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Abstract—The analysis presented in [1, 2] is extended to sedimenting low-inertia tracers advected by random
divergence-free hydrodynamic flows. The key feature of the process is the clustering of the tracers due to the
divergence of tracer-velocity field. This phenomenon has probability one; i.e., it takes place in aimost every
realization of the process. Both spatial diffusivity and diffusivity in the density space (responsible for cluster-
ing) are calculated. The low inertia of the tracers does not affect the spatial diffusivity. The indispensable use
of afinite velocity correlation time leads to an anisotropic spatial diffusivity. The calculations performed in the
study are based on a diffusion approximation. © 2004 MAIK “ Nauka/Interperiodica” .

1. CURRENT STATUS OF THE PROBLEM
AND BASIC EQUATIONS

The inertial tracer density field advected by a ran-
dom flow satisfies the continuity equation

%+%V(r,t)%p(r,t) =0, p(r,t) =por), (1)
which can be rewritten as

P ov(r,1t)

[b—t+V(r,t)%Ep(r,t)+Tp(r,t) -0

In the genera case, the Eulerian tracer velocity
V(r,t) is different from the Eulerian flow velocity
u(r, t).

Effects due to molecular diffusion can be neglected

a an early stage of the process. At alater stage, these
effects must be taken into account:

% + aa—rV(r, t)%p(r, t) = pdp(r, 1),

P(r, 0) = po(r),

where pis molecular diffusivity. The total mass of trac-
ersis conserved in the course of evolution:

©)

M = M(t) = Idrp(r,t) = Idrpo(r) = const.

The Eulerian velocity V(r, t) of low-inertia particles
inaflow field u(r, t) can be described by the quasilinear

partial differential equation (e.g., see[3])

9
%+ v(r, t)mEV(r, £)

(4)
= —A[V(r, t) —u(r, t)] +9%1‘%%
p

interpreted as a phenomenological model, where A is
the drag coefficient, g is the gravitational acceleration,
Pp isthe tracer particle density, and pg is the fluid den-
sity. In the general case, Eq. (4) may have multiple or
discontinuous solutions. However, its solution is
unigue over areasonabletimeinterval in the asymptotic
case of A — o (low-inertia particles), which is con-
sidered in the present study.

The linear drag force F(r, t) = AV(r, t) on the right-
hand side of (4) is given by the Stokes law for adowly
moving particle treated approximately as a sphere: A =
6T[ar]/mp, where a is the tracer radius, n is the coeffi-
cient of dynamic viscosity, and m, is the particle mass
(see[4, 9]).

The velocity v of tracer sedimentation or rise (usu-
ally in the vertical direction) is determined by the bal-
ance between buoyancy and viscous forces:

By introducing the representation
V(r,t) = v+v(r,1), ®)

where v(r, t) is the tracer velocity fluctuation about v,
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1006
Egs. (2) and (4) arerewritten as

Do+ vir, 01 9500, = 2400y,

p(r, 0) = po(r), (6)

%+ [v+v(r,t)]%%v(r, t) = =A[v(r,t)—u(r, t)].

In the general case, a divergent Gaussian stationary,
homogeneous, and isotropic random field velocity field
u(r, t) with zero mean ([i(r, t)= 0) is characterized by
the correlation and spectral tensors

(U) ] ) — 1 )
Bij '(r —r', t—t) = L(r, thuy(r', t)O
= IdkEij(k,t—t')eik(r_r'),

1
(2m)°
Eik, 1) = EY(k, 1) + EF'(k, 1),

where d is the space dimension and the spectral tensor
components have the form

ko (7)

Eik 1) = J’dr B(r, e’ ",

EF (k.Y = E¥(k, O - %%,

8
pot _ pot ki kj ( )
Eij (k! t) - E (k1 t) k2

with solenoidal and potential components E'(k, t) and
EPo(K, t).
The correlation time of the field u(r, t) is defined as

17
T, = —JdrBi(i )(O, 1);
Ouy

the velocity variance, as
o> = BY(0,0) = r, O
= Idk[(d ~-1)Ek, 1) + Ep(k, 1)].

In the analysis presented below, o> = m2(r, t)0is
treated as a small parameter.

1.1. Tracer Diffusion: Lagrangian Approach

The first-order partial differential Eulerian equa
tions (6) are equivalent to the following ordinary differ-
ential equationsin a Lagrangian approach:

Er(t) = v+v(r(t),t), r(Q) =r,,
dt 9)
%v(t) = AV -ur(®), 9], V(0) = Voro).
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Note that these equations describe the Newtonian
dynamics of a particle under the action of the random
force f(t) = Au(r(t), t) exerted by the hydrodynamic
flow and the Stokes drag force F(t) = -Av(r (1), t).

The dependence of the solution to (9) on rq is
denoted here by a vertical bar:

r@t) = r(tjro), v(t) = v(t|ro).
Accordingly, the Eulerian tracers density p(r, t) is
expressed as [6-8]

p(r,t) = Idropo(ro)é(r(t”o) —r). (10)

The delta function on the right-hand side of (10) is
referred to as the indicator function

o(r,t) = d(r(tjro)—r), (11)
and its value averaged over the ensembl e of realizations

of the random field u(r, t) is the probability density
function (PDF) of particle location [6-8]

P(r,t) = [o(r, )L, = B(r(t|ro) —r)q.

AS A — oo (in the limit of inertialess tracers), it
holds that

(12)

v(r, ) = u(r, t), (13)
and Egs. (6) and (9) reduce to
%r(t) = v+u(r(®,1), (0 = ro,
(14)

%+v§—r+§—ru(r, t)%p(r, t) =0,

P, 0) = po(r).

In other words, the trajectories of inertialess particlesin
a hydrodynamic flow can be found by solving a kine-
matics problem.

First of al, one hasto elucidate the statistical mean-
ing of (13) and its scope. The applicability of this
approximation in a statisticall model depends on the
order of limit operations (see[1, 2]).

Spatial diffusion of inertialess sedimenting particles
in the absence of clustering in a divergence-free veloc-
ity field u(r, t) (divu(r, t) = 0) was analyzed in [9, 10],
where spatial diffusivity was shown to be anisotropic
with respect to the sedimentation direction defined by
the vector v. The anisotropy is due to finite correlation
time 1, of the flow velocity field. (Spatia diffusion
would be isotropic if the field u(r, t) were delta-corre-
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DIFFUSION AND CLUSTERING OF SEDIMENTING TRACERS

lated in time.) In those studies, a finite T, was used in
the framework of diffusion approximation.

In [1], Egs. (9) were used to analyze diffusion and
clustering of low-inertia particles in a divergence-free
velocity field u(r, t) in the absence of sedimentation
(v =0). It was shown that fields u(r, t) that are delta-
correlated in time cannot be used in statistical models
of particletransport intheinertialesslimit; i.e., thelimit
operations A — o and 1, — 0 are not interchange-
able. However, these limits commute when statistical
modeling isrestricted to spatial diffusion. It was shown
in [11] that this is aso true for sedimenting particles
(v # 0) in adivergence-free field u(r, t), in which case
anisotropy of spatial diffusivity is also due solely to a
finite correlation time 1,. Moreover, it is obvious that
the inertialess limit is equivalent to the following con-
ditions for the parameter A:

Mo>1, A> v, A> o1l (15)
where |, is the correlation length of a random velocity
field u(r, t).

1.2. Tracer Density Field:
Eulerian Satistical Approach

To develop a statistical model of the tracer density
field, consider the indicator function

o, r; p) = 3(p(r,r)—p),

defined on a surface p(r, t) = p = const or a contour in
three- or two-dimensional flow, respectively. In the
general case, the evolution of thisfunction is described
by the Liouville equation

(16)

D fveve, 01 350 s )
_ov(r,t)a _ (17)
= S aP e T ).
@0, r; p) = d(po(r) —p),

which can be rewritten as

% + Vaa_r + aa—ru(r, t)EQD(t, r;p)

_ov(r,t) d . (18)

= T[l +%p}¢(t, r, p),

(0,1 p) = 3(po(r) —p)

inthe case of adivergence-freevelocity field v(r, t),i.e.,
if ov(r, t)/or # 0. The single-point PDF corresponding
to equation of mation (6) isthe indicator function aver-
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aged over the ensemble of realizations of the random
field v(r, t):

Pt,r; p) = O, r; p)d

In[1], the problem was analyzed without taking into
account sedimentation. If a zero-mean Gaussian sta-
tionary, homogeneous, and isotropic field is character-
ized by the correlation tensor

vy, v, ©)0 = BY(r —r', t-t),

then the single-point PDF P(t, r; p) corresponding to
Eqg. (18) obeys the following equation in both in the
approximation of field v(r, t) delta-correlated in time
and in diffusion approximation:

Bt %0
PO, r; p) = o(po(r) —p),

97 9’
@ _p DP(t,r;p)=Dpa—p2p2P(t,r;p), 9

wherethe spatial diffusivity Do and the diffusivity D, in
the p space are defined as

00

D, = éIdTB/(r,Hr)v(r,t)D: L
0

2
ar\,B/ (r,)d

(20)

D, = }dr< av(ré: +T)6V(g|’r, t)>

0
. <B3V(r,t)mz>
divw\ [] or 0/

They characterize, respectively, the spatial dispersion
and clustering of adensity field p(r, t). Here, T, and 1,
arethe correlation times of the random fieldsv(r, t) and
ov(r, t)/or, and d is the space dimension.

It is clear that the random field v(r, t) described by
the closed nonlinear equation (6) is not Gaussian in the
general case. However, itisalso clear that v(r, t) can be
treated approximately as a Gaussian field in deriving
Eqg. (19), because higher order cumulants of the field
divv(r, t) are smaller in order of magnitude as com-
pared to the second-order cumulant function.

Indicator function (16) characterizes the geometry
of the tracer density field p(r, t). In particular, (16) can
be used to expressthe total area of the two-dimensional
regions where p(r, t) > p,

St p) = I dp' I dro(t,r; p), (21)
P
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1008
or the tracer mass inside the regions,

[

M(t; p) = J'p'dp'J'df O, r; p). (22)

If v(r, t) isadivergence-free random field, then clus-
tering occurs with probability one, i.e., tracers group
together into clusters of higher density surrounded by
regions of relatively low tracer density; accordingly,
St; p) — 0and M(t; p) — M. Coherent behavior of
this type is observed in almost every realization of the
process (see[1, 2, 12, 13]), and its occurrence is inde-
pendent of the model used to describe fluctuations.
However, its characteristics (e.g., clustering time and
length scales) may strongly depend on the model. In
particular, it followsfrom Eq. (19) that the average area
of clusters where the tracer density exceeds a certain p
decreases in the course of time (when Dt > 1) as

1 ]
8t; p)d = expg

JTIPDt

while the average mass inside such clusters,

IM(t; p)d = Mg

_[p 0 D,tJ (24)
/T[Dptexpg 1 Ejdpo(r)dr,

approaches the total mass M, = J’po(r)dr .

e[ e, (23)
U

Note that inertialess tracers advected by a diver-
gence-free flow may be characterized by nonzero D,,.
For example, the two-dimensional divergence does not
vanish for buoyant tracers moving in a plane, whereas
the three-dimensional divergence vanishes [14] (see
also [15, 16]).

Thediffusivities Dy and D, defined by (20) werecal-
culated for low-inertia tracers advected by a random
velocity field u(r, t) were calculated in [ 1, 2.

Thus, the dynamics of tracer sedimentation is
described by Eq. (17) or (18) for ®(t, r; p), where the
tracer particle velocity v(r, t) in the random flow field
u(r, t) isgoverned by Eq. (6). It is clear from the fore-
going discussion that all calculations should be per-
formed in diffusion approximation with arandom field
u(r, t) having afinite correlation time 1,. This problem
isanalyzed in the present study.

2. DIFFUSION AND CLUSTERING
OF INERTIALESS SEDIMENTING PARTICLES

In the case of intertialess sedimenting tracers, stetis-
tical description of the density field in diffusion approx-
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imation relies on simplified Egs. (17) and (18):

D 4 v +u(r, t)] 5P
” _ou(r,t) )6 =
u(r,t .
T T pd(t, T; p),
%+V§_r+_u(r t)%cb(t, rp)
26
aulgrr t)[1+a_p}q>(t r; p), )

®(0,r; p) = 3(po(r) —p).

Equation (25) is well suited for finding the depen-
dence of ®(t, r; p) onu(r, t); EQ. (26), for averaging the
desired function directly over the ensemble of realiza-
tions of u(r, t).

Since both (25) and (26) are first-order equations
with respect to time, the following dynamic causality
condition holds:

oP(t, r;

p)-Ofort<0andt>t

duy(r', t)) (27)

i.e., the functional ®(t, r; p) depends on u(r, t) only
within theinterval t < t' <t. Ast' — t, the following
equation for the variational derivative is obtained:

o0d(t, r; p)
ou;(r',t-0)
_ 80 L 08(r—r")a
= [—6(r —r)a—rj or, ap

The equation for P(t, r; p) is derived by averaging
Eq. (26) over the ensemble of realizations of u(r, t):

(28)
}D(t, r;p).

D20, r; p) = -2, 9o 1 o)) "
+ [1+a‘3_p }<w¢(t, r p)>-
Equation (29) can be rewritten as
%+V%EP(L r,p) = —% dr’
xj’dt' B (r -t —t')< %> (30)
0
+[1+ 50 ]for J'dt B a_rjr — tl)< 65crj(jt(’rr,;tf)))>
No. 5 2004
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by applying the Furutsu—Novikov theorem [17, 18]
(r, Y R[t; u(y, 1)]0

= for J’dt BY(r —r ,t_t')< M> (31)

du;(r', t)
to the correlation function of a Gaussian random field
with an arbitrary functional R[t; u(y, )], whichisvalid
under dynamic causality condition (27).

In the diffusion approximation for Eqg. (30), fluctua-
tions over time intervals on the order of 1, are
neglected, and the variational derivative in (30) obeys
the equation

Y +V656¢(t r,p) _ - 0

(bt~ “ord duy(r', t) (32)
subject toinitial condition (28); i.e.,
0P(t, r; p)
ou;(r', t) |, -,
0 , 09 ') 0 (33
=[5 -l s —-r)o Cp
—[é(r Dar e ap }(D(t,r,p).

The solution to problem (32), (33) hasthe form

dat,rip) - 0 . .00
sty | oPEVhE

(34)

s 66(r rno
[6“ )ar or; ap

The evolution of the function ®(t, r; p) over a time
interval on the order of 1, is governed by the equation

}CD(t', r;p).

M ,.,90 SN
EFtJrVﬁDCD(t’r’ p) =0,

O, 15 P)i=¢ = P, 1;P).
Hence,

, N NG
o, r; p) = eXpDV(t—t)me’(t,r; p). (39
0 0

Substituting (35) into (34), one obtains a fina
expression for the variational derivative valid in the dif-
fusion approximation (t =t—t"):

3P, r; p) _ - 4

Su(rt) [_5(r TS .
00(r —r'—vt) 0 :

+ e et rie)

A closed equation for the tracer-density PDF in the
diffusion approximation is obtained by substituting (36)
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into (30) and integrating the result over r';

% + V—DP('[, r;p)

0° .
ajP(t,r,p)

J'd'[ B(vt, T)

3
OB(“)(VT 1) 9 0
_P(t! r; p)

_.rd
9B (vt,1) 8*

arar 2p P(t,r, P).

_Id
Inthelong-timelimit (t > 1, t > |y/v), the upper limits

in the integrals on the right-hand side of (37) can be set
to infinity. The resulting PDF equation is

%+V—DP(I r;p) = D”(V)a %r P, r; p)
(38)

2

+G(V) P(t r; p) +Dy(v) pr “P(t,1; p),

where the transport coefficients are defined as
Dyj(v) = Idr B(vt, 1)

(=)

= .[dT [i(r + v, t+7)u(r, )0

(u)
G,v) = Id ‘M
(39)

0 ,
= _ dT<WUj(r, t)>,

0B (v1, 1)

Dp(v) = Id oror,

ou(r +vr t+r)au(r t)>

_[d< or

The coefficients D;;(v) and Gj(v) characterize the
spatial dispersion of the density field for inertialess
tracers, whereas clustering is controlled by the diffusiv-
ity D,(v). Note that the asymptotic laws of evolution of
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thetracer density field are described by functionals (23)
and (24) with D, replaced by D(v).

If divu(r, t) = O, then both G;(v) and D,(v) vanish
in (38), theinertialess-tracer density field evolves with-
out clustering, and clustering is possible only for low-
inertiatracers.

An eguation for the mean tracer density is obtained
by integrating the product of Eq. (38) with p over p:

% + V—D Cp(r, )d

(40)

9’ 9
D"(V)ariarj Cp(r, )OO+ G](v)arJ Cp(r, t)1

In view of (10) and (12), this equation is similar to the
equation for the PDF of particle location. Effects due to
molecular diffusion can easily be taken into account by
averaging Eq. (3) inthe inertialess limit over the ensem-
ble of realizations of thefield u(r, t) and using (31). The
resulting equation for the mean density is

%+V—D [p(r, 0 = pA B (r, )0

gt ool
j ’

Cp(r, 0)00 = pofr).

In the diffusion approximation, the variational
derivative in Eq. (41) satisfies the equation

o ,,900p(.0 _ 000

(bt~ “orbdu(r', t') duy(r', t') (42)
subject to aninitial condition that follows from (3),
5.0 | = 95 _rpr,y). (43
i IR TR UL I

The solution to problem (42), (43) has the form
(T=t-t)

op(r, t)
ov(r', t)
000 (44)

a_DTDa o(r —r)p(r, t).

= —exp %A

The evolution of p(r, t) over atime interval on the
order of T, isgoverned by the equation

0

0
i+ VaraP(r B = Hap(r, ),

p(r, Y= = p(r, ).
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Hence,

, O or O
p(r,t) = eXpB_HJA_VﬁHTEp(r’t)' (45)

Substituting (45) into the right-hand side of (44)
yields a final expression for the variational derivative
valid in the diffusion approximation (t =t —t'):

op(r,t) _ epAT
ou(r, t) or; (46)
x 3(r —r'—v1)e *'p(r, t).

A closed equation describing the evolution of the
mean density in the diffusion approximation is obtained
by substituting (46) into (41) and integrating the result
overr'

%+v%%[p(r,t)ﬂ = uA [p(r, )T

+—Idr J’drB(“)(r —r', 1) 47)

“m 6(r —r'=v1)e* p(r, 1)1

H)(r, 0)0 = po(r).

In the long-time limit (t > t, t > ly/v), the upper
limitsin theintegrals on the right-hand side of (47) can
be set to infinity. A solution to the resulting equation for
the mean tracer density,

%w%wr,om = uA (1, 0

Idr B (r—r',1)

x e8(r —r' —vr)e™ ™ Ip(r, )0

)
__J.d J,d 0B;; T)
x 3 —r' —vr)e "™ Ip(r, 1)

can be obtained in explicit form.

By introducing the Fourier transform of the density
field,

p(r,t) = _[dqpq(t)e‘q“,

1 —iq [
t) = ——(drp(r, t)e'*
pq( ) (2T[)dJ. p( )
and using the spectral tensor defined in (8), the follow-
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ing equation is obtained:

%+ iv e Cpy ()0

= {ug”+qq;Dy(@ v) —a.G(a, v} B 400
where

D,(q, V) = [dk [dTE, (K, T)
j J' { j
x exp{— p(k* -2k )T +ik vt} ,
Gi(q, V) = J’dk J’diJ E;k, 1)
x exp{— p(k* -2k )T +ik DV} .
Its solutionis
[pqy()0 = p4(0)
x exp{—iv [t —pg’t —g;q;D;(q, V)t + q,Gi(a, V)1 .
Therefore,
Cp(r, )0 = J'dr‘po(r')P(r,t|r'),

where

S |
P(r,t|r) = (2T[d

(48)
- qut —0;9;D;i(q, V)t + q,Gi(q, V)t}

can beinterpreted, in view of (10) and (12), asthe PDF
of particle location affected by molecular diffusion if a
Gaussian random forcing term f(t) is introduced into

Eq. (9):

%r(t) S VU, 0 +F@), 1(0) = )

d@®Od= 0, OF(t)f(t)0= 2ud;d(t—t).

In the general case, the PDF given by (48) is non-
Gaussian, but it simplifies to a Gaussian one in the
long-timelimit (t > 14, t > 1y/V):

1
P(r t|r) =
T = Gy (49)

- plqzt —qq; Dij(V)t +q,G(V)t},
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where

Dij(v) = Dy(0, v)

00

= IdedTEij(k, 1) exp{ - pk’t +ik O/},
0
Gi(v) = G,(0, V)
J'dedi, E,j(k, Ty exp{ —pk*t + ik Cvt} .

The diffusivity tensor Dj;(v) can be represented as
ViV,
Dii(v) = A(V)‘;E‘l + B(v)4(v),

where

AW) = D)7, BW) = T30,

and A(v) = &; — v;v;/v2 According to this representa-
tion, |f the zaX|s is allgned with v, then diffusion of the
density field along the z axis and in the transverse plane
R is controlled by D,(v) = A(v) and D(v) = B(v),
respectively. Moreover, additional particle transport
along the z axis takes place, due to the divergent nature
of thefield u(r, t), and

G,\v) = G(v)% = % [ok '!drEp(k, 1)(ik V) 0
x exp{— pk>+ik v} .

To estimate the degree of diffusivity anisotropy, sup-
pose that

Eijkk, 1) = Eij(k)eXp{—|T|/To},

where 1, is the correlation time of the random velocity
field. Then,

1 .dk K, v
D;v) = .[k Eilk )1+ p%f( v))cosze’
where cos?0 = (k - v)Zk?v2 and
kv,
1+ ptok?

p(k, v) =

In the three-dimensional case,

®) p(k v)cose
1+p(k v)cose

G(v) = - Idk EP(K)

Idkk Ep°t(k)[ﬁl — ———arctanp(k, v)@.

1
p(k, v)
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If the velocity field is divergence-free (e.g., for
d = 3), then E;(k) = EX(K)A;(k), and

D,(v) = “V”IdkkEs‘"(k)f”(k, V),

D(v) = %[J'dkkEso'(k)fD(k, v),
0
where
0
f(k, v) = Qarctanp(k, v)
0

1 o1 0
* vy ik vy Feanpk =1,

fok v) = Earctan p(k, v)
O

1 g1 0
~ 5 vy vy Pk V) 1 |

If pissmall (v1, < ), thenboth fi(k, v) and f(k, v)
are close to 2p/3, and diffusion is independent of the
sedimentation velocity v. If pislarge (vi, > |p), then
fi(k, v) = 2f5(k, v) = 2. The anisotropy isexplained by
the shorter times required for particles to pass through
regionsof correlated velocitieswhen tracers diffuserel-
ative to turbulent motion and by the fact that the trans-
verse correlation length of a random velocity field is
one half of itslongitudinal correlation length [6, 19]. If
HT, < Ig, then Dy(v) is independent of p. Note that
these estimates are valid if the integrals involved are
convergent. Diffusion in the well-developed turbulent
flow characterized by the Kolmogorov power spectrum
was analyzed in [11].

In the general case of a coordinate system oriented
in the direction of sedimentation (r ={z R}), Eq. (38)
has the form

Mo ,,90 .
m+vmp(t’ r;p)

2 2

_ d . 0 .
= A(V)G?P(t, r;p)+ B(V)WP('[, r;p) (51)

+G(V) SPtrp)+ Dp(V) p *P(t, 15 p),

where

0BY(vT, 0, T)

G(v) = —[di—=25-

0
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3. LOW-INERTIA TRACERS
3.1. General Analysis

It was noted above that analysis of clustering of sed-
imenting tracers in a divergence-free flow field must
take into account the inertia of particles. Accordingly,
recall Egs. (6),

o 0 _ ov(r,t)
g vV Dl (0 = =),
p(r, 0) = po(r),
0
[F+[v+v(r t)] v(r t) (53)

= =A[v(r, t) —u(r, )],

and assume that v(r, t) isa zero-mean Gaussian station-
ary and homogeneous field characterized by the corre-
lation tensor

v, Ov,(r, 10 = BY(r —r', t=t).

The single-point PDF P(t, r; p) corresponding to equa-
tion of motion (52) is governed by an equation similar
to (38):
a 2
%Jr Vo ER(L T p) = Dyv; D55 PG
(54)
2p P(t1 rl p)

+Gj(v; t) P(t,r, p) + Dy(v; t)

with transport coefficients defined as
t
Djj(v; t) = IdTB(V)(VT 1)

t

= Idt'EVi(r +vt, ) v(r +vt', t)0

(v)
G(v; 1) = J‘d M
(55

<av(r +Vt, t)v-(r +vt, t')>,

J’dt

9B (v1,1)

Polvi 0 = Id arar,

av(r +vt, t)ov(r + vt t)>_

J’dt< s
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Here, D;;(v; t) characterizesthe spatial dispersion of the
density field for low-inertia tracers, whereas clustering
is controlled by the diffusivity D,(v; t).

Thus, stochastic equation (53) must be used to eval-
uate transport coefficients (55), i.e., spatiotemporal cor-
relation functions for the random fields v(r, t) and
ov(r, t)/or.

Equation (53) can be rewritten as
o0
exp%—vt—gat[expalt v(r t)]

= -Hr, 020

When represented in terms of

v(r t) = A[v(r, t) —u(r, t)].

v(r,t) = v(r +vt, t), u(r,t) = u(r +vt,t),

it does not contain v:
0~ _ 00~
S0 Y = Hi(r, Do, 9
—A[V(r, t) =u(r, )].

(56)

The new variables arethe velocity fieldsin acoordinate
system moving with the settling tracers. Transport coef-
ficients (55) are expressed accordingly:

t

Dij(v; t) = J’dr Bi(]-V)(VT,T)
0

t

= Idt'zoi(r,t)oj(r,t')mz IdrBi(f)(o, 1).

B(V)(vr 1)

G(v; 1) = J’d
(57)

t ~ )
——J'dt'DLg’r’ v (rt)0= J’d 9By (0 )
0

9B (v, 1)

t
Dolvi ) = —fdrt oror,

0
_ tdt. RV DOV, ) - ey B(V)(O r)
- J; or  or _f .

In the long-time limit (t > 14, t > |/v), the upper
limitsin the integralsin (57) can be set to infinity. The
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resulting transport coefficients
%M=Im$@JL
OB(")(O 7)
G(v) = J’d : (58)
B(V)(O 1)
Do(v) = I dt ar or;

are determined by spatiotemporal statistical character-
istics of the solution to Eq. (56).

Consider adivergence-free zero-mean Gaussian sta-
tionary, homogeneous, and isotropic field u(r, t) char-
acterized by the correlation tensor

BI(r —r', t—t) = [y(r, tyuy(r', t)
In a coordinate system moving with the settling tracers,
(U) ' n - ~ [
r—r,t—t) = i(r, o, t)O0
( 3 ) i(r, Ou;(r', ) (59)
= B (r —r'+v(t-t),t-t),

and a spatial spectral density of the field u(r, t) can be
defined:

BY(r, 1) = IdkEij(k, e,

kikig

(60)
ik ) = El 0, =750

The following representation is valid for a fourth-
rank tensor used below:

9°B’(0,00 _ D
oror,  d(d+2) (61)
x[(d+1)0,8;; — 08,0, —&;0;] ,

where

D = [akkE() = —d—fl fu(r, Hau(r, 50 (62)

is associated with the solenoidal component of the
divergence-free random field u(r, t).

In the diffusion approximation, the Eulerian statisti-
cal model of clustering for the density field p(r, t) gov-
erned by Eq. (56) is obtained by evaluating the trans-
port coefficientsin (58).
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If cﬁ is small, then Eq. (56) can be linearized with
respect to U(r, t) . The simplified equation

% + i, t)%%\”/(r, )

= -G, 020

can be rewritten as

% N7, ) = =0, 1)
au(r t)~
k

u(r t) = A[V(r, t) = O(r, t)]

|(r B

(63)

Vi(r, t) + AG(r, 1),

where summation over repeated indices is assumed.

3.2. Diffusion Approximation

The random field u(r,t) correlates with v(r,t),
whichisafunctional of G(r, t) . According to (59), cor-

relations are decoupled for the Gaussian field U(r, t) by
applying the Furutsu—Novikov theorem rewritten as

t

Ci(r, ORI Ay, DI = [dr[dt

(U)(r —r +V(t t) t— tl)<6R[Ev G(Ya T)]>

(64)

ou(r', t)
In the diffusion approximation, the equation
Oovi(r, 1) _
EB_ )\Déu(r t)

for thevariational derivativeissubject to theinitial con-
dition
v (r,t)

S, t) ) _[6“ BET

+8, 2 =0i,r,1) | + A3y 30 -1,

t=t'+0

at t = t', which follows from (63). Its solution has the
form

dvi(r,t) _  -n0 aV(r t)
S0 © H[é(r o
+ Q0= 74, 1) | + A3y —r)D
Since
v(r,t) = e, t)
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and

U, t) = 70, 1)
in the diffusion approximation, the variational deriva-
tiveis expressed as

dVi(r, 1) avi(r, 1)
du(r, t) __[6( ", (65)
+5,28=0g,, 0 [+ A& 05,8 -r).
U

3.3. Spatiotemporal Correlation Tensor
for v(r, 1)

The spatiotemporal correlation tensor of the field
v(r,t) att>t, obeysthe equation
Eﬁ DW 2 = [ﬁ v
EF'[”‘D i(r, O vy(ry, t)O = A Lo(r, v (ry, t)O
o . .
—a—mk(r,t)vi(r,t)vj(rl, t)0
<au(r t)

VT, Hv(ry, t1)>

By Furutsu—Novikov theorem (64) and expres-
sion (65) for the variational derivative, the problem for

the function C7(r, t)v(r 4, t)0 isformulated as

P, t+ D7 (1, 00

T u AT, 66
= A% J’dT BT —r v, e (66)

y(r, t+ T)Vj(rll ., = ry(r, t)‘7j(r11 O
with T = t — t;, where the initiad condition
[Vi(r, t)v(r 4, )0 is independent of t for a stationary
field. The terms of order o’ are neglected in Eq. (66),
because A is assumed to satisfy conditions (15).

Now, the diffusivity tensor D;;(v) can be calculated
by using (58). Theintegral of Eq. (66) with respect to T
over the interval (0, o) yields

00

)\Ier7i(r,t+T)\7]-(rl,t)D= Vi(r, ) v(ry, )0
© (67)
+)\IdrBi(”)(r—r +v1, T)[1-€e™].
0
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The expression for Dj;(v) is obtained by settingr =r:
)\Dij(v) = i(r, yvy(r, )0

+A J’dr BU(vt, 1)[1-€e™]. (68)

Furthermore, Eq. (63) entails an equation for the
equal-time spatial correlation tensor for the field

v(r,t):

L+ 20,0, 97,1, 00
. _airkzok(r,t)oi(r,t)r/j(rl, 00

~ 9 iy, 7 7y, B0
or

0 ~
(S0 0,)

<a—” IS t)>
lk

F AL, H7(r g, OO+ (o, O T(r, .

By Furutsu—Novikov theorem (64) and expression (65)
for the variational derivative, the time-independent cor-
relation tensor F;(r —ry) = O7y(r, t) v(r,, t)O satisfies
the following equation (in the limit of r —r; —r):

00

2N F(r) = 2J'dr[B‘“>(vr T) - B + VT, 7))

BW
<SR- Idwa F)

Y

BW
r+vt, 1) 0
08 vt Y 0 0

_J'd

B(“)(r +VT,1T) 0

ar Fal) (69)

_}d

0B(”)(r +VT, 1) a

_Id a1 IB(r)
0

Cofde a°B(r + v, T)F
I orr, o)
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+ 2\ J'dre‘AT B (r +vt, 7).

The time-independent correlation [,(r, t) v(r, t)O
is obtained by setting r = 0 and neglecting the terms of

order o) in Eq. (69):

D (r, O ¥(r, 0= A Ict e B (v, 1).  (70)

The spatia diffusivity tensor D;;(v) is obtained by sub-
stituting (70) into (68):

Dy(v) = J'dr B(vT, 1). (71)

Thisexpressionisindependent of A and obviously iden-
tical to that corresponding to inertialess tracers.

The drift coefficient given by the second expression
in (58) is calculated in a similar manner. It is obvious

that the result will be on the order of 03 ; i.e., the drift
is slow as compared to sedimentation with velocity v.

3.4. Spatiotemporal Correlation Tensor
for divv(r, t)

The p-space diffusivity D,(v) is obtained by differ-
entiating (67) with respect tor; and ry; and settingr =r:

D,(v) = -!'dt<a\7(ré:+0a\7gr’ t)>

_ 1/ mov(r, O
“AN\O or O/

Hence, the correlation time for the field ov(r, t) /or is

(72)

_1
Taive = %

This expression is valid for sufficiently large values of
A. Inparticular, it holds under condition (15), i.e., when

v(r,t) = u(r,t)and 1; =T1,.

The equation for
AV,(r, oV (r, )\ _ °Fy(r)
ory or, oror, |, _,
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follows from (69):

9°F;(0) _ 0 ?Bi(vt, 1)
A 5 ar, oror, 2\ Id ar,ar,
* BW
gy (VT, r)a Fi;(0)
_2,!d arkar, argar,
P " 9°By(vT, T)8°F,,(0)
.([ or,dr,  0rgar,
P " 9°BY(vT, T)8°F,,(0)
_([ or,dr,  0rgdry
P " 9°By(vT, T)8°F;(0)
_([ or,dr,  drgor,
P " 9°Bi(vT, T)8°F;(0)
_([ or,dr,  0rgory
o dTaZBi(;)(VT, 1)9°F;(0)
{ drgdr,  0r,0r,
a2 ?B{Y(v1,1)0°F(0)
,[ orgdr,  0r,0r
4 0°Bl(vT, ) 9°F;4(0)
‘I orgdr,  ar,dr,
a2 0°Bl(vT, ) 9°F;4(0)
{ drgdr,  0r,ory
oral? ?BY(v1,1)0°F 4, (0)
I drgdr,  0r,ar,
B;(0, 1)
Zfd arBar ar,ar, Fev(0)-
Settingi =kandj =1in(73) yields

A/ V(. 0
O gr O
9°By(vT, T)9°F;;(0)
oridr;  0rgor,

= 4'(|)’d
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with

O°Fy(0) _
argar,

0B (v1, 1)

—)\T
- )\J’dr orgor,

which is given by (61) under conditions (15):

2 25(u)
9°F,(0) _ 9°BL(0,0)
drgar, orgor,
D
= m[(d + 1) 85, 0ij — ;i Oy; — Og; Oyi] »

where the parameter D associated with the solenoidal
component of thefield u(r, t) is given by (62).

The resulting expression for D(v) is

_ 4D(d+ 1) (u)(VT 1)
Polv) = d(d + 2)\? I
(75)
Ad+1)  9°BLXO,0)" (“)(VT 0.

= d ;
d(d+2)(d-—1)A*>  or® { ar?

i.e, Dy(v) ~ oﬁ . The solenoidal component of u(r, t)

generates the solenoidal component of v(r, t) directly

viaalinear mechanism unrelated to advection, and the

solenoidal component of v(r, t) is coupled to its diver-

gent component viaadvection. Thus, asmaller D,(v) is

obtained if sedimentation istaken into account; i.e., the
clustering time increases.

(73)
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Abstract—Advection of passive tracersin an unsteady hydrodynamic flow consisting of a background stream
and avortex is analyzed as an example of chaotic particle scattering and transport. A numerical analysisreveals
anonattracting chaotic invariant set /\ that determines the scattering and trapping of particlesfrom theincoming
flow. The set has a hyperbolic component consisting of unstable periodic and aperiodic orbits and a nonhyper-
bolic component represented by marginally unstable orbits in the particle-trapping regions in the neighbor-
hoods of the boundaries of outer invariant tori. The geometry and topology of chaotic scattering are examined.
It is shown that both the trapping time for particles in the mixing region and the number of timestheir trajecto-
ries wind around the vortex have hierarchical fractal structure as functions of the initial particle coordinates.
The hierarchy isfound to have certain properties due to an infinite number of intersections of the stable mani-
fold in A with amaterial line consisting of particles from the incoming flow. Scattering functions are singular
on a Cantor set of initial conditions, and this property must manifest itself by strong fluctuations of quantities

measured in experiments. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Deterministic chaos in classical Hamiltonian
dynamical systems having compact phase spaces is a
well-devel oped area of nonlinear physics. A variety of
analytical, numerical, and experimental methods are
used to study nonlinear dynamics. Most scattering the-
ories deal with open systems having unbounded phase
spaces in which particles enter an interaction region
along completely regular trajectories and escapefrom it
along asymptotically regular particletrajectories. Thus,
typical scattering trajectories are not chaotic in rigorous
sense, because chaos is interpreted as complicated
motion over infinite time intervals. However, motion in
the interaction region may have all characteristics of
true Hamiltonian chaos, including homoclinic struc-
tures, fractals, strange invariant sets, positive Lyapunov
exponents, etc. This phenomenon, known as irregular
(chaotic) scattering [1-4], is the subject of intensive
studiesin celestial mechanics [5, 6], molecular dynam-
ics[7], atomic physics [8-10], fluid dynamics [11-18],
theory of potential scattering [1, 3, 19], and other areas
of physics. One can say that regular scattering is as
scarce in the realm of scattering processes as are inte-
grable systems among the totality of bounded Hamilto-
nian systems.

In numerous studies, including those mentioned
above, it wasfound that chaotic scattering obeyscertain
fundamental laws. Transient chaos in the interaction
region is due to the existence of at least one nonattract-
ing chaotic invariant set consisting of an infinite num-
ber of localized unstable periodic and aperiodic orbits.

The chaotic invariant set A has both stable and unstable
manifolds, which extend into the regions of asymptoti-
cally regular motion. Even though A is not a global
attractor, it plays an important role in scattering loosely
analogous to that played by the scattering matrix. The
particles that belong to the stable manifold A, from the
outset remain in theinteraction region forever. Particles
that are initially close to A remain in the interaction
region for along time, wandering in the neighborhoods
of unstable orbitsin A. Asaresult, the physically mea-
sured scattering functions that relate characteristics of
outgoing trajectories to those of incoming ones are sin-
gular on a Cantor set of initial conditions. The existence
of thisset can be used asabasisfor adefinition of chaotic
scattering. Even though these singularities congtitute a
set of measure zero, they manifest themselves in experi-
ments by strong fluctuations of measured quantities.

A number of rigorous mathematical results have
been obtained for hyperbolic scattering systems, i.e., in
cases when there are no KAM tori in the phase space
and all periodic orbits are unstable. For such systems,
the probability of particle trapping in the interaction
region is an exponentially decreasing function of trap-
ping time, there exist simple relations between the frac-
tal dimension of A and both the corresponding expo-
nent and the average positive Lyapunov exponent
(see[20, 4]), and the set of singularities of a scattering
function is asimple fractal. In nonhyperbolic systems,
KAM tori coexist with zones of chaotic motion, the
phase-space topology strongly depends on the system’s
parameters, the long-time tail of the trapping probabil-
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ity follows a power law, and the set of singularitiesis
not a simple fractal. More or less realistic models
belong to the class of nonhyperbolic systems, and anal-
ysis of chaotic scattering and transport in such models
is of practical importance.

In this paper, we andyze chaotic advection in an
unconfined unsteady hydrodynamic flow as a model of
oceanic vorticeslocated over topographic heights[21, 22].
The laboratory prototype of such atopographic vortex
is the cylindrical vortex in a homogeneous hydrody-
namic flow over an underwater obstacle known as the
Taylor column [23, 24]. Passive tracers (e.g., pollut-
ants) are advected by flow with a periodic component
(tidal flow) into a mixing region, where their motion
may be chaotic [18], and then are washed away into a
region of regular outflow. Thus, tracer transport and
mixing must be described in the framework of atypical
problem of chaotic scattering. Since the phase space of
a two-dimensional incompressible flow is identical to
its configuration space, geophysical flows and labora-
tory dyeing experiments offer unique opportunities to
observe directly spatial patterns that illustrate funda-
mental structures and properties of dynamical systems,
such as invariant sets, fractal boundaries, Lévy flights,
dynamical traps, etc. [16, 17, 25, 26]. In the present
study, we determine the flow topology and describe
tracer transport by geometrical methods.

2. INVARIANT SETS OF THE FLOW

2.1. Two-Dimensional Unsteady Flow
with a Topographic Vortex

The two-dimensional flow model introduced in [27]
is defined by the dimensionless streamfunction

W = Inyx+y* +ex+ExsinT, (1)

where T = wt isanormalized time variable, and x and y
denote Cartesian coordinates. The first termin (1) rep-
resents a steady point vortex with a singular point at
x=y = 0. The second and third terms describe steady
and unsteady two-dimensional flows characterized by
dimensionless parameters € and &, respectively. Thisis
a simplified model of an oceanic flow with a topo-
graphic vortex embedded in a background steady flow
having a periodic tidal component. We use the
Lagrangian approach to analyze the kinematics of trac-
ers (i.e., inertialess nondiffusive particles). It is well
known that the Hamiltonian equations of motion for
tracers in an incompressible two-dimensional flow
(with divv = 0, wherev = (v,, v,)) are written as

¥
oy’

y = V(X T):a—LIJ
y y 1y, axl

X =V, (XYT1) =

)

where the streamfunction W(x, y, 1) plays the role of a
Hamiltonian. Thus, the configuration space of an
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advected particle is the phase space of dynamical sys
tem (2). The equations of motion for streamfunction (1)
are

y
X+ y?

X = —

©)

y = 2X 2+e+«Esinr,
X +y

where the dot denotes derivative with respect to T. In
the absence of perturbation (¢ = 0), the phase portrait of
the system consists of finite and infinite orbits separated
by a separatrix encompassing the vortex and passing
through the saddle point with the coordinates x = —1/¢
and y = 0. In the polar coordinates defined by the rela-
tions x = pcosd and y = psing, the unperturbed equa-
tions are solved in quadratures:

b=e /1_5'5‘8")”9%, (4)

where E = gpcosd + Inp is an integral of motion.
Depending on initial conditions, particles move either
along closed streamlines encompassed by the separa-
trix loop or around the loop aong infinite streamlines.
In[27], it was shown numerically and analytically that
an arbitrarily small perturbation splits the separatrix
and gives rise to transversal intersections of stable and
unstable saddle-point manifolds and to an infinite vari-
ety of periodic and aperiodic orbits. The trgjectories of
tracers deviate from the steady-flow streamlines. Some
information about them is provided by Poincaré sec-
tions, which depict thelocations of particlesin the (X, y)
planeat t=2rm(m=0, 1, 2, ...). Borrowing terminol-
ogy from [14], we define the free-stream region (with
incoming and outgoing components), mixing region,
and vortex core as the sets of trajectories for which the
number of times they wind around the vortex is zero,
finite, and infinite, respectively.

The phase-space topology strongly depends on the
values of € and &, because they are defined in terms of
steady-flow velocity, unsteady-flow period, and vortex
intensity (which determines the particle rotation fre-
guency). Their relative values determine the orders of
nonlinear resonances in the system. Asthe value of €/§
increases, the vortex core (occupied by regular tragjecto-
ries) grows and the orders of surviving resonances
increase, while the mixing region shrinks correspond-
ingly. When €/ > 1, the system exhibits almost regular
dynamics. In that study, numerical computations were
performed for € = 0.5 and § = 0.1, in which case the
mixing region is abundant with various topological
structures.

2.2. KAM Tori and Cantori
Now, we describe the invariant sets of dynamical
system (3), which make up the building blocks of its
structure. Particles belonging to different sets exhibit
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Fig. 1. (a) Plane of the Poincaré section of the flow. Dashed curves represent the unperturbed separatrix. (b) Secondary resonance
with period 101t in the neighborhood of the half-integer primary resonance with period 1t

qualitatively different behavior. The simplest examples
of invariant sets are the entire phase space, a stationary
point, aperiodic orbit, and any orbit defined on thetime
interval [—o, o0]. The set of trgjectoriesthat do not wind
around the vortex is excluded from the present analysis.
The set of invariant curves shown in Fig. 1 represents
sections of KAM tori. It is the set of periodic and qua-
siperiodic tracer motions around the vortex center. In
the Poincaré section, they make up families of nested
closed smooth curves. Most of them lie inside the vor-
tex core. The Poincaré section is the set of points with
coordinates X, = X(t = 2rm) and y,, = y(T = 2rmm), where
m=0, 1, 2, .... Figure 1 depicts the Poincaré section of
a set of approximately 10° orbits with initial coordi-
nates x and y lying in the intervals [-0.9, —0.85] and
[-0.1, 0.1], respectively. Other families of invariant
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curves make up stable islands centered at elliptic
points, which are located both in the vortex coreand in
the mixing region. Theidands arise from nonlinear res-
onances of various orders between particle motions in
the vortex and the 2re-periodic perturbation. The main
island in the chaotic seais arises from the half-integer
(Teperiodic) primary resonance and is surrounded by
higher order resonances (see Fig. 1b). Fig. 1b aso
clearly depicts the secondary resonance with period
101t Figure 2 shows a periodic orbit at the center of the
primary resonance; the inset thereto, a fragment of the
periodic orbit corresponding to the 10teperiodic sec-
ondary resonance depicted in Fig. 1b. Asterisks repre-
sent the elliptic points of the secondary resonance.

The vortex core also contains islands and chains of
islands. High-resolution images demonstrate that these
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0.6

03F
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~0.6F,
~0.9

-0.6

Fig. 2. Periodic trgjectory at the center of the primary reso-
nance. Inset shows a fragment of the periodic trajectory of
the 107t-periodic secondary resonance originating at point 1
and terminating at point 2 over atimeinterval of 21

chains are surrounded by narrow stochastic layers. The
vortex coreis preserved for any combination of € and §;
i.e., it isarobust structure. Since the particle rotation
frequency in the vortex core is much higher than the
(unit) perturbation frequency, the perturbation can be
treated as adiabatic with respect to most orbits inside
the core and the orbits as regul ar, except for those lying
in the neighborhoods of overlapping high-order reso-
nances, which make up very narrow stochastic layers.

1021

The KAM tori make up impermeable barriersthat limit
tracer transport and mixing.

It is well known (see [28]) that perturbation gives
rise to cantori replacing some KAM tori (primarily
those with rotation numbers that do not satisfy the
Diophantine condition in the KAM theorem). The can-
tori areinvariant sets having Cantor structure with gaps
and are characterized by a topological dimension at
least lower than the measure of a curve. Motion on
them is quasiperiodic. However, cantori are unstable
and, therefore, have stable and unstable manifolds.
Unlike KAM tori, cantori are permeable for tracers.
The intersection of amaterial line with the stable man-
ifold Ag in the incoming-flow region contains particles
that reach the mixing-region—vortex-core boundary in
the course of time and rotatein aregion loosely encom-
passed by a bounded invariant KAM curve. Then, they
rapidly cross the curve and dwell on its opposite side.
The process repeats many times until the particles cross
the boundary and escape. Such particle-trapping
regions point to the existence of cantori with narrow
gaps at vortex-core—stable-island boundaries. Figure 3
illustrates the trapping of a passive tracer with initial
coordinates in the incoming-flow region. The graph of
the coordinate x as a function of time (Fig. 3a) demon-
strates that most of the time it executes a periodic
motion in the neighborhood of the half-integer primary
resonance (depicted in Fig. 3b). Figure 3c showsafrag-

T
600 F .
(a)
400
200 +
0 T T 1 1 1
-2 -1 0 -2 -1 0
y X X
0.2 : — . :
© Iy (d) .
P I R
= SEX K x
\\\ ,/";K % &\\\
ok | ok \:\ o ¥k ‘} N
L %é\ * v
R R X * /
-~ L %“’/
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_02 1 1 1 1
-2 -2 -1 0

X

Fig. 3. Trapping of a passive tracer at the edge of the chaotic sea: (a) variation of coordinate x with time; (b) tracer trajectory;
(c) fragment of trajectory near the saddle point; (d) Poincaré section.
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Fig. 4. Image of the unstable manifold A, obtained as a“snapshot” of adye stresk in the flow at T = 151T

ment of this periodic orbit in the neighborhood of the
saddle point corresponding to an unstable periodic
orbit. Figure 3d shows the corresponding Poincaré sec-
tion. Itisimportant that the existence of an invariant set
of cantori and/or trapping regionsimpliesthat mixingis
inhomogeneous, as manifested (e.g., in topographic
maps of trapping) by power-law long-timetails of trap-
ping-time distributions and by singular behavior of
scattering functions [18].

2.3. Chaotic Invariant Set
and Unstable Periodic Orbits

The chaotic invariant set A is defined asthe set of al
orbits (except for the KAM tori and cantori) that never
leave the mixing region. The set consists of an infinite
number of periodic and aperiodic (chaotic) orbits. All
orbitsin this set are unstable. If atracer belongsto A at
the initial moment, then it remainsin the mixing region
asT —» o or T — —o0, The Poincaré section of Aisa
set of points of Lebesgue measure zero. Most trajecto-
ries of the tracers advected into the mixing region from
the incoming flow sooner or later leave the mixing
region with the outgoing flow. However, their behavior
is largely determined by the presence of A. They can
“trail” after trgjectories of the saddle set, wandering in
their neighborhoods.

Each orbit in the chaotic set and, therefore, the
entire set A\ have both stable and unstable manifolds.
The stable manifold A, of the chaotic set is defined as
the invariant set of orbits approaching those in A as
T — . Theunstable manifold A, isdefined asthe sta-
ble manifold corresponding to time-reversed dynamics.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

Following tragjectories in A, tracers advected by the
incoming flow enter the mixing region and remain there
forever. It was mentioned above that the corresponding
initial conditions make up a set of measure zero. The
tracer trgjectories that are initially close to those in the
chaotic set follow the chaotic-set trgjectories for along
time and eventually deviate from them, and leave the
mixing region along the unstable manifold. This behav-
ior offers a unique opportunity to extract important
properties of A by measuring the characteristics of scat-
tered particles and to observe unstable manifolds
directly in laboratory experiments [11, 12, 16, 17, 29]
or even in geophysical flows[30, 31].

An unstable manifold can be visualized by various
methods. A blob consisting of many tracer particlesini-
tially belonging to the intersection of theincoming flow
with the stable manifold spreads out and transforms
into an intricate fractal curve approaching A, in the
course of time. A similar pattern develops in dyeing
experiments. The stable manifold liesin the coordinate-
plane region bounded by the separatrix locations at the
times corresponding to the two extrema reached during
the perturbation period. This region extends to —oo
along they axis, and its width is determined by the val-
ues of € and &. Only particles located in this region
reach the mixing region. Figure 4 shows an image of
the unstable manifold of (3) at the time 151t obtained
numerically by integrating the equations of motions for
particles continuously injected into the incoming flow
at the point with x, = —4.357759744 and y, = —6. This
pattern oscillates with the flow. Tracer particles are
advected along the fractal curve of the unstable mani-
fold, which plays the role of an “attractor” in a Hamil-
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Fig. 5. Image of chaotic invariant set A.

tonian system (there are no “classical” attractors in
incompressible flows). Direct computation of the so-
called trapping map [18] provides an image of A.. The
intersection of A and A\, is the chaotic manifold A
depicted in Fig. 5. This fractal set of points oscillates
with the flow. The tracer particles starting from points
inthisset remaininthemixing regionast —» +o. The
vortex-core—free-stream boundary has a finite length
equal to that of the separatrix loop in the unperturbed
flow (§ = 0), but it is infinitely long in a periodicaly
perturbed flow.

The set shown in Fig. 5 was constructed by using the
numerical procedure described above as a sketch of the
actual chaoticinvariant set A. Figure 5 provides an ade-
quate representation of the nonhyperbolic component
of A\, which consists of marginally unstable quasiperi-
odic orbits in the neighborhoods of the boundaries of
outer KAM tori. As mentioned above and demonstrated
in Fig. 3, it isthe region where the cantori and trapping
regions are located and particles may remain for along
time, executing almost periodic motions with the
Lyapunov exponent close to zero. Their dynamics can
be interpreted as motions in the neighborhood of the
half-integer primary resonance. The fractal characteris-
tics of these motions are analyzed in the next section.

Periodic orbitsin the hyperbolic component of A are
essentially unstable, and the probability of finding them
in the superposition of two fractal “dust clouds” islow.
We propose the following numerical method to demon-
strate their existence. Change (numerically) to new
variables: angle © and action |. Define a set of initial
angles ©, and actions |, for particles in the mixing
region. Find their values such that the angle changes by
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2rtin atimeinterva T. For the same initial conditions,
calculate the change AE in particle energy over a cer-
tain timeinterval, say, 21t The particles for which both
angle and energy remain unchanged over this interval
(O(T = 2m) = ©y and AE = 0) obviously execute a
21t-periodic motion. Using these results, draw a contour
map of particle-energy change as a function of the ini-
tial angle and time T. Shaded areas in Fig. 6 represent
certain values of AE. The intersections of the contours
of AE = 0 with theline T = 2= 6.2831852... give the
initial angles corresponding to particles that execute
2r-periodic motionsin theinitial action interval. Simi-
lar procedures can be used to find 41, 61, and
2mre-periodic orbits. Their stability can be analyzed by
standard methods.

3. GEOMETRY OF CHAQTIC SCATTERING
3.1. Fractal Structure of Scattering

In this section, we analyze the geometry of tracer
transport in the mixing region. As an illustration, we
consider theinitia conditions on the segment of theline
y = —6 in the free-stream region whose left and right
endpoints areitsintersectionswith the lower whisker of
the perturbed separatrix loop at the times 312 +
2rm(sint = —1) and 172 + 2rm (sint = 1), respectively.
All nontrivial scattering processes involve particles
whose initial coordinates lie in the region bounded by
these amplitude values of instantaneous separatrix
streamlines. Figure 7 shows the snapshots of the evolu-
tion of this material line taken at T = 8, 9, 1011, and
11rt At T = 0, point A was at the intersection of the
unperturbed separatrix (sint = 0) and the line y, = -6,
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Fig. 6. Map of particle-energy change AE (as afunction of initial angle ©y and movement time T) for determining the initial coor-

dinates of tracers executing 2r-periodic motions.

i.e., at xo(A) = —4.6447002; point G, at the intersection
of the separatrix at thetimes1v2 + 2rimand theling, i.e.,
a X(G) = —4.3577522. The particles with x, <
-4.6447002 and X, > —4.3577522 are not trapped in the
vortex and are immediately washed away into the free-
stream region (see dotted segmentsin Fig. 7). Points A
and G move aong the stable manifold into the neigh-
borhood of the saddle periodic orbit and remain in the
mixing region for along (theoretically, infinite) time.

We calculated the total number n of turns executed
by most particles before they escaped into the outgo-
ing-flow region (the half-plane above the liney = 6).
The graph of n(xy) (see Fig. 8) isan intricate hierarchy of
sequences of fragments of materia line AG. Their fractal
properties are generated by the infinite sequence of inter-
sections of the stable and unstable manifolds with the
materia line segment as it rotates about the vortex.

Following [32], we refer to the sequences of seg-
ments corresponding to each n = 0 as epistrophes. The
epistrophes make up a hierarchy. The endpoints of each
segment in an nth-level epistrophe are the limit points
of an (n + 1)th-level epistrophe. For example, thereisa
single epistrophe on the zeroth level (n = 0), and the
endpoints of the corresponding segments generate epis-
trophes b, ¢, d, e, g, etc. on the level n = 1, which con-
verge to the corresponding limit points (see Fig. 8).
Numerical experiments on epistrophes lying on differ-
ent levels revealed the following trends: (i) each epist-
rophe convergesto alimit point in the material line seg-
ment under consideration; (ii) the endpoints of each
segment in an nth-level epistrophe are the limit points
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of an (n + 1)th-leve epistrophe; (iii) the lengths of seg-
ments in an epistrophe decrease in geometric progres-
sion; (iv) the common ratio q of al progressions is
related to the largest Lyapunov exponent for the saddle
point asfollows: A = —(1/2m)Ing.

Figure 9 shows the length |; of an epistrophe seg-
ment as a functions of its index | for the zeroth-level
epistrophe and the first-level epistrophesc, d, e, and g.
The slopes of al graphs are Inq = -1.59; i.e., the seg-
ment lengthsin every epistrophe decrease in geometric
progression: |; = l,q! with q=0.2. Thelargest Lyapunov
exponent for the saddle point can be evaluated as the
upper bound for the numerical error accumulated over
adouble integration step. Numerical experimentsusing
2 x 10* tracer particles uniformly distributed along AG
showed that the upper bound for the numerical error
accumulated before the particles escape from the mix-
ing region lies on aline with slope A = 0.25. A similar
result isobtained by analyzing the linearized system (3)
in the neighborhood of the saddle point.

Thefractal depictedin Fig. 8 isnot strictly self-sim-
ilar, because it contains segments (caled strophes
in [32]) that do not belong to the epistrophes. Some of
them arelabeled by Greek lettersin the graph. Thus, the
fractal is characterized by partial self-similarity: each
level contains both self-similar epistrophe sequences
and additional elements (strophes), which are pre-
served in the asymptotic limit and do not fit into the reg-
ular structure. These results are in complete agreement
with the epistrophe theorem proved in [32] for area
and orientation-preserving open maps of aplanewith a
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Fig. 7. Snapshots of evolution of amaterial line taken at successive instants to illustrate the development of “lobes’ from elements

of the epistrophes and strophesin the fractal shownin Fig. 8.
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Fig. 8. Fractal set of the initial coordinates xg of incoming-flow tracers that escape from the mixing region after n turns around the

vortex (N — o).

center and an unstable singular point whose stable and
unstable manifolds intersect transversely.

3.2. Tracer Transport

The fractal depicted in Fig. 8 provides a comprehen-
siveillustration of tracer transport. The line segment AG
is stretches and bends as it winds around the point vor-
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tex, and then its part begins to fold as particles rotating
around the vortex accelerate while other particles
decelerate in the neighborhood of the saddle point. Fig-
ure 7 illustrates the formation of thefirst fold at T = 81t
The snapshots in Fig. 7 corresponding to later instants
show that the segment DE (the “back” of the fold)
escapes into the free-stream region, taking the shape of
a “lobe” The segment EFG (the “front” of the fold)
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Fig. 10. Scattering function for particles belonging to the
segment DE of the zeroth-level epistrophe (see Fig. 8). Tis
the particle-trapping time.

continues to wrap around the vortex. The segment DE
in Fig. 8 is associated with the segment DE of the
zeroth-level epistrophe (tracer particles that have not
made a complete turn). The segment EFG is repre-
sented by an empty segment generating an infinite
sequence of strophes and epistrophesin Fig. 8. At T =
10, the second fold develops in the material line. The
segment BC (its “back™) escapes, giving rise to another
“lobe” as its “front” (represented by segment CD in
Fig. 8) givesrise to another turn about the vortex. After
atime interval of T = 111, two new lobes (represented
by the segments e and g of the first-level epistrophe)
begin to develop in the stretched portion of the first
fold. The particles in these lobes escape together with
the lobe BC before they complete their second turn
about the vortex, giving rise to the second “finger” in
Fig. 4. Furthermore, the snapshot taken at T = 11m
shows the folds that subsequently devel op into the sec-
ond-level strophesa and 3 and into the third-level stro-
phesv and p. These strophes give rise to the four lobes
that combine with zeroth- and first-level epistrophe
segments to form the third “finger” in Fig. 4.

This processrepeatsiteratively; i.e., the portion cor-
responding to an epistrophe segment and an empty seg-
ment in Fig. 8 unwinds off the material segment’s*“tail”
that lingers in the neighborhood of the saddle point
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with each turn about the vortex. Theresult istheinfinite
sequence of the zeroth-level epistrophe segmentsillus-
trated by Fig. 8. Each subsequent zeroth-level epistro-
phe segment escapes in a period after the preceding
escape. This scenario describes the formation of epist-
rophes and strophes at al nonzero levels, except that
each nth-level epistrophe segment generates two
(n + 1)th-level epistrophes. In other words, these epist-
rophe segments also escape successively, a pair per
period. In dyeing experiments, these events are visual-
ized by periodic formation of lobe pairs. In the course
of time, dye streaklines develop into a self-similar pat-
tern (see Fig. 4) in the sense that new fingers with
increasing number of lobes appear in each subsequent
period.

Figure 10 shows a typical scattering function for
particles belonging to the segment DE of the zeroth-
level epistrophe. The endpoints D and E divide particles
that fall into the stable and unstable manifolds. A simi-
lar role is played by the endpoints of all elements of
strophes and epistrophes. These points make up a set of
points that remain in the mixing region forever. The
scattering function corresponding to strophes have a
similar U shape with a more pronounced asymmetry.

4. CONCLUSIONS

A partition of the phase space into invariant setsis
described for an unconfined periodic incompressible
flow model with a stationary point vortex. Behavior of
typical trajectories and tracer transport are analyzed. A
numerical method is proposed for finding unstable peri-
odic orbits with the use of contour maps of particle-
energy change. A chagtic invariant set A\ isreveaed. Its
unstable manifold A, is visualized in numerical experi-
ments on evolution of material lines and multiple tracer
trajectories. The scaling on the material line segment
evolving from the intersection of aline in theincoming
flow with the stable manifold A is shown to determine
the chaotic behavior of tracers. It is demonstrated that
the singul arities of thetrapping timefor aparticleinthe
mixing region as a function of its initial coordinate in
the incoming flow are associated with particles that
enter the mixing region along trgjectories in A, and
escape aong A,. An anaysis of the geometry and
topology of chaotic scattering shows that both the par-
ticle-trapping time and the number of their turns about
the vortex haveintricate hierarchical fractal structure as
functions of their initial coordinates. The hierarchy is
shown to exhibit certain properties due to infinite num-
ber of intersections of the stable manifold in A with a
material line consisting of particles from the incoming
flow. The self-similar structure of the functionis shown
to consist of sequences of epistrophes, which determine
tracer transport. Relationship between the topological
and dynamical characteristics of chaotic advection is
established.
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Finally, we outline some open problemsthat deserve
further scrutiny. The approach developed here can be
applied to a broad class of problemsin chaotic scatter-
ing in an inhomogeneous phase space where the domi-
nant role is played by a nonattracting chaotic set with
hyperbolic and nonhyperbolic components. For hyper-
bolic scattering, the fracta dimension d can be
expressed in terms of the largest Lyapunov exponent A
and the average trapping time [T [for particles in the
mixing region asd = 1 — (AT 0! [4, 20]. When there
exists a nonhyperbolic component, this expression is
not valid and adeeper insight into relationship between
topology, dynamics, and statistics of chaotic scattering
is required. Of practical importance is analysis of the
effect of noise on basic scattering characteristics. In
geophysical advection problems, the effects due to vis-
cosity (dissipative dynamics of finite-size particles)
must be taken into account. Dynamics of chemically or
biologically active diffusive tracersis aso of practical
interest [33]. Note that chaotic invariant sets play an
important role in geophysical advection of active trac-
ers, such as oceanic phytoplankton or chemical reac-
tants in the atmosphere. These sets can be viewed as
dynamical catalysts of biological productivity and
chemical reactions.

NOTE ADDED IN PROOF (September 2004)

Using the method described at the end of Section 2,
we found nonresonant periodic orbits (separated from
elliptic and hyperbolic resonance points) and unstable
periodic orbits related to broken resonancesin the cha
otic sea, which are not manifested in the Poincaré sec-
tions.
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Abstract—A finite total number of flow parametersin the wall region of aturbulent boundary layer pointsto
universal behavior of turbulent shear stress as a function of mean-vel ocity gradient and turbulent heat flux asa
function of both mean-velocity and mean-temperature gradients. Combined with dimensional arguments, this
fact is used to reduce the momentum and heat equations to first-order ordinary differential equations for temper-
ature and velocity profiles amenable to genera analysis. Scaling laws for velocity and temperature in boundary
layer flows with transpiration are obtained as generalizations of well-known logarithmic laws. Scaling relations
are also established for shear stress and rms transverse vel ocity fluctuation. The proposed method has substantial
advantages as compared to the classical approach (which does not rely on fluid-dynamics equations [1-3]). It can
be applied to establish scaling laws for a broader class of near-wall turbulence problems without invoking clo-
sure hypotheses. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Thewell-known derivation of the logarithmic veloc-
ity profile for the wall regions of turbulent near-wall
flows proposed in [1-3] neither makes use of any
hypothesis about the mechanism of turbulent transfer
nor relies on fluid-dynamics equations. It is based only
on dimensional reasoning combined with assumptions
of negligible molecular viscosity outside the viscous
sublayer and near-wall flow independence of external
parameters. An analogous approach was subsequently
applied in numerous studies. In particular, a logarith-
mic temperature distribution was obtained by Landau
in 1944 (e.g., see[4]).

The scope of the classical method [1-3] isobviously
restricted to problems with alimited number of param-
eters. In particular, it cannot be used to obtain any
meaningful results in the case of nonzero transverse
velocity at thewall.

The dternative approach proposed in this paper also
makes use of dimensiona analysis, but it essentialy
relies on equations of motion. As aresult, velocity and
temperature scaling laws for flows with transpiration
are obtained as generalizations of the classical logarith-
mic laws. Scaling laws have also been established for
shear stress and rmstransverse vel ocity fluctuation. The
present analysisis as physically reasonable and mathe-
matical rigorous as the classical one.

The scaling law for the velocity profile was origi-
nally obtained in [5, 6] by invoking the Prandtl mixing-

length theory, whereas the remaining relations are
newly derived here.

2. STATEMENT OF THE PROBLEM

Consider the heat-conducting incompressible flow
in the wall region of turbulent boundary layer on a
smooth permeable surface with transpiration along the
normal vector. Since the transverse gradients of aver-
aged flow variables are much steeper than their longi-
tudinal gradients in athin wall region, the momentum
and heat eguations can be written in the first approxi-
mation as

-, v+ vd—u = vy v,u,
dy p
4o (1)
—B'vDO+ x@ = —j,tVv,(6-06,).

Here, u isthe longitudinal mean flow velocity; 0 isthe
mean temperature; y is the distance from the wall; v is
molecular viscosity; x is molecular thermal diffusivity;
andv,, 9,, 1,, andj, arethewall values of transverse
velocity, temperature, shear stress, and temperature
flux, respectively.

Temperature is treated here as a passive scalar; i.e.,
the second equation in (1) applies to passive-contami-
nant transport as well.

Equations (1) describe turbulent flow over an infi-
nite plane where the pressure and transverse velocity
are constant, while the remaining flow variables depend
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only on the distance from the plane. For aflow of this
kind,

du T
- = Fl%/1vi VW’E\AH’

dy
o _ (.
gy = PV X e S
. 2
wvo= Fy ,v,vW,E“H

®'vO= F4§/,v,x,vw,%”,jmg,

where F,, ..., F, are universal functions. Thus, these
guantities are assumed to be independent of externa
boundary-layer parameters and are determined only by
wall boundary conditions and physical properties of the
fluid.

The first and second equationsin (2) are solved for
1,/p andj,,, and the results are substituted into the third
and fourth equations to obtain

R dug
wvid= Gl%,v,vw,d—ym,
du déj ®)
O'vi= Gz%,v,x,vw,a/,d—y].

Applying Buckingham'’s IN-theorem to (3) and treating
temperature as a passive scaar having a specific dimen-
sion, one obtains

WvO= —g/g—EZS( Re, B),

= _y2dedu
[B VD - y dydyT(Rea Pe! B)! (4)
2 2
Re - y_cl'l, - y_d_u, B - ﬂd_y
v dy X dy Reydu

The local Reynolds number Re is defined here as the
ratio of characteristic turbulent and molecular viscosity
values. Thefunctions Sand T are assumed to be contin-
uous at

0<Re<o, 0<Pe<om,

and have partial derivatives with respect to their argu-
ments within these intervals. In physical terms, these
conditions are equivalent to the standard assumption
that viscosity is essential only within a narrow viscous
sublayer. It is aso assumed that

S(,0)#£0, T(o,0,0)#0.

Expressions (4) relate shear stress and temperature flux
to the mean-velocity gradient. Since the dependence of
these relations on transpiration must weaken with
increasing distance from the wall, the parameter (3 is

—00 <3< 0,
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defined so that the denominator containsthe local Rey-
nolds number Re.

The behavior of the Reynolds-stress component
[V °[{due to transverse vel ocity fluctuations) is similar
to that of shear stress:

2
o= 5H S(Re. p), )

where S, satisfies the same conditions as does the func-
tion Sin (4).

The components [?Cand W?[{due to velocity fluc-
tuations paralel to the wall) are left outside the scope
of the present analysis. Their behavior near the surface
ismore complicated (e.g., see[7—9]) and poorly known
even in the absence of mass flux across the surface.

By changing to the wall variables

y+=yﬁv. usUF. v, = v, 2
6, = _eW_—eF
fw AP

and using (4), Egs. (1) are rewritten as

.S s(Re, B) + S

=1+v,u,,

dy,J dy, (6)
u,(0) = 0,
yfj?/:g;iT(Re, PrRe, B)
Pirg(;: =1+v.6,, 6,0) =0, ()
Re = Vgt B = peg

where Pr = v/x isthe molecular Prandtl number.

Thus, the problem is reduced to an ordinary differ-
ential equation (6) for the velocity profile. The temper-
ature distribution governed by (7) is determined by the
integral

Y+

Prv. dy,

N(1+v.8) = [{ThReT(rRe PRE ) O

According to (4), the turbulent Prandtl number is

S(Re, B)
T(Re, Pe, B) ©)

If Pr,=1and Pr =1, then Eq. (7) hasthe solution

Pr.(Re, Pe, ) =

0, =u,.
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3. IMPERMEABLE WALL

In the case of impermeablewall (v, =0), Eq. (6) has
the closed-form solution
R

u, = I dRe 3 JRe |
) JRe’S(Re, 0) + Re JReS(Re, 0) +1
y. = JRES(Re, 0) +Re, 0<Re<w,  (10)
and integral (8) yields
R
Prd«/ ReZS( Re, 0) + Re (11)

9 = [T PrReT(Re PIRe, 0)'
0

It follows from (10), (11), and the conditions
imposed on the functions Sand T that both velocity and
temperature exhibit logarithmic asymptotic behavior in
the outer part of the wall region:

U, = Z(Iny. + ) + O(y"), (12)
PrO

6. = —!{Iny, +B(Pr)] + O(y:"),
y+ — 0, a> 0! (13)

K = J/S(0,0), Pr{ = Pry(ew,,0).

Based on experimental data, the values of the constants
in asymptotic representation (12) are set as follows:

K =041, C,= 205.

The most frequently recommended val ues of the turbu-
lent Prandtl number Pr? in the logarithmic region vary

between 0.85 and 0.95 [10]. Inwhat follows, Pr; = 0.89
in accordance with experimental datain [11].

Asymptotic expressions for the function B(Pr)
in (13) at small and large molecular Prandtl numbers
can be derived from the integral representation

dJ/Re’S(Re, 0) + Re
1+ PrReT(Re, PrRe, 0)

1

KPr

B(Pr) = —
Pr?.!

o]

_ dRe P
IRe(l +PrReT(Re, PrRe, 0))  pr}
1

(14
kdy/Re’S(Re, 0) + Re— PrT(Re, PrRe, 0)dRe
1+ PrReT(Re, PrRe, 0)

[

gl

1

—Ink,

which follows from (11), (13), and (10). The asymp-
totic form corresponding to small Prandtl numbers is
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mainly determined by the behavior of the integrand in
the second integral in (14) at high loca Reynolds
numbers:

B(Pr)

InPr+b,+..., Pr—0,

1
b, = T (00, 0, 0)dPe
! I1+ PeT (o, Pe, 0)
0

(15

00

g

1

[1+ Pe(T (e, Pe,0) —T(, «,0))]dPe

Pe[1 + PeT(w, Pe, 0)] InK.

If turbulent thermal diffusivity isindependent of X, i.e.,
T is independent of the Peclet number (see [10]),
then (15) yields

b, = In(k/Pr}),
which is smaller by 1 as compared to the value sug-
gested in [10].

At large Prandtl numbers, the dominant contribution
to the asymptotic form of B(Pr) is due to the first inte-
gra in (14), and the behavior of its integrand at the
lower limit of integration is essential. Using the well-
known estimate

®'vO= 0, y— 0,
suppose that

T(Re, PrRe, 0) = k(Pr)./Re+..., Re—» 0,

where k(Pr) is some function. Then, the leading-order
term in the asymptotic expression for B(Pr) is

B(Pr) = b,Pr*°+ ...,

PrHOO,

0

dx _ 2mJ/3k

K
b, = < = .
’ Pr?-! 1+Kk(w)X  9Pr2/k(w)

This result is close to the values given by an approxi-
mate formulafor b, proposed in [10].

By substituting (12) into (5), a constant value of the
rms transverse velocity fluctuation in the outer subre-
gion is obtained:

W'2ﬂ=i+0 :G, Z:L,
ST 9 B

(16)

y+—> (e

Thefinite limit value /o, isa universal constant. Most
experimental values of o, are slightly less than unity.
Henceforth, it is assumed that g, = 0.95 (see experi-
mental datain [12]).
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4. TRANSPIRATION

In the general case of nonzero transverse velocity at
the wall, the change to the variables

YVw

= YWw _ -2
Y = o " V.., W= v 1+v,u, a7
is performed in (6) to obtain the equation
dw 2dw 2
G0 SRe B+ =0 = 1, w(0) = =,
L)
Re = iwgiv B = 2 QX
o2 .dy’ "~ ReYwdw'’

The variables in (17) are defined so that Eq. (18) is
independent of v,.

Since the integral curves of Eq. (18) are symmetric
about the abscissa axis, it is sufficient to examine their
behavior in the upper half-plane. The pattern of integral
curvesisqualitatively illustrated by Fig. 1, where solu-
tions to Eq. (18) with S= k2 are plotted. Negative and
positive values of Y correspond to injection and suction,
respectively. The value of w increases from 0 to +co
along each curve.

In the case of suction, v, issmall, because u, has a
relatively large value at the outer edge of the wall
region while the right-hand side of (6) remains positive.
Therefore, the initial condition in (18) dictates that
physical integral curves must intersect the ordinate axis
at relatively large values of w (unphysical segments of
integral curves are shown as dashed graphsin Fig. 1).
In the general case, the velocity profile in the wall
region of turbulent boundary layer with suction is
described by integral -curve segments corresponding to
large values of w.

All integral curves lying in the first quadrant are
physical. Small values of w(0) correspond to strong
injection, i.e., large values of v,.

4.1. Scaling Laws
Equation (18) entails

dw _ 1
dinY  ,/S(Re B) + 1/Re

(19)

In the outer part of the wall region, the local Reynolds
number is high and quantities on the order of 1/Re can
be neglected in Eq. (19). Hence,

1

w = EInY+C1(v+)+O(W), a>0, (20)

where C;(v,) issome function. In the case of injection,
expression (20) describes the asymptotic behavior of
the solution to Eq. (6) as Y —» . In the case of suc-
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Fig. 1. Integral curves of Eq. (18) in the upper half-plane.

tion, it correspondsto the intermediate asymptotic solu-
tion for the outer part of the wall region. After changing
back to the original variables, (20) yields an asymptotic
representation of velocity profile:

Z([T+V,U.-1) = 2{Iny, + C(v.)] + O(%:")

a>0,

where C(v,) is a universal function. Relation (21)
extends the logarithmic law for velocity to flows with
transpiration. Since it must reduceto (12) when v, =0,
it holds that

(22)

y+ 001

C(0) = C,.
By virtue of (6), expression (21) also determinesthe

shear-stress distribution in the outer part of the wall
region:

V%(A/—m'vu—l) = Xy, + C(v.)] + Oy,

y+—> 00,

(22)

An analogous expression for the rms transverse
velocity fluctuation can be obtained by substituting (21)
into (5):

-\/2—(02 7Tl —1)
. ' (23)

= [ny. +C(v,)] + O(y:), Yu—> o,

where the constant g, is defined in (16) and calculated
by using results obtained for impermeable wall.
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Fig. 2. Velocity profiles for Poiseuille flows with transverse
mass flux in scaling variables. Solid and dashed curves rep-
resent data from [13, 14]. The solid lineis 2.44Iny, + 5.0.

Inview of (17) and (19), integral (8) is rewritten as

2Pr[1 + ReS(Re, )] dw

In(1+v.,6,) = I w[1+ PrReT(Re, PrRe, B)]’
2lv,
Then,
M = Injwj + In|Yz
2Py 2

(24)
Pr[1 + ReS(Re, B)] dw

0
+2£ thr®[1 + PrReT(Re, PrRe, B)] T

Theintegral in (24) is bounded for the outer subregion.
After changing back to the origina variables in (24)
and using (21), it yields

1/2Pr?

V%[(l+v+e+) 1)

1/2pr?

+2D(V., Pr)(1+v,0.) (25)

1 _
= E[InY+ + C(V+)] + O(y+a), Yy —> o,
where D(v,, Pr) is some function. Since (25) must
reduce to (13) when v, = 0, it holds that

D(0, Pr) = C,—B(Pr).

For unit turbulent and molecular Prandtl numbers,
D(v,, 1) =0.

Asymptotic relations (21)—(23) and (25) are scaling
laws for longitudinal velocity, shear stress, rms trans-
verse velocity fluctuation, and temperature, respec-
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tively, valid in the intermediate wall region outside the
viscous sublayer.

Relation (21) was originally obtained in [5, 6] by
invoking the Prandtl mixing-length theory, whereas
scaling laws (22), (23), and (25) are newly derived here.

4.2. Small Values of v,

When v, issmall (e.g., in the case of flow with suc-
tion), the velocity, shear-stress, and temperature distri-
butions can be represented as

2u, 0
— = uy(y,) +O(v,),
1+, /1+v,u, ) (v-)
du,
%D _mlvlﬂ+T;—_1E = ug(y+)+O(V+),
(26)
[var ‘ Pr‘[co B(Pr)l}[m v.8,)""" -1

= 82(y,) + O(v.),

where u® (y,) and 6° (y,) are the velocity and tempera-

ture profiles for an impermeable wall. Substituting the
first relation in (26) into (5) yields

J.—z

The first term on the right-hand side of this expansion
isthe rms velocity fluctuation in the boundary layer on
impermesable surface.

Thus, in the case of arbitrary suction or weak injec-
tion (when v, is small), the profiles in question can be
expressed in terms of the characteristics of the flow
over impermeable wall.

y+201

20 = y, = 0.

5. COMPARISON WITH EXPERIMENTAL
AND NUMERICAL RESULTS

Figure 2 shows the velocity profiles for pressure-
gradient-driven channel flow with transverse mass flux
obtained by direct numerical simulationin[13, 14] and
plotted in terms of scaling variables. The solid curvein
Fig. 2 corresponds to v, = 0.061 and the value Re,,, =
4357 of the Reynolds number based on the mean veloc-
ity and the channel width; the dashed curve, to v, =
0.241 and Re,, = 8000. Even though the Reynol ds-num-
ber values used in the computations are relatively low,
these distributions agree with (21): the graphs have
intervals of almost linear growth with a slope close to
Uk (k =0.41).

Thegraphsin Fig. 3 represent experimental velocity
and shear-stress distributionsin turbulent boundary lay-
ers with uniform transpiration reported in [15] (see
also [16]). The data points plotted in Figs. 3a—3d corre-
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Fig. 3. Profiles of velocity (open symbols) and shear-stress (closed symbols) in boundary layer on a plate with transpiration at Rey-
nolds numbers R, = 3.5 x 10° (1), 5.4 x 10° (2), 7.3 x 10° (3), 9.2 x 10° (4), 1.1 x 10° (5), 1.3 x 10° (6), and 1.4 x 10° (7) in scaling
variables, based on data from [15]: F = 0.001 (a), 0.002 (b), 0.00375 (c), 0.008 (d), —0.001 (e), —0.002 (f).

spond to severa values of F = v,/U, for flows with
injection and zero pressure gradient (U, is free-stream
velocity); the data points in Figs. 3e and 3f, to flows
with suction and moderate adverse pressure gradient.

The straight lines in Fig. 3 have the slope 1/k and cor-
respond to the right-hand side in (21) with C(v,) cho-
sen to ensure the best approximation of experimental
data (see Fig. 4). According to [15], experimental data
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Fig. 5. Rmstransverse velocity fluctuation in terms of scal-
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Fig. 6. Temperature profilesin turbulent boundary layerson
an impermeable plate based on data from [11]: R, = 1.30 x
108 (0), 1.44 x 10° (0), 1.99 x 108 (»). The solid line is
2.17(Iny, + 1.6).
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for flow over an impermeable plate are in good agree-
ment with logarithmic law (12) whenk =0.41 and C, =
2.05. Figures 3a-3d demonstrate that the width of the
logarithmic region (where scaling law (21) holds)
increases with both Reynolds number and v,. As v,
increases, the inner boundary of the logarithmic region
shifts toward the wall (see Fig. 3d, which corresponds
to the strongest injection in the series of experiments
reported in [15]).

Figures 3e and 3f demonstrate that the velocity pro-
files plotted in terms of scaling variables for flows with
suction also have logarithmic intervals.

The velocity and shear-stress profiles plotted in
terms of scaling variables are amost identica in the
viscous sublayer and very similar in the outer part of
the wall region, i.e., providing experimental evidence
of thevalidity of thefirst equationin (1). Itisclear from
Figs. 3b and 3c that the square root of shear stress in
flow with nonzero mass flux across the wall does
exhibit logarithmic asymptotic behavior in the wall
region.

Currently, relation (23) cannot be validated by com-
parison with experiment because of the lack of suffi-
ciently accurate measurements of velocity fluctuations
in the wall regions of flowswith transpiration. Figure 5
showsthe profile of rmstransverse vel ocity fluctuations
in the asymptotic turbulent boundary layer with suction
at v, =-0.0601 and Res = 1000 (the Reynolds number
based on the displacement thickness) plotted in terms
of the scaling variables used in (23) for the DNS results
reportedin[17, 18]. Figure 5 demonstrates that the pro-
file has a distinct logarithmic interval even though the
computations were performed at arelatively low Rey-
nolds number, but its slope exceeds 1/k by approxi-
mately 15%.

Relation (25) was verified against experimental data
from [11], where temperature profiles and Stanton
numbers were measured while skin friction was not.
The skinfriction coefficient was calcul ated by using the
Reynolds number based on the momentum thickness
and a universal skin-friction law [19, 20].

Figure 6 shows temperature profiles for boundary
layer on impermeable plate. The experimental data
points plotted in Fig. 6 are consistently described by

expression (13) with Pr{ =0.89 and B = 1.6.

Figure 7 shows temperature profiles for flows with
transpiration plotted in terms of the scaling variables
used in (25) with C(v,) determined from the experi-
mental data presented in Fig. 4. The function D(v,, Pr)
is defined so that the experimental data points follow

linear graphs at Pr; = 0.89 (see Fig. 8).

In agreement with scaling law (25), the experimen-
tal profiles shown in Fig. 7 have distinct logarithmic
intervals, and the function plotted in Fig. 8 by using
experimental dataexhibits clear-cut monotonic behavior.
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Fig. 7. Temperature profiles in boundary layers on a plate with transpiration in scaling variables, based on data from [11]: (1) F =
9.6 x 104 R, = 1.5 x 105; (2) 9.0 x 1074, 2.0 x 10%; (3) 2.4 x 1073, 3.9 x 10°%; (4) 2.0 x 1073, 9.3 x 10% (5) 1.9 x 1073, 1.5 x 105,
(6) 1.8 x 1072, 2.0 x 105 (7) 3.8 x 1073, 1.5 x 108; (8) 3.5 x 1072, 2.0 x 10°%; (9) 6.0 x 1073, 4.0 x 10° (10) 5.1 x 1073, 9.2 x 10°;
(11) 4.7 x 1073, 1.5 x 105; (12) 4.4 x 1073, 2.0 x 10%; (13) 1.3 x 1073, 4.1 x 10 (14) 1.1 x 102, 9.6 x 10°.

