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In Memory of Dmitriœ Aleksandrovich Panov
The papers published in this issue under the rubrics
“Magnetic Confinement Systems” and “Tokamaks” are
devoted to the memory of Dmitriœ Aleksandrovich
Panov, suddenly deceased November 4, 2001.

D.A. Panov, colleague and successor of
I.N. Golovin, was one of the leaders of mirror-based
magnetic plasma confinement research. However, the
importance of his scientific activity goes far beyond the
scope of this field. The achievements of the laboratory
headed by Panov over many years at the Kurchatov
Institute had a marked influence on the development of
controlled fusion research as a whole. Being a bright,
extraordinary person, he manifested himself in full
measure as a talented scientist and experienced leader.

Among the achievements of Panov in the field of
fusion research, one can note successful experiments
on the feedback suppression of the flute and ion cyclo-
tron plasma instabilities. He initiated the implementa-
tion of superconducting magnetic coils in fusion
devices. In 1971, the first confinement system with
1063-780X/02/2809- $22.00 © 20711
superconducting windings (Ogra-III) was created
under his leadership.

Being a heaven-born experimentalist, Panov also
made a substantial contribution to the theory of mag-
netic confinement systems. In the beginning of the
1980s, he put forward the principle of “orthogonality”
of the magnetic field geometry (the perpendicularity of
the magnetic field lines to the contours of the absolute
value of the magnetic field strength) to eliminate neo-
classical transport. This idea was then developed in the
modern theory of optimization of three-dimensional
magnetic configurations with the purpose of improving
plasma confinement.

Everyone who was lucky enough to work and com-
municate with D.A. Panov appreciates his high profes-
sionalism, good will, kindness, skill to listen, and reli-
ability.

The Editorial Board is grateful to the authors who
have responded to the proposal to present papers for
this issue.
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Abstract—Five decades of fusion research have resulted in a solid base of understanding of the physics of
plasma confinement by magnetic fields, including documentation of the role of the topology of the magnetic
fields, i.e., “open” or “closed” field lines, in determining the confinement. Without known exception, closed
systems, such as tokamaks, stellarators, or reversed-field pinches, have confinement times that are dominated
by turbulence. As a result, to produce net fusion power, closed systems must be so large in size as to raise ques-
tions as to their practicality. By contrast, there are examples of open (mirror-based) systems where turbulence,
if present at all, was at such low levels as to have a negligible influence on the confinement. Specifically, mem-
bers of a subset of open systems, those with axisymmetric fields, have demonstrated cross-field transport rates
that agree with classical predictions, opening up the possibility of fusion power systems that would be much
smaller than their closed-field counterparts. Standing in the way of implementing axisymmetric mirror-based
fusion systems is the MHD-unstable nature of their equilibria. The kinetic stabilizer represents a proposed way
to overcome this difficulty, one based on theory that has been confirmed in the gas dynamic trap (GDT) axi-
symmetric mirror experiment in Novosibirsk, Russia. MHD-stabilization in the GDT arises from the presence
of a sufficient density of effluent plasma on the outwardly expanding field lines outside the mirrors. However,
in those mirror-based fusion systems, such as tandem-mirrors, that would operate at lower plasma collisional-
ities than the GDT, the effluent plasma density would be too low for this stabilization method to be effective.
The kinetic stabilizer overcomes this difficulty by using ion beams injected from ion sources located far out on
the expanding field lines beyond the outer mirror. These ion beams, aimed at small angles to the field lines, are
compressed, stagnated, and reflected by the inwardly converging field, forming a localized plasma that accom-
plishes the stabilization. In previous papers, theory was developed and examples were given of mirror and tan-
dem-mirror systems using kinetic stabilizers to achieve fusion-relevant plasma regimes. In this paper, some of
the special issues that must be faced in pursuing the kinetic-stabilizer approach to fusion power will be dis-
cussed, together with some perceived opportunities for optimizing such systems. © 2002 MAIK “Nauka/Inter-
periodica”.
11. INTRODUCTION

The magnetic-mirror approach to fusion has had a
long history of development, being one of the first sug-
gested means for solving the confinement problem of
magnetic fusion. Dr. Dmitriœ Panov, in whose honor this
paper is being written, had a long and distinguished
career in the experimental investigation of mirror-based
fusion systems. This paper is concerned with a possible
solution to a problem, the MHD instability of axisym-
metric mirror systems, a problem that Dr. Panov also
particularly addressed in his studies.

The 50-year history of research into the confinement
of plasma in magnetic fields should have taught us one
clear lesson. The lesson is that there is a fundamental
difference in the character of plasma confinement
between that in so-called “closed” systems, such as the
tokamak, the stellarator, or the reversed-field pinch, and
“open” systems, such as those based on the use of the
magnetic mirror principle to provide axial confinement.
Closed systems, with no known exceptions, show con-
finement that is dominated by turbulence-related pro-
cesses, rather than by “classical,” i.e., collision-related,

1 This article was submitted by the authors in English.
1063-780X/02/2809- $22.00 © 20712
processes. As a result, to achieve confinement adequate
for fusion power purposes in, for example, the tokamak
requires that it be scaled up in size and power level to
the point that its ultimate practicality as an economi-
cally viable source of fusion power is open to question.
By contrast, from earliest days, there have been exam-
ples of open systems where turbulence, if present at all,
is at such a low level that only collision-related pro-
cesses play a significant role in determining the con-
finement. Furthermore, within the class of mirror-based
systems, those with axisymmetric magnetic fields (i.e.,
solenoidal fields produced by coaxial circular coils),
have most clearly attained cross-field transport rates
approaching the classical, “Spitzer” [1] rate predicted
for such fields. Given this circumstance, in a search for
simpler and smaller fusion power systems than those
based on closed-field topology, axisymmetric mirror-
based systems appear to offer much promise.

Standing in the way of implementing new forms of
axisymmetric mirror-based fusion power systems is the
long-understood tendency of such systems toward
MHD instabilities of the “interchange” variety [2], a
type of instability that leads to a coherent drift of the
confined plasma column across the confining field. This
002 MAIK “Nauka/Interperiodica”



        

THE KINETIC STABILIZER: ISSUES AND OPPORTUNITIES 713

                
type of transport of the plasma column across its con-
fining field is to be contrasted with the enhanced-diffu-
sion type of transport associated with the turbulent pro-
cesses encountered in closed systems. As experiment
has shown (for example, in the axisymmetric-field gas
dynamic trap (GDT) at the Budker Institute in Novosi-
birsk [3]) when the MHD interchange instability is sup-
pressed, the rate of transport of the plasma across the
magnetic field can approach the slow diffusion rates
expected from interparticle collisions, namely the
Spitzer-predicted rate. The GDT experiment [3] and
theory that preceded it [4] represent, in fact, the starting
points for the kinetic stabilizer (KS) concept [5, 6],
selected aspects of which will be discussed in this
paper.

The stabilization method employed in the GDT is
based on the following plasma physics considerations,
reviewed briefly here.

In an axisymmetric mirror cell for which the ratio of
the mean ion orbit radius to the radius of the plasma,
ri /a, is greater than the ratio of the plasma radius to the
cell length, so-called “finite-orbit” effects [7] stabilize
all but the lowest order MHD interchange mode. This
m = 1 mode corresponds to a simple sideways drift of
the plasma column as a whole.

For the m = 1 mode, as with all interchange modes,
the source of free energy is the energy of expansion of
the plasma that arises from the circumstance that, in an
axially symmetric mirror cell, the volume of a given
tube of flux increases if that tube is transported in the
radial direction. The geometric origin of this effect lies
in the competition between the regions of positive and
negative field-line curvature that characterize the mag-
netic field between the mirrors. As shown by the theory
[2], the region of negative field-line curvature (out-
wardly decreasing field strength) midway between the
mirrors always wins (if only slightly) over the regions
of positive curvature (outwardly increasing field
strength) located near the mirrors.

To better define the plasma physics issues associated
with the stabilization method employed in the GDT
(and the one that is to be employed in the KS), it is help-
ful to consider the interchange instability from the
standpoint of plasma currents and particle drifts.
Looked at from that aspect, the interchange instability
arises from the fact that, in regions of negative field-line
curvature, the particle currents associated with the
oppositely directed azimuthal drifts of the ions and
electrons, if not canceled by current flow along the field
lines from other regions of the plasma, would result in
an azimuthally directed electric field in that region. In
that azimuthal electric field, the ions and electrons
would together perform an outwardly directed E × B
motion. Stabilization occurs when three conditions are
satisfied. The first condition is that there should exist a
region (or regions) of positive field-line curvature down
the field lines from the region of negative field-line cur-
vature. The second condition is that these regions
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
should be extensive enough so that the accumulative
effect of the electron and ion drifts in them produces
canceling currents that are sufficient to overcome the
destabilizing charge separation that arises in the regions
of negative field line curvature. The third, equally
important, condition that must be satisfied is that there
should exist a sufficient plasma density on the field
lines between the regions of negative and positive cur-
vature to allow the uninhibited flow of the neutralizing
currents that suppress the instability.

Returning now to the situation in the GDT, since the
field-line curvature of the field lines emerging outside
each mirror is strongly positive, it follows that, if a suf-
ficient amount of plasma were to be present outside the
mirrors and if this plasma can electrically “communi-
cate” adequately with the interior plasma, it can stabi-
lize the interior, contained, plasma. As the theory shows
[4], the plasma in the expander can be orders of magni-
tude lower in density and pressure and still be suffi-
ciently dense to stabilize the interior plasma.

In the GDT, which operates in a dense and highly
collisional plasma region where the mean-free-path for
ion–ion collisions is shorter than the length of the
plasma, the effluent plasma leaking through the mir-
rors, even though much lower in density than the inte-
rior, confined, plasma, is still sufficiently dense to sat-
isfy the three conditions stated above. As a result, it
MHD-stabilizes the confined plasma at a remarkably
high plasma beta value of 30%. However, if we con-
sider the situation that would be encountered in a con-
ventional tandem-mirror fusion system, a different pic-
ture is obtained. Such systems would operate at plasma
temperatures and densities where the mean-free-path
for ion–ion collisions is long compared to the length of
the plasma. In such a case, the effluent plasma density
would be too low to stabilize the interior plasma and
other means must be sought. The long-standing con-
ventional approach to solving the MHD stability prob-
lem has been to abandon axisymmetry and to employ
multipole magnetic-well fields, involving “baseball” or
“yin-yang” [8] coils in the mirror cells, following the
lead of the classic mirror experiment performed by
Ioffe [9] in the 1960s.

Though highly effective in stabilizing MHD modes,
the use of nonaxisymmetric fields not only introduces
transport-producing “bounce-resonant” particle drifts
[10], but also increases the complexity of the magnetic
field coils of a tandem-mirror system. A consequence
of this field-coil complexity is that it severely con-
strains the field strengths that can be attained in the mir-
rors and it inhibits the ability of the designer to reduce
the volume of the plasma in the plug mirror cells in
order to minimize the power required to maintain the
plugging plasmas contained in these cells.
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2. THE KINETIC STABILIZER CONCEPT

The KS concept as applied to axisymmetric mirror-
based systems has been described in previous papers [5,
6]. Its starting point was an earlier concept, the “kinetic
tandem” [11]. The idea is to create in situ a localized
plasma on the expanding field lines lying outside the
outermost mirror of an axisymmetric tandem-mirror
system. This localized plasma is to be created by the
“kinetic” technique of launching directed ion beams
from ion sources lying still farther out on the expanding
field lines. These ions, aimed at small angles to the
local direction of the field lines, would be compressed,
stagnated, and reflected at a predetermined position on
the converging field lines, chosen so as to optimize the
stabilizing effect of the beam-produced plasma. What
was shown in the previous papers is that, when opti-
mally produced, the density of this stabilizer plasma
could be many orders of magnitude lower than that of
the plug plasma in a tandem-mirror system and still be
effective in MHD-stabilizing that plasma (provided that
the three conditions stated above are all satisfied).

The field-line-curvature-related condition that must
be satisfied by the KS plasma can be seen from an
examination of the MHD stabilization criterion for an
axisymmetric mirror system [4], stated in integral form
in the expression

(1)

In this expression, the radius of the plasma is repre-
sented by the term ‡. The integral is to be carried out
over the length of the plasma between the ends of the
system, located at –L and +L, respectively. The term in
the brackets represents the total kinetic pressure of the
plasma (a function of position). This pressure term is
then multiplied by the plasma radius cubed and the sec-
ond derivative of the plasma radius (the curvature term)
and then integrated over the length of the system to
determine the sign of Is.

As can be seen from Eq. (1), regions of the plasma
at large radius and where the field-line curvature is
strongly positive will make the largest positive (stabi-
lizing) contributions to the integral. The KS takes
advantage of this scaling by creating its kinetically pro-
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Table 1.  Fusion Parameters of Example 1

Central cell magnetic field 0.5 T

Mirror ratio of central cell 2.0

Fusion plasma ion density (50–50 DT) 6.2 × 1020 m–3

Ion and electron temperature of central-cell 
plasma

15 keV

Beta value of central-cell plasma 0.3

Length of fusion plasma 25.0 m

Diameter of fusion plasma 0.15 m
duced plasma at an optimally located position on the
expanding field lines (the “expander”) outside the mir-
rors. To achieve this optimization, the flux surfaces in
the expander region can be tailored in specified ways
(to be illustrated in a later section).

In order to study the KS in a quantitative manner,
computer codes were written that perform the follow-
ing functions:

(i) Generation of the flux surfaces for mirror cells
and for the expander.

(ii) Calculation of the magnetic compression and
localization of ion beams injected into the expander
field, with angular distributions that simulate those
from actual ion sources.

(iii) Evaluation of instability integral (1), both for
mirror-contained plasmas and for the beam-produced
stabilizer plasma.

In the next section, we will present an example
(from a previous paper [5]) that illustrates the use of
these codes, a route to a discussion of some new results.

3. AN EXAMPLE: STABILIZATION 
OF A SINGLE MIRROR CELL

As an example of a fusion-relevant system, for
example, one that could be used to produce a high flux
of 14 MeV D–T neutrons for material testing purposes,
we consider a simple mirror cell with the following
parameters (Table 1).

The first step in the code calculations was to evalu-
ate the MHD stability integral, Eq. (1), for the mirror
cell, assuming unity pressure in the cell (dropping to
zero near the mirrors). The flux function that was
assumed for this calculation is one that has been
employed previously to model the fields in mirror cells
[12]. It is of analytic form, involving trigonometric
functions and Bessel functions of imaginary argument,
representing the field lines in the vicinity of the end
mirrors. This flux function matches smoothly onto a
cylindrical flux tube (zero second derivative) in the cen-
tral region of the mirror cell. The shape of the flux sur-
faces near the mirrors is shown in Fig. 1. In a later sec-
tion, we will discuss more advantageous shapes for the
flux surfaces, ones that can be employed to diminish the
negative contributions to the instability integral from
the regions of negative field-line curvature.

When evaluated between the midplane and the end
of the mirror cell, the value of the integral, Is, of Eq. (1)
associated with the flux surface of Fig. 1 is –1.7 × 10–6.

The next task of the code is to calculate the shape of
the flux surface in the expander region. For this exam-
ple, the expander flux surface was generated by a parax-
ial representation derived from a magnetic field, Bz , on
the axis, the intensity of which was assumed to
decrease in a Gaussian manner with distance from the
mirror. This flux surface contour, as generated by the
code, is shown in Fig. 2. As with the mirror cell flux
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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surface, we will later consider more advantageous ways
to configure the expander flux surface.

The next task of the code is to calculate the value of
the instability integral for a plasma that is assumed to
be located favorably on the expander flux surface. The
result found for a unit pressure KS plasma located
between 1.9 and 2.1 m from the mirror was the value
Is = +0.39. Comparing this value to that found for the
central cell, we find that the ratio between the two val-
ues is 4.5 × 10–6. It follows that the pressure of the KS
plasma can be more than five orders of magnitude
smaller than that of the central plasma and still stabilize
it against the MHD interchange instability, provided the
“communication” requirement between the central
plasma and the KS plasma, mentioned earlier, is also
met.

To complete the analysis, the final task of the code
was to calculate the location and pressure of a plasma
generated by the compression, stagnation, and reflec-
tion of ions emerging from ion sources located farther
out on the expander field lines. For this calculation, an
analytical form was assumed for the angular distribu-
tion emitted by the ion sources, approximating ones
characteristic of typical ion sources. By varying the
width and mean angle of injection of these ions, a set of
parameters could be determined that optimized the sta-
bilization, i.e., which minimized the current and/or
power requirements of the ion sources. Figure 3 shows
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Fig. 3. Source angular distribution used in the example.
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Fig. 1. Shape of a Bessel-function-type flux surface in a
mirror cell used to calculate the stability integral.
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the form of the angular distribution that was used to
represent the ion sources.

Given the source angular distribution (which can be
varied in width and mean angle of injection relative to
the field lines) and the location of the sources (at 2.5-m
distance from the mirrors), the code next used this dis-
tribution to calculate the location, the compressed par-
ticle density (relative to the density at the sources), and
the spatial distribution of the KS plasma. This plasma
was then used as input to another code, one that calcu-
lates the value of stability integral (1). Figure 4 shows
the relative ion density, the location, and the spatial
extent of the KS plasma. Note the density compression
(in this case, by a factor of 35) caused by the conver-
gence and stagnation of the injected ions.

When the density compression and the location in
the expander of the KS plasma was used as input to the
code for calculating the stability integral, a value of this
integral of 11.6 was found. Therefore, the ratio of that
determined for the central cell (1.7 × 10–6) to this value
is equal to 1.5 × 10–7. We see therefore that the kinetic
pressure of the injected KS ions, as averaged over the
surface on which the ion sources are located, can be
almost seven orders of magnitude smaller than the peak
kinetic pressure in the central cell and still stabilize it
against the MHD interchange mode, given a sufficient
level of “communication” between the KS plasma an
the plasma in the central cell.
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Fig. 2. Expander flux surface for a Gaussian variation of the
field on the axis.
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Fig. 4. Spatial location and density compression factor of
KS plasma.

z, m

Compression factor



 

716

        

POST

                
At the axial position of the sources, the magnetic
field has dropped to about 0.02 T and the flux tube has
expanded to a cross-sectional area of about 4 m2. This
area, taken together with an assumption about the
energy and the type of ion emitted by the KS ion
sources, will now permit us to estimate the beam power
required to stabilize the plasma and then to compare
this power to the fusion power released. The ions cho-
sen for the KS ion sources were 1-keV Cs+ ions (easy
to generate and more effective because their low energy
and large mass reduces the beam power requirements).
Table 2 summarizes these parameters and gives the
results for the required KS beam power and the calcu-
lated fusion power output from the central cell, using
the parameters of Table 1 as input.

As can be seen, the fusion power released is much
larger than the KS plasma beam power required to sta-
bilize the plasma in the mirror cell. However, this
example is not presented as a viable fusion power sys-
tem, since no provision has been made for reducing the
mirror end losses. Rather, the promise of the KS stabi-
lizer comes from its application to tandem mirror sys-
tems. In the next sections, we will discuss this applica-
tion and some of the special issues and opportunities
that present themselves.

4. THE KINETIC STABILIZER TANDEM MIRROR: 
SPECIAL ISSUES

Of special interest for fusion purposes is the appli-
cation of the KS concept to tandem-mirror fusion sys-
tems. This application has been discussed in a prelimi-

Table 2

Mean diameter of KS stabilizer plasma 1.0 m

Area of KS ion sourse region 4.0 m2

Energy of KS ions (Cs+) 1.0 keV

KS ion-beam power (two ends) 200 kW

D–T fusion power released 45 MW

Table 3.  Fusion Parameters of MINIMARS

Fusion Power 1200 MW

Electrical power output 600 MW

Neutron wall loading 2.7 MW/m2

Central-cell magnetic field 3.0 T

Choke coil field 26.0 T

Length of central cell 95.0 m

Plasma radius 0.42 m

Ion temperature 30 keV

Plasma beta 0.6

Mirror ratio of central cell
(beta-enhanced)

13.7
nary way in a previous paper [6]. In that paper, it was
shown that the use of axisymmetric confining fields
should permit the design of practical tandem mirror
fusion power plants based on the original TM concept
of Dimov, Fowler, and Logan, i.e., tandem mirror sys-
tems that would generate the required plugging poten-
tials by the straightforward means of increasing the
plasma density in the plugging cells by an order of
magnitude relative to the central cell, while at the same
time being able to operate with high central-cell mirror
ratios. When one is employing only circular coils to
produce the confining fields, not only is it possible to
increase the fields in the plugging cells far above that
possible with yin-yang or baseball coils, but at the same
time the plasma volume in these cells can be made
much smaller than would be possible with the nonaxi-
symmetric fields. Higher mirror ratios, higher end-cell
fields, and small plugging plasma volumes translate to
a major simplification (e.g., “thermal barriers” would
not be required) and improvement in performance and
should therefore result in major economic advantages.

To briefly summarize the results of the previous TM
calculations, they addressed a “redesign” of an earlier-
studied TM system, called “MINIMARS.” [13]. In the
calculations, the same fusion power parameters were
retained as those of the earlier study, but the end plug-
ging region (which had used multipole fields and ther-
mal barriers) was replaced by small-volume axisym-
metric mirror cells. What was calculated was the esti-
mated power required to maintain the plugs at a high
plasma density and the estimated KS beam power that
would be required to stabilize the plug cells. What was
found was that the end cells make the largest negative
contribution to the stability integral. It follows that, if
these are well stabilized, it will assure that the central-
cell plasma will also be stable (assuming that the “com-
munication” between the various plasmas is adequately
robust). Note in this connection that the elimination of
thermal barriers will improve the communication
between the central-cell plasma and the end-cells,
thereby reducing some of the concerns that arise when
thermal barriers are employed. Table 3 summarizes the
fusion parameters of MINIMARS that were assumed in
the KS example [6].

In order to calculate the power required by the end
cells, i.e., the sum of the beam power required to main-
tain the plugging plasmas plus that required to power
the KSs, compromises between competing require-
ments had to be made. While the power required to
maintain the plug plasmas is reduced if their length is
made shorter (smaller volume of plasma), the negative
contribution to the stability integral increases as the
length is shortened. Also, the use of higher ion energies
in the plugs reduces their mirror losses, but increases
the pressure that must be stabilized by the KS. In the
compromises made, 100 keV deuterons were chosen
for the plug ions and the cell length was set at 3.0 m.
With these parameters, the plug beam power and the
KS beam power were approximately equal, being
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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8.2 MW for the former (each end) and 5.0 MW for the
latter. The total power required to maintain and stabi-
lize the plug cells was still small compared to the
600 MW fusion power output, the Q value of which
was thus primarily determined by the confinement nτ
value of the central cell.

One important change that was made in the updated
MINIMARS example as compared to the previous
study was an optimization of the expander. This optimi-
zation was accomplished in the following way: Con-
sider a case in which, in the expander, the flux surface
emerging from the mirror resembles a stylized trumpet
horn. That is, it is of conical shape (zero second deriv-
ative), changing farther out to a sharply outwardly curv-
ing flux surface that shortly changes again to a conical
surface for further expansion until the location of the
ion sources is reached. The shape of the flux surfaces in
such an expander is shown in Fig. 5.

With this shape of expander, the ion sources are to
be aimed to converge at the high-curvature region
between the two conical surfaces. In this way, their sta-
bilizing effect can be optimized. Further optimization
(to be discussed in a later section) arises from moving
the location of high positive curvature in or out in the
axial direction. Moving the location inward, although it
reduces the radius-cubed term in the stability integral,
is compensated for by greater magnetic compression of
the beams and by an increase in the second-derivative
term in the integral, with possible ancillary advantages
having to do with “communication” and other issues.

5. TANDEM-MIRROR PLUG CELLS: 
ISSUES AND OPTIMIZATION

With the previous discussions as background, we
will now address some new issues and some further
avenues for optimization of tandem-mirror systems
employing KSs.

Since the plug cells represent the largest negative
contribution to the stability integral and thus require the
lion’s share of the KS beam power, it is worthwhile to
examine ways to reduce the magnitude of this negative
contribution, to be accomplished through shaping the
flux surfaces in the plug cells. At the same time this
type of optimization is going on, one must keep one’s
eye on a particular long-standing issue associated with
mirror confinement, namely the Alfvén ion cyclotron
(AIC) instability. This instability is driven by the inher-
ent anisotropy of the mirror-confined plug ions. While
“warm-plasma” stabilization, normally present in a tan-
dem-mirror system without thermal barriers, is effec-
tive on other loss-cone-type instabilities, it is necessary
to use special means to avoid the AIC mode. The tech-
nique that was developed to suppress this mode is that
of “sloshing ions.” That is, ions are injected into the
mirror cell at an intermediate angle (relative to the field
lines) so that they reduce the anisotropy of the trapped
plasma. The ability to use sloshing ions to suppress the
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
AIC has been predicted theoretically [14] and demon-
strated in tandem-mirror experiments such as TMX-U
[15] and Gamma 10 [16]. The fact that the presence of
a sloshing-ion population does not have a deleterious
effect on the confinement of an otherwise isotropic
plasma has also been demonstrated in the GDT [3].

In the search for an improved flux surface configu-
ration for the plug cells, it was found possible to
achieve two objectives at once. The field configuration
was calculated from a paraxial expansion (to fifth order
in the plasma radius) of the field on the axis arising
from the superposition of currents in circular loop coils.
The field was shaped in such a way that the presence of
the sloshing-ion population reduces the negative contri-
bution of the plug cell to the stability integral. This
long-understood concept takes advantage of the fact
that, if the sloshing ions are preferentially reflected in
regions of the field with positive field-line curvature,
the negative contribution of the plasma to the instability
integral will be reduced. The presence of collisional
randomization in steady-state will prevent the achieve-
ment of complete stabilization, but that is not required
if the system is to employ KSs. However, these stabiliz-
ers would now require much less beam power than if
the sloshing ions were not present.

To perform the needed evaluations, the stability
code was adapted to calculate flux surfaces generated
by coaxial, coplanar, circular-hoop coils, the currents in
which increase linearly (from a base value) in moving
toward the mirrors, starting from the midplane between
the mirrors. As was shown in an early report [17], this
type of coil assembly produces a mirror-cell field the
flux surfaces of which are everywhere convex (have
positive curvature) with respect to the axis, except for a
short region whose length is on the order of the coil
radius. Figure 6 shows an example of such a flux-sur-
face contour, as generated by the code.

Fig. 5. Schematic representation of the flux surface in an
optimized expander.
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The strength of the magnetic field on the axis of the
coil system is shown in Fig. 7. Note that the mirror ratio
is 4 : 1 for this choice of values.

The shape of the flux surface shown in Fig. 6 can be
seen to be such that it is well-suited for the containment
of a sloshing-ion type of distribution in that the sloshing
ions will be preferentially reflected in regions of posi-
tive field-line curvature. On the other hand, this flux
surface would not be expected to be advantageous for
the centrally peaked “normal-mode” distributions that
would be characteristic of mirror-confined plasmas
under usual circumstances.

