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Abstract—Transient processes after off-axis ECR heating in the T-10 tokamak is switched on or off are ana-
lyzed. Itisfound that the transient processes have the following two characteristic features. First, transport coef-
ficients undergo a jump, thereby driving the evolution of the initial steady-state distributions of the plasma
parameters. Second, the evolution of the original configuration is accompanied by ECR heating of the plasma.
A mathematical model is proposed that takesinto account the jJump in transport coefficients over the entire cross
section of the plasma column and adequately describes this transient process. An analysis of the experimental
data confirms the validity of the model equations formulated here. It is shown that, without invoking the jump
in transport coefficients after off-axis ECR heating is switched on or off, it isimpossible to describe the exper-
imentally observed opposite-sign changes in the electron temperature at the center of the plasma column and
in the ECR heating region. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, there is much experimental evidence for
the very fast response (on time scales shorter than the
diffusion time calculated from the energy balance) of
the electron transport to various perturbations, specifi-
caly, (i) the propagation of sawtooth oscillations [1],
(if) modulated on-axis ECR heating (ECRH) in the W7-
AS stellarator [2], (iii) L—H and H-L transitionsin the
JET tokamak [3], (iv) the injection of impurities that
cool the periphera plasmain the TFTR device [4, 5],
and (v) the peripheral pelletinjectioninthe RTP[6] and
Tore Supra[7] tokamaks.

This effect was first observed during laser ablation
of pellets, accompanied by peripheral plasma cooling,
in experiments on the TEXT tokamak [8, 9], in which
the central electron temperature increased rapidly in
response to plasma cooling at the periphery. These
experiments are remarkable in that they are character-
ized by electron temperature inversion. An opposite
effect was observed during heating of the peripheral
plasma in the TEXT tokamak [10] and during modu-
lated ECRH in the RTP tokamak [11].

In the experiments carried out in [8, 9], two results
appear to be paradoxical: (i) the so-called nonloca
response of the plasma to an externa action (i.e, a
rapid change in the local plasma parameters at a large
distance from the plasma region upon which an exter-
nal action is performed) and (ii) the heating of the cen-
tral plasma in response to the peripheral plasma cool-
ing. Note that the response time is about T4 = 1-3 ms,
which is one-two orders of magnitude shorter than the
energy confinement time 1¢ and two-three orders of
magnitude shorter than the resistive time 15 of the cur-
rent redistribution. Consequently, the heating of the

central plasma cannot be explained by the peaking of
the current density and the change in the Z; profile.

The nonlocal response of the plasmato an external
action can be explained, eg., by the simultaneous
change in the electron heat diffusivity x, over the entire
cross section of the plasma column during the delay
time 14 [8, 9]. In this case, in order to describe the
experiments of [8, 9], it is necessary that the electron
heat diffusivity X, decrease by about 25-50% in the
plasma core and increase at the plasma boundary. The
experiments on the peripheral plasma heating [10, 11],
in which the electron temperature was observed to
decrease in the central plasma region, can also be
explained by a rapid change in ., but this change is
opposite in sign to that in the experiments [8, 9]. A
detailed analysis of the L-H and H-L transitions [12—
14] showed that not only ¥, but also x; should changein
ajumplike fashion, in which case the delay time 1 is of
the same order as that during the cooling or heating of
the peripheral plasma. Note that the physical nature of
such a rapid change in transport coefficients is still
unclear.

In[15], the processes of the peripheral plasma cool-
ing and heating of the core plasma in the experiments
of [8, 9] were described using the canonical profile
transport model [16, 17]. A comprehensive review of
the models used to explain the nonlocal plasma
response to an external action can be found in [18].

In our earlier papers [19-24], a new method was
developed that makesit possible to determine transport
coefficients for the transient processes that occur, e.g.,
in response to ECRH. The method may be outlined as
follows. The transient process is described by transport
equations with the unknown coefficients that are to be
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reconstructed by solving the corresponding inverse
problem. The electron temperature is assumed to be
known at several radial points and at several times. The
heat diffusivity, heat convection velocity, and ECRH
power profile are determined from the condition for the
discrepancy functiona (the difference between the
temperature values measured experimentally and those
obtained theoretically by solving the heat-conduction
equation) to be at minimum.

The objectives of this study are to anayze the tran-
sient processes after off-axis ECRH is switched on or
off, develop a mathematical model describing the non-
local plasma response to ECRH, and to reconstruct
transport coefficients both in the steady state and during
the transient process.

2. MATHEMATICAL MODEL

The transient process after ECRH is switched on
will be described as follows (the transient process after
ECRH is switched off can be described in a similar
way). We write the heat-conduction equation, the
boundary and initial conditionsfor the el ectron temper-
ature TX(r) corresponding to the quasi-steady plasma
without ECRH, and the heat-conduction equation for
the electron temperature T(r, t) corresponding to the
transient process after ECRH is switched on:

26t( STS) rar%l

———(rn uST®) + Poy + Q°,
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Xe3r O

ey
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Here, we have introduced the following notation: tg
is the time at which ECRH is switched on, Pgc is the
ECRH power, T, is the electron temperature at the
plasma boundary, n¥r) is the steady-state electron den-
sity, TS(r) isthe steady-state el ectron temperature, P,
is the steady-state ohmic heating power, the term QS
describes the steady-state heat sinks, n(r, t) isthe elec-
tron density, T(r, t) is the electron temperature, Pg, is
the ohmic heating power, and the term Q describes the
heat sinks during the transient process after ECRH is
switched on.
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In heat-conduction equations (1) and (2), the total
heat flux W is assumed to be the sum of the diffusive
and convective components:

oT

W-—n)(ea +nu,T, 3)

where ¥, is the electron heat diffusivity and u, is the
heat convection velacity. Hence, Egs. (1) and (2) alow
for the convective heat flux 5/2I' ,T, where[ , isthe par-
ticle flux.

Subtracting Eqg. (1) from Eq. (2), we obtain
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We represent the density n(r, t) and temperature
T(r,t) for the transient process as the sums of the
steady-state values nXr) and TXr) and the variations

A, t)yand T(r, t):
n(r,t) = n>(r) +n(r, t),
T(r,t) = T3(r) + T(r, t).

After ECRH is switched on, the power is mainly
deposited in the electron plasma component; conse-
quently, the electron temperature changes at a much
faster rate than the electron density does. As a conse-

quence, therelative density variation n ismuch smaller

than the relative temperature variation T . In this paper,
we are considering the transient process that occur on
time scales of 1020 ms, which allows usto neglect the
electron density variations, i.e., to assume that

)

n _T n
<=, =<1l (6)
n T n
Setting n(r, t) = nXr) in Egs. (4), we obtain
nT—n>T°=n°T,
nxOT —n>S0T>= n*(x 0T - x0T
= n°(Xe—X)OT + n*.0T, (7)
nu,T — nsuesTSz nS(ueT - ufTs)
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= ns(ue - ues)TS + nsue'T',

where Of = af
or’

Note that, up to this point, we did not assume that
the ratios (Xe — )(es)/)(eS and (U, — uf)/uf are small.
Finally, Eq. (4) reduces to
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In the inverse problem for Eq. (8), which describes
the transient process after ECRH is switched on, the

.. S S
unknowns are the transport coefficients X, Us , Xe, and
U, and the ECRH power profile Pc. The ohmic heating

power profiles Pg,, and Pg,, aswell as the profiles QS

and Q of the power of electron-ion energy exchange,
are described by standard formulas expressing the pro-
filesin terms of the plasma density and plasma temper-
ature.

In order to formulate the inverse problem of recon-
structing the transport coefficients, it is necessary to
choose a particular model for each of them. Here, we
will analyze the following two models of transport
coefficients.

(i) Thefirst isthe model in which the transport coef-
ficients ¥, and u, depend on the local values of the
plasma parameters, specifically, the electron density
n(r, t) and electron temperature T(r, t) and their gradi-
ents. In this model, the transport coefficients X, and u,
can changein alocal region of the plasma column only
when the local density and local temperature both
change in the vicinity of thisregion.

(ii) The second is the model in which the transport
coefficients X, and u, are nonlocal functions of the
plasma parameters. This indicates that, in any local
region of the plasma column, the coefficients . and u,
can change even when the local density and tempera-
turein this region remain unchanged.

For each of the models, we will write out the heat-
conduction equation for describing the transient pro-
cess after ECRH is switched on or off and will formu-
late the inverse problem of reconstructing the transport
coefficients X, and u, and the ECRH power profile Pgc.
Note that, in the steady stage, the problem of determin-
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ing X and u, is degenerate: it is possible to find only
flux (3) rather than its diffusive and convective compo-
nents. It isfor this reason that the transport coefficients
Xe and u, can be determined separately only by analyz-
ing the transient process.

3. LOCAL DEPENDENCE OF THE TRANSPORT
COEFFICIENTS X, AND u, ON THE PLASMA
PARAMETERS

The transport coefficients . and u, in Eqg. (8) can
depend on many local plasma parameters. In our anal-
ysis, werestrict ourselvesto considering the problemin
a simplified formulation. We assume that the electron
heat diffusivity ¥, and heat convection velocity u, are
functions of the following local parameters. the elec-
tron density, the electron temperature, and their gradi-
ents. In other words, we assume that

Xe(N, T, On,OT),
U (n, T,On,OT).

Xe
U =

€))

Below, for brevity, assumption (9) will be referred to as
alocal model.

Small perturbations of the plasma parameters sat-
isfy the following relationships, which will be used
below to linearize the heat-conduction equation (8):

T OT DT O T
?S‘<DTS’ DTS i (10
2
where 0%f = 6—2
or

In order to describe the transient process, we expand
the transport coefficients x. and u, (9) in the increments
in the independent variables T and [T in the vicinities
of the steady-state values of the density n° and temper-
ature TS. We al so neglect the terms of the second order

in the temperature variation T. Taki ng into account
relationships (6) and (10), we obtain the expressions
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Anaogously, we expand the chmic heating power Pg,
and heat loss Q during the transient processin thevicin-
ity of the steady state and neglect the corresponding
second-order terms. As aresult, we obtain
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H}PoHIZI T, Q- Q e

Pon POH 03T O

(12)



370

Substituting formulas (11) and (12) into Eq. (8), we
arrive at the following linearized equation for the elec-

tron temperature variation T (r, t):

OTD 10
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In the local model of transport coefficients [25], the
most important of the characteristic features of Eq. (13)
and relationships (14) are asfollows.

(i) The transport coefficients (14) in the transient
process differ from those in the steady stage.

(ii) If the coefficient ¥, is afunction of the electron
temperature T only, then the linearized equation (13)
always contains the convective term, even when the
convective heat flux does not enter the basic equations

(1) and (2) (uS = 0).

(iii) The coefficients K and V in the linearized equa-
tion (13) are functions of the steady-state plasma
parameters, i.e, they are determined only by the
steady-state density and temperature distributions.

4. NONLOCAL DEPENDENCE
OF THE TRANSPORT COEFFICIENTS X,
AND u, ON THE PLASMA PARAMETERS

In this model, the transient process after ECRH is
switched on or off is described by assuming that the
dependence of transport coefficients on the plasma
parameters is nonlocal. Let us clarify what is meant
here by the nonlocal dependence. The electron heat dif-
fusivity ¥, and heat convection velocity u, in the tran-
sient process can be represented as

Xe(r, 1) = Xo(r) + XolF 1), Ug(r, 1) = ug(r) + Ue(r, 1),
<tS G m, t<stg  (15)
Uelr, =
e() t %e(r)v 1:>tS'

In fact, representations (15) assume that the varia-
tions X, and U, occur on time scales much shorter than

Xer, ) =
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the diffusion time, which is characteristic of the tran-
sient processin question. In addition, it is not assumed
that the ratios )~(e/)(eS and Ge/uf are smaller than unity.
Below, representations (15) will be referred to asanon-
local model of transport coefficients.

Substituting representations (15) into Eq. (8) yields
the equation

30 103,070 19
2ot ) = et K amrar V)
PPo7”, 0Q°)5
+Pect | B52H + B |T
+1 0TS 0Ty 19
ot ororar VT, (16)

%—I(r =0,t) =0, T(r=1,t) =0, t>tg

T(r,t=t) =0, O<r<L

When deriving this equation, we assumed that expan-
sions (12) are valid. We also introduced the notation

K= KS+K, V=V°+V,
S

K® = K%(r) = n*(r)xe(r).
K = K(r) = n°(n)Xe(r), (17)
VZ = V() = n’(r)ug(r),
V = V(r) = n*(r)l(r).

In the formulation of the inverse problem, the
unknowns in Eq. (16) are the electron heat diffusivity

xf and heat convection velocity uf in the steady state,

the variations X, and U, in the transient process after
ECRH is switched on or off, and the ECRH power pro-
file Pee(r).

Note that, in the inverse problem for the linearized

equation (13), there are only two unknown functions, K
and V, but the relationship between these functions and

the steady-state coefficients xf and uf (14) isundeter-
mined. Now, Eq. (16) containsfour unknown functions,

namely, K, K, V, and V, with which, however, the four

sought-for functions )(eS , uf , Xer @nd U, can easily be

found from formulas (17).

Equations (16) with relationships (17) will be used
to describe the transient process after ECRH is
switched on or off in the model of the nonlocal depen-
dence of transport coefficients on the plasma para-
meters.

PLASMA PHYSICS REPORTS Vol. 28 No. 5 2002
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5. FORMULATION OF THE INVERSE PROBLEM
AND NUMERICAL ALGORITHM
FOR SOLVING IT

Here, we formulate the inverse problems of recon-
structing the transport coefficients for problem (13) and
(14) and for problem (16) and (17). Let the transient
process after ECRH is switched on or off be described
by Eq. (13) with relationships (14) or by Eq. (16) with
relationships (17), and let the coefficients K and V as
well as the coefficients K and V in Eq. (16) be time-
independent. The known quantities are the electron

temperature variations fik measured experimentally at
Nradia pointsr;(i=1,...,N)at Mtimest, (k=1, ...,
M) and some of the global plasma parameters, namely,
the major and minor radii of the plasma column, the
total plasma current, the ohmic heating power, and the
ECRH power.

We begi n by writing the discrepancy functional:

zz Zv[T(r.,tk) fl /z Zv.[f 1,

k=1i=

wheretheweighting factorsy; are to be chosen in accor-
dance with the reliability of information from different
measurement channels.

The inverse problem is formulated as follows. It is
necessary to determine the ECRH power profile P (),
the heat diffusivity K(r), the heat convection velocity
V(r), and also, for Eqg. (16), the variations K (r) and
V (r) with which the solution T (r, t) to the heat-con-
duction equation (13) or (16) minimizes the discrep-
ancy functional (18).

The method for solving the inverse problem
assumes a parametric representation of the sought-for
functions. We expand the unknown functions K(r),
K (r), V(r), V (r), and Pgc(r) in certain basis polyno-
mial functions [19—24] ;

(18)

Mg

K = 3 ko,

j=1

K(r) = zkcb (",

j=1

My My .
V() = Y vigi(n, V() = S g, a9)
j=1 ji=1

(o]

Pec(r) = AeXp[ BDZWD} B = 2%In2.

Here, ¢/, ¢, ¢ ,and §; =1{1,r, 1313, ...} arepoly-
nomials; r, is the position of the center of the ECRH
power profile; w is its half-width; and the constants A
and a determine the amplitude, profile, and total ECRH
power.
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Hence, the solution of the inverse problem reduces
to the determination of the vector of the unknown
parameters

P={k,j=1 ..Mk,j=1,..
|\/|V,V j=1,.

» Mg,
: (20)
VI’J =1 M\'}sAer!Wla}
from the condition for the discrepancy functional (18)
to be at minimum.

Theinverse problemis solved by the method of iter-
ative regularization [26], which consists of the follow-
ing steps: (i) theinitial vector PS (s = 1) of the sought-
for parameters is specified and Eq. (13) or (16) is
solved, (ii) the gradient VJS of the discrepancy func-
tional (18) and the descent depth vector hS are calcu-
lated, and (iii) the new approximation for the sought-for

parameters is determined from the relationship P =

0J°
P’ + h; P
mizes the discrepancy functional (18), thereby giving
the desired solution to the inverse problem (13), (14),
and (18)—(20) or the inverse problem (16), (17), and
(18)—20).

The accuracy with which the transport coefficients
and the right-hand sides of the equations of the inverse
problem can be reconstructed was thoroughly dis-
cussed in[19], in which the numerical results of “quasi-
real” experiments were presented and the reconstruc-
tion accuracy was estimated as a function of the uncer-
tainties in the input parameters (i.e., errors in measur-
ing the electron temperature). That is why we do not
discussthis question in detail here.

This iteration procedure (i)—(iii) mini-

6. NUMERICAL RESULTS

Here, we describe numerical results obtained for the
T-10 tokamak. Since the spatial resolution of the sys-
tem for measuring the electron temperature from the
second harmonic of EC emission in T-10 was insuffi-
cient for our purposes, the numerical algorithm pro-
posed here was based on the data from soft X-ray
(SXR) diagnostics. In T-10, the SXR intensity Iy iS
recorded from 40 viewing chords with the spatial reso-
[ution Ar = 1-1.5 cm and the temporal resolution At =
40 ps. Having solved the abelianization problem, we
obtain the radial SXR intensity profile Jyxx(r), from
which we can determine the electron temperature pro-
file by solving the transcendental equation

oo

where n(E) is the sensitivity function of the detector.
In Eq. (21), the sensitivity function n(E) was calcu-

lated for a Maxwellian electron distribution function.

When calculating the electron temperature, we aso

Jsxr U f(zeff) ﬂ(E)dE (21
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Fig. 1. (a) Redial profiles of the change Algxr(r) in the chord SXR signal at different times after off-axis ECRH in shot no. 29614
is switched on (t = 670 ms). The symbols are for the experimental SXR intensities, and the solid curves are for the integral of the
local SXR intensity, AJgxg, obtained by solving the problem of the abelianization of the SXR signal Algxg. (b) Time evolution of
the local SXR intensity AJgxgr(t) at different radii after off-axis ECRH in shot no. 29614 is switched on (t = 670 ms). The solid

curves correspond to the radial pointsin the central plasmaregion 0 < r/a < 0.2, and the dashed curves refer to the ECRH power
deposition region 0.3 < r/a < 0.7. The quantity AJgxgr Was determined from the abelianization of the measured signal Algxg.

assumed that the electron density n(r, t) and profile
Z(r, t) both remained unchanged during the transient
process. The SXR detectors were calibrated with the
help of the electron temperature profile measured by
the Thomson scattering technique in the steady dis-
charge stage before ECRH is switched on or off.

Figure 1a shows the radial profiles of the change
Algx(r) in the chord SXR signal intensity at different
times after off-axis ECRH in shot no. 29614 is
switched on (t = 6470 ms). The symbols denote the
experimental SXR intensities, and the solid curves cor-
respond to the integral of the local SXR intensity,
AJgxr, Which was obtained by solving the problem of
the abelianization of the SXR signal Algyg.

Figure 1b showsthetime evolution of thelocal SXR
intensity AJgyg(t) at different radii after off-axis ECRH

in the same discharge (shot no. 29614) is switched on

(t =670 ms). The solid curves correspond to the radial
pointsin the central plasmaregion 0<r/a<0.2, and the
dashed curves refer to the ECRH power deposition
region 0.3 < r/a < 0.7. The quantity AJsxg Was deter-
mined from the abelianization of the measured signal
Algxg.

In moving along the viewing chords from the
plasma boundary toward the center of the plasma col-
umn, each next signal isthe sum of the preceding signal
and the integral of the signals from the inner region
between two neighboring measurement channels. Note
that, in the direction from the plasma boundary to the
plasma center, the viewing chords become even longer.
There is a possibility that the SXR signal intensity
decreases starting from a certain measurement channel
(asisthecasein Figs. laand 2a). Thisindicatesthat the
change in the SXR intensity in the ECRH power depo-
PLASMA PHYSICS REPORTS  Vol. 28
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Fig. 2. (a) Radial profiles of the change Algxr(r) in the chord SXR signal at different times after off-axis ECRH in shot no. 29614

is switched off (t = 750 ms). The symbols are for the experimental SXR intensities, and the solid curves are for the integral of the
local SXR intensity, AJgxg, obtained by solving the problem of the abelianization of the SXR signal Algxg. (b) Time evolution of

the local SXR intensity AJgyg(t) at different radii after off-axis ECRH in shot no. 29614 is switched off (t = 750 ms). The solid
curves correspond to the radial points in the central plasmaregion 0 < r/a < 0.2, and the dashed curves refer to the ECRH power

depositionregion 0.3 <r/a<0.7.

sition region is opposite in sign to the change in the
SXR intensity at the center of the plasma column. This
effect is also confirmed by the solution to the abelian-
ization problem of reconstructing the radia profile of
the local SXR signal intensity.

Figure 2a shows the radial profiles of the change
Algxr(r) inthe chord SXR signal at different times after
off-axis ECRH in shot no. 29614 is switched off (t =
750 ms). The symbols denote the experimental SXR
intensities, and the solid curves correspond to the inte-
gral of the local SXR intensity, AJsxr, Which was
obtained by solving the problem of the abelianization
of the SXR signal Al gx.

Figure 2b showsthe time evolution of thelocal SXR
intensity Algxg(t) at different radii after off-axis ECRH
in the same discharge as in Fig. 2a (shot no. 29614) is
switched off (t = 750 ms). The solid curves correspond

PLASMA PHYSICS REPORTS  Vol. 28
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totheradial pointsinthecentral plasmaregionO<r/a<
0.2, and the dashed curves refer to the ECRH power
deposition region 0.3 <r/a<0.7.

One can readily see that, during the first ten milli-
seconds, the change in the local intensity AJgxg in the
central region isopposite in sign to the change in AJgxg
in the ECRH power deposition region. In other words,
after ECRH is switched on, the central temperature
decreases, while, after ECRH is switched off, the cen-
tral temperature increases. Hence, the transient process
after off-axis ECRH is switched on or off isan example
of the nonlocal plasma response to an external action.

Now, we turn to the solution of the inverse prob-
lems. First, we present the results of a numerical solu-
tion of theinverse problem (13) and (14). Here, we ana-
lyze discharges in which the changesin the ohmic heat-
ing power Pg, and heat loss Q are both much smaller
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Fig. 3. Radia profiles of the change Algxg(r) in the chord SXR signal at different times after off-axis ECRH in shot no. 23281 is

switched off (t =800.5ms): 1 —At=(1) 2, (2) 4, (3) 6, (4) 8, and (5) 10 ms. The symbols are for the experimental SXR signal
intensities, and the solid curves are for the integral of the local SXR intensity, AJsxr, obtained by solving the abelianization prob-

lem.

than the ECRH power Pg¢; consequently, in Eq. (13),
we can neglect thetermswith (0P, /0T)Sand (0Q/0T)S.

The relevant experimental data and the results of
their numerical processing for the transient process
after off-axis ECRH in shot no. 23281 is switched off
(t=800.5 ms) areillustrated in Figs. 3-6.

Figure 3 shows the radial profiles of the change
Algxr(r) inthe chord SXR signal at different times after
off-axis ECRH is switched off. The symbols denote the
experimental SXR signal intensities, and the solid
curves correspond to the integral of the local SXR

intensity, AJsxg, Which was obtained by solving the
abelianization problem.

Figure 4 shows the radial profiles of the electron

temperature variation ?(r, t) at different times after
off-axis ECRH is switched off.

Theresults of solving theinverse problem (13), (14)
and (18)—(20) areillustrated in Fig. 5, which shows the
radial profiles of the effective electron heat diffusivity

xff (r) = K(r)/nXr), effective heat convection velocity
ueef f(r) = V(r)/nXr), and ECRH power Pg(r). The Pgc

PLASMA PHYSICS REPORTS Vol. 28 No. 5 2002
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Fig. 4. Radial profiles of the electron temperature variation at different times after off-axis ECRH in shot no. 23281 is switched off

(t=800.5ms): At= (1) 2, (2) 4, (3) 6, (4) 8, and (5) 10 ms.

profile shown by the solid curve is abtained by solving
the inverse problem with the parameters r,/a = 0.34,
w/a=0.16, and a = 2. When solving the inverse prob-
lem, we fixed the last parameter, a = 2, set the total
ECRH power at 0.65 MW, and searched for the param-
etersr, and w. In Fig. 5, the dashed curve is the radia
profile of the normalized input power, calculated by the
method of ray trgjectories with the TORAY code [27].

The ECRH power profile obtained from our model
isseento coincide fairly closely with that calculated by
the TORAY code. The discrepancies between the pro-
files can be explained by the fact that, in redlity, the
transport coefficients may be both temperature- and
time-dependent, which is not taken into account in our
model equation (13) with relationships (14).
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Figure 6 shows the radial profiles of the change in
the heat flux components at different times after ECRH
is switched off, namely, the diffusive component

AW = _KAT/ar and the convective component
MW, = VT, calculated by solving theinverse problem.

We point out the following characteristic feature of
the results obtained. Figure 4 clearly showsthat, on the
time scales under consideration (5-10 ms), the varia-

tion T (r, t) in the electron temperature profile spreads
out sowly (in comparison with the diffusion time) but
the increment in the temperature gradient does not
decrease. An analogous effect was mentioned in [23,
28-30]. According to Fig. 5, the effective heat convec-
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Fig. 5. Solution to the inverse problem (13), (14) and (18)—
(20) for shot no. 23281. Shown are theradial profiles of the

effective electron heat diffusivity x:ﬁ n = K(r)/ns(r),

effective heat convection velocity usﬁ n= V(r)/ns(r), and
ECRH power Pgq(r). The Pgc profile shown by the solid

curve is obtained by solving the inverse problem with the
following parameters: the total ECRH power is 0.65 MW,
ro/a=0.34, wa=0.16, and o = 2. The dashed curve isthe

radia profile of the normalized input power, calculated by
the method of ray trajectories with the TORAY code.

tion velocity uf ' (r) changes its sign near the center of

the ECRH power deposition region. Thisindicates that,
to the left and to the right of the power deposition
region, the convective heat flux is directed toward the
diffusive heat flux (Fig. 6). The presence of the convec-
tive heat flux with such a structure preventsthe electron
temperature profile from being spread out.

Now, we turn to the results obtained from the nonlo-
cal model (15) and (16). Recall that, in the inverse prob-
lem (15), (16), and (18)—(20), it is necessary to recon-

struct five unknown profiles, namely, K(r), V(r), K n),

V (r), and Pgc(r), which is, however, a fairly difficult
task because it requires low-noise experimental data.
Sincethe noiselevel indischargesillustrated in Fig. 1a,
23, and 3 was very high, we consider the following two
simplified versions of the inverse problem.

Problem A. We assume that the total heat flux (3) in
the steady state only has the diffusive component; i.e.,

ANDREEYV et al.
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=500
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Fig. 6. Radial profiles of the changes in the heat flux com-
ponents for shot no. 23281 at different times after off-axis
ECRH is switched off (t = 800.5 ms), namely, the diffusive

component AWy = -KaT /ar and the convective compo-

nent AW, = VT, calculated by solving the inverse prob-
lem: At = (1) 2, (2) 4, (3) 6, (4) 8, and (5) 10 ms.

uf (r)=0. Additionally, we assumethat, during the tran-
sient processes after ECRH is switched on or off, only
the electron heat diffusivity changes, X, (r, t) 0, while
Ue (r, 1) =0.

Inthisversion of theinverse problem (15), (16), and
(18)—(20), it is necessary to reconstruct the coefficients
K(r) = Kr) + K(r) and K (r) and the ECRH power
profile Pec(r).

Problem B. We again assume that the total heat flux
(3) inthe steady state only hasthe diffusive component;

i.e, uf(r) = (. Additionally, we assume that, during the
transient processes after ECRH is switched on or off,
the total heat flux acquires a convective component,
while its diffusive component remains unchanged; i.e.,
Xe(r, 1) =0 and Gg(r, t) # 0.

In this version of inverse problem (15), (16), and
(18)—20), it is necessary to reconstruct the coefficients
PLASMA PHYSICS REPORTS  Vol. 28

No. 5 2002
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Fig. 7. (a) Solution to inverse problem (15), (16), and (18)—(20) in formulation A for the transient process after ECRH in shot no.
23281 isswitched off. The dashed curveisfor the steady-state el ectron heat diffusivity XS () =XeN- )N(e (r), the dashed-and-dotted
curveisfor thejump )N(e (r) inthe electron heat diffusivity, and the solid curve isthe ECRH power profile Pec(r) with the parameters
ro/a=0.38 and w/a = 0.17. (b) Solution to inverse problem (15), (16), and (18)—20) in formulation B for the transient process after
ECRH in shot no. 23281 is switched off. The dashed curve is for the steady-state electron heat diffusivity x? (r), the dashed-and-
dotted curve is for the jump Ge (r) in the heat convection velocity, and the solid curve is the ECRH power profile Pg(r) with the

parametersry/a = 0.38 and w/a = 0.17.

K(r) = KXr) and V(r) and the ECRH power profile
Pec(h).

Note that, when solving these two simplified inverse
problems, we fixed the parameters a = 2 and P =
0.65 MW and searched for the parameters r, and w.

Figure 7aillustrates the solution to inverse problem
(15), (16), and (18)—(20) in formulation A. The dashed
curve corresponds to the steady-state electron heat dif-

fusivity XS(r) = X« — Xe(r), the dashed-and-dotted

curverefersto thejump X, (r) in the electron heat diffu-
sivity, and the solid curve is the ECRH power profile
Pec(r) with the parametersr,/a = 0.38 and w/a = 0.17.
Figure 7b illustrates the solution to inverse problem
(15), (16), and (18)—(20) in formulation B. The dashed
curve corresponds to the steady-state electron heat dif-

fusivity xf (r), the dashed-and-dotted curve refers to

the jump U, (r) in the heat convection velocity, and the
solid curve is the ECRH power profile Pe(r) with the
parametersr,/a = 0.38 and w/a = 0.17.

Figure 8 shows the time evolution of the variation in
the electron temperature at several radii (version A).
The solid curves correspond to the el ectron temperature
calculated by solving transcendental equation (21) after
No. 5
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solving the abelianization problem. The dashed curves
refer to the solution of inverse problem (15), (16), and
(18)—(20) informulation A. We can see that this version
of the model describes well an increase in the electron
temperature in the central region of the plasma column
and adecrease in the electron temperature in the ECRH
power depasition region.

Figure 9 shows the radial profiles of the changesin
the heat flux components at different times after off-
axis ECRH is switched off (version B). The solid curve

reflects the jump in heat flux, AW,,,,, = n°U.T°, which

is associated with the jumps in transport coefficients.
The symbols stand for the perturbation AW, =

T

€or
curves correspond to the perturbation AW,,,., = n°u,T

of the convective heat flux. The perturbed convective
heat flux is seen to be about one order of magnitude
smaller than the perturbed diffusive heat flux.

Note that, at this stage of investigation, we are not
able to choose one of the two solutions obtained by
solving the inverse problem in formulations A and B,
because the input experimental data were obtained
from discharges with afairly high noise level. In order

-nSx of the diffusive heat flux, and the dashed
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Fig. 8. Time evolution of the electron temperature variation (version A) at severa radii in the transient process after ECRH in shot
no. 23281 is switched off. The solid curves correspond to the electron temperature calculated by solving transcendental equation
(21) after solving the abelianization problem. The dashed curves refer to the solution of inverse problem (15), (16), and (18)—(20).

to choose one of these solutions, itisnecessary toinvolve  tive flux directed outward from the center (version B).
additional experimental information. Thus, it is well  However, in order to obtain the final answer to this ques-
known that, after ECRH is switched on, the plasmais tion, it is necessary to have more detailed experimental
partially expelled from the central region. Thiseffect can  information about the behavior of the plasmadensity and
be explained as the onset of an additional radial convec-  to solve the equation describing its evolution.

PLASMA PHYSICS REPORTS Vol. 28 No. 5 2002
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7. DISCUSSION

In this paper, we have described transient processes
after ECRH is switched on or off by using two models
of transport coefficients. For each of the model, we
have derived the transport egquation and have formu-
lated the inverse problem. By solving the inverse prob-
lems, we have reconstructed the transport coefficients
and the ECRH power profile. Let us compare the
numerical results obtained from these two models.

(i) First, we consider how each of the models
describes opposite-sign changes in the electron temper-
ature in the central region of the plasma column and in
the power deposition region during off-axis ECRH (see
Figs. 1b, 2b, and also papers[2, 8-11]).

The nonlocal model of transport coefficients reli-
ably describes a decrease (or increase) in the tempera-
ture at the plasma center. After ECRH is switched on
(or off), the electron heat diffusivity increases (or
decreases) simultaneously over the entire cross section
of the plasma column in ajumplike manner. Thisindi-
cates that the central electron temperature begins to
change before the perturbations from ECRH reach the
central region.

The local model of transport coefficients is incapa-
ble of describing opposite-sign changes in the electron
temperature in the central region of the plasma column
and in the ECRH power deposition region. In Eq. (13),
the heat sink term (which describes changesin both the
ohmic heating power and the power of electron-on
energy exchange) comes into play only when the cen-
tral temperature changes; however, this change in the
temperature is aconseguence of the propagation of per-
turbations from ECRH. In this case, the sinks can only
slow down the rate at which the temperature changes,
so that the heat sink term fails to describe the tempera-
ture decrease in the central region of the plasma col-
umn.

(if) Second, we consider how the models describe
the experimentally observed retarded spreading of the

variation T (r, t) in the electron temperature profileon a
time scale longer than the diffusive time (see Fig. 4 and
also papers[22, 28-30]).

The nonlocal model describes this effect as follows.
At each radia point, there are two competing pro-
cesses. a decrease in the temperature because of the
jumplikeincrease in the electron heat diffusivity and an
increase in the temperature due to ECRH. As a result,
the temperature changes at a slower rate, thereby lead-
ing to the observed effect of the retarded spreading of
the radial electron temperature profile.

The local model describes this effect in a different

way. The heat convection velocity uf ' (r) evaluated by

solving the corresponding inverse problem has the fol-
lowing feature: it changesits sign near the center of the
ECRH power deposition region (Fig. 5). As aresult, to
the left and right of the power deposition region, the
No. 5
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Fig. 9. Radial profiles of the changes in the heat flux com-
ponents (version B) at different times after off-axis ECRH
in shot no. 23281 is switched off: (2) At = 0.5 ms, (3) At =
1.5ms, (4) At=2.5ms, (5) At =3.5ms, (6) At =4.5ms, and
(7) At=5.5ms. Solid curve Lisfor thejump inthe heat flux,

AWy, = n°0, TS, which is associated with the jumps in

transport coefficients. The symbols stand for the perturbed
diffusive heat flux AWy = —nSX$ST | and the dashed
curves are for the perturbed convective heat flux AW, =
nSG,T .

convective heat flux AW, ., = VT isdirected toward the

diffusive heat flux AW, = _KaT Jor. Itisthisstructure
of the convective flux that prevents the electron temper-
ature profile from being spread out.

This analysis indicates that the effective heat con-

vection velocity u:f ' (r) depends not only on the local
plasma parameters but also on the position of theregion
wherethe ECRH power isdeposited, i.e., on the param-
eters of the transient process (in the case at hand, on the
ECRH power profile Pec(r)). However, formula (14),
which was obtained for usﬁ (r) in deriving linearized
equation (13), implies that the heat convection velocity

uf ' (r) should depend only on the steady-state distribu-
tions of the plasmadensity and plasmatemperature. For
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this reason, the solution uf f (r) obtained above contra-

dictsthe assumptions madein deriving linearized equa-
tion (13).

(iii) Third, we point out one more feature of the
solutions to the inverse problems in the two model's of
transport coefficients.

In the local model, the perturbations of the diffusive

(AW, =—-KOT /or) and convective (AW,,,, = VT ) heat
fluxes cancel one another to a large extent (Fig. 6). In
this case, the required heat convection velocity in the
ECRH power deposition region is high, uf " =50 m/s
(Fig. 5). This indicates that, in order to determine the
heat flux from the solution to inverse problem (13),
(14), and (18)—20), it is necessary to determine the dif-
ference of two large quantities, which isas small as 10—
20% of the diffusive heat flux. As aresult, in the local
model, the inverse problem turns out to be ill-condi-
tioned, which may lead to alarge error in the resulting
solutions.