According to (9), the turbulent Prandtl number for
the logarithmic region is independent of the wall value
of transverse velocity, in agreement with experimental
evidence[21].

6. VELOCITY AND TEMPERATURE PROFILES
IN FLOWS WITH STRONG INJECTION

Now, let us apply the method of matched asymptotic
expansions [22] to analyze the asymptotic behavior of
velocity and temperature profiles corresponding to high
values of v,. In this case, the wall region consists of
four distinct subregions.

For subregion | (adjoining the wall), it holds that
Y =0(1), turbulent shear stress can be neglected in
Eqg. (18), and the leading-order term in the solution is
similar to that for purely laminar flow:

2 eY/2+O(V:4),

v (27)
In(1+v.0,) = PrY+0O(vy).

W =

The solution for subregion Il (next to 1) is sought in the
form

Y=M+Y, w= WalY) |
M (28)
Y, = O(1), M— w.
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Substituting (28) into (18) and taking the limit as
M — oo for Y, = O(1) yields

W, 2 dW, _
o ey, <
Re = V\_lzd_vvz
To2.dy,’

Thus, the turbulent and laminar components of
shear stress are comparable in order of magnitude. The
boundary condition for Eq. (29) and the value of M are

D(v,, Pr) — D(0, Pr)

0 = T T T T
o T
-0.21 o B
-0.4}F oo e
0.6k R
o a
—08 ! ! ! !
0 0.05 0.10 0.15 0.20 0.25
v,

Fig. 8. Values of D(v,, Pr) based on experimental results
from [11].
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determined by asymptotic matching of expansions (27)
and (28):

W, — 2% Me"? = v,. (30)
Boundary condition (30) is then used to obtain a solu-
tion to EQ. (29) in parametric form:

Re

Y, = InRe+ ReS(Re, =) +IS(Re, o)dRe,
0

Y2 — —00;

(31)

W, = 2JRe’S(Re, ©) + Re, 0< Re <.

After writing the temperature distribution in subre-
gionll as

In(1+v.6,) = PrY*

Y2

Prdy,
I 1+ PrReT(Re, PrRe, oo)
Y*—-M

(32)

Y* = O(1)

the variable in the integrand in (32) is changed by
using (31) and the limit is taken as Re — o to find

In(1+v.,8,) = PrM

RedS(Re o) + 25(Re, o)dRe
1+ PrReT(Re, PrRe, «)

+PrI

Re

dRe
IRe[1+ PrReT(Re, PrRe, «)]

1
2 T(Re PrRe, o)dRe
1+ PrReT(Re, PrRe, «)
0

The condition at the outer edge of subregion Il is
obtained as Re — oo;

In(1+v,6,) = 2Pr;InY,+ PrM
+a,(Pr)+...,

YZHOO,

(33)
Pr;"’ = Prt(°o1 ©, 00)’

_ RedS(Re, )
%(P1) = P[5 ReT(Re, PrRe, =)
0

00

dRe
J-Re[l + PrReT(Re, PrRe, «)]

1
2+ T(Re PrRe, «)dRe
1+ PrReT(Re, PrRe, «)’
0
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In subregion |11,
W;(Y5)
Y=M+/MY, w= 234
3 N
1 _
= = 0O(1), Y;=0(1).
Y3
In the limit of
M+ oo, Yi = 0(1), Y, = O(1),

3

Eqg. (18) retains only the turbulent component of shear
stress:

AW _ Q2 dYsr

Cav,0 X P =1, OWsawd -

The solution to EqQ. (34) that satisfies the condition for
matching with the solution for subregion Il is

B= (34)

Y3 = S(OO! B) +J'S(°°1 B)dB
W, = 2 /@, 0<p <.
The temperature distribution in subregion 1l is
obtained by adding the integral
Y3
_ABdY;
RCTD

Yo/ /M

to (32). After using (35) to change the variable in this
integral, it isrewritten as

- (BS(. B) ~ S(w, B)dB
S R

B* = MD?S(;Z 00)% +

Inthelimit of M — oo,

I, = Pr[INM = 2InY, + 2In(2S(e, ©0))]

|

Pr (°° ©,B)dB

dS(e, B)
f T(wo, o, B)

* [IPr(es, B)—Pri"’]d—[f+ "

As3 —= 0, the sum of (33) with this expression yields
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the condition at the outer edge of subregion I11:

In(1+v,0,) = 2PrlInY,+ PrM

(36)
+PrInM + ay(Pr) +ag + Y; —= o,
o = [[Pr( ) pr j{ffwwﬁg)
J'[Pr(oo 0, B) = Pr’] [f 2P %In(2k?).
In the outermost subregion 1V,
Y = MY, w=W,(Y)+...,
1/Y, = O(1),
AW (37)

LdinyJ S, 0) = 1.

The solution to Eq. (37) that satisfies the condition for
matching with the solution for subregion 11 is

1

W, = <InY,. (39)

Combined with (21), expression (38) determines the
asymptotic form of C(v,):

C(v.) = 52"-+

V+—>00’

(39)
M+ 2InM = 2lnv,.

The temperature distribution for subregion 1V is
obtained by adding the integral

Y
I, = 2Pr? .[
1+ Yy/J/M
to (36). The resulting expression

In(1+v,6,) = 2PrlIninY, + PrM

dy,
Y,InY,

+(Pre + Pr)InM + ay(Pr) +ag +

is combined with (25) to find the asymptotic represen-
tation

D(v,, Pr)
P+ Pry Pr) +
= exp|— PrM L 1nM az( )0 a3
op® 2P 2P
—ZK/IEe_M’2+ ety V>,
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This function tends to zero with increasing v,.

According to Fig. 4, thefunction C,— C(v,,) plotted

by using velocity profiles obtained experimentally
in[15] and numerically in [13, 14] increases toward
v, = 0.8. However, C(v,) — o as v, — o by virtue
of (39). Therefore, C(v,) is a honmonotonic function,
and the graph presented in Fig. 4 must have amaximum.

Subregions | and 11 constitute the viscous sublayer.
Denote by d, its characteristic thickness normalized to
the near-wall length scale pv/t,,. The above analysis
shows that

d, = O(Inv.,/v,)

as v, — oo, |t should berecalled that injection reduces
the viscous-sublayer thickness and widensthe logarith-
mic region (see analysis of experimental data presented
inFig. 3).

7. CONCLUSIONS

A model based on fluid-dynamics equations, stan-
dard assumption of near-wall flow independence of
external parameters, and continuity of functions S and
T representing turbulent shear stress and temperature
flux is formulated. Scaling relations for velocity, tem-
perature, and Reynolds-stress components are derived
without invoking any hypotheses about the mechanism
of turbulent transfer. Asymptotic representations of the
universal functions C(v,) and D(v,, Pr) contained in
these relations are obtained.

The wall region of turbulent boundary layer with
transpiration consists of two distinct subregions: avis-
cous sublayer adjoining the wall, where the turbulent
and viscous stress components are comparablein order
of magnitude, and an outer subregion, where molecular
viscosity is negligible. In the outer subregion, the scal-
ing lawsfor velocity, temperature, shear stress, and rms
transverse velocity fluctuation are determined by the
same logarithmic distribution, which depends only on
the dimensionless transpiration velocity v,.

As v, — oo, the viscous-sublayer thickness mea-
sured in units of near-wall length scale tends to zero as
O(Inv,/v,), and the domain where the scaling laws are
valid shifts toward the wall.
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Abstract—A solution to the system of equations describing acylindrical hybrid-aligned nematic liquid crystal
is obtained. The rotational flow driven by vertical temperature gradient in such a cell is investigated theoreti-
caly. Thecell is suggested as a new experimental setup for determining an additional relation required to mea-
sure the twel ve thermomechanical coefficients. It is shown that the termsin the expressions for thermomechan-
ical stress and heat flux obtained in [8] are equivalent to those originaly proposed in [7]. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Shortly after the discovery of liquid crystals (LCs),
rotation of a cholesteric drop induced by vertical tem-
perature gradient was observed by Lehmann [1]. For
cholesteric LCs, thermomechanical effects of this kind
wereinvestigated in detail both experimentally and the-
oretically in [2-5] and attributed specifically to the
chirality of cholesterics. Consequently, effects of this
kind would not be expected to occur in nonchiral LCs,
such as nematics (NLCs) [2—6]. However, new thermo-
mechanical effects were predicted for deformed nemat-
icsin [7], where the first consistent theory of thermo-
mechanical coupling due to nonuniform director orien-
tation under a temperature gradient was developed for
uniaxial nematics. Thermomechanical effects of three
basic typeswere considered in [7]: hydrodynamic exci-
tation induced by temperature gradient (direct thermo-
mechanical effect), temperature gradient arising in non-
uniform flow (inverse thermomechanica effect), and
additional director deflection caused by heat flow.

The validity of the thermomechanical terms in the
eguations obtained in [7] was questioned in [8], where
these terms were written in somewhat different form.
The discrepancy is elucidated in the Appendix. How-
ever, the thermomechanical coupling predicted in[7]
was observed in numerous experimental studies[9-11],
and the measured values of thermomechanical coeffi-
cientswere in good agreement with the theoretical esti-
mates obtained in [7]. Thermomechanica coupling,
including some effects induced by external fields, was
investigated experimentally in [12], where an original
cylindrical hybrid-aligned nematic cell was proposed
and thermally driven rotation in such a cell was
observed.

In this paper, we solve the system of equations for
the director distribution in a cylindrical homeotropic—
planar hybrid nematic cell. A theoretical analysis of
rotation of the cell induced by a temperature gradient
along its axisis presented. We suggest that the cell can
be used as anew experimental setup for determining an
additional relation required to measure the twelve ther-
momechanical coefficients. To derive the lacking rela-
tions between the coefficients, alternative director ori-
entations should be implemented by using nonuniform
static or oscillating magnetic fields. The required non-
uniform director orientations can be obtained by reori-
enting the director field through a Frédericksz transi-
tion in an external magnetic field.

The paper is organized as follows. In Section 2, we
examine the static director distribution in a cylindrical
hybrid aligned nematic cell. In Section 3, we analyze
thermally driven rotation of the cell. In Section 4, we
discuss the reversibility of thermomechanical coupling
and present our conclusions. In the Appendix, we show
that the terms in the expressions for thermomechanical
stress and heat flux obtained in [8] are equivalent to
those originally proposed in [7].

2. DIRECTOR DISTRIBUTION
IN A CYLINDRICAL HYBRID CELL

Consider a nematic layer in a cylindrical cell with
the z axis directed vertically upwards. The boundary
conditions on the lower and upper substrates corre-
spond to directors oriented along the z axis (homeotro-
pic orientation) and along the tangents to concentric
circles, respectively (see Fig. 1). By virtue of symme-
try, every director n belongs to a cylindrical surface
coaxia with the z axis. It is also clear that n is not
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Fig. 1. Cylindrica hybrid-aligned nematic cell.

defined on the axis; i.e., the z axis is a disclination.
Therefore, the director distribution can be determined
only withintheinterval a<r <R, whereaisthe molec-
ular size and Risthe cylinder radius.

Define a cylindrical coordinate system (r, ¢, 2).
By virtue of symmetry, the director distributionisinde-
pendent of r and ¢. Denoting the angle between the
director n and the z axis by x, we write the components
of nas
n, = 0,

ny = sinx(2), n, = cosx(z).

The boundary conditions for the function x(2) are
x(0) =0, x(L) = w2,
where L isthe NLC layer thickness.

In the cylindrical coordinates, the Frank elastic free
energy density F, is expressed as follows [13]:

Fa = KX°STX + =5Kasin'(20)
1 M. .4 22 @)
+§K3Dr_23m X +X'“cos XE

whereK,, K,, and K; arethe Frank elastic constantsand
X' = dx/dz. The director distribution is determined by
minimizing the elastic free energy for the cell volume:

F = 2nJ’Fdrdrdz.

Theintegral over dr islogarithmically divergent. How-
ever, we can use R and a, respectively, asthe upper and
lower limits. Since the latter (the length scale on which
the macroscopic theory fails) defines acylinder coaxial
with the outer cylinder of radius R, the integral from a
to Ris readily calculated. Solving the ensuing Euler—
Lagrange equation, we obtain theintegral of motion [7]

I6_F — f—
X % F = const.
It can also befound by applying the Noether theorem [14].
The function x(2) is defined implicitly by the fol-
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lowing relation:

RZ_aZ 2 2 1/2
xE [K,sin’X + K4cos'X] O
2 0
z= (DO 1 0 dx,
H . 2 . 4
o%:onsH InEED[ZKZS'n (2x) + Kzsin xE 2

where the boundary condition x(0) = 0 is used. The
boundary condition x(L) = 172 determines the inte-
gration constant. Numerical computation of the expres-
sion (2) using Mathematica 5 shows that the function
X(2) isalmost linear. In particular, it hastheform x(2) =
TZ/2L in Frank’s single-constant approximation.

3. THERMALLY DRIVEN ROTATION
OF A NEMATIC CELL

Suppose that external heat sources are used to keep
the temperatures on the lower and upper planes (z= 0
andz=L) at T, + AT and Ty, respectively. Theresulting
temperature gradient givesrise to solid-body NL C rota-
tion, which is described by the Navier—Stokes equa-
tionswritten in the linear steady-state approximation as
follows[7]:

00 .
O_xkI =0, 0 =—pd;+0,+0q, ©)

k
where p ispressure, o,; denotes viscous stress compo-

nents, and oLTm denotes thermomechanical stress com-

ponents. The problem linearized with respect to veloc-
ity and director disturbances should be solved in the
cylindrical coordinate system by using the single-con-
stant approximation &, =&, = ... =&,, = &, where§, are
thermomechanical coefficients [7]. By virtue of sym-
metry, it is also clear that

0/ =0, v, =v,=0,

where v is the hydrodynamic velocity and w(r, 2) =
d¢/dt is the angular velocity of NLC rotation. Finally,
we have the following equation for the angular
velocity:

Ve = ro(r, ),

.2 0w
[3n3+ nssin'X] 5
. . 0w
* [(n1—nz)sin(2x) + 2n,sin(4x)IXr 57

. 9%w
+[n3+nesn2x]rﬁ

. . 9w
+[n2+(nl—nz>sn2x+n4sn2(2x)]r5; (4)
1. AT .2 5 SIN(2x)
+8.§ 3 [(SSm X 2)—r2
No. 5 2004
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2
—(12—-18cos’X + 6¢0s'X + sin2(2x))%§
z

—(18—120032)(+4cos(2x))x'zsin(2x)} = 0.

Here,

Ny = 0.5(az+a,+0dg), N, = 05(0,+as—a,),

ns = 0.5a,
are the Miesowicz viscosities;

N, =0.250,, ns =150+ 0.505, Ng=0.5(0;+ag)

and a;, q,, ..., Og are the Ledie coefficients. As
R — oo, EQ. (4) can be reduced to an equation for the
velocity v = wR of thermally driven flow in a planar
hybrid cell [12].

Equation (4) isasecond-order linear elliptical equa-
tion. To formulate an appropriate Dirichlet problem, we
set the following boundary conditions:

w(r,z=0) = w(r,z=1)
=w(r=a2 =w(r=R2z =0.

They correspond to a nematic confined between two
coaxial rigid cylinders of height L with radii a and R.
The Dirichlet problem can be solved by using Mathe-
matica 5. A numerical analysis of Eq. (4) was per-
formed for MBBA as an example of NLC. The com-
puted results are shown in Figs. 2 and 3.

When the planar concentric orienting substrate is at
the top and the cell is heated from below, the nematicis
expected to rotate steadily about the zaxis. When asim-
ilar nematic cell is heated from above, oscillatory rota-
tion should be expected. Theseresults arein qualitative
agreement with recent experimental observations[12].

Moreover, our numerical analysis shows that the
maximum rotation velocity (with respectto zand r) is
proportional to the temperature difference between the
upper and lower substrates (see Fig. 4).

4. DISCUSSION AND CONCLUSIONS

The present theoretical treatment of thermally
driven rotation of a cylindrical hybrid-aligned nematic
cell is in qualitative agreement with experimental
observations[12]. We should note here that the thermo-
mechanical stress tensor proposed in [7] is invariant
under time reversal, as correctly reasoned in [§].
Accordingly, we concur with the authors of [8] in that
thermomechanical coupling does not involve dissipa-
tion. In other words, the work done by thermomechan-
ical forcesis converted into the kinetic energy of arota-
tiona flow (e.g., via direct thermomechanical effect)
rather than dissipated into heat (internal energy of the
system). Even though the change in energy density due
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Fig. 2. Angular velocity of rotation versus z and r for
MBBA at AT = 5°C. The thermomechanical coefficient is

£ =0.22 x 108 dyn/°C.

V(I)max’ |J.m/S
0.8 T T T

0.6

04

0.2

1
1.5 r,cm

0 0.5 1.0

Fig. 3. Maximum rotation velocity (with respect to ) versus
distancer from the common axis of cylindersfor AT = 5°C.

Vmax’ Hm/s
1.0F T T T T =

0.5+ .

0 2 4 6 8 10
AT, °C

Fig. 4. Maximum rotation velocity (with respect to zand r)
versus temperature difference AT.

to thermomechanical forces is caused by externa
sources, it is reversible. Entropy may vary, and a“dis-
sipative” function associated with thermomechanical
coupling will not be invariant under time reversal.
However, such a function was used in [7] to derive
exact equations describing thermomechanical effects.
Consider the entropy equation

as/ot +div(sv+q/T) = 2R/T,
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where ¢/T isheat flux. Thefunction 9 is antisymmetric
under time reversal (i.e., “dissipative’), but this does
not lead to any substantial inconsistency. Indeed, the
system analyzed here is an open one, since heat is sup-
plied by an external source, and the entropy of a ther-
mally uninsulated system of this kind may vary.

Note also that the thermomechanical-stress and
heat-flux components suggested in [8] are equivalent to
the corresponding expressions in [7]. Indeed, a simple
algebra can be performed to show that the expressions
given in [8] can be abtained by simply rewriting those
proposed in [7] in adifferent form (see Appendix).

In summary, reversible thermomechanical coupling
does exist. It has been observed experimentally, and its
analysis can provide information about molecular
dynamics, elastic properties, and structure of nematic
mesophase.
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APPENDIX

DIFFERENT REPRESENTATIONS
OF THERMOMECHANICAL STRESS TENSOR

We introduce new notation for the thermomechani-
cal coefficientsused in [7]:

a, = (28~ &+ Es— ),

8, = —5(28, - &, Es+ ),

8 = 3+ &), & = 3(E—Eo).

8 = 5+ &), 8 = —5(E—E),
8 = ~5(Ea—Ee+ & —Eg+ B+ 28y),
_1
ag = 2(23—24—27"'28—211_2512)’
Qg = %(—255"'&7‘*'2&10"'{12),
1 _1 _
A = é(— 28,+ 289+ &y), A = EEM’ ag = &

After some manipulation, we obtain the following
expression for the thermomechanical stress tensor con-
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sidered in [7]:

thm

o; = an;0;Tdivn+a,n0;Tdivn

+ %;\3 +a,+ %alq%ninj(nﬂnq)DqT
1
+ %3‘* éai’gnj(ljkni)(mk-r)
1
+ E—as"‘ Za%nj(ljink)(mk-r)

+ay+ %a%nj(nVni)(nVT)

+ %4 + %afgni(mkni)(ljk-r) ©)
+ et 3 Om) (00

1
+Ha,+ zaq%ni(nan)(nVT)

+agn;n;divn(nVT) + %aﬂ(nVni)DjT

+ %all(nan)DiT + :—zLalZDinj(nVT)
L1

2a12Djni(nVT).

According to [8], the new components of thermome-
chanical stress have the form oj; = a(0T)(CINy),
where oy, is expressed as follows (if no symmetry is
imposed on the tensor):

_ tr str " tr <tr tr str
Qijpl = 1N 00, + a1 N;0; O, + AN Oy

tr tr n tr tr tr tr tr <tr

+a3N;0;, 0, + A3N;Q; O, + 34N, §jj Oy + A5N; OOy

n 6tr 6tr 6tr 6tr6tr n 6tr 6tr

+ a5N;0;,0y T agN;N;N Oy, + a7N,0; O + 87N, 0; 05
+ 6“‘ + 6“’ 6” + n 6“' 6“’
aghin;N oy, + agN 0 Ojp + AgN 0 O;y

tr n tr
+ayoN; nkn|c3ip + agh, nkn|6jp.

If the stress tensor is symmetric, thena, = a' (i =1, 3,
5,7, 9, 10). Using this expression for g;j,, we perform
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some manipulations to obtain the expression for ther-
momechanical stress o;, givenin[8]:

R _

o;; = a;n,0;Tdivn +ajn;;Tdivn

+[a(nVT)divn + 3,00, T(nVn)]d;
+a5n; (0;n) (O, T) + agny(Oin) (O, T)
+asn; (0,n;) (O, T) + agn;(Oen;) (0,T)

+a;0,n;(nVT) +a;0;n(nVT)

" (6)
+a(nVn))OT +ag(nVn) ;T

+ (ag—a, —a; —ay)n;n;divn(nVT)
+(—az—az—a,+ag)nn(nVny) O, T
+(—as—a;—ay +ap)n(nVn,)(nVT)
+(—ag—a;—ag + a,)n;(nVn)(nVT).

Comparison of (5) with (6), we find that each term
in (6) isidentical to a corresponding term in (5) except
for those containing a, and a,, which correspond to the
additional pressure

p"™ = ay(nVT)divn +a,0,T(nVn,),

due to thermomechanical coupling (in [7], it was
included in the expression for hydrodynamic pressure).
Note that p™™ can be found by the method proposed
in[7],i.e, by applying the conditional variational prin-
ciplefor divv = 0.

Note also that the tensor g, in the expression for
thermomechanical stresswasused in [8] to describethe

heat flux jg without sufficient reason. However, the

equality of the corresponding tensors can easily be
proved by the method proposed in [7]. First, rewrite the
“dissipative” function that describes thermomechanical
coupling in terms of ayy,:

R = aijup(Oiv)(OT)(Ony).
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Then, calculate the variational derivatives of R in [, T
and [J;v; respectively, keeping the remaining quantities
constant, to obtain

thm _ .0R _ 6%thm _
O« =k T = —Tg(“D‘J-) = —ajp(0iv)(On,)T,
R B%thm

gj = = ajp(0cT)(Hny).

o(Lv))
The resulting coefficients are obviously equal, since

they are obtained by varying the same “dissipative”
function.
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Abstract—Thermodynamics of the Potts model with an arbitrary number of states is analyzed for a class of
hierarchical lattices of fractal dimensiond > 1. In contrast to the case of crystal lattice, it isshown that all phase
transitions on lattices of this type are of the second order. Critical exponents are determined, their dependence
on structural parameters is examined, and scaling relations between them are established. A structural criterion
for changein transition order is discussed for inhomogeneous systems. Application of the resultsto critical phe-
nomenain phase transitions in dilute crystals and porous mediais discussed. © 2004 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

Analysis of phasetransitionsin spin modelson hier-
archical lattices dates back to the Migdal—Kadanoff
renormalization group method [1, 2], where such lat-
tices were introduced as approximations of crystal lat-
tices[3]. Thevariety of hierarchical lattices of noninte-
ger dimension proposed in further studies[4, 5] can be
used as models of fractal systems. Analysis of phase
transitions on fractalsis of great interest, since fractals
are frequently used in models of disordered systems,
such as porous media or percolation clusters in disor-
dered crystals[6]. Hierarchical lattices are not random,
but they have wide distributions of coordination num-
ber and characteristic length and can therefore be used
as models of random inhomogeneous media. Indeed,
studies of Ising models on hierarchical lattices have
shown that the critical exponents for second-order
phase transitions are different for fractals and depend
on their structural characteristics [7, 8]. This behavior
is analogous to change in critical exponents for disor-
dered crystals with degree of disorder [9].

Furthermore, dependence of first-order transitions
on structural inhomogeneity in hierarchical fractal
models is qualitatively similar to that observed in
numerical studies of such transitions in models of
diluted crystals [10—13] and porous media[14, 15]. In
particular, the inhomogeneity-induced crossover from
first- to second-order transition discussed in [10-15]
occursin the g-state Potts model (with g =4 and 10) on
hierarchical lattices of fractal dimension d > 2 [16].
This remarkabl e observation cannot be explained in the
framework of the standard phenomenology that
attributes “suppressed” first-order transitions in inho-
mogeneous systems (partial or complete suppression of
jumps in thermodynamic state variables) to the forma-
tion of an inhomogeneous two-phase state near the crit-

ical point [17]. Thisexplanation isinconsistent with the
physical nature of the instability that develops in the
inhomogeneous system and manifests itself by diver-
gence of correlation length and critical susceptibility
[10-15].

However, experiments on transitionsin liquid crys-
tals [18, 19] and the antiferromagnet MnO [20] con-
fined in porous matrices demonstrate the possibility of
change in order of transition due to inhomogeneity.
A change from the first-order structural transition
O, —= Dy, to a symmetry-forbidden second-order
transition occursfor amagnetite (Fe;O,) under doping
with zinc [21]. An analogous change is also observed
for phase transition from cubic to orthorhombic phase
in mixed crystals (KBr); _(KCN), [22, 23]. Whereas
transition of thiskind in idea cubic lattices are of the
first order [24], it turns into a second-order one for x =
0.65, 0.7 [22], and 0.73 [23] as the elastic modulus C,,
vanishes at the critical point [23].

Thus, both experiments and numerical analysis of
realistic models demonstrate that inhomogeneities not
only suppress jJumps in thermodynamic state variables,
but also lead to second-order singular behavior. Eluci-
dation of the nature of this phenomenon and develop-
ment of its quantitative models will improve under-
standing of phase-transition mechanisms and stimulate
progressin many applications of inhomogeneous mate-
rials. One goal of theoretical analysisisto discriminate
between systems characterized by change from first- to
second-order phase transition and those in which first-
order jumps are merely suppressed by the formation of
an intermediate inhomogeneous phase [17, 25].
Another goal isto determine the critical exponents for
inhomogeneity-induced second-order transitions and
find their relationship to characteristics of inhomoge-
neous structure.

1063-7761/04/9905-1044$26.00 © 2004 MAIK “Nauka/ Interperiodica’



INHOMOGENEITY-INDUCED SECOND-ORDER PHASE TRANSITIONS

Studies of phase transitions in simplified spin mod-
els of inhomogeneous systems, such as hierarchical lat-
tices, can be very helpful in achieving these goals,
because thermodynamics of certain models of this kind
admits exact analytical treatment [16]. Indeed, anaytical
evidence of change from first- to second-order phase
trangition in inhomogeneous systems can currently be
found only in the results reported in [16] and in analyses
of the Potts modd for random graphs with power-law
distributions of coordination number in [26, 27].

The Potts model was examined in [10-16, 26, 27] as
the simplest one that admits first-order transitions on
trandationally invariant lattices of dimensiond=2or 3
and represents various physical phenomena, including
structural transitions in adsorbate layers (q = 3, 4) and
transitions in cubic ferromagnets placed in magnetic
field or inliquid mixtures(q = 3) (seereview in[28] and
referencestherein). The Potts model can also be used to
describe various ferroelastic transitions, such as the
O, — Dy, transitions in the spinels exemplified by
NiCr,0, and Fe;O, and in the superconductors Nb;Sn
and V,Si (g = 3) or the charge-ordering transitions in
Yb,As; crystals [29] and Mg;Cd-type alloys (q = 4)
(see Table1V.4in[24]).

The analysis presented in this paper is focused on
the g-state Potts model with arbitrary q on atwo-param-
eter family of hierarchical lattices characterized by
fractal dimensionsd > 1 and average coordination num-
bers 2 < z < 4. An analytical approach different from
that employed in [16] isused to show that second-order
phase transitions can occur for all of these g, d, and z;
to obtain expressionsfor critical exponents; to examine
their dependence on structural parameters; and to find
scaling relations between them. The results obtained
here make it possible to suggest a structural criterion
for inhomogeneity-induced change in order of transi-
tion. Finally, these results are discussed with regard to
their applicability to critical phenomenain phase tran-
sitionsin dilute crystals and porous media.

2. GEOMETRIC CHARACTERIZATION
OF HIERARCHICAL LATTICES

Figure 1 schematizesthe construction of ahierarchi-
cal lattice of the family specified above by replacing
each bond with n = 2 chains containing m = 2 bonds.
The total number of bonds increases by afactor of B =
mn at each step of the procedure, amounting to B* after
the kth step. The number N, of sites is given by the
recursion relation

N, = BN,_;,—n—-B+2,
Therefore, if Ny = 2, then

n-1
B-1

+1. Q)
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Fig. 1. lterative construction of hierarchical lattice with
m=3andn=4.

Since the average coordination number for an infi-
nitelatticeisz = I!im (ZBk/Nk) ,itfollowsfrom (1) that

2= 2275 2)

Sk

i.e, z variesfrom2 (M — o) to4 (M=2, N —» ).
After k steps, the largest distance between sites is m.
Therefore, N, O (m¥)? ask — oo, where

4= InB
Inn

is the fractal dimension of the lattice. It is obvious that
1<d< o,
If z and d are treated as independent parameters,

then the conditionsm= 2 and n = 2 imply that
2<z<4(1-279. ©)

To find the distribution of coordination number, note
that z = 2nk and the number of such sitesin the Ith-level
latticeis

s.= (B-n)B™**' o0<ksl-1.

Sinces =2 (z = n' for thetwo basic sites), it follows
that ;:(:OSK =N, and Z'kzoskzk = 2B,. Theresulting
coordination-number distribution is

|
W@ = lim %5(2-4)
k=0

d

_ B-1@y-? oK.

= =5 00 z d(z-2nY);
k=0

i.e, apower law with an exponent greater than unity.

Analogous distributions with denser sequences of z

(z.=K) are used in models based on iterative scale-free
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random graphs [ 26, 27]. For these graphs, Potts models
with g = 1 admit second-order transitions, with effec-
tive-field singularities due to a divergent moment [2°[)
if the power exponent in W(2) islessthan 3 [26]. In the
present model, [Z[is divergent if r = d/(d — 1); other-
wise,

rB-1
B-n'

FO=2

However, it is shown below that all transitions on the
hierarchical lattices of the type considered here are of
the second order with anomalous scaling, and the form
of W(2) determines only the values of critical expo-
nents.

3. RECURSION RELATIONS, GIBBS FREE
ENERGY, AND CORRELATIONS
IN THE POTTS MODEL

The partition function for the g-state Potts model on
the lattices under analysis can be calculated by assign-
ing the factor

24(0,0) = exp[K8s o+ 3601 +80.0)| ()

to each bond and performing the sum of the resulting
expressionsover 0 ={1, 2, ..., q}. (Here, 0 and ¢' are
the Potts spins at the bonded sites, K = J/T, and histhe
external field.) The “partia” partition function Z,(o, ¢)
calculated for thelth-level lattice asasum over all spins
except those at the basic sites can be shown to satisfy
the recursion relation [1-3]

2,.1(0,0) = [(2)5.6] @31 ) (851 + B¢:). (9

Thus, the next-level partia partition function is
obtained by raising Z(a, ") to the power mand raising
each element of the resulting matrix to the power n. The
exponential factor in (5) isintroduced to remove spuri-
ous powers of exp(h/2)(d,; + Oy ;). Relations (4)
and (5) can be used to find the partition function in the
thermodynamic limit as| — co.

By virtue of (4) and (5), Z (o, ¢") can be represented
as

(1-551)(1-051)

Z/(0,0") = 2305104 1 + Ay

q-1
+ bl (60, 1 + 60‘, 1 + 60, 160', 1) (6)
+C||:6o-’ 0'_60—’160"1 (l 60’(;;)(:;- 60‘ l)i|
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Thematrix Z(o, ') given by (6) hastwo nondegenerate
eigenvalues,

= —(a1|+a2|) /\/(au az|) +(q- 1)blv (7)

and an eigenvalue ¢, of multiplicity g— 2. Expression (7)
can be used to represent the coefficients obtained when
Z(o, a") israised to the power m as follows:

1 1 m m Z
ay = é()\+| +)\—I)+El(all_a2l)1
[ 1 m m Zl
ay = 5(7\+| +)\—I)_E(all_a2|)a 8
: . _om AL —A]
b =¢(b, ¢ =c, = .
1 = (b | Y M=,

Accordingly, the coefficients satisfy recursion relations
corresponding to (5):

—h(n-1 1 \N —h(n-1)/2 N
ay ., = e V@)", b,y = e ()"

a _fat(q- 2)C|D
2,1+1 — D q 1

o . = [Ba+(@=2)c o —c
+1 7 0 q-1 0 Og-10°

The starting values of the coefficients are derived
from (4):

+(q- 2)5’3‘;' 9

_ K+h
Qo= € ,

h/2
b, = €

The partition functionsfor the Potts model swith partic-
ular boundary conditions at the basic sites are found by
solving system (8), (9). In the case of free boundary
conditions, the following result is obtained by adding
the required fields h/2 at the basic sites:

Zl(f) — zeh(c+0‘)/2zl(o_’ O_.)

= 'ay + (q-1)(ay + 2€"°D)).

If periodic boundary conditions are set at the basic
sites, then

K
Ao =€ +q-2,
e (10)
C, = e -1

(11)

Z" = ZZ(" 0) = ay+ay+(d-2)c. (12

If boundary conditions specify that o = 1 at the basic
sites, then
zZ% = 7,(1,1) = ay,. (13)

In the absence of long-range ordering, all of these
partition functions must yield the same Gibbs free-
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energy density in the thermodynamic limit. They are
very difficult to calculate for h # 0. However, both
Gibbs free energy and its field derivatives can be
obtained by analytical methods for h = 0 near the criti-
cal point, and this will suffice to determine the order of
transition and the critical exponents.

In this section, an expression for the Gibbs free
energy for h = 0 is derived. In this case, it follows
from (8) and (9) that

ay = b+c, ay=a,+(q-2)c,
i.e., only two coefficients are independent. By intro-
ducing

eK|+1 f( K|),
fx) = ax-p" " 19
0= o

Another recursion relation valid forh=0is

(eKH_ 1)5'

K,/n n (15)
(e" -1)

by = 9|+1b|Ba g =

By combining (15) with the definition of K,, the follow-
ing expression for the Gibbs free-energy density is
obtained:

- _TlimNtinz" = _2Z g
F = TJL"Z,N' InZ, 2TkZlB Ing,, (16)

where use is made of the fact that KBY — 0 as

| — oo,
Thefixed point K = K, of relation (14),
e = f(e), (17)
isthecritical point. If K> K_, then K, — oo. If K <K,
then K, — 0. If [K—K | < K. and | issufficiently small,
then K varies dowly,

K

=14k (K=K, (18)

Ko Kdny, K
—e )€ +a-1) g (19

K=f'(e") = HG = =
(e"-1)(e"+qg-1)

until it becomes much greater or much smaller than K...
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An applicability condition for (18) can be written as

const

[ <|CE Inm,

(20)

where the constant is determined from (18) by using
requiringthat K, ~KcatK <K andK, > K atK>K..

For | > 1., (14) yields

K|+l:nqg%% )

U(m-1) 'l
n m

— VM=

K,=qgn d<D—D

g 0 K<K

cy

K n

o (21)

le

|-
n/(n—1)(n_|—n/(n—1)eXpch)n ’

expK,=m K>K..

By virtue of (18)—(21), the Gibbs free-energy density F

given by (16) has a singular part that scalesas B ° [

|K — K >~¢, with the specific-heat critical exponent
InB

O =2-——

e (22

In particular, if K> K; and [K — K| ~ K., then expres-
sion (16) with

o= (=) =1)", 1<l
a=0

. =(q"" )", 1>1,
yields

F =55 110+ B (0.~ 0.

For h =0, the correlation function
G = |:60,160', 1D_ [60, 1D[6 a, 1|:|

is readily obtained for the basic spins. For the Ith-level
lattice,

2

z,(o, 15
:z|(1,1)_§g (o )E

_gq-1 e -1
Z| E Z| E 0 e“+q-1
U |

If K< K andl >, then thefirst equation in (21) yields

G

U(m-1) e |
K 2 A(m— n m
G=—=q°n" ”E!(—————————'“ 3 a Dexpg—%g,
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where the correlation length is

_Inm

lc -V
§0mT (K—K)™, v = 3.

(23)
The critical exponent for correlation length satisfies the
scaling relation

dv = 2—-aq.

If K> K, then the exponentia scaling isnot valid, and
the second relation in (21) impliesthat G, is asymptoti-
cally constant:

~1
G =95

—constn _'°).

However, the characteristic change in G, scales as m'° ,

because n'© = (m/m"

Thus, the specific heat and correlation length at the
critical point of the Potts model under analysis exhibit
power-law singular behavior satisfying a standard scal-
ing relation. Anomalous scalings of order parameter
and susceptibility are considered in the next section.

)d_l.

4. ORDER PARAMETER
AND CRITICAL SUSCEPTIBILITY

In the present Potts model, the spontaneous order
parameter is expressed as

N, -1
gN;* Z [5,,.0-1
i=1
S (24)
where 3, ;s the average calculated under the bound-
ary conditionswith ¢ = 1 at the basic sites, i.e.,

N, -1

Z B, 40 =

i=1
Notethat nonzero p at K > K and h = 0 can be obtained
only under these symmetry-breaking boundary condi-
tions. Indeed, [, ,01= 1/qfor zerofield under the free
or periodic boundary conditions by virtue of the sym-
metry with respect to permutation of the values of o.
Hence,

p = lim

[ )

1 9z z|

Z|(l) oh |- Z(l) (25)

(f)
() _ NiZ

0 _ (N -1z

q

Substituting (11) and (12) into these equations, one
obtains

Z|(p) —

hy = (= DA
q

(N =1)(g-1)A
q ,

(26)

Ai+(q-2)¢ =
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where A4 arethefield derivatives of eigenvalues(7) for
h=0,

Aui = (a1| +ap) E 5o a,) +2(q-1)by.

[(2 q)(aw -

It follows from (13) and (24)—(26) that

_ o ONTo,+q-2
“‘l"f'l 2(q-1) @

0. = -8, —(q-2)¢

+ all .

Define another combination of derivatives independent
of ¢, and the left-hand sides of (26):

ay — 3y + (¢
qq

b, =

Using the derivatives of (9) with respect to h and
Egs. (26), one obtains the following recursion relation

for the vector @, = (¢, _):
¢ = Tig_,+u, (28)
where
uy = $55n(N_, - )[(g-2)(m-e)
(29)
—2(q—1)(m—1)e‘K"”]—n+1,
uy = (N, - 1)%‘- eID"' u+|, (30)

4 = hdel2+(a-2)md ] e(q-2)(1-md,)

ao  2e(1-md) e(g-2+2md,) D,(Sl)
€= eXpa(|—1—‘—
e = exp(K,_1—K)), (32)
8= eo0-1irep(<_) -1,
The solution to Eg. (28) has the form
o, = -T_I-T_I 1 -T-l¢o
1-1 R ~ (33)
+ ZT|T| 1... Tkl + Uy,
where ¢, = (1, 1).
No.5 2004
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To examine the asymptotic behavior of ¢, as| —
o near the critical point, represent T, approximately as

Ofe= lim T, 1<l
~ O K, - K,
Ti=0, . (34)
Ole=1limT,, [>1..
O I-o
Then,
A= I
b, =T T{d)o Z(BTc)u}
|
+ Z B T U,
k:IC+1 (35)
Al=loal, Lol =l
= T°° TC(¢O_¢C)+B T°° (I)c
+B1 = (B ) 9.
where
= lim lim u,B™, = limy,B”,
| - oK, - K, | -5
0.=(1-B 7o) u, ¢.,=(1-B"To) " u..

It follows from (29)—32) that

3,2 DRBI2+ (A-2)mI ] e(q-2)(1-mdc o

ag  2(1-m9,) (q-2+2m9,) O
- n-1
ec - exp|:Kc n :|-
5. = [ewd- 1)k -1,
o (37)
- _<0-<
¢c+ - 7 q 1
= 20 _ o010
b = —5HL-2¢ A

For the analysis that follows, it is important that the
eigenvalues of thematrix T arereal and lessthan B for

m=2,n=2,q> 0. Indeed, the largest eigenvalue of T
can be expressed as

2

= m+e—p+A(m+e—p)’—4me,
e=ed.<1, (38)

=2(1_ Ko _ Ko 9=2
p_q(l s)[me e+ > (m 1)]
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Equation (17) for K, can be used to show that 0 < p <
(Mm-D(1-¢)form=2,n=2,andq> 0, whichimplies

that the eigenvalues of T. arereal and A, < B.
The expressions for T. and u,, are different for the

ordered and disordered phases. In particular, when K <
K., it follows from (21), (31), (32), and (34) that

nqu 25
QDZq 20

To =

u, = 4=2m-1
q m

NN
OoonO
(||

1
1

Since the eigenvalues of T. (0 and n) and T. areless
than B, expression (35) reduces to the following as

| —> oo;

0,=8'9.=—1=ZNgo.

Therefore, the order parameter given by (27) vanishes
for the disordered phase.

When K > K, it holds that

“ O 0 OO
Too: BOD) uoo:DOD'
goono 010
Therefore, u,(d,,) vanishesin (35), and
[ RN
0. = B eTc(do—0o) + B
Rma® q-2
=N [constD B [ —T}

Accordingly, the order parameter given by (27) is

Qg@% 0 (K-K.),

In(B/)\max)
Ink

(39)
B =

To examine the behavior of critical susceptibility for
h = 0 near the critical point, consider the expression

() (O
1l u
X = lim N|l % %
oo Z [Z,
) _ N 2
= limIN?y,, -+ 2,
- | l.|J| qu q
which is obtained by using Egs. (26) and introducing

Wy = [&y + (q—1)(8y + 2b1)] /0N,

(40)
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Define another linear combination of second-order
derivatives,

W = [(d—1)(8y—2b) + & +a(q—-2)E]1/aA,

and differentiate Eqgs. (9) with respect to h to obtain the
following equation for the vector v, = (Y, Y_):

Y, = IE)I‘I1|—1"'V|: (41)
where
P = BE X (1—X|)/(q—1)E
O(q-1)y, 1-y, 0
, Ki(n—-1)/n 1
x = (e +q-1) —, (42)
e +qg-1
Ki(n=1)/n
K,/n -1
yy = (e +qg-1) :
e —
and
_1N?0 0
vi= 50 b Oreuro) (@)
q uqg-

for |K — K| ~ K. and large |. The matrix P, has the
eigenvalues B and B(x, —V,) < B. In the expression for

v,, the term proportional to N|2 isthe right eigenvector
of each P, that corresponds to B. Combined with an

expression for P, analogous to (34), thisfact is used to
derive the critical scaling from (40)—43):

X DQE;XE 0 K=K,

_ 2InA 5 InB
B Ink

(44)

It is obvious that the standard scaling relation is valid:
a+2B+y = 2.

Thus, the Potts model admits only second-order phase
transition with power-law anomalous scaling of ther-
modynamic parameters.

5. CRITICAL EXPONENTS

L et us consider the dependence of the critical expo-
nents on lattice parameters and g. The inequalities k <
B and A, < B (see (19) and (38)) combined with the
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scaling relations lead to the following constraints for
the exponentsin (22), (23), (39), and (44):

v>1/d, a<1, >0, y>1.

As g — o, the exponents approach their limit values
in these inequalities. Indeed, if g > 1, then (17), (19),
and (38) yield K, = 2/zIng, kK = B, and A, = B;.
Accordingly,

v=1/d, a=1, B=1/g""InB, y=1.

Asn — o (d —» o), it holds that K, = gn™/™™ ",
K =m, and A5 = n and the expressions for the expo-
nents reduce to

v=1 a=2-d, B=1l, y=d-2.
In the limit of m — o (d — 1), one obtains K, =

ninm/(n— 1), K = n, p = gm"-3-1/6, and A
B(1 - p/m); hence,

_ 1 _d-2 _ q
V= _11 a~d—l’ B 6 Zl(n_l)lnn
=9
d-1

Note that only the exponent B depends on g in these
limit cases, and only if it is small. In the general case,
the exponents (considered as functions of the measur-
able parameters of real fractals, d and z) weakly
depend on the average coordination number if 2.5 <
Z < 4. Figure 2 shows the critical exponents as func-
tions of d on the physical interval 1.5 < d < 3for several
values of gand z = 2.5. The case of g = 1 corresponds
to the anomalous scaling at the threshold for percola
tion over randomly distributed bonds with probability
density p = 1 — e [31]. The equation for the percola-

tion threshold, p, = 1— e, follows from (17):

pe = 1-(1-p»)".

It should be noted that, whereas the critical expo-
nentsin the Potts model on fractalsillustrated by Fig. 2
vary significantly, the actually observed values of the
exponents exhibit certain trends. In particular, the spe-
cific-heat exponent a is usually negative, the suscepti-
bility exponent is anomaloudly large (y = 1.7), and the
correlation-length exponent monotonically decreases
withincreasing d while 3 increases. Furthermore, all of
them are monotonic functions of g, except for . These
characteristics of the critical exponents may aso hold
in other spin models on fractal lattices with sufficiently
small d.

Note also that the numerical values of a and 3 cor-
responding to m= 2 and certain n and q have been cal-
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Fig. 2. Critical exponents versus fractal dimension for Potts models on hierarchical latticeswith z =2.5and q=1(0), 2 (0), 4 (»),

and 8 (V).

culated in an earlier study [16]. Similar values of a and
B are given by anaytical expressions (22) and (39),
respectively, within numerical accuracy.

6. CRITERION FOR CHANGE
IN ORDER OF TRANSITION

If hierarchical lattices are considered as models of
inhomogeneous systems, such as percolation clustersin
dilute crystals or materials confined in porous matrices,
then certain conclusions can be made about the geomet-
ric characteristics of real inhomogeneous media that
are responsible for change in the order of phase transi-
tion. Indeed, this phenomenon is independent of the
fractal dimension for lattices of the type considered
hereintheentireinterval 1 <d < . It can be speculated
that the occurrence of a second-order transition is due
to the small average coordination number (z < 4).
Analogous behavior is obtained for diluted models on
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square lattices: z < 4 at any dilution while the dimen-
sion d = 2 of the largest cluster holds until the percola-
tion threshold is reached [6]. Therefore, the change
from first- to second-order transition occurs even if the
impurity concentration is arbitrarily small [10, 11, 32].
On the other hand, first-order transition is suppressed in
the model of an inhomogeneous system with z > 4
instead of changing to second-order transition [25].

Apparently, the condition z < 4 for the average
coordination number can be suggested as acriterion for
change from first- to second-order phase transition in a
variety of inhomogeneous systems with short-range
interactions. In particular, for diluted models on asim-
ple cubic lattice (z= 6) with avacancy concentration of
1 - x, the average coordination number in the largest
cluster can be roughly estimated as z = 6x. By condi-

tion z < 4, thisimplies that second-order phase transi-
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tion must occur if x < 2/3, in agreement with the numer-
ical estimatex < 0.7 £ 0.05[12, 13].

The existence of a threshold value of the average
coordination number can be qualitatively explained as
follows. Aninhomogeneous lattice with low connectiv-
ity (small z) does not contain macroscopic regions of
maximal coordination number. Therefore, as the criti-
ca point is approached, macroscopic regions of
ordered phase are unlikely to form for energy reasons,
while correlations of order-parameter fluctuations
grow, as in second-order transition, which leads to sin-
gularities in thermodynamic parameters. Conversely,
aprogressively increasing number of macroscopic
regions of ordered phase can formin systemswith large
z, as in the phenomenological scenario discussed
in[17]. In this case, the correlation length of order-
parameter fluctuations remainsfinitein both ordered and
disordered phases, and no second-order singularity
arises, even though first-order jumps may completely
vanish in highly inhomogeneous systems [25].

7. CONCLUSIONS

The results obtained in this study can be used to
explain anomalous scaling in systems described by the
Potts model, such as percolation clustersin dilute crys-
tals or materials confined in porous matrices with frac-
tal properties similar to those of the hierarchical lattices
considered here. This is corroborated by the fact that
o < 0 for g < 10, which corresponds to an inequality
established rigorously for random inhomogeneous sys-
tems [33]. The analytical expressions obtained above
can be compared with experiment for particular values

of mandnordand z.

The critical exponents weakly depend on z (2.5 <

Z < 4) and strongly depend on the fractal dimension.
This explains their slow variation with impurity con-
centration for dilute crystals [10-13], since the fracta
dimension of the percolation clusters that undergo
inhomogeneity-induced phase transition remains
amost constant until the percolation threshold is
reached [6]. However, the exponents for materials con-
fined in porous matrices should be expected to vary
more significantly with the fractal dimensions of
porous media [6].

The predicted exponents cannot be compared with
experiment. No detailed data are currently available on
anomalous scaling in inhomogeneity-induced second-
order transitions, mainly because their fundamental
nature has been demonstrated only in recent theoretical
studies [10-15]. However, numerous examples of sec-
ond-order transitions have long since been discovered
experimentally in crystals for which first-order transi-
tions are predicted by the Landau theory of phase tran-
sitions [24]. According to [10-15], these findings
should be attributed to the presence of impurities or
defects. For example, the ferroglastic transitions in
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Nbs;Sn and V;Si crystals [34] were distinguished from
second-order transitions only for sufficiently pure spec-
imens [35].

Finally, note that inhomogeneity-induced second-
order transition may not be specific to the Potts model
analyzed in [10-16] and the present study. It should be
associated with every first-order transition to a sub-
group of the high-symmetry phase. (For ideal cubic lat-
tices, transitions of this type are described by the Lan-
dau potential with acubicinvariant [24].) However, the
feasibility of this phenomenon in the absence of group—
subgroup relation between the symmetries of the
ordered and disordered phases (i.e., for reconstructive
first-order phase transitions [24]) cannot be corrobo-
rated by any experimental or theoretical evidence.
Apparently, second-order singular behavior induced by
structural inhomogeneity isimpossiblein this case.
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Abstract—We analyzed the field dependences of forced magnetostriction in the multidomain state of the easy-
plane antiferromagnet CoCl, obtained in the following cycles: the introduction—emoval of a magnetic field
lying in the easy plane, the introduction—removal of a magnetic field lying in the easy plane and directed nor-
mally to that introduced earlier, etc. The magnetostriction of the crystal in the multidomain state was shown to
contain two components. First, the component reversible in the cycle magnetic field introduction—removal,
which makes the mgjor contribution in the crystal under consideration, and, second, acomparatively small irre-
versible component, that is, the contribution retained after magnetic field removal. In low fields, the reversible
magnetostriction component was proportiona to the square of the applied magnetic field. Field-induced rear-
rangement of the multidomain antiferromagnetic state was found to be responsible for singularities of the field
dependence of crystal magnetization. In particular, in anear-zero field that lay in the easy plane, the transverse
susceptibility decreased twofold compared with its value in fields in which the crystal is already in the mon-
odomain state. At the same time, close to the “monodomainization” field, transverse magnetic susceptibility
was maximum. Defects were shown to favor the formation of the reversible multidomain state. Determining
factorsin this process were elastic and magnetoel astic interactions. The multidomain state of antiferromagnets
was described using the domain distribution function over the orientations of domain antiferromagnetic vectors
with respect to the magnetic field direction and the magnetic field dependence of this function. The results of
our analysis were in close agreement with the experimental data on CoCl,. © 2004 MAIK “ Nauka/lnterperi-

odica” .

1. INTRODUCTION

Magnetic ordering results in the formation of an
inhomogeneous multidomain antiferromagnetic state
in many antiferromagnets [1]. Antiferromagnetic
domains have different antiferromagnetic vector L
directions. The formation of the multidomain state of
antiferromagnetsis not related to demagnetizing fields,
which are dipole in their nature [2]. Exchange energy
loss in domain walls should make this state energeti-
caly unfavorable. Therefore, the main problem in
describing the multidomain antiferromagnetic state is
primarily the explanation of the reasons for its forma:
tion[1, 3].

Domains in antiferromagnets were first studied for
orientation phase transitions in uniaxial antiferromag-
nets [4, 5]. In the field region of the transition from the
state with the easy-axis antiferromagnetic orientation
of spinsin sublatticesto the state with spins canted with
respect to the field and oriented almost normally to the
easy axis, both these states are observed simulta
neoudly; that is, antiferromagnets are then in an inter-
mediate state [5]. A description of such a state formed
in magnetic fields that magnetize antiferromagnets was
performed taking into account magnetostatic energy [6].

In the absence of amagnetic field, antiferromagnets
are not magnetized. Various mechanisms have been
suggested to explain the formation of the multidomain
state as a result of their ordering [1]. However, it
appearsthat thereisno unigue mechanism applicableto
al antiferromagnets. At first sight, the entropy mecha-
nism [7] is most universal. According to this mecha
nism, exchange energy loss on domain walls is bal-
anced by adecreasein free energy, —TAS, because of an
increase in the entropy of the multidomain state. Here,
T is the temperature and AS is the entropy increment.
This contribution depends on temperature and vanishes
asT — 0. In certain instances, the entropy mechanism
explains the formation of the multidomain state only
closeto the Néel temperature [1].

In many antiferromagnets, the equilibrium or almost
equilibrium multidomain state exists over the entire
temperature interval from Ty to T — 0 and is related
to defects of various kinds. Domains are formed in
crystal twinning, when the domain structure is a com-
bination of antiferromagnetic and structural domains.
The formation of the multidomain state is possible
when the segquence of sublattices is disarranged, for
instance, in the presence of edge dislocations, when the
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defect is a half-plane of atoms with magnetic moments
related to one of the magnetic sublattices. It was shown
in [8, 9] that screw dislocations in antiferromagnets
caused the formation of spin dislocations, which, if
anisotropy was taken into account, led to the formation
of the multidomain antiferromagnetic state. Defects
can also stabilize multidomain states of kinetic origin
that accompany antiferromagnetic ordering [10].

The simplest example of the influence of defects on
the formation of the multidomain state is provided by
so-called “metallurgical defects’ near which the lattice
is distorted in such a way that anisotropy field direc-
tions locally change. The local orientations of the anti-
ferromagnetic vector are al so determined by inhomoge-
neities. We will not consider such effects, and our
object of study will be fairly perfect crystalswith inev-
itable defects. Attention will be focused on the multido-
main states formed as a result of magnetoelastic inter-
action between the magnetic subsystem and elastic
fields of defects. Thisinteraction has been studied com-
paratively poorly.

The field dependences of magnetostriction in easy-
plane antiferromagnets, namely, iron family metal
dihalides, were studied experimentaly in [11]. The
presence of domains in these substances was, in partic-
ular, substantiated by neutron diffraction [12]. Accord-
ing to theresults obtained in [11], the multidomain state
of these antiferromagnets is magnetoelastic in nature.
At the same time, the crystal as awhole in the multido-
main antiferromagnetic state does not experience spon-
taneous anisotropic magnetostriction in the easy plane,
which accompanies antiferromagnetic  ordering,
whereas such strain does exist in domains, judging
from the presence of agap in the low-frequency branch
of antiferromagnetic resonance. Spontaneous magneto-
striction is restored in the crystal as awhole in a mag-
netic field, as the transition to the monodomain state
occurs. When the field is removed, the initial unde-
formed state of the crystal and, therefore, its multido-
main state are restored almost fully. Such a quasi-equi-
librium character of the multidomain state of antiferro-
magnets can, in our view, be stabilized by interactions
between spontaneously strained domains and elastic
stress fields of defects. For instance, it was shown
in [13] that three domains converging at one vertex (a
triad of domains) with their vectors L rotated through
120° with respect to each other created elastic stresses
that balanced lattice stresses caused by defects of a cer-
tain type situated at this vertex.

It follows that elastic interactions of domains and
defects can provide the energy gain of the multidomain
state. On the other hand, the magnetic field dependence
of the rearrangement of the multidomain state of anti-
ferromagnets under magnetic field actions should be
determined by the specific mechanism of the stabiliza-
tion of this state. Attention in thiswork will be focused
precisely on this problem.
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2. THE REARRANGEMENT
OF THE MULTIDOMAIN STATE
OF THE CoCl, ANTIFERROMAGNET
UNDER MAGNETIC FIELD ACTION
(ACCORDING TO THE MAGNETOSTRICTION
DATA)

Two-sublattice antiferromagnets CoCl, are layered

dihalides with D3, symmetry. They consist of sand-

wiches formed by Co?* ion layers, which are sur-
rounded by CI-layers on both sides. The bonds areion-
covalent within the sandwiches and van der Waals
between them [14]. The Co?* ions within layers are
coupled by comparatively strong ferromagnetic
exchange. Exchange interactions of Co?* ions between
the nearest sandwiches (that is, between the nearest
Co?* layers) are antiferromagnetic and very weak
(much weaker than intralayer ferromagnetic exchange).
The Néel temperature of CoCl, is Ty =24.7 K [15].

Uniaxial easy-plane anisotropy in CoCl, is substan-
tial (the anisotropy field at T = 4.2 K is approximately
150 kOe), whereas symmetry-allowed intralayer
anisotropy could not be observed. The weakness of
intralayer anisotropy resultsin the degeneracy of vector
L =, — s, directions in the plane, where s, and s, are
the magnetizations of the sublattices. When the crystal
is cooled below Ty in the absence of an external mag-
netic field, it experiences the transition to the multido-
main antiferromagnetic state [12]. And when a mag-
netic field lying in the easy planeis applied, the crystal
can be converted to the homogeneous state, in which
the L vectors of al domains uniformly acquire an ori-
entation normal to the applied field while remaining in
the easy plane. The s; and s, vectors become canted
toward the field direction, while remaining in the
plane. Upon the attainment of the spin flip field (it is
Hi = 32kOeat T=4.2K for CoCl, [15]), the magneti-
zations of the sublattices become parallel to each other
and the field.

Measurements of the forced magnetostriction of
CoCl, single crystals in external magnetic fields were
performed using a capacitance dilatometer [16]. An
assembly of magnets that created fields perpendicular
to each other was used. Both fields were directed in the
plane of the crystal. The sample had the shape of a5 x
5 x 1 mm? plate, and the symmetry axis of the crystal
was perpendicular to the plate plane. Crystal elongation
was measured in the direction lying in the plane along
one of its sides. The forced striction value (the relative
elongation) is e(H) = Al(H)/l, where | is the length of
the crystal in the direction of measurements and Al(H)
isitsincrement in the field. Crystallographic directions
in the plane of the sample plate were not controlled.
The samples had fortuitous orientations with respect to
these directions.

The ¢(H) dependences of the CoCl, crysta in the
cycle of applying—removing crossed magnetic fields

No. 5 2004



1 1
10 5 0 5 10
H,, kOe Hp, kOe

Fig. 1. Dependences of the relative elongation of the CoCl,

crystal on magnetic field strength at T= 4.2 K. Curves 1 and
2 were obtained for the introduction—removal of magnetic
field Hp perpendicular to the direction of elongation mea-

surements, and curves 3 and 4, when field H“ wasparallel to
the direction of measurements.

are shown in Fig. 1. Magnetostriction €5(H) measure-
ments under field applying and removing conditions
when the field H was perpendicul ar to the direction of
measurements correspond to curves 1 and 2, respec-
tively, and g(H) values obtained when field H was sub-
sequently applied and removed along the direction of
measurements, to curves 3 and 4, respectively. We see
that the field dependences of magnetostriction have the
form of a hysteresis |oop with residual striction whose
sign is determined by the direction of the field being
removed. Note that this hysteresis is related to field
rotation through 90° rather than the change in its sign.
If afield of the same direction is repeatedly applied and
removed, with or without changesin itssign, no hyster-
esisis observed, and the residual striction is only fixed
after thefirst field applying—emoving cycle.

The relative elongations caused by the rearrange-
ment of the multidomain state of the CoCl, crystal (in
low fields up to 10 kOe) reach values fairly large for
antiferromagnets, on the order of 5 x 104, which actu-
ally correspondsto the restoration of spontaneous mag-
netostriction of the single-domain state under field
action. As follows from the dependences shown in
Fig. 1 and obtained with switching field directions, this
spontaneous magnetostriction in domains in the multi-
domain state is balanced to within a comparatively
small residua striction value, and even this residua
deformation is absent until a magnetic field is applied
for the first time. At the same time, as follows from the
antiferromagnetic resonance data[17], domainsin this
state retain their spontaneous deformation and remain
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virtually unstressed, which manifestsitself by the pres-
ence of agap in the spectrum of the low-frequency anti-
ferromagnetic resonance branch caused by spontane-
ous magnetostriction. A multidomain state model
should therefore combine the absence of crystal stric-
tion as a whole and a mutually-domain configuration
when the domains remain free and, therefore, exhibit
spontaneous magnetostriction and virtually do not cre-
ate stresses on one another.

Figure 1 shows that the CoCl, crystal experiences
positive deformation in the region of thetransition from
the multidomain to homogeneous state; that is, it elon-
gates along the field and shrinksin the direction normal
to the field. In fields of both orientations higher than
10 kOe, the crystal is in the uniform (single-domain)
state. Close to the transition to this state, g(H) is maxi-
mum and g;(H), minimum. The maximum field H,, is
not equal to (higher than) the minimum field H,,. In
addition, & (Hma) > |€:(Hmin)|- This asymmetry of the
€(H) and en(H) dependences will be shown to be
related to the special features of the field dependence of
the magnetostriction of the homogeneous state.

Our consideration will be restricted to anisotropic
magnetoelastic interactions in the easy plane. Let us
determine the behavior of magnetostriction in the
homogeneous state. Taking into account hexagonal
symmetry of the CoCl, crystal, the sum of the mag-
netoelastic and elastic energies can be written in the
form [13]

E= ZVGB(T)(naanx_naynBy)(Uxx_Uyy)
ap

+ Z )\GB(T)(naany + annay)ny
* D

+ zaaB(T)(nczlx + néy)(uxx + Uyy)
ap

1

+ écll(uix + Uiy) + ClZUxnyy + (Cll - C12)U§y1

where a, B = 1, 2 are sublattice numbers, a = 3; v, A,
and 0 are the temperature-dependent parameters of
magnetoel astic interactions; Ny, Nay and Nay» Npy arethe
direction cosines of the magnetization vectors of the
sublattices s, and s;; Uj; are the components of the
strain tensor; and the x and y axes are oriented in the
easy plane. Theterms quadraticin U;; describe the elas-
tic contribution to the free energy of the crystal. The
first and second sums in (1) are related to anisotropic
magnetoel astic interactions determined by the direc-
tions of sublattice magnetic moments. The terms with
o =B and a # 3 describeintra- and intersublattice con-
tributions, respectively. The third sum corresponds to
magnetoel astic interactions isotropic in the easy plane.
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In the homogeneous state, the spins of both sublat-
tices are equally canted with respect to the field in the
easy plane, and the cosine of the cant angle is propor-
tional to the ratio between the external field H and the
spin flip field H;;. The minimization of (1) with respect
to the U;; components taking into account this spin ori-
entation in the field yields equations that describe the
applied field dependences of strain values. For the
strain Uy, when H is oriented either along y or along X,
we have

20, Yo
Uy (H [y, X) = — 7
n(H 11y, %) Cu+Cyp Cu-Cp
(2
O 20
+0 %2 Du_Og M5

[Cy+Cp Cu-CHg "H 0

where the upper sign corresponds to the field orienta-
tionH ||y (thefield is parallel to the measure strain U,,)
and the lower sign, to the H || x orientation (the field is
perpendicular to the measurement direction). The mag-
netostriction of the CoCl, crystal in the homogeneous
state was analyzed in [18], however, only aong the
field; for this reason, the asymmetry of the field depen-
dences of magnetostriction mentioned above was not
discussed in [18].

M agnetostriction measurements are performed with
respect to the size of the crystal at H = O; that is, theiso-
tropic contributions to strain present in (2) are included
in this size at the temperature of measurements. As a
result, the equation for the magnetostriction of the
CoCl, crystal in the directions along and normal to the
field can be written in the form

0 HZ %
€ o = +e90-2(1+ Ny, o ”'2 : (©)
0 HZ 0

Here, €9 is the spontaneous magnetostriction of the
single-domain statewith L 0H asH — 0 (its values
are determined by extrapolating &g, o(H?) from the
region of high fields, in which the antiferromagnetic
state is homogeneous, to H — 0); H; and H, are the
magnetic fields directed parallel and normally to the
direction of size measurements; and n,  is the param-
eter that depends on the direction of the field and deter-
mines the rate at which magnetostriction increases in
the field. According to (3), the magnetostriction of the
homogeneous state at H = 0 should satisfy the equali-
tieseq(H,=0) =€® and g45(H; = 0) =—O. In addition,

S - 2Y11— VY12

(
€ .
Cu—Cop

The n;,  vaues are aso determined by the parameters
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of magnetoelastic interactions,

- Y 015(C11 —Cyy)
2Y11 =Y (2Y11—Y12)(Cy + Cpp)’

- Yo 01,(Cy; —Cypp)
2Y11 =Y (2Y11—=Y12)(Cyy +Cpp)

Ny

Np

We see that the £ (H?) and £4,(H?) dependences have
different slopes at 6,, # 0 and y;, # 0, because n;; # .

Our experimental unit allowed usto apply fields H;,
up to Hy. In such high fields, the magnetostriction of
the single-domain state quadratically depends on H and
satisfies (3). These measurements were used in [18] to
determinethe&® = 6.3 x 10 and n;=-0.2 values. The
fields introduced normally to the direction of measure-
ments were limited from above by the value H, =
13 kOe. Inthisfield interval, the region of the existence
of the homogeneous state was too narrow and insuffi-
cient for determining ng from the magnetostriction
data. It will, however, be shown that the n value can be
found by analyzing the (H) dependence in the field
region of multidomain state rearrangements. The case
when Hy.o > Hiyi and €)(Hpmae) > [€5(Hmin)| corresponds
to the above-mentioned asymmetry of the dependences
€(H) and g4(H).

3. DISCUSSION OF THE FIELD DEPENDENCES
OF THE MAGNETOSTRICTION
OF THE CoCl, CRY STAL
IN THE MULTIDOMAIN STATE

Let us consider the behavior of magnetostriction
when the multidomain state experiences rearrangement
in low fields. The dependences of the magnetostriction
of the multidomain state on the square of magnetic field
intensity shownin Fig. 2 correspond to field withdrawal
only, that is, to curve 2 and 4 portionsin Fig. 1. We see
that, at H < 2.5 kOe, the dependence of the relative
crystal elongation on magnetic field intensity under
field removal conditionsis described by the equation

&0 &potTa, DH|2|, O (4)

where g, ;istheresidua magnetostriction in measure-
ments along (|) and normally to (0)) the field being
removed and o, and o are the empirical parameters.
The €, and €, values are aimost equal in magnitude
(&= &p). Let usrewrite (4) in the form

H2

_ sHj o

g0 = & nte—LE, (5)
Hg

where Hy is a parameter with the magnetic field inten-
sity dimensions. Agreement with the results of mea-
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H?, kOe?

1
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Fig. 2. Dependences of the relative elongation of the CoCl,

crystal in the multidomain state on the square of magnetic
field intensity measured when magnetic field was removed
from the substance (correspond to curves 2 and 4 in Fig. 1).
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Fig. 3. Orientation of the spin vectors of sublattices s; and
s, and magnetization M and domain antiferromagnetic L

vectors with respect to the magnetic field vector H. Neigh-
boring domains with different vector L orientations are
shown.

surementsisattained for Hy=5.7 + 0.5 kOe. Whenfield
H <2.5kOeisapplied for thefirst time, theg(H) depen-
dence is described by (4), but with €, = 0. If the forma-
tion of the multidomain state is related to defects, the
attainment of the equilibrium state after every changein
the magnetic field should occur after the elapse of
relaxation time, which, generally, depends on many
factors and can be fairly long. It is assumed in (4) that
al relaxation processes are completed and g(H) is a
guasi-equilibrium quantity.

As has been mentioned, the number of domainswith
the vector L orientation L [J H increases and that with
L ||H decreasesasamagnetic field isintroduced. In the
state prior to applying thefield for thefirst time, therel-
ative volumes of domains with arbitrary orientations
should be equal. The multidomain state can be
described in terms of the domain distribution function
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p(¢) determined from the ratio between the volume of
domains whose vector L makes angle ¢ with the field
direction and the volume of the whole crystal. Let ¢ be
the angle between the normal to L and the direction
of H. Its changes should be considered in the interval
from =12 to 12, because L is a director rather than a
vector. For definiteness, the angle ¢ can be defined as
theangle between M =s, + s, and H (see Fig. 3).

It follows from the dependences shown in Fig. 2 that
only the anisotropic component of the magnetostriction
of domains manifestsitself at H < 3 kOe at the begin-
ning of multidomain state rearrangement. The field-
dependent contributions to the magnetostriction of the
single-domain state, which areresponsiblefor itsasym-
metry, appear in fields H > 3 kOe. For this reason, the
relative crystal elongation along the direction of the
field being introduced can in low fields be written as

/2
e = &9 [ 2o (@) ©

-T2

It is taken into account in (6) that the spontaneous
anisotropic magnetostriction deformation of a separate

singledomain along and normally toL is 769, respec-
tively. The distribution density of domains is normal-
ized according to the condition

2

J p(9)dd = 1.

-T2

Inlow fields (H < Hy) [19], the equation for the dis-
tribution density of domains that satisfies (3) under
magnetic field removal conditions has the form

1|:| Dsr Hq:| 2
@) = ZOr+anTs s oS- F @

where g, is the modulus of the residual magnetostric-
tionin (4) obtained when thefield isremoved. Distribu-
tion (7) only depends on the angle ¢. The ratio between
residual and anisotropic magnetostriction in (7) deter-
mines the fraction of the domains that retain the field-
induced orientation with L [0 H after the field is
removed. For the first magnetic field introduction, we
must sete, =0in (7) [19].

According to (7), the distribution of domains during
magnetic field removal contains two terms one of
which isrelated to the reversible component of the rear-
rangement of the multidomain state and the other, to the
irreversible component. The second term is character-
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ized by residual magnetostriction. For thisreason, (H)
for acrystal can be written as the sum of two terms,

E(H) = ere\/(H)+sirrev(H)! (8)

where g, (H) isthereversible contribution to the result-
ant striction and €;,,,(H) istheirreversible contribution.
Generally, both terms of (8) depend on thefield applied
and the stage of the cycle of its introduction, although
€ires(H), probably starting with some introduced field
value, should not depend on field intensity. We assume
that the irreversible striction component remains con-
stant as the magnetic field is removed over the entire
field interval of the existence of the multidomain state;
that is, €,q(H) = € = const. Accordingly, the field
dependences of the €,,(H) and €., (H) contributionsto
magnetostriction can be determined for the introduc-
tion of afield directed differently.

The field dependences €,,(H) and g, (H) for the
CoCl, crystal obtained from the experimental data on
the basis of the above considerations are shown in
Fig. 4. The component reversible in the cycle of the
introduction of crossed fields €,,,(H) does not have a
hysteresis, its values are equal when the field is intro-
duced and removed. Asymmetry of the field depen-
dence becomes even more pronounced for €,,,(H). The
irreversible component €;,,o,(H) has the form of a hys-
teresis loop. The closing loop portion for the €;,,,(H)
dependence in Fig. 4 (in the first quadrant) was repro-
duced proceeding from the above mentioned antisym-
metric character of magnetostriction in low fields,
because Fig. 1 does not contain experimental data in
thisregion.

If the domains are “free” in the multidomain state
and their magnetostriction is equal to that in the homo-
geneous state, an increase in the volume of domains
with afavorable orientation in afield accompanied by a
decrease in the volume of the other domains can be
treated as domain wall displacements. For each mag-
netic field value, there is a certain balance between the
volumes of domains with various L directions; that is,
when equilibrium is attained, the action of magnetic
forces on mobile walls in each field is balanced by
forces that counteract changesin theinitially equiprob-
able distribution of domains with different L orienta-
tions. If defects are responsible for the multidomain
state, certain elastic stresses arise every time as the
crystal attains equilibrium in afield. These stresses are
related to mismatching between the elastic fields of
defects and those of magnetostriction strainin domains.

4. THE MAGNETIC FIELD DEPENDENCE
OF THE DISTRIBUTION DENSITY
OF DOMAINS p()

Let us consider two different domains that border
each other; we will denote the L orientation angles in
them by ¢, and ¢, (Fig. 3). Suppose that H # 0 and the
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Fig. 4. Field dependences of reversible g,o,(H) and irrevers-
ible &y, (H) components of CoCl, crystal magnetostriction

in crossed magnetic fields in magnetic field introduction—
removal cycles.

field vector liesin the easy plane. The spins get canted
in both domains under field action. The energy densi-
ties acquired by the domains are then

e = —%erzcoszq)l, e, = —%erzcoszq)z,

where X, is the magnetic susceptibility of the homoge-
neous state of the antiferromagnet for the easy-plane
field orientation. The work done when adomain wall is
displaced by Ad by thefield is calcul ated as the product
of the difference of the energy densities by the change
in the volume,

DA, = X H (0059, o9 )SAd, (9

where Sisthe area of the moving wall. The same work
value can be determined using the stress ¢ of the action
of the domains on the wall,

AA,, = 0SAd. (10)
A comparison of (8) and (9) yields the stress acting on
the wall in amagnetic field in the form

o = %XeHZ(COSZq)l—COSZCI)Z). (11)

Upon the attainment of the equilibrium change in p(¢)
in the given field H, this stress should be balanced by
counteraction forces for the reversible component of
domain redistribution. Note that (11) does not include
the contribution of the change in the magnetoeastic
energy of domainsin the multidomain state of CoCl, to
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the work of domain wall displacement. The magne-
toelastic energy is, however, much smaller than the
energy of spinsin afield, and thisiswhy weignorethis
contribution.

Let us perform averaging over ¢, in (11) to deter-
mine the mean stress of magnetic field action (through
differently canting spins) on the walls of the domains
with the orientation ¢,. This gives

Gy = 5XeH (0050 — cos'p), (12)

where bars are used to denote the mean values over the
orientations of the domains that surround the distin-
guished domain with the orientation ¢. The number of
neighboring domains is finite for each particular
domain. However, expression (12) was obtained by cal-
culations on average for the domains with the ¢ orien-
tation. This is why angle indices are omitted in (12).
Indeed, the mean value over all domain orientations
should not depend on the index of ¢. The mean values
denoted by bars should then be calculated over al
domain orientations.

The introduction of counteraction forcesthat ensure
equilibrium of the multidomain structure at H # 0 is
essentially thermodynamic. In redlity, stress fields
counteracting wall displacements can be inhomoge-
neous. For instance, the surface of the wall bendsif the
wall encounters a defect during movement. This causes
the appearance of surface forces that impede wall dis-
placements, and the larger the bend the greater the pin-
ning force. There also existsamore general approach to
describing domain wall displacements, when awall is
considered in apotential field, and the equilibrium wall
position corresponds to minimum potential energy. The
displacement of a wall from the equilibrium position
causes the appearance of forces counteracting this dis-
placement and equal to the potential energy gradient.
The parameters of these quasi-elastic forces are deter-
mined by the strength of elastic interactions between
the wall and defects. When considering wall move-
ment, viscous friction forces are in addition introduced.
Asweareonly interested in equilibriumin afield rather
than the rate of its attainment, we disregard these
forces.

The irreversible component of domain rearrange-
ment is most probably related to the domainsin which
the orientation of L does not remain unchanged as a
result of the action of equilibrating quasi-elastic forces.
To distinguish between the reversible and irreversible
rearrangement components, let us represent the domain
distribution function in the form

P(¢) = (1-93)Pre($) + OPirrer(9).

where 9 is the volume fraction occupied by domains
that orient their magnetic moments M aong the field
without causing the appearance of counteraction

(13)
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forces. We will not discuss the nature and form of
Pire(®). AS concerns p,o(¢), we can, taking into
account (12) and putting €, = 0in (7), write

dpa() = = Xszdoq,. (14)

d

This proportionality has, however, been obtained and
holds in low fields only, when H < Hy and pe,(¢) —
/1t The obvious condition that an increase in the vol-
ume of certain domainsis only possible at the expense
of the volume of the other domains then does not hold.
This condition is satisfied in high fields. Indeed, the
p(d) density of domainswith ¢ = /2 isinfinitesimal in
high fields (that is, p — 0), whereas elastic stress
applied to the walls of these domains is maximum in
the corresponding field. Clearly, the absolute changein
the distribution function of these domains dp in high
fields, in spite of stress values that act on them, should
tend to zero, whereas the relative change is large. Tak-
ing this into account, we in addition assume that the
increment of the distribution density of domains hasthe
form dp(¢) ~ p(¢)da, rather than is proportional to a
mere change in the stress value. As a criterion of the
validity of this assumption, let us analyze the experi-
mental data on the magnetic field dependence of mag-
netization and the field dependence of the reversible
magnetostriction component in the cycle of the intro-
duction—withdrawal of mutually orthogonal fields in
the plane of the CoCl,, crystal. The differential equation
for p,e,(¢) hasthe form

dpa(9) _ 8
Pa(®)  yH

(15)

whichisin agreement with (7) and (14) at H < H,. This
equation limits an increase in the volume of the
domains with the unfavorable orientation of L in high
fields.

Equation (15) yields the angle ¢ distribution of
domainsin the form

1 On? 0

_ 2
prev(q)) - I(H/HO) expl%}mHgCOS q)g (16)
where we use the notation
w2
Hy OHO On* .0
Hy= —, l0/== exp——cos ¢1dd.
° 22 HH{ _J;Z PHZ O

The p,($) dependences for Hy = 5.7 kOe and various
field values H = 2, 5, 10, and 15 kOe are shown in
Fig. 5. We see that the distribution becomes unidirec-
tiona with the predominant orientation of domains cor-
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respondingto ¢ =0 (L OH) asH increases. Neverthe-
less, even at H = 15 kOe = 2.5H,, the distribution
remains fairly broad.

The equation for the distribution density of domains
being obtained, |et us consider the behavior of the mag-
netic properties of the multidomain state of antiferro-
magnets.

5. THE FIELD DEPENDENCES
OF MAGNETOSTRICTION, MAGNETIZATION,
AND MAGNETIC SUSCEPTIBILITY
IN THE MULTIDOMAIN STATE

We will use the equation for the distribution density
of domains [Eqg. (16)] to analyze the field dependence
of the reversible component of the relative crystal elon-
gation under field introduction conditions over the
entire interval of the fields of the transition from the
multidomain to homogeneous state. The equation for
the reversible magnetostriction of the multidomain
state can be written in the approximation of the ideal
multidomain state (&;,,o, = 0) in the form

gH) _ _ 1
¢®  1(HIHy)
w2 =
x| {[1 2(1-knn)tli5¥iﬂ%jcos iy 17)
- Hy O
O 0
—[-2(1+n D)'—_|——99§—(|—){]S|n ¢ expB———cos ¢Dd¢
0 H2 0O 2H?

An equation similar to (17) describes magnetostriction
perpendicular to the field being introduced.

It is easy to show that the expansion of (16) yields
(7) in low fields H/H, < 1, and striction is then
described by a quadratic field dependence similar
to (4). Agreement with experiment is attained for Hy =

Hy2./2.

The experimenta &,,(H) and €,,(H) values are
compared with g(H) calculated by (17) and g(H) cal-
culated by the equation similar to (17) in Fig. 6. The
€9, Hy, Hy, and n, parameters were taken to equal
those determined from the experimental data on the
reversible component of the magnetostriction of the
CoCl, crystal. To satisfy the condition of asymmetric
field dependences of longitudinal and transverse stric-
tions described above, we used n; = 0.9 in model cal-
culations. The field dependences of the magnetostric-
tion of the homogeneous state are given by solid lines
in Fig. 6. These dependences were calculated by (3)
using the same parameter values. The calculated longi-
tudinal magnetostriction closely agrees with the exper-
imental data over the entire interval of the fields of the
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Fig. 5. Field dependences of the distribution density of

domains at H = 2 kOe (dash-and-dot line), 5 kOe (solid
line), 10 kOe (dotted line), and 15 kOe (dashed line).

H, kOe

Fig. 6. Field dependences of the magnetostriction of the
multidomain (dashed lines) and homogeneous (solid lines)
states.

transition to the homogeneous state. For transverse
magnetostriction in the region of H,;,, the calculated
values are dlightly exaggerated compared with the
experimental €, data. In reality, this discrepancy does
not exceed the error of striction measurements. The
conclusion should therefore be drawn that agreement
between theory and experiment is quite satisfactory
also for the transverse magnetostriction of the multido-
main state. Closer agreement can be obtained by mea-
suring transverse magnetostriction in higher fields.

The distribution of domains [Eg. (15)] can be used
to calculate the field dependence of the mean magneti-
zation of the crystal in a magnetic field oriented in the
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Fig. 7. Field dependences of the normalized magnetization
m(H)/Mg and magnetic susceptibility x(H)/X of the multi-
domain state. The magnetization of the homogeneous state
isshown by the solid line, the dashed line correspondsto the
multidomain state, and the dotted line, to magnetic suscep-
tibility.

easy plane. The equation for magnetization in the
approximation of the ideal multidomain state (6 = 0)
can be written in the form

mH) __ 1 H
Mg [(H/HQ)H
2 , 02, O (18)
X I cos ¢ exp—;cos ¢idd,
. [(PHg 0

where Mg is the magnetization of the homogeneous
stateif the crystal isin field H = Hy;.

The m(H)/Mg dependence cal culated by (18) for the
same parameter values as with mean striction is shown
by the dashed line in Fig. 7. The same figure contains
the m(H)/Mg dependence for the homogeneous state of
the crystal with L O H in al fields (the solid thick line).
The presence of the multidomain state and its rear-
rangement in afield result in a nonlinear field depen-
dence of magnetization, which has a characteristic sag
with respect to the linear dependence for the homoge-
neous state [20]. This nonlinearity was experimentally
observed not only for the CoCl,, crystal [21] but also for
other crystals, in particular, NiCl, [19, 22]. This behav-
ior of m(H) was not explained in the cited works.

We measured m(H) for CoCl, samples different
from those used to study magnetostriction. The result-
ing dependences were closely similar to those shownin
Fig. 7, but complete coincidence required selecting Hy
somewhat different from that given above (Hy =
5.2 kOe). This seems quite natural considering that the
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multidomain state is related to the degree of structure
imperfection, which is different in different crystals.

Note one more special feature of the field depen-
dence of the magnetization of the multidomain state of
easy-plane antiferromagnets. In low fieldsH < Hy, the
m..,(H) dependence can be written as

1. ,8 RO
m(H)=§erEJL+8%H :

It follows that the magnetic susceptibility of the revers-
ible magnetization component should be two times
lower than that for the homogeneous state at the onset of
the rearrangement of the multidomain antiferromagnetic
date. This is substantiated experimentally [19, 22]. At
0 # 0, the magnetic susceptibility changesasH —~ 0
by afactor dightly smaller than two; this change should
then depend on the stage of the cycle of theintroduction
or removal of crossed magnetic fields.

The differentiation of dependence (19) with respect
tofield yields the field dependence of magnetic suscep-
tibility x(H). The field dependence of magnetic suscep-
tibility normalized by the magnetic susceptibility of the
homogeneous state [x(H)/Xd is shown by the dotted
linein Fig. 7. In low fields (H < Hy), magnetic suscep-
tibility increases asthe square of field. AtH ~ Hy, it has
amaximum and tendsto its value for the homogeneous
state as field increases further. This maximum should
berelated to acomparatively sharp change in the distri-
bution density of domainsinfieldsH = H,. A maximum
was a so abserved experimentally for NiCl, [22], but its
explanation in [22] was not well grounded.

(19)

6. THE INFLUENCE OF SPONTANEOUS
ANISOTROPIC MAGNETOSTRICTION
ON THE INTERACTION BETWEEN DEFECTS

It can be suggested that the rearrangement of the
multidomain state of antiferromagnetsis determined by
the interaction of elastic fields of defects and elastic
fields of the configuration of antiferromagnetic
domains that experience magnetostriction. This inter-
action is responsible for equilibrium of the multido-
main state at both H =0and H # 0 and for itsreversibil-
ity. However, is this interaction capable of providing
energy gain when the multidomain state is formed?

