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Abstract—The analysis presented in [1, 2] is extended to sedimenting low-inertia tracers advected by random
divergence-free hydrodynamic flows. The key feature of the process is the clustering of the tracers due to the
divergence of tracer-velocity field. This phenomenon has probability one; i.e., it takes place in almost every
realization of the process. Both spatial diffusivity and diffusivity in the density space (responsible for cluster-
ing) are calculated. The low inertia of the tracers does not affect the spatial diffusivity. The indispensable use
of a finite velocity correlation time leads to an anisotropic spatial diffusivity. The calculations performed in the
study are based on a diffusion approximation. © 2004 MAIK “Nauka/Interperiodica”.
1. CURRENT STATUS OF THE PROBLEM 
AND BASIC EQUATIONS

The inertial tracer density field advected by a ran-
dom flow satisfies the continuity equation

(1)

which can be rewritten as

(2)

In the general case, the Eulerian tracer velocity
V(r, t) is different from the Eulerian flow velocity
u(r, t).

Effects due to molecular diffusion can be neglected
at an early stage of the process. At a later stage, these
effects must be taken into account:

(3)

where µ is molecular diffusivity. The total mass of trac-
ers is conserved in the course of evolution:

The Eulerian velocity V(r, t) of low-inertia particles
in a flow field u(r, t) can be described by the quasilinear

t∂
∂

r∂
∂

V r t,( )+ 
  ρ r t,( ) 0, ρ r t,( ) ρ0 r( ),= =

t∂
∂ V r t,( )

r∂
∂

+ 
  ρ r t,( )

∂V r t,( )
∂r

-------------------ρ r t,( )+ 0.=

t∂
∂

r∂
∂

V r t,( )+ 
  ρ r t,( ) µ∆ρ r t,( ),=

ρ r 0,( ) ρ0 r( ),=

M M t( ) rρ r t,( )d∫ rρ0 r( )d∫ const.= = = =
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partial differential equation (e.g., see [3])

(4)

interpreted as a phenomenological model, where λ is
the drag coefficient, g is the gravitational acceleration,
ρp is the tracer particle density, and ρ0 is the fluid den-
sity. In the general case, Eq. (4) may have multiple or
discontinuous solutions. However, its solution is
unique over a reasonable time interval in the asymptotic
case of λ  ∞ (low-inertia particles), which is con-
sidered in the present study.

The linear drag force F(r, t) = λV(r, t) on the right-
hand side of (4) is given by the Stokes law for a slowly
moving particle treated approximately as a sphere: λ =
6πaη/mp, where a is the tracer radius, η is the coeffi-
cient of dynamic viscosity, and mp is the particle mass
(see [4, 5]).

The velocity v of tracer sedimentation or rise (usu-
ally in the vertical direction) is determined by the bal-
ance between buoyancy and viscous forces:

By introducing the representation

(5)

where v(r, t) is the tracer velocity fluctuation about v,

t∂
∂ V r t,( )

r∂
∂

+ 
  V r t,( )

=  λ V r t,( ) u r t,( )–[ ]– g 1
ρ0

ρp
-----– 

 +

g
λ
--- 1

ρ0

ρp

-----– 
  v.=

V r t,( ) v v r t,( )+ ,=
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1006 KLYATSKIN
Eqs. (2) and (4) are rewritten as

(6)

In the general case, a divergent Gaussian stationary,
homogeneous, and isotropic random field velocity field
u(r, t) with zero mean (〈u(r, t)〉  = 0) is characterized by
the correlation and spectral tensors

(7)

where d is the space dimension and the spectral tensor
components have the form

(8)

with solenoidal and potential components E sol(k, t) and
Epot(k, t).

The correlation time of the field u(r, t) is defined as

the velocity variance, as

In the analysis presented below,  = 〈u2(r, t)〉  is
treated as a small parameter.

1.1. Tracer Diffusion: Lagrangian Approach 

The first-order partial differential Eulerian equa-
tions (6) are equivalent to the following ordinary differ-
ential equations in a Lagrangian approach:

(9)

t∂
∂ v v r t,( )+[ ]

r∂
∂

+ 
  ρ r t,( )

∂v r t,( )
∂r

-----------------ρ r t,( ),–=

ρ r 0,( ) ρ0 r( ),=

t∂
∂ v v r t,( )+[ ]

r∂
∂

+ 
  v r t,( ) λ v r t,( ) u r t,( )–[ ] .–=

Bij
u( ) r r'– t t'–,( ) ui r t,( )u j r' t',( )〈 〉=

=  kEij k t t'–,( )eik r r'–( ),d∫
Eij k t,( )

1

2π( )d
------------- rBij

u( ) r t,( )e ik r⋅– ,d∫=

Eij k t,( ) Eij
sol k t,( ) Eij

pot k t,( ),+=

Eij
sol k t,( ) Esol k t,( ) δij

kik j

k2
--------– 

  ,=

Eij
pot k t,( ) Epot k t,( )

kik j

k2
--------=

τ0
1

σu
2

----- τBii
u( ) 0 τ,( );d

0

∞

∫=

σu
2 Bii

u( ) 0 0,( ) u2 r t,( )〈 〉= =

=  k d 1–( )Es k τ,( ) E
p

k τ,( )+[ ] .d∫
σu

2

td
d

r t( ) v v r t( ) t,( ), r 0( )+ r0,= =

td
d

v t( ) λ v t( ) u r t( ) t,( )–[ ] , v 0( )– v0 r0( ).= =
JOURNAL OF EXPERIMENTAL
Note that these equations describe the Newtonian
dynamics of a particle under the action of the random
force f(t) = λu(r(t), t) exerted by the hydrodynamic
flow and the Stokes drag force F(t) = –λv(r(t), t).

The dependence of the solution to (9) on r0 is
denoted here by a vertical bar:

Accordingly, the Eulerian tracers density ρ(r, t) is
expressed as [6–8]

(10)

The delta function on the right-hand side of (10) is
referred to as the indicator function

(11)

and its value averaged over the ensemble of realizations
of the random field u(r, t) is the probability density
function (PDF) of particle location [6–8]

(12)

As λ  ∞ (in the limit of inertialess tracers), it
holds that

(13)

and Eqs. (6) and (9) reduce to

(14)

In other words, the trajectories of inertialess particles in
a hydrodynamic flow can be found by solving a kine-
matics problem.

First of all, one has to elucidate the statistical mean-
ing of (13) and its scope. The applicability of this
approximation in a statistical model depends on the
order of limit operations (see [1, 2]).

Spatial diffusion of inertialess sedimenting particles
in the absence of clustering in a divergence-free veloc-
ity field u(r, t) (divu(r, t) = 0) was analyzed in [9, 10],
where spatial diffusivity was shown to be anisotropic
with respect to the sedimentation direction defined by
the vector v. The anisotropy is due to finite correlation
time τ0 of the flow velocity field. (Spatial diffusion
would be isotropic if the field u(r, t) were delta-corre-

r t( ) r t r0( ), v t( ) v t r0( ).= =

ρ r t,( ) r0ρ0 r0( )δ r t r0( ) r–( ).d∫=

ϕ r t,( ) δ r t r0( ) r–( ),=

P r t,( ) ϕ r t,( )〈 〉 u δ r t r0( ) r–( )〈 〉 u.= =

v r t,( ) u r t,( ),≈

td
d

r t( ) v u r t( ) t,( ), r 0( )+ r0,= =

t∂
∂ v

r∂
∂

r∂
∂

u r t,( )+ + 
  ρ r t,( ) 0,=

ρ r 0,( ) ρ0 r( ).=
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DIFFUSION AND CLUSTERING OF SEDIMENTING TRACERS 1007
lated in time.) In those studies, a finite τ0 was used in
the framework of diffusion approximation.

In [1], Eqs. (9) were used to analyze diffusion and
clustering of low-inertia particles in a divergence-free
velocity field u(r, t) in the absence of sedimentation
(v = 0). It was shown that fields u(r, t) that are delta-
correlated in time cannot be used in statistical models
of particle transport in the inertialess limit; i.e., the limit
operations λ  ∞ and τ0  0 are not interchange-
able. However, these limits commute when statistical
modeling is restricted to spatial diffusion. It was shown
in [11] that this is also true for sedimenting particles
(v ≠ 0) in a divergence-free field u(r, t), in which case
anisotropy of spatial diffusivity is also due solely to a
finite correlation time τ0. Moreover, it is obvious that
the inertialess limit is equivalent to the following con-
ditions for the parameter λ:

(15)

where l0 is the correlation length of a random velocity
field u(r, t).

1.2. Tracer Density Field:
Eulerian Statistical Approach 

To develop a statistical model of the tracer density
field, consider the indicator function

(16)

defined on a surface ρ(r, t) = ρ = const or a contour in
three- or two-dimensional flow, respectively. In the
general case, the evolution of this function is described
by the Liouville equation

(17)

which can be rewritten as

(18)

in the case of a divergence-free velocity field v(r, t), i.e.,
if ∂v(r, t)/∂r ≠ 0. The single-point PDF corresponding
to equation of motion (6) is the indicator function aver-

λτ 0 @ 1, λ  @ v /l0, λ  @ σu
2τ0/l0

2,

Φ t r; ρ,( ) δ ρ r r,( ) ρ–( ),=

t∂
∂ v v r t,( )+[ ]

r∂
∂

+ 
  Φ t r; ρ,( )

=  
∂v r t,( )

∂r
-----------------

ρ∂
∂ ρΦ t r; ρ,( ),

Φ 0 r; ρ,( ) δ ρ0 r( ) ρ–( ),=

t∂
∂ v

r∂
∂

r∂
∂

u r t,( )+ + 
  Φ t r; ρ,( )

=  
∂v r t,( )

∂r
----------------- 1 ρ∂

∂ ρ+ Φ t r; ρ,( ),

Φ 0 r; ρ,( ) δ ρ0 r( ) ρ–( )=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
aged over the ensemble of realizations of the random
field v(r, t):

In [1], the problem was analyzed without taking into
account sedimentation. If a zero-mean Gaussian sta-
tionary, homogeneous, and isotropic field is character-
ized by the correlation tensor

then the single-point PDF P(t, r; ρ) corresponding to
Eq. (18) obeys the following equation in both in the
approximation of field v(r, t) delta-correlated in time
and in diffusion approximation:

(19)

where the spatial diffusivity D0 and the diffusivity Dρ in
the ρ space are defined as

(20)

They characterize, respectively, the spatial dispersion
and clustering of a density field ρ(r, t). Here, τv and τdivv
are the correlation times of the random fields v(r, t) and
∂v(r, t)/∂r, and d is the space dimension.

It is clear that the random field v(r, t) described by
the closed nonlinear equation (6) is not Gaussian in the
general case. However, it is also clear that v(r, t) can be
treated approximately as a Gaussian field in deriving
Eq. (19), because higher order cumulants of the field
divv(r, t) are smaller in order of magnitude as com-
pared to the second-order cumulant function.

Indicator function (16) characterizes the geometry
of the tracer density field ρ(r, t). In particular, (16) can
be used to express the total area of the two-dimensional
regions where ρ(r, t) > ρ,

(21)

P t r; ρ,( ) Φ t r; ρ,( )〈 〉 .=

v i r t,( )v j r' t',( )〈 〉 Bij
v( ) r r'– t t'–,( ),=

t∂
∂

D0
r2

2

∂
∂

– 
  P t r; ρ,( ) Dρ

ρ2

2

∂
∂ ρ2P t r; ρ,( ),=

P 0 r;  ρ,( ) δ ρ0 r( ) ρ–( ),=

D0
1
d
--- τ v r t τ+,( )v r t,( )〈 〉d

0

∞

∫ 1
d
---τv v2 r t,( )〈 〉 ,= =

Dρ τ ∂v r t τ+,( )
∂r

--------------------------∂v r t,( )
∂r

-----------------d

0

∞

∫=

=  τdivv
∂v r t,( )

∂r
----------------- 

 
2

.

S t; ρ( ) ρ' rΦ t r; ρ',( ),d∫d

ρ

∞

∫=
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1008 KLYATSKIN
or the tracer mass inside the regions,

(22)

If v(r, t) is a divergence-free random field, then clus-
tering occurs with probability one, i.e., tracers group
together into clusters of higher density surrounded by
regions of relatively low tracer density; accordingly,
S(t; ρ)  0 and M(t; ρ)  M0. Coherent behavior of
this type is observed in almost every realization of the
process (see [1, 2, 12, 13]), and its occurrence is inde-
pendent of the model used to describe fluctuations.
However, its characteristics (e.g., clustering time and
length scales) may strongly depend on the model. In
particular, it follows from Eq. (19) that the average area
of clusters where the tracer density exceeds a certain ρ
decreases in the course of time (when Dt @ 1) as

(23)

while the average mass inside such clusters,

(24)

approaches the total mass M0 = .

Note that inertialess tracers advected by a diver-
gence-free flow may be characterized by nonzero Dρ.
For example, the two-dimensional divergence does not
vanish for buoyant tracers moving in a plane, whereas
the three-dimensional divergence vanishes [14] (see
also [15, 16]).

The diffusivities D0 and Dρ defined by (20) were cal-
culated for low-inertia tracers advected by a random
velocity field u(r, t) were calculated in [1, 2].

Thus, the dynamics of tracer sedimentation is
described by Eq. (17) or (18) for Φ(t, r; ρ), where the
tracer particle velocity v(r, t) in the random flow field
u(r, t) is governed by Eq. (6). It is clear from the fore-
going discussion that all calculations should be per-
formed in diffusion approximation with a random field
u(r, t) having a finite correlation time τ0. This problem
is analyzed in the present study.

2. DIFFUSION AND CLUSTERING 
OF INERTIALESS SEDIMENTING PARTICLES

In the case of intertialess sedimenting tracers, statis-
tical description of the density field in diffusion approx-

M t; ρ( ) ρ' ρ' rΦ t r; ρ',( ).d∫d

ρ

∞

∫=

S t; ρ( )〈 〉 1

πρDρt
--------------------

Dρt
4

--------–
 
 
 

ρ0 r( ) r,d∫exp=

M t; ρ( )〈 〉 M0=

– ρ
πDρt
------------

Dρt
4

--------–
 
 
 

ρ0 r( )d r,d∫exp

ρ0 r( ) rd∫
JOURNAL OF EXPERIMENTAL
imation relies on simplified Eqs. (17) and (18):

(25)

(26)

Equation (25) is well suited for finding the depen-
dence of Φ(t, r; ρ) on u(r, t); Eq. (26), for averaging the
desired function directly over the ensemble of realiza-
tions of u(r, t).

Since both (25) and (26) are first-order equations
with respect to time, the following dynamic causality
condition holds:

(27)

i.e., the functional Φ(t, r; ρ) depends on uj(r, t') only
within the interval t0 ≤ t' ≤ t. As t'  t, the following
equation for the variational derivative is obtained:

(28)

The equation for P(t, r; ρ) is derived by averaging
Eq. (26) over the ensemble of realizations of u(r, t):

(29)

Equation (29) can be rewritten as

(30)

t∂
∂ v u r t,( )+[ ]

r∂
∂

+ 
  Φ t r; ρ,( )

=  
∂u r t,( )

∂r
------------------

ρ∂
∂ ρΦ t r; ρ,( ),

t∂
∂ v

r∂
∂

r∂
∂

u r t,( )+ + 
  Φ t r; ρ,( )

=  
∂u r t,( )

∂r
------------------ 1 ρ∂

∂ ρ+ Φ t r; ρ,( ),

Φ 0 r; ρ,( ) δ ρ0 r( ) ρ–( ).=

∂Φ t r; ρ,( )
δu j r' t',( )

-------------------------- 0 for t' 0 and t' t,><=

δΦ t r; ρ,( )
δu j r' t 0–,( )
-----------------------------

=  δ r r'–( )
r j∂
∂

–
∂δ r r'–( )

∂r j

----------------------
ρ∂

∂ ρ+ Φ t r; ρ,( ).

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( )

r∂
∂

u r t,( )Φ t r; ρ,( )〈 〉–=

+ 1 ρ∂
∂ ρ+

∂u r t,( )
∂r

------------------Φ t r; ρ,( ) .

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( )

ri∂
∂

r'd∫–=

× t'Bij
u( ) r r'– t t'–,( ) δΦ t r; ρ,( )

δu j r' t',( )
--------------------------d

0

t

∫

+ 1 ρ∂
∂ ρ+ r' dt'

∂Bij
u( ) r r'– t t'–,( )

∂r j

------------------------------------------- δΦ t r; ρ,( )
δu j r' t',( )

--------------------------

0

t

∫d∫
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DIFFUSION AND CLUSTERING OF SEDIMENTING TRACERS 1009
by applying the Furutsu–Novikov theorem [17, 18]

(31)

to the correlation function of a Gaussian random field
with an arbitrary functional R[t; u(y, τ)], which is valid
under dynamic causality condition (27).

In the diffusion approximation for Eq. (30), fluctua-
tions over time intervals on the order of τ0 are
neglected, and the variational derivative in (30) obeys
the equation

(32)

subject to initial condition (28); i.e.,

(33)

The solution to problem (32), (33) has the form

(34)

The evolution of the function Φ(t, r; ρ) over a time
interval on the order of τ0 is governed by the equation

Hence,

(35)

Substituting (35) into (34), one obtains a final
expression for the variational derivative valid in the dif-
fusion approximation (τ = t – t '):

(36)

A closed equation for the tracer-density PDF in the
diffusion approximation is obtained by substituting (36)

ui r t,( )R t; u y τ,( )[ ]〈 〉

=  r' t'Bij
u( ) r r'– t t'–,( )

δR t; u y τ,( )[ ]
δu j r' t',( )

---------------------------------d

0

t

∫d∫

t∂
∂ v

r∂
∂

+ 
  δΦ t r; ρ,( )

δu j r' t',( )
-------------------------- 0=

δΦ t r; ρ,( )
δu j r' t',( )

--------------------------
t t'=

=  δ r r'–( )–
r j∂
∂ ∂δ r r'–( )

∂r j

-----------------------
ρ∂

∂ ρ+ Φ t' r; ρ,( ).

δΦ t r; ρ,( )
δu j r' t',( )

-------------------------- v t t'–( )
r∂

∂
–

 
 
 

exp=

× δ r r'–( )–
r j∂
∂ ∂δ r r'–( )

∂r j

----------------------
ρ∂

∂ ρ+ Φ t' r; ρ,( ).

t∂
∂ v

r∂
∂

+ 
  Φ t r; ρ,( ) 0,=

Φ t r; ρ,( ) t t'= Φ t' r; ρ,( ).=

Φ t' r; ρ,( ) v t t'–( )
r∂

∂
 
 
 

exp Φ t r; ρ,( ).=

δΦ t r; ρ,( )
δu j r' t',( )

-------------------------- δ r r' vτ––( )
r j∂
∂

–=

+
∂δ r r' vτ––( )

∂r j

----------------------------------
ρ∂

∂ ρ Φ t r; ρ,( ).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
into (30) and integrating the result over r':

(37)

In the long-time limit (t @ τ0, t @ l0/v), the upper limits
in the integrals on the right-hand side of (37) can be set
to infinity. The resulting PDF equation is

(38)

where the transport coefficients are defined as

(39)

The coefficients Di j(v) and Gj(v) characterize the
spatial dispersion of the density field for inertialess
tracers, whereas clustering is controlled by the diffusiv-
ity Dρ(v). Note that the asymptotic laws of evolution of

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( )

=  τBij
u( ) vτ τ,( )

ri∂r j

2

∂
∂

P t r; ρ,( )d

0

t

∫

– τ
∂Bij

u( ) vτ τ,( )
∂ri

----------------------------
r j∂
∂

P t r; ρ,( )d

0

t

∫

– τ
∂Bij

u( ) vτ τ,( )
∂ri∂r j

----------------------------
ρ2

2

∂
∂ ρ2P t r; ρ,( ).d

0

t

∫

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( ) Dij v( )

ri∂r j

2

∂
∂

P t r; ρ,( )=

+ G j v( )
r j∂
∂

P t r; ρ,( ) Dρ v( )
ρ2

2

∂
∂ ρ2P t r; ρ,( ),+

Dij v( ) τBij
u( ) vτ τ,( )d

0

∞

∫=

=  τ ui r vτ+ t τ+,( )u j r t,( )〈 〉 ,d

0

∞

∫

G j v( ) τ
∂Bij

u( ) vτ τ,( )
∂ri

----------------------------d

0

∞

∫–=

=  τ ∂u r vτ+ t τ+,( )
∂r

--------------------------------------u j r t,( ) ,d

0

∞

∫–

Dρ v( ) τ
∂Bij

u( ) vτ τ,( )
∂ri∂r j

----------------------------d

0

∞

∫–=

=  τ ∂u r vτ+ t τ+,( )
∂r

--------------------------------------∂u r t,( )
∂r

------------------ .d

0

∞

∫
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1010 KLYATSKIN
the tracer density field are described by functionals (23)
and (24) with Dρ replaced by Dρ(v).

If divu(r, t) = 0, then both Gj(v) and Dρ(v) vanish
in (38), the inertialess-tracer density field evolves with-
out clustering, and clustering is possible only for low-
inertia tracers.

An equation for the mean tracer density is obtained
by integrating the product of Eq. (38) with ρ over ρ:

(40)

In view of (10) and (12), this equation is similar to the
equation for the PDF of particle location. Effects due to
molecular diffusion can easily be taken into account by
averaging Eq. (3) in the inertialess limit over the ensem-
ble of realizations of the field u(r, t) and using (31). The
resulting equation for the mean density is

(41)

In the diffusion approximation, the variational
derivative in Eq. (41) satisfies the equation

(42)

subject to an initial condition that follows from (3),

(43)

The solution to problem (42), (43) has the form
(τ = t – t')

(44)

The evolution of ρ(r, t) over a time interval on the
order of τv is governed by the equation

t∂
∂ v

r∂
∂

+ 
  ρ r t,( )〈 〉

=  Dij v( )
ri∂r j

2

∂
∂ ρ r t,( )〈 〉 G j v( )

r j∂
∂ ρ r t,( )〈 〉 .+

t∂
∂ v

r∂
∂

+ 
  ρ r t,( )〈 〉 µ∆ ρ r t,( )〈 〉=

–
ri∂
∂

r' t'Bij
u( ) r r'– t t'–,( )

δρ r t,( )
δu j r' t',( )
--------------------- ,d

0

t

∫d∫
ρ r 0,( )〈 〉 ρ 0 r( ).=

t∂
∂ v

r∂
∂

+ 
  δρ r t,( )

δu j r' t',( )
--------------------- µ∆ δρ r t,( )

δu j r' t',( )
---------------------=

δρ r t,( )
δu j r' t',( )
---------------------

t t'=
r j∂
∂ δ r r'–( )ρ r t,( ).–=

δρ r t,( )
δv j r' t',( )
----------------------

=  µ∆ v
r∂

∂
– 

  τ
 
 
 

r j∂
∂ δ r r'–( )ρ r t',( ).exp–

t∂
∂ v

r∂
∂

+ 
  ρ r t,( ) µ∆ρ r t,( ),=

ρ r t,( ) t t'= ρ r t',( ).=
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Hence,

(45)

Substituting (45) into the right-hand side of (44)
yields a final expression for the variational derivative
valid in the diffusion approximation (τ = t – t '):

(46)

A closed equation describing the evolution of the
mean density in the diffusion approximation is obtained
by substituting (46) into (41) and integrating the result
over r':

(47)

In the long-time limit (t @ t0, t @ l0/v), the upper
limits in the integrals on the right-hand side of (47) can
be set to infinity. A solution to the resulting equation for
the mean tracer density,

can be obtained in explicit form.
By introducing the Fourier transform of the density

field,

,

and using the spectral tensor defined in (8), the follow-

ρ r t',( ) µ∆ v
r∂

∂
– 

  τ–
 
 
 

ρ r t,( ).exp=

δρ r t,( )
δu j r' t',( )
--------------------- eµ∆τ

r j∂
∂

–=

× δ r r' vτ––( )e µ∆τ– ρ r t,( ).

t∂
∂ v

r∂
∂

+ 
  ρ r t,( )〈 〉 µ∆ ρ r t,( )〈 〉=

+
ri∂
∂

r' τBij
u( ) r r'– τ,( )d

0

t

∫d∫

× eµτ∆

r j∂
∂ δ r r' vτ––( )e µτ∆– ρ r τ,( )〈 〉 ,

ρ r 0,( )〈 〉 ρ 0 r( ).=

t∂
∂ v

r∂
∂

+ 
  ρ r t,( )〈 〉 µ∆ ρ r t,( )〈 〉=

+
ri∂r j

2

∂
∂

r'd∫ τBij
u( ) r r'– τ,( )d

0

∞

∫

× eµτ∆δ r r' vτ––( )e µτ∆– ρ r τ,( )〈 〉

–
ri∂
∂

r' τ
∂Bij

u( ) r r'– τ,( )
∂r j

----------------------------------d

0

∞

∫d∫
× eµτ∆δ r r' vτ––( )e µτ∆– ρ r τ,( )〈 〉 ,

ρ r t,( ) qρq t( )eiq r⋅ ,d∫=

ρq t( )
1

2π( )d
------------- rρ r t,( )e iq r⋅–d∫=
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DIFFUSION AND CLUSTERING OF SEDIMENTING TRACERS 1011
ing equation is obtained:

where

Its solution is

Therefore,

where

(48)

can be interpreted, in view of (10) and (12), as the PDF
of particle location affected by molecular diffusion if a
Gaussian random forcing term f(t) is introduced into
Eq. (9):

In the general case, the PDF given by (48) is non-
Gaussian, but it simplifies to a Gaussian one in the
long-time limit (t @ τ0, t @ l0/v):

(49)

t∂
∂

iv q⋅+ 
  ρq t( )〈 〉

=  µq2 qiq jDij q v,( ) qiGi q v,( )–+{ } ρ q t( )〈 〉 ,–

Dij q v,( ) k τEij k τ,( )d

0

∞

∫d∫=

× µ k2 2k q⋅–( )τ– ik vτ⋅+{ } ,exp

Gi q v,( ) k τk jEij k τ,( )d

0

∞

∫d∫=

× µ k2 2k q⋅–( )τ– ik vτ⋅+{ } .exp

ρq t( )〈 〉 ρ q 0( )=

× iv qt µq2t– qiq jDij q v,( )t– qiGi q v,( )t+⋅–{ } .exp

ρ r t,( )〈 〉 r'ρ0 r'( )P r t r',( ),d∫=

P r t r',( )
1

2π( )d
------------- q iq r r' vt––( ){expd∫=

µq2t– qiq jDij q v,( )t– qiGi q v,( )t+ }

td
d

r t( ) v u r t( ) t,( ) f t( ), r 0( )+ + r',= =

f t( )〈 〉 0, f i t( ) f j t'( )〈 〉 2µδijδ t t'–( ).= =

P r t r',( )
1

2π( )d
------------- q iq r r' vt––( )⋅{expd∫=

– µq2t qiq jDij v( )t– qiGi v( )t+ } ,
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where

The diffusivity tensor Dij(v) can be represented as

where

and ∆ij(v) = δij – v iv j/v2. According to this representa-
tion, if the z axis is aligned with v, then diffusion of the
density field along the z axis and in the transverse plane
R is controlled by Dzz(v ) = A(v) and D⊥ (v) = B(v ),
respectively. Moreover, additional particle transport
along the z axis takes place, due to the divergent nature
of the field u(r, t), and

(50)

To estimate the degree of diffusivity anisotropy, sup-
pose that

where τ0 is the correlation time of the random velocity
field. Then,

where cos2θ = (k · v)2/k2v2 and

In the three-dimensional case,

Dij v( ) Dij 0 v,( )=

=  k τEij k τ,( ) µk2τ– ik vτ⋅+{ } ,expd

0

∞

∫d∫
Gi v( ) Gi 0 v,( )=

=  k τk jEij k τ,( ) µk2τ– ik vτ⋅+{ } .expd

0

∞

∫d∫

Dij v( ) A v( )
v iv j

v2
----------- B v( )∆ij v( ),+=

A v( ) Dij v( )
v iv j

v2
-----------, B v( )

1
d 1–
------------Dij v( )∆ij v( )= =

G j v( ) G v( )
v j

v2
-----

v j

v2
----- k τEp k τ,( ) ik v⋅( )d

0

∞

∫d∫= =

× µk2– ik vτ⋅+{ } .exp

Eij k τ,( ) Eij k( ) τ /τ0–{ } ,exp=

Dij v( )
1
v
---- kd

k
------Eij k( )

p k v,( )

1 p2 k v,( ) θcos
2

+
-------------------------------------------,∫=

p k v,( )
kv τ0

1 µτ0k2+
-----------------------.=

G j v( )
v j

v2
----- kd Epot k( )

p2 k v,( ) θcos
2

1 p2 k v,( ) θcos
2

+
-------------------------------------------∫–=

=  
4πv j

v2
------------ kk2Epot k( ) 1

1
p k v,( )
----------------- p k v,( )arctan–

 
 
 

.d

0

∞

∫–
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If the velocity field is divergence-free (e.g., for
d = 3), then Eij(k) = Es(k)∆ij(k), and

,

where

If p is small (vτ0 ! l0), then both f||(k, v) and f⊥ (k, v)
are close to 2p/3, and diffusion is independent of the
sedimentation velocity v. If p is large (vτ0 @ l0), then
f||(k, v ) = 2f⊥ (k, v) ≈ π/2. The anisotropy is explained by
the shorter times required for particles to pass through
regions of correlated velocities when tracers diffuse rel-
ative to turbulent motion and by the fact that the trans-
verse correlation length of a random velocity field is
one half of its longitudinal correlation length [6, 19]. If

µτ0 ! , then Dij(v) is independent of µ. Note that
these estimates are valid if the integrals involved are
convergent. Diffusion in the well-developed turbulent
flow characterized by the Kolmogorov power spectrum
was analyzed in [11].

In the general case of a coordinate system oriented
in the direction of sedimentation (r = {z, R}), Eq. (38)
has the form

(51)

where

Dzz v( )
4π
v
------ kkEsol k( ) f || k v,( )d

0

∞

∫=

D⊥ v( )
4π
v
------ kkEsol k( ) f ⊥ k v,( ),d

0

∞

∫=

f || k v,( ) p k v,( )---arctan




=

+
1

p k v,( )
----------------- 1

p k v,( )
----------------- p k v,( )arctan 1– 

  ,

f ⊥ k v,( ) p k v,( )---arctan




=

–
1

p k v,( )
----------------- 1

p k v,( )
----------------- p k v,( )arctan 1– 

  .

l0
2

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( )

=  A v( )
z2

2

∂
∂

P t r; ρ,( ) B v( )
R2

2

∂
∂

P t r; ρ,( )+

+ G v( )
z∂

∂
P t r; ρ,( ) Dρ v( )

ρ2

2

∂
∂ ρ2P t r; ρ,( ),+

G v( ) τ
∂Biz

u( ) v τ 0 τ, ,( )
∂ri

-----------------------------------.d

0

∞

∫–=
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3. LOW-INERTIA TRACERS

3.1. General Analysis 

It was noted above that analysis of clustering of sed-
imenting tracers in a divergence-free flow field must
take into account the inertia of particles. Accordingly,
recall Eqs. (6),

(52)

(53)

and assume that v(r, t) is a zero-mean Gaussian station-
ary and homogeneous field characterized by the corre-
lation tensor

The single-point PDF P(t, r; ρ) corresponding to equa-
tion of motion (52) is governed by an equation similar
to (38):

(54)

with transport coefficients defined as

(55)

t∂
∂ v v r t,( )+[ ]

r∂
∂

+ 
  ρ r t,( ) ∂v r t,( )

∂r
-----------------– ρ r t,( ),=

ρ r 0,( ) ρ0 r( ),=

t∂
∂ v v r t,( )+[ ]

r∂
∂

+ 
  v r t,( )

=  λ v r t,( ) u r t,( )–[ ] ,–

v i r t,( )v j r' t',( )〈 〉 Bij
v( ) r r'– t t'–,( ).=

t∂
∂ v

r∂
∂

+ 
  P t r; ρ,( ) Dij v; t( )

ri∂r j

2

∂
∂

P t r  ρ;,( )=

+ G j v; t( )
r j∂
∂

P t r  ρ;,( ) Dρ v; t( )
ρ2

2

∂
∂ ρ2P t r  ρ;,( ),+

Dij v; t( ) τBij
v( ) vτ τ,( )d

0

t

∫=

=  t' v i r vt+ t,( )v j r vt'+ t',( )〈 〉 ,d

0

t

∫

G j v; t( ) τ
∂Bij

v( ) vτ τ,( )
∂ri

---------------------------d

0

t

∫–=

=  t'
∂v r vt+ t,( )

∂r
-----------------------------v j r vt'+ t',( ) ,d

0

t

∫–

Dρ v; t( ) τ
∂Bij

v( ) vτ τ,( )
∂ri∂r j

---------------------------d

0

t

∫–=

=  t'
∂v r vt+ t,( )

∂r
-----------------------------∂v r vt'+ t',( )

∂r
------------------------------- .d

0

t

∫
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DIFFUSION AND CLUSTERING OF SEDIMENTING TRACERS 1013
Here, Dij(v; t) characterizes the spatial dispersion of the
density field for low-inertia tracers, whereas clustering
is controlled by the diffusivity Dρ(v; t).

Thus, stochastic equation (53) must be used to eval-
uate transport coefficients (55), i.e., spatiotemporal cor-
relation functions for the random fields v(r, t) and
∂v(r, t)/∂r.

Equation (53) can be rewritten as

When represented in terms of

it does not contain v:

(56)

The new variables are the velocity fields in a coordinate
system moving with the settling tracers. Transport coef-
ficients (55) are expressed accordingly:

(57)

In the long-time limit (t @ τ0, t @ l0/v), the upper
limits in the integrals in (57) can be set to infinity. The

vt
r∂

∂
– 

 exp
t∂

∂
vt

r∂
∂

 
  v r t,( )exp

=  v r t,( )
r∂

∂
 
  v r t,( )– λ v r t,( ) u r t,( )–[ ] .–

ṽ r t,( ) v r vt+ t,( ), ũ r t,( ) u r vt+ t,( ),= =

t∂
∂

ṽ r t,( ) ṽ r t,( )
r∂

∂
 
  ṽ r t,( )–=

– λ ṽ r t,( ) ũ r t,( )–[ ] .

Dij v; t( ) τBij
v( ) vτ τ,( )d

0

t

∫=

=  t' ṽ i r t,( )ṽ j r t',( )〈 〉d

0

t

∫ τBij
ṽ( ) 0 τ,( ).d

0

t

∫=

G j v; t( ) τ
∂Bij

v( ) vτ τ,( )
∂ri

---------------------------d

0

t

∫–=

=  t'
∂ṽ r t,( )

∂r
-----------------ṽ j r t',( )〈 〉d

0

t

∫– τ
∂Bij

ṽ( ) 0 τ,( )
∂ri

------------------------,d

0

t

∫–=

Dρ v; t( ) τ
∂Bij

v( ) vτ τ,( )
∂ri∂r j

---------------------------d

0

t

∫–=

=  t'
∂ṽ r t,( )

∂r
-----------------∂ṽ r t',( )

∂r
------------------〈 〉d

0

t

∫ τ
∂Bij

ṽ( ) 0 τ,( )
∂ri∂r j

------------------------.d

0

t

∫–=
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resulting transport coefficients

(58)

are determined by spatiotemporal statistical character-
istics of the solution to Eq. (56).

Consider a divergence-free zero-mean Gaussian sta-
tionary, homogeneous, and isotropic field u(r, t) char-
acterized by the correlation tensor

In a coordinate system moving with the settling tracers,

(59)

and a spatial spectral density of the field u(r, t) can be
defined:

(60)

The following representation is valid for a fourth-
rank tensor used below:

(61)

where

(62)

is associated with the solenoidal component of the
divergence-free random field u(r, t).

In the diffusion approximation, the Eulerian statisti-
cal model of clustering for the density field ρ(r, t) gov-
erned by Eq. (56) is obtained by evaluating the trans-
port coefficients in (58).

Dij v( ) τBij
ṽ( ) 0 τ,( ),d

0

∞

∫=

G j v( ) τ
∂Bij

ṽ( ) 0 τ,( )
∂ri

------------------------,d

0

∞

∫–=

Dρ v( ) τ
∂Bij

ṽ( ) 0 τ,( )
∂ri∂r j

------------------------d

0

∞

∫–=

Bij
u( ) r r'– t t'–,( ) ui r t,( )u j r' t',( )〈 〉 .=

Bij
ũ( ) r r'– t t'–,( ) ũi r t,( )ũ j r' t',( )〈 〉=

=  Bij
u( ) r r' v t t'–( ) t t'–,+–( ),

Bij
u( ) r t,( ) kd Eij k t,( )eik r⋅ ,∫=

Eij k t,( ) E k t,( ) δij

kik j

k2
--------– 

  .=

∂2Bij
u( ) 0 0,( )

∂rk∂rl

---------------------------–
D

d d 2+( )
--------------------=

× d 1+( )δklδij    δ ki –  δ lj δ kj δ li – [ ] ,

D kk2E k( )d∫ 1
d 1–
------------ u r t,( )∆u r t,( )〈 〉–= =
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1014 KLYATSKIN
If  is small, then Eq. (56) can be linearized with

respect to . The simplified equation

can be rewritten as

(63)

where summation over repeated indices is assumed.

3.2. Diffusion Approximation 

The random field  correlates with ,
which is a functional of . According to (59), cor-
relations are decoupled for the Gaussian field  by
applying the Furutsu–Novikov theorem rewritten as 

(64)

In the diffusion approximation, the equation

for the variational derivative is subject to the initial con-
dition

at t = t ', which follows from (63). Its solution has the
form

Since

σu
2

ũ r t,( )

t∂
∂ ũ r t,( )

r∂
∂

+ 
  ṽ r t,( )

=  ṽ r t,( )
r∂

∂
 
  ũ r t,( )– λ ṽ r t,( ) ũ r t,( )–[ ]–

t∂
∂ λ+ 

  ṽ i r t,( ) ũk r t,( )
∂ṽ i r t,( )

∂rk

--------------------–=

–
∂ũi r t,( )

∂rk

------------------ṽ k r t,( ) λ ũi r t,( ),+

ũ r t,( ) ṽ r t,( )
ũ r t,( )

ũ r t,( )

ũk r t,( )R t; ũ y τ,( )[ ]〈 〉 r' t'd

0

t

∫d∫=

× Bkl
u( ) r r' v t t'–( ) t t'–,+–( )

δR t  ũ y τ,( );[ ]
δũl r' t',( )

--------------------------------- .

t∂
∂ λ+ 

  δṽ i r t,( )
δũl r' t',( )
--------------------- 0=

δṽ i r t,( )
δũl r' t',( )
---------------------

t t' 0+=

δ r r'–( )
∂ṽ i r t',( )

∂rl

---------------------–=

+ δil
∂δ r r'–( )

∂rk

----------------------ṽ k r t',( ) λδilδ r r'–( ),+

δṽ i r t,( )
δũl r' t',( )
--------------------- e λ t t'–( )– δ r r'–( )

∂ṽ i r t',( )
∂rl

---------------------–




=

+
∂δ r r'–( )

∂rk

----------------------δilṽ k r t',( ) λδilδ r r'–( )+




.

ṽ r t,( ) e λ t t'–( )– ṽ r t',( )=
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and

in the diffusion approximation, the variational deriva-
tive is expressed as

(65)

3.3. Spatiotemporal Correlation Tensor
for  

The spatiotemporal correlation tensor of the field
 at t > t1 obeys the equation

By Furutsu–Novikov theorem (64) and expres-
sion (65) for the variational derivative, the problem for
the function  is formulated as

(66)

with τ = t – t1, where the initial condition
 is independent of t for a stationary

field. The terms of order  are neglected in Eq. (66),
because λ is assumed to satisfy conditions (15).

Now, the diffusivity tensor Dij(v) can be calculated
by using (58). The integral of Eq. (66) with respect to τ
over the interval (0, ∞) yields

(67)

ṽ r t',( ) eλ t t'–( )ṽ r t,( )=

δṽ i r t,( )
δũl r' t',( )
--------------------- δ r r'–( )

∂ṽ i r t,( )
∂rl

--------------------–=

+ δil
∂δ r r'–( )

∂rµ
----------------------ṽ µ r t,( ) λe λ t t'–( )– δilδ r r'–( ).+

ṽ r t,( )

ṽ r t,( )

t∂
∂ λ+ 

  ṽ i r t,( )ṽ j r1 t1,( )〈 〉 λ ũi r t,( )ṽ j r1 t1,( )〈 〉=

–
rk∂
∂

ũk r t,( )ṽ i r t,( )ṽ j r1 t1,( )〈 〉

–
∂ũi r t,( )

∂rk

------------------ṽ k r t,( )ṽ j r1 t1,( ) .

ṽ i r t,( )ṽ j r1 t1,( )〈 〉

τ∂
∂ λ+ 

  ṽ i r t τ+,( )ṽ j r1 t,( )〈 〉

=  λ2eλτ τ1Bij
u( ) r r1– vτ1 τ1,+( )e

λτ 1–
,d

τ

∞

∫
ṽ i r t τ+,( )ṽ j r1 t,( )〈 〉 τ 0= ṽ i r t,( )ṽ j r1 t,( )〈 〉 ,=

ṽ i r t,( )ṽ j r1 t,( )〈 〉

σu
4

λ τ ṽ i r t τ+,( )ṽ j r1 t,( )〈 〉d

0

∞

∫ ṽ i r t,( )ṽ j r1 t,( )〈 〉=

+ λ τ Bij
u( ) r r1– vτ+ τ,( ) 1 e λτ––[ ] .d

0

∞

∫
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The expression for Dij(v) is obtained by setting r = r1:

(68)

Furthermore, Eq. (63) entails an equation for the
equal-time spatial correlation tensor for the field

:

By Furutsu–Novikov theorem (64) and expression (65)
for the variational derivative, the time-independent cor-
relation tensor Fij(r – r1) =  satisfies
the following equation (in the limit of r – r1  r):

(69)

λ Dij v( ) ṽ i r t,( )ṽ j r t,( )〈 〉=

+ λ τ Bij
u( ) vτ τ,( ) 1 e λτ––[ ] .d

0

∞

∫

ṽ r t,( )

t∂
∂ 2λ+ 

  ṽ i r t,( )ṽ j r1 t,( )〈 〉

=  
rk∂
∂

ṽ k r t,( )ṽ i r t,( )ṽ j r1 t,( )〈 〉–

–
r1k∂
∂

ũk r1 t,( )ṽ i r t,( )ṽ j r1 t,( )〈 〉

–
∂ũi r t,( )

∂rk

------------------ṽ k r t,( )ṽ j r1 t,( )

–
∂ũ j r1 t,( )

∂r1k

---------------------ṽ k r1 t,( )ṽ i r t,( )

+ λ ũi r t,( )ṽ j r1 t,( )〈 〉 ũ j r1 t,( )ṽ i r t,( )〈 〉+[ ] .

ṽ i r t,( )ṽ j r1 t,( )〈 〉

2λ iFij r( ) 2 τ Bβγ
u( ) vτ τ,( ) Bβγ

u( ) r vτ+ τ,( )–[ ]d

0

∞

∫=

×
rβ∂rγ

2

∂
∂

Fij r( ) τ
∂Bβj

u( ) r vτ+ τ,( )
∂rγ

-------------------------------------
rβ∂
∂

Fiγ r( )d

0

∞

∫–

– τ
∂Bβi

u( ) r vτ+ τ,( )
∂rγ

-------------------------------------
rβ∂
∂

Fγj r( )d

0

∞

∫

– τ
∂Biγ

u( ) r vτ+ τ,( )
∂rβ

-------------------------------------
rγ∂
∂

Fβj r( )d

0

∞

∫

– τ
∂B jγ

u( ) r vτ+ τ,( )
∂rβ

-------------------------------------
rγ∂
∂

Fiβ r( )d

0

∞

∫

– 2 τ
∂2Bij

u( ) r vτ+ τ,( )
∂rβ∂rγ

---------------------------------------Fβγ r( )d

0

∞

∫
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The time-independent correlation 
is obtained by setting r = 0 and neglecting the terms of

order  in Eq. (69):

(70)

The spatial diffusivity tensor Dij(v) is obtained by sub-
stituting (70) into (68):

(71)

This expression is independent of λ and obviously iden-
tical to that corresponding to inertialess tracers.

The drift coefficient given by the second expression
in (58) is calculated in a similar manner. It is obvious

that the result will be on the order of ; i.e., the drift
is slow as compared to sedimentation with velocity v.

3.4. Spatiotemporal Correlation Tensor 
for div  

The ρ-space diffusivity Dρ(v) is obtained by differ-
entiating (67) with respect to ri and r1j and setting r = r1:

(72)

Hence, the correlation time for the field ∂ /∂r is

This expression is valid for sufficiently large values of
λ. In particular, it holds under condition (15), i.e., when
v(r, t) ≈ u(r, t) and  = τ0.

The equation for

+ 2λ2 τe λτ– Bij
u( ) r vτ+ τ,( ).d

0

∞

∫

ṽ i r t,( )ṽ j r t,( )〈 〉

σu
4

ṽ i r t,( )ṽ j r t,( )〈 〉 λ τ e λτ– Bij
u( ) vτ τ,( ).d

0

∞

∫=

Dij v( ) τBij
u( ) vτ τ,( ).d

0

∞

∫=

σu
4

ṽ r t,( )

Dρ v( ) τ ∂ṽ r t τ+,( )
∂r

--------------------------∂ṽ r t,( )
∂r

-----------------d

0

∞

∫=

=  
1
λ
--- ∂ṽ r t,( )

∂r
----------------- 

 
2

.

ṽ r t,( )

τdivṽ
1
λ
---.=

τ ṽ

∂ṽ i r t,( )
∂rk

--------------------
∂ṽ j r t,( )

∂rl

--------------------
∂2Fij r( )
∂rk∂rl

------------------
r 0=

–=
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follows from (69):

(73)

Setting i = k and j = l in (73) yields

(74)

2λ
∂2Fij 0( )
∂rk∂rl

------------------ 2λ2 τe λτ– ∂2Bij
u( ) vτ τ,( )

∂rk∂rl

------------------------------d

0

∞

∫=

– 2 τ
∂2Bβγ

u( ) vτ τ,( )
∂rk∂rl

------------------------------
∂2Fij 0( )
∂rβ∂rγ
------------------d

0

∞

∫

– τ
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∞
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0

∞

∫
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∂2Bβi
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-------------------d

0

∞

∫

– τ
∂2Biγ

u( ) vτ τ,( )
∂rβ∂rk

------------------------------
∂2Fβj 0( )
∂rγ∂rl

-------------------d

0

∞

∫

– τ
∂2Biγ

u( ) vτ τ,( )
∂rβ∂rl

------------------------------
∂2Fβj 0( )
∂rγ∂rk

-------------------d

0

∞

∫

– τ
∂2B jγ

u( ) vτ τ,( )
∂rβ∂rk

------------------------------
∂2Fiβ 0( )
∂rγ∂rl

-------------------d

0

∞

∫

– τ
∂2B jγ

u( ) vτ τ,( )
∂rβ∂rl

------------------------------
∂2Fiβ 0( )
∂rγ∂rk

-------------------d

0

∞

∫

– 2 τ
∂2Bij

u( ) vτ τ,( )
∂rβ∂rγ

------------------------------
∂2Fβγ 0( )
∂rk∂rl

--------------------d

0

∞

∫

– 2 τ
∂4Bij 0 τ,( )

∂rβ∂rγ∂rk∂rl

-------------------------------Fβγ 0( ).d

0

∞

∫

λ ∂ṽ r t,( )
∂r

----------------- 
 

2

=  4 τ
∂2Bβγ

u( ) vτ τ,( )
∂ri∂r j

------------------------------
∂2Fij 0( )
∂rβ∂rγ
------------------d

0

∞

∫
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with

which is given by (61) under conditions (15):

where the parameter D associated with the solenoidal
component of the field u(r, t) is given by (62).

The resulting expression for Dρ(v) is

(75)

i.e., Dρ(v) ~ . The solenoidal component of u(r, t)
generates the solenoidal component of v(r, t) directly
via a linear mechanism unrelated to advection, and the
solenoidal component of v(r, t) is coupled to its diver-
gent component via advection. Thus, a smaller Dρ(v) is
obtained if sedimentation is taken into account; i.e., the
clustering time increases.
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Abstract—Advection of passive tracers in an unsteady hydrodynamic flow consisting of a background stream
and a vortex is analyzed as an example of chaotic particle scattering and transport. A numerical analysis reveals
a nonattracting chaotic invariant set Λ that determines the scattering and trapping of particles from the incoming
flow. The set has a hyperbolic component consisting of unstable periodic and aperiodic orbits and a nonhyper-
bolic component represented by marginally unstable orbits in the particle-trapping regions in the neighbor-
hoods of the boundaries of outer invariant tori. The geometry and topology of chaotic scattering are examined.
It is shown that both the trapping time for particles in the mixing region and the number of times their trajecto-
ries wind around the vortex have hierarchical fractal structure as functions of the initial particle coordinates.
The hierarchy is found to have certain properties due to an infinite number of intersections of the stable mani-
fold in Λ with a material line consisting of particles from the incoming flow. Scattering functions are singular
on a Cantor set of initial conditions, and this property must manifest itself by strong fluctuations of quantities
measured in experiments. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Deterministic chaos in classical Hamiltonian
dynamical systems having compact phase spaces is a
well-developed area of nonlinear physics. A variety of
analytical, numerical, and experimental methods are
used to study nonlinear dynamics. Most scattering the-
ories deal with open systems having unbounded phase
spaces in which particles enter an interaction region
along completely regular trajectories and escape from it
along asymptotically regular particle trajectories. Thus,
typical scattering trajectories are not chaotic in rigorous
sense, because chaos is interpreted as complicated
motion over infinite time intervals. However, motion in
the interaction region may have all characteristics of
true Hamiltonian chaos, including homoclinic struc-
tures, fractals, strange invariant sets, positive Lyapunov
exponents, etc. This phenomenon, known as irregular
(chaotic) scattering [1–4], is the subject of intensive
studies in celestial mechanics [5, 6], molecular dynam-
ics [7], atomic physics [8–10], fluid dynamics [11–18],
theory of potential scattering [1, 3, 19], and other areas
of physics. One can say that regular scattering is as
scarce in the realm of scattering processes as are inte-
grable systems among the totality of bounded Hamilto-
nian systems.

In numerous studies, including those mentioned
above, it was found that chaotic scattering obeys certain
fundamental laws. Transient chaos in the interaction
region is due to the existence of at least one nonattract-
ing chaotic invariant set consisting of an infinite num-
ber of localized unstable periodic and aperiodic orbits.
1063-7761/04/9905- $26.00 © 21018
The chaotic invariant set Λ has both stable and unstable
manifolds, which extend into the regions of asymptoti-
cally regular motion. Even though Λ is not a global
attractor, it plays an important role in scattering loosely
analogous to that played by the scattering matrix. The
particles that belong to the stable manifold Λs from the
outset remain in the interaction region forever. Particles
that are initially close to Λs remain in the interaction
region for a long time, wandering in the neighborhoods
of unstable orbits in Λ. As a result, the physically mea-
sured scattering functions that relate characteristics of
outgoing trajectories to those of incoming ones are sin-
gular on a Cantor set of initial conditions. The existence
of this set can be used as a basis for a definition of chaotic
scattering. Even though these singularities constitute a
set of measure zero, they manifest themselves in experi-
ments by strong fluctuations of measured quantities.

A number of rigorous mathematical results have
been obtained for hyperbolic scattering systems, i.e., in
cases when there are no KAM tori in the phase space
and all periodic orbits are unstable. For such systems,
the probability of particle trapping in the interaction
region is an exponentially decreasing function of trap-
ping time, there exist simple relations between the frac-
tal dimension of Λ and both the corresponding expo-
nent and the average positive Lyapunov exponent
(see [20, 4]), and the set of singularities of a scattering
function is a simple fractal. In nonhyperbolic systems,
KAM tori coexist with zones of chaotic motion, the
phase-space topology strongly depends on the system’s
parameters, the long-time tail of the trapping probabil-
004 MAIK “Nauka/Interperiodica”
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ity follows a power law, and the set of singularities is
not a simple fractal. More or less realistic models
belong to the class of nonhyperbolic systems, and anal-
ysis of chaotic scattering and transport in such models
is of practical importance.

In this paper, we analyze chaotic advection in an
unconfined unsteady hydrodynamic flow as a model of
oceanic vortices located over topographic heights [21, 22].
The laboratory prototype of such a topographic vortex
is the cylindrical vortex in a homogeneous hydrody-
namic flow over an underwater obstacle known as the
Taylor column [23, 24]. Passive tracers (e.g., pollut-
ants) are advected by flow with a periodic component
(tidal flow) into a mixing region, where their motion
may be chaotic [18], and then are washed away into a
region of regular outflow. Thus, tracer transport and
mixing must be described in the framework of a typical
problem of chaotic scattering. Since the phase space of
a two-dimensional incompressible flow is identical to
its configuration space, geophysical flows and labora-
tory dyeing experiments offer unique opportunities to
observe directly spatial patterns that illustrate funda-
mental structures and properties of dynamical systems,
such as invariant sets, fractal boundaries, Lévy flights,
dynamical traps, etc. [16, 17, 25, 26]. In the present
study, we determine the flow topology and describe
tracer transport by geometrical methods.

2. INVARIANT SETS OF THE FLOW

2.1. Two-Dimensional Unsteady Flow
with a Topographic Vortex 

The two-dimensional flow model introduced in [27]
is defined by the dimensionless streamfunction

(1)

where τ = ωt is a normalized time variable, and x and y
denote Cartesian coordinates. The first term in (1) rep-
resents a steady point vortex with a singular point at
x = y = 0. The second and third terms describe steady
and unsteady two-dimensional flows characterized by
dimensionless parameters ε and ξ, respectively. This is
a simplified model of an oceanic flow with a topo-
graphic vortex embedded in a background steady flow
having a periodic tidal component. We use the
Lagrangian approach to analyze the kinematics of trac-
ers (i.e., inertialess nondiffusive particles). It is well
known that the Hamiltonian equations of motion for
tracers in an incompressible two-dimensional flow
(with divv = 0, where v = (v x, v y)) are written as

(2)

where the streamfunction Ψ(x, y, τ) plays the role of a
Hamiltonian. Thus, the configuration space of an

Ψ x2 y2+ln εx ξx τ ,sin+ +=

ẋ v x x y τ, ,( ) ∂Ψ
∂y
--------,–= =

ẏ v y x y τ, ,( ) ∂Ψ
∂x
--------,= =
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advected particle is the phase space of dynamical sys-
tem (2). The equations of motion for streamfunction (1)
are

(3)

where the dot denotes derivative with respect to τ. In
the absence of perturbation (ξ = 0), the phase portrait of
the system consists of finite and infinite orbits separated
by a separatrix encompassing the vortex and passing
through the saddle point with the coordinates x = –1/ε
and y = 0. In the polar coordinates defined by the rela-
tions x = ρcosϕ and y = ρsinϕ, the unperturbed equa-
tions are solved in quadratures:

(4)

where E = ερcosϕ + lnρ is an integral of motion.
Depending on initial conditions, particles move either
along closed streamlines encompassed by the separa-
trix loop or around the loop along infinite streamlines.
In [27], it was shown numerically and analytically that
an arbitrarily small perturbation splits the separatrix
and gives rise to transversal intersections of stable and
unstable saddle-point manifolds and to an infinite vari-
ety of periodic and aperiodic orbits. The trajectories of
tracers deviate from the steady-flow streamlines. Some
information about them is provided by Poincaré sec-
tions, which depict the locations of particles in the (x, y)
plane at τ = 2πm (m = 0, 1, 2, …). Borrowing terminol-
ogy from [14], we define the free-stream region (with
incoming and outgoing components), mixing region,
and vortex core as the sets of trajectories for which the
number of times they wind around the vortex is zero,
finite, and infinite, respectively.

The phase-space topology strongly depends on the
values of ε and ξ, because they are defined in terms of
steady-flow velocity, unsteady-flow period, and vortex
intensity (which determines the particle rotation fre-
quency). Their relative values determine the orders of
nonlinear resonances in the system. As the value of ε/ξ
increases, the vortex core (occupied by regular trajecto-
ries) grows and the orders of surviving resonances
increase, while the mixing region shrinks correspond-
ingly. When ε/ξ @ 1, the system exhibits almost regular
dynamics. In that study, numerical computations were
performed for ε = 0.5 and ξ = 0.1, in which case the
mixing region is abundant with various topological
structures.

2.2. KAM Tori and Cantori 

Now, we describe the invariant sets of dynamical
system (3), which make up the building blocks of its
structure. Particles belonging to different sets exhibit

ẋ
y

x2 y2+
----------------,–=

ẏ
x

x2 y2+
---------------- ε ξ τ ,sin+ +=

ρ̇ ε 1
E ρln–

ερ
------------------ 

 
2

– ,=
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Fig. 1. (a) Plane of the Poincaré section of the flow. Dashed curves represent the unperturbed separatrix. (b) Secondary resonance
with period 10π in the neighborhood of the half-integer primary resonance with period π.
qualitatively different behavior. The simplest examples
of invariant sets are the entire phase space, a stationary
point, a periodic orbit, and any orbit defined on the time
interval [–∞, ∞]. The set of trajectories that do not wind
around the vortex is excluded from the present analysis.
The set of invariant curves shown in Fig. 1 represents
sections of KAM tori. It is the set of periodic and qua-
siperiodic tracer motions around the vortex center. In
the Poincaré section, they make up families of nested
closed smooth curves. Most of them lie inside the vor-
tex core. The Poincaré section is the set of points with
coordinates xm = x(τ = 2πm) and ym = y(τ = 2πm), where
m = 0, 1, 2, …. Figure 1 depicts the Poincaré section of
a set of approximately 103 orbits with initial coordi-
nates x and y lying in the intervals [–0.9, –0.85] and
[−0.1, 0.1], respectively. Other families of invariant
JOURNAL OF EXPERIMENTAL 
curves make up stable islands centered at elliptic
points, which are located both in the vortex core and in
the mixing region. The islands arise from nonlinear res-
onances of various orders between particle motions in
the vortex and the 2π-periodic perturbation. The main
island in the chaotic sea is arises from the half-integer
(π-periodic) primary resonance and is surrounded by
higher order resonances (see Fig. 1b). Fig. 1b also
clearly depicts the secondary resonance with period
10π. Figure 2 shows a periodic orbit at the center of the
primary resonance; the inset thereto, a fragment of the
periodic orbit corresponding to the 10π-periodic sec-
ondary resonance depicted in Fig. 1b. Asterisks repre-
sent the elliptic points of the secondary resonance.

The vortex core also contains islands and chains of
islands. High-resolution images demonstrate that these
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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chains are surrounded by narrow stochastic layers. The
vortex core is preserved for any combination of ε and ξ;
i.e., it is a robust structure. Since the particle rotation
frequency in the vortex core is much higher than the
(unit) perturbation frequency, the perturbation can be
treated as adiabatic with respect to most orbits inside
the core and the orbits as regular, except for those lying
in the neighborhoods of overlapping high-order reso-
nances, which make up very narrow stochastic layers.

–0.9 –0.6 –0.3 0 0.3 0.6
x

–0.6

–0.3

0

0.3

0.6

y

–0.2

0

0.2
y

–0.90 –0.85 –0.80
x

Fig. 2. Periodic trajectory at the center of the primary reso-
nance. Inset shows a fragment of the periodic trajectory of
the 10π-periodic secondary resonance originating at point 1
and terminating at point 2 over a time interval of 2π.

1

2
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The KAM tori make up impermeable barriers that limit
tracer transport and mixing.

It is well known (see [28]) that perturbation gives
rise to cantori replacing some KAM tori (primarily
those with rotation numbers that do not satisfy the
Diophantine condition in the KAM theorem). The can-
tori are invariant sets having Cantor structure with gaps
and are characterized by a topological dimension at
least lower than the measure of a curve. Motion on
them is quasiperiodic. However, cantori are unstable
and, therefore, have stable and unstable manifolds.
Unlike KAM tori, cantori are permeable for tracers.
The intersection of a material line with the stable man-
ifold Λs in the incoming-flow region contains particles
that reach the mixing-region–vortex-core boundary in
the course of time and rotate in a region loosely encom-
passed by a bounded invariant KAM curve. Then, they
rapidly cross the curve and dwell on its opposite side.
The process repeats many times until the particles cross
the boundary and escape. Such particle-trapping
regions point to the existence of cantori with narrow
gaps at vortex-core–stable-island boundaries. Figure 3
illustrates the trapping of a passive tracer with initial
coordinates in the incoming-flow region. The graph of
the coordinate x as a function of time (Fig. 3a) demon-
strates that most of the time it executes a periodic
motion in the neighborhood of the half-integer primary
resonance (depicted in Fig. 3b). Figure 3c shows a frag-
0

–2
–0.2

0.2
(c)

x

y

600

–2
0

(a)

x

T

–1 0

400

200
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xm
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–1 0

0
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Fig. 3. Trapping of a passive tracer at the edge of the chaotic sea: (a) variation of coordinate x with time; (b) tracer trajectory;
(c) fragment of trajectory near the saddle point; (d) Poincaré section.
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Fig. 4. Image of the unstable manifold Λu obtained as a “snapshot” of a dye streak in the flow at τ = 15π.
ment of this periodic orbit in the neighborhood of the
saddle point corresponding to an unstable periodic
orbit. Figure 3d shows the corresponding Poincaré sec-
tion. It is important that the existence of an invariant set
of cantori and/or trapping regions implies that mixing is
inhomogeneous, as manifested (e.g., in topographic
maps of trapping) by power-law long-time tails of trap-
ping-time distributions and by singular behavior of
scattering functions [18].

2.3. Chaotic Invariant Set 
and Unstable Periodic Orbits 

The chaotic invariant set Λ is defined as the set of all
orbits (except for the KAM tori and cantori) that never
leave the mixing region. The set consists of an infinite
number of periodic and aperiodic (chaotic) orbits. All
orbits in this set are unstable. If a tracer belongs to Λ at
the initial moment, then it remains in the mixing region
as τ  ∞ or τ  –∞. The Poincaré section of Λ is a
set of points of Lebesgue measure zero. Most trajecto-
ries of the tracers advected into the mixing region from
the incoming flow sooner or later leave the mixing
region with the outgoing flow. However, their behavior
is largely determined by the presence of Λ. They can
“trail” after trajectories of the saddle set, wandering in
their neighborhoods.

Each orbit in the chaotic set and, therefore, the
entire set Λ have both stable and unstable manifolds.
The stable manifold Λs of the chaotic set is defined as
the invariant set of orbits approaching those in Λ as
τ  ∞. The unstable manifold Λu is defined as the sta-
ble manifold corresponding to time-reversed dynamics.
JOURNAL OF EXPERIMENTAL 
Following trajectories in Λs , tracers advected by the
incoming flow enter the mixing region and remain there
forever. It was mentioned above that the corresponding
initial conditions make up a set of measure zero. The
tracer trajectories that are initially close to those in the
chaotic set follow the chaotic-set trajectories for a long
time and eventually deviate from them, and leave the
mixing region along the unstable manifold. This behav-
ior offers a unique opportunity to extract important
properties of Λ by measuring the characteristics of scat-
tered particles and to observe unstable manifolds
directly in laboratory experiments [11, 12, 16, 17, 29]
or even in geophysical flows [30, 31].

An unstable manifold can be visualized by various
methods. A blob consisting of many tracer particles ini-
tially belonging to the intersection of the incoming flow
with the stable manifold spreads out and transforms
into an intricate fractal curve approaching Λu in the
course of time. A similar pattern develops in dyeing
experiments. The stable manifold lies in the coordinate-
plane region bounded by the separatrix locations at the
times corresponding to the two extrema reached during
the perturbation period. This region extends to –∞
along the y axis, and its width is determined by the val-
ues of ε and ξ. Only particles located in this region
reach the mixing region. Figure 4 shows an image of
the unstable manifold of (3) at the time 15π obtained
numerically by integrating the equations of motions for
particles continuously injected into the incoming flow
at the point with x0 = –4.357759744 and y0 = –6. This
pattern oscillates with the flow. Tracer particles are
advected along the fractal curve of the unstable mani-
fold, which plays the role of an “attractor” in a Hamil-
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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Fig. 5. Image of chaotic invariant set Λ.
tonian system (there are no “classical” attractors in
incompressible flows). Direct computation of the so-
called trapping map [18] provides an image of Λs. The
intersection of Λs and Λu is the chaotic manifold Λ
depicted in Fig. 5. This fractal set of points oscillates
with the flow. The tracer particles starting from points
in this set remain in the mixing region as τ  ±∞. The
vortex-core–free-stream boundary has a finite length
equal to that of the separatrix loop in the unperturbed
flow (ξ = 0), but it is infinitely long in a periodically
perturbed flow.

The set shown in Fig. 5 was constructed by using the
numerical procedure described above as a sketch of the
actual chaotic invariant set Λ. Figure 5 provides an ade-
quate representation of the nonhyperbolic component
of Λ, which consists of marginally unstable quasiperi-
odic orbits in the neighborhoods of the boundaries of
outer KAM tori. As mentioned above and demonstrated
in Fig. 3, it is the region where the cantori and trapping
regions are located and particles may remain for a long
time, executing almost periodic motions with the
Lyapunov exponent close to zero. Their dynamics can
be interpreted as motions in the neighborhood of the
half-integer primary resonance. The fractal characteris-
tics of these motions are analyzed in the next section.

Periodic orbits in the hyperbolic component of Λ are
essentially unstable, and the probability of finding them
in the superposition of two fractal “dust clouds” is low.
We propose the following numerical method to demon-
strate their existence. Change (numerically) to new
variables: angle Θ and action I. Define a set of initial
angles Θ0 and actions I0 for particles in the mixing
region. Find their values such that the angle changes by
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2π in a time interval T. For the same initial conditions,
calculate the change ∆E in particle energy over a cer-
tain time interval, say, 2π. The particles for which both
angle and energy remain unchanged over this interval
(Θ(T = 2π) = Θ0 and ∆E = 0) obviously execute a
2π-periodic motion. Using these results, draw a contour
map of particle-energy change as a function of the ini-
tial angle and time T. Shaded areas in Fig. 6 represent
certain values of ∆E. The intersections of the contours
of ∆E = 0 with the line T = 2π = 6.2831852… give the
initial angles corresponding to particles that execute
2π-periodic motions in the initial action interval. Simi-
lar procedures can be used to find 4π-, 6π-, and
2mπ-periodic orbits. Their stability can be analyzed by
standard methods.

3. GEOMETRY OF CHAOTIC SCATTERING

3.1. Fractal Structure of Scattering 

In this section, we analyze the geometry of tracer
transport in the mixing region. As an illustration, we
consider the initial conditions on the segment of the line
y = –6 in the free-stream region whose left and right
endpoints are its intersections with the lower whisker of
the perturbed separatrix loop at the times 3π/2 +
2πm(sinτ = –1) and π/2 + 2πm (sinτ = 1), respectively.
All nontrivial scattering processes involve particles
whose initial coordinates lie in the region bounded by
these amplitude values of instantaneous separatrix
streamlines. Figure 7 shows the snapshots of the evolu-
tion of this material line taken at τ = 8π, 9π, 10π, and
11π. At τ = 0, point A was at the intersection of the
unperturbed separatrix (sinτ = 0) and the line y0 = –6,
SICS      Vol. 99      No. 5      2004
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∆E

Fig. 6. Map of particle-energy change ∆E (as a function of initial angle Θ0 and movement time T) for determining the initial coor-
dinates of tracers executing 2π-periodic motions.
i.e., at x0(A) = –4.6447002; point G, at the intersection
of the separatrix at the times π/2 + 2πm and the line, i.e.,
at x0(G) = –4.3577522. The particles with x0 <
−4.6447002 and x0 > –4.3577522 are not trapped in the
vortex and are immediately washed away into the free-
stream region (see dotted segments in Fig. 7). Points A
and G move along the stable manifold into the neigh-
borhood of the saddle periodic orbit and remain in the
mixing region for a long (theoretically, infinite) time.

We calculated the total number n of turns executed
by most particles before they escaped into the outgo-
ing-flow region (the half-plane above the line y = 6).
The graph of n(x0) (see Fig. 8) is an intricate hierarchy of
sequences of fragments of material line AG. Their fractal
properties are generated by the infinite sequence of inter-
sections of the stable and unstable manifolds with the
material line segment as it rotates about the vortex.

Following [32], we refer to the sequences of seg-
ments corresponding to each n ≥ 0 as epistrophes. The
epistrophes make up a hierarchy. The endpoints of each
segment in an nth-level epistrophe are the limit points
of an (n + 1)th-level epistrophe. For example, there is a
single epistrophe on the zeroth level (n = 0), and the
endpoints of the corresponding segments generate epis-
trophes b, c, d, e, g, etc. on the level n = 1, which con-
verge to the corresponding limit points (see Fig. 8).
Numerical experiments on epistrophes lying on differ-
ent levels revealed the following trends: (i) each epist-
rophe converges to a limit point in the material line seg-
ment under consideration; (ii) the endpoints of each
segment in an nth-level epistrophe are the limit points
JOURNAL OF EXPERIMENTAL
of an (n + 1)th-level epistrophe; (iii) the lengths of seg-
ments in an epistrophe decrease in geometric progres-
sion; (iv) the common ratio q of all progressions is
related to the largest Lyapunov exponent for the saddle
point as follows: λ = –(1/2π)lnq.

Figure 9 shows the length lj of an epistrophe seg-
ment as a functions of its index j for the zeroth-level
epistrophe and the first-level epistrophes c, d, e, and g.
The slopes of all graphs are lnq = –1.59; i.e., the seg-
ment lengths in every epistrophe decrease in geometric
progression: lj = l0q j with q ≈ 0.2. The largest Lyapunov
exponent for the saddle point can be evaluated as the
upper bound for the numerical error accumulated over
a double integration step. Numerical experiments using
2 × 104 tracer particles uniformly distributed along AG
showed that the upper bound for the numerical error
accumulated before the particles escape from the mix-
ing region lies on a line with slope λ ≈ 0.25. A similar
result is obtained by analyzing the linearized system (3)
in the neighborhood of the saddle point.

The fractal depicted in Fig. 8 is not strictly self-sim-
ilar, because it contains segments (called strophes
in [32]) that do not belong to the epistrophes. Some of
them are labeled by Greek letters in the graph. Thus, the
fractal is characterized by partial self-similarity: each
level contains both self-similar epistrophe sequences
and additional elements (strophes), which are pre-
served in the asymptotic limit and do not fit into the reg-
ular structure. These results are in complete agreement
with the epistrophe theorem proved in [32] for area-
and orientation-preserving open maps of a plane with a
 AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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Fig. 7. Snapshots of evolution of a material line taken at successive instants to illustrate the development of “lobes” from elements
of the epistrophes and strophes in the fractal shown in Fig. 8.
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Fig. 8. Fractal set of the initial coordinates x0 of incoming-flow tracers that escape from the mixing region after n turns around the
vortex (n  ∞).

β

center and an unstable singular point whose stable and
unstable manifolds intersect transversely.

3.2. Tracer Transport 

The fractal depicted in Fig. 8 provides a comprehen-
sive illustration of tracer transport. The line segment AG
is stretches and bends as it winds around the point vor-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tex, and then its part begins to fold as particles rotating
around the vortex accelerate while other particles
decelerate in the neighborhood of the saddle point. Fig-
ure 7 illustrates the formation of the first fold at τ = 8π.
The snapshots in Fig. 7 corresponding to later instants
show that the segment DE (the “back” of the fold)
escapes into the free-stream region, taking the shape of
a “lobe.” The segment EFG (the “front” of the fold)
SICS      Vol. 99      No. 5      2004
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continues to wrap around the vortex. The segment DE
in Fig. 8 is associated with the segment DE of the
zeroth-level epistrophe (tracer particles that have not
made a complete turn). The segment EFG is repre-
sented by an empty segment generating an infinite
sequence of strophes and epistrophes in Fig. 8. At τ =
10π, the second fold develops in the material line. The
segment BC (its “back”) escapes, giving rise to another
“lobe” as its “front” (represented by segment CD in
Fig. 8) gives rise to another turn about the vortex. After
a time interval of τ = 11π, two new lobes (represented
by the segments e and g of the first-level epistrophe)
begin to develop in the stretched portion of the first
fold. The particles in these lobes escape together with
the lobe BC before they complete their second turn
about the vortex, giving rise to the second “finger” in
Fig. 4. Furthermore, the snapshot taken at τ = 11π
shows the folds that subsequently develop into the sec-
ond-level strophes α and β and into the third-level stro-
phes ν and µ. These strophes give rise to the four lobes
that combine with zeroth- and first-level epistrophe
segments to form the third “finger” in Fig. 4.

This process repeats iteratively; i.e., the portion cor-
responding to an epistrophe segment and an empty seg-
ment in Fig. 8 unwinds off the material segment’s “tail”
that lingers in the neighborhood of the saddle point

10–8

10–6

10–4

10–2

AG

c d

e g

30 6 9
j

lj

Fig. 9. Semilogarithmic plot of the decrease in the epistro-
phe-segment length lj for n = 0 (AG) and n = 1 (c, d, e, g)
with the segment index. The logarithm of the slope is minus
the largest Lyapunov exponent.

–4.55 –4.50 x0
40

60

80

100
T

Fig. 10. Scattering function for particles belonging to the
segment DE of the zeroth-level epistrophe (see Fig. 8). T is
the particle-trapping time.
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with each turn about the vortex. The result is the infinite
sequence of the zeroth-level epistrophe segments illus-
trated by Fig. 8. Each subsequent zeroth-level epistro-
phe segment escapes in a period after the preceding
escape. This scenario describes the formation of epist-
rophes and strophes at all nonzero levels, except that
each nth-level epistrophe segment generates two
(n + 1)th-level epistrophes. In other words, these epist-
rophe segments also escape successively, a pair per
period. In dyeing experiments, these events are visual-
ized by periodic formation of lobe pairs. In the course
of time, dye streaklines develop into a self-similar pat-
tern (see Fig. 4) in the sense that new fingers with
increasing number of lobes appear in each subsequent
period.

Figure 10 shows a typical scattering function for
particles belonging to the segment DE of the zeroth-
level epistrophe. The endpoints D and E divide particles
that fall into the stable and unstable manifolds. A simi-
lar role is played by the endpoints of all elements of
strophes and epistrophes. These points make up a set of
points that remain in the mixing region forever. The
scattering function corresponding to strophes have a
similar U shape with a more pronounced asymmetry.

4. CONCLUSIONS

A partition of the phase space into invariant sets is
described for an unconfined periodic incompressible
flow model with a stationary point vortex. Behavior of
typical trajectories and tracer transport are analyzed. A
numerical method is proposed for finding unstable peri-
odic orbits with the use of contour maps of particle-
energy change. A chaotic invariant set Λ is revealed. Its
unstable manifold Λu is visualized in numerical experi-
ments on evolution of material lines and multiple tracer
trajectories. The scaling on the material line segment
evolving from the intersection of a line in the incoming
flow with the stable manifold Λs is shown to determine
the chaotic behavior of tracers. It is demonstrated that
the singularities of the trapping time for a particle in the
mixing region as a function of its initial coordinate in
the incoming flow are associated with particles that
enter the mixing region along trajectories in Λs and
escape along Λu. An analysis of the geometry and
topology of chaotic scattering shows that both the par-
ticle-trapping time and the number of their turns about
the vortex have intricate hierarchical fractal structure as
functions of their initial coordinates. The hierarchy is
shown to exhibit certain properties due to infinite num-
ber of intersections of the stable manifold in Λ with a
material line consisting of particles from the incoming
flow. The self-similar structure of the function is shown
to consist of sequences of epistrophes, which determine
tracer transport. Relationship between the topological
and dynamical characteristics of chaotic advection is
established.
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



CHAOTIC SCATTERING, TRANSPORT, AND FRACTALS 1027
Finally, we outline some open problems that deserve
further scrutiny. The approach developed here can be
applied to a broad class of problems in chaotic scatter-
ing in an inhomogeneous phase space where the domi-
nant role is played by a nonattracting chaotic set with
hyperbolic and nonhyperbolic components. For hyper-
bolic scattering, the fractal dimension d can be
expressed in terms of the largest Lyapunov exponent λ
and the average trapping time 〈T 〉  for particles in the
mixing region as d ≈ 1 – (λ/〈T 〉)–1 [4, 20]. When there
exists a nonhyperbolic component, this expression is
not valid and a deeper insight into relationship between
topology, dynamics, and statistics of chaotic scattering
is required. Of practical importance is analysis of the
effect of noise on basic scattering characteristics. In
geophysical advection problems, the effects due to vis-
cosity (dissipative dynamics of finite-size particles)
must be taken into account. Dynamics of chemically or
biologically active diffusive tracers is also of practical
interest [33]. Note that chaotic invariant sets play an
important role in geophysical advection of active trac-
ers, such as oceanic phytoplankton or chemical reac-
tants in the atmosphere. These sets can be viewed as
dynamical catalysts of biological productivity and
chemical reactions.

NOTE ADDED IN PROOF (September 2004)

Using the method described at the end of Section 2,
we found nonresonant periodic orbits (separated from
elliptic and hyperbolic resonance points) and unstable
periodic orbits related to broken resonances in the cha-
otic sea, which are not manifested in the Poincaré sec-
tions.
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Abstract—A finite total number of flow parameters in the wall region of a turbulent boundary layer points to
universal behavior of turbulent shear stress as a function of mean-velocity gradient and turbulent heat flux as a
function of both mean-velocity and mean-temperature gradients. Combined with dimensional arguments, this
fact is used to reduce the momentum and heat equations to first-order ordinary differential equations for temper-
ature and velocity profiles amenable to general analysis. Scaling laws for velocity and temperature in boundary
layer flows with transpiration are obtained as generalizations of well-known logarithmic laws. Scaling relations
are also established for shear stress and rms transverse velocity fluctuation. The proposed method has substantial
advantages as compared to the classical approach (which does not rely on fluid-dynamics equations [1–3]). It can
be applied to establish scaling laws for a broader class of near-wall turbulence problems without invoking clo-
sure hypotheses. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The well-known derivation of the logarithmic veloc-
ity profile for the wall regions of turbulent near-wall
flows proposed in [1–3] neither makes use of any
hypothesis about the mechanism of turbulent transfer
nor relies on fluid-dynamics equations. It is based only
on dimensional reasoning combined with assumptions
of negligible molecular viscosity outside the viscous
sublayer and near-wall flow independence of external
parameters. An analogous approach was subsequently
applied in numerous studies. In particular, a logarith-
mic temperature distribution was obtained by Landau
in 1944 (e.g., see [4]).

The scope of the classical method [1–3] is obviously
restricted to problems with a limited number of param-
eters. In particular, it cannot be used to obtain any
meaningful results in the case of nonzero transverse
velocity at the wall.

The alternative approach proposed in this paper also
makes use of dimensional analysis, but it essentially
relies on equations of motion. As a result, velocity and
temperature scaling laws for flows with transpiration
are obtained as generalizations of the classical logarith-
mic laws. Scaling laws have also been established for
shear stress and rms transverse velocity fluctuation. The
present analysis is as physically reasonable and mathe-
matical rigorous as the classical one.

The scaling law for the velocity profile was origi-
nally obtained in [5, 6] by invoking the Prandtl mixing-
1063-7761/04/9905- $26.00 © 21028
length theory, whereas the remaining relations are
newly derived here.

2. STATEMENT OF THE PROBLEM

Consider the heat-conducting incompressible flow
in the wall region of turbulent boundary layer on a
smooth permeable surface with transpiration along the
normal vector. Since the transverse gradients of aver-
aged flow variables are much steeper than their longi-
tudinal gradients in a thin wall region, the momentum
and heat equations can be written in the first approxi-
mation as

(1)

Here, u is the longitudinal mean flow velocity; θ is the
mean temperature; y is the distance from the wall; ν is
molecular viscosity; χ is molecular thermal diffusivity;
and vw, θw, τw, and jw are the wall values of transverse
velocity, temperature, shear stress, and temperature
flux, respectively.

Temperature is treated here as a passive scalar; i.e.,
the second equation in (1) applies to passive-contami-
nant transport as well.

Equations (1) describe turbulent flow over an infi-
nite plane where the pressure and transverse velocity
are constant, while the remaining flow variables depend

u' v ',〈 〉– νdu
dy
------+

τw

ρ
----- v wu,+=

θ'v '〈 〉– χdθ
dy
------+ jw– v w θ θw–( ).+=
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only on the distance from the plane. For a flow of this
kind,

(2)

where F1, …, F4 are universal functions. Thus, these
quantities are assumed to be independent of external
boundary-layer parameters and are determined only by
wall boundary conditions and physical properties of the
fluid.

The first and second equations in (2) are solved for
τw/ρ and jw, and the results are substituted into the third
and fourth equations to obtain

(3)

Applying Buckingham’s Π-theorem to (3) and treating
temperature as a passive scalar having a specific dimen-
sion, one obtains

(4)

The local Reynolds number Re is defined here as the
ratio of characteristic turbulent and molecular viscosity
values. The functions S and T are assumed to be contin-
uous at

and have partial derivatives with respect to their argu-
ments within these intervals. In physical terms, these
conditions are equivalent to the standard assumption
that viscosity is essential only within a narrow viscous
sublayer. It is also assumed that

Expressions (4) relate shear stress and temperature flux
to the mean-velocity gradient. Since the dependence of
these relations on transpiration must weaken with
increasing distance from the wall, the parameter β is

du
dy
------ F1 y ν v w

τw

ρ
-----, , , 

  ,=

dθ
dy
------ F2 y ν χ v w

τw

ρ
----- jw, , , , , 

  ,=

u'v '〈 〉 F3 y ν v w

τw

ρ
-----, , , 

  ,=

θ'v '〈 〉 F4 y ν χ v w

τw

ρ
----- jw, , , , , 

  ,=

u'v '〈 〉 G1 y ν v w
du
dy
------, , , 

  ,=

θ'v '〈 〉 G2 y ν χ v w
du
dy
------ dθ

dy
------, , , , , 

  .=

u'v '〈 〉 y
du
dy
------ 

 
2

S Re β,( ),–=

θ'v '〈 〉 y2dθ
dy
------du

dy
------T Re Pe β, ,( ),–=

Re
y2

ν
----du

dy
------, Pe

y2

χ
----du

dy
------, β

v w

Rey
---------dy

du
------.= = =

0 Re ∞, 0 Pe ∞, ∞ β ∞,≤ ≤–≤ ≤≤ ≤

S ∞ 0,( ) 0, T ∞ ∞ 0, ,( ) 0.≠ ≠
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defined so that the denominator contains the local Rey-
nolds number Re.

The behavior of the Reynolds-stress component
〈v '2〉  (due to transverse velocity fluctuations) is similar
to that of shear stress:

(5)

where S2 satisfies the same conditions as does the func-
tion S in (4).

The components 〈u'2〉  and 〈w'2〉  (due to velocity fluc-
tuations parallel to the wall) are left outside the scope
of the present analysis. Their behavior near the surface
is more complicated (e.g., see [7–9]) and poorly known
even in the absence of mass flux across the surface.

By changing to the wall variables

and using (4), Eqs. (1) are rewritten as

(6)

(7)

where Pr = ν/χ is the molecular Prandtl number.
Thus, the problem is reduced to an ordinary differ-

ential equation (6) for the velocity profile. The temper-
ature distribution governed by (7) is determined by the
integral

(8)

According to (4), the turbulent Prandtl number is

(9)

If Prt ≡ 1 and Pr = 1, then Eq. (7) has the solution

v '2〈 〉 y
du
dy
------ 

 
2

S2 Re β,( ),=

y+
y
ν
---

τw

ρ
-----, u+ u

ρ
τw
-----, v + v w

ρ
τw
-----,= = =

θ+

θw θ–
jw

---------------
τw

ρ
-----=

y+

du+

dy+
-------- 

 
2

S Re β,( )
du+

dy+
--------+ 1 v +u+,+=

u+ 0( ) 0,=

y+
2 dθ+

dy+
--------

du+

dy+
--------T Re PrRe β,,( )

+
1
Pr
-----

dθ+

dy+
-------- 1 v +θ+, θ+ 0( )+ 0,= =

Re y+
2 du+

dy+
--------, β

v +

Rey+
------------

dy+

du+
--------,= =

1 v +θ++( )ln
Prv + y+d

1 PrReT Re PrRe β,,( )+
-----------------------------------------------------------.

0

y+

∫=

Prt Re Pe β, ,( ) S Re β,( )
T Re Pe β, ,( )
------------------------------.=

θ+ u+.≡
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3. IMPERMEABLE WALL

In the case of impermeable wall (v+ = 0), Eq. (6) has
the closed-form solution

(10)

and integral (8) yields

(11)

It follows from (10), (11), and the conditions
imposed on the functions S and T that both velocity and
temperature exhibit logarithmic asymptotic behavior in
the outer part of the wall region:

(12)

(13)

Based on experimental data, the values of the constants
in asymptotic representation (12) are set as follows:

The most frequently recommended values of the turbu-

lent Prandtl number  in the logarithmic region vary

between 0.85 and 0.95 [10]. In what follows,  = 0.89
in accordance with experimental data in [11].

Asymptotic expressions for the function B(Pr)
in (13) at small and large molecular Prandtl numbers
can be derived from the integral representation

(14)

which follows from (11), (13), and (10). The asymp-
totic form corresponding to small Prandtl numbers is

u+
Red

Re2S Re 0,( ) Re+
-----------------------------------------------

Re

ReS Re 0,( ) 1+
-----------------------------------------,–

0

R

∫=

y+ Re2S Re 0,( ) Re+ , 0 Re ∞,<≤=

θ+
Pr Re2S Re 0,( ) Re+d
1 PrReT Re PrRe 0,,( )+
----------------------------------------------------------.

0

R

∫=

u+
1
κ
--- y+ln C0+( ) O y+

α–( ),+=

θ+

Prt
0

κ
------- y+ln B Pr( )+[ ] O y+

α–( ),+=

y+ ∞, α 0,>

κ S ∞ 0,( ), Prt
0 Prt ∞ ∞ 0, ,( ).= =

κ 0.41, C0 2.05.= =

Prt
0

Prt
0

B Pr( ) κPr

Prt
0

--------- Re2S Re 0,( ) Re+d
1 PrReT Re PrRe 0,,( )+
----------------------------------------------------------

0

1

∫=

– Red
Re 1 PrReT Re PrRe 0,,( )+( )
----------------------------------------------------------------------

Pr

Prt
0

-------+

1

∞

∫

×
κ Re2S Re 0,( ) Re+d Prt

0T Re PrRe 0,,( ) Red–
1 PrReT Re PrRe 0,,( )+

------------------------------------------------------------------------------------------------------------------

1

∞

∫
– κ ,ln
JOURNAL OF EXPERIMENTAL
mainly determined by the behavior of the integrand in
the second integral in (14) at high local Reynolds
numbers:

(15)

If turbulent thermal diffusivity is independent of χ, i.e.,
T is independent of the Peclet number (see [10]),
then (15) yields

which is smaller by 1 as compared to the value sug-
gested in [10].

At large Prandtl numbers, the dominant contribution
to the asymptotic form of B(Pr) is due to the first inte-
gral in (14), and the behavior of its integrand at the
lower limit of integration is essential. Using the well-
known estimate

suppose that

where k(Pr) is some function. Then, the leading-order
term in the asymptotic expression for B(Pr) is

This result is close to the values given by an approxi-
mate formula for b2 proposed in [10].

By substituting (12) into (5), a constant value of the
rms transverse velocity fluctuation in the outer subre-
gion is obtained:

(16)

The finite limit value 1/σ2 is a universal constant. Most
experimental values of σ2 are slightly less than unity.
Henceforth, it is assumed that σ2 = 0.95 (see experi-
mental data in [12]).

B Pr( ) Pr b1 …, Pr 0,+ +ln=

b1
T ∞ ∞ 0, ,( ) Ped

1 PeT ∞ Pe 0, ,( )+
-------------------------------------------

0

1

∫=

– 1 Pe T ∞ Pe 0, ,( ) T ∞ ∞ 0, ,( )–( )+[ ] Ped
Pe 1 PeT ∞ Pe 0, ,( )+[ ]

---------------------------------------------------------------------------------------------- κ .ln–

1

∞

∫

b1 κ /Prt
0( ),ln=

θ'v '〈 〉 O y3( ), y 0,=

T Re PrRe 0,,( ) k Pr( ) Re …, Re 0,+=

B Pr( ) b2Pr2/3 …, Pr ∞,+=

b2
κ

Prt
0

------- xd

1 k ∞( )x3+
--------------------------

0

∞

∫ 2π 3κ
9Prt

0 k ∞( )3
---------------------------.= =

v '2〈 〉 +
1
σ2
----- O y+

α–( ), σ2+
κ

S2 ∞ 0,( )
------------------------,= =

y+ ∞.
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4. TRANSPIRATION
In the general case of nonzero transverse velocity at

the wall, the change to the variables

(17)

is performed in (6) to obtain the equation

(18)

The variables in (17) are defined so that Eq. (18) is
independent of v+.

Since the integral curves of Eq. (18) are symmetric
about the abscissa axis, it is sufficient to examine their
behavior in the upper half-plane. The pattern of integral
curves is qualitatively illustrated by Fig. 1, where solu-
tions to Eq. (18) with S = κ2 are plotted. Negative and
positive values of Y correspond to injection and suction,
respectively. The value of w increases from 0 to +∞
along each curve.

In the case of suction, v+ is small, because u+ has a
relatively large value at the outer edge of the wall
region while the right-hand side of (6) remains positive.
Therefore, the initial condition in (18) dictates that
physical integral curves must intersect the ordinate axis
at relatively large values of w (unphysical segments of
integral curves are shown as dashed graphs in Fig. 1).
In the general case, the velocity profile in the wall
region of turbulent boundary layer with suction is
described by integral-curve segments corresponding to
large values of w.

All integral curves lying in the first quadrant are
physical. Small values of w(0) correspond to strong
injection, i.e., large values of v+.

4.1. Scaling Laws 

Equation (18) entails

(19)

In the outer part of the wall region, the local Reynolds
number is high and quantities on the order of 1/Re can
be neglected in Eq. (19). Hence,

(20)

where C1(v+) is some function. In the case of injection,
expression (20) describes the asymptotic behavior of
the solution to Eq. (6) as Y  ∞. In the case of suc-

Y
yv w

ν
---------- v +y+, w

2
v +
------ 1 v +u++= = =

Y
dw
dY
------- 

 
2

S Re β,( ) 2
w
----dw

dY
-------+ 1, w 0( ) 2

v +
------,= =

Re
Y2w

2
----------dw

dY
-------, β 2

ReYw
-------------- dY

dw
-------.= =

dw
d Yln
------------

1

S Re β,( ) 1/Re+
-------------------------------------------.=

w
1
κ
--- Y C1 v +( ) O Y α–( ), α 0,>+ +ln=
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tion, it corresponds to the intermediate asymptotic solu-
tion for the outer part of the wall region. After changing
back to the original variables, (20) yields an asymptotic
representation of velocity profile:

(21)

where C(v+) is a universal function. Relation (21)
extends the logarithmic law for velocity to flows with
transpiration. Since it must reduce to (12) when v+ = 0,
it holds that

By virtue of (6), expression (21) also determines the
shear-stress distribution in the outer part of the wall
region:

(22)

An analogous expression for the rms transverse
velocity fluctuation can be obtained by substituting (21)
into (5):

(23)

where the constant σ2 is defined in (16) and calculated
by using results obtained for impermeable wall.