The nonlocal model gives another pattern of the heat
fluxes (Fig. 9). Thetemporal evolution of the changein
thetotal heat flux is characterized by the jump AW,

fjump =
n°G.T> or AW, = —N5X0TS0r in the heat flux (this
jump is associated with the jumps in transport coeffi-
cients), the jump AW, = —nsxf 0T /or in the diffusive

heat flux component (this jump is determined by the
change in the electron temperature), and the jump

AW, = nSGeT in the convective heat flux component
(this jump, however, plays an insignificant role in the
evolutionary pattern, because the heat convection
velocity is as low as U, =2 m/s, see Fig. 7b). Conse-

guently, in the nonlocal problem as formulated, the
inverse problem is well-conditioned and the resulting
solutions are sufficiently exact.

(iv) Finally, we compare the two modelsin the con-
text of the value of the discrepancy functional (18). In
the loca model (9), the discrepancy functional (18)
determined from the solution to inverse problem (13),
(14) and (18)—(20) is approximately equal to J = 8.89 x
10-3. In nonlocal model (15), the solution to inverse
problem (15), (16), and (18)—(20) yields J = 5.63 x 1073,
As aresult, the discrepancy functional in the nonlocal
model (15) is a factor of about 1.5 smaller than that in
local modd (9). This circumstance is an additional
argument in favor of the nonlocal model.

Hence, the above analysis of the numerical results
obtained from two different models of transport coeffi-
cients allows usto draw the following conclusions:

(i) The use of the nonlocal model (15) (specifically,
the introduction of the jumps in transport coefficients)
provides a reasonable accuracy in the description of
transient processes after ECRH is switched on or off.

ANDREEYV et al.

(i) In contrast, the local model (11) failsto describe
these transient processes with a sufficient accuracy and
yields results contradicting the underlying assumptions
of the model.

8. CONCLUSIONS

The transient processes after ECRH is switched on
or off have the following characteritic features. First,
the transport coefficients change in ajumplike manner,
thereby driving the evolution of the initial steady-state
distributions of the plasma parameters. Second, the
evolution of the original configuration is accompanied
by ECRH of the plasma. Consequently, in numerical
modeling and in atheoretical analysis, it isnecessary to
use the equations that are capable of describing both of
these transient processes simultaneously.

The mathematical model proposed here takes into
account the jump in transport coefficients over the
entire cross section of the plasma column and ade-
guately describes the transient processes under consid-
eration. An analysis of the experimental data confirms
the validity of the model equations formulated here.
Numerical calculations show that, under the ECRH

conditions in the T-10 tokamak, the jump X. in the
electron heat diffusivity amounts to approximately 15—

20% of the steady-state value xf . Note that, without

invoking the jump in transport coefficients after off-
axis ECRH is switched on or off, it is impossible to
describe opposite-sign changes in the electron temper-
ature in the central region of the plasma column and in
the ECRH power deposition region.

The proposed nonlocal model of transport coeffi-
cients can be used to analyze the results from experi-
ments in which the peripheral discharge plasma is
cooled by injecting pellets or impurities and from
experimentsin which the peripheral plasmaisheated as
the total plasma current is rapidly ramped up.
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Abstract—A new type of longitudinal electric current isrevealed by analyzing the drift trajectories of charged
particles in a tokamak—the current that may be referred to as the asymmetry current because it is associated
with the asymmetry of the boundary between trapped and transit particlesin phase space. The generation of this
current is explained by the fact that the motions of the particles that cross the magnetic surface at agiven point
in opposite directions are qualitatively different. The asymmetry current results from the toroidal variations of
the magnetic field and is maintained by the radial momentum flux of transit particles. The contribution of the
particles of different species to the asymmetry current density is proportional to their pressure, isindependent
of the gradients of the plasma parameters, is maximum at the magnetic axis, and decreases toward the plasma
periphery. In contrast to standard neoclassical theory, the asymmetry current can be found only from exact par-
ticle trajectories. The asymmetry current is calculated for tokamaks with differently shaped magnetic surfaces
and for a model stellarator. By exploiting the newly revealed asymmetry current, together with the bootstrap
current, it may be possible to substantially simplify the problem of creating a tokamak reactor. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The concept of a steady-state tokamak-based fusion
reactor was introduced as early as 1971 by Bickerton,
Connor, and Taylor [1] and independently by Kadomt-
sev and Shafranov [2]. Their ideas originated from
Galeev and Sagdeev’s theoretical discovery (in 1967)
of “banana’ diffusion, which generates the bootstrap
current [3, 4]. In 1987, the bootstrap current was
observed experimentally by Havryluk et al. [5]. The
bootstrap current density is proportional to the plasma-
density and plasma-temperature gradients, and the neo-
classical bootstrap current vanishes near the magnetic
axis. Because of this, it was proposed to use an external
current source in order to maintain the central region of
the tokamak plasmain a steady state. However, exact
calculations of the drift trajectories show that the near-
axis bootstrap current density is actually nonzero: for
typical plasma parameters, it is about 18% of the max-
imum radia current density [6-9]. It has been esti-
mated that this level of the bootstrap current density is
capable of ensuring the steady-state operation only of a
tokamak reactor with a highly elongated plasma [10],
while the creation and stable confinement of such a
plasma is a fairly complicated technical problem,
which has not yet been conclusively resolved. In this
context, it is of interest to discuss a new natural mech-
anism for generating a steady-state longitudinal current
near the magnetic axis. This mechanism operatesin a
narrow region in phase space and isgoverned by aqual-

itative difference in the motions of charged particles
that cross a given magnetic surface in opposite direc-
tions. The magnitude of thisnew current—the asymme-
try current—is determined by the density of such tran-
Sit particles that are responsible for the asymmetry of
the boundary between transit and trapped particles in
phase space. |n toroidal magnetic confinement systems,
the asymmetry current is generated by the magnetic
field gradient. The magnitude of the asymmetry current
isproportional to thetotal plasma pressure, and itsden-
sity is maximum at the magnetic axis of the device.

To the best of our knowledge, there are two papers
devoted to experimental studies of the radia distribu-
tion of the noninductive current density: these are
experiments on the Proto-Cleo stellarator [11] and the
CDX-U tokamak [12]. In those papers, the near-axis
current density was found to be far greater than its neo-
classical value. The analysis carried out in [13-17]
showed that, in a tokamak, the current near the mag-
netic axis may be so high that it cannot be described by
neoclassical theory; moreover, this current hasthe same
direction as the ohmic current. As was asserted in [13,
14], the existence of such a current follows from the
conservation of the generalized momentum (the toroi-
dal canonical momentum) of a particle. The self-gener-
ation of the current in atokamak with an additional ver-
tical (poloidal) magnetic field was considered by Chu
[15], who showed that the trapped particle loss conein
velocity space is asymmetric with respect to the sign of
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the toroidal particle velocity. The current generated by
aspecific group of particlesin astandard tokamak mag-
netic field was for the first time predicted theoretically
inour papers[16, 17], where this current was called the
“asymmetry current.” In [18], we analyzed for the first
time the question of whether the asymmetry current can
actually exist in stellarators.

Since an asymmetry of the boundary region
between trapped and transit particles in phase space
stems from the characteristic features of the drift
motion of particles in the magnetic field of a closed
confinement system and since these features them-
selves are associated with the conservation of the toroi-
dal canonical momentum, we can state that the currents
predicted in [13-18] are produced by essentially the
same mechanism.

However, in all papers devoted to the investigation
of plasma behavior near the magnetic axis (including
papers [6-10], which were aimed, in particular, at cal-
culating the on-axis current), the authors found only
corrections to the bootstrap current and revealed no
asymmetry current, although, at the magnetic axis, the
asymmetry current is substantially higher than the
bootstrap current.

Here, we quantitatively estimate the asymmetry cur-
rent in tokamaks with circular and noncircular mag-
netic surfaces. The asymmetry current in stellaratorsis
considered by using asimplified model, which provides
only qualitative estimates. We compare these qualita-
tive predictions with the experimental data from the
Proto-Cleo stellarator [11].

2. ASYMMETRY CURRENT
(QUALITATIVE ANALYSIS)

We consider the motion of charged particles in a
tokamak magnetic field in the drift approximation [19]
and represent the magnetic field as

Bory, Be

= 200 2o 40
B_ h ,BO,1D1

where B, is the toroidal magnetic field, h=1 + €cos8,
€ =r/R, r is the radius of a magnetic surface, R is the
tokamak major radius, 8 isthe poloidal angle, and By is
the poloidal magnetic field. In order to simplify the
analysis of the drift trgjectories, we assume that the
ratio By/B, is small and neglect the changes in the
safety factor g, plasma density n, and temperature T

along the particle trgjectories. In this case, the drift
equations [20] yield

(1)

%
-3 =¢"1n 2

y Svall 2

v, =0o,vJG+ gcosbh . (3)
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Here, the poloidal magnetic flux ¢ = Y,20/(B,R?) is
normalized in such a way that, for circular magnetic
surfaces, itisequal to Y =¢2; J=J,{/(mv) isthenormal-
ized toroidal component of the generalized momentum;
the parameter { = 2gp/R is proportional to the Larmor
radius p of a particle moving with the velocity v; G =
1 — uBy/E istheinvariant quantity expressed in terms of

the magnetic moment L = mvéh/zB0 of aparticle; v
and v are the particle velocities parallel and perpen-
dicular to the magnetic field; and 6, = £1 isthe sign of
the particle velocity at a point with the coordinates €
and 6 on the particle tragjectory.

From Egs. (2) and (3) for a tokamak with circular
magnetic surfaces () = € = const), we obtain the fol-
lowing expression, which is to be the subject of our
analysis.

e’ —g2+ 0,0, /h../G + e.cos,
= 0,{/hJ/G + ecosb.

In order to understand the physical nature of the
asymmetry current, it is sufficient to thoroughly exam-
ine how the character of the particle motion changes
depending on the value of the quantity G and the sign
of the quantity o.. The value og = +1 determines the
sign of the velocity of a particle whose trajectory inter-
sects the magnetic surfacee = g, at thepoint (€=¢,, 6 =
8,); the current of such particlesincreasesthe rotational
transform. The value o, = —1 corresponds to the sign of
the velocity of aparticle that crosses this magnetic sur-
face at the same point but in the opposite direction.
Note that, in a tokamak, a particle with o = +1 moves
in the direction of the ohmic current. We aso stress
that, in contrast to g, the quantity o is an integral of
motion.

Expression (4) implies that, first, the drift trajecto-
ries of the particles with o, = +1 that start from a mag-
netic surface of radius €, > {?* at 6, = 0 remain inside
this magnetic surface and, second, the drift trajectories
of the particleswith o, =—1 remain outside this surface,
provided that the toroidal magnetic field points in the
direction of the ohmic current. Since the topology of
thedrift trgjectoriesin asmall region 0 < e,< {3 around
the magnetic axis is very complicated [21], this region
requires separate treatment and will be investigated
numerically. In order to qualitatively analyze the types
of drift trajectories, it is expedient to divide the full
range of changes of theinvariant G, —e,cos6, < G < 1,
into three characteristic subranges: (i) —€,cos6,< G < G,,
(i) G, £ G< G, and (iii) G_.< G < 1[16, 17]. The
boundaries between these subranges, G, and G_, can be
determined qualitatively from the condition for thelon-
gitudinal velocity component to vanish (at 6 = 17) on the
inner and outer drift trajectories, respectively. The coor-
dinates g, and 6, of the point at which the longitudinal

“
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Fig. 1. Particle trgjectories in the phase space region G, <
G < G_ (G* = 3). The magnetic surface is shown by the
dashed curve.

particle velocity vanishes on thetrajectory can befound
from the set of equations

sg — ssz = —04(./G + g,c086, )
cosf, = —Eg. (6)

0

Setting 6, = Ttin Egs. (5) and (6) yields the follow-
ing equation for G,:

G, = Jasz—osz /G, + €,C0SH,. 7

It is a straightforward matter to find a solution for
€,= 0. For &> (%3, Eq. (7) can be solved by the method
of successive approximations. In the first approxima-
tion, we set G, = & under the sguare root sign and
expand the right-hand sidein a seriesto obtain

G,=0 and G =0*? for &=0, )
/1 + cos@
G.= -0 * for £>0°. (9)

2./e
Note that G, is adways smaller than G_. Consequently,
in the second subrange of the parameter G, the “outer”
particles are trapped while the “inner” particles are
transit. For brevity, transit particles from the second
subrange will be referred to as “ specific particles.” Fig-
ure 1 shows the drift trajectories of the particles from

the second subrange for G* = G{? = 3, and X =
e =3, B, = 0. Figure 2 shows the trajectories for
G* = 3.5, i.e., the drift trajectories of the particlesfrom

GOTT, YURCHENKO

Fig. 2. Particle trajectories in the phase space region G_ <
G< 1 (G* = 3.5). The magnetic surface is shown by the
dashed curve.

the third subrange. In both figures, the dashed curve
indicates the magnetic surface and the magnetic field
points outward from the reader (in the direction of the
ohmic current).

Note that Egs. (5) and (6) have another solution,
namely, G=-¢.,at 6,=0and 6, = 0. The corresponding
trajectoriesare shownin Fig. 5from [21]. These arethe
trajectories of the particles for which the quantity o,
takes on both signs and whose longitudina velocity
component is directed along the ohmic current. Hence,
we can see that the boundary between trapped and tran-
Sit particles in phase space is asymmetric.

The second subrange, where the topology of the
drift tragjectories in phase space depends qualitatively
on the sign of the particle velocity at the intersection
point of the drift and magnetic surfaces in the given
poloidal cross section, was first considered in [16-18].
In neoclassical theory, which assumes that Ar/r < 1
(where Ar isthe deviation of the particletrajectory from
the magnetic surface), the drift trgjectories can be
traced only approximately. That is why neoclassical
theory failsto capture the second subrange and is capa-
ble of describing only the first and third subranges,
where the outer and inner particles are either both
trapped (the first subrange) or both transit (the third
subrange). Let us show that it isthe second subrangein
which the particle motion gives rise to anew longitudi-
nal current. If we neglect the precession velocity of the
trapped particles, then we can see that their mean toroi-
dal velocity iscloseto zero, so that these particles make
essentially no contribution to the current. In the third
subrange, the number of particles moving in either
PLASMA PHYSICS REPORTS  Vol. 28
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direction isthe same, so that they also do not contribute
to the current.

Since the flux of specific transit particles from the
second subrange in phase space is hot balanced at all, it
drives the longitudinal current, whose direction coin-
cideswith that of the ohmic current. The density of this
asymmetry current can easily be estimated from the
formula

jaOelvidn. (10)

Since specific particles are near the boundary between
transit and trapped particles in phase space, we have

W~ e vy. In the main part of the plasma column

(s> Z?’s ), the density of this group of particles can be
estimated as
G_

3n DanI|dG ZTn

V|||

(1)

We can readily see that the density &n is, in essence,
determined by the difference between the densities of
transit particles moving along the magnetic field (o,)
and those moving in the opposite direction (o0_):

7"5& [mﬁﬂ

Formulas (10) and (11) give

(12)

; T
JA: enVT—
Jes

Hence, the asymmetry current is associated pre-
cisely with the difference in the densities of transit par-
ticles moving along the magnetic field and in the oppo-
site direction; thisdifferenceis, in turn, associated with
the asymmetry of the boundary between trapped and
transit particles in phase space. The driving force for
the asymmetry current is the toroidal variations of the
magnetic field, and its magnitude is proportional to the
density of all of the plasma particles.

Since we assume that the temperature is constant
along the drift trajectories, we can rewrite formula (13)
as

(13)

cgP 1

JA RBO/\/—S

which implies that the magnitude of the asymmetry
current is proportional to the total plasma pressure P
and its density decreases toward the periphery of the
plasma column.

A comparison between formula (13) and the familiar
qualitative expression for the bootstrap current density,

) cdP
Is @5959

(14)

(15)
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showsthat, over the major part of the plasma columnin
atokamak, the bootstrap current density is higher than
the asymmetry current density. However, in the central
region of the plasma column, the situation is reversed

by virtue of the relationships .~ 1/./es and [gl~

JE..

An important difference between the asymmetry
current and the bootstrap current isthat thefirst is deter-
mined by the plasma pressure (rather than by the
plasma pressure gradient, as is the case with the boot-
strap current).

Another way to estimate the asymmetry current
density isto determine the toroidal momentum balance
far from the magnetic axis (& > Z?’s). In the case at

hand, transit particles moving in opposite directions
have different total momenta. The rate at which the
momentum is exchanged between these two particle

du
Yy
roupsis ~nm——" ~ mMvv;An ~ mv wherev
group m T Je oB. =
is the particle—particle collision frequency. In turn, al
of the transit particles transfer their momentum to the
trapped particles at the rate ,/e,vmnuy, where u is the

mean toroidal velocity of transit particles. Conse-
guently, the toroidal momentum balance equation for
the ions can be written as

du||I 3
bdt

D C-I-I

]
min,—= im_uuim"' lei (Upe— Uy,

(16)

where p; = ./e;mny; is the ion viscosity and |4 =
MmNV the electron—on friction coefficient. The corre-
sponding equation for the electrons has the form

duIIe
¢ dt

u 0 _CTe
°*U |dBgR

megn

_Ullq%—lei(une— U||i), (17)

where |, = ,/esmNwVy is the electron viscosity and
electron—€lectron collisions are neglected for simplic-
ity.

In a steady state, we have du/dt = 0. Therefore,

from Egs. (16) and (17), we find the ion and electron
velocities and then obtain the following expression for

the asymmetry current density in the case /e, > my/m:

CHe

A= e(nuy ™ TR B9

—neu”e) = (n T, +n.T,). (18)

For /e, < 1, we have y, < |, so that Eq. (18)
becomes
e(NeleVre t NiVri)

I

jal

(19)
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One can easily see that expression (19) is a two-fluid
analogue of formula (13). For the sameion and electron
temperatures, the ions and electrons make the same
contributions to the total current.

Theresultsobtained arevalid only for very low elec-
tron—on collision frequencies. For afinite collision fre-
guency, the contribution of the electron current is
smaller than that of the ion current. The role of elec-
tron—on collisions for different devices will be quanti-
tatively estimated below.

We emphasize that the above analysis is valid far
from the magnetic axis. Near the magnetic axis (0 <
€. < (?P), the asymmetry current cannot be estimated
analytically, but it can be easily estimated just at the
axis (g,=0):

i (0)~caP 1

Note that the expression for the bootstrap current at
the magnetic axis was obtained earlier in a number of
papers [7-10]:

i5(0) ~ 7R PO

j8(0) ~ &5 O dyg)

A comparison between formulas (20) and (21)

shows that, for conventional (not too peaked) plasma

pressure profiles prevailing in tokamak experiments,

the asymmetry current at the magnetic axis exceeds the

bootstrap current. For this reason, it is important to

know the radia profile of the asymmetry current over
the entire plasma column.

The expression for the asymmetry current that is
valid over the entire plasma column can be obtained
only numerically.

1)

3. ASYMMETRY CURRENT IN A TOKAMAK
(QUANTITATIVE ESTIMATE)

The current density in an elementary plasmavolume
around the point with the coordinates €, and 6, can be
represented as [22, 23]

j (&5 65)
= eJ’v”(eS, 0., E, G,0.)f (g, 6, E, G, 0,)dEAG

+cOxM,

where v, is the longitudinal velocity of the particle
guiding centers in the elementary volume, f is the dis-
tribution function of the guiding centers, and M is the
total magnetic moment of the particlesin the same vol-
ume. The second term in representation (22) describes
the magnetization current, which can be neglected by

virtue of the estimate jyy ~ /€] /0P

In areal toroidal device, the current can be calcu-
lated quantitatively only by solving the kinetic equa

(22)
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tion. For atokamak with circular magnetic surfaces, the
familiar drift kinetic equation [24] in which the invari-
ants of motion (E, G, J) are used as symbolic variables
has afairly smple form,

wof _

qRI6 St(f) +Q,
where the poloidal angular velocity w of a particle is
equal to

(23)

w=v[Vo

= q—lR[v”—Zcose(v2+ v)l4ev] . %)

We can see that, asthe magnetic axisis approached, the
contribution of the drift velocity to the poloidal angular
speed increases in proportion to 1/¢.

The second term Q on the right-hand side of kinetic
equation (23) describes the source ensuring that the
problem is steady-state when neoclassical losses are
taken into account. This source plays an especialy
important role in transport processes in the central
region of the plasma column [25-27].

Inthefull range of pitch angles, the condition for the
poloidal angular velocity w to vanish, which follows
from the condition d6/de = 0, determines the boundary
such that, for the largest possible pitch angles, the tra-
jectory of atrapped particle splits into two trajectories
of trangit particles. Far from the magnetic axis of the
device, the quantity gRw is close to the longitudinal
velocity (3), which, inthe case at hand, differsradically
from the neoclassical longitudinal velocity,

V) = O,V . Jew2k’ + 1+ cosBh ™7, (25)

in that, in formula (3), it is important to take into
account the functional dependence of the coordinate €
on both the invariants of maotion and the poloidal angle
6. In formula (25), we introduced the notation k2 = (1 +
€ — UBy)/2e,. The condition for the splitting of the
trapped orbit near the magnetic axis is difficult to ana-
lyze analytically (this condition was discussed in our
earlier paper [21]).

At very low collision frequencies, transport pro-
cesses are naturally nonlocal and cannot be directly
associated with thelocal gradients. Since transport pro-
cesses are also nondiffusive in nature, they should be
described with allowance for particle and heat sources.
In essence, transport processes are convective, so that it
is particularly important to precisely calculate the
shapes of particle trgjectories, especially near the mag-
netic axis. In the zeroth approximation in the collision
frequency, the distribution function should be found by
averaging the right-hand side of Eq. (23) over particle
trajectories:

fwde - 0. (26)
w
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Clearly, the steady-state distribution function so
obtained is non-Maxwellian, indicating that the plasma
is steady-state but thermodynamically nonequilibrium.

In the problem at hand, in contrast to conventional
neoclassical theory, we are dealing with two separa-
trices. This circumstance may lead to a strong depen-
dence of the distribution function on the variable G at
the points G= G, and G = G_ in phase space. Physi-
cally, such a dependence stems from the fact that, at a
very low collision frequency, the characteristic time
required for abarely transit particle to complete arevo-
lution in the toroidal direction istoo short for the parti-
clesto relax to aMaxwellian distribution [14, 28].

The explicit expression for the collision integral in
terms of theinvariants of motionisfairly involved [29],
so that we do not write it out here. Since we failed to
solve the second-order equation (23), which contains
partial derivatives with respect to four variables, we
restrict ourselves to obtaining quantitative estimates of
the asymmetry current from information about the
character of the particle motion.

The longitudinal current in a closed magnetic con-
finement system can be estimated from the mean poloi-
dal velocity of the specific group of transit particles.
This mean velocity can be defined as the ratio of the
distance Azthe particle propagatesin the toroidal direc-
tion during the time interval At required for it to com-
plete a revolution in the poloidal direction to this time
interval. For atokamak, the mean velocity so defined is
equivalent to the longitudinal velocity averaged over
the period of the toroidal rotation of aparticle along the
drift trgjectory (the so-called bounce-averaged longitu-
dinal velocity) [8, 30]:

d
bp= M
de

(27)

wheredt = d—e .
w

For further analyses, it is expedient to simulta-
neously consider two particles that move in opposite
directions, pass through the same point at the magnetic
surface, have the same energy, and are characterized by
the same value of the parameter G. Figure 3 shows how
the total (summed over oy) longitudinal velocity of the
two particles with the same energy at the point with the
coordinates x; = 3 and 6, = 0 on the magnetic surface
depends on the value of the parameter G*. As may be
seen from Fig. 3, specific particlesfrom the second sub-
range of the full range of changes of the parameter G
have the highest longitudinal velocity. The velocities of
the trapped particles from the first subrange and transit
particles from the third subrange are nonzero and have
the same sign as the vel ocities of the particles from the
second subrange, but, on the other hand, they are suffi-
ciently low that their contribution to the asymmetry
current can be neglected. The particlesnot only movein
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Fig. 3. Total (summed over og) toroidal velocity of two par-
ticleswith the same energy at the point with the coordinates
Xs = 3 and 65 = 0 on the magnetic surface vs. parameter G*.

the longitudinal direction but aso undergo the classical
precession [20, 30]. In the Appendix, we will show that
the precession velocities of the trapped and transit par-
ticles have opposite signs and that the total velocity is
proportional to the gradients of the plasma pressure and
safety factor. We will also show that the precession cur-
rent can be neglected in comparison with both the boot-
strap current at the plasma edge and the asymmetry cur-
rent near the magnetic axis. In order to find the asym-
metry current, we sum up the mean longitudinal
velocities of the specific particles over energies, taking
into account the particle velocity distribution function,
and average the resulting velocities over the layer
between two neighboring magnetic surfaces. Assuming
that, inside the layer, the particle velocity is indepen-
dent of radius and is afunction of the radial coordinate
g, of the magnetic surface under consideration, we
obtain

0 G_
0,0 = egll—T‘!EdEJdel—gT—f v

s

(28)

where dl, is an element of length of the poloidal cross
section of the magnetic surface. In contrast to the above
gualitative analysis, carried out with the help of formu-
las(8) and (9), thelimits of integration over G are deter-
mined from the condition w(ay) = 0.

We use the following model representation for the
distribution function of the specific group of transit par-
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Fig. 4. Sameasin Fig. 1 but for K=2and 6 = 0.4.

ticles from asmall region in phase space:

f = fy[H(G-G,)-H(G-G.)]. (29)
Here, fy, is a Maxwellian particle energy distribution
function and the Heaviside step function H(x) is defined
to be zero for x < 0 and to be unity for x > 0.

Because of the highly nonlocal character of the
problem (especially near the magnetic axis), we could
obtain quantitative estimates for the asymmetry current
and its radial profile over the plasma column only by
using numerical methods.

GOTT, YURCHENKO

In order to reduce the computer time required to
estimate the quadruple integral in formula (28), we
applied the most accurate method of numerical integra-
tion [31]. In what follows, the numerical results
obtained in our simulations will be represented as
approximating formulas that are valid over the entire
plasma column in the toroidal confinement systems
under discussion.

3.1. Tokamak with Circular Magnetic Surfaces

For clarity, we start by presenting the particular
results from computations of the asymmetry current in
atokamak with circular magnetic surfaces. The numer-
ical results can be approximated by the expression

{nevy

,85+ Zza'

3.2. Tokamak with Noncircular Magnetic Surfaces

§.0= 05 (30)

For a tokamak with noncircular magnetic surfaces,
the equation describing particle trajectories can be
rewritten as

2

o> ps
f(0)  fx(Bs)

= +./G+pcosb-o,,/G + p.cosBy,
where p is the position vector for the point at the drift

trajectory, ps = &fk(8y), fx = A/x2+y2, X = cosX +
d(e)sin’X, Y = K(€)sinX, 8(€) = d,€/€, is the triangular-
ity, K(¢) = K(0) + [K(a) — K(0)]e/e, is the elongation of
the plasma column, and the parameter x isrelated to the
poloidal angle 6 by cos8 = x/f, [32].

The subscript a denotes values at the plasma bound-
ary. The particle trajectories shown in Figs. 4 and 5
were calculated for the same parameter values as the
trajectoriesin Figs. 1 and 2 but for K =2 and 6 = 0.4.
A comparison between these two pairs of figures shows
that, in tokamaks with circular and noncircular mag-
netic surfaces, the particle trajectories are qualitatively
the same.

(1)

The results from computations of the asymmetry
current in a tokamak with noncircular magnetic sur-
faces can be approximated by the expression

K _ 11
0= (1+0.16)(1+0.1K)EJAEL

(32)

which implies that the asymmetry current magnitudeis
weakly dependent on the shape of the cross sections of
the magnetic surfaces.
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3.3. Asymmetry Current of Fusion a-Particles

The asymmetry current of fusion-generated o-parti-
cleswas calculated in essentially the sameway asin the
two preceding cases. The only differenceisthat the dis-
tribution function f,, isreplaced by the steady-state dis-
tribution function for a-particles obtained by Putvinskii
[29]. For our purposes here, it isconvenient to represent
this steady-state function in the form

O 3n, 1

for z<
fq(v) = E4nln(zg+1)z3+1

(33)

for

z> 2,

wheren, isthea-particledensity, z, = v, /v Voq isthe
velocity of a3.5-MeV a-particle, v[is the velocity of
o-particles at which they are equally slowed down by
collisions with plasma electrons and plasmaions (V=
1.3 x10° /T, [keV] m/s), and z= v/v; The a-particle
density can be estimated from the formula

n, = T,Lovihyn,. (34)

Here, 1, is the lifetime of a-particles, [0 v s the pro-
duction rate of a-particles in fusion reactions, and ny
and n, are the densities of deuterium and tritium ions.

We substitute expressions (33) and (34) into formula
(28) and, for estimates, replace G {(vp with (o=

{r(vp inthelimitsof integration over G. Then, we per-
form the velocity integration to obtain

1(2,)

n|Zo + 1|%I f|V||| <V”>D 4

0 0= 3.J/men, v,

where

101, {(1"'20) }

| = —
(20) = 2 Brz 247 »

- 0
+ A/é[arctan E%IE - g} %

The results of numerical integration over the vari-
ables G, |, and T can be approximated by the formula

00
{,en,v, 1(z) (37

(1+015)(1+01K)A/s +03z”3ln|zo +1
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Fig. 5. Sameasin Fig. 2 but for K =2 and a = 0.4.

3.4. Estimates of Noninductive Currents
in a Tokamak Reactor

The results of calculations of the radial profiles of
the densities of noninductive currents in the ITER-
FEAT tokamak [33] areillustrated in Fig. 6. The current
densities were calculated from formulas (36) and (37).
In Fig. 6, curve I isfor the total asymmetry current of
plasma electrons and ions, curve 2 is for the bootstrap
current, curve 3 is for the asymmetry current of a-par-
ticles, and curve 4 isfor the total noninductive current.
The calculations were carried out for the following
radial profiles of the plasma density and electron and
ion temperatures: n = 1.05 x 10%°[1 — (p/p,)*]*?> m3
and T ; = 34[1 — (p/po)*1"* keV, the remaining parameter
vauesbeingk= 1.7, 6 =04, z; = 1.65, |, = 15.1 MA,
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Fig. 6. Radia profiles of the densities of the noninductive
currents in the ITER-FEAT tokamak: (/) asymmetry cur-
rent, (2) bootstrap current, (3) asymmetry current of a-par-
ticles, and (4) total noninductive current.

and 1, = 15 s. Under these conditions, the asymmetry
current is 1.05 MA, the bootstrap current is 5.1 MA,
and the current of a-particles is 1.1 MA. Thus, the
asymmetry current of plasma electrons, plasma ions,
and a-particles amounts to about 14% and noninduc-
tive currents amount to about 50% of the total plasma
current. From Fig. 6, one can see that, near the mag-
netic axis of the device, the noninductive current is
driven primarily by a-particles. In this series of compu-
tations, the collision frequency was neglected. In order
to take into account the influence of the effective colli-
sion frequency on noninductive currents, we turn to the
familiar expression that is usually used to calculate the
bootstrap current [34]:

1
0.0

© 1+055/V, +0.45v,

0o (38)

where v = J2Rg/(ved), v is the frequency of the

ion—on collisions (for the ions) or of the electron—on
and electron—electron collisions (for the electrons), and

Eeir = Eg+ ZT% [21]. Our calculations carried out for the

parameters of the ITER-FEAT tokamak show that,
when the effective collision frequency is taken into
account, the asymmetry current of plasmaions and the
asymmetry current of a-particles both remain practi-
cally unchanged, while the contribution of the asymme-
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try current of plasmaelectronsto the total noninductive
current decreases from 3.5 to 2% and the contribution
of the bootstrap current decreases from 50 to 30%. We
thus can conclude that taking into account the collision
frequency reduces noninductive currents in a fusion
plasma by a factor of approximately 1.5, mainly at the
expense of a decrease in the bootstrap current.

4. ESTIMATE OF THE ASYMMETRY CURRENT
IN A STELLARATOR

In a stellarator with a circular magnetic axis of
radius R, the asymmetry current can be estimated using
the following model expression for the magnetic field
strength:

B = By[1-¢€cosB—g,cos(16+ M)]; (39)

where g, = g,(r/a) is the helical ripple amplitude, | is
the multipolarity, M is the number of magnetic field
periods, and @ is the toroidal angle. Since the shape of
the magnetic surfaces in a tokamak was found to have
an insignificant impact on the asymmetry current, we
restrict ourselvesto considering astellarator with circu-
lar magnetic surfaces.

By anaogy with Egs. (5) and (6) for atokamak, the
equations for the boundary between trapped and transit
particlesin a stellarator can be written in the form

sg - ssz = —0,(,/G + £,0088; + £,,c0s(10, + M), (40)

£

cosb, = —9———"9cos(leo+ M)
& £o )

G I 1-

= _g)_shaASO '

cosMq,

where A is the aspect ratio. If we neglect the second
term on the right-hand side of Eg. (41), then, from
Egs. (40) and (41), we obtain

G,=0 and G =0 for &=0, (42)

£
Jl + cos@, + e—hscos(les+ M)
S

2./,

for &> Zm.

G, =g-0( (43)

Sincethestellarator isan axially asymmetric device,
we must perform averaging not only over the poloidal
angle 6, but also over the toroidal angle ¢. Calculations
show that, in stellaratorswith0 < g,/e < 2,2 <1 <4,
and 4 <M < 10, the asymmetry current can be esti-
mated from formula (30), in which the safety factor g
should be replaced by 1/p,, where W, is the rotational
transform produced by the stellarator magnetic field.

Our estimates show that the asymmetry current in a
stellarator may be of the same order of magnitude as
that in atokamak. That iswhy, in stellarators, in which
PLASMA PHYSICS REPORTS  Vol. 28
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there are no inductive currents, the asymmetry current
is, presumably, easier to reveal experimentally than in
tokamaks.

L et usdiscusstheresults of experimentsin the Proto-
Cleo gellarator [11] with the parameters R = 0.4 m,
a=0.045m,B,=0.3T,n=10"%[1 - (p/a)’]*» m3, T, =
0.05[1 — (p/a)*]? keV, T, = 0.01[1 — (p/a)*]* keV, and
W@ = 1. Figure 7 compares the experimentally
obtained profile of the noninductive current in the
Proto-Cleo stellarator (the closed squares) with the cal-
culated profile of the neoclassical bootstrap current (the
dashed curve). The vertical bars show the experimental
errors. We can see that the radial profile of the nonin-
ductive current in the region near the magnetic axiscan-
not be explained by neoclassical theory even at a qual-
itative level: the neoclassical bootstrap current is pre-
dicted to be zero in thisregion, but in reality the current
near the axis (R =40 cm) isfinite.

In our opinion, this discrepancy may be resolved by
incorporating the asymmetry current.

Under conditions prevailing in the Proto-Cleo stel-
larator, the effective collision frequency plays an
important role and the asymmetry current is almost
completely determined by the ion plasma component.

The Proto-Cleo isan | = 3 stellarator. Such stellara-
tors usually operate with an externally imposed, cor-
recting vertical magnetic field, which may substantially
change the magnetic configuration. Since paper [11]
contains no data on the rotational transform profile, we
present the results of illustrative calculations carried

out for several values of uFfo .

Figure 8 shows the experimental and computational
datafrom Fig. 7 and a so theradial profiles of the asym-
metry current calculated for the Proto-Cleo parameters
and for different values of the rotational transform:

uf’fo = 0.5 (curve 1), 0.2 (curve 2), and 0.1 (curve 3).

