

+ ANTND,(Ss + r2S) — 4SH(NTN3
+ NIND + 2NN, + ZNQNTZ)} + (1~ 2),
hon = 4kmyriVIVE+ K2 mir?[ (N, V) NT = V1]
(5)

+ kzmlmz{ NQSS[]-G(leVl) +16(N,V,)
—12(Ny,V,) — 12(N,V,) ] + NL[16S55(N,V,)
—12S5(N,V;) —4S5(NpVy) —4S5r(NpVy) ]

q 4 _ 4 _ _ 4,
+ V;[rgrllrlg + 3r11"1; _8r21r1; + 4r1;S_‘1;] } (4:35)
- k2m1m2[6(N12V1)2Nr112 + 4I‘I§N22]
+KmmV(2r,r s — 3ri'rs3) + (1— 2),
oy = kmyr [ 3(N,V2)VE - 4vi- 2N,V
(6)
+Kmir [V —3(N, Vi)

2 2[32 5 33-15,3 25 335
+k mlmz%/l[érerrlz_érlru + ér1r2r12_§r2r12
O

37 3 213 3 3 2 1.3 14
+ §r1r12_r1r2 I'12_§r2r12_2r2r1 r—6r,rp

11 1 1l Al
+Or, T +8rprr, 312—16r12312}
335 a4 32 5 13 3

+ (V1V2)|:Zrlr12 —=8ryr, _ZrerrIZ _Zrlrlz

2 1 = 14 ) At
+2rir, rlg +06r; 1, +16r; S, + 12"1252}

15 3 5 15 5 15 _
+(N12V1)2[§r1r12—grirzrlg—grlrgrlg
153 5 57 3,3213,33 3

+ +=

Erzrlz _§r1r12 4r1r2 Mo+ §r2r12
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POST-POST-NEWTONIAN EQUATIONS OF MOTION FOR POINT PARTICLES 847
Solutions (4.32)—4.36) obtained here coincide with

7 1 - . ; .
_ZrZIrl; +16S; + 16f1351ﬂ the solutions given in [12].
152 5 153 s 5. POST-POST-NEWTONIAN EQUATIONS
+ 1o _ )
(N12V1)(N12V2)[ ) Firaln E1EP OF MOTION
9 s ) . The equations of motion in the post-post-Newtonian
+ L—lrlr12 -12S;5 - 12r12512} approximation can be written in the form
d°¢} 2
2[3 2 -1 -3 11,1 3 L= My 2
+(N.Vy) [Zrzrl rp—=2r,r; + AELET: dt? (0)1 (5 (5.1)
—4 n nn mh
+c [P+ FT+FN,
Iriieesiverisy] (430 o T T
where the equalities
-3 2 11
—(N1V1)(NLV,)[rry; +16S;; + 16r,"Sp) 1 1
n _ _1. k uhn — =Iyp/n
+(N;V,)’[8S; + 8r1'Sp] Egl B 2km26“a"r2\{\2/)2’ (E)l Akmyr \(/2\)/2 (52
+ (NpVy) (N,V )[srzﬁ‘—?’rzr*‘—?’r-z_lesf} IR
e R R R 2 follow from the expressions for 0,,hy, and hon, respec-

tively, appearing in F; .
# (NV) (N V) [-3rirsd + 3 - g + osi |

2 For F(i)" , we obtain from Egs. (2.5) and (2.7)
# (NVD)(N,Vo)[ - 3rir - arig - 1657 U U S
F" = =50, — 5Ny 0khoo + hon + Shoo V4
324 ) 5 (4) 2% 22 @ 6 2@
+(NpV,)(NLV,) [érlrlz +3rp— 1652} 1 L L L
+ N V=0 hg VX + 0,0y VE + 0,0y VIV
—16S5(N;V,) (NoVy) + 12S5(N; V) (N,V5) e e e e
3 3-3,,3 2 136 3 13 951 1 1 A 1
— + = — = = — : :
2k°myry +k m1m2[4l’1f12 4r, 2r2 2I’1 ry _%anhks VIIVi+ akhnsvi\/i_lhm hoo + hyy hok
3 1 1 1 5 (4) (4 3) @ (2) (3)
A CRT. A  NE N 1 1 1 1
: 11—, 1 : n
+ hpy s V3 = Zhyy 0hgg — Shog hoo V7
+ %rir;lré—%%rzré + grgrfr[g + 3r[§ — 3r1r§1r1§ 2 (2 2(4) @) 2 2
(5.3)
1 1 1
e T T e BT S B et S 1 n MV he 9.he V6
2'1 '12 2'1 '12 2'1 '12 2 1'12 4 1'2 '12 —_h()kakhoo Vl_hOO akhoovlvl—honakhoo Vl
@  © @ @ @ @
3 12 15 5o 2 32 2 1 1 1
— =l (==l T, +A4r5r, r5=5rr
162 % 42t E AL TR + Ny O V5 = Dy Ohog V5 + Mo Bchys VAVS
(2) (3) (2) (3) (2) (2)
1 1 — 3 _ o _ [l
—5r7' T + 41,0 + %rlzrzsriz} O+ (1-—2), 2 < ko 1= s
D + akhos V1V1V1 - —hks V1V1V1
3) 2 (2)
where
1 L 1 : Ky /S
(NAVA) =NV, (NaVe) = NAVg, =51 Pis 0o = 5hea Oy ViV
@ 2 @ @ @
_ k k sk Kk . .. . .
(NasVe) =NugVe, (VaVg) =VaVe. Using formula (3.18) and regularizing the diverging
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integrals (see Appendix B), we obtain
n 1
5)1 = —ék2m1m2[3N22(N12V1)2 + 4NJ,(N,V,)?
—7NI(NV1)(NpVo) + 4VI(N1, Vo) —4V5(N1,Vy)

—3V1(Ny,Vy) +3V3(NyVy) ],

=
4

—K2mymyr 5[ - 8NL,V; —4N3,V3 + 16N3,(V,V,)

= —16K°mPmyraNg, — 20k mamyr Ny, (5.4)

+ BN, ( N12V1)2 +16V5(Np,V,) — 16V (N1, Vy)
—12V3(N3,V,) + 12V1(Ny,V,) ]

To evaluate F;", we will use solutions (4.33)-

&)
(4.37) aswell asformula(5.3). After regularization (see
Appendix B), we have

1

%anggo = 3k3m§’r1‘21Nr1]2 - lzlkamimzrlesz

+ K2m3r 5[ =N,V + BN (NpV,) 2 = 3V5(N,V,)]

+ kzmlmerSBNTsz + %:{)NTng - gNgz(Vlvz)

23 37
— S NL(NV)’ =5 NB(NLV,)*

n 31 n
+ 25N (N VL) (NpVy) + sz( N1,V5)
39 3 31
—==V1(Ny,V,) = =V5(Ny,Vy) + = Vi( N12V1)i|
4 4 4
k] - SNG(NV)'VE + BVR(N V)V

n 15, 3 ,n
+ 2N12V‘/1A + g N1 ( N12V2)4 - Evz( N12V2)3}1

1
1 . aL3.3 —4\n 3.2 —4.n
érgg)k akh(O()) = 4K'myr Ny, + 2K mmyrp Ny,
4

+ KPmar S[3NL(N LV, = 2V3(N,V,) —4NLVE

1 3 3 _4\n 3 2 4.n
ETQ;‘ akfgzo)o = —2K'myr Ny, + 7K°mmyrp Ny,

_ n 2 n
+ kzmgrlg[ N12(NpVy) —4Va(N, Vo)l

1
1 3 3 -4\ n
éhnmhmbabhOO = 4K'myr ,Ny,,
2 @ @
1
: 3 2 -3
qu Tg# = 8K mzmlrngzz—8k2m§r12V2(N12V2)’

1
1 - 2 2 -3
Er(]g)n tz%) = 4k m2r12V2(N12V2)1
1
—hon = —14K°mim,r 5N,

+ KM S NLV2 — AN (N, V,)° + 3VANLV,)]
+Kom,myr 5[ [ 6N3,V; + 10N3,(N3, V)]
—10V3(N3,V,) — 17N3,(V,V4) = 42N35(Ny,Vy)?
+ 12N, V7 + 46N7,(N;, Vo) (Ny,Vy)
+12V1(N,V,) —21V5(N,V,) + 6VI(N, V)]

+ kmr [-8V5(N, Vo) Vi + V3 (N, VL)Y,
1

1 _
_5?4(;0 VT = kzmlmzr 1§V2( Ni,V;)

- 2k2m§r1§Vr1‘(N 12V2)

#kmyriZ[ BVIVA(NLV,) + VAN V) |

1
20 oo VI = 2KPMEr2VI(NLVs),
2 2 @
1 n —3\,n
érggy akgc;o Vi = 4k2m§r1§V1(N12V2)-
A
r:g)nakfzgg) Vl; = 8k2m§r1§V2(N12V1)’
1
o akh(g)bVE = 8K’ m3r Va(N,Vs),
N S
rgg;)abrzg)kVE = 8K’marsNL(V,Vy),
1
o e Vi = —AKMr V(N Vo),
1

—gn)k Vi = Kmarol—Va(NVi) — N (V1 V5)

+4NT,(NpV5) (N V) + 2V (N, Vy) ]
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+ KoMy myr o[ = SNV + 12N, (V,V,)
+ 24N,(N1,V,) = 32ND (N, Vo) (N Vy)
—7VI(NLV,) + 12V5(Np,V,)]

+ KMy [-3Vi(N, V)

+2V1(NpVo) V3 + 4V5(NpVo) (V4 Vo) ],

1 1
k k
anhOk Vl - akhOn Vl
(5) ()

= Kmar o[ -Va(NyVy) + Nip(V, V)]
+Kemymyr [ 7NLVE — 6N, (V,V,) — 7VI(N,V,)
+ 6V (Ny,V,) ]+ Kkmor 2[4V5 (N, V)V
—4ANLV5(V,V,) + 6N (N, V) (V,V,)

—BV3(N V1) (NV,) — 2N, V5(V,Vy) ],
1
4@2? ViVE = kmyris[-4Vi(N, V) V5

—2V1(NVo)(V1Vy) + 3VI(NpVy) (NppVao)?]

+ 4K mar V(N5 Vy) + 2K2mmyr V(N V),
1

I'E%) akgc))o VEVT = —4k2mzm1rI§V'I(N12V1),

1

1-anhmkvlivrln
2" @

= Km3r[— VI(NRVy) + NLVE + 2N3,(N,Vy) Y

+ kzmlmzrlg’[—4N22(N12V1)2 +3V1(Np,V,)]
+ kmzrﬁ[VS(Nqu)Vi

3
= SNL(NV2)'VE + 2N (ViV)° |
1
0oy V1V
(4

= Km3rp[-Vi(N,Vy) + NLVE—4NL(NpV,) 7

+ Kmymyr 5[ 8N (N, V)% = 3VI(NL, V) — 3N,V

+ kmzrﬁ[ 3Vi( N12V2)2( Ni,Vs)
—4V3(N, V1) (V1 V) —2VI(V1V,) (N V),

1

2h,. 0., VAVE = 2K mErNG V2,
@ @

1
s Omhis VIV = 4K°MBrSVI(N,V,),

(2 (2 (5.5)

1
4SQ%,VEViVE = 4kmyr ;5(V1 Vo) Vi(Ny, V),

1

1, ~
—érg;)vaVQVE = —km,r5V3Vi(NL,Vy).

We have introduced the following notation:
(N2V2) =NRVa,  (ViV,) =ViVa,

Expressions (3.18), (5.1) and (5.4), (5.5) lead to the
post-post-Newtonian equations of motion for two point
particles:

d’g]

-2
e = —kmyri; Ny,

+ C_2§l<mzr1§[gN22( N12V2)2 - 2N22V§

+ 4N, (V,V,) — quvi +3V3(Ny,V,) —4VH (N, V)

+4VI(N2V1) ~3VE(NVs) |

2 3,0

+K'my(5my + 4my)rp; N, 0

O

+ ¢ Thm,r ANLVE(VAVE) - 2NLVE
O

2Nn Ky ka2 0 3ainy,2 2 9 n.,2 2
—2Np,p(ViV3) +§N12V1(N12V2) +§N12V2(N12V2)

15
~6NL(ViV3)(N2Vo)* ~ T NN V)*

+5VIVA(NL,V,) —3VAVE(NLV,) + VIVE(NLLV,)
+ 4VIV5(NLV,) —4VEVA(NL,V,) + 5VAVa(NL,V,)
—4VI(ViV3)(Ny,Vy) + AV5(ViVE) (N V)
+AVI(ViV5) (NV,) —4VI(ViV3)(N,V,)  (5.6)

+6V5(Ny,Vy)( N12V2)2 —6V1(Ny,Vy)( N12V2)2
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9 9
+ SVANGV2) ~ VAN V) |

#mumyrd] - 2NGVE + INGVE - INLVAVS

39

17
+ > N1, ( N12V1)2 + > N15( N12V2)2

n 55, n
—39N3, (N3, V2) (N, Vy) — sz( N3,V5)

55

63 63
# ZVINLV;) + VNGV =5 VI(NV,) |

+ KPMEr S ANDV2 — 8NTL(V, V) — 6NT(N, V)
+2N7, (N, V)2 = 4ND, (N, V) (N, Vy)
+2V5(N3,V,) —2V1(N3p V) + 2V5(Ny, V)
—2V3(NV1)] - 9K mar NG,

O
- SZ?kgmimzrigNgz - %gkgmgmlréer]z %

The equations of motion for the second particle can be
obtained by substituting subscript 2 for 1.

6. CONCLUSIONS

Equations of motion (5.6), derived here by the EIH
method, coincide with the equations obtained by
Kopeikin [10], who used the Fock method. Thus, we
have proved that both methods (the EIH method and the
Fock method), which can be regarded as classical, give
not only identical post-Newtonian, but also post-post-
Newtonian equations of motion for point particles in
the harmonic coordinates.

It should be noted that the definition of point parti-
cles in the Fock method is very clear from the stand-
point of physics. In the EIH method, clarity is lost, but
mathematical calculations are simplified. We give here
amost all calculations (except very simple ones).

If we take retarded waves instead of standing waves
in the expansions of metric tensor (2.9), the post-post-
Newtonian equations of motion for point particles will
not change; a difference will appear only in the next
approximations.
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APPENDIX A

Derivatives of the Products of Sngular Functions

We apply identities (2.10) and (2.11) to singular
functionsry, rg",L=1,2,3,...,.M=1,23, ....

Substituting f = r;* and, successively, g = ry, ry,
... into identity (2.10), we obtain

—L+1 -1

dra =Ly to, (A1)

Substituting rx and rg into identity (2.10) and
using (A.1), we obtain
0. (rarg)=Lrgira o s
a( A'B ) B 'A a'A (AZ)
+Mrarg" to,rg.
A similar substitution of functionsf=r," andg=ry,
r2, ... intoidentity (A.1) gives
0.0, A = L(L—1)ra 20, r a0, ra
+Lra 10,0,
Using identities (2.11) and (A.1)—(A.3), we obtain the
following expressions for r,- and rg" :

(A.3)

0:0(raTe ) =LI5 1A 0,051 a
M 10,0515 + LIL—1)rg"ra" 20.r i oy
+M(M=1)rarg" 20,5 0,rs A4
+ LML g 0 a0 s + 015 00 AT
In particular, formulas (A.3) and (A.4) give
At =L(L=1)ra" 20,0 a0, 4 + Lra"1Ary, (A5)
A(rra) =Lt At Mg g

+L(L=1)rg"ra 20, a0, ra

L —-M+24 -1~ -1 (A'G)
+2LMr Y e
Substituting the formulas
0. = —r2N3, (A7)

0005 = FRI3NANA~8.] ~3M&(r )8,  (A)

(which are borrowed, asin [10, 16], from the theory of
generalized functions [20]) into identities (A.1)—(A.6),
we obtain the following formulas defining the deriva-
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tives of the products of functions r~ and rg" interms
of the products of the derivatives of these functions:

A = —Lra NG, (A.9)
A.(rara"y = —Lr"ri-ING
a( A'B )_L _M_Ii : A (A].O)
—Mr,rg "Ng,
0.0ora = Lra" (L +2)NANR —3,,]
. (A.11)
~ 2 (0 )8

0.0p(rars) = LMratrg" TH(NANG + NANG)
+Mrars" 2[(M + 2)NENg — 5,]

A.12
[(L +2)NANA —3,] A2

M _-L-2
+Lrgra

—gnMr;\LrgM () Sap —gnLrng;\“la(r )50,

Ary = L(L=D)rxt 2 —4anir" 18(r),  (A.13)

-L

ACArg) = LIL=D)rg'ram 2+ M(M=Drarg" 2

. T A.14
—ArLrg"r e ) — ATt g 16(rB).( )

APPENDIX B

Regularization of Diverging Integrals

To derive equations of motion (5.6), we must evalu-
ate the following diverging integrals in formulas (5.2)
and (5.3):

[AFATATZd(R), [ rArE Nad(R),
[ ArATENGA(R),  [O(F A Ars NANAA(R),
[ ATATENANGA(X), [ )rars NaN5d(%),
[ ATATENANANGA(), - [3()rir NANANGA(R),
[3(FArAraNANENEA(R),  [O(F )1 Ars NaNEN5(%),
J’S(rA)anag‘lnsAB(dx), IS(rA)anaﬁlnsAB(dx), (B.1)
IS(rA)anafaEmsAB(dx), IS(rA)aEafag\lnsAB(dx),

[3(7 070295 1nSpa(dR),

jS(mrfNiaE‘aﬁlnsAB(dX),
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IS(rA)rgzNga,?aglnsAB(dx),
IS(rA)r;\ZNia;\ajlnsAB(dx),
IS(rA)rgZNi‘\a;‘aSlnsAB(dx)

forK=—4,-3,-2,-1,0,1and M =4, -3, -2, -1, 0, 1.

Taking into account relation (3.16), we obtain the

expansion of ryNG and Sy into power seriesinr , = O:

Knia _ K a K=-2
reNg =TragNag +{ras “Na

+ (K= 1)rlS " NagNasNa} ra

0 _
+ H(K = Dl N2aNaNG + 5(K - 1)(K ~3)
g

- _ 0
<04 NI NEaNANANG + 5(K - Dy N 72

El K-=3pja b s j (BZ)
+%(K_l)(K_3)(K_5)rAB NAsNasNAeNAs

X NANANG + S(K = 1) (K = 3)r N3G NGNS
# 2(K - 1)l Na + 5(K - 1)(K ~3)

(K-

]
x i 3’N23N23N2N2Ni\gi +0(rp),

SXIB = (2rAB)M + M(ZrAB)M_l(l + NﬁBNE\)rA
# Z{MM = 1)(2r )" "0+ 2N{aNS + NieNZaNSNG)
+M(2r ag)" " (rae = TasNAsNAeNANZ) } 12
[l _
¥ BréM(M —1)(M=-2)(2r0)" (1

+ NN NAsNENAND + 3NSgNY (B.3)
+ 3NaNERNANG) + SM(M — 1)(2r)"'

1 1k Kk 20k NS niK aS
X (rag + FagNagNa =T AsNagNasNAN,

~ FeNAaN3e N2 NANANG) + 5 (2r,0) "~

_ _ Ol
% (FasNasNasNAsNANANS — 1 NAsNj) gi +O(r).
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Using the formulas[1]

[B NN (%) = 2p1+ - P=12.,
IS(r;)(N;N;f)Zp‘l(dX') =0, p=12 ..,

and property (2.6) of the & function, we obtain the fol-
lowing integral making nonzero contributions to equa-
tions of motion (5.6):

IS(rA)rz&r;ZNRN':\NZ(dw

2 n
= —1—5rA3;3[ NA36b5+ NiBéns-'- NSABénb] !
T A N S
J’E’)(rA)rA Ng(dx) = _érABNABV
3 n,aen 1 2.
Ié(rA)rA rgNa(dx) = _1_5rABNAB’
[BEATTENAER) = TN,

[BIArrENg(dR) = 2raNis,

/= - 1 1 n -
[B(r)0,35S5(d%) = | 380~ 7N3eN3s |ra

S/ - n 1 —
[B(r 0,35 INSa(d%) = | NieN3a— 580 |1,
/= ALB —
[3(r 20,0305 InS5(dl%) B4

1 1 n 1 a n a -
= [_NgBaan + =NagOap + 7 Naglyp — NABNABNZI%|rA?I§1

2 ] 2
IS(rA)aEaQag\lnsAB(dx)

3 3
= [ZNgBBan + ZNiBébn +

1 .
SNRsBas —~ 3NAsNEe N3 2
IS(rA)aEaEag\lnsAB(dx)

= [~ NagBan — NaeBap — NagSn, + 4NAsNAsNas] Fas,
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10.

11

12.

13.

14.

15.

16.

17.

18.

19.
20.
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[BEENEIEOIINS a(cK) = FrreNe

Ié(rA)r?NiaﬁaflnsAB<dX) = rasNhe.
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Abstract—Model-independent QED radiative corrections to polarization observables in the elastic scattering
of unpolarized and longitudinally polarized electron beam by a deuteron target are cal culated. Two experimen-
tal setups are considered: the deuteron target is arbitrarily polarized, or the vector and/or tensor polarization of
the recoil deuteron is measured. The calculations are based on taking all essential Feynman diagrams into
account and using the covariant parametrization of the deuteron polarization state. The radiative corrections are
calculated for the hadronic variables using invariant integration of the leptonic tensor. Numerical estimates of
the radiative corrections to the polarization observables are made for various values of the kinematical vari-

ables. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent progress in electron-scattering experiments
has made it possible to measure various polarization
observables in the region of momentum transfers,
where they can help to discriminate between different
theoretical predictions. Much of this progress has been
made possible by modern high-energy electron acceler-
ators with a high duty cycle, such as MAMI or JLAB,
and by the development of polarized sources, targets,
and polarimeters.

Electron scattering by few-body systems has shown
that the two-body terms of the nuclear electromagnetic
operators make important contributions to the observ-
ables.

The deuteron, the only bound two-nucleon system,
is one of the fundamental systems of nuclear physics.
Accordingly, many studies, both experimental and the-
oretical, have been devoted to it. Of particular interest
today isthe degree to which the deuteron can be under-
stood as a system of two nucleons interacting via the
known nucleon—nucleon interaction.

When addressing the electromagnetic properties of
the deuteron more specifically, the corresponding ques-
tion concerns the ability to predict the three deuteron
form factors starting from the calculated deuteron
wavefunction and the nucleon form factors known from
the electron—nucleon scattering. At low momentum
transfers, predictions and data agree quite well when
only one-body terms are taken into account; at higher
momentum transfers, two-body contributions are
important. Whether it is necessary to make allowance

TThis article was submitted by the authorsin English.

for quark degrees of freedom is still a matter of debate.
An up-to-date status of the experimental and theoretical
research into the deuteron can be found in reviews [1].

The deuteron electromagnetic form factors most
often are studied in order to check our understanding of
the two-nucleon system. In parallel, however, the deu-
teron form factors are also exploited to get a better han-
dle on the neutron form factors. In the past, much of our
knowledge on the neutron charge form factor Gg,(g?)
came from precision studies of the deuteron structure
function A(¢?) (see Eq. (16) for the definition). Only
very recently have experiments involving both polar-
ized electrons and polarized target/recoil nuclei madeit
possible to access Gg, via other observables. At large
0%, however, G, is still largely unknown, which repre-
sents a serious handicap to quantitative understanding
of the deuteron charge form factors.

Elastic el ectron—deuteron scattering has been inves-
tigated in many experiments, and the cross-sectional
data today cover alarge range of momentum transfers
(see review [2]). Some of these data are obviously not
very precise; other data, mainly more recent, have
reached accuracies that have achieved alevel 1%. Over
the last few years, it has increasingly become possible
to measure not only cross sections, but also spin
observables. The knowledge of these spin observables
isimperative if one wants to separate the contributions
of the different form factors to the A(¢?) structure func-
tion. In terms of experiment, good progress has been
made. In particular, we now have a reasonably com-
plete set of polarization data for electron—deuteron
scattering that allows usto separate the deuteron charge
and quadrupole form factors.

1063-7761/04/9805-0853$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Two techniques are basically available to measure
such spin observables.

(1) With storage rings, one can use polarized, internal
deuteron gas targets from an atomic beam source [3].
The high intensity of the circulating electron beam
allows one to achieve acceptable luminosities despite
the very low thickness of the gas target.

(2) At facilities with external beams, one can use
polarimeters to measure the polarization of the recoil
deuterons. High beam intensities are a prerequisite
because the measurement of polarization, which
requires a second reaction of the deuteron, involves the
loss of afew orders of magnitude in the counting rate.

Current experiments at modern accelerators have
reached a new level of precision; this requires a new
approach to data analysis and inclusion of all possible
systematic uncertainties. An important source of such
uncertainties is the electromagnetic radiative effects
caused by physical processes that occur in higher
orders of perturbation theory with respect to electro-
magnetic interaction. Previously, we calculated the
radiative corrections to the polarization observablesin
deep inelastic scattering (due to atensor-polarized deu-
teron target) [4] and in semi-inclusive deep inelastic
scattering (due to the vector polarization of the target
and/or outgoing hadron) [5].

In the present paper, we calculate the model-inde-
pendent O(a) QED corrections to the polarization
observables in the scattering of the unpolarized or lon-
gitudinally polarized electron beam off avector- or ten-
sor-polarized deuteron target (or production of an arbi-
trarily polarized final deuteron),

e (k) + D(py) — € (ky) + D(py). (D)

The experimental setups also make it possible to mea-
sure the tensor polarization observables under scatter-
ing off the polarized deuteron target aswell as by deter-
mination of the recoil deuteron polarizations. Different
aspects of respective approaches[6] in JLAB have been
discussed recently in [7].

For polarized-target experiments, a scattered elec-
tron is usually detected, although the measurement of
therecoil deuteronisalso possible. Inthefirst case, lep-
tonic variables, and in the second case, hadronic ones
are used to calculate radiative corrections. In the lep-
tonic variables, the virtuality of the heavy intermediate
photon is not fixed due to the possibility to radiate a
photon by the initial or scattered electron. As a resullt,
the corresponding radiative correction involves certain
integralswith deuteron form factors over the intermedi-
ate photon mass that cannot be computed in a model-
independent way (without knowing the form factors).
On the contrary, in hadron variables, the heavy photon
mass is fixed and the respective radiative correction
caused by electromagnetic effects in the lepton part of
the interaction can be calculated, in principle, in a
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model-independent way in any order of perturbation
theory.

The measurement of the recoil-deuteron polariza-
tion requires the analysis of the second scattering,
which, in turn, suggests knowledge of the recoil-deu-
teron 3-momentum. Therefore, calculation of the radi-
ative correction in this experimental setup requires
using the hadronic variables, which we consider in this
work. Our approach is based on the covariant parame-
trization of the polarization state of the deuteron target
or recoil deuteron in terms of the 4-momenta of the par-
ticles in process (1), used first in [8-10] and recently
in [4, 5]. In addition, we use invariant integration of the
leptonic tensor to cal culate the contribution to the radi-
ative correction caused by the hard-photon radiation.
Derived thisway, thefirst-order QED correctionisgen-
eralized by exponentiation of the most singular termsin
the limiting case where the real photon energy issmall.
Our analytical final results are simple enough and have
aphysicaly transparent form.

2. BORN APPROXIMATION

Different polarization observables in the electron—
deuteron elastic scattering have been studied in [11-16]
and other papers, where the results were expressed in
terms of the deuteron electromagnetic form factors.
Here, we reproduce most of these results using the
method of covariant parametrization of the deuteron
polarization state in terms of the particle 4-momenta
and demonstrate the advantage of this approach.

We first consider the scattering off the polarized
deuteron target. In the one-photon exchange approxi-
mation, we define the cross section of process (1) in
terms of the contraction of the leptonic L,,, and had-
ronic H,, tensors (we neglect the electron mass wher-
ever possible),

d’k,d’p,

2
a
P EvHuvs_z?za(kl"' P1—K,—p2), (2

2Vq

do =

where V = 2k;p,, €, and E, are the respective energies
of the scattered electron and the recoil deuteron, and
g = k; —ky = p,—p, isthe 4-momentum of the heavy vir-
tual photon that probes the deuteron. For a longitudi-
nally polarized electron beam, the leptonic tensor in the
Born approximation is given by

Liv = G°Gp + 2(Kyukay + Koukyy) + 2iA (v aky),

3
(pvab) = € )

uvhpahbp’

where A isthe degree of the beam polarization (in what
follows, we assume that the electron beam is com-
pletely polarized, and, consequently, A = 1).
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RADIATIVE CORRECTIONS TO POLARIZATION OBSERVABLES

The hadronic tensor can be expressed via the deu-
teron electromagnetic current J, describing the transi-
tiony*d — das

Hy = 5. 4

Because the deuteron is a spin-one nucleus, its elec-
tromagnetic current is completely described by three
form factors. Assuming the P- and C-invariance of the

hadron electromagnetic interaction, we can write this
current as[17]

Ju = (Pt P2y

G 2
< -Gz + 2auza-TuuE)

+ GZ(Uluuzq - U;pulq)!

where U, (Uy,) is the wavefunction of the initial
(recoil) deuteron, M isthe deuteron mass, and G; (i = 1,
2, 3) are the deuteron electromagnetic form factors.
Due to the current hermiticity, the form factors G;(g?)
arereal functionsin the region of spacelike momentum
transfer. They can be related to the standard deuteron
form factors, G (the charge monopole), Gy, (the mag-
netic dipole), and G, (the quadrupole), as

Gu = -G, Gg = G +G,+2G;,
- P _ PO
ce=femcorBedie
- R
VAR VA
The standard form factors have the normalizations
_ _ M
GC(O) - 11 GM(O) - _p'd!
M (7)
Gg(0) = M*Qy,

where m, is the nucleon mass, Yy(Qy) is deuteron mag-
netic (quadrupole) moment, and their values are

Hy = 0857, Qy = 0.2859fm’.

In calculating the expression for the hadron tensor
H,, in terms of the deuteron electromagnetic form
factors, using the explicit form of electromagnetic cur-
rent (5), one has to use the spin-density matrix of the
initial and final deuterons

1 i
U UTp = _é%aﬁ_ pl&glﬁa_m(aBWpl) + Qqp.
0D )
U2(x ;[3 = _%GB_%%

if the deuteron target is polarized and the polarization
of the recoil deuteron is not measured. Here, W, and
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Qqp are the target-deuteron polarization 4-vector and
the quadrupol e tensor, respectively.

Taking Egs. (4), (5), and (8) into account, we can
write the hadronic tensor in the general case as

Hy = Huw(0) + Hyo(V) + Hy(T), 9)

where H,,,(0) corresponds to the unpolarized case and
H,.(V) (H,(T)) corresponds to the case of the vector
(tensor) polarization of the deuteron target. The H,,,(0)
term has the form

~ W,. .
Hpv(o) = _nguv + "\;I—zplu Pivs

e M P.q

guv = guv T o plu = plu__zquv
q q

_ 20°g , pOR?
W, = —?%HIDGU,
) (10)
— 2[0P A2 2 P 2[]
W2 = 4M |$—TGM+GC+KT2GQI|.

In the case under consideration, the term H,,(V),
responsible for the vector polarization of the deuteron
target, can be written as

HulV) = 5| (Gu=G)(Wp2) (wvapy)

+2M2E1*1+4£Ec3(pvqw>], (11)

- p
G - ZGC + aGQ,

where the 4-vector of the target deuteron polarization
satisfies the conditions

W’ = -1, Wp, = 0.
For the tensor-polarized deuteron target, H,,(T)

can be written in terms of the electromagnetic form
factors as

Ol

Huv(T) = _QGf/I@pv + M_2

<[Glr 4 Bobe+ J0e+ 1G] (12
X bluﬁlv -2nGy(Gy + ZGQ)(bluéV + E)lvéll)
~q*(1+n)GiQu,
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where

QU = vaqv_gl;(_gv équ =0,

~ _ 0,0v= Yvla (OO
QHV - va + ;4 Q- qz QHU_ ;2
QUqu = 0! (_? = Qanan'

The target deuteron quadrupole polarization tensor Q,,
satisfies the conditions

Quw = Qv Qu =0, pyQu =0.

Using the definitions of cross section (2) and lep-
tonic (3) and hadronic (9) tensors, we can easily derive
the expression for the unpolarized differential cross
section in terms of the invariant variables suitable for
the calculation of the radiative corrections,

(13)

Quas

(14)

doy" _ mo’Rp

- ooV

dQ QO
Q2 = —q2 = 2k;k,.

W, + —[1-p(1+7)]0,
VR G s

In the laboratory system, this expression can be written
in amore familiar form,

day"
dQ

= 0 AQ) HB@)taon, (19
t U

where 6, isthe electron scattering angle, oysisthe Mott
cross section multiplied by the deuteron recoil factor

. 20471
%1+2(51/M)sm2§% ,

and ¢, is the electron beam energy. The two structure
functions A(Q?) and B(Q?) are quadratic combinations
of the three electromagnetic form factors describing the
deuteron structure,

AQ) = GUQ) + Sn°GHQ) + EnGi(Q),

4 2
BQY) = 31+ MEH(Q), 0 = Lo

Before writing similar distributions for the scatter-
ing of polarized particles, we note that, in this case,
there may exist, in general, an azimuthal correlation
between the reaction plane and the plane (p,, W) if the
recoil deuteron is detected (here, W is 3-vector of the
deuteron polarization). However, in the Born approxi-
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mation, with the P-invariance of the electromagnetic
interaction taken into account, such a correlation is
absent. In what follows, we consider the situation
where the vector W belongs to the reaction plane and
the corresponding azimuthal angle equals to zero.
Therefore, there exist only two independent compo-
nents of W, which we call the longitudinal and trans-
verse ones. It is convenient to use the covariant param-
etrization of the deuteron polarization 4-vector interms
of the 4-momenta of the particles in the reaction. This
parametrization is ambiguous and depends on the
directions along which the longitudina and transverse
components of the deuteron polarization in its rest
frame are defined.

As mentioned above, we have to define the longitu-
dinal W' and transverse WT 4-vectors. In our casg, it is
natural to choose the longitudinal direction in the labo-
ratory system along the 3-momentum g and the trans-
verse direction perpendicular to the longitudinal onein
the reaction plane. The corresponding 4-vectors can be
written as [5]

W = El‘lu:_BEa,
M./p(4t +p) 17
W = (4T +p)kyy —(1+21)0, — (2= P) Puyy
JV(4T+p)(1-p—p1)

This leads to simple expressions for the corresponding
part of the hadronic tensor,

L2
HL(Y) = ~ 22 (uvap,) /ot p),

2841 + p) (uvak)

—(2-p)(uvap,)] r(ﬁ%&r)'

The polarization-dependent parts of the cross sec-
tion, due to the vector polarization of the deuteron tar-
get, are given by

(18)

HL(V) =

L 2
99 _ TU2-P @+ p)GE,

19
dQ® 41V’ P (19)

.
do,

dQ’

2

- HGZ/\/(‘]'T +p)(1_p_pT)GMG, (20)
VQ T

where we assumed that A in Eq. (3) isequal to one and

the deuteron-target polarization degree (longitudinal or
transverse) is 100%.
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Inthelaboratory system, these parts of the cross sec-
tion can be written as

do; 204
—% = znchJ(1+n)E‘l+nsn >0
dQ € 1)
ee ee 2
><tan—2-sec—2-GM,
dcb

o 2 oNstan S A+ MGy e + 264, (22

where €, is the scattered €l ectron energy.
It is worth noting that the ratio of the longitudinal
polarization asymmetry A- = dot /do, to the transverse

one, AT = daoy, /do,,

Al _2-p p__ G
A’ 4 Nt(l-p-p17) G

is expressed in terms of the deuteron form factors Gy,
and G in the same way as the corresponding ratio in the
case of elastic electron—proton scattering is expressed
via the proton electromagnetic form factors Gy, and
Ggp [17, 18]. Thisisadirect consequence of therelation

between the proton HﬁV(V) and deuteron H,,,(V) had-

ronic tensors, which depend on the proton and deuteron
vector polarization, respectively,

(23)

4t +p
8t

We now consider the tensor-polarized deuteron tar-
get. For completeness, we introduce the 4-vector

Hpv(V)(GMv G) = - Hpv(v)(GMp! GEp) (24)

W(N) — Zsp)\pcplAklkaO

" V.Np(I-p-p1)

which is orthogonal to the reaction plane. It can then be

verified that the set of the 4-vectors Wﬂ) =L, T, N,
sati sfies the conditions

(25)

WOWP = 5,5, Wp, =0, op=LTN.

If one more 4-vector W\ = p, /M isadded to the set

of the 4-vectors defined by Egs. (17) and (25), we
obtain the compl ete set of orthogonal 4-vectorswiththe
properties

WPW™ = g, WPW = g,
mn=20,L,T,N.

This allows us to express the deuteron quadrupole

(26)
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polarization tensor in the general case as

Quv = W W, Ry = W W Ry,
RO(B = RBG’ Rcror = O,

(27)

because the components Ry, Ry, and Ry, are identi-
cally equal to zero dueto the condition Q,,,p,, = 0. The
quantities R, arein fact the degrees of the tensor polar-
ization of the deuteron target. In the Born approxima:
tion, the components R, and Ry do not contribute and
expansion (27) can be rewritten in the standard form

[W(L’W(L’ W(T)W(T)} R,

1 28
+ éMlT)W\()T)(RTT —R) (28)

+ (WPWE + WOW R4,
where we took into account that
RiL*+ Rrr+ Ry = 0.

The part of the cross section that depends on the ten-
sor polarization of the deuteron target can be written as

do] dop do dop’
—bz = “‘bE e —(Rir—Rw) +— — >R (29)
dQ dQ dQ dQ’
where
deJ ol
=—=Z2(1-p-1p)
dQ® Q'
(30)
O 8 2. 2-2p+21p+p° o0
X G G + = G + ’
rEB 2 3N T T —p) '
dGJT _ T[O(2 2
e —6;2n(1—p—Tp)GM, (31)
do,

5! _ _na ;p(l pP— Tp)
4I| 2-p —G Gy (32

In the laboratory frame, this part of the cross section
can be written as

doy T

dQ® €
X Ons[ S LR+ Srr(Rrr —Run) + SRi1]

(33)
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where
10 8
S = QEBVIGCGQ*’gnZGé
0
(34)
enf1+ 2014y’ |Gh
0
1
Srr = 5NGu, (39
2 . 20. B
St = -4n |n+n"sin > sec5GLGy. (36)

2 2

If the longitudinal direction is determined by the
recoil deuteron 3-momentum, relations (18) and (21)
are not affected by hard photon radiation in the lepton
part of theinteraction (this correspondsto the use of the
so-called hadronic variables, see below) because

q = pP2—P;:

However, when thisdirection is reconstructed using the
3-momentum of the scattered electron (lepton vari-
ables), these relations break down because

q#k;—K,

in this case. This means that, in the leptonic variables,
parametrization (17) is unstable and radiation of ahard
photon by the electron leads to a mixture of the longi-
tudinal and transverse polarizations.

This mixture can be eliminated by taking the longi-
tudina direction along the 3-momentum of the initial
electron. The corresponding parametrization of the 4-
vector polarizationsis[19]

2Tk1u - pl“
M 1
— (1_ p- ZpT)klu — pplu
NVp(1—p—pT)

The hadronic tensors H,;,

0 —
W, =
(37)

k
) —
Wy =

then have the form

_ A4t+p
HllV = —IT

6] - 2t aky) + ZE=Lhuvapy)|
D

41 +p (38)

+ Gy E11 +2pT)(U- ap.) [GM
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Ht

= |—PT
Ky l-p—p1

x [G(l + 2r)[ p(uvqpl) - (qul)} (39)

1
—GMp—pT(UquO EGM

In the case of scattering off a polarized target, the

tensors Hy;," and H,;, are connected by thetrivial rela-
tions

Hy, = cosBH,, + sinBH,,,

T

Hy = smeH ,+ CosOH,,,
1+21)
cosB = —(WHw®y = LEA+20 (40)
Np(4T+p)

sind = -WOw) = — [H1=P=pT)
4T +p
Using these relations, we can write the polarization-
dependent parts of the Born cross section, which corre-
spond to parametrization (37), as

|
S(—j—z = cose%—s ejiz,
th dop olQT )
& = S‘ne&+ co eﬂ

d Qz d Qz d Q2 !
where doy, /dQ? and doy, /dQ? are defined by Egs. (19)
and (20). Therefore, we can write

dO'b _ T[(Xz
dQ’ a3 42)
1+2t
x[ 7 +5(1—p—pr)G}GM,
do, _ nd® p(I=p—p1)
Q" v T (43)

x [_ %(Z—p)GM F(1+ 2T)G}GM.

In the case of the tensor polarization, the relations
that represent an analog of Eq. (41) become

doy _ _ doy

where the partial cross sections dcrb /dQ? are defined
by Eq. (29) asthe coefficientsin front of the respective

I,LJ=1LT, (44)
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guantitiesR, | , R — R\, ad R, and the entries of the
matrix X,; are

XL = %1(1 + 3c0s20)R;,
¥ %1(1— c0520)(R, —R,)) + SN26R,,

X7 = 2(1 —Cc0s20)R;, (45)

¥ %1(3 +c0s20) (R, —R..) — in26R,,

X, = _i—Llsin26[3R,| — (Ry = Run)] + C0S26R;.

As we can see, the polarization-dependent part of the
Cross section is now expressed in terms of the new
polarization parameters R, R; — R, and R;; defined in
accordance with the directions given by Eq. (37), and
the coefficients in front of these quantitiesin the right-
hand side of Eq. (44) determine the corresponding par-

tial cross sections doy /dQ2.

We now consider the scattering off the unpolarized
target in the case where the recoil deuteron polarization
is measured. In this case, we can obtain both the vector
and tensor polarizations of the recoil deuteron using the
results given above. For this, we note that the longitudi-
nal and transverse 4-vectors S& and ST, which satisfy
therelations & = -1 and () =0, are

g = 210, * PPay
M./p(4t +p)

The part H,(V) of the hadronic tensor can be
derived from Eg. (11) by the substitution W — §
p, ~ —P,. Thisactually meansthat we haveto replace
(Wp,) in the right-hand side of Eq. (11) with (Sp,). The
vector polarization of the recoil deuteron (longitudinal
P~ or transverse P7) is defined as the ratio of the polar-
ization-dependent part of the cross section to the unpo-
larized part. Taking into account that (S-p,) = (\W-p,),
we conclude that

S = wh, (46)

P' = —A", P = A" (47)
where A- and AT are the respective asymmetries for the

scattering off the 100%-polarized deuteron target.

Here, we want to draw the reader’s attention to the
fact that determination of G,,/G by measuring the ratio
AL/AT in the scattering off a polarized deuteron target is
more attractive than by measuring the ratio P/PT in the
polarization transfer process because the second scat-
tering is necessary in the latter case. This decreases the
corresponding event number by about two orders [20],
substantially increasing the statistical error. The prob-
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lem with the depolarization effect that appears in the
scattering of a high-intensity electron beam on the
polarized solid target can be avoided using the polar-
ized gas deuteron target [3].

By analogy, the components of the tensor polariza-
tion of the recoil deuteron are defined by the ratios of
the corresponding partial cross sections to the unpolar-
ized one,

~ do ~ do
R = —Zn. Rt = l:n,
doy dog
TT (48)
~ ~ dO'b
Rrr— RN = "™
dog

Part H,,,(T) of the hadronic tensor can be derived from
Eq. (12) by changing the sign in the term proportional
to Gy(Gy + 2Gg). Straightforward calculations using
this updated tensor and parametrization (46) lead to the
following results. First, both diagonal partial cross sec-
tions in the right-hand side of Eq. (48) are the same as
defined by Eq. (29) for the scattering off the polarized

target, and second, the partial cross section doy' /dQ?

changes sign compared with the cross section in
Eqg. (29).

3. RADIATIVE CORRECTIONS

The total radiative correction can be divided into
model-independent and model-dependent contribu-
tions. The model-independent radiative correction
includes al QED corrections to the lepton part of the
interaction and insertion of the vacuum polarization
into the exchange photon propagator. The model-
dependent radiative correction involves additional cou-
plings of the photon with the off-mass-shell hadron and
comes from box-type diagrams, hadronic vertex func-
tions, hadron contribution to vacuum polarization, etc.
It can be analyzed at the level allowed by the current
knowledge of the hadronic structure; as arule, the cor-
responding contribution is added to the systematic
error.

The standard practice of data analysisin ep and ed
scatterings is that the model -independent radiative cor-
rection is taken into account with the accuracy allowed
by theoretical calculations. The reason is that it makes
the main contribution due to the smallness of the elec-
tron mass and can be calculated without any additional
assumptions. Therefore, the model-independent radia-
tive correction is calculated theoretically and simply
subtracted from the observed quantities, or Monte
Carlo generators constructed on the basis of these cal-
culations are implemented into the codes of the data
analysis. In this paper, we calculate only the model-
independent radiative correction; we bear thisin mind
inwhat follows.
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There exist two sources of radiative corrections
when the corrections of order a are taken into account.
The first is caused by virtual and soft photon emission
that cannot affect the kinematics of process(1). The sec-
ond arises due to the radiation of a hard photon,

e (ky) + D(py) — e (k) +y(k) + D(p),  (49)

because cuts on the event selection used in the current
experiments alow photons to be radiated with an
energy of about 100 MeV or even more [6, 20]. Such
photons cannot beinterpreted as“ soft.” Theform of the
radiative correction caused by the contribution due to
the hard photon emission depends strongly on the
choice of variables used to describe process (49) [21].

The hadronic variables were used formerly to com-
pute the radiative correction in the elastic and deep-
inelastic polarized electron—proton scattering [21, 22].
As noted in [21], the form and value of the radiative
correction in the hadronic variables differ substantially
from the radiative correction calculated in the leptonic
variables. We want to point out that the resultsin [22] can
be used for the e astic ep scattering and rel ations (10) and
(22) can be used to calculate the radiative correction in
the elastic unpolarized and polarized ed scattering in
the case of the deuteron vector polarization. Here, we
also calculate the radiative correction in the case of the
deuteron tensor polarization, which is absent in [22]
because the proton has spin 1/2. Our goal is to obtain
physically transparent formulas for the radiatively cor-
rected cross sections, which are absent in [22], and to
generalize them with the higher orders of the coupling
constant o taken into account by simple exponentiation
of the leading contributions.

In contrast to [22], we assume at the very beginning
that, in reaction (49), the recoil deuteron is detected and
the 4-momentum

g=p,—p;1 = ki—k,—kK

is fixed. Because neither the scattered electron nor the
hard photon is detected, the complete integration over
the 3-momenta of these undetected particles must be
performed.

In calculating the radiative correction using the had-
ronic variables, it is very convenient to use the method
of invariant integration. In this method, integration of

the leptonic tensor wa (with the emission of an addi-
tional photon taken into account) over the variables of
the scattered electron and the emitted additional photon
is performed before the contraction of the leptonic and
hadronic tensors. At the beginning, we use the overall
4-dimension &-function to eliminate the k, momentum
and then perform analytic integration with respect to
the photon 3-momentum in the special system where

Ki+pi—p, = 0.
It is convenient to introduce the dimensionless had-
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ronic variables

@, - 2k
2k,q’ VvV’

which characterize inelasticity due to the hard-photon
emission in the lepton block: if the photon is not radi-
ated, then x = 1 and y = p. The quantity 1 — x actually
represents the energy fraction of the collinear photon
radiated by the initial-state electron. It is easy to verify
this statement because

q = xk,—k,, ki=K=0

in this case.

The use of these variables in the framework of our
approach alows us to bypass the complication that
comes from the Gram determinant and appears in the
standard method developed in [23] and used later
in[22, 24]. Thismakesit possibleto simplify the calcu-
lations and write physically transparent expressions for
both polarized and unpolarized cross sections.

Using the above strategy, we start from the follow-
ing expression for the cross section of process (49) in
the hadronic variables:

X Xy = p, (50)

_ d3p2 a dkg,, 2 2
do = \—/BZLUV HV—E—Z—R—Jé(kZ—m )

Here, wisthe photon energy and misthe electron mass.
The leptonic tensor corresponding to the hard-photon
radiation iswell known [25, 26]. It can be written as

a” |y (51)

y — qun P
Ly = L+ LG

Its unpolarized symmetric part is

2 2 2 2
un _ o[ (d°=t) +(q"—9) 2 2L 10|~
Ly = 2{ st -2m7q =+ 57O
(52)
o 2mTp - o 2mip -
+ SEE - Sz Dklukl\/ + SEE —t—zmkzukz\;,

and the antisymmetric part, arising due to the longitu-
dinal beam polarization, is

2
P _ i q-s_,.20l . 10
Ly 4|(uvqp)§<1p[ o 2m D52+tﬂ}

2 2
-t  2m's 10
Kyo| =1 —
+ 2p[ (o s)tz}% (53)
t = —2kk,, s = 2kk, = —Q°+Vy,
aq

a, = a,— 0.
q
After removing the overall d-function, it isnecessary to
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calculate the quantity

. e, 2 2
Ly = IL{Waa(kz—m ).

We calculate it using the method of invariant integra-
tion. We first consider the case of the unpolarized elec-
tron beam. With the P-invariance of the electromag-
netic interaction and gauge invariance of the quantity

LLV taken into account, we can represent this quantity
in the general form as

L = Ay, + Bkyukay. (54)

Thetwo functions A and B can be obtained by contract-
ing the left- and right-hand sides of this equation with

the respective tensors @w and Elphv . As aresult, we
obtain two equations for the two unknowns A and B,

2 2
,=3a-0=3p
4q

Ci —28)2[_A+ (o’ —5)28}
4q 4q

(55)

I, =
where we introduce the notation
_ nx dKg 2 o
Il - J’Lﬁvguv—oo_é(kZ_m )’

d’k

I, = J’Lﬂﬂiluil\,aé(kﬁ— m).

Next, we must integrate over the photon phase space
in the integrals |, and 1,. Because the quantity 6(k§ -
m?)d*k/w that enters the integrands in I, and |, is
Lorentz invariant, we can take any coordinate system to

do this integration. The most convenient one is the
coordinate system where

Ki+p;—p, = 0.

Infact, thisisthe center-of-mass system for the radiated
photon and the scattered electron, and, therefore, the
polar (¥) and azimuthal (¢) angles of the radiated pho-
ton cover the entire phase space. We therefore have

dks2 20 _ 1=X
wé(kz—m)— 4RXd(pdcosﬁ,
0<@<2m, (56)

2
m

—-1<cosd <1, R, = 1-x+=,

wherethe z axisis chosen along the direction of theini-
tial electron 3-momentum. In writing the quantity R,

we set X = 1 in the coefficient in front of m?/Q2.
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The energies of al particles and the polar angle of
the initial deuteron in this system can be expressed in
terms of the invariant variables as

_ Vy(1—x) _Vy+2m’
w=-—S—= g = L=
2./R 2./R

. = Vy(1-X) +2m’ £ = V(1-p)

2 2/R 2. /R
(57)

E - \_/w Cose - g_E_l_sl__j_Y

2 2/\/§ ’ 1 2|p1||k1| ’
R = WR,,

where €, and E; (€, and E,) are the respective energies
of theinitial (final) electron and deuteron.

The necessary angular integrals are given by

1_ 2R
I—t T Vy(1-x)

2x _ 2 _ _
[Z = IR -2+ 10,

¢ = _Vy(l—x)
I - Rx ’
4x> _ 2V(1-x) (58)
—t y

y (1-p)°
(R(L-3+ 5L +1-p-y1],

[ox = V(l_)l(?)x(l_p)’
am’ _ _ 4R,
Itz Vy(l—x)z'

where we use the short notation for definiteintegral and
the quantity L,

X = Kkpy,

2

21 1
- 9o Q
= [=£((dcosd, L =In :

[=2n) M’ xR,
0 -1

and neglect thetermsof order (m?/Q?) whenever possible.
Calculating theintegrals|, and |, as described above
and solving the system of two equations (55), we find
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that the functions A and B are given by

A = =21 FP(x, Q*/m’) + 3(1-X)],

2
B = SHS—Z[Fp(X, QYm?) +3+x],

P _1+x Q4
(xQ/m) -~ nmszx T—x
) (59)
+i___r_n___+1+4x
2R, ZQR

The contraction of the unpolarized parts of the lep-
tonic tensor (integrated over the photon phase space)
and the hadronic tensor for radiative process (49) is
given by

iun V 2
Ly Hw(0) = _%A"' _4)[; E%\Nl
vio- )2 (60)
+ [(1+ A+ TTyB}WZ.

To write the respective contractions in the polarized
case, we have to take into account that the parametriza-
tion of the polarization 4-vectors S- 7 in the radiative
process differs somewhat from the Born expressions
given by Eq. (46) (we here consider the polarized recoil
deuteron for definiteness). Formally, they can be
derived by the substitution

p—Y, ki—xk, T —1/X, V—xV (61)

in Eq. (46).

The contraction of the unpolarized part of the lep-
tonic tensor (integrated over the photon phase space) and
the hadronic H,,,(T) tensor for radiative process (49) is
given by

iun _ o = (1—y)2—
LiH(T) = C-AQ + Ve[ =220

+(2n<1—n)—y)Ql+p(1+n)Qn}Eﬁfﬂ o

+(2-y)ve[nQ, - ¥=310=Y0 e,

Q 2-y)*
¥ 2[4A+ e VB}GQG,

where

Ql = quqpklvv Qll = vaklpklv-
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Taking into account the relation

which holds for the recoil-deuteron phase space, after

some algebra, we derive the following representation

for unpolarized cross section of reaction (49):

doH doy"

dQ () = ZHI{

, W
E—f(x P, r)}dx

> (xky) F(x, Q)

(63)
F(x, Q*/m?) = FP(x, Q*/m’) + 3—4x,

f(x,p,T) = 3(x— p)+— -—TE.

Here, A is the minimum-energy fraction of the hard
photon and x;,, depends on the experimental cuts for the
photon energy.

For the partial cross sections in the case of tensor
polarization of the recoil deuteron in radiative pro-
cess (49), we obtain the expressions

doH

dQ’

1-A LL

a 2’2 (xky) FT(x, Q%mP)dx,

L(ky) = z<1+n)lnxm(ei4—zeqe)

d
+§[J’d

" =y (64)
2n_f do,’ 2o (xky) FT(x, Q) dix,

LT 1A LT

d
dQ ( 1) XI do(-?bz (Xkl)FT(X, Q2/m2)dX,

'm

where
F'(x, Q°%/m%) = F"(x, Q%/m%) +3—x.

We now consider the case of the longitudinaly
polarized electron beam and calculate the necessary

integral, where L), = L}, , using the method of invari-
ant integration. Takl ng the P-invariance of the electro-

magnetic interaction and gauge invariance of the quan-
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tity LLV into account, we can represent this quantity in
the general form as
Lty = iC(kvaky). (65)

The unknown function C can be obtained by contract-
ing the left- and right-hand sides of this equation with
the tensor (Lvgk,). As aresult, we obtain the following
expression for C:

i, 2 _ k., 2 2
5(A"=s)C = ILSV(uvqkl)-d)-&kz—m ). (66)
Calculating thisintegral as explained above, we obtain
C = 2T[XFp 2/
g (x, Q°/m’).

The contraction of the polarized part of the leptonic
tensor (integrated over the photon phase space) and the
hadronic H,,,(V) tensor for radiative process (49) is
given by

LEHE, = —5(2-yNV’C/plT+p)Gh, (67
LibHE, = —3V°Cl20(L-Y) + y(p + 21)]

(68)
NT(x—p—y1) "

After some algebra, we derive the following repre-
sentation for the parts of the cross section that depend
on the vector polarization of the recoil deuteron:

LT
doy

dQ’

_a
(k) = o=
1-a |1 (69)

do
x f d(;z (xk,) FP(x, Q°/m’)dx.

Xm

Theinfrared auxiliary parameter A < 1isrelated to
the minimal energy of the hard photon in the chosen
coordinate system, and the lower integration limit is
defined by its maximum value, which depends on the
experimental cuts on the event selection in the experi-
mental measurement of the observablesin elastic elec-
tron—deuteron scattering:

A = rin X = 1_wﬂx
e " €

For example, if thelost invariant mass M, (Of the scat-
tered electron and the undetected additional hard pho-
ton) is allowed,

(ky+ py— pz)2 < Miaxv
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then
2
Xn = —5——5— Q -
Q"+ Minex
On the other hand, the quantity x,, cannot be arbi-
trary (but must, of course, be smaller than unity) even if
no experimental constraints on the event selection are
used. The restriction on x, follows from the inequality
X" —xp—p1>0,
which reflects the obvious relation
x°V?
XV + M?
for radiative process (49). In any case, we therefore

have
P 417
Xm > 2%"+ /\[1+ plr

We note oneinteresting point regarding formula (69).
It looks very similar to the corresponding result in the
quasireal electron approximation [27] for the descrip-
tion of the collinear photon radiation (8, < 6y, 6, < 1)
by the longitudinally polarized electron, which is suit-
able for the leptonic variables,

dofky, k) = 5= [(doy(xk) P(x, Lo))dx

_q2 < _q|'211ax =

k = (l—X)kl, (70)
1+x, 2(1-x+X €165
P(x, Lo) = T—Lo- ( — ) L= nrln—zo,

where doy, is the cross section of the radiationless pro-
cess. It is not surprising that the function FP differs
from P in Eq. (70) because it also has to contain traces
from the final electron radiation.

Formulas (63), (64), and (69) describe the distribu-
tion over the momentum transfer squared in reaction (49)
and define the respective radiative correction due to the
hard photon emission. To compute the total radiative
correction, we must also add the contribution due to
emission of the virtual photon and the real soft photon
(with the energy lessthan Ag;). This contribution isthe
same for polarized and unpolarized scattering,

S+V
do _ dcbg 6V+6S).

0 aQizn =
The virtual correction is standard [28],
5 = 4(LQ—1)|n%— L5+ 3Lg+ §—4,
) (72)
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where A is the “photon mass,” while the soft-photon
correction has some specification in the hadronic vari-
ables

g

5 = 4(LQ—1)|anA+2Lé—2LQ—§+2. (73)

It can be seen that the terms proportional to L2Q do

not vanish in the sum & + &° (asthey do for the leptonic
variables) and the contribution of the hard photon emis-
sion hasto be taken into account to cancel them (due to
the terms with InR/(1 — X) in the functions FP, FT,

and FU"),
The observed cross sections, which take the totd
radiative correction into account, do not depend on the

auxiliary infrared parameter A and can be writtenin the
form suitable for numerical integration as

dg"" doy,’ a
ok = rod o

dAoy f, dob

ZTTI[ i 1- vl i 5 (X ky) F*" (74)
o’ W.
+?—f(x o, T)}dx
) = dc_bT(k )%U.ﬁ%
1) = Q2 1 27T
(75)

dAGtT fa
dQ® 1- x "

dcrb

(xkl)F }

ZHJ[

The partial cross sectionsin the case of the tensor polar-
ization of the recoil deuteron are defined by the formula

d 1J dO'IJ
Qi(ka Q;’ (ko + 58
dAoID fa dob
2nf[ dQ? 1- x do (kl)F} (76)

+—(1+n)|nXm(GM 2G,yG)9y 9,
1,J=L,T,
where

dAo, = doy(xk,) —doy(k,)
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for both polarized and unpolarized cases and
5=+ 2In(1—xm)ELQ—£In(l—xm)

5
—In(1- xm)—§—§,

fy = 2LQ—2|n(1—x)—£,

2
1+x
Inx
—X

P = —(1+X)Lo- (77)

+(1+X)In(1-x) +1+4Kx,
F" = F"+3-4x,
F' = F’+3-x.

Thesingularity at x=1intheintegrands of Egs. (74)—
(76) cancels by the corresponding quantity dAc,/dQ?.
For example, in the simplest unpolarized case, we have

dAcy,’  md?
dQZ QZVZXZ

x [2(1 + x)wl—VTVZ(x +T(1+ x))}(l—x).

It iswell known that the leading logarithmic contri-
butions to the radiative correction of order (aLg)", n=
1, 2, ... arecontrolled by the electron structure function
D(x, Lg),

d‘ia’ = J’D( LQ) (xkl)dx
(78)

L Lplgt
2|:|2 PZ(X) +.

oL
D(x, L) =8(1—X) + Z—Tfpl(x)

It can be verified that the leading part of the first-order
correction defined by Egs. (74)—76) can be derived
using representation (78) at

aL
D(x, Lg) = S7Pa(¥),

3

2
Py = 222 3

Thus, we can improve our result by insertion of the
higher order leading contributions using Eg. (78) and
the known expressionsfor thefunctions P,(x) [29]. This
improvement resultsin modification of the quantities d,
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fa, and F” inthe right-hand sides of Egs. (74)—(76). For
example, to account for the corresponding second-
order terms, we must use the substitutions

O0—0+yq, fp—fat+tyfan,

2
aLd

B B eyEl v = O

+3In(1-X,) + 2In*(1=X,,),

na
3 (79)

_9_
5 = ¢
fo = 3+4In(1-x),

2
_2(1+ x)|n(1—x)—21(1’f>)‘()|nx—5;x

On the other hand, there exists a simple method of
summation of al the singularities at x = 1 in the total
radiative correction, which goes beyond the leading
logarithmic approximation (see, e.g., [30]). It consists
in using the exponential form of the electron structure
function and, in our case, can be introduced as

S(1—x) + B[l—%—xe(l—A—x) +6(1—x)InA}

BL-x"" 8 0
— o eerh )

where
=%
B - T[(LQ 1)!

