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Abstract—Methodsfor reconstructing adelay differential equation from the time series of an observable quan-
tity are proposed for various classes of time-delay systems. The methods rely on knowledge of the distributions
of extrema of the time series of observed oscillations and projection of the infinite-dimensional phase spaces of
time-delay systemsonto special |ow-dimensional subspaces. The effectiveness of the proposed methodsisdem-
onstrated by reconstructing delay differential equations from their chaotic solutions, including those corrupted
by noise, and by constructing models of real time-delay systemsfrom chaotic time series. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

Systems whose behavior is determined not only by
their current state, but also by their past states, are wide-
spread in nature [1]. Their models are generally formu-
lated as delay differentia equations. Maodels of this
kind have been successfully applied in various areas of
physics, biology, physiology, and chemistry. For exam-
ple, adelay in population dynamics arises because indi-
viduals must go through an adolescent period before
they contribute to reproduction [2]. In a spatiadly dis-
tributed system, the delay is determined by the time
required for a signal to travel a distance with a finite
velocity [3]. In particular, the class of delay systems
includes the standard Ikeda model of a passive optical
cavity [4], the Lang—Kobayashi equations describing
the dynamics of semiconductor lasers with optical
feedback [5], the Mackey—Glass equation modeling the
production of red blood cells[6], and many other mod-
els of processes in living organisms ranging from glu-
cose metabolism to infectious disease propagation [7].

A general model of atime-delay system is described
by the following equation:

e X (t) + £, X"TV() + ...+ e, X(1)
= F(x(t), X(t=T14), ..., X(t =T,)),

where x(t) isthe state of the system at atimet; x"(t) is
the nth time derivative; 14, ..., T, are delays,; and the
parameters €, ..., €, characterize the system’s inertia.
Even first-order delay equations may exhibit extremely
high-dimensional chaotic oscillations[3, 8]. This com-
plicates reconstruction of amodel from time series and
necessitates the development of special methods. In
most reconstruction methods, the infinite-dimensional
phase space of a time-delay system is projected onto

(D)

low-dimensional subspaces. Criteria for evaluating the
quality of reconstruction of a time-delay system
include the minimal prediction error [9-11], the mini-
mal value of information entropy [12], and various
measures of complexity of the projected time series
[13-16]. Some methods for analyzing time-delay sys-
temsrely on regression analysis [17-19].

In this paper, we describe an original technique for
determining the time delay based on statistical analysis
of thetimeinterval s between the extrema of time series.
Relying on the technigque, we propose new reconstruc-
tion methods for high-dimensional time-delay systems
characterized by several delays. We a so propose meth-
ods for reconstructing delay-feedback ring systems
from the time series of various observable quantities.

2. CHARACTERISTICS OF TIME SERIES
OF TIME-DELAY SYSTEMS

Statistical analysis of the time interval s between the
extrema of the time series of various real time-delay
systems and their models reveals the following genera
properties. For a delay-feedback system, the probabil-
ity N of observing apair of extrema separated by atime
interval T in atime series, as afunction of T, hasadis
tinct minimum at T corresponding to thetime delay (see
Fig. 1a). This can be explained by analyzing one of the
most widely used time-delay differential equations,

eX(t) = —x(t) + f(x(t—14)). )

In radio engineering, Eq. (2) is used as the general
model of a delayed-feedback oscillator represented by
acircuit containing a nonlinear device, an inertial ele-
ment, and a delay line [20] (see Fig. 2). In the realistic
case of aninertial system (g, > 0), atime series x(t) can
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Fig. 1. Qualitative behavior of the number N of pairs of extremaseparated by aninterval T, normalized to thetotal number of extrema

intime series: () inertial system; (b) zero-inertia system.

be approximated by quadratic functions in the neigh-
borhoods of extremum points; i.e.,

x(t) = 0, X(t)#0

at these points. Indeed, the condition
X(t) = X(t) =0

holds at inflection and nonquadratic extremum points
and on time intervals where the state variable is con-
stant. In this case, the time series virtualy has no
extrema separated by the delay 1,. Differentiating (2)
with respect to t, we obtain

df (x(t—T1,)) .

€.X(t) = —x(t) + axX(=T)) X(t—T1y).

©)
If x(t) =0and X(t) # 0 for g, # 0, then it follows from

Eqg. (3) that x(t — 1;) # 0. In other words, there is no
extremum separated by 1, from a quadratic extremum;

i.e, N(t;) — 0. When 1 # 14, the derivatives x (t) and
X (t — 1) can vanish simultaneoudly; i.e., extrema sepa-
rated by T can exist.

An anaogous property is characteristic of time-
delay systems having a more general form,

X(t) = F(x(t), x(t—T14)). (4)
Differentiating Eq. (4) with respect to time, we obtain

_ OF(x(1), x(t—rl)))_(

(0 ORI o
0 X(t=T4))
T D
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i.e., Xx(t) and x (t — 1) cannot vanish simultaneoudly in
the typical case of aquadratic extremum.

When ¢, = 0, differentiation of Eq. (2) with respect
totleadsto

_ df(x(t=T4))

(t) - dx(t_.l.l) X(t_Tl);

(6)
i.e, Xx(t)=0if x(t—1,) = 0. In other words, each extre-
mum of the time series of x(t) is separated from another
oneby 1, if £, =0; i.e., N(T) hasamaximum at 1 = 14
(see Fig. 1b). In the case of alimited-bandwidth system
(e, > 0), the most probable time interval between
extrema in the time series of x(t) is wider than 1, (see
Fig. 1a). Thiscan be explained by the effect of the addi-
tional delay due to the inertial element in Fig. 2 on the
system’s dynamics. For such a system, extrema are
most frequently separated by 1; + T.. In particular, a
numerical analysis of Eq. (2) with anonlinear function

f(x) = A=x
leads to the following estimate when A islarge:
T, = €,/2.

Noisy time series exhibit additional extrema, which

€ _‘
Fig. 2. Block diagram of a delay-feedback ring system. The
elements denoted by 14, f, and g, represent a delay line, a
nonlinear device, and an inertial element, respectively.

Points 1-3 are locations where the state variable can be
measured.

@~

2 3
T . f .
Jx(t—1y))

x(t—T1))

=
—~
a3

No. 3 2005



RECOVERY OF PARAMETERS OF DELAYED-FEEDBACK SYSTEMS

are not related to the intrinsic dynamics of time-delay
systems. The probability of finding a pair of extrema
separated by T increases with the intensity of high-fre-
guency noise, and so does the probability of observing
extrema separated by t;. At moderate noise levels, the
latter probability remains lower than the former; i.e.,
the qualitative behavior of N(1) is preserved.

3. RECONSTRUCTION
OF FIRST-ORDER TIME-DELAY SYSTEMS

We describe a method for recovering first-order
time-delay systems, using Eq. (2) as an example. To
find the delay t,, one should locate the extrema of a
time series and find the number N of pairs of extrema
separated by an interval 1 for a sufficiently large set of
T values. The delay 1, corresponds to the location of an
absolute minimum of N(T) adjacent to an absol ute max-
imum.

To recover the parameter €, and the function f from
a chaotic time series, we rewrite Eg. (2) as

eX(t) +x(t) = F(x(t-14)). (7)

Then, the graph of f can be recovered as a set of points
with coordinates (X(t —14), €, X (t) + X(t)). Since g, isnot
known a priori, we cal culate the sets of points (x(t —T1,),
eX (1) + x(t)) corresponding to a number of values of €.
Using thefact that € = €, only for aset of pointsthat rep-
resents a single-valued function, we find the desired
€, and nonlinear function by minimizing the length L(g)
of the polygonal line connecting the points (X(t — 1),

eX (1) + x(t)) ordered with respect to x(t —1,). Note that
other methods for recovering this function make use of
extremum points or points satisfying certain conditions
only [13, 14], whereas every data point in atime series
can be utilized in the procedure proposed here. Thus, a
nonlinear function can be recovered even by using rel-
atively short, weakly chaotic time series.

To demonstrate the effectiveness of this procedure,
we have reconstructed various time-delay differential
equations having the form of (2), using the time series
obtained by solving them numerically. In particular, we
have applied our method to time series generated by the
Ikeda model of apassive optical cavity [4],

X(t) = —x(t) + usin(x(t —T1) = Xo), (8)

which corresponds to Eq. (2) with ¢, = 1. Figure 3a
shows a data segment illustrating the dynamics on the
high-dimensional chaotic attractor described by Eqg. (8)
with u =20, 1, = 2, and %, = 1Y3 [21]. The full data set
of 20000 points, including 1100 extremum points, was
obtained at a sampling rate of 200 points per delay
interval 1, = 2.

Figure 3b shows the graph of N(t) obtained by
counting the number of points where both x(t) and

X (t— 1) vanished for values of 1 taken with a step of
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0.01. The derivative x (t) was evaluated by using alocal
quadratic approximation. The absolute minimum of
N(t) is located at T = 1, = 2.00, which corresponds
exactly to the time delay. Figure 3¢ shows the graph of
L(¢) obtained by varying € with a step of 0.01. The
minimum of L(€) islocated exactly at € =€, = 1.00. Fig-
ure 3d shows the multimodal function f (virtually iden-
tical to the nonlinear functionin (8)) recovered by using
only 2000 data points. Its amplitude corresponds to the
parameter |1, and theitsvalue at x(t —1,) = 0 can be used
to find xg.

To evaluate the scope of our method as applied to
noisy time series, we added zero-mean Gaussian white
noise to the time series generated by Eq. (8). Even at a
relative noi se amplitude of 20%, we recovered the exact

time delay 1; = 2.00 and the almost exact value €; =

0.98 of the inertia parameter by using the locations of
the absolute minimum of N(t) and the minimum of
L(€), respectively. The corresponding recovered nonlin-
ear functionisshown in Fig. 3e. Note that the quality of
its reconstruction is much higher than that attained
in [19], where the same parameter values were used in
the Ikeda model, despite a relatively high noise level
and numerical error of €.

In another example, we applied our method to the
time series generated by a real delayed-feedback ring
system. The elements of its schematic representation by
Fig. 2 are adelay line characterized by a delay t,, an
amplifier characterized by a dynamic transfer function
f, and afirst-order RC filter with resistance R and capac-
itance C. The system is described by the equation

RCV(t) = =V(t) + f(V(t-T1y)), 9)

whereV(t) and V(t —1,) arethedelay-lineinput and out-
put, respectively. Equation (9) is equivaent to Eq. (2)
withg; = RC.

Figure 4a shows the input waveform sampled with
an analog-to-digital (A/D) converter at a sampling fre-
quency f,=4 kHz for t; = 31.7 msand g; = 1.007 ms.
Since the delay T, is not a multiple of the sampling
interval T, = 0.25 ms, we could not find the exact value
of 1,. The absolute minimum of the N(t) curve plotted

inFig. 4bwithastep T intislocated at T; =31.75ms.
TheL(¢) curveplottedin Fig. 4c with astep of 0.025 ms
in € for this 1; exhibitsaminimum at €; = 1.000 ms.

The recovered nonlinear function shown in Fig. 4d is
virtually identical to the dynamic transfer function of
the amplifier.

4. RECONSTRUCTION
OF DELAYED-FEEDBACK RING SYSTEMS

The state variabl e of the del ay-feedback ring system
described by Eqg. (2) can be measured at its points rep-
resented as 1-3 in Fig. 2. However, some of these mea-
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Fig. 3. Reconstruction of the lkeda model: (a) time series; (b) number N of pairs of extrema separated by an interval t, normalized
to the total number of extremain the time series; (c) length L(g) of the polygonal line connecting the points (x(t —T4), £X (t) + x(t))
ordered with respect to x(t — t4), normalized to the total number of points, L,in(€) = L(1.00); (d) recovered nonlinear function;
(e) nonlinear function recovered from atime series with a Gaussian white noise level amplitude of 20%.

surements may be impossible to perform, for example,
when the system is amonolithic circuit device or when
the physical locations of these points cannot be identi-
fied. The analysis presented in the preceding section is
developed for x(t) measured at point 1.

When the x(t — 1,) is measured at point 2 in Fig. 2,
the parameters of system (2) can be evaluated by using
the procedure described above, because x(t —1,) isiden-
tical to x(t) shifted by t,. For example, the results
obtained by analyzing the time series sampled as a
delay-line output V(t — 1,) for the ring oscillator
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described by Eq. (9) are qualitatively similar to those
presented in Fig. 4 toillustrate the reconstruction of the
system from V(t).

Now, we consider a procedure for recovering sys-
tem (2) in the case when f(x(t — 1,)) is measured at
point 3 in Fig. 2. The time series f(x(t — 1,)) generated

by time-delay system (2) has amost ho extrema sepa-
rated by t,, because

df (x(t—14)) _
dt -

LG8
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Fig. 4. Reconstruction of a delayed-feedback oscillator: () sampled experimental time series; (b) number N of pairs of extrema
separated by an interval T, normalized to the total number of extremain the time series, Nyin(T) = N(31.75 ms); (c) L(€) normalized
to the total number of points, Ly,in(€) = L(1.000 ms); (d) recovered nonlinear function.

Therefore, 1, can be evaluated by finding the number N
of pairs of extrema separated by T in time series
f(x(t — 1,)) for a sufficiently large set of 1 values and
locating the absolute minimum of N(1).

Thefunction f can be recovered by plotting f(x(t —T,))
versusx(t—T1,). Tofind x(t —1,), we use alow-passfilter
with cutoff frequency v, = 1/¢; to smooth the available
chaotic waveform f(x(t — t,)) and shift the filter output
by the delay T, determined above. Since neither €, nor
v, isknown apriori, we cal cul ate the sets of pointswith
coordinates (u(t — ty)), f(x(t —T4))) for anumber of val-
ues of v, where u(t — 1,) is the filter output. Using the
fact that € = €, only for a set of points that represents a
single-valued function, we again find the desired ¢, and
nonlinear function by minimizing the length L(¢) of the
polygonal line connecting the points (u(t — Tty),
f(x(t — t,))) ordered with respect to the abscissa.
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Asanillustration, we use atime series f(x(t — 1)) to
recover the Mackey—Glass equation (a standard model
of afirst-order delay system) [6],

ax(t—r1,)

X(t) = —bx(t) + m

(10)

which takes the form of (2) when divided by b. Our
analysis of (10) was performed for
a=02 b=01 c¢=10, 71, =300,
which correspond to a high-dimensional chaotic attrac-
tor [§].
Figure 5a shows a segment of the time series f(x(t —
1,)) illustrating the dynamics of the Mackey—Glass sys-
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Fig. 5. Reconstruction of the Mackey—Glass system: (a) time series of f(x(t —1)); (b) number N of pairs of extremain thetime series
separated by an interval T, normalized to the total number of extrema, Npy,i(T) = N(300); (c) length L(g) of the polygonal line con-

necting the points with coordinates (u(t — T'l ), f(x(t —14))) ordered with respect to u(t — T'l ), normalized to the number of points,

Linin(€) = L(20.0); (d) recovered nonlinear function.

tem. The absolute minimum of N(t) plotted in Fig. 5b
with unit stepintislocated at T; = 300. The minimum
of L(g) plotted in Fig. 5c with astep of 0.1 islocated at
€; =10.0 (¢, = /b = 10). Figure 5d shows the function
f (virtually identical to the nonlinear function in (10))
recovered by using these values of 1; and €;. The

method described above accurately recoversthe param-
eters of the Mackey—Glass system at relative noise
amplitudes of up to 10%.

5. RECONSTRUCTION
OF HIGH-ORDER DELAY ED-FEEDBACK
SYSTEMS

The method of statistical analysis of the intervals
separating the extrema in time series developed above

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

for systems (2) and (4) can be extended to a higher
order time-delay system,

e XV(t) + &, X"V() + ..+ eX(D)

(11)
= F(x(t), x(t—T14)).

Differentiating (11) with respect to time, we obtain

e XM() + g, X"(1) + ... +£,X(1)
_ dF(x(t), x(t—rl))),(

ax(1) (® (12)
OF(x(t), x(t—1,)) .
+ X(—1) X(t—T1,).
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If X(t) =0, then X (t—T1,) # 0 when the |eft-hand side of
Eg. (12) does not vanish. Since the probability that it
vanishes is very low in the genera case, the graph of
N(t) must be qualitatively similar to that corresponding
to a first-order delay differential equation having the
form of (2) or (4).

The proposed method for evaluating the inertia
parameter and nonlinear function by projection of the
inifinite-dimensional phase space of a time-delay sys-
tem onto special two-dimensional subspaces can be
applied to higher order systems. For example, if the
dynamics of a system is governed by the second-order
time-delay differential equation

EX(1) +&,X(1) = —x(t) + f(x(t-11)), (13

then the nonlinear function can be recovered by calcu-
lating a set of points with coordinates

(X(t—T14), £2X(1) +&1X(t) + X(1)).
Since neither €, nor €, is known a priori, the graphs of
E,X(t) + E.x(t) + x(t)

corresponding to a number of values of €, and &,
should be plotted versus x(t —1;). Using the fact that a
single-valued function can be obtained only if €, = ¢,
and &, = &, we caculated the minimum length
L(€,, &,) of the polygonal line connecting the points

(X(t=Tq), EX(t) + E1X(1) + x(1))

ordered with respect to x(t — 1,). The quality of recon-
struction is poorer than that attained for first-order
time-delay systems, because the procedure involves
numerical calculation of second derivatives.