To illustrate the gain (reductions in the negative con-
tribution to the stability integral) that could be expected
by employing sloshing-ion distributions in mirror cells
with flux surfaces of the type shown in Fig. 6, compar-
ison calculations of the stability integral were made.
First, a normal-mode distribution was used together
with a Bessel-function type of flux surface (an example
of which is shown in Fig. 1). The cell length was 2.5 m,
the mirror ratio was 4 : 1, and the radius of the flux sur-
face at the midplane was 0.15 m. The normal-mode
density distribution used is shown in Fig. 8.

Next, a sloshing-ion distribution normalized to the
same unit peak pressure was employed in the same cell.
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Fig. 6. Flux surface contour associated with an assembly of
circular current loops (radius 0.25 m) the currents in which
increase linearly (from a base value) with distance from the
midplane (note the change of scale between the r and
z axes).

Fig. 8. Normal-mode density distribution for a Bessel-func-
tion mirror cell.
Finally, the normalized sloshing-ion distribution was
employed in the cell the flux surface of which is shown
in Fig. 6. The length of the cell, the flux surface radius
at the mirror, and the mirror ratio were kept the same as
for the Bessel-function cell. To represent a sloshing-ion
distribution, a normal-mode distribution was multiplied
by a weighting function that approximates the effect of
off-angle injection of ions. The resultant normalized
axial distribution of the plasma as it was used in the two
mirror cells is depicted in Fig. 9.

As was noted, the value of the instability integral
was calculated for three cases: (i) for the normal-mode
distribution (Fig. 8) in the Bessel-function cell, (ii) for
a sloshing-ion distribution (Fig. 9) in the same cell, and
(iii) for a sloshing-ion distribution in the linear-taper
cell of Fig. 6. To illustrate the gains achievable by the
optimization of the flux surfaces and by the use of
sloshing ions, Table 4 gives the value Is of the stability
integral for the three cases. The first entry is for the nor-
mal-mode case in the Bessel-function cell. The second
entry is for the sloshing-ion distribution in the same
cell. The third entry is for the sloshing-ion distribution
in the linear-taper-coil cell of Fig. 6. For all cases, the
mirror ratio was 4 : 1 and the plasma radius at the mir-
rors had the same value (0.075 m). All distributions
were normalized to unity at their peak pressures so that

0.5–1.0

1

2

B, T

z, m

3

1.0–0.5

4

5

Fig. 7. Variation (with distance from the midplane) of the
magnetic field strength on the axis of the coil system pro-
ducing the flux surface shown in Fig. 6.
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Fig. 9. Sloshing-ion axial density distribution.
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all would generate the same peak plugging potential in
a tandem-mirror system.

It can be seen from Table 4 that a substantial reduc-
tion in the negative contribution to the stability integral
can be achieved by using sloshing ions in a taper-coil
cell as compared to either normal-mode or sloshing-ion
distributions contained in a Bessel-function cell. This
reduction comes about as a result of the combined
effect of sloshing ions and the favorable shaping of the
field lines that occurs when the cell employs the linear-
taper configuration for the current in its field coils.

The example given above illustrates the kinds of
reductions in destabilizing effect (reflected in reduc-
tions in the KS beam-power requirements) that are pos-
sible by shaping the flux surfaces in the end-cells of a
tandem mirror employing KSs. In a 1988 paper con-
cerning the GDT, Mirnov and Ryutov [18] employed
variational analysis to determine the optimal shape of
the flux surfaces in the mirror cell of the GDT, i.e., the
shape that minimizes the negative contribution of this
cell to the instability integral. Although, in the case that
they treated, the plasma pressure was isotropic (owing
to the high collisionality of the GDT operating regime),
their analytical approach could also be applied to a
sloshing-ion pressure distribution. In that way, even
further gains than those presented here could no doubt
be realized, within the limits imposed by engineering
requirements in the construction of the field coils.

Although the discussion here has been centered on
the optimization of the flux surfaces in the plug cells of
a tandem mirror, the analysis by Mirnov and Ryutov
[18] shows that the central cell can also be optimized
with respect to minimizing its destabilizing contribu-
tion to the stability integral. There is however, perhaps
another reason for specially shaping the flux surfaces of
the central cell. The flux surfaces that were described
above and illustrated in Fig. 6 are created by circular
coils with a linearly increasing current as a function of
distance from the midplane. The field lines, as noted,
possess “good” curvature everywhere except near the
midplane. Although, as far as is known, the stability
analysis has not been performed for this type of mirror
field configuration, it seems reasonable that such a
shape of flux surface could help in suppressing a class
of weakly driven modes of the “trapped-ion” [19] vari-
ety. These instabilities have their origin in inadequate
electrical communication between the central cell,
plug, and expander regions in the tandem mirror. Paren-
thetically, the elimination of thermal barriers, as pro-
posed here, and the alternative expander designs (dis-
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
cussed in the next section) should go a long way toward
eliminating this particular concern.

6. THE EXPANDER:
ISSUES AND OPTIMIZATION

The design of the expander presents another opportu-
nity for optimization, previously discussed in Section 4.
It also involves some special issues relative to the
“communication” requirement mentioned in Section 1.
As was discussed, the generic requirements for optimi-
zation of the expander are to create an expanding flux
surface that consists of a combination of conical (zero
second derivative) and strong-positive-curvature flux
surfaces, chosen to optimally accomplish the magnetic
compression, stagnation, and reflection of ion beams
injected (at optimally chosen angles of injection) into
the expander. In the choice for the location of the posi-
tive-curvature region of the expander, there are two dif-
ferent approaches that can be taken. The first approach,
the one that is illustrated in Fig. 5, involves the location
of this region at a position that is intermediate between
that of the ion sources (located close to the outer end of
the expander) and the outer mirror of the plug cell. In
this way, the stabilizing (positive) contribution to the
instability integral arises from a combination of mag-
netic compression and exploitation of the radius-cubed
term in the integrand of the integral. The potential dis-
advantage of using this means for optimization arises
from the “communication” issue as it applies to the
region of the expander between the location of the sta-
bilizer plasma and the mirror. Since the distance
between these two locations in the expander might be
fairly large and since the density of the stabilizer
plasma would be quite low, it would be necessary to
insure that a sufficient density of high-conductivity
plasma existed between the two to insure the easy flow
of the stabilizing currents. This potential problem sug-
gests the examination of an alternative way to optimize
the effectiveness of the beam-produced stabilizer
plasma as follows.

First, the expander is to be configured so that its
outer conical region extends almost into the mirror
region itself, changing abruptly there to a region of high
positive curvature. Second, the ion beams are to be
directed at smaller angles and with a smaller angular
spread, so that they are strongly converged and com-
pressed, being stagnated and reflected in the high-cur-
vature region close to the mirror. In this way, although
the radius-cubed enhancement effect is largely lost, sta-
Table 4

Cell type and density distribution Is Ratio

Normal-mode distribution in the Bessel cell –3.6 × 10–4 1.0

Sloshing-ion distribution in the Bessel cell –3.7 × 10–4 1.03

Sloshing-ion distribution in the taper-coil cell –1.4 × 10–4 0.39
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bilization strength is recovered through the greatly
increased magnetic compression of the stabilizer beam
ions. In an example where the magnetic compression
factor was approximately 800 : 1, the value of the sta-
bility integral, Is, was found to be +22.0. This value is
nearly as large as the value that was obtained by inject-
ing the same current of ions at larger angles into an
expander of the shape shown in Fig. 5.

Some of the advantages of taking this alternate
approach to the expander design are the following.
First, the communication distance between the plug-
cell plasma and the stabilizer plasma is much smaller
than that for the alternative design. Second, the density
of the stabilizer plasma, since it is much higher than
that for the other case, will itself create a significant
local potential peak. The formation of this potential
peak will then be expected to result in the trapping of a
low-density plasma between this peak and the mirror,
still further enhancing the electrical communication
between the stabilizer and the plug plasma. A third per-
ceived advantage is that the electrons trapped by the
potential peak could be heated by directed microwave
beams, thus further enhancing the MHD stabilizing
effect of the stabilizer plasmas.

7. CONCLUSION
Following a discussion of some prior examples, the

discussions in Sections 5 and 6 illustrate some of the
considerations that need to be taken into account in the
design of the plug cells and the expanders for tandem-
mirror systems with KSs. In the design of the plug cells,
it was shown that significant gains in performance
could be obtained by a combination of flux-surface
shaping and the use of sloshing-ion distributions. The
use of sloshing ions is further indicated for the suppres-
sion of the AIC mode in the plug cells. In the design of
the expanders, which one of the two generic design phi-
losophies (stabilizer plasma distant-from or close-to the
mirrors) should be employed would depend on plasma
physics and engineering/economic issues that can only
be settled by more detailed analyses and computer sim-
ulations. Already, however, the approaches discussed
above can be expected to result in a significant
improvement in the performance of the “MINIMARS
with KSs” that was reported in [6]. The next steps, now
underway, will be to update “legacy” mirror MHD sta-
bility codes developed in the 1980s at Livermore, and
apply them to the analysis of an axisymmetric tandem
mirror with KSs, thereby extending the zeroth-order
analyses given here to realistic, finite-beta examples. If
these new studies validate the KS concept, they will
provide additional motivation for a resurgence of work
on mirror-based fusion systems as important contend-
ers in the search for practical and economic approaches
to fusion power.
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Abstract—After the attainment of the density doubling due to the potential confinement, GAMMA 10 exper-
iments have been directed to obtain a high-density plasma with potential confinement and also to study the
dependence of the confining potential and confinement time on the plasma density. These problems are impor-
tant to understand the physics of potential formation in tandem mirrors and also for the development of a tan-
dem mirror reactor. GAMMA 10 experiments have advanced greatly after the Sorrento IAEA Conference,
where high-density plasma production by using an ICRF heating at a higher harmonic frequency was reported.
Recently, a high-density plasma was attained and the reproducibility of high-density plasma production was
much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions. In
this paper, we report the production of a high-density plasma and the dependence of the confining potential and
confinement time on the density up to a density of 4 × 1012 cm–3. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The mirror concept was suggested in the early 1950s
independently by G.I. Budker in the USSR and
R.F. Post in the USA [1]. Ever since, many efforts have
been continued toward the goal of fusion power by
using the mirror concept. In the history of mirror
research, many Russian works are admired for the great
pioneering achievement. M.S. Ioffe et al. demonstrated
the effectiveness of the minimum-B field for suppress-
ing MHD instability [2, 3]. After that, the concept of the
minimum-B field became one of the guiding principles
in fusion researches. The idea of the tandem mirror was
proposed first in the world in Russia [4, 5]. D.A. Panov
is another great pioneer in mirror research. He con-
structed first in the world the superconducting thermo-
nuclear installations OGRA-3 [6] and OGRA-3B [7].
He pioneered the works on magnetic field confining
properties—the orthogonal magnetic field, “Panov’s”
coordinates, and other ideas. He contributed to success-
ful experiments on feedback stabilization of instabili-
ties [8]. This paper is dedicated to the achievement of
D.A. Panov.

In the GAMMA 10 tandem mirror, plug and thermal
barrier potentials of 1.7 and 1.1 kV have been attained
with a plasma confinement time of 0.6 s for a plasma
with an ion temperature of 0.5 keV [9]. In this experi-
ment, plasma heating was mainly electron cyclotron
resonance heating (ECRH) and an ion temperature was
about 0.5 keV. Then, ion heating power in the ion cyclo-
tron range of frequency (ICRF) was increased and an
ion temperature of 10 keV was attained [10]. We men-
tioned this heating scenario as a hot-ion mode. How-

1 This article was submitted by the authors in English.
1063-780X/02/2809- $22.00 © 20721
ever, a density increase due to the potential confinement
was less than 10%. This situation was much improved
by axisymmetrization of the heating patterns of ECRH
for potential formation [11] and of ICRF heating [12].
A further improvement of confinement was made by
installing conducting plates in anchor transition
regions. The central-cell density and the diamagnetism
were doubled due to those improvements [13]. After
this attainment, GAMMA 10 experiments have been
directed to obtain a high-density plasma with potential
confinement and also to study the dependence of the
confining potential and confinement time on the plasma
density. These problems are important for understand-
ing the physics of potential formation in tandem mir-
rors and also for the development of a tandem mirror
reactor. We reported a high-density plasma production
by using higher harmonic ICRF heating in the last ICPP
Conference [14] and IAEA Conference [15]. Recently,
a higher density plasma was attained and the reproduc-
ibility of the high-density plasma production was much
improved than the plasma reported before. This
improvement was attained by adjusting the spacing of
the conducting plates installed in the anchor transition
regions [13]. In this paper, we report on the recently
obtained high-density plasma and the dependence of
the confining potential and the confinement time on the
density up to a density of 4 × 1012 cm–3.

2. GAMMA 10 TANDEM MIRROR

The GAMMA 10 tandem mirror consists of a cen-
tral cell, two anchor cells, and two end mirror cells. The
anchor cells with a minimum-B configuration are
located at both ends of the axisymmetric central cell
002 MAIK “Nauka/Interperiodica”
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Fig. 1. GAMMA 10 coil system, shape of magnetic flux tube with heating systems, axial magnetic-field strength, and axial distri-
bution of the plasma potential.

profile
and are connected to the axisymmetric end mirror cells.
The central cell has a length of 5.6 m, and the magnetic-
field intensity at the midplane is 0.4 T with a mirror
ratio of 5.2. The plug/barrier cell has a length of 2.5 m,
and the magnetic-field intensity at the midplane is 0.5 T
with a mirror ratio of 6.2. Regions between the axisym-
metric field and the minimum-B field are mentioned as
transition regions. The initial plasma is produced by
magneto-plasma-dynamic plasma guns located at both
ends. A slow ion cyclotron wave (RF1: 9.9 MHz)
excited by Nagoya type III antennas installed near both
ends of the central cell is used for plasma production
with hydrogen gas puffing in the central cell. Ions in the
central cell are heated by ICRF (RF2: 6.3 MHz) power
applied to a double half-turn (DHT) antenna. A higher
harmonic ICRF (RF3: 36–76 MHz) power applied
another DHT antenna is used to obtain a higher density
plasma. A neutral beam injection (NBI: 25 kV, 30 A)
started last year for plasma heating and production in
the central cell. A plasma confining potential is pro-
duced by electron cyclotron resonance heating (ECRH)
in the plug/barrier region. Figure 1 shows the magnetic-
field coils, the shape of the magnetic flux tube with
heating systems, the axial magnetic-field strength, and
the axial distribution of the plasma potential.

For plasma diagnostics, plasma densities in the cen-
tral cell, anchor cells, and plug/barrier cells are mea-
sured by using microwave interferometers. The end-
loss ion current and the ion energy spectrum at the end
are measured by using an end-loss ion-energy analyzer
(ELA) [16]. Plasma potentials in the central cell and in
the barrier region of the plug/barrier cell are measured
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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are located close to the plasma. The thickness of the fanning magnetic flux corresponding to the 30-cm-diameter flux tube in the
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by using beam probes [17]. The plasma potential in the
plug region is determined by analyzing the energy of
the end-loss ions measured with the ELA. The plasma
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
confinement potential is determined as the potential
difference between the potentials in the plug region and
central cell.
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3. HIGH-DENSITY PLASMA PRODUCTION
AND CONFINEMENT IN GAMMA 10

Potential confinement was studied under various
heating scenarios, such as without ECRH, with ECRH
at one end, and with ECRH at both ends. Figure 2
shows the waveforms of the central cell line densities
and end-loss ion currents, where NLCC denotes the
central cell line density and E-ELA and W-ELA indi-
cate end-loss currents to the east and west ends. When
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Fig.4. Waveforms of (a) central-cell line density, (b) dia-
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Plug ECRH

Barrier ECRH
ECRH is not applied, NLCC and E- and W-ELA have
similar waveforms indicating that the plasma is mainly
lost to the ends. Actually, we measured that about 85%
of the produced plasma was lost in the axial direction
globally and the ratio was higher in the core region
defined as inside the FWHM of the density profile.
When ECRH is applied only to the east plug, the ion
current to E-ELA decreases owing to the potential
reflection of low energy ions, while the ion current to
W-ELA increases owing to the ions reflected due to the
east plug potential; NLCC does not increase. When
ECRH is applied to both plugs, NLCC increases as a
result of potential confinement. This experiment clearly
indicates the potential confinement in the tandem mir-
ror. With the potential confinement, we attained dou-
bling of the density indicating about a fourfold increase
in the axial particle confinement time near the axis [13].

After the attainment of the density doubling, it was
observed that a density higher than 2.5 × 1012 cm–3 was
difficult to be achieved with and without potential con-
finement due to a density clamping mechanism.
Although this mechanism has not been made clear yet,
a higher density plasma was obtained by higher har-
monic ICRF heating (RF3) [14]. In addition to the RF3
power, the central cell NBI made the plasma density
higher. An important contribution in the high density
plasma production was the adjustment of the spacing of
the conducting plates installed in the anchor transition
regions. Figure 3 shows the cross sectional view of the
conducting plates arrangement. In the figure, the
former conducting plates (AP1 and AP2) are also indi-
cated. The new conducting plates (AP3) are curved
along magnetic field lines and located close to the
plasma. Figure 4 shows the waveforms of (a) the central
cell line density, (b) diamagnetic signal, and (c) end-
loss ion current measured by ELA. The ELA is used in
a bias-scanning operational mode and the envelope of
the signal traces the end-loss ion current. In Fig. 4a, the
line density increases by 30% by applying RF3 power
at 100 kW. In the experiment without RF3, the line den-
sity was saturated at about 4.5 × 1013 cm–3 even if the
RF1 power was increased to higher than 100 kW. So,
the higher harmonic ICRF heating is efficient for higher
density plasma production. The line density increases
further due to the potential confinement by applying
ECRH. The FWHM of the line density profile was
19 cm and the plasma density on the axis was n(0) =
3.5 × 1012 cm–3 when the line density was 7 × 1013 cm–2.
The decrease in the diamagnetic signal with applying
RF3 is not well explained yet. The increase in the dia-
magnetic signal with ECRH and NBI is not large, but
the increase becomes larger as the wall conditioning
progresses more with plasma shots. The ion tempera-
ture was determined from the diamagnetic signal and
also by energy analysis of charge-exchange neutrals.
The ion distribution was anisotropic with a perpendic-
ular (with respect to the magnetic field) temperature of
3 keV and parallel temperature of 0.3 keV. The electron
temperature was 0.08 keV. The particle confinement
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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time parallel to the magnetic field τ|| is determined as
τ|| = eN/Iloss , where e is the unit charge, N is the total
number of ions in a flux tube, and Iloss is the end loss
current from the flux tube measured by ELA. Figure 4c
shows the current density at the measurement position.
For the end loss current corresponding to the flux tube
in the central cell, the ELA current is multiplied by a
factor of 40 corresponding to the ratio of magnetic field
strength between the central cell and ELA position. Just
before applying ECRH, i.e., without confining poten-
tial, a particle confinement time parallel to the magnetic
field was 5 ms and the radial confinement time was esti-
mated to be longer than 30 ms. Those confinement
times of the ICRF-sustained plasma correspond to the
mirror confinement time in the GAMMA 10 magnetic
field. The parallel confinement time was increased
about three times due to the potential confinement, but
the radial confinement time decreased by about 30%,
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Fig. 5. Particle confinement time τ|| (closed circles) and
confining potential φc (triangles) vs. plug ECRH power (at
one end).
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Fig. 6. Axial confinement time τ|| (closed circles) and
plasma confining potential φc (triangles) vs. plasma density
for a plug ECRH power of 140–150 kW.
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with the result that the density increase on the axis was
about 30% in this shot.

Figure 5 shows an increase in the plasma confining
potential φc and axial particle confinement time τ|| with
ECRH power for a plasma with a relatively low density
of about 1.5 × 1012 cm–3. At a plug ECRH power of
140 kW, a confining potential of 550 V was produced
and the plasma density increased from 1.3 × 1012 to
2.5 × 1012 cm–3 due to the potential confinement. Figure 6
shows the axial confinement time and confining poten-
tial versus plasma density. In contrast to the confine-
ment time, the confining potential tends to decrease
with the density. Such behavior requires a more
detailed study. The potential formation mechanism is
theoretically studied by means of Monte Carlo simula-
tion [18]. In this model, however, the potential depends
only on the profile but not on the absolute value of the
density. Therefore, we are to study the dependence of
the potential on density experimentally. The magnitude
of the confining potential depends strongly on the
anisotropy of the plug electron distribution function.
The electron velocity anisotropy is considered to be
relaxed as the plasma density increases. Then, the
decrease in the confining potential with the plasma den-
sity is as expected. The density range in Fig. 6 is not
wide, and we need more experiments in order to obtain
a functional relation between them.

4. SUMMARY

A high-density plasma has been obtained with good
reproducibility, and we expect an increase in the ion
temperature with progress of wall conditioning. The
dependence of the confining potential and confinement
time on the density was studied in the high-density
plasma, but we need more experiments in order to
obtain a functional relation between them. A further
increase in the density and longer sustainment of a high-
density plasma are the next problems to be studied.
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Abstract—Waves in the ion cyclotron range of frequency are efficiently used to produce and heat magnetic
mirror plasmas. In relatively low-density (lower than 1018 m–3) plasmas, the fast Alfvén eigenmodes are
formed in radial and axial directions and the excitation of these modes is strongly affected by the density. The
slow Alfvén waves are also effectively used for plasma heating. The ion temperature above 10 keV is achieved,
which is confirmed by the detection of fusion neutrons. The excitation of Alfvén eigenmodes is studied in the
GAMMA 10 tandem mirror. © 2002 MAIK “Nauka/Interperiodica”.
1 This manuscript is dedicated to Dr. D.A. Panov and
his pioneer works on magnetic mirror research.

1. INTRODUCTION

Plasma heating with waves in the ion cyclotron
range of frequency (ICRF) is widely used in fusion
devices. In tokamaks, fast Alfvén waves are mainly
used to heat large-size and high-density plasmas. In
fusion-oriented mirror devices [1–3], slow Alfvén
waves with a fundamental ion cyclotron resonance fre-
quency are effectively used for the heating of low-den-
sity plasmas in magnetic field configurations with axial
profiles. ICRF waves are also used for the initial plasma
production in the mirror and stellarator devices [4].
GAMMA 10 is an axisymmetrized tandem mirror with
a thermal barrier [5–8]; it consists of five mirror cells,
which are a central cell, minimum-B anchor cells, and
plug/barrier cells at both ends. The length of the central
cell between mirror throats is 5.8 m, and the diameter
of the stainless-steel vacuum vessel is 1 m. Magnetic
field strength at the midplane of the central cell is
0.41 T, and the mirror ratio is 5 in a standard mode of
operation. A limiter 0.36 m in diameter is set near the
midplane. The anchor cells have a minimum-B mirror
field configuration and are located at both sides of the
central cell. The anchor cells play a role of MHD-stabi-
lizers. The magnetic field strength is 0.61 T at the mid-
plane, and the mirror ratio is 3. The plug/barrier cells
are located at both ends of GAMMA 10, where a ther-
mal barrier and plug potentials are produced. In the
central cell of GAMMA 10, ICRF waves are used suc-
cessfully for plasma production and heating. The high
ion temperature plasma above 10 keV was achieved and
sustained stably with ICRF heating. Typical plasma

1 This article was submitted by the authors in English.
1063-780X/02/2809- $22.00 © 0727
parameters on the axis are the following: the density is
2 × 1018 m–3, the ion temperature is 5 keV, and the elec-
tron temperature is 100 eV.

The plasma production with ICRF waves is used not
only in fusion experiments but also in plasma applica-
tions. In this paper, experiments on the plasma produc-
tion and heating, as well as the characteristics of the
waves excited in the mirror field configuration, are
reported.

2. SETUP OF ICRF EXPERIMENTS 
ON GAMMA 10

Figure 1 shows the axial profile of the magnetic field
line and strength and a schematic of ICRF antennas
installed in the central cell. The axial coordinate is
counted from the midplane of the central cell, where
z = 0. The negative values of z correspond to the east
side of the device. Two kinds of ICRF antennas are
installed near the mirror throats of the central cell. The
first kind is the so-called Nagoya type III antennas
(Type III) [9], which are installed at z = ±2.2 m, where
the mirror ratio R is 1.6. The four plate elements of
Type III consist of two pairs, one with vertical plates
and the other with horizontal plates, in order to generate
a rotating electromagnetic field. Another is conven-
tional double half-turn antennas (DHTs) installed at
z = ±1.7 m, where R = 1.1. Three ICRF systems (RF1,
RF2, and RF3) are now in operation. Principally, Type III
are driven by the RF1 system and are used for plasma
production in the central cell and ion heating in the
anchor cell [2]. The frequency is adjusted to the ion
cyclotron frequency near the midplane of the anchor
cell. Fast Alfvén waves which are launched by Type III
propagate through a flux tube with an elliptical cross
section between the central and anchor cells and are
converted to slow Alfvén waves [10, 11]. DHTs are
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Axial profiles of the magnetic field line and strength in GAMMA 10 and a schematic of the ICRF antennas.

antenna
driven by RF2 and are used for the main plasma heating
in the central cell. The frequency is adjusted to the ion
cyclotron frequency near the midplane of the central
cell. The plasma is started up by injecting pulsed (1 ms)
gun-produced plasmas from both ends and is sustained
by applying RF1 and RF2 in combination with hydro-
gen gas puffing in the central cell. To avoid energy loss
due to charge exchange, the gas is puffed near the mir-
ror throats, where less hot ions exist. In mirror plasmas,
ions which are heated in the perpendicular direction are
deeply trapped near the midplane. RF1 and RF2 have

Parameters of ICRF systems in GAMMA 10

max power, 
kW

max duration, 
ms

Frequency 
range, MHz

RF1 300 × 2 500 7.5–15
RF2 300 × 2 500 4.4–9.6
RF3 200 500 36–76
two final outputs for both sides of antennas. The total
radiated powers from Type III and DHTs are typically
100 kW with a duration of 200 ms, respectively. RF3 is
a newly constructed system, which is used for the pro-
duction of high-density plasma [12]. The RF3 system
uses Type III or DHTs according to the experimental
purpose. The maximum power and duration, as well as
the frequency range of each ICRF system, are listed in
the table.

In GAMMA 10, a plasma with a temperature anisot-
ropy between perpendicular and parallel directions to
the magnetic field is produced during strong ICRF heat-
ing. Temperature anisotropy is measured by using a
diamagnetic loop array installed at z = –0.33, ±1.5, and
1.95 m. Mirror ratios at the location of each diamag-
netic loop are 1.01, 1.08, and 1.26, respectively. From
diamagnetic loops installed at z = ±1.5 m, it is deter-
mined that the axial pressure profile of the central cell
is symmetric with respect to the midplane. Diamagnetic
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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loops are also installed in the midplane of both anchor
cells.