When calculating the asymmetry current, we took into
account the collision frequency. Figure 8 demonstrates
guantitative agreement between the experimental data
and model numerical results on theradial profile of the
noninductive current near the magnetic axis of the
device.

Figure 9 displays the computational results on the

asymmetry current that were obtained for uff,\,f, =05
without (curve 1) and with (curve 2) alowance for col-
lisons. The radia profile of the bootstrap current
(curve 3) and the experimental pointsarethe sameasin
Fig. 7. We can see that the actua collision frequency
substantially changes the magnitude of the asymmetry
current.

5. CONCLUSION

The results obtained in this study show that a new
type of longitudinal electric current should exist in
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Fig. 7. Comparison between the experimentally obtained
profile of the noninductive current density (closed squares)
in the Proto-Cleo stellarator [11] and the calculated profile
of the bootstrap current density (dashed curve).
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Fig. 8. Asymmetry current density vs. rotational transform

for the Proto-Cleo parameters [11] and for uff,\,lf =(1) 05,

(2) 0.2, and (3) 0.1. The calculated bootstrap current density
isshown by curve 4 and closed squares are the experimental
points.
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Fig. 9. Effect of the collision frequency on the asymmetry
current in the Proto-Cleo stellarator [11]: (1) and (2) asym-
metry current densities calcul ated, respectively, without and
with allowance for collisions and (3) bootstrap current den-
sity. Closed squares are the experimental points. The adjust-

able parameter is Hﬁ{; =05.

plasmas confined in toroidal magnetic systems—the
current that may be referred to as the asymmetry cur-
rent because it is associated with the asymmetry of the
boundary between trapped and transit particles with
respect to the sign of their longitudinal velocity. This
current isdriven by the longitudinal magnetic field gra-
dient, is carried by a specific group of transit particles,
isproportional to the total plasma pressure, and is max-
imum near the magnetic axis of the device. Note that
the asymmetry current can exist only in a tokamak in
which the discharge duration is much longer than the
energy lifetime, i.e., in atokamak operating in a quasi-
steady mode. In this case, the particle distribution func-
tion is steady-state but thermodynamically nonequilib-
rium. The energy fed into the plasma is partialy
expended on generating noninductive currents—the
bootstrap current and the asymmetry current.

The asymmetry current may play an important role
inany local region with aflatter plasma pressure profile
and with aradial size larger than the deviation of drift
trajectories from the magnetic surfaces. In ordinary
tokamak discharges, these conditions are usually satis-
fied in the central region of the plasma column. In dis-
charges with internal and external transport barriers,
they can also be satisfied in the barrier regions.

Although the asymmetry current is relatively small
in absolute value, it may help to facilitate the problem
of current generation near the magnetic axis of atoka-

GOTT, YURCHENKO

mak reactor. It is clear that, by increasing the plasma
pressurein the steady operating mode, itis, inprinciple,
possible to create fusion-grade plasmas only at the
expense of noninductive currents.
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APPENDI X
Classical Precession Current

It is well known that, in toroidal confinement sys-
tems, the particles move aong the torus with a certain
mean velocity, which is called the precession velocity.
In the neoclassical approximation, in which the devia-
tion of the drift trajectories of the particles from the
magnetic surface is assumed to be small in comparison
with the radius r of the surface, we can obtain the fol-
lowing expression for the precession velocity at €, >
¢*3 in adevice with circular magnetic surfaces[23, 30,
35-39]:

(1+ es<|> *)yde _do

/
Tssf .fq)
where ¢(k, 6) = J2k% =1+ cosB, K? = (1 + & —

UBy/E)2e,, Yy = (1 + adp?)cosO + PsinO — a/2¢?, the
term o = —8TRe?(dp/dr)/B? is determined by the mag-
netic field gradient, and S = rdinr/dr is the magnetic
shear. Assuming for estimates that the particle distribu-
tion function is Maxwellian, we can write the preces-
sion current averaged over the magnetic surface in the
form

(A.1)

nevls . vz
Oy = ~dx ok
4nfm/_gr .I
(A.2)
g f(1+e0%)yd0/g
) 05 faero
where x = E/Tand b = K;ax = (1 + &9/2¢& In these

expressions, we neglect the deviation of the drift trajec-
tories of both transit and trapped particles from the
magnetic surface. This approximation indicates that,
for trapped particles, theintegral over the magnetic sur-
face istwo times smaller than the integral over the drift

. . 1
trajectory a':* des/q>s=§fde/q%. In standard neo-
classical theory [39], this difference implies that the
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summation over g, should be carried out with weight-
ing functions of 1 for transit particles and of 1/2 for
trapped particles. Asaresult, we can reduce expression
(A.2) to afar simpler form,

] nevTZT

i) ¢
2.(1+ 85¢ )
I L

which alows us to take the integrals over the variables
0, k2, and x and thus derive the desired expressions for
the precession currents of the trapped and transit parti-
cles [the notation { 1/2} in expression (A.3) means that
the factor 1/2 refers only to trapped particles|.

(i) For trapped particles, we obtain

00 =
(A3)

L, = —¢nev+F, (A4)
where
F, = [1+2 —}; (A5
Y oanfe, % :
(i) for transit particles, we obtain
Ejuq)r = _ZTneVT(Fpr_Ft)v (A6)
where
_ 16 0
F,= =2+—=. (A7)
p 83[2 4(:12:|

From expressions (A.4) and (A.6), we can see that
the precession current of trapped particles is com-
pletely canceled by afraction of the precession current
of transit particles and that the classical precession cur-
rent is determined by the magnetic shear (the gradient
of the safety factor) and by the plasma pressure gradi-
ent.

Thus, we arrive at the following expression for the
total classical precession current carried by both transit
and trapped particles:

_ (neves . ap

35 g [2 * 4qﬂ.

This expression implies that, for aradial safety fac-

tor profile increasing toward the plasma boundary, the

precession current is directed opposite to the ohmic,

bootstrap, and asymmetry currents. In operating modes

with areversed shear, the first term in expression (A.8)

can cancel the second term, so that the precession cur-
rent can vanish or even reverse direction.

Expression (A.8) can berewritten inamoreillustra-
tiveform:

(A.8)

ES

Gp00-H2 0,0+ 248 (A9)
ST s
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where the currents [j,and jz are given by formulas
(14) and (15).

Hence, under the assumptions used in our analysis,
the precession current is small in comparison with both
the asymmetry current near the magnetic axis and the
bootstrap current far from the magnetic axis. Because
of this, we neglected the precession current when cal-
culating the noninductive currents.
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Abstract—Drift instability in dusty plasmadue to plasmadensity inhomogeneity and inhomogeneities of dust
distributionsin densities and chargesis studied analytically. An explicit general expression for the growth rate
of instability is derived. It is found that the growth rate of the dissipative drift instability is substantially
enhanced and the threshold of the instability is lowered in the presence of dust. © 2002 MAIK “ Nauka/lInter-

periodica” .

Drift instability in dusty plasma due to plasmaden-
sity inhomogeneity and inhomogeneities of dust distri-
butionsin densities and charges can be relevant for both
edge turbulence in fusion devices [1-3] and iono-
spheric plasmas [4, 5]. The presence of dust asahighly
dissipative component in a magnetized plasma can
cause the excitation of dust modified drift waves[1, 6].
These drift waves can be associated with the gradients
of dust charges and dust densities and can be excited in
the absence or presence of plasma density gradients.
The large dissipation is caused by the collisions of
plasma particles with dust grains appearing as elastic
Coulomb collisions and dust capture collisions (colli-
sions where the plasma particles recombine on dust
particles). The rate of these collisionsis approximately
Z,P times larger than the rate of plasma particle binary
collisions, where Z; is the dust charge in units of the
electron charge and P = ngZ,/n is the parameter propor-
tional to the dust density ny (n being the plasma particle
density). The dust charge is usually proportional to the
dust size; for dust sizeslarger than 10-3 um, the charges
arevery big (Z,> 1; for dust grains of size on the order
of 3 um, which are most often encountered, Z; = 10%).
The parameter P is often adjusted to the value on the
order of unity. Under this condition, the dissipation is
highly enhanced by the presence of dust and, therefore,
any dissipative drift instability should also be very
much enhanced.

In previous considerations, the effect of dissipation
due to plasma particle scattering and absorption by dust
grains was neglected, although this is the main effect
governing the drift wavesin dusty plasmas. The change

L This article was submitted by the authorsin English.

of drift waves due to the contribution of dust to the
guasineutrality condition in the basic state (investigated
previously in [7]) has aminor effect.

We intend to show that the problem of dissipation
due to dust—plasma particle elastic and inelastic colli-
sionswith allowance for both the contribution of dust to
the quasineutrality condition and dust charge variations
in the wave can be investigated directly. It isfound that
both the growth rate is enlarged and the threshold is
lowered in the presence of dust. A nonlinear treatment
of drift waves in dusty plasma was formulated in [6],
where the linear growth rate was investigated for a par-
ticular range of parameters of the dusty plasma system.
In the present note, a general analysis of the linear
growth rate is performed, which allows us to find an
explicit dispersion relation and its solutions.

We start with linearizing the system of nonlinear
Hasegawa—\Wakatani equations obtained in [6] under
conditions where only the dust—plasma particle colli-
sions are taken into account as the main dissipative pro-
cess. We use the dimensionless notation of [6]:

tHQ,pSt, X—»l; yal;
Lrl pS pS (1)
on.L, 0Z4L, epl,
n———; — = =,
ne,Ops Zd ps Te ps

where @ is the electrostatic potential in the wave, Q; is
theion cyclotron frequency, ps= v/Q; istheion Larmor
radius for the electron temperature, and 0Z, is the
change of the dust charge in the drift wave. There are
two parametersthat determine theinhomogeneities—the
parameter s, related to the gradient length of dust inho-
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mogeneity L4, and the usua density gradient length L,:

. PLy" . _ 0ngZy,
(1+P)(1+P-PLSY onio’ o
Lt = 10n,
o

Nio OX

The dissipative processes can be described by three
coefficients—c, (related to electron adiabaticity along
the magnetic field lines), a (related to the electron cap-
ture collisions with dust grains), and 3 (related to the
capture of both electrons and ions in collisions with
dust grains) [6]:

3)

where k, is the wave vector component along the mag-
netic field,

Ve

. B=a(l+ P)[1+‘i_°—“] @)
Q.p_s Vi
1 I—n

Thefrequenciesin Eqg. (4) are the dust charging fre-
quency Ve, = w,a(l + T+ 2)/./2md, , the ion-dust charg-
ing collision frequency V; =(1 + P)V,=v4P(T + 2)/2(1 +
T + 2), and the frequency of the change of electron
momentum in collisions with dust grains v, = vg,P(T +
2(z + 4 + 2Zexp(2)In(di/a)/3)/z(1 + T + 2). Here, T =
T, [T., z= Z4€/aT,, d; istheion Debye length, and ais
the size of dust grains, which are assumed to be spher-
ical.

The equations of [6] in the linear limit describe the
modification of drift instability in dusty plasma. They
are genera in the sense that they take into account the
most important new dissipative processes induced by
dust, as well asthe change of the charge balance in the
initial equilibrium state induced by dust charges. This
set of linear equationsis

Ce

(i0k” —isk, )y — 55 (W=n) = 0, (5)
(miw+a+c)n—azd + (ik,—c)y = 0, (6)
(miw+B) = a(l+P)n. @)

Equations (5)—7) lead to the following dispersion
relation for @ = w/a:

0 2 . ky Ce
i K _ISG_(1+P)G
.G _Co @®)
e __D -1
_#[_i6+1+c_e_wi| = 0.
a(l+P) o —iwn+p/a

BENKADDA, TSYTOVICH

We note that Eqg. (8) depends on two parameters,
c./a and K /a. For ¢, > a, we obtain

. []2 1 ] ky 1 N A —
'(‘)E( "I+ R0 a%+1+lﬂ+m B 0.9
O'®* .0

In thislimit, the parameter ¢, does not enter the dis-
persion relation. Note that, here, both coefficients ¢,
and a arerelated to theinfluence of dust on the instabil-
ity. The coefficient ¢, describes the nonadiabaticity
caused by dust, and the coefficient a describes the cap-
ture processes. I n the presence of dust, the coefficient c,
is smaller by several orders of magnitude (approxi-
mately Z4P times) than that in the absence of dust. By
assuming ¢, > o, we consider the case where the non-
adiabaticity introduced by dust is much less than the
effect of dust dissipation related to the charging of dust.

The quadratic equation (9) is simple to solve analyt-
ically. However, for the sake of deeper understanding,
we consider thelimiting cases. First of all, we can men-
tion that, in general, the ratio B/a is on the order of
unity. For the special case of small dust densitiesP < 1,
thisratio islarge:

B_z(1+1+2)
a P(t+z) -
In the limit P < 1, we find that the drift waves are

always unstable, the instability being caused by dust
only. Taking into account P < 1 and s < 1, we find
2
0z

k, i

1+K* B

Thereal part of the drift frequency is approximately

the same as in the absence of dust, but the growth rate

ison the order of WP = v, P? = v; ;Z4P2. Although the

latter expression contains the small factor P?, the

growth rate can be substantially large if P > 1/Z, (we
remind that Z, is usualy very large).

For P on the order of unity, the ratio 3/a is also on

the order of unity and the drift waves become so unsta-

ble that the real and imaginary parts of the frequency
are of the same order of magnitude. This happens if

Ky 1 pg_Bp2, 10
a%+1+lﬂ<a%+1+lﬂ'

In this case, there always exists an unstable root

(10)

w=

(1)

(12)

(13)

The figure illustrates the dependence of the growth
rate y = y/a =Im® on the wave number k and param-
eter P for 1 = 0.02 in the case of a hydrogen plasma.
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For aninequality oppositeto inequality (12), thereis
no instability: one of the roots describes ssimply the
relaxation of dust charges (w = —i[3), and another root
describes a stable dust-drift wave:

1 2 1.2
m~ky%+————l+|:D i3[3ZH< + i E »
1 b+ 1
1+P y 1+ PJ

Animportant feature isthe change of thereal part of
the drift frequency in the presence of dust [see the first
termin Eq. (14)].

We can consider the case of small and large a values
and the case where both components of the wave vector
are of the same order of magnitude (P is on the order or
larger than unity). According to Eq. (13), the growth
rate y ison the order of a for k < 1 and decreases with
the wavenumber for k > 1. For a > 1, this growth rate
isvery large; for k < 1, condition (12) impliesk, < a,
which isalwaysfulfilled in this case. When k> 1, con-
dition (12) means k > 1/a, which is also aways ful-
filled for large values of a. For a < 1, the instability
growth rate is again on the order of a, but, for k < 1,
condition (12) gives the restriction k, < 1. For k > 1
(where the growth rate decreases with k and, thus, is
much less than its maximum value), condition (12)
gives k > 1/a. In this case, the value of o is approxi-
mately Z,P times larger than the correspondent expres-
sion in the absence of dust.

For ¢, < a, the nonadiabaticity introduced by dust
dominates. Assuming that both components of thewave
vector are of the same order of magnitude, we find that,
for k on the order of unity and o < 1, the instability is
absent, but the real part of the frequency is changed
substantialy by dust:

K2 +

= %_'i

=i (15)

Theinstability appearsfor a > 1 and isdescribed by

Imo:
_ sk, iCe(P(Z"‘ T)+z(P+1+2z+71))

K> (1+P)zP(t +2)

(16)

Let us mention that the condition ¢, < a reads

k’vZ, < Vv, O P? and means that the parameter P
should be larger than a certain value (depending on the
wave vector component k,, which is an independent
variable).

This investigation shows that, in the presence of
dust, the threshold for the drift instability can be much
lower and the growth rate can be substantially larger
than those in the absence of dust. Therefore, we expect
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a strong modification of turbulence in the presence of
dust in the edge tokamak plasmas and ionospheric
plasmas, where experimental data show evidence of
dust [4].
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PLASMA OSCILLATIONS

AND WAVES

M etastable Balancing Oscillators
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Abstract—The problem of an oscillator performing oscillations at the top of an oscillating potential barrier is
solved exactly. The conditions under which the motion is finite, quasi-finite (metastable), or infinite are deter-
mined. Examples are presented from mechanics (a Kapitsa pendulum on a solid support that oscillates in the
horizontal direction), plasma physics (Bernstein—Green—Kruska waves), and microwave el ectronics (metasta-
ble electrons near an oscillating virtual cathode). © 2002 MAIK “ Nauka/Interperiodica” .

It iswell known that the particle can undergo finite
oscillatory motion (in which case it can be regarded as
an oscillator) only in the presence of arestoring force.
Thisindicates that the profile of the force field potential
should have at least one local minimum.

Not so generaly known is the fact that, even in a
force field with the potential profile in the form of a
potential barrier (with one maximum and no minima),
the particle may undergo finite motion near the maxi-
mum. For thisto occur, the position and/or the height of
the barrier should oscillate in time. Such oscillators
may be grouped into a separate class of balancing oscil-
lators.

Here, we present an exact solution to the problem of
the simplest balancing oscillator at the top of the poten-
tial barrier whose position varies periodically with
time.

We consider a particlein aforce field with the para-
bolic potential
U(x, t) = —a(x—dcosut)?, (1)

where aisthe steepness of the parabolaand 6 and ware
the amplitude and frequency of the oscillations of the
potentia barrier.

In such afield, the equation of particle motion

m@( _ U, 1)

e % (@3]

has the form
d’x _
m—; = 2a(x—0cosut), 3)
dt
where misthe mass of a particle.

Under theinitial conditions x(0) = X, and v(0) = v,,
the solution to integrodifferential equation (3) is

expressed in terms of elementary functions:

60)(2) coswt 6uﬁ coshwyt

2

x(t) = >
W + Wy

2 2
W + Wy

4)
+ X,C0sh (1) + Lsinh(wqt),
Wy

wherewO:A/%a.

L et the particle be incident on an oscillating poten-
tial barrier. To be specific, we set x,> 06> 0and v, < 0.
Using expression (4), we can determine the initial con-
ditions under which the particle trajectory is finite,
quasi-finite (metastable), or infinite and find out how
theresidencetimeT of the particleintheinterval (-0, )
depends on theinitial conditions.

We call the particle trajectory a“finite trgjectory” if
the particle oscillates in the interval (-0, d) for an infi-
nite time (T = o). From expression (4), we can easily
see that the particle trgjectory is finite when x, and v,
satisfy the relationship

0 duwf O
O W + W

In this case, the terms with hyperbolic functionsin
expression (4) exactly cancel each other and there
remains only the term with a trigonometric function,
indicating that the particle will undergo periodic oscil-
lations for an arbitrarily long time. When x, and v,, val-
ues deviate slightly from those satisfying relationship
(5), the particle trajectory is quasi-finite: after several
oscillations, the particle will go to infinity.

Figure 1 shows the dependence of the time during
which the particle oscillates in the interval (-9, d) on
theinitial velocity v, for several different values of the
initial coordinate x,.

1063-780X/02/2805-0398%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Dependence of the residence time of aparticlein the
interval (-5, d) on the initia particle velocity for different
initial particle coordinates: xy/d = (1) 5.5, (2) 5, (3) 4.5,
(4) 4, (5) 3.5, and (6) 3. The dashed and solid curves corre-
spond to reflected and transit particles, respectively.

At this point, we must make the following three
remarks.

(i) The dependences shown in Fig. 1 areresonant in
character.

(if) The right (dashed) parts of the curves corre-
spond to reflected particles and terminate at the
abscissa (the latter indicates that particles with low ini-
tial velocities do not reach the barrier).

(iii) Theleft (solid) parts of the curves correspond to
transit particles and have the following asymptotic
behavior at high initia velocities:

(6)

An analysis of the solution shows that the closer the
values of X, and v, to those satisfying relationship (5),
the longer is the residence time of the particle within
theinterval (-9, ).

Figure 2 shows the regions corresponding to differ-
ent states of particle motion in the phase plane of the
initial coordinates and velocities (x,, V,). The plane of
theinitial valuesisdivided into three regions: the parti-
cles from region / do not reach the barrier (1 = 0), the
particles from region 2 oscillate in the interval (-0, d)
for a certain time and then are reflected back from the
barrier, and the particles from region 3 oscillate in the
interval (-9, 0) for acertain time and then overcomethe
barrier and continue moving in the forward direction.
Regions 2 and 3 are separated by the straight line deter-
mined from relationship (5), and the boundary between
regions / and 2 was calculated numerically.
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Fig. 2. Regions corresponding to different states of particle
motion in the phase plane of the initia coordinates and
velocities (X, Vp): (1) particlesthat do not reach the barrier,

(2) reflected particles, and (3) transit particles.

Figure 3illustrates the motion of aquasi-finite (meta-
stable) particle (curves 1) against the background of
oscillations of the top of the potentia barrier (curves2).

From Fig. 3, we can see that

(i) the particle aways oscillates in phase with the
barrier and

(i) the oscillatory vel ocity and oscillation amplitude
of the barrier always exceed those of the particle.

The particle motion can also be conveniently illus-
trated by the phase diagram of the particle. Figure 4
shows phase diagramsfor the above three characteristic
states of particle motion. Figure 4aillustrates the state
of finite particle motion. Figure 4b illustrates the
motion of a particle that oscillates within the interval
(-9, 0) for afinite time and then is reflected from the
barrier. Figure 4c illustrates the motion of atransit par-
ticle with a finite residence time within the interval
(=9, 8). Also shownin Fig. 4 isthe phase diagram of the
motion of the barrier (dashed circle).

Hence, we have shown the existence of finite and
quasi-finite particle trajectories at the top of the poten-
tial barrier whose position varies periodicaly with
time.

L et us present some examples of metastable balanc-
ing oscillators in different branches of physics.

1. Kapitsa pendulum. Let a mathematical pendu-
lum consist of a mass fixed to the upper end of athin
vertical rod whose lower end is attached to the support
by a pivoted mount. When the point of support vibrates
with a certain frequency and amplitude, the lower posi-
tion of the mass becomes unstable, while the upper
position becomes stable. The stability of the upper posi-
tion of a pendulum with a point of support vibrating in
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Fig. 3. Oscillations of the quasi-finite particles (curves 1)
and of the top of the potential barrier (curves 2): (a) transit
particlewith x,/6=-10.8 and v/dw= 25.6 and (b) reflected

particle with x,/d =11 and v/dw= 25.9.

the vertical direction wasfirst studied both theoretically
and experimentally by PL. Kapitsa[1, 2]. The dynam-
icsof apendulum whose point of support vibratesin the
horizontal direction is described by Eg. (3) and corre-
sponds to the behavior of a metastable oscillator.

2. Bernstein—-Green—Kruskal wavesin a plasma.
Bernstein, Green, and Kruskal [3] studied steady non-
linear electrostatic waves in a plasma by simulta-
neously solving the Boltzmann and Poisson equations.
In the wave's frame of reference, the wave was repre-
sented as a steady potential profile, in which case there
were both transit and trapped particles in the electron
and ion plasma components. If we assume that the
potential profile is unsteady and oscillatesin time, then
there should exist metastable plasma particles concen-
trated near the corresponding potential barriers.

3. Metastable electronsin avircator. In [4, 5], the
dynamics of an electron beam with an oscillating vir-
tual cathode, which dividesthe beam €l ectronsinto two
groups (transit and reflected electrons), was studied
through one-dimensional electrostatic modeling by the
macroparticle method (the method of charged plane
sheets). The simulations revealed athird group of elec-
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Fig. 4. Phase diagrams of the () trapped, (b) reflected, and
(c) transit particles for different initia particle coordinates
and velocities: (a) X, = 4.5 and v, = —1.78884, (b) x; =
4.80069 and v, = —1.97436, and () X, = 5.29443 and v =
—2.55294.

trons, called “metastable electrons.” These electrons
reach the virtual cathode, which plays the role of a
potential barrier for them, perform several (up to 20)
oscillations together with the cathode, and then pass
over to the first or second group. More recently, the
PLASMA PHYSICS REPORTS  Vol. 28
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existence of metastable electrons near the virtua cath-
ode was confirmed in [6, 7]. Let us analyze the dynam-
ics of metastable electrons in more detail .

In [4—7], this new phenomenon was merely discov-
ered but not explained. That is why we will focus our
further analysis on the following questions:

(i) What are the mechanisms responsible for the sta-
bility and trapping of metastable electrons near avirtual
cathode?

(ii) Can the existence of metastable electrons be a
consequence of the one-dimensional character of simu-
lations or do they actualy exist in multidimensional
configurations?

(iii) Can the existence of metastable electrons be a
consequence of calculations of the electrostatic part of
the problem or do they actually exist in electromagnetic
fields?

(iv) What is the relative number of metastable elec-
trons in the beam?

We start by answering thefirst question, namely, the
one about the mechanism for the stability and trapping
of metastable electrons near a virtual cathode. Clearly,
if the cathode were immobile, no metastable electrons
would be observed, because the minimum of the elec-
trostatic potential near thevirtual cathode playstherole
of a potential hump for negatively charged electrons.
However, the spatial oscillations of the virtual cathode
give rise to oscillations of the top of the potentia
energy profile. If the oscillatory velocity of the virtual
cathode is higher than the electron velocity, then, for
this electron, the cathode at a certain oscillation phase
behaves asif it were alocal potential well whose walls
alternately appear and disappear.

Since a virtual cathode is an object in the electron
phase space, itsinertiaissmall and its oscillatory veloc-
ity can be higher than the velocity of certain electrons.
The above metastabl e balancing oscillator at the top of
an oscillating potential barrier is a smple example of
metastable electronsin avircator.

In order to answer the remaining three questions, we
used the KARAT code (a completely self-consistent,
relativistic electromagnetic particle-in-cell code) [8],
which was appropriately modified in order to provide
the possibility of revealing metastable electrons and
calculating their number.

Thiswas done in the following way. We chose a cer-
tain volume near the virtual cathode and calculated the
residence time of each macroparticle within this vol-
ume. After running the code, we plotted the electron
distribution function over the calculated residence
times. Our simulations can be illustrated with the fol-
lowing typical example.

An equipotential cavity is a circular cylinder of
radiusR =2 cm and length L = 15 cm and with conduct-
ing ends. The cavity isin a strong magnetic field (B =
30 kG). A monoenergetic annular € ectron beam with
the electron energy W = 511 keV (y = 2), radius r, =
2002
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Fig. 5. Modeling of an electron beam with avirtual cathode:
(a) geometry of the problem and specified dimensions (the
electron distribution function was calculated over the resi-
dence times of the beam electrons in the chosen volume,
which is marked by dashes) and (b) instantaneous phase
diagram of the beam.

1 cm, and wall thickness Ar = 0.2 cmisinjected into the
cavity through the left end (Fig. 5a8). The limiting cur-
rent of such abeam can be conveniently estimated from
the familiar formula[9]

3/2
liim = m_C3 (y2/3_1) (7)
T, R Ml
Dr—b+2InaD%L—sechﬁD

which gives |, = 4.82 KA.

Figure 5b shows a representative instantaneous
phase diagram of the beam at a current above the limit-
ing current. We can see that thereisavirtual cathodein
the cavity. In Fig. 5a, the volume for which the resi-
dence time of the beam electrons was determined is
indicated by dashes. In simulations, the total time dur-
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Fig. 6. Distribution function of the beam el ectrons over their
residence times in the chosen volume for beam currents of
(a) 5.15and (b) 10 kA.

ing which the trgjectories of the beam electrons were
traced was 15 ns.

When the beam current was slightly above the lim-
iting current, we revealed an appreciable quantity of
metastable electrons. Thisisillustrated by Fig. 6, which
shows the distribution functions of the beam electrons
over their residence timesin the chosen volume for the
beam currents | = 5.15 (Fig. 6a) and 10 kA (Fig. 6b). A
double-humped top of the distribution functions in
Fig. 6 reflects the presence of transit and reflected elec-
trons, and the long tail in the distribution function in
Fig. 6a corresponds to metastable electrons. The rela
tive fraction of metastable electrons in the beam
amounts to afew tenths of a percent. When simulating
the beam shown in Fig. 6b, we revealed no metastable
electrons, athough there remains the possibility that a
small fraction of such electrons are present. A decrease
in the number of metastable electrons with increasing
beam current may result from two possible reasons.
First, at higher beam currents, electromagnetic oscilla-

DUBINOV, SAIKOV

tions in the cavity are more irregular. Second, the
higher the beam current, the larger is the number of
beam electrons, so that, even if the number of metasta-
ble electrons remains unchanged, their relative fraction
should decrease with increasing beam current.

Hence, we have revealed the mechanism by which
metastable electrons appear in a virtual cathode and
oscillate stably with it. The dynamics of such oscilla-
tions and their regular features have been investigated
using asimple model. The existence of metastable el ec-
trons was confirmed by a completely self-consistent,
two-dimensional computer modeling, which aso made
it possible to estimate their number.

We stress that metastabl e el ectrons oscillate in phase
with the virtual cathode, thereby increasing the dipole
moment of a system consisting of avirtual cathode and
itsimage in the anode grid; consequently, by increasing
the relative fraction of metastable electrons, it is possi-
ble to raise the efficiency of microwave oscillators
operating with virtual cathodes (this possibility was
briefly addressed in [4]).

Finally, note that the above examples do not exhaust
thelist of systemsin which metastable balancing oscil-
lators may exist.
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with a Nonrelativistic Electron Beam

Yu. O. Averkov and V. M. Yakovenko

Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine,
ul. Akademika Proskury 12, Kharkov, 61085 Ukraine

Received July 17, 2001; in final form, December 4, 2001

Abstract—Nonlinear oscillations of a semiconductor plasmawith alow-density electron beam in the absence
of an external magnetic field are studied in the hydrodynamic approximation. The beam is assumed to be non-
relativistic and monoenergetic. Cases are studied in which the Langmuir frequency of the electron oscillations
in asemiconductor is much higher or much lower than the electron momentum relaxation rate. The self-similar
solution obtained for the first case describes the damping of the nonlinear oscillations of the wave potential.
Numerical analysis of the second case shows that the electric field distribution in the beam may correspond to
that in a shock wave. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The first investigations of nonlinear waves without
allowance for thermal effects were carried out by
A.l. Akhiezer, G.Ya. Lyubarskii, and R.V. Polovin [1-3]
about 50 years ago. They showed, in particular, that the
frequency of nonlinear oscillations is independent of
the oscillation amplitude only in the nonrelativistic
limit. For high-intensity relativistic waves, the oscilla-
tion period increases with wave amplitude [ 3].

The stahility conditions for electron oscillations in
an unbounded cold plasmain the absence of an external
constant magnetic field were investigated qualitatively
by Dawson [4], who considered the cases of plane,
cylindrical, and spherical symmetries. He showed that,
inthe one-dimensional case, the oscillationsin ahomo-
geneous plasma become unstable and that the wave
front breaks when the wave amplitude becomes larger
than a certain critical value. He interpreted this phe-
nomenon as the onset of multistream plasma flows (or
the phase mixing of oscillations). In the cases of cylin-
drical and spherical symmetries, the oscillations are
anharmonic in character, so that the multistream flows
will occur regardless of the oscillation amplitude. He
also showed that an analogous situation takes place in
an inhomogeneous plasmain the one-dimensional case.

The case of nonlinear relativistic waves was investi-
gated by Tsytovich [5]. He considered this problem
using, asan example, two identical colliding beamsand
determined their energy losses due to the excitation of
oscillations. He showed, in particular, that, in the
ultrarelativistic limit, only a small fraction of the
energy of two identical colliding beams can be trans-
ferred to oscillations.

Among the first papers on the nonlinear theory of
beam—plasma instabilities were papers [6-16], in
which the instabilities were assumed to be suppressed

mainly by the trapping of beam electrons by the plasma
wave. A study was made of theinteraction of both mod-
ulated and unmodulated relativistic beams with a cold
collisionless plasma treated in the linear approxima-
tion. The electron beam density was assumed to be
much lower than the density of plasmaelectrons. It was
found that the efficiency of the beam—plasma interac-
tion increases with the reativistic factor, although its
linear growth rate decreases. In a monograph by
Kuzelev and Rukhadze [17] and in the papers cited
therein, it was shown that instabilities can be sup-
pressed by the above mechanism only when the elec-
tron beam density islow in comparison with the plasma
density. If the electron density of the beam is such that
the electron plasma frequency of the beam is much
higher than the maximum growth rate of hydrodynamic
instability, then the instability is driven by the so-called
collective Cherenkov effect (which is also called the
anomalous Doppler effect for the natural oscillations of
the beam). This effect can also be regarded as a reso-
nant interaction between the plasmawave and the beam
wave. According to [17], these instabilities are sup-
pressed by the nonlinear frequency shift of the interact-
ing waves.

There are many papers devoted to the interactions of
premodulated (bunched) electron beams with plasmas
[18-24]. Thus, the interaction of amonoenergetic beam
with a plasma was investigated experimentally in [18,
19]. It was established that the waves excited in this
interaction can propagate over much greater distances
(keeping their amplitudes aimost unchanged) in com-
parison with those in conventional beam—plasma sys-
tems with an unmodulated or aweakly modulated €l ec-
tron beam. Starting from the equation for the potential
electric field of one-dimensional linear oscillations
excited by a monoenergetic electron beam in a cold
plasma, an analytic expression was derived that
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describes the potential of the plasma wave. It was
shown that the amplitude of the propagating wave
remains unchanged if the electron bunches move with-
out being deformed, which is possible only when the
electric field inside the bunches vanishes and when the
beam in the steady-state wave is a sequence of rectan-
gular bunches. That the electric field vanishes inside
equilibrium bunches wasinterpreted as being dueto the
superposition of the field of the excited plasma oscilla-
tions (which tends to compress the bunches) and the
self-field of the bunches (which tends to expand them).
As a result, regions where the wave electric field
changes harmonically aternate with regionswhereitis
zero.

The excitation of large-amplitude waves by relativ-
istic electron beams with a partially neutralized space
charge was investigated by Fainberg et al. [25, 26].
They showed that, in electron beams in which the elec-
trons rotate in the azimuthal direction, the space charge
density wave gives rise to oscillations of the beam cur-
rent and, accordingly, to the magnetic self-field of the
wave. Inturn, this self-field initiates a self-compression
force of the bunches into which the beam is broken by
the wave. The self-compression force counterbalances
the force of Coulomb interaction between the electrons.
Asaresult, awave with alarge-amplitude electric field
can propagate in the beam in such away that the trajec-
tories of the beam electrons do not intersect and the
wave front does not break.

The interaction of electron beams with collision-
dominated plasmas was studied in [27-29]. Ivanov et
al. [27] used the particle-in-cell method to model the
temporal evolution of thewave energy intheinteraction
of a monoenergetic electron beam with a collision-
dominated dense plasma. The parameters of the beam—
plasma system were chosen so that the collision fre-
guency in the plasmawas higher than the growth rate of
the hydrodynamic instabilitiesin a collisionless plasma
and lower than the electron Langmuir frequency. They
considered the excitation of a single wave at the elec-
tron Langmuir frequency and also the excitation of a
wave packet. In the first case, the wave energy in the
nonlinear interaction stage oscillates and turns out to be
much lower than that in a collisionless plasma. How-
ever, although the condition for the oscillations to grow
at amaximum rate isviolated by adecreasein the beam
electron velocity, they are not completely damped
because of the corresponding changein their phase. An
initially monoenergetic electron beam that excites a
wave packet in the plasmais thermalized in the nonlin-
ear stage. As a result, the plasma oscillations are
damped and the beam can freely propagate through the
plasmawithout significant energy loss. The spatial evo-
[ution of the wave energy in the interaction of electron
beams with collision-dominated plasmas was studiesin
[28, 29] for the case of excitation of asingle oscillation
mode. It was shown, in particular, that the dependence
of the wave energy on the longitudinal (in the propaga-
tion direction of the beam) coordinate is oscillatory in
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character and that the wave energy in the nonlinear
stage is substantialy lower than that in a collisionless
plasma [28]. The oscillation period in the nonlinear
stage is also shorter than that in the collisionless case
[29].