2
v +
------ 1 v +u++ 1–( ) 1

κ
--- y+ln C v +( )+[ ] O y+

α–( ),+=

y+ ∞, α 0,>

C 0( ) C0.=

2
v +
------ u'v '〈 〉 +– 1–( ) 1

κ
--- y+ln C v +( )+[ ] O y+

α–( ),+=

y+ ∞.

2
v +
------ σ2 v '2〈 〉 + 1–( )

=  
1
κ
--- y+ln C v +( )+[ ] O y+

α–( ), y+ ∞,+

40

20

0
–20 –10 0 10 20

Y

w

Fig. 1. Integral curves of Eq. (18) in the upper half-plane.
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In view of (17) and (19), integral (8) is rewritten as

Then,

(24)

The integral in (24) is bounded for the outer subregion.
After changing back to the original variables in (24)
and using (21), it yields

(25)

where D(v+, Pr) is some function. Since (25) must
reduce to (13) when v+ = 0, it holds that

For unit turbulent and molecular Prandtl numbers,
D(v+, 1) ≡ 0.

Asymptotic relations (21)–(23) and (25) are scaling
laws for longitudinal velocity, shear stress, rms trans-
verse velocity fluctuation, and temperature, respec-

1 v +θ++( )ln
2Pr 1 ReS Re β,( )+[ ] wd

w 1 PrReT Re PrRe β,,( )+[ ]
--------------------------------------------------------------------.

2/v +

w

∫=

1 v +θ++( )ln

2Prt
0

-------------------------------- wln v +

2
------ln+=

+ Pr 1 ReS Re β,( )+[ ]
Prt

0 1 PrReT Re PrRe β,,( )+[ ]
----------------------------------------------------------------------- 1– 

  wd
w
-------.

2/v +

w

∫

2
v +
------ 1 v +θ++( )

1/2Prt
0

1–[ ]

+
1
κ
---D v + Pr,( ) 1 v +θ++( )

1/2Prt
0

=  
1
κ
--- y+ln C v +( )+[ ] O y+

α–( ), y+ ∞,+

D 0 Pr,( ) C0 B Pr( ).–=

20

16

1 10 100 1000
y+

2/v +( ) 1 v +u++ 1–( )

12

8

4

0

Fig. 2. Velocity profiles for Poiseuille flows with transverse
mass flux in scaling variables. Solid and dashed curves rep-
resent data from [13, 14]. The solid line is 2.44lny+ + 5.0.
JOURNAL OF EXPERIMENTAL
tively, valid in the intermediate wall region outside the
viscous sublayer.

Relation (21) was originally obtained in [5, 6] by
invoking the Prandtl mixing-length theory, whereas
scaling laws (22), (23), and (25) are newly derived here.

4.2. Small Values of v+

When v+ is small (e.g., in the case of flow with suc-
tion), the velocity, shear-stress, and temperature distri-
butions can be represented as

(26)

where (y+) and (y+) are the velocity and tempera-
ture profiles for an impermeable wall. Substituting the
first relation in (26) into (5) yields

The first term on the right-hand side of this expansion
is the rms velocity fluctuation in the boundary layer on
impermeable surface.

Thus, in the case of arbitrary suction or weak injec-
tion (when v+ is small), the profiles in question can be
expressed in terms of the characteristics of the flow
over impermeable wall.

5. COMPARISON WITH EXPERIMENTAL 
AND NUMERICAL RESULTS

Figure 2 shows the velocity profiles for pressure-
gradient-driven channel flow with transverse mass flux
obtained by direct numerical simulation in [13, 14] and
plotted in terms of scaling variables. The solid curve in
Fig. 2 corresponds to v+ = 0.061 and the value Rem =
4357 of the Reynolds number based on the mean veloc-
ity and the channel width; the dashed curve, to v+ =
0.241 and Rem = 8000. Even though the Reynolds-num-
ber values used in the computations are relatively low,
these distributions agree with (21): the graphs have
intervals of almost linear growth with a slope close to
1/κ (κ = 0.41).

The graphs in Fig. 3 represent experimental velocity
and shear-stress distributions in turbulent boundary lay-
ers with uniform transpiration reported in [15] (see
also [16]). The data points plotted in Figs. 3a–3d corre-

2u+

1 1 v +u+++
----------------------------------- u+

0 y+( ) O v +( ),+=

2
v +
------ u'v '〈 〉 +–

du+

dy+
--------+ 1– 

  u+
0 y+( ) O v +( ),+=

2Prt
0

v +
----------

Prt
0

κ
------- C0 B Pr( )–[ ]+ 1 v +θ++( )

1/2Prt
0

1–[ ]

=  θ+
0 y+( ) O v +( ), y+ 0,≥+

u+
0 θ+

0

v '2〈 〉 + v '2〈 〉 +
0 v +

2σ2
---------u+

0 y+( ), y+ 0.≥+=
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Fig. 3. Profiles of velocity (open symbols) and shear-stress (closed symbols) in boundary layer on a plate with transpiration at Rey-
nolds numbers Rx = 3.5 × 105 (1), 5.4 × 105 (2), 7.3 × 105 (3), 9.2 × 105 (4), 1.1 × 106 (5), 1.3 × 106 (6), and 1.4 × 106 (7) in scaling
variables, based on data from [15]: F = 0.001 (a), 0.002 (b), 0.00375 (c), 0.008 (d), –0.001 (e), –0.002 (f).
spond to several values of F = vw/Ue for flows with
injection and zero pressure gradient (Ue is free-stream
velocity); the data points in Figs. 3e and 3f, to flows
with suction and moderate adverse pressure gradient.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The straight lines in Fig. 3 have the slope 1/κ and cor-
respond to the right-hand side in (21) with C(v+) cho-
sen to ensure the best approximation of experimental
data (see Fig. 4). According to [15], experimental data
SICS      Vol. 99      No. 5      2004
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2

1

0 0.2 0.4 0.6 0.8

C0 – C(v+)

v+

Fig. 4. Values of C(v+) based on experimental results from
[15] (h) and numerical results from [13] (j) and [14] (d).

25

30

10 100 1000
y+

2/v +( ) σ2 v '2〈 〉 + 1–( )

20

Fig. 5. Rms transverse velocity fluctuation in terms of scal-
ing variables for the wall region based on DNS results
from [17]. The line segment has the slope 1/κ.

10 100 1000 y+

22

17

12

7

2

θ+

Fig. 6. Temperature profiles in turbulent boundary layers on
an impermeable plate based on data from [11]: Rx = 1.30 ×
106 (s), 1.44 × 106 (h), 1.99 × 106 (n). The solid line is
2.17(lny+ + 1.6).
JOURNAL OF EXPERIMENTAL
for flow over an impermeable plate are in good agree-
ment with logarithmic law (12) when κ = 0.41 and C0 =
2.05. Figures 3a–3d demonstrate that the width of the
logarithmic region (where scaling law (21) holds)
increases with both Reynolds number and v+. As v+
increases, the inner boundary of the logarithmic region
shifts toward the wall (see Fig. 3d, which corresponds
to the strongest injection in the series of experiments
reported in [15]).

Figures 3e and 3f demonstrate that the velocity pro-
files plotted in terms of scaling variables for flows with
suction also have logarithmic intervals.

The velocity and shear-stress profiles plotted in
terms of scaling variables are almost identical in the
viscous sublayer and very similar in the outer part of
the wall region, i.e., providing experimental evidence
of the validity of the first equation in (1). It is clear from
Figs. 3b and 3c that the square root of shear stress in
flow with nonzero mass flux across the wall does
exhibit logarithmic asymptotic behavior in the wall
region.

Currently, relation (23) cannot be validated by com-
parison with experiment because of the lack of suffi-
ciently accurate measurements of velocity fluctuations
in the wall regions of flows with transpiration. Figure 5
shows the profile of rms transverse velocity fluctuations
in the asymptotic turbulent boundary layer with suction
at v+ = –0.0601 and Reδ* = 1000 (the Reynolds number
based on the displacement thickness) plotted in terms
of the scaling variables used in (23) for the DNS results
reported in [17, 18]. Figure 5 demonstrates that the pro-
file has a distinct logarithmic interval even though the
computations were performed at a relatively low Rey-
nolds number, but its slope exceeds 1/κ by approxi-
mately 15%.

Relation (25) was verified against experimental data
from [11], where temperature profiles and Stanton
numbers were measured while skin friction was not.
The skin friction coefficient was calculated by using the
Reynolds number based on the momentum thickness
and a universal skin-friction law [19, 20].

Figure 6 shows temperature profiles for boundary
layer on impermeable plate. The experimental data
points plotted in Fig. 6 are consistently described by

expression (13) with  = 0.89 and B = 1.6.

Figure 7 shows temperature profiles for flows with
transpiration plotted in terms of the scaling variables
used in (25) with C(v+) determined from the experi-
mental data presented in Fig. 4. The function D(v+, Pr)
is defined so that the experimental data points follow

linear graphs at  = 0.89 (see Fig. 8).

In agreement with scaling law (25), the experimen-
tal profiles shown in Fig. 7 have distinct logarithmic
intervals, and the function plotted in Fig. 8 by using
experimental data exhibits clear-cut monotonic behavior.

Prt
0

Prt
0
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Fig. 7. Temperature profiles in boundary layers on a plate with transpiration in scaling variables, based on data from [11]: (1) F =
9.6 × 10–4, Rx = 1.5 × 106; (2) 9.0 × 10–4, 2.0 × 106; (3) 2.4 × 10–3, 3.9 × 105; (4) 2.0 × 10–3, 9.3 × 105; (5) 1.9 × 10–3, 1.5 × 106;

(6) 1.8 × 10–3, 2.0 × 106; (7) 3.8 × 10–3, 1.5 × 106; (8) 3.5 × 10–3, 2.0 × 106; (9) 6.0 × 10–3, 4.0 × 105; (10) 5.1 × 10–3, 9.2 × 105;
(11) 4.7 × 10–3, 1.5 × 106; (12) 4.4 × 10–3, 2.0 × 106; (13) –1.3 × 10–3, 4.1 × 105; (14) –1.1 × 10–3, 9.6 × 105.
According to (9), the turbulent Prandtl number for
the logarithmic region is independent of the wall value
of transverse velocity, in agreement with experimental
evidence [21].

6. VELOCITY AND TEMPERATURE PROFILES
IN FLOWS WITH STRONG INJECTION

Now, let us apply the method of matched asymptotic
expansions [22] to analyze the asymptotic behavior of
velocity and temperature profiles corresponding to high
values of v+. In this case, the wall region consists of
four distinct subregions.

For subregion I (adjoining the wall), it holds that
Y = O(1), turbulent shear stress can be neglected in
Eq. (18), and the leading-order term in the solution is
similar to that for purely laminar flow:

(27)

The solution for subregion II (next to I) is sought in the
form

(28)

w
2

v +
------eY /2 O v +

4–( ),+=

1 v +θ++( )ln PrY O v +
3–( ).+=

Y M Y2, w+
W2 Y2( )

M
------------------ …,+= =

Y2 O 1( ), M ∞.=
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Substituting (28) into (18) and taking the limit as
M  ∞ for Y2 = O(1) yields

(29)

Thus, the turbulent and laminar components of
shear stress are comparable in order of magnitude. The
boundary condition for Eq. (29) and the value of M are

dW2

dY2
---------- 

 
2

S Re ∞,( ) 2
W2
-------

dW2

dY2
----------+ 1,=

Re
W2

2
-------

dW2

dY2
----------.=

0
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D(v+, Pr) – D(0, Pr)
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Fig. 8. Values of D(v+, Pr) based on experimental results
from [11].
SICS      Vol. 99      No. 5      2004



1036 VIGDOROVICH
determined by asymptotic matching of expansions (27)
and (28):

(30)

Boundary condition (30) is then used to obtain a solu-
tion to Eq. (29) in parametric form:

(31)

After writing the temperature distribution in subre-
gion II as

(32)

the variable in the integrand in (32) is changed by
using (31) and the limit is taken as Re  ∞ to find

.

The condition at the outer edge of subregion II is
obtained as Re  ∞:

(33)
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In subregion III,

In the limit of

,

Eq. (18) retains only the turbulent component of shear
stress:

(34)

The solution to Eq. (34) that satisfies the condition for
matching with the solution for subregion II is

(35)

The temperature distribution in subregion III is
obtained by adding the integral

to (32). After using (35) to change the variable in this
integral, it is rewritten as

.

In the limit of M  ∞,

.

As β  0, the sum of (33) with this expression yields
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1
Y3
----- O 1( ), Y3 O 1( ).= =

M ∞,
1
Y3
----- O 1( ), Y3 O 1( )= =

dW3

dY3
---------- 

 
2

S ∞ β,( ) 1, β 2
W3
-------

dY3

dW3
---------- 

 
2

.= =

Y3
S ∞ β,( )

β
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S ∞ β,( ) βd

2β3/2
-------------------------,

β

∞

∫+=

W3 2 S ∞ β,( )
β

------------------, 0 β ∞.< <=

I3
β Y3d

T ∞ ∞ β, ,( )
--------------------------

Y2/ M

Y3

∫=

I3
β S ∞ β,( ) S ∞ β,( ) βd–d

βT ∞ ∞ β, ,( )
--------------------------------------------------------,

β*

β

∫=

β* M
2S ∞ ∞,( )

Y2
----------------------- 

  2

…+=

I3 Prt
∞ Mln 2 Y2ln– 2 2S ∞ ∞,( )( )ln+[ ]=

+
Prt ∞ ∞ β, ,( ) βd

β
------------------------------------

S ∞ β,( )d
T ∞ ∞ β, ,( )
--------------------------

β

∞

∫–

β

1

∫

+ Prt ∞ ∞ β, ,( ) Prt
∞–[ ] βd

β
------ …+

1

∞

∫
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the condition at the outer edge of subregion III:

(36)

In the outermost subregion IV,

(37)

The solution to Eq. (37) that satisfies the condition for
matching with the solution for subregion III is

(38)

Combined with (21), expression (38) determines the
asymptotic form of C(v+):

(39)

The temperature distribution for subregion IV is
obtained by adding the integral

to (36). The resulting expression

is combined with (25) to find the asymptotic represen-
tation

1 v +θ++( )ln 2Prt
0 Y3ln PrM+=

+ Prt
∞ M a2 Pr( ) a3 …, Y3 ∞,+ + +ln

a3 Prt ∞ ∞ β, ,( ) Prt
0–[ ] βd

β
------

S ∞ β,( )d
T ∞ ∞ β, ,( )
--------------------------

0

∞

∫–

0

1

∫=

+ Prt ∞ ∞ β, ,( ) Prt
∞–[ ] βd

β
------ 2Prt

0 2κ2( ).ln–

1

∞

∫

Y MY4, w W4 Y4( ) …,+= =

1/Y4 O 1( ),=

dW4

d Y4ln
-------------- 

 
2

S ∞ 0,( ) 1.=

W4
1
κ
--- Y4.ln=

C v +( ) M
2
----- …, v + ∞,+=

M 2 Mln+ 2 v +.ln=

I4 2Prt
0 Y4d

Y4 Y4ln
-----------------

1 Y3/ M+

Y4

∫=

1 v +θ++( )ln 2Prt
0 Y4lnln PrM+=

+ Prt
∞ Prt

0+( ) M a2 Pr( ) a3 …+ + +ln

D v + Pr,( )

=  PrM

2Prt
0

----------–
Prt

0 Prt
∞+

2Prt
0

---------------------- M
a2 Pr( ) a3+

2Prt
0

---------------------------–ln–exp

–
2κ
M
------e M /2– …,+ v + ∞.
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This function tends to zero with increasing v+.

According to Fig. 4, the function C0 – C( ) plotted
by using velocity profiles obtained experimentally
in [15] and numerically in [13, 14] increases toward
v+ ≈ 0.8. However, C(v+)  ∞ as v+  ∞ by virtue
of (39). Therefore, C(v+) is a nonmonotonic function,
and the graph presented in Fig. 4 must have a maximum.

Subregions I and II constitute the viscous sublayer.
Denote by d+ its characteristic thickness normalized to
the near-wall length scale ρν/τw. The above analysis
shows that

as v+  ∞. It should be recalled that injection reduces
the viscous-sublayer thickness and widens the logarith-
mic region (see analysis of experimental data presented
in Fig. 3).

7. CONCLUSIONS

A model based on fluid-dynamics equations, stan-
dard assumption of near-wall flow independence of
external parameters, and continuity of functions S and
T representing turbulent shear stress and temperature
flux is formulated. Scaling relations for velocity, tem-
perature, and Reynolds-stress components are derived
without invoking any hypotheses about the mechanism
of turbulent transfer. Asymptotic representations of the
universal functions C(v+) and D(v+, Pr) contained in
these relations are obtained.

The wall region of turbulent boundary layer with
transpiration consists of two distinct subregions: a vis-
cous sublayer adjoining the wall, where the turbulent
and viscous stress components are comparable in order
of magnitude, and an outer subregion, where molecular
viscosity is negligible. In the outer subregion, the scal-
ing laws for velocity, temperature, shear stress, and rms
transverse velocity fluctuation are determined by the
same logarithmic distribution, which depends only on
the dimensionless transpiration velocity v+.

As v+  ∞, the viscous-sublayer thickness mea-
sured in units of near-wall length scale tends to zero as
O(lnv+/v+), and the domain where the scaling laws are
valid shifts toward the wall.
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Abstract—A solution to the system of equations describing a cylindrical hybrid-aligned nematic liquid crystal
is obtained. The rotational flow driven by vertical temperature gradient in such a cell is investigated theoreti-
cally. The cell is suggested as a new experimental setup for determining an additional relation required to mea-
sure the twelve thermomechanical coefficients. It is shown that the terms in the expressions for thermomechan-
ical stress and heat flux obtained in [8] are equivalent to those originally proposed in [7]. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Shortly after the discovery of liquid crystals (LCs),
rotation of a cholesteric drop induced by vertical tem-
perature gradient was observed by Lehmann [1]. For
cholesteric LCs, thermomechanical effects of this kind
were investigated in detail both experimentally and the-
oretically in [2–5] and attributed specifically to the
chirality of cholesterics. Consequently, effects of this
kind would not be expected to occur in nonchiral LCs,
such as nematics (NLCs) [2–6]. However, new thermo-
mechanical effects were predicted for deformed nemat-
ics in [7], where the first consistent theory of thermo-
mechanical coupling due to nonuniform director orien-
tation under a temperature gradient was developed for
uniaxial nematics. Thermomechanical effects of three
basic types were considered in [7]: hydrodynamic exci-
tation induced by temperature gradient (direct thermo-
mechanical effect), temperature gradient arising in non-
uniform flow (inverse thermomechanical effect), and
additional director deflection caused by heat flow.

The validity of the thermomechanical terms in the
equations obtained in [7] was questioned in [8], where
these terms were written in somewhat different form.
The discrepancy is elucidated in the Appendix. How-
ever, the thermomechanical coupling predicted in [7]
was observed in numerous experimental studies [9–11],
and the measured values of thermomechanical coeffi-
cients were in good agreement with the theoretical esti-
mates obtained in [7]. Thermomechanical coupling,
including some effects induced by external fields, was
investigated experimentally in [12], where an original
cylindrical hybrid-aligned nematic cell was proposed
and thermally driven rotation in such a cell was
observed.
1063-7761/04/9905- $26.00 © 21039
In this paper, we solve the system of equations for
the director distribution in a cylindrical homeotropic–
planar hybrid nematic cell. A theoretical analysis of
rotation of the cell induced by a temperature gradient
along its axis is presented. We suggest that the cell can
be used as a new experimental setup for determining an
additional relation required to measure the twelve ther-
momechanical coefficients. To derive the lacking rela-
tions between the coefficients, alternative director ori-
entations should be implemented by using nonuniform
static or oscillating magnetic fields. The required non-
uniform director orientations can be obtained by reori-
enting the director field through a Frédericksz transi-
tion in an external magnetic field.

The paper is organized as follows. In Section 2, we
examine the static director distribution in a cylindrical
hybrid aligned nematic cell. In Section 3, we analyze
thermally driven rotation of the cell. In Section 4, we
discuss the reversibility of thermomechanical coupling
and present our conclusions. In the Appendix, we show
that the terms in the expressions for thermomechanical
stress and heat flux obtained in [8] are equivalent to
those originally proposed in [7].

2. DIRECTOR DISTRIBUTION
IN A CYLINDRICAL HYBRID CELL

Consider a nematic layer in a cylindrical cell with
the z axis directed vertically upwards. The boundary
conditions on the lower and upper substrates corre-
spond to directors oriented along the z axis (homeotro-
pic orientation) and along the tangents to concentric
circles, respectively (see Fig. 1). By virtue of symme-
try, every director n belongs to a cylindrical surface
coaxial with the z axis. It is also clear that n is not
004 MAIK “Nauka/Interperiodica”
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defined on the axis; i.e., the z axis is a disclination.
Therefore, the director distribution can be determined
only within the interval a < r < R, where a is the molec-
ular size and R is the cylinder radius.

Define a cylindrical coordinate system (r, ϕ, z).
By virtue of symmetry, the director distribution is inde-
pendent of r and ϕ. Denoting the angle between the
director n and the z axis by χ, we write the components
of n as

The boundary conditions for the function χ(z) are

where L is the NLC layer thickness.

In the cylindrical coordinates, the Frank elastic free
energy density Fd is expressed as follows [13]:

(1)

where K1, K2, and K3 are the Frank elastic constants and
χ' = dχ/dz. The director distribution is determined by
minimizing the elastic free energy for the cell volume:

The integral over dr is logarithmically divergent. How-
ever, we can use R and a, respectively, as the upper and
lower limits. Since the latter (the length scale on which
the macroscopic theory fails) defines a cylinder coaxial
with the outer cylinder of radius R, the integral from a
to R is readily calculated. Solving the ensuing Euler–
Lagrange equation, we obtain the integral of motion [7]

It can also be found by applying the Noether theorem [14].
The function χ(z) is defined implicitly by the fol-

nϕ χ z( ), nrsin 0, nz χ z( ).cos= = =

χ 0( ) 0, χ L( ) π/2,= =

Fd
1
2
---K1χ'2 χ 1

8r2
-------K2 2χ( )sin

2
+sin

2
=

+
1
2
---K3

1

r2
---- χ χ'2+ χcos

2
sin

4

 
  ,

F 2π Fdr r z.dd∫=

χ'
δF
δχ'
------- F– const.=

z χ n

z = L

z = 0

z

ϕ

y

x

Fig. 1. Cylindrical hybrid-aligned nematic cell.
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lowing relation:

(2)

where the boundary condition χ(0) = 0 is used. The
boundary condition χ(L) = π/2 determines the inte-
gration constant. Numerical computation of the expres-
sion (2) using Mathematica 5 shows that the function
χ(z) is almost linear. In particular, it has the form χ(z) =
πz/2L in Frank’s single-constant approximation.

3. THERMALLY DRIVEN ROTATION 
OF A NEMATIC CELL

Suppose that external heat sources are used to keep
the temperatures on the lower and upper planes (z = 0
and z = L) at T0 + ∆T and T0, respectively. The resulting
temperature gradient gives rise to solid-body NLC rota-
tion, which is described by the Navier–Stokes equa-
tions written in the linear steady-state approximation as
follows [7]:

(3)

where p is pressure,  denotes viscous stress compo-

nents, and  denotes thermomechanical stress com-
ponents. The problem linearized with respect to veloc-
ity and director disturbances should be solved in the
cylindrical coordinate system by using the single-con-
stant approximation ξ1 = ξ2 = … = ξ12 = ξ, where ξi are
thermomechanical coefficients [7]. By virtue of sym-
metry, it is also clear that

where v is the hydrodynamic velocity and ω(r, z) =
dϕ/dt is the angular velocity of NLC rotation. Finally,
we have the following equation for the angular
velocity:

(4)

z = 

R2 a2–
2

----------------- K1 χ K3 χcos
2

+sin
2[ ]

const
R
a
--- 

  1
4
---K2 2χ( )sin

2
K3 χsin

4
+ln+

-------------------------------------------------------------------------------------------------

 
 
 
 
 

1/2

x,d

0

χ

∫

∂σki

∂xk

---------- 0, σki pδki– σki' σki
thm,+ += =

σki'

σki
thm

∂/∂ϕ 0, v r v z 0, v ϕ rω r z,( ),= = = =

3η3 η5 χsin
2

+[ ] ∂ω
∂r
-------

+ η1 η2–( ) 2χ( )sin 2η4 4χ( )sin+[ ]χ 'r
∂ω
∂z
-------

+ η3 η6 χsin
2

+[ ] r
∂2ω
∂r2
---------

+ η2 η1 η2–( )+ χsin
2 η4 2χ( )sin

2
+[ ] r

∂2ω
∂z2
---------

+
1
8
---ξ∆T

L
------- 3 χsin

2
2–( ) 2χ( )sin

r2
-------------------
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Here,

are the Miesowicz viscosities;

and α1, α2, …, α6 are the Leslie coefficients. As
R  ∞, Eq. (4) can be reduced to an equation for the
velocity v  = ωR of thermally driven flow in a planar
hybrid cell [12].

Equation (4) is a second-order linear elliptical equa-
tion. To formulate an appropriate Dirichlet problem, we
set the following boundary conditions:

They correspond to a nematic confined between two
coaxial rigid cylinders of height L with radii a and R.
The Dirichlet problem can be solved by using Mathe-
matica 5. A numerical analysis of Eq. (4) was per-
formed for MBBA as an example of NLC. The com-
puted results are shown in Figs. 2 and 3.

When the planar concentric orienting substrate is at
the top and the cell is heated from below, the nematic is
expected to rotate steadily about the z axis. When a sim-
ilar nematic cell is heated from above, oscillatory rota-
tion should be expected. These results are in qualitative
agreement with recent experimental observations [12].

Moreover, our numerical analysis shows that the
maximum rotation velocity (with respect to z and r) is
proportional to the temperature difference between the
upper and lower substrates (see Fig. 4).

4. DISCUSSION AND CONCLUSIONS

The present theoretical treatment of thermally
driven rotation of a cylindrical hybrid-aligned nematic
cell is in qualitative agreement with experimental
observations [12]. We should note here that the thermo-
mechanical stress tensor proposed in [7] is invariant
under time reversal, as correctly reasoned in [8].
Accordingly, we concur with the authors of [8] in that
thermomechanical coupling does not involve dissipa-
tion. In other words, the work done by thermomechan-
ical forces is converted into the kinetic energy of a rota-
tional flow (e.g., via direct thermomechanical effect)
rather than dissipated into heat (internal energy of the
system). Even though the change in energy density due

– 12 18 χ 6 χ 2χ( )sin
2

+cos
4

+cos
2

–( )d2χ
dz2
--------

--– 18 12 χ 4 2χ( )cos+cos
2

–( )χ'2 2χ( )sin 0.=

η1 0.5 α3 α4 α6+ +( ), η2 0.5 α4 α5 α2–+( ),= =

η3 0.5α4=

η4 = 0.25α1, η5 = 1.5α6 0.5α3, η6+  = 0.5 α3 α6+( )

ω r z 0=,( ) ω r z L=,( )=

=  ω r a z,=( ) ω r R z,=( ) 0.= =
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to thermomechanical forces is caused by external
sources, it is reversible. Entropy may vary, and a “dis-
sipative” function associated with thermomechanical
coupling will not be invariant under time reversal.
However, such a function was used in [7] to derive
exact equations describing thermomechanical effects.
Consider the entropy equation

∂s/∂t div sv q/T+( )+ 25/T ,=

0.5

1.0
r, cm

01.5

0.2

0.4

0.6

0.8

1.0

z, 
10

–2
 c

m

0

2

4

ω
, 1

0
–

5  s
 –

1

Fig. 2. Angular velocity of rotation versus z and r for
MBBA at ∆T = 5°C. The thermomechanical coefficient is
ξ = 0.22 × 10–6 dyn/°C.

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 r, cm

vϕmax, µm/s

Fig. 3. Maximum rotation velocity (with respect to z) versus
distance r from the common axis of cylinders for ∆T = 5°C.

0 2 4 6 8 10

0.5

1.0
vmax, µm/s

∆T, °C

Fig. 4. Maximum rotation velocity (with respect to z and r)
versus temperature difference ∆T.
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where q/T is heat flux. The function 5 is antisymmetric
under time reversal (i.e., “dissipative”), but this does
not lead to any substantial inconsistency. Indeed, the
system analyzed here is an open one, since heat is sup-
plied by an external source, and the entropy of a ther-
mally uninsulated system of this kind may vary.

Note also that the thermomechanical-stress and
heat-flux components suggested in [8] are equivalent to
the corresponding expressions in [7]. Indeed, a simple
algebra can be performed to show that the expressions
given in [8] can be obtained by simply rewriting those
proposed in [7] in a different form (see Appendix).

In summary, reversible thermomechanical coupling
does exist. It has been observed experimentally, and its
analysis can provide information about molecular
dynamics, elastic properties, and structure of nematic
mesophase.
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APPENDIX

DIFFERENT REPRESENTATIONS
OF THERMOMECHANICAL STRESS TENSOR

We introduce new notation for the thermomechani-
cal coefficients used in [7]:

After some manipulation, we obtain the following
expression for the thermomechanical stress tensor con-

a1
1
4
--- 2ξ1 ξ3– ξ5 ξ7–+( ),=

a2
1
4
--- 2ξ1 ξ3– ξ5– ξ7+( ),–=

a3
1
2
--- ξ2 ξ6+( ), a4–

1
2
--- ξ2 ξ6–( ),= =

a5
1
2
--- ξ3 ξ7+( ), a6

1
2
--- ξ3 ξ7–( ),–= =

a7
1
2
--- ξ3 ξ4– ξ7 ξ8– ξ11 2ξ12+ + +( ),–=

a8
1
2
--- ξ3 ξ4– ξ7– ξ8 ξ11– 2ξ12–+( ),=

a9
1
2
--- 2ξ5– ξ7 2ξ10 ξ12+ + +( ),=

a10 = 
1
2
--- 2ξ7– 2ξ9 ξ11+ +( ), a11 = 

1
2
---ξ11, a12 = ξ12.
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sidered in [7]:

(5)

According to [8], the new components of thermome-

chanical stress have the form  = aijklp(∇ kT)(∇ lnp),
where αijklp is expressed as follows (if no symmetry is
imposed on the tensor):

If the stress tensor is symmetric, then ai =  (i = 1, 3,
5, 7, 9, 10). Using this expression for aijklp , we perform

σij
thm a1n j∇ iTdivn a2ni∇ jTdivn+=

+ a3 a4
1
2
---a10+ + 

  nin j n∇ nq( )∇ qT

+ a3
1
2
---a5+ 

  n j ∇ kni( ) ∇ kT( )

+ a– 3
1
2
---a5+ 

  n j ∇ ink( ) ∇ kT( )

+ a– 3
1
2
---a7+ 

  n j n—ni( ) n—T( )

+ a4
1
2
---a6+ 

  ni ∇ kn j( ) ∇ kT( )

+ a– 4
1
2
---a6+ 

  ni ∇ jnk( ) ∇ kT( )

+ a– 4
1
2
---a8+ 

  ni n—n j( ) n—T( )

+ a9nin jdivn n—T( ) 1
2
---a11 n—ni( )∇ jT+

+
1
2
---a11 n—n j( )∇ iT

1
2
---a12∇ in j n—T( )+

+
1
2
---a12∇ jni n—T( ).

σij
R

aijkpl a1niδjk
tr δlp

tr a1''n jδik
trδlp

tr a2nkδij
trδlp

tr+ +=

+ a3niδjl
trδkp

tr a3''n jδil
trδkp

tr a4nlδij
trδkp

tr a5niδjp
tr δkl

tr+ + +

+ a5''n jδip
tr δkl

tr a6nin jnlδkp
tr a7nkδil

trδpj
tr a7''nkδip

tr δjl
tr+ + +

+ a8nin jnkδpl
tr a9nlδik

trδjp
tr a9''nlδjk

tr δip
tr+ +

+ a10n jnknlδip
tr a10'' ninknlδjp

tr .+

ai''
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some manipulations to obtain the expression for ther-

momechanical stress  given in [8]:

(6)

Comparison of (5) with (6), we find that each term
in (6) is identical to a corresponding term in (5) except
for those containing a2 and a4, which correspond to the
additional pressure

due to thermomechanical coupling (in [7], it was
included in the expression for hydrodynamic pressure).
Note that pthm can be found by the method proposed
in [7], i.e., by applying the conditional variational prin-
ciple for divv = 0.

Note also that the tensor aijklp in the expression for
thermomechanical stress was used in [8] to describe the

heat flux  without sufficient reason. However, the
equality of the corresponding tensors can easily be
proved by the method proposed in [7]. First, rewrite the
“dissipative” function that describes thermomechanical
coupling in terms of aijklp:

σij
R

σij
R

a1ni∇ jTdivn a1''n j∇ iTdivn+=

+ a2 n—T( )divn a4∇ kT n—nk( )+[ ]δ ij

+ a3ni ∇ jnk( ) ∇ kT( ) a3''n j ∇ ink( ) ∇ kT( )+

+ a5ni ∇ kn j( ) ∇ kT( ) a5''n j ∇ kni( ) ∇ kT( )+

+ a7∇ in j n—T( ) a7''∇ jni n—T( )+

+ a9 n—n j( )∇ iT a9'' n—ni( )∇ jT+

a8 a1– a1''– a2–( )nin jdivn n—T( )+

+ a3– a3''– a4– a6+( )nin j n—nq( )∇ qT

+ a5– a7– a9– a10''+( )ni n—n j( ) n—T( )

+ a5''– a7''– a9''– a10+( )n j n—ni( ) n—T( ).

pthm a2 n—T( )divn a4∇ kT n—nk( ),+=

jk
σR

5thm
aijklp ∇ iv j( ) ∇ kT( ) ∇ lnp( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Then, calculate the variational derivatives of 5thm in ∇ kT
and ∇ iv j respectively, keeping the remaining quantities
constant, to obtain

The resulting coefficients are obviously equal, since
they are obtained by varying the same “dissipative”
function.
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Abstract—Thermodynamics of the Potts model with an arbitrary number of states is analyzed for a class of
hierarchical lattices of fractal dimension d > 1. In contrast to the case of crystal lattice, it is shown that all phase
transitions on lattices of this type are of the second order. Critical exponents are determined, their dependence
on structural parameters is examined, and scaling relations between them are established. A structural criterion
for change in transition order is discussed for inhomogeneous systems. Application of the results to critical phe-
nomena in phase transitions in dilute crystals and porous media is discussed. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Analysis of phase transitions in spin models on hier-
archical lattices dates back to the Migdal–Kadanoff
renormalization group method [1, 2], where such lat-
tices were introduced as approximations of crystal lat-
tices [3]. The variety of hierarchical lattices of noninte-
ger dimension proposed in further studies [4, 5] can be
used as models of fractal systems. Analysis of phase
transitions on fractals is of great interest, since fractals
are frequently used in models of disordered systems,
such as porous media or percolation clusters in disor-
dered crystals [6]. Hierarchical lattices are not random,
but they have wide distributions of coordination num-
ber and characteristic length and can therefore be used
as models of random inhomogeneous media. Indeed,
studies of Ising models on hierarchical lattices have
shown that the critical exponents for second-order
phase transitions are different for fractals and depend
on their structural characteristics [7, 8]. This behavior
is analogous to change in critical exponents for disor-
dered crystals with degree of disorder [9].

Furthermore, dependence of first-order transitions
on structural inhomogeneity in hierarchical fractal
models is qualitatively similar to that observed in
numerical studies of such transitions in models of
diluted crystals [10–13] and porous media [14, 15]. In
particular, the inhomogeneity-induced crossover from
first- to second-order transition discussed in [10–15]
occurs in the q-state Potts model (with q = 4 and 10) on
hierarchical lattices of fractal dimension d > 2 [16].
This remarkable observation cannot be explained in the
framework of the standard phenomenology that
attributes “suppressed” first-order transitions in inho-
mogeneous systems (partial or complete suppression of
jumps in thermodynamic state variables) to the forma-
tion of an inhomogeneous two-phase state near the crit-
1063-7761/04/9905- $26.00 © 21044
ical point [17]. This explanation is inconsistent with the
physical nature of the instability that develops in the
inhomogeneous system and manifests itself by diver-
gence of correlation length and critical susceptibility
[10–15].

However, experiments on transitions in liquid crys-
tals [18, 19] and the antiferromagnet MnO [20] con-
fined in porous matrices demonstrate the possibility of
change in order of transition due to inhomogeneity.
A  change from the first-order structural transition
Oh  D4h to a symmetry-forbidden second-order
transition occurs for a magnetite (Fe3O4) under doping
with zinc [21]. An analogous change is also observed
for phase transition from cubic to orthorhombic phase
in mixed crystals (KBr)1 – x(KCN)x [22, 23]. Whereas
transition of this kind in ideal cubic lattices are of the
first order [24], it turns into a second-order one for x =
0.65, 0.7 [22], and 0.73 [23] as the elastic modulus C44
vanishes at the critical point [23].

Thus, both experiments and numerical analysis of
realistic models demonstrate that inhomogeneities not
only suppress jumps in thermodynamic state variables,
but also lead to second-order singular behavior. Eluci-
dation of the nature of this phenomenon and develop-
ment of its quantitative models will improve under-
standing of phase-transition mechanisms and stimulate
progress in many applications of inhomogeneous mate-
rials. One goal of theoretical analysis is to discriminate
between systems characterized by change from first- to
second-order phase transition and those in which first-
order jumps are merely suppressed by the formation of
an intermediate inhomogeneous phase [17, 25].
Another goal is to determine the critical exponents for
inhomogeneity-induced second-order transitions and
find their relationship to characteristics of inhomoge-
neous structure.
004 MAIK “Nauka/Interperiodica”
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Studies of phase transitions in simplified spin mod-
els of inhomogeneous systems, such as hierarchical lat-
tices, can be very helpful in achieving these goals,
because thermodynamics of certain models of this kind
admits exact analytical treatment [16]. Indeed, analytical
evidence of change from first- to second-order phase
transition in inhomogeneous systems can currently be
found only in the results reported in [16] and in analyses
of the Potts model for random graphs with power-law
distributions of coordination number in [26, 27].

The Potts model was examined in [10–16, 26, 27] as
the simplest one that admits first-order transitions on
translationally invariant lattices of dimension d = 2 or 3
and represents various physical phenomena, including
structural transitions in adsorbate layers (q = 3, 4) and
transitions in cubic ferromagnets placed in magnetic
field or in liquid mixtures (q = 3) (see review in [28] and
references therein). The Potts model can also be used to
describe various ferroelastic transitions, such as the
Oh  D4h transitions in the spinels exemplified by
NiCr2O4 and Fe3O4 and in the superconductors Nb3Sn
and V3Si (q = 3) or the charge-ordering transitions in
Yb4As3 crystals [29] and Mg3Cd-type alloys (q = 4)
(see Table IV.4 in [24]).

The analysis presented in this paper is focused on
the q-state Potts model with arbitrary q on a two-param-
eter family of hierarchical lattices characterized by
fractal dimensions d > 1 and average coordination num-
bers 2 <  < 4. An analytical approach different from
that employed in [16] is used to show that second-order
phase transitions can occur for all of these q, d, and ;
to obtain expressions for critical exponents; to examine
their dependence on structural parameters; and to find
scaling relations between them. The results obtained
here make it possible to suggest a structural criterion
for inhomogeneity-induced change in order of transi-
tion. Finally, these results are discussed with regard to
their applicability to critical phenomena in phase tran-
sitions in dilute crystals and porous media.

2. GEOMETRIC CHARACTERIZATION
OF HIERARCHICAL LATTICES

Figure 1 schematizes the construction of a hierarchi-
cal lattice of the family specified above by replacing
each bond with n ≥ 2 chains containing m ≥ 2 bonds.
The total number of bonds increases by a factor of B =
mn at each step of the procedure, amounting to Bk after
the kth step. The number Nk of sites is given by the
recursion relation

Therefore, if N0 = 2, then

(1)

z

z

Nk BNk 1– n– B– 2.+=

Nk
B n–
B 1–
------------Bk n 1–

B 1–
------------ 1.+ +=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Since the average coordination number for an infi-

nite lattice is  ≡ , it follows from (1) that

(2)

i.e.,  varies from 2 (m  ∞) to 4 (m = 2, n  ∞).
After k steps, the largest distance between sites is mk.
Therefore, Nk ∝  (mk)d as k  ∞, where

is the fractal dimension of the lattice. It is obvious that
1 < d < ∞.

If  and d are treated as independent parameters,
then the conditions m ≥ 2 and n ≥ 2 imply that

(3)

To find the distribution of coordination number, note
that zk = 2nk and the number of such sites in the lth-level
lattice is

Since sl = 2 (zl = nl for the two basic sites), it follows

that  = Nl and  = 2Bl . The resulting
coordination-number distribution is

i.e., a power law with an exponent greater than unity.
Analogous distributions with denser sequences of zk

(zk = k) are used in models based on iterative scale-free

z 2Bk/Nk( )
k ∞→
lim

z 2
B 1–
B n–
------------;=

z

d
Bln
nln

---------=

z

2 z 4 1 2 d––( ).< <

sk B n–( )Bl k– 1– , 0 k l 1.–≤ ≤=

skk 0=
l∑ skzkk 0=

l∑

W z( )
sk

Nl

-----δ z zk–( )
k 0=

l

∑
l ∞→
lim=

=  
B 1–

B
------------ 2

z
--- 

 
d

d 1–
------------

δ z 2nk–( );
k 0=

∞

∑

Fig. 1. Iterative construction of hierarchical lattice with
m = 3 and n = 4.
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random graphs [26, 27]. For these graphs, Potts models
with q ≥ 1 admit second-order transitions, with effec-
tive-field singularities due to a divergent moment 〈z3〉 ,
if the power exponent in W(z) is less than 3 [26]. In the
present model, 〈zr〉  is divergent if r ≥ d/(d – 1); other-
wise,

However, it is shown below that all transitions on the
hierarchical lattices of the type considered here are of
the second order with anomalous scaling, and the form
of W(z) determines only the values of critical expo-
nents.

3. RECURSION RELATIONS, GIBBS FREE 
ENERGY, AND CORRELATIONS

IN THE POTTS MODEL

The partition function for the q-state Potts model on
the lattices under analysis can be calculated by assign-
ing the factor

(4)

to each bond and performing the sum of the resulting
expressions over σ = {1, 2, …, q}. (Here, σ and σ' are
the Potts spins at the bonded sites, K = J/T, and h is the
external field.) The “partial” partition function Zl(σ, σ')
calculated for the lth-level lattice as a sum over all spins
except those at the basic sites can be shown to satisfy
the recursion relation [1–3]

(5)

Thus, the next-level partial partition function is
obtained by raising Zl(σ, σ') to the power m and raising
each element of the resulting matrix to the power n. The
exponential factor in (5) is introduced to remove spuri-
ous powers of exp(h/2)(δσ, 1 + δσ', 1). Relations (4)
and (5) can be used to find the partition function in the
thermodynamic limit as l  ∞.

By virtue of (4) and (5), Zl(σ, σ') can be represented
as

(6)

zr〈 〉 2r B 1–

B nr–
--------------.=

Z0 σ σ',( ) Kδσ σ',
h
2
--- δσ 1, δσ' 1,+( )+exp=

Zl 1+ σ σ',( ) Ẑl( )σ σ',
m[ ]

n h
2
--- 1 n–( ) δσ 1, δσ' 1,+( ).exp=

Zl σ σ',( ) a1lδσ 1, δσ' 1, a2l

1 δσ 1,–( ) 1 δσ' 1,–( )
q 1–

-----------------------------------------------+=

+ bl δσ 1, δσ' 1, δσ 1, δσ' 1,+ +( )

+ cl δσ σ', δσ 1, δσ' 1,–
1 δσ 1,–( ) 1 δσ' 1,–( )

q 1–
-----------------------------------------------– .
JOURNAL OF EXPERIMENTAL 
The matrix Zl(σ, σ') given by (6) has two nondegenerate
eigenvalues,

(7)

and an eigenvalue cl of multiplicity q – 2. Expression (7)
can be used to represent the coefficients obtained when
Zl(σ, σ') is raised to the power m as follows:

(8)

Accordingly, the coefficients satisfy recursion relations
corresponding to (5):

(9)

The starting values of the coefficients are derived
from (4):

(10)

The partition functions for the Potts models with partic-
ular boundary conditions at the basic sites are found by
solving system (8), (9). In the case of free boundary
conditions, the following result is obtained by adding
the required fields h/2 at the basic sites:

(11)

If periodic boundary conditions are set at the basic
sites, then

(12)

If boundary conditions specify that σ = 1 at the basic
sites, then

(13)

In the absence of long-range ordering, all of these
partition functions must yield the same Gibbs free-

λ l±
1
2
--- a1 l, a2 l,+( ) 1

4
--- a1 l, a2 l,–( )2 q 1–( )bl

2+ ,±=

a1l' 1
2
--- λ+l

m λ–l
m+( )

ζ1

2
----- a1l a2l–( ),+=

a2l' 1
2
--- λ+l

m λ–l
m+( )

ζ1

2
----- a1l a2l–( ),–=

bl' ζ lbl, cl' cl
m, ζ l

λ+l
m λ–l

m–
λ+l λ–l–
-------------------.≡= =

a1 l 1+, e h n 1–( )– a1l'( )n
, bl 1+ e h n 1–( )/2– bl'( )n

,= =

a2 l 1+,
a2l' q 2–( )cl'+

q 1–
--------------------------------- 

 
n

q 2–( )
a2l' cl'–
q 1–

---------------- 
 

n

,+=

cl 1+

a2l' q 2–( )cl'+
q 1–

--------------------------------- 
 

n a2l' cl'–
q 1–

---------------- 
 

n

.–=

a1 0, eK h+ , a2 0, eK q 2,–+= =

b0 eh/2, c0 eK 1.–= =

Zl
f( ) eh σ σ'+( )/2Zl σ σ',( )

σ σ',
∑=

=  eha1l q 1–( ) a2l 2eh/2bl+( ).+

Zl
p( ) Zl σ σ,( )

σ
∑ a1l a2l q 2–( )cl.+ += =

Zl
1( ) Zl 1 1,( ) a1l.= =
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



INHOMOGENEITY-INDUCED SECOND-ORDER PHASE TRANSITIONS 1047
energy density in the thermodynamic limit. They are
very difficult to calculate for h ≠ 0. However, both
Gibbs free energy and its field derivatives can be
obtained by analytical methods for h = 0 near the criti-
cal point, and this will suffice to determine the order of
transition and the critical exponents.

In this section, an expression for the Gibbs free
energy for h = 0 is derived. In this case, it follows
from (8) and (9) that

i.e., only two coefficients are independent. By intro-
ducing

a well-known relation is obtained [30]:

(14)

Another recursion relation valid for h = 0 is

(15)

By combining (15) with the definition of Kl , the follow-
ing expression for the Gibbs free-energy density is
obtained:

(16)

where use is made of the fact that KlB–l  0 as
l  ∞.

The fixed point K = Kc of relation (14),

(17)

is the critical point. If K > Kc , then Kl  ∞. If K < Kc ,
then Kl  0. If |K – Kc| ! Kc and l is sufficiently small,
then Kl varies slowly,

(18)

(19)

until it becomes much greater or much smaller than Kc .

a1l bl cl, a2l+ a1l q 2–( )cl,+= =

Kl

a1l

bl

------,ln≡

e
Kl 1+ f e

Kl( ),=

f x( ) 1 q x 1–( )m

x 1– q+( )m x 1–( )m–
------------------------------------------------------+

n

.≡

bl 1+ gl 1+ bl
B, gl

e
Kl 1– 1–( )

B

e
Kl/n 1–( )

n
---------------------------.≡=

F T Nl
1– Zl

f( )ln
l ∞→
lim– –

z
2
---T B k– gk,ln

k 1=

∞

∑= =

e
Kc f e

Kc( ),=

e
Kl Kc–

1 κ l K Kc–( ),+≈

κ f ' e
Kc( )≡ B

e
Kc e

Kc/n
–( ) e

Kc/n
q 1–+( )

e
Kc 1–( ) e

Kc q 1–+( )
-------------------------------------------------------------- B,<=
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An applicability condition for (18) can be written as

(20)

where the constant is determined from (18) by using
requiring that  ~ Kc at K < Kc and  @ Kc at K > Kc .

For l > lc , (14) yields

(21)

By virtue of (18)–(21), the Gibbs free-energy density F

given by (16) has a singular part that scales as  ∝
|K – Kc|2 – α, with the specific-heat critical exponent

(22)

In particular, if K > Kc and |K – Kc| ~ Kc , then expres-
sion (16) with

yields

For h = 0, the correlation function

is readily obtained for the basic spins. For the lth-level
lattice,

If K < Kc and l > lc , then the first equation in (21) yields

l lc
const

K Kc– κln
----------------------------,ln≡<

Klc
Klc

Kl 1+ nq
Kl

q
----- 

 
m

,≈

Kl qn 1/ m 1–( )– Klc
n1/ m 1–( )

q
------------------------- 

 
m

l lc–

, K Kc,<≈

Kl 1+

Klexp
m

--------------- 
 

n

,≈exp

Kl mn/ n 1–( ) m n/ n 1–( )– Klc
exp( )n

l lc–

, K Kc.>≈exp

B
lc–

α 2
Bln
κln

---------.–=

gk

gc e
Kc 1–( )

B
/ e

Kc/n
1–( )

n
, l lc,<≡

g∞ qm 1– /n( )n
, l lc>≡




≈

F
z

2 B 1–( )
--------------------T gc B

lc–
g∞ gc–( )+[ ] .–≈

G δσ 1, δσ' 1,〈 〉 δ σ 1,〈 〉 δ σ' 1,〈 〉–=

Gl

Zl 1 1,( )
Zl

f
-------------------

Zl σ 1,( )
σ
∑

Zl
f

---------------------------

 
 
 
 
 
 

2

–
q 1–

q2
----------- e

Kl 1–

e
Kl q 1–+

------------------------.= =

Gl

Kl

q3
----- q 2– n 1/ m 1–( )– Klc

n1/ m 1–( )

q
------------------------- 

 
m

l lc–

ml

ξ
-----– 

  ,exp∼≈ ≈
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where the correlation length is

(23)

The critical exponent for correlation length satisfies the
scaling relation

If K > Kc , then the exponential scaling is not valid, and
the second relation in (21) implies that Gl is asymptoti-
cally constant:

However, the characteristic change in Gl scales as ,

because  = (ml/ )d – 1.
Thus, the specific heat and correlation length at the

critical point of the Potts model under analysis exhibit
power-law singular behavior satisfying a standard scal-
ing relation. Anomalous scalings of order parameter
and susceptibility are considered in the next section.

4. ORDER PARAMETER 
AND CRITICAL SUSCEPTIBILITY

In the present Potts model, the spontaneous order
parameter is expressed as

(24)

where 〈δσ, 1〉  is the average calculated under the bound-
ary conditions with σ = 1 at the basic sites, i.e.,

(25)

Note that nonzero µ at K > Kc and h = 0 can be obtained
only under these symmetry-breaking boundary condi-
tions. Indeed,  = 1/q for zero field under the free
or periodic boundary conditions by virtue of the sym-
metry with respect to permutation of the values of σ.
Hence,

Substituting (11) and (12) into these equations, one
obtains

(26)

ξ m
lc Kc K–( ) ν– , ν∼ ∼ mln

κln
---------.=

dν 2 α .–=

Gl
q 1–

q2
----------- A constn

l lc–
–( ).exp+≈

m
lc

n
l lc–

m
lc

µ

qNl
1– δσi 1,〈 〉 1–

i 1=

Nl 1–

∑
q 1–

----------------------------------------------,
l ∞→
lim=

δσi 1,〈 〉
i 1=

Nl 1–

∑ 1

Zl
1( )--------

∂Zl
1( )

∂h
------------

h 0=

Żl
1( )

Zl
1( )---------.≡=

δσi 1,〈 〉

Żl
f( ) NlZl

f( )

q
---------------, Żl

p( ) Nl 1–( )Zl
p( )

q
-----------------------------.= =

λ̇+l
Nl 1–( )λ+l

q
--------------------------,=

λ̇–l q 2–( )ċl+
Nl 1–( ) q 1–( )λ–l

q
-------------------------------------------,=
JOURNAL OF EXPERIMENTAL
where  are the field derivatives of eigenvalues (7) for
h = 0,

It follows from (13) and (24)–(26) that

(27)

Define another combination of derivatives independent
of ϕ+l and the left-hand sides of (26):

Using the derivatives of (9) with respect to h and
Eqs. (26), one obtains the following recursion relation
for the vector jl = (ϕ+l , ϕ–l):

(28)

where

(29)

(30)

(31)

(32)

The solution to Eq. (28) has the form

(33)

where ϕ0 = (1, 1).

λ̇±l

λ̇± l  =  
1
2
--- a ˙ 1 l a ˙ 2 l + ( ) 

1
2

 
q

 ------ 2 q – ( ) a ˙ 1 l a ˙ 2 l – ( ) 2 q 1– ( ) b ˙ l + [ ] . ±

µ
qNl

1– ϕ+l q 2–+
2 q 1–( )

-------------------------------------,
l ∞→
lim=

ϕ+l

ȧ1l ȧ2l– q 2–( )ċl–
a1l

---------------------------------------------.=

ϕ–l

ȧ1l ȧ2l qċl+–
a1l

--------------------------------.=

jl T̂ ljl 1– ul,+=

u+l
q 2–

q2
-----------n Nl 1– 1–( ) q 2–( ) m el–( )[=

– 2 q 1–( ) m 1–( )e
Kl/n–

] n– 1,+

u l– Nl 1–( ) 1
el'

el

---– 
  el'

el

---u+l,+=

T̂ l = 
n
q
---

el 2 q 2–( )mϑ l+[ ] el q 2–( ) 1 mϑ 1–( )
2el' 1 mϑ l–( ) el' q 2– 2mϑ l+( ) 

 
 

,

el Kl 1–
Kl

n
-----– 

  ,exp≡

el' Kl 1– Kl–( ),exp≡

ϑ l

Kl

n
----- 

 exp 1– / Kl 1–( )exp 1–[ ] .≡

ϕ l T̂ lT̂ l 1– …T̂1ϕ0=

+ T̂ lT̂ l 1– …T̂k 1+ uk ul,+
k 1=

l 1–
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To examine the asymptotic behavior of ϕl as l 

∞ near the critical point, represent  approximately as

(34)

Then,

(35)

where

It follows from (29)–(32) that

(36)

(37)

For the analysis that follows, it is important that the

eigenvalues of the matrix  are real and less than B for

m ≥ 2, n ≥ 2, q > 0. Indeed, the largest eigenvalue of 
can be expressed as

(38)

T̂ l

T̂ l

T̂c T̂ l, l lc,<
Kl Kc→
lim≡

T̂∞ T̂ l, l lc.>
l ∞→
lim≡







≈

ϕ l T̂∞
l lc–

T̂c
lc ϕ0 BT̂c

1–( )
k
uc

k 1=

lc

∑+≈

+ BkT̂∞
l k–

u∞

k lc 1+=

l

∑

=  T̂∞
l lc–

T̂c
lc ϕ0 ϕc–( ) B

lcT̂∞
l lc–

ϕc+

+ Bl Î B 1– T̂∞( )
l lc–

–[ ]ϕ ∞,

uc ulB
l– , u∞

Kl Kc→
lim

l ∞→
lim ulB

l– ,
l ∞→
lim= =

ϕc Î B 1– T̂c–( ) 1–
uc, ϕ∞ Î B l– T̂∞–( ) 1–

u•.≡≡

T̂c = 
n
q
---

ec 2 q 2–( )mϑ c+[ ] ec q 2–( ) 1 mϑ c–( )
2 1 mϑ c–( ) q 2– 2mϑ c+( ) 

 
 

,

ec Kc
n 1–

n
----------- ,exp=

ϑ c

Kc

n
------ 

 exp 1– / Kc( )exp 1–[ ] ,=

ϕc+
2
z
---q 2–

q
-----------,–=

ϕc–
2
z
--- 1 2e

Kc– q 1–
q

-----------– 
  .–=

T̂c

T̂c

2λmax

n
------------- m ε ρ– m ε ρ–+( )2 4mε– ,+ +=

ε ecϑ c 1,<≡

ρ 2
q
--- 1 ε–( ) me

Kc/n
e

Kc–
q 2–

2
----------- m 1–( )+ .≡
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Equation (17) for Kc can be used to show that 0 < ρ <
(m – 1)(1 – ε) for m ≥ 2, n ≥ 2, and q > 0, which implies

that the eigenvalues of  are real and λmax < B.

The expressions for  and u∞ are different for the
ordered and disordered phases. In particular, when K <
Kc , it follows from (21), (31), (32), and (34) that

Since the eigenvalues of  (0 and n) and  are less
than B, expression (35) reduces to the following as
l  ∞:

Therefore, the order parameter given by (27) vanishes
for the disordered phase.

When K > Kc , it holds that

Therefore, u∞(ϕ∞) vanishes in (35), and

Accordingly, the order parameter given by (27) is

(39)

To examine the behavior of critical susceptibility for
h = 0 near the critical point, consider the expression

(40)

which is obtained by using Eqs. (26) and introducing

T̂c

T̂∞

T̂∞
n
q
--- 2 q 2–

2 q 2– 
 
 

, =

u∞
q 2–

q
-----------m 1–

m
-------------2

z
--- 1

1 
 
 

.–=

T̂∞ T̂c

ϕ l Blϕ∞
q 2–

q
-----------Nlϕ0.–≈ ≈

T̂∞
B 0

0 0 
 
 

, u∞
0

1 
 
 

.= =

ϕ+l B
l lc–

e+T̂c
lc ϕ0 ϕc–( ) Blϕc++=

≈ Nl const
λmax

B
---------- 

 
lc q 2–

q
-----------– .

µ
λmax

B
---------- 

 
lc

K Kc–( )β,∼ ∼

β
B/λmax( )ln

κln
-------------------------- 0.>=

χ Nl
1– Ż̇ l

f( )

Zl
f( )---------

Żl
f( )

Zl
f( )---------

 
 
  2

–
l ∞→
lim≡

=  Nl
1– ψ+l

Nl

q2
-----– 

  2
q
---,+

l ∞→
lim

ψ+l ȧ̇1l q 1–( ) ȧ̇2l 2 ḃ̇l+( )+[ ] /qλ+l.=
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Define another linear combination of second-order
derivatives,

,

and differentiate Eqs. (9) with respect to h to obtain the
following equation for the vector yl = (ψ+l, ψ–l):

(41)

where

(42)

and

(43)

for |K – Kc| ~ Kc and large l. The matrix  has the
eigenvalues B and B(xl – yl) < B. In the expression for

vl , the term proportional to  is the right eigenvector

of each  that corresponds to B. Combined with an

expression for  analogous to (34), this fact is used to
derive the critical scaling from (40)–(43):

(44)

It is obvious that the standard scaling relation is valid:

Thus, the Potts model admits only second-order phase
transition with power-law anomalous scaling of ther-
modynamic parameters.

5. CRITICAL EXPONENTS

Let us consider the dependence of the critical expo-
nents on lattice parameters and q. The inequalities κ <
B and λmax < B (see (19) and (38)) combined with the

ψ–l q 1–( ) ȧ̇1l 2 ḃ̇l–( ) ȧ̇2l q q 2–( ) ċ̇l+ +[ ] /qλ–l=

yl P̂lyl 1– vl,+=

P̂l B
xl 1 xl–( )/ q 1–( )

q 1–( )yl 1 yl– 
 
 

,=

xl e
Kl/n q 1–+( )e

Kl n 1–( )/n
q 1–+

e
Kl q 1–+

---------------------------------------,=

yl e
Kl/n q 1–+( )e

Kl n 1–( )/n
1–

e
Kl 1–

-----------------------------,=

vl
B 1–

B
------------

Nl
2

q2
------ 1

q 1– 
 
 

cλmax
2l O Nl( )+ +=

P̂l

Nl
2

P̂l

P̂l

χ
λmax

2

B
---------- 

 
lc

K Kc– γ– ,∼ ∼

γ
2 λmaxln Bln

κln
----------------------------.=

α 2β γ+ + 2.=
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scaling relations lead to the following constraints for
the exponents in (22), (23), (39), and (44):

As q  ∞, the exponents approach their limit values
in these inequalities. Indeed, if q @ 1, then (17), (19),
and (38) yield Kc ≈ 2/ , κ ≈ B, and λmax ≈ Bε .
Accordingly,

As n  ∞ (d  ∞), it holds that Kc ≈ q ,
κ ≈ m, and λmax ≈ n and the expressions for the expo-
nents reduce to

In the limit of m  ∞ (d  1), one obtains Kc ≈
nlnm/(n – 1), κ ≈ n, ρ ≈ qm(n – 3)/(n – 1)/6, and λmax ≈
B(1 − ρ/m); hence,

Note that only the exponent β depends on q in these
limit cases, and only if it is small. In the general case,
the exponents (considered as functions of the measur-
able parameters of real fractals, d and ) weakly
depend on the average coordination number if 2.5 <

 < 4. Figure 2 shows the critical exponents as func-
tions of d on the physical interval 1.5 < d < 3 for several
values of q and  = 2.5. The case of q = 1 corresponds
to the anomalous scaling at the threshold for percola-
tion over randomly distributed bonds with probability
density p = 1 – e–K [31]. The equation for the percola-

tion threshold, pc = 1 – , follows from (17):

It should be noted that, whereas the critical expo-
nents in the Potts model on fractals illustrated by Fig. 2
vary significantly, the actually observed values of the
exponents exhibit certain trends. In particular, the spe-
cific-heat exponent α is usually negative, the suscepti-
bility exponent is anomalously large (γ ≥ 1.7), and the
correlation-length exponent monotonically decreases
with increasing d while β increases. Furthermore, all of
them are monotonic functions of q, except for β. These
characteristics of the critical exponents may also hold
in other spin models on fractal lattices with sufficiently
small d.

Note also that the numerical values of α and β cor-
responding to m = 2 and certain n and q have been cal-

ν 1/d , α 1, β 0, γ 1.>><>

z qln

ν 1/d , α 1, β 1/q2/zn B, γ 1.≈ln≈≈≈

n 1/ m 1–( )–

ν 1, α 2 d– , β 1, γ d 2.–≈≈≈≈

ν 1
d 1–
------------, α d 2–

d 1–
------------, β q

6m2/ n 1–( ) nln
-------------------------------,≈≈≈

γ d
d 1–
------------.≈

z

z

z

e
Kc–

pc 1 1 pc
m–( )n

.–=
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Fig. 2. Critical exponents versus fractal dimension for Potts models on hierarchical lattices with  = 2.5 and q = 1 (h), 2 (s), 4 (n),
and 8 (,).

z

culated in an earlier study [16]. Similar values of α and
β are given by analytical expressions (22) and (39),
respectively, within numerical accuracy.

6. CRITERION FOR CHANGE 
IN ORDER OF TRANSITION

If hierarchical lattices are considered as models of
inhomogeneous systems, such as percolation clusters in
dilute crystals or materials confined in porous matrices,
then certain conclusions can be made about the geomet-
ric characteristics of real inhomogeneous media that
are responsible for change in the order of phase transi-
tion. Indeed, this phenomenon is independent of the
fractal dimension for lattices of the type considered
here in the entire interval 1 < d < ∞. It can be speculated
that the occurrence of a second-order transition is due
to the small average coordination number (  < 4).
Analogous behavior is obtained for diluted models on

z
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square lattices:  < 4 at any dilution while the dimen-
sion d = 2 of the largest cluster holds until the percola-
tion threshold is reached [6]. Therefore, the change
from first- to second-order transition occurs even if the
impurity concentration is arbitrarily small [10, 11, 32].
On the other hand, first-order transition is suppressed in
the model of an inhomogeneous system with  ≥ 4
instead of changing to second-order transition [25].

Apparently, the condition  < 4 for the average
coordination number can be suggested as a criterion for
change from first- to second-order phase transition in a
variety of inhomogeneous systems with short-range
interactions. In particular, for diluted models on a sim-
ple cubic lattice (z = 6) with a vacancy concentration of
1 − x, the average coordination number in the largest
cluster can be roughly estimated as  = 6x. By condi-
tion  < 4, this implies that second-order phase transi-

z

z

z

z

z
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tion must occur if x < 2/3, in agreement with the numer-
ical estimate x < 0.7 ± 0.05 [12, 13].

The existence of a threshold value of the average
coordination number can be qualitatively explained as
follows. An inhomogeneous lattice with low connectiv-
ity (small ) does not contain macroscopic regions of
maximal coordination number. Therefore, as the criti-
cal point is approached, macroscopic regions of
ordered phase are unlikely to form for energy reasons,
while correlations of order-parameter fluctuations
grow, as in second-order transition, which leads to sin-
gularities in thermodynamic parameters. Conversely,
a progressively increasing number of macroscopic
regions of ordered phase can form in systems with large

, as in the phenomenological scenario discussed
in [17]. In this case, the correlation length of order-
parameter fluctuations remains finite in both ordered and
disordered phases, and no second-order singularity
arises, even though first-order jumps may completely
vanish in highly inhomogeneous systems [25].

7. CONCLUSIONS

The results obtained in this study can be used to
explain anomalous scaling in systems described by the
Potts model, such as percolation clusters in dilute crys-
tals or materials confined in porous matrices with frac-
tal properties similar to those of the hierarchical lattices
considered here. This is corroborated by the fact that
α < 0 for q ≤ 10, which corresponds to an inequality
established rigorously for random inhomogeneous sys-
tems [33]. The analytical expressions obtained above
can be compared with experiment for particular values
of m and n or d and .

The critical exponents weakly depend on  (2.5 <
 < 4) and strongly depend on the fractal dimension.

This explains their slow variation with impurity con-
centration for dilute crystals [10–13], since the fractal
dimension of the percolation clusters that undergo
inhomogeneity-induced phase transition remains
almost constant until the percolation threshold is
reached [6]. However, the exponents for materials con-
fined in porous matrices should be expected to vary
more significantly with the fractal dimensions of
porous media [6].

The predicted exponents cannot be compared with
experiment. No detailed data are currently available on
anomalous scaling in inhomogeneity-induced second-
order transitions, mainly because their fundamental
nature has been demonstrated only in recent theoretical
studies [10–15]. However, numerous examples of sec-
ond-order transitions have long since been discovered
experimentally in crystals for which first-order transi-
tions are predicted by the Landau theory of phase tran-
sitions [24]. According to [10–15], these findings
should be attributed to the presence of impurities or
defects. For example, the ferroelastic transitions in

z

z

z

z
z
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Nb3Sn and V3Si crystals [34] were distinguished from
second-order transitions only for sufficiently pure spec-
imens [35].

Finally, note that inhomogeneity-induced second-
order transition may not be specific to the Potts model
analyzed in [10–16] and the present study. It should be
associated with every first-order transition to a sub-
group of the high-symmetry phase. (For ideal cubic lat-
tices, transitions of this type are described by the Lan-
dau potential with a cubic invariant [24].) However, the
feasibility of this phenomenon in the absence of group–
subgroup relation between the symmetries of the
ordered and disordered phases (i.e., for reconstructive
first-order phase transitions [24]) cannot be corrobo-
rated by any experimental or theoretical evidence.
Apparently, second-order singular behavior induced by
structural inhomogeneity is impossible in this case.
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Abstract—We analyzed the field dependences of forced magnetostriction in the multidomain state of the easy-
plane antiferromagnet CoCl2 obtained in the following cycles: the introduction–removal of a magnetic field
lying in the easy plane, the introduction–removal of a magnetic field lying in the easy plane and directed nor-
mally to that introduced earlier, etc. The magnetostriction of the crystal in the multidomain state was shown to
contain two components. First, the component reversible in the cycle magnetic field introduction–removal,
which makes the major contribution in the crystal under consideration, and, second, a comparatively small irre-
versible component, that is, the contribution retained after magnetic field removal. In low fields, the reversible
magnetostriction component was proportional to the square of the applied magnetic field. Field-induced rear-
rangement of the multidomain antiferromagnetic state was found to be responsible for singularities of the field
dependence of crystal magnetization. In particular, in a near-zero field that lay in the easy plane, the transverse
susceptibility decreased twofold compared with its value in fields in which the crystal is already in the mon-
odomain state. At the same time, close to the “monodomainization” field, transverse magnetic susceptibility
was maximum. Defects were shown to favor the formation of the reversible multidomain state. Determining
factors in this process were elastic and magnetoelastic interactions. The multidomain state of antiferromagnets
was described using the domain distribution function over the orientations of domain antiferromagnetic vectors
with respect to the magnetic field direction and the magnetic field dependence of this function. The results of
our analysis were in close agreement with the experimental data on CoCl2. © 2004 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Magnetic ordering results in the formation of an
inhomogeneous multidomain antiferromagnetic state
in many antiferromagnets [1]. Antiferromagnetic
domains have different antiferromagnetic vector L
directions. The formation of the multidomain state of
antiferromagnets is not related to demagnetizing fields,
which are dipole in their nature [2]. Exchange energy
loss in domain walls should make this state energeti-
cally unfavorable. Therefore, the main problem in
describing the multidomain antiferromagnetic state is
primarily the explanation of the reasons for its forma-
tion [1, 3].

Domains in antiferromagnets were first studied for
orientation phase transitions in uniaxial antiferromag-
nets [4, 5]. In the field region of the transition from the
state with the easy-axis antiferromagnetic orientation
of spins in sublattices to the state with spins canted with
respect to the field and oriented almost normally to the
easy axis, both these states are observed simulta-
neously; that is, antiferromagnets are then in an inter-
mediate state [5]. A description of such a state formed
in magnetic fields that magnetize antiferromagnets was
performed taking into account magnetostatic energy [6].
1063-7761/04/9905- $26.00 © 21054
In the absence of a magnetic field, antiferromagnets
are not magnetized. Various mechanisms have been
suggested to explain the formation of the multidomain
state as a result of their ordering [1]. However, it
appears that there is no unique mechanism applicable to
all antiferromagnets. At first sight, the entropy mecha-
nism [7] is most universal. According to this mecha-
nism, exchange energy loss on domain walls is bal-
anced by a decrease in free energy, –T∆S, because of an
increase in the entropy of the multidomain state. Here,
T is the temperature and ∆S is the entropy increment.
This contribution depends on temperature and vanishes
as T  0. In certain instances, the entropy mechanism
explains the formation of the multidomain state only
close to the Néel temperature [1].

In many antiferromagnets, the equilibrium or almost
equilibrium multidomain state exists over the entire
temperature interval from TN to T  0 and is related
to defects of various kinds. Domains are formed in
crystal twinning, when the domain structure is a com-
bination of antiferromagnetic and structural domains.
The formation of the multidomain state is possible
when the sequence of sublattices is disarranged, for
instance, in the presence of edge dislocations, when the
004 MAIK “Nauka/Interperiodica”
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defect is a half-plane of atoms with magnetic moments
related to one of the magnetic sublattices. It was shown
in [8, 9] that screw dislocations in antiferromagnets
caused the formation of spin dislocations, which, if
anisotropy was taken into account, led to the formation
of the multidomain antiferromagnetic state. Defects
can also stabilize multidomain states of kinetic origin
that accompany antiferromagnetic ordering [10].

The simplest example of the influence of defects on
the formation of the multidomain state is provided by
so-called “metallurgical defects” near which the lattice
is distorted in such a way that anisotropy field direc-
tions locally change. The local orientations of the anti-
ferromagnetic vector are also determined by inhomoge-
neities. We will not consider such effects, and our
object of study will be fairly perfect crystals with inev-
itable defects. Attention will be focused on the multido-
main states formed as a result of magnetoelastic inter-
action between the magnetic subsystem and elastic
fields of defects. This interaction has been studied com-
paratively poorly.

The field dependences of magnetostriction in easy-
plane antiferromagnets, namely, iron family metal
dihalides, were studied experimentally in [11]. The
presence of domains in these substances was, in partic-
ular, substantiated by neutron diffraction [12]. Accord-
ing to the results obtained in [11], the multidomain state
of these antiferromagnets is magnetoelastic in nature.
At the same time, the crystal as a whole in the multido-
main antiferromagnetic state does not experience spon-
taneous anisotropic magnetostriction in the easy plane,
which accompanies antiferromagnetic ordering,
whereas such strain does exist in domains, judging
from the presence of a gap in the low-frequency branch
of antiferromagnetic resonance. Spontaneous magneto-
striction is restored in the crystal as a whole in a mag-
netic field, as the transition to the monodomain state
occurs. When the field is removed, the initial unde-
formed state of the crystal and, therefore, its multido-
main state are restored almost fully. Such a quasi-equi-
librium character of the multidomain state of antiferro-
magnets can, in our view, be stabilized by interactions
between spontaneously strained domains and elastic
stress fields of defects. For instance, it was shown
in [13] that three domains converging at one vertex (a
triad of domains) with their vectors L rotated through
120° with respect to each other created elastic stresses
that balanced lattice stresses caused by defects of a cer-
tain type situated at this vertex.

It follows that elastic interactions of domains and
defects can provide the energy gain of the multidomain
state. On the other hand, the magnetic field dependence
of the rearrangement of the multidomain state of anti-
ferromagnets under magnetic field actions should be
determined by the specific mechanism of the stabiliza-
tion of this state. Attention in this work will be focused
precisely on this problem.
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2. THE REARRANGEMENT 
OF THE MULTIDOMAIN STATE 

OF THE CoCl2 ANTIFERROMAGNET 
UNDER MAGNETIC FIELD ACTION 

(ACCORDING TO THE MAGNETOSTRICTION 
DATA)

Two-sublattice antiferromagnets CoCl2 are layered

dihalides with  symmetry. They consist of sand-
wiches formed by Co2+ ion layers, which are sur-
rounded by Cl– layers on both sides. The bonds are ion-
covalent within the sandwiches and van der Waals
between them [14]. The Co2+ ions within layers are
coupled by comparatively strong ferromagnetic
exchange. Exchange interactions of Co2+ ions between
the nearest sandwiches (that is, between the nearest
Co2+ layers) are antiferromagnetic and very weak
(much weaker than intralayer ferromagnetic exchange).
The Néel temperature of CoCl2 is TN = 24.7 K [15].

Uniaxial easy-plane anisotropy in CoCl2 is substan-
tial (the anisotropy field at T = 4.2 K is approximately
150 kOe), whereas symmetry-allowed intralayer
anisotropy could not be observed. The weakness of
intralayer anisotropy results in the degeneracy of vector
L = s1 – s2 directions in the plane, where s1 and s2 are
the magnetizations of the sublattices. When the crystal
is cooled below TN in the absence of an external mag-
netic field, it experiences the transition to the multido-
main antiferromagnetic state [12]. And when a mag-
netic field lying in the easy plane is applied, the crystal
can be converted to the homogeneous state, in which
the L vectors of all domains uniformly acquire an ori-
entation normal to the applied field while remaining in
the easy plane. The s1 and s2 vectors become canted
toward the field direction, while remaining in the easy
plane. Upon the attainment of the spin flip field (it is
Hff ≈ 32 kOe at T = 4.2 K for CoCl2 [15]), the magneti-
zations of the sublattices become parallel to each other
and the field.

Measurements of the forced magnetostriction of
CoCl2 single crystals in external magnetic fields were
performed using a capacitance dilatometer [16]. An
assembly of magnets that created fields perpendicular
to each other was used. Both fields were directed in the
plane of the crystal. The sample had the shape of a 5 ×
5 × 1 mm3 plate, and the symmetry axis of the crystal
was perpendicular to the plate plane. Crystal elongation
was measured in the direction lying in the plane along
one of its sides. The forced striction value (the relative
elongation) is ε(H) = ∆l(H)/l, where l is the length of
the crystal in the direction of measurements and ∆l(H)
is its increment in the field. Crystallographic directions
in the plane of the sample plate were not controlled.
The samples had fortuitous orientations with respect to
these directions.

The ε(H) dependences of the CoCl2 crystal in the
cycle of applying–removing crossed magnetic fields

D3d
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are shown in Fig. 1. Magnetostriction ε⊥ (H) measure-
ments under field applying and removing conditions
when the field H was perpendicular to the direction of
measurements correspond to curves 1 and 2, respec-
tively, and ε||(H) values obtained when field H was sub-
sequently applied and removed along the direction of
measurements, to curves 3 and 4, respectively. We see
that the field dependences of magnetostriction have the
form of a hysteresis loop with residual striction whose
sign is determined by the direction of the field being
removed. Note that this hysteresis is related to field
rotation through 90° rather than the change in its sign.
If a field of the same direction is repeatedly applied and
removed, with or without changes in its sign, no hyster-
esis is observed, and the residual striction is only fixed
after the first field applying–removing cycle.

The relative elongations caused by the rearrange-
ment of the multidomain state of the CoCl2 crystal (in
low fields up to 10 kOe) reach values fairly large for
antiferromagnets, on the order of 5 × 10–4, which actu-
ally corresponds to the restoration of spontaneous mag-
netostriction of the single-domain state under field
action. As follows from the dependences shown in
Fig. 1 and obtained with switching field directions, this
spontaneous magnetostriction in domains in the multi-
domain state is balanced to within a comparatively
small residual striction value, and even this residual
deformation is absent until a magnetic field is applied
for the first time. At the same time, as follows from the
antiferromagnetic resonance data [17], domains in this
state retain their spontaneous deformation and remain

4

2

0

–2

–4
1050510

1
2

3

4

Hmin

H||, kOe H⊥ , kOe

Hmax

ε × 104

Fig. 1. Dependences of the relative elongation of the CoCl2
crystal on magnetic field strength at T = 4.2 K. Curves 1 and
2 were obtained for the introduction–removal of magnetic
field H⊥  perpendicular to the direction of elongation mea-
surements, and curves 3 and 4, when field H|| was parallel to
the direction of measurements.
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virtually unstressed, which manifests itself by the pres-
ence of a gap in the spectrum of the low-frequency anti-
ferromagnetic resonance branch caused by spontane-
ous magnetostriction. A multidomain state model
should therefore combine the absence of crystal stric-
tion as a whole and a mutually-domain configuration
when the domains remain free and, therefore, exhibit
spontaneous magnetostriction and virtually do not cre-
ate stresses on one another.

Figure 1 shows that the CoCl2 crystal experiences
positive deformation in the region of the transition from
the multidomain to homogeneous state; that is, it elon-
gates along the field and shrinks in the direction normal
to the field. In fields of both orientations higher than
10 kOe, the crystal is in the uniform (single-domain)
state. Close to the transition to this state, ε||(H) is maxi-
mum and ε⊥ (H), minimum. The maximum field Hmax is
not equal to (higher than) the minimum field Hmin. In
addition, ε||(Hmax) > |ε⊥ (Hmin)|. This asymmetry of the
ε||(H) and ε⊥ (H) dependences will be shown to be
related to the special features of the field dependence of
the magnetostriction of the homogeneous state.

Our consideration will be restricted to anisotropic
magnetoelastic interactions in the easy plane. Let us
determine the behavior of magnetostriction in the
homogeneous state. Taking into account hexagonal
symmetry of the CoCl2 crystal, the sum of the mag-
netoelastic and elastic energies can be written in the
form [13]

(1)

where α, β = 1, 2 are sublattice numbers, α ≥ β; γ, λ,
and δ are the temperature-dependent parameters of
magnetoelastic interactions; nαx , nαy and nβx , nβy are the
direction cosines of the magnetization vectors of the
sublattices sα and sβ; Uij are the components of the
strain tensor; and the x and y axes are oriented in the
easy plane. The terms quadratic in Uij describe the elas-
tic contribution to the free energy of the crystal. The
first and second sums in (1) are related to anisotropic
magnetoelastic interactions determined by the direc-
tions of sublattice magnetic moments. The terms with
α = β and α ≠ β describe intra- and intersublattice con-
tributions, respectively. The third sum corresponds to
magnetoelastic interactions isotropic in the easy plane.

E γαβ T( ) nαxnβx nαynβy–( ) Uxx Uyy–( )
αβ
∑=

+ λαβ T( ) nαxnβy nβxnαy+( )Uxy

αβ
∑
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+
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2 Uyy
2+( ) C12UxxUyy C11 C12–( )Uxy

2 ,+ +
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In the homogeneous state, the spins of both sublat-
tices are equally canted with respect to the field in the
easy plane, and the cosine of the cant angle is propor-
tional to the ratio between the external field H and the
spin flip field Hff . The minimization of (1) with respect
to the Uij components taking into account this spin ori-
entation in the field yields equations that describe the
applied field dependences of strain values. For the
strain Uyy when H is oriented either along y or along x,
we have

(2)

where the upper sign corresponds to the field orienta-
tion H || y (the field is parallel to the measure strain Uyy)
and the lower sign, to the H || x orientation (the field is
perpendicular to the measurement direction). The mag-
netostriction of the CoCl2 crystal in the homogeneous
state was analyzed in [18], however, only along the
field; for this reason, the asymmetry of the field depen-
dences of magnetostriction mentioned above was not
discussed in [18].

Magnetostriction measurements are performed with
respect to the size of the crystal at H = 0; that is, the iso-
tropic contributions to strain present in (2) are included
in this size at the temperature of measurements. As a
result, the equation for the magnetostriction of the
CoCl2 crystal in the directions along and normal to the
field can be written in the form

(3)

Here, ε(S) is the spontaneous magnetostriction of the
single-domain state with L ⊥  H as H  0 (its values
are determined by extrapolating εd||, ⊥ (H2) from the
region of high fields, in which the antiferromagnetic
state is homogeneous, to H  0); H|| and H⊥  are the
magnetic fields directed parallel and normally to the
direction of size measurements; and η||, ⊥  is the param-
eter that depends on the direction of the field and deter-
mines the rate at which magnetostriction increases in
the field. According to (3), the magnetostriction of the
homogeneous state at H = 0 should satisfy the equali-
ties εd||(H|| = 0) = ε(S) and εd⊥ (H⊥  = 0) = –ε(S). In addition,

The η||, ⊥  values are also determined by the parameters
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of magnetoelastic interactions,

We see that the εd||(H2) and εd⊥ (H2) dependences have
different slopes at δ12 ≠ 0 and γ12 ≠ 0, because η|| ≠ η⊥ .

Our experimental unit allowed us to apply fields H||
up to Hff . In such high fields, the magnetostriction of
the single-domain state quadratically depends on H and
satisfies (3). These measurements were used in [18] to
determine the ε(S) = 6.3 × 10–4 and η|| = –0.2 values. The
fields introduced normally to the direction of measure-
ments were limited from above by the value H⊥  =
13 kOe. In this field interval, the region of the existence
of the homogeneous state was too narrow and insuffi-
cient for determining η⊥  from the magnetostriction
data. It will, however, be shown that the η⊥  value can be
found by analyzing the ε⊥ (H⊥ ) dependence in the field
region of multidomain state rearrangements. The case
when Hmax > Hmin and ε||(Hmax) > |ε⊥ (Hmin)| corresponds
to the above-mentioned asymmetry of the dependences
ε||(H) and ε⊥ (H).

3. DISCUSSION OF THE FIELD DEPENDENCES 
OF THE MAGNETOSTRICTION 

OF THE CoCl2 CRYSTAL
IN THE MULTIDOMAIN STATE

Let us consider the behavior of magnetostriction
when the multidomain state experiences rearrangement
in low fields. The dependences of the magnetostriction
of the multidomain state on the square of magnetic field
intensity shown in Fig. 2 correspond to field withdrawal
only, that is, to curve 2 and 4 portions in Fig. 1. We see
that, at H < 2.5 kOe, the dependence of the relative
crystal elongation on magnetic field intensity under
field removal conditions is described by the equation

(4)

where εr||, ⊥  is the residual magnetostriction in measure-
ments along (||) and normally to (⊥ ) the field being
removed and α|| and α⊥  are the empirical parameters.
The εr|| and εr⊥  values are almost equal in magnitude
(εr|| ≈ εr⊥ ). Let us rewrite (4) in the form

(5)

where Hd is a parameter with the magnetic field inten-
sity dimensions. Agreement with the results of mea-
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surements is attained for Hd = 5.7 ± 0.5 kOe. When field
H < 2.5 kOe is applied for the first time, the ε(H) depen-
dence is described by (4), but with εr = 0. If the forma-
tion of the multidomain state is related to defects, the
attainment of the equilibrium state after every change in
the magnetic field should occur after the elapse of
relaxation time, which, generally, depends on many
factors and can be fairly long. It is assumed in (4) that
all relaxation processes are completed and ε(H) is a
quasi-equilibrium quantity.

As has been mentioned, the number of domains with
the vector L orientation L ⊥  H increases and that with
L || H decreases as a magnetic field is introduced. In the
state prior to applying the field for the first time, the rel-
ative volumes of domains with arbitrary orientations
should be equal. The multidomain state can be
described in terms of the domain distribution function

s1 L
M

H
∆dϕ1 ϕ2

s2

s1

s2

M

H

L

Fig. 3. Orientation of the spin vectors of sublattices s1 and
s2 and magnetization M and domain antiferromagnetic L
vectors with respect to the magnetic field vector H. Neigh-
boring domains with different vector L orientations are
shown.

3

2

0

–2

–3

1612840

H2, kOe2

ε × 104

1

–1

Fig. 2. Dependences of the relative elongation of the CoCl2
crystal in the multidomain state on the square of magnetic
field intensity measured when magnetic field was removed
from the substance (correspond to curves 2 and 4 in Fig. 1).
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p(ϕ) determined from the ratio between the volume of
domains whose vector L makes angle ϕ with the field
direction and the volume of the whole crystal. Let ϕ be
the angle between the normal to L and the direction
of H. Its changes should be considered in the interval
from –π/2 to π/2, because L is a director rather than a
vector. For definiteness, the angle ϕ can be defined as
the angle between M = s1 + s2 and H (see Fig. 3).

It follows from the dependences shown in Fig. 2 that
only the anisotropic component of the magnetostriction
of domains manifests itself at H < 3 kOe at the begin-
ning of multidomain state rearrangement. The field-
dependent contributions to the magnetostriction of the
single-domain state, which are responsible for its asym-
metry, appear in fields H > 3 kOe. For this reason, the
relative crystal elongation along the direction of the
field being introduced can in low fields be written as

(6)

It is taken into account in (6) that the spontaneous
anisotropic magnetostriction deformation of a separate

single domain along and normally to L is , respec-
tively. The distribution density of domains is normal-
ized according to the condition

In low fields (H < Hd) [19], the equation for the dis-
tribution density of domains that satisfies (3) under
magnetic field removal conditions has the form

(7)

where εr is the modulus of the residual magnetostric-
tion in (4) obtained when the field is removed. Distribu-
tion (7) only depends on the angle ϕ. The ratio between
residual and anisotropic magnetostriction in (7) deter-
mines the fraction of the domains that retain the field-
induced orientation with L ⊥  H after the field is
removed. For the first magnetic field introduction, we
must set εr = 0 in (7) [19].

According to (7), the distribution of domains during
magnetic field removal contains two terms one of
which is related to the reversible component of the rear-
rangement of the multidomain state and the other, to the
irreversible component. The second term is character-
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ized by residual magnetostriction. For this reason, ε(H)
for a crystal can be written as the sum of two terms,

(8)

where εrev(H) is the reversible contribution to the result-
ant striction and εirrev(H) is the irreversible contribution.
Generally, both terms of (8) depend on the field applied
and the stage of the cycle of its introduction, although
εirrev(H), probably starting with some introduced field
value, should not depend on field intensity. We assume
that the irreversible striction component remains con-
stant as the magnetic field is removed over the entire
field interval of the existence of the multidomain state;
that is, εirrev(H) = εr = const. Accordingly, the field
dependences of the εrev(H) and εirrev(H) contributions to
magnetostriction can be determined for the introduc-
tion of a field directed differently.

The field dependences εrev(H) and εirrev(H) for the
CoCl2 crystal obtained from the experimental data on
the basis of the above considerations are shown in
Fig. 4. The component reversible in the cycle of the
introduction of crossed fields εrev(H) does not have a
hysteresis, its values are equal when the field is intro-
duced and removed. Asymmetry of the field depen-
dence becomes even more pronounced for εrev(H). The
irreversible component εirrev(H) has the form of a hys-
teresis loop. The closing loop portion for the εirrev(H)
dependence in Fig. 4 (in the first quadrant) was repro-
duced proceeding from the above mentioned antisym-
metric character of magnetostriction in low fields,
because Fig. 1 does not contain experimental data in
this region.

If the domains are “free” in the multidomain state
and their magnetostriction is equal to that in the homo-
geneous state, an increase in the volume of domains
with a favorable orientation in a field accompanied by a
decrease in the volume of the other domains can be
treated as domain wall displacements. For each mag-
netic field value, there is a certain balance between the
volumes of domains with various L directions; that is,
when equilibrium is attained, the action of magnetic
forces on mobile walls in each field is balanced by
forces that counteract changes in the initially equiprob-
able distribution of domains with different L orienta-
tions. If defects are responsible for the multidomain
state, certain elastic stresses arise every time as the
crystal attains equilibrium in a field. These stresses are
related to mismatching between the elastic fields of
defects and those of magnetostriction strain in domains.

4. THE MAGNETIC FIELD DEPENDENCE 
OF THE DISTRIBUTION DENSITY 

OF DOMAINS p(ϕ)

Let us consider two different domains that border
each other; we will denote the L orientation angles in
them by ϕ1 and ϕ2 (Fig. 3). Suppose that H ≠ 0 and the

ε H( ) εrev H( ) εirrev H( ),+=
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field vector lies in the easy plane. The spins get canted
in both domains under field action. The energy densi-
ties acquired by the domains are then

where χe is the magnetic susceptibility of the homoge-
neous state of the antiferromagnet for the easy-plane
field orientation. The work done when a domain wall is
displaced by ∆d by the field is calculated as the product
of the difference of the energy densities by the change
in the volume,

(9)

where S is the area of the moving wall. The same work
value can be determined using the stress σ of the action
of the domains on the wall,

(10)

A comparison of (8) and (9) yields the stress acting on
the wall in a magnetic field in the form

(11)

Upon the attainment of the equilibrium change in p(ϕ)
in the given field H, this stress should be balanced by
counteraction forces for the reversible component of
domain redistribution. Note that (11) does not include
the contribution of the change in the magnetoelastic
energy of domains in the multidomain state of CoCl2 to

e1
1
2
---χeH2 ϕ1, e2cos

2
–

1
2
---χeH2 ϕ2,cos

2
–= =

∆A12
1
2
---χeH2 ϕ1cos

2 ϕ2cos
2

–( )S∆ ,d=

∆A12 σS∆d .=

σ 1
2
---χeH2 ϕ1cos

2 ϕ2cos
2

–( ).=

4

2

0

–2

1050510
H||, kOe H⊥ , kOe

ε × 104

εrev

εirrev

Fig. 4. Field dependences of reversible εrev(H) and irrevers-
ible εirrev(H) components of CoCl2 crystal magnetostriction
in crossed magnetic fields in magnetic field introduction–
removal cycles.
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the work of domain wall displacement. The magne-
toelastic energy is, however, much smaller than the
energy of spins in a field, and this is why we ignore this
contribution.