3. EIGENMODES IN THE AXIAL
AND AZIMUTHAL DIRECTIONS

Figure 2 shows the axial profiles of the magnetic
field strength and the ω/Ωci values, which are deter-
mined from the magnetic field strength and applied fre-
quencies of RF1 and RF2, where ω is the angular fre-
quency of RF1 and RF2 and Ωci is the local ion cyclo-
tron angular frequency. The locations of both antennas
are also indicated. As is shown in Fig. 2, Type III are
driven at a frequency close to the fundamental cyclo-
tron frequency at the antenna location. Under the
present experimental conditions, i.e., the relatively low
density and the small radius, a fast wave eigenmode
with an azimuthal mode number m = +1 is only excited.
This mode satisfies the boundary conditions in the
radial direction. The dispersion relation of the m = +1
fast wave that is excited in cylindrical and uniform plas-
mas with a vacuum layer between plasma and conduct-
ing wall is indicated in Fig. 3. It is calculated for a fre-
quency of 9.9 MHz; a magnetic field strength of 0.41 T;
and plasma and wall radii of 0.18 and 0.5 m, respec-
tively. Because the m = +1 fast wave experiences no
cut-off [13] in this region, it can propagate all over the
GAMMA 10 device. When RF1 antennas installed at
both ends of the central cell are driven at the same fre-
quency, excited fast waves interact with each other. The
interaction between the excited waves depends strongly
on the plasma density because the wavelength changes
under the fixed frequency condition. As was previously
explained, these fast waves excited in the central cell
can also propagate in the end direction and are con-
verted into slow waves in the region between the central
and anchor cells. The converted slow waves propagate
to the anchor cell and heat ions in the fundamental
cyclotron resonance layer. Then, the effect of the fast
wave excitation in the central cell appears in the dia-
magnetic signals in both the east and west anchor cells.
Figure 4 shows the temporal evolution of both diamag-
netic signals in the east and west anchor cells. The tem-
poral behavior of both signals shows the out-of-phase
dependence of the density because the density is chang-
ing during the discharge. This interference indicates
that the anchor cell beta, which is defined as the ratio of
the plasma pressure to the magnetic field pressure, can
be controlled by changing the phase difference between
both antennas in the central cell. Figure 5 shows the
phase dependence of both the east and west anchor dia-
magnetic signals under a fixed central cell line density
of 2.5 × 1017 m–2. The powers that are carried to the
anchor cells are written as described in [9]:

(1)
PE

P0
------ 1 kzd δ–( ),cos+=
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Fig. 2. (a) Axial profile of the magnetic field strength in the
central and anchor cells and the location of ICRF antennas;
(b) ω/Ωci values determined from the magnetic field
strength and the applied frequency.
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Fig. 5. Anchor diamagnetic signals when the phase differ-
ence between RF1 antennas is changed at a fixed line den-
sity of 2.5 × 1017 m–2. Open and solid circles indicate the
signals in the east and west anchor cells, respectively.
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for different line densities in the central cell.
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Fig. 7. Dispersion relation of m = +1 fast waves calculated
for a frequency of 63 MHz. Solid circles represent the
experimental data from magnetic probes.
(2)

where PE and PW are the powers to the east and west
anchors, respectively; P0 is the power to both anchors
when there are no interactions; and kz , d, and δ are the
axial wavenumber, the distance between both antennas,
and the phase difference, respectively. As is clearly
seen from Eqs. (1) and (2), we can choose optimum
conditions for the MHD stability, in which case the
total power becomes 2P0 by controlling the phase dif-
ference. However, it is difficult to control the anchor
beta when the density is automatically changed by
improving the particle confinement due to the potential
formation. There will be a possibility to use the feed-
back control of the phase difference from the viewpoint
of optimization of the anchor beta. In recent experi-
ments in GAMMA 10, RF1 with different frequencies
in the east and west Type III is used in order to avoid the
interference. Figure 6 shows the east and west anchor
diamagnetic signals as functions of the line density
when frequencies of 9.9 and 10.3 MHz are used for the
east and west antennas, respectively. The amplitude of
both diamagnetic signals becomes almost the same
when the line density changes from 1.5 × 1017 to 5 ×
1017 m–2. The controllability of the plasma has been
improved.

In mirror plasmas, the magnetic field strength and
the plasma parameters are nonuniform in the axial
direction. The excited waves will be affected by this
nonuniformity and will form eigenmodes also in the
axial direction even though RF1 with different frequen-
cies in the east and west sides is used. These eigen-
modes also depend strongly on the density. The exist-
ence of such axial eigenmodes means that the ampli-
tude of the wave field becomes strong discretely as the
density changes. As is indicated in Fig. 3, only one
radial eigenmode is excited in the given parameter
region. Then, it will be difficult to keep the excitation of
the wave continuously with increasing density. If there
is a large gap between the densities at which axial
eigenmodes are excited, the density will be clamped.
Recently, an ICRF system with a frequency in the high-
harmonic fast wave (HHFW) region is introduced to
improve such a discrete excitation of eigenmodes. Fig-
ure 7 shows the calculated dispersion curves of m = +1
fast waves which are excited in the cylindrical plasma
under a fixed frequency close to ten ion cyclotron fre-
quencies. It is seen that several modes can be excited
under the given experimental conditions. It is expected
that the density clamping due to the axial eigenmode
formation by RF1 is improved and the density increases
more smoothly because eigenmodes will be excited at
various densities by RF3. Figure 8 shows a typical time
evolution of the line density and diamagnetism with
RF3. The RF1 power is fixed at 180 kW and a line den-
sity of 4 × 1017 m–2 is sustained. The ion temperature of
several keV is achieved with RF2. RF3, which has a fre-

PW

P0
------- 1 kzd δ+( ),cos+=
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Fig. 8. Typical temporal evolution of the line density and diamagnetic signals when RF3 is applied. The RF1 power is fixed at
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quency of 63 MHz, is superposed from 50 ms as indi-
cated in Fig. 8. A clear increase above 40% in the line
density is observed. When the RF1 power was further
increased under the fixed conditions, i.e., the same
amount of gas puffing, the same RF2 power, and so on,
we observed little increase in the line density above 4 ×
1017 m–2. In the previous experiments, in which a large
amount of gas puffing was used, we have observed the
line density increase up to 2 × 1018 m–2 accompanied
with a significant reduction of diamagnetism [14]. In
the RF3 case, no reduction in diamagnetism is observed
with increasing line density and the ion temperature is
kept at several keV. The density profile measurements
indicate that the density increases mainly in the core
region. The wavenumber of the excited waves is mea-
sured with a magnetic probe array installed at the
peripheral region of the central cell. Obtained wave-
numbers are plotted in Fig. 7, and the waves with the
fundamental radial mode are detected.

4. HOT ION MODE WITH ICRF HEATING

As was explained previously, DHTs located near
both ends of the central cell are driven by RF2 with a
frequency of 6.36 MHz and launch slow Alfvén waves
for the ion heating in the central cell. Although both
DHTs are driven at the same frequency, no interfer-
ences are observed because the fundamental cyclotron
resonance layers exist between both antennas and slow
waves cannot propagate through the central cell mid-
plane. When we arrange experimental conditions care-
fully, the diamagnetic signal, which is the information
of mainly the ion pressure, increases with the radiated
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
power from RF2 antennas. Figure 9 shows the radiated-
power dependence of the diamagnetic signals at differ-
ent magnetic field strengths. The plasma pressure
increases almost linearly with the RF2 power. Since the
dependence is almost the same for each magnetic field,
the ion pressure is nearly proportional to the magnetic
field strength. The highest ion temperature above
10 keV was achieved at the highest field of 0.57 T.
When the output power of RF2 is further increased, the
radiated power from the antenna tends to saturate. It
means that the loading resistance decreases in the high-
power region. As was noted above, the mirror ratio at
the DHT location is 1.1. The central cell beta increases

5

400 80
Radiated power, kW

10
Diamagnetic signal, 10–5 Wb

0.30 T
0.41 T
0.57 T

Fig. 9. Diamagnetic signals in the central cell vs. RF2 radi-
ated power for different magnetic field strengths.
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with increasing RF2 power; when it becomes several
percent, the magnetic field profile changes, which
strongly affects the propagation of the excited slow
waves. The other possible reasons for the reduction of
the loading resistance is the MHD instability of the
plasma. The loading resistance is affected by the MHD
activity near the antenna region. It will be required to
increase the anchor beta. These MHD-related issues
will be discussed in other manuscripts.

The achievement of the ion temperature above
10 keV is confirmed by the emission of fusion neutrons
in the deuterium plasma [15]. To keep the axisymme-
trized configuration, the magnetic field strength of the
anchor cell and the RF1 frequency are chosen to satisfy
the fundamental cyclotron resonance condition for pro-
ton plasma. A target proton plasma is sustained by RF1
with a frequency of 9.9 MHz. The magnetic field
strength in the central cell and the RF2 frequency
(4.465 MHz) are chosen to satisfy the fundamental
cyclotron resonance condition for deuterium plasma.
Figure 10 shows the typical temporal evolution of
plasma parameters in the deuterium experiment and a
time sequence of the heating system. The time evolu-
tion of the radiated power of RF2 is also indicated. Ini-
tially, the proton plasma is sustained by applying RF1
and RF2 with hydrogen puffing and the diamagnetic
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Fig. 10. Typical temporal evolution of the plasma parame-
ters in experiments with a hydrogen–deuterium mixture.
signal in the anchor cell increases. Since the RF2 fre-
quency is adjusted to deuterium plasma, the slow waves
are not excited and the ion temperature is kept low in
the central cell as is seen in Fig. 10. The additional deu-
terium puffing is done from 40 ms. Then, the radiated
power of RF2 increases abruptly and the diamagnetic
signal in the central cell also increased. The density
fractions of protons and deuterium ions are evaluated
from the spectroscopic measurements of the Balmer
lines of these two species and are found to be approxi-
mately 50 : 50. From neutron measurements, in which
the yield reaches 7 × 108 neutron/s, it was estimated
that the deuterium ion temperature grows to above
10 keV. This heating scheme with two ion species is
just the slow wave heating. The slow wave heating will
become ineffective in high-density plasmas. Advanced
experiments with two ion species in mirror devices
were reported in [16, 17]. Two ion hybrid heating
schemes as in tokamaks or other heating scenarios must
be tested in the mirror devices for higher density
plasma heating in the nearest future.

5. SUMMARY

Fast Alfvén waves are efficiently used for plasma
production in the GAMMA 10 tandem mirror. In the
central cell, the radial and axial eigenmodes are formed
and the plasma performance is affected by the strong
density dependence of the excitation of these eigen-
modes. The density clamping is observed when the
power for the plasma production is increased. High-
harmonic fast waves are introduced for the higher den-
sity plasma production. The increase above 40% in the
line density is observed with no reduction of the dia-
magnetic signal.

The slow Alfvén waves are also efficiently used for
plasma heating in the magnetic mirror configuration.
An ion temperature above 10 keV is achieved, which is
confirmed by the detection of fusion neutrons in exper-
iments with a hydrogen–deuterium mixture.
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Abstract—A new type of ambipolar trap is proposed, where a minimum-B magnetic field is used to confine
the particles radially and to provide plasma macroscopic stability. The particles are confined axially by creating
the plug potentials at both end-mirror cells of the ambipolar trap. The plug potential is produced by only elec-
tron cyclotron resonance heating, the mechanism of which is proposed. © 2002 MAIK “Nauka/Interperiod-
ica”.
1 1. INTRODUCTION

Magnetic mirror confinement studies, in which Rus-
sian scientists have been playing an important role in
improving the idea of the mirror concept, have a long
history. An experiment on a minimum-B single mirror
was firstly carried out by Ioffe [1] to prove the magne-
tohydrodynamic (MHD) stability.

D.A. Panov, who was a pioneer of the mirror pro-
gram in Kurchatov Institute, carried out the pioneer
experiments on feedback stabilization (Ogra-2 and
Ogra-3 installations [2]), the first superconducting
plasma installations (Ogra-3 simple mirror [3] and
Ogra-4 baseball mirror [4]). Panov is well known for
starting theoretical study of orthogonal magnetic con-
figurations.

The idea of an ambipolar trap was first proposed by
Dimov [5]. The ion axial confinement in the electro-
static potential hill at both ends of the ambipolar trap
was theoretically studied by Pastukhov [6]. The origi-
nal ambipolar trap was improved by Baldwin and
Logan [7] by introducing the thermal barrier potential
between the central cell and the plug region. The con-
ventional ambipolar trap with a thermal barrier con-
tains minimum-B mirror cells at both ends for MHD
stability. However, such a minimum-B magnetic field
leads to neoclassical radial transport [8, 9]. So, ambi-
polar traps involve many physical issues, e.g., electro-
static potential formation, plasma axial and radial
transport, etc.

Ambipolar traps with a thermal barrier potential
make use of the magnetically trapped high-energy ion
population (sloshing ions) in the end mirror cells to cre-
ate an electrostatic potential hill for ion confinement [7,
10, 11], which is called the ion confining potential or
the plug potential. Subsequent experimental works,
however, indicate that the plug potential can be formed

1 This article was submitted by the authors in English.
1063-780X/02/2809- $22.00 © 20734
without high-energy sloshing ions [12, 13]. That is,
only electron cyclotron resonance heating (ECRH)
applied in the plug region is responsible for the plug
potential formation. The efforts aimed at understanding
the mechanism for the plug potential formation without
sloshing ions were first made theoretically in [14].

The ambipolar trap has greatly improved the ion
axial confinement by the plug potential formation,
although the formation mechanism is still unknown.
So, the next issue is plasma radial transport. The
GAMMA 10 ambipolar trap was designed as an axi-
symmetrized ambipolar trap; i.e., neoclassical radial
transport is suppressed by the magnetic field configura-
tion. However, recent experiments in GAMMA 10
revealed the existence of appreciable plasma radial
transport [15, 16].

Therefore, a design of a new type of ambipolar trap
is expected on the basis of the experimental results. In
Section 2, we propose a new type of ambipolar trap.
Section 3 presents a simple analysis of the plug poten-
tial formation. Mechanisms for the plug and thermal
barrier potential formation are described in Section 4.
A possible mechanism for plasma radial transport in
the present ambipolar traps is presented in Section 5.
A summary is given in Section 6.

2. SINGLE MINIMUM-B AMBIPOLAR TRAP

It is known that a magnetic surface does not exist in
an open-ended magnetically confinement system such
as an ambipolar trap. Instead, a magnetic flux tube,
which is chosen to be circular at the central cell mid-
plane of the ambipolar trap, has been considered as a
magnetic surface without any question. The equipoten-
tial surfaces are assumed to lie just on the magnetic flux
tube in the central cell. An analysis of neoclassical
transport has been done of such idealized electric and
magnetic configurations.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of |B| and equipotential surfaces: (a) the circular case and (b) the case with perturbations added to the
equipotential surfaces.

(‡) (b)

Fig. 2. Coil system of a single minimum-B ambipolar trap: (a) a top view and (b) a bird’s eye view.
Defining the bounce frequencies ωE and ωB of a par-
ticle in the azimuthal direction as

, (1)

where R is the plasma radius, e is the unit charge, c is
the speed of light, B is the magnetic field, ϕ is the elec-
trostatic potential, and µ is the magnetic moment, one
can see that the relation ωE @ ωB is satisfied in a stan-
dard ambipolar trap such as GAMMA 10 [15, 16].
Henceforth, we use the standard notations. The plasma
is produced by gas puffing and ionization and is heated
by externally injected waves, so that the density and
temperature fluctuations always occur in the experi-
mental device.

ωE
c ∇ϕ– B×

2πRB
2

---------------------------, ωB
c µ∇ B– B×

2πReB
2

-------------------------------≡ ≡
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Figure 1 illustrates the variations of an equipotential
surface in the cross section of a single mirror cell. The
unperturbed equipotential surfaces are assumed to be
circular (Fig. 1a). Ions and electrons produced by ion-
ization drift in the opposite directions through the —B
drift. The system is usually designed to be stable
against MHD modes, so that the resultant charge sepa-
ration does lead to the growth of the density perturba-
tions. However, the resultant density fluctuations will
lead to the fluctuations of the equipotential surface
shown in Fig. 1b.

As will be shown below, such perturbed equipoten-
tial surfaces enhance the radial drift of particles. The
energy ε and the magnetic moment µ of a particle are
conserved during drift motion if the Coulomb collision
frequency is lower than the drift frequency. Especially
for the particles with ε @ eϕ, the magnitude of the mag-
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Fig. 3. (a) |B| surfaces and magnetic field lines in a single minimum-B ambipolar trap and (b) the axial profile of the magnetic field.
netic field Bt satisfying the relation ε = µBt is conserved
during drift motion. Here, Bt is the magnitude of the
magnetic field at the particle turning position of the
axial bounce motion. That is, the particle drift motion is
limited by the region B(x, y, z) ≤ Bt. Therefore, the
experimental device having closed mod-B surfaces can
confine the particles within the magnetic well even if
the electrostatic potential perturbations appear.

The single minimum-B ambipolar trap has a coil
system shown in Fig. 2. The mod-B surfaces and the
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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Fig. 4. Coil system of a linked minimum-B ambipolar trap.
axial profile of magnetic field are plotted in Fig. 3. The
mirror ratio is about six, and the central cell is sur-
rounded by baseball coils, as is seen in Figs. 2 and 3.
ECRH is performed in the outermost mirror cells,
which are highly elongated from the circular cross sec-
tion of the magnetic flux tube, and the mod-B surfaces
are open. Therefore, the ions and electrons trapped in
the outermost mirror cells escape rapidly from there
due to drift motion in the perturbed electrostatic poten-
tial, which plays the role of a thermal barrier. The plug
potential is created by ECRH shown schematically in
Fig. 3. The natural drift pumping of ions is expected
around the thermal barrier region at the midplane in the
outermost mirror cells. The linked minimum-B ambi-
polar trap is designed to increase the efficiency the
power input, as is shown in Fig. 4, where ECRH is
applied only in outermost single minimum-B mirrors.
The design of the magnetic field in the transition region
between single minimum-B mirrors is under consider-
ation.

The mechanism for the plug potential formation is
described in next section [14, 17].

3. SIMPLE ANALYSIS OF THE PLUG POTENTIAL 
FORMATION

The electrons coming from the central cell are
reflected by the thermal barrier potential and only a
small amount of the electrons reaches the plug region.
On the other hand, the electrons magnetically trapped
in the plug/barrier region are heated by ECRH.

The profiles of electrostatic potential and magnetic
field profiles are schematically shown in Fig. 5a, and
the velocity spaces of electrons and ions are shown in
Figs. 5b and 5c, respectively. The electrons coming
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
from the central cell are assumed to be Maxwellian at
z = zi; on the other hand, the electrons trapped in the
plug/barrier region are assumed to be non-Maxwellian

(c)

Escape to

ε = µB + eϕ 

ε = µBi + eϕi
ε = µBp + eϕp

µ0

ε

µi* µi**

Ion velocity space

(b)

ε = µB – eϕ 
ε = µBi – eϕi

ε = µBb – eϕb

µ0

ε

µe* µe**

Electron velocity space

(‡)

zi

Central

End wallB ϕ

zb zp zm z

the end wall

Come back to the central cell

cell

Fig. 5. (a) Axial magnetic field and electrostatic potential
profiles in the plug/thermal barrier cell, (b) electron velocity
space, and (c) ion velocity space.
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due to radial drift (or radial loss). So, the electron dis-
tribution function is written as

(2)

Here, αe is a constant, Tec and nec are the electron tem-
perature and density at z = zi , and me is the electron
mass. Subscript i denotes the values of the quantities at
z = zi . The quantities ε and µ are the electron total

energy (ε ≡ mev 2 – eϕ) and magnetic moment (µ ≡

me /B), where v  is the velocity and v ⊥  is the veloc-

ity component perpendicular to the magnetic field. Distri-
bution function (2) is the simplest one that includes the
effect of non-Maxwellian electrons trapped magnetically,
but it can be integrated analytically in velocity space,
which is the reason why we adopt expression (2) as the
electron distribution function in the end-mirror cell.

The electron density ne(z) (zb ≤ z ≤ zm) is given by
integrating the distribution in the appropriate velocity
space as

(3)

f e

nec

me

2πTec

-------------- 
 

3/2 ε eϕ i+
Tec

----------------–
 
 
 

exp

for ε µBi eϕ i–≥

nec

me

2πTec

-------------- 
 

3/2 ε eϕ i α eµBi–+
1 α e–( )Tec

-------------------------------------–
 
 
 

exp

for ε µBi eϕ i.–<














=

1
2
---

1
2
--- v ⊥

2

ne z( )
Bnec

πTec
3/2

---------------- ε µd

0

µe**

∫d

µBb eϕb–

∞

∫ ε µd

µe**

∞

∫d

µBi eϕ i–

∞

∫+




=

× 1

ε µB– eϕ+( )1/2
--------------------------------------

ε eϕ i+
Tec

----------------–
 
 
 
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+ ε µ 1

ε µB– eϕ+( )1/2
--------------------------------------d

µe*

∞

∫d
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Fig. 6. Schematic diagram of the axial ion density profile
around the plug.
where µe* ≡ e(ϕ – ϕi)/(B – Bi) and µe** ≡ e(ϕb –
ϕi)/(Bb − Bi).

With the assumption e(ϕ – ϕb)/Tec @ 1 and
µe**Bi /Tec @ 1, the integrations in Eq. (3) result in [17]

(4)

Here, the constant αe should satisfy the relation αe ≤
Bb/Bi in order that electron distribution function (2)
remain finite in the range of Bb ≤ B ≤ Bi, when µ  ∞
with ε = µB. On the basis of thermal barrier potential
ϕb, Eq. (4) reduces to

(5)

where neb ≡ ne(zb).

At z = zb, the distribution function of the electrons
trapped in the plug/barrier mirror cell in Eq. (2) is writ-
ten as

(6)

which is a bi-Maxwellian distribution function with
two component temperatures Te|| and Te⊥ , parallel and
perpendicular to the magnetic field, respectively,

(7)

Modified Boltzmann relation (5) can be derived
under the assumption that the electron distribution is bi-
Maxwellian distribution (6) at z = zb in the entire veloc-
ity space, including the region passing to the inner mir-
ror throat z = zi . The electrons coming from the inner
mirror throat are fewer at z = zb than those magnetically
trapped in the thermal barrier region if Bi /Bb @ 1 and
Te/Te|| @ 1, so that the assumption that the electrons are
bi-Maxwellian in the passing region at z = zb is a good

e ϕ ϕ i–( ) . 1 α e–( )Tec

B α eBi–

B 1 α e–( )3/2
----------------------------

ne z( )
nec

------------
 
 
 

.ln

e ϕ ϕ b–( ) 1 α e–( )Tec

B α eBi–

B 1 α e–( )3/2
----------------------------

ne z( )
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------------
 
 
 

ln=

– 1 α e–( )Tec

Bb α eBi–

Bb 1 α e–( )3/2
------------------------------
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-------
 
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 

ln

=  1 α e–( )Tec

Bb B α eBi–[ ]
B z( ) Bb αbBi–[ ]
---------------------------------------
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------------
 
 
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,ln

f e nec

me

2πTec

-------------- 
 

3/2

–

1
2
---mev ||

2

1 α e–( )Tec
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





exp=
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Te|| 1 α e–( )Tec, Te⊥
1 α e–( )

1 α eBi/Bb–( )
---------------------------------Tec.= =
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Fig. 7. Ion distribution functions: (a, c, e) the distribution functions for v || ≥ 0 and (b, d, f) for v || < 0. Plots (a) and (b) are the same
simulation results, plots (c) and (d) are the same parameter runs, and (e) and (f) are also the results of the same simulation runs.
approximation of the Maxwellian electrons in the pass-
ing region.

Now, we consider the mechanism for the plug
potential formation briefly. As was mentioned previ-
ously in this section, modified Boltzmann law (5) has a
form of e(ϕ(z) – ϕb) = Te ||ln{G(B)ni(z)/nec}. Here, we
assume the charge neutrality condition, so that the elec-
tron density ne is equal to the ion density ni. Since the
original scenario of the plug potential formation
includes the high-energy sloshing ion population, the
plug potential is formed at the point where dni /dz = 0 if
G(B) is independent of B. In the case of a non-Max-
wellian electron distribution in the plug/thermal barrier
region (i.e., when G(B) is a function of B), the plug
potential can be formed in the region satisfying the con-
dition d[G(B)ni]/dz = 0 (if exists) in the midway from
z = zb to z = zm even if there is no high-energy sloshing
ion population.
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In order to clear whether there exists a region where
the condition d[G(B)ni]/dz = 0 is satisfied, the follow-
ing ion distribution function is introduced:

(8)f i
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The corresponding ion velocity space is illustrated in
Fig. 5c. Here, the ion distribution function is of the
same type as the electron distribution function and αi is
a constant. The ion distribution function in the loss cone
in the region v || ≤ 0 is assumed to be zero; i.e., ions
escaping through the outer mirror throat z = zm never
come back (here, we assume Bm = Bi and ϕm = ϕi for
simplicity). An explicit expression for the velocity v || is
defined in Section 4 [see Eq. (9)].

The resultant ion density profile, however, has an
infinite slope at the plug as shown in Fig. 6; i.e., dni /dz =
–∞ at z = zp [17]. The infinite ion density gradient,
|dni /dz| = ∞, at z = zp follows from that |∂fi /∂ε | = ∞ on
the line ε = µBp + eϕp in Eq. (8). A type of a modified
Boltzmann law e(ϕ(z) – ϕb) = Te||ln{G(B)ni(z)/nec} in
Eq. (4) requires d[G(B)ni]/dz = 0 at the plug. However,
dni /dz = –∞ at z = zp leads to d[G(B)ni]/dz = –∞ at ϕ =
ϕp (i.e., B = Bp); i.e., the plug potential does not form.
This contradiction is avoided by introducing the effect
of Coulomb collisions, which make |∂fi /∂ε| < ∞ on the
line ε = µBp + eϕp. Coulomb collisions, therefore, are
expected to form the plug potential between z = zb and
z = zm because these avoid making |dni /dz| < ∞ at z = zp.
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Fig. 8. Axial profiles of the electrostatic potential and ion
density obtained by Monte Carlo simulations.
4. MONTE CARLO CALCULATION
OF THE PLUG POTENTIAL FORMATION

As was shown in the previous section, ion Coulomb
collisions, as well as the modified Boltzmann law, are
necessary to form a plug potential. In order to include
Coulomb collisions in the calculations of the ion distri-
bution function, we carry out Monte Carlo simulations.

Since the plug potential formation is a one-dimen-
sional problem along z, we calculate the ion orbits
along a magnetic field line to regard the plug potential
formation as a one-dimensional problem along a mag-
netic field line,

(9)

Ion scattering by Coulomb collisions is included by
the Monte Carlo method [18–20]. The ions are input in
the thermal barrier region, and, finally, the ion distribu-
tion function becomes Maxwellian due to Coulomb
collisions. To describe non-Maxwellian ions in the
steady state, it is necessary to introduce radial ion
losses with the mean ion loss time τL . A uniform ran-
dom number ξk (which is from 0 to 1) is given at each
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Fig. 10. Height of the plug potential and the location of the plug.
calculation step for the kth ion. The number ξk is com-
pared with the magnitude of exp{–tk/τL}, where the
time tk is measured from the time when the kth ion was
input at the inner mirror throat z = zi in Fig. 5a. If ξk >
exp{–tk/τL}, the kth ion is lost from the plug/barrier mir-
ror cell. Since we are looking for the steady-state plug
potential, the ions that are lost are immediately input at
the inner mirror throat z = zi. Here, the velocity compo-
nents v || and v ⊥  of an ion at z = zi are given randomly
according to a Maxwellian distribution with tempera-
ture Tic in the passing region in velocity space.