All of the papers cited above deal with a gaseous
plasma. At the sametime, it is of interest to investigate
the excitation of steady-state nonlinear waves by elec-
tron beams in a solid-state plasma. Thus, the existence
of nonlinear electromagnetic waves in semiconductors
was addressed in many papers (see, e.g., [30-32]). The
mathematical apparatus for a description of steady-
state nonlinear waves of finite amplitude (domains) in
semiconductors was worked out in [30, 31]. It is based
on the solution of amodel equation for the internal cur-
rent in a semiconductor (with allowance for the diffu-
sion current), Poisson’s equation, and the continuity
equation. Different nonlinear mechanisms for the onset
of the envelope solitons of transverse electromagnetic
waves in a semiconductor were analyzed theoretically
by Bass and Khankina [32]. These mechanisms are
associated with the dependence of the electron energy
on the quasi-momentum in narrow band-gap semicon-
ductors, the effect of a nonuniform high-frequency
electromagnetic field, and the heating of current carri-
ersin an externa electric field.

In contrast to [27-29], in which the development of
the instability was considered both in the linear and
nonlinear stages, our aim hereis to investigate how the
dissipation in a semiconductor affects the excitation
and propagation of steady-state wavesin asemiconduc-
tor plasma—electron beam system. We apply the hydro-
dynamic approximation and assume that the beam is
monoenergetic. In practice, the related phenomena can
be studied experimentally, e.g., by the methods used in
[33, 34] to investigate the interaction of electron beams
with a solid-state plasma. We examine the following
two qualitatively different cases: the first one in which
the electron Langmuir frequency Q, inasemiconductor
plasma is much higher than the electron momentum
relaxation rate v, Q, > v, and the second one in which
Q, < v. Inthefirst case, we obtain a self-similar solu-
tion for the wave potential. Numerical modeling of the
second case with the help of the phase-plane methods
showsthat, in weak wave fields, the electric field distri-
bution in the beam correspond to that in a shock wave.

2. BASIC EQUATIONS

We consider a homogeneous semiconductor and
assume that there is no external magnetic field. Let the
x-axis be directed aong the propagation direction of a
nonrelativistic monoenergetic beam moving with the
velocity v,,. The nonrelativistic character of the motion
of the beam electrons and the semiconductor-plasma
electrons (v, u < ¢, where v isthe beam electron veloc-
ity, uisthe velocity of the semiconductor-plasma elec-
trons, and c is the speed of light in empty space), we
PLASMA PHYSICS REPORTS  Vol. 28
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restrict ourselves to considering a potential electric
field (E=-0¢/0x, where ¢ isthe electric field potential).
We start with the following set of hydrodynamic equa-
tions and Poisson’s equation in the one-dimensional
approximation:

o,

Ddt —(nv) =0

PN, 0y =

ot "3 ( w =0

Df’_v fﬂ - £09%

Tt TYax T mpox (1)
EBu JOu_- edad

Dat ax m* gx

528~ aref(n—ng + (NN,
0 0X

where n and n, are the electron and ion densities in the
beam, N and N, are the perturbed and unperturbed elec-
tron densities in a semiconductor plasma, — is the
charge of an electron, m, is the mass of afree electron,
€, is the dielectric constant of the crystal lattice of the
semiconductor, m* is the effective mass of an electron

in a semiconductor, v; = = ,/kgT/m* is the thermal
velocity of the conduction electronsin a semiconductor
(for Q, < v, we have vy O vg, with v being the Fermi
velocity of the semiconductor-plasma electrons), kg is
Boltzmann's constant, and T is the temperature of the
semiconductor lattice. The beam ions can be assumed
to be immabile because the characteristic rates of
changet! of both thefields and the electron density are
high in comparison with the ion Langmuir frequency
Q;; i.e., we are working under the condition

s Q. (@)

An immobile, positively charged crystal lattice serves
as a background neutralizing the electron charge of the
semiconductor plasma.

In the general case, in the equation of motion of the
semiconductor-plasma electrons in set (1), we must
keep the term proportional to the electron density gra-
dient and also take into account the dependence v(|E|)
of the relaxation rate of the momentum of the semicon-
ductor-plasma electrons on the strength of the electric
field of aplasmawave. For Q, > v, we assume that the
relaxation rate is constant and corresponds to a certain
characteristic electric field strength. We can expect that
this assumption, which is dictated by a fairly compli-
cated structure of the equationsincorporating the v(|E|)
dependence, will yield correct order-of-magnitude
results, because, in the range of the semiconductor and
field parameters for which the case Q, < v isrealized,
the V(|E|) dependence is unimportant. The necessary
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guantitative conditions for these assumptions will be
presented at the end of the paper.

We represent the sought-for self-similar solution for
the wave potential in the form

¢ =0(@), ©)

where v,; is the phase velocity of the plasma wave
(Vo O vp). Substituting representation (3) into Egs. (1)
and taking into account the above assumptions, we
obtain the set of equations

& = X=Vpt,

U
Eﬁ[n(V—vph)] =0

[N(u Vi) =0

E( av _ eod¢

. T myot @
vl = 220

EK — T vu

D 2

% = 4mef(n=n) + (N=No)].

The solutions to the continuity equation in set (4) have
the form

Voh—V
n(v) = nOM for
Voh—

n(vy) = Ny, )

for

N(u) = NoVfou N() = No.  (6)

ph

Integrating the equation of motion of the beam elec-
trons yields the energy conservation law

mo(v—=v)’ o my(Ve— V)
2 q) - 2 eq)O’

which leads to the following form of the dependence
v(9):

V-V = 2 (V=) + 2000,

where ¢, = §(v,) isacertaininitial potential value.
We insert dependence (8) into Eq. (5) and obtain

@)

®)

no(Vo_V h)
J(vph v+ Zo- “40)

From physical considerations, it is clear that n and n,
should be of the same sign. Consequently, from formu-
las (5) and (8), we have v, > v, for v> v, and v < v,
forv<vy,.

n(¢) = €))
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Below, the solution to the equation of motion of the
semiconductor-plasma electrons and the solution to
Poisson’s equation will be derived separately for the
cases Q, > v and Q, < v, using a gallium arsenide
(GaAs) semiconductor as an example.

3. SOLUTION FOR THE WAVE POTENTIAL
IN THE CASE Q, > v

The case Q, > v can be redized, e.g., in a heavily
doped, partially compensated GaAs semiconductor at
liguid helium temperatures. In this situation, the
momentum of the electrons relaxes due to their scatter-
ing by the screened dipoles (in the case at hand, these
are donor—acceptor complexes) [35, 36]. According to
[35], in a sample with an n-type impurity (tellurium)
concentration of about N; = 5 x 10'7 cm3, the level of
compensation by a p-type impurity (oxygen or nickel)
being 54%, the electron density is about N, = 1.5 %
10" cm3. In a semiconductor with this electron den-
sity, with the lattice temperature T = 4.2 K, and with the
electron temperature T, = 100 K (in which case the
electric fields are about E = 50-60 V/cm), the electron
momentum relaxation rateisnearly v =3 x 10" s~! [36]
and the Langmuir frequency of the solid-state plasma
electrons is approximately equa to Q, =

JATE®Ny/e,m* =2.4 x 108 57!, where g, = 12.53 and
>

m# = 0.067m,. Hence, we have Q, = 2.4 x 10" s
v=3x10!s"
We integrate the equation of mation of the semicon-

ductor-plasma electrons in set (1) to obtain the energy
conservation law

m*(u—vph)2 m* v

> —edp+W, =

—e¢o + Wy, (10)

where W, = vr:;J’udE is the energy of the dissipative

| osses associated with the el ectron—dipol e scattering of
the electrons and ¢, = $(u = 0) isthe same as in depen-
dence (8). Formula (10) yields the following form of
the dependence u(d):

u—vph:—J Vi + 220 00 + 2 (Wao—WQ). (11

Here, the minus sign in front of the square-root sign is
chosen because N and N, should be of the same sign.

Following [15], we consider the case in which the
kinetic energy of the semiconductor-plasma electrons
in a moving frame of reference associated with the
wave is much higher than their potential energy in the
wave field; i.e.,

m*(u—v )2 m* v
2 bh = 2 b > e(¢_¢o)

(12)
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This condition enables usto introduce the small param-
eter

_ ep*
O = 5 <1,
MyVyo

(13)

where ¢* is a certain value of the wave potential. We
expand the right-hand side of dependence (11) in pow-
ers of the small parameter §, and switch to the dimen-
sionless variables

v = ¢o/¢*,

Asaresult, we obtain

Q

= P
n = (14)

Ovi m,
u= —Vph%/‘frn‘;%(w—wo)

P (15)
1

v 00
+ - m vofud +0O(d
m* Vph %Ndo _[ oo ( ¢)
Here, we assume that the dissipative correctionis much

smaller than O(&,) but much larger than O(3; ). Apply-
ing the method of successive approximations, we find

0l m v 1 my

U=~V zm*5¢(‘lJ Wo) + ¢B3 ey

p

W 0 20 (16)
90D+ 06, 85—
m* v g, U ﬁ

XJ’(LIJ— Wo)dn +

where

\V} Vo
Oy < =— <1, = £, (17)
T Q, Ben = Vo
To be specific, we set

8 = (1—Pg) < 1.

Inserting expression (16) into solution (6) gives

N = Nod - V5, 1o

p ¢B3 m*
XI(lIJ—llJo)dﬂ -

(18)

zm* W40~ B
g (9

W"O D+ om,,, 5
AR O

We substitute expressions (9) and (19) into Poisson’s
equation in set (4) and pass over to the dimensionless
variables (14) to arrive at

2 *
oY_1Nom*pgp 1 %—‘}‘(w—wo)

on’ " BNomo /T 20— )

)
———j(tu wo)dn—5—¢ =

PBpi monh
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Then, we differentiate Eq. (20) with respect to the
dimensionless variable n and obtain

’p, 10 1
a—";+B—26—Lr']’+6VB—3(w—wo)
ﬂ ph ph (21)
1 My

= _6 ,

1+ 2(p - wo)]”f’ﬂ T
where
-V = 1Nom*

5, = o 5, = 5 NG (22)
Theinitial conditionsfor Eq. (21) can be formulated as
_ oy - YO
0) = W, =— = = 23
WO =Wo 3| = G (23)

For the above parameters of the semiconductor plasma
and of thewavefield at ny=6 x 10" cm= and §, = 1.3 x
107 (B, = 0.996), we have

85,0012, 5,=2x10",

(24)
B2 =~2x10", 5°=145x10"
m
or
9, _ O  _ O, _
R oo RE - ST

%

In accordance with relationships (25), the beam
term in Eq. (21) is formaly small, so that it can be
regarded as a small correction and may be evaluated by
successive approximations. As a result, the solution to
Eq. (21) with zero on the right-hand side has the form

p?(n) = C,e"cos(wn)
+ C2

(26)
"sin(wn) + Ce",
where C,, C,, and C; are the constants of integration
and

(B [1e
RO |7 Fr s
(27)
13
+§L+ 1+6—‘;E >0
2 27 4q '

2%{% o —D % «/277 }(28)

Physical considerations dictate the choice C; = 0. In
expressions (27) and (28), we are interested only in real
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roots, i.e., y, w 0 R. We insert solution (26) into the
right-hand side of EqQ. (21) and obtain the solution [37]

P(n) = Yo+ Cyie’"cos(wn) 29)
+C,e"'sin(wn) - 3,Py(N),
where
SAY'I
= Re —_—(f d , (30
Ws(n) Dz 1/Bphj (Me” nD (30)
S =2y, S, =Yy+tiw, S =y-—iw, (31)
f(n)
_ vn(v01+wCz)COS(wn) (wC, — sz)Sin(wﬁ).
{1+2[C,cos(wi) + C,sin(wi)] e} ** (32)

In solution (29), the constants of integration C, and C,,
which should satisfy the initial conditions (23), can be
found numerically by taking into account the fact that
the quantity (0y/on), is related to them by

Y0
ConC,

3
D C,y+uC
_5,Re 1Y 2

= 1D(1+201)3’2(2sk+1/8 ) (33)

0

S\
+ -—-——I f(R)e dﬂ D
250 + 1IR3,

= Ciy+ oG,

Figure 1 shows the numerical solution () obtained
for n* = -30, C, =-0.01, C, = (dy/on), = 0.14, y =
6 x 107, and w =1. The quantity n* correspondsto the
time at which the oscillations are completely damped.
From Fig. 1, we can seethat the oscillations of the wave
potential are damped at a slow rate, because the ratio
v/Q, issmall (i.e., the damping rateis|ow as compared
to the frequency of the natural oscillations of the semi-
conductor plasma).

4. SOLUTION FOR THE WAVE POTENTIAL
IN THE CASE Q, < v

This case can be redlized in an uncompensated
semiconductor with an impurity concentration of about
N, =N, ~ 10" cm= at T= T, = 300 K, the electric fields
being about E = 15 V/cm. Under these conditions, the
electron momentum will relax due primarily to colli-
sions with polar optical phonons [38] with frequencies
of v = 3.5 x 10'? s, the electron Langmuir frequency
being about Q, = 6 x 10! s™'. Of coursg, in the case
Q, <, itisonly possibleto speak of an unnatural wave
in the beam—semiconductor-plasma system under con-
Sideration.
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Fig. 1. Solution y,(n) for v < Q.

For v > Q,, the equation of motion in set (4), spe-
cifically, the equation of motion of the conduction elec-
trons in the semiconductor, has the solution

u= ug? (34)

where 4 = e/m*v is the mobility of the semiconductor-
plasma electrons. Note that solution (34), which
implies a linear dependence of the velocity of these
electrons on the electric field, is valid only for weak
electric fields, in which we are interested here. In the
dimensionless variables (14), Poisson’s equation has
the form

_UJ: ; i
0'1 «/ 1+2(p—yp) (35)
oW, Ao 7]
+ a— Oljn*éq)avlj,

where 8, = Q,/v and the quantities d, and d, are the
same asthose inthe casev < Q.

Investigating Eq. (35) by the phase-plane method
[39] yields the singular point P(y,, oy/on = 0). For
65 —49,,> 0, the singular point P(y,, 0) isan unstable

node, and, for 6V2 - 49, < 0, it is an unstable focal
point. This indicates that, in both cases, the image
point in the phase plane approaches an equilibrium
stateasn — —oo. From the condition 65 -44,=0,we

can obtain the following expression for the critical den-
sity n,, of the beam electrons:

1‘[62 My 2,2
Ng = 2 2—_2(1_Bph) NO' (36)
Bpn€ov m*
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For the above parameters of the semiconductor, we
haven,, = 2.4 x 10* cm™ (B, = 0.996). For n< n, (or,

equivalently, 8- — 43, > 0), the dependence Y(n) is
purely aperiodic (the oscillations are absent), and, for

n>n, (or 63 — 49, < 0), the dependence Yi(n) corre-
sponds to exponentially damped oscillations.

In the vicinity of the equilibrium state P(y,, 0), the
solutions for the wave potential and its derivative have
the form

Y-y URe{ exp(Ayon)},

g% O Re{ Ay ,exp(AoN)} (37)

The functions Y(n) and oy(n)/on calculated for the
initial conditions Y(0) = 0.5 and (dY(n)/on), = 0.15 at
n=10cm><n,(5,=3.3 X107, §, =0.18) are shown
in Figs. 2 and 3, respectively. The same functions cal-
culated for the same initial conditions but a n =
10" ecm3>n, (3,=3.3,8,=0.18) areshowninFigs. 4
and 5, respectively. From Figs. 3 and 5, one can see
that, at n < n.,, the dependence dy(n)/on resembles a
nonoscillating trailing edge of a shock wave, while, at
n>n,, it hasthe form of an oscillating trailing edge of
a shock wave.

5. DISCUSSION OF THE BASIC
ASSUMPTIONS

Here, we return to the question of the applicability
of the basic assumptions made during derivation of
Egs. (1). For v < Q,, the damping rate of the wave
potential isfairly small, y =6 x 10 < 1. Thisindicates
that the approximation v = const is valid only in the
range in which the amplitude of the wave potential
changes insignificantly. Obvioudly, thisis the range in
which |n| ~ y! ~ 10°. Thus, the solution for the wave
potential that was obtained above in the approximation
v = const isvalid over afairly wide range of n values.

Forv > Q,, the energy acquired by the semiconduc-
tor-plasma electrons in a wave field with a strength of
E O 15 V/cm is about 6; = (e/v)UE?, which is much
lower than their thermal energy 6;/kgT = 10 (for T =
300 K). Consequently, the dependence of the electron
momentum relaxation rate on the wave field can be
neglected.

The condition for the gradient term in the equation
of motion of the semiconductor-plasma electrons to be
smaller than the collision term has the form

> _.
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Fig. 4. Solution Y(n) forv > Q a n>ng.

Using solution (6) and taking into account the relation-
ship |u/v,,| < 1, wefind

1vrou

<1l
2
vvphax

(39)

Estimating the drift velocity u asu ~ JE, we can rewrite
inequality (39) in the form

(40)

Taking into account the consegquence of Poisson’s equa-
0E

tion, specifically, max
0X

= 4%9 N,, we finally obtain
0

VT poE

Vo2 2
> <K = LY 7] éldj < 1.
Vphvax

<K = G- A 0v0 (41)
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Fig. 5. Solution ay(n)/an forv > Qpat n> n,.

For the above parameters of the semiconductor and for
Vo = 0.1C (v, =2.99 x 10° cm/s), we have k ~ 0.01 for
v < QpandK ~ 107 for v > Q. Hence, we can also
neglect the gradient term in the equation of motion of
the semiconductor-plasma electronsin set (1).

6. CONCLUSION

The problem of the nonlinear oscillations of a semi-
conductor plasma with a monoenergetic low-density
electron beam has been investigated in the hydrody-
namic approximation. We have considered two qualita-
tively different cases: the first onein which the electron
Langmuir frequency Q, in a semiconductor plasmais
much higher than the electron momentum relaxation
ratev, Q,> v, and the second onein which Q, <v. We
have shown that the case Q, > v can be redized in a
heavily doped, partialy compensated GaAs semicon-
ductor at liquid helium temperatures in moderately
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strong electric fields. In such a semiconductor, the
momentum of the electrons relaxes due to their scatter-
ing by the screened dipoles, whose role is played by
donor—acceptor complexes. For this case, the self-sim-
ilar solution for the wave potential has been derived
using perturbation theory. The case Q, < v can bereal-
ized in alightly doped GaAs semiconductor in weak
electric fields at room temperature. Numerical investi-
gations of this case by using the phase-plane methods
show that, in weak wave fields, the electric field distri-
bution in the beam correspond to that in a shock wave.
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Abstract—The relaxation of a magnetic field perturbation periodic in two directionsis studied in the electron
magnetohydrodynamic approximation. It is shown that the relaxation is accompanied by the coalescence of
magnetic cells. When transport coefficients are sufficiently low, the nonlinear stage of the coalescence process
isindependent of their values. This effect may help to explain why the duration of the crash phase of sawtooth
oscillations in tokamaks is anomalously short. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Some processes in hot plasma cannot be described
interms of the one-fluid MHD theory. Thus, in terms of
the one-fluid MHD model, the duration of the crash
phase of sawtooth oscillations in tokamaks is anoma:
lously short [1, 2]. Thereis, asyet, no final explanation
for this disagreement with experiment.

Such problemsarelikely to be overcome by describ-
ing the electron dynamics more completely. MHD
models capable of taking into account the effects asso-
ciated with electron dynamics have been analyzed in
many papers (see, e.g., [3, 4]). One of these modelsis
the electron MHD (EMHD) model, in which the ions
are treated as an immobile background and the elec-
trons are described in hydrodynamic approximation
[5]. The EMHD equations are applicable to flows with
a characteristic dimension smaller than the ion disper-

2

sionlength 3, defined by 5% = — =
4miZ°en,

quency higher than the ion cyclotron frequency wy.
When electron inertiais neglected, the highest possible
frequency of the flows is also restricted: it should not
exceed the electron cyclotron frequency.

In this paper, the two-dimensional problem of the
relaxation (reconnection) of a magnetic field periodic
in two directions is studied both analytically and
numerically in the EMHD approximation.

The reconnection problem in EMHD theory was
considered in [6-11]. In those papers, the initial distri-
bution of the poloidal magnetic field corresponded
either to aneutral sheet or to achain of magneticislands
stretched along the sheet. In the case of aneutral sheet,
the distribution of the toroidal magnetic field depended
on the same coordinate as the poloidal magneticfield (a
one-dimensional magnetic configuration). In the case
of a chain of magnetic islands, the toroidal magnetic

and with afre-

field was congtant. In [6-11], the stability of such one-
dimensional configurations against linear perturbations
wasinvestigated analytically under the assumption that
the perturbation is completely damped far from the
neutral sheet. For the purposes of this article, the most
important of the results obtained in [6-11] is the con-
clusion that, in the case of inertialess electronsin adis-
sipationless plasma, the initial magnetic configuration
with a neutral sheet is linearly stable, while the initial
configuration with a chain of magnetic isands is lin-
early unstable. Moreover, the stronger the magnetic
field component associated with the islands, the faster
the instability growth rate.

Here, the formulation of the problem is somewhat
different from that used in [6-11]. The initia equilib-
rium distribution of the poloidal and toroidal magnetic
fields is a chessboardlike set of sgquare cells (islands)
periodic in two directions. Aswill be shown below, the
dynamics of the process under consideration is highly
sensitive to the relationship between the amplitudes of
the poloidal and toroidal magnetic fields. In particular,
inthe absence of dissipation, theinitial configurationin
which the toroidal magnetic field is sufficiently strong
in comparison with the poloidal field islinearly stable.
An equilibrium-breaking perturbation of the magnetic
field is also assumed to be periodic in two directions,
the period of the perturbation being an exact multiple of
the period of the initial magnetic field.

Another point in which this paper differsfrom [6-11]
is that the nonlinear stage of the instability is investi-
gated quite thoroughly. The evolution of the magnetic
configuration istraced completely, starting with theini-
tial unstable equilibrium and ending at the fina stable
equilibrium, by solving the EMHD equations numeri-
cally. Theresults of anumerical solution of the EMHD
equations are also used to determine some of the
analytic dependences characterizing this evolutionary
process.

1063-780X/02/2805-0411$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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In the present paper, the problem is formulated in a
way similar to that in [12]. The only difference is that
Germaschewski and Grauer [12] used reduced MHD
(RMHD) equations. However, the RMHD model is
incapable of taking into account the toroidal magnetic
field. The RMHD and EMHD models both imply that
the magnetic field configuration in question is unstable
against the coal escence of magnetic cells, but they give
substantially different dynamic pictures of the coales-
cence process.

The most interesting of the results obtained in the
present paper is the following. In the nonlinear stage of
the coalescence of magnetic cells, the behavior of the
system on scal es on which most of the magnetic energy
is accumulated is independent of (or, at least, depends
only dlightly on) the transport coefficients, provided
that the coefficients are sufficiently small. In particular,
for vanishing plasma resistivity and vanishing electron
plasma viscosity, the coalescence lasts for afinite time.
In the RMHD model [12], this time is proportional to
the sguare root of the electrical conductivity of a
plasma. The above considerations may help to explain
why the duration of the crash phase of sawtooth oscil-
lations in tokamaks is anomalously short. The tearing
instability that developsin a highly conducting plasma
gives rise to neutral current sheets, which are so thin
that further evolution of the magnetic configuration is
governed by the electron dynamics and, accordingly, is
independent of the values of transport coefficients. In
particular, thisis true of the reconnection (crash) time.

2. MATHEMATICAL FORMULATION
OF THE PROBLEM

L et the scale length of the problem be the sizel of a
magnetic cell, and let the characteristic poloidal mag-
2
netic field and the quantity m;lals—z play the roles of the
i
magnetic field scale and the time scale, respectively.
Then, the two-dimensional (d/0z= 0) EMHD equations
can be written as

OAIAt+{H, A = nAA—VA’A, (1)

OH, /ot +{A AA} = nAH,—VA®H,, )

where A is the z-component of the vector potential, H,
is the z-component of the magnetic field, n is the
dimensionless plasma electrical conductivity, v is the
dimensionless electron plasma viscosity, and

dofdg oadfoa
{(f.g = 53053

is the Poisson bracket.

These equations have the following important prop-
erty. For motions that occur in the magnetic field H, on
the scalelength|, theratio of the contributionsfrom the
nonlinearity and dissipation (the Reynolds number) is

oxady 0dyox

ZHUKOV

equal to Re, = H,1%/v for a plasmawith a zero conduc-
tivity and finite viscosity and to Re, = H, /n for aplasma
with a zero viscosity and finite conductivity. Conse-
quently, the Reynolds number Re, isindependent of | (a
particularly important point).

The problem was solved with the initial conditions

3)
“

A = sinxsiny,
H, = Hysinxsiny,
in rectangular calculation region
O0<x<Xp, = 2N, O<y<Y, = 2nN.

Since the boundary conditions are periodic, N is an
integer.

Below, we will show that conditions (3) and (4) cor-
respond to an unstable equilibrium state. The motions
are assumed to be driven by a small seed perturbation
of the magnetic configuration satisfying these condi-
tions. The particular shape of this perturbation is unim-
portant for further analysis.

Note that the coalescence of magnetic cells is
favored energeticaly. Infact, theterm {H,, A} in Eq. (1)
can be rewritten as (V- V)A, where V = (—0H,/0y,
0H_/0x), so that Eq. (1) isatransport equation with dis-
sipation. The maximum/minimum value of the solution
to such an equation can only increase/decrease. Conse-
quently, as the magnetic cells coalesce, the energy E, =

:0_ ,(VA)’ dxdy of the poloidal magnetic field can
only decrease, because of the increase in the cell sizes
and, accordingly, the decrease in the gradients. The
amplitude of the toroidal magnetic field and, accord-
ingly, its energy can either increase or decrease during
the coalescence. As will be shown below, for small
amplitudes H,,, the coalescence of the cellsisaccompa-
nied by a significant loss of the total energy. When the
amplitude H, islarge, the released fraction of the pol oi-
da field energy is converted into the toroidal field
energy, in which case the loss of the total energy isrel-
atively small.

3. SMALL CALCULATION REGION
(X = Yo = 2m)

The results from a numerical solution of the prob-
lem asformulated show that theinitial equilibrium state
satisfying conditions (3) and (4) is unstable; moreover,
the most unstable harmonics are those in which A and
H, are proportional to the linear combination of cosx
and cosy. A linear analysis (see Section 5) shows that,
in a dissipationless plasma, these harmonics grow with
therate

V= ve-wd2e J(ve- i)’ -y )
wherey, = 1/2 and w, = H,/2.
PLASMA PHYSICS REPORTS Vol. 28 No.5 2002
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For Hy < H; = 2, the real part of the growth rate,

Rey= (1/2)(1 - H§/4)1/2, is positive, which indicates
that there is an instability. For H, > H, the real part of

y vanishes, so that the equilibrium is stable. However,
this stability is violated by dissipation.

When H, < H,, the results obtained for the initial
stage of the process by solving problem (1)—(4) numer-
ically agreewith theresultsof linear analysis. However,
the same is not true for H, > H.. According to linear
analysis (see Section 5), the growth rate of the dissipa-
tive instability is proportional to n and v. However,
even when the harmonics cosx and cosy in the solution
to problem (1)—«4) have very small amplitudes, thetime
scale on which they grow depends on n and v in an
irregular manner because of their nonlinear interaction
with smaller scale harmonics. In the initial stage of the
development of the perturbation, this interaction is
weak but, at the same time, it isimportant because the
growth rate of the dissipative instability at low n and v
isslow. Notethat, for H, > H,, therate at which the har-
monics cosx and cosy grow substantially decreases
with increasing H,. For a sufficiently large amplitude
H,, the instability does not have enough time to come
into play before the initial harmonic sinx siny is com-
pletely damped by the conventional dissipation. The
particular value of this amplitude H, depends on the
dissipation coefficients and on the amplitude of the
equilibrium-breaking perturbation. Hence, the toroidal
magnetic field plays a stabilizing role.

When the harmonics cosx and cosy grow to a suffi-
ciently large amplitude, the coalescence process
becomes essentially nonlinear and proceeds at a much
faster rate. An additional boundary formsin the vicinity
of the adjacent corners of each pair of neighboring cells
in which the magnetic field has the same sign. Then,
these cells coalesce into alarger cell or into astrip. Fig-
ures 1 and 2 show the isolines of the amplitude A at dif-
ferent times. In order to provide a clearer insight into
the coal escence process, the figuresillustrate the results
obtained with a calculation region whose sides are two
times aslong as those of the assumed region (X, =Y, =
41m). At the site of contact (reconnection) between the
two cells, the plasma current becomes highly peaked
(Fig. 3). Note that, in the same problem treated in the
MHD approximation [12], the current density was
found to evolve to a distribution characteristic of a
sheet. Presumably, the appearance of the current peak
instead of the current sheet is typical of the reconnec-
tion problems in which the freezing-in of the magnetic
field into the plasma electrons (rather than ions) is
important [13].

The nonlinear phase of the coalescence of the cells
has the following important property. For sufficiently
small dissipation coefficients n and v, the behavior of
the main harmonics cosX, cosy, and sinX siny, which
accumul ate more than 80% of the total energy, isinde-
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pendent of the values of these coefficients and is gov-
erned by both the mutual nonlinear interaction among
them and their nonlinear interaction with higher har-
monics. In particular, this is also true of the time at
which the cells coalesce. Instead of speaking of the
limitn — 0 andv — 0, it is more correct to speak
of the limits in which n can be zero and v approaches
an infinitely small (but nonzero) value. Moreover, the
order in which these limits are taken is of fundamental
importance: the casewith v = 0 and with n smaller than
acertain critical valuen,issingular: over afinitetime
interval, the peak current density becomes infinitely
high and the peak itself becomesinfinitely narrow. The
critical value n. is fairly large. Thus, for H, = 0, it is
equal to 0.006. Singularities at finite plasma conduc-
tivity were also obtained by Valori et al. [13] in study-
ing reconnection problems with allowance for the Hall
effect. Note that, in one-fluid hydrodynamics, the
plasma conductivity have a substantial impact on the
scales of the main processes[12]. It should be empha-
sized that, in EMHD theory, the current density distri-
bution is strongly sensitive to the values of the dissipa-
tion coefficients. The current peak evolves to a shape
that ensures the dissipation of the energy flux dE/dt
from large- to small-scale motions.

The singularity at v = 0 is closely associated with
thefact that the Reynolds number Re, isindependent of
the scale of the motion. At small n values, the energy
flux from large- to small-scale motions is damped
equally weakly on both large and small scales. That is
why finite energy can be accumulated in the processes
occurring on infinitely small scales, thereby giving rise
to the singularity.

That large-scale motions are independent of v at n =0
is associated with the fact that, in EMHD theory, the
Reynolds number Re, is proportiona to the square of
the scale, in contrast to MHD theory, in whichitislin-
early proportional to the scale. Consequently, in
EMHD theory, it can be assumed that v = 0 on large
scales.

In calculations, the smallest values of the transport
coefficientsweren =0 and v = 7 x 10, It should be
stressed that the conclusion about the independence of
large-scale motions on transport coefficients was care-
fully checked by reducing the spacing of the numerical
grid, on which the maximum number of mesh points
was 300 x 300.

L et us consider the behavior of the energy character-
istics of the process.

Figure 4 shows the time evolutions of the total
energy E,, = E, + E, and the energy E for different val-

ues of H,. Here, Ep=‘[ff”ﬁ°:0(VA)2 dxdy isthe energy
of the poloidd magnetic field and E, =

X"" :":O sz dxdy is the energy of the toroidal magnetic
field. By the energy E is meant the sum of the energy
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Fig. 1. Representative chain of eventsfor the coalescence of magnetic cells (distribution of A). Shown are the events resulting in the
formation of new magnetic cells. The sides of the calculation region are X, = Y, = 41t In each column, the time increases from top

to bottom, and the upper frame in the right column refersto alater time than the lower frame in the left column.

accumulated in the harmonics cosX, cosy, and sinX siny
of the poloidal magnetic field and the energy accumu-
lated in the harmonics cosx and cosy of the toroidal
magnetic field. As will be shown in Section 5, the
energy E plays an important role in the dynamics of the
process under discussion. Asmay be seenin Fig. 4, the
total energy decreases sharply during the nonlinear
phase of the coalescence process; moreover, the larger
the amplitude H,, the smaller decreasein E,,,, provided
that H, = 1. During this phase, the energy E decreases
when H, < 1 and increases when H, > 1.

Also, during the coal escence process, the energy is
redistributed between the toroidal and poloidal compo-
nents of the magnetic field. Figure 5 shows the time
evolution of the ratio E,/E,. At the initial instant, we

have E,/E, = Hé /2. As aresult of the coalescence of
magnetic cells, thisratio increases; moreover, for H, > 1,
it becomes larger than unity. Note also that, for H, = 0,
the ratio E,/E, equals zero both before and after the
coalescence; however, during the nonlinear stage of the
coalescence process, the ratio E,/E, reaches values of
order unity.

No. 5
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415

NS

|

Fig. 2. Representative chain of reconnection events resulting in the formation of one-dimensional structures (strips). The sides of

the calculation region are X, = Y; = 41U

Figure 5 also shows the temporal behavior of the
characteristic wavenumber defined by

XO' YO
[ 2
kd= 0 ((VA)
1/,
X0 Yo 12
2 2 2 0
+(VH,) )dxdy/I J’ (A" +H,)dxdyd .
X, y=0 O

At the initia instants, we have k = ﬁ which corre-
sponds to the initial harmonic sinx siny. After the coa-
2002

PLASMA PHYSICS REPORTS Vol. 28 No. 5

lescence, the harmonics cosx and cosy with the wave-
number k = 1 are dominant.

Note aso that the coalescence dynamics differs
between the cases H, < 1 and H, ~ 1. Figure 5 shows
that, in the case of small H, values, the coalescence
resultsin weakly damped oscillations. Inthe caseH, ~ 1,
the magnetic field is seen to relax to itsfinal configura-
tion amost immediately after the coal escence process
has come to an end.

Most of the above features of the coalescence pro-
cess may be clarified using the model with asmall num-
ber of harmonics (see Section 5).
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Fig. 3. Representative current density distribution in the nonlinear stage of the coalescence process. The sides of the calculation

region are X, = Y, = 21U

In a configuration that is established as a result of
the coalescence of magnetic cells, the components A
and H, are linear combinations of the harmonics cosx
and cosy. Such a configuration calculated on the region
with the sides X, = Y,, = 21tis stable. The specific struc-
ture of the configuration depends on the value of the
parameter H, and on the symmetry properties of the
equilibrium-breaking perturbation satisfying condi-
tions (3) and (4). When the quantities A and H, after the
coal escence are proportional to the combination cosX +
cosY (see the second frame from the top in the left col-
umn of Fig. 1), thefinal configuration of magnetic cells
is analogous in structure to the initial configuration.

The only difference is that the final cells are J2 times
larger than the initia cells and are turned through an
angle of 1¥4 with respect to their original orientations.
If this combination contains only the cosx or cosy har-
monic, then the configuration established after the coa-
lescence process is one-dimensional (see the third
frame from the top in the left column of Fig. 2).

4. LARGE CALCULATION REGION

The results obtained using a cal culation region with
the sides X, = Y, = 21N (where N = 2) show that, as
before, the fastest growing harmonics are those in
which the components A and H, are proportional to the
linear combination of cosx and cosy. Consequently, for

N = 2, the formation of a configuration in the initial
stage of the process proceedsin the same way asin the
above case N = 1 and the resulting configuration corre-
sponds to the linear combination of the cosx and cosy
harmonics. If the resulting configuration is cellular,
then the coalescence process repeats over and over
again. We thus deal with a cascade of coalescence
events, in each of which the cell side becomeslarger by

afactor of /2 (Fig. 1). If the configuration resulting
from thefirst coal escence event is one-dimensional and
is determined only by the cosx or cosy harmonic, then
further evolution of the magnetic field proceeds
through the development of atearing instability, so that
we deal with a cascade of reconnection events (Fig. 2).
Note that, according to the calculated results, the insta-
bility in aone-dimensional configuration developson a
much longer time scale in comparison with that in a
configuration with magnetic cells. This conclusion
agrees with the results of [6-11], where it was shown
that, in contrast to a configuration with magnetic
islands, a one-dimensional magnetic configuration in a
dissipationless plasma is linearly stable. In our analy-
sis, the dissipation in a plasmais always assumed to be
finite but low. At this point, let us make an important
remark. In [6-11], a study was made of the perturba-
tionsthat become completely damped far from the neu-
tral sheet. In the case under analysis here, the perturba-
tion isassumed to be periodic in two directions. A com-
PLASMA PHYSICS REPORTS  Vol. 28
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prehensive examination of the tearing instability of
neutral sheets goes beyond the scope of the present
work.