Let us perform averaging over ϕ2 in (11) to deter-
mine the mean stress of magnetic field action (through
differently canting spins) on the walls of the domains
with the orientation ϕ1. This gives

(12)

where bars are used to denote the mean values over the
orientations of the domains that surround the distin-
guished domain with the orientation ϕ. The number of
neighboring domains is finite for each particular
domain. However, expression (12) was obtained by cal-
culations on average for the domains with the ϕ orien-
tation. This is why angle indices are omitted in (12).
Indeed, the mean value over all domain orientations
should not depend on the index of ϕ. The mean values
denoted by bars should then be calculated over all
domain orientations.

The introduction of counteraction forces that ensure
equilibrium of the multidomain structure at H ≠ 0 is
essentially thermodynamic. In reality, stress fields
counteracting wall displacements can be inhomoge-
neous. For instance, the surface of the wall bends if the
wall encounters a defect during movement. This causes
the appearance of surface forces that impede wall dis-
placements, and the larger the bend the greater the pin-
ning force. There also exists a more general approach to
describing domain wall displacements, when a wall is
considered in a potential field, and the equilibrium wall
position corresponds to minimum potential energy. The
displacement of a wall from the equilibrium position
causes the appearance of forces counteracting this dis-
placement and equal to the potential energy gradient.
The parameters of these quasi-elastic forces are deter-
mined by the strength of elastic interactions between
the wall and defects. When considering wall move-
ment, viscous friction forces are in addition introduced.
As we are only interested in equilibrium in a field rather
than the rate of its attainment, we disregard these
forces.

The irreversible component of domain rearrange-
ment is most probably related to the domains in which
the orientation of L does not remain unchanged as a
result of the action of equilibrating quasi-elastic forces.
To distinguish between the reversible and irreversible
rearrangement components, let us represent the domain
distribution function in the form

(13)

where δ is the volume fraction occupied by domains
that orient their magnetic moments M along the field
without causing the appearance of counteraction

σϕ
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---χeH2 ϕcos

2 ϕcos
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forces. We will not discuss the nature and form of
pirrev(ϕ). As concerns prev(ϕ), we can, taking into
account (12) and putting εr = 0 in (7), write

(14)

This proportionality has, however, been obtained and
holds in low fields only, when H ! Hd and prev(ϕ) 
1/π. The obvious condition that an increase in the vol-
ume of certain domains is only possible at the expense
of the volume of the other domains then does not hold.
This condition is satisfied in high fields. Indeed, the
p(ϕ) density of domains with ϕ = π/2 is infinitesimal in
high fields (that is, p  0), whereas elastic stress
applied to the walls of these domains is maximum in
the corresponding field. Clearly, the absolute change in
the distribution function of these domains dp in high
fields, in spite of stress values that act on them, should
tend to zero, whereas the relative change is large. Tak-
ing this into account, we in addition assume that the
increment of the distribution density of domains has the
form dp(ϕ) ~ p(ϕ)dσϕ rather than is proportional to a
mere change in the stress value. As a criterion of the
validity of this assumption, let us analyze the experi-
mental data on the magnetic field dependence of mag-
netization and the field dependence of the reversible
magnetostriction component in the cycle of the intro-
duction–withdrawal of mutually orthogonal fields in
the plane of the CoCl2 crystal. The differential equation
for prev(ϕ) has the form

(15)

which is in agreement with (7) and (14) at H ! Hd . This
equation limits an increase in the volume of the
domains with the unfavorable orientation of L in high
fields.

Equation (15) yields the angle ϕ distribution of
domains in the form

(16)

where we use the notation

The prev(ϕ) dependences for Hd = 5.7 kOe and various
field values H = 2, 5, 10, and 15 kOe are shown in
Fig. 5. We see that the distribution becomes unidirec-
tional with the predominant orientation of domains cor-
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responding to ϕ = 0 (L ⊥  H) as H increases. Neverthe-
less, even at H = 15 kOe ≈ 2.5Hd , the distribution
remains fairly broad.

The equation for the distribution density of domains
being obtained, let us consider the behavior of the mag-
netic properties of the multidomain state of antiferro-
magnets.

5. THE FIELD DEPENDENCES
OF MAGNETOSTRICTION, MAGNETIZATION, 

AND MAGNETIC SUSCEPTIBILITY
IN THE MULTIDOMAIN STATE

We will use the equation for the distribution density
of domains [Eq. (16)] to analyze the field dependence
of the reversible component of the relative crystal elon-
gation under field introduction conditions over the
entire interval of the fields of the transition from the
multidomain to homogeneous state. The equation for
the reversible magnetostriction of the multidomain
state can be written in the approximation of the ideal
multidomain state (εirrev = 0) in the form

(17)

An equation similar to (17) describes magnetostriction
perpendicular to the field being introduced.

It is easy to show that the expansion of (16) yields
(7) in low fields H/H0 ! 1, and striction is then
described by a quadratic field dependence similar
to (4). Agreement with experiment is attained for H0 =

Hd/2 .
The experimental ε||rev(H) and ε⊥ rev(H) values are

compared with ε||(H) calculated by (17) and ε⊥ (H) cal-
culated by the equation similar to (17) in Fig. 6. The
ε(S), Hd , Hff , and η|| parameters were taken to equal
those determined from the experimental data on the
reversible component of the magnetostriction of the
CoCl2 crystal. To satisfy the condition of asymmetric
field dependences of longitudinal and transverse stric-
tions described above, we used η⊥  = 0.9 in model cal-
culations. The field dependences of the magnetostric-
tion of the homogeneous state are given by solid lines
in Fig. 6. These dependences were calculated by (3)
using the same parameter values. The calculated longi-
tudinal magnetostriction closely agrees with the exper-
imental data over the entire interval of the fields of the
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1
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transition to the homogeneous state. For transverse
magnetostriction in the region of Hmin, the calculated
values are slightly exaggerated compared with the
experimental ε⊥ rev data. In reality, this discrepancy does
not exceed the error of striction measurements. The
conclusion should therefore be drawn that agreement
between theory and experiment is quite satisfactory
also for the transverse magnetostriction of the multido-
main state. Closer agreement can be obtained by mea-
suring transverse magnetostriction in higher fields.

The distribution of domains [Eq. (15)] can be used
to calculate the field dependence of the mean magneti-
zation of the crystal in a magnetic field oriented in the

3

2

1.50.50–1.5
ϕ, rad

p

–1.0 –0.5 1.0

1

0

Fig. 5. Field dependences of the distribution density of
domains at H = 2 kOe (dash-and-dot line), 5 kOe (solid
line), 10 kOe (dotted line), and 15 kOe (dashed line).
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168 1240
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H, kOe

Hmax

ε × 104
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ε⊥

Fig. 6. Field dependences of the magnetostriction of the
multidomain (dashed lines) and homogeneous (solid lines)
states.
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easy plane. The equation for magnetization in the
approximation of the ideal multidomain state (δ = 0)
can be written in the form

(18)

where MS is the magnetization of the homogeneous
state if the crystal is in field H = Hff .

The m(H)/MS dependence calculated by (18) for the
same parameter values as with mean striction is shown
by the dashed line in Fig. 7. The same figure contains
the m(H)/MS dependence for the homogeneous state of
the crystal with L ⊥  H in all fields (the solid thick line).
The presence of the multidomain state and its rear-
rangement in a field result in a nonlinear field depen-
dence of magnetization, which has a characteristic sag
with respect to the linear dependence for the homoge-
neous state [20]. This nonlinearity was experimentally
observed not only for the CoCl2 crystal [21] but also for
other crystals, in particular, NiCl2 [19, 22]. This behav-
ior of m(H) was not explained in the cited works.

We measured m(H) for CoCl2 samples different
from those used to study magnetostriction. The result-
ing dependences were closely similar to those shown in
Fig. 7, but complete coincidence required selecting Hd

somewhat different from that given above (Hd =
5.2 kOe). This seems quite natural considering that the

m H( )
MS

--------------
1

I H/H0( )
--------------------- H

H ff

--------=

× ϕ H2

2H0
2

---------- ϕcos
2

 
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π/2

∫

1.2

0.25

128
H, kOe

m/Ms
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Fig. 7. Field dependences of the normalized magnetization
m(H)/MS and magnetic susceptibility χ(H)/χe of the multi-
domain state. The magnetization of the homogeneous state
is shown by the solid line, the dashed line corresponds to the
multidomain state, and the dotted line, to magnetic suscep-
tibility.
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multidomain state is related to the degree of structure
imperfection, which is different in different crystals.

Note one more special feature of the field depen-
dence of the magnetization of the multidomain state of
easy-plane antiferromagnets. In low fields H ! Hd , the
mrev(H) dependence can be written as

(19)

It follows that the magnetic susceptibility of the revers-
ible magnetization component should be two times
lower than that for the homogeneous state at the onset of
the rearrangement of the multidomain antiferromagnetic
state. This is substantiated experimentally [19, 22]. At
δ ≠ 0, the magnetic susceptibility changes as H  0
by a factor slightly smaller than two; this change should
then depend on the stage of the cycle of the introduction
or removal of crossed magnetic fields.

The differentiation of dependence (19) with respect
to field yields the field dependence of magnetic suscep-
tibility χ(H). The field dependence of magnetic suscep-
tibility normalized by the magnetic susceptibility of the
homogeneous state [χ(H)/χe] is shown by the dotted
line in Fig. 7. In low fields (H < Hd), magnetic suscep-
tibility increases as the square of field. At H ~ Hd , it has
a maximum and tends to its value for the homogeneous
state as field increases further. This maximum should
be related to a comparatively sharp change in the distri-
bution density of domains in fields H ≈ Hd . A maximum
was also observed experimentally for NiCl2 [22], but its
explanation in [22] was not well grounded.

6. THE INFLUENCE OF SPONTANEOUS 
ANISOTROPIC MAGNETOSTRICTION

ON THE INTERACTION BETWEEN DEFECTS
It can be suggested that the rearrangement of the

multidomain state of antiferromagnets is determined by
the interaction of elastic fields of defects and elastic
fields of the configuration of antiferromagnetic
domains that experience magnetostriction. This inter-
action is responsible for equilibrium of the multido-
main state at both H = 0 and H ≠ 0 and for its reversibil-
ity. However, is this interaction capable of providing
energy gain when the multidomain state is formed?

Clearly, it is exceedingly difficult to exhaustively
describe the interaction of defects with each other and
with domain elastic fields in a real crystal [23]. This
problem will therefore be considered only qualitatively
in the simplest case of a planar isotropic medium with
defects. The interaction energy e between two neigh-
boring defects (let i and j be their numbers) is a function
of the rij vector connecting them; that is, e = e(rij). In
the approximation that we use, energy e only depends
on the distance between the defects. We assume that the
interaction energy of one of the defects under consider-

m H( ) 1
2
---χeH 1 H2

8H0
2

----------+
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 
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ation with the other defects is additive; that is, Ei =

(rij).

Let homogeneous spontaneous magnetostriction
related to homogeneous antiferromagnetic ordering
occur in this plane, and let the frame of reference be
fixed at the ith defect. The deformation along the x axis
is positive and equals εS , and that along the y axis has
the same value but opposite sign, –εS . Clearly, both
axes lie in the plane. After deformation, the equation for
the interaction energy between the ith and other defects
accurate to second-order terms has the form

(20)

Here, the derivatives are calculated at the position of the
jth defect, whose coordinates prior to deformation are
denoted by x0j and y0j . The distance between the ith and
jth defects is r0ij .

The total interaction energy between all defects can
be written as the sum of three terms,

(21)

Let us denote the first sum in (21) by E0. It equals the
interaction energy between the defects before the
appearance of anisotropic magnetostriction. In the
approximation that we use, according to which aniso-
tropic deformation is isomorphic with respect to the
local positions of defects, the second sum in (21)

should be zero. The coefficient of  in the third sum
will be denoted by k. The total interaction energy
between the defects after anisotropic magnetostriction
can now be written as the sum of two terms,

(22)
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Growth defects can be considered almost equilib-
rium, and interaction energy between them should
therefore be minimum. For this reason, we must
assume that k > 0. It follows that homogeneous sponta-
neous anisotropic magnetostriction favorable for a per-
fect crystal increases the interaction energy between
defects. The dependence of the interaction energy
between defects on magnetostriction displacements is
therefore responsible for the appearance of a quasi-
elastic increasing force.

If defects cannot move over the crystal, then, as fol-
lows from (22), they impede the formation of the sin-
gle-domain state of an antiferromagnet with anisotropic
magnetostriction. The crystal then becomes divided
into regions with homogeneous but differently directed
magnetostrictions, the size of these domains being
determined by the distances between defects. A variant
of the geometrically correct structure of domains with
defects that do not change their mutual arrangement as
the multidomain structure is formed was analyzed
in [13]. It was also shown in that work that elastic coor-
dination of the striction of domains and defects resulted
in an energy gain of the multidomain state additional
to (22) for the domains that formed triads.

Note that the magnetoelastic mechanism of multi-
domain structure formation in antiferromagnets with
a contribution to the free energy proportional to the
square of the mean magnetostriction similar to the sec-
ond term in (21) was also considered in [24, 25]. In
these works, this term was related to domain elasticity
self-action on one another similar to magnetodipole
interaction of ferromagnetic domains. In our view, this
approach requires additional justification.

7. CONCLUSIONS

We showed that the magnetostriction of the multido-
main state of the CoCl2 crystal was determined by the
distribution of domains over the orientations of antifer-
romagnetic vectors in them, and the rearrangement of
the multidomain state could be described by magnetic
field-induced changes in this distribution.

The equilibrium multidomain state of the magne-
toelastic nature can be formed in an antiferromagnet as
a result of coordination of stresses that arise in the
spontaneous striction of domains and fields of elastic
stresses of defects. This interaction results in the
appearance of quasi-elastic forces responsible for the
equilibrium existence of the multidomain state. When
the magnetic field changes, these forces counteract
domain wall displacements. We obtained an equation
for the field dependence of the equilibrium component
of the distribution density of domains and used it to cal-
culate the behavior of the reversible striction, magneti-
zation, and magnetic susceptibility components. A
comparison of the results of our calculations with the
experimental data shows close agreement between
SICS      Vol. 99      No. 5      2004
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them over the whole region of fields of the transition to
the single-domain state.

We showed that, in addition to the component of the
distribution function of domains with respect to the
directions of their antiferromagnetic vectors that was
reversible in magnetic field introduction–removal
cycles, there existed an irreversible component. The
determination of the ratio between these two compo-
nents in crystals with a controlled number of defects of
various types is, we believe, an interesting problem for
further studies.

REFERENCES
1. M. M. Farztdinov, Physics of Magnetic Domains in Anti-

ferromagnets and Ferrites (Nauka, Moscow, 1981) [in
Russian].

2. S. V. Vonsovskiœ, Magnetism (Nauka, Moscow, 1971;
Wiley, New York, 1974).

3. A. Hubert, Theorie der Domanenwände in Geordneten
Medien (Springer, Berlin, 1974; Mir, Moscow, 1977).

4. L. Néel, Ann. Phys. (Paris) 3, 137 (1948).
5. V. G. Bar’yakhtar, A. A. Galkin, and V. A. Popov, Zh.

Éksp. Teor. Fiz. 62, 2233 (1972) [Sov. Phys. JETP 35,
1169 (1972)].

6. V. G. Bar’yakhtar, A. N. Bogdanov, and D. A. Yab-
lonskiœ, Usp. Fiz. Nauk 156, 47 (1988) [Sov. Phys. Usp.
31, 810 (1988)].

7. Y. Y. Li, Phys. Rev. 101, 1450 (1956).
8. I. E. Dzyaloshinskiœ, Pis’ma Zh. Éksp. Teor. Fiz. 25, 110

(1977) [JETP Lett. 25, 98 (1977)].
9. A. S. Kovalev and A. M. Kosevich, Fiz. Nizk. Temp. 3,

259 (1977) [Sov. J. Low Temp. Phys. 3, 125 (1977)].
10. E. M. Lifshitz, Zh. Éksp. Teor. Fiz. 42, 1354 (1962) [Sov.

Phys. JETP 15, 939 (1962)].
JOURNAL OF EXPERIMENTAL 
11. V. M. Kalita, A. F. Lozenko, S. M. Ryabchenko, and
P. A. Trotsenko, Ukr. Fiz. Zh. 43, 1469 (1998).

12. M. K. Wilkinson, J. W. Cable, E. O. Wollan, and
W. C. Koehler, Phys. Rev. 113, 497 (1959).

13. V. M. Kalita and A. F. Lozenko, Fiz. Nizk. Temp. 27, 489
(2001) [Low Temp. Phys. 27, 358 (2001)].

14. M. E. Lines, Phys. Rev. 131, 546 (1963).

15. J. W. Leech and A. J. Manuel, Proc. Phys. Soc. London,
Sect. B 59, 210 (1956).

16. Z. A. Kazeœ, M. V. Levanidov, and V. I. Sokolov, Prib.
Tekh. Éksp. 2, 196 (1981).

17. A. F. Lozenko, P. E. Parkhomchuk, S. M. Ryabchenko,
and P. A. Trotsenko, Fiz. Nizk. Temp. 14, 941 (1988)
[Sov. J. Low Temp. Phys. 14, 517 (1988)].

18. V. M. Kalita, A. F. Lozenko, and S. M. Ryabchenko, Fiz.
Nizk. Temp. 26, 671 (2000) [Low Temp. Phys. 26, 489
(2000)].

19. V. M. Kalita, A. F. Lozenko, S. M. Ryabchenko, et al.,
Fiz. Tverd. Tela (St. Petersburg) 46, 317 (2004) [Phys.
Solid State 46, 326 (2004)].

20. L. Néel, Izv. Akad. Nauk SSSR, Ser. Fiz. 21, 890 (1957).

21. C. Starr, F. Bitter, and A. R. Kaufmann, Phys. Rev. 58,
977 (1940).

22. V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, and
T. M. Yatkevich, Fiz. Nizk. Temp. 30, 38 (2004) [Low
Temp. Phys. 30, 27 (2004)].

23. A. M. Kosevich, Theory of Crystal Lattice (Vishcha
Shkola, Kharkov, 1988) [in Russian].

24. E. V. Gomonaœ and V. M. Loktev, Fiz. Nizk. Temp. 25,
699 (1999) [Low Temp. Phys. 25, 520 (1999)].

25. H. Gomonay and V. Loktev, J. Phys. C 14, 3959 (2002).

Translated by V. Sipachev
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



  

Journal of Experimental and Theoretical Physics, Vol. 99, No. 5, 2004, pp. 1065–1073.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 126, No. 5, 2004, pp. 1221–1231.
Original Russian Text Copyright © 2004 by Matizen, Ishikaev, Oboznov.

                                     

SOLIDS
Electronic Properties
Magnetic Moment of Square SIS Josephson Arrays:
Self-Organized Criticality

É. V. Matizena,*, S. M. Ishikaeva, and V. A. Oboznovb

a Nikolaev Institute of Inorganic Chemistry, Siberian Division, Russian Academy of Sciences, 
Novosibirsk, 630090 Russia

b Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
*e-mail: matizen@che.nsk.su

Received December 9, 2003

Abstract—The temperature- and magnetic-field dependences of the magnetic moment of square Josephson
arrays with SIS-type junctions are studied experimentally. Two temperature regions are observed with different
types of magnetization curves. Magnetic flux avalanches are detected in the low-temperature region. Statistical
analysis of avalanche amplitudes A shows that their size distribution varies in accordance with the power law
P ∝  An with crossover, when exponent n varies from n = –0.7 for small avalanches to n = –6 for large ava-
lanches, while the frequency spectrum varies in accordance with the law 1/f α. Such behavior is interpreted as
a manifestation of self-organized criticality. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we report on the results of experimen-
tal investigation into magnetic properties of arrays with
a Josephson junction of the superconductor–insulator–
superconductor type (SIS arrays). Our aim was to
observe peculiarities of magnetic field penetration in
Josephson arrays (J arrays) by measuring their mag-
netic moment.

In the Introduction, the studies pertaining to our
work are briefly reviewed. The characteristics of arrays
and the description of the main features of a SQUID
magnetometer specially designed by us are given in
Section 2. The results of measurements of the magnetic
moment of arrays and observation of self-organized
criticality realized in SIS arrays are presented in Sec-
tion 3. Section 4 contains our conclusions.

The interest in properties of regular two-dimen-
sional J arrays has been growing in recent years. A large
number of transport studies were undertaken in this
field, but there are practically no experimental results
on direct measurement of the magnetic moment. How-
ever, magnetic studies are undoubtedly of considerable
importance. Such experiments may lead to the discov-
ery of new phenomena since the complexity of the elec-
trodynamics of J arrays does not allow all the factors to
be considered in theoretical models. We are aware of
only one publication [1] devoted to direct measure-
ments of magnetic properties (susceptibility) of J arrays,
which appeared after our first communication [2]. At the
same time, a large number of theoretical works (see, for
example, [3–7]) deal with the magnetic properties of J
arrays and require verification of the matching of the
theoretical and experimental results.
1063-7761/04/9905- $26.00 © 21065
Experimental studies of magnetic properties of J
arrays are also important from the practical point of
view. Such arrays are currently considered as a pro-
spective source of radio waves in the millimeter and
submillimeter spectral ranges, which have not been
explored extensively so far [8].

The problem concerning the existence of self-orga-
nized criticality in J arrays is of special interest.
According to Bak et al. [9, 10], who developed this the-
ory, self-organized criticality is a fairly wide-spread
phenomenon in nature. It is observed in many complex
systems formed by a large number of elements actively
interacting with one another. Such discrete systems
have a huge number of metastable states with an inter-
esting dynamics. Upon monotonic variation of external
conditions in a system that has attained instability,
jumplike transitions occur between metastable states;
such transitions have the form of avalanches with dif-
ferent sizes, which sustain the critical state of the sys-
tem on average. It is important to note that these ava-
lanches are independent of the intensity of external
action or fluctuations; even an insignificant effect may
lead to a huge avalanche (catastrophe). Another feature
is that, in spite of random motion, the system is self-
organized and acquires a certain constant (on average)
parameter, e.g., the sandpile slope (sandpile problem).
Thus the system itself maintains the critical state,
which is the essence of self-organized criticality. In this
case, there is no need to adjust any parameters in con-
trast, say, to the case of a liquid, when two of its param-
eters (temperature and density) have to be kept constant
for investigating the critical point.

The size distribution of avalanches (probability den-
sity) is a power function with a negative nonintegral
004 MAIK “Nauka/Interperiodica”



 

1066

        

MATIZEN 

 

et al

 

.

                                
Nb Pb
 Josephson
junctions SiO

Si

0.5

0.4

0.3

0.2

0.1

0 54321

I, mA

V, mV

Fig. 1. J array with octagonal electrodes (SIS1 and SIS2). The inset shows the current-voltage characteristic of a single junction in
the SIS2 array at 4.2 K.
exponent. This dependence is observed, for example,
by the magnitudes of earthquakes (the Gutenberg–
Richter law [11]). Fifteen years following pioneering
studies of self-organized criticality [9, 10], a large num-
ber of theoretical models were constructed imitating var-
ious natural phenomena such as earthquakes [12, 13],
crossing phase transitions [14], quark–hadron phase
transitions [15], rain phenomena [16], spreading of for-
est fires [17, 18], economic crises [19], and evolution of
populations in biology [20].

Experimental data on self-organized criticality have
been obtained for a rather limited class of artificially
prepared objects: in the study of the dynamics of sand-
pile growth [21], motion of a piece of sandpaper over a
nylon carpet [22], film boiling of nitrogen on the sur-
face of a high-temperature superconductor (HTSC) in
the vicinity of the superconducting transition [23], and
plastic flow of a loaded metal rod [24]. Ginzburg [25]
was the first to indicate the possibility of self-organized
criticality in a Josephson medium in 1994. Magnetic
flux avalanches were probably observed in HTSC
ceramics in experimental works [26, 27], but magnetic
moment jumps were not studied in detail and the mech-
anism of their formation was not discussed in fact.

In a number of recent publications, the power
dependence of the avalanche amplitude distribution in
the case of self-organized criticality has fallen under
doubt. A revision [28] and experiments [29] show that
the distribution function is rather of an exponential type
P(x) ∝  exp(–(x/x0)µ), where µ is a nonintegral exponent.
JOURNAL OF EXPERIMENTAL
In this case, we have a characteristic scale x0 and the
avalanche size distribution function is not uniform.
This contradicts the “classical” self-organized critical-
ity since this theory presumes gauge invariance while
observing avalanches of all sizes. However, all real sys-
tems have a finite size and, hence, the maximal size of
avalanches is also limited to a certain value. Thus,
gauge invariance has natural limits of applicability.

2. SAMPLES 
AND EXPERIMENTAL TECHNIQUE

We studied square J arrays consisting of 100 ×
100 cells with Nb–NbOx–Pb Josephson tunnel junc-
tions in the temperature range 2–10 K in magnetic
fields up to 200 Oe. Two configurations of arrays with
different shapes of Nb and Pb superconducting film
islands (electrodes) were designed for our experiments.
One electrode configuration was in the form of an octa-
gon and the other was cross-shaped. Fragments of the
arrays are shown in Figs. 1 and 2. The cross-shaped
configuration was distinguished by a high inductance
of a cell and had an area of a tunnel junction four times
as large as that in the octagonal configuration; this
allowed us to obtain high critical currents.

J arrays with octagonal electrodes containing 100 ×
100 cells were made according to the same pattern in
two copies with different critical currents (these arrays
will be henceforth referred to as SIS1 and SIS2 arrays),
while the arrays with cross-shaped electrodes (SISk
 AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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Fig. 2. J array with cross-shaped electrodes (SISk). The inset shows the current-voltage characteristic of a single junction at 4.2 K.
arrays containing 64 × 64 cells) had only one value of
the critical current. The arrays were prepared using the
thin-film technology described, for example, in [30].
The lower Nb layer was obtained using magnetron
sputtering followed by photolithography and chemical
etching. The insulating layer of silicon monoxide and
the upper PB layer were obtained by vacuum evapora-
tion; the structure of these layers was formed with the
help of explosion photolithography. After the formation
of windows (for the tunnel contacts) in the SiO layer,
followed by ion cleaning of the surface, a NbOx tunnel
interlayer was formed by controlled oxidation of the
niobium surface in an argon–oxygen mixture.

It should be noted that SIS arrays have a short ser-
vice life (their parameters remained unchanged only for
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
about two months). Comparative parameters of SIS1,
SIS2, and SISk arrays are given in the table.

We studied magnetic properties of SIS arrays with
the help of an original SQUID magnetometer devel-
oped at the Low-Temperature Physics Laboratory at the
Institute of Inorganic Chemistry, Siberian Division,
Russian Academy of Sciences. The magnetometer had
a number of considerable advantages in the design of
detecting coils of the flux transformer, in the form of
compensation of their astaticism, and in the construc-
tion of the solenoid. The detecting coils of the flux
transformer were prepared in the form of a symmetric
second-order gradiometer [31, 32]. However, in con-
trast to the classical scheme, the central coil was
divided into two equal parts separated by a certain dis-
Table

Junction type SIS1 SIS2 SIS3

Junction structure Nb–NbOx–Pb Nb–NbOx–Pb Nb–NbOx–Pb

Array size 100 × 100 100 × 100 from 64 × 64

Cell size, µm2 20 × 20 20 × 20 20 × 20

Junction area, µm2 ≈7 ≈7 ≈25

Critical current at 4.2 K, µA ≈80 ≈150 ≈1800

Normal resistance, Ω 10 20 ≈0.7

Inductance of a cell, H ≈2.5 × 10–12 ≈2.5 × 10–12 ≈10–11

Capacitance of junction, nF 0.01 0.01 0.03
SICS      Vol. 99      No. 5      2004
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Fig. 3. Magnetization curves for the SIS2 array containing 100 × 100 cells at various temperatures.
tance so that these coils had the form of Helmholtz
coils. This ensured a number of advantages (in particu-
lar, reduced microphone noise and a substantially
weaker dependence of the signal on the position of the
sample), which enabled us to study magnetic properties
in the direct magnetization mode and to obtain repro-
ducible results.

The solenoid consisted of two superconducting
parts: an external short-circuited part and an internal
open part. In the short-circuited solenoid, a certain
value of the field was frozen, while the open solenoid
served for continuous field variation in certain limits.
Astaticism of thoroughly prepared detecting coils was
approximately 3 × 10–4; a small coil consisting of sev-
eral turns of copper wire wound on the same frame as
in the flux transformer and coupled inductively with it
was introduced for additional compensation. This coil
was connected in series with the open solenoid. The
number of turns in this coil (six in our case) was
selected so as to compensate astaticism of the system of
detecting coils to the maximal possible extent. During
operation, a current was passed through the additional
coil, which was not equal to the current in the solenoid,
but was proportional to it with a certain coefficient that
could be varied in certain limits. Thus, the total slope of
magnetization curves could be varied by adding a value
proportional to the field to the sample signal, which
almost completely compensated the contribution from
screening currents of intrinsic superconducting Nb and
Pb film electrodes. As a result, the magnetic moment
being measured for the most part contained only the
contribution from the currents flowing in the Josephson
array. It should be noted that, without such compensa-
tion, the weakly manifested structure of the signal
could not be singled out in the course of subsequent
processing against the background of a large total slope
of the magnetization curve.

To reduce drifts and noise, liquid helium containing
the flux transformer, the solenoid, and the supercon-
ducting magnetic screen was transformed to the super-
fluid state by evacuating vapor. For the same purpose,
measurements were mostly performed at night. The tem-
perature was measured using a Cu + 0.1%Fe–Cu +
0.1%Ge thermocouple with a sensitivity of about
10 µV/K at helium temperatures; the reference points in
JOURNAL OF EXPERIMENTAL 
this case were the superconducting transitions in nio-
bium and lead as well as the point of transition of helium
to the superfluid state, which was easily fixed from a
sharp decrease in low-frequency noise in the recording
system.

3. MAGNETIC PROPERTIES OF SIS ARRAYS

Figure 3 shows the magnetic moment hysteresis
loops for SIS2 array at different temperatures. Analo-
gous curves were also obtained for the other array,
SIS1 [2]. It can be seen from Fig. 3 that two tempera-
ture regions with different types of magnetization
curves were obtained.

Our experiments show that in the first (high-temper-
ature) region from 5.3 K up to the superconducting
transition temperature of lead (Tc = 7.2 K), the hystere-
sis loops for SIS2 array are continuous reproducible
curves. All the curves in this region exhibit a clearly
manifested structure in the form of magnetic moment
peaks of the same height with a temperature-indepen-
dent field period of about 59 mOe. If we take into
account the suppression of the mean field in the region
of cells of the array as a result of the screening action of
superconducting film electrodes, the period of the
peaks matches the value ∆H = Φ0/a2 ≈ 52 mOe, where
Φ0 is the magnetic flux quantum and a is the period of
the array.

The hysteresis loops reflect a specific critical state
formed in a regular Josephson structure. Periodic peaks
of the magnetic moment correspond to an increase in
the critical current of fluxon pinning (depinning cur-
rent) for integral frustrations, when the same integral
number of flux quanta (fluxons) corresponds to each
cell and, hence, the fluxon distribution in the array is the
most regular and stablest. The stability of the vortex
system is manifested in the increase in the depinning
current and, accordingly, in the total magnetic moment.

In addition to large-amplitude peaks, small humps
located exactly between the peaks (a sort of second har-
monic) can be clearly seen. These humps correspond to
a change in the flux in the array on the average by a
fluxon for each two cells. This is apparently a conse-
quence of a rather stable distribution of flux quanta in J
arrays, which are added in staggered order [33, 34].
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In all probability, higher order harmonics associated
with periodic formation of fluxon superlattices with a
still larger period also exist in J arrays; however, such
harmonics cannot be distinguished in the experiment
against the noise background.

In the second (low-temperature) region from 5.3 to
2 K, the hysteresis loops for SIS1 array acquire mag-
netic moment jumps resembling noise; in contrast to
temperature fluctuations, the amplitude of these jumps
increases with decreasing temperature. First, such
jumps appear at the tops of peaks and then propagate to
the sides, forming compact periodic groups with the
same period as on high-temperature curves. With a fur-
ther decrease in temperature, the groups of jumps
merge together.

For illustration, Fig. 4 shows the magnetization
curves for SIS1 array upon a change in the external field
within ±15 mOe at 2.15 K. The upper curve contains
four complete consecutive cycles while the lower curve
contains two cycles. All curves have segments on which
the monotonic variation of the magnetic moment is
interrupted by sharp spontaneous drops followed again
by the monotonic dependence until the next jump. It
can be clearly seen that these jumps occur at random
values of the field and their amplitudes exhibit a sub-
stantial spread. Note the presence of monotonic and
quite reproducible segments of 5–6 mOe on which a
transition to another branch of the loop after the field
reversal takes place.

–10 – 5 0 5 10
H, mOe

10–9 A m2

500 Φ0

Fig. 4. Hysteresis loops for the SIS1 array containing 100 ×
100 cells at T = 2.15 K in fields up to ±15 mOe.
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Characteristic sharp shifts, which occur over a very
short time in the same direction only at the tops of the
peaks (owing to which these shifts can be reliably sin-
gled out from noise) can be reliably traced from direct
observation of the recorder pen, which recorded the sig-
nals simultaneously. In this way, we could fix the emer-
gence of jumps for the other array (SIS2), now below
5.7 K.

The study of arrays of the other configuration (SISk)
revealed that the general form of hysteresis loops does
not differ in principle from those for SIS1 and SIS2
arrays. Figure 5 shows the hysteresis loops for a SISk
array containing 64 × 64 cells at different temperatures.

The formation of flux avalanches in this array begins
at relatively high temperatures (lower than the super-
conducting transition temperature for lead by less than
one degree) in view of a substantially higher critical
current of junctions and a larger inductance of the cell
of this array. At the same time, the temperature below
which the type of the magnetization curve changes
(crossover) and magnetic moment jumps appear in
arrays SIS1 and SIS2 is approximately equal to 6 K.

For interpreting crossover, it is interesting to con-
sider the temperature dependence of depinning current
Idep in SIS1 array (Fig. 6). The fluxon depinning current
was estimated from the half-width of magnetization
hysteresis loops on the basis of the simplified assump-
tion that currents flow in the array along concentric
square paths; the width of the loop is obviously propor-
tional to the depinning current. In the case of square
current lines, simple calculation leads to the following
expression for the magnetic moment of the array:

where Idep is the depinning current, which is assumed to
be constant over the entire array and N is the number of
cells in the array. We can expect that real current lines
differ from squares; these lines are as if rounded at the
corners and the actual areas of current contours are
smaller than the predicted values. Consequently, the
estimate based on the simplest model is slightly low-
ered. To obtain the estimate from above, we can con-
sider current contours in the form of circles (in this

M Idep= N3a2/6,
5.6 K 5.2 K 2.0 K6.7 K

1 Oe

10
–

9  A
/m

2

Fig. 5. Hysteresis loops for the SISk array containing 64 × 64 cells at various temperatures.
SICS      Vol. 99      No. 5      2004



1070 MATIZEN et al.
case, we assume that the current does not flow in the
corners of the array). This estimate gives a value that is
higher approximately by 20%. In Fig. 6, the mean value
of the depinning current Idep of the array under investi-
gation at various temperatures is compared with the
directly measured critical current Ic of a single Joseph-
son junction. It can be seen that the two temperature
dependences are in good agreement for an appropriate
ratio of the scales. In accordance with the theory [34],
depinning currents and the critical current must differ
approximately by an order of magnitude: Idep/Ic = 1/10.
Our ratio is approximately equal to 1/15, which can be
explained both by the error in determining the depin-
ning current from the magnetic moment on the basis of
the simple model and by a slight decrease in the critical
current as a result of degradation of junctions during
several months.

To obtain a qualitative description of electrody-
namic properties of J arrays considered here, we will
follow the theoretical publications [3, 4, 25, 35] in
which the existence of two different regimes of mag-
netic flux flow in a J array or two regions differing in
their magnetic properties. The boundary between the
regions is determined, analogously to [3, 4], by param-
eter k = λ/a, where λ is the magnetic field penetration
depth in the array. It should be noted that the reciprocal
of parameter k corresponds to the Ginzburg parameter
V = 1/k [25, 35]. Parameter k is a function of tempera-
ture since penetration depth λ varies with temperature
as [36, 37]

(1)λ T( )
Φ0

2πµ0 jc T( )
--------------------------,=

5

4

3

2

1

0 1 2 3 4 5 6 7

20

0

40

60

80

Ic, µΑIdep, µΑ

T, K

Fig. 6. Temperature dependence of the depinning current in
the SIS1 array. Triangles correspond to estimates of current
from the magnetic moment of the array, while squares
denote the data obtained from direct measurements of the
critical current in a single junction.
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where jc(T) is the critical current density in Josephson
junctions, which increases with decreasing tempera-
ture. Thus, by decreasing temperature, it is possible to
pass from one regime to the other in experiments.

Substituting the experimentally measured tempera-
ture dependence Ic(T) into formula (1) (Fig. 6) shows
that λ = a for T ≈ 6 K. This value corresponds to the
experimentally measured crossover temperature
(5.8 K) below which the shape of the magnetization
curves changes and magnetic moment jumps appear.

At high temperatures for which LIc ! Φ0, where L is
the inductance of a cell, an individual cell cannot con-
fine a flux quantum and each fluxon is distributed over
several cells. This corresponds to the condition k @ 1
(weak pinning); in this case, fluxons penetrate the J
array in the form of hypervortices extending over a
large number of cells. The interaction between fluxons
at weak pinning leads to their deep penetration into the
array with an almost uniform distribution. The field pro-
file on the array in this case is formed by peaks at the cen-
ters of hypervortices, which are distributed almost regu-
larly over the area of the array (see, for example, 4, 38].
For k @ 1, when a fluxon is spread over a large number
of cells, the dynamics of Josephson vortices can be
described in the continuous limit, when states with
minimal energy exist in the system. Such a theoretical
model is confirmed experimentally since the curves
obtained in Fig. 6 match the curves calculated for large
values of the Josephson penetration depth even in detail
(see Fig. 14 in [3]).

In the opposite case, when the critical current is
quite large, the condition LIc @ Φ0 is satisfied, each cell
can confine a magnetic flux much stronger than one
quantum, and each cell may contain only an integral
number of fluxons. The fluxon dynamics in this regime
can be described as the motion of discrete quasiparti-
cles, which are localized within a cell and possessing a
certain effective mass. This corresponds to the case
k ! 1 (strong pinning state). As the external magnetic
field increases in contours of cells (with initial zero
flux), the screening current also increases together with
the magnetic moment of a cell. When the current attains
its critical value, a fluxon enters the cell; its magnetic
moment decreases jumpwise, the magnetic field pene-
trates into the J array discretely and almost synchro-
nously over nearly quadratic contours. In this case, the
system of fluxons is in metastable states far from equi-
librium (absolute minimum) and the profile of the
increasing field forms a rectangular well with steps
from contour to contour; i.e., the profile resembles the
Bean distribution of the field in a type II bulk supercon-
ductor.

It was proposed in [25] that a J array for k ! 1 may
acquire self-organized criticality, because for large
value of critical currents through the Josephson junc-
tions, the ensemble of fluxons in it can be treated as a
discrete interactive system. For large values of the J
array, the entire array as a whole possesses a large num-
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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ber of metastable states, which is a necessary condition
for observation of self-organized criticality. In a slowly
varying magnetic field, when screening currents
approach the critical value, the system of fluxons
attains an unstable state from which is passes to one of
numerous metastable states under the action of sponta-
neous perturbations. Such a form of existence near the
critical state is typical of self-organized criticality. The
final state occupied by the system as a result of each
such jump is naturally determined by the configuration
of metastable states of the system as well as the dynam-
ics of the collective motion of fluxons in an array and a
large number of random perturbing factors (e.g., ther-
mal fluctuations).

Figure 7 shows a fragment of the magnetization
curve for a SISk array, which contains segments with a
monotonic variation of the magnetic moment inter-
rupted by sharp drops. Dependences of this type are
characteristic of self-organized criticality studies on
entirely different objects [21, 22, 24, 29]. For SIS2 and
SISk arrays, we managed to record sufficiently large
bodies of data for obtaining reliable statistical charac-
teristics of avalanches.

We believe that the magnetic moment jumps
observed in our experiments (see Figs. 4 and 7) confirm
the existence of self-organized criticality in a J array.
The histogram of the number of jumps as a function of
their amplitudes demonstrates a power dependence P ∝
An, which is a “calling card” of self-organized critical-
ity. The exponent for the SIS1 array was found to be
n = –1.9 [2]; however, it should be noted that the data
were comparatively scarce; for this reason, the spread
of points was quite large in the region of rare events
(large amplitudes). It is interesting to note that com-
puter simulation was used in [35] to obtain close values
of n = −1.75 and N = –1.80 for structures consisting of
256 and 128 cells for a 1D Josephson array (one-dimen-
sional multiple-contact SQUID). However, self-orga-
nized criticality appeared in [35] only in calculations
with discrete introduction of external currents to ran-
dom junctions of the system and did not appear when
the external field varied continuously as in this study.

The curve describing the amplitude distribution of
jumps for the SIS2 array has a different form: two
clearly manifested regions of power dependence of the
probability density of the emergence of avalanches on
their amplitude are observed on the curve with expo-
nent n = –0.7 for small avalanches and about n = –6 for
large avalanches with a sharp crossover (Fig. 8). Some
authors (starting from [11]) noted a similar crossover in
the avalanche distribution for other objects or even used
an exponential dependence for describing such a distri-
bution [29].

We did not observe crossover [2] on the SIS1 array,
probably due to the fact that the number of avalanches
was too small for a detailed statistics. Crossover is
observed in the range of large avalanches, whose prob-
ability is low; for this reason, for a relatively small
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
number of avalanches (slightly larger than 1000), the
spread of results in this region was quite large and
crossover could not be fixed reliably [2].

Figure 9 shows the Fourier spectrum of avalanches
into which the magnetization curves were decomposed
in sweeping the magnetic field with a constant rate with
jumps (avalanches) appearing on the curves. It can be
seen from Fig. 9 that the spectrum for high frequencies
behaves as 1/f α in the region of at least 1.5 decades.

Our studies remain unique where the behavior of the
magnetic moment is studied during continuous magneti-
zation of regular J arrays and self-organized criticality

0.12

0.10

0.08
28 29 30 31

Time, min

Magnetometer readings, V

Fig. 7. A fragment of the magnetization curve of the SISk
array at 4.1 K; magnetic moment jumps corresponding to
magnetic flux avalanches are clearly seen.

n = –0.7

n = –6

100

10

1
100 1000

A, flux quanta

Number of avalanches

Fig. 8. Distribution of magnetic moment jumps (magnetic
flux avalanches) with respect to amplitude in SIS2 grid at
T = 4.1 K.
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is observed. It should be noted that this phenomenon
was also observed recently in polycrystalline niobium
films [39] as well as in a granulated Nb film [29] almost
simultaneously with our first publication [2]. According
to Altshuler et al. [39], they observed a power depen-
dence of the distribution upon a change in amplitudes
within two orders of magnitude, although the curve
plotted on the log–log scale is convex rather than a
straight line. Behnia et al. [29] assert that they observed
an exponential dependence of the amplitude distribu-
tion function and therefore doubt that self-organized
criticality exists in this structure. Indeed, many compu-
tational models (see, for example, [40]) lead to an anal-
ogous distribution, which appears on the log–log scale
as a convex curve with “heaping” at large amplitudes.

After our first experiments, Ginzburg and Sav-
itskaya [40] confirmed in their calculations that ava-
lanches in arrays can also be observed during magneti-
zation of a J array and not only when current pulses are
supplied to individual random junctions, as was pro-
posed in [35]. In their opinion, the reason for self-orga-
nized criticality during magnetization is not the spread
in critical currents Ic in different junctions of the array
under investigation, but a weak spatial aperiodicity of
the array of about 5%; in our case, this corresponds to
a random deviation of 1 µm and lies within the error of
our technology.

4. CONCLUSIONS

Our experiments aimed at studying magnetic prop-
erties of regular square Josephson SIS arrays revealed a
number of new effects. Above all, these effects include
magnetic flux avalanches obeying the regularities of
self-organized criticality.

10–9

10–10

10–11

10–12

10–13

1 10 100
Frequency, Hz

Power, rel. units

Fig. 9. Fourier spectrum for fragments on the magnetization
curve, on which avalanches appear.
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As regards the recent dispute over the avalanche dis-
tribution law, it should be noted that the size distribu-
tion, which is governed by a power law according to the
results of our studies, apparently exhibits crossover,
which is probably due to a finite size of the array; for
this reason, the probability of observing large ava-
lanches is low. In [29] (Fig. 3), crossover can also be
clearly seen in the avalanche distribution, but the
authors of [29] describe it by an “expanded” expo-
nential.

Our spectrum of magnetic flux avalanches also has
a power form within almost two frequency decades
with exponent n = –1.3.

Josephson arrays have a number of advantages as a
model object for experimental study of self-organized
criticality. In this model, internal and external condi-
tions can easily be varied to study their effect on the
characteristics of self-organized criticality. Our experi-
mental model makes it possible to calculate the mag-
netic dynamics of a J array on the basis of well-devel-
oped concepts and to verify the correctness of the
results.

It should be noted in conclusion that we did not
observe self-organized criticality in SNS arrays and in
HTSC ceramics with intergranular contacts close in
their properties to SNS. The absence of avalanches can
be explained by dissipation of energy required for evo-
lution of avalanches in the conducting interlayer of
junctions, which does not take place in SIS junctions.
The analysis of reasons for the emergence of self-orga-
nized criticality requires additional theoretical and
experimental studies of regular J arrays of various types
(SIS and SNS) and configurations with various areas of
junctions and critical current densities.
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Abstract—Resonance tunneling in superconducting junctions with electrode order parameters of s and d sym-
metry was studied. The Green function formalism was used to derive an equation for the resonance current in
junctions of arbitrary dimensionality and order parameter symmetry. A universal equation for resonance super-
current was obtained for junctions of arbitrary dimensionality with isotropic electrode order parameters. A
numerical analysis of resonance current transport in junctions of various types was performed for the two-
dimensional model. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, much interest has been shown in
Josephson junctions based on high-Tc superconducting
materials. Experimental works in this area revealed the
existence of a large number of localized states in
high-Tc superconductors [1]. It was shown [2] that the
transfer of the normal current component in such struc-
tures is resonance in character and proceeds through
localized states. For this reason, theories that only take
into account tunneling of quasi-particles through the
“weak coupling” region [3–7] are insufficient for calcu-
lating the transport properties of the junctions.

Theoretical studies of resonance tunneling in NIN
structures were performed using the tunnel model [8]
and the three-dimensional model of junctions [9, 10].
Resonance current transport in junctions in which one
of or both electrodes were superconductors with order
parameters of s symmetry was also considered [11–18].
Resonance current transport in superconducting junc-
tions with d pairing in the electrodes was theoretically
studied using the one-dimensional model in [19]. It was
shown in [20] that, at low voltages, resonance tunneling
in NID structures suppressed junction conduction sin-
gularities arising because of the presence of bound zero
energy states in superconducting electrodes [21]. At the
same time, a consistent theory of the resonance trans-
port of supercurrent in DID structures has not been
developed thus far.

In addition, an analysis of the experimental data [2]
showed that the transport of the normal current compo-
nent was resonance in character in some high-Tc super-
conducting junctions, whereas the transport of super-
current was determined by direct tunneling without the
participation of localized states. No consistent explana-
tion of this effect has been suggested thus far.
1063-7761/04/9905- $26.00 © 21074
The purpose of this work was to develop a theory of
resonance transport of supercurrent in high-Tc super-
conducting junctions. Our preliminary results were
reported in [22].

2. A JUNCTION MODEL

We assume that the tunnel barrier V(r) in the junc-
tion under consideration is the sum of two potentials
(see Fig. 1)

(1)

where the first term models a rectangular barrier of
height V and thickness d,

(2)

and the second term describes a localized state in the

V r( ) V rect V imp,+=

V rect x( ) Vθ x d x–( )( ),=

D

y

E

V0

0

r0

2ρ

DI

d x

Fig. 1. Junction model.
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interlayer material,

(3)

which is situated at some point r0 = (x0; y0) and has
radius ρ ! |k|–1 (k is the Fermi momentum of quasi-
particles in the electrodes). We restrict our consider-
ation to the limit of weak coupling and assume vector k
to be fixed on the Fermi surface (|k| = k ≈ kF). Poten-
tial (3) disturbs spatial homogeneity of the structure
and results in the nonconservation during tunneling of
the component of the momentum of quasi-particles par-
allel to the barrier. The barrier thickness is taken to be
fairly large,

(4)

where λ0 =  is the momentum of quasi-particles
in the interlayer (V0 = V – µ), m is the mass of the elec-
tron, and µ is the Fermi energy. In addition, we assume
that the conditions

(5)

are met for the localized states under consideration.
Meeting (5) is necessary for the effective localization of
the wave function of a quasi-particle on a defect. Junc-
tion transport properties will also be calculated on the
assumption that the current that passes through the
junction does not drive the superconducting electrodes
from the state of thermodynamic equilibrium. This con-
dition is automatically satisfied in structures with s- and
d-type superconducting electrodes separated by a broad
potential barrier of low transparency, even when the
barrier contains localized states spaced at distances that

far exceed their effective transverse radius l⊥  = d/ .
It is assumed that the density of localized states in the
interlayer is low and their mutual influence is insig-
nificant.

3. THE GREEN FUNCTION
OF THE PROBLEM

The Green function of the problem is found from the
Gor’kov equations [23] modified for the case of an
anisotropic contact [24],

(6)

V imp r r0–( )
–α , r r0– ρ,≤
0, r r0– ρ,>




=

λ0d  @ 1,

2mV0

λ0 d x0–( ) @ 1, λ0x0 @ 1

λ0d

Gω r r',( ) G11 r r',( ) G12 r r',( )
G21 r r',( ) G22 r r',( ) 

 
 

,=

1
2
--- r1 ∆ r r1,( )σ+ ∆* r1 r,( )σ–+( )d∫–





--+ δ r r1–( ) iωÎ σzĥ–( )




Gω r1 r',( ) δ r r'–( ) Î ,=
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where the operator  is given by

In (6), ∆(x, x1) is the order parameter of the system,
which depends on the coordinates; T is the temperature;
and ω = (2n + 1)πT denotes the Matsubara frequencies.

In addition, (6) contains the second-order unit matrix 
and the Pauli matrices σx , σy , and σz (σ± = σx ± iσy).
Equation (6) can conveniently be rewritten in the inte-
gral form

(7)

The Green function  of the unperturbed problem is

found from (6) after replacing the operator  with the
operator of the spatially homogeneous problem without

localized states. The  Green function is then
obtained as the sum of plane waves with coefficients
that follow from the condition of continuity of the func-
tions themselves and their derivatives at the boundaries

of the structure. (Details of calculating  are given in
the Appendix.)

Localized states have the atomic size scale. The
Green functions Gω(r, r') change along interatomic dis-
tances; that is, they are slowly varying functions of the
coordinate on the scale of Vimp(r) function changes.
This circumstance allows them to be removed from the
integrand in (7),

(8)

to arrive at a matrix equation for determining the local
Gω(r0, r') function of the form

(9)

where

(10)

Equation (9) yields the Green function value at the
point where the localized state is situated,

(11)

ĥ

ĥ ∇ 2/2m– V r( ) µ.–+=

Î

Gω r r',( ) Gω
0 r r',( )=

+ r1Gω
0 r r1,( )σzV imp r1 r0–( )Gω r1 r',( ).d∫

Gω
0

ĥ

Gω
0

Gω
0

Gω r r',( ) Gω
0 r r',( )≈

+ r1Gω
0 r r1,( )V imp r1 r0–( )d∫{ }σ zGω r0 r',( ),

Gω r0 r',( ) Gω
0 r0 r',( ) V r0( )σzGω r0 r',( ),+=

V r0( ) V11 r0( ) V12 r0( )
V21 r0( ) V22 r0( ) 

 
 

=

=  r1Gω
0 r0 r1,( )V imp r1 r0–( ).d∫

Gω r0 r',( ) = 1 det V r0( )[ ]σ zV
1– r0( )+( )

Gω
0 r0 r',( )

Φ
-----------------------.
ICS      Vol. 99      No. 5      2004



1076 GONCHAROV et al.
Here, the denominator Φ is determined through the
components of matrix (10) as

Like (r, r1), the Gω(r, r') function in (8) is a slowly
varying function of r on the scale of Vimp(r) variations
and can also be removed from the integrand. We can
therefore write the solution to the integral equation (8)
in terms of the unperturbed Green function of prob-
lem (11) and the localized state potential,

(12)

4. THE TRANSPORT PROPERTIES
OF THE JUNCTION

The transport properties of the junction can be cal-
culated using the general equation for the current,

(13)

where ϕ = ϕL – ϕR is the difference of the macroscopic
phases of the order parameters of the left and right
superconductors and e is the charge of the electron.

In the two-dimensional junction model, the trace of
the Gω(r, r') matrix in (13) is determined from (12); it
can be represented in the form

(14)

Here, the parameter Λ(r0) is the modulus of the ampli-
tude of resonance scattering for electronic and hole
excitations. Equation (14) can be partitioned into two
components responsible for different transport chan-
nels of quasi-particles through the junction. The first

component, (r, r') + (r, r'), describes potential
scattering of quasi-particles by barrier (2), and the
second component, resonance scattering by localized
state (3).

The tunnel current of Josephson junctions of various
configurations, including junctions with high-Tc super-
conducting electrodes, has well been studied theoreti-
cally [3–5]. The d symmetry of the order parameter of
the high-Tc superconductor is responsible for several

Φ 1 V22 r0( )+( ) 1 V11 r0( )–( ) V12 r0( )V21 r0( ).+=

Gω
0

Gω r r',( ) Gω
0 r r',( )=

+ r1V imp r1 r0–( )d∫{ } Gω
0 r r0,( )σzGω r0 r',( ).

I ϕ( ) eT
2im
--------- ∂

∂x'
------- ∂

∂x
------– 

  Tr Gω r r',( ){ }
ωn

∑
x 0=

,
x' x→
lim=

Tr Gω r r',( ){ } G11
0 r r',( ) G22

0 r r',( )+=

+ Λ r0( ) 1–( )l 1+ G jl
0 r r0,( )ΦG jl r0 r',( ),

j l, 1=

2

∑

Λ r0( ) 1
Φ
---- r1V imp r1 r0–( ).d∫=

G11
0 G22

0
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nontrivial effects, which are not observed for junctions
with isotropic superconductors. These are the appear-
ance of bound electron–hole zero energy states at the
insulator–d-type superconductor boundary (as a result,
zero bias anomalies appear in the current–voltage char-
acteristics at low voltages [21]) and several effects
related to the suppression of the order parameter at the
insulator–superconductor boundary [6, 7].

In our problem, the potential component of the cur-
rent through the junction is determined by the well-
known equation

(15)

If the order parameters of the left and right supercon-
ductors are denoted by the superscripts “L” and “R”
and both have d symmetry, then we can, ignoring order
parameter suppression close to the junction boundaries,
write

(16)

Here, ∆±(x, θ) is the anisotropic order parameter, which
depends on the angle θ of the propagation of quasi-par-
ticles with respect to the x axis. Equation (15) allows us
to obtain the following equation for the potential cur-
rent:

(17)

The notation in (17) is as follows:

(18)

and |t |2 is the tunnel transparency of the barrier. Equa-
tion (17) reduces to the result obtained in [3], and our
numerical calculations for the SID and DID junction

Ipot ϕ( ) eT
2im
--------- ∂

∂x'
------- ∂

∂x
------– 

 
x' x→
lim=

× G11
0 r r',( ) G22

0 r r',( )+( )
ωn

∑
x 0=

.

∆± x θ,( )
∆L T( ) 2θ 2α L+−( )e

iϕL, x 0,<cos

0, 0 x d ,< <

∆R
T( ) 2θ 2α R+−( )e

iϕR, x d .>cos





=

Ipot ϕ( )
eTkF

iπ
------------ θ θ t 2 Γ3 Γ4–( )

Z
----------------------⋅ .cosd

π/2–

π/2

∫
ωn

∑=

Z Γ1Γ2 t 2 Γ3Γ4 Γ1Γ2–( ),––=

Γ1 1 β–
Lβ+

L*, Γ2+ 1 β+
Rβ–

R*,+= =

Γ3 1 β–
Lβ–

R*, Γ4+ 1 β+
Rβ+

L*,+= =

β±
L R, i ∆±

L R,( )*–

ω Ω±
L R,+

-----------------------,=

Ω±
L R, ω2 ∆±

L R, 2
+ ,=
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models repeat the phase dependences of the current and
the temperature dependences of the critical current
obtained in that work.

The equation for the supercurrent of direct tunneling
[Eq. (17)] was derived ignoring the difference in the
rates of the decay of the wave functions of electrons and
holes in the junction (ignoring dephasing [25]). With
superconducting electrodes, this approach is justified if
µ @ |∆L|, |∆R|. Dephasing in the barrier is of no signifi-
cance if

(19)

Condition (19) also allows us to ignore dephasing in the
tunneling of electrons and holes to localized states and
backward in resonance current calculations [14]. Reso-
nance currents must, however, be calculated taking into
account the energy difference between electrons and
holes in the preexponential terms in the equations for
the Green functions. The necessary accuracy of the
expansion in powers of ω/V0 is then exp(–2λ0d) (see
Appendix).

The equation for resonance current transport
through the junction is obtained from (13) by substitut-
ing the remaining terms present under the sum sign
in (14),

(20)

5. PARTICULAR CASES 
OF RESONANCE SCATTERING

5.1. General Equation for Resonance Current 
in the Two-Dimensional DID Junction

Of the greatest interest in the high-Tc superconduct-
ing structures is two-dimensional transport in the ab
plane. In the two-dimensional junction model, the
potential parameters of the localized state are selected
from the condition that potential well (3) should con-
tain at least one energy level. This procedure is
described in detail in [20]; here, we only give final
equations. In our problem, the energy parameters of
localized states are written in terms of model constants
ρ and α as

where the η parameter is

ω
V0
------  & λ0d–( ).exp

Ires ϕ( )
eTΛ r0( )

2im
-------------------- ∂

∂x'
------- ∂

∂x
------– 

 
x' x→
lim=

+ 1–( )l 1+ G jl
0 r r0,( )ΦG jl r0 r',( )

j l, 1=

2

∑
ωn

∑
x 0=

.

I1
1– λ0ρ( )

λ0

2ραm
--------------- η– 

 
λ0ρ 0→

1

mαρ2
-------------- 2η

λ0ρ
---------–≈

E0

2V0
---------,=

η  = 1
λ0ρ
--------- K1 λ0ρ( )–

λ0ρ 0→

λ0ρ
2

---------
λ0ρ

2
--------- 

 ln γE
1
2
---–+ 

  .–≈
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Here, γE ≈ 0.577 is the Euler constant, I1 is the modified
Bessel function of the first kind, K1 is the modified
Bessel function of the second kind (the Macdonald
function), and E0 is the energy of the resonance level of
the localized state. It then follows from (20) that

(21)

where

(22)

The Γ0 parameter is the width of the electronic level
state for the localized state situated in the middle of the
barrier and ER is the effective resonance level energy
that takes into account the shift caused by a finite width
of the barrier.

The other parameters in (21) are determined as
follows:

(23)

Here, the Fermi momentum of quasi-particles in the
barrier is obtained ignoring dephasing (that is, λ(ky) =

 and the angle brackets 〈…〉  denote averaging
over the transverse momentum ky ,

The  parameters in the integrands in (23) are real

and phase-independent components of the  vari-

Ires
2D 2eT
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S0 S1 ϕcos–
-----------------------------,

ω
∑–=

S1 2γ0
2JLJR,=
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4
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λ0x0
----------,exp=
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4λkF
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 
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---------------------------------------------------
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 
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ables from (18); they are given by

(24)

When writing (23) and deriving (21), we proceeded
from the equalities

These equalities follow from the symmetry properties
of the anisotropic order parameter. They are valid
because the integration ranges correspond to the period

of the (θ) functions equal to π. The equalities hold
for arbitrary orientation angles αL, R .

Equation (21) describes the general case of reso-
nance current transport in two-dimensional structures
with an arbitrary symmetry of the order parameter in
the electrodes. This is the main result of the present

work. The particular form of the  parameters deter-
mined by (24) is valid for the model with a step depen-
dence of the modulus of the order parameter on spatial
coordinates. This result is, however, easy to generalize

to a more general case if the  parameters are under-
stood as Andreev reflection coefficients of electrons
having the corresponding trajectories [20], which can
be obtained by numerically solving the problem of the
neighborhood effect at the boundary between the super-
conducting electrode and the dielectric interlayer [7].

5.2. SIS Junctions of Different Dimensionalities

In the limiting case of isotropic electrode order
parameters, (21) takes the simplest form. Integrals (23)
are calculated analytically, and (21) gives the resonance
supercurrent in the SIS junction in the form

(25)

The analytic continuation ω  –iE in (25) gives the
dispersion equation

(26)

which has been studied for one-dimensional models of
a short junction d ! ξ0 (ξ0 is the coherence length) [13]

β̂±
L R, ∆L R, T( ) 2θ 2α L R,+−( )cos

ω Ω±
L R,+

------------------------------------------------------------.=

JL β̂+

L
( ) JL β̂–

L
( ), JR β̂+

R
( ) JR β̂–

R
( ).= =

β̂±
L R,

β̂±
L R,

β̂±
L R,

Ires eT∆2 ϕΓ 0
2 Γ0

2∆2 ϕ
2
---sin

2

ω
∑sin=

– ∆2 ω2+( ) ω2 ER
2 Γ2

4
-----+ + 

  ω2Γ ∆2 ω2+–
1–

.

Γ0
2∆2 ϕ

2
--- ∆2 E2–( ) E2 ER

2 Γ2

4
-----–– 

 +sin
2

+ E2Γ ∆2 E2– 0,=
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and generalized to arbitrary ratios between the barrier
width and coherence length [14].

The form of (25) and (26) is insensitive to problem
dimensions. Different junction dimensions only change
the form of the energy parameters of localized states. In
the two-dimensional problem, the width of the reso-
nance level and its energy are determined by (22), and,
in the one-dimensional geometry, the properties of
localized states are determined by parameters similar to
those obtained in [13],

The characteristic resonance level width for a three-
dimensional SIS junction is given by the equations

It follows that the Beenakker–van Houten dispersion
equation [Eq. (26)] obtained in 1991 for the one-dimen-
sional model is of a more general applicability and
remains valid for junctions with wide barriers and prob-
lems of large dimensions.

Equation (25) allows the summation of the Matsub-
ara frequencies for “broad” (∆/Γ0 ! 1) and “narrow”
(∆/Γ0 @ 1) resonances to be performed analytically.
Studies of supercurrent in these two limits lead to the
same conclusions as drawn in [14], this time for junc-
tions with two- and three-dimensional geometries. We,
however, obtained resonance transparency close to one
and a nonsinusoidal phase dependence of supercurrent
only at the resonance level energy close to zero (ER ~ 0)
and when the localized state was situated close to the
barrier center (x0 ~ d/2). A shift of the localized state
resonance energy from zero or a displacement of the
localized state from the barrier center decreases reso-
nance transparency and supercurrent and restores the
sinusoidal phase dependence of supercurrent Ires(ϕ).
Averaging over energy and coordinates of localized
states makes supercurrent in two- and three-dimen-
sional SIS junctions proportional to sinϕ in both limit-
ing cases.

5.3. Resonance Scattering
in a Two-Dimensional SID Junction

Resonance current transport in junctions with high-
Tc superconducting electrodes will be studied on the
assumption that the ab plane of the high-Tc supercon-
ducting crystal is perpendicular to the surface of the

Γ01
1D 2V0 t λ0 d 2x0–( )( ),exp=

Γ02
1D 2V0 t λ0 d 2x0–( )–( ).exp=

Γ01
3D V0 t

λ0 d 2x0–( )( )exp
λ0x0

------------------------------------------,=

Γ02
3D V0 t

λ0 d 2x0–( )–( )exp
λ0 d x0–( )

---------------------------------------------.=
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



RESONANCE TUNNELING IN SUPERCONDUCTING JUNCTIONS 1079
0.075

0.060

0.045

0.030

0.015

0

0.04

0.03

0.02

0.01

0

0.012

0.008

0.004

0 0.2 0.4 0.6 0.8 1.0
ϕ/π

0 0.2 0.4 0.6 0.8 1.0
ϕ/π

4 2, 3

1, 2

4

3

0.32

0.31

0.30
0.6 0.8

1

3

2

4

2

4

1 1

2

34

0.12

0.08

0.04

0

0.07

0.14

0.21

0.28

0

0.08

0.16

0.24

0.32

0.40

2Ires(ϕ)/πe ∆d 0( )∆s 0( )2Ires(ϕ)/πe ∆d 0( )∆s 0( )

(a)

(b)

(c)

(d)

(e)

(f)

(e')

(g)

3

2

1

3

4

3

1, 2

4

Fig. 2. Phase dependences of supercurrent in the SID junction for γ0/∆d(0) = (a, b, c) 0.1 and (d, e, f) 10 at λd = 6, k/λ = 2, ER = 0,
and x0 = d/2; αR = (a, d) 0, (b, e) π/12, and (c, f) π/6; and T/Ts = (1) 0, (2) 0.05, (3) 0.3, and (4) 0.6. Inset e' shows the region of
maximum supercurrent corresponding to curves 1, 2, and 3 in Fig. 2g. Phase dependences of nonresonance supercurrent are plotted
in Fig. 2g for the same parameters in arbitrary units.
junction and the order parameter is determined by (16).
Electronic and hole excitations at the boundary of an
anisotropic superconductor are influenced by different
order parameters if α ≠ 0. If the sign of the order param-
eter changes after the reflection of a quasi-particle from
the surface of the high-Tc superconductor, bound
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Andreev states appear on the surface of the supercon-
ductor with zero energy with respect to the Fermi level
(zero energy states or mid gap states) [21]. The region
of the appearance of zero energy states depends on the
angle of high-Tc superconductor crystal lattice orienta-
tion. For instance, for the SID junction, the order
SICS      Vol. 99      No. 5      2004
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parameter has the form

(27)

Andreev states then appear on the trajectories satisfying
the condition

The question of how the appearance of zero energy
states influences resonance current is of interest.

∆ x T,( )
∆s T( )e

iϕL, x 0<
0, 0 x d< <

∆d T( ) 2θ 2α R+−( )e
iϕR, x d .>cos






=

θ π/4± α R; π/4 α R+±–( ).∈
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Fig. 3. Temperature dependences of supercurrent Ic(T) in
the SID junction for γ0/∆d(0) = (a) 10, (b) 0.1, and (c) 0.01
at λd = 6, k/λ = 2, ER = 0, x0 = d/2, and αR = (1) 0, (2) π/12,
and (3) π/6. Temperature dependences of nonresonance
supercurrent are plotted in Fig. 3d in arbitrary units for the
same parameters.
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The phase dependences of supercurrent and the tem-
perature dependences of critical current are shown in
Figs. 2 and 3. The dependences were obtained on the
assumption that the order parameters ∆s(T) and ∆d(T)
satisfied the Bardeen–Cooper–Schrieffer theory equa-
tions. Numerical calculations were performed for the
ratio between the critical temperatures of the supercon-
ductors Ts/Td = 1/9. At αR = 0, the behavior of the Ires(ϕ)
curves in “narrow” and “broad” resonances is similar to
that for junctions with isotropic electrode order param-
eters; namely, we observe phase dependences close to
sin(ϕ/2) at low temperatures and resonance transpar-
ency equal to one. As in Section 5.2, shift of the reso-
nance energy of the localized state from zero or a dis-
placement of the localized state from the middle of the
barrier decreases resonance transparency, causes a drop
in resonance supercurrent, and restores the sinusoidal
dependence of Ires(ϕ). After averaging over localized
state energies and coordinates, resonance current
becomes proportional to sinϕ in both limiting cases.

Figures 2a and 2d are visual illustrations of devia-
tions of the I(ϕ) dependence from sinϕ at low tempera-
tures. An increase in the temperature or the orientation
angle αR makes the curves closer to sinusoidal (see
Figs. 2b, 2c, 2e, 2f). For comparison, the phase depen-
dences of tunnel supercurrent at the same junction
parameters and αR = 0 are shown in Fig. 2g; these
dependences follow from the equation for potential
supercurrent [Eq. (17)] and the results obtained in [3].
We see that the phase dependences of tunnel supercur-
rent are sinusoidal at low temperatures under long junc-
tion conditions.

The temperature dependences of the critical current
for the SID junction at various superconductor crystal
orientations are shown in Fig. 3. Figures 3a, 3b, and 3c
demonstrate a sharper decrease in Ic as the temperature
increases caused by resonance narrowing. At the same
time, the theory described in [3] predicts a smooth
decrease in the critical tunnel current as the temperature
increases (Fig. 3d). The large slopes of the temperature
dependences of resonance current are explained by
strong resonance level “smearing” at T > Γ0; accord-
ingly, the narrower the resonance, that is, the smaller
the resonance level width Γ0, the lower the temperature
of the onset of critical current drop as the temperature
increases. A visual illustration of such a behavior of
Ic(T) is given by Fig. 3.

We see from Figs. 2 and 3 that an increase in the
angle of high-Tc superconductor crystal orientation
causes a decrease in supercurrent. This process is
shown in detail in Fig. 4, where the dependences of crit-
ical current on the angle αR are plotted. According to
this figure, “isothermal” curves decrease as the αR

angle increases, and, at αR = π/4, the resonance current
is identically equal to zero, which is formally related to
the equality to zero of the JR integral in (21) (at αR =
π/4, the integrand becomes antisymmetric with respect
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to θ, and JR therefore vanishes under averaging over
angles). Physically, the absence of resonance current at
αR = π/4 is easily explained from symmetry consider-
ations. When quasi-particles are rescattered by local-
ized states, the probabilities of the trajectories toward
the high-Tc superconductor with the angles ±θ with
respect to the normal are equal. At the same time, quasi-
particles interacting with the high-Tc superconducting
electrodes are influenced by order parameters of differ-
ent signs. As a result, the contributions to the resonance
current of the directions ±θ are equal in magnitude and
opposite in sign. For this reason, averaging over all tra-
jectories gives zero supercurrent value. A similar situa-
tion arises with potential tunneling [3]. In SID junc-
tions at αR = π/4, the coefficient of sinϕ in the equation
for supercurrent vanishes and the contribution of terms
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Fig. 4. Supercurrent Ic(αR) in the SID junction for
γ0/∆d(0) = (a) 10, (b) 0.1, and (c) 0.01 at λd = 6, k/λ = 2,
ER = 0, x0 = d/2 and T/Ts = (1) 0, (2) 0.01, (3) 0.05, (4) 0.3,
and (5) 0.6. Angular dependences of nonresonance super-
current are plotted in Fig. 4d in arbitrary units for the same
parameters.
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proportional to sin2ϕ therefore becomes predominant.
This is, in particular, the reason for changes in the peri-
odicity of the phase dependence of the potential super-
current in such junctions [26, 27]. In the equation for
resonance supercurrent [Eq. (21)], the terms propor-
tional to sin2ϕ, like the other (higher) terms of the trig-
onometric series sinnϕ, synchronously vanish. For this
reason, the resonance current vanishes at αR = π/4.

An analysis of the plots shown in Figs. 4a and 4b
shows that resonance narrowing results in a rapid
decrease in the critical current as the angle of high-Tc

superconductor orientation increases. A comparison of
the Ic(αR) curves calculated for resonance and direct
tunneling (see Fig. 4d) shows that potential supercur-
rent decreases more monotonically as αR increases.

An interesting feature of the temperature depen-
dences of resonance supercurrent shown in Fig. 3 is
their anomalous decrease at low temperatures and non-
zero orientation angles of high-Tc superconductors.
Formally, such a behavior of the temperature curves is
explained as follows: whereas the other integrals in (21)
show a fairly monotonic behavior (see Fig. 5b, where
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Fig. 5. Temperature dependences of the integrals (a) J2 and
(b) JR in the SID transition for various αR angles. The plots
were constructed for the Matsubara frequency ω = πT and
for a narrow resonance with γ0/∆d(0) = 0.1. The other
parameter values: λd = 6, k/λ = 2, ER = 0, and x0 = d/2.
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ϕ/πϕ/π
the JR(T) dependence is plotted by way of example for
various orientation angles of high-Tc superconductors),
the J2 integral rapidly increases as the temperature
approaches zero (see Fig. 5a). For this reason, the
denominator in (21) is minimum at nonzero temperature.

The J2 and JR integrals describe interactions
between two resonance tunneling processes, namely,
JOURNAL OF EXPERIMENTAL 
through localized states and through bound Andreev
states that appear on the surface of high-Tc supercon-
ductors at αR ≠ 0. It was shown in [20] that the interfer-
ence of these processes did not necessarily cause super-
current amplification. Moreover, at zero voltage at the
junction, the interference current component related to
rescattering of quasi-particles in the Andreev channel
of tunneling at localized states can make a negative
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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contribution to the supercurrent. This is the effect of
complex interference of two resonance processes that
may be responsible for a sharp decrease in the angle
dependence of the critical resonance current compared
with the potential current and the deficiency of the crit-
ical current at zero orientation angles of high-Tc super-
conductors noticeable in the region of low temperatures
(Figs. 3a, 3b, 3c).

5.4. RESONANCE CURRENT
IN A TWO-DIMENSIONAL DID JUNCTION

In the general case of anisotropic order parameters,
not all integrals (23) can be calculated analytically. For
symmetrical junctions with high-Tc superconducting
edges, analytic equations can only be obtained from (21)
for a narrow resonance at αL = αR = 0 and k/λ @ 1.
Equations similar to (25) and (26) with ∆ = ∆d(T) are
then obtained for supercurrent and the energy spectrum
of resonance junction states with equal order parame-
ters in the left and right electrodes. In the general case
of arbitrary k/λ ratios and orientation angles of high-Tc

superconducting crystals, resonance junction conduc-
tion can only be analyzed numerically.

Equation (21) for current can, however, be simpli-
fied for junction configurations of practical interest
with orientation angles of the high-Tc superconducting
electrodes of αL = ±αR . If the condition

is met, we have J1 = J2 and JL = JR for integrals (23). It
follows that junctions with the orientation angles |αL| =
|αR| have equal resonance properties. The resonance
transport of current is sharply different in this respect
from the direct tunneling current. It follows from [3]
and Eq. (17) obtained in this work that the direct super-
current behaves differently in junctions with the config-
urations αL = ±αR .

Applying (21) to symmetrical junctions yields

(28)

Equation (28) will be analyzed numerically on the
assumption that the ab planes of the d-type supercon-
ducting crystals to the left and right of the insulating
interlayer are perpendicular to the surface of the junc-

∆L T( ) ∆R T( ) ∆d T( )= =

Ires
2D DID

αL αR= 4eT
γ0

2Jd
2 ϕsin
Sd

----------------------,
ω
∑–=

Jd JL JR, J J1 J2,= = = =

Sd ω2 ER
2– Γ2

4
-----– ω 4Jγ0 Γ–( )––=

+ 2γ0
2 Γγ0

1– J 2J2– Jd
2 ϕ

2
---cos

2
– 

  .
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tion, and the order parameter of the problem is given
by (16).

The phase dependences of the resonance supercur-
rent obtained using (28) are shown in Fig. 6. If both ori-
entation angles αR and αL are nonzero, the behavior of
the phase curves is similar to that of the curves for SID
junctions, as follows from Figs. 6b, 6c, 6e, and 6f. We
can only note that supercurrent decreases more rapidly
as the orientation angles of the high-Tc superconductors
increase in magnitude. In addition, if αL, R ≠ 0, the phase
curves of DID junctions more rapidly approach sinuso-
idal dependences because of the presence of two
regions with anisotropic order parameters instead of
one such region in SID junctions. As with SIS junc-
tions, a displacement of the localized state from the
center of the barrier or a deviation of the resonance
energy from the Fermi level causes a sharp decrease in
supercurrent and the disappearance of the deviations of
phase characteristics from the sinusoidal dependence.
As a result, resonance current averaging over the reso-
nance energy ER and the coordinate x0 of the localized
state gives a sinusoidal phase dependence of the super-
current.

Similarity of the resonance tunneling processes in
SID and DID junctions is also observed when we com-
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Fig. 7. Temperature T/Td dependences of critical current
Ic(T) in the DID junction for γ0/∆d(0) = (a) 0.1 and (b) 10
and αL = αR at λd = 6, k/λ = 2, ER = 0, x0 = d/2, and αL =
(1) 0, (2) π/12, and (3) π/6.
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pare the temperature dependences of the critical cur-
rent. A rapid decrease in supercurrent as the tempera-
ture increases or resonance narrows in DID junctions is
shown in Figs. 7a and 7b. Note also that the temperature
curves at αL, R ≠ 0 exhibit anomalous behavior at low
temperatures; similar anomalies have been given atten-
tion above, when resonance supercurrent in SID junc-
tions was analyzed. At large orientation angles of high-
Tc superconducting crystals, we do not observe a sharp
increase in the critical current in resonance current
plots such as is characteristic of direct tunneling
(Fig. 7d, curve 3). The situation with the angle depen-
dences of resonance current in DID junctions is similar.
Interestingly, according to [3], the orientation angle
dependence of direct supercurrent should be very far
from monotonic (see Fig. 8d). At the same time, the
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Fig. 8. Dependences Ic(αL) of critical current in the DID
junction for γ0/∆d(0) = (a) 10, (b) 0.1, and (c) 0.01 and αL =
αR at k/λ = 2, λd = 6, ER = 0, x0 = d/2, and T/Ts = (1) 0,
(2) 0.01, (3) 0.05, (4) 0.3, and (5) 0.6. Angle dependences
of nonresonance supercurrent are plotted in Fig. 8d in arbi-
trary units for the same parameters.
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dependences of resonance supercurrent shown in
Figs. 8a–8c are monotonic, which lends support to the
conclusions made in describing the angle dependences
of the critical current in SID junctions.

To summarize, our study of the resonance supercur-
rent in junctions in which both electrodes have d-sym-
metry order parameters shows that the supercurrent
value is determined by the moduli of the orientation
angles of superconductor crystals rather that the angles
themselves. For this reason, structures with symmetric
(αL = αR) and antisymmetric (αL = –αR) electrode con-
figurations that we often come across in theoretical and
experimental studies are equivalent. Indeed, in reso-
nance tunneling, a quasi-particle falls into a localized
state potential well and “forgets” about the initial direc-
tion of its motion. Subsequent particle rescattering in
the directions ±θ with respect to the x axis is equiprob-
able. As a result, physical resonance tunneling pro-
cesses in structures with αL = ±αR are spatially symmet-
rical and do not differ from each other. In reality, the
existence of a localized state between two high-Tc

superconducting electrodes with pronounced anisotro-
pic properties is responsible for isotropy of not only
resonance tunneling. It was shown in [20] that the pres-
ence of a localized state along the trajectory of the
appearance of bound zero energy states results in res-
cattering of particles in other directions, which weak-
ens the zero bias anomaly effect.

6. CONCLUSIONS

We have presented calculations of resonance super-
current transport in equilibrium Josephson junctions of
different configurations, determined the supercurrent
using the formalism of Green functions, and obtained
an equation for the Green function in a nonhomoge-
neous potential barrier with a localized state. For the
two-dimensional junction model, we derived an ana-
lytic equation for resonance supercurrent valid for an
arbitrary symmetry of electrode order parameters. For
the SIS junction, we generalized the Beenakker–van
Houten dispersion equation obtained for the one-
dimensional model [13] to junctions of arbitrary
dimensions. We numerically studied the dependences
of the resonance supercurrent on the macroscopic
phase, temperature, and high-Tc superconductor crystal
orientation angles with respect to the direction of cur-
rent propagation. A comparison of these results with
those for tunnel current transport through the potential
barrier reveals a steeper resonance current drop as the
temperature or the orientation angle of the high-Tc crys-
tals deviates from zero. For narrow resonances usually
observed in experiments, finite temperatures and non-
zero orientation angles substantially decrease the reso-
nance supercurrent. Our results lead us to conclude
that, in long high-Tc superconducting junctions and in
the presence of localized states in the interlayer, reso-
nance supercurrent is indeed suppressed compared
 AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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with direct tunneling through the barrier, in confor-
mity with [2].

Analysis of the results obtained in this work has
substantiated the conclusions drawn in [20]; namely,
the interaction of two resonance processes of tunneling
through localized states and bound Andreev levels
(zero energy states) can weaken supercurrent and the
effects related to anisotropy of high-Tc supercon-
ductors.

The approach developed above ignores the suppres-
sion of the order parameter close to the boundaries of
high-Tc superconducting structures. It follows that we
did not study the contribution to supercurrent transport
caused by resonance tunneling to Andreev levels with
nonzero energies localized near the boundary. Exactly
including this contribution requires numerical calcula-
tions. Nevertheless, the analysis performed in this work
leads us to conclude that taking into account these
effects would not cause serious qualitative changes.
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APPENDIX

Let the source of the Green function lie within the
barrier. The unperturbed Green function can conve-
niently be found by writing (6) for the Fourier trans-

form of (r, r'). In the two-dimensional model, the
Fourier transform of the two-component Green func-

tion (r, r') is given by

If the barrier potential V(r) is homogeneous, that is, if
the presence of the localized state is ignored, the Green

function (r, r') in the Gor’kov equations can be par-
titioned in such a way that one of its components be a
slowly varying function. Indeed, the Green function

experiences oscillations at a length of about ,
whereas the order parameter changes over much longer
distances, on the order of the coherence length [24]. We
can therefore redefine the Green function and the order
parameter accordingly,

(29)

where  is the slowly varying component of the

Gω
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Gω
0

Gω
0 r r',( ) 1

2π
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unperturbed Green function of the problem and

This allows us to linearize system (6) and write it in the
form of the matrix equation

(30)

The anisotropic order parameter ∆(x, θ) depends on the
angle θ of the propagation of quasi-particles with

respect to the x axis. In the operator , we omitted the
∂2/∂x2 terms, which can be ignored if the condition
∆/µ ! 1 is satisfied.

Representing the x components of the Green func-
tions in the form of plane waves, we can write

(31)

Substituting (31) into homogeneous equation (30)
yields the final matrix equation that can be used to
determine the Green functions in a superconductor,

(32)

System (32) separates into two pairs of equations for
determining the G11, 21 and G12, 22 functions. The condi-
tion of the equality of the determinant to zero is used to
find the ξ parameter,

(33)

where the notation ∆± = ∆(x, θ±) is used to stress that
quasi-particles in anisotropic superconductors are
influenced by different order parameters depending on
the direction of their motion; there is a simple relation
between the θ± angles, namely, θ+ = θ and θ– = π – θ.
The sign in (33) is selected depending on whether the
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quasi-particle is an electron or a hole. In addition, the
relation between the Green function components,

(34)

follows from (32). The selection of different signs
in (33) and (34) allows us to obtain four independent

solutions for the Green function components  in
a superconductor, namely,

(35)

The solution for the unperturbed Green functions in the
barrier is found from (6) taking into account that the
order parameter in a normal material is zero,

(36)

Four independent general solutions can be obtained

from (36) for the Green functions . The solutions
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responsible for the transport of electron-like excitations
in the barrier are described by plane waves,

(37)

The solution for holes in the barrier is

(38)

where λ =  characterizes the two-
dimensional momentum of electrons in the barrier. The

particular solution to (37) for the  components is
written in the form

(39)

It follows that the  Green functions of the prob-
lem in various junction regions are representable in the
form of the superposition of the corresponding inde-
pendent solutions (35), (37)–(39) provided that the
functions are finite at infinity,
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The two other Green function components  are found from (32) and (36) in a similar way,
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The Ai , Bi , Ci , and Di coefficients (i = 1, 2, 3, 4) of the
exponential functions are found from the condition of
continuity of the Green functions and their derivatives
at the structure boundaries. Equations (40) and (41) are
written using notation (18). We also introduced the
Fermi momentum of quasi-particles in the supercon-
ducting electrodes in these equations,

On the assumption that the Fermi level energy µ @ |∆L|,
|∆R| and the contribution, to the current, of terms with
high Matsubara frequencies is negligibly small, we can
ignore dephasing in the superconducting electrodes [25];
that is, the difference between the Fermi momenta of
electrons and holes can be considered insignificant, and

the approximate definitions  ≈ ikx = κ can be used.
In addition, we can ignore dephasing in all the expo-
nents and in the equations where the Fermi momentum
of interlayer electrons λ is in some way compared
with κ. From these considerations, the equations for the
coefficients of (40) and (41) as functions of the x' vari-
able can be written in the form

(42)
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--------- A1 λ κ±( ) β–

LA3 λ κ+−( )+[ ] ,=

A1
m
κZ
------- de

→* x'( )β–
LΓ2 de

← x'( )th β–
L β+

R–( )–[ ] ,–=

A2
m
κZ
------- de

→* x'( )te Γ3 Γ1–( ) de
← x'( )Γ1+[ ] ,–=

A3
m
κZ
------- de

→ x'( )Γ2 de
←* x'( )te Γ2 Γ4–( )–[ ] ,–=

A4
m
κZ
------- de

→ x'( )th β–
L β+

R–( ) de
←* x'( )β+

RΓ1+[ ] ,–=

D1

D2 
 
  1

2λ*
--------- C1 λ κ±( ) β–

LC4 λ κ+−( )+[ ]=

– 1

0 
 
  m

λ*
------e λ x'– ,
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The Z and Γ1, 2, 3, 4 parameters are defined by (18). Some
of the parameters of (42) have a simple physical mean-
ing. For instance, te is the transparency coefficient of
the barrier for the electron, th =  is the transparency

coefficient of the barrier for the hole, (x') and

(x') are the probabilities of electron and hole tun-
neling from the right superconductor to the localized

state region, and (x') and (x') are the probabili-
ties of reaching the localized state by the quasi-particles
that move from the left superconductor. There are stan-
dard equations for these probabilities,

If the dephasing effect is ignored, the probabilities of
reaching the localized state are related by the simple
equations

where re, h are the reflection coefficients of electrons
and holes from the Vrect potential.

Conditions (4) and (5) introduced in the construc-
tion of our model help us to simplify calculations some-
what. As the localized state that effectively participates
in resonance current transport is situated approximately
in the middle of the barrier, x0 ~ d/2, we can assume that
the exponential functions exp(–λd) and exp(–2λx0)
have the same order of smallness. In addition, we
assume that the barrier height is fairly large and condi-

D3

D4 
 
  1

2λ
------ C4 λ κ±( ) β+

L*C1 λ κ+−( )–[ ] ,=

C1
m
κZ
------- de

← x'( )th Γ3 Γ2–( ) de
→* x'( )Γ2+[ ] ,–=

C2
m
κZ
------- de

→* x'( )te β+
L* β–

R*–( ) de
← x'( )β–

R*Γ1+[ ] ,=

C3
m
κZ
------- de

→ x'( )th Γ4 Γ1–( ) de
←* x'( )Γ1+[ ] ,–=

C4
m
κZ
------- de

→ x'( )β+
L*Γ2 de

←* x'( )te β–
R* β+

L*–( )+[ ] .=

te*

de
→

de
→*

de
← de

←*

te
4κλ e κd–

λ κ+( )2e λd– λ κ–( )2eλd–
--------------------------------------------------------------,=

de
→ x'( ) 2κ λ κ–( )eλ d x'–( ) λ κ+( )e λ d x'–( )–+[ ]

λ κ+( )2e λd– λ κ–( )2eλd–
-----------------------------------------------------------------------------------------,=

de
← x'( ) 2κe κd– λ κ–( )eλ x' λ κ+( )e λ x'–+[ ]

λ κ+( )2e λd– λ κ–( )2eλd–
---------------------------------------------------------------------------------.=

de
→ x'( )rh de

→* x'( )– thde
← x'( ),–=

de
← x'( )rh de

←* x'( )– thde
→ x'( ),–=
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tion (19) is therefore satisfied. The Green functions
with an accuracy to terms on the order of exp(–2λd)
inclusive are then given by the equations

(43)

(44)

(45)

G11
0 x x0,( ) m

λ
---- λ x x0––( )exp–≈

– t 2 λ x x0–( )( )
Γ3Γ4 Γ1Γ2–

Γ1Γ2
-----------------------------exp

+ λ x x0+( )–( )
λ0 κ–
λ0 κ+
---------------

4κλ 0

λ0
2 κ2–

----------------- 1
Γ1
-----+ 

 exp

+ λ 2d x– x0–( )–( )
λ0 κ–
λ0 κ+
---------------

4κλ 0

λ0
2 κ2–

----------------- 1
Γ2
-----+ 

 exp

+ λ 2d x– x0+( )–( )exp

× 2
λ0 κ–
λ0 κ+
--------------- 

 
2 8κλ 0 λ0

2 κ 2
+( )

λ0
2 κ 2

–( )
2

-----------------------------------
Γ1 Γ2+( )
Γ1Γ2

----------------------+
 
 
 

,

G21
0 x x0,( ) m

λ*
------ λ x x0+( )–( )

4κλ 0

λ0
2 κ 2

–
-----------------

β–
L

Γ1
-----exp–≈

+ λ 2d x– x0–( )–( )
4κλ 0

λ0
2 κ2–

-----------------
β+

R

Γ2
------exp

+ λ 2d x– x0+( )–( )exp

×
8κλ 0 λ0

2 κ2+( )

λ0
2 κ2–( )2

-----------------------------------
β+

RΓ1 β–
LΓ2+( )

Γ1Γ2
----------------------------------- ,

G12
0 x x0,( ) m

λ
---- λ x x0+( )–( )

4κλ 0

λ0
2 κ 2

–
-----------------

β+
L*

Γ1
---------exp≈

+ λ 2d x– x0–( )–( )
4κλ 0

λ0
2 κ2–

-----------------
β–

R*

Γ2
---------exp

+ λ 2d x– x0+( )–( )exp

×
8κλ 0 λ0

2 κ2+( )

λ0
2 κ2–( )2

-----------------------------------
β–

R*Γ1 β+
L*Γ2+( )

Γ1Γ2
----------------------------------------- ,

G22
0 x x0,( ) m

λ*
------ λ x x0––( )exp≈

– t 2 λ x x0–( )( )
Γ3Γ4 Γ1Γ2–

Γ1Γ2
----------------------------- 

 exp
JOURNAL OF EXPERIMENTAL 
(46)

These equations are valid if the condition Γ1Γ2 ≠ 0 is
satisfied in the denominator Z of coefficients (42). We
considered the situation with Γ1Γ2 = 0 separately; it was
found that the contribution of such states to the reso-
nance current was zero in equilibrium DID junctions.

Beenakker and van Houten [13] included dephasing
in the derivation of the dispersion equation that related
energy to the macroscopic phase and localized state
parameters. Obtaining equally accurate results with
Green functions (43)–(46) only requires taking dephas-
ing into account in the Fermi momenta of interlayer
quasi-particles that appear in the m/λ and m/λ* multi-
pliers. Since it is assumed that ω/V0 ! 1, the Fermi
momenta of electrons in a normal material can approx-
imately be described by the equation

(47)

where

Accordingly, for holes, the equation complex conjugate
to (47) can be used.
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Abstract—We consider the question of the existence of nonradial solutions of the Ginzburg–Landau equation.
We present results indicating that such solutions exist. We seek such solutions as saddle points of the renormal-
ized Ginzburg–Landau free-energy functional. There are two main points in our analysis: searching for solu-
tions that have certain point symmetries and characterizing saddle-point solutions in terms of critical points
of certain intervortex energy function. The latter critical points correspond to forceless vortex configurations.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Ginzburg–Landau equation describes, among
other things, macroscopic stationary states of superflu-
ids, Bose–Einstein condensation, and solitary waves in
plasmas. In recent years, it has become a subject of
active mathematical research (see monographs [1–3]
and reviews [4–7] for some of the recent references).
This equation is simple to write,

(1.1)

where (in the case of the entire plane R2) ψ: R2  C,
with the boundary condition

(1.2)

but not easy to analyze. In fact, so far only radially sym-
metric solutions, i.e., solutions of the form ψn(x) =
fn(r)einθ, where r and θ are polar coordinates for x ∈  R2,
are known for (1.1) and (1.2) (see [8–17]). Solutions ψn

are called n vortices. We note that n = degψn , where
degψ, the degree (or vorticity) of ψ (satisfying (1.2)) is
the total index (winding number) at ∞ of ψ considered
as a vector field on R2, i.e.,

for sufficiently large R.
The existence and properties of the vortex solutions

were established only recently. The known facts are as
follows.