Clearly, it is exceedingly difficult to exhaustively
describe the interaction of defects with each other and
with domain elastic fields in a real crystal [23]. This
problem will therefore be considered only qualitatively
in the simplest case of a planar isotropic medium with
defects. The interaction energy e between two neigh-
boring defects (et i and j betheir numbers) isafunction
of the r; vector connecting them; that is, e = &(ry). In
the approximation that we use, energy e only depends
on the distance between the defects. We assume that the
interaction energy of one of the defects under consider-
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ation with the other defects is additive; that is, E =

Zi e(ry).

Let homogeneous spontaneous magnetostriction
related to homogeneous antiferromagnetic ordering
occur in this plane, and let the frame of reference be
fixed at the ith defect. The deformation along the x axis
is positive and eguals €g, and that aong the y axis has
the same value but opposite sign, —€s. Clearly, both
axeslieinthe plane. After deformation, the equation for
the interaction energy between the ith and other defects
accurate to second-order terms has the form

EB(f )+ [6e i aey }8
z 0ij 6x 0j — ay 0j |©s
(20)
1l/0°e 2 0’e oe >
+ 2|:aXJ Xoj — ZaX XO]yOJ ay2y01i|ssg

Here, the derivatives are calcul ated at the position of the
jth defect, whose coordinates prior to deformation are
denoted by Xy and y;. The distance between theith and
jth defectsisry;.

Thetotal interaction energy between all defects can
be written as the sum of three terms,

g 9
E = ZEi = ;e(rou)+;%we)(j)(xm—xoj)

de N
a(yl )(yOI yOJ) Eﬁs
WAgB e ) (21)
2 ij Eﬁ(xl_ J)Z J
€ (= xo) (Yo~ o)
a(x — X )a(yI ) i 0j 0i 0j
d%e 202
+ ————(Yoi — Yoj) Es-
ayi-y)> T Ee

Let us denote the first sumin (21) by E,. It equals the
interaction energy between the defects before the
appearance of anisotropic magnetostriction. In the
approximation that we use, according to which aniso-
tropic deformation is isomorphic with respect to the
local positions of defects, the second sum in (21)

should be zero. The coefficient of €2 in the third sum
will be denoted by k. The total interaction energy
between the defects after anisotropic magnetostriction
can now be written as the sum of two terms,

E = E,+ ke (22)
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Growth defects can be considered almost equilib-
rium, and interaction energy between them should
therefore be minimum. For this reason, we must
assume that k > 0. It follows that homogeneous sponta-
neous anisotropic magnetostriction favorable for a per-
fect crystal increases the interaction energy between
defects. The dependence of the interaction energy
between defects on magnetostriction displacements is
therefore responsible for the appearance of a quasi-
elastic increasing force.

If defects cannot move over the crystal, then, asfol-
lows from (22), they impede the formation of the sin-
gle-domain state of an antiferromagnet with anisotropic
magnetostriction. The crystal then becomes divided
into regions with homogeneous but differently directed
magnetostrictions, the size of these domains being
determined by the distances between defects. A variant
of the geometrically correct structure of domains with
defects that do not change their mutual arrangement as
the multidomain structure is formed was anayzed
in [13]. It was aso shown in that work that elastic coor-
dination of the striction of domains and defects resulted
in an energy gain of the multidomain state additional
to (22) for the domains that formed triads.

Note that the magnetoelastic mechanism of multi-
domain structure formation in antiferromagnets with
acontribution to the free energy proportiona to the
square of the mean magnetostriction similar to the sec-
ond term in (21) was aso considered in [24, 25]. In
these works, this term was related to domain elasticity
self-action on one another similar to magnetodipole
interaction of ferromagnetic domains. In our view, this
approach requires additional justification.

7. CONCLUSIONS

We showed that the magnetostriction of the multido-
main state of the CoCl, crystal was determined by the
distribution of domains over the orientations of antifer-
romagnetic vectors in them, and the rearrangement of
the multidomain state could be described by magnetic
field-induced changes in this distribution.

The equilibrium multidomain state of the magne-
toelastic nature can be formed in an antiferromagnet as
a result of coordination of stresses that arise in the
spontaneous striction of domains and fields of elastic
stresses of defects. This interaction results in the
appearance of quasi-elastic forces responsible for the
equilibrium existence of the multidomain state. When
the magnetic field changes, these forces counteract
domain wall displacements. We obtained an equation
for the field dependence of the equilibrium component
of the distribution density of domainsand used it to cal-
culate the behavior of the reversible striction, magneti-
zation, and magnetic susceptibility components. A
comparison of the results of our calculations with the
experimental data shows close agreement between
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them over the whole region of fields of the transition to
the single-domain state.

We showed that, in addition to the component of the

distribution function of domains with respect to the
directions of their antiferromagnetic vectors that was
reversible in magnetic field introduction—removal
cycles, there existed an irreversible component. The
determination of the ratio between these two compo-
nentsin crystals with a controlled number of defects of
various typesis, we believe, an interesting problem for
further studies.

10.
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Abstract—The temperature- and magnetic-field dependences of the magnetic moment of sguare Josephson
arrays with SIS-type junctions are studied experimentally. Two temperature regions are observed with different
types of magnetization curves. Magnetic flux avalanches are detected in the low-temperature region. Statistical
analysis of avalanche amplitudes A shows that their size distribution varies in accordance with the power law
P O A" with crossover, when exponent n varies from n = 0.7 for small avalanches to n = —6 for large ava-

lanches, while the frequency spectrum varies in accordance with the law 1/f®. Such behavior isinterpreted as
amanifestation of self-organized criticality. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In this paper, we report on the results of experimen-
tal investigation into magnetic properties of arrays with
a Josephson junction of the superconductor—insul ator—
superconductor type (SIS arrays). Our aim was to
observe peculiarities of magnetic field penetration in
Josephson arrays (J arrays) by measuring their mag-
netic moment.

In the Introduction, the studies pertaining to our
work are briefly reviewed. The characteristics of arrays
and the description of the main features of a SQUID
magnetometer specially designed by us are given in
Section 2. Theresults of measurements of the magnetic
moment of arrays and observation of self-organized
criticality realized in SIS arrays are presented in Sec-
tion 3. Section 4 contains our conclusions.

The interest in properties of regular two-dimen-
sional Jarrays has been growing in recent years. A large
number of transport studies were undertaken in this
field, but there are practically no experimental results
on direct measurement of the magnetic moment. How-
ever, magnetic studies are undoubtedly of considerable
importance. Such experiments may lead to the discov-
ery of new phenomena since the complexity of the elec-
trodynamics of Jarrays does not alow all the factorsto
be considered in theoretical models. We are aware of
only one publication [1] devoted to direct measure-
ments of magnetic properties (susceptibility) of Jarrays,
which appeared after our first communication [2]. At the
sametime, alarge number of theoretical works (see, for
example, [3—7]) deal with the magnetic properties of J
arrays and require verification of the matching of the
theoretical and experimental results.

Experimental studies of magnetic properties of J
arrays are aso important from the practical point of
view. Such arrays are currently considered as a pro-
spective source of radio waves in the millimeter and
submillimeter spectral ranges, which have not been
explored extensively so far [8].

The problem concerning the existence of self-orga-
nized criticality in J arrays is of specia interest.
Accordingto Bak et al. [9, 10], who devel oped thisthe-
ory, self-organized criticality is a fairly wide-spread
phenomenon in nature. It is observed in many complex
systems formed by alarge number of el ements actively
interacting with one another. Such discrete systems
have a huge number of metastable states with an inter-
esting dynamics. Upon monotonic variation of external
conditions in a system that has attained instability,
jumplike transitions occur between metastable states;
such transitions have the form of avalanches with dif-
ferent sizes, which sustain the critical state of the sys-
tem on average. It is important to note that these ava-
lanches are independent of the intensity of external
action or fluctuations; even an insignificant effect may
lead to a huge avalanche (catastrophe). Another feature
is that, in spite of random motion, the system is self-
organized and acquires a certain constant (on average)
parameter, e.g., the sandpile slope (sandpile problem).
Thus the system itself maintains the critical state,
which isthe essence of self-organized criticality. In this
case, there is no need to adjust any parameters in con-
trast, say, to the case of aliquid, when two of its param-
eters (temperature and density) have to be kept constant
for investigating the critical point.

The size distribution of avalanches (probability den-
sity) is a power function with a negative nonintegral

1063-7761/04/9905-1065$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Jarray with octagona electrodes (SIS1 and SIS2). The inset shows the current-voltage characteristic of asingle junctionin

the SIS2 array at 4.2 K.

exponent. This dependence is observed, for example,
by the magnitudes of earthquakes (the Gutenberg—
Richter law [11]). Fifteen years following pioneering
studies of self-organized criticality [9, 10], alarge num-
ber of theoretical modelswere constructed imitating var-
ious natural phenomena such as earthquakes [12, 13],
crossing phase transitions [14], quark—hadron phase
transitions [15], rain phenomena[16], spreading of for-
est fires[17, 18], economic crises[19], and evolution of
populations in biology [20].

Experimental data on self-organized criticality have
been obtained for a rather limited class of artificially
prepared objects: in the study of the dynamics of sand-
pile growth [21], motion of a piece of sandpaper over a
nylon carpet [22], film boiling of nitrogen on the sur-
face of a high-temperature superconductor (HTSC) in
the vicinity of the superconducting transition [23], and
plastic flow of aloaded metal rod [24]. Ginzburg [25]
wasthe first to indicate the possibility of self-organized
criticality in a Josephson medium in 1994. Magnetic
flux avalanches were probably observed in HTSC
ceramics in experimental works [26, 27], but magnetic
moment jumps were not studied in detail and the mech-
anism of their formation was not discussed in fact.

In a number of recent publications, the power
dependence of the avalanche amplitude distribution in
the case of self-organized criticality has fallen under
doubt. A revision [28] and experiments [29] show that
the distribution function israther of an exponential type
P(X) O exp(—(x/%y)"), where L isanonintegral exponent.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

In this case, we have a characteristic scale x, and the
avalanche size distribution function is not uniform.
This contradicts the “classical” self-organized critical-
ity since this theory presumes gauge invariance while
observing avalanches of all sizes. However, al real sys-
tems have afinite size and, hence, the maximal size of
avalanches is also limited to a certain value. Thus,
gauge invariance has natural limits of applicability.

2. SAMPLES
AND EXPERIMENTAL TECHNIQUE

We studied sguare J arrays consisting of 100 x
100 cells with Nb—-NbO,—Pb Josephson tunnel junc-
tions in the temperature range 2-10 K in magnetic
fields up to 200 Oe. Two configurations of arrays with
different shapes of Nb and Pb superconducting film
islands (el ectrodes) were designed for our experiments.
One electrode configuration was in the form of an octa-
gon and the other was cross-shaped. Fragments of the
arrays are shown in Figs. 1 and 2. The cross-shaped
configuration was distinguished by a high inductance
of acell and had an area of atunnel junction four times
as large as that in the octagonal configuration; this
allowed usto obtain high critical currents.

Jarrays with octagonal electrodes containing 100 x
100 cells were made according to the same pattern in
two copies with different critical currents (these arrays
will be henceforth referred to as SIS1 and SIS2 arrays),
while the arrays with cross-shaped electrodes (SISk

No. 5 2004
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Josephson
junctions

Fig. 2. Jarray with cross-shaped electrodes (SISk). The inset shows the current-voltage characteristic of asingle junction at 4.2 K.

arrays containing 64 x 64 cells) had only one value of
the critical current. The arrays were prepared using the
thin-film technology described, for example, in [30].
The lower Nb layer was obtained using magnetron
sputtering followed by photolithography and chemical
etching. The insulating layer of silicon monoxide and
the upper PB layer were obtained by vacuum evapora-
tion; the structure of these layers was formed with the
help of explosion photolithography. After the formation
of windows (for the tunnel contacts) in the SiO layer,
followed by ion cleaning of the surface, a NbO, tunnel
interlayer was formed by controlled oxidation of the
niobium surface in an argon—oxygen mixture.

It should be noted that SIS arrays have a short ser-
vicelife (their parameters remained unchanged only for

about two months). Comparative parameters of SIS1,
SIS2, and SISk arrays are given in the table.

We studied magnetic properties of SIS arrays with
the help of an origina SQUID magnetometer devel-
oped at the Low-Temperature Physics Laboratory at the
Institute of Inorganic Chemistry, Siberian Division,
Russian Academy of Sciences. The magnetometer had
a number of considerable advantages in the design of
detecting coils of the flux transformer, in the form of
compensation of their astaticism, and in the construc-
tion of the solenoid. The detecting coils of the flux
transformer were prepared in the form of a symmetric
second-order gradiometer [31, 32]. However, in con-
trast to the classical scheme, the central coil was
divided into two equal parts separated by a certain dis-

Table

Junction type SIS1 SIS2 SIS3
Junction structure Nb-NbO,—Pb Nb-NbO,—Pb Nb-NbO,—Pb
Array size 100 x 100 100 x 100 from 64 x 64
Cell size, um? 20x 20 20x 20 20x 20
Junction area, um? =7 =7 =25
Critical current at 4.2 K, pA =80 =150 =1800
Normal resistance, Q 10 20 =0.7
Inductance of acell, H =25x 10712 =25x 10712 =101
Capacitance of junction, nF 0.01 0.01 0.03
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Fig. 3. Magnetization curves for the SIS2 array containing 100 x 100 cells at various temperatures.

tance so that these coils had the form of Helmholtz
coils. This ensured a number of advantages (in particu-
lar, reduced microphone noise and a substantially
weaker dependence of the signal on the position of the
sample), which enabled usto study magnetic properties
in the direct magnetization mode and to obtain repro-
ducible results.

The solenoid consisted of two superconducting
parts. an external short-circuited part and an internal
open part. In the short-circuited solenoid, a certain
value of the field was frozen, while the open solenoid
served for continuous field variation in certain limits.
Astaticism of thoroughly prepared detecting coils was
approximately 3 x 10-4; asmall coil consisting of sev-
eral turns of copper wire wound on the same frame as
in the flux transformer and coupled inductively with it
was introduced for additional compensation. This coil
was connected in series with the open solenoid. The
number of turns in this coil (six in our case) was
selected so asto compensate astaticism of the system of
detecting coils to the maximal possible extent. During
operation, a current was passed through the additional
coil, which was not equal to the current in the solenoid,
but was proportional to it with a certain coefficient that
could bevariedin certain limits. Thus, thetotal slope of
magnetization curves could be varied by adding avalue
proportional to the field to the sample signal, which
almost completely compensated the contribution from
screening currents of intrinsic superconducting Nb and
Pb film electrodes. As a result, the magnetic moment
being measured for the most part contained only the
contribution from the currents flowing in the Josephson
array. It should be noted that, without such compensa
tion, the weakly manifested structure of the signal
could not be singled out in the course of subsequent
processing against the background of alargetotal slope
of the magnetization curve.

To reduce drifts and noise, liquid helium containing
the flux transformer, the solenoid, and the supercon-
ducting magnetic screen was transformed to the super-
fluid state by evacuating vapor. For the same purpose,
measurements were mostly performed at night. Thetem-
perature was measured using a Cu + 0.1%Fe-Cu +
0.1%Ge thermocouple with a sensitivity of about
10 pV/K at helium temperatures; the reference pointsin

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

this case were the superconducting transitions in nio-
bium and lead aswell asthe point of transition of helium
to the superfluid state, which was easily fixed from a
sharp decrease in low-frequency noise in the recording
system.

3. MAGNETIC PROPERTIES OF SIS ARRAY S

Figure 3 shows the magnetic moment hysteresis
loops for SIS2 array at different temperatures. Analo-
gous curves were also obtained for the other array,
SIS1[2]. It can be seen from Fig. 3 that two tempera-
ture regions with different types of magnetization
curves were obtained.

Our experiments show that in the first (high-temper-
ature) region from 5.3 K up to the superconducting
transition temperature of lead (T, = 7.2 K), the hystere-
sis loops for SIS2 array are continuous reproducible
curves. All the curves in this region exhibit a clearly
manifested structure in the form of magnetic moment
peaks of the same height with a temperature-indepen-
dent field period of about 59 mQOe. If we take into
account the suppression of the mean field in the region
of cellsof thearray asaresult of the screening action of
superconducting film electrodes, the period of the
peaks matches the value AH = ®y/a? = 52 mOe, where
@, is the magnetic flux quantum and a is the period of
the array.

The hysteresis loops reflect a specific critical state
formed in aregular Josephson structure. Periodic peaks
of the magnetic moment correspond to an increase in
the critical current of fluxon pinning (depinning cur-
rent) for integral frustrations, when the same integral
number of flux quanta (fluxons) corresponds to each
cell and, hence, thefluxon distributioninthearray isthe
most regular and stablest. The stability of the vortex
system is manifested in the increase in the depinning
current and, accordingly, in the total magnetic moment.

In addition to large-amplitude peaks, small humps
located exactly between the peaks (a sort of second har-
monic) can be clearly seen. These humps correspond to
a change in the flux in the array on the average by a
fluxon for each two cells. This is apparently a conse-
guence of arather stable distribution of flux quantain J
arrays, which are added in staggered order [33, 34].

No. 5 2004



MAGNETIC MOMENT OF SQUARE SIS JOSEPHSON ARRAY S

| M wena:
-10 -5 0 5 10

Fig. 4. Hysteresisloopsfor the SIS1 array containing 100 x
100 cellsat T=2.15K infields up to +15 mOe.

Inall probability, higher order harmonics associated
with periodic formation of fluxon superlattices with a
still larger period also exist in J arrays; however, such
harmonics cannot be distinguished in the experiment
against the noise background.

In the second (low-temperature) region from 5.3 to
2 K, the hysteresis loops for SIS1 array acquire mag-
netic moment jumps resembling noise; in contrast to
temperature fluctuations, the amplitude of these jJumps
increases with decreasing temperature. First, such
jumps appear at the tops of peaks and then propagate to
the sides, forming compact periodic groups with the
same period as on high-temperature curves. With afur-
ther decrease in temperature, the groups of jumps
merge together.

For illustration, Fig. 4 shows the magnetization
curvesfor SIS1 array upon achangein the external field
within £15 mOe at 2.15 K. The upper curve contains
four complete consecutive cycles while the lower curve
containstwo cycles. All curves have segments on which
the monotonic variation of the magnetic moment is
interrupted by sharp spontaneous drops followed again
by the monotonic dependence until the next jump. It
can be clearly seen that these jumps occur at random
values of the field and their amplitudes exhibit a sub-
stantial spread. Note the presence of monotonic and
quite reproducible segments of 56 mOe on which a
transition to another branch of the loop after the field
reversal takes place.

5.6 K

1069

Characteristic sharp shifts, which occur over avery
short time in the same direction only at the tops of the
peaks (owing to which these shifts can be reliably sin-
gled out from noise) can be reliably traced from direct
observation of the recorder pen, which recorded the sig-
nals simultaneously. In thisway, we could fix the emer-
gence of jumps for the other array (SIS2), now below
57K.

Thestudy of arrays of the other configuration (Sl Sk)
revealed that the general form of hysteresis loops does
not differ in principle from those for SIS1 and SIS2
arrays. Figure 5 shows the hysteresis loops for a SISk
array containing 64 x 64 cells at different temperatures.

Theformation of flux avalanchesin thisarray begins
a relatively high temperatures (lower than the super-
conducting transition temperature for lead by less than
one degree) in view of a substantially higher critical
current of junctions and a larger inductance of the cell
of this array. At the same time, the temperature below
which the type of the magnetization curve changes
(crossover) and magnetic moment jumps appear in
arrays SIS1 and SIS2 is approximately equal to 6 K.

For interpreting crossover, it is interesting to con-
sider the temperature dependence of depinning current
l4ep IN SIS1 array (Fig. 6). The fluxon depinning current
was estimated from the half-width of magnetization
hysteresis loops on the basis of the simplified assump-
tion that currents flow in the array along concentric
square paths; the width of theloop is obviously propor-
tional to the depinning current. In the case of square
current lines, simple calculation leads to the following
expression for the magnetic moment of the array:

M = I4,N°a’/6,

where | 4, isthe depinning current, which is assumed to
be constant over the entire array and N isthe number of
cellsin the array. We can expect that real current lines
differ from squares; these lines are as if rounded at the
corners and the actual areas of current contours are
smaller than the predicted values. Consequently, the
estimate based on the simplest model is slightly low-
ered. To obtain the estimate from above, we can con-
sider current contours in the form of circles (in this

[ 2.0 \

10-° A/m?
H}
I e
~
=

1 Oe

e

Fig. 5. Hysteresisloops for the SISk array containing 64 x 64 cells at various temperatures.
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Fig. 6. Temperature dependence of the depinning current in
the SIS1 array. Triangles correspond to estimates of current
from the magnetic moment of the array, while squares
denote the data obtained from direct measurements of the
critical current in asingle junction.

case, we assume that the current does not flow in the
corners of the array). This estimate givesavaluethat is
higher approximately by 20%. In Fig. 6, the mean value
of the depinning current |, of the array under investi-
gation at various temperatures is compared with the
directly measured critical current | of a single Joseph-
son junction. It can be seen that the two temperature
dependences are in good agreement for an appropriate
ratio of the scales. In accordance with the theory [34],
depinning currents and the critical current must differ
approximately by an order of magnitude: |/l = 1/10.
Our ratio is approximately equal to 1/15, which can be
explained both by the error in determining the depin-
ning current from the magnetic moment on the basis of
the simple model and by adlight decreasein the critical
current as a result of degradation of junctions during
several months.

To obtain a qualitative description of electrody-
namic properties of J arrays considered here, we will
follow the theoretical publications [3, 4, 25, 35] in
which the existence of two different regimes of mag-
netic flux flow in a J array or two regions differing in
their magnetic properties. The boundary between the
regions is determined, analogously to [3, 4], by param-
eter k = AMa, where A is the magnetic field penetration
depth in the array. It should be noted that the reciprocal
of parameter k corresponds to the Ginzburg parameter
V = Uk [25, 35]. Parameter k is a function of tempera-
ture since penetration depth A varies with temperature
as[36, 37]

P

MDD = ST

)
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where j(T) is the critical current density in Josephson
junctions, which increases with decreasing tempera-
ture. Thus, by decreasing temperature, it is possible to
pass from one regime to the other in experiments.

Substituting the experimentally measured tempera-
ture dependence 1 (T) into formula (1) (Fig. 6) shows
that A = afor T = 6 K. This value corresponds to the
experimentally measured crossover temperature
(5.8 K) below which the shape of the magnetization
curves changes and magnetic moment jumps appear.

At hightemperaturesfor which LI, < @, whereL is
the inductance of a cell, an individual cell cannot con-
fine aflux quantum and each fluxon is distributed over
severa cells. This corresponds to the condition k > 1
(weak pinning); in this case, fluxons penetrate the J
array in the form of hypervortices extending over a
large number of cells. The interaction between fluxons
at weak pinning leads to their deep penetration into the
array with an amost uniform distribution. Thefield pro-
fileonthearray inthiscaseisformed by peaksat the cen-
ters of hypervortices, which are distributed almost regu-
larly over the area of the array (see, for example, 4, 39].
For k> 1, when afluxon is spread over alarge number
of cells, the dynamics of Josephson vortices can be
described in the continuous limit, when states with
minimal energy exist in the system. Such a theoretical
model is confirmed experimentally since the curves
obtained in Fig. 6 match the curves calculated for large
values of the Josephson penetration depth even in detail
(seeFig. 14in [3)).

In the opposite case, when the critical current is
quite large, the condition LI, > @, issatisfied, each cell
can confine a magnetic flux much stronger than one
quantum, and each cell may contain only an integral
number of fluxons. The fluxon dynamicsin this regime
can be described as the motion of discrete quasiparti-
cles, which are localized within a cell and possessing a
certain effective mass. This corresponds to the case
k < 1 (strong pinning state). As the external magnetic
field increases in contours of cells (with initial zero
flux), the screening current also increases together with
the magnetic moment of acell. When the current attains
its critical value, a fluxon enters the cell; its magnetic
moment decreases jumpwise, the magnetic field pene-
trates into the J array discretely and almost synchro-
nously over nearly quadratic contours. In this case, the
system of fluxonsisin metastable states far from equi-
librium (absolute minimum) and the profile of the
increasing field forms a rectangular well with steps
from contour to contour; i.e., the profile resembles the
Bean distribution of thefield in atype Il bulk supercon-
ductor.

It was proposed in [25] that aJ array for k < 1 may
acquire self-organized criticality, because for large
value of critical currents through the Josephson junc-
tions, the ensemble of fluxonsin it can be treated as a
discrete interactive system. For large values of the J
array, the entire array as awhole possesses alarge num-
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ber of metastable states, which is anecessary condition
for observation of self-organized criticality. In aslowly
varying magnetic field, when screening currents
approach the critical value, the system of fluxons
attains an unstable state from which is passes to one of
numerous metastabl e states under the action of sponta-
neous perturbations. Such aform of existence near the
critical state istypical of self-organized criticality. The
final state occupied by the system as a result of each
such jump is naturally determined by the configuration
of metastable states of the system aswell asthe dynam-
ics of the collective motion of fluxonsin an array and a
large number of random perturbing factors (e.g., ther-
mal fluctuations).

Figure 7 shows a fragment of the magnetization
curve for a SISk array, which contains segments with a
monotonic variation of the magnetic moment inter-
rupted by sharp drops. Dependences of this type are
characteristic of self-organized criticality studies on
entirely different objects[21, 22, 24, 29]. For SIS2 and
SISk arrays, we managed to record sufficiently large
bodies of data for obtaining reliable statistical charac-
teristics of avalanches.

We believe that the magnetic moment jumps
observed in our experiments (see Figs. 4 and 7) confirm
the existence of self-organized criticality in a J array.
The histogram of the number of jumps as a function of
their amplitudes demonstrates a power dependence P [
A", whichisa*“calling card” of self-organized critical-
ity. The exponent for the SIS1 array was found to be
n=-1.9 [2]; however, it should be noted that the data
were comparatively scarce; for this reason, the spread
of points was quite large in the region of rare events
(large amplitudes). It is interesting to note that com-
puter simulation was used in [35] to obtain close values
of n=-1.75and N = -1.80 for structures consisting of
256 and 128 cellsfor a1D Josephson array (one-dimen-
sional multiple-contact SQUID). However, self-orga-
nized criticality appeared in [35] only in calculations
with discrete introduction of external currents to ran-
dom junctions of the system and did not appear when
the external field varied continuously asin this study.

The curve describing the amplitude distribution of
jumps for the SIS2 array has a different form: two
clearly manifested regions of power dependence of the
probability density of the emergence of avalanches on
their amplitude are observed on the curve with expo-
nent n =-0.7 for small avalanches and about n = —6 for
large avalanches with a sharp crossover (Fig. 8). Some
authors (starting from[11]) noted asimilar crossover in
the avalanche distribution for other objects or even used
an exponential dependence for describing such a distri-
bution [29].

We did not observe crossover [2] on the SIS1 array,
probably due to the fact that the number of avalanches
was too small for a detailed statistics. Crossover is
observed in the range of large aval anches, whose prob-
ability is low; for this reason, for a relatively small
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Fig. 7. A fragment of the magnetization curve of the SISk
array at 4.1 K; magnetic moment jumps corresponding to
magnetic flux avalanches are clearly seen.

Number of avalanches

100

10

1
100
A, flux quanta

Fig. 8. Distribution of magnetic moment jumps (magnetic
flux avalanches) with respect to amplitude in SIS2 grid at
T=4.1K.

number of avalanches (dlightly larger than 1000), the
spread of results in this region was quite large and
crossover could not be fixed reliably [2].

Figure 9 shows the Fourier spectrum of avalanches
into which the magnetization curves were decomposed
in sweeping the magnetic field with a constant rate with
jumps (avalanches) appearing on the curves. It can be
seen from Fig. 9 that the spectrum for high frequencies
behaves as 1/f% in the region of at least 1.5 decades.

Our studies remain unique where the behavior of the
magnetic moment is studied during continuous magneti-
zation of regular J arrays and self-organized criticality
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Fig. 9. Fourier spectrum for fragments on the magnetization
curve, on which avalanches appear.

isobserved. It should be noted that this phenomenon
was also observed recently in polycrystalline niobium
films[39] aswell asin agranulated Nb film [29] almost
simultaneoudly with our first publication [2]. According
to Altshuler et al. [39], they observed a power depen-
dence of the distribution upon a change in amplitudes
within two orders of magnitude, although the curve
plotted on the log-og scale is convex rather than a
straight line. Behniaet al. [29] assert that they observed
an exponential dependence of the amplitude distribu-
tion function and therefore doubt that self-organized
criticality existsin this structure. Indeed, many compu-
tational models (see, for example, [40]) lead to an anal-
ogous distribution, which appears on the log-og scale
asaconvex curve with “heaping” at large amplitudes.

After our first experiments, Ginzburg and Sav-
itskaya [40] confirmed in their calculations that ava-
lanches in arrays can also be observed during magneti-
zation of aJarray and not only when current pulses are
supplied to individual random junctions, as was pro-
posed in [35]. In their opinion, the reason for self-orga
nized criticality during magnetization is not the spread
in critical currents | in different junctions of the array
under investigation, but a weak spatial aperiodicity of
the array of about 5%; in our case, this corresponds to
arandom deviation of 1 um and lieswithin the error of
our technology.

4. CONCLUSIONS

Our experiments aimed at studying magnetic prop-
erties of regular square Josephson SIS arraysrevealed a
number of new effects. Above all, these effects include
magnetic flux avalanches obeying the regularities of
self-organized criticality.
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Asregardsthe recent dispute over the avalanche dis-
tribution law, it should be noted that the size distribu-
tion, which isgoverned by apower law according to the
results of our studies, apparently exhibits crossover,
which is probably due to afinite size of the array; for
this reason, the probability of observing large ava-
lanches is low. In [29] (Fig. 3), crossover can aso be
clearly seen in the avalanche distribution, but the
authors of [29] describe it by an “expanded” expo-
nential.

Our spectrum of magnetic flux avalanches aso has
a power form within amost two frequency decades
with exponent n =-1.3.

Josephson arrays have a number of advantages as a
model object for experimental study of self-organized
criticality. In this model, internal and external condi-
tions can easily be varied to study their effect on the
characteristics of self-organized criticality. Our experi-
mental model makes it possible to calculate the mag-
netic dynamics of a J array on the basis of well-devel-
oped concepts and to verify the correctness of the
results.

It should be noted in conclusion that we did not
observe self-organized criticality in SNS arrays and in
HTSC ceramics with intergranular contacts close in
their propertiesto SNS. The absence of avalanches can
be explained by dissipation of energy required for evo-
lution of avalanches in the conducting interlayer of
junctions, which does not take place in SIS junctions.
The analysis of reasons for the emergence of self-orga-
nized criticality requires additional theoretical and
experimental studies of regular Jarrays of varioustypes
(SISand SNS) and configurations with various areas of
junctions and critical current densities.
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Abstract—Resonance tunneling in superconducting junctions with electrode order parameters of sand d sym-
metry was studied. The Green function formalism was used to derive an equation for the resonance current in
junctions of arbitrary dimensionality and order parameter symmetry. A universal equation for resonance super-
current was obtained for junctions of arbitrary dimensionality with isotropic electrode order parameters. A
numerical analysis of resonance current transport in junctions of various types was performed for the two-
dimensional model. © 2004 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

In recent years, much interest has been shown in
Josephson junctions based on high-T. superconducting
materials. Experimental worksin this arearevealed the
existence of a large number of localized states in
high-T, superconductors [1]. It was shown [2] that the
transfer of the normal current component in such struc-
tures is resonance in character and proceeds through
localized states. For this reason, theories that only take
into account tunneling of quasi-particles through the
“weak coupling” region [3—7] areinsufficient for calcu-
lating the transport properties of the junctions.

Theoretical studies of resonance tunneling in NIN
structures were performed using the tunnel model [8]
and the three-dimensional model of junctions [9, 10].
Resonance current transport in junctions in which one
of or both electrodes were superconductors with order
parameters of ssymmetry wasalso considered [11-18].
Resonance current transport in superconducting junc-
tions with d pairing in the electrodes was theoretically
studied using the one-dimensional model in[19]. It was
shownin [20] that, at low voltages, resonance tunneling
in NID structures suppressed junction conduction sin-
gularities arising because of the presence of bound zero
energy statesin superconducting electrodes[21]. At the
same time, a consistent theory of the resonance trans-
port of supercurrent in DID structures has not been
developed thus far.

In addition, an analysis of the experimental data[2]
showed that the transport of the normal current compo-
nent was resonance in character in some high-T, super-
conducting junctions, whereas the transport of super-
current was determined by direct tunneling without the
participation of localized states. No consistent explana-
tion of this effect has been suggested thus far.

The purpose of thiswork wasto develop atheory of
resonance transport of supercurrent in high-T, super-
conducting junctions. Our preliminary results were
reported in [22].

2. A JUNCTION MODEL

We assume that the tunnel barrier V(r) in the junc-
tion under consideration is the sum of two potentias
(seeFig. 1)

V(r) = Vrect+Vimpv (1)

where the first term models a rectangular barrier of
height V and thickness d,

Vi(X) = VB(x(d-X)), )

and the second term describes a localized state in the

— -~

Fig. 1. Junction model.
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interlayer material,

_ 0o, fr=rg <p,
Vimp(r_ro) - Ep’ |r_r0| >p, (3)

which is situated at some point r, = (X; Yo) and has
radius p < |k (k is the Fermi momentum of quasi-
particles in the electrodes). We restrict our consider-
ation to the limit of weak coupling and assume vector k
to be fixed on the Fermi surface (k| = k = k¢). Poten-
tial (3) disturbs spatial homogeneity of the structure
and results in the nonconservation during tunneling of
the component of the momentum of quasi-particles par-
alel to the barrier. The barrier thickness is taken to be
fairly large,

Aod > 1, (4

whereA, = ./2mV,, isthe momentum of quasi-particles
intheinterlayer (Vo =V — ), misthe mass of the elec-

tron, and W isthe Fermi energy. In addition, we assume
that the conditions

Ao(d=X%o) > 1, Agxg>1 ()

are met for the localized states under consideration.
Meeting (5) isnecessary for the effective localization of
the wave function of a quasi-particle on a defect. Junc-
tion transport properties will also be calculated on the
assumption that the current that passes through the
junction does not drive the superconducting electrodes
from the state of thermodynamic equilibrium. Thiscon-
ditionisautomatically satisfied in structureswith s- and
d-type superconducting el ectrodes separated by abroad
potential barrier of low transparency, even when the
barrier containslocalized states spaced at distancesthat

far exceed their effectivetransverseradiusiy=d/ /A,d.

It is assumed that the density of localized states in the
interlayer is low and their mutual influence is insig-
nificant.

3. THE GREEN FUNCTION
OF THE PROBLEM

The Green function of the problem isfound from the
Gor'kov equations [23] modified for the case of an
anisotropic contact [24],

O ' O
Gy(r, 1) = DGll(rl r') Gpo(r, r') O,
OGu(r,r') Gy(r,r) 0

S 0. + 47110
©
+3(r —r,)(iwl —o,h) EGw(rl, r'y = 8(r—r)i,
u
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where the operator h is given by

h = —O%2m+V(r)-p.

In (6), A(X, X;) is the order parameter of the system,
which depends on the coordinates; T isthe temperature;
and w = (2n + V)T denotes the Matsubara frequencies.

In addition, (6) contains the second-order unit matrix 1
and the Pauli matrices o,, 0,, and 0, (0, = Oy % i0y).
Equation (6) can conveniently be rewritten in the inte-
gra form

G,(r,r') = GX(r,r")

0 , ()
+Idr1Gw(r1 rl)czvimp(rl_rO)Gm(rb r )

The Green function GS) of the unperturbed problem is
found from (6) after replacing the operator h with the
operator of the spatially homogeneous problem without

localized states. The GS) Green function is then

obtained as the sum of plane waves with coefficients
that follow from the condition of continuity of the func-
tions themselves and their derivatives at the boundaries

of the structure. (Details of calculating Gg aregivenin
the Appendix.)

Localized states have the atomic size scale. The
Green functions G(r, r') change along interatomic dis-
tances; that is, they are slowly varying functions of the
coordinate on the scale of V,q,(r) function changes.
This circumstance alows them to be removed from the
integrand in (7),

G,(r, r')ng,(r, r

. o ®
+ {Idrle(r, r.1)\/imp(r1_r0)}0- sz(ro’ r )!

to arrive at a matrix equation for determining the local
G(ro, 1) function of the form

Gulro 1) = Go(ro 1) +V(re)0,Gu(ror), (9
where

V(r,) = Evn(ro) VlZ(rO)E

OV (ro) Van(re) O

= fdrleﬁxro, [1)Vimp(F1 = o).

Equation (9) yields the Green function value at the
point where the localized state is situated,

Gffo )
(0)

(10)

Gulfo 1) = (L+det[V(ro)lo,V(rg) -(12)
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Here, the denominator @ is determined through the
components of matrix (10) as

® = (1+Vu(ro))(1=Viu(ro)) + Vio(ro)Va(ro)-

Like G (r, ry), the G,(r, r') function in (8) isaslowly
varying function of r on the scale of V() variations
and can aso be removed from the integrand. We can
therefore write the solution to the integral equation (8)
in terms of the unperturbed Green function of prob-
lem (11) and the localized state potential,

G,(r,r') = GX(r,r")

. (12)
+{Idrlvimp(rl_r0)} Gu)(r! ro)Gsz(ro’ rl)-

4. THE TRANSPORT PROPERTIES
OF THE JUNCTION

The transport properties of the junction can be cal-
culated using the general equation for the current,

H(9) = 2|mxax%x OXDZTr{G (r, o) (13)

x=0

where ¢ = ¢, — ¢ isthe difference of the macroscopic
phases of the order parameters of the left and right
superconductors and e is the charge of the electron.

In the two-dimensional junction model, the trace of
the G(r, r') matrix in (13) is determined from (12); it
can be represented in the form

TrH{Gy(r, 1} = Gyy(r, ') +G(r, 1)

2 . (14)
+A(re) 3 (<) "'GH(r, 1) @G (ro. 1),

=1

1
A(rg) = q—)J'dI’ 1Vimp(r1="ro).

Here, the parameter A(r o) is the modulus of the ampli-
tude of resonance scattering for electronic and hole
excitations. Equation (14) can be partitioned into two
components responsible for different transport chan-
nels of quasi-particles through the junction. The first
component, G, (r, r') + Gy, (r, r'), describes potential
scattering of quasi-particles by barrier (2), and the
second component, resonance scattering by localized
state (3).

Thetunnel current of Josephson junctions of various
configurations, including junctions with high-T, super-
conducting electrodes, has well been studied theoreti-
cally [3-5]. The d symmetry of the order parameter of
the high-T,. superconductor is responsible for several

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

GONCHAROV et al.

nontrivial effects, which are not observed for junctions
with isotropic superconductors. These are the appear-
ance of bound electron—hole zero energy states at the
insul ator—d-type superconductor boundary (as aresult,
zero bias anomalies appear in the current—voltage char-
acteristics at low voltages [21]) and severa effects
related to the suppression of the order parameter at the
insulator—superconductor boundary [6, 7].

In our problem, the potential component of the cur-
rent through the junction is determined by the well-
known equation

o0

o 0]
lim a0

pot(q)) - 2|mx ax|$_x

(15)
xS (Ghy(r, 1) + Gaolr, 1)

x=0

If the order parameters of the left and right supercon-
ductors are denoted by the superscripts “L” and “R”
and both have d symmetry, then we can, ignoring order
parameter suppression close to the junction boundaries,
write

A (T)cos(20 7 2a,)e?", x<0,
A,(x,0) = 0, 0<x<d, (26)

0 _

[AR(T)cos(20 7 2a)e™, x>d.

Here, A,(X, 8) isthe anisotropic order parameter, which
depends on the angle B of the propagation of quasi-par-
ticleswith respect to the x axis. Equation (15) allowsus
to obtain the following equation for the potentia cur-
rent:

Tk
lo($) = € FZIdGcose []t|2( 3 ) (17)
h —TU2
The notation in (17) isasfollows:
Z = T T, =t (a4 =T 1ly),
M= 1+pp7, o= 1407,
rs=1+BB0, r,=1+6p, (19
gur - T8
+ Q)-}- QI_;’R

L,R LR2
Q; :A/(o+ ,

and [t ] is the tunnel transparency of the barrier. Equa
tion (17) reduces to the result obtained in [3], and our
numerical calculations for the SID and DID junction
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model s repeat the phase dependences of the current and
the temperature dependences of the critical current
obtained in that work.

The equation for the supercurrent of direct tunneling
[Eq. (17)] was derived ignoring the difference in the
rates of the decay of the wave functions of electronsand
holes in the junction (ignoring dephasing [25]). With
superconducting electrodes, this approach isjustified if
u > |AY, |2F|. Dephasing in the barrier is of no signifi-
cance if

w _ _
v, = exp(-Aqd).
Condition (19) also allows usto ignore dephasing in the
tunneling of electrons and holes to localized states and
backward in resonance current calculations [14]. Reso-
nance currents must, however, be cal cul ated taking into
account the energy difference between electrons and
holes in the preexponentia terms in the equations for
the Green functions. The necessary accuracy of the
expansion in powers of w/V, is then exp(-2Aqd) (see
Appendix).

The equation for resonance current transport
through the junction is obtained from (13) by substitut-
ing the remaining terms present under the sum sign
in (14),

(19)

Ires(q)) 2im xﬂx|$_X 0)@

2 (20)
+5 S (DTG 1) @Gy (ro. 1)

w, j,I=1 x=0

5. PARTICULAR CASES
OF RESONANCE SCATTERING

5.1. General Equation for Resonance Current
in the Two-Dimensional DID Junction

Of the greatest interest in the high-T, superconduct-
ing structures is two-dimensional transport in the ab
plane. In the two-dimensiona junction model, the
potential parameters of the localized state are selected
from the condition that potential well (3) should con-
tain at least one energy level. This procedure is
described in detail in [20]; here, we only give final
equations. In our problem, the energy parameters of
localized states are written in terms of model constants
panda as

_ A 1 2n E

17 (A op) m— — ===l =2

1 ( Op)EQpO(m Uy ap -0 map® AP 2Vo
where the n parameter is

_ 1 op E‘?‘ODD 1D
ﬂ—m—Kl(A %nDZD Ye—
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Here, ye = 0.577 isthe Euler constant, |1ISthem0dIerd
Bessal function of the first kind, K; is the modified
Bessel function of the second kind (the Macdonald
function), and E; is the energy of the resonance level of
the localized state. It then follows from (20) that

S;sing

122 = —2e TZSO S 0050’ (21)
where
S, = 2y5J
2 2 F2
S = —w —ER—‘A:—CO(Z(Jl"'Jz)Vo—r)
+Yo(Myo (I + 3p) — (I + 3,)2 = IF = 33),
For = Voltlexp(Ag(d —2x,)) )\ (22)
0 0
02 = Voltlexp(—Ag(d—2%p)) [—r—s,
Ao(d=Xo)
ré =Tl T=Tu+Te Yo = 2Volt],
E.~E Ao+ K2r
RTZ0OT ANk

The I'y parameter is the width of the electronic level
state for the localized state situated in the middle of the
barrier and Ey is the effective resonance level energy
that takesinto account the shift caused by afinite width
of the barrier.

The other parameters in (21) are determined as
follows:

03,0 exp(Aod —2A(k,) %) 0 1
00 = . D :
0J,.0 < AP OpsO

Y29

03,0 _ [ exp(Aod—2A(k,)(d—Xp))H 1
0 °0= D .
0Jr0 Aky)T BN

Here, the Fermi momentum of quas—partlcleﬁ in the
barrier is obtained ignoring dephasing (that is, A(k)) =

A/)\S + k§ and the angle brackets Ll.. [(denote averaging
over the transverse momentumk,,

I:I

I:I

w2
k|: 9
> I dBcosB f (kesin(0)).

-T2

Df(ky)EJ(y =
The Bk’R parameters in the integrands in (23) are real
L,R

and phase-independent components of the B~ vari-
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ables from (18); they are given by

BLR — A"R(T)cos(26 F 20, R

w+ QR

(24)

When writing (23) and deriving (21), we proceeded
from the equalities

B = B @D = I,

These equalities follow from the symmetry properties
of the anisotropic order parameter. They are valid
because the integration ranges correspond to the period

of the ﬁi R (B) functions equal to Tt The equalities hold
for arbitrary orientation angles o, .

Equation (21) describes the general case of reso-
nance current transport in two-dimensiona structures
with an arbitrary symmetry of the order parameter in
the electrodes. This is the main result of the present

work. The particular form of the Bi’ ? parameters deter-
mined by (24) isvalid for the model with a step depen-
dence of the modulus of the order parameter on spatial
coordinates. This result is, however, easy to generalize

toamoregeneral caseif the Bi’ R parametersare under-
stood as Andreev reflection coefficients of electrons
having the corresponding trgjectories [20], which can
be obtained by numerically solving the problem of the
neighborhood effect at the boundary between the super-
conducting electrode and the dielectric interlayer [7].

5.2. 9SJunctions of Different Dimensionalities

In the limiting case of isotropic electrode order
parameters, (21) takes the smplest form. Integrals (23)
are calculated analytically, and (21) givesthe resonance
supercurrent in the SIS junction in the form

| o = eTAzsinq)FgZ[l'éAzsinzq—z)
© (29)

2 -1
— (8% + ) R0" + B+ %E—wzr A2+w2} .

The analytic continuation w —= —E in (25) gives the
dispersion equation

2
F2A%g 29_’_ A2 2 2_E2_F_|j
+ETJ0*-E® = 0,

which has been studied for one-dimensional models of
ashort junction d < &, (&, isthe coherence length) [13]
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and generalized to arbitrary ratios between the barrier
width and coherence length [14].

The form of (25) and (26) is insensitive to problem
dimensions. Different junction dimensions only change
the form of the energy parameters of localized states. In
the two-dimensional problem, the width of the reso-
nance level and its energy are determined by (22), and,
in the one-dimensional geometry, the properties of
localized states are determined by parameters similar to
those obtained in [13],

Mot = 2Voltlexp(Ao(d —2x,)),
[ = 2Voltlexp(-Ag(d —2xp)).

The characteristic resonance level width for a three-
dimensional SIS junction is given by the equations

exp(Ao(d —2xo))

rng = Vot Moo ,

exp(—Ao(d —2Xo))

Moz = Volt :
02 Ol | )\O(d_xo)

It follows that the Beenakker—van Houten dispersion
equation[Eq. (26)] obtained in 1991 for the one-dimen-
sional model is of a more general applicability and
remainsvalid for junctionswith wide barriers and prob-
lems of large dimensions.

Equation (25) allows the summation of the Matsub-
ara frequencies for “broad” (Al < 1) and “narrow”
(AT, > 1) resonances to be performed analytically.
Studies of supercurrent in these two limits lead to the
same conclusions as drawn in [14], this time for junc-
tions with two- and three-dimensional geometries. We,
however, obtained resonance transparency close to one
and a nonsinusoidal phase dependence of supercurrent
only at the resonance level energy closeto zero (Eg ~ 0)
and when the localized state was situated close to the
barrier center (X, ~ d/2). A shift of the localized state
resonance energy from zero or a displacement of the
localized state from the barrier center decreases reso-
nance transparency and supercurrent and restores the
sinusoidal phase dependence of supercurrent |..(d).
Averaging over energy and coordinates of localized
states makes supercurrent in two- and three-dimen-
sional SIS junctions proportional to sing in both limit-
ing cases.

5.3. Resonance Scattering
in a Two-Dimensional SD Junction

Resonance current transport in junctions with high-
T, superconducting electrodes will be studied on the
assumption that the ab plane of the high-T, supercon-
ducting crystal is perpendicular to the surface of the
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Fig. 2. Phase dependences of supercurrent in the SID junction for yo/A4(0) = (& b, ¢) 0.1 and (d, e, f) 10 at Ad = 6, k/A =2, Eg =0,
and xg = d/2; ag = (a,d) O, (b, €) W12, and (c, f) 1W6; and T/Tg = (1) O, (2) 0.05, (3) 0.3, and (4) 0.6. Inset € shows the region of
maximum supercurrent corresponding to curves 1, 2, and 3 in Fig. 2g. Phase dependences of nonresonance supercurrent are plotted

in Fig. 2g for the same parametersin arbitrary units.

junction and the order parameter is determined by (16).
Electronic and hole excitations at the boundary of an
anisotropic superconductor are influenced by different
order parametersif a # 0. If the sign of the order param-
eter changes after the reflection of aquasi-particlefrom
the surface of the high-T, superconductor, bound
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Andreev states appear on the surface of the supercon-
ductor with zero energy with respect to the Fermi level
(zero energy states or mid gap states) [21]. The region
of the appearance of zero energy states depends on the
angle of high-T, superconductor crystal |attice orienta-
tion. For instance, for the SID junction, the order
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same parameters.

parameter has the form

m(T)e™, x<0
A(x,T) = 0, O0<x<d

g i
[Ay(T)cos(20 ¥ 2a)e®™, x>d.

(27)

Andreev statesthen appear on the trgjectories satisfying
the condition

00 (x1W4—-ag U4+ 0R).

The question of how the appearance of zero energy
states influences resonance current is of interest.
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The phase dependences of supercurrent and thetem-
perature dependences of critical current are shown in
Figs. 2 and 3. The dependences were obtained on the
assumption that the order parameters A(T) and Ay(T)
satisfied the Bardeen—Cooper—Schrieffer theory equa-
tions. Numerical calculations were performed for the
ratio between the critical temperatures of the supercon-
ductors TJT, = 1/9. At ag = 0, the behavior of the |, (¢)
curvesin “narrow” and “broad” resonancesissimilar to
that for junctions with isotropic el ectrode order param-
eters; namely, we observe phase dependences close to
sin(¢/2) at low temperatures and resonance transpar-
ency equal to one. Asin Section 5.2, shift of the reso-
nance energy of the localized state from zero or adis-
placement of the localized state from the middle of the
barrier decreases resonance transparency, causesadrop
in resonance supercurrent, and restores the sinusoidal
dependence of |,.($). After averaging over localized
state energies and coordinates, resonance current
becomes proportional to sing in both limiting cases.

Figures 2a and 2d are visua illustrations of devia-
tions of the I(¢) dependence from sing at low tempera-
tures. An increase in the temperature or the orientation
angle ar makes the curves closer to sinusoidal (see
Figs. 2b, 2¢c, 2e, 2f). For comparison, the phase depen-
dences of tunnel supercurrent at the same junction
parameters and ag = 0 are shown in Fig. 2g; these
dependences follow from the equation for potential
supercurrent [Eq. (17)] and the results obtained in [3].
We see that the phase dependences of tunnel supercur-
rent are sinusoidal at low temperatures under long junc-
tion conditions.

The temperature dependences of the critical current
for the SID junction at various superconductor crystal
orientations are shown in Fig. 3. Figures 3a, 3b, and 3c
demonstrate a sharper decrease in | as the temperature
increases caused by resonance narrowing. At the same
time, the theory described in [3] predicts a smooth
decreasein thecritical tunnel current asthetemperature
increases (Fig. 3d). The large dopes of the temperature
dependences of resonance current are explained by
strong resonance level “smearing” at T > Iy, accord-
ingly, the narrower the resonance, that is, the smaller
the resonance level width I, the lower the temperature
of the onset of critical current drop as the temperature
increases. A visua illustration of such a behavior of
I(T) isgiven by Fig. 3.

We see from Figs. 2 and 3 that an increase in the
angle of high-T, superconductor crystal orientation
causes a decrease in supercurrent. This process is
shownindetail in Fig. 4, where the dependences of crit-
ical current on the angle ay are plotted. According to
this figure, “isotherma” curves decrease as the ag
angleincreases, and, at o = T4, the resonance current
isidentically equal to zero, which isformally related to
the equality to zero of the J; integral in (21) (at o =
174, the integrand becomes anti symmetric with respect
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parameters.

to 0, and Ji therefore vanishes under averaging over
angles). Physically, the absence of resonance current at
Og = TV4 is easily explained from symmetry consider-
ations. When quasi-particles are rescattered by local-
ized states, the probabilities of the trgjectories toward
the high-T, superconductor with the angles £6 with
respect tothe normal are equal. At the sametime, quasi-
particles interacting with the high-T, superconducting
electrodes are influenced by order parameters of differ-
ent signs. Asaresult, the contributions to the resonance
current of the directions +6 are equal in magnitude and
opposite in sign. For thisreason, averaging over al tra-
jectories gives zero supercurrent value. A similar situa-
tion arises with potential tunneling [3]. In SID junc-
tionsat ag = 174, the coefficient of sing in the equation
for supercurrent vanishes and the contribution of terms
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Fig. 5. Temperature dependences of the integrals (a) J, and
(b) Jr in the SID transition for various ag angles. The plots

were constructed for the Matsubara frequency w = 1T and
for a narrow resonance with yg/Ay4(0) = 0.1. The other

parameter values: Add = 6, k/A =2, Eg =0, and xq = d/2.

proportional to sin2¢ therefore becomes predominant.
Thisis, in particular, the reason for changesin the peri-
odicity of the phase dependence of the potential super-
current in such junctions [26, 27]. In the equation for
resonance supercurrent [Eqg. (21)], the terms propor-
tional to sin2¢, like the other (higher) terms of thetrig-
onometric series sinng, synchronously vanish. For this
reason, the resonance current vanishes at oy = /4.

An analysis of the plots shown in Figs. 4a and 4b
shows that resonance narrowing results in a rapid
decrease in the critical current as the angle of high-T,
superconductor orientation increases. A comparison of
the I (ag) curves calculated for resonance and direct
tunneling (see Fig. 4d) shows that potential supercur-
rent decreases more monotonically as o increases.

An interesting feature of the temperature depen-
dences of resonance supercurrent shown in Fig. 3 is
their anomal ous decrease at low temperatures and non-
zero orientation angles of high-T. superconductors.
Formally, such a behavior of the temperature curvesis
explained asfollows. whereasthe other integralsin (21)
show a fairly monotonic behavior (see Fig. 5b, where
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the Jx(T) dependence is plotted by way of example for
various orientation angles of high-T, superconductors),
the J, integral rapidly increases as the temperature
approaches zero (see Fig. 5d). For this reason, the
denominator in (21) isminimum at nonzero temperature.

The J, and Jy integrals describe interactions
between two resonance tunneling processes, namely,
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through localized states and through bound Andreev
states that appear on the surface of high-T, supercon-
ductorsat ag # 0. It was shown in [20] that the interfer-
ence of these processes did not necessarily cause super-
current amplification. Moreover, at zero voltage at the
junction, the interference current component related to
rescattering of quasi-particles in the Andreev channel
of tunneling at localized states can make a negative
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contribution to the supercurrent. This is the effect of
complex interference of two resonance processes that
may be responsible for a sharp decrease in the angle
dependence of the critical resonance current compared
with the potential current and the deficiency of the crit-
ical current at zero orientation angles of high-T, super-
conductors noticeable in the region of low temperatures
(Figs. 3a, 3b, 3¢).

5.4. RESONANCE CURRENT
IN A TWO-DIMENSIONAL DID JUNCTION

In the general case of anisotropic order parameters,
not al integras (23) can be calculated andyticaly. For
symmetrical junctions with high-T. superconducting
edges, analytic equations can only be obtained from (21)
for a narrow resonance at a, = og = 0 and k/A > 1.
Equations similar to (25) and (26) with A = Ay(T) are
then obtained for supercurrent and the energy spectrum
of resonance junction states with equal order parame-
tersin the left and right electrodes. In the genera case
of arbitrary k/A ratios and orientation angles of high-T,
superconducting crystals, resonance junction conduc-
tion can only be analyzed numerically.

Equation (21) for current can, however, be simpli-
fied for junction configurations of practical interest
with orientation angles of the high-T, superconducting
electrodes of o, = +ag. If the condition

AY(T) = A%(T) = Ay(T)

ismet, we have J; = J, and J, = Ji for integrals (23). It
follows that junctions with the orientation angles |, | =
|ag| have equal resonance properties. The resonance
transport of current is sharply different in this respect
from the direct tunneling current. It follows from [3]
and Eq. (17) obtained in thiswork that the direct super-
current behaves differently in junctions with the config-
urations o, = +0g.

Applying (21) to symmetrical junctionsyields

242 -
Jgsin
2700y = ey NS
W
Jg=3,=3g J=3=1d,
2 (28)

S = ~w'~Eg—7 ~w(4Jyo-T)

+ ZVSB‘yglJ —2J° - Jﬁcoszq—z)g.

Equation (28) will be analyzed numerically on the
assumption that the ab planes of the d-type supercon-
ducting crystals to the left and right of the insulating
interlayer are perpendicular to the surface of the junc-
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tion, and the order parameter of the problem is given
by (16).

The phase dependences of the resonance supercur-
rent obtained using (28) are shownin Fig. 6. If both ori-
entation angles o and a, are nonzero, the behavior of
the phase curvesis similar to that of the curvesfor SID
junctions, as follows from Figs. 6b, 6c, 6e, and 6f. We
can only note that supercurrent decreases more rapidly
asthe orientation angles of the high-T. superconductors
increasein magnitude. Inaddition, if a, r# 0, the phase
curves of DID junctions more rapidly approach sinuso-
idal dependences because of the presence of two
regions with anisotropic order parameters instead of
one such region in SID junctions. As with SIS junc-
tions, a displacement of the localized state from the
center of the barrier or a deviation of the resonance
energy from the Fermi level causes a sharp decrease in
supercurrent and the disappearance of the deviations of
phase characteristics from the sinusoidal dependence.
As aresult, resonance current averaging over the reso-
nance energy Er and the coordinate X, of the localized
state gives asinusoidal phase dependence of the super-
current.

Similarity of the resonance tunneling processes in
SID and DID junctionsis also observed when we com-
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pare the temperature dependences of the critical cur-
rent. A rapid decrease in supercurrent as the tempera
tureincreases or resonance narrowsin DID junctionsis
shownin Figs. 7aand 7b. Note al so that the temperature
curves at o g # 0 exhibit anomalous behavior at low
temperatures; similar anomalies have been given atten-
tion above, when resonance supercurrent in SID junc-
tions was analyzed. At large orientation angles of high-
T, superconducting crystals, we do not observe a sharp
increase in the critical current in resonance current
plots such as is characteristic of direct tunneling
(Fig. 7d, curve 3). The situation with the angle depen-
dences of resonance current in DID junctionsis similar.
Interestingly, according to [3], the orientation angle
dependence of direct supercurrent should be very far
from monotonic (see Fig. 8d). At the same time, the
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dependences of resonance supercurrent shown in
Figs. 8a—8c are monotonic, which lends support to the
conclusions made in describing the angle dependences
of the critical current in SID junctions.

To summarize, our study of the resonance supercur-
rent in junctions in which both electrodes have d-sym-
metry order parameters shows that the supercurrent
value is determined by the moduli of the orientation
angles of superconductor crystals rather that the angles
themselves. For this reason, structures with symmetric
(o, = ag) and antisymmetric (a, = —aR) electrode con-
figurations that we often come across in theoretical and
experimental studies are equivalent. Indeed, in reso-
nance tunneling, a quasi-particle falls into a localized
state potential well and “forgets’ about theinitial direc-
tion of its motion. Subsequent particle rescattering in
the directions +0 with respect to the x axis is equiprob-
able. As a result, physical resonance tunneling pro-
cessesin structureswith o, = +ag are spatially symmet-
rical and do not differ from each other. In redlity, the
existence of a localized state between two high-T,
superconducting electrodes with pronounced anisotro-
pic properties is responsible for isotropy of not only
resonance tunneling. It was shown in [20] that the pres-
ence of a localized state along the trajectory of the
appearance of bound zero energy states results in res-
cattering of particles in other directions, which weak-
ens the zero bias anomaly effect.

6. CONCLUSIONS

We have presented calculations of resonance super-
current transport in equilibrium Josephson junctions of
different configurations, determined the supercurrent
using the formalism of Green functions, and obtained
an equation for the Green function in a nonhomoge-
neous potential barrier with a localized state. For the
two-dimensional junction model, we derived an ana-
Iytic equation for resonance supercurrent valid for an
arbitrary symmetry of electrode order parameters. For
the SIS junction, we generalized the Beenakker—van
Houten dispersion equation obtained for the one-
dimensional model [13] to junctions of arbitrary
dimensions. We numerically studied the dependences
of the resonance supercurrent on the macroscopic
phase, temperature, and high-T, superconductor crystal
orientation angles with respect to the direction of cur-
rent propagation. A comparison of these results with
those for tunnel current transport through the potential
barrier reveals a steeper resonance current drop as the
temperature or the orientation angle of the high-T, crys-
tals deviates from zero. For narrow resonances usually
observed in experiments, finite temperatures and non-
zero orientation angles substantially decrease the reso-
nance supercurrent. Our results lead us to conclude
that, in long high-T, superconducting junctions and in
the presence of localized states in the interlayer, reso-
nance supercurrent is indeed suppressed compared
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with direct tunneling through the barrier, in confor-
mity with [2].

Analysis of the results obtained in this work has
substantiated the conclusions drawn in [20]; namely,
the interaction of two resonance processes of tunneling
through localized states and bound Andreev levels
(zero energy states) can weaken supercurrent and the
effects related to anisotropy of high-T, supercon-
ductors.

The approach devel oped above ignores the suppres-
sion of the order parameter close to the boundaries of
high-T, superconducting structures. It follows that we
did not study the contribution to supercurrent transport
caused by resonance tunneling to Andreev levels with
nonzero energies localized near the boundary. Exactly
including this contribution requires numerical calcula-
tions. Nevertheless, the analysis performed in thiswork
leads us to conclude that taking into account these
effects would not cause serious qualitative changes.
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APPENDIX

Let the source of the Green function lie within the
barrier. The unperturbed Green function can conve-
niently be found by writing (6) for the Fourier trans-
form of Gﬁ)(r, r'). In the two-dimensional model, the
Fourier transform of the two-component Green func-

tion G2 (r, r') is given by

Go(r,1') = Zlﬂ[dkyexp(—i k(Y —¥))Ga(ky, X, X).

If the barrier potential V(r) is homogeneous, that is, if
the presence of the localized state isignored, the Green
function Gg (r, r") inthe Gor’ kov equations can be par-
titioned in such a way that one of its components be a
sowly varying function. Indeed, the Green function
experiences oscillations at a length of about k;l,

whereas the order parameter changes over much longer
distances, on the order of the coherencelength [24]. We
can therefore redefine the Green function and the order
parameter accordingly,

Go(Ky, X, X) = exp(xikX)Ga(k,, X, X),
A(x,0) = J’dxlexp(—ik 0F ) A(X, Xq),

(29)

where Gg is the dowly varying component of the
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unperturbed Green function of the problem and

. k, ik
exp(if) = m+ﬁ

Thisallows usto linearize system (6) and writeitinthe
form of the matrix equation

i — 0, (B )0 + 2% (x )0
O 2 O
x Gk, X, X) = 8(x—x)I, (30)
. ik d K
ho = F o+ Vi M =5 .

The anisotropic order parameter A(X, 8) depends on the
angle 0 of the propagation of quasi-particles with
respect to the x axis. In the operator ho, we omitted the

0%/0x? terms, which can be ignored if the condition
A < lissatisfied.

Representing the x components of the Green func-
tionsin the form of plane waves, we can write
Ga(k, X, X) = exp(EX)Ga(k,). (31)
Substituting (31) into homogeneous equation (30)

yields the final matrix equation that can be used to
determine the Green functions in a superconductor,

n * (]
O 2 O
><(_32)(ky) =0, (32)
k& K
h£—+ m +Vrect—l.l—é-r—n.

System (32) separates into two pairs of equations for
determining the G;; » and Gy, ,, functions. The condi-
tion of the equality of the determinant to zero isused to
find the & parameter,

2

X

(33)

where the notation A, = A(x, 6,) is used to stress that
guasi-particles in anisotropic superconductors are
influenced by different order parameters depending on
the direction of their motion; there is asimple relation
between the 6, angles, namely, 6, =06 and 6_= 11— 6.
The sign in (33) is selected depending on whether the
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guasi-particle is an electron or a hole. In addition, the
relation between the Green function components,

e @ _ 1A% =0 ()
Ga(k), = —an(ky g (34)
—w+ 2g
m

follows from (32). The selection of different signs
in (33) and (34) alows us to obtain four independent

solutions for the Green function components G(1)1, 51 1N
a superconductor, namely,

0 o 0? 0 o™

D010 - epl(sik,+ £ 00 Wg ()
0Gx Di D G21 (ky) D

The solution for the unperturbed Green functionsin the
barrier is found from (6) taking into account that the
order parameter in anormal materia is zero,

{iol —o,hy Go(k, %, X) = 8(x—x)I,
N 02 K> (36)
hn = ﬁ"'vrect_“_ﬁ-

Four independent general solutions can be obtained
from (36) for the Green functions G(l)l, 21 - The solutions

GONCHAROV et al.

responsiblefor the transport of electron-like excitations
in the barrier are described by plane waves,

oD gop
EG”E = 0 Dexp(xAx). (37)
D621D boo

The solution for holes in the barrier is
Uso 8 o0
EGSE = 09 Oexp(+A*x), (38)
0G0 010

where A = JA3+k; —2miw characterizes the two-

dimensional momentum of electronsin the barrier. The
particular solution to (37) for the GEL 2 componentsis

written in the form

040

0 5Pexp(=Alx=x]). (39)
JooA

It follows that the G, ,; Green functions of the prob-
lem in various junction regions are representable in the
form of the superposition of the corresponding inde-
pendent solutions (35), (37)—«39) provided that the
functions are finite at infinity,

O
L* g10
—B EAlexp(ka)+D 1L DAsexp(K-"X), x<0,
10 Oop-0
D00 Hi,p
EGHE = 00 0B, + Be ™ - e Merr-x0 . 50 D(B3 *1+B,e™), 0<x<d, (40)
0G0 HHOO bio
O
] 1l
1 O R*
HN 1RDA2exp(—Kf*x)+E—B_ EA4exp(—fo), x>d.
.o 010
O
The two other Green function components ng, 12 arefound from (32) and (36) in asimilar way,
D
[3_ L«
DClexp(K x) + OP-0C,exp(k_"x), x<0,
g 0410
EGzzgz [D1DHD "+ D,e™ )\*eMx X‘Em D(DSeX+D4e‘“), 0<x<d, (41)
0Gpo 00 b1
O
0 0
[0 prO 1
ml B~ DCZexp(—KT* X) + E ECaexp(—K_Rx), x>d.
N 1 0 _ R*
0 _
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The A, By, C;, and D, coefficients (i = 1, 2, 3, 4) of the
exponentia functions are found from the condition of
continuity of the Green functions and their derivatives
at the structure boundaries. Equations (40) and (41) are
written using notation (18). We aso introduced the
Fermi momentum of quasi-particles in the supercon-
ducting electrodes in these equations,

m
Ky

L,R -
Ky =ik +

L,R
QbR

On the assumption that the Fermi level energy p > |AY,
|AR] and the contribution, to the current, of terms with
high Matsubara frequencies is negligibly small, we can
ignore dephasing in the superconducting el ectrodes[25];
that is, the difference between the Fermi momenta of
electrons and holes can be considered insignificant, and

the approximate definitions k5 = ik, = k can be used.
In addition, we can ignore dephasing in all the expo-
nents and in the equations where the Fermi momentum
of interlayer electrons A is in some way compared
with K. From these considerations, the equationsfor the
coefficients of (40) and (41) as functions of the X' vari-
able can be written in the form

o, 0 1 L
010 = 5[AAFK)—Bs A(A k)]
0oB,0 2A
+E1%m —}\x,
0ooA
up,d _
0590 = S (A £K) + A FK)],
oB,0 2A
A, = ——[d (X)BEM ,—dg (X)ta(BE - B,
Ay = = [dy ™ (X)te(T 3= T1) +dg (X) ]
KZ e e 1 e ’
- M. .-. -k
As = = Slds () —de ™ ()Mo =T )],
=~ ds ()t (BE—BF) +dg * (x) BT 1]
KZ e — + e + 11
(42)
3017 = é—)l\;[cl(uK)+BEc4(>\ TK)]

0D,0

El%m “AX
gooA
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= Z{C,A£K) =B CLA FK)],

I:H:ID

0
DD
UD,

Cr = —Zds ()t(T5=T2) +dg " (T,

C, = ld. " ()BT =B + dg ()BT,
Cs = —Zds ()(Ta=T) +dg " (T ],
Ca = Slds ()BL T+ dg ™ O0)t(BY =BT

TheZandl, , 5 4, parametersare defined by (18). Some
of the parameters of (42) have a simple physical mean-
ing. For instance, t, is the transparency coefficient of

the barrier for the electron, t, = t¥ is the transparency
coefficient of the barrier for the hole, d. (x) and
do * (X) are the probabilities of electron and hole tun-
neling from the right superconductor to the localized
state region, and d; (x) and d ¥ (x") are the probabili-
tiesof reaching the localized state by the quasi-particles
that move from the left superconductor. There are stan-
dard equations for these probabilities,
Akre™

) +K)2e—)\d_0\_K)2e)\d’

te =

2k[(A =k) T+ (A + k) e
(A +K)2e—Ad_()\_K)Ze)\d

de’(x) =

2ke™ (A —K)E + (A +K)e™]
AR (A k)2

If the dephasing effect is ignored, the probabilities of
reaching the localized state are related by the simple
equations

de (X) =

de " (X) = —tyds (),
de (X)rp—ds " (X)

where r, , are the reflection coefficients of electrons
and holes from the V, potential.

Conditions (4) and (5) introduced in the construc-
tion of our model help usto simplify cal culations some-
what. Asthe localized state that effectively participates
in resonance current transport is situated approximately
inthe middle of the barrier, x, ~ d/2, we can assume that
the exponential functions exp(—Ad) and exp(—2AXg)
have the same order of smallness. In addition, we
assume that the barrier height isfairly large and condi-

de (X)rs—

= —tyde (X)),
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tion (19) is therefore satisfied. The Green functions
with an accuracy to terms on the order of exp(—2Ad)
inclusive are then given by the equations

m
Gh(X, Xo) = _X[eXp(_Alx —Xqg|)

r3r4_ r1r2

2
— [t "exp(A (X —Xo)) o,

Po—K
Dho +K

AZ_gr

+ exp(-A(X+ X))

43

k2l

+ exp(-A(2d —x— xo))go+K =
A2

+exp(-A(2d —x + X))

Dok, 8Ao(Ag + K (T3 + o)1
giEyEre a2-x»)? T of

4K
G(x, xo)~——[exp(—x(x+xo)) — E

4K\ BT

+ (M (2d - X —x) S5

(44)
+exp(-A(2d—x+ xo))

. BKA(Ag + K*) (BIT; + BIT ,)
Ag-kd” T ]

7\ B,
—x* T

GlZ(X Xo) = _[eXp(

4K\, [3_

+exp(-A(2d —x— xo)) 2F (45)

+exp(-A(2d —x+ XO))

R L
L BKA(A+ K (BT T, 4B, T,)
(As—K*) U

Gzz(x Xo) = [eXp( )\|X Xo|)

e (x—g L 2la= Tl
Fexp (%)
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B MotK  4KA, 1
+eXp( )\(X+X0))[P\O_K )\g_ 2rl|:|
+ 4kAg 1 (46)
0 K K 0 |:|
+ exp(-A(2d —x— XO))D\ 2 2I'4]

+ exp(-A(2d —x + X))

D [‘?\o"'KD 8K)\o()\o"‘K )(rl"‘rz)D
|:| [P\ -k ()\(Z)_KZ)Z rr, D

These equations are valid if the condition ';[, # 0 is
satisfied in the denominator Z of coefficients (42). We
considered the situation with "I, = 0 separately; it was
found that the contribution of such states to the reso-
nance current was zero in equilibrium DID junctions.

Beenakker and van Houten [13] included dephasing
in the derivation of the dispersion equation that related
energy to the macroscopic phase and localized state
parameters. Obtaining equally accurate results with
Green functions (43)—(46) only requires taking dephas-
ing into account in the Fermi momenta of interlayer
guasi-particles that appear in the nVA and myA* multi-
pliers. Since it is assumed that w/V, < 1, the Fermi
momenta of electronsin anormal material can approx-
imately be described by the equation

1. 1
A 2,2 .
NAg+ K, —2miw

%L mi w BDmiooD%j
A(ky) A (k,) 2[5\2(k)DD

(47)

where

A(Ky) = JAZ+K.

Accordingly, for holes, the equation complex conjugate
to (47) can be used.
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Abstract—We consider the question of the existence of nonradial solutions of the Ginzburg—Landau equation.
We present results indicating that such solutions exist. We seek such solutions as saddl e points of the renormal -
ized Ginzburg—L andau free-energy functional. There are two main points in our analysis. searching for solu-
tions that have certain point symmetries and characterizing saddle-point solutions in terms of critical points
of certain intervortex energy function. The latter critical points correspond to forceless vortex configurations.

© 2004 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The Ginzburg—Landau equation describes, among
other things, macroscopic stationary states of superflu-
ids, Bose-Einstein condensation, and solitary wavesin
plasmas. In recent years, it has become a subject of
active mathematical research (see monographs [1-3]
and reviews [4—7] for some of the recent references).
This eguation is simple to write,

~Ay+(JW*-1)y = 0, (1.1)

where (in the case of the entire plane R?) y: R2 —~ C,
with the boundary condition

W] —1 as |X| — oo, (1.2)

but not easy to analyze. Infact, so far only radially sym-
metric solutions, i.e., solutions of the form ,(X) =
f,(r)€™, wherer and 6 are polar coordinates for x [ [R?,
areknown for (1.1) and (1.2) (see[8-17]). Solutions Y,
are called n vortices. We note that n = degy,,, where
degy, the degree (or vorticity) of Y (satisfying (1.2)) is
the total index (winding number) at oo of () considered
asavector fieldon R?, i.e,

=1
degy =5 [ d(agy)
IX =R
for sufficiently large R.

The existence and properties of the vortex solutions
were established only recently. The known facts are as
follows.

T This article was submitted by authorsin English.

(i) Existence and uniqueness (modulo symmetry
transformations and in a class of radialy symmetric
functions) [10-13].

(i) Stability for |n| < 1 and instability for |n| > 1
([13], earlier results on stability for the disc are due
to [15-17]).

(iif) Uniqueness of ., (again, modulo symmetry
transformation) in a class of functions Y with degy =

+1 and I(|q;|2— 1)’ < 0 [16].

Therefore, the next question is: Are there nonradi-
ally symmetric solutions?

In this paper, we present results indicating that such
solutions exist. There are two key ingredients in our
analysis. First, we characterize nonradially symmetric
solutions as critical points of the intervortex energy
function described below (see also [18]). Second, we
seek solutions having certain point symmetries. The
latter fact reduces the number of free parameters
describing such solutions to one (the size of the corre-
sponding polygon of vortices).

Solutions breaking the rotational symmetry were
found to exist in the case of the Ginzburg—L andau equa-
tionintheball By ={x 0 R?]| x| < R} with the bound-

ary condition Y[,z =€" and |n|> 2 (see[1, 2], The-

orem 1 X.1). However, in the case of the ball, thereisan
external mechanism leading to the symmetry breaking:
the boundary condition. It repels vortices, forcing their
confinement. On the other hand, the energy is lowered
by breaking up multiple vortices into (+1)- (or (=1)-)
vortices and merging vortices of opposite signs. Thus,
for R that are not very small, the lowest energy is
reached by a configuration of |n| vortices of vorticities

1063-7761/04/9905-1090$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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+1 depending on the sign of n, which, obviously, is not
rotationally symmetric.

This paper is organized as follows. In Sections 2
and 3, we review some material in [13]: the variational
formulation of the problem and some specific proper-
ties of vortex solutions. In Section 4, we define the int-
ervortex energy and discussits properties. In particular,
we discuss the correlation term in (the upper bound on)
the expansion of the intervortex energy for large inter-
vortex separations and a definition of G-symmetric vor-
tex energies, where G is a subgroup of the symmetry
group of (1.1).

In Section 5, we consider point symmetries (Cy,),
present one of our main results, Theorem 5.1, on the
existence of critical pointsfor Cy,-Ssymmetric intervor-
tex energies, and derive some genera relations for
those energies. In Section 6, we prove Theorem 5.1 and
discuss some other cases.

Finally, in our five appendices all the hard analytic
and numerical work is concentrated. In these appendi-
ces, we compute various asymptotic expansions
beyond the leading order. We feel that these appendices
are of interest on their own because they address rather
subtle computational issues.

2. RENORMALIZED GINZBURG-LANDAU
ENERGY

It is a straightforward observation that Eq. (1.1) is
the equation for critical points of the functional

“W = 3[H P30 -0 @

Indeed, if we define the variational derivative 9, ()
of € by

Re[£0, (W) = 3w (22)

A=0

for any path y, such that Y, = ¢ and aa—)\tpA =g,

then the left-hand side of Eg. (1.1) is equa to
0, é(P) = 0z é(W) for €(y) given by (2.1).

Equation (2.1) is the celebrated Ginzburg—Landau
(free) energy. However, thereisaproblem with it in our
context. It is shown in [13] that, if Y is an arbitrary
C1-vector field on R? such that || — 1 as|x] — o«

uniformly in X = x/[x| and degy # 0, then € () = .

We renormalize the Ginzburg—Landau energy func-
tional as follows (see [13]). Let x(X) be a smooth posi-
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tive function on [R? vanishing at the origin and converg-
ing to one at infinity. We define

Erenl(W)

= 5fHw '~ —(def’z”’)zx Ry, &Y

where

FU) = 3u-1)" (2.4)
Properties of the renormalized energy functional
E,en(P) areinvestigated in [13].

In this paper, we take

_ [ for [X=R+R",
X)) =0

(2.5)
[0 for [X <R

for Rvery large compared to all length scales appearing
below.

3. VORTICES

Itisshownin[10-13] that, for any n, Eq. (1.1) hasa
solution, unique modulo symmetry transformations, of
the form

W(x) = f(ne™, (3.2)

where f,, with 1 > f, = 0, monotonically increase from
f,(0) =0to lasrincreasesto . Forn=0, f,(r) = 1. For
[n] > O, f,(r) does not admit an explicit expression.
These are the n vortices mentioned in the Introduction.
Of course, each solution |, generates a one-parameter
(for n = 0) or a three-parameter (for |n| > 0) family of
solutions of (1.1). The latter are obtained by applying
symmetry transformationsto |J,,.

The function f,(r) in (3.1) satisfies the ordinary dif-
ferential equation

100t n°

2 —
~tardarat zf- (- tfa =0

(3.2)

The (self) energy of the n vortex isgiven by E; 5 :=
€ en(Pn). To compute E,, g, we use the fact that, if g is

asolution of (1.1), then, due to theformuIaIIle |> =

- I QPAY of integration by parts, we have

% V)

, 2 33

= 3[R -3 -ley - L0 &9
No. 5 2004
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Using thisformulafor = g, and using the asymptotic
expression (which can be easily derived from (3.2);
see[19, 20] for the general case)

n° ., AO0
f(r) = 1- + ol (3.4)
" or? QU
forr > 1, we obtain
Enr = rm?InBR0 + ¢(jn)) + OB (3.5)

D R

The constant c(n) can be computed numerically (which
isnot quite trivial; see Appendix 1), which yields

c(1) = 0.376m, c(2) = 0.535, 36)
c(3) = 0.577m, c(5) = 0.6151 '

The asymptotic form of ¢(n) for n > 1 isfound analyt-
icaly in Appendix 2.

4. INTERVORTEX ENERGY

In this section, we introduce and discuss a key con-
cept of the intervortex energy (see aso [4, 18]). We
begin with some definitions.

By a vortex configuration ¢, we understand a pair
(a,n),wherea =(ay, ..., a), a OR? andn=(n,, ...,
ny), n; 0 Z, for someK = 1 (positions of the vortex cen-
tersand their vorticities). We consider once-differentia-
ble functions P: R?2 — C satisfying || — 1 as
[X| —= 0. We say that the vortex configuration of Y is
¢ =(a, n), confy = ¢, if Y has zeros (only) a a,, ...,
ax with the respective local indicesn,, ..., ng; i.e.,

J’d(argtp) = 21N,
Vi
for any contour y; containing a;, but not the other zeros
of Y, andforj =1, ..., K. (Strictly speaking, we haveto
specify the phase factor, or rotation angle, for each vor-
tex; but these play no role in our considerations and are

not displayed or mentioned in what follows.) We now
define

Er(C) = inf{€(W) | confy =¢} .

We expect that Eg(c) > —0. An argument supporting

this statement is presented in [18]. Of course, for
bounded domains, this inequality is trivial. We call

Er(c) the energy of the vortex configuration c. It plays

a central role in our analysis. We also note that E(c)

serves as a Hamiltonian for the vortex dynamicsin the
adiabatic approximation (see [21]).

In what follows, we keep the vortex indices n fixed
and write Eg(a) for Ex(c). It is clear intuitively that a
minimizer in (4.2) existsif and only if OEg(a) = 0 (the

(4.1)

4.2
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force acting on the vortex centersis zero). However, to
establish this fact is not so easy.

Theorem 4.1. If thereisa minimizer for variational
problem (4.2), then this minimizer satisfies Ginzburg—
Landau equation (1.1).

Proof. Let Y be aminimizer for (4.2). Because we
have

_ 0
0= a_)\%ren(l-p +A¢&)

A=0

= ReIE(—Aw +(|pI* - 1))

for any differentiable function &: R? — C vanishing
together with its gradient sufficiently fast at o and van-
ishing at the points a, ..., a,, we conclude that { sat-
isfies(1.1) for x# ay, ..., &,. Ontheother hand, because
W 0 H(R’), we have Ay + (IWP - Dy O H(R?).
Hence, Ay + (WP —1)Y = 0on R?.

Arguments and results in [18] (see, in particular,
Theorem 3.2) justify the following conjecture.

Conjecture 4.2. OEx(a) = 0 for some a, (with n
fixed) if and only if thereisaminimizer for problem (4.2)
at the configuration a and, consequently, due to Theo-
rem4.1, if and only if Ginzburg—-Landau equation (1.1)
has a solution with the configuration a,.

Thegoal of thispaper isto find forcel ess vortex con-

figurations, i.e., configurations ¢ such that
OEgr(@) = 0. (4.3)

For this, we study the intervortex energy Ex(a) for very
small and very large intervortex separations.

Let
d, = minla;—a;| for a = (ay, ..., a).
- iz]
For d, large, we prove in Section 7 the upper bound
Ex(@) < ER’— A@) + O(d;™) + O(R™),

where

(4.4)

K
EE?O) = -zlEﬂi, R + H %l
| =
and A(c) isahomogeneous function of degree—2, pro-
vided that a satisfies (JH(a) = 0. We recall that E,, g =
€ en(Wn) isthe self-energy of the n vortex (see (3.5)) and
H(a) isthe energy of the vortex pair interactions,

H(a) = —T[Z nn;Inja|,

i#]

(4.5

witha; =g —4a.
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The correlation term A(a)is of importance for us
here. We have an explicit expression for it (see
Egs. (A.3.4) and (A.3.5)) and compute it explicitly in
the cases of interest. We conjecture that A(a) > 0
aways.

We observe that the upper bound (4.4) with the
remainder O(d;") instead of —A(a) + O(d;"°) is
obtained by choosing the Hartree-type function

PO = []wa(x-2)
i=1

describing “independent” vortices. For asymptotically
forceless configurations, i.e., oneswith [JH(a) =0, this
estimate can be somewhat improved, but in order to
move even to the remainder estimate O(d;~Ind, ) in the
|atter case, one has to refine this function and include
the leading correlations.