The specific features of the cascades in question are
determined by the value of H,,, the properties of the per-
turbation breaking the equilibrium conditions (3) and
(4), and the size of the calculation region. Thus, if the
sides of the calculation region differ from 212™ (where
mis an integer), then the cascade process, in which the

cell sideincreases by afactor of J2 after each coales-
cence event, inevitably terminates in the corresponding
stage. Further evolution proceedsin a somewhat differ-
ent way. However, in al cases, the magnetic field per-
turbation relaxes to a stable configuration in which the
components H, and A are proportiona to the linear
combination of the largest scale harmonics cos(X/N)
and cos(y/N).

Note that the energy of the system and the Reynolds
number Re, associated with the plasma conductivity
both decrease after each reconnection event, in which
case, however, the Reynolds number Re, associated
with the electron plasma viscosity does not decrease
but instead increases because of the larger characteris-
tic length scale of each new configuration. Conse-
quently, when Re, > Re,,, thereisno reason for the cas-
cade process to terminate. In this case, it isonly certain
that each new coalescence event islonger than the pre-
ceding event, because the characteristic time scale of
the entire process is inversely proportional to the mag-
netic field magnitude. When Re, < Re,,, the cascadeter-
minates after the Reynolds number Re,, reaches avalue
on the order of unity. Thereafter, the magnetic field is
damped by conventional dissipation.

5. MODEL WITH A SMALL NUMBER
OF HARMONICS

Many features of the solution of problem (1)—4) on
acalculation region with the sides X, = Y, = 21t can be
understood in terms of the model with a small number
of harmonics (which will be referred to as the MSNH).
In this model, the solution to the problem is approxi-
mated by the expressions

A = afpta f,+a,f,,
H, = byfo+ Db, fy+b,f,,

where the coefficients a, | , and b, ; , depend only on
time. The function f, = sinX, siny corresponds to the

initial harmonic with the sguared wavenumber ké =
—-Afy/f, = 2. The functions f, = cosx — cosy and f, =
cosX + cosy correspond to the harmonic with the
smallest wavenumber k = 1. The Poisson brackets of
these functions have the form {f,, f,} = 2f,, {f,, f;} =

f,/2 + (harmonics with k = ./5), and {f,, f,} = —f,/2 +

PLASMA PHYSICS REPORTS Vol. 28 No. 5 2002
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Fig. 4. Time evolutions of E, (unprimed) and E (primed)
forn=0,v=5x10* andHy=(1) 0, (2) 1, (3) 1.5, and
(4) 2.5. The sides of the calculation region are X, = Y, = 21U
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Fig. 5. Time evolutions of (7, /") (kand (2, 2') E,/E, for

n=0,v=5x 10" and Hy = (1) 0and (2) 1.9. The sides of
the calculation region are X, = Y = 21U

(harmonics with k = ./5). We can neglect the harmon-

icswithk = /5 becausethey are more strongly damped
by dissipation. As a result, we arrive at the following
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equations (in which the superior dot denotes differenti-
ation with respect to time):

a; + agh,/2—bya,/2 = —(n +v)ay, (6)
a, —agh,/2+bya, /2 = —(n +v)a,, @
by —aya,/2 = —(n +V)by, ®)
by +aya,/2 = —(n +V)b,, )

o — (a1h, —a,h;) = -2(n +2v)a,, (10)

bo = =2(n +2v)hb,. (11)

Note that the harmonics with k = /5 can be
neglected only in the case of large n and v values,
which isnotinteresting for our purposes here. However,
aswill be seen below, the model (6)—(11) isvery useful
for understanding the dynamics of the coal escence pro-
cess. Let us examine this model in more detail.

For a dissipationless plasma, linearizing Egs. (6)—
(11) about the equilibrium statea, = 1, by=H,, and a, =
a, = b, = b, = 0 yields expression (5) for the growth
ratey.

We can show that, in the linear approximation,
Egs. (6)—(11) coincide with the equations for the corre-
sponding Fourier coefficients of the linearized problem
(1)—(4) if the initia (at t = 0) perturbation that breaks
the equilibrium conditions (3) and (4) is composed only
of the cosx and cosy harmonics. The reason for thisis
that, applying the operator {f,, ...} to the functions
{fo, T2} F T, /2 many times, we arrive at the functions
that do not contain thef, , , harmonics.

Let us now investigate the nonlinearized equations
(6)—(11) by converting them into a more convenient
form. It should be noted that these equations have the
dissipationlessintegral of motion

E=al2+a’ +b’, (12)

where

a’=a +a., b’ =bi+b.. (13)

In problem (1)—(4), the quantity E is the sum of the
energies E,(1) = & and E(+/2) = &) /2 (accumulated in
a poloidal magnetic field in the harmonics with the
wavenumbers k = 1 and /2, respectively) and the
energy E(1) = b? (accumulated in the k = 1 harmonics

of the toroidal magnetic field). In the absence of higher
harmonics, the total magnetic energy is equal to E,,, =

E + E,(J/2), where E,(,/2) = b¢ /4 is the energy accu-

mulated in the k = ./2 harmonic of the toroidal mag-
netic field.
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Using the integral of motion (12) and the quantities
o = a;b,—a,b,
B = ab; +ayb,,
we rewrite Egs. (6)—(10) in the form
—20 = =2(n +2v)a,,
B+boa/2 = —2(n +V)B,

(14)

(15)
(16)

& +ag(a; —ag)l4—bopl2 = —2(n+v)a, (17

E = —2n(1+ai/a’)E-2v(1+3a,/a’)E, (18)

a’ = 2E. (19)

Equations (11) and (15)—(19) constitute a closed set
of eguations. In the dissipationless case, we can draw
thefollowing anal ogy: these equations are equivalent to
the set of equations describing the two-dimensional
motion of a charged particle with coordinate a, and
velocity 2a in one direction and velocity 23 in another.
The particle movesin aconstant uniform magnetic field
that isoriented in the third direction and whose strength
is proportional to b, = H, = const and also in the poten-

tial U(ay) =—(a> — a; /8. The potential U takes on its
minimum vaIue—af/S on the line a, = 0 and its maxi-

mum value 0 ison thelines a, = +a.. For 8, — o,
we have U — —oo.

By way of analogy, we can readily write the follow-
ing dissipationless integrals of motion, which corre-
spond to the energy W and generalized momentum P of
the above charged particle:

W = 2(a” +B%) - (a2 —a3)’/8, (20)
P = B+ Hyay/4. 21)

Formulas (12)—(14) put integrals (20) and (21) inthe
form

W = —(a*=b?)*12,
P = ayby/4 + a,b; + a,b,.

(22)
(23)

According to these expressions, the energy is nonpos-
itive, W < 0, and is proportional to the square of the
energy difference Ey(1) — E(1) and the generalized
momentum P is equal to the fraction of the helicity
H= J’Aszxdy that iscontainedinthek=1and k= ./2
harmonics.

We areinterested in solving problem (6)—(11) rather
than problem (15)—(17). Accordingly, we must impose
certain restrictions on the possible solutions to problem
(15)—(17) in order to single out a class of solutions that
areworth considering, because the parameter a. and the
initial values of the quantities a, 3, and a, are not arbi-
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trary. Formula (12) implies that the quantity a, is
restricted to the values [a,| < a.; moreover, asla)| — &,
the quantities a and 3 tend to zero by virtue of formula
(20) and the condition W< 0.

The case a. — |a,| < &, corresponds to a magnetic
configuration in which the initial harmonic sinx siny
dominates over the k = 1 harmonics. The case |[a,| < a.
corresponds to a configuration that is dominated by the
k = 1 harmonics and forms after the coalescence of
magnetic cells. The reason for thisis that the magnetic

energy accumulated in the k = ./2 harmonics is equal
to ag /2 and the energy accumulated in the k = 1 har-
monics is equal to af + a§ + bf + b; =E- a§/2=

2 2
(a; — ay)/2.

Thetime evolution of a, can be easily understood by
drawing an analogy with the motion of a charged parti-
clein the magnetic field b, and the potential U. Clearly,
the coordinate a, of the moving particle oscillates
between minimum (a,,,,) and maximum (a,,,,) values.
In the absence of a magnetic field (b, = 0), we have
Anin =—8max- 1heMagnetic field b, turnsthe particle and
forces it to drift aong the lines U = congt, thereby
diminishing the difference a,,,, — a,;,- Consequently,
the initial equilibrium |a,| = &, which is unstable in a
weak magnetic field b,, becomes stable in a sufficiently
strong field by,

In order to analyze the temporal behavior of a, in
more detail, we eliminate 8 in formula (20) using for-
mula (21). Since the quantities W and P remain
unchanged with time, we will arrive at the equation

relating a, to the time derivative &, = 2a. For brevity,

we restrict ourselves to considering the case with the
initial values a = B = 0 (and, accordingly, a, = a, =
b, = 0) and

(t=0) = a/1-¢,

where the quantity e is related to the ratio between the
energy W and the depth U of the potential well by

e = 8lW/a;.
Then, the desired equation relating a, to a, can be
written as
485+ Hilae/1-e—a0) - (ag-a5) +<'al = 0,
Setting &, = 0 gives the equation for a,,;,, and a,,,.
Using this equation, we can easily show that a,,,, = &,
(t=0).
For H, < H, = 2a, (or, more precisely, H, — H, >
a.n/e) ande < 1, weobtaina,,, = a;,and a,,;, = a,— H,.
The coordinate a, evolves in time as follows. For a

(24)
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fairly long time, on the order of y'In[(a,, -
a.i)/(@(t=0) — a,)] > 1, the coordinate a, remains
close to a, (the particle is in a state close to equilib-
rium). Then, the coordinate a, deviates substantially
from a;, a. - |ay| ~ &, on atime scale that can be esti-

mated from Eq. (25) as (H; + 2a7 )12,

For H, > H, (or, more precisely, H,— H. > a,./e ) and
€ < 1, the period of motion is estimated to be
(Hg - Hf)—”z, inwhich case a,,;,, isequal to

0 H. O
Anmin = amaxEﬂ-_TE——Ed]'
0 HZ-H’D

Consequently, unlike in the previous case, the
amplitude of themotionisa,,, — a.,;, < a; and depends
sensitively on theinitial value of a,, thereby indicating
that the motion is stable.

Let us consider the influence of dissipation. Since,
in problem (1)—(4), the ratio a,/a. determines which of
the harmonicsis dominant, we analyze how the dissipa-
tion influences the quantity a,/a.. Thisinfluence can be
characterized by the quantity e defined in formula (24).
Using Egs. (6)—9) and (18), we obtain

¢ = 4(n+3v)(ag/ad)e,

which indicatesthat, under the action of dissipation, the
guantity e increases with time. Consequently, the ratio
a,/a. undergoes damped oscillations and approaches
zero.

Recall that the case H, > H. and € < 1 corresponds
to the onset of a dissipative instability. It is convenient
to explain the mechanism for this instability by again
drawing an anal ogy with the motion of a charged parti-
clein the potential U and in the magnetic field b,

In the presence of dissipation, the particlevelocity is
lower than without dissipation. Consequently, the mag-
netic field b, cannot bring the particle back into itsini-
tial position. Accordingly, the particle rotates around
the center (a,,, + &,,,)/2, which moves toward the min-
imum in the potential U. A more important point is that
dissipation increases the radius (a,,,x — a;,)/2 of rota-
tion of the particle. When the radius of rotation
becomes comparable to a., the particle occurs in the
region of large gradients of U and continues moving
toward the position a, = 0 at a higher velocity.

In the case at hand (H, > H. and € < 1), we have
(Amax — @min)/ac ~ (Hc/bp)’e. From Egs. (6)«(11) and
(19), we obtain the following equation for the ratio
by/He:

0 0
d(be/Ho) =-nl- %{bO/HC) —Vﬂ—gﬁ(boch)-
dt % 0 4]
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Using this equation and the equation for €, we find
that the ratio (a,,,, — a,,;,)/a; increases at the rate 2(n +

V) + (2N + 10.5v)a> /a2 = 4n + 12.5v.

Now, we again turn to problem (1)—(4). In what fol-
lows, by the quantities a,, b,, a, etc., we mean the
related functions of the corresponding Fourier coeffi-
cientsin the Fourier series expansion of problem (1)—(4).
The temporal behavior of these quantities can be
described by Egs. (11) and (15)—19) with the addi-
tional terms that accounts for the interaction with the
perturbation harmonics that are neglected in the
MSNH. The results from the numerical solution of
problem (1)—(4) show that the effect of this interaction
on the solution to Egs. (11) and (15)—(19) is analogous
to the effect of additional dissipation. The latter, how-
ever, not merely changes the coefficients n and v but
plays a fundamentally important role. In essence, the
MSNH correctly describesthe solution to problem (1)—4)
only in the linear stage, when H, < H.. For H, > H,, the
MSNH and the model with additional dissipation dis-
agree quantitatively even in theinitial stage of the evo-
lution. This disagreement can be explained by the fact
that the effect of higher harmonics, being small, isat the
same time important, because, at low transport coeffi-
cients, the growth rate of the dissipative instability is
slow. The MSNH implies that, in the nonlinear stage,
the magnetic perturbation undergoes weakly damped
oscillations from the initial magnetic configurationto a
configuration corresponding to the linear combination
of the cosx and cosy harmonics and back again. Astime
elapses, the latter configuration becomes dominating.
However, the solution to problem (1)—(4) showsthat the
magnetic perturbation undergoes such oscillations only
when H, < H_; moreover, the oscillations are damped
at a significantly faster rate than predicted by the
MSNH. When the amplitude H, is not too small, the
perturbation undergoes no oscillations and rapidly
evolves to the final configuration. Nevertheless, below,
we will show that the results obtained in the MSNH
provide a clear insight into the regular features of the
evolution of the magnetic configuration in the nonlinear
stage in problem (1)—(4).

An analysis of the numerical solution to problem
(1)—(4) showsthat, in the nonlinear stage of the coales-
cence process, the quantities a,, b,, etc., changein such
away that the energy W becomes as close as possibleto

the minimum value of the potential, minU= —af /8,
under the condition of conservation of the helicity P

and at a prescribed energy, R* = a§/2 + b§/4 +a’+b?

accumulated in thek = 1 and k = /2 harmonics after
the coalescence. In other words, as a result of coales-
cence, the parameter e (24) reaches its maximum under
the condition P = const, in which case the energy Ris
an unknown quantity and is to be cal culated from other
considerations. Although the energy R is unknown, the
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condition for e to be maximum makes it possible to
quantitatively describe energy redistribution resulting
from the coal escence of the magnetic cells. Let usillus-
trate this point.

First, we turn to the conservation of the helicity P.
Note that, in most of the calculation versions, the
change in P in the nonlinear stage is not too large and
reaches 20% only in rare cases. However, just before
and just after the nonlinear stage of the coalescence
process, the values of P were found to be essentially the
same. Note also that the fraction of the generalized par-
ticle momentum P associated with the helicity con-

tainedinthek=1and k= ﬁ harmonics corresponds
to more than 90% of the total helicity H. Using expres-
sion (23), we can reduce the conservation condition for
P to the form

agbo/4 +a;b, + a,b, = ayby/4. (26)

Here, the quantities with and without the superscript
“—" are taken, respectively, at the times just before and
just after the nonlinear stage. Condition (26) was
derived taking into account the fact that, initially, the

k= /2 harmonics dominate.

L et usanalyze the consequences of the condition for
€ to be maximum. We use expressions (12), (22), and
(24) and Eq. (19) to rewrite this condition as

:_ _ (@-b)’
(@212 + & + b2’
Taking into account relationships (13), we arrive at

the following representations for the coefficients a, b,
ay, and by in*“spherical” coordinatesR, U, &, &,,, and ¢:

ay = ~/2Rcosysing,,
by = 2Rsinysing,

= max.

€ (27)

a = Rcosy cosé,,
b = Rsinycosg,,
a;b, + a,b, = abcosé.

In these coordinates, conditions (26) and (27) can be
rewritten as

XSin(2y) = aghy/(2R?),

X = cos€,cosé,cosh —(sink,sing,)/./2, 08)

2 2 . 2 2 2
COS Y cos ¢,— SN Ycos
62 — ( lIJ E.a l-IJ Eb) = max.

(cosqu + SinleJ c:osZEb)2

The extremum of €*{&,, &, WIX(&a &, )1} is
reached at the points satisfying the equations

0€°10E, , + (9€°10W) (AW/IX)(IX/OE, ) = O,
(3€° 1Y) (dW/dX)(dx/0¢) = O.
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Since dx/0¢ isproportional to sin¢, de?/d, 1, ispro-
portional to cosé, psing, ., and 0X/0¢,, =

—(sin&, pcos&p 5 + (COs, pSinéy, a)/A/é), one of the
solutions for which this extremum isreached iSsiné, =
sin, = sin¢ = 0. Accordingly, wehavea,=b,=0.Itis
an easy matter to show that this solution corresponds to
the maximum of e. Consequently, after the coal escence,

the k = /2 harmonics, which dominated before the
coalescence, disappear, whereas the k = 1 harmonics
become dominant.

In terms of the “particle-magnetic field by—poten-
tial U” system, the results obtained indicate that the
system evolves to the most stable steady state and that
the generalized particle momentum is conserved during
the evolution. Clearly, this state corresponds to a parti-
cle at the bottom of the potential well (a, = 0). In order
for the generalized momentum (21) to be conserved,
the particle should move along the bottom (3 # 0). The
magnetic field b, acts to turn the moving particle. To
prevent thiseffect, it is necessary that the magnetic field
vanish (b, = 0).

Substituting &, = &, = ¢ = 0 into relationships (28)
yields the equation

sin’(2y) = [agby/(2R%)]”. (29)

After the coalescence, we have g, = b, = 0; conse-
quently, RR = a> + b? =E. Since we aso have E- =

(a9 )*/2 before the coal escence, we can rewrite Eq. (29)
in the form

sin’(29) = (bglag) (E/E)". (30)
We can seethat, in order for Eg. (30) to have asolu-

tioninthe case b, /a, = H, > 1, the energy E after the
coal escence should exceed that before the coal escence.
Above, we have shown that thisis actually the case.

Equation (30) has two solutions: ¢ = Yypand Y =

W2 — Y where Y = (1/2)arcsin(|by/ag| (E/E).
Accordingly, after the coalescence, the ratio of the
energies of the toroidal and poloidal magnetic fields,

E/E, =bY/a’ = tan’ Y, can be either larger or smaller
than unity. Cal culations show that E, > E, for H, < 1 and
E,> E, for H, > 1. Theratio E,/E, increases monotoni-
caly as H, increases. The monotonic dependence of
E,/E, on H, can also be obtained from Eq. (29) with
alowance for the numerical data on the value of R.
The fact that, after the coalescence of the magnetic
cells, the magnetic perturbation undergoes weakly
damped oscillationswhen H,, << 1 and does not oscillate
a all when H, ~ 1 can be explained in terms of the
motion of acharged particlein the magnetic field b, and
the potential U. When H, ~ 1, the magnetic field b, acts
PLASMA PHYSICS REPORTS  Vol. 28
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to oppose the particle motion toward the bottom of the
potential well, thereby trying to prevent the particle
from crossing the line a, = 0. However, because of the
interaction with small-scale harmonics, the magnetic
field b, falls off to zero and the particle approaches the
bottom (where the coordinate a, hasa zero value). Con-
sequently, the magnetic field b, cannot force the parti-
cle to move away from the bottom of the well, asin the
case with b, = const. As a result, the particle moves
gradually from the point a, = a. toward itsfinal position
a, = 0. In the absence of a magnetic field, the particle
crosses the line a, = 0 with a nonzero velocity, but its

relative energy €28|W|/a; becomes slightly lower than

that at theinitial instant. We thus deal with the damped
oscillations of a particle about the minimum of U.

6. CONCLUSION

We have shown that, in the EMHD model, the con-
figuration of magnetic cells that is periodic in two
directions is unstable against the coalescence of the
cells. Numerical simulations on a calculation region
whose sides exceed the period of the cells reveded a
cascade of reconnection events, in each of which the
characteristic scale of a newly formed configuration

increases by afactor of /2.

The most interesting feature of the coalescence pro-
cess is that, in the EMHD model (unlike in the MHD
model), the dynamics of the cells where most of the
magnetic energy is accumulated is independent of the
dissipation coefficients, provided that the coefficients
themselves are sufficiently small. In particular, thetime
scale on which the cells coalesce remains finite or, at
least, increases very slowly asn and v tend to zero. On
the other hand, the dissipation coefficients have a sub-
stantial impact on the distribution of the electric current
density during the reconnection process. the current
density isredistributed in such away asto dissipate the
energy flux from large- to small-scale maotions. The
independence of the reconnection time on the dissipa-
tion coefficients in EMHD theory can explain the
anomalously short duration of the crash phase of saw-
tooth oscillations in tokamaks.
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Abstract—Approximate formulas for the modeling of the interaction of fast alpha particles and suprathermal
electrons with solid-state plasmas of the emitter films in a secondary-electron-emission radioisotope current
source are derived. The approximate formulas are used to estimate the characteristic interaction parameters, in
particular, the effective stopping power of the composite material of the emitter, the ranges of apha particles,
the optimum thickness of the emitter, and the maximum possible number of binary current cells. The results
obtained can be used to optimize the parameters of a prototype model of such a source and to analyze its cur-
rent—voltage characteristic. They can aso be applied in Monte Carlo modeling of the generation of suprather-
mal electrons by fast ion fluxesin a solid-state plasmaand i on flux—induced fast nonequilibrium secondary el ec-

tron emission from metallic and dielectric films. © 2002 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

The method of direct conversion of nuclear energy
into an electrical one holds great promise for many
applications, e.g., for scientific investigations in deep-
space missions (to provide electric energy sources in
onboard equipment), for the self-contained power sup-
ply of equipment in the Earth’s hardly accessible areas,
aswell asin microelectronics and medicine. The ques-
tion asto how this method can beimplemented in a sec-
ondary-emission radioi sotope current source (SERICYS)
was thoroughly discussed, e.g., by Balebanov et al. [1].
According to [1], the characteristic feature of the
SERICS battery is the power-law distribution of
suprathermal electrons produced during the propaga-
tion of fast ions from a radioisotope source in a solid-
state plasma of an emitter consisting of alarge number
of thin metal layers alternating with insulating layers,
e.g., in the form of grids. The high efficiency of the
electric-current generation by an ion flux in the
SERICS battery stems from the onset of nonequilib-
rium secondary electron emission. In order to develop
and fabricate a prototype model of the SERICS, it is
necessary to carry out some additional investigations,
which include among other things amore detailed anal -
ysis of the processes of the slowing down of fast apha
particles in the emitter (in particular, refinement of the
estimates for the ranges of these particles in a multi-
layer system of binary current cells), the determination
of both the possible thicknesses of the metal films and
the maximum possible number of binary current cells,
direct calculations aimed at confirming the efficiency of
the secondary electron emission from metal films of

optimum thickness, the refinement of the previously
obtained efficiency of converting nuclear energy into
electrical energy, and the determination of the service
time of the emitter under the al pha-particle fluence con-
ditions characteristic of SERICS batteries.

The objective of this paper isto obtain approximate
formulas for an analytic description of the interaction
of fast alpha particles and suprathermal electrons with
the emitter layers. Theformulasare derived on thebasis
of the summarized data presented in a monograph by
Pucherov et al. [2] and with the use of the data reported
by Shimizu and Ding [3]. The formulas obtained are
then used to calculate, in particular, the effective stop-
ping power of the composite material of the emitter, the
ranges of alpha particles, and the maximum possible
number of binary current cells. In the continuous slow-
ing-down approximation, using the transport equation
with the approximate formulas derived here makes it
possibleto investigate the energy and pitch angle distri-
butions of alpha particles and a so the mean energy 10ss
of the fast ion flux as a function of the depth to which
the ions penetrate into the emitter.

2. APPROXIMATE FORMULAS
FOR THE INELASTIC INTERACTIONS
OF ALPHA PARTICLES WITH THE EMITTER

The main factor governing inelastic energy loss of
fast ions is the stopping power of the medium pene-
trated by them. It is proposed that the role of theioniz-
ing radiation in a SERICS will be played by apha par-
ticles with an initial energy E, of about 3-10 MeV.

1063-780X/02/2805-0423%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. (a) Plots of the stopping power of a beryllium film
for alpha particles: the dotted curve is for the analytic
approximation of k calculated from formulas (2) and (3)
and the solid curve is reconstructed from the basic data
(b) Analytic approximations of the stopping powers for
apha particles of (1) Be, (2) Al, (3) Si, and (4) Cu films.

Thus, a?'°Po a pha-particle source produces al pha par-
ticleswith aninitia energy of 5.3 MeV. The most com-
prehensive collection of data on the mass stopping
power K,(E) of different substances is presented in the
form of the tables in monograph [2] for the fast ion
energies from 100 keV to 100 MeV. Note that, in [2],
the mass stopping power K,(E) is given in units of
MeV cm?/g. However, in the analysis of ionization pro-
cesses in the solid-state plasma of the emitter of a
SERICS, it is more convenient to use the stopping
power K(E) of substances, which ismeasured in units of
MeV/um. The functions k,(E) and K(E) are related by

theformulak(E) = K,(E)p x 10, where p isthe density

of the emitter materia in units of g/cm®. When con-
structing analytic approximate formulas for kK(E), we
start with the following asymptotic expressions for the
stopping power at low and high energiesof fastions[4]:

K(E) O(1/E,)In(DE,),

K(E)OEY?, v, < vy,

Vg > Vg,
(D

where v = eZZaz 3 /i, D isaconstant, Z, is the charge
of anion, and # is Planck’s constant. In this section, the
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alpha-particle energy E, is expressed in MeV. When
analyzing an SERICS, we will also need an expression
for the stopping power of substances in the energy
interval E, [1 (100 keV-10 MeV).

One can readily see that the asymptotic expressions
(1) are satisfied by the basis functions of the form
(1/E)In[F(E)], where F(E) = 1 + (AE*?)/[1 + BE'?] and
the constants A and B determine the position of the
maximum of the stopping power in the first approxima-
tion. Consequently, the most general analytic represen-
tation of the stopping power k(E) (in MeV/um) is pro-
vided by the function

K(E) = CE)M(E)L(E)(VE)In[F(E)], (2

where C isaconstant and the correcting functions SE),
M(E), and L(E) make it possible to obtain the best
agreement between the results of calculations by for-
mula (2) and the data presented in [2], in particular, to
reconstruct the plot of the function K(E) in all detail
(including breaks in the plot).

In view of the accuracy of the data presented in
monograph [2], function (2) appearsto be quite suitable
for approximating the stopping power K(E) in our anal-
ysis (the approximate plot of the function deviates at
certain points from the corresponding values in the
tables presented in [2] by no more than 5%).

Now, we determine function (2) for different sub-
stances. First, we turn to the slowing-down processin
beryllium (pg. = 1.8477 g/cm?, Z, = 4, and the atomic
weight A, = 9.013). With allowance for expressions (1),
the constants A, B, and C in formula (2) should be set at
A=5.79,B=1, and C = 0.2196, in which case the cor-
recting functions are described by the expressions

S(E) = {1+ 0.01/[cosh(20(E —1.6))]}
x tanh[10(E + 0.03)],
M(E) = {1+0.12/[1+6(E—0.8)"]}
x { 1—0.032/cosh[ 10(E — 1.1)]}
x {1 —0.11/cosh[30(E — 0.3)]}
x {1+ 0.01/cosh[15(E — 1.2)]} tanh(E + 0.58),
L(E) = 1 + {0.04/[1 + 0.9(E - 1)]}
+ {0.06/[1 + 0.8(E - 2)]}
+{0.03/[1 + 0.9(E — 3)2]}
+ {0.06/[1 + 0.9(E — 4)2]}
+{0.023/[1 + 0.9(E - 5)]}
+{0.04/[1 + 0.7(E - 1.5)%]}
+ {0.03/[1 + 0.6(E — 6)]}
—{0.01/[1 + 0.6(E - 7)]}.

3)
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The stopping power of beryllium for alpha particlesis
illustrated in Fig. 1a, in which the dotted curve is the
plot of function (2) with allowance for expressions (3)
and the solid curve is reconstructed from the summa-
rized data presented in [2].

For copper (pc, = 8.96 glcm?®, Z, = 29, and A, =

63.54), weset A=3.5,B=1.5, and C = 0.8439, the cor-
recting functions being

M(E) = tanh(E + 0.985) tanh[6.5(E + 0.0074)]
x {1-0.01/[1 + 10E - 0.7)2]}
x {1-0.01/[1 +2(E—2.7)]}
x {1-0.012/cosh[14(E - 0.6)] },
SE) = 1.033{1 + 0.005/[1 + 10(E — 1.1)]}

x {1—0.005/[1 + 10(E - 1.2)2]}(E + 0.65)/(E + 1), (4)
L(E) = 1 + {0.13/[1 + 0.6(E — 1.2)]}
—{0.3/[1 + 15(E - 0.3)?]}
+{0.03/[1 + 8(E - 0.8)]}

—{0.0002/[1 + 8(E — 1.1)]}

—{0.04/[1 + I5(E— 1)?]} — {0.01/[1 + 0.5(E — 5)]}.

The stopping power Kq,(E) of copper for alpha parti-
cles, calculated from formula (2) with expressions (4),
isgivenin Fig. 1b.

We also present analytic approximations for the
stopping powers of aluminum and silicon for fast alpha
particles. For aluminum (A, = 26.98, Z, = 13, and p,, =

2.6989 g/cm?), the constants A, B, and C are equal to
A=3.598, B=1, and C = 0.3049 and the correcting
functions S(E), M(E), and L(E) are described by the
expressions

SE) =1+ {0.08/[1 + 6(E - 0.4)]}
+1{0.011/[1 + (E-1.6)*]} + {0.014/[1 + 2(E-1.4)*]}
—{0.039/cosh[20(E - 0.95)] } + W(E),

W(E) = {0.012/[1 + 1.5(E-3.8)*]}
—{0.01/cosh[15(E—0.55)] }

+{0.013/cosh[15(E—0.3)] } (5)
+ {0.008/cosh[15(E—-1)] },
M(E) = {1 —0.045/cosh[8(E—-0.6)] }
x {1 -0.006/cosh[20(E -5)] }
x {1-0.01/cosh[2(E-5)] },
L(E) = {1 —0.0632/cosh[15(E —-0.1)] }
x{1+0.01/[1 +0.5(E-7)}.
The stopping power of aluminum, calculated from for-
mula (2) with expressions (5), isgiven in Fig. 1b.
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For a silicon film (pg; = 2.328 g/cm’, Z, = 14, and
A = 28.09), the constants are A = 2.9, B = 1.885, and
C = 0.6307 and the correcting functions have the form

SE)=1+{042/[1 + 1.2(E-0.5)]}
+{0.05/[1 + 0.5(E-1.9)*]}
—{0.05/[1 + 2(E—0.7)’]} + {0.045/[1 + 2(E - 1.5)*]}
+{0.012/cosh[(E-4.7)] },
M(E) =1-{0.01/cosh[10(E—-0.8)] }
+{0.014/cosh[10(E-0.2)] } (6)
—{0.015/cosh[E—-10] } + {0.01/cosh[E—-6.5] },
L(E) = 1 — {0.0295/ cosh[ 15(E — 1.05)] }
—{0.015/cosh[13(E-0.6)] }
+{0.019/cosh[20(E—-0.4)] }
—-0.0605{1 - tanh[10(E—0.1)] }.

Substituting expressions (6) into formula (2) and carry-
ing out the necessary manipulations, we obtain the
stopping power of silicon as afunction of the energy of
alpha particles. The plot of this function is shown in
Fig. 1b. From Fig. 1b, we can see that the characteristic
features (such aslocal extremes and breaks) of the plots
of the stopping power K(E) are fairly well described by
the above approximate formulas.

The energy losses of a flux of fast alpha particles
propagating through an emitter consisting of thin
(It < 0.1 pum) alternating beryllium and copper filmsare
determined by the effective stopping power of thiscom-
posite material:

Keff(E) = [IBeKBe(E)+|CuKCu(E)]/(IBe+ICu)'

For beryllium and copper films of equal thickness,
the calculated energy dependence of the effective stop-
ping power of the emitter is depicted in Fig. 2a. The
analytic formula (2) for k.;(E) corresponds to the
parameter choice A= 1.4, B=0.6, and C = 0.6069 with
the correcting functions

SE) = {1-0.01/cosh[10(E —1.4)] }
x {1-0.021/cosh[1.1(E-5.7)] }
x {1 -0.03/cosh[0.7(E—8.4)] }

x {1.12-0.11tanh[20(E - 0.2)] }
x {1 +0.006/cosh[0.5(E —6)] }
x {1+ 0.005/cosh[0.5(E—-8)] }

x {1 -0.006/cosh[E—4.3] }
x {1-0.013/cosh[E—-10] }
x {1-0.005/cosh[18(E-1)] },
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Fig. 2. (a) Effective stopping power for alphaparticles of an
emitter composed of beryllium and copper films of equal
thickness. (b) Range of alpha particlesin an emitter com-
posed of beryllium and copper films of equal thickness.

M(E) = {1 - 0.316/cosh[3(E-0.1)] }

x {1-0.031/cosh[12(E—0.9)] }

x {1+0.015/cosh[6(E —1.7)] }

x {1 —0.2205/cosh[20(E—0.1)] }

x {1-0.01/cosh[15(E —0.8)] },

L(E) =1 + {0.1/[1 + 0.1(E - 3)*]}

+{0.23/cosh[2(E —1)] } + {0.06/cosh[2(E —2.1)] }
+{0.125/cosh[5(E —0.4)] }

+{0.1/cosh[5(E—0.8)] }

—{0.053/cosh[10(E — 1.1)] }.

Using formulas (2) and (7), we can readily calculate the
actual range of alpha particlesin the composite material
of an emitter consisting of beryllium and copper films
of equal thickness (I, = I¢,):

(N

E

R(E) = [dEK(E). 8)
0

ALTAISKII ef al.

Note that the effective range (8) is anonlinear function
of the stopping powers of copper and beryllium. Some
of the calculated values of the effective range R(E) are
given in the table. In particular, the range of an alpha
particle with an energy of 5 MeV at the entrance to the
emitter is 14.4 ym. Consequently, for a 0.05-um-thick
individual filminabinary current cell of the emitter, the
alpha particle can propagate through, at most, 144
binary Be—Cu layers.

The effective range R(E) (in micrometers) in the
composite material of an emitter with the stopping
power K. (E) is described by the following analytic
approximate expressions:

R(E) = D,X(E)H(E)E¥/In[F,(E)], D, = 1.0423,
X(E) = {1 + 0.89/ cosh[ 0.4(E —0.6)] }
x {1 +0.029/cosh[8(E —0.28)] }
x {1—-0.11/cosh[5(E - 1.35)] }
x {0.9158 + 0.0873 tanh[0.5(E — 6)] 1,
H(E) = {1 + 0.396/cosh[2(E—0.5)] }
x {1—-0.045/cosh[1.2(E—3)] }
x {1 —0.0064/cosh[2(E —3.5)] }
x {1—0.033/cosh[3(E-2.2)] }
x {1—0.012/cosh[L5(E—7.6)] },
F,(E)=1+AE®)/[1+BE"], A =14, B, =0.6,

where the energy E of an alpha particle is in units of
MeV. The plot of the effective range (9) isdisplayed in
Fig. 2b.