∆ψ– ψ 2 1–( )ψ+ 0,=

ψ 1 as x ∞,

degψ := 
1

2π
------ argψ( )d

x R=

∫

¶ This article was submitted by authors in English.
1063-7761/04/9905- $26.00 © 21090
(i) Existence and uniqueness (modulo symmetry
transformations and in a class of radially symmetric
functions) [10–13].

(ii) Stability for |n| ≤ 1 and instability for |n| > 1
([13], earlier results on stability for the disc are due
to [15–17]).

(iii) Uniqueness of ψ±1 (again, modulo symmetry
transformation) in a class of functions ψ with degψ =

±1 and  < ∞ [16].

Therefore, the next question is: Are there nonradi-
ally symmetric solutions?

In this paper, we present results indicating that such
solutions exist. There are two key ingredients in our
analysis. First, we characterize nonradially symmetric
solutions as critical points of the intervortex energy
function described below (see also [18]). Second, we
seek solutions having certain point symmetries. The
latter fact reduces the number of free parameters
describing such solutions to one (the size of the corre-
sponding polygon of vortices).

Solutions breaking the rotational symmetry were
found to exist in the case of the Ginzburg–Landau equa-
tion in the ball BR = {x ∈  R2 | |x| ≤ R} with the bound-
ary condition  = einθ and |n| ≥ 2 (see [1, 2], The-

orem IX.1). However, in the case of the ball, there is an
external mechanism leading to the symmetry breaking:
the boundary condition. It repels vortices, forcing their
confinement. On the other hand, the energy is lowered
by breaking up multiple vortices into (+1)- (or (−1)-)
vortices and merging vortices of opposite signs. Thus,
for R that are not very small, the lowest energy is
reached by a configuration of |n| vortices of vorticities

ψ 2 1–( )2

∫

ψ ∂BR
004 MAIK “Nauka/Interperiodica”
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±1 depending on the sign of n, which, obviously, is not
rotationally symmetric.

This paper is organized as follows. In Sections 2
and 3, we review some material in [13]: the variational
formulation of the problem and some specific proper-
ties of vortex solutions. In Section 4, we define the int-
ervortex energy and discuss its properties. In particular,
we discuss the correlation term in (the upper bound on)
the expansion of the intervortex energy for large inter-
vortex separations and a definition of G-symmetric vor-
tex energies, where G is a subgroup of the symmetry
group of (1.1).

In Section 5, we consider point symmetries (CNv),
present one of our main results, Theorem 5.1, on the
existence of critical points for CNv-symmetric intervor-
tex energies, and derive some general relations for
those energies. In Section 6, we prove Theorem 5.1 and
discuss some other cases.

Finally, in our five appendices all the hard analytic
and numerical work is concentrated. In these appendi-
ces, we compute various asymptotic expansions
beyond the leading order. We feel that these appendices
are of interest on their own because they address rather
subtle computational issues.

2. RENORMALIZED GINZBURG–LANDAU 
ENERGY

It is a straightforward observation that Eq. (1.1) is
the equation for critical points of the functional

(2.1)

Indeed, if we define the variational derivative ∂ψ%(ψ)
of % by

(2.2)

for any path ψλ such that ψ0 = ψ and  = ξ,

then the left-hand side of Eq. (1.1) is equal to

 =  for %(ψ) given by (2.1).

Equation (2.1) is the celebrated Ginzburg–Landau
(free) energy. However, there is a problem with it in our
context. It is shown in [13] that, if ψ is an arbitrary
C1-vector field on R2 such that |ψ|  1 as |x|  ∞
uniformly in  = x/|x| and degψ ≠ 0, then %(ψ) = ∞.

We renormalize the Ginzburg–Landau energy func-
tional as follows (see [13]). Let χ(x) be a smooth posi-

% ψ( )
1
2
--- ∇ψ 2 1

2
--- ψ 2 1–( )2

+ 
  .∫=

Re ξ∂ψ% ψ( )∫ λ∂
∂

% ψλ( )
λ 0=

=

λ∂
∂ ψλ

λ 0=

∂ψ% ψ( ) ∂ψ% ψ( )

x̂
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tive function on R2 vanishing at the origin and converg-
ing to one at infinity. We define

(2.3)

where

(2.4)

Properties of the renormalized energy functional
%ren(ψ) are investigated in [13].

In this paper, we take

(2.5)

for R very large compared to all length scales appearing
below.

3. VORTICES

It is shown in [10–13] that, for any n, Eq. (1.1) has a
solution, unique modulo symmetry transformations, of
the form

(3.1)

where fn , with 1 > fn ≥ 0, monotonically increase from
fn(0) = 0 to 1 as r increases to ∞. For n = 0, fn(r) = 1. For
|n| > 0, fn(r) does not admit an explicit expression.
These are the n vortices mentioned in the Introduction.
Of course, each solution ψn generates a one-parameter
(for n = 0) or a three-parameter (for |n| > 0) family of
solutions of (1.1). The latter are obtained by applying
symmetry transformations to ψn .

The function fn(r) in (3.1) satisfies the ordinary dif-
ferential equation

(3.2)

The (self) energy of the n vortex is given by En, R :=
%ren(ψn). To compute En, R , we use the fact that, if ψ is

a solution of (1.1), then, due to the formula  =

−  of integration by parts, we have

(3.3)

%ren ψ( )

=  1
2
--- ∇ψ 

2 deg ψ( )
 

2

 
r

 
2

 -------------------- χ – F ψ 
2 ( ) +  

  x 
2 , d ∫

F u( )
1
2
--- u 1–( )2.=

χ x( )
1 for x R R 1– ,+≥
0 for x R≤




=

ψn x( ) f n r( )einθ,=

1
r
---

r∂
∂

r
∂ f n

∂r
-------- 

 –
n2

r2
----- f n 1 f n

2–( ) f n–+ 0.=

∇ψ 2∫
ψ∆ψ∫

%ren ψ( )

=  1
2
--- 1 ψ 

2 1
2
--- 1 ψ 

2 – ( ) 
2

 –
deg ψ( )

 

2

 
r

 
2

 -------------------- χ ––   
  ∫  .
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Using this formula for ψ = ψn and using the asymptotic
expression (which can be easily derived from (3.2);
see [19, 20] for the general case)

(3.4)

for r @ 1, we obtain

(3.5)

The constant c(n) can be computed numerically (which
is not quite trivial; see Appendix 1), which yields

(3.6)

The asymptotic form of c(n) for n @ 1 is found analyt-
ically in Appendix 2.

4. INTERVORTEX ENERGY

In this section, we introduce and discuss a key con-
cept of the intervortex energy (see also [4, 18]). We
begin with some definitions.

By a vortex configuration , we understand a pair
( , ), where  = (a1, …, aK), aj ∈  R2, and n = (n1, …,
nK), nj ∈  Z, for some K ≥ 1 (positions of the vortex cen-
ters and their vorticities). We consider once-differentia-
ble functions ψ: R2  C satisfying   1 as
|x|  ∞. We say that the vortex configuration of ψ is

 = ( , ), confψ = , if ψ has zeros (only) at a1, …,
aK with the respective local indices n1, …, nK; i.e.,

(4.1)

for any contour γj containing aj , but not the other zeros
of ψ, and for j = 1, …, K. (Strictly speaking, we have to
specify the phase factor, or rotation angle, for each vor-
tex; but these play no role in our considerations and are
not displayed or mentioned in what follows.) We now
define

(4.2)

We expect that ER( ) > –∞. An argument supporting
this statement is presented in [18]. Of course, for
bounded domains, this inequality is trivial. We call
ER( ) the energy of the vortex configuration . It plays
a central role in our analysis. We also note that E( )
serves as a Hamiltonian for the vortex dynamics in the
adiabatic approximation (see [21]).

In what follows, we keep the vortex indices  fixed
and write ER( ) for ER( ). It is clear intuitively that a
minimizer in (4.2) exists if and only if ∇ ER( ) = 0 (the

f n r( ) 1 n2

2r2
------- O

1

r4
---- 

 +–=

En R, πn2 R
n
----- 

 ln c n( ) O
1

R2
----- 

  .+ +=

c 1( ) 0.376π, c 2( ) 0.535π,= =

c 3( ) 0.577π, c 5( ) 0.615π.= =

c
a n a

ψ

c a n c

argψ( )d

γ j

∫ 2πn j=

ER c( ) inf %ren ψ( )  confψ c={ } .=

c

c c
c

n
a c

a
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force acting on the vortex centers is zero). However, to
establish this fact is not so easy.

Theorem 4.1. If there is a minimizer for variational
problem (4.2), then this minimizer satisfies Ginzburg–
Landau equation (1.1). 

Proof. Let ψ be a minimizer for (4.2). Because we
have

for any differentiable function ξ: R2  C vanishing
together with its gradient sufficiently fast at ∞ and van-
ishing at the points a1, …, am , we conclude that ψ sat-
isfies (1.1) for x ≠ a1, …, am . On the other hand, because

ψ ∈  , we have –∆ψ + (|ψ|2 – 1)ψ ∈  .
Hence, –∆ψ + (|ψ|2 – 1)ψ = 0 on R2.

Arguments and results in [18] (see, in particular,
Theorem 3.2) justify the following conjecture.

Conjecture 4.2. ∇ ER( 0) = 0 for some 0 (with 
fixed) if and only if there is a minimizer for problem (4.2)
at the configuration 0 and, consequently, due to Theo-
rem 4.1, if and only if Ginzburg–Landau equation (1.1)
has a solution with the configuration 0.

The goal of this paper is to find forceless vortex con-
figurations, i.e., configurations  such that

(4.3)

For this, we study the intervortex energy ER( ) for very
small and very large intervortex separations.

Let

For da large, we prove in Section 7 the upper bound

(4.4)

where

,

and A( ) is a homogeneous function of degree –2, pro-
vided that  satisfies ∇ H( ) = 0. We recall that En, R =
%ren(ψn) is the self-energy of the n vortex (see (3.5)) and
H( ) is the energy of the vortex pair interactions,

(4.5)

with aij = ai – aj .

0 λ∂
∂

%ren ψ λξ+( )
λ 0=

=

=  Re ξ ∆ψ– ψ 2 1–( )ψ+( )∫

H1
loc

R
2

( ) H 1–
loc

R
2

( )

a a n

a

a

c

∇ ER a( ) 0.=

a

da ai a j–
i j≠
lim for a a1 … aK, ,( ).= =min

ER a( ) ER
0( ) A a( )– O da

8/3–( ) O R 2–( ),+ +≤

ER
0( ) Eni R,

i 1=

K

∑ H
a
R
--- 

 +=

c
a a

a

H a( ) π nin j aij ,ln
i j≠
∑–=
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The correlation term A( )is of importance for us
here. We have an explicit expression for it (see
Eqs. (A.3.4) and (A.3.5)) and compute it explicitly in
the cases of interest. We conjecture that A( ) > 0
always.

We observe that the upper bound (4.4) with the

remainder O( ) instead of –A( ) + O( ) is
obtained by choosing the Hartree-type function

describing “independent” vortices. For asymptotically
forceless configurations, i.e., ones with ∇ H( ) = 0, this
estimate can be somewhat improved, but in order to

move even to the remainder estimate O( ) in the
latter case, one has to refine this function and include
the leading correlations.

Remark 4.3. As   ∞, the important asymp-
totic expression

(4.6)

was proved in [18] with Rem = O( ) in general

and Rem = O( ) if ∇ H( ) = 0.

As mentioned in the Introduction, our second idea is
to consider solutions of (1.1) that are invariant under
point group transformations. Consequently, we intro-
duce intervortex energy functions invariant under such
groups. We consider a subgroup G of the total symme-
try group

(where T(n) is the group of translations of Rn) of Ginz-
burg–Landau equation (1). For a G-invariant vortex
configuration  = ( , ) (i.e., invariant under the spa-
tial part of G), we define the G-invariant vortex interac-
tion energy ER, G( ) as

(as before, we fix  and omit it from the relation).

Theorem 4.1 and Conjecture 4.2 obviously extend to
the G-symmetric situation. In particular, we have the
following conjecture:

If 0 is a critical point of ER, G( ) (i.e., ∇ ER, G( 0) =
0), then Eq. (1.1) has a G-invariant solution.

Our goal in what follows is to find critical points of
the G-invariant intervortex energy ER, G( ) for appro-

a

a

da
1– a da

8/3–

ψ 0( ) x( ) ψn j
x ai–( )

i 1=

K

∏=

a

da
2– daln

da

ER a( ) Eni R,

i 1=

K

∑ H
a
R
--- 

  Rem+ +=

da
2– daln

da
2– a

Gsym O 2( ) T 2( ) U 1( )××=

c a n

a

ER G, a( )

=  inf %ren ψ( )  confψ = c ψ is G-invariant,{ }

n

a a a

a
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priate groups G, namely, point groups CNv (see the next
section).

5. POINT SYMMETRIES

We seek solutions of Eq. (1.1) having symmetry
groups CNv . These groups consist of rotations around
the origin by angles given by integer multiples of 2π/N
and reflection(s) in one (and therefore N) line(s) pass-
ing through the origin. Such solutions are determined
by fixing vortex configurations that have the desired
symmetry group. We consider vortex configurations
consisting of N m vortices uniformly spaced on a circle
of radius a and a single (–k) vortex at the center of the
circle, which is placed at the origin. Several such con-
figurations and their symmetry lines are shown in
Fig. 1. Such configurations have the symmetry group
CNv . The symmetry group CNv determines such a con-
figuration uniquely up to the vortex values m and k and
the size a.

As noted at the end of the previous section, we rely
on the argument that CNv-symmetric solutions are in
one-to-one correspondence with critical points of the
CNv-symmetric intervortex energy

(hereinafter, we consider only CNv-symmetric intervor-
tex energies, and often omit the subscript CNv). Our
goal is to find critical points of ER( ). One of the cen-
tral results in this paper is the following theorem.

Theorem 5.1. There exist critical points of
 among the configurations  described above

for the parameter values

.

ER c( ) ER CNv, c( )≡

c

ER CNv, c( ) c

N m k, ,( ) 2 2 1, ,( ) and 4 2 3, ,( )=

N = 4 N = 4

N = 2 N = 3

Fig. 1. Symmetric configurations and their reflection lines.

m m

m m

m

m

m

m

m

–k

–k
–k
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a
a

a α

+2 +2– 1

+1

+1 +1

+1

+1 +1 +1 +1– 1 – 1

Fig. 2. 
This theorem is proved in Section 6. In the rest of
this section, we establish general properties of the
energy  and find a necessary condition on the

parameters N, m, and k.

We observe that, if  is a configuration described
above, then

(5.1)

where  = a/|a| (again, we do not display the parame-
ters ). In this case, it therefore suffices to investigate

the energy  as a function of one variable, the scale
parameter a.

We note that, if m ≥ 2, then there is a continuum of
configurations, labeled by a parameter α > 0, with the
same symmetry group CNv as a given configuration,
which have the given configuration as the limit as
α  0. For instance, for m = 2, each m-vortex can be
split into a pair of 1-vortices with all pairs lying either
on the circle or on the lines joining their parent m-vor-
tices to the origin at equal distance α to those m-vorti-
ces (see Fig. 2).

By symmetry, the energy of the resulting configura-
tions has a critical point at α = 0. A simple analysis of
the breakup of a 2-vortex shows that this critical point
is a local maximum. Indeed, e.g., for m = 2, it was
shown in [13] that the linearization of Eq. (1.1) (the
Hessian of the energy functional) around the 2-vortex
solutions ψ2 = f2(r)e2iθ has exactly one negative mode
(an eigenfunction corresponding to a negative eigen-
value) of the form ξ = e4iϕξ4(r) + ξ0(r), where ξk(r) are
some real functions. Then, the function ψ2 + λξ  for suf-
ficiently small |λ| lowers the energy of ψ2. On the other
hand, this function has two simple zeros (i.e., of vortic-
ities +1) in a vicinity of x = 0. Indeed, in the complex
notation z = x1 + ix2  x = (x1, x2), ψ2(z) = bz2 + O(z3)
and ξ(z) = c + O(z) for some positive numbers b and c
in the neighborhood of z = 0. Hence, ψ2(z) + λξ(z) =
bz2 + λc + O(z3) + O(λz), which therefore has two sim-

ER CNv, c( )

c

∇ a j
ER a( ) â j∂ a j

ER a( )=

and ∇ a j
H a( ) â j∂ a j

H a( ) j,∀=

â
n

ER a( )

                                                
JOURNAL OF EXPERIMENTAL A
ple zeros z± = ±  + O(λ3/4) in the neighborhood of

z = 0. This shows in particular that splitting of a 2-vor-
tex lowers the energy.

Proposition 5.2. Let a configuration , as
described above, be asymptotically forceless, i.e.,

 = 0. Then,

(5.2)

Proof. By virtue of (4.1), the equation  = 0
for the configuration described is equivalent to the
equation

(5.3)

Because

(5.4)

the latter equation implies that  = 0, which is
equivalent to (5.2) due to the relation

(5.5)

We note that Eq. (5.3) implies that, if  = 0,

then  = 0 for all  of forms = s , s > 0. The
latter fact implies another proof of (5.2). Indeed,
H( /R) behaves as const · lnR + const for large R.
Hence, for an asymptotically force-free configuration
(i.e., the one with  = 0), the constant in front of
lnR is independent of the scale parameter a. This asymp-
totic scale invariance implies that the leading term

for the configuration with a = 0 (i.e., when all the vor-
tices collapse to the center of the circle) is equal to the
leading term

for the configuration with a very large a, and therefore
the vortices in such a configuration can be treated as

λc
b

------

c0

∇ H a0( )

k
1
2
--- N 1–( )m.=

∇ H a0( )

a∂
∂

H a0( ) 0.=

H a( ) H
a
a
--- 

  π nin j a,ln
i j≠
∑–=

nin ji j≠∑

nin j

i j≠
∑ 2Nmk– N N 1–( )m2.+=

∇ H a0( )
∇ H a( ) a a a0

a

∇ H a( )

π Nm k–( )2 Rln

π Nm2 k2+( ) Rln
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virtually independent (see (4.4)). Hence,

which implies (5.2).
We observe that Eq. (5.2) is equivalent to the rela-

tion

(5.6)

Indeed, this follows from Eqs. (5.4) and (5.5).
Relation (5.2) between k and m is assumed in what

follows.
For the configuration above, we now introduce the

energy differences

(5.7)

where we recall that Nm – k is the total vorticity of the
configuration in question and En, R is the energy of a sin-
gle vortex of vorticity n, i.e., En, R = %ren(ψn). We let ∆En

denote the energy difference for this vortex,

(5.8)

Clearly,

(5.9)

This, together with (3.5), implies that (modulo O(R–2))

(5.10)

On the other hand, for very large intervortex dis-
tances, Eqs. (5.7), (5.6), (4.6), and (3.5) imply that
(modulo O(R–2) + o(a–2))

(5.11)

where C = A( /a). We compute H( ) for the given con-
figuration. Because the distances between the vortices

on the circle are 2asin , 2asin , …, 2asin ,

we find

(5.12)

This equation, together with Eq. (5.11), yields, for large
intervortex distances,

(5.13)

modulo O(R–2) + o(a–2).

Nm k–( )2 Nm2 k2,+=

H
a
R
--- 

  H
a
a
--- 

  H a( ), independent of a.= =

∆E a( ) := ER a( ) π Nm k–( )2 R,ln–

En R, πn2 R ∆En.+ln=

ER 0( ) ENm k– R, and ∆E 0( ) ∆ENm k– .= =

∆E 0( ) π Nm k–( )2 Nm k–( ) c Nm k–( ).+ln–=

∆E a( ) π Nm2 m k2 kln+ln( )–≤

+ Nc m( ) c k( ) H a( ) Ca 2– ,–+ +

a a

π
N
---- π

N
---- N 1–( )π

N
---------------------

H a( ) πm2N 2 kπ
N
------sin 

  .ln
k 1=

N 1–

∑–=

∆E a( ) π Nm2 m k2 kln+ln( )– Nc m( )+≤

+ c k( ) πm2N 2 kπ
N
------sin 

  Ca 2––ln
k 1=

N 1–

∑–
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In the next section, we establish the existence of
points  such that  = 0 for given configura-

tions by comparing  and  for large inter-

vortex distances a.

6. SIMPLEST CASES: PROOF OF THEOREM 5.1

In this section, we consider some special, in fact the
simplest, cases of the vortex configurations introduced
in Section 5. We recall that every such configuration
consists of a vortex of vorticity –k placed at the origin
and N vortices, each of vorticity m, distributed equidis-
tantly on a circle of radius a with the center at the ori-
gin. Such a configuration is fixed by the symmetry
group CNv , and hence the only remaining free parame-
ter is the radius of the circle a. With a slight abuse of
notation, we write ∆E(a) = .

Proof of Theorem 5.1. The correlation coefficient C
in Eq. (5.13) is computed for the specified configura-
tions in Appendix 3:

(6.1)

(We expect that, for general (N, m, k), k = (N – 1)m,

C is of the form  · (integer).) Thus, ∆E(a) monotoni-

cally increases to

(6.2)

Moreover, due to (3.6), we have

(6.3)

for the configurations (N, m, k) = (2, 2, 1), (4, 2, 3)
(explicit computations are given below). Hence, ∆E(a)
has at least one minimum for these configurations as
claimed.

Computation of (6.3) 

(a) The case N = 2, m = 2, and k = 1 (we recall that
 ≡ , etc.). We have

(6.4)

On the other hand, Eq. (5.11) implies that, for very
large a,

(6.5)

a0 ∇ E a0( )

∆E 0( ) ∆E a( )

∆E a( )

C 8π 20π,=

for N m k, ,( ) 2 2 1, ,( ) 4 2 3, ,( ).,=

1
2
---

π
4
---

∆E a( ) monotonically increases to

∆E ∞( ) as a ∞.

∆E ∞( ) ∆E 0( )<

ER a( ) ER a( )

∆E 0( ) ∆E3 0( )≡ c 3( ) 9π 3ln– 9.31π.–= =

∆E a( ) c 1( ) 2c 2( ) 8π 2ln–( ) 8π 2 Ca 2––ln–+≤

+ O
aln

a4
-------- 

  9.64π– Ca 2– O
aln

a4
-------- 

  .+–=
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(b) The case N = 4, m = 2, and k = 3 (see Fig. 1). In
this case,

(6.6)

On the other hand, Eq. (5.11) implies that, for large a,
we have the asymptotic behavior

(6.7)

Thus, (6.3) is shown.

Remark 1. We examine the case where m = 1, i.e.,
the vortices on the circle are simple. In this case,
k = (N – 1)/2. Therefore, in the simplest case where
N = 3 and k = 1, we take the (m = 1)-vortices as equally
spaced (Fig. 3).

Equations (4.9), (4.12), and (3.6) imply that, in this
case, ∆E(0) < ∆E(∞) (in fact, ∆E(0) = ∆E2(0) = –2.238π
and ∆E(∞) = –1.792π). Numerical computations show
(see Appendices 3 and 4) that ∆E '(∞) > 0 and ∆E '(0) >
0 (in fact, for a @ 1, ∆E(a) = 4c(1) – 3πln3 – Ca–2 =
−1.792π – Ca–2 with C > 0). In this case, we cannot
therefore conclude that a critical point of ER(a) exists.
But a more careful numerical analysis indicates that
there probably exist two extremal points of ER(a), a

minimum and a maximum, for 1/  ≤ a ≤ 2. Similar
configurations for large (and odd) N are analyzed in
Appendix 5.

Remark 2. The case where N = 2, m = 2, and k = 1
is the limiting case of N = 4, m = 1, and k = 1 (see
Fig. 2). All three configurations have the same symme-
try group C2v generated by rotation by π and reflections
in the vertical and horizontal axes passing through the
vortex –1. After the symmetry group is fixed, the sec-
ond and third configurations have two free parameters:
the scale parameter a and the angle/distance α between
two of its neighboring 1-vortices (see Fig. 3). As α 
0, the second and third configurations are continuously
transformed into the first one.

∆E 0( ) ∆E5 0( ) c 5( ) 25π 5ln– 39.62π.–= = =

∆E a( ) 4c 2( ) 16π 2ln–( ) c 3( ) 9π 3ln–( )+≤

– 32π 2 Ca 2– O
aln

a4
-------- 

 +–ln

=  40.44π– Ca 2– O
aln

a4
-------- 

  .+–

2

–1

+1 +1

+1

a

Fig. 3. (See Fig. 1; a critical value of the parameter a is not
specified, but its existence is established).
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7. UPPER BOUND
ON THE INTERVORTEX ENERGY

In this section, we prove inequality (4.4) for the
energy  of vortex configurations.

Theorem 7.1. We have the estimate

(7.1)

where  =  + H  and

(7.2)

Moreover, if  = 0, then estimate (7.2) can be
improved as

(7.3)

where , the correlation term, is a homogeneous
degree-(–2) function explicitly given by the condition-
ally convergent integral

(7.4)

(where  = 0 is assumed) with

(7.5)

Before proceeding to the proof of these estimates,
we show that the integral in the right-hand side of (7.4)
is conditionally convergent in the forceless case

 = 0. Because the integrand has singularities at
the points a1, …, aK, it suffices to show that the integrals
over the discs D(ak, ε) centered at ak and of a radius
ε > 0 converge. We consider the integral over the disc
D(ak, ε). Let

(7.6)

Because the function ϕ(k)(x) is harmonic in D(ak, ε), it
has an expansion around the point ak of the form

(7.7)

where rk and θk are the polar coordinates of xk = x – ak

and cm and θ(m) are some constants.

ER a( )

ER a( ) ER
0( ) Rem O max a j

2/R2( ),+ +≤

ER
0( ) Eni R,k 1=

k∑ a
R
--- 

 

Rem
O da

2–( ) if ∇ H a( ) 0,=

O da
2– daln( ) otherwise.




=

∇ H a( )

Rem A a( )– O da
8/3–( ) O

1

R2
----- 

  ,+ +=

A a( )

A a( )
1
4
--- ∇ϕ 0

4 ∇ϕ j
4

j

∑–∫=

∇ H a( )

ϕ0 ϕ j, ϕ j x( )
j

∑ n jθ x a j–( ),= =

θ x( )   is  the polar angle of  x R 
2

 . ∈

∇ H a( )

ϕ k( ) x( ) ϕ j x( ).
j k≠
∑=

ϕ k( ) x( ) cmrk
m m θk θ m( )–( ),cos

m 0=

∞

∑=
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In the forceless case,

(7.8)

and, therefore,

(7.9)

where ck = O(1/ ) is a constant, rk = |xk|, and x⊥  =
(−x2, x1). Now, writing

(7.10)

where

(7.11)

and using (7.9), we see that the singular part of the inte-
gral above is

(7.12)

Therefore, the integral in the right-hand side of (7.4)
is conditionally convergent, in the sense that it is well
defined as a limit of similar integrals with small discs
around the points a1, …, ak excised, as the radii of those
discs tend to 0.

Proof of Theorem 7.1. We prove the upper
bound (7.1) using the variational inequality

(7.13)

valid for any function ψ having the given vortex config-
uration , and by showing that, for an appropriate ψ,
%R(ψ) is of the form of the right-hand side of (7.6).
Namely, we show that

(7.14)

where Rem is given by either (7.2) or (7.3), as appropri-
ate. Then, (7.1) follows from (7.13) and (7.14).

We begin with proving estimate (7.1) with remain-

der (7.2). Let ψi(x) = , where xi = x – ai , and let

∇ϕ k( ) ak( )
1

2πnk

-----------J ∇ ak
H a( )– 0,= =

∇ϕ k( ) x( )

=  ck xk 2θk xk
⊥ 2θksin–cos( ) O

rk
2

da
3

-----
 
 
 

,+

da
2

∇ϕ 4 ∇ϕ k
4–( )

D ak ε,( )

∫  = 2 ∇ϕ k
2α k α k

2+( ),

D ak ε,( )

∫

α k := 2∇ϕ k ∇ϕ k( )⋅ ∇ϕ k( )
2,+

4 ∇ϕ k
2∇ϕ k ∇ϕ k( )⋅

D ak ε,( )

∫

=  4
nk

2

rk
2

----- ck 2θksin O rk( )+–( )
D ak ε,( )

∫ O
1
rk

---- 
  ∞.<

D ak ε,( )

∫=

ER a( ) %R ψ( ),≤

a

%ren ψ( ) ER
0( ) Rem,+=

ψ
ni( )

xi( )
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fi ≡ |ψi|. We consider the class of functions ψ of the form

ψ = f  with a function f such that

(7.15)

where n = 2 if  and n = 1 otherwise and ri = |x –
ai |, and

(7.16)

where

with the corresponding estimates of their first deriva-
tives.

We construct a function satisfying (7.15) and (7.16).
Let D(z, ρ) denote the disc of radius ρ centered at a

point z. Let  be a smooth partition of unity, i.e.,

 = 1, having the properties

and

Then, the function f =  satisfies (7.15) and
(7.16). Indeed, (7.13) is obvious, while (7.14) follows
from the relation

(7.17)

We prove the following lemma.
Lemma 7.1. Let ψ satisfy (7.15), (7.16). Then,

(7.18)

where  is given in Theorem 7.1 and Rem is given
by (7.2).

Proof. Let Dj = D(aj, r0), a disc with the center at aj

and of radius r0 = /3. We decompose the energy func-
tional as

(7.19)

where e(ψ) is the energy density,

. (7.20)

e
iϕ0

f f i O
1

rda
n

------- 
  if r j ! da+= , i,∀

∇ H a( )

f 1 O
1

d2 x a,( )
------------------ 

  if d x a,( ) @ 1,+=

d x a,( ) x a j– ,
j

lim= min

χ j{ } 1
K

χ jl 1=
K∑

B a j
1
3
---da, 

  suppχ j j∀⊂

∇ nχ j O da
n–( ), n 0 1 2., ,= =

f jχ j∑

f j 1 O r j
1–( ).+=

%R ψ( ) ER
0( ) Rem O

1

R2
----- 

  ,+ +=

ER
0( )

da

%R ψ( ) e ψ( )

D j

∫
j

∑ e ψ( ),

DR\∪ D j

∫+=

e ψ( )
1
2
--- ∇ψ 2 1

4
--- ψ 2 1–( )2

+=
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Let e1(ϕ) =  and  = f(ψ) – .

Equation (4.6) implies

(7.21)

Next, estimates (7.17) and

(7.22)

give

(7.23)

Together with Eq. (7.10), this yields

(7.24)

Next, in the region Di , we have ψ = fi , where fi ≡
|ψi |. Expansion (7.9) implies that

(7.25)

Using this relation, we obtain

where R = . Expanding

(7.26)

and using that  = O(d(x, )–2), ∇ϕ i(x) =

O( ), and ∇ϕ i = 0, we obtain

In the forceless case, we can improve this estimate

1
2
--- ∇ϕ 2 f ψ( )〈 〉 f ψk( )

k∑

e ψ( )

DR\∪ Dk

∫ e1 ϕ0( )

DR\∪ Dk

∫ O x a,( ) 4–d( ).

DR\∪ Dk

∫+=

∇ ψ i O r j
3–( )=

e1 ϕ i( )

DR\∪ Dk

∫ e ψi( ) O r0
2–( ).+

DR\∪ Dk

∫=

e ψ( )〈 〉
DR\∪ Dk

∫

=  
1
2
--- ∇ϕ i∇ϕ j O r0

2–( ).+
DR\∪ Dk

∫
i j≠
∑

e
iϕ0

∇ϕ i∇ϕ i( )

Di

∫ 0.=

e ψ( )

Di

∫ e ψi( )

Di

∫ e1 ϕ i( )( )

Di

∫ R,+ +=

f i
2 1–( )α iDi∫

∇ϕ i( ) ∇ϕ i( ) ai( ) O
ri

da
2

----- 
 +=

∇ϕ i( ) x( ) 2 a

ri
1– 1 f i

2–( )
Di∫

R O
r0ln

da
2

---------- 
  .=
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using relation (7.9) again to show that, as in (7.12),

This gives

Finally, we observe that, due to (7.15),

where

Collecting the estimates above, we arrive at

(7.27)

which, together with (7.9) and (7.16), yields

(7.28)

where Rem is given in (7.2) and

with

Now, by definition of the cutoff function χ (χ ≥ 0,
χ = 1 for |x| ≥ R), we have

, (7.29)

where n = degψ. We first compute the first integral in
the right-hand side.

f i
2 1–( )∇ϕ i∇ϕ i( )

Di

∫

=  f i
2 1–( ) ci 2θi O

ri

da
3

----- 
 +sin– 

 

Di

∫

=  f i
2 1–( )O

ri

da
3

----- 
 

Di

∫ O
r0

da
3

----- 
  .=

R O
r0

da
3

----- 
  if ∇ϕ i ai( ) 0.= =

1
2
--- ∇ϕ k( )

2

Dk

∫ e1 ψ j( ) IDk
+

Dk

∫
j k≠
∑=

=  e ψ j( ) IDk
O r0

2–( ),+ +∫
j k≠
∑

ID := 
1
2
--- ∇ϕ i ∇ϕ j.⋅

D

∫
i j≠
∑

e ψ( )〈 〉
Dk

∫ IDk
O

r0ln

da
2

---------- 
  O

1

r0
2

---- 
  ,+ +=

%R ψ( ) E Rem,+=

E g
degψ( )2

n2
--------------------χ– 

 ∫=

g e ψ j( )
j

∑ 1
2
--- ∇ϕ i∇ϕ j.

i j≠
∑+=

E g

B 0 R,( )

∫ g
n

2r2
-------– 

 

B 0 R,( )c

∫+≤
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By definition of En, R and because ai ! R, we have

(7.30)

We now show that

(7.31)

We compute

(7.32)

where a = . Furthermore, changing the integration
variable as θ  z = eiθ and computing the residue, we
find

The last two equations yield (7.24). We also observe
that, up to a multiplicative constant, expression (7.24)
can be found from the symmetry considerations: the
invariance of the integral in the left-hand side under
translations (ai  ai + h and aj  aj + h ∀ h ∈  R2)
and rotations (ai  gai and aj  gaj ∀ g ∈  O(2))
implies that it depends only on |aij|. Its scaling proper-
ties under the dilations (ai  λai and aj  λaj ∀λ ∈
R) imply that it is a multiple of ln(|aij|/R).

Equations (7.30) and (7.31) imply that

(7.33)

Next, we estimate the second integral in the right-
hand side of (7.29). By Eqs. (7.17) and (7.22), we have

e ψi( )

DR

∫ e ψ
ni( )

( )
DR ai+

∫ Eni R, O
1

R2
----- 

  .+= =

IDR

1
2
--- ∇ϕ i∇ϕ j

DR

∫
i j≠
∑≡ πnin j

aij

R
-------- 

  .ln
i j≠
∑–=

∇ϕ i∇ϕ j

DR

∫

=  nin j
r a θcos–

r2 a2 2ar θcos–+
------------------------------------------- rd θ,d

0

R

∫
0

2π

∫
aij

r a θcos–

r2 a2 2ar θcos–+
------------------------------------------- θd

0

2π

∫

=  
π
r
--- r2 a2–

2iar2
--------------- zd

z
r
a
---– 

  z
a
r
---– 

 
----------------------------------

z 1=

∫°–

=  
π
r
--- π

r
--- r2 a2–

r2 a2–
------------------+

2π
r

------
1 if r a,>
0 if r a.<




=

g

B 0 R,( )

∫ Eni R,∑ H
a
R
--- 

  O
1

R2
----- 

  .+ +=

g
1
2
--- ∇ϕ 0

2 O d x a,( ) 4–( ).+=
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Furthermore, expanding the terms ∇θ (x – aj) in ∇ϕ 0(x) =

∇θ (x – aj) around the point x, we obtain

(7.34)

where θ''(x) is the Hessian of θ(x). Choosing the origin
such that  = 0 eliminates the second term on the
right-hand side. (Otherwise, we could use, by an
explicit computation,

the integral of which over the exterior of the ball
B(0, R) vanishes.) Hence,

(7.35)

Estimates (7.28), (7.29), (7.33), and (7.35) imply (7.7)
with Rem given in (7.2).

Remark 7.3. The statement of Lemma 7.2
remains true for a wider class of functions defined by
replacing (7.7) by the condition

(7.36)

with the corresponding estimates of their first deriva-
tives, where n = 2 if ∇ H( ) = 0 and n = 1 otherwise.

To prove this, we write ψ in the region Di as ψ =

(fi + ξ), where fi ≡ |ψi |. Using relation (7.25) and

(7.37)

we obtain

(7.38)

n j∑

∇ϕ 0 x( ) n∇θ x( ) θ'' x( ) n ja j O
n ja j

2∑
d x a,( )3
-------------------

 
 
 

,+∑–=

n j∑ a j

θ'' x( )∇θ x( )
x

r4
----,–=

f
n2

2r2
-------– 

 

B 0 R,( )c

∫

=  O
n ja j

2∑
x a,( )4d

------------------
 
 
 

B 0 R,( )c

∫ O
n ja j

2∑
R2

-----------------
 
 
 

= .

f f i O
1

rda
n

------- 
  and Re e

iϕ0–
ψ f i–( ) θd

0

2π

∫+=

=  O
1

da
n 1+

----------- 
  if x ai–  ! da,

a

e
iϕ0

f j∇ϕ j∇ Imξ
D j

∫ n j f j θ∂
∂

Imξ
D j

∫ 0,= =

e ψ( )

Di

∫ e ψi( )

Di

∫ e1 ϕ i( )( )

Di

∫ R R',+ + +=
SICS      Vol. 99      No. 5      2004



1100 OVCHINNIKOV, SIGAL
where R is given above and

(7.39)

Using

and

due to (7.36) and that  +  – 1 = O( ), we find

(7.40)

We now proceed to proving estimate (7.4) with Rem
given by (7.3). First, we describe the class of test func-

tions for which we prove this estimate: ψ = f with

where we used definition (7.11) and where ηj are
smooth cutoff functions depending only on rj = |xj | (i.e.,
radially symmetric in the xj variables) satisfying

(7.43)

and

(7.44)

R' ∇ϕ 0
2 f i

2 1–+( ) f iReξ f i
2 Reξ( )2+





Di

∫=

+
1
2
--- ∇ϕ 0

2 ξ 2 1
2
--- ∇ξ 2 2∇ f i∇ Reξ+ +

+ f i∇ϕ i( )∇ Imξ Im ξ∇ϕ 0 ∇ξ⋅( )+

+
1
2
--- f i

2 1– 2 f iReξ+( ) ξ 2 1
4
--- ξ 4+





.

ξ O
1

rda

------- 
 =

Reξ θd

0

2π

∫ O
1

da
2

----- 
  in D j=

∇ϕ i
2 f i

2 ri
4–

R' O
lnr0

da
2

--------- 
  .=

e
iϕ0

f  = 

f j
1
2
--- f j

1– α jη j in D a j
1
3
---da, 

  j, 7.41( )∀–

1
1
2
--- ∇ϕ 0

2– O d x a,( ) 4–( )+

in D a j
1
4
---Da, 

 
j

∪ 
 

c

,
7.42( )











B a j
1
2
---da, 

  \B a j 2da
γ,( ) suppη j⊂

B a j
1
2
---da, 

  \B a j da
γ,( )⊂

∇ nη j O da
γn–( ), n 0 1 2,, ,= =
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for γ =  (not optimal). (The ’s in (7.41) play no

important role and are chosen purely with a view of
simplifying some expressions below.)

The function

(7.45)

satisfies Eqs. (7.41) and (7.42). To prove this, we use
the expansion

(7.46)

and the estimate

(7.47)

which is shown by expanding the function ∇ϕ (j)(x)
around aj and using

and

Our next task is to prove the following lemma.

Lemma 7.4. Let  be forceless in the sense that
∇ H( ) = 0. Then, estimate (7.7) with (7.3) holds for
any function ψ satisfying (7.21), (7.22).

Proof. The proof follows the lines of the proof of
Lemma 7.2, but with some subtle modifications consid-
ered below.

First of all, instead of e1(ψ) = |∇ϕ| 2 used in the

proof of Lemma 7.2, we use the density

(7.48)

which is a better approximation to the density e(ψ). We
also use (7.27) instead of (7.17). In particular, we have

(7.49)

We set fj := 1 –  – . For any k and for uk =

(fk + ξ), where ξ is a real function, we have the
identity

(7.50)

1
3
--- f j

1–

f f jχ j∑ 1
2
--- f j

1– α jη j∑–=

f j 1
1
2
--- ∇ϕ j

2– O r j
4–( )+=

α j O da
2–( ) in D a j da,( ),=

∇ϕ j( ) a j( ) 1
2πn j

-----------∇ a j
H a( )– 0= =

∇ϕ j x( ) O r j
1–( ).=

a
a

1
2
---

e2 ϕ( )
1
2
--- ∇ϕ 2 1

4
--- ∇ϕ 4,–=

e ψ j( ) e2 ϕ j( ) O r j
6–( ).+=

f j
2 ∇ϕ j

2

e
iϕ0

e uk( )〈 〉 1
2
--- ∇ϕ i∇ϕ j

i j≠
∑ A ϕ( )– Bk ξ( ) Rk,+ +=
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where

(7.51)

and

(7.52)

We now take ξ = – αkηk . Then,

(7.53)

Due to (7.28) and the corresponding estimate for the
derivatives of αj and due to (7.25), (7.27), and (7.29),
we have

. (7.54)

We note that the form of (7.21) is chosen such that

Next, we estimate Bk(ξ) on the entire disc

D . Expanding the function ∇ϕ (k)(x) around

the point ak and using that

we find

(7.55)

where xk = –ak and ϕ'' is the Hessian (the matrix of sec-
ond derivatives) of a function ϕ. Using this expression
in estimating Bk(ξ), we find

(7.56)

where  = 1 – ηk. The first term in the right-hand side
of this expression is singular at xk = x – ak = 0, but the
integral of it is conditionally convergent and equals 0.

Bk ξ( ) := 
1
2
---gk α k 2 f kξ+( )–

+
1
4
---α k

2 α k f kξ f k
2ξk

2+ +

R e2 ϕ j( ) e ψ j( )–( )
j k≠
∑ 1

2
--- gk α k–( )ξ2–=

+ f kξk
1
4
---ξk

4 1
2
--- 2∇ f k∇ξ ∇ξ 2+( ).+ +

1
2
--- f k

1–

e ψ( ) e uk( ) on D ak
1
3
---da, 

  .=

Rk O da
4γ– 2–( )=

Bk ξ( ) 0 on B ak
1
2
---da, 

  \B ak da
γ,( )= ηk 1={ } .⊂

ak
1
3
---da, 

 

∇ϕ k( ) ak( )
1

2πnk

-----------J ∇ ak
H a( )– 0,= =

α k x( ) 2∇ϕ k x( )ϕ k( )'' ak( )xk O rkda
3–( ),+=

Bk ξ( ) gk∇ϕ k x( )ϕ k( )'' ak( )xkηk–=

+ O r 3– da
3– da

4–+( )ηk on D ak
1
3
---da, 

  ,

ηk
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Indeed, because the function ϕ(k)(x) is harmonic in

, we have (cf. (7.9))

(7.57)

where c = O( ), x⊥  = (–x2, x1), and θk is the polar

angle of xk (see Eq. (7.9)). Because gk and  depend

only on rk (we write (gk ) (rk) for gk(x) (x)), we have

(7.58)

(strictly speaking, we must first excise a small disc
around xk = 0 and then take the radius of this disc to
zero).

Equations (7.32), (7.33), (7.35), and (7.37) imply
that

(7.59)

Finally, we derive the estimate

(7.60)

on . Indeed, Eq. (7.42) implies that

(7.61)

which, together with (7.49), implies (7.60).
Now, Eqs. (7.59) and (7.60) with γ = 1/3 imply

(7.62)

where the term E is defined after Eq. (7.28) and  =

. Equations (7.29), (7.33), (7.35), and (7.61)

imply (7.14) with Rem given by (7.3).
Lemmas 7.2 and 7.4 and inequality (7.13) imply

Theorem 7.1.

8. DISCUSSION

In this paper, we investigated the Ginzburg–Landau
equation (1.1) that appears in condensed matter physics
and nonlinear optics. Specifically, we presented careful
arguments supporting the existence of nonradial-sym-
metric solutions corresponding to vortex configurations
c with N + 1 vortices fixed by the symmetry group CNv .

D ak
1
3
---da, 

 

ϕ k( )'' ak( )xk c xk 2θk xk
⊥ 2θksin–cos( ),=

da
2–

ηk

ηk ηk

gkηk( ) rk( )∇ϕ k x( )ϕ k( )'' ak( )xk∫
=  c gkηk( ) rk( ) 2θksin∫– 0=

e ψ( )〈 〉

D ak
1
3
---da, 

 

∫ 1
2
--- ∇ϕ i∇ϕ j

i j≠
∑ A ϕ( )–

 
 
 

D ak
1
3
---da, 

 

∫=

+ O da
3– da

2– 4γ– da
4– 2γ++ +( ).

e ψ( )〈 〉 1
2
--- ∇ϕ i∇ϕ j

i j≠
∑ A ϕ( )– O d x a,( ) 6–( )+=

D ak
1
4
---da, 

 
k∪ 

 
c

e ψ( ) e2 ϕ0( ) O d x a,( ) 6–( ),+=

%R ψ( ) E A a( ) O da
8/3( ),+–=

A a( )

A ϕ( )∫
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In these configurations, N m vortices lie on the circle of
radius a, one (–k) vortex is placed at the center of the
circle, and the only remaining free parameter is
the overall size of the configuration, the radius of the
circle a.

Our argument is based on reducing the problem of
the existence of solutions corresponding to a given vor-
tex configuration to the existence of critical points of
the effective energy of the vortex configurations intro-
duced in this paper. For CNv configurations, this effec-
tive energy is a function of a single variable, a. To prove
the existence of critical points of this energy, we inves-
tigated it analytically and numerically at large and
small values of parameter a. We found that there are
critical points at the vortex configurations (N = 2, m =
2, k = 1) and (N = 4, m = 2, k = 3) and, consequently, we
expect the existence of (static) solutions corresponding
to these configurations. For the vortex configuration
(N = 3, m = 1, k = 1), our numerical analysis indicates
that it is very likely that such a critical point exists. Our
numerical computations suggest that the critical a’s are
on the order of O(1). Finding their true values requires
rather elaborate numerical analysis, which would be
desirable to develop but which is presently lacking. In
addition, we have shown (see Appendix 5) that, for the
vortex configurations (N, 1, (N – 1)/2) with odd N @ 1
and sufficiently large a, the energy is greater than the
effective energy of a single N vortex.

All solutions considered are saddle points of the
renormalized Ginzburg–Landau energy functional.
Perturbations breaking the CNv symmetry group can
lower the energy of the corresponding solution vortex
configuration. However, we expect that, under small
symmetry breaking perturbations, such solutions lead
to long-living metastable states that can be observed
experimentally. Moreover, even weak pinning centers
can stabilize such solutions. Thus, to experimentally
observe the static configurations found in this paper,
one would need to create weak pinning potentials satis-
fying the suggested point symmetry, adjust the radius a
at which these potentials are located, and then slowly
reduce the strength of these potentials to zero.
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APPENDIX 1

Computation of c(n) 

In this appendix, we compute the constants c(n) in
expression (3.5) for the self-energy En, R of the n vortex
(see Eq. (3.6)). For this, we derive a convenient formula
for En, R . Multiplying Eq. (3.2) by r2 , where f '(r) =
∂f(r)/∂r, integrating the result over r, observing that the
first two integrands are total derivatives, and integrating
the last term by parts, we obtain the quantization rela-
tion (see [22])

This equation, together with Eq. (3.3), yields an expres-
sion for En, R ,

However, we prefer to use a different representation of

En, R , which is obtained from above if we write 1 –  =

(1 – )  + (1 – )2 and use the quantization for-
mula above again:

(A.1.1)

To avoid numerical evaluation of the integral
in (A.1.1) over an infinite range, we use the expansion
of fn(r) in 1/r for large r. However, fn(r) is not analytic
at r = ∞; it has an essential singularity at this point.
Hence, the resulting series is asymptotic. We truncate

this series at the order O . To compensate for this

truncation, we add to the resulting polynomial in 1/r a

multiple of the decaying solution /  of the lin-
earization of Eq. (3.2) around 1. We should linearize
Eq. (3.2) around the resulting polynomial, but the pow-

ers of 1/r2 lead to similar powers multiplying /r,
and it therefore suffices to linearize around 1. The result
is

(A.1.2)

f n' r( )

1 f n
2–( )2

r rd

0

∞

∫ n2.=

En R,
π
2
---n2– π 1 f n

2–
n2

r2
-----χ– 

  r r.d

0

∞

∫+=

f n
2

f n
2 f n

2 f n
2

En R,
π
2
---n2 π 1 f n

2–( ) f n
2 n2

r2
-----χ– rdr.

0

∞

∫+=

1

r6
---- 

 

e 2r– r

e 2r–

f n r( ) 1 n2

2r2
-------

n2 1 n2/8+( )
r4

-----------------------------––




=

–
1

r6
---- n4

2
-----

n2 16+
2

----------------- n2 n4

8
-----+ 

 + 
  …–





c
e 2r–

r
----------- 1 …+( ),–
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where c is a constant to be determined by a matching
procedure. Inserting this expression in Eq. (A.1.1), we
obtain

(A.1.3)

for any r0 > 0. We choose 6 ≤ r0 ≤ 10. This relation
together with Eq. (3.5) implies that

(A.1.4)

For numerical solution of Eq. (3.2), we take the interval
(0.3, r0). Because Eq. (3.2) linearized around the func-
tion 1 has the solutions

(A.1.5)

we should apply the numerical iteration procedure
starting from the upper limit, r0. Then, the dangerous,
exponentially growing solution would not affect our
procedure.

In the range 0 < r ≤ 0.3, we use the fact that, as
Eq. (3.2) shows, the function fn(r) is analytic in a disc
|r | < O(1) and can therefore be presented by a conver-
gent series

(A.1.6)

for some number α > 0. Here, δn, k is the Kronecker
symbol, δn, k = 1 for n = k and δn, k = 0 for n ≠ k. (We
expect that the pole closest to the origin lies on the
imaginary axis.)

To finish the computation of c(n), we must find the
value of the parameters α and c. This is done by match-
ing solution (A.1.2) for small r with solution (A.1.6) for

En R, πn2 Rln– πn2

2
-------- π f n

2 1 f n
2–( )r rd

0

r0

∫+=

– πn2 r0ln n2 2–

2r0
2

-------------- n2 16–

4r0
4

-----------------+ +
 
 
 

O r0
6–( )+

1
π
---c n( ) n2

2
----- f n

2 1 f n
2–( )r rd

0

r0

∫+=

– n2 r0

n
-----ln n2 2–

2r0
2

-------------- n2 16–

4r0
4

-----------------+ +
 
 
 

O r0
6–( ).+

1

r
------e 2r± ,

f n r( ) αrn 1 r2

4 n 1+( )
--------------------

r4

8 n 2+( )
--------------------+–





=

× 1
4 n 1+( )
-------------------- α2δn 1,+ 

  r6

12 n 3+( )
-----------------------+

× α2 δn 2,
3

4 n 1+( )
--------------------δn 1,– 

  1
8 n 2+( )
--------------------–

× 1
4 n 1+( )
-------------------- α2δn 1,+ 

  …+



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large r. Specifically, using Eq. (A.1.2), we compute

fn(r0) and  for various values of the parameter c.
Using these values as initial conditions, we integrate
Eq. (3.2) backward to r = 0.3, which yields fright(0.3)

and . On the other hand, using Eq. (A.1.6), we

compute fleft(0.3) and  for various values of the

parameter α. We then match fright(0.3) and 

with fleft(0.3) and  by minimizing [(fright(0.3) –

fleft(0.3))2 + (  – )2]1/2. This yields the
values of the parameters c and α. After this, we com-
pute c(n) using formulas (A.1.4) and (A.1.6).

APPENDIX 2

Large-n Asymptotic Form 
of the Vortex (Self) Energy 

In this appendix, we find the large-n asymptotic
form of the constant c(n) in expression (3.6) for the
(self) energy of the n vortex. For this, we use the large-n
asymptotic expression for the function fn(r) defined
in (3.2),

(A.2.1)

where the variable z is defined by

, (A.2.2)

and the function g(z) is a solution of the equation

(A.2.3)

The function g(z) has the asymptotic form

(A.2.4)

where φ(z) is the Airy function. In particular, we have

(A.2.5)

Inserting expressions (A.2.1) and (A.2.2) in Eq. (A.1.1)
and using (A.2.4) and (A.2.5), we find that

(A.2.6)

where c is some constant and

(A.2.7)

f n' r0( )

f right' 0.3( )

f left' 0.3( )

f right' 0.3( )

f left' 0.3( )

f right' 0.3( ) f left' 0.3( )

f n r( )
1 n2/r2– if r n @ n/2( )1/3,–

2/n( )1/3g z( ) if r n–  ! n,



=

r n
n
2
--- 

 
1/3

z+=

g'' zg g3–+ 0.=

g z( ) z1/2 if z @ 1,=

g z( ) constφ z( ) if z ! 1,–=

g z( )
0.39

z–( )1/4
---------------e 2 z–( )3/2/3– for z ! 1.–=

c n( ) αn2/3π c O n 2/3–( ),+ +=

α 21/3 g2 z( ) zθ z( )–( ) z,d

∞–

∞

∫=
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with θ(z) = 1 for z ≥ 0 and θ(z) = 0 for z < 0. Multiplying
Eq. (A.2.3) by g'(z) and integrating the result, we find
that α = 0, and therefore,

(A.2.8)

as n  ∞. A rough numerical computation yields the
following value for the constant c:

(A.2.9)

APPENDIX 3

Computation of Correlation Coefficients 

In this appendix, we compute the correlation func-
tion

, (A.3.1)

with

(A.3.2)

(A.3.3)

(see Eq. (4.4)) for configurations of K = N + 1 vortices
with N vortices of vorticity m lying on the circle of
radius a and one vortex of vorticity –k at the center of
this circle, such that ∇ H( ) = 0.

We write  = a · , where  is a fixed configuration
with N vortices on the unit circle and one at the center.
Changing the integration variable in (A.3.4) as x = ay,
we find

, (A.3.4)

where C depends on  only. Our task now is to find the
sign of C for the configurations of interest. We write
A = A( ).

1. N = 2, m = 2, and k = 1. In this case, there are two
double vortices on the circle and one single vortex of
the opposite vorticity at the center (see Fig. 1). Below,
we use the dimensionless variable

(A.3.5)

For the configuration under consideration, we have

(A.3.6)

c n( ) c O n 2/3–( )+=

c 0.7π.≈

A A a( )
1
4
--- ∇ϕ 0

4 ∇ϕ j
4

j

∑–∫= =

ϕ0 ϕ j and ϕ j x( )
j

∑ n jθ x a j–( ),= =

θ x( ) the polar angle of x R
2
,∈=

a

a b b

A a( ) Ca 2–=

b

a

ρ x
a
-----.=

A
1

4a2
-------- ρ ρ θ 48

α
------

16 2θ( )cos

αρ2
--------------------------–





d

0

2π

∫d

0

∞

∫=

+
64 2θ( )cos

2

α2
---------------------------- 64

α2
------ 1 2ρ2 2ρ2 2θ( )cos+ +( )–





,
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where

(A.3.7)

(In general, for aj, j = 1, …, N, distributed equidistantly

on the circle of radius a, α = .)
First, we take the integral over θ. For this, we change
the integration variable as θ  z = exp(2iθ); i.e., we
write the inner integral in (A.3.8) as an integral over the
unit circle. A simple calculation gives

(A.3.8)

(A.3.9)

(A.3.10)

Inserting expressions (A.3.7)–(A.3.10) in Eq. (A.3.6),
we obtain

This gives

(A.3.11)

Hence, in the configuration under consideration, the
energy ER( ) is given by

(A.3.12)

α ρ4 1 2ρ2 2θ( ).cos+ +=

x a j–( )2/a2N

j 1=
N∏

θd

α2
------

0

2π

∫ 2π 1 ρ4+( )
1 ρ4–

3
--------------------------,=

θd

α2
------ 2θ( )cos

0

2π

∫ 4πρ2

1 ρ4–
3

-------------------,–=

θd
α
------

0

2π

∫ 2π
1 ρ4–
-----------------,=

θd
α
------ 2θ( )cos

0

2π

∫ 2π
1 ρ4–
-----------------min ρ2 1

ρ2
-----,

 
 
 

,–=

θd

α2
------ 2θ( )cos

2

0

2π

∫ π
1 ρ4–

3
-------------------=

×
1 4ρ4 ρ8 for ρ 1,<–+

ρ8 4ρ4 1–+( )/ρ4 for ρ 1.>



A
4π
a2
------ 2 x

1 x–

1 x+( )3
-------------------d

0

1

∫



=

+
xd

1 x+( )3
------------------- 3x 1 3

x
--- 1

x2
-----+ + + 

 

1

∞

∫ 



.

A
8π
a2
------.=

a

1
π
---ER a( ) 9 Rln– 9.64– 8

a2
-----– O

aln

a4
-------- 

  .+=
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2. N = 3, m = 1, and k = 1. Similarly to Eq. (A.3.8),
we obtain

(A.3.13)

where α = ρ6 + 1 + 2r3sin(3θ). The integrals in
Eq. (A.3.13) can be taken explicitly. To do this, we set
z = exp(3iθ), and then

(A.3.14)

(A.3.15)

and

(A.3.16)

Inserting expressions (A.3.14)–(A.3.16) in Eq. (A.3.13),
we obtain

(A.3.17)

A
1

4a2
-------- ρρ θ 6

α
--- 1 2ρ2+( )





d

0

2π

∫d

0

∞

∫=

–
12 3θ( )sin

ρα
------------------------- 9 1 ρ2+( )

α2
---------------------- 1 ρ2 2ρ4+ +( )–

+
36ρ2 3θ( )sin

2

α2
--------------------------------- 36ρ5 3θ( )sin

α2
-------------------------------–





,

θd
α
------

0

2π

∫ 2π
1 ρ6–
-----------------,=

θd
α
------ 3θ( )sin

0

2π

∫ 2π
1 ρ6–
-----------------min ρ3 1

ρ3
-----, 

  ,–=

θd

α2
------

0

2π

∫ 2π 1 ρ6+( )
1 ρ6–

3
--------------------------,=

θd

α2
------ 3θ( )sin

0

2π

∫ 4πρ3

1 ρ6–
3

-------------------,–=

θd

α2
------ 3θ( )sin

2

0

2π

∫ π
1 ρ6–

3
-------------------=

×
1 4ρ6 ρ12 for ρ 1,<–+

ρ12 4ρ6 1–+( )/ρ6 for ρ 1.>



A
3π
4a2
-------- x

5x 9x2 1– 2x3– 2x4–+

1 x x2+ +( )3
----------------------------------------------------------d

0

1

∫



=

+ x
4

1 x x2+ +
-----------------------

9

1 x x2+ +( )2
------------------------------–

d

1

∞

∫

+ 10x 18+

1 x x2+ +( )3
------------------------------

6x 2+

x2 1 x x2+ +( )3
-----------------------------------

+




.
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A simple calculation of integrals in Eq. (A.3.16) gives
explicit answers for A:

(A.3.18)

Hence, the energy for such configurations is given by

(A.3.19)

3. N = 4, m = 2, and k = 3. In this case, there are four
double vortices in the corners of a rectangle and a
(−3)-vortex at the center. For this configuration, we
have

(A.3.20)

where

The change of variables 2θ   + π/2, ρ8  
reduces the integrals over θ in Eq. (A.3.20) to those in
Eqs. (A.3.8)–(A.3.10). As a result, we obtain

(A.3.21)

Direct calculation of the integrals in Eq. (A.3.11) gives

(A.3.22)

A
2π
a2
------.=

1
π
---ER a( ) 4 Rln– 1.792–

2

a2
-----.–=

A
16

a2
------ θ ρρd

α
--------- 4ρ12

α
----------

36ρ4 4θ( )cos
2

α
----------------------------------+





0

∞

∫d

0

2π

∫=

+ 4.5ρ4 13.5 4θ( )cos
24ρ8

α
----------- 4θ( )cos+ +

–
1
α
--- ρ2 1+( )6

2ρ2 ρ2 1+( )2 ρ4 1+( )– 4ρ6+[ ]

---– 2ρ4 4θ( ) 3 ρ2 1+( )2
2ρ2–( )/αcos





,

α ρ8 1 2ρ4 4θ( ).cos–+=

θ̃ ρ̃4

A
16π
a2

--------- x
1 3x–

1 x x2 x3+ + +
----------------------------------d

0

1

∫



=

+
2 5x5 23x4 18x3 6x2 3x– 1–+ + +( )

1 x x2 x3+ + +( )3
---------------------------------------------------------------------------------------

+ x
7.5

1 x2+
-------------- 1.5

x2 1 x2+( )
------------------------–

4 1 x x2+ +( )
x2 1 x x2 x3+ + +( )3
-----------------------------------------------–





d

1

∞

∫

–
2

1 x x2 x3+ + +( )3
----------------------------------------- x5 11x4 2x3– 22x2---–+



– 31x 21– 12
x

------– 4

x2
-----– 










.

A
80π
a2

---------,=
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and therefore, the energy of the configuration in ques-
tion is

(A.3.23)

We note that, for all the configurations under consid-
eration, the correlation term A is given by

,

where M is an integer; i.e., the quantity given by the
integral in A is quantized. Moreover, the “quantization”
takes place separately for the integrals over regions r <
1 and r > 1. We conjecture that this property is general
and holds for any forceless configuration.

APPENDIX 4

Inequality  > 0 

In this appendix, we show that ER(a) – ER(0) > 0 for
the configuration consisting of N 1-vortices equidistrib-

uted on the circle of radius a and one  vortex

at the center and for sufficiently small a. We assume
that N is odd but otherwise arbitrary.

For a = 0, the configuration in question collapses to

a single -vortex, , sitting at the origin. Let

L be the Hessian of %ren(ψ) at ψ = . It was shown

in [13] that the subspaces

(A.4.1)

m = ,  + 1, …, which are orthogonal to

each other and span the entire Hilbert space L2(R2), are
invariant under the action of the operator L. Moreover,

it was shown that, in the sectors with m ≥ 3  – 1,

L is nonnegative and 0 is not its eigenvalue (actually,

the statement in [13] is formulated for m ≥ 3 , but

1
π
---ER a( ) 25 Rln– 40.44–

80

a2
------.–=

A
π

4a2
--------M=

ER' 0( )

N 1–
2

-------------– 
 

N 1+
2

------------- ψN 1+
2

-------------

ψN 1+
2

-------------

u1 r( )eimθ u2 r( )e
i 2

N 1+
2

------------- m– 
  θ

uk+




--- L2 rdr( ), k∈ 1 2,=




,

N 1+
2

------------- N 1+
2

-------------

N 1–
2

-------------

N 1–
2

-------------
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the proof works also for m = 3  – 1), while in the

sectors

the operator L has negative eigenvalues. We now

observe that the sectors with  ≤ m ≤ 3  – 2

do not have the CNv symmetry and, consequently, are
forbidden in our case. Therefore, on the subspace
invariant under the action of the group CNv , L ≥ 0 and 0
is now its eigenvalue. The latter implies that

(A.4.2)

for any odd N and for sufficiently small a.

APPENDIX 5

Large-N Asymptotic Forms 

In this appendix, we find the asymptotic behavior of
the energy of the circular asymptotically forceless con-
figurations, i.e., the ones with ∇ H( ) = 0, for large val-
ues of N. More precisely, the configurations we consider
consist of N 1-vortices equally spaced on a circle of radius
a and with the center at the origin and one (−k) vortex at
the center. We recall that the condition ∇ H( ) = 0 is
equivalent to the relation k = –(N – 1)/2. We assume in
addition that N is odd and a @ N.

According to Eq. (5.10) and because

the energy of the above configuration is

(A.5.1)

where we use the notation ER(a) = ER( ). For a = 0 (the
“initial state”), the energy is given by Eq. (3.5),

(A.5.2)

N 1–
2

-------------

N 1+
2

------------- 2 m 2
N 1+

2
-------------,≤ ≤+

N 1+
2

------------- N 1–
2

-------------

ER a( ) ER 0( ) 0>–

a

a

πk
N
------sin

π N k–( )
N

---------------------,sin=

ER a( ) π N 1+
2

------------- 
 

2

R π N 1–
2

------------- 
 

2 N 1–
2

------------- 
 ln–ln=

+ Nc 1( ) 2πN 2 πk
N
------sin 

  ,ln
k 1=

N 1–
2

-------------

∑–

a

ER 0( ) π N 1+
2

------------- 
 

2

Rln=

– π N 1+
2

------------- 
 

2 N 1+
2

------------- 
  .ln
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To calculate the sum in Eq. (A.5.1), we use the Euler
expansion

(A.5.3)

and

(A.5.4)

where Γ(x) is the Euler gamma function,

,

where 1 ! M ! N. For N @ 1, this yields

(A.5.5)

modulo terms O(1) in N. As a result, we have the energy
difference

(A.5.6)

f k( )
k M=

L

∑ f x( ) xd

M
1
2
---–

L
1
2
---+

∫=

–
1
24
------ f ' L

1
2
---+ 

  f ' M
1
2
---– 

 – 
 

2 xsin( )ln xd

0

π/2

∫ 0,=

kln
k 1=

M

∑ Γ M 1+( ),ln=

2 πk
N
------sin 

 ln
k 1=

N 1–
2

-------------

∑ 2
πk
N
------ 

 sin 
 ln

k 1=

M

∑=

–
N
π
---- z 2 Zsin( )lnd

0

πM
N

--------

∫ 2
πk
N
------ 

 sin 
 ln

k M 1+=

N 1–
2

-------------

∑+

–
N
π
---- z 2 Zsin( )lnd

πM
N

--------

π/2

∫ 2πk
N

--------- 
 ln

k 1=

M

∑=

– M
2πM

N
------------ 

 ln 1– 
  1

2
--- 2πM
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------------ 

  1
24M
-----------+ln–

2 πk
N
------sin 

 ln
k 1=

N 1–
2

-------------

∑ 1
2
--- Nln=

ER a( ) ER 0( )–

=  N c 1( ) 1
2
--- 2ln– 

  π+ 0.183πN .=
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Thus, for (N @ 1) vortices placed equidistantly on a cir-
cle of radius a @ N, the energy is greater than the effec-
tive energy of a single N vortex.
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Abstract—The main mechanism in homogeneous broadening and relaxation of crystal-field excitations for
R-ions in cuprates is believed to be provided by the fluctuations of crystalline electric field induced by a static
and dynamic charge inhomogeneity generic to doped cuprates. Such an inhomogeneity is assumed to be the
result of topological phase separation. We address the generalized granular model as one of the model scenarios
for describing the static and dynamic charge inhomogeneity in cuprates. The charge subsystem is believed to
be similar to that of a Wigner crystal with melting transition and phononlike positional excitation modes. We
consider a simple model of charge inhomogeneity that allows us to elucidate the main universal features of the
density of CF states and the respective inhomogeneous broadening. The formal description of R-ion relaxation
mainly coincides with that of the recently suggested magnetoelastic mechanism by Lovesey and Staub. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Inelastic neutron scattering (INS) spectroscopy is a
powerful tool that makes it possible to unambiguously
determine the Stark multiplet structure and crystal-field
(CF) potential in rare-earth (R) based high-Tc supercon-
ducting materials such as Y1 – xRxBa2Cu3O6 + y [1, 2].
This technique provides detailed information on the
electronic ground state of the R-ions, which is impor-
tant for understanding the thermodynamic magnetic
properties and the observed coexistence between super-
conductivity and long-range magnetic ordering of the
R-ion sublattice at low temperatures. Moreover, INS
spectroscopy may be effectively used for quantitative
monitoring of the decay of the antiferromagnetic state
of the parent compound and the evolution of the super-
conducting state upon doping, because the linewidths
of CF transitions are believed to directly probe the elec-
tronic susceptibility. The relaxation behavior appears to
be extremely dependent on the energy at which the sus-
ceptibility is probed. The CF INS spectroscopy is
widely used to reveal the opening of an electronic gap
in the normal state of underdoped superconductors [1]
and to examine its anisotropy [3, 4]. Recently, Ho3+

CF-INS spectroscopy was used to investigate the oxy-
gen and copper isotope effects on the pseudogap in
Ho-124 and (LaHoSr)2CuO4 high-temperature super-
conductors [5, 6]. However, the mechanism of the
relaxation of R-ions in cuprates has become the issue of

¶ This article was submitted by authors in English.
1063-7761/04/9905- $26.00 © 21108
heated debates [7, 8] that question the current interpre-
tation of information detected by INS spectroscopy.

In the normal state, the excited CF levels of an R-ion
interact with phonons, spin fluctuations, and charge
carriers. These interactions limit the lifetime of the
excitation; thus, the observed CF transitions exhibit line
broadening. Similarly to the case of conventional
Fermi-liquid metals, interaction with charge carriers is
considered the predominant relaxation mechanism in
cuprates. This interaction is usually assumed to be an
isotropic exchange coupling with the effective spin
Hamiltonian Hex = –2I(gJ – 1)(s · J), where I is an
exchange integral that should be nearly independent of
the particular R-ion under consideration; gJ is the
Lande factor; s is the spin moment of a charge carrier;
and J is the total momentum of the R-ion. Such a sce-
nario seems to be rather natural if the predominant spin
channel of neutron scattering is taken into account.
The detailed theory of the respective relaxation mech-
anism was developed by Becker, Fulde, and Keller
(BFK-model) [9]. The corresponding intrinsic line-
width appears to increase almost linearly with temper-
ature (Γ(T) ∝  ρ2T) according to the well-known Kor-
ringa law [10]. Here, ρ is the coupling constant, ρ =
I(gJ – 1)N(EF), where N(EF) is the density of states
(DOS) at the Fermi level. The deviation from a linear
temperature dependence at low temperatures has been
usually interpreted in terms of the opening of a
(pseudo)gap and the associated reduction in damping.
Fitting the high-temperature linewidth data in the
framework of the simple or modified Korringa law, one
004 MAIK “Nauka/Interperiodica”
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obtains coupling constant values that typically vary
from 0.003 to 0.006 [1, 3–6].

We emphasize that the spin channel of relaxation
directly implies the relevance of the Fermi-liquid sce-
nario for cuprates, with many signatures of non-Fermi-
liquid behavior ignored. However, the spin-exchange
model has a number of visible inconsistencies, firstly,
as concerns the magnitude of the coupling constant.
Indeed, a linear temperature dependence of the relax-
ation time above Tc observed in EPR studies of S-ion
Gd3+ in YBa2Cu3O7 after Korringa fitting yields a mag-
nitude of the exchange integral of I ≈ 3 × 10–4 eV [12],
which directly points to unrealistically large values of
the spin coupling constants ρ found in all INS experi-
ments on CF transitions. Certain problems exist with
the Lande factor scaling approximately as (gJ – 1). In
studying the system Y1 – xRxBa2Cu3O6 + y (R = Er, Ho,
Tm), Mukherjee et al. [11] found |ρ(Tm)/ρ(Ho)| ≈ 2
instead of the theoretically expected value (gTm –
1)/(gHo – 1) = 2/3, and |ρ(Tm)/ρ(Er)| ≈ 4.5, instead of
the expected (gTm – 1)/(gEr – 1) = 5/6. This clear dis-
agreement evidences against the exchange mechanism.
The spin-exchange scenario fails to explain the
“strange” doping dependence of Tm3+ relaxation in
Tm-123 [13] and Nd3+ relaxation in (LaSrNd)2CuO4 [14].

Finally, Staub et al. [15] found that the Lorentzian
linewidth of the quasi-elastic neutron scattering for
Tb3+ in YBa2Cu3O7 can be properly described by the
simple (exp(∆/kBT) – 1)–1 law typical of Orbach pro-
cesses governed by lattice vibrations. They have shown
that such an interpretation also describes the results
obtained earlier for Ho3+ and Tm3+. They conclude that
interactions with charge carriers are negligible and that
interactions with lattice vibrations are responsible for
the relaxation behavior of the 4f electrons in cuprates.
Therefore, the INS results that claim to probe the super-
conducting gap or the pseudo-gap should be reexam-
ined in terms of Orbach processes. A similar conclusion
was drawn in [14] for Nd3+ relaxation in
(LaSrNd)2CuO4. Lovesey and Staub [16] have shown
that the dynamic properties of the lanthanide ions
(Tb3+, Ho3+, and Tm3+) are adequately described by a
simple three-state model, not unlike the one introduced
by Orbach for interpreting electron paramagnetic reso-
nance signals from a lanthanide ion in dilute concentra-
tion in a salt. The cross section for inelastic scattering
of neutrons by the lanthanide ion is derived by con-
structing a pseudospin S = 1 model and treating the
magnetoelastic interaction as a perturbation of the three
CF states. The scattering of neutrons is thus a quasielas-
tic process and the relaxation rate is proportional to
(exp(∆/kBT) – 1)–1, where ∆ is the energy of the inter-
mediate CF state at which the density of phonon states
is probed. However, this very attractive scenario also
faces some visible difficulties in explaining, for
instance, the unusual nonmonotonic temperature
dependences and too large oxygen isotope effect in the
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INS spectra of Ho-124 and Ho-214 systems [5, 6], and
certain doping dependences in Y-123 and Nd-214 sys-
tems [14]. The origin of the anomalously large low-
temperature inhomogeneous broadening remains
unclear. The magnetoelastic mechanism yields very
small magnitudes of Γ(T = 0), one or two orders smaller
than that found in experiment.

In comparing the two mechanisms, we emphasize a
difference in them that seems to be of primary impor-
tance: the spin-channel mechanism takes the fluctua-
tions of the effective magnetic field on R-ions into
account, while the phonon (magnetoelastic) mecha-
nism deals with fluctuations of the electric field. More-
over, the conventional spin-channel mechanism actu-
ally probes spin fluctuations rather than charge fluctua-
tions, although its contribution to the linewidth Γ(T) ∝
(IN(EF))2 is believed to strongly depend on the carrier
density. However, this relationship is derived in the
framework of the Fermi-liquid scenario and should be
modified if one addresses the typical antiferromagnetic
insulating state. Interestingly, in [8, 15, 16], the phonon
(magnetoelastic) mechanism is addressed as an alterna-
tive to charge fluctuations. As an example, the authors
point to insulating materials in which “…the density of
carriers is essentially zero…” [8], which forbids the
charge fluctuation channel of relaxation.

We emphasize that both groups of researchers have
underestimated the role of the conventional spinless
charge fluctuation channel. Indeed, the CF Hamiltonian
for an R-ion in cuprates can be written in its standard
form as

where  are Stevens equivalent operators; Bkq =
bkq〈rk〉γk , where bkq are CF parameters; γ2 = α, γ4 = β,
γ6 = γ (α, β, γ are Stevens parameters); and

which may be expressed within the well-known point-
charge model as

where  is the tensorial spherical harmonics and (t)
is the charge number operator. Conventional metals are
characterized by very short-time charge dynamics,
which makes it possible to neglect the contribution of
charge fluctuations to the inhomogeneous broadening
and relaxation of R-ions in the low-energy range of CF
energies, and to consider a mean homogeneous charge
distribution. An altogether different picture emerges in

HCF Bkq* Ôk
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the case of cuprates where we are dealing with various
manifestations of static and dynamic charge inhomoge-
neity (see, e.g., [17, 18] and references therein). More-
over, the INS spectroscopy of CF excitations itself
yields an impressive picture of charge inhomogeneity
in the 123 system [1, 2], where it was found that the
observed CF spectra separate into different local com-
ponents whose spectral weights distinctly depend on
the doping level; i.e., there is clear experimental evi-
dence for cluster formation. The onset of superconduc-
tivity can be shown to result from percolation, which
means that the superconductivity is a property of inho-
mogeneous materials. It seems probable that the
dynamic rearrangement of the charge system at temper-
atures above Tc somehow affects both the inhomoge-
neous broadening of CF transitions and R-ion relax-
ation.

2. CHARGE INHOMOGENEITY IN CUPRATES: 
TOPOLOGICAL PHASE SEPARATION

At present, the stripe model of inhomogeneity [18]
is most popular in cuprate physics. It is worth noting
that this model is based on the more universal idea of
topological phase separation, with the doped particles
assumed to be localized inside the domain walls of a
bare phase.

Below, we address one of the topological phase sep-
aration scenarios that may be termed a generalized
granular model for doped cuprates. We assume that the
CuO2 layers in parent cuprates may gradually lose their
stability under electron–hole doping, while a new self-
organized multigranular 2D phase becomes stable.

The new scenario implies that the unconventional
phase state evolves from the parent insulating cuprate
as a result of self-trapping of charge transfer excitons
(CT) accompanied by a self-consistent lattice polariza-
tion and the appearance of the “negative-U” effect. Par-
ent insulating cuprates appear to be unstable with
regard to self-trapping of low-energy one- and two-cen-
ter CT excitons [19, 20], with the nucleation of elec-
tron–hole droplets being actually a system of coupled

electron  and hole  centers glued in the
lattice due to strong electron–lattice polarization
effects. Such a system can be regarded as an electron–
hole Bose liquid described by the generalized Bose–
Hubbard Hamiltonian. Doping, or deviation from half-
filling in an electron–hole Bose liquid is accompanied
by formation of multicenter topological defects such as
charge-order (CO) bubble domain(s) with Bose super-
fluid (BS) and extra bosons localized in domain wall(s),
or a topological CO + BS phase separation, rather than
a uniform mixed CO + BS supersolid phase [21, 22].
Such a situation partly resembles that of granular super-
conductivity.

CuO4
7– CuO4

5–
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The most probable possibility is that every micro-
grain accumulates one or two particles. Then the num-
ber of such entities in a multigranular texture nucleated
with doping has to depend on the doping in a nearly lin-
ear way. Generally speaking, each individual micro-
grain may be characterized by its position, nanoscale
size, and the orientation of the U(1) degree of freedom.
In contrast to uniform states, the phase of the superfluid
order parameter for a micrograin is assumed to be unor-
dered. The granular structure must be considered
largely dynamic in nature.

In the long-wavelength limit, off-diagonal ordering
can be described by an effective Hamiltonian in terms
of the U(1) (phase) degree of freedom associated with
each micrograin. Such a Hamiltonian contains a repul-
sive, long-range Coulomb part and a short-range contri-
bution related to the phase degree of freedom. The latter
term can be written in the form of a so-called Josephson
coupling, standard for the XY model,

(1)

where ϕi and ϕj are global phases for micrograins cen-
tered at the respective points i and j, and Jij is the
Josephson coupling parameter. The Josephson coupling
gives rise to the long-range ordering of the phase of the
superfluid order parameter in such a multicenter tex-
ture. Such a Hamiltonian represents a starting point for
the analysis of disordered superconductors, granular
superconductivity, and the insulator–superconductor
transition with an 〈i, j〉  array of superconducting islands
with phases ϕi , ϕj .

To account for the Coulomb interaction and allow
for quantum corrections, we introduce the charging
energy [23]

into the effective Hamiltonian, where ni is the number
operator for particles bound in the ith micrograin; it is
quantum-mechanically conjugate to ϕ, ni = –i∂/∂ϕi ,
(C−1)ij is the capacitance matrix, and q is the particle
charge.

Such a system appears to reveal a tremendously rich
quantum-critical structure [24, 25]. In the absence of
disorder, the T = 0 phase diagram of the multigranular
system implies either triangular or square crystalline
arrangements with a possible melting transition to a liq-
uid. We note that the analogy with the charged 2D Cou-
lomb gas implies Wigner crystallization of the multi-
granular system with a Wigner crystal (WC) to the
Wigner liquid melting transition. Naturally, additional
degrees of freedom of the micrograin provide a richer
physics of such lattices. For a system to be an insulator,

HJ Jij ϕ i ϕ j–( ),cos
i j,〈 〉
∑–=

Hch
1
2
---q2 ni C 1–( )ijn j

i j,
∑–=
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disorder is required that pins the multigranular system
and also causes the crystalline order to have a finite cor-
relation length. The traditional approach to Wigner
crystallization implies the formation of a WC for den-
sities lower than the critical density, when the Coulomb
energy is greater than the kinetic energy. The effect of
quantum fluctuations leads to a (quantum) melting of
the solid at high densities or at a critical lattice spacing.
The critical properties of a two-dimensional lattice
without any internal degrees of freedom are success-
fully described by applying the BKT theory to disloca-
tions and disclinations of the lattice. This description
proceeds in two steps. The first step implies the transi-
tion to a liquid-crystal phase with a short-range
translational order, and the second involves the transi-
tion to an isotropic liquid. In such a system, if the
micrograin positions are fixed at all temperatures, the
long-wavelength physics is described by an (anti)ferro-
magnetic XY model with an expectable BKT transition
and a gapless XY spin-wave mode.

The low-temperature physics in a multigranular sys-
tem is governed by an interplay of two BKT transitions,
for the U(1) phase and the positional degrees of free-
dom, respectively [25]. Dislocations lead to a mismatch
in the U(1) degree of freedom, which makes the dislo-
cations bind fractional vortices and leads to a coupling
of translational and phase excitations. The BKT tem-
peratures either coincide (square lattice) or the melting
temperature is higher (triangular lattice) [25].

Quantum fluctuations can substantially affect these
results. Quantum melting can destroy the U(1) order at
sufficiently low densities where the Josephson coupling
becomes exponentially small. A similar situation is
expected to occur in the vicinity of structural transitions
in a multigranular crystal. With increasing micrograin
density, the quantum effects result in a significant
decrease in the melting temperature compared with the
classical square-root dependence. The resulting melt-
ing temperature can reveal an oscillating behavior as a
function of the particle density with zeros at critical
(magic) densities associated with structural phase tran-
sitions.

In terms of our model, the positional order corre-
sponds to an incommensurate charge density wave,
while the U(1) order corresponds to superconductivity.
In other words, we arrive at a subtle interplay between
two orders. The superconducting state evolves from a
charge order with TC ≤ Tm , where Tm is the temperature
of the melting transition, which could be termed the
temperature of the opening of the insulating gap.

The normal modes of a dilute multigranular system
include the pseudo-spin waves propagating in between
the micrograins; the positional fluctuations, or qua-
siphonon modes, which are gapless in a pure system but
are gapped when the lattice is pinned; and, finally, fluc-
tuations in the U(1) order parameter.
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The orientational fluctuations of the multigranular
system are governed by the gapless XY model [24]. The
relevant model description is most familiar as an effec-
tive theory of the Josephson junction array. An impor-
tant feature of the model is that it displays a quantum
critical point.

The low-energy collective excitations of a multi-
granular liquid includes the usual longitudinal acoustic
phononlike branch. The liquid crystal phases differ
from the isotropic liquid in that they have massive topo-
logical excitations, i.e., disclinations. We note that liq-
uids do not support transverse modes, and these could
survive in a liquid state only as overdamped modes. It
is therefore reasonable to assume that solidification of
the bubble lattice is accompanied by stabilization of
transverse phononlike modes with their sharpening
below the melting transition. In other words, the insta-
bility of transverse phononlike modes signals the onset
of melting. The phononlike modes in the bubble crystal
have much in common with the usual phonon modes,
but because of their electronic nature they can hardly be
detected by inelastic neutron scattering.

A generic property of the positionally ordered bub-
ble configuration is the sliding mode, which is usually
pinned by the disorder. The depinning of sliding
mode(s) can be detected in a low-frequency and low-
temperature optical response.

We note that as regards CF fluctuations, there is no
principal difference between the contributions of real
phonon modes and quasiphonon modes of a multigran-
ular system. Moreover, it is worth noting that the charge
inhomogeneity in a multigranular system is prone to be
closely coupled with lattice structural distortions. How-
ever, stabilization of transverse phononlike modes in
multigranular system that accompanies its solidifica-
tion at the temperatures above Tc may strongly affect
the CF relaxation due to a mechanism identical to the
magnetoelastic mechanism proposed by Lovesey and
Staub. In a sense, such a conclusion reconciles the
“old” spin-fluctuation [1, 2] and the “new” magne-
toelastic phonon [15, 16] approaches to INS spectros-
copy of cuprates with R-ions.

Above, we addressed a simplified model of “rigid”
bubbles and neglected any possible internal or confor-
mational degree of freedom. However, the bubble can
actually be characterized by a subtle interplay of orbital
degrees of freedom with a pseudo-Jahn–Teller effect. In
other words, we may anticipate a set of different con-
formational states of the bubble.

3. CHARGE INHOMOGENEITY 
AND INHOMOGENEOUS LINE BROADENING

OF CF TRANSITIONS IN CUPRATES

Neutron spectroscopy involves energies of several
meV and is therefore susceptible to dynamical effects
of the order of 10–13 s. All slower processes contribute
to inhomogeneous broadening of CF transitions. The
SICS      Vol. 99      No. 5      2004
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Fig. 1. Energy surfaces E±(x, y) for a model doublet (z = 0.3).
effects of inhomogeneous line broadening are clearly
seen for CF excitation in Ho1 – xYxBa2Cu3O7 with an
energy near 0.5 meV [4]. Although the CF transition is
between two singlets, it reveals an intrinsic multiple-
peak structure at low temperatures, comprising a dom-
inant central peak with shoulders on each side, and a
tail on the higher energy side. The key assumption on
which the traditional analysis is based is that the
observed line shape arises from R-ions distributed in
slightly different local environments, but subject to the
same relaxation processes. In other words, one assumes
that the observed line shape reflects a temperature-inde-
pendent inhomogeneous broadening and a universal
temperature-dependent relaxation mechanism. The
spectrum measured at a particular temperature is then
given by the convolution of a broadening function char-
acteristic of that temperature and the residual line shape
at absolute zero. Hence, the relaxation is assumed to be
described by a single broadening function whose posi-
tion, width, and amplitude depend on temperature.
However, this approach fails to explain an unusual low-
temperature line shape of the CF transition with an
unexpectedly large (Γ0 ≈ 0.2 meV) residual linewidth of
the central peak. The low-temperature experimental
spectra are likely to reveal some sort of continuous dis-
tribution of CFs, rather than a simple superposition of
only three components whose spectral weights dis-
tinctly depend on the doping level, as was assumed
in [1, 2].

In the continuum approximation, the resultant CF
transition line shape in the static case corresponds to the
density of the local CF distribution convoluted with the
individual line shape. The density of the local CF distri-
bution has a number of universal features typical of a
rather wide range of inhomogeneous 2D potentials.
Under certain conditions, we can easily predict the
character and number of such peculiarities in the com-
JOURNAL OF EXPERIMENTAL
plex structure of the CF transition and even the line
shape itself.

3.1. Simple Point Charge Model
of Electron Inhomogeneity 

To make our consideration more quantitative, we
consider a simple model of charge inhomogeneity cen-
ters organized into an incommensurate square superlat-
tice in the CuO2 plane with a parameter a, and hypote-
tical R-ions with the momentum J = 1 positioned above
(under) the CuO2 plane (the z-coordinate in units of a:
z = Z/a), as in the R-123 structure, and having the M =
0 ground singlet state. In the approximation of a strong

tetragonal CF component, | | @ | |, the energies of
two excited states with |M| = 1 are shifted by

Hence, we can introduce two energy surfaces E±(x, y),
where x and y are the plane coordinates of a R-ion. The
surfaces osculate at points with tetragonal symmetry.

The point-charge model for the CF parameters 
allows us to easily compute these surfaces. For z = 0.3,
they are shown in Fig. 1. At first sight, these surfaces
differ insignificantly, but the isoenergetic curves reveal
a distinction. In Fig. 2, we marked different singular
points and some isoenergetic curves for both modes
E±(x, y). Four points of type M at the corners of the
square cell with the tetragonal symmetry correspond to
sharp maxima for both E–(x, y) and E+(x, y). The Γ point
at the center with the tetragonal local symmetry corre-
sponds to a smooth local maximum of the energy
E−(x, y) and a minimum of the energy E+(x, y). Four
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E–(x, y) (left-hand side) and E+(x, y) (right-hand side) branches of a model doublet (see text for details).
minima of E–(x, y) are situated at the points X(Y) on the
boundaries where the E+(x, y) surface has saddle points.
The saddle points of the E–(x, y) surface are situated
inside the elementary cell. By varying the lattice sepa-
ration, we may simulate the effect of varying the con-
centration of charge inhomogeneity centers. The
energy surfaces E±(x, y) can be described by the DOS
defined as ρ(E) ∝  [dE/dS]–1, where S(E) is the area of
the cross section E(x, t) = E = const. The R-ions are
assumed to be uniformly distributed in the x, y plane,
and their number is proportional to the cross-sectional
area: dNR(E) = ρ(E)dE ∝  dS(E). The DOS has several

0.20

0.15

0.10

0.05

0
–10 0 10 20 30 40

DOS, arb. units

Energy, arb. units

0.03

0.02

0.01

0 10 20 30 40 50

Fig. 3. Results of a numerical calculation of the density of
states for the lower and upper branches E±(x, y) of a model
doublet with z = 0.3.
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singularities associated with extremal points (minima,
maxima, and saddle points). The saddle points are of
primary importance because they are known to yield
a logarithmic divergence of the DOS in two-dimen-
sional systems. Near the minima and maxima, the E(S)
dependence can be approximated as E(S) ≈ E(0) + aSn.
It is clear that for n ≤ 1, the DOS is finite at the extre-
mum point, while for n > 1, it diverges at the extremum
point. It is worth noting that sharp extrema with small n
correspond to a small DOS. It is interesting to note the
strong resemblance of the procedure to that of the con-
ventional two-dimensional band model, where one
deals with a k-momentum space.
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Fig. 4. Results of a numerical calculation of the density of
states for the lower branch E–(x, y) of a model doublet for dif-
ferent values of the z parameter: z = 0.25 (1); 0.3 (2); 0.4 (3).
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The results of numerical calculation of the DOS
for both the low-energy |–〉  and high-energy |+〉  modes
are shown in Fig. 3.1 The inset to Fig. 3 shows the fine
structure of the DOS near the maximum of the energies
E± . The dotted line shows the energy position of the |±〉

1 The numerical calculations were performed by E. Zenkov.
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doublet failing the inhomogeneity potential. We note
that both DOSs reveal features typical of two-dimen-
sional systems. This figure yields a nice illustration of
the effects of charge incommensurability, in particular,
the splitting effect resulting from local breaking of the
tetragonal symmetry. It is worth noting that our model
DOS obeys the a–3 scaling law.

Figure 4 shows the effect of varying the distance z of
the R-ion from the CuO2 plane. We see the change in
the DOS shape with the expected narrowing and blue
shift for larger z.