The assumption of charge neutrality allows us to
determine the electron density from ne(z) = ni(z). The
electrostatic potential ϕ(z) is calculated by modified
Boltzmann law (5). In simulations, the electrostatic
potential is given in advance; i.e., ϕ(z) = 0. The motion
of ions is followed in the given electrostatic potential,
and the density is calculated from the ion positions. Ion
SICS REPORTS      Vol. 28      No. 9      2002
motion is calculated until the steady-state ion density
profile is established.

The new electrostatic potential is calculated by
modified Boltzmann law (5) with the steady-state ion
density for the old electrostatic potential profile. Then,
the ion motion is traced again in the new electrostatic
potential and the ion density is accumulated until a new
steady-state ion density profile is established. The
above procedure is repeated until the steady-state pro-
files of both the ion density and the electrostatic poten-
tial are established.

The parameters used in simulations are as follows.
The magnetic field profile from z = zb to z = zm is adopted
to be that in the end mirror cell of GAMMA 10 [12],
where the axial length Lz from the thermal barrier z = zb

to the outer mirror throat z = zm is Lz = 120 cm. The tem-
peratures Tfield of the field ions and electrons, with
which the test ions receive Coulomb collisions, are
100 eV. The number density nfield of the field ions (the
same as that of the field electrons) is uniform along z
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and is equal to nfield = 1011 cm–3. In this field plasma, the
deflection time τD is given by

(10)

where lnΛii is the Coulomb logarithm. The time τ0,
defined as τ0 ≡ (Ti /mi)–1/2, is the time required for a ther-
mal test hydrogen ion to move by 1 cm.

The temperature of test ions is set to be Ti = 100 eV
at z = zi. The deflection time is τD . 5.6 × 10–3 s, and the
flight time of 1 cm is τ0 . 1.0 × 10–7 s for the above
parameters. The transit time τtransit of an ion with Ti =
100 eV moving from z = zb to z = zm is defined as τtransit =
Lz × τ0 = 1.2 × 10–5 s.

In simulations, the test ions escaping from the outer
mirror throat z = zm or lost (radially) are input again at
the inner mirror throat z = zi. The justification of the
boundary condition on test ions will be given below.
The ion axial density profile ni(z) is given by the test ion
axial positions as

(11)

Here, zk is the axial position of the kth test ion and δ( )
is the Dirac delta function. The weight B(zk) in Eq. (11)
comes from that the cross section of the magnetic flux
tube is in inverse proportion to the magnitude of the
magnetic field B(z). The total number of ions Ni in the
mirror cell from z = zb to z = zm in Fig. 5a is given as

(12)

where Eq. (11) is used. Therefore, the test ions escaping
from the outer mirror throat or radially are to be input
immediately at the inner mirror throat in order that the
total number of the ions Ni in the steady state remain
unchanged. The above boundary condition on test ions
means that the ions in the plug/barrier region are sup-
plied by the ion flux from the inner mirror throat.

In order to save computer time, only the region from
z = zb to z = zm is calculated. The test ions input at z = zi

are mapped at z = zb with a positive velocity v || on the
assumption of the conservation of ε and µ during its
flight from z = zi to z = zb. The test ions arriving at z = zb

with v || ≤ 0 are reflected perfectly at z = zb if ε ≤ µBi +
eϕi, and are input again at z = zi with a Maxwellian
velocity of Ti if ε > µBi + eϕi. The algorithm of ion sup-
ply to the end mirror cell adopted in Monte Carlo sim-
ulations is consistent with the present tandem mirror
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experiment, where the ions in the end mirror cell are
supplied from the central cell and escape through the
outer mirror throat or escape radially.

The electrostatic potential is set to be ϕi = 0 at z = zi.
The potential ϕb at z = zb is given in advance and does
not change throughout the simulation run. Therefore,
the potential profile ϕ(z) is determined from its magni-
tude at z = zb.

Figure 7 shows the steady state ion distribution
functions in the entire axial region represented by ε and
µ in the case of eϕb/Ti = –1 and Te⊥ /Te|| = 100 for differ-
ent values of τD/τtransit, where the field ion density is
changed to obtain different values of τD. The separa-
trices denoted by the lines ε = µBp + eϕp and ε = µBm +
eϕm are determined in the simulation run, while the sep-
aratrices denoted by ε = µBi + eϕi and ε = µBb + eϕb are
given in advance as boundary conditions for the elec-
trostatic potential. Figures 7a and 7b, 7c and 7d, and 7e
and 7f are the results of the same simulation runs,
respectively. The region ε > µBp + eϕp and ε > µBm + eϕm

is the passing region for v || ≥ 0 in Figs. 7a, 7c, and 7e
and the loss cone region for ions v || < 0 in Figs. 7b, 7e,
and 7f. The loss time τloss /τtransit is fixed at 8.2, so that
Figs. 7a and 7b are the loss dominant case and Figs. 7e
and 7f are the Coulomb collision dominant case. It is
seen that the loss cone region is filled with ions by Cou-
lomb collisions in Fig. 7f, but it is almost empty in
Fig. 7b. The velocity space only in the region ε ≥ 0 is
plotted in Fig. 7; i.e., the ions responsible for the plug
potential formation (the energy of these ions is larger
than the potential energy eϕi at z = zi) are seen in these
figures. Since the ion loss time satisfies the inequality
τD/τloss @ 1 in Figs. 7a and 7b, the number of test ions
in the region ε ≤ µBi + eϕi is very small. However, the
ion distribution function in the passing region from the
inner mirror throat ε > µBi + eϕi is almost independent
of µ; i.e., it is a part of the Maxwellian distribution
function, because the transit time τtransit is shorter than
τD and τloss. On the other hand, Figs. 7e and 7f corre-
spond to the case of τD/τloss ! 1, so that a significant
increase in ion collisional filling is observed in the
region ε < µBi + eϕi.

Figure 8 presents the axial profiles of the steady
state electrostatic potential and ion density for different
values of τD/τtransit . The plug potential (note that the
plug is a maximum point of the electrostatic potential)
is clearly created in every case in Fig. 8. The maximum
point of the ion density profile does not coincide with
the position of the plug potential but rather exists in
front of the plug potential, which means that almost all
ions are reflected in front of the plug potential and only
a small part of ions reaches the plug point. In the case
of few trapped ions in the thermal barrier potential in
Fig. 8a, the peak point of the ion density exists around
the region where the electrostatic potential is greater
than zero, i.e., the region just beyond the height of ϕi.
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Since the ions have the potential energy z = zi when they
are input at eϕi, the ions are reflected by the electro-
static potential predominantly when the potential is
beyond ϕi. The ion density, therefore, decreases with
the growth of the electrostatic potential beyond ϕi . If
there exists a large amount of ions trapped in the ther-
mal barrier potential in Fig. 8c, the peak point of the ion
density profile is around z = zb. The magnitude of the
plug potential is plotted as a function of τD/τtransit in
Fig. 9. In the limit of small τD/τtransit , i.e., even in the
collision dominant limit, the plug potential is found to
be formed in Figs. 9a and 9b. The larger the ratio
Te⊥ /Te||, the larger the plug potential in Figs. 10a–10c.

Figure 10 plots the height of a plug potential as a
function of Te⊥ /Te||. Here, Fig. 10a is for eϕb/Ti = –1,
Fig. 10b is for eϕb/Ti = –2, and Fig. 10c is for eϕb/Ti =
–3. The field ion and electron densities and tempera-
tures determining Coulomb collisions with the test ions
are the same as those mentioned previously in this sec-
tion. By using relations (7), modified Boltzmann law
(5) can be rewritten as

(13)

Note that the charge neutrality condition ni(z) =
ne(z) is assumed throughout this paper. The plug poten-
tial is a function of ne(zp)/neb and Bp/Bb, as well as Te⊥ /Te||

e ϕ ϕ b–( ) = Te||
Te⊥

Te||
-------- 1

Te⊥

Te||
--------– 

  Bb

B z( )
-----------+

ne z( )
neb

------------
 
 
 

.ln
in Eq. (13). Figure 10, however, indicates that the
height of the plug potential is a function of only Te⊥ /Te||
as long as τD/τL is fixed. Figures 10d–10f show the mag-
netic field at the axial position of the plug potential. The
position of the plug depends weakly on the ratio Te⊥ /Te||
and the thermal barrier depth ϕb – ϕi, and the position
is almost independent of τL/τ0, i.e., τL/τD .

Until now, the thermal barrier depth is given in
advance as a boundary condition. The calculation of the
entire region of the plug/thermal barrier cell including
the thermal barrier region will be described below. In
order to calculate the electrostatic potential from z = zi

to z = zm, we take into account the population of the cold
component of electrons coming from the central cell,
but reflected from the thermal barrier potential,

(14)

Electron distribution function (14) is the cold com-
ponent denoted by the index “cold.” The total electron
distribution function fe + fecold consists of the distribu-
tions described by Eqs. (2) and (14). The two-compo-
nent electron distribution function is observed in the
central cell experimentally [21].

By integrating the electron distribution function fe +
fe cold over velocity space, we arrive at the modified
Boltzmann law
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In the case of necold = 0, Eq. (15) reduces to Eq. (4),
and, in the case of nec = 0, Eq. (15) becomes the Boltz-
mann law for cold electrons, so that Eq. (15) can be
regarded as an interpolation formula.

Figure 11 illustrates the typical electron orbits in the
plug/thermal barrier cell. The electrons in the central
cell of an ambipolar trap has a two-component distribu-
tion function in Fig. 11. Monte Carlo simulation results
are plotted in Fig. 12. Here, the calculations include the
region from the inner mirror throat z = zi to the outer
mirror throat z = zm of the plug/thermal barrier cell. Fig-
ure 12a corresponds to the case of τloss/τD ! 1, while
Fig. 12b corresponds the case of τloss /τD * 1. The ther-
mal barrier potential is found to be created around
z = zb, and the plug potential is found at the point
between z = zb and z = zm in both Figs. 12a and 12b.

Figure 13 shows the results of simulations for differ-
ent parameter values. The deeper the thermal barrier
potential, the higher the plug potential. The plug poten-
tial decreases with increasing ratio nec/(nec + necold).
Especially, in case of necold = 0, the thermal barrier
potential becomes too deep to form the plug potential.
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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5. RADIAL TRANSPORT 
DUE TO THE NONUNIFORMITY

OF THE ELECTROSTATIC POTENTIAL

In calculating the plug potential formation in Sec-
tion 4, the ion loss was taken into account. The larger
the ion loss, the higher the plug potential. In Section 2,
the natural ion radial loss was expected to create the
thermal barrier potential for the plug potential forma-
tion in the outermost end mirror cells in Figs. 2 and 3.

As seen in Section 4, variations in the electrostatic
potential along the magnetic field line can easily occur
when the electron distribution deviates from Max-
wellian. Electrons are heated by ECRH so that the tem-
perature Te of electrons is a function of ψ and θ, which
are the coordinates across the magnetic axis. Here, we
adopt the flux coordinates (ψ, θ, ζ), where the ζ coordi-
nate is taken along the magnetic field line, B = —ψ × —θ,
and —ψ · —ζ = —θ · —ζ = 0. The θ coordinate corre-
A PHYSICS REPORTS      Vol. 28      No. 9      2002
sponds to the azimuthal coordinate and the ψ coordi-
nate is proportional to the magnetic flux, i.e., the radial
coordinate. Therefore, it is natural to assume that the
electron distribution function is fe = fe(ε, µ, ψ, θ).

The drift motion of ions is described by

 (16)

where κψ and κθ are the covariant components of the
magnetic field line curvature k defined by

(17)

Here, k ≡  ·  and  ≡ B/B.

If the electrostatic potential is a function of only ψ
(i.e., ϕ = ϕ(ψ)), then the ions move along the surface

dψ
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------- c
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e
--κθ 2ε µB– 2eϕ–( ),–=
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e
--κψ 2ε µB– 2eϕ–( ),+=
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ψ = const in the zeroth order motion and the ions drift
in the first order motion across the magnetic flux tube
through the —B drifts, which causes neoclassical radial
transport. However, if ϕ = ϕ(ψ, θ, ζ), then the ions do
not move along the equipotential surfaces in the zeroth
order motion in the magnetic mirrors because ωE @ ωB

in Eq. (1) is satisfied in the standard cases of an ambi-
polar trap.

In the thermal barrier region, the electrostatic poten-
tial has a complicated axial structure, so that we con-
sider the ions in the central region. Figure 14 shows the
GAMMA 10 experimental device.

In the following calculations of ion orbits, we use
the following model of the electric field:

(18)

e∂ϕ
∂ψ
---------

Ti

ψ0
------ 1 ξ z( ) 10θ{ }cos–(–=

– η z( ) 11θ 0.1+{ }cos ζ z( ) 13θ 0.2+{ } )cos– ),

e∂ϕ
∂θ

--------- Ti
ψ
ψ0
------ 10ξ z( )10 10θ{ }sin(=

+ 11η z( ) 11θ 0.1+{ }sin 13ζ z( ) 13θ 0.2+{ } )sin+ ),
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Fig. 16. Ion drift orbits with different pitch angles: (a) the
amount of azimuthal drift per half axial bounce motion and
(b) the Poincare map at z = 0. Here, Ncross in plot (a) is a
count of particle’s transits at z = 0.
where ψ0 ≡ (1/2)(20 cm)2B(z = 0). Ions feel the E × B
drifts given by Eqs. (18). The ion drift surfaces are
illustrated in Fig. 15, where a Poincare map is plotted at
z = 0 by tracing the ion drift orbits in GAMMA 10.
Here, an ion orbit with the pitch angle Θ = π/3 is fol-
lowed. In Eq. (18), the electric field causing E × B drifts
is assumed to be ξ(z) = η(z) = ζ(z) = 0 to obtain the
results in Fig. 15.

The perturbations of the electric field are added to
Fig. 15a in order to obtain the results in Figs. 15b–15d;
i.e., the electric field with ξ(z) = 0.1 and η(z) = ζ(z) =
0 is assumed in Eq. (18) to obtain the results in
Fig. 15b; ξ(z) = η(z) = 0.1 and ζ(z) = 0 in Fig. 15c; and
ξ(z) = η(z) = ζ(z) = 0.1 in Fig. 15d. Namely, small per-
turbations are added to the zeroth order E × B drift in
Figs. 15b–15d. Therefore, Fig. 15 illustrates the equi-
potential surfaces at z = 0. The ions with the pitch angle
Θ = nπ/180, where n = 10, 20, 30, 40, 50, 60, and 70,
starting at z = 0, r = 10 cm [ψ = 50B(z = 0) cm2 G] and
θ = π/4] are traced in the electrostatic potential in
Fig. 15.

Figure 16 shows the Poincare map in the electro-
static potential in the case ξ(z) = η(z) = ζ(z) = 0, the
equipotential surface of which is shown in Fig. 15a.
The drift orbits with different pitch angles are circular,
which is the reason why GAMMA 10 is an effectively
axisymmetrized ambipolar trap. The quantity ∆θ in
Fig. 16a represents the amount of azimuthal drift per
half bounce motion along a magnetic field line.

The cases in which perturbations are added to the
zeroth order electric field are displayed in Fig. 17. Here,
drift orbits plotted in Figs. 17a and 17b were calculated
in the case of ξ(z) = 0.1 and η(z) = ζ(z) = 0 as is shown
in Fig. 15b; the orbits in Figs. 17c and 17d are the case
of ξ(z) = η(z) = 0.1 and ζ(z) = 0, the equipotential sur-
face of which is shown in Fig. 15c; and the orbits in
Figs. 17e and 17f are the case of ξ(z) = η(z) = ζ(z) = 0.1,
which is shown as the equipotential surface of Fig. 15d.
It is seen in Fig. 17d that there exists a resonance parti-
cle whose orbit is shifting from the original equipoten-
tial surface and its radial position at z = 0 continues to
approach zero in Fig. 17c. In the case of Figs. 17e and
17f, nonresonant particles are perturbed from their
original equipotential surface and their orbits depend
on the pitch angle.

Figures 18a and 18b correspond to the case ξ(z) =
0.1 (for |z| < 200 cm) and 0 (for |z| ≥ 200 cm) and η(z) =
ζ(z)= 0, Figs. 18c and 18d to the case ξ(z) = η(z) = 0.1
(for |z | < 200 cm) and 0 (for |z | ≥ 200 cm) and ζ(z) = 0,
and Figs. 18e and 18f to the case ξ(z) = η(z) = ζ(z) =
0.1 (for |z | < 200 cm) and 0 (for |z | ≥ 200 cm). Namely,
Fig. 18 is the case that the electric field perturbation is
localized within |z | < 200 cm. In these cases, the ion
drift orbits are found to depend on its pitch angle
greatly.
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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6. SUMMARY

We have proposed a single minimum-B ambipolar
trap and a linked minimum-B ambipolar trap. The
design of the transition region between each ambipolar
trap is not completed yet on a linked minimum-B ambi-
polar trap. The advantage of this single minimum-B
trap is as follows. Almost all regions consist of a mini-
mum-B mirror so that the system is stable against MHD
modes.

The plug and thermal barrier potentials are shown to
be created if the electron distribution function is non-
Maxwellian in the plug/thermal barrier mirror cells.
The electron heating by externally injected microwave
can easily make the electron distribution function non-
Maxwellian. To maintain the non-Maxwellian electron
distribution function, some (radial) loss of electrons is
necessary, otherwise Coulomb collisions finally make
the electrons Maxwellian.

The possible mechanism for ion (electron) radial
loss has been proposed in Section 5. The character of
radial loss is that the magnitude of the magnetic field at
the particle axial turning point in the axial bounce
motion is conserved for a particle with ε @ eϕ. There-
fore, the particles trapped in the central cell of a single
minimum-B ambipolar trap are confined within the
minimum-B magnetic field, while the particles trapped
in the end mirror cell are lost radially.

Therefore, a single minimum-B ambipolar trap
requires only ECRH at both mirror cells for the
plug/thermal barrier operation. The required pumping
of particles is carried out automatically.
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Abstract—Results are presented from experiments on the production and study of a hot dense plasma in the cen-
tral solenoid of the AMBAL-M fully axisymmetric ambipolar magnetic confinement system. The hot plasma in
the solenoid and end cell is produced by filling the system with a thermally insulated current-carrying plasma
stream with developed low-frequency turbulence. The plasma stream is generated by a gas-discharge plasma
source placed upstream from the magnetic mirror of the solenoid. As a result, an MHD-stabilized plasma with a
length of 6 m, a diameter of 40 cm, a density of 2 × 1013 cm–3, an ion energy of 250 eV, and an electron tem-
perature of 60 eV is produced in the central solenoid. It is found that, in the quiescent decay phase, transverse
plasma losses from the solenoid due to low-frequency oscillations and nonambipolar transport are rather small
and comparable with the classical diffusion losses. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experiments carried out in the AMBAL-M fully axi-
symmetric ambipolar confinement system [1] are of
fundamental importance for the future fusion reactor.
The key research problems here are MHD stabilization
of the collisionless axisymmetric plasma and the study
of longitudinal and transverse losses. Experiments in
the AMBAL-M device were divided into two stages.
From 1993 to 2000, experiments were conducted in the
end cell, consisting of a mirror cell and semicusp. The
system was filled with a turbulent plasma generated by
a plasma source placed upstream from the magnetic
mirror. As a result, an initial MHD-stabilized hot
plasma with a density of ~2 × 1013 cm–3, an electron
temperature of ~60 eV, and an ion energy of ~250 eV
was produced. The thermal insulation of the plasma in
the entrance magnetic mirror and ohmic plasma heating
in the mirror cell by the longitudinal electron current
were investigated [2].

In 2000, experiments on the production and study of
a hot dense plasma in a long solenoid connected to the
end cell of the AMBAL-M device began. A hot plasma
in the solenoid and the end cell is produced by filling
the system with a thermally insulated current-carrying
plasma stream with developed low-frequency turbu-
lence. The plasma stream is generated by a gas-dis-
charge plasma source placed upstream from the mag-
netic mirror of the solenoid. This source is the same as
in the end cell experiments. In this paper, which is ded-
icated to the memory of D.A. Panov, we present the
results of the first experiments on filling the solenoid
with a hot dense plasma.
1063-780X/02/2809- $22.00 © 20750
2. EXPERIMENTAL SETUP

Figure 1 shows a schematic of the experimental
setup. The distance between the magnetic mirrors of the
solenoid connected to the end cell is 7 m, and the length
of the region with a uniform magnetic field of 1.95 kG
is 6 m. To achieve the optimum filling of the solenoid,
the distance between the solenoid entrance mirror and
the plasma source can be varied from 70 to 155 cm.

The plasma parameters in the solenoid were mea-
sured with a set of diagnostics used previously in the
end cell experiments [2] and consisting of movable
Langmuir and magnetic probes, diamagnetic loops,
end-loss energy analyzers, and a system of multichord
plasma probing by the attenuation of a fast neutral
beam in the solenoid.

3. EXPERIMENTAL RESULTS

The experiments showed that the filling of the sole-
noid with a turbulent plasma stream allowed the pro-
duction of a thermally insulated plasma with a length of
6 m, a diameter of up to 40 cm, a density of up to 2 ×
1013 cm–3, an average ion energy of 250 eV, and an elec-
tron temperature of 60 eV. By varying the distance
between the plasma source and the entrance magnetic
mirror of the solenoid, it was established that both the
plasma density and energy increased as the plasma
source approached the solenoid. Figure 2 shows the
plasma diamagnetic signals for the three positions of
the plasma source: 155, 110, and 70 cm from the
entrance magnetic mirror.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic layout of experiments with a central solenoid (side view): (1) solenoid, (2) gas-discharge plasma source
(3) entrance magnetic mirror of the solenoid, (4) exit magnetic mirror, (5) mirror sell, and (6) semicusp. Shown are the magnetic
field lines emerging from the plasma source (z0 = –155 cm, r0 = 6 cm). At the bottom, the axial profile of the magnetic field is shown.
Measurements with Langmuir probes showed that
the internal plasma was at a fairly high negative poten-
tial. The floating potential of an isolated Langmuir
probe was about –150 V for a maximum distance of
155 cm between the solenoid and the plasma source,

〈nT⊥ S〉 , 1018 eV cm–1

10 2 3 4 t, ms

70 cm

110 cm

155 cm

Fig. 2. Diamagnetic signals from the solenoid plasma for
three distances between the plasma source and the solenoid.
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and it was about –350 V for a minimum distance of
70 cm (Fig. 3). The rapid differential rotation of the
plasma due to the substantial potential gradient leads to
the onset of the Kelvin–Helmholtz instability. The
spectra of the density and potential fluctuations exhibit
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Fig. 3. Radial profiles of the probe floating potential for the
maximum and minimum distances between the plasma
source and the solenoid.
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Fig. 4. Radial profile of the plasma density in the solenoid
for the minimum distance between the plasma source and
the solenoid.
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Fig. 5. Radial profiles of the rms amplitude of plasma
potential fluctuations for the maximum and minimum dis-
tances between the plasma source and the solenoid.
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Fig. 6. Radial profile of the longitudinal current density in
the solenoid.
maxima at frequencies that are multiples of the funda-
mental frequency fE = cEr/2πrB ~ 15 kHz and that are
associated with the drift of the corresponding azimuthal
harmonics.

The onset of electrostatic plasma oscillations leads
to the intense radial diffusion of the plasma. As a result,
the inner region becomes filled with a plasma that is
hollow at the source outlet because of the annular
geometry of the discharge channel of the source; simul-
taneously, a plasma appears in the peripheral region.
The radial plasma density profiles obtained from probe
measurements and multichord diagnostics by the atten-
uation of a probing fast hydrogen neutral beam (Fig. 4)
have a characteristic radius of 12–18 cm at a level of
1/e, depending on the distance between the plasma
source and the solenoid. As the distance from the
plasma source to the entrance mirror decreases, the
transverse plasma losses increase because the ampli-
tude of plasma potential fluctuations increases from 30
to 80 V (Fig. 5) and the outer radius of the projection of
the gas-discharge channel of the source onto the sole-
noid increases from 12.9 to 14.2 cm. As a result, the
plasma radius increases to 18 cm at a distance of 70 cm
between the source and the entrance mirror.

The radial profile of the longitudinal electron cur-
rent flowing through the solenoid plasma was measured
with the help of a movable magnetic probe. Figure 6
shows the radial profile of the longitudinal current den-
sity in the initial segment of the solenoid (at z = 55 cm).
It is seen in the figure that there is an inner annular
region where the negative electron current with a den-
sity of ~20 A/cm2 and total value of ~2.3 kA is directed
from the plasma source to the solenoid, whereas in the
outer annular region, a current of ~1.8 kA flows in the
opposite direction.

We also measured the local transverse plasma trans-
port in the central solenoid. The local transverse plasma
flux caused by electrostatic oscillations is of drift

nature, and its density is Γr ≈ –c〈 〉 /B, where  and
 are the fluctuations of the azimuthal electric field and

plasma density, respectively, and the angular brackets
denote the averaging over the time interval longer than
the characteristic oscillation period. This flux was mea-
sured by a combined four-electrode Langmuir probe,
which could be displaced in the radial direction. The
azimuthal electric field was determined from the differ-
ence between the floating potentials of one pair of
probes, and the plasma density was determined from
the ion saturation current. Similar probes were previ-
ously used to study fluctuations and plasma transport in
the edge plasma of tokamaks (see, e.g., [3, 4]) and
reversed-field pinches [5]. To eliminate the influence of
the plasma source on the measurements of the radial
plasma transport in the solenoid in the quiescent decay
phase, the source discharge current was rapidly
switched off in a time of ~0.1 ms.

Ẽϕ ñ Ẽϕ

ñ
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Fig. 7. Signals of the plasma density and the azimuthal electric field at a radius of 6 cm.
Figure 7 shows the signals of the ion saturation cur-
rent and the azimuthal electric field. It is seen that, after
the source discharge current is switched off, the ampli-
tude of electric field oscillations sharply decreases and
low-frequency fluctuations in the saturation ion current
are observed over ~0.5 ms. In our opinion, these fluctu-
ations indicate the onset of MHD plasma oscillations
because of the disruption of the stabilizing effect of
plasma line-tying in the conducting end after the source
is switched off. Processing of the n and Eϕ signals with
account of the phase shift and correlation between them
shows that the coefficient of turbulent diffusion in the
solenoid due to low-frequency plasma fluctuations
amounts to ~2 × 106 cm2/s during plasma filling. The
radial plasma flux decreases by a factor of about 30
over 0.2 ms after the source current is switched off, and,
over 0.7 ms, it decreases by a factor of 103 in compari-
son with the turbulent flux measured during the source
operation.

Nonambipolar plasma transport in the solenoid
was deduced from the measurements of the current to
a plasma receiver positioned in the semicusp. When
the plasma source was switched off, the current to the
plasma receiver was In ~ 2 A.