In order to analyze the dynamics of the energy and
pitch angle distributions of alpha particles in a flux
propagating through a solid-state plasma of the emitter
(e.g., by using the transport equation in the continuous
slowing-down approximation [5]), it is also necessary
to know the function E(R) inverse to the function
defined by formula(8), i.e., to carry out the transforma-
tion R(EE) — E(R). Inthisway, we obtain with reason-
able accuracy the following analytic expression for the
function E(R) at energies of E < 10 MeV:

E(R) = Y(R/U(R),
Y(R) =R{1 + 1.7tanh[0.4R] }
x {1 —0.002tanh[0.08(R—14)] },
UR) = 8{1 + 0.4R31}
x {1 +0.05tanh[0.04(R—25)] },

where the effective range R of alpha particles in the
composite material of the emitter isin units of um.

Hence, the important features of inelastic interac-
tions of the fluxes of fast apha particles from a radio-
isotope source in an emitter consisting of thin metal
films in an SERICS are reasonably well described by

€))

(10)
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the above analytic formulas (2)—10) with allowancefor
both the features of the plot of the stopping power of the
emitter and the ranges of alpha particles in a wide
energy interval.

3. APPROXIMATION FOR THE STOPPING
POWER OF THE EMITTER MATERIAL
FOR SUPRATHERMAL ELECTRONS

Inelastic energy losses of aphaparticlesin the emit-
ter are associated primarily with the ionization of sub-
stance of the films and the generation of a tail of
suprathermal (fast) electrons. Suprathermal e ectrons
can be divided into two groups [6, 7]: true secondary
electrons with energies E < 50 eV and so-called d-elec-
trons with energies 50 eV < E < E,,, where the maxi-
mum energy E,, is related to the instantaneous energy
E, of an alphaparticle by E,,= 2722 eV (E,/5 MeV).

In order to derive approximate formulas describing
the stopping power of the emitter material and the mean
free paths of fast electronsin awide energy interval, we
can use, e.g., the datafrom [3], including those on par-
ticle losses due to the excitation of plasmons (for true
secondary electrons, these losses can be significant).
For copper, silicon, gold, and silver films, in which we
are interested here, the stopping powers K(E) can be
approximated by analytic expressions that are quite
similar to the above formulas, Thus, for the stopping
power K, (in units of eV/A) of copper films for
suprathermal electrons, we can obtain the approximate
expression

Keo(E) = 107°{1-0.109/[1
+20(log(E/103500))%]} F4(E) G, (E), v
where
FL(E) = {1+0.25/[1 + 15(log(E/21) )*]}
x {1+0.17/[1 +40(log(E/49) Y]}{1 + 0.17/[1
+50(log(E/12.7) )*1},
G,(E) = {1-0.42/[1 +200(log(E/3.67) )*]}
x {1-0.065/[1 + 25(log(E/260) )]} {1 - 0.08/[1
+20(log(E/2239) )21} (1 + E/2)*2/(1 + E/58)39,

and the energy E (in eV) of suprathermal electronslies
intherange 3.43 eV < E< 103.5 keV.

The stopping power of silicon films for suprather-
mal electronswith energies6.76 eV < E< 105.9 keV is
approximated by the expression

Kg(E) = 1.4 x 107 [1 + (E/3)] **/[1 + (E/49)] >3
x F5(E)G,(E)K(E), (12)
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Ranges of alpha particles in an emitter with the stopping
power Kg(E)

E,MeV | Rum [|[E,MeV | R um [[E,MeV | R pm
0.1 0.564 2.6 6.650 51 14.806
0.2 1.026 2.7 6.917 5.2 15.193
0.3 1.381 2.8 7.193 53 15.586
0.4 1.677 29 7.472 54 15.983
05 1.934 3 7.760 55 16.385
0.6 2.165 31 8.045 5.6 16.792
0.7 2.381 3.2 8.340 5.7 17.203
0.8 2.587 3.3 8.638 5.8 17.618
0.9 2.790 34 8.941 5.9 18.039
1 2.994 35 9.249 6 18.463
11 3.200 3.6 9.561 6.1 18.892
12 3.406 3.7 9.879 6.2 19.325
13 3.613 3.8 10.2 6.3 19.762
14 3.822 39 10.526 6.4 20.203
15 4.035 4 10.857 6.5 20.648
16 4.250 4.1 11.193 6.6 21.098
1.7 4.468 4.2 11.533 6.7 21.551
18 4.690 4.3 11.877 6.8 22.009
19 4917 44 12.227 6.9 22471
2 5.150 4.5 12.581 7 22.937
21 5.387 4.6 12.940 7.1 23.408
22 5.629 4.7 13.303 7.2 23.883
2.3 5.876 4.8 13.672 7.3 24.362
24 6.129 4.9 14.050 7.4 24.846
25 6.387 5 14.423 75 25.334

where

F,(E) = {1 +0.98/[1 + 20(log(E/46) )]}

x {1+ 50(log(E/24))*}{1 + 1.16/[1
+30(log(E/36))%1}{1 - 0.1/[1 + 30(log(E/14.12))2]},
G,(E) = {1+ 0.49/[1 + 40(log(E/28) ]}

x {1+0.2/[1 + 30(log(E/80) ]}

x {1—-0.2/[1 + 30(log(E/218) )]}

x {1+ 0.08/[1 + 30(log(E/35080) )?]},

K,(E) = {1-0.12/[1 + 20(log(E/431) ]}

x {1-0.3/[1 +70(log(E/8.3) )]}

x {1-0.1/[1 + 200( log(E/40) )1},

and the energy E isin units of eV.

The stopping power of silver filmsfor suprathermal
electrons with energies 4.365 eV < E < 103.5 keV is



428

K, eV/A
10 - (a)

0.1

1 1 1
1 10 10? 103 10* 10°

(b)

100}

10

100 103 10*
E, eV

1 10

Fig. 3. (8) Stopping power of copper for suprathermal elec-
trons. The dotted curve is for the analytic approximation.
(b) Range of suprathermal electrons in copper. The dotted
curve isfor the analytic approximation.

approximated by the expression
Kag(E) = 6x 107*{ [1+ (E/1.8)] **/[1+ (E/60)] *}
x F3(E)G3(E)Ka(E), (13)
where
Fy(E) = {1 -0.75/[1 + 200( log(E/4.36) )]}
x {1+ 0.4/[1 + 40(log(E/8.5) ]}
x {1+ 0.47/[1 + 50(log(E/5.6) )]}
x {1-0.08/[1 + 30(log(E/26.6) )]},
G4(E) = {1+ 0.25/[1 + 100(log(E/13) ]}
x {1—0.33/[1 + 20(log(E/40) )]}
x {1-0.18/[1 + 15(log(E/716) ]}
x {1+ 0.08/[1 + 30(log(E/15.3) )]},
Ks(E) = {1 -0.06/[1 + 20(log(E/1603) )]}
x {1+0.1/[1 + 50(log(E/177) )1}

ALTAISKII ef al.

x {1-0.1/[1 + 40(log(E/20890) )]}

x {1-0.07/[1 +20(log(E/45710) )*1};

and E isin units of eV.

The stopping power of gold films for suprathermal
electrons with energies 3.02 eV < E < 102.3 keV is
approximated by the expression

Kao(E) = 10 [1 + (E/1.2)]*%/[1 + (E/80)] >3
x F4(E)G4(E)K4(E),
where

F.(E)={1-0.5/[1 + 50(log(E/3.311) )|}

x {1-0.12/[1 + 50(log(E/23.7) )]}

x {1+ 0.17/[1 + 50(log(E/180) )]},
G,(E) = {1 - 0.18/[1 + 10(log(E/668) )]}

x {1+ 0.22/[1 + 50(log(E/108) )]}

x {1-0.17/[1 + 50(log(E/39) )]},
K,(E) = {1 -0.023/[1 + 40(log(E/14) )]}

x {1+ 0.08/[1 + 50(log(E/75) )?]}

x {1—-0.1/[1 + 20(log(E/103500) )2]},

and E isin units of eV.

In order to illustrate the accuracy of approximate
formulas (11)—14), Fig. 3a shows the plots of the stop-
ping power of copper. The dotted curve is calculated
from formula (11), and the solid curve is reconstructed
from the data of [3]. The two curves are seen to coin-
cide amost completely. It should be noted that, in
expressions (11)—(14), the electron energy is measured
from the Fermi energy.

The approximate expression for the stopping power
Kg. Of beryllium films can be derived by using the data
of [6], which refer to electron energiesof 100eV < E, <
20 keV. For convenience, we introduce the normalized
electron energy y = E./(100 V), in terms of which we
obtain

Kee = a(y)(4.8665/y)In(1+ 1.368y"%),
where

(15)

aly) =[1.638 —
0.638 tanh(y/15) 1{1 — 0.206/cosh[0.4(y —6)] }
x {1-0.1/cosh[0.3(y—15)] }
x {1+ 0.083/cosh[3(y—1)] }.

Using the data of [3, 6], it is also an easy matter to
derive approximate formulas for the mean free path A
of fast electrons with respect to inelastic losses. This
range is used to estimate the probability for secondary
electrons to escape from the films. Thus, using the data
of [6], we obtain the following approximate expression
PLASMA PHYSICS REPORTS  Vol. 28
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for the mean free path A, (in angstroms) of secondary
electrons with energies 100 eV < E < 20 keV in beryl-
lium:

Age = (21+1.17y)[1.5-0.5tanh(0.1y)] c(y), (16)
where
cy) = {1 +0.02/[1 +0.2(0.1y — 15)?]}
x tanh(0.07y) {1 —0.06/[1 + 0.5(0.1y — 3)*]}
x {1-0.05/[1 + 0.05(y — 20)?]}
x {1 +0.01/[1 + 0.04(y — 100)?]},
y =E(V)/100.

Also, using the data of [3], we can see that the mean
free path (with respect to inelastic collisions) of sec-
ondary electronswith energies2.54 eV <E< 10 keV in
copper is described by the approximate formula

Aoy = 1.65[1 + (E/60)]°°[1 + (2.64/E)] *° an
x P, (E)P,(E)Py(E),
where
P,(E) = {1 +0.27/[1 + 400( log(E/8.38) )]}
x {1-0.2/[1 + 400(log(E/3.45) )*1}
x {1+ 0.2/[1 +200(log(E/2.54) )]
+0.3/[1 + 300( log(E/10.66) )1},
P,(E) = {1 —0.11/[1 + 400(log(E/4) )*1}
x {1 -0.06/[1 + 400(log(E/2.9) )]}
x {1-0.16/[1 + 300(log(E/3.29) )]}
x {1+0.108/[1 + 120(log(E/7.73) ]},
Py(E) = {1-0.19/[1 + 103(log(E/2.71) )]}
x {1 -0.065/[1 + 300(log(E/5.34) )]}
x {1+ 0.08/[1 + 200(log(E/29.89) )*]
+0.06/[1 + 400( log(E/3.68) )]}.

Recall that, in formula (17), the mean free path is in
units of A and the electron energy isin units of eV. The
plot of function (17) is shown by the dotted curve in
Fig. 3b, inwhich the solid curve correspondsto the data
of [3].

Using the data on suprathermal electrons with ener-
gies4.84 eV < E < 8.93 keV [3], we obtain the follow-
ing approximate expression for the electron mean free
path (in units of A) with respect to inelastic collisions
insilicon:

Ag = 2.2[1+ (E/60)] °®[1 + (4.84/E)]*°

(18)
x U (E)U,(E)U5(E),
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where
U,(E) = {1 - 0.06/[1 + 40(log(E/ 43.3))*]}
x {1—0.73/[1 + 4(log(E/ 25))*]}
x {1 -0.2/[1+200(log(E/5.97))%
+ 1.8/[1 +20(log(E/ 11))*1}{1 -0.39/[1
+100(1og(E/21))21}{1-0.02/[1 + 100( log(E/27))*1},
U,(E) = {1 —0.11/[1 + 100(log(E/ 70))?]}
x {1 -0.15/[1 + 400(log(E/ 4.84))*]}
x {1 -0.45/[1 +200(log(E/ 18.44))*]}
x {1-0.08/[1 + 50(log(E/ 113.7)]},
Us(E) = {1 + 0.14/[1 + 800(log(E/ 16.2))?]
+0.45/[1 + 50(log(E/ 15)*]}
x {1+ 0.02/[1 + 70(log(E/34))*]}
x {1-0.2/[1 + 100(log(E/7.13))2]}
x {1-0.1/[1 + 1400(log(E/ 17))?]

+0.04/[1 + 30(log(E/25)4]},

and the energy E isin units of eV.

Note that the data of [3] were obtained with allow-
ancefor inelastic electron losses due to plasmon excita-
tion in a solid-state plasma.

The above approximate expressions (11)—(18) pro-
vide a sound basis for the calculations (and the relevant
express-evaluations) of the interaction of suprathermal
electrons with the emitter films in a radioisotope cur-
rent source.

4. ELECTRON EMISSION

Here, we briefly discuss analytic approximations
describing fast ion—induced electron emission from the
emitter films. These approximations are important, in
particular, for the analysis of the current—voltage char-
acteristic of aradioisotope current source.

Let A be the integral yield of secondary electrons
from the film per bombarding ion. Note that, according
to, e.g., monograph [7], the integral yield A is almost
entirely (up to 90%) contributed by the group of true
secondary electrons. In [7], the representative second-
ary electron emission spectrum dA/dE at energies of
E <10 eV was presented for the case of irradiation of a
150-nm-thick gold film by alpha particles from the
252Cf isotope. The spectrum is peaked at an energy of
about E = 0.7 eV, the characteristic spectrum width
being about 2 eV. In dimensionless units, the spectrum
dA/dE of low-energy (0.295 < E <9.167 eV) electrons
emitted from the film is described by the following ana-
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Fig. 4. Emission spectrum f(E) = EdA/dE of the secondary
electrons produced by apha particlesin acarbon film.

lytic approximate expression in the form of a power-
law-like distribution with the correcting functions:

dA

dE (19)

C,F,(E)E*®/(1+ 051EY),

where
F,(E) =1+ {1.42/cosh[0.8 (E — 0.02)]}
+ {0.17/cosh[2(E - 0.73)]}
+ {0.029/cosh[6 (E - 0.98)]}
+ {0.118/[1 + 0.8(E—2.1)?]}
+{0.088/[1 + 0.3(E—7)*]}

and the energy is expressed in units of eV. In formula
(19), the normalizing factor C, for the target material
and bombarding ions under consideration is chosen [7]
S0 asto satisfy the condition A = 6.

For awide interval of higher energies (63 eV < E <
2825 eV), the secondary electron emission spectrumis
presented in Fig. 3.7afrom [7] for the case of irradia
tion of acarbon film with a mass thickness of 2 pg/cm?
by 1.92-MeV aphaparticles (the detection angle being
42°). The analytic approximation of the dimensionless
characteristic f(E) = EJA/dE presented in [7] has the
form

f(E) = 0.834R,(E)W,(E) X,(E)E/(1 + 12.34E®), (20)
where
R,(E) = 0.55{1 — 0.15tanh[ 10(E — 0.537)]}
x {1—0.14/[1 + 10(E — 0.537)*]}
x {1-0.27/[1 + 16(E - 0.25)4]},
W,(E) = {1 - 0.7 tanh[5(E — 0.25)]}
x {1+ 0.91/[1 +4(E - 0.963)]}
x {1+ 0.4/[1 + 2(E - 2.45)]}

ALTAISKII ef al.

x {1 +0.25/[1 + 12(E — 0.875)*]}
x {1-0.13/[1 + 14(E- 1.7)7]},
X,(E) = 1 + {0.05/cosh[4(E — 1.1)]}
+ {0.093/cosh[4(E — 2.82)]}
+ {0.082/cosh[3(E — 2.11)]}{0.13/cosh[4(E — 2.45)]}

—{0.36/cosh[3(E - 1.46)]}.

For convenience, the electron energy in formula (20) is
expressed in units of keV. The approximate formula
(20) corresponds to a power-law-like spectrum of the
secondary electron emission. The plot of function (20)
in logarithmic variables (log f (E), logE) is depicted
inFig. 4, in which the power-law parts of the secondary
€l ectron emission spectrum can easily be distinguished.

To conclude this section, we should make the fol-
lowing remarks. First, in away similar to what we did
when deriving the above formulas, it is also possible to
obtain analytic approximate expressionsfor theintegral
yield A of secondary €electrons from the emitter film as
afunction of both the energy of afast ion and the angle
0 at which it isincident on the film. The dependence on
theincidence angleisvery important for calculating the
secondary electron emission in a radioisotope current
source for actual pitch angle distributions of the alpha
particles. Second, it is usually assumed (see, e.g., [7])
that the yield of secondary electrons is proportional to
1/cos 8, i.e, that it is determined by the energy released
by afast ion in ionization processes at distances from
the film surface that are on the order of the depth from
which the secondary electrons are emitted. Since the
penetration depth of alpha particles into the emitter of
an SERICSis, inturn, proportional to cos6, theintegral
yield of secondary electrons from the films is indepen-
dent of their pitch angle distribution [8]. The construc-
tion of approximate formulas for A on the basis of the
available experimental data and with allowance for the
pitch angle distribution of apha particles will make it
possibleto clarify the role played by their oblique inci-
dence on the emitter films in both the electric-current
generation in a radioisotope current source and the
electric-current distribution over depth in the emitter.
Finally, we note that taking into account the pitch angle
distribution of alpha particles leads to more readlistic
estimates of both the maximum possible number of
binary current cells and the efficiency of converting
nuclear energy into electrical energy. Thus, the results
of calculations carried out in [8] show that, for an iso-
tropic distribution of fast ions over the directions of
their momenta, the integral (over energy and pitch
angles) ion flux density decreases with depth z accord-
ing to the law j(2)/j0) = 1 — (zZ/R,)?>, where R, is the
range of an ion with the energy E, at the entrance to the
emitter. For an isotropic distribution Ny(6, E,) ~ cos?0
of fast alpha particles incident on the emitter surface,
wearrive at afar slower rate at which alphaparticlesare
stopped in the emitter: the integral flux density
2002
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decreases with depth according to the law | (2)/j0) =
1 —(z/Ry)*. Itisnecessary to keep in mind that the effec-
tive range of alpha particles in the composite material
of the emitter should be calculated in terms of the effec-
tive stopping power K. (E).

5. CONCLUSION

The results obtained in this paper are as follows.

(i) Based on the summarized data from experimen-
tal measurements and numerical calculations, we have
constructed approximate formulas for the stopping
powers of beryllium, copper, auminum, and silicon
filmsfor fast a phaparticles over awide energy interval
(from 100 keV to 10 MeV). We have also derived ana-
Iytic approximations for both the effective stopping
power of the binary current cells of beryllium—copper
films for alpha particles and the ranges of alpha parti-
clesin the composite material of the emitter of aradio-
isotope current source.

(if) We have obtained analytic approximations for
the stopping power of the emitter for suprathermal elec-
trons generated by fast apha particles and for their
ranges (with respect to inelastic processes) over awide
energy interval.

(iif) We have considered analytic power-law-like
approximations for the secondary electron emission
induced by fast alpha particles in carbon films (at low
energies of the secondary electrons) and in gold films
(in awide interval of higher energies of the secondary
electrons).

(iv) The approximate formulas constructed here
reflect the characteristic features of the plots of the
functions under consideration. The results obtained can
be used, in particular, to model inelastic interactions of
alpha particles and suprathermal electrons with the
emitter of a radioisotope current source, to analyze the
current—voltage characteristic of the source and the effi-
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ciency with which it generates the electric current, and
to optimize the parameters of SERICS batteries.
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Abstract—The energy balance in the interaction of intense (W=7 MW/cm?, Q = 130 Jcm?) flows of ahigh-
temperature (T, + T, = 0.7 keV) deuterium plasma with targets made of different materials (graphite, tungsten,
copper, etc.) is studied experimentally. It is shown that radiation plays a decisive role in the interaction energy
balance: aplasmalayer arising near the surface of the eroded target reemits most of the plasma-flow energy into
the surrounding space. No more than 50 Jcm? reaches the surface. Then, this energy is expended primarily on
the target heating and only a small fraction (less than 3 Jcm?) is spent on the evaporation of the target surface
layer. 1t is shown that, for targets made of high-Z materials, the energy reaching the surface is transferred pre-
dominantly by radiation. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The formation of a surface shielding layer is a
salient feature of the interaction of intense plasmaflows
with solid surfaces. In the initial stage of the interac-
tion, the density of the heat flux onto the surface almost
coincides with the power density of theincident plasma
flow and, in existing plasma devices, can attain tens of
MW/cm?. In a short time t,, the surface temperature
increases to the boiling (or sublimation) temperature,
and the target material begins to evaporate and ionize
intensively. This results in the formation of a plasma
layer, which substantially decreasesthe heat |oad on the
target. For this reason, this layer is called the “shield-
ing” layer and the phenomenon itself is known as
“vapor shielding.” The timet during which the shield-
ing layer is formed depends on the heat flux density W
and the properties of the target material. In the order of
magnitude, this time coincides with the beginning of
intense surface evaporation, t=t,,,. Using the dataon the
thermophysical properties of materials, we obtain that,
at atypical flux density of W= 10 MW/cm?, thistimeis
equal tot,,=0.15 psfor graphite, t,,= 0.9 usfor copper,
and t,, = 1.2 usfor tungsten.

After the shielding plasma layer is formed, it pro-
tects the target surface from the direct action of the
plasma flow, thus playing the role of a buffer taking
over the energy flux. Further, some fraction of this
energy goes for target heating, somefraction is spent to
increase the shielding layer mass (i.e., to evaporate and
ionize the target material and to heat the produced
plasma), and, finally, some fraction is radiated from the
shielding layer into the surrounding space. The evapo-
rated material efficiently shields the surface only when
the energy of the bombarding particles is not too high

and their deceleration length A in the surface plasma
layer is shorter than the layer thickness H. Otherwise,
most of the particle energy is spent on the surface ero-
sion, asin the case, e.g., of targetsirradiated with high-
energy electron or ion beams. As for plasma devices,
the characteristic particle energies in such devices are
substantially lower than in the beams and the plasma—
target interaction region is usually wider. The latter cir-
cumstance decreases the mass loss from the surface
layer due to the transverse layer expansion beyond the
interaction region. Because of the lower particle energy
and the decrease in the plasma layer mass | oss, the con-
dition A < H usually holds in the interaction of intense
plasma flows with solid surfaces, so that the surface
layer is actually shielding.

In this paper, we present the experimental data
obtained in the 2MK-200 facility at the Troitsk Institute
for Innovation and Fusion Research. These data
allowed usto analyze the energy balance in theinterac-
tion of deuterium plasma flows with targets made of
different materials (copper, tungsten, graphite, etc.).
The characteristic feature of this device is the presence
of astrong magnetic field B, = 25 kG normal to the sur-
face of atarget irradiated with a plasma, which makes
it possibleto suppress the transverse mass|oss from the
shielding layer. With arather short (T = 20 ps) plasma
pulse with ion energies of E; < 1 keV, thetarget irradia-
tion conditions were produced such that, for all the
materials under study, the shielding layer had time to
form. This layer was found to govern the dynamics of
the interaction process and to determine the contribu-
tion from each energy transfer channel to the total
energy balance.

1063-780X/02/2805-0432$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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2. EXPERIMENTAL SETUP

The 2MK-200 facility isalong cusp trap (LCT) [1],
which is filled with a plasma by means of two coaxial
pulsed plasmaguns (Fig. 1). When two high-speed (V =
4 x 107 cm/s) deuterium plasmabunches propagating in
the opposite directions meet in the central part of the
device, they are decelerated and thermalized, thus pro-
ducing a high-temperature plasma with 3 =1 (calcu-
lated by the external magnetic field) and an energy of
up to 40 kJ. Plasma particles|eave the confinement sys-
tem mainly due to diffusion into the skin layer (atran-
sition layer between the plasma with B;,, < B, and the
external magnetic field B, = 20 kG). Then, they move
along the magnetic field and escape though the annular
slots of two cusps. The strong magnetic field in the
annular ot (B, = 25 kG) prevents the high-B plasma
from escaping. For this reason, only the magnetized
skin plasma leaves the confinement system through the
annular slot.

=N (M= ==K K

=

433
3. PARAMETERS OF THE PLASMA FLOW

The plasma flows out through the annular slot (i.e.,
through the maximum-field region located at a distance
of R, = 16-18 cm from the system axis; see Fig. 1)
along the magnetic field lines. The magnetic field has
only the radial component in this region. Downstream
from the dot (in a so-called expander), the magnetic
force lines diverge gradually in the azimuthal and axial
directions and meet the wall of the vacuum chamber at
adistance of 25 cm from the annular slot.

Table 1 shows the plasma parameters near the
annular dlot at different times. The flow half-width is
d, = 1.1 cm and varies dightly with time, and the effec-
tive flow duration is T = 20 ps. The data on the plasma
density, electron and ion temperatures, plasma pres-
sure, and magnetic field were obtained from interfer-
ometry, Thomson laser scattering, and the measure-
ments with a pressure gauge and magnetic probes,
respectively [1-3].

Fig. 1. Schematic of the 2MK-200 facility: (1) plasmaguns, (2) LCT, (3) cusps, (4) target, (5) expander, (6) annular dlot, (7) LCT

plasmawith = 1, and (8) skin plasma.

PLASMA PHYSICS REPORTS Vol. 28 No. 5 2002



Tablel
t=1pus t=5us t=20us
Ne, 10725 cm3 0.6 4 10
Te, €V 120 140 90
T, eV 800 600 120
P, am 1 5 3
B 0.04 0.2 0.12

The energy density Q in the plasma jet flowing out
of the confinement system decreases as the distance R
from the system axis increases. The decrease in Q is
related to the expansion of the plasma flow in both the
azimuthal (proportionaly to 1/R) and axia (the
increasein the flow width) directions. The energy of the
plasma flow was measured by a calorimeter, which was
acopper cylinder 75 mm in length and 25 mm in diam-
eter. The calorimeter was placed at a sufficiently large
distance from the annular slot, R > 28 cm, where the
shielding effect did not disturb the results of the flow
energy measurements. From the calorimeter data and
the flow width, measured with magnetic probes and
pressure gauges, we cal culated the plasma flow energy
density at the distances R = 1640 cm from the system
axis. Near the annular dot, the calculated energy den-
sity was Q = 130 Jcm?, which corresponded to an aver-
age power density of W =7 MW/cm?. Consequently,
the energy of the plasmaflowing out of the annular slots
of two cusps amountsto 41iRd,Q = 30 kJ, which agrees
satisfactorily with the total plasma energy in the con-
finement system (~40 kJ), taking into account that a
fraction of energy is lost through the axia cusp slots
and some fraction is lost due to diffusion across the
magnetic field toward the liner wall. At distances of R =
24, 28, and 33 cm, the energy density decreased to 80,
46, and 21 Jcn?, respectively.

The targets intended for irradiation with a plasma
were inserted into the cusp in the radial direction and
could be positioned at different distances R from the
system axis. All the experiments described in this
paper, except for an experiment with awire mesh target
and an additional experiment with graphite, were con-
ducted at the normal incidence of the plasma flow onto
the target.

4. EXPERIMENTAL RESULTS

Under our experimental conditions, the energy
transferred to the shielding layer can be expended on
the following processes. a fraction of energy reaches
the surface and is spent on heating the target and evap-
orating a thin layer on its surface, and the remaining
energy should be either radiated from the shielding
layer into the surrounding space or stored in this layer
asinternal plasmaenergy. A significant role of radiation
motivated the use of relevant diagnostics such asradia-

ARKHIPOV et al.

tion calorimetry and soft X-ray (SXR) spectrometry. In
addition, we measured the target heating and studied
the erosion craters on the target surface. Using these
diagnostics, we could clarify the role of each of the
above processes in the total energy balance.

4.1. Radiative Losses from the Shielding Layer

In order to investigate the role of radiative lossesin
the interaction energy balance, we used radiation calo-
rimetry and SXR spectrometry.

4.1.1. Radiation calorimetry. To determine the
integral (over the spectrum and time) radiative losses
from the surface plasma layer, we used a highly sensi-
tive thermocouple radiation calorimeter [4], in which
an auminum-oxide film served as a caorimeter
receiver. The measured absorption coefficient of this
coating isno lessthan 98% for theradiation intherange
4 A <\ <12 pm, except for the VUV spectral region
200 < A <2000 A, inwhich absol ute calibration was not
performed. For the latter region, the theoretical esti-
mates of the absorption coefficient give the value 285%

[4].

The arrangement of the radiation calorimeter is
shown in Fig. 2. The collimator axis was adjusted to a
point located at a distance of R, = 18 cm from the sys-
tem axis. By displacing the target along the radius R
from shot to shot, we could collect the radiation from
the plasmalayer regionslying at thedistance X=R- R,
from the target surface. The spatial resolution of the
collimator along the X-axiswas o = 0.5 cm. Inthetrans-
verse direction (i.e., adong the system axis), the calo-
rimeter viewing field was equal to 31 mm, which was
substantially larger than the plasma flow width.

As targets, we used tungsten, copper, or graphite
(the POCO brand) samples up to 5 cm long. As was
shown previoudy in [2], the shielding layer plasma
moves primarily along the magnetic field lines. Conse-
guently, the radiating regionislimited in two directions
perpendicular to the magnetic field: in one direction,
the size is limited by the target length L, and, in the
other direction, it is limited by the layer thickness d,
which can vary for different targets within the range
12-25 mm. The size of the radiating region along the
third coordinate is determined by the parameters of the
shielding layer and, as will be shown below, depends
strongly on the charge number Z of the target material.
Note that the width of the shielding layer was larger
than that of the deuterium plasma flow and could vary
with distance from the target, d = d(X). Nevertheless, in
all cases, the calorimeter collected radiation over the
entire layer width. Consequently, when recalculating
the radiated energy from the calorimeter readings, the
knowledge of the layer thicknessis only required if the
radiation is not volume in character. Such a correction
was made only when calculating the radiation from a
tungsten plasma.
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Fig. 2. Layout of radiation calorimetry.
When analyzing the plasma radiative characteris- 2
tics, it is convenient to use a reduced quantity in inter- EX)d(X), Jom
mediate calculations, namely, the emittance per unit 150 -
volume €. Hereinafter, when using the notation €, we - 2 o L=5cm W
mean that the corresponding data are calculated for an | ce-L=272cm
optically transparent plasma. When dealing with anon- 1001 ' T
zero optical thickness, we will use the quantity €4. In
the final form, it is more convenient to use the quantity
€d (or g4d), which is proportional to the calorimeter
signal and does not depend on the layer width. S0
Tungsten. Curve 1in Fig. 3 showsthe quantity d as
a function of the distance X from a tungsten target of
length L, = 5 cm. It is seen that, most of the energy is 0 '
radiated from the first 2-3 cm of the surface layer. In E(X)d(X), Jem?
order to analyzethe shape of theradiativelosscurvenot 250
only qualitatively, but also quantitatively, we should 3  IL=5cm
have information on the optical plasmathickness. This o9l 4
isimportant for recal culating the calorimeter energy to
the energy radiated by thelayer in al directions. To esti- 150
mate the optical thickness, we carried out an experiment
with a target of length L, = 2.2 cm (Fig. 3, curve 2).
Curves 1 and 2 amost coincide for the distances 100
X>1 cm. This pointsto the fact that, at such distances,
the plasma is aimost transparent for radiation at the 50+
wavelengths characteristic of radiative losses. Near the
target (X <7 mm), the curves differ substantially, which I I I -
indicates that it is necessary to take into account the 0 1 2 3 4 5

finite optical thickness of the plasma layer. The
required direct measurements of the radiating layer
thickness d(X) were performed with an SXR spec-
trograph and will be described in detail in Section 4.1.2.

Let usconsider theradiating layer as a superposition
of a volume source and a surface source. The radiative
PLASMA PHYSICS REPORTS Vol. 28
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Distance from the target X, cm

Fig. 3. Radiative losses from the plasmanear atungsten tar-
get calculated (1, 2) under the assumption that the plasma
optical thickness is zero and (3, 4) taking into account the
finite plasma optical thickness. The target length L is equal
to 5 cm for curves / and 3 and 2.2 cm for curves 2 and 4.
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£X)d(X), Jem?
120+
100+
80+
60+
40}
20

0 1 2 3 4 5 6 7 8 9
Distance from the target X, cm

Fig. 4. Radiative losses from the plasmanear acopper target
4 cm long. The curves are calculated under the assumption
that the plasma optical thicknessis zero.

loss power from alayer of thickness dX is equal to
dE(X) = dE(X) + dE{X) = &,(X)dV + K(X)dS
= g,/(X)Ld(X)dX + K(X)2(L + d(X))dX,

where ,(X) isthe emittance per unit volume of the first
source and K(X) is the surface emittance of the second
source. It is assumed that €, and K are independent of
the target length. We define the effective emittance €4
as dE(X) = e4(X)LA(X)dX. Then, we obtain

2(L +d(X))

Ld(X)

The energy received by the calorimeter from alayer of
thickness dX isequal to

Eai(X) = e(X) + K(X). ey

Q

dA = dAV+dAS = 4._T[dEV

Q d _Q 4.0
+T[2(L+d)dES = 4nLd%V+LKDdX,

where Q isthe collimator angular aperture.

The emittance € calculated for an optically thin
plasmais given by the equality dA = L%[sdeX. Conse-

guently, we have (X) = e (X) + é K(X). Denoting (X)

for targets of length L, and L, as €,(X) and &,(X), we
obtain a set of two equations from which it follows

O _ (X)L —&x (X)L,
(9 = S0P
O (2)
%((X) _ LiLo(&x(X) —€4(X))
- 4L, -Ly)

O
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Fig. 5. Radiative losses from the plasmanear agraphite tar-
get 5 cm long. The curves are calculated under the assump-
tion that the plasma optical thicknessis zero.

Curves 3 and 4 in Fig. 3 show the results of calcula-
tions of €4(X)d(X) by formulas (1) and (2). In compar-
ison with curves 1 and 2, respectively, the profiles
become steeper; more than one-half of the energy is
now radiated from the first centimeter of the plasma
layer. At distances of X < 7 mm, about two-third of the
energy isradiated by the “ surface source” and one-third
isradiated by the “volume source.” When analyzing the
energy balance, the energy density Q in a deuterium
flow should be compared with the quantity Q,4 =

di - [e() 000X, e, the energy raciated by the

plasmalayer per unit area of the flow cross section. For
atungsten target, we have Q,,4 = 240-280 Jcm?.

Copper. The emittance of the copper plasma, aswell
as that of the tungsten plasma, has a pronounced peak
near the target surface (Fig. 4). The maximum value
e(X)d(X) = 120 Jcm? is comparable with the corre-
sponding value for a tungsten target. At the same time,
the half-width of the curve for copper is nearly two
times aslarge as that for tungsten and amountsto AX =
3 cm. As aresult, the radiative losses from the copper
plasma layer are substantially greater. Calculations
show that, without taking into account radiation trap-
ping, these losses are equal to Q,,4 = 350 Jcm?.

POCO Graphite. The emittance of the carbon
plasma (near a graphite target of length L = 5 cm) is
much lower than the emittance of the tungsten or cop-
per plasmas (Fig. 5). The peak near the surface is less
pronounced. Asthe distance from the surface increases,
the value of €(X)d(X) decreases by afactor of about 3;
at X=4 cm, it arrives at a plateau 4 Jcm? high, which
continues at least to X = 8§ cm. Moreover, the measure-
ments show that, even for X = 125 cm (when R =
30.5 cm and the deuterium flow energy density is as
low as Q = 30 Jcm?), the radiative losses still are sig-
nificant: £(X)d(X) = 3 Jcm?.
PLASMA PHYSICS REPORTS  Vol. 28
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The data obtained confirm that the shielding layer
near the graphite surface can be divided into two
regions: a dense plasma (n, = 10'7 cm™3) near the sur-
face (X < 1 cm) and a plasma corona, i.e., the region of
arelatively rare plasma, which rapidly flows away from
the surface and whose density and temperature are
aways nearly uniform (e.g., at t = 8 us, the corona den-
sity and temperature are n, =5 x 10" cm=3 and T, =
80eV [2, 3]). A plateau on the emittance curve corre-
sponds to the plasma corona.