Our model approach yields a simple illustration of
the concentration effects. Indeed, if we assume the
generic square lattice for the inhomogeneity centers,
we obtain a simple relation between the lattice parame-
ter and concentration: a2 ∝  1/x. Hence, given a fixed
absolute magnitude of the Z parameter, we see that the
dimensionless parameter z = Z/a varies with the con-
centration of the charge inhomogeneity centers. In
other words, Fig. 4 with additional a–3 scaling correc-
tions yields an example of a change in the DOS with a
rise in concentration. As expected, the rise in concen-
tration results in a smoothing of the energy surfaces
with a narrowing of the energy distribution and a size-
able shift of the main peak. Positional disorder due to
conventional defects such as substituted ions, uncon-
ventional topological defects such as dislocations and
disclinations (which are inherent for two-dimensional
materials, however), and slow positional motion of
bubbles result in an inhomogeneous broadening, which
implies a weighted superposition of different energy
surfaces E(x, y). Such a broadening can be easily taken
into account if we simply assume the Gaussian distribu-
tion of different E(x, y) values near a mean value
〈E(x, y)〉 . An illustrative example of a Gaussian broad-
ening is shown in Fig. 5, where we have included both
raw numerical data and the results of a convolution with
the Gaussian function with a half-width of γ = 0.1, 0.5.

Fast positional motion of the charge inhomogeneity
centers results in averaging of the CF potential acting
on the R-ion. The simplest model of such an averaging
in the framework of the point-charge approximation for
our square superlattice assumes the distribution of the
point charges near mean positions R with a probability

of W(ρ) ∝  , where ρ specifies the displacement
from the mean position and 〈ρ2〉  is a mean-square dis-
placement. In general, the mean-square displacement is
believed to be strongly anisotropic, with a predominant
in-plane component. For simplicity, however, the
numerical calculations of the energy surfaces E± were
performed with an isotropic displacement. The aver-
aged potential differs from the bare Coulomb potential
in that it has smoothed and lower maxima, and hence
the bounds of the DOS spectra shrink with a simulta-
neous shift in the center of gravity to higher energies
(see Fig. 6). Interestingly, the shift in the center of DOS
gravity is very sensitive to the z component of the

e ρ2/ ρ2〈 〉–
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charge displacement and in a sense can be used as its
measure.

However, this is not the only effect of averaging. As
the extremum regions of E±(r) become flatter and their
areas extend, the contribution of a greater number of
adjacent sites to the extrema becomes important, each
of them coming with its own phase. This leads to the
specific interference phenomena. In particular, as the
dispersion 〈ρ2〉  increases, the extremum points of E±
reveal a clear tendency to splitting. For example, the
maximum of the bare E– surface at the Γ point splits
into four maxima, which are shifted towards the four
corresponding M points, while a shallow minimum
appears at the Γ point. Thus, unexpectedly enough,
averaging can result in some complication of the energy
surfaces in general. The same effect is obtained alterna-
tively by increasing the z parameter.

As the charge distribution in the CuO2 plane
becomes more uniform, the E± energy separation pro-
gressively vanishes, because the potential of a uni-
formly charged plane yields no electric field gradient.
This may be achieved either by increasing z or by
amplifying fluctuations of the in-plane sites. Then the
energy spectrum of the model consists of the M = 0 sin-
glet ground state and the M = ±1 doublet, and the DOS
spectrum of the only excited state reduces to a δ-peak
that resides at zero energy in the adopted units. The
numerical results (see Figs. 4 and 6) confirm this con-
clusion.

To summarize, analysis of the real-space charge
inhomogeneity makes it possible to approach the inter-
pretation of the typical features of experimental spectra
from a novel angle in terms of the “real-space DOS”
singularities, which reflect some essential topological
properties of the inhomogeneity-induced spatial distri-
bution of the relevant physical parameters such as the
CF for R-ions. The basic properties of these DOS sin-
gularities (their number, kinds, etc.) are rather stable
against variations in the charge distribution and admit a
simple classification scheme. For example, extremum
points of the distribution correspond to jumps in the
DOS spectra, while saddle points give rise to sharp
divergences that manifest themselves as spectral peaks.
The observed experimental spectrum should be
regarded as a convolution of an individual line profile,
the intensity factor, and the DOS function, together
contributing to a complex resultant line shape. How-
ever, it is sometimes possible to discriminate between
different sources of the spectral features. In particular,
the proposed DOS mechanism should be addressed in
the case of “extra lines,” where the number of spectral
features observed exceeds that predicted from symme-
try considerations.

3.2. Implications for CF Transitions in Cuprates 

In the inset to Fig. 5, we present the low-temperature
CF excitation spectrum in HoxY1 – xBa2Cu3O7 (x = 0.1)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
with the energy near 0.5 meV [4]. It may be concluded
that the spectrum exhibits all the features found in our
model simulation, and hence precisely the inhomoge-
neous broadening governs the line shape. The central
peak seems to reflect the contribution of saddle-point
R-ions, while the left-hand and right-hand shoulders
are associated with R-ions exposed to extremal CF
magnitudes.

Bubbles in a crystal or liquid state of the cuprate
participate in both slow and fast motion, and we should
therefore expect a rather complicated interplay of inho-
mogeneous broadening and averaging/narrowing,
which can strongly depend on temperature. Simple
classical considerations imply the T-linear high-tem-
perature dependence of both 〈ρ2〉  and the concentration
of the topological defects in the bubble system such as
dislocations and disclinations. However, the low-tem-
perature behavior of 〈ρ2〉  is governed mainly by quan-
tum effects. It is worth noting that the contribution of
topological defects changes when crossing the BKT
transition temperature, which is accompanied by bind-
ing/unbinding of topological defects and the change in
the behavior of correlation functions. At first glance,
the rise in the temperature has to suppress the inhomo-
geneous broadening due to a faster motion of bubbles.
However, we are actually dealing with two competing
T-dependent effects: the rise of the concentration of
topological defects on the one hand and the rise of their
mean velocity on the other.

Slow conformational motion can be described in
terms of a finite diffusion, resulting in a linear-in-T
dependence of the respective inhomogeneous broaden-
ing. Actually, we deal with a combined effect of differ-
ent sources of static and dynamic factors governing the
line shape of CF transitions. Its separation requires both
further experimental information and a refinement of
theoretical models.

4. CONCLUSIONS

We have argued that the main mechanism of inho-
mogeneous broadening and relaxation of CF excita-
tions for R-ions in cuprates can be provided by fluctua-
tions of the crystalline electric field induced by a static
and dynamic charge inhomogeneity generic to doped
cuprates. Such an inhomogeneity is assumed to be the
result of topological phase separation. We have consid-
ered the generalized granular model as one of the model
scenarios for describing the static and dynamic charge
inhomogeneity in cuprates. The charge subsystem is
believed to be similar to that of a Wigner crystal with
the melting transition and phononlike positional excita-
tion modes. We have considered a simple model of
charge inhomogeneity organized into an incommensu-
rate square superlattice; this model makes it possible to
elucidate the main universal features of the real-space
density of CF states. It is worth noting that both static
and dynamic effects are considered on an equal footing.
SICS      Vol. 99      No. 5      2004
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We see that the studies of line narrowing for CF transi-
tions for 4f ions in high-Tc cuprates provides an infor-
mative tool to investigate the charge rearrangement that
accompanies the onset of high-Tc superconductivity.
Our model approach based on the analysis of the real-
space DOS can be easily generalized to study other
manifestations of the electron inhomogeneity in
cuprates such as inhomogeneous broadening of NMR–
NQR signals.

ACKNOWLEDGMENTS

This paper was supported in part by INTAS (grant
no. 01-0654), the CRDF (grant no. REC-005), RME
(grant nos. 02.-3.4-392 and UR.01.01.062), and the
Russian Foundation for Basic Research (project
no. 04-02-96077). A. S. M. has benefited from stimu-
lating discussions with A. T. Boothroyd, A. Mirmel-
stein, and J. Mesot.

REFERENCES

1. J. Mesot and A. Furrer, J. Supercond. 10, 623 (1997).
2. J. Mesot and A. Furrer, in Neutron Scattering in Layered

Copper-Oxide Superconductors, Ed. by A. Furrer (Klu-
wer, Dordrecht, 1998), p. 335.

3. J. Mesot, G. Böttger, H. Mutka, and A. Furrer, Europhys.
Lett. 44, 498 (1998).

4. A. T. Boothroyd, A. Mukherjee, and A. P. Murani, Phys.
Rev. Lett. 77, 1600 (1996).

5. D. Rubio Temprano, J. Mesot, S. Janssen, et al., Phys.
Rev. Lett. 84, 1990 (2000).

6. D. Rubio Temprano, K. Conder, A. Furrer, et al., Phys.
Rev. B 66, 184506 (2002).
JOURNAL OF EXPERIMENTAL 
7. A. T. Boothroyd, Phys. Rev. B 64, 066501 (2001).
8. S. W. Lovesey and U. Staub, Phys. Rev. B 64, 066502

(2001).
9. K. W. Becker, P. Fulde, and J. Keller, Z. Phys. B 28, 9

(1977).
10. J. Korringa, Physica C (Amsterdam) 16, 601 (1950).
11. A. Mukherjee, A. T. Boothroyd, D. McK. Paul, et al.,

Phys. Rev. B 49, 13089 (1994).
12. D. Shaltiel, C. Noble, J. Pilbrow, et al., Phys. Rev. B 53,

12430 (1996).
13. R. Osborn and E. A. Goremychkin, Physica C (Amster-

dam) 185–189, 1179 (1991).
14. M. Roepke, E. Holland-Moritz, B. Büchner, et al., Phys.

Rev. B 60, 9793 (1999).
15. U. Staub, M. Gutmann, F. Fauth, and W. Kagunya,

J. Phys.: Condens. Matter 11, L59 (1999).
16. S. W. Lovesey and U. Staub, Phys. Rev. B 61, 9130

(2000).
17. J. Burgy, M. Mayr, V. Martin-Mayor, et al., Phys. Rev.

Lett. 87, 277202 (2001).
18. E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad,

cond-mat/0206217.
19. A. S. Moskvin, R. Neudert, M. Knupfer, et al., Phys.

Rev. B 65, 180512(R) (2002).
20. A. S. Moskvin, J. Málek, M. Knupfer, et al., Phys. Rev.

Lett. 91, 037001 (2003).
21. A. S. Moskvin, I. G. Bostrem, and A. S. Ovchinnikov,

JETP Lett. 78, 772 (2003).
22. A. S. Moskvin, Phys. Rev. B 69, 214505 (2004).
23. S. A. Kivelson and B. Z. Spivak, Phys. Rev. B 45, 10490

(1992).
24. A. G. Green, Phys. Rev. B 61, R16299 (2000).
25. C. Timm, S. M. Girvin, and H. A. Fertig, Phys. Rev. B

58, 10634 (1998).
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



  

Journal of Experimental and Theoretical Physics, Vol. 99, No. 5, 2004, pp. 891–897.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 126, No. 5, 2004, pp. 1027–1033.
Original Russian Text Copyright © 2004 by Zakharov, Mukharlyamov.

                   

GRAVITATION, 
ASTROPHYSICS
A Macroscopic System of Einstein–Maxwell Equations
for a System of Interacting Particles with Different Masses

A. V. Zakharov and R. K. Mukharlyamov 
Kazan State University, ul. Lenina 19, Kazan, 420008 Tatarstan, Russia

e-mail: Alexei.Zakharov@ksu.ru; Ruslan.Muharlyamov@ksu.ru

Received December 25, 2003

Abstract—A macroscopic system of Einstein–Maxwell equations for systems of particles with different
masses is derived up to the second order in the interaction. The dominant type of interaction in this system are
electromagnetic interactions between particles (for example, a radiation-dominated cosmological plasma in the
expanding universe before the moment of recombination). The results of [1], which can only be applied to sys-
tems of interacting particles with equal masses, are generalized. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the Maxwell equations for con-
tinua can be obtained from the microscopic Maxwell–
Lorentz equations by statistical averaging over ensem-
bles [2]. It is natural to assume that the Einstein equa-
tions (or their generalizations) in a medium can also be
obtained by averaging the microscopic Einstein field
equations (the Einstein equations whose right-hand
side contains a sum of energy–momentum tensors of
individual particles). However, since the left-hand side
of the Einstein equations is nonlinear, the averaging of
the microscopic Einstein equations presents a much
more complicated problem compared with the deriva-
tion of the macroscopic Einstein equations in special
theory of relativity.

The problem of constructing macroscopic Einstein
equations was first posed by Shirokov [3]. In [4, 5], a
method of averaging over an ensemble of microscopic
Einstein equations was developed for a system of self-
gravitating particles with equal masses. As a result,
macroscopic Einstein equations were obtained for con-
tinua up to the second order in the gravitational interac-
tion. In [6], we generalized the results of [4, 5] for a sys-
tem of gravitationally interacting particles with differ-
ent masses. The equations obtained differ from the
classical Einstein equations by additional terms attrib-
uted to the interaction between particles. These terms
are proportional to the cube of the Einstein constant and
are expressed in terms of a two-particle correlation
function of particles.

The paper [1] is devoted to the derivation (up to the
second order in the interaction) of a macroscopic sys-
tem of the Einstein–Maxwell equations for a relativistic
plasma in which the dominant type of interaction are
electromagnetic interactions.
1063-7761/04/9905- $26.00 © 20891
The present paper generalizes the results of [1],
which can only be applied to a system of interacting
particles with equal masses.

It turns out that macroscopic Einstein equations for
a relativistic plasma differ from the classical Einstein
equations by additional terms on the left-hand side that
are associated with both electromagnetic and gravita-
tional interactions simultaneously. These terms repre-
sent a symmetric bivalent traceless tensor with zero
divergence. In the present paper, we obtain explicit
expressions for these terms as integrals, in the momen-
tum space, of expressions containing one-particle dis-
tribution functions of interacting particles of the
plasma.

It turns out that macroscopic Maxwell equations for
a system of electromagnetically and gravitationally
interacting particles are also different from the classical
Maxwell equations. This difference manifests itself in
the additional terms on the left-hand side of the Max-
well equations, which are attributed simultaneously to
the effects of general gravity theory and the effects of
interaction.

2. MICROSCOPIC EQUATIONS
Let us write out a microscopic system of Einstein

and Maxwell equations as

(1)

(2)

Here,  is the Einstein tensor of a Riemannian space

with metric ,  is a microscopic energy–momen-
tum tensor of particles of the medium, χ = 8πk/c4 is the
Einstein constant, k is the Newton gravitational con-

G̃
ij χT̃ m( )

ij χT̃ el( )
ij

,+=

∇̃ kF̃
ik 4π

c
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i
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g̃ij T̃ m( )
ij
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stant, c is the velocity of light,  is the tensor of elec-

tromagnetic field (the Maxwell tensor),  is the micro-

scopic current four-vector, and  is the energy–
momentum tensor of the electromagnetic field. The
operations of raising and lowering indices are per-

formed by the metric tensor  and its inverse . 
denotes a covariant derivative in a Riemannian space
with metric .

The tensor  is expressed in terms of  as
follows:

(3)

The tensors  and  are expressed in terms of the
Klimontovich random function [7] as

(4)

(5)

Here, eb is the charge of particles of kind “b”;  is the

determinant of the metric ; ma and  are the mass
and the momentum of particles of kind “a”;

is the invariant volume element in the four-dimensional

space with coordinates  [8]; and (qi, ) is the
Klimontovich random function [7]:

(6)

where na is the number of particles of kind “a” and  is
a canonical parameter along the trajectory of particles:

 and  are the coordinates and the momentum of
the lth particle of kind “a” that are determined from the
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i ũa
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q l( )
i p̃ j
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equations of motion

(7)

(  are the Christoffel symbols of the first kind cal-
culated by the metric ).

According to Eqs. (7), function (6) satisfies the fol-
lowing equation:

(8)

Let us represent the metric  of the gravitational
field produced by all the particles as a sum of the gen-
eralized metric gij and the contribution hij due to micro-
scopic interactions between particles:

(9)

where gij = 〈 〉  is the metric  averaged over the
ensemble [1]. Note that 〈hij〉  ≡ 0. The tensor of electro-

magnetic field  can also be represented as

(10)

where Fik = 〈 〉  is the Maxwell tensor averaged over
the ensemble and ωik is a microscopic tensor of electro-
magnetic field due to interactions between particles.
Note that 〈ωik〉 ≡ 0.

Along with the momenta

,

we will also use the momenta pi measured in the met-
ric gij:

(11)

Here, s is a canonical parameter calculated by the met-
ric gij .

Let us pass from  to pi by the rule

(12)

The Jacobian of transformation (12) is equal to (see [9])

(13)
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where g is the determinant of the metric gij . Let us
introduce a function Na(qi, ) defined in the eight-
dimensional phase space with coordinates (q, p):

(14)

The functions  and  in (14) are determined from
the equations obtained from (7) by the change of vari-
ables (12) (pi = gijpj).

Note that the functions  and Na are related by the
formula

(15)

An equation for Na(q, p) is obtained from the Liouville
equation (8) by the change of variables (12) and (15):

(16)

Here,

(17)

is the difference of the Christoffel symbols of the sec-
ond kind for the metrics  and gij , and

(18)

Passing to the momenta pi and the function Na in (4) and
(5), we obtain

(19)

(20)

where d4p/  is the invariant volume element in the
unperturbed momentum space.
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For further consideration, it is convenient to rewrite
the Einstein equations as

(21)

Here, Rij is the Ricci tensor of a Riemannian space with
metric gij and ∇ m is a covariant derivative in this space.

Substitute (9) and (10) into the Maxwell equations (2).
Taking into account that the gravitational interactions
are weak, we expand the microscopic Maxwell equa-
tions up to the first-order terms in hij:

(22)

In expressions (21) and (22) and below, raising and
lowering indices is performed by the averaged metric

gij , h = .

Now, let us expand Eq. (6) up to the second-order
terms in hij and ωij and average the equations obtained
over the ensemble. When we restrict ourselves to the
averaged equations up to the second-order terms in the
interaction, we can obtain a closed system of equations
for the one-particle distribution function

,

the averaged metric gij , and the macroscopic tensor of
electromagnetic field (the Maxwell tensor). An equa-
tion for fa was obtained earlier in [5, 6].

3. MACROSCOPIC SYSTEM OF EINSTEIN 
AND MAXWELL EQUATIONS

Upon averaging over ensembles of microscopic
equations by the scheme that was described in detail
in [1], we arrived at macroscopic Einstein and Maxwell
equations. These equations are now expressed as

(23)

(24)
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Here, Gij is the Einstein tensor of a Riemannian space
with a macroscopic metric gij , Fik is the Maxwell tensor,
Ji is the macroscopic four-vector of electric current
density, and Tij is the macroscopic tensor of energy–
momentum. The last tensor represents a sum of the

macroscopic energy–momentum tensors  of the
medium, the macroscopic tensor of electromagnetic

field , and the macroscopic energy–momentum

tensor  of electromagnetic radiation in a plasma.
(As applied to the cosmological plasma, by the latter
we will mean the energy–momentum tensor of the relic
radiation.)

The macroscopic Einstein equations differ from
the classical Einstein equations by the additional

terms ∇ k , µij , and –χ  on the left-hand side.
These tensors are explicitly expressed in terms of one-
particle distribution functions by the formulas given
below. The last of these additional terms represents a
correction to the macroscopic tensor of electromagnetic
radiation due to gravitational interaction that is multi-
plied by the Einstein constant and carried over, with
minus sign, from the right- to the left-hand side of the
Einstein equations.

The macroscopic Maxwell equations in general rel-
ativity theory also differ from the classical Maxwell
equations due to the additional terms ∇ kϕki + µi on their
left-hand side. These additional terms are associated
both with the effects of interaction and the effects of
general relativity theory. They are also explicitly
expressed in terms of one-particle distribution func-
tions.

Let us write out the additional terms in the explicit
form:

(25)

Tij
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(26)

(27)

(28)

(29)

Here,

are the invariant volume elements in the three-dimen-
sional momentum space of particles of kinds “b”
and “c,” respectively. The Greek index “α” in formu-
las (25)–(28) runs only through the values 1, 2, and 3
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(the space index). The derivative with respect to 
in (29) should be calculated as if all four components of
the momentum were independent. The dependence of

 on  is taken into account after differentiation

with respect to .

These expressions coincide with the corresponding
expressions for the additional terms in the macroscopic
Maxwell and Einstein equations obtained in [1] under
the assumption that the system consists of particles of
equal masses. However, they become different for sys-
tems with different masses. These differences are
displayed explicitly by the tensor Jijk(u', u'') in formu-
las (26), (28), and (29).

In [5], explicit expressions for these tensors
(see (28), (29), and (37)) were presented in a locally
Lorentz reference frame. It was pointed out that one
should take the center-of-momentum frame as such a
reference frame. To facilitate the calculations, it was
assumed in [1, 5] that all the particles in the system
have equal rest masses; hence, one should assume that,
in the center-of-momentum frame, the velocities of
interacting particles have equal magnitudes but oppo-
site directions:

where v' and v'' are three-dimensional velocities of
interacting particles.

If we do not require that the masses of interacting
particles should be equal, then the following equality
holds in the center-of-momentum frame:

where p' and p'' are the three-dimensional momenta of
interacting particles.

In this frame of reference,

(30)

Here,

are the space components of the vector v'.
A covariant generalization of (21) is expressed as

(31)

The expression for Kij(u', u'') turns out to be diver-
gent as k  0, i.e., at large target distances. This

p f'

p0' pα'

p f'

v'' v',–=

p'' p',–=

K00 K0α 0,= =

Kαβ
4π2c

v 'u0' u0''kmin
2 1 mbu0' /mcu0''+( )

------------------------------------------------------------------ δαβ
v α' v β'

v '2
-------------– 

  .=

v ' v 1'
2

v 2'
2

v 3'
2

+ + , v α' v 'α u'α /u'0= = =

Kij u' u'',( ) 4π2

kmin
2 u'u''( )2 1–[ ] 3/2

--------------------------------------------- u'u''( )2 1–[ ] gij–{=

– ui'u j' ui''u j'' u'u''( ) ui'u j'' ui''u j'+( )+– } .
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divergence is associated with the fact that we integrate
over an infinite domain, whereas, in fact, we should
restrict the integration to the domain of correlation,
where the metric is assumed to be slowly varying. To
surmount this difficulty, one should introduce, just as
when deriving a kinetic equation, a truncation in the
divergent integral

We set the lower limit of integration equal to

rather than zero; here, rmax is the size of the correlation
domain (the correlation length). Then, the above inte-
gral reduces to

Tensor (31) has the following properties:

(32)

Let us write out formula (27) from [5] in the center-
of-momentum frame, in which p'' = –p'. In this frame of

reference, the components of (u', u'') are expressed
as (the space indices of the three-dimensional velocity
vector v 'α are lowered by the three-dimensional Kro-
necker delta δαβ)

(33)

(34)

(35)

kd

k3
-----.

0

∞

∫

kmin 1/rmax=

1

2kmin
2

------------ rmax
2 /2.=

Kij u' u'',( ) Kij u'' u',( ),=

Kiju'i Kiju''i 0, Kij K ji.= = =

Jlmn
1( )

J000
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------

mbu0'

mcu0''
----------- 

 
3

–=

× α
mbu0'

mcu0''
-----------v ' 

  v '2

c2
-------,

J00α
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------

mbu0'

mcu0''
----------- 

 
2

–=

× α
mbu0'

mcu0''
-----------v ' 

  v α'

c
------,

J0αβ
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------

mbu0'

mcu0''
----------- 

  α
mbu0'

mcu0''
-----------v ' 

  δαβ–=

+
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------

mbu0'

mcu0''
----------- 

  β
mbu0'

mcu0''
-----------v ' 

 
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(36)

The functions α and β in formulas (33)–(36) depend
only on the argument

and are represented in the following explicit forms:

(37)

(38)

Here, we introduced the following notation for the
integral:

By the arguments given above, here we again set the
lower index equal to kmin = 1/rmax.

× δαβ
v α' v β'

v '2
-------------– 

  ,

Jαβγ
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------α

mbu0'

mcu0''
-----------v ' 

  c2

v '2
-------–=

× δαβ
v γ'

c
------ δαγ

v β'

c
------ δβγ

v α'

c
------ 2

v α' v β' v γ'

cv '2
-------------------–+ +

+
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
----------

× β
mbu0'

mcu0''
-----------v ' 

  c2

v '2
------- δαβ

v α' v β'

v '2
-------------– 

  v γ'

c
------

+ δαγ
v α' v γ'

v '2
-------------– 

  v β'

c
------ δβγ

v β' v γ'

v '2
------------– 

  v α'

c
------+ .

w
mbu0'

mcu0''
-----------v '=

α πc3

w3kmin

---------------

2
w
c
---- 1 w2

c2
------+ 

 

1 w2

c2
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 
2

-----------------------------
1 w

c
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1 w
c
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 
 
 
 
 

ln+ ,=

β πc3

2w3kmin

------------------

2
w
c
---- 3 2

w2
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w4

c4
------+ 

 

1 w2

c2
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 
2

------------------------------------------------=

+ 3 1 w2
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1 w

c
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1 w
c
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 
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1
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kd

k2
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∞

∫=
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A covariant generalization of these results, which
are obtained in a locally Lorentz center-of-mass frame
of reference, to arbitrary reference frames has the form

(39)

(40)

Here,

(41)

(42)

When µ = 1, these results coincide with the results
of [1].

Thus, we have generalized the results of [1] to the
case of a multicomponent system of electromagneti-
cally and gravitationally interacting particles with dif-
ferent masses.

Jijk
1( ) u' u'',( ) Jijk

2( ) u'' u',( ) Jijk u' u'',( ),= =

Jijk u' u'',( ) A gijuk' giku j' g jkui'+ +( )[=

– z gijuk'' giku j'' g jkui''+ +( )

– ui'u j''uk'' ui''u j' uk'' ui''u j''uk'+ +( ) 3zui''u j''uk''+ ]

+ C ui'u j' uk' z ui'u j' uk'' ui'u j''uk' ui''u j' uk'+ +( )–[

+ z2 ui'u j''uk'' ui''u j' uk'' ui''u j''uk'+ +( ) z3ui''u j''uk''– ] .

z u'u''( ) u'iui''( ),= =

A
π

kmin
-------- µ2 2µz 1+ +( )1/2

1 µz+( )2

µ3 z2 1–( )5/2
---------------------------------------------------------------=

× 2µ z2 1– 1 3µ2 2µz 2µ2z2–+ +( )
1 µz+( ) µ2 2µz 1+ +( )

-----------------------------------------------------------------------------------

+
1 3µ2– 2µz 4µ2z2+ +( )

1 µz+( )2
----------------------------------------------------------

× 1 µz µ z2 1––+

1 µz µ z2 1–+ +
-------------------------------------------

 
 
 

ln ,

C
π

kmin
-------- µz 1+( )

1 2µz µ2+ +( )1/2µ3 z2 1–( )7/2
-----------------------------------------------------------------------=

× 2µ z2 1– 5 7µ2 10µz 2µ2z2–+ +( )[

+
1 2µz µ2+ +( )

1 µz+
--------------------------------

5 7µ2– 10µz 12µ2z2+ +( ) 1 µz µ z2 1––+

1 µz µ z2 1–+ +
-------------------------------------------

 
 
 

,ln×

µ mb/mc.=
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The tensor Jijk(u', u'') satisfies the identity

(43)

The tensors , µij , , and µi must satisfy the fol-
lowing additional conditions

(44)

(45)

because the divergences of all the other tensors in the
macroscopic Einstein and Maxwell equations are iden-
tically zero.

Equations (44) and (45) impose certain constraints
on the dependence of the parameters rD and rg, which

enter the expressions for  and , respectively,
on the coordinates and the relative velocity of particles.

The macroscopic energy–momentum tensor of the
plasma particles and the current four-vector can also be
expressed in terms of seven-dimensional distribution
functions:

(46)

(47)

One should supplement the system of equations
obtained with a kinetic equation for Fb . For a relativis-
tic plasma, this equation was obtained in [10, 11].

4. POSSIBLE APPLICATIONS 
OF THE THEORY

The equations of the gravitational field for continua
obtained in this paper differ from the classical Einstein
equations by the additional terms

on the left-hand side.

Jijk u' u'',( )u''k 0.=

ϕ ij
k τ ij

gr( )

glj∇ l ∇ kϕ ij
k µij χτ ij

gr( )–+( ) 0,=

∇ iµ
i 0,=

Jrpq
el( ) Jrpq

gr( )

Tij
m( ) c

d3 p

p0 g–
---------------- pi p jFa p( ),∫

a

∑=

Ji eac
d3 p

p0 g–
---------------- piFa p( ).∫

a

∑=

∇ kϕ ij
k µij χτ ij

gr( )–+
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These terms are proportional to the squared Einstein
constant; however, they are also proportional to the
squared density of particles. Hence, these additional
terms may only be effective in continua with suffi-
ciently high density. Such densities may take place at
early stages of evolution of the universe, as well as
inside objects that are close to the state of gravitational
collapse. Therefore, it is natural to apply the equations
obtained to the theory of early stages of stellar evolu-
tion and to the theory of gravitational collapse.

In [3], the authors suggested that the macroscopic
Einstein equations should be applied to the construc-
tion of cosmological models. In [1, 12], the possibility
of applying the macroscopic Einstein equations to the
early stages of stellar evolution was assessed. 
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Abstract—Model-independent radiative corrections to deep inelastic scattering of an unpolarized electron
beam off the tensor-polarized deuteron target are considered. The contribution to the radiative corrections due
to the hard photon emission from the elastic electron–deuteron scattering (the so-called elastic radiative tail) is
also investigated. The calculation is based on the covariant parametrization of the deuteron quadrupole polar-
ization tensor. Radiative corrections to the polarization observables are estimated numerically for the kinemat-
ical conditions of the current experiment at HERA. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The flavor structure of nucleons is described in
terms of parton distribution functions. Most of the
information on these functions has up to now come
from inclusive deep inelastic scattering processes:
experiments where only the scattered lepton is
detected. Investigation of the nucleon spin structure
involves new types of reactions. For example, the HER-
MES experiment was specifically designed to perform
accurate measurements of semi-inclusive reactions,
where, in addition to the scattered lepton, some of the
hadrons produced are also detected [1].

The polarized nuclei of deuterium and helium-3 are
used to extract information on the neutron spin-depen-
dent structure function g1(x) [2]. In analyzing the exper-
imental data on inclusive spin asymmetries for deute-
rium, a small effect due to a possible tensor polarization
in this spin-1 target must be taken into account in order

to deduce the spin-dependent structure function .
This is connected with the presence of additional tensor-
polarized structure functions in a deuteron target [1]. So
far, spin-structure studies have focused on the spin-1/2
nucleon. Different spin physics, such as the tensor
structure in the deuteron, exists for higher-spin had-
rons. Measurement of these additional spin-dependent
structure functions provides important information
about nonnucleonic components in spin-1 nuclei and
tensor structures at the quark–parton level [3]. A gen-
eral formalism of deep inelastic electron–deuteron scat-
tering was discussed in [4], where new four tensor
structure functions bi(x), i = 1, …, 4 were introduced.
They can be measured using a tensor-polarized target

g1
d

¶ This article was submitted by authors in English.
1063-7761/04/9905- $26.00 © 20898
and an unpolarized electron beam. Among these new
structure functions, only one, b1, is the leading twist in
QCD [4], and it was found that this function is small for
a weakly coupled system of nucleons (for example, the
deuteron). Therefore, the measurement of b1 for a deu-
teron can provide information on its possible exotic
components.

From the theoretical standpoint, the spin-dependent
structure function b1(x) was investigated in a number of
papers. The available fixed targets with J ≥ 1 are only
nuclei (deuteron is the most commonly used nucleus).
If the nucleons in the deuteron are in the S state, then
b1(x) ≡ 0. For nucleons in the D state, b1(x) ≠ 0 in gen-
eral [4]. It was found [5] that, in the quark–parton
model, the sum rule

is generally true if the sea of quarks and antiquarks is
unpolarized (and it was shown how this sum rule is
modified in the presence of a polarized sea). Mank-
iewicz [6] studied b1(x) for the ρ meson and noticed
empirically that

in his model. It was shown in [7] that multiple scatter-
ing terms at low x can still lead to b1(x) ≠ 0 even in the
case where only the S-wave component is present. Var-
ious twist-two structure functions of deuterons (in par-
ticular, b1) have been calculated in a version of the con-
volution model that incorporates relativistic and bind-
ing energy corrections [8]. Simple parametrizations of
these structure functions are given in terms of few deu-
teron wavefunction parameters and the free nucleon
structure functions. The tensor structure functions were

xb1 x( )d∫ 0=

xb1 x( )d∫ 0=
004 MAIK “Nauka/Interperiodica”
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discussed in [9] in the case of lepton scattering and in
hadron reactions such as the polarized proton–deuteron
Drell–Yan process.

As is known, the HERMES experiment has been
designed to measure the nucleon spin-dependent struc-
ture functions from deep inelastic scattering of longitu-
dinally polarized positrons and electrons from polar-
ized gaseous targets (H, D, 3He). In 2000, HERMES
collected a data set with a tensor-polarized deuterium
target for the purpose of making the first measurement
of the tensor structure function b1(x). The preliminary
results on this structure function are presented in [10]
for the kinematic range 0.002 < x < 0.85 and 0.1 < Q2 <
20 GeV2. The preliminary result for the tensor asymme-
try is small enough to produce an effect of more than

1% on the measurement of . The dependence of b1 on
the x variable is in qualitative agreement with the
expectations based on coherent double-scattering mod-
els [11–13] and favors a sizeable value of b1 in the low-
x region. This suggests a significant tensor polarization
of the sea quarks, violating the Close–Kumano sum
rule [5].

The radiative corrections to deep inelastic scattering
of unpolarized and longitudinally polarized electron
beams on a polarized deuteron target were considered
in [14] in a particular case of the deuteron polarization
(which can be obtained from the general covariant spin-
density matrix [15] when spin functions are eigenvec-
tors of the spin projection operator). The leading-log
model-independent radiative corrections in deep inelas-
tic scattering of an unpolarized electron beam off the
tensor-polarized deuteron target were considered
in [16]. The calculation is based on the covariant
parametrization of the deuteron quadrupole polariza-
tion tensor and uses a Drell–Yan-like representation.

Current experiments at modern accelerators have
reached a new level of precision, and this circumstance
requires a new approach to data analysis and inclusion
of all possible systematic uncertainties. One of the
important sources of such uncertainties is the electro-
magnetic radiative effect caused by physical processes
occurring in higher orders of perturbation theory with
respect to electromagnetic interaction. In the present
paper, we give a covariant description of the deep inelas-
tic scattering of an unpolarized electron beam off the ten-
sor-polarized deuteron target (the polarization state of
the target is described by the spin-density matrix of the
general form) with the radiative corrections

(1)

taken into account.
The corresponding approach is based on the covari-

ant parametrization of the deuteron quadrupole polar-
ization tensor in terms of the 4-momenta of the particles
in process (1) [16]. We also performed numerical calcu-
lations of the radiative corrections for the kinematical
conditions of the experiment [10]. The contribution of

g1
d

e– k1( ) d p( ) e– k2( ) X px( )+ +
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the radiative tail from the elastic ed scattering is consid-
ered separately.

2. BORN APPROXIMATION

The standard set of variables used for the descrip-
tion of deep inelastic scattering processes is

(2)

where q is the 4-momentum of the intermediate heavy
photon that probes the deuteron structure. We first
define the deep inelastic scattering cross section of pro-

cess (1) in terms of the contraction of the leptonic 
and hadronic Wµν tensors (in the Born approximation,
we can neglect the electron mass)

(3)

We note that, only in the Born approximation (without
accounting for radiative corrections),

The Born leptonic tensor (in the unpolarized case) is

(4)

The hadronic tensor is defined as

where Jµ is the electromagnetic current for the γ* +
d  X transition (γ* is the virtual photon). The sum
means summation over the final states, and the bar
means averaging over the polarizations of the target and
summation over the polarizations of the final particles.
To write the hadron tensor in terms of the structure
functions, we first define the deuteron spin-density
matrix (we do not consider the effect caused by the vec-
tor polarization of the deuteron in what follows)

(5)

where sµ and Qµν are the target deuteron polarization
4-vector and the deuteron quadrupole polarization ten-
sor. The corresponding hadron tensor has both the
polarization-independent and polarization-dependent
parts and in the general case can be written as

(6)

where Wµν(0) corresponds to the unpolarized case and
Wµν(V)(Wµν(T)) corresponds to the case of the vector

x
q2–

2 pq
----------, y

2 pq
V

----------,= =

V 2 pk1, q2 Vxy, q– k1 k2,–= = =

Lµν
B

dσ
dxdQB

2
----------------

πα2

VQB
4

----------- y
x
--Lµν

B Wµν.=

q k1 k2, QB
2– q2– 2k1k2.= = =

Lµν
B q2gµν 2 k1µk2ν k1νk2µ+( ).+=

Wµν 2π( )3 δ 4( ) k1 p k2– px–+( )JµJν*,
X

∑=

ρµν
1
3
--- gµν

pµ pν

M2
-----------– 

 –
i

2M
--------εµνλρsλ pρ– Qµν,+=

Qµν Qνµ, Qµµ 0, pµQµν 0,= = =

Wµν Wµν 0( ) Wµν V( ) Wµν T( ),+ +=
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(tensor) polarization of the deuteron target. The Wµν(0)
term has the form

(7)

where M is the deuteron mass and W1, 2 are the unpolar-
ized structure functions depending on two independent
variables x and q2. The part of the hadron tensor that
depends on the quadrupole polarization tensor can be
represented as

(8)

Here, Bi (i = 1, 2, 3, 4) are the spin-dependent structure
functions (caused by the tensor polarization of the tar-
get). They are also functions of the two variables q2 and
x. Because the hadron tensor Wµν(T) is symmetric under
µ  ν, measuring these new structure functions does
not require the electron beam to be polarized.

We used the following notation in formula (8):

(9)

We note that the deuteron spin-dependent structure
functions Bi are also related to the structure functions bi

introduced in [4] as

(10)

In calculating radiative corrections, it is convenient
to parametrize the polarization state of the deuteron tar-
get in terms of the 4-momenta of the particles partici-
pating in the reaction under consideration. Therefore,
first, we have to find the set of the axes and write them
in a covariant form in terms of the 4-momenta. If we
choose, in the laboratory system of reaction (1), the lon-

Wµν 0( ) W1g̃µν–
W2

M2
------- p̃µ p̃ν,+=

g̃µν gµν
qµqν

q2
-----------, p̃µ– pµ

pq

q2
------qµ,–= =

Wµν T( )
M2

pq( )2
------------- Qαβqαqβ B1g̃µν

B2

pq
------
˜

p̃µ p̃ν+ 
 





=

---+ B3qα p̃µQν̃α p̃νQµ̃α+( ) pqB4Q̃µν+




.

     

Qµν̃ Qµν
qνqα

q2
-----------Qµα , Qµν̃qν– 0,= =

Q̃µν Qµν
qµqν

q4
-----------Qαβqαqβ+=

–
qνqα

q2
-----------Qµα

qµqα

q2
-----------Qνα , Q̃µνqν– 0.=

B1 b1, B2–
b2

3
----- b3 b4,+ += =

B3
b2

6
-----

b4

2
-----, B4–

b2

3
----- b3.–= =
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gitudinal direction 
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along the electron beam and the
transverse one 

 

t 

 

in the plane (
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) and perpendicular
to 

 

l

 

, then

(11)

We chose one of the axes along the direction 

 

l

 

 because,
in the experiment on measuring the 

 

b

 

1

 

 structure func-
tion [10], the direction of the magnetic field used for
polarization of the deuteron target is along the positron
beam line. The direction of the magnetic field provides
the quantization axis for the nuclear spin in the target.

It can be verified that the set of the 4-vectors 
has the properties

(12)

and that in the rest frame of the deuteron (the laboratory
system),

(13)

Adding one more 4-vector  = 

 

p

 

µ

 

/

 

M

 

 to set (11),
we obtain a complete set of orthogonal 4-vectors with
the properties

(14)

This allows us to express the deuteron quadrupole
polarization tensor in the general case as

(15)

because the components 
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 are orthogonal to the 4-vector

Sµ
l( ) 2τk1µ pµ–

M
-------------------------,=

Sµ
t( ) k2µ 1 y– 2xyτ–( )k1µ xy pµ––
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l( ) 0 l,( ), Sµ

t( ) 0 t,( ), Sµ
n( ) 0 n,( ),= = =

l n1, t
n2 n1 n2⋅( )n1–

1 n1 n2⋅( )2–
-------------------------------------,= =

n
n1 n2×

1 n1 n2⋅( )2–
-----------------------------------, n1 2,

k1 2,

k1 2,
------------.= =

Sµ
0( )

Sµ
m( )Sν

m( ) gµν,=

Sµ
m( )Sµ

n( ) gmn, m n, 0 l t n., , ,= =

Qµν Sµ
m( )Sν

n( )Rmn= Sµ
α( )Sν

β( )Rαβ,≡
Rαβ Rβα, Rαα 0,= =
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) and expansion (15) can be rewritten in the stan-
dard form

(16)

where we took into account that

In what follows, we consider the deep inelastic scat-
tering of the unpolarized electron beam from the ten-
sor-polarized deuteron target. Thus, we have to calcu-
late only the contraction of the Born leptonic tensor

 and the hadronic tensor Wµν(T) caused by the ten-
sor polarization of the target,

(17)

where

Using the formulas for the vectors , we can calcu-
late the contractions. After simple calculation, we have

(18)

with

(19)

Therefore, in the general case, the cross section of
deep inelastic scattering of an unpolarized electron
beam from a tensor-polarized target is determined, in
the Born approximation, by the components of the qua-

Sµ
n( )

Qµν Sµ
l( )Sν

l( ) 1
2
---Sµ

t( )Sν
t( )– Rll=

+
1
2
---Sµ

t( )Sν
t( ) Rtt Rnn–( ) Sµ

l( )Sν
t( ) Sµ

t( )Sν
l( )+( )Rlt,+

Rll Rtt Rnn+ + 0.=

Lµν
B

SB T( ) Lµν
B Wµν T( )=

=  8
τ
y
-- 1

y2
---- xy2B1 a 1– y+( )B2 yB3+ +[ ] Q0–





+
1
y
--- 2 y–( )B3 yB4–[ ] Q1 B4Q11+





,

a xyτ , Q0 Qαβqαqβ,= =

Q1 Qαβqαk1β, Q11 Qαβk1αk1β.= =

Sµ
α( )

dσB T( )

dxdQB
2

----------------- 2πα2

xQB
4

------------=

× SllRll Stt Rtt Rnn–( ) SltRlt+ +[ ] ,

Sll 2xbτ y 1 2xτ+( )2–[ ] G=

+ 2b 1 3xτ+( )B3 b a–( )B4,+

Slt 2 xbτ
y

---------=

× 2 y 2a+( )G 2 y– 4b–( )B3 yB4+ +[ ] ,

Stt 2xbτ G B3+( ), G– xyB1
b
y
---B2.–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
drupole polarization tensor Rll , Rlt , and the combination
(Rtt – Rnn).

We now consider just one more, commonly used
choice of the coordinate axes: components of the deu-
teron polarization tensor are defined in the coordinate
system with the axes along the directions L, T, and N in
the rest frame of the deuteron, where

(20)

The corresponding covariant form of set (20) is given
by

(21)

and the expansion of the deuteron polarization tensor is
defined by full analogy with (16),

(22)

These two sets of orthogonal 4-vectors are connected
by an orthogonal matrix that describes a rotation in the
plane perpendicular to the direction n = N,

(23)

In this set of axes, the part of the differential cross
section that depends on the tensor polarization can be
written as

(24)

(25)

L
k1 k2–
k1 k2–
-------------------, T

n1 n1 L⋅( )L–

1 n1 L⋅( )2–
----------------------------------, N n.= = =

Sµ
L( ) 2τ k1 k2–( )µ y pµ–

M yh
--------------------------------------------,=

Sµ
T( ) 1 2xτ+( )k2µ 1 y– 2xτ–( )k1µ x 2 y–( )pµ––

Vxbh
------------------------------------------------------------------------------------------------------------,=

Sµ
N( ) Sµ

n( ), h y 4xτ ,+= =

Qµν Sµ
L( )Sν

L( ) 1
2
---Sµ

T( )Sν
T( )– RLL=

+
1
2
---Sµ

T( )Sν
T( ) RTT RNN–( ) Sµ

L( )Sν
T( ) Sµ

T( )Sν
L( )+( )RLT .+

Sµ
L( ) θSµ

l( ) θSµ
t( ),sin+cos=

Sµ
T( ) θSµ

l( )sin– θSµ
t( ),cos+=

θcos
y 1 2xτ+( )

yh
--------------------------, θsin 2 xbτ

h
---------.–= =

dσB T( )

dxdQB
2

----------------- 2πα2

xQB
4

------------=

× SLLRLL STT RTT RNN–( ) SLT RLT+ +[ ] ,

SLL hG– 2bB3+=

+
B4

h
----- 1 y–( ) y 2xτ–( ) 2a y xτ+( )–[ ] ,

STT
2xbτ

h
------------B4,=

SLT 2 xbτ
y

--------- 2 y–( ) B3
y
h
---B4+ 

  .=
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3. RADIATIVE CORRECTIONS

In this paper, we consider only the QED radiative
corrections to the deep inelastic scattering process (1).
We confine ourselves to calculation of the so-called
model-independent radiative corrections, correspond-
ing to photons radiated from a lepton line with the vac-
uum polarization taken into account. The reason is that
it gives the leading contribution to radiative corrections
due to the smallness of the electron mass and can be
calculated without any additional assumptions. Never-
theless, these radiative corrections depend on the shape
of the deuteron structure functions (both spin-indepen-
dent and spin-dependent) via their dependence on vari-
ables x and Q2.

There exist two contributions to radiative correc-
tions when we take the corrections of the order α into
account. The first one is caused by virtual and soft pho-
ton emission that cannot affect the kinematics of pro-
cess (1). The second one arises due to the radiation of a
hard photon,

(26)

The leptonic tensor corresponding to the hard-pho-
ton radiation is well known [17, 18]. For an unpolarized
electron beam, it can be written as

(27)

where

with

m is the electron mass,

and

in this section. The hadronic tensor in this case has the
same form as the hadronic tensor in the Born approxi-
mation, but the momentum transfer q differs from the
Born one and the structure functions Bi depend on the

e– k1( ) d p( ) e– k2( ) γ k( ) X px( ).+ ++

Lµν
γ A0g̃µν A1k̃1µk̃1ν A2k̃2µk̃2ν,+ +=

A0
q2 χ1+( )2

q2 χ2–( )2
+

χ1χ2
-----------------------------------------------------– 2m2q2 1

χ1
2

----- 1

χ2
2

-----+ 
  ,–=

A1 4 q2

χ1χ2
----------- 2m2

χ2
2

---------+
 
 
 

,–=

A2 4 q2

χ1χ2
----------- 2m2

χ1
2

---------+
 
 
 

,–=

k̃iµ kiµ
qki

q2
-------qµ, i– 1 2,,= =

χ1 2, 2kk1 2, ,=

q2 χ2 χ1– QB
2 ,–=

q k1 k2 k––=
JOURNAL OF EXPERIMENTAL
new momentum q. Here and in what follows, we
neglect the terms vanishing as m  0.

We consider the hard photon (with the energy ω >
∆ε, where ∆ ! 1) emission process using the approach
in [19], where it was applied to the process of deep
inelastic scattering on an unpolarized target. We intro-
duce the variables suitable for this process,

where Mx is the invariant mass of the hadron system
produced in scattering of the photon (with the virtuality
q2) by the target.

We note the physical meaning of the z variable: it
shows the degree of deviation from the elastic process
(ed  ed). Therefore, the value z = 0 corresponds to
the elastic ed scattering threshold, and the value z =
εd/ε1 (where εd is the deuteron bound energy and ε1 is
the electron beam energy in the laboratory system) cor-
responds to the ed  enp reaction threshold
(quasielastic ed scattering).

The contraction of the leptonic and hadronic tensors
can be represented as

(28)

z
Mx

2 M2–
V

--------------------
q2 2 pq+

V
---------------------, r

q2

QB
2

-------,–= = =

x' q2–
2 pq
----------

xyr
xyr z+
-----------------, χ1 2, 2kk1 2, ,= = =

Sγ T( ) AA0 BA1 CA2,+ +=

A NQ0 3B1
2τ
c

-----B2
c

2xyr
----------- B2 2B3 B4+ +( )+ + ,=

B N Q0
V
2c
------B2 V

QB
2 χ1+

2rQB
2

------------------ B2 B3+( )–




=

+
QB

2 χ1+( )2

4rQB
2

------------------------- B1
Vc

2rQB
2

------------- B2 2B3 B4+ +( )+ 
 

+ VQ1 B3

QB
2 χ1+

2rQB
2

------------------c B3 B4+( )–
V
2
---cQ11B4+





,

C N Q0
V
2
--- 1 y–( )2

c
------------------B2





=

+ V
QB

2 χ2–

2rQB
2

------------------ 1 y–( ) B2 B3+( )

+
QB

2 χ2–( )2

4rQB
2

------------------------- B1
Vc

2rQB
2

------------- B2 2B3 B4+ +( )+ 
 

+ VQ2 B3 1 y–( )
QB

2 χ2–

2rQB
2

------------------c B3 B4+( )+
V
2
---cQ22B4+





,
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where

The quantities Q0, Q1, Q2, Q11, and Q22 are the con-
tractions of the deuteron quadrupole polarization tensor
and 4-momenta. They can be expressed in terms of the
scalar products of the 4-momenta of the particles par-

ticipating in the reaction and the set of 4-vectors .
Therefore, these contractions are

(29)

where we used the conditions

For the set of the 4-vectors , we also have tk1 = 0.

It is convenient to separate the poles in the term
(χ1χ2)–1 using the relation

Then, the radiative correction (caused by the hard-
photon emission) to the differential cross section of
deep inelastic scattering of an unpolarized electron
beam by the tensor-polarized target has the form

(30)

N 4τ /Vc2, c z xyr.+= =

Sµ
l t n, ,( )

Q0 Qαβqαqβ lq( )2 1
2
--- tq( )2–

1
2
--- nq( )2– Rll= =

+ 2lqtqRlt 2nqlqRln 2nqtqRtn+ +

+
1
2
--- tq( )2 nq( )2–[ ] Rtt Rnn–( ),

Q1 Qαβqαk1β lk1lq
1
2
---tk1tq– 

  Rll= =

+ lk1tq tk1lq+( )Rlt lk1nqRln+

+ tk1nqRtn
1
2
---tk1tq Rtt Rnn–( ),+

Q11 Qαβk1αk1β lk1( )2 1
2
--- tk1( )2– Rll= =

+ 2lk1tk1Rlt
1
2
--- tk1( )2 Rtt Rnn–( ),+

Q2 Q1 k1 k2( ), Q22 Q11 k1 k2( ),= =

ia Sµ
i( )aµ, i l t n,, ,= =

Rll Rtt Rnn 0, nk1 nk2 0.===+ +

Sµ
l t n, ,( )

1
χ1χ2
-----------

1

QB
2

------- 1
1 r–
----------- 1

χ1
----- 1

χ2
-----– 

  .=

dσγ

dxdQB
2

----------------
αy
Vx
------ k3d

2πω
-----------Σ z r,( ),∫=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where ω is the energy of the hard photon and

(31)

It is convenient to write the integral in Eq. (30) as

(32)

where we separate the contributions proportional to m2,

(33)

We first consider the integrals , i = 1, 2. The
numerator of the integrands in I1m(I2m) is then calcu-
lated in the approximation χ1 = 0 (χ2 = 0) [19]. The inte-
gration measure over the hard-photon phase space is
written as

(34)

Using the invariance of ω2dΩk , we can integrate
over the angular variables dΩk in the most suitable
coordinate system, namely, in the coordinate frame,
where

(the center-of-mass system of the scattered electron and
the produced hadronic system). We obtain

Σ z r,( )
α2 q2( )

QB
4

---------------- R0 z r,( ) 1
χ1
----- 1

χ2
-----– 

  R1 z r,( )+




=

+
m2

χ1
2

------R1m z r,( )
m2

χ2
2

------R2m z r,( )+




,

R0
2

r2
----A,–=

R1
1

r 1–
----------- 1 1

r2
----+ 

  QB
2 A

4
r
--- B C+( )– ,=

R1m 2
QB

2

r
-------A

4

r2
----C–

 
 
 

,=

R2m 2
QB

2

r
-------A

4

r2
----B–

 
 
 

.=

I
k3d

2πω
-----------Σ z r,( )∫ I1m I2m IR,+ += =

I1m
k3d

2πω
-----------α2 q2( )

QB
4

----------------m2

χ1
2

------R1m z r,( ),∫=

I2m
k3d

2πω
-----------α2 q2( )

QB
4

----------------m2

χ2
2

------R2m z r,( ).∫=

Iim

k3d
2πω
-----------

dz
z+ z–
------------

ω2 Ωkd
2π

----------------, z+ y 1 x–( ).= =

k1 k2– p+ 0=

ω2 Ωkd
2π

---------------- m2

χ1 2,
2

---------∫ 1
2
---.=
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3.1. Integral I1m 

We calculate the integrand in the approximation
where χ1 = 0 (except in the denominator). This approx-
imation corresponds to the emission of a collinear pho-
ton along the initial-electron momentum. In this case,
the variables take the values

After integrating over the hard-photon angular vari-
ables, the integral I1m can be represented as

(35)

It is convenient to explicitly extract the contribution
containing the infrared divergence. For this, we add to
the numerator of the integrand and subtract from it its
value at z = z+. At this value, we have

The integral I1m can thus be written as

(36)

r1
1 y– z+
1 xy–

--------------------, q1
2 r1QB

2 , x1'–
xyr1

z xyr1+
-------------------.= = =

I1m
1

QB
4

------- zd
z+ z–
------------α1

2N1Σ1 z( ),

0

zm

∫=

Σ1 z( ) Σ1llRll Σ1ltRlt Σ1tt Rtt Rnn–( ),+ +=

Σ1tt b
QB

2

r1
------- Gt B3t+( ),=

Σ1lt
V
r1
---- xyb

τ
--------- y 1– r1+( )B4t[–=

+ a 3b r1+–( )B3t 2 a b– r1+( )Gt+ ] ,

Σ1ll
V

2τr1
---------- a b–( ) y 1– r1+( )B4t{=

+ 2b b 2a– r1–( )B3t 2ab a b– r1+( )2–[ ] Gt } ,–

Gt xyB1t=
b

y 1– r1+
----------------------B2t, α1– α q1

2( ),=

N1
4τ

z xyr1+( )2
--------------------------,=

zm z+ ρ, ρ– 2∆ε τ z++( )/V ,= =

Bit Bi q1
2 x1',( ), i 1–4.= =

r1 1, α1 α , N1 4τ /y2, x1' x.= = = =

I1m
1

QB
4

------- zd
z+ z–
------------

0

z+

∫=

× α1
2N1Σ1 z( ) α24τ

y2
-----Σ1 z+( )–

Vx
πy
------ ρ

z+
----

dσB

xdQB
2d

----------------.ln+
JOURNAL OF EXPERIMENTAL 
3.2. Integral I2m 

Calculation of the integrand is performed in the
approximation χ2 = 0, which corresponds to the emis-
sion of a collinear photon along the final-electron
momentum. In this case, the variables take the values

After integrating over the hard-photon angular vari-
ables, the integral I2m is represented as

(37)

The contribution containing the infrared divergence is
extracted explicitly in a similar manner as for the I1m

integral. At a value of z =z+, we have

The integral I2m is then rewritten as

(38)

The radiative corrections due to the virtual photon
exchange and real soft-photon emission (with energy

r2
1 z–
1 z+–
-------------, q2

2 r2QB
2 , x2'–

xyr2

1 r2 1 y–( )–
-----------------------------.= = =

I2m
1

QB
4

------- zd
z+ z–
------------α2

2N2Σ2 z( ),

0

zm

∫=

Σ2 z( ) Σ2llRll Σ2ltRlt Σ2tt Rtt Rnn–( ),+ +=

Σ2tt bQB
2 r2Gs B3s+( ),=

Σ2lt V
xyb
τ

--------- y 1– 1
r2
----+ 

  B4s




–=

+ a 3b– 1
r2
----+ 

  B3s 2 1 a b–( )r2+[ ] Gs+




,

Σ2ll
V

2τr2
---------- a b–( ) 1 r2 1 y–( )–[ ] B4s{=

– 2b 1 2a b–( )r2+[ ] B3s

– 2abr2
2 1 ar2 br2–+( )2–[ ] Gs } ,

Gs xyB1s
b

1 r2 1 y–( )–
-----------------------------B2s, α2– α q2

2( ),= =

N2
4τ

z xyr2+( )2
--------------------------, Bis Bi q2

2 x2',( ), i 1 2 3 4., , ,= = =

r2 1, α2 α , N2 4τ /y2, x2' x.= = = =

I2m
1

QB
4

-------=
zd

z+ z–
------------

0

z+

∫

× α2
2N2Σ2 z( ) α24τ

y2
-----Σ2 z+( )–

Vx
πy
------ ρ

z+
----

σBd

x QB
2dd

----------------.ln+
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ω < ∆ε) can be related to the Born cross section as1 

(39)

where the factor δSV is [19]

(40)

ε1(ε2) is the initial (final) electron energy, and θ is the
electron scattering angle in the coordinate frame, where

The function f is defined as

The quantities ε1, ε2, and θ can be expressed in terms of
the invariant variables as

(41)

The radiative correction δSV is finally rewritten as

(42)

3.3. Integral IR 

To calculate this integral, we use the results in [19].
In addition to the integrals calculated in that paper, we
need the integrals

(43)

To calculate these integrals, we write the hard-photon
phase space measure as

(44)

1 We note that the vacuum polarization effects are included in the
Born cross section through the dependence of the coupling con-
stant α on the virtual-photon momentum.

σ S V+( )d

x QB
2dd

------------------ δSV σBd

x QB
2dd

----------------,=

δSV α
π
--- L 1–( ) ∆ε( )2

ε1ε2
-------------ln

3
2
---L+=

–
1
2
---

ε1

ε2
----ln

2 π2

6
-----– 2– f

θ
2
---

2
cos 

 – , L
QB

2

m2
-------,ln=

k1 k2– p+ 0.=

f x( )
td
t
---- 1 t–( ).ln

0

x

∫=

ε1
V 1 xy–( )

2 V τ z++( )
-----------------------------, ε2

V 1 z+–( )

2 V τ z++( )
-----------------------------,= =

θ
2
---cos

2 1 y– xyτ–
1 xy–( ) 1 z+–( )

--------------------------------------.=

δSV α
2π
------ 1– π2

3
-----– 2 f

1 y– xyτ–
1 xy–( ) 1 z+–( )

--------------------------------------–




=

– 1 xy–
1 z+–
--------------ln

2
L 1–( ) 3 2 ρ2

1 xy–( ) 1 z+–( )
--------------------------------------ln+ 

 +




.

k3d
2πω
-----------F z r,( )χ1,

k3d
2πω
-----------F z r,( )χ1

2.∫∫

d k3

2πω
-----------

QB
2

2 y2 4a+
-------------------------dϕ

2π
------dzdr.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Because the function F is independent of the ϕ variable
in our case, we can integrate over this variable. We
do this in the coordinate frame specified above. The
results are

(45)

After simple calculations, the integral IR is (with the
contributions proportional to the Rln and Rtn compo-
nents omitted)

(46)

where

(47)

i1
ϕd

2π
------χ1∫

QB
2

y2 4a+
-----------------= =

× 2 y–( ) y c–( ) 1 r–( ) y 2a+( )–[ ] ,

i2
ϕd

2π
------χ1

2∫ 1
2
--- 3i1

2 QB
4 1 xy–( )2

y2 4a+
-----------------------------– r r1–( )2 .= =

IR
1

2QB
4

---------- Rmn

L1

1 xy–
-------------- zd

1 r1–
-------------Gi

mn z r1,( )

0

zm

∫



m n,
∑

i 1=

4

∑=

+
L2

1 z+–
------------- zd

1 r2–
-------------G̃i

mn
z r2,( )

0

zm

∫

+
1

1 xy–
-------------- zd

0

zm

∫ rd
r r1–
---------------

Gi
mn z r,( )
1 r–

---------------------
Gi

mn z r1,( )
1 r1–

-----------------------–

r–

r+

∫

+
1

1 z+–
------------- zd

0

zm

∫ rd
r r2–
--------------- G̃i

mn
z r,( )

1 r–
---------------------

G̃i
mn

z r2,( )
1 r2–

-----------------------–

r–

r+

∫

+
QB

2

y2 4a+
--------------------- z r

α2

r2
-----d

r–

r+

∫d

0

zm

∫

--× Bi C0i
mn z r,( ) i1C1i

mn z r,( ) i2C2i
mn z r,( )+ +[ ]





,

L1

QB
2 1 xy–( )2

m2xy τ z++( )
-------------------------------, L2ln

QB
2 1 z+–( )2

m2xy τ z++( )
-------------------------------,ln= =

r± z( )
1

2xy τ z++( )
---------------------------=

× 2xy τ z+( ) z+ z–( ) y y2 4a+±( )+[ ] ,

Gi
mn z r,( )

α2

r2
----- 1 r–( )BiAi

mn z r,( ),=

G̃i
mn

z r,( )
α2

r2
----- 1 r–( )BiBi

mn z r,( ),=
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with m, n = l, t, n. We note that the structure functions
Bi are functions of two independent variables

The expressions for the coefficients , , ,
k = 0, 1, 2, are given in Appendix A. The contributions
proportional to the Rln and Rtn components are consid-
ered in more detail in Appendix B.

We now briefly discuss the singularities in the IR

integral. The value r = 1 corresponds to the real soft-
photon emission (there is an infrared divergence at this
point), and the value r = r1(r2) corresponds to the emis-
sion of a collinear photon along the initial- (final-) elec-
tron momentum (the so-called collinear divergence).
The singularity at the point z = z+ is the infrared one.
The divergence at r = 1 is nonphysical. It arises during
the integration procedure due to the separation of the
poles in the expression (χ1χ2)–1. It is necessary to
explicitly extract the collinear and infrared divergences
in the above formula.

The integrand in the above expression can be written
in the form that does not explicitly contain the infrared
divergences if we add term (39) to it. For this, we use
the transformations

(48)

where

and the symbol P denotes the principal value of the
integral. The total radiative correction (which is the
sum of the contribution due to the hard-photon emis-
sion and the contribution due to the real soft-photon
emission and virtual-photon contribution) to the part of
the differential cross section caused by the tensor polar-
ization of the target is written as

(49)
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where

(50)

The term  has different forms depending on the
integration region of the variable r. In the regions r– ≤
r ≤ r1 and r2 ≤ r ≤ r+ (where r ≠ 1, and therefore the
divergence at the point r = 1 is absent), the function

 has the form

(51)
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In the region r1 < r < r2, we have

(52)

where we introduce the notation

(53)

In obtaining the above formula, we use the relation

(54)

We finally consider the part of the integral I caused
by the Rln and Rtn components of the deuteron quadru-
pole polarization tensor. As stated above, these compo-
nents do not contribute to the cross section treated in the
Born approximation. If these terms are integrated over
the whole region of the ϕ variable, then these integrals
are equal to zero as well (because only one plane
remains after such integration). We discuss this prob-
lem in more detail in Appendix B.

We note that the integration limits for the variable z
in formula (50) are given somewhat schematically. This
integral contains two contributions (we neglect here the
contribution of the radiative tail from the quasielastic
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scattering). One of them is the so-called inelastic con-
tribution; the integration region for it in the variables r
and z is presented in Fig. 1 by the dashed triangle. The
integration over z for this contribution must be carried
out from

to z+, where Mth is the inelastic threshold (Mth = M +
mπ). The second contribution, related to the radiative
tail of the elastic peak, is given by the interval

The contribution of the elastic radiative tail to the
total radiative correction δtot (i.e., inclusion of radiative
corrections to the elastic ed scattering) can be obtained
from formula (30) by a simple substitution in the had-
ronic tensor,

(55)

where  are expressed in terms of the deuteron elec-
tromagnetic form factors as

(56)

zmin
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r = r+

r = r–

r = r1

r = r2

Fig. 1. The integration domain in r and z.
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Here, GC , GM , and GQ are the deuteron charge mono-
pole, magnetic dipole, and quadrupole form factors,
respectively. These form factors have the normaliza-
tions

where mn is the nucleon mass and µd(Qd) is the deuteron
magnetic (quadrupole) moment, with the values

After substitution of  in formula (30), we have to
perform trivial integration over the z variable using the
delta function

4. NUMERICAL ESTIMATE

We calculate the radiative corrections for the kine-
matical conditions of the HERMES experiment [10].
The energy of the positron beam is 27.6 GeV. The
HERMES installation has provided the first direct mea-
surement of the structure function b1 in the kinematic
range 0.002 < x < 0.85 and 0.1 < Q2 < 20 GeV2. A cylin-
drical target cell confines the polarized gas along the
positron beam line, where a longitudinal magnetic field
provides the quantization axis for the nuclear spin. The
corresponding tensor atomic polarization is T = 0.83
(see Appendix C for the definition of this quantity).

The analysis of the experimental data was per-
formed in the approximation b3 = b4 = 0. In the numer-
ical estimate below, we also neglect these functions.

The deuteron spin-dependent structure function b1 is
extracted from the measured tensor asymmetry Azz via
the relation [10]

(57)

where the deuteron spin-independent structure function

 is expressed in terms of the ratio

(see [20]) and 

GC 0( ) 1, GM 0( ) M/mn( )µd,= =
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d
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2xF1

d
--------------------------------------------- 1–= =

γ2 4M2x2

Q2
----------------=
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is a kinematic factor. Here, σT(σL) is the cross section
for the absorption of transversely (longitudinally)
polarized virtual photons by the unpolarized target. The
Born cross section of the deep inelastic scattering of the
unpolarized electron beam by the unpolarized target
has the form

(58)

The structure functions  are related to the structure
functions W1,2 (introduced in formula (7)) as

The deuteron spin-independent structure function

is calculated using parametrizations for the proton

structure functions  [21] and the ratio  [22].
The deuteron spin-dependent structure function b2 is
also extracted from the experiment using the Callan–
Gross relation

(59)

According to the preliminary results of the
HERMES experiment, the tensor asymmetry can be
parametrized as [23]

(60)

The influence of the radiative correction on the spin-
dependent part of the Born cross section is shown in
Fig. 2 as a function of the variable x for various Q2 val-
ues. Inclusion of the radiative correction shifts the zero
value of b1 and b2 to the region of smaller x (see Figs. 2c
and 2d). In the range of low x (x ~ 10–3–10–2), the value
of the radiative correction changes from 10 to 30% com-
pared with the Born contribution. This region is of the
utmost importance for b1 measurements. According to
the theoretical predictions in [11–13], the structure func-
tion b1 increases very rapidly in this region, and this fact
was confirmed in the HERMES experiment [10].

From our estimate, we conclude that the radiative
corrections to process (1) are not small, especially for
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Fig. 2. The spin-dependent part of the cross section calculated for the kinematical conditions of the HERMES experiment [10]. The
solid line is the Born approximation, the dotted line corresponds to the inclusion of the radiative corrections. The Q2 values are as
follows: (a) 0.1, (b) 1, (c) 4, and (d) 10 GeV2.
the low-x region, and they have to be taken into account
in data analysis.
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APPENDIX A

In this Appendix, we present the formulas for the
coefficients , , and  (m, n = l, t, i = 1, 2, 3,Ai

mn Bi
mn C ji

mn
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
4, j = 0, 1, 2) that determine the cross section of the
hard-photon emission process (see formula (50)).

The coefficients determining the contribution pro-
portional to the B1 structure function are

A1
ll n1

τ
----- r ∆1–( )2 2a b ∆1+( )–[ ] ,–=

B1
ll n1

τ
----- 2a b–( )r 1 ∆2+ +[ ] 2 ar 2 3ar+( )–{ } ,=

C01
ll VN

τ
-------- r ∆1–( )2 a 3a 1 r2+( ) 2 b ∆1+( )–[ ]+{ } ,–=
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(A.1)

The coefficients determining the contribution propor-
tional to the B2 structure function are
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(A.2)

The coefficients determining the contribution propor-
tional to the B3 structure function are
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(A.3)

The coefficients determining the contribution propor-
tional to the B4 structure function are

(A.4)
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We here use the notation

APPENDIX B

In this Appendix, we consider the part of the integral
I that is caused by the Rln and Rtn components of the
deuteron quadrupole polarization tensor (these compo-
nents do not contribute to the differential cross section
treated in the Born approximation). We define the inte-
gral caused by the Rln component as

(B.1)
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(B.2)

and

The second integral, caused by the Rtn component, is
defined as

(B.3)

where the integrand is
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(B.4)

and

As before, we calculate the above integrals in the
center-of-mass system of the hard photon and the unde-
tected hadron system:

The electron momenta k1 and k2 define the xz plane, the
z axis is directed along the deuteron momentum p.
Then, the hard-photon momentum k is determined by
the azimuthal (ϕ) and polar (θ) angles, and the phase
space of the hard photon can be written as

(B.5)

where ω is the hard-photon energy.
The quantity nq can be written in this coordinate

system as nq = , where  is a factor independent

P2tn QB
2 xyg 1 r2+( )B1

g
c
--- a 1 r2+( ) 4 fr–[ ] B2+





–=

+ g r 1– y+( ) B2 B3+( )

---– bc B3 B4+( ) 2br 1 y–( )B3–




,

U0tn r 1–( ) 2xy f B1
τ
c
--B2+ 

 –=

---+ 2 y–( ) 2a y+( ) B2 B3+( ) ,

U1tn
1
V
--- r 1–( ) 2a y+( )G1 f G2---–





=

–
y 2–
Mxy
----------- M 2a y+( ) 2τd–[ ] B2 B3+( )

–
d

Mxy
-----------c 2a r 2–( )]G2–





,

G1 3B1
2τ
c

-----B2
c

2xyr
----------- B2 2B3 B4+ +( ),+ +=

G2 B1–
c

2xyr
----------- B2 2B3 B4+ +( ),–=

d2 bQB
2 , f b a– z– r 1 xy–( ),+= =

g z 1– r a b– xy+( ).+=

k1 k2– p+ 0.=

d3k
2πω
-----------

QB
2

2 y2 4a+
-------------------------dϕ

2π
------dzdr,=

n ϕsin n
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of ϕ. Then, the integration over the ϕ variable in the
region (0, 2π) leads to the result

Therefore, the Rln and Rtn components of the deuteron
quadrupole polarization tensor do not contribute to the
differential cross section of deep inelastic scattering of
the unpolarized electron beam by the tensor polarized
target. This is because only the scattered-electron vari-
ables are measured (this corresponds to the HERA
experimental conditions, for example).

If the hard photon is detected, then Iln and Itn survive
and the expressions for Σln and Σtn have to be taken into
account.

APPENDIX C

In this Appendix, we give some formulas describing
the polarization state of the deuteron target in different
cases. In the case of an arbitrary polarization of the tar-
get, it is described by the general spin-density matrix
(defined by eight parameters in general), which in the
coordinate representation has the form

(C.1)

where pµ is the deuteron 4-momentum, and sµ and Qµν
are the deuteron polarization 4-vector and the deuteron
quadrupole polarization tensor.

In the deuteron rest frame, the above formula is
written as

(C.2)

This spin-density matrix can be written in the helicity
representation using the relation

(C.3)

where  are the deuteron spin functions that have the
deuteron spin projection λ on the quantization axis (the
z axis). They are

(C.4)

The elements of the spin-density matrix in the helicity
representation are related to those in the coordinate rep-

Iln Itn 0.= =

ρµν
1
3
--- gµν

pµ pν

M2
-----------– 

 –
i

2M
--------εµνλρsλ pρ– Qµν,+=

Qµν Qνµ, Qµµ 0, pµQµν 0,= = =

ρij
1
3
---δij

i
2
---εijksk Qij, ij+ + x y z., ,= =

ρλλ ' ρijei
λ( )*e j

λ'( ), λ λ ', + – 0,, ,= =

ei
λ( )

e ±( ) 1

2
------- 1 i 0,±,( ), e 0( )+− 0 0 1, ,( ).= =
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(C.5)

To obtain these relations, we use that Qxx + Qyy + Qzz = 0.
The polarized deuteron target described by the pop-

ulation numbers n+, n–, and n0 is often used in spin
experiments. Here, n+, n–, and n0 are the fractions of
atoms with the respective nuclear spin projection on the
quantization axis m = +1, m = –1, and m = 0. If the spin-
density matrix is normalized to 1, i.e.,

then we have

Thus, the polarization state of the deuteron target is
defined in this case by two parameters: the so-called
V (vector) and T (tensor) polarizations,

(C.6)

Using the definitions of the quantities n±, 0 ,

(C.7)

we have the following relation between V and T and the
parameters of the spin-density matrix in the coordinate
representation (in the case where the quantization axis
is directed along the z axis):

(C.8)

or

(C.9)
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Abstract—The main features of resonance scattering of electrons by molecules are described and resonances
are determined on the basis of the theory of collisions in a two-body system, as well as resonances emerging as
a result of collisions in a few-body system. Regularities in the emergence of such resonances and their charac-
teristics are analyzed. The results of calculations of these resonant processes occurring during collisions of elec-
trons with diatomic molecules, made on the basis of the quantum theory of scattering in a few-body system, are
presented. The results of calculating the cross sections of resonant processes of electron collisions with mole-
cules are compared with the available experimental data and with the results of calculations based on other
approximations. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Resonances bringing a variety of features to physi-
cal phenomena exist in any field from molecular phys-
ics to elementary particle physics. The concept of reso-
nance is one of the fundamental concepts in quantum
physics. We can attach a broad physical meaning to the
term resonance, including stable levels, and imply their
effect on scattering processes [1, 2]. Resonances play a
special role in the physics of irreversible processes. In
this case, in accordance with the Poincaré theorem [3],
resonances are responsible for nonintegrability of most
dynamic systems.

A theoretical explanation of resonances and their
parameters can be constructed on the basis of forces of
interaction between particles, which are treated as ele-
mentary particles in such processes. For example, reso-
nant processes in atomic physics are determined by the
forces of interaction between electrons and nuclei,
while resonances in nuclear physics are determined by
forces acting between nucleons.

A resonance in scattering is any peak on the experi-
mental curve describing the scattering cross section.
The resonance is characterized by the moment, parity,
spin, lifetime, etc. Collisions of electrons with mole-
cules often result in the formation of metastable nega-
tive molecular ions, which are also traditionally
referred to as molecular resonances [4–11]. In this case,
since atoms move slowly as compared to electrons, the
electron + molecule system can be regarded as a quasi-
molecule whose electron shell at each instant corre-
sponds to a quasistationary state of such a quasimole-
cule. This is in accordance with the well-known adia-
batic approximation in quantum mechanics. In this
approximation, various electron transitions (excitation,
ionization, charge transfer) are hampered for collisions
of electrons, atoms, or ions with molecules under ordi-
1063-7761/04/9905- $26.00 © 20915
nary conditions. The necessary condition for such a
charge transfer [5, 6] is ∆E∆τ ~ ", where ∆E is the
change in the quasimolecule energy and ∆τ is the colli-
sion time. Thus, for slow collisions, when the value of
∆τ is large, transitions can occur only if ∆E is small;
i.e., two states of the quasimolecule before and after the
collision must be close and such a process can also be
treated as a resonant process. Such treatment of a reso-
nance reveals the relation between equilibrium and
dynamics, on the one hand, and the physics of dissipa-
tive processes, on the other hand [12].

The importance of resonant processes is determined
by the fact that all practical applications of experimen-
tal studies are based on resonances since it is resonant
processes that are characterized by large cross sections
or long lifetimes as compared to nonresonant processes
and play an important role in low-temperature plasmas
(resonant processes determine the emergence and dis-
appearance of excited and charged particles; i.e., they
determine optical and electrical properties of a plasma),
in controlled thermonuclear synthesis, mu-catalysis,
and so on [4–12].

Proceeding from the theory of collisions in a two-
body system in which the target molecule is regarded as
a force center, the following type of resonances can be
distinguished [4–11].

1. A shape resonance appears in the case when the
incident electron is trapped to a quasi-stationary level
separated from the level in the continuum by a centrif-
ugal barrier formed by a combination of attractive and
repulsive fields of the target molecule. This type of res-
onance appears only when the electron possesses an
angular momentum relative to the target molecule. In
the case of low-energy s scattering (l = 0), electron can-
not be trapped and form resonance is absent.

2. A vibrationally excited resonance appears when
the incident electron excites vibrations of the target
004 MAIK “Nauka/Interperiodica”
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molecule and is temporally bound. In this case, the
kinetic energy of the electron is directly transformed
into the vibrational energy of motion of the nuclei of
the negative molecular ion; thus, this type of resonance
is associated with violation of the Born–Oppenheimer
principle. The lifetimes of such resonant states are
extremely long (especially for polyatomic molecules)
and attain tens of microseconds.

3. An electron-excited resonance is formed when the
projectile electron excites the electron system of the
target molecule and also becomes temporally bound. In
this case, the detachment of an electron is impossible as
long as the molecule remains in the excited state. Nev-
ertheless, an electron may still be detached if closed
and open channels are coupled.

Theoretical description of such resonances appear-
ing as a result of formation of negative metastable ions
is presented in [4–11] on the basis of the theory of scat-
tering in a two-body system. In these works, resonances
are defined as complex poles of the scattering matrix
continued to the nonphysical energy sheet or as poles of
an analytic continuation of the Green function.

Collisions between electrons and molecules occur-
ring without the formation of intermediate complexes
as well as collision processes at thermal energies of
incident electrons, in which a nonmonotonic energy
dependence of scattering cross section is also observed,
remain unstudied. In the latter case, the application of
standard techniques for calculating cross sections is
unjustified in view of violation of the Born–Oppenhe-
imer approximation [4–6]. The application of the the-
ory of collisions in a two-body system for calculating
such processes encounters considerable difficulties
since the system considered here is essentially a many-
particle system [13, 14].

For this reason, we will describe resonant processes
occurring during collisions of an electron with mole-
cules by using a more consistent approach based on the
quantum theory of scattering in a few-particle system
[13, 14]. The main approximation in this case is that the
interaction of the projectile electron with the electrons
and nuclei of the target molecule is replaced by the
interaction of the electrons with the atoms of the mole-
cule, the atoms being treated as force centers. Thus, a
complex many-particle system consisting of the elec-
tron and the nuclei is replaced by a system of few inter-
acting bodies, which can be described with the help of
Faddeev equations [13]. Naturally, this approximation
imposes certain constraints on the energy of the projec-
tile electron: this energy should not be higher than that
the ionization energy of the atoms constituting the mol-
ecule. However, it is precisely this energy range that is
interesting in connection with the presence of reso-
nance peaks in the effective cross sections of collisions
of electrons with various molecules [4–11].

In such a formalism, a resonance in a three-particle
system is determined by two-particle resonances under
certain conditions [1, 13, 14]. Thus, the reason for the
JOURNAL OF EXPERIMENTAL 
emergence of three-particle resonances is the existence
of resonant states in paired subsystems. This not very
popular point of view is due to the fact that such a cou-
pling does not exist always and cannot be determined
explicitly even when it is present. This was demonstrated
for the first time in nuclear physics and in elementary
particle physics where the interaction between particles
leading to the appearance of resonances is determined by
the exchange between the particles of the same reso-
nances; thus, resonances produce themselves [1, 2].

In atomic physics, coupling between resonances is
observed for a large number of phenomena (such as
scattering of electrons by molecules, coupling between
clusters in biopolymer molecules, and in Bose conden-
sate) [4–7, 14, 15]. In this type of coupling, two-particle
resonances lead to a series of three-particle resonance.
A peculiar feature of this phenomenon is that the stron-
ger the two-particle resonance, the larger the number of
three-particle resonances produced by it. Experiments
show [1, 14, 15] that such resonant states in many-par-
ticle systems lead to anomalously high rates of chemi-
cal reactions, dynamic coupling of noninteracting par-
ticles, etc. [14–16]. The importance of studying such
states is directly associated with determining the bind-
ing energy of a system of N bodies using information
on subsystems of this many-particle system, i.e., the
construction of dependences EN = f(EN – 1, EN – 2,…) and
the determination of the conditions for the formation of
a coupled many-particle system provided that some
subsystems are not coupled [16].

The physical foundation of the effect considered
here is presented in [1], where the following aspects are
revealed.

1. The effect of two-particle resonances on the spec-
trum of a three-particle system is clearly manifested;
i.e., a two-particle resonance can radically reconstruct
the discrete spectrum of three particles. However, not
every two-particle resonant state can reconstruct the
spectrum of three particles, but only the state whose
size rres ∝  (2mij|e0|)–1/2 is much larger than the range r0
of its action (e0 is the binding energy and mij is the
reduced mass of a pair of particles. Such a resonance
can only be an s resonance (l = 0) since such resonant
states strongly differ in size from other types of reso-
nant states. For e  0, size rres  ∞. The size of a
resonant state is manifested in the scattering of particles
in the form of a large scattering length a, which is equal
to the size of this resonant state for small e0. Analyzing
resonant states from the standpoint of their size, we can
observe that all these states sharply differ from the res-
onance considered above. For example, the state occu-
pied by the system in a partial wave with l ≠ 0 has a size
on the order of the range of forces due to the centrifugal
barrier; a compound resonance is not large either. Thus,
a two-particle s level with a small binding energy occu-
pies an exceptional position among resonant states as
regards its size.
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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2. Three-particle levels are stable and their number
is proportional to ln(|a|/r). It can be proved [1, 13–15]
that the interaction responsible for the emergence of
these levels has the form U ∝  A/R2, where

ri is the distance between a pair of particle, and is oper-
ative in the interval (r0, a) (Fig. 1). In the general case,
the constant A of this interaction is a function of quan-
tum numbers of the three-particle state, angular
momentum, parity, and symmetry relative to the trans-
position of the particles. The value of A is estimated
in [1, 13–15]. The strongest attraction should be
observed for the orbital angular momentum L = 0 for
three particles since centrifugal forces are absent in this
case. The symmetry of this state must be maximal; oth-
erwise, the wavefunction has nodes and the coupling
becomes weaker.

3. Centrifugal forces suppress the effect.
4. Such states possess the maximal symmetry.
5. Triple forces do not influence on the effect.
6. The addition of a particle to the three-particle sys-

tem suppresses the effect.
7. The particle charge has no influence on the effect,

which is manifested less clearly in this case.
8. For particles with spins, the effect is also pro-

nounced less clearly.
It should be noted that such peculiar states of three

particles are independent of the specific form of the
potential (i.e., independent of the forces of interaction
between particles) and are universal in the sense that
these states reflect only the fact of existence of a reso-
nance. Thus, irrespective of the form of pair forces
between the particles, if it leads to a low-energy two-
particle s resonance, this automatically leads to the for-
mation of a family of three-particle resonances. Conse-
quently, the reason for the emergence of a three-particle
level lies in the production of long-range interaction
between three particles by a two-particle resonance
with a large spatial size.

Thus, the number of resonant states in a three-parti-
cle system is determined only by specific properties of
paired subsystems.

The masses of the particles have the strongest influ-
ence on the effect. The following three characteristic
regimes can be singled out: the mode of identical parti-
cles, the mode of a heavy center, and the molecular
mode [1, 13–15].

The heavy-center mode takes place when the masses
of two particles are of the same order ml , while the mass
mh of the third particle is much larger. The pair of light
particle has no energy level and these particles do not
interact with each other, but interact with the heavy par-
ticle through the attracting potential. In this case, if the
mass of the third particle is infinitely large, we are deal-
ing with the case of a pair of particles in a force center;

R2 2
3
--- r1

2 r2
2

r3
2+ +( ),=
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naturally, three-particle levels do not emerge in such a
system. In this case, the heavy particle does not respond
to the motion of the noninteracting particles moving
independently from each other in the field of the sta-
tionary heavy particle. Consequently, in this limit, the
binding energy of the three particles is the additive sum
of the binding energies of two-particle systems. How-
ever, for a finite mass of the heavy particle, the motion
of all the three particles is correlated, so that the center
of mass of the system remains at rest. In this case, the
heavy particle responds to a change in the position of
other particles whose motion becomes correlated in
spite of the absence of a direct interaction between
them. Thus, dynamic correlation in the motion of cou-
pled particles can be treated as a sort of attraction. It
should be noted that such a dynamic attraction also
appears in the case when repulsive force act between
the particles coupled in this way. In this case, dynamic
attraction compensates mutual repulsion and leads to
stabilization of the system. This can be clearly seen, for
example, for the ion of positronium e+e–e– [14–16]. In
this case, for any finite mass of a heavy center, the num-
ber of levels is

A special feature of this mode is that extremely shallow
levels in paired subsystem are required for the existence
of three-particle levels in contrast to the molecular
mode, where the requirements imposed on paired levels
are much less stringent and more realistic.

In the molecular mode, when a light particle has
shallow levels in the interaction with the heavy parti-
cles, the number of levels is

and the potential of the interaction produced by the

N
ml

mh

------ 1

e0mlr0
2

---------------.ln∝

N
ml

mh

------ 1

e0 mlr0
2

------------------ln ,∝

U

R

1/r0
2

1/R2

|a|r0

Fig. 1. Effective potential responsible for resonances in a
three-particle system.
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light particle has the form

which is precisely the energy of the molecular energy
level. A simple example of this mode is a system con-
sisting of an electron and two neutral atoms. A mole-
cule formed in this way differs from a conventional
molecule in that its nuclei vibrate in region R whose
size is determined by the energy e0 of the shallow paired
level; in addition to vibrational levels, this system also
has a rotational spectrum. Thus, two-particle levels in
this mode lead to the formation of a series of not only
vibrational, but also rotational levels [1, 13–15].

It should be noted that such peculiar resonance
states are manifested in a wide range of conditions and
form a stable phenomenon which can be reliably iden-
tified and confirmed experimentally.

2. BASIC EQUATIONS AND RESULTS 
OF CALCULATIONS

We will analyze these peculiar resonant states quan-
titatively in the case of the molecular mode using the
Faddeev integral equations [13]. In the given approxi-
mation (three particles, viz., two atoms and an elec-
tron), these equations are formulated for three parts into
which the total wavefunction of the three-body system
splits,

Each part corresponds to possible divisions of the sys-
tem of three particles into noninteracting subgroups. In
the momentum space, in the case of scattering of parti-
cle 1 from the coupled pair (2, 3), these equations have
the form [13, 14]

(1)

Here, Φ1 describes the initial state of the three-body
system: free motion of particle 1 and the bound state of
pair (2, 3); G0(Z) = (H0 – Z)–1, Z = E + i0, where H0 is
the operator of free motion of the three particles; E is
the total energy of the three-body system, which is
equal to the sum of the kinetic energy of projectile 1
and the binding energy of pair (2, 3); and Ti is a paired
T matrix that can be unambiguously defined in terms of
the paired interaction potential Vi with the help of the
Lippmann–Schwinger equations

(2)

To describe the motion of three particles in the center-
of-mass system, we use the generally accepted Jacobi

V
0.32–

mlrhh
2

-------------,∝

Ψ Ψi.
i 1=

3

∑=

Ψi Φiδi1 G0 Z( )Ti Ψ j Ψk+( ),–=

i j k, , 1 2 3; 3 1 2; 2 1 3., ,, ,, ,=

Ti Vi ViGiTi, Ci+ hi Zi–( ) 1– ,= =

hi ∆i Vi.+=
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coordinates. It should be borne in mind that we must
use as integration variables in Eq. (1) a certain system
of variables which is found to be most convenient. For
example, in the integral corresponding to the expres-
sion G0T1Ψ2, it is more convenient to take k2 and p2 as
integration variables. In this case, variables k1 and p1
determining the kernel of operator T1 should be
expressed in terms of variables k2 and p2. Sometimes,
it is more convenient to use variables p1 and p2 in the
same situation.

Paired T matrices ti(ki, ; Z) appearing in the ker-
nels of the equations have singularities in variable Z:
the poles corresponding to the discrete spectrum of
paired subsystems and a cut along the positive part of
the real axis generated by the spectrum of the two-body
problem. The explicit form of these singularities gives
the spectral representation of matrix T. The poles of the
T matrix corresponding to the discrete spectrum gener-
ate singularities in the wavefunction components Ψi;
separating these components, we obtain the represen-
tation

(3)

where

and Qj and Rji are smooth functions of their variables.
Such a division of singularities appears automatically
in the numerical solution of integral equations. To
define functions Qj and Rji unambiguously, we can pro-
ceed as follows. We substitute Ψi in form (3) into initial
equations (1) and equate the coefficients of identical
singularities. This gives the equations for these func-
tions which can be used for expressing explicitly all
main characteristics of the three-body problem: wave
function, elements of the S matrix, as well as the ampli-
tudes and cross sections of all processes occurring in
the three-body system. Thus, the cross section of the
elastic scattering process has the form

the cross section of rearrangement processes is given by

and the cross section of the process of decay into three

ki'

Ψi ki pi; pi
0,( ) ϕ ki( )δ pi pi

0–( )=

–
Bi ki pi; pi

0; Z,( )
pi

2/2ni ki
2/2m jk Z–+

--------------------------------------------------,

Bi ki pi; pi
0; Z,( )

=  Q j ki pi; pi
0; Z,( )

ϕ j p j( )R ji k j; pi
0; Z( )

p j
2/2n j κ j Z––

-------------------------------------------------–
 
 
 

,
j 1=

3

∑–

dσ11

dΘ
----------- 2π( )4n1 R11

2,=

dσ1i

dΘ
----------

2π( )4n1 p f R1i
2

p1
0

-------------------------------------,=
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free particles has the form

where

The main advantage of the Faddeev equations (1) is
that

(i) the solution of this equation gives simultaneously
the amplitudes and cross sections of all processes
occurring in the three-particle system;

(ii) the accuracy in determining the bound state from
the solution of the Faddeev equations is much higher
than the accuracy obtained by solving the Schrödinger
equations (this peculiarity is associated with the fact
that Eqs. (1) were formulated for the wavefunction
components and, hence, take into account possible
asymptotic forms of the three-particle system);

(iii) these equations make it possible to carry out a
correct (from the standpoint of mathematics) analysis
of scattering processes, in which all three free particles
are in the initial state [12, 13]; this is impossible in all
approaches proposed earlier [5–11]:

In this case, we have the following representation
for the wavefunction [13–15]:

where functions Mi, j satisfy the following system of
equations:

For cross sections of these processes, we obtain the fol-
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
 

lowing expressions [13–15]:

corresponds to processes in which three free particles
are in the initial and final states;

correspond to processes in which a coupled pair of par-
ticles  s  

j
  is present in the initial or the final state. The

equations for functions 

 

Q

 

ij

 

, , and 

 

R

 

ij

 

 are analogous
to the equations for 

 

M

 

i

 

,

 

j

 

 and are given in [13–15].

It should be noted that potentials do not appear
explicitly in integral equations (1); these equations con-
tain a more general characteristic, viz., 

 

T

 

 matrices,
which are connected with the potentials of the Lipp-
mann-Schwinger equations (2). Consequently, although
potentials are formally used in the given method, we
essentially model 

 

T

 

 matrices, which are constructed on
the basis of the Bateman method [13, 14] suitable for
any local potential. This method considerably simpli-
fies numerical solution of the system of integral
equations (1) and sometimes even leads an analytic
solution [13–17].