CistheEuler constant, and I (x) isthe gammafunction.
This procedure leads to a redefinition of d and f, in
Egs. (74)—(76),

op _ 3
5— 87" = E(LQ—ln(l_Xm))
5 0
I (=% -2-F,
fow 20 = —g—ZIn(l—x),

and to the appearance of an additional term

(8
: exp| B, -G
Ij%g(xkl)s(l—x)“%dx

Xm
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that absorbs the purely Born cross section and a part of
the radiative corrections. For example, partial cross sec-
tions (76) become

dg"” 00y \[BA=X"""  ror8
e 1)—{{ O T g exp| B, -

|~:TD a dAO’b f

doy’
@(p b

3
[of
+ (L M)INXy(Gly ~2GoG)3, B

4. NUMERICAL ESTIMATIONS

There are different approaches to the analysis of
polarization observables. If the experimental informa-
tion is extracted directly from the spin-dependent part
of the cross section (see [31] for the corresponding
experimental method), the radiative correction can be
large due to the contribution of factored virtual and soft
corrections. The nonfactored contribution to the radia-
tive correction, caused by the hard photon emission,
cannot be large in elastic scattering because the phase
space of such a photon is strongly suppressed by
restrictions on the event selection. The effect of the
radiative correction in this case is demonstrated in
Figs. 1-4 for the ratios

- ] LT — )
Y do =n @)
6R F)obs,F)b
Pobspb

in the unpolarized case and for vector polarization of
the recoil deuteron, and for the ratios

dol) dot" _ dogdoy’
6” — obs b —l, RQ — obs b -1 (83)
un 13 LT
dcobsdcb CIO-obs 0-b

in the case of tensor polarization. We note that, if the
radiative correctionisignored, all the quantities defined
by Egs. (82) and (83) are equal to zero. The quantities
dr and Orq are very important physical values because
they can be used for an independent determination of
the ratios of form factors such as G,/G and G,/Gq, (see
Egs. (19), (20), (31), (32), and (48)).

The observed cross sections in Egs. (82) and (83)
are defined by Egs. (74)—(76) or their exponential mod-
ification (as in Eq. (81)). We consider two different
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Fig. 1. The effect of the radiative correction on the unpolarized cross section and vector polarizations of the recoil deuteron given

by Egs. (74), (75) and Eq. (82) at VV = 8 GeV/2. The solid curves correspond to Q% = 1 GeV2, and the dashed ones, to Q? = 3 GeV2.
Parametrization | is used for the deuteron electromagnetic form factors [32].

parametrizations of the deuteron electromagnetic form
factorsgivenin [32] and label them | and II.

Ascan be seen from Fig. 1, the radiative corrections
to the unpolarized cross section depends strongly on the
value X, that is connected with the energy of the hard
photon in process (49). If x,,is close to unity (X, = 1),
the total radiative correction, being negative, can reach
10% or even more. As X, decreases, the total radiative
correction becomes much smaller. Such behavior of the
radiative correction has a ssimple physical interpreta-
tion. If x,,= 1, the energy of the photon in process (49)
is sufficiently small and the positive contribution into
theradiative correction due to the hard photon emission
cannot compensate the factored negative contribution
caused by virtua and soft photon corrections that
accompany process (1). As the hard-photon energy
increases, such compensation occurs and the absolute
value of the total radiative correction decreases. The
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same behavior is also exhibited by polarization-depen-
dent parts of the cross section in the case of vector
polarization of the recoil deuteron and by partial cross
sections in the case of tensor polarization.

However, the effect of the radiative corrections is
precisely the opposite for theratios defined by Egs. (82)
and (83). At x,, = 1, the tota radiative correction is
defined mainly by its factored part, which is the same
for the polarization-dependent and unpolarized cross
sections. Therefore, the radiative correction in fact can-
celsin this region for such ratios. On the contrary, at
smaller values of x,,, the nonfactored part of the radia-
tive correction becomes significant and the total radia-
tive correction increases. An unexpected fact isthat the
ratios &;; in (83) are approximately one order smaller
than & +in (82).

As our calculations show, the sensitivity of the radi-
ative correction to two different parametrizations of the

No. 5 2004



RADIATIVE CORRECTIONS TO POLARIZATION OBSERVABLES 867

o Or

00002 T T T T, _I .. T T T 00070 T T T T T T T T
oF T 4 0.0060F .
~0:0002r | 0.0050F -
~0.0004 - . - ; .
0.0040F .
~0.0006 - . i § i
_0.00081 | 0.0030F )
~0.0010F 1 0.0020+ -
~0.0012} 1 0.0010f -
—~0.0014} . I ]
| | | | | | | | O | | | | | | | |

5, 03 04 05 06 07 08 09 10 5 03 04 05 06 07 08 09 10

0_ T T T T T T T T | 0_ T T T T T T T T ]
~0.0002- 4 —0.0010 .
~0.0004 4 -0.0020+ .
~0.0006 - 1 —0.0030 1
~0.0008 - 4 -0.0040+ :
~0.0010}- 4 —~0.0050+ .
~0.0012} { —0.0060 -
_00014 i | | | | | | | | | _00070 . | | | | | | | | |

03 04 05 06 07 08 09 L0 03 04 05 06 07 08 09 1.0

xm xm

Fig. 2. The effect of the radiative correction in the case of tensor polarization of the recoil deuteron. The partial cross sectionsin
Eqg. (83) are calculated using Eq. (76). Kinematical conditions and parametrization of the form factors are the same asin Fig. 1.
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Fig. 3. Theinfluence of different parametrizations of the deuteron electromagnetic form factors on the radiative correction. The solid
(dashed) curve corresponds to parametrization | (I1) [32]. The kinematical conditions are V = 8 GevZ and Q% = 1 GeV2.

deuteron electromagnetic form factors [32] at relevant Theinfluence of the higher order corrections, calcu-
values of energies and momentum transfers is practi- lated by summing the leading contributions by the
caly negligible. In fact, the respective curves coincide  exponentiation procedure, is demonstrated in Fig. 4 for
in the entire range of x,, (see Fig. 3). the tensor polarization ratios. The corresponding curves
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Fig. 4. Comparison of the total radiative corrections in the case of tensor polarization calculated by Eq. (76) (solid curve) and

Eq. (81) (dashed curve) at V = 8 GeV2 and Q% = 1 GeV2.

for the vector ones are very similar. We see that the
effect issmall and cannot even exhibit itself at small x,,,
where the nonfactored radiative correction contributes.
As usual, the large correction factor caused by expo-
nentiation of the higher order leading radiative correc-
tions at X, = 1 to the unpolarized and polarized parts of
the cross section cancelsin their ratios.

REFERENCES

1. M. Garcon and J. W. Van Orden, nucl-th/0102049;
R. Gilman and F. Gross, J. Phys. G: Nucl. Part. Phys. 28,
R37 (2002).

2. 1. Sick, nucl-ex/0208009.

3. D. M. Nikolenko, H. Arenhovel, L. M. Barkov, €t al.,
Phys. Rev. Lett. 90, 072501 (2003).

4. G. . Gakh and N. P. Merenkov, Pis ma Zh. Eksp. Teor.
Fiz. 73, 659 (2001) [JETP Lett. 73, 579 (2001)].

14.

A. V. Afanas'ev, |. V. Akushevich, G. I. Gakh, and
N. P. Merenkov, Zh. Eksp. Teor. Fiz. 120, 515 (2001)
[JETP 93, 449 (2001)].

D. Abbott, J. Ball, J. Ducret, et al., nucl-ex/0001006;
Phys. Rev. Lett. 84, 5053 (2000).

R. Gilman, in Physics and Instrumentation with
6-12 GeV Beams, Ed. by S. Dytman, H. Fenker, and
P. Roos (TINAF, Newport News, Virginia, 1998).

I. V. Akushevichand N. M. Shumeiko, J. Phys. G 20, 513
(1994).

I. Akushevich, A. llichev, N. Shumeiko, et al., Comput.
Phys. Commun. 104, 201 (1997).

I. Akushevich, H. Boettcher, and D. Ryckbosch, hep-
ph/9906408.

. M. Gourdin and C. A. Piketty, Nuovo Cimento 32, 1137

(1964).

M. Gourdin, Phys. Rep. C 11, 29 (1974).

M. J. Moravcsik and P. Ghosh, Phys. Rev. Lett. 32, 321
(1974).

I. Kabzarev, L. B. Okun’, and M. V. Terent’ev, Pis' ma
Zh. Eksp. Teor. Fiz. 2, 466 (1965) [JETP Lett. 2, 289

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98 No.5 2004



15.

16.

17.

18.

19.

20.

21.

22.

23.

RADIATIVE CORRECTIONS TO POLARIZATION OBSERVABLES

(1965)]; V. M. Dubovik, E. P. Likhtman, and
A.A. Cheshkov, Zh. Eksp. Teor. Fiz. 52, 706 (1967)
[Sov. Phys. JETP 25, 464 (1967)].

H. S. Song, F. L. Ridener, Jr., and R. H. Good, Jr., Phys.
Rev. D 25, 61 (1982).

R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C
23, 363 (1981).

A. |. Akhiezer and M. P. Rekalo, Electrodynamics of
Hadrons (Naukova Dumka, Kiev, 1977), p. 216.

A. V. Afanasev, |. Akushevich, and N. P. Merenkov,
Phys. Rev. D 65, 013006 (2002); hep-ph/0009273.

I. V. Akushevich, A. V. Afanasev, and N. P. Merenkov,
hep-ph/0111331.

B. D. Milbrath et al. (Bates FPP Collaboration), Phys.
Rev. Lett. 80, 452 (1998); Phys. Rev. Lett. 82, 2221
(1999); M. K. Jones et al. (Jefferson Lab Hall A Collab-
oration), Phys. Rev. Lett. 84, 1398 (2000).

A. Akhundov, D. Bardin, L. Kalinovskaya, and T. Rie-
mann, Fortschr. Phys. 44, 373 (1996); J. Blumlein, Phys.
Lett. B 271, 267 (1991); Z. Phys. C 65, 293 (1995).
A.V.Afanasev, |. Akushevich, A. Ilyichev, and N. P Meren-
kov, Phys. Lett. B 514, 269 (2001).

D.Y. Bardin and N. M. Shumeiko, Nucl. Phys. B 127,
242 (1977); D. Bardin and L. Kalinovskaya, hep-
ph/9712310.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

24,

25.

26.

27.

28.

29.

30.

31

32.

869

I. Akushevich, A. llyichev, and N. Shumeiko, Eur. Phys.
J. C5, 1(2001).

E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, Yad. Fiz.
47, 1593 (1988) [Sov. J. Nucl. Phys. 47, 1009 (1988)];
Yad. Fiz. 45, 782 (1987) [Sov. J. Nucl. Phys. 45, 486
(1987)].

T.V. Kuchtoand N. P. Shumeiko, Nucl. Phys. B 219, 412
(1983).

V. N. Baier, V. S. Fadin, and V. A. Khoze, Nucl. Phys. B
65, 381 (1973).

R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo
Cimento A 11, 824 (1972); 11, 865 (1972); P. Mastrolia
and E. Remiddi, hep-ph/0302162.

S. Jadach, M. Skrzypek, and B. F. L. Ward, Phys. Rev. D
47, 3733 (1993).

E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41, 733 (1985)
[Sov. J. Nucl. Phys. 41, 466 (1985)]; F. A. Berends,
W. L. van Neerven, and G. J. H. Burgers, Nucl. Phys. B
297, 429 (1988).

N. D. Gagunashvili, Nucl. Instrum. Methods Phys. Res.
A 343, 606 (1994).

www-dapnia.ceafr/SphnT20

No. 5 2004



Journal of Experimental and Theoretical Physics, Vol. 98, No. 5, 2004, pp. 870-881.

Trangdated from Zhurnal Eksperimental’ noi | Teoreticheskor Fiziki, Vol. 125, No. 5, 2004, pp. 999-1011.

Original Russian Text Copyright © 2004 by Alshits, Lyubimov.

ATOMS, SPECTRA,

RADIATION

Wedge Refraction of Electromagnetic Waves
in Absorbing Crystals

V. I. Alshitsand V. N. Lyubimov
Shubnikov Institute of Crystallography, Russian Academy of Sciences,
Leninskiz pr. 59, Moscow, 117333 Russia
e-mail: alshits@ns.crys.ras.ru
Received March 14, 2003

Abstract—Topological features of the self-intersection of wave surfaces near singular optical axes of an
absorbing crystal are investigated. Distributions of complex polarization fields in the neighborhood of singular
directions are obtained. It is shown that, when the wave normal m circumvents an optical axis, the correspond-
ing rotation of polarization ellipses is characterized by the Poincaré index n = 1/4. Using the example of an
orthorhombic crystal, a wedge refraction of el ectromagnetic waves on the intersection line of the sheets of the
surface of refractive indices is predicted and theoretically investigated. It is shown that the directions of the
mean energy fluxes P, are close to the direction of normals n, to the refraction surface only in the central
region of awedge, i.e., only in the domain where the polarization is amost linear and the group velocity of
waves is well defined. When m moves to singular axes, the ellipticity of the polarization increases at the ends

of the edge of the wedge and the orientations of the vectors P.. and n, gradually diverge, yet remain in the same

plane that is orthogonal to the edge. The angle between P, and P_ monotonically decreases, and P, || P_ for
the propagation along singular axes; in this case, the angle between n, and n_increases, and they have a plane-
fan-type orientational singularity along the optical axes. When m is scanned aong the edge of the wedge, the
unaveraged vectors P, describe per period the same conical surface that coincides with the refraction cone of a
transparent crystal, while the endpoints of the vectors P, run over eliptic orbits whose shape and slope depend
on m. The possihilities of observing awedge refraction are analyzed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The conica refraction of electromagnetic waves in
transparent crystalsis awell-known phenomenon [1-3].
It arisesin biaxial crystals when waves propagate along
any of the two existing optical axes; henceforth, the
directions of these axes will be denoted by m® and
m@, When the wave norma m coincides with the
directions m*2), the phase velocities v = vm of the
waves of independent polarizations degenerate (here,
v =c/n, where n is the refractive index and c is the
speed of light in vacuum). In this case, allowed orienta-
tions of polarization vectors form a whole continuum
along the optical axis. Each polarization correspondsto
its own energy-flux vector P, the Poynting vector, ori-
ented along an appropriate generator of the refraction
cone. Therefore, for example, a circularly polarized
wave directed along m() (j = 1, 2) should distribute
energy over the cone. It iswell known that the vector P
in transparent crystalsis collinear to the group velocity
u =un. Here, nisaunit normal to the surface of refrac-
tiveindicesn(m). This surface has aconical singularity
at the point m = m{). The normals n defined in the
immediate vicinity of the direction m() coincide with
the directions P and form a classical refraction cone in
the limit; geometrically, this cone is exactly the same as

the cone formed by the vectors P. Such cones were
experimentally observed as early asthe 19th century [2].

A similar phenomenon exists in crystal acoustics,
where the conical refraction was experimentaly and
theoretically studied much later [2]. Interestingly, there
isanother type of refraction in crystal acoustics, the so-
called wedge refraction, which was theoretically pre-
dicted in [4] and experimentally observed in [5]. This
phenomenon is observed in hexagonal crystalsinwhich
two slowness surfaces of acoustic wavesintersect. Near
the intersection lines of the sheets of the slowness sur-
face, the normals to these surfaces form a specific
wedge of directions of group velocities.

In contrast to acoustics, where the wedge refraction
occurs even in the absence of absorption, the wedge
refraction in the optics of transparent crystalsisimpos-
sible. However, in absorbing crystals, the situation
changes. When the absorption is “switched on,” each
optical axis of a transparent biaxial crystal splits into
two axes, mt) —» m{?  which are called singular axes
[1, 6]. The crystal becomes optically tetraaxial. The
sheets of the double-sheeted surface of refractive indi-
ces intersect along the lines that connect the directions
of split axes. The surface of refractive indices has
wedgelike singularities at which the intersection line of
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Fig. 1. Sections of the surfaces n.(m) by the planes containing optical axes; (a) transparent crystal and (b) absorbing crystal.

the sheets represents the edge of the wedge. It can nat-
urally be expected that the switching on of absorption
modifiesthe classical conical refraction of atransparent
crystal, turning it into a qualitatively new phenomenon,
awedge refraction.

The present paper is devoted to the analysis of this
very problem. We will thoroughly investigate the com-
plex geometry of the self-intersection of the surface of
refractive indices and analyze the distribution of energy
fluxes of eigenwavesin the self-intersection region. We
will study the behavior of the Poynting vectors on the
intersection line of sheets and the behavior of geomet-
ric normals to the surface of refractive indices, which
determine the directions of group vel ocitiesin transpar-
ent crystals. We will seethat these two vector character-
istics, P(m) and n(m), exhibit radically different types
of behavior near the singular axes. This fact is associ-
ated with the strong ellipticity of the wavefieldsin this
region and makes the introduction of such a character-
istic of wavefields asthe group velocity impossible[7].
On the other hand, there always exists a line between
singular axes on the unit sphere of directionsm -m=1
on which the ellipticity is equal to zero and the group
velocity is rigorously defined. We will see below that
thedirections of the energy-flux P and the normal n nat-
urally coincide on thisline, and the character of wedge
refraction near this line is similar to the related phe-
nomenon in the acoustics of nonabsorbing crystals.
When moving away from this region along the edge of
the wedge, the dlipticity of polarization increases,
while the energy flux P(m) rotates along different sec-
tions of the universal cone, which coincides with the
refraction cone of a transparent crystal. At the ends of
the wedge, these rotations occur in opposite directions
along circular sections of the same cone. Thus, the
behavior of the energy flux along singular axes actually
coincides with the conical refraction in a transparent
crystal for a circularly polarized wave. Below, we will
show that these absorption-induced features, which are
characterized by a smooth transition from one refrac-
tion cone to another at the ends of the wedge through a
narrow area of pure wedge refraction, permit experi-
mental observation even in the case of small absorption.
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Analysisof topological anomaliesinthe distribution
of complex vector fields of polarization in the neigh-
borhood of the singular axes presents a separate non-
trivial problem. According to [8], these features can be
characterized by “topological charge” the Poincaré
index n = 1/4. This important result, a brief account of
which was earlier published by one of the authors of
this paper in a nearly inaccessible publication [8], has
unfortunately been overlooked by specidists in the
field. Therefore, we also touch upon this problem
below.

2. STATEMENT OF THE PROBLEM
AND THE BASIC EQUATIONS

First, we consider a transparent triclinic crystal
characterized by a real permittivity tensor € or by its
inversen = &7 If we assume, for definiteness, that €, <
€, < &, then, in a standard crystallophysical system of
coordinates in which the tenors € and n are diagonal,
the optical axeswill liein the plane xz. In each singular
direction m{), the sheets of the surface of refractive
indices n,(m) have a conical contact point at m®2:
n,(m) = n_(m). Here, the subscripts (+) denote two
different sheets of the surface of refractive indices, the
external (+) and the internal (-) sheets, which corre-
spond to independent isonormal electromagnetic
waves. The orientations of the directions m{) are
defined by the angle 6, (Fig. 1a), which is easily deter-
mined when one considers the cross section of the sur-
face of refractive indices by the xz plane:

tanB, = ,/d;p/dy, dj = n;—n;. 1

Thus, in the chosen crystallophysical system of coordi-
nates {x, y, z}, the orientations of optical axes are
defined by the directions

m*? = (+sin6,, cosby). )

When the absorption is switched on, the material
tensors € and n are formally complemented by imagi-
nary components. € — € +ig'andn — n —in".
Accordingly, it is convenient to combine refractive
indices n, and absorption indices n; by introducing

No. 5 2004



872

complex refractive indices N, = n, + in.. In terms of
these indices, isonormal electromagnetic waves of fre-
guency w are expressed in aform similar to the case of
atransparent crystal:

0O 0 [ED .

nE("g =g ‘Dexp[iw%’l-m T — } )
OH.(r,t)O D c

The relation between the wave fields (3) and the com-
plex refractive indices N,, on the one hand, and the
direction m and the material constants, on the other, is
well known [1-3, 6]. As applied to our problem, it is

convenient to make use of the Fedorov invariant equa-
tions [6], which explicitly depend on m:

E:r = (ﬂ —iTl')[Hi x m] ’
He [1P1/P2 P2 = Poa/Py [Py,
N = {a+b[p,[h,+ /(p1 o) (P2 P} - (5)

where p; = m x ¢ and the parameters a, b, and c(
define a dyadic form of the complex tensor

n-in' = al +b(c?0c?+c?0c™). (6
Note that the transition from H ., to H, and from N,, =
Nu + 1N to N, =n, +in, in (4), (5) requires addi-
tional sorting of sheets into external and internal ones.
In (6), | is the identity tensor. A specific relation
between the parameters a, b, and ¢ entering in (6) and
the components of the usual matrix form of the tensor
n —in' in the crystallophysical system of coordinates
was considered in [9]. Here, we present these parame-
ters in the explicit form only for a particular case of
crystals of orthorhombic symmetry, which guarantees
the diagonalization of the real and imaginary parts of
the tensors € + i€’ and n — in' in the same system of
coordinates. In the | atter case,

a= nz—irllz, b= —d13+idl13’

c® = (¢, 0,c5), c? = (-, 0,c),

(4)

(7)

where, by analogy with (1), we denoted dj; = n; —n;
and introduced the parameters

d,,—id; dyy—id;
6 = [EE o= [BCEL ()
diz—idys diz—idys

The condition under which the complex refractive
indices coincide, N, = N_ = N,, corresponds to the
directions of optical axesand issatisfied whenp, - p; =
0 and p, - p, = 0. Each of these two complex equations
determines a pair of singular directions, so that, in gen-
eral, there exist four optical (singular) axesin absorbing
crystals[1, 6].

Here, we should make one important remark.
Although no specia restrictions are imposed on the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

ALSHITS, LYUBIMOV

absorption level in the above formulas, in the class of
problems under consideration, we will focus on a suffi-
ciently low level of absorption such that an electromag-
netic wave preserves its wave structure as it propagates
over distances much greater than the wavelength. We
are dealing with the cases when each optical axis of a
transparent biaxial crystal splits, under the influence of
weak anisotropic absorption, into two new axes.

mi) — m{? =m® + Am{” . Of course, under weak
absorption, such splitting must be small.! For example,
for an orthorhombic crystal, the equations p; - p; = 0
and p, - p, = 0 with regard to (7) and (8) yield
m0) || Rect)), which, as can easily be verified, corre-
spondsto (2), and

AmY =Am, = (0, +X,, 0),

_ JAptgldy, dy

X0 = 2dy |dp Oy

This symmetric splitting, shownin Fig. 1b, is quite nat-
ural because the origina axes m* 2 liein the xz plane,
which isasymmetry plane.

According to (4), the complex polarization vectors
of isonormal waves of magnetic field are orthogonal:
H, - H_ = 0. This means that the corresponding polar-
ization ellipses are orthogonal and the directions of
their circumvention are identical. The eccentricities of
isonormal ellipses are also identical. Let a, and b, be
the lengths of the semiaxes of the polarization ellipses
of isonormal waves. The orientations of these semiaxes
are given by the formula

a, +ib, |[[H.//H. H.. (10)

When a wave propagates along singular axes, when
pi-p.=0o0rp, - p,=0and, accordingly, thefieldsH,
are parallel to p, and p, (up to acomplex scalar factor,
see (4)), the eccentricity of the polarization ellipses of
the wave of magnetic field vanishes, i.e., the polariza-
tioniscircular. Therefore, singular axes are sometimes
called circular axes. However, according to (4), the
electric component of the wave in this cases remains
eliptic.

9)

3. WAVE CHARACTERISTICS
IN THE NEIGHBORHOOD OF A SINGULAR AXIS

Consider in greater detail the wave characteristics
near a singular optical axis in a crystal with arbitrary
anisotropy. Choose any of the four axes m"? and
denote its direction by m, for short. Assume, for defi-

niteness, that m, is a solution to the equation p, - p; =

L However, asis shown in [10, 11], under a small anisotropy com-
parable to the absorption level, the splitting is determined by the
ratio of small parameters and may not be small. Below, we will
not consider such special cases.
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0. It can easily be shown that the vector ¢ in this case
can be represented as ¢® = J + gm,, where J isacircu-
lar vector orthogonal tomg (J -J=0andJ - my=0).In
alocal system of coordinates {x;, X5, X3} with the axis
X3 directed along m,, the vector J has the following
components: J = (1, i, 0). By an appropriate choice of
the parameter b in (6), one can reduce the vector ¢ to
theformc®@ = (1, ¢,, C3). Since the vectors c® and ¢@
are fully determined by the material tensor n —in' (6),
the parameters g, C,, and C; can be considered known.
In this notation, the complex refractive index for the
singular direction mg is given by

No = ng+iny = [a+b(1+ic,)] ™. (11)

Our primary interest, however, lies in the behavior of
the wave characteristicsin the neighborhood of asingu-
lar direction where

m = mgy+ 0(cosd, sing,0), 0<B<1l. (12

Here, O is the angle of deviation of the wave normal
from the singular axis, and the polar angle ¢ is mea
sured from the axis x;. Calculations based on general
expression (5) yield the following expressions:

N = Not J/OIP| cosq)_Tq)o,
-0 (13)
N = Mot A/BIPlSint—==2,
2
where |P| and ¢, are given by
i g1+
P=lPlepd 20 = iby=o N (19

In asimilar way, applying (4), we obtain the following
expressionsfor the complex amplitudes of the magnetic
component of the wave:

Hey = ClJ + JBRexp(i/2)], (15)
R = A(-C, 1,6), A= .2g/(1+C). (16)

In (15), C, are amplitude coefficients. As is clear
from (15), when the propagation direction deviates
from the singular axis (8 # 0), the wave polarization
ceases to be circular; ellipses arise whose eccentricities
arethe smaller, the smaller O is,

e’ = 1-bl/a; = JBIql, (17)

and with the orientations of the semiaxes given by (10),
g 11 Jos3(0 6°), inZ (0 -6°), )

(18)
ac, | Fsinz(6 -4°), cos(6 6%, &
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74
)

Fig. 2. Configuration of the surfaces n.(m) and n, (m) in

the neighborhood of asingular axis. The heavy lines show a
continuous transition between external and internal sheets,

n, +in, n_+in._, under a complete circumvention
of asingular axis.

In these formulas, |Q| and ¢° are defined by

Q=|Qexp(-i$%/2) = 2A(i -¢,). (19)

Formulas (13) completely describe the wave sur-
faces n(m) and n'(m) in the neighborhood of asingular
axis. Locally, these surfaces are completely similar and
differ only in the scale and the rotation through angle 1t
around my. Indeed, the difference n,, — ny coincides

with n,,, —ny when ¢ isreplaced by ¢ + 1t Each of the

surfaces n(m) and n'(m) has a self-intersection line that
emanates from a singular axis. The refractive indices
degenerate on the line ¢ = ¢, + 1T (N, = n_), while the

absorption indices degenerate on the line ¢ = ¢, (N, =

n_) (see Fig. 2). On the other hand, a full rotation

around my, i.e., the replacement of ¢ by ¢ + 21
reverses the signs + in (13), which means a simulta-

neous change of the branches: n, + in, <—— n_+in_
(see the relevant contours in Fig. 2). In this case, the
physical equivalence of the position rotated through 21t
is guaranteed by the fact that, according to (18), the
polarization ellipses of isonormal waves also change
places, a, + ib, ~—— a_ + ib_, so that the mutually
orthogonal pairs of ellipses coincide after the rotation.
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Fig. 3. Rotation of polarization ellipses under a complete
circumvention of asingular axis; the small upper circleindi-
cates the beginning and the end of circumvention.

Fig. 4. Self-intersection of the surface n.(m).

As aresult, after a full rotation around m,, the above
pairs rotate in the same direction through a resulting
angle of 172, which corresponds to the Poincaré index
1/4 mentioned in the Introduction (see Fig. 3).

In [12], we showed that a similar topological sce-
nario takes place in the description of the propagation
of elastic waves in absorbing crystals. However, in this
case, the Poincaré index of the appropriate distributions
of polarization fields may be of either sign: n = +1/4.

4. GEOMETRY OF THE SURFACE
OF REFRACTIVE INDICES
IN ORTHORHOMBIC CRYSTALS

Now, we proceed to the description of wedge refrac-
tion in the neighborhood of the self-intersection line of
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the surface of refractive indices. The general configura-
tion of the surface n,(m) in this neighborhood follows
from the previous description and is shown in Fig. 4.
However, further analysis requires more detailed infor-
mation about the geometry of thissurface. Thisanalysis
is beyond the applicability of formula (13), which is
only valid near one of the split axes. However, for small
absorption and, accordingly, small splitting, one can
describe at once the whole neighborhood of the pair of

axes mij) . Below, we do so for the neighborhood of the

pair m(il) in an orthorhombic crystal.

Arrange the Cartesian system of coordinates {x;, X,
X3} introduced above so that x5 || m® and assume that
the x, axisis parallél to the y axis of the original crys-
tallophysical system of coordinates, as is shown in
Fig. 1b. In other words, we choose the vectorsp, g, and
m® as unit vectors of the system {x;, X,, Xg} ; in the orig-
inal system of coordinates, these vectors are given by

p = (cosB,, 0,—-sinB,),

qg = (0,1,0), (20)

m® = (sinB,, 0, cos6y).

It is convenient to represent the wave normal m in the
new system of coordinates as

m=m®Y+Am, Am = (my, m,, 0), 21)
mf, m§ <1

Combining (5) and (7) and taking into account that
the absorption isweak, after rather tedious calculations
we obtain

N = Mot D.Je,Rer, ng = /e,(1+Dmy),

N = Mot (Imr)D,/Je,, (22)
No = (N3/2n, +X1D)./e,.
Here,
D = ,/d,d%/2n,, (23)

_ 2 2 2. A
r= ’\/ml+ m; — X1+ 2iX,m,.

In (22) and (23), X, is defined by (9) in which the sign
of modulus should be changed by mere brackets. The
condition Rer = 0, which reduces to the relations

—Xo S My < Xo, (24)

determines the self-intersection line of the surface
n,(m) on which n, = n_(Fig. 4). On the other hand, the
condition Imr = 0 yields the two relations

m, = 0,

m =0, m<-x,andm, =0, m,=X, (25)

which determine two self-intersection lines of the sur-
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WEDGE REFRACTION OF ELECTROMAGNETIC WAVES IN ABSORBING CRYSTALS

face n, (m) such that n, = n_.. On the unit sphere of
directionsm - m = 1, thelines (25) continuetheline (24).
At the endpoints of the segment (24) (at the pointsm, =
+Xo), both therefractiveindices and the absorption indi-
ces coincide. These points define the directions of sin-
gular axes. The absorption splitsthe optical axism® of
atransparent crystal, thus giving rise to apair of singu-

lar axes m” and m™ that make an angle of 2x, (in

radians) (see (9) and Fig. 1b). The system of coordi-
nates used in this work has proved to be convenient for
describing the local geometry of the contact of sheets
because the x, axis is parale to the self-intersection
lines.

The line (24) represents a wedge singularity of the
surface of refractive indices of absorbing crystals. The
geometric normals n, can be defined for each sheet
n.(m):

on,

N. ”ﬁ (26)

We will focus on the orientation of n, in the immediate
vicinity of the self-intersection lines. When speaking of
such normals on the line (24), we will mean that they
aredefined in the limit of infinitely close vicinity of this
line. Here, it is obvious that n,(m; > 0) || n;(M, <0);
therefore, a single isonormal pair n.. characterizes both
faces of the wedge surface, on the upper (+) and the
lower (=) sheets. Assume, for definiteness, that n, = n,
(m; > 0).

In aparticular case of transparent crystals (o = 0),
when the line (24) shrinks to a point m; = m, = 0, we
obtain the following expressions for the refractive indi-
ces n, near this point and the cone of normals n°%(m) to
the surface:

n. = J&;[1+xD(cosy +1)],

(27)
n’ || D(cosy —1)p + gDsiny + m™®.

Here, we used the polar coordinates (x, g): m, = x cosy
and m, = xsiny. It is this cone of normals n(y) that is
shown in Fig. 5. In the case of zero absorption consid-
ered here, this cone is simultaneously a cone of group
velocities and Poynting vectors; i.e, it represents a
refraction cone. In the plane x;x, perpendicular to the
direction of m®, this cone has a circular cross section.
The angular dimensions a, and 3, of this cone in two
perpendicular cross sections passing through its geo-
metric axis (see Fig. 5) are given by

Bo _ 1. %o
tan2 = 2tanztanO(o, (28)

where D is defined by (23). It is obvious that 3, > a,

tana, = 2D,
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Fig. 5. Refraction cone of a transparent crystal (27). The
upper circle that bounds the conical surface and belongs to
the plane x;x, represents the trgjectory of the endpoint of

the energy-flux vector of acircularly polarized wave propa-
gating along the optical axis m(@.

aways, i.e., the cone is not circular. However, the less
D is, the closer the coneisto acircular cone with small
opening: B, = 0, = 2D < 1. In practice, the latter con-
dition isusualy fulfilled because, asarule, 2D in most
crystalsisno greater than 0.1; therefore, the opening a,
of the refraction cone is very small even for record-
breaking crystals. For instance, o, = 4°51' in ammo-
nium oxalate and a, = 3°18' iniodic acid [3].

In absorbing crystals near theline (24), when |my| <
1, therelief of the surface of refractive indices (22) and
the field of geometric normals are given by

n, Ol+y.m;, m>0,
B Ell+y¢m1’ m1<01

Je, (29)
n, ” m(l) - Dyip'
Here, the following parameters are introduced:
V. = 1+1/,/1-ma/x2. (30)

When deriving these formulas, we assumed that |m,| <
(xé - m§ )2%0. When my changes its sign, atransition
n, = n_occurs, which means that there is a kink of
the surface n,(m) on the line (24); in this case, the vec-
tors n, change their direction stepwise, thus forming
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Fig. 6. Schematic distribution of the vector characteristics of wedge refraction; (a) normals n.. on theintersection line of sheetsand
(b) normalized Poynting vectors p,. = P../|P.. | along the edge of the refraction wedge on the wave sheet n_(m) (dark quadrangles

denote right angles).

awedge of orientations (see Fig. 6a). The opening
angle a of thiswedge is defined by

D(y.—y.) _ 2D J1-my/x5

tana =
1+D%.,y.  1-(1+D*)mi/xo

(31)

as a function of the coordinate. At the center of the
intersection line of the sheets, where m, = O, the angle
a (31) coincides with o, (28) and proves to be the min-
imal opening angle of the wedge of geometric normals
(see Fig. 64). Away from the center, the angle between
the normals increases, while the kink of the sheets

n,(m) becomes still sharper. When m5/x3 < 1, we
have

0 2
O 0
EDBLz—%mZ p+m®,
n. |0

D]mSD o
Dp+m'™.
Toxd

Below, we will see that, under a small deviation from
the center of theintersection line of the sheets, thewave
polarization is dightly different from alinear polariza-
tion; therefore, formulas (32) for n, approximately
characterize the direction of group velocitiesu, aswell.

(32)

A sufficiently smooth increasein angle a with m, at
the center of the wedge changesinto asharp increasein
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the vicinity of the direction m' . Let us evaluate the
region of the anomalous growth of a. The angle a
increases by afactor of two from ag to 20, for my/x, =

J312=0.86. Inthisregion, x,—m, < X, and it is con-
venient to use the notation m, = Xg— 1, 0 < U < Xo.
Then, a = 102 for p/X, = a;/8. For a, = 0.1, this equal -
ity holds at /X, ~ 10°3. A further decrease in p/x, to
zero leads to a still sharper increasein o from W2 to Tt

A neighborhood of a specific direction of the singu-
lar axis requires a separate consideration. Here, it is

convenient to introduce polar coordinates i, () with the
origin corresponding to the direction m®: m, = Xo +

pcosP , m; = psin( . Inthis case, we obtain the follow-
ing expressions from (22) and (26):

ni=J€_216cos%, 8 = (2uxog2) "D,

~

P

n.,=n_=ng = psin§+qcos

(33)

N2

Expression (33) showsthat, for m, = X, (propagation

along the singular axis m'”) the surface n.(m) has a
pointed-tip-type singularity (see Fig. 6a). In this case,
in contrast to the pronounced asymmetry at the center
of the edge, the shape of the wedge at the ends of the
edge proves to be symmetric with respect to the plane
XoX3 that passes through the edge of the wedge and
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locally coincides with both faces of the wedge at the
singular points m; = 0 and m, = +X,. Accordingly, the
geometric normals at the ends of the edge of the wedge
have a fan-type singularity that is paralel to the x;x,
plane and symmetric with respect to the X,x; plane
(Fig. 6a).

5. WEDGE REFRACTION
OF ELECTROMAGNETIC WAVES
ON THE SELF-INTERSECTION LINE
OF THE SURFACE n,(m)

Below, we will see that the polarization of waves
near the self-intersection line of the surface n.(m) is
linear only on the central x;X; plane, whereas, in other
places, it iselliptic. Therefore, the group velocity of the
waves can be defined only in a relatively narrow area
surrounding the x;x; plane. Hence, it is clear that the
field of normals n,(m) determined above can hardly
serve as a characteristic of the wedge refraction of
waves considered here. To describethelatter, one hasto
determine afield of Poynting vectors

P, = ReE, xReH,. (39

For complex vector amplitudes of electric and mag-
netic fields near the intersection line of the sheets
n.(m), we obtain the following expressions from (4)
and (7), which complement formulas (22):

E2 ||m,q+ (m, +iX, £1)G,
_0“ L0 + (M, .Xl ) (35)
H: [lmpp—(my+ix,£1)Q.

Here, G = p + 2Dm®. On the intersection line of the
sheets (24), when m, = 0, we have the foll owing expres-
sions for ac electric and magnetic fields:

- m -
ReE, ||giGsin¢i—;(—2qcos¢i,
1

(36)
ReH, [|g.qsing; + r;—zpcosq);.
1
Here,
0. = 1+ ,/1—(my/xo), (37)

¢, isaphasethat depends on timet and the coordinate

o, =0 —¢2, 0"=k -r —wt, and ¢_ isthereference
point of the phase. Formulas (36) describe an dliptic
polarization of isonormal waves; in the present case,
they have identical phase velocities but different

absorption indices. The coefficients of sing, and

cos¢, in (36) define the vectors a, and b, of semiaxes
of appropriate ellipses.
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Near the midpoint of the intersection line of the
sheets, when |[my| < Xo = X4/, from (36) and (37) we
obtain

0
EQGsinq)I—r;—zq coso.,,
1

ReE, || O m
E,choscl):——stinq):,
D Xl
(38)
o -m 3
[Rgsind, + X—pcos¢+,
ReH, || :
%2pcos¢:+ T—qu'nqi.
D Xl

These formulas show that, at the center of the wedge,
where m, = 0, the wave polarization is linear, whereas,
a little ways from the center, weak ellipticity arises.
Finally, when a wave propagates strictly along a singu-
lar axis, the electric and magnetic fields are polarized
elliptically and circularly, respectively:

ReE, || Gsing, —gsgn¥,coso.,
« |l ¢.—qsgnx,cosd. (39)

ReH., |[qsing. + psgnx,coso..

The Poynting vector P, (34) can be represented asa
sum of time-independent (averaged over a period)

energy flux P. and atime-dependent flux Py :
P, = P.+P,,
P, || c.cos2¢, +d,sin2¢..

Here, ¢, and d, are the semiaxes of the corresponding
ellipses. According to (34) and (36), on the intersection
line of the sheets (24), these vectors are defined by

(40)

_ Cn?
P. || —2Dgip + O + gtm®,
ke U

I]T]z
c. ||2Dgep + C— gm®,
xo U

(41)

d. 1120. 5 Ha.

We omitted identical factors in the expressions for P.
and P . One can see from (41) that the two time-aver-

aged middle vectors P. and P_, whose orientations
can also be represented as

P. Im® —Dg,p, (42)
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Fig. 7. Trajectories of the endpoints of the Poynting vectors P,. of isonormal waves on the universal refraction cone (Fig. 5) for three
directions of the wave normal on the self-intersection line of the surface n,(m): a—m || m® (my, = 0), heavy dots indicate the posi-

tions of the endpoints of P, ; (b) intermediate orientation, 0 < m, < X, two elliptic sections of the cone are parallel to the vector g

(to the edge of the wedge); (c) m || m&l) (mp = Xg), the horizontal circle in the section corresponds to the merging of two ellipses

for asingular direction.

always lie in the plane x;X3, which is orthogonal to the
edge of the wedge, while the orientations of these vec-
tors smoothly vary asthe coordinate m, is varied, mak-
ing an angle of y (Fig. 6b):

_ D(g,-9) _ 2DJ1-mi/xs

tany = 5 = (43)
1+D%g.9-

1+ D’mi/xe

It is interesting to note that expressions (42) and (43)
are similar to (29) and (31).

The ends of the vectors P.. correspond to the centers
of eliptic trajectories described by the ends of the vec-

tors P, and P_. The minor semiaxes of the ellipses are

paralel to the edge of the wedge, d. || g, while their
eccentricity monotonically decreasesfrom unity to zero
asm, increases from 0 to x,. Simultaneously, the slope
of the major semiaxes c, with respect to the horizontal
plane decreases to zero: for m, = xo, we havec, || p. A
rather tedious analysis leads to a very interesting pic-
ture: al eliptic orbits can be represented as lines that
arise in the plane sections of a universal cone that coin-
cideswith the cone of refraction of atransparent crystal
(see formulas (28) and Fig. 5). A variation in m,
changes only the orientations of the secant planes,
which remain parallel to the edge of the wedge, i.e., to
thevector g. Inthis case, the full energy-flux vectors P,
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traverse all the generators of the universal cone, run-
ning over the corresponding elliptic orbits (see Fig. 7).
Consider the behavior of the characteristics of interest
near the midpoint and at the ends of the intersection line
of the sheetsin greater detail. When |m,| < X,, the energy
fluxes of isonormal waves are given by the relations

2
€

O m2D
+||IDE-2+ p+m,
O 2)(3

I%FID

0
0

2 2
%no%——%mzmp—%—j%mzm ®
0 o 2x O 2x
0
. I 5P
0
O 2

0
P lI-Czpp+m®,
0 X
U omo. O md
Eb—” A Dp + [ — 2 m(l), (45)
o [BX 0 4)(3
0
411 Fa.
0 a
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These formulas show that the time-averaged vectors P.

and P_ of two isonormal waves start to converge as
they move away from the wedge center. Moreover, as
we expected, theinitia orientations of these vectorsfor
m, = 0 coincide with the corresponding directions of the
normals n, (see (32)); however, the latter, unlike the

fluxes P , diverge asm, increases, rather than converge
(Fig. 6).

Near the singular axis, when m, = xg—H, 0 < g <
Xo, the energy fluxes are characterized by the expres-
sions

P. || Po Jiil(—ZDp +m®),
0

Po = —Dp+m™,

¢ IDpt [24(2Dp-m®),
Xo
- Xo

These relations show that, for a wave propagating
strictly along asingular axis, when i = 0, the directions

of the mean fluxes of isonormal waves coincide, P. ||
P_ || Po, while their endpoints represent the centers of

(46)

appropriate circles that the vectors P, and P_ describe

in the x,%, plane (Fig. 7c). Thefull vectorsP=P + P~
behave in exactly the same way as the flux vectors in
transparent crystals when a circularly polarized wave
propagates al ong the optical axis (Fig. 5). Formulas (46)
show that the average flux vector P, retains its asym-
metric orientation in the x;X; plane.

Away from the singular axis, when the waves lose

their circular polarization, the vectors P. and P_
diverge more and more as [ increases (Fig. 6b). In this

case, the circles described by the vectors P, and P_ for
K = 0turninto gradually elongating ellipses. The angle

y (43) between the vectors P. and P_ smoothly
increases when moving toward the wedge center: it
attainsits maximum equal to o, at the center; i.e., aswe
have aready pointed out above, it coincides with the
angle between the normals n, (see Fig. 6).

6. DISCUSSION

Thus, absorption gives rise to quite nontrivial topo-
logical features both in the geometry of a contact
between degenerate wave surfaces (Figs. 2 and 4) and
in the distribution of complex vector polarization fields
that are characterized by the Poincaré index n = 1/4 in
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thevicinity of singular axes (Fig. 3). In the propagation
directions that are close to the self-intersection lines of
the surfaces of refractiveindices, internal wedge refrac-
tion is predicted. Analysis has shown that the character
of refraction is analogous to a similar phenomenon in
the acoustics of nonabsorbing crystals only in the cen-
tral region of a wedge, where the polarization is close
to a linear polarization. Away from this region, the
ellipticity of polarization increases, while the direction

of the Poynting vector averaged over a period, P.,
deviates more and more from the corresponding normal
n, toward the surface of refractive indices. In this case,
the nonaveraged Poynting vectors P, on the entire edge
of the wedge rotate along the same cone of directions,
which coincides with the refraction cone of a transpar-
ent crystal, whereas the endpoints of these vectors run
over different plane (elliptic) sections of the cone that
depend on the position of the wave normal on the edge
of the wedge. Along singular axes (at the ends of the
edge of the wedge), these sections become circular,
whiletherefraction pattern fully reproducesthe conical
refraction of circularly polarized wavesin atransparent
crystal (Fig. 5).

In the last sections of this paper, when analyzing the
geometry of the sdlf-intersection of the surface of
refractive indices and discussing the specific features of
the wedge refraction of electromagnetic waves, we
restricted ourselves to the analysis of orthorhombic
crystals. In this case, the x;%; plane passing through the
center of the wedge represents a symmetry plane, and
the pictures on either side of this plane are equivalent.
The center of the wedge corresponds to a linear polar-
ization of waves, which is preserved on the whole this
plane, while the signs of rotation of elliptically polar-
ized waves on different sides of the symmetry plane are
opposite. Obviously, the signs of rotation of circularly
polarized waves that propagate along the crystallo-
graphically equivalent singular axes m{” and m" are
also opposite in this case. Naturally, in monoclinic and
triclinic crystals that have no such symmetry plane
connecting the singular directions, these directions
are not equivalent, and the general picture is some-
what distorted. Nevertheless, according to analysis, all
the main features of the phenomenon are qualitatively
the same even in the absence of symmetry. In particu-
lar, a triclinic perturbation of symmetry does not
remove the line of orientations for the propagation of
linearly polarized waves on the unit sphere of direc-
tionsm - m =1 but distortsit. Such linesarewell known
in absorbing crystals of arbitrary anisotropy [13, 14] and
do not disappear even under the additional switching on
of optical activity [15].

Let us touch upon the possibility of experimental
observation of wedge refraction in absorbing crystals.
In the experiment, the physical parameter with which
one should compare the splitting angle of optical axes
is the divergence of the optical beam. In particular,
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Fig. 8. Vector polarization fields in one of isonormal branches around (@) a tangency point of degeneracy in a uniaxial crystal,
(b) apair of conical pointsin abiaxia transparent crystal, and (c) aquadruple of singular axesin an absorbing crystal (the rotation
of the major semiaxes of polarization ellipses are shown near singular points).

when a light beam is transmitted along the direction
m® (or m®@) with the divergence AS much greater than
the angular splitting 2x, of optical axes, the pattern
observed differs only slightly from the ordinary conical
refraction: the fine details associated with the absorp-
tion do not manifest themselves. However, if we choose
alaser beam with adivergence much lessthan the angu-
lar splitting of axes, then it becomes possibleto observe
a wedge refraction as well as the anomalies described
above near new positions of optical axes. Since the
divergence of alaser beam may be very small, A9 ~1',
the corresponding estimate of admissible relations
between the material parameters, 2x, > A9, yields the
inequality n'/d > 3 x 104, which leads to inessential
restrictions on the choice of the objects of investigation.

Let us dwell on an interesting topological aspect of
the problem. It iswell known that, in optically uniaxial
crystals, the degeneracy corresponding to the tangency
of the wave sheets and characterized by the Poincaré
index n =1 (Fig. 8a) isunstable with respect to any real
perturbation &e of the “uniaxial” symmetry of the ten-
sor €. Any such perturbation (due to external actionson
a crystal or a phase transformation) splits the tangent
degeneracy into two conical ones each of which has
topological “charge” n = 1/2, so that the total Poincaré
index remains equal to the original one (Fig. 8b). Con-
ical degeneracies are stable with respect to the varia
tions of anisotropy, which only shift the degeneracy
points but do not change their index n. However, aswe
have seen, this stability does not apply to imaginary
perturbations de = id¢', which correspond to absorp-
tion. According to the results obtained above, the
switching on of absorption aso splits conical degener-
aciesinto two pairs of singular points with indicesn =
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1/4 (Fig. 8c), so that the conservation of the original
index again holds: % x4 =1. Itisthisfact that guaran-

teesacontinual switching off of thetwo types of pertur-
bation considered above; as a result, the regions with
split axes shownin Figs. 8b and 8c (in the circlesdrawn
by dotted lines) shrink to points, and we return to the
original pattern of a transparent biaxial, and then also
uniaxial, crystal.
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Abstract—Bound states of a particle in the field of two pointlike & centers are considered in the 3D problem.
The exact solution to the Schrédinger equation is obtained for a system of scattered centers. © 2004 MAIK

“ Nauka/Interperiodica” .

Point (zero-range) potentials were used for the first
time by Fermi [1] in the 1D problem to study the shift
of spectral lines. The application of the & function asthe
potential in the Schrédinger equation makesit possible
to obtain a compact anaytic solution. This facilitated
subsequent wide application of point potentials. In
addition, actual forces (e.g., nuclear forces or theforces
emerging during the screening of the Coulomb poten-
tial) can often be treated as short-range forces.

The method of zero-range potential has been suc-
cessfully used in various branches of physics. In
nuclear physics, this method was employed for study-
ing the scattering of particles (including that by two sta-
tionary centers). Point interactions were used for solv-
ing three-body problems and for studying nucleon tun-
neling. The method is also extensively used in atomic
physics. It was employed for describing molecular sys-
tems, in the theory of atomic collisions (e.g., in study-
ing charge exchange and neutralization of atomic parti-
cles), and in solid-state theory.

Extensive literature on this problem is presently
available. Steady-state solvabl e point models were con-
sidered in monograph [2] in 1D, 2D, and 3D cases.
One-dimensional steady-state equations with 6 and o'
potentials were studied in [3]. A number of questions
associated with 3D point potentials were studied in
detail in monographs [4, 5].

The models with pointlike interactions are distin-
guished, among other things, by their applicability for
constructing exact solutions of nonstationary problems.
Breit [6] was apparently the first to study nucleon tun-
neling with the help of a nonstationary 1D model.
Nucleon tunneling was also analyzed in [ 7, 8.

An analogous nonstationary model equation with
scattered & potentials was studied in [9-15]. The exact
solution describing a “bound” state (i.e., the state
described by arapidly (exponentially) decreasing func-
tion of coordinates in the case of identical constants
characterizing the depth of the levels of pointlike cen-
ters) was obtained for the first timein [9]. In addition,
an important feature of the problem on scattering of

pointlike centers with a constant velocity was also con-
sidered in [9]. If the Schrédinger equation is used in
integral form, an equation with a difference kernel
appears under a certain substitution of variables. This
makes it possible to obtain exact solutions for a wide
class of problems. A relation for the charge-exchange
probability was obtained in [10] for an arbitrary rela
tion between the relative velocity v and parameter o
characterizing the level depth. A compact expression
for the recharging probability amplitude for o wells
characterized by different depths a and (3 is given
in[11]. This expression is valid for any relation
between quantitiesa, 3, and v. A solution with an oscil-
latory asymptotic form was obtained (i.e., “free” states
were determined) in [12] for scattering of identical
wells. The Cauchy problem for different wells and for
scattering of o centers from different points was aso
solved in [12]. The “bound” state of dispersing centers
characterized by different depths of a single bound
level was determined in [13]. In [14], the propagator in
thefield of two dispersing centers of various depthswas
determined for the first time. The same problem was
solved later in [15].

This communication is devoted to analysis of point-
like 3D systems. In Section 1, the form of the potential
operator for a moving 3D well is determined. In Sec-
tions 2 and 3, the bound states for two stationary wells
(including those with different depths) are determined.
The exact solution to the Schrodinger equation for
identical dispersing wells is obtained in Sections 4
and 5, where the “bound” state (i.e., the state described
by a rapidly decreasing  function of coordinates) is
determined. The solution in the case of dispersal from
different points is also obtained. The results are dis-
cussed in Section 6.

1. Inthe spherically symmetric case, the bound state
of ad center resting at the origin can be described by the
Schrédinger equation of the form

W 2ay = sy +rm ), 1)
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where Yi(r, t) isthe psi function; in the system of units
used here, s = m=e=1, # isPlanck’s constant, misthe
mass, and eisthe charge.

The solution to Eq. (1) describing a bound state has
the form

q_j:

const ] ik
TexpD—Kr+7 . ()]

Thevalidity of relation (2) can be verified, for example,
by substituting this solution into Eq. (1) writtenininte-
gra form:

t

W = Z%IJ'dtIdr'G“)(r—r‘,t—t') .
xO(r')[W(r, t) +r'W (r',t)],

where GM) is the retarded Green function (see [4, 5]),

- _ io(t—t") (r—=r"
¢ s [2Tri(t—t')]3’2exp[ 2(t—t)} “

Here, a(xX) =0if x<0and o(x) =1 for x= 0.

If we have a d center moving with velocity v, we
must modify the right-hand side of Eq. (1) and writethe
equation as follows:

|a—w+ 1Alp
ot
ot ®)
= ?B(r —vtO){W[l—iv(r—vt)] +(r—vt) }.
This equation has the solution
_ const
Y=o
(6)
0 v
X exp+K|r —vi] +5 K 24 iv(r —vt) + —1.
0 2 20

2. Let us consider the case of two stationary centers
located at pointsr =rgand r =— . The corresponding
Schrddinger equation has the form

D 2ap = Z8(r —r )W+ (r —1o) D )

+O(r +r)(W+(r+ro) )].

Here, the quantities k and r, determine the energy
level Ko Representing the equation in integral form

(7)
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with the help of the retarded Green function, we obtain

1 dt KoC(t)
(2T[|)1/2K-r (t— t)3/2

N2 .
" Eex'o[lg(t—r to'; Ik exp['z(it _rt?))E_
While deriving this equation, we took into account
the boundary condition
[W+(r=rM ], .,
=W+ (r+rM ], L, = —KoC(1).

Applying the operator [Q + (r —rg)Uy],  ,, toexpres-
sion (8), we obtain the following equation for C(t):

(8)

1 . dtC
~oC(t) = - N I(tt_t()tg?2 .

[T =T0)" 1 i(r =T o)y
eX'O[Z(t—tO')EL+ t—t'ODrﬂro

dtC(t) Rirg
KJZ_WI(t t)3/2 OeXpH_tD'

Beforewe setr = rin thefirst term, we must carry
out integration by parts, assuming that the substitution

. 2_|t'=t
o]
t-—t

t'=—0

is equal to zero. For t' — t, this equality can be
ensured by the presence of the exponential factor. Rep-
resenting the exponent i(r —ry)%/2(t —t') in dimensional
variables, we obtain im(r —r)%/2%4(t —t') (see [5]). In
our calculation, we must carry out the substitution
h — (1 —i€), where the positive quantity € — 0;
before proceeding to the limit € — 0, we must ensure
that t' — t. Quantity € doesnot appear subsequently in
the final expressions. This operation is essentialy sim-
ilar to the operation “subtraction of diverging terms”
proposed in [4]. For C(t), we have the equation

2 dtC(t)
A

C(t) =

9)
it C(t)expEf rtg

(t —t )3/2

1

K«/Z_T[II
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If we set in this equation

.2
K
c(t) = epd2
we obtain the relation
exp(—2K,r
K = KO——p(2r0 o)) (10)

The depth of the bound level Kk, depends not only on
K, but also on the distance 2r, between the centers. For
ro — 0, asmooth transition of solution (7) to the solu-
tion for a single & center does not exist. This distin-
guishes the problem considered here from the 1D case,
inwhich such asmooth transition is possible (see [15]).
Solution (8) has the form

W= constEeXp(_K("r —rq) + exp(—Kq|r +r|)d
O Ir=rq| r+r1

()
.2
Koy
X &XPES
If we seek the solution to Eq. (7) in form (11), we can
readily obtain relation (10) also.

3. In the case of two stationary & centers, bound
states with two different values of parametersk, and K,
characterizing the level depth can exist.

We assume that the solution for the  function has
the form of the sum of four terms:

.2
Kqt
exp%—z1 —K1|r—r0|g

(12)
iK1t
exqu?l —Ky|r + rOE

+B r +rg|

1

.2
K>t
exp%%—th +ro|%

r +rg|

+[3,

This gives

o, 1
15t T30V

kit kst
= —2“@: alexpDTlm+ azexpDTZD}é(r —ry)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

CHIKHACHEV

.2 .2 D
+[ B0 + pop 50 + 1) 5

The right-hand side of this equation can be written in
the form

C3(r = 1) W+ (r =ro) 52
+CB(r +ro) W+ (r+ro) (5],

The substitution of expression (12) into thisrelation
ultimately leads to the system of four equations,

exp(—2K,ro)
=210y = E_Klal+ Bl—ZI‘O L2 ECL
exp(—2K o)
—2moa, = E—Kzaz"' Bzz—rozogcp
(2 ) (13)
exp(—2K,r
=2mp, = E—K1[31+(x12—r010%C2,
exp(—2K,r)
_ZHBZ = E—K282+02——§F;—2-—()—EC2

From the condition of existence of nonzero solution
of system (13), we can find two equationsfor determin-
ing constants C, and C,:

K1C]D chﬂ _ eXp(_4K1r0)

A -—5Hi -8 = G (19
K2C]D K2C2:| _ eXp(—4K2I'O)

H- ZHD%L— 2 = GG (19)

0

These equations define the values of C, and C, in
termsof K4, K,, and r. It should be noted that the equal-
ity C, = C,ispossible only for k; = K.

4. Let usnow consider amore complex case of mov-
ing & centers. We assume that the centers are scattered
from point r = 0 with equal and opposite velocities. The
Schrddinger equation can be written in the form

oy 1

D+ 2ny = 2?”{5(r-vt)[w(1-iv r —vt))

+(r=vt)@] ® (r +vt) (16)
X[Q(L+ivIr+vt))+(r+vt) ]}.
Using the advanced Green function
O - __iot-t) i(r—r)°
© (2ni(t—t'))3’2ex [ 2(t'—t)}
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(see[5]) and the boundary conditions at pointsr = vt,

1 1 0
Elr+vt| o
we can write Eq. (16) in mtegral form:
[ dtC(t)
( 2H|)3/2KI(t _t)3/2 a
17
. d i(r=vt)7 _i(r+vt)ZD
gKap[ 2= )} KeXp[ 20t —1) }H

We denote
c)yepd U = o).

Analogously to the procedure used in Section 2, we can
obtain the following expression for g(t) from Eq. (17):

_ 2 “g(t)dt
0O = =l
(18)
i gt dt o 2i vt
KJEI( 3’2 POt

While deriving this expression, we aso integrated by
parts and assumed that

t'=o

2 vt (r—r)d _
eXpD - 1 - 01
Jr-t g2 2Av-tg|

which ispossible under the substitution 2 —» 7 (1 + i€)
and e — 0. We set

gEE'D

h(1) =%D, T =

Equation (18) leadsto

1' '[' :1‘
t’ t

i dr(2h(t)T +h(T))

h() = K,\/ﬁj’ Ji-T
(19)
T dt' h(r) 0 2iv7 n

KA/2nI(T 1)¥? =POT <0

This equation can be solved using the Laplace transfor-
mation in the same way asin the case of the 1D nonsta-
tionary problem (see[9, 11, 12]). Assuming that

00

H(p) = Ih(T)eXp(—pT)dT,
0
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we can obtain from Eq. (19)

dH
KH(p)————— (p) +2p

d
© = Tl L H(P) 20,35 "
I
s 2I‘/de[exp( —2v 2ip)H(p)].

If we set p = g%/2i, we can obtain from expression (20)
the solution for H in the form

_ const qdq
H = ——eX 21
W= A pD .[a(q) &
where
_ g &Xp(=2vg)
a(@) = a-———
For g(t), we obtain the following expression:
const
o(t) = == jqqu(q)eXpD a2

Path L may have theform of two rayslocated in the sec-
ond and fourth quadrants of complex plane g and will
be defined more exactly below. Since

.2

c() = gt e st

the solution to the Schrédinger equation is given by

vt
mdtexp% 2%

W(r,t) = ConStJ- (t -2t

da'
g (gdg
Iq qep(T ZtDa(q) @) fa(q)g

O i(r +vt)D
x|

(23)

» G(r —vt)D
P

= const{W_+W}.

The integrals defining W, can be transformed to the
simpler integrals

expthiiv igs
W, =
raal (24)
qdq D I(q |r+) rik qdq
fa(q) Ia(q)g
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Here r,=r vt r,=|r,|, and

a(q) = q- —eXp(ZVZ va)

Thesum W, + WY_satisfiestheinitial equation (16); this
can be verified by direct substitution.