Remark 4.3. As d, — oo, the important asymp-
totic expression

K
Ed@) = ¥ EyptH % +Rem (4.6)
=1

was proved in [18] with Rem = O(d;zlndg) in general
and Rem = O(d;”) if OH(a) = 0.

Asmentioned in the Introduction, our second ideais
to consider solutions of (1.1) that are invariant under
point group transformations. Consequently, we intro-
duce intervortex energy functions invariant under such
groups. We consider a subgroup G of the total symme-

try group
Gym = O(2) xT(2) x U(1)

(where T(n) isthe group of trandations of R") of Ginz-
burg-Landau equation (1). For a G-invariant vortex

configuration ¢ = (a, n) (i.e, invariant under the spa-
tial part of G), we define the G-invariant vortex interac-
tion energy Ex ¢(a) as

Er (@)
= inf{ €,(Y) | confy = ¢, P is G-invariant}

(as before, we fixn and omit it from the relation).

Theorem 4.1 and Conjecture 4.2 obviously extend to
the G-symmetric situation. In particular, we have the
following conjecture;

If apisacritical pointof E; g(2a) (i.e., OEg g(a0) =
0), then Eq. (1.1) has a G-invariant solution.

Our goal in what followsisto find critical points of
the G-invariant intervortex energy Eg (@) for appro-
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Fig. 1. Symmetric configurations and their reflection lines.

priate groups G, namely, point groups Cy, (seethe next
section).

5. POINT SYMMETRIES

We seek solutions of Eg. (1.1) having symmetry
groups Cy, . These groups consist of rotations around
the origin by angles given by integer multiples of 21/N
and reflection(s) in one (and therefore N) ling(s) pass-
ing through the origin. Such solutions are determined
by fixing vortex configurations that have the desired
symmetry group. We consider vortex configurations
consisting of N mvortices uniformly spaced on acircle
of radius a and a single (—K) vortex at the center of the
circle, which is placed at the origin. Several such con-
figurations and their symmetry lines are shown in
Fig. 1. Such configurations have the symmetry group
Cuv- The symmetry group Cy, determines such a con-
figuration uniquely up to the vortex values mand k and
thesize a.

As noted at the end of the previous section, we rely
on the argument that Cy,~-symmetric solutions are in
one-to-one correspondence with critical points of the
Cny-Symmetric intervortex energy

Er(c) =Eg ¢ (0)

(hereinafter, we consider only Cy,-Symmetric intervor-
tex energies, and often omit the subscript Cy,). Our

goal isto find critical points of Eg(c). One of the cen-
tral resultsin this paper is the following theorem.

Theorem 5.1. There exist critical points of
Er ¢, (€) among the configurations ¢ described above
for the parameter values

(N,mk) = (2,2,1) and (4, 2,3).
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This theorem is proved in Section 6. In the rest of
this section, we establish general properties of the

energy Eg ¢ (c) and find anecessary condition on the
parameters N, m, and k.

We observe that, if ¢ is a configuration described
above, then

0, Ex@ = 80, Ex(a)

A : (5.1)
and 0y H@ = 80 H(@ 0.

where & = a/|al (again, we do not display the parame-
ters n). In this caseg, it therefore suffices to investigate
theenergy Ex(a) asafunction of onevariable, thescale
parameter a.

We note that, if m > 2, then there is a continuum of
configurations, labeled by a parameter a > 0, with the
same symmetry group C, as a given configuration,
which have the given configuration as the limit as
o — 0. For instance, for m= 2, each m-vortex can be
split into a pair of 1-vortices with all pairs lying either
on the circle or on the lines joining their parent m-vor-
tices to the origin at equal distance a to those m-vorti-
ces (seeFig. 2).

By symmetry, the energy of the resulting configura-
tions has a critical point at a = 0. A simple analysis of
the breakup of a 2-vortex shows that this critical point
is a local maximum. Indeed, eg., for m = 2, it was
shown in [13] that the linearization of Eq. (1.1) (the
Hessian of the energy functional) around the 2-vortex
solutions P, = f,(r)e?® has exactly one negative mode
(an eigenfunction corresponding to a negative eigen-
value) of the form & = e¥9€ ,(r) + & (r), where {,(r) are
somereal functions. Then, the function s, + A for suf-
ficiently small |A| lowers the energy of {,. On the other
hand, this function has two simple zeros (i.e., of vortic-
ities +1) in avicinity of x = 0. Indeed, in the complex
notation z= X, + iX,~—= X = (X4, %), Y,(2) = bz? + O(Z)
and &(2) = ¢ + O(2) for some positive numbersb and ¢
in the neighborhood of z = 0. Hence, Y,(2) + A&(2) =

bz + Ac + O(Z) + O(A\2), which therefore has two sim-
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ple zeros z, = + J% + O(A¥4) in the neighborhood of
z=0. This showsin particular that splitting of a 2-vor-
tex lowers the energy.

Proposition 5.2. Let a configuration c,, as

described above, be asymptotically forceless, i.e.,
OH(a,) =0. Then,

K = %(N—l)m. (5.2)
Proof. By virtue of (4.1), the equation [IH(a,) =0

for the configuration described is equivalent to the
equation

0 _
S-H(@) = 0. (5.3)

Because

H(@) = H %—nz nn;Ina,

i %]

the latter equation implies thatez
equivalent to (5.2) dueto ther

Zninj = —2Nmk + N(N —1)m’.

i#j
We note that Eq. (5.3) impliesthat, if OH(a,) =0,
then OH(a) = Ofor al a of forms a=sa,, s> 0. The
latter fact implies another proof of (5.2). Indeed,
H(a/R) behaves as const - InR + const for large R.
Hence, for an asymptotically force-free configuration
(i.e., the one with (O0H(a) = 0), the constant in front of

INR isindependent of the scale parameter a. Thisasymp-
totic scale invariance implies that the leading term

(Nm—k)’InR

for the configuration with a = 0 (i.e., when all the vor-
tices collapse to the center of the circle) is equal to the
leading term

(5.4)

N = 0, whichis
ation

(5.5)

m(Nm” + k%) InR
for the configuration with a very large a, and therefore
the vortices in such a configuration can be treated as
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virtually independent (see (4.4)). Hence,
(Nm—-k)*> = Nm*+ K,
which implies (5.2).

We observe that Eq. (5.2) is equivalent to the rela-
tion

[ED = @ =
H CRJ H CH] H(a),
Indeed, this follows from Egs. (5.4) and (5.5).

Relation (5.2) between k and mis assumed in what
follows.

For the configuration above, we now introduce the
energy differences
AE(a) = Ex(@) - (Nm—-k)’InR, (5.7)

where we recall that Nm— Kk is the total vorticity of the
configuration in question and E, risthe energy of asin-

glevortex of vorticity n, i.e., E, g = €,e(W,). Welet AE,
denote the energy difference for this vortex,

E,r = TN’ INR+AE,.

independent of a. (5.6)

(5.8)
Clearly,

Er(Q) = Enm-kr ad AE(Q) = AEyp_.  (5.9)

This, together with (3.5), implies that (modulo O(R2))

AE(0) = —i(Nm—Kk)In(Nm=k) + c(Nm—K).
(5.10)

On the other hand, for very large intervortex dis-
tances, Egs. (5.7), (5.6), (4.6), and (3.5) imply that
(modulo O(R?) + o(a™))

AE(@@) < —(Nm’Inm + k*Ink)
(5.11)
+Nc(m) + c(k) + H(a) —Ca™?,

where C = A(a/a). We compute H(a) for the given con-
figuration. Because the distances between the vortices

: . TT . TT . (N=Dm
onthecwcleareZasmN,2asmN,...,2asm—N ,
wefind

N-1 k
_ 2 ;- KT

H(@) = -tm°N Z In%snﬁm. (5.12)

k=1

This equation, together with Eq. (5.11), yields, for large
intervortex distances,

AE(a) < —i(Nm’Inm + k’Ink) + Nc(m)
N-1
, k... (613
+ ¢(K) —im Nz In%anD—Ca
k=1

modulo O(R?) + o(a™).
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In the next section, we establish the existence of
points a, such that CJE(a,) = O for given configura-

tions by comparing AE(0) and AE(a) for large inter-
vortex distances a.

6. SSIMPLEST CASES: PROOF OF THEOREM 5.1

In this section, we consider some special, in fact the
simplest, cases of the vortex configurations introduced
in Section 5. We recall that every such configuration
consists of a vortex of vorticity —k placed at the origin
and N vortices, each of vorticity m, distributed equidis-
tantly on acircle of radius a with the center at the ori-
gin. Such a configuration is fixed by the symmetry
group C,,, and hence the only remaining free parame-
ter is the radius of the circle a. With a slight abuse of

notation, we write AE(a) = AE(a) .

Proof of Theorem 5.1. The correl ation coefficient C
in Eq. (5.13) is computed for the specified configura-
tionsin Appendix 3:

C = 8m, 201t

(6.1)
for (N, m,k) = (2,2, 1), (4,2,3).

(We expect that, for general (N, m, k), k = % (N=Dm,

Cisof theform E - (integer).) Thus, AE(a) monotoni-

cally increasesto

AE(a) monotonically increases to

(6.2)

AE(x) as a —» .

Moreover, due to (3.6), we have
AE() < AE(0) (6.3)

for the configurations (N, m, k) = (2, 2, 1), (4, 2, 3)
(explicit computations are given below). Hence, AE(a)
has at least one minimum for these configurations as
claimed.

Computation of (6.3)

(@ ThecaseN=2, m=2, and k=1 (we recal that
Eg(a) = Eg(a), etc.). We have

AE(0) =AEL0) = ¢(3)-9min3 = -9.311t.  (6.4)

On the other hand, Eqg. (5.11) implies that, for very
large a,

AE(a) < c(1) + (2¢(2) —8mIn2) —8min2—Ca™

rna _ 2, odnan (69
+ODa4D = —-9.64n-Ca +0Da4D'
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Fig. 3. (See Fig. 1; acritical value of the parameter ais not
specified, but its existence is established).

(b) Thecase N =4, m=2, and k=3 (seeFig. 1). In
this case,

AE(0) = AE((0) = c(5) —25mIn5 = —39.621. (6.6)

On the other hand, Eqg. (5.11) implies that, for large a,
we have the asymptotic behavior

AE(a) < (4c¢c(2) —16711In2) + (¢(3) — 911In3)

~32min2—-ca?+oHa]
a (6.7)

_ -2 fnag
= —40.4411—-Ca +0Da4D'

Thus, (6.3) is shown.

Remark 1. We examine the case wherem=1, i.e,,
the vortices on the circle are simple. In this case,
k=(N— 1)/2. Therefore, in the ssimplest case where
N =3 and k = 1, we take the (m= 1)-vortices as equally
spaced (Fig. 3).

Equations (4.9), (4.12), and (3.6) imply that, in this
case, AE(0) < AE() (infact, AE(0) = AE,(0) =—2.2381
and AE(e0) = —1.792m). Numerical computations show
(see Appendices 3 and 4) that AE'(«) > 0 and AE'(0) >
0 (in fact, for a > 1, AE(a) = 4¢(1) — 3nin3 - Ca? =
-1.7921t — Ca2 with C > 0). In this case, we cannot
therefore conclude that a critical point of Ex(a) exists.
But a more careful numerical analysis indicates that
there probably exist two extremal points of Eg(a), a

minimum and a maximum, for 1h/§ <a< 2 Similar
configurations for large (and odd) N are analyzed in
Appendix 5.

Remark 2. Thecasewhere N=2, m=2,andk=1
is the limiting case of N =4, m=1, and k = 1 (see
Fig. 2). All three configurations have the same symme-
try group C,, generated by rotation by ttand reflections
in the vertical and horizontal axes passing through the
vortex —1. After the symmetry group is fixed, the sec-
ond and third configurations have two free parameters.
the scale parameter a and the angle/distance a between
two of its neighboring 1-vortices (see Fig. 3). Asa —»
0, the second and third configurations are continuously
transformed into the first one.
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7. UPPER BOUND
ON THE INTERVORTEX ENERGY

In this section, we prove inequality (4.4) for the
energy Ex(a) of vortex configurations.

Theorem 7.1. We have the estimate

Ex(@) < ER + Rem + O(max|a;|*/R?), (7.1)
where EQ = ZEzlEni,R + H% and
d;?) if OH(@) = 0,
Rem = %p( ) @ (7.2)

[0(d;’Ind,) otherwise.

Moreover, if OH(@) =0, then estimate (7.2) can be
improved as

~ 1
Rem = —A(a) + O(d;>®) + OEEE,
where A(a), the correlation term, is a homogeneous
degree-(—2) function explicitly given by the condition-
aly convergent integral

(7.3)

A@@) = %J{Iﬁb d'-5 1B ;I“} (7.4)
j
(where OH(a) =0 isassumed) with
0 = 0 ) = nO(x—a ,
¢ JZ¢J ¢;(x) = n;6(x-a;) 75

8(x) is the polar angle of x O R’

Before proceeding to the proof of these estimates,
we show that the integral in the right-hand side of (7.4)
is conditionally convergent in the forceless case
OH(a) = 0. Because the integrand has singularities at
thepointsa,, ..., ax, it sufficesto show that theintegrals
over the discs D(a,, €) centered at a, and of a radius
€ > 0 converge. We consider the integral over the disc
D(a, €). Let

duo(¥) = z d;(x).
izk

Because the function ¢(x) is harmonic in D(a, €), it
has an expansion around the point g, of the form

(7.6)

duo(¥) = z c,.rrcosm(8, —6™), (7.7)

m=0
where r, and 6, are the polar coordinates of x, = X — a,
and ¢, and 6™ are some constants.
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In the forcel ess case,
1
P @) = —ﬁJDakH(a) =0, (7.8)
and, therefore,
@ (X
00 (7.9)

= C(XC0S26, — X Sin26,) + O

where ck = O(l/dg) is a constant, r, = |xJ, and x” =
(=X, X7). Now, writing

[ (@ 1~ 1@ Y = [ @® 7o+ a), (7.10)

D(ay, €) D(ay, €)
where
— 2
=20 O 4o+ |0 ol

and using (7.9), we see that the singular part of theinte-
gral aboveis

(7.12)

4 1@ VT s

P& ) (7.12)
MO
ODL ;J] <00,

Therefore, theintegral in theright-hand side of (7.4)
is conditionally convergent, in the sense that it is well
defined as a limit of similar integrals with small discs
around thepointsa,, ..., a, excised, astheradii of those
discstend to O.

2

n :

—=(—c,sin26, + O(ry)) = f
k

=4

D(ay, €) D(ay, €)

Proof of Theorem 7.1. We prove the upper
bound (7.1) using the variational inequality

Er(a) < €r(W),

valid for any function Y having the given vortex config-
uration a, and by showing that, for an appropriate ),
Er(YP) is of the form of the right-hand side of (7.6).
Namely, we show that

(7.13)

Cren(W) = EQ + Rem, (7.14)

where Remisgiven by either (7.2) or (7.3), as appropri-
ate. Then, (7.1) follows from (7.13) and (7.14).

We begin with proving estimate (7.1) with remain-
der (7.2). Let w,() = w™(x) , where x; = x—a;, and let
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f; = |UYi]. We consider the class of functions ) of theform

P = fe* with afunction f such that

f=f+0d=0if rj<d, i,

Hf

wheren=2if JH(a) and n= 1 otherwiseandr; = [x—
&, and

(7.15)

f=1+0-2Fif dx a) > 1,

7.16
(%, ) (719

where
d(x,a) = minx-aj[,
J

with the corresponding estimates of their first deriva-
tives.

We construct afunction satisfying (7.15) and (7.16).
Let D(z p) denote the disc of radius p centered at a

point z. Let {X} 1 be asmooth partition of unity, i.e.,
le: .X; =1, having the properties

1 :
B%j,éd%Dsuppxj dj
and
0%; = O(d,"), n=01,2

Then, the function f = f;x; saisfies (7.15) and

(7.16). Indeed, (7.13) is obvious, while (7.14) follows
from the relation

f; = 1+0(r7").

We prove the following lemma.
Lemma7.1. Let Y satisfy (7.15), (7.16). Then,

(7.17)

€x(y) = Ex’+Rem+ OE—Q—E,

where EY is given in Theorem 7.1 and Rem is given
by (7.2).

Proof. Let D; = D(ay, ro), adisc with the center at g

and of radiusr,= d, /3. We decompose the energy func-
tional as

(7.18)

W) = > I e(y) + J' e(y), (7.19)
i D DR\OD,
where e(|)) isthe energy density,
1 2,1, 2 2
ey) = 3| [*+ (W~ 1)". (7.20)
No.5 2004
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Let e(6) = 31 [* and TF(W)0 = W) - T, F(W).
Equation (4.6) implies

[ ew = [ e®d+ [ OWdx a)™).(7.21)

DR\ODy DR\ODy DR\ODy
Next, estimates (7.17) and
ap | = O(r;) (7.22)
give
e®) = [ eW)+O(0). (7.9
DR\OD, DR\OD,
Together with Eq. (7.10), thisyields
I Ce(y)d
DR\UD, (7.24)

- ;Z [ o)

Next, intheregion D;, we have ) = ei%fi , Wheref, =
|ux|. Expansion (7.9) implies that

[®® =0 (7.25)
Using this rel atioin, we obtain
JeW) = [e) + [efdy) +R
where R = IDi(fiz—l)ai . Expanding
B g = (7.26)

= o)+ Oqjﬂ

and using that | ,(¥)|* = O(d(x, @)D, B i(x) =
o(r"), and IDi(l—fiz)Etb =0, we obtain

In the forceless case, we can improve this estimate

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

OVCHINNIKOV, SIGAL

using relation (7.9) again to show that, asin (7.12),

I(f?—l)fcb g

I(f 1)Dcsm29 +OEr NN

AR
= I(ff—l)oagg = 0%2%
This gives

R = OEL‘E

Finally, we observe that, due to (7.15),

1
>[I® wl =
Dy

if @ (a) =0

zj-el(wj) +1p,

i#kp,

=Y [eW) + 1o, +O(ry),
jzkK
where

Ip = %ZI@ i o .

iZiD
Callecting the estimates above, we arrive at

J’E@(w)m = Ip, + oEl 7 D 0515, (7.27)
which, together with (7.9) and (7.16), yields
¢€r(1) = E+Rem, (7.28)

where Remisgivenin (7.2) and

d 2
e = -G
with
g = ze(w)+zzt¢ o

EF

Now, by defi nltlon of the cutoff function x (x = 0,
X = 1for x| 2 R), we have

(7.29)

where n = deg. We first compute the first integral in
the right-hand side.
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By definition of E,, r and because a; < R, we have

(nl) l
[ew) = [ ew™)= Eni,R+OER;5. (7.30)
D Dr+a
We now show that
b, = J’El) ==y mn '”DE{'H (7.31)
|¢]DR i#]
We compute
fﬁb id
- Pr (7.32)
—acoso

- n'n'-”r +a’ —2arcosedrde’

where a = |a;| . Furthermore, changing the integration
variable as® — z = €® and computing the residue, we
find

21

r —acoso

.[2 > do
o +a” —2arcos6

_ g_rz—a2 dz
r Ziarzzil%_é%%__

_onl if r>a,
if r<a.

The last two equations yield (7.24). We also observe
that, up to a multiplicative constant, expression (7.24)
can be found from the symmetry considerations: the
invariance of the integral in the left-hand side under
translations (g — & + hand g — a + h Oh 0 R?)
and rotations (& — ga; and a — ga; g 0 O(2))
implies that it depends only on |g;]. Its scaling proper-
tiesunder thedilations (g —~ Aa and g —~ Ag (A [
R) imply that it isamultiple of In(|a;[/R).

Equations (7.30) and (7.31) imply that

[ o= Enrt HEEID odid  (733)

[hﬂ
B(O, R)

Next, we estimate the second integral in the right-
hand side of (7.29). By Egs. (7.17) and (7.22), we have

g = 3@ 4*+O0(d(x ™).
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Furthermore, expanding theterms® (x—a) inld o(X) =
z n; @ (x—a) around the point X, we obtain

b o) = n® (-6 ) nja +ODH”J‘""J‘ZD
0 z 1= Ed(x’ a) ;(734)

where 8"(X) isthe Hessian of 8(x). Choosing the origin
suchthat ) n;a; = 0 eliminates the second term on the
right-hand side. (Otherwise, we could use, by an
explicit computation,

8"(X)® (x) = —rﬁ

the integral of which over the exterior of the ball
B(0, R) vanishes.) Hence,

00
f o734
BO.R (7.35)
nJa]D n; a2D
I Ca(x, a)‘ D R O

B(O, R)°

Estimates (7.28), (7.29), (7.33), and (7.35) imply (7.7)
with Rem givenin (7.2).

Remark 7.3. The statement of Lemma 7.2
remains true for awider class of functions defined by
replacing (7.7) by the condition

2n

f = fﬁOEr%IH and IRe(e_i%qJ—fi)de
a 0 (7.36)
1
O%ME if |[x—a| <d,,

with the corresponding estimates of their first deriva-
tives, wheren=2if OH(a) = 0 and n = 1 otherwise.

To prove this, we write ) in the region D; as Y =
e'¢°(fi + &), wheref, = |Ji]. Using relation (7.25) and

[ i Oimg = ndf,-aa_emz =0, (7.37)
D; D,
we obtain
Ie(llJ) = Ie(l-pi) + Iel(q)(i)) +R+R, (7.38)
D, D, D,
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where Ris given above and
R = [ o + 17-1) 1 ReE + 17(Re)’
O
D.

+ 3]0 o2€*+ 31 °+ 2001 0Reg
+ 10 O0ImE+Im(E o008 )

1 14U
+5(f -1+ 2fRep)[E + 78 '

(7.39)

Using

and

2n

[Rezcd = o in b,

ara
dueto (7.36) and that | ;| + fZ —1=0(r;"), wefind

R = Od”rd]

e (7.40)

We now proceed to proving estimate (7.4) with Rem
given by (7.3). First, we describe the class of test func-

tions for which we prove this estimate: Y = e®fwith

1-
gfi—5f'an; in D%ij,sdm Oj,  (7.41)
0
0 1

f=-3® J°+O0(x &)
& (7.42)
0

in Ej D%\J, 4D DD

where we used definition (7.11) and where n; are
smooth cutoff functions depending only onr; =[x | (i.e.,
radially symmetric in the x; variables) satisfying

1
Bgaj, Ed%\B(aj, 2d}) O suppn;

08Ry 308

(7.43)
\B(a;, dY)

and

0", = O(d;™), n=012 (7.44)
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fory= % (not optimal). (The fj_l’s in (7.41) play no

important role and are chosen purely with a view of
simplifying some expressions below.)

The function

=3 fJXJ_Z%fi—lainj

satisfies Egs. (7.41) and (7.42). To prove this, we use
the expansion

(7.45)

f, = 1——|E|) | +O(r ) (7.46)

and the estimate

a; = O(dy) in D(a;,d,), (7.47)

which is shown by expanding the function @ ;(X)
around g and using

b ;(a) = D H@ =0

and

;09 = O(r7").
Our next task isto prove the following lemma.

Lemma 7.4. Let a be forceless in the sense that

OH(a) = 0. Then, estimate (7.7) with (7.3) holds for
any function  satisfying (7.21), (7.22).

Proof. The proof follows the lines of the proof of
Lemma7.2, but with some subtle modifications consid-
ered below.

First of all, instead of e () = %mm 2 used in the

proof of Lemma 7.2, we use the density

e0) = 31 -39 |" (7.48)

which isabetter approximation to the density e(ys). We
also use (7.27) instead of (7.17). In particular, we have

&) = eld) +O(r}).

Wesetf:=1-f2 — | |°

ei%(fk + &), where € is a real function, we have the
identity

(7.49)

. For any k and for u, =

BUu)= 25 B B, ~AW)+ B+ R, (750

i %]
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where
_ 1
By(€) = _égk(ak +2f,&)
(7.51)
1. 2.2
+ Z_ak +a,f &+ fi &
and

R = 3 (&) - e(W) - 5(6— )8’
& (7.52)

1 1
+h&+ 38+ 5(207E +E ).

We now take & = —lfglo(kr]k. Then,

2

e(y) = e(u) on Df, %dg. (7.53)

Due to (7.28) and the corresponding estimate for the
derivatives of a; and due to (7.25), (7.27), and (7.29),
we have

R, = O(d;*7?). (7.54)

We note that the form of (7.21) is chosen such that
1
B,(§) =0 on B, 5d7\B@, d) O{n=1 .

Next, we estimate B, (¢) on the entire disc
D%k, %d% Expanding the function ¢ (x) around
the point a, and using that

_ 1 _
P @) = —Z_anJDakH(Q) = 0,
we find

() = 20 (X)diy(@dx+O(rdy),

where x, = —a, and ¢" isthe Hessian (the matrix of sec-
ond derivatives) of afunction ¢. Using this expression
in estimating By(§), we find

(7.55)

Bu(§) = —ok® k(X)q)Elk)(ak)Xkr_]k

+ O(r—3d;3 + d;‘)r‘]k on D%lk, %d%

(7.56)

where n, = 1-n,. Thefirst term in the right-hand side
of this expression is singular at x, = x — a, = 0, but the
integral of it is conditionally convergent and equals O.
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Indeed, because the function ¢y (x) is harmonic in

1
D éd%, we have (cf. (7.9))

Ol (@)X = C(%,C0526, —x.Sin26)),  (7.57)

where ¢ = O(d;z), XY = (=% X;), and 6, is the polar
angle of x, (see EQ. (7.9)). Because g, and 1, depend
only onr, (wewrite (g, ) (r) for g(X) i« (X)), we have

I(gkr_]k) (r)d (@) X«

= _CI(gkﬁk)(rk)Sinzek =0

(strictly speaking, we must first excise a small disc
around x, = 0 and then take the radius of this disc to
Zero).

Equations (7.32), (7.33), (7.35), and (7.37) imply
that

(7.58)

0
[ rEwo= %Zﬁb @ =A@
Dbk, 308 oo lag (7.59)
+0(d,> +dy 2+ d* ).

Finally, we derive the estimate

BWI= 5T B - A®)+O(d(x 8)°) (7.60

i %]

1 ¢ . .
on H]kD%k, qu% . Indeed, Eq. (7.42) implies that

e(W) = eyho) +O(d(x, 2) "),
which, together with (7.49), implies (7.60).
Now, Egs. (7.59) and (7.60) withy = 1/3 imply
Er(W) = E—A®@) + O(d3?), (7.62)
wheretheterm E is defined after EQ. (7.28) and A(a) =
A($) . Equations (7.29), (7.33), (7.35), and (7.61)
imply (7.14) with Rem given by (7.3).

Lemmas 7.2 and 7.4 and inequality (7.13) imply
Theorem 7.1.

(7.61)

8. DISCUSSION

In this paper, we investigated the Ginzburg—L andau
equation (1.1) that appearsin condensed matter physics
and nonlinear optics. Specifically, we presented careful
arguments supporting the existence of nonradial-sym-
metric solutions corresponding to vortex configurations
cwith N + 1 vorticesfixed by the symmetry group Cy, .
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In these configurations, N mvortices lie on the circle of
radius a, one (—K) vortex is placed at the center of the
circle, and the only remaining free parameter is
the overall size of the configuration, the radius of the
circlea.

Our argument is based on reducing the problem of
the existence of solutions corresponding to a given vor-
tex configuration to the existence of critical points of
the effective energy of the vortex configurations intro-
duced in this paper. For Cy, configurations, this effec-
tive energy isafunction of asinglevariable, a. To prove
the existence of critical points of this energy, weinves-
tigated it analytically and numerically at large and
small values of parameter a. We found that there are
critical points at the vortex configurations (N =2, m=
2, k=1)and (N=4, m=2, k=3) and, consequently, we
expect the existence of (static) solutions corresponding
to these configurations. For the vortex configuration
(N=3, m=1, k=1), our numerical analysisindicates
that itisvery likely that such acritical point exists. Our
numerical computations suggest that the critical a’'sare
on the order of O(1). Finding their true values requires
rather elaborate numerical analysis, which would be
desirable to develop but which is presently lacking. In
addition, we have shown (see Appendix 5) that, for the
vortex configurations (N, 1, (N —1)/2) with odd N > 1
and sufficiently large a, the energy is greater than the
effective energy of asingle N vortex.

All solutions considered are saddle points of the
renormalized Ginzburg-Landau energy functional.
Perturbations breaking the Cy, symmetry group can
lower the energy of the corresponding solution vortex
configuration. However, we expect that, under small
symmetry breaking perturbations, such solutions lead
to long-living metastable states that can be observed
experimentally. Moreover, even weak pinning centers
can stabilize such solutions. Thus, to experimentally
observe the static configurations found in this paper,
one would need to create weak pinning potentials satis-
fying the suggested point symmetry, adjust theradius a
at which these potentials are located, and then slowly
reduce the strength of these potentialsto zero.
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APPENDIX 1

Computation of ¢(n)

In this appendix, we compute the constants c(n) in
expression (3.5) for the self-energy E,  of the n vortex
(see Eg. (3.6)). For this, we derive aconvenient formula
for E, . Multiplying Eq. (3.2) by r2 f (r) , wheref'(r) =
of(r)/ar, integrating the result over r, observing that the
first two integrands are total derivatives, and integrating
the last term by parts, we obtain the quantization rela-
tion (see [22])

00

f- 2%rdr = n?.
0

This equation, together with Eq. (3.3), yields an expres-
sionfor E, g,

Enr = —gn2+n}%— fﬁ—E;xErdr.
r
0

However, we prefer to use a different representation of
E, r, Whichisobtained from aboveif wewrite 1 — fﬁ =

(1 - f2)f2 + (1 - £2)? and use the quantization for-
mula above again:

Tt

* 2
Eng = §n2+nﬂ(l—f§)fﬁ—%x}rdr. (A1)
0

To avoid numerical evaluation of the integral
in (A.1.1) over an infinite range, we use the expansion
of f,(r) in L/r for large r. However, f(r) is not analytic
at r = oo; it has an essential singularity at this point.
Hence, the resulting series is asymptotic. We truncate

this series at the order OEL%H To compensate for this

truncation, we add to the resulting polynomial in 1/r a

multiple of the decaying solution ey Jr of thelin-
earization of Eq. (3.2) around 1. We should linearize
Eq. (3.2) around the resulting polynomial, but the pow-

ers of 1/r? lead to similar powers multiplying ez Ir,

_and it therefore sufficesto linearize around 1. Theresult
is

0 -t Szsim
O 2r? rt
(A.12)
1m' n’+160. ntp O &
—= +—H_ geet—(1+..),
8012 2 % gl 0 Jr ( )
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where c is a constant to be determined by a matching
procedure. Inserting this expression in Eq. (A.1.1), we
obtain

.
E,r—TN’INR = - +T[J'fﬁ(1— f2rar
0 (A.1.3)
0 2_ 2
—mm’dnry+ 1 22+__%n 165+ o(rd)

O 2r, 4r0 O

for any r, > 0. We choose 6 < ry < 10. This relation
together with Eq. (3.5) implies that

To

1 _ n’ 2 2
nc(n) =3 +Ifn(1—fn)rdr
(A.1.4)
2 2
-n Eln n—_22+%+0(r0)
I 2r2  ard O

For numerical solution of Eg. (3.2), wetake theinterval
(0.3, rp). Because Eq. (3.2) linearized around the func-
tion 1 has the solutions

1 +,/2r
_e s
Jr
we should apply the numerical iteration procedure
starting from the upper limit, ry. Then, the dangerous,
exponentially growing solution would not affect our
procedure.

In the range 0 < r < 0.3, we use the fact that, as
Eq. (3.2) shows, the function f,(r) is analytic in adisc
[r| < O(1) and can therefore be presented by a conver-
gent series

(A.15)

_ n 2 I’4
folr) = arit= 4(n+ D) 8(n+2)
o 1 r
*Giin+1)  ° B0 1] T+ 3)

(A.1.6)

2 _L 0 1
X[O‘ a2 An+ D)0 8n+2)

0o 1 u
xDl(n+1) 0(615} E

for some number a > 0. Here, §,  is the Kronecker
symbol, 3, y = 1 for n=kand §, «=0forn# k. (We
expect that the pole closest to the origin lies on the
imaginary axis.)

To finish the computation of c(n), we must find the
value of the parameters a and c. Thisis done by match-
ing solution (A.1.2) for small r with solution (A.1.6) for
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large r. Specifically, using Eqg. (A.1.2), we compute
f.(ro) and f.(r,) for various values of the parameter c.

Using these values as initial conditions, we integrate
Eq. (3.2) backward to r = 0.3, which yields f;,(0.3)

and f4,(0.3) . Ontheother hand, using Eq. (A.1.6), we
compute fi(0.3) and f(0.3) for variousvaluesof the
parameter o. We then match f;(0.3) and f,,4,(0.3)
with f,(0.3) and f,(0.3) by minimizing [(fiign(0.3) —

fie(0.3))% + (fign(0.3) — f1(0.3) )3 ¥2. Thisyields the
values of the parameters ¢ and a. After this, we com-
pute c(n) using formulas (A.1.4) and (A.1.6).

APPENDIX 2

Large-n Asymptotic Form
of the Vortex (Self) Energy

In this appendix, we find the large-n asymptotic
form of the constant c(n) in expression (3.6) for the
(self) energy of the n vortex. For this, we usethelarge-n
asymptotic expression for the function f,(r) defined

in(3.2),
2,.2 - 13
f(r) = D/l—n/r if r—=n> (n/2)"", (A.2.1)
EKZ/n)l’sg(z) if [r—n| <n,
where the variable zis defined by
1/3
r= n+% z, (A2.2)
and the function g(2) is a solution of the equation
g"+zg—g3 = 0. (A.2.3)
The function g(2) has the asymptotic form
_ 2. S
g2 =z" if z> 1, (A.2.4)

0(2 = constg(2) if z<< -1,
where @(2) isthe Airy function. In particular, we have
0.39
@™

Inserting expressions (A.2.1) and (A.2.2) inEq. (A.1.1)
and using (A.2.4) and (A.2.5), we find that

92 = 2B for <1, (A25)

c(n) = an®®n+c+0(n??), (A.2.6)
where ¢ is some constant and
a = 2" J‘ (9°(2) — 26(2))dz, (A.2.7)
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with8(2) =1forz=0and 6(z) =0for z< 0. Multiplying
Eqg. (A.2.3) by ¢g'(2 and integrating the result, we find
that a = 0, and therefore,

c(n) = c+0(n?) (A.2.8)
asn —» oo, A rough numerical computation yields the
following value for the constant c:

c=0.7m (A.2.9)

APPENDIX 3

Computation of Correlation Coefficients

In this appendix, we compute the correlation func-
tion

A= A@) = %J{Iﬁb Y I ﬂ, (A.3.)
j

with

¢y = Zd)j and ¢;(x) = nB(x-2a)), (A32)
]

8(x) = thepolar angleof x O R’ (A.3.3)

(see Eq. (4.4)) for configurations of K = N + 1 vortices
with N vortices of vorticity m lying on the circle of
radius a and one vortex of vorticity —k at the center of

thiscircle, such that OH(a) = 0.

Wewrite a =a- b, where b isafixed configuration
with N vortices on the unit circle and one at the center.
Changing the integration variable in (A.3.4) as x = ay,
we find

A(@@) = Ca?, (A.3.4)

where C dependson b only. Our task now isto find the
sign of C for the configurations of interest. We write
A=A(a).

1.N=2,m=2,andk= 1. Inthiscase, there are two
double vortices on the circle and one single vortex of

the opposite vorticity at the center (see Fig. 1). Below,
we use the dimensionless variable

o=

~ (A.35)

For the configuration under consideration, we have

= —Ipdede

64cos (20) 64

2
a

D48 16cos(29)

(A.3.6)
(1 + 2p + 2p cos(29)) D
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where
a = p*+1+2p°cos(26). (A.3.7)
(Ingenerd, fora, j =1, ..., N, distributed equidistantly

on the circle of radius a, o = [}, (x—a)/a™" )

First, we take the integral over 0. For this, we change
the integration variable as 8 — z = exp(2i0); i.e., we
writetheinner integral in (A.3.8) asanintegral over the
unit circle. A simple calculation gives

21

de _ 2n(1+p")

Ia2 1— 43
o 19" (A.3.8)
2
Id—gcos(ze) = — 4np43’
) o 1-p
(o _
JO’O‘ |1 o'
. o k29
Id cos(28) = 2m S _min[p>, 1%
J Ji-p? 0 o
21
J’d—ezcosz(Ze) = L”
¢ 1-p
(A:3.10)

D1+4p p for p<1,
[(p +4p —1)/p for p> 1

Inserting expressions (A.3.7)—(A.3.10) in Eq. (A.3.6),
we obtain

A = J. 1-—x
a0 (1+x)°
dx 3,104
+ X+1l+=+=—2F[]
{(1+x)3%' X xHp
Thisgives
A=8T (A.3.11)

Hence, in the configuration under consideration, the
energy Eg(a) isgiven by

8 | odnay
~964- =+ O 45

%TER(Q)-glnR - (A3.12)
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2.N=3, m=1, and k=1. Similarly to Eq. (A.3.8),
we obtain

2mn

loo U6 2
A= —(d doe 1+2
4a2J’ ppj %5( p)

_12sin(36) 9(1+p )(l+p +2p)

o (A.3.13)

.\ 36p’sin°(36) _36p°sin(36) %
o’ o> 0O
where o = pb + 1 + 2r3sin(30). The integrals in

Eq. (A.3.13) can be taken explicitly. To do this, we set
z=exp(3i0), and then

(o _
IO‘ |1 ol
. 0 (A.3.14)
do . _ 3 1[
Igsm(Se) = mmB)
0
21 6
I@ _2n(l+p’)
a2 1— 6|3 '’
o 1-p" (A.3.15)
do . amp’
I_an(?’e) = - T[pe 3
) a 1-pf
and
"do
J’—sm (30) = " "6|
0 P (A.3.16)

X%&+4p6—p12 for p<1,
Hp* +4p°-1)/p° for p>1.

Inserting expressions (A.3.14)«A.3.16) in Eq. (A.3.13),
we obtain

5x+9x°—1—2x>—2x*

(1+x+x2)3

BHD

:4a[+[d
4 9

+ de -
-1[ B+ x+x°

10x + 18
(1+x+ xz)3

> (A.3.17)
(1+x+ x2)
6x+2 U

+ 30
x2(1 + X+ x2) O
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A simple calculation of integralsin Eg. (A.3.16) gives
explicit answers for A:

(A.3.18)

Hence, the energy for such configurationsis given by

2

le@-4inR = —1792-2 (A.3.19)
n a

3.N=4,m=2, and k= 3. Inthis case, there are four
double vortices in the corners of a rectangle and a
(=3)-vortex at the center. For this configuration, we
have

OO

21

16 ppap™ | 36p°cos’(46)
A==(d
az.[ I E a

0

8

+4, 5p + 13.5c0s(40) + 24p cos(40)

(A.3.20)
~20(p°+ 1)° - 20°(p" + 1)2(p“ +1) +4p°

—2p*cos(48)(3(p? + 1)’ = 2p?)/a E;
0

where
a = p®+1-2p*cos(46).

The change of variables 20—~ 8 + 172, p8 — p"
reduces the integrals over 6 in Eq. (A.3.20) to thosein
Egs. (A.3.8)—(A.3.10). Asaresult, we abtain

1-3
A= @Sl’d =
1+ x+x+x°
+2(5x +23x" + 18x° + 6X°

(1+x+x2+x)°

w A.3.21
075 15 A(L+ X+ X°) ( )

+ fdx[3 - -
X(1+X) XL+ x+x2+x)°

—-3x-1)

1+ x°

- 2 % +11x = 2x° = 22%°

(1+x+x +x)

12_4g5|0
—31x-21-=-=
X X 2D|]i|D

Direct calculation of theintegralsin Eq. (A.3.11) gives

(A.3.22)
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and therefore, the energy of the configuration in ques-
tionis

80

le@-25InR = —2044-2  (a323
n a

We notethat, for al the configurations under consid-
eration, the correlation term A is given by

A=-Lwm,
4a

where M is an integer; i.e., the quantity given by the
integral in A isquantized. Moreover, the “quantization”
takes place separately for the integrals over regionsr <
1 andr > 1. We conjecture that this property is genera
and holds for any forceless configuration.

APPENDIX 4

Inequality Ex(0) >0

In this appendix, we show that Ex(a) — Ex(0) > O for
the configuration consisting of N 1-vortices equidistrib-

[\ '

5> 0 vortex

at the center and for sufficiently small a. We assume
that N is odd but otherwise arbitrary.

uted on the circle of radius a and one E—

For a = 0, the configuration in question collapsesto
. N+1 - _
asingle > -vortex, Y. 1, Sitting at the origin. Let
2
L bethe Hessian of €,,({) at Y = Yy, . It was shown
=

in [13] that the subspaces

. N+1

0 : 25— -nhe
aneE™ +une |y
|

(A.4.1)
O L3(rdr), k:ng
O

~_N+1 N+1

S22
each other and span the entire Hilbert space L%([R?), are
invariant under the action of the operator L. Moreover,
N-1 ,

+ 1, ..., which are orthogona to

it was shown that, in the sectors withm= 3

L is nonnegative and O is not its eigenvalue (actualy,
N2—1’ but

the statement in [13] isformulated for m= 3
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N-1_

the proof works also for m=3 5

1), whilein the

sectors

+2sms2N;{

N+1
2

the operator L has negative eigenvalues. We now

N+1SmS3N_1—2

observe that the sectors with

do not have the Cy, symmetry and, consequently, are
forbidden in our case. Therefore, on the subspace
invariant under the action of the group C,, L =0and 0
isnow its eigenvalue. The latter implies that

Ex(a) — Ex(0) >0 (A.4.2)

for any odd N and for sufficiently small a.

APPENDIX 5

Large-N Asymptotic Forms

In this appendix, we find the asymptotic behavior of
the energy of the circular asymptotically forceless con-
figurations, i.e., the oneswith JH(a) = O, for large val-
ues of N. More precisdly, the configurations we consider
consist of N 1-vorticesequally spaced onacircle of radius
a and with the center at the origin and one (—k) vortex at

the center. We recall that the condition (OH(a) = 0 is

equivalent to therelation k = (N — 1)/2. We assume in
addition that N isodd and a > N.

According to Eqg. (5.10) and because

snTK - sinn—(N_k),

N N

the energy of the above configuration is

2 2
Er(@) = Ttg\%lg InR—nENZ_% Ing\lz_lg
B (A5.1)
+No(1) -2\ ¥ Infpsing,
k=1

where we use the notation Eg(a) = Eg(a). For a= 0 (the
“initial state”), the energy is given by Eq. (3.5),

EL0) = ng\'—”ﬂzlnR

2 O
, (A5.2)
NI N+ I
o2 0702 [
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To calculate the sum in Eq. (A.5.1), we use the Euler  Thus, for (N > 1) vortices placed equidistantly on acir-
expansion cleof radiusa > N, the energy is greater than the effec-
tive energy of asingle N vortex.
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Abstract—The main mechanism in homogeneous broadening and relaxation of crystal-field excitations for
R-ionsin cupratesis believed to be provided by the fluctuations of crystalline electric field induced by a static
and dynamic charge inhomogeneity generic to doped cuprates. Such an inhomogeneity is assumed to be the
result of topological phase separation. We address the generalized granular model as one of the model scenarios
for describing the static and dynamic charge inhomogeneity in cuprates. The charge subsystem is believed to
be similar to that of a Wigner crystal with melting transition and phononlike positional excitation modes. We
consider asimple model of charge inhomogeneity that allows usto elucidate the main universal features of the
density of CF states and the respective inhomogeneous broadening. The formal description of R-ion relaxation
mainly coincides with that of the recently suggested magnetoel astic mechanism by Lovesey and Staub. © 2004

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Inelastic neutron scattering (INS) spectroscopy is a
powerful tool that makes it possible to unambiguously
determine the Stark multiplet structure and crystal-field
(CF) potentia in rare-earth (R) based high-T, supercon-
ducting materials such as Y; _,RBaCu;Oq. [1, 2].
This technique provides detailed information on the
electronic ground state of the R-ions, which is impor-
tant for understanding the thermodynamic magnetic
properties and the observed coexistence between super-
conductivity and long-range magnetic ordering of the
R-ion sublattice at low temperatures. Moreover, INS
spectroscopy may be effectively used for quantitative
monitoring of the decay of the antiferromagnetic state
of the parent compound and the evolution of the super-
conducting state upon doping, because the linewidths
of CF transitions are believed to directly probe the elec-
tronic susceptibility. The relaxation behavior appearsto
be extremely dependent on the energy at which the sus-
ceptibility is probed. The CF INS spectroscopy is
widely used to reveal the opening of an electronic gap
in the normal state of underdoped superconductors [1]
and to examine its anisotropy [3, 4]. Recently, Ho®**
CF-INS spectroscopy was used to investigate the oxy-
gen and copper isotope effects on the pseudogap in
Ho-124 and (LaHoSr),CuO, high-temperature super-
conductors [5, 6]. However, the mechanism of the
relaxation of R-ionsin cuprates has become the issue of

T This article was submitted by authorsin English.

heated debates [7, 8] that question the current interpre-
tation of information detected by INS spectroscopy.

Inthenormal state, the excited CF levelsof an R-ion
interact with phonons, spin fluctuations, and charge
carriers. These interactions limit the lifetime of the
excitation; thus, the observed CF transitions exhibit line
broadening. Similarly to the case of conventiona
Fermi-liquid metals, interaction with charge carriersis
considered the predominant relaxation mechanism in
cuprates. This interaction is usually assumed to be an
isotropic exchange coupling with the effective spin
Hamiltonian Hy = —21(g; — 1)(s - J), where | is an
exchange integral that should be nearly independent of
the particular R-ion under consideration; g; is the
Lande factor; sis the spin moment of a charge carrier;
and J is the total momentum of the R-ion. Such a sce-
nario seemsto be rather natural if the predominant spin
channel of neutron scattering is taken into account.
The detailed theory of the respective relaxation mech-
anism was developed by Becker, Fulde, and Keller
(BFK-model) [9]. The corresponding intrinsic line-
width appearsto increase almost linearly with temper-
ature (I'(T) O p?T) according to the well-known Kor-
ringa law [10]. Here, p is the coupling constant, p =
[(g;— DN(Ep), where N(Eg) is the density of states
(DOS) at the Fermi level. The deviation from a linear
temperature dependence at low temperatures has been
usualy interpreted in terms of the opening of a
(pseudo)gap and the associated reduction in damping.
Fitting the high-temperature linewidth data in the
framework of the simple or modified Korringa law, one
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obtains coupling constant values that typically vary
from 0.003 to 0.006 [1, 3-6].

We emphasize that the spin channel of relaxation
directly implies the relevance of the Fermi-liquid sce-
nario for cuprates, with many signatures of non-Fermi-
liquid behavior ignored. However, the spin-exchange
model has a number of visible inconsistencies, firstly,
as concerns the magnitude of the coupling constant.
Indeed, a linear temperature dependence of the relax-
ation time above T, observed in EPR studies of S-ion
Gd** inY Ba,Cu;0; after Korringafitting yields a mag-
nitude of the exchange integral of | =3 x 104 eV [12],
which directly points to unrealistically large values of
the spin coupling constants p found in all INS experi-
ments on CF transitions. Certain problems exist with
the Lande factor scaling approximately as (g; — 1). In
studying the system Y, _,R,Ba,Cu,0s .., (R = Er, Ho,
Tm), Mukherjee et al. [11] found |p(Tm)/p(Ho)| = 2
instead of the theoretically expected value (gr, —
D/(Qno — 1) = 2/3, and |p(Tm)/p(Er)| = 4.5, instead of
the expected (g, — D/(gg — 1) = 5/6. This clear dis-
agreement evidences against the exchange mechanism.
The spin-exchange scenario fails to explain the
“strange” doping dependence of Tm?* relaxation in
Tm-123[13] and Nd®* relaxation in (LaSrNd),CuQO, [14].

Finally, Staub et al. [15] found that the Lorentzian
linewidth of the quasi-elastic neutron scattering for
Tb* in YBa,Cuz0; can be properly described by the
simple (exp(A/kgT) — 1) law typical of Orbach pro-
cesses governed by lattice vibrations. They have shown
that such an interpretation also describes the results
obtained earlier for Ho** and Tm3*. They conclude that
interactions with charge carriers are negligible and that
interactions with lattice vibrations are responsible for
the relaxation behavior of the 4f electrons in cuprates.
Therefore, the INSresultsthat claim to probe the super-
conducting gap or the pseudo-gap should be reexam-
ined interms of Orbach processes. A similar conclusion
was drawn in [14] for Nd* relaxation in
(LaSrNd),CuQ,. Lovesey and Staub [16] have shown
that the dynamic properties of the lanthanide ions
(Tb3*, Ho®*, and Tm®*) are adequately described by a
simple three-state model, not unlike the one introduced
by Orbach for interpreting €lectron paramagnetic reso-
nance signalsfrom alanthanide ion in dilute concentra-
tion in a salt. The cross section for inelastic scattering
of neutrons by the lanthanide ion is derived by con-
structing a pseudospin S = 1 model and treating the
magnetoel astic interaction as a perturbation of thethree
CF states. The scattering of neutronsisthusaquasielas-
tic process and the relaxation rate is proportional to
(exp(A/kgT) — 1)1, where A is the energy of the inter-
mediate CF state at which the density of phonon states
is probed. However, this very attractive scenario also
faces some visible difficulties in explaining, for
instance, the unusual nonmonotonic temperature
dependences and too large oxygen isotope effect in the
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INS spectra of Ho-124 and Ho-214 systems [5, 6], and
certain doping dependences in Y-123 and Nd-214 sys-
tems [14]. The origin of the anomalously large low-
temperature inhomogeneous broadening remains
unclear. The magnetoelastic mechanism yields very
small magnitudes of I (T = 0), one or two orderssmaller
than that found in experiment.

In comparing the two mechanisms, we emphasize a
difference in them that seems to be of primary impor-
tance: the spin-channel mechanism takes the fluctua-
tions of the effective magnetic field on R-ions into
account, while the phonon (magnetoelastic) mecha-
nism deals with fluctuations of the electric field. More-
over, the conventional spin-channel mechanism actu-
ally probes spin fluctuations rather than charge fluctua-
tions, although its contribution to the linewidth I'(T) O
(IN(Ep))? is believed to strongly depend on the carrier
density. However, this relationship is derived in the
framework of the Fermi-liquid scenario and should be
modified if one addresses the typical antiferromagnetic
insulating state. Interestingly, in [8, 15, 16], the phonon
(magnetoel astic) mechanism is addressed as an alterna-
tive to charge fluctuations. As an example, the authors
point to insulating materialsin which “...the density of
carriers is essentialy zero...” [8], which forbids the
charge fluctuation channel of relaxation.

We emphasize that both groups of researchers have
underestimated the role of the conventional spinless
charge fluctuation channel. Indeed, the CF Hamiltonian
for an R-ion in cuprates can be written in its standard
form as

Hee= 5 S B, Ok,

k=2 4,6 ksqsk

where O¢ are Stevens equivalent operators;, By, =
by, [B¥x, Where by, are CF parameters; y, = o, y, = B,
Vs =Y (0, B, y are Stevens parameters); and

by = [hd+ADby,,
which may be expressed within the well-known point-
charge model as
aCy(Ry)

Abkq = z k+1

(A (t) — hD),

where CE isthetensoria spherical harmonicsand f; (t)

isthe charge number operator. Conventional metals are
characterized by very short-time charge dynamics,
which makes it possible to neglect the contribution of
charge fluctuations to the inhomogeneous broadening
and relaxation of R-ionsin the low-energy range of CF
energies, and to consider a mean homogeneous charge
distribution. An atogether different picture emergesin
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the case of cuprates where we are dealing with various
manifestations of static and dynamic charge inhomoge-
neity (see, e.g., [17, 18] and references therein). More-
over, the INS spectroscopy of CF excitations itself
yields an impressive picture of charge inhomogeneity
in the 123 system [1, 2], where it was found that the
observed CF spectra separate into different local com-
ponents whose spectral weights distinctly depend on
the doping level; i.e., there is clear experimental evi-
dence for cluster formation. The onset of superconduc-
tivity can be shown to result from percolation, which
means that the superconductivity is a property of inho-
mogeneous materials. It seems probable that the
dynamic rearrangement of the charge system at temper-
atures above T, somehow affects both the inhomoge-
neous broadening of CF transitions and R-ion relax-
ation.

2. CHARGE INHOMOGENEITY IN CUPRATES:
TOPOLOGICAL PHASE SEPARATION

At present, the stripe model of inhomogeneity [18]
is most popular in cuprate physics. It is worth noting
that this model is based on the more universal idea of
topological phase separation, with the doped particles
assumed to be localized inside the domain walls of a
bare phase.

Below, we address one of the topological phase sep-
aration scenarios that may be termed a generalized
granular model for doped cuprates. We assume that the
CuO, layersin parent cuprates may gradually losetheir
stability under electron—hole doping, while a new self-
organized multigranular 2D phase becomes stable.

The new scenario implies that the unconventional
phase state evolves from the parent insulating cuprate
as a result of self-trapping of charge transfer excitons
(CT) accompanied by a self-consistent lattice polariza:
tion and the appearance of the “negative-U” effect. Par-
ent insulating cuprates appear to be unstable with
regard to self-trapping of low-energy one- and two-cen-
ter CT excitons [19, 20], with the nucleation of elec-
tron—hole droplets being actually a system of coupled

electron CuO]~ and hole CuO;~ centers glued in the

lattice due to strong electronattice polarization
effects. Such a system can be regarded as an electron—
hole Bose liquid described by the generalized Bose—
Hubbard Hamiltonian. Doping, or deviation from half-
filling in an electron—hole Bose liquid is accompanied
by formation of multicenter topological defects such as
charge-order (CO) bubble domain(s) with Bose super-
fluid (BS) and extrabosons|ocalized in domain wall(s),
or atopological CO + BS phase separation, rather than
a uniform mixed CO + BS supersolid phase [21, 22].
Such asituation partly resemblesthat of granular super-
conductivity.
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The most probable possihility is that every micro-
grain accumulates one or two particles. Then the num-
ber of such entitiesin amultigranular texture nucleated
with doping hasto depend on thedoping in anearly lin-
ear way. Generaly speaking, each individual micro-
grain may be characterized by its position, nanoscale
size, and the orientation of the U(1) degree of freedom.
In contrast to uniform states, the phase of the superfluid
order parameter for amicrograin is assumed to be unor-
dered. The granular structure must be considered
largely dynamic in nature.

In the long-wavelength limit, off-diagonal ordering
can be described by an effective Hamiltonian in terms
of the U(1) (phase) degree of freedom associated with
each micrograin. Such a Hamiltonian contains a repul -
sive, long-range Coulomb part and a short-range contri-
bution related to the phase degree of freedom. Thelatter
term can be written in the form of aso-called Josephson
coupling, standard for the XY model,

H, = —Z Jijcos(di—9;), 1

4, jo

where ¢; and ¢; are globa phases for micrograins cen-
tered at the respective points i and j, and J; is the
Josephson coupling parameter. The Josephson coupling
givesriseto the long-range ordering of the phase of the
superfluid order parameter in such a multicenter tex-
ture. Such a Hamiltonian represents a starting point for
the analysis of disordered superconductors, granular
superconductivity, and the insulator—superconductor
transition with an [, jClarray of superconducting islands
with phases ¢, ¢;.

To account for the Coulomb interaction and allow
for quantum corrections, we introduce the charging
energy [23]

1 _
Hen = —éqzz n(C 1)iinj
i

into the effective Hamiltonian, where n; is the number
operator for particles bound in the ith micrograin; it is
quantum-mechanically conjugate to ¢, n, = —0/0¢;,
(C™1); is the capacitance matrix, and q is the particle
charge.

Such asystem appearsto reveal atremendoudly rich
guantum-critical structure [24, 25]. In the absence of
disorder, the T = 0 phase diagram of the multigranular
system implies either triangular or square crystaline
arrangementswith apossible melting transitionto alig-
uid. We note that the anal ogy with the charged 2D Cou-
lomb gas implies Wigner crystallization of the multi-
granular system with a Wigner crystal (WC) to the
Wigner liquid melting transition. Naturally, additional
degrees of freedom of the micrograin provide a richer
physics of such lattices. For asystem to be an insul ator,
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disorder is required that pins the multigranular system
and also causesthe crystalline order to have afinite cor-
relation length. The traditional approach to Wigner
crystallization implies the formation of aWC for den-
sitieslower than the critical density, when the Coulomb
energy is greater than the kinetic energy. The effect of
quantum fluctuations leads to a (quantum) melting of
the solid at high densities or at a critical |attice spacing.
The critical properties of a two-dimensiona lattice
without any internal degrees of freedom are success-
fully described by applying the BKT theory to disloca
tions and disclinations of the lattice. This description
proceeds in two steps. The first step implies the transi-
tion to a liquid-crystal phase with a short-range
trandational order, and the second involves the transi-
tion to an isotropic liquid. In such a system, if the
micrograin positions are fixed at all temperatures, the
long-wavelength physicsis described by an (anti)ferro-
magnetic XY model with an expectable BKT transition
and a gapless XY spin-wave mode.

Thelow-temperature physicsin amultigranular sys-
temisgoverned by aninterplay of two BKT transitions,
for the U(1) phase and the positional degrees of free-
dom, respectively [25]. Dislocations lead to amismatch
in the U(1) degree of freedom, which makes the didlo-
cations bind fractional vortices and leads to a coupling
of trandational and phase excitations. The BKT tem-
peratures either coincide (square lattice) or the melting
temperature is higher (triangular lattice) [25].

Quantum fluctuations can substantially affect these
results. Quantum melting can destroy the U(1) order at
sufficiently low densitieswhere the Josephson coupling
becomes exponentially small. A similar situation is
expected to occur inthevicinity of structural transitions
in a multigranular crystal. With increasing micrograin
density, the quantum effects result in a significant
decrease in the melting temperature compared with the
classical square-root dependence. The resulting melt-
ing temperature can reveal an oscillating behavior as a
function of the particle density with zeros at critical
(magic) densities associated with structural phase tran-
sitions.

In terms of our model, the positional order corre-
sponds to an incommensurate charge density wave,
while the U(1) order corresponds to superconductivity.
In other words, we arrive at a subtle interplay between
two orders. The superconducting state evolves from a
charge order with T < T,,,, where T,,, is the temperature
of the melting transition, which could be termed the
temperature of the opening of the insulating gap.

The normal modes of a dilute multigranular system
include the pseudo-spin waves propagating in between
the micrograins; the positional fluctuations, or qua-
siphonon modes, which are gaplessin apure system but
are gapped when the lattice is pinned; and, finally, fluc-
tuationsin the U(1) order parameter.
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The orientational fluctuations of the multigranular
system are governed by the gapless XY model [24]. The
relevant model description is most familiar as an effec-
tive theory of the Josephson junction array. An impor-
tant feature of the model is that it displays a quantum
critical point.

The low-energy collective excitations of a multi-
granular liquid includes the usual longitudinal acoustic
phononlike branch. The liquid crystal phases differ
from theisotropic liquid in that they have massive topo-
logical excitations, i.e., disclinations. We note that lig-
uids do not support transverse modes, and these could
survive in aliquid state only as overdamped modes. It
is therefore reasonable to assume that solidification of
the bubble lattice is accompanied by stabilization of
transverse phononlike modes with their sharpening
below the melting transition. In other words, the insta-
bility of transverse phononlike modes signals the onset
of melting. The phononlike modesin the bubble crystal
have much in common with the usual phonon modes,
but because of their el ectronic nature they can hardly be
detected by inelastic neutron scattering.

A generic property of the positionally ordered bub-
ble configuration is the sliding mode, which is usually
pinned by the disorder. The depinning of dliding
mode(s) can be detected in a low-frequency and low-
temperature optical response.

We note that as regards CF fluctuations, there is no
principal difference between the contributions of real
phonon modes and quasi phonon modes of a multigran-
ular system. Moreover, it isworth noting that the charge
inhomogeneity in amultigranular system is proneto be
closely coupled with lattice structural distortions. How-
ever, stabilization of transverse phononlike modes in
multigranular system that accompanies its solidifica-
tion at the temperatures above T, may strongly affect
the CF relaxation due to a mechanism identical to the
magnetoelastic mechanism proposed by Lovesey and
Staub. In a sense, such a conclusion reconciles the
“old” spin-fluctuation [1, 2] and the “new” magne-
toelastic phonon [15, 16] approaches to INS spectros-
copy of cuprates with R-ions.

Above, we addressed a simplified model of “rigid”
bubbles and neglected any possible internal or confor-
mational degree of freedom. However, the bubble can
actually be characterized by asubtleinterplay of orbital
degrees of freedom with apseudo-Jahn—Teller effect. In
other words, we may anticipate a set of different con-
formational states of the bubble.

3. CHARGE INHOMOGENEITY
AND INHOMOGENEOUS LINE BROADENING
OF CF TRANSITIONS IN CUPRATES

Neutron spectroscopy involves energies of several
meV and is therefore susceptible to dynamical effects
of the order of 1072 s. All slower processes contribute
to inhomogeneous broadening of CF transitions. The
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Fig. 1. Energy surfaces E,(x, y) for amodel doublet (z=0.3).

effects of inhomogeneous line broadening are clearly
seen for CF excitation in Ho, _,Y,Ba,Cu;O; with an
energy near 0.5 meV [4]. Although the CF transition is
between two singlets, it reveals an intrinsic multiple-
peak structure at low temperatures, comprising a dom-
inant central peak with shoulders on each side, and a
tail on the higher energy side. The key assumption on
which the traditional analysis is based is that the
observed line shape arises from R-ions distributed in
dlightly different local environments, but subject to the
same rel axation processes. |n other words, one assumes
that the observed line shape reflects atemperature-inde-
pendent inhomogeneous broadening and a universal
temperature-dependent relaxation mechanism. The
spectrum measured at a particular temperature is then
given by the convol ution of abroadening function char-
acteristic of that temperature and the residual line shape
at absolute zero. Hence, the relaxation is assumed to be
described by a single broadening function whose posi-
tion, width, and amplitude depend on temperature.
However, this approach failsto explain an unusual low-
temperature line shape of the CF transition with an
unexpectedly large (I'; = 0.2 meV) residua linewidth of
the central peak. The low-temperature experimental
spectraare likely to reveal some sort of continuous dis-
tribution of CFs, rather than a smple superposition of
only three components whose spectral weights dis-
tinctly depend on the doping level, as was assumed
in[1,2].

In the continuum approximation, the resultant CF
transition line shapein the static case correspondsto the
density of thelocal CF distribution convoluted with the
individual line shape. The density of thelocal CF distri-
bution has a number of universal features typical of a
rather wide range of inhomogeneous 2D potentials.
Under certain conditions, we can easily predict the
character and number of such peculiarities in the com-
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plex structure of the CF transition and even the line
shapeitself.

3.1. Smple Point Charge Model
of Electron Inhomogeneity

To make our consideration more quantitative, we
consider asimple model of charge inhomogeneity cen-
ters organized into an incommensurate square superlat-
tice in the CuO, plane with a parameter a, and hypote-
tical R-ionswith the momentum J = 1 positioned above
(under) the CuO, plane (the z-coordinate in units of a:
z=Z/a), asin the R-123 structure, and having the M =
0 ground singlet state. In the approximation of astrong

tetragonal CF component, |B; | > |B5 |, the energies of
two excited states with |M| = 1 are shifted by

AE.(x,y) O [ﬁABS(x, y) *[AB3(x, y)l]

Hence, we can introduce two energy surfaces E.(X, Y),
where x and y are the plane coordinates of aR-ion. The
surfaces osculate at points with tetragonal symmetry.

The point-charge model for the CF parameters 88, 42

allows usto easily compute these surfaces. For z= 0.3,
they are shown in Fig. 1. At first sight, these surfaces
differ insignificantly, but the isoenergetic curves reveal
a distinction. In Fig. 2, we marked different singular
points and some isoenergetic curves for both modes
E.(x, y). Four points of type M at the corners of the
square cell with the tetragonal symmetry correspond to
sharp maximafor both E_(x, y) and E.(X, y). Thel” point
at the center with the tetragonal local symmetry corre-
sponds to a smooth local maximum of the energy
E_(x, ¥) and a minimum of the energy E.(X, y). Four

No. 5 2004



STATIC AND DYNAMIC CHARGE INHOMOGENEITY

M

1113

Y
O,

|
_04  -02 v 02 0.4

Fig. 2. Specific pointsin an elementary cell of incommensurate superstructure. Singular points and someisoenergetic curvesfor the
E_(x, y) (Ieft-hand side) and E.(x, y) (right-hand side) branches of a model doublet (see text for details).

minimaof E_(x, y) are situated at the points X(Y) on the
boundarieswherethe E, (X, y) surface has saddle points.
The saddle points of the E_(X, y) surface are situated
inside the elementary cell. By varying the lattice sepa-
ration, we may simulate the effect of varying the con-
centration of charge inhomogeneity centers. The
energy surfaces E,(X, y) can be described by the DOS
defined as p(E) O [dE/dS 2, where SE) is the area of
the cross section E(x, t) = E = const. The R-ions are
assumed to be uniformly distributed in the X, y plane,
and their number is proportional to the cross-sectional
area: dNk(E) = p(E)dE O dS(E). The DOS has severa
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Fig. 3. Results of a numerical calculation of the density of
states for the lower and upper branches E.(x, y) of amodel

doublet with z=0.3.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

singularities associated with extremal points (minima,
maxima, and saddle points). The saddle points are of
primary importance because they are known to yield
alogarithmic divergence of the DOS in two-dimen-
sional systems. Near the minima and maxima, the E(S)
dependence can be approximated as E(S) = E(0) + aS".
It is clear that for n < 1, the DOS is finite at the extre-
mum point, whilefor n> 1, it diverges at the extremum
point. It isworth noting that sharp extremawith small n
correspond to asmall DOS. It is interesting to note the
strong resemblance of the procedure to that of the con-
ventional two-dimensional band model, where one
deals with a k-momentum space.

DQOS, arb. units
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T T
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Fig. 4. Results of a numerical calculation of the density of
statesfor the lower branch E_(x, y) of amodel doublet for dif-

ferent values of thez parameter: z=0.25 (1); 0.3 (2); 0.4 (3).
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Fig. 5. Inhomogeneous broadening of the model CF transi-
tion. The results of a Gaussian convolution of the calcul ated
DOS. The inset shows the experimental inelastic neutron
scattering spectraof the ground stateto thefirst excited state
CF transition of Ho>" in Hog 1Y o gBay,Cuz05 in the energy
range 0.1 to 0.9 meV [4].
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Fig. 6. Results of a numerical calculation of the density of
states for the lower branch E_(x, y) of amodel doublet given

different values of the [p2parameter: O; 0.5; 0.95.

The results of numerical calculation of the DOS
for both the low-energy |-Cland high-energy |+Cimodes
are shown in Fig. 3.1 Theinset to Fig. 3 shows the fine
structure of the DOS near the maximum of the energies
E. . The dotted line shows the energy position of the |+

1 The numerical calculations were performed by E. Zenkov.
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doublet failing the inhomogeneity potential. We note
that both DOSs reveal features typical of two-dimen-
siona systems. This figure yields a nice illustration of
the effects of charge incommensurahility, in particular,
the splitting effect resulting from local breaking of the
tetragonal symmetry. It is worth noting that our model
DOS obeysthe a® scaling law.

Figure 4 showsthe effect of varying the distance z of
the R-ion from the CuO, plane. We see the change in
the DOS shape with the expected narrowing and blue
shift for larger z.

Our model approach yields a simple illustration of
the concentration effects. Indeed, if we assume the
generic sgquare lattice for the inhomogeneity centers,
we obtain asimple relation between the | attice parame-
ter and concentration: a? [0 1/x. Hence, given a fixed
absolute magnitude of the Z parameter, we see that the
dimensionless parameter z = Z/a varies with the con-
centration of the charge inhomogeneity centers. In
other words, Fig. 4 with additional a= scaling correc-
tions yields an example of a change in the DOS with a
rise in concentration. As expected, the rise in concen-
tration results in a smoothing of the energy surfaces
with a narrowing of the energy distribution and a size-
able shift of the main peak. Positional disorder due to
conventional defects such as substituted ions, uncon-
ventional topological defects such as dislocations and
disclinations (which are inherent for two-dimensional
materials, however), and slow positional motion of
bubbles result in an inhomogeneous broadening, which
implies a weighted superposition of different energy
surfaces E(X, y). Such a broadening can be easily taken
into account if we simply assume the Gaussian distribu-
tion of different E(x, y) values near a mean value
(E(X, Y)LJAnN illustrative example of a Gaussian broad-
ening is shown in Fig. 5, where we have included both
raw numerical dataand theresults of aconvolution with
the Gaussian function with a half-width of y= 0.1, 0.5.

Fast positional motion of the charge inhomogeneity
centers results in averaging of the CF potentia acting
on the R-ion. The simplest model of such an averaging
in the framework of the point-charge approximation for
our square superlattice assumes the distribution of the
point charges near mean positions R with a probability

of Wp) O e® ! [ng, where p specifies the displacement
from the mean position and [p2(lis a mean-square dis-
placement. In general, the mean-square displacement is
believed to be strongly anisotropic, with a predominant
in-plane component. For simplicity, however, the
numerical calculations of the energy surfaces E, were
performed with an isotropic displacement. The aver-
aged potential differs from the bare Coulomb potential
in that it has smoothed and lower maxima, and hence
the bounds of the DOS spectra shrink with a simulta-
neous shift in the center of gravity to higher energies
(seeFig. 6). Interestingly, the shift in the center of DOS
gravity is very sensitive to the z component of the
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charge displacement and in a sense can be used as its
measure.

However, thisis not the only effect of averaging. As
the extremum regions of E,(r) become flatter and their
areas extend, the contribution of a greater number of
adjacent sites to the extrema becomes important, each
of them coming with its own phase. This leads to the
specific interference phenomena. In particular, as the
dispersion [p20increases, the extremum points of E,
reveal a clear tendency to splitting. For example, the
maximum of the bare E_ surface at the I' point splits
into four maxima, which are shifted towards the four
corresponding M points, while a shallow minimum
appears at the I' point. Thus, unexpectedly enough,
averaging can result in some complication of the energy
surfacesin general. The same effect is obtained aterna-
tively by increasing the z parameter.

As the charge distribution in the CuO, plane
becomes more uniform, the E, energy separation pro-
gressively vanishes, because the potential of a uni-
formly charged plane yields no electric field gradient.
This may be achieved either by increasing z or by
amplifying fluctuations of the in-plane sites. Then the
energy spectrum of the model consists of theM =0 sin-
glet ground state and the M = +1 doublet, and the DOS
spectrum of the only excited state reduces to a d-peak
that resides at zero energy in the adopted units. The
numerical results (see Figs. 4 and 6) confirm this con-
clusion.

To summarize, analysis of the real-space charge
inhomogeneity makes it possible to approach the inter-
pretation of the typical features of experimental spectra
from a novel angle in terms of the “real-space DOS’
singularities, which reflect some essential topological
properties of the inhomogeneity-induced spatial distri-
bution of the relevant physical parameters such as the
CF for R-ions. The basic properties of these DOS sin-
gularities (their number, kinds, etc.) are rather stable
against variationsin the charge distribution and admit a
simple classification scheme. For example, extremum
points of the distribution correspond to jumps in the
DOS spectra, while saddle points give rise to sharp
divergences that manifest themselves as spectral peaks.
The observed experimental spectrum should be
regarded as a convolution of an individual line profile,
the intensity factor, and the DOS function, together
contributing to a complex resultant line shape. How-
ever, it is sometimes possible to discriminate between
different sources of the spectral features. In particular,
the proposed DOS mechanism should be addressed in
the case of “extralines,” where the number of spectral
features observed exceeds that predicted from symme-
try considerations.

3.2. Implications for CF Transitions in Cuprates

Intheinset to Fig. 5, we present the low-temperature
CF excitation spectrum in Ho,Y ; _,Ba,Cu;0; (x = 0.1)
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with the energy near 0.5 meV [4]. It may be concluded
that the spectrum exhibits al the features found in our
model simulation, and hence precisely the inhomoge-
neous broadening governs the line shape. The centra
peak seems to reflect the contribution of saddle-point
R-ions, while the left-hand and right-hand shoulders
are associated with R-ions exposed to extremal CF
magnitudes.

Bubbles in a crystal or liquid state of the cuprate
participate in both slow and fast motion, and we should
therefore expect arather complicated interplay of inho-
mogeneous broadening and averaging/narrowing,
which can strongly depend on temperature. Simple
classical considerations imply the T-linear high-tem-
perature dependence of both [p2Cand the concentration
of the topological defects in the bubble system such as
didocations and disclinations. However, the low-tem-
perature behavior of [p2[is governed mainly by quan-
tum effects. It is worth noting that the contribution of
topological defects changes when crossing the BKT
transition temperature, which is accompanied by bind-
ing/unbinding of topological defects and the changein
the behavior of correlation functions. At first glance,
the rise in the temperature has to suppress the inhomo-
geneous broadening due to a faster motion of bubbles.
However, we are actually dealing with two competing
T-dependent effects: the rise of the concentration of
topological defects on the one hand and the rise of their
mean velocity on the other.

Slow conformational motion can be described in
terms of a finite diffusion, resulting in a linear-in-T
dependence of the respective inhomogeneous broaden-
ing. Actually, we deal with acombined effect of differ-
ent sources of static and dynamic factors governing the
line shape of CF transitions. Its separation requires both
further experimental information and a refinement of
theoretical models.

4. CONCLUSIONS

We have argued that the main mechanism of inho-
mogeneous broadening and relaxation of CF excita-
tionsfor R-ionsin cuprates can be provided by fluctua-
tions of the crystalline electric field induced by a static
and dynamic charge inhomogeneity generic to doped
cuprates. Such an inhomogeneity is assumed to be the
result of topological phase separation. We have consid-
ered the generalized granular model as one of the model
scenarios for describing the static and dynamic charge
inhomogeneity in cuprates. The charge subsystem is
believed to be similar to that of a Wigner crystal with
the melting transition and phononlike positional excita-
tion modes. We have considered a simple model of
charge inhomogeneity organized into an incommensu-
rate square superlattice; this model makesit possible to
elucidate the main universal features of the real-space
density of CF states. It is worth noting that both static
and dynamic effects are considered on an equal footing.

No. 5 2004



1116

We see that the studies of line narrowing for CF transi-
tions for 4f ions in high-T, cuprates provides an infor-
mative tool to investigate the charge rearrangement that
accompanies the onset of high-T. superconductivity.
Our model approach based on the analysis of the real-
space DOS can be easily generalized to study other
manifestations of the electron inhomogeneity in
cuprates such as inhomogeneous broadening of NMR—
NQR signals.
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Abstract—A macroscopic system of Einstein-Maxwell equations for systems of particles with different
masses is derived up to the second order in the interaction. The dominant type of interaction in this system are
el ectromagnetic interactions between particles (for example, aradiation-dominated cosmological plasmain the
expanding universe before the moment of recombination). The results of [1], which can only be applied to sys-
tems of interacting particles with equal masses, are generalized. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itiswell known that the Maxwell equationsfor con-
tinua can be obtained from the microscopic Maxwell—
Lorentz equations by statistical averaging over ensem-
bles [2]. It is natural to assume that the Einstein equa-
tions (or their generalizations) in amedium can also be
obtained by averaging the microscopic Einstein field
equations (the Einstein equations whose right-hand
side contains a sum of energy—momentum tensors of
individual particles). However, since the left-hand side
of the Einstein equations is nonlinear, the averaging of
the microscopic Einstein equations presents a much
more complicated problem compared with the deriva-
tion of the macroscopic Einstein equations in special
theory of relativity.

The problem of constructing macroscopic Einstein
equations was first posed by Shirokov [3]. In [4, 5], a
method of averaging over an ensemble of microscopic
Einstein equations was developed for a system of self-
gravitating particles with equal masses. As a result,
macroscopic Einstein equations were obtained for con-
tinua up to the second order in the gravitational interac-
tion. In[6], we generalized theresultsof [4, 5] for asys-
tem of gravitationally interacting particles with differ-
ent masses. The equations obtained differ from the
classical Einstein equations by additional terms attrib-
uted to the interaction between particles. These terms
are proportional to the cube of the Einstein constant and
are expressed in terms of a two-particle correlation
function of particles.

The paper [1] is devoted to the derivation (up to the
second order in the interaction) of a macroscopic sys-
tem of the Einstein-Maxwell equationsfor arelativistic
plasma in which the dominant type of interaction are
electromagnetic interactions.

The present paper generalizes the results of [1],
which can only be applied to a system of interacting
particles with equal masses.

It turns out that macroscopic Einstein equations for
a relativistic plasma differ from the classical Einstein
equations by additional terms on the |eft-hand side that
are associated with both electromagnetic and gravita-
tiona interactions simultaneously. These terms repre-
sent a symmetric bivalent traceless tensor with zero
divergence. In the present paper, we obtain explicit
expressions for these terms as integrals, in the momen-
tum space, of expressions containing one-particle dis-
tribution functions of interacting particles of the
plasma.

It turns out that macroscopic Maxwell equations for
a system of electromagnetically and gravitationally
interacting particles are also different from the classical
Maxwell equations. This difference manifests itself in
the additional terms on the left-hand side of the Max-
well equations, which are attributed simultaneously to
the effects of general gravity theory and the effects of
interaction.

2. MICROSCOPIC EQUATIONS

Let us write out a microscopic system of Einstein
and Maxwell equations as

G = XTim +XTon, 1
OE™ = —4?”3‘. @)

Here, G’ isthe Einstein tensor of a Riemannian space
with metric ;, T(m) iSamicroscopic energy—momen-

tum tensor of particles of the medium, x = 8mk/c* isthe
Einstein constant, k is the Newton gravitational con-
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stant, cisthe velocity of light, F'™ isthetensor of elec-

tromagnetic field (the Maxwell tensor), 3" isthe micro-

scopic current four-vector, and 'T'i(jen is the energy—
momentum tensor of the electromagnetic field. The
operations of raising and lowering indices are per-

formed by the metric tensor ¢;; and itsinverse g Dk
denotes a covariant derivative in a Riemannian space
with metric g; .

The tensor 'T'i(jen is expressed in terms of F* as
follows:

FinF @3)

The tensors :Fi(jm) and J' are expressed in terms of the
Klimontovich random function [7] as

] d al
T = Y me’[ J__pg LN, B, @

Z ebCI UbNb(q p). )
Here, g, is the charge of particles of kind “b”; g isthe

determinant of the metric g;; ; m, and p. are the mass
and the momentum of particles of kind “a”;

U, = — =
A Y PaPh

d*g

J-g

isthe invariant volume element in the four-dimensional
space with coordinates P, [8]; and Na(q, p,) is the
Klimontovich random function [7]:

Ny

Na(d, By) =y [988°(d ~0l)8'(B =B} (3), ()

where n, isthe number of particlesof kind“a” and S is
a canonical parameter along the trgjectory of particles:

ds = ,/g;dq'dq’,

Ay and P are the coordinates and the momentum of
the Ith particle of kind “@” that are determined from the
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equations of motion

day _ By
ds mc’

- ™
pi 1

E T m CBZI lkp(l)p(l)

(Fj, ik are the Christoffel symbols of the first kind cal-
culated by the metric g;; ).

According to Egs. (7), function (6) satisfies the fol-
lowing equation:

aN ~j~ kaNa ONa _ O (8)
oq

Let us represent the metric g;; of the gravitational

field produced by all the particles as a sum of the gen-
eralized metric g; and the contribution h;; due to micro-
scopic interactions between particles:

@ij = g + hyj, 9

where g; = [§; Ois the metric §;; averaged over the
ensemble [1]. Note that [Iy;(= 0. The tensor of electro-
magnetic field Fix can also be represented as

aﬁikbhg

|~:ik = Fix+ Wiy, (10)
where F;, = [F . Ois the Maxwel| tensor averaged over
the ensemble and w, is amicroscopic tensor of electro-
magnetic field due to interactions between particles.
Note that [d, = O.

Along with the momenta

qu)
ds

we will also use the momenta p' measured in the met-
ric gj:

pi(l) = O‘_l(q1 p)biuy
_ (gypp)” (11)
a(q’ p) - J 1/2°
T (@p'P)”

Here, sisacanonical parameter calculated by the met-
ric g;.
Let us pass from p; to p; by therule

bj = @jkbk = G@jkgki Pi. (12)
The Jacobian of transformation (12) isequal to (see[9])
bl = o9 (13)
ap; g
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where g is the determinant of the metric g;. Let us
introduce a function Ny(d/, b,—) defined in the eight-
dimensional phase space with coordinates (g, p):

Na

Na(a, P) = 3 [ds3'(d' —gly($))3"(p; — P)’($)- (14)

=1

Thefunctions qim and pf" in (14) are determined from
the equations obtained from (7) by the change of vari-
ables (12) (p' = ¢'p).

Note that the functions N and N, arerelated by the
formula

Na(q, ) = =2-N,(q, p). (15)
gC(

An equation for N,(q, p) is abtained from the Liouville
equation (8) by the change of variables (12) and (15):

piaNa+r pjpkaNa+% pkaNa
ag T T op ¢ " ap
(16)
_ 6 m j K ea |
= a_pi[%)jkAmi p'p —EUJ.kAu p%Na}-
Here,
K
Ay = Oy — U, u = pl ,
PP (17)

m _ ~m m

is the difference of the Christoffel symbols of the sec-
ond kind for the metrics @” and g;;, and

1 ~| | 1 ~Imc Im
! FeF=—1t §"F—g"F,.. (18
a@p T agp? (Y Fme(19)

Passing to the momentap; and the function N, in (4) and
(5), we obtain

UJ!k =

~ii d4p R
T = § m(—=a(q, p) [FuU.NL(q, pa), (19
Z a‘[J__g (a, p) §lata (0, Pa), (19)

o d'py g,
J = Zebcjl:/——:é aubNb(q! pb)! (20)

where d“p/ /=g is the invariant volume element in the
unperturbed momentum space.
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For further consideration, it is convenient to rewrite
the Einstein equations as

R; +0,Q7-0,Q0 + Qm ol —QhQl,

- szacj'/\/_—ga é%mgjm

1~ ~ m = (el
_égiigkm%'l;ua Na(qi pa) + XTi(J )'

(21)

Here, R; isthe Ricci tensor of a Riemannian space with
metric g; and [, is acovariant derivative in this space.

Substitute (9) and (10) into the Maxwell equations (2).
Taking into account that the gravitational interactions
are weak, we expand the microscopic Maxwell equa-
tions up to the first-order termsin hy:

O F™ + O (hF ™ =i F'™) + %Fikah +

+ O (™= o™) + %w”‘th 22)

4
= —4T[Z eaj’df_pgaui(a)% - %%Na(q’ pa)'

In expressions (21) and (22) and below, raising and
lowering indices is performed by the averaged metric

gj, h=h.

Now, let us expand Eq. (6) up to the second-order
termsin h; and w; and average the equations obtained
over the ensemble. When we restrict ourselves to the
averaged equations up to the second-order termsin the
interaction, we can obtain a closed system of equations
for the one-particle distribution function

N

fa(q,p) = —

the averaged metric g;, and the macroscopic tensor of
electromagnetic field (the Maxwell tensor). An equa-
tion for f, was obtained earlier in [5, 6].

3. MACROSCOPIC SYSTEM OF EINSTEIN
AND MAXWELL EQUATIONS

Upon averaging over ensembles of microscopic
equations by the scheme that was described in detail
in[1], wearrived at macroscopic Einstein and Maxwell
equations. These equations are now expressed as

Gij+Dk¢ikj+Uij—XTi(jgr) = XTi, (23)
ik ik i _ AT
OF + O+ = = (24)
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Here, G; is the Einstein tensor of a Riemannian space
with amacroscopic metric g;, F*isthe Maxwell tensor,
J' is the macroscopic four-vector of electric current
density, and Tj; is the macroscopic tensor of energy—
momentum. The last tensor represents a sum of the

Macroscopic energy—momentum tensors T(m) of the
medium, the macroscopic tensor of electromagnetlc

field T(e'), and the macroscopic energy—momentum

tensor T’ of electromagnetic radiation in a plasma.