Integral equations (1) possess good properties (from
the mathematical standpoint)) such as the Fredholm
property and unambiguous solvability only under cer-
tain conditions imposed on two-particle data [13]:
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(i) paired potentials Vi(k, k'), which are nonlocal in
the general case, are smooth functions of k, k' and sat-
isfy the condition

(ii) point Z = 0 is not a singular point for Eqs. (2);
i.e., all three scattering lengths in pair channels are
finite;

(iii) the positive two-particle spectrum is continu-
ous. This condition is essential for nonlocal potentials
since positive eigenvalues may appear only in this case,
and this condition is satisfied for virtually all physical
processes.

Coulomb potentials and hard-core potentials do not
satisfy the first condition: Coulomb potentials lead to a
singularity of the type |k – k'|–2 in T matrices, while
hard-core potentials result in a slow decrease in the T
matrix for large momenta. When the second condition
is violated, the Fredholm property of Eqs. (1) is lost for
Z = 0, which leads to the above-mentioned Efimov’s
effect (emergence of an infinitely large discrete spec-
trum in a three-body system under certain conditions).
A similar situation emerges in the case of scattering of
electrons from diatomic molecules, for which this
effect was experimentally observed for the first time.
The three-body approximation considered here repro-
duces these experimental results in a quite natural way.

It should be emphasized once again that the given
approximation appears quite reasonable for values of
the incident electron energy lower than the electron
excitation energy of the molecule.

As the initial data in such a formulation of the prob-
lem, we use pair interaction potentials, masses, and
energies of colliding particles. For potentials of pair
interaction of electrons with atoms of the molecule, we
used potentials of the form

(4)

whose parameters were determined on the basis of the
electron binding energy at a negative ion, scattering
lengths, and effective radius. Allowance for spin (in the
case of homonuclear molecules) was made as follows.
For the scattering length, we used the quantity [5, 6,
14–17]

where at and as are the triplet and singlet scattering
lengths, respectively.

Vi k k',( ) 1 k k'––( )1 e– , e 0;>≤

V r( ) λ βr–( )exp
r

---------------------------,=

1
a
--- 1

a1
----- 1

a2
-----

1
4
--- 3

at

---- 1
as

----+ 
  ,= = =
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Pair potentials of interaction between atoms in mol-
ecules was simulated by the Morse potentials

(5)

whose parameters were determined on the basis of
spectroscopic data [18].

Numerical solution of integral equations (1)
involves considerable difficulties because the kernels of
integral equations (1) contain the following singula-
rities:

(i) Branching points of the square-root type, which
correspond to the thresholds of two-particle processes.

(ii) Poles determining the bound states of two-parti-
cle subsystems in pair T matrices.

(iii) Logarithmic singularities. The position of these
singularities and their form depend on the form of pair
potentials of interaction, the masses of colliding parti-
cles, and the total energy of the three-body system.

Consequently, various methods of numerical solu-
tion of Eqs. (1) are based on:

(i) Bypassing the singularities by deforming the
integration contour to the complex plane; this is possi-
ble only when pair potentials are defined analytically
and do not introduce additional singularities in the ker-
nels of Eqs. (1), which is the case with the potential of
the rectangular well or hard core type.

(ii) Using the method of integration along the real
axis; in this case, the solution should be approximated
in the vicinity of these singularities either by summing
the Born series with the help of Padé approximants, or
using interpolation polynomials for approximating the
solution, or using the moments methods for this
purpose.

(iii) Application of various variational principles,
collocation methods, methods of artificial separation of
singularities, and so on.

All methods mentioned above have the same disad-
vantage: they can be used only for a specific three-par-
ticle system. These methods mainly involve calculation
of bound states or states of scattering of three identical
particles.

Here, we propose a quite universal method for solv-
ing system of equations (1) for calculating bound states
as well as scattering states in systems with arbitrary
masses, which interact via arbitrary pair short-lived
potentials that can also be defined numerically. In the
method proposed here, the domain of an unknown
function is divided into a number of intervals on each of
which the function is approximated with the help of
corresponding interpolation polynomials. The method
for solving system of equations (1) is a modification of
the standard method for solving integral equations, in
which the integral on the right-hand side is replaced
with the help of a quadratures formula for solving
Eq. (1). As a result, we arrive at a system of algebraic
equations for values of the sought function at the nodes
of the quadratures formula. In the proposed method, the

V r( ) D 1 α r r0–( )–( )exp–( ),=
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domain of the sought function is divided into a number
of segments, on each of which the function is deter-
mined with the help of interpolation polynomials repro-
ducing the correct behavior of the function in the vicin-
ity of the above singularities, after which integration is
carried out using quadratures formulas. A package of
application programs was used for realization of the
proposed numerical method for solving the system of
integral equations (1) [13–15].

We will consider the results of calculation of these
resonant processes using as an example the calculation
of cross sections for the simplest reaction of dissocia-
tive attachment of electrons to hydrogen molecules.
These results are shown in Fig. 2 together with the lat-
est experimental data [4, 19–21] and the results of cal-
culations based on other approximations [5–11]. These
results confirm the existence in this system of the reso-
nant states considered above. It should be noted here
that experimental results of observation of three-parti-
cle resonant states were presented for the first time by
Poincaré [3] for the dissociative attachment of an elec-
tron to hydrogen molecules. However, in view of the
electron energy distribution within about 0.1 eV in the
beam, only nonmonotonic character of the energy
dependence of the dissociative attachment cross section
was revealed in these experiments; this nonmonotonic-
ity was confirmed in theoretical calculations published
more than 20 years ago [14, 17]. The oscillatory struc-
ture of the dissociative attachment cross sections was
confirmed only recently in experiments [19], in which
a special technique was used for energy stabilization of
the electron beam (~meV).

To estimate the influence of particle charges on the
effect, we consider the scattering of electrons from
hydrogen halide molecules. Since the electron affinity
to the hydrogen atom is much smaller than to a halogen
atom [18], a hydrogen halide molecule can be proposed
as a system consisting of a proton and a negative halo-
gen ion. Thus, in the approach proposed here, the main
approximation is that the interaction of the projectile
electron with the nuclei of the target molecule is
replaced by the interaction of the incident electron with
the proton and the negative halogen ion. The complex
many-particle problem of calculating the electron scat-
tering cross section at diatomic molecules is reduced to
the problem of collision in a three-body system, which
can be solved using the method of quantum scattering
problem in a few-particle system. Naturally, this
approximation is valid for energies of the incident elec-
tron lower than the electron excitation energy of the
molecule.

Computational difficulties encountered in calcula-
tion of cross sections in the given approximation are
mainly associated with the long-range Coulomb inter-
action potentials between a projectile electron, a pro-
ton, and a negative halogen ion. It was mentioned above
that in this case the integral Faddeev equations cannot be
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
applied directly; either these equations should be modi-
fied or the differential formulation of the Faddeev equa-
tions in the coordinate state should be used [13–15]. It
should be noted that in the general case of scattering of
an electron from halogen molecules in the given
approximation,

the Faddeev equations for four mutually interacting
bodies (two electrons, a halogen atom, and a proton)
should be used. However, for some processes such as
dissociative attachment reactions, we can confine our
analysis to equations for three pairwise interacting
bodies.

In our case, to calculate dissociative attachment of
an electron to hydrogen halide molecules, we apply the
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Fig. 2. 

 

Dependences of the cross section of electron disso-
ciative attachment to hydrogen molecules on the energy of
projectile electrons: the solid curve corresponds to experi-
mental data [19]; the results of calculations performed
in [11], [7, 10], [10, 26], [21], and [20] are represented by
the fine-dash, large-dash, dot-and-dash, dotted, and double
dot-and-dash curves, respectively; our results of calculation
are presented by circles.
SICS      Vol. 99      No. 5      2004



922 POZDNEEV
Faddeev equation for three charged particles in the
coordinate space, which have the form [13–15]

(6)

where

and the coordinates are connected via the relations

Vst(xi) being pair short-range interaction potentials
defined by (4) and (5). The relation between the

∆xi
– ∆yi

– Vi xi( ) E–+( )Ψi Vi Ψ j,
j i≠
∑–=

Vi

ni
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---- Vst xi( ), ni+
qkq j

2mkj

---------------,= =
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2m jmk

m j mk+
------------------ r j rk–( ),=

yi

2mi m j mk+( )
mi m j mk+ +
--------------------------------ri
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Fig. 3. Dissociative attachment of electrons to HI mole-
cules: the results of calculations performed in [19], [9],
and [21] are represented by the dashed, fine solid, and bold
solid curves, respectively; the results of calculations in the
semiclassical approximation [21] are depicted by the dash-
and-double dot curve; our results are shown by the dot-and-
dash curve.
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momentum and coordinate representations is defined
by the Fourier transformation,

To obtain a unique solution of integrodifferential equa-
tions in the coordinate space, we must add the boundary
conditions, which have the form [13–15]

(7)

(8)

where

A large number of various numerical methods have
been developed on the basis of approximation of com-
ponents Ψi by bicubic Hermite splines, quintet basis
splines, etc. However, an effective, reliable, and univer-
sal algorithm of the numerical solution of Eqs. (6) with
boundary conditions (7) and (8) in the coordinate space
has not been developed for the following reasons. First,
an algorithm of numerical solution for processes with
three free particles in the initial and final states does not
exist in view of rather complex boundary conditions.
Second, point-by-point convergence of the result to the
exact solution upon a decrease in the mesh size cannot
be proved analytically in any of the known numerical
methods based on finite different approximation.

Consequently, the application of the mesh method in
the polar coordinate system [14] for numerically solving
the system of coupled integrodifferential equations (6) in
partial derivatives with boundary conditions (7) and (8)
appears as most justified since analytic solutions also
exist in this case for some potentials determining the
resonant states under investigation [13, 14, 22]. This
makes it possible to monitor the accuracy of the solu-
tions obtained by the numerical method.
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Fig. 4. Dissociative attachment of electrons to HBr mole-
cules: the experimental results [9, 10] are shown by the
dashed curve; the results of calculations performed in [26]
are represented by the solid curve; our results are shown by
the dot-and-dash curve.
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Figures 3–6 show the results of calculating the cross
sections of electron dissociative attachment to hydro-
gen halide molecules and their isotope-substituted
modifications in the ground state and in excited vibra-
tion-rotation states. Also shown are experimental
results [4, 7, 9, 11, 19, 21] and the results of calcula-
tions based on other approximations [4–11], which
demonstrate suppression of oscillations in the scatter-
ing cross sections.

Let us consider the effect of these peculiar reso-
nances on the rates of chemical reactions, which
appears interesting for explaining electron transport in
proteins (physically, this transport is one of the main
functionally important processes in a cell [15, 23]).
Knowing this transport mechanism, it would be possi-
ble to explain how a transition is made from structurally
disorganized chemical transformations (e.g., in solu-
tions) to coordinated subsequent stages typical of bio-
logical systems [15]. It should be noted that no new
interactions are used in nature and the process is orga-
nized due to an appropriate choice of molecular struc-
tures and the corresponding well-known interactions.
Thus, identification and analysis of these interactions
will make it possible to understand physical mecha-
nisms of processes occurring in proteins and other
molecular structures such as DNA and RNA.

To study the processes described above, we first
consider a simple system of two identical coupled par-
ticles tunnelling through a potential barrier by using a
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Fig. 5. Dissociative attachment of electrons to DBr molecules that were initially (a) in the ground state (v  = 0) and (b) in the excited
vibrational state (v  = 1). Our results and the results of calculations performed in [26] are shown by the dashed and solid curves,
respectively.
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mathematically correct quantum theory of scattering in
a few-body system [13–15].

It should be noted that tunnelling of particles
(including structured ones) is usually considered on the
basis of well-known theories [24] and results are auto-
matically extended to many-particle systems (espe-
cially in applied studied, e.g., in biology [23]). Most
results in these applications are associated precisely
with analysis of tunnelling through various potential
barriers of multicomponent structured complexes.
Quite often, such results do not correspond to the initial
problem and do not reproduce experimental data. It
should be noted that if the barrier size is much larger
than the characteristic size of a complex, the difference
from the structureless case is insignificant. If the size of
the complex is commensurate with the barrier width,
mechanisms appear [15, 25] leading to anomalous
transparency of the barrier (analogously to the Ram-
sauer effect [4, 5, 7]).

The physical reason for the barrier transparency is
associated with the possibility of formation of a barrier
resonance since the potential energy of the system may
have a local minimum ensuring the metastable state of
the complex; to this end, the interaction of all particles
of the complex with the barrier is required.

To demonstrate this effect, we use the quantum scat-
tering theory to consider the tunnelling of a pair of
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Fig. 6. Isotopic effect in the reactions of dissociative attach-
ment of electrons to HBr and DBr molecules. The solid and
dashed curves correspond to the results of calculations per-
formed using the nonlocal theory [26]; our results are
shown by the dot-and-dash curve.
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identical particles m1 = m2 = m coupled through various
types of interaction (harmonic oscillator, Morse and
Gauss potentials) through a potential barrier which was
simulated by a potential of the form [25]

where a and b are the barrier height and width. The
results of our calculations are shown in Fig. 7 together
with the results of calculations [25] based on Eqs. (1).
It can be seen from the figure that, for a barrier height
much larger than the characteristic size of the incident
complex, its transmission probability differs insignifi-
cantly from the transmission probability in the case of
structureless particles. If the size of the complex is
commensurate with the spatial size of the barrier,
mechanisms appear which lead to a substantial trans-
parency of the barrier and even to its total transparency
in some cases.

In the simplest case of a complex consisting of two
particles, the physical pattern of the barrier transpar-
ency is determined by the formation of a resonant state
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Fig. 7. Tunneling probabilities for a structureless (1) and
structured (2, 3) particles as functions of the energy of the
projectile particle for the harmonic potential (2) and the
Morse potential (3) for various characteristics of the barrier
a = 1 (a), 6 (b), and 11 (c). Energy E is given in units of the
corresponding potential.
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upon the passage of only one of the particles through
the barrier. Thus, two particles are on different sides of
the barrier (i.e., this resonant state is preserved until the
other particle passes through the barrier). The barrier
width is determined by the lifetime of this resonance.

It should be noted here the penetrability symmetry
breaking for structured particles may serve as a possi-
ble mechanism explaining different penetrabilities of
biomembranes in opposite directions (osmosis).
Another explanation of penetrability of a biomembrane
is given in [23] on the basis of the assumption that an
isothermal phase transition of the melting/crystalliza-
tion type occurs in a monolayer of the membrane, but
in 2D and not in 3D system. This makes it possible to
interpret some peculiarities of the blood circulatory
system, which could not been explained earlier.

Analogous results are considered in [24]; however,
factors determining the penetrability of potential barri-
ers for structured particles are completely different.

Figure 7 shows that the tunnelling probability in
some cases may attain unity, which can be explained by
interference suppression of the reflected wave (this
phenomenon is widely used for blooming of optical
systems). As the number of interacting particles
increases, the effect of enhancement of the barrier pen-
etrability may substantially increase. Thus, under cer-
tain conditions, coupled clusters not only surmount
obstacles more easily, but can also be themselves trans-
parent to other particles (this is often encountered in
biological systems).

The most astonishing fact is that this mechanism of
potential barrier transparency for structural particles
was confirmed in experiments [19–25].

These features are commonly observed in real sys-
tems, e.g., in the simplest chemical reactions induced
by electrons:

In the approximation of the quantum theory of scatter-
ing in a few-body system, it is possible to reproduce the
experimental data [9–11, 19–26] on the simplest chem-
ical reactions occurring during the interaction of elec-
trons with diatomic molecules in the ground state as
well as in excited vibration-rotation states. These
results are presented in Figs. 8–11; all calculations in
this case are performed in the above-mentioned approx-
imation, in which the interaction of an electron with
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nuclei and electrons of the target molecule was
replaced by the interaction of the electron with each
atom as a whole (the atom was treated as a force cen-
ter). The same figures also show the results of calcula-
tions performed in the resonance model approximation
with nonlocal potentials based on the quantum theory
of scattering in a two-body system [26].
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Fig. 8. Vibrational excitation of hydrogen halide (HBr) mol-
ecules by electrons, e + HBr(v  = 0)  e + HBr(v  = 1 (a),
2 (b), and 3 (c)). The dashed curves describe our results and
solid curves are the results of calculations performed
in [26].
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It should be noted in this connection that the appli-
cation of nonlocal separable potentials opens wide
prospects for detailed reproduction of experimental
results [14, 15, 17]. For example, using the separable
potential

V k k',( ) λg k( )g k'( )=
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Fig. 9. Vibrational excitation of hydrogen halide (HBr) mol-
ecules by electrons, e + HBr(v  = 1)  e + HBr(v  = 0 (a),
2 (b), and 3 (c)). The dashed curves describe our results and
solid curves are the results of calculations performed in [26].
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with form factors of the type
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we can reproduce the experimental data on scattering
cross sections with a preset accuracy both in the approx-
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Vibrational excitation of hydrogen halide (HBr) mol-

ecules by electrons,  e   + HBr(  v   = 2)   e   + HBr(  v   = 1 (a),
3 (b), and 4 (c)). The dashed curves describe our results and
solid curves are the results of calculations performed in [26].
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imation of the two-body problem [10, 16] and in the
approximation of the few-body problem [14, 15, 17, 27].

However, the main difficulty encountered in the
application of these potentials is associated with the
choice of parameters λ, γ, and β. For this reason, we use
here the simplest pair potentials (4), (5) whose param-
eters can be chosen on the basis of real spectroscopic
data [18] rather than empirical data, as was done in [26].

It should be noted once again that this approxima-
tion appears reasonable for energies of the projectile
electron lower than the electron excitation energy of the
molecule. Otherwise, it is necessary to use the many-
particle approximation instead of the three-particle
approximation since the contributions from the dissoci-
ation channels become significant (this is demonstrated
in Figs. 8, 10, and 11). Consequently, we can speak of
the agreement with the experimental results only on the
average in view of the initial model of the process as
well as the simplest pair potentials simulating the inter-
action of an electron with atoms [14, 15, 17].

A comparison of the results of our calculations with
the available experimental data [4–11, 19–23] shows
that simulation of the electron interaction with each
atom of the molecule based on Eqs. (1), which corre-
spond to the multiple scattering pattern [6, 14, 17],
makes it possible to attain satisfactory agreement with
experiment (coincidence of the orders of magnitude of
cross sections, including isotopic effects and threshold
singularities [14–17]).

The well-known theoretical methods for studying
resonant processes occurring during electron collisions
with molecules [4–11] (the boomerang method, the R
matrix method, the method of time evolution of the
wavefunction, the Feschbach operator method, etc.) are
based on interpreting this process as a multistage pro-
cess. The first stage involves the electron capture by a
molecule and the formation of a negative molecular ion.
The second stage is the decay (evolution) of this state to
various states of the decay products: a negative ion and
a neutral or excited atom, two neutral or excited atoms
and an electron (dissociation of the molecule), and an
excited molecule and an electron (excitation of the mol-
ecule by electron impact). The basis of this formalism
i.e., the formation of an intermediate state of a negative
molecular ion) is not always substantiated from the
physical point of view. For example, in the case of dis-
sociative attachment of an electron to a hydrogen mol-
ecule, the lifetime of this complex is comparable to the
electron mean free time, during which it covers a dis-
tance equal to the diameter of the hydrogen molecule.
An analogous situation also emerges for the reaction
[14, 27]

in which a considerable fraction of the translational
energy (in accordance with the momentum limit
Ev/Et ≈ 0.88 [27]) is transformed into the vibrational

O P3( ) CS X1Σ+( ) CO X1Σ+( ) S P3( ),++
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energy of the CO molecule. Such a reaction also occurs
without the formation of an intermediate complex.

Naturally, many reactions exist in which a long-
lived intermediate complex is formed in the course of
the reaction (see [5–11, 14, 15, 17] for details). How-
ever, for some processes like those described above, a
preliminary analysis of experimental data for a given
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Fig. 11. Vibrational excitation of hydrogen halide (DBr)
molecules by electrons, e + DBr(v  = 0)  e + DBr(v  =
1 (a), 2 (b), and 3 (c)). The dashed curves describe our
results and solid curves are the results of calculations per-
formed in [26].
SICS      Vol. 99      No. 5      2004



928 POZDNEEV
processes required for analyzing various collisions; the
absence of such an analysis often leads to erroneous
interpretation of experimental data.

Thus, a class of processes existing in atomic, chem-
ical, and biological physics can be referred to as direct
processes in analogy with nuclear physics. The main
feature of these processes is that no intermediate long-
lived complex is formed in the course of scattering.

Consequently, the most adequate methods for inter-
preting such direct processes and reaction occurring
with the formation of an intermediate complex have
been those proposed by Faddeev, Yakubovskiœ, and
Merkur’ev [13], who developed a quantum theory of
scattering in few-body systems without model assump-
tions concerning the formation of an intermediate com-
plex during a collision. This method can be applied for
describing direct processes as well as processes occur-
ring with the formation of intermediate long-lived
states. Thus, we can state that quantum transparency
effects for various barriers and peculiarities of chemical
reaction mechanisms described above can take place in
various branches of physics, chemistry, and biology
and can be interpreted in the framework of nonrelativ-
istic quantum mechanics with the help of the formalism
proposed in [13–15].

This is especially important for molecular biology,
in which a consistent and mathematically correct expla-
nation of fermentation reactions has not been obtained
as yet [23]. The contemporary description of these reac-
tions based on the assumption that a part of the free
energy liberated as a result of a reaction is used for
accelerating catalysis, i.e., penetration through a barrier
(recuperation of energy), does not permit one to quan-
titatively analyze the reaction energy. For this reason, it
is extremely difficult to experimentally confirm or
reject the proposed model.

On the contrary, the above substantiation of the
transparency of potential barriers for structural com-
plexes with a size commensurate with the barrier width
provides an explanation for such reactions based on the
well-known physical principles in the framework of
ordinary quantum theory for a few-body system.

Let us consider the geometrical (spatial) character-
istics of the above-mentioned peculiar resonant states.
Since it is quite difficult to study these characteristics
experimentally in the case of electron collisions with
molecules, we will consider systems that are accessible
for experimental studies, viz., clusters of molecules of
inert gases [28].

It should be noted that these molecular clusters con-
sisting of atoms of helium, lithium, and a number of
inert gases attract attention of both theoreticians [29]
and experimentalists [28] primarily in the context of
applied studies such as superfluidity, superconductivity,
Bose condensation, chemistry and physics of clusters,

and laser physics (the possibility of developing 
molecular laser), as well as due to the possibility of

He2
+
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observing unusual quantum phenomena such as the Efi-
mov effect in real systems.

However, a direct theoretical analysis of even the
simplest of the above systems, viz., He3 consisting of
three helium nuclei and six electrons, is an extremely
complicated problem.

To analyze the He3 system, we consider the cluster
approximation in which this system is replaced by a
simpler system consisting of three force centers
(helium atoms). The validity of this approximation for
calculations of bound states is obvious since the differ-
ence between the binding energy of the system and the
ionization energy of the atom is several orders of mag-
nitude. It is well known that helium atoms are bosons;
consequently, the problem boils down to analysis of
three pairwise identical neutral spinless particles. To
solve this problem, we propose mathematically correct
model-free methods in the theory of scattering in the
three-body system [13–15].

It should be emphasized that virtual levels in paired
subsystems in the case of complex many-particle sys-
tems do not lead to the emergence of resonant states in
a many-particle system [1]. This, however, does not
mean that this effect is absent in these systems since it
can be due to many-particle and not two-particle virtual
states.

For this reason, we will consider the interpretation
of a number of peculiar properties of He3, Ar3, Kr3,
Ne3, Xe3, Li3, and Rn3 systems precisely on the basis
of the three-particle approximation. It should be noted
that a large number of theoretical and experimental
methods exist for studying clusters consisting of atoms
of helium and a number of inert gases. Most methods
are intended for studying bound states; however, scat-
tering states [28–31], which are most informative for
confirming the existence of peculiar resonant states,
were practically ignored.

It was stated by a number of authors [30] that the
main difficulties in studying the He3 system are associ-
ated with its low binding energy (~1 mK), an unusually
large size of the excited state (~150 Å), and a strong
repulsion at small distances. However, the results
obtained in [15, 31], where an analogous three-particle
approximation was used for calculating the He3 system,
differ from the statements made in [30].

For this reason, it would be also interesting to verify
the conclusions drawn in [30] on the basis of the three-
particle approximation with the short-range pair poten-
tials used in [32]. The main purposes of this investiga-
tion are

(i) determining the number of possible resonant
states;

(ii) clarifying the influence of pair interaction poten-
tials on the characteristics of these states;

(iii) estimating the effect of repulsion at short dis-
tances, which can be approximated by a hard core in the
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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model for the boundary conditions [13–15] imposed on
the characteristics of these peculiar states.

Thus, the theoretical analysis of the He3 system is
reduced to solving equations in the quantum theory of
scattering in a three-body system, which makes it pos-
sible to use the well-known methods [13–15]. In con-
trast to [30], where resonances in a three-particle sys-
tem were studied using the Faddeev equations on the
basis of analytic continuation of the scattering matrix to
the range of complex energy values, we use here direct
numerical solution without an analytic continuation.

In this case, after the separation of angular variables,
the Faddeev equations (6) in the coordinate space for
the He3 system in the three-particle approximation with
pair short-range potentials [32] have the form [13–15]

(9)

where

For calculations with a hard core in the model of
boundary conditions, the right-hand side is equal to
zero for x < c, where c is the core size. To obtain an
unambiguous solution to the equations, we must preset
boundary conditions (7), (8),

(10)

which assume the following form in the boundary-con-
dition model:

For ρ  ∞, the boundary conditions in the case of
short-range pair potentials can be written in the form [13]

(11)
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where ψl, v(x) are the partial components of the wave
functions of paired subsystems with binding energy

el, v; ρ = , θ = ; aaL, v and AaL(θ)
are the scattering amplitudes of processes with two or
three particles, respectively, in the final state; and Hv(x)
are the Hankel spherical functions.

In calculations of bound states, the wavefunctions
decrease quite rapidly at infinity; consequently, at a
large distance x = Rx , y = Ry , the asymptotic boundary
conditions can be replaced by the conditions

For the He3 system in the three-particle approxima-
tion with angular momentum L = 0, we have

where partial components l assume even values; l = 0,

2, 4, …; and the expression for functions (x, y, η) is
given in [13–15].

The asymptotic behavior of the components of
Eqs. (9) for scattering processes with short-range
potentials can be described by the function [13–15]

(12)

where a0(z), z = E + i0 is the elastic scattering amplitude
for E > ed , and Al(E, θ) is the decay amplitude for E > 0.
We also assume that the helium molecule 4He2 has only
one bound state with binding energy ed < 0 and with
a corresponding wavefunction ψd(x).

For processes of scattering, the scattering matrix for
z = E + i0, E > ed , the scattering phases and lengths in
the s state can be expressed with the help of the follow-
ing formulas:
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Table 1.  Binding energy, coefficient of clusterization, scat-
tering length, mean radius, and the square of mean radius for
various molecules

Potential
,

mK
||fc||2 Lsl, Å

,

Å
,

Å

He3 molecule

HFDHE2 –0.1171 0.2094 140 5.65 6.46

HFD-B –0.1330 0.2717 137 5.48 6.23

HFD-ID –0.1061 0.1555 139 5.80 6.64

LM2M1 –0.1247 0.2412 132 5.57 6.35

LM2M2 –0.1264 0.2479 131 5.55 6.32

TTYPT –0.1264 0.2487 130 5.56 6.33

He3 molecule, boundary-condition model

HFDHE2 –0.1170 0.2095 138 5.65 6.46

HFD-B –0.1329 0.2717 135 5.48 6.23

HFD-ID –0.10612 0.1555 134 5.80 6.64

LM2M1 –0.12465 0.2412 130 5.57 6.35

LM2M2 –0.12641 0.2479 131 5.55 6.32

TTYPT –0.12640 0.2487 131 5.56 6.33

 molecule

HFDHE2 –1.6653 0.9077 134 55.26 66.25

HFD-B –2.7430 0.9432 135 48.33 57.89

HFD-ID –1.0612 0.8537 140 62.75 75.38

LM2M1 –2.1550 0.9283 129 51.53 61.74

LM2M2 –2.2713 0.9319 131 50.79 60.85

TTYPT –2.2806 0.9323 131 50.76 60.81

 molecule, boundary-condition model

HFDHE2 –1.6765 0.9078 135 56.22 67.11

HFD-B –2.7458 0.9439 135 48.31 58.00

HFD-ID –1.1061 0.8597 136 62.87 76.13

LM2M1 –2.2585 0.9323 132 52.41 62.04

LM2M2 –2.2801 0.9319 131 50.79 61.05

TTYPT –2.2885 0.9339 131 51.23 60.89

EHe3
rHe3

〈 〉 rHe3

2〈 〉
1/2

He3*

He3*

Table 2.  Binding energies of inert gas molecules calculated
by using the HFD-B potential

Energy,
10–6 at. units

Ne2 Ar2 Kr2 Xe2 Rn2

Ethr 178 394 619 854 9268

Eexp 135 446 629 874 –
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To solve the system of equations (9) with boundary
conditions (10), (12) numerically, we used the standard
method described in detail in [13–15, 17]. For pair
interaction potentials, we used potentials HFDHE2,
HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with
appropriate parameters [32], which reproduce in detail
the main parameters of the corresponding molecules [18].

The results of calculation of the energy of bound
states in systems He3 and  with and without taking
into account the hard core are given in Tables 1–3.

Interpretation of the geometric characteristic of the
He3 molecule in both ground and excited states was
given in [31]. Using the methods developed in these
papers, let us consider the geometric characteristics of
Ne3 and  molecules which are of considerable
interest in the context of investigations into Bose con-
densation, superconductivity, and superfluidity. The
results of calculation of the density function defined
as [31]

where

are presented in Fig. 12. This function has the form

A sufficiently clear representation of the geometric
characteristics of the molecules of inert gases is pro-
vided by plotting this function in the coordinates rl , ra ,
where 
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Note that, for excited states of the inert gas molecules,
as well as for the molecules of  [31] and 
(Fig. 12), this function has two peaks, which corre-
sponds to a linear structure. This implies that the third
particle in the excited state is located with a high prob-
ability between two other particles (as if this state cor-
responded to two combined paired subsystems). It is
precisely this configuration that corresponds to the con-
ditions for the emergence of the Efimov effect in a
three-particle system. This conclusion is confirmed by
calculations of the clusterization coefficient defined by
the formula [31]

The results of such calculations are given in Table 1. It
can be seen that two-particle states dominate in the
excited state , while their role in the ground state
is insignificant. In the ground state, system He3 forms a
nearly equilateral triangle, while in the excited state,
one of the atoms is at a large distance from the other
two atoms. Other excited states can be obtained by the
similitude method [1, 13–15].

An analogous structure is formed in the calculation
of the systems Ne3 , Ar3 , Kr3 , Xe3 , and Rn3 using the
three-particle approximation. The results of calcula-
tion of these systems in the given approximation with
the HFD-B potential and the parameters borrowed
from [32] are presented in Tables 2 and 3.

In calculations based on the boundary-condition
model, the value of core c was chosen so that even a
slight change in this quantity did not affect the binding
energy of paired subsystems. In our calculations, c =
1.5 Å, the value of binding energy for the helium mol-
ecule was 1.69 mK, and the value of r0 was 100 Å. A
detailed description of the numerical method for solv-
ing system of equations (9) with asymptotic boundary
conditions (11), and Eqs. (12) is given in [13–15].

It should be noted that, according to our calcula-
tions, the size of the ground state of the He3 system is
smaller than the size of the He2 molecule. However, the

size of the excited state  of the three particle sys-
tem is much larger than that of the two-particle system
He2. The experimental data [28] confirm this statement.
Thus, in the given approximation, the results of calcu-

He3* Ne3*

f c Ψ x y z', ,( )φ2 x( )az' x.d∫=

He3*

He3*
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lations indicate that peculiar resonant states can exist in
the He3 system, the number of such states being not
more than two.

To study the scattering processes occurring during
the collision of an atom with a helium molecule and to
determine the role of pair interaction potentials, we cal-
culated the amplitudes of elastic scattering and decay as
well as phase shifts with and without taking into
account the hard core. The results of these calculations
are depicted in Fig. 13. The results are almost indepen-
dent of the form of pair interaction potentials and on
whether or not the hard core was taken into account
both for bound states and for scattering state.
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Fig. 12. The density functions for  molecule in the

(a) ground and (b) excited states.

Ne3*
Table 3.  Binding energies of the ground state and the first excited state of the inert gas molecule trimers calculated by using
the HFD-B potential

Ne3 Ar3 Kr3 Xe3 Rn3

Energy, 10–6 at. units 398 330 1278 1215 1885 1811 2509 2438 30875 30801

Ne3* Ar3* Kr3* Xe3* Rn3*
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Thus, it can be concluded that the form of pair inter-
action potentials and allowance for a hard core in the
boundary-condition model in the given approximation
does not substantially affect the results of calculations.
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Abstract—The comparative values of the peak and integral cross sections of spontaneous Raman scattering
and the optical dephasing time of molecular vibrations were determined for several oxide crystals by spontane-
ous Raman spectroscopy. The spectral, time, and energy parameters of stimulated Raman scattering (SRS) were
measured for ten crystals using picosecond YLF : Nd laser pumping with a radiation wavelength of 1047 nm.
An analysis of the experimental dependence of the threshold energy of pumping SRS on the integral and peak
cross sections of spontaneous Raman scattering showed that the SRS gain increment explicitly depended on the
integral cross section and was independent of the peak cross section of spontaneous Raman scattering as the
ratio between the pumping pulse width (11 ps) and the time of optical dephasing of molecular vibrations
changed from 0.42 to 9.3. The gain coefficients of steady-state stimulated Raman scattering under threshold
stimulated Raman scattering conditions were determined for all the crystals studied on the basis of the measured
threshold SRS pumping energies, the duration and width of the spectrum of pulses, the nonlinear interaction
length, the intensity of pumping, and the theoretical dependences that relate the steady-state and transient SRS
gain increments. The steady-state SRS gain coefficients obtained in this work fitted well a linear dependence
on the peak cross sections of spontaneous Raman scattering, which substantiated the correctness of our analysis
and measurements. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Stimulated Raman scattering (SRS) under picosec-

ond laser pumping conditions had been extensively
studied in the late 1960s–early 1970s [1]. This was
caused by the observation of new (compared with nano-
second pumping) features of the process related in par-
ticular to manifestations of the transient character or
violation of coherence of SRS and the influence of dis-
persion and self-phase modulation on the time, spec-
tral, and spatial radiation parameters. The theory of
transient SRS (see reviews [1, 2]) explained well some
of the experimental results obtained in gases and liq-
uids [3] and, more recently, in quartz optical fibers
under the conditions of a large nonlinear interaction
length between radiation and media [4]. Picosecond
SRS was also studied in well-known calcite and lithium
niobate crystals, more recently, in popular KGd(WO4)2
(KGW) crystals [5], and others. In recent years, interest
in nanosecond and picosecond SRS in crystals has
increased because crystals offer much promise for use
in SRS frequency converters of laser radiation and for
the advancement into the infrared spectral range.

Currently, several new promising crystals active in
SRS have come into view [6–10], and the search for
new ones continues. Although the general laws govern-
ing SRS in liquid, gaseous, and solid media should be
similar, there are certain differences related, for instance,
to different phase relaxation rates and inhomogeneity
of the spectrum of vibrational resonances [1], disper-
sion [2–4], the mechanism and dynamics of self-phase
1063-7761/04/9905- $26.00 © 20934
modulation [11, 12], and the mechanical and thermo-
physical properties of media.

As the selection of the object of study and the mod-
ern experimental methods and laser techniques allow us
to move from the micro- to femtosecond time range in
studying SRS [13–15], of special interest is, in our
view, correspondence between experimental data and
theoretical concepts of transition from the steady-state
to transient SRS mode. As is well known, there is no
strict time boundaries that separate steady-state and
transient SRS, which impedes using one or another the-
ory and a comparison of experimental results. If the
response of a system to an exciting light pulse of width
τp is linear, the nonstationarity condition for the system
with the phase relaxation time T2 is comparatively
clear, namely, τp < T2, but if the response is nonlinear,
this condition can be substantially different. This is
caused by the transformation of the time envelope of
the pulse and its spectrum in a nonlinear process.

If spontaneous intensity IS0 noise increases expo-
nentially under undepleted pumping conditions, the
intensity of the amplified wave at a Stokes frequency
shifted with respect to the pumping frequency increases
as IS = IS0expG for both steady-state and transient
SRS [2]. For steady-state SRS, when the pumping
pulse width τp is much larger than the phase relaxation
time of Raman scattering of the active vibrational
mode, the G0 = gIpL gain increment is linearly propor-
tional to the intensity of pumping Ip , the length L of the
004 MAIK “Nauka/Interperiodica”
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interaction of light with the medium, and the SRS gain
coefficient g. As a result of SRS amplification, the spec-
trum of the Stokes pulse narrows. At G0 varying from
single digits to hundreds, this can substantially transform
the transient system response condition G0T2 @ τp [1].
On the other hand, under transient SRS conditions, the
Stokes pulse during amplification can narrow with
respect to the pumping pulse [2, 3], which complicates
an analysis of the nonstationarity conditions. The the-
ory developed in [2], which combines analytic and
numerical methods, was used to determine the relation
between steady-state and transient SRS gain incre-
ments over wide ranges of their values, in particular, for
the τp/T2 ratios that ranged from 10 to 0.01.

In the limit of large gain coefficients, the relation
between steady-state and transient gain increments has
the form [2]

(1)

where T2 = 1/πc∆νR and ∆νR is the width of the sponta-
neous Raman scattering spectrum. Equation (1) can
easily be transformed into

(2)

where λp and λs are the wavelengths of pumping and
Stokes scattering shifted to the longer waves, ns is the
refractive index at the Stokes frequency, σint is the inte-
gral cross section of spontaneous Raman scattering,

and ν = 1/λ is the radiation frequency. The intensity of
pumping radiation is Ip = Ep/τpSeff , where Ep is the
pumping energy and Seff is the effective cross section
area of the pumping beam. The steady-state SRS gain
coefficient g is related to the peak cross section σp of
spontaneous Raman scattering as [1]

(3)

Note that, as σp(σint) ~  [1], the steady-state Raman
gain coefficient g (accordingly, the G0 gain increment
too) is linearly proportional to the radiation frequency.
(A quadratic frequency dependence of the SRS gain
coefficient was observed in several experiments, prob-
ably because of a contribution of resonance electronic
transitions in the ultraviolet spectral range to the non-
linear process [6].) It follows in particular from (2) that,
in conformity with theory [2], at large amplifications
and if dispersion is ignored, the transient gain incre-
ment Gτ is proportional to the square root of the integral
spontaneous Raman scattering cross section σint and

Gτ 4G0

τ p

T2
-----,=

Gτ
4πλs

2λ pσint

hcns
2

--------------------------I pL
 
 
 

1/2

,=

σint σ ν( ) ν σp∆ν,≈d∫=

g ν( )
σpλ s

2λ p

c2hns
2

-----------------.=

λ s
4–
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independent of the width of the radiation spectrum, the
width of the pumping pulse τp , and the time of phonon
optical dephasing T2.

In this work, we studied SRS in many crystals with
molecular vibration optical dephasing times T2 varying
within more than an order of magnitude. We were
therefore able to analyze the characteristics of the tran-
sition from steady-state to transient SRS and estimate
the most important parameters of the nonlinear process
at a constant picosecond laser pumping.

Spontaneous Raman spectroscopy techniques
allowed us to obtain comparative peak and integral SRS
cross sections that determine the steady-state and tran-
sient SRS gain increments in various crystals. For
ten oxide crystals, we measured the spectral, time, and
energy SRS parameters under pumping with a
YLF : Nd laser (pulse width about 11 ps, radiation
wavelength 1047 nm). An analysis of the experimental
dependence of the threshold SRS pumping energy on
the integral and peak cross sections of spontaneous
Raman scattering led us to conclude that, in agreement
with the concept of transient SRS, the SRS gain incre-
ment explicitly depended on the integral cross sections
and was independent of the spontaneous Raman scat-
tering peak cross section over the range of changes in
the τp/T2 ratio between the pumping pulse width τp =
11 ns and the time T2 of optical dephasing of molecular
vibrations from 0.42 to 9.3. We used the theoretical
dependences relating the steady-state and transient SRS
gain increments calculated in [2] for various τp/T2 ratios
to estimate the steady-state SRS gain increments G0
under the threshold SRS conditions for all the crystals
studied in this work. Next, we determined nonlinear
interaction lengths L and pumping intensities Ip to cal-
culate the steady-state SRS gain coefficients g = G0/IpL
from the measured threshold SRS pumping energies
and the duration and width of the spectrum of pulses.
This allowed us to find the dependence of the gain coef-
ficient g on the spontaneous Raman scattering peak
cross section σp for all crystals. We showed that the
experimental steady-state SRS gain coefficient g satis-
factorily obeyed the linear dependence g = f(σp)
[Eq. (3)], which in turn substantiated the correctness of
our analysis and measurements.

2. OPTICAL DEPHASING TIME 
AND SPONTANEOUS RAMAN SCATTERING 

PEAK AND INTEGRAL CROSS SECTIONS
IN OXIDE CRYSTALS

The crystals studied in this work are listed in Table 1.
SRS in crystals typeset in boldface was studied for

the first time. Detailed spectroscopic studies of the series
of alkaline-earth metal (Ca, Sr, and Ba) and lead (Pb)
tungstates and molybdates were performed in [16, 17].
Table 1 contains the parameters of the most intense
Raman-active vibrations observed in spontaneous
SICS      Vol. 99      No. 5      2004
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Table 1.  Spectroscopic parameters of SRS-active modes of the crystals studied at 300 K

Crystal
Raman mode

frequency
νR, cm–1

Spontaneous
Raman scatter-
ing line width

∆νR, cm–1

Vibrational
phase relaxation 

time
T2 = 1/πc∆νR, ps

Refractive
index n

Excitation
polariza-

tion

Integral cross
section* of spon-
taneous Raman
scattering σint,

arb. unit

Peak cross
section* of spon-
taneous Raman
scattering σp,

arb. units

Ba(NO3)2 1047 0.4 26.5 1.55 || C4 21 63

BaMoO4 892 1.85 5.73 1.98 || C4 55 62

SrMoO4 887 2.5 4.24 1.98 || C4 63 51

SrWO4 921 2.7 3.93 2.13 || C4 50 41

KGd(WO4)2 
(KGW)

901 5.4 1.96 1.9 ⊥  C2 50 35

CaMoO4 879 5.5 1.93 1.93 || C4 65 34

CaWO4 911 6.9** 1.54 1.98 || C4 52 18

TeO2 648 9 1.18 2.21 ⊥  C4 150 35

PbWO4 904.7 4.1 2.59 2.15 ⊥  C4 171 97

PbMoO4 871 6.0** 1.77 2.25 ⊥  C4 390 120

* Peak and integral cross sections of spontaneous Raman scattering are given with respect to the cross sections of the Raman-active mode
(1300 cm–1) of the diamond single crystal.
Raman scattering spectra and assigned to totally sym-
metrical ν1 vibrations of the [WO4]2– and [MoO4]2– tet-
rahedral complexes. These complexes are the scheelite
structure fragments of metal tungstate and molybdate
crystals under consideration. It was shown earlier that
the type of the cation (Ca, Sr, Ba, Pb) substantially
influenced the width ∆ν1 of the spontaneous Raman
scattering line of metal tungstates; this width changed
from 6.9 cm–1 in CaWO4 to 1.6 cm–1 in BaWO4. A sim-
ilar trend was observed for metal molybdates. It was
shown that the widening of the ν1 line depended on the
mass of the cation and the distance between the
[WO4]2– or [MoO4]2– complexes in the scheelite crystal
structure. The BaWO4 and BaMoO4 crystals are charac-
terized by a large mass of the cation and the largest unit
cell size among the scheelites, which explains why the
spontaneous Raman scattering spectra of these crystals
contain the narrowest ν1 lines. The integral cross sec-
tion of the ν1 line remained virtually unchanged in the
series of alkaline-earth metal (Ca, Sr, and Ba) tung-
states and molybdates. At the same time, the peak cross
sections for this line, which are inversely proportional
to the width of the Raman-active vibration, are
3−4 times larger for BaWO4 and BaMoO4 than for
CaWO4 and CaMoO4. 

In this work, we for the first time measured the peak
and integral spontaneous Raman scattering cross sec-
tions for oriented SrWO4, PbWO4, and PbMoO4 crys-
tals. Table 1 shows that the σint value for SrWO4 is vir-
tually equal to that for CaWO4 and BaMoO4. These
JOURNAL OF EXPERIMENTAL 
results substantiate our suggestion that the kind of the
cation weakly influences the integral cross section σint
for the ν1 line of totally symmetrical vibrations in the
series of alkaline-earth metal (Ca, Sr, and Ba) tung-
states. Note that the width of the ν1 line in SrWO4 is
larger than in BaWO4 but smaller than in CaWO4. The
peak cross section of this line σp in SrWO4 is smaller by
30% than in BaWO4 but larger almost twofold than in
CaWO4 [17].

An important special feature of the spontaneous
Raman scattering spectra of PbWO4 and PbMoO4 crys-
tals is the dependence of the intensity of the ν1 line on
the geometry of scattering (hh and vh in Fig. 1), differ-
ent from that observed in the polarized spontaneous
Raman scattering spectra of alkaline-earth metal tung-
states and molybdates. The intensity of this line in Ca,
Sr, and Ba tungstates and molybdates is highest when
the directions of liner exciting light polarization and the
C4 crystallographic axis coincide (E || C4, hh) (Fig. 1a,
Table 1). The intensity ratio Ihh/Ivh (vh corresponds to
E ⊥  C4) for these crystals is larger than one, Ihh/Ivh =
1.2–1.25. For the PbWO4 and PbMoO4 crystals, this
ratio is smaller than one and equals 0.67 and 0.53,
respectively. This effect is most pronounced for the
PbMoO4 crystal, where the intensity of the ν1 line in the
spontaneous Raman scattering spectrum is abnormally
high for the vh geometry and exceeds the intensity for
the hh geometry by a factor of 1.9 (Fig. 1b).

Certain special features of the vibrational spectra of
PbWO4 and PbMoO4 were also observed in [16, 17],
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004
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where the energies of vibrational levels in a series of
scheelites were analyzed. The essential difference of
the energy diagrams of these crystals from those of the
other scheelites was explained by a comparatively large
degree of covalence of the bond between Pb and O and
the large mass of the Pb cation. This in particular man-
ifested itself by the lowest energy of totally symmetri-
cal stretching vibrations ν1 for crystalline and molten
PbWO4 and PbMoO4 among the scheelites.

Earlier, in the absence of data on the integral inten-
sities of Raman scattering by PbWO4 and PbMoO4, it
was assumed that the peak cross section of the ν1 line
of spontaneous Raman scattering is low because of its
comparatively large width. Correct measurements of all
the parameters for all geometries and crystal orienta-
tions showed that the width of the ν1 line in the sponta-
neous Raman scattering spectra of PbWO4 and
PbMoO4 was close to the line widths for KGW,
CaWO4, and CaMoO4. The anomalously high integral
cross section values for the ν1 lines of lead tungstate
and molybdate, however, also predetermine their larg-
est peak cross section values in the series of scheelites
(Table 1), which offers promise for using these crystals
not only in picosecond but also in nanosecond SRS.

Along with the refractive indexes of all crystals,
Table 1 contains dephasing times determined from the
spontaneous Raman scattering spectrum width T2 =
1/πc∆νR on the assumption of homogeneous broaden-
ing and the Lorentz shape of the spectrum. As follows
from our analysis, the spontaneous Raman scattering
spectra of the crystals labeled by asterisks (**) are
inhomogeneously broadened, which makes the corre-
sponding estimates of T2 not unambiguous [1].

Table 1 shows that, for pumping pulses of width τp =
10 ps, the formal condition of transient SRS, namely,
G0T2 @ τp , is certainly satisfied at the conventional
threshold value G0 = 25 for the Ba(NO3)2 crystal with
the largest dephasing time T2 = 26.5 ps. At the same
time, for the TeO2 crystal, for which T2 = 1.18 ps is the
lowest, the G0T2 product is comparable with τp = 10 ps
under threshold conditions, and the SRS process can be
close to steady-state. We stress that these consider-
ations are not strict, and only a comparison of experi-
mental and theoretical data allows the questions put
above to be answered.

3. EXPERIMENTAL DATA 
ON STIMULATED RAMAN SCATTERING 

AND THEIR CORRESPONDENCE 
TO THEORETICAL CONCEPTS

In conformity with the above considerations, we
selected a YLiF4 crystal laser as the source for pumping
SRS. The laser operated in the regime of passive mode-
locking and generated at 1047 nm emitting a 200–300 ns
train of 11 ps pulses with the total train energy up to
1.5 mJ (Fig. 2). The optical scheme of the experimental
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
unit for studying SRS was similar to that used by us
in [10, 18]. Radiation of the laser operating in the
TEM00 mode was attenuated by neutral light filters and
focused by a spherical long-focus (f = 70 cm) mirror
onto the sample under study. Laser and scattered radia-
tion passed through a focusing lens and a dichroic filter
that cut off pumping radiation and fell onto calibrated
fast-response germanium photodiodes.

During one flash, the energy of separate pulse train
and scattered radiation picosecond pulses was mea-
sured with a digital oscilloscope (Fig. 2), which
allowed us to determine the dependence of the effi-
ciency of SRS on the energy of pumping pulses. The

(a)

(b)

PbWO4

hh

vh

PbMoO4

hh

vh

0 200 400 600 800 1000

νR, cm–1

Fig. 1. Spontaneous Raman scattering spectra of (a) PbWO4
and (b) PbMoO4 crystals at linear exciting light polariza-
tions collinear (E || C4, hh) and orthogonal (E ⊥  C4, vh)
with respect to the C4 axes of these crystals.
SICS      Vol. 99      No. 5      2004
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time parameters of the pulses of scattered and excited
radiation were measured with a time resolution of
2−3 ps on an IMACON-501 electron-optical camera
interfaced with a reading device on a silicon CCD
matrix. The spectral composition of pumping and scat-
tered radiation was analyzed with a PGS-2 grating
polychromator with the use of the CCD matrix and a
computer. The width of the pumping laser radiation
spectrum measured at the second harmonic frequency
∆νp was 2.26 cm–1 (∆λp = 0.062 nm). For the measured
width of pulses τp = 11 ps at the wavelengths λ =
1047 and 523.5 nm, we had τp∆νp = 0.74, which was
evidence that pumping laser pulses were not fully lim-
ited spectrally [1].
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Fig. 2. (1) Pumping laser and (2) SRS radiation oscillo-
grams for the PbMoO4 crystal.

Table 2.  Normalized threshold pumping energies  and
steady-state SRS gain coefficients in crystals

Crystal L, mm ,

µJ cm
τp/T2 G0

g,
cm/GW

Ba(NO3)2 40 24 0.42 300 14.2

BaMoO4 18 13.0 1.92 93 8.1

SrMoO4 36 15.8 2.6 78 5.6

KGd(WO4)2 36 10.4 5.6 47 5.1

SrWO4 43 18.1 2.8 75 4.7

CaMoO4 28 12.04 5.7 45 4.3

CaWO4 39 21.5 7.14 42 2.2

TeO2 10 4.3 9.3 37 9.7

PbWO4 30 5.4 4.25 52 10.9

PbMoO4 30 2.6 6.2 40 17.5
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The oscillograms of laser pumping radiation and
SRS in the PbMoO4 crystal are shown by way of exam-
ple in Fig. 2. The threshold of the appearance of SRS is
clearly seen. The ratio between the energies of SRS and
pumping pulse trains gives the dependence of the effi-
ciency of SRS on the pumping energy (Fig. 3). We see
that an increase in the efficiency of SRS corresponding
to undepleted pumping conditions transforms into sat-
uration with cascade generation of the second Stokes
component as the pumping energy increases. Cascade
generation of three to four SRS Stokes components
with radiation frequencies sequentially decreasing by
νR (Table 1) with respect to νp and of several anti-
Stokes components with similar frequency shifts
caused by four-photon mixing [1] is easily attainable
experimentally. The dependence shown in Fig. 3 was
obtained with pumping of comparatively low intensi-
ties, when the efficiency of generation of the higher
Stokes and anti-Stokes components was negligibly low.
We extrapolated the dependences like that shown in
Fig. 3 to zero SRS efficiency to determine the threshold
SRS pumping energy for all crystals and normalized it

by the crystal length ( L) (see Table 2). As follows
from the preceding section, spontaneous RS cross sec-
tions in the crystals under study can depend on the
direction of radiation polarization with respect to the
crystallographic axes of the crystals. We measured SRS
at pumping linear polarization directed parallel or nor-
mally to the crystallographic axes that corresponded to
maximum spontaneous RS cross section values.

3.1. An Analysis of Experimental Data

In this section, we analyze the experimental data in
terms of the relation between phase relaxation times
obtained by linear spectroscopy methods, spontaneous
Raman scattering integral and peak cross sections, and
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Fig. 3. SRS efficiency as a function of pumping energy for
the PbMoO4 crystal.
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



PICOSECOND STIMULATED RAMAN SCATTERING IN CRYSTALS 939
energy, time, and spectral SRS parameters. This relation,
determined by (1)–(3), was discussed in the Introduction.

As follows from the measured energy characteris-
tics of SRS, the threshold SRS pumping energies

( L) of various crystals differ almost by a factor of
ten (Table 2). The maximum SRS threshold was
obtained for the Ba(NO3)2 crystal with the smallest
integral cross section of spontaneous Raman scattering
and the largest vibration dephasing time T2 = 26.5 ps
(Table 1). These features make SRS transient to the
greatest degree. SRS thresholds decrease for the group
of Ca and Sr tungstate crystals, whose T2 times are
smaller compared with barium nitrate but are substan-
tially different and whose integral cross sections are
virtually equal.

SRS thresholds decrease for the group of Ca, Sr, and
Ba molybdates, which have somewhat larger integral
cross sections compared with Ca and Sr tungstates and
different dephasing times T2. A substantial decrease in
the SRS threshold is observed for lead tungstate and
molybdate, which are characterized by the largest inte-
gral cross sections and minimum dephasing times T2.
For all these groups of crystals, SRS thresholds explic-
itly depend on the integral cross section of spontaneous
Raman scattering and are virtually independent of the
peak cross sections or phase relaxation times T2 in con-
formity with the theory of transient SRS [2] [see (2)].

This conclusion is visually illustrated by the depen-
dence of the SRS threshold on the integral cross section
of spontaneous Raman scattering shown in Fig. 4.
According to this figure, the SRS threshold monotoni-
cally decreases as the integral cross section of sponta-
neous Raman scattering increases. If the threshold gain
increment value is set at Gτ = 25 for all crystals in
Eq. (2) for transient SRS, then (2) gives the hyperbolic

dependence L = f(n2/σint). We do not analyze the
linear dependence of this function on the Stokes radia-
tion frequency, whose values are close for the crystals
under study (Table 1), but take into account the sharper
quadratic dependence on the refractive index [Eq. (2)].
The dependence of the experimental normalized
threshold SRS energies on n2/σint is shown in Fig. 5 for
the crystals studied. The hyperbolic dependence is
given by a solid line; it shows that, in agreement with
theory and Eq. (2), precisely the integral cross section
of spontaneous Raman scattering is responsible for
transient SRS amplification. Note that the experimental
values for the PbMoO4, PbWO4, and TeO2 crystals
with the shortest times T2, which make the SRS process
close to steady-state, also satisfactorily fit the hyper-
bolic dependence of the SRS threshold on the integral
cross section.
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3.2. SRS Amplification Factors

Next, we checked the relation between transient and
steady-state SRS and estimated the gain coefficients g
of steady-state SRS on the basis of the theory described
in [2]. For this purpose, we used the dependences that
related the gain increments of transient and steady-state
SRS Gτ = f (G0) calculated by Carman et al. for Gauss-
ian pulses and various ratios between the pumping
pulse width and the phonon dephasing time τp/T2,
which changed from 10 to 0.01 for the samples under
study (Table 1). We assumed that the gain increments of
all the crystals were equal, Gτ = 25 [1], and used the
results obtained in [2] to determine the steady-state
SRS gain increment G0 for each of them (Table 2). The
transient and steady-state SRS gain increments differed
most strongly (by a factor of 12) for the Ba(NO3)2 crys-
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tal with the smallest τp/T2 = 0.42 ratio (sharply transient
SRS). A decrease in the difference between the steady-
state and transient gain increments as the τp/T2 ratio
increases to values of about 4–9 is indicative of the
approach to a steady-state SRS mode in the PbMoO4,
PbWO4, and TeO2 crystals. The G0 increments found
this way can be used to calculate SRS gain factors g by
the formula G0 = gIpL, the nonlinear interaction length
L and the pumping intensity Ip being known.

The nonlinear interaction length is as a rule deter-
mined as twice the length along which the beam cross
section increases twofold because of diffraction. For
the Gaussian beams that we are dealing with, this
length is given by the equation

(4)

where 2w0 is the diameter at the beam waist at I = I0/e
and n is the refractive index. The laser beam profile
measured using the CCD chamber was close to Gauss-
ian with a diameter of 2w0 = 80 µm. The length L found
for n = 2 was approximately 5 cm. As follows from
Table 2, the lengths of our crystals are smaller than L =
5 cm and therefore determine the nonlinear interaction
length. The pumping intensity Ip is given by

(5)

Here, Ep and τp are the measured pulse energy and
width and Seff is the effective area of the beam cross
section determined by the overlap integral of pumping
and Stokes wave modes; for Gaussian beams, Seff =

2π  [4]. Note that, in our calculations for near-thresh-
old conditions, we ignore possible transformation of
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Fig. 6. Steady-state SRS gain coefficient g for all crystals as
a function of the peak cross section of spontaneous Raman
scattering σp/n2 normalized by the refractive index n
according to (3).
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the spatial Stokes beam profile caused by SRS amplifi-
cation or self-focusing.

The L, G0, and τp = 11 ps values, measured and
listed in Table 2, were used to calculate the SRS gain
coefficients g for all the crystals. These values are
shown in Fig. 6 as depending on the peak cross section
of spontaneous Raman scattering normalized by refrac-
tive indexes according to (3). On the whole, most of the
data well fit the linear dependence of gain coefficient g
of steady-state SRS on the peak cross section of spon-
taneous Raman scattering, which is evidence of the cor-
rectness of measurements and their correspondence
to (3). The data on the PbMoO4 and TeO2 crystals,
which are characterized by large integral cross sections
of spontaneous Raman scattering and the shortest
dephasing times T2, fall outside the linear dependence
shown in Fig. 6. As has been mentioned above, possible
reasons for this may be related to inaccuracy of deter-
mining T2 from the spontaneous Raman scattering
spectra. In contrast to the other crystals, TeO2 is charac-
terized by two-photon absorption even under low-
intensity pumping. This effect manifests itself by visi-
ble glow of the laser-excited channel and can distort the
results of SRS gain coefficient measurements.

The values obtained in this work can be compared
with the literature estimates of SRS gain coefficients
for steady-state SRS excited in crystals by nanosecond
laser pulses at 1060 nm. For instance, g = 11 cm/GW was
obtained for the Ba(NO3)2 crystal in [19]. For the KGW
crystal, the g value varies from 6 [20] to 4 [21] cm/GW,
which is close to our data. The value obtained for
SrWO4 in [22], g = 5 cm/GW, virtually coincides with
that given in Table 2. On the whole, the g values esti-
mated by us as described above are in satisfactory
agreement with the results obtained by independent
methods.

3.3. The Time and Spectral Properties of SRS Pulses

We measured SRS pulse widths and spectra for two
“extreme” crystals with the longest, T2 = 26.5 ps, and
shortest, T2 = 1.77 ps, optical dephasing times, that is,
for Ba(NO3)2 and PbMoO4. The Stokes pulse width for
Ba(NO3)2 decreased relative to τp in satisfactory agree-
ment with theory [2] from 11 to 7 ps, the spectrum
width being ∆νS = 3 cm–1. As has been mentioned
above, the properties of the PbMoO4 crystal are some-
what anomalous, which also follows from the time and
spectral parameters of SRS. For this crystal, the width
of Stokes pulses τs = 10.5 ps at the fundamental and sec-
ond harmonic frequencies is close to the pumping pulse
width, and the spectrum width is ∆νS = 3.76 cm–1. At the
same time, according to [2], the Stokes pulse for
PbMoO4 should be more than twofold narrower (for a
Gaussian envelope). The product τs∆νS = 1.18 for
PbMoO4 corresponds to a substantial deviation from a
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spectrally limited pulse, whereas this product for
Ba(NO3)2 is 0.63, which is much closer to a spectrally
limited pulse. Note that the self-phase modulation-
induced insignificant chirp of the pumping pulse fre-
quency of our laser had to be transferred from the pump-
ing frequency to the SRS Stokes wave frequency [12, 13]
and cause phase modulation and spectral broadening of
Stokes radiation. The reasons for the discrepancy
between theory and experiment for PbMoO4 can be
related to the complex spectrum of vibrational reso-
nances in the medium.

As has been shown in [4], in an optical fiber, that is,
in a medium with inhomogeneously broadened vibra-
tional resonances (fused quartz), the SRS pulse under
picosecond pumping conditions slightly narrows, as in
the PbMoO4 crystal considered above, and has a femto-
second time structure caused by the large width of the
spontaneous Raman scattering spectrum. The PbMoO4
crystal may have similar characteristics, and the Stokes
pulse can have a substructure of width about 2 ps (irre-
solvable under our experimental conditions) deter-
mined by its spectrum. This substructure may prevent it
from narrowing.

4. CONCLUSIONS

We comparatively studied SRS of a large number of
oxide crystals, for the first time for some of them, under
picosecond pumping conditions. Measurements of the
energy, spectral, and time SRS parameters and their
comparison with the spectroscopic parameters of spon-
taneous Raman scattering determined by us substanti-
ated the laws governing transient SRS. Measurements
of the threshold SRS pumping energies for a large num-
ber of crystals showed that the gain increment of tran-
sient SRS was independent of the dephasing time or the
spectral width of Raman-active vibrations but was
determined by the integral cross section of Raman scat-
tering. The theory of transient SRS developed in [2]
was used to show that the theory on the whole correctly
described our data on transient SRS in oxide crystals
and the relation between the transient and steady-state
SRS gain increments. A comparatively simple experi-
mental technique for picosecond excitation of SRS and
a comparison of the measured SRS parameters with
theoretical dependences allowed us to estimate the
steady-state SRS gain coefficients in crystals and show
that they were related to the peak cross sections of
spontaneous Raman scattering determined by linear
spectroscopy methods.
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Abstract—Electrically conducting nanostructured carbon films obtained by chemical vapor deposition and
composed of nanodimensional graphite crystals exhibit the effect of optical rectification on exposure to nano-
second pulsed laser radiation. Experiments show that the amplitude and polarity of the pulsed voltage strongly
depend on the angle of incidence and polarization of the laser radiation and on the spatial orientation of a carbon
film with electrodes relative to the laser beam. Under the optimum conditions corresponding to maximum
amplitude of the response signal, the factor of conversion of the laser pulse power into electric voltage was
about 500 and 650 mV/MW at a laser wavelength of 1064 and 532 nm, respectively. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The phenomenon of optical rectification originally
reported by Bass et al. [1] offers an example of nonlin-
ear interaction between high-power laser radiation and
an optical medium. The effect is manifested when a suf-
ficiently powerful laser pulse passes through a nonlin-
ear optical crystal and consists in that a pulse of electric
polarization is induced in the crystal, the shape of this
pulse repeating the laser pulse envelope. If electrodes
are applied to opposite faces of such a nonlinear optical
crystal, the laser-induced polarization will lead to the
appearance of a potential difference between these
electrodes [2, 3]. In noncentrosymmetric media, the
optical rectification effect is related to the second term
in the expansion of the electric polarization vector into
series with respect to the electric field strength—that is,
to the second-order nonlinear susceptibility, which is
also responsible for the second harmonic generation.
Although both phenomena were discovered almost
simultaneously and experimentally observed in a large
number of noncentrosymmetric crystals (see, e.g.,
review [3]), the optical rectification effect has received
much less attention than the second harmonic genera-
tion. The situation changed with the appearance of
lasers capable of generating femtosecond pulses, which
allowed optical rectification to be used for the genera-
tion of terahertz radiation in ZnTe and some other non-
centrosymmetric semiconductor crystals [4]. Quite
recently, the generation of terahertz radiation was
observed in epitaxial films of centrosymmetric YBCO
crystals, where the optical rectification effect is due to
a quadrupole (rather than dipole) mechanism of optical
1063-7761/04/9905- $26.00 © 20942
nonlinearity [5]. Since the quadrupole nonlinearity
increases with the dimensions of molecules, we may
expect that the optical rectification effect related to this
mechanism can be observed in carbon nanotubes and
other nanostructured materials (as a rule, possessing the
center of inversion). The existing theoretical descrip-
tions of the second harmonic generation and optical
rectification in carbon nanotubes refer to the effects
observed in the presence of a constant electric field [6].

This paper presents the results of our experimental
investigation of the optical rectification effect in carbon
films composed of nanodimensional graphite crystals.

2. EXPERIMENTAL

The experiments were performed with carbon films
obtained by chemical vapor deposition (CVD) from a
methane–hydrogen mixture according to our standard
technology described elsewhere [7, 8]. The films were
deposited onto 0.5-mm-thick silicon substrates with
linear dimensions 25 × 25 mm. The main structural ele-
ments in these carbon films are crystallites of an irreg-
ular shape comprising several (typically, five to fifty)
parallel, well-ordered graphite layers. The thickness of
these crystallites ranges from 2 to 20 nm, while their
lateral dimensions vary within 1–3 µm. In all crystal-
lites, the atomic layers exhibit predominant orientation
in the direction of normal to the substrate surface, with
a maximum deviation not exceeding ±20° [9]. The dis-
tance between crystallites is about 0.5–1 µm. The car-
bon films possessed clearly pronounced porous nanoc-
rystalline structure. The average thickness of nano-
structured carbon films studied was 3–4 µm.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the experimental arrangement (see the text for explanations).
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Figure 1 shows a schematic diagram of the experi-
mental arrangement. Nanostructured carbon film 6 on a
silicon substrate 8 was pressed with two flat conducting
electrodes 7 to a dielectric sample holder 9, so that the
substrate was in contact with the sample holder, while
the film surface was almost entirely free (parallel elec-
trodes covered only a small part of the film surface
area). The dc resistance between electrodes was 100–
200 Ω , depending on the distance between them.

The films were exposed to the radiation of a single-
mode single-frequency YAG:Nd3+ laser. The laser cav-
ity scheme allowed linearly polarized output radiation
to be obtained [10]. The energy W of the linearly polar-
ized radiation pulse at a wavelength of λ = 1064 nm
reached 50 mJ. The pulses had a Gaussian shape with a
full width at half maximum (FWHM) of about 22 ns.
The laser beam diameter was 2 mm. The laser beam
was attenuated by neutral filters and passed through λ/4
plates (2, 3) and optical polarizer 4 (Fig. 1). By chang-
ing mutual orientation of the quarter-wave plates, it was
possible to rotate the polarization plane in the beam
entering the polarizer. This allowed the power of a lin-
early polarized radiation at the polarizer output to be
smoothly controlled. The polarizer could be rotated
within 90° around its axis so as to obtain p- and s-polar-
ized output beams.

Then, the laser beam passed divider plate 5 and was
directed to the carbon film studied (Fig. 1). Using the
divider plate, together with photodiode 11 and an auto-
mated multichannel registration system 12 [11], it was
possible to measure the energy of pulsed radiation inci-
dent onto the sample. Divider plate 1, together with
avalanche photodiode 13, enabled the observation of
laser radiation pulses with the aid of an oscillograph.
The measurements according to this scheme were also
performed using the second harmonic mode of the
same laser. All the results presented below were
obtained for laser pulse energies below a threshold for
L OF EXPERIMENTAL AND THEORETICAL PHY
the visible laser damage of the nanostructures carbon
films studied. The damage could be observed at a laser
radiation intensity above 20 MW/cm2 [12].

The amplitude of the voltage U appearing between
the electrodes during laser irradiation of the film was
measured using a storage oscillograph 10 with an input
impedance of 1 MΩ , while the shape of electric pulses
could be observed using an oscillograph with a pass
band of 650 MHz.

3. EXPERIMENTAL RESULTS

The results of our experiments showed that irradia-
tion of a nanostructured carbon film by laser pulses at
λ = 1064 nm leads to the appearance of pulsed voltage
between the electrodes. The shape of this signal was
virtually identical to the laser pulse shape observed
with the aid of the avalanche photodiode. Analogous
results were obtained for the samples irradiated by sec-
ond-harmonic radiation (λ = 532 nm). As is known, the
conversion to second harmonic leads to a decrease in

the laser pulse width by a factor of . In our experi-
ments, the durations of pulses measured between elec-
trodes during exposure of the sample to laser radiation
with λ = 1064 and 532 nm also differed approximately
1.4 times.

Further investigations showed that the amplitude U
and polarity of the pulsed response voltage strongly
depend on the polarization of laser beam and on the
spatial orientation of a carbon film with electrodes rel-
ative to the incident laser beam. When the laser beam
was perpendicular to the film plane, the response signal
amplitude was zero irrespective of the beam polariza-
tion and the arrangement of electrodes. Any other ori-
entation of the film relative to the laser beam led to the
appearance of a nonzero pulsed response voltage.

Figure 2 shows the dependence of the response volt-
age pulse amplitude U on the laser beam incidence

2
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angle α relative to the film plane (Fig. 1) for the p- and
s-polarized radiation (at a fixed laser pulse energy).
Note that, according to Fig. 1, α = 0 when the film sur-
face is perpendicular to the laser beam (initial orienta-
tion) and α is positive (negative) when the film is
rotated clockwise (anticlockwise) from the initial posi-
tion. The axis of rotation passing through the point O,
the plane of the carbon film, and the electrodes are per-
pendicular to the plane of the figure coinciding with the
plane of incidence of the laser radiation (and the plane
of observation). It should be also noted that data corre-
sponding to incidence angles close to ±90° are not pre-
sented in Fig. 2 because laser radiation incident at graz-
ing angles on the sample surface partly illuminated the
electrodes, with the result that the response voltage
pulse duration became significantly longer than the
laser pulse width. Variation of the laser spot position in
the region between electrodes at a fixed arrangement of
the sample did not influence the amplitude and shape of
the response signal.

As can be seen from Fig. 2, the experimental curves
U(α) behave as uneven functions of the angle, the abso-
lute value of U is maximum at α = ±(45°–55°), and the
U(α) curves for the p- and s-polarized laser radiation
are significantly different in magnitude of the response
voltage. At fixed laser beam energy, the response volt-
age pulse amplitude for the p polarization exceeds that
for the s polarization in the entire range of α.

Figure 3 shows the plots of U versus β, the angle of
rotation of film 6 with electrodes 7 relative to the ON
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–75° –50° –25° 0 25° 50° 75°

α

2

Fig. 2. Plots of the amplitude U of a pulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the angle α of incidence of (1) p- and
(2) s-polarized laser radiation (τ = 22 ns, λ = 1064 nm,
W = 2 mJ).
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axis (Fig. 1) coinciding with the normal to the surface,
measured for the linear (p-polarized) and circularly
polarized laser beam at a fixed incidence angle α =
+50°. It should be noted that the values β = 0° and 180°
correspond to the positions of sample faces with elec-
trodes 7 (perpendicular to the plane of Fig. 1). As can
be seen from Fig. 3, rotation of the sample holder plate
with electrodes around the ON axis leads to variation of
the response voltage pulse amplitude according to the
cosine law. When electrodes 7 are in the planes parallel
to the plane of laser beam incidence (β = 90° and 270°)
the response voltage pulse amplitude is zero. For β =
180°, when the electrodes change their mutual arrange-
ment (upper electrode becomes lower and vice versa,
see Fig. 1), the response signal becomes negative, while
its amplitude approximately corresponds to the U value
observed for β = 0°.

Figure 4 shows the plots of U versus the laser pulse
energy W measured using the p-polarized radiation for
two orientations of the film with electrodes correspond-
ing to α = +50°, β = 0° and α = –50°, β = 0°. As can be
seen from these data, the dependences U(W) can be
approximated by straight lines with a good accuracy.
Note that the plots corresponding to α = +50°, β = 0°
and α = –50°, β = 0° are virtually symmetric with
respect to the W axis. Taking into account that the laser
pulse duration τ during the experiments at λ = 1064 nm
was fixed, we may infer from Fig. 4 that the amplitude
of the pulsed response voltage is a linear function of the
laser power. The coefficient of conversion η(λ =

20

40

0

–20

–40
0 100° 200° 300°

β

1

2

U, mV

Fig. 3. Plots of the amplitude U of a pulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the angle β of the sample rotation for
(1) linear and (2) circular polarization of the incident laser
radiation (τ = 22 ns, λ = 1064 nm, W = 1.7 mJ, α = 50°).
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1064 nm) of the pulsed laser power into response volt-
age amplitude was about 500 mV/MW, while the value
of η(λ = 532 nm) obtained for second-harmonic radia-
tion was about 650 mV/MW.

We have also studied the dependence of the
response voltage pulse amplitude on the laser beam
spot diameter on the carbon film surface at fixed values
of W and τ. The laser beam diameter was increased or
decreased with the aid of telescopes based on diverging
and converging lenses, respectively. These experiments
showed that an increase in the beam diameter by a fac-
tor of 6.25 led to a growth in the response voltage
amplitude by a factor of about 1.3. Thus, at a fixed laser
pulse power, a 39-fold decrease in the incident power
density led to a slight (1.3-fold) increase, rather than to
a decrease in amplitude of the response voltage
between electrodes situated on the carbon film surface.

4. DISCUSSION OF RESULTS

The whole body of experimental results described
above covers all features characteristic of the optical
rectification effect (see, e.g., [3]). The obtained coeffi-
cients of conversion of the pulsed laser power into
response voltage amplitude are many times greater than
the values (observed for the optical rectification in non-
linear optical crystals of ADP and DKDK types (15 and
18 mV/MW, respectively) [3].

However, in contrast to the previously reported
investigations, where the response voltage was mea-
sured between electrodes situated on the opposite faces
of noncentrosymmetric transparent dielectric crystals,
the optical rectification effect in our experiments was
observed on absorbing conducting nanostructured car-
bon films with a graphitelike atomic structure. Since
graphite (two- or three-dimensional) structure pos-
sesses the center of inversion (point symmetry group
D6h [13]), the affect observed in our samples is proba-
bly due to a quadrupole nonlinearity. This conclusion is
confirmed by the observed dependence of the response
voltage on the film orientation. Indeed, preliminary the-
oretical analysis showed that the signal due to the opti-
cal rectification on a quadrupole nonlinearity is propor-
tional to F(α)sin2α cosβ, where F(α) is a slowly vary-
ing function of the angle α. This agrees well with our
results presented in Figs. 2 and 3.

However, the symmetry of the graphitelike material
in our nanostructured carbon films may significantly
differ from that of the usual graphite because of a con-
siderable amount of structural defects related to the
high proportion of atoms situated in the surface of nan-
odimensional crystals and in the region of bending of
the atomic planes [14]. Violation of the central symme-
try caused by such structural defects may lead to an
increase in the contribution of dipole nonlinearity to the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
static polarization. Such an analysis of the possible
manifestations of the dipole, quadrupole, and other
possible mechanisms is a subject for separate investi-
gation.

5. CONCLUSIONS

We have experimentally observed the appearance of
a pulsed electric signal in laser-irradiated conducting
nanostructured carbon films composed of nanodimen-
sional graphite crystals. The films were obtained by
CVD on silicon substrates. The time variation of the
pulsed response voltage measured between parallel
electrodes on the surface of the film repeated the shape
of the laser power pulse. The amplitude of the response
voltage strongly depends on spatial orientation of a car-
bon film with electrodes relative to the laser beam and
on the polarization of the incident laser radiation. The
magnitude of the effect is directly proportional to the
laser power, rather than to the laser power density as in
the case of second harmonic generation.
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Fig. 4. Plots of the amplitude U of a pulsed response voltage
between electrodes fixed on a nanostructured graphitelike
carbon film versus the laser pulse energy W for (1) α = 50°,
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Abstract—We present a quantum theory of the parametric self-conversion of the laser radiation frequency in
active nonlinear crystals with a regular domain structure. Such crystals feature simultaneous lasing and quasi-
phase-matched parametric conversion of the laser radiation frequency. These processes are described using the
Heisenberg–Langevin equations in two regimes of the subharmonic generation: super- and subthreshold. The
spectral properties of the quadrature components of the laser frequency and its subharmonic and the photon sta-
tistics have been studied as dependent on the pump power, crystal length, and reflectance of the laser cavity
output mirror. Using the obtained analytical expressions, these characteristics are calculated for a active non-
linear Nd:Mg:LiNbO3 crystal with a regular domain structure. In the subthreshold regime, the maximum
decrease in the spectral density of fluctuations in the subharmonic quadrature component relative to the stan-
dard quantum limit may reach 90%; in the above-threshold regime, these fluctuations are virtually not sup-
pressed. A decrease in the spectral density of fluctuations of the laser frequency quadrature does not exceed
10%. In the subthreshold excitation regime, the subharmonic photons obey a super-Poisson statistics; in the
above-threshold regime, the photon statistics is Poisson-like. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
In recent years, much attention has been devoted to

ferroelectric crystals possessing periodically inhomo-
geneous nonlinear properties. In such media, the direc-
tion of the spontaneous polarization vector changes to
the opposite on passage from one domain to another.
This may lead to reversal of the sign of the coefficient
of quadratic nonlinear susceptibility [1, 2], whereby a
“nonlinear” lattice is formed in the crystal possessing
homogeneous linear properties. Nonlinear optical crys-
tals with a regular domain structure, called RDS crys-
tals or nonlinear photonic (periodically poled) crystals,
have certain advantages over homogeneous nonlinear
crystals. The main advantage is that, by selecting the
period of modulation of the nonlinear susceptibility in
an RDS crystal, it is possible to compensate mismatch
of the interacting light waves (quasi-phase-matched
interaction), thus providing conditions for almost arbi-
trary three-wave mixing. At present, the quasi-phase-
matched interactions between light waves are used for
generating coherent radiation in a broad spectral range
from UV to IR. In addition, the quasi-phase-matched
interactions are of interest from the standpoint of gen-
erating nonclassical light (squeezed light and entangled
photon states) [3–6]. Nonclassical light can be used in
various high-precision optical measurements and in
optical data transmission and processing systems [7].

Active nonlinear RDS crystals open new prospects
in nonlinear optics [8]. In such crystals, rare earth
1063-7761/04/9905- $26.00 © 20947
dopant ions provide for active (lasing) properties, while
the crystalline matrix plays the role of a nonlinear
medium. This system may feature the phenomenon of
self-frequency conversion, whereby lasing proceeds
simultaneously with nonlinear conversion of the laser
frequency. Investigations into the properties of active
nonlinear laser crystals are stimulated by the wide
potential range of applications of compact and reliable
lasers based on such crystals, generating in the visible
and IR spectral range.

The possibilities of self-frequency conversion in
homogeneous active nonlinear crystals are limited by
their dispersion properties. As was noted above, these
limitations can be by-passed in the presence of spatially
modulated nonlinear susceptibility. Recently [8–11], it
was demonstrated that RDS crystals combining the
advantages of active nonlinear media with periodically
inhomogeneous nonlinear properties are of interest
from the standpoint of realization of various three-wave
interactions, whereby one of the waves can be
enhanced due to the active properties of the crystal.
Such processes provide a basis for the creation of min-
iature self-frequency-conversion lasers.

This study was devoted to the quantum properties of
light generated during the parametric self-frequency
conversion of laser radiation. In the course of this pro-
cess taking place in a resonator based on a active non-
linear RDS crystal, lasing proceeds simultaneously
with the parametric conversion of the laser frequency.
004 MAIK “Nauka/Interperiodica”
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In the case under consideration, we are speaking of the
second subharmonic generation. Up to now, quantum
theory has been well developed separately for the lasing
and the parametric frequency conversion processes
(see, e.g., monographs [12–14]). However, in the case
of self-frequency conversion, the two processes are cor-
related. This circumstance alters the physics of this
phenomenon and complicates its theoretical analysis.

Previously [15, 16], the quantum theory of paramet-
ric self-frequency conversion was developed for gas
lasers. In these lasers, the photon lifetime T in the laser
cavity is much longer than the characteristic times of
the inverse population relaxation (T||) and the active
medium polarization (T⊥ ): T @ T⊥ , T||. This condition
allows the inverse population and polarization to be
adiabatically excluded from the equations describing
generation of the laser radiation. However, the afore-
mentioned active nonlinear crystals are characterized
by a different relation between the characteristic times:
T ! T⊥  ! T||. For this reason, the results of previous
theoretical analysis [15, 16] are inapplicable to such
solid-state laser systems.

In this study, a quantum analysis of the parametric
self-frequency conversion is performed for an arbitrary
relation between the characteristic times. We will con-
sider the spectrum of fluctuations of the quadrature
components and the photon statistics of the laser radia-
tion and subharmonic fields. The general formulas will
be used in numerical calculations of the parametric
self-frequency conversion in a active nonlinear
Nd:Mg:LiNbO3 crystal with a regular domain structure.

This paper is organized as follows. In Section 2, the
Heisenberg–Langevin equations are written separately
for the laser generation and the quasi-phase-matched
three-wave interactions. The parametric self-frequency
conversion is analyzed in Section 3, where the corre-
sponding Heisenberg–Langevin equations are written
and solved by perturbation method. Section 4 presents
the results of calculating the spectrum of fluctuations of
the quadrature components of the laser radiation and its
subharmonic in the sub- and above-threshold regimes
of second subharmonic generation in a active nonlinear
Nd:Mg:LiNbO3 crystal. In Section 5, the main attention

1

2

3

Pumping ω1 + ω2 = ω3 ω1
ω2

ω3

Fig. 1. Schematic diagram of ring cavity involving three
mirrors (1–3) and an active nonlinear RDS crystal featuring
three-wave interaction.
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is devoted to analysis of the subharmonic photon statis-
tics in the subthreshold generation regime.

2. LASER 
AND NONLINEAR OPTICAL EQUATIONS

The process of parametric self-frequency conver-
sion will be analyzed according to the following
scheme. First, we will separately describe laser genera-
tion in an active crystal and three-wave interactions in
a nonlinear optical crystal. Then, the two descriptions
will be combined to yield the joint system of equations
for the field operators and atoms of the medium, which
describes processes in a nonlinear active crystal. The
system will be solved using the Heisenberg–Langevin
method [12–14], which is known to be especially con-
venient for calculating the correlation functions of
operators and, hence, of the spectral densities.

The process of laser and parametric generation is
studied for a nonlinear active RDS crystal situated in a
ring cavity (Fig. 1) provided with two mirrors (1 and 2)
totally reflecting radiation at the excited frequencies
and with an output mirror (3). The crystal is pumped
through mirror 1; mirrors 2 and 3 are fully transparent
to pump radiation.

2.1. Laser Generation in an Active Crystal

The process of laser generation in an active crystal
will be first considered without allowance for nonlinear
optical properties. We use a quantum approach based
on the Heisenberg operator equation, generally follow-
ing the scheme [12]. Excluding operators related to the
thermal reservoir and modeling the laser field interac-
tion with other physical systems (except atoms) from
the system of operator equations for the field and atoms
of the medium, we obtain the system of Heisenberg–
Langevin equations [12]:

(1)

(2)

(3)

(4)

These equations are written in the interaction repre-
sentation using the rotating wave approximation. The
laser field frequency ωl is assumed to coincide with the

dal

dt
------- klal iTCgσ– Fl t( ),+–=

dσ
dt
------

1
τ⊥
----- σ– igT ⊥ alN+( ) Γ t( ),+=

dσ†

dt
---------

1
τ⊥
----- σ†–( )   i –  gT ⊥ a l 

† N ) Γ 
† t ( ) ,+=

dN
dt
-------

1
τ||
---- P N– i2T ||g σal

† σ†al–( )+[ ] Γ N t( ).+=
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frequency ω0 of transitions between the laser levels
(ω0 = ωl). In Eqs. (1)–(4),

are operators of the polarization and the population dif-
ference for a laser- active medium containing M atoms,

respectively;  (al) is the operator of creation (annihi-
lation) of a photon with the frequency ωl;

is the constant of interaction between an atom and the
electromagnetic field; T|| and T⊥  are the times of relax-
ation of the inverse population and the polarization of
medium, respectively; IS is the saturation intensity of
the active medium; V is the quantization volume deter-
mined by the transverse size of the pump beam and the
crystal length; c is the speed of light in vacuum; TC is
the cavity round trip time by wave; t is the dimension-
less time representing the current time normalized to TC
(t  t/TC); τ|| = T||/TC; τ⊥  = T⊥ /TC;

is the pump parameter; and η is the excess pump power
(absorbed in the active medium) over threshold (the lat-
ter corresponds to η = 0, and the lasing condition is
η > 0). Operators Γ(t), ΓN(t), and Fl(t) are the operators
of noise related to the polarization, inverse population
of the active medium, and losses, respectively. The

appearance of these operators and the terms σ,

σ†, (P – N), and klal in Eqs. (1)–(4) reflects the
interaction with thermal reservoir. The coefficient kl is
given by the formula

(5)

where αl are linear losses in the crystal, Rl is the coeffi-
cient of intensity reflection of the cavity output mirror
at the frequency ωl , and L is the laser crystal length.
The random force operator Fl is defined as [13, 17]

(6)

where bl and cl are operators related to the losses in the
crystal and in the cavity output mirror, respectively.

σ σν, N
ν 1=

M

∑ Nν

ν 1=

M

∑= =

al
†

g
c"ωl

4ISVT ||T ⊥
------------------------=

P
kl 1 η+( )
g2TCT ⊥

----------------------=

τ⊥
1–

τ⊥
1– τ||

1–

kl

α lL 1 Rl–+
2

-----------------------------,=

Fl t( ) α lLbl t( ) 1 Rl– cl t( ),+=
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We also introduce the operators bj and cj related to
the modes with the frequencies ωj , which are defined as
follows (see, e.g., [12]):

(7)

(8)

(9)

(10)

where j, k = 1, 2, 3 (operators with different subscripts
refer to the waves of different frequencies), δjk is the
Kronecker delta, and

is the average number of thermal phonons for the jth
mode at the thermal reservoir temperature T (at room
temperature, (T) ! 1).

According to relations (6)–(10),

(11)

(12)

(13)

(14)

The noise operators Γ(t) and ΓN(t) possess the fol-
lowing properties [12]:

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

b j t( ) bk
† t'( ),[ ] c j t( ) ck

† t'( ),[ ] δ jkδ t t'–( ),= =

b j
† t( )〈 〉 b j t( )〈 〉 c j t( )〈 〉 c j

† t( )〈 〉 0,= = = =

b j t( )bk t'( )〈 〉 b j
† t( )bk

† t'( )〈 〉=

=  c j t( )ck t'( )〈 〉 c j
† t( )ck

† t'( )〈 〉 0,= =

b j
† t( )〈 〉 bk t'( )〉  = c j

† t( )〈 〉 ck t'( )〉  = n j T( )δjkδ t t'–( ),

n j T( )
"ωj

kT
---------exp 1– 
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where N0 and σ0 are the stationary values of the inverse
population and the medium polarization operators and
P is the pump power (see formulas (32) below).

Using the equations presented in this section, it is
possible to analyze the process of laser generation in an
active crystal with allowance for losses in the crystal
and in the output mirror.

2.2. Quasi-Phase-Matched Wave Interactions 
in a Nonlinear Crystal 

Now let us proceed to the three-wave process (ω3 =
ω1 + ω2) in a nonlinear optical RDS crystal situated in
a ring cavity. With neglect of losses, the Hamiltonian of
this interaction is

(23)

where  (aj) are the operators of creation (annihila-
tion) of a photon with the frequency ωj ,

is the nonlinear wave coupling coefficient (nj being the
refractive index for the wave with the frequency ωj , and
deff being an effective nonlinearity coefficient depen-
dent on the polarizations of interacting waves), and Q is
the factor taking into account the RDS parameters of the
crystal. The latter quantity is given by the formula [18]:

,

where L = SΛ is the crystal length, S is the number of
RDS periods in the given crystal, Λ is the period of
modulation of the nonlinear susceptibility (RDS
period),

is the phase mismatch, k(ωj) is the wavenumber corre-
sponding to the frequency ωj . If the modulation period
Λ is much shorter than the characteristic nonlinear
interaction length and the quasi-phase-matching condi-
tion is valid (∆k = 2πm/Λ , where m is an odd integer
indicating the phase-matching order), the wave interac-
tion in the RDS crystal proceeds in the same way as in
a homogeneous medium [2, 19]. In this case, Q = 2/πm.

According to Eq. (23), the system of Heisenberg–
Langevin equations for the nonlinear process under
consideration with allowance for losses is as follows:

(24)

(25)

HNL "ε Qa3
†a2a1 Q*a1

†a2
†a3+( ),=

a j
†

ε πLdeff
8π"ω1ω2ω3

n1n2n3c2V
------------------------------=

Q
i∆kL

2
------------– 

 exp c
∆kL

2
---------- ∆kΛ

4
-----------tansin=

∆k k ω3( ) k ω2( ) k ω1( )––=

da1 2,

dt
------------ k1 2, a1 2,– iεa2 1,

† a3 F1 2, t( ),+ +=

da3

dt
-------- k3a3– iεa1a2 F3 t( ).+ +=
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In deriving these equations, we excluded operators
related to the thermal reservoir (this is achieved using a
procedure similar to that used in deriving laser equa-
tions (1)–(4)). The coefficients kl and the fluctuation
operators Fl(t) are given by formulas (5) and (6),
respectively. Taking into account these relations and
following the conventional procedure (see, e.g., [20]),
one may readily check that commutation relations for

the operators  and aj are retained with time, so that

(26)

The quantum equations (24) and (25) describe the
process of three-wave nonlinear optical interactions in
a crystal situated in the laser cavity with losses. The
joint system of equations (1)–(4) describing the laser
generation process and Eqs. (24)–(25) describing wave
interactions in the nonlinear optical medium is a basis
of the quantum theory of the process of optical self-fre-
quency conversion.

3. PARAMETRIC LASER FREQUENCY 
SELF-CONVERSION

IN AN ACTIVE NONLINEAR CRYSTAL

Let us consider the parametric self-down-conver-
sion of the laser frequency in an active nonlinear crys-
tal. The process involves simultaneous lasing and
quasi-phase-matched division of the laser frequency
(i.e., generation of the subharmonic with the frequency
ω/2). In the three-wave interaction, we have ω1 = ω2 =
ω/2 and ω3 = ω, so that the system of equations describ-
ing this process is as follows:

(27)

(28)

(29)

(30)

Equations (27)–(30) are obtained by combining the
system of nonlinear optical equations (24), (25) with
the system of equations (1)–(4) describing laser gener-
ation. In addition, we take into account that the wave
with the frequency ω3 = ω is enhanced in the active
medium and involved in the nonlinear interaction. Sub-
script 1 refers to the ω/2 subharmonic wave.