L et us now determine more exactly the path of inte-
gration L. Let ussupposethat q=q, +ig,, whereq; and
g, are real numbers. Path L consists of the imaginary
axis (g, = 0), where g, varies from « to 0, and the real
axis (g, = 0), where g, variesfrom 0 to co. On theimag-
inary axis, the integrand function has no singularities
and exponentially decreases for g, —= oo; on the real
axis, apoleexistsfor 2vq; = exp(-2vq,) and we assume
that contour L bypasses this pole from above. The inte-
grand function in expression (24) decreases exponen-
tially for g, — o on thereal axisaswell. It isimpor-
tant for the next section to note that contour L for
g, — o can be displaced to region g, < 0, which
ensures the convergence of the integral.

5. After certain modifications, relations (23) and
(24) give the solution of amore complex problem, viz.,
scattering from different points. We assume that the 6
centers are located at pointsr = tryat t = 0. The veloc-
ities of the centers are directed along +r, and —,
respectively. In this case, we must replace r — vt by
r—vt—ro=r_andr +vtbyr +vt+r,=r_inEq. (16).
We denote

Ovt iy O
+ &P Fivirg D|(q—iri)%
Qq(r,t) = expEr - B
ql
Iryf ft+= 0 24+230
This gives
Q" 1, s _
[ 5t +2AQ = 21¥(r,)
| [l
Gyt i 0 1 (25)
xexpE > - rq:g ; .
0 2t

We represent the W function in the form

W= _[(Q; +Q,)S(q)da. (26)
L

Substituting this expression into Eqg. (16) modified in
accordance with the above arguments, we obtain the
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following equation for §q):

D D
_[ dqexp%k (D%S(q) -
02+ .m KH+ )

(27)

D D

J’ dqexp[h Da(q)S(q)
0 ZB r'q
0 vl
This equation has the solution
S(q) = —L puqq gddi) (28)
a(q) a(q)

Substitution of expression (28) into Eq. (27) and
integration of the right-hand side of the resultant equa-
tion by parts lead to an identity. The form of Egs. (26),
(27), and (28) implies that relations (23) and (24) give
the solution of the problem of & centers scattered from
different points (r = #r) if we carry out the following
substitution in these relations:

th+rV°, re — |r £(vt+ry)|.

Constant Cdepends on v, K, and ry, the complex

form of the dependence complicating the passageto the
steady-state limit v — 0. To determine the solution
for v — 0, we will seek §q) in the form §q) =
exp(ikoq). In this case, we can obtain from Eq. (27)

.2
Koy . I'q] iKog , I'dl
exp[nger} X p[ngrVD}

K i(Ko+2iv)?
2vB+r—‘D
v

Proceeding to the limit v — 0, we obtain the equality

(29)

exp(—2Kol)
2r, '

coinciding with relation (10). In accordance with this
equality, the steady-state solution is defined by for-
mula(11). It should be noted, however, that the form of
function §q) used here does not provide a solution for
vz0.

6. Solution (23), (24) is basically analogous to the
solution obtained in [9] for the bound state of scattered
centersin the 1D problem. In both cases, the solutionis
the sum of two expressions corresponding to the direc-
tion of motion of the center and affecting each other.
However, the 3D problem exhibits a number of pecu-

K = Kg—
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liarities. The bound state in this case cannot be repre-
sented in the form of a discrete series of “metastable”
decaying levels. In the case of scattering from the same
point in the 1D problem, in the limit v — 0, the state
continuously transformsinto the state of asingle é cen-
ter, while no such transition can be made in the 3D
problem. Thisis due to the fact that there is no contin-
uous transition to the state of one center in the steady-
state two-point problem upon a limiting transition to
zero of the separation between the centers. In mono-
graph [4], the existence of relative motion is simulated
by the presence of bound levels with a time-dependent
depth. Apparently, it is possible to construct more real-
istic solvable models of various nonstationary quan-
tum-mechanical processes such as, for example, the
tunneling of nucleons or charge exchange of atomic
particles. In this connection, nonstationary problems
with 3D pointlike d centers are of special significance.
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Abstract—A new three-dimensional scheme for rectifying a gradient force is proposed and analyzed. The
schemeisbased on the use of astrong, partially coherent optical field involving a component with afluctuating
phase. It is shown that the rectification of a gradient force acting on atoms with a nondegenerate ground state
is asecond-order effect with respect to field strength in this scheme, whereas an analogous effect is third-order
in coherent bichromatic fields. Conditions for three-dimensional confinement of atoms are obtained by using
the velocity dependence of the rectified radiative force. For alarge class of atoms, such as even-even isotopes
of ytterbium and alkaline-earth elements, these conditions can be implemented at a relatively high effective
temperature (of the particle ensemble) of about 10 K. Thisfinding can be used to widen substantially the range
of energies of atoms amenable to effective three-dimensional optical manipulation. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Resonant atoms placed in a strong nonmonochro-
matic nonuniform optical field (as a standing wave)
are subjected to a strong rectified gradient force
(RGF) [1-5]. Its sign remains invariant over a distance
much larger than the optical wavelength A. The force
does not saturate with increasing field intensity (in con-
trast to spontaneous radiation pressure).

Various theoretical aspects and implementation
schemesfor rectifying radiative forceswere considered
in humerous studies (e.g., see [6-11] and references
cited therein). In particular, their results suggest that
RGF can be used to create extremely deep potential
wells[12] and provide dissipative optical trapsfor con-
fining relatively “hot” atoms with energies well above
typical lower limits for laser cooling. Their practical
implementation can substantialy widen the range of
energies of atoms amenable to effective three-dimen-
sional optical manipulation. However, optimization of
necessary physical conditions must rely on an analysis
of three-dimensional models of rectification that allow
for polarization phenomena in mechanical effects of
light [4].

In this paper, we propose and analyze a new three-
dimensional scheme for rectifying agradient forcein a
strong nonmonochromatic field involving a component
with a fluctuating phase. The analysis is performed for
atomswithJ=0— J=1transitions (aseven-evenYb
and akaline-earth isotopes), which are deemed pro-
mising for new experiments on laser cooling (e.g.,
see 13-16] and references cited therein). In this
scheme, the effects due to the RGF and the delayed gra-

dient force (radiativefriction) are only of sixth order (!)
in the amplitude of the acting field in the limit case of
weakly saturated population of excited levels when a
coherent field is used [1-4)]. For thisreason, analysisis
complicated and the radiative force has to be modified.
The scheme differs from those with atoms with degen-
erate ground states[8, 17].

We show that rectification of a gradient force in a
strong, partially coherent field is a fourth-order effect
with respect to the field amplitude (i.e., a second-order
one in intensity). We derive expressions for RGF and
delayed gradient force (DGF) in a 3D nonmonochro-
matic field and use them to determine conditions for
stable 3D confinement of resonant particles with an
effective temperature T of at |east several kelvins(much
higher than the known lower limits for laser cooling in
similar problems).

We note that the opposite limit case of weak coher-
ent bichromatic field and particles with T < 1 K was
considered in previous studies [18, 19] (also devoted to
three-dimensional rectification of radiative forces for
atoms with strong singlet—singlet transitions and weak
J=0— J=1transitions).

2. MODEL

Consider an atom of mass m moving with velocity v
in an electromagnetic field

E(r,t)e ™ +cc.

with carrier frequency wy, tuned to resonance with the
g =0, Mg = 00— |Jo = 1, M = 0, £1[atomic transi-
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tion, where J, is the total angular moment and M,
denotesits projectionsin theground (a = g) and excited
(a = e) states.

Thefield is the superposition of coherent quasi-res-
onant components with three different frequencies
polarized in mutually perpendicular directions and a
partialy coherent (fluctuating) resonant field E' with a
bandwidth I

E(r,t) = Z Ej.e exp[—iAt] +E'(r, 1), (21)
i=xyz

where g denotes the unit basis vectors of a Cartesian
coordinate system and 4 is the detuning from the reso-
nant frequency wy.

In accordance with the original concept of gradient-
force rectification [1], assume the following hierarchy
of characteristic frequencies:

Al A=A > Vi,

_ |Vj1|2 (2.2)
Vil® U
A >y, kv, S (2.3

l

where | and j # | denote indices x, y, or z Vj,(r) and
U(r, t) are the Rabi frequencies defined as

dE, d(eE'(r, 1))
Vi= g Vi T
with d = ||d||//3 (||d]| is the reduced dipole transition
matrix element); k = wy/c is the wave number; y is the
decay rate for the excited state; and & is the fluctuating-
component detuning from the resonant frequency. Ine-
quality (2.2) implies that the coherent components of
E, are“quasi-resonant,” i.e., giveriseto aspatially non-
uniform Stark shift, and the fluctuating component is
“resonant,” i.e., ensures excitation of the atom. Condi-
tion (2.3) means that the coherent field E, issufficiently
strong to ensure that the light-induced Stark shifts
exceed the optical resonance width. The opposite limit
of a weak coherent bichromatic field was considered
in[18, 19]. Note that superposition (2.1) a fortiori
admits a 3D acting-field configuration (cf. [1-3]).

An atom placed in field (2.1) is driven by the force

[4, 20]

F = ﬁz (p,0V} +c.c), (2.4)
i

where

Vi(r,t) = V, exp(-iAt) + U,

1 In the scheme considered in [1], thisis achieved by using a“con-
trolling” coherent field component with asmall detuning.
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and p; denotes the projections of the induced dipole
moment measured in d, which are determined by solv-
ing the optical Bloch equations written for a prescribed
unperturbed classical trgjectory r = vt. In the “Carte-

ian” representation adapted to the present problem [4,
19, 21], these equations and the expression for theforce
are averaged over oscillations of frequency A, (cf. [22])
to obtain (using the same notation for averaged quan-
tities)

.d A~ _
|QT[+VD—|AI(r)%pi =

zqiju
j
hi=X%xYVz

A . 2.5
%d“"y—lﬂij(r)g% = —iyg; (29)

+(PUT -Uipf)=8; 3 (pfUi—cc),

l=xyvy,2
OVl°
- * jl
F = hZ(ijUj +c.c.)+hzq”—-§‘——, (2.6)
i j

where g is the population difference between the
excited and ground states, ¢; (with i # j) characterize
the coherence of excited atomic states,

2V (N | < V()
A, +Z |A|

I #i

Ai(r) =

are the effective spatially nonuniform detunings due to
light-induced Stark shifts, and

Aij(r) = Ai(r) —Ai(r).

Next, Egs. (2 5) and (2.6) are averaged over fluc-
tuations of E'.% Bloch equations (2.5) constitute a sys-
tem of multiplicative linear equations, and the averag-
ing over the ensemble of random processes U; condi-
tioned on the right-hand inequality in (2.2) can be
performed by using the expansions of their solution in
terms of { < 1, which is proportional to the autocorre-
lationtime 1, ~ 1 [25]:

|Uj|Te. AT, kvt (<1
By assuming that TU; = 0 and the E' components with
different polarizations fluctuate independently, i.e.,

MU, (r, t)U;(r, t+1)00= MU(r, t)UF (r, t+ T)I0= 0,

i#].

2In the theory of resonant radiation pressure, radiative forces due
to fluctuating fields with finite bandwidths were originally con-
sidered in [23, 24].
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Egs. (2.5) and (2.6) are reduced to

F = OFD= Fy+F,

a|V.,|? (2.7)
F. = —hi
0
O (2.8)

O
x zQiEj’dTDHDUi*(r, t)Ui(r,t+r)D]]—C.CH,

[a(-ji ty+ 2Ri(r):|Qi + Z R.(r)Q. = v, (2.9)

I #i

where Q; = [f;[Mand the rate constants for transitions
between the ground and excited atomic states induced
by thefield E' are determined by the correlators

0
Ri(r) = 2ReI [TV (r, t)UT (r, t+ 1)@ . (2.10)

Note also that U; is treated as a stationary random
process and only first-order termsin { < 1 areretained
in the reduced equations.

Equations (2.7)—2.9) show that, under condition (2.3)
of strong quasi-resonant field,

V2, = U,

the radiative force F exerted on the atom by the fluctu-
ating field isweak as compared to the gradient force F,
which is proportional to the sum of the population dif-
ferences multiplied by the gradients of E;; components:

IFJ <|F

Accordingly, Egs. (2.7)<2.9) expose the roles played
by thefields E; and E' in the present model. The fluctu-
ating field E' is responsible for incoherent mixing of
atomic states, and the quasi-resonant coherent field E;
induces the effective potentials that determine the
motion of the atom: the excited atom movesin thefield
with

dl-

Vi (1D, = Xy, 7;
the unexcited one, in the field with
=y Va(ifg, 1= xy.z.
i

Ananalogous model (inthe basis of adiabatic states)
describes a two-level atom moving in a coherent
bichromatic field [3, 22]. It is obvious that a rectified
force

Fr= [FJ= Z<QiD|X—f1|Z> £0 (2.12)
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exists when R = R(r) (transition rates are spatially
modulated), which is possible only if the coherent field
has mutually interfering components. (Hereinafter,
angle brackets denote averaging over oscillations with
periods comparable to the optical wavelength.)

Finaly, note that Egs. (2.9), where the effect of E;
on transition saturation is ignored, are derived under
conditions (2.2) and (2.3) supplemented with a refined
guasi-resonance condition for E;:

2

V_il ngz < 5

A, Y
This makes it possible to restrict analysis to the first
approximation (i.e., Egs. (2.5)) in averaging the origi-
nal Bloch equations over oscillations with frequencies
comparable to 4A; (higher order approximations for a
related problem were discussed in [22]).

3. RECTIFIED GRADIENT FORCE
AND THREE-DIMENSIONAL CONFINEMENT

To obtain expressions for the RGF, we specify the
fieldsE' and E; as superpositions of planewaves (j = X,
Y, 2):

U
Uj(r,t) = E

x{ exp(i@;(t))[exp(ik;, [T) + exp(ik;, [F)]  (3.1)
+exp(ig;(t)) [exp(-ik, [F) + exp(-ik;, [1)]}

Viy(r) = \g[exp(i(q,-lﬂ)”m)

+exp(i(g;2 [F +n;j2))1,

where V; and n;, are the amplitudes and initial phases
of the coherent field components, and @ (t) and () are
independent fluctuating phases (with delta-correlated
zero-mean derivatives), which determine the correla-
tors of E' components by the relations

[Texpil@;(t) —@;(t + 1))
= Mexpi[y;(t) - Y;(t+1)]M = exp(d t]), (3.3
Texpi[P;(t) —@,(t+T1)]0= 0

inamodel of radiation with phase diffusion [23, 26].

Thus, each Cartesian component of E' consists of
two independent fluctuating components. Their struc-
ture implies that F¢ = 0 (in approximation (2.8)), and
thefield E' has a Lorentzian spectral profile with band-
widthT:

(3.2)

2

l(w) ] ————.
O ey
Note that representation (3.1) in the region occupied

No. 5 2004



THREE-DIMENSIONAL RECTIFICATION OF A GRADIENT FORCE

by atomsisvalid only if the coherence length
l. = ct, =cll
is much greater than the diameter of the region:
l.>b

(see [23]). Moreover, if correlated light beams with
wave vectors Kj; and k;, are obtained from the same
source by using an appropriate optical system, then the
optical path difference between them must also be
much smaller than |...

The vectors k;, and g, in (3.1) and (3.2), with the
magnitudes

Kol = k = wo/c, [ajo] = q; = [we+4jl/c

lie in the planes perpendicular to the corresponding
basis vectors of the Cartesian coordinate system:

To be specific, suppose that

Aqgy = Age,, Aqgy = Age,, Aq, = Age,, 34
Ak, = Ake,, Ak, = Ake, Ak, = Ake,, 34
|Ok| < |AK[, [Ad], (3.9)

where

dk = Aq—Ak, Aqg; = [g;,—0;4]/2,

Ak; = [k —kj]/2,
and the values of A, Ak, and ok are determined by pre-
scribing the angles 3 and 3; between the wave propaga-
tion directionsin (3.1) and (3.2), i.e., between the pairs
{Kij2 ki and {q;z, gje}:
Ak = ksin(B/2), Aq; = q;sin(B;/2).
Consequently, the “microscopic” and “macroscopic”
length scales, Ay and A (A << A\, see[3, 22)), are esti-
mated as Ay, = TAq ~ A and A = 178K in this problem
and are parameters that can be adjusted by choosing
values 3 and 3;. The optical field configuration is sche-
matized in the figure.

Expressions for the transition rates R(r) and the
effective potentials |V;y(r)[?/4y; are obtained by combin-
ing (2.10), (3.1), and (3.2):

R(r) = Reos’(Ak; 1), R = 4Ul’rr,

V. (1 Y
| JlA(j i |A| cos’[Aq; F +&], & =

(3.6)
2—N;jd/2.
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When the transition is not saturated, i.e.,
4R/y <1,

the steady-state solution to Egs. (2.9) (at t > y) can be
represented as a convergent series in powers of the E'
wave intensity:

Q=5q" Q”=-1 (37
j=0

where Q}“’ (r) are defined by the recursive relations

0
Q"(r) = —I[ZRj(r +vT)Q" I (r +v1)
= (3.8)
+ S R(r +vn)Q" (r +vr)}e‘”dt
l; | I

In the linear approximation with respect to the E'
wave intensity, (3.7) and (3.8) yield an expression for
the population difference,

YR
(v° + 4(Ak; 1))

Qi(r)=

2k, v
[ycos(ZAk ) + sin(24k, [r)}

+22(y +4(Ak )%

1#]

x [%/cos(ZAh 7y + 22K Y G 2ak, D)},
which can be combined with (2.7), (3.4), and (3.5) to

find the rectified radiative force (after averaging F over
spatial oscillations of period Ay):

Fr= FO= Z(F0i+Fli)eﬂ
i

ADKA; R 5 .

F | T ————
° 1+(vi/vc)22Vg'

®, = 25kr; + 2§, (3.9)

my; v;
1+ (vilve)®

1 Xi = K;cos®;,
_ AAKGIRA,
my”

In accordance with (3.4), the pairs of indices (i, j) are
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Three-dimensional optical field configuration corresponding to superposition (3.1), (3.2) and satisfying conditions (3.4): long
dashed and solid arrows indicate the directions of propagation of partially coherent and coherent waves (with wave vectors *k;q,
k> and 1, dj2), respectively; short arrows, polarization directions; 3 and f3; are angular widths.

(%, 2), (v, %), or (z,Y),

2 _ 2
9 = [Vil4jl,
=gl r,=X%x r,=Yy, r,=z
vi = eV, v.=y/l2Ak,

F, isthe rectified gradient force, and F, is the delayed

gradient force (radiative friction) (by the terminology
of [4]).

It is clear from (3.9) that both RGF and DGF are
second-order quantities with respect to field strength
here, whereas third-order analogous quantities are
obtained in coherent bichromatic fields [3, 4]. The
velocity dependence of RGF has a Lorentzian profile

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

with a width determined by the “microscopic” length
scae:

V. = YAu/21L

When v; > v, the RGF scales with the inverse
sguare of particle velocity; when v; < v, itisvirtualy
independent of the velocity. In the latter case, macro-
scopic potential wells are created, with depths greater
than the characteristic depth 4|V,,[%/A; of microscopic
potential wells. Note also that the DGF is a nonlinear
function of both velocity and coordinate of the atom.

It is remarkable that the “macroscopic” motions of
particles along the axes of the Cartesian coordinate sys-
tem induced by RGF and DGF are mutually indepen-
dent. When

mvi/2 = T, > 4V, °I4,,
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they are governed by the equations

2
m 1+ Y|4 2 —an(ri)—vaicosdJi,
v2| dt or;
c (3.10)
% =v i =XV,z
dt - i1 - ,y, ’

i.e., by the Newton equations with a “renormalized”
(velocity-dependent) mass, where

_ . RAAK [Ig?
Mo = AW grae T, !

ls = iyk?/6TT i's the wave intensity that saturates the

atomic transition, | =1, g?= gi, I; denotesthe intensity
of a plane-wave component in superposition (3.2)
polarized along g, and Ak > 0. Furthermore, all detun-
ings 4; > 0 induced by the RGF also supposed to be
similarly distributed along each Cartesian coordinate
axis:

M(r;) = Ny(1-cosd,),

VP, = |ViPIa,.
Therefore,

Lo = Lgl = 1¢°
for every pair of indices| and i, and
K| =K.

Thus, the model of three-dimensional confinement
is reformulated as a nonlinear model of one-dimen-
sional motion. Under the conditions 4; > 0, the minima
of the potential (r) are found by solving the equation

cosd(r,) = 1.

It is clear that each point A, with phase-space coordi-
nates (r; = r,, v, = 0) isastable stationary point (attrac-
tor) of system (3.10). However, a particle moving inthe
vicinity of the RGF node located at r,,is confined in its
region of attraction G, only if its kinetic energy

mvi2/2 =T, does not exceed a certain critical T, deter-
mined not only by the potential-barrier height 211, but
also by the profile width of the RGF as a function of
velocity. If mv2/2 =T, < My, then T, < M, (since the
RGF rapidly decreases at v; > v,.). If T, > I, then T
iscomparableto My, but is substantially lower than T..
Both G,, and T, are difficult to determine because the
sign of the friction coefficient depends on the particle’s
location.

Let us find sufficient conditions for three-dimen-
sional confinement of atoms and estimate T,, using the
fact that DGF plays the role of friction only in the
regions Q,, where

K cos®; > 0, (3.11)
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i.e., when

ri O (r,— 148K, rp, + TV40K).
Define the generalized energy

€(r;, v;) = T(1+T,/2T,) + N(r;) (3.12)
(whenk =0, € isanintegra of motion). Alternatively, €
isinterpreted as the Lyapunov function of system (3.10)
in the phase-space domain N, bounded by the closed
contour é(r;, v;) = My encompassing the attractor A,
Indeed, (3.10) implies that its derivative along the tra-
jectory r; = ri(t), v; = v,(t) amost everywhere in N,
(except for A,,) satisfies the differential inequality

dé(r, vi) _

It = —2kT,;cos®,; <0, (3.13)

because the condition for particle confinementinside N,,,,

é(r;, v;) <My, (3.14)
entails (3.11) and, therefore, r; O Q,,. Note that the
function € is positive definite everywhere in N, except
for A, (where € =0).

Thus, every trajectory passing through N,, asymp-
totically approaches the point A, ast — oo, crossing
the closed contours of constant € inwards, and inequal-
ity (3.14) is a sufficient condition for confinement of
atoms at the nodes of RGF. Note that, even though
N, O G, (i.e., N, isjust a subregion of the region of
attraction of A,,,, as shown numerically), the avail ability
of analytical representation (3.14) facilitatesanalysis of
the confinement conditions.

Condition (3.14) entails a constraint on the kinetic
energy of particles and an estimate for T,:

20,
1+, /1+20,/T,

This means that an atom that passes through the
RGF node located at r,, and has an energy not higher
than T,, will be trapped in its vicinity. On the other
hand, an atom with energy T; < T,, confined in a small
neighborhood of an RGF node cannot be released from
the region of attraction by a sudden perturbation (e.g.,
by asingle collision with a“hot” particle) if the result-
ing increase in its energy is not greater than T,.

T.<Ty =

<T,.

Since
Mo OAk/k, MNy/TO (Ak/K)®,

the quantity Ty, = T\y(AK) asafunction of the parameter
Ak = TV, reaches amaximum value T, , which can be
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expressed in aform suitable for estimation:

_ . TO ﬁwoRg 2/3 I/\2 1/3
maxTw = TM~3.2[2nT0c} [ } (319

l's
where T, = my?%/2k?.
The maximum is reached when

AK/K = [T 2T}, <1

and is associated with a specific relation between the
profile width of the RGF as a function of velocity and
its magnitude:

My = 4T..

By solving Eq. (3.10) numerically, asimple relation is
found:

T /T, = n=207.

Note that the value of T, is lower than maxI(r;) = 21,

approximately by half in the optimal regime considered
here.

Thus, under an optimal choice of the field configu-
ration, the RGF can be used to confine particles in
three-dimensional traps of size smaller than A if their
effective temperature satisfies the condition

T <T = 2nTy/kg,

where kg is the Boltzmann constant, T, is defined
by (3.15), and n ~ 2.

It is important that T increases with the coherent-
field intensity even when both g and R/y are held con-
stant. As an example consider an ytterbium atom with
the 1§-'P, singlet—singlet transition (A =398.8 nm, y =
1.8x10%s?). If Rly=0.2 and g? = 0.05 are taken as esti-
mated values, then (3.15) yieldsasimple expression for
the limit temperature (in kelvins) for atoms confined by
means of the RGF:

2_1/3
T= Z[U\—} ,

ls

where | and | are measured in W/cnm? and A in centi-
meters. In particular, if A=0.5cm, I/I;=10% and A2l =
25W, then T= 12 K. Inthis case, Ak/k ~0.38, A = 2 x
10 s, and al starting conditions of the problem are
satisfied if the fluctuating-field intensity is|' = 5l and
its bandwidth isT = 5 x 10° s*. For comparison, note
that To= 1.5 K in the example considered here, whereas
the lower temperature limit for confined atoms corre-
sponding to quantum fluctuations of radiative forces
does not exceed

T,=#|V,,|*/A = 0.01 K.
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4. CONCLUSIONS

The scheme of the ponderomotive effect of astrong,
partialy coherent field on atomswithaJ=0—J=1
transition analyzed here is remarkable in two respects.
First, both rectified gradient force and friction force are
second-order quantities with respect to the field inten-
sity. Second, the light-induced motion of a particle is
(on a macroscopic scale) a superposition of indepen-
dent one-dimensional motions along three mutually
orthogonal axes. Each of these motions is controlled
only by field components having a certain polarization
in the plane perpendicular to the direction of motion.
This finding can be used to simplify optical control of
three-dimensional particle motion by independently
varying the parameters and geometry of field compo-
nents with mutually orthogonal polarizations.

In principle, the proposed scheme for rectifying the
gradient force makes it possible to implement three-
dimensional confinement of relatively “hot” particles
with temperatures as high as severa kelvins under an
optimal choice of the optical field geometry and param-
eters. In particular, deep traps of this kind may help to
solve the challenging problem of optical trapping of an
ultracold electron-ion plasma with ions in resonance
with laser light, because its electron subsystem may
have a relatively high temperature of 1 to 10 K (even
when its density islow) [27].
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Abstract—Certain feedback loops can be used in photorefractive optical schemesto implement periodic states
and create spatial gratings characterized by extremely high or low diffraction efficiencies. Thishighly nonlinear
phenomenon is studied both experimentally and numerically. An analytical method is devel oped for analyzing
periodic states with the use of symmetries of time-dependent diffraction equations and fast feedback response.
The method is applied to describe the properties of periodic states, including their spatial structure, diffraction-
efficiency oscillation period and amplitude, and characteristics of feedback-controlled strong phase modula-

tion. © 2004 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Photorefractive beam coupling has been the subject
of intensive theoretical and experimental studies over
the last twenty years [1-3]. This is explained by the
diversity and strength of photorefractive nonlinear
effects and by their potential applicability in various
optical devices[2, 4].

Photorefractive nonlinearity is caused by photoin-
duced charge separation and change in optical permit-
tivity dueto the linear electro-optic effect [3]. Gain sat-
uration (at 10*-10% cm™) is frequently observed even
for intensities of about a milliwatt, when the photoin-
duced contribution begins to play a dominant role in
conductivity. The nonlinear response time decreases
with increasing intensity, varying between 10 and 102
s in experiments with continuous radiation.

The most widely known photorefractive nonlinear
effects include optical gain [5], phase conjugation [6],
optical emission [7, 8], soliton propagation [9], record-
ing and fixing of volume gratings [10], and nonlinear
scattering [11]. In recent years, particular interest is
taken in combined effects of optical and material nonlin-
earities, including spatial subharmonic generation [12],
critical enhancement of nonlinear response [13], and
space-charge singularities [14].

Control of nonlinear optical properties by means of
electronic feedback has also become increasingly
important in the past few years [15-20]. A basic exper-
iment isschematized in Fig. 1. The phase ¢ of theinput
signal wave is coupled to the corresponding output
intensity by a certain relation (see details below). This

1 Permanent address: Institute of Crystallography, Russian Acad-
emy of Sciences, Moscow, 117333 Russia.

leads to adrastic change in characteristics of two-beam
coupling.

The historical background is as follows. Initialy,
feedback was introduced to eliminate effects due to
fluctuations of input phase difference, i.e., fluctuations
of the optica interference pattern in a nonlinear
medium. However, experiments demonstrated that
feedback effects by far exceed all expectations. In par-
ticular, feedback resulted in 100% diffraction efficiency
of the light-induced refractive-index grating and adras-
tic change in the energy exchange between the beams
[15-17]. The first attempts to explain the observed
effects by assuming that the induced refractive-index

|j
~ R(xp)
A

Fig. 1. Experiment on feedback-controlled two-beam cou-
pling: 1—piezomounted mirror, 2—photodetector, 3—
feedback control system. Curved line segments represent
grating fringes.
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grating is spatially uniform have failed. However, these
attempts involved the correct conjecture that feedback
tends to induce a phase shift of +172 between the dif-
fracted and transmitted components of the output sig-
nal (S) wave.

Equations that adequately describe beam coupling
controlled by #1722 feedback, including nonlocal
boundary conditions, were formulated in [18], where a
direct numerical smulation was also reported. It was
found that the perfect +1v2 feedback did produce a
clear-cut maximizing effect. Under reasonabl e assump-
tions about the parameters of a nonlinear crystal, the
feedback induced a refractive-index grating character-
ized by either 100% or zero diffraction efficiency. How-
ever, perfect feedback is not beneficial when these
extreme states are obtained. In other words, the formu-
lated ideal model remained correct only for a limited
time interval beyond which the formulated equations
failed to describe a continuously operating real device.

Subsequently, it was established that feedback delay
is responsible for continuous operation and is substan-
tial only near extreme states [19]. Numerical simula-
tions showed that, because of feedback delay, a nonlin-
ear system reaches a periodic state (attractor) in which
the phase ¢4(t) of the input signal wave exhibits fast
large-amplitude oscillations combined with aslow drift
[19, 20]. This behavior carries over to output beam
characteristics. Moreover, numerical simulations
revealed that variations of crystal thickness and input-
wave intensity ratio induce transitions between peri-
odic states with different characteristics and periods of
¢4(t) oscillations. Specially designed experiments con-
firmed that multiple periodic states exist [19].

It should be noted that, while the nonlinear effects
discussed here are obviously of importance for experi-
ment and applications, they present a nontrivial prob-
lem. Asfar as we know, no close analogy can be found
in nonlinear physics. Thisis special because nonlinear
evolution equations for waves inside a crystal are sup-
plemented with a nonlocal nonlinear feedback condi-
tion. The results of direct numerical simulations stimu-
late theoretical analysis rather than provide alternative
solutions.

In this paper, we develop an analytica method to
describe beam coupling controlled by +172 feedback
and demonstrate that it can be effectively used to obtain
various results. The key point in the theory is the aver-
aging over fast phase oscillations [21]. This procedure
makes use of the only available small parameter, viz.,
theratio of the feedback response time to the nonlinear
response time, and some general symmetries of the
nonlinear wave equations.

The theory developed here is restricted to an analy-
sis of local nonlinear response, which is both easiest to
examine and most important for experiment. However,
thisrestriction is not essential. The results obtained can
be extended to other photorefractive nonlinearities of
practical interest (e.g., see[1-3]). From amore general
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perspective, these results are of interest for analysis of
media characterized by nonlinear response times, such
as liquid crystals [22]. Owing to nonlinear response,
feedback loops can be used to perform various optical
functions. Maximization and minimization of diffrac-
tion efficiency of spatial gratings can be viewed as
examples of such functions.

2. BASIC RELATIONS
2.1. Two-Beam Coupling Equations

The starting system of equationsfor the wave ampli-
tudes Sand R and the amplitude E of the field generated
by space charge (see Fig. 1) iswritten in dimensionless
form as

R, = iES, 1)
S, = iE*R, )
E,+E = RS, 3

The subscripts x and t denote derivatives with respect to
dimensionless coordinate and time, respectively. The
coordinate x is normalized to the nonlinearity length
scale (independent of light intensity), and t is normal-
ized to the nonlinear response time (inversely propor-
tional to the total wave intensity).

Equations (1) and (2) are derived from Maxwell’s
equations to describe Bragg diffraction of the R- and
Swaves by arefractive-index grating. They do not con-
tain time derivatives because of slow nonlinear
response (light intensity isfully controlled by variation
of E(t)). The total wave intensity is conserved: (|S° +
|R[), = 0. Since the input intensities (at x = 0) are inde-
pendent of time in the problem considered here, the
total intensity isindependent of both x and t. Therefore,
R and S can be normalized so that

IR(X, )% +[S(x, 1) * = 1.

Equation (3) describes the slow development of a
light-induced grating and reflects the materia proper-
ties of the crystal. The absolute value of the product
RS* on the right-hand side of (3) is equal to half the
contrast of the interference pattern. Note that the mate-
rial equation used here is obtained in various micro-
scopic models of photorefractive response [3, 18].

According to (3), E = RS* under steady-state condi-
tions; i.e., the maxima of the static refractive-index
grating coincide with the maxima of the interference
pattern. This property is the locaity of nonlinear
response assumed here. In the general case, these peri-
odic distributions differ by a shift in space [3]. How-
ever, the theory becomes too cumbersome when it is
taken into account, and allowance for the shift is not
essential for actual experiments.
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2.2. Fundamental Solutions

The gpatial distributions of the amplitudes R and S
are determined by their input values R(0, t) and S0, t)
and by the grating-amplitude profile E(x, t). These fac-
tors characterize readout and recording conditions,
respectively. In other words, the same grating recorded
by an instant t can be read by different methods when
the input values are rapidly varied. This property
reflects the structure of Egs. (1)—3): thefirst two equa
tions contain time as a parameter in E(x, t), and the last
one ensures weak variation of E over t < 1.

Itisimportant for further analysisthat the recording
and readout processes are separated as much as possi-
ble. To do this, wefirst consider Egs. (1) and (2). These
equations are linear and homogeneousin Rand S. Their
common solution (for prescribed E(x)) can be repre-
sented as a linear combination of two independent par-
ticular solutions constituting a basis.

One of the basis vectorsis defined as the pair R-(X),
S-(X) corresponding to the input amplitudes R-(0) = 1
and S:(0) = 0. This fundamental solution corresponds
to the process of reading the grating with an R-beam of
unit amplitude. Since the grating amplitude varies with
time, the fundamental amplitudes are parameterized by
t. Next, it is readily verified that the pair R = =S (X),
S= Rf () dso solves Egs. (1) and (2). The latter par-
ticular solution corresponds to the process of reading
the grating with an S-beam of unit amplitude. It islin-
early independent of the former one and can be chosen
asthe second basis vector. The existence of abasis con-
sisting of only two fundamental amplitudes, R-(X) and
S (X), reflectsthe symmetry properties of system (1), (2).

Thus, the solution R(x, t), (X, t) subject to the input
conditions Ry(t), S,(t) can be represented as

R(X 1) = Re(x, t)Ry(t) — St (X, ) So(t),
S(x, 1) = Se(X )Ry(1) + RE (X, ) So(t).

The fundamental amplitudes R=(x, t) and S-(x, t) com-
pletely characterize the diffraction properties of the
grating. Equations (4) can be solved agebraicaly for
R- and S-. In other words, the fundamental solutions
can easily be calculated when the amplitudes Re(X, t)
and S-(x, t) corresponding to a readout process are

known and it is kept in mind that |Re(x, t)7 +
|S=(t 9P =1.

A necessary step in formulating feedback condi-
tions is the expansion of R and Sinto transmitted (T)
and diffracted (D) components. According to Egs. (4)
(seeadso Fig. 1), the contribution R:R, to the amplitude
Ris precisely the transmitted part of the input R-beam,

while—St §, isthe diffracted part of the input S-beam.

Similarly, SR, and Rf S, are the D and T components
of §x, t).

(4)
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Finaly, we note that

N = |S:(X 1)]° =1~ |Re(Xo, 1)

is an important observable characteristic (diffraction
efficiency) of a grating. It can be determined experi-
mentally by shutting off either R- or Sbeam momen-
tarily and calculating the ratio |R(X,, t)[%/|S0, t)|* or

1S(%0, D)P/IR(O, t)[?, respectively.

2.3. Feedback Conditions

Hereinafter, we assume that the input R-wave ampli-
tude is constant and represent the input S'wave ampli-
tude as S0, t) = Sexp(idy), where S, = const and ¢, =
¢ 4(t) isthe feedback-controlled phase. The time depen-
dence of this phase determines the observed properties
of the system. The dimensionless crystal thickness X,
and the input intensity ratio ry = |Ry|/|S? are used as
adjustable parameters.

The phase shift between the diffracted and transmit-

ted components of S, S-(X))Ro and RE (X)) Sexp(idy), at
the output end of the crystal is

@ = ag[ RS Re(X0) Se(Xo)exp(=igg)l.  (5)

The conditions ®, = +172 are called perfect feedback
conditions. They can be satisfied by an appropriate
choice of the input phase ¢.. Since the fundamental
amplitudes R:(X,) and S-(X,) can be expressed as alge-
braic functions of R(xy) and S(x,), the conditions ® =
+102 can be interpreted as a nonlinear relation between
¢ and the output amplitudes of recording waves. The
guantity @, is well defined only if n # 0, 1

(IS (%0)Re(X0)| = ¥N(1—n) does not vanish).

In experiments, the feedback is implemented by
using a fast and weak input-phase modulation d¢, =
Pysin(wt), where Py <€ 1 and w > 1. Such oscillations
of ¢, do not affect the recording process and serve as a
marker of the T component of the signal wave. Owing
to interference of the D and T components, the output
intensity |S(X,)|> has a component that oscillates with
double frequency as cos(2wt) and amplitude

2w = 5|RoS VA=) Wicos®,

Using #l,,, as an error signal, one can adjust the input
phase so that ®, = +172. This method is effective so
long as the product n(1 —n) is not too close to zero. It
is important that the present characterization of the
feedback relies only on general properties of the funda-
mental amplitudes R- and S:, while therefractive-index
grating may be spatially nonuniform.

It was shown experimentally that the +172 feedback
can be used (under certain constraints on X, and r) to
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attain n as high asn = 1 and hold it at this level [15].
When the feedback sign isreversed, the diffraction effi-
ciency falls to zero. On the other hand, a numerical
analysis showed [18] that the diffraction efficiency
reachesavalue of 1 or Oinatimet= 1. After that, the
use of the conditions ®, = £172 is not beneficia. Thus,
the perfect feedback conditions should be applied to
describe the initial evolution of the system and should
be modified when its continuous operation is to be
described.

It was supposed in [19] that inertia of the feedback
loop ensures continuous operation of the system. To
make use of theinertia, the perfect conditions d4=+172
were replaced with the time-dependent relation

ds = TRy /N (1—n)cosdy, (6)

where t; < 1 is the feedback-loop response time and a
dot denotes an ordinary time derivative. This relation
admits a simple interpretation. So long as the coefficient
of cos®; is large as compared to unity, i.e., n(1—n) is
not too close to zero, the input phase ¢, rapidly
approaches avalue ensuring that ®,= const — = +17/2,
and relation (6) is amost equivalent to the perfect feed-
back conditions. As the value of n(1 —n) approaches
zero, inertia plays an increasingly important role and
the value of ®, may deviate substantially from £172.

According to numerical simulations [19, 20], the
use of (6) instead of the perfect conditions ®, = +172
ensures continuous operation of the system. After an
extremal isreached, the diffraction efficiency oscillates
about either unity or zero, while the phase factor
exp(idy) exhibitsafast periodic variation superimposed
on alinear drift,

bs = Qt+¢,(1). (7)

The part of Q that is a multiple of 21/T can be sub-
sumed under the phase factor exp(i¢,,). The correspond-
ing periodic oscillation is neither small nor harmonic,
and itsperiod T decreases with t;. Furthermore, compu-
tations showed that the periodic state (attractor)
changes qualitatively as x, and r are varied. The quali-
tative changes are observed in detuning Q, period T,
and shape of the “periodic” component ¢ (t).

The most important theoretical predictions were
confirmed in special experiments conducted to measure
o4t) [19]. It was aso shown that the frequency
response of the feedback is in good agreement with
Eq. (6) [20]. Thus, substantial evidencewas obtainedin
favor of the inertial feedback condition. The feedback-
loop response time was estimated as t; ~ 1073,

3. ANALYTICAL METHOD

The presence of fast oscillations (with period T < 1)
makes it possible to develop a perturbation theory by
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using an averaging method. In view of expression (7)
for the input phase ¢, we write

Re(% 1) = Re(X) + Re(x, 1), ©®
S(xt) = exp(iQ)[S() +S(x 1], (9
E(x,t) = exp(=iQt)[E(x) + E(x, )], (10)

where the amplitudes Rg, S¢, and E are independent

of timeand E, R, and S are T-periodic functions of
time. The recording-wave amplitudes R and S can be
represented in similar form. The frequency shift should
be attributed to slow variations (|Q| < 1).

Because of therecording inertia, the fast component

of the grating amplitude is small: E < E. Since the
fundamental amplitudes R: and S: characterize instan-
taneous diffraction by the grating, it also holds that

Re < Re and S < S . However, thefast components
of the recording waves, R and S, are not small as com-

pared to the slow ones, R and S, because fast oscilla-
tions of the input amplitude S0, t) = Sexp[id4(t)] are
instantly transferred into the crystal by diffraction on a
static (or quasistatic) grating. These fast components

contribute substantially to E , because the product RS*
appearing on the right-hand side of (3) has a constant
component that is not small.

As afirst step in developing a perturbation theory,
we derive a closed system of equations for the slow
amplitudes. Using (4) to express the amplitudes R and
S* in terms of R- and S, substituting the results
into (3), neglecting the fast components of the funda-
mental amplitudes, and retaining their slow compo-
nents, we obtain

E=(@1-iQ)™

o P 1D
X [WoRFSE + €|Ry S (RE =S )],
where
_ 2 2_To—1
Wo = (R ~[8)*= 205

is the input intensity difference and € = [éxp(idp,(t))Lis
obtained by averaging over T. Since ¢, is defined up to
a constant, we can choose a suitable value of arge. Let
us choose € = [g]. The admissible values of the modula:
tion parameter ¢ lie between zero and unity. Its lowest
value corresponds to an extremely strong effect of peri-
odic phase modulation; the highest one, to the absence
of modulation.

Thedifferential equationsfor Re and S differ from
Egs. (1) and (2) for Rand Sonly by the replacement of

E with E. They can be solved simultaneously with (11)
(see next section). Asaresult, we obtain expressionsfor
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E, R, and S asfunctions of x parameterized by arbi-
trary X, o, Q, and €. The limit case of € = 1 corre-
sponds to time-independent beam coupling in the
absence of periodic modulation and in the presence of
detuning Q.

Theimportance of relationsfor averaged amplitudes
isexplained as follows. The parameters Q and € can be

adjusted to satisfy the complex relation Rr (X,) = 0 or

S (%) =0, i.e., to implement a periodic state withn =
1 or 0, respectively. This cannot be done without peri-
odic modulation. Thus, the first-order perturbation the-
ory can be used to find the required averaged feedback
characteristics, but it does not provide a complete
description of periodic states. This can be done in the
next order of perturbation theory. It is also important

that the slow amplitude E correspondington =1 or O
strongly depends on x. This property rules out the use
of aspatially uniform model of the grating and playsan
important role in substantiating the theory.

We schematically describe the cal culations performed
in second-order perturbation theory. Equations (3) and
(8)—(10) are used to derive an equation for the fast grat-
ing amplitude:

~ = —% 2
Ec = [RoSJ[(RE—S ") (cosd, )
. = —% 2
—ising,(RE+S)].

Here, we neglect the terms that are small with
respect to T and make use of [dos¢,[1= € and
[Sing,[= 0. On the right-hand side of (12) (which is
interpreted as a fast-oscillating driving force), the
space- and time-dependent functions are completely
uncoupled, and this equation is easily solved.

Thefast components of the fundamental amplitudes
obey an inhomogeneous linear system of equations,

which is derived from (1) and (2) and solved by varia-
tion of constants. As aresult, we have

Re(x,t) = A(X, )Re(X) = B(x, t)S (x),

(12)

. _ _ (13)
SE(x, 1) = A(X, t)S(X) + B(x, t)RE(X),
where
A(x 1) = 2i IRe[ E(X, t)RE(X)Se(x)] dX,
0
(14)

B(x t) = iI[é*(x', t)RE(X)
0

—E(x, ) S (x)]dX.

When the output Re (%o, t) and S (Xo, t) are known, the
feedback conditions can be used to find the function
dp(t) (see Section 5). Thus, the theory of periodic states
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is made self-consistent. It is important that either

Re (%) or St (%) vanishes, depending on the feedback
sign.

4. CHARACTERIZATION OF SLOW MOTIONS
4.1. Fundamental Amplitudes Rr and S
According to the foregoing analysis, the amplitudes
Re (X) and S: (X) obey system (1), (2) (with E replaced
by E) and satisfy the boundary conditions Rg (0) = 1
and S-(0) = 0. The grating amplitude E is given
by (11) as aquadratic form of Re and SF .

Tofind Re and S¢, we use the fact that the system
isinvariant under the linear unitary transformation
Rr = Q_§1+Qi§a

_ _ _ (15)
S = —Q,Ri+Q* S

to new amplitudes R; and S;, where the complex
parameters Q, satisfy the condition [Q,]2+ |Q_*=1.In
physical terms, the invariance means that a variety of
wave pairs (corresponding to various boundary condi-

tions), rather than one, can be coupled by diffraction on
the same grating. It is important for the present study

that the quadratic form E (Re, S ) can be transformed
by (15) into E 0 Ry St under an appropriate choice of

Q.. The differential equations for R; and S; thus
obtained are easily solved, because they are formally
identical to those describing the two-beam coupling
due to photorefractive nonlinearity [2, 3]. The inverse
transformation is used to obtain the required expres-
sions for the fundamental amplitudes.

For present purposes, we can write

1 _Wq]l/Z
= =0l 16
Q. [25% 50 (16)

where, again, W, = |Ro]> — |S,]? and
g = JWE+eX(1-WP) (17)

isapositive parameter. It isobviousthat g = |W|, where
g = 1in the absence of phase modulation.

In the new representation, we have E = iyR; S,
where

y=g(i+Q)”" (18)

isinterpreted asthe complex optical gain exponent. The

corresponding input amplitudes are Ry (0) = Q_ and
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S1(0) = Q,, and R, and S; as functions of x are
expressed as

Ri = Q[Q°+Q exp(2y'x)] "™,
S = QIQ+Qexp(-2yx)] .

Hence, the required expressionsfor Re and S: are

(19)

Re = [Qfexp%—y%%+ Qfexpmj}

020 20)
x [Q%exp(~y'x) + Q2exp(yx)] ' "V,
§ = 2Q,Q.sinh¥
2 (21)

i-—Q)/20

x [Q2exp(y'x) + Q exp(~y'x)]|

In the general case, both Re and S are complex quan-
tities, and it can be shown that the sum of their squared
magnitudes is unity. When € = 1, expressions (20) and
(21) correspond to the fundamental amplitudes in the
absence of phase modulation and in the presence of a
frequency shift Q between the input waves.

4.2. Conditions for 100%
and Zero Diffraction Efficiency

The values n = |S: (X)) and 1 —n = |Re(Xo)” quan-
tify the diffraction efficiency and transmittance of a
grating. 100% diffraction efficiency (i.e., zero transmis-
sion) is ensured by the condition R:(X,) = 0, whereas
the condition for zero diffraction efficiency (100%
transmission) is S-(X,) = 0. Since expressions (20) and
(21) for Re and S contain two feedback-controlled
parameters, Q and €, bothn = 1 and n = 0 can be
attained in the leading order of perturbation theory.

Using (20), one can readily show that the condition

Re (%) =0 (n = 1) isequivalent to

2 2
X = L S (22)
gTy W
where
_ 1,9—Wo
L = Ing+Wo’
andj =1, 3, ... isapositive odd number. Since g =

g(e, W), thefirst relation in (22) defines a sequence of
branches of the function g;(x,, Wp), while the second
one determines the frequency detuning as a function of
X and W, for the jth branch. Here, € and Q are even and
odd functions of W, respectively. Figure 2a shows €
versus the input intensity ratio ro = (1 + Wy)/(1 — W)
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Fig. 2. Phase modulation parameter € versusinput intensity
ratio ro = |R(0)|%/|S(0)[? for several values of crystal thick-
ness xo: (a) +1v2 feedback; (b) —Tv'2 feedback.

(whichisbetter suited for representation) for the branch
with j = 1 and several values of X,. Finally, note that the
actual values of |Q| do not exceed 1.5.

Sincee < 1, theadmissible values of x, and |Inr| are
bounded from below and above, respectively. Setting
€=1in(17) and (22), we obtain

2

nr
5 (23)

Xo = T +

Thisrelation determines the boundary of the domain of
Xo and ro where n = 1. The minimal admissible crystal

o™ = 1, corresponds to r, = 1 and the

thickness, X,
branch with j = 1. For this branch, |Inrgl,. =

JTI(Xo—T0) ; i.e., therange of admissibleinput intensity
ratios rapidly increases with x,. Figure 3 shows the
function Xy(r) for j =1, 3, and 5. Thisdemonstrates that
the branch with j = 1 is the lowest in a wide range of
parameters, i< Xy < 12.5and [Inry| < 2. Thisbranchis
of primary interest.
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Fig. 3. Threshold curves of Xo(rq) for +172 feedback and
i=1,35.

Now, consider the condition Sz (x,) = 0 (n = 0).
According to (21), itimpliesthat y' = 0 and y"x, =—T7 ',
wherej'=2, 4, .... Theserelations are equivalent to

2 _ (1'1%0)" = Wg

—2, Q=0
1_W0

(24)

min

The minimal admissible thickness, x, = 2, corre-
spondstoj'=2and W, =0 (r, = 1), twice as Iargeas
that obtained above. Figure 2b showsthee(ry) forj'=2
and severa values of x,. Also being an even function, it
is characterized by some new properties. Thevalue of €
decreases not only with increasing x,, but also with
increasing |logr, |. This means that the range of admis-
sible values of ryisreduced by increasing the thickness
Xo- Setting € = 0, we obtain [W| < 217X, for thisinterval.

Finally, we note that the condition Sr (X,) = Oisaways
satisfied when € = O (the grating amplitude vanishes).
Outsidetheinterval indicated above, thistrivial resultis
the only possible one.

When the growth exponent is an imaginary number
(y' = 0), there is no energy exchange between light
waves, and expressions (20) and (21) for Re and S
are substantially simplified. For j' = 2, they reduceto

(] iWO)@

Rr = E:os sm DexpD— > )
< 0 Woxgd 1 iWoxy
= —|ifl- sn™ exp .

0 4rf0  %| 0 20
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4.3. Spatial Distribution of the Grating Amplitude
Using (11), (20), and (21), one can easily find

g- tRSQ cosha -
1—-iQlosh(y'x—a)J

i1Q

(25)

The parameter a is defined by the relation W, =
gtanha. It can be positive or negative, depending on
Wy and xy. Theuseof a isdictated by convenience con-
siderations. The coefficient that multiplies the brackets
is E(0).

Conditions (22) or (24) set the feedback parameters
Q and ¢ (and hence a) and make the distribution E (x)
dependent only on W (or r) and x, for each jth or j'th
branch. We restrict our analysis to the most important
branches, j = 1and j' = 2. Note also that the real func-
tions |E (X)| and arg[E(x)] are important quantitative
and qualitative characteristics of the system describing
the grating amplitude and the corresponding fringe dis-
tribution, respectively.

When n = 1, (22) yields the following simplifying
relations. y'xy = -L = 2a and Q = 2a/mt Then, (25)
reduces to

cosha
cosh[a(2xxg —1)]’

E(X)| =
E(0)

(26)

argE(x) — argE(0) = 2—In E(x)|, 27)

where the input parameters are expressed as

£|RoS|
J1+ (2a/m)’

According to (26), the profile | E (X)| is symmetric about
the center of the crystal and |E (X)J/|E (0)| increases
from 1to cosha from the boundaries (x = 0, X;) toward

the center (X = xy/2). Thus, cosha can beinterpreted as
the degree of spatial nonuniformity of the grating pro-
file. The spatial distribution of the grating phaseis also
symmetric about the center of the crystal. The corre-
sponding degree of spatial nonuniformity is quantified
by (1Tv2a)In(cosha). Note that, by the definition of a,
it vanisheswhen W, = 0, i.e., when the input intensities
are equal. In this special case, the grating is spatially
uniform.

IE0) = argE(0) = arctan-zf. (29)

Figure 4 shows |E(X/2/E(0) and
arg[ E(x,/2)/E(0)] as functions of r, for several val-

ues of crystal thickness. It demonstrates that the effects
due to nonuniformity, including fringe modulation and

curvature, increase substantially with [logr, |-
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The input parameter |E (0)| is an even function of
logr, with a maximum at logr, = 0. As X, increases
from 4 to 10, the maximum val ues decreases from 0.19
to 0.075. The parameter argE(0) isan odd function of
logr, close to —arg[ E(x,/2)/E(0)] .

Whenn =0 (y'=Q=0), thegrating is spatially uni-
form and stationary for every admissible W, and X,.
According to (25), its amplitude (for j' = 2) is

2 2
E = exp(—iWyX) /%%E _EV%%

This case is much simpler than the preceding one.

(29)

Atfirst glance, the combination of anonzero grating
amplitude with zero diffraction efficiency is a paradox.
However, it is consistent with general principlesand is
explained by energy exchange between the R- and
Swaves. In contrast to the well-known Kogelnik for-
mulan = sin’(|E[x,), which isvalid for agrating with a
constant amplitude (E = const), the relations obtained
here demonstrate the feasibility of gratingswithn =0
in awide range of x, and r,.

5. PERIODIC STATES

To derive closed equations for the “fast periodic”
phase ¢,(t), one must calculate the product

SRoRe (X, 1) Se(Xo, t) €xp (- Q1),

which is contained in feedback condition (6) by virtue
of (5). Using (8), (9), (13), (14), and the fact that either
Rr (Xo) or St (%) vanishes for the periodic states con-
trolled by the £172 feedback, we have
Re(X0) Se(%o) exp (- Qt) = FB(X). (30)
The fast amplitude E contained in the expression for B
in (14) is determined from (12):
~ ~2  _,2 =2y
E = [RSI[(RE-—SF)Hu-i(Re+S)v]. (31
The known amplitudes R- and S- depend on x, and the

periodic functionsu and v of time arerelated to ¢ ,(t) by
the equations

U = —cosp,—€, VvV = sing,,. (32
Substituting (31) into (14), we obtain
|RyS B(Xo, t) = —cC,v +ic_u, (33)
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(a)

[E(xy/2)/E(0)]
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Fig. 4. Amplitude and phase distortion characteristics
|[E(x/2VIE(0)| (8) and arg[E(xy/2)/E(0)] (b) versus

input intensity ratio for x=4 (1), 6 (2), 8 (3), and 10 (4) in
the case of +172 feedback.

where the coefficients

X,

¢, =[RS’ [(1£2RES - 2ARS Yo (39)
0

depend only on X, and r,. The amplitudes Rr(x) and

St (X) contained in the integrand are such that either
n =1orn=0. ltisimportant that the coefficientsc, are
real. To demonstrate this and calculate some integrals,
we recall the results obtained in the preceding section.

Using (20)—<22) and (24), one can readily show that

B e _ He [L[2X .0
R[:SF = Esmh[am—%—lm}
(35)

L TX . _ . mxd
+ sinhacos— + icoshasin— ]
Xo Xo [

-1
0 _ ~[2X . u
X [Qcoshacosh[a = — }D
0 O, ~ OB
Vol. 98
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Fig. 5. Coefficients c, versusrg for several values of xq: (a)
+102 feedback; (b) —1v2 feedback. Solid curves and dashed
curvesrepresent c_and c,, respectively; (a) xo=4 (1), 6 (2),
8(3),and 10 (4); (b) xg="7 (1), 8(2), and 9 (3); symbolscor-
respond to the endpoints of intervals of admissible values.

forn=1j=1and

RS
g (36
Ecoshasmz——25|nhasm2 (36)
Zcosh a Xo XoH

forn =0, ]j'=2. In both cases, the real and imaginary
parts of Re (X) Sk (X) have opposite parities with respect
to the center of the crystal. Thisimplies that the coeffi-
cientsc, arerea. Figure 5 shows c.(r) for several val-
uesof x,whenn =1andO0. If r, =1, then ¢, = xy/8 and
C_= Xy/4. The curves presented here do not exhibit sin-
gular behavior of any type near the boundaries of the
admissibility intervals. If n = 1, then c,/c_ monotoni-
cally increases with x; and |logr, | from 0.5 to approx-
imately 0.7. If n =0, thisratio canbeashighas 1.0-1.2.

Finally, we use (5), (6), (30), and (33) to derive and
equation for ¢,;:

tid, = cusing,—c,vcosd,. (37)
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It is independent of the feedback sign. Proportional
variation of ¢, and c_isequivalent to renormalization of
t;. Ordinary differential equations (32) and (37) make
up aclosed system for the periodic functions ¢,,, u, and
v. This system is essentially nonlinear.

Notethat Sr (X,) =—i and Re(Xo, t) =—iB(Xo, t) inthe
case of +172 feedback. The periodic function of time

cu+ic,v
[T

defines a closed trajectory on the complex planein the
neighborhood of the origin. This trgjectory provides a
convenient representation of the system’s dynamics
(related to experiment). In the case of —1v2 feedback,
the trgjectory of the system is described by the periodic
function

—iB =

—icu+c,v

SF(XO’ t) = _B(XO1 t) = |ROS)|

close to zero.

It is understood that both period T and maximal
deviation on,,, of diffraction efficiency from 1 or O
depend on the feedback responsetimet;. The equations
of motion obtained here can easily be used to determine
these dependences. By normalizing t and the variables

uandv to ﬁ (i.e., by changing to intrinsic reference
values), the small parameter t; is eliminated from the

equation of motion. Hence, we have the scaling rela-
tions

TOJt, OnNmd t. (39)

They are consistent with results obtained by direct
numerical simulation [19, 20]. The proportionality
coefficientsin (38) depend on the type of periodic state.

Finally, we describe some useful symmetry proper-
tiesof system (32), (37). If itissolved by ¢(t), u(t), and
v(t), then the combination of —¢(t), u(t), and —v(t)
provides another solution. Furthermore, time inversion
is equivalent to sign reversal inu and v.

Since the system under analysis is autonomous, its
order can be reduced. Setting u(t) = u($,(t)) and v(t) =
V(9,(1)), we obtain

l_d_u_ = COS(I)p—s

t.dd, c.usnd, —c,vcosd,’

f ¢p ¢p ¢p (39)
1dv __ cosp,

trdp, c.using,—c,vcos,

Next, we note that periodic conditions can be classified
by the condition ¢,(t + T) — ¢,(t) = 2N, where N = 0,
+1, ... is an integer. Accordingly, the period of u(¢,)
and v(¢p) is 2riN. When ¢,(t) is not a monotonic func-
tion (e.g., when N = 0), the functions u(¢,) and v(¢,)
are two-valued. Since solutions with nonzero N and —N
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Fig. 6. Closed contoursin the complex planeillustrating the
time dependence of Rx(xg) for Xg = 6.6 in the case of +172
feedback: N =3 (a), 0 (b), and 1 (c); ro =1 (a), 6 (b), and
1(c).

are subject to the symmetry conditions indicated above,
it is sufficient to consider the cases with N > 0. If the
periodic functions u(¢,) and v(¢,) are known, then
d,(t) can be found by solving Eq. (37).

Nonlinear equations (39) cannot be integrated ana-
lytically. However, this can easily done numerically,
eg., by using the standard Mathematica system.
Numerical integration is virtually equivalent to com-
plete analysis of solutions.
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Fig. 7. Time dependence of input phase ¢ for the periodic
states illustrated by Fig. 6.

Figure 6a shows the closed contour of R (X, t)/ jff
in the complex plane calculated forn = 1, X, = 6.6, ry =

1, and N = 3. Over the period T = 30.7 /1; , the phase

¢, changes by 6Tt Here, value of 8Nya = [Re(Xor t) |5

is approximately equal to =64.5t;. The corresponding
time-dependent input phase ¢, is shown in Fig. 7a.
Since Q = 0, it is similar to ¢,(t). The phase exhibits
three pronounced jumps within a period. These results
arein good agreement with the results of direct numerical
simulations and experimental measurements [19, 20].
Analogous behavior of S:(X,, t) and ¢(t) is predicted
forn =0.

Figure 6b shows the contour calculated for n = 1,
Xy =6.6,r,=6,and N=0. Here, the phaseq>p isperiodic
with period T = 10.5,/t;, and 8Ny = 3.2t;. The fre-
guency detuning Q is approximately 0.85 in this case.

Owing to the detuning, the periodic oscillation of the
input phase ¢ is superimposed on alinear growth (see
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Fig. 7b). These trends are also consistent with numeri-
cal and experimental results.

Our calculations show that, generaly, there exist
periodic stateswithN =0, 1, 2, ... corresponding to the
same values of X, and r. In other words, periodic solu-
tionsto system (32), (37) are not unique. Figures 6¢ and
7¢ show, respectively, the closed contour and ¢ 4(t) cor-
responding to N = 1, X, = 6.6, and ry = 1. The contour
has a single-lobed shape, the phase exhibits one jump

over the period T = 8.0,/t;, and 3n = 17.5¢;.