Unfortunately, because of a low level of the valid
signal against the background measured in the absence
of atarget, we could not obtain the data on the optical
thickness of the plasma layer by shortening the target
length, as was done for tungsten. To roughly estimate
the character of the generation of the radiation received
from the layer X < 4 cm, we carried out a separate
experiment in which the normal to the target was
inclined at an angle of 30° to the plasma flow axis. In
this case, thetarget surfaceirradiated with aplasmawas
facing the calorimeter and we measured the radiation
from different regions of the plasmalayer lying over the
target.

Because of the target inclination, the density of the
energy flux onto the surface varied only by 14%, so that
we could use the data presented in Fig. 5 in our analy-
sis. In this experiment, the expected curves of the sur-
face layer brightness should depend on the assumed
radiation source. If radiation is surface in character,
then the target inclination would have no effect on the
calorimeter readings. If radiation is volume in nature,
then the calorimeter readings near the target would be
smaller because the plasma volume viewed by the cal-
orimeter is narrower. In particular, we should consider
the third characteristic situation with a thin (AX <
0.5 cm) intensively radiating layer adjacent to the tar-
get. In this case, the radiation is emitted from the layer
surface, whereas the bulk plasma (0.5 < X < 4 cm) radi-
ation is volume in character. The latter case deserves a
particular consideration, because it is necessary to ver-
ify the assumption of [3] that a substantial fraction of
the shielding layer energy can be reemitted by lithium-
like carbon ionsin the region of the first radiation max-
imum of a carbon plasma, which corresponds to a
plasma temperature of ~5 eV [5]. In the experiments
described in this paper, such a temperature, according
to[3], can be attained only in theregion lying no farther
than 2 mm from the surface. If such athin, intensively
radiating layer does exist, then most of the energy
should be radiated from its face parallel to the exposed
target surface. When a graphite target isin the horizon-
tal position, the calorimeter does not “sight” thisradia-
tion and the method for recalculating the radiative
losses from the calorimeter signal, which was used to
draw Fig. 5, can give a significantly underestimated
value of theradiativeloss power. A small turn of thetar-
get makes the bright face visible. As the target surface
is approached, the calorimeter readingswill first almost
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coincide with those for a horizontal target; however,
they will increase rapidly when the bright face will fall
into the calorimeter viewing field.

The calorimeter signals indicate that, at short (X <
2 cm) distances from the target, the plasma radiation
can be associated with a surface source; further, the
experimental points better fit the curve calculated for a
volume source. In any case, the existence of an opti-
cally thin layer adjacent to the target surface was not
proved experimentally. The fact that, at distances of
about 2-3 cm from the target, the radiation generation
gradually takes the features of surface radiation does
not lead to significant errors in determining the radia-
tivelossesfrom ahorizontal target because, in this case,
the area of the front face (parallel to the target surface)
of the optically thick layer adjacent to the target isthree
to six times smaller than the area of the side faces (it is
the radiation from these side faces that is measured in
the case of a high plasma optical thickness).

Using the datapresented in Fig. 5, we can determine
the radiative loss power. If only the first 7 cm of the
shielding layer are taken into account and the plasma
optical thickness is assumed to be small, the radiative

7 cm

losses can be estimated as Q4 = al I e(X)d(X)dX =
0
0

40 Jem?. Assuming that the plasma within the first
2.5 cmradiates as a surface source, we obtain the upper

estimate Q,,4 < 70 Jcm?.

4.1.2. SXR spectroscopy. Theradiativelossesinthe
short-wavelength spectral region were measured by an
SXR spectrograph with a 5000-line/mm gold transmis-
sion grating. The geometry of the experimentsis simi-
lar to that in Fig. 2. Targets with alength of L = 5cm
and width of 3.5 cm were positioned at R = 18.5 cm.
The spectra were measured at different distances X
from the target. The spectrograph viewed the region
R = 12-19 cm. Along the system axis, the spectrograph
was adjusted to the center of the plasma flow. The spa-
tial resolution of the spectrograph was 2.5 mm along
the X-axis and 2 mm along the system axis, the spectral
resolution was 1.5 A, and the linear dispersion was
13 A/mm. The spectral interval 10 < A < 400 A was
analyzed. The time-integrated spectrum was recorded
directly on a Kodak 101-01 X-ray film. The time-
resolved spectra were obtained with the help of a sin-
gle-frame camera based on a microchannel plate
(MCP). The X-ray emission was converted into thevis-
ible image with the help of a pulsed MCP camera [6]
and recorded on aKodak 2484 film. The time resolution
of the measurements was 100 ns.

Figures 6 and 7 show the integrated (over the spec-
tral region A < 400 A) plasma brightness in front of
tungsten and graphite targets. The curve in Fig. 6 was
obtained by anayzing the time-integrated spectrum,
and the curvein Fig. 7 is obtained by integrating seven
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Fig. 6. Plasma brightnessintegrated over the spectral region
A <400 A near atungsten target.

instantaneous spectra of a carbon plasma at different
timest =2-13 us.

In the case of an optically thin plasma, the surface
brightness is proportional to the plasma emittance. In
view of thisfact, we can compare curve 1in Fig. 3 with
the curvein Fig. 6 and also the curvesin Figs. 5and 7.
A comparison showsthat, for both materials, the behav-
ior of the corresponding curves at distances of X >
0.5cm is very similar. Hence, for both tungsten and
graphite, the radiative lossesin therange A < 400 A are
proportional to the radiative losses integrated over the
spectrum. Closer to the surface, at distances of X < 0.2—
0.4 cm, the short-wavel ength radiative |osses decrease,
which is probably due to the fact that the temperature
drops sharply and, consequently, the spectrum shifts
toward longer wavelengths. At the sametime, it isprob-
able that the integrated radiative losses near the surface
X < 0.3 cm aso have a tendency to decrease. This
assumption does not contradict the data from radiation
calorimetry, because the spatial resolution of the
method (5 mm) does not permit accurate measurements
in the immediate vicinity of the target. However,
because of the small thickness of thisregion, the behav-
ior of the radiative loss curve within it cannot substan-
tidly influence the calculated value of the energy radi-
ated from the plasma layer, even in the case of atung-
sten plasma.

To determine the width of the shielding layer near a
tungsten target, the spectrograph was turned through
90°. In this case, we measured the spectra by varying
the gpatial coordinate along the system axis at a fixed
distance from the axis R, = 16 cm. Then, in a series of
successive shots, the target was placed at different radii
R, which allowed us to determine the shielding layer
width as afunction of the distance X = R— R, from the
target surface. It turned out that the width d of the radi-
ating region was 25 mm near the surface and, then,
decreased gradually as the distance from the target
increased. At X = 25 mm, it became comparable with
the width of a free deuterium flow, d, = 11 mm. In the
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Fig. 7. Plasmabrightnessintegrated over the spectral region
A <400 A near agraphite target.

foregoing, thisresult was used to calculate the radiative
losses from a tungsten plasma.

4.1.3. Experiment with a mesh target. In this
experiment, we used a 5 x 5-cm stainless-steel wire
mesh as a target. The mesh was mounted in the holder
so that its normal was at an angle of a = 55° to the axis
of the plasmaflow. (In other words, the target shown in
Fig. 2 was turned in the figure plane in the counter-
clockwise direction through an angle of a = 55°.) The
mesh was made of stainless steel, the mesh cell sizewas
0.7 mm, and the mesh transmittance was T = 80%.
Interferometer measurements [2] demonstrated that,
when such amesh was used instead of asolid stainless-
stedl target, the parameters of the shielding layer, such
as the formation time, the geometric dimensions, and
the electron plasma density did not change. It may be
suggested that the meshy structure of the target affects
only dightly the processes occurring in the plasma
layer. Consequently, the radiation fluxes near the target
also change dlightly in this case. The plasma observed
through the mesh has the same characteristics as the
plasma in front of the mesh wires at a distance of
X = 0.3 mm from them (which is about one-half of the
cell size). Thus, using the mesh target, we could deter-
mine the energy characteristics of radiation at a dis-
tance of X = 0.3 mm from the target.

The radiation calorimeter measured radiation from
the front side (A) (i.e., the surface facing the plasma)
and rear side (B) of the mesh. The energy radiated from
unit area (normal to the measurement direction) of the
source within unit solid angle (i.e., the surface bright-
ness) was equal to W, = 8 J(cm? sr) for the front side
and W = 5.7 J(cm? sr) for the rear side of the mesh
(taking into account the effective mesh transmittance
Ter = 75% in the measurement direction). The differ-
ence between W, and W indicates that the plasmain
front of the target surface cannot be considered opti-
caly thin.

If radiation is surface in character, then the energy
density transferred by photons onto the mesh surfaceis
PLASMA PHYSICS REPORTS  Vol. 28
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equal to Q4 = TW; = 18 Jen?. It isreasonable to com-
pare the value of Q,,4 with the energy density absorbed
by the target Q,,. For R = 24 cm, when the plasma flow
energy density is close to the density of the energy flux
incident onto the inclined mesh target, the energy den-
sity absorbed by asolid stainless-steel target isequal, as
will be shown below, to Q, = 21 Jcm?. Consequently,
we have Q.4 = Qy,; i.€., the energy transferred by pho-
tonsto the X = 0.3 mm plane ailmost coincides with the
energy reaching the surface of the stainless-sted target.

Most likely, the energy is transferred to the surface
predominantly by photons. A mechanism alternative to
radiative transfer is electron heat conduction. For heat
conduction to ensure the power flux with a density on
theorder of 1 MW/cm? (whichisequivalent to 20 Jcm?
for 20 ps) from the plane X = 0.3 mm onto the surface,
the electron temperature at a distance of X = 0.3 mm
should be no lower than 10 eV. Here, we assume that
the thermal conductivity is classical; otherwise, the
required temperature would be even higher. However,
even a T, = 10 eV, the plasma density would be no

higher than 'IE =4 x 10" cm3, where P = 6 atm isthe

e

plasma pressure in the shielding layer. On the other
hand, the interferometric measurements [2] show that,
for high-Z targets, the plasma density at distances of
X <1 mm from the target surfaceis at least 10'® cm.
Hence, we can conclude that the electron heat conduc-
tion cannot ensure such a high power flux asthat trans-
ferred to the plane X = 0.3 mm by radiation. Therefore,
radiation transfer plays a decisive role in the energy
transfer onto the surface of the irradiated stainless-steel
target. For other high-Z materials, the energy transfer
mechanism is probably the same. Thisis confirmed by
the fact that all of the studied characteristics of the
shielding layer are similar near targets made of such
materials.

4.2. Surface Erosion

To determine the energy expended on the target sur-
face erosion, we inspected the surface profiles of graph-
ite, tungsten, and copper targets (the graphite target was
inspected after 40 shots, and the tungsten and copper
targetswereinspected after 18 shots). The graphite ero-
sion crater was ~8 pum deep, which corresponded to an
erosion rate of 0.2 um/shot. The half-width of graphite
erosion craters was 6 mm, and the full width (at alevel
of 0.1) was 11 mm. The erosion profilefor tungsten was
much wider; itsfull width exceeded 20 mm, which may
be explained, probably, by the action of radiation from
the shielding layer. Because of a complicated relief of
the crater bottom, which consists of many sharp peaks
and cavities, we can only eval uate the average thickness
of the eroded material, which amounts to ~3 um, i.e,,
0.15 pm/shot. A substantial (=100 pm) depth of the cra-
ter on the copper target is explained primarily by the
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splashing of a copper melt. Comparing the erosion cra-
ter volume with the volume of the material pressed out
onto the target edges, we can roughly estimate the evap-
orated materia thickness. Thisisno larger than 10 pum;
i.e, the erosion rate is <0.5 um/shot. The energy
required to evaporate a layer of this thickness is equal
to Qp = 1.5 Jem? for tungsten, Q,,, = 2 Jem? for

graphite, and Q,,, < 3 Jcm? for copper.

4.3. Target Heating

We measured the energy spent on the heating of tar-
gets made of tungsten, copper, stainless steel (the
12X18HIT brand), aluminum, or graphite (the EK-98
brand). For this purpose, atarget made of a given mate-
rial and shaped as a cylinder 10 mm in height and
25 mm in diameter was placed at different radii R and
the change in its temperature after irradiation and uni-
form heating was measured. The target diameter was
equal to the diameter of the integral calorimeter mea-
suring the plasma flow energy Q. The cylindrical sur-
face of the target was screened from the plasma flow.
The data obtained are listed in Table 2, which presents
the energy density Q,[Jcm?] spent on heating and a
fraction of thisenergy inthetotal energy balance Q;,/Q.

The analytical solution of a model problem of heat
transfer in a homogeneous slab shows that, when the
heat flux W acts on the sampl e surface (we assume that
W(t) = const), the flux W,(t) directed inward the sample
isequal to

2
max

T, =T
,tst, = gpxc[—w 0} ,

.t
Warcsmﬁ“, t>t,,
0 t

where p isthe mass density, K isthe thermal conductiv-
ity, ¢ is the specific heat (we assume that k(T) = const
and c(T) = const), T, iSthe maximum attainabl e (boil-
ing or sublimation) temperature, and T, is the initial
surface temperature.

gl:l

Wi(t) = 3)

QDD

Table2
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¥o | 2o | 20 | ¢o
w 48 (37%) | 46 (58%) | 29 (63%) |20 (100%)
cu 39 (30%) | 29 (36%) | 20 (43%) |21 (100%)
Stainlesssteel | 24 (18%) | 21 (26%) | 16 (35%) |10 (50%)
Al 26 (20%) | 20 (25%) | 15 (33%) | 7 (33%)
Graphite 17 (13%) | 16 (20%) | 12 (26%) | 9 (43%)
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(Tmax — To) and, consequently, Q, = WiT X

J TP (T, .~ Ty /T . Hence, in the l atter case, the tar-

get absorbs about one-fourth of the energy absorbed in
the former case. In the real experiment, the heat flux W
varies significantly with time; however, the tendency of
Qp to decrease with increasing t;,,,, should remain
under these conditions too.

As Q decreases, the time it takes for the target sur-
face to be heated to the temperature T, increases rap-
idly and becomes longer than the plasma pulse. The
measurements carried out with tungsten and copper tar-

TIPKC
o Q./© 4t
R=18cm|R=24cm|R=28cm
W 1 48 46 29 4
Cu 0.86 45 34 23
Stainless steel | 0.29 83 72 55
Al 0.45 58 44 33
Graphite 0.36 47 44 33
For t > t,, we have
PKCTmax —To

W (t) = = T . 4
According to formula (4), the energy absorbed by atar-
get depends on its thermalphysical characteristics as

Qn O JpKC (T — Tp)- Using the values of thermal-
physical constants calculated from the literature data
[7-10] averaged over the temperature interval 300 K-
Trax (8t P=5atm), we obtain the following ratios of the
absorbed energy in different materials. W : Cu : stain-
less stedl : Al : graphite=1:0.86: 0.29: 0.45: 0.36.
The factor © introduced in thisway allows usto repre-
sent the data of Table 2 in aform convenient for com-
parison (see Table 3).

For each target position R = 18, 24, and 28 cm, the
value of Q,/O isnearly the samefor all of the materials,
except for stainless steel. Therefore, the experimental
data obtained, as a whole, agree well with model for-
mula (4) for each energy density Q = 130, 80, and
46 Jcm?. Only the stainless-steel target absorbs signif-
icantly higher (by 70%) energy than that predicted by
the model. One of the possible reasons is that the sur-
facelayer of the stainless-steel target is modified so that
the initial concentration of chromium atoms in it
decreases as compared to theinitial concentration equal
to 18%. As aresult, the thermalphysical characteristics
of the surface layer can become close to those for pure
iron, which might substantially increase the power
transferred via heat conduction from the surface.

The experimental fact that Q, decreases as Q
decreases is explained by a specific feature of our
plasma device; namely, as Q decreases, the time of the
shielding layer formation t;,,,, becomes comparable
with the plasmaflow duration T. The fact that Q,, indeed
decreases can easily be demonstrated asfollows. Let us
consider two limiting cases, T > t,,, (the shielding layer
formsinstantaneously) and 1 = t,, (the thermal evapora-
tion begins only by the end of the plasma pulse). In the
former case, it follows from formula (4) that Q, =

T 4pKC
[oWi(odt = ‘Eﬁ_
according to formula (3), we have W, =

(Toex — To)A/T. The latter case,
W =

gets at Q = 21 Jcm? (the calculated heating times are
t,, =110 and 70 s, respectively) show that no shielding
layer isformed in this case and the targets absorb all the
energy flux that fall onto them. This follows from the
fact that the Q,, values are the same for both targets and
that Q,, for eachtarget coincideswith Q. (Thelatter fact,
if considered separately, could not be a proof that the
energy istotally absorbed, because the energy incident
on thetarget can be somewhat different from the energy
Q of thefreeflow; see Section 5 for details.) Thismeans
that, under our experimental conditions, the accommo-
dation coefficient of the deuteron energy is close to
unity even for such aheavy element as tungsten, which
has the minimum energy accommodation coefficient at
agiven deuteron energy [11, 12].

At a somewhat shorter calculated heating times,
e.g., for t,, = 24 us (atungsten target at Q = 46 Jcm?)
or t,, = 23 us (an aluminum target at Q = 21 Jcm?), the
irradiated surface absorbs no more than 50-65% of the
energy, which indicates the existence of a shielding
layer under these conditions. The appearance of metal
vapor in this caseis probably due not to thermal evapo-
ration, but to the bombardment of the heated surface by
high-energy deuterons of the plasma flow. (At Q =
100 Jem?, the collisional sputtering by deuterons also
takes place, but it is not dominant.) The sputtering
occurs at energies higher than the threshold energy

%ﬂlcﬂ-l—a [13], where U, is the bonding energy of
surface atoms, M, is the atomic mass, and M; is the
mass of the bombarding ion. As an example, for Al and
W, we have U, = 3.3 and 8.8 eV, respectively. The
threshold energy for these materials is in the range
E;, = 20200 eV, which is substantially lower than the
characteristic energy of plasmaflow deuterons, E=0.3—
0.8 keV, so that the sputtering can take place. Asthetar-
get is heated, the efficient sputtering of the surface by
bombarding ions begins when the surface temperature
reachesavalue of T* = U,/40; then, the sputtering coef-
ficient increases exponentially [12, 14]. For different
materials, the time t* it takes for their surface to be
heated to the temperature T* varies from 0.05t,,, for alu-

Ethr =
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minum to 0.21t,, for graphite. In addition, it is neces-
sary to take into account the time required for the sput-
tered atoms to be produced in an amount sufficient for
the shielding effect. Most likely, in the experiments
under discussion, the plasma pulse duration was longer
than thetotal time of the shielding layer formation; con-
sequently, only a fraction of the heat flux reached the
surface.

Hence, the observed dependences of the heating
energy density Q;, on the plasma flow energy density Q
and the target material can be explained on rather sim-
ple assumptions that the heat is transferred into the tar-
get through heat conduction and that, as Q decreases,
the sputtering (rather than evaporation) becomes a
dominant mechanism for the production of atomsform-
ing the shielding layer.

5. ENERGY BALANCE

The results obtained allows us to conclude that the
radiative losses make the main contribution to the
energy balance. Most of the energy is radiated even in
the stage when the plasma column temperature is rela-
tively high and the energy is supplied by the plasma jet
flowing out of the LCT. Let us demonstrate this. As an
example, we consider aplasmaat adistance of X=3cm
from the graphite target at the instant t = 25 psfrom the
beginning of interaction. At that time, wehave T,= T, =

20 eV and n, = 10'¢ cm™ [3]. The energy density con-
tained in the plasma column is g, < g(neTe +nT) +

Z(Te) 1
Zn] Z Ek] + éz n]E([zJ[(Te)+l)J, Whel’e n] |S the
j k=1 j

density of the jth plasmaion species, n, = an ,Eyis

J

the bonding energy of the kth outer electron of the jth
element, and [Z[lis the average ion charge number of
the jth element. The third term is introduced into the
formula in order to take into account (by the order of
magnitude) the maximum possible contribution from
excited levels to the potential energy. This can be
important when considering a recombining plasma. To
estimate the maximum plasma energy, we will use the
overestimated data on the carbon content in the plasma
column: ne = np [15], from where, taking into account
that (Z.[= 4, we have nc =2 x 10" cm= and np = 2 x
10" cm. Calculations yield €, < 0.18 Jcm?®. An analy-
sisof the experimental data (Fig. 5) showsthat theradi-
ative losses from the graphite plasmaare about 30 times
higher than the plasma energy. Hence, the target plasma
isapeculiar kind of converter, which does not store the
deuterium flow energy, but converts it into radiation
while the energy is supplied from the plasma jet.

Aswas aready mentioned above, for both tungsten
and graphite, the radiative lossesin therange A < 400 A
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are proportional to the total radiative losses integrated
over the entire spectrum. From the available experi-
mental data, we cannot determine the proportionality
factor. However, calculations performed for our exper-
imental conditions show that thisfactor is closeto unit
[15, 16]; i.e., it isthe short-wavelength range A < 400
that determines the radiative losses from the target
plasma at all distances (maybe except for a narrow
layer adjacent to the surface).

Comparing the values of Q and Q,,4, We can notice
the large difference between them. Note that, for tung-
sten and copper, we have Q < Q,, Whereas for graph-

ite, wehave Q> Q;.4 + Q.

The fact that Q < Q,4 for heavy elements indicates
that either the emitter has some peculiarities not taken
into account in our consideration or its characteristics
are affected by the presence of atarget in the plasma
flow. In principle, for targets made of high-Z materials,
the energy that falls into the radiation calorimeter from
the shielding layer may include the additional radiation
energy from the secondary plasma produced on the tar-
get area that is unaffected by the plasma flow but is
exposed to an intense radiation of the layer itself. We
have conducted additional experiments with collima-
tion diaphragms that provided different spatial resolu-
tion along the device axis. These experiments showed
that, in the presence of the secondary plasma, the losses
can be somewhat overestimated, but not higher than by
10-15% and only at X < 1 cm. Deserving more atten-
tion is the second assumption that, in the presence of a
target, the energy density of the plasma jet increases at
the azimuthal angleswherethetarget is positioned. The
energy flow in the annular slot can become strongly
inhomogeneous in the azimuthal direction. However,
because of the small angular size of the target, the life-
time and parameters of the LCT plasma change insig-
nificantly in the presence of atarget and the power den-
sity averaged over azimuthal angles also changes only
dlightly.

In our opinion, the increase in the energy flux onto
the target is due to the decrease in the space charge of
trapped electrons in the expander (as was shown in
[17], this space charge can efficiently suppress the sec-
ondary electron emission). The existence of the space
charge was confirmed by the direct measurements of
the floating potential in the expander [1]. For asubstan-
tial fraction of trapped electrons to be produced in the
expander, it is hecessary that the plasma flow strongly
expand before it meets the expander wall or the target.
When the target is located near the annular slot, the
potential difference between the target and the skin
plasma along the magnetic field line turns out to be
much less than that between the wall and the skin
plasma (along another field line). If the wall and the tar-
get are under the same potential, this resultsin the gen-
eration of an electric field drawing the ions onto the
magnetic field linesthat meet the target. In this case, the
energy density Q transferred to the shielding layer var-
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ies more strongly with R than is expected from the con-
sideration of the parameters of a free plasma flow. At
large distances from the annular dlot (eg., a R >
28.cm), the potential difference in the skin layer
between thefield linesarriving at thewall and the target
issmall and the energy transferred to the shielding layer
is close to the flow energy. As the annular slot is
approached, the potential difference increases rapidly;
asaresult, at R= 18 cm, Q increases by afactor of 2—3
in comparison with the value calculated for afree jet.

Probably, there are another reasons why the energy
transferred to the shielding layer can be underesti-
mated. For example, when the target is positioned near
the annular dot, the increase in the electron heat flux
due to the increase in the gradient of the electron tem-
perature can be of importance. In our opinion, such an
underestimate actually took place because there is no
other way to bring in accordance the energy lossesfrom
the shielding layer (e.g., for a copper target, Q,q =
350 Jem?) and the energy transferred to the layer.

For a graphite target, the thickness of the efficiently
radiating layer is significantly larger than for targets
made of high-Z materials. This explains why Q.q,

which is the power density of radiative losses from the
region AX; = 7 cm, does not coincide with Q — Q,,. In

order to radiate the deficient energy Q — Q. — Q4 =

300 Jeny? (assuming that Q=350 Jcm?), it is necessary
that the thickness of the radiating layer be AX, =1 m.
According to[2], the propagation vel ocity of the corona
front isequal to ~4 x 10° cm/s; hence, the corona of this
size, indeed, hastime to form for At = 25 ps. However,
at such a corona size, its most part would fall into the
skin region adjacent to the LCT plasmawith 3 =1 and
the high concentration of carbon ions in the corona
would result in the intense interaction between the LCT
plasma and the corona. The effect of thisinteraction on
the energy transfer to the first seven centimeters of the
visible shielding layer isdifficult to predict. Inthis case,
the processes associated with the plasma outflow from
the LCT and the processes accompanying the interac-
tion of the plasmawith the target become closely inter-
related and the confinement system can no longer be
regarded as an energy source independent of the shield-
ing layer when analyzing the energy balance.

6. CONCLUSION

In this paper, we have presented the results of exper-
iments on studying the energy balancein theinteraction
of intense high-temperature plasma flows with solid
targets. In the experiments, we used a thermalized
plasma jet flowing out of an LCT filled with a plasma
by means of two high-power pulsed plasma guns. The
basic parameters of the free plasmaflow arethe follow-
ing: Ne=5x%x10%cm3; T,=120eV; T, =600eV; Q =
130 Jcm?; and the effective duration is T = 20 ps,
which corresponds to an average power density of W=
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7 MW/cm?. When atarget isintroduced into the flow, a
shielding plasmalayer isformed near the target surface.
The energy flux density transferred to the surface
plasmaincreases several times and, for targets made of
high-Z materials, can attain W = 20 MW/cm? (which
corresponds to Q = 0.3-0.4 kJcm?). Most likely, such
an increase in the power density is related to the
increase in heat losses from the confinement system in
the presence of atarget. For low-Z materials, which are
characterized by the existence of an extended shielding
layer, it is hardly possible to calculate the power trans-
ferred to the layer because of the presence of a long
corona and, accordingly, a strong effect of the latter on
the skin plasma parameters in the confinement system.

The energy transferred to the shielding layer is dis-
tributed as follows. Some fraction of the energy, Q,,p,
reaches the surface of the irradiated target and is
expended on the evaporation of the target material, and
another fraction, Q,, is spent on the heating of the non-
eroded part of the target. For al the materials under
study, the energy spent on evaporation is low, Q,, <
4 Jem?, which alows one to speak of the shielding
properties of the surface plasmalayer. The energy spent
on thetarget heating, Q,, istransferred from the surface
through heat conduction and, with the known thermal-
physical properties of the material, can be easily calcu-
lated. For each material, there is alimiting energy that
can be expended on heating at a given duration of the
heating pulse. Under our experimental conditions, this
energy is equa to Q,ma = 50 Jem? for tungsten and
Qnmax = 20 Jem? for graphite. As the plasma flow
energy density decreasesto Q < Q,, the shielding layer
can ill form, but the mechanism for its formation
changes from evaporation to sputtering.

A separate experiment with atarget made of astain-
less-steel wire mesh has shown that, through a plane
0.3 mm distant from the target surface, the energy is
mainly transferred by radiation. Estimates show that
heat conduction is of minor importance, so that the
energy reaching the surface is also transferred predom-
inantly by radiation. Presumably, a similar energy
transfer mechanism is also dominant for other high-Z
materials. For low-Z materials (e.qg., graphite), this con-
clusion was not proved, because we observed a large
electron temperature gradient immediately near the sur-
face[3].

For al of the materials under study, the radiative
energy losses play a dominant role in the interaction
energy balance: the shielding layer reemits most of the
energy supplied by the plasma flow. The spatial distri-
bution of the radiating regionsis different for materials
with different Z values. Near the tungsten target, the
intensively radiating region of width AX = 1.5 cm is
adjacent to the surface. The radiation intensity in this
region decreases rapidly with distance from the surface,
and the surface radiation gradually changes to the vol-
ume radiation. The radiating copper plasma layer lies
PLASMA PHYSICS REPORTS  Vol. 28
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farther from the surface, and its characteristic width is
AX =3 cm. In other respects, the character of radiative
lossesisvery similar to that in the case of atungsten tar-
get. Near the graphite target, the radiative loss curve
first smoothly falls with distance from the surface and,
at X=4 cm, arrives at aplateau. It is the plateau region
corresponding to the plasma corona that reemits most
of the energy of the deuterium flow. The low emittance
of the plasmacoronaisbalanced by itslargelength (this
length is, at least, AX > 10 cm, and, according to indi-
rect evidence, it can attain avalue of AX > 50 cm). For
high-Z materials, no radiating plasma corona was
observed in the experiments.

A comparison of the experimental data with the
results of calculations [15, 16] under our experimental
conditions alows us to conclude that radiative losses
occur mostly inthe SXR spectral region. Hence, we can
conclude that the shielding layer plasma near a solid
target isan efficient converter of the plasmaflow energy
into SXR emission. The data obtained show that, for
creating a high-power broadband SXR source, the
interaction of intense plasmaflowswith targets made of
high-Z materials is of most interest. In this case, it is
possible to obtain compact, intensively radiating
plasma objects.
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Abstract—A microwave argon plasmatorch is used to excite the spectra of various materials admixed to the
working gas. It is shown that thistorch is a very efficient tool for detecting extremely low impurity concentra
tionsin the sample material. An important advantage of the method isthe simplicity of testing liquid and dusty
samples. The torch design and the device for spectral analysis created at the Institute of General Physics are
described. The parameters of the torch plasma are estimated. These estimates agree satisfactorily with the
observations of other authors. The spectroscopic studies of impuritiesin distilled water with the use of aplasma
torch showed that the sensitivity of this technique is no worse than 10-%, which is comparabl e with the sensitiv-
ity of inductively coupled plasma devices. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

To produce high-temperature plasma jets, ac or dc
arc discharges and gas-plasma torches, exploiting the
energy of exothermic reactions, are usually used. Thus,
the combustion of hydrogen in the fluorine atmosphere
at 10 atm proceeds at atemperature of 4800 K. It isdif-
ficult to achieve higher temperatures by means of
chemical reactions, because the flame gasisdissociated
and, then, ionized. For this reason, the methods for pro-
ducing high-temperature plasmas in arc torches are
usually based on the ohmic hesating of the conducting
ionized medium, because, in this case, it is possible to
attain higher temperatures due to the higher specific
energy released in the discharge. For example, temper-
atures of up to 50000 K were achieved in electric arcs.
However, the arcs are not usually used in spectroscopy,
because the working gas is strongly contaminated by
the vapor of the electrode material undergoing strong
erosion. For this reason, RF and microwave discharges
are more appropriate for spectroscopy, because they
can operate without electrodes; as a result the plasma
produced is much more pure.

An RF electrodeless discharge excited in a gas jet
flowing out into the atmosphere was implemented by
Reed [1] in 1960. This type of discharge is usualy
referred to as an inductively coupled plasma (ICP)
torch. A substantial advantage of thistorch isrelated to
injecting the gastangentially to thewall of acylindrical
guartz tube. Dueto the swirling of the gasflow, the dis-
chargeis stabilized and is separated from the tube wall.
Inasimilar device providing a40-kW power deposition
in a discharge excited in an air (argon) flow at atmo-
spheric pressure inside a 6-cm-diameter quartz tube at
agasflow rate of upto 11/s, temperatures of the effluent
plasma of up to 10 000 K were achieved by Yakushin
[2]. A theoretical model describing the operation of the
| CPtorch was proposed by Raizer [3], who showed that
the processes occurring in the plasmatron are very sim-

ilar to the combustion in a usual chemical torch. Both
models are based on solving the problem of the propa
gation of an equilibrium discharge wave due to heat
conduction or a combustion wave.

As the frequency of the field exciting an electrode-
less discharge increases, not only the plasmatron
dimensions can be reduced proportionally to the field
wavelength, but the specific radiation power deposited
in the discharge can also be increased. This circum-
stance isimportant for achieving high plasmatempera-
tures in relatively small and inexpensive devices. Due
to the progressin microwave electronics achieved in the
1960s, resulting in the development of high-power cw
magnetrons, it became possible to create open-flame
microwave plasmatronsin the form of acoaxial plasma
torch [4]. At first, attempts were made to use such plas-
matrons with a power of one to several kW to initiate
plasmochemical reactions at high temperatures and to
weld small-size refractory-metal piecesin the reducing
atmosphere. At present, microwave plasmatrons attract
much interest because of their possible applications in
plasma chemistry dueto the high temperature and elec-
tron density in the torch plasma[5].

In recent years, microwave plasmatrons have aso
found applicationsin high-temperature spectroscopy as
sources for spectral excitation. Thus, in [6], with the
help of acoaxial cavity positioned at the edge of a coax-
ia line fed from a microwave source with a power of
100-300 W at a frequency of 2.45 GHz, a short flame
with an electron temperature of 5500 K, an electron
density of ~10 cm™, and a gas temperature of
~4000 K was abtained in an argon jet flowing from the
cavity into the atmosphere.

2. DESIGN OF THE MICROWAVE TORCH

The design of the microwave torch is shown in
Fig. 1. The key element of the torch is a waveguide—

1063-780X/02/2805-0444%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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coaxial junction with the transformation coefficient and
the voltage standing-wave ratio both close to unity. The
rectangular waveguide hasa45 x 90 mm cross section.
The radii of the coaxia feeder of the torch are a =
10 mm and b = 2.5 mm. The feeder impedance, esti-
mated by the formula

Z. = 60g;"’In(a/b) (1)
is equal to Z. = 83 Q. The central tube of the coaxial
feeder passes through the rectangular waveguide and,
then, through a tunable coaxial stub. The tube is con-
nected to a working-gas balloon via a reduction gear-
box. A quartz tube is pasted with a heat-resistant her-
metic sealing compound to the shielding tube of the
coaxia linein the gap between the feeder and the stub,
so that the volume filled with the working gas is iso-
lated from the cavity and the magnetron. The inner
tube, through which the working gasisfed, endswith a
nozzle forming a plasma jet. In the design of a torch
described in [4], the nozzle was made of a refractory
metal and the outer tube of the coaxial line was cooled
with water. Below, it will be shown that these measures
are undertaken merely to protect the torch unit from
heat fluxes emergent from the aobjects treated with the
torch. Thisisnot necessary if the torch flameisdirected
upward, inthe direction of the convective flux of the gas
heated by thetorch. In this case, the nozzle can be made
of ametal that hasarelatively low melting temperature,
because thetorch plasma, unlike the arc discharge, does
not touch the nozzle itself. In our case, the conical noz-
zle is made of copper. The torch coaxial feeder is her-
metically fixed into a flange that can be connected to a
vacuum chamber with quartz windows for the radiation
output. The chamber isintended for preventing the pen-
etration of air into the torch flame region when operat-
ing with flammable gases. In addition to the torch unit
described above, the device aso includes a feeding
rectangular waveguide connected to the magnetron unit
through a protecting ferrite isolator or a circulator.
Experiments showed that the microwave torch is, in
fact, aload matched to the magnetron, so that the isola-
tor (circulator), which is one of the most expensive
components of the transmission line, may be excluded.
As a high-voltage power source for the magnetron, we
used a modified supply unit for an electric-discharge
pump, to which a 5-kV 100-uF capacitor was added to
smooth the voltage ripples of the divider bridge circuit.
This allowed us to achieve the continuous mode of
magnetron operation instead of the pulsed mode used
commonly in microwave ovens, in which the amplitude
modulation by the rectified mains voltage attains 100%.
We also added a filament transformer provided with a
high-voltage insulation of its secondary winding.
PLASMA PHYSICS REPORTS  Vol. 28

No. 5 2002

445

Spectro-
meter

RSN

Sample

Spectro- || - Plasmajet
meter
Chamber

Coaxial feeder

Magnetron i ” I

a
T

Power supply

Vapor
Liquid sample

Ultrasonic

generator Ultrasonic

vibrator

Fig. 1. Design of the microwave torch. The sampling of the
material evaporated by aYAG laser (at the top) and the lay-
out of the microwave excitation of the torch and the sam-
pling of liquid with the help of an ultrasonic evaporator (at
the bottom).