(As applled to the cosmologica plasma, by the latter
we will mean the energy—momentum tensor of therelic
radiation.)

The macroscopic Einstein equations differ from
the classical Einstein equations by the additional

terms 0,05, 1, and =1 on the left-hand side.

These tensors are explicitly expressed in terms of one-
particle distribution functions by the formulas given
below. The last of these additional terms represents a
correction to the macroscopic tensor of electromagnetic
radiation due to gravitational interaction that is multi-
plied by the Einstein constant and carried over, with
minus sign, from the right- to the left-hand side of the
Einstein equations.

The macroscopic Maxwell equations in general rel-
ativity theory also differ from the classica Maxwell
eguations due to the additional terms (¢ + ' on their
left-hand side. These additional terms are associated
both with the effects of interaction and the effects of
general relativity theory. They are also explicitly
expressed in terms of one-particle distribution func-
tions.

Let us write out the additional terms in the explicit
form:

2 2
X e,e.mimac’

¢ij=; 1612 J'.oA/—g

di p?osj"_'—[igfk '+ w34+ /) | (29)

b(X) aFC(X")D
b( ) .. O

a (]

X (UU")K g (U, U FFe(X) =2

x“e,e.mmac’

Hi _; 1617 I 'OJ_g

d3 pu

gr= ki
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non

+(ui'uj +uu)gqr+% gIJ
iy
EE:

(85 + 878 | (285 ~ Uy u™) Jyan(ul, )

(26)

ron "o

—2z(u;uj + Ui u; )g

an(x)

a

Fo(X')———

o' = XS mbm C (uu")
; g-[ p"OJ_g
* Ko (U, )[(uu) (u'g” - u'g")
(U'I kf u..kgif)]

wIF (X) oF(X")
B:C(X) : ?E

a

(27)

—Fp(X)

| xele. mbm c
" bz g-[ p"OJ_q

() D,

a

(29)
x [(u'u")dg — ugu'] u'kas<u

X€,e.m-mac’

(@) _
i ; 1677 I"V_g

d3
xJ’ ..OA/—

+ g™ (U + U u) 15 (U, U)F(X)

[22578] — zg;;9™ — (3]u] + &ju;)u®

(29)

[
<3 F00[ [ - 550

+ %2 +Z u' u' —22u"u‘f} E}
0
Here,
d p dzpll
T TN

are the invariant volume elements in the three-dimen-
sional momentum space of particles of kinds “b”
and “c,” respectively. The Greek index “a” in formu-
las (25)—(28) runs only through the values 1, 2, and 3
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(the space index). The derivative with respect to p}

in (29) should be calculated asif all four components of
the momentum were independent. The dependence of

Po On p, is taken into account after differentiation
with respect to p; .

These expressions coincide with the corresponding
expressions for the additional termsin the macroscopic
Maxwell and Einstein equations obtained in [1] under
the assumption that the system consists of particles of
equal masses. However, they become different for sys-
tems with different masses. These differences are
displayed explicitly by the tensor Jj(u', u") in formu-
las (26), (28), and (29).

In [5], explicit expressions for these tensors
(see (28), (29), and (37)) were presented in a locally
Lorentz reference frame. It was pointed out that one
should take the center-of-momentum frame as such a
reference frame. To facilitate the calculations, it was
assumed in [1, 5] that al the particles in the system
have equal rest masses; hence, one should assume that,
in the center-of-momentum frame, the velocities of
interacting particles have equal magnitudes but oppo-
site directions:

V' =
where v' and v" are three-dimensional velocities of
interacting particles.

If we do not require that the masses of interacting
particles should be equal, then the following equality
holds in the center-of-momentum frame:

p" =,

where p' and p" are the three-dimensional momenta of
interacting particles.

In this frame of reference,

Ko = Kog = 0,
4tfcC VyV;
KGB = [ || % B_ 0‘2%_(30)
v' UgUo mln(l + mbuolm uO) v
Here,
vi= Jvievievy, v o= v = ui®

are the space components of the vector v'.
A covariant generalization of (21) is expressed as

) = —C -1,
mln[(u ) _1] (31)
—UiU; —uuy + (U (U +ug'up)

The expression for Kj(u', u") turns out to be diver-
gent as k —= 0O, i.e., at large target distances. This
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divergence is associated with the fact that we integrate
over an infinite domain, whereas, in fact, we should
restrict the integration to the domain of correlation,
where the metric is assumed to be slowly varying. To
surmount this difficulty, one should introduce, just as
when deriving a kinetic equation, a truncation in the
divergent integral

oK
fé
We set the lower limit of integration equal to
Kmin = /T
rather than zero; here, r,, isthe size of the correlation
domain (the correlation length). Then, the above inte-

gral reducesto

1
2k§1in

= r2. 2.

Tensor (31) hasthe following properties:
Kij(U', u’) Kij(U"1 u),
Kju' = Ku' =0, K = K;.

(32)

Let uswrite out formula (27) from [5] in the center-
of-momentum frame, inwhich p" =—p'. Inthisframe of

reference, the components of J'Y (U, u") are expressed

as (the space indices of the three-dimensional velocity

vector v'* are lowered by the three-dimensional Kro-
necker delta d,p)

Jooo = 2 L (M
%0 (1 + myuy/m uo)u'OUSQ’ncu},D @)
|jnb
X o ,
IqT"cl'JO DC2
3= 2 1 MeUgf
00a — [T ]
(1 + myup/m g ) ugus Em.ug
(34)
U“bUOVDV
E}n Oe”
3o = 2 1 Emb“d] Embuo D5
0% (1 + myuy/mup) upup Enugd an U
2 1 U“b“‘ﬂgﬂnbu"v (35)

o,

(1 + myup/m.ug ) ugug Emeug?
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VoV
X %C‘B __V'2 D’

3 — 2 1 H’nbub 0
BT (1 + myup/meug) uguy - Ly O

2
C

2
v

V. Vv, Vg VaVgV,
x [508_1 + By + 5y, L8 _2_11__9__\/}
c c c cv'?

2 1

(1 + myug/meUg) UgUg

(36)

VaVVy
BT T 21~
v2He

' 2
S

4
+ Dby -

The functions a and 3 in formulas (33)—<36) depend
only on the argument

Gvﬂﬁ*_% _VBV\DE
v|2 |:| C By V|2 |:| C ’

m, U,
b '(?V'
mcuO

W =

and are represented in the following explicit forms:

Z\LV%[+\A_/2D W
e | C 2 T cO
a=— +In03 ], (37)
K. Wi W
W Kpjin %___B %+ED
2
2 4
w W W
2205 % 4 3N
g = nc’ C%Z ¢ ¢t
2W3kmin E;l_vlzgz
2
¢ (38)
EI—WD
W cd
+3%L+—2D|n[+—|] .
C %14.%
c

Here, we introduced the following notation for the
integral:

| (o}
N

1 _ ok
I(min - I k .
I(min
By the arguments given above, here we again set the
lower index equal to Ky, = L/ -
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A covariant generalization of these results, which
are obtained in alocally Lorentz center-of-mass frame
of reference, to arbitrary reference frames has the form

I, un) = IR u) = Jyuu),  (39)
Jij(u, u") = AL(GijU + iU + gjli)
—2Z(g;Ux * GikU; + ;i)
— (Uuj U + uuj U+ o udug) + 3zuuj ] (40)
+ Clujuj Uy — Z( U U Uy + LU Uy + U;'Ujuy)
+ (Ul uy + Ul ujuy + uiulu) — 20 Ul o]
Here,
z = (uu) = (u'u),
_ @+ 2pz+ 1)1+ p2)°
A= k.. 3, 2 5/2
W (1)
9 [ZuA/zz— 1(1+ 3u2 + 2uz—2u222)
2
(1+pz)(p° +2uz+1) (41)
+ (1- 3u2 +2uz+ 4u222)
(1+uz)?
X InE}l+ Hz—H 22—1%}
O+ pz+p/Z2-10
c= U (Hz+1)
Knin(1 + 2pz+ p°)"*p°(Z -1)"
X [2UNZ° = 1(5+ T’ + 10pz—2p°7)
L @+2uz+ ) (42)
1+pz

A0
X (571 + 100z + 121°7) In (- HZ =M Z lm},

O +pz+p/—12
M= my/m,.

When p = 1, these results coincide with the results
of [1].

Thus, we have generalized the results of [1] to the
case of a multicomponent system of electromagneti-
cally and gravitationally interacting particles with dif-
ferent masses.
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A MACROSCOPIC SYSTEM OF EINSTEIN-MAXWELL EQUATIONS

The tensor Jj; (U, u") satisfies the identity

iU, u")u™ = 0. (43)

The tensors ¢}, p;, T, and pi must satisfy the fol-
lowing additional conditions

gljDI(Dkq):(j Y _XTi(jgr)) = 0,
Ou' =0, (45)

because the divergences of al the other tensors in the
macroscopic Einstein and Maxwell equations are iden-
tically zero.

Equations (44) and (45) impose certain constraints
on the dependence of the parameters r, and ry, which

. | .
enter the expressions for Jio) and J\9. , respectively,

on the coordinates and the relative vel ocity of particles.

The macroscopic energy—momentum tensor of the
plasma particles and the current four-vector can also be
expressed in terms of seven-dimensional distribution
functions:

(44)

(m _ _Qf_P_ D
Tij ch e P P;Fa(p), (46)
d’p (47)

J = ZeacfpoﬁpiFa(p).

One should supplement the system of equations
obtained with a kinetic equation for F,,. For arelativis-
tic plasma, this equation was obtained in [10, 11].

4. POSSIBLE APPLICATIONS
OF THE THEORY

The equations of the gravitational field for continua
obtained in this paper differ from the classical Einstein
equations by the additional terms

Dkq)ikj * U _XTi(jgr)

on the left-hand side.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

897

Thesetermsare proportional to the squared Einstein
constant; however, they are also proportional to the
squared density of particles. Hence, these additional
terms may only be effective in continua with suffi-
ciently high density. Such densities may take place at
early stages of evolution of the universe, as well as
inside objects that are close to the state of gravitational
collapse. Therefore, it is natural to apply the equations
obtained to the theory of early stages of stellar evolu-
tion and to the theory of gravitational collapse.

In [3], the authors suggested that the macroscopic
Einstein equations should be applied to the construc-
tion of cosmological models. In [1, 12], the possibility
of applying the macroscopic Einstein equations to the
early stages of stellar evolution was assessed.
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Abstract—Model-independent radiative corrections to deep inelastic scattering of an unpolarized electron
beam off the tensor-polarized deuteron target are considered. The contribution to the radiative corrections due
to the hard photon emission from the elastic electron—deuteron scattering (the so-called elastic radiative tail) is
also investigated. The calculation is based on the covariant parametrization of the deuteron quadrupole polar-
ization tensor. Radiative corrections to the polarization observables are estimated numerically for the kinemat-
ical conditions of the current experiment at HERA. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The flavor structure of nucleons is described in
terms of parton distribution functions. Most of the
information on these functions has up to how come
from inclusive deep inelastic scattering processes:
experiments where only the scattered lepton is
detected. Investigation of the nucleon spin structure
involves new types of reactions. For example, the HER-
MES experiment was specifically designed to perform
accurate measurements of semi-inclusive reactions,
where, in addition to the scattered lepton, some of the
hadrons produced are also detected [1].

The polarized nuclei of deuterium and helium-3 are
used to extract information on the neutron spin-depen-
dent structure function g,(x) [2]. In analyzing the exper-
imental data on inclusive spin asymmetries for deute-
rium, asmall effect dueto apossibletensor polarization
in this spin-1 target must be taken into account in order

to deduce the spin-dependent structure function gf.

Thisis connected with the presence of additional tensor-
polarized structure functions in adeuteron target [1]. So
far, spin-structure studies have focused on the spin-1/2
nucleon. Different spin physics, such as the tensor
structure in the deuteron, exists for higher-spin had-
rons. Measurement of these additional spin-dependent
structure functions provides important information
about nonnucleonic components in spin-1 nuclei and
tensor structures at the quark—parton level [3]. A gen-
eral formalism of deep inelastic el ectron—deuteron scat-
tering was discussed in [4], where new four tensor
structure functions b(x), i = 1, ..., 4 were introduced.
They can be measured using a tensor-polarized target

T This article was submitted by authorsin English.

and an unpolarized electron beam. Among these new
structure functions, only one, b, isthe leading twist in
QCD [4], and it wasfound that thisfunction issmall for
aweakly coupled system of nucleons (for example, the
deuteron). Therefore, the measurement of b, for adeu-
teron can provide information on its possible exotic
components.

From the theoretical standpoint, the spin-dependent
structure function by(X) was investigated in a number of
papers. The available fixed targets with J = 1 are only
nuclel (deuteron is the most commonly used nucleus).
If the nucleons in the deuteron are in the S state, then
b,(X) = 0. For nucleonsin the D state, b;(x) # 0 in gen-
era [4]. It was found [5] that, in the quark—parton
model, the sum rule

J’dxbl(x) =0

is generally true if the sea of quarks and antiquarksis
unpolarized (and it was shown how this sum rule is
modified in the presence of a polarized sea). Mank-
iewicz [6] studied by(x) for the p meson and noticed
empirically that

J'dxbl(x) =0

in his model. It was shown in [7] that multiple scatter-
ing terms at low x can still lead to by(x) # 0 evenin the
case where only the S-\wave component is present. Var-
ious twist-two structure functions of deuterons (in par-
ticular, b,) have been calculated in aversion of the con-
volution model that incorporates relativistic and bind-
ing energy corrections [8]. Simple parametrizations of
these structure functions are given in terms of few deu-
teron wavefunction parameters and the free nucleon
structure functions. The tensor structure functionswere
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discussed in [9] in the case of lepton scattering and in
hadron reactions such as the polarized proton—deuteron
Drell-Yan process.

As is known, the HERMES experiment has been
designed to measure the nucleon spin-dependent struc-
ture functions from deep inel astic scattering of longitu-
dinally polarized positrons and electrons from polar-
ized gaseous targets (H, D, *He). In 2000, HERMES
collected a data set with a tensor-polarized deuterium
target for the purpose of making the first measurement
of the tensor structure function b;(x). The preliminary
results on this structure function are presented in [10]
for the kinematic range 0.002 < x<0.85and 0.1 < Q%<
20 GeV2. Thepreliminary result for the tensor asymme-
try is small enough to produce an effect of more than

1% on the measurement of gf . Thedependence of b, on

the x variable is in qualitative agreement with the
expectations based on coherent doubl e-scattering mod-
els[11-13] and favors asizeable value of b, inthe low-
x region. This suggests a significant tensor polarization
of the sea quarks, violating the Close-Kumano sum
rule [5].

The radiative corrections to deep inelastic scattering
of unpolarized and longitudinally polarized electron
beams on a polarized deuteron target were considered
in [14] in a particular case of the deuteron polarization
(which can be obtained from the general covariant spin-
density matrix [15] when spin functions are eigenvec-
tors of the spin projection operator). The leading-log
model-independent radiative correctionsin deep inelas-
tic scattering of an unpolarized electron beam off the
tensor-polarized deuteron target were considered
in[16]. The calculation is based on the covariant
parametrization of the deuteron quadrupole polariza-
tion tensor and uses a Drell-Yan-like representation.

Current experiments at modern accelerators have
reached a new level of precision, and this circumstance
requires a new approach to data analysis and inclusion
of al possible systematic uncertainties. One of the
important sources of such uncertainties is the electro-
magnetic radiative effect caused by physical processes
occurring in higher orders of perturbation theory with
respect to electromagnetic interaction. In the present
paper, we give acovariant description of the deep inelas-
tic scattering of an unpolarized electron beam off theten-
sor-polarized deuteron target (the polarization state of
the target is described by the spin-density matrix of the
genera form) with the radiative corrections

e (ky) +d(p) — e (ky) + X(pY ()
taken into account.

The corresponding approach is based on the covari-
ant parametrization of the deuteron quadrupole polar-
ization tensor interms of the 4-momentaof the particles
inprocess (1) [16]. We also performed numerical calcu-
lations of the radiative corrections for the kinematical
conditions of the experiment [10]. The contribution of
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theradiativetail fromthe elastic ed scattering is consid-
ered separately.

2. BORN APPROXIMATION

The standard set of variables used for the descrip-
tion of deep inelastic scattering processesis

s 1.
2pq’ v 2
V = 2pk,, o =-Vxy, q=k—k,

where g is the 4-momentum of the intermediate heavy
photon that probes the deuteron structure. We first
define the deep inelastic scattering cross section of pro-

cess (1) in terms of the contraction of the leptonic LE\,
and hadronic W, tensors (in the Born approximation,
we can neglect the electron mass)

do _ o’ o'y, B
dxdQ2  vaQix

We note that, only in the Born approximation (without
accounting for radiative corrections),

QzB = _qz = 2k;k,.
TheBorn leptonic tensor (in the unpolarized case) is

Liv = 00 + 2(Kykay + KeyKay). (4)
The hadronic tensor is defined as

b= @’y 80k + p—ko—p) 3,35,
X

Wiv- ©)

q = k;—k,,

where J, is the electromagnetic current for the y* +
d — Xtransition (y* is the virtual photon). The sum
means summation over the final states, and the bar
means averaging over the polarizations of the target and
summation over the polarizations of the final particles.
To write the hadron tensor in terms of the structure
functions, we first define the deuteron spin-density
matrix (we do not consider the effect caused by the vec-
tor polarization of the deuteron in what follows)

PuPyy i
pv S%UV_“_ZD 2M uv)\ps)\pp"'QuV!

va = va! Qpp = O, prpv = 01

where s, and Q,, are the target deuteron polarization
4-vector and the deuteron quadrupole polarization ten-
sor. The corresponding hadron tensor has both the
polarization-independent and polarization-dependent
parts and in the general case can be written as

Wi = Wi(0) + W, (V) + W, (T), (6)

where W,,,(0) corresponds to the unpolarized case and
w(T)) corresponds to the case of the vector

WMWY,

©)
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(tensor) polarization of the deuteron target. The W,,,(0)
term has the form

~ W,. .
va(o) = _ngpv + 'Nl—gpp Py,

q.9 P9 ¥
= Py = PS5
q q

@pv = gpv_

where M is the deuteron mass and W, , are the unpolar-
ized structure functions depending on two independent
variables x and ¢?. The part of the hadron tensor that
depends on the quadrupole polarization tensor can be
represented as

M? O .  B,. .
_%Qquanﬁlgpv + p_élpu p\H

WinlT) = (pq)?

(8)
. . ~ 0O
+ B30a (Pu Qoo + PvQjia) + qu4qug

Here, B; (i = 1, 2, 3, 4) are the spin-dependent structure
functions (caused by the tensor polarization of the tar-
get). They are also functions of the two variables g? and
X. Because the hadron tensor W, (T) is symmetric under
K ~— Vv, measuring these new structure functions does
not require the electron beam to be polarized.

We used the following notation in formula (8):

QpG = va_%Qpa’ Qp\qu =0,
QHV = va + %%QGBqGQB (9)

_gv_gnga_quganav équ = 0.
q q

We note that the deuteron spin-dependent structure
functions B, are also related to the structure functions b,
introduced in [4] as

B, =-b, B,= %"'bs"'bm
b, b b (10)
83 = 52_34, B4 = §2_b3

In calculating radiative corrections, it is convenient
to parametrize the pol arization state of the deuteron tar-
get in terms of the 4-momenta of the particles partici-
pating in the reaction under consideration. Therefore,
first, we have to find the set of the axes and write them
in a covariant form in terms of the 4-momenta. If we
choose, inthelaboratory system of reaction (1), thelon-
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gitudinal direction | along the electron beam and the
transverse onet in the plane (k4, k) and perpendicular
tol, then

i:) _ 2Tk1“—p“
M 1
qjt) - kzp_(l_y_zxyr)klu_xypp
d )
%n) — Zeu)\po p)\klpk20
vd ’
d=.JVxyb, b=1-y—xyt, 1= MI/V.

(11)

We chose one of the axes along the direction | because,
in the experiment on measuring the b, structure func-
tion [10], the direction of the magnetic field used for
polarization of the deuteron target is along the positron
beam line. The direction of the magnetic field provides
the quantization axis for the nuclear spin in the target.

It can be verified that the set of the 4-vectors S "
has the properties

SLU)SLB) — _6u[3, qxa)pli =0, Q,B =1,t,n, (12)

and that in the rest frame of the deuteron (the laboratory
system),

s’ =1, sP=(4, s =(@n),

n,—(ny Chy)ng

l=n, t= =
N1=(ny [hy) (13)
n,xn k
n= 1 2 2, n1,2 — |kl,2|.
N 1=(ny [hy) L2

Adding one more 4-vector Sﬁf’) = p,/M to set (11),

we obtain a complete set of orthogonal 4-vectors with
the properties

S = g,
qim)éln) = 0m: MN= 0, |,t,n.

This allows us to express the deuteron quadrupole
polarization tensor in the general case as

Qu = 7SR =757 Ry,
RGB = RBw R(x(x = O,

because the components Ry, Ry, and R, vanish by the
condition Q,,p, = 0.

In the Born approximation, the components R, and
R, do not contribute to the cross section (because the
4-momenta ¢, and k;,, are orthogonal to the 4-vector

(14)

(15
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Sﬁ,")) and expansion (15) can be rewritten in the stan-
dard form

Qu = [§'s)- 39" [R,
+ % VS (Re=Ron) + (' + 'SRy,

where we took into account that
RII + Rtt + F'2nn =0

In what follows, we consider the deep inelastic scat-
tering of the unpolarized electron beam from the ten-
sor-polarized deuteron target. Thus, we have to calcu-
late only the contraction of the Born leptonic tensor
LEV and the hadronic tensor W, (T) caused by the ten-
sor polarization of the target,

SAT) = Loy W,(T)

(16)

o1
= 8-57[xy281 +(a-1+y)B,+yBi] Q,

y (17)

1 O
+ )‘/[(2 —Y)B3—yB,] Q; + B,Qq; El

where
a=xyt, Qu = QupUsUp,
Q1 = QuplaKip, Qu = QupkiaKip-

Using the formulas for the vectors Sﬁ,“) , we can calcu-
late the contractions. After ssmple calculation, we have

dog(T) _ 2nd?

dxdQs  xQp (18)
X [SiRy + Si(Re— Ron) + SiRid
with
S, = [2xbT —y(1 + 2x1)7|G
+2b(1+ 3x1)B; +(b—a)B,,
xbt
s= 2 (19

x[2(y+2a)G+(2-y—-4b)B;+yB,],

Si = 2xb1(G+B;), G = xyBl—SBz.
Therefore, in the general case, the cross section of
deep inelastic scattering of an unpolarized electron
beam from a tensor-polarized target is determined, in
the Born approximation, by the components of the qua-
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drupolepolarization tensor R, R;;, and the combination

(Rtt - Rnn)

We now consider just one more, commonly used
choice of the coordinate axes: components of the deu-
teron polarization tensor are defined in the coordinate
system with the axesalong thedirectionsL, T, and N in
the rest frame of the deuteron, where

k;—k, n;—(n, L)L
L = L T=——1—0" N =n. (20
|k, —ky /1—(n1EL)2

The corresponding covariant form of set (20) is given
by

S(ML) _ 21 (k, - k2)p —Yby

M.Jyh (21)
%T) _ (1+ZXT)kZH—(1—y—2xr)k1u—x(2—y)p“
JVxbh '

s =9, h=y+axt,

and the expansion of the deuteron polarization tensor is
defined by full analogy with (16),

Qu = [958 24Ps R,
(22)
+ %%T)QT)(RTT —Rw) + (SlL)s)T) + S(‘uT)g/L))RLT-

These two sets of orthogonal 4-vectors are connected
by an orthogonal matrix that describes arotation in the
plane perpendicular to the directionn = N,

S = coses +sines,
SP = —sinds) + cosbS,
1+ 2x1) . xbt
0 = y(1+2x1) , Sin@ = =2 [/—,
Jyh h

In this set of axes, the part of the differential cross
section that depends on the tensor polarization can be
written as

(23)

Cos

dog(T) _ 21108
dxdQ%  xQp
X[S.LRLL *+ Srr(Rrr—Rwn) + StRiA]

(24)
S, = —hG+2bB,
B
+ UL -y)(y-2x1) —2a(y + x1)],
2xb
STT %841
b (25)
_ X0T YO
Sy =2 /7(2 Y)FBs+ !By
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3. RADIATIVE CORRECTIONS

In this paper, we consider only the QED radiative
corrections to the deep inelastic scattering process (1).
We confine ourselves to calculation of the so-called
model-independent radiative corrections, correspond-
ing to photons radiated from a lepton line with the vac-
uum polarization taken into account. The reason is that
it gives the leading contribution to radiative corrections
due to the smallness of the electron mass and can be
calculated without any additional assumptions. Never-
theless, these radiative corrections depend on the shape
of the deuteron structure functions (both spin-indepen-
dent and spin-dependent) viatheir dependence on vari-
ables x and Q2.

There exist two contributions to radiative correc-
tions when we take the corrections of the order a into
account. Thefirst oneis caused by virtual and soft pho-
ton emission that cannot affect the kinematics of pro-
cess (1). The second one arises due to the radiation of a
hard photon,

e (k) +d(p) —e (k) +y(k) + X(p).  (26)

The leptonic tensor corresponding to the hard-pho-
tonradiationiswell known [17, 18]. For an unpolarized
electron beam, it can be written as

L\},/lv = Aoguv + Alizluhklv + AZEZpEZv, (27)
where
2
(A +X) "+ (0" =X,)°
X1X2

—2m qza(lz o)

AO:_

with
X12 = 2KK; 5,
mis the e ectron mass,
9 = X2—X1— Q&
and
q =k —k,—k

in this section. The hadronic tensor in this case has the
same form as the hadronic tensor in the Born approxi-
mation, but the momentum transfer g differs from the
Born one and the structure functions B; depend on the
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new momentum ¢. Here and in what follows, we
neglect the terms vanishing asm —~ 0.

We consider the hard photon (with the energy w >
Ag, where A < 1) emission process using the approach
in [19], where it was applied to the process of deep
inelastic scattering on an unpolarized target. We intro-
duce the variables suitable for this process,

_Mi-M®_¢’+2pg @
VoV Ty
_ o’ _ _xyr _

X = 50 Xyr+2' X12 = 2KKy 5,

where M, is the invariant mass of the hadron system
produced in scattering of the photon (with the virtuality
g by the target.

We note the physical meaning of the z variable: it
shows the degree of deviation from the elastic process
(ed — ed). Therefore, the value z = 0 corresponds to
the elastic ed scattering threshold, and the value z =
£4€, (where g, is the deuteron bound energy and €, is
the electron beam energy in the laboratory system) cor-
responds to the ed — enp reaction threshold
(quasielastic ed scattering).

The contraction of the leptonic and hadronic tensors
can be represented as

S(T) = AA,+ BA, +CA,,

A:N%P&+%&

(28)

—C (B, +2B,+ 54)}

2xyr
.|V
B = NEQO[Z—BZ vE X, 1,
0 ¢ B
(QB+X1)
+ B,+2B;+B
4|’QB % ( 2 3 4%
2 Vv 0
+ VQ1[83_ & Z(lc( Bs+ B4)} + ECQ1184 O
2rQg O

2
c= NEQO[\—’—“‘” B,
0|2 ¢
Qé—Xz
+V—=—=(1- B,+B
ZVQZB( y)(B, 3)

Xz) Bé +2B,+ B4)E}

4rQB

2
+ VQz[Bs(l y)+ Q; Q’z(z

B

vV O
c(Bs+ B4)} + ECQ2284 0
U
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where

N = 4r/VcZ, C = z+Xyr.

The quantities Qg, Qy, Q,, Q11, and Q,, are the con-
tractions of the deuteron quadrupole polarization tensor
and 4-momenta. They can be expressed in terms of the
scalar products of the 4-momenta of the particles par-

ticipating in the reaction and the set of 4-vectors S{. e
Therefore, these contractions are

1 1
Qo = Quplatls = | (10)~5(t0)° ~5(na)’|Ry
+2lqtqR; + 2nqlgR, + 2nqtqRy,

+ 21(t6)° = ()] (R = Roy),

1
Q1 = Quplakyip = Bkllq—étklt%Rn

+ (Ik;tq + tks @) Ry + Tking R,

1 (29)
+ tklantn + ztkltq(Rtt - Rnn)i

Qu = Qupkiakys = [(Ikl) - 3(tky) }R”

+ 20Ky, R+ 3(1K,) (R = R,

Qz = Qu(k; — k3), Qxn = Qu(ki— ky),

ia=SVa, i=1¢tn,
where we used the conditions

R,+R;*+R,,=0, nk;=nk,=0.

I,t,n)

For the set of the 4-vectors , wealso havetk, =0.

It is convenient to separate the poles in the term
(X1X2) ™ using the relation

1 1 1 01 10

X1X2 Q_E;T"Ej(_l_)(_ij

Then, the radiative correction (caused by the hard-
photon emission) to the differential cross section of
deep inelastic scattering of an unpolarized electron
beam by the tensor-polarized target has the form

do' _ _ay dk
dXdQ ~ vx)2nw

Zr), (30)
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where wisthe energy of the hard photon and
2, 2
_ a(q)d 0l _1p
2(z,r) = R.(z r) + R,z r
(z1) QgDO()[klpl()
(31)
2 2
m m g
+_2R1m(zv r)+_2R2m(Za T)D
X1 X2 U
2
Ry, = —=A,
r
R = o[ H+ 2ffeia-1(B+0)]
2
ar r° 0
2
[
Rom = 25—BA—5233.
ar r° o0

It is convenient to write the integral in Eqg. (30) as

_ Ok _
| - IE;[-(:)Z(Z, I') - I1m+ |2m+ IR1 (32)
where we separate the contributions proportional to n,
dk a (q )m
Iznw QB l le(z r)
(33)
_ &k o*(q)m®
m = RZm(Z I')
Jomo o7y

We first consider the integrals |, i = 1, 2. The
numerator of the integrands in I,,(l,y) is then calcu-
lated in the approximation X, = 0 (X, = 0) [19]. Theinte-

gration measure over the hard-photon phase space is
written as

¢k _ dz w’dQ,
2Mw z,—z 2T

v Ze = Y(1-x). (34

Using the invariance of w?dQ,, we can integrate
over the angular variables dQ, in the most suitable
coordinate system, namely, in the coordinate frame,
where

kl_k2+p = O

(the center-of-mass system of the scattered electron and
the produced hadronic system). We obtain

IZT[ X
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3.1. Integral 14,

We calculate the integrand in the approximation
where x; = 0 (except in the denominator). This approx-
imation corresponds to the emission of a collinear pho-
ton aong the initial-electron momentum. In this case,
the variables take the values

Xyry

_l-y+z 2
Z+Xyry

2 1
r, = , =—r,Qz, X;=
1 T—xy 1 1QB 1

After integrating over the hard-photon angular vari-
ables, theintegral 1, can be represented as

Zm

1. dz
T Qizz

212 = Z Ry + 2Ry + Z4(Ry —

Qs

—22_62N,24(2), (35)

1m

Ran),

tht - b (Gt + B3t)’

vV b
2 = —— )‘();/—[(y—l"'rl)Bm

M
+(a-3b+r,)B; +2(a—-b+r,)G],

Vv
2 = Trl{ (@a=b)(y—1+r;)By

+2b(b—2a—r,)B; —[2ab—(a—b+r,) G},

_b
y—=1+r;

_ 4t
(z+xyry)®

Zn = 2,-p, p = 20e(t+z2)/V,

1-4.

G, = xyBy; — By, a; = G(Cﬁ),

Bi; = Bi(Qi: Xy), 1=

It is convenient to explicitly extract the contribution
containing the infrared divergence. For this, we add to
the numerator of the integrand and subtract from it its
value at z = z,. At this value, we have

r, =1, N, = 4T/y2, X1 = X

Theintegra |4, can thus be written as

a, = a,

QB 0 (36)

3,20+ in2 e

[0( N,Z,(2) — o’
y Y Zedx dQB
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3.2. Integral I,

Calculation of the integrand is performed in the
approximation x, = 0, which corresponds to the emis-
sion of a collinear photon along the final-electron
momentum. In this case, the variables take the values

2 .o Xyrs
I’z - 1_Z+’ - r2QB1 XZ - 1_r2(1_y)

After integrating over the hard-photon angular vari-
ables, the integral |, is represented as

_1-z 2 _

Zn

_1.dz >
m = QQ{L_—ZGZNZZZ(Z)' (37)
2,(2) = Z5 R+ ZRe + Zou(Re — Rop)s
2o = bQZB(rZGs+ Bss),
-y Yo 4,10
Tz v [ Py-1 B
+%_3b+lDB +2[1+(a—b)r]GE;
e g
a1 = s—{(a=b)[1-r,(1-y)]B
211 o, 2 Y)] Bas
—2b[1+ (2a—b)r,] Bs,
—[2abr2—(1+ar,—br,)? G},
G.= xyB——2 B, « = a(gp)
o T BT Ty e B2 T AW
_ 41 - 2 i =
N, = ——, B = Bi(ox), 1=123,4
(z+xyry)

The contribution containing the infrared divergence is
extracted explicitly in a similar manner as for the I,

integral. At avalue of z=z,, we have

r,=1, o, =a, N,=4t/y’, X, = X
Theintegra |, isthen rewritten as
_dz_
2m — Q z,-27
%o (38)
[O(ZN 50 -5z, )}+VX nR 9%
y Ty Zidx dQB

The radiative corrections due to the virtual photon
exchange and real soft-photon emission (with energy
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w < Ag) can be related to the Born cross section ast

(S+V) d
dO' . — 5 O-BZ' (39)
dxdQpg dxdQpg
where the factor 3% is[19]
sv_ a B (As)
5 —n[(L 1)In 8182+2|_
Q2 (40)
1 25_1___ _ = |n=<B
S’ f Hpos’2 } L=<,

€4(g,) isthe initia (final) electron energy, and 8 is the
electron scattering anglein the coordinate frame, where

k,—k,+p = 0.
The function f is defined as

f(x) = I%tln(l—t).

The quantitiese,, €,, and B can be expressed in terms of
the invariant variables as

- VA-xy) V(1-z,)
2A/V(T+z+’ ? 2A/V(T+z+)’

(41)
20 _ 1-y—xyt
COS = = srrmmoidoes

2 (1-xy)(1-z)

The radiative correction 3% isfinally rewritten as

sv _ ald T[2 1-y—xyt
e Wl lee el
(42)
1 xy 2 nd
—In +(L-1)B+om—P __[O7
(-3 2N a7 ys
3.3. Integral I

To calculate thisintegral, we use the resultsin [19].
In addition to the integrals calculated in that paper, we
need the integrals

I Z,1)X1, .IZ F(Z r)Xl (43)

To calculate these integrals, we write the hard-photon
phase space measure as

dk _  Q
21w

Olq>dzdr

o (44)

2y +4a

L We note that the vacuum polarization effects are included in the
Born cross section through the dependence of the coupling con-
stant o on the virtual-photon momentum.
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Because the function F isindependent of the ¢ variable
in our case, we can integrate over this variable. We
do this in the coordinate frame specified above. The
results are

I y +4a
x[(2=y)(y—c)=(1-r)(y+2a)],

dp 2 150 Qa(1

= = _QU-x)*
Z_IZT[Xl_ y2+4a (r=ry) }

After simple calculations, the integral Iy is (with the
contributions proportional to the R,, and R,, compo-
nents omitted)

(45)

Zm

1 H L1 mn
- G Zr
R ZQBI y mnD:L XyI ( l)
L Zn
2
+1 z+ 1 G. (z r,)

r Gm”(z N _G"(zr)
- ny f|r_rl|[ )

r [GF (zr) G "z 1))
1 Z+I I|r—r2|[ 1"’22}

dd—
+ y+4aJ’zJ'r

r_

(46)

. . u
xB[Cqi (2 1) +11C1(z, 1) +1,C5 (2, 1)] %

where

QB(l XY)
m Pxy(T+2,)

QB(l Z+) (47)
m Pxy(T+2,)

1
2xy(1 +2,)
x [2xy(T +2) + (2. —2)(y = /Y’ + 4a)],

2

GM@z1) = Z(1-nNBA™Z),
r

r«(2 =

2

&Mz = S(1-NBB"@),
r
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with m, n =1, t, n. We note that the structure functions
B, are functions of two independent variables

Xyr

2 2
= rQ; X = ——.
q Qs Z+ Xyt

The expressions for the coefficients A™, B™, Cy",
k=0, 1, 2, are given in Appendix A. The contributions
proportional to the R, and R, components are consid-
ered in more detail in Appendix B.

We now briefly discuss the singularities in the I
integral. The value r = 1 corresponds to the real soft-
photon emission (there is an infrared divergence at this
point), and the valuer =r4(r,) correspondsto the emis-
sion of acollinear photon along theinitial- (final-) elec-
tron momentum (the so-called collinear divergence).
The singularity at the point z = z, is the infrared one.
The divergence at r = 1 is nonphysical. It arises during
the integration procedure due to the separation of the
poles in the expression (XX, It is necessary to
explicitly extract the collinear and infrared divergences
in the above formula.

Theintegrand in the above expression can bewritten
in the form that does not explicitly contain the infrared
divergences if we add term (39) to it. For this, we use
the transformations

G(z 1)
1-r

9i(x ¥)
xy(t +2,)

G(zr) G(z 1)
I|r—rr|[ - 1—r}

[

= P o N -ca )

(48)

i =12,

where

01(x y) = (1=xy)% &% y) = (1-2)%

and the symbol P denotes the principal value of the
integral. The total radiative correction (which is the
sum of the contribution due to the hard-photon emis-
sion and the contribution due to the real soft-photon
emission and virtual-photon contribution) to the part of
the differential cross section caused by the tensor polar-
ization of the target iswritten as

do _ dog

— + 6tol
2 2 !
dxdQz  dxdQjg

(49)
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where
0 Z,
3 = a L+2(L-1)In—rr——
any - AT Sy )
_Inzl—xy_4_T_[2
1-z, 3

b DdoB
[(1 xy)(1- L)}[ddeB

z,

xQ J’—[a N,Z,(2) + 0aN,Z,(2)

(50)

Qs

+4a

—G"(z 1) + G (z, 1] +

Z, I

2
a mn . ~mn
><J'dzJ'drFBi[COi (zr)+i,Cyi(z )

_ 0
+i,Co (z 1)] + R?’“E

The term R™ has different forms depending on the

integration region of the variabler. In the regionsr_<
r<rpandr, <r <r. (wherer # 1, and therefore the
divergence at the point r = 1 is absent), the function

R™ has the form

z, I,

mn _

1 dr
P= dz
1—xy_£ J(l—r)|r—r1|

x[G"(z ) -G"(z )] + 1 (51)
><Z+dzr+—dr Gz 1) -G,
_([ _r[(l—r)|r—r2| Ps P
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Intheregionr, <r <r,, we have

C 1o
R™ = [dzin=—[0'(z ) - iz ) +
r+—l|:|
0

1
z,-z

mn mn mn mn D

X[Gi0(z 1) =0z r)+fio(z1)-fir(zry)] %

+ fdz fi{ o) -grE )

s 1-r*™ ! (52)
-fi@zn+fl'z1)

+

1 mn mn
ey GHCDELMCEY

1 ~mn ~mn 0
7 [Fen-FTe g

where we introduce the notation

Gimn(z! r) = gin(;n(zv r) + Algin;.n(z! r)v

G(zr) = fa(z 1) +8,f7'(z 1),

Fen) = 2oy N -giE ],

_ . (53)
Fi@n = = [ficen- @),

A = (l-xy)r—a—b-z
A, = (l-y+xy)r+z-1.
In obtaining the above formula, we use the relation
) dr . dr
PIH‘“(V) = J’E[W(f) -¥(1)]
T T (54)

1-r
+WPY(DIn

r

We finally consider the part of the integral | caused
by the R,, and R,, components of the deuteron quadru-
pole polarization tensor. As stated above, these compo-
nents do not contributeto the cross section treated in the
Born approximation. If these terms are integrated over
the whole region of the ¢ variable, then these integrals
are equal to zero as well (because only one plane
remains after such integration). We discuss this prob-
lem in more detail in Appendix B.

We note that the integration limits for the variable z
informula (50) are given somewhat schematically. This
integral containstwo contributions (we neglect herethe
contribution of the radiative tail from the quasielastic
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r

7,
7

iy
B

il

r=1r

/

r=r

1‘[\l ——
N

Znin

Fig. 1. Theintegration domaininr and z.

scattering). One of them is the so-called inelastic con-
tribution; the integration region for it in the variablesr
and zis presented in Fig. 1 by the dashed triangle. The
integration over z for this contribution must be carried
out from

_ Mg -M?
Znin = vV
to z,, where My, is the inelastic threshold (M, = M +

my). The second contribution, related to the radiative
tail of the elastic peak, is given by the interval

z=0, r(0)<r<r,(0).

The contribution of the elastic radiative tail to the
total radiative correction 8 (i.e., inclusion of radiative
corrections to the elastic ed scattering) can be obtained
from formula (30) by a ssmple substitution in the had-
ronic tensor,

B(c, X) - —=3(1-x)B®, i =1,2,3,4, (55)
q
where Bi(e') are expressed in terms of the deuteron elec-
tromagnetic form factors as
B = ng’Gy,

4G
) — _on242 a2 Q n ]
By = —2n’q [GM+1+HBBC+3GQ+nGND],(56)

BS = 2n°q°Gy(Gu + 2Gy),
B = -2nd’(1+n)Gy, N = —q’74M”.
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Here, G¢, Gy, and Gy, are the deuteron charge mono-
pole, magnetic dipole, and quadrupole form factors,
respectively. These form factors have the normaliza-
tions

Ge(0) = 1, Gy(0) = (M/m,)ug,
Go(0) = M*Qy,

wherem, isthe nucleon mass and 4(Q,) isthe deuteron
magnetic (quadrupole) moment, with the values

Hy = 0.857, Q, = 0.2859 fm°.

After substitution of B{* in formula (30), we have to

perform trivial integration over the z variable using the
delta function

o(1—x) = xyrd(2).

4. NUMERICAL ESTIMATE

We calculate the radiative corrections for the kine-
matical conditions of the HERMES experiment [10].
The energy of the positron beam is 27.6 GeV. The
HERMES installation has provided thefirst direct mea-
surement of the structure function b, in the kinematic
range0.002<x<0.85and 0.1 < Q?< 20 GeV?2 A cylin-
drical target cell confines the polarized gas along the
positron beam line, where alongitudinal magnetic field
provides the quantization axis for the nuclear spin. The
corresponding tensor atomic polarization is T = 0.83
(see Appendix C for the definition of this quantity).

The analysis of the experimental data was per-
formed in the approximation b = b, = 0. In the numer-
ical estimate below, we also neglect these functions.

The deuteron spin-dependent structurefunctionb; is
extracted from the measured tensor asymmetry A,, via
therelation [10]

3. (L+Y)FS

b, = - Azzm , (57)

where the deuteron spin-independent structure function
F‘f isexpressed in terms of the ratio

o, _ Fo(1+4M*X/Q7)

R = 5 1
Ot 2xF;
(see[20]) and
2 _ AMPX
Yy = 2
Q
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is a kinematic factor. Here, o1(0)) is the cross section
for the absorption of transversely (longitudinally)
polarized virtual photons by the unpolarized target. The
Born cross section of the deep inelastic scattering of the
unpolarized electron beam by the unpolarized target
has the form

dog' _ 4108
dxdQi  xQp
d 2 2 —d 2
X [(L-y—xyT)Fy(x, Q%) + xy"F(x, Q)].

(58)

The structure functions F‘lj, , arerelated to the structure
functions W, , (introduced in formula (7)) as

W, = 2FS, W, = 4(1/y)F5.
The deuteron spin-independent structure function

FO = Fo(1+ F5/FD)
27 T

is calculated using parametrizations for the proton

structure functions F5 [21] and the ratio F5/F5 [22].

The deuteron spin-dependent structure function b, is
also extracted from the experiment using the Callan—
Grossrelation

1+R
1+y2

b, = 2x=——b,. (59)

According to the preliminary results of the
HERMES experiment, the tensor asymmetry can be
parametrized as[23]

A, = -156x10°(1-1.74x-1.45./x).  (60)

Theinfluence of the radiative correction on the spin-
dependent part of the Born cross section is shown in
Fig. 2 asafunction of the variable x for various Q? val-
ues. Inclusion of the radiative correction shifts the zero
value of b, and b, to theregion of smaller x (seeFigs. 2¢c
and 2d). In the range of low x (x ~ 103-107?), the value
of theradiative correction changes from 10 to 30% com-
pared with the Born contribution. This region is of the
utmost importance for b; measurements. According to
thetheoretical predictionsin [11-13], the structure func-
tion b, increases very rapidly in thisregion, and thisfact
was confirmed in the HERMES experiment [10].

From our estimate, we conclude that the radiative
corrections to process (1) are not small, especially for
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Ao, nb/GeV? Ao, nb/GeV?
~500 0.7

-850 2.7

—1200

~1550 -6.7F/
/ (b)
!
i
~1900 ' L . _g7! . . .
2.2 4.1 6.0 7.9 9.8 1.1 3.3 5.5 7.7 9.9
x, 1073 x, 1072
Ao, nb/GeV? Ao, 1073 nb/GeV?
0.015 2.00 . : .
—0.015 1 075
—-0.045 1 -050
—-0.075F 1 -L75
(©)
-0.105 . . . -3.00 . . .
0.05 0.14 0.23 0.32 041 0.1 0.30 0.49 0.68 0.87
X X

Fig. 2. The spin-dependent part of the cross section calculated for the kinematical conditions of the HERMES experiment [10]. The
solid line is the Born approximation, the dotted line corresponds to the inclusion of the radiative corrections. The Q? values are as
follows: (a) 0.1, (b) 1, (c) 4, and (d) 10 GeV2.

thelow-x region, and they haveto betakenintoaccount 4, j = 0, 1, 2) that determine the cross section of the

in data analysis. hard-photon emission process (see formula (50)).
The coefficients determining the contribution pro-
ACKNOWLEDGMENTS portional to the B, structure function are
We wish to thank N.P. Merenkov for useful discus-
sionsand comments. We warmly acknowledge M. Con- " N, )
talbrigo for useful discussions on the HERA experi- A = —[(r-4)"-2a(b+4,)],
mental conditions, aswell asfor sending us preliminary t
results on the A, parametrization.
B! = Mer2a—b)r+1+4,%—ar(2+3ar)} ,
APPENDIX A !

In this Appendix, we present the formulas for the | VN , ,
coefficients A™, B/, and Cji" (m n=1,t,i=1,2,3, Ca = ——{(F-4y)" +a[3a(l+r")-2(b+A))]},
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6N,

Cii = ~6N(c+2a), Cp = -6Ng

2n,;

it _ <&My
Al_Md

Qa(2b+Ay)(F—4,),

2
B! = M—néQE(AZ—Zbr)[(a—b)r +1+0),

Cor = —4n,Q5
x [a(1+r?)(y+ 2a) — 2bF —A,(c + 2a—2b)],
Cly = —4n,[(y + 4a)(c +2a) —2a(f + 2b)],

It T
= -8n,—(y+
Cy 8n2v(y 2a),

AL
tt N Qg 2 2 A
AL = 2074 (b+ A7,
2
BY = %%B(szrz—ZbrA2+A§),
NQ;
Co = 55

x [(1+r%)(y* +4a—2ab) + (2b+A,)*+ A7,
Cly = Sb(L+y+2a-n)+ (1+)A],

cl, = _dﬂz[y2+2a(2—b)].
The coefficients determining the contribution propor-
tional to the B, structure function are
Ay = Zb(1+1%)+ (11 +ry)A,]
x[(F—41)"~2a(b+4,)],
B! = —”f’[b(1+r2)—A2(r-2a)]
x{[(2a—b)r +1+A,]°—ar(2+3ar)},
Clo = —0{ (7-3y)¢"

+3a(5-y+r)c+3a’(3+r’)—ar[5+3(a+b)]},
2
T

n_ o N B o
Cp = 3TC[4(a+c) cyl, C, 6ch

NsQk i
Ay = =2 (2b+A)(T-A)

x[b(L+r%) +(1-r+ry)A],
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nsQé
Md

x[b(L+r%) +(a+b-r)A,],

B, = -2

(A, —2br)[1+A,+ (a=Db)r]

it _ NV? i
Cp = W:{ 2ac[yr +(3b+a)(1+r)—-y—8a]

—c’[2a+ (2-Yy)(y+4a)] +2a[2a(b—a+T) (A2)
r(y+2a)(r-a(l+r)+r@a+b?)},
cl, = —4n2}:[2a(1—3r +2F + 4¢) + cy(2 + b—a)]

It _ T
Cyp = 8nZCV(y+2a)’

A7 = PNsZi[ 2%+ By(2b+Ay)],

Bl = —)%’nszz[zbzr2 + A, (A,—2br)],

N

tt _
Coo = 2bc

{-2c’[a+ (1+a)(2-Y)]
+c[(3—-2y+a’ +b’)(f —2a)
+4(ab+b-a’) +4r(a—b%)] —2a[(r —a)’ + b?]

+(1+2a-2b+a’+b*)[r—a(l+r?)+(a+b)},

x{c[1+7a(l+a)—b(1l+b)+(a+b)(a®+b?)]
+4a[(a-b)(1-r)+a*+b*=r]},

¢t = -M 2+ 2a(2-b)).
cd

The coefficients determining the contribution propor-
tiona to the B; structure function are

Al = ngg{(a+ ))[2Z,+ 1A, (2a+T1 —A,)]
—A[rP(r=Ap) +2(b+Ap) +r(a+b)(@a+r -4},
B! = —ngg{ 27,[1+ (2a—b)r +A,]

+3an,[(b-a)r ~1-4,]}
Cla = N[c(6a~16+9y) + 6a(y~3-r)],
Ci; = -3IN(2-y), Cz =0,
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Q It _ V2 It _ Alt _
A = = =(27,(3b-a—r1) + Ay[4r(1+b°+3ab)  Cou=- 2|\,,dll’f‘lab (a=b)7], Cyu=Cyu=0,
_2a(1+r%) +c(ar —3+5br)]}, As = —xyrc®Ang, By = —xyc’A,ns,
2 it _ CNV tt tt_
Bl = n3(':v|Q;{222[(3b a)r —1] +A,[(1+ar)(a—6b) Co = ——5~(y+2a), Ci=Co =0

) ) We here use the notation
—(a+3b)(r'+A,)+r(b"=1)+b+A,(3r-2b)]},
N1+r

C=z+xyr, [=a-b+r, n =35— VQs.

Cus = n,V{4a[2br —y* + 4(b*—a)]

(A.3)
—C[3y(2—-y)+8a(l+a+2b)]},

ne NNV
| M | 27 2md ® T 2cl-r
Cs = _ZNE(Z_Y)(Y"'Za)f Cx =0,
d® = bQ3, A, = (L-xy)r—a—b-z

Att - c
27 % By = (L-y+xy)r+z-1, N= 2%
Cc
x{ (8= 20)[D(1+1%) + (L1 +T1y)A ]

+bA[1+r(b—a+A)]}, Z, = b(L+r%)+ A, (1-r+yr),

Z, = b(1+r%) +A,(1-y—r).

Bt3t _ nsxyg 2 (1+r)+08y(1-y-r)
x { (2br =A)[b(L +r%) + (1=r —y)A,] APPENDIX B
+bA,[r(b—a+r)-Aj}, InthisAppendix, we consider the part of theintegral
| that is caused by the R,, and R,, components of the
tt _ VN 2, .2 deuteron quadrupol e polarization tensor (these compo-
Cos = Sp{3b-a-(a"+b’)(2+a+D) nents do not contribute to the differential cross section
treated in the Born approximation). We define the inte-

+ r[y2 +2y(2b—a) +2a(3—a)] gral caused by the R, component as
_ _ d’k
+c[y(l+y+3a)—4(1+a)—2ab]}, o = Iﬁz'n(z’ r,0)R,, (B.1)
VN
Cis = —2(2-YIY +2a(2-b)l. Cx = 0. uith
The coefficients determining the contribution propor- 2.z, ) = a (q )ZVN
tional to the B, structure function are Qs Mr2
2
n_ ,c _ 2 _ [Plln Pain
A, = nat{(b a)(1+r7)+A[1+r(2a-Db)]}, x 0%, %, +Ugn+ Umx]D,

B} = nZl(a-b)(1+r)+ Afa+ 1), Pun = 2 @ngy(lﬂz)Bl

NV
Cos = —5-[1+3(b-a)], Ciy=Cy =0, rolc(l=r(1-y)) +a(1+r?) —4fr]B,
W Qb 2 +[2a—fr+1(3(1—r+yr)+2ar)}B
A} = S ZE (1 + 1)+ Ay[1-r(3b-a)]} , (A4) 5 3
2.2 1 0
B, = SCM%[ 2b(1 +r?) + Ay (7 —2b)], *5c[1+(a=-b)r] 84%
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P, = —%E—xy(1+r2)(c+2ar)81 (B.2)
O
2
+%[—ar(a(1+r2)—4fr)+92—(1—y—r)
+§(4fr—a(1+3r2+2yr—2r))}B2
+[r(f -2ar)-g(2a+3(r+y-1))}|33
~Sa-b+nB,g
O
Uogin = 29(cB, +1B,) +21(2-Y)(B, + By),
_ 4t 150
U1In - VB31+EBE,
and

c=z+xyr, f= 1+(1—y)2,

g = 1+2a/c, nq=9'q,.

The second integral, caused by the R,, component, is
defined as

dk
Iy = J’mztn(Z’ r,9)Rin, (B.3)

wheretheintegrand is

’(g%)_2VN
Qs dri(r-1)

[Pltn P2tn 0J
Oy, %, T Uoin + UnX s

Sz 1, 0) =

O
P = Qégf xy(1+r1%)B,

—g[a(l+ r?) —4r(f +4y)] B,

+ f[1+r(y—1)](B, + Bs)

+brc(B;+B,) + 2br(1—y)B3E1
O
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Pon = _QZBEP(yG(l + rz) B, + %[a(l + r2) —4fl'] B,

+g(r—1+y)(B,+By) (B.4)

—bc(B; + B4)—2br(1—y)83E1

0
- 1

Uo = (1 _1)[—2xyf%l+ EB%
+(2-y)(2a+Y)(B, + By) |
14 £

Un = \_/E(r_l)(za"'Y)Gl_sz

0

-2
~AhoIM(2a+y) - 21d] (B, + By)

d O
—M—Xyc—Za(r —2)]G2%

2t c
Gl = 3Bl+?82+m(82+283+ B4),
C
G, = _Bl_m(82+283+54)'
and
d> = bQ3, f =b-a—z+r(l-xy),

0=2z-1+r(a—b+xy).

As before, we calculate the above integrals in the
center-of-mass system of the hard photon and the unde-
tected hadron system:

k,—k,+p = 0.

The electron momentak, and k, define the xz plane, the
z axis is directed aong the deuteron momentum p.
Then, the hard-photon momentum k is determined by
the azimuthal (¢) and polar (8) angles, and the phase
space of the hard photon can be written as

3 2
dk _ _ Qb 9% qr,
21w

5o (B.5)

2y’ +4a

where w is the hard-photon energy.
The quantity ng can be written in this coordinate
systemasng = nsing , where n isafactor independent
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of ¢. Then, the integration over the ¢ variable in the
region (0, 2m) leadsto the result

ln = 1w = 0.

Therefore, the R, and R,, components of the deuteron
guadrupol e polarization tensor do not contribute to the
differential cross section of deep inelastic scattering of
the unpolarized electron beam by the tensor polarized
target. This is because only the scattered-electron vari-
ables are measured (this corresponds to the HERA
experimental conditions, for example).

If the hard photon is detected, then I,,, and |, survive
and the expressionsfor 2,,, and %, have to be taken into
account.

APPENDIX C

In thisAppendix, we give some formulas describing
the polarization state of the deuteron target in different
cases. In the case of an arbitrary polarization of the tar-
get, it is described by the genera spin-density matrix
(defined by eight parameters in general), which in the
coordinate representation has the form

uv S%uv

va = val

pppv|:| |
2D 2M EunrpSiPp +

Quu = 0,

qu’((:.1)

prpv =0,

where p,, is the deuteron 4-momentum, and s, and Q,,
are the deuteron polarization 4-vector and the deuteron
guadrupole polarization tensor.

In the deuteron rest frame, the above formula is
written as

p 6 +5 slijk+QIJ’ IJ = XYz (CZ)

This spin-density matrix can be written in the helicity
representation using the relation

(A)* (\)

P = Pij& € 7, ANAN =+, -0, (C.3)

where ei(” are the deuteron spin functions that have the

deuteron spin projection A on the quantization axis (the
zaxis). They are

(£) — i—l—(l, i|’0)1 e(o) = (0, 0, 1)

© TR

The elements of the spin-density matrix in the helicity
representation are related to those in the coordinate rep-

(C.4)
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resentation by
Pir = % % _%sz Poo = %+QZZ!
P+ = _E(Qxx_ny) + iQxya
+0 — xz_. 2/ C5
Pio = Zﬁﬁxfm JﬂQ iQy,), (CH
0 = =5 (5:15) + = (Qu*iQ),

P = (Pa)E

To obtain these relations, we usethat Q,, + Q,y + Q= 0.

The polarized deuteron target described by the pop-
ulation numbers n,, n_, and n, is often used in spin
experiments. Here, n,, n_, and n, are the fractions of
atomswith the respective nuclear spin projection on the
guantization axism=+1, m=-1, and m=0. If the spin-
density matrix isnormalizedto 1, i.e.,

Spp =1,
then we have
n,+n_+ny, = 1.

Thus, the polarization state of the deuteron target is
defined in this case by two parameters. the so-called
V (vector) and T (tensor) polarizations,

V=n,-n, T=1-3n, (C.6)
Using the definitions of the quantitiesn, o,
el (= &0
= pu j ¥ E)v rIO = plj j *650)1 (C7)

we have the following relation between V and T and the
parameters of the spin-density matrix in the coordinate
representation (in the case where the quantization axis
is directed along the z axis):

_1 ~1.1. 1
nO - 3+sz’ ni - 3+232 2szv (C8)
or
- _3szv V = =S, (Cg)
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Abstract—The main features of resonance scattering of electrons by molecules are described and resonances
are determined on the basis of the theory of collisionsin atwo-body system, aswell as resonances emerging as
aresult of collisionsin afew-body system. Regularitiesin the emergence of such resonances and their charac-
teristicsareanalyzed. Theresults of calculations of these resonant processes occurring during collisions of elec-
trons with diatomic mol ecules, made on the basis of the quantum theory of scattering in afew-body system, are
presented. The results of calculating the cross sections of resonant processes of electron collisions with mole-
cules are compared with the available experimental data and with the results of calculations based on other
approximations. © 2004 MAIK “ Nauka/| nterperiodica” .

1. INTRODUCTION

Resonances bringing a variety of features to physi-
cal phenomena exist in any field from molecular phys-
icsto elementary particle physics. The concept of reso-
nance is one of the fundamental concepts in quantum
physics. We can attach a broad physical meaning to the
term resonance, including stable levels, and imply their
effect on scattering processes[1, 2]. Resonances play a
special role in the physics of irreversible processes. In
this case, in accordance with the Poincaré theorem [3],
resonances are responsible for nonintegrability of most
dynamic systems.

A theoretical explanation of resonances and their
parameters can be constructed on the basis of forces of
interaction between particles, which are treated as ele-
mentary particlesin such processes. For example, reso-
nant processes in atomic physics are determined by the
forces of interaction between electrons and nuclei,
while resonances in nuclear physics are determined by
forces acting between nucleons.

A resonance in scattering is any peak on the experi-
mental curve describing the scattering cross section.
The resonance is characterized by the moment, parity,
spin, lifetime, etc. Collisions of electrons with mole-
cules often result in the formation of metastable nega-
tive molecular ions, which are also traditionaly
referred to asmolecular resonances[4-11]. Inthiscase,
since atoms move slowly as compared to electrons, the
electron + molecule system can be regarded as a quasi-
molecule whose electron shell at each instant corre-
sponds to a quasistationary state of such a quasimole-
cule. Thisis in accordance with the well-known adia-
batic approximation in quantum mechanics. In this
approximation, various electron transitions (excitation,
ionization, charge transfer) are hampered for collisions
of electrons, atoms, or ions with molecules under ordi-

nary conditions. The necessary condition for such a
charge transfer [5, 6] is AEAT ~ £, where AE is the
change in the quasimol ecul e energy and At isthe colli-
sion time. Thus, for slow collisions, when the value of
AT is large, transitions can occur only if AE is small;
i.e., two states of the quasimol ecul e before and after the
collision must be close and such a process can aso be
treated as a resonant process. Such treatment of areso-
nance reveas the relation between equilibrium and
dynamics, on the one hand, and the physics of dissipa-
tive processes, on the other hand [12].

The importance of resonant processes is determined
by the fact that all practical applications of experimen-
tal studies are based on resonances since it is resonant
processes that are characterized by large cross sections
or long lifetimes as compared to honresonant processes
and play an important role in low-temperature plasmas
(resonant processes determine the emergence and dis-
appearance of excited and charged particles; i.e., they
determine optical and electrical properties of aplasma),
in controlled thermonuclear synthesis, mu-catalysis,
and so on [4-12].

Proceeding from the theory of collisions in a two-
body system in which thetarget moleculeisregarded as
aforce center, the following type of resonances can be
distinguished [4-11].

1. A shape resonance appears in the case when the
incident electron is trapped to a quasi-stationary level
separated from the level in the continuum by a centrif-
ugal barrier formed by a combination of attractive and
repulsive fields of the target molecule. Thistype of res-
onance appears only when the electron possesses an
angular momentum relative to the target molecule. In
the case of low-energy s scattering (I = 0), electron can-
not be trapped and form resonance is absent.

2. A vibrationally excited resonance appears when
the incident electron excites vibrations of the target
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molecule and is temporally bound. In this case, the
kinetic energy of the electron is directly transformed
into the vibrational energy of motion of the nuclei of
the negative molecular ion; thus, this type of resonance
is associated with violation of the Born—Oppenheimer
principle. The lifetimes of such resonant states are
extremely long (especially for polyatomic molecules)
and attain tens of microseconds.

3. An electron-excited resonanceisformed when the
projectile electron excites the electron system of the
target molecule and also becomestemporally bound. In
this case, the detachment of an electronisimpossible as
long as the molecule remains in the excited state. Nev-
ertheless, an electron may till be detached if closed
and open channels are coupled.

Theoretical description of such resonances appear-
ing as aresult of formation of negative metastable ions
ispresented in [4-11] on the basis of the theory of scat-
tering in atwo-body system. In these works, resonances
are defined as complex poles of the scattering matrix
continued to the nonphysical energy sheet or as poles of
an analytic continuation of the Green function.

Collisions between electrons and molecules occur-
ring without the formation of intermediate complexes
as well as collision processes at thermal energies of
incident electrons, in which a nonmonotonic energy
dependence of scattering cross section isalso observed,
remain unstudied. In the latter case, the application of
standard techniques for calculating cross sections is
unjustified in view of violation of the Born—Oppenhe-
imer approximation [4—6]. The application of the the-
ory of collisions in a two-body system for calculating
such processes encounters considerable difficulties
since the system considered here is essentially a many-
particle system [13, 14].

For this reason, we will describe resonant processes
occurring during collisions of an electron with mole-
cules by using amore consistent approach based on the
guantum theory of scattering in a few-particle system
[13, 14]. The main approximation in this caseisthat the
interaction of the projectile electron with the electrons
and nuclel of the target molecule is replaced by the
interaction of the electrons with the atoms of the mole-
cule, the atoms being treated as force centers. Thus, a
complex many-particle system consisting of the elec-
tron and the nuclei is replaced by asystem of few inter-
acting bodies, which can be described with the help of
Faddeev equations [13]. Naturaly, this approximation
imposes certain constraints on the energy of the projec-
tile electron: this energy should not be higher than that
the ionization energy of the atoms constituting the mol-
ecule. However, it is precisely this energy range that is
interesting in connection with the presence of reso-
nance peaksin the effective cross sections of collisions
of electrons with various molecules [4-11].

In such aformalism, aresonance in athree-particle
system is determined by two-particle resonances under
certain conditions [1, 13, 14]. Thus, the reason for the
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emergence of three-particle resonancesis the existence
of resonant states in paired subsystems. This not very
popular point of view is due to the fact that such a cou-
pling does not exist dways and cannot be determined
explicitly even when it is present. Thiswas demonstrated
for the first time in nuclear physics and in elementary
particle physics where the interaction between particles
leading to the appearance of resonancesisdetermined by
the exchange between the particles of the same reso-
nances, thus, resonances produce themselves[1, 2].

In atomic physics, coupling between resonances is
observed for a large number of phenomena (such as
scattering of electrons by molecules, coupling between
clustersin biopolymer molecules, and in Bose conden-
sate) [4-7, 14, 15]. Inthistype of coupling, two-particle
resonances lead to a series of three-particle resonance.
A peculiar feature of this phenomenon isthat the stron-
ger the two-particle resonance, the larger the number of
three-particle resonances produced by it. Experiments
show [1, 14, 15] that such resonant states in many-par-
ticle systems lead to anomalously high rates of chemi-
cal reactions, dynamic coupling of noninteracting par-
ticles, etc. [14-16]. The importance of studying such
states is directly associated with determining the bind-
ing energy of a system of N bodies using information
on subsystems of this many-particle system, i.e., the
construction of dependences Ey = f(Ey_1, En_2...) and
the determination of the conditionsfor the formation of
a coupled many-particle system provided that some
subsystems are not coupled [16].

The physical foundation of the effect considered
hereispresentedin [1], wherethe following aspectsare
revealed.

1. The effect of two-particle resonances on the spec-
trum of a three-particle system is clearly manifested;
i.e., atwo-particle resonance can radically reconstruct
the discrete spectrum of three particles. However, not
every two-particle resonant state can reconstruct the
spectrum of three particles, but only the state whose
Size I O (2myleyl)™2 is much larger than the range r,
of its action (&, is the binding energy and m; is the
reduced mass of a pair of particles. Such a resonance
can only be an s resonance (I = 0) since such resonant
states strongly differ in size from other types of reso-
nant states. For e — 0, sizer,, — . The sizeof a
resonant state is manifested in the scattering of particles
inthe form of alarge scattering length a, which is equal
to the size of this resonant state for small e,. Analyzing
resonant states from the standpoint of their size, we can
observe that all these states sharply differ from the res-
onance considered above. For example, the state occu-
pied by the systemin apartial wavewith| # 0 hasasize
on the order of the range of forces due to the centrifugal
barrier; acompound resonanceis not large either. Thus,
atwo-particle slevel with asmall binding energy occu-
pies an exceptional position among resonant states as
regardsits size.
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2. Three-particle levels are stable and their number
is proportional to In(Jal/r). It can be proved [1, 13-15]
that the interaction responsible for the emergence of
these levels has the form U OO A/R?, where

2 2
R* = S(ri+ra+r3),

r; isthe distance between a pair of particle, and is oper-
ativein theinterval (ro, @) (Fig. 1). In the general case,
the constant A of this interaction is a function of quan-
tum numbers of the three-particle state, angular
momentum, parity, and symmetry relative to the trans-
position of the particles. The value of A is estimated
in[1, 13-15]. The strongest attraction should be
observed for the orbital angular momentum L = O for
three particles since centrifugal forces are absent in this
case. The symmetry of this state must be maximal; oth-
erwise, the wavefunction has nodes and the coupling
becomes weaker.

3. Centrifugal forces suppress the effect.
4. Such states possess the maximal symmetry.
5. Triple forces do not influence on the effect.

6. The addition of aparticleto the three-particle sys-
tem suppresses the effect.

7. The particle charge has no influence on the effect,
which is manifested less clearly in this case.

8. For particles with spins, the effect is aso pro-
nounced less clearly.

It should be noted that such peculiar states of three
particles are independent of the specific form of the
potentia (i.e., independent of the forces of interaction
between particles) and are universal in the sense that
these states reflect only the fact of existence of areso-
nance. Thus, irrespective of the form of pair forces
between the particles, if it leads to a low-energy two-
particle s resonance, this automatically leads to the for-
mation of afamily of three-particle resonances. Conse-
guently, the reason for the emergence of athree-particle
level lies in the production of long-range interaction
between three particles by a two-particle resonance
with alarge spatial size.

Thus, the number of resonant statesin athree-parti-
cle system is determined only by specific properties of
paired subsystems.

The masses of the particles have the strongest influ-
ence on the effect. The following three characteristic
regimes can be singled out: the mode of identical parti-
cles, the mode of a heavy center, and the molecular
mode[1, 13-15].

The heavy-center mode takes place when the masses
of two particlesare of the same order m, whilethe mass
m, of the third particle is much larger. The pair of light
particle has no energy level and these particles do not
interact with each other, but interact with the heavy par-
ticle through the attracting potential. In this case, if the
mass of thethird particleisinfinitely large, we are deal -
ing with the case of a pair of particlesin aforce center;
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Fig. 1. Effective potential responsible for resonances in a
three-particle system.

naturally, three-particle levels do not emerge in such a
system. Inthis case, the heavy particle does not respond
to the motion of the noninteracting particles moving
independently from each other in the field of the sta-
tionary heavy particle. Conseguently, in this limit, the
binding energy of the three particlesisthe additive sum
of the binding energies of two-particle systems. How-
ever, for afinite mass of the heavy particle, the motion
of al the three particlesis correlated, so that the center
of mass of the system remains at rest. In this case, the
heavy particle responds to a change in the position of
other particles whose motion becomes correlated in
spite of the absence of a direct interaction between
them. Thus, dynamic correlation in the motion of cou-
pled particles can be treated as a sort of attraction. It
should be noted that such a dynamic attraction aso
appears in the case when repulsive force act between
the particles coupled in this way. In this case, dynamic
attraction compensates mutual repulsion and leads to
stabilization of the system. This can be clearly seen, for
example, for the ion of positronium e*ee [14-16]. In
this case, for any finite mass of aheavy center, the num-
ber of levelsis

m
NO DL

-
M e;myrg

A special feature of thismodeisthat extremely shallow
levelsin paired subsystem are required for the existence
of three-particle levels in contrast to the molecular
mode, where the requirementsimposed on paired levels
are much less stringent and more realistic.

In the molecular mode, when a light particle has
shallow levels in the interaction with the heavy parti-
cles, the number of levelsis

ND [m#
my |€g|mirg

and the potential of the interaction produced by the
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light particle has the form
VO —0.3;2’
MMyn

which is precisely the energy of the molecular energy
level. A simple example of this mode is a system con-
sisting of an electron and two neutral atoms. A mole-
cule formed in this way differs from a conventional
molecule in that its nuclei vibrate in region R whose
sizeis determined by the energy €, of the shallow paired
level; in addition to vibrational levels, this system also
has a rotational spectrum. Thus, two-particle levels in
this mode lead to the formation of a series of not only
vibrational, but also rotationa levels[1, 13-15].

It should be noted that such peculiar resonance
states are manifested in awide range of conditions and
form a stable phenomenon which can be reliably iden-
tified and confirmed experimentally.

2. BASIC EQUATIONS AND RESULTS
OF CALCULATIONS

We will analyze these peculiar resonant states quan-
titatively in the case of the molecular mode using the
Faddeev integral equations [13]. In the given approxi-
mation (three particles, viz., two atoms and an elec-
tron), these equations are formulated for three partsinto
which the total wavefunction of the three-body system

splits,

3
Y=Sy.
2"

Each part corresponds to possible divisions of the sys-
tem of three particles into noninteracting subgroups. In
the momentum space, in the case of scattering of parti-
cle 1 from the coupled pair (2, 3), these equations have
theform [13, 14]

Wi = 8,0, —Go(2)Ti(W¥; + W), (1)
ihj,k=1,23;312;21,3.

Here, ®; describes the initial state of the three-body
system: free motion of particle 1 and the bound state of
pair (2, 3); Gy(2) = (Hy—2)1, Z=E +i0, whereH, is
the operator of free motion of the three particles; E is
the total energy of the three-body system, which is
equal to the sum of the kinetic energy of projectile 1
and the binding energy of pair (2, 3); and T; isapaired
T matrix that can be unambiguously defined in terms of
the paired interaction potential V; with the help of the
Lippmann—Schwinger equations

T, = Vi+V,GT;,, C = (hi_zi)_la

To describe the motion of three particles in the center-
of-mass system, we use the generally accepted Jacobi

)
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coordinates. It should be borne in mind that we must
use as integration variables in Eq. (1) a certain system
of variables which is found to be most convenient. For
example, in the integral corresponding to the expres-
sion G,T,¥,, it is more convenient to take k, and p, as
integration variables. In this case, variables k; and p;
determining the kernel of operator T, should be
expressed in terms of variables k, and p,. Sometimes,
it is more convenient to use variables p; and p, in the
same situation.

Paired T matrices t;(k;, K ; Z) appearing in the ker-
nels of the equations have singularities in variable Z:
the poles corresponding to the discrete spectrum of
paired subsystems and a cut along the positive part of
thereal axis generated by the spectrum of the two-body
problem. The explicit form of these singularities gives
the spectral representation of matrix T. The poles of the
T matrix corresponding to the discrete spectrum gener-
ate singularities in the wavefunction components W;
separating these components, we obtain the represen-
tation

W (k;, pi; p) = & (k))d(p;—p;)
__Bi(kupii P 2) 3)
p/2n; + k2my —Z'

where
Bi(ki, pi; PL; 2)

o;(py)Rji(Kj; pio; Z)E
pi2n -k, -z O

3 .
= _Z (ki pi; pis Z2) —
U

j=1

and Q; and R; are smooth functions of their variables.
Such a division of singularities appears automatically
in the numerical solution of integral equations. To
define functions Q; and R;; unambiguously, we can pro-
ceed asfollows. We substitute W, in form (3) into initial
equations (1) and equate the coefficients of identical
singularities. This gives the equations for these func-
tions which can be used for expressing explicitly all
main characteristics of the three-body problem: wave
function, elements of the Smatrix, aswell asthe ampli-
tudes and cross sections of all processes occurring in
the three-body system. Thus, the cross section of the
elastic scattering process has the form

doy;

do
the cross section of rearrangement processesisgiven by

= (27'[)4n1|R11|21

doy - (2n)4n1 Py R1i|2

do o ’

and the cross section of the process of decay into three
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free particles has the form

d’o, 5 (27T)4nipf|50i|2

dodp ~ P
where

pf - 2n|gl _Ki_K%'

The main advantage of the Faddeev equations (1) is
that

(i) the solution of this equation gives simultaneously
the amplitudes and cross sections of all processes
occurring in the three-particle system,

(i) the accuracy in determining the bound statefrom
the solution of the Faddeev equations is much higher
than the accuracy obtained by solving the Schrodinger
equations (this peculiarity is associated with the fact
that Egs. (1) were formulated for the wavefunction
components and, hence, take into account possible
asymptotic forms of the three-particle system);

(iii) these eguations make it possible to carry out a
correct (from the standpoint of mathematics) analysis
of scattering processes, in which all three free particles
arein theinitial state [12, 13]; thisisimpossiblein all
approaches proposed earlier [5-11]:

1+tz2+3

L+ (2, 3) (elastic scattering processes),
+ (2, 3)* (excitation processes),

[l
—= B+ (1, 2)* O (rearrangment processes
%2 +(1,3)* g  with excitation),

[
L+ 2+ 3 (ionization processes).

In this case, we have the following representation
for the wavefunction [13-15]:

Wo(k, p; k% p%) = 3(k —k%)3(p—p°)
o0 o koz p02 .
ZMi’jB(’p,k’p’—Z—n—’]-i_—Zﬁ-i_l(E
1)
- 2 kz koz 02 )

p+———+p—+|0
2n 2m 2m 2n

where functions M; ; satisfy the following system of
equations:

M; (2) = 6i,jTi(Z)+Ti(Z)GO(Z)ZMk,j(Z)-

k#i

For cross sections of these processes, we obtain the fol-
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lowing expressions [13—-15]:
Swo(k, p; k', p7) = d(k —k')d(p —p’)

s, K _p? K]
Zmé[tn 2m 2n 2ni

12 12
xZM“H(,p; k', p"; lz(—m+g—n+i(8
1]

corresponds to processes in which three free particles
areintheinitial and final states;

2
o) = 2migHe- k_ _p_,
SOSi(ki p: pl) 2T[I6|:2n + 2m Ksi 2n|:|

X zQEJB(!pv pn —K +__I(H
k

12
+ 3 U (IR Bl + 2+ i
S¢

. D 2 p|2 pl2 k.2|:|
Zé?l%u k', p, +p +|%
VR o KD
+lesi(kl)R|J i pn 2m+2n+|(8

correspond to processes in which acoupled pair of par-
ticles 5 is present in the initid or the final state. The

equations for functions Qj;, (Ngi i, and R; are analogous
to the equations for M; ; and are given in [13-15].

It should be noted that potentials do not appear
explicitly inintegral equations (1); these equations con-
tain a more genera characteristic, viz., T matrices,
which are connected with the potentials of the Lipp-
mann-Schwinger equations (2). Consequently, although
potentials are formally used in the given method, we
essentially model T matrices, which are constructed on
the basis of the Bateman method [13, 14] suitable for
any local potential. This method considerably simpli-
fies numerical solution of the system of integral
equations (1) and sometimes even leads an analytic
solution [13-17].

Integral equations (1) possess good properties (from
the mathematical standpoint)) such as the Fredholm
property and unambiguous solvability only under cer-
tain conditions imposed on two-particle data[13]:
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(i) paired potentials V; (k, k), which are nonlocal in
the general case, are smooth functions of k, k' and sat-
isfy the condition

IVi(k, k)< 1=k =K])'"¢, €>0;

(i) point Z = 0 is not a singular point for Egs. (2);
i.e, al three scattering lengths in pair channels are
finite;

(iii) the positive two-particle spectrum is continu-
ous. This condition is essential for nonlocal potentials
since positive eigenval ues may appear only inthis case,
and this condition is satisfied for virtually all physical
Processes.

Coulomb potentials and hard-core potentials do not
satisfy the first condition: Coulomb potentialslead to a
singularity of the type |k — k'? in T matrices, while
hard-core potentials result in a slow decrease inthe T
matrix for large momenta. When the second condition
isviolated, the Fredholm property of Egs. (1) islost for
Z = 0, which leads to the above-mentioned Efimov’s
effect (emergence of an infinitely large discrete spec-
trum in a three-body system under certain conditions).
A similar situation emerges in the case of scattering of
electrons from diatomic molecules, for which this
effect was experimentally observed for the first time.
The three-body approximation considered here repro-
duces these experimental resultsin a quite natural way.

It should be emphasized once again that the given
approximation appears quite reasonable for values of
the incident electron energy lower than the electron
excitation energy of the molecule.

Astheinitial datain such aformulation of the prob-
lem, we use pair interaction potentials, masses, and
energies of colliding particles. For potentials of pair
interaction of electrons with atoms of the molecule, we
used potentials of the form

v(r) = AeREED) @

whose parameters were determined on the basis of the
electron binding energy at a negative ion, scattering
lengths, and effective radius. Allowance for spin (in the
case of homonuclear molecules) was made as follows.
For the scattering length, we used the quantity [5, 6,
14-17]

1_1_1_18,10

v A

where a, and a; are the triplet and singlet scattering
lengths, respectively.
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Pair potentials of interaction between atomsin mol-
ecules was simulated by the Morse potentials

V(r) = D(1-exp(-a(r—ro))), ©)
whose parameters were determined on the basis of
spectroscopic data[18].

Numerical solution of integra equations (1)
involves considerabl e difficulties because the kernel s of
integral equations (1) contain the following singula-
rities:

(i) Branching points of the square-root type, which
correspond to the thresholds of two-particle processes.

(ii) Poles determining the bound states of two-parti-
cle subsystemsin pair T matrices.

(iii) Logarithmic singularities. The position of these
singularities and their form depend on the form of pair
potentials of interaction, the masses of colliding parti-
cles, and the total energy of the three-body system.

Consequently, various methods of numerical solu-
tion of Egs. (1) are based on:

(i) Bypassing the singularities by deforming the
integration contour to the complex plane; thisis possi-
ble only when pair potentials are defined analytically
and do not introduce additional singularitiesin the ker-
nels of Egs. (1), which is the case with the potential of
the rectangular well or hard core type.

(ii) Using the method of integration along the real
axis; in this case, the solution should be approximated
in the vicinity of these singularities either by summing
the Born series with the help of Padé approximants, or
using interpolation polynomials for approximating the
solution, or using the moments methods for this
purpose.

(iif) Application of various variational principles,
collocation methods, methods of artificial separation of
singularities, and so on.

All methods mentioned above have the same disad-
vantage: they can be used only for a specific three-par-
ticle system. These methods mainly involve calculation
of bound states or states of scattering of three identical
particles.

Here, we propose a quite universal method for solv-
ing system of equations (1) for calculating bound states
as well as scattering states in systems with arbitrary
masses, which interact via arbitrary pair short-lived
potentials that can also be defined numerically. In the
method proposed here, the domain of an unknown
function isdivided into anumber of intervals on each of
which the function is approximated with the help of
corresponding interpolation polynomials. The method
for solving system of equations (1) is a modification of
the standard method for solving integral equations, in
which the integral on the right-hand side is replaced
with the help of a quadratures formula for solving
Eq. (1). As aresult, we arrive at a system of algebraic
equations for values of the sought function at the nodes
of the quadraturesformula. In the proposed method, the
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domain of the sought function is divided into a number
of segments, on each of which the function is deter-
mined with the hel p of interpolation polynomiasrepro-
ducing the correct behavior of the functioninthevicin-
ity of the above singularities, after which integration is
carried out using quadratures formulas. A package of
application programs was used for realization of the
proposed numerical method for solving the system of
integral equations (1) [13-15].

We will consider the results of calculation of these
resonant processes using as an example the calculation
of cross sections for the simplest reaction of dissocia-
tive attachment of electrons to hydrogen molecules.
These results are shown in Fig. 2 together with the lat-
est experimental data [4, 19-21] and the results of cal-
culations based on other approximations [5-11]. These
results confirm the existence in this system of the reso-
nant states considered above. It should be noted here
that experimental results of observation of three-parti-
cle resonant states were presented for the first time by
Poincaré [3] for the dissociative attachment of an elec-
tron to hydrogen molecules. However, in view of the
electron energy distribution within about 0.1 €V in the
beam, only nonmonotonic character of the energy
dependence of the dissociative attachment cross section
was reveal ed in these experiments; this nonmonotonic-
ity was confirmed in theoretical calculations published
more than 20 years ago [14, 17]. The oscillatory struc-
ture of the dissociative attachment cross sections was
confirmed only recently in experiments [19], in which
a special technique was used for energy stabilization of
the electron beam (~meV).

To estimate the influence of particle charges on the
effect, we consider the scattering of electrons from
hydrogen halide molecules. Since the electron affinity
to the hydrogen atom is much smaller than to a halogen
atom [18], ahydrogen halide molecul e can be proposed
as a system consisting of a proton and a negative halo-
genion. Thus, in the approach proposed here, the main
approximation is that the interaction of the projectile
electron with the nuclei of the target molecule is
replaced by the interaction of the incident electron with
the proton and the negative halogen ion. The complex
many-particle problem of calculating the electron scat-
tering cross section at diatomic moleculesis reduced to
the problem of collision in athree-body system, which
can be solved using the method of quantum scattering
problem in a few-particle system. Naturaly, this
approximation isvalid for energies of theincident elec-
tron lower than the electron excitation energy of the
molecule.