An additional increase in the plasma density in the
solenoid was achieved by puffing hydrogen into the
axial plasma region through a ceramic tube positioned
near the entrance magnetic mirror of the solenoid. At an
optimum rate of hydrogen puffing into the axial region
of the solenoid (~10 l torr/s), the plasma density and the
amplitude of the diamagnetic signal increased by a fac-
S REPORTS      Vol. 28      No. 9      2002
tor of about 1.7. Consequently, the maximum plasma
density in the solenoid attained a value of ~4 × 1013 cm–3.

The basic parameters of the solenoid of the
AMBAL-M device and the parameters of the plasma
produced are listed in the table.

4. DISCUSSION

The experiments carried out in the AMBAL-M
device showed that the use of a thermally insulated
plasma stream is an efficient method for creating a hot
plasma in the solenoid. When passing through the sole-
noid, the stream ions acquire the transverse energy due

Table

Parameter Value

Distance between magnetic mirrors 7 m

Magnetic field in the uniform part 1.95 kG

Mirror ratio in the entrance
and exit magnetic mirrors

10.7 and 14.7

Initial vacuum 3 × 10–6  torr

Pulse duration of the plasma source ~2 ms

Plasma diameter ~40 cm

Plasma density (0.3–4) × 1013 cm–3

Electron temperature 60 eV

Ion energy 250 eV

Longitudinal electron current
in the plasma

~2 kA
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to stochastic heating by broadband electrostatic oscilla-
tions. A fraction of ions becomes trapped in the con-
finement region [2]. Note that the ion cyclotron fre-
quency in the solenoid is ~3 MHz and the ions are sto-
chastically heated at the subharmonics of the ion
gyrofrequency (in contrast to the experiments [6], in
which the ion were stochastically heated at the frequen-
cies close to the ion gyrofrequency). The plasma elec-
trons are heated due to collisions with the trapped hot
ions and due to the relaxation of the plasma electron
flow with longitudinal electron energies of ~200 eV and
current of ~2 kA. Transverse electrostatic plasma oscil-
lations also enhance plasma diffusion, which leads to
the broadening of the plasma density profile and an
increase in transverse losses. As was mentioned above,
the production of a hot initial plasma by filling the sys-
tem with a turbulent plasma stream was successfully
used in the previous end cell experiments in the
AMBAL-M device. However, the plasma volume in the
solenoid is much greater than that in the end cell; there-
fore, to fill the solenoid, it was necessary to increase the
intensity of the plasma stream by placing the source
nearer to the entrance magnetic mirror of the solenoid.

The diamagnetic and plasma density signals in the
solenoid in the decay phase after the ordinary (slow)
switching-off of the plasma source are quiescent, and a
typical plasma decay time of ~1 ms agrees with the
classical plasma confinement time, determined by the
ion scattering into the loss cone. Such plasma behavior
in the solenoid points to its MHD stability. Estimates of
the plasma MHD stability against flute perturbations in
the given magnetic field geometry show that the plasma
inside the semicusp is stable if its pressure is higher
than the plasma pressure in the solenoid. Experiments
demonstrated that the plasma density in the semicusp
was several times lower than that in the solenoid. Con-
sequently, MHD stability of the plasma in the solenoid
is provided by a different mechanism. The existence of
such a stabilizing mechanism is confirmed by the fact
that the behavior of the solenoid plasma remains the
same after the switching-off of the semicusp coils pro-
ducing the favorable curvature of the magnetic field
lines. The reasonable explanation of the plasma stabil-
ity observed in the experiment is that the plasma is fro-
zen in a high-conductivity thermal plasma near the
source. The density of this plasma does not change
when the discharge current in the source decays slowly
over a characteristic time of ~0.5 ms after the source is
switched off. When the discharge current in the source
is switched off abruptly over a time of ~0.1 ms, the
plasma density in the solenoid decreases more rapidly
than it does when the source is switched off slowly; in
this case, intense density fluctuations at frequencies of
5–10 kHz are observed. These observations most likely
indicate the loss of MHD stability because of the dete-
rioration of the stabilizing effect of plasma line-tying in
the source when it is switched off abruptly. To clarify
this point, it is necessary to investigate plasma oscilla-
tions and transverse plasma losses in the decay phase
under different source operating conditions.

The results obtained allow us to estimate the plasma
lifetime in the axisymmetric solenoid. The plasma life-
time determined by transverse losses due to electro-
static oscillations in the decay phase, τ⊥  ~ nr/2Γr,
amounts to tens of milliseconds. The plasma lifetime
determined by nonambipolar losses, τn ≈ 〈nV 〉/2In,
where V is the plasma volume, amounts to ~100 ms.
These lifetimes are rather long (one to two orders of
magnitude longer than the classical longitudinal con-
finement time), which indicates that the plasma can be
confined in the solenoid of the ambipolar confinement
system provided that the longitudinal losses are sup-
pressed.

Controllable gas puffing for maintaining or increas-
ing the plasma density is used in many magnetic con-
finement systems, in particular, open systems (e.g., the
GAMMA-10 device [7]). Hydrogen puffing in the
AMBAL-M device was previously used in the mirror
cell of the end system and showed its high efficiency
[8]. It was demonstrated that the gas puffing increases
both the density and energy of the plasma. This is
explained by the fact that the gas-discharge plasma
source, which continues operating in the course of gas
puffing, introduces a considerable power into the sole-
noid plasma; then, this power is transferred to the par-
ticles of the created plasma and heats them. Therefore,
the ions produced by gas ionization rapidly gain energy
from electrostatic oscillations via stochastic heating,
whereas the electrons gain energy due to the enhanced
relaxation of the longitudinal electron current in the
higher density plasma.

5. CONCLUSION

A plasma with a length of 6 m, a diameter of ~40 cm,
a density of 2 × 1013 cm–3, an electron temperature of
60 eV, and an ion energy of ~250 eV was produced in
the central solenoid of the AMBAL-M device by filling
the system with a turbulent plasma stream. With an
additional gas puffing, the plasma density was
increased to 4 × 1013–3, whereas the electron tempera-
ture did not decrease substantially. To further increase
the plasma density in the solenoid, it is planned to use
the second plasma stream, which will fill the solenoid
from the opposite end. Recently, the second source has
been mounted in the plasma receiver tank and the vac-
uum coil impeding the free propagation of the plasma
stream has been removed. As a result, a transition
region between the second source and the mirror cell
has been formed, which is similar to the transition
region between the first source and the solenoid. In this
case, MHD plasma stability, as previously, is provided
by the plasma line-tying in the sources at the ends of the
device.
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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Abstract—A study is made of a toroidally linked mirror system with a zero rotational transform and a three-
dimensional magnetic field that ensures good confinement of charged particles. A toroidally linked magnetic
mirror configuration at low plasma pressures is calculated by numerically solving the isometry equation for the
magnetic field to second order in the small parameter of the paraxial approximation. The calculations carried
out with the VMEC code for a particular linked magnetic mirror configuration demonstrate the possibility of
achieving good confinement of drifting particles. The calculated results show that it is, in principle, possible
to link mirror cells into a toroidal configuration capable of providing plasma confinement at a tokamak level.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of eliminating longitudinal plasma
losses by linking mirror cells into a toroidal configura-
tion has a long history, dating back to 1958, when the
paper by Kadomtsev [1] was published. Various exper-
imental and theoretical attempts have been made to
devise a magnetic configuration with good confinement
properties [2–4]. Unfortunately, all known proposals
failed to avoid superbanana drift orbits, which are
known to lead to enormously high transverse particle
losses in devices with fusion plasma parameters. This is
presumably one of the reasons why no experiments
with such confinement systems are now carried out.

Recent advances in the study of confinement prop-
erties of magnetic configurations by analyzing the
topography of the magnetic field strength on equilib-
rium magnetic surfaces [5–9] have made it possible
to suggest a new approach to implementing the idea
of toroidal mirror devices: in order to achieve good
plasma confinement in a toroidal mirror system, Ars-
enin et al. [10] proposed to use the isometry condi-
tion [7].

Here, we present the results of numerical calcula-
tions of a toroidally linked vacuum magnetic mirror
configuration satisfying the isometry condition [7] and
analyze the confinement properties of the configuration
at low plasma pressures by using the VMEC code [11].
Since this code is widely used to estimate plasma con-
finement in stellarators, we could follow the same com-
putation procedure in order to carry out a comparative
analysis of the confinement properties of a toroidally
1063-780X/02/2809- $22.00 © 0756
linked mirror system (TLMS) and an optimized stellar-
ator. In our simulations, we did not address MHD sta-
bility issues because it is supposed that related prob-
lems will be overcome by divertor stabilization [10].

The paper is organized as follows. In Section 2, we
derive equations describing a toroidally linked, vacuum
paraxial isometric configuration and give an example of
how they can be solved. The boundary magnetic sur-
face obtained by solving these equations and approxi-
mated by spatial Fourier harmonics is used as input to
the VMEC code for equilibrium calculations. The
results of relevant simulations are described in Section 3.
In Section 4, we discuss and summarize the main
results of our study.

2. SECTIONALLY ISOMETRIC, 
TOROIDALLY LINKED MIRROR SYSTEM

IN THE PARAXIAL APPROXIMATION

A TLMS with a zero rotational transform is con-
structed in several steps. In the first step, we apply the
paraxial approximation to calculate a boundary mag-
netic surface whose shape satisfies the isometry condi-
tion in vacuum [7].

2.1. Paraxial Magnetic Surfaces

We consider vacuum magnetic surfaces near the
magnetic axis of the system, which is a closed plane
curve with variable curvature. We assume that the mag-
netic surfaces are symmetric with respect to the plane
2002 MAIK “Nauka/Interperiodica”
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of the magnetic axis. The coordinates of the magnetic
surface can be represented as

(1)

where xaxis and yaxis are the coordinates of a current
point on the magnetic axis and the coordinates xl and zl

characterize deviation from the magnetic axis in the
plane perpendicular to it. The coordinates on the mag-
netic axis satisfy the trigonometric equations

(2)

where α is the angle between the tangent to the mag-
netic axis and the x-axis, k is the magnetic axis curva-
ture, and the prime denotes the derivative with respect
to the arc length s of the magnetic axis.

It is convenient to formulate the isometry condition
in Boozer coordinates [12], which will be used in fur-
ther analysis. We choose the radial Boozer coordinate
to be the toroidal magnetic field flux Φ through the
cross section of the magnetic surface and denote the
poloidal and toroidal angular coordinates by θ and ζ,
respectively (in a confinement system with closed mag-
netic field lines, the poloidal coordinate labels the field
lines on the magnetic surface and the toroidal coordi-
nate coincides with the scalar magnetic potential).

In the paraxial approximation, the deviation from
the magnetic axis can be described through the expan-

sion in the powers of ρ = :

where the quantities a(s) and b(s) define the ellipticity
of the cross section of the magnetic surface and the
functions ∆(θ, s) and Γ(θ, s) account for the displace-
ment and triangularity of the magnetic surface. The lon-
gitudinal coordinate ζ is introduced through the expres-
sion

(3)

where the first term s0(ζ) describes the relationship
between s and ζ at the magnetic axis and the corrective
second term accounts for the deviation of the surface
ζ = const from the surface perpendicular to the mag-
netic axis. Note that it is sufficient to incorporate this
correction only into the coordinates on the magnetic
axis because the paraxial approximation is constructed
to second order in ρ. Expanding the coordinates on the

x xaxis xl α ,sin–=

y yaxis xl α ,cos+=

z zl,=

xaxis' α , yaxis'cos α , α'sin k s( ),= = =

Φ

xl aρ θcos ρ∆+( ),=

zl bρ θsin ρΓ+( ),=

s s0 ζ( ) ρ2Σ θ s0,( ),+=
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axis in powers of ρ, we obtain from representations (1)
and Eq. (2) the following expressions:

(4)

Here, there is no need to distinguish between s and s0,
so that all of the parameters of the magnetic surface in
these expressions can be treated as functions either of s
or ζ, through the dependence s = s0(ζ).

The metric tensor elements in the coordinates (Φ, θ, ζ)
should satisfy the conditions [10]

where F = const is the external poloidal current (the
total current in the coils). Using expressions (4), we can
determine the metric tensor elements and derive the
relationships for the geometric parameters of the mag-
netic surface. To first order, the former conditions g13 =
g23 = 0 determine the function Σ:

The latter condition yields the relationship between s
and ζ at the magnetic axis,

and the angular dependence of the functions ∆ and Γ
(with allowance for their symmetry with respect to the
z = 0 plane),

(5)

It is important to note that another restriction on the
parameters ∆ and Γ can be obtained from the condition
g13 = g23 = 0 in the next-order (second-order) approxi-
mation. To do this, we must retain the higher order
(third-order) terms ρ3δx and ρ3δy in expressions (4).
The consistency condition for the equations for δx and
δy, which follow from the conditions g13 = g23 = 0, gives
the relationship

(6)

In what follows, we will use the metric tensor element
g33. Taking into account the above relationships, we can
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express g33 as

(7)

Let us compare the expressions derived here with
the expressions obtained by Shafranov [13], who deter-
mined the shape of the magnetic surface in a mirror
confinement system with closed magnetic field lines
from the scalar potential of the magnetic field near the
magnetic axis. The comparison yields

Here, η is the ellipticity, B0 is the magnetic field at the
magnetic axis, and

where B3 is the amplitude of the third poloidal har-
monic in the expansion of the scalar potential. One can
readily verify that these expressions satisfy both condi-
tions (5) and (6). Additionally, the terms in the expres-
sion for ζ(s), which can be obtained by inverting for-
mula (3), are the same as the first terms in the expansion
of the scalar potential of the magnetic field near the
magnetic axis [13].

2.2. Isometry Condition

The isometry condition, which indicates that the B =
const contours on a magnetic surface have constant sep-
aration along a field line, ensures omnigeneity, a prop-
erty whereby the superbanana drift vanishes [7]. In
Boozer coordinates, the isometry condition has the
form

where f(ρ, θ) is a bounded function periodic in θ. In this
condition, we use expression (7) for g33 and the expan-
sion of the function f in powers of ρ: f(ρ, θ) = ρf1(θ) +
ρ2f2(θ).
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To first order in ρ, the choice kasinθ = (ab)'f1

(where C1 is an arbitrary constant) and the relationship

f1 = C1sinθ yield the first-order isometry condition:

. (8)

Note that condition (8) coincides with the condition
derived in [7].

To second order in ρ, the choice f2 = C2sinθcosθ

(where C2 is an arbitrary constant) and the relationship

yield the second-order isometry condition:

(9)

Substituting isometry conditions (8) and (9) into
expression (7), we can show that the following relation-
ship is satisfied to within second-order terms:

The metric tensor element g33 is uniquely related to the

magnetic field strength B: B = F/2π . Consequently,
the isomagnetic contours B = const on the magnetic

surface ρ = const are the lines ζ = const + ρ cosθ +

ρ2 cos2θ. In the (θ, ζ) plane, all of the isomagnetic

contours can be obtained by translating a fixed contour
along the ζ-axis.

In a mirror confinement system with closed mag-
netic field lines, equilibrium magnetic surfaces are

determined by the condition  = U(ρ) (see, e.g.,

[14]). The magnetic surfaces on which the isometry
condition is satisfied are equilibrium surfaces [7]. This
is also readily seen from the familiar equilibrium con-
ditions in the paraxial approximation [13]; in our nota-
tion, they can be written as
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Taking into account isometry conditions (8) and (9), we
see that these equilibrium conditions are satisfied,
because the integrands are the total derivatives of peri-
odic functions.

2.3. Sectionally Isometric Mirror System

In order to construct a TLMS, it is necessary to
ensure that the magnetic field lines are closed. A possi-
ble way to do this is to require that the condition for
closed field line geometry be satisfied only in the parax-
ial approximation. In other words, to second order in ρ,
it is sufficient to require that the magnetic axis be closed
and the differential equation (6) for the periodic func-
tions a, b, k, ∆0, ∆1, and Γ2 be satisfied. However, we will
take a different approach.

The mirror-image symmetry of a magnetic configu-
ration, i.e., the symmetry of a magnetic surface with
respect to a certain plane perpendicular to the magnetic
axis (e.g., the y = 0 plane), guarantees that the magnetic
field lines are closed [15] and requires that the functions
B0, η, and k be even functions of s (provided that the arc
length of the magnetic axis is measured from the mir-
ror-image symmetry plane).

Unfortunately, this requirement contradicts the first-
order isometry condition (8). Let us try to make them as
consistent as possible. This can be done in the follow-
ing way. We consider a TLMS that has several periods,
i.e., is composed of several identical curvilinear sub-
systems. We assume that each subsystem consists of
two symmetric parts such that the constant C1 is posi-
tive in the first half and is negative (–C1) in the second
half. We also assume that the constant changes sign at
the magnetic field maxima B0 max, at which  = 0.
Under these assumptions, from Eq. (8), we see that the
curvature is a continuous function and, in Eq. (9), we
can set ∆1 = 0 for simplicity, in which case Eq. (9)
becomes independent of the sign of C1.

Of course, a TLMS constructed in this way is not
exactly isometric. This can be seen, e.g., from the
expression for the contours of constant magnetic field
strength B on an equilibrium magnetic surface (see the
end of Section 2.2). It can nevertheless be hoped that
the deviation from isometry will be small. At least, the
most dangerous particles (those that are most deeply
trapped in local magnetic wells) will move in an essen-
tially isometric field and thus will not lead to superba-
nana losses. In addition, a break in the curvature indi-
cates that the solution obtained is actually nonanalytic
in the third and higher orders in the paraxial approxima-
tion. However, in our simulations, this circumstance did
not cause any confusion, because the paraxial approxi-
mation is used merely to determine the magnetic sur-
face, the coordinates on which are expanded in a series
in poloidal and toroidal harmonics. However, since
these expansions are analytic functions, we could natu-
rally use them as the boundary conditions in the VMEC
code.

B0'
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Hence, in order to construct a sectionally isometric
TLMS, we solved Eqs. (2) and (8) (in which we took
into account the above change of the sign of C1) and
Eq. (9) (in which we set ∆1 = C2 = 0). The functions ∆0
and Γ2 were calculated from the relationships

which satisfy Eqs. (5) and (6). As may be seen, there
remains considerable freedom in searching for the solu-
tion, because there is one equation, namely, Eq. (9), for
two unknown function, a and b.

For convenience in numerical solution, we repre-

sented the functions a and b as a = exp(u + v ),

b = exp(u – v ). The magnetic field at the axis,

B0 = B0 max exp(–2u), was determined in terms of a
periodic function u, which was specified as the sum of
several harmonics, u = D2(cos2s – 1) + D4(cos4s – 1) +
D3 (cos3s – cos s) + D5(cos5s – cos s), over one period
of the system. The arc length s of the magnetic axis over
one period was nondimensionalized in such a way that

∆0
ka
2

------ b
2

a
2

b
2

+
----------------– I ,–=

Γ2
ka
2

------ a
2

a
2

b
2

+
----------------– I ,+=

I ' ka
ab

a
2

b
2

+( )
2

----------------------- a'b ab'–( ) bb'

a
2

b
2

+
----------------– ,=

1

πB0 max

---------------------

1

πB0 max

---------------------

86420–2–4–6–8

y

x

–6

–4

–2

0

2

4

6

8

Fig. 1. Magnetic axis of an 8-period toroidally linked mirror
system.
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the function u was 2π-periodic. At the points s = 0, π,
and 2π, at which u = u' = 0, the magnetic field has max-
ima. Equations (2) and (9) for the unknown function v
were solved with the initial conditions v  = v ' = 0 at s = 0
(which corresponds to circular magnetic surfaces). By
varying the constants D and C1, we were able to obtain
a periodic solution and to close the magnetic axis.

Figure 1 shows the shape of the magnetic axis in an

8-period TLMS with C1/  = 0.257592, D2 =
−0.420341, D3 = 3.86782 × 10–2, D4 = –0.949148 × 10–1,
and D5 = 3.46073 × 10–2. We can see that the angular
separation between the mirror-image symmetry
planes is 22.5°. Figure 2 illustrates how functions a
and b, the magnetic field strength at the magnetic axis,
the ratio of semiaxes a/b, the magnetic axis curvature,
and the displacement and triangularity of the magnetic
surface (the last three functions being normalized to

) depend on the arc length over one period of
the system.
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Fig. 2. Calculated dependences of a, b, B0, a/b, k, ∆0, and
Γ2 on the coordinate along the magnetic axis.
3. CALCULATIONS OF THE MAGNETIC 
CONFIGURATION AND PARTICLE 

CONFINEMENT WITH THE VMEC CODE

Having calculated functions a, b, k, ∆0, and Γ2, we
can use expressions (4) as a parametric representation
of the boundary magnetic surface of a configuration
one of the eight periods of which is shown in Fig. 3. On
the boundary magnetic surface, we plot the magnetic
field lines and the isomagnetic contours B = const in
vacuum. The lines and the contours are all seen to
enclose the magnetic axis.

Then, we expand the cylindrical coordinates R and z
on the boundary magnetic surface in Fourier series: R =

cos(mθ – nϕ), and z =

sin(mθ – nϕ), where R is the dis-
tance from the z, ϕ is the toroidal angle, and θ is the
Boozer angular coordinate in the paraxial approxima-
tion (see Section 2). The resulting sets of coefficients
Rmn and zmn can be used as input to the VMEC code. In
order for the code to calculate a sufficiently smooth
boundary magnetic surface over one period of the sys-
tem, it was necessary to use a large number of Fourier
harmonics (M = 7, N = 30).

Figure 4 shows isomagnetic contours calculated for
β = 0.1% in the plane (θ, ζ) of Boozer coordinates on a
magnetic surface with a radius equal to 0.9 of the
plasma radius. We can see that, in a TLMS, isomagnetic
contours are symmetric with respect to the vertical line
at which the magnetic field is maximum (in the middle
of the period). With sufficient accuracy, isomagnetic
contours in each half-period possess the translational
symmetry in the toroidal direction.

Figure 5 shows the contours of  = const cal-

culated at β = 0.1% in Boozer polar coordinates (ρ, θ)
in an arbitrary cross section of the magnetic surface. In
these coordinates, the magnetic surfaces are concentric

circles. The contours of  = const are also seen to

be nested circles. It may therefore be concluded that we
have actually arrived at equilibrium magnetic surfaces
in a magnetic mirror configuration with closed mag-
netic field lines.

Figure 6 shows the contours J|| =  = const of the

longitudinal adiabatic invariant calculated at β = 0.1%
for different pitch angles of the trapped particles (i.e.,
for different mirror ratios Bref /Bmin, where Bref is the
magnetic field strength at the reflection point). We can
immediately see the omnigeneity of most of the trapped
particles: the contours J|| = const coincide with the equi-
librium magnetic surfaces (the concentric circles in
Fig. 5). This provides clear evidence for good confine-
ment of the trapped particles, which constitute the
majority of the particles in a TLMS.

Rmnn N–=
N∑m 0=

M∑
zmnn N–=

N∑m 0=
M∑

dl/B∫°

dl/B∫°

vdl∫°
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Fig. 3. Boundary magnetic surface over one period of a toroidally linked mirror system.
3.1. Particle Confinement

In the VMEC code, the particle confinement quality
is controlled by the following universal procedure. The
reactor-scale sizes and relevant magnetic fields are
automatically assigned to the mirror system. The drift
trajectories of model 3.6-MeV α-particles that start
with random velocities from random positions at a
given magnetic surface are traced until the particles
escape from the interior of the boundary magnetic sur-
face. The times at which the particles escape through
the boundary magnetic surface and the total number of
such particles are stored in the code. The table presents
the parameters of the TLMS that were used in simula-
tions, and Fig. 7 illustrates the dynamics of the losses of
particles starting from three magnetic surfaces. Figure
7 shows that there is good particle confinement in a
TLMS with a large mirror ratio. Note that fairly rapid
losses of a small number of particles starting from mag-
netic surfaces with large radii is presumably associated
with the fact that the isometry condition at these sur-
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
faces is satisfied somewhat inexactly, which gives rise
to small “isomagnetic islands” near the extremes of the
magnetic field (Fig. 4). The calculated results are found
to agree fairly well with the results obtained in analo-
gous simulations of optimized stellarators [16].

Parameters of a toroidally linked mirror system

Aspect ratio 20.65

Plasma volume 469.5 m3

Major radius (min/max) 18.63 m/24.78 m

Volume-averaged minor radius 1.114 m

Average magnetic field 5 T

Mirror ratio at the magnetic axis 5.8

Average β value 0.1%
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Fig. 4. Isomagnetic contours in the plane of Boozer angular coordinates over one period of a sectionally isometric confinement sys-
tem.
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Fig. 5. Contours of the integral  = const at β = 0.1%.dl/B∫°
3.2. Equilibrium Calculations

The VMEC code was devised to calculate plasma
equilibria in devices with a nonzero rotational trans-
form. Our simulations show that, for “mirror-image”
systems with a zero rotational transform, the VMEC
code is capable of making more or less accurate predic-
tions of plasma equilibria at low (less than 1%) β val-
ues. However, the larger the β value, the more signifi-

cant the deviation of the surfaces of  = const

from the magnetic surfaces calculated by the code (the
concentric circles in Fig. 8). Recall that, for the plasma
to be in equilibrium in a system with closed magnetic

field lines, the integral  = U(ρ) should be con-

stant on the magnetic surfaces.

This deviation from equilibrium conditions is associ-
ated with an incorrect formulation of the equilibrium
problem for a system with a zero rotational transform and
a fixed boundary magnetic surface. At low plasma pres-

sures, the condition  = U(ρ) = const is ensured by

dl/B∫°

dl/B∫°

dl/B∫°
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Fig. 6. Contours J|| =  = const for trapped particles reflected at different mirror ratios Bref /Bmin.vdl∫°
the procedure proposed here for specifying the boundary
magnetic surface from the solution to the vacuum prob-
lem. At large β values, the boundary magnetic surface
ceases to be equilibrium, so that its shape should be
adjusted in a desired fashion. In future numerical investi-
HYSICS REPORTS      Vol. 28      No. 9      2002
gations, we are going to determine the shape of the bound-

ary magnetic surface satisfying the condition  =

U(ρ) = const and the isometry condition for a given β
value by selecting the proper set of Fourier harmonics.

dl/B∫°
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4. CONCLUSION

The calculations carried out in this paper for a par-
ticular toroidally linked, magnetic mirror configuration
demonstrate that it is possible to achieve good confine-
ment of drifting particles in a curvilinear mirror system.
An effective way of linking mirror cells into a toroidal
configuration at low plasma pressures is to satisfy the
isometry condition up to second order in the paraxial
approximation. 
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Fig. 7. Time evolution of the number of α-particles, out of
1000, that start from three magnetic surfaces with the radii
r = (1) 0.25, (2) 0.5, and (3) 0.75 and are lost from the sys-
tem.
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Fig. 8. Contours of the integral  = const at β = 1%.dl/B∫°
The calculated results show that it is, in principle,
possible to link mirror cells into a toroidal configura-
tion capable of providing plasma confinement at a toka-
mak level.
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Abstract—Current drive by coaxial helicity injection in the Sustained Spheromak Physics Experiment (SSPX)
is modeled by a hyper-resistive term in Ohm’s law for discharges in which magnetic fluctuations are small (1–
3%). The current on the open magnetic field lines from the applied vacuum bias flux is assumed completely
relaxed; interior to the spheromak, the helicity flux balances the ohmic losses. The poloidal area of the sphero-
mak is found to depend on the strength of the hyper-resistive diffusion coefficient, allowing potentially large
amplifications of the vacuum flux and discharge current. One discharge is examined in detail; the best fit to the
experimental data finds that a limited fraction of the helicity injected into the flux conserver is effectively
applied to current drive interior to the spheromak. © 2002 MAIK “Nauka/Interperiodica”.
1 We dedicate this paper to our late colleague and
warm friend Dmitriœ A. Panov, in memory of our col-
laborations in fusion physics and especially in the phys-
ics of open (mirror) systems.