The number of solutions increases with distance
from the threshold, i.e,, from the boundary of the
domain of periodic states (see Fig. 3). For ssimplicity, let
us consider thecaseof N =l1landry=1, when x, — 1=
(e — 1) is an intrinsic supercriticality parameter. In
the near-threshold interval Tt< x, < 4.2, where € varies
from 1 to approximately 0.74, the periodic state with
N = 0 is unique. As the threshold is approached, the
amplitude of phase oscillation goesto zero as (X, — )2,
while the period T decreases insignificantly. The
absence of solutions with N # 0 in the near-threshold
region should be expected, because the effects due to
phase modulations would be eliminated via abrupt
changes in ¢, (by multiples of 2m) and the system’s
inertiawould preclude such jumps.

When %, = 4.2, there existsasolution withN =1 (in
addition to onewith N = 0). As x, approaches the lower
boundary of theinterval, it does not exhibit any thresh-
old singularity and disappears via loss of stability.
When x, = 5.7 (¢ = 0.54), there exists a periodic state
with N = 3. As X, increases, it softly splits off from the
state with N = 1 via period tripling (see aso Figs. 6
and 7). When x,= 6.7 (€ = 0.47), astatewith N = 2 splits
off from the one with N = 1 via period doubling.

Anaogous behavior is exhibited by the system
when the distance from the separatrix isincreased with

decreasing |logr, | The trends described above provide

a basis for understanding the results of numerical and
physical experiments presented in [19]. For thick crys-
talswith xy = 12.5, additiona manifestations of thresh-
old singularity can be expected as the branches with
j =1and 2 are crossed (see Fig. 3) if theinput intensity
ratio is sufficiently large (|logry | = 2.1).

6. CONCLUSIONS

We have developed an efficient method for analyz-
ing a new highly nonlinear model of feedback-con-
trolled beam coupling and recording of gratings. The
method makes use of the symmetries of time-depen-
dent diffraction equations and fast response of the feed-
back. No close analogy can be found in the physics of
nonlinear distributed systems. The method relies on a
number of new concepts.
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The new method is used to analyze the spatial struc-
ture of the refractive-index gratings corresponding to
n =21 and 0. Scaling relations are obtained for the oscil-
lation period T and the oscillation amplitude &N, .-
Some observable properties of various periodic states
are described. A close relationship between the regimes
withn = 1and n = 0isestablished. The scenario of the
elimination of periodic states observed asthe separatrix
is approached is elucidated. These results supplement
those obtained by direct numerical simulation.

It is remarkable that periodic states may not be
unigue. When the distance from the threshold is suffi-
ciently large, there exist several periodic solutions char-
acterized by different manifestations for the same input
parameters. This finding suggests that stability of the
periodic states should be examined. Moreover, we can-
not rule out the possibility that memory effects are
essential for implementation of a particular regime.

The local nonlinear response considered here is
most pronounced in LiNbO; crystals, where photovol -
taic charge transport plays a dominant role in grating
formation [23]. Thismaterial is utilized in devel opment
of various devices based on diffraction effects and in
most experiments on optical feedback. The typical
dimensionless thickness of the crystal's does not exceed
10, which corresponds to an actual thickness of several
millimeters. Therefore, the brancheswithj =1 andj' =
0O and 2 are most relevant, which justifies certain restric-
tions imposed in the course of our theoretical anaysis.

Theoretical considerations suggest that experiments
on LiNbOs:Fe crystals of variable thickness with con-
stant concentrations of Fe** and Fe* ions should be
conducted to verify the predicted successive onset of
new periodic states with increasing supercriticality
parameter. The scaling relations for T and dn,,,,« should
also berelatively easy to verify experimentally by vary-
ing the electronic circuit parameters that determine the
feedback response time.

Nonlocal photorefractive response is associated
with diffusive transport and is described by Eq. (3) with
imaginary unit on the right-hand side. It is of particular
interest for enhancement of optical gain. In systems
based on this phenomenon, periodic states withn = 1
can be implemented under more stringent requirements
for crysta parameters and experimental conditions.
Analysis of these states must rely on arefined theory.

We believe that the systems with maximized and
minimized diffraction efficiency examined above
exemplify a more general class of optical devices, in
which electronic feedback loops are responsible for
implementation of useful functions. Development of an
appropriate theory is a challenging task of great practi-
cal importance.
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In Quasi-One-Dimensional or Quasi-Two-Dimensional Traps
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Abstract—Solutions to the Gross—Pitaevskii equations are obtained in the hydrodynamic approximation for a
repulsive Bose gas that expands after a quasi-one-dimensional or quasi-two-dimensional trap is removed. The
results are expressed in terms of measurable parameters, such as the initial condensate size and the oscillation
frequencies of trapped particles. Three-dimensional effects are calculated by a variational method. The analyt-
ical results are in good agreement with available experimental data. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The properties of a Bose-Einstein condensate in
which particle motion is “frozen” or reduced to zero-
point oscillations in one or two directions are the sub-
ject of intensive studies [1-14]. In experiments, cigar-
shaped quasi-one-dimensional condensates are created
by using optical dipole traps [1]. A quasi-two-dimen-
sional condensate was created in an array of disc-
shaped traps provided by the periodic potential of a
laser beam [2]. When the traps are sufficiently deep, the
motion along the array is frozen and the condensate
splitsinto several independent condensates confined in
separate potential wells.

Important experimental information about the prop-
erties of a Bose-Einstein condensate confined in a
three-dimensional trap can be extracted by measuring
the time-dependent density of the expanding atomic
cloud after the trapping potential is switched off. In the
mean-field approximation, the dynamics of a dilute
condensate is described by the Gross—Pitaevskii equa-
tion [14]

2
iﬁ%—f = ‘;L_mﬂw VoW + Wy, D)

where
Velr) = 3m(@ix’ + ay’ + i)
is the trapping potential,
g = 4mk’a/m 2
is the nonlinear coupling constant associated with an

atom—atom scattering length a;, and the condensate
wave function @ is normalized to the number of atoms

J’qulzdr = N. 3)

If the number of atoms is sufficiently large, then the
Gross—Pitaevskii equation can be transformed into
hydrodynamic equations that admit simple self-similar
solutions describing both oscillations of agasin a par-
abolic trapping potential and its free three-dimensional
expansion after the potential is switched off [15-18].
Thistheory is perfectly consistent with experiment.

A different situation arises when some degrees of
freedom of the expanding condensate remain frozen.
Recently, condensate expansion was investigated in
guasi-one-dimensional waveguides [1] and in systems
of two-dimensional discs [2]. This promising line of
research was pursued in several studies. In [19], quasi-
one-dimensional condensate expansion was analyzed
without taking into account the transverse “quantum
pressure.” In[20], the effects due to quantum pressure
were taken into account for steady states, in which case
only the two transverse modes contribute to the pres-
sure. In [13], the ground states of condensates confined
in cigar- and disc-shaped traps were calculated by a
variational method, but no analysis of the dynamics of
condensate expansion was presented.

In this paper, an analytical study of guasi-one-
dimensional and quasi-two-dimensional condensate
expansion is presented. Conditions are formulated
under which the three-dimensional Gross—Pitaevskii
equation can be reduced to analogous equations in
fewer coordinates. These equations are solved in the
hydrodynamic approximation under initial conditions
corresponding to a trapped condensate in equilibrium
before the trap is switched off. The condensate expands
either aong the axis of a quasi-one-dimensional
waveguide or in the plane of a quasi-two-dimensional
trap. However, if the conditions for reduction to Gross—
Pitaevskii equations of lower dimension are violated,
then the gas flow is three-dimensional. Three-dimen-
sional effectsin the flow are calculated by a variational

1063-7761/04/9805-0908$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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method. Finally, it is shown that the theoretical results
agree with experiment.

2. QUASI-ONE-DIMENSIONAL
AND QUASI-TWO-DIMENSIONAL
CONDENSATE EXPANSION
WITHOUT THREE-DIMENSIONAL EFFECTS

It iswell known that the Gross—Pitaevskii equation
can be formulated as a principle of least action with the
action functional

S= ILdt, L = J'iEdr, (4)

where the Lagrangian density is

% =gy —guD) + o
2 t 2m
: 5)
+Vedlyl*+ Sglul”

In the case of a cigar- or disc-shaped trap, one can
readily find conditions under which the tightly
restrained degrees of freedom are frozen and the
Gross—Pitaevskii equation reduces to a one- or two-
dimensional equation, respectively. Even though this
problem has been considered more than once, we
briefly review here the basic points of the derivation in
order to identify the essential parameters of the theory
and formulate conditions for its applicability.

2.1. One-Dimensional Expansion

If the longitudinal frequency w, for an axially sym-
metric trap is much less than the transverse trap fre-

quency wy,
A= wlwg <1, (6)

and the transverse zero-point energy is much higher
than the nonlinear interaction energy per atom, then the
transverse motion reduces to the ground state of parti-
cle oscillation, with the amplitude

a, = (A/mwy)"%

Denoting by Z, the characteristic size of the condensate
along the axis of a cigar-shaped trap, one can use the
estimate

N O|y|*a%Z,

(see (3)) to write the corresponding condition as fol-
lows (e.g., see[11]):

Na/Z, < 1. ©)

If this condition is satisfied, then the condensate wave
function can be factorized:

W, 1) = ox Y)Wz 1), (8)
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where
0 2 4+ A1
oxy) = ——expE—YH 9
Jma, O 2a8 O

is the wave function of the ground state of transverse
motion. Substituting (8) and (9) into (4) and (5) and
integrating the result over the condensate’'s cross sec-
tion, one obtains the action expressed in terms of the
one-dimensional Lagrangian density
i h?
Fio = Z(WEW-WWD + W

(10)

2
mag

+ Ima? 2w+ 9y,
2 4

Then, the evolution of W(z, t) obeys the one-dimen-
sional Gross—Pitaevskii equation

2
inW, = —;L—mwzﬁ %mwfzzw roulVRW, (1)
where
2%#%a
ng = g 2 = 2S (12)
2mag mag;

isan effective coupling constant and W isnormalized as
J’|w|2dz = N. (13)

Equation (11) determines the longitudinal dynamics of
a condensate in a cigar-shaped trap.

By the well-known substitution
’ O
Yz t) = Jp(z t)expé%jv(z’, t)dz‘l%, (14

Eqg. (11) istransformed into the system

Pt (pVv), = 0, (15)
Vt+vvz+9rln—Dpz+w§Z
16)
2 2 (
P EP P g
2m 4p 2PDZ

In Eq. (16), the last term (“quantum pressure”) can be
neglected if it is much smaller than the nonlinear term,
i.e,if

&  Na

< —.
Z. <& a7)
Then, Eq. (16) reducesto
vt+vvz+gﬁ3pz+w§z=0. (18
No.5 2004
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Combined with Eq. (15), it constitutes the hydrody-
namic approximation describing the evolution of acon-
densate.

Thetime-independent solution of the hydrodynamic

equations is the well-known Thomas—Fermi distribu-
tion of a one-dimensional condensate;

20
p(2 = Z—Z—%ﬂ.—ﬁ v =0, (19

where the integration constant Z, (longitudina half-
length of the condensate) can be expressed in terms of
the number of atoms N as

Z, = (3Na@2 )™ (20)

Applicability conditions (7) and (17) for the one-
dimensional hydrodynamic approximation can be
rewritten by substituting (20) as follows (see [11]):

JA < Nagdag < 1/A. (21)

Now, assumethat thelongitudinal trapping potential
is switched off and the condensate can freely expand
along thelongitudinal axis. At the sametime, it remains
transversely confined, and its transverse motion
remains frozen in ground state (9). Accordingly, the
expansion can be described by hydrodynamic equa-
tions (15) and (18) subject to initial conditions (19). An
anal ogous problem in nonlinear optics was solved long
ago [22], with a*“pressure” p, in (18) having the opposite
sign, and its solution was recently applied to describe
three-dimensional condensate expansion [15-18]. This
approach is used here to analyze the case when the con-
densate expands into a “waveguide” A solution to
Egs. (15) and (18) is sought in the form

3N 1 O vy

PED = 2z,b00 26200 (22)
v(z t) = za,t),
where b(t) and a(t) satisfy the conditions
b,0) = 1, a,0) = 0. (23)
Substituting (22) into (15) and (18) yields
a,(t) = by(t)/byt), (24)
and the equation
b, = w./b’ (25)

for b,(t). The latter equation can easily be integrated to
obtain an implicit formulafor b, as afunction of t:

J2w,t = /o b, - 1)
+ %In[2b2—1+ 2./o,(b,—1)]

(26)
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(see [23], where this solution was applied to describe
the quasi-one-dimensional initial stage of the conden-
sate expansion that follows after a disc-shaped trap is
switched off). The expression for a(t) in terms of b,(t)
yields the velocity field:

J2w,z ~
b,(t) b,(t)’
The leading edge of the density distribution moves as

v(zt) = (27)

Zmax(t) = ZObZ(t) (28)
with the maximum vel ocity
_ OZpe _ 1
Vial) = = = J2Z4, [1- YO (29)
Att> w,,
bt) = 2w, t> ;) (30)
the density and velocity distributions simplify to
3N
p(z. )=
4vmaxt
v(z t)= % t> W,

and the maximum vel ocity tends to the constant value
Ve = N2Z00,  t3> W, (32)

These formulas describe inertial motion when the den-
sity is so small that the nonlinear pressure does not
accelerate the gas any longer. Formula (32) is suitable
for comparison with experiment, because the asymp-
totic value of the maximum velocity is expressed in
terms of measurable parameters. the longitudinal trap
frequency w, and the initial half-width Z, of the longi-
tudinal Thomas—Fermi profile.

Expression (31) yields the asymptotic velocity dis-
tribution

U 20

p(v)dv = V]SV e (33)
WD Vil
The mean kinetic energy is
1
= vp(V)dV = ZE,,
2N
o] 5 (34
E.. = fmv?2
max 2 max*

2.2. Two-Dimensional Expansion

Two-dimensional  condensate  dynamics are
observed when the longitudinal trap frequency w, is
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much higher than the radia trap frequency wy, i.e,
when inequality (6) is replaced with the reverse one:

A= w/w;> 1 (35

Now, assume that the motion along the z axisis frozen,
i.e., the zero-point energy associated with the oscilla-
tion amplitude a, = (7/mw,)Y? is much higher than the
nonlinear energy. By virtue of the estimate

N O|y*Ra,,

where R, is the radius of the density distribution in the
plane (X, y) of the trap, this condition leads to the ine-
quality

< R
<o

If it holds, the condensate wave function can again be
factorized:

P, 1) = 2W(x v, 1),

(36)

(37)
where

#0

02 = expB— (38)

T[JJA ZIJ2

isthe longitudinal ground-state wave function. By sub-
stituting (37) and (38) into (4) and (5) and integrating
the result over the longitudinal coordinate, the actionis
expressed in terms of the effective two-dimensional
Lagrangian density
Lo = iﬁ(w*w—w W) +ﬁ—2(|w 1?+]w,)%)
2D 2 t t 2m X y
(39)

1 2,2 2 2 g
+>mwg (X + Y)W+ —=—
2 |:|( y) 2,\/5'[3_2

The corresponding Euler—Lagrange equation is the
two-dimensional Gross—Pitaevskii equation
sz

W = =AW

W[,

(40)

# Zme? (< + Y)W+ goo| WV,

where A, = 8 + 9, isthe transverse Laplace operator,
O,p IS an effective coupling constant expressed as

2./2mh’a
O = g - =, (41)
J2ma, ma,
and W isnormalized as
J’ILIJIdedy = N. (42)

Equation (40) describesthetwo-dimensional transverse
dynamics of a condensate in a disc-shaped trap.
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By the substitution

I’] |:|
W(rent) = oD expg;l—" [E

where rp = (x, y) and v = (v,, v,), EQ. (40) is trans-
formed into the system

P+ Uo(pv) = 0, (44)

vy + (vOp)v + QADDDP + (*JD

2 2
+ ﬁ_ZDD @ _A_Dp =0,

2m 4p 2p
where [y = (d,, 9,) is the transverse gradient operator.

The quantum pressure can be neglected if it is much
lower than the nonlinear pressure, i.e.,

(45)

1 < Na/a,. (46)
Then, Eg. (45) reduces to the hydrodynamic equation
v+ (vOv+ E0p+afr 0. (47)

The time-independent solution of the hydrodynamic
equations is the Thomas—Fermi profile

2|]
— _D]- - O,
p(r) = - v

where r?2 = x2 + y? and the radius R, of the density dis-
tribution is determined by the number of atoms N:

_ D 16
Thisinequality can be used to rewriteinequality (36) in
amore convenient form, and the applicability condition

for the two-dimensional Thomas—Fermi approximation
becomes

(48)

Na a A@ (49)

1 < Naga, < \°. (50)

After the transverse trapping potentia is switched
off, the condensate begins to expand radially, remain-
ing bounded longitudinally. The radial expansion is
described by hydrodynamic equations (44) and (47)
subject to initial conditions (48). Now, the solution is
sought in the form

O 2
'Z—I-\I—z 21 - 2r2 L,
TRybE(1) 0 Rybi(t)D
v(r,t) = rag(t),

rt) =
p(r, 1) (51)
where v istheradial velocity component, and b(t) and
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o(t) satisfy theinitial conditions
b0 =1, ay0) =0. (52)

The substitution of (51) into (44) and (47) yields an
equation relating b(t) to aq(t),

o, = bo/bg,
and adifferential equation for b(t),
by = wi/by. (53)
The last equation is solved under the initial conditions
by(0) = 1, b(0) = b(0)a(0) = 0
to obtain

bo(t) = 1+ wit’,

(54)
and hence
an(t) = bu/by = Wit/(1+witd).

Thus, simple expressions are obtained for the radial
density and velocity distributions:

0 2 O
P 1) = 2201 , t°0 Ro(lr t)%’
MRG1 + W} + W
0 O (55)
2
wyrt
v(r,t) =
.9 1+ wit?
The leading edge of the radia density distribution
moves as
Mmad®) = Roy/1+ 0’ (56)
with the maximum velocity
dr RywAt
Vill) = —= = . (57)
™ dt 1+ 2
Att> wo,
2N
p(r, 1) = %
="'
v(r,t)= o
where
Ve = RoWp, 13 wp (59)

As in the one-dimensiona case, these formulas
describe inertial motion. Again, the maximum velocity
is expressed in terms of measurable parameters, the
radial frequency wy of the trap before it was switched
off and the initial Thomas—Fermi radius R,.
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The asymptotic velocity distribution is

p(v)dv = —[11 —Dvdv (60)
VmaxD ma@
and the mean energy is
! _1 o
E = 3Emax, Erax = 2mvmax. (61)

3. THREE-DIMENSIONAL EFFECTS:
A VARIATIONAL APPROACH

If condition (7) or (36) is violated, then motion
along the smaller dimension of the condensate is not
frozen and must be taken into account. As shown
in[24], this can be done by applying a simple varia-
tional method. However, when the trap is highly aniso-
tropic and the number of atomsin the condensate is suf-
ficiently large, the tria distribution along the larger
dimension should be the equilibrium Thomas—Fermi
profile, which differs substantially from the Gaussian
distribution assumed in [24]. This method was applied
to calculate the ground states of condensates in [13].
Here, it is applied to condensate dynamics.

3.1. Cigar-Shaped Trap

In the case of a cigar-shaped trap with Thomas—
Fermi axial density distribution, the variational conden-
sate wave function has the form

P = Aexp[-l——-{] /1

xexp['émar%aizz)]

(62)

wherethe parameters A, w, w,, 05, and o, arefunctions
of time. It isassumed that Na/Z, ~ 1, i.e., the Thomas—
Fermi limit radia profile is not reached and the radial
wave function can be well approximated by a Gaussian
distribution. The parameter A isrelated to the widthsw,
and w, by normalization condition (3), which yields
A= 0 3N 2
Dhronw

Substituting (62) into (4) and (5) and integrating the
result, one obtains the averaged Lagrangian

(63)

L _|#&° dO(D A0l on, 1
N 27d Tambs 0T Moo WG
. , (64)
hoda, 4 2,1 ;Dw 3Nas’ 1
+ e —— + —0; + MW )\
02 7at " 2mz T 2" OE T Ty Waw,
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where the 1/W;1 term is neglected. Indeed, thisterm is
much less than a?, because the estimates

w,0Z,, o, O(mi%)W,/w, Oma,/A OMad

imply that the condition 1/w? < a, is equivalent to the

condition A2 < Naga, for the applicability of the Tho-
mas—Fermi approximation in the longitudinal direction
(see (21)).

Lagrangian (64) entails the well-known expressions

_ m1 dwy _ m1ldw,
o = Awg dt * T2 Aw, dt (65)
and the equations of motion for the widths
i} INE
W+ olw, = 228 1 g
m-wg sm” wpw,
3Nag#h’ 1
W, + A2wiw, = ——— : 67
z Ov¥z m2 \NZD\Ni ( )

These equations differ from those derived in [24] by
numerical factors and by the absence of the term corre-
sponding to longitudinal quantum pressure (it would be
incorrect to retain this term in the approximation
employed here). In the dimensionless variables

by = wy/ag, b, =w/Z;, T = w3t (68)
Egs. (66) and (67) are rewritten as
d’by 1.29 1
—+tby = =+ —=—, 69
di®> b, 5bh, (%)
d’b, . > A2
2+ \b, = =, 70
dt’ b?b? (70
where the parameter
q = (AZg/as)® (71)

characterizes the radial nonlinear pressure. If q < 1,
then the second term on the right-hand side of (69) can
be neglected to obtain the time-independent solution
b, = b, =1, which correspondsto the one-dimensional
approximation (see Section 2). In this case, Eqg. (70)
describing free longitudinal expansion obviously
reducesto Eq. (25).

The equilibrium values of b and b, are determined
by the equations

b = b2, = = 1+291
z0
which differ from anal ogous equations obtained in [21]

only by notation. They describe the state of the conden-
sate before expansion.

(72)
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The condensate expansion that follows after thelon-
gitudinal potential is switched off is described by the
equations

2 2 2

dt b> Sblb, di* bib:
They can readily be solved numerically under theinitial
conditions

(73)

O

bo(0) = 0,
bA0) = 0,

b(0) = by,
bz(o) = sz’

(74)

where by, and b,, are determined by (72). Figure 1
shows the functions of time

by = wolag, Zynx = Zobt) = Zb,(t)/by,
where Z = Zyb,, isthe initial half-width of the conden-
sate, for several values of N. When

JAa/a, < N < a/(May),
we have the analytical solution obtained in Section 2. If
N>ag/(Aay),

then the expansion starts from a radius larger than the
zero-point oscillation amplitude a;, and by — 1 as
T—0. At T > 1, the longitudina expansion
approachesaninertial motion characterized by constant
velocities of atoms. The maximum velocity is readily
found by using the conservation law corresponding to
Eq. (73):

lgjbﬂz_'_S_)\z[m&[Dz_'_ 2 1}

20dt0 "~ 2q|Odt0 ~ 27 2
0O
(75)
2
+)2‘— = const.
oMz

At1 =0, ityiddstheinitial valuesin (74). AST —» oo,

db,/dT —» byma, by—=1, b,—> oo,
and therefore
- 2 5 107
b =\ |[——+= - 76
o /\/bZDObZO q%JDO bDAj ( )
Then, Egs. (72) are used to find
dz 2Zw,by
Viax = e = T (77)
dt t- o 11+ b2|:|0

Whenqg < 1,i.e, byy=1and Z = Z,, this expression
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Zmax, MM

10,

1.50F
1.25
1.00

0.75

0.50
0.25

Fig. 1. Radius b = w/an (a) and longitudinal size z,,,, (b) vs. time T = tw, for aone-dimensional expanding condensate in acigar-
shaped trap at a; = 5 um, ag = 5nm, and A = 0.05. Curves 1, 2, and 3 correspond to N = 10, 10*, and 10°, respectively.

yields the one-dimensional velocity given by (32).
Whenqg> 1,i.e, by, > 1, it reducesto

Vi = 20,Z.
Thus, not only the longitudina condensate size

increases, but also the ratio of v, t0 WR increases

from ./2 to 2 asthe number of atomsin the condensate
increase.

Both asymptotic velocity distribution and expres-
sion for the mean energy retain their form given by (33)
and (34), respectively, where v, isnow given by (77).
Figure 2 illustrates the dependence of the mean energy
on N.

3.2. Disc-Shaped Trap

In the case of a disc-shaped trap with Thomas—
Fermi radial density distribution, the variational wave
function has the form

W= A 1—r—2expE|— zH
e D2w3

< | (e a2,

(78)

where the time-dependent parameters A, wg, W,, dp,
and a, are related by normalization condition (3):

_eN_1 e
BECYE

Substituting (78) into (4) and (5) and integrating the

A

(79)
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result, one obtains the Lagrangian

L _podog A% o 1 orWwh
N~ 027t 2moot MO
pida, #2011 o oW
S et RGN B Y =
2°dt  2mis 0 MO (80)
8 Naj’ 1

where the 1/w{, term is neglected, because this term is

E/hw,
20+ .

15

10

1 1 1 1 1
0 2x10% 4x10* 6x10* 8x10* 10°

N

Fig. 2. Mean energy of atomsin a condensate (measured in
energy quanta fw, of longitudinal oscillations) after one-
dimensional expansion in acigar-shaped trap vs. number of
atoms.
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R ok, mm

915

oy

1.06

1.04

1.02

Fig. 3. Radius R4 (8) and longitudinal size b, = w,/a, (b) vs. time T = twy for atwo-dimensional expanding condensate in a disc-
shaped trap at a, = 5 pm, ag=5nm, and A = 20. Curves 1, 2, and 3 correspond to N = 103, 10%, and 10°, respectively.

much lessthan a?, by virtue of the applicability condi-
tion NagJa, > 1 for the radial Thomas—Fermi approxi-
mation.

Lagrangian (80) entails expressions (65) and the
equations of motion for the widths

. 2 16 Nag’® 1
Wg + WWp = , (81)
2 m o wiw,
. 2 Nag®
W+ N odw, = ey FORAR 1 g

+ )
miw; 21 mt whw,

which are rewritten in the dimensionless variables

by = wo/R,, b, =w,/a, T = wqt, (83)
wherea,=a/./A, as
d’by, 1
— tbhy = =5, (84)
a2 bb,
d’b, ., A2 A%g 1
S+ A°b, = =+ ———. 85
dt’ b? 3 bibl (%)
The parameter
q = (Ry/Aa,)’ (86)

characterizes the longitudinal nonlinear pressure. If
g << 1, then the second term on the right-hand side
of (85) can be neglected to obtain the time-independent
solution
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which corresponds to the two-dimensional approxima-
tion considered in Section 2. In this case, EQ. (84) obvi-
ously reduces to (53).

The equilibrium values of b and b, are determined
by the equations

1

1 _4.,91
1+3

= (87)
0o

which again are identical to the equations obtained
in [21], except for notation. They describe the state of
the condensate before expansion. The expansion in the
plane of the trap is described by the equations

d’o, _ 1 d’b, A,
di>  b’b, dr? b’
They can readily be solved numerically under initial

conditions (74), where b, and b,, are determined
by (87). Figure 3 shows the functions of time

Rrax = Rbg(t)/bp,

where R = Ryb, isthe initial radius of the condensate,
for several values of N. When

Ng 1

+A\%b, = .
3 p’p’

(88)

b, = w,/a,,

aja, < N < a,\’/a,,
we have the analytical solution obtained in Section 2. If
N> a,\*/a,

then the expansion starts from a longitudinal size w,,
larger than the zero-point oscillation amplitude &, (i.e.,
bo>1),andb, — 1ast1T —» . At T > 1, theradia
expansion approaches an inertial motion characterized
by constant velocities of atoms. The maximum velocity
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0 2x10*  4x10* 6x10* 8x10* N
Fig. 4. Mean energy of atomsin a condensate (measured in
energy quanta fiwy of longitudinal oscillations) after two-
dimensional expansion in a disc-shaped trap vs. number of

atoms.

isfound by using the conservation law corresponding to
Eqg. (88):

mﬁmﬁi{;_ 2%, +;m}

Odtl * p2q| 20
(89)
e L cong,
oMz
which yields
: 1 3 1D
bo, max = 3 90
) meobzo 2000l
Accordingly,
2
Ve = AR = wR 1+—3b§° (91)
dt |i_o 2(1 + bg)

Whenqg < 1,i.e, by =1and R=R,, this expression
yields the two-dimensional velocity given by (59).
Whenqg> 1,i.e, by> 1, it reducesto

e = A3200R.

Both the asymptotic velocity distribution and expres-
sion for the mean energy retain their form given by (60)
and (61), respectively, where v, isnow given by (91).
Figure 4 illustrates the dependence of the mean energy
on N.
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4. DISCUSSION

L et us compare the theoretical results with available
experimental data.

An experimental study of condensate expansionina
guasi-one-dimensional trap was reported in [1], where
the longitudinal half-length of the condensate was Z =
100 pm and thetime of transition to inertial motion was
approximately 20 ms, which corresponds to the trap
frequency w, = 50 s. Under these conditions, expres-
sion (32) yields

Ve = A2Z0, = 7 mm/s.

In view of the assumptions made, good agreement
between this estimate and the experimental value
Vimax = 5.9 mm/s is achieved without introducing any
adjustable parameters.

Expansion of a Bose-Einstein condensate in a sys-
tem of two-dimensional disc-shaped traps was investi-
gated in [2]. The results of that study showed that no
longitudinal expansion took place, and the condensate
was effectively divided into separate condensate “ pan-
cakes’ confined in separate potential wells. Therefore,
the two-dimensional theory can be applied to describe
the radial expansion of each particular condensate.
According to [2], the maximum radial velocity was
Vimax = 1.5-1.7 mm/s when the initial radius was R =
13 um and the radial trap frequency was wy = 132 s
Expression (59) predicts

V max = Rwg = 1.7 mm/s,

which is in good agreement with the experimental
value. Thus, the mean-field theory provides a good
description of condensate expansion in fewer coordi-
nates as well. Deviations from the theoretical predic-
tions would point to the existence of a condensate that
could not be described by the mean-field theory.
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Abstract—We study the cross sectionsg; ; _1, 0; j _», and g; ; _3 of capture of one, two, and three electrons by
boron ions with chargesi = 1-5 and velocities V = (1.83-5.50)V, in gaseous media with atomic numbers Z,
varying from 1 to 54. The oscillatory form of the Z, dependence of electron capture cross section by boron ions,
which has been established for lighter ions, is confirmed. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Theoretical estimates of electron capture cross sec-
tions o; ; _, by variousions of light elements, based on
the Thomas—Fermi statistical model, proved that the
Cross sections increase monotonically with the nuclear
charge Z, of atoms in the medium [1, 2]. Analysis of
experimental datain the range of relatively low veloci-
tiesV = (1-2)V, (V, = 2.19 x 108 cm/s), for which the
electron capture cross sections attain their maximal
value, also indicates that cross sections g; ; _; on the aver-

age increase monotonically in proportion to Zi"> [2].

However, subsequent experimental studies revealed
certain deviations from this type of dependence of
0; ;-1 0On Z,. The cross sections of electron capture by
boron ions with velocity V = 1.83V, in neon, deter-
mined from experimental data, are smaller than the cor-
responding values in nitrogen by a factor of 1.5-2 [3].
Analogous deviations are also observed for higher
velocities of ions. Analysis of the el ectron capture cross
section by nitrogen and neon ions for V = 3.65V, indi-
cates that the corresponding cross sections in neon are
considerably higher than in nitrogen and argon [4, 5].
Investigations of electron capture cross sections by
hydrogen and helium ions in various media in a wide
range of ion velocities proved that the variation of the
value of cross sections ; ; _; upon anincrease in Z; has
theform of oscillations[6, 7]. Thus, we can assume that
the actual Z, dependence of the electron capture cross
section by light ions in the velocity range V > 2V, sub-
stantially differs from a monotonic dependence, which
is apparently due to the shell structure of atoms of the
medium.

In this study, we investigate the effect of structural
features of atoms of the medium on the electron capture
cross sections o; ;_; measured for boron ions with
charges i = 1-5 for velocities V = (1.83-5.50)V, in
gasesH,, He, N,, Ne, Ar, Kr, and Xe; we also calculate

theoretically the electron capture cross sections by the
sameionsin mediawith Z, = 1-54. Thiswork continues
our experiments with boron ions reported in [3]. The
ion velocities V will be given in atomic units of V.

2. EXPERIMENTAL TECHNIQUE

Experimentswith boron ionswere carried out on the
setup described in [3, 8]. Boron ions B with charges
i =1, 2, and 3 and velocities V = 1.83, 2.74, 3.65, and
5.50 were extracted from an accelerator and directed to
the collision chamber after their passage through a
recharging device, where the primary ions were trans-
formed into beams of boron atoms B with chargesi =
1-5. The charge distribution of boron ions after their
passage through the collision chamber was measured
with the hel p of a detection system consisting of amag-
netic analyzer and a block of identical counters. The
capture cross sections o; ; _,,, for one, two, and three
electrons, wherem= 1, 2, 3, were determined from the
obtained charge distributions using the method
described in [9]. The errors in determining the cross
sections were mainly determined by the errors in esti-
mating the gas layer thickness in the collision chamber
(~10%) and by the statistical spread in the results of
several sets of measurements, which amounted on aver-
age to 10-15% in the capture cross sections for one
electron, 20—-30% in the capture cross sections for two
electrons, and 50-70% in the capture cross section for
three electrons. The cross sections of electron capture
by boron ions for al above-mentioned velocities in
atomic and molecular hydrogen [10] and in He, N, Ar,
as well as Kr, were measured earlier [9, 11]. All cross
sections g, ; _,, for boronionsin Ne and Xe were deter-
mined for thefirst timein this study. The values of cross
sections o; ; _, for ion velocities V = 2.74, 3.65, and
5.50 aregiveninthetable. Sincethevalues of cross sec-
tions obtained in the present study and in [9, 11] coin-
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Cross sections o; ; _,, of electron capture (in units of 10716 cm?/at)

i,i—m H, He N, Ne Ar Kr Xe

V=275

10 0.018 0.09 0.04 0.19 0.10

2,1 0.08 0.36 0.43 0.85 0.63 0.9

2,0 0.0036 0.3 0.018 0.004

3,2 0.29 0.8 10 1.60 17 2.3

3,1 0.0017 0.04 0.04 0.07 0.05 0.1

4,3 0.54 20 21 3.6 4.0

4,2 0.05 0.1 0.24 0.22

4,1 0.02 0.01
V=365

1,0 0.012 0.03

2,1 0.008 0.05 0.09 0.18 0.10 0.13 0.16

2,0 0.01 0.01

3,2 0.016 0.12 0.24 0.5 0.35 0.50 0.80

3,1 0.003 0.012 0.007 0.015 0.03

4,3 0.05 0.40 0.80 19 1.0 1.60 24

4,2 0.03 0.03 0.09 0.063 0.14 0.2

4,1 0.005 0.01 0.03 0.012

5,4 0.12 0.70 14 3.0 1.80 21 3.0

53 0.2 0.16 0.35 0.30 0.60 0.71

52 0.03 0.04 0.1 0.1
V=550

3,2 0.002 0.008 0.03 0.13 0.035

3,1 0.001

4,3 0.0043 0.03 0.13 0.30 0.35 0.48

4,2 0.0002 0.0035 0.004 0.016 0.027

5,4 0.009 0.07 0.25 0.70 0.50 0.83

5,3 0.0006 0.0012 0.045 0.055 0.18

5,2 0.0008 0.006 0.014

cided to within 20-30%, thetabl e containsthe averaged
values of cross sections.

3. THEORETICAL MODELS
FOR CALCULATING ELECTRON CAPTURE
CROSS SECTIONS

In accordance with the analysis carried out in [3],
thetotal cross section of electron capture by anionwith
charge i and velocity V ~ 1-2 is proportional to the
number of vacancies p;_;(n) in the unfilled electron
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shell closest to the nucleus and characterized by the
principal quantum number n:

l; -
Oio1 = Poa(Mmae =2V, (1)
where I;_, is the binding energy of the electron being
captured, 1,=13.6 eV, and a, = 5.29 x 10° cm.
For boron ions, the values of p,_,(n) decrease from

p,(2) = 8for B3 ionsto py(2) = 6 for B*ions. Astheion
velocity subsequently increases to V ~ 3-5, the values
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of cross sections g; ; _; can be estimated from the Bohr
formula for the cross sections of electron capture by
light ionsin mediawith Z, 2 2 [1, 2, 12]:

o, i, = 4magi’zy Vv, )

In the case of electron capture by afast ion from the
filled shell n, of an atom of the medium to the ion shell
n, the partial cross section g; ;_;(n, — ny) can be cal-
culated in the Oppenheimer—Brinkman—Kramers

(OBK) approximation [13, 14]. The values of o},

were calculated for the cross sections of electron cap-
ture by boron ions with chargesi = 1-5 and velocities
V =1.83, 2.74, 3.65, and 5.50 in mediawith Z, = 1-54.
The method for calculating cross sections is analogous
to that proposed in [6] for helium ions.

The main drawback in the OBK approximation is
that it gives exaggerated values of calculated electron
capture cross sections as compared to the experimental
values. For this reason, the calculated values of cross
sections were normalized to the experimental data
obtained for boronionsfor the above velocitiesin nitro-
gen. The normalization coefficient

exp
Oii_1

OBK
i,i—1

R(V,Z) =

for velocities V = 1.83, 2.74, 3.65, and 5.50 for boron
ionsisR(V, 5) = 0.03, 0.06, 0.09, and 0.15, respectively.
It is known from previous studies that the value of
R(V, 1) for hydrogen (Z = 1) varies from 0.13 for V =
3.65100.18 for V = 5.50 [6]. For helium ions (Z = 2),
the value of R(V, 2) increases from 0.04 for V = 1.2 to
0.18 for V = 3.65-10 [ 7]. These data have made it pos-
sible to represent the normalization coefficient in the
form of the empirical expression

1

R(V, Z) = 0.295[(0.54V/Z)™®+1] . ©)

The values of R(V, Z) determined using formula (3) are
in accordance with the most of the above values of
R(V, Z) to within £30%. Formula (3) is a modification
of the analogous expression from [14].

4. ANALY SIS OF OBTAINED RESULTS

Figure 1 shows the values of the electron capture
cross sections o; ;_; as a function of Z;, obtained in
experiments and calculated using various approxima-
tions. For velocity V = 1.83, cross sections g; ;_; for
boronionswith chargesi = 2, 3 increase with Z; in pro-

portion to Z;”®. The values of cross sections deter-

mined on the basis of formula (1) are in satisfactory
agreement with the experimental data. A noticeabledis-
crepancy isobserved only for cross sections of electron
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capture by B?* ions in nitrogen and neon. The calcula-
tions of the electron capture cross sections carried out
inthe OBK approximation lead to aqualitatively differ-
ent dependence, which is not monotonic, but has the
form of alternating maxima and minima with the gen-
eral increasein the value of g, ; _; with Z in proportion

to z!"®. Calculations carried out in the OBK approxi-

mation make it possible to describe the deviation of the
electron capture cross section from those cal culated by
formula (1) for nitrogen and neon (see Fig. 1a). Asthe
ion velocity increases, the dependence of the electron
capture cross section on Z; becomes essentially non-
monotonic. The deviation of the experimental data
from the results calculated by formula (2) for an ion
velocity of V = 3.65 increases, especially upon an
increasein theion charge. The applicability of the OBK
approximation is more justified for increasing ion
velocity [6]; Figs. 1b and 1c clearly demonstrate the
improvement in matching calculated electron capture
cross sections with experimental datafor V =5.5.

The results of this study show that maxima are
formed due to the shell structure of atoms of the
medium and the resonant nature of the dependence of
total cross sections g; ;_; on Z;. Each of these maxima
correspondsto the maximal contribution of partial elec-
tron capture cross sections from individual atomic
shellsK, L, and M of the medium. The results presented
in Fig. 1 confirm this conclusion for boron ions. In the
framework of the OBK approximation, it is also possi-
ble to explain the shift of the maximatowards high val-
ues of Z; with increasing ion velocity. Indeed, the OBK
cross sections attain their maximal values when the
electron binding energy in one of the atomic shells of
the medium becomes equa to I, = (I, + 2l,,,)/3, where
I and I;,, are the electron binding energy in the target
atom and the fast ion, respectively, and |, = uV?/2 isthe
energy transferred by an electron [6, 7]. Withincreasing
ion velocity, the value of |, for which the electron cap-
ture cross section is maximal increases, leading to the
corresponding increase in the value of Z; at which the
given maximum is observed.

The emergence of oscillations in the dependence of
the electron capture cross section on Z; ismainly dueto
the enhancement of the effect of internal and external
screening on the average orbital velocity of electrons
from outer shells of atoms in the medium upon an
increase in the principal quantum number n. Thisleads
to an increase in the relative difference between the
cross sections for states with adjacent values of n.
Incomplete filling of outer electron shells deepens the
minima in the dependence of cross sections g; ; _; on
Z,. It can be seen from the above results that the largest
amplitude of oscillations (i.e., the difference between
the maximal and minimal values of cross sections) for
boron ions in the range of Z, = 7-18 (N, Ne, Ar) is
observed for an ion velocity of V = 3.65. In this case,
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Fig. 1. Dependence of cross sections g;  _4 of electron capture by boron ions (a) B2, (b) B3*, and (c) B* on Z;. Symbols corre-

spond to experimental values; solid curves describe the results of normalized cal culationsin the OBK approximation; dot-and-dash
lines correspond to cal culations by formula (1) for V = 1.83, and dashed lines, to calculations by formula (2) for V = 3.65. The values

of velocities V (in units of V) are shown on the curves.

the amplitude of oscillations decreases with increasing
boron ion charge and attains its lowest value for nuclei
of B> (Figs. 1 and 2) With a further increase in the
velocity of ions, the oscillatory dependence of the cross
sections on Z; is gradually weakened and becomes vir-
tually monotonic again for V > 20 [6].

Figure 2 shows for comparison the avail able exper-
imental and theoretical values of cross sections oz ;_;
of electron capture by nuclei of hydrogen H* [6],
helium He?* [7], boron B>, and nitrogen N”* [5] for
avelocity of V = 3.65 in various media. In the range of
Z, = 2-54, the values of 0, ,_, increase on average in
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proportion to Z;"*, approximately in accordance with
theresults of calculations based on the Bohr formula (2).
However, the figure shows the deviation of the experi-
mental data from this dependence. For example, for
Z, =1, thevalues of cross sections o ,_ for the nuclei
in question differ from those calculated by formula (2)
approximately by an order of magnitude. In contrast to
the model of independent electrons, the calculations
carried out in the OBK approximation arein qualitative
agreement with the experimental dependence of cross
sections g, ;4 on Z (including the case of Z, = 1). The
above results show that the dependence of the electron
capture cross sections on Z; for the nuclei in question
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Fig. 2. Cross sections a7, 7 _ ; of electron capture by nuclei
of hydrogen, helium, boron, and nitrogen as functions of Z;
for velocity V= 3.65. Experiment: (m) H* [4], (V) HE?* [3],
(0) B, our results, and (@) N’* [5]. Solid curves corre-
spond to the results of normalized calculations in the OBK

approximation; dashed straight lines correspond to calcula
tions based on formula (2).

exhibits oscillations with the amplitude decreasing with
increasing the nuclear charge Z of the ion.

An analysis of capture cross sections of two elec-
trons was also carried out using the experimental data
for boron ions with velocities of V =1.19 and 1.82. We
calculated theration, = g, ; _,/0; ; _; of cross section of
capture of two electrons to the cross sections of capture
of one electron by boron ions. Within the experimental
error, these ratios remain constant for the electron cap-
ture cross sections in all gaseous media studied, except
krypton and xenon. This enabled us to average n, over
various media; as a result, the minimal value of n, =
0.004 + 0.001 was obtained for capture of two electrons
by B* ions with the formation of negative B~ ions. For
boronionswith chargesi = 2-5, ration, is 0.09 + 0.05.

Thecrosssection g; ; _ 3 of capture of three electrons
is 3-5 times smaller than the cross section o; ; _, for
capture of two electrons. The ratios Nz = 0; ; _3/0; ;1
for capture of three electrons were obtained only for
boron ion velocities of V = 3.65 and 5.50 and were
approximately equal to 0.02 + 0.01.

5. CONCLUSIONS

It has been established that the values of cross sec-
tions o, ;_, obtained from the experimental data

increase on the average with Z, in proportion to Z\"°
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and can be successfully described by the model of inde-
pendent electrons in the low-velocity range. However,
the analysis of experimental data revealed deviations
from the monotonic dependence of o; ; _; on Z: in the
range of low velocities, the cross sections in neon are
smaller than the corresponding values in nitrogen and
argon by afactor of 2-3. Asthe ion velocity increases,
the dependence of the electron capture cross section on
Z, becomes essentially nonmonotonic.

The calculations carried out in the OBK approxima-
tion successfully describe the oscillations observed in
the dependence of cross sections g, ;_; on Z,. We pro-
posed a unified empirical formula for various ions of
light elements to normalize the electron capture cross
sections g; ; _; calculated in the OBK approximation.

The results of our calculations make it possible to
analyze the variation of oscillationsin the cross section
upon a change in the ion charge and velocity. With
increasing V, the position of the extrema in the depen-
dence of cross sections o, ;_; on Z, is shifted towards
higher values of Z,. The amplitude of oscillation
depends both on the ion charge i and on the nuclear
charge Z of the ion. An increase in the ion charge
reduces the amplitude of oscillations, which attains its
minimal value for nuclei. With increasing nuclear
charge of the ion, the amplitude of oscillations also
decreases if we consider the cross sections of electron
capture by the nuclei of the elements; in this case, for
electron capture by ions, the dependence of cross sec-
tions on Z is more complicated. Analysis of the depen-
dence of the oscillation amplitude on velocity V makes
it possible to determine the velocity range in which
oscillations must be taken into account in the depen-
denceof 0, ;_; on Z.

Thus, it has been established that the cross sections
of electron capture by light ions (Z = 1-7) with veloci-
tiesV = 2-10 asafunction of Z; exhibit oscillations due
to peculiarities of the shell structure of atoms of the
medium.
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Abstract—Drift of an excess electron in dense and condensed inert gasesin external electric field and excita
tion of atoms by electron impact in these systems are analyzed. The effective potential energy surface for an
excess electron at agiven electric field strength consists of wellsand hills, and the actions of neighboring atoms
are therefore separated by saddles of the potential energy. At such atomic densities that the difference of inter-
action potentials for an excess electron between neighboring wells and hills of the potential energy surface
becomes small, the electron mobility islarge. Thisisrealized for heavy inert gases (Ar, Kr, Xe) with anegative
scattering length of an electron on individual atoms. In these cases, the average potential energy of the electron
interaction with atoms corresponds to attraction at low atomic densities and to repulsion at high densities. The
transition from attraction to repulsion at moderate atomic densities |eads to amaximum of the electron mobility.
A gas model for electron drift in condensed inert gases is constructed on the basis of this character of interac-
tion. Dueto high electron mobility, condensed inert gases provide high efficiency of transformation of the elec-
tric field energy into the energy of emitting photons through drifting electrons. It is shown that, although the
role of formation of autodetaching states in the course of electron drift is more important for condensed inert
gases than for rare gases, this effect acts weakly on exciton production at optimal atomic densities. The param-
eters of aself-maintained electric discharge in condensed inert gases as a source of ultraviolet radiation are dis-

cussed from the standpoint of electron drift processes. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Themobility K and drift velocity w of afree electron
in gasesisinversely proportional to the number density
N of atoms, i.e., the quantities KN and wN in a gas are
independent of its density. At high densities, thislaw is
violated because of two reasons. First, electron scatter-
ing proceeds simultaneously on several atoms, and sec-
ond, the interaction between atoms changes the atomic
system, which affects the character of the electron
interaction in this system. For inert gases, where atoms
conserve their individuality in a condensed system, the
behavior of an excess electron injected in a condensed
gas is different depending on its sort. In light inert
gases, He and Ne, an excess electron compels to dis-
place the surrounding atoms. This structure change
moves together with the electron, and, therefore, the
electron effective mass is on the order of the atomic
mass, and, hence, the reduced electron mobility KN in
these condensed gases (He and Ne) is substantially
lower than in gases.

As follows from experiments [1-15], different
behavior of the reduced electron mobility occurs in
heavy inert gases, Ar, Kr, and Xe. The electron effective
mass in condensed heavy inert gases is on the order of

TThis article was submitted by the authors in English.

the free electron mass, and as the atomic number den-
sity increases, the reduced mobility has a tendency to
decrease; it experiences a sharp jump in anarrow range
of the atomic number densities (see Fig. 1 for the case
of xenon [7, 11]). Table 1 [16] demonstratesthis behav-
ior of the mobility of the excess electron. In Table 1,
Kges IS the electron zero-field mobility in gases at room
temperature, K, isthe electron zero-field mobility at the
triple point, and K, is the maximum electron zero-

Table 1. Parameters of drift of an excess electron in rare
gases

Ar Kr Xe
Trnae K 155 170 223
Ninax» 1072 cm3 12 1.4 12
KinaxNmao 1024 (cmV 51 [14]| 22 64 72
Ty, K 85 117 163
Njig, 102 cm3 2.1 18 14
KyNiig, 10 (cmV 9)* 10+1 | 29+5 |28+ 10
[1-6, 8, 10, 14]
Vo, V[9, 12, 13, 15] -03 | -05 | -08
KgasN: 102 (cmV s)7 [16] 12 062 | 017

1063-7761/04/9805-0924$26.00 © 2004 MAIK “Nauka/ Interperiodica’



PROCESSES IN CONDENSED INERT GASES INVOLVING EXCESS ELECTRONS

field mobility for the liquid state. This table also con-
tains the temperatures T,,,, of the maximum electron
mobility, the triple point temperatures T,,, and the num-
ber densities of aloms N.., Njjq corresponding to these
temperatures. We note that the differencein the electron
mobilities for solid and liquid inert gasesis not signifi-
cant; i.e., high mohility of an excess electron cannot be
explained by the order distribution of atoms. The quan-
tity V,in Table 1 isthe maximum difference of the elec-
tric potentials acting on the electron located inside and
outside a condensed inert gas. It is energetically profit-
able for an excess electron to be located inside the inert
gas, and the minimum of V, corresponds to the atomic
number densitiesthat are related to the maximum of the
electron mobility. In addition, high mobility of an
excess electron is observed only in a narrow range of
atomic number densities, to be considered below. As
follows from the datain Table 1, the maximum reduced
mobilities of the excess electronsin inert gases, aswell
as the reduced mobilities at the triple point, signifi-
cantly exceed those at gaseous densities. This differ-
ence is especialy high for xenon, which is the main
object of our consideration. In addition, the maximum
reduced electron mobilities in inert gases exceed those
in metals of high conductivity. Indeed, the reduced
electron mobility K.N, is equal to 2.9 and 3.1 in the
units 10 (cmV s)~* for copper and silver, respectively.
We note that, because el ectrons are degenerate in these
metals, a typical electron velocity near the Fermi sur-
face is much greater than the thermal velocity of afree
electron. Therefore, although the specific mobilities of
an excess electron in condensed inert gases signifi-
cantly exceed those in metals, the ratios of the electron
free mean path to the distance between nearest atoms
(or the lattice constant) have the same order of magni-
tude for both condensed inert gases and metals.

Some theories [17-21] explain the high mobility of
an excess electron by the Ramsauer effect in electron
scattering on an individual atom, but such approaches
are just model s because they are correct only for gases.
Of course, the gaseous approach for the electron scat-
tering is the simplest one, but it does not allow us to
describe the electron behavior in awide range of atomic
number densities with a small number of fitting param-
eters. The high mobility of an excess electron in con-
densed inert gases has a fundamental meaning because
it isevidence of aweak interaction between the electron
and this matter at such densities. In what follows, we
consider just this range of the atom number densities
corresponding to high values of the electron mobility,
and our task is to explain the nature of this phenome-
non. Analyzing the properties of the total potential
energy that acts on the electron from a condensed inert
gas, we show that it varies, on average, from attraction
to repulsion as the atomic number density increases.
The maximum electron mobility corresponds to the
transition from attraction to repulsion, and in what fol-
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Fig. 1. The dependence of reduced el ectron mobility in xenon
on the density of atoms according to experiments[7, 11].

lows, we analyze the problem of drift of an excess elec-
tron in condensed inert gases from this standpoaint.

The high mobility of excess electrons corresponds
to a low resistance of condensed inert gases at such
atom number densitiesif the excess el ectrons propagate
in this matter under the action of an externa electric
field. When the electron energy reaches the threshold of
atom excitation, it isconsumed in the formation of exci-
tons; in this range of atom number densities, formation
of excitons by electron impact is an effective process.
But formation of autodetachment states may affect the
efficiency and rate of exciton formation in condensed
inert gases. These autodetachment states are bound
states of excited and excess electrons with a binding
energy of about 0.4 eV [22]. Formation of autodetach-
ment states of inert gas atoms impedes excitation of
atoms, and we consider this problem below.

The high electron mohility in condensed inert gases
has fundamental meaning and can be applied to trans-
form the energy of an external electric field into the
energy of photons in the vacuum ultraviolet (VUV)
spectral range through excess electrons moving in con-
densed inert gases. This method, which requires the
creation of aself-maintaining electric dischargein con-
densed inert gases, was suggested in [23, 24] and was
then experimentally proved for xenon [25-27].
Because the excited inert gas atoms are characterized
by a high excitation energy, such a method makes it
possible to effectively convert the electric energy into
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Table 2. Parameters of the interaction potential of two iden-
tical atoms of inert gases (R., D) and reduced parameters of
condensed inert gases near the triple point [28]

Ar Kr Xe Average

Re, A 376 | 401 | 4.36 -
D, K 143 | 200 | 278 -
a A 3755 | 3992 | 4.335 -
alR, 100 | 099 | 1.01 |1.005+0.013

_ 3
No=Re'» | 188 | 155 | 121 -
1022 cm3
T,/D 0587 | 0578 | 0.570 |0.579+ 0.007
p,RYD, 103 19 | 17 | 17 1.9+0.2
Vi RS 0.879 | 0.884 | 0.855 | 0.88+0.02
Vg /R 077 | 076 | 074 | 0.76+001
€q,/D 6.5 6.7 6.7 6.5+ 0.3
AH;/D 0.990 | 0980 | 0.977 | 0.98+0.02
ASie 169 | 170 | 171 | 1.68+0.03
rw/Re 0.639 | 0641 | 0.627 | 0.64+0.01

Table 3. Reduced parameters of an excess electron in con-
densed inert gases

Ar Kr Xe
Nsoi/Nog 1.30 131 134
Niig/No 113 113 117
Nimax/No 0.68 0.90 0.99
N«/Ng 2.05 154 1.38
eVo/equn -3.8 -4.3 -4.9

radiation because elastic scattering of electrons is
weak. This problem of energy conversionisanalyzedin
this paper in the context of the behavior of excess elec-
trons in condensed inert gases.

2. INTERACTION OF AN EXCESS ELECTRON
IN CONDENSED INERT GASES

A feature of condensed inert gasesisthe small bind-
ing energy between atoms in comparison with typical
atomic energies. This implies that the interaction
between neighboring atoms in solid and liquid inert
gases is relatively small and allows us to use the simi-
larity law for various parameters of dense and con-
densed inert gases [28]. The reason for thisis that the
parameters of inert gases are governed by pairwise
interactions of atoms, and the pair interaction potentials
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are known for inert gas atoms with a high (several per-
cent) accuracy [29-32]. The pair character of atom
interaction makes it possible to express certain param-
eters of inert gases viathe parameters of the interaction
potential of two atoms and ensures validity of the scal-
ing laws for various parameters of bulk inert gases.
Representing the pair interaction potential of two atoms
in the form of a potential well, we use two interaction
parameters, the depth D of this potential well and the
equilibrium interatomic distance R, that corresponds to
the minimum of the interaction potential. Table 2 gives
some reduced parameters of heavy inert gases[28] and
confirms the validity of the similarity law for them.
Here, a is the lattice constant, and all the inert gases
have the face-centered cubic lattice; T, is the triple
point temperature; V;, and Vg, are the specific volumes
per atom for the liquid and solid states, respectively, at
the triple point; g, is the sublimation energy per atom
for the crystal at the triple point; AH;, is the fusion
energy (the energy consumed in melting) per atom;
AS . isthe entropy jump per atom at melting; and ryy, is
the Wigner—Seitz radius for the liquid state. As follows
from Table 2, the reduced parameters are the same for
different rare gases within the accuracy of several per-
cent. Hence, the bound systems of inert gas atoms have
asimple nature and can be treated as systems of classi-
cal bound atoms. We use this in the subsequent ana-
lysis.

Although scaling is not valid for an electron in con-
densed inert gases, it is convenient to express the
reduced parameters of an excess el ectron, which allows
usto comparethe electron parameterswith thosefor the
interaction of atoms. The number densities Ny, and N,
(where Ny, = L/Vg, and Nq = 1/Vj;,) in Table 3 corre-
spond to the solid and liquid states of inert gases at the
triple point, N, is the number density in Table 1 at
which the zero-field electron mobility has a maximum,

Np, = R.>, and Ng= /2/(2F )3, where F is the mean

radius of the valence electron in a given atom and the
values of these radii are taken from [33-35]. Hence, N[

is the number density of balls of radius r if these balls
form a close-packed crystal lattice. In accordance with
the Pauli exchange interaction, an excess €lectron can-
not be located inside atoms, and, as follows from the
datain Table 3, the excluded volume for the location of
an excess electron is comparable to the total volume
inside condensed inert gases at the triple point. As can
be seen, the similarity law is not valid for N{N,. In

addition, the ratio N;;/Njgrows as we transfer from Ar
to Xe; thisratio expresses atypical part of spaceinside
aliquid inert gas where an excess electron may not be
located.

We now consider the problem of interaction of an
excess electron inside a liquid inert gas from another
standpoint, analyzing the behavior of the potential
energy surface for this electron as the atom density
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increases starting from low values. At low atomic den-
sities, when an electron is located in a gas, it interacts
with individual atoms independently. In regions
between atomsfar from them, the interaction potential
is zero and nonzero interaction occurs only near
regions occupied by atoms. On the basis of the Fermi
formula[36], theinteraction potential between the el ec-
tron and atoms can be represented as

u(r) = ZZZLZLé(r _R), (1)

where, r isthe electron coordinate, R; is the coordinate
of the ith atom, and L is the electron—atom scattering
length. Because the scattering length is negative for Ar,
Kr, and Xe, this interaction potential corresponds to
attraction in regions where atoms are located. There-
fore, the potential energy surface consists of regions
inside atoms with a sharp electron repulsion, regions
near each atom with electron attraction, and regions
between atoms with zero interaction potential. The
region between atoms with zero interaction potential
shrinks as the number density of atoms increases, and
when the distance between nearest neighborsis compa-
rable with the electron orbit size, the potential energy
surface takes the form of wells and saddles, which sep-
arate regions of individual atoms. This potential energy
surface resembles that describing interaction of bound
atoms in clusters [37, 38]. In redlity, attraction corre-
sponds only to an average interaction of an electron of
zero energy with an individual atom in a gas, and it
leads to a redshift of spectral lines emitted by excited
atomslocated in inert gases[39]. The exchangeinterac-
tion of a test electron with electrons of the inert gas
atomsisaccompanied by repulsion if this electron pen-
etrates an internal atom region occupied by other elec-
trons. The volume of repulsion near each atom is
approximately 1/N; where the values of Njare given

in Table 3, and thisimplies that high electron mobility
isabsent at high gas pressures.

Theinteraction potential between atest electron and
an individual inert gas atom can therefore be repulsion
at small distancesfrom the atom and attraction at longer
distances, which are of the order of the electron scatter-
ing length. Correspondingly, the attraction in theregion
of location of individual atoms dominates in the inter-
action potential of a test electron with the system of
inert gas atoms at low densities of atoms. Evidently, as
the number density of atoms increases, the attraction
part of the interaction potential disappears, and, there-
fore, there is an atomic density when an average inter-
action potential becomes zero. This atomic density cor-
responds to the transition from attraction to repulsion
for the tota interaction potential, and the mobility of
slow electrons abtains a maximum, because a typical
energy difference between wells or hillsin the potential
energy becomes minimal at such an atomic density.
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Thiselectron behavior is expected, however, if the elec-
tron scattering length on an individual atom is negative,
i.e, for Ar, Kr, and Xe.

Thus, there is a strong repulsion of an excess elec-
tron in heavy inert gases near each core due to the
exchange interaction with internal atomic electrons,
and atest electron does not penetrate the atom because
of the Pauli exclusion principle. Average electron inter-
actionwith anindividual atom correspondsto attraction
because of the negative electron-atom scattering
length. At intermediate atomic densities, these interac-
tions compensate each other, on average, and the elec-
tron mobility has a maximum at such densities. We are
guided by the liquid state of condensed inert gases,
because the order distribution of atomsis not important
for the nature of this high electron mobility. Therefore,
the electron mobilities for the solid and liquid states do
not differ, in principle, but this mechanism of high elec-
tron mobility corresponds to a narrow density range,
while high mobility of asolid inert gas can be observed
in awide range of atomic densities.

3. DRIFT AND MOBILITY
OF AN EXCESS ELECTRON
IN HEAVY INERT GASES

Guided by a range of high mobilities of an excess
electron in condensed inert gases where the interaction
of this electron with the environment is weak, we use a
gas approach for electron scattering. Keeping in mind
that the potential energy surface for an individual elec-
tron consists of wells and hills, and that hills separate
the action of an individual core, we use the gaseous
approach for electron scattering where each core is a
scattering center for an excess electron. If the cross sec-
tion for scattering on an individual core is small com-
pared to the square atom size, we reduce the problem of
electron motion inside a condensed inert gasto scatter-
ing on individual cores, astakes placein gases. We note
that thismodel isvalid only in the case of high electron
mobility in a condensed system if the electron interac-
tion with this system is weak.