This approach isillustrated here by an analysis of a
time series generated by a delayed-feedback oscillator
containing two series connected low-pass RC filters.
The dynamics of the oscillator is governed by Eq. (13),
where x(t) and x(t —t,) are the delay-line input and out-
put, respectively;

€ = RIC+RC,, & = RCR,C,,

and R, C, and R,, C, are the respective resistances and
capacitances of thefilters.

We used an A/D converter to sample the delay-line
input at a sampling frequency of fs = 4 kHz for 1, =
31.7ms, R,C; = 1.007 ms, and R,C, = 0.479 ms (g, =
1.486 ms and €, = 0.482 ms?). The absolute minimum
of the N(t) curve plotted in Fig. 6ais located at T; =
31.75ms. TheL(€,, €,) graph plotted in Fig. 6b with a
step of 0.01 msin €, and astep of 0.01 ms?in €, exhib-

itsaminimum at €; =1.48 msand €, =0.48 ms’. The
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filter parameters evaluated by using these results are
(R,C))'=1.00 msand (R,C,)' = 0.48 ms. The recovered
nonlinear function shown in Fig. 6¢ is virtually identi-
cal to the dynamic transfer function of the nonlinear
device.

6. RECONSTRUCTION
OF HIGH-ORDER DELAYED-FEEDBACK
SYSTEMS WITH TWO INDEPENDENT DELAY S

Consider the time-delay system characterized by
two independent delays:

X(t) = F(x(t), X(t—1,), X(t —15)). (14
Differentiating (14) with respect to t, we abtain
g oF . oF .
X(t) = 3= X(1) + 37— X(t—T14)
ox(t) ox(t—T1,) (15)

oF .
+a—————————x(t_T2)x(t—r2).

Since the time series of Eq. (14) typically has quadratic
extrema, X (t) =0 and X (t) # 0 at the extremum points.
Therefore, if x(t) =0, then

ax(t—T1,) + bx(t-1,) 20, (16)
where

OF(x(1), X(t—1,), X(t —=T15))
ox(t—1,) '

OF(x(t), X(t—=1,), X(t —=T15))
oX(t—T15,) '

Condition (16) holdsonly if x(t—1,) Z0or x(t—71,) #
0. Therefore, neither x(t) and x(t — t,) nor x(t) and
X (t — 1) vanish simultaneously; i.e., there is no extre-
mum separated by T, or T, from a quadratic extremum.
In other words, the number of extrema separated by
intervals T, and 1, is much smaller than the number of
extremaseparated by T intervalsof different length; i.e.,
the graph of N(1) has distinct minima at 1 = 1; and
T=T,.

To illustrate the method for recovering the remain-
ing characteristics of a system with two independent
delays, we consider the equation

eX(t) = =x(1) + fo(x(t=T14)) + Fo(x(t-T3)). (17)
Differentiating Eq. (17), we obtain

of,(x(t-14))

b =

e1X(t) = —x(t) + X(—T3) X(t-1y) "
At ,(X(t=T,)) .
+—62x(t—r2)2 X(t—T1,).
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Fig. 6. Reconstruction of the model of a delayed-feedback oscillator with atwo-section filter: (a) number N of pairs of extremain
the time series separated by an interval T, normalized to the total number of extrema, Nyin(t) = N(31.75 ms); (b) L(€; , €, ) normal-

ized to the number of points, Lyin(€;, €,) = L(1.48 ms, 0.48 msz); (c) recovered nonlinear function.

By virtue of Eq. (18), if

X(t—1,) = X(t—T,) = 0, (19)
then
€X(t) = —x(1),
i.e.,
g, = -% (20)

Thus, the parameter €, can be evaluated by finding the
points in the time series of x(t) where condition (19) is
satisfied, calculating the first and second derivatives at
these points, using (20) to determine the corresponding
values of €;, and averaging the results.

To recover the nonlinear functionsf, and f,, we map
the trgjectory described by Eg. (17) onto the three-
dimensional space

(X(t—T4), X(t—T2), &1X(1) + X(1)).
Thetrajectory of the system in this spaceisrestricted to

a two-dimensional surface, because Eq. (17) can be
rewritten as

eX(t) +x(t) = fo(x(t—-1y)) + fo(x(t-12)). (21)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

The intersection of the surface with a plane x(t —1,) =
const determines the function f; up to an additive con-
stant, because each intersection point satisfies the
equation

e x(t) +x(t) = fi(x(t-14)) +cy,
where
¢, = fL(x(t-1y))

corresponds to the chosen particular constant value of
X(t —T,). Similarly, the function f, can be recovered by
finding the intersection with x(t — t,) = const as

e X(1) +x(t) = f(x(t-T1,)) +cy,
where
c, = fi(x(t-1y))

correspondsto a particular value of x(t —1,).

To demonstrate the effectiveness of this method, we
recover the generalized Mackey—Glass equation con-
taining an additional delay term,

) ax(t-r1,)
=-b
X(t) X(t) + 2L+ x°(t )
(22)
aXxX(t—T1,)
2(1+x(t-1,))
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Fig. 7. Reconstruction of Eq. (22): (a) number N of pairs of extrema separated by an interval T normalized to the total number of
extremain the time series; (b) length L of the polygonal line connecting the intersection pointsin x(t — r'2) =1, ordered with respect
to the abscissa, Lyyin(Ty) = L(70); (c) length L of the polygonal line connecting the intersection pointsin x(t — T, ) = 1, ordered with
respect to the abscissa, Lyin(T2) = L(300); (d) length L of the polygonal line connecting theintersection pointsinx(t— T, ) = 1, ordered
with respect to the abscissa, Lyin(€) = L(10.1); (e) nonlinear function f; recovered up to €; = fo(x(t — T,)), where x(t — 1,) = 1;
(f) nonlinear function f, recovered up to €, =fy(x(t—1;)), wherex(t—1,)=1.
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from a corresponding time series. Dividing Eq. (22) by
b, we rewrite it as (17) with €; = 1/b. Figure 7a shows
the graph of N(1) plotted for a;, = 0.3,a,=0.2, b=0.1,
c =10, t; = 70, and 1, = 300. Locating the first pro-
nounced minima of N(t), we obtain the delays 1; = 69
and 1, = 300. Another distinct minimum of N(1) is
located at apoint closeto 1 =1, + T,. Using these values
of 1; and 1,, we obtain the average €; = 9.4 (g, =
1b=10).

To minimize the error of €, given by (20), we dis-
carded the points where X (t) is very small.

Mapping the time series of Eq. (22) onto the three-
dimensional space

(X(t=T1), X(t=T3), &1 X(t) + x(1))

and calculating its intersections with planes x(t — 1,) =
const and x(t — 1; ) = const, we recovered the nonlinear

functions f; and f, up to additive constants. However,
the quality of reconstruction is poor because of the
errors of 1, and €;.

To improve the quality of reconstruction, we refined
the desired parameter values asfollows. Varying 1, in a

small neighborhood of 1; = 69, we mapped the time
series onto a number of embedding spaces,

(X(t=T9), X(t=T5), £1X(t) + x(1)) ,

and calculated their intersections with a plane x(t —
T,) = const in order to find a set of intersection points

localized in a narrow strip. The corresponding nearly
single-valued function was determined by minimizing
the length L(t,) of the polygonal line connecting the
intersection points ordered with respect to the abscissa.
The L(t,) curve plotted in Fig. 7b has a minimum at

T, = 70. The value of 1, was refined in a similar man-
ner. We mapped the time series onto the spaces

(X(t=T1), X(t=T5), E1%(t) + X(1))

corresponding to a number of T, values in a small
neighborhood of T, =300 and calcul ated their intersec-
tions with x(t — T,) = const. Note that we used the
refined delay T, = 70 in these calculations. The L(t,)
curve plotted in Fig. 7c hasaminimum at T, = 300. If
1, # 1,, then 1, should be refined again by calculating
the intersections of the embedding spaces with a plane
X(t—1T,) = const for therefined value of T, . The param-

eters 1, and T, should be successively refined until con-
stant values are obtained. When the deviations of the

starting approximate delays 1; and 1, from the respec-
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tive true values are small, both delays can be deter-
mined to high accuracy.

After the delays have been refined, a new estimate
for €, can be found by using (20) as described above.
However, amore reliable estimate is obtained by vary-
ing € in aneighborhood of €], mapping the time series
onto the spaces

(X(t=T4), X(t=T5), ex(t) + X(1)) ,

and using all points of intersection with either x(t —
T,) = const or x(t — T,) = const to find a nearly single-
valued function. In Fig. 7d, the L(€) normalized, by
analogy with L(t,) and L(1,), to the number of pointsin

the intersection hasaminimum at €; = 10.1. Note that

the proposed procedure of parameter refinement is
faster by several orders of magnitude as compared to
the simultaneous direct search through the parameters
€, T, and 1, defining the embedding space

(X(t=T14), X(t=T2), £1X(1) + X(1)).

Figures 7e and 7f show the results obtained by using
the refined parameter values €, = 10.1, T, = 70, and

T, = 300 to recover the nonlinear functions in (22). To

evaluate the scope of the method, we applied it to noisy
data sets and found that the system can be recovered to
good accuracy at relative noise amplitudes of up to 10%.

7. CONCLUSIONS

We have proposed methods for recovering time-
delay systems of certain classes from chaotic time
series, based on statistical analysis of thetimeintervals
separating the extrema of the series and mapping the
infinite-dimensional phase spaces of the systems onto
specia low-dimensional subspaces. If dynamical sys-
tems describing processes of different nature are simi-
lar in structure to certain model equations, then the cor-
responding time delays, inertia parameters, and nonlin-
ear functions can be recovered even at relatively high
noise levels. Since the time delay is determined by per-
forming only comparison and addition operations
(without data sorting, estimating approximation error,
or calculating any motion-complexity measure), the
computational cost of this procedure is relatively low.
Since the inertia parameter and nonlinear function for
systemswith asingletime delay are recovered by using
all data points in the time series, the procedure can be
successfully applied even to relatively short, weakly
chaotic time series.

It is shown that the proposed methods can be used to
recover the model equations describing del ay-feedback
ring systems from the time series of various observable
state variables. The effectiveness of the methods has
been demonstrated by applying them to time series
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obtained in numerical experiments, including those
corrupted by noise, and to the time series generated by
areal device used in radio engineering.
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Abstract—Diffraction radiation generated by afast particle moving past a dielectric wedge or past a homoge-
neous medium with the surface of arbitrary shape is considered at afrequency close to the natural frequency of
the medium. The angular distribution of diffraction radiation is investigated as a function of the wedge angle
and the shape of the surface. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

From the microscopic point of view, diffraction
radiation results from the scattering of thefield of auni-
formly moving charged particle by the atoms of a
medium. The scattering cross section of an electromag-
netic wave by an atom is maximal near the resonance,
when the wave frequency is close to the natura fre-
guency of an atom; therefore, the intensity of diffrac-
tion radiation must increase at resonance frequencies. It
is well known that the radiation field in the near-field
zone is mainly longitudinal and the magnitude of the
transverse field is much less than that of the longitudi-
nal field. Therefore, in dense media, the energy transfer
from an excited atom to a nonexited one mainly occurs
via the longitudinal field through a resonance dipole—
dipole interaction rather than through the radiation and
absorption of transverse resonance waves. The energy
of electron excitation propagates through the medium
in the form of excitons. As a result, the interaction
between a resonance photon and an atom leads to the
annihilation of the photon and the creation of an exciton
with the maximum probability. Therefore, the reso-
nance photon, i.e., a photon with energy close to the
energy of an exciton, does not penetrate deep into the
medium. For the same reason, transverse resonance
waves cannot be emitted by atoms situated in the bulk
of adense medium.

Thus, the probability of diffractionradiation at ares-
onance frequency due to scattering by an atom is much
less than the probahility of creation of an exciton, and
the diffraction radiation results from the scattering of
the field of a particle by atoms in a layer close to the
surface of the medium. The thickness of this layer is
determined by the absorption coefficient of transverse
resonance waves. Since this thicknessis small, we can
restrict the analysis to the single-scattering approxima-
tion for the resonance component of the field of afast
particle by the atoms of the medium. Such an approxi-

mation in the problem of reflection of resonance elec-
tromagnetic waves from the surface of a medium was
proposed by Fermi [1]. This approximation made it
possible to solve the reflection problem without resort-
ing to the usual macroscopic boundary conditions and
showed good agreement with experiment.

It should be noted that the field of a charged particle
moving at a constant velocity v and energy E = ymc?
falls off with distance a as exp(—aw/yv) in the direction
perpendicular to the velocity. Therefore, polarization
currents that are responsible for the diffraction radia-
tion exponentially decay away from the surface. This
fact increases the contribution of the atoms that are sit-
uated close to the surface of the medium to the reso-
nance radiation, thus increasing the accuracy of single-
scattering approximation for the resonance field com-
ponent of afast particle by the atoms of the medium.

Usually, to consider the diffraction radiation, one
applies the methods of macroscopic electrodynamics,
which take into account the effect of boundaries by
ordinary boundary conditions[2-8]. These methods are
convenient when applied to the problems of diffraction
radiation from surfaces of relatively simple shape.
However, for media with a surface of complex shape,
rigorous consideration of boundary conditionsinvolves
considerable difficulties; therefore, one has to develop
special approximation methods for each specific shape
of the surface.

A generalization of the method, developed in [1],
for analyzing resonance scattering of wavesto the prob-
lem of diffraction radiation at resonance frequencies
provides arelatively simple technique for studying dif-
fraction radiation in the case of surfaces of complex
shape. It isworthwhileto apply the Fermi method to the
diffraction radiation at a resonance frequency of the
medium and to evaluate the intensity of such radiation
depending on the shape of the surface of the medium.

1063-7761/05/10003-0468%$26.00 © 2005 Pleiades Publishing, Inc.
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2. DIFFRACTION RADIATION FROM A WEDGE
AT A RESONANCE FREQUENCY

Consider acharged particle that moves uniformly in
vacuum by the law

r=a+vt
in the plane x = a. Let the axis z be directed along the

vector v, and the axis x, along a. Then, we can represent
the field generated by a moving particle as

Eo(r,t) = J’dSpJ’dwEo(p, w)exp(ip O —iot),

@
Eolp, ©) = Eq()3(00-pyv),
Eo(p) = %exp(—i ). @

Below, we consider the Fourier component of the parti-
cle field at a resonance frequency of the medium.
Assuming that the wavelength of the field is much
greater than the size of amolecule, we can consider the
interaction of a molecule with the field in the dipole
approximation. The molecules excited by the field of a
fast particle give rise to a radiation field; however,
because transverse resonance waves are absorbed by
the medium, only the resonance component of the field
emitted by the molecules that are close to the surface
may beirradiated from the medium. Therefore, one can
restrict the analysis to the single-scattering approxima:
tion of the particle field in the medium. Consider the
diffraction radiation of a charged particle when it trav-
els past a homogeneous dielectric wedge given by the
formula

£z, z<0O,
X =0 3
tnz, z>0

(&, n > 0), when the concentration of moleculesin the
medium is ny. The amplitude of the transverse reso-
nance wave emitted by a molecule situated at the point
R, exponentially decays as it propagates through the
medium. The direction to the observation point is
defined by the unit vector n; thisdirection intersectsthe
surface of the wedge at the point

R,+R'(X,Y',Z),
where
X1Z' = nJn, YIZ =ny/n,.
The field is irradiated from either face of the wedge

depending on the direction of irradiation, i.e., depend-
ing onthesign of n,. Consider, for definiteness, the case
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of n,> 0, i.e, the forward radiation. Then, the field is
irradiated through the plane x = —+z and

Xa+ nza nX

_r]+nX/nZ’ n_Z<n' “)

When n, <0, thefield isirradiated through the planex =
&z of the wedge and

' Xa B E Za Ny
= o =<, 5

E_nX/nZV |nZ| E ( )
The distance between a radiating molecule and the
intersection point with the surface is |Z/n,|. A decrease
in the amplitude of the resonance wave in the medium
can be taken into account by multiplying the density of
intramolecular current by

exp{ _glzl(Ra)/znzl} y

where g is the absorption coefficient. Hence, to take
into account the absorption of the transverse resonance
wave in the material of the wedge, we should replace
the usual expression for the Fourier image of the den-
Sity of polarization current in the single-scattering
approximation,

(g, ) = —-iw(1/2m)%a(w)

. | (6)
XY [d"PEo(p. w)exp{~i(p-q) [R4
by the expression
. _ 3 3
j(g,w) = —iw(1/2m a(w)ZId PEo(p, w) @

x exp{-i(p—-q) (R,—9|Z'(R,)/2n,} .