Since the analysis of the nonlinear system of equa-
tions (27)–(30) in the general case is impossible, we
will only analyze two typical regimes from the stand-
point of the parametric process under consideration:
subthreshold and above-threshold generation of the
subharmonic mode. Let the pump power exceed the

a j
†

a j t( ) ak
† t( ),[ ] δ jk.=

da1

dt
-------- k1a1 i2εa1

†a3 F1 t( ),+ +–=

da3

dt
-------- k3a3 iTCgσ– iεa1

2 F3 t( ),+ +–=

dσ
dt
------

1
τ⊥
----- σ– igT ⊥ a3N+( ) Γ t( ),+=

dN
dt
-------

1
τ||
---- P N– i2gT || σa3

† σ†a3–( )+( ) Γ N t( ).+=
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laser generation threshold. Then, the atomic and field
operators can be represented as follows:

(31)

where Aj0, σ0, and N0 are the classical quantities corre-
sponding to the stationary solution of Eqs. (27)–(30) in
the absence of random forces, while δaj(t), δσ(t), and
δN(t) are the operators taking into account fluctuations.
As can be readily seen, the quantities Aj0, σ0, and N0 are
in fact the stationary average values, because the oper-
ator forces F1(t) and F3(t) are mutually uncorrelated
and are not correlated with the fluctuation operators
Γ(t) and ΓN(t).

A stationary solution of the system (27)–(30) has the
following form:

(32)

This solution exists provided that η ≥ g2T||T⊥ /ε2,
which corresponds to the pump power exceeding the
subharmonic generation threshold (A10 ≠ 0). According
to formulas (32), the laser wave amplitude A30 in this
above-threshold regime is independent of the pump
power P. In other words, the amplitude A30 remains con-
stant when the pump power grows, and all the excess
supplied power is spent on increasing the amplitude of
the subharmonic wave. As expected, the subharmonic
phase in this parametric process is shifted relative to the
laser wave phase by π/2 or –π/2 [21].

If the parameters of the crystal, pump, and cavity are

such that η < g2T||T⊥ /ε2, then the pump power is
below the subharmonic generation threshold. For a sub-
threshold regime of subharmonic generation, a station-
ary solution of the system (27)–(30) is as follows:

(33)

A comparison of Eqs. (32) and (33) shows that exceed-
ing the subharmonic generation threshold leads to a

a j t( ) A j0 δa j t( ), σ t( )+ σ0 δσ t( ),+= =

N t( ) N0 δN t( ),+=

A30

ik1

2ε
------, N0–

P

1 k1
2g2T ||T ⊥ /ε2+

---------------------------------------,= =

σ0

k1gT ⊥ P

2 ε k1
2g2T ||T ⊥ /ε+( )

--------------------------------------------,=

A10

k1k3 η k1
2g2T ||T ⊥ /ε2–( )

2 ε2 k1
2g2T ||T ⊥+( )

------------------------------------------------------
 
 
 

1/2

.±=

k1
2

k1
2

A30
η1/2

4g2T ||T ⊥( )1/2
-------------------------------, N0

k3

g2TCT ⊥

------------------,= =

σ0
iη1/2k3

4g4TC
2 T ||T ⊥( )1/2

--------------------------------------, A10 0.= =
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change in the stationary laser generation amplitude.
This variation is cased by additional losses of the laser
wave energy for the generation of the subharmonic
wave.

Now we will analyze the spectra of fluctuations of
the laser radiation and its subharmonic in the two limit-
ing excitation regimes.

3.1. Subharmonic Generation
in Above-Threshold Regime 

The above-threshold regime of subharmonic gener-
ation corresponds to stationary solutions of the type
given by formulas (32). In this case, system (27)–(30)
linearized in the vicinity of the stationary solution leads
to the following equations for the fluctuation operators:

(34)

(35)

(36)

(37)

Let us use the Fourier transform of Eqs. (34)–(37), for
example,

Upon solving Eqs. (34)–(37) for the Fourier compo-
nents δa1, 3(Ω), we obtain

(38)

(39)

where

d δa1( )
dt

---------------- = k1δa1– i2ε A30δa1
† A10δa3+( ) F1 t( ),+ +

d δa3( )
dt

---------------- = k3δa3– iTCgδσ– iε2A10δa1 F3 t( ),+ +

d δσ( )
dt

--------------- = 
1
τ⊥
-----δσ– iTCg N0δa3 A30δN+( ) Γ t( ),+ +

d δN( )
dt

---------------
1
τ||
----δN– i2TCg+=

× σ0δa3
† A30

† δσ σ0δa3– A30δσ†–+( ) Γ N t( ).+

δa1 Ω( ) 1

2π
---------- δa1 t( )eiΩt t.d

∞–

∞

∫=

δa1 Ω( )
x1* Ω–( )Z Ω( ) y1 Ω( )Z† Ω–( )–

y1 Ω( )y1* Ω–( ) x1 Ω( )x1* Ω–( )–
--------------------------------------------------------------------------,=

δa3 Ω( ) i iΩ k1–( )δa1 Ω( )[=

+ i2εA30δa1
† Ω–( ) F1 Ω( )+ ] 2εA10( ) 1– ,

x1 Ω( ) 4ε2A10– i2εyA30*–=

– iΩ k1–( ) iΩ k3 gTCL⊥ N0 x+––( ),

y1 Ω( ) = y iΩ k1–( ) i2εA30 iΩ k3 gTCL⊥ N0 x+––( ),–

Z Ω( ) k3 iΩ– gTCN0L⊥ x–+( )F1 Ω( ) y Ω( )+=
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We are interested in statistical properties of the
quadrature components of the laser frequency and its
subharmonic at the laser cavity output, which are
measured using the balance homodyne detection tech-
nique [22]. Let us introduce the quadrature Fourier
components,

(40)

(41)

where δaj, out is the Fourier component of the field oper-
ator with the frequency ωj at the cavity output deter-
mined by the following boundary condition at the out-
put mirror [17]:

(42)

According to relations (40) and (41), the quadrature
components are δ-correlated:

(43)

(44)

where SX, j(Ω) and SY, j(Ω) are the spectral densities of
fluctuations of the quadrature components. Using
Eqs. (38)–(44), it is possible to derive analytical
expressions for the spectral densities SX, j(Ω) and
SY, j(Ω), but the resulting formulas are rather cumber-
some and are not presented here. Below (see Section 4)
we present the plots of the spectral densities SX, j(Ω)
and SY, j(Ω) versus various parameters of the problem
under consideration.

3.2. Subharmonic Generation
in Subthreshold Regime 

In the subthreshold regime of subharmonic genera-
tion, the stationary solution of system (27)–(30) is

× F1
† Ω–( ) i2εA10 F3 Ω( ) i 1 2γA30*–( )L⊥ Γ Ω( )+[+

– i2A30γL⊥ Γ† Ω–( ) γΓN Ω( ) ] ,+

γ = γ Ω( ) = 2gTCA30L⊥ iΩ τ•∃
1–– 4gTCL⊥ A30

2+( ) 1–
,

γ∑ˆ<dmM Ω–( )

x = x Ω( ) = 2gTCγ A30* N0L⊥ iσ0–( ), x* = x* Ω–( ),

y = y Ω( ) = 2gTCγ A30N0L⊥ iσ0+( ), y* = y* Ω–( ),

L⊥ L⊥ Ω( )
gTC

iΩ τ⊥
1––

-------------------.= =

X j Ω( ) δa j out, Ω( ) δa j out,
† Ω( ),+=

Y j Ω( ) i δa j out,
† Ω( ) δa j out, Ω( )–( ),=

δa j out, Ω( ) 1 R j– δa j Ω( ) c j Ω( ).–=

X j
† Ω( )X j Ω'( )〈 〉 SX j, Ω( )δ Ω Ω'–( ),=

Y j
† Ω( )X j Ω'( )〈 〉 SY j, Ω( )δ Ω Ω'–( ),=
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given by formulas (33). In this case, equations for the
fluctuation operators are as follows:

(45)

(46)

(47)

(48)

Solving these equations, we obtain the following
expressions for the Fourier spectra of field operators:

(49)

(50)

where

The quadrature components of the laser frequency
are also δ-correlated and their spectral densities are
described by relations (43) and (44). Using formulas (49)
and (50), it is possible to obtain analytical expressions
for the spectral densities SX, j(Ω) and SY, j(Ω). The plots
of these spectral densities are also presented below in
Section 4.

Thus, the proposed theory allowed us to obtain ana-
lytical expressions for the spectrum of fluctuations of
the quadrature components of the laser frequency and
its subharmonic excited simultaneously in the same
crystal in two limiting regimes of the parametric self-
frequency conversion. The spectral densities of both
quadrature components depend on various parameters
of the system under consideration. For this reason,
these dependences will be considered for a particular
case of the active nonlinear Nd:Mg:LiNbO3 crystal, in
which one of the self-frequency conversion processes

d δa1( )
dt

---------------- k1δa1– i2εA30δa1
† F1 t( ),+ +=

d δa3( )
dt

---------------- k3δa3– iTCgδσ F3 t( ),+–=

d δσ( )
dt

--------------- = 
1
τ⊥
-----δσ– iTCg N0δa3 A30δN+( ) Γ t( ),+ +

d δN( )
dt

---------------
1
τ||
----δN–=

+ i2TCg σ0δa3
† A30δσ σ0*δa3– A30δσ†–+( ) Γ N t( ).+

δa1 out, Ω( ) 1 R1–=

×
iΩ k1–( )F1 Ω( ) i2εA30F1

† Ω–( )–

4ε2 A30
2 iΩ k1–( )2–

------------------------------------------------------------------------------- c1 Ω( ),–

δa3 out, Ω( )
1 R3–

yy* xx*–
------------------------=

× zF3 Ω( ) yF3
† Ω–( )– zx2 iA30L⊥ γy–( )Γ Ω( )+[

+ iA30L⊥ γz– yx2*–( )Γ† Ω–( )

+ zγ yγ*–( )Γ N Ω–( ) ]  – c3 Ω( ),

x2 x2 Ω( ) i 1 2γA30*–( )L⊥ , x2* x2* Ω–( ),= = =

z z Ω( ) iΩ k3 gTCN0L⊥––= =

+ 2gTCγ* A30N0L⊥ iσ0+( ).
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(namely, the quasi-phase-matched parametric self-fre-
quency-doubling) was observed [23].

4. QUADRATURE-SQUEEZED LIGHT 
GENERATION AT THE LASER FREQUENCY 

AND ITS SUBHARMONIC
IN Nd:Mg:LiNbO3 RDS CRYSTAL

Now we will calculate the spectra of quadrature
components of the laser frequency and its subharmonic
for the process of parametric self-frequency conversion
in a active nonlinear Nd:Mg:LiNbO3 RDS crystal. The
crystal can be pumped by radiation with a wavelength
of 0.81 µm, for example, from a diode laser [23]. Laser
generation is observed at a wavelength of 1.084 µm, so
that the subharmonic wavelength is 2.168 µm. In para-
metric interaction of the ee–e type, the laser and sub-
harmonic waves possess extraordinary polarization.
The condition of quasi-phase-matched interaction is
obeyed for a nonlinear susceptibility modulation period
of Λ = 22 µm [23]. The other parameters of the
Nd:Mg:LiNbO3 RDS crystal were as follows: effective
nonlinearity coefficient, deff = 34.4 pm/V; linear losses
at the frequencies ω/2 and ω, α1 = α3 = 0.08 cm–1; sat-
uration intensity, IS = 104 W/cm2; number of active
dopant atoms, M = 1018; longitudinal and transverse
relaxation times, T|| = 10–4 s and T⊥  = 6.7 × 10–10 s, respec-
tively; typical cavity round trip time, TC = 3 × 10–11 s.

4.1. Spectral Characteristics 
for Subharmonic Generation
in Above-Threshold Regime 

The characteristic spectral densities of quadrature
components calculated using formulas (38)–(44) are
presented in Figs. 2 and 3, where the unit spectral
density corresponds to the standard quantum limit. Fig-
ure 2 shows the spectra of fluctuations in one of the
laser radiation quadratures at various pump powers. As
can be seen, the more the pump power exceeds the
threshold level, the stronger the suppression of quadra-
ture fluctuations relative to the quantum limit in a cer-
tain spectral region. In other words, a quadrature-
squeezed light is generated in this spectral region.
According to Fig. 2, the maximum efficiency of fluctu-
ation suppression below the standard quantum limit in
the quadrature component for the laser frequency can
amount to 10%. These results refer to the X-quadrature
field components; as for fluctuations of the Y-quadra-
ture components, these must increase in accordance
with the uncertainty relation, which was confirmed by
the results of our calculations.

Figure 3 shows the spectra of fluctuations in one of
the subharmonic field quadratures for various reflec-
tion coefficients of the cavity output mirror. As can be
seen, fluctuations in this quadrature component are
virtually not suppressed. Thus, the active nonlinear
Nd:Mg:LiNbO3 crystal with the above parameters
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exhibits rather insignificant suppression of laser radia-
tion fluctuations in the regime of above-threshold sub-
harmonic generation.

4.2. Spectral Characteristics 
for Subharmonic Generation in Subthreshold Regime 

Figres 4–6 show the spectra of fluctuations in one of
the quadrature components of the subharmonic field,
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Fig. 2. The spectra of fluctuations in a laser field quadrature
in a above-threshold regime of subharmonic generation,
calculated for various ratios of the pump power to the
threshold power Ppump/Pth = 10 (1), 15 (2), and 20 (3).
Other parameters: Rω/2 = 1; Rω = 0.9; L = 0.5 cm.
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Fig. 3. The spectra of fluctuations in a subharmonic field
quadrature in a above-threshold regime of generation, cal-
culated for various coefficients of reflection of the cavity
output mirror Rω/2 = 0.95 (1), 0.97 (2), 0.99 (3). Other
parameters: Rω = 1; Ppump/Pth = 15; L = 0.5 cm.
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Fig. 4. Variation of the spectrum of fluctuations in a subharmonic field quadrature in a subthreshold regime of generation depending
on the ratio of the pump power to the threshold power Ppump/Pth . Other parameters: L = 0.5 cm; Rω = 1; Rω/2 = 0.8. The inset shows
the scale of the spectral density levels, in which a darker color corresponds to a lower level of fluctuations.
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Fig. 5. Variation of the spectrum of fluctuations in a subharmonic field quadrature in a subthreshold regime of generation depending
on the coefficient of reflection Rω/2 of the cavity output mirror at the subharmonic frequency ω/2. Other parameters: Ppump/Pth =
10; Rω = 1; L = 0.5 cm. The inset shows the scale of the spectral density levels, in which a darker color corresponds to a lower level
of fluctuations.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



NONCLASSICAL LIGHT GENERATION 955
0.010 0.02

0.1

0.2

0.3

0.4

0.5

0.6

L,
 c

m

ΩTC

1.000

1.000

0.9000

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

Sω/2(Ω)

0.03 0.04 0.05

Fig. 6. Variation of the spectrum of fluctuations in a subharmonic field quadrature in a subthreshold regime of generation depending
on the length L of the active nonlinear crystal. Other parameters: Ppump/Pth = 10; Rω = 1; Rω/2 = 0.9. The inset shows the scale of
the spectral density levels, in which darker color corresponds to a lower level of fluctuations.
which were calculated using formulas (40)–(44), (49),
and (50). The calculations were performed for various
pump powers, reflection coefficients of the cavity out-
put mirror, and crystal lengths. The parameters of the
Nd:Mg:LiNbO3 crystal were the same as those used
above for the above-threshold regime of subharmonic
generation; other parameters are indicated in the figure
captions. In Figs. 4–6, the level of the standard quantum
limit also corresponds to the unit spectral density.

Analysis of the data presented in Figs. 4–6 shows
that the maximum suppression (corresponding to the
darkest area) of the quadrature field fluctuations takes
place at a nonzero frequency, in contrast to the case of
the above-threshold regime of subharmonic generation.
Figure 4 shows that the higher the pump power, the
stronger the suppression of fluctuations in the subhar-
monic quadrature. However, this is accompanied by
narrowing of the spectral band in which the fluctuations
are effectively suppressed. According to Fig. 5, an
increase in the reflectance of the output mirror for the
subharmonic wave leads to a significant growth in the
efficiency of suppressing fluctuations in the corre-
sponding quadrature. An analogous behavior is
observed in response to a change in the length of the
active nonlinear crystal as depicted in Fig. 6, which was
calculated for

η 1+
Ppump 1 e

αpL–
–( )

Pth
--------------------------------------,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where Ppump = 0.5 W, Pth = 1.25k3 W, k3 is the dimen-
sionless quantity given by formula (5), and αp =
2ln2 cm–1. The maximum efficiency of suppression of
the subharmonic wave quadrature fluctuations for the
indicated parameters is about 90% (for the X-quadra-
ture field). As for the laser frequency generated in this
regime, our calculations showed that virtually no sup-
pression of fluctuations take place.

5. PHOTON STATISTICS 
IN PARAMETRIC SELF-FREQUENCY 

CONVERSION

In the general case, calculations of the photons dis-
tribution functions for the laser frequency and subhar-
monic frequency encounter considerable difficulties.
For this reason, we will restrict the consideration to
analysis of the statistical properties of photons within
the framework of the second-order moments and calcu-
late the average photon number and its dispersion. In
order to simplify calculations, we consider the average

photon number 〈nj 〉  = 〈 aj 〉  and the Fano factor

at the subharmonic frequency (j = 1) and laser fre-
quency (j = 3) inside the cavity.

a j
†

F j

n j
2〈 〉 n j〈 〉 2–

n j〈 〉
-----------------------------=
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In the vicinity of the stationary solution of
Eqs. (27)–(30), according to expressions (31),

(51)

For the dispersion of the photon number, to within the
same accuracy we have

(52)

In the above-threshold regime of subharmonic genera-

tion, we have |Aj0|2 @ 〈δ δaj〉  and, hence,

(53)

This implies that the Fano factor is Fj = /〈nj〉 ≈ 1
(j = 1, 3) and, therefore, the photon statistics in the laser
cavity excited at these frequencies is Poisson-like.

In the subthreshold regime of subharmonic genera-
tion, the photon statistics at the laser frequency remains
Poisson-like as well (|A10| = 0). The photon statistics at
the subharmonic frequency depends on the average val-

ues 〈δ δa1〉  and 〈(δ δa1)2〉 . The time variation of the

operator δ (δa1) under the action of the random force
can be readily determined using Eq. (45) and the Her-
mitian-conjugated relation. As a result, we obtain

(54)

Using this solution, taking into account the statistical

properties of fluctuations related to the operators (t)
and F1(t) according to Eqs. (12)–(14), and considering
the stationary subthreshold regime of subharmonic
generation, we obtain expressions for the average pho-
ton number,

, (55)

and for the dispersion of this number,

(56)

.

Taking into account that, according to (33),

n j〈 〉 A j0
2 δa j

†δa j〈 〉 .+=

σ j
2 n j

2〈 〉 n j〈 〉 2– A j0
2 1 2 δa j

†δa j〈 〉+( )= =

+ A j0
2 δa jδa j〈 〉 δ a j

†δa j
†〈 〉+( ).

a j
†

n j〈 〉 A j0
2, n j

2〈 〉 n j〈 〉 2 A j0
2
.≈–≈

σ j
2

a1
† a1

†

a1
†

δa1
† t( ) e

k1θ–
F1

† t θ–( ) 2εA30θ( )cosh(
0

t

∫=

+ iF1 t θ–( ) 2εA30θ( )sinh ) θ.d

F1
†

n1〈 〉
2εA30( )2 2k1

2n1 T( )+

2 k1
2 2εA30( )2–( )

--------------------------------------------------=

σ1
2 k1

2

2 k1
2 2εA30( )2–( )

----------------------------------------=

× 3 2εA30( )2 8 2εA30( )2n1 T( )+[

+ 4 k1
2 2εA30( )2–( )n1

2 T( ) ]

A30
η1/2

4g2T ||T ⊥( )1/2
-------------------------------,=
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we obtain the relation

Thus, as expected, the average number of photons at the
subharmonic frequency, the dispersion of this number,
and the corresponding Fano factor sharply increase
when the pump power approaches the subharmonic

generation threshold (η ≈ g2T||T⊥ /ε2).

If the number of thermal phonons is (T) ! 1, for-
mulas (55) an (56) yield for the Fano factor

(57)

In the other limiting case ( (T) @ 1), the Fano factor
is independent of proximity to the subharmonic gener-
ation threshold, being determined by the average num-
ber of thermal phonons: F1 = (T).

It should be noted that, far away from the subhar-
monic generation threshold at 〈n1〉  ! 1, the Fano factor
for the excited biphotons, F1 = 1.5, differs from the
value (F = 2) for the biphotons generated as a result of
the spontaneous parametric scattering [17, 22]. We
believe that a decrease in the Fano factor is related to
the inertial character of the response of the system
under consideration to a random action (i.e., to the pres-
ence of a term describing losses in Eq. (45)).

6. CONCLUSIONS

We have developed a theory describing the genera-
tion of nonclassical light during laser self-frequency
conversion in an active nonlinear crystal. Using this
description, based on the Heisenberg–Langevin equa-
tions, we have thoroughly analyzed the process of self-
down-conversion (halving) of the laser frequency. The
calculations were performed for an arbitrary relation
between the photon lifetime in the laser cavity and the
characteristic times of the inverse population relaxation
and the active medium polarization. We considered the
process of subharmonic generation in the sub- and
above-threshold regimes. It was established that there
are optimum parameters of the crystal, pumping, and
cavity favoring the maximum efficiency of suppressing
fluctuations in the quadrature components of the laser
frequency and subharmonic fields below the level of the
standard quantum limit. We have also considered the
photon statistics for the generated light fields.

The results of our theoretical analysis show that the
active nonlinear RDS crystals can be used as effective
sources of nonclassical light. Further expansion of the
possibilities of such crystals with respect to self-fre-
quency conversion due to the presence of RDS opens
good prospects for the creation of small-size sources of
nonclassical radiation in various wavelength ranges.

k1
2 2εA30( )2– k1

2 ε2η
g2T ||T ⊥

-----------------.–=

k1
2

n1

F1 1.5 2 n1〈 〉 .+=

n1

n1
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



NONCLASSICAL LIGHT GENERATION 957
RDS crystals can feature, besides the traditional
nonlinear optical interactions, consecutive three-wave
interactions of the optical modes having the common
pump wave. In this context, it is important to develop a
quantum theory of such processes in active nonlinear
RDS crystals. In such systems, the laser cavity features
three coupled processes: lasing and two nonlinear wave
interactions. The theory of self-frequency conversion
during consecutive interactions in RDS crystals can be
developed through generalization of the approach pre-
sented in this study.
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Abstract—Polarization bremsstrahlung (PBS) of a fast ion scattered in a polycrystalline medium is calculated
and analyzed with allowance for the contributions from the coherent and incoherent channels of the process. It
is shown that scattering of a projectile from the crystal lattice of the target is responsible for typical features of
the PBS spectrum. For example, PBS is suppressed (as compared to radiation emitted by a single atom) in the
low-frequency part of the spectrum, where coherent PBS dominates. In the intermediate spectral region, a step
structure is formed as a result of “elimination” of the contribution from the reciprocal lattice vector with a preset
magnitude to the coherent component of the process. Finally, incoherent PBS dominates in the high-frequency
part of the spectrum and the process occurs as in the case of a single atom. These spectral peculiarities of PBS
are determined by the structure of the target and depend on the velocity of the projectile and the emission angle,
and can be observed in experiments dealing with radiation emitted by fast charged particles in thin polycrystal-
line films. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The use of multiply charged ions in contemporary
experiments on the interaction of charged particles with
solid targets [1] necessitates analysis of possible
mechanisms of radiation emission in the case of such
scattering.

It is well known [2] that ordinary bremsstrahlung
(which is also known as static bremsstrahlung) is
strongly suppressed for small values of the charge-to-
mass ratio of the particle being scattered. This study is
devoted to calculation and analysis of bremsstrahlung
of the emission channel, namely, polarization
bremsstrahlung (PBS) [3, 4] induced by a heavy ion in
a polycrystal. This type of radiation, which is supple-
mentary to static bremsstrahlung, is independent of the
projectile mass and should dominate over ordinary
bremsstrahlung in the case considered here.

The existence of PBS of heavy charged particles
was first indicated in [5], where the bremsstrahlung of
a proton scattered from a hydrogen atom was calcu-
lated. Subsequently, the concept of PBS was used in [6]
for explaining the emission spectra of protons with an
energy on the order of 1 MeV during their scattering
from thin aluminum films. The effect of the structure of
a solid target on PBS was not considered in [6]. The
band nature of the PBS energy spectrum was accounted
for in [7], where the PBS spectrum near the adsorption
edge was calculated. However, the collective effects in
PBS associated with the crystal lattice of the target
were not analyzed in [7]. Such effects were considered
for the first time in [8] for PBS of a relativistic electron
in a polycrystal. It was shown that the PBS spectrum of
1063-7761/04/9905- $26.00 © 20958
a relativistic charged particle is formed by an aggregate
of peaks. The position of such peaks is determined by
the Bragg condition for scattering of the intrinsic field
of an electron from the crystal lattice of the target.
These peculiarities of the PBS spectrum of a relativistic
electron in a polycrystal were experimentally observed
in [9], where the frequency-angular distribution of radi-
ation emitted by 2.4-MeV electrons during their scat-
tering from a thin aluminum foil was measured. The
position and height of the peaks detected in these mea-
surements were in good agreement with theoretical cal-
culations [8].

As we pass to a fast, but nonrelativistic projectile,
the PBS spectrum in a polycrystal must be transformed
since the intrinsic field of the charged particle with a
nonrelativistic velocity substantially differs from the
field of a transverse electromagnetic wave. Accord-
ingly, the analogy between PBS and Bragg scattering of
virtual photons from a crystal lattice becomes inade-
quate. In addition, the noticeable contribution to the
PBS intensity in the nonrelativistic case must lead to
incoherent scattering of the intrinsic field of the projec-
tile into a bremsstrahlung photon, which is insignificant
in the relativistic case [8].

Thus, we will study PBS of a fast ion in a polycrys-
tal in a wide energy range with allowance for both
coherent and incoherent emission channels.

2. BASIC RELATIONS

We proceed from the expression for the PBS ampli-
tude in the case when a charged particle is scattered
from a single atom [3]. In the first Born approximation,
004 MAIK “Nauka/Interperiodica”
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the corresponding formula for an electron and for an
ion has the same appearance except for factor Zp (Zp is
the ion charge) (we use the atomic units " = e = me = 1
everywhere):

(1)

where c is the velocity of light, ω and k are the fre-
quency and the wave vector of the emitted photon, εj

and pj are the energy and momentum of the projectile,
Ej is the energy of the target atom, ek, σ is the unit vector
of photon polarization, and A( p)(q) is the vector poten-
tial of the electromagnetic field of the scattering charge,

(2)

v being the velocity of the projectile. In expression (1),
allowance is made for the possibility of target excita-
tion in the course of PBS |i 〉   |f 〉; consequently, an
atom is described by the matrix element of the scatter-
ing operator

The use of the first order of perturbation theory in the
interaction of a projectile with an atom in formula (1) in
the case of PBS of a heavy charged particle is justified
by the smallness of perturbation in the motion of the
projectile in the course of the process up to velocities
on the order of the atomic velocity. Indeed, it is well
known [3] that the main contribution to PBS comes
from transferred momenta which are smaller than the
characteristic atomic momentum so that the minimal
approach distance is longer than or on the order of the
mean atomic radius. It can be easily seen, however, that
the Coulomb interaction energy at such distances is
much smaller than the kinetic energy of a heavy particle
impinging at a velocity higher than the atomic velocity.
Consequently, the condition for the applicability of per-
turbation theory in the interaction of a projectile with an
atom is satisfied.

Expression (1) for the PBS amplitude makes it pos-
sible to interpret this process as the scattering of the
intrinsic field of the projectile particle (virtual photon)
into a real photon at bound electrons of the target. Such
an interpretation discloses common features of PBS
and scattering of a real photon. In particular, if an
atomic electron is ionized in the course of the process,

Tif 2πiδ ε f E f ω εi Ei––+ +( ) q0( )2
=

× 2π
ω
------

1
c
---ek σ l, ,* As

p( ) q( ) f〈 | ĉls ω k; q0 q,,( ) i| 〉 ,

q0 ε f εi, q– p f pi,–= =

A p( ) q( )
4πcZ p

q0
---------------- 

  q0v/c2 q–

q0/c( )2
q2–

----------------------------,=

f〈 | ĉls k q,( ) i| 〉 .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
we are dealing with Compton scattering or radiation-
induced ionization in the case of PBS [6, 10]. Hence-
forth, we will consider PBS without target excitation
|i 〉  = |f 〉; in this case, q0 = –ω, and the matrix element of
the scattering operator can be expressed in terms of the
dynamic polarizability of the atom,

Using this substitution, we obtain the following expres-
sion for the PBS amplitude at the jth atom of the crystal
lattice:

(3)

where n is the unit vector in the direction of emission
of a photon. While deriving formula (3) from expres-
sion (1), we carried out averaging over polarization of
the emitted photon. The factor exp(i(q + k) · rj) intro-
duced in expression (3) describes the phase relations
between the contributions from different atoms of the
crystal lattice to the amplitude of the process (rj is the
radius vector of the nucleus of the jth atom).

It should be noted that PBS with excitation of an
atom is an incoherent process in respect of the contribu-
tion of atomic electrons; the cross section of this pro-
cess is proportional to the number of electrons in the
target. On the contrary, PBS without excitation of the
atom is a coherent process whose cross section is pro-
portional to the squared number of electrons. Thus, the
latter process dominates over the first one in the fre-
quency range ω < v /ra (ra is the characteristic atomic
radius); this is demonstrated, for example, in [11].
Here, we consider the case when the above inequality is
satisfied and, hence, PBS with atomic excitation can be
discarded.

To derive the expression for the PBS intensity per unit
volume of the medium, we must sum expression (3) over
the atoms in unit volume of the crystal lattice,

Then, using the standard quantum-mechanical proce-
dure, we have

(4)

where t is the time interval; and q1 = q + k is the
momentum imparted to the medium from the projectile

f〈 | ĉls ω k; q0 q,,( ) i| 〉 α ω q k+,( )δls.

T j 2πiδ ω qv+( ) 2π
ω
------=

× 1
c
--- nA p( ) q( )[ ]ω2α ω q k+,( ) i q k+( ) r j⋅( ),exp

T tot T j.∑=

dI
dωdΩn
------------------

ω3

2πc( )3
----------------

q1d

2π( )3
-------------

T tot
2

t
------------,

t ∞→
lim∫=
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during emission. Substituting expression (3) into for-
mula (4), we obtain

(5)

Here, dΩn is the solid angle in the direction of emission
of a photon. The double sum on the right-hand side of
equality (5) is the form factor of the medium; for a crys-
tal, this quantity has the form [12]

(6)

where ni is the ion concentration in the lattice, g is the
reciprocal lattice vector, u is the mean thermal devia-
tion of lattice atoms from their equilibrium positions,
and S(g) is the form factor of a unit cell normalized
to unity. The first term on the right-hand side of equal-
ity (6) describes incoherent scattering of electromag-
netic field from lattice ions. It is proportional to the first
power of the atomic concentration. The second term
describes coherent scattering proportional to the
squared concentration of ions. It can be seen from for-
mula (6) that coherent scattering occurs only when the
momentum transferred to the medium is equal to the
reciprocal lattice vector (q1 = g) in contrast to an inco-
herent process. Formally, this circumstance is reflected
in the presence of the delta function in the coherent
term. It should be noted that these delta functions are
“eliminated” after the integration of the coherent part of
the PBS intensity in formula (4) with respect to trans-
ferred momentum q1.

In accordance with the above-mentioned division of
the form factor of the medium into the coherent and
incoherent parts, the differential PBS intensity per unit
volume can be written in the form

(7)

We will henceforth consider PBS in a polycrystal-
line medium. For this reason, intensity (7) should be
averaged over the direction of the reciprocal lattice vec-
tor as in the case of X-ray scattering in a polycrystal [13]:

(8)
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For convenience of comparison with experiment, it is
expedient to pass from PBS intensity (8) to the differ-
ential yield of the number of photons from a unit length
of the polycrystal into a unit solid angle in a unit fre-
quency range:

(9)

Using formulas (4)–(9), we arrive at the following
expressions for the incoherent and coherent contribu-
tions to the differential yield of PBS photons emitted by
a fast charged particle in the polycrystal:

(10)

(11)

Here, θ =  is the photon emission angle, N(

 

g

 

) is the
number of reciprocal lattice vectors with a preset mag-
nitude 

 

g

 

, 
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x

 

) is the Heaviside step function, and 

 

µ

 

 is
the reduced mass of a lattice ion and the projectile. The
minimal momentum transferred to the medium is a
function of the emission angle and is defined as

(12)

This formula shows that the momentum transferred to
the medium for zero emission angles in the relativistic
limit decreases in inverse proportion to the squared
energy. Function 
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leads to the emergence of the Heaviside function in for-
mula (11). The expression for Iφ(g, v, ω, θ) has the form

(13)

where

(14)

(15)

(16)

(17)

(18)

Formulas (10)–(18) describe PBS of a fast charged par-
ticle in the polycrystal for all velocities satisfying the
Born approximation, including the nonrelativistic case.

3. RESULTS AND DISCUSSION

Calculations based on formulas (10)–(18) were car-
ried out for the following approximation of the nondi-
pole dynamic polarizability:

(19)

where α(ω) is the complex dipole polarizability and
F(q) is the atomic form factor.

Since the radiation considered here is characterized
by a high frequency ω @ 1 at. unit, we will henceforth
neglect the difference between the polarizability and
the form factor of a single atom and the corresponding
quantities for an ion in the crystal lattice.

We calculated dipole polarizability α(ω) using the
data on the photoabsorption cross section borrowed
from the site of the Berkley National Laboratory [14].
With the help of these data and the optical theorem, we
determined the imaginary part of the dipole polarizabil-
ity. The real part was reconstructed from the imaginary
part using the Kramers–Kronig relation. The value of
the photoabsorption cross section [14] was normalized
to satisfy the sum rule. The real and imaginary parts of
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the polarizability of the silver atom calculated in this
way and multiplied by the square of the frequency are
presented in Fig. 1. The peaks on the frequency depen-
dence of the imaginary part of the polarizability corre-
spond to the values of the electron binding energy in the
N, M, and L subshells of the silver atom. Figure 1 also
shows that, in the high-frequency limit, the real part of
the polarizability multiplied by the squared frequency
and taken with the opposite sign attains its asymptotic
value equal to the number of bound electrons in the
atomic system of units.

A comparison of the results of calculation of the
complex polarizability of an atom, based on the method
used here, with the results of calculation of the same
quantity in the random-phase approximation with
exchange [15] shows that the discrepancy typically
does not exceed 10% in a wide frequency range.

The atomic form factor appearing on the right-hand
side of equality (19) was calculated using the Slater
wave functions using the formula proposed in [16],
where it was shown that the difference between the
form factor calculated in this way from the Hartree–
Fock value does not exceed a few percent.

Figures 2–5 show the calculated differential yield of
PBS photons generated by an ion with charge Zp = 30
and velocity v  = c/3 in polycrystalline silver and alumi-
num. We used the following values of mean standard
deviation of lattice ions from their equilibrium posi-
tions (parameter u): uAl = 0.096 Å and uAg = 0.087 Å. In
the sum over reciprocal lattice vectors of the same mag-
nitude, determining coherent PBS (11), we took into
account 50 terms for which S(g) ≠ 0. It should be noted
that the photon yield in the same spectral range changes
by less than 1% when 40 terms are taken into account.

50

40

30

20

10

0

–10
100 10310 104

ω, eV

–ω2 Reα(ω),
ω2 Imα(ω), at. units

Fig. 1. Real (solid curve) and imaginary (dotted curve) parts
of the dynamic polarizability of a silver atom, multiplied by
squared frequency.
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Figure 2 shows the PBS photon yield at a silver
polycrystal in the low-frequency range for an emission
angle of 90°. The same figure shows the corresponding
value for a single atom. It can be seen that PBS in the
polycrystal is strongly suppressed as compared to the
single atom in the given frequency range. This fact can
be explained by the combined action of two factors.
First, it can be seen from formula (10) that the incoherent
term is small in the range of low frequencies ω < v /u and
PBS is determined by the coherent component (11). Sec-
ond, a contribution to coherent PBS in a polycrystal
comes not from all momenta imparted to the target, but
only from those with a magnitude equal to that of one

2.5

2.0

0 200

ω, eV

400 600 800 1000

1.5

1.0

0.5

(Nph)/(dωdΩdl), (eV cm sterad)–1

Fig. 2. PBS of an ion with charge Zp = 30 in a polycrystal
(solid curve) and at an atom (dotted curve) of silver in the
low-frequency range.
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(Nph)/(dωdΩdl), (eV cm sterad)–1

ω, eV

Fig. 3. The same as in Fig. 2 for a higher-frequency range.
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of reciprocal lattice vectors. This leads to a decrease in
the process intensity as compared to the intensity of
radiation emitted by a single atom, when all momenta
imparted to the target and allowed by the momentum
conservation law contribute to the process. For exam-
ple, for frequencies ω ! vg, modulo-small transferred
momenta ω/v  ≤ q < g make zero contribution to coher-
ent PBS in a polycrystal, while precisely these
momenta play an important role in the formation of
PBS at a single atom.

The peaks on the frequency dependence in Fig. 2 are
associated with the peaks of the imaginary part of the
polarizability of the silver atom for photon energies
close to the ionization potentials of the N and M shells.

Figure 3 shows PBS in a higher-frequency range,
when the spectral dependence of the photon yield from
a polycrystalline target acquires a characteristic struc-
ture in the from of “frequency steps.” For preset values
of the parameters of the problem (ion velocity and
emission angle), three frequency steps can be seen in
the frequency interval depicted in Fig. 3; the position of
these steps is virtually the same for both types of the
target. The reason for the emergence of such a spectral
structure, which is not observed for a single atom, is
associated with the coherent PBS component in a poly-
crystal, which dominates in the spectral range consid-
ered here. It can easily be seen from formula (11) that
the frequency ωj of the step associated with the recipro-
cal lattice vector g is defined as

(20)

For frequencies higher than ωj , the contribution from a
preset magnitude g of the reciprocal lattice vector to the
probability of the process is zero since the energy-
momentum conservation law is violated for it. This

ωj g v θ, ,( ) gv
1 v /c( ) θcos–
-----------------------------------.=

250020001500 30001000
0

0.05

0.10

0.15

0.20

0.25
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(Nph)/(dωdΩdl), (eV cm sterad)–1

Fig. 4. Differential yield of PBS photons from an ion scat-
tered in polycrystalline silver for various emission angles:
90° (solid curve), 60° (dotted curve) and 120° (dashed
curve).
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leads to the emergence of a frequency step on the spec-
tral dependence of the PBS photon yield. Since the
value of frequency ωj is determined by the magnitude
of vector g for which S(g) ≠ 0, the form of the PBS
spectrum in a polycrystal depends on the crystal struc-
ture of the target. For example, for a diamond-type
crystal lattice, the number of frequency steps is much
smaller than for the face-centered lattice considered
here. Indeed, in the case of the diamond lattice, an addi-
tional limitation is imposed on reciprocal lattice vectors
for which the form factor of a unit cell differs from
zero.

The “sharpness” of a frequency step depends on the
relation between the coherent and incoherent contribu-
tions to PBS. If incoherent PBS prevails, the frequency
step will be “blurred.” To avoid this, the following con-
dition must be satisfied:

(21)

It follows from the above inequality that the step struc-
ture in the PBS spectrum for a given magnitude of the
reciprocal lattice vector has greater contrast for large
emission angles θ. Indeed, with increasing θ, the mini-
mal momentum (12) transferred to the target increases,
while the contribution from the incoherent PBS compo-
nent decreases.

Figure 4 shows the dependence of PBS in a silver
polycrystal on the emission angle. It can be seen from
the figure that the relative value of the frequency jump
increases with the emission angle and its position is
shifted to the region of lower frequencies in accordance
with formulas (20) and (21).

Figure 5 shows the dependence of the PBS spectrum
in an aluminum polycrystal on the velocity of the pro-
jectile. The solid curve is the emission spectrum for a
high value of the ion velocity (v  = c/3). With decreasing
velocity, first, the contribution from the incoherent pro-
cess increases; second, the position of frequency steps
is shifted to the low-frequency region. Thus, the posi-
tion of a frequency step in the PBS spectrum may serve
as a measure of the energy of a scattering ion; i.e., the
energy loss of the projectile can be judged from the dis-
placement of ωj . The dashed curve in Fig. 5 corre-
sponds to an ion velocity equal to the velocity of
1-MeV protons used in experiments [6]. It can be seen
that the PBS spectrum in this case does not exhibit the
characteristic solid-state structure, but coincides with
the emission spectrum for a single atom. This was pre-
cisely the case in experiments [6], in which no step
structure of the spectrum was observed. This can be
explained by the fact that, for low ion velocities (v  =
c/20 for the dashed curve in Fig. 5), the incoherent PBS
component prevails over the coherent component even
beginning with a photon energy of 500 eV or higher so
that the step structure is completely hidden behind the
incoherent background.

g
1
u
--- 1

v
c
---- θcos– 

  .<
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In the high-frequency region of the PBS spectrum
(ω > 10 keV), which is characterized by high values of
the momentum imparted to the target (or small values
of the impact parameter), incoherent PBS plays a dom-
inant role. For this reason, the solid-state structure of
the spectrum associated with the coherent interaction of
the projectile with the target becomes weakly distin-
guishable. As a result, the PBS spectrum in a polycrys-
tal approaches the spectrum at a single atom, as should
be expected in accordance with the physical pattern of
the process. Thus, to observe frequency steps in the
PBS spectrum at a polycrystal, ions with a sufficiently
high energy should be used and observation should be
carried out in the range of intermediate photon energies
from 1.5–2 to approximately 6 keV.

4. CONCLUSIONS

We calculated and analyzed PBS of a fast ion in a
polycrystalline medium taking into account coherent
and incoherent emission channels. It is shown that in
the range of low photon energies ω ! 2πv /a (a is the
lattice constant), in which the coherent component of
the process dominates, PBS in the polycrystal is sup-
pressed as compared to radiation emitted by a single
atom. This suppression is due to the fact that small
momenta transferred to the target and determining PBS
at a single atom make zero contribution to coherent
scattering of a fast ion from the crystal lattice in the
low-frequency range.

In the intermediate photon energy range ω ≥ 2πv /a
(2−6 keV), a clearly distinguishable step structure (fre-
quency steps) is observed in the PBS spectrum. This
structure is associated with coherent scattering of a pro-
jectile from a crystal lattice, during which a momentum

2000 3000 4000 5000 6000
0

0.01

0.02

0.03
(Nph)/(dωdΩdl), (eV cm sterad)–1

ω, eV

Fig. 5. Differential yield of PBS photons from an ion scat-
tered in polycrystalline aluminum for various ion velocities:
v  = c/3 (the ordinate is magnified by a factor of 5) (solid
curve) and v  = c/20 (dotted curve).
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modulo equal to one of reciprocal lattice vectors is
transferred to the target. A frequency step is formed as
a result of elimination of the contribution from one of
the reciprocal vector moduli (g) to the process, when
the minimal transferred momentum determined by con-
servation laws is modulo greater than g. The position
and height of frequency steps reflect the features of the
target structures and are functions of the velocity of the
projectile particle and the photon emission angle.

In the high-frequency spectral range ω @ 2πv /a
(ω > 8–10 keV), the incoherent component of the PBS
spectrum dominates and the emission spectrum
approaches the spectrum for a single atom.

These spectral features of PBS in polycrystalline
targets may also be observed in experiments on emis-
sion from fast ions scattered in thin films, when the
absorption of radiation in the target can be neglected as
well as radiation emitted by secondary electrons.

Since the typical features of the PBS spectrum in
polycrystals are determined by the structure of the tar-
get and depend on the velocity of the projectile, this
radiation can be used for structural analysis of the target
material and for determining bremsstrahlung of fast
ions in a polycrystalline medium.

REFERENCES

1. I. E. Bakhmetjev, A. D. Fertman, A. A. Golubev, et al.,
Laser Part. Beams 21, 1 (2003).

2. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 5: Statistical Physics, 5th ed. (Fizmatlit,
Moscow, 2003; Pergamon, New York, 1987).
JOURNAL OF EXPERIMENTAL 
3. Polarized Bremsstrahlung from Particles and Atoms,
Ed. by V. N. Tsytovich and I. M. Oœringel’ (Nauka, Mos-
cow, 1987) [in Russian].

4. V. A. Astapenko, L. A. Bureeva, and V. S. Lisitsa, Usp.
Fiz. Nauk 172, 155 (2002) [Phys. Usp. 45, 149 (2002)].

5. V. M. Buœmistrov, Yu. A. Krotov, and L. I. Trakhtenberg,
Zh. Éksp. Teor. Fiz. 79, 808 (1980) [Sov. Phys. JETP 52,
411 (1980)].

6. K. Ishii and S. Morita, Phys. Rev. A 30, 2278 (1984).
7. V. A. Astapenko, Zh. Éksp. Teor. Fiz. 99, 165 (1991)

[Sov. Phys. JETP 72, 92 (1991)].
8. N. N. Nasonov, Nucl. Instrum. Methods Phys. Res. B

145, 19 (1998).
9. S. Blazhevich, A. Chepurnov, V. Grishin, et al., Phys.

Lett. A 254, 230 (1999).
10. V. A. Astapenko, L. A. Bureyeva, and V. S. Lisitsa, Laser

Phys. 10, 960 (2000).
11. V. A. Astapenko, V. M. Buœmistrov, and Yu. A. Krotov,

Zh. Éksp. Teor. Fiz. 93, 825 (1987) [Sov. Phys. JETP 66,
464 (1987)].

12. M. L. Ter-Mikaelyan, High Energy Electromagnetic
Processes in Condensed Media (Akad. Nauk Arm. SSR,
Yerevan, 1969; Wiley, New York, 1972).

13. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 8: Electrodynamics of Continuous Media,
4th ed. (Fizmatlit, Moscow, 2003; Pergamon, New York,
1984).

14. http://cindy.lbl.gov/optical_constants.
15. A. V. Korol’, A. G. Lyalin, O. I. Obolenskiœ, and

A. V. Solov’ev, Zh. Éksp. Teor. Fiz. 114, 458 (1998)
[JETP 87, 251 (1998)].

16. V. P. Shevelko, I. Yu. Tolstikhina, and Th. Stolker, Nucl.
Instrum. Methods Phys. Res. B 184, 295 (2001).

Translated by N. Wadhwa
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



  

Journal of Experimental and Theoretical Physics, Vol. 99, No. 5, 2004, pp. 965–977.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 126, No. 5, 2004, pp. 1109–1122.
Original Russian Text Copyright © 2004 by Aksenova, Val’kov, Karetnikov, Kovshik, Romanov, Ryumtsev.

                             

ATOMS, SPECTRA, 
RADIATION
Extraordinary Ray Refraction 
in a Large Pitch Helical Medium 

E. V. Aksenovaa,*, A. Yu. Val’kovb,**, A. A. Karetnikova, A. P. Kovshika, 
V. P. Romanova, and E. I. Ryumtseva

a St. Petersburg State University, Petrodvorets, St. Petersburg, 198504 Russia
b St. Petersburg Institute for Foreign Economic Relations, Economics, and Law, St. Petersburg, 191104 Russia

e-mail: *aksev@mail.ru; **alexvalk@mail.ru
Received May 17, 2004

Abstract—The phenomenon of extraordinary ray refraction in a helical liquid crystal with large (compared to
the light wavelength) pitch has been studied by theoretical and experimental methods. At a sufficiently large
angle of incidence relative to the pitch axis, the extraordinary ray exhibits reflection (reversal) from a certain
layer of the medium. The ordinary ray, for which the system is optically isotropic, exhibits no such reflection.
The experimental dependences of the transmitted and reflected (reversed) rays are described using the
geometrical optics approximation taking into account the optical losses for scattering inside the liquid crystal.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among the main distinctive features of liquid crys-
tals (LCs) are their unusual optical properties, in partic-
ular—anisotropy (both uniaxial and biaxial), very high
optical activity, selective reflection, unusually strong
scattering of light, etc. [1]. From this standpoint, of
considerable interest for optical applications are the
LCs possessing one-dimensional periodicity, primarily
cholesteric LCs. These LCs are locally uniaxial, with
the optical axis uniformly rotating around the pitch axis
so as to form a helical structure. In the case of normal
incidence, whereby light propagates along the pitch
axis, the wave equation admits exact solutions [1, 2].
For oblique incidence, systems with a cholesteric
pitch P on the order of the light wavelength λ can be
described using approximate methods [3] based on the
Floquet theorem and the theory of diffraction. The
validity of this approach was repeatedly confirmed in
experiment.

Cholesteric LCs with a pitch greater then the light
wavelength, as well as low-twist nematic LCs, have
been studied to a much lower extent, although the first
results for the normal incidence of light (the so-called
Mouguin adiabatic regime) were obtained about a cen-
tury ago [4]. In recent years, the lack of knowledge
about such media has become especially challenging in
view of the wide use of twist LC cells in data displays.
The properties of helical LC media smoothly vary on a
scale of λ, which makes it possible to use methods of
the Wentzel–Kramers–Brillouin type. The problem of
electromagnetic wave propagation in a locally isotropic
medium with smooth inhomogeneities was considered
in [5].
1063-7761/04/9905- $26.00 © 20965
In recent years, we have studied the propagation of
electromagnetic waves in the case of oblique incidence
in cholesteric LCs with large pitch [6]. In this case,
light also propagates in the adiabatic regime, whereby
there are two normal waves—local ordinary and local
extraordinary—with the polarization vectors deter-
mined by directions of the optical axis and the wave
vector at a given point. The wave vector component
perpendicular to the pitch axis is conserved, and the
length of this vector (wavenumber) is determined from
the local dispersion equation [6, 7].

In helical LCs, where the director orientation
changes from point to point, the trajectories of rays
exhibit a complicated character. Description of such
systems encounters problems of two types. Problems of
the first type are related to determination of the director
distribution in an LC cell using the results of optical
measurements. Such investigations were performed,
for example, in [8]. In particular, the director field
structure in hybrid cells of nematic LCs was recon-
structed using the results of measurements of the
reflected light intensity in the vicinity of a point of the
total internal reflection. Problems of the second type
are related to investigations of the light propagation and
scattering in LC cells with known structures [3]. This
paper deals with a problem of the second type.

We have studied propagation of the ordinary and
extraordinary rays in twist LC cells with the helical
structure period much greater than the light wave-
length. It was established that the extraordinary ray
propagating at a sufficiently large angle to the pitch axis
exhibits reversal of the propagation direction inside the
medium and leaves this medium similarly to the case of
total internal reflection. However, in contrast to the lat-
004 MAIK “Nauka/Interperiodica”
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ter effect, the extraordinary ray exhibits reflection in
depth of the medium, rather than on the sample surface.
We have studied this phenomenon theoretically and
confirmed it experimentally. The experimental data
have been analyzed in detail within the framework of
the geometrical optics approximation.

This paper is organized as follows. Section 2 pro-
vides a theoretical description of the propagation of
light in cholesteric LCs with large pitch. In particular,
Section 2.1 presents general relations of the geometri-
cal optics of such cholesteric LCs and Section 2.2 con-
siders the trajectory shape and reversal of the extraordi-
nary ray. In Section 3, we describe the experiment and
present the experimental results. Section 4 is devoted to
a comparative analysis of the theory and experiment
with allowance for extinction in the cholesteric LC. In
the Conclusions section, we will consider some other
possible factors influencing the intensity of transmitted
and reflected rays in the vicinity of the turning point.
The Appendix gives formulas for the calculation of
extinction in cholesteric LCs with large pitch.

2. THEORY OF THE LIGHT PROPAGATION
IN TWIST LIQUID CRYSTAL CELLS 

WITH LARGE PITCH

2.1. Geometrical Optics Approximation

Consider a plane-parallel twist LC (cholesteric or
nematic) cell with a pitch P @ λ and a thickness d,
occupying a layer 0 ≤ z ≤ d in a Cartesian coordinate
system xyz with the z axis perpendicular to the bound-
ary planes. Let the pitch axis be oriented parallel to the
z axis and the director vector n(r) be perpendicular to
this direction and homogeneous in the xy plane:

(2.1)

Here, q0 = π/P and φ0 is the initial phase. According to
formula (2.1), the period of the director n(z) is 2P.
However, since the directions n and –n in cholesteric
and nematic LCs are equivalent, the actual pitch is P.

The wave equation for the electromagnetic field in
such a medium can be written as

(2.2)

where E(r) is the electric field vector, k0 = ω/c, ω is the
circular frequency, c is the speed of light in vacuum,
and  is the permittivity tensor. In a cholesteric (as
well as in a planar twist nematic) LC, the latter tensor
has the following form [1]:

(2.3)

where εa = ε|| – ε⊥ ; ε|| and ε⊥  are the permittivity compo-
nents parallel and perpendicular to n(z).

n r( ) n z( )≡ q0z φ0+( )cos q0z φ0+( )sin 0, ,( ).=

curlcurl k0
2ε̂ z( )–( )E r( ) 0,=

ε̂ z( )

εαβ z( ) ε⊥ δαβ εanα z( )nβ z( ),+=
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In view of the homogeneity of the system in the xy
plane, it is convenient to pass to the Fourier harmonics
E(k⊥ , z) with respect to the transverse variables r⊥  =
(x, y).

Let us fix the transverse wave vector k⊥  and seek
a solution of the wave equation (2.2) inside the medium
in the geometrical optics approximation:

(2.4)

where E0(z) and kz(z) are scalar functions and e(z) is the
unit vector (e · e* = 1), which can be considered as local
values of the amplitude, the z-components of the com-
plete wave vector k(z) = (k⊥ , kz(z)), and the vector of
polarization of a quasi-plane wave.

The condition of applicability of the geometrical
optics approximation (2.4) is represented by the set of
inequalities,

(2.5)

which must be obeyed for all z in the interval 0 ≤ z ≤
min(P, d). The first two inequalities (2.5) imply smooth
variation of the field amplitude and the polarization

vector on a wavelength scale (λ ~ k–1 ~ ), while the
third inequality reflects the smooth variation of the kz(z)
component of the wave vector k(z) on this scale. Note
that, in view of the relation

the third inequality corresponds to the condition

(2.6)

According to formulas (2.5) and (2.6), the kz(z) compo-
nent in the geometrical optics approximation is not very
small for all z.

Substituting expression (2.4) into wave equation (2.2)
and considering the main order with respect to the large
parameter kz(z)P ~ P/λ, we obtain the eikonal equation

(2.7)

At a fixed direction of the wave vector t = k/k and a
fixed value of z, the homogeneous system of linear
equations (2.7) for a uniaxial permittivity tensor (2.3)

E r( ) E0 z( )e z( )=

× ik⊥ r⊥⋅ i kz z'( ) z'd

0

z

∫+
 
 
 

,exp

dE0 z( )
dz

--------------- ! E0 z( )kz z( ),

de z( )
dz

------------  ! kz z( ),
dkz z( )

dz
-------------- ! kz

2 z( ),

kz
1–

dkz z( )
dz

--------------
kz z( )

P
----------,∼

kz z( )P @ 1.

k z( ) k z( ) e z( )×× k0
2ε̂ z( )e z( )+ 0.=
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has two well-known solutions corresponding to the
ordinary (o) and extraordinary (e) waves [9]:

(2.8)

Here, n(o) and n(e) = n(e)(t) are the refractive indices for
the ordinary and extraordinary rays, respectively:

(2.9)

where θ is the angle between vectors n and k. The
polarization vectors e(o) = e(o)(t) and e(e) = e(e)(t) are
defined by the conditions

, (2.10)

and by the fact that vector e(e) occurs in the plane of vec-
tors k and n. Using Eqs. (2.10) and (2.3), we determine
the directions of the unit polarization vectors e(o)

and e(e):

(2.11)

In contrast to the usual formulation of the problem
of wave propagation in a homogeneous anisotropic
medium, where the direction of the wave vector t and
the optical axis n do not change in space, our system
has a fixed transverse component k⊥  of the wave vector,
while the optical axis n(z) is rotating in space. In this
case, the wave vectors k and the polarization vectors e
are the functions of the coordinate z and the two-dimen-
sional vector k⊥ . For the ordinary wave, the first equa-
tion (2.8) yields

(2.12)

For the extraordinary wave, we have

(2.13)

therefore, the second relation (2.8) is an equation for

the (k⊥ , z) component. Solving this equation, we
obtain

(2.14)

The polarization vectors e(o)(k⊥ , z), e(e)(k⊥ , z) can be
determined using formulas (2.11) with n = n(z) and k =

k(o)(k⊥ ) or k = k(e)(k⊥ , z), where k(o) = (k⊥ , ) and

k(e) = (k⊥ , ).

k o( ) k0n o( ), k e( ) k0n e( ).= =

n o( ) ε⊥ , n e( ) ε⊥ ε||

ε|| θcos
2 ε⊥ θsin

2
+

-------------------------------------------,= =

e o( ) ⊥  n, e o( ) ⊥  k, ε̂e e( ) ⊥  k

e o( ) || k n, e e( ) || n kε̂k( ) k kε̂n( ).–×

kz
o( ) k⊥ z,( ) kz

o( ) k ⊥( )≡ ε⊥ k0
2 k ⊥

2– .=

θcos
n z( ) k e( ) k⊥ z,( )⋅

k e( ) k⊥ z,( )
-------------------------------------

n z( ) k⊥⋅
k e( ) k⊥ z,( )
-----------------------,= =

kz
e( )

kz
e( ) k⊥ z,( ) ε||k0

2 k ⊥
2–

εa

ε⊥
----- k⊥ n z( )⋅( )2– .=

kz
o( ) k ⊥( )

kz
e( ) k⊥ z,( )
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It should be noted that, within the framework of the
geometrical optics approximation (2.4), the indepen-
dence of the transverse wave vector component k⊥  of z
is equivalent to Snell’s law. Indeed, selecting the y axis
orientation in the xyz system along the fixed vector k⊥ ,
we can write t(z) = (0, sinχ(z), cosχ(z)), where χ(z) is
the z-dependent angle between the wave vector and the
z axis. Therefore, n(e)(t) = n(e)(t(z)) = n(e)(z) and
Eq. (2.8) yields k⊥  = k0n(e)sinχ(z) for the extraordinary
wave. Thus, the condition that k⊥  is constant corre-
sponds to the usual Snell’s formula

(2.15)

For the ordinary wave, this condition also corresponds
to the usual Snell law, n(o)(z)sinχ(z) = const. However,
both quantities n(o)(z) and χ(z) are in fact independent
of z (see relations (2.9) and (2.12)) and this law is
trivial.

In order to find the field amplitude E0(z) in the geo-
metrical optics approximation, it is necessary to retain
terms of the next order with respect to the small param-
eter λ/P. The resulting “transfer equation” [10] for the
field amplitude E0(z) is equivalent to the law of energy
conservation, divS = 0, for the Poynting vector [9]:

(2.16)

For the waves satisfying Eq. (2.4), S(r) ≡ S(z) and

(2.17)

Thus, in our case, the energy conservation law takes the
form divS = ∂zSz(z) = 0, which implies that Sz(z) is inde-
pendent of z. As a result, relation (2.17) gives the law of
variation of the field amplitude:

(2.18)

where C0 is an arbitrary constant. Substituting expres-
sions (2.11)–(2.14) into (2.18), we eventually obtain

(2.19)

In concluding this Section, it can be noted that terms
of the next order of smallness in λ/P in the wave equa-
tion yield a correction to the phase of the wave (2.4).
The condition of neglect of this correction implies
a restriction on the wave optical path in an inhomoge-
neous medium [10, 11]:

(2.20)

n e( ) z( ) χ z( )sin const.=

S r( )
c

8πk0
----------- k E 2 E E∗ k⋅( )–[ ] .=

S z( )
c E0 z( ) 2

8πk0
-------------------- k z( ) e z( ) k z( ) e z( )⋅( )–[ ] .=

E0 z( ) 2 C0

k0

kz z( ) ez z( )k z( ) e z( )⋅–
--------------------------------------------------,=

E0 z( ) 2 C0

k0

kz
o( ) k ⊥( )

------------------ for o( )-ray,

k0
2ε⊥

2 εa k⊥ n z( )⋅( )2+

kz
e( ) k⊥ z,( )k0ε⊥

2
------------------------------------------------- for e( )-ray.









=

z λ  ! P2,
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which is an additional condition, supplementary to ine-
qualities (2.5), determining the applicability of the geo-
metrical optics approximation.

2.2. The Phenomenon 
of Extraordinary Ray Reversal

Let us consider the conditions under which the light
wave can propagate in a medium with a preset value of
k⊥ . According to relation (2.12), the condition of the

ordinary wave propagation appears as k0 ≥ k⊥ .
Since the wave vector k(o) is independent of the coordi-
nate z, the wave in this medium will exhibit rectilinear
propagation in the entire region 0 ≤ z ≤ d. According to
relation (2.11), the polarization vector e(o)(z) of this wave
depends on z, since its direction is determined by the
local director vector n(z). According to formula (2.19),
the wave amplitude is constant.

The conditions of propagation of the extraordinary
wave are significantly different because the longitudi-

nal wave vector component  depends on the coordi-
nate z. According to Eq. (2.14), the extraordinary wave
will propagate in the medium for all z, provided that
vectors k⊥  and n(z) in the entire interval obey the ine-
quality

(2.21)

This inequality corresponds to the condition  <

min(ε⊥ , ε||) .

On the contrary, if the reverse inequality is valid for
all values of φ(z), which corresponds to the condition

 > max(ε⊥ , ε||)  the extraordinary wave will not
propagate in the medium.

In the intermediate case of

we observe a situation where inequality (2. 21) is valid
only within a certain interval of angles φ(z). In this case,
there exists an angle φ(zt) for which the inequality

in (2.21) changes to equality, so that the  compo-
nent vanishes. As the angle φ(z) decreases further, the

 component becomes imaginary and the extraordi-
nary wave exhibits exponential decay. At the point zt ,

the  component changes sign and, accordingly, the
wave changes the direction of propagation along the z
axis. Therefore, zt is the turning point for the extraordi-
nary wave. In a certain sense, this effect is analogous to
the phenomenon of total internal reflection from a cer-
tain plane in depth of the medium.

ε⊥

kz
e( )

ε||k0
2 k ⊥

2 εa

ε⊥
-----k ⊥

2 φ z( )cos
2

.>–

k ⊥
2

k0
2

k ⊥
2 k0

2

min ε⊥ ε||,( )k0
2 k ⊥

2 max ε⊥ ε||,( )k0
2,≤ ≤

kz
e( )

kz
e( )

kz
e( )
JOURNAL OF EXPERIMENTAL 
The polarization vector e(e)(z) of the extraordinary
wave is adiabatically adjusted to the local values of the
wave vector and the director in accordance with for-
mula (2.11).

In the vicinity of the point z = zt , the inequalities in
(2.5) are not satisfied and the geometrical optics
approximation fails to be valid. Here, we occur in a
caustic region where the field amplitude, according to

Eq. (2.19), tends to infinity because (z)  0 as
z  zt . In order to describe the wave behavior in this
region, it is necessary to analyze wave equation (2.2)
for field (2.4) with  expanded into series in the
vicinity of the turning point. For scalar waves, the phe-
nomenon of wave reversal and the behavior of the wave
field in the vicinity of this point have been described in
much detail, for example, in [11]. This analysis showed
that, in particular, after passage via the turning point,

the field not only changes the sign of the  compo-
nent, but acquires an additional phase shift exp(–iπ/2).

Now let us consider the shapes of trajectories of the
ordinary and extraordinary rays in a cholesteric LC
with large pitch. The ray trajectory is defined as the set
of points at which the tangent coincides with the direc-
tion of the group velocity of the wave. In our case, it is
convenient to replace the group velocity vector by the
Poynting vector S having the same direction [9]. In an
isotropic medium, S || k and the trajectory is usually
described in terms of the wave vector. In an anisotropic
medium, where (in the general case) S  k, the trajec-
tory should be described in terms of the Poynting vec-
tor. Introducing parametrization of the ray trajectory as
(r⊥ (z), z) and writing the condition that the tangent at a
given point is parallel to the Poynting vector (S⊥ (z),
Sz(z)) of the wave, we obtain an equation for the ray tra-
jectory r⊥ (z):

(2.22)

For the ordinary ray, relations (2.10) show that
k(o)e(o)(z) = 0, and Eq. (2.17) shows that S(o) || k(o) and
S(o) is independent of the coordinate z. Therefore, the
right-hand side of Eq. (2.22) is constant and we con-
clude that the ordinary ray trajectory is rectilinear and
coincides in direction with the wave vector k(o).

For the extraordinary ray, the vector S(e)(z) exhibits
a more complicated trajectory because it is not parallel
to the wave vector (S(e)(z)  k(e)(z)) and changes direc-
tion when z varies. In order to determine this trajectory,
let us note that, in an arbitrary anisotropic medium, the
vectors k, E, and S occur in the same plane so that S ⊥
E and k ⊥  D = ; therefore,  = 0 [9]. Taking into
account the symmetry of the permittivity tensor , the

kz
e( )

ε̂ z( )

kz
e( )

||

dr⊥ z( )
dz

---------------
S⊥ z( )
Sz z( )
------------.=

||

ε̂E kε̂E
ε̂
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Fig. 1. Projections of the ray trajectories in an LC cell onto xz and yz planes for two angles of entrance χ into the LC: (a) extraor-

dinary ray (χ = 63.2°); (b) reverse extraordinary ray (χ = 63.5°). Calculations were performed for  = 1.51,  = 1.69, φ0 =

−π/2 in formula (2.1); x axis is parallel to k⊥ .

ε⊥ ε||
latter relation can be written as  = 0, so that e ⊥  .
Formula (2.3) yields the relation

(2.23)

which implies that, in a uniaxial anisotropic medium,
vector  is a linear combination of the n and k vec-
tors. Note also that, according to relation (2.11) for the
extraordinary wave, the polarization vector e(e) is also a
linear combination of the n and k vectors. As a result,

we conclude that the vectors e(e), S(e), and  lie in
the same plane formed by the vectors n and k(e), so that
e ⊥   and e ⊥  S. Therefore, the uniaxial anisotropic
media (to which the systems under consideration

belong on a local level) are characterized by S(e) || .
The above considerations imply that

(2.24)

and trajectory equation (2.22) with allowance for (2.23)
takes the following form:

(2.25)
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Integrating this relation, we obtain an explicit expres-
sion for the ray trajectory:

(2.26)

The right-hand side of Eq. (2.26) reduces to elemen-
tary functions and an incomplete elliptic integral of the
first kind. The results of numerical calculations of the
ray trajectories are presented in Fig. 1. As can be seen,
the extraordinary ray for certain angles of incidence
exhibits reversal inside the crystal and turns back to the
medium from which the light wave was incident onto
the crystal. The trajectory of the extraordinary ray in
such a medium is flat neither inside nor outside of the
wave channel. However, the period-average Poynting
vector occurs in the (z, k⊥ ) plane.

3. EXPERIMENTAL

We have verified the effect of extraordinary ray
reversal by measuring the parameters of rays outside a
crystal and interpreting the results within the frame-
work of the geometrical optics approximation.

The system studied comprised the mixture of a nem-
atic LC (ZhKM1466, Institute of Organic Semiprod-

r⊥ z( )
εak ⊥

ε⊥
----------=

n z'( ) φ z'( )cos

kz
e( ) z'( )

------------------------------ z'd

0

z

∫ k⊥
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kz
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0
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∫+
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ucts and Dyes, Moscow) and a chiral additive. The lat-
ter was an optically active compound with the structural
formula

synthesized at the Vilnius State University (Lithuania).
The surfaces of prisms contacting with the LC medium
were processed so as to ensure the planar orientation.

Figure 2 shows a schematic diagram of the experi-
mental setup. The light source was a He–Ne laser oper-
ating at λ = 632.8 nm. After polarizer P, the linearly
polarized laser beam passed through a half-wave plate
(which allowed the polarization plane direction to be
controlled) and struck the entrance face of a prism in

C4H9O COO

C

CH3

H CH3
CH3

Ph1

P1
V

P2 Ph2

G

CPHe–Ne λ /2

Fig. 2. Schematic diagram of the experimental setup:
(He−Ne) helium–neon laser; (P, P1, P2) polarizers;
(λ/2) half-wave plate; (Ph1, Ph2) photodetectors; (V) digital
voltmeter V7-35; (G) goniometer; (C) optical cell with liq-
uid crystal.

βout

–

+

γ0

βin

α

χ
1

2

3

Ph1

Ph2

Fig. 3. Schematic diagram of the LC cell showing the ray
paths: (1) planar twist LC; (2, 3) glass prisms with a height
of 12 mm, a larger base of 37 mm, and a base angle γ0 = 70°;
βout and βin, the angles of incidence and refraction on the
prism entrance surface, respectively; α the angle of inci-
dence onto the LC surface.
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cell C mounted on goniometer G. We measured the
reflected and transmitted light intensities (I1 and I2) as
functions of the angle of the laser beam incidence onto
the LC for two polarizations of the incident light beam,
which corresponded to the ordinary or extraordinary
ray entering the LC. Using polarizers P1 and P2 placed
in front of the photodetectors (Ph1 and Ph2, respec-
tively), it was possible to separate the components hav-
ing the same polarization as that in the incident light.

The measurements were performed with a special
cell schematically depicted in Fig. 3, comprising a thin
lane-parallel LC layer (1) sandwiched between two
trapezoidal glass prisms (2, 3) with the base angles γ0 =
70°. This shape of the prism allowed the incident beam
to be introduced at rather large angles α. The experi-
ments were performed for two LC samples with d = 8
and 100 µm. The easy director orientation axes on both
surfaces were perpendicular to the plane of the figure.
The concentration of the optically active additive was
selected so as to provide that the pitch P would be close
to the LC layer thickness d.1 As a result, the cell fea-
tured planar twist structure with a director orthogonal
to the plane of the figure on the alignment surfaces and
parallel to this plane at the center of the LC layer (thus,
making one turn over the layer thickness).

The values of  and  in the LC mixtures for

λ = 632.8 nm were  = 1.51 and  = 1.69, thus
virtually coinciding with the corresponding values for
the nematic matrix. This is explained by a very small
concentration of the chiral additive (about 2 and 0.07%
for the first and second sample, respectively). The
refractive index of the glass prisms was np = 1.644. This

value falls between  and , being three times

closer to  than to .

The incident, transmitted, and reflected rays occur
in the plane of Fig. 3. The angles of the light incidence
onto the LC surface (α) and onto the prism entrance
surface (βout) are related as

(3.1)

where the sign is selected as indicated in Fig. 3,
depending on the position of the incident ray relative to
the outer normal to the prism entrance surface. Rela-
tions (3.1) show that α can vary from γ0 –

 ≈ 32.54° to 90°.

First, let us consider how the incident light intensity
would be distributed between photodetectors Ph1 and
Ph2 if the extraordinary ray reversal were not taking

1 The pitch P was determined using two independent methods:
first, by observation of the Grangin texture in a Canot wedge; sec-
ond, by monochromatic light diffraction on a confocal structure.

ε⊥ ε||

ε⊥ ε||

ε⊥ ε||

ε|| ε⊥

α γ0 βin, np βinsin± sin βout,= =

1/np( )arcsin
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place. According to Snall’s law for the ordinary ray
refraction at the glass–LC interface,

(3.2)

This relation poses limitation on the angle of incidence,

α < α∗  =  so that the ordinary ray does
not enter the LC when α > α∗  Substituting the values of

np and , we obtain α∗  ≈ 66.7° for the total internal
reflection angle of the ordinary ray at the glass–LC
interface.

For the extraordinary ray, Snall’s law with allow-
ance for relation (2.9) yields

(3.3)

because θ = 90° at the at the glass–LC interface (Fig. 3).
When χ varies from 0 to 90°, the right-hand side in rela-

tion (3.3) changes from 0 to . Similarly, the left-
hand side varies (depending on α) from 0 to np . By

virtue of the condition np < , for any α there is an
angle χ,

(3.4)

such that relation (3.3) is satisfied. This implies that the
extraordinary ray does not exhibit total internal reflec-
tion at the glass–LC interface in the entire range of
angles α.

Therefore, it might be expected that the extraordi-
nary ray would exhibit reflection and refraction at all
angles of incidence and the output light intensity
measured by both photodetectors would smoothly vary
depending on α. The intensity of the transmitted
light (I2) must significantly exceed that of the reflected
light (I1). For the ordinary ray, it might be expected that
both reflected and refracted (transmitted) signals would
be observed for α < α∗ , and only the reflected signal,
for α > α∗ .

The results of our measurements for the ordinary
and extraordinary rays are presented in Fig. 4. As can
be seen from these data, there exists an angle α∗  ≈ 66.7°
(the same for both rays) such that the light reaches both
photodetectors Ph1 and Ph2 for α < α∗ , and only photo-
detector Ph1 for α > α∗ . The results presented in Fig. 4
refer to the sample with d = 100 µm. The pattern
observed for the sample with d = 8 µm is qualitatively
the same, but the signal intensity variations in the vicin-
ity of α & α∗  are less pronounced. Thus, the experi-
mental results for the ordinary ray are qualitatively con-

np αsin n o( ) χsin ε⊥ χ ε⊥ .≤sin= =

ε⊥ /np( )arcsin

ε⊥

np αsin n e( ) θ( ) χsin ε|| χ ,sin= =

ε||

ε||

χ
np αsin

ε||

-----------------,arcsin=
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sistent with the above predictions, whereas the data for
the extraordinary ray disagree with these predictions.

The discrepancy can be eliminated if we take into
account the phenomenon of the extraordinary ray rever-
sal described in Section 2.2. According to this, the
extraordinary wave with a sufficiently large value of k⊥
(i.e., at a sufficiently large angle of incidence α) cannot
penetrate into the LC deeper than to a certain layer
where kz = 0. Upon reaching this depth, kz changes sign
and, in fact, this wave will escape from the LC layer
with the same value of the transverse component k⊥  but
with the opposite longitudinal component kz . This will
appear as if the wave would be reflected. As was dem-
onstrated in Section 2.2, the extraordinary ray reversal
for ε⊥  < ε|| takes place for waves with k⊥  such that

ε⊥  <  ≤ ε|| . Taking into account the relation k⊥  =

k(e)sinχ and Snall’s law (3.3), we obtain

k0
2 k ⊥

2 k0
2

ε⊥

np
--------- α

ε||

np
--------.≤sin<

0

0.2

0.4

0.6

0.8

1.0

I, rel. units

(a)

(b)

1
2

3

1

60° 65° 70° 75° 80°
α

0

0.2

0.4

0.6

0.8

1.0

1

2
3

Fig. 4. Angular dependence of the reflected and transmitted
light intensity for the (a) ordinary and (b) extraordinary
rays. Experimental data: (e) reflected intensity; (h) trans-
mitted intensity; (m) total intensity. Solid curves show the-
oretical curves: (1) reflected intensity I1; (2) transmitted
intensity I2 calculated using formulas (4.4) (a) and (4.8) (b);
(3) total intensity I1 + I2 (a); reflected intensity I1 calculated
using formula (4.9) (b). All values are normalized to the
incident light intensity.
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Since  > np and /np ≡ sinα∗ , we infer that the
extraordinary ray reversal must be observed in the
interval α∗  < α ≤ 90°, in agreement with our experi-
mental results.

The fact of coincidence of the limiting angles α∗  for
the ordinary and extraordinary rays can be explained as
follows. If the refractive index (2.9) of the extraordi-
nary ray decreases in the course of its propagation in
the LC layer, while the k⊥  component of the wave vec-
tor remains constant, the  component along the ray

tends to decrease. The minimum angle α corresponding
to the onset of the extraordinary ray reversal is deter-
mined by the condition that  is zero on a plane in

depth of the LC, where the refractive index n(e) is mini-
mum. In our case, ε⊥  < ε|| and, hence, the minimum

value of n(e) is , thus coinciding with the refractive
index n(o) for the ordinary ray. Therefore, the minimum
angle α corresponding to the onset of the extraordinary
ray reversal exactly coincides with the angle of total
internal reflectance α∗  of the ordinary ray.

4. THE INFLUENCE OF EXTINCTION

Now we will analyze the angular dependence of
intensities I1, 2 for the rays of both types in more detail.
First, let us consider the case of incidence of the ordi-
nary ray. The first factor determining a smooth decrease
in intensity of the transmitted ray (I2) and an increase in
intensity of the reflected ray (I1) at α  α∗  in the
region of α < α∗  is related to a redistribution of the
energy between the rays refracted and reflected at the
LC–glass interface. The intensities of the transmitted

ε|| ε⊥

kz
e( )

kz
e( )

ε⊥

0 45° 90°

θ

5

10

15

σ, cm–1

σ(e)

σ(o)

Fig. 5. Angular dependences of the extinction coefficients
for the ordinary (σ(o)) and extraordinary (σ(e)) rays calcu-
lated using formula (A.2).
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(Itr) and reflected (Irf) rays are described by the Fresnel
formulas [9],

(4.1)

where I0 is the incident light intensity and

(4.2)

is the reflection coefficient for the ray polarized in the
plane of incidence.

As α approaches the critical value α∗ , the reflection
coefficient increases and tends to unity in the limit of
α  α∗ . Therefore, in the vicinity of α∗ , it is neces-
sary to take into account multiple reflections at both
LC–glass interfaces (Fig. 3).

It should be also noted that, for α  α∗ , rela-
tion (3.2) yields χ  90° and, hence, the refracted ray
propagates in the LC at α ≈ α∗  at almost glancing
angles. As a result, the optical path

(4.3)

traveled by the ray between two sequential reflections
in the LC can be rather large so that the losses of light
scattered in the LC (extinction) may become signifi-
cant. The general formulas for the extinction coeffi-
cients in a twist LC cell with large pitch are presented
in the Appendix. We used formulas (A.2) and (A.4) to
calculate the angular dependence of the extinction coef-
ficient for the ordinary (σ(o)(θ)) and extraordinary
(σ(e)(θ)) rays in the LC under consideration. The results
of these calculations are presented in Fig. 5. For a nem-
atic matrix of this LC, the ratio of the Frank moduli is
K33/K11 ≈ 0.95 and K11 ~ 10–6 dyn. For this reason we
have calculated estimates for a single-constant approx-
imation with K11 = K22 = K33 = 10–6 dyn. The interval of
integration in (A.2) was truncated at a scattering angle
of 0.7° corresponding to the detector aperture. It should
be noted that the maximum values of σ(e) (for θ ≈ 45°)
are several times larger than the characteristic values of
σ(o) (cf. [12, 13]).

Thus, taking into account the multiple reflections
and extinction, we obtain for the ordinary ray

(4.4)
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for α < α∗ , and

(4.5)

for α > α∗ . Here, γ(o) = a(o)R||,

(4.6)

σ(o)(θ) is the extinction coefficient for the ordinary ray,
θ = θ(z) is the angle between the director n(z) and the
wave vector k(o),

and

is the number of reflections of the ordinary ray inside
the sample within the aperture D @ d (in our experi-
ments, D = 4 mm). In the geometry under consider-
ation, φ0 = –π/2 and k⊥  = (k⊥ , 0, 0); we also took into
account that the ordinary ray has a rectilinear trajectory,
and an increment of the trajectory length in (A.1) is dl =
(l (o)/d)dz.

In Fig. 4a, solid curves show the results of calcula-
tions using formulas (4.4) and (4.5) with the extinction
coefficient σ(o) presented in Fig. 5. It should be noted
that the curves I1, 2(α) are very sensitive to this extinc-
tion coefficient. Therefore, the agreement of theory and
experiment reached in Fig. 4a without any fitting
parameters can be considered as quite satisfactory.
Note that the sum of intensities of the reflected and
transmitted rays for α < α∗  is smaller than the intensity
of the ray reflected for α > α∗ . The difference is espe-
cially pronounced for α∗  – α ~ 1–2°. This behavior is
related to considerable losses for scattering in the LC
for α values close to the total internal refection angle
(when the ordinary ray travels over a large distance
inside the crystal).

Now let us consider the case of incidence of the
extraordinary ray. Note certain differences between
Figs. 4b and 4a. First, in the region where α is smaller
than α∗  and sufficiently far from the critical value, the
transmitted intensity I2 is smaller for the extraordinary

ray than for the ordinary one: for example, (56°) ≈

0.8I0 and (56°) ≈ 0.9I0. Second, the total intensity
I1 + I2 for the extraordinary ray at α < α∗  in a rather
wide region (α∗  – α * 1°) is close to the value of I1 for

I1 I0, I2 0= =
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d
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0
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α > α∗ , whereas for the ordinary ray, the intensity I1 at
α > α∗  is significantly greater than I1 + I2 at α < α∗ .
Finally, the region of α < α∗  in Fig. 4b where I1 and I2

significantly vary when α  α∗  is much narrower
than the analogous region for the ordinary ray in
Fig. 4a. This region in Fig. 4b features a weak growth
in the reflected intensity I1 and a significant decrease in
the transmitted intensity I2 for the extraordinary ray, in
contrast to the case of the ordinary ray (for which the
variations of I1 and I2 are of the same order of magni-
tude).

In order to explain these distinctions, it should be
recalled that the refractive index for the extraordinary

ray ( ) in our system is almost three times closer

than the value for the ordinary ray ( ) to the value
for the glass prisms (np). From this we infer that the
coefficient of reflection for the extraordinary ray polar-
ized perpendicularly to the plane of incidence [9],2 

(4.7)

for χ given by formula (3.4) is about ten times smaller
than the coefficient of reflection for the ordinary ray
(R||). Therefore, the main factor significantly influenc-
ing the values of I1 and I2 for the extraordinary ray in
this case is extinction, whereas multiple reflections at
the LC–glass and glass–LC interfaces play a much less
significant role. This circumstance explains the absence
of significant angular dependence of the reflected inten-
sity I1 for the ordinary beam in the region of α < α∗ .

Thus, the intensities of transmitted and reflected
extraordinary rays are given by the expressions

(4.8)

for α < α∗  and

(4.9)

2 These estimates are obtained using the formula for an isotropic
medium.
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for α > α∗ . Here, γj(e) = aj(e)R⊥  (j = 1, 2),

(4.10)

σ(e)(θ) is the extinction coefficient for the extraordinary
ray, θ(z) is the angle given by the formula (2.13),

(4.11)

is the element of optical path traveled by the extraordi-
nary ray in the LC according to formula (2.25), Mj(e) is
the number of reflections of the extraordinary ray inside
the sample for α < α∗  (j = 1) and α > α∗  (j = 2). In the
case under consideration, R⊥  ! 1 and, hence γj(e) ! 1,
so that we may put Mj(e) = ∞ in formulas (4.8) and (4.9).

In Fig. 4b, the solid curve shows the results of cal-
culations using formulas (4.8) and (4.9) with the extinc-
tion coefficient σ(e) presented in Fig. 5. Here, it should
be also emphasized that the curves I2(α) at α < α∗  and
I1(α) at α > α∗  are very sensitive to the extinction coef-
ficient σ(e). Note that the coefficient σ(e) was calculated
with cutoff of the integral (A.2) in the region of scatter-
ing angles below 0.7° (which corresponded to the
condition q * 4q0 in (A.4)). At the same time, for-
mula (A.4) is valid in the region of q @ q0. In the region
of q & q0, fluctuations of the director (A.4) exhibit
smecticlike [14], rather than nematiclike behavior. In
thin LC layers, the interaction of LC molecules with the
alignment surfaces becomes more significant, which
leads to the suppression of fluctuations near the inter-
faces and, hence, decreases the extinction coefficient.
For this reason, the values of σ(e) in Fig. 5, which are
more sensitive than σ(o) with respect to the scattering at
small angles, should be treated as estimates. This prob-
ably accounts for a greater difference between theory
and experiment for the extraordinary ray (Fig. 4b) than
for the ordinary ray (Fig. 4a).

Now we can explain the behavior of I1 and I2 in the
regions where the angle α is far from α∗ . The lower val-
ues of I2 for the (e)-ray than for the (o)-ray are related
to the fact that the integrals in (4.8) and (4.9) contain
significant contributions from the regions of z where
σ(e) is large, that is, where θ(z) in (2.13) is close to 45°.
As a result, even relatively short optical paths of the ray
at α far away from α∗ , the exponential factors in (4.10)
significantly differ from unity. The regions of θ(z) ≈ 45°
correspond to two relatively narrow regions in the inter-
vals (0, P/2) and (P/2, P). The transmitted ray crosses
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one of these regions producing a significant contribu-
tion to the integral at 0 < z < P/2, and another, at P/2 <
z < P. The extraordinary ray exhibiting a reversal passes
twice through one of these regions (0 < z < P/2) when
propagating in the forward and reverse directions. For
this reason, the values of I2 at α < α∗  and I1 at α > α∗
are approximately equal.

In the close vicinity of α∗ , the length of the trajec-
tory of the extraordinary ray begins to increase and the
integrals in (4.8) and (4.9) acquire significant contribu-
tions from the regions with small σ(e) and large length.
The width α – α∗  of the region where this contribution
becomes predominant is significantly smaller for the
(e)-ray than for the (o)-ray, which is caused by two fac-
tors. First, the length l (e) of the extraordinary ray trajec-
tory is shorter than that (l (o)) of the ordinary ray. Indeed,
as α – α∗   0, l (e) increases logarithmically, while
l (o) ~ (α – α∗ )–1/2 according to (2.4). Second, the longest
part of the trajectory in the vicinity of the turning point,
zt(α∗ ) = P/2 corresponds to a nearly zero angle θ
between the director n(z) ≈ n(P/2) and the wave vector
k(e) ≈ k⊥ . However, as can be seen from Fig. 5, the value
σ(e)(0) ≡ σ(o)(0) corresponds to the minimum of σ(o)(θ),
so that the values of the integrand in (4.8) and (4.9) on
the longest part of the extraordinary ray trajectory are
smaller than the analogous values for the ordinary ray
in (4.6).

5. CONCLUSIONS

Now let us consider some additional factors influ-
encing the intensities of transmitted and reflected
extraordinary rays in the close vicinity of α∗ .

(i) As is known, the extraordinary ray in nematic
LCs exhibits anomalous scattering by small angles into
extraordinary rays [1]. For this reason, the extraordi-
nary ray exhibits multiple scattering over a length on
the order of (σ(e))–1 ! (σ(o))–1 and transforms from
coherent into diffuse with a small angular expansion
and retained polarization [15]. Since the system under
consideration is locally close to nematic LCs, we may
expect that an analogous effect can take place in our
system as well. According to experimental data [15],
the characteristic angular size of a diffuse beam was
1°−1.5° at a ray optical path in the LC on the order of
0.1 cm. Thus, significant angular expansion begins
approximately in the same region of α where I2 consid-
erably changes due to losses due the scattering by large
angles. As a result, the beam at α∗  – α ~ 1°–1.5° con-
tains a considerable proportion of extraordinary rays
exhibiting reversal, which appear as reflected when
leaving the LC. For this reason, the region of α∗  – α ~
1°–1.5° features an increase ion I1, which becomes
more pronounced as α∗  – α approaches zero.
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(ii) For angles α > α∗  but still sufficiently close to
α∗ , the angular dependence of I1, 2 may be influenced
by the so-called permeation effect [11, 16], whereby a
wave partly penetrates through the forbidden region,
where it exponentially decays in the z direction, to
reach the adjacent allowed region. This leads to a
decrease in the reflected intensity I1 (a part of the
energy leaks through the forbidden region) and an
increase in the transmitted intensity I2 (more energy
penetrates through the forbidden region). The smaller
the width of the forbidden region, the more pronounced
is the permeation phenomenon. In our case, the forbid-
den region corresponds to zt < z < P – zt , and its width
P – 2zt > α∗  tends to zero when α  α∗ . The charac-
teristic interval of angles for which the permeation is
significant, ∆αper = α – α∗ , is determined by the con-
dition

(5.1)

Using the condition (k⊥ , zt) = 0, it is possible to
determine zt as the function of α:

In particular, zt(α∗ ) = P/2. This yields, for ∆zt(α) =
zt(α∗ ) – zt(α) in the limit as ∆α = α – α∗   0,

where

In the vicinity of the point zt = zt(α) in the forbidden
region, the longitudinal component of the wave vec-
tor (2.14) has the following form:

(5.2)

Evaluating the integral in (5.1), we obtain

which yields

Using the experimentally determined values of np, ε⊥ ,
and ε||, we obtain ∆αper ~ 0.2λ/P. For a 100-µm-thick
LC sample, this yields ∆αper ~ 0.07°, while for d =
8 µm, ∆αper ~ 0.9°.

Imkz
e( ) z( ) zd

zt

P/2

∫  & 1.
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zt α( ) q0
1– ε⊥
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2 αsin

2
------------------- 1– 

  .arcsin=

∆zt α( ) µq0
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1/2
,≈

µ 21/2ε||
1/2ε⊥

–1/4εa
–1/2 np

2 ε⊥–( )1/4
.=

kz
e( ) k⊥ z,( ) ik0 εa≈

× 2µ ∆α( )1/2q0 z zt–( ) q0
2 z zt–( )

2
– .

πk0

4q0
--------µ2 εa∆α  & 1,

∆αper
λ

πε||P
------------

ε⊥ εa

np
2 ε⊥–

----------------.∼
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(iii) For α = α∗ , the turning point is at zt(α∗ ) = P/2.
The components of the extraordinary wave vector k(e) at

this point are  = k0 ,  = 0. For the ordinary

wave,  = k⊥  = . According to (2.12), in this case

we have (k⊥ ) = 0 and k(e) = k(o). At the turning point,
n(P/2) || k(o, e) and the modes are degenerate, whereby
the difference between ordinary and extraordinary
waves disappears. This situation may lead to the phe-
nomenon of mode transformation [10] between the
ordinary and extraordinary rays. As a result, in the
vicinity of the turning point at α ≈ α∗ , the energy is
partly transferred from extraordinary to ordinary ray
and the latter propagates in a narrow vicinity of the
plane z = d/2, not escaping from the outer surfaces of
the prisms. The characteristic interval of angles ∆αint in
which the interconversion of two rays may take place is
determined by the condition

Taking into account that, in the vicinity of the turning

point,  ! k⊥ , we can write this condition as

or as

This yields an estimate of ∆αint & λ/P or ∆αint ~ 0.4° for
d = 100 µm and ∆αint ~ 4.5° for d = 8 µm. It should be
emphasized that this estimate only indicates the interval
of angles where the interconversion of extraordinary
into ordinary ray may take place, rather than giving the
absolute values of such transformation. Calculations of
the latter values requires solving the wave equation in
the vicinity of the point α = α∗  with allowance for he
interaction of modes, which is a nontrivial problem.

In conclusion, it should be noted that the observed
phenomenon of refraction of the extraordinary ray has
analogs in the propagation of waves in the media with
smoothly variable optical and acoustical charac-
teristics. These phenomena include tropospheric refrac-
tion [16], the formation of a submerged waveguide
channel in the ocean [11], and some effects accom-
panying the propagation of seismic waves in the Earth
crust.

The investigations of refraction in LC cells are of
independent interest for the optics of LCs. At the same
time the cells of chiral LCs offer a convenient model
system for studying fine effects such as the wave prop-
agation inside a waveguide channel; permeation of

k ⊥
e( ) ε⊥ kz

e( )

k⊥
o( ) k⊥

e( )

kz
o( )

k o( ) k e( )–  & q0 π/P.=

kz
e( )

k⊥
o( ) α*( ) k⊥

e( ) α( )–  & q0,

k0np α*∆αcos k0 np
2 ε⊥– ∆α  & q0.=
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waves from one to another channel, interaction of
modes in the vicinity of caustics, etc.
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Appendix

Calculation of the extinction coefficient for a
twist cell with large pitch. When a light ray propagates
in a fluctuating medium, the energy is partly lost as a
result of scattering. These losses are described by the
extinction coefficient σ, which coincides with the total
scattering cross section representing the intensity of
scattered radiation per unit volume and per unit inci-
dent intensity, integrated over the entire range of scat-
tering angles.