Computational difficulties encountered in calcula-
tion of cross sections in the given approximation are
mainly associated with the long-range Coulomb inter-
action potentials between a projectile electron, a pro-
ton, and a negative haogen ion. It was mentioned above
that in this case the integral Faddeev equations cannot be
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Fig. 2. Dependences of the cross section of electron disso-
ciative attachment to hydrogen molecules on the energy of
projectile electrons: the solid curve corresponds to experi-
mental data [19]; the results of calculations performed
in[11], [7, 10], [10, 26], [21], and [20] are represented by
the fine-dash, large-dash, dot-and-dash, dotted, and double
dot-and-dash curves, respectively; our results of calculation
are presented by circles.

applied directly; either these equations should be modi-
fied or the differential formulation of the Faddeev equa-
tions in the coordinate state should be used [13-15]. It
should be noted that in the general case of scattering of
an electron from halogen molecules in the given
approximation,

e+(H'G)

Ee +(H'G") (elastic scattering processes),

Ee +(H"G)* (excitation processes),

EH+ + (e, G)* O (rearrangment processes
. Hs+(eHyrn  with excitation),

O

He+H +G g

%34_ e+ H* + GO (ionization processes),

0
%b+ H+G 0

the Faddeev equations for four mutually interacting
bodies (two electrons, a halogen atom, and a proton)
should be used. However, for some processes such as
dissociative attachment reactions, we can confine our
analysis to equations for three pairwise interacting
bodies.

In our case, to calculate dissociative attachment of
an electron to hydrogen halide molecules, we apply the
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Fig. 3. Dissociative attachment of electrons to HI mole-
cules: the results of calculations performed in [19], [9],
and [21] are represented by the dashed, fine solid, and bold
solid curves, respectively; the results of calculationsin the
semiclassical approximation [21] are depicted by the dash-
and-double dot curve; our results are shown by the dot-and-
dash curve.

Faddeev equation for three charged particles in the
coordinate space, which have the form [13-15]

= _Vizl'pj! (6)

j#£i

(=8, -4y +Vi(x) - E)¥;

where

n = Okd;

Xi A/kaj ,

2m, 2mm,

X = [=——(r;=ry),

m+m

y = 2mi(mj+mk)r._mjrj+mkrk
! m+m+m. ' m+m ]

and the coordinates are connected viathe relations

X = Ij J+Syj7 Yi =

mkz m,

2 2,2 _
e (m+m)(m+mk) ST =L

~SiX; T Gy

V4(X) being pair short-range interaction potentias
defined by (4) and (5). The relation between the
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momentum and coordinate representations is defined
by the Fourier transformation,

W(k;, pi)
= (2n)‘3jexp[—i(ki 0 + p; T7)]W (%, i) dx;dy;.

To obtain aunique solution of integrodifferential equa-
tionsin the coordinate space, we must add the boundary
conditions, which have the form [13-15]

WilXi ¥idx,y .0 —> 0, (1)
Wioay) o @00 em(ik i —iw))

exp(i’\/E]|yj| +iw;))
il

+ ZAij(y]’ Dzi)(ﬂ(xj) (8)
exp(i VE|X| +iwp)

where

= 2||(|ln(|k||x| (ki 30)),

_E

L In(2 ,
WJ kZJ2| Jk|/\/—k ( ’\/_k)lykl

WO——

Z| L in2J/E)IX],

o Ka;q;
' 2mij’

A large number of various numerical methods have
been developed on the basis of approximation of com-
ponents W, by bicubic Hermite splines, quintet basis
splines, etc. However, an effective, reliable, and univer-
sal agorithm of the numerical solution of Egs. (6) with
boundary conditions (7) and (8) in the coordinate space
has not been devel oped for the following reasons. First,
an agorithm of numerical solution for processes with
threefree particlesin theinitial and final states does not
exist in view of rather complex boundary conditions.
Second, point-by-point convergence of the result to the
exact solution upon a decrease in the mesh size cannot
be proved analytically in any of the known numerical
methods based on finite different approximation.

Consequently, the application of the mesh method in
the polar coordinate system [14] for numerically solving
the system of coupled integrodifferential equations(6) in
partial derivatives with boundary conditions (7) and (8)
appears as most justified since analytic solutions also
exist in this case for some potentials determining the
resonant states under investigation [13, 14, 22]. This
makes it possible to monitor the accuracy of the solu-
tions obtained by the numerical method.

Ex = E—K;.
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Fig. 4. Dissociative attachment of electrons to HBr mole-
cules: the experimental results [9, 10] are shown by the
dashed curve; the results of calculations performed in [26]
are represented by the solid curve; our results are shown by
the dot-and-dash curve.

Figures 3—-6 show the results of calculating the cross
sections of electron dissociative attachment to hydro-
gen halide molecules and their isotope-substituted
modifications in the ground state and in excited vibra-
tion-rotation states. Also shown are experimental
results [4, 7, 9, 11, 19, 21] and the results of calcula-
tions based on other approximations [4-11], which
demonstrate suppression of oscillations in the scatter-
ing Cross sections.

Let us consider the effect of these peculiar reso-
nances on the rates of chemical reactions, which
appears interesting for explaining electron transport in
proteins (physically, this transport is one of the main
functionally important processes in a cell [15, 23]).
Knowing this transport mechanism, it would be possi-
bleto explain how atransition ismade from structurally
disorganized chemica transformations (e.g., in solu-
tions) to coordinated subsequent stages typical of bio-
logical systems [15]. It should be noted that no new
interactions are used in nature and the processis orga-
nized due to an appropriate choice of molecular struc-
tures and the corresponding well-known interactions.
Thus, identification and analysis of these interactions
will make it possible to understand physica mecha-
nisms of processes occurring in proteins and other
molecular structures such as DNA and RNA.

To study the processes described above, we first
consider a simple system of two identical coupled par-
ticles tunnelling through a potential barrier by using a

g, A? o, A?
1-2 T T T T T T 18 T T T T T
16+ E
1.0+ -
14} -
0.8 {12p -
10} 1
0.6+ e
8F _
0.4 1 6} -
4l |
0.2+ _
2 L .
1 1 1
0 02 04 06 038 10 12 14 0 0.2 0.4 0.6 0.8 1.0 1.2

E,eV

E, eV

Fig. 5. Dissociative attachment of el ectronsto DBr moleculesthat wereinitially (a) in the ground state (v = 0) and (b) in the excited
vibrationa state (v = 1). Our results and the results of calculations performed in [26] are shown by the dashed and solid curves,

respectively.
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Fig. 6. Isotopic effect in the reactions of dissociative attach-
ment of electronsto HBr and DBr molecules. The solid and
dashed curves correspond to the results of calculations per-
formed using the nonlocal theory [26]; our results are
shown by the dot-and-dash curve.

mathematically correct quantum theory of scattering in
afew-body system [13-15].

It should be noted that tunnelling of particles
(including structured ones) is usually considered on the
basis of well-known theories [24] and results are auto-
matically extended to many-particle systems (espe-
cialy in applied studied, e.g., in biology [23]). Most
results in these applications are associated precisely
with analysis of tunnelling through various potential
barriers of multicomponent structured complexes.
Quite often, such results do not correspond to theinitial
problem and do not reproduce experimental data. It
should be noted that if the barrier size is much larger
than the characteristic size of acomplex, the difference
from the structureless caseisinsignificant. If the size of
the complex is commensurate with the barrier width,
mechanisms appear [15, 25] leading to anomalous
transparency of the barrier (analogously to the Ram-
sauer effect [4, 5, 7]).

The physical reason for the barrier transparency is
associated with the possibility of formation of abarrier
resonance since the potential energy of the system may
have aloca minimum ensuring the metastable state of
the complex; to this end, the interaction of all particles
of the complex with the barrier is required.

To demonstrate this effect, we use the quantum scat-
tering theory to consider the tunnelling of a pair of
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Fig. 7. Tunneling probabilities for a structureless (1) and
structured (2, 3) particles as functions of the energy of the
projectile particle for the harmonic potential (2) and the
Morse potential (3) for various characteristics of the barrier
a=1(a), 6 (b), and 11 (c). Energy E isgiven in units of the
corresponding potential.

identical particlesm, =m, = mcoupled through various
types of interaction (harmonic oscillator, Morse and
Gauss potentials) through a potential barrier which was
simulated by a potential of the form [25]

aexp((x"y)’/2b)
J21b ’

where a and b are the barrier height and width. The
results of our calculations are shown in Fig. 7 together
with the results of calculations [25] based on Egs. (1).
It can be seen from the figure that, for a barrier height
much larger than the characteristic size of the incident
complex, its transmission probability differs insignifi-
cantly from the transmission probability in the case of
structureless particles. If the size of the complex is
commensurate with the spatial size of the barrier,
mechanisms appear which lead to a substantial trans-
parency of the barrier and even to itstotal transparency
in some cases.

In the simplest case of a complex consisting of two
particles, the physical pattern of the barrier transpar-
ency is determined by the formation of aresonant state

V(Xy) =
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upon the passage of only one of the particles through
the barrier. Thus, two particles are on different sides of
the barrier (i.e., thisresonant state is preserved until the
other particle passes through the barrier). The barrier
width is determined by the lifetime of this resonance.

It should be noted here the penetrability symmetry
breaking for structured particles may serve as a possi-
ble mechanism explaining different penetrabilities of
biomembranes in opposite directions (osmosis).
Another explanation of penetrability of abiomembrane
is given in [23] on the basis of the assumption that an
isothermal phase transition of the melting/crystalliza-
tion type occurs in a monolayer of the membrane, but
in 2D and not in 3D system. This makes it possible to
interpret some peculiarities of the blood circulatory
system, which could not been explained earlier.

Analogous results are considered in [24]; however,
factors determining the penetrability of potential barri-
ersfor structured particles are completely different.

Figure 7 shows that the tunnelling probability in
some cases may attain unity, which can be explained by
interference suppression of the reflected wave (this
phenomenon is widely used for blooming of optical
systems). As the number of interacting particles
increases, the effect of enhancement of the barrier pen-
etrability may substantially increase. Thus, under cer-
tain conditions, coupled clusters not only surmount
obstacles more easily, but can also be themselvestrans-
parent to other particles (this is often encountered in
biological systems).

The most astonishing fact is that this mechanism of
potential barrier transparency for structural particles
was confirmed in experiments [19-25].

These features are commonly observed in real sys-
tems, e.g., in the simplest chemical reactions induced
by electrons:

e+ AB(vy, Jy)

e+AB(v,, J;) (elastic scattering processes),
EP +AB(v,, J,) (vibration-rotation excitation),

U
— %leA + B O (dissociative attachment
[A+eB E of electron to molecule),

O
e+ A + B (dissociation of molecule).

In the approximation of the quantum theory of scatter-
ing in afew-body system, it ispossibleto reproduce the
experimental data[9-11, 19-26] on the simplest chem-
ical reactions occurring during the interaction of elec-
trons with diatomic molecules in the ground state as
well as in excited vibration-rotation states. These
results are presented in Figs. 8-11; al calculations in
this case are performed in the above-mentioned approx-
imation, in which the interaction of an electron with

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

925

o, A2
25 T T T T T T T T T

20

0-1
15

10

o
)
T

5
=)}
T

=
~
T

o
[\
T

0.35

0.30

0.25

0.20

0.15

0.10

0.05

L 1 1 1 1 1 1 1
0 05 1.0 1.5 20 2.5 3.0 35 40 45 5.0
E,eV

Fig. 8. Vibrational excitation of hydrogen halide (HBr) mol-
ecules by electrons, e + HBr(v =0) — e+ HBr(v =1(a),
2 (b), and 3 (¢)). The dashed curves describe our results and
solid curves are the results of calculations performed
in[26].

nuclei and electrons of the target molecule was
replaced by the interaction of the electron with each
atom as a whole (the atom was treated as a force cen-
ter). The same figures also show the results of calcula-
tions performed in the resonance model approximation
with nonlocal potentials based on the quantum theory
of scattering in atwo-body system [26].
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Fig. 9. Vibrational excitation of hydrogen halide (HBr) mol- Fig. 10. Vibrational excitation of hydrogen halide (HBr) mol-
ecules by electrons, e+ HBr(v =1) — e+ HBr(v=0(a), ecules by electrons, e + HBr(v =2) — e+ HBr(v =1(a),
2 (b), and 3 (c)). The dashed curves describe our results and 3 (b), and 4 (c)). The dashed curves describe our results and
solid curves are the results of calculations performed in [26]. solid curves are the results of calculations performed in [26].
It should be noted in this connection that the appli-  with form factors of the type
cation of nonlocal separable potentials opens wide N N 1
prospects for detailed reproduction of experimental (k) = k- K2 g (1+8 sz
results [14, 15, 17]. For example, using the separable I (K) = z Vi [ll_l g
i=0 =1

potential

we can reproduce the experimental data on scattering
V(k k) = Ag(k)a(k’) cross sections with a preset accuracy both in the approx-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99 No.5 2004



RESONANCES IN ELECTRON SCATTERING BY MOLECULES

imation of the two-body problem [10, 16] and in the
approximation of the few-body problem [14, 15, 17, 27].

However, the main difficulty encountered in the
application of these potentials is associated with the
choice of parametersA, y, and 3. For thisreason, we use
here the simplest pair potentias (4), (5) whose param-
eters can be chosen on the basis of real spectroscopic
data[18] rather than empirica data, aswas donein[26].

It should be noted once again that this approxima-
tion appears reasonable for energies of the projectile
electron lower than the el ectron excitation energy of the
molecule. Otherwisg, it is necessary to use the many-
particle approximation instead of the three-particle
approximation since the contributions from the dissoci-
ation channels become significant (thisis demonstrated
in Figs. 8, 10, and 11). Consequently, we can speak of
the agreement with the experimental results only on the
average in view of the initial model of the process as
well asthe simplest pair potentials simulating the inter-
action of an electron with atoms [14, 15, 17].

A comparison of the results of our calculationswith
the available experimental data [4—11, 19-23] shows
that smulation of the electron interaction with each
atom of the molecule based on Egs. (1), which corre-
spond to the multiple scattering pattern [6, 14, 17],
makes it possible to attain satisfactory agreement with
experiment (coincidence of the orders of magnitude of
cross sections, including isotopic effects and threshold
singularities [14-17]).

The well-known theoretical methods for studying
resonant processes occurring during electron collisions
with molecules [4-11] (the boomerang method, the R
matrix method, the method of time evolution of the
wavefunction, the Feschbach operator method, etc.) are
based on interpreting this process as a multistage pro-
cess. The first stage involves the electron capture by a
mol ecule and the formation of anegative molecular ion.
The second stageisthe decay (evolution) of thisstateto
various states of the decay products: a negative ion and
aneutral or excited atom, two neutral or excited atoms
and an electron (dissociation of the molecule), and an
excited molecule and an el ectron (excitation of the mol-
ecule by electron impact). The basis of this formalism
i.e., the formation of an intermediate state of anegative
molecular ion) is not always substantiated from the
physical point of view. For example, in the case of dis-
sociative attachment of an electron to a hydrogen mol-
ecule, the lifetime of this complex is comparable to the
electron mean free time, during which it covers a dis-
tance equal to the diameter of the hydrogen molecule.
An analogous situation also emerges for the reaction
[14, 27]

O(°P) + CS(X'z") — co(x'=") + S(°P),
in which a considerable fraction of the translational

energy (in accordance with the momentum limit
E,/E, = 0.88 [27]) is transformed into the vibrational
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Fig. 11. Vibrational excitation of hydrogen halide (DBr)
molecules by electrons, e + DBr(v = 0) — e+ DBr(v =
1 (a), 2 (b), and 3 (c)). The dashed curves describe our
results and solid curves are the results of calculations per-
formed in [26].

energy of the CO molecule. Such areaction also occurs
without the formation of an intermediate complex.

Naturally, many reactions exist in which a long-
lived intermediate complex is formed in the course of
the reaction (see [5-11, 14, 15, 17] for details). How-
ever, for some processes like those described above, a
preliminary analysis of experimental data for a given
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processes required for analyzing various collisions; the
absence of such an analysis often leads to erroneous
interpretation of experimental data.

Thus, aclass of processes existing in atomic, chem-
ical, and biological physics can be referred to as direct
processes in analogy with nuclear physics. The main
feature of these processes is that no intermediate long-
lived complex is formed in the course of scattering.

Consequently, the most adequate methods for inter-
preting such direct processes and reaction occurring
with the formation of an intermediate complex have
been those proposed by Faddeev, Yakubovskii, and
Merkur'ev [13], who developed a quantum theory of
scattering in few-body systems without model assump-
tions concerning the formation of an intermediate com-
plex during a collision. This method can be applied for
describing direct processes as well as processes occur-
ring with the formation of intermediate long-lived
states. Thus, we can state that quantum transparency
effectsfor various barriersand peculiarities of chemical
reaction mechanisms described above can take placein
various branches of physics, chemistry, and biology
and can be interpreted in the framework of nonrelativ-
istic quantum mechanicswith the help of the formalism
proposed in [13-15].

This is especialy important for molecular biology,
inwhich aconsistent and mathematically correct expla-
nation of fermentation reactions has not been obtained
asyet [23]. The contemporary description of these reac-
tions based on the assumption that a part of the free
energy liberated as a result of a reaction is used for
accelerating catalysis, i.e., penetration through abarrier
(recuperation of energy), does not permit one to quan-
titatively analyze the reaction energy. For thisreason, it
is extremely difficult to experimentally confirm or
reject the proposed model.

On the contrary, the above substantiation of the
transparency of potential barriers for structural com-
plexes with a size commensurate with the barrier width
provides an explanation for such reactions based on the
well-known physical principles in the framework of
ordinary quantum theory for afew-body system.

Let us consider the geometrical (spatial) character-
istics of the above-mentioned peculiar resonant states.
Since it is quite difficult to study these characteristics
experimentally in the case of electron collisions with
molecules, we will consider systemsthat are accessible
for experimental studies, viz., clusters of molecules of
inert gases [28].

It should be noted that these molecular clusters con-
sisting of atoms of helium, lithium, and a number of
inert gases attract attention of both theoreticians [29]
and experimentalists [28] primarily in the context of
applied studies such as superfluidity, superconductivity,
Bose condensation, chemistry and physics of clusters,

and laser physics (the possibility of developing He,
molecular laser), as well as due to the possibility of
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observing unusual quantum phenomena such asthe Efi-
mov effect in real systems.

However, a direct theoretical analysis of even the
simplest of the above systems, viz., He; consisting of
three helium nuclei and six electrons, is an extremely
complicated problem.

To analyze the He; system, we consider the cluster
approximation in which this system is replaced by a
simpler system consisting of three force centers
(helium atoms). The validity of this approximation for
calculations of bound states is obvious since the differ-
ence between the binding energy of the system and the
ionization energy of the atom is several orders of mag-
nitude. It is well known that helium atoms are bosons;
consequently, the problem boils down to analysis of
three pairwise identical neutral spinless particles. To
solve this problem, we propose mathematically correct
model-free methods in the theory of scattering in the
three-body system [13-15].

It should be emphasized that virtual levelsin paired
subsystems in the case of complex many-particle sys-
tems do not lead to the emergence of resonant statesin
a many-particle system [1]. This, however, does not
mean that this effect is absent in these systems since it
can be due to many-particle and not two-particle virtual
states.

For this reason, we will consider the interpretation
of a number of peculiar properties of He;, Ar;, Krs,
Ne;, Xe;, Liz, and Rn; systems precisely on the basis
of the three-particle approximation. It should be noted
that a large number of theoretical and experimental
methods exist for studying clusters consisting of atoms
of helium and a number of inert gases. Most methods
are intended for studying bound states; however, scat-
tering states [28-31], which are most informative for
confirming the existence of peculiar resonant states,
were practically ignored.

It was stated by a number of authors [30] that the
main difficultiesin studying the He; system are associ-
ated with itslow binding energy (~1 mK), an unusualy
large size of the excited state (~150 A), and a strong
repulsion at small distances. However, the results
obtained in [15, 31], where an analogous three-particle
approximation was used for calculating the He; system,
differ from the statements made in [30].

For thisreason, it would be al so interesting to verify
the conclusions drawn in [30] on the basis of the three-
particle approximation with the short-range pair poten-
tials used in [32]. The main purposes of this investiga-
tion are

(i) determining the number of possible resonant
states,

(i) clarifying the influence of pair interaction poten-
tials on the characteristics of these states;

(iii) estimating the effect of repulsion at short dis-
tances, which can be approximated by ahard coreinthe
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model for the boundary conditions[13-15] imposed on
the characteristics of these peculiar states.

Thus, the theoretical analysis of the He; system is
reduced to solving eguations in the quantum theory of
scattering in a three-body system, which makes it pos-
sible to use the well-known methods [13-15]. In con-
trast to [30], where resonances in a three-particle sys-
tem were studied using the Faddeev equations on the
basis of analytic continuation of the scattering matrix to
the range of complex energy values, we use here direct
numerical solution without an analytic continuation.

Inthis case, after the separation of angular variables,
the Faddeev equations (6) in the coordinate space for
the He,; system in the three-particle approximation with
pair short-range potentials [32] have the form [13-15]

[y =W Y) = VI (49
y ©
* 3 [Wa ).y, rl)dnEL
where o
H“z__ajz_ LD AL
' ox~ 0y X y
z=E+i0, L=1+A, a=(,\).

For calculations with a hard core in the model of
boundary conditions, the right-hand side is equal to
zero for x < ¢, where c is the core size. To obtain an
unambiguous solution to the equations, we must preset
boundary conditions (7), (8),

LIJaL(X! y)lx:O = O, l'IJaL(Xi y)lx:O = 01 (10)

which assume the following form in the boundary-con-
dition model:

1

aL(C y)+ZILPaL(X y)haa(x y)r]dr] = O

a 1

X 3y _Bxyng”?

“gt T2 O
y = Bx", y°_ J3xyng
D44 2 0

For p — oo, the boundary conditions in the case of
short-range pair potentials can bewrittenintheform[13]

aaL,vzl-IJI, v(X)Hv(/\/E_ E2,I,v)

+AaL(e)exp(iJE5%+ inL/2’

1))

al 5o

(11)
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where () (X) are the partial components of the wave
functions of paired subsystems with binding energy

€, P = X +y?, 0= actan(y/x); aq,, and A, (6)
are the scattering amplitudes of processes with two or
three particles, respectively, in thefina state; and H,(x)
are the Hankel spherical functions.

In calculations of bound states, the wavefunctions
decrease quite rapidly at infinity; consequently, a a
large distance x = R, y = R, the asymptotic boundary
conditions can be replaced by the conditions

aL|x Rx _ |,\/_
v

Wat |x=

AL ]

aL|y R

For the He; system in the three-particle approxima:

tion with angular momentum L = O, we have
I i 1D

Hyi = Hoy = _6_X2__+I(I "‘1)[;2"'
where partial components | assume even values; | = 0,
2,4, ...; and the expression for functions h;a. x,y,n)is
givenin [13-15].

The asymptotic behavior of the components of

Egs. (9) for scattering processes with short-range
potentials can be described by the function [13-15]

Wi(X,Y; 2) = doPg(X)[SiN(y/z—¢€q)
+exp(iy./z—eg)[a0(2) + o(y "))]]

N %F;/—Z[‘))[A,(Z, 8) +o(p 2],

whereay(2), z= E +i0isthe elastic scattering amplitude
for E> ey, and A/(E, 6) isthe decay amplitudefor E > 0.
We also assume that the helium molecule *He, has only

one bound state with binding energy €d < 0 and with
a corresponding wavefunction Yy(x).

For processes of scattering, the scattering matrix for
z=E +i0, E > ¢, the scattering phases and lengths in
the s state can be expressed with the help of the follow-
ing formulas:

(12)

S(2) = 1+2iay(2),

5(p) = 3ImInSy(eq+ p°+i0), >0,
L= a3 2(P)
T2
p-0 P
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Table 1. Binding energy, coefficient of clusterization, scat-
tering length, mean radius, and the square of mean radius for
various molecules

Potential | M | iR |Lg A| THe E‘*aePw’
mK A A
He; molecule
HFDHE2| —0.1171 | 0.2094 | 140 | 5.65 6.46
HFD-B | -0.1330 | 0.2717 | 137 | 548 6.23
HFD-ID | -0.1061 | 0.1555 | 139 | 5.80 6.64
LM2M1 | -0.1247 | 0.2412 | 132 | 557 6.35
LM2M2 | -0.1264 | 0.2479 | 131 | 555 6.32
TTYPT | -0.1264 | 0.2487 | 130 | 5.56 6.33
He; molecule, boundary-condition model
HFDHE2| —0.1170 | 0.2095 | 138 | 5.65 6.46
HFD-B | -0.1329 | 0.2717 | 135 | 548 6.23
HFD-ID |-0.10612| 0.1555 | 134 | 5.80 6.64
LM2M1 |-0.12465| 0.2412 | 130 | 5.57 6.35
LM2M2 |-0.12641| 0.2479 | 131 | 555 6.32
TTYPT |-0.12640| 0.2487 | 131 | 5.56 6.33
He; molecule
HFDHE2 | -1.6653 | 0.9077 | 134 | 55.26 | 66.25
HFD-B | —2.7430 | 0.9432 | 135 | 4833 | 57.89
HFD-ID | -1.0612 | 0.8537 | 140 | 62.75 | 75.38
LM2M1 | —2.1550 | 0.9283 | 129 | 51.53 | 61.74
LM2M2 | —2.2713 | 09319 | 131 | 50.79 | 60.85
TTYPT | —2.2806 | 09323 | 131 | 50.76 | 60.81
He; molecule, boundary-condition model
HFDHE2 | -1.6765 | 0.9078 | 135 | 56.22 | 67.11
HFD-B | —2.7458 | 0.9439 | 135 | 4831 | 58.00
HFD-ID | —-1.1061 | 0.8597 | 136 | 62.87 | 76.13
LM2M1 | —2.2585 | 0.9323 | 132 | 5241 | 62.04
LM2M2 | —2.2801 | 0.9319 | 131 | 50.79 | 61.05
TTYPT | —2.2885 | 0.9339 | 131 | 51.23 | 60.89

Table 2. Binding energies of inert gas molecules calcul ated
by using the HFD-B potential

Energy,
105 at. units Ne, Ar, Kr, Xe, Rn,
Eirr 178 394 619 854 9268
E@(p 135 446 629 874 -
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To solve the system of equations (9) with boundary
conditions (10), (12) numerically, we used the standard
method described in detail in [13-15, 17]. For pair
interaction potentials, we used potentials HFDHE2,
HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with
appropriate parameters [32], which reproduce in detail
the main parameters of the corresponding molecules[18].

The results of calculation of the energy of bound
statesin systems He; and Hej with and without taking
into account the hard core are given in Tables 1-3.

Interpretation of the geometric characteristic of the
He; molecule in both ground and excited states was

given in [31]. Using the methods developed in these
papers, let us consider the geometric characteristics of

Ne; and Nej molecules which are of considerable

interest in the context of investigations into Bose con-
densation, superconductivity, and superfluidity. The
results of calculation of the density function defined
as[31]

p(ry) = I|F(r1,r2,r3)|2dr2dr3,

where
1
F(ry,r,,rg) = —%P(x,y,z’)
213 2T[Xy|:|
N Xy[w(x Y20 WY z‘)} 0
X'y Xy 0
7 =X
Xy

are presented in Fig. 12. This function has the form

_ J3 2
p(r) = 4T[2rzj|F(x,r£, 2% dxdz.

A sufficiently clear representation of the geometric
characteristics of the molecules of inert gases is pro-
vided by plotting this function in the coordinatesr, r,,
where

h=rz,r, = l—j—lr(l—z'z)llz.
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Note that, for excited states of the inert gas molecules,
as well as for the molecules of Hej [31] and N€&j

(Fig. 12), this function has two peaks, which corre-
sponds to a linear structure. Thisimplies that the third
particle in the excited state is located with a high prob-
ability between two other particles (asif this state cor-
responded to two combined paired subsystems). It is
precisely this configuration that correspondsto the con-
ditions for the emergence of the Efimov effect in a
three-particle system. This conclusion is confirmed by
calculations of the clusterization coefficient defined by
the formula[31]

fo = J’lP(x, Y, Z)@,(x)azdx.

The results of such calculations are givenin Table 1. It
can be seen that two-particle states dominate in the
excited state Hej , while their role in the ground state
isinsignificant. In the ground state, system He; forms a
nearly equilateral triangle, while in the excited state,
one of the atoms is at a large distance from the other
two atoms. Other excited states can be obtained by the
similitude method [1, 13-15].

An analogous structure is formed in the calculation
of the systems Ne;, Ars, Krs, Xe;, and Rn; using the
three-particle approximation. The results of calcula-
tion of these systems in the given approximation with
the HFD-B potential and the parameters borrowed
from [32] are presented in Tables 2 and 3.

In calculations based on the boundary-condition
model, the value of core ¢ was chosen so that even a
dlight change in this quantity did not affect the binding
energy of paired subsystems. In our calculations, ¢ =
1.5 A, the value of binding energy for the helium mol-
ecule was 1.69 mK, and the value of r, was 100 A. A
detailed description of the numerical method for solv-
ing system of equations (9) with asymptotic boundary
conditions (11), and Egs. (12) isgiven in [13-15].

It should be noted that, according to our calcula-
tions, the size of the ground state of the He; system is
smaller than the size of the He, molecule. However, the

size of the excited state He; of the three particle sys-

tem is much larger than that of the two-particle system
He,. The experimental data[28] confirm this statement.
Thus, in the given approximation, the results of calcu-

931

()

Fig. 12. The density functions for Ne} molecule in the
(a) ground and (b) excited states.

lations indicate that peculiar resonant states can existin
the He; system, the number of such states being not
more than two.

To study the scattering processes occurring during
the callision of an atom with a helium molecule and to
determinetherole of pair interaction potentials, we cal-
culated the amplitudes of elastic scattering and decay as
well as phase shifts with and without taking into
account the hard core. The results of these calculations
aredepicted in Fig. 13. The results are almost indepen-
dent of the form of pair interaction potentials and on
whether or not the hard core was taken into account
both for bound states and for scattering state.

Table 3. Binding energies of the ground state and the first excited state of the inert gas molecule trimers calculated by using

the HFD-B potential

Ne; Ne; Arg Arj Krs Kr Xeg Xe; Rng Rn3
Energy, 107 at. units 398 330 1278 1215 1885 1811 2509 2438 | 30875 | 30801
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99 No.5 2004
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Fig. 13. Dependence of phase shifts on energy &q(E ).
Ejap = (3/2)(E + |eq]) for collisions between the helium atom

and molecule for potentials HFD-B, LM2M2, TTYPT [32]
calculated (a) without and (b) with taking into account the
solid core.

Thus, it can be concluded that the form of pair inter-
action potentials and alowance for a hard core in the
boundary-condition model in the given approximation
does not substantially affect the results of calculations.
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Abstract—The comparative values of the peak and integral cross sections of spontaneous Raman scattering
and the optical dephasing time of molecular vibrations were determined for several oxide crystals by spontane-
ous Raman spectroscopy. The spectral, time, and energy parameters of stimulated Raman scattering (SRS) were
measured for ten crystals using picosecond YLF : Nd laser pumping with a radiation wavelength of 1047 nm.
An analysis of the experimental dependence of the threshold energy of pumping SRS on the integral and peak
cross sections of spontaneous Raman scattering showed that the SRS gain increment explicitly depended on the
integral cross section and was independent of the peak cross section of spontaneous Raman scattering as the
ratio between the pumping pulse width (11 ps) and the time of optical dephasing of molecular vibrations
changed from 0.42 to 9.3. The gain coefficients of steady-state stimulated Raman scattering under threshold
stimulated Raman scattering conditionswere determined for all the crystal s studied on the basi s of the measured
threshold SRS pumping energies, the duration and width of the spectrum of pulses, the nonlinear interaction
length, the intensity of pumping, and the theoretical dependences that relate the steady-state and transient SRS
gain increments. The steady-state SRS gain coefficients obtained in this work fitted well a linear dependence
on the peak cross sections of spontaneous Raman scattering, which substantiated the correctness of our analysis
and measurements. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Stimulated Raman scattering (SRS) under picosec-
ond laser pumping conditions had been extensively
studied in the late 1960s—early 1970s [1]. This was
caused by the observation of new (compared with nano-
second pumping) features of the processrelated in par-
ticular to manifestations of the transient character or
violation of coherence of SRS and the influence of dis-
persion and self-phase modulation on the time, spec-
tral, and spatial radiation parameters. The theory of
transient SRS (seereviews[1, 2]) explained well some
of the experimental results obtained in gases and lig-
uids [3] and, more recently, in quartz optica fibers
under the conditions of a large nonlinear interaction
length between radiation and media [4]. Picosecond
SRS was also studied in well-known calcite and lithium
niobate crystals, more recently, in popular KGd(WQO,),
(KGW) crystals[5], and others. In recent years, interest
in nanosecond and picosecond SRS in crystals has
increased because crystals offer much promise for use
in SRS frequency converters of laser radiation and for
the advancement into the infrared spectral range.

Currently, several new promising crystals active in
SRS have come into view [6-10], and the search for
new ones continues. Although the general laws govern-
ing SRS in liquid, gaseous, and solid media should be
similar, there are certain differencesrelated, for instance,
to different phase relaxation rates and inhomogeneity
of the spectrum of vibrational resonances [1], disper-
sion [2—4], the mechanism and dynamics of self-phase

modulation [11, 12], and the mechanical and thermo-
physical properties of media.

Asthe selection of the object of study and the mod-
ern experimental methods and laser techniquesallow us
to move from the micro- to femtosecond time range in
studying SRS [13-15], of specia interest is, in our
view, correspondence between experimental data and
theoretical concepts of transition from the steady-state
to transient SRS mode. As is well known, there is no
strict time boundaries that separate steady-state and
transient SRS, which impedes using one or another the-
ory and a comparison of experimental results. If the
response of a system to an exciting light pulse of width
T, islinear, the nonstationarity condition for the system
with the phase relaxation time T, is comparatively
clear, namely, T, < T, but if the response is nonlinear,
this condition can be substantially different. This is
caused by the transformation of the time envelope of
the pulse and its spectrum in a nonlinear process.

If spontaneous intensity g, noise increases expo-
nentially under undepleted pumping conditions, the
intensity of the amplified wave at a Stokes frequency
shifted with respect to the pumping frequency increases
as |l = lgexpG for both steady-state and transient
SRS[2]. For steady-state SRS, when the pumping
pulse width T, is much larger than the phase relaxation
time of Raman scattering of the active vibrational
mode, the G, = gl L gain increment is linearly propor-
tional to theintensity of pumping |,,, the length L of the
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interaction of light with the medium, and the SRS gain
coefficient g. Asaresult of SRS amplification, the spec-
trum of the Stokes pulse narrows. At G, varying from
singledigitsto hundreds, this can substantially transform
the transient system response condition GyT, > 1, [1].
On the other hand, under transient SRS conditions, the
Stokes pulse during amplification can narrow with
respect to the pumping pulse[2, 3], which complicates
an analysis of the nonstationarity conditions. The the-
ory developed in [2], which combines analytic and
numerical methods, was used to determine the relation
between steady-state and transient SRS gain incre-
ments over wide ranges of their values, in particular, for
the 1,/T, ratios that ranged from 10 to 0.01.

In the limit of large gain coefficients, the relation
between steady-state and transient gain increments has

the form [2]
G, = [4G,=2 (1)
T OT27

where T, = 1/TcAvg and Avg, is the width of the sponta-
neous Raman scattering spectrum. Equation (1) can
easily be transformed into

1/2

AN O, O
G, = s heOmy (7 2
O heng O

where A, and A are the wavelengths of pumping and
Stokes scattering shifted to the longer waves, n, is the
refractive index at the Stokes frequency, o, istheinte-
gral cross section of spontaneous Raman scattering,

Oiy = Io(v)dv =04,

and v = 1/A isthe radiation frequency. The intensity of
pumping radiation is I, = E/1,S¢, where E; is the
pumping energy and Sy is the effective cross section
area of the pumping beam. The steady-state SRS gain
coefficient g is related to the peak cross section oy, of
spontaneous Raman scattering as [1]

O AN,

¢’hn?

g(v) = (3)

Note that, as 0,(0;y) ~ A5" [1], the steady-state Raman
gain coefficient g (accordingly, the G, gain increment
too) islinearly proportional to the radiation frequency.
(A quadratic frequency dependence of the SRS gain
coefficient was observed in several experiments, prob-
ably because of a contribution of resonance electronic
trangitions in the ultraviolet spectral range to the non-
linear process[6].) It followsin particular from (2) that,
in conformity with theory [2], at large amplifications
and if dispersion is ignored, the transient gain incre-
ment G, is proportional to the squareroot of theintegral
spontaneous Raman scattering cross section o, and
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independent of the width of the radiation spectrum, the
width of the pumping pulse 1,,, and the time of phonon
optical dephasing T,.

In thiswork, we studied SRS in many crystals with
molecular vibration optical dephasing times T, varying
within more than an order of magnitude. We were
therefore able to analyze the characteristics of the tran-
sition from steady-state to transient SRS and estimate
the most important parameters of the nonlinear process
at a constant picosecond laser pumping.

Spontaneous Raman  spectroscopy techniques
allowed usto obtain comparative peak and integral SRS
Ccross sections that determine the steady-state and tran-
sient SRS gain increments in various crystals. For
ten oxide crystals, we measured the spectral, time, and
energy SRS parameters under pumping with a
YLF: Nd laser (pulse width about 11 ps, radiation
wavelength 1047 nm). An analysis of the experimental
dependence of the threshold SRS pumping energy on
the integral and peak cross sections of spontaneous
Raman scattering led usto conclude that, in agreement
with the concept of transient SRS, the SRS gain incre-
ment explicitly depended on the integral cross sections
and was independent of the spontaneous Raman scat-
tering peak cross section over the range of changesin
the 1,/T, ratio between the pumping pulse width 1, =
11 nsand thetime T, of optical dephasing of molecular
vibrations from 0.42 to 9.3. We used the theoretical
dependences rel ating the steady-state and transient SRS
gainincrementscalculated in[2] for various 1,/ T, ratios
to estimate the steady-state SRS gain increments G,
under the threshold SRS conditions for al the crystals
studied in this work. Next, we determined nonlinear
interaction lengths L and pumping intensities |, to cal-
culate the steady-state SRS gain coefficients g = Gy/I L
from the measured threshold SRS pumping energies
and the duration and width of the spectrum of pulses.
Thisallowed usto find the dependence of the gain coef-
ficient g on the spontaneous Raman scattering peak
cross section g, for al crystals. We showed that the
experimental steady-state SRS gain coefficient g satis-
factorily obeyed the linear dependence g = f(o)
[Eq. (3)], which in turn substantiated the correctness of
our analysis and measurements.

2. OPTICAL DEPHASING TIME
AND SPONTANEOUS RAMAN SCATTERING
PEAK AND INTEGRAL CROSS SECTIONS
IN OXIDE CRYSTALS

The crystals studied in thiswork are listed in Table 1.

SRS in crystals typeset in boldface was studied for
thefirst time. Detailed spectroscopic studies of the series
of akaline-earth metd (Ca, Sr, and Ba) and lead (Pb)
tungstates and molybdates were performed in [16, 17].
Table 1 contains the parameters of the most intense
Raman-active vibrations observed in spontaneous
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Table 1. Spectroscopic parameters of SRS-active modes of the crystals studied at 300 K

_— Integral cross Peak cross
Raman mode R%a'?r?grt]agc%a(t)tuesr- hVI brzlnor;? Refractive | EXCitation | section* of spon-|section* of spon-
Crysta frequency | ool S-en | Phaseraaxalion | REITSCUVE| ) i75 | taneous Raman | taneous Raman
Vg, cm? Ing linewi ?th time index n tion scattering oy, | scattering oy,
Avg, cm Tz = Urehve, ps arb. unit arb. units
Ba(NO,), 1047 0.4 265 155 ICs 21 63
BaM 00, 892 1.85 5.73 1.98 lICs 55 62
S'MoO, 887 25 4.24 1.98 ICs 63 51
STWO, 921 2.7 3.93 213 IICs 50 4
KGd(WO,), 901 5.4 1.96 19 0c, 50 35
(KGW)
CaMoO, 879 55 193 193 ICa 65 34
Cawo, 911 6.9+ 154 1.98 lICs 52 18
TeO, 648 9 118 221 ac, 150 35
PbWO, 904.7 4.1 2.59 2.15 uc, 171 97
PbMoO, 871 6.0** 177 2.25 uc, 390 120

* Peak and integral cross sections of spontaneous Raman scattering are given with respect to the cross sections of the Raman-active mode
(1300 cm‘l) of the diamond single crystal.

Raman scattering spectra and assigned to totally sym-
metrical v, vibrations of the [WO,]>~ and [M0Q,]? tet-
rahedral complexes. These complexes are the scheelite
structure fragments of metal tungstate and molybdate
crystals under consideration. It was shown earlier that
the type of the cation (Ca, Sr, Ba, Pb) substantially
influenced the width Av, of the spontaneous Raman
scattering line of metal tungstates; this width changed
from 6.9 cm?in CaWwQ,to 1.6 cmtin BawO,. A sim-
ilar trend was observed for metal molybdates. It was
shown that the widening of the v, line depended on the
mass of the cation and the distance between the
[WOQ,]% or [MoO,]% complexesin the scheelite crystal
structure. The BawO, and BaMoQ, crystalsare charac-
terized by alarge mass of the cation and the largest unit
cell size among the scheelites, which explains why the
spontaneous Raman scattering spectra of these crystals
contain the narrowest v, lines. The integral cross sec-
tion of the v, line remained virtually unchanged in the
series of akaline-earth metal (Ca, Sr, and Ba) tung-
states and molybdates. At the same time, the peak cross
sections for this line, which are inversely proportional
to the width of the Raman-active vibration, are
3-4times larger for BawO, and BaMoO, than for
CawQ, and CaMoQ,.

In thiswork, we for thefirst time measured the peak
and integral spontaneous Raman scattering cross sec-
tions for oriented Sf\WQO,, PoWO,, and PoMoO, crys-
tals. Table 1 shows that the g;,; value for Sf'WQO, is vir-
tually equal to that for CawO, and BaMoO,. These
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results substantiate our suggestion that the kind of the
cation weakly influences the integral cross section o,
for the v, line of totally symmetrical vibrations in the
series of akaline-earth metal (Ca, Sr, and Ba) tung-
states. Note that the width of the v, line in S’'WO, is
larger than in BawO, but smaller than in CawQ,. The
peak cross section of thisline g, in S'WO, issmaller by
30% than in BawO, but larger aimost twofold than in
Cawo, [17].

An important special feature of the spontaneous
Raman scattering spectra of PbWO, and PoMoO, crys-
talsis the dependence of the intensity of the v, line on
the geometry of scattering (hh and vhin Fig. 1), differ-
ent from that observed in the polarized spontaneous
Raman scattering spectra of alkaline-earth metal tung-
states and molybdates. The intensity of thislinein Ca,
Sr, and Ba tungstates and molybdates is highest when
thedirections of liner exciting light polarization and the
C, crystalographic axis coincide (E || C,4, hh) (Fig. 13,
Table 1). The intensity ratio I,/ (vh corresponds to
E 0O C,) for these crystals is larger than one, I/l =
1.2-1.25. For the PboWQO, and PbM0oO, crystals, this
ratio is smaller than one and equals 0.67 and 0.53,
respectively. This effect is most pronounced for the
PbMoQ, crystal, where theintensity of thev, lineinthe
spontaneous Raman scattering spectrum is abnormally
high for the vh geometry and exceeds the intensity for
the hh geometry by afactor of 1.9 (Fig. 1b).

Certain special features of the vibrational spectra of
PbWO, and PbM0oO, were also observed in [16, 17],

No. 5 2004



PICOSECOND STIMULATED RAMAN SCATTERING IN CRYSTALS

where the energies of vibrational levels in a series of
scheelites were analyzed. The essentia difference of
the energy diagrams of these crystals from those of the
other scheelites was explained by acomparatively large
degree of covalence of the bond between Pb and O and
the large mass of the Pb cation. Thisin particular man-
ifested itself by the lowest energy of totally symmetri-
cal stretching vibrations v, for crystalline and molten
PbWQO, and PbM 0O, among the scheelites.

Earlier, in the absence of data on the integral inten-
sities of Raman scattering by PoWO, and PbMoO,, it
was assumed that the peak cross section of the v, line
of spontaneous Raman scattering is low because of its
comparatively large width. Correct measurements of all
the parameters for all geometries and crystal orienta-
tions showed that the width of the v, linein the sponta-
neous Raman scattering spectra of PbWO, and
PbMoO, was close to the line widths for KGW,
CawQ,, and CaMo0Q,. The anomalously high integral
cross section values for the v, lines of lead tungstate
and molybdate, however, also predetermine their larg-
est peak cross section values in the series of scheelites
(Table 1), which offers promise for using these crystals
not only in picosecond but also in nanosecond SRS.

Along with the refractive indexes of al crystals,
Table 1 contains dephasing times determined from the
spontaneous Raman scattering spectrum width T, =
1/TcAvg, on the assumption of homogeneous broaden-
ing and the Lorentz shape of the spectrum. As follows
from our analysis, the spontaneous Raman scattering
spectra of the crystals labeled by asterisks (**) are
inhomogeneously broadened, which makes the corre-
sponding estimates of T, not unambiguous [1].

Table 1 showsthat, for pumping pulses of widtht, =
10 ps, the formal condition of transient SRS, namely,
GoT, > 1, is certainly satisfied at the conventional
threshold value G, = 25 for the Ba(NO;), crystal with
the largest dephasing time T, = 26.5 ps. At the same
time, for the TeO, crystal, for which T, = 1.18 psisthe
lowest, the G, T, product is comparable with T, = 10 ps
under threshold conditions, and the SRS process can be
close to steady-state. We stress that these consider-
ations are not strict, and only a comparison of experi-
mental and theoretical data alows the questions put
above to be answered.

3. EXPERIMENTAL DATA
ON STIMULATED RAMAN SCATTERING
AND THEIR CORRESPONDENCE
TO THEORETICAL CONCEPTS

In conformity with the above considerations, we
selected aY LiF, crystal laser asthe source for pumping
SRS. The laser operated in the regime of passive mode-
locking and generated at 1047 nm emitting a200-300 ns
train of 11 ps pulses with the total train energy up to
1.5mJ(Fig. 2). The optical scheme of the experimental
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(a) PbWO,

N

i JES

JLJ\_JL”‘ JJL

| | | |
0 200 400 600 800 1000

VR, Cm_l
Fig. 1. Spontaneous Raman scattering spectraof (a) PbWO,
and (b) PbMoO, crystals at linear exciting light polariza-
tions collinear (E || C4, hh) and orthogonal (E O Cy4, vh)
with respect to the C4 axes of these crystals.

unit for studying SRS was similar to that used by us
in[10, 18]. Radiation of the laser operating in the
TEM y, mode was attenuated by neutral light filters and
focused by a spherical long-focus (f = 70 cm) mirror
onto the sample under study. Laser and scattered radia-
tion passed through afocusing lens and adichroic filter
that cut off pumping radiation and fell onto calibrated
fast-response germanium photodiodes.

During one flash, the energy of separate pulse train
and scattered radiation picosecond pulses was mea-
sured with a digital oscilloscope (Fig. 2), which
allowed us to determine the dependence of the effi-
ciency of SRS on the energy of pumping pulses. The
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Fig. 2. (1) Pumping laser and (2) SRS radiation oscillo-
grams for the PbMoO, crystal.

time parameters of the pulses of scattered and excited
radiation were measured with a time resolution of
2-3ps on an IMACON-501 electron-optical camera
interfaced with a reading device on a silicon CCD
matrix. The spectral composition of pumping and scat-
tered radiation was anayzed with a PGS-2 grating
polychromator with the use of the CCD matrix and a
computer. The width of the pumping laser radiation
spectrum measured at the second harmonic frequency
Av,was 2.26 cm (AA, = 0.062 nm). For the measured
width of pulses 1, = 11 ps a the wavelengths A =
1047 and 523.5 nm, we had 1,Av, = 0.74, which was
evidence that pumping laser pulses were not fully lim-
ited spectrally [1].

Table 2. Normalized threshold pumping energies Etg“L and

steady-state SRS gain coefficientsin crystals

Crystal L, mm Etl?r L. /T, | Go 9
' uJem cm/GW
Ba(NOs), 40 | 24 0.42 | 300 14.2
BaMo0O, 18 | 130 192 | 93 8.1
SrMoO, 36 15.8 2.6 78 5.6
KGAWO,), | 36 | 104 | 56 47 5.1
S'WO, 43 181 28 75 4.7
CaMo0Q, 28 12.04 | 5.7 45 4.3
Cawo, 39 | 215 | 714 | 42 2.2
TeO, 10 43 9.3 37 9.7
PbWO, 30 5.4 425 | 52 10.9
PbMoO, 30 26 6.2 40 175
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Fig. 3. SRS efficiency as afunction of pumping energy for
the PbMoQO, crystal.

The oscillograms of laser pumping radiation and
SRSin the PoMoQ, crystal are shown by way of exam-
plein Fig. 2. Thethreshold of the appearance of SRSis
clearly seen. Theratio between the energies of SRS and
pumping pulse trains gives the dependence of the effi-
ciency of SRS on the pumping energy (Fig. 3). We see
that an increase in the efficiency of SRS corresponding
to undepleted pumping conditions transforms into sat-
uration with cascade generation of the second Stokes
component as the pumping energy increases. Cascade
generation of three to four SRS Stokes components
with radiation frequencies sequentially decreasing by
Vg (Table 1) with respect to v, and of severa anti-
Stokes components with similar frequency shifts
caused by four-photon mixing [1] is easily attainable
experimentally. The dependence shown in Fig. 3 was
obtained with pumping of comparatively low intensi-
ties, when the efficiency of generation of the higher
Stokes and anti-Stokes components was hegligibly low.
We extrapolated the dependences like that shown in
Fig. 3to zero SRS efficiency to determine the threshold

SRS pumping energy for all crystals and normalized it

th
by the crystal length (Epr L) (see Table 2). Asfollows

from the preceding section, spontaneous RS cross sec-
tions in the crystals under study can depend on the
direction of radiation polarization with respect to the
crystallographic axes of the crystals. We measured SRS
at pumping linear polarization directed parallel or nor-
mally to the crystallographic axes that corresponded to
maximum spontaneous RS cross section val ues.

3.1. An Analysis of Experimental Data

In this section, we anayze the experimental data in
terms of the relation between phase relaxation times
obtained by linear spectroscopy methods, spontaneous
Raman scattering integral and peak cross sections, and
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energy, time, and spectral SRS parameters. Thisrelation,
determined by (1)—(3), was discussed in the Introduction.

As follows from the measured energy characteris-
tics of SRS, the threshold SRS pumping energies

(Etg1r L) of various crystals differ ailmost by a factor of

ten (Table 2). The maximum SRS threshold was
obtained for the Ba(NO3), crysta with the smallest
integral cross section of spontaneous Raman scattering
and the largest vibration dephasing time T, = 26.5 ps
(Table 1). These features make SRS transient to the
greatest degree. SRS thresholds decrease for the group
of Ca and Sr tungstate crystals, whose T, times are
smaller compared with barium nitrate but are substan-
tially different and whose integral cross sections are
virtually equal.

SRSthresholds decrease for the group of Ca, Sr, and
Ba molybdates, which have somewhat larger integral
cross sections compared with Caand Sr tungstates and
different dephasing times T,. A substantial decrease in
the SRS threshold is observed for lead tungstate and
molybdate, which are characterized by the largest inte-
gra cross sections and minimum dephasing times T,.
For al these groups of crystals, SRS thresholds explic-
itly depend on the integral cross section of spontaneous
Raman scattering and are virtually independent of the
peak cross sections or phase relaxation times T, in con-
formity with the theory of transient SRS [2] [see (2)].

This conclusion isvisualy illustrated by the depen-
dence of the SRS threshold on theintegral cross section
of spontaneous Raman scattering shown in Fig. 4.
According to this figure, the SRS threshold monotoni-
cally decreases as the integral cross section of sponta-
neous Raman scattering increases. If the threshold gain
increment value is set at G, = 25 for al crystals in
Eq. (2) for transient SRS, then (2) gives the hyperbolic

thr

dependence E, L = f(n?/0;,). We do not analyze the

linear dependence of this function on the Stokes radia-
tion frequency, whose values are close for the crystals
under study (Table 1), but take into account the sharper
guadratic dependence on the refractive index [Eq. (2)].
The dependence of the experimental normalized
threshold SRS energies on n?/a;,, isshown in Fig. 5 for
the crystals studied. The hyperbolic dependence is
given by a solid line; it shows that, in agreement with
theory and Eq. (2), precisely the integral cross section
of spontaneous Raman scattering is responsible for
transient SRS amplification. Note that the experimental
values for the PbM0O,, PbWQO,, and TeO, crystals
with the shortest times T,, which make the SRS process
close to steady-state, also satisfactorily fit the hyper-
bolic dependence of the SRS threshold on the integral
Cross section.
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3.2. SRS Amplification Factors

Next, we checked the relation between transient and
steady-state SRS and estimated the gain coefficients g
of steady-state SRS on the basis of the theory described
in [2]. For this purpose, we used the dependences that
related the gain increments of transient and steady-state
SRS G, =f(Gy) calculated by Carman et al. for Gauss-
ian pulses and various ratios between the pumping
pulse width and the phonon dephasing time 1,/T,,
which changed from 10 to 0.01 for the samples under
study (Table 1). We assumed that the gain increments of
al the crystals were equal, G; = 25 [1], and used the
results obtained in [2] to determine the steady-state
SRS gain increment G, for each of them (Table 2). The
transient and steady-state SRS gain increments differed
most strongly (by afactor of 12) for the Ba(NO,), crys-

25
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Fig. 4. Threshold energy of SRS pumping normalized by
the nonlinear interaction length as a function of the integral
Cross section of spontaneous Raman scattering.
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Fig. 5. Experimental normalized threshold energy of SRS
pumping as a function of the reciprocal integral cross sec-

tion of spontaneous Raman scattering n?/cj,.. Thesolid line
qualitatively describes dependence (2).
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tal withthe smallest 1,/T, = 0.42 ratio (sharply transient
SRS). A decrease in the difference between the steady-
state and transient gain increments as the 1,/T, ratio
increases to values of about 4-9 is indicative of the
approach to a steady-state SRS mode in the PoMoO,,
PbWQO,, and TeO, crystals. The G, increments found
thisway can be used to calculate SRS gain factors g by
the formula G, = gl L, the nonlinear interaction length
L and the pumping intensity |, being known.

The nonlinear interaction length is as a rule deter-
mined as twice the length along which the beam cross
section increases twofold because of diffraction. For
the Gaussian beams that we are dealing with, this
length is given by the equation

_ 4T[W§n

where 2w, is the diameter at the beam waist at | = | /e
and n is the refractive index. The laser beam profile
measured using the CCD chamber was close to Gauss-
ian with adiameter of 2w, =80 um. Thelength L found
for n = 2 was approximately 5 cm. As follows from
Table 2, the lengths of our crystals are smaller than L =
5 cm and therefore determine the nonlinear interaction
length. The pumping intensity |, is given by

E
l, = =—2. 5
P Sefpr ( )
Here, E, and T, are the measured pulse energy and
width and Sy is the effective area of the beam cross
section determined by the overlap integral of pumping
and Stokes wave modes; for Gaussian beams, Sy =

ang [4]. Notethat, in our calculationsfor near-thresh-
old conditions, we ignore possible transformation of

L
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the spatial Stokes beam profile caused by SRS amplifi-
cation or self-focusing.

The E;' L, Gy, and T, = 11 ps val ues, measured and
listed in Table 2, were used to calculate the SRS gain
coefficients g for al the crystals. These values are
shown in Fig. 6 as depending on the peak cross section
of spontaneous Raman scattering normalized by refrac-
tiveindexes according to (3). On the whole, most of the
datawell fit the linear dependence of gain coefficient g
of steady-state SRS on the peak cross section of spon-
taneous Raman scattering, which is evidence of the cor-
rectness of measurements and their correspondence
to (3). The data on the PbMoO, and TeO, crystals,
which are characterized by large integral cross sections
of spontaneous Raman scattering and the shortest
dephasing times T,, fall outside the linear dependence
shownin Fig. 6. As has been mentioned above, possible
reasons for this may be related to inaccuracy of deter-
mining T, from the spontaneous Raman scattering
spectra. In contrast to the other crystals, TeO, is charac-
terized by two-photon absorption even under low-
intensity pumping. This effect manifests itself by visi-
ble glow of the laser-excited channel and can distort the
results of SRS gain coefficient measurements.

The values obtained in this work can be compared
with the literature estimates of SRS gain coefficients
for steady-state SRS excited in crystals by nanosecond
laser pulsesat 1060 nm. For instance, g = 11 cm/GW was
obtained for the Ba(NO5), crystal in [19]. For the KGW
crystal, the g value varies from 6 [20] to 4 [21] c/GW,
which is close to our data. The value obtained for
SIWO, in [22], g = 5 cm/GW, virtually coincides with
that given in Table 2. On the whole, the g values esti-
mated by us as described above are in satisfactory
agreement with the results obtained by independent
methods.

3.3. The Time and Spectral Properties of SRS Pulses

We measured SRS pulse widths and spectra for two
“extreme” crystals with the longest, T, = 26.5 ps, and
shortest, T, = 1.77 ps, optical dephasing times, that is,
for Ba(NOs), and PbM0O,. The Stokes pulse width for
Ba(NO,), decreased relative to T, in satisfactory agree-
ment with theory [2] from 11 to 7 ps, the spectrum
width being Avg = 3 cm™. As has been mentioned
above, the properties of the PbMoO, crystal are some-
what anomalous, which al so follows from the time and
spectral parameters of SRS. For this crystal, the width
of Stokes pulsest,=10.5 psat the fundamental and sec-
ond harmonic frequenciesis close to the pumping pulse
width, and the spectrum width isAvg=3.76 cm . At the
same time, according to [2], the Stokes pulse for
PbMoO, should be more than twofold narrower (for a
Gaussian envelope). The product tAvg = 1.18 for
PbMoQO, corresponds to a substantial deviation from a
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spectrally limited pulse, whereas this product for
Ba(NO;), is 0.63, which is much closer to a spectraly
limited pulse. Note that the self-phase modulation-
induced insignificant chirp of the pumping pulse fre-
quency of our laser had to be transferred from the pump-
ing frequency to the SRS Stokeswave frequency [12, 13]
and cause phase modulation and spectral broadening of
Stokes radiation. The reasons for the discrepancy
between theory and experiment for PbMoO, can be
related to the complex spectrum of vibrationa reso-
nances in the medium.

Ashas been shown in [4], in an optical fiber, that is,
in a medium with inhomogeneously broadened vibra-
tiona resonances (fused quartz), the SRS pulse under
picosecond pumping conditions slightly narrows, asin
the PbM 0O, crystal considered above, and has afemto-
second time structure caused by the large width of the
spontaneous Raman scattering spectrum. The PbMoO,
crystal may have similar characteristics, and the Stokes
pulse can have a substructure of width about 2 ps (irre-
solvable under our experimental conditions) deter-
mined by its spectrum. This substructure may prevent it
from narrowing.

4. CONCLUSIONS

We comparatively studied SRS of alarge number of
oxide crystals, for thefirst time for some of them, under
picosecond pumping conditions. Measurements of the
energy, spectral, and time SRS parameters and their
comparison with the spectroscopic parameters of spon-
taneous Raman scattering determined by us substanti-
ated the laws governing transient SRS. Measurements
of thethreshold SRS pumping energiesfor alarge num-
ber of crystals showed that the gain increment of tran-
sient SRS wasindependent of the dephasing time or the
spectral width of Raman-active vibrations but was
determined by theintegral cross section of Raman scat-
tering. The theory of transient SRS developed in [2]
was used to show that the theory on the whole correctly
described our data on transient SRS in oxide crystals
and the relation between the transient and steady-state
SRS gain increments. A comparatively simple experi-
mental technique for picosecond excitation of SRS and
a comparison of the measured SRS parameters with
theoretical dependences alowed us to estimate the
steady-state SRS gain coefficients in crystals and show
that they were related to the peak cross sections of
spontaneous Raman scattering determined by linear
spectroscopy methods.
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Abstract—Electrically conducting nanostructured carbon films obtained by chemical vapor deposition and
composed of nanodimensional graphite crystals exhibit the effect of optical rectification on exposure to nano-
second pulsed laser radiation. Experiments show that the amplitude and polarity of the pulsed voltage strongly
depend on the angle of incidence and polarization of the laser radiation and on the spatial orientation of acarbon
film with electrodes relative to the laser beam. Under the optimum conditions corresponding to maximum
amplitude of the response signal, the factor of conversion of the laser pulse power into electric voltage was
about 500 and 650 mV/MW at a laser wavelength of 1064 and 532 nm, respectively. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The phenomenon of optical rectification originally
reported by Bass et al. [1] offers an example of nonlin-
ear interaction between high-power laser radiation and
an optical medium. The effect is manifested when asuf-
ficiently powerful laser pulse passes through a nonlin-
ear optical crystal and consistsin that apulse of electric
polarization is induced in the crystal, the shape of this
pulse repeating the laser pulse envelope. If electrodes
are applied to opposite faces of such anonlinear optical
crystal, the laser-induced polarization will lead to the
appearance of a potential difference between these
electrodes [2, 3]. In nhoncentrosymmetric media, the
optical rectification effect is related to the second term
in the expansion of the electric polarization vector into
serieswith respect to the electric field strength—that is,
to the second-order nonlinear susceptibility, which is
also responsible for the second harmonic generation.
Although both phenomena were discovered almost
simultaneously and experimentally observed in alarge
number of noncentrosymmetric crystals (see, eg.,
review [3]), the optical rectification effect has received
much less attention than the second harmonic genera-
tion. The situation changed with the appearance of
lasers capable of generating femtosecond pulses, which
allowed optical rectification to be used for the genera-
tion of terahertz radiation in ZnTe and some other non-
centrosymmetric semiconductor crystals [4]. Quite
recently, the generation of terahertz radiation was
observed in epitaxial films of centrosymmetric YBCO
crystals, where the optical rectification effect is due to
aquadrupole (rather than dipole) mechanism of optical

nonlinearity [5]. Since the quadrupole nonlinearity
increases with the dimensions of molecules, we may
expect that the optical rectification effect related to this
mechanism can be observed in carbon nanotubes and
other nanostructured materials (asarule, possessing the
center of inversion). The existing theoretical descrip-
tions of the second harmonic generation and optical
rectification in carbon nanotubes refer to the effects
observed in the presence of a constant electric field [6].

This paper presents the results of our experimental
investigation of the optical rectification effect in carbon
films composed of nanodimensional graphite crystals.

2. EXPERIMENTAL

The experiments were performed with carbon films
obtained by chemical vapor deposition (CVD) from a
methane-hydrogen mixture according to our standard
technology described elsewhere [7, 8]. The films were
deposited onto 0.5-mm-thick silicon substrates with
linear dimensions 25 x 25 mm. The main structural ele-
ments in these carbon films are crystallites of an irreg-
ular shape comprising several (typicaly, five to fifty)
paralel, well-ordered graphite layers. The thickness of
these crystallites ranges from 2 to 20 nm, while their
lateral dimensions vary within 1-3 pum. In al crystal-
lites, the atomic layers exhibit predominant orientation
in the direction of normal to the substrate surface, with
amaximum deviation not exceeding £20° [9]. The dis-
tance between crystallites is about 0.5-1 um. The car-
bon films possessed clearly pronounced porous nanoc-
rystalline structure. The average thickness of nano-
structured carbon films studied was 3—4 pum.

1063-7761/04/9905-0942$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic diagram of the experimental arrangement (see the text for explanations).

Figure 1 shows a schematic diagram of the experi-
mental arrangement. Nanostructured carbonfilm6 ona
silicon substrate 8 was pressed with two flat conducting
electrodes 7 to a dielectric sample holder 9, so that the
substrate was in contact with the sample holder, while
the film surface was almost entirely free (parallel elec-
trodes covered only a small part of the film surface
area). The dc resistance between electrodes was 100—
200 Q, depending on the distance between them.

The films were exposed to the radiation of asingle-
mode single-frequency YAG:Nd®** laser. The laser cav-
ity scheme allowed linearly polarized output radiation
to be obtained [10]. The energy W of the linearly polar-
ized radiation pulse at a wavelength of A = 1064 nm
reached 50 mJ. The pulses had a Gaussian shape with a
full width at half maximum (FWHM) of about 22 ns.
The laser beam diameter was 2 mm. The laser beam
was attenuated by neutral filters and passed through A/4
plates (2, 3) and optical polarizer 4 (Fig. 1). By chang-
ing mutual orientation of the quarter-wave plates, it was
possible to rotate the polarization plane in the beam
entering the polarizer. This allowed the power of alin-
early polarized radiation at the polarizer output to be
smoothly controlled. The polarizer could be rotated
within 90° around its axis so asto obtain p- and s-polar-
ized output beams.

Then, the laser beam passed divider plate 5 and was
directed to the carbon film studied (Fig. 1). Using the
divider plate, together with photodiode 11 and an auto-
mated multichannel registration system 12 [11], it was
possible to measure the energy of pulsed radiation inci-
dent onto the sample. Divider plate 1, together with
avalanche photodiode 13, enabled the observation of
laser radiation pulses with the aid of an oscillograph.
The measurements according to this scheme were also
performed using the second harmonic mode of the
same laser. All the results presented below were
obtained for laser pulse energies below athreshold for

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

the visible laser damage of the nanostructures carbon
films studied. The damage could be observed at a laser
radiation intensity above 20 MW/cm? [12].

The amplitude of the voltage U appearing between
the electrodes during laser irradiation of the film was
measured using a storage oscillograph 10 with an input
impedance of 1 MQ, while the shape of electric pulses
could be observed using an oscillograph with a pass
band of 650 MHz.

3. EXPERIMENTAL RESULTS

The results of our experiments showed that irradia-
tion of a nanostructured carbon film by laser pulses at
A = 1064 nm leads to the appearance of pulsed voltage
between the electrodes. The shape of this signal was
virtually identical to the laser pulse shape observed
with the aid of the avalanche photodiode. Analogous
results were obtained for the samplesirradiated by sec-
ond-harmonic radiation (A = 532 nm). Asisknown, the
conversion to second harmonic leads to a decrease in

the laser pulse width by a factor of ./2. In our experi-
ments, the durations of pulses measured between elec-
trodes during exposure of the sample to laser radiation
with A = 1064 and 532 nm also differed approximately
1.4 times.

Further investigations showed that the amplitude U
and polarity of the pulsed response voltage strongly
depend on the polarization of laser beam and on the
spatial orientation of a carbon film with electrodes rel-
ative to the incident laser beam. When the laser beam
was perpendicular to the film plane, the response signal
amplitude was zero irrespective of the beam polariza-
tion and the arrangement of electrodes. Any cther ori-
entation of the film relative to the laser beam led to the
appearance of a nonzero pulsed response voltage.

Figure 2 shows the dependence of the response volt-
age pulse amplitude U on the laser beam incidence
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Fig. 2. Plots of theamplitude U of apulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the angle a of incidence of (1) p- and
(2) s-polarized laser radiation (t = 22 ns, A = 1064 nm,
W=2mJ).

angle a relative to the film plane (Fig. 1) for the p- and
s-polarized radiation (at a fixed laser pulse energy).
Note that, according to Fig. 1, a = 0 when the film sur-
face is perpendicular to the laser beam (initial orienta-
tion) and a is positive (negative) when the film is
rotated clockwise (anticlockwise) from theinitial posi-
tion. The axis of rotation passing through the point O,
the plane of the carbon film, and the electrodes are per-
pendicular to the plane of the figure coinciding with the
plane of incidence of the laser radiation (and the plane
of observation). It should be also noted that data corre-
sponding to incidence angles close to £90° are not pre-
sented in Fig. 2 because laser radiation incident at graz-
ing angles on the sample surface partly illuminated the
electrodes, with the result that the response voltage
pulse duration became significantly longer than the
laser pulse width. Variation of the laser spot position in
the region between electrodes at a fixed arrangement of
the sampl e did not influence the amplitude and shape of
the response signal .

As can be seen from Fig. 2, the experimental curves
U(a) behave as uneven functions of the angle, the abso-
lute value of U ismaximum at a = +(45°-55°), and the
U(a) curves for the p- and s-polarized laser radiation
are significantly different in magnitude of the response
voltage. At fixed laser beam energy, the response volt-
age pulse amplitude for the p polarization exceeds that
for the s polarization in the entire range of a.

Figure 3 shows the plots of U versus 3, the angle of
rotation of film 6 with electrodes 7 relative to the ON
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Fig. 3. Plots of theamplitude U of a pulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the angle B of the sample rotation for
(2) linear and (2) circular polarization of the incident laser
radiation (T =22 ns, A = 1064 nm, W= 1.7 mJ, a = 50°).

axis (Fig. 1) coinciding with the normal to the surface,
measured for the linear (p-polarized) and circularly
polarized laser beam at a fixed incidence angle a =
+50°. It should be noted that the values 3 = 0° and 180°
correspond to the positions of sample faces with elec-
trodes 7 (perpendicular to the plane of Fig. 1). As can
be seen from Fig. 3, rotation of the sample holder plate
with electrodes around the ON axisleadsto variation of
the response voltage pulse amplitude according to the
cosine law. When electrodes 7 arein the planes parall el
to the plane of laser beam incidence (3 = 90° and 270°)
the response voltage pulse amplitude is zero. For 3 =
180°, when the el ectrodes change their mutual arrange-
ment (upper electrode becomes lower and vice versa,
seeFig. 1), theresponse signal becomes negative, while
itsamplitude approximately correspondsto the U value
observed for 3 = 0°.

Figure 4 shows the plots of U versus the laser pulse
energy W measured using the p-polarized radiation for
two orientations of the film with electrodes correspond-
ingtoa =+50° 3 =0°and a =-50°, 3 =0°. Ascan be
seen from these data, the dependences U(W) can be
approximated by straight lines with a good accuracy.
Note that the plots corresponding to a = +50°, 3 = 0°
and a = -50°, B = 0° are virtualy symmetric with
respect to the W axis. Taking into account that the laser
pulse duration T during the experimentsat A = 1064 nm
was fixed, we may infer from Fig. 4 that the amplitude
of the pulsed response voltage isalinear function of the
laser power. The coefficient of conversion n(A =
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1064 nm) of the pulsed laser power into response volt-
age amplitude was about 500 mV/MW, while the value
of N(A =532 nm) obtained for second-harmonic radia-
tion was about 650 mV/MW.

We have also studied the dependence of the
response voltage pulse amplitude on the laser beam
spot diameter on the carbon film surface at fixed values
of Wand 1. The laser beam diameter was increased or
decreased with the aid of tel escopes based on diverging
and converging lenses, respectively. These experiments
showed that an increase in the beam diameter by afac-
tor of 6.25 led to a growth in the response voltage
amplitude by afactor of about 1.3. Thus, at afixed laser
pulse power, a 39-fold decrease in the incident power
density led to adlight (1.3-fold) increase, rather than to
a decrease in amplitude of the response voltage
between electrodes situated on the carbon film surface.

4. DISCUSSION OF RESULTS

The whole body of experimental results described
above covers al features characteristic of the optical
rectification effect (see, e.g., [3]). The obtained coeffi-
cients of conversion of the pulsed laser power into
response voltage amplitude are many times greater than
the values (observed for the optical rectification in non-
linear optical crystals of ADP and DKDK types (15 and
18 mV/MW, respectively) [3].

However, in contrast to the previously reported
investigations, where the response voltage was mea
sured between el ectrodes situated on the opposite faces
of noncentrosymmetric transparent dielectric crystals,
the optical rectification effect in our experiments was
observed on absorbing conducting nanostructured car-
bon films with a graphitelike atomic structure. Since
graphite (two- or three-dimensional) structure pos-
sesses the center of inversion (point symmetry group
Dgn [13]), the affect observed in our samples is proba-
bly due to aquadrupole nonlinearity. Thisconclusionis
confirmed by the observed dependence of the response
voltage on thefilm orientation. Indeed, preliminary the-
oretical analysis showed that the signal due to the opti-
cal rectification on a quadrupole nonlinearity is propor-
tional to F(a)sin2a cosp, where F(a) is aslowly vary-
ing function of the angle a. This agrees well with our
results presented in Figs. 2 and 3.

However, the symmetry of the graphitelike material
in our nanostructured carbon films may significantly
differ from that of the usual graphite because of a con-
siderable amount of structural defects related to the
high proportion of atoms situated in the surface of nan-
odimensional crystals and in the region of bending of
the atomic planes[14]. Violation of the central symme-
try caused by such structural defects may lead to an
increasein the contribution of dipole nonlinearity to the
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Fig. 4. Plotsof the amplitude U of apulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the laser pulse energy W for (1) a = 50°,
B=0°and (2) a =-50°, B =0° (p-polarized light).

static polarization. Such an analysis of the possible
manifestations of the dipole, quadrupole, and other
possible mechanisms is a subject for separate investi-
gation.

5. CONCLUSIONS

We have experimentally observed the appearance of
a pulsed electric signal in laser-irradiated conducting
nanostructured carbon films composed of nanodimen-
sional graphite crystals. The films were obtained by
CVD on silicon substrates. The time variation of the
pulsed response voltage measured between parallel
electrodes on the surface of the film repeated the shape
of the laser power pulse. The amplitude of the response
voltage strongly depends on spatial orientation of acar-
bon film with electrodes relative to the laser beam and
on the polarization of the incident laser radiation. The
magnitude of the effect is directly proportiona to the
laser power, rather than to the laser power density asin
the case of second harmonic generation.
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Abstract—We present a quantum theory of the parametric self-conversion of the laser radiation frequency in
active nonlinear crystals with aregular domain structure. Such crystals feature simultaneous lasing and quasi-
phase-matched parametric conversion of the laser radiation frequency. These processes are described using the
Heisenberg—L angevin equations in two regimes of the subharmonic generation: super- and subthreshold. The
spectral properties of the quadrature components of the laser frequency and its subharmonic and the photon sta-
tistics have been studied as dependent on the pump power, crystal length, and reflectance of the laser cavity
output mirror. Using the obtained analytical expressions, these characteristics are calculated for a active non-
linear Nd:Mg:LiNbO; crystal with a regular domain structure. In the subthreshold regime, the maximum
decrease in the spectral density of fluctuations in the subharmonic quadrature component relative to the stan-
dard quantum limit may reach 90%,; in the above-threshold regime, these fluctuations are virtualy not sup-
pressed. A decrease in the spectral density of fluctuations of the laser frequency quadrature does not exceed
10%. In the subthreshold excitation regime, the subharmonic photons obey a super-Poisson statistics; in the

above-threshold regime, the photon statistics is Poisson-like. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, much attention has been devoted to
ferroelectric crystals possessing periodically inhomo-
geneous nonlinear properties. In such media, the direc-
tion of the spontaneous polarization vector changes to
the opposite on passage from one domain to another.
This may lead to reversal of the sign of the coefficient
of quadratic nonlinear susceptibility [1, 2], whereby a
“nonlinear” lattice is formed in the crystal possessing
homogeneous linear properties. Nonlinear optical crys-
tals with a regular domain structure, called RDS crys-
tals or nonlinear photonic (periodically poled) crystals,
have certain advantages over homogeneous nonlinear
crystals. The main advantage is that, by selecting the
period of modulation of the nonlinear susceptibility in
an RDS crystal, it is possible to compensate mismatch
of the interacting light waves (quasi-phase-matched
interaction), thus providing conditions for amost arbi-
trary three-wave mixing. At present, the quasi-phase-
matched interactions between light waves are used for
generating coherent radiation in a broad spectral range
from UV to IR. In addition, the quasi-phase-matched
interactions are of interest from the standpoint of gen-
erating nonclassical light (squeezed light and entangled
photon states) [3-6]. Nonclassical light can be used in
various high-precision optical measurements and in
optical datatransmission and processing systems[7].

Active nonlinear RDS crystals open new prospects
in nonlinear optics [8]. In such crystals, rare earth

dopant ions provide for active (lasing) properties, while
the crystalline matrix plays the role of a nonlinear
medium. This system may feature the phenomenon of
self-frequency conversion, whereby lasing proceeds
simultaneously with nonlinear conversion of the laser
frequency. Investigations into the properties of active
nonlinear laser crystals are stimulated by the wide
potential range of applications of compact and reliable
lasers based on such crystals, generating in the visible
and IR spectral range.

The possibilities of self-frequency conversion in
homogeneous active nonlinear crystals are limited by
their dispersion properties. As was noted above, these
limitations can be by-passed in the presence of spatially
modulated nonlinear susceptibility. Recently [8-11], it
was demonstrated that RDS crystals combining the
advantages of active nonlinear media with periodically
inhomogeneous nonlinear properties are of interest
from the standpoint of realization of variousthree-wave
interactions, whereby one of the waves can be
enhanced due to the active properties of the crystal.
Such processes provide a basis for the creation of min-
iature self-frequency-conversion lasers.

This study was devoted to the quantum properties of
light generated during the parametric self-frequency
conversion of laser radiation. In the course of this pro-
cess taking place in a resonator based on a active non-
linear RDS crystal, lasing proceeds simultaneously
with the parametric conversion of the laser frequency.

1063-7761/04/9905-0947$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic diagram of ring cavity involving three
mirrors (1-3) and an active nonlinear RDS crystal featuring
three-wave interaction.

In the case under consideration, we are speaking of the
second subharmonic generation. Up to now, quantum
theory has been well developed separately for thelasing
and the parametric frequency conversion processes
(see, e.g., monographs [12-14]). However, in the case
of self-frequency conversion, the two processes are cor-
related. This circumstance alters the physics of this
phenomenon and complicates its theoretical analysis.

Previoudly [15, 16], the quantum theory of paramet-
ric self-frequency conversion was developed for gas
lasers. In these lasers, the photon lifetime T in the laser
cavity is much longer than the characteristic times of
the inverse population relaxation (T)) and the active
medium polarization (Tp): T > T, T),. This condition
allows the inverse population and polarization to be
adiabatically excluded from the equations describing
generation of the laser radiation. However, the afore-
mentioned active nonlinear crystals are characterized
by a different relation between the characteristic times:
T < Ty < T, For this reason, the results of previous
theoretical analysis [15, 16] are inapplicable to such
solid-state laser systems.

In this study, a quantum analysis of the parametric
self-frequency conversion is performed for an arbitrary
relation between the characteristic times. We will con-
sider the spectrum of fluctuations of the quadrature
components and the photon statistics of the laser radia-
tion and subharmonic fields. The general formulas will
be used in numerical calculations of the parametric
self-frequency cornversion in a active nonlinear
Nd:Mg:LiNbO; crystal with aregular domain structure.

This paper is organized as follows. In Section 2, the
Heisenberg—Langevin equations are written separately
for the laser generation and the quasi-phase-matched
three-wave interactions. The parametric self-frequency
conversion is analyzed in Section 3, where the corre-
sponding Heisenberg—Langevin equations are written
and solved by perturbation method. Section 4 presents
the results of cal culating the spectrum of fluctuations of
the quadrature components of the laser radiation and its
subharmonic in the sub- and above-threshold regimes
of second subharmonic generation in a active nonlinear
Nd:Mg:LiNbO; crystal. In Section 5, the main attention
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isdevoted to analysis of the subharmonic photon statis-
ticsin the subthreshold generation regime.

2. LASER
AND NONLINEAR OPTICAL EQUATIONS

The process of parametric self-frequency conver-
sion will be anayzed according to the following
scheme. First, we will separately describe laser genera-
tion in an active crystal and three-wave interactions in
a nonlinear optical crystal. Then, the two descriptions
will be combined to yield the joint system of equations
for the field operators and atoms of the medium, which
describes processes in a nonlinear active crystal. The
system will be solved using the Heisenberg-L angevin
method [12-14], which is known to be especially con-
venient for calculating the correlation functions of
operators and, hence, of the spectral densities.

The process of laser and parametric generation is
studied for anonlinear active RDS crystal situated in a
ring cavity (Fig. 1) provided with two mirrors (1 and 2)
totally reflecting radiation at the excited frequencies
and with an output mirror (3). The crystal is pumped
through mirror 1; mirrors 2 and 3 are fully transparent
to pump radiation.

2.1. Laser Generation in an Active Crystal

The process of laser generation in an active crystal
will befirst considered without allowance for nonlinear
optical properties. We use a quantum approach based
on the Heisenberg operator equation, generally follow-
ing the scheme [12]. Excluding operators related to the
thermal reservoir and modeling the laser field interac-
tion with other physical systems (except atoms) from
the system of operator equationsfor the field and atoms
of the medium, we obtain the system of Heisenberg—
Langevin equations [12]:

% = —ka,—iTcgo + F,(1), )

%it’ - TiD(_c;+igTDa|N)+r(t), 2)

dd_ff = T_lm(_of) —igToa N) + (1), €
- T—lu[P-N+i2T”g(oa.*—o*a.)] (). (@)

These equations are written in the interaction repre-
sentation using the rotating wave approximation. The
laser field frequency w, is assumed to coincide with the
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frequency wy, of transitions between the laser levels
(wp = w). InEgs. (1)~4),

M
= o,, N =
2

are operators of the polarization and the popul ation dif-
ference for alaser- active medium containing M atoms,

respectively; a (a) isthe operator of creation (annihi-
lation) of a photon with the frequency w;

chw,
41sVT Ty

is the constant of interaction between an atom and the
electromagnetic field; T, and T, are the times of relax-
ation of the inverse population and the polarization of
medium, respectively; | is the saturation intensity of
the active medium; V is the quantization volume deter-
mined by the transverse size of the pump beam and the
crystal length; c is the speed of light in vacuum; T is
the cavity round trip time by wave; t is the dimension-
lesstime representing the current timenormalized to T
(t — tTy); 0= T||/Tc; Tn=TdTg;

v=1

ki(1+n)

P=—
9 TcTo

isthe pump parameter; and n isthe excess pump power
(absorbed in the active medium) over threshold (the lat-
ter corresponds to n = 0, and the lasing condition is
n > 0). Operatorsr (t), [y (t), and F,(t) are the operators
of noise related to the polarization, inverse population
of the active medium, and losses, respectively. The

appearance of these operators and the terms ral o,
15 of, ;' (P —N), and ka in Egs. (1)~(4) reflects the
interaction with thermal reservoir. The coefficient k; is
given by the formula

L+1-R
k = %, (5)

where a, arelinear lossesin the crystal, R, is the coeffi-
cient of intensity reflection of the cavity output mirror
at the frequency wy, and L is the laser crystal length.
The random force operator F, is defined as[13, 17]

Fi(t = mbl(t)+v1—R|C|(t), (6)

where by and ¢, are operators related to the lossesin the
crystal and in the cavity output mirror, respectively.
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We also introduce the operators b; and ¢; related to
the modes with the frequencies wy, which are defined as
follows (see, e.g., [12]):

[b;(t), ba(t)] = [g;(t), ch(t)] = &, 3(t—t), (7)

[bj()0= Dby()J= C&()0= C&[()T=0, (8)
[b;(t)b(t)0 = [b](t)by(t)D

= [g(t)e(t)0 = (e (t)0= 0,

[b] ()b (t) = & (1) (t') = A (T)3;,3(t —t') (10)

wherej, k=1, 2, 3 (operators with different subscripts
refer to the waves of different frequencies), 9 is the
Kronecker delta, and

~ hw
n(T) = Bxp =t -

is the average number of thermal phonons for the jth
mode at the thermal reservoir temperature T (at room

temperature, n; (T) < 1).
According to relations (6)—(10),

9)

[Fi(t), FI(t)] = 2k3(t-t), (11)

F,(t)0= OF ()0 = 0, (12)
FA(o= OF (1)) D=0, (13)
FI () F,(t)D = 2k[,d8(t—t). (14)

The noise operators I"(t) and I'y(t) possess the fol-
lowing properties[12]:

T (t)F(t)D=0, TEH)F @)D= o0, (15)
TWF(()O=0, Oy(t)F (D=0, (16)
or()o=o0, O'@riwo=o0, (17
o (t)r)o
Te Te . (18)
= %[—D(M # No) + (P - NoJHB(t - 1),
o (t)r')o
~ DT_ T_ . (29
= HEM =Ny - ZTC”(P— NoJH3(t - 1),
n_ 2Teq, PN ,
T (DT ()0 = —Tf —r o=t (20)
T ()0 = — %l_+ Phgrst-t), (1)
T ()M y(t)0 = TCDP ~Hood(t-1),  (22)
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where N, and o, are the stationary values of theinverse
population and the medium polarization operators and
P is the pump power (see formulas (32) below).