1. INTRODUCTION
The current in the spheromak toroidal magnetic

configuration can be sustained by injection of helicity
from an electrostatic coaxial gun. (References to the
extensive spheromak literature can be found in [1, 2].)
The mechanism is a magnetic dynamo arising from cor-
related magnetic and velocity fluctuations. The result-
ing helicity source in Ohm’s law yields a time-averaged
steady state configuration. Such sustainment has been
studied in several experiments, including CTX [3],
FACT [4], SPHEX [5], and SSPX [6].

The current drive source is the injection of magnetic
helicity into the flux-conserving wall surrounding the
spheromak [7]. The helicity is then coupled into the
spheromak from open field lines that intersect the flux
conserver. This concept of a primarily axisymmetric
spheromak is valid when magnetic fluctuations are not
too large, so that a mean-field model is a good represen-
tation of the flux surfaces. Consequently, the helicity
density inside the spheromak separatrix is a flux func-
tion and its transport across flux surfaces is enhanced
by the dynamo effect. If the coupling of the fluctuations
to the plasma is of sufficiently small scale, it can then
be represented as a current diffusion; the resulting
dynamo in Ohm’s law can be described by a hyper-
resistivity [8].

Experimental discharges run in three phases. The
first phase, formation of the spheromak, is accompa-
nied with significant MHD activity and, thus, cannot be
modeled with the present theory. The second phase,
sustainment, generally has moderate levels of MHD

1 This article was submitted by the authors in English.
1063-780X/02/2809- $22.00 © 0765
activity and can be suitable for modeling with hyper-
resistivity. The third phase, decay, generally has
increasing MHD activity and terminates with an MHD
event; it is thus not suitable for modeling with this the-
ory.

In this paper, we apply the hyper-resistive model to
the plasma sustained in the Sustained Spheromak Phys-
ics Experiment (SSPX) (Fig. 1), under conditions in
which the magnetic fluctuations (at the wall) are ~1–
3% [6]. It is with these conditions that the core electron
temperatures exceed 100 eV during sustainment.
Equally important is that the electron temperature for
these conditions is a flux function with a profile peaked
on the magnetic axis. The flux dependence of this pro-
file was obtained by comparing Thomson scattering
measurements with an equilibrium reconstruction,
using the CalTrans/Corsica code and the magnetic
probe data [6, 9].

Many discharges in SSPX can be fit with a hyper-
resistivity model, although more experimental work will
be required to confirm this hypothesis of current diffu-
sion. In the present paper, a simple, ad hoc hyper-resis-
tive coefficient is used to fit the limited set of data, yield-
ing an estimate of the magnitude of this coefficient. In
future work, this result will be expanded with calcula-
tions from a large set of experimental data and compared
with nonlinear theories that calculate the hyper-resistiv-
ity coefficient explicitly [10–13]. Issues of energy con-
finement consistent with flux-surface breaking by the
current drive are also left to future work.

2. OHM’S LAW WITH HYPER-RESISTIVITY

Ohm’s law with hyper-resistivity has the general
form [8]

(1)E v B×+ η j
b̂
B
---—– Λ—λ u– —λ×( )⋅ R,≡=
2002 MAIK “Nauka/Interperiodica”
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where λ = µ0j · B/B2, Λ is an arbitrary positive function
of position, and u is an arbitrary vector function of posi-
tion. In a force-free toroidal plasma that was the basis
of the work in [8], λ is a flux function so the term u × —λ
will vanish in the surface-averaged Ohm’s law. In this
work, we assume that, with a pressure gradient, λ must
remain a flux function; consequently, we choose

(2)

where the average is defined as

(3)

In addition, the velocity u can now be chosen for con-
venience; we choose it (in the Appendix) to simplify the
classical transport associated with hyper-resistivity.
Clearly, this is ad hoc; the only justification is that it
leads to transport equations without an explicit depen-
dence on the unknown velocity u [14]. It should be
pointed out that this procedure differs from that used by
Ward and Jardin [15]; their independent variable
remained j||/B and, then, they used u to transform
Ohm’s law into a proper 1D equation. In what follows,
we choose Λ to be a flux function as are all other trans-
port coefficients. For this present study, it is further
assumed to be a constant.

λ µ0 j B⋅〈 〉 / B B⋅〈 〉 ,=

…〈 〉 …( ) ld
B
----   

ld
B

 ----. ∫°∫°  =                             

Injector outer
electrode

Injector inner
electrode

Injector discharge 
region

Vacuum

Divertor

Flux
conserver

Spheromak

1 m
plasma

Fig. 1. Cross section of the SSPX spheromak. Bias mag-
netic coils inside the inner electrode (cathode) provide the
flux necessary for electrostatic helicity injection; external
coils allow shaping of the vacuum flux surfaces, providing
experimental flexibility. A slot on the midplane of the spher-
omak plasma is used for diagnostic access. Locations of
magnetic probes in the flux conserver wall are shown as
small circles. Also shown are the poloidal flux surfaces for
a “generic” spheromak.

vessel
The poloidal component of Faraday’s law together
with the surface average of Eq. (1) provides Ohm’s law

(4)

Another important quantity is the gauge invariant helic-
ity,

(5)

Here, VL is the loop voltage, Ψ is the poloidal flux, and
Φ is the toroidal flux. Note that these equations can
only be used inside the separatrix; in the cold open field
line region, we choose λ to be constant. Of course,
other choices could be made, but, for this work, we
assume this edge plasma to be completely “relaxed”
and can supply helicity at whatever rate required to
drive the spheromak plasma current.

Note that the surface averaged currents appearing
in Eq. (4) are second order in Φ. Without hyper-resistiv-
ity, Eq. (4) is second order in flux and needs only a sin-
gle boundary condition at the edge since the equation is
singular at the axis with natural boundary conditions.
With the addition of hyper-resistivity, the equation
becomes fourth order and needs an additional boundary
condition at the edge. Again, the axis takes care of
itself. For this free boundary calculation, we choose
one boundary condition to be the value of the loop volt-
age. In fact, this choice is not arbitrary. It is constrained
to synchronize the equilibrium and Ohm’s law. Specif-
ically, it is constrained to force the poloidal flux at the
separatrix of the plasma as computed in Eq. (4) to be
equal to that computed by the free boundary equilib-
rium solver needed to complete the dynamical calcula-
tion. For this work the additional boundary condition is
the value of λ at the edge, since that is basically set by
the gun current and gun flux. Another choice could be
the rate of helicity injection across the separatrix. There
is one additional condition, namely the value of the tor-
oidal flux across the spheromak, Φm; this is determined
by demanding that F = RBtor be continuous across the
plasma separatrix.

The formal procedure for obtaining Eq. (4) was to
use a coordinate system in which the toroidal flux is the
independent coordinate. As such, from the remaining
components of Faraday’s law [14], we learn that the
fluid velocity relative to this moving coordinate system
is given by

(6)

This result will then be used in the Appendix to calcu-
late the hyper-resistive correction to classical transport.
Finally, in order to work with a fixed coordinate system,

∂Ψ
∂t

-------- V L=

=  2π η J B⋅〈 〉
B —ϕ⋅〈 〉

---------------------- ∂
∂Φ
-------Λ —Φ 2〈 〉 ∂V

∂Φ
------- ∂λ

∂Φ
-------– .

K Ψsep Ψ–( ) Φ.d

0

Φ

∫=

v —Φ⋅ 2πR
2R —ϕ⋅〈 〉 V L–( ).=
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we use the dimensionless toroidal flux,  = Φ/Φm, as
the independent coordinate.

Next, we consider the properties of Eq. (4). There
are two time scales; in one of them, the first term on the
right-hand side balances the left-hand side producing
the usual L/R time; in the other, the last term on the
right-hand side does the balancing producing a hyper-
resistive time scale. Now, to describe the behavior of
this equation, it is easiest to consider the limit in which
Λ is “large” compared with the resistivity. In this case,
Ψ evolves until the two terms on the right-hand side
balance; this is accomplished by both flattening the λ
profile and increasing the poloidal area of the sphero-
mak. As a consequence, the flux hole along the geomet-
ric axis contracts and the difference in poloidal flux
across the plasma amplifies. Clearly, in the opposite
limit where the resistivity is “large”, the hole expands,
the λ profile steepens, and the plasma area shrinks.
Since we are not interested in the specific dynamics of
hyper-resistivity, but rather in its time-averaged behav-
ior only, the time asymptotic results of Eq. (4), where
the two terms balance, will be compared with the exper-
iment. Further, since the duration of the sustainment
phase of the experiment usually exceeds the L/R time,
and since the experimental data indicates that the
plasma is in equilibrium or evolving slowly, we can
compare with the theory in steady state.

3. APPLICATION TO THE SSPX EXPERIMENT

In SSPX, a spheromak is formed and sustained by
coaxial helicity injection from a “gun” operated at a
current Igun also known as the discharge current, and
magnetic flux Φgun generated by external power sys-
tems. The rate of helicity injection into the flux con-
server is 2ΦgunVgun, where Vgun is the gun voltage. The
helicity is injected onto the open magnetic field lines
which pass through the flux conserver wall. Some frac-
tion of the helicity is then transferred to the spheromak,
where it maintains the plasma current; the remainder is
lost in the sheaths at the walls and to ohmic dissipation
on the open lines. In the following, we will not model
the mechanisms for the transfer from open lines;
instead, we determine the helicity required to sustain
spheromaks over a parameter range including those
measured in the experiment. Calculation of the rate of
helicity crossing the separatrix at the experimental cur-
rent is then compared with 2ΦgunVgun, determining the
fraction of Vgun consumed by sustaining the spheromak.

The time history of the discharge analyzed here is
shown in Fig. 2. SSPX has been designed [9] with a
flexible bias magnetic field system, which allows sus-
tained operation with λgun = µ0Igun/Φgun comparable to
the lowest eigenvalue, λFC, of the flux conserver, calcu-
lated by the solution of — × B = λFCB. Further, the value
of λ(Φ) in the plasma (including open field lines) must
span the lowest eigenvalue [16], 9.8 m–1, in SSPX. To

Φ̂
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replace helicity losses in the spheromak, λ on the sepa-
ratrix must be greater than this value. Consequently,
operating near the eigenvalue allows sustainment with
weak gradients in λ throughout the plasma. As the drive
for resistive modes is proportional to this gradient [17],
magnetic fluctuations are expected and found to have a
low amplitude. These fluctuations (as measured by wall
currents flowing in rods bridging the diagnostic slot in
the flux conserver wall, Fig. 1) show several low toroi-
dal mode numbers, n = 1, 2, 3, and 4 (Fig. 3). Their
interference leads to coherence times comparable to the
rotation time of the discharge. This combination of
fluctuations with low amplitude and low coherence are
generally consistent with a current diffusion model,
although further measurements will be needed to jus-
tify this assumption. Electron temperature measure-
ments using Thomson scattering show that this dis-
charge has peaked electron temperatures of 50–80 eV,
rather less than the maximum observed in the “best”
discharges; for modeling purposes, we take 50 eV on
the magnetic axis and with Zeff = 2.5 and assume the
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Fig. 2. Time history of shot no. 7052. Shown are the dis-
charge current and voltage, as well as the poloidal magnetic
field at the flux conserver wall just above the diagnostic slot
and on the bottom of the flux conserver; λgun = 10.3 m–1.
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Fig. 3. Fluctuations in the wall current measured at 12 azimuthal locations in the rods bridging the diagnostic slot (Rogowski sig-
nals, shot no. 7052). The top and bottom traces are the same signal, connected with lines that indicate relative times at each azimuth.
temperature profile to be linear in , dropping to 15 eV
on the open field lines.

We apply our analysis to this discharge at 1.8 ms,
when the discharge has reached a quasi-steady state,
although possibly with a slowly varying current profile.
The starting point is the MHD equilibrium found by fit-
ting the plasma current profile and current to the poloi-
dal magnetic field data from the probes identified in
Fig. 1. An acceptable reconstruction has λ taking the

form λ( ) = λgun(1 + a )/(1 + a), where , the
poloidal magnetic flux normalized to the flux between
the separatrix and magnetic axis, ranges from 0 on the
magnetic axis to 1 on the separatrix. The value of λ on
the open field lines is then λgun. (We have found that the
current, flux, and average λ are insensitive to the pre-
cise form of the fit.) For this particular discharge, we
find that the fraction of the gun current passing through
the hole is 142 kA, the toroidal plasma current inside
the separatrix is 145 kA, and that λgun = 10.3 m–1 with
a = 0.29.

The solution of Ohm’s law with the resistivity pro-
file determined by the electron temperature, together
with the free-boundary equilibrium for the SSPX
geometry, requires knowing the vacuum magnetic flux
distribution frozen into the cathode and flux conserver

Φ̂

Ψ̂ Ψ̂2 Ψ̂
walls; this is provided by the initial vacuum bias field.
Together with the discharge current, the vacuum flux
yields λgun. One further parameter needs to be specified:
Λ, or the toroidal plasma current in the spheromak, or
the helicity flux at the separatrix. To compare with
experiment, we evaluate the discharge properties over a
wide range of Λ. The results of the model are then fit to
the discharge by determining Λ which matches the
plasma current determined from the equilibrium fit to
the data. (This effectively fits the experimental mag-
netic probe data, as shown below.)

The flux configuration is shown in Fig. 4 for two
values of Λ (note the change in poloidal area corre-
sponding to large differences in amplification of the
gun flux and current). The values of the gun flux and
current through the hole along the geometric axis are
approximately independent of the spheromak plasma
current, changing somewhat with the electrode inter-
section with the separatrix limiting the open field lines
which encircle the spheromak. As the spheromak cur-
rent increases with the hyper-resistive coefficient, the
magnetic field on and near the geometric axis increases.
To maintain the open flux, the hole radius shrinks, as is
seen in the figure. The radius can be estimated to ~70%
by calculating the flux due to the spheromak current,
approximating it as a toroidal filament on the magnetic
axis.
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1

0.010.001 0.1 1

10

100

0.1

dK/dt, V Wb

Λ, V Wb

0.1

0.01

Φm, Wb

1

1000

Ιconf, kA

(a) (b)

Λ, V Wb

Fig. 5. (a) Toroidal magnetic flux on the separatrix (dashed line) and confined toroidal current (solid line). The applied gun flux
which passes through the hole on the geometric axis varies from 0.017 Wb for Λ = 0.004 to 0.022 Wb for Λ = 1. (b) Helicity injection
rate at the separatrix.

0.010.001 0.1
100
The toroidal flux on the separatrix and the helicity
injected across the separatrix are plotted in Fig. 5. As
the confined current increases with Λ at fixed gun cur-
rent and flux, λ on the magnetic axis approaches the
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flux conserver eigenvalue from below, but the edge
value, λgun, is fixed. Consequently, the helicity is driven
by a weaker gradient, so that the flux and current ampli-
fications increase more slowly than linearly with Λ.
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The measured confined current corresponds to Λ =
0.0091 V Wb. The magnetic field at the wall is com-
pared with probe data in Fig. 6 and is found to be as
good as the fit used to start the calculation. At other val-
ues of Λ, the calculated probe fields are significantly
different. The calculated profiles of λ and q are shown
in Fig. 7 as functions of the normalized poloidal flux.
The lack of low order (m, n) rational surfaces found
from the q profile is consistent with the low amplitude
of magnetic fluctuations.

The calculated rate of helicity transport across the
separatrix is 0.62 V Wb. At the calculated value of the
gun flux which passes through the poloidal hole,
0.017 Wb, the effective voltage applied to the confined
spheromak is 19 V, which is much less than the applied
voltage (≈350 V). Also, the helicity injected into the
spheromak is small compared to the helicity supplied
by the gun. This result follows from the assumed elec-
tron temperature and Zeff , although likely variations in
these will not increase the effective voltage by a large
amount. The fact that the resultant effective voltage
applied to the spheromak is small is consistent with
experimental measurements which find that the bulk of
the voltage drop is across the sheath and along the open
field lines [18].

The helicity drive also depends strongly on λgun,
since the helicity transport across the separatrix is pro-

portional to ∂λ/∂ . As an example, flux surfaces in a
discharge operating at λgun = 14.0 m–1 are shown in
Fig. 8. The best fit to the hyper-resistivity had Λ =
0.0039 V Wb with a helicity injection into the sphero-

Φ̂
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Fig. 6. Calculated poloidal magnetic field at the wall for Λ =
0.0092 (solid line), compared with probe data (crosses) for
t = 1.8 ms (shot no. 7052). The probe locations (Fig. 1) are
numbered from 1 at the top to 20 at the bottom of the flux
conserver. Missing data points correspond to locations
which do not presently contain probes.
mak of 1.70 V Wb, corresponding to an effective helic-
ity drive voltage of 63 V.

4. DISCUSSION

We have modeled a discharge in SSPX using Ohm’s
law in which the dynamo is approximated by hyper-
resistive diffusion. The approximation is applied within
the spheromak separatrix and assumes that the open-
field region is completely relaxed (with constant λ). In
this limit, helicity transport into the spheromak is deter-
mined by the balance between interior ohmic losses and
the hyper-resistivity. This in turn determines the ampli-
fication of vacuum flux and current by the spheromak.
Comparison of the fit to the experimental data analyzed
here with the total helicity injected into the flux con-
server indicates that only a small fraction is transferred
to the spheromak, with most of the helicity lost in
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Fig. 7. Profiles resulting from the fits to the magnetic probe
data, comparing the results of the initial reconstruction
(dashed line) with the results from the hyper-resistivity cal-
culation (solid line) for Λ =0.0092: (a) λ profile and (b) q
profile.
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sheaths at the walls and in dissipation in the cold
plasma on open field lines.

The spheromak magnetic flux and current shown in
Fig. 5 scale less than linearly with Λ. Further, the values
of Λ needed to fit the few discharges analyzed to date
are similar. If this holds in general, the value may pro-
vide significant constraints on the dynamo responsible
for the sustainment. Comparison of this value with cal-
culations of hyper-resistive coefficients will help
address the issue of whether the experimentally
observed current is limited by helicity balance in the
spheromak, the coupling of helicity from the edge
plasma column, or both.

Within the hyper-resistive model, the amplification
of applied flux and current are potentially quite large,
providing the possibility that losses on the open lines
can be reduced significantly relative to those in the
spheromak. An important caution is that the limiting
factor may be the coupling from the open field lines to
the spheromak, an issue not addressed here. There is
evidence that a strong n = 1 mode can drive this cou-
pling [19, 20], but improved field and flux amplification
requires that magnetic fluctuations not badly open the
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Fig. 8. Poloidal flux surfaces for shot no. 7226 at 1.8 ms. For
this discharge, the gun current along the geometric axis was
calculated to be 0.155 MA, the confined current was
0.267 MA, and λgun = 14.0 m–1.
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mean-field flux surfaces, which would allow large
energy losses and produce low electron temperatures
and high resistivity.
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APPENDIX

CLASSICAL TRANSPORT 
DUE TO HYPER-RESISTIVITY

Here, we determine the correction to classical trans-
port due to hyper-resistivity. Classical particle transport
has the form

(A.1)

where

(A.2)

and

(A.3)

Now, with Eq. (6), we see that there are two contribu-
tions to Γ from hyper-resistivity; one is already
accounted for in VL and the other comes from the
explicit dependence on the first term of Eq. (5). The
sum can be written as

(A.4)

where q is the safety factor and F = RBtor . Now, the first
term in the square bracket can be rewritten as

Here, Btor is the toroidal magnetic field and terms has
the unpleasant form depending on uθ,
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This term can be eliminated by the appropriate choice
of uθ. Finally, the hyper-resistive correction has the
form

(A.5)

where Bpol is the poloidal magnetic field.
Note that this is the way the loop voltage comes in

for the usual η driven part, which is what led us to the
specific choice of uθ.
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Abstract—Calculations are presented showing the temperatures expected in a spheromak sustained by contin-
uous injection of helicity, based on a model previously shown to agree with temperatures achieved in sphero-
mak experiments carried out in the 1980's. New experiments with Thomson scattering measurements of elec-
tron temperature will provide an experimental test. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The spheromak is a potentially attractive concept for
compact fusion reactors, either in steady state or pulsed
operation [1]. The unique feature of the spheromak is
the possibility of creating very strong magnetic fields
using an electrostatic Marshall gun to inject helicity
into a metal flux conserver that, in the case of the pulsed
reactor, confines the plasma without the need for exter-
nally produced magnetic fields.

The price paid for these simplifications is magnetic
turbulence associated with relaxation of the injected
currents into a stable Taylor configuration [2]. How-
ever, by injecting helicity at a controlled rate, on time
average, the turbulence needs to be only strong enough
to cause relaxation on the time scale of ohmic decay,
which is the competing process by which a stable state
is distorted into an unstable state. Models based on this
idea appeared to explain temperatures achieved in the
CTX spheromak in the 1980s [3]. Here, we apply the
model to predict temperatures in the new SSPX spher-
omak facility [4].

2. TRANSPORT MODEL

Our calculations employ a heat transport code using
the model of [3]. We refer to that paper and [5] for a
description of the equations. The heat diffusivity χ
includes both a term due to magnetic turbulence (elec-
tron channel) and an ion classical heat diffusion term,
and also a gyrobohm term important at high tempera-
tures but not at temperatures of a few hundred eV antic-
ipated in SSPX.

The term in χ representing magnetic turbulence is
that due to Rechester and Rosenbluth, of the form [6]:

(1)

1 This article was submitted by the authors in English.

χMAG v eLC
δB

2〈 〉
B

2
--------------,=
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where 〈 〉  denotes a space-time average; v e is the elec-
tron thermal speed; and LC = 3a is a magnetic correla-
tion length with spheromak minor radius a, calibrated
to CTX temperature data (a correction to [3], which
gave LC = 5a).

The expression for magnetic fluctuations used in our
transport code is derived in [3, 5]. It is a version of S-
scaling [7], giving

(2)

where S is the Lundquist number (ratio of the properly
averaged ohmic decay time to the Alfvén transit time)
and gP is the enhancement factor. Our formula for gP ,
derived from the Poynting flow of magnetic energy
needed to restore the magnetic field to Taylor’s relaxed
state, causes fluctuations to be enhanced in proportion
to the power driving build up of the magnetic field in
the spheromak [3]. In a steady state, gP ≈ 1. We refer the
reader to [5] for details.

The physical significance of Eq. (1) lies in a calcu-
lation of chaotic wandering of magnetic field lines in
space, giving line lengths L of order [6]

(3)

Then, collisional transport across field lines gives a heat
transport in the radial direction that usually exceeds
parallel transport along field lines: χMAG/a2 > veλ/L2 if
〈δB2〉/B2 < 4π2(LC/λ), where λ is the electron mean free
path. This criterion is satisfied over a wide range of
parameters, and our transport code using Rechester–
Rosenbluth transport seems to explain temperatures
obtained in CTX [3].

δB
2〈 〉

B
2

--------------
gP

S
-----,≈

L
2πa

δB
2〈 〉

B
2

--------------

--------------- 2πa
S
gP

-----.≈=
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3. RESULTS

Figures 1 and 2 show results for buildup of a spher-
omak by gun injection using our heat transport code to
calculate temperatures during buildup. Buildup of the
field is calculated from

(4)

where EMAG is the magnetic energy in the spheromak
assuming approximately a Taylor state and P is the use-
ful fraction of the gun power going toward buildup of
the field energy. We are developing models of P(t) to
represent the constant current power supply in SSPX

dEMAG

dt
---------------- P t( ) η j

2
V ,d∫–=

t, s

Ç, T
í, keV
0.25

0.20

0.15

0.10

0.05

0 0.001 0.002 0.003

Fig. 1. (1) Core temperature and (2) magnetic field evolu-
tion for Zeff = 1 (dashed lines) and 2 (solid lines).

0.004

0.003

0.002

0.001

0 0.001 0.002 0.003
t, s

τ, s

Fig. 2. Ohmic decay time evolution for Zeff = 1 (dashed line)
and 2 (solid line).

2

1

and the spheromak impedance RS giving a voltage V =
IRS in response to a gun current I. Here, we will simply
specify P(t) representative of gun powers measured in
the experiment.

Figure 1 shows the buildup of the magnetic field and
temperature with power input given by

(5)

for a pulse duration t0 = 3 ms. The peak field B = 0.2 T
corresponds to EMAG = 10 kJ in a cylindrical flux con-
server of radius R = 0.5 m and length R.

The ohmic decay power  in Eq. (4) appears

as ohmic heating in the heat transport equation. We
assume constant density n = 1020 m–3. We show results
for two cases, Zeff = 1 and 2. The temperature is not
much affected since Zeff appears in both the ohmic heat-
ing term and the Rechester–Rosenbluth loss term, giv-
ing a maximum temperature T = 0.1 keV near the end
of the pulse.

The magnetic field is affected by Zeff because the
ohmic decay time is affected. The ohmic decay time is
shown in Fig. 2, given by

(6)

We see that τ rises as the temperature rises, allowing
prolonged sustaining of the field even though the power
input is falling by Eq. (5).

4. DISCUSSION

We have carried out calculations of temperatures
expected to be obtained by ohmic heating during
buildup of the magnetic field by gun injection in the
SSPX spheromak. The predicted temperatures, in the
range of 0.1 keV, have previously been observed in
spheromaks during quiet periods or decay but data has
not been available during buildup in SSPX.

Maintaining temperatures sufficient to limit ohmic
losses well below the input power is essential for
buildup to high magnetic fields. Indeed, in our calcula-

tions  is almost constant, so that a power level

sufficient to initiate buildup is sufficient to sustain
buildup for as long as the power lasts. This result fol-
lows from S-scaling, which predicts approximately
constant β with ohmic heating and Rechester–Rosen-
bluth transport [8], giving τ ∝ B2 as shown in Fig. 3.

As we have seen, S-scaling implies magnetic field
lines of long length, of order Sa by Eq. (3), where S ≈
105 in SSPX, or shorter lines that only appear intermit-
tently as flux surfaces open and close, with duty factor
S–1. Recent MHD simulations of spheromaks using the
NIMROD code find much shorter open field lines that

P t( ) 20 MW 1 t
t0
---–=

η j
2

Vd∫

τ
EMAG

η j
2

Vd∫
-------------------.=

η j
2

Vd∫
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persist during gun injection [9]. It is the use of temper-
ature as a diagnostic to distinguish between persistently
short or long field lines that has motivated the calcula-
tions presented here.