With allowance for the extinction, the intensity I(l)
of a ray traveling over a distance l in a medium is deter-
mined by the formula

(A.1)

where dl is the element of the trajectory length.
In a homogeneous anisotropic medium, there are two

extinction coefficients, σ(o) and σ(e). In the Born approx-
imation, these coefficients are as follows [12, 13, 17]:

(A.2)

where the superscripts (i) and (s) refer to the incident
and scattered waves, respectively, and take two values
corresponding to the (o) and (e) modes in a uniaxial
medium; δ( j) are the angles between vectors e( j) and

e( j),

is the Fourier transform of the correlation function of
the director fluctuations,

I l( ) I 0( ) – σ l( ) ld

0

l

∫ 
 
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16π2
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-----------------------=

× Ω
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n s( )eµ
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δ s( )cos
2

-----------------------Gαµβν ,d∫
s 1 2,=

∑

ε̂

Gαµβν Gαµβν k s( ) k i( )–( )=

Ĝ r r'–( ) δε̂ r( )δ̂ε∗ r'( )〈 〉 ,=
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and  denotes integration over all directions of

the unit vector k(s)/k(s).
In a helical medium with large pitch, formula (A.2)

retains is meaning, but the quantities e(j), n(j), and δ(j),
being the functions of the angle θ(j)(z) between the vec-
tors k(j) and n(z), also depend on z. The correlation

function  in the coordinate representation in the

helical medium can be written as (r – r'; (z + z')/2).
For the light scattering, a significant part of the function

 with respect to the first argument |r – r'| ~ λ, which
is much smaller than P (the characteristic scale with
respect to the argument (z + z')/2. This difference
between the two scales allows us to perform substitu-
tion (z + z')/2 ≈ z ≈ z' in all smoothly varying quantities
and perform the Fourier transform with the wave vector
q = k(s)(z) – k(i)(z) at a fixed z ≈ z', assuming the condi-
tion |k(s)(z) – k(i)(z)| @ q0 to be valid [7, 18].

The Fourier transform of the correlation function of
the director fluctuations

(A.3)

with respect ti the variable r – r' for a cholesteric LC
with large pitch has, in the adiabatic approximation
under the condition q @ q0, a form analogous to that for
the nematic LC [1] with allowance for a smooth preces-
sion of the director along the z axis:

(A.4)

where Kjj (j = 1, 2, 3) are the Frank moduli, and

(see [18]).
This allows a formula of the (A.2) type to be used

with the correlation function (A.4) for calculating the
contribution to the extinction coefficient σ(j)(θ(j)(z)) in a
helical medium due to scattering by not very small
angles.
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Abstract—We present the results of our experiments in which the propagation of whistler waves in a plasma
with a nonstationary magnetic-field perturbation (B = B0 + δB(t), δB/B0 ≤ 5%) was investigated. The parametric
and dispersive phenomena in a variable magnetic field were studied on the unique Krot plasma bench (the
plasma column was 4 m in length and 1.5 m in diameter). A periodic field perturbation is shown to lead to an
amplitude–frequency modulation of the whistler wave and to fragmentation of the signal into separate fre-
quency-modulated wavepackets followed by their compression. The formation and compression of pulses is
attributable to strong whistler group-velocity dispersion near the electron cyclotron frequency (ω ≤ ωH). The
results can be used to interpret the spectral shapes of the signals received from the Earth’s magnetosphere and
ionosphere in the electron and ion whistler frequency ranges. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigating the excitation and propagation of
whistlers in the Earth’s magnetosphere and ionosphere
is of current interest in diagnosing plasma parameters,
studying nonlinear phenomena, and solving problems
related to VLF radio communication [1]. It is well
known that artificial signals can be significantly dis-
torted as they propagate in the near-Earth plasma. Such
phenomena as the amplitude–frequency modulation,
the generation of satellites, and the broadening of the
whistler frequency spectrum are often recorded in
ground-based and satellite experiments [2, 3]. As
regards the natural emissions, modulation can arise
both directly during their generation in the magneto-
sphere and on the path of the signal in the plasma [4].
Nonlinear processes in the Earth’s radiation belts [1]
and the parametric interaction of waves with plasma-
density and magnetic-field variations [3, 5] may be
responsible for the variations in the amplitude–fre-
quency characteristics of whistlers.

When parametric phenomena are analyzed, reso-
nant processes are traditionally considered, implying
that the space and time scales of the variations in
parameters of the medium are related in a certain way
to the frequency and wavenumber of the waves propa-
gating in a plasma [5]. However, in our opinion, the
most typical phenomena are nonresonant in nature [6].
In this case, no special constraints are imposed on the
pattern of variations in parameters; in particular, it can
be aperiodic.

Below, the linear interaction of waves with nonsta-
tionary variations in parameters of the medium, varia-
tions that exist independently of the traveling probe
wave, is called parametric. The nonlinear effects attrib-
1063-7761/04/9905- $26.00 © 20978
utable to the self-action of intense waves also belong to
the broad class of parametric phenomena, but they are
not considered here.

The geometrical-optics method generalized to non-
stationary media [6, 7] can be used to describe waves in
a medium with parameters that are relatively slow func-
tions of the time and space coordinates. This method
allows the frequency transfer equation for a quasi-
monochromatic wave field to be directly written [6]:

(1)

where ω and k are the frequency and the wave vector,
respectively; vg = vg(ω) is the group velocity of the
wave; and n is the refractive index of the medium.
Equation (1) is of fundamental importance in under-
standing how the frequency spectrum of the emission in
nonstationary media is enriched. We see from Eq. (1)
that the modulation of the refractive index is accompa-
nied by the frequency modulation (FM) of the signal.
The group-velocity dispersion causes different ele-
ments of the signal to propagate with different veloci-
ties; hence, the compression of individual parts of the
wave can be observed.

The refractive index for longitudinal whistlers with
frequencies

(ωH is the electron cyclotron frequency, ωp is the elec-

tron plasma frequency, ωLH =  is the lower-

∂ω
∂t
------- vg∇( )ω+ ω

∂n/∂t( )ω k,

∂ nω( )/∂ω
-------------------------,–=

ωLH ω ωH ! ωp< <

ωHΩH
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hybrid resonance frequency, and ΩH is the ion cyclotron
frequency) is

(2)

In previous papers devoted to nonresonant phenom-
ena in a magnetoactive plasma [8, 9], only the electron
density was considered as a nonstationary parameter.
However, it follows from expression (2) that the propa-
gation characteristics of whistler waves are determined
to a large extent by the magnetic field strength. Nonsta-
tionary disturbances of the Earth’s magnetic field are
recorded often, particularly during enhanced solar
activity. Both periodic (associated with the excitation of
magnetohydrodynamic modes) disturbances and aperi-
odic variations of the geomagnetic field are observed
when solar-wind plasma streams interact with the
Earth’s magnetosphere. The magnetic field can also be
disturbed by intense low-frequency whistlers; in this
case, the field modulation is not accompanied by elec-
tron-density variations [10].

Of particular interest are ion whistlers, waves with
left-hand polarization and with frequencies close to the
ion cyclotron frequency: ω ≤ ΩH [11, 12]. The similar-
ity of the electron and ion whistler dispersions near the
cyclotron frequencies (nion ≈ (ΩH – ω)–1/2) allows the
results obtained in the electron whistler frequency
range to be used to interpret phenomena in the ion
whistler frequency range.

In this paper, we present the results of our experi-
ments on the propagation of whistlers in a plasma with
a weakly periodic magnetic-field modulation. The
experiments were carried out on a Krot bench that was
specially designed to simulate phenomena in space
plasma.

2. DESCRIPTION OF THE EXPERIMENT

The experimental facility is a vacuum chamber 10 m
in length and 3 m in diameter (Fig. 1a). A mirror-con-
figuration (with a mirror ratio of R = 2.4, Fig. 1b) mag-
netic field is generated by a solenoid placed inside the
vacuum chamber. Under experimental conditions, the
magnetic field strength in the central cross section of
the solenoid was B0 = 65 G. A cylindrical plasma col-
umn (4 m in length, 1.5 m in diameter) that is not in
contact with the metal walls of the chamber is produced
by a pulsed inductive discharge (fdis = 5 MHz, Pgen =
250 kW, τpulse = 1 ms) in an argon atmosphere at a pres-
sure of p = 7 × 10–4 Torr. The maximum plasma density
at the discharge time reaches ~1013 cm–3, the electron
temperature is Te ≈ 10 eV, and the ion temperature is
Ti ≤ 0.5 eV. The plasma decay is governed by the ambi-
polar diffusion of electrons along the magnetic field.

n
ωp

ω ωH ω–( )
------------------------------.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The experiments were carried out in a decaying
plasma after the plasma-producing generators were
turned off when the electron density reached ne =
1012 cm–3. To decrease the divergence of whistler waves
in a plasma, a duct with a reduced electron density
extended along the axis of the system was produced;
the whistlers excited by the antennas in this duct were
kept in ducting mode [13]. An additional pulse gene-
rator (τpulse = 1 ms) operated at frequencies of F =
1−3 MHz was used to produce the duct. The generator
was loaded onto a loop antenna (an inductor D = 20 cm
in diameter) located in the center of the chamber. The
power of the generator was about 10 kW; the variable
current induced in the antenna by the generator reached
Imax = 30 A. The duct was formed through the local
heating of electrons in the near field of the inductor and
the subsequent thermodiffusion-induced plasma redis-
tribution [14]. The duct formation is governed by uni-
polar diffusion: nonmagnetized ions and electrons dif-
fuse, respectively, across and along the magnetic field,
while the quasi-neutrality is ensured by the closure of
the current through the background plasma. A quasi-
stationary plasma density distribution was established
in a time of ~500 µs; the length of the duct L reached
~3 m, and its diameter was determined by the diameter
of the antenna and the electron heat-conduction length
across the magnetic field:

(ρe is the Larmor electron radius, and δ = 2m/M, where
m and M are the electron and ion masses, respectively).

Λ⊥ ρe/δ
1/2 20 cm≈ ≈

B0 = 65 G plasma
ne = 10 11–1012 cm

1234

5 67

(a)

F = 1–3 MHz, I~ = 10–15 A

(b)

–200 –100 0 100 200
z, cm

B0

2.4B0

B

8

duct

Fig. 1. (a) A scheme of the Krot experimental facility:
1—emitting antenna; 2, 3, and 4—receiving antennas;
5—double probe; 6—microwave probe; 7—pulse genera-
tor (F = 1–3 MHz, I = 10–15 A); 8—inductor. (b) The
magnetic-field distribution along the axis of the vacuum
chamber.
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The radial plasma density and temperature distributions
in a stationary duct 900 µs after the onset of a heating
pulse (F = 1.2 MHz) are shown in Fig. 2. The plasma
density was measured by a tiny probe with a micro-
wave cavity produced on a segment of a double-wire
line [15]; a double probe was used to measure the elec-
tron temperature. The plasma density on the axis of the
duct was ne = 1011 cm–3, and the electron temperature
was Te = 1.5 eV.

As the source of a nonstationary magnetic-field per-
turbation, we used the same inductor as that used to
produce the duct. After a quasi-stationary density distri-
bution was established, the external magnetic-field per-
turbation was determined by the variable near field of
the antenna (F = 1–3 MHz). The structure of the low-
frequency (LF) field near the inductor (the axial mag-
netic-field component) in the formed density duct
matched the field distribution of a current loop in a vac-
uum. The amplitude of the variable magnetic field in

(a)

–50 –40 0 10 50

R, cm

6

8
ne , 1011 cm–3

4

2

0
–30 –20 –10 20 30 40

(b)

–50 –40 0 10 50

R, cm

1.6

1.8
Te, eV

1.4

1.2

1.0
–30 –20 –10 20 30 40

Fig. 2. (a) The transverse plasma density distribution 900 µs
after the onset of a LF pulse (F = 1.2 MHz). (b) The trans-
verse plasma electron temperature distribution at the same
time.

HF pulse
f0 = 150–160 MHz

F = 1–3 MHz
LF pulse

Ionization pulse

Fig. 3. A time diagram for the operation of the experimental
facility.

10 2 3 4 t, ms
JOURNAL OF EXPERIMENTAL 
the plane of the inductor reached δBmax = 3 G, which
corresponds to a relative perturbation δBmax/B0 ≈ 5%.
At distances z > D from the inductor, LF whistler waves
with

were excited in the plasma. It is easy to show that the
relative magnetic-field perturbation in waves of this
type is much larger than the plasma density perturba-
tion [10]:

Under experimental conditions, ωH < 0.1ωp , δn and δB
are the plasma density perturbation and the magnetic-
field perturbation of a LF whistler wave.

A time diagram for the operation of the experimen-
tal facility is shown in Fig. 3. The propagation of high-
frequency (HF) whistlers in a plasma with a nonstation-
ary magnetic field was investigated at the frequencies
of the probe wave f0 = 150–160 MHz. In this case, the
condition fH/2 < f0 ≤ fH (fH = ωH/2π) was satisfied, and
the quasi-longitudinal whistlers with wavelengths λ =
2π/k ≈ 4–5 cm were confined in a duct with a reduced
plasma density [13]. The probe wave was emitted into
the plasma in the form of a pulse τ = 0.1–10 µs in
duration.

The chosen whistler frequencies are close to the
cyclotron frequency, f0 ≈ 0.9fH, and the whistler group-
velocity dispersion is fairly strong. In this frequency
range, the whistlers are also called cyclotron waves.
Their propagation characteristics are determined to a
large extent by the collisional damping and the kinetic
collisionless absorption by resonant particles — plasma
electrons.

HF waves were emitted and received by shielded
single-turn magnetic loop antennas 1–2 cm in diameter
placed in different cross sections of the facility. The
antennas were coated with a dielectric layer to reduce
the plasma influence on their impedance characteris-
tics. In general, the antennas in the experiments were
placed on the axis of the plasma duct; the plane of the
antennas was oriented along the external magnetic field
lines. The emitting antenna was located near the induc-
tor, at a distance of ∆z = 5 cm from its plane. The loops
installed on the opposite side of the inductor at different
distances from the emitting antenna were used as the
receiving antennas (In Fig. 1a, 1 is the emitting
antenna, and 2, 3, and 4 are the receiving antennas).

k ⊥
ωp

c
------, k || 2

ωp

c
------ ω

ωH

-------≈≈

δn
n0
------

ωH

ωp

------- 
 

2δB
B0
------  ! 

δB
B0
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The HF signals passed through the plasma were
recorded by a digital oscillograph; their spectral analy-
sis was performed by using a numerical Fourier trans-
form.

3. EXPERIMENTAL RESULTS

The main experimental results are presented in
Fig. 4. When passing through the region with a per-
turbed field, a continuous HF signal (f0 = 160 MHz)
breaks up into separate wavepackets that follow one
another with the field modulation period (F =
1.2 MHz). The amplitude modulation depth of the sig-
nal increases as the receiving antenna recedes from the
emitting antenna. The compression of HF pulses is
observed—their duration decreases as they propagate
in the plasma. A spectral analysis shows that the
received signal is frequency-modulated; the relative
frequency deviation ∆f/f does not exceed 1–3%. The
filling frequency decreases from the beginning to the
end of each pulse; the slope of the time–frequency rela-
tion increases with increasing distance between the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
receiving and emitting antennas (Figs. 4d–4f). The
minimum duration to which the frequency-modulated
(FM) signal is compressed is τmin ≈ ∆f –1 ≈ 100 ns
(Fig. 4c), where ∆f ≈ 10 MHz is the width of the fre-
quency spectrum for the FM whistler wave (Figs. 4d–4f).

The cyclotron absorption of whistler waves is
clearly seen (Fig. 5a). At large distances from the emit-
ting antenna (∆z = 260 cm), the signal spectrum is
shifted as a whole downward in frequency. The
observed pattern is the result of nonuniform damping of
various elements of the FM-signal spectrum, which
must have been symmetric about the carrier frequency
of the probe wave, ∆f ≈ 159 MHz, in the absence of
absorption.

The signal frequency modulation is relatively small
when a HF wave is excited and received outside the
region of an intense magnetic-field perturbation. Fig-
ure 6 presents the results obtained at a distance of L =
70 cm from the inductor, the distance between the emit-
ting and receiving antennas placed on the duct axis was
∆z ≈ 15 cm. The amplitude of the magnetic-field pertur-
0 0.5 1.0 1.5 2.0 2.5

(a)

(b)

(c)

z = 25 cm

z = 50 cm

z = 130 cm

t, µs

Fig. 4. Oscillograms (a–c) and spectrograms (d–f) of the HF signals (f0 = 160 MHz) received from the plasma at various distances
from the emitting antenna in the presence of a magnetic-field perturbation at F = 1.2 MHz (δB/B0 ≈ 3%).
SICS      Vol. 99      No. 5      2004



982 GUSHCHIN et al.
2.52.01.51.00.50

160

150

170
f, MHz

170

160

150

170

160

150

(d)

(e)

(f)

t, µs

Fig. 4. (Contd.)
bation by LF whistler waves (F = 1.2 MHz) is smaller
by almost a factor of 10 than the field perturbation in
the plane of the inductor; the full width of the modu-
lated frequency spectrum is ∆f < 1 MHz (Fig. 6b).
Despite the low frequency modulation and the small
wave path, the group-velocity dispersion still causes the
signal envelope to be distorted appreciably (Fig. 6a).

The wave frequency transformation was investi-
gated in experiments with short pulses (τ ≈ 150 ns, f0 =
160 MHz) that were fed to the emitting antenna with
different time delays. The delays were chosen in such a
way that a HF pulse was emitted into the plasma at dif-
ferent phases of the periodic magnetic-field perturba-
tion (F = 3 MHz, δBmax/B0 ~ 5%). Depending of the
phase of the variable field, signals with “redshifted”
and “blueshifted” frequencies were recorded (Fig. 7).
The frequency shift was determined by the time at
which the wave passed through the plasma: at the max-
imum of the magnetic field, when the amplitude of the
periodic perturbation was at a maximum and the vari-
able magnetic field was aligned with the external field,
JOURNAL OF EXPERIMENTAL 
0 0.5 1.0 1.5 2.0 2.5
t, µs

140 145 150 155 160 165 170
f, MHz

(a)

(b)

Fig. 5. A spectrum (a) and oscillogram (b) of the HF signal
(f0 = 159 MHz) received from the plasma in the presence of
a LF magnetic-field perturbation at F = 3 MHz, δB/B0 ≈ 5%.
The distance between the receiving and emitting antennas is
∆z ≈ 260 cm; both antennas were placed on the axis of the
plasma duct.
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(b)

(a)

0 0.5 1.0 1.5 2.0 2.5

170
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t, µs

Fig. 6. An oscillogram and (b) spectrogram of the HF whistler (f0 = 160 MHz) excited and received from the plasma at a distance
z ≈ 70 cm from the LF antenna (F = 1.2 MHz) in the region of a weak external magnetic-field perturbation (δB/B0 < 0.5%).
and at its minimum, when the directions of the external
and loop fields were opposite.

If the antennas are separated by a large distance
(∆z  >  1 m) and are placed off the duct axis (∆r =
5−10 cm), then signals with a complex amplitude enve-
lope and an intricate spectral shape can be observed
(Fig. 8). Such a form of the signals can be explained by
the complex structure of the whistler modes of the
broad (Dduct > 2π/k) plasma duct. As the antenna placed
off the duct axis emits whistlers, not only axisymmetric
modes of the plasma duct, but also asymmetric modes
with nonzero azimuthal wave numbers are probably
effectively excited. The HF field recorded by the
antenna at a chosen point in space is the result of inter-
ference between several modes of the plasma duct with
different group velocities.

4. DISCUSSION

The experimental results can be explained by two
effects. The first effect is the nonresonant parametric
frequency modulation of whistlers in a plasma with a
variable refractive index, whose nonstationary behavior
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is related to the harmonic modulation of the magnetic
field.

The second effect is the compression of a FM whis-
tler wave attributable to strong whistler group-velocity
dispersion at frequencies close to the electron cyclotron
frequency. The expression for the group velocity of lon-
gitudinal whistlers is

(3)

Since each point of the frequency envelope of a FM sig-
nal moves with its own group velocity, some parts of the
wave are extended, while other parts are compressed.
Under certain conditions, the wave energy can be local-
ized on short time intervals where the field amplitude can
be much larger than the initial amplitude [6]. The com-
pression of FM pulses in a dispersive medium is used,
in particular, to produce intense microwave pulses [16].

The propagation of a whistler wave in a plasma with
a nonuniform and nonstationary magnetic field is rather
difficult to analyze theoretically when the dispersion is
taken into account. For this reason, we propose using a

v g 2c
ω1/2ωH

1/2

ωp

------------------- ωH ω–( )3/2.=
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simplified geometrical-optics model for theoretical
estimations.

To estimate the frequency transformation effect, we
disregard the whistler group-velocity dispersion. Let us
assume that a longitudinal whistler with an initial fre-
quency ω0 propagates in a homogeneous plasma (along
the z axis) with a constant (over the path) external mag-
netic field and represent the variable field of the induc-
tor as a spatially uniform perturbation localized on a
segment of the path with length L. The frequency trans-
fer equation (1) for whistlers takes the form

(4)

Let us consider the harmonic magnetic-field modula-
tion with frequency Ω:

(5)

The solution of Eq. (4) using (5) shows that the signal

∂ω
∂t
------- v g ω0( )∂ω

∂z
-------+

ω
ωH

-------
∂ωH

∂t
----------.=

B̃
0, z 0 L,[ ] ,∉
δB Ωt, z 0 L,[ ] .∈sin




=

B~(t)

200 300 500
t, ns

0 100 400

∆ϕ

1

160 180

f, MHz

140

2

3

Sf, arb. units

Fig. 7. Transformation of the frequency spectrum of a short
pulse (f0 = 160 MHz, τ ≈ 150 ns) emitted into the plasma at
different phases, ∆ϕ = π/2 (1), π (2), and 0 (3), of the LF
(F = 1.2 MHz) magnetic-field perturbation.
JOURNAL OF EXPERIMENTAL
frequency is modulated harmonically:

The maximum frequency shift

is reached at the points that are at distance z1 from the
point at which the wave enters the variable magnetic
field:

.

Under experimental conditions (ω0/2π = 160 MHz,
Ω/2π = 1.2 MHz, v g = 1.5 × 108 cm s–1), the maximum
frequency shift corresponding to N = 1 occurs at z1 =
30 cm; i.e., a strong deviation can be observed as the
wave traverses a path with a length of L ~ z1. The length
scale of the near field of the antenna, a segment with an
intense quasi-static magnetic-field perturbation, is ∆z ~
D = 20 cm. Thus, z1 ~ D and the frequency modulation
index virtually reaches its maximum after the whistler
has traversed the region of the inductor, in agreement
with the experimental data.

To estimate the compression of FM whistler pulses,
we assume the signal frequency modulation to be fixed
and at a maximum:

Taking into account the frequency dependence of the
whistler group velocity (3), we can determine the dis-
tance between the point at which a FM signal enters a
dispersive medium and the compression point:

(6)

Since the condition

is satisfied for whistlers with frequencies close to the
cyclotron frequency, the elements of the FM signal with

(t0 is the time at which the segment of the wavepacket
under consideration enters the dispersive medium) will

ω t( ) ω0 δω Ωt.sin+=

δω ω0
δB
B0
------=

z1

πv g

2Ω
---------N , N 1 2 …, ,= =

ω t( ) ω0 1
δB
B0
------ Ωtsin+ 

  .=

z2

v g
2

∂v g

∂ω
--------- ∂ω

∂t
-------

max

------------------------------.=

∂v g

∂ω
--------- 0<

∂ω
∂t
-------

t t0=

0<
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e of a magnetic-field perturbation at F = 1.2 MHz (δB/B0 ≈
 of the plasma duct, ∆r ≈ 5–10 cm.
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Fig. 8. Sample oscillograms and spectrograms of the HF signals (f0 = 155 MHz) received from plasma in the presenc
3%). The distance between the receiving and emitting antennas is ∆z ≈ 150 cm; both antennas were placed off the axis
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be compressed. The estimate based on formula (6) indi-
cates that z2 ≈ 60 cm at B0 = 65 G. Note that the field in
our calculations was assumed to be uniform throughout
the path of the wave. Under experimental conditions,
however, the length of the segment with a uniform mag-
netic field at the center of the trap is only about 40 cm.
We see from Fig. 4a that the signal is separated into
individual packets as the wave traverses the region of
the near field of the inductor. Thus, the estimate is valid
on this segment of the path. Subsequently, however, the
wavepackets are compressed more slowly, because the
field increases in strength toward the magnetic mirror
and, hence, the whistler group slowdown and frequency
dispersion decrease.

The geometrical-optics approximation used in our
estimations breaks down near the compression point.
The minimum duration to which a pulse is compressed
is determined by the full width of the FM signal fre-
quency spectrum. As was noted above, the cyclotron
damping of high-frequency spectral components
causes the spectrum to narrow and prevents the effec-
tive compression of whistler waves. In addition, no sig-
nificant increase in the pulse amplitude compared to the
initial signal is observed due to the damping.

5. CONCLUSIONS

Our experimental results show that a nonstationary
magnetic-field perturbation produces a frequency mod-
ulation of the whistler wave that propagates in a
plasma. The strong whistler group-velocity dispersion
at frequencies ω ≤ ωH is responsible for the FM signal
deformation; the fragmentation of a HF signal into sep-
arate wavepackets with FM filling is observed. The fact
that the compression is caused by the magnetic-field
modulation at an unperturbed electron density is of fun-
damental importance.

The peculiarities of the propagation of whistlers in a
plasma with a nonstationary magnetic field can be used
for diagnostic purposes. In particular, the amplitude of
the magnetic-field variations (δω/ω0 ~ δB/B0) can be
determined from the frequency modulation of the sig-
nal that passes through a perturbed region.

In conclusion, note that the oscillograms and spec-
trograms of modulated whistlers resemble the record-
ings of the signals received from the near-Earth plasma
in the ELF frequency range—structured Pc-1,2 geo-
magnetic pulsations or “pearls” [11]. Within the frame-
work of existing models, it is assumed that the ampli-
tude and frequency modulations of such signals arise
directly in the generation process attributable to the
growth of ion cyclotron instability. However, a clear
correlation between the FM pearl repetition period and
the LF geomagnetic-field modulation period is com-
monly observed when Pc-1,2 magnetic pulsations and
lower-frequency Pc-3,4 pulsations are recorded simul-
JOURNAL OF EXPERIMENTAL
taneously [12]. The similarity of the signals and full-
scale experiments suggest that the pearls are formed
through the parametric modulation of ion whistlers by
LF pulsations of the Earth’s magnetic field and their
subsequent dispersive compression. In this case, the
received signal contains information about the presence
of a LF perturbation that is not recorded on the ground,
and the Pc-3,4 pulsation amplitude can be diagnosed by
the pearl frequency modulation.
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Abstract—Helicity generation conditions are derived for helical flows of Joukowski type with allowance for
effects due to viscosity, buoyancy, temperature nonuniformity, and solid-body rotation. The upper and lower
limits are determined for the rotation-frequency interval in which helicity can be generated by viscous forces.
These conditions correspond to the regime of an isolated tornado-like vortex. An exact solution to the time-inde-
pendent equations of motion for inviscid incompressible flow is obtained. The solution describes a generalized
Kelvin–Helmholtz vortex having the form of a localized cylindrical vortex with nontrivial stable topological
vortex-core structure determined by a finite value of helicity. For linear traveling inertia waves, which must have
uniform helical structure, a general representation is found that characterizes helical structures of different ori-
gin. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the vorticity generated in
flows over obstacles can be transferred into the back-
ground stream. This process is characterized by vor-
ticity flux [1], i.e., the average direct product of veloc-
ity u and vorticity w = curlu. The trace of the tensor, or
the helicity defined as H = w · u/2, plays an important
role in turbulence theory [2, 3] and in magnetic dynamo
theory [4, 5].

Among the diversity of observed atmospheric vorti-
ces, relatively high helicity values (up to 10 m/s2) are
characteristic of tornadoes and tornado-like vortices,
such as dust devils and waterspouts [6], which have
essentially three-dimensional structure. Moist-convec-
tive tornadic vortices typically have a relatively coher-
ent uniformly helical flow structure despite the huge
Reynolds numbers corresponding to wind velocities up
to 500 km/h inside tornadoes (see [7] and references
therein). Indeed, by the Helmholtz vorticity theorem,
flows of Gromeka–Beltrami type (with |w × u| = 01 or
Joukowski type (with [(w + 2W) × u] = 0, where W is
solid-body rotation frequency) are characterized by the
lowest rates of energy dissipation per unit mass corre-
sponding to a given kinetic energy [8–11]. However,
these flows are described by exact solutions to the
Helmholtz vorticity equation [8, 9] and are topologi-
cally different from other time-independent flow
regimes [12, 13].

1 This relation is satisfied if w and u are collinear, i.e., w = ku
where k is a function of coordinates in the general case. However,
k = const throughout this study, which corresponds to uniform
helical flow.
1063-7761/04/9905- $26.00 © 20987
Helical vortex structures similar to uniform helical
flows are also observed experimentally in laboratory
models of tornadic vortices at a sufficiently large dis-
tance from the rotating bottom [14].

In this paper, we apply a helicity balance equation to
Joukowski-type helical flows to explore the possibility
of helicity generation in the presence of buoyancy, vis-
cous dissipation, and solid-body rotation with fre-
quency W(t).

The paper is organized as follows. In Section 2, a
general balance equation for the integral helicity

is derived and used as a basis for a qualitative analysis
of flow regimes that admit production of  via the
spin-down effect and latent heat release (cooling) in the
presence of cyclonic or anticyclonic vorticity perturba-
tions, as well as by horizontal components of vorticity
perturbations over a sloped underlying surface in the
presence of viscous dissipation.

In Section 3, a general uniform helical-vortex solu-
tion to the linear equations of fluid dynamics is
obtained. In particular, it describes traveling inertia
waves in a fluid rotating as a whole. Furthermore, an
exact time-independent solution to the nonlinear equa-
tions of fluid dynamics is obtained. It has the form of a
cylindrical helical vortex of radius R, which reduces to
a generalization of the Helmholtz vortex line as R 
0 and is structurally stable (as are tornadic vortices)
since helicity is a topological invariant. The interval of
Ω in which the vortex can have a nonmonotonically
varying tangential velocity uϕ is determined, which

H d3xH∫=

H
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implies that a contaminant can concentrate in the region
of minimal uϕ .

In Section 4, it is shown that local helicity H can be
generated by viscous dissipation in flow regimes with
supercritical Ω . This possibility is consistent with
observations of tornado-like vortices. Condition (17) is
obtained for generation of integral helicity in a
Joukowski-type flow by the combined effects of hori-
zontal temperature nonuniformity and solid-body rota-
tion with Ωz ≠ 0. Moreover, the existence of two quali-
tatively different regimes of helicity evolution is dem-
onstrated for a Joukowski-type flow with horizontal
temperature nonuniformity and W ≠ 0. One of these
regimes (which corresponds to H  0 and t  ∞)
can be exactly described by a well-known solution for
nonuniform solid-body rotation of a fluid ellipsoid [15].
The other regime is a steady flow of new type with a
finite H in the limit of t  ∞.

2. HELICITY BALANCE EQUATION

Consider the equations of viscous incompressible
flow written in the Boussinesq approximation in a coor-
dinate system rotating with frequency W(t) (see
Eq. (A.1) in the Appendix). This noninertial coordinate
system obviously corresponds to the initial stage of tor-
nado formation, when tornado-scale cyclone rotates as
a whole beneath a source cumulonimbus cloud. The
localized helical perturbations analyzed in this study
develop in a solid-body rotational flow.

In the Appendix (see also [16]), the following bal-
ance equation is obtained for the integral helicity

(V is the domain of vortex flow field):

(1)

where the overbar denotes an integral over V;  =
dW/dt; α is the angle between the gravitational acceler-
ation g and the z axis (normal to the Earth surface); the
y and x axes are directed northward and eastward,
respectively; T is a temperature perturbation; β is the
thermal expansion coefficient; ρ = ρ0(1 – βT) is the
fluid density (ρ0 = const); and ν is kinematic viscosity.

Equation (1) with α = 0 was used in [16] to find a
scaling parameter that justifies laboratory-scale model-

ing of atmospheric tornado-like vortices. When  = 0,
Eq. (1) yields a well-known criterion for invariance of

 in inviscid homogeneous flow, because all terms on
the right-hand side of (1) vanish in this case. However,

if  ≠ 0 and  ·  < 0, then helicity can be generated

H d3xH

V

∫=

dH
dt

-------- 2 Ẇ u⋅( )–=

+ βg Tωz α Tωy αsin+cos( ) ν∆u w,⋅+

Ẇ

Ẇ

H

Ẇ Ẇ u
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by the spin-down effect. In particular, in the case of

 < 0 (decelerating solid-body rotation), the value of

| | can be determined by bottom friction linearly scal-
ing with velocity (see Appendix), in which case solid-
body rotation is preserved. However, solid-body rota-

tion is also preserved when  ≠ 0 in the (nondissipa-
tive) exact solution to the Helmholtz vorticity equation
describing the “fluid” elliptic gyroscope [15] (see also
the Conclusions section).

Generation of  is possible when the temperature
and vorticity variations are such that the second and
third terms on the right-hand side of (1) remain posi-
tive. For example, when heat is released (T > 0) as
moisture condenses in a cyclonically rotating updraft
(ωz > 0, counterclockwise rotation in the northern
hemisphere), the second term of the right-hand side
of (1) is responsible for generation. Indeed, observa-
tions suggest that more than 90% of tornadoes rotate
counterclockwise. Alternatively, Eq. (1) implies that 
can be generated in anticyclonically rotating down-
drafts (ωz < 0), in which the air mass cools down
(T < 0).

Note that an underlying-surface slope (α ≠ 0) may
also be responsible for  generation when ωz = 0 and

 > 0, as in convective rolls (horizontally oriented
vortices).

To complete a qualitative analysis of helicity bal-
ance equation (1), note that the sign of the viscous term
in (1) may change. Indeed, it was shown in [17] that

/dt|t = 0 > 0 under certain conditions in an appropri-
ate turbulent flow regime because of this dissipative
term. The possibility of similar evolution of local helic-
ity in a Joukowski-type flow is examined below. How-
ever, certain properties of uniform helical vortex struc-
tures should be specified.

3. UNIFORM HELICAL VORTEX 
STRUCTURES

Even though Gromeka–Beltrami and Joukowski-
type vortex flows have been identified under natural and
experimental conditions, they are seldom mentioned in
studies in classical and geophysical fluid dynamics,
probably, because of low likelihood of their occurrence
(see [21, p. 210]). Note, however, that even inertia
waves in rotating fluids can be referred to this type of
structures. This fact was noted in [4], but not even men-
tioned in [18–20], whereas it can be used to derive a
more general representation for helical inertia waves
(see below), which can be helpful in analyzing analo-
gous helical flow structures found in other areas of
physics.

Ẇ

Ẇ

Ẇ

H

H

H

H

ωyT

dH
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3.1. Consider the linear equation for inertia waves
written in a coordinate system tied to an unbounded
rotating homogeneous fluid (see [18, 20] and Eq. (A.2)),

(2)

where W = (0, 0, Ωz) for simplicity. In [18], the solution
to (2) corresponding to ν = 0 was represented as a trav-
eling plane wave:

(3)

where

When ν ≠ 0, the solution is readily obtained by multi-
plying (3) by the factor exp(–νk2t) [20].

It can easily be verified (see also [4]) that waves
described by (3) satisfy the relation

which is characteristic of Gromeka–Beltrami flows
since (3) entails

Here, minus corresponds to negative helicity,

i.e., right-handed rotation of the velocity vector [4].
Vice versa, positive helicity is associated with left-
handed rotation of a velocity vector of constant magni-
tude. It was also noted in [4] that motion of this kind is
of interest in magnetic dynamo theory. If ω = 0, then (3)
is an exact solution to the equations describing steady
inviscid incompressible flow [8].

The solution to Eq. (2) satisfying the condition

can be represented in a more general form:

(4)

where  is an arbitrary function. In particular, if

∂
∂t
----- curlu( ) 2Ωz

∂u
∂z
------ ν∆ curlu( ), divu+ 0,= =

u ReA i k x⋅ ωt–( )[ ] , k A⋅exp 0,= =

ω 2Ωzkz/k,=

k k , A a ib, a k⋅+ b k⋅ a b⋅ 0,= = = = =

a2 b2.=

curlu ku,±=

b
1
k
--- k a×[ ] , a± 1

k
--- k b×[ ] .+−= =

H ku2/2,–=

curlu ku±=

u νk2t–( )ReAf z̃ x y, ,( ), z̃exp z
2Ωzt

k
-----------,±= =

f f̃ ξ( ) k
Ay

----- Axz̃ Azx–( )– ,exp=

ξ y
Azz̃ Axx+

Ay

-----------------------,+=

f̃

f i kzz̃ kxx kyy+ +( )±[ ]exp=
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then solution (4) reduces to (3). Note also that the argu-

ment of  at t = 0 equals that of an arbitrary function of
the form

which was used in [22, 23] to describe steady helical
vortex structures in a ferromagnet, because it is
assumed that

Thus, solution (4) provides a generalized represen-
tation of inertia waves, which can be interpreted as
Gromeka–Beltrami flows. Moreover, expression (4)
also describes the general form of helical structures
arising in various natural systems and phenomena.
Note also that an arbitrary sign of helicity implies that
the corresponding dispersion equation should be writ-
ten as follows (in contrast to [18] and (3)):

where plus is associated with negative helicity. A simi-
lar representation of ω in (3) was given in [20], but
without allowing for the correlation between the signs
of ω and helicity (see also [4]).

3.2. The representations of linear uniform helical
waves written out above are amenable to the superposi-
tion principle. This is not true with regard to exact solu-
tions to the nonlinear Helmholtz equation that describe
Joukowski-type flows, with

The exact solution to the time-dependent equations
of inviscid incompressible fluid dynamics that
describes a Joukowski-type flow can be represented as

(5)

(6)

Solutions satisfying (5) and (6) with W = 0 and j =
xφ(x) were considered in [24] for a localized spherical
vortex that is structurally stable (unlike Hill’s spherical
vortex [21]) since it is characterized by a finite helicity
and a corresponding topological invariant. It was noted
in [24] that helical vortex flows of this kind can be of
interest with regard to magnetic plasma confinement.
The flow fields generated by these spherical helical vor-
tices outside their localization domains are identical to
those of point vortex dipoles [25]. Therefore, they can
be used to regularize the vortex-particle methods
employed in 3D numerical simulations of vortex burst-
ing in turbulent boundary layers. This can be done by
using the fact (proved in [25]) that there exists an exact
weak solution to the equations of inviscid incompress-
ible fluid dynamics represented as a finite-dimensional
Hamiltonian dynamical system describing three-

f̃

Ω0 k1 x iy+( ) k2 x iy–( ) k3z+ +( ),

4k1k2 k3
2+ 0.=

ω
2kzΩz

k
--------------,±=

curlu 2Ω+ ku, W 0.≠=

u 2Ω
k

------- ũ, curlũ+ curlu kũ,= = =

ũ curlcurlj kcurlj, ∆j k2j++ 0.= =
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dimensional point vortex dipoles. (They can be inter-
preted as infinitesimal vortex rings or generalized Hill
vortices with nonzero helicity.)

Here, an analogous exact solution to the fluid-
dynamics equations is obtained for a cylindrically sym-
metric vortex of radius R characterized by nontrivial
topologically invariant structure associated with non-
zero value of H. As R  0, the vortex reduces to a
generalized vortex line with H ≠ 0 [21], whereas the
classical Helmholtz vortex line is obtained when H = 0.
Cylindrical helical vortex solutions are more attractive
as models of tornado-like vortices having stable com-
plicated vortex cores, as compared to the Helmholtz
vortex line [26].

In the axially symmetric case, expression (5) is the
following exact time-independent solution to the Helm-
holtz equation for a vortex localized in a cylindrical
domain of radius R:

(7)

(8)

where J0 and J1 are the first- and second-order Bessel
functions, and conditions (8) ensure continuous match-
ing of the velocity fields inside and outside the cylinder.
The solution defined by (7) and (8) is obtained by anal-
ogy with the analysis performed in [24] to determine
the structure of a spherical helical vortex. Unlike the
vortex considered in [24], the vortex described by (7) is
at rest in the laboratory frame and does not induce any
velocity field analogous to that associated with a point
Helmholtz vortex or a vortex filament. Outside the
domain of vorticity localization (at r > R), uϕ is identi-
cal to the velocity field induced such a point vortex
characterized by the circulation χ determined by (8).
This relation holds in the laboratory frame in which the
cylindrical helical vortex executes a solid-body rotation
about its symmetry axis with frequency Ωz . Note that a
point Helmholtz vortex can be interpreted as the limit
form vortex filament obtained as R  0 by assuming
zero axial velocity v z0 and uniform vorticity distribu-
tion, i.e.,

,

uz r( )
2Ωz

k
--------- BJ0 kr( )+ Θ R r–( ) v 0zΘ r R–( ),+=

ũϕ r( ) BJ1 kr( )Θ R r–( ) χ
r
--- Ωzr– 

  Θ r R–( ),+=

ũr r( ) 0, Θ p( )
1, p 0,≥
0, p 0,<




= =

2Ωz

k
--------- BJ0 kR( )+ v z0,=

BJ1 kR( ) χ
R
--- ΩzR,–=

ωz 2Ωz
χ̃

πR2
---------= =
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inside the vortex core of radius R, with  = const and
ωz  ∞. This vortex is characterized by zero helicity.
The solution presented above has a nonzero helicity,
and the corresponding vorticity distribution inside the
vortex core is not uniform, because the vorticity com-
ponents associated with u defined by (7) are

Let us consider some characteristics of solution (7)
under various particular conditions (8).

Conditions (8) with k = γ1n/R (where γ1n are the zeros
of J1) imply that the circulation is

i.e., differing only by a factor of 2π from  for the limit
form of the vortex filament obtained as R  0 and
Ωz  ∞ and has the circulation of the point Helm-
holtz vortex. In this case, the coefficient B has the spe-
cific form

which follows from (8). The corresponding cylindrical
helical vortex, inducing the vortex-filament velocity
field at r > R, has a stable topological structure deter-
mined by the helicity value. When n > 1, the flow field
inside the vortex core (at r < R) can have a very compli-
cated structure involving both updrafts and downdrafts
with opposite circulation signs analogous to the
updrafts and downdrafts observed in tornadic and dust-
devil flow structures [26].

Note that the solution obtained from (7) at r ≤ R for
the flow in a bounded rotating vessel of radius R was
used, for example, in [27] to describe the bottom drain
flow out of the vessel.

On the other hand, there exists a solution defined at
r ≥ 0 for arbitrary k that is identical to (7) at r ≤ R for
Ω = 0 [8]. However, vorticity is not localized at r ≤ R in
this solution, as it is in the radially nonuniform cylindri-
cal generalization of the classical Helmholtz vortex
[21] described by (7) and (8). In contrast to [8, 27], the
solutions defined by (7) and (8) are obtained by match-
ing a vortex flow localized at r ≤ R with a potential flow
at r > R. Therefore, Eqs. (7) and (8) define a new exact
solution describing a localized cylindrical vortex hav-
ing a nontrivial topological structure whose stability, as
in the case of spherical vortex [24], is due to the exist-
ence of a corresponding topological invariant, i.e.,
helicity [2, 3].

When kR ≠ γ1n and B ≠ 0 in (8), the sign of the cir-
culation χ determining the velocity field at r > R asso-
ciated with a cylindrical helical vortex may differ from
that of Ωz (in contrast to the case of kR = γ1n), because

χ̃

ωz 2Ωz+ kuz, ωϕ kũϕ , ωr 0.= = =

χ ΩzR
2,=

χ̃

B Bn

v z0 2ΩzR/γ1n–
J0 γ1n( )

-------------------------------------,= =

χ
R2J2 kR( )

J0 kR( )
-----------------------

v 0zJ1 kR( )
RJ2 kR( )

------------------------- Ωz– 
  .=
AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004



HELICITY GENERATION IN UNIFORM HELICAL FLOWS 991
Indeed, when kR is held constant, the sign of χ changes
at supercritical rotation frequencies,

(9)

Therefore, when (9) holds and  > 0, nonmonotonic
behavior at r > R can be exhibited by the azimuthal
velocity

as a function of the distance r from the vortex center-
line, since the absolute value of  reaches a minimum
value,

at

Furthermore, the necessary condition rm > R leads to an
additional upper bound for Ωz:

(10)

where

Note that the existence of a minimum of the absolute
value of  as a function of r at r = rm in a coordinate
system rotating with the fluid implies that the tracer
concentration advected by the vorticity field builds up
in the neighborhood of r = rm. Indeed, an annular dis-
tribution of this kind was observed in [28] for suspen-
sions in rotating vessels in a narrow range of Ωz , in
qualitative agreement with (9) and (10).

Thus, the present helical generalization of the Helm-
holtz vortex (parameterized by k and Ωz) can be used to
describe qualitatively different variations of the 
field outside the vortex core (at r > R). If k = γ1n/R or

k ≠ γ1n/R and Ω <  or Ω >  in the latter case, then
the variation of uϕ with r increasing from r = R is simi-
lar to the dependence of  on r for the Helmholtz vor-
tex (in a coordinate system rotating with frequency Ωz).

If k ≠ γ1n/R and  < Ω < , then the nonmonotonic

behavior of (r) indicated above may be responsible
for localization of a passive scalar in the neighborhood
of r = rm associated with min| (r)|.

Ωz Ωcr
0>

v 0zJ1 kR( )
RJ2 kR( )

-------------------------, J2 p( )
2J1 p( )

p
-----------------= = J0 p( ).–

Ωcr
0

ũϕ Ωzr–
Ωz Ωcr

0–( )R2J2 kR( )
rJ0 kR( )

------------------------------------------------–=

ũϕ

ũϕ 2 χ Ωz( )1/2=

r rm
χ
Ωz

------ 
  1/2

.= =

Ωz Ωcr
1<

Ωcr
0

1 J0 kR( )/J2 kR( )–
---------------------------------------------,=

0
J0 kR( )
J2 kR( )
----------------- 1 at Ωcr

0 0.>< <

ũϕ

ũϕ

Ωcr
0 Ωcr

1

ũϕ

Ωcr
1 Ωcr

0

ũϕ

ũϕ
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4. EVOLUTION OF HELICITY 
IN UNIFORM HELICAL FLOWS

Representation (7) of the velocity field at r < R can
be obtained by using (5) and averaging over the azi-
muthal angle the well-known solution for the uncon-
fined ABC flow [8, 9, 12, 13],

(11)

In what follows, a time-dependent generalization
of (11) is derived in the context of an analysis of the
possibility of helicity generation by taking into account
the effects described by introducing time-dependent A,
B, and C for an unsteady Joukowski-type helical flow
regime. Since only the coefficient B is retained in (11)
in the azimuthally symmetric case, the analysis below
is developed for A = C = 0 and B evolves in time accord-

ing to the helicity balance equation with ν ≠ 0,  ≠ 0,
and T ≠ 0.

4.1. Viscous Dissipation 
and Local Helicity Generation 

The time evolution of the helicity

for a flow satisfying (5) and (11) is analyzed here by

using vorticity equation (A.2) with ν ≠ 0,  ≠ 0, and
T ≠ 0:

(12)

(13)

where the velocity field  corresponds to a flow
described by (11). Equation (12) is derived without
using any additional assumptions (other than those
underlying starting equations (A.1)), because it is suffi-
cient to use a time-dependent generalization of (5) for
the velocity and vorticity fields. In particular, Eqs. (12)
and (13) imply that local helicity (13) can be generated

by allowing for viscous dissipation in (12) with  = 0
(ν ≠ 0) even if T = 0 and W ≠ 0. Indeed, if k < 0, then
Eq. (12) predicts an increase in H provided that H > 0
and the sum

ũx A kz C ky,cos+sin=

ũy B kx A kz,cos+sin=

ũz C ky B kx.cos+sin=

Ẇ

H
w u⋅

2
------------=

Ẇ

∂H
∂t
-------

1
k
--- d

dt
-----W2 ũ Ẇ⋅( )– νk2 ũ2k W ũ⋅+( )––=

+
βg
k

------ εij3 α ε ij2 αsin+cos( ) Ωi kũi+( ) ∂T
∂x j

-------,

H
kũ2

2
-------- W ũ,⋅+=

ũ

Ẇ

ũ2k W ũ⋅+
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is negative by virtue of the following inequalities:

(14)

where

Inequality (14) is satisfied when Ψ has a real value only
in the case of sufficiently fast (supercritical) solid-body
rotation of the system,

(15)

Inequality (15) is analogous to the criterion for dissipa-
tive–centrifugal instability obtained in [29] (see discus-
sion of its occurrence in upper atmospheric layers
in [30]).

It follows from (14) that, if 2Ωcr > Ω > Ωcr , there
exists only a lower bound for the value of cosΨ dictated
by the physical parameters of the system (the only
upper bound is determined by the inequality cosΨ < 1).
Under this condition, the required effect is more likely
to occur than if Ω > 2Ωcr , in which case the left-hand
side of (14) restricts the domain of admissible Ψ. Note
that the condition for Ω in which the lower bound for
frequency is half the upper one is consistent with the
criterion for the formation of an isolated tornado-like
vortex in the experiment described in [31]. Indeed,
according to [31], this regime corresponds to the fol-
lowing interval of the rotational Peclet number:

where Ra is the Rayleigh number and

is a dimensionless parameter associated with the solid-
body rotation frequency Ω (D is the diameter of an iso-
lated source of buoyancy). The Peclet-number interval
indicated above is associated with a rotation-frequency
range:

Thus, the conditions for rotation frequency that corre-
spond to the isolated intense helical vortices observed
in [31] are in fair agreement with the criterion for local
helicity generation resulting from dissipative instabil-
ity, since

k ũ
Ω

-------- Ψ k ũ
2Ω
--------,>cos>

Ω W , ũ ũ , Ψcos
W ũ⋅
Ωu

------------.= = =

Ω Ωcr> k ũ
2

--------.=

3 PeΩ 20, PeΩ 0.63
Ra
Ta
------ 

 
2

,≈< <

Ta 4Ω2D4

ν2
-----------------=

Ω1 Ω Ω2,
Ω2

Ω1
------ 1.6.≈< <

Ωmax

Ωmin
----------- 2.=
JOURNAL OF EXPERIMENTAL 
Let us compare the value of Ωmin = Ωcr given by (14)
and (15) with the value of Ω1 ≈ 0.21(ε/ν)1/2 (see [31]),
where

is the rate of kinetic energy dissipation per unit mass. If
Ωcr = Ω1, then k is estimated as

By the definition of ε, if  ≈ |u|, then

provides an estimate valid for velocity field (11). This
means that not only the ratio Ωmax/Ωmin that follows
from (14) and Ω2/Ω1 from [31] are in agreement, but so
are the lower bounds Ωcr and Ω1 as well. The agreement
suggests that the observations of isolated helical vorti-
ces reported in [31] can be interpreted by taking into
account interaction between solid-body rotation and
viscous dissipation.

When A = C = 0, it is obvious that  in (14) and (15)
is independent of coordinates since  = B according
to (11). The following estimate can be obtained for
nonzero A, C, B:

in which case the upper bound for Ωcr is

4.2. Generation of Integral Helicity 
in Nonuniform Temperature Fields 

Now, consider helicity balance equation (12) in the
case when temperature fluctuations determine the evo-
lution of the integral helicity

For simplicity, only constant temperature gradients are
taken into account:

In this case, (12) yields the following balance equation

ε ν
2
---

∂ui

∂x j

------- 
 

2 ∂u j

∂xi

-------- 
 

2

+ 
 ≈

k
0.41

ũ
---------- ε

ν
--- 

 
1/2

.≈

ũ

k
0.82 curlũ

ũ
--------------------------≈

ũ
ũ

ũ A B C+ +≤
x

max ũm,=

Ωcr
k ũm

2
------------.=

H
2π
k

------ 
 

3

x y zH .d

0

2π/k

∫d

0

2π/k

∫d

0

2π/k

∫≡

∂T
∂x j

------- A j.=
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for integral helicity:

(16)

where

for arbitrary A, B, and C. According to (16), integral
helicity (in contrast to local helicity) cannot be gener-
ated when k < 0, since  has a negative value in this
case and its absolute value decreases with time because
of viscous dissipation.

However, Eq. (16) implies that effects due to buoy-
ancy can be responsible for production of  when
W ≠ 0 even if the rotation frequency does not vary with
time. In particular, it follows from (16) that the deriva-
tive /dt is positive when W ≠ 0 at the initial moment
if the following inequality holds for W = (0, 0, Ωz):

(17)

where A0, B0, and C0 denote the values of A, B, and C
at t = 0, respectively. Thus, if α > 0 and the rotation fre-
quency is constant, then (17) implies that there exists a
critical value of horizontal temperature gradient,

such that the integral helicity increases with time at the
initial stage of the evolution of  for Ax > Acr . Indeed,
it was noted in [26] that dust devils develop only in the
presence of sufficiently steep horizontal temperature
gradients. Furthermore, when α  0 (the underlying
surface is flat), it follows from (16) and (17) that inte-
gral helicity can be generated either if the rotation fre-
quency varies substantially with time (see above) or if
the velocity of solid-body rotation has horizontal com-
ponents. The latter condition can be satisfied for con-
vective rolls.

4.3. Regimes of Local Helicity Generation
in Nonuniform Temperature Fields 

Consider balance equation (12) for local helicity in
the special case when A = C = 0. For simplicity, sup-
pose also that only the component Ax of a constant tem-
perature gradient is nonzero:

dH
dt

--------
1
k
--- d

dt
-----W2 νk3ũ

2
––=

+
βg
k

------ εij3 αcos εij2 αsin+( )ΩiA j,

H
kũ

2

2
-------- k A2 B2 C2+ +( )

2
--------------------------------------= =

H

H

dH

ΩzβgAx αsin

νk4 A0
2

B0
2 C0

2+ +( )
-------------------------------------------- 1,>

Acr

νk4 A0
2 B0

2 C0
2+ +( )

βgΩz αsin
--------------------------------------------,=

H

∂T
∂y
------ ∂T

∂z
------ 0.= =
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These conditions correspond to a time-dependent
solution to the heat equation without source terms,
because  = 0 if A = C = 0.

The equations describing the evolution of B(t),
Ωz(t), and Ωy(t) are derived in the Appendix. Note that

 = 0 since

and assume that Ωx = 0 to simplify the analysis that fol-
lows. In the Appendix, it is shown that two qualitatively
different systems of evolution equations may be valid,
depending on whether or not the relation

(18)

for the helical-vortex parameters B, Ωz , and Ωy flow
holds.

When (18) is not satisfied,

(19)

This set of equations is easily solved, and (13) is used
to obtain H  0 at t @ 1/νk2. Equations for Ωy and Ωz

in (19) are identical to those (written out in [15] in the
Boussinesq approximation) for the angular velocities of
a degenerate fluid ellipsoid (spheroid) executing a
solid-body rotation in a gravity field under a constant
temperature gradient. However, the value of Ax in (19)
can be treated as constant at any instant if Ay = Az = 0,
whereas this is possible in the context of [15] only at the
initial moment, because both Ay and Az are nonzero at
t > 0 if Ωz ≠ 0, Ωy ≠ 0, and Ax ≠ 0. Next, we consider the
case when relation (18) holds.

In the Appendix, the following nonlinear dynamical
system is derived for B2 = q, Ωz , and Ωy:

(20)

ũx

Ω̇x

∂T
∂y
------ ∂T

∂z
------ 0= =

Ωz
2 Ωy

2+ k2B2=

Ḃ νk2B, Ω̇y– βg
Ax

2
------ α ,cos–= =

Ω̇z
βgAx αsin

2
-------------------------.=

q̇
2
3
---νk2q–

2βgAx

3k2
---------------- Ωz α Ω y αcos–sin( ),+=

Ω̇z
νk2Ωz

3
---------------–

βgAxΩz

6k2q
------------------- Ωz α Ω y αcos–sin( )–=

+
βgAx αsin

2
-------------------------,

Ω̇y
νk2Ωy

3
---------------–

βgAxΩy

6k2q
------------------- Ωz αsin Ωy αcos–( )–=

–
βgAx αcos

2
--------------------------.
SICS      Vol. 99      No. 5      2004



994 CHEFRANOV
Under condition (18), system (20) admits general solu-
tion (A.9) expressed in terms of elliptic integrals,
because there exists the invariant

(21)

In particular, the solution to system (20) corresponding
to h0 = 0 is

(22)

As t  ∞, solution (22) describes a stable time-inde-
pendent flow regime described by system (20):

(23)

(which can be derived from the general solution
to (A.9) as t  ∞). The time-independent integral
helicity corresponding to (23),

(where H is given by (A.4) when A = C = 0), can be
written as

(24)

Thus, the time-independent regime characterized
by (24) corresponds to a large limit value of integral
helicity when a constant temperature gradient is per-
pendicular to the gravity force.

h0 νk2t( )exp
q
q0
----- 

  1/2

=

× q

ν2k2
----------

Ωz α Ω y αcos–sin( )2

ν2k4
--------------------------------------------------– .

B t( ) νk2t
3

----------– 
 exp=

× B 0( )
βgAx

νk3
------------ νk2t

3
---------- 

 exp 1– 
 + 

  ,

Ω t( ) Ωz α Ω y αcos–sin νk2t
3

----------– 
 exp= =
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βgAx
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3
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 exp 1– 
 + 

  .

B0

βgAx

νk3
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βgAx

νk2
------------ α ,cos–= =

Ωz0
βgAx αsin

νk2
-------------------------=

H
k

2π
------ xHd

0

2π/k

∫=

H0
βgAx( )2

2ν2k5
-------------------.=
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Note that nonlinear equations (20) for Ωz and Ωy

substantially differ from those obtained in [15] for the
angular velocities of solid-body rotation of a degener-
ate fluid ellipsoid (spheroid), even though the solution
to (A.9) is also expressed in terms of elliptic integrals
in the general case.

It would be interesting to construct an analog of sys-
tems of hydrodynamic type not only by analyzing
solid-body rotation of a fluid (as in [15]), but also by
taking into account the helical structure of the
Joukowski-type flows examined here.

5. CONCLUSIONS

Examples are given of uniform helical vortex flow
regimes that develop via relatively simple mechanisms
in a fluid rotating as a whole. In particular, a new exact
representation is obtained for uniform helical vorticity
fields, which generalizes both a well-known solution
having the form of traveling inertia waves in a fluid
rotating as a whole [18] and a helical solution used
in [22, 23] to describe steady helical vortex structures
in a ferromagnet. It is shown that not only the pure
solid-body rotation regimes examined in [15], but also
uniform helical regimes of fluid rotation, can be
described by relatively simple dynamical system (20),
including the limit of t  ∞ (see (23) and (24)). To
obtain the dynamical system, time-dependent uniform
helical vortex flow regimes are analyzed, instead of the
commonly considered steady uniform helical vortex
flow fields [8, 9, 12]. An analysis of the time-dependent
generalization makes it possible to allow for dissipative
and thermodynamic effects (reflected in the starting
Eqs. (A.1)) in the evolution of local and integral helical
vorticity perturbations.

The new exact solution defined by (7) and (8)
describes a localized cylindrical vortex having a non-
trivial stable topological structure determined by the
value of helicity. This solution is qualitatively different
from the spherical vortex considered in [24] and is a
generalization of the Helmholtz vortex filament. It can
be used to model natural tornadic vortices, which are
actually characterized by nonuniform vortex structure.

The results obtained here can be used to solve mag-
netic dynamo problems, which are seldom analyzed
by invoking the concept of uniform helical vortex
flow [32, 33]. Their existence under geophysical condi-
tions is questioned in [33, 21], probably because their
occurrence even in well-known inertia waves (see
above) is not taken into account.
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APPENDIX

1. The equations for a velocity field in a coordinate
system rotating with frequency W are written in the
Boussinesq approximation as

(A.1)

The corresponding equation for vorticity w = curlu is

(A.2)

In (A.1) and (A.2), summation from 1 to n over
repeated indices is assumed, εijl is the Levi-Civita per-
mutation symbol, and n is the dimensionality of the
space (n = 2, 3).

The equation for the helicity field

that corresponds to (A.1) and (A.2) for n = 3 is

(A.3)

Since both w and u are supposed to vanish at the
boundaries of a volume V, it follows from (A.3) that the
integral helicity

is governed by balance equation (1) with

∂ui

∂t
------- ul
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2
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-------.+

H
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------------,=
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When the effects due to bottom friction are taken into
account, the right-hand sides of (A.1), (A.2), and (A.3)
contain the additional terms

and

respectively, while (1) contains the term

If Ωz ≡ Ω3 ≠ 0, then

and if Ω = 0, then

where h is the fluid-layer thickness. The case of α ≠ 0
is not considered in the present study.

2. If

,

then expression (13) for H yields

(A.4)

When (A.4) is substituted into (12), the resulting equa-
tion is satisfied for A = C = 0 by setting to zero the term
that does not contain trigonometric functions and the
groups that multiply sinkx and coskx. This leads to the
following system of equations:

(A.5)

2α ui δi3u3–( ),–

2α ωi εij3

∂u3

∂x j

--------– 
  ,–

2α 2H ω3u3 εij3ui

∂u3

∂x j

--------–– 
  ,–

2α H ω3u3–( ).–

α
νΩz

h
---------,=

α ν
h2
-----,=

A C 0,
∂T
∂y
------ ∂T

∂z
------ 0= = = =

H
kB2

2
--------- Ωz kx Ωy kxsin+cos( )B.+=

kBḂ
2ΩzΩ̇z

k
----------------–

2ΩyΩ̇y

k
----------------– νk3B2–=

+
βg
k

------∂T
∂x
------ Ωz αsin Ωy αcos–( ),

Ωz Ḃ Ω̇zB+ Ω̇zB– νk2ΩzB– βgB
∂T
∂x
------ α ,sin+=

ΩyḂ Ω̇yB+ Ω̇yB– νk2ΩyB– βgB
∂T
∂x
------ α .cos–=
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System (A.5) with

can be transformed into

(A.6)

where

It follows from (A.6) that

and

(A.7)

where

If relation (18) holds, then system (A.6) is degenerate

and Eq. (A.7) is an identity for any  satisfying (18).
If relation (18) is violated, then system (19) can be
derived by combining (A.6) and (A.7).

If (18) holds, then (A.5) yields system (20), which is
conveniently represented in dimensionless form:

(A.8)

∂T
∂x
------ Ax, B2 q,= =

a1Ω̇z b1Ω̇y+ c1 Ωz Ωy,( )=

=  
2βgAx

k2
---------------- Ωz α Ω y α k

2
q

Ωz

-------- αsin–cos–sin 
  ,

a2Ω̇z b2Ω̇y+ c2 Ωz Ωy,( )=

=  
2βgAx

k2
---------------- Ωz αsin Ωy α k2q

Ωz

-------- αcos+cos– 
  ,

a1

4 Ωz
2 qk2–( )

Ωzk
2

-----------------------------, a2

4Ωz

k2
---------,= =

b1

4Ωy

k2
---------, b2

4 Ωy
2

k2q–( )

Ωyk
2

-----------------------------.= =

Ω̇y
c1 a1Ω̇z–

b1
----------------------=

Ω̇z a2b1 a1b2–( ) c2b1 b2c1,–=

a2b1 a1b2– 16q
Ωz

2 Ωy
2

k2q–+

k2ΩzΩy

----------------------------------
 
 
 

,=

c2b1 b2c1–
βgAx

2
------------ a2b1 a1b2–( ) α .sin=

Ω̇z

dv
dτ1
-------- γu,

du
dτ1
-------- 3

4
---γ1

γu2

4v
--------,–= =

τ1 2 eτ /2 1–( ), τ 2
3
---tνk2,= =
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where

System (A.8) has preserves invariant (21), which can be
written as

This invariant can be used to integrate system (A.8) in
quadratures to obtain

(A.9)

where C is an integration constant, and F and E denote
the elliptic integrals of the first and second kinds,
respectively:
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Abstract—We present a new scaled equation of state adequately describing the P–ρ–T data for fluids near the
vapor–liquid transition point and compare this equation to the Schofield parametric equation of state. A com-
parative analysis of the approximation of data for He4, C2H4, and H2O in the critical region shows that both
these equations correctly describe the behavior of thermodynamic functions asymptotically close to the critical
point. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The modern scaling theory of critical-point phase
transitions in liquids, or the theory of second-order
phase transitions, had its beginning in the mid-1960s,
when a singular character of the behavior of thermody-
namic functions at the critical point was established
based on the results of numerous thorough experi-
ments. In order to explain the behavior of substances
near such points, the so-called scaling hypothesis was
suggested (see, e.g., [1–3]) according to which the ther-
modynamic potentials are generalized functions of a
noninteger order with respect to the corresponding
fields. Subsequently, Wilson calculated the powers of
these functions (critical exponents) by solving the
renormalization-group equations [4]. The approxima-
tion of experimental data in terms of these functions
showed that certain corrections have to be introduced in
order to reduce errors in the nonasymptotic region. The
most commonly accepted were the corrections of
Wegner [5] and Berestov [6], which accounted for the
nonasymptotic behavior, and the Pokrovskii transfor-
mation [7], which described the asymptotic asymmetry
of real fluids relative to the critical isochore.

There were many attempts to expand this descrip-
tion beyond the region of validity of the scaling hypoth-
esis by matching the scaled equation to the Landau
expansion [8]. Recently, this approach to the crossover
was studied in [9, 10]. Alternative descriptions of the
behavior of substances in the critical region were pro-
posed as well. In particular, Martynov [11] formulated
a general approach to construction of the theory of crit-
ical phenomena based on a systematic analysis of the
Ornstein–Zernicke equations and the main relation-
ships of the local statistical mechanics. However, an
expression obtained in [11] for the pressure does not
1063-7761/04/9905- $26.00 © 20998
adequately describe the P–ρ–T data for fluids near the
vapor–liquid transition point.

Up to the present, the most adequate description of
the behavior of fluids in the critical region was provided
by the scaling theory. In the general form, the scaled
equation of state for symmetric systems such as the
Ising model was proposed by Griffiths [12]:

(1)

Here, h1 is the scaling field, A1 is the conjugated den-
sity, τ is the reduced temperature, δ and β are the criti-
cal exponents, and f is a scaling function. However, the
function f entering into Eq. (1) is set only by asymptotic
behavior at certain lines. The form of this function was
calculated [13, 14] by method of ε-expansion in the
renormalization-group theory. This form is compli-
cated and not suited for the treatment of experimental
data. For this reason, a rather large number of interpo-
lated scaling functions were suggested. Unfortunately,
these attempts did not provide a convenient equation
adequately describing the critical points of fluids [15].

One of the most successful attempts of such interpo-
lation was the parametric equation of state proposed by
Schofield [16], which allowed the asymptotic behavior
of a fluid to be described in the entire critical region,
rather than only on the selected lines. Modifications of
the Schofield equation, taking into account corrections
for the nonasymptotic behavior and the asymmetry of
real fluids at the critical point, significantly expanded
the range of application of the scaling theory [17].
However, these parametric equations are still rather
complicated and the description of experimental data in
these terms is difficult. Therefore, the problem of

h1 A1( ) A1
δ f τ / A1

1/β( ).sgn=
004 MAIK “Nauka/Interperiodica”
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selecting a sufficiently simple scaling function, such
that Eq. (1) could be conveniently used for the descrip-
tion of the behavior of a fluid in a large vicinity of the
critical point, is still open.

We have used the form of the function proposed
in [11] for the pressure and expressed the scaling field
h1 as

(2)

The equation of state in this form provides correct
asymptotic behavior on selected lines and describes the
entire asymptotic region of a symmetric system (Ising
model) near the critical point. However, the simple
Ising model and the isomorphous model of the lattice
gas possess a special symmetry with respect to the sign
of the scaling field h1, whereas real fluids do not pos-
sess this symmetry. The passage to description of the
critical point of a real fluid is provided by the Pok-
rovskii transformation [7].

Using the Pokrovskii transformation (in terms of the
algebra of fluctuating quantities), the pressure and the
chemical potential of a fluid can be represented in the
form of a linear combination of quantities correspond-
ing to the symmetric system and possessing certain
scaling dimensions. This representation leads to the so-
called “mixing” of the thermodynamic variables: the
temperature and chemical potential of a real system can
be represented as linear combinations of the tempera-
ture and chemical potential of the symmetric model
system; by the same token, the density and entropy of a
real system can be represented as linear combinations
of the same quantities for the model system.

Restricting the consideration to the most strongly
fluctuating values, we write

(3)

where h1 and h2 are the generalized fields correspond-
ing to the symmetric model system; A1 and A2 are the
conjugated generalized densities; ∆  = (ρ – ρk)/ρk; η =
(µ – µk)(ρk/Pk); σ = (s – sk)(Tk/Pk); τ = (T – Tk)/Tk; µ is
the chemical potential; s is the entropy per unit volume;
a and b are the fitting constants characterizing the
degree of “mixing”; and the subscript k refers to critical
values of the variables. The differential of the pressure
can be written as [8]

(4)

(5)

h1 A1( ) A1
δ m k h2/ A1

1/β( )γ
+( ).sgn=

∆ρ̃ A1 bA2, σ+ A2 aA1,+= =

h1 η aτ , h2+ τ bη ,+= =

ρ̃

dP ρ µd s T ,d+=

dπ 1 ∆ρ̃+( ) η σ
skTk

Pk

----------+ 
  τ .d+d=
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In terms of the symmetric model, this can be rewritten
as

(6)

where M ≡ skTk/Pk , π = (P – Pk)/Pk .

To the first approximation, we may set b = 0 in
Eq. (6) because this term is responsible for singularity
of the diameter of the boundary curve [7] and gives
only an insignificant correction to the pressure. Then,
the pressure differential is

(7)

Now let us use the above relations and transform the
scaled equation of state (2). In order to determine the
pressure as a function of the density and temperature
near the vapor–liquid critical point, let us differentiate
Eq. (2) with respect to h1 and h2. This yields

(8)

(9)

Using these relations, we can determine 

and . By definition, a differential of the

thermodynamic potential of a symmetric system is the
total differential:

(10)

Using this property of the total differential and Eq. (9),
we obtain

(11)

Integrating Eq. (11) yields

(12)

where ϕ(h2) is an unknown function of the scaling field
h2. Taking into account expressions (3) and the condi-
tion b = 0, we eventually obtain

(13)

dπ 1 bM–
1 ab–
----------------- A1+ 

  h1d
M a–
1 ab–
--------------- A2+ 

  dh2,+=

dπ 1 A1+( )dh1 M a– A2+( )dh2.+=

mδA1
δ 1– ∂A1

∂h1
--------- 

 
h2

kh2
γ ∂A1

∂h1
--------- 

 
h2

+ 1,=

mδA1
δ 1– ∂A1

∂h2
--------- 

 
h1

kA1γh2
γ 1– kh2

γ ∂A1

∂h2
--------- 

 
h1

+ + 0.=

∂A1/∂h2( )h1

∂A1/∂h1( )h2

dΦ A1 h1d A2dh2.+=

∂A2

∂h1
--------- 

 
h2

kγh2
γ 1– A1

∂A1

∂h1
--------- 

 
h2

.–=

A2

kγh2
γ 1–

2
-----------------A1

2 ϕ h2( ),+–=

A2
kγτγ 1–

2
----------------∆ρ̃2 ϕ τ( ).+–=
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Substituting the values of A1, A2, h1, and h2 into
Eq. (7), we obtain an expression for the total differen-
tial of the pressure:

(14)

Integrating the first term in this equation with respect to
∆  from 0 to ∆  at τ = const, and the second term with
respect to τ from 0 to τ at ∆  = 0, we obtain an expres-
sion for the pressure:

(15)

Taking into account that, on the critical isochore at
τ  0, the heat capacity Cv behaves as τ–α, we may
conclude that the integral in expression (15) has the
form of C0τ2 − α. Thus, the final scaled equation of state
has the following form:

(16)

Using Eqs. (3) and (13), we obtain the following
expressions for the entropy and heart capacity:

(17)

(18)

However, experiment shows that the pressure on the
critical isochore is, to within the experimental error,
directly proportional to τ. Therefore, in approximating
experimental data on the pressure, we may neglect the
integral in Eq. (15) as well as the last term in Eq. (16).
Of course, these terms cannot be ignored in determin-
ing derivatives of the pressure. It should be emphasized

dπ 1 ∆ρ̃+( ) mδ∆ρ̃δ 1– kτγ+( ) ∆ρ̃d=

+ 1 ∆ρ̃+( )kγ∆ρ̃τγ 1– M a-–+

– kγτγ 1– ∆ρ̃2

2
-------------------------- ϕ τ( )+ τ .d

ρ̃ ρ̃
ρ̃

π m∆ρ̃δ 1
δ

1 δ+
------------∆ρ̃+ 

  kτγ ∆ρ̃ 1
2
---∆ρ̃2+ 

 +=

+ M a–( )τ ϕ τ( ) τ .d∫+

π M a–( )τ m∆ρ̃ ∆ρ̃ δ 1– 1
δ

1 δ+
------------∆ρ̃+ 

 +=

+ kτ τ γ 1– ∆ρ̃ 1
2
---∆ρ̃2+ 

  C0τ τ 1 α– .+

σ kγτγ 1–

2
----------------∆ρ̃2– s0τ

1 α– a∆ρ̃,+ +=

Cv

TPk

Tk
2ρ

--------- ∂σ
∂τ
------ 

 
ρ

PkT

Tk
2ρ

---------= =

× kγ γ 1–( )
2

----------------------τγ 2– ∆ρ̃2 s0 1 α–( )τ α–+– .
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that Eqs. (16)–(18) describe the behavior of real fluids
very close to the vapor–liquid critical point without cor-
rections for the nonasymptotic behavior.

The isotherms of the equation of state obtained,
being continuous in the phase separation region, are
similar to the van der Waals isotherms. Then, using
conditions on the spinodal, we can determine a curve
bounding the region of absolute instability of the liquid:

(19)

As was noted above, the terms proportional to b in
Eq. (3) reflect the “singularity of the linear diameter.”
Indeed, taking these terms into account, assuming that
h1 = 0 (a condition on the boundary curve), and using
Eqs. (3) and (13), we obtain the following relations for
the boundary curve:

(20)

(21)

These expressions show that the boundary curve
behaves as |τ|β and the diameter of this curve has a
singularity of the type |τ|1 – α, in accordance with the
theory [7]. This result also confirms the validity of
assumptions underlying our equation of state.

Then, we compared the obtained equation of state to
that of the existing scaling theory of critical phenom-
ena. For the comparison, we used the scaled Schofield
equation [16]. According to our experience, this equa-
tion most adequately reflects the thermodynamic prop-
erties of fluids. In order to obtain an expression for the
pressure, we transformed the Schofield equation using
the algebra of fluctuating quantities according to Pok-
rovskii [7]. In parametric form, expressions for the
pressure, temperature, and density with allowance for
the singularity of the diameter of the boundary curve
are as follows [17, 18]:

(22)

Here, A and g are empirical coefficients and B, z0, z2,

∆ρ̃ k
mδ
------- 

 
1/ δ 1–( )

τ β.±=

ρL ρG– 2ρk
k
m
---- 

 
1/ δ 1–( )

τ β,=

ρL ρG+

=  bρk 2 2 α–( )C0 kγ k
m
---- 

 
2/ γ 1–( )

+ τ 1 α– .

π M α–( )τ Arγ β+ θ θ3–( )+=

+ Agr2 α– z0 z2θ
2 z4θ

4+ +( ),

τ 1 ab–( ) 1– r 1 B2θ2–( ) bArγ β+ θ θ3–( )–[ ] ,=

∆ρ grβθ bAr1 α– θ θ3–( ).+=
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and z4 are combinations of the critical exponents:

Ignoring, by analogy with Eq. (7), the terms involving
b (accounting for the singularity of the boundary curve
diameter and leading to a pressure correction insignifi-
cant in the context of our analysis), we obtain the
Schofield equation of state for the description of real
fluids:

(23)

This equation was used for comparing our nonparamet-
ric equation (16) to the relations following from the
scaling theory. The comparison was based on the anal-
ysis of data for three fluids: helium-4 (He4), water
(H2O), and ethylene (C2H4).

It should be emphasized that we do not introduce
corrections for the nonasymptotic behavior, and our
aim is only to establish the principal applicability of the
scaled equation of state (16) to description of the
behavior of real fluids in the critical region.

2. EXPERIMENTAL DATA

In investigations of the thermodynamic properties of
fluids near the vapor–liquid transition point, there are
three main factors complicating obtaining of the results
which can be used for verification of the adequacy of
proposed theories. The first factor is the presence of
impurities that very strongly influences the critical
behavior of fluids. The second factor is the effect of
gravity, which accounts for the development of signifi-
cant density gradients in the vertical direction. The
third factor is a slow rate of attaining the state of ther-
modynamic equilibrium. Taking this into account, we
verified Eq. (16) using our experimental results [19],
which are still the most exact data obtained under the
conditions of minimization of the influence of all three
factors limiting the experimental accuracy.

In comparing various equations of state, there arises
the problem of selecting critical parameters and expo-
nents for the particular fluids. These quantities are

B2 γ 2β–( )/γ 1 2β–( ),=

z0 γ γ 1–( )/2B2α 1 α–( ) 2 α–( ),=

z2 B2α 2γ 2β 1–+( ) γ– 2β+[ ] /2B2α 1 α–( ),=

z4 γ β 3/2–+( )/α .=

π M a–( )τ Arγ β+ θ θ3–( )+=

+ Agr2 α– z0 z2θ
2 z4θ

4+ +( ),

τ r 1 B2θ2–( ),=

∆ρ grβθ.=
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determined as fitting parameters in approximation of
the experimental data by one or another function and,
hence, depend on the form of this function. This prob-
lem was recently discussed in [20]. In addition, the crit-
ical parameters of fluids depend on the experimental
methods employed. We believe that these differences,
while influencing the error of approximation, still allow
the aforementioned data to be used for the comparison
of the new equation of state to the existing ones.

The scatter of the critical parameters, depending on
the form of the approximating function and the selected
set of experimental data, may significantly exceed the
experimental uncertainty. For example, the values of
parameters of He4 determined from three equations of
state (with all parameters, including critical exponents,
fitted over the whole body of data) are as follows.

For the equation of state (22): Tk = 5.2028 K; Pk =
1711.8 Torr (228221 Pa); ρk = 69.56 kg/m3; ∆f =
0.869 Torr (116 Pa).

For the equation of state (23): Tk = 5.2042 K; Pk =
1713.9 Torr (228501 Pa); ρk = 69.75 kg/m3; ∆f =
0.902 Torr (116 Pa).

For the Sartakov–Martynets equation of state [17, 18]),
which takes into account both the asymmetry of real
fluids and their nonasymptotic behavior far from the
critical point [21]: Tk = 5.1968 ± 0.005 K; Pk = 1704.1 ±
6 Torr (227195 Pa); ρk = 69.56 ± 0.14 kg/m3; ∆f =
0.832 Torr (111 Pa).

Here and below, ∆f is the rms error of approxima-
tion; the error intervals of the values of critical param-
eters for the Sartakov–Martynets equation are given for
a confidence level of 0.99. As can be seen, the error of
approximation for the Sartakov–Martynets equation in
the entire interval of densities is smaller than that for
the two other equations, which is quite natural since the
former equation involves the terms responsible for the
asymmetry and nonasymptotic behavior. Note that the
rms error of approximation rather weakly depends on
the form of equations, while the critical parameters are
quite sensitive to the form of functions. In this study, all
approximations of the data for He4 were obtained using
the values of critical parameters corresponding to the
Sartakov–Martynets equation. For He4, the P–ρ–T data
were obtained for 23 isotherms (620 points) at temper-
atures above and below the critical point [19]. Since the
scaled equation (16) and the Schofield equation are
more readily compared above the critical temperature,
the approximation was obtained using the data for T >
Tk (340 experimental points) taken from [19].

For H2O, we used the data of Ryvkin and Akhundov
[22–24] and set the following critical parameters: Tk =
647.3 K; Pk = 22.856 MPa; ρk = 307 kg/m3 [22–25].

For C2H4, we used the data of Hastings et al. [26]
with the critical parameters Tk = 282.3452 K, Pk =
5.0403 MPa, and ρk = 213.752 kg/m3 (7.634 mol/l).
SICS      Vol. 99      No. 5      2004
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The rms errors of parameters of the equations of
state (including critical exponents) are strongly corre-
lated. For correct comparison of the equations of state,
the critical exponents were taken equal to the values
obtained within the framework of the three-dimension
al Ising model [10]: β = 0.3255, γ = 1.239, and δ = 4.80.

3. RESULTS OF APPROXIMATION

The comparative approximation procedure con-
sisted in determining the minimum of the quadratic
error functional (representing the sum of square devia-
tions of the calculated values from experimental data)
depending on the fitting parameters. The fitting param-
eters were calculated using the conventional least-
squares method (for linear systems of normal equa-
tions) and the method of configurations (for nonlinear
equations). The results of approximation of the P–ρ–T
data for helium-4, water, and ethylene using proposed

0.4

0.2

0

–0.2

–0.4

–0.3 –0.2 –0.1 0 0.1 0.2

(P – Pcalc)/P, %

He4

(ρ – ρc)/ρc

Fig. 1. A plot of the relative deviation of the experimen-
tally measured pressure from the values calculated for He4

at T > Tk in terms of (d) Eq. (16) and (n) the Schofield
equation (23).
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equation of state (16) and Schofield equation (23) are
presented in the table (fitting parameters of the two
equations, rms errors, and the interval of approximation
on the density scale) and in Figs. 1–3 (relative devia-
tions of the pressure from calculated values).

Helium-4 (He4). Approximation of the data for He4

by Eq. (23) was obtained in the maximum range of den-
sities (41.2 kg/m3 ≤ ρ ≤ 96.9 kg/m3) where such exper-
imental data were available. The rms deviation for
Eq. (23) is ∆f = 6.13 Torr (817 Pa) or 0.36%. In the
same range of densities, Eq. (16) yields ∆f = 3.34 Torr
(445 Pa) or 0.2%. and, hence, is definitely preferred.
Figure 1 and the table present the results for a narrower
interval of densities. As can be seen, the approximation
error and the relative scatter of data for Eqs. (16) and
(23) in this narrower interval become comparable.

As was noted above, the term C0τ2 – α in Eq. (16) is
insignificant in the approximation under consideration.
Indeed, approximation of the experimental data using

2

1

0

–1

–2

–0.3 –0.2 –0.1 0 0.1 0.2

(P – Pcalc)/P, %

C2H4

(ρ – ρc)/ρc

0.3 0.4

Fig. 2. A plot of the relative deviation of the experimentally
measured pressure [26] from the values calculated for eth-
ylene (C2H4) in terms of (o) Eq. (16) and (n, ,) the
Schofield equation (23). The interval of approximation
includes all data for the single-phase region, including the
results obtained in the vicinity of the boundary curve.
Comparison of the results of approximation of the P–ρ–T data for helium-4, water, and ethylene using the proposed equation
of state (16) and the Schofield equation (23)

Equation (16) Schofield equation (23)

4He C2H4 H2O 4He C2H4 H2O

m 8.243 2.753 2.967 A 5.836 13.638 13.041

k 9.080 18.915 14.952 g 0.827 1.079 1.057

M–a 3.922 6.529 7.489 M–a 3.880 5.794 7.085

C0 1.498 0.430 2.669 – – – –

∆f 0.06% 0.48% 0.34% ∆f 0.08% 0.52% 0.65%

–0.28 ≤  ≤ 0.15 –0.23 ≤  ≤ 0.39  ≤ 0.3 –0.28 ≤  ≤ 0.15 –0.23 ≤  ≤ 0.39  ≤ 0.3∆ρ̃ ∆ρ̃ ∆ρ̃ ∆ρ̃ ∆ρ̃ ∆ρ̃
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Eq. (16) with this term rejected showed that the rms
error was the same and the fitting coefficients remained
almost unchanged. The coefficient at this term is yet
given in the table for the sake of complete data presen-
tation.

Ethylene (C2H4). Figure 2 shows the relative devia-
tions of the pressure from calculated values for C2H4
[26]. In this system, the rms error of data approximation
in terms of Eq. (16) is somewhat greater than that for
the Schofield equation.

Water (H2O). Figure 3 shows the results of approx-
imation of the experimental data [22–24] for water at
T > Tk in terms of Eqs. (16) and (23). In this case, the
proposed equation is again somewhat more preferred
than the Schofield model.

An analysis of the results of approximation showed
that Eq. (16) in a narrow interval of densities (0.8 ≤
ρ/ρk < 1.2) describes the experimental data even better
than the modified scaled Schofield equation. The aver-
age scatter of data in this interval is comparable with
the experimental uncertainty. As can be seen from
Figs. 1–3, the scatter of data for both equations grows
with increasing distance from the critical point. This
behavior is quite natural because the scaled equation
(as well as the scaling theory as such) is asymptotic. In
order to improve the description of experimental data,
it is necessary to introduce nonasymptotic corrections
and provide for matching of the scaled equation to an
equation describing the regular part of thermodynamic
functions, for example, to the virial equation of state. In
recent years, there have been attempts (see [9, 10]) to
combine the scaled equation with the Landau expan-
sion for second-order phase transitions [8]. The approx-
imation using such combined equations naturally pro-
vides for a decrease in error, since additional fitting
parameters are introduced. For example, the scatter of

2

1

0

–1

–2
–0.4 –0.2 –0.1 0 0.1 0.2

(P – Pcalc)/P, %

H2O

(ρ – ρc)/ρc

0.3 0.4–0.3

Fig. 3. A plot of the relative deviation of the experimentally
measured pressure [22–24] from the values calculated for
water at T > Tk in terms of (d) Eq. (16) and (n) Schofield
equation (23).
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data for water fell to within 0.08% and for ethylene, to
within 0.03%. In this study, neither the Landau expan-
sion nor any other corrections were used because the
aim was to establish the principal applicability of the
proposed scaled equation of state to describe the
asymptotic behavior of real fluids in the critical region.

4. CONCLUSIONS

We have presented a new scaled equation of state
obtained using the scaling field function for the
pressure suggested by Martynov [11]. It was shown
that the proposed equation correctly describes the
asymptotic behavior of fluids near the vapor–liquid
critical point. In the asymptotic vicinity of the critical
point, the new equation approximates the experimental
dependences of the pressure on the temperature and
density with greater precision than the modified para-
metric Schofield equation. At the same time, proposed
equation (16) is simpler than parametric Schofield
equation (23), more convenient for application in prac-
tice, and gives simple expressions for the binodal and
spinodal curves.

REFERENCES
1. A. Z. Patashinskiœ and V. L. Pokrovskiœ, Zh. Éksp. Teor.

Fiz. 50, 439 (1966) [Sov. Phys. JETP 23, 292 (1966)].
2. L. P. Kadanoff, Physics (Long Island City, N.Y.) 2, 263

(1966).
3. F. Dyson, E. Montroll, M. Katz, and M. Fischer, in Sta-

bility and Phase Transitions (Mir, Moscow, 1973) [in
Russian].

4. K. G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1975).
5. F. J. Wegner, Phys. Rev. B 5, 4529 (1972).
6. A. T. Berestov, Zh. Éksp. Teor. Fiz. 72, 348 (1977) [Sov.

Phys. JETP 45, 184 (1977)].
7. A. Z. Patashinskiœ and V. L. Pokrovskiœ, Fluctuation The-

ory of Phase Transitions, 2nd ed. (Nauka, Moscow,
1982; Pergamon Press, Oxford, 1979).

8. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd
ed. (Nauka, Moscow, 1976; Addison-Wesley, Reading,
MA, 1970).

9. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Phys. Rev.
A 41, 3161 (1990).

10. V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Phys.
Rev. E 64, 026125 (2001).

11. G. A. Martynov, Dokl. Akad. Nauk 378, 173 (2001)
[Dokl. Phys. 46, 310 (2001)].

12. R. B. Griffiths, Phys. Rev. 158, 176 (1967).
13. G. M. Avdeeva and A. A. Migdal, Pis’ma Zh. Tekh. Fiz.

16, 253 (1972) [Sov. Tech. Phys. Lett. 16, 178 (1972)].
14. E. Brezin, D. J. Wallace, and K. G. Wilson, Phys. Rev. B

7, 232 (1973).
15. M. Vicentini-Missoni, J. M. H. Levelt-Sengers, and

M. S. Green, Phys. Rev. Lett. 22, 389 (1969); M. Bar-
matz, P. C. Hohenberg, and A. Kornblit, Phys. Rev. B 12,
1947 (1975); O. B. Verbeke et al., J. Phys. Chem. 73,
SICS      Vol. 99      No. 5      2004



1004 BEZVERKHIŒ et al.
4076 (1969); R. D. Goodwin, J. Res. Natl. Bur. Stand.,
Sect. A 79, 84 (1974).

16. P. Schofield, Phys. Rev. Lett. 22, 606 (1969); P. Scho-
field, G. D. Litster, and G. T. Ho, Phys. Rev. Lett. 23,
1098 (1969).

17. A. G. Sartakov and V. G. Martynets, Izv. Sib. Otd. Akad.
Nauk SSSR, Ser. Khim. Nauk, No. 7 (3), 14 (1982).

18. P. P. Bezverkhiœ, V. G. Martynets, É. V. Matizen, and
V. F. Kukarin, Teplofiz. Vys. Temp. 26, 700 (1988).

19. V. F. Kukarin, V. G. Martynets, É. V. Matizen, and
A. G. Sartakov, Fiz. Nizk. Temp. 6, 549 (1980) [Sov. J.
Low Temp. Phys. 6, 263 (1980)].

20. V. A. Rabinovich and Yu. E. Sheludyak, Zh. Fiz. Khim.
77, 1708 (2003).
JOURNAL OF EXPERIMENTAL
21. V. F. Kukarin, V. G. Martynets, É. V. Matizen, and
A. G. Sartakov, Fiz. Nizk. Temp. 7, 1501 (1981) [Sov. J.
Low Temp. Phys. 7, 725 (1981)].

22. S. L. Rivkin and T. S. Akhundov, Teploénergetika (Mos-
cow), No. 10, 66 (1963).

23. S. L. Rivkin, T. S. Akhundov, E. A. Kremenevskaya, and
N. N. Asadullaeva, Teploénergetika (Moscow), No. 4, 59
(1966).

24. S. L. Rivkin and T. S. Akhundov, Teploénergetika (Mos-
cow), No. 1, 57 (1962).

25. N. S. Osborn, H. F. Stimson, and D. C. Ginnings, J. Res.
Natl. Bur. Stand. 18, 389 (1937); 23, 261 (1939).

26. J. R. Hastings, J. M. H. Levelt Sengers, and F. W. Bal-
four, J. Chem. Thermodyn. 12, 1009 (1980).

Translated by P. Pozdeev
 AND THEORETICAL PHYSICS      Vol. 99      No. 5      2004


	1005_1.pdf
	1018_1.pdf
	1028_1.pdf
	1039_1.pdf
	1044_1.pdf
	1054_1.pdf
	1065_1.pdf
	1074_1.pdf
	1090_1.pdf
	1108_1.pdf
	891_1.pdf
	898_1.pdf
	915_1.pdf
	934_1.pdf
	942_1.pdf
	947_1.pdf
	958_1.pdf
	965_1.pdf
	978_1.pdf
	987_1.pdf
	998_1.pdf