In the case of electron motion in a gas, when a test
electron is scattered subsequently on individua atoms,
the zero-field electron mobility K, is given by [40, 41]

e

__e/1dpy
- 3_rn(_:.<v_2W |:|7|:|>’ (2)

where m, is the electron mass; v isthe electron veloc-
ity; averaging is taken over the distribution of electrons
with respect to velocities; v = Nvao* is the rate of the
electron—atom scattering, with N being the atom num-
ber density; and o* isthe diffusion cross section of the
electron—atom €lastic scattering. For simplicity, we
consider below the case where the cross section isinde-
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Table 4. Parameters of the gas model for drift of an excess
eectronin liquid rare gases [ 16]

Ar Kr Xe
o,/Ta; 0.012 0.005 0.005
O il T 0.004 0.002 0.002
Al 65 150 170
Amax/Bmax 200 450 480

pendent of the collision velocity and formula (2) takes
the form [40, 41]

A or KN = 0.53—E

Jm.T o* ./meT’

where A = (No*)~ is the mean free path of an electron
inagasand T isthe temperature. This connection of the
reduced electron mobility and the scattering cross sec-
tion allows us to express the diffusion cross section o*
of the electron—atom scattering in agas viathe reduced
mobility, which is given by

ot = 05
JMTK N

In particular, applying this gas model to gaseous xenon
and using the experimental values [7] of the reduced
mobility K.N = 3 x 10 (cm V s)™ at the temperature
T = 236 K, we obtain from formula (4) the diffusion
cross section o* = 52 A2 at this temperature. We intro-
duce the critical number density of atoms N, that char-
acterizes the transition from the gaseous system to the
condensed one and corresponds to the relation o* =

Ttr\i, , Wherer,, istheWigner—Seitz radius(nr\i, =23 x

1075 cm?? for liquid xenon). According to formula (4),
the critical number density is

_ _3Jm

- 4(c* )3/2’
and it isequal to N, = 4 x 10% cm~3 for xenon. Thisis
the transient gas-iquid number density for xenon.

We treat the density range of the maximum electron
mobility in xenon on the basis of the gasmodel. Taking
the maximum zero-field electron mobility from Table 1
(KN =7.2x10% (cmV s)™ at the atom number density
Niax = 1.2 x 10?2 cm™3), we obtain on the basis of for-
mula (4) o* = 1.4 x 108 cm?, which is small in com-

parison with nr\i, =2.3x 1075 cm?, and, hence, the gas
model is applicable in this case. Thus, composing elec-
tron scattering in a condensed inert gas at the atomic
density of the maximum electron mobility as aresult of
the electron interaction with small independent scatterers

K, = 053

©)

(4)

)

cr
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located on atom cores, we use formula(4) to find the dif-
fusion cross sectionsfor electron scattering 0, and oy,
that correspond to the atom number densities N,,,,, and
N, (see Table 1). These cross sections are given in
Table4 [16], where a, and a,, are the distances
between nearest neighbors at these atomic densities,
and A, and A, are the electron mean free paths for
these densities. As can be seen, the gas approach is
valid because the effective cross sections are relatively
small, whereasthe mean free pathsfor electronsarerel -
atively large.

We consider the datain Table 1 from another stand-
point, composing the potential energy surface for an
excess electron in the form of wells and hills near each
core if the well depth is relatively small. We take the
interaction potential of the electron with each atomic
center in the form

2

u(r) = —erxpg—;—% asry, (6)
wherer is the distance from the atom’s center, a isthe
range of atomic forces, and ry, is the Wigner—Seitz
radius for the condensed system. The electron scatter-
ing on an individual center isweak if U, < €, where €
isthe electron energy. We can then use perturbation the-
ory for electron scattering (the Born approximation),
and the differential cross section of the electron scatter-
ing on an individual center in the Born approximation
for the interaction el ectron—core potential (6) is[42]

2
2Im,U,a 293
M8 Reo%h exp% KZaEdQ, 7

do =
40 s 0O

where
K = 2qsin(6/2)

isthe variation of the electron wave vector as aresult of
scattering, 0 isthe scattering angle, qistheinitial elec-
tron wave vector, and

dQ = mdcos6

isthe solid angle element. From this, we have the diffu-
sion cross section of elastic scattering on each scattered
center, given by

» - wa' gt
or = ED?D . (8)

This consideration isvalid for U, < ¢, i.e., intherange
of parameters where the electron mobility is highin a
condensed system. In the case of xenon at the atomic
density of the maximum electron mobility, we obtain
Uy/e = 0.05 if a = ry, in the interaction potentia (6).
Thus, from different standpoints, we find that the inter-
action of an excess el ectron with the environment isrel-
atively weak at atomic densities where the electron
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mobility has amaximum and the diffusion cross section
of the electron at each coreis also relatively small.

As follows from the above analysis, the gas model
can be valid for the mobility of an excess electron in
condensed inert gases in some range of atomic densi-
ties. Thismeansthat, in the case where we compose the
potential energy surface for an individual electron
inside a condensed inert gas in the form of wells and
hills, the amplitude of the electron scattering on an indi-
vidual well or hill isless than the distance between the
nearest neighboring atoms. We can also use another cri-
terion of the gas model validity: when the electron
mean free path in a condensed inert gas is large com-
pared to the distance between neighboring atoms. This
allows us to use the gas model for electron scattering,
according to which an electron is scattered indepen-
dently on neighboring nonuniformities of the potential
energy surface. This leads to the classical theory of
electron kineticsin gasesin an externa electric field in
this case of an excess el ectron in condensed inert gases.
This theory was elaborated for kinetics of electronsin
semiconductors and gases [44-50]. It is represented in
contemporary publications[41, 51, 52], and we use this
theory below for excitation of atomsin condensed inert
gases.

Although the criterion for the weakness of the inter-
action of an excess electron in condensed inert gases at
high electron mobilitiesisfulfilled, as well asthe crite-
rion for the gas approach for propagation of an excess
electron, the character of electron motion is in reality
more complex. Indeed, due to the exchange interaction
of an excess electron with atomic electrons, an excess
electron cannot penetrate the atoms. Hence, if we con-
sider electron scattering at atomic cores to be indepen-
dent, the cross section of scattering at each core is on
the order of the atomic radius sguared, which signifi-
cantly exceeds the values in Table 4 that follow from
the mobility data. Therefore, alarge mean free path for
electronsinside liquid inert gases may be explained by
collective effectsin simultaneous el ectron scattering on
several cores, and the above gas model has aqualitative
character. Nevertheless, because of its ssimplicity, we
use the above gas model for the electron scattering in
liquid inert gasesasaresult of theinteraction with inde-
pendent scatterers.

4. EXCITATIONS IN CONDENSED INERT GASES
BY ELECTRONS DRIFTING
IN AN EXTERNAL ELECTRIC FIELD

In analyzing the electron behavior in a gas of inde-
pendent scatterers, we use the classical theory [44-50]
of electron motion in gases under the action of an exter-
nal electric field. The basis of this theory is the small
change in electron energy when there is a significant
change in the electron momentum as a result of elastic
electron—atom scattering due to the small ratio of the
electron and atomic masses. This allows us to expand
the velocity distribution function of the electron f(v)
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over the spherical harmonics, and thisdistribution func-
tion has the form

f(v) = To(v) +vifa(v), (9)

where v, is the electron velocity component along the
electric field and vf,(v) < fy(v) according to the basic
concept. Although the antisymmetric part of the distri-
bution function f;(v) is small, it is of importance
because the electric field acts on electrons via this com-
ponent of the distribution function. The set of equations
for the distribution function in the case of only the elas-
tic electron—atom scattering and in neglecting inelastic
processes has the form (seg, e.g., [51])

dfo _ , ;. 2 d
dv ' og,2dv

Vi) = la(fo)  (10)

inthe stationary case, where a = eE/m,, E isthe electric
field strength, v = Nvo(v) is the rate of electron colli-
sions with atoms, and | o(f) is the electron—atom colli-
sion integral. Thisimplies a general expression (2) for
the electron mobility, where an average is taken over
the spherical component f, of the distribution function.

We consider the simplest case where o(v) ~ 1/v and
the rate v is independent of v. We then obtain the
expressions

E
fo(e) Oex D—ED, wzgze—,
of€) Hexpg TH V.oomy
M (1)
T = T+—2,
3v

where € is the electron energy (which is to be used
along with the electron velocity) and T is the gas tem-
perature. We note that we ignore collisions between
electrons and that the parameter T, does not correspond
to the definition of the electron temperature, but
coincideswith it in the expression for distribution func-
tion (11). The drift velocity is proportional to the elec-
tric field strength, and this dependenceisrelated to lig-
uid xenon as long as inelastic collisions are weak [53].
Hence, this simple dependence v(v) describesthe elec-
tron behavior in liquid xenon. On the contrary, the el ec-
tron behavior in gaseous xenon is more complex
because of anonmonotonic velocity dependencefor the
el ectron—atom cross section due to the Ramsauer effect.
Such a dependence leads to the maximum of the
electron mobility as a function of the electric field
strength [7], which aso follows from detailed calcula-
tions [54] for gaseous xenon. Below, we use the sim-
plest dependence o(v) ~ 1/v for the analysis of electron
kineticsin liquid xenon.

Also taking into consideration excitation of atoms
by electron impact and assuming that, above the excita-
tion threshold Ag, the electron loses the energy by atom
excitation, wefind that the distribution function iszero at
the excitation threshold f,(Ag) = 0. This gives the energy
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Fig. 2. The efficiency of excitation of atoms in an atomic
system if therate v of the electron—atom elastic scatteringis
independent of the electron velocity v.

distribution function fy(€) of an excess eectron [55] in
the form

€ <Ag,

EC[%(E) ¢o(AE)]

fole) = [p, €= Ag,

where Cisthe normalization constant and ¢4(€) isgiven
by formula (11),

(12)

bo(e) = eXpD TD (13)

In the regime under consideration, the drift velocity
is proportional to the electric field strength E even at
high fields and the parameter T, ~ E? at high fields,
while the average electron energy is restricted by the
value (3/7)Ac in the limit of high electric fields. In this
regime, electrons acquire energy from the external field
and lose it in elastic collisions with atoms. When an
electron reaches the excitation energy Ag, a forming
excited atom emits a photon. The electron energy
becomes zero after atom excitation, and the process of
the increase of the electron energy repeats. Therefore,
the rate of atom excitation is determined by the flux in
the energy space, and, on the basis of the indicated
energy balance, we have the rate of atom excitation
given by [16]

dN, _ 4 g2 M 0 Agy
& = oD Nerveed D

T < T, <A¢,

(14)

where Njis the number density of excited atoms, N, is

the number density of excess electrons, and Ac is the
excitation energy.

We now find the portion y of the power acquired by
the electrons from the external electric field and lost to
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atom excitation. We assume that the power acquired
from the field is transformed below the excitation
threshold mostly into the atom thermal energy as a
result of elastic collisions between electrons and atoms,
and this power per one electron is eEw, where w is the
electron drift velocity. From formula (14), we then have

dN
ot _ _4 mper?, OAm
V=GN, T 3o SPOTD (19
T < T, <A¢,
where
2 2
Te = —az = —MW
3v 3

is the effective electron temperature. Figure 2 gives the
dependence of the efficiency of atom excitation y on the
electron energy € = 3T,/2 under these conditions [16].
Formally, this expression hasamaximum at T, = 2A¢g/5,
where & = 0.61, but because € < 3A&/7, the above con-
sideration is valid below this limit. It follows from (15)
that the transformation efficiency yis significant even at
low values of TJAE€.

In this consideration, we implicitly use the criterion

e

Vex> MV,

where v, is atypical excitation rate of atomsin colli-
sionswith atest electron. To obtain a more specific cri-
terion, we analyze the other limiting case of slow atom
excitation. The energy distribution function then has
the form

fo(€) = Coole)

and differs from that in formula (9) by the absence of
decay of fast electronsin the excitation process. Corre-
spondingly, the rate of the atom excitation is equal
to [16, 41]

dN,

T (16)

9« D_ﬂ]
NngexpD_I_

where k, is the rate constant of quenching resonantly
excited atoms by a slow electron, and g, and gjare the

statistical weights of the ground and excited atomic
states. We have used the principle of detailed balance
between the excitation and inverse quenching pro-
cesses [51, 56], which is convenient because the
guenching rate constant is independent of the electron
energy for aslow electron (T, < Ag). The values of the
guenching rate constants for resonantly excited atoms
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Table 5. Parameters of the lowest resonantly excited states of inert gas atoms [ 16, 56]
Uk, (M/M)kg,
* 9 3 3
Atom (state) Ag, eV J*, eV T,Nns kg 1077 cm/s 10% o3 kg, 108 cm?¥s 1044 emd/s
Ar (1sy) 11.62 4.14 10 0.82 12 0.15 2.0
Ar (1sy) 11.83 3.93 2 39 13
Kr (1sy) 10.03 3.97 35 39 7.3 2.8 18
Kr (1sy) 10.64 3.36 3.2 35 89
Xe(1sy) 8.44 3.69 3.6 7.0 4.0 10 43
Xe(1sy) 9.57 3.43 35 4.6 6.2

of inert gasesare givenin Table 5. Wethere give the val -
ues of kg for thermal collisions on the basis of the elec-
tron mobilitiesin gases according to the datain Table 1.

Comparing the excitation rates according to formu-
las (13) and (16), we find them to be simultaneously
valid if the criterion

s Merpg™?
ko> Wit ke (17)

is satisfied, where the rate constant of the elastic elec-
tron—atom scattering is introduced as ky = V/IN,. Using
the gas model for elastic scattering of electrons on
atoms, we take the quenching rate constants for elec-
tron—atom collisions and radiative times of excited
atomsin acondensed inert gasto be close to thosein a
gas, whereas the rate constants for the elastic electron
scattering are much lessin condensed state. This means
that criterion (17) is even more valid for condensed
inert gasesthan for their gaseous phase. In addition, this
leads to a high efficiency of transformation of the elec-
tric field energy into excitations in electronic excitation
for condensed inert gases.

We note [57] that, in spite of the simplicity of con-
densed inert gases as a system of bound atoms in the
ground state (see Table 2), elementary excitations in
this system—excitons—have a complex structure. One
more peculiarity of excitonsin condensed inert gasesin
comparison with excitationsin a gaseous system is due
to the interaction of an excited atom with the environ-
ment. In gases, excited atoms are formed as a result of
the electron impact, and these excited atoms emit radi-
ation. In condensed inert gases, an excited atom is
transformed very fast into adiatomic excimer molecule
and lives in such aform. Therefore, radiation of a con-
densed inert gas is characterized by a broad band for a
guasimolecular exciton, and luminescenceis redshifted
in comparison with the spectral line of atom emission,
and one can expect the luminescence quantum yield to
be close to unity.

There are two types of quasimolecular excitons
depending on the total spin of an excited electron and
the core. Because the electron spin is zero for the
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ground state, the radiative time of an exciton with the
total spin one is much greater than the radiative time of
an exciton with zero total spin [58]. This fact is taken
into account in the analysis of exciton kinetics.

5. ROLE OF AUTODETACHING STATES
IN GENERATION OF EXCITONS

Because of weak electron—-atom interaction in con-
densed inert gases for atomic densities of high electron
mobility, an excess el ectron experiences aweak friction
when it is drifting in an external electric field. There-
fore, the efficiency ishigh for conversion of the electron
energy obtained from the field into excitation of atoms.
But this weak electron—matter interaction is the reason
for the increased role of autodetaching statesin the for-
mation of excitons. We consider this problem in what
follows.

Excitation and decay of autodetaching states in the
course of motion of an excess electron in condensed
inert gases proceeds according to the scheme

e+A > (A)**, (18)

where A isthe inert gas atom. The parameters of auto-
detaching states (A)** of inert gas negative ions are
anaogous to those of H~(25?) [59], where the autode-
taching stateis placed about 0.4 €V |ower than the atom
excitation energy and the lifetime of these autodetach-
ing states is approximately 101-1012 s. Because the
typical time of radiative decay of an ionic state viathe
emission of aUV photonis about 10°-102 s, its prob-
ability of occurring during the decay of an autodetach-
ing state is small. However, this process can be
repeated, and the process of photon emission through
channel (18) may be significant. If channel (18) isreal-
ized, the spectrum of radiation is characterized by
longer wavelengths than that from A* but shorter than

from A% [22].

Electron capture in an autodetaching state leads to
an additional decrease in the el ectron distribution func-
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tion, and the capture cross section o, IS given by the
Breight—-Wigner formula [42]

o r?

O-I‘es = 2 2 2 ! (19)

M (e —¢g,,) + /4
where ™ isthe width of the autodetaching level and €,
isthe electron energy for this resonance. We first deter-
mine formally a decrease in the energy distribution
function of electrons, considering electron capture on
the autodetaching level as the elastic electron scatter-
ing. We can then represent the cross section of the elec-
tron—atom elastic scattering as the sum of two parts,

0 = Og + Ores) (20)
where g, smoothly depends on the electron energy and
O, IS the resonant part of the elastic cross section.
Restricting ourselves to the Druyvesteyn case of the
electron distribution function [44], where the typica
electron energy significantly exceeds the thermal
energy of atoms, we find that, instead of formula (12),

the distribution function is given by

2 -17]
do(€) = exp[ﬂ’dadv'azg 0. (21)

If we assume the rate of elastic electron—atom scatter-
ing v to be independent of the electron energy, for-
mula (19) transformsto formula(12) when the resonant
part of electron scattering is neglected.

The character of the electron interaction with an
autodetaching state consists in the electron capture on
thislevel and in the subsequent decay of the resonance
level, which can lead to achange in the direction of the
electron velocity. Thus, the capture of an electron on
the resonance level is similar to elastic scattering of the
electron with a change in the direction of its motion.
Assuming that 0, > 0, at the resonance, we find that
formation of the autodetaching state under the above
consideration leads to ajump in the exponent (19), and
thisjumpis egual to

z:}ds%“—a

Bv re;]

where v, = Nv0,, Which implies that, above the res-
onance, the distribution function acquires the factor
exp(=¢). This means that distribution function (13)
transformsinto

(22)

€
do(e) = XPETH E<Ee
e

S
do(e) = P+ —&, £
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Under the assumption that the rate v of the electron—
atom scattering is independent of €, the exponent is
given by

3de

£ = I_(N 0.)° = 3T[r

' (29

where

28 o
m,

kres = V.’ Vies = (24)
res

In particular, for 0, = 8 €V (xenon), we obtain K =
1.4 x 107 cm¥/s and this estimate is valid for both gas-

eous and condensed states when the gas model is appli-
cable.

Thus, the role of the autodetaching level in electron
kinetics is governed by exponent (23). Taking ky =
v/IN,, where k is the rate constant of the elastic elec-
tron—atom scattering aside the resonance, we obtain

_ T[r d<reé:|
&= om0 =
Using formula(25) for the estimate in gaseous and con-
densed xenon, we take ' = 0.01 eV, T, ~ 3 €V, O =
8 eV, and the value of ky from Table 5. This gives & =
0.005 for gaseous xenon; i.e., autodetaching states do
not affect the electron distribution function there.
Applying the gas model to condensed xenon, we can
evaluate the rate constant of the electron—atom scatter-
ing from the known zero-field mobility of electrons as
ky = 2.4 x 10 cm?¥/s at the number density corre-
sponding to the mobility maximum. Substituting this
small rate constant in (25), we obtain & ~ 10°. Thus, as
supposed in [22], formation of autodetaching states is
not essential for excitation of atoms in gases even at
high atomic densities. However, it may be important in
condensed inert gases at densities where the electron
mobility is high.

The autodetaching states are of importance in elec-
tron kineticsand atom excitation if £ > 1; we determine
this limit below. The probability dw(e) of the electron
energy being in arange from € to € + de after the decay
of an autodetaching state according to formula (19) is
given by

ds _ 2(S_Sr%)

dw = ———, s=
(1 +5) r

(26)

We suppose that autodetaching is not essential if 0, <
O i.e, if

21
me8r$001

25 = (27)
and the probability w that s = s,, when the autodetach-
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ing state can beignored, is equal to

00

1

w I dw — (28)
S

In particular, for xenon at the atomic number density of
the maximum electron mobility, we have s, = 14. The
presence of an autodetaching state therefore acts as a
barrier in the kinetics of electronsin the space of elec-
tron energy. In the case of xenon, the probability of
passing through this barrier is approximately 0.02. Of
course, this decreases the efficiency of transformation
of the energy of the externa electric field into the
energy of emitting photons through electrons that
excite atoms in condensed inert gases.

This effect decreases the efficiency y of transforma-
tion of the electric field energy into the energy of VUV
photons because it leads to a drop in the distribution
function. However, in the limit

T.> Ae—¢g, (29

this influence on the efficiency coefficient y is small if
the criterion

s me[AQjS/Z
qu > MD_TeD kel

is satisfied instead of criterion (17). Indeed, because
Ag — €= 0.4 eV, criterion (29) isvalid if the efficiency
yisnot small. Next, both the influence of electron cap-
ture in the autodetaching state and the atom excitation
lead to a decrease of the distribution function, but
because these effects are not separated, al the fast elec-
tronslosetheir energy for the excitation of atomsdueto
criterion (30). Thus, although autodetaching states
affect the efficiency of exciton production by drifting
the excess electrons in condensed inert gases, this is
evidently inessential at optimal atomic densities. An
indirect confirmation of thisisthe efficiency of 18% for
conversion of the electric energy into VUV radiation
that is observed in solid xenon [26, 27]. Formula (15)
givesthisvalueat T,= 2.5 eV (Ae/T, = 3.2).

Because of high efficiency, it isadvantageousto cre-
ate a self-maintaining electric discharge in condensed
inert gases for generation of VUV photons, as sug-
gested in [23, 24]. Such an emission was observed in
liquid xenon [25] in the form of a broad line near the
central wavelength of 175 nm, when electrons were
transported from acold fiel d-emission cathode at moder-
ate electric field strengths. Generation of VUV photons
in solid xenon was achieved in experiments [ 26, 27]. As
follows from the above analysis, the energy distribution
function of the excess electronsis zero at el ectron ener-
gies above the excitation threshold, and, hence, the
direct ionization of atoms by electron impact isimpos-
sible in condensed inert gases. In addition, the number
density of the excess electrons is relatively small, and
stepwiseionization does not proceed in condensed inert

(30)
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gases. Therefore, to support adischarge, ionization pro-
cesses are required outside a condensed inert gas. In
particular, within the framework of the experimental
scheme of [26, 27], a photocathode is placed near solid
xenon and secondary electrons form as a result of
absorption of VUV photons by the photocathode. A gap
filled with gaseous xenon makesit possible to avoid the
self-diffusion effect that decreases by severa orders of
magnitude the probability of an electron entering a
media in the case of a photocathode in direct contact
with condensed matter [60]. In solid xenon 1 mm thick
at an electric tension of 1 kV, approximately 20 photons
may be formed per one electron. As a result, a self-
maintaining discharge is created in this scheme.

We now make some evaluations for this scheme
with alayer of condensed xenon and alayer of gaseous
xenon that are governed separately because of using a
grid. For definiteness, we take xenon at the triple point,
such that thetemperatureisequal to 163 K and the pres-
sure of gaseous xenon is 0.8 atm, which corresponds to
the number density of xenon atoms approximately 4 x
10%° cm3. Taking the characteristic energy in liquid
xenon about 3 eV, which provides an efficiency of con-
version of the electric energy into VUV radiation of
about 20%, we obtain the electric field strength for lig-
uid xenon approximately 100 V/cm. After passing the
liquid layer, each electron createsfive VUV photons per
centimeter of its path. The drift velocity of electronsin
liquid xenon is 2 x 10° cm/s under these conditions. In
the gaseous layer, an average energy of 2 eV isattained
at areduced electric field strength of E/N = 1 Td [54],
which corresponds to 400 V/cm. We note that the num-
ber k of electrons forming per electron in a condensed
inert gasisequal to

_ YEI
k_As’

where | is the layer thickness. Therefore, it is advanta-
geousto increase the electric field strength in alayer of
a condensed inert gas. This is not valid for a gaseous
layer, because, along with excitation processes, direct
ionization of atoms by electron impact proceeds, which
restricts both the layer thickness and the electric field
strength. The total electric current density islimited by
heat transport processes, and this value is measured
in HA/cm?,

Onthe basis of the experience of experimental study
[25-27] and from the above analysis, one can simplify
the scheme of a self-maintaining electric dischargein a
condensed inert gas and improve the discharge param-
eters if the electric discharge is a generator of VUV
radiation. First, a Csl photocathode is useful for this
goal, because its efficiency for the electron emission is
almost three orders of magnitude higher at A = 172 nm
than that for a zinc photocathode [60] that was used in
experiments [26, 27]. Second, it is convenient to apply
an alternating voltage to a layer from condensed inert
gases. In this manner, using a suitable frequency of the

(31)
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eectricfield (f = 1 MHz), one can increase the path that
an electron passesin alayer. Asaresult, in alayer with
athickness of several millimeters, an €l ectron traverses
apath of several meters. Next, dueto theincreasein the
electron lifetime in a discharge, stepwise ionization
processes may be important, increasing the electron
number density. This makes it possible to improve the
parameters of a self-maintaining electric discharge.

6. CONCLUSIONS

High electron mobility is observed in heavy con-
densed inert gases (Ar, Kr, Xe) in a narrow range of
atomic densities. The widespread explanation of this
effect [17-21] by the Ramsauer effect in the electron
scattering on an individual atom is not correct because
of the large distance of the electron—atom scattering in
comparison with the distance between neighboring
atoms at these atomic densities. We have shown that the
nature of high electron mobility is connected to the
transition from an attracting interaction potential to a
repulsing one between an excess electron and an atom
ensemble. High electron mobility is accompanied by
weak electron interaction with atoms of a condensed
inert gas, which allows us to use a gas model for elec-
tron scattering inside this system. In redlity, electron
scattering in condensed inert gases is not reduced to
scattering on individual cores, i.e., collective effectsare
important in these processes. Therefore, a quantitative
description is used in experimental results, and the
parameters corresponding to the el ectron mobility max-
imum do not admit similarity law for different inert
gases. In addition, the analysis of electron kinetics in
condensed inert gases in external fields shows that the
processes of formation of autodetaching stateslead to a
decrease in the electron energy distribution function
with increasing electron energy. Nevertheless, forma-
tion of autodetaching states may be not essential for the
transformation of the electric field energy into vacuum
ultraviolet radiation if acondensed inert gasistranspar-
ent to electron drift.

The results of this analysis can be used for creating
aself-maintaining electric discharge in condensed inert
gasesto generate ultraviolet radiation. The basisfor this
is the existing versions of such a discharge [25-27]
together with the above analysis of the nature of pro-
cesses involving electrons. This allows us to take the
next step in constructing a new version of self-main-
taining electric discharge in condensed inert gases.
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Abstract—The process of cumulation of the dynamic order parameters (E/N and n./N) in dissipative structures
of agas-discharge plasmais simulated using the model of ambipolar drift and ionization. The model is appli-
cable for explaining the onset of electric energy cumulation (for E2/8rt> H2/8m) at the periphery of electric
arcs; beaded, ball, and streak lightning; cathode spots; and other spherical, cylindrical, conical, and planar dis-
sipative plasma structures, viz., the plasmoids previously observed in “enigmatic” phenomena and in experi-
ments with nonequilibrium gas-discharge plasmas. It is shown that, in contrast to Turing regular dissipative
structures (1952), the nonlinear profiles of the dynamic order parameters in cumulative—dissipative structures
(Vysikailo, 1996) are described not by diffusion processes, but by convective processes of ambipolar drift
focusing the electric field density (E2/8m). © 2004 MAIK “ Nauka/ I nterperiodica’ .

1. INTRODUCTION

The methods for the obtaining and prolonged con-
finement of extremal states of matter are being
intensely studied. The knowledge of such states is
essential, for example, for devel oping new technologies
and for synthesizing new materials. The study of Cou-
lomb cumulators (i.e., dissipative plasma structures in
which cumulation of energy, mass, and electric field
occursin charged focused mass flows) asthe most pow-
erful attractors in connection with focusing electric
forces for E4/8mm> H%8ris essential.

Theroleof cumulation isapparently decisivein pro-
cesses of energy and masstransfer through theinterface
between different media (with different phase and other

states). It isfor thisreason that cathode and anode spots
are formed at the metal—gas, metal-liquid, and other
interfaces. In dissipative structures self-formed at the
interfaces between different media, the corresponding
cumul ative processes responsible for apeculiar geome-
try of transition layers take place. These layers focus
the energy and mass flows. Such a structural (anisotro-
pic) activation of media renders the characteristics
(dynamic order parameter) closer. This constitutes the
goal of formation of cumulative-dissipative structures
(plasma el ectrode spots) in the media. Dynamic plasma
structures (cathode spots, lightning, and arcs) are plas-
madynamic analogs of hydro- and gasdynamic regular
systems such as a sandstorm, tornado, hurricane, drain,
gully, swirl, etc. (see Figs. 1-3).

(@)
(b)

()

Fig. 1. Evolution of the width of acylindrical self-focused discharge with increasing current (from left to right); positive column (a),
Faraday dark space (b), and cathode glow and its reflection in a mirror-polished copper cathode (c).
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ELECTRIC FIELD CUMULATION IN DISSIPATIVE STRUCTURES

In the absence of a cathode spot, the conductivity of
the medium is negligibly small (for a current density of
~1071° A cm™), while the density of the strongest cur-
rent in the spot can attain avalue of 108 A cm[1]. The
cumulation coefficient A for current density (j) in the
spot relative to a nonactivated and nonstructured
medium can be as high as A; = j/j, = 10%. What pro-
cesses are responsible for such cumulation? It appeared
that this effect confirms the decisive role of microex-
plosions of cathode regions, viz., explosive emission of
electrons [1]. In accordance with the theory of ectons
(portions of electrons from cathode spots), the reason
for microexplosionsis Joule heating of microtips (inho-
mogeneities of the cathode). Then why is a cathode
spot with anormal current density formed on amirror-
finished electrode (see Fig. 1 from [2])? The effect
apparently cannot be explained only by the tip geome-
try and Joule heating. Joule heating and the explosion
of a cathode region are rather consequences of current
density cumulation that the reason for this effect. How
can we explain the processes of temporal and spatia
proportionality in all dissipative plasmastructures? The
proportionality for cathode spots in space and time has
been established experimentally by Kesaev [3]. The
“reciprocal” displacement of a cathode spot in atrans-
verse magnetic field (Stark, 1903) remains enigmatic
both in the one-dimensional classical model and in the
ecton theory [1]. Thiseffect discovered by Stark clearly
showed that the cathode spot plasma contains el ectrons
moving not only to the positive, but also to the negative
electrode (cathode). (It isthese el ectronsthat determine
the displacement of the cathode spot as an integral dis-
sipative plasma structure (plasmoid) and not a cumula-
tive jet (high-energy electron beam directed to the
anode).) The nearly spherical geometry of the cathode
spot and the geometry of the Faraday dark space, coin-
ciding with the hourglass geometry or with the classical
Laval nozzle geometry remain unclear (see Figs. 1, 3).

The electric field cumulation and the corresponding
focusing of energy and mass flows in dissipative
plasma structures (including cathode spots) have been
investigated insufficiently. In accordance with the prop-
ositions formulated by the author in [4], al dissipative
structures cumulate energy—mass flows, forming the
regions of focusing or attraction (attractors) in the bulk.
In these extended cumulative structures, thetype of ele-
ments of flows being focused changes under the action
of the self-focusing field. The specific energy received
from an external force or energy field is enhanced and
redistributed in attractors and new degrees of freedom
are excited in the medium. Only after this do the
energy—mass flows dissipate to the surroundings in a
new form. The flows activated in cumulators of dissipa-
tive structures are anisotropic and ordered.

In simulating experimental observations for ele-
vated gas pressures under the condition E%/8rt> H?/8m,
where E and H are the electric and magnetic field
strength, transitions layers or lenses focusing the elec-
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Fig. 2. Cathode spots. (a) Example of a possible arrange-
ment of structured plasmoids with different symmetries
(k = 0 correspond to planar, 1 to cylindrical, and 2 to spher-
ical symmetry). (b) Arrowsindicate the directions of cumu-
lation of electron flows and of the reduced €electric field,
which explain the reciprocal motion of the cathode spot in
atransverse magnetic field asaresult of cumulation and for-
mation of acumulative electron jet responsiblefor the Fara-
day dark space. Electrons appear in the bulk in the spot
region, for example, due to UV preionization. (c) Corre-
sponding diagram of cumulation of ion flowsto the cathode

spot.

Fig. 3. Discharge in a tube with increasing discharge cur-
rent. Comparison of the photographs shows the evolution of
thejump width with increasing current (from top to bottom)
[15, 16]. The arrow marks the region of self-formation of a
conical discharge. The gas flow velocity is directed oppo-
sitely and amounted to U = 50 m/s.

tric field and the corresponding flows of charged parti-
cleswill appear only if the ambipolar drift istaken into
consideration. The ambipolar drift leading to focusing
effects of this type under elevated gas pressures, when
the role of diffusion is small, was disregarded in the
models considered earlier [5, 6].

In 1970s, Prigogine used the term dissipative struc-
tures as applied to the energy—mass flows ordered by an
external force into structures. At present, brilliant
examples of chemica dissipative structures breaking
spatial symmetry are known. These are Turing struc-
tures, in memory of A. Turing, who was the first to put
forth (in 1952) the hypothesis that the interaction
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between nonlinear chemical reactions and diffusion
may lead to the formation of ordered spatia structures
differing in the concentrations of reagents [7]. Numeri-
cal simulations performed on the basis of a brusselator
(avery simple model of chemical reactions, which sat-
isfiesal the requirements necessary to the formation of
dissipative structures) makes it possible to trace the
transition from a spatially homogeneous system to spa-
tially structured states upon a deviation of the system
from thermodynamic equilibrium and the emergence of
various alternating geometric structures, each of which
possesses a quite definite dynamic stability and spatial
symmetry.

Cathode spots, as well as Turing structures, may
organize regular structures[3, 8]. In regular dissipative
systems of cathode spots, elements of dissipative struc-
tures (individual spots) are arranged at equal or nonlin-
early ordered distances [8]. Nonlinearities in transfer
processes, as well as in sources and sinks of charged
particles (in particular, the difference in the electric
field dependences of the mobilities of electrons and
ions and the internal eectric field which prevents
charge separation), lead to ambipolar drift via which
various phases are formed and matched in aregular sys-
tem. Transient profiles between different phase states of
the medium under elevated pressures P > 10 torr and
Ne ~ 10'° cm=3 are described by ambipolar drift. Its
velocity issimilar to that of the velacity of sound.

It was proposed in [4, 9-11] that systems of dissipa-
tive structures forming a single entity be referred to as
dissipative crystals. Publication [12], in which the con-
cepts of quasi-crystals and turbulent crystals were
introduced for ordered flows in liquids, is aso worth
mentioning. The structurization of the medium in such
systems ensures geometrical focusing (cumulation) of
energy—mass flows in definite directions. This process
is associated with self-formation of transition layersfil-
tering, discriminating, selecting, ordering, and focusing
the energy, momentum, and mass flows (such layers
play the role of semi-penetrable membranes, walls,
etc.) as well as cumulative jets (channels subdivided
into stingsand jets). In theselayersand cumulative jets,
cumulation of not only flows, but also of reduced force
field takes place (in a gas-discharge plasma, thisis the
parameter E/N, where N is the density of the gas). In
real focusing processes, cumulation with the spherical,
cylindrical, and planar symmetry can take place.

Accordingly, several types of symmetry can be dis-
tinguished in attractive structures and their cumul ative—
dissipative regular systemsformed by dissipative struc-
turesin aplasma (see Fig. 2). Several varieties of struc-
tural or cumulative thermal conductivity, electrical con-
ductivity, etc., are also possible. For example, alayered
structural cumulative conductivity arises in plasmas,
which is manifested in the form of glowing strata par-
alel to plane electrodes. An arc, lightning, or a linear
crack inametal appearsinthe case of cylindrical cumu-
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lation. Cylindrical cumulation in lightning facilitates
the formation of a cumulative “enigmatic” jet of elec-
trons with an energy of several megaelectronvolts,
which propagates continuously or in pulsesin front of
a glowing cumulative-dissipative regular linear system
withL > r, whereL andr arethelongitudinal and radial
dimensions[13]. In the approach proposed here, acath-
ode spot is a spherical cumulator. In a hydrogen dis-
charge plasma, the author and Shashkov observed
cumulation of the cup-in-cup type, where bright cylin-
drical layers were parallel to one another with the axis
perpendicular to plane electrodes.

Focusing (attractive) structures with various types
of symmetry form complex geometrical cascades (see
Fig. 3).

In plasma-type (charged) cumulators, the collapse
of energy—mass flows may result in the penetration of
the Coulomb barrier by nuclei; i.e., “cold” transmuta-
tion of nuclei as a result of globaly local resonances
can take place in cumulative-dissipative systems.

The importance of studying extended cumulative
Coulomb dissipative structures (collapsing energy—
mass flows) and their cumulative—dissipative regular
systems, as well as profiles of dynamic order parame-
ters and their discontinuities playing the role of chan-
nels, membranes, and potential walls in such systems,
becomes obvious and the practical value of investiga:
tionsin thisfield may turn out to be unlimited.

2. FORMULATION OF THE PROBLEM

Comprehensive numerical simulation of dynamic
self-consistency of al processes associated with pas-
sage of current in the formation of the geometry of a
cathode spot, Faraday dark space, anode region, and
cumulative jets from the cathode, which participate in
the formation of these aobjects, remains an extremely
cumbersome and complicated three-dimensional non-
stationary problem that has not been correctly formu-
lated and solved so far. For this reason, it is expedient
to study simple one-dimensional models of discharge
elements possessing a certain spatial symmetry accord-
ing to the results of experimental observations, which,
however, help to clarify the role of ambipolar drift in
cumulation of the electric field.

Here, wewill study planar aswell as spherically and
cylindrically symmetric stationary cumulation of the
dynamic order parameters (E/N and n/N) in plasmoids,
which is associated with ambipolar drift (convective
ambipolar flows arising due to nonlinearities in trans-
port processes) [2, 14-22].

Themodel proposed here can be used for describing
the processes of the formation of transition layers or
focusing membranesin a cathode spot having the visu-
ally observed shape of a hemisphere or cone. The elec-
tron and ion current are focussed precisely on this spot
in structurally different ways (since electrons and ions
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move in opposite directions). As current collapse
progresses, anew state of the plasmawith anormal cur-
rent density is formed, which is visualized differently
(in the form of a bright glow) [4]. Formaly, it is
assumed that the electron current from the cumulation
center is connected by a narrow high-conductivity
cumulative jet (defocusing cumulative electron jet) to
the positive column (see the diagram in Fig. 2 and
Fig. 1). The geometrical sizer of thejet isrelated to the
part R of the cathode spot accumulating electrons via
the current conservation law. The jet, together with
recombination processes and ambipolar drift, deter-
mines the geometry of the Faraday dark space [4]. The
cathode spot openness parameter for electrons is x ~
(r/R)2. In solving problems with radial cumulation, the
size of the sting (transformed into a jet) can be disre-
garded as compared to theradial size of the self-formed
plasmoid (x < 1). Intheregion of the electron jet at the
cathode spot, an ion flow focusing element is formed.
The characteristic size of this quasi-neutral region will
be obtained analytically in this study. The process of
mutual focusing of the electron and ion flows in this
region leads to the formation of a compact (self-focus-
ing) cathode spot.

The production of electrons and ions in the region
with appreciable radia fields is ensured by direct ion-
ization; at the periphery of the structure, the UV preion-
ization of impurities probably plays an important role.
Cumulation of profiles in the region of radial fields in
the proposed mode! is determined by ambipolar drift of
the plasma dueto different electric field dependences of
the electron and ion mobilities [2, 14-22] and a sharp
(exponential) electric field dependence of the ioniza
tion rate. The model of a high-conductivity cumulative
sting was formulated for the first timein 1996 in [17],
where the corresponding estimates were given in the
ambipolar drift-diffusion approximation. This model
differs from conventional 2D models in the boundary
conditions at the center of the structure being simu-
lated. (In conventional models, e.g., with cylindrical
symmetry, the condition leading to the Bessel or diffu-
sion profiles of the dynamic order parameter at the cen-
ter of the structure is imposed, while the model pro-
posed here accounts for possible unlimited cumulation
of energy and mass flows and the dynamic order param-
eter to the cumulation center.) Let us consider the emer-
gence of cumulation of the dynamic order parameter in
detail. We proceed from the basic kinetic concepts
using the Boltzmann equations for a system of charged
particles in a gas-discharge plasma.

The compl ete system of Maxwell equations and the
kinetic transport equations for electrons and ionsin the
bulk of a simple gas-discharge plasma at a large dis-
tance from the electrodes (and, hence, without a num-
ber of familiar problems associated with the boundary
conditions at the cathode) are usually solved in pertur-
bation theory disregarding displacement currents (see,
for example, [14]). Thefollowing ratios play therole of
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small dimensionless parameters: /L, I/L, WTy, Wi/Ue,
and j;/j. < 1. Here, L isthe characteristic sizeand wis
the characteristic frequency of inhomogeneities under
investigation; |, = €/eE is the energy length over which
electrons acquire the characteristic energy ¢€; lg =
E/(41en,) isthe vectored length of variation of the elec-
tric field strength E; e is the electron charge, 1y =
/(4teng,) isthe Maxwell time; and P, je, W and j; are
the mobilities and current densities for electrons and
ions, respectively. The vectored characteristic length of
variation of the electric field strength is determined by
the concentration of electrons[18] and not ions, aserro-
neously assumed in [19]. Under definite conditions (in
the regions where the neutrality is noticeably violated),
this inaccuracy leads to an analytic errors of severa
order of magnitude in the size of the Coulomb structure
or its transient profiles. We apply the terms “ Coulomb
structure” or “Coulomb cumulator” to a dissipative
structure in a gas-discharge plasma, in which the elec-
tric field isfocused and the role of the magnetic field in
this case isinsignificant.

3. ANALYTIC MODELS
AND NUMERICAL CALCULATIONS

In stationary and quasi-stationary plasmoids (in
which displacement currents can be neglected and the
plasma consists of electrons and one species of ions),
the profile dynamics of the dynamic order parameters
(E/N and n./N) can be reduced to a single nonlinear
Burgers-type equation [14, 18, 20]

on, 0dlg 0 3
FTRRT D]ne+FoD]qleD—D((DE+ D,y0Ony) = Q,,
)
where
|J~eDi +uiDe
Da = _—, D = IE |:I y
T = HETe

D;, De, Wi, and . are the diffusion coefficients and
mobilities of ions and electrons, Iy and I’ are the fluxes
of these quantities, and T'y = /e, j, being the preset cur-
rent density. The condition I'y = I'; + I', = const deter-
mines the relation between the electric field strength
and the electron concentration, while the quantity Q,
describes the creation and annihilation of electrons. In
the proposed model, it is the product I'y - O(W/Me) that
determines the ambipolar drift convective focusing of
the electric field or the entrainment of the plasma pro-
files by ambipolar drift. This term differs from zero if
the field dependences of the mobilities of electrons and
ions are different; in this way, nonlinearity in transport
processes occurring in a heterogeneous plasmoid is
manifested.

Ambipolar drift (and, hence, convective focusing)
may be due to nonuniform and nonstationary form of
the electron distribution function in sources and sinks
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of ions (in Q) [20], plasmachemical reactions involv-
ing ions [18], violation of neutrality in an inhomoge-
neous and nonstationary plasma (second term in
Eq. (1)) [14], the presence of gas circulation, external
magnetic field [21], etc. The quantity OOE can be
expressed in terms of [In, only in the 1D approximation
inx[14,18,19] orinr [4, 911, 17].

In the approximation of reaction—ambipolar drift
transport, a stationary quasi-neutral profile is described
by the differential equations following from Eq. (1):

d(Br ney)

G = (v —pno), @
where k =0, 1, and 2 describes the planar, cylindrical,
and spherical symmetry, respectively. The reaction is
accounted for in Eq. (2), first, in the form of direct ion-
ization by an electron impact with frequency v and, sec-
ond, under the assumption that the destruction of the
plasma is determined by dissociative recombination
with effective coefficient 3.
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Equation (2) makesit possible to numerically calcu-
late the coefficients of quasi-neutral cumulation of the
electron (and ion) concentration and the reduced elec-
tric field strength (y(r) = E/N x 10% Td~?) as functions
of r. It should be noted that the effective coefficient 3 of
recombination of electrons with ions sharply decreases
for y(r) > 40, which enables us to disregard recombina-
tionintheregion of stationary quasi-neutral cumulation
of parameter y. If we represent the drift velocities of
electrons and ions in the form p E = Cy* and ,E = By
(where C = const and B = const), we can analytically
derive from Eq. (2) the reduced field profile y(r) in the
guasi-neutral approximation:

v = —infep-av0) + FE Y] @
It can be seen from this relation that, for
P B(1-a)
1% Avgexp(Ay(0))

the value of y(r,) = «. The size of the region of transi-
tion from y(0) to y(r,) = o

_ B(l-a)
' Avgexp(Ay(0))’

is determined by the ion mobility (parameter B), the
index (1 — o) of nonlinearity of drift flows of electrons
and ions relative to each other, the strength of the elec-
tric field dependence of the direct ionization rate on the
(parameter A), and the value of theionization frequency
voexp(Ay(0)) for ry.

Consequently, if the nonlinear process of ambipolar
drift—ionization determines the cathode spot radius, the
size of the cathode spot must vary in accordance with
the above-mentioned parameters; with increasing pres-
sure, the spot radius must sharply decrease. Cumulation
coefficient A, of plasma concentration is determined in
accordance with Eq. (3) and follows from the condition
of conservation for the electron current (in the approx-
imation j;/j, < 1):

Ne

ne(0)

Avy(r —ro)
0 Agn[exp( AV(0) + 51— E

For a =1, ambipolar drift becomes equal tozeroand
cumulation profiles of the order parameters disappear.
In this case, other transport processes must be taken
into account for describing experimental profiles.

In accordance with Eq. (3), the reduced field cumu-
lation (A, = y/y(0)) isindependent of the symmetry type
or the geometry of the Coulomb (E%8m > H?%8m)
plasmacumulator (k=0, 1, 2). Figure 4ashowsthe pro-
file of the reduced field cumulation coefficient A,
which qualitatively reflects dependence (3). In accor-

Ay =

(4)
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dancewith relation (4), the cumulation of concentration
or the degree of ionization of the gasis determined to a
considerable extent by the symmetry type and depends
on k (see Fig. 4b). For the three one-dimensional cases
strongly differing in the electron concentration profiles,
we analytically derived the same reduced field profile,
which is close to the linear profile (in space) at the
boundary of the cathode layer. Thus, relation (3) is
based on the assumption made in the Engel-Steenbeck
model concerning the linearity of the reduced electric
force profile (E/N) in the region of its cumulation at the
cathode (see Fig. 44).

It should be noted that the analytic solution to
Eqg. (2) in the ambipolar drift—recombination approxi-
mation, which describes the Faraday dark space, were
obtained earlier in [22] for k= 0.

Here, we obtain analytic and numerical solutionsfor
k=1 and 2. The solution can aso be sought in theform
of aprofiley~r"; in this case,

1-k

In the nitrogen gas-discharge plasma, a = 3/4, and in
the planar symmetry (k= 0), n =4/7 in accordance with
relation (5). The solution in [22] was obtained for n =
1. Thisis associated with aless accurate approximation
of ambipolar drift as afunction of y, which was chosen
by the author in [22]. For k = 1, we have n = 0, while
for k = 2, the value of n becomes negative, but cumula-
tion of ydoesnot arise; in all these cases, only the deriv-
atives of y and n, increase (see Fig. 5).

Modée (2) is applicable for describing nonuniform
profiles of the dynamic order parameter and current
collapse in the range 107 < y < 200 and encompasses a
wide spectrum of nonlinear dynamic effects, including
electric field cumulation in a nonequilibrium gas-dis-
charge plasma.

4. DISCUSSION

In analytic and numerical calculations, it was
assumed that the model operatesin the case of cylindri-
cal symmetry also and can be used for describing pro-
cesses of radial cumulation in anonequilibrium plasma
at the periphery of lightning or an extended arc. In this
case, a high-conductivity cumulative jet must be
formed in areal physical object; radial electron flows
collapse to this jet in the region of the cumulator. The
model proposed here precisely describes the character-
istic radial profilesin such an attractor.

We have demonstrated here that cumulative pro-
cesses or Coulomb (E?/8m > H?%8m) self-focusing of
the electric field in plasmoids not only exist, but can
also be simulated analytically and numericaly in the
1D approximation. Qualitative dependences of cumu-
lating profiles of the dynamic order parameters (y/yo
and n/ny on r/ry) are shown in Figs. 4 and 5. It can be
seen that, in the given formulation of the problem,
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simultaneous cumulation of plasma concentration n
and reduced field y in a Coulomb cumulator is possible
only in the case of spherical symmetry (k = 2).

Theestablished electric field cumulation in aplasma
accompanied by the simultaneous mutual organization
of substructures with different symmetriesis of special
practical importance. Even Eg. (5) and Figs. 1 and 3
demonstrate that a complex play of self-organizing
structures and their sizes with various cumulation pro-
files and defocusing of the dynamic order parametersis
possible. The mode of formation of cumulative jetsin
plasmoids in the dynamics of media self-organization
needs to be determined. Nature optimally decidesitself
which bricks, cylinders, cones, or balls are more suit-
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able to be assembled into structures and their ordered
systems, viz., cumulative—dissipative “crystals’ with
elements possessing different types of symmetry (see
Figs. 1-3). The problems of self-consistency of charac-
teristic sizes, frequencies, nonlinear resonances, pulsa-
tion, and other dynamic order parameters have to be
solved by researchers. However, even analysis of sim-
ple 1D models shows that, for different values of k =0,
1, 2, an activated medium may change the profiles of
dynamic order parameters (including characteristic
sizes and frequencies) in the bulk of a gas-discharge
plasma (see Figs. 3, 4b, and 5).

In accordance with the generalized Gauss theorem,
characteristic sizes r, fields (F,, ~ 1/r"), forces (F ~
1/r"), and, by virtue of Newton’s second law (w(r) =
(F./r)%®), the characteristic frequencies of processes,

W~ 1/(r*1°5 cumulate in cumulators (in the regions
of attraction and focussing) [10, 11]. The law of cumu-
lation (n) changes with the excitation of new degrees of
freedom (and in the course of electric field cumulation).

In the general case, the presence of ambipolar diffu-
sion, aswell as diffusion caused by neutrality violation
(seeEq. (1)), does not eliminate the electric field cumu-
lation altogether [11]. However, the length of the attrac-
tor region changes accordingly. From the balance of
gradients (in the model of ambipolar drift and ambipo-
lar diffusion associated with violation of neutrality), at
the boundary of the cathode spot, we can derive the
equations of topoenergy and tempoenergy states of a
plasmoid element (or elements of a cumulative—dissi-
pative regular system):

sE/N
nJ/N’

De
rED\-/-a-r 5.6 x 10

we O "’“D wEE?\E

Here, the cathode spot radl us re is measured in cm, E
inV cm™, N and n, in cm™, and D¢ is the diffusion
coefficient associated with violation of neutrality [14].
Inthislimit, a cathode spot radius differing from r,, was
obtained in [4, 17]. When the dynamic order parame-
ters attain their critical values, nonlinear media gener-
ally exhibit complication of the geometry of flows (with
new degrees of freedom) in space and time as well as
stratification with a constant characteristic size or inter-
val (macroquantization in space and time) accompa-
nied by the formation of cumulative—dissipative regular
systems.

The presence of several types of diffusion processes
(classical ambipolar diffusion and the diffusion associ-
ated with neutrality violation) in aplasmamay lead, in
view of dispersion, to structurization of space-time
structures in a gas-discharge plasma as in the case of
plankton distribution in the presence of two types of
diffusion [23]. For this reason, structured energy and
mass transfer and consecutive modification of energy
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and mass flows can take place in cumulative-dissipa
tive regular systems. In aternating attractors (regions
of focusing, or attraction, of flows), cumulative jets
(stings and jets) possessing cumulative properties are
formed in this case. It is cumulative jets (high-energy
beams) and the geometry of structural cumulation of
dynamic order parameters that are responsible for the
Faraday dark space and its geometry similar to that of
the Laval nozzle (hourglass). Cumulative—dissipative
processes may form a pulse-periodic, coherent, station-
ary, or chaotic pattern in the phase space-time with a
symmetry of self-organizing structures, which variesin
space and time (see Fig. 2).

Thus, wereturn to the ideas formulated by Kesaev,
according to which the cathode spot (as anew dynamic
state of plasma cumulating energy and mass flows) is
discrete in space and time [1-3] and is characterized by
resonance frequencies, nonlinear resonances in space
and time, and a hierarchy of internal sizes.

In accordance with the model proposed here, itisthe
electric field cumulation in the spot associated with
ambipolar drift that leads to the explosion of cathode
inhomogeneities; thisin turn ensures electron emission.
Cathode spots and their systems form amultihierarchic
cumulative—dissipative regular system with nonlinear
resonances associated with cumulative processes in
Coulomb attractors.

Analysis of experimental observations and numeri-
cal calculations leads to the conclusion that radial
ambipolar drift (V) may be responsible for the initia
stage of cumulation of the dynamic order parameter in
the cathode spot plasma[4, 9-11, 17, 20].

The cumulative—dissipative model describes the
normal current density at the cathode spot (j* =

en} V. (E/N*)). The model enables us to estimate the

total current in lightning or arcs (I = §*, where Sisthe
area of the lightning surface) from the visual character-
istics. Using this model, we can explain the reciprocal
motion of the cathode spot in a transverse magnetic
field (see Fig. 2), estimate its velocity (V, = w[Vs x
H]/c), and calculate the spectral power (W = F*V ~
Vow*, a=—3n-2)/(n + 1) for F ~1/r") of flicker noise
from the operation of cathode spots and other Coulomb
attractors (plasmoids) with a focused electric field and
charge particle flows [4, 10]. In the framework of
cumul ative—dissipative dynamics, we can consider the
cumulation of electrons into a cumulative jet (see
Fig. 2).

The cumulative—dissipative approach developed
here can be used for studying a number of enigmatic
phenomena with cylindrical symmetry existing in gas-
discharge plasmas. For example, the concentration of
energy in the bulk of lightning, which obviously corre-
sponds to its luminous intensity, can be attributed to
cumulative radial processes induced by radial ambipo-
lar drift. The existence of radial cumulation of the elec-
tric field also explains the emergence at the center of a
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lightning of electrons having energies on the order of
megael ectronvalts, causing a 10-m long air breakdown
under the atmospheric pressure [13] (for a high-energy
electron beam degradation on the order of 1 MeV m).
There are no exploding microtips in the sky, which
would ensure the emission of such electrons. However,
such energy may appear as a result of geometrical
cumulation of the electric field in extended Coulomb
attractors. Processes of radia electric field cumulation
at the periphery of lightning also explain the fact that a
1-km long flash of lightning preserves its transverse
size.

From the standpoint of cumulative dynamics, the
Lawrence and Dennington experiments (1930-1931),
aswell asthe Nagaoka and Siguira experiments (1924),
becomelessenigmatic (see[13], pp. 514-518). Inthese
experiments, the broadening of the Zn line was discov-
ered, which corresponds to electric field strengths on
the order of 10°V cm™ (if we attribute this broadening
to the Stark effect). Such field strengths were observed
in aspark channel with awidth approximately equal to
r =0.02 cm for adischargegap of L =1 cm at avoltage
of afew kilovolts (U = 2 x 10° V) applied to the elec-
trodes. This can be transverse electric fields (E, ~ U/r ~

10°V cm™) rather than longitudinal fields. Both trans-

verse and longitudinal fieldslead to the Stark effect, but

transverse fields (focused to the center of the regular

cylindrical system, viz., electric arc) should not beinte-

grated over the gap asin the case of longitudinal fields
L

[J'Exdx = U( L)} , aswas done by Nagaokaand Siguira
0

[13]. Such errors are obvious in the formation of trans-
verse pressure gradients or transverse hydrodynamic
fieldsin adrain (cylindrical hydrodynamic attractor or
cumulator of energy and mass flows). The hydrody-
namic analogy suggests that radial cumulation of elec-
tric fieldsin plasmoids (visualized in space and timein
the form of dissipative-cumulative regular systems
ordered at large distances) is possible in an electric arc
aswell (see Figs. 1 and 3).

Self-organization of the attractor described by
Eq. (2) occurs under the action of an external electric
force or an energy difference. The external generalized
(electric in the present case) force setsthe activated ele-
ments of the medium in motion and orderstheir convec-
tive (ambipolar in the case of aplasma) flows. The acti-
vated elements are ordered by this force to such an
extent that the reduced force itself is cumulated in the
attractor or cumulator formed by it. The cumulative or
explosive profile of the electric field is described by
Eqg. (3). Such organi zation—sel f-organi zation processes
lead to complex cumulation of dynamic order parame-
tersof external factor (the reduced external force E/Nin
our case) in an activated nonlinear medium aswell as of
dynamic order parameters determining the extent of
activation of medium elements (the temperature of var-
ious degrees of freedom, the degree of ionization, etc.).
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Convective processes of ambipolar drift in a nonequi-
librium gas-discharge plasma ensure the cumulative—
dissipative self-organization of the medium and cumu-
lation of the electric field strength. The remaining pro-
cesses (including the formation of tips at the subse-
quently exploding electrodes) may be secondary pro-
cesses relative to self-cumulation of the electric field
strength.

Thus, in the case of self-organization of a continu-
ous medium (including nonequilibrium gas-discharge
plasmas), external forces induce in the medium not
only opposing forces (in accordance with the Le Chat-
elier principle), but also orthogonal forces, which can
locally exceed considerably the mean values of forces
distributed over the entire activated volume of the
medium in the attractor or cumulator formed by these
forces.

On the basis of available experimental observations
in gas-discharge plasmas, it can be concluded that
regions with longitudinal electric field, as well as with
transverse or radia (relative to the total current vector)
fields, can appear during the formation of plasma struc-
tures. After the attainment of critical values, cumulation
of the reduced force excites new degrees of freedomin
elements of the medium being activated and forms dis-
sipative structures as well as their systems, viz., “dissi-
pative channels’ with cumulative jets (or stings). The
fields collapsing towards the center in the radial direc-
tions form cumulative focused stings. In regular cumu-
lative—dissipative systems, the elements of the activated
medium (especialy in stings) acquire cumulative
(hyper) properties[4, 9-11].

In this study, a simple ambipolar drift mechanism
has been proposed and tested. The mechanism
describes self-cumulation of the electric field strength
or volume charge in a gas-discharge current-carrying
plasma for low concentrations of plasma particles.
Such an ambipolar focusing mechanism can be associ-
ated, for example, with different electric field depen-
dences of mobilities of electrons and ions. The author
believes that this mechanism operates in the formation
of the periphery of cathode spots, arcs, lightnings, etc.
It iswell known that the formation of a cathode spot is
accompanied by pulsed (cumulative) transport of the
cathode material to the interelectrode gap [3, 8]. This
effect is associated with electric energy cumulation in
dissipative plasma structures and is successfully
explained by the model proposed here. In contrast to
the Turing model, the transport is executed not by dif-
fusion, but by ambipolar drift.

However, further studies of electric field cumulation
in amedium activated by the field and of the formation
of extended Coulomb cumulators and their dissipative
crystals, viz., regular systems in a gas-discharge
plasma, are required.

Arcs and other cumulative—dissipative crystalline
systems exist in amedium, while amedium with cumu-
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lative stings and with boundaries cumulating energy
and mass flows is self-formed even in vacuum.

The formation of attractors (or regions of focusing
of energy and mass flows) is a multidimensional prop-
erty of any continuous nonlinear medium. A more
detailed study of volume charge cumulation in cathode
spots will make it possible to clearly visualize and
explain the effects of convective Coulomb focusing of
electric field asaform of energy in remote stars, molec-
ular and atomic clusters, and even in nuclei of micro-
scopic structures.

The analytic treatment of static cumulation of the
dynamic order parameters in a gas-discharge plasma
has been carried out in complete accordance with [24]
and can be generalized to the processes of electric field
dynamic cumulation. The Coulomb self-focusing exists
and cannot be absent since the existence of Coulomb
forcesis evident.
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Abstract—A general solution to the stochastic advection—diffusion problem is obtained for a fractal medium
with long-range correlated spatial fluctuations. A particular transport regimeis determined by two basic param-
eters: the exponent 2h of power-law decay of the two-point velocity correlation function and the mean advection
velocity u. The values of these parameters corresponding to anomalous diffusion are determined, and anoma-
lous behavior of thetracer distribution isanalyzed for various combinations of u and h. Thetracer concentration
is shown to decrease exponentialy at large distances, whereas power-law decay is predicted by fractional dif-
ferential equations. Equations that describe the essential characteristics of the solution are written in terms of
coupled space-timefractional differential operators. The analysisrelies on adiagrammatic technique and makes
use of scale-invariant properties of the medium. © 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

In many situations, transport in highly disordered
media cannot be described by the classical diffusion
equation [1]. In particular, this is the case with fractal
media characterized by long-range spatial correlations
of fluctuating characteristics. One approach to prob-
lems of thiskind is based on the use of fractional differ-
ential equations (e.g., see [2—4]). They admit solutions
characterized by anomalous time dependence of the
tracer-cloud radius R at long times (R O t¥ with y # 1/2)
and power-law (instead of Gaussian) decay of tracer
concentration at long distances (at r > R). “Heavy”
(power-law) tails in tracer distributions are extremely
important for applications (e.g., for substantiating the
reliability of radioactive waste disposal sites) in view of
the huge difference between power-law and Gaussian
decay. However, the standard fractional-diffusion
approach relies on a formal analysis and requires both
further mathematical substantiation (e.g., see [5, 6])
and generalization (see [6-12]). Therefore, the ensuing
conclusions must be tested against specific physical
models.