Agreement between predictions by our heat trans-
port model and temperature measurements in SSPX
would be encouraging for future research on sphero-
maks. Our χMAG , being collisional in origin, turns out to

0.5

0.4

0.3

0.2

0.1
0.001 0.002 0.0030

t, s

τ/Ç2, arb. units

Fig. 3. Ratio of the ohmic decay time to magnetic energy at
a constant density for Zeff = 1 (dashed line) and 2 (solid
line).
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be similar to classical ion thermal transport (also
included in our code), giving

(7)

where β is the usual ratio of kinetic to magnetic pres-
sure. Classical losses also give constant β with ohmic
heating.

Eventually gyrobohm transport would be expected
to dominate in spheromaks at fields above 1 T [8]. Even
so, reactor studies with our transport model show that
ohmic ignition might be possible at a higher field [1].
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Abstract—Conditions are determined for the stability of a finite-pressure plasma against perturbations local-
ized near a magnetic field line in a magnetic confinement system without average minimum-B. The marginal

stability (ω2 = 0) is achieved at the pressure profile p ∝  U–5/3 (where U = ), provided that the pressure is

lower than a certain critical value above which an unstable incompressible mode in which the displacement as
a function of the coordinate along the field line has zeros appears at some magnetic field line. © 2002 MAIK
“Nauka/Interperiodica”.

ld
B
----∫°
1. In confinement systems with closed magnetic field
lines, the plasma compressibility may play an important
role in MHD-stabilizing convective perturbations. For a
plasma with an isotropic pressure (p⊥  = p|| = p) in a con-
figuration without a magnetic well, the condition for
stability against flute modes has the form [1]

(1)

where U =  and γ = 5/3. The marginal stability con-

dition is

W = 0, (2)

the corresponding marginal pressure profile being

(3)

Criterion (1) is valid, in particular, for a finite-pressure
plasma, β = 2p/B2 ≠ 0 (where the quantity U is to be cal-
culated from an actual equilibrium magnetic field). In
criterion (1), the second stabilizing term, associated
with the plasma compressibility, is important for non-
paraxial systems, in which |—B/B | i |—p/p |. The ine-
quality in criterion (1) imposes a restriction on the
radial pressure profile. If, at the plasma periphery, there
is a separatrix surface (in the immediate vicinity of
which we have U  ∞), then there exist convectively
stable pressure profiles such that the pressure vanishes
at this surface.

As was shown in [2], the plasma equilibrium in an
axisymmetric configuration of the poloidal (meridi-
onal) magnetic field is stable against arbitrary perturba-
tions if (a) condition (1) is satisfied and if (b) the wave
equation describing perturbations with large azimuthal
mode numbers (m  ∞) at any magnetic field line

W — p —U γp
—U( )2

U
---------------- 0,≥+⋅=

ld
B
----∫°

p U
γ–
.∼
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without allowance for the plasma compressibility has
no unstable solutions such that the displacement as a
function of the coordinate along the field line has zeros.
Note that requirement (b) determines the maximum
possible β value consistent with MHD plasma stability.
The results obtained in [3] on a dipole magnetic config-
uration with a levitated current-carrying ring illustrate
how requirements (a) and (b) can be used in the calcu-
lations of the plasma stability.

The use of the stabilizing effect of nonparaxial ele-
ments expands the possibilities of creating MHD stable
systems with closed magnetic field lines. Interest in
such systems is associated, in particular, with a search
for configurations that ensure the lowest possible trans-
port across the magnetic surfaces [4–7]. Thus, in a
closed-line configuration, the role of a nonparaxial sta-
bilizer may be played by a divertor [8, 9]. The objective
of the present paper, which is dedicated to the memory
of D.A. Panov, is to investigate the stability of a finite-
pressure plasma in confinement systems with closed
magnetic field lines (and with a zero rotational trans-
form) by taking into account the effect of the plasma
compressibility and by not restricting the analysis to a
class of axisymmetric configurations of the poloidal
magnetic field. Conditions for stability against pertur-
bations localized near a magnetic field line (or balloon-
ing modes, according to the terminology of [10]) are
derived.1 

2. We consider a localized perturbation with the dis-
placement

(4)

1 In contrast to axisymmetric configurations [2], the fact that, for
general magnetic geometries, stability against such localized
modes is a sufficient condition for stability against arbitrary per-
turbations remains unproved (see also [11]).

X x r( ) iS iωt–( ),exp=
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where

(5)

b is the characteristic transverse dimension of the
plasma, and ∂/∂l is the derivative along the magnetic
field. For simplicity, we restrict ourselves to the case in
which the “azimuthal” component k⊥  of the wave vec-
tor is much larger than its “radial” component. In this

case, we have x =  + , and the displacement

components σ and τ satisfy the equations [10]

(6)

(7)

where ρ is the density, a labels the magnetic surfaces (the

constant pressure surfaces),  = const, κ = k · —a/|—a|

is the normal component of the curvature vector k =
—⊥ (p + B2/2)/B2 of the magnetic field line, and the
prime denotes the derivative with respect to a.

In formulas (6) and (7), the quantity

(8)

which is proportional to ∝ — · x, characterizes the dis-
placement (see [10], Section 6). We express the deriva-

tive  from formula (8) and integrate it along the

magnetic field line (of length L). Then, taking into
account the relationship

(9)

which holds for closed-line configurations, we obtain
the following relationship for the function f:

(10)

—S = k⊥ , k⊥ B⋅ 0, k⊥ x⋅ 0,= =
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From formula (7), we can see that, at the stability
boundary ω2 = 0, the function f is independent of l and
is equal to

(11)

In this case, the normal component σ of the displace-
ment satisfies the integrodifferential equation

(12)

The integral term on the right-hand side of this equation
describes the effect of the plasma compressibility. For
an axisymmetric configuration of the poloidal magnetic
field, Eq. (12) passes over to Eq. (6.28) from [2].

We integrate Eq. (12) along the field line. Taking
into account expression (11), we obtain

(13)

Assuming that f0 ≠ 0, we arrive at the equation

(14)

The relationships κ = (p' + BB')  and U ' = −  +

 put Eq. (14) in the form

(15)

which coincides with marginal stability condition (2).
Hence, marginal stability is achieved at pressure profile
(3). Note that Eq. (12) has the solution σ = const, which
indicates that, at the stability boundary, the perturbation
is of a flute nature. Moreover, the constancy of σ is a
consequence of the plasma compressibility: for an
incompressible perturbation (f0 = 0), there is no such
solution for β ≠ 0.

It can be shown that, in accordance with [1], mar-
ginal stability condition (15) for a confinement system
without a magnetic well is valid for an arbitrary rela-
tionship between the components of the wave vector k⊥
of localized perturbation (4).

3. Equations (6) and (7) may also have solutions
with ω2 < 0 (i.e., solutions with f = 0, which are not of

a flute nature) when  +  > 0. However, if one and
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only one of the eigenvalues λ1 < λ2 < … of the problem

(16)

(17)

(where r(l) is a positive function2) is negative,

(18)

(19)

then Eqs. (6) and (7) have no such unstable solutions.
The negative eigenvalue λ1 corresponds to an unstable
flute perturbation (the first eigenfunction σ = σ1 has no
zeros) in an incompressible plasma, i.e., to a confine-
ment system without average minimum-B. However,
by integrating Eq. (16), we can see that the constant

sign of σ1 yields the inequality λ1 ≠ 0 for  ≠ 0.

Consequently, according to relationship (10), the func-
tion f cannot be identically zero; i.e., there exists no
solution with f = 0.3 However, as was shown above, a
compressible flute perturbation is stable. The inequality
in condition (19) indicates the absence of unstable
incompressible modes such that the displacement as a
function of the coordinate along the field line has zeros.
Condition (19) is valid for moderate pressures; the crit-
ical pressure at the given magnetic field line is β = β∗ ,
at which the eigenvalue λ2 passes through zero.

4. Hence, it has been shown that, in a confinement
system without a magnetic well, the marginal stability
against perturbations of class (4) is achieved at pressure
profile (3) provided that β is lower than a certain critical
value above which an unstable incompressible pertur-
bation with an alternating-sign displacement σ(l)
appears at some magnetic field line. Since condition (1)
refers to any β value, it may be said that the flute mode
is the most dangerous.

Note that, under condition (1), the most “danger-
ous” (from the standpoint of the lowest possible pres-
sure) magnetic field lines are those lying on a magnetic

2 Since we are interested exclusively in the signs of the eigenval-
ues, the form of this function is unimportant for further analysis.

3 For a flute perturbation, the function f equals zero at λ1 = 0, in
which case Eq. (13) at the stability boundary is automatically
valid because both its sides contain f0 = 0. The requirement λ1 ≥ 0
is reflected in the stability criteria for a closed-line confinement
system with a magnetic well (see [11–14]).

∂
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2κ p'
B —a
--------------+ 
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σ l L+( ) σ l( )=
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λ2 0,>

κσ
—a
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B
----∫°
surface at which the pressure gradient is large and the
magnetic field in regions of unfavorable field line cur-
vature is weak (in a magnetic confinement system with
a divertor, these are magnetic field lines near the sepa-
ratrix surface).
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On the Boundary of an Equilibrium Plasma 
near the Magnetic Separatrix in a Tokamak1
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Abstract—It is shown that plasma rotation near the tokamak the wall can result in a shift of the isobaric sepa-
ratrix with respect to the magnetic one. This shift is calculated analytically, and this effect is exemplified by
simple plasma equilibrium states. The plasma rotation that causes the shift of the separatrices can be driven
either by a nonzero radial electric field at the plasma edge or by the Hall effect, which may take place even in
the absence of the electric field. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

In the traditional theory of a high-temperature
plasma equilibrium, the separatrix that separates nested
toroidal magnetic surfaces from open field lines (which
is characteristic of present-day tokamaks with a diver-
tor) is regarded as a boundary of the “hot” plasma. This
can be explained by simple kinetic considerations,
according to which the plasma particles move roughly
along the magnetic surfaces. Under the same consider-
ations, the appearance of the separatrix restricts the
maximum possible plasma pressure in a tokamak with
a limiter [1]. In fact, it is well known that the drift orbits
of charged particles in a tokamak may significantly
deviate from the magnetic surfaces. Nevertheless, in
static equilibrium, the plasma pressure is a function of
the magnetic surface, so that the isobars can deviate
from the projections of the magnetic surfaces onto the
cross section of the plasma column only when the
plasma exhibits a macroscopic motion (rotation).

In a rotating equilibrium plasma, the isobaric sur-
faces are known to deviate from the magnetic surfaces
(see, e.g., [2–4]). On the other hand, it has been estab-
lished experimentally that, in the immediate vicinity of
the magnetic separatrix, the plasma pressure may be
finite and the plasma rotation velocity may be nonzero
(see, e.g., [5]); as a result, the boundary of the hot
plasma and the magnetic separatrix may, in principle,
be not coincident. To the best of our knowledge, this
circumstance has not yet been extensively discussed in
the literature, although it is clearly important to take it
into account to correctly calculate equilibrium configu-
rations, to infer true conclusions about the limiting val-
ues of the equilibrium plasma parameters, etc.

Rotation of the tokamak edge plasma is, as a rule,
driven by a nonzero electric field near the wall. This

1 This paper is devoted to the memory of Dmitriœ Aleksandrovich
Panov, a highly skilled physicist and charming man.
1063-780X/02/2809- $22.00 © 20779
electric field can be associated with different effects,
e.g., dominant loss of suprathermal ions, which have
“wider” orbits in the wall region [6], and distinctive
features of the boundary conditions in the divertor layer
of a tokamak (with allowance for the longitudinal ion
fluxes onto the divertor plates) [7, 8]. However, even in
the idealized case of a high longitudinal conductivity of
the plasma in the divertor layer (i.e., of a constant elec-
tric potential outside the separatrix), the plasma ions
can undergo rotational motion (this possible rotation is
described by multifluid MHD models).

Here, we analyze the possible difference between
the magnetic and isobaric separatrices due to plasma
edge rotation. Depending on the relationships between
the equilibrium plasma parameters, the separatrix that
separates nested isobaric surfaces from unclosed iso-
bars and is regarded as a physical boundary of the con-
fined hot plasma can lie either inside (an unfavorable
case) or outside (a favorable case) the magnetic separa-
trix. The analysis is carried out on the basis of the Hall
magnetohydrodynamics (HMHD) model, which is one
of the simplest two-fluid models [9] suitable for
describing the steady states of a moving plasma [9–11].
Simple analytic examples of equilibria are presented
that demonstrate the effect of different spatial positions
of the magnetic and isobaric separatrices.

2. AXISYMMETRIC PLASMA EQUILIBRIUM

Using the HMHD model, we consider the simplest
case of an equilibrium tokamak plasma rotating only in
the toroidal direction. We employ a cylindrical coordi-
nate system {r, ζ, z}, where the radial coordinate r is
measured from the z-axis, which is the symmetry axis
of the torus, and ζ is the toroidal angular coordinate (the
axial symmetry of the tokamak implies that ∂ζ  0).
002 MAIK “Nauka/Interperiodica”
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For a steady-state plasma (∂t  0), the set of
HMHD equations has the following form (see, e.g.,
[11]):

(1)

(2)

(3)

(4)

Here, we use the standard notation: v is the flow veloc-
ity of the ions of mass mi; ve is the electron flow veloc-
ity; and the quantity ε accounts for the Hall effect,
which results from the two-fluid nature of the plasma
(in the limit ε  0, the HMHD equations are reduced
to the conventional one-fluid MHD equations). Equa-
tion (2) can be integrated by introducing the electric
potential φ:

(5)

which yields the relationship B—φ = 0, indicating that φ
is a function of the magnetic surface,

(6)

where Ψ is the label of the magnetic surface described
by the equation Ψ(r, z) = const.

We represent the magnetic field as

B = —Ψ × —ζ + I —ζ, (7)

where the magnetic surface label Ψ is chosen to be the
normalized poloidal magnetic flux. The toroidal plasma
rotation velocity can be written in the form

(8)

which satisfies Eq. (4) by virtue of the axial symmetry
of the problem.

Substituting expressions (7) and (8) into Eq. (1)
yields

(9)

where

The vector equation (9) is equivalent to the three scalar
equations

(10)

I = I(Ψ), (11)

ρ—v2

2
----- ρ —( v ) v×× — p

1
4π
------B — B×( )×+ + + 0,=

— ve B×( )× 0,=

ve v
ε

4πρ
----------—– B× , ε

mic
e

--------,= =

— ρv( )⋅ 0.=

ve B× c—φ,=

φ φ Ψ( ),=

v Ω r z,( )r
2—ζ ,=

ρΩ2
r—r– — p

1
4π
------ 1

r
2

----∆*Ψ—Ψ
+ +

+
I

r
2

----—I —ζ —I —Ψ×[ ]⋅( )—ζ– 
 0,=

∆* r
∂
∂r
----- 1

r
--- ∂

∂r
----- 

  ∂2

∂z
2

-------.+=

∆*Ψ II ' 4πr
2 ∂Ψp( )r+ + 0,=
(12)

Equation (10) is the Grad–Shafranov equation in
which the total derivative of the pressure with respect to
Ψ is replaced by the partial derivative with respect to Ψ
at constant r. The quantity Ω has the meaning of the
angular frequency of the toroidal rotation of the ions.
Equation (12) clearly shows that, for a nonzero rotation
frequency (Ω ≠ 0), the plasma pressure is no longer a
function of the magnetic surface; i.e., we have p =
p(Ψ, r).

From Eqs. (5) and (3), we obtain the following rela-
tionship between Ω and (∂Ψp)r:

(13)

where, for convenience, we have introduced the func-
tion ω(Ψ) = cφ'(Ψ), which determines the electric field
(here and below, the prime denotes the derivative with
respect to Ψ). In the absence of the Hall effect (ε  0),
the quantities Ω and ω coincide. When the Hall effect
is taken into account, the actual angular rotation fre-
quency Ω differs from the derivative of the electric
potential (ω = cφ').

3. PATTERN OF ISOBARS NEAR THE MAGNETIC 
SEPARATRIX

We consider the condition for the existence of a sep-
aratrix in the cross section of the family of magnetic
surfaces Ψ(r, z) = const. We do not specify the function
Ψ but assume that it is a solution to Grad–Shafranov
equation (10). The singular points of the family of mag-
netic surfaces should satisfy the vector equation —Ψ = 0.
Taking into account representation (7), we see that this
equation is equivalent to the following two scalar
equations:

(14)

The nested magnetic surfaces have at least one singular
point—the magnetic axis (r = R, z = 0). For simplicity,
we also assume that, in the cross section of the mag-
netic surfaces, there is a vertical separatrix with the
radius r = rs , at which we have Br = 0. Under this
assumption, substituting r = rs into the first of Eqs. (14)
allows us to find the z coordinate Zm of the X-point at
the magnetic separatrix.

∂p
∂r
------ 

 
Ψ

ρΩ2
r.=

Ω ω Ψ( ) ε
ρ
--- ∂Ψp( )r+ ,=

∂Ψ
∂r
-------- 

 
z

rBz 0,= =

∂Ψ
∂z
-------- 

 
r

rBr– 0.= =
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Analogously, taking into account Eq. (12), we
obtain the following equations for the isobaric surfaces
p(r, z) = const:

(15)

We can see that the family of isobaric surfaces also pos-
sesses a vertical separatrix with r = rs , but the ordinate
Zp of the isobaric X-point for Ω ≠ 0 can differ from the
ordinate of the magnetic X-point.

Let us determine the relative shift of the isobaric and
magnetic X-points. To do this, we can retain only the
lowest order term in the expansion of Bz in powers of z
at r = rs ,

(16)

because, for an up/down symmetric plasma configura-
tion, we have (∂zBzs)|z = 0 = 0. Here and below, the sub-
script s refers to the values of the quantities at the ver-
tical separatrix, i.e., at r = rs . Inserting expansion (16)
for Bzs into the first of Eqs. (14), we obtain

(17)

With allowance for relationships (16) and (17), the
first of Eqs. (15) gives

(18)

We introduce the relative shift of the isobaric and mag-
netic X-points,

(19)

to rewrite Eq. (18) in the form

(20)

Assuming that |δ| & 1, we obtain from Eq. (20)

(21)

When the electric field vanishes at the magnetic sep-
aratrix (ωs = 0), the plasma rotation in the separatrix

∂p
∂r
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 
z

∂p
∂Ψ
-------- 

 
r

∂Ψ
∂r
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 
z

∂p
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 
Ψ
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=  rBz
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 
r

rρΩ2
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 
r
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-------- 

 
r
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-------- 

 
r
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 
r

– 0.= = =

Bzs Bz0
1
2
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Bzs

∂z
2
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 
 
 

z 0=

z
2
,+≈

∂2
Bzs

∂z
2

------------
 
 
 

z 0=

2Bz0

Zm
2

-----------.–≈

Bz0 1
Z p

2

Zm
2

------–
 
 
  ∂p

∂Ψ
-------- 

 
r

s

ρsΩs
2

0.≈+

δ
Z p Zm–

Zm

------------------,=

1 1 δ+( )2
–

ρsΩs
2

Bz0 ∂p/∂Ψ( )r s
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δ
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2

2Bz0 ∂p/∂Ψ( )r s

--------------------------------------.≈
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region is associated with the two-fluid nature of the
plasma [see Eq. (13)]:

(22)

Substituting the quantity (∂p/∂Ψ)r |s extracted from for-
mula (22) into relationship (21), we obtain the relative
shift of the isobaric and magnetic X-points:

(23)

where  is the ion cyclotron frequency in the poloi-
dal magnetic field Bz0. Expression (23) clearly shows
that, even when the electric field at the magnetic sepa-
ratrix is zero, the plasma rotation (Ωs ≠ 0) leads to the
relative shift of the magnetic and isobaric X-points
(and, accordingly, of the magnetic and isobaric separa-
trices in the vicinity of the X-points). The value of the
shift is determined by the ratio of the angular frequency
of the toroidal plasma rotation to the ion cyclotron fre-
quency in the poloidal magnetic field. The sign of the
shift depends on the signs of the quantities Ωs and Bz0,
i.e., on the mutual orientation of the toroidal rotation
velocity vector v and the z-component Bz0—z of the
magnetic field. When δ > 0, the isobaric surface, which
coincides with the boundary of the plasma column, is
shifted to the region outside the magnetic separatrix; as
a result, the plasma pressure at the magnetic separatrix
(at least, near the magnetic X-point) is nonzero. When
δ < 0, the isobaric surface is shifted to the region inside
the magnetic separatrix, in which case the plasma pres-
sure at the magnetic separatrix is, of course, zero.

However, if the plasma conductivity in the separa-
trix region is low, then the electric field at the separatrix
can be nonzero, as is the case, e.g., in a detached
plasma. In this situation, the relative shift of the iso-
baric and magnetic X-points is no longer governed
exclusively by the two-fluid effects.

The relative shift can be estimated from the follow-
ing considerations. The plasma pressure at the mag-
netic axis {r = R, z = 0} can be approximately repre-
sented as

(24)

where e = (R – rs)/R  (|e | < 1) is the inverse aspect ratio.
Since the pressure at the vertical separatrix is zero
(ps = 0), we have

(25)

When the kinetic energy ρΩ2R2/2 of the plasma rotation
is insignificant in comparison with the pressure pa, we

Ωs
ε
ρs

----- ∂p
∂Ψ
-------- 

 
r s

.=

δ
εΩs

2Bz0
-----------≈

Ωs

2ωBpi

------------, ωBpi

eBz0

mic
----------;= =

ωBpi

pa ps
∂p
∂r
------ 

 
z 0= s

eR o e( ),+ +≈

pa

eR
------ ∂p

∂r
------ 

 
z 0= s

≈ rs ρsΩs
2

Bz0
∂p
∂Ψ
-------- 

 
r s

+ 
  .=
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can extract the quantity (∂p/∂Ψ)r |s from Eq. (25):

We insert this expression into relationship (21) to
obtain the relative shift of the isobaric and magnetic
X-points:

(26)

Hence, when the electric field in the separatrix region is
nonzero, the relative shift of the isobaric and magnetic
X-points is determined by the toroidal rotation velocity
of the plasma at the separatrix. The sign of this shift
depends on the sign of e, i.e., on the relative position of
the vertical separatrix to the magnetic axis. For a
D-shaped cross section of the plasma column, the
inverse aspect ratio is positive, e > 0, and the vertical
separatrix occurs at the inner circumference of the
torus. The isobaric surface is shifted to the region out-
side the magnetic separatrix, so that the plasma pres-
sure at the magnetic separatrix (at least, near the mag-
netic X-point) is nonzero (Fig. 1). When e < 0, the ver-
tical separatrix is at the outer circumference of the torus
and the plasma pressure at the magnetic separatrix is
zero (Fig. 2).

4. ANALYTIC EXAMPLES 
OF PLASMA EQUILIBRIA

We illustrate the above analysis by discussing sim-
ple analytic examples of equilibrium plasma states. In
contrast to the static plasma state, in which the plasma
equilibrium is described by the two flux-surface func-
tions I(Ψ) and p(Ψ), a description of the toroidally

∂p
∂Ψ
-------- 

 
r s

pa

eR
2
Bz0

-----------------.≈

δ e
ρsΩs

2
R

2

2 pa

------------------.≈

rs
R

Zm

r

Fig. 1. Magnetic (solid curves) and isobaric (dotted curves)
surfaces in an equilibrium configuration described by
expressions (34) and (36) with e = (R – rs)/R = 0.2, Zm =

0.5R, and  = 0.49.Ma
2

rotating plasma requires the specification of two addi-
tional functions, ω(Ψ) and ρ(Ψ, r), in which case the
plasma pressure p(Ψ, r) should satisfy Eq. (12).

In order to find analytic solutions to Eqs. (10) and
(12), we represent the plasma density ρ as ρ =
ρ0(r)f(Ψ), use expression I2 = 2CIΨ + C∗ , and assume
that (∂p/∂Ψ)r is a function of only r. Then, Eq. (12) can
be integrated to yield (see Appendix)

(27)

where the label Ψ is measured from the magnetic sepa-

ratrix (at which Ψ = 0),  = ρa R2/(2pa) is the
square of the Mach number, pa is the pressure at the

magnetic axis, and κ = ρs /(ρa ).

Using expression (27), we can rewrite Eq. (10) in
the form

(28)

The solution to this equation can be constructed by the
expansion in polynomials in r and z2 (see, e.g., [12]).

p Ψ r,( )
pa

1 κ–
------------ Ma

2
1 κ–( )r

2
R

2
–

R
2

---------------- 
  Ψ

Ψa

------ -exp=

+ κ Ma
2

1 κ–( )
r

2
rs

2
–

R
2

---------------
 
 
 

1 Ψ
Ψa

------– 
 exp κ– ,

Ma
2 Ωa

2

Ωs
2 Ωa

2

4r
2 ∂2Ψ
∂ r

2( )
2
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2
---------- CI 4πr

2 pa

Ψa 1 κ–( )
------------------------+ + +

× 1 κ Ma
2

1 κ–( )
R

2
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2
–

R
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 
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2

1 κ–( )r
2

R
2

–

R
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rsR

r

Zm

Fig. 2. Magnetic (solid curves) and isobaric (dotted curves)
surfaces in an equilibrium configuration described by
expressions (34) and (36) with e = (R – rs)/R = –0.2, Zm =

0.5R, and  = 0.49.Ma
2
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The simplest way to do this is to retain only the lowest
order term in the expansion in powers of z2 and to use
explicitly the coordinates {rs, Zm} of the magnetic
X-point. Introducing the dimensionless variables
x = r/R and y = z/R, we can express Ψ(x, y) as

(29)

where xs = rs/R, ym = Zm/R, and K = (1 – κ). The
quantity Bz0 is the z-component of the magnetic field at
the vertical separatrix at z = 0. Indeed, we have

(30)

Substituting expression (29) for Ψ(x, y) into Grad–
Shafranov equation (28), we obtain the relationship
between the geometric parameters (xs , ym) of the mag-
netic configuration and the plasma parameters (Ma , κ,

β0 = 8πpa/ ),

(31)

where

(32)

and also the relationship between the magnetic-field
component Bz0 and the quantity CI , characterizing the
poloidal current profile,

(33)
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In the simplest case κ  1 (ρs   ρa ),
expression (29) for Ψ(x, y) reduces to

(34)

which corresponds to the familiar Solov’ev’s solu-
tion[1]; moreover, from relationship (31), it follows
that

(35)

Note that the surfaces Ψ = const of the function Ψ given
by expression (34) are closed near the point {x = 1,
y = 0} at any xs ≠ 1, and the points {x = xs , y = ym} are
X-points. In what follows, we restrict ourselves to con-
sidering such values of Ma and κ that do not distort this
configuration.

For κ  1, expression (27) for the plasma pressure
simplifies to

(36)

where

(37)

Knowing the equilibrium configuration of the mag-
netic field and the plasma parameters, we can deter-
mine the relative shift of the isobaric and magnetic
X-points. For the solutions obtained above, specifically,
the solutions that are linear in z2, expansion (16) and
Eq. (20) are exact. Consequently, in the case in which
the electric field vanishes at the separatrix, the relative
shift of the X-points is described by the expression [see
Eq. (20)]

(38)

where  = eBz0/mic is the ion cyclotron frequency in
terms of the field component Bz0.