Here, a(w) isthe polarizability of amolecule, R, isthe
radius vector of the center of inertia of a molecule, and
the summation is performed over al molecules of the
substance. Assuming that the material of the wedge is
homogeneous, we can neglect the effect of fluctuations
of the polarization current by replacing (7) by its value
averaged over the coordinates of the molecules:

(9, 0) = —iw(1/2m)’a(w) jd3pEo(p, w)

(8)
x( > exp{-i(p-0a) Ra—-g|Z(Ra)/2nS} ).

Theenergy of thefield irradiated from the medium over
the entire flight time of aparticlein the frequency inter-
val dw near the resonance frequency, into an element
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dQ of solid angle in the direction of the vector k =
(w/c)r/r can be expressed as

d’E(n, w) _ (2m)° 2
Toda - o kG, o)
= ‘% q(w)Id3p[k [Eo(p, w)] 9

2

x<z exp{—i(p —k) ERa—QIZ'(Ra)/an|}>

Equations (4) and (5) show that Z'(R,) isindependent of
Y,; therefore, averaging with respect to Y, resultsin the
deltafunction d(p, — k). Since Eq(p, w) contains o(w —
p,), the integration with respect to p, and p, is per-
formed with the use of these delta functions. The
remaining integral with respect to p, isgiven by (e, and

RYAZANOV

g, are unit vectors along the axes x and y)

00

J’ dpEo( Py Ky, 0/ V) exp{—i p,(X,—a)}

(10)
= (ie/2nQ)L exp{—aQ + QX ,
2,2
L = eyky—iQex—V—w(l;zv le)
5 qu]2 V2D 12 (11)
Q= [ky+D7D %"_ED} '

When considering the forward radiation, one should
use expression (4) for Z', so that

9Z(RJ)| _ gXa*tnZ
2n, 2nn,+ny
Hence, after averaging with respect to Y, and integrat-
ing with respect to p,, it remains to determine the mean

value with respect to the coordinates X, and Z, of the
form

=_h(X,+nZ). (12

<Z exp{ ikxXa+ Q(Xa_a) —i(kz—O)/V)Za+ h(Xa+ r]Za)}

0 =X/n
= noexp(-aQ) [ dXexp{ikX+QX+hxp [ dZexp{i(k,~w/v)Z+hnZ (13)
— XIE
_ No(n + &) exp(-aQ)
(k& + (k,—w/v) —ihn —i(Q+ h)&] [k,n — (k,—w/v) +iQn]’
The distribution of the radiated energy can be expressed as
CE(n.w) _ €0’ kxL]? (8+n)°exp(-2aQ) a4
dwda ~ zeeg e O e T (@ hn )1 (o o @) QM

The radiated energy as a function of the distance a
between the particle trgjectory and the edge of the
wedge is given by the exponential function

exp(—2aQ) = exp{—2a[kC+ (wiyv)] "},

which decreases with increasing distance much faster
in the nonrelativistic case than in the ultrarelativistic
case, similar to the behavior of the field of afast parti-
cle. This exponential function is also essential for the
dependence of the radiation intensity on the azimuthal
angle ¢. In the nonrelativistic case,

w
Q:;>ky
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and the function exp(—2aQ) takes values of the same
order of magnitude for different ¢. In the ultrarelativis-
tic case, for very smal k,, Q ~ w/yv, whereas, for

large k,,
w
Q Dky > y_v

Therefore, in the ultrarelativistic case, the function
exp(—2aQ) strongly suppresses the radiation for finite
k,. As aresult, when the particle moves perpendicular
to the edge of the wedge, the whole radiation is virtu-
ally concentrated near the plane xz. Taking into account
that
_iew 2 _ T2
= — X = —
L Yo and [k x L] D:kaZ

No. 3

2005



DIFFRACTION RADIATION FROM A FAST PARTICLE AT A RESONANCE FREQUENCY

for k, = 0 and y > 1, we can obtain the following
expression for the distribution of diffraction radiation

2 2

d’E(n,w) _ € 2|0()|

471

in the ultrarelativistic case for k, = 0, i.e., in the
plane xz:

(£ +n)’exp(—2awlyc) )

dwdQ

. (15
[(K& +k,—w/v)*+ (hE + hn +Ew/yc) ] [(kn =k, + w/v)? + (nw/yc)’] (

In the ultrarelativistic case, the following relations hold for small angles 8 between the wave vector k of the

radiated wave and the particle velocity v:
k, Ok9,

therefore, expression (15) can be rewritten as

d’E(n, w) _

(£ +n)’exp(-2awlyc)

k,— /v O(k/2)(8% + 11y?);

2 212
Joda - €°¢ KZ|nya (w)[?

where u = h/k. Note that the condition n,/n, < n, which
guarantees the applicability of formula (4), remains
valid for arbitrary values of the coefficient ¢ in the
equation for thefirst face of thewedgex =&z Itisinter-
esting to compare the radiation in the limiting cases & =

, (16)

{198 + @2 +y )2+ (UE+un +E/)A {BNn -8 2+y /2" + (/)3

0 (the first face of the wedge is paralld to the particle
velocity) and & = oo (the first face of the wedge is per-
pendicular to the particle velocity).

For & = 0, the distribution of radiation energy (16) is
expressed as

d’E(n, w ?exp(—2awlyc
du()dQ : - GZCZkilnoa(w)lz 2 2 _22] o yz) 2 2 2 " (17)
{(un)"+@ +y ") 14 {Pbn —¢ “+y")/2] +(nly)}
In the limiting case & = o, the radiation distribution (16) takes the form
d’E(n, w) _ 222 2 exp(—2aw/yc)
Jodo - e"ckz|nyo (w)| (18)

The condition n,/n, < n, which guarantees the applica-
bility of formula (4), remains valid for p — o when
the second face of the wedge is perpendicular to the
particle velocity. In this case, we have to take into
account that

h = g/2(nn,+ny),

dE(nw) _ 222 2|noar (w)|?

{92+ (u+1y)3 {Pn -0 2+y 22>+ (nly)3

so that, in the limit as
n— o,
we have
un — g/2k,.

In this case, the distribution of radiated energy is
expressed as

exp(—2aw/yc)

dwdQ

The factor {982 + (1/y)% in the denominator of (19)
leads to stronger dependence of the radiation intensity
on the particle energy. It can easily be seen that, in the
limiting case of large u, i.e., for small absorption length
of the transverse resonance waves in the substance, dis-
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{198 + @2 +y )2+ [UE + g2k + EV]3 9 2+ (1y)3

(19)

tribution (19) becomes independent of &, i.e., of the
slope of the first face of the wedge. This is associated
with the fact that, for small absorption length, the radi-
ation is mainly emitted by the molecules situated near
the second face of the wedge.

No. 3 2005



472

A comparison of (19) and (16) shows that the slope
of the second face of the wedge with respect to the par-
ticle velocity weakens the dependence of the radiation
intensity on the Lorentz factor of the particle.

The simplest limiting case correspondsto & = 0 and
n = o, when the substance occupies the domain of neg-
ative x and negative z. Such a configuration of a sub-
stance can be called a step rather than a wedge. In this
case, the distribution of diffraction radiation from an
ultrarelativistic particle can easily be represented as

2
TERD) - eeiinga(e))
20
exp(—2aw/yc) ()

(@2 +y )14+ (g2} {8 2+ (Ly)3

X

3. DIFFRACTION RADIATION
FROM AN INHOMOGENEOUS SURFACE

Now, consider another example of diffraction radia-
tion at a frequency close to a natural frequency of the
medium in the case when a particle moves by the law

x=a y=0 z=vt

past a homogeneous medium with the density of mole-
cules n, and the volume of the medium is bounded by
the condition X, < {(Y,, Z,). It should be noted that no
radiation is emitted when { = const, i.e,, when a
charged particle moves uniformly parallel to the sur-
face of a homogeneous medium. The reason liesin the
fact that the energy and momentum conservation laws
for theradiation hold only for the transfer of longitudi-
nal momentum (along the direction of the particle
velocity) to the medium; however, for such an orienta-
tion of the surface of a homogeneous medium, atrans-
fer of longitudinal momentum is impossible due to the
homogeneity of the conditions of the problem along the
z coordinate. This means that the radiation field is zero
for { = congt; i.e., radiation is emitted due to the irreg-
ularities of the surface, which makes possible the trans-
fer of longitudinal momentum to the medium.

Thus, it is the polarization currents near the irregu-
larities of the surface that are responsible for the dif-
fraction radiation from a homogeneous medium,
whereas the polarization currents in the bulk of the
medium do not contribute to the diffraction radiation.
Let us find a point on the surface X = {(Y, Z) of the
medium with the minimal value of the coordinate X and
choose the coordinate axes so that the plane X = 0
passes through this point. As pointed out above, polar-
ization currents in the domain X < 0 do not contribute
to the diffraction radiation. This fact allows oneto take
into account only the current density in the layer
enclosed between the surface X = {(Y, Z) and the plane
X =0 when calculating the Fourier image of the density
of polarization current in (4).
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To avoid nonessential complications, we restrict the
consideration to the diffraction radiation from a
medium with the surface of the form X = {(2). The
amplitude of the transverse resonance wave radiated by
a molecule situated at the point R, exponentially
decays in the medium due to inelastic scattering. The
direction to the observation point is specified by a unit
vector n; this direction intersects the surface of the
medium at apoint R, + R'(X', Y', Z') whose z coordinate

Z,tZ=Z,+Z(Ry)
can be determined from the equation

E(ZatZ) = Xa+Z(ny/n,). (21)
The distance between the emitting molecule and the
above intersection point is given by

R(X, Y, Z)| = [Z(R)/nj.

A falloff in the amplitude of the resonance wave along
the whole path in the homogeneous medium can be
taken into account with the use of expression (7) for the
Fourier image of the mean polarization current. Intro-
ducing the notation

00 00

.z

_ -3
S(p) = (2m) _J;dY_J;dZ JO' dx 2

xexp{—-ip [R-gZ'(R)/2n} ,

we can write

Yy exp{-ip [R,~gZ(R.)/2n} ) = ng(2m)’S(p). (23)

Equation (22) shows that the domain of large values of
the variable X does not make an appreciable contribu-
tion to theintegral for the following two reasons: dueto
the decreasing exponentia function exp{—gZ'(R)/2n}
and due to the upper limit. Therefore, two qualitatively
different cases are possible. In the first case, the thick-
ness of the effective layer of irregularities is less than
the absorption length of the resonance wave; in this
case, akey roleis played by the upper limit, while the
decreasing exponential function varies slightly within
the integration interval. Therefore, one can neglect the
decreasing exponential function, which is equivalent to
using the current in the form (6) instead of (7). In this
case, §p) takesthe form

0 [

Y, 2)

S(p) = (2 (dY [dZ [ dXexp{-ip[R} (24)
forge |

instead of (22).
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In the second case, the absorption length of areso-
nance wave is small compared with the thickness of the
effective layer of irregularities. In this case, the upper
limit of integration with respect to X in (22) plays a
small role, and one can integrate with respect to X
in (22) up to infinity. The effect of the surface shape
manifests itself in the fact that the function Z'(R,) is
determined from Eq. (21), which is completely defined
by the shape of the surface. Then, formula (22) is
rewritten as

[ [ [

S(p) = (2~ { dy { dz {dx -

xexp{—-ip [(R-gZ(R)/2n} .

An estimate for (25) can be obtained using the proper-
ties of the function Z'(R), i.e., using the specific shape
of the surface.

Consider the first case, when the thickness of the
layer of irregularities is less than the absorption length
of the resonance wave. Then, we can neglect the ampli-
tude decay due to scattering of the radiated wave in the
substance. In this case, the distribution of the radiated
energy isgiven by

2
() = oiens

x ‘a(w)fdsp[k x Eq(p)] S(p—K)3(w0—p,v)|

where S(p —Kk) isdefined in (24). It isworth noting that,
in the particular case {(Y, Z2) = {(Y), when the surface
shape is independent of z, S(p — k) is proportional to
o(p, — k), and d(w — p,v)d(p, — k) = 0 if there is no
Cherenkov radiation in the medium. Thus, there is no
diffraction radiation when (Y, Z) = {(Y) because alon-
gitudinal momentum cannot be transferred to such a
medium.

Now, consider the diffraction radiation from a
medium whose surface is given by X = {(2). In this
case, the integral with respect to p in (26) contains a
product of the delta functions &(p, — k) and d(w—p,v),
which are used for integrating with respect to p, and p,.
Asaresult, (26) isrewritten as

(26)

d’E(n, w)\ _ wna(2m)®
dwdQ / c
U2)
x ep(-i(k,—wv)Z [ dXexp(ikX)
0

a(m)IdZ

(27)

00

X Idpx[k X Eo( Py Ky, /)] €xp(—i pxX)

2
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The integral with respect p, contained in (27) is given

in (10). Thus, upon integration, formula (27) is
expressed as
Lw’ng

<d2E(n, w)> - o
cQ?

dwdQ
x exp(—2aQ)a(w)[k x L (k)]|*
=

(28)

o= J dze{-ilk-wv)Z

2

x exp{(Q +ik,){(Z)}

In the particular case when the wavelength is much
greater than the thickness of the layer of surface irreg-
ularities, k.{ < 1, QC < 1, and expression (28) can be
simplified to

2‘-02”3

<d2E(n, oo)> - e
cQ?

dwdQ
x exp(—2aQ)|a(w)[k x L (k)]|?

(29)

(Q—ikx)IdZZ(Z) exp{-i(k,-w/v)z}

In this case, the radiation distribution is determined by
the Fourier image of the surface shape {(k, — w/v).

4. DIFFRACTION RADIATION FROM A MEDIUM
WITH PERIODIC SURFACE

Now, consider the diffraction radiation at a reso-
nance frequency from a homogeneous substance with
periodic, in the Z coordinate, surface of the form X =
2b{1 + cos(gZ)}. Applying the well-known expansion
of the exponential function in terms of Bessel func-
tions,

exp(iucos®) = ZiSJS(u) exp(isd), (30)

we can reduce the integral with respect to Zin (28) to

00

M(k) = [ dZexp{~i(k,~w/V)2)

x exp{ (Q—1ik,)2b(1 + cosgZ)}

= 2nexp{ 2b(Q-ik,)} ¥ i*J,(2bQ-2ibk,) (31)

x O(sg+ k,—w/v).
The terms in the sum in (31) take nonzero values only
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for thoseirradiation anglesd for which the argument of
the delta function passes through zero, i.e., for

[1-(v/c)cosd] = sg(v/w). (32
This condition stems from the fact that, for fixed values
of w, 9, and v, the value of the longitudinal momentum
transferred from the field to the medium is specified by
the conservation law, while the periodically inhomoge-
neous surface can accept only a certain fixed momen-
tum. Diffraction radiation from a periodically inhomo-
geneous surface was considered in various approxima-
tions by many authors, and expression (32) was often
called a resonance condition. Under these conditions,
diffraction radiation was also referred to as resonance
radiation, although the frequency of this radiation was
not related to the natural frequencies of the medium.
Following this terminology, we can call the diffraction
radiation resonance radiation at resonance frequencies.
The energy distribution of this radiation is given by

d’E(n, w)\ _ LW,
<—doon > = 2Tnec—QZ
x exp{—2(a-b)Q} fr o )L (k)|* (33)
G i K2R 2k B(sg + ),

where T isthe total flight time.

5. DISCUSSION OF THE RESULTS

The results obtained above can be applied under the
condition that the frequency of diffraction radiation is
closeto acertain resonance frequency w, = E /%, where
E, is the energy of an exciton. Transverse waves with
such a frequency are strongly absorbed in the sub-
stance; therefore, the only transverse resonance waves
that may leave the substance are those radiated by mol-
ecules lying close to the surface of the medium. Dueto
the small thickness of the layer of radiating molecules,
one can restrict analysis to the case of single scattering
of the field of afast particle in the substance, which is
accompanied by the radiation of atransverse resonance
wave. This method is a generalization of the Fermi
method for analyzing the reflection and scattering of
transverse resonance waves [1]. The single-scattering
approximation allows oneto consider diffraction radia-
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tion microscopically as atransformation of the Fourier
component of the particle field into a transverse reso-
nance wave due to the interaction with a molecule. In
this approximation, the radiation energy is a simple
function of the coordinates of the molecules of the
medium; this makesthe analysis of diffraction radiation
from complex surfaces simpler compared with the pro-
cedure involving boundary conditions in macroscopic
electrodynamics. The method considered does not
allow one to calculate the intensity of diffraction radia-
tion for arbitrary frequencies. However, as applied to
the problem of diffraction radiation from a dielectric
wedge considered below, this method makesit possible
to relatively easily investigate the radiation energy as a
function of the wedge angle. In the problem of diffrac-
tion radiation from a nonplanar surface of a homoge-
neous medium, this method alows one to calculate
rather easily the radiation energy as a function of the
surface shape of the medium.