The stochastic advection—diffusion model with a
slow (power-law) long-distance decay of correlationsis
one such model. The results of its analysis performed
in[12, 13] under simplifying assumptions are consis-
tent with those obtained by solving fractional -diffusion
equations. (A review of the relationship between these
approaches and relevant bibliography can be found
in [14]). However, one may question the sensitivity of
these results to the approximations employed and their
agreement with the exact solution to the advection—dif-
fusion problem.

In this paper, this solution is obtained in a general
form by analyzing a group of scaling transformations
[15] with the use of the Feynman diagrammatic tech-
nique [16], which was applied to transport in random
mediain [17-19].

In Section 2, the problem is stated and a diagram-
matic representation of the Green function is con-
structed. In Section 3, the behavior of thetracer concen-
tration at long and short distances is analyzed in the
case of zero mean advection velocity. In Section 4, we
analyze the case when this velocity is finite. The main
results are summarized and discussed in the fina
section.

2. STATEMENT OF THE PROBLEM

The model is based on an equation describing advec-
tion and molecular diffusion of concentration c (r, t):

%ﬁ O(v—D0)c = 0, @

where both advection velocity v = v(r) and diffusivity
D(r) are random functions of coordinates. Hereinafter,
we consider the problem with a tracer distribution pre-
scribed at the initial moment t = 0 in the absence of
sources (sources can readily be taken into account).

The medium is statistically homogeneous and iso-
tropic, and both v and D are represented as

v(r) = u+Vv'(r), D(r) = D+D'(r), 2
where u = ¥(r)0and D = D(r)Care ensemble-aver-
aged quantities independent of coordinates, and v'(r)
and D'(r) are the fluctuating velocity and diffusivity,
respectively (¥'(r)C= O, D'(r)= 0).
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The velocity field satisfies the incompressibility
condition:
divv = divv' = 0. 3

Since afracta medium isconsidered, fluctuations of
its characteristics are long-range correlated; i.e., the
long-distance decay of the correlation functions of the
random v' and D' follows power laws. In particular, the
two-point velocity correlation function,

KP(ri=r2) = Wi(r)vi(ro)o (4
behaves asfollowswhen |r; —r,| > a:
o] a 2h

(2 _ ] a [
K|| (rl rZ)DV Ellrl—rz|D ’ (5)

where h > 0, a is the short-range cutoff radius, and V2
is the characteristic value of K{?(r) for |r| < a. Thus,

Ki(jz)(r) is a homogeneous function of degree —2h for

Ir|> a. Similarly, the n-point velocity correlation
function,

Kia, (12,20 000 T)
= Wi (r)vi(ra)...vi (ro)0

satisfiesthe following relation when |r; —r;| > afor any
pair of ryand r;:

(6)

Kl (AL AT, o AT )
—ah () (7)
= A Kiliz...in(rl’ rz, ey rn)

By analogy with the theory of critical phenomena[15],
the parameter h is called the scaling dimension of
velocity fluctuation v'. According to (7), the Fourier
transform of the n-point correlation function,

Kl(n) {kll k2|'--1kn} :Idrldrzdrn

P

xexp[—i(ky O+ Ky Oyt ...+ K, O)]

X KI(:)ZIn(rlv r2! ---1rn) (8)
= (21)°%8(ky + ky + ... +K,)
X Kifi,(Ks, Kz -ov Kn_a),
satisfies the scaling relation
K {AKy MKy, o, Ak ©
= NOIKD kg Ky ek

The power exponent n(h — 3) on the right-hand side
of (9) is called the scaling exponent of K{7 | {k, ks,
o Ko}
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Combining (5) with (9), we find that the Fourier
transform of the two-point correlation function behaves
asfollowswhenka < 1 (k= [k|):

K? k) OvZa®k-2. (10)

Relations analogous to (4)—10) can also be written
out for the correlation functions of diffusivity fluctua-
tions.

The concentration satisfying Eq. (1) at an arbitrary
instant can be expressed in terms of its initial distribu-
tion as

c(r,t) = Idr'G(r,r'; t)c(r', 0), (11)

where the Green function G(r, r'; t) solves the equation

o @ 0o o0 s
E'p7t+6_xivi(r)_0_xiD6_xiEG(r'r 1) =0 (12
subject to theinitial condition
G(r,r"; 0) = d(r —r"). (13)

Of practical interest isthe tracer concentration aver-
aged over the ensemble of realizations of the medium,

c(r,t) = [d(r, )1t satisfies the equation obtained from

(11) by replacing c with ¢ and G with G, where G (r —
r', t)y = [G(r, r'; t)Ois the ensemble-averaged Green
function (henceforth called Green function for simplic-
ity). The caculation of G(r —r', t) is facilitated by
invoking the “cross’ diagrammatic technique devel-
oped in [17] and applied to transport theory for disor-
dered mediain [18, 19].

Performing Fourier and L aplace transformsin space
and time, respectively, and using Eqg. (12), initial condi-
tion (13), and expressions (2), we obtain

= 1
G{k,pp = — — :
p+ik b+ Dk =M(k, p)

where k and p are the Fourier and Laplace variables,
respectively, and M(k, p) is the “self-energy” opera-
tor expressed as the sum of irreducible skeleton dia-
grams [16]:

(14)

M(k, p) =H+H<_x

(15)

-~ - (o)
. < N PN

N N

Here, horizontal lines and crosses represent, respec-

tively, functions G and perturbation operators of the
form

SN U VAN

T = V‘(r)axi+6xiD(r)0xi' (16)
Each dashed line joins the crosses relating to a particu-
lar cumulant. (Expansion in terms of cumulants plays a
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key role in ensemble averaging.) By definition (16),
each cross contains gradients, as well as velocity and
diffusivity fluctuations. In the Fourier representation,
gradients are replaced by wave vectors. In particular,
the D' term contains the product of the wave vectors
relating to respective G lines adjoining the cross on its
right and left, while the v' term contains a single wave
vector associated with either line by virtue of (3). Each
dashed line emanating from acrossis associated with a
wave vector over which integration is performed. Sub-
gtituting (14) into diagrammatic expansion (15), one
obtains an integral equation for M(k, p).

The sections that follow present an analysis of its
solutions.

3. TRANSPORT
WITH ZERO MEAN ADVECTION

First, we analyze the role played by diffusivity fluc-
tuations. The analysis is performed here for the first
diagram in self-energy operator (15). By virtue of (16),
it can be represented as the sum

M, = MYV + MP.
The summands represent the contributions due to

advection-velocity and diffusivity fluctuations. Up to
constant factors, they are expressed as

(A) 1.2 lk —q*"°
M5 ij'dq — : 17)
p+Dg -M(q, p)
2 2g-3
M Dszdq q_|k2‘Q| . (18)
p+Dg -M(q, p)

Here, two-point velocity and diffusivity correlation
functions are replaced with their respective asymptotics
corresponding to small wave vectors. Sincegin (18) is
the scaling dimension of diffusivity, it holdsthat g > 0.
If M(g, p) ~ g? for small wave vectors, then the integral
in (18) is convergent as q goesto zero evenif k =0 and
p = 0. The apparent divergence of the integral for large
wave vectors is explained by the fact that the long-
wavelength asymptotic expression for the two-point
correlation function used in the integrand fails in this
limit. This means that the integral is constant up to
small corrections under the condition k (k < a™) of

interest here, and (18) impliesthat M (k, p) ~ k2 The
term M(ZD) (k, p) ~ k? in expression (14) for the Green

function can be combined with Dk’ to obtain a renor-
malized mean diffusivity. This can also be done when
all higher order diagrams are taken into account. For
this reason, we retain only the contributions due to
advection-velocity fluctuations to the expansion of the
self-energy operator (i.e., only thefirst term in (16)).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

947

Similarly, expression (17) impliesthat MY (k, p) ~
k? for small wave vectors when h > 1. Since this depen-
dence holdsin al higher order diagrams, the stochastic
diffusion model can aso bereduced to normal diffusion
in this case.

Thus, velocity fluctuations with scaling dimension
h > 1, as well as diffusivity fluctuations with any
dimension, areirrelevant with respect to deviation from
normal diffusion. When h < 1, an essentialy different
behavior is observed.

The caseswhen h < 1 and h = 1 are analyzed sepa-
rately below.

31.h<1

If M(q, p) ~ g? in the integrand of (17) asp —= 0,
then the integral is divergent at the lower wave-vector
limitask, p — 0. Sinceit is convergent at the higher
wave-vector limit, the use of long-wavelength asymp-
totics of the velocity correlation function is justified,
and the divergence indicated above implies that

M(g,p) > DK as k, p —~ 0. Therefore, further
analysis of the case when u = 0 (see (14)) can be per-
formed for

1
p—M(k, p)

Equation (15) is the diagrammatic expansion of the
self-energy operator in terms of correlation functions
that are scale-invariant by virtue of (9). Accordingly,
we may assume (and subsequently prove) that both
self-energy operator and Green function have anao-
gous properties. Expression (19) implies that the scal-
ing exponents of the self-energy operator and the
Laplace variable p are equal. Therefore, the scaling

relations for M(k, p) and G{k, p} must have the form
(20)
(21)

Gk, pt = (19)

M(Ak, A%p) = A*M(K, p),

G(Ak,\°p) = A G(k, p),
where A is a scaling exponent to be determined.

To prove (20) and (21), we use diagrammatic repre-
sentation (15) towrite M(k, p) asasum in which thenth
summand is the contribution of all diagrams containing
N Crosses:

M(k, p) = K'L(k, p) = Ky L(k,p).  (22)

n=2

The factor k? corresponds to the gradients in the
extreme right and left crosses. The scaling exponent of
the nth termin (22), A,,, is the sum of the exponents of
the elements of the corresponding diagram. These ele-
ments include a combination of n-point velocity corre-
lators, n gradients, n — 1 Green functions, and the
3n-dimensional differential of wave vectors. The corre-
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sponding exponents are n(h — 3), n, {(h — 1)A, and 3n,
respectively. (Since the wave vectors used as integra-
tion variables are combined additively with k, the cor-
responding scaling exponents are equal to that of k.)
Equating the sum of the exponents enumerated aboveto
the exponent A of the operator M, we obtain

nh+n+(n-1)A = A, (23)
which yields a self-energy scaling exponent indepen-
dent of the order of a diagram:

A=1+h. (24)

Since (20) withA =1+ histhusvalid for each sum-
mand in (22), it holds for the series as awhole. By vir-
tue of (24), relation (20) entails the representation

M(k, p) = vVa'k" " (&), (25)

where ¢(§) is a dimensionless function of the dimen-
sionless scaling variable

- p
¢ = va'kt
Thefactor Va"in (25) and (26) is obtained by using (5).
Next, we analyze the behavior of ¢(§) at large and
small values of its argument. It is obvious that ¢(&)
must approach a finite limit as & — 0. Indeed, if
!imotb (§) = oo, then (25), (26), and (19) would imply

(26)

that M(k, 0) = o and G{k, O} = 0. However, diagram-
matic expansion (15) would then yield M(k, 0) = 0,
which contradicts the assumption that EIimoq)(E) = oo, It

can be proved in a similar manner that EIimocl)(E) z 0.

Thus, we have EIimoci) (§) =A~1land

M(k, 0) = AvVa'k'*". (27)
Comparing thisresult with (22), we find that L,(k, 0) O
k1-M. The ensuing divergence of the integrals in
L.(k, p) for p=0ask — O impliesthat they are con-
vergent at g; < a* for finitek and p; i.e., the asymptotic
expressions for velocity correlation functions corre-
sponding to this limit are valid. Expression (27)
obtained for & = 0 can be extended to nonzero p such
that ¢ < 1. The next term in the expansion of M(k, 0) in
terms of & either is p up to a constant factor if h < 1/2
(in which case the scaling of the denominator in (19)
does not change) or scales with k2" =1p@-M/1+h) jf b >
1/2, prevailing over p in (19) in order of magnitude.
(Recall that p corresponds to the first time derivative in
the fractional -diffusion approach.)

In the opposite limit of & > 1 (k'*" goes to zero
faster than p), the first approximation of (22) with
respect to k can be used:

M(k, p) = K°L(0, p). (28)
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Here, the function L(0, p) can be found by combining
scaling relation (20) with (24):

L(0, p) O p t~/E*D, (29)

In this case, the self-energy operator behaves asymptot-
icaly asM O kp-Wa+h gt p > Vak:*h. (However,
this clearly does not entail any singularity of M as
p — 0.) By virtue of (25) and (26), it follows that the
first term in the expansion of ¢(§) is

O(E)DEE T g g s ) (30)

Sincek = 0isnot asingular point of theintegralsin
L.(k, p) when p £ 0, we have an analytic expansion in
integer powers of k? ask — 0, and relations (20) and
(24) imply that the function

_0@) _M(k, p)
f(&)= t D (31)
can be represented as
(©) = 3 g, gs 1, (32)
2

where b, are dimensionless coefficients. We emphasize
that (32) corresponds to an analytic expansion of
M(k, p) in terms of the vector k that holds at & > 1
(see (26)). Comparing this result with expression (27)
for M(Kk, p) at large k, we conclude that M(k, p) has a
branch point at

«oQ p Ha+h

Ja

(which corresponds to a branch point of f(§) at |§| ~ 1).
In other words, the scaling of propagator (19) can be
essentially different, depending on the ratio of p and
k1 *M even in the Fourier—Laplace domain where both
variables are small (this behavior is analogous to the
behavior of vertices in the Landau theory of Fermi lig-
uids [20]). To the best of our knowledge, this behavior
of a completely scale-invariant propagator is not pre-
dicted by any model based on the standard fractional-
diffusion equations[2, 3], but is possible in generaliza-
tions involving coupled space-time fractional-differen-
tial operators (asin [9, 11]).

In the present model, one can easily construct inter-
polation operators having the asymptotic properties of
the propagator considered here. For example, we can

use 0,-D“"?% if h < 12 ad
aEz—h)/(1+h)@h—yz_@(uh)/z if h > 1/2, where 9,
denotes atime derivative and © isalinear combination
of 07" and a Laplace operator multiplied by afac-
tor of dimension (Va")Z+",
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Next, we analyze the behavior of the Green function
in a space-time representation. The inverse Fourier—
Laplace transform of (19) yields

G(r.1) :I(gnl; < T vakt M), 33)
where
I(s) = 1”6 §,>0. (34
o | S 070

Eg—io

Combining (33) and (34), we obtain a general expres-
sion for the Green function:

G(r f) = (Va t) 3/(1+h)¢)|j‘

E{/P

where the argument of ®(x) scales with unity and
®(0) ~ 1. In particular, thisimpliesthat the tracer cloud
radius behaves as

(35)

RO(va'") " (36)
at long times. At short distances from the origin such
that r < (Vat)V@+h the exponential in (33) can be
ignored to obtain
G(r,t) O(va') ", (37)
which can aso be derived from (36) by using the con-
servation of thetotal number of tracer particles. Expres-

sion (37) estimates the long-time decay of concentra-
tion at afixed point in space.

Let us now eucidate the asymptotic form of the
Green function at distances much greater than R, i.e., at
r > (Vaht)Y@+", According to (33), the possibility
(or impossibility) of power-law decay of G(r, t) is
determined by the behavior of I(s) at s < 1. By sub-
stituting (32) into (34), the function I(s) is rewritten as

20(1+ h)

i) =y d, " = > d [(va"t) K" (38)
n=0 n=0

Substituting this formulainto (33), we express G as a
sum in which the first term is 8(r) and the nth term is
proportional to the result obtained by applying the
Laplace operator to d(r) n times. In other words, each
summand iszero at r # 0. Mathematically, thisimplies
that r1*"/Vaht = co is an essentially singular point of the
function ®(x) and the Green function cannot be repre-
sented as a series expansion in inverse powers of
rt+hvaht,

The asymptotic formof G at r > (Vaht)Y@+" can be
found by shifting the contour of integration with
respect to k in (33) from the real axis into the upper
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half-plane (after performing the integral over the angu-
lar variables). In the limit considered here, thisyields

G(r,t) O exp(ikyr), (39)

wherek, isthe singular point of |(Va'k!* ") in the upper
half-plane of k that is nearest to the real axis. Since
the function G associated with concentration by defini-
tion (11)—(13) can only be positive, the exponent in (39)
must be areal quantity. Therefore, ks lies on the imagi-
nary axis and Imk, ~ (Va't)=Y@+" in accordance with
expansion (38). As a result, we have an asymptotic
expression for the Green function at larger:

Br
Combined with the normalization factor (Vant)-¥+h
in (35), this formula determines the behavior of con-
centration at r > (Vat)YA+" i.e,, its growth at afixed
distant point and its instantaneous profile. Thus, the
spatia tracer distribution predicted by the stochastic
advection model does not have a“heavy” (power-law)
tail even if the power-law decay of the velocity correla-
tor isslow (withh < 1).

C_S(r,t)Dexp[ } BOL  (40)

32.h=1

When h =1, expression (17) with M(q, p) ~ ¢° sub-
stituted into the integral yields alogarithmically diver-
gent quantity: MY ~ Vak2Inp, where

—1
0 Opa A
u = xR, (ka) o - (41)
0o O N
This suggests that a logarithmic approximation of the
self-energy operator should be sought in the form

M(k, p) OVak’In*p (42)

with a > 0. The integral over the wave vectors in an
arbitrary diagram of order n> 2 also yields alogarithm.
However, such a diagram contains the product of n—2
additional functions G, as compared to the second-
order one. According to (42) and (19), thisresultsin a
small factor InM -2y, Therefore, calculation of the

self-energy operator can be restricted to the skeleton
diagram with two crosses, and Eqg. (17) reducesto

k—ql™
M(k, p) 0KV (dg—K=d .
(k. p) qu—M(q, p)

Combined with (42), thisyieldsa =1—a, i.e, a = 1/2.
Thus, when the velocity scaling dimensionish =1, the
Green functionis

(43)

= 1
G{ k1 p} —1/2|

(44)
p+ Dk’ In"p
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where the argument of the logarithm is given by (41)
and D4 ~ Va. Following the derivation of (36), we find
that the tracer cloud radius behaves as

R O(Vat)*2In* E%‘H

(45)
at long times and conclude that the long-distance
expansion of the tracer concentration does not contain
any power-law terms.

4. TRANSPORT WITH NONZERO MEAN
ADVECTION (u # 0)

Advection by mean flow is a fortiori much more
effective than transport by velocity fluctuations. For
this reason, we consider the case when

u<<Vv. (46)
We introduce the new variable
p = p+ik U (47

instead of p for convenience, i.e., use areference frame
moving with avelocity u: r — r'=r —ut. Green func-
tion (14) is expressed in terms of p' asfollows:

= 1
G{k,p} = ——.

p' =Mk, p)
In the general case, a nonzero mean advection velocity
violatesthe scaleinvariance expressed by (20) and (21).
However, the problem can be analyzed in two important
limit cases.

If k and p' are such that

max{|p!, IM(k, p)} > uk, (49)

then the term —iq - u can be neglected in the denomina-
tor of a Green function having the form

G{k—a,p} = [p—iqu—M(k p)] .
Accordingly, the results obtained above remain valid
for u # O irrespective of the scaling dimension h. Using

expression (27) as an estimate for M (k, p", we can
write

(48)

'O
O Yo
instead of (49), where
}Diﬂllh
Ky DaEVD : (51)

This result means that tracer propagation at t < t =
(ukp)™ obeys the laws of advection with zero mean

velocity. In this case, the tracer cloud radius is greater
than the corresponding displacement by the mean flow
(R> ut).
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When max{k, |p'/u} < Kkrj the behavior of the self-

energy operator is essentially different for h > 1/2, h <
1/2, and h = /2. We analyze each of these cases sepa-
rately.

Case 1: max{k, |p'//u} <k h>1/2.

The integrals in the expressions for M (k, p) are
dominated by the contributions from |g;| > k3 There-

fore, the quantity L (k, p") analogousto L(k, p") in (22)

is independent of k and p' and L ~ Va'k]™* ~ uty
Accordingly,
M Ou’t, K2 (52)
Thus, advection at t > tjobeys the laws of normal dif-
fusion when h > 1/2.
Case 2: max{k, |p'//u} <k h<1/2.
An analysis of the diagram with two crosses shows

that the integrals over wave vectors are convergent
when |g;| < k. Therefore, Green functions of the form

G{k-g,p} = [p—iqu-M(k—q,p)]"
can be approximated as follows:

G{k—q.p} =[p-iqL-Mk p) ™. (53)

Similarly, the factors k — g corresponding to the gradi-
entsin (16) can be simplified:

As aresult, the scale invariance expressed by (20) and
(21) isrestored, but the scaling exponent A is obviously
different. To calculate A, we must take into account one
distinction from the case of u = 0. In view of (53)
and (54), the wave vectors used asintegration variables
should be associated with the scaling exponent A. Thus,
the scaling exponent A of the nth-order diagram in
M (k, p") isthe sum of n, n(h—3), n(h—3)A, {(n—1)A,
and 3nA, which correspond to the n factors k dueto the
gradients in crosses, a combination of n-point velocity
correlators, the product of n — 1 Green functions, and
the product of differentials, respectively. Asaresult, we
have the equation

n+nhA—-(n-1)A = A,
which yields

(55)

A= h

Relations (20) and (56) can be used to represent the
self-energy operator, by analogy with (25), as

(56)

~ 1 B
M 0= (ut k)" (), (57)
where Y({) is a dimensionless function of the dimen-
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sionless variable

L = pty(ut k)™M, (58)

Inthelimit case of { < 1, when M > p', we should

drop p' in denominator (53). Then, M (k, p") becomes
independent of p' and can be determined up to anumer-
ical factor of order unity by combining (57) with (58):

M Ot} (ut, k)", (59)

In the opposite limit of { > 1, when M < p, the
leading-order contribution to the self-energy operator is
due to the diagram with two crosses, where the Green

function can be approximated as follows: G(k — q,
p) = (p'—iq - u)~ Calculating this diagram, we obtain

Y DE-“—( )

(60)

The structure of expressions (57)—60) is analogous
to that of (25)—29). Following the derivation of (35),
(36), and (40), we use (47), (57), and (58) to calculate
the inverse Fourier—Laplace transform of (48). As a
result, we obtain an expression for the Green function
that isvalid at t > tywhen h < 1/2:

1 |j*|:|3(l h) LIJ|:

' Y(-h
'[EUt,,D }' (61)

where the argument of W(x) scales with unity and
Y(0) ~ 1. This implies that the tracer cloud radius
behaves as

l_
R Out, Etlg
*

at long times. Within the cloud (at r' < ut{t/tp)*~"),

S,y o LT
’ ut, Ut '

To elucidate the behavior of the Green function at
longer distances, we follow the analysis of the case of
u = 0. Since the singular point of the Fourier transform

of G asafunction of k nearest to the real axisis

(62)

(63)

1 o
k, Oi— ™ 0o

the asymptotic form of the Green function at larger' is

— _r'_ﬂ_le_h
G(r,t)Dexp{ Cut*DtD } C O1. (64)
Case 3: max{k, |p'|/u} <k h=12.

Whenu # 0and h = 1/2, the equations are similar to
those obtained for u = 0 and h = 1, except that the inte-
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grand is independent of M (g, p') intheregion of loga-
rithmic behavior. Finaly, we have

M Ou’t, KInv,
(65)

(Again, this result can be obtained by solving a trun-
cated equation with a two-cross diagram.) Following
the derivation of (45), we find an estimate valid at
t>tr

1/2

RO [uzt* tin g—*ﬂ} (66)

td

5. CONCLUSIONS

We made use of adiagrammiatic technique and scale
invariance to obtain a number of important results con-
cerning passive-scalar transport in long-range corre-
lated highly disordered media without invoking any
simplifying assumptions.

The predicted behavior strongly depends on the
scaling dimension of spatial velocity fluctuations,
which isdetermined by the power exponentsin velocity
correlation functions. Vel ocity fluctuations with a scal-
ing dimension h > 1, as well as diffusivity fluctuations
of any dimension, do not cause any deviation from nor-
mal diffusion.

For a flow with velocity correlations characterized
by a dimension h < 1, a superdiffusive regime is pre-
dicted. In particular, when the advection velocity is
zero, the tracer cloud radius increases as R O t¥@+h),
i.e., faster than in the case of normal diffusion. This
scaling is qualitatively similar to that predicted by the
fractional-diffusion model, where the transport equa-
tion contains atime derivative and a derivative of order
(1 + h) with respect to coordinates (e.g., in contrast
to[21]). However, both models lead to essentially dif-
ferent results in the long-distance limit (r > R).
Whereas the fractional-diffusion model predicts a
power-law of concentration decay in this limit (e.g.,
see[2, 14]), our analysis shows that the concentration
decreases exponentialy with an exponent ~(r/R). In
other words, the stochastic advection model does not
admit any power-law tail in the tracer distribution even
when velocity is long-range correlated.

We believe that this discrepancy is not accidental.
The physically well-motivated stochastic advection
model takes into account the very low probability of
high vel ocities, which rules out slow (power-law) decay
of concentration at long distances. Both the standard
fractional-diffusion model [2, 3] and its generalizations
with arbitrary parameters [11] (but not the model pro-
posed in [9]), being purely mathematical, ignore this
physical observation and impose no restrictions on the
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law of concentration decay at long distances. In the the-
ory of Lévy processes, the problem analyzed here cor-
responds to a class of jump probabilities for which
dependence on coupled space-time variables cannot be
expressed in terms of deltafunctions.

The results obtained here for nonzero mean advec-
tion velocity (u # 0) are summarized as follows. At
short times (t < t[), when anomalous diffusion prevails

over advection (R > ut), transport is similar to the case
of u = 0, whereas different behavior is predicted in the
long-time limit (t > t[), when advection plays a domi-
nant role (R < ut). In the latter case, transport in the
moving reference frame depends on the relation
between h and 1/2. If h > 1/2, then the tracer cloud
spreads according to the law of normal diffusion, with
an effective diffusivity depending on u. If h < 1/2, then
asuperdiffusive regime is obtained, with R O t1—",

In the transport regimes separating those described
above (h=1and h=22whenu=0and u # 0, respec-
tively), the power laws for R(t) are modified by loga-
rithmic factors.
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Abstract—We have measured the shape of the Autler—Townes doublet and the peak of electromagnetically
induced transparency (EIT) under plasma conditions. We compare the experimental results with the cal culated
spectrum of the probefield of athree-level Arll A-scheme by taking into account Coulomb collisions. We show
that the Coulomb broadening of the EIT peak is small (less than 40%), while the saturation resonance is broad-
ened under the experimental conditions by a factor of 3. In contrast to the saturation resonance attributable to
the Bennett dip in the velocity distribution of the population, the EIT peak isacoherent effect and is broadened
mainly through Coulomb dephasing. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A strong resonant monochromatic wave can split the
energy levels and, accordingly, the emission (absorp-
tion) spectrum at transitions involving these states—an
effect that has long been known and that was initially
called the dynamic Stark effect [1]. Subsequently, the
splitting of the spectrum into two components was
called the Autler—Townes splitting (doublet). In nonlin-
ear gas spectroscopy, field splitting is a basic effect in
the classification of perturbation theory [2]; allowance

for the therma motion of particles significantly
changes its spectral manifestations. For example, in a
Raman scattering scheme (seeinset to Fig. 1) with large
Doppler broadening, the field splitting of the probe-
field spectrum manifestsitself only for coaxial wavesin
the Stokes casg, i.e., at k, < k. If only the probe level |
is populated, then other nonlinear effects induced by a
strong field, in particular, the saturation effect and the
nonlinear interference effect (NI1EF) do not show up. In
this case, the absorption spectrum of the probe field
describes the field splitting in pure form.

14

Fig. 1. Experimental setup to study field splitting: 1—discharge tube, 2 and 3—mirrors, 4—Brewster plate, 5—etalon, 6—dia-
phragm, 7—obturator, 8—diffraction grating, 9—scanning interferometer, 10—photodetector, 11—synchronous detector, 12—tun-
able dye laser, 13—wavelength meter, 14—oscillograph, 15— ens, and 16—compulter.

1063-7761/04/9805-0953$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Due to quantum interference, the field splitting of
the absorption spectrum induced by a strong wave at
the adjacent transition is accompanied by a significant
reduction or, idedly, complete elimination of the
probe-wave absorption at the frequencies correspond-
ing to the spectral region between the split components.
This effect, which was caled electromagnetically
induced transparency (EIT), has been actively studied
in recent years (see, e.g., [3, 4] and references therein).
The possibility of the elimination of light absorption
under resonance conditions viathe EIT effect is being
actively used in various problems. In particular, the effi-
ciency of the resonant laser frequency transformation
by nonlinear optical methods [5] increases signifi-
cantly, which makes it possible to use not only pulsed,
but also relatively weak continuous laser emission (see,
e.g. [6, 7]). In many applications, it is important to
obtain the narrowest possible EIT peak, but level relax-
ation, and field and Doppler broadenings affect the
shape of the EIT resonance [8].

In this work, we observed the Autler—Townes dou-
blet and the EIT peak at ionic transitions in a low-tem-
perature plasma for the first time. lon-ion Coulomb
scattering was found to also affect the shape of the peak
under plasma conditions. The influence of Coulomb
scattering on the shape of the resonances due to the sat-
uration and NIEF effects under ion laser plasma condi-
tionswas studied in detail previously [9-11]. The Cou-
lomb broadening of the EIT peak measured in thiswork
proved to be much smaller than the Coulomb broaden-
ing of the saturation resonances. Our experimental and
theoretical studies alowed usto quantitatively describe
the influence of Coulomb ion—on interaction on the
field splitting and to explain the observed features.

2. EXPERIMENT

Previoudly, the nonlinear resonances in a A-scheme
attributable to field splitting were experimentally stud-
ied mainly in molecular spectra (see, e.g., [12]) by
using molecular Raman lasers. In this case, the
observed and calculated resonance shapes are difficult
to compare, because, apart from field splitting, other
nonlinear effects (saturation and NIEF) contribute sig-
nificantly to thetotal profile dueto the large population
of the lower level n. However, the measured spectrum
splitting, which is proportional to the strong-field Rabi

frequency
G = |E/d./2h

(IE| is the amplitude of the electric field, and % is the
Planck constant), allowed the dipole moment d,,, of the
m-n transition to be determined directly. The measure-
mentswere carried out at G values much larger than the
relaxation constants I'; (i,j =m, n, I).

As we noted above, for the profile of the Autler—
Townes doublet in the A-scheme (see Fig. 1) to be
recorded free from other nonlinear effects, the probe
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wave must propagate coaxially with the strong wave,
and its frequency must be lower than the strong-field
frequency (the Stokes case); at the same time, only the
probe level | must be populated, while the levels m and
n must be ideally empty. In contrast to thermally popu-
lated rovibrational molecular levels, ionic levels in a
plasma allow the required conditions to be realized. In
particular, asimilar caseisrealized when the strong and
probe fields are resonant, respectively, to the Arll laser
transition and the transition to a metastable state with a
large population. We chose ascheme with the following
levels:

ImO= 4p°S,,, [I0= 3d°Ps,.

The corresponding relaxation constants and Einstein
coefficients (in units of 10’ s?) are

InO= 4s°P,,,

r,=300,r,=15 1T =8, A,, =9, A, = 1.

The characteristic level populations in an argon laser
plasmaare N, ~ 1, N, ~ 5, and N, ~ 100 (in units of
10° cm3) [9, 11]. Thus, the following relations hold for
the level scheme chosen:

M=sr,<r,<kvq
for the relaxation constants and
N, > N, =N,

for the level populations.

Under argon laser plasma conditions, some of the
manifestations of field splitting have been observed
previously when studying the generation at coupled
laser transitions in aV-scheme: when the frequency of
the Stokes radiation was detuned, a decoupled reso-
nance was observed for large detunings of the high-fre-
guency laser field, and complex resonance structures
were observed near the exact resonance for the Stokes
radiation when it was tuned to the line center [13, 14].
The shape of the Autler—Townes doublet and the influ-
ence of Coulomb diffusion on it have not been investi-
gated.

In our experiments, we studied the spectrum of a
Stokes prabefield in the presence of astrong field at the
adjacent transition (the A-scheme, Fig. 1). We mea-
sured the difference between the absorption coefficients
for the probe field in the absence and in the presence of
astrong field that corresponded to the nonlinear correc-
tion to the probe-field work A% ,. For asignal of suffi-
cient amplitude to be produced, the intensity of the
strong field must be large (G = 100 MHz). The intrac-
avity field of a single-frequency 457.9-nm line
(4p?S,,—4s°P,;,) ion laser with minimum angular
momentum (j,,=j, = 1/2) was used to achieve theseval-
ues. As aresult, we measured the Autler—Townes dou-
blet shape under argon laser plasma conditions without
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the Doppler base with an accuracy high enough to make
a comparison with the theory.

The experimental setup isshowninFig. 1. Anargon
laser discharge tube 1 (length | = 50 cm, channel diam-
eter d = 7 mm, and working current | ~ 100 A) was
placed in a cavity with entrance (2) and exit (3) mirrors
opaque for the generated emission, but transparent for
the probe emission. Thus, there were two waves in the
cavity: a standing linearly polarized generated wave
and atraveling linearly polarized probe wave. Etalon 5
provided the selection of one longitudinal mode and
smooth tuning of the generation frequency, while dia-
phragm 6 separated out the TEMy, mode. The cavity
mirrors selected the linewith awavelength A = 458 nm;
the transmission losses in the cavity at this line were
=0.3%, which provided a high field intensity inside the
cavity. The emergent emission from the argon | aser was
directed by the mirror to a diffraction grating 8. One
order from this grating was entered into a scanning
Fabry—Perot interferometer 9, which was used to con-
trol the mode composition of the emission and to deter-
mine the strong-field detuning from the resonance,
while the other order was diverted to photodetector 10,
the signal from which was the reference one for a syn-
chronous detector 11.

A dyelaser 12 whose wavelength (A, = 648 nm) was
recorded by a wavelength meter 13 was used as the
probe-field source. The automatic frequency control
(AFC) system [15] alowed usto tie the cavity modeto
the selector peak and to smoothly change the probe-
field frequency over a range up to 4.5 GHz. The fre-
guency was tuned with computer 16 at discrete steps of
less than 20 MHz; the step approached the emission
linewidth (about 10 MHz). The dye-laser spectrumwas
recorded by the scanning interferometer 9 with a free
dispersion range of 5 GHz connected to an oscillo-
graph, which was used to control the mode composition
of the emission. Before being entered into the discharge
tube, the probe field was prefocused by lens 15 to pro-
vide the maximum possible field uniformity in the cav-
ity. After the passage through the discharge tune, the
probe-field beam was reflected from an additional
plate 4 and diverted by the mirrorsto photodetector 10
connected to the synchronous detector 11. The angle
between the beams of the probe field and the generated
emission was ~1073 rad, which allowed the feedback to
be avoided. The strong field was modulated at a fre-
guency of ~1 kHz with obturator 7; the synchronous
detection at the modulation frequency alowed us to
automatically subtract the Doppler base and to separate
out the nonlinear corrections induced by the strong
field. The personal computer 16, to which all of the
measuring instruments were connected through an
ADC, was used for controlling the experiment and for
synchronous data acquisition and recording.

To separate in frequency the resonances from the
oppositely directed standing-wave components and to
observe the field splitting induced by the traveling
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Fig. 2. Experimental profile for the nonlinear correction in
the probe-field spectrum for the strong-field parameters G =
100 MHz and Q = 1.6 GHz.

(coaxial) wave in pure form, the strong field must be
detuned from the resonance by a value larger than the
population resonance width. An experimental fre-
guency profile of the nonlinear correction to the probe-
field absorption coefficient for a strong-field detuning
Q = w—w,, =1.6 GHzisshowninFig. 2. The negative
values on the plot correspond to an increase in probe-
field absorption induced by the strong field, while the
positive values correspond to a decrease in absorption,
which is equivalent to electromagnetically induced
transparency. A sharp structure attributable to field
splitting is observed for the coaxial component: the
split low-amplitude absorption profile with a splitting
of about 0.5 GHz and the high-amplitude EIT peak cen-
tered at afrequency Q, = Qk/k,= 1.1 GHz between the
split components. A wide (with a FWHM of about
1.3 GH2) population resonance with alow amplitudein
accordance with the level population ratio is seen
symmetric about the line center at a frequency Q, =
—-Qk/k, = —1.1 GHz. The small peak at Q, = 0 corre-
sponds to the effect of higher order spatial harmonics,
which ismost pronounced at the exact resonancefor the
strong field (Q = 0) [16]; it is not considered here.

Since the contribution of the saturation effect that
forms the population resonance is the same for the
oppositely directed and coaxia components, we sub-
tracted the left part of the plot (Q, < 0) from its right
part (Q,, > 0) to separate out the field splitting effect in
pure form. The Autler—Townes doublet profile cor-
rected in thisway is shown in Fig. 3 together with the-
oretical curves computed without and with Coulomb
ion—on interaction. Since the amplitude of the doublet
components for our parameters is small compared to
the amplitude of the peak, it would be more precise to
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Fig. 3. Nonlinear correction in the probe-field spectrum
AP(Q,) corresponding to the field splitting effect for the

following strong-field parameters: G = 100 MHz, Q =
1.59 GHz, and kvt = 4.9 GHz; the short and long dashes
represent the calculations using the perturbation theory
without diffusion (4) and with diffusion (v = 2 x 10" s,
respectively; the solid line and the dots represent the numer-
ically calculated and experimental values, respectively.

usetheterm “EIT peak profile.” Below, we compare the
experimental and theoretical results.

3. THEORY

The nonlinear correction to the probe-field work for
the A-scheme (Fig. 1) with N, = N, < N, calculated in
the model of relaxation constants using the perturbation
theory (G <) is[2]

AP0 = 200)-2P(G)

2AJTIN, exp(—Q1 /K v 1) (K —K,)

2
Kv

= 41w, |G,*G| (1)

1
(Fp—i(Q,—k,Q/K))*

x Re

where |G| and |G| are the Rabi frequencies of the strong
and probe fields, k and k, are their wave vectors, Q =
W— Wy, and Q, = W, — wy, are the field frequency
detunings relative to the corresponding resonance, v, =

AJ2TIM isthethermal velocity, and N, isthe population
of level I.

This formula describes the Autler—Townes doubl et
in absorption with the EIT peak centered at the probe-
field frequency Q,, = k,Q/k with the width

Mo = (KMo + (K=K )M )/ k. )
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In this approximation, the splitting Axr = 21", does not
depend on the strong-wave intensity and is determined
by the relaxation constant of theforbidden transition I,
for close magnitudes of the wave vectors. On the other
hand, it is well known that in a strong field |G| > T;
(when the contribution of the relaxation constants may
be ignored), the splitting for stationary atoms is deter-
mined by its Rabi frequency |G|, while allowance for the
thermal motion leads to the addition of a scaling factor
that depends on the relation between the wave vectors of
the probe and strong fields (see, e.g., 12, 17]):

Dar = 4G 1=K Kk K. 3)

For an arbitrary relation between |G| and I, the
expression for the nonlinear correction calculated inthe
Doppler limit (|G|, [ < kvy) is[17]

2JTIN exp(~Q /K v T)

AP, = 2hw,|G
M u| ul k“VT (4)
0 0
XEL e r,—i(Q,—k,Q/K) .
- A\ ]-
. 4k, (k—k,)|G|]
E /\/(rp_'(Qu_kuQ/k))z"' u( 2u) a

In the limit |G| < I;, this expression reduces to (1), a
result of perturbation theory. As the field amplitude
increases, the splitting increases and is described by
Eq. (3) inthelimit |G| > T;.

Under the experimental conditions (|G| = 100 MHz,
I =Ty =280 MHz, ', = 25 MHz), the approxima-
tion of perturbation theory (|G| < Iy, IMy) holds well.
The profile calculated using formula (4) with the field
splitting (determined by the Rabi frequency |G]) is vir-
tually identical to result (1) of perturbation theory—the
latter curve isindicated by short dashes in Fig. 3. The
FWHM of the EIT peak (and, accordingly, the splitting)
in this approximation is determined by the relaxation
constant of the forbidden transition

Aar 027 = 2k /k = 400 MHz.

The calculated curve quditatively agrees with the
experimental curve, but thewidth of the EIT peak inthe
experiment is appreciably larger (by about 40%);
allowance for the field broadening yields no such
broadening.

Coulomb ion scattering [9] is known to be mainly
responsible for the broadening of nonlinear resonances
in an ion laser plasma. This scattering is satisfactorily
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described by amodel of diffusioninvelocity spacewith
avelocity-independent coefficient [18, 19]:

y = 16/NZ°e'A

D = vv?/2,
T 3M2y3

©)

where v is the effective ion—ion collision frequency;

vy = ,/2T,/M isthethermal velocity; Ze and M are the

charge and mass of the active ions, respectively; N is
the effective number density of the perturbing ions; and
N\ isthe Coulomb logarithm.

The Coulomb broadening of the resonances due to
saturation was studied in detail in an experiment; in
particular, it was shown that the Coulomb broadening
could reach afactor of 100 with respect to the radiative
width for long-lived metastable levels[11]. The pattern
of the diffusive broadening of population resonancesis
fairly easy to understand: a strong monochromatic
wave produces Bennett structureswith awidth I, /k <
v, against the background of a Maxwellian velocity
distribution for the population of level j = m, n with
width v;. Diffusion in velocity space tendsto level off
the nonequilibrium, causing the resonant structureto be
broadened. The characteristic change in velocity
increases with timet following the diffusion law

Av;0./Dt.

Over the leve lifetime FJ-_l, diffusion in velocities

causes the saturation resonance in the spectrum to be
broadened by

k
A = kAvJ-::LT

> vil, ]

=mn; (6)

i.e., thelonger thelevel lifetime, thelarger the broaden-
ing of the saturation resonance, as distinct from the
model of relaxation constants. For laser transitions, the
Bennett dip is broadened predominantly at the rela
tively long-lived upper level. For our level scheme, the
characteristic broadening of the saturation resonanceis
AT, ~ 3; accordingly, the width of the population res-
onance observed for the oppositely directed strong and
probe waves centered at Q, = -1.1 GHz (see Fig. 2) is
larger by afactor of about 3 than the width of the EIT
peak.

Sincethe EIT peak is produced by coherent effects,
the Coulomb broadening mechanism in this case differs
fundamentally from the broadening mechanism of pop-
ulation resonances. Apart from a change in the popula-
tion distribution, diffusion in the velocity space aso
leads to dephasing (phase diffusion) of the nondiagonal
density (coherence) matrix element through a random
change in the ion coordinate:

Ar’00A v2%0 Dt
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which corresponds to the change in phase
M$’0 = K rOODK .

The dephasing is significant when A¢ ~ 1. Hence, we
can estimate the dephasing time scale T, and the related
correction to the homogeneous transition width:

-1/3 -1/3

= (v(kvy)®) . (7)

Accordingly, the correction to the width of the EIT
peak (2) under experimental conditions is estimated as

k“r_Dl/k = 300 MHz, which is appreciably larger than
", =200 MHz. Thisvalue isin conflict with the exper-

iment, in which the observed broadening is appreciably
smaller than .

Since perturbation theory may be used to describe
the experiment, the effect can be analyzed in more
detail. For coaxia strong and probe wavesin the Stokes
case (k, <K), wemay usethenonlinear correctioninthe
probe-field spectrum cal culated using perturbation the-
ory up to the second order in |G| with diffusionin veloc-
ities [20]. Reducing the expression to a more familiar
form for nonlinear spectroscopy, we obtain theline pro-
file that corresponds to the field splitting:

15 O(DKY)

4./ w,|G,|%|GI°Ny(k—k,)
KV,

AP(Q,) =

0 2
xRef] dtexp(iQut)db(t)E , 8)
0
0

O(t) = exp{ (I, +iQk, /Kt
—D(k—k,)’(k./K)*t/3}.

Here, we ignore the force of friction, because the reso-
nant velocity isless than 0.4v;. The phase diffusion is

determined not by the factor Dk?, as suggested by esti-
mate (7), but by afactor of (k— kp)zkf1 /k* smaller quan-

tity. Accordingly, the diffusion width of the field-split-
ting resonance may be expressed as

o= [D(k—k,)k2/K] ™2, 9)

In the experiment,
- 2,214 _
k,/k=0.7, (k—k,)°k,/K"=0.04.
Thus, the diffusion width of the field-splitting reso-
nance, I'p = 100 MHz, isby afactor of about 3 smaller
than (Dk?)Y3; thediffusive broadeningissmall, ' <T,.
In the limit D — O, the expression for the profile
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Fig. 4. Frequency branches calculated using formula (10)
for the following experimental conditions: Q = 100 MHz
and Q = 1.59 GHz.

shape reducesto (1). Theresult of our calculation using
formula (8) of perturbation theory with Coulomb diffu-
sion for experimental conditions is indicated by long
dashes in Fig. 3. The curve satisfactorily describes the
experiment; the dlight deviations are attributable
mainly to asymmetry in the experimenta profile. The
curve (solid line) calculated numerically from the sys-
tem of equations for the density matrix with the diffu-
sive and field broadenings and with the force of Cou-
lomb friction is also shown in the figure. This curveis
in even better agreement with the experiment; it also
describes the asymmetry. On the right slope of the EIT
peak, the results of our numerical calculations and cal-
culations using perturbation theory with diffusion arein
close agreement; deviations are clearly seen only onthe
left dope.

4. DISCUSSION

Our comparison of the experimental and calculated
curves shows that, in contrast to the saturation reso-
nances, population diffusion in velocities does not lead
to any significant broadening of the resonance due to
field splitting. A good approximation to describe the
experiment is perturbation theory with diffusion; in this
case, the field broadening is negligible. The opposite
limiting case was analyzed in [21]: the diffusion shape
of the Autler—Townes doublet components was calcu-
lated for afield splitting |G| much larger than the reso-
nancewidth. Inthiscase, the diffusion width of the split

components was found to be ~J/DK/|G|, i.e, it
decreases with increasing |G|, and no appreciable
broadening of the resonances was observed in an exper-
iment with strong fields in the V-scheme [13, 14].
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Since the amplitude of the Autler—Townes doublet
componentsin our caseissmall compared to the ampli-
tude of the EIT peak, itisof considerableinterest to dis-
cussthe influence of Coulomb diffusion on the shape of
the EIT peak—its relative broadening under experi-
mental conditions did not exceed 40%. Qualitatively,
such a weak influence can be understood by using the
pattern of frequency branches: the velocity dependence
of the resonant frequencies of the split components
(see, eg., [13]). The resonant frequencies when the
homogeneous width is ignored are described in our
case by the expression

) (10)

= kv +(Q—kv)/2+ (Q—kv)%4+|G%

The results of our calculation using formula (10) for
experimental parameters are shown in Fig. 4. When
averaged over velacities, the integral is accumulated in
the vicinity of the extremaof the function Q,(v), called
turning frequencies [13]. The size of the vicinity that
gives a significant contribution is determined by the
slope of the function, dQ,/dv—the asymptotic behav-
ior at large velocities is determined by the coefficients
k, and (k, — k), which differ greatly in our case. There-
fore, the integral is accumulated at velocities v > 0.4v+

for the resonance Q& <1GHzandat v < 0.4v; for the

second resonance Qﬁ < 1 GHz. Given the Max-

wellian distribution function, this leads to a larger
amplitude of the resonance that is farther from the
center of the line, as confirmed by the experiment (see
Fig. 2). Formulas (1), (4), and (8) derived in the Dop-
pler limit do not describe the asymmetry. The role of
Coulomb population diffusion under these conditions
reducesto thewalk of particles on the frequency branch
along the velocity axisin avicinity of the order

AijvT./viiIZFj, j = mn,

whose size does not exceed the size of the region that
contributesto theintegral ; therefore, this effect isweak,
with the influence of diffusion on the wing shape being
stronger than on the width of the EIT peak. The asym-
metry in the doublet componentsisthe result of averag-
ing over velocities with allowance made for the finite
Doppler width and is virtualy independent of diffu-
sion. Thus, the main broadening mechanismin this case
is Coulomb dephasing (phase diffusion), whose effect,

inturn, is weakened by afactor of [(k— ku)zkfl [k ~Y3 ~
3 under experimental conditions. As a result, the Cou-
lomb broadening of the EIT peak does not exceed 40%.

The experiment also allows us to determine the
width of the population resonance (attributable to the
Bennett dip at the upper level m), which is observed for
oppositely directed probe and strong fields—the nega-
tive detuning range in Fig. 2. It isof considerable inter-
est to compare our result with the data of previous
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experiments on the Lamb dip and the spontaneous
emission spectrum (see, e.g., [9]). The FWHM of the
saturation resonance in our caseisA = 1.3 GHz, which
correspondsto arelative broadening of the Bennett dip
by a factor of y = (A/2r ,,,))(K/k,) = 3.7. This value is
slightly larger than that yielded by measurements of the
spontaneous emission spectrum under the same condi-
tions (see [9]). In contrast to previous measurements,
the field broadening of the population resonance in our
experimental conditions was large and it could not be
ignored. Our estimation of the characteristic values
yields the following Coulomb, homogeneous, and field
widths of the saturation resonance under experimental
conditions:

An, = K, Vvii/2l,=0.7 GHz
(Ap = 2In2A,, = 1 GHz isthe FWHM)),
2l K, /k=0.35 GHz,

Ag = 2|G| /2T /T = 0.8 GHz.

Consequently, the diffusion and field widths are com-
parable in magnitude and are appreciably larger than
the homogeneous width: Ay = Ag > 21k /K. As was
shown in [9, 22], the squares of the field and diffusion
widths are added in these conditions; i.e., the total
width may be expressed as

A = A + A% =1.3 GHz,

in good agreement with the measurements.

(11)

5. CONCLUSIONS

Thus, we have measured for the first time the shape
of the nonlinear resonance due to field splitting under
plasma conditions. Our experimental and theoretical
studies of this effect at relatively low field intensities
(IG] < I'y) show that Coulomb ion—ion scattering,
which leads to ion diffusion in the velocity space,
affectsthe Autler—Townes doublet profile and the width
of the EIT peak only dlightly. This influence reduces to
a small (about 40%) broadening of the peak and to a
change in the wing shape of the split components. The
main broadening mechanism is Coulomb dephasing
(phase diffusion), which causes an effective increase in
the homogeneous width by 'y described by (9). We
have shown that the broadening of the saturation reso-
nance via Coulomb population diffusion under these
conditions is ailmost an order of magnitude larger; the
field broadening in this case also gives a significant
contribution.
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Abstract—Capillary instability of isothermal incompressible liquid-crystal (LC) jets is considered within the
linear hydrodynamics of uniaxial nematic LCs. Free boundary conditions with strong tangential anchoring of
director n at the surface are formul ated in terms of the mean surface curvature € and the Gaussian surface cur-
vature 9. The static version of the capillary instability is shown to depend on the elasticity modulus K, the sur-
face tension o, and the radius r of the LC jet, expressed in terms of the characteristic parameter k = K/agrg.
The problem of the capillary instability in LC jetsis solved exactly, and a dispersion relation that reflects the
effect of elasticity is derived. It is shown that increase in the elasticity modulus results in decrease in both the
cut-off wavenumber k and the disturbance growth rate s. Thisimplies an enhanced stability of LC jetsin com-
parison to ordinary liquids. In the specific case where the hydrodynamic and orientational LC modes can be
decoupled, the dispersion equation is given in a closed form. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The breakup of liquid jets injected via a circular
nozzleinto stagnant fluids has been the subject of wide-
spread research over the years. Previous studies that
followed the seminal works of Lord Rayleigh have
established that a complex jet flow is influenced by a
large number of parameters. Theseinclude nozzleinter-
nal flow effects, the jet velocity profile V(r), and the
physical state of both liquid and gas. Although the
hydrodynamic equations are nonlinear, the linear sta-
bility theory can provide qualitative descriptions of the
breakup phenomena and predict the existence of differ-
ent breakup regimes.

Using alinear theory, Rayleigh showed [1] that the
jet breakup is a consegquence of the hydrodynamic
instability, or more exactly, the capillary instability.
Neglecting the effect of the ambient fluid, the viscosity
of the jet liquid, and gravity, he demonstrated that a
cylindrical liquid jet is unstable with respect to distur-
bances characterized by wavelengths larger than the jet
circumference. Rayleigh also considered the case of a
viscous jet in an inviscid gas and an inviscid gas jet in
an inviscid liquid [2]. Weber [3] extended Rayleigh’s
result to Newtonian viscous fluids and showed that vis-
cosity tendsto reducethe breakage rate and increase the
drop size. Chandrasekhar [4] considered the effect of a
uniform magnetic field on the capillary instability of a
liquid jet. A mechanism of bending disturbances and of
buckling, slowly moving, highly viscous jets was pre-
sented by Taylor [5]. Further developments of the the-
ory in Newtonian liquids was concerned with addi-
tional factors such asthe dynamic action of the ambient

TThis article was submitted by the authorsin English.

gas (leading to atomization of the jet), the nonlinear
interaction of growing modes that lead to satellite drop
formation, and the spatial character of instability [6, 7].

The capillary instability in jets of non-Newtonian
suspensions and emulsions presents a different cate-
gory of cases governed by power-law (pseudoplastic
and dilatant) liquids. The effective viscosity of the
pseudoplastic liquid decreases with increasing strain
rate, whereas in dilatant liquids, it increases [7]. The
behavior of capillary jets of dilute and concentrated
polymer solutions suggests a strong influence of the
macromolecular coils on their flow patterns [7]. Free
jets of polymeric liquids that exhibit oscillations are
reported in [8].

The idea of the Rayleigh instability was applied to
tubular membranesin dilute lyotropic phases[9]. Their
relaxation, following optical excitation, is character-
ized by along time and can be described by means of
the hydrodynamic approach [10]. Bending deforma
tions of such membranes are governed by the Helfrich
energy [11], which depends on the curvature of the
tube. Thus, competition between the surface tension
and curvature energy of the membrane that has been
immersed in water renders the initial shape of the tube
unstable. The hydrodynamic formalism used in [10]
and the hydrodynamics of fluids with an inner order
such asliquid crystals (LCs) [12] have similar features.
In [10], the order parameter is a unit vector normal to
the membrane surface. In contrast, the order parameter
Q of an LC fluid is defined throughout the space it
occupies.

The continuum theory of L C phases has emerged as
arigorous part of condensed matter theory. The hydro-
dynamics of the nematic L C phases was devel oped dur-
ing the 1960s-1970s in the pioneering works of Erick-

1063-7761/04/9805-0960$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Table 1. Thebasic physical parametersq;, p, K, and o, and their derivativesn;, B;, Vi, Bi, I, A, and v; for nematic LC 4-meth-
oxybenzylidene-4-butylaniline (MBBA) at 25°C taken from [23, 30]

o4, mPas oo, mPas O3, MPas oy4, mPas a5, mPas Og, MPas
7 —78 -1 84 46 -33
Ny, mPas Ns, MPas Ns, mMPas A M1 Mo
42 50 104 1.026 1.013 0.013
1, mPas B,, mPas B3, mPas B4, mPas vi, mPas Yo, MPas
42 25 79 59 77 —79
B,, mPas B,, mPas Bs, mPas B, mPas 9B 8, m?s
58 104 25 78 5.92 12x 1070
p, kg/m?3 K, N 0o, N/'m | =Klgg, m vj, m?/s S
1.2x 103 9x 1072 38x10°3 2.4x 10710 10°-10* 10%-10°

Table 2. Thebasic physical parametersa;, p, K, and oy and their derivativesn;, B, Vi, B;, Wi, A, and v; for LC paraazoxyanisole
(PAA) at 122°C taken from [23, 30]

o4, mPas 0o, mPas O3, MPas a4, mPas o5, mPas Og, MPas
4 —6.9 -0.2 6.8 5 21
Ny, mPas N3, mPas Ns, mPas A My H2
34 45 137 1.06 1.03 0.03
1, mPas 5, mPas B3, mPas B4, mPas Y1, mPas Yo, mPas
34 2.25 11.45 4.55 6.7 -7.1
B,, mPas B,, mPas Bs, mPas B, mPas 9B 8, m?s
4.34 9.36 2.26 11.24 7.11 1.8x107°
o, kg/m? K, N 0o, N/m | = Klgg, m v;, m?/s S
1.4 x 10° 11.9 x 10712 40x 1073 3x 10710 10°-10°° 104-1073

sen [13, 14], Ledlie [15 16], Parodi [17], and the Har-
vard Group [18],! and its predictions were successfully
confirmed in many experimental observations. The
combination of viscous and elastic properties is likely
to produce new evolution patterns of hydrodynamic
instabilities, in terms of Benard—Rayleigh, Marangoni,
and electrohydrodynamic effects [19], which cannot
occur in ordinary liquids. In particul ar, we refer to non-
steady-state (oscillatory) evolution of the instability
that appears viathe Hopf bifurcation [20]. Theinstabil-
ity of an LC jet poses an additional challenge with
respect to the effects listed above. This aready is
already applicablein the framework of the linear stabil-
ity theory.

Linear analysis of the capillary instability in athin
nematic L C fiber was recently performed in [21] under

1 The name Harvard Group was proposed by De Gennes [19] and
denotes five authors (see[18]).

the assumption that the director field n(r) is fixed and
does not change even if the fiber shape evolves viathe
linear instability process. In this analysis, the only
influence of the LC nematicity is due to the anisotropy
of the elastic surface energy and the anisotropy of vis-
cous LC moduli. The above assumption stipulates the
predominance of elastic forces over the surface tension
(I > rp) and over hydrodynamic forces (Er < 1), where
| = K/o and Er = n\ry/K denote the anchoring extrapo-
lation length [22] and the Ericksen number [19],
respectively; n and K are viscous and elastic moduli;
Vis the LC vdocity; and r, stands for the geometric
length scale, i.e., the radius of the LC jet. Thefirst con-
dition (I > ry) isdifficult to implement for most known
nematic LCs with well-studied physical parameters.
Indeed, classical nematic LCs, also known as MBBA
and PAA, have an anchoring extrapolation length of | =
3x10m (Tables1 and 2). Thisvalueindicates strong
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anchoring at the surface.? Otherwise, the radius of the
jet must be decreased to the molecular scale. In the case
of strong director anchoring at the surface, the second
requirement, Er < 1, does not alow a continuous tran-
sitionto ordinary liquids (the classical Rayleigh—\Weber
theory) which is an important benchmark in the theory.
We notethat asthe elasticity tendsto zero, K — Othen
Er —= . Moreover, disregarding the bulk elasticity
effects in LCs excludes the competition between the
bulk forces and surface tension that is crucia for the
physical picture of thin LC films (see Section 3). Inthis
context [21], the Leslie-Ericksen equation of angular
motion of the director n(r, t) was neglected and the
elastically induced nondissipative contributions to the
Navier—Stokes equation were not included in the LC
hydrodynamics.

A more realistic setup of the problem consists of a
rigid boundary condition of strong director anchoring
at the free surface of LC jets. The simplest case consti-
tutesatangential orientation of thedirector at the surface,
n -e=0, whereeisaunit vector normal to thejet surface.
Such orientation, having strong anchoring and tempera-
ture independence, is observed at the free surface of the
classica nematic PAA mentioned above [24-26].
Assuming that the scale of deformation of the initial
surface is much larger than the molecular length
of LCs, we conclude that if the orientation of the
director n is set tangential to the undisturbed surface,
then it must also remain tangential when the surfaceis
smoothly disturbed.

The elastic properties of LCs are expected to change
the evolution patterns of jets that are made from them.
In this paper, we derive arigorous mathematical model
of capillary instability for isotherma incompressible
nematic LC jets in the single elastic approximation.
This model shows how the combined viscous and elas-
tic properties of LC fluids determine the boundary con-
ditions at the free surface with strong tangential anchor-
ing of the director and the range where instability pre-
vails.

2. HYDRODYNAMICS OF AN LC JET

In this section, we first formulate the problem of
capillary instability and then derive the basic equations
that govern the linear hydrodynamics of an LC jet. The

20n the basis of an heuristic argument, De Gennes [19] noted that
if the anisotropic interaction at a nematic-substrate interface is as
large as that acting between nematic molecules, the anchoring
energy o can be roughly estimated as 0 ~ K/a, where K is the
Frank modulus and a is the molecular dimension; hence, taking
K=8x10"?Nanda=5x 10"9m, wefind o = 1.6 x 107 N/m,
which corresponds to the strong anchoring in virtually all practi-
cal cases. An extensive review by Cognard [23] lists sixteen of
the most studied nematic L Cs with corresponding ¢ measured at
equilibrium with air (see Table 9 in [23]). All values lie in the

range between 2.45 x 1072 N/m for MPPB and 4 x 1072 N/m for

5CB, which well supports the qualitative consideration of De
Gennes.
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incompressible flow of anematic LC is described by a
set of differential equations: the continuity equation,
the Nayier—Stokes equation for viscoelastic LCs, and
the Leslie-Ericksen eguation of angular motion of the
director n(r, t). They are supplemented by boundary
conditionson the L C free surface with strong tangential
anchoring of the director.