Using the equations presented in this section, it is
possibleto analyze the process of laser generationin an
active crystal with allowance for losses in the crysta
and in the output mirror.

2.2. Quasi-Phase-Matched Wave I nteractions
in a Nonlinear Crystal

Now let us proceed to the three-wave process (w; =
w; + w,) inanonlinear optical RDS crystal situated in
aring cavity. With neglect of losses, the Hamiltonian of
thisinteraction is

Hy, = #e(Qala,a, + Q*alalas), (23)

where ajT (&) are the operators of creation (annihila-
tion) of a photon with the frequency w,

8171 W, W,Ww
€ = T[l_deff —153
n,N,N;c°V

is the nonlinear wave coupling coefficient (n; being the
refractiveindex for the wave with the frequency w;, and
ds being an effective nonlinearity coefficient depen-
dent on the polarizations of interacting waves), and Qis
the factor taking into account the RDS parameters of the
crystal. The latter quantity is given by the formula[18]:

_ [ iAKLO . AKL._ AKA
Q= eXp——8inc > tanT ,
where L = SA is the crystal length, Sis the number of
RDS periods in the given crystal, A is the period of
modulation of the nonlinear susceptibility (RDS
period),

Ak = k(wg) —k(wy,) —k(w,)

is the phase mismatch, k(w) is the wavenumber corre-
sponding to the frequency . If the modulation period
A is much shorter than the characteristic nonlinear
interaction length and the quasi-phase-matching condi-
tion is valid (Ak = 2rmV/AA, where mis an odd integer
indicating the phase-matching order), the wave interac-
tion in the RDS crystal proceeds in the same way asin
ahomogeneous medium [2, 19]. Inthiscase, Q = 2/tm.

According to Eg. (23), the system of Heisenberg—
Langevin equations for the nonlinear process under
consideration with allowance for lossesis as follows:

da ;
dtz = —ky 28 o + i€ 35+ Fy o(1), (24)

da :
L) 29
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In deriving these equations, we excluded operators
related to the thermal reservoir (thisisachieved using a
procedure similar to that used in deriving laser equa
tions (1)—(4)). The coefficients k, and the fluctuation
operators F(t) are given by formulas (5) and (6),
respectively. Taking into account these relations and
following the conventional procedure (see, e.g., [20]),
one may readily check that commutation relations for

the operators ajT and g are retained with time, so that

[a,(t), ag()] = 3. (26)

The quantum equations (24) and (25) describe the
process of three-wave nonlinear optical interactions in
a crystal situated in the laser cavity with losses. The
joint system of equations (1)—(4) describing the laser
generation process and Egs. (24)—(25) describing wave
interactions in the nonlinear optical medium is a basis
of the quantum theory of the process of optical self-fre-
guency conversion.

3. PARAMETRIC LASER FREQUENCY
SELF-CONVERSION
IN AN ACTIVE NONLINEAR CRY STAL

Let us consider the parametric self-down-conver-
sion of the laser frequency in an active nonlinear crys-
tal. The process involves simultaneous lasing and
guasi-phase-matched division of the laser frequency
(i.e., generation of the subharmonic with the frequency
w/2). In the three-wave interaction, we have w, = w, =
w/2 and w; = w, so that the system of equations describ-
ing this processis as follows:

da,

= = a+ i2eala, + Fy(t), (27)
dag : f o2
i = Ke2s—iTcgo +ial+ Fy(t), (28)
Cé_‘f = T_lu(_c+ igToasN) + (1), (29)
dN _ 1 :
@ (PN 29T (083 —0'ay)) + My (t). (30)

Equations (27)—30) are obtained by combining the
system of nonlinear optical equations (24), (25) with
the system of equations (1)—(4) describing laser gener-
ation. In addition, we take into account that the wave
with the frequency w; = w is enhanced in the active
medium and involved in the nonlinear interaction. Sub-
script 1 refers to the w/2 subharmonic wave.

Since the analysis of the nonlinear system of equa-
tions (27)—(30) in the genera case is impossible, we
will only analyze two typical regimes from the stand-
point of the parametric process under consideration:
subthreshold and above-threshold generation of the
subharmonic mode. Let the pump power exceed the
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laser generation threshold. Then, the atomic and field
operators can be represented as follows:

a;(t) = Ajp+0a(t), a(t) = g5+ da(t),

(31)
N(t) = Ng+ ON(t),
where A, 0y, and N, are the classical quantities corre-
sponding to the stationary solution of Egs. (27)—(30) in
the absence of random forces, while da(t), do(t), and
ON(t) are the operators taking into account fluctuations.
Ascan bereadily seen, the quantities Ay, 0y, and N, are
in fact the stationary average values, because the oper-
ator forces Fy(t) and F4(t) are mutualy uncorrelated
and are not correlated with the fluctuation operators
I (t) and I \(t).
A stationary solution of the system (27)—30) hasthe
following form:

ik, P

Ay = ——, B
T T L

k,gT-P
i 191p

= , 32
° 2(e +Kig“T To/e) (32)

Ay = t%(lk3(n2_klzgz-r||TD/S )E .
O 2(e"+kg'TTy) O

This solution exists provided that n > ki g?TT /€2,
which corresponds to the pump power exceeding the
subharmonic generation threshold (A, # 0). According
to formulas (32), the laser wave amplitude A, in this
above-threshold regime is independent of the pump
power P. In other words, the amplitude Az, remains con-
stant when the pump power grows, and all the excess
supplied power is spent on increasing the amplitude of
the subharmonic wave. As expected, the subharmonic
phasein this parametric processis shifted relative to the
laser wave phase by 172 or —11/2 [21].

If the parameters of the crystal, pump, and cavity are
such that n < k; g2T,T/e2, then the pump power is
bel ow the subharmonic generation threshold. For asub-

threshold regime of subharmonic generation, a station-
ary solution of the system (27)—(30) is as follows:

A30 = _.__rli/_z__._ = k3
1/2? 2 !
(49°TTo) 9°TcTy .
ir]l/2k3 ( )
00 = 1/2? AlO = O

(4g*TeT o)

A comparison of Egs. (32) and (33) shows that exceed-
ing the subharmonic generation threshold leads to a
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change in the stationary laser generation amplitude.
This variation is cased by additional losses of the laser
wave energy for the generation of the subharmonic
wave.

Now we will analyze the spectra of fluctuations of
the laser radiation and its subharmonic in the two limit-
ing excitation regimes.

3.1. Subharmonic Generation
in Above-Threshold Regime

The above-threshold regime of subharmonic gener-
ation corresponds to stationary solutions of the type
given by formulas (32). In this case, system (27)—30)
linearized in the vicinity of the stationary solution leads
to the following equations for the fluctuation operators:

d(da ;
(dt 2 =—k,0a, + I2€(A306al + Aydag) + Fy(t), (34)
d(da ; -
(dt ) __ ksda; —iTcgdo +ie2A 008, + F4(t), (35)
d(c?tc) - _%50+ ITcg(Nodag + AgdN) + (1), (36)
O
ddN) _ 1 i
dt '[”6N + |2Tcg

(37)
x (Oodak + Ald0 — 0,085 — Agpd0') + I (1).

Let us use the Fourier transform of Egs. (34)—(37), for
example,

[

5a,(Q) = 71_51 Iéal(t)eimdt.

Upon solving Egs. (34)—37) for the Fourier compo-
nents da, 3(€2), we obtain

X5 (-Q)Z(Q) -y,(Q)Z'(-Q)

y1(Q)YE (-Q) —x,(Q)% (-Q)’
0a5(Q) = i[(iQ—k;)0a,(Q)

+i2eAg0al(—Q) + F1(Q)](2eA) ™,

0a,(Q) = (38)

(39)

where
X,(Q) = —4e’A,,—i2eyAk,
—(iIQ—=k)(iQ—ks—gTcLyNg + x),
Vi(Q) = y(iQ —K;) =126 Agg(iQ —k3 —gTcLgNg + X),
Z(Q) = (k3—i1Q+gTcNoLy—x)F1(Q) +y(Q)
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X F1(=Q) + 126 Ay[F4(Q) +i(1—-2yA%) LM (Q)
—i2A4yLoM T (=Q) + Yy (Q)],

. — -1
Y =Y(Q) = 29T AgLo(iQ — Tz +49TcLg|Ag®)

YY" <dmM (—Q)
X = X(Q) = 29Tcy(AxNoLg—igy), x* =x*(-Q),
Yy =Y(Q) = 29Tcy(AxNoLn+i0p), y* =y*(-Q),
gTc
Lo = Lo(Q) = .
[} D( ) |Q _'[Bl

We are interested in dtatistical properties of the
guadrature components of the laser frequency and its
subharmonic at the laser cavity output, which are
measured using the balance homodyne detection tech-
nique [22]. Let us introduce the quadrature Fourier
components,

Xj(Q) = 6aj,out(Q) + aaI,om(Q), (40)

Yi(Q) = (58] ax(Q) -3 0u(Q)), (41)
where da, ,,, isthe Fourier component of the field oper-
ator with the frequency «y at the cavity output deter-
mined by the following boundary condition at the out-
put mirror [17]:

88, ou(Q) = JI-R;3a,(Q) —¢,(Q).

According to relations (40) and (41), the quadrature
components are d-correl ated:

(42)

X[(Q)X(Q)0 = S ,(Q)J(Q-Q), (43

T ' !
OV (Q)X;(Q) = S, ;(Q)d(Q-Q), (44)
where S (Q) and S;;(Q) are the spectral densities of
fluctuations of the quadrature components. Using
Egs. (38)—(44), it is possible to derive anaytical
expressions for the spectral densities S ;(Q) and
S;(€), but the resulting formulas are rather cumber-
some and are not presented here. Below (see Section 4)
we present the plots of the spectral densities S, ;(Q)
and S,;(Q) versus various parameters of the problem
under consideration.

3.2. Subharmonic Generation
in Subthreshold Regime

In the subthreshold regime of subharmonic genera-
tion, the stationary solution of system (27)—(30) is
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given by formulas (33). In this case, equations for the
fluctuation operators are as follows:

@ = —k;0a, + i2£A306a1+ F.(1), (45)
% = —K3ay—iTogd0+Fa(t),  (46)
@ - —Tiacw iTog(Nydag + AgdN) + T (1), (47)
O
dion) _ 1
dt T”6N

(48)
+i2Tcg(0daL + Agyd 0 — G 8ag — AgydT') + I (1).

Solving these equations, we obtain the following
expressions for the Fourier spectra of field operators:

day ou(Q) = J1-R;

L (1Q-K)F,(Q) —i2eAyF1(-Q) Q) (49)
467 Agl? - (1Q —ky)? ne
53y 04(Q) = S22
' yy* — XX
X [ZF5(Q) = YFi(—Q) + (2% — i AgLoyy) T (Q) 50

+ (=i AgLoyz—yx3)r'(-Q)
+(zy —yy*)Mn(-Q)] —c3(Q),

where
X, = %(Q) = i(1-2yA%)Ly, X3 = X3 (-Q),
z=2(Q) =iQ—-k;—0gT:NyLy
+29Tcy* (AgNolLp +i00).

The quadrature components of the laser frequency
are also o-correlated and their ral densities are
described by relations (43) and (44). Using formul as (49)
and (50), it is possible to obtain analytical expressions
for the spectral densities S, ;(Q) and S,;(Q). The plots
of these spectral densities are also presented below in
Section 4.

Thus, the proposed theory allowed usto obtain ana-
lytical expressions for the spectrum of fluctuations of
the quadrature components of the laser frequency and
its subharmonic excited simultaneously in the same
crystal in two limiting regimes of the parametric self-
frequency conversion. The spectral densities of both
guadrature components depend on various parameters
of the system under consideration. For this reason,
these dependences will be considered for a particular
case of the active nonlinear Nd:Mg:LiNbO; crystal, in
which one of the self-frequency conversion processes
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(namely, the quasi-phase-matched parametric self-fre-
guency-doubling) was observed [23].

4. QUADRATURE-SQUEEZED LIGHT
GENERATION AT THE LASER FREQUENCY
AND ITS SUBHARMONIC
IN Nd:Mg:LiNbO; RDS CRY STAL

Now we will calculate the spectra of quadrature
components of the laser frequency and its subharmonic
for the process of parametric self-frequency conversion
in a active nonlinear Nd:Mg:LiNbO; RDS crystal. The
crystal can be pumped by radiation with a wavelength
of 0.81 um, for example, from adiode laser [23]. Laser
generation is observed at awavelength of 1.084 um, so
that the subharmonic wavelength is 2.168 pum. In para-
metric interaction of the ee—e type, the laser and sub-
harmonic waves possess extraordinary polarization.
The condition of quasi-phase-matched interaction is
obeyed for anonlinear susceptibility modulation period
of A = 22 um [23]. The other parameters of the
Nd:Mg:LiNbO; RDS crystal were as follows: effective
nonlinearity coefficient, d¢ = 34.4 pm/V; linear losses
at the frequencies w/2 and w, o, = 03 = 0.08 cm™; sat-
uration intensity, Is = 10* W/cn?, number of active
dopant atoms, M = 10%; longitudina and transverse
relaxationtimes, T, =10 sand T; = 6.7 x 10° s, respec-
tively; typical cavity round triptime, T =3 x 10t s,

4.1. Spectral Characteristics
for Subharmonic Generation
in Above-Threshold Regime

The characteristic spectral densities of quadrature
components calculated using formulas (38)—(44) are
presented in Figs. 2 and 3, where the unit spectral
density corresponds to the standard quantum limit. Fig-
ure 2 shows the spectra of fluctuations in one of the
laser radiation quadratures at various pump powers. As
can be seen, the more the pump power exceeds the
threshold level, the stronger the suppression of quadra-
ture fluctuations relative to the quantum limit in a cer-
tain spectral region. In other words, a quadrature-
squeezed light is generated in this spectral region.
According to Fig. 2, the maximum efficiency of fluctu-
ation suppression below the standard quantum limit in
the quadrature component for the laser frequency can
amount to 10%. These results refer to the X-quadrature
field components; as for fluctuations of the Y-quadra-
ture components, these must increase in accordance
with the uncertainty relation, which was confirmed by
the results of our calculations.

Figure 3 shows the spectra of fluctuations in one of
the subharmonic field quadratures for various reflec-
tion coefficients of the cavity output mirror. As can be
seen, fluctuations in this quadrature component are
virtually not suppressed. Thus, the active nonlinear
Nd:Mg:LiNbO; crystal with the above parameters
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0.15

1
0.10
QT
Fig. 2. The spectraof fluctuationsin alaser field quadrature
in a above-threshold regime of subharmonic generation,
calculated for various ratios of the pump power to the
threshold power Ppym/Pyn = 10 (1), 15 (2), and 20 (3).
Other parameters: Ry, = 1; R, =0.9; L=0.5cm.
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Fig. 3. The spectra of fluctuations in a subharmonic field
quadrature in a above-threshold regime of generation, cal-
culated for various coefficients of reflection of the cavity
output mirror Ry» = 0.95 (1), 0.97 (2), 0.99 (3). Other

parameters: Ry, = 1; Pyymp/Pyn = 15, L = 0.5cm.

1
0 0.02 0.10

exhibits rather insignificant suppression of laser radia-
tion fluctuations in the regime of above-threshold sub-
harmonic generation.

4.2. Spectral Characteristics
for Subharmonic Generation in Subthreshold Regime

Figres 4-6 show the spectra of fluctuationsin one of
the quadrature components of the subharmonic field,
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Fig. 4. Variation of the spectrum of fluctuationsin asubharmonic field quadrature in a subthreshol d regime of generation depending

ontheratio of the pump power to the threshold power Py my/Pyy - Other parameters: L = 0.5 cm; R, = 1; Ry» = 0.8. Theinset shows
the scale of the spectral density levels, in which adarker color corresponds to alower level of fluctuations.
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Fig. 5. Variation of the spectrum of fluctuationsin asubharmonic field quadrature in a subthreshold regime of generation depending
on the coefficient of reflection Ry, of the cavity output mirror at the subharmonic frequency w/2. Other parameters: Ppymg/Pih =
10; R,,=1; L = 0.5 cm. Theinset shows the scale of the spectral density levels, in which adarker color correspondsto alower level
of fluctuations.
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Fig. 6. Variation of the spectrum of fluctuationsin a subharmonic field quadrature in a subthreshol d regime of generation depending
on the length L of the active nonlinear crystal. Other parameters: Ppymp/Pih = 10; Ry, = 1; Ry, = 0.9. The inset shows the scale of

the spectral density levels, in which darker color correspondsto alower level of fluctuations.

which were calculated using formulas (40)—44), (49),
and (50). The calculations were performed for various
pump powers, reflection coefficients of the cavity out-
put mirror, and crystal lengths. The parameters of the
Nd:Mg:LiNbO; crystal were the same as those used
above for the above-threshold regime of subharmonic
generation; other parameters are indicated in the figure
captions. In Figs. 46, thelevel of the standard quantum
limit also corresponds to the unit spectral density.

Analysis of the data presented in Figs. 4-6 shows
that the maximum suppression (corresponding to the
darkest areq) of the quadrature field fluctuations takes
place at a nonzero frequency, in contrast to the case of
the above-threshold regime of subharmonic generation.
Figure 4 shows that the higher the pump power, the
stronger the suppression of fluctuations in the subhar-
monic quadrature. However, this is accompanied by
narrowing of the spectral band in which the fluctuations
are effectively suppressed. According to Fig. 5, an
increase in the reflectance of the output mirror for the
subharmonic wave leads to a significant growth in the
efficiency of suppressing fluctuations in the corre-
sponding quadrature. An analogous behavior is
observed in response to a change in the length of the
active nonlinear crystal asdepicted in Fig. 6, which was
calculated for

L
Ppump(l - e—“p )

+1 = ,
f Po
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where Pyymp = 0.5 W, Py, = 1.25k; W, k3 is the dimen-
sionless quantity given by formula (5), and a, =
2In2 cmL. The maximum efficiency of suppression of
the subharmonic wave quadrature fluctuations for the
indicated parameters is about 90% (for the X-quadra
ture field). As for the laser frequency generated in this
regime, our calculations showed that virtually no sup-
pression of fluctuations take place.

5. PHOTON STATISTICS
IN PARAMETRIC SELF-FREQUENCY
CONVERSION

In the general case, calculations of the photons dis-
tribution functions for the laser frequency and subhar-
monic frequency encounter considerable difficulties.
For this reason, we will restrict the consideration to
analysis of the statistical properties of photons within
the framework of the second-order moments and cal cu-
late the average photon number and its dispersion. In
order to ssimplify calculations, we consider the average

photon number [ (= m} a;[land the Fano factor

2
r - M-mJ
! th0
a the subharmonic frequency (j = 1) and laser fre-
guency (j = 3) inside the cavity.
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In the vicinity of the dtationary solution of
Egs. (27)—30), according to expressions (31),

hO = |A,*+ (Ba3da] (51)

For the dispersion of the photon number, to within the
same accuracy we have

o’ = - T = |A,*(1+25a/da[)
+ Aly( Bayda,0+ BajdaD).

In the above-threshold regime of subharmonic genera-

tion, we have |Aq]2 > Ba] &aand, hence,

(52)

2
=A% - hF=|A" (53)
Thisimplies that the Fano factor isF; = o /< 1

(j =1, 3) and, therefore, the photon statisticsin the laser
cavity excited at these frequencies is Poisson-like.

In the subthreshold regime of subharmonic genera-
tion, the photon statistics at the laser frequency remains
Poisson-like aswell (JA,g| = 0). The photon statistics at
the subharmonic frequency depends on the average val-

ues & aI 0a,[and Eﬂéa} da,)’LIThetime variation of the

operator 6a{ (da;) under the action of the random force

can be readily determined using Eq. (45) and the Her-
mitian-conjugated relation. As aresult, we obtain

dal(t) = Jo’e‘kl"(FI(t-e)cosh(zsAsoe) -~

+iF,(t—0)sinh(2eAq,0))d8.

Using this solution, taking into account the statistical

properties of fluctuations related to the operators F (t)
and F,(t) according to Egs. (12)—(14), and considering
the stationary subthreshold regime of subharmonic
generation, we obtain expressions for the average pho-
ton number,

(28A)” + 2Kiny(T)
2(K; — (2eAx)”)
and for the dispersion of this number,
2 ki

o, =
b2k - (28An))

h,0 =

(55)

x [3(2eAg)” + 8(2eAg,) Ny (T) (56)

+4(K; — (28 Agp)*)NY(T)] -

Taking into account that, according to (33),
1/2
Ay =~
(49°TTp)
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we obtain the relation

2

€n
g'TyTy

K - (2eAy)” = ki —

Thus, as expected, the average number of photonsat the
subharmonic frequency, the dispersion of this number,
and the corresponding Fano factor sharply increase
when the pump power approaches the subharmonic

generation threshold (n = k- g°TT/e?).

If the number of thermal phononsis i, (T) < 1, for-
mulas (55) an (56) yield for the Fano factor

F, = 15+2Mh0 (57)

In the other limiting case (0, (T) > 1), the Fano factor

is independent of proximity to the subharmonic gener-
ation threshold, being determined by the average num-

ber of thermal phonons: F; = n, (T).

It should be noted that, far away from the subhar-
monic generation threshold at ;[ 1, the Fano factor
for the excited biphotons, F, = 1.5, differs from the
value (F = 2) for the biphotons generated as a result of
the spontaneous parametric scattering [17, 22]. We
believe that a decrease in the Fano factor is related to
the inertial character of the response of the system
under consideration to arandom action (i.e., to the pres-
ence of aterm describing losses in Eq. (45)).

6. CONCLUSIONS

We have developed a theory describing the genera-
tion of nonclassica light during laser self-frequency
cornversion in an active nonlinear crystal. Using this
description, based on the Heisenberg—Langevin equa-
tions, we have thoroughly analyzed the process of self-
down-conversion (halving) of the laser frequency. The
calculations were performed for an arbitrary relation
between the photon lifetime in the laser cavity and the
characteristic times of the inverse population relaxation
and the active medium polarization. We considered the
process of subharmonic generation in the sub- and
above-threshold regimes. It was established that there
are optimum parameters of the crystal, pumping, and
cavity favoring the maximum efficiency of suppressing
fluctuations in the quadrature components of the laser
frequency and subharmonic fields bel ow the level of the
standard quantum limit. We have also considered the
photon statistics for the generated light fields.

The results of our theoretical analysis show that the
active nonlinear RDS crystals can be used as effective
sources of nonclassical light. Further expansion of the
possibilities of such crystals with respect to self-fre-
guency conversion due to the presence of RDS opens
good prospects for the creation of small-size sources of
nonclassical radiation in various wavelength ranges.
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RDS crystals can feature, besides the traditional
nonlinear optical interactions, consecutive three-wave
interactions of the optical modes having the common
pump wave. In this context, it isimportant to develop a
guantum theory of such processes in active nonlinear
RDS crystals. In such systems, the laser cavity features
three coupled processes:. lasing and two nonlinear wave
interactions. The theory of self-frequency conversion
during consecutive interactions in RDS crystals can be
developed through generalization of the approach pre-
sented in this study.
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Abstract—~Polarization bremsstrahlung (PBS) of afast ion scattered in a polycrystalline medium is cal culated
and analyzed with allowance for the contributions from the coherent and incoherent channels of the process. It
is shown that scattering of a projectile from the crystal lattice of the target is responsible for typical features of
the PBS spectrum. For example, PBS is suppressed (as compared to radiation emitted by a single atom) in the
low-frequency part of the spectrum, where coherent PBS dominates. In the intermediate spectral region, a step
structureisformed asaresult of “elimination” of the contribution from the reciprocal |attice vector with apreset
magnitude to the coherent component of the process. Finally, incoherent PBS dominates in the high-frequency
part of the spectrum and the process occurs as in the case of asingle atom. These spectral peculiarities of PBS
are determined by the structure of the target and depend on the vel acity of the projectile and the emission angle,
and can be observed in experiments dealing with radiation emitted by fast charged particlesin thin polycrystal-

line films. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The use of multiply charged ions in contemporary
experiments on theinteraction of charged particleswith
solid targets [1] necessitates analysis of possible
mechanisms of radiation emission in the case of such
scattering.

It is well known [2] that ordinary bremsstrahlung
(which is also known as static bremsstrahlung) is
strongly suppressed for small values of the charge-to-
mass ratio of the particle being scattered. This study is
devoted to calculation and analysis of bremsstrahlung
of the emission channel, namely, polarization
bremsstrahlung (PBS) [3, 4] induced by aheavy ionin
a polycrystal. This type of radiation, which is supple-
mentary to static bremsstrahlung, isindependent of the
projectile mass and should dominate over ordinary
bremsstrahlung in the case considered here.

The existence of PBS of heavy charged particles
was first indicated in [5], where the bremsstrahlung of
a proton scattered from a hydrogen atom was calcu-
lated. Subsequently, the concept of PBS was used in [6]
for explaining the emission spectra of protons with an
energy on the order of 1 MeV during their scattering
from thin aluminum films. The effect of the structure of
a solid target on PBS was not considered in [6]. The
band nature of the PBS energy spectrum was accounted
for in [7], where the PBS spectrum near the adsorption
edge was calculated. However, the collective effectsin
PBS associated with the crystal lattice of the target
were not analyzed in [7]. Such effects were considered
for thefirst timein [8] for PBS of arelativistic electron
inapolycrystal. It was shown that the PBS spectrum of

arelativistic charged particleisformed by an aggregate
of peaks. The position of such peaks is determined by
the Bragg condition for scattering of the intrinsic field
of an electron from the crystal lattice of the target.
These peculiarities of the PBS spectrum of arelativistic
electron in apolycrystal were experimentally observed
in[9], where the frequency-angular distribution of radi-
ation emitted by 2.4-MeV electrons during their scat-
tering from a thin auminum foil was measured. The
position and height of the peaks detected in these mea-
surementswerein good agreement with theoretical cal-
culations [8].

As we pass to a fast, but nonrdativistic projectile,
the PBS spectrum in a polycrystal must be transformed
since the intrinsic field of the charged particle with a
nonrelativistic velocity substantially differs from the
field of a transverse electromagnetic wave. Accord-
ingly, the anal ogy between PBS and Bragg scattering of
virtual photons from a crystal lattice becomes inade-
guate. In addition, the noticeable contribution to the
PBS intensity in the nonrelativistic case must lead to
incoherent scattering of theintrinsic field of the projec-
tileinto abremsstrahlung photon, which isinsignificant
intherelativistic case [9].

Thus, we will study PBS of afastionin apolycrys-
tal in a wide energy range with allowance for both
coherent and incoherent emission channels.

2. BASIC RELATIONS

We proceed from the expression for the PBS ampli-
tude in the case when a charged particle is scattered
from asingle atom [3]. In the first Born approximation,

1063-7761/04/9905-0958%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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the corresponding formula for an electron and for an
ion has the same appearance except for factor Z, (Z, is
theion charge) (we use the atomic unitsz =e=m,=1
everywhere):

Ty = 2mid(e, + E,+ w-&-E)(d)’
21l * oS i
g Egek,o,lAim(Q)EfIC' (wk; g’ a)in (D)

qo =& —€&, (=pPi—DPi

where c is the velocity of light, w and k are the fre-
quency and the wave vector of the emitted photon, ;
and p; are the energy and momentum of the projectile,
E; isthe energy of thetarget atom, g, , isthe unit vector
of photon polarization, and A(P(q) is the vector poten-
tial of the electromagnetic field of the scattering charge,

TcZ . oov/c? —
AP = HEEDAVE =0 - ()
@ Halro’~g

v being the velocity of the projectile. In expression (1),
allowance is made for the possibility of target excita
tion in the course of PBS |i O— |f [] consequently, an
atom is described by the matrix element of the scatter-
ing operator

[F|8"(k, q) i 0

The use of thefirst order of perturbation theory in the
interaction of a projectile with an atom in formula (1) in
the case of PBS of a heavy charged particle isjustified
by the smallness of perturbation in the motion of the
projectile in the course of the process up to velocities
on the order of the atomic velocity. Indeed, it is well
known [3] that the main contribution to PBS comes
from transferred momenta which are smaller than the
characteristic atomic momentum so that the minimal
approach distance is longer than or on the order of the
mean atomic radius. It can be easily seen, however, that
the Coulomb interaction energy at such distances is
much smaller than the kinetic energy of aheavy particle
impinging at avelocity higher than the atomic vel ocity.
Consequently, the condition for the applicability of per-
turbation theory intheinteraction of aprojectilewith an
atom is satisfied.

Expression (1) for the PBS amplitude makes it pos-
sible to interpret this process as the scattering of the
intrinsic field of the projectile particle (virtual photon)
into areal photon at bound el ectrons of the target. Such
an interpretation discloses common features of PBS
and scattering of a real photon. In particular, if an
atomic electron isionized in the course of the process,
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we are dealing with Compton scattering or radiation-
induced ionization in the case of PBS [6, 10]. Hence-
forth, we will consider PBS without target excitation
i = |f Qinthiscase, q° = —w, and the matrix element of
the scattering operator can be expressed in terms of the
dynamic polarizability of the atom,

Fle"°(w k; ¢° q)[i0— a(w, q + k).

Using this substitution, we obtain the following expres-
sion for the PBS amplitude at the jth atom of the crystal

|attice;
T, = 2mid(w+ qv)@

3
*S[nAP (@) a(w, -+ k)exp(i(q + k) IT,),

where n is the unit vector in the direction of emission
of a photon. While deriving formula (3) from expres-
sion (1), we carried out averaging over polarization of
the emitted photon. The factor exp(i(q + k) - r;) intro-
duced in expression (3) describes the phase relations
between the contributions from different atoms of the
crystal lattice to the amplitude of the process (r; is the
radius vector of the nucleus of the jth atom).

It should be noted that PBS with excitation of an
atomisan incoherent processin respect of the contribu-
tion of atomic electrons; the cross section of this pro-
cess is proportional to the number of electrons in the
target. On the contrary, PBS without excitation of the
atom is a coherent process whose cross section is pro-
portional to the squared number of electrons. Thus, the
latter process dominates over the first one in the fre-
guency range w < vir, (r, is the characteristic atomic
radius); this is demonstrated, for example, in [11].
Here, we consider the case when the above inequality is
satisfied and, hence, PBS with atomic excitation can be
discarded.

To derivethe expression for the PBSintensity per unit
volume of the medium, we must sum expression (3) over
the atoms in unit volume of the crystal lattice,

Tt = sz'

Then, using the standard quantum-mechanical proce-
dure, we have

T

dl
im
e ]

_ W dchl
dwdQ, (2Trc)3I(2n)3t

(4)
where t is the time interval; and g, = g + k is the
momentum imparted to the medium from the projectile
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during emission. Substituting expression (3) into for-
mula (4), we obtain

d__ o . dg (2’
dwdQ, (2ﬂC)3I(2ﬂ)3 wc

x §(w+q W) [n AP (] |w’a(w a)]” ()
x 'y exp(iay Crj—r)).
N

Here, dQ, isthe solid anglein the direction of emission
of a photon. The double sum on the right-hand side of
equality (5) istheform factor of the medium; for acrys-
tal, this quantity has the form [12]

Y exp(i(an)(r;=ry)) = m(1-exp(-u'ay))
g (6)
+n(2m)° exp(-u"g")S(9)3(d: - 9),

g

where n; is the ion concentration in the lattice, g is the
reciprocal lattice vector, u is the mean thermal devia-
tion of lattice atoms from their equilibrium positions,
and §(g) is the form factor of a unit cell normalized
to unity. The first term on the right-hand side of equal-
ity (6) describes incoherent scattering of electromag-
netic field from latticeions. It is proportional to thefirst
power of the atomic concentration. The second term
describes coherent scattering proportional to the
squared concentration of ions. It can be seen from for-
mula (6) that coherent scattering occurs only when the
momentum transferred to the medium is equal to the
reciprocal lattice vector (g, = g) in contrast to an inco-
herent process. Formally, this circumstance is reflected
in the presence of the delta function in the coherent
term. It should be noted that these delta functions are
“eliminated” after theintegration of the coherent part of
the PBS intensity in formula (4) with respect to trans-
ferred momentum q.

In accordance with the above-mentioned division of
the form factor of the medium into the coherent and
incoherent parts, the differential PBS intensity per unit
volume can be written in the form

dl _g d _n + 0 d [ )
dodQ,dv  LdwdQ,dVH CdoodQ, dV

incoh
We will henceforth consider PBS in a polycrystal-
line medium. For this reason, intensity (7) should be
averaged over the direction of the reciprocal lattice vec-
tor asinthecase of X-ray scatteringinapolycrystal [13]:

n d _ di_ dQ, )
[HwdQ,dVD] IdwdQndV 4t

polycr
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For convenience of comparison with experiment, it is
expedient to pass from PBS intensity (8) to the differ-
ential yield of the number of photons from aunit length
of the polycrystal into a unit solid angle in a unit fre-
quency range:

_dN = 1l dp 9)
dwdQ,d  wvidwdQ,dV'

Using formulas (4)—9), we arrive at the following
expressions for the incoherent and coherent contribu-
tionsto the differential yield of PBS photons emitted by
afast charged particle in the polycrystal:

0 dN g _ 2nZe
Ijj("l‘)dQndIDincoh T[VZC3
2uv

X I |G((A), ql)lzl(p(qli v, w, e) (10)

Y1min

d
X [1- exp(~q2u’)] =,
o}

0 dN 0 _ 4T[ni22i003
Hodo,dd,, ~ o2

3

<3 N UL epguioa v.0.0) 0
9

X G)%;v —oo%[—%cos%.

Here, 8 = pK isthe photon emission angle, N(g) isthe
number of reciprocal lattice vectors with a preset mag-
nitude g, ©(x) is the Heaviside step function, and | is
the reduced mass of alattice ion and the projectile. The
minima momentum transferred to the medium is a
function of the emission angle and is defined as

Gumn(,v,0) = DH-Zooseh, (12

This formula shows that the momentum transferred to
the medium for zero emission angles in the relativistic
limit decreases in inverse proportion to the squared
energy. Function l¢(g, v, w, 8) has emerged as a result
of integration with respect to azimuth angle @, of vector

g=0q, =q+k.

The polar angle 3 of this vector is determined by the
energy conservation law, while the condition [cosd| < 1
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leads to the emergence of the Heaviside functionin for-
mula(11). Theexpression for (g, v, w, 6) hastheform

lo(g, v, w, 0)
_ AD-BE-CD _ CD _C (13
(D*-B»"* g’ E°
where
2 2 2 2
_ 2, WV .2 wv LW 20 W
A=g+ 3 sin"6+2 e cos6f 2C2 gcosevg
(14)
x %cose - IE[%)HC—/ cosf — 1% + Z%}
_ 49 _[O oeg_d]
B = gvanGJI [ngbcose ID} "
2
v IV O
X[E§+[—b-cose—lm},
_ o2 OV e OO0
C =dg'sn 6%[—[V9Dccose ID} 0 (16)
2
= g-— W v _O
D=g Zcosecvgcbcose 1D 17)
= 26n08% [1-[ L coso— 1]
E = ZSnGCJl [Vg[bcose ID} : (18)

Formulas (10)—18) describe PBS of afast charged par-
ticle in the polycrystal for all velocities satisfying the
Born approximation, including the nonrelativistic case.

3. RESULTS AND DISCUSSION

Calculations based on formulas (10)—(18) were car-
ried out for the following approximation of the nondi-
pole dynamic polarizability:

a(w, q) = a(w)F(q), (19)

where a(w) is the complex dipole polarizability and
F(q) isthe atomic form factor.

Since the radiation considered here is characterized
by a high frequency w > 1 at. unit, we will henceforth
neglect the difference between the polarizability and
the form factor of a single atom and the corresponding
quantities for anion in the crystal lattice.

We calculated dipole polarizability a(w) using the
data on the photoabsorption cross section borrowed
from the site of the Berkley National Laboratory [14].
With the help of these data and the optical theorem, we
determined theimaginary part of the dipole polarizabil-
ity. Thereal part was reconstructed from the imaginary
part using the Kramers—Kronig relation. The value of
the photoabsorption cross section [14] was normalized
to satisfy the sum rule. The real and imaginary parts of
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Fig. 1. Red (solid curve) and imaginary (dotted curve) parts
of the dynamic polarizability of asilver atom, multiplied by
squared frequency.

the polarizability of the silver atom calculated in this
way and multiplied by the square of the frequency are
presented in Fig. 1. The peaks on the frequency depen-
dence of the imaginary part of the polarizability corre-
spond to the values of the electron binding energy in the
N, M, and L subshells of the silver atom. Figure 1 also
shows that, in the high-frequency limit, the real part of
the polarizability multiplied by the squared frequency
and taken with the opposite sign attains its asymptotic
value equal to the number of bound electrons in the
atomic system of units.

A comparison of the results of calculation of the
complex polarizahility of an atom, based on the method
used here, with the results of calculation of the same
quantity in the random-phase approximation with
exchange [15] shows that the discrepancy typically
does not exceed 10% in awide frequency range.

The atomic form factor appearing on the right-hand
side of equality (19) was calculated using the Slater
wave functions using the formula proposed in [16],
where it was shown that the difference between the
form factor calculated in this way from the Hartree—
Fock value does not exceed afew percent.

Figures 2-5 show the calcul ated differential yield of
PBS photons generated by an ion with charge Z, = 30
and velocity v = ¢/3in polycrystalline silver and alumi-
num. We used the following values of mean standard
deviation of lattice ions from their equilibrium posi-
tions (parameter u): U, = 0.096 A and u,,=0.087 A. In
the sum over reciprocal lattice vectors of the same mag-
nitude, determining coherent PBS (11), we took into
account 50 terms for which §(g) # 0. It should be noted
that the photon yield in the same spectral range changes
by less than 1% when 40 terms are taken into account.
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Fig. 2. PBS of an ion with charge Z, = 30 in a polycrystal

(solid curve) and at an atom (dotted curve) of silver in the
low-frequency range.

Figure 2 shows the PBS photon yield at a silver
polycrystal in the low-frequency range for an emission
angle of 90°. The same figure shows the corresponding
value for a single atom. It can be seen that PBS in the
polycrystal is strongly suppressed as compared to the
single atom in the given frequency range. Thisfact can
be explained by the combined action of two factors.
First, it can be seen from formula (10) that theincoherent
termissmall in therange of low frequenciesw< v/uand
PBSisdetermined by the coherent component (11). Sec-
ond, a contribution to coherent PBS in a polycrysta
comes not from all momentaimparted to the target, but
only from those with a magnitude equal to that of one

(NPP)/ (dwdQdl), (eV cm sterad) ™!
0.25 , | |

0.20

0.15

0.10

0.05

2000 2500

w, eV

0 1
1000 1500 3000

Fig. 3. Thesame asin Fig. 2 for a higher-frequency range.
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of reciprocal lattice vectors. Thisleadsto adecreasein
the process intensity as compared to the intensity of
radiation emitted by a single atom, when all momenta
imparted to the target and allowed by the momentum
conservation law contribute to the process. For exam-
ple, for frequencies w < vg, modulo-small transferred
momenta w/'v < g < g make zero contribution to coher-
ent PBS in a polycrystal, while precisely these
momenta play an important role in the formation of
PBS at a single atom.

The peaks on the frequency dependencein Fig. 2 are
associated with the peaks of the imaginary part of the
polarizability of the silver atom for photon energies
closeto theionization potentials of the N and M shells.

Figure 3 shows PBS in a higher-frequency range,
when the spectral dependence of the photon yield from
a polycrystalline target acquires a characteristic struc-
ture in the from of “frequency steps.” For preset values
of the parameters of the problem (ion velocity and
emission angle), three frequency steps can be seen in
the frequency interval depicted in Fig. 3; the position of
these steps is virtually the same for both types of the
target. The reason for the emergence of such a spectral
structure, which is not observed for a single atom, is
associated with the coherent PBS component in a poly-
crystal, which dominates in the spectra range consid-
ered here. It can easily be seen from formula (11) that
the frequency w, of the step associated with the recipro-
cal lattice vector g is defined as

gv
1—-(v/c)cosb’ (20)
For frequencies higher than y, the contribution from a
preset magnitude g of the reciprocal |attice vector to the
probability of the process is zero since the energy-
momentum conservation law is violated for it. This

w;(g,v,0) =

(NPMY/(dwdQdl), (eV cm sterad)™!
0.25

020
0.15
0.10

0.05

2000 2500

w, eV
Fig. 4. Differentia yield of PBS photons from an ion scat-
tered in polycrystalline silver for various emission angles:

90° (solid curve), 60° (dotted curve) and 120° (dashed
curve).

1500

0
1000 3000
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leads to the emergence of afrequency step on the spec-
tral dependence of the PBS photon yield. Since the
value of frequency «y is determined by the magnitude
of vector g for which §g) # 0, the form of the PBS
spectrum in a polycrystal depends on the crystal struc-
ture of the target. For example, for a diamond-type
crystal lattice, the number of frequency steps is much
smaller than for the face-centered lattice considered
here. Indeed, in the case of the diamond | attice, an addi-
tional limitation isimposed on reciprocal | attice vectors
for which the form factor of a unit cell differs from
zero.

The“sharpness’ of afrequency step depends on the
relation between the coherent and incoherent contribu-
tionsto PBS. If incoherent PBS prevails, the frequency
step will be “blurred.” To avoid this, the following con-
dition must be satisfied:

g<l—lj%L—%cos%.

It follows from the above inequality that the step struc-
ture in the PBS spectrum for a given magnitude of the
reciprocal lattice vector has greater contrast for large
emission angles 6. Indeed, with increasing 8, the mini-
mal momentum (12) transferred to the target increases,
while the contribution from the incoherent PBS compo-
nent decreases.

Figure 4 shows the dependence of PBS in a silver
polycrystal on the emission angle. It can be seen from
the figure that the relative value of the frequency jump
increases with the emission angle and its position is
shifted to the region of lower frequenciesin accordance
with formulas (20) and (21).

Figure 5 showsthe dependence of the PBS spectrum
in an aluminum polycrystal on the velocity of the pro-
jectile. The solid curve is the emission spectrum for a
high value of theion velocity (v = ¢/3). With decreasing
velocity, first, the contribution from the incoherent pro-
cess increases; second, the position of frequency steps
is shifted to the low-frequency region. Thus, the posi-
tion of afrequency step in the PBS spectrum may serve
as ameasure of the energy of a scattering ion; i.e., the
energy loss of the projectile can be judged from the dis-
placement of w. The dashed curve in Fig. 5 corre-
sponds to an ion velocity equal to the velocity of
1-MeV protons used in experiments [6]. It can be seen
that the PBS spectrum in this case does not exhibit the
characteristic solid-state structure, but coincides with
the emission spectrum for a single atom. This was pre-
cisely the case in experiments [6], in which no step
structure of the spectrum was observed. This can be
explained by the fact that, for low ion velocities (v =
c/20 for the dashed curvein Fig. 5), theincoherent PBS
component prevails over the coherent component even
beginning with a photon energy of 500 €V or higher so
that the step structure is completely hidden behind the
incoherent background.

(21)
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Fig. 5. Differential yield of PBS photons from an ion scat-
tered in polycrystalline aluminum for variousion velocities:
v = c¢/3 (the ordinate is magnified by a factor of 5) (solid
curve) and v = ¢/20 (dotted curve).

In the high-frequency region of the PBS spectrum
(w > 10 keV), which is characterized by high values of
the momentum imparted to the target (or small values
of the impact parameter), incoherent PBS plays a dom-
inant role. For this reason, the solid-state structure of
the spectrum associated with the coherent interaction of
the projectile with the target becomes weakly distin-
guishable. As aresult, the PBS spectrum in a polycrys-
tal approaches the spectrum at a single atom, as should
be expected in accordance with the physical pattern of
the process. Thus, to observe frequency steps in the
PBS spectrum at a polycrystal, ions with a sufficiently
high energy should be used and observation should be
carried out in the range of intermediate photon energies
from 1.5-2 to approximately 6 keV.

4. CONCLUSIONS

We calculated and analyzed PBS of afast ionin a
polycrystalline medium taking into account coherent
and incoherent emission channels. It is shown that in
the range of low photon energies w < 2mv/a (a is the
lattice constant), in which the coherent component of
the process dominates, PBS in the polycrystal is sup-
pressed as compared to radiation emitted by a single
atom. This suppression is due to the fact that small
momentatransferred to the target and determining PBS
at a single atom make zero contribution to coherent
scattering of a fast ion from the crystal lattice in the
low-freguency range.

In the intermediate photon energy range w = 2rv/a
(2-6 keV), aclearly distinguishable step structure (fre-
guency steps) is observed in the PBS spectrum. This
structure is associated with coherent scattering of apro-
jectilefrom acrystal lattice, during which amomentum

No. 5 2004



964

modulo equal to one of reciprocal lattice vectors is
transferred to the target. A frequency step is formed as
aresult of elimination of the contribution from one of
the reciprocal vector moduli (g) to the process, when
the minimal transferred momentum determined by con-
servation laws is modulo greater than g. The position
and height of frequency steps reflect the features of the
target structures and are functions of the velocity of the
projectile particle and the photon emission angle.

In the high-frequency spectral range w > 2mv/a
(w > 8-10 keV), the incoherent component of the PBS
spectrum dominates and the emission spectrum
approaches the spectrum for a single atom.

These spectral features of PBS in polycrystaline
targets may also be observed in experiments on emis-
sion from fast ions scattered in thin films, when the
absorption of radiation in the target can be neglected as
well as radiation emitted by secondary electrons.

Since the typical features of the PBS spectrum in
polycrystals are determined by the structure of the tar-
get and depend on the velocity of the projectile, this
radiation can be used for structural analysis of the target
material and for determining bremsstrahlung of fast
ionsin apolycrystalline medium.
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Abstract—The phenomenon of extraordinary ray refraction in ahelical liquid crystal with large (compared to
the light wavelength) pitch has been studied by theoretical and experimental methods. At a sufficiently large
angle of incidence relative to the pitch axis, the extraordinary ray exhibits reflection (reversal) from a certain
layer of the medium. The ordinary ray, for which the system is optically isotropic, exhibits no such reflection.
The experimental dependences of the transmitted and reflected (reversed) rays are described using the
geometrical optics approximation taking into account the optical losses for scattering inside the liquid crystal.

© 2004 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Among the main distinctive features of liquid crys-
tals (LCs) aretheir unusual optical properties, in partic-
ular—anisotropy (both uniaxial and biaxial), very high
optical activity, selective reflection, unusually strong
scattering of light, etc. [1]. From this standpoint, of
considerable interest for optical applications are the
L Cs possessing one-dimensional periodicity, primarily
cholesteric LCs. These LCs are locally uniaxial, with
the optical axisuniformly rotating around the pitch axis
so asto form a helical structure. In the case of normal
incidence, whereby light propagates along the pitch
axis, the wave equation admits exact solutions [1, 2].
For oblique incidence, systems with a cholesteric
pitch P on the order of the light wavelength A can be
described using approximate methods [3] based on the
Floquet theorem and the theory of diffraction. The
validity of this approach was repeatedly confirmed in
experiment.

Cholesteric LCs with a pitch greater then the light
wavelength, as well as low-twist nematic LCs, have
been studied to a much lower extent, although the first
results for the normal incidence of light (the so-called
Mouguin adiabatic regime) were obtained about a cen-
tury ago [4]. In recent years, the lack of knowledge
about such media has become especially challenging in
view of the wide use of twist LC cellsin data displays.
The properties of helical LC media smoothly vary on a
scale of A, which makes it possible to use methods of
the Wentzel-Kramers—Brillouin type. The problem of
€l ectromagnetic wave propagation in alocally isotropic
medium with smooth inhomogeneities was considered
in[5].

In recent years, we have studied the propagation of
electromagnetic wavesin the case of oblique incidence
in cholesteric LCs with large pitch [6]. In this case,
light also propagates in the adiabatic regime, whereby
there are two normal waves—Ilocal ordinary and local
extraordinary—with the polarization vectors deter-
mined by directions of the optical axis and the wave
vector at a given point. The wave vector component
perpendicular to the pitch axis is conserved, and the
length of this vector (wavenumber) is determined from
the local dispersion equation [6, 7].

In helical LCs, where the director orientation
changes from point to point, the trgjectories of rays
exhibit a complicated character. Description of such
systems encounters problems of two types. Problems of
thefirst type are related to determination of the director
distribution in an LC cell using the results of optical
measurements. Such investigations were performed,
for example, in [8]. In particular, the director field
structure in hybrid cells of nematic LCs was recon-
structed using the results of measurements of the
reflected light intensity in the vicinity of a point of the
total internal reflection. Problems of the second type
arerelated to investigations of the light propagation and
scattering in LC cells with known structures [3]. This
paper deals with a problem of the second type.

We have studied propagation of the ordinary and
extraordinary rays in twist LC cells with the helica
structure period much greater than the light wave-
length. It was established that the extraordinary ray
propagating at asufficiently large angleto the pitch axis
exhibits reversal of the propagation direction inside the
medium and leaves this medium similarly to the case of
total internal reflection. However, in contrast to the lat-
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ter effect, the extraordinary ray exhibits reflection in
depth of the medium, rather than on the sample surface.
We have studied this phenomenon theoretically and
confirmed it experimentally. The experimental data
have been analyzed in detail within the framework of
the geometrical optics approximation.

This paper is organized as follows. Section 2 pro-
vides a theoretical description of the propagation of
light in cholesteric LCs with large pitch. In particular,
Section 2.1 presents genera relations of the geometri-
cal optics of such cholesteric LCs and Section 2.2 con-
sidersthetrgjectory shape and reversal of the extraordi-
nary ray. In Section 3, we describe the experiment and
present the experimental results. Section 4 isdevoted to
a comparative analysis of the theory and experiment
with alowance for extinction in the cholesteric LC. In
the Conclusions section, we will consider some other
possible factorsinfluencing the intensity of transmitted
and reflected rays in the vicinity of the turning point.
The Appendix gives formulas for the calculation of
extinction in cholesteric LCs with large pitch.

2. THEORY OF THE LIGHT PROPAGATION
IN TWIST LIQUID CRYSTAL CELLS
WITH LARGE PITCH

2.1. Geometrical Optics Approximation

Consider a plane-parallel twist LC (cholesteric or
nematic) cell with a pitch P > A and a thickness d,
occupying alayer 0 < z< d in a Cartesian coordinate
system xyz with the z axis perpendicular to the bound-
ary planes. Let the pitch axis be oriented parallel to the
z axis and the director vector n(r) be perpendicular to
this direction and homogeneous in the xy plane:

n(r)=n(2 = (cos(goZ+ @), SN(AoZ + @), 0). (2.1)

Here, q, = TP and @, istheinitial phase. According to
formula (2.1), the period of the director n(z) is 2P.
However, since the directions n and —n in cholesteric
and nematic LCs are equivalent, the actual pitchisP.

The wave equation for the electromagnetic field in
such amedium can be written as

(curlcurl —k38(2))E(r) = 0, (2.2)
where E(r) isthe electric field vector, ky = w/c, wisthe
circular frequency, c is the speed of light in vacuum,
and &(2) isthe permittivity tensor. In a cholesteric (as
well asin a planar twist nematic) LC, the latter tensor
has the following form [1]:

SaB(Z) = SDBGB + eancx(z) nB(Z)1 (23)
wheree, = g, —¢€p; €,and g arethe permittivity compo-
nents parallel and perpendicular to n(2).
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In view of the homogeneity of the system in the xy
plane, it is convenient to pass to the Fourier harmonics
E(ky, 2) with respect to the transverse variables r =
(%, y)-

Let us fix the transverse wave vector k; and seek
a solution of the wave equation (2.2) inside the medium
in the geometrical optics approximation:

E(r) = Eo(2€(2)

z

O . O (2.4)
x expOkpy O+ |Ikz(z')dz1],
g 0 g

where Ey(2) and k/(z) are scalar functions and e(z) isthe
unit vector (e - e* = 1), which can be considered aslocal
values of the amplitude, the z-components of the com-
plete wave vector k(2) = (kg, kf2)), and the vector of
polarization of a quasi-plane wave.

The condition of applicability of the geometrical

optics approximation (2.4) is represented by the set of
inequalities,

T < oK.
(2.5)
‘d_z_(é) < k(2), dkz(z) < K¥),
V4

which must be obeyed for al zin theinterval 0 < z<
min(P, d). Thefirst two inequalities (2.5) imply smooth
variation of the field amplitude and the polarization
vector on awavelength scale (A ~ k™ ~ k;l), while the
third inequality reflects the smooth variation of the k,(2)

component of the wave vector k(z) on this scale. Note
that, in view of the relation

dk,(2) k)
4z p

the third inequality corresponds to the condition

k(9P > 1. (2.6)
According to formulas (2.5) and (2.6), the k,(z) compo-
nent in the geometrical opticsapproximation isnot very
small for al z

Substituting expression (2.4) into wave equation (2.2)
and considering the main order with respect to thelarge
parameter k,(2)P ~ P/\, we obtain the eikonal equation

k(2) x k(2) x &(2) + k&2 e(?) = 0.

At afixed direction of the wave vector t = k/k and a
fixed value of z the homogeneous system of linear
equations (2.7) for a uniaxia permittivity tensor (2.3)

2.7)
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has two well-known solutions corresponding to the
ordinary (0) and extraordinary (€) waves[9]:
K = kon@, K = kon®. (2.8)

Here, n© and n® = n©(t) are the refractive indices for
the ordinary and extraordinary rays, respectively:

Ep€

(2.9)

n® = e, n(e):J

2 - 247
€Cos 6 +¢ensin'6

where 0 is the angle between vectors n and k. The
polarization vectors €9 = eO)(t) and €9 = €9(t) are
defined by the conditions

€2 0n, 920k, & 0Ok, (2.10)
and by thefact that vector €® occursin the plane of vec-
torsk and n. Using Egs. (2.10) and (2.3), we determine
the directions of the unit polarization vectors €9

and e©:
e ||k xn, €9 ||n(kék)—k(kén). (2.1

In contrast to the usual formulation of the problem
of wave propagation in a homogeneous anisotropic
medium, where the direction of the wave vector t and
the optical axis n do not change in space, our system
has afixed transverse component k; of the wave vector,
while the optical axis n(2) is rotating in space. In this
case, the wave vectors k and the polarization vectors e
arethefunctionsof the coordinate zand the two-dimen-
sional vector k. For the ordinary wave, the first equa-
tion (2.8) yields

K2k, 2 =kP(ke) = Jeko—Ke. (212)
For the extraordinary wave, we have
(e) [k

cosh = N2 ks, 2 _ n@ 1 (213)

K92 k9K 2)

therefore, the second relation (2.8) is an eguation for
the kge) (kg, 2 component. Solving this equation, we
obtain

Kk, 2) = Js”kg—ké—i—;(kmm(z))z. (2.14)

The polarization vectors €9(k, 2), €9(k, Z) can be
determined using formulas (2.11) withn =n(2) and k =

kO(kp) or k = k@(kp, 2), where k© = (kp, k?(k.)) and
k® = (kg k(K 2)).
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It should be noted that, within the framework of the
geometrical optics approximation (2.4), the indepen-
dence of the transverse wave vector component k of z
isequivalent to Snell’s law. Indeed, selecting they axis
orientation in the xyz system aong the fixed vector kg,
we can write t(2) = (0, sinx(2), cosx(2), where x(2) is
the z-dependent angle between the wave vector and the
z axis. Therefore, n@(t) = n®(t(2) = n@ and
Eq. (2.8) yidds k;, = kyn®sinx(z) for the extraordinary
wave. Thus, the condition that k; is constant corre-
spondsto the usual Snell’s formula

n“(2)sinx(2) = const. (2.15)

For the ordinary wave, this condition also corresponds
to the usua Snell law, n©(2)sinx(2) = const. However,
both quantities n©(z) and x(2) are in fact independent
of z (see relations (2.9) and (2.12)) and this law is
trivial.

In order to find the field amplitude Ey(2) in the geo-
metrical optics approximation, it iS necessary to retain
terms of the next order with respect to the small param-
eter A/P. The resulting “transfer equation” [10] for the
field amplitude Ey(2) is equivalent to the law of energy
conservation, divS = 0, for the Poynting vector [9]:

S(r) = E%ko[kuzf— E(EDK)]. (2.16)

For the waves satisfying Eq. (2.4), S(r) = §(2) and

@ = %[k(z) - A (K (B

Thus, in our case, the energy conservation law takesthe
formdivS=0,S(2) = 0, whichimpliesthat S(z) isinde-
pendent of z. Asaresult, relation (2.17) givesthe law of
variation of the field amplitude:

Ko
-k &)’
where C, is an arbitrary constant. Substituting expres-
sions (2.11)—(2.14) into (2.18), we eventually obtain

(2.17)

[Eo(@)” = Cop (2.18)

0 ko

(k)

2 _ z
S St + ek i

K9k, 2koe

for (0)-ray,
(2.19)
for (e)-ray.

In concluding this Section, it can be noted that terms
of the next order of smallnessin A/P in the wave equa-
tion yield a correction to the phase of the wave (2.4).
The condition of neglect of this correction implies
arestriction on the wave optical path in an inhomoge-
neous medium [10, 11]:

14\ < P?, (2.20)
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which isan additional condition, supplementary to ine-
gualities (2.5), determining the applicability of the geo-
metrical optics approximation.

2.2. The Phenomenon
of Extraordinary Ray Reversal

Let us consider the conditions under which the light
wave can propagate in a medium with a preset value of
k. According to relation (2.12), the condition of the

ordinary wave propagation appears as js_m ko = ko
Since the wave vector k(© isindependent of the coordi-
nate z, the wave in this medium will exhibit rectilinear
propagation in the entireregion 0 < z< d. According to
relation (2.11), the polarization vector €9(2) of thiswave
depends on z, since its direction is determined by the
local director vector n(z). According to formula (2.19),
the wave amplitude is constant.

The conditions of propagation of the extraordinary
wave are significantly different because the longitudi-
nal wave vector component kf’ depends on the coordi-

nate z. According to Eq. (2.14), the extraordinary wave
will propagate in the medium for al z, provided that
vectors kK and n(2) in the entire interval obey the ine-
quality

£k~ K2 > Z—;kécoszqn(z). 2.21)

This inequality corresponds to the condition k2Ij <
min(es, £)ks -

On the contrary, if the reverse inequality isvalid for
al values of @(2), which corresponds to the condition
k? > max(e, g)k; the extraordinary wave will not
propagate in the medium.

In the intermediate case of

min(e, £,)Ks < k2 < max(eg, £)K5,

we observe a situation where inequality (2. 21) isvalid
only within acertaininterval of angles@(2). Inthiscase,
there exists an angle ¢(z) for which the inequality
in (2.21) changes to equality, so that the k! compo-
nent vanishes. As the angle ¢(2) decreases further, the
k¥ component becomes imaginary and the extraordi-
nary wave exhibits exponential decay. At the point z,

the k' component changes sign and, accordingly, the
wave changes the direction of propagation along the z
axis. Therefore, z is the turning point for the extraordi-
nary wave. In acertain sense, this effect is analogous to
the phenomenon of total internal reflection from a cer-
tain plane in depth of the medium.
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The polarization vector €°(z) of the extraordinary
wave is adiabatically adjusted to the local values of the
wave vector and the director in accordance with for-
mula (2.11).

In the vicinity of the point z = z, the inequalitiesin
(2.5) are not satisfied and the geometrical optics
approximation fails to be valid. Here, we occur in a
caustic region where the field amplitude, according to

Eq. (2.19), tends to infinity because k¥ (2) — 0 as
Z— z. In order to describe the wave behavior in this
region, it is necessary to analyze wave eguation (2.2)
for field (2.4) with €(2) expanded into series in the
vicinity of the turning point. For scalar waves, the phe-
nomenon of wave reversal and the behavior of the wave
field in the vicinity of this point have been described in
much detail, for example, in [11]. Thisanaysis showed
that, in particular, after passage via the turning point,

the field not only changes the sign of the k§e> compo-
nent, but acquires an additional phase shift exp(—i172).

Now let us consider the shapes of trajectories of the
ordinary and extraordinary rays in a cholesteric LC
with large pitch. Theray trajectory is defined as the set
of points at which the tangent coincides with the direc-
tion of the group velocity of the wave. In our case, it is
convenient to replace the group velocity vector by the
Poynting vector S having the same direction [9]. In an
isotropic medium, S || k and the trajectory is usually
described in terms of the wave vector. In an anisotropic
medium, where (in the general case) S f k, the trajec-
tory should be described in terms of the Poynting vec-
tor. Introducing parametrization of the ray trajectory as
(ro(2), 2 and writing the condition that the tangent at a
given point is parallel to the Poynting vector (Sy(2),
S,(2)) of the wave, we obtain an equation for theray tra-
jectory r(2):

dr(2 _ Su(?
dz S

(2.22)

For the ordinary ray, relations (2.10) show that
k@el)(z) = 0, and Eq. (2.17) shows that S || k© and
S js independent of the coordinate z. Therefore, the
right-hand side of Eq. (2.22) is constant and we con-
clude that the ordinary ray trajectory is rectilinear and
coincides in direction with the wave vector k©,

For the extraordinary ray, the vector S®(z) exhibits
amore complicated tragjectory because it is not parallel
to the wave vector (S9(2) }f k©(2)) and changes direc-
tion when zvaries. In order to determine this trajectory,
let us note that, in an arbitrary anisotropic medium, the
vectors k, E, and S occur in the same plane so that S [
E andk OD = £E ; therefore, kEE =0[9]. Taking into
account the symmetry of the permittivity tensor €, the
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Fig. 1. Projections of the ray trgjectoriesin an LC cell onto xz and yz planes for two angles of entrance x into the LC: (a) extraor-
dinary ray (x = 63.2°); (b) reverse extraordinary ray (x = 63.5°). Calculations were performed for /e = 151, ,[g; = 1.69, ¢ =

-2 in formula(2.1); x axisis parallel to k.

|atter relation can bewrittenas ek =0, sothate O €k .
Formula (2.3) yields the relation

€k = gk +g4(n k)N, (2.23)

which implies that, in a uniaxial anisotropic medium,
vector €k is alinear combination of the n and k vec-
tors. Note also that, according to relation (2.11) for the
extraordinary wave, the polarization vector e® isalso a
linear combination of the n and k vectors. As a result,
we conclude that the vectors €@, S©, and £k liein
the same plane formed by the vectors n and k@, so that
e 0 €k and e O S. Therefore, the uniaxial anisotropic
media (to which the systems under consideration
belong on alocal level) are characterized by S© || €k .
The above considerations imply that
542 _ (@k“@)s

SO  (¢2k°2). (2249

and trajectory equation (2.22) with allowancefor (2.23)
takes the following form:

dr(2 _ n(@dkscos@(2)e, + ke
dz k(Der '

(2.25)
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Integrating this relation, we obtain an explicit expres-
sion for the ray trgjectory:

dz
K92)

0 ;i n(Z) cosqQ(z)
K(2)

€.k ’
roz) = 2 dz + k 2.26
2= q (2.26)

0

Theright-hand side of Eq. (2.26) reducesto elemen-
tary functions and an incomplete elliptic integral of the
first kind. The results of numerical calculations of the
ray trajectories are presented in Fig. 1. As can be seen,
the extraordinary ray for certain angles of incidence
exhibitsreversal inside the crystal and turns back to the
medium from which the light wave was incident onto
the crystal. The trajectory of the extraordinary ray in
such a medium is flat neither inside nor outside of the
wave channel. However, the period-average Poynting
vector occursin the (z, k) plane.

3. EXPERIMENTAL

We have verified the effect of extraordinary ray
reversal by measuring the parameters of rays outside a
crystal and interpreting the results within the frame-
work of the geometrical optics approximation.

The system studied comprised the mixture of anem-
atic LC (ZhKM 1466, Ingtitute of Organic Semiprod-
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——————

He—Ne P, Ph,

Fig. 2. Schematic diagram of the experimental setup:
(He-Ne) helium—neon laser; (P Py, P,) polarizers;
(A/2) half-wave plate; (Phy, Phy) photodetectors; (V) digital
voltmeter V7-35; (G) goniometer; (C) optical cell with lig-
uid crystal.

Bout

Ph
* Bin !

Yo

ESRVAVAY

Ph,

Fig. 3. Schematic diagram of the LC cell showing the ray
paths: (1) planar twist LC; (2, 3) glass prisms with a height
of 12 mm, alarger base of 37 mm, and abase angleyp = 70°;
Bout @d By, the angles of incidence and refraction on the

prism entrance surface, respectively; a the angle of inci-
dence onto the LC surface.

ucts and Dyes, Moscow) and a chiral additive. The lat-
ter was an optically active compound with the structural
formula

H CHjz
CHz—

\_/
C
cmw@coo@
CH3

synthesized at the Vilnius State University (Lithuania).
The surfaces of prisms contacting with the LC medium
were processed o as to ensure the planar orientation.

Figure 2 shows a schematic diagram of the experi-
mental setup. The light source was aHe-Ne laser oper-
ating at A = 632.8 nm. After polarizer P, the linearly
polarized laser beam passed through a half-wave plate
(which allowed the polarization plane direction to be
controlled) and struck the entrance face of a prism in
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cell C mounted on goniometer G. We measured the
reflected and transmitted light intensities (1, and 1) as
functions of the angle of the laser beam incidence onto
the LC for two polarizations of the incident light beam,
which corresponded to the ordinary or extraordinary
ray entering the LC. Using polarizers P; and P, placed
in front of the photodetectors (Ph; and Ph,, respec-
tively), it was possible to separate the components hav-
ing the same polarization as that in the incident light.

The measurements were performed with a special
cell schematically depicted in Fig. 3, comprising athin
lane-parallel LC layer (1) sandwiched between two
trapezoidal glass prisms (2, 3) with the base anglesy, =
70°. This shape of the prism allowed the incident beam
to be introduced at rather large angles a. The experi-
ments were performed for two LC sampleswithd = 8
and 100 um. The easy director orientation axes on both
surfaces were perpendicular to the plane of the figure.
The concentration of the optically active additive was
selected so asto provide that the pitch P would be close
to the LC layer thickness dlAsa result, the cell fea-
tured planar twist structure with a director orthogonal
to the plane of the figure on the alignment surfaces and
parallel to this plane at the center of the LC layer (thus,
making one turn over the layer thickness).

The values of ,/e;, and /g, in the LC mixtures for

A = 632.8 nm were /e, = 1.51 and ,fg; = 1.69, thus

virtually coinciding with the corresponding values for
the nematic matrix. This is explained by a very small
concentration of the chiral additive (about 2 and 0.07%
for the first and second sample, respectively). The
refractiveindex of the glass prismswasn, = 1.644. This

value falls between /e, and /g, being three times

closer to , /g, thanto /e .

The incident, transmitted, and reflected rays occur
in the plane of Fig. 3. The angles of the light incidence
onto the LC surface (a) and onto the prism entrance
surface (B,,) arerelated as

a = inBinv nps.nBin = S.nBouU (31)
where the sign is selected as indicated in Fig. 3,
depending on the position of the incident ray relative to
the outer normal to the prism entrance surface. Rela
tions (3.1) show that a can vay from vy, —

arcsin(1/n,) = 32.54° to 90°.
First, let us consider how theincident light intensity

would be distributed between photodetectors Ph; and
Ph, if the extraordinary ray reversal were not taking

1 The pitch P was determined using two independent methods:
first, by observation of the Grangin texture in a Canot wedge; sec-
ond, by monochromatic light diffraction on a confocal structure.
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place. According to Snall’s law for the ordinary ray
refraction at the glass-L C interface,

n,sna = n@snx = Jepsinx<.fe.  (32)

Thisrelation poses limitation on the angle of incidence,
o <ap= acsin(./e/n,) so that the ordinary ray does
not enter the LC when a > o jSubstituting the val ues of

n, and /e, we obtain aj= 66.7° for the total internal

reflection angle of the ordinary ray at the glass-LC
interface.

For the extraordinary ray, Snal’s law with allow-
ancefor relation (2.9) yields

n,sna = n®@)sinx = ./gsiny, (3.3)

because 6 = 90° at the at the glass-L C interface (Fig. 3).
When x variesfrom 0to 90°, theright-hand sideinrela-

tion (3.3) changes from 0 to ng|. Similarly, the left-
hand side varies (depending on a) from O to n,. By
virtue of the condition n, < @|, for any a thereisan
angley,
. n,sina
X = arcsin :
g

(3.4)

such that relation (3.3) is satisfied. Thisimpliesthat the
extraordinary ray does not exhibit total internal reflec-
tion at the glass-LC interface in the entire range of
anglesa.

Therefore, it might be expected that the extraordi-
nary ray would exhibit reflection and refraction at al
angles of incidence and the output light intensity
measured by both photodetectors would smoothly vary
depending on a. The intensity of the transmitted
light (I,) must significantly exceed that of the reflected
light (1,). For the ordinary ray, it might be expected that
both reflected and refracted (transmitted) signalswould
be observed for a < apy and only the reflected signal,

fora>apn

The results of our measurements for the ordinary
and extraordinary rays are presented in Fig. 4. As can
be seen from these data, there existsan angle o = 66.7°

(the same for both rays) such that the light reaches both
photodetectors Ph; and Ph, for a < a5 and only photo-
detector Ph; for a > a; Theresults presented in Fig. 4
refer to the sample with d = 100 um. The pattern
observed for the sample with d = 8 um is qualitatively
the same, but the signal intensity variationsinthevicin-
ity of a =< apjare less pronounced. Thus, the experi-

mental resultsfor the ordinary ray are qualitatively con-
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Fig. 4. Angular dependence of the reflected and transmitted
light intensity for the (a) ordinary and (b) extraordinary
rays. Experimental data: (<) reflected intensity; (CJ) trans-
mitted intensity; (A) total intensity. Solid curves show the-
oretical curves: (1) reflected intensity 14; (2) transmitted

intensity I, calculated using formulas (4.4) (a) and (4.8) (b);
(3) total intensity I + I, (8); reflected intensity 14 calculated
using formula (4.9) (b). All values are normalized to the
incident light intensity.

sistent with the above predictions, whereas the data for
the extraordinary ray disagree with these predictions.

The discrepancy can be eliminated if we take into
account the phenomenon of the extraordinary ray rever-
sal described in Section 2.2. According to this, the
extraordinary wave with a sufficiently large value of k;
(i.e., at asufficiently large angle of incidence a) cannot
penetrate into the LC deeper than to a certain layer
wherek, = 0. Upon reaching this depth, k, changes sign
and, in fact, this wave will escape from the LC layer
with the same value of the transverse component k-, but
with the opposite longitudinal component k,. This will
appear asif the wave would be reflected. As was dem-
onstrated in Section 2.2, the extraordinary ray reversa
for g5 < g takes place for waves with k; such that

enks < K5 < gK;. Taking into account the refation k=
k®siny and Snall’s law (3.3), we obtain

e 8y

— < sno < —,
np nP
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Fig. 5. Angular dependences of the extinction coefficients
for the ordinary (0(®)) and extraordinary (6(®) rays calcu-
lated using formula (A.2).

Since /g, > n,and ,/e,/n, = sinapy we infer that the
extraordinary ray reversal must be observed in the
interval o< a < 90°, in agreement with our experi-
mental results.

Thefact of coincidence of thelimiting angles ajfor
the ordinary and extraordinary rays can be explained as
follows. If the refractive index (2.9) of the extraordi-
nary ray decreases in the course of its propagation in
the LC layer, while the k; component of the wave vec-
tor remains constant, the k§e> component along the ray

tendsto decrease. The minimum angle a corresponding
to the onset of the extraordinary ray reversal is deter-

mined by the condition that k¥ is zero on a plane in

depth of the LC, where the refractive index n® is mini-
mum. In our case, & < g and, hence, the minimum

value of n® is /e, thus coinciding with the refractive
index n© for the ordinary ray. Therefore, the minimum
angle a corresponding to the onset of the extraordinary
ray reversal exactly coincides with the angle of total
internal reflectance ajof the ordinary ray.

4. THE INFLUENCE OF EXTINCTION

Now we will analyze the angular dependence of
intensities |, , for the rays of both typesin more detail.
First, let us consider the case of incidence of the ordi-
nary ray. Thefirst factor determining asmooth decrease
inintensity of thetransmitted ray (I,) and anincreasein
intensity of the reflected ray (1) at a — apjin the

region of a < apjis related to a redistribution of the

energy between the rays refracted and reflected at the
LC—glass interface. The intensities of the transmitted
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(1) and reflected (1,;) rays are described by the Fresnel
formulas[9],

e = ToRy, Te = To(1-Ry), (4.1)
where |, isthe incident light intensity and
tanz(x—a)
Ry = —"—= (4.2)
tan"(x +a)

is the reflection coefficient for the ray polarized in the
plane of incidence.

Asa approachesthe critical value o the reflection
coefficient increases and tends to unity in the limit of
a — oy Therefore, in the vicinity of oy it is neces-
sary to take into account multiple reflections at both
LC—glassinterfaces (Fig. 3).

It should be also noted that, for a — apj rela-

tion (3.2) yieldsx — 90° and, hence, the refracted ray
propagates in the LC at o = ajat amost glancing

angles. As aresult, the optical path

sina,
. 2 . 2
AJsin‘a, —sin“a

traveled by the ray between two sequential reflections
in the LC can be rather large so that the losses of light
scattered in the LC (extinction) may become signifi-
cant. The general formulas for the extinction coeffi-
cientsin atwist LC cell with large pitch are presented
in the Appendix. We used formulas (A.2) and (A.4) to
calculate the angular dependence of the extinction coef-
ficient for the ordinary (c©(8)) and extraordinary
(0©(8)) raysin the LC under consideration. The results
of these calculations are presented in Fig. 5. For anem-
atic matrix of this LC, the ratio of the Frank moduli is
Ks/Ky; = 0.95 and K;; ~ 1078 dyn. For this reason we
have calculated estimates for a single-constant approx-
imation with K;; = K,, = K33 =10 dyn. Theinterval of
integration in (A.2) was truncated at a scattering angle
of 0.7° corresponding to the detector aperture. It should
be noted that the maximum values of o (for 6 = 45°)
are severa timeslarger than the characteristic values of
o© (cf. [12, 13]).

Thus, taking into account the multiple reflections
and extinction, we obtain for the ordinary ray

1© = d

4.3

(A=Y@, 2My+2
Il = IoR” 1+——(—;—)———2L0—)—(1_y(0)() ) ,

~Y(o) (4.4)
lo (A —Y )2 2My +2
I, = a_o (0) 2(0) (1_y(0)() )
(o) 1—V(o)
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fora < o and

Il: IO’ |2:O (45)
for a > ap Here, y,) = aR;
0@ . O
8o = ePpE— J'o (8(2))d], (4.6)
odl O

09(0) is the extinction coefficient for the ordinary ray,
0 = 6(2) is the angle between the director n(z) and the
wave vector k©),

n(2 kg sina
sina,’

cosb(2) = = ¢c0s(gyz+ @)

o~/ €0

and

DA/sinza —sin‘a
Mg=1+ 5

dsin2a

is the number of reflections of the ordinary ray inside
the sample within the aperture D > d (in our experi-
ments, D = 4 mm). In the geometry under consider-
ation, @, = —102 and k = (kg, 0, 0); we aso took into
account that the ordinary ray hasarectilinear trgjectory,
and anincrement of thetrajectory lengthin (A.1) isdl =
(19/d)dz.

In Fig. 4a, solid curves show the results of calcula-
tions using formulas (4.4) and (4.5) with the extinction
coefficient o presented in Fig. 5. It should be noted
that the curves 1, ,(a) are very sensitive to this extinc-
tion coefficient. Therefore, the agreement of theory and
experiment reached in Fig. 4a without any fitting
parameters can be considered as quite satisfactory.
Note that the sum of intensities of the reflected and
transmitted raysfor a < apjissmaller than the intensity

of the ray reflected for a > a3 The difference is espe-
cially pronounced for aj— a ~ 1-2°. This behavior is

related to considerable losses for scattering in the LC
for a values close to the total internal refection angle
(when the ordinary ray travels over a large distance
inside the crystal).

Now let us consider the case of incidence of the
extraordinary ray. Note certain differences between
Figs. 4b and 4a. First, in the region where a is smaller
than ajand sufficiently far from the critical value, the

transmitted intensity |, is smaller for the extraordinary
ray than for the ordinary one: for example, 15 (56°) =
0.8l, and 15 (56°) = 0.91,. Second, the total intensity

[, + I, for the extraordinary ray at o < apjin arather
wideregion (aj—a = 1°) iscloseto thevalue of I, for
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o > apy whereas for the ordinary ray, the intensity |, at
a > apis significantly greater than 1, + 1, at o < o
Finally, the region of a < apin Fig. 4b wherel; and I,
significantly vary when a — apjis much narrower
than the analogous region for the ordinary ray in
Fig. 4a. Thisregion in Fig. 4b features a weak growth
in the reflected intensity |; and asignificant decreasein
the transmitted intensity |, for the extraordinary ray, in
contrast to the case of the ordinary ray (for which the
variations of |, and |, are of the same order of magni-
tude).

In order to explain these distinctions, it should be
recalled that the refractive index for the extraordinary

ray (J/g;) in our system is almost three times closer

than the value for the ordinary ray (Ja—:_D ) to the value
for the glass prisms (n,). From this we infer that the
coefficient of reflection for the extraordinary ray polar-
ized perpendicularly to the plane of incidence [9] 2

sin’(x — )
Ry = —g—x‘— (4.7)
sn (x+a)
for x given by formula (3.4) is about ten times smaller
than the coefficient of reflection for the ordinary ray
(Ry. Therefore, the main factor significantly influenc-
ing the values of 1, and |, for the extraordinary ray in
this case is extinction, whereas multiple reflections at
the LC—glass and glass-L C interfaces play a much less
significant role. This circumstance explainsthe absence
of significant angular dependence of thereflected inten-
sity I, for the ordinary beam in the region of a < o

Thus, the intensities of transmitted and reflected
extraordinary rays are given by the expressions

(Byi) = Vi) q . My +2
I, = IORD[1+—1—@——2—1-@—(1—VI(G)“ )|,

1-Yie (48)
lo (Ay0—Y )2 2My g + 2
|2=a_0—1(e) 21(e) (1-Vie® )
1e)  1-VYig
for a < apand
_ Qe —Yo(e) Mag +1
I, = IR+ |, —2—=2(1- ,
1 oot g 1Yo (1-Yae ) (4.9)
I, =0

2 These estimates are obtained usi ng the formula for an isotropic
medium.
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for a > o Here, g = aRa (1 = 1, 2),

e 0
ae = Pl [ 09(2d @0,
l 20 0

o (4.10)

_ g ©) o 1 () A
By = EXPE-2 J’ o (2d™ (20,
O O

z=0

0®(B) isthe extinction coefficient for the extraordinary
ray, 6(2) isthe angle given by the formula (2.13),

A9 = |1+]90@ g,
dz

isthe element of optical path traveled by the extraordi-
nary ray in the LC according to formula (2.25), M is
the number of reflections of the extraordinary ray inside
thesamplefor a < ap(j =1) and a > ap(j = 2). Inthe
case under consideration, R; < 1 and, hence Yio < 1,
so that we may put M; = o informulas (4.8) and (4.9).

In Fig. 4b, the solid curve shows the results of cal-
culations using formulas (4.8) and (4.9) with the extinc-
tion coefficient o® presented in Fig. 5. Here, it should
be also emphasized that the curves 1,(a) at o < ajand

[,(ar) at o > ajare very sensitive to the extinction coef-

ficient o©. Note that the coefficient 6® was calcul ated
with cutoff of theintegral (A.2) inthe region of scatter-
ing angles below 0.7° (which corresponded to the
condition g = 4q, in (A.4)). At the same time, for-
mula(A.4) isvalidintheregionof g> q,. Intheregion
of q = qq, fluctuations of the director (A.4) exhibit
smecticlike [14], rather than nematiclike behavior. In
thin LC layers, theinteraction of L C moleculeswith the
alignment surfaces becomes more significant, which
leads to the suppression of fluctuations near the inter-
faces and, hence, decreases the extinction coefficient.
For this reason, the values of o(® in Fig. 5, which are
more sensitive than o(® with respect to the scattering at
small angles, should be treated as estimates. This prob-
ably accounts for a greater difference between theory
and experiment for the extraordinary ray (Fig. 4b) than
for the ordinary ray (Fig. 4a).

Now we can explain the behavior of 1, and I, in the
regionswheretheanglea isfar fromap; Thelower val-

ues of |, for the (e)-ray than for the (0)-ray are related
to the fact that the integrals in (4.8) and (4.9) contain
significant contributions from the regions of z where
o® islarge, that is, where 8(2) in (2.13) is close to 45°.
Asaresult, even relatively short optical paths of the ray
at o far away from o the exponential factorsin (4.10)
significantly differ from unity. Theregions of 6(2) = 45°
correspond to two rel atively narrow regionsin theinter-
vals (0, P/2) and (P/2, P). The transmitted ray crosses

(4.12)
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one of these regions producing a significant contribu-
tion to the integral at 0 < z < P/2, and another, at P/2 <
z< P. The extraordinary ray exhibiting areversal passes
twice through one of these regions (0 < z < P/2) when
propagating in the forward and reverse directions. For
this reason, thevalues of |, at a < ajand I, a o > ap

are approximately equal.

In the close vicinity of aj the length of the trajec-

tory of the extraordinary ray begins to increase and the
integralsin (4.8) and (4.9) acquire significant contribu-
tions from the regions with small o and large length.
The width o — ajof the region where this contribution

becomes predominant is significantly smaller for the
(e)-ray than for the (0)-ray, which is caused by two fac-
tors. First, the length 1© of the extraordinary ray trajec-
tory isshorter than that (1©) of the ordinary ray. Indeed,
asa — ag— 0, 1® increases logarithmically, while

1© ~ (o —a) 2 according to (2.4). Second, thelongest

part of the trajectory in the vicinity of the turning point,
z(ap) = P/2 corresponds to a nearly zero angle ©

between the director n(z) = n(P/2) and the wave vector
k® = k. However, as can be seenfrom Fig. 5, the value
0®(0) = 0(0) corresponds to the minimum of a(©(0),
so that the values of the integrand in (4.8) and (4.9) on
the longest part of the extraordinary ray trajectory are
smaller than the analogous values for the ordinary ray
in (4.6).