The analysis of diffraction radiation at a resonance
frequency without involving macroscopic boundary
conditions can be applied to the experimental investiga-
tion of the structure of complex surfaces. To obtain
more detailed information, one can measure radiation
energy at different values of the particle velocity and at
severa frequency points close to different natural fre-
guencies of the medium.
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Abstract—A new mechanism of development of quantum correlations due to the combined effects of a com-
mon heat bath and a resonant classical electromagnetic field is analyzed for a system of two two-level atoms
coupled by dipole-dipole interaction. Conditions are found under which arbitrary steady-state entanglement
can be created in the absence of measurement in an entangled basis. The analysis of dynamics of entanglement
isfocused on the effects of dipole—dipole interaction, mean number of thermal photons, degree of squeezing of
thermal radiation, classical field strength, and presence of additional decay channels. © 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

Entangled states of quantum objectsinvolve correla
tions that preclude description in terms of a factorized
wavefunction or density matrix. In view of the mea-
surement postulate, the correlations lead to the para-
doxes of quantum theory formulated by Einstein, Pod-
olsky, and Rosen [1] and Schrodinger [2]. Present-day
interest in entangled states is motivated by their pro-
spective applications in quantum cryptography, quan-
tum computing, and quantum teleportation [3, 4],
which motivate extensive studies of conditions and
methods for preparation of entangled states, as well as
their properties and possible utility [5].

Currently, entangled states are created in the form of
two-mode squeezed light, which is widely used in
guantum optics. Preparation and control of entangled
states of atoms, including many-particle ones, presents
amore difficult problem, which is the subject of ongo-
ing theoretical and experimental studies. The possibil-
ity of creation of two entangled macroscopic ensembles
of atoms in free space has been demonstrated in a
recent experiment [6]. Analysis of many-particle states
and methods for creation and control of entangled states
islargely stimulated by the model of aone-way quantum
computer based on quantum measurement [7]. Progress
has also recently been made toward teleportation of
atomic states [8].

In this paper, we analyze entanglement of atomic
states and conditions for entanglement control using
electromagnetic field. Our results suggest a new mech-
anism of entanglement and demonstrate a possibility
for entanglement control. For ssimplicity, we consider a
system of two two-level atoms. A two-state quantum
system is called aqubit in quantum information theory.

Entanglement of atomic states can be created by
three principal mechanisms: (1) dynamic (e.g., dipole-

dipole) interaction between subsystems, (2) interaction
with acommon heat bath, and (3) measurement of inde-
pendent atomic systems (in an entangled basis).

The first mechanism does not seem to cal for any
comment, being directly responsible for entanglement
of states of atomic subsystems. However, the analysis
presented in this paper shows that its role in steady-
state entanglement may vary substantially, depending
on therelative contributions of interactions with acom-
mon heat bath and independent heat baths specific to
individual atoms to the overall relaxation process.

In the nontrivial model of entanglement by interac-
tion of atoms with a common heat bath considered
in [9-12], the state space of the system is decomposed
into two subspaces with different particle permutation
symmetries. In this model, the coupling to a common
heat bath makes it possible to sustain different types of
dynamics in these subspaces:. the evolution of statesin
the decoherence-free subspace is unitary [13], whereas
the Dicke states (which span the other subspace) are
characterized by nonunitary (dissipative) dynamics.
Owing to the difference in dynamics, initially disentan-
gled atomic states that do not lie entirely in either sub-
space become entangled. In superradiance theory, the
states belonging to these subspaces are called subradi-
ant and superradiant, respectively [14, 15], and entan-
glement can also be created if the dissipative dynamics
of subradiant states are different from those of superra-
diant states. Note that these states are responsible for
the experimentally observed dependence of spontane-
ous emission time on interatomic distance [16, 17] (cf.
the theory in [18]).

Measurements of atomic systems usualy involve
detection of photons emitted by atoms. If the atom that
has emitted a detected photon cannot be identified, then
the state of aninitially doubly excited two-atom system
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immediately after the click of the detector will be a
superposition of the ground state of the atom that has
emitted the photon and the excited state of the other
atom. Thus, an Einstein—Podolsky—Rosen (EPR) pair,
i.e, a maximally entangled pair of qubits, is created.
Note that the resulting wavefunction characterizes the
so-caled posterior state of the atoms[19]. A measure-
ment is the projection of the measured state onto the
subspace spanned by the entangled states. The entan-
glement of the subsystem thus selected isexactly dueto
a nonselective measurement, which is related to the
indistinguishability of quantum subsystems with
respect to some observable. The entanglement istotally
unrelated to any collective process, being entirely due
to an effective measurement in an entangled basis. A
specific analogy between the preparation of entangled
states of asystem of noninteracting subsystems by state
reduction (measurement) and quantum state evolution
was considered in [20].

To control the creation of entangled states, one must
be ableto change the system’s parameters. The simplest
way to control the dynamics of an atomic system is
coherent control, i.e.,, coupling to a coherent field.
However, interaction between a system and a coherent
field, aswell asany classical field, does not necessarily
give rise to quantum correlations between its noninter-
acting subsystems. For this reason, the present analysis
of the dynamics of creation of entangled states, includ-
ing steady states, of a system driven by a resonant
coherent field takes into account both dipole-dipole
coupling and decay by interaction with common and
independent thermal reservoirs.

The criterion for entanglement is a separate prob-
lem. The existence of quantum correlationsin a system
can be checked by applying Bell's inequality [21].
However, no genera operational criterion for entangle-
ment of arbitrary systems is available to this day. The
concurrence introduced by Wootters as an entangle-
ment measure [22] cannot be used to formulate neces-
sary and sufficient conditions. In this study, we use the
Peres—Horodecki criterion, which apparently isthe only
avail able necessary and sufficient condition for entangle-
ment (inseparability) of bipartite mixed states [23, 24].
According to this criterion, a state is entangled (insep-
arable) if at least one eigenvalue of the (partial) trans-
pose of the density matrix with respect to the variables
associated with one atom is negative. (The transpose is
henceforth called the Peres-Horodecki matrix.) Then,
there exist quantum correlations in the system, and the
sum of the negative eigenvalues of the Peres—Horo-
decki matrix provides a measure for the correlations.
The present analysisisillustrated by graphs of the abso-
lute value of the lowest eigenvalue of the Peres-Horo-
decki matrix.

The results of our study of the dynamics of a reso-
nantly driven, spontaneously decaying two-atom sys-
tem coupled to acommon heat bath suggest that aclas-
sical field offers an effective tool for coherent control
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based on anew mechanism of entanglement. It has been
shown that entanglement does not arise when the dou-
bly excited state of the system decays via spontaneous
emission [9]. However, their interaction with acoherent
resonant pulse can lead to both time-dependent and
steady-state entanglement. We find conditions for
guantum correlation corresponding to a specific value
of the Peres—-Horodecki measure between —0.5 (for an
EPR pair) and zero. We demonstrate a difference in the
role played by dipole—dipole interaction in the creation
of asteady entangled state between the case of decay by
interaction with acommon heat bath and the case when
the decaying atoms interact with independent heat
baths in the absence of collective relaxation. With
increasing contribution of independent decay channels,
the mechanism of steady-state entanglement by interac-
tion with a common heat bath transforms into a mech-
anism dominated by dipole—dipole interaction, while
the interactions with a classical field and independent
heat baths only guarantee relaxation to a steady state.
The results obtained here can be summarized as fol-
lows: aqubit with arequired entanglement measure can
be prepared via quantum state evolution (without per-
forming any measurement-induced projection) by cou-
pling an atomic system to electromagnetic fields. This
isapromising possibility for quantum communication,
because the resulting entangled state has a longer life-
time.

The paper is organized as follows. In Section 2, we
formulate a master equation for a two-atom density
matrix describing the processes of interest here. In Sec-
tion 3, we analyze the quantum correlations arising
between the atoms when the resonantly driven system
is coupled to a common heat bath at zero temperature,
taking into account dipole—dipole interaction. In Sec-
tion 4, we discuss the case when the common heat bath
isin the maximally squeezed state at a finite tempera-
ture. In Section 5, we present the numerical results
obtained for a system coupled to an arbitrary common
heat bath and independent heat baths specific to indi-
vidual atoms. We analyze the change in characteristics
of coherent control caused by deviation from optimal
parameters.

Preliminary results of this study have been reported
at several conferences [25].

2. DESCRIPTION OF THE MODEL
AND GOVERNING EQUATIONS

The two qubits considered here can be impurity
atoms (or ions) in a photonic crystal or single-mode
fiber, or atoms in a magnetic trap or microcavity, or
atoms in other man-made environments. All of these
systems can be accurately described by models of col-
lective decay by interaction with a common heat bath,
which can be reduced to models of atom dynamics in
one-dimensional resonant fields. We consider a classi-
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cal electromagnetic wave propagating in the positive z
direction and represent the electric field of the wave as

E = €exp[—i(wt—kz)] + €* exp[i(wt —kz)].

In the dipole approximation, the density matrix %R of
the two-atom system obeys the master equation

dR _

dt
Here, the Hamiltonian € of the two-atom system isthe
sum of the Hamiltonians 7€, of isolated atoms, an oper-

ator V' representing the dipole-field interaction, and
the dipole—dipole interaction operator V' 4,

Ho= Ha+V o+ gy,

[97% ] - oR. (1)

where
K, = %ﬁwo(cgm 1+10Cy),
Vy=—EmWOL+10E ), @
Vea= 28
= |1 - oy,

R denotes the distance between the qubits; in the case
of Markovian evolution of the system coupled to acom-
mon heat bath, the relaxation superoperator I has the
form (see[9])

A

MR

2
- )_(|_(121_0|_(N +1)(RG,6_+C.C_R-2€¢_RE.)
2
. )—(|—%1-9|—N(@i(6_(€+ +CC.R-26,R6) (3

Xd1°(2<@ RC, —RC.C, —€.C.R)M

2
*
le

A7 (2@ RE_—RC_C_—€C_C_R)M*,
with
¢, =C,01+e"°T C,,

= o0, C, = |10,

the state vectors |00and |1C0correspond to the ground
and excited energy levels; fiwy, is the energy difference
between thelevels; d isthe atomic dipole moment oper-
ator; d,gisamatrix element of the dipole moment oper-
ator; and 0 isthe phase gained by the wave as it travels
the distance between the atoms.
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The common heat bath is a quantized one-dimen-
siona electromagnetic field whose initial state |P,Cis
delta-correlated in time:

[Dobbe | PJT = N(w)3(w— o),
[0, biy| DT = [1+ N()]8 (w0 — ),
[Do|b by P = M(w)3(2Q — w—w),
[,|bibl| P = M* (0)3(2Q; — w— ),

where b, and bI) denote, respectively, the annihilation

and creation operators for thermal photons with wave-
number g = ge, = we/c and N(w) isthe spectral density
of the bath. The common heat bath isin asgueezed state
characterized by acentral frequency Q and adegree of
sgueezing

M(w) = [M(w)l exp(-2iQrt),

M(w) < /N(w)[N(w) +1].

The evolution of atoms coupled to the heat bath is
described in the Markovian approximation. The cou-
pling constant ¥, the parameters N(w) = N(w,) = N and
M(w) = M(wy,) = M, and the exponential factor

expliw(r,—r,) [e,/c]
= expliwg(ra—ry) [e/c] = exp(i0)

representing the phase gain are independent of fre-
quency (r, and r, are the locations of the atoms, |r —
r,| = R). The polarization states of thermal photons are
ignored.

In the limit case of M = N = 0, the heat bath defined
above reduces to a one-dimensional vacuum field. In
other cases, it providesagood model of the electromag-
netic field produced by a degenerate optical parametric
oscillator [26].

The recoil effects due to photon emission and
absorption are neglected in deriving both the model of
gubits driven by a classical field and the relaxation
superoperator. Polarization effects are neglected and
the bol df ace vector notation is not used, since the elec-
tric field and dipole moment are assumed to be parallel.

Superoperators having the form of (3) with 6 = 2rm
(n =0, £1, ...) describe interactions with one- and
three-dimensional heat baths.

In the one-dimensional case, electromagnetic
modes propagating in both directions are assumed to
have similar characteristics. To allow for differencein
parameters between therma modes and describe the
case of 8 # 2 (n =0, £1, ...), one should replace the

superoperator [ o with o + "o, where the superoper-
ator [ isobtained by substituting primed quantities (in
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particular, changing €, to 6. =C, 0 1 +¢e°1 0 C,)
in fo.

In the case of a three-dimensiona heat bath, the
atoms must be localized in aregion much smaller than

the resonant wavelength. However, the separation
between the atoms must still be taken into account [27]

by introducing relaxation superoperators 1 and [
corresponding to independent decay channels:

() 2
. d .
Fih = X—|21°| (ND +1)

x (Re€VCY + € eVR - 26V RE)

xD2 (4)

x (26 RCY - R6PECL -6 CVR)

(j) yx 2
X dio ()
+
5 M

x (26VRe€V - R6VEY —6VeVR)

where

¢ =c,01, @?=10cC,. (5)

In other words, the operator o must be replaced by
fo + |:1 +|:2 in(l).

The Lindblad equations with relaxation superopera-
tors having the form of (3) or (4) provide ageneral for-
malism for describing decay processes in the Mark-
ovian approximation [28]. For this reason, we believe
that system (1)—(3) written for two-level atoms, with
Eqg. (1) in some cases replaced by

dR _

o MR-

[QR ) -1 R —T R — 2R, (6)

can be applied to describe the dynamics of two qubits
coupled to aresonant classical and a broad-bandwidth
guantized electromagnetic fields.

Equations (1) and (6) entail equations for slowly
varying density-matrix elements (as compared to
exp(xiugt)). Assuming (for simplicity) that the atomic
transition frequency, the driving-field carrier frequency,
and the central frequencies of all heat baths are equal,
wefind that the dowly varying density matrix isidenti-
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cal to the density matrix in the interaction represen-
tation,

R = exp(iHAt/h)Texp(—i Hatlh),
R = L[, V] -F R, )

V= exp(i%atin)V exp(—i K atih).
Averaging Eq. (7) over fast oscillations, we aobtain a
similar equation in which the nonzero matrix elements
represent dipole—dipole interaction: 'y, = d;gdy RS =

°lf|*f . We use the notation for the state space basis vec-
torsintroduced in [9]:

[gd= |00 |00} |eO= |13 |10 ®
[fO= |1C10 |00} |I0= [0C1D |10

Here, |f Orepresents the singly excited state of a two-
atom system in which the first atom is excited, the sec-
ond one is in the ground state, and so on. Frequently,
the following partially entangled basis should be used
instead of (8):

lgbjal= %ume‘“’m,

IsO= T(|fD+e"e|I 0, e

(9)

The matrix elements calculated in these basis sets are
related asfollows:

%ff = %{%ss"'%aa"'%as"'%sa}’

g{ll = %{%ss"'%aa_%as_%sa}a

R = %Ze‘e{%es—%ea},
Ry = %2{ Pea+ Red |
Ry = %zeie{@zgs_%ga},
Ry = jé{%gawngs},

QRfl = %eie{%as-"%ss_%aa_%sa}-

When the carrier frequency of the classical field is
different from the atomic transition frequency,
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another definition of slowly varying amplitudesis more
suitable:

2i wt —iwt
%ge = %gee y %fg = %fge y

QRﬂ = E);‘)«fly %ee = @iee, e

Taking into account the detuning from resonance [29],
we use a standard method to derive the corresponding

equations for slowly varying amplitudes 97% (dropping
the double tildein G ):

idj,é 4
Eat + TRy = —5— 190" (o, + R, )
of + eiegigl)’
idy,é* _j
5:% + rD%ff = 10 (Rig—€ 99Ref)
idyé, o i|dy|?
_1To(e Rie—Rgr) + h_;(;(%fl -R),
idj,é o
%%"’ rEgill = - 10 ( eQ{Ig el)
d i d
I 10 (Rie— e%gl)+l| 10| (Ris —Ra),
|d o
E%: + I_Eg{ee - 10 ( e%ef + 97{el)
o Gy, + &),

[dﬂt+ (00— o) + r}%

|d* é* —i
= 10 (g{gg — R — e%”)
. . 2

[dﬂt Fi(o— o) + r}@]{

|d —| —i
= 10 ( e%gg 99{” - Ry)
. . (10)
idpé | iyl
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[c(jjt +2i(w—wy) + F}

d* %* —i —i
= 10 (%gl g)Rfe"'e 99Rgf 9gile)a
id},é* I
Hjt + rljglfl - = 1% € e(g{fg_g{el)
|d10

P 1 g
—— (Rie—Rg) + ﬁRS( f ),

S +iteo- ) +T [fhie

= Idm% (%ﬂ"'e_le%ff _ie%ee)
idyé i|dy|?
+ ;f %ge_ ;;3 %Iev

[(%—i(w—%) 4 r}%

|d
= 10 (Ree— 97?,”—6 %fl)
idi,é* _ig ||d |
%e Reg + ;;’3 Res.