If the electric field at the separatrix is nonzero, then
Eq. (20) at κ ≠ 1 yields

(39)

where  is given by expression (32).
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For κ  1, Eq. (39) reduces to

(40)

Taking into account the relationship xs = 1 – e, we
obtain

(41)

To within terms of first order in the expansion in powers
of e, expression (41) can be written as

For κ = 1 (i.e., for ρs  = ρa ), this approximate
expression coincides with estimate (26).

5. CONCLUSION

Using as an example simple analytic plasma equi-
libria in a tokamak, we have shown that toroidal rota-
tion of the edge plasma can result in a shift of the
plasma boundary with respect to the magnetic separa-
trix. In different magnetic configurations, the plasma
boundary can occur either inside or outside (when the
cross section of the plasma column is D-shaped) the
magnetic separatrix; in the latter case, the plasma pres-
sure at the magnetic separatrix is nonzero. We have cal-
culated the shift of the isobaric X-point relative to the
magnetic X-point as a function of the rotation velocity
of the edge plasma. It can be expected that, for a
D-shaped tokamak, poloidal plasma rotation will
enhance the effect in question. The results obtained
show that, in computing particular equilibrium config-
urations, it is necessary to formulate the boundary con-
ditions more accurately.
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APPENDIX

Here, we show that, under the assumptions made in
our analysis, expression (27) leads to a general solution
to Eq. (12). We rewrite Eq. (12) in the form

(42)

1 1 δ+( )2
–

1 xs
2

–( )Ma
2

2 1 1 xs
2

–( )Ma
2

–( )
--------------------------------------------+ 0.=

δ 1
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ρ
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--- ω Ψ( ) ε

ρ
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∂Ψ
-------- 

 
r
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2

.= =
Representing the density as ρ(Ψ, r) = ρ0(r2)f(Ψ) (where
ρ0 ≠ 0) and assuming that the pressure is linear in Ψ,
p(Ψ, r) = Cp(r2)Ψ + p0(r2), we obtain

(43)

Here and below, the superior dot indicates the deriva-
tive with respect to r2, and the prime denote indicates
the derivative with respect to Ψ. We differentiate this
equation two times with respect to Ψ at constant r to
obtain

. (44)

Then, we differentiate Eq. (44) with respect to r2 at
constant Ψ,

(45)

Equation (45) imposes restrictions on the function
ω(Ψ), f(Ψ), Cp(r2), and ρ0(r2). For ε ≠ 0, this equation
splits into the following two conditions:

Let us analyze these conditions separately.

(i) Noting that Cp/ρ0 ≠ const, we obtain from the
first equation ω'' + ε(1/f )''(Cp/ρ0) = 0 the relationships

Equation (44) yields the following relationships
between the constants Cω, ω0, λ, and µ: Cω = χλ and
ω0 = χµ (where χ is an arbitrary constant), in which
case we obtain

However, this solution is not satisfactory for the follow-
ing reason. If the electric field vanishes at the sepa-
ratrix, then we have ωs = 0, which holds either when
χ = 0 or when λΨs + µ = 0. In the first case, the electric
field is identically zero everywhere (ω ≡ 0). In the sec-
ond case, the plasma density at the separatrix is singular.

(ii) For Cp/ρ0 = C = const ≠ 0, Eq. (43) implies that

/ρ0 = C1 = const, /ρ0 = C2 = const, and
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If the dependence f(Ψ) is known, then, from these three
relationships, we can find the functions ρ0(r), Cp(r),
p0(r), and ω(Ψ):

We thus see that the angular rotation frequency is a
function of the magnetic surface: k = C1/C.

Now, we clarify the physical meaning of the con-
stants introduced above. We assume that Ψ = 0 and
f (0) = fs at the magnetic separatrix and that Ψ = Ψa and
f(Ψa) = 1 at the magnetic axis. Since, at the vertical iso-
baric separatrix (which coincides with the magnetic
separatrix), the plasma pressure should vanish, we have

 = 0 at r = rs, so that the function p0(r) has the

form

(46)

At the magnetic axis, the plasma density is ρa =
ρ00exp(kR2), which gives

(47)

At the vertical separatrix, we have ρs = ρa exp(k(  –
R2))fs , or, equivalently,

(48)

The angular rotation frequency at the magnetic sepa-
ratrix is equal to Ωs = ±(2C2 / fs)1/2, which allows us to
find C2:

(49)

From expressions (46), (47), and (49), we obtain the
following expressions for the pressure and angular rota-
tion frequency at the magnetic axis:

(50)
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Resolving these expressions in the unknowns k and C,
we find

(51)

(52)

where  = ρa R2/(2pa) is the square of the Mach

number at the magnetic axis and κ = ρs /(ρa ).

Hence, taking into account expressions (46)–(52),
we can represent the solution to Eq. (43) in the form

In deriving this solution, we used the following free
parameters: the density ρa; the pressure pa; the Mach
number Ma at the magnetic axis; and the dimensionless
quantity κ, which characterizes the separatrix region
and the relative position rs /R of the vertical separatrix.
The function Ψ(r, z) was assumed to be known. The
function f(Ψ) was an arbitrary nonnegative function
that determines the plasma density profile and satisfies
the boundary conditions f(Ψa) = 1 and f(0) = fs , where
the function fs is given by expression (48).
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Abstract—A study is made of the dynamics of particles interacting with electromagnetic field fluctuations in
a plasma in the presence of a magnetic field. Possible mechanisms for the onset of anomalous transport and its
suppression by applying a radial electrostatic field are analyzed. Estimates of the diffusion coefficient are pro-
posed based on the calculations of particle trajectories. © 2002 MAIK “Nauka/Interperiodica”.
The paper is devoted to analyzing the dynamics of
charged particles in an inhomogeneous magnetized
plasma in their interactions with wave packets propa-
gating transverse to the magnetic field and to the
plasma density gradient. This approach makes it possi-
ble to consider the processes of particle scattering by
electromagnetic field fluctuations. Similar problems
arise in the study of anomalous transport in plasmas
(see, e.g., [1–6] and other related papers).

Here, a possible mechanism for the onset of anoma-
lous transport under the action of drift instabilities in a
plasma is discussed in terms of the motion of individual
particles [7, 8]. In the presence of multimode perturba-
tions, the motion of particles can become stochastic due
to their interactions with fluctuations, in which case the
particle confinement in a magnetic field is governed by
collisionless diffusion [9–11]. We are interested in the
particle interaction with moving, spatially localized,
soliton-like fluctuations [12]. We also investigate the
effect of the radial electrostatic field on the dynamics of
particles and on their transport. This effect is of partic-
ular interest in studying improved confinement regimes
achieved by applying a radial electrostatic field in dif-
ferent magnetic confinement systems (such as toka-
maks, open devices, stellarators, and reversed-field
pinches) [13–16].

We consider a two-dimensional (r, θ) configuration
that is uniform along the z-axis and in which the mag-
netic field B depends only on the radius r and is directed
along the z-coordinate. We take into account the radial
electrostatic field Er(r) and assume that the waves are
electrostatic and propagate along the azimuthal angle θ.
The components of the electric field of each wave
packet have the form

(1)

(2)

Eθ
~ 1

r
---∂ϕ~

∂θ
---------,–=

Er
~ ∂ϕ~

∂r
---------.–=
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Here, the electric potential ϕ~ is represented as a sum of
many harmonics:

(3)

where s is the number of the wave packet, n is the azi-
muthal wavenumber, ωs is the angular phase velocity of
the packet, gs(r) is its radial profile, and ϕ0s, n and ψs, n
are the amplitudes and initial phases of the electric-
potential harmonics of the packet.

The particle trajectories are determined by numeri-
cally solving the following equations of particle
motion:

(4)

(5)

where m and q are the mass and charge of a particle and
v r and vθ are the radial and azimuthal components of its
velocity. The computations were carried out for the fol-
lowing linear radial profile of the electrostatic field:

(6)

where a is the radius of the plasma cylinder.
An important characteristic of anomalous transport

is the radial displacement of a particle in its interaction
with localized fluctuations. The figure illustrates the
time dependence of the radial coordinate of a proton
with an initial energy of 100 eV in a plasma column
with radius a = 0.2 m in a uniform magnetic field B =
0.5 T for different values of E0r. We can see that, as the
radial electric field (of any polarity) increases, the
radial displacement of the particle decreases substan-
tially and, accordingly, the radial scale of the diffusion
becomes shorter. In computations, it was assumed that

ϕ~ ϕ0s n, gs r( ) n ωst θ–( ) ψs n,+[ ] ,cos
n

∑=

m
dv r

dt
--------- q Er

~
Er r( ) v θB+ +[ ] ,=

m
dv θ

dt
--------- q Eθ

~
v rB–( ),=

Er r( ) E0r
r
a
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Time dependence of the radial coordinate of a proton with an initial energy of 100 eV for B = 0.5 T, a = 0.2 m, ε = 0.1, and Te =
100 eV.
the electric field of the wave is localized along the azi-
muthal angle θ in a sufficiently narrow region of width
δθ. The maximum potential difference ∆ϕ across this
region (or the maximum potential amplitude) satisfies
the condition

(7)

where ε is the relative amplitude of the wave potential,
e is the charge of an electron, k is Boltzmann’s constant,
and Te is the electron temperature. The results shown in
the figure were obtained for ε = 0.1. Under the condi-

ε e∆ϕ
kTe

------------- ! 1,=
tions chosen for the figure, the phase velocity is equal
to the diamagnetic drift velocity; this corresponds to
low-frequency drift waves [7, 8].

The time during which a particle interacts with the
electric field of a single wave packet is equal to

(8)

where u is the particle velocity with respect to the wave.
For magnetized particles, we have u = |v ph – Vdr |, where
v ph is the wave phase velocity and Vdr is the drift veloc-
ity of the particle guiding center. For unmagnetized par-

∆t
δθ

u
-----,=
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ticles, we have u = |v ph – vθ|. In the geometry adopted
here, the drift velocity Vdr may be caused by both the
electric field and the magnetic field gradient:

(9)

During the interaction time ∆t, a magnetized particle
is displaced in the radial direction by a distance of
about

(10)

Our numerical calculations show that estimate (10)
is valid for both u ! vθ and u i vθ. The time between
the interactions of a particle with two successive wave
packets is equal to

(11)

where λ is the maximum (under the conditions adopted
here) wavelength in the electric-potential spectrum (3).
Using relationships (10) and (11), we can estimate the
maximum anomalous diffusion coefficient in the case
of stochastic particle motion:

(12)

Estimate (12) shows, in particular, that the diffusion
coefficient can be lowered (and, accordingly, the anom-
alous transport can be suppressed) when |Vdr | @ v ph.
The drift velocity Vdr can be increased by applying a
strong radial electric field, which gives rise to the E × B
drift.

The phase velocity of the low-frequency waves, as
well as of the lower hybrid drift waves [8], is equal to

(13)

where δn is the radial scale of the plasma density gradi-
ent. For such waves, we have λ ~ δn. Using these rela-
tionships, we obtain the diffusion coefficient for the
above two limiting cases:

(14)

(15)

Note that the confinement time estimated from dif-
fusion coefficient (14) coincides with that obtained in
[10, 11] in analyzing the quasi-Hamiltonian dynamics
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of the guiding centers of the ions during their stochastic
motion under the action of low-frequency drift waves.

In conclusion, we have analyzed the ion dynamics
under the conditions of a stochastic regime of anoma-
lous diffusion. Both qualitative estimates and computa-
tional results demonstrate that anomalous diffusion can
be suppressed by applying a strong radial electric field.
We emphasize that we have neglected a possible
decrease in the oscillation amplitude ε after applying
the radial electric field and assumed that ε lies in the
range ε = 0.01–0.1, corresponding to the experiments of
[14]. Presumably, the value of ε should be determined
from the self-consistent solution to the corresponding
nonlinear problem.
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Abstract—A method for the laser probing of an imploding plasma in the S-300 high-current generator (I =
4 åÄ, Z = 0.15 Ω, and τ = 100 ns) with the use of a YAG : Nd laser is described. The first version of the method
enables obtaining three-frame shadow and schlieren photographs of the plasma of the accelerator load with an
exposure of 10 ns and an interval between frames of 25 ns. The second version enables the five-frame probing
of the plasma with an exposure of 1 ns and an interval between frames of 10 ns. Stimulated Brillouin scattering
in carbon tetrachloride is used to compress the probing laser pulse. A series of shadow and schlieren photo-
graphs of the plasma of different liners and Z-pinches are obtained. Mechanisms for the image formation are
discussed. The magnitude and gradients of the plasma density are estimated. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Laser probing (interferometry, shadow and the
schlieren photography, etc.) has long been a classic
method for diagnosing imploding plasmas. This
method allows one to study a plasma with a definite
density magnitude and gradients. However, to imple-
ment this diagnostics in pulsed high-current generators,
it is necessary to solve a number of problems related to
both the design of the generators and the specific con-
ditions under which experiments are carried out: large
distances between the probing radiation source, the
object under study, and the image plane; the relatively
small dimensions of the object; and, finally, rigid
requirements to the synchronization between the prob-
ing laser pulse and the current pulse through the load.
In this paper, we describe a system for the laser probing
of the plasma in the S-300 high-current generator [1].
In our opinion, the system is fairly well suited for these
conditions.
1063-780X/02/2809- $22.00 © 20790
The S-300 eight-module generator, operating at a
current of up to 4 MA with a current rise time of 100 ns
(Fig. 1), is destined for experiments with high-temper-
ature pulsed plasmas of light liners and Z-pinches. The
accelerator loads were positioned at the center of the
vacuum chamber. The input and output diagnostic win-
dows 100 mm in diameter were placed at a distance of
2.4 m from the load. Accordingly, the angular aperture
of the probing beams was no larger than 2.5°.

2. DIAGNOSTIC COMPLEX

The diagnostic complex included the transmitting
and receiving laser components.

The receiving component, which was used to record
the shadow images of the plasma, consisted of a lens
(f = 1600 mm) imaging the plasma with a magnifica-
tion factor of 2 and a camera equipped with a set of fil-
ters and a photographic cassette. Optical wedges with
1

Fig. 1. General view of the S-300 facility. Arrow 1 indicates the photographic camera, and arrow 2 indicates the holder with mirrors
directing the probing laser beams to the plasma object.
002 MAIK “Nauka/Interperiodica”
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Fig. 2. Optical scheme for generating three probing beams (I, II, and III) with 25 ns delays between the pulses: (1) DO, (2) amplifier,
(3) nonlinear crystal for the frequency doubling, and (4) Glan prism for separating the beams at the fundamental and second har-
monics. The latter pass through the optical delay lines and are directed into the S-300 generator.
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Fig. 3. (a) Shadow photograph of the implosion of an aluminum wire 110 µm in diameter and 1 cm in length at a current through
the load of 2 MA. (b) Shadow photograph of the implosion of a C2D4 fiber 30 µm in diameter and 0.6 cm in length; the upper frame
is made before the current is switched on (the wire clamps are seen at the top and bottom); the delay between the middle and lower
frames is 50 ns. (c) Schlieren photographs of the implosion of a C2D4 fiber 30 µm in diameter and 1.5 cm in length an a current of
1.7 MA. Schlieren masks allow the detection of the deflection angles of the probing beams in the range from 1 to 6 mrad in all
directions. Here and in subsequent figures, numerals on the right from photographs show the delay time (in ns) between the exposure
and the current start (at a level of no less than 5%).
an angle of 1° or 2° were positioned near the focal plane
of the lens in order to separate the beams in the image
plane by a required distance. If needed, different
schlieren masks could be positioned in the focal plane
of the lens. For immobile objects, the resolution of the
system in the object plane was no worse than
35 line/mm.

The transmitting component was located in a sepa-
rate room; the distance between the laser system and the
target unit exceeded 18 m. The first version of the trans-
mitting component (Fig. 2) consisted of a YAG : Nd
driving oscillator (DO), a three-stage second-harmonic
generator (SHO), and optical delay lines. An electroop-
tical shutter was synchronized with the current pulse of
the S-300 generator. Each SHO stage consisted of a sin-
gle-pass amplifier, a LiNbO3 nonlinear crystal with the
temperature-sensitive tuning to the phase matching,
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
and a Glan prism. After passing through the prism, sec-
ond-harmonic radiation arrived at the optical delay line
and, then, at a set of mirrors directing this radiation
onto the plasma object. Radiation at the fundamental
frequency, which was polarized orthogonally to the
second-harmonic radiation, passed through the Glan
prism without deflection. Then, it was amplified and
used to generate the second harmonic in the next stage.
The energy in each probing beam was 20–25 mJ, the
wavelength was 532 nm, the divergence was ~1 mrad,
the pulse duration was 10 ns, and the interval between
pulses was 25 ns. The beams were directed to the center
of the vacuum chamber, where the target unit was
installed.

The technique described, which allowed the succes-
sive separation of second-harmonic beams, substan-
tially reduced the radiation load on crystals as com-
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Fig. 4. Shadow photographs of two imploding wire arrays composed of eighty tungsten wires 6 µm in diameter. The array diameter
is 1 cm, its length is 1 cm, the current through the load is 2.6 MA, and the current rise time is ~110 ns.
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Fig. 5. (a) Schlieren photographs of a Z-pinch with an 8-mm-long and 5-mm-diameter load made of agar-agar and C2D4 and having
a preformed neck; schlieren masks are similar to those in Fig. 3c. (b) Shadow photographs of the same load with an addition of LiD.
The current is 2.2 MA.
pared to the conventional scheme of dividing the output
beam. As a result, the number of probing beams can be
increased with a minimal expenditure. With this
scheme for the probing-beam generation, all laser and
nonlinear optical components operated under radiation
loads that were far below the limiting ones. This sub-
stantially improved the reliability of the complex oper-
ation, so that we could adjust the entire diagnostic sys-
tem in the pulsed mode with a repetition rate of 1 Hz.
This is particularly important for experiments with
large accelerators having small input apertures for the
probing beams.

Figures 3, 4, and 5 show plasma photographs of dif-
ferent S-300 loads. It is seen in the photographs that the
plasma of these loads moves at velocities of ~5 ×
107 cm/s. In this case, the spatial resolution in the direc-
tion of plasma motion, δ = v τ, is determined by the
duration of the probing pulse (τ = 10 ns) and amounts
to several millimeters. Hence, in order to improve the
PLASMA PHYSICS REPORTS      Vol. 28      No. 9      2002
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Fig. 6. Optical scheme of the transmitting component of the laser diagnostic complex for five-frame plasma probing: (1) YAG : Nd
DO, (2, 8) isolators, (3) YAG : Nd amplifiers, (4) lens (f = 0.9 m), (5) scattering CCl4 cell (l = 1.5 m), (6) SHOs (LiNbO3), (7) Glan
prisms, (9) mirror with a reflection coefficient of 30%, and (10) SHOs (KTP). Five beams pass through the optical delay lines and
are directed into the S-300 generator.
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temporal and spatial resolution of the diagnostic tech-
nique, the laser pulse should be shortened. For this pur-
pose, the laser system was modified; in addition, the
number of the probing beams was increased to 5.

To shorten the laser pulse, we used the compression
of the DO pulse due to stimulated Brillouin scattering
(SBS) in a nonlinear optical medium. This shortening
technique has a number of advantages over the conven-
tional electrooptical method of “cutting” a short pulse
from an ordinary giant pulse. This is, first of all, an
increase in the power due to the high efficiency of
energy transfer from the original (pumping) pulse to the
scattered (Stokes) pulse. In addition, there is the possi-
bility of amplifying the Stokes radiation by the pump-
ing-radiation amplifiers because the frequency shift
between the pumping and scattered radiation is negligi-
bly small. In addition, there is no delay between these
pulses. Finally, we note that this method is very conve-
nient because the process is passive in character and the
synchronization of the laser complex with the experi-
mental device is the same as in the first version of the
transmitting component.

Phase conjugation and pulse compression in various
nonlinear media in the course of SBS were studied in
detail by many authors (see, e.g., [2–7]) and have
already been used in plasma diagnostics [8].

Figure 6 shows the optical scheme of the transmit-
ting component of the diagnostic complex. The driving
oscillator (1) with an electrooptical shutter operates at
a pumping power slightly exceeding the threshold level
for generating the fundamental transverse mode
TEM00. The pulse duration is 7 ns, and the pulse energy
is 0.3–0.5 mJ. The cavity length is 20 cm, and the diam-
eter of the aperture separating out the fundamental
mode is 1 mm. The studies of the longitudinal mode
structure with the help of a Fabry–Perot interferometer
showed that the DO mode composition varied from
pulse to pulse and consisted of one to six modes.
Although single-frequency laser pulses are compressed
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most efficiently (in this case, cavities with passive
Q-switching are usually used), we have managed to
achieve the reproducible compression of the pumping
pulse to 1.2 ns. This result is far from the maximum
possible compression, probably, because of the pres-
ence of several longitudinal modes in the pumping radi-
ation.

Then, the DO pulse passes through an isolator (2)
consisting of an interference polarizer and a quarter-
wave plate and enters two single-pass amplifiers (3).
The amplified signal is focused by a lens (4) with a 900-
mm focal length into a 1.5-m-long cell filled with car-
bon tetrachloride. The backscattered Stokes pulse with
a lower frequency is amplified and directed by the spa-
tial isolator (2) into the SHO stages. The first three of
them are similar to the stages of the above version of the
transmitting component. After these stages, the radia-
tion at the fundamental frequency falls into an isolator
(8) and is amplified. A fraction of the signal is reflected
backward by a mirror (9) with a reflection coefficient of
30%. The frequency of radiation passed through the
mirror doubles in a KTP crystal (10); this second-har-
monic beam is the fourth probing beam. The radiation
reflected from the mirror (9) is amplified during its
backward pass and is deflected by the isolator (8). This
beam, whose radiation frequency doubles in the second
KTP crystal, serves as the fifth probing beam. A set of
mirrors (which is not depicted in Fig. 6) delays the
probing laser beams by 10 ns and directs them to the
load of the experimental device and, further, to the
receiving component of the diagnostic complex.

The duration of the second-harmonic pulses did not
exceed 1 ns because of the square dependence of their
intensity on the intensity of the pumping radiation.
Their energy was 3–5 mJ, which was quite sufficient to
ignore emission from the plasma. The diagnostic com-
plex was adjusted in the pulse-periodic mode at a repe-
tition rate of 0.25–0.5 Hz. The maximum repetition rate
was determined by the resources of the pumping-lamp
power supply, rather than the processes in the SBS cell
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Fig. 7. Five-frame shadow photographs of three agar-agar Z-pinches. Numerals on the right from photographs show the delay time
(in ns) between the exposure and the current start. The minus sign means that the frames are made before the beginning of the load
current signal detected by the oscillograph; in this case, the current at the beginning of the oscillograph signal can attain 100 kA.
(the latter allowed us to obtain a well reproducible com-
pression of laser pulses at repetition rates up to 10 Hz
[6]).

Figure 7 shows shadow photographs of the Z-pinch.
In the middle column, one can see the expansion of
small plasma drops, which are invisible on photos
obtained with an exposure of 10 ns.

3. ESTIMATES OF THE MAGNITUDE
AND GRADIENTS OF THE PLASMA DENSITY

There are several mechanisms that may be responsi-
ble for the formation of a shadow in photographs.

The first mechanism is the cutoff of the probe radia-
tion in plasma when the radiation frequency approaches
the plasma frequency ω0:

For a beam with a wavelength of 532 nm, this occurs at
densities of Ne ≥ 4 × 1021 cm–3.

Second, the probe radiation can be absorbed via
inverse bremsstrahlung (i.e., due to free–free transi-
tions). In this case, the attenuation of laser radiation is
described by Bouguer’s law,

ω ω0≈
4πNee

2

m
------------------.=

Iν Iν0 ϑ l–( ),exp=
where l is the distance passed by the probing beam and
the absorption coefficient ϑ  is determined by the
expression [9]

For kTe @ hν, which is always satisfied in our experi-
ments, the absorption coefficient is described by the
formula

Here, C1 = 3.69 × 108 cm5 degree1/2 s–3; Z is the ion
charge; g is the Gaunt factor; Ne and Ni are the electron
and ion densities, respectively; and ν is the probe-radi-
ation frequency. From this formula, we obtain the fol-
lowing expression for Ni:

For a tungsten plasma under our experimental condi-
tions, we have Ni > 5 × 1018 cm–3.

It should be noted that, for a plasma of high-Z mate-
rials, the ion density estimated by this formula depends
weakly on the electron temperature. Indeed, we have
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Ni ~ /Z3/2(T), and the average ion charge number Z
is well approximated by the dependence Z ~ T1/2. Cal-
culations (see, e.g., [10]) show that, as Te increases
from 10 to 100 eV, Z increases from 6 to 20; in this case,
Ni at fixed ϑ  changes by no more than 10%.

The third mechanism for the formation of a shadow
in photographs is the refraction of the probing beam in
plasma regions where the electron density gradient is so
large that the refracted rays fall outside the aperture
angle of the lens α = d/a, where d is the lens diameter
and a is the distance from the lens to the object. The
deflection angle and the electron-density gradient are
related by the formula [11]

where ε is the refraction angle, λ is the probing-radia-
tion wavelength, and l is the plasma length along the
probing beam. This formula is valid if the probing-
wave frequency is much higher than the frequency of
electron–ion (or electron–neutral) collisions (ω @ ωei)
and much higher than the electron cyclotron frequency,
ω @ ωe = eB/(mc) (here, B is the magnetic field, and m
is the electron mass), which is always satisfied under
experimental conditions.

For the given geometry of the diagnostic windows,
the refraction angle is ~20 mrad, which corresponds to
the plasma density gradient |—Ne| no larger than 3 ×
1020 cm–4. From the characteristic plasma size
observed, we can estimate the electron density as Ne =
1020 cm–3. Consequently, for the tungsten plasma, the
ion density (Fig. 4) can be estimated as 2 × 1019 cm–3

and, for other loads, as 5 × 1019 cm–3.

Hence, the formation of a shadow in photographs
via inverse bremsstrahlung absorption seems to be most
probable, at least, for a metal plasma. The appearance
of a shadow due to absorption was previously observed
in experiments on the heating of foils by focused elec-
tron beams [12], as well as in experiments on the implo-
sion of highly emitting gas puffs [13]. This mechanism
is dominant under many experimental conditions.

The refraction angles detected by the schlieren
method lie in the range from 1 to 6 mrad, which deter-
mines the range of detectable density gradients: 1019 <
|—Ne | < 5 × 1019 cm–4. Taking into account the charac-
teristic plasma size, the electron density is estimated at
1019 cm–3.

4. CONCLUSION

The five-frame laser probing system with an expo-
sure of 1 ns and an interval between frames of 10 ns has
been created. The system uses the second harmonic of
a YAG : Nd laser and the compression of the DO pulse

Te
3/4

—Ne
ε

4.46 10
14– λ 2

l×
------------------------------------,–=
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due to BS in a nonlinear optical medium. It is capable
of operating in the repetitive mode under unfavorable
conditions of the S-300 generator (the distance from the
object is 18 m, and the angular aperture is 2.5°). This
made it possible to reliably record five shadow images
of the plasma produced by the magnetic implosion of
light liners and Z-pinches.

Small-scale plasma formations expanding at veloci-
ties of (2–5) × 108 cm/s have been detected.

Mechanisms responsible for the formation of a
shadow in the photographs have been discussed, and
the plasma density has been estimated.
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