The basic notation and linear hydrodynamic equa-
tions for uniaxial nematic LCs follow the theory given
in [18] (the so-called Harvard Group approach), which
has become standard in many monographs, e.g.,
[12, 27]. We note that the Harvard Group and Ericksen—
Ledie—Parodi approaches are in full agreement (a
detailed discussion is given in [19]).

2.1. Basic Notation and Variables

The following basic variables describe the nematic
L C medium: velocity V(r, t), pressure P(r, t), and direc-
tor n(r, t), n?=1. Theinitial values of the functions are
denoted by “0,” either as a subscript or superscript. The
following notation, which is commonly accepted in the
theory of LCs, is used henceforth:

1. The free energy density E, of a deformed non-
chiral uniaxial nematic LC, given in the quadratic
approximation in terms of the derivatives dn/dx and in
the single elastic approximation, has the form

E, = g(divzn +rot?n), (1)

where K = 0 is known as the Frank elasticity modulus.
Inthevicinity of aphasetransition, K 0 Q?[19], andin
the isotropic phase, it vanishes.

2. The bulk molecular field F and the Ericksen elas-
tic stress tensor 1,4, which set the equilibrium distribu-
tion of the n field in an LC, are determined by the vari-
ational derivatives:3

F=M-nlh,MOorF = (&;—-nin)M;, (2
where
_ 0 08 OE,
"7 9x0(0,n) on’
(©)
T = 0Eq oy = 9
Ko a(0¢n;)’ K %
i.e,
M = KA3n, T = K(6k|d|vn+(n D’Otn)nmemki

+ [[n X rOtn] x n] memki)’ (4)

where €, is a completely antisymmetric unit tensor of
the third rank (the Levi-Civita tensor).

3 Here and throughout, unless noted otherwise, we apply the sum-
mation rule over indices repeated in atensor product, e.g., a;j by, =

2 &bk
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3. If the deviations of the director n = n® + n! from
itsinitial orientation n® along the z direction are small,
then

0

nf=ny=0 n;=1,
1 1 1 1,2 1,2 (5)
15 m, ny > 0(ny), (n),
and simple algebrayields the linear approximation
Fo = KAgny,, F, = KAgny,, F,=0, (6)

where A; is the three-dimensional Laplacian. Similar
considerations regarding the Ericksen stress tensor Ty
give

.1
Ty = Tyy = T, = Kdivn',

o= = [pn anﬂ
Xy T Thyx T D—a—){_'a—yﬂ’
(7)
_ _ [Qn anﬂ
TyZ _sz - D—a—y— _—6—Z—|:|1
B [@n anZlD
Ty = —Ty, DE—Z_ _EYD

The stresses given by Egs. (7) do not contribute to the
nondissipative stress tensor Ti({() used in the linear
hydrodynamics of LCs (see Eq. (8) below).

)

4. The reactive (nondissipative) T;, and dissipative

T(d) stress tensors are defined as

T = —P3,— Tk]gn S(MF+ nF)
(8)
+§(niFk—nkFi):
d) = 2n1Y|k+(n3_2n1)(n ijnj+nk ij ]) (9)

+(2n1 +Ns—2n3)NingNiNg Y,

where the antisymmetric Q,, (vorticity) and symmetric
Y« parts of the derivative 9, V, are given by

Q. 1BM<_‘MD
T 20x,  axT
(10)
= 50x. axk

Three independent viscous moduli n;, the kinetic coef-
ficient A, and the rotational viscosity y; determine the

dissipative stress tensor TIk , the fourth-rank viscosity
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tensor n;m, and the dissipative function D in the
absence of heat fluxes,

1

D = nikijiijm+y_1F21 T(d) Nikjm Y jms

Nikim = N1(&ij&km + Exi&im)
(11)
+ ﬂ2‘3(ninj§km + 0 NEn + NN + NN &)

+NsMiNgN; Ny,

The tensor N, consists of three independent uniaxial
invariants [12] and is highly symmetrlc Nikim = Niimj =
Nimik- The requirement that D is positive becomes
n;20, nz=0, ns20, y,20. (12)

The parameter A is close to +1 or —1 for rodlike or
disklike molecules, respectively. If the liquid is vis
coisotropic, then A = 0.

5. The hydrodynamic reactive (nondissipative) m(
and dissipative m@ fields are defined as

(r) = —(V )i + Ny + A& YNy,

(13)
m® = 1

F,
Y1

where [; is the three-dimensional gradient operator,
(0a)* = Ag.

6. The surface tension g of a nematic LC is given
by [28]

o= 00+01Eh,d]2, (19)

where 0, and o; are isotropic and anisotropic surface
tension moduli respectively, and e is a unit vector nor-
mal to the LC surface.

7. Another system of viscous moduli a; (called the
Ledie viscosities) relate the dissipative and kinetic
moduli as*

N = a,/2, A= -y,ly,,
Ns = Oy +0,+ 05+ g,
Yo = O3+ 0y, (15)

Y1 = U3—0y,

N3—2N; = U5+ 0A,

2N, +Ns—2n; = al+yglyll

4 The correct expression for Nsisgivenin[18].

No. 5 2004



964

with the support of the Onsager—Parodi relation [17] as
O3+ 0, = dg— 0 Inthe vicinity of a phase transition,
the viscous moduli a; have different dependences on
order parameter Q: a; 0 Q?, a5, O3, 05, 05 0 Q, and
a, 0Q°[19].

Tables 1 and 2 (see above) summarize viscosities
and other physical parameters that characterize the
most frequently used and well-studied nematic LCs,
also known as MBBA and PAA.

2.2. Basic Equations

The complete system of hydrodynamic equations
for the isothermal incompressible nematic LC reflects
the conservation laws of mass and of linear and angular
momenta.

1. The continuity equation

divv = 0. (16)

2. The Navier—Stokes equation for viscoelastic LC,

V r
P3¢ +P(V M)V, = —(T” Ti)-

(17)
3. The Leslie-Ericksen equation of angular motion of
the director n(r, t),

an M) 4 M@

— =m"+m

n (18)

The last equation is written for a negligible specific
angular moment of inertia &, of the LC, namely,

Lle< pré , Where r, is the characteristic size of the

system. Thisistruein our case, wherer isthe radius of
the jet.

We consider an isothermal incompressible jet flow-
ing along the z axis out of a nozzle at velocity V. The
initial orientation of director n° is assumed to be col-
linear with V. Deviations from the initial values of the
director and pressure aredefinedasn'=n—-n®and P, =
P —P,, respectively, where P, = g/r, isthe unperturbed
pressure within the cylindrical jet. In the linear approx-
imation, [n| < 1, Egs. (16)—(18) are simplified as

aT(d)
0%y

divv = 0,

Pot ax

+¥n0d F—u(

on' 1
O_tl nEQki"')\E?ijknE"'y_th

M),
(19)

Eﬂ - 6”_n?n?1 i,j,k = XYz

1]
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Choosing n. = 1 gives F, =0, and hence,
oV, oV, v,
Al AL

ox 0y 0z =0 (20)
oV,  aP, 0°n
P % - ax + B3lA2+l32“‘ZDVX
0° V, A+1 10F,
* (B Bl)6xaz "2 o9z’
oV oP 0’
i it + BV,
y 0z 21)
0° V, A+1 10F
* (B Bl)ayaz 2 0z’
FTEr T B3zAz+ B3_ZQE|VZ
A 1|]9F aF)D
2 Oox * oyl

o, _ A+10V, A-1V, F,

= + -
ot~ 2 oz 2 0x yl’
ony, _ A+10V, A-19V, F,

ot~ 2 9z 2 a9y vy, (22)
on;
i

where A, = 0%/0x> + 3%/0y? is the two-dimensional
Laplacian, B, =N, B, =N4/2, B3 = Ns—N4/2, and F, and
F, are given in (6). Because isotropic viscosity implies
that 3, = B, the LCs MBBA and PAA mentioned above
are clearly far from isotropic (see Tables 1 and 2).

To make the problem more specific and easier to
solve, we consider axisymmetric disturbances in the
system of a cylindrical LC jet with radius ry. In this
case,

oV, 6V V
FE T @)
v, _ aPl 0’
P = [[31%3 +B26_22i|vr
(24)
2V,  oF,
+(B2- Bl)araz Higs
AV, aP PG
Potr = -+ |:BZA20+B3 Z}
(25)
oF  Fo
elgr * 70
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on' oV, oV,
Vige = Vil Va5 4 Fr 0 = 0, (26)
where

9% 10

Bac 6_r2+ ror’

1. 8°
F, = K%AZC——2+£Enr1, (27)

A+1 A=1

p‘lz 2 ’ UZ: 2

Equations (23)—(26) describe the ordinary linear
hydrodynamic behavior of isotropic incompressible
liquids if the LC properties vanish: K, y; — 0 and
B = B. Theresult isthe well-known continuity equation
and the linearized Navier—Stokes equation,

oV

divV =0, pS- = —OP;+BAV. (28)

2.3. Boundary Conditions at the Free Surface

Boundary conditions at the free surface of an LC
state that the jump in normal stress consists of two
parts. one depends on the surface tension ¢ and the
other on the elastic disturbance W, of the uniform
director field ng(r). Assuming that no tangentia
stresses exist at the free surface, we can express the
boundary conditionsat r =r, as

60:0,

Ti)ec+ (209 + Wuze + 5

(T + (29)

where g are the components of the normal unit vector e
in the reference frame of the LC cylinder and # =
(YR, + 1/R,)/2 denotes the mean surface curvature with
the principal radii R, and R,.

The nonhydrodynamic part of the boundary condi-
tions with strong tangential anchoring of the director at
the free surface holdsiif the scale of deformation of the
initial surface is much larger than the molecular length
of LCs.® This determines the tangential behavior of a
smoothly disturbed director n at the free surface, e, <

e~1
efh=0 —» e+n'

=0ar =r, (30

Thelast constraint cancelsthe gradient termin Eq. (29).
We finally abtain the boundary conditions in the linear

5 Strictly speaking, this assumption is correct when the equilibrium
distribution of the director field n(r) is free of singularities. The
problem of the minimal surface of an LC drop presents another
situation where a substantial rearrangement of thefield n(r) at the
surface can decrease the total energy by destroying the disclina
tion core within the drop.
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approximation of the variables nr1 Vi, V,, and Py,

TE+TY +20H + Wy = 0, TE+TY = 0.(31)
Substitution of the expressions for the reactive and dis-
sipative stress tensors gives
2B, Y =Py = 200(9o— #) — Wy,
ZBZer = HzFr:a“ = ro,

where #, = (2ro)* is the initial mean curvature of the
LC cylinder. The equations for the jet surface—dis-
turbed by a wave {(z, t}—and its radia velocity d¢/ot
are given by

(32)

_a,
Vi © oot

where { < r, is the radia displacement of a surface
point. The principal radii of the surface curvature, inthe
linear approximation with respect to ¢, and its deriva-
tives can be expressed as

r(zt) =ro+q(z1), ar =ry, (33

1 1 1 T 1_ 9%
= ~=_52 ==_25 34
Ry 1o+l 1o 2 R 97 9

This transforms the boundary conditions given by
Egs. (30) and (32) into

1 _ 0 - 9¢
"= VT A (35)
2B, = WoF,, (36)
_ 0z . o*
Pl 2Berr - UoB— + _D+Welast (37)
G2 az0

The term W, deserves further discussion. It reflects
the existence of normal stresses at the surface, which
arise due to the resistance of the uniformly orientated
continuous LC media to the surface disturbance. The
term W, vanishesin undisturbed L C jets and depends
linearly on the elastic modulus K, theradiusr,, and the
derivatives of {. Moreover, the invariance of the prob-
lem under inversion of the z axis requires dependence
on derivatives of only even orders. An explicit expres-
sion for W« is derived in Section 3.1.

3. PLATEAU INSTABILITY
IN AN LC CYLINDER

Before considering the sophisticated mathematics
of Egs. (23)«26) supplemented by boundary condi-
tions (35)—37), we discuss capillary instability of the
LC cylinder. Thisis done by applying the Plateau con-
siderations [29] on the shape of a liquid mass with-
drawn from the action of gravity.
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We consider an LC cylinder with surface disturbed
in accordance with (33), where { = {ycoskz, {, issmall
compared to r,, and k = 217/, with A being the distur-
bance wavelength. The idea of Plateau, applied here, is
to find the cut-off wavelength A, of the disturbance that
determines breakage of the cylinder into droplets with
due decrease in the total energy.

The average volume v over one wavelength A in
the z direction is given by

A

= /—1\J’dzJ'ds = T[%;+%Z%
0 s

utte

=

4 v [

(39)

where ry in the right-hand side is given as a second-
order expansionin {,. Thetotal energy € of the LC cyl-
inder per unit wavel ength with adisturbed director field
n(r) isgiven by

N
_ K .2 2
€ = oyfds+ ZIdZI(dIV n+rot°n)ds.

S

(39)

The static director field n(r) can befound from Eq. (27)
and the associated boundary condition (35),

=1 F _oaghh 1 aDl_o
40
nlza—zatr:r “o
r az 0

Equation (40) has the solution

k&,

n(r,z) = WO

5 I1(kr)sinkz, (41)

which is finite at r = 0, where |(X) is the modified
Bessel function of order m. The contribution of elastic
forcesis determined by

ko T
I1(Kkro)
x [ A2(kr)sin’kz + A3(kr)cos'kZ]

div?n +rot’n = kz[
(42)

where

dh( , 1,

A(aq) = dq

1(q) Ax(aq) = 1,(0).
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Simple integration of Eqg. (39) gives

_ ki, 2
€ = 2n00r0%L+ kZ [ 1(kr0)}
krg (43)
x I[Ai(q) + A>(9)] qda.
0

Inserting r, from Eq. (38) into the first term above, we
obtain

2
200w = o -2+ 32

o (44)
X j[Ai(q) +Ay(Q)]qdg, © = k.

The positiveroot w, = k4, of the expression in theright-
hand side of Eq. (44) determinesthe cut-off wavelength
N\ of capillary disturbances that renders the LC cylin-
der unstable.

The quadratic approximation with respect to the
derivatives an/dx; in Eq. (1), which provides the basis
for the Frank theory, makes expression (44) correct
only in terms of the w? approximation. Indeed, the
power of @ in Eq. (44) must not exceed 2, otherwise
calculation becomes inconsistent. We thus obtain

2
€ —20,JTIV = Og5— ZO(Uu —1) + TKK®Z,
(45)
1K
S 1+2k Oolo’

where the subscript s denotes the static nature of the
Plateau instability. The asymptotic behavior of wy(k)
shows two important limits:

W, = 1-Kif Kk <1,

(46)

W, = Uitk > 1.

J_ %l ax0
Figure 1 shows a plot of kg versus k for the Plateau
instabilitiesin the LC and in ordinary liquid.

The corresponding asymptotic cut-off wavelength
N\ isobtained as

Ny = 2TUr(1+K) if K < 1,

_ 2K 10+,
A = 21 IEE“FOE%HZED”K > 1.

This result shows that k = k increases the total energy
€ of the disturbed system, whereas k < k decreases it.

According to (46), there are two marginal regimes of
instability.

(47)
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1. Thecapillary regimer, > K/o,. Here, A isclose
to the circumference of the cylinder and the éastic

deformation contribution [E4dv to the total energy €

is negligible. This regime should apply to awide range
of nematic LCs, because the common values of K ~
10 Jm [19] and o, ~ 102 Jm? [23] lead to K/g, ~
10° m. This value is evidently smaller than the pres-
ently attainable radii of the jet.

2. The elastic regime ry < K/o,. This case reflects
the dominance of elastic deformation and predicts an

unusual behavior for Ag O /.. This regime cannot be

reached by a simple increase of the elastic moduli,
because their magnitude is determined by K ~ kgT/a,
where KgT = 4 x 102 J is the Boltzmann thermal
energy at room temperature and a= 5 x 107° misthe
molecular length of the LC. In contrast, the effect of
surface tension can be diminished by surfactants or by
charging the surface of theliquid. In the | atter case, the
charge can virtually eliminate the effect of surface ten-
sion and provide conditions under which elastic forces
predominate.

3.1. W, and the Gaussian Surface Curvature

A straightforward way to derive an expression for
W« IS to solve the elastic problem for the stresses
existing on a deformed axisymmetric surface of an LC
cylinder. Thisisrelated to the Plateau instability, which
obviates the need to repeat the entire procedure.

When we turn from Plateau considerations regard-
ing the static instability of LC cylindersto the capillary
instability of LC jets, the question iswhether the cut-off
wavelengths of the static (Ag) and hydrodynamic (Ay)
problems coincide. This question was neglected by
Rayleigh in his studies on isotropic viscous liquids,
because the cut-off wavelengths always coincide for
ordinary liquids, A, = Ay4. Thisidentity reflects a deep
equivalence principle of the bifurcation point for anon-
trivial steady state of a dynamic system and the thresh-
old of static instability related to the minimum of its
free energy € [4].

Using this A; = Ay, we construct the term W,
which enters boundary condition (37). For this, we
examine and represent the total energy (45) as

¢ — 20’0,\/_

~ok+ 2KZ°k } (48)

_ Tl

o
Next, we compare the expression in the brackets with
the right-hand side of Eq. (37). This gives W.«, Which
generates the elastic contribution in (48),

1 _ 197

- ()

Weee = 2K, 4§ = ,
Rle rodz?
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Fig. 1. Universal plots of kg versusk for the Plateau insta-
bilitiesinan LC cylinder (solid line), and in ordinary liquid,
kg'g = 1 (dashed line).

where 4 is the Gaussian surface curvature in accor-
dance with (34). Thus, the final expression for bound-
ary conditions (29) is based on two fundamental invari-
ants of the surface curvature, the mean surface curva-
ture # and the Gaussian surface curvature 9.

4. DISPERSION RELATION

Rayleigh was the first to observe [1] that the insta-
bility problemis not so definite, contrary to the Plateau
theory. The mode whereby a system deviates from
unstable equilibrium must depend on the nature and
characteristics of small displacements to which this
system is subjected. In the absence of such displace-
ment, any system, however unstable, cannot depart
from equilibrium. These characteritics, being hydro-
dynamic, reflect the effect of viscosity, which predom-
inates over inertia. For ordinary liquids, the mode of the
maximum instability, which corresponds to the wave-
length Ag = 4.508 x 2r,, exceeds the circumference of
the liquid cylinder. We anticipate that the instability of
LC jets has similar features.

The fact that the velocity potential does not exist in
an anisotropic viscodlastic liquid dictates a standard
approach to this problem that was first elaborated by
Rayleigh [2]. We define the Stokes stream function
W(r, t) and the director potential O(r, t) as

_ 1w, 10 1 _
Vi r oz’ Vz_rar’ N =

00
FEGY
such that continuity equation (23) holds. From the other
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three equations, (24)—(26), we have

0P, _ 9° owy 1
ar - Be=Plamg ooy
(51)
0 rlown, , @’ w oW
(TZ[BlrE[F ar0] Bz pat I-J-lrFr}-
0P, _ 1
9z
) o lovh ., , Y v (52)
x&[ﬁzrﬁﬂ_m"'B3E_pﬁ_“2”:f}
e _ 1[ ke Ll a_w} i
ot r M arar0 M2 Ty,
0° 1000 9
_ 09”1000
F = K%2C+622 ﬂar
Applying the commutation rules gives
1700 _ 9
o= = 5rbe@ — R
k9 o’
- Ka 2c+a ﬂ@

which facilitates smplification of the above equations.
Assuming that an axisymmetric disturbance character-
ized by the wavelength 217k increases exponentially in
time with the growth rate s gives

{l.]J, @, Zi Pl’ Fr}

= {“lJ(r), ie(r)7C(r), p(r)’lf(r)} eSHikZ.

Inserting (54) in (51)—(53) leads to the amplitude equa-
tions

(54)

lop _

0 10y
2P = B S0 B:

orCr ord
Bs = 2B B>,

1

r

K+ sp) ¥+, f,
p)r M1 (55)

kp =

(56)
0 (104
0 [eegy

L]
— (B +sp)¥ —p, T |,
orCror0™ e ro? }D

8 0 1oy,

qJ 1
= M K=+ =1,
Sar arror0” y
' (57)
_ U _ 2
f= Kar(AZC k?)8.

The new variables in (54) require reformulating
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boundary conditions (35)—37) as

_ 96 _—_

kg = 3 sc—kr,

Ho 0 rloyn 2ljJ

Bzf artor0” tk (58)
_ aDJJD

where

r = 0,4 125+2K10k

The real forms of amplitude equations (55)—«57) and
boundary conditions (58) imply that expression (54)
divides the five variables into two groups: P;, {, and W,
O, F,. These groups are shifted with respect to each
other by the phase angle 1v2.

4.1. Reduction of the Amplitude Equations

In this section, we perform the standard procedure
for the simplification of amplitude equations (55)—(57).
Substituting f from (57) in the other amplitude equa-
tions, we obtain

lop _
kor

0 (Louy

1 O
orlt or (59)

08
~ (B + 5p) ¥ + 57,1, 5,

_ 0 (Loy 2 Yy
kp = ra D[B%rﬂ ar) (BK +Sp)r}D (60)
08
yluzrar ory

-y ooy, 2w, KO
0 = Mg g0 tHky +y16r

060 2, SV
[rar arC] B( " KDG}’

(61)

where

Bi = Ba—VYiMiHp By = Bz"'VlUf,
B; = I32+v1|~l§- B, = B3—VYiHiHy,

and B, > 0, B; > 0 by virtue of conditions (12). Let a
new stream function x be defined as Yy = rox/or. The
orientational () and kinematic (v;) viscosities, as well

(62)
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asthe other auxiliary functions, are defined by therela
tions

B.
9 = yﬁ vi = b= K2,
1 i (63)
W2:k2+§, §<1Hufng,
ANERVE

where the first inequality in (63) applies to the known
nematic LC fluids (see Tables 1 and 2). Using the new
notation, we find the first integrals of the amplitude
equations,

© = (Biloo—Boup)x + sy,11,6, (64)
Kp = (Bslgoo— BaUs) DX —SY1Ho0,8,  (65)
0 = (Mo + HiKD)X + 9 (8o —WH)0. (66)

Next, we eliminate the pressure amplitude p from
Egs. (64) and (65). This gives
[BaAZe — (BiK + Bz Age + BouizkIx -
=51 (Halze + H1K)O = O,

(HoDoe + HiK)X +9 (D0 —w)B = 0. (69)

Diagonalizing the matrix of operatorsin (67) and (68),
we obtain homogeneous equations for the functions
x(r) and 6(r),

A

(D33~ Dot + Dt -DA 3 = B (69)

where
Dy = K(9Busw? — sy, u2k?),
D, = 9(B, KW + B,KU + B,wAU?) + 25y, LK,
D, = 9(B,K + Byw’ + B,U5) — sy, 5, !
D; = 9B,.

Itiseasy to verify that all coefficients D; are positive if
the conditions B, > 0 and 1, < 1, 9/v; < 1 are satisfied
(for al i). The latter conditions are in good agreement
with numerous observationsin nematic LCs[19].

Factoring the polynomial differential operator fur-
ther (recalling that D5 > O) gives
D2l — Doz + Dyl — Do -
= Dyl — M) (B~ M) (B — M),

Equation (71) facilitates finding the finite solutions of
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Eq. (69),

X0 =y Shmp),
ol (72)
o) = 3 io(myr),
j=1 !

where the second fundamental solutions that diverge at
r = 0 have been excluded, C; and G; are indeterminate

coefficients, and m’ are three generic® roots of the
cubic equation

_ 2 _ D,
=0 > m =B (73)
=
3 3
2 2 _ D > _ Do
3nint = 8 [ =5
j#£k j=1

The coefficients G; can be expressed via C; after insert-
ing solutions (72) into Eq. (68):

1
G = 59C;
74)
K+ wm’ (
gj:%’ J=11213-
w2 —m

J

The amplitude of the pressure p(r), the stream function
Y(r), and the displacement ¢(ry) of a point on the sur-
face are easily found from Egs. (57), (64), (68),
and (74) as

3 Ii
p(r) = kalﬁ_cjlo(mjr),

S
I, = Blmj2_82u§+5lelgj,
3 (75)
P(r) = rZlel(mjr),
i=1

3
1 .
q(ro) = 51—(2 g;Cil.(mjry), j =123,
j=1

6 The freedom to choose the physical parameters of the LC seems
to admit a degeneration of cubic equation (73), when some of the

roots mj2 can coincide in different ways. This coincidence is not
important because it can occur only at specific wave vectorsk* on

which the coefficients D,, D1, and D depend. On the other hand,

thiskind of degeneration might be interesting if k* is accidentally
close to the cut-off wave vector ky at which the breakage of the

LC jet develops.
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Before proceeding, we discuss the distribution of the
roots mj2 of cubic equation (73) in the complex plane.

First, mf is always positive because D; > 0, as men-
tioned above and as follows from the Descartes rule of
sign interchange in the sequence of coefficientsfor real

algebraic equations. The other two roots mi 3 areeither
positive or complex conjugate with positive real parts.
Thelast case leadsto Bessel functions of complex argu-
mentsin (72). Thisfact can indicate that the separation
of the two groups of functionsP,, { and W, ©, F, by the
phase angle 172 is more el aborate than assumed in (54).
Another consequence of the existence of complex con-

jugate roots mjz, which is more important from the
physical standpoint, is the appearance of imaginary
contributions to the dispersion equation. This can lead
to acomplex value of the growth rates= 5§ + iw asits

solution and to the nonsteady (oscillatory) evolution of
thejet, eqg.,

Z(Z t) 0 c(ro) St |(wt+kz),

where w is the frequency of oscillations.

4.2. Dispersion Equation

In what follows, we derive the dispersion equation
s=g(kr) that determines the evolution of the Rayleigh
instability in LC jets. The revised version of boundary
conditions (58) at r = rg, which utilizes the new stream
function x(r), is given by

69 kza_x
ar or’
006 d 0
SYakoge = BszoBak + Bok'SE, (76)
s 9’ x 0x
(P = 2B S+ Tg

where B; = 3, + yi 41, Substituting (72) and (75) into
(76) and eliminating the coefficients C;, C,, and C,
from the linear equations leadsto a (3 x 3)-determinant
equation:

detS; = 0, (77)
where
2 S
Sy = K -39,
s
S Bsmjz"' BSk2_5y1u2QJ1 (78)
[ To(miry) 11(myro)
=g L\t 5 0}
> S[mjll(mjro) 2B:m Jll(m o)
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and 1;(y) =dl,(y)/dy. Equation (77) isanimplicit form
of the exact dispersion relation, which is highly com-
plex and cannot be solved anayticaly in the general
case. Nevertheless, here we can verify that the cut-off
wavelength A4 coincides with A obtained from the Pla-
teau theory. Indeed, the cut-off regime corresponds to
boundary conditions (76) when s= 0 and is satisfied for
=0,i.e, \j=As. Theimplications of Eq. (77) can be
extended further, for the study of different modes of the
L C flow, including oscillations, and in order to describe
the asymptotic behavior of LC jets. Thisis outside the
scope of this paper. In the next section, we consider a
case that facilitates decoupling of hydrodynamic and
orientational modes, and consequently the solution of
the Rayleigh instability problem in a closed form.

5. DECOUPLING OF HYDRODYNAMIC
AND ORIENTATIONAL MODES

In this section, we discuss the case in which disper-
sion equation (77) becomes solvable. Here, we encoun-
ter another problem: the elasticity of the LC and anisot-
ropy of its viscous properties have the same origin and
therefore cannot be considered separately. Nevertheless,
we investigate the case where dispersion equation (77)
can be simplified. The large number of physical param-
eters involved (three viscous moduli, two kinetic coef-
ficients, A and y,, orientational (9) and kinematic (v;)
viscosities, and the dimensionless parameter k) call for
such a treatment.

We consider an LC with rodlike molecules (A = 1)
and low orientational viscosity ¢

K<

0, 9 <v, 5

ul = l! HZ (79)

where the first three relations apply to known nematic
LC fluids (see Tables 1 and 2). The last inequality
in (79) applies to the low-viscosity limit, which was
considered for the kinematic viscosity in ordinary lig-
uids by Rayleigh [1].

In this case, characteristic equation (73) reducesto

Sm4+ %BK+SD 2

——k B( +20 =, (80)
g=P g l33+[34_
p Bo
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The three roots mj2 of Eq. (73) become

2me, = BK+ =

Vo
2 4 _ 23 DEDZ 81
i/\/(% k' + 2(B Z)k\;—z+a}—p’ (81)
2 _ 'S
m3 ry

A smple analysis of the last expression shows that the
dimensionless parameter B hasacritical value of 2 that
separates two different evolution scenarios of the LC

jet. If B > 2, both roots, m; and mj, are positive and
the capillary instability aways appearsviatrivial bifur-
cation (steady-state instability). This scenario appliesto
MBBA and PAA LCs with Bygga = 5.92 and Bpas =
7.11 (see Tables 1 and 2). In the opposite case, B < 2,
we can find the regime where the above roots are com-
plex conjugate. This leads to the oscillatory evolution
of the jet, which appears via the Hopf bifurcation (see
Section 4.1).

Significant simplification can be obtained if we
assume degeneration of the three viscosities at the crit-
ical value %B= 2. Indeed, if the viscous moduli {3; sat-

isfy the relation

Bsx(Bj) =2 — 2B, + B3 = 3By, (82)
2
the three roots m; of Eq. (73) are
2 2 2 2. S 2 S
m, =k, mp, = kK+=, m; = <. 83
1 2 V2 3 19 ( )

We note that relation (82) cancels the last term in (9).
Expressions (83) indicate that the problem is decom-
posed into two parts, or, in other words, the cross terms
in Egs. (67) and (68) are dropped. Thus, thefirst part of
the problem is associated with the Rayleigh instability,
described by

(Boe— M5, ) (Dye =5, )X = O, (84)

with boundary conditions that account for elasticity,

9 20X _

arA2°X+k ar = O

(85)
s 62x 0X _
P = 25[31F+F§ ar =r.
The second part is associated with an orientational
instability of the director field n(r, t),

(Bpe—M3)0 = 0,
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Fig. 2. A plot of therescaled growth rate Sversuskrq for low

viscosity prgl 0 S_(krg) (solid curves) and high viscosity
2B,ro/og i (krg) (dashed curves) for different values of K in

descending order from top down, k =0, 0.25, 1, 5. If §/v =
4k, then the scaling for both viscous regimes is the same.

with the boundary condition

00 _ 120X 4, =
sar =k T ar =r,. (86)
The solutions of Egs. (84) and (86) are
c C
x(r) = ml |0(m1*r)+m_2|0(m2*r)a
1% 2%
(87)

o(r) = ;—ilo(mgr»

With these solutions, the hydrodynamic pressure p(r),
stream function (r), and surface displacement ¢(r)
are obtained as

p(r) = —C;8plo(my, 1),

P(r) = rfcgl(myr) +col (my, 1),

q(ro) = C—k3|1(m3r0),

where the only indeterminates are ¢, and c,, while ¢
can be expressed as their linear combination,

c (M o)
2 ]
11(mgro)

oS- ¢ l1(My, o)
s =
K2 Y 14(mgrg)

(88)

provided that s = s(kr) satisfies the dispersion relation
that follows from (85) and (87),

., 2v;K°
lo(kro)
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' 2kmy,  1y(krg) .
x| 1;(krg) — (M, rg)|s (89
1(kro) k2+m§*|1(mz*fo) 1(My, 1) (89)
2 2
k I, (kro)m;, —k
= 281 K31+ 2K)] Il(kr(’)-———-——j* ..
pro ol ro)mZ* +k

If Kk =0and v; = V,, Eq. (89) is known as the Weber
equation for aviscous isotropic liquid [6]. For low vis-
cosity,” B, ~ B, < pO.r,, aRayleigh-type expression

is obtained (see Fig. 2),
(ki) = K1 kri(a+ 20 D
pro lo(kro)

where the subscript “—" denotes low viscosity.

(90)

The maximum s™ in Eq. (90), which corresponds

to the wave number k™, leads to evolution of the larg-
est capillary instability. Numerical calculations show

that s™ and k™ are both proportional to (1 + 2k)2

gL F

T 31+ 2k prd
T a

roo/1+ 2K

(91)
, a= 0697

When high viscosity prevails, B, ~ B, > ./p0ol,, the
dispersion equation is given by (see Fig. 2)
Oy
2
2B,rok
[1-Kr2(1+2K)]12(kro)
lo(Kro)11(Kro) + kro[13(ro)]*
max 0-0 max
S+ = 1 k+ = Ol
6B,ro

where the subscript “+" denotes high viscosity. In this
limit, similar to ordinary liquids [4], there is no finite
mode of the maximum instability for any K. Inthiscase,
we have

s.(kro) =

(92)

G(ro)
kmax
- S:“_aX[Clll(kTaxro)"'Czll(mz*ro)] = 0.

8

(93)

7 In the theory of viscoisotropic liquid jets, this case is known [7]
to pertain to the range of low Ohnesorge numbers Oh =

n/,/pogr, that determine the competition between the hydrody-

namic and surface tension forces. Expression (92) corresponds to
the case of high Ohnesorge numbers.
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Nevertheless, there exists a continuous range [0, (1 +

2K)Y2r;*] of wave numbers k with afinite disturbance
growth rate s, (kr), which affect the cylindrical jet.

We note that the dispersion curves shown in Fig. 2
and those in Fig. 5in [21] appear to be similar, but are
characterized by different physical parameters. The
reason for this observation is the similarity between
Weber equation (89) and dispersion equation (36)
in [21], which are obtained from different models. Our
approach was to develop a genera axisymmetric solu-
tion in the framework of the three-dimensional model.
This model dates back to the Rayleigh—\Weber theory
[2, 3] and accounts for the radial inhomogeneity of the
disturbed director field. The implicit solutions of
Eq. (77) reflect the radia dependence of both the
hydrodynamic V(r, z t) and orientational n(r, z t)
modes, and they include all typesof LC jet evolution. A
specific case where the hydrodynamic and orientational
modes are decoupled exhibits this radial dependence
and yields dispersion equation (89) in explicit form.

In contrast, the one-dimensional analysis of the LC
jet evolution, usedin [21], ishardly compatible with the
distortion of the director field n(r, z, t), and therefore
must be supported by assuming a fixed axial direction
of n° (see detailed comments in Section 1). This
endows their model with an inherent “decoupling” that
results from the a priori elimination of elastic forces.
Obviously, the similarity between the above-mentioned
dispersion curves disappearsif we consider the general
solution given by (77).

5.1. Hydrodynamic Influence
on the Orientational Instability of LCs

We conclude this section with a brief discussion
regarding the hydrodynamic influence on the orienta-
tiona instability of the director field n(r, t). As the
effect of hydrodynamics changes the wave number k; of
the Plateau instability to K., the flow drivesthe orien-
tational instability (41) of the director field n(r, t).
Indeed, in accordance with (87),

max

S__
5
It is convenient to consider the following two marginal
Viscous regimes.
1. The low-viscosity limit,

n(r,2) = cgly(my™r), me™ = (94)

1 _pK

1
31+ 2k .Jke' y2
where € ~ 1010 is a small dimensionless para-
meter.
2. The high-viscosity limit,

1Y:
6K 3,

(M3™re)’ = (95)

(Wiro)’ = (96)
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In both limits, the distribution of the director field
n(r, t) in the jet is adways nontrivial and definitely far
from static distribution (41).

6. CONCLUSIONS

1. The capillary instability of an LC jet with astrong
tangential anchoring of the director at the surface is
considered within the linear hydrodynamics of the
uniaxial nematic LC. Its static version, which is called
the Plateau instability and corresponds to the varia-
tiona problem of minimal free energy, predicts a sub-
stantial dependence of the disturbance cut-off wave-
length on the dimensionless parameter kK = K/agf .

2. The hydrodynamic problem of the capillary insta-
bility in LC jets is solved exactly and the dispersion
relation is derived. This relation, which is represented
as a determinant equation, implicitly expresses the dis-
persion s= (k) of the growth rate s as afunction of the
wave number k of axisymmetric disturbances of the jet.

3. The case where the dispersion eguation becomes
explicitly solvable is considered in detail. It corre-
sponds to the regime in which the hydrodynamic and
orientational modes become decoupled. The hydrody-
namics changes the wave number kg of the Plateau
instability into k., which produces evolution of the
largest capillary instability. Similarly, a hydrodynamic
flow influences the static orientational instability of the
director field n(r, t).

4. The present theory can easily be extended to non-
uniaxial nematic L Cs that possess finite point symme-
try groups G [ O(3) as distinguished from the uniaxial
group D.,;, The corresponding expressions for the free
energy density E4(G) and the dissipative function D(G)
were derived in [31].

5. In this work, the effect of external fields was not
considered. However, the theory developed here facili-
tates the treatment of the Rayleigh instability in nem-
atic LCsinthe presence of static electromagneticfields.

ACKNOWLEDGMENTS

The research was supported by the Gileadi Fellow-
ship program of the Ministry of Absorption of the State
of Isragl. The useful comments of E.I. Kats are hereby
acknowledged.

REFERENCES

1. Lord Rayleigh, Proc. London Math. Soc. 10, 4 (1879).

2. Lord Rayleigh, Philos. Mag. 34, 145 (1892); 34, 177
(1892).

3. C.Weber, Z. Angew. Math. Mech. 11, 136 (1931).

4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Instability (Oxford Univ. Press, Oxford, 1961).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 98

5.

10.
11
12.

13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

973

G. |. Taylor, Proc. R. Soc. London, Ser. A 253, 289
(1959); 253, 296 (1959); 253, 313 (1959); Proc. R. Soc.
London, Ser. A 313, 453 (1969).

V. G. Levich, Physicochemical Hydrodynamics (Fizmat-
giz, Moscow, 1959; Prentice-Hall, Englewood Cliffs,
N.J., 1962).

A. L.Yarin, FreeLiquid Jetsand Films; Hydrodynamics
and Rheology (Wiley, New York, 1993).

Y. Tomita, T. Shimbo, and Y. Ishibashi, J. Non-Newto-
nian Fluid Mech. 5, 497 (1979).

R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392
(1994).

K. L.Gurin,V.V. Lebedev, and A. R. Muratov, Zh. Eksp.
Teor. Fiz. 110, 600 (1996) [JETP 83, 321 (1996)).

W. Helfrich, Z. Naturforsch. B 103, 67 (1975).

E. |. Katsand V. V. Lebedev, Fluctuational Effectsin the
Dynamics of Liquid Crystals (Springer, New York,
1994).

J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).
J. L. Ericksen, Phys. Fluids 9, 1205 (1966).

F. M. Ledie, Q. J. Mech. Appl. Math. 19, 357 (1966).

F. M. Ledlie, Arch. Ration. Mech. Anal. 28, 265 (1968).
O. Parodi, J. Phys. (Paris) 31, 581 (1970).

D. Forster, T. C. Lubensky, P. C. Martin, et al., Phys.
Rev. Lett. 26, 1016 (1971).

P. G. de Gennesand J. Prost, The Physics of Liquid Crys-
tals, 2nd ed. (Oxford Univ. Press, London, 1993; Mir,
Moscow, 1982).

L. G. Fel and G. Lasiene, Acta Phys. Pol. A 70, 165
(1986).

A.-G. Cheong, A. D. Rey, and P. T. Mather, Phys. Rev. E
64, 41701 (2001).

G. E. Durand and E. G. Virga, Phys. Rev. E 59, 4137
(1999).

J. Cognard, Alignment of Nematic Liquid Crystals and
Their Mixtures (Gordon and Breach, London, 1982).

A. Fergusson and S. J. Kennedy, Philos. Mag. 26, 41
(1938).

D. Langevin, J. Phys. (Paris) 33, 249 (1972).

S. Krishnaswamy and R. Shashidhar, in Proceedings of
International Liquid Crystal Conference (Bangalore,
1973), Pramana Suppl., Vol. 1, p. 247.

L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 7: Theory of Eladticity, 4th ed. (Nauka,
Moscow, 1987; Pergamon Press, Oxford, 1986).

A. Rapini and M. Papoular, J. Phys. Collog. 30, C4-54
(2971).

J. Plateau, Satique Expérimentale et Théorique des
Liquides Soumis aux Seules Forces Moléculaires
(Gauthier-Villars, Paris, 1873).

W. H. de Jeu, Physical Properties of Liquid Crystalline
Materials (Gordon and Breach, London, 1980).

L. G. Fel, Kristallografiya 34, 1222 (1989) [Sov. Phys.
Crystall. 34, 737 (1989)]; Mal. Cryst. Lig. Cryst. 206, 1
(1991).

No. 5 2004



Journal of Experimental and Theoretical Physics, Vol. 98, No. 5, 2004, pp. 974-980.

Trangdated from Zhurnal Eksperimental’ noi | Teoreticheskor Fiziki, Vol. 125, No. 5, 2004, pp. 1115-1121.

Original Russian Text Copyright © 2004 by Fomin.

FLUIDS

Superfluid *He Phasesin Aerogel

. A. Fomin
Kapitza Ingtitute for Physical Problems, Russian Academy of Sciences,
ul. Kosygina 2, Moscow, 119334 Russia
e-mail: fomin@kapitza.ras.ru
Received December 1, 2003

Abstract—A criterion for selecting the order parameter in the immediate vicinity of the transition temperature
is derived within the framework of a phenomenological description of superfluid 3He in aerogel. The order
parameter of the BW phase of pure ®He satisfies this criterion, whereas that of the ABM phase does not. A class

of order parameters that could be used to describe the properties of the A-like phase of *He observed in aerogel
was found. The influence of a magnetic field on the order parameters from this class is considered. © 2004

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Superfluid *He phases are the most thoroughly stud-
ied example of unconventional Cooper pairing. Pairing
is considered unconventional if, in addition to gauge
symmetry, other symmetries of the normal phase are
broken by the pairing-induced phase transition. The
introduction of aerogel into liquid *He makes it possi-
ble to use *He for studying the influence of impurities
on unconventional Cooper pairing [1]. These studies
may be of interest for understanding the properties of
metallic superconductors with unconventional Cooper
pairing, such as UPt;, UBey;, Sr,Ru,0,, UGe,, €tc.,
which unavoidably contain impurities. Aerogel can be
thought of as arigid frame formed by strands approxi-
mately 30 A thick. The estimated mean distance
between aerogel strands is 200 A; this is close to the
correlation length &, in superfluid *He, which changes
in the range 160-500 A depending on pressure. Like
usual impurities, aerogel limits the mean free path | of
Fermi quasi-particles in liquid ®He. According to esti-
mates, | ~ 1500-1800 A for 98%-porous aerogel, which
fillslessthan 2% of itstotal volume. Thislengthislarge
compared with &;,. According to the theory of supercon-
ducting aloys [2], impurities decrease the superfluid
transition temperature T, proportionally to &4/l [3]. Two
superfluid phases are observed in the °®He + aerogel sys-
tem below T, [4]. By analogy with pure (free of aerogel)

3He, these phases are called A- and B-like. Thisimplies
correspondence, which is exact for the B-like phase.
The observation of a uniformly precessing domain in
it[5] shows that the difference between its order
parameter and that of the BW phaseissmall if any. The
observed properties of theA-like phase differ more sub-
stantially from those of the A phase of pure *He. To
identify this phase, we must answer the question of
whether or not aerogel can influence the form of the

order parameter, and if it can, then what phases are
admissible. The purpose of thiswork wasto answer this
guestion. Next, we will formul ate aprocedure for deter-
mining the order parameters of the superfluid *He
phases in aerogel in the vicinity of the transition point
T.. This procedure will be applied to the A-like phase.

2. AEROGEL INTERACTION
WITH THE ORDER PARAMETER

Under the conditions of Cooper pairing with | £ 0,
we must expect effectsthat arise because of fluctuations
in the arrangement of aerogel strandsin addition to the
already mentioned overall decreasein T, determined by
the mean free path. Near T;, these effects can be
described phenomenologicaly on the assumption that
gel creates arandom field that acts on the order param-
eter. The corresponding change in the free energy of
superfluid phases is found from symmetry consider-
ations and supposed aerogel properties. Pairing occurs
in *He with orbital momentum | = 1 and spins=1. The
corresponding order parameter is a complex 3 x 3
matrix A;, where g and j are the spin and orbital indi-
ces, respectively. The interaction of *He with aerogel
strands arises because of the scattering of quasi-parti-
cles on them. Scattering changes quasi-particle
momenta, and thisis the mechanism of aerogel interac-
tionswith the orbital part of A,;. Aerogel can also inter-
act with the spin part of the order parameter. The aero-
gel material (SiO,) isnonmagnetic, but when aerogel is
immersed into liquid ®He, aerogel strands become cov-
ered with alayer of localized *He atomsthat can partic-
ipate in spin exchange with scattered quasi-particles. To
“switch off” interactions with spin, an admixture of “He
is added into the cell for measurements. The atoms that
are first deposited on the strands are then “He, and, if
present in a sufficient concentration, they fully replace
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localized *He atoms. It follows that *He in aerogel with
and without an admixture of “He can have different
properties. Its magnetic properties should differ the
most strongly. Everywhere below, we assumethat aero-
gel strands are covered by alayer of “He. Aerogel then
only acts on the orbital part of A,;, and, in the principal
order in A, the corresponding free energy increment
can be written in the form [6]

N(O)Injl(r)Auj pl (1)

where N(O) is the density of states at the Fermi bound-
ary and nj;(r) is the random static tensor field. Because
of thet — —t invariance, the n;(r) tensor is rea and
symmetrical, and its isotropic part (1/3)n,(r)y;
describes the local changein T, = T(r) caused by scat-
terer density fluctuations. The anisotropic part

1,() = 3N0(r)8, =n{?

describes the local splitting of T, caused by spherical
symmetry violation by gel strands. The isotropic ran-
dom field part will further be considered included into
T, =T.(r). Theresults obtained in [ 7] alow the random
field to be estimated as

|nd| Ox&o/ RO &/l

where| isthe mean free path, Risthe strand radius, and
x isthe volume fraction occupied by aerogel. This esti-
mate gives the correct order of magnitude. For 98%-
porous aerogel, &y/1 ~ 1/10. The spatia scale of field
n;(r) changes is the distance between strands d ~

R/ /X this distance is comparable to &, in 98%-porous
aerogel. If the order parameter is deformed on a scale
of the order of d, the relative gradient energy loss is of
about (€,/d)? and larger than the energy gain from the
interaction with the field n; (r) by afactor proportional
to {y/R> 1. Itisunfavorable for the order parameter to
follow field changes or form states localized on ascale
of the order of d. The weakness of field n;(r) does not
rule out the possibility of formation of localized states
on ascale of L > d. This possibility exists because the

mean order parameter A,; isdegenerate with respect to
orbital rotations. According to Imry and Ma[8], contin-
uous degeneracy of the order parameter can be respon-
sible for disordering under the action of arandom field.
In particular, Imry and Ma show that an arbitrarily
weak field destroys long-range order for the vector
order parameter S(r) that interacts with random field
h(r) as

Fiy = —Is(r) Ch(r)d’r. 2

Indeed, the mean random field h(r) val ue vanishes; that
is, (]JL3)J’h(r) d® — OasL —» oo, whereL isthelin-
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ear dimension of the region over which the integration
isperformed. Themean h(r) valuetendsto zero propor-
tionally to (d/L)%2. The energy gain of the orientation of
the order parameter along the mean field in the region
with linear dimension on the order of L tendsto zero by
the same law. The energy loss decreases faster, by the
law (§/L)? and, at large L, partitioning into domains
becomes favorable. This partitioning destroys long-
range order. When this general argument is applied to
superfluid *He in aerogel, it should be borne in mind
that interaction F,, differsfrom F,y,; namely, there exist

nonzero A; for which F, vanishes at all admissible
r](a) These A,; arefound from the equation

N AuAu = 0. ©)
Its solutions satisfy the equation
AuA + AyAL = 3y Ctonst (4)

which is independent of n;. Equation (4) determines

the real part of the A, A product, its imaginary part
may be an arbitrary antisymmetric tensor. When inter-
action with arandom field vanishes, changesin the ori-
entation of the order parameter give no energy gain and
long-range order is not destroyed. Already these quali-
tative arguments are evidence that condition (3) is a
necessary criterion of the stability of the corresponding
value Ay with respect to random field nj(r) if order
parameter fluctuations can be ignored [9].

In the next section, we formulate a procedure for

finding the order parameter in the presence of random
field ny(r).

3. THE SELECTION
OF SUPERFLUID PHASES

The Ginzburg—Landau functional including interac-
tion (1) iswritten as

FaoL = N(O)Idgr[TA“l T nJl(r)AWA“I * 22 Bels

3%

Al aA A (5)
26x am

aA aAwD
36x ax, U }

where T = (T — TY)/T, and I is the nth fourth-order
invariant in the expansion of free energy in A;; we will
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not need expressions for | (see [10]) here. The coeffi-
cients34, ..., Bs and K;, K,, and K3 are phenomenol og-
ical constants. In what follows, we assume that K; =
K,= K; = K, in accordance with the weak-coupling
approximation. The gradient terms can aso contain
random components, for instance, of the form
u(r)A, 0 A} /10X, where uy(r) is a random vector.! The
component written above is, by its meaning, the local
random velocity to within afactor of #/m. All terms of
this type are obtained by “elongating” the derivatives,

0 0
ox;  0x +uy(r),

in energy equation (5). Further reasoning shows that
these terms do not influence the selection of phases; for
this reason, they are not taken into account here. The

variation of functional (5) with respect to A; givesthe
following equation for the equilibrium order parameter:

1 > ol
A +2Y B—

wz a°A, 0 ©
1 9 e - A n.

Thevariation in A, gives the equation complex conju-
gateto (6). Accordmg to the estimate given above, ran-
dom field n(r) is low. Larkin and Ovchinnikov [11]
estimated the influence of alow random field on a one-
component order parameter (conventional pairing) near
T.. We will use similar reasoning. A more complex
form of the order parameter and the degeneracy men-
tioned above, however, require the introduction of non-
trivial changesinto the procedure used in [11].

A random field causes order parameter fluctuations
a,; about its mean value,

Ay(r) = A+ a(r).

The condition A, # 0 is the criterion of long-range
ordering, and it determines the transition temperature T.
Not too closeto T, a,; can be considered a value of the
first order of smallnesswith respect ton;,. Werestrict our
consideration to such temperatures. Let us expand (6) in

this temperature region in the vicinity of A; = A,; and

11t was V.I. Marchenko who brought the existence of such energy
termsto my attention.
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retain terms up to second order in a; and n; in this
expansion,

TA, +Tay
%i a,i* aA%}AWaV” 6A(Z <;A* r
1Ea—la«maﬁ| +2 63IS a:naBE (7)
2hA. OAOA, A OA0A, O
_%Ké-%+2(%% — Auny—ayny;.

Averaging (7) over scales much larger than the mean
distance between aerogel strands yields

TAul 22 B [GA* ZEbA* aAv:aABI

eo Ol
OATOAL A,

(&, a0
)
0
Dﬂ«’;namug} = —laynt

Along with Ay;, (8) contains the mean products of fluc-
tuation components [@&,,a5 L] €tc. In order to determine
these components, we must gather the rapidly varying
termsin (7) and in its complex conjugate,
0%l 0%l

*

il ZZB[OA*OA AT AT
72 a0 9)
1 8y el - Ao
zKEy*ZaTaxE} Aol
5 2 2
L1 ol %l
Rt ZZ Ps {OA OAY 0A;0A
o=t (10)

Thisisalinear inhomogeneous system of equations.
Because of the degeneracy of A,; mentioned above, the
corresponding homogeneous system has solutions.

These are the increments of A,; and A} that corre-
spond to small rotation Qg

Wy = Q" A, o = QAL (1)
where €% is the absolutely antisymmetric tensor. To
solve (9), (10), we must pass to Fourier transforms of
n;i(k) and a,(K) in these equations. In what follows, the
character of thesingularity of a;(k) ask — Owill only
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be essential; the anisotropy of the gradient terms can
therefore beignored. Thisallowsusto replacetheterms
with the derivatives

2 2
4 0
lKQ a;u + 297
2 0ax 0X0%]

and

by
and

respectively, in (9) and (10). Multiplying both sides
of (9) and (10) by wj; and w,;, respectively, and sum-
ming the resulting equations yields

_ 2 (WA + 0, AN

K k2

a’(k) = (12)

for the projection a,;(k) wj; + ajj; (K)w,; = a®(k). In cal-
culating the means [@&,,a5 L] the a,; components parallel
to wy; give the contribution proportional to

* N - 2 d3k
u%mwwﬁmﬁjﬁ.

Thisintegral diverges at the lower limit. The diverging
terms cannot be excluded by renormalizing the con-
stants in the equation for the energy. For a solution
to (8) to exigt, it is necessary that the coefficient of the
integral vanish; that is,

Q.€"Quni” = 0, (13)
where Q, = A, Al + AyA . Because Q,, is selected
arbitrarily, it follows from (13) that

Qrmff‘) = lenl(ra)'

The Q,, matrix is Hermitian and can therefore be
transformed to the diagona form with real diagonal
matrix elementsg, . In the corresponding basis, (14) can
then be rewritten as

(14)

(g —g;)n = 0.
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This equality should be satisfied at all admissible n®
values. It follows that all g, are equal; that is,

Avrﬂcj + Avjlz\\.’;r = q6rj;
which coincides with condition (4).

The order parameters that satisfy (4) can naturaly
be called “quasi-isotropic,” because the energy of their
interaction with aerogel does not change under arbi-
trary orbital rotations; that is, continuous degeneracy is
also retained when random tensor field nj(r) is taken
into account. Also note that the order parameter A
entersinto the tensor of superfluid densitiesin the com-
bination A, Ay + Ay AL ; that is, condition (4) is a
requirement that this tensor be isotropic.

It follows that random field nj;(r) does not destroy
long-range order only of those *He phases that have a
quasi-isotropic order parameter. The procedure for
finding order parameters that correspond to the
observed or possible superfluid phases should therefore

begin with selecting a family of A,; matrices that sat-
isfy condition (4). These matrices are “the correct
zeroth approximation” to the sought order parameter.
Next, we must use (9) and (10) to express a,; and ay;

via Ay and n;(r). In practice, the Fourier components
of a,(k) can be found more conveniently. After calcu-
lating the means [&,,a5 L) etc., and substituting them
into (8), (8) becomes a closed equation for determining

A, . The coefficients B,, ..., Bs and K and the cor-
relation functions [[,,(k)ng(—k)U that (8) contains
should be considered given. At n;(r) = 0, we return to
the usual equation for determining free energy extrema
for pure *He.

The order parameter of the BW phase,

A = DeRy, (15)
where R; is areal orthogonal matrix, satisfies condi-
tion (4). Ignoring dipole interactions alows R to be
transformed into an identity matrix by rotating the spin
axes with respect to the orbital axes. Aerogel can natu-
raly be considered uniform and isotropic. The tensor
structure of the [ ,,(k)ng(—k)Ocorrelation functionsis
then determined by symmetry [6]. It is aso clear from
symmetry considerations that the order parameter,
which is proportional to the unit matrix, satisfies (8). It
follows that the BW phase remains stable in the pres-
ence of aerogel. Compared with pure *He, the phenom-
enological coefficients (34, ..., Bs change in the BW
phase. Thisinfluences the region of BW phase stability
and the thermodynamic properties of the phase, which
depend on these coefficients. We will, however, omit
explicit calculations of such fluctuation corrections to
the 34, ..., Bs coefficients.
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The order parameter of the ABM phase,

1A, .o
does not satisfy criterion (4). This raisesthe question of
the search for the order parameter that would be capa-

ble of describing the observed properties of the A-like
phase.

4. THE ZEROTH APPROXIMATION
FOR THE ESP PHASES

The measured magnetic susceptibility of the A
phase equal sthat of the normal phase[4]. It followsthat
this phase does not contain Cooper pairs with a zero
spin projection onto the magnetic field direction; that
is, it is an equal spin pairing (ESP) phase. The order
parameter of an arbitrary ESP phase can be written as

A, = Aig[ap(mj +in)+8,(,+ip)l.  (17)

N

where ap and &, arethe mutualy orthogonal unit vec-
tors and the m, n;, |;, and p; vectors are arbitrary at
this stage. Substituting order parameter (17) into con-
dition (4) shows that, for this condition to be met, the
m;, n;, I, and p; vectors should satisfy the equation

mm +nn + 11+ p;p = 9. (18)

It is assumed that the order parameter is normalized by
the condition A; A, = A2 One of the solutions to (18)

(p=0and m, n, and | are the set of three orthonormal-
ized vectors) was discussed in detail in [9]. All solu-
tions can conveniently be found using the following
procedure. Consider four four-dimensional vectors Mg,
N, Lg, and P, (s=1, 2, 3, 4) that satisfy the equation

M,M.+ NN + L, L +P,P, = .. (19)

To within collective rotations and reflections, the only

solution to (19) is a set of four vectors q‘a’ such that

g® . g® =&, Let us select an arbitrary four-dimen-

siona unit vector V = (v4, V,, Vg, V,) and project the

q<a) vectors onto the three-dimensional hyperplane

orthogonal to V . Thisyieldsthe four three-dimensional
vectors

PN E)) ~ _ A2 ~
m=§8" -v,V, n=§7-v,,
. A . A (20
| = q( )—vsv, p = q< )—v4v.

Multiplying the combination mym + nyn, + ;1 + p;p, by

an arbitrary vector a normal to V and using (20) for m,
n, |, and p shows that these vectors satisfy (18). Equa-
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tions (20) allow usto find some other properties of the
vectorsm, n, |, and p, namely,

m’+n’+1%+ p2 = 3, (21)
mbh = —v,v,, mQd = —v,v,,
1v2 1Vv3 (22)
nid = —v,vg, ...,
m* = 1-v2 n?=1-vj ... (23)

Property (22) can be used to show that [m x n] - [l x
p] = 0; that is, the normals to the planes spanned by the
m, nand |, p pairs of vectors, respectively, are mutually
perpendicular. This property is retained for al pairs
selected from the set of four vectors m, n, |, and p. It
follows that (17) with the vectors m, n, |, and p given
by (20) determines a three-parameter family of quasi-
isotropic order parameters of the ESP type. Substituting
these order parameters into (5) yields their energiesin
the zeroth approximation with respect to n(r),

Fel 02+ 813, + 0B, + B + 5(Ba + Bs)

N(O) - 18 1 2 3 4 5
—4(B1 + Bs) (V1Va—V,V5)°].

Thevy, v,, v3, and v, parameters appear in (24) only in

the combination A =v,v, — V3. If B + Bs = B15 <0,
the free energy minimum isreached at A = 0, that is, at

(24)

ViV, = VyVs. (25)
In the weak coupling approximation, both coefficients
B, and 5 are negative, and the inequality B, + Bs < 0is
satisfied with alarge safety margin. Condition (25) has
simple physical meaning. The order parameters deter-
mined by (17) are not unitary. The phases that corre-
spond to them may have spin densities proportional to
eumAy Ay, that is, to (2A%/3)[d x &][n -1 —m - p] for
the order parameter given by (17). Property (22) alows
usto easily ascertain that spontaneous spin density van-
ishesif condition (25) is satisfied. This condition deter-
mines a two-parameter family of nonferromagnetic
guasi-isotropic phases that may include the A-like
phase. This family can be parameterized as follows:
v, =sinasinf, v, = sinacosB, v =cosasinf, andv, =
cosa cosp. The parameters o = 174 and 3 = 174 corre-
spond to the most symmetrical nonferromagnetic con-
figuration. We then have v, = v, = v3 = v, = 1/2, the
lengths of the m, n, |, and p vectors are al equa to
Jélz, and the angles between two arbitrary vectors of
this set are also equal. The vectors connecting the cen-
ter of aregular tetrahedron and its vertices constitute
such a set of four vectors.

If B15> 0, the A2 value should be aslarge as possible

in the equilibrium state. The maximum A2 valueis 1/4
and isattained at v; = V,, V, = —V3 0 V4 =V, V, = V3.
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The solutions make up a one-parameter family. In the

1 .
—siny

2

andv,=-v;= %Zcosy . For instance, the set v; = —-1/2,
V, = V3=V, = 1/2 corresponds to the most symmetrical
ferromagnetic solution; that is, this solution is obtained
from the most symmetrical nonferromagnetic solution
m, n, lj, pj by reversing one of the vectors.

first case, it can be parameterized asv;, = v, =

5. MAGNETIC FIELD EFFECTS

Inamagnetic field, two terms should be added to the
free energy. One of these is quadratic in the field,

@ _ 1
fH - _EXUV

By the definition of ESP phases, one of the principal
values of the magnetic susceptibility tensor x,, coin-
cides with the susceptibility of the normal phase ¥;,.
Near T, the form of the x,,, tensor is determined from

symmetry considerations, X,y = XnOw — K(A A} +

Ajj). The second term on the right-hand side
describes a decrease in the transverse susceptibility
compared with X,,. This is a two-dimensional tensor
with the principal values 2A%)\; ,/3, where A, , are the
roots of the equation

M_3r+2+A% = 0.