The matrix elements of the relaxation superoperator
representing unidirectional decay by interaction with a
common heat bath are expressed as

MRyg = —X|did (N +1)
x (R + e_ie%ﬂ + eiegilf +Ry) + 2X|d10|2Ngtgg

—X(d10) € "R geM — X (l2) € * R oM™,

rg{ff = )'(—|92}2|—(N + 1)

X (2R + e_ie%fl + eieg{” — 2R e)

X| 1o|

> N(e Ieg{ﬂ + elegi” + Z%ff - 2%99)

+ Xdio%gee_ieM + deoeie%egM*,
2
ry, = X—|d21°| (N+1)
x (%Heie + 2R, + e—ie%ﬂ — 2R ee)

X|d10|

N(Z%H + eleg{” ie%ﬂ —2%99)
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+ X508 *RgeM + X %R eg " M*,
[Ree = 2X|dig (N + 1) R
_X|d10|2N(%II + Ryp + € Ry + €°Ryp)

—X(d10) € "R geM — X (dl26) R g€ "M*,
MRy = X_____|d210| (N+1)

X (Rt + € Ry —2Rge— 2€°R))

+ Xl 1°| N(e " +3T)

+ Xdioz(g{fg + eieg)]{Ig - ieg{ef) M*,
2 (12)
MRy = X—|d21°| (N+1)

x (eie%gf + Ry —2R¢e — 2ei997i|e)

+ Xldwl 1°| N(3%g +€°Pg)

+xd% (%fge + Rig—€°Re)M*,
MRge = X|d1ol (N + 1) Rgq + X|dio| NR ge
+xd1 (ele%n +€°Ryy + Ry
+ &Ry = Ryg€® — € Ree) M*,
FrRy = ﬁ%m—l—z(N +1)
x (€°Ryr + 2Ry + €°Ry) — 26°Ree)

X|d10|

> N(Zgiﬂ + ele%ff + eleg{” —26'9%99)

+ Xdlo%geM + Xd*2 ZISQRegM*

rE)Rfe - Xl 1O| (N + l)(‘?’%fe"'ele%le)

2
+ Xl (&1, + Gy~ 2y~ 260)

+xd¥; (e'e%e|+e2'99Ref 'GQng)M*,

M Rye = Xldl “" (N+1)(38R+ € " Rye)

2
+ )@ N(R e+ € Rie— 26 "Ry — 2R 1)
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+ Xd (%el + ele%ef Ieg{Ig)M*v

where time-dependent squeezing is characterized by
= |M|exp(—2iQrt + 2iwt).

We assume that the atomic transition frequency, driv-
ing-field carrier frequency, and the central frequency of
the heat bath are equal, so that M is independent of
time.

3. ENTANGLEMENT BY INTERACTION
WITH A HEAT BATH AT ZERO TEMPERATURE

First, we consider the simplest case of unidirectional
collective decay in thecaseof N=M =0, o =y =
[, =0and®=2m (n=0, +1, ...).

Let us discuss the dependence of entanglement on
the quantities 3 = x|d,o[%/2 and d = |d,|/R%A character-
izing interaction with the heat bath and dipole-dipole
coupling, respectively, and the Rabi frequency & =
[€dyo|/A.

When the only effective entanglement mechanismis
the interaction with the common heat bath, steady-state
quantum correlations are observed and the degree of
entanglement can amount to—0.17, depending on initial
conditions[9].

When only the dipole—dipole interaction is effec-
tive, no steady-state quantum correlations are created,
because the degree of entanglement oscillates between
zero and —0.5. The classical field does not create any
entanglement at all, and the corresponding eigenvalues
of the Peres-Horodecki matrix are [1, O, O, O] at any
instant.

Any combination of these mechanisms leads to a
different entanglement behavior. However, al of the
resulting steady states depend on initial conditions, as
in the case of collective decay by interaction with a
common heat bath.

Weintroduce dimensionl ess parameters characteriz-
ing the relative magnitudes of dipole—dipole coupling
and Rabi frequency as compared to interaction with the
heat bath:

K = 3/B = 2IR*Ax,
c = &/B = 2€|/hx|dy.

Dipole—dipole interaction in a two-atom system
coupled to a common heat bath either does not affect
steady-state entanglement or destroys it. In the case of
adoubly excited (Dicke) initial state, no entanglement is
created in the system. Inthe case of asingly excited state,
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Fig. 1. Time dependence of the lowest eigenvalue of the Peres-Horodecki matrix parameterized by the ratio of the Rabi frequency
to the constant of coupling to acommon heat bath with zero photon number in the absence of dipole-dipole interaction: (a) doubly

excited system; (b) singly excited system.

steady-state quantum correlations are created, and the
lowest eigenvalue of the Peres-Horodecki matrix,

i

)\=4

21—+ e _gPlooskt)],

tendsto alimit value of —0.104. Since thislimit isinde-
pendent of the dipole—dipole interaction strength, the
corresponding steady-state entanglement is similar to
the entanglement of noninteracting atoms by interac-
tion with acommon heat bath [9]. Thisisclear fromthe
fact that the dipole—dipol e interaction does not mix sub-
spaces of states with different particle permutation
symmetriesif 8 = 2rm (n =0, £1, ...). When the phase
gain is different from these values, the dipole—dipole
interaction mixes such subspaces and can destroy
steady-state entanglement if K is sufficiently large.

A totaly different behavior is observed when the
atoms are driven by a resonant classical field. In this
case, steady-state entanglement is created when the
system is initialy in the doubly excited state, ground
state, or singly excited state. The dependence of entan-
glement on the initial state of the system is illustrated
by Figs. 1aand 1b, which correspond to doubly and sin-
gly excited states, respectively.

As the classical-field strength increases, the devel-
opment of guantum correlations is followed by their
destruction; i.e., there exists an optimal field strength
for maximal entanglement. Note al so that entanglement
of this kind is enhanced by increasing dipole—dipole
interaction.

Both the operator of interaction with aclassical field
and the dipole—dipole interaction operator are symmet-
ric under particle permutation in the case of 8 = 2m
(n=0, £1, ...) considered here. However, the interac-
tion with a classica field leads to different types of
steady-state entanglement, since the corresponding
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operator is reducible; i.e., the state space of the system
is decomposed into irreducible subspaces. Due to the
difference in dynamics between the subspaces, both
time-dependent and steady-state entanglementsare cre-
ated by change in the representation of any state of the
system in an entangled or disentangled basis set. In
general, each particular operator contributing to the
system’s dynamicsis associated with a specific decom-
position into irreducible subspaces, whose properties
determine the dynamics of entanglement.

In the case of a singly excited state (Fig. 1b), the
interaction with a classical field destroys steady-state
entanglement, while the dipole—dipole interaction only
induces oscillations, while its effect on steady-state
quantum correlations is negligible in a wide range of
parameters.

If the three interactions are effective simultaneoudly,
then the nonzero elements of the time-independent den-
sity matrix are

Ry = (L+2¢”+4c* +K)A™,
Rys = Ca/2(k—2ic*—i)a™,
Rye = —2¢7(1+ik)A™,

Re = 2¢°(2¢° +1)A™, R, = —2ic’y2a™, (12)

Ree = 4¢’'A™, Ruy = Raa

A7 = (1-R,)(1+4c®+12¢* +K)) .

Thisgenera solutionisreduced to aparticularly simple
form by retaining only thefirst-order termswith respect
to the constant of coupling to the classical field (in the
partialy entangled basis):
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O i O
K—i

E 1_%aa 0 K2+1C'\/§(1_%aa) 0%

O O

g = O 0 R aa 0 0n

Spes :

. 2+1cﬁ(1—%aa) 0 0 o

g~ 0

O 0 0 0 00

The corresponding Peres—-Horodecki matrix is

O i i O

K+i K—I 1
E 1 _%aa K2 + 1C(1 _%aa) 2, 1C(1_%aa) é%aag
. K—Ii 1 .
o HE5—c(1-Re) Paa 0 0o B

Rs'" = O *1 0. (13)
K+i 1

O0—5—Cc(1-Ra) 0 é%aa 0 O
Ok +1 O
SR 0
5 E%""a 0 0 0 g

In these expressions, the time-independent element R,
of the density matrix is determined by theinitial condi-
tions and the coupling constants. The corresponding
expression is very cumbersome. For this reason, our
analysis presented above is restricted to numerical sim-
ulations.

If the dipole-dipole interaction is neglected, then
the lowest eigenvalue of the Peres-Horodecki matrix
has the simple form

_ 1Ry, + 6R,C° + 8R,c' —2¢ + 4c”

Hence, when R, = 0, the highest degree of squeezing
is characterized by A =—0.06, which correspondsto ¢ =
&/B = 2[é|/hx|dyo| = 0.38.

4. MAXIMALLY SQUEEZED HEAT BATH

Now, we consider the most interesting case, when
the common heat bath is in the maximally squeezed
state at afinite temperature ((M|= /N(N + 1)), retain-
ing the condition 8 = 2 (n =0, £1, ...). In this case,
the evolution of initially pure states is characterized by

A (14) atwo-atom wavefunction.
2 2 4 . -
1+4c +12c The Peres-Horodecki matrix is
ON+1 1 g
O 0
1 JN(N+ 1)

geeoo° hea ToNwr (e 0 F
st - 0 0
0 _JIN(N+D) 1 0
. 0 oN+1 (L Hea) e 0 J
0 1 N 0

When R, = 0, the atoms are in identical (excited or
ground) initial states. In the absence of dipole-dipole
interaction, the only negative eigenvalue of the Peres—

Horodecki matrix isA = —./N(N + 1) /(2N + 1), which

tendsto itslowest limit, A =-0.5, with increasing pho-
ton number.
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Thus, the collective interaction between two excited
or ground states and a maximally squeezed high-inten-
sity broad-bandwidth electromagnetic wave gives rise
to steady-state entanglement analogous to that in an
EPR pair. This is explained by the high degree of
anisotropy of angular-momentum relaxation in a
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Fig. 2. Time dependence of the lowest eigenvalue of the Peres-Horodecki matrix parameterized by thermal photon number for a
squeezed heat bath: (a) doubly excited system; (b) singly excited system.

sgueezed heat bath (see Appendix 1in[29]), which can
be interpreted as transfer of correlations from the
squeezed heat bath to angular-momentum states. The
relationship between entanglement and spin sgueezing
was discussed in [30]. Since the evolution of Dicke
states (symmetrized under permutation of the states of
atwo-level system) can be described in terms of angu-
lar-momentum dynamics [14, 15], the steady state cou-
pled to amaximally squeezed heat bath isthe following
pure one (see [31]):

JN+1|gB+ /Nl
J2N+1

Figure 2a illustrates the dependence of the time-
dependent lowest eigenvalue of the Peres—-Horodecki
matrix on the thermal photon number for a doubly
excited two-atom system. Here, the dipole-dipole
interaction has no effect on the steady-state entangle-
ment.

Thus, since initially identical atomic states interact-
ing with amaximally squeezed heat bath evolve toward
an entangled state analogousto an EPR pair, any degree
of entanglement can be obtained if the system is con-
trolled so that entanglement is not destroyed. The
desired control is a classical driving field. The reso-
nantly driven system evolves into a mixed steady state,
and the corresponding time-independent density matrix
is

Ryg = A (1—Ry) + (8N°+5N—2¢°N
+ 4N® + 8¢*|M| —6|M|N — 4N?IM| + 8¢’N
+ 4¢" —2|M| - 8¢’ |M| + 1 + u),

Rys = —14/2CA7 (1=~ Ry (U+ N—|M]| + 1),
Rye = =07 (1= Ry,) (u—2¢|M| —4N*|M|
—4N|M| + 44N>+ 6N*+ 2N —|M|),
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Re = 2¢°A(1-R,) (2N + 1 +u),

Ree = —/2cA7(1-Ry)(u+N=[M), (15

Ree = A7(1-Ry)

x (4N%+ N —4N’|M| + 2¢°N + 4N°
—4¢IM| + 8¢*N —2|M|N + 8¢c*|M| + 4c?),
Rea = 0,

u = 4c’M| + 4¢°N + 2¢7,
A = 1+12N*+ 6N —8N?|M| + 24c¢|M|
—8N|M| —8c’|M| + 8¢*N + 8N*—2|M|

+ 4¢% + 24¢*N + 12¢”.

An analysis of the lowest eigenvalue of the Peres—
Horodecki matrix shows that no entanglement is cre-
ated in the system by strong or weak classical field if
R, = 0. Figure 3 also demonstrates that classical driv-
ing field generally destroys steady-state entanglement.
However, the degree of steady-state entanglement var-
ies between zero and that in an EPR pair within a cer-
tain range of classical-field strength. Thisobservationis
most important in terms of coherent control, because it
impliesthat any required degree of entanglement can be
created in aresonantly driven system, depending on the
strength of coupling to the classical field.

In the case of asingly excited system, the degree of
entanglement decreases with increasing thermal photon
number (see Fig. 2b). When driven by a classica field,
the system exhibits Rabi oscillations and the degree of
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Fig. 3. Time dependence of the lowest eigenvalue of the
Peres—Horodecki matrix parameterized by the ratio of the
Rabi frequency to the constant of coupling to a maximally
sgueezed common heat bath in the case of adoubly excited
system.

steady-state entanglement is independent of both pho-
ton number and dipole—dipole interaction.

5. ENTANGLEMENT BY INTERACTION
WITH AN ARBITRARY HEAT BATH

L et us now discuss the dependence of entanglement
on detuning from optimal parameters. Practical imple-
mentation of maximal squeezing presents certain diffi-
culties in the case of broad-bandwidth radiation. This
leads to a certain difference between the actual and
highest possible degrees of entanglement. The devia-
tion from maximal squeezing reduces the degrees of
both time-dependent and steady-state entanglement, as
illustrated by Fig. 4.

Another important mechanism responsible for devi-
ation from optimal steady-state entanglement in the
present model isthe presence of additional decay chan-

S~

4
N O 02

Fig. 4. Time dependence of the lowest eigenvalue of the
Peres-Horodecki matrix parameterized by the degree of
squeezing for a common heat bath in the case of a doubly
excited system.
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nels, which can be modeled by introducing interactions
with independent heat bathsinto Eq. (6). For simplicity,
we assume that the independent heat baths are not
squeezed, have equal parameters, and do not contain
any photons. When the dipole-dipole interaction
between the atoms is neglected, the nonzero elements
of the time-independent density matrix obtained by
solving Eqg. (6) (in the partialy entangled basis):

Ryg = [W+8c%(2¢” + 1+ 2b+b%)]A™,

R, = 8c%(2¢”+ 1+ 2b+b?),

_ _ 4,1
R, = R, = 16c'A™, (16)
Rys = —2i+/2c(4b” +b®+ 2+ 5b + 4c” + 4bc%)A™,

Rye = —4¢’(b®+3b+2)A™,

R, = -8i(1+b)./2c”.

Here, ¢ denotes the ratio of the frequency & = [€d,|/%
characterizing the interaction between an atom and a
classical field to the constant 3 = x|d,0|%/2 of coupling
to an independent heat bath, ¢ = &/B = 2[€é|/Ax|d,o| and
b = x;/x isthe ratio of the constants of coupling to the
independent and common heat baths. The remaining
parameters are defined as follows:

A = 64c” +16¢°(2¢° + 1+ 2b + b%) +w,

w = b*+6b°+13b%+ 12b + 4.

The interactions with independent heat baths
destroy the entanglement created by a classical wavein
asystem coupled to acommon heat bath. Figure5illus-

N
N
™
AN
N
|
N
J
N
N
i
|

Fig. 5. The lowest eigenvalue of the time-independent
Peres-Horodecki matrix. Here, 3 and ¢ are, respectively, the
ratios of the constant of coupling to independent heat baths
and the Rabi frequency to the constant of coupling to acom-
mon heat bath with zero photon number in the case of adou-
bly excited system.
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Fig. 6. The lowest eigenvalue of the time-independent
Peres—Horodecki matrix. Here, k and c are, respectively the
ratios of the dipole—dipole interaction strength and the Rabi
frequency to the constant of coupling to independent heat
baths with zero photon numbers in the case of a doubly
excited system.

trates the entanglement behavior under these condi-
tions.

Finally, we consider the limit case when the atoms
are coupled only to independent heat baths. Then, time-
dependent entanglement can be created only by dipole—
dipole interaction (under appropriate initial condi-
tions), whereas no steady-state entanglement is created
in the absence of resonant classical field. The corre-
sponding diagonal time-independent density matrix,

Ry, = (N + 1) _ o - (N+DN
9N+ T T N+
_ N’

R = (2N + 1)’

is independent of dipole-dipole interaction and possi-
ble sgueezing by independent heat baths. Here, N
denotes the spectral density of an independent heat
bath.