3. CHARACTERISTIC FEATURES
OF THE PLASMA JET PRODUCED
BY THE MICROWAVE TORCH

Figure 2 presents photographs of the plasmajet pro-
duced by the coaxial microwave torch operating with
argon. The gas outflow rate varied from 10 to 50 sccm.
The continuous magnetron power was ~850 W. Spec-
tral measurements showed the absence of copper lines
in the green spectral region. This allows usto conclude
that the copper impuritiesintroduced by the nozzle into
the discharge plasmaare negligible. When athin copper
wire was inserted into the plasma jet, it was melt, and
we observed a characteristic green luminescence of
copper. The radius and length of the plasma core were
=0.1 and =1 cm, respectively. Asthe argon outflow rate
was varied, we observed that, at low outflow velocities
(<1 m/s), the plasma jet transformed into an interelec-
trode arc discharge or quenched, whereas at high out-
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Fig. 2. Photographs of the plasma jet at the outlet from the coaxial line: without filters (on the left) and with a UF-2 filter (on the

right).

flow velocities (>>1 m/s), it continued to burn and var-
ied only dlightly in size. The fact that the torch unit was
heated insignificantly during a long operation time
indicatesthat the heat transfer from the plasmajet to the
torch is insignificant. Thus, we can conclude that the
slow-combustion regimeisrealized in the jet, when the
heat-conduction wave propagating towards the nozzle
is continuously carried away by forced convection in
the gas flow. The microwave radiation power scattered
by the plasma jet into the surrounding space is rela
tively low because the intensity of the microwave back-
ground at a distance on the order of several tens of cen-
timeters from the jet does not exceed the sanitary stan-
dard. This means that the microwave-power absorption
coefficient in the plasma jet is close to unity, which, in
turn, provides a way of estimating the jet plasma
parameters.

4. ESTIMATES OF THE JET PLASMA
PARAMETERS

The equivaent circuit of the plasma torch, which
contains no special components matching the torch unit
to the magnetron, consists of an active resistance and a
capacitive reactance connected in paralel. The capaci-
tive reactance is compensated for by tuning the unit, so
the active resistance R plays a decisive role in the torch
operation. For the optimum power transfer to the load
(flame), it is necessary that the impedances of the coax-
ial line and the plasma jet be equal to each other,

Z.=R[Q]. (2)

The parameters of the jet plasma were estimated as
follows. Proceeding from the impedance matching con-
dition (2) and the observed geometric dimensions of the

j€t, namely, its characteristic length L and radius p, we
determine the average conductivity of the plasma:

o = LI(Rmp) [Q7 m ], 3)
which isrelated to the electron density n, and the elec-
tron collision frequency v in the gas (plasma) by the
known relationship

o = e’nJmv, 4

where e and mare the electron charge and mass, respec-
tively. Here, we use the electrostatics approximation,
which is applicable when the electron collision fre-
guency substantially exceeds the angular frequency of
the electromagnetic field and the plasma jet length is
shorter than the electromagnetic wavelength:

V> w = 21T,
L<A/21m = c/w.

To calculate the average density n,, we should know
the electron-atom collision fregquency v, which
depends on both the pressure (i.e., the neutral density)
in the gas surrounding the plasma jet and the electron
temperature T,. If the discharge is excited in argon
atmosphere under normal conditions and the electron
temperatureisintherange0.5< T,< 5 eV, then, accord-
ing to [6], the dependence v(T,) can be approximated
by the formula

Vals7]=3.3 x 10°p [torr] T, [eV] = 6 X 101T¢/T,, (6)

where p = NjKTg isthe gas pressure, N, is the atom den-
sity, and T isthe gastemperaturein the plasmajet. The
physical parameter determining the frequency v, isthe
density N,, rather than the pressure p. In the transverse
direction, the plasmajet isin equilibrium with the sur-
rounding atmosphere: NyT, = NyT,,. Hence, expression
(6) isrepresented in the form where v, isinversely pro-

(&)
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portional to T, In high-temperature discharges, the
energy islost predominantly viaradiation:

P, = &(T,)0,TgS, )

where (T is the emissivity factor, g, = 5.67 X
1078 W/(m? K%) is the Stefan—Boltzmann constant, and
S=2mng isthe radiating area. Assuming that the input
microwave power absorbed in the discharge, P,, iscon-
verted mainly (accurate to the factor €) into blackbody
radiation with the power P,, we determine T

Ty = [Pol(£0,9)] . )

On the other hand, the plasma conductivity in a
medium with a high degree of ionization is determined
by electron—-ion collisions,

Vg = 29x 10°ZN InAT*?, ©9)

where N; (incm™3) isthe plasmaion density, Zistheion
charge number, Tgisin eV, and InA = 5-20 is the Cou-
lomb logarithm. Most likely, the conductivity in ahigh-
pressure discharge is determined by the frequency v;
however, it should be kept in mind that the collision fre-
guency Vv, can aso play an important role.
Expressions (3)—(8) allow usto find the dependence
Ne(Te):

ne [m™] = 21x10%0T/T,
= 21x 10°(T /T )L/(Z.TtP).

To determine n, and T,, we should have one more
eguation relating these quantities. For estimates not
pretending to a high accuracy, we can use the Saha
equation [6], which is applicable for an equilibrium
plasma with a low degree of ionization (n, < N,) and
ionswith Z = 1:

na [m™] = 4.8 x 10°(g,/g,) N, T exp{—(1/kT} , (11)

where T [K] is the equilibrium temperature of the
medium,

(10)

3/2

Te=T =T, (12)

(9,/9,) = 6 for noble gases; and | is the ionization
energy (for argon, we havel = 15.8 eV). Actually, high-
pressure microwave discharges are nonequilibrium and
the electron temperature is always higher than the gas
temperature. Consequently, when T, isestimated by the
Sahaequation (11) in which n, isdetermined by expres-
sion (10), such an estimate will inevitably result in non-
equilibrium temperature values, T, > T,.

The estimate for T, obtained by assuming the emis-
sivity factor to be in the range 0.5 <€ < 1 gives the
probable gas temperature range 4000 < T, < 4800 K.
The electron temperature is estimated at T, = 0.55 eV =
6400 K, which is higher than T, by afactor of ~1.5. In
this case, the electron density that should ensure the
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optimum conductivity of the jet plasmaisequal ton, =

10%° m~3. The calculations of the electron collision fre-
guencies by formulas (6) and (9) demonstrated the cor-
rectness of the assumption that electron-neutral colli-
sions are dominating: v, = 2.5 x 10" s, whereas
Vg < 10105,

Let us consider the characteristics of a microwave
propagating through the plasma with the above param-
eters. For this purpose, we will use the formulas pre-
sented in [7] for calculating the propagation and atten-
uation constants (B = 217A, and a, respectively), aswell
as the skin depth o for the case of the normal incidence
of a plane wave on a half-space filled with a homoge-
neous plasma (here, A, is the microwave wavelength in
the plasma). In the case under consideration, two ine-
qualities are satisfied: n, > nyv,/w and v, > w, where
N = Mw?/(g,€?) is the critica plasma density for a given
frequency w = 211f and €, isthe permittivity of avacuum.
Quantitatively, we have n, [m3] = 1.24 x 10'%f2 [GHZ].
In this case, complicate formulas can be reduced to the
form:

B = a = (w/c)[nw/(2nVv)] Y7, (13)

d=1/a. (14)

Substituting the above plasma parameters into these
formulas, we obtain B = a =4.2 cm™!. From here, we
determine the wavelength in the plasma A, = 21/ =
1.5 cm; over this length, the power is attenuated by a
factor of € = 7.4. The skin depth to which thefield pen-
etrates into the plasmais 0 = 0.24 cm. These estimates,
obtained for a wave propagating in a homogeneous
plasma, are close to the observed longitudinal (L ~
1 cm) and transverse (p ~ 0.1 cm) plasma jet dimen-
sionsin spite of the fact that the formulas obtained can
hardly be applied to a nonuniform plasma waveguide
along which a damped surface mode propagates. Note
that the plasma jet can be neither longer (because of
microwave power absorption) nor wider (because of the
finite depth to which the microwave field penetrates
into the plasma).

Let us estimate the convective energy losses caused
by the gas flow. The energy density per unit length of
the plasmajet is equal to W, = T(pPNKT,, and the power
carried away by thejetis

P.=W,v W, (15)
where v is the gas flow velocity. For the argon flow
velocity in therange 1-10 m/s, the convectivelosses are
estimated at P, = 5-50 W, which is no more than 6% of
the input power. This also indirectly confirms our pre-
vious assumption that the power losses from the plasma
jet are caused primarily by radiation.

Now, we consider the discharge ignition conditions.
Thelimiting (breakdown) microwave power that can be
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transmitted through the coaxial waveguide not filled
with adielectric can be calculated by the formula
-3-2

P, = 8.3x10°E.b’In(a/b) W. (16)

Here, a and b are in cm and E,, [V/cm] is the break-
down electric field near the central conductor, where
the field is maximum. The value of E,, for air at atmo-
spheric pressureis egqual to 29 kV/cm. The correspond-
ing power vaue is P, = 600 kW. For argon at atmo-
spheric pressure, we have E,, = 17 kV/cm and P, =
200 kW. This power value is several orders of magni-
tude higher than the power level at which breakdown
occurs at the outlet from the coaxial waveguide. The
actual field strength at the central conductor of the
coaxia lineis ~0.54 kV/cm at a microwave power of
850 W. It is probable that a sharp nozzle edge, which
locally increases the electric field, plays a certain posi-
tive role, resulting in the reduction of the breakdown
power. However, it seemsthat this effect isnot aunique
reason why the breakdown field strength decreases. A
resonance occurring in the waveguide itself before
breakdown can aso contribute to this effect. Before
breakdown, a rectangular waveguide loaded with a
matched coaxial line is a high-Q cavity for the lowest
H,, mode with awavelength of A, = 16.7 cm. Since the
field in this cavity is enhanced by a factor of several
tens, the eectric field strength at the outlet from the
coaxia line can increase to the breakdown value. This
is possible if the length the rectangular waveguide L is
amultiple of the half-wave,

L= n)\g/2 =nx8.35 cm.

If thisequality is not satisfied or in the presence of a
ferrite circulator, it is necessary to force the torch igni-
tion by creating a spark at the edge of the coaxial line.
However, when operating without a ferrite circulator,
the sel f-breakdown and the subsequent stabl e discharge
in the continuous mode were achieved due to the reso-
nant enhancement of the field, provided that the length
of the feeding waveguide was chosen properly. When
the waveguide dimensions did not satisfy the resonance
condition or in the repetitive mode of magnetron oper-
ation with the modulation by the ac mains voltage, we
did not achieve areproducible ignition of the discharge
even with the help of an artificial spark because, inthis
case, such a spark should be produced for each magne-
tron pulse.

To find out whether or not the above jet plasma
parameters in an argon discharge at atmospheric pres-
sure can be regarded as unique, we consider previous
experiments conducted with different gases flowing
through a quartz tube passing through a waveguide in
the direction of the applied electric field [8, 9]. In [8],
the discharge was excited by the field with a wave-
length of A =12 cmin awaveguidewitha7.2 x 3.4 cm
cross section. The tube radius was =1 c¢cm, and the
discharge radius was =0.5 cm. The input power was
1-2 kW. In this case, the temperature in air at atmo-
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spheric pressure was =4000 K; in nitrogen, it was
=5000 K. By matching the discharge plasmaload to the
source, the authors managed to deposit up to 80-90%
of the microwave energy in the plasma. In [9], a
waveguide with the same cross section and a quartz
tube of radius 0.8 cm were used. Nitrogen at atmo-
spheric pressure was studied. The measurements of the
vibrational and rotational temperatures, as well as the
measurements of the electron density, showed that the
nitrogen plasmawas close to the equilibrium state. The
temperature was =6000 K and depended only dightly
on the power. In contrast, in a similar experiment with
amicrowave discharge in argon [10], the electron tem-
perature was equal to =7000 K and appreciably
exceeded the gas temperature, which was equal to
=4500 K. This is explained by the fact that, in atomic
gases, there are no losses of the electron energy through
the impact excitation of molecular vibrations.

To understand the effects occurring in the torch dis-
charge, it isimportant to know whether or not the local
thermodynamic equilibrium (LTE) is reached in the
discharge. The complete thermodynamic equilibriumis
rather anideal model applicableto aclosed plasmasys-
tem with a homogeneous temperature distribution. In a
real situation, the complete thermodynamic equilib-
rium is not realized because of the finite dimensions of
the gas-discharge plasma. In such a plasma, there exist
heat, radiation, and charge fluxes disturbing the spatial
homogeneity and the thermal equilibrium. Neverthe-
less, under certain assumptions, it makes sense to say
about the LTE. For the LTE to occur in a collisiona
plasma, it is necessary to satisfy the following condi-
tions[11]:

(i) the frequency of collisions with heavy particles
should be sufficient for the electrons to lose the excess
energy acquired from the external electric field;

(if) the ionization and recombination processes
should proceed in the plasmavolume, and the diffusion
of charged particlesfrom the volume should be negligi-
ble; and

(iii) the deactivation of excited atoms should occur
via guenching in collisions, and the emitted photons
should be absorbed in the plasma volume and do not
leave the plasma.

A factor disturbing the equilibrium is the external
electric field. Due to the interaction with this field, the
electron temperature T, differsfrom the temperatures of
heavy particles, Ty and T;. As acriterion of the permis-
sibleexcessof T, over Tyand T;, we can usetheinequal -
ity [11]

(Te=Tg)/ Te = (My/4Me) (A€E)*(1.5KT,) * < 1, (17)

where A, is the electron mean free path (here, we
assumed that Ty = T;). This inequality implies that the
energy gained from the field over the mean free path
(A€E) should be substantially lower than the electron
thermal energy 1.5KT..
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For the LTE model to be applicable, the admissible
gpatial inhomogeneity of the temperatures and the den-
sities of different particles, T and ng, should satisfy the
inequalities

AOT. TS <1, AOnn' <1, (18)

which imply that the mean free paths of the particles
should be shorter than the characteristic lengths at
which their temperatures and densities vary. Estimates
show that, for the jet plasma, the LTE condition (17) is
not satisfied, because the left-hand side of the inequal-
ity istwo orders of magnitude larger than the right-hand
side, which explains the large difference between the
electron and atom temperatures. In contrast, conditions
(18) can easily be satisfied.

For a plasma satisfying the LTE requirements, the
criterion of a permissible deviation from equilibrium
reduces to the condition for the electron density to be
no lessthan acertain value [12] (provided that the devi-
ation from the Boltzmann distribution does not exceed
10%)):

ne=16x10"°T.*(eU, ;) m~, (19)
where U, , isthe energy difference between the levels
p and g such that radiative transitions between them can
result in the deviation from the equilibrium. When
studying alow-temperature plasma, an intermediate sit-
uation is most frequently encountered in which the
plasma can be optical thick in certain spectral regions
and, simultaneously, optically thin in other regions.
Thus, the low-temperature gas-discharge plasma in
noble gases is transparent in the UV region and, par-
tialy, in the visible region, whereas the line and contin-
uum IR emission is strongly absorbed. The most strong
absorption is observed in the resonance lines.

An analysis of many experimental data showed that
the LTE in argon is reached at the following plasma
parameters [13]:

Ne=25x10"m> and T=8500K.

It was found that, in high-pressure plasmas, the popul a-
tion of the ground energy state should deviate from that
prescribed by the Boltzmann distribution, whereas the
equilibrium is easily reached for the upper states. Thus,
for the population of the upper states to be equilibrium,
it is sufficient that the density be n,> 3 x 102° m= even
if there is alarge difference between the electron tem-
perature T, = (7-10) x 1000 K and the gas temperature
T, = 2320-5400 K [14]. At the same time, the data pre-
sented in [15, 16] show that, at pressures of p > 5 x
10* Pa (on the order of atmospheric pressure) and elec-
tron densities of n, = 3 x 10! cm3, the population of
the Arl ground state is several times higher than the
equilibrium popul ation.

The above considerations show that, at the given
basic parameters of the jet plasma, the LTE conditions
are not satisfied and that it is necessary to perform a
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special analysis of the emission spectra, particularly, in
the UV region. One can expect that, in the presence of
impurity atoms, the emission spectra from argon
plasmainthelR, visible, and UV regionswill be some-
what modified, which is the subject for spectroscopy
studies.

5. APPLICATION OF THE MICROWAVE TORCH
TO ANALYTICAL SPECTROSCOPY

The methods of the classical analytical spectros-
copy, including the resonance fluorescence, are known
asthe most reliable, precise and sensitive tools both for
scientific research and applications. Laser beams are
often used to produce a plasma. A laser beam focused
a the surface of a specimen generates a hot-plasma
spark with atemperature on the order of 1 keV. Atoms
and molecules in the plasma of the evaporated material
emit the characteristic radiation. The initial tempera-
tures of the laser-produced plasma are high enough for
any element of the Mendeleev periodic table to be ion-
ized, thus providing a means for its reliable identifica-
tion. Thelight emitted from the laser-produced spark is
collected by mirrors onto the entrance dlit of ahigh-res-
olution spectrometer. The spectrum obtained in the
spectrometer exit plane is detected by one or severa
CCD arrays. Their output signalsare amplified, filtered,
cleared from noise, and then are recorded in a computer
with time intervals shorter than 1 ms.

Up to the present time, the pulsed laser spectros-
copy, characterized by aresolution on the order 1 ppm
(part per million), satisfied the requirements of the
researchers and manufacturers of materials. However,
as the role played by fine cleaning in the technologies
for fabricating new materials and integrated circuits
increased, a demand arose for a better sensitivity of
analytical methods. The primary disadvantage of taking
sampleswith the help of lasersisthat the lifetime of the
laser-produced plasma and, consequently, of the
excited states of the sampled-material atoms is shorter
than 1 us, which significantly limits the sensitivity of
the method. Obviously, the sensitivity can be improved
by increasing the lifetime of the evaporated-material
plasma, which can be achieved by injecting the sam-
pled material into asteady plasmajet. Inthiscase, itis
expected that the time-integrated characteristic optical
radiation from the sample should increase by severa
orders of magnitude.

This idea was realized in the above-mentioned |CP
devices, which allowed one to improve the sensitivity
of the method up to 1 ppb (part per billion). However,
the ICP devices also have disadvantages. First, such
devices are very expensive, primarily because of the
high cost of plasma sources and a complexity of its
operation. Second, the sampled material is spread over
a large ICP plasma volume (of several tens of cm?3),
which makesit hardly possible to improve the sensitiv-
ity even if the plasma image is focused onto the spec-
trometer entrance dlit. Third, the ICP plasma density is
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Fig. 3. View of the device for spectral analysis.
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Fig. 4. Spectrum of unprocessed water (shown by dark shading). The copper lines are distinctly seen (the reference copper linesare
shown by gray shading); the intensity of the lines substantially exceedsthat of the copper lines observed in the working gas (argon).

several orders of magnitude lower than the density of
the microwave-discharge plasma.

It follows from the above considerations that the
microwave torch is a more appropriate device for solv-
ing the problem of increasing the sensitivity of spectro-
scopic measurements. Figure 3 demonstrates the photo-
graph of a model |aboratory device for sensitive spec-
troscopy with the use of a microwave plasma jet. By
analogy to ICP devices, it was called microwave cou-
pled plasma (MWCP) device. The device consists of
three main units (aside from alaser). These are amicro-

wave torch, a monochromator equipped with a CCD
array for light detection, and a computer. The most
expensive component is the CCD array (from 1000 to
2000 USD). A small-sized candlelike flame of thetorch
can be imaged easily on the monochromator entrance
dlit. Since the parameters of the plasma et depend only
dlightly in the gas flow velocity, the sampled-material
vapor content in the discharge can be varied in awide
range. A significant advantage of the method under dis-
cussion is, on the one hand, the possibility of mixing
the sampled material taken from a solid target by a
PLASMA PHYSICS REPORTS  Vol. 28
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Fig. 5. Spectrum of water that is the product of combustion of hydrogen in oxygen, both prepared through electrolysis of singly
distilled water (shown by gray shading). The K lines are distinctly seen in the spectrum (the reference potassium lines are shown

by dark shading).
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Fig. 6. Spectra of distilled water after (1) asingle and (2) triple distillation. The Na lines are distinctly seen in the spectrum (the
reference sodium lines are shown by dark shading); the lines decrease substantially after triple distillation, but do not disappear at
al. Their level corresponds to an impurity concentration of about 1 ppb.

pulsed laser with a jet plasma of the microwave torch
(asis shown at the top of Fig. 1). On the other hand, it
isalso possible to study dusty and liquid samples with-
out laser evaporation, by mixing the sampled material
and the working gas with the help of a nebulizer or an
ultrasonic evaporator (as is shown at the bottom of
Fig. 1). The device can be made portable.

To demonstrate the potentialities of the method, we
performed an analysis of impurities of various elements
inwater, e.g., the content of Na, K, and other atoms (see
Figs. 4-6). First, we studied tap water, in which we
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detected many elements. Then, we analyzed the water
prepared through the combustion of hydrogen in the
oxygen atmosphere and also water distilled up to three
times. The impurity content in singly distilled water
was al so determined with the help of a mass-spectrom-
eter; itslevel did not exceed 10~. In the spectrogram of
the water prepared through the combustion of hydrogen
in oxygen (Fig. 5), one can see peaks corresponding to
K admixture. Note that, in the spectrogram for distilled
water, even after triple ditillation (Fig. 6), one can see
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the Na peaks exceeding noise and indicating the pres-
ence of sodium atoms at alevel of several ppb.

6. CONCLUSION

The experiments with a microwave torch have dem-
onstrated that the sensitivity of analytical plasma spec-
troscopy can be significantly increased by using the
technique proposed. From the physical standpoint, the
use of electromagnetic radiation in the microwave
range is more efficient for plasma production in com-
parison with RF radiation. Another advantage is the
ease of fabrication and low cost of microwave torches,
because they can be powered by the magnetrons of
microwave kitchen ovens.

The electron density and temperature in the non-
equilibrium plasma of the jet, which are the main fac-
tors determining the excitation of atomic and molecular
levels of the impurities under study, require further
experimental investigations. The estimates made by
using the Saha equation, which is only applicable for
equilibrium plasma, do not pretend to yield high accu-
racy because, under our experimental conditions, the
discharge plasmaisfar from equilibrium. Nevertheless,
these estimates do not contradict the observations of
other authors.
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Abstract—Thefeasibility of using laser plasmaas a source of high-energy ionsfor the purposes of proton ther-
apy is discussed. The proposal is based on the efficient ion acceleration observed in recent laboratory and
numerical experiments on the interaction of high-power laser radiation with gaseous and solid targets. The spe-
cific dependence of proton energy lossesin biological tissues (the Bragg peak) promotes the solution of one of
the main problems of radiation therapy, namely, the irradiation of a malignant tumor with a sufficiently strong
and homogeneous dose, ensuring that the irradiation of the surrounding healthy tissues and organsis minimal.
In the scheme proposed, a beam of fast ions accelerated by a laser pulse can be integrated in the installations
intended for proton therapy. © 2002 MAIK “ Nauka/Interperiodica” .

Recently developed compact lasers capable of gen-
erating ultrashort pulses in the multi-terawatt and peta-
watt power range have found progressively wider appli-
cations[1]. Thus, it was proposed to use these lasers to
create new types of charged particle accelerators [2],
sources of hard X-ray and gamma radiation [3], and
charged particle injectors [4], as well as to apply them
to the problem of inertial confinement fusion (in the
framework of the concept of fast ignition of fusion tar-
getswith the use of laser-accel erated electron [5] or ion
[6] beams). The above applications are based on the
fact that the nonlinear interaction of high-power laser
radiation with matter is accompanied by the efficient
conversion of laser energy into the energy of fast parti-
cles. The generation of collimated fast ion beams was
observed in many experiments on the interaction of
ultrashort laser pul seswith gaseous and solid targets[ 7]
and was thoroughly investigated using multidimen-
siona particle-in-cell computer simulations [8]. In
present-day experiments [7], the energy of fast elec-
trons (protons) attains several hundreds (tens) of MeV.
Computer simulations show that, by optimizing the
parameters of a petawatt laser pulse and a target, it is
possible to achieve a protons energy of about severa
hundreds of MeV [8].

In this paper, we discussthefeasibility of using laser
plasma as a source of high-energy ionsfor the purposes
of hadron therapy. Hadron therapy is a constituent part
of radiation therapy, which makes use not only of high-
energy ion beams, but al so of pi mesons, neutrons, elec-
tron beams, and X-ray and gammaradiation toirradiate
cancer tumors (for details, see [9] and the literature
cited therein). Generaly, surgical removal, chemother-
apy, and radiation therapy are applied in parallel to treat
cancers. In devel oped countries, the radiation therapy is
applied to more than one-half of oncological patients.

After more than 40 years of experimental research,
clinical centers of proton therapy (PT), intended for the
treatment of up to 1000 patients per year, are now being
actively developed. Three such centers have already
been put into operation; in the nearest future, there will
be nine PT centers[10]. Each of them is equipped with
aspecial medical proton accel erator, from where proton
beams are delivered to three to five treatment rooms. A
mandatory and the most expensive attribute of such
centersisthe Gantry system for the multiple-field irra-
diation of the lying patient (Fig. 1a).

Proton therapy has a number of advantages. First, a
proton beam isinsignificantly scattered by atomic elec-
trons, which reduces the irradiation of healthy tissues
located on the side of the tumor. Second, the decelera-
tion length of protons with a given energy is fixed,
which alows one to avoid undesirable irradiation of
healthy tissues behind the tumor. Third, the presence of
asharp maximum of proton energy lossesin tissues (the
Bragg peak) provides a substantial increase in the radi-
ation dose in the vicinity of the beam stopping point
(see, e.g.,[9]). Uptothe present time, conventional par-
ticle accelerators (synchrotrons, cyclotrons, and linacs)
have been used to produce proton beams with the
required parameters. The use of laser accelerators
seems to be very promising because of their compact-
ness and additional capabilities of controlling the pro-
ton beam parameters.

Therearetwo versions of using laser accelerators. In
the first version, a conventional accelerator is replaced
with alaser one. In the second version, which seemsto
be more attractive, laser radiation is delivered to a tar-
get, whereit isconverted into fast ions. Thetarget is sit-
uated directly at the entrance to the treatment room,
which isespecially important for the design of the Gan-
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Fig. 1. (@) Conventional Gantry system: (/) deflecting mag-
nets, (2) quadrupole lenses, (3) positioner, (4) dose delivery
system and dose monitoring, (5) treatment room, and
(6) concrete protection; (b) personal laser accelerator.

try system. Note that the Gantry system is not only
expensive, but also very large (6-8 m in diameter and
10-12 min length) and heavy (100 t or higher) facility.
The weight and cost of the system are mainly deter-
mined by apowerful and very precisely made magneto-
optical system rotating as asingle entity. The use of the
second version will allow one to both simplify the sys-
tem and substantially reduce its cost. In this case, the
central accelerator, the beam transportation channels,
and the larger part of the Gantry magnetic system
become unnecessary. One of the possible engineering
solutionsis shownin Fig. 1b.

The requirements for the main parameters of amed-
ical proton beam (abeam intensity of (1-5) x 10'° pro-
ton/s and a maximum proton energy of 230-250 MeV)
can easily be satisfied with the use of modern accelera-
tion technique. At the same time, the other two require-
ments—the beam must be highly monoenergetic,
Aé€/€ < 1072, and the duty-factor (the useful time frac-
tion of a pulsed beam) should be no worse than 0.3
(otherwise, the repetition rate must be no lower than
several Hz)—are rather difficult to satisfy.

A comparison of the ion energy spectrum required
for medical applications (Aé/€ < 10%) with that

BULANOV, KHOROSHKOV

observed in laboratory and numerical experiments on
the interaction of |aser radiation with matter shows that
the available ion spectra are far from being monoener-
getic. It follows from [7, 8] that, at energies lower than
the maximum energy (€ < €., the energy distribu-
tion is quasi-thermal with the effective temperature T
several times lower than € ... Such a spectrum is unac-
ceptable for medical purposes, because it does not
ensure an essential increase in the radiation dose in a
local area and will cause an unacceptably intense irra
diation of healthy tissues.

In order to improve the quality of a proton beam, it
can be “cut” into narrow beams in energy space. How-
ever, in this case, the conversion efficiency of laser
energy into the energy of fast particles is significantly
reduced and, what is more important, the number of the
beam particles decreases. A more promising approach
is related to the use of multilayer targets. Thus, it was
proposed to use afoil target consisting of high-Z atoms
and covered with a thin hydrogen-containing film (see
Fig. 2a). When thetarget isirradiated with an ultrashort
laser pulse, heavy atoms are partially ionized and their
electrons escape from the foil, thus creating the charge-
separation electric field. Because of their large inertia,
the heavy ions remain at rest, while the more mobile
protons are involved in the process of acceleration. The
energy spectrum of protons accelerated in the charge-
separation field near the target surface can be found
from the continuity condition for the particle flux in
energy space, namely, N(€) = ny(x,)|dx,/d€|. Here, the
energy € isafunction of the Lagrangian coordinate X,,
N(¢€) is the differential particle energy spectrum, and
Ny(X) 1S the initial spatial distribution of the particles.
We can see that, in order to produce a highly monoen-
ergetic proton beam, it is necessary that the hydrogen
layer thickness Ax, be small (i.e., the function ny(x,)
should be highly localized in x, space) and/or the deriv-
ative |dé/dx,| should vanish at a certain point X,,. In the
vicinity of this point, the function €(x,) can be repre-

sented as €(X) = Emax — A(X) — Xp*/4. It follows from
here that, in the vicinity of the maximum energy, the
particle energy spectrum has the form N(©é) =
N/ (€, — €)'2. The necessary conditions for this
acceleration regime can be ensured by using a two-
layer target with a hydrogen-containing film deposited
on the front side of thefoil, asisshown in Fig. 2b. Note
that, when preparing this paper, we become acquainted
with the recently published paper [10], in which the
increase in the efficiency of ion acceleration in the
interaction of laser radiation with two-layer targets was
demonstrated experimentally.

The characteristic energy of protons accelerated in
the charge-separation electric field E = 2rm,Zdl in the
region of size R, equal to the laser spot radius, can be
estimated in the order of magnitude as €., =
2m,Ze’lR, and the energy spectrum width as A€ =
PLASMA PHYSICS REPORTS  Vol. 28
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2 e*Ax R Here, n, is the density of high-Z ions in
thefoil, Zeistheir electric charge, | isthefoil thickness,
and Ax, is the thickness of the hydrogen-containing
film. It isassumed that the intensity of laser radiationis
sufficiently high for all the electrons to be blown out of
the laser-irradiated region under the action of the pon-
deromotive pressure. For this purpose, it is necessary
that the dimensionless amplitude of the laser field a =
eE/mywc be larger than a. = |/d,, where E is the laser
field strength, w isthe laser frequency, e and m, are the
charge and mass of an electron, and d, = ¢/wy, isthe col-
lisionless skin depth. For a laser wavelength of about
1 um and afoil thickness of 5 um, the threshold field
amplitude is a. = 50; i.e., the laser intensity is| =5 x
102! W/cm?, which corresponds to the petawatt power
range [1]. It follows from [8] that, in this case, the
energy of fast protons attains several hundreds of MeV,
which is sufficient for PT. Aswas noted above, the flux
of accelerated protonsin abeam should be no less than
(1-5) x 10'° proton/s, which is achievable, because, in
experiments of [7, 8], the number of accelerated pro-
tons attained a value of 10'>-10'* proton/pulse. To
ensure such a number of fast particles, it is sufficient
that the thickness of the solid-state hydrogen-contain-
ing film on the target surface be about 1 um at a laser
spot diameter of about 10 um. In addition, the parame-
ters of a proton beam can be controlled by varying the
target geometry (aswas shownin [8], the protons accel-
erated from the surface of a convex foil target are
focused into its center of curvature). Note that the high
quality of the proton beam (the smallness of the ratio
Aé€/€é) is of fundamental importance not only for med-
ical applications, but also for charged particle injectors
[4] and the problem of fast ignition of fusion targets
with the use of laser-accelerated ion beams[6].

As the fast ion beam propagates through a tissue, it
loses energy. The energy loss rate is equal to dé/dx =
K/é? (see, e.g., [11]), where the K factor logarithmi-
cally depends on the proton energy. Figure 3 shows the
profiles of the energy deposited by proton beams with
different energy distributions. Curve / corresponds to
the distribution N(€) = ny0(€ e — €)0(€ —€ i), Where
Emax aNd €., are the maximum and minimum proton
energiesinthebeam, 8(§) =1a & >0,and 6(§) =0 at
& < 0 (for the given distribution, (€ a — €min)/Emax =
0.1). In curve 2, which corresponds to the energy spec-
trum N(%) = n()e(%max - %)e(% - %min)/(%max - %)1/21
we can see a pronounced peak of energy losses. For
comparison, Fig. 3 aso showsthe profiles of the energy
deposited by monoenergetic and quasi-thermal proton
beams. Curve 3 corresponds to a monoenergetic beam:
N(€) = nyd(€,x — €). We can see the Bragg peak of
energy lossesin thevicinity of the beam stopping point.
Curve 4 corresponds to the energy distribution of the
form N(€) = nB(€ o — €)exp(=é/2T)"2, where T =
6,../2 isthe effective temperature. It isthisdistribution
that is usualy used to approximate the fast proton
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Fig. 2. Two-layer target: athin hydrogen-containing filmis
deposited on (a) the rear side and (b) the front side of afoil
consisting of high-Z atoms.
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Fig. 3. Energy deposition profiles for beams with different
energy distributions.

energy spectra observed in laboratory and numerical
experiments on the interaction of laser radiation with
non-optimized targets. Itisclear that thisdistributionis
unacceptable and it is necessary to use optimized mul-
tilayer targets.

The future of hadron therapy is related to the cre-
ation of specialized oncological centers equipped with
modern diagnostics and medical accelerators. Cities
with a population of two to three million inhabitants
need centerswith four treatment rooms. For smaller cit-
ies, centers with one treatment room are required; how-
ever, to create such centers based on conventional
accelerators and existing Gantry systemsisinexpedient
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from the economical standpoint. At the same time, the
creation of such centers in medium-sized hospitals
would expand the range of PT applications and, a very
important point, would made it possible to bring medi-
cal centers closer to patients. One of the solutions to
this problem is the creation of relatively inexpensive
specialized medical laser proton accelerators having
relatively small dimensions (2—3 m) and weighting no
more than several tons. In fact, this can substantially
simplify the design and reduce the cost of PT centers.
The use of multilayer targets with various shapes and
structures provides additional possibilities for control-
ling the parameters of fast ion beams, such as the
energy spectrum, the number of particles, the foca
length, and the size of the region where the proton
energy is deposited.

As concerns the low repetition rate of the proton
pulses, there are two possible solutionsto this problem.
At present, the repetition rate of the required ultra-high-
power (petawatt) laser pulsesis rather low. The repeti-
tion rate of proton pulses can be increased by imple-
menting an assembly of lasers shooting at a single tar-
get in succession. It is also possible to accelerate the
bunch of protons repeatedly, each time increasing the
energy of protons by several MeV. This may be
achieved with sequentially positioned targets and lower
power lasers, which nowadays have a sufficiently high
repetition rate.
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