In the nonferromagnetic phase, A = 0 and, in addition,
AL =2and A, =1; that is, the transverse susceptibility is
anisotropic. In the ferromagnetic phase, A? = 1/4, one
obtains A; = A, = 3/2, and the transverse susceptibility
isisotropic. In the equilibrium state, the order parame-
ter is oriented in such a way that the largest principal
valueof x,,, correspondsto the magnetic field direction.
Additional energy (26) then has equal values for all
A-like phases.

Apart from the term quadratic in field, the free
energy contains the linear term

Y = iZenAyALH,.

H.H,. (26)

(27)

In pure *He, thisterm splitsthe transition to the A phase
into two transitions closely spaced along the tempera-
ture axis. First, a ferromagnetic A, phase is formed.
This phase only contains Cooper pairs with a single
spin projection. At a lower temperature, the transition
to an A, phase occurs. In this phase, both spin projec-
tionsare present. The ¢ coefficient is proportional to the
derivative of the density of states with respect to the
energy, and the temperature interval in which the A;
phase exists is harrow in measure of the smallness of
UH/e:, where | is the magnetic moment of the *He
nucleus and € isthe Fermi energy.
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Inaerogel, theterm linear infield al so influencesthe
sequence of phase transitions. Let us include it into
energy (24),

(0)
N(O)

- -4 2
(29
1.+ 0B, + B + 5(By + B

This equation should be minimized with respect to A
and AZ. Theresult depends on the sign of the sum of Bs.
If By5 > 0, the energy minimum is reached at |A| =

at all A? that is, the ferromagnetic phase is stable. The
transition to the superfluid state occurs at T = (H/6. At
T < (H/6, we have A? = -91,,/B, where T, = T —{,,/6 and
B =93, + B3 + 5B, + 4Bs. The magnetic moment
includes a small component M = N(0){A?/6, which is
independent of the field but proportional to A2.

However, if 3,5 < O, the ferromagnetic phase corre-
sponds to the minimum of energy (28) only in the tem-
perature range (B/f35)({/6) < T < (H/6. At T, =
(HB/6[,5, the transition to another phase with A =
—-3(H/4B3,5A? occurs. As the temperature departs from
T,, A\ tends to zero; that is, the additional magnetic
moment vanishes. The transition at T = T, is similar to
the A, — A, transition in pure 3He. It follows that the
ferromagnetic phases considered above are similar to
the A, phase of pure *He. The pairing amplitudes for
both spin projections s = 1 and s = -1 are, however,
nonzero.

6. DISCUSSION

To summarize, the superfluid 3He phases whose
order parameter satisfies condition (4) can only formin
aerogel. It was shown for the example of the A-like and
A;-like phases that this condition does not determine

the A, matrix unambiguously but specifies quite a
family of such matrices. The order parameter most
favorable energetically can be selected by using an
approximation of a higher order in n(r). The proce-
dure for finding the solution becomes substantialy
more complex, and the solution then explicitly depends
on the unknown correlation functions of the random
field n;(r). An attempt can be made to narrow the class
of admissible solutions based on the physical properties
of the observed superfluid phases. For instance, transi-
tion splitting in amagnetic field would be evidence that,
of the two possibilities considered in the preceding sec-
tion, we have 3,5 < 0 and the nonferromagnetic phaseis
stable far from T.. Conversely, if the A; — A, transi-
tion is absent, the stable phase is ferromagnetic
(B15 > 0). No definite dataon this point are available. In
the main approximation with respect to the random
field, all quasi-isotropic phases have an isotropic tensor
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of superfluid densities. In particular, thisfeature should
distinguish the A-like phase from the ABM phase of
pure *He.
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Abstract—L attice vibrations of the wurtzite-type AIN have been studied by Raman spectroscopy under high-
pressure up to the phase transition to the rock salt structure at 20 GPa. Five fundamental bands Eg, A(TO),

E.(TO), A4(LO), and E;(LO) have a strong, positive pressure shift, whereas the shift of the low-frequency E;

band isweakly positive. We have found that the bond-bending E; mode has a positive mode Griineisen param-

eter y; = 0.04, which is qualitatively consistent with the recently reported valuey; = 0.12 [21]. Thus, we confirm

that AIN remains stable with respect to the bond-bending mode, while in most tetrahedral semiconductors,
bond-bending modes soften on compression. Experimental results are compared with the first-principle cal cu-

lations. © 2004 MAIK “ Nauka/Interperiodica” .

The pressure-induced phonon softening is a signifi-
cant characteristic property of tetrahedral semiconduc-
torsand has been reported in many experimental [1-10]
and theoretical [11-18] works. Negative frequency
shift of the low-energy modes of tetrahedral semicon-
ductors on compression manifests itself in their well-
known negative thermal expansions at low tempera-
tures. These “soft” modes are shearing modes, involv-
ing bond bending in thefirst order of the strain [15, 18].
Phonon frequency drop, more pronounced for high-Z
materials, reaches about 30% at the threshold of the
pressure-induced phase transitions, when covalent tet-
rahedral structures lose their stability and transform
into more densely packed arrangements. Experimen-
taly, it has been found that the stability of tetrahedral
structures with respect to the bond-bending modes cor-
relates with their absolute stability under pressure to
such an extent that the drop in frequency is faster for
less stable compounds. Weinstein [4, 6] has found that
for six diamond and zinc-blende structure ZnTe, Ge, Si,
ZnSe, ZnS, and GaP semiconductors, thereis aremark-
able linearity between the mode Griineisen parameter

_ _diny,
Yi = ~dnv

(wherev; isthefrequency of themaodei and V isthevol-
ume) for the purely bond-bending T A(X) mode and the
transition pressure P, for these materials.

TThis article was submitted by the authorsin English.

Previoudly, the only known experimental examples
of bond-bending modes with a positive pressure shift
were the bond-bending T A(X) mode of diamond [19]*

and the E% mode of wurtzite-type BeO [20]. This

behavior might be regarded as characteristic of the low-
Z second-row semiconductors; however, recent Raman

measurements found a similar behavior for the Eé

mode of thewurtzite-type AIN (w-AlIN) at pressures up
to 6 GPa[21]. Previous high-pressure Raman studies of
w-AlN [22, 23] failed to measure the pressure shift of

the Eﬁ mode, most probably due to the lack of high-

quality crystals. We believe that this problem deserves
special attention, because the bond-bending elasticity is
one of the most prominent manifestations of directional
covalent bonding and its pressure behavior should be
studied in depth. From the fundamental standpoint,
AIN represents an interesting and complicated case of
covalent versusionic bonding [24]: althoughitsvalence
charge distribution is highly ionic [25], AIN adopts the
tetrahedrally coordinated wurtzite structure and there-
fore belongs to covalent materials [26]. To ensure that

the pressure coefficient of the E; mode of AIN is

indeed positive, we have taken a complementary high-
pressure Raman study of AIN up to its stability limit at

1 We note that the experimental error bar for yra(X) for diamond
obtained in this work is twice the value of yra(X) itself. However,
the positive sign of yra(X) isindirectly corroborated by the posi-
tive thermal expansion coefficient of diamond at low tempera-
tures.

1063-7761/04/9805-0981$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Raman spectraof AIN as afunction of pressurein the low-energy region (a) and in the high-energy region (b). The spectral
resolution is 0.5 cm . Ethanol-methanol mixture was used as a pressure transmitting medium.

about 20 GPa. The pressure dependence of the low-fre-

guency bond-bending Eé mode was traced up to the

threshold of the pressure-induced phase transition for
thefirst time.

The AIN samples were 20-um-thick crystals grown
on a sapphire substrate by vapor phase epitaxy. Pres-
sure was produced using adiamond-anvil pressure cell.
Compressed helium and a methanol—ethanol mixture
were used asapressure-transmitting mediumin thefirst
and in the second experimental run, respectively. Pres-
sure was measured in situ by the ruby luminescence
technique. The Raman spectra were measured using a
THR-1000 triple spectrometer equipped with an
OSMA detector (the first run), and a Dilor XY double
spectrometer equipped with a CCD detector (the sec-
ond run). An Ar* laser (A = 514.5 nm) was used as the
source of excitation. All spectra were recorded in the
backscattering geometry at ambient temperature.

For the hexagonal wurtzite structure with the space
group P6;mc (Z = 2), factor-group analysis predicts six
sets of optical modes at k=01[27],

Mop = A +2B; + E; + 2E,,
where A;, E;, and E, are Raman active modes and B,

modes are silent. A, and E, are also infrared active and
split into longitudinal and transverse components (LO

FMHW, cm™!
14 T T T T T 12
AIN
12 110
E? mode——
101 u 18
n® = . [ ]
| ]
gL -t --------%- - - 16
n -- -
6F 1
~—— EJ mode °
4+ o® °® 12
[
_’_._3;___;____n____o_
. ° °
2 0 5 10 15 20 0

Pressure, GPa

Fig. 2. Raman band width (FMHW) for the E, and E5

modes of AIN as afunction of pressure. An ethanol—-metha-
nol mixture was used as a pressure-transmitting medium.
The dashed horizontal lines are drawn to guide the eye.
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Frequency, cm™!
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AIN ar

254

252+ N =
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248
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244}
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Fig. 3. Comparison of the measured and cal culated pressure

dependence of the Raman frequency for the E; mode of

AIN. The squares are the first run data, obtained with com-
pressed helium as a pressure-transmitting medium. The tri-
angles are the second run data, obtained with the ethanol—
methanol mixture as a pressure transmitting medium. Solid
line 1 is alinear fit of the first run data. Dotted line 2 isa
guide for the eye. Line 3 is the experimental dependence
obtained in [21]. Lines 4 and 5 are the calculated depen-
dences obtained in [21] and [33], respectively. All data are
shifted along the vertical axisin order that the ambient pres-

sure frequencies coincide with the value of 249 cm™
obtained in our experiment.

and TO). The lowest frequency mode Eé is a bond-
bending mode.

The Raman spectrum of w-AIN has been measured
previously under ambient conditions and has been ana-
lyzed in some detail, including the effects of polariza-
tion and anisotropy [28-30]. Our ambient pressure
Raman frequencies are 249, 610, 657, 669, 890, and

910 cmrt for the respective modes Ej;, A,(TO), Ej,
E,(TO), A,(LO), and E;(LO). These values agree with
very reliable data[28-30] to within 1%. On an increase
in pressure, al Raman bands shift continuously to
higher phonon energy, with neither broadening nor
intensity loss, to about 18 GPa. Above 18 GPa, the
bands weaken and disappear at about 21 GPa in both
experimental runs dueto the phasetransitionto therock
salt structure[31, 32]. Representative Raman spectra of
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Frequency, cm™!

7501

7001

650 .

0 5 10 15 20
Pressure, GPa

600

Fig. 4. The measured pressure dependence of the Raman

frequency for the E; and TO modes of AIN. The squares

and circles are the first run data, obtained with compressed
helium as apressure-transmitting medium. Thetrianglesare
the second run data, obtained with the ethanol-methanol
mixture as a pressure-transmitting medium. The solid lines
arelinear fits of thefirst run data.

AIN inthelow- and high-energy region as afunction of
pressure are shown in Fig. 1. Pressure dependences of

the E; and E5 bandwidths are shown in Fig. 2.

Figure 3 compares measured and calculated pres-

sure dependences of the Raman frequency for the Ej;
mode of AIN. In our experiment, the pressure depen-

dence of the E; frequency is weak but apparently pos-

itive and linear up to 13 GPa in both runs. Above
13 GPa, the first-run data fall well on the low-pressure
dependence, while the second-run data indicate a sud-

den rise of the Eﬁ frequency. This is possibly associ-
ated with solidification of the ethanol-methanol
medium, resulting in nonhydrostatic sample stress.
Therefore, above 13 GPa, the first run data obtained in
hydrostatic conditions with compressed helium as a
pressure-transmitting medium are the most reliable. We
note that solidification of the ethanol-methanol
medium did not result in any detectable anomaly in the
pressure dependence of the high-frequency bond-
stretching modes (see Fig. 4). We believe that the non-
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Table 1. Measured and calculated linear pressure coefficients v; [cm™ GPa™] obtained for the AIN Raman frequencies

Es A(TO) E2 E,(TO) A(LO) E,(LO)
Experiment
Present 1 0.05(1) 3.8(2) 4.9(2) 4.5(1) - -
Present 2 0.05(1) 4.3(2) 4.65(3) 4.55(6) 4.0(1) 3.6(7)
[21] 0.12(5) 4.4(1) 4.99(3) 4.55(3) - 4.6(1)
Cadlculations
[33] -0.29 4.29 4.79 4.36 - -
[21] -0.03 3.0 4.2 3.8 35 4.0

hydrostatic stresses result in amuch weaker response of
these modes in comparison to their strong dependence
on the high hydrostatic pressure.

The mode pressure coefficients v; calculated using
the linear |east-square fit

Vi = Vi +ViP,
where v; is the frequency of the modei at the pressure

P, arelisted in Table 1. The Ei frequency in the second
run was fitted only to 12 GPa. Our mode pressure coef-
ficients v; are consistent with the results reported
in [21], athough with somewhat lower pressure slope

for the E; frequency (see Table 1).
Ab initio calculations [21, 33] give aweak negative
pressure shift for the E; mode of AIN. Nevertheless,

the pressure coefficient of the Ei mode is nearly zero,
and the differences between experimental and calcu-
lated pressure shifts are quite small on the absolute
scale. The agreement between measured and cal cul ated

coefficients of the E§ , TO, and LO modes is quite sat-
isfactory (see Table 1).

As mentioned earlier, the bond-bending phonon
modes of most tetrahedral semiconductors soften under
compression and thus have negative Griineisen param-
eters y.. Table 2 compiles experimental mode Gri-
nei sen parameters obtained on the basis of the first- and
the second-order Raman measurements and inelastic
neutron scattering for the bond-bending modes in a
series of tetrahedral compounds. The calculated Grii-
neisen parameters for diamond and BP are also dis-
played. A negative value of y; is observed in most cases
except for diamond, BeO, and AIN. For BP, calcula
tions[36] predict an exotic combination of anegativey;
for the bond-bending T A(X) mode and a positive y; for
the bond-bending T A(L) mode. The E, mode of SIC-6H
has zero pressure slope and hence zero y;, but the qua-
dratic pressure coefficient of the mode frequency is
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Table 2. Mode-Griineisen Barameters y; for the bond-bend-
ing modes in a series of ANB#N compounds (W—wurtzite
structure, ZB—zinc blende structure, D—diamond structure,

L—hexagonal diamond structure)

Material Structure | Mode Yi Reference
Experiment
cds w Es 27 [6]
InP ZB TAL) | —20 [6]
ZnO w E; -1.8 [6]
GaAs ZB TAL) | -17 [6]
ZnSe ZB TAL) | -15 [6]
ZnS ZB TAL) | -15 [6]
Ge D TAL) | -152 [10]
Si D TAL) | -13 [3]
ZnTe ZB TAL) | -10 [6]
GaP ZB TAL) | —0.81 [2]
GaN w E; —0.426 [8]
SiC-6H Hex. E, 0.0 (7]
BeO w Es 0.04 [20]
AIN w Es 0.04 | Thisstudy
0.10 [21]
C D TA(X) 0.4 [19]
Calculations
C D TA(X) 0.3 [34]
C D TA(L) 0.17 [34]
C L = 0.16 [35]
BP ZB TAX) | —0.64 [36]
-0.27 [37]
BP ZB TA(L) 0.121 [36]
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negative [7]. We see that AIN is one of the most stable
materials with respect to the bond-bending mode on
compression.

Despite this, w-AIN undergoes a first-order phase
transition to the rock-salt structure at arather low pres-
sure of 20 GPa. At the same time, SIC-6H and w-BeO,
which have nearly the same values of y; for the bond-
bending E, modesasAIN does, preserve the tetrahedral
structures up to the pressures as high as 100 GPa [38]
and 140 GPa [39], respectively. This obviously indi-
catesthat the applicability of Weinstein’sempirical cor-
relation rule [4, 6] islimited.

The pressure behavior of the bond-bending modes
of tetrahedral semiconductors can be elucidated in
terms of the pressure-sensitive balance between stabi-
lizing and destabilizing contributions to the restoring
force constants[15]. Thisbalance, in turn, can betraced
back to the atomic configuration of the constituent
atoms, as has been donein the analysis of the thermody-
namical stability of the diamond phase of carbon [40].
However, this issue is beyond the scope of the present
report and will be discussed in a subsequent paper.

The authors wish to thank A. Dobrynin for growing
the AIIN crystals. E. V. Yakovenko is grateful to
A.F. Goncharov for his assistance in Raman measure-
ments.
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Abstract—We present the first weakly nonlinear analysis of the morphological stability of atwo-dimensional
cylindrical crystal growing from solution in an arbitrary regime (with the growth rate proportional to supersat-
uration). A quadratic (with respect to the perturbation amplitude) correction to the critical radius of a stable
crystal determined in the linear theory is obtained in an analytical form and studied as a function of the per-
turbation frequency and the growth regime. It is established that an increase in the perturbation amplitude vir-
tually always leads to a decrease in the critical radius. Factors accounting for this nontrivial effect are consid-

ered. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Problems pertaining to the morphological stability
of growing crystals are of importance both in practica
applications (e.g., for predicting the microstructure of
solidifying ingots) and in basic science (e.g., for
describing dissipative structures formed under non-
equilibrium conditions). After the classical study of
Mullins and Sekerka [1], presenting an original linear
analysis of the morphological stability for a growing
spherical crystal, this approach was extended to other
geometries and more genera conditions (including
attachment kinetics, surface self-diffusion, etc.) [2].
Theresults of thislinear analysis of stability were qual-
itatively and quantitatively confirmed by the results of
numerous experiments [2-5].

Hardy and Coriell [3] studied the growth of pertur-
bationsin acylindrical crystal of ice growing from dis-
tilled water under conditions of low supercooling. Ini-
tidly, the crystal grew in the form of asmooth cylinder.
Then, when the crystal reached certain critical sizes, its
shape had visible, rapidly growing distortions. The
experimentally measured critical radius of a stable
cylindrical crystal was in good agreement with the
value predicted by the theory, which alowed a rather
accurate method to be developed for the indirect deter-
mination of the interfacial free energy of the water—ice
system.

However, experiments reveal ed an interesting pecu-
liarity that could not be described within the framework
of the linear analysis of stability: the possible coexist-
ence of particles in various forms (morphological
phases) in some regions of the control parameters (e.g.,
supersaturation) [6-8]. Analysis of this and some other
experimental features [9-11] led to the idea that the

morphological transition from one crystal shape to
another can be considered by analogy with the usual
phase transitions of the first order. In the case of non-
equilibrium crystallization, the role of thermodynamic
potential is played by the production of entropy.

The results of our recent calculations [11-13] per-
formed within a linear analysis of the morphological
stability, with determination of the production of
entropy, allowed the boundaries of metastable regions
(the regions of coexistence of various morphological
phases) to be determined for the first time. In this con-
text, there is the need for independent theoretical veri-
fication and justification of the main hypotheses under-
lying the calculations[11-13]. One of these hypotheses
is that an increase in the amplitude of perturbations
(experimentally implemented by applying thermal or
acoustic action, introducing special impurities, etc.) on
the initially smooth crystal surface, leads to a decrease
in the critical radius of a stable crystal.

The most natural way of considering the critical
radius as dependent on the perturbation amplitudeisto
perform an analysis of stability at higher (second and
above) orders of perturbation theory. Only a few such
attempts (using shape perturbations with harmonics of
small but finite amplitude) have been made because of
complex and tedious calculations [14-16]. The weakly
nonlinear analysis of diffusion-limited growth was per-
formed in these investigations up to the third order with
respect to a small parameter. It was confirmed that an
increase in the perturbation amplitude almost always
leadsto adecrease in the critical radius of astable crys-
tal [14-16]. However, the assumption of a diffusion-
limited crystal growth regime used in these investiga-
tions posed a significant limitation upon their general-
ity: the question naturally arises asto whether the above
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important result has a universal character, rather than
being related to the specific growth regime.

The study was aimed at performing a weakly non-
linear analysis of the morphological stability of atwo-
dimensional cylindrical crystal growing from solution
in an arbitrary regime (with the local growth rate pro-
portional to supersaturation). This would significantly
generalize the results obtained in [14], showing how
universal is the dependence of the critical radius of a
stable crystal on the perturbation amplitude, which is
very important for justification of the approach devel-
opedin[11].

2. FORMULATION OF THE PROBLEM

We consider the growth of an initially smooth,
round single two-dimensional crystal from asupersatu-
rated solution. The main assumptions are as follows.

(i) Crystallization proceeds under isothermal—iso-
baric conditions and both the free surface energy and
the kinetic coefficient are isotropic.

(i) Thefield of concentrations C is described by the
L aplace equation

O°c = 0, 1)

where the symbol [0 denotes the nabla operator.

(iii) 1t isassumed that an arbitrarily small distortion
of the circle can be represented as a superposition of
harmonic functions of the type coskd, where ¢ is the
polar angle and k is a positive integer.

(iv) The solution concentration obeys the following
boundary conditions:

C(R)) = C., (2
DQ‘S‘: = B(C|F=R+acosk¢_cs)1
on f = R+acoskd (3)
Ge = Co+ CTK,
~2 ~ 2 ~a2v 2
~ _ r°+2(0r/o¢) —ror/o
k= D 2007100)°-Fo%/0¢" @

(F? + (3F100)%)
Here, T = R+ acosk¢ isthe shape of adistorted circular
boundary, Risthe radius of the unperturbed circle, a(t)
is the perturbation amplitude (a < R), t is the current
time, D isthe diffusion coefficient, 3 isthe kinetic coef-
ficient of crystallization, C,, is the solution concentra-
tion at alargedistance R, (R, > R) from the crystal sur-
face, Cgis the equilibrium solution concentration near
an arbitrary boundary, C, is the equilibrium solution
concentration near a plane boundary, I is the coeffi-

cient of surfacetension, and K isthe curvature.

There are two important remarks concerning the
boundary conditions.

(i) Condition (2) can be given two interpretations.
First, we can assume that concentration C,, is main-
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tained at acertain distance R, and seek a stationary con-
centration distribution satisfying Egs. (1)—(3). How-
ever, another possible interpretation is more useful
from the standpoint of analysis of the loss of stability.
It was demonstrated [17, 18] that, under conditions of
low supersaturation, the solution of the nonstationary
problem with the boundary conditions C(x) = C,
and (3) coincides with the solution of problem (1)—(3),
provided that R, corresponds to a certain boundary
determined by the relations

R, = RIVA, AIn(v’A%)+S= 0.

Here, S= (C,, — CJ/(Cy, — C9), Cg, isthe crystal den-
sity, A is a parameter, and Inv? = 0.5772 is the Euler
constant.

(if) Boundary condition (3) describes the balance of
a substance under the assumption that the solution con-
centrationisnegligibly small ascompared to the crysta
density. This assumption, significantly simplifying the
problem, is well satisfied in many real systems featur-
ing crystallization from solution.

For the convenience of calculations, we will passto
dimensionless variables in Egs. (1)—(4), by scaling dis-
tances to the radius of nucleation in a saturated solu-
tion, R* = C,I'/(C,, — Cp) [17] and representing the con-
centration field as u = (C — Cy)/C,. In these variables,
the Laplace equation iswritten as

O%u = 0, (5)
and the boundary conditions appear as
u(pa) = 4, (6)
CX@ = u|r=p+6<;osk¢_us7
an r = p + dcoskdp (7)

us = KA.

Here, n=n/R*, r=T1/R*, p=R/R*, §(t) = a(t)/R*, A=
(C,, —Cp)/C,isthedegree of supersaturation, K = KR*
Py = R/R*, and a = D/BR*.

In boundary condition (7), we can pass from the
operator d/0n to the vector components using the
relation

oJu

a—n = [Ou [én,
where
_0du, . 10u.
Ou = dr|’+ra¢|¢’
_ - r—p—
e, = @ ® = r—p-0coskd,

and e, isthe unit vector normal to the surface ® = 0. As
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aresult, condition (7) transforms to

o %gu 6ksmk¢
5°K? ror

1+—sm kd
r?

ougl _ .., _
a¢|] r - ulr Us. (8)

3. WEAKLY NONLINEAR ANALYSIS
OF THE MORPHOLOGICAL STABILITY

3.1. Calculation of the Concentration Field

Let us expand the concentration field into seriesin
powers of d,

u(r, §) = Up(r) + us(r, )3+ uy(r, )3° + us(r, $)3°, (9)

where u, ..., U are the expansion coefficients. Substi-
tuting expression (9) into theinitial equation (5) and the
boundary conditions (6) and (8), we expand each term
into Taylor's series in & up to the third power in the
vicinity of p. The curvature is expressed as
K = Ko+ K8+ K" + K, (10)
where K, K, K,, and K; are the coefficients calcul ated
in the Appendix. Equating the coefficients at like pow-
ers of , we obtain four sets of equations for determin-
ing the functions uy(r), u,(r, ¢), ux(r, ¢), and uy(r, ¢):

1. 0%, = O,
Uo(py) = A
a9l —Ug|, = Koh; (11)
or |,
2 D%u, = 0,
u(pa) = 0,
(12)
aa_ul —Uy|, = Bﬁ’ o ¢ Yo Dcoskq) K,A;
or |, goor |, ar?
3. 0%, = 0,
u(py) = O,
6u2 —Uy|, = 0 UO Dcos k¢
Mo ZDa r
- (13)

+0(k sin’ k¢%
2> or |,
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O

o e Dcoskq)

P or?
+O(ksinkcba_u1
p2 or |,

+%u1

or

—KLA;

4. 0%, = 0,
us(py) = 0,

au3

-u
ar 3|p

9*uo| H
or’

= 1) _

GDar

oA

ZDar

+%u2

gor |,

Dcos ko

0° 0"U,
or®

Dcos ko

2010
0"U, Dcoskq>
ar?

(14)

L 29Ul o
pDacI)D

o Ksinkd coske SNCALTE
0 ERTETEIN

o ksink (9uz
pz HooH P

ak sin kq)coskq)% 0
2p° Oar?

_ 204
P or

O
O
g

ak sin kq)au1

— KA.
20 or|, °

The solution of the Laplace equation inthering (p <
r < p,) for each ith system can be written in the follow-
ing form [19]:

u, = Ao+ Bjglnr

+ zlr_”(Amcoan) + B,,sinng) as)

+ z r"(E;,cosn¢ + F,,sinnd),
n=1
wherei =0, 1, 2, or 3.
3.1.1. Unperturbed solution (zero order). Substitut-
ing expression (15) for i = 0into Egs. (11) and equating
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the coefficient at the like trigonometric functions, we
obtain

AOn = BOn = EOn = I:On = 01 (16)
Ay = A—Bglnp,, a7

_ A(p-1)
00_G+pA)\! (18)

where A, = In(p,/p). A solution to the problem in the
zero approximation is

Ug -A+A(p 1)In
a+pA, Py

3.1.2. First-order perturbation solution. Substitut-
ing expression (15) for i = 1 into the boundary condi-
tions of set (12) and equating the coefficients at like
trigonometric functions for the same harmonic num-
bers, we obtain two nonzero constants of the first-order
approximation for n = k:

(19)

Ay = Azpy, (20)
Ey = —AiZpy, (21)
where
_ AK-1)-By(pta) _ pf
p(Z(ak—p) + (ak+p))’ P
The solution to Egs. (12) is
kD
u(r,9) = Alzcoskcbg-)— r (22)

P

3.1.3. Second-order perturbation solution. Substi-
tuting expression (15) for i = 2 into the boundary con-
ditions of set (13), expressing the powers of trigono-
metric functions viatrigonometric functions of the cor-
responding multiple arguments, and equating the
coefficients at the same harmonic numbers, we obtain
four nonzero constants of the second-order approxima-
tionforn=0and n=2k:

Ay = —Bylnp,, (23)
0 = {2Apk(a +p) (£ + 1)
+ Byy((at + p) —a(kK* = 1)) (24)
+A(2=3K*)}{ 4p°(a + Ap)}
Ay = AZPLS (25)
Eo ok = —AZ PN, (26)

where the expression for A, is given in the Appendix.
Substituting formulas (23)—26) into Egs. (15), fori =2
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we obtain a solution to Egs. (13):
2k
r 2
u,(r, = B,yln— + A,z cos2k Bb; 27
2(r, 9) = By ot A ¢ —% (27)

3.1.4. Third-order perturbation solution. Substitut-
ing expression (15) for i = 3 into the boundary condi-
tions of set (14), expressing the powers of trigonomet-
ric functions via trigonometric functions of the corre-
sponding multiple arguments, and equating the
coefficients at the same harmonic numbers, we obtain
four nonzero constants of the third-order approxima-
tionfor n=kand n=3k:

Esx = —AgiPr (28)

Esac = —As sPr (29)

where the expressions for Az  and A 5 Vvia the con-
stants of previous orders are presented in Appendix.

Substituting these quantitiesinto Egs. (15) for i = 3, we
eventually obtain the solution to Egs. (14):
kO
us(r,9) = coskcl) 8)— '
P
(30)

As —2%cos3ke Bb; ﬂ

p)\

Finally, substituting solutions (19), (22), (27), and
(30) into expansion (9), we obtain an expression for the
concentration field u(r, ¢) in the form of a series in
powers of o.

3.2. Calculation of the Radius of Sability
of a Circular Crystal

Oncethe concentration field isknown, we can deter-
mine the radius of a stable crystal. To within a positive
constant factor, the local crystal growth rate V can be
written as

v 0ou

: (3D

on r = p+ dcoskdp

Substituting the above expression for u(r, ¢) into

Eg. (31) and expanding the resulting expression into

seriesin & in the vicinity of p, we can eventually repre-
sent the growth rate as

V =V,+ 14
P (32
x (V,coskd +V,cos2k¢ + V;cos3ke),
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where
B 1
0= X+
P 4p (33)
x (2A,pK(Z° + 1) + 4Bg,p” — Boo(k* — 2)) &,
_ ﬂs 2,2 2 2 4
V, = Q—gAlpk (Z-1)-kp°A,(z'-1)
+ APK(Z +1) — gAlpk(z2 +1)
(3-K),_2 2 3,2 3 (34)
—Ag kkp T2+ 1) = Boop” + S(K* = 2) BoorP
—(ApkZ” + By + A;pk)3p7,
V, = pE-ApK(Z —1) —2A,p°k(Z" + 1)
(35)

1 1
+7(K+2)Byy + SA0k(Z + ),

Va = B2 (3K +2) By 3Aq akp (4 1)

_ %Alpk(zz+ 1) —%k3A1p(22+ 1)— 3K2p?A,(Z ~1) (36)

+ AP+ 1) + gAlka(z2 -~

Let us consider the initial stage of the loss of mor-
phological stability of the growing particle upon the
onset of perturbation on the boundary and determine
the critical particle radius for which the perturbation
amplitudewill grow. To thisend, following [14-16], we
have to solve for p the equation

V, = 0. (37)

Thiswill determine the critical radius above which the
rate of variation of the amplitude of the basic (initially
applied) harmonic cosk changes sign from minus
(corresponding to decay) to plus (corresponding to
increase). Obvioudly, an increase in the amplitude of
the basic harmonic will lead to the appearance of sec-
ondary harmonics of the other frequencies (see, eg.,
Eq. (32)). Thus, from the standpoint of the initial stage
of the loss of stability, behavior of the basic harmonic
is the determining factor.

Let usseek for asolution of Eq. (37) inthefollowing
form:

p = g+g,d, (38)

where g and g, are the expansion coefficients. In this
expression, the term proportional to & is omitted
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because its presence in Eq. (37) has no physical mean-
ing for symmetry considerations. Indeed, in the pres-
ence of aterm proportional to 9, a half-period transla-
tion of the cosk¢ perturbation (equivalent to alternation
in the amplitude sign) would lead to a change in the
critical radius for stable growth in the isotropic
medium.

Substituting ansatz (38) into the explicit expres-
sion (37) and expanding it into seriesin powers of d up
to the third-order term, we arrive at an expression con-
taining & to the first and third powers. Grouping and
equating the terms at like powers, we obtain two equa-
tionsfor determining g and g, . Thefirst quantity cannot
be expressed explicitly and is determined from the
equation

(- g’k —gkL + K’a + gk’L + gk —ka) (h® + 1) 39)
+9(g—1)(1-h? = 0.

The second coefficient can be explicitly expressed as

01 = [(My=My)h®+ (Mg + MR
+Msh* + (Mg — M, )h? + M, + M,

+ 60K} (5k* —k* - 2)][8g[(20k — g) (M — M7)h?40)
+((2ak—g)h® + (2ak + g)h*)Mg

+((2ak + g)(Mg—M;) + (2ak—g)
x (Mg + M;))h* + (2ak + g) (Mg + M7)11 ™,

where h = g¥/p%, L = In(p,/g), and the expressions
for coefficients M, M,, ..., Mg are presented in the
Appendix.

It should be noted that Eq. (39) for g in the diffusion
limit (a — 0) coincides with an analogous equation
derivedin[14].

4. DISCUSSION OF RESULTS

Figures 1 and 2 show the plots of the linear radius of
stability g and the correction of the second order of
smallness g, versusthe parametersa and k (the value of
p, was selected following [14]). The g and g, values
numerically calculated for the diffusion-controlled
growth (o = 0) (see Figs. 1 and 2) coincide with the
analogous values reported in [14], which is additional
evidence in favor of correctness of our calculation.

According to the results of calculations (Figs. 1la
and 2a), the linear radius of stability (g) increases with
the harmonic frequency (number) and the parameter a.
This behavior can be explained as follows. According
to the classical results [1], the main factor responsible
for theloss of stability istheinhomogeneity of the con-
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-10

-15

2 -1

loga

Fig. 1. Plotsof (a) thelinear critical radius of stability g and
(b) the quadratic correction g, versus parameter o for various

perturbation frequencies (harmonic numbers) k for p, = 10°,

centration field at the crystal boundary: the supersatu-
ration increases with distance from the crystal. For this
reason, a perturbation arising on the crystal surface
occurs under more favorable conditions and can
develop more rapidly. The main stabilizing factor isthe
curvature (i.e., the surface energy): the greater the cur-
vature at the appearing protrusion, the more readily it
can be dissipated. Thus, for two nuclei with perturba-
tions of the same amplitude but different frequencies,
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Fig. 2. Plotsof (a) the linear critical radius of stability g and
(b) the quadratic correction g, versus perturbation fre-
quency k for p) = 108 and various parameters a: (+) O;
(0) 100; (O0) 1000; (<) 10000.

the curvature is greater for the nucleus with a higher
frequency and, accordingly, the stabilizing factor is
stronger here. As a result, the nucleus loses stability
under this perturbation at a greater critical radius. As
the a value increases, the field at the crystal becomes
more homogeneous and, accordingly, the destabilizing
factor decreases and the critical radius g increases.

In contrast to the behavior of g, the character of vari-
ation and the sign of g; are not as obvious. As can be
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frequency k for py, = 108,

seen from Figs. 1b and 2b, an increase in the perturba-
tion amplitude leads in most cases to a decrease in the
critical radius as compared to that in the linear case (an
increase is observed only in the diffusion-controlled
growth regime for the harmonic with k = 2). However,
with anincreasein the perturbation amplitude (for fixed
parameters of a and k), the perturbation falls within a
region of higher supersaturation (i.e., a stronger desta-
bilizing factor) and greater curvature (i.e., a stronger
stabilizing factor). The fact that, in the competition of
two factors, the former amost always predominates
(even in the kinetically controlled growth regime with
o > 1) isavery interesting result.
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A decreasein the critical radiuswith increasing per-
turbation amplitude allows us to explain the phenome-
non of coexistence of two different morphological
phases, which is frequently observed in experiment.
Indeed, consider two round crystal nuclei growing at a
sufficiently large distance from each other in asupersat-
urated solution. Since the appearance of fluctuationsin
solutionsis, inthe general case, astochastic process, let
a fluctuation of small but finite amplitude & to arise at
one of the two particles. According to the above calcu-
lations, this nucleus will lose stability when its radius
will increase to the critical value of p, while the other
nucleus may still retain its round shape. Thus, in the
growth interval from p to g, we can observe both the
crystals of round shape and those with developing per-
turbations corresponding to the kth harmonic. When the
radius of a round nucleus will increase to g according
tothelinear analysis, it will lose stability to even aneg-
ligibly small fluctuation.

This provides ground for one of the main assump-
tionsused in our calculations of the boundaries of meta-
stable regions [11-13]. It would be also interesting to
use the above results for qualitatively evaluating the
perturbation amplitude for which the crystal radius
reaches avalue p® called binodal. This value was previ-
ously determined via a calculation of the production of
entropy based on the linear analysis[13] as

o0 = 10, _ak L 2AKK -1)
20 2k—-1  2k-1
(41)
2 2 2
+«/[1_ ak_, 2Ak(K _1)} s aak@C=1)0
2k—1  2k-1 2k-1 .

According to formula (38), the amplitude of this
perturbation is

5 = J(p"—g)/g,.

Figure 3 shows plots of theratios of the perturbation
amplitude &* to the above characteristic dimensions g
and p° versus k for the diffusion and kinetic growth
regimes. These data revea an interesting fact: the size
pP found in [13] corresponds to the perturbation ampli-
tudes comparable to the radius of stability of the crys-
tal. Thisresult indicates that, from the standpoint of the
above weakly nonlinear analysis, p° represents the crit-
ical radius with respect to the maximum perturbations
o* of the crystal radius (whereby the perturbation
amplitude is comparable to the crystal size), which jus-
tifies use of the name “binodal radius”

Let us specially consider the casesof k=1 and k =
2. According to the results of numerical analysis, repre-
senting the solution in the form (38) for k= 1 isnot jus-
tified because a correction to the solution in the linear

(42)
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Fig. 4. Plots of (a) the linear critical radius of stability g and
(b) the quadratic correction g, versus parameter o for various
perturbation frequencies (harmonic numbers) k for S= 0.05.

approximation is much greater: g,0%/g ~ 1078 for a =
0-100). This violates the main assumption of perturba-
tion theory (introducing a so-called inhomogeneity of
the expansion [20]). The perturbation with k = 2, for
which the g, correction is positive at o < 73, isthe next
neighboring caseto that of k = 1. Doesthis fact account
for the special behavior (see Figs. 1b and 2b) because
the point occursin the region of inhomogeneous expan-
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sion [20], or is everything correct from the mathemati-
cal standpoint and the result has a physical meaning?
These questions require additional investigation.

The data considered above (Figs. 1 and 2) are
related to a constant p,, which is not convenient from
the standpoint of experiment. Aswas pointed out in Sec-
tion 2, the quantity p, appears as afitting parameter on
the passage from nonstationary to stationary diffusion
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problem. This parameter is directly related to the quan-
tity S which has a clear physica meaning and can be
readily determined for any supersaturation solution. In
connection with this, Figs. 4 and 5 present analogs of
Figs. 1 and 2, respectively, plotted as afixed S A com-
parison between these representations shows that the
character of dependencesis qualitatively the same.

5. CONCLUSIONS

We have carried out a weakly nonlinear analysis of
morphological stability for a round crystal growing in
an arbitrary regime from a supersaturated solution. It
was found that, similar to the diffusion-controlled
growth considered in [14-16], an increase in the ampli-
tude of perturbations leads to a decrease in the critical
radius of stable crystal. This behavior is an additional
argument in favor of the hypothesis that such a depen-
dence of the critical radius on the perturbation ampli-
tude is rather universal and may be considered as evi-
dence that this nonequilibrium transition belongs to
first-order phase transitions.

We would like to make a final remark concerning
the possibility of comparing the values of critical radii
calculated in this study to the experimental data. At the
present time, it is hardly possible to speak of such ver-
ification due to both the technical complexity of the
experiment and the still relatively large number of sim-
plifying assumptions made in the theory. The main task
at this stage is to provide qualitative explanation and to

MARTYUSHEV et al.

propose amethod for analytically calcul ating the exper-
imentally observed phenomenon of coexisting mor-
phologies during crystallization under identical condi-
tions. We believe that the results reported above are an
important step in this direction.
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APPENDIX

_ (K’ —1)coskd
1 - 2 1

p

11K 5
K, = p—3[§ + %L—ékaacosqu)},

K

1 9
K, = E[Egk“ + 2 ~ Poos’ko

—gkz(l +10) coskq)],

A

As = {8Ap°k(a +p—ak)Z'
+ A,pk(3pk — 60 —3p + 50k)Z°

+8A,p°k(0l +p +ak)
— A,pk(3pk + 60 + 3p + 50k) + 8B,p° (0 +p)

+ Byy(301k* — 601 — 2p)
+3A(5k* —k*~2)}p **1{ 8(Z(ak—p) + (ak +p))} ,

As s = {24A,p°k(a +p —3ak)Z'
+3A,pk(pk —2a —p + 7ak —4ak?)Z’
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_ 2Apk(a +p —2ak)Z + By(2a +p +ak’) + 2A,pk(a +p + 20K)
4p°(Z'(2ak—p) + (2ak + p)) ’

+24A,p°k(0 +p + 3aKk)
—3A,pk(pk + 2a +p + 7ak + 40k’

— Byo(9ak® + 60 + 2p),

+3A(9K + 3K* —2)}p *31{ 24(Z(30k - p)
+(30k+p))},

M, = —3a’k’ - 6a’k’ + 150k
+18g°kL — 10g°kL + 12a g’k — 10a°g®k’
~30g°k*-13g"LK* - 6g*L°K> + 34g* LK
—16g'L°k—7g*K’a —4g’ka + 3g°LK?
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-6g'k—12La’k’g* - 48ag°kL + 780 g°Lk’
—4ag’L%’ + 40g°L%k* — 4ag’LK’ - 4g°K’aL
+8g'kaL +8La’k’g’ — 24k(1292 + 20(2ksg2
—4a*°g? + 500%k’°g% + 69°k — 12La °kg
- 24L013ksg + 60L0(3k5g - 12L20(2k3g2
—6L%0°K’g? + 30L%a’K’g? + 40°k3g — 40 ’K’g,
M, = 6g°L —4g°K’ + 4g"k* — 6a g’ + 2g*a + 3a“k’
+60a'k*— 150"k’ - 2¢° + 2¢* + 7¢"K’a
—14g"K°aL —10g'L - 150°k%g + 2a°k’g®
+12K°a’g” — 240°k*g” + 6a°g°k* = 50 g°K*
+4ag’k" - 2g"L°k" + 29" L%K? + 3g*LK?
+4g*Lk* - 30Lo’k°g? + 144k’ a’Lg’® — 60La’k’g’
—2a°g*k*L + 690 g°L°k" — 300 g°L%K?
+34ag°Lk* - 320 g°Lk" — 150 g°L°k® + 6g K a L
—g’LK* + 710°k"g - 30a°K’g,

M, = 4k(—6k*a* + 15k"a” + 6g°a® + 2g°L? + g°L
— 309’ +3g’a + 12ag°L —4g’La + 2K*a’g’
—3k%a* - 6g*Kk’a + 5¢°K°aL + 2k’a’g’L — 6k°La’g
—12k’La’g + 30k*La’g — 6k°L0’g” — 3k°L°a’g’
+15k*L%a’g’ — g'L — o °k*g’ — 14k’a’g” + 60°k*g’
—-30°g’k* + 60 g’k + 2g"L°k* — 79" L°K® + 2¢° LK
- 17k40(2Lg2 + 6L0(2kzg2 + a2g3k4L —70 gSLZk4
+40g°L°K* = 29ag°LK® + 8ag’Lk’ — 2g°LK?
-8a’k*g + 20°k%g),

M, = 29(4g’K* + 2ag® - 4¢°k* — 10g°L + 60°K>
—150°k* —=60g”—5a°k® — 29" + 2¢° + 15K°ag’
+239°K’L — 12¢°L°K* + 18¢°L°k" — 40 k*g” — 4g°LK*
—10La’k’g—22k’a’Lg + 12La’k’g — 7L%ak’g’
+6L°K°ag”— 14k°aLg” + 32Lak’g” — 5g°a L°k®
—2Kk’a’g + 12a°k*g + 6g°L — 10k°a’g” + 8 °k*g’
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—50g°k* - 13g*LK? + 8K*0a’Lg’
—10ag’LK* + 60g°Lk* + 8a°’k’g),
M = 2k(-12k°a* + 30k*a* + 8g°L* + 6g°L — 8g”a
—6g° +6g" + 8g°La —6k°a” — 179"k’ — 16¢°K%aL
—12k°La’g - 24Kk°La’g + 60k La’g — 12k°L%a’g’
- 6k6L20(Zg2 + 30k4L20(Zg2 - 1494L + 6K’a 2g2
+220°k*g? — 260 °g°K” + 270 g°K* + 14g°L %K
—22¢°L°K* + 219" LK* — 40k*a’Lg’ + 8La’K’g”
+ 4azgsk4L —16a g?’sz4 +4a g3 L%k* - 2601 gng2
+36ag°Lk* - 11g°LK* — 200°k*g + 40°K°g),
M, = ag3_g4+93_2agz+a2kzg+agskz_kzagz
—20°K* + 20°k" = 3¢°L —ag’Lk® + 4La’k’g
—4La’K’g + 2LKPag’ + 2L %0k g?
—2L%*ag’+2g°L,
M, = gk(-g°+g°+ 3k’a®— 40’
—2ag®-2g°L + 309 + 3k’g°L?—3g°L? + 3¢°L
+g°al + 6k’gLa —8gal),
Mg = 4g4Lk2 + 20(g3Lk2 + Zazkzg
- 8L0(2k2g —4g‘?’Lk2 - 293 + 8Lk20(g2
—4g*L - 8Lak’g’ — 40°k*g + 6g°L + 4L%0k'g’
—4g°L%k* + 2¢" — 4L%K%a ¢* — 6K’a g’ + 40 °k*
— 40’k + 6ag’K’ + 40°K’g” + 4a g’

+ 8L0(2k4g + 4ggL2k2 —2a gs.
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Abstract—Lifshitz invariants emerging in the presence of external effects in a crystal are considered for 2D
irreducible representations of the D, class. It isshown that, for a2D irreducible vector representation, the elec-
tric field exceeding a critical value leads to the formation of an incommensurate phase on the phase diagram.

© 2004 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

In studying incommensurate (1) phases and phase
transitions (see reviews [1-3]), two types of such tran-
sitions are distinguished. The first type is associated
with the presence of the Lifshitz (L) invariant in the
thermodynamic potential, while the second type is
characterized by the presence of a Lifshitz-type (LT)
invariant. Here, we consider thefirst type of transitions.
In the case when a multidimensional representation of
the symmetry group of the initial phase in the crystal
rules out the existence of an L invariant, theincommen-
surate invariant (abbreviated below as IL) can be
induced by appropriate effects exerted on a crysta
(electric or magnetic fields, mechanical stresses, etc.).
The coefficient of the IL invariant is the external factor
itself. This problem was considered for the first time
in [4], where the phase diagram with an | phase was
constructed from general considerations. However,
apparently not a single specific case has been investi-
gates as yet.

The goal of thisstudy isanalysisof a2D vector rep-
resentation of the crystal symmetry classD,;,, the deter-
mination of possible IL invariants for this representa
tion, and the calculation of the corresponding phase
diagrams. To run a few steps ahead, we can state that
the induction of | phases on these diagram is not as
obvious and simple as appears at first glance and the
results of our analysis differ from those described in [4].

2. TWO-DIMENSIONAL REPRESENTATIONS
OF SYMMETRY CLASS Dy,

The choice of the crystal symmetry class D, isdic-
tated by the existence of two irreducible representa-
tions, each of which permitstwo independent invariants
of the second and fourth order in the bases of the repre-
sentations. The latter circumstance determines the sim-
plest algebra of these representations among al non-
one-dimensional representations of crystal symmetry

groups. The table shows the representations of class
Dy, according to which the components of vector x; =
{x,y, Z and rank two tensor {u,} are transformed (we
use the matrix form of notation: a =1, ..., 6). The
polarization vector components P;, which will be
treated as the order parameter for representation of E,,
is transformed like the components of vector x;; U,
stands for components of the strain tensor u; (in partic-
ular, u, = 2u,, and Us = 2u,,). The existence of two rep-
resentations instead of one as in classes D,, C,,, and
D,q (with the same independent invariants) rules out the
existence of the piezoelectric effect in the initial phase
of the crystal, which simplifies the problem.

None of 2D representations of E, and E, permits an
L invariant. We will consider external forces (electric
field E; and mechanical stresses g,,) that can induce IL
invariants (we confine our analysis only to invariants
linear in forces). Using the table, we can obtain two IL
invariants for the E, and E, representations, respec-
tively:

Ex{ an Py} y Ey{ PX’ Py} X1
Edusud ,—Ef{u, ug ,, (D)

{n,& ,=na,g-&,n,

Since invariants (1) contain the electric field compo-
nents E, and E,, we will find the invariants which are
linear in E,, E, and also linear in P,, P, and uy, Us.
There exists only one such invariant (the energy of
interaction of polarization with the eectric field):

d,=0d/0z

-EP,—E,P,. 2

There are no invariantslinear in E,, E, and quadratic in
Py, Py or quadraticin ug, us. We will confine our subse-
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a/ag

Fig. 1. Phase diagram on the af' plane for F > Fy (A > 0).
The curves demarcate the regions of existence of phasesG,,
Gz, and |, (see relations (6), (13), and (17)); ag =
2(2BEA 3,

guent analysis to the vector representation of E, only.

3. HOMOGENEOUS THERMODYNAMIC
POTENTIAL

It is convenient to represent components P, and P,
of the order parameter in polar coordinates:

P, = psing. 3

In the simplest case and in the absence of fields (E,=0
and E, = 0), the homogeneous thermodynamic potential
(containing no gradient invariants) has the form

® = ap®+pp’+pp’cosdd. (4)

We assume that we are dealing with second-order tran-
sitions; i.e., coefficients 3 >0and 3 — || > 0.

From the conditions of minimum for potential (4) in
variables p and ¢, we obtain the three solutions

Gy p =0,

p*=-a/(B-B). (9
G, cosdd = 1, p° = —al/(B+P),

corresponding to three phases with symmetry groups

P, = pcoso,

G,: cosdp = -1,

Irreducible representations of crystal symmetry class Dy,

Aqg i) Aqy
Uz
A2g Ay z
E, = Uy
—Us
Byg Uy — Uy By
Bog Us Boy,
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Gp=Dyp=4/mmm(initia phase), G, =C,, =2, m,,

and G, = C,, =2,mm, (see, for example, [5]). Phase G,
isstablefor a >0, and G, isstablefor a <0 and 3' > 0,
while G, exhibits stability for a <0and 3' < 0 (the same
notation of phases and their groups should not lead to
misunderstanding). Group G; = C, = m, is one more
subgroup of group G, (aswell as of groups G, and G,)
in the E, representation. The solution for phase G; can
be obtained if we take into account the second-order
invariant in p*cos4¢ in expression (4). It should be
noted that phase G,, as well as phase G,, has four dif-
ferent domains with different orientations of compo-
nents P, and P, (different values of angle ¢; see rela-
tions (5)).

We now supplement potential (4) with invariant (2).
In the case of a one-component order parameter (e.g.,
P,) transformed in accordance with a one-dimensional
representation (A,,; see table), field E, conjugate to it
leads to disappearance of the second-order phase tran-
sition. In other words, the symmetry groups of the ini-
tial and polar phases become identical. Characteristic
anomalies in physical quantities are smoothed. In the
case of a 2D representation, however, we can always
choose thefield orientation such that one of the second-
order phase transitions is preserved. Fields with orien-
tation E, = 0 or E, = 0 lower the symmetry of the G, and
G; phases to the symmetry of the G, and G; phases,
respectively. Consequently, transition Gyp) — Gy(3) is
preserved (the index of the group to which the group of
the corresponding phase is lowered in the presence of
the field is given in parentheses). Fields with orienta-
tion E, = +E, lower the symmetry of the G, and G,
phases to the symmetry of the G, and G; phases,
respectively. Consequently, transition Gy — Gyg) is
preserved. It is sufficient to consider one of these cases.
We choose E, =0 and E, = E.

The phase diagram corresponding to potentia (4),
(2) isdepicted in Fig. 1 (so far we ignore the presence
of the | phase, which will follow from the subsequent
analysis). Thecurve a = o, describing the second-order
phase transition between phases G, and G; (here, we
simplify the notation of phases: G, = Gy, and G; =
Gy g)) is defined by the expression

1 .o _ 1 _
a = 5(3p'-B)F'=a, p=3F=py

E = 2p'F’,

(6)

where the expression for p on this curve is also given
and a convenient new notation F for field E is intro-
duced (we note that the value of F depends on ' and
that B' > 0; see Fig. 1).

The solution for phases G, and G; in field E can be
obtained in asmall neighborhood of transition curve (6).

No. 5 2004



INCOMMENSURATE PHASES INDUCED IN A CRYSTAL BY EXTERNAL EFFECTS

In the G, phase, one of four domains is preserved (see
above), in which vector P, isdirected along field E;:

sing = 0, P = Po(1-4,),
a—0o, = (B+3B)FA,, ©

cosd =1,

(a—a)’
4(B +3p)
Here, we aso have the expression for thermodynamic
potential @, in the form of a series expansionina —a,
(to be more precise, in A,). The region of validity of
solutions (7) is defined by the inequality A, < 1. Inthe

G; phase, two of four domains are preserved:
6

.2
sn'¢ = éAs,

®, = ~ (B +9B)F' + 3(a )’

P = pPo(l+A4y),

dp-0t = Z(5B-3B)FAs, ®)

_ 1 ned 1 2 5(0(0—0()2
P, = 16([3 +9B)F 4(0(O a)F 2(56-30)"
Solutions (8) are valid for A; < 1.

It can be seen from relations (7) and (8) that the sec-
ond-order phase transition G, —= G; consists in the
rotation of vector P; (which is directed along the x axis
in the G, phase) through small angles +¢ about the x
axis, in other words, the component P, having opposite
directions in the two domains of phase G; appears in
this phase.

4. PHASE TRANSITION G, — 1,
We now supplement potential (4), (2) with IL invari-
ant (1) with coefficient o,
OE{P,, P}, 9)

as well as with the invariants quadratic in the deriva
tives and in components P, and P,

81[(0,P)° + (3,P,)7] +3,[(8,P)* + (3,P,)"]
+285(0,P,) (3,P,) + 25,(,P,) (9;P,)

(see, for example, [6], where both terms, the L invari-
ants and LT invariant, were introduced simultaneously
for thefirst time).

We analyze the loss of stability in the G, and G,
phases relative to harmonic displacements, which
determine the possibility of transitions from these
phasesto | phases. We write P, and P, in the form

P, = pcosd + p;cos(g,x + q,Y),
P, = psing +p,cos(a,x + g,y + ).

Quantities p and ¢ are defined in accordance with rela
tions (7) and (8). It should be noted that, in the presence

(10)

(11)
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of field E, quantities P, and P, are transformed accord-
ing to different 1D representations of the G, and G,
groups, for this reason, the values of p, and p,, as well
as the constant phase shifts  in relations (11), are dif-
ferent.

We substitute expressions (11) into thermodynamic
potential (2), (4), (9), and (10), integrate the result with
respect to coordinates x and y, and minimize the part of
the integral obtained, which is quadratic in p; and p,,
with respect to py, Py, 0, Gy, and Y. Calculations lead
to the following results for phases G, and G,.

Let us first consider the G, phase. This phase loses
stability relative to harmonic displacements (11) (and
experiences asecond-order phase transition to phase|,)
for values of F exceeding the critical value F;

Fo = (B+3p)3,/(2p'0)". (12)

Wave vector g; of the superstructure formed in this way

and the stability loss (a = @ ) of the G, phase are deter-
mined by the expressions

q’ = (B+3B)FoA8, =2 G =0, ¢ =0,

A= (FP=F)IFZ, o = 0,=0,+A,, (13)

A, = (B+3B)%5,FoA’I6B'S,,
which were derived for A < 1.

The phase transition from the G, phase to incom-
mensurate phase |, involvesthe emergence of harmonic
components P, and P, with amplitudes p, and p,,
respectively. It should be emphasized that the homoge-
neous component P,, which is present in the G, phase,
ispreserved in phasel,; in other words, the |, phase has
a peculiar structure (see relations (11)). (On possible
incommensurate polar phases, see[7].)

In the |, phase, potential @, (7) associated with the
presence of a homogeneous part of component P, is

supplemented with potential ®, associated with inho-
mogeneous (harmonic) parts of components P, and P,
with amplitudes p, and p.:

6p°(0,—a)’

(T)z = >
(B+B)(B+3B)

(14)

5. PHASE TRANSITIONS

G3 I I3AND |2 —— Gg
Let us now consider the G5 phase. Performing cal-
culations analogous to those for phase G,, we obtain
the following results. Phase G; loses stability to har-
monic displacements (11) (and experiences a second-
order phase transition to phase |I5) for values of field F
exceeding the critical value F, [see (12)]. The value of
wave vector g of the superstructure formed in this way
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G,

7/

Fig. 2. Dependence of the thermodynamic potentials of
phases G,, Gg, |5, and Izon o for F > Fq (A > 0) (seerela-
tions (7), (8), (14), and (16)).

coincides with expression (13). Vector ¢; is found to be
perpendicular to vector P, in each of the two domains of
phase |5 (note that wave vector g, is perpendicular to
vector P, in phase G, as well):

dx = —qsind, g, = qcoso,

a =dz;=0y—As,

N2x C22
A, = (B+SB)I61FOA _ 1-52,
1265, >

(15)

24 _ 653
(5B —3B")Fq

These expressions, as well as relations (13), were
derived for A < 1; in formulas (15), A coincides with
that in formulas (13). Angle ¢, aswell as phase shift
assumes two values corresponding to two domains of
phase | ;.

The phase transition from phase G; to incommensu-
rate phase | involves the emergence of harmonic parts
in components P, and P, with amplitudes p, and p,. In
domains of phase |3, homogeneous component P, and
Py, which are present in domains of phase G;, are pre-
served. In contrast to the |, phase, phase |; experiences
a constant phase shift Y between the harmonic compo-
nents P, and P, . The structure of phase I; turns out to be
even more peculiar and intricate than the structure of
phase |,.

.2 _ (B=3B)°A

sin
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In phase 15, potential ®; (8) associated with the
presence of homogeneous parts of components P, and
P, is supplemented with potential ®3 associated with
inhomogeneous (harmonic) parts of components P, and
P, with amplitudes p, and p,:

24B% (0 - 4)°

(T)g = >
(B+B)(B+3B)

(16)

Although the formation of phases|, and |5 is almost
symmetric (cf. relations (13) and (15)), phase |5 turns
out to be metastable in the entire range where it exists.
Figure 2 shows the dependence of the thermodynamic
potentials of phases G,, Gs, |,, and I; on a. The poten-
tial of the I, phase passes below the potential of the I
phase. The intersection of the potential of the I, phase
with the potential of the G; phase, which is determined

by the equality @, + ®, = ®; (see relations (7), (8),
and (14)) takes place a a = o, where

e = GO_BZH 3(55([;)3(?;;)3) -1]

-1

(17)

It should be noted that we are using here the one-
harmonic approximation for phases |. Analysis shows
that the inclusion of higher harmonics affects only
dightly the dependence of the potential of phase |, on
o, while the corresponding dependence for the poten-
tial of the I; phase changes significantly. The dashed
curve in Fig. 2 shows the predicted dependence of the
potentials of phases|, and I;ona.

6. PHASE DIAGRAMS

Thus, there exists a critical field E, = 2B'Fg (see
relation (6)) above which (E > Ey) the incommensurate
phase |, appears on the phase diagram. This is due to
the existence of IL invariant (1), while the existence of
the critical field is associated with the presence of
invariant (2), i.e., with the linear interaction of the field
with the order parameter.

It is convenient to plot the phase diagram with the |,
phase on the a3’ plane for F > F, (see Fig. 1). Phase |,
lies on both sides of the line a = a, (see relation (6)).
The phase diagram plotted on the aF? planeis even more
illustrative (Fig. 3). On the diagrams depicted in Figs. 1
and 3, the domains of phase |, expand with increasing F?

in proportion to (F2— F3)? (see relations (13) and (17)).

It should also be verified that possible but disre-
garded invariants cannot appreciably affect the results
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F?IF§

5

0 0.25
o/

Fig. 3. Phase diagram on the aF?2 plane (3p' > B). The
curves demarcate the regions of existence of phases G,, G5,

and |, (seerelations (6), (13), and (17)); ago = 2B FS .

obtained above. The potential can be supplemented
with homogeneous invariants of the form

(us % Up) (PR £ P), - Us(P+ PY),
ug(P,Py + P,P,).

However, the elimination of these invariants by varying
the potential invariablesu, £ u,, Uz, and ug would result
to renormalization of coefficientsof 3 and 3", which can
be assumed to have been performed in relation (4).

The potentia can be supplemented with invariants
of theform

(18)

(Ex E5(Pi2 P,

(19)
(E(E, + E,E)(P,P,+ P,P,),
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which are quadratic in the field and quadratic in P, and
P, aswell as with invariants of the type

(ExP £ E,P) (P £P)),
(E(P,+E,P)(P,P,+P,P)),

(20)
(EZ+E))(E,P,tEP,),

(E.E, + E,E)(EP,+ E,P,),

which are linear in the field and cubic in P, and P,
along with those cubic in field and linear in P, and P,

All invariants (19) and (20) are characterized by
higher orders in the field or in the components of the
order parameter as compared to the invariants included
in the potential. In these invariants, series expansions
can be carried out. Calculations show that this does not
significantly change the results obtained above.
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