For asystem driven by aresonant classical wave, the
time-independent solution describes an entangled state
depending on the dipole—dipole interaction strength:

Ry = (16¢* +4Kk*+8c”+1)A™,
Ry = 2c(4ic”+2k+i)A™,
Ry = 2c(—4ic®+2k—i)A™, Ry = 4c’A™,
Ry = R, = 4c’(4c®+1)A™, (17)
R.. = 16¢'A™, Ry = —4c’(2ik+1)A™,
R = -R, = -8ic’A™,

A = 64c’ + 4Kk* + 16¢% + 1.
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Here, the photon number in the independent heat baths
is set to zero for simplicity. Figure 6 illustrates the
entanglement behavior under these conditions.

6. CONCLUSIONS

The entanglement mechanism considered here is
very difficult to analyze, because it is determined by at
least eight groups of variable parameters. the photon
number and degree of squeezing of the common heat
bath, analogous parameters of independent heat baths,
the constants of coupling to the heat baths, the dipole-
dipole coupling parameters, the Rabi frequency, the
detuning from resonance with the classical field, the
detunings from the central frequencies of the heat
baths, and the phase gain. Moreover, the steady state of
a two-atom system coupled to a common heat bath
depends on the initia states of the atoms. Our discus-
sion and analysis are focused on situations that, on the
one hand, highlight the specific features of the new
entanglement mechanism and, on the other hand, dem-
onstrate the possibility of entanglement control by vari-
ation of the classical-field strength. Since a quantitative
criterion for entanglement is obtained by solving
fourth-order algebraic equations, analytical description
of entanglement cannot be developed in most cases,
and we had to rely on numerical simulations.

One special feature of the discussed mechanism of
development of quantum correlations is that steady-
state entanglement is independent of the direct dipole—
dipole interaction when the system isinitially in asin-
gly excited state, being determined primarily by the
characteristics of the common heat bath and the Rabi
frequency (for 8 = 2rm, where n = 0, 1, ...). The
steady-state entanglement behavior changes only when
the decay via independent interactions with specific
heat baths plays a substantial role in the dynamics of
each atom. In the absence of collective decay, the entan-
glement is mainly determined by the dipole—dipole
interaction and the Rabi frequency. Basically, this is
explained by the properties of the irreducible represen-
tations of the total dipole moment operator and the
operator of dipole-dipole interaction between the
atoms. Furthermore, this observation suggests two
essentially different mechanisms of entanglement
between atoms driven by a resonant classical electro-
magnetic wave. One of these is based on collective
decay by interaction with a common heat bath; the
other, on direct (in the present case, dipole—dipole)
interaction between the subsystems.

The numerous studies of entanglement of atomic
states coupl ed to acommon heat bath reported in recent
papers (e.g., see [12, 30, 32, 33]) included analyses of
entanglement of atoms driven by a classical electro-
magnetic field. In [34], a Dicke-type model was
invoked to analyze the steady-state entanglement of a
coherently driven system coupled to a common heat
bath in the absence of both dipole-dipole interaction
and sgueezing, and use was made of the Wootters
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entanglement measure (concurrence). Our results agree
with those obtained in [34] when restricted to Dicke
states and %, = 0. However, entanglement in the case
of an unsgueezed common heat bath is due specifically
to R, # 0. Moreover, general analysis of entanglement
of symmetrized states of indistinguishable particles
(including Dicke states) |eads to ambiguous results[35]
and must be taken further. The relationship between
entanglement of Dicke states and atomic-state squeez-
ing was considered in [30]. In a recent paper [36], the
entanglement created by a classical driving field was
analyzed for spontaneously decaying atomic systems
coupled by dipole-dipole interaction. The results
reported therein are consistent with those obtained here
in the absence of coupling to a common heat bath.
Note, however, that the present analysis of entangle-
ment is performed by taking into account both symme-
trized and antisymmetrized (with respect to particle
permutation) quantum states.
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Abstract—The wavefunctions, matrix elements, and probabilities of radiative transitions between Stark sub-
levels of atomic multiplets are calculated as afunction of the strength of adc electric field. The general expres-
sions for the wavefunction of a multiplet state in afield obtained by perturbation theory for close-lying levels
with the use of completely reduced Green's function allow one to determine the field dependence of both the
dipole-allowed and dipole-forbidden radiation amplitudes. A decomposition of the second-order amplitude for
the transition between fine-structure sublevels of two levels of equal parity into irreducible components is
obtained. Numerical calculations of the probabilities of radiative transitions between triplet states of helium
show the possihility of experimental observation of the emergence and vanishing of Stark lines of radiative tran-
sitionsin the vicinity of anticrossing fields. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Radiative transitions between bound states are the
basic processes that characterize the quantum structure
of an atom. The probabilities of these transitions deter-
mine the possibility of observing and measuring the
corresponding intra-atomic characteristics. The proba-
bilities of radiative transitions change under an external
field. A quantitative description of this phenomenon
allows one not only to predict the results of experimen-
tal investigations but also to control the process of radi-
ation by adc field, which gives rise to new (forbidden)
lines in the emission and absorption spectra and leads
to the vanishing of a number of lines that exist in the
spectrum of afree atom.

A helium atom is of special interest because it rep-
resents the smplest, after a hydrogen atom, quantum
system that consists of three particles. A specific fea
ture of the Stark effect for a helium atom is the anti-
crossing of levelswith equal nonzero angular momenta
| of an excited electron (equal to the total angular
momentum of the atom | = L). The anticrossing may
occur both between the singlet 1snlL; (a total spin of
S= 0 and a total momentum of J = L) and the triplet
1snl3L, (atotal spin of S= 1) sublevels[1, 2], aswell as
between sublevelsof atriplet [3] that differ by the value
of thetotal momentumJ=L,Lx1(J=L +9).

The anticrossing of levelsin adc electric field Fy =
Fq&, is caused by the divergence (repulsion) of sublev-
elsas F; increases in a strong field F, > F; the differ-
ence between the polarizabilities of the lower and upper
sublevels is such that, for Fy < F,, these sublevels
approach each other asF, increases. At the anticrossing
point F, = F,, which corresponds to maximally close

sublevels, the mixing of the initial statesleadsto asig-
nificant change in the properties of diverging sublevels.
In particular, an admixture state with a different
momentum J may remove the constraint on the dipole
radiation or, conversely, may nullify the radiation
matrix element due to the destructive superposition of
nonzero matrix elements of dipole-allowed transitions.
Thus, in addition to the shift and the splitting of levels,
adc electric field may lead either to the emergence of
forbidden or to the vanishing of alowed lines in the
atomic spectrum.

Since the discovery of the Stark effect, extensive
experimental research has been devoted to studying the
behavior of an atomic spectrum, including studying the
variation in the intensity of atomic lines in an electric
field (see the survey in [4]). However, a consistent the-
oretical analysis of the wavefunctions and the probabil-
ities and intensities of radiative transitions in atoms as
afunction of adc electric field has been carried out only
for a hydrogen atom: (i) for highly excited Rydberg
states with principal quantum numbers of n = 10, 30,
40 [5] by diagonalizing the Hamiltonian of the interac-
tion of an atom with the field in the restricted basis of
states of n' shellswith |n' —n| < 3 and (ii) for arbitrary
states by perturbation theory with the use of the reduced
Coulomb Green function both in the first nonvanishing
terms[6] and in higher order termsin the field strength
Fo [7]. The calculation of quadrupole correctionsto the
probabilities of radiative transitions in a hydrogen-like
atom has shown that the contribution of a multipole
interaction with radiation is comparable to the effects
of the spin—orbit interaction (fine structure) and
becomes negligible compared with the Stark correc-
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tions when the energy of interaction with adc field is
greater than the energy of the spin—orbit interaction [8].

Theoretical calculations of the Stark effect in multi-
electron atoms have been primarily restricted to the
determination of the shift and the splitting of energy
levelsasafunction of the electric-field strength. A con-
sistent description of the field dependence of the energy
at which the anticrossing of the n®P; triplet sublevels of
helium occurs has been performed by perturbation the-
ory for close-lying levels on the basis of high-precision
relativigtic calculations of polarizabilities[9], aswell as
with regard to the fourth-order corrections (expressed in
terms of hyperpolarizabilities) both to the diagonal [10]
and off-diagona [11] matrix elements. Higher order
perturbation theory for almost degenerate states devel-
oped in this way alows one to calculate not only the
eigenvalues but al so the eigenfunctions of an atom in a
field, which are primarily required to determine the
intensities of multiplet emission and absorption lines of
electromagnetic waves by atoms [12] in a dc electric
field. In the present paper, we apply the method devel-
oped in[11] to calculate the wavefunctions, matrix ele-
ments, and probabilities of radiative transitions
between the triplet states of helium.

2. THE WAVEFUNCTION
OF A MULTIPLET STATE
IN A DC ELECTRIC FIELD

Theintegral Schrodinger equation

k

W(r) = zaJiM(anJiM(r) )

—Gi(r, r)(V(r') —AE)|W(r) )

expressed in terms of the completely reduced Green
function

Ge(r,r') = Gg(r, ")
< Greom(N@Lam(r’) 2

_iz EnLJi -E

=1

with the mean energy of an atomic multiplet

EnL.JI

: k
T2

(kisthe number of interacting sublevels of the multiplet
with energies E, ;) for the wavefunction ¥, which

becomes the wavefunction @, j(r) of one of the sub-
levels when the field is switched off, can be reduced to
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aset of homogeneous algebraic equations for the super-
position coefficients ayy = (@, v |WI11]:

k

iZlaJiM[WJJ‘ +(e; —AE)d,;] = 0, 3)

J=343 0

Here, ¢, = E,, —E and

WJJ

. . _ (4)
= @yl V[ 1+ Ge(V —AE)] " |@y om0

is the matrix of the operator V = F, - r that takes into
account the interaction of an atom with adc field F, =
Fo&, in al orders in the field amplitude F, [13, 14]
(here, we use the atomic system of units, r being the
radius vector of an optical electron).

The energy correction AE = E — E isdetermined by
diagonalizing this matrix, which is equivalent to solv-
ing the secular equation

det”WJJi + (E‘]i —AE)6JJ|” = 0 (5)

Hereandin (3), 3,, isthe Kronecker delta.

Note that, in contrast to thefirst termin Eq. (1) with
fixed principal n, orbital L, and magnetic M guantum
numbers, in the second term, which is orthogonal to the
first term, only the projection of the total momentum M
onto the direction of the dc field is fixed. Thus, the
orbital and total momenta of an atom in state W are not
fixed; this may lead to violation of the selection rules
for radiative transitions and, hence, may give rise to
lines of dipole-forbidden transitions, which are missing
in the spectrum of a free atom and whose intensity
increases with the field strength F,.

In contrast to degenerate states, for which €, =0,

only one coefficient ayw may be nonzero for Fy = 0
in (1); asfollows from (3) and (5), this coefficient cor-
responds to the state with energy AE = € 3, However,

for afield such that |WJJi |~ €55 i=1,2, ...,k al coef-
ficients in Egs. (1) and (3) are close to each other in
absolute value and weakly depend on the field. Obvi-
ously, the accuracy of calculating the energy AE from
Eqg. (5) depends on the accuracy of calculating amatrix
element, which can be calculated by (4) up to an arbi-
trary order in the field.
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2.1. Pairwise Interacting Sates
Consider, for simplicity, theinteraction between two
close-lying sublevels (k = 2, €3 = +0/2, where d =
EnLy, — Enwy, isthe splitting energy in zero field) that

are realized in the triplet states of helium with M = 0
andJ=L + 1, aswell asin the stateswith M = L and
J=L, L+ 1 Inthis case, the set of equations (3) and
secular equation (5) take the form

(W3131—6/2—AE)8.J1M+W31326132M = 0,

6
WJleale + (W‘JZJZ + 6/2_AE)a.J2M = O, ( )

(W, 5, —8/2—AE)(W, , +8/2—AE)

(7
=W, ,W,

291"

The solution of system (6) with regard to the normaliza-
tion condition

k
wwo= 'y |ayu|*— BGL(V - AE)|WO= 1
i=1

leads to equations for the superposition coefficients ay,
that make it possible to apply an iterative procedure to
calculate corrections to the wavefunction of arbitrary
order in Fy:

W‘]Z‘]Z + 6/2_AE
WJ1J1 + WJ2J2 - ZAE,

WJ1J1—6/2_AE
WJI‘]l + WJZJZ - 2AE’

2 _
EX

(8)

2
sl

where
A = 1+ W GL(V(r') —AE) WD

The substitution of the solutionsto secular equation (7)
for AE allows one to express the superposition coeffi-
cientsas

£ _ T
am = Fsgn(W, 5,)a;5,m

_OA . (0+W, ;3 —W, ;) . ©)
2 3(Fo) % |

Here,
1/2
8(Fo) = [(3+Wy,5,=Wy5)" +4(W,5)7 7,
sgnx = x/|x| is the sign function, and the signs + are
chosen with regard to the following limit conditions for
FO —— O (WJJ' e O)
M = Sgn(WJlJz)asz —1,

. _
ajm = —sgn(W;,,,)a;u — 0.
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To calculate the matrix element (4), it is convenient
to introduce a system of coordinates with the axis
Z || &. Then, the operator of interaction with adc field
Fq&, can be represented as

V = Fz

L et us derive perturbation theory series for the wave-
function and the energies of multiplet statesin adc elec-
tricfield Fy < 1. Tothisend, we expand all field-depend-
ing quantitiesin Egs. (3) in powers of thefield [11]:

— W3 (4)
Wiy = Wip + Wi+,

AE = AE® + AEW + ., (10)
0 2
ayu = A +amt ...,
where
w2 = sz(z)',
JJ [OAANN] (11)

(4) _ 4,4 2 (2)
Wiy = Fowyy + Fouy; AE™.

The field-independent coefficients in these expressions
can be expressed as second-, third-, and fourth-order
matrix € ements,

(2) _ '
Wi = =10 3ml ZGZI@ ym D)

Uyy = —1@n gl ZG;EGlﬁzl(anJ'MD (12)

WS?- = —[@n ol ZG;;ZG;;ZG;;ZkPnLJ'MD
Note that, in contrast to the corrections to the wave-
functions of Stark states of ahydrogen atom [7], expan-
sions (10) contain only even-order corrections. In the
vicinity of the minimum of the splitting of the multiplet
sublevels (in the neighborhood of the anticrossing Fy =
F.), corrections to the matrix elements and to the

energy are comparable to the splitting (W; ~ a,,. FS ~
0, where a, is the polarizahility). Therefore, we

assume that the splitting o is on the order of FS . Only
the first nonvanishing correction to a matrix element is

strictly quadratic in the field, W% ~ F2. For other
quantities, the order number does not imply that the rel-
evant quantity is proportiona to the corresponding
power of the field but just indicates the relative contri-
bution of these guantities to expansion (10), whose
terms form a descending sequence; in particular,

0 2 4
&) = [ > Jalf > ...

A correction to the energy of the first nonvanishing
term of perturbation theory series contains the fine-

structure splitting energy & and the components of
matrix elements W that are quadratic in the field:

DED = SWD, + WD, 28O, (13)
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where

5?(F,) = E? _g®
= [(3+ W, - W)+ 4w )7
is the fine-structure splitting energy in the field. This
expression is not strictly proportional to FS) and only
formally describes the quadratic Stark effect of doublet
sublevels. Moreover, for [W$3| < 8, the off-diagonal

matrix element V\/(Jf)J2 determinestheleading (resonance)
contribution to the fourth-order correction [10, 15]. Cor-
rection (13) becomes proportional to the square of the
field strength, AE@ 0 F3, only for W] > 3.

To determine the fourth-order correction AE®
together with nonresonance terms, one should take into
account the fourth-order corrections W(J‘S). to the matrix
elementsin Eqg. (7) [10, 11]. In this case, neither AE®)
nor W4} for [WS3| < & are strictly proportional to Fj

because the expression for W.) contains AE®. For-
mula (9) in the zeroth-order approximation gives the

coefficients aﬁiﬁ,, which are functions of the field
strength:

(0)%

(OF:
a; M

R (2)
= Fsgn(Wj 3,)asm

MmO (3+W2 —wW ™ (14)

= i
20 69(F)

For W] > &, the coefficients alfy (J=L, L+ 1)

become comparable to each other and are determined
by the field-independent ratio of combinations of sec-

ond-order matrix elements. The corrections agi; can be

determined either from system (3) or from Egs. (9),
taking into account the fourth-order corrections to the
matrix elements and to the normalization factor:

+ :DA(Z) +\2
= ay T * (1= (e )]

4)
+ J,J +\2
X (1—2aly ") —=7 + (abu (15)
U
(4) (4)
(0)£42 Z\NJZJZ_WJlJ1
)]

(2) \2
J1d,

x[1-(a 59(Fo) B
]

where

(2) _ 2,402 (0)2 0) 5(0)
A" = Fo(agmUy,g, + a3 mUy y, + 285 wag,mly, g,)-
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The substitution of the obtained expressions for
energy AE and the superposition coefficients a, into
Eqg. (1) allows one to obtain an expansion in powers of
the field for the wavefunction:

W= YO @y (16)
Up to second-order terms, we have
k
WO = z ag?gﬂ |(anJiMD (17)
i=1
k
Wb = _F z aS?KAG;;kanLJiM [
i=1 (18)

k
W = Z [aglzgﬂ + FSaS?KAG;;ZG;;Z] Priaml
i=1
These expressions are sufficient to determine the field-
dependence of the amplitudes and the probabilities and
intensities of radiative transitions up to the second-
order corrections in Fy. Formulas (10)—<13) make it
possible to determine the energy of the states up to the
fourth-order corrections. Here, one should keep in mind
that the field dependence of the superposition coeffi-
cients ay, may significantly change the probabilities
even in the zeroth-order approximation, especialy in
the neighborhood of the anticrossing field Fy, = F,,

where a9, and al®,,, become comparable to each

other in magnitude.