5. CONCLUSIONS

Now let us consider some additional factors influ-
encing the intensities of transmitted and reflected
extraordinary raysin the close vicinity of a

(i) As is known, the extraordinary ray in nematic
L Cs exhibits anomal ous scattering by small anglesinto
extraordinary rays [1]. For this reason, the extraordi-
nary ray exhibits multiple scattering over a length on
the order of (0©@)* < (o) and transforms from
coherent into diffuse with a small angular expansion
and retained polarization [15]. Since the system under
consideration is locally close to nematic LCs, we may
expect that an analogous effect can take place in our
system as well. According to experimental data [15],
the characteristic angular size of a diffuse beam was
1°-1.5° at aray optical path in the LC on the order of
0.1 cm. Thus, significant angular expansion begins
approximately in the same region of a wherel, consid-
erably changes due to losses due the scattering by large
angles. As aresult, the beam at aj— o ~ 1°-1.5° con-

tains a considerable proportion of extraordinary rays
exhibiting reversal, which appear as reflected when
leaving the LC. For this reason, the region of aj—a ~
1°-1.5° features an increase ion |;, which becomes
more pronounced as aj— o approaches zero.
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(if) For angles a > ajbut still sufficiently close to
ar; the angular dependence of 1, , may be influenced
by the so-called permeation effect [11, 16], whereby a
wave partly penetrates through the forbidden region,
where it exponentially decays in the z direction, to
reach the adjacent allowed region. This leads to a
decrease in the reflected intensity |, (a part of the
energy leaks through the forbidden region) and an
increase in the transmitted intensity 1, (more energy
penetrates through the forbidden region). The smaller
the width of the forbidden region, the more pronounced
is the permeation phenomenon. In our case, the forbid-
den region correspondsto z < z< P — z, and itswidth
P —2z > atends to zero when a — a3 The charac-
teristic interval of angles for which the permeation is
significant, Ad,, = 0 — oy is determined by the con-
dition

P/2

f Imk!®(z)dz < 1. (5.1)
z

Using the condition k' (k, z) = 0, it is possible to
determine z as the function of a:

— o larcan €00 &l 0
z(a) = gy arcsin |[—2H—IL— 14,
’ Jea%ﬁsinza 0
In particular, z(a) = P/2. This yields, for Az(a) =
z(ap) —z(a) inthelimit asAa = o —a;— 0,

_ 1
£z(0) = ugy (Aa)
where

12 12 -1/4_-1/2 va

n = 2% e e (0] e,

In the vicinity of the point z = z(a) in the forbidden

region, the longitudinal component of the wave vec-
tor (2.14) hasthe following form:

K (K, 2) = ikonfe,

2
x \[21(080) oz~ 2) ~ Gz -2’
Evaluating the integral in (5.1), we obtain

(5.2)

TKo 2 -
20, Jeba = 1,
which yields
A €0€a
Ad, O— .

Using the experimentally determined values of ny, €,
and g we obtain A0 e ~ 0.2\/P. For a 100-pum-thick
LC sample, this yields Aap, ~ 0.07°, while for d =
8 um, Ad e ~0.9°.
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(iii) For a = aj the turning point isat z(ap) = P/2.
The components of the extraordinary wave vector k© at
this point are k' = k,./e,, k! = 0. For the ordinary
wave, k' =k;=k® . Accordingto (2.12), in this case

we have k? (k) = 0 and k@ = k©. At the turning point,

n(P/2) || k© © and the modes are degenerate, whereby
the difference between ordinary and extraordinary
waves disappears. This situation may lead to the phe-
nomenon of mode transformation [10] between the
ordinary and extraordinary rays. As a result, in the
vicinity of the turning point at o = ay the energy is
partly transferred from extraordinary to ordinary ray
and the latter propagates in a narrow vicinity of the
plane z = d/2, not escaping from the outer surfaces of
the prisms. The characteristic interval of anglesAq;,,; in
which theinterconversion of two rays may take placeis
determined by the condition

k@ -k < g, = TUP.

Taking into account that, in the vicinity of the turning
point, kie) < k5, we can write this condition as

k& (e) —k(@)| = g0,
or as
KoNpCOSa,AQ = kou/Na— A0 = g

Thisyieldsan estimate of Aa;. < A/P or Aq;;, ~0.4° for
d =100 um and Aa;; ~ 4.5° for d = 8 um. It should be
emphasized that thisestimate only indicatestheinterval
of angles where the interconversion of extraordinary
into ordinary ray may take place, rather than giving the
absolute values of such transformation. Cal cul ations of
the latter values requires solving the wave equation in
the vicinity of the point a = ajwith alowance for he

interaction of modes, which is anontrivial problem.

In conclusion, it should be noted that the observed
phenomenon of refraction of the extraordinary ray has
analogs in the propagation of waves in the media with
smoothly variable optical and acoustical charac-
teristics. These phenomenainclude tropospheric refrac-
tion [16], the formation of a submerged waveguide
channel in the ocean [11], and some effects accom-
panying the propagation of seismic waves in the Earth
crust.

The investigations of refraction in LC cells are of
independent interest for the optics of LCs. At the same
time the cells of chiral LCs offer a convenient model
system for studying fine effects such as the wave prop-
agation inside a waveguide channel; permeation of
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waves from one to another channel, interaction of
modesin the vicinity of caustics, etc.
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Appendix

Calculation of the extinction coefficient for a
twist cell with largepitch. When alight ray propagates
in a fluctuating medium, the energy is partly lost as a
result of scattering. These losses are described by the
extinction coefficient o, which coincides with the total
scattering cross section representing the intensity of
scattered radiation per unit volume and per unit inci-
dent intensity, integrated over the entire range of scat-
tering angles.

With allowance for the extinction, the intensity 1(1)
of aray traveling over adistance | in amedium is deter-
mined by the formula

O 0
1) = 10)expC-{o(h)dL] (A.2)
0D

where dl isthe element of the trgjectory length.

In ahomogeneous anisotropic medium, there are two
extinction coefficients, o and o®. In the Born approx-
imation, these coefficients are asfollows [12, 13, 17]:

(1) 50

4
O'(i) _ kO €y eB
16m°n" cosa"” Ao
n(S)e(S)eSIS) ( ) )
x dQ (S)#Gauﬂvv
S:ZLZ-[ " cos’s®

where the superscripts (i) and (s) refer to the incident
and scattered waves, respectively, and take two values
corresponding to the (0) and (e) modes in a uniaxial
medium; 31 are the angles between vectors € and
& el

Gorqu = Guqu(k(S) _k(i))

is the Fourier transform of the correlation function of
the director fluctuations,

G(r —r") = B&r)dedr)g
0,5 = €,(Ny0NG +NgdN,),
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and ko(s) denotes integration over al directions of

the unit vector k©/k®,

In a helical medium with large pitch, formula (A.2)
retains is meaning, but the quantities e, n(), and 50,
being the functions of the angle 8U)(z) between the vec-
tors kW and n(z), also depend on z The correlation

function G(r, r') inthe coordinate representation in the

helical medium can be written as G (r —r'; (z + 2)/2).
For thelight scattering, asignificant part of thefunction
G with respect to the first argument |r —r'| ~ A, which
is much smaller than P (the characteristic scale with
respect to the argument (z + Z)/2. This difference
between the two scales allows us to perform substitu-
tion (z+ Z)/2=z=Z in al smoothly varying quantities
and perform the Fourier transform with the wave vector
q=k®(2) —k(2) at afixed z= Z, assuming the condi-
tion [k®(2) —k®(2)| > g, to be valid [7, 18].

The Fourier transform of the correlation function of
the director fluctuations

] Z+ )

Qe d 1", TZE = Bn(Ndng(r)D  (A3)
with respect ti the variable r —r' for a cholesteric LC
with large pitch has, in the adiabatic approximation
under the condition g > q,, aform analogousto that for

the nematic L C [1] with allowance for a smooth preces-
sion of the director along the z axis:

Jup(d: 2) = kgT
€i(0, 2)€;5(d, 2)
&, (K —Kj)(a h(2)* +K;q°
whereKj; (j = 1, 2, 3) are the Frank moduli, and
q-n@(qh@)

o= (g (@)

e(d. 2 = &(a,2 xn(d

(A.4)

X

el(qv Z) =

(see[18]).

This alows a formula of the (A.2) type to be used
with the correlation function (A.4) for calculating the
contribution to the extinction coefficient o)(80)(2)) ina
helical medium due to scattering by not very small
angles.
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Compression of Whistler Wavesin a Plasma
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Abstract—We present the results of our experiments in which the propagation of whistler waves in a plasma
with anonstationary magnetic-field perturbation (B = B, + 8B(t), dB/Bj < 5%) wasinvestigated. The parametric
and dispersive phenomena in a variable magnetic field were studied on the unique Krot plasma bench (the
plasma column was 4 min length and 1.5 m in diameter). A periodic field perturbation is shown to lead to an
amplitude—frequency modulation of the whistler wave and to fragmentation of the signal into separate fre-
guency-modulated wavepackets followed by their compression. The formation and compression of pulsesis
attributable to strong whistler group-velocity dispersion near the electron cyclotron frequency (w < wy). The
results can be used to interpret the spectral shapes of the signals received from the Earth’s magnetosphere and
ionosphere in the electron and ion whistler frequency ranges. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigating the excitation and propagation of
whistlers in the Earth’s magnetosphere and ionosphere
isof current interest in diagnosing plasma parameters,
studying nonlinear phenomena, and solving problems
related to VLF radio communication [1]. It is well
known that artificial signals can be significantly dis-
torted asthey propagate in the near-Earth plasma. Such
phenomena as the amplitude—frequency modulation,
the generation of satellites, and the broadening of the
whistler frequency spectrum are often recorded in
ground-based and satellite experiments [2, 3]. As
regards the natural emissions, modulation can arise
both directly during their generation in the magneto-
sphere and on the path of the signal in the plasma [4].
Nonlinear processes in the Earth’s radiation belts [1]
and the parametric interaction of waves with plasma-
density and magnetic-field variations [3, 5] may be
responsible for the variations in the amplitude—fre-
guency characteristics of whistlers.

When parametric phenomena are analyzed, reso-
nant processes are traditionally considered, implying
that the space and time scales of the variations in
parameters of the medium are related in a certain way
to the frequency and wavenumber of the waves propa-
gating in a plasma [5]. However, in our opinion, the
most typical phenomena are nonresonant in nature [6].
In this case, no specia constraints are imposed on the
pattern of variations in parameters; in particular, it can
be aperiodic.

Below, the linear interaction of waves with nonsta-
tionary variations in parameters of the medium, varia-
tions that exist independently of the traveling probe
wave, is called parametric. The nonlinear effects attrib-

utable to the self-action of intense waves aso belong to
the broad class of parametric phenomena, but they are
not considered here.

The geometrical-optics method generalized to non-
stationary media[6, 7] can be used to describe wavesin
amedium with parametersthat arerelatively slow func-
tions of the time and space coordinates. This method
allows the frequency transfer equation for a quasi-
monochromatic wave field to be directly written [6]:

(On/dt),,

ow _
3t T (Ve = g

(D

where w and k are the frequency and the wave vector,
respectively; vq = v4(w) is the group velocity of the
wave; and n is the refractive index of the medium.
Equation (1) is of fundamental importance in under-
standing how the frequency spectrum of theemissionin
nonstationary media is enriched. We see from Eq. (1)
that the modulation of the refractive index is accompa-
nied by the frequency modulation (FM) of the signal.
The group-velocity dispersion causes different ele-
ments of the signal to propagate with different veloci-
ties; hence, the compression of individual parts of the
wave can be observed.

The refractive index for longitudinal whistlers with
frequencies

Wy <W< Wy < W,

(wy is the electron cyclotron frequency, w, is the elec-
tron plasma frequency, wy = JwyQy is the lower-
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hybrid resonance frequency, and Q, istheion cyclotron
frequency) is

n= — @

w(w,—w)

In previous papers devoted to nonresonant phenom-
enain a magnetoactive plasma[8, 9], only the electron
density was considered as a nonstationary parameter.
However, it follows from expression (2) that the propa-
gation characteristics of whistler waves are determined
to alarge extent by the magnetic field strength. Nonsta-
tionary disturbances of the Earth’s magnetic field are
recorded often, particularly during enhanced solar
activity. Both periodic (associated with the excitation of
magnetohydrodynamic modes) disturbances and aperi-
odic variations of the geomagnetic field are observed
when solar-wind plasma streams interact with the
Earth’s magnetosphere. The magnetic field can aso be
disturbed by intense low-frequency whistlers; in this
case, the field modulation is not accompanied by elec-
tron-density variations [10].

Of particular interest are ion whistlers, waves with
left-hand polarization and with frequencies close to the
ion cyclotron frequency: w < Qy [11, 12]. The similar-
ity of the electron and ion whistler dispersions near the
cyclotron frequencies (n,,, = (Qy — w)~¥?) alows the
results obtained in the electron whistler frequency
range to be used to interpret phenomena in the ion
whistler frequency range.

In this paper, we present the results of our experi-
ments on the propagation of whistlersin a plasmawith
a weakly periodic magnetic-field modulation. The
experiments were carried out on a Krot bench that was
specially designed to simulate phenomena in space
plasma.

2. DESCRIPTION OF THE EXPERIMENT

The experimental facility isavacuum chamber 10 m
in length and 3 m in diameter (Fig. 1a). A mirror-con-
figuration (with amirror ratio of R= 2.4, Fig. 1b) mag-
netic field is generated by a solenoid placed inside the
vacuum chamber. Under experimental conditions, the
magnetic field strength in the central cross section of
the solenoid was B, = 65 G. A cylindrical plasma col-
umn (4 min length, 1.5 m in diameter) that is not in
contact with the metal walls of the chamber is produced
by a pulsed inductive discharge (f4s = 5 MHz, Py, =
250 KW, T, = 1 ms) in an argon atmosphere at a pres-
sure of p =7 x 10~ Torr. The maximum plasma density
at the discharge time reaches ~10'% cm3, the electron
temperature is T, = 10 eV, and the ion temperature is
T, 0.5 eV. The plasmadecay is governed by the ambi-
polar diffusion of electrons along the magnetic field.
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tor (F = 1-3 MHz, | = 10-15 A); 8—inductor. (b) The
magnetic-field distribution along the axis of the vacuum
chamber.

The experiments were carried out in a decaying
plasma after the plasma-producing generators were
turned off when the electron density reached n, =

10% cm3. To decrease the divergence of whistler waves
in a plasma, a duct with a reduced electron density
extended along the axis of the system was produced,
the whistlers excited by the antennas in this duct were
kept in ducting mode [13]. An additional pulse gene-
rator (Tousee = 1 Ms) operated at frequencies of F =
1-3 MHz was used to produce the duct. The generator
was |oaded onto aloop antenna (an inductor D =20 cm
in diameter) located in the center of the chamber. The
power of the generator was about 10 kW; the variable
current induced in the antenna by the generator reached
lmax = 30 A. The duct was formed through the local
heating of electronsin the near field of the inductor and
the subsequent thermodiffusion-induced plasma redis-
tribution [14]. The duct formation is governed by uni-
polar diffusion: nonmagnetized ions and electrons dif-
fuse, respectively, across and aong the magnetic field,
while the quasi-neutrality is ensured by the closure of
the current through the background plasma. A quasi-
stationary plasma density distribution was established
in atime of ~500 us; the length of the duct L reached
~3 m, and its diameter was determined by the diameter
of the antenna and the electron heat-conduction length
across the magnetic field:

A= pJ8"%=20 cm

(pe isthe Larmor electron radius, and & = 2nVM, where
mand M are the electron and ion masses, respectively).
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verse plasma electron temperature distribution at the same
time.
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Fig. 3. A timediagram for the operation of the experimental
facility.

Theradia plasmadensity and temperature distributions
in a stationary duct 900 ps after the onset of a heating
pulse (F = 1.2 MH2z) are shown in Fig. 2. The plasma
density was measured by a tiny probe with a micro-
wave cavity produced on a segment of a double-wire
line[15]; a double probe was used to measure the elec-
tron temperature. The plasma density on the axis of the
duct was n, = 10" cm3, and the electron temperature
wasT,=15¢eV.

Asthe source of a nonstationary magnetic-field per-
turbation, we used the same inductor as that used to
produce the duct. After aquasi-stationary density distri-
bution was established, the external magnetic-field per-
turbation was determined by the variable near field of
the antenna (F = 1-3 MHZz). The structure of the low-
frequency (LF) field near the inductor (the axial mag-
netic-field component) in the formed density duct
matched the field distribution of acurrent loop in avac-
uum. The amplitude of the variable magnetic field in
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the plane of the inductor reached 0B, = 3 G, which
corresponds to a relative perturbation 8B,,,,/By = 5%.
At distancesz> D from theinductor, LF whistler waves
with

were excited in the plasma. It is easy to show that the
relative magnetic-field perturbation in waves of this
type is much larger than the plasma density perturba-
tion [10]:

5n_ 0738 _ 8B

-— < .
no [b.)plj BO BO

Under experimental conditions, wy, < 0.1w,, dn and dB
are the plasma density perturbation and the magnetic-
field perturbation of a LF whistler wave.

A time diagram for the operation of the experimen-
tal facility isshown in Fig. 3. The propagation of high-
frequency (HF) whistlersin aplasmawith anonstation-
ary magnetic field was investigated at the frequencies
of the probe wave f, = 150-160 MHz. In this case, the
condition f,,/2 < f, < f (fy = w/2m) was satisfied, and
the quasi-longitudinal whistlers with wavelengths A =
217k = 4-5 cm were confined in a duct with a reduced
plasma density [13]. The probe wave was emitted into
the plasma in the form of a pulse T = 0.1-10 s in
duration.

The chosen whistler frequencies are close to the
cyclotron frequency, f, = 0.9f,, and the whistler group-
velocity dispersion is fairly strong. In this frequency
range, the whistlers are also called cyclotron waves.
Their propagation characteristics are determined to a
large extent by the collisional damping and the kinetic
collisionless absorption by resonant particles— plasma
electrons.

HF waves were emitted and received by shielded
single-turn magnetic loop antennas 1-2 cm in diameter
placed in different cross sections of the facility. The
antennas were coated with a dielectric layer to reduce
the plasma influence on their impedance characteris-
tics. In general, the antennas in the experiments were
placed on the axis of the plasma duct; the plane of the
antennas was oriented along the external magnetic field
lines. The emitting antenna was located near the induc-
tor, at adistance of Az=5 cm from its plane. The loops
installed on the opposite side of theinductor at different
distances from the emitting antenna were used as the
receiving antennas (In Fig. 1la 1 is the emitting
antenna, and 2, 3, and 4 are the receiving antennas).
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The HF signals passed through the plasma were
recorded by adigital oscillograph; their spectral analy-
sis was performed by using a numerical Fourier trans-
form.

3. EXPERIMENTAL RESULTS

The main experimental results are presented in
Fig. 4. When passing through the region with a per-
turbed field, a continuous HF signa (f, = 160 MHZz)
breaks up into separate wavepackets that follow one
another with the field modulation period (F =
1.2 MHz). The amplitude modulation depth of the sig-
nal increases as the receiving antenna recedes from the
emitting antenna. The compression of HF pulses is
observed—their duration decreases as they propagate
in the plasma. A spectral analysis shows that the
received signa is frequency-modulated; the relative
frequency deviation Af/f does not exceed 1-3%. The
filling frequency decreases from the beginning to the
end of each pulse; the slope of the time—frequency rela-
tion increases with increasing distance between the

981

receiving and emitting antennas (Figs. 4d-4f). The
minimum duration to which the frequency-modulated
(FM) signal is compressed is T, = Af* = 100 ns
(Fig. 4c), where Af = 10 MHz is the width of the fre-
guency spectrum for the FM whistler wave (Figs. 4d-4f).

The cyclotron absorption of whistler waves is
clearly seen (Fig. 5a). At large distances from the emit-
ting antenna (Az = 260 cm), the signal spectrum is
shifted as a whole downward in frequency. The
observed pattern isthe result of nonuniform damping of
various elements of the FM-signal spectrum, which
must have been symmetric about the carrier frequency
of the probe wave, Af = 159 MHz, in the absence of
absorption.

The signal frequency modulation is relatively small
when a HF wave is excited and received outside the
region of an intense magnetic-field perturbation. Fig-
ure 6 presents the results obtained at a distance of L =
70 cm from the inductor, the distance between the emit-
ting and receiving antennas placed on the duct axis was
Az= 15 cm. The amplitude of the magnetic-field pertur-

(a)

z=25cm

T
z=130cm

0 0.5 1.0

1.5 2.0 2.5
t, Us

Fig. 4. Oscillograms (a—c) and spectrograms (d—f) of the HF signals (f; = 160 MHz) received from the plasma at various distances
from the emitting antennain the presence of a magnetic-field perturbation at F = 1.2 MHz (8B/Bg = 3%).
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bation by LF whistler waves (F = 1.2 MHZz) is smaller
by amost a factor of 10 than the field perturbation in
the plane of the inductor; the full width of the modu-
lated frequency spectrum is Af < 1 MHz (Fig. 6b).
Despite the low frequency modulation and the small
wave path, the group-velocity dispersion still causesthe
signal envelope to be distorted appreciably (Fig. 6a).

The wave frequency transformation was investi-
gated in experiments with short pulses (t = 150 ns, f, =
160 MHz) that were fed to the emitting antenna with
different time delays. The delayswere chosenin such a
way that a HF pulse was emitted into the plasma at dif-
ferent phases of the periodic magnetic-field perturba-
tion (F = 3 MHz, dB,,,/By ~ 5%). Depending of the
phase of the variable field, signals with “redshifted”
and “blueshifted” frequencies were recorded (Fig. 7).
The frequency shift was determined by the time at
which the wave passed through the plasma: at the max-
imum of the magnetic field, when the amplitude of the
periodic perturbation was at a maximum and the vari-
able magnetic field was aligned with the external field,

1.5 2.0 2.5
t, Us
T T T T T
(@)
140 145 150 155 160 165 170
f, MHz
(b) T T T T

0 0.5

1.0 1.5

t, Us

2.0 2.5

Fig. 5. A spectrum (a) and oscillogram (b) of the HF signal
(fo = 159 MH2z) received from the plasmain the presence of
aLF magnetic-field perturbation at F = 3 MHz, 6B/By = 5%.
The distance between the receiving and emitting antennasis
Az = 260 cm; both antennas were placed on the axis of the

plasma duct.
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160

150 I i

1.5 2.0 2.5
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Fig. 6. An oscillogram and (b) spectrogram of the HF whistler (fo = 160 MHz) excited and received from the plasma at a distance
z=70 cm from the LF antenna (F = 1.2 MHz) in the region of aweak external magnetic-field perturbation (8B/Bg < 0.5%).

and at its minimum, when the directions of the external
and loop fields were opposite.

If the antennas are separated by a large distance
(Az > 1 m) and are placed off the duct axis (Ar =
5-10 cm), then signalswith acomplex amplitude enve-
lope and an intricate spectral shape can be observed
(Fig. 8). Such aform of the signals can be explained by
the complex structure of the whistler modes of the
broad (D, > 217K) plasmaduct. Asthe antenna placed
off the duct axis emits whistlers, not only axisymmetric
modes of the plasma duct, but also asymmetric modes
with nonzero azimuthal wave numbers are probably
effectively excited. The HF field recorded by the
antenna at a chosen point in space is the result of inter-
ference between several modes of the plasma duct with
different group velocities.

4. DISCUSSION

The experimenta results can be explained by two
effects. The first effect is the nonresonant parametric
frequency modulation of whistlers in a plasma with a
variablerefractive index, whose nonstationary behavior

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

is related to the harmonic modulation of the magnetic
field.

The second effect is the compression of a FM whis-
tler wave attributable to strong whistler group-velocity
dispersion at frequencies closeto the electron cyclotron
frequency. The expression for the group velocity of lon-
gitudinal whistlersis

1/2, 1/2

W,
vy = 2C H
(A)p

(W —)* 3)

Since each point of the frequency envelope of aFM sig-
nal moves with its own group velocity, some parts of the
wave are extended, while other parts are compressed.
Under certain conditions, the wave energy can be local-
ized on short timeintervalswhere the field amplitude can
be much larger than the initial amplitude [6]. The com-
pression of FM pulses in a dispersive medium is used,
in particular, to produce intense microwave pulses[16].

The propagation of awhistler wave in aplasmawith
anonuniform and nonstationary magnetic field israther
difficult to analyze theoretically when the dispersion is
taken into account. For this reason, we propose using a
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Fig. 7. Transformation of the frequency spectrum of a short
pulse (fy = 160 MHz, T = 150 ns) emitted into the plasma at

different phases, A¢ = 172 (1), 11 (2), and O (3), of the LF
(F = 1.2 MHz) magnetic-field perturbation.

simplified geometrical-optics model for theoretical
estimations.

To estimate the frequency transformation effect, we
disregard the whistler group-velocity dispersion. Let us
assume that a longitudinal whistler with an initial fre-
guency wy, propagatesin a homogeneous plasma (along
the z axis) with aconstant (over the path) external mag-
netic field and represent the variable field of the induc-
tor as a spatialy uniform perturbation localized on a
segment of the path with length L. The frequency trans-
fer equation (1) for whistlers takes the form

w 0wy
Wy o0t

ow Jw
=5 1 Vg(wo)a =

m (4)

Let us consider the harmonic magnetic-field modula
tion with frequency Q:

m, z0O[0,L],

B=p .
BsnQt, zO[O,L].

()

The solution of Eq. (4) using (5) shows that the signal
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frequency is modulated harmonically:
w(t) = wy+dwsnQt.

The maximum frequency shift
ow = (;Q)—B;

is reached at the points that are at distance z, from the
point at which the wave enters the variable magnetic
field:

v _
ZQN’ N=12...

z, =
Under experimental conditions (wy/2rt = 160 MHz,
Q/2m=1.2 MHz, v4 = 1.5 x 108 cm s%), the maximum
frequency shift corresponding to N = 1 occurs at z; =
30 cm; i.e., a strong deviation can be observed as the
wavetraverses apath with alength of L ~ z;. Thelength
scale of the near field of the antenna, a segment with an
intense quasi-static magnetic-field perturbation, isAz ~
D =20 cm. Thus, z; ~ D and the frequency modulation
index virtually reaches its maximum after the whistler
has traversed the region of the inductor, in agreement
with the experimental data.

To estimate the compression of FM whistler pulses,
we assume the signal frequency modulation to be fixed
and at a maximum:

w(t) = mOElH@B—?sinQ%

Taking into account the frequency dependence of the
whistler group velocity (3), we can determine the dis-
tance between the point at which a FM signal enters a
dispersive medium and the compression point:

2

v

7z, = —9 6
2 avg 0_00 ( )

0| | 0t |max

Since the condition

v,

—Ic<

ow 0

is satisfied for whistlers with frequencies close to the
cyclotron frequency, the elements of the FM signal with

ow

e <0
ot |i=t,

(t; is the time at which the segment of the wavepacket
under consideration enters the dispersive medium) will
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be compressed. The estimate based on formula (6) indi-
catesthat z, = 60 cm at B, = 65 G. Notethat thefield in
our calculations was assumed to be uniform throughout
the path of the wave. Under experimental conditions,
however, the length of the segment with auniform mag-
netic field at the center of the trap is only about 40 cm.
We see from Fig. 4a that the signal is separated into
individual packets as the wave traverses the region of
the near field of theinductor. Thus, the estimate isvalid
on this segment of the path. Subsequently, however, the
wavepackets are compressed more slowly, because the
field increases in strength toward the magnetic mirror
and, hence, the whistler group slowdown and frequency
dispersion decrease.

The geometrical-optics approximation used in our
estimations breaks down near the compression point.
The minimum duration to which a pulse is compressed
is determined by the full width of the FM signa fre-
guency spectrum. As was noted above, the cyclotron
damping of high-frequency spectra components
causes the spectrum to narrow and prevents the effec-
tive compression of whistler waves. In addition, no sig-
nificant increase in the pul se amplitude compared to the
initial signal is observed due to the damping.

5. CONCLUSIONS

Our experimental results show that a nonstationary
magnetic-field perturbation produces a frequency mod-
ulation of the whistler wave that propagates in a
plasma. The strong whistler group-velocity dispersion
at frequencies w < wy, is responsible for the FM signal
deformation; the fragmentation of a HF signal into sep-
arate wavepackets with FM filling is observed. The fact
that the compression is caused by the magnetic-field
modulation at an unperturbed el ectron density is of fun-
damental importance.

The peculiarities of the propagation of whistlersina
plasmawith a nonstationary magnetic field can be used
for diagnostic purposes. In particular, the amplitude of
the magnetic-field variations (dww, ~ dB/B,) can be
determined from the frequency modulation of the sig-
nal that passes through a perturbed region.

In conclusion, note that the oscillograms and spec-
trograms of modulated whistlers resemble the record-
ings of the signals received from the near-Earth plasma
in the ELF frequency range—structured Pc-1,2 geo-
magnetic pulsations or “ pearls’ [11]. Within the frame-
work of existing models, it is assumed that the ampli-
tude and frequency modulations of such signals arise
directly in the generation process attributable to the
growth of ion cyclotron instability. However, a clear
correlation between the FM pearl repetition period and
the LF geomagnetic-field modulation period is com-
monly observed when Pc-1,2 magnetic pulsations and
lower-frequency Pc-3,4 pulsations are recorded simul-
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taneously [12]. The similarity of the signals and full-
scale experiments suggest that the pearls are formed
through the parametric modulation of ion whistlers by
LF pulsations of the Earth’s magnetic field and their
subsequent dispersive compression. In this case, the
received signal containsinformation about the presence
of aLF perturbation that is not recorded on the ground,
and the Pc-3,4 pul sation amplitude can be diagnosed by
the pearl frequency modulation.
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Abstract—Helicity generation conditions are derived for helical flows of Joukowski type with allowance for
effects due to viscosity, buoyancy, temperature nonuniformity, and solid-body rotation. The upper and lower
limits are determined for the rotation-frequency interval in which helicity can be generated by viscous forces.
These conditions correspond to the regime of an isolated tornado-like vortex. An exact sol ution to thetime-inde-
pendent equations of motion for inviscid incompressible flow is obtained. The solution describes a generalized
Kelvin-Helmholtz vortex having the form of alocalized cylindrical vortex with nontrivia stable topological
vortex-core structure determined by afinite value of helicity. For linear traveling inertiawaves, which must have
uniform helical structure, a general representation isfound that characterizes helical structures of different ori-

gin. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that the vorticity generated in
flows over obstacles can be transferred into the back-
ground stream. This process is characterized by vor-
ticity flux [1], i.e., the average direct product of veloc-
ity u and vorticity @ = curlu. The trace of the tensor, or
the helicity defined asH = o - u/2, plays an important
rolein turbulence theory [2, 3] and in magnetic dynamo
theory [4, 5].

Among the diversity of observed atmospheric vorti-
ces, relatively high helicity values (up to 10 m/s?) are
characteristic of tornadoes and tornado-like vortices,
such as dust devils and waterspouts [6], which have
essentially three-dimensional structure. Moist-convec-
tive tornadic vortices typically have a relatively coher-
ent uniformly helical flow structure despite the huge
Reynolds numbers corresponding to wind velocities up
to 500 km/h inside tornadoes (see [7] and references
therein). Indeed, by the Helmholtz vorticity theorem,
flows of Gromeka—Beltrami type (with [ x u| = 0 or
Joukowski type (with [(@ + 2Q2) x u] = 0, where Q is
solid-body rotation frequency) are characterized by the
lowest rates of energy dissipation per unit mass corre-
sponding to a given kinetic energy [8-11]. However,
these flows are described by exact solutions to the
Helmholtz vorticity equation [8, 9] and are topologi-
caly different from other time-independent flow
regimes [12, 13].

1 This relation is satisfied if @ and u are collinear, i.e, ® = ku
where kisafunction of coordinatesin the general case. However,
k = const throughout this study, which corresponds to uniform
helical flow.

Helical vortex structures similar to uniform helical
flows are also observed experimentally in laboratory
models of tornadic vortices at a sufficiently large dis-
tance from the rotating bottom [14].

In this paper, we apply ahelicity balance equation to
Joukowski-type helical flows to explore the possibility
of helicity generation in the presence of buoyancy, vis-
cous dissipation, and solid-body rotation with fre-
guency €(t).

The paper is organized as follows. In Section 2, a
general balance equation for the integral helicity

H= Id3xH

is derived and used as a basis for a qualitative analysis

of flow regimes that admit production of H via the
spin-down effect and latent heat release (cooling) inthe
presence of cyclonic or anticyclonic vorticity perturba
tions, as well as by horizontal components of vorticity
perturbations over a sloped underlying surface in the
presence of viscous dissi pation.

In Section 3, agenera uniform helical-vortex solu-
tion to the linear equations of fluid dynamics is
obtained. In particular, it describes traveling inertia
waves in a fluid rotating as a whole. Furthermore, an
exact time-independent solution to the nonlinear equa-
tions of fluid dynamicsis obtained. It hasthe form of a
cylindrical helical vortex of radius R, which reduces to
a generalization of the Helmholtz vortex lineasR —
0 and is structuraly stable (as are tornadic vortices)
since helicity is atopological invariant. The interval of
Q in which the vortex can have a nonmonotonically
varying tangential velocity u, is determined, which
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impliesthat acontaminant can concentratein theregion
of minimal uy.

In Section 4, it is shown that local helicity H can be
generated by viscous dissipation in flow regimes with
supercritical Q. This possibility is consistent with
observations of tornado-like vortices. Condition (17) is
obtained for generation of integral helicity in a
Joukowski-type flow by the combined effects of hori-
zontal temperature nonuniformity and solid-body rota-
tion with Q, # 0. Moreover, the existence of two quali-
tatively different regimes of helicity evolution is dem-
onstrated for a Joukowski-type flow with horizontal
temperature nonuniformity and  # 0. One of these
regimes (which correspondsto H — O and t — o)
can be exactly described by a well-known solution for
nonuniform solid-body rotation of afluid elipsoid [15].
The other regime is a steady flow of new type with a
finite H in the limit of t — oo,

2. HELICITY BALANCE EQUATION

Consider the equations of viscous incompressible
flow written in the Boussinesq approximation in acoor-
dinate system rotating with frequency Q(t) (see
Eq. (A.1) inthe Appendix). Thisnoninertial coordinate
system obviously correspondsto the initial stage of tor-
nado formation, when tornado-scale cyclone rotates as
a whole beneath a source cumulonimbus cloud. The
localized helical perturbations analyzed in this study
develop in a solid-body rotational flow.

In the Appendix (see also [16]), the following bal-
ance eguation is obtained for the integral helicity

H = (d°xH
I
(V isthe domain of vortex flow field):
dH :
— = 2(Q[u
dt ( ) (@)

+Bg(Tw,cosa + Tw,sina) + vAu [o,

where the overbar denotes an integral over V; Q =
dQ/dt; a isthe angle between the gravitational acceler-
ation g and the z axis (normal to the Earth surface); the
y and x axes are directed northward and eastward,
respectively; T is a temperature perturbation; 3 is the
thermal expansion coefficient; p = po(1 — BT) is the
fluid density (py = const); and v is kinematic viscosity.

Equation (1) with a = 0 was used in [16] to find a
scaling parameter that justifies laboratory-scale model-
ing of atmospheric tornado-like vortices. When =0,
Eqg. (1) yields a well-known criterion for invariance of
H ininviscid homogeneous flow, because all terms on
the right-hand side of (1) vanish in this case. However,

if @ #0and Q - U <0, then helicity can be generated
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by the spin-down effect. In particular, in the case of
Q < 0 (decelerating solid-body rotation), the value of

|Q | can be determined by bottom friction linearly scal-
ing with velocity (see Appendix), in which case solid-
body rotation is preserved. However, solid-body rota

tion is aso preserved when  # 0 in the (nondissipa-
tive) exact solution to the Helmholtz vorticity equation
describing the “fluid” elliptic gyroscope [15] (see also
the Conclusions section).

Generation of H is possible when the temperature
and vorticity variations are such that the second and
third terms on the right-hand side of (1) remain posi-
tive. For example, when heat is released (T > 0) as
moisture condenses in a cyclonically rotating updraft
(w, > 0, counterclockwise rotation in the northern
hemisphere), the second term of the right-hand side

of (1) isresponsible for H generation. Indeed, observa-
tions suggest that more than 90% of tornadoes rotate

counterclockwise. Alternatively, Eq. (1) impliesthat H
can be generated in anticyclonically rotating down-
drafts (w, < 0), in which the air mass cools down
(T<O0).

Note that an underlying-surface slope (o # 0) may
also be responsible for H generation when w, = 0 and

w,T >0, asin convective rolls (horizontally oriented
vortices).

To complete a qualitative analysis of helicity bal-
ance equation (1), note that the sign of the viscousterm
in (1) may change. Indeed, it was shown in [17] that
dH /dt|;- , > 0 under certain conditions in an appropri-
ate turbulent flow regime because of this dissipative
term. The possibility of similar evolution of local helic-
ity in a Joukowski-type flow is examined below. How-
ever, certain properties of uniform helical vortex struc-
tures should be specified.

3. UNIFORM HELICAL VORTEX
STRUCTURES

Even though Gromeka—Beltrami and Joukowski-
type vortex flows have been identified under natural and
experimental conditions, they are seldom mentioned in
studies in classica and geophysical fluid dynamics,
probably, because of low likelihood of their occurrence
(see [21, p. 210]). Note, however, that even inertia
waves in rotating fluids can be referred to this type of
structures. Thisfact was noted in [4], but not even men-
tioned in [18-20], whereas it can be used to derive a
more general representation for helical inertia waves
(see below), which can be helpful in analyzing analo-
gous helical flow structures found in other areas of
physics.
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3.1. Consider the linear equation for inertia waves
written in a coordinate system tied to an unbounded
rotating homogeneous fluid (see[18, 20] and Eg. (A.2)),

0 _ ou
a—t(curlu) = ZQZaZ+vA(curIu),

where Q = (0, 0, Q,) for simplicity. In [18], the solution
to (2) corresponding to v = 0 was represented as a trav-
eling plane wave:

u = ReAexp[i(k X —wt)],
w = 2Q.k,/k,

divu = 0, (2

kA =0,
3

where

k=1|kl, A=a+ib, alk =blk =alb =0,

a’ = b’
When v # 0, the solution is readily obtained by muilti-
plying (3) by the factor exp(—vk?t) [20].

It can easily be verified (see aso [4]) that waves
described by (3) satisfy the relation

curlu = %ku,
which is characteristic of Gromeka—Beltrami flows
since (3) entails
b = i%[kxa], a= Tr%[kXb].

Here, minus corresponds to negative helicity,

H = —ku%2,
i.e., right-handed rotation of the velocity vector [4].
Vice versa, positive helicity is associated with left-
handed rotation of avelocity vector of constant magni-
tude. It was also noted in [4] that motion of thiskind is
of interest in magnetic dynamo theory. If w= 0, then (3)

is an exact solution to the equations describing steady
inviscid incompressible flow [8].

The solution to Eq. (2) satisfying the condition
curlu = xku
can be represented in amore general form:

u = exp(—vk’t)ReAf(z x,y), Z = zizizt,
_ oz K, =
f= f(é)exp[——(sz—Azx)] @)
Ay
£ = +AZE+ A X
=Yy A

y
where f isan arbitrary function. In particular, if

f = exp[+i(k,z+k,x+kyy)]
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then solution (4) reducesto (3). Note aso that the argu-

ment of f att=0equalsthat of an arbitrary function of
the form

Qo(ki(x+iy) + ky(x—ly) + ks2),

which was used in [22, 23] to describe steady helical
vortex structures in a ferromagnet, because it is
assumed that

4k,k, + K5 = 0.

Thus, solution (4) provides a generalized represen-
tation of inertia waves, which can be interpreted as
Gromeka—Beltrami flows. Moreover, expression (4)
also describes the general form of helical structures
arising in various natural systems and phenomena.
Note also that an arbitrary sign of helicity implies that
the corresponding dispersion equation should be writ-
ten asfollows (in contrast to [18] and (3)):

2k,Q,

k )
where plus is associated with negative helicity. A simi-
lar representation of w in (3) was given in [20], but
without allowing for the correlation between the signs

of wand helicity (see also [4]).

3.2. The representations of linear uniform helical
waves written out above are amenabl e to the superposi-
tion principle. Thisisnot true with regard to exact solu-

tions to the nonlinear Helmholtz equation that describe
Joukowski-type flows, with

curlu+2Q = ku, Q=#0.

The exact solution to the time-dependent equations
of inviscid incompressible fluid dynamics that
describes a Joukowski-type flow can be represented as

20
k

w==

u= +U, curld = curlu = ku, (5

0 = curlcurlg + keurlp, A@+k°@ = 0. (6)

Solutions satisfying (5) and (6) with & = 0 and ¢ =
X@(X) were considered in [24] for alocalized spherical
vortex that is structurally stable (unlike Hill’s spherical
vortex [21]) sinceit is characterized by afinite helicity
and a corresponding topological invariant. It was noted
in [24] that helical vortex flows of this kind can be of
interest with regard to magnetic plasma confinement.
Theflow fields generated by these spherical helical vor-
tices outside their localization domains are identical to
those of point vortex dipoles [25]. Therefore, they can
be used to regularize the vortex-particle methods
employed in 3D numerical simulations of vortex burst-
ing in turbulent boundary layers. This can be done by
using the fact (proved in [25]) that there exists an exact
weak solution to the equations of inviscid incompress-
ible fluid dynamics represented as a finite-dimensi onal
Hamiltonian dynamical system describing three-
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dimensional point vortex dipoles. (They can be inter-
preted as infinitesimal vortex rings or generalized Hill
vortices with nonzero helicity.)

Here, an analogous exact solution to the fluid-
dynamics equationsis obtained for acylindrically sym-
metric vortex of radius R characterized by nontrivial
topologically invariant structure associated with non-
zero value of H. As R — 0, the vortex reduces to a
generalized vortex line with H # 0 [21], whereas the
classical Helmholtz vortex lineis obtained when H = 0.
Cylindrical helical vortex solutions are more attractive
as models of tornado-like vortices having stable com-
plicated vortex cores, as compared to the Helmholtz
vortex line [26].

In the axially symmetric case, expression (5) is the
following exact time-independent sol ution to the Helm-
holtz equation for a vortex localized in a cylindrical
domain of radius R:

uin = [

+ BJo(kr)}@(R—r) +vo,O(r —R),

ly(r) = BI(kNO(R-1) + £ -Q,r0(r-R), (1)

~ 0L, p=0,
G =0 ep =g 7
(8)
BJ,(kR) = é—QZR,

where J, and J, are the first- and second-order Bessel
functions, and conditions (8) ensure continuous match-
ing of the velocity fieldsinside and outside the cylinder.
The solution defined by (7) and (8) is obtained by anal-
ogy with the analysis performed in [24] to determine
the structure of a spherical helical vortex. Unlike the
vortex considered in [24], the vortex described by (7) is
at rest in the laboratory frame and does not induce any
velocity field analogous to that associated with a point
Helmholtz vortex or a vortex filament. Outside the
domain of vorticity localization (at r > R), uy isidenti-
cal to the velocity field induced such a point vortex
characterized by the circulation X determined by (8).
Thisrelation holdsin the laboratory frame in which the
cylindrical helical vortex executes a solid-body rotation
about its symmetry axiswith frequency Q,. Notethat a
point Helmholtz vortex can be interpreted as the limit
form vortex filament obtained as R — 0 by assuming
zero axia velocity v, and uniform vorticity distribu-
tion, i.e.,

w, = 20, = X,
TR
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inside the vortex core of radius R, with X = const and
w, — 0. Thisvortex is characterized by zero helicity.
The solution presented above has a nonzero helicity,
and the corresponding vorticity distribution inside the
vortex core is not uniform, because the vorticity com-
ponents associated with u defined by (7) are

w,+2Q, = ku,, w, = ki, = 0.

Let us consider some characteristics of solution (7)
under various particular conditions (8).

Conditions (8) with k =y, /R (wherey;,, arethe zeros
of J;) imply that the circulationis

X = QR

i.e., differing only by afactor of 2rtfrom x for thelimit
form of the vortex filament obtained as R — 0 and
Q, — o and has the circulation of the point Helm-
holtz vortex. In this case, the coefficient B has the spe-
cificform

Vao— ZQZR/yln
‘]O(yln) ,

which follows from (8). The corresponding cylindrical
helical vortex, inducing the vortex-filament velocity
field at r > R, has a stable topological structure deter-
mined by the helicity value. When n > 1, the flow field
inside the vortex core (at r < R) can have avery compli-
cated structure involving both updrafts and downdrafts
with opposite circulation signs analogous to the
updrafts and downdrafts observed in tornadic and dust-
devil flow structures[26].

Note that the solution obtained from (7) at r < Rfor
the flow in a bounded rotating vessel of radius R was
used, for example, in [27] to describe the bottom drain
flow out of the vessal.

On the other hand, there exists a solution defined at
r = 0 for arbitrary k that isidentical to (7) at r < Rfor
Q =0[8]. However, vorticity isnot localized at r < Rin
thissolution, asitisin theradially nonuniform cylindri-
cal generdization of the classical Helmholtz vortex
[21] described by (7) and (8). In contrast to [8, 27], the
solutions defined by (7) and (8) are obtained by match-
ing avortex flow localized at r < Rwith apotential flow
atr > R Therefore, Egs. (7) and (8) define a new exact
solution describing a localized cylindrical vortex hav-
ing anontrivial topological structure whose stability, as
in the case of spherical vortex [24], is due to the exist-
ence of a corresponding topological invariant, i.e.,
helicity [2, 3].

When kR # y;,, and B # 0 in (8), the sign of the cir-
culation X determining the velocity field at r > R asso-
ciated with acylindrical helical vortex may differ from
that of Q, (in contrast to the case of kR =;,,), because

B=B,=

- Rsz(kR)D/OZJl(kR) _QD
Jo(kR) URI,(kR) 8

No. 5 2004



HELICITY GENERATION IN UNIFORM HELICAL FLOWS

Indeed, when kR is held constant, the sign of x changes
at supercritical rotation frequencies,

o _ Vo Ji(kR) _2J:(p)
Q,> Qe = RJ,(kR) ’ -

J2(p) —Jo(P)- (9)
Therefore, when (9) holds and Q2 > 0, nonmonotonic
behavior at r > R can be exhibited by the azimuthal

velocity
02
aq) — _er _(Qz_ch)R ‘]2(kR)
rJo(KR)

as a function of the distance r from the vortex center-
line, since the absol ute value of 04, reaches a minimum
value,

|C|¢| = 2(|X|Qz)1/2

==
Z

Furthermore, the necessary conditionr,,, > Rleadsto an
additional upper bound for Q,:

OxIo2
0

QO
1= J4(KR)/I,(kR)’

Q,<Qg = (10)

where

Jo(kR)

0
TRy <ta Qa0

0<

Note that the existence of a minimum of the absolute
value of U, asafunction of r at r =r, in acoordinate
system rotating with the fluid implies that the tracer
concentration advected by the vorticity field builds up
in the neighborhood of r = r,,,. Indeed, an annular dis-
tribution of this kind was observed in [28] for suspen-
sions in rotating vessels in a narrow range of Q,, in
gualitative agreement with (9) and (10).

Thus, the present helical generalization of the Helm-
holtz vortex (parameterized by k and Q,) can be used to
describe qualitatively different variations of the G¢
field outside the vortex core (at r > R). If k =y, /R or
k#y,/RandQ< Q2 orQ> QL inthelatter case, then
the variation of u, with r increasing fromr = Ris simi-
lar to the dependence of 64, onr for the Helmholtz vor-
tex (in acoordinate system rotating with frequency Q,).

If k#y,/Rand Qi, <Q< Qg, , then the nonmonotonic

behavior of G¢ (r) indicated above may be responsible
for localization of a passive scalar in the neighborhood
of r =r,, associated with min|u, (r)|.
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4. EVOLUTION OF HELICITY
IN UNIFORM HELICAL FLOWS

Representation (7) of the velocity field at r < R can
be obtained by using (5) and averaging over the azi-
muthal angle the well-known solution for the uncon-
fined ABC flow [8, 9, 12, 13],

U, = Asinkz+ Ccosky,

u, = Bsinkx + Acoskz, (11)

U, = Csinky + Bcoskx.

In what follows, a time-dependent generalization
of (11) is derived in the context of an analysis of the
possibility of helicity generation by taking into account
the effects described by introducing time-dependent A,
B, and C for an unsteady Joukowski-type helical flow
regime. Since only the coefficient B is retained in (11)
in the azimuthally symmetric case, the analysis below
isdeveloped for A= C=0and B evolvesin time accord-

ing to the helicity balance equation withv # 0, Q # 0,
and T#0.

4.1. Viscous Dissipation
and Local Helicity Generation

The time evolution of the helicity

_olu
==
for a flow satisfying (5) and (11) is analyzed here by

using vorticity equation (A.2) withv # 0, Q # 0, and
T#0:

%?z‘%iﬂ{%ﬂﬁn—v%w%+ﬂtm
(12)
. ~ 0T
+ B_kg(sljgcosa +8|JZSH1CX)(Q| + kUI)a_XJ’
~2
Hzgdgm, (13)

where the velocity field U corresponds to a flow
described by (11). Equation (12) is derived without
using any additional assumptions (other than those
underlying starting equations (A.1)), becauseit is suffi-
cient to use a time-dependent generalization of (5) for
the velocity and vorticity fields. In particular, Egs. (12)
and (13) imply that local helicity (13) can be generated
by alowing for viscous dissipation in (12) with =0
(vz0) evenif T=0and Q # 0. Indeed, if k<0, then

Eq. (12) predicts an increase in H provided that H > 0
and the sum

U’k + Q[
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is negative by virtue of the following inequalities:

G > cosW > K

Q 2Q° (14)

where

@l =i _ed
Q=1Q|, u=|ul, cos¥ = ou

Inequality (14) issatisfied when W hasareal value only

in the case of sufficiently fast (supercritical) solid-body
rotation of the system,

LY

Q>Q, = >

Inequality (15) is analogousto the criterion for dissipa-
tive—centrifugal instability obtained in[29] (see discus-
sion of its occurrence in upper atmospheric layers
in[30]).

It follows from (14) that, if 2Q, > Q > Q,, there
existsonly alower bound for the value of cosW dictated
by the physical parameters of the system (the only
upper bound is determined by theinequality cosW < 1).
Under this condition, the required effect is more likely
to occur than if Q > 2Q,, in which case the left-hand
side of (14) restricts the domain of admissible Y. Note
that the condition for Q in which the lower bound for
frequency is half the upper one is consistent with the
criterion for the formation of an isolated tornado-like
vortex in the experiment described in [31]. Indeed,
according to [31], this regime corresponds to the fol-
lowing interval of the rotational Peclet number:

(15

3< Pe, <20, PeQ~063E1$3%

where Rais the Rayleigh number and
4Q°D*

2
\Y

Ta =

is adimensionless parameter associated with the solid-
body rotation frequency Q (D isthe diameter of aniso-
lated source of buoyancy). The Peclet-number interval
indicated above is associated with a rotation-frequency
range:

Q,

Q1<Q<Qz, Q_:16
1

Thus, the conditions for rotation frequency that corre-
spond to the isolated intense helical vortices observed
in[31] arein fair agreement with the criterion for local
helicity generation resulting from dissipative instabil-
ity, since
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Let uscomparethevalue of Q,;, = Q. given by (14)
and (15) with the value of Q, = 0.21(g/v)Y? (see [31]),
where

_ vy, YD
ZDD)xD EBXDD

istherate of kinetic energy dissipation per unit mass. If
Q. =Q,, thenkisestimated as

k= 041 41 [gg
VTR

By the definition of ¢, if U = |u|, then

0.82]curl
u

k=

provides an estimate valid for velacity field (11). This
means that not only the ratio Q.. /Quin that follows
from (14) and Q,/Q, from [31] arein agreement, but so
arethelower bounds Q. and Q, aswell. The agreement
suggests that the observations of isolated helical vorti-
ces reported in [31] can be interpreted by taking into
account interaction between solid-body rotation and
viscous dissipation.

WhenA=C=0, itisobviousthat U in (14) and (15)
is independent of coordinates since U = B according

to (11). The following estimate can be obtained for
nonzero A, C, B:

maxt<|A + Bl +[C| = Uy,
X

in which case the upper bound for Q. is

s _ [k,
ch - 2 .

4.2. Generation of Integral Helicity
in Nonuniform Temperature Fields

Now, consider helicity balance equation (12) in the
case when temperature fluctuations determine the evo-
[ution of the integral helicity

_DkD J'de dyJ' dzH.
For simplicity, only constant temperature gradients are
taken into account:
oT _
In this case, (12) yields the following balance equation
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for integral helicity:

dH 1d

@ ' UK -
+ B—f(sijscosa +€;,Sn0)QA,
where
H:_G_:|<(A+B+C)
2 2

for arbitrary A, B, and C. According to (16), integral
helicity (in contrast to local helicity) cannot be gener-

ated when k < 0, since H has a negative value in this
case and its absolute value decreases with time because
of viscous dissipation.

However, Eq. (16) implies that effects due to buoy-

ancy can be responsible for production of H when
Q # 0 even if the rotation frequency does not vary with
time. In particular, it follows from (16) that the deriva-

tive dH /dt is positive when  # 0 at theinitial moment
if the following inequality holds for = (0, 0, Q):
Q,BgA.sina
VK'(Ag + BS + C5)
where A,, By, and C, denote the values of A, B, and C
at t =0, respectively. Thus, if a > 0 and therotation fre-

guency is constant, then (17) implies that there exists a
critical value of horizontal temperature gradient,

vk'(Ag + By + C)
BgQ,sina

>1, a7

Acr =

such that the integral helicity increases with time at the

initial stage of the evolution of H for A, > A.,. Indeed,
it was noted in [26] that dust devils develop only in the
presence of sufficiently steep horizontal temperature
gradients. Furthermore, when a — 0 (the underlying
surface is flat), it follows from (16) and (17) that inte-
gra helicity can be generated either if the rotation fre-
guency varies substantially with time (see above) or if
the velocity of solid-body rotation has horizontal com-
ponents. The latter condition can be satisfied for con-
vectiverolls.

4.3. Regimes of Local Helicity Generation
in Nonuniform Temperature Fields

Consider balance equation (12) for local helicity in
the special case when A = C = 0. For simplicity, sup-
pose also that only the component A, of a constant tem-
perature gradient is nonzero:

oT _ 0T _

dy 0z
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These conditions correspond to a time-dependent
solution to the heat equation without source terms,

because U, =0if A=C=0.

The equations describing the evolution of B(t),
Q/t), and Q(t) are derived in the Appendix. Note that

Q. =0since
oT _ oT _

oy 0z

and assumethat Q, = 0 to simplify the analysisthat fol-
lows. Inthe Appendix, it is shown that two qualitatively
different systems of evolution equations may be valid,
depending on whether or not the relation

Q7 +Qf = KB (18)
for the helica-vortex parameters B, Q,, and Q, flow
holds.

When (18) is not satisfied,

. . A
B=-—k’B, Q= g cosa,

. (19
BgA,sina
.

This set of equations is easily solved, and (13) is used
toobtainH — Oatt > 1/vk? Equationsfor Q, and Q,
in (19) are identical to those (written out in [15] in the
Boussinesq approximation) for the angular vel ocities of
a degenerate fluid elipsoid (spheroid) executing a
solid-body rotation in a gravity field under a constant
temperature gradient. However, the value of A, in (19)
can be treated as constant at any instant if A,= A, =0,
whereasthisispossiblein the context of [15] only at the
initial moment, because both A, and A, are nonzero at
t>0if Q,#0,Q, #0,and A, # 0. Next, we consider the
case when relation (18) holds.

In the Appendix, the following nonlinear dynamical
system is derived for B2 =g, Q,, and Q,;

Q, =

2
q= —%vk2q+ BgA —(Q,sina —Q cosa),
Q, = _vK'Q, PIAD, 2(Q,sina —Q, cosa)
3 6k’q
BgA,sna
+ Rt (20)
2
. K> Q, AQ
Qy _Y _BoA Y(Q,sina —Q,cosa)
3 6k’q
BgA,cosa
-
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Under condition (18), system (20) admits general solu-
tion (A.9) expressed in terms of elliptic integrals,
because there exists the invariant

h, = exp(vk t)DqD

Lo

_(Q,sina -Q cosa)
vk

(21)

In particular, the solution to system (20) corresponding
tohy=0is

2
B(t) = expD vl; E

BgA,
x %(o) + v SERN

Q(t) = Q,sina —Q cosa = expD— 3'%

vk DD
P3O

<o) + 9%

Ast — oo, solution (22) describes a stable time-inde-
pendent flow regime described by system (20):

A A
B, = Bg—ax Qy = —Bg—zxcosa,
vk vk
. (23)
BgA,sna
Qp = ——5—
vk

(which can be derived from the general solution
to(A.9) ast — ). The time-independent integral
helicity corresponding to (23),

k2T[/k
= E[J. dxH
0

(where H is given by (A.4) when A = C = 0), can be
written as

(BQAX)

(24)
2v2Kk°

Thus, the time-independent regime characterized

by (24) corresponds to a large limit value of integral

helicity when a constant temperature gradient is per-
pendicular to the gravity force.
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Note that nonlinear equations (20) for Q, and Q,
substantialy differ from those obtained in [15] for the
angular velocities of solid-body rotation of a degener-
ate fluid ellipsoid (spheroid), even though the solution
to (A.9) is also expressed in terms of elliptic integrals
in the general case.

It would be interesting to construct an analog of sys-
tems of hydrodynamic type not only by analyzing
solid-body rotation of a fluid (as in [15]), but also by
taking into account the helica structure of the
Joukowski-type flows examined here.

5. CONCLUSIONS

Examples are given of uniform helical vortex flow
regimes that develop viarelatively simple mechanisms
in afluid rotating as awhole. In particular, a new exact
representation is obtained for uniform helical vorticity
fields, which generalizes both a well-known solution
having the form of traveling inertia waves in a fluid
rotating as a whole [18] and a helical solution used
in[22, 23] to describe steady helical vortex structures
in a ferromagnet. It is shown that not only the pure
solid-body rotation regimes examined in [15], but also
uniform helical regimes of fluid rotation, can be
described by relatively simple dynamical system (20),
including the limit of t —» oo (see (23) and (24)). To
obtain the dynamical system, time-dependent uniform
helical vortex flow regimes are analyzed, instead of the
commonly considered steady uniform helical vortex
flow fields[8, 9, 12]. An analysis of the time-dependent
generalization makesit possible to alow for dissipative
and thermodynamic effects (reflected in the starting
Egs. (A.1)) inthe evolution of local and integral helical
vorticity perturbations.

The new exact solution defined by (7) and (8)
describes a localized cylindrical vortex having a non-
trivial stable topological structure determined by the
value of helicity. This solution is qualitatively different
from the spherical vortex considered in [24] and is a
generalization of the Helmholtz vortex filament. It can
be used to model natural tornadic vortices, which are
actually characterized by nonuniform vortex structure.

Theresults obtained here can be used to solve mag-
netic dynamo problems, which are seldom analyzed
by invoking the concept of uniform helical vortex
flow [32, 33]. Their existence under geophysical condi-
tions is questioned in [33, 21], probably because their
occurrence even in well-known inertia waves (see
above) is not taken into account.
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APPENDIX

1. The equations for a velocity field in a coordinate
system rotating with frequency Q are written in the
Boussinesq approximation as

oy, oy, :
3t + U'O_X| +€;(2Q;u + QX))

- _pi_x + VAU + BT (330050 +5;,5ina), (A.1)

divu = 0, P' = P—%)(Szzxz—(ﬂ %)?).

The corresponding equation for vorticity @ = curlu is

0(w +(n-1)Q)) +u 2@
ot '6x|

= (o ZQ)al a2

+ VAW, + Bg(€j3c080 +¢€; Zsmox)a-r

X]

In (A.1) and (A.2), summation from 1 to n over
repeated indices is assumed, g is the Levi-Civita per-
mutation symbol, and n is the dimensionality of the
space (n= 2, 3).

The equation for the helicity field

_ ol
H—————2,

that correspondsto (A.1) and (A.2) forn=3is

0 0
2%'? + mu,auI + U aw| +(A)£,J|(Q,xI +2Q,u)

10p au
= —__p(*)i + (o + 2Ql)ui(ﬁ

+2 Q.
UI poaxl

(A.3)
+v(w;Ay; + U Awy) + Bg(wscosa + w,sina)T
+(g;3c080 + e,stma)u Bg

Since both @ and u are supposed to vanish at the
boundaries of avolumeV, it follows from (A.3) that the
integral helicity

H= Idst

is governed by balance equation (1) with

W, = W, W= Wy W= W
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When the effects due to bottom friction are taken into
account, the right-hand sides of (A.1), (A.2), and (A.3)
contain the additional terms

=20(u;— 9o

—ZGEoi—s

i3Us),

aU:.D
ij3a_x]D’

and

Ju

—20F2H — w,u; - Eijali 5] E,

respectively, while (1) contains the term

—20(H — wsUuy).
If Q,=Q;#0, then
q = vQ,
= t
and if Q =0, then
v
a = h—z,

where h is the fluid-layer thickness. The case of a # 0
is not considered in the present study.

2.1f

_c = oT _ oT _

then expression (13) for H yields

kB®

H= 7+(Q coskx + Q,sinkx) B. (A9

When (A.4) is substituted into (12), the resulting equa-
tionissatisfied for A= C = 0 by setting to zero the term
that does not contain trigonometric functions and the
groups that multiply sinkx and coskx. This leadsto the
following system of equations:

20,0, 2Q,Q,

BgaT(Q sina —Q,cosa),

aT (A.5)
Q,B+Q,B = —Q,B-vk’Q,B+ BgB_ sina,

Q,B+0Q,B = -Q,B-vk'Q,B-BgB>- cosa.
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System (A.5) with
oT
& = AX1 B2 =q,

can be transformed into

a,Q,+b,Qy = ¢,(Q, Q)

2B9A o Ka.. O
% %Izsna—chosa—stnuD,

(A.6)
a,Q:+0,Qy = ¢,(Q, Q)

2BgA 2
BI?Z X%)Zsincx —Q,cosa + I-(g—z?coscx%,

where

_4(Q7-qk)
QK

|
QD
N

1

bl:—y

It follows from (A.6) that

- C1—81Q2
Qy = ———

y b1
and

Q.(a,b, —a;b,) = c,b,—b,c,, (A7)

where

EQ2+QZ—k2%
ab; —a,b, = 16q0———~

0 KQ,Q, O

_ BoA

Cob; —bycy = Bl

(a,b, —a;b,)sina.

If relation (18) holds, then system (A.6) is degenerate
and Eq. (A.7) isanidentity for any Q, satisfying (18).
If relation (18) is violated, then system (19) can be
derived by combining (A.6) and (A.7).

If (18) holds, then (A.5) yields system (20), whichis
conveniently represented in dimensionless form:

dv _ v du _ 3y yo©
- ’ T T Y1 o
dt, dt, 4 4v A8
1, = 2(e””-1), 1= %tvkz,
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where
u=ue’ v=ve', us= %
vk
v = ﬁ Q = Q,sina -Q,cosa,
_ BoA | _ BoA
1 = y - .
(vk3)’ K*q(0)

System (A.8) has preservesinvariant (21), which can be
written as

32Y1 _2_ 12

Thisinvariant can be used to integrate system (A.8) in
quadratures to obtain

2 the [ (B -p**
he2Hed | (/B+1)p-1

yu+C =

+3"'E(¢, m) - —ﬁ’z‘ 23R (9, m)},
(A.9)

0 p(/3-1) +1n
Yp(a+)-1-

5m

12’

where C is an integration constant, and F and E denote

the elliptic integrals of the first and second kinds,
respectively:

¢ = arccos

m = sin

¢ ¢
E :J'dq)A/l—mzsinzq), F = IL,
mmﬁmlla
hd
_ (Q,(0)cosa +Q,(0)sina)®
- vk '

p=v

ho
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Abstract—We present a new scaled equation of state adequately describing the P—p—T data for fluids near the
vapor-liquid transition point and compare this egquation to the Schofield parametric equation of state. A com-
parative analysis of the approximation of data for He*, C,H,, and H,0 in the critical region shows that both
these equations correctly describe the behavior of thermodynamic functions asymptotically close to the critical

point. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The modern scaling theory of critical-point phase
transitions in liquids, or the theory of second-order
phase transitions, had its beginning in the mid-1960s,
when asingular character of the behavior of thermody-
namic functions at the critical point was established
based on the results of numerous thorough experi-
ments. In order to explain the behavior of substances
near such points, the so-called scaling hypothesis was
suggested (see, e.9., [1-3]) according to which the ther-
modynamic potentials are generalized functions of a
noninteger order with respect to the corresponding
fields. Subsequently, Wilson calculated the powers of
these functions (critical exponents) by solving the
renormalization-group equations [4]. The approxima-
tion of experimental data in terms of these functions
showed that certain corrections haveto beintroducedin
order to reduce errors in the nonasymptotic region. The
most commonly accepted were the corrections of
Wegner [5] and Berestov [6], which accounted for the
nonasymptotic behavior, and the Pokrovskii transfor-
mation [7], which described the asymptotic asymmetry
of real fluids relative to the critical isochore.

There were many attempts to expand this descrip-
tion beyond the region of validity of the scaling hypoth-
esis by matching the scaled equation to the Landau
expansion [8]. Recently, this approach to the crossover
was studied in [9, 10]. Alternative descriptions of the
behavior of substances in the critical region were pro-
posed as well. In particular, Martynov [11] formulated
ageneral approach to construction of the theory of crit-
ica phenomena based on a systematic analysis of the
Ornstein—Zernicke equations and the main relation-
ships of the local statistical mechanics. However, an
expression obtained in [11] for the pressure does not

adequately describe the P—p—T data for fluids near the
vapor—liquid transition point.

Up to the present, the most adequate description of
the behavior of fluidsinthe critical region was provided
by the scaling theory. In the general form, the scaled
equation of state for symmetric systems such as the
Ising model was proposed by Griffiths [12]:

hy = sgn(A)|A°f (t/|AYP). )

Here, h; is the scaling field, A, is the conjugated den-
sity, T isthe reduced temperature, 4 and 3 are the criti-
cal exponents, and f is a scaling function. However, the
function f entering into Eqg. (1) isset only by asymptotic
behavior at certain lines. The form of this function was
calculated [13, 14] by method of e-expansion in the
renormalization-group theory. This form is compli-
cated and not suited for the treatment of experimental
data. For this reason, a rather large number of interpo-
lated scaling functions were suggested. Unfortunately,
these attempts did not provide a convenient equation
adequately describing the critical points of fluids [15].

One of the most successful attempts of such interpo-
|ation was the parametric equation of state proposed by
Schofield [16], which allowed the asymptotic behavior
of afluid to be described in the entire critical region,
rather than only on the selected lines. Modifications of
the Schofield equation, taking into account corrections
for the nonasymptotic behavior and the asymmetry of
real fluids at the critical point, significantly expanded
the range of application of the scaling theory [17].
However, these parametric equations are still rather
complicated and the description of experimenta datain
these terms is difficult. Therefore, the problem of

1063-7761/04/9905-0998%$26.00 © 2004 MAIK “Nauka/ Interperiodica’



NONPARAMETRIC SCALED EQUATION OF STATE AND APPROXIMATION

selecting a sufficiently simple scaling function, such
that Eq. (1) could be conveniently used for the descrip-
tion of the behavior of afluid in alarge vicinity of the
critical point, is still open.

We have used the form of the function proposed
in [11] for the pressure and expressed the scaling field
h, as

hy = sgn(A)[A*(m+k(h/|A[YP)). (2

The equation of state in this form provides correct
asymptotic behavior on selected lines and describes the
entire asymptotic region of a symmetric system (Ising
model) near the critical point. However, the simple
Ising model and the isomorphous model of the lattice
gas possess a special symmetry with respect to the sign
of the scaling field h,, whereas real fluids do not pos-
sess this symmetry. The passage to description of the
critical point of a real fluid is provided by the Pok-
rovskii transformation [7].

Using the Pokrovskii transformation (in termsof the
algebra of fluctuating quantities), the pressure and the
chemical potential of afluid can be represented in the
form of alinear combination of quantities correspond-
ing to the symmetric system and possessing certain
scaling dimensions. This representation leads to the so-
called “mixing” of the thermodynamic variables. the
temperature and chemical potential of areal system can
be represented as linear combinations of the tempera-
ture and chemical potential of the symmetric model
system; by the same token, the density and entropy of a
real system can be represented as linear combinations
of the same quantities for the model system.

Restricting the consideration to the most strongly
fluctuating values, we write
Ap = Aj+DbA,, 0= A,+aA,

b, ©)

h, =n+at, h,

where h; and h, are the generalized fields correspond-
ing to the symmetric model system; A, and A, are the
conjugated generalized densities; Ap = (p — pY/Px; N =
(H=HJ(PdPY; 0= (s=SI(TW/P); T=(T=TY/Ty; pis
the chemical potential; sisthe entropy per unit volume;
a and b are the fitting constants characterizing the
degree of “mixing”; and the subscript k refersto critical
values of the variables. The differential of the pressure
can be written as[8]

dP = pdu + sdT, (@]

_ ~ ST
drt = (1+Ap)dn +%§+kadr. (5)
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In terms of the symmetric model, this can be rewritten
as

_ L-bM
dr U1-ab

+DM a

0
+ Afdh, + =2

+ AHdh,,  (6)

where M = s T /P, 1= (P - P)/P,.

To the first approximation, we may set b = 0 in
Eqg. (6) because this term is responsible for singularity
of the diameter of the boundary curve [7] and gives
only an insignificant correction to the pressure. Then,
the pressure differential is

drt = (1+A,)dh, + (M —a+ Ay)dh,. @)

Now let us use the above relations and transform the
scaled equation of state (2). In order to determine the
pressure as a function of the density and temperature
near the vapor—liquid critical point, let us differentiate
Eq. (2) with respect to h, and h,. Thisyields

s-1[PA yiAD _
moA; Bh,, +kh2EBhD =1, (8)
s-1[0A[] y-1, o PAD
MOA; EBhZDhl+kA1yh2 +kh2[8h2 =0. (9

Using these relations, we can determine (0A,/0hy),,

and (aAllahl)hz. By definition, a differential of the

thermodynamic potential of a symmetric system is the
total differential:

do = A,dh, + A,dh,. (10)

Using this property of the total differential and Eq. (9),
we obtain

PAD _ L ynr-ia PAD
5,0, kyh, Al[th (12)
Integrating Eq. (11) yields
_ kyhy™
A, = AL+ 0 (hy), (12)

where ¢(h,) is an unknown function of the scaling field
h,. Taking into account expressions (3) and the condi-
tion b =0, we eventually obtain

kYT A+ 0(1). (13)
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Substituting the values of A;, A,, h;, and h, into

Eq. (7), we obtain an expression for the total differen-
tial of the pressure:

drt = (1+Ap)(M3AR ™"+ kt¥)dAp

+[(1+Af))kyAbry_l+ M-a (14)

y—1p~2
—ﬂl—é—éﬂﬂp(r)}dr.

Integrating thefirst term in this equation with respect to
Ap fromOtoAp at T = const, and the second term with

respect toT fromOto T a Ap =0, we obtain an expres-
sion for the pressure:

m= mAEf%L + %Aﬁ% + krygsﬁ + %Aﬁ%

+(M-a)t +J’¢(T)dr.

(15

Taking into account that, on the critical isochore at
T — 0, the heat capacity C, behaves as 1%, we may
conclude that the integral in expression (15) has the
form of C,t2~9. Thus, the final scaled equation of state
has the following form:

_ ~pa 13- o ,~
m = (M-a)T+mAp|Ap| +—1+6ApH
(16)
i~ 1, - _
+ktt|Y 1%3p+§ApE+COTITI1 *

Using Egs. (3) and (13), we obtain the following
expressions for the entropy and heart capacity:

y-1

o= —K\%———Aﬁz + 5T " +aAp, (17)
C _ TPKEQED _ PkT
v T Tz O — T2
kP P kP (18)

x [__ky(\g— 1)TV‘2AE)2 +55(1— a)ﬁ’]

However, experiment shows that the pressure on the
critical isochore is, to within the experimental error,
directly proportional to t. Therefore, in approximating
experimental data on the pressure, we may neglect the
integral in Eq. (15) as well asthe last term in Eq. (16).
Of course, these terms cannot be ignored in determin-
ing derivatives of the pressure. It should be emphasized
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that Egs. (16)—(18) describe the behavior of real fluids
very closeto the vapor—iquid critical point without cor-
rections for the nonasymptotic behavior.

The isotherms of the equation of state obtained,
being continuous in the phase separation region, are
similar to the van der Waals isotherms. Then, using
conditions on the spinodal, we can determine a curve
bounding the region of absoluteinstability of theliquid:

(19)

As was noted above, the terms proportional to b in
Eq. (3) reflect the “singularity of the linear diameter.”
Indeed, taking these terms into account, assuming that
h, = 0 (a condition on the boundary curve), and using
Egs. (3) and (13), we obtain the following relations for
the boundary curve:

Dle/(as— 1)

p—Ps = 2o Il (20)

PL*Pe

K21 L (21)
= bpk[2(2—a)C0+ky%?E ]|r|1 .

These expressions show that the boundary curve
behaves as |1|? and the diameter of this curve has a
singularity of the type |t['~¢, in accordance with the
theory [7]. This result also confirms the validity of
assumptions underlying our equation of state.

Then, we compared the obtained equation of stateto
that of the existing scaling theory of critical phenom-
ena. For the comparison, we used the scaled Schofield
equation [16]. According to our experience, this equa-
tion most adequately reflects the thermodynamic prop-
erties of fluids. In order to obtain an expression for the
pressure, we transformed the Schofield equation using
the algebra of fluctuating quantities according to Pok-
rovskii [7]. In parametric form, expressions for the
pressure, temperature, and density with alowance for
the singularity of the diameter of the boundary curve
areasfollows[17, 18]:

m= (M=0)T+Ar " Pe-0%

+Agr’~%(z, + 2,6 + 2,8%), )
T = (L—ab)'[r(1-B%?) —bAr'"P(e -0,

Ap = grPe +bArt (8 -6%).
Here, A and g are empirical coefficients and B, z,, z,,
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and z, are combinations of the critical exponents:
B® = (v-2B)/v(1-2P),
2o = y(y-1)/2B°a(1-0)(2~a),
z, = [B?0(2y + 2B —1) —y + 2] /2B%a (1 - ),
z, = (y+B-3/2)/a.

Ignoring, by analogy with Eq. (7), the terms involving
b (accounting for the singularity of the boundary curve
diameter and leading to a pressure correction insignifi-
cant in the context of our anaysis), we abtain the
Schofield equation of state for the description of real
fluids:

m= (M-a)t+Ar " ¥6-96°

+Agri%(zo + 2,06% + 2,6%,

(23)
T = r(1-B%0?),

Ap = grBe.

This equation was used for comparing our nonparamet-
ric equation (16) to the relations following from the
scaling theory. The comparison was based on the anal-
ysis of data for three fluids: helium-4 (He), water
(H,0), and ethylene (C,H,).

It should be emphasized that we do not introduce
corrections for the nonasymptotic behavior, and our
aimisonly to establish the principal applicability of the
scaled equation of state (16) to description of the
behavior of rea fluidsin the critical region.

2. EXPERIMENTAL DATA

Ininvestigations of the thermodynamic properties of
fluids near the vapor—liquid transition point, there are
three main factors complicating obtaining of the results
which can be used for verification of the adequacy of
proposed theories. The first factor is the presence of
impurities that very strongly influences the critical
behavior of fluids. The second factor is the effect of
gravity, which accounts for the development of signifi-
cant density gradients in the vertical direction. The
third factor is a slow rate of attaining the state of ther-
modynamic equilibrium. Taking this into account, we
verified Eq. (16) using our experimental results [19],
which are still the most exact data obtained under the
conditions of minimization of the influence of all three
factors limiting the experimental accuracy.

In comparing various equations of state, there arises
the problem of selecting critical parameters and expo-
nents for the particular fluids. These quantities are
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determined as fitting parameters in approximation of
the experimental data by one or another function and,
hence, depend on the form of this function. This prob-
lem was recently discussed in [20]. In addition, the crit-
ical parameters of fluids depend on the experimental
methods employed. We believe that these differences,
whileinfluencing the error of approximation, still allow
the aforementioned data to be used for the comparison
of the new equation of state to the existing ones.

The scatter of the critical parameters, depending on
the form of the approximating function and the sel ected
set of experimenta data, may significantly exceed the
experimental uncertainty. For example, the values of
parameters of He* determined from three equations of
state (with all parameters, including critical exponents,
fitted over the whole body of data) are as follows.

For the equation of state (22): T, = 5.2028 K; P, =
1711.8 Torr (228221 Pa); p, = 69.56 kg/ms; Af =
0.869 Torr (116 Pa).

For the equation of state (23): T, = 5.2042 K; P, =
1713.9 Torr (228501 Pa); p, = 69.75 kg/ms; Af =
0.902 Torr (116 Pa).

For the Sartakov—Martynets equation of Sate[17, 18]),
which takes into account both the asymmetry of real
fluids and their nonasymptotic behavior far from the
critical point[21]: T,=5.1968+ 0.005K; P, =1704.1 +
6 Torr (227195 Pa); p, = 69.56 + 0.14 kg/m3; Af =
0.832 Torr (111 Pa).

Here and below, Af is the rms error of approxima-
tion; the error intervals of the values of critical param-
etersfor the Sartakov—Martynets equation are given for
a confidence level of 0.99. As can be seen, the error of
approximation for the Sartakov—Martynets equation in
the entire interval of densities is smaller than that for
the two other equations, which isquite natural sincethe
former equation involves the terms responsible for the
asymmetry and nonasymptotic behavior. Note that the
rms error of approximation rather weakly depends on
the form of equations, while the critical parameters are
quite sensitive to the form of functions. In this study, al
approximations of the datafor He* were obtained using
the values of critical parameters corresponding to the
Sartakov—M artynets equation. For He*, the P—p—T data
were obtained for 23 isotherms (620 points) at temper-
atures above and below the critical point [19]. Sincethe
scaled equation (16) and the Schofield equation are
more readily compared above the critical temperature,
the approximation was obtained using the data for T >
T, (340 experimental points) taken from [19].

For H,0, we used the data of Ryvkin and Akhundov
[22—24] and set the following critical parameters. T, =
647.3K; P, = 22.856 MPa; p, = 307 kg/m? [22-25].

For C,H,, we used the data of Hastings et al. [26]
with the critical parameters T, = 282.3452 K, P, =
5.0403 MPa, and py = 213.752 kg/m? (7.634 mol/l).
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(P_ Pcalc)/P’ %

04r

0.2

0.2
(p - pc)/pc

Fig. 1. A plot of the relative deviation of the experimen-

tally measured pressure from the values cal culated for He?
at T>Tginterms of (@) Eq. (16) and (») the Schofield
equation (23).

The rms errors of parameters of the eguations of
state (including critical exponents) are strongly corre-
lated. For correct comparison of the equations of state,
the critical exponents were taken equal to the values
obtained within the framework of the three-dimension
al Ising model [10]: B =0.3255, y=1.239, and 6 = 4.80.

3. RESULTS OF APPROXIMATION

The comparative approximation procedure con-
sisted in determining the minimum of the quadratic
error functional (representing the sum of square devia-
tions of the calculated values from experimental data)
depending on the fitting parameters. The fitting param-
eters were calculated using the conventional |east-
squares method (for linear systems of normal equa-
tions) and the method of configurations (for nonlinear
equations). The results of approximation of the P—p—T
data for helium-4, water, and ethylene using proposed

BEZVERKHII et al.

(P_ Pcalc)/Ps %

2L

| |
03 04
(p - p(,)/p(,
Fig. 2. A plot of the relative deviation of the experimentally
measured pressure [26] from the values calculated for eth-
ylene (C,H,) in terms of (0) Eq. (16) and (a, V) the
Schofield equation (23). The interval of approximation

includes all data for the single-phase region, including the
results obtained in the vicinity of the boundary curve.

| |
-02 -0.1 0 01 02

equation of state (16) and Schofield equation (23) are
presented in the table (fitting parameters of the two
equations, rmserrors, and theinterval of approximation
on the density scale) and in Figs. 1-3 (relative devia-
tions of the pressure from cal culated values).

Helium-4 (Het). Approximation of the data for He?
by Eq. (23) was obtained in the maximum range of den-
sities (41.2 kg/m? < p < 96.9 kg/m®) where such exper-
imental data were available. The rms deviation for
Eq. (23) is Af = 6.13 Torr (817 Pa) or 0.36%. In the
same range of densities, Eq. (16) yields Af = 3.34 Torr
(445 Pa) or 0.2%. and, hence, is definitely preferred.
Figure 1 and the table present the results for a narrower
interval of densities. As can be seen, the approximation
error and the relative scatter of data for Egs. (16) and
(23) in this narrower interval become comparable.

As was noted above, the term C,12~% in Eq. (16) is

insignificant in the approximation under consideration.
Indeed, approximation of the experimental data using

Comparison of the results of approximation of the P—p—T data for helium-4, water, and ethylene using the proposed equation

of state (16) and the Schofield equation (23)

Equation (16) Schofield equation (23)
“He C,H, H,O “He C,H, H,O
m 8.243 2.753 2967 |A 5.836 13.638 13.041
k 9.080 18.915 14952 |g 0.827 1.079 1.057
M-a 3.922 6.529 7489 |M-a 3.880 5.794 7.085
Co 1.498 0.430 2669 |- - - -
Af 0.06% 0.48% 0.34% | Af 0.08% 0.52% 0.65%
-0.28< Ap <0.15(-0.23< Ap <0.39| |Ap| <0.3 -0.28< Ap <0.15|-0.23< Ap <0.39||Ap| <0.3
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol.99 No.5 2004
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03 04
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Fig. 3. A plot of the relative deviation of the experimentally
measured pressure [22-24] from the values calculated for
water at T > Ty in terms of (®@) Eq. (16) and () Schofield
equation (23).

Eqg. (16) with this term rejected showed that the rms
error was the same and the fitting coefficients remained
amost unchanged. The coefficient at this term is yet
given in the table for the sake of complete data presen-
tation.

Ethylene (C,H,). Figure 2 showstherelative devia-
tions of the pressure from calculated values for C,H,
[26]. Inthissystem, thermserror of dataapproximation
in terms of Eq. (16) is somewhat greater than that for
the Schofield equation.

Water (H,0). Figure 3 shows the results of approx-
imation of the experimental data [22—24] for water at
T> T, interms of Egs. (16) and (23). In this case, the
proposed equation is again somewhat more preferred
than the Schofield model.

An analysis of the results of approximation showed
that Eq. (16) in a narrow interval of densities (0.8 <
p/p, < 1.2) describes the experimental data even better
than the modified scaled Schofield equation. The aver-
age scatter of data in this interval is comparable with
the experimental uncertainty. As can be seen from
Figs. 1-3, the scatter of data for both equations grows
with increasing distance from the critical point. This
behavior is quite natural because the scaled equation
(aswell asthe scaling theory as such) is asymptotic. In
order to improve the description of experimental data,
it is necessary to introduce nonasymptotic corrections
and provide for matching of the scaled equation to an
equation describing the regular part of thermodynamic
functions, for example, to thevirial equation of state. In
recent years, there have been attempts (see [9, 10]) to
combine the scaled equation with the Landau expan-
sion for second-order phasetransitions[8]. The approx-
imation using such combined equations naturally pro-
vides for a decrease in error, since additional fitting
parameters are introduced. For example, the scatter of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99
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datafor water fell to within 0.08% and for ethylene, to
within 0.03%. In this study, neither the Landau expan-
sion nor any other corrections were used because the
aim was to establish the principal applicability of the
proposed scaled equation of state to describe the
asymptotic behavior of rea fluidsin the critical region.

4. CONCLUSIONS

We have presented a new scaled equation of state
obtained using the scaling field function for the
pressure suggested by Martynov [11]. It was shown
that the proposed equation correctly describes the
asymptotic behavior of fluids near the vapor-iquid
critical point. In the asymptotic vicinity of the critical
point, the new equation approximates the experimental
dependences of the pressure on the temperature and
density with greater precision than the modified para-
metric Schofield equation. At the same time, proposed
eguation (16) is simpler than parametric Schofield
equation (23), more convenient for application in prac-
tice, and gives simple expressions for the binodal and
spinodal curves.
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