Of greatest interest are the transitions in the helium
spectrum whose initial and/or final states are pairwise
interacting triplet states n®P; whose wavefunctions in
the zeroth-order approximation are given by superposi-
tions (17) with k = 2. The spin—orhit splitting of these
statesisrather large and can be resolved in the emission
and absorption spectra [3]. For sublevels with J; = 2,
J, =0, and zero projection of the momentum onto the
direction of the field (M = 0), the effect of anticrossing
occursin thefield

[25
Fo = Fo= [—£20,
9C‘nP

in contrast to the stateswithJ =1, 2 and M = 1, for
which F, = 0 and the repulsion of levels occurs for any
F, (anticrossing in zero field). For definiteness, we will
supply the parameter & with theindex of amultiplet, nL.
The tensor polarizability a;p, which is given in (22)
below, is a universal characteristic for all sublevels of
the triplet; in particular, it determines the matrix ele-
ments of the operator of interaction with field (20). Fig-
ures laand 1b show the field dependence of the super-
position coefficients a'sy~ of the triplet sublevels 33P
for M = 0 and M = £1, respectively. One can see that,

(19)
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for M =0, in an anticrossing field of F, = 145 kV/cm,
the contribution of the upper sublevel to the wavefunc-
tion of the state with energy AE_ amounts to about 3%
and becomes equal to the contribution of the lower level
for Fy = 3F,. Thefine-structure splitting o for the states
withM =+1 (J =1, 2) isan order of magnitude smaller
than that for the states with M =0 (J = 0, 2); therefore,

the coefficients ay~ and a'2~ become virtually equal

evenin afield of Fy= F, (Fig. 1b). Numerical calcula-

tions for the n3P states with n = 2, 4, 5, 6 show similar
field dependence for the superposition coefficientswith
regard to the renormalization of the anticrossing field of
thelevelswithM =0 (J =2, 0) according to formula (19)
(see Table 1).

The explicit expressions for WSZJ). [11],

(2) _

1 "L+
Wy = _EZ Cm;o(—l)J s
jmoz (20)
] 1/2 .
X[(2L+ )23+ 1)} SL L0,
(2L +1-]); 0J JsO

show that the second-order matrix elements (11) are
determined by two irreducible parameters of the [nLS]
state: the scalar

s  _ o) _ 2
O, = Qs = 3(2L+1) (21)
X [ gl [ Lgl(_nll +(L+ 1)9(an A 7@ om0
and the tensor
t _ @ _ 2L
anL - anLS - 3(2'. + 1)
(22)
x( @ r[g(n) +2L—1g(n) ]I’(p
LIM L-1F 5y 39+t hLIM

polarizabilities. Here, g™ is a reduced radial Green

function in asubspace of stateswith orbital momentum
L' [13]. Formula (20) involves standard notation for the
Clebsch—Gordan coefficients and the 6j symbols [16].
The numerical values of the scalar and tensor polariz-
abilities calculated by the model potential method [13]
for the P, D, and F states with the principal quantum
number n < 6 of orthohelium are presented in Table 1,
together with the values of the fine-structure splitting
taken from [17] and the anticrossing field (19). The
table shows that the effect of anticrossing may occur
not only for the n3P,_, states but also for the 3°D,
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Fig. 1. Superposition coefficients aj,, of the sublevels of

the triplet 3%; (@ M = 0: (1) a2~ = —ad" and
@ ad™ = D" ) M = 21: (1) a7 = 7al?} and

2 ia(loi)_l = (Zoi); . The vertical line on the horizontal axis
corresponds to the anticrossing field F, = 145 kV/cm.

stateswith M = 0. However, the anticrossing field of the
33D, , sublevels,

49
F.(3°Dsy) = /——%9,
503p

is about an order of magnitude less than that of the
33P,_, sublevels.

When calculating the probability of the radiative
transition n3P — n'3P in the vicinity of the anticross-
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Table 1. Numerical values of the spin—orbit splittingd, = E,  —E,_ ,theanticrossingfield F, and the scalar ap, and
tensor cx;L polarizabilities of triplet states of a helium atom

n dnps MHZ | 81p, MHZ | Fo kViem | afp,au | alp,au | ajp,au | alp,au | oSe,au | ape,au

2 31908 - 617 48.0 74.8 - - - -

3 8772 1401 145 1.72(4) | 374 -9.32(3) 1.07(4) - -

4 3576 591.2 439 1.70(5) 1.66(3) | 2.89(6) | —7.46(5) | —2.13(6) 2.14(6)

5 1798 303.4 14.9 8.98(5) 7.26(3) | 1.94(7) | -5.11(6) 7.10(7) | —2.13(7)

6 1028 1754 5.55 3.40(6) 278(4) | 7.95(7) | —2.11(7) 3.93(8) | —1.30(8)

Note: The number in parentheses indicates a decimal exponent: x(n) = x x 10",

ing field of the lower n'3P state (n' < n), one may
assume that all fine-structure components of the upper
level NP are completely mixed. This assumption is
especially valid for the n®D and n3F states, which have
nearly an order of magnitude smaller spin—orbit split-
ting; moreover, the tensor polarizability of these states
is from 2 to 3 orders of magnitude greater in absolute
value than that of the n3P states, asisshownin Table 1.
Thus, the condition |W(2) | ~ F0|0(nL| > 9, issatisfied
for L = 2 virtually over the entire range of the field con-
sidered. Inthis case, one may neglect the e, in Egs. (3)
for the upper level. The scalar polarizability, which
entersthe diagonal matrix elements and energy, cancels
out in the coefficients W;; — AE of these equations and

vanishes. Hence, in the first nonvanishing order, all
coefficients of the set of equations (3) are proportional

to al, . Since these equations are homogeneous, one

can eliminate the factor a;, from all terms, so that,

ultimately, the coefficients of the set of equations are
determined only by a combination of the coefficients of
the vector sum in (20) and depend only on the set of
spin—orbit quantum numbers. Thus, using (20) and
(11), we can obtain the following limit (for 8, <

|0(;L| FS) expressions for energy (13) and superposition
coefficients (14) of pairwise interacting states.

1. For nL stateswithM=0andJ=L+1,L-1;

_F} (2L%+2L - 3)+3sngn0(nL .
AB, ‘_E[O‘“L PL(2L-1) } 23
a|(_01+1o = +a|(_0)1059n0(nL
_ J2L+ 1+ sgnas, (24)
B 2(2L +1)
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2. For nL stateswithM=+LandJ=1L, L +1,

=5 (2L -3) ¥ 3sgna!
AE, = —laf, + oAk (@29)
al(_OJ)r_lM = +al(_0)l\/l+ sgn(Maty, )
_ /\/L+1i(L—l)SgnG:ﬂ_ (26)
- 2(L+1)

Table 2 pr&eents the limit values of the superposition
coefficients a for the pairwise interacting states
|n3LJ1J2 MOJL =1, 2, 3 that are calculated by the above

formulas. When using these values of the coefficients,
one should make sure that higher order corrections
cannot significantly affect them. To this end, we can
evaluate the contribution of the second-order correc-
tions (15). Numerical calculations show that the ine-

quality [a%%)| < |aly)| is valid for any level nL up to
field strengths of F, = 3F,, where F, isthe anticrossing
field of the n®P, sublevels with M = 0.

Table 2. Limit values of the superposition coefficients a(o)
for pairwise interacting |n Ly,,M Ostateswith ornL > 0. For

nL < 0, this table presents the coefficients a(o)

9 | o | N @

g +l o +<I\l g +

g | =8| | 8| ¥ | @
TlE |2 |2 |E |4

alv | JB | J12 | J25 | JAB | Ja3IT | 12
al | V213 |£J12 | J3l5 |+.J213 | JaIT | +/34
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2.2. Isolated and Threefold Degenerate Sates

In the general case of triplet states with arbitrary
orbital momentum L, along with the above-described
pairwise interacting sublevels that are defined by the
wavefunction of the form

O+ _ (0= (0)£
Wilm = aymPnio,m * @5,mPra,ms

(27)

in the zeroth-order approximation there exist isolated
stateswithM=0andJ=L andwith|M|=J=L + 1 that
are not mixed with other sublevels in a field. All off-
diagonal matrix elements in Egs. (3) are identically
zero for these states, and the first nonvanishing energy
correction is strictly quadratic (see (11), (20)):

AE® = w
2
= _Pogs ,3-L(L*1)c0) (28)
2 L(2L-1) O
M=0 J=L,
AE® = W) = —F—g(as + 0y )
L+1L+1 2 nL nL/» (29)

M =J =L+1,

a, = 1, and the wavefunction in the zeroth-order
approximation coincides with the wavefunction of an

unperturbed atom: Y., = @, . These statesinclude,

in particular, al three |N3S,MO states with orbital
momentum L = 0, which differ by the value of the spin
projection onto the electric-field direction, M = 0, 1
(Where o, =0).

Inaddition, for L = 2, thereare 2(L — 1) sets of three-
fold degenerate states, which represent a superposition
of all three interacting sublevels of the triplet [nLJ,MO
(i=1,2,3)withJ;=L+1,J,=L,andJ; =L —1. Each
set corresponds to a certain val ue of the magnetic quan-
tum number M satisfying the condition 1< [M|<L -1
and is described by the wavefunctions of zeroth-order
approximation (17) withk = 3:

0 _ 500 (0) 0)
Waiam = @ am®Paa,m + 85 amPram + aJ3)\M(anJ3M-(30)

Here, A = 1, 2, 3isaquantum number that enumerates
three solutions of Egs. (3) that correspond to three mul-
tiplet states of an atom in afield. These superpositions
have a sufficiently large orbital momentum L; there-
fore, for these superpositions, the energy of Stark split-
ting in the range of fields F, considered is much greater
than the fine-structure splitting 8, , So that one can set

€; =0inEgs. (3) and (5).

Calculating the matrix elements vvg? and substitut-
ing them into Egs. (3) and (5), we obtain three sets of
solutions for each M. In the limit case €; =0, these
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solutions can be expressed in the analytic form both for

the energy AE®, and for the corresponding superposi-

tion coefficients aﬁi)M. In this case, in contrast to the

coefficients aﬂi)M , the energy isindependent of the sign

of the magnetic quantum number. In particular:
I.ForM|=L-1=1:
2

F
(1) BER: =~ (05 + o),
RC B 1
L+11M /—(L+1)(2L+1)1 (31)
1
al%y = sgn(M)ﬁ
a® _ 2L-1
L-11M — 2L+17
Fo L—3
(2) AERY, = —5 o + = 0tni,
0) _ L
a i1om = 2 ,—____(L+l)(2L+l)’ @
|__
%y = sgn(M)—L(L+l),
a© __[2L-1
L-12M L(2L+1)
Fo 202-13L +12
@ _ Fo[}s t [
(3) AEns = —5 int (LD OnD
2© — L(2L-1)
L+13M (L+ 1)(2L + 1)1 (33)
@ =_ 2L-1
a zm = —sgn(M) (D)
ROR— 1
L-13M ’—L(2L+1)
Il.For M|=L-22>1:
= L-3
(1) AER) = R+ =an,
ORI 3
L+1iM (L+1)(2L+ 1)’ 3
0  _ 2L-1
aiiv = sgn(M) __L(L+1)'
© - J(L=12L-1)
A1m [2L+1)
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Fos L2131 +12 ¢ )
200" L (2L-1) T

(0) _ 3(2L-1)

L—2
JL(L+1)

(0) _ L-1
A _om = 2 ,—L(2L+1)’

(2) AED, =

(35)
a%y = sgn(M)

Fa 2L2-19L + 27

@ _ Fors t [

(3 AEq5 = —5 L L(2L-1) Ao
a® L. = [(L=-1)(2L-1)
* L+1)(2L + 1)’

( )( ) (30)

© _ 3(L-1)
a zv = —sgn(M) L(L+1)

O R 3
L-13M L(2L+1)

The disposition of solutions is chosen so that, for

positive o, , an increase in the quantum number A cor-

responds to an increase in energy. All three coefficients
ay v that correspond to the same solution (to energy E; )
may simultaneously changetheir signs; thisis equivalent
to the change of the phase of wavefunction (30).

Table 3. Limit values of the energy of the Stark splitting
AEE]ZL)A and the superposition coefficients a(ﬁ)M for thethree-
fold degenerate |nL ;M states

LIMIA _ZAEE'FL))\/ th) al(_ol 1AM ag\)M al(_oll)\M
2|21 1| app+app UJ15 | +U.J/3 | J3/5
2| app—0np/2 | /815 | U6 | —/3710
3| alp—app J2i5 | #1142 | 1710
3£1[ 1| oSk J328 | /5112 | J10/21
2 | ope—300e/5 | J15/28 | +1/./12 | —J/8/21
3| aje—4ai:/5 | /514 | FU/2 | U7
32| 1| oS +al, 1./28 |+l2 J5I7
2| ape J3IT | U3 | -J5/21
3| abr—3ay:/5 | J/15/28 | F./512 | 1/.J/21
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Table 3 shows the sets of the limit values of energy
and the corresponding superposition coefficientsfor the
triplet states D and F with M = £1, £2. For the states

with negative a’, , the sequence order of solutions is

reversed, which corresponds either to the replacement
A =1 < A=3ortothepermutation of rowsin thetable
that correspondtoA =1and A = 3.

The data of Tables 1-3 can be used to calculate the
frequencies and the probabilities of radiative transitions
in orthohelium as a function of a dc €electric field.
Below, we present the calculation of the transition
probabilities between triplet levelswith momentaL = 0,
1, 2, 3: the dipole-allowed transitions n®P — n'3Sand
n3D — n'3P and the dipole-forbidden transitions
n3S— n'3S n®D — n'3S, N3P — n'3P, and n3F —
n'sp.

3. PROBABILITY OF A RADIATIVE TRANSITION
IN AN ELECTRIC FIELD

The basic quantities that determine the probability
of aforced or a spontaneous transition between bound
states, W, —= W, arethetransition frequency w; = E; —

E; and the matrix element of the operator (\7*) of
interaction between an atom and the field of an
absorbed (emitted) photon:

My = W VW0 (37)

In the one-electron dipole approximation, the operator
of interaction with radiation can be represented as

~ _ F F

v 2(e r) 2ru,

where F is the electric-field strength of the radiation
andr,=rCy,(6, ¢). Here, C,,(8, ¢) isamodified spher-
ical function[16]; u = 0for Ttradiation (the polarization
vector is parallel to the dc field, e || &), and p = £1 for
o radiation (the polarization vector is perpendicular to
thedcfield, e O gy) [18].

The field dependence of the transition frequency is
related to the Stark effect for energiesE; and E;. For iso-
lated states near the point F, = F,, this dependence is
quite accurately described by quadratic corrections that
are determined by the polarizabilities from Table 1. For
the fine-structure components, higher order corrections
also become significant [15]; they can be calculated by
perturbation theory for close-lying levels[11, 14]. Sim-
ple estimates show that, for Fy < F,, where F, is the
anticrossing field of the lower state, the relative varia-
tion in the frequency of radiative transitions of optical
range is no greater than 0.1%. Therefore, in calculating
the field dependence of the probabilities of the transi-
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tions considered below, we neglect the contribution of
the Stark corrections to the energies E; and E;.

The field dependence of a matrix element that may
vanish in zero field due to the dipole selection rules is
more important. Under the influence of a dc field F,
the selection rules are significantly changed; this, in
particular, givesriseto dipole-forbidden radiation lines.
In turn, the probabilities of dipole-allowed transitions
may also be significantly changed. This effect is espe-
cialy clearly manifested in the ratio of the transition
intensities within multiplets; it leads to a decrease (up
to vanishing) of certain components and the emergence
or the enhancement of other fine-structure components
of atomic lines. These effects are mainly related to the
variation in the wavefunctions and, hence, in the matrix
elementsin afield.

In this section, we consider the variation in the tran-
sition probabilities of the most intense lines N3P-n'3S
and n3D-n'3P of orthohelium for the field strengths in
the vicinity of the anticrossing of the states °P,_,. We
assume that the expansion coefficients of the D states
reach their asymptotic values and neglect higher order
corrections.

3.1. Probabilities of Dipole-Allowed Transitions
as a Function of an Electric Field

Due to the field dependence of the superposition
coefficients (14), the dependence of Jl;; on the field F,
for dipole-allowed transitions between multiplet sub-
levels manifestsitself even in the zeroth-order approx-

imation W, = WQ):

MP(Fo) = w00

C < (0) (0) 0 (38)
= z 2aJ},A'M'anAMEpn'L'J},MJV|(PnLJjMD

j=1j=1

where the primed quantities denote the quantum num-
bers of the fina state, the unprimed quantities denote
the quantum numbers of theinitial state, and the quan-
tum number A enumerates the solutionsto Egs. (3) (the
* solutions in (13) and (14)). Neglecting the variation
of the transition frequency and the radial matrix ele-
ment in the field, we can represent the corresponding
field dependence of the probability of aradiative transi-
tion as

Wi(Fo) = Rua(Fo)W(0), (39)

where “W';;(0) is the integrated probability of transitions
for F, = O between the fine-structure sublevels of the
initial [nLIMOand final |n'L'J'M'Ostates with given M
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and M'. Thus, we can obtain the following relation for
the ratio of probabilities Ry, = W(Fo)/W(0):

P (Fo)|°
Z | @yl 7 [@nLom [lf
73

Run(Fo) =

OJiLo
(40)

2
v U 4
= |y a(-1’V23+ 1Y afuCind S 0
J J

0 M2
*0y 23+ 1) (Couny)
J J

2 -1

xD L1y g o
oJyieo g

Here, just asin (38), the summation over J(J') includes
only the momenta of interacting states from a basis of
dimension k(k). Thus, the field dependence of the prob-
ability of aradiative transition, which is allowed in the
dipole approximation, between the fine-structure sub-
levels of an atom in the lowest order termin Fy isdeter-
mined by the linear combination of the superposition
coefficients a© in (38) that satisfy the conditions

[

—

(0)
F0406J'Jb’ |aJ)\M —>, 011,

Fo-0

and guarantee the equality

ZR)\')\(FO) = 1.
A

3.2. Probabilities
of the N3P — n'3STransitions

For atransition between the |n'3S,M'Ostate, which
has no fine structure, and the |n®P,MUstate, which is
superposition (27) of two states of atriplet, matrix ele-
ment (38) is represented as a superposition of the
matrix elements of P-Stransitionsfrom two interacting
sublevels [n3PIM[

© _ .0 0
Myn = ay,mPrsul V |@npa,m
(0) o
+ay mDnsul V |@npy,ml

Each of these matrix elements can be expressed in
terms of the same radial matrix element [@,,dr |@,,Cand
the Clebsch—Gordan coefficients:

(Dl V |@npam D

F !
= — 523+ 1CH @udrigneL]
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200 300 400

Fo, kV/cm

1
0 100

Fig. 2. Probabilities Ry of radiative transitions from the
13%P,MLto the [235,M'Cistates: (8) M = 0 and (b) M = #1;

(D) Ry BPo, M 0 135, MY and (2) Ry (3PP,

M "D 35, M),

Thus, among the dipole-allowed n3P—n'3Slineswith
fixed nand n', we have four components

R(N°P,+2 %> n'’S, + 1)
= R(nN°P,0-%~ n'°§,+1) = 1

that are independent of the dc field F, and six lines
whose matrix elements depend on the field even in the
zero order in F,. Thisdependenceisdetermined by the
superposition coefficients (theindex A' = J' = 1 of the
final state, which is the same for al transitions, is
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omitted):
, 1
R\(n*P,0 - n*8,0) = (/285 —a)’, (41)
R,(n*P,0 %~ n'’s + 1)
1 , (42)
= é(a(z(;\)o + «/éa(()())\)o )
R,(N°P, 1"~ n'°S + 1)
l _ 2 (43)
= é(a(Z(;\)il + ag.?\)tl y
R\(n°P, +1-%2» n'°S,0)
(44)

_1 o 0 2
= é(aZ)\:rlial)\tl .

The explicit dependence of Egs. (43) and (44) on the
sign of the magnetic quantum number does not influ-
ence the transition probabilities since the relative sign

of the coefficients a(ﬁ)i , aso dependson M.

The probabilities of radiative 1t and o transitions
from state |3°P,MOwith M = 0 to state |23S,M'[iversus
adc electric field are shown in Fig. 2a. One can seethat
the probabilities of the Tt transitions R,(3%P,0 —»
n'3S,0) and R(3%P_0 -~ n'35,0) (curves 1 and 2),
which correspond to a radiative decay of the |33P,00
levelswith J=0and J = 2 and differ by afactor of 2 at
Fo =0, becomeequal inafield of Fy = F,= 145 kV/cm,
which corresponds to the anticrossing field (indicated
by along vertical line on the horizontal axis). For F, >
400 kV/cm, the integrated probability, which corre-
spondsto RY = R™ + R™ and remainsinvariant in the
approximation considered, accumulates at the transi-
tion [33P,00-"> |n'3S,000(curve 1), while the probabil-

ity of the transition |33P_0C-"~ |n'3S,000oecomes neg-
ligible (curve 2). A similar situation occurs for o tran-
sitions. The probabilities of these transitions also differ
by afactor of 2 at F, = 0 and become equal a F,=F,;

the integrated probability RS = R + R isaccumu-
lated at the transition [33P_00-—"~ |n'3S, + 1Jwhile the
probability of the o radiation of the line |33P,00-~
[n'3S, + 1[becomes negligible as F, increases.

Figure 2b represents the relative probabilities of
transitions from the [3%P,M[states with M = 1. In this
case, significant variations in the probabilities occur at
lower fields of Fy < 100 kV/cm. For Fy = 100 kV/cm,
the probabilitieswith A = + for the Tttransitions and with
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A =—for the o trangitions remain nonzero (curve 1). The
probabilities of the remaining two lines vanish (curve 2).

3.3. Probabilities
of then3D — n'3P Transitions

Among the |n3D M sublevels of the D multiplet are
isolated sublevels [n3D,000and |nD; + 30 pairwise
interacting sublevels |n®D,0Cand |n3D400) and threefold
degenerate sublevels|n®D, + 1[Jwhich prove to be com-
pletely mixed at afield strength F, in the vicinity of the
anticrossing of the n'3P state. In such fields, one can
take the values corresponding to the limit for W), | >
o from Tables 1 and 2 as the superposition coefficients
ad),, of theinitial |n3D,Mstate.

In the set of all transitions [n3D0— |n'3PLbetween
the multiplet sublevels with fixed n and n', there is a
nonzero probability of observing three 1t transitions
that are independent of F, in the approximation consid-
ered (despite the degeneracy of the momentum projec-
tion with respect to its sign, transitions between the

states with opposite signs of M are assumed to be dif-
ferent),

R(n°D,0 ™~ n'°P,0) = 1, (45)

R,(nN°Dy +2 " n'°P,+2)
[, A=1, (46)

- E;l A =2
and eight o transitions

R(N°D;+3 %~ n'’P,+2) = 1,
R(n°D,+1-% n°P,+2
A\(N"D, »%2) )
M, A =12,
=0
ol, A =3,

R,(n°D, = 1-%~ n'°P,0)

0 12
:%)\—(X—*‘—l—)’ )\:1,3, (48)
0, A=2

Here, for the sake of uniformity, we use numerical nota-
tion for the * states of a doubly degenerate basis, simi-
lar to a threefold degenerate basis, starting from the
state with the minimal energy (i.e., A = 1 for the — state
and A = 2 for the + state). In addition, there exist transi-
tions whose field dependence is determined by the
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superposition coefficients of the |n'3P,00states even in

the zeroth-order approximation. They include four 1t
transitions

Ry, (n°D,0 = n'°P,.0)

2
%(3(2?\)'0"'«/23{()3)'0 . A =1, (49)
- Ij4 0 0) 12
Eﬁ_(«/éa(zx)'o—aéx)'o , A =2,
and 12 o transitions
Ru(n’D,£1 -9 n'°P,0)
4 0) (0) |2 _
CI3A (A +1)(az>\'o+«/§ao>\'o , A=13, (50)
=0
2
L2 (2800 —afhe)’, A = 2.

(13

Among 28 transitions to the states |n'3P,. + 100whose
probability is different from zero and dependson afield

via the coefficients a%)., ,, there are 8 T transitions
with the probabilities

Rin(n’Dy+1 s n'°P, £ 1)

M, A =1,
U
= El%'(a(zo}\)liltag.o)\)'il 2! )\ = 2! (51)

E_Z( © ©) 2
7

Qys1Fapnsg), A=3,

and 20 o transitions

Ry(n°D,0 %~ n'°P, + 1)

1 _ 2 (52
= é(a(Z(;\)‘il"'agg\)'il ,
3 o 1 3
R)\-(n D)\O — N P)\- i 1)
03 @, 7aQ.,)°, A=1
_ Dlo 2N+ 1 AN £1) s ’ (53)
2
EB(a(zc))\)'ili a(l(;\)'tl , A =2,
Ru(n’Dy£2 -2» n°P, £ 1)
2
E‘é(a(z(;\)‘ili a(l(;\)'il . A =1, (54)

=0
0 — (0 2
[G(a(Z)\)'il"'ag.)\)'il , A =2,

Here, the sign (%) in parentheses corresponds to the
sign of the magnetic quantum number M' = £1.
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The right-hand sides of expressions (49)—54) for
the probabilities coincide with those of (41)—(44);
therefore, the field dependence of these probabilities,
just as for the probabilities of the transitions n3P —
n'3S isrepresented by the curves shownin Fig. 2. These
probabilities satisfy the following properties, which
were pointed out above:

(1) Inthe anticrossing field of the n'3P,.0 levels, the
transition probabilities (49) and (50) take equal values
for different A",

(2) The amplitudes of half of the transitions to the
states n'3P,.M' vanish as the field F, increases.

4. PROBABILITIES
OF RADIATIVE TRANSITIONS INDUCED
BY A DC ELECTRIC FIELD

The effect of inducing, by an electric field, radiative
transitions that are missing in the spectrum of a free
atom due to the selection rules for dipole transitionsis
even more important than the variation in the probabil -
ities of dipole-allowed transitions. The most interesting
representatives of such transitions are the nS—-n'Stransi-
tions, which areforbidden in the nonrel ativistic approx-
imation in all orders of multipolarity, and the n®P, ;—
n'3P, transitions (the transitions nP; ,n'3P; , and
n3P,n'3P, are alowed in electroquadrupole approxi-
mation). The corresponding field dependence of the
probability W (F,) isdetermined by the squared matrix
element of adipoletransitioninthefirst order of pertur-
bation theory i (Fo).

A zeroth-order approximation for wavefunction (1)
is not sufficient to calculate radiative matrix elements

of such transitions. Here one should take into consider-
ation the term that contains the Green function with the

operator of interaction with a dc field V and corre-
sponds to the correction to wavefunction (18) in the
first order in F,. Then, thefirst nonvanishing matrix ele-
ment is

(1)
‘/‘/Ln‘)\'n}\

(55

_ ZZ 20 0 W)
JAN'M J)\M n'L'IM'nLIM -

After integrating with respect to the angular variables
with the use of standard methods of the angular
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momentum algebra[16], the matrix element

(W)
UnlrmnLam
— (n) (n")
= Py gml M G T+ 110G T @ gm0

can be represented as a decomposition into irreducible
parts, similar to the decomposition of the amplitude of
a two-photon dipole transition on a free atom [13, 19,
20]. Neglecting the effect of the fine structure of inter-
mediate states on the second-order radial matrix ele-
ment, we obtain

(1) — J+L+S
Unlamnm = (1)

(2L +1),, (23 + 1)1
xS Coum| " e
p:;lyz 2L+1-p),
xo HLP e,
0JJsno
where
pW = [(ZL +1-p)p
Clito (2L +2),
1/2
x (2L +1)(2p + 1)} (57)

L' L
Z CL 010C|_010D P Dc(p)-
o111Q0

Here, the radial matrix elements with the reduced
Green function in a subspace of states with orbital

momentum | and the energies of the initial (g\™) and
final (g") states are grouped into combinations

o® = mLrg"rinL B (-1)°m'L|rg"rinL O

The sum over pin decomposition (56) may contain one,
two, or al three terms, depending on the values of the
orbital quantum numbers L and L', as well as on the
type of radiation (on ) because the summation index p
must satisfy the inequalities

W <p<2, |L-L|<spsL+L,
J-J<p<d+J,

which follow from the general properties of the
Clebsch—Gordan coefficients and the 6] symbols. Thus,
the term with p = 0 gives a nonzero contribution to
amplitude (56) only for Tt transitions (4 = 0), and the
term with p = 1 gives such a contribution only for o
transitions (U = £1). The field-induced transitions
n3S, — n'3S, and n®P, — n'3P, are accompanied
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only by Tt radiation (because the amplitude of ¢ radia-
tionis USamoin = USiaonice = 0in this case).

Note that the quantities B'™ are the same for all

sublevels of the initial and final multiplets because the
dependence of amplitude (56) on the total momenta J
and J' and the spin Sis determined only by the coeffi-
cients of vector summation.

4.1. Transition Probabilitiesfor L' = L
ForL=L"=1andJ+ J = 2, dl three parameters

B in (56) may have nonzero values, for these
parameters, the u dependence is expressed in explicit
form:

) = 8,8,
B2 = d4—u28(2)
5 .

The invariant quantities B® are represented as linear

combinations of the radial matrix elements 0(0) =

o? =gl M = g7, where

an _ g
(58)

and o

or. = mUr[g" £ g™ rinLD

in analogy with the representation of the scalar, antisym-
metric, and tensor components of polarizability [21] (see
also formulas (21) and (22)):

B = m[LUL 1+ (L+1)o) 4],

BY = smrrploii-oid. (9
2L-1 « }

@ _ _ L +
B = 3(2L+1)[0L‘1+2L+30L+1 '

Formulas (58) and (59) imply the following symmetry
property:

B(pu) B(p u)

which corresponds to opposite signs of the helicity p
for the photons emitted during decay or absorbed dur-
ing excitation.

Thus, the matrix elements of transitions between
stateswith identical momentacan be represented aslin-
ear combinations of the components of transition polar-
izabilities (59). In particular, the transition n3§, —
n'3S, is determined by asingle (scalar) component

FFo

1 _ (0) - (0)
Mnn - _TUnJi,nJi - T 5 B

In this case, the probability isa strlctly quadratic func-
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tion of thefield strength:
W DML D R,

For then3P, — n'°P,. lines, there are both isol ated

and pairwise interacting states among the upper and
lower sublevels. Accordingly, part of the matrix ele-
ments of the transitions are determined only by the
polarizability components 3 and are strictly propor-
tional to the dc field strength F,

Jl/L(l)(n3P10 > ' °P,0)
= MY (%P, 2 " %P, + 2)

= (B +B).

For the remaining transitions, the field dependence
of the matrix elements is more complicated and
includes the field dependence via the superposition

coefficients a9, :

(60)

MP(n®P,0 > n°P,.0)
_FF
= OB(O) (aNoa50 + @00
FFon@ (0) A(0)
——2“[3 («/é 08000

(0) (0 (0) L(0)
+«/§aoxoazxo A\ 0Q200)

(61)

MP (3P £1- 0Py £ 1)

_F Fo (0) © (0

(0) (0)
— B (aye1@ine1 F Ao 180011
(62)
I:':o @_ o0 JO0 430 0
~72 B (—aiys18in+1 % 30 41810 +1

(0) (0) (0) (0)
+3a5 51801~ Ans18 21

MP(®P,0 2= P, + 1)

F':o«/é (1) © 0 , 0 )
—B7(- 2'\/§a1)\ +180x0 T A1x 1800

(63)

(0) (0)

+ 3ayy+1820) — ) + 18000

FFo/3
g\/_B(Z)(Z'\/é (0) (0)

— (0) (0) (0) (0)
F 3521300 — An £ 18210)

MP(n*P£2 o» n®py £ 1)
2P (%P0 2> n'®

Potl)  (64)

FF, @ 4 30 4O (0)
T— 83 B Qins1 F Ao
2.2
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Fig. 3. Relative probability of the forbidden n®P,M—n"3p,.M'
transitions; (1) ("°P,0 ——= n3P,0), (2) (N°P.O ——~
n3P_0), (3) (NP0 —> n3p_0), and (4) (NP0 —»
n3P,0); (8 n=4andn'=2and (b) n=5and n' = 3.

Taking into account the limit values of the coeffi-

cients aSOA’.M (Table 2), one can verify that half of the

forbidden components (61)—(64), which arise for F, #
0, vanish as F, increases. Moreover, if the condition
|W;;| > disfulfilled for the upper nP state in the vicin-

ity of the anticrossing F, = F; of the lower n'P state,

then the values a'), can be replaced by their asymp-

totic values from Table 2. Then, similar to the case of
allowed transitions, the above formulas are rewritten in
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terms of combinations of the form al%, + /28, and
J2a, — ald, . This, in particular, implies again that
the transition probabilities for the £ components coin-
cideat Fy = F,and that half of these components vanish
asthefield strength F, increases.

The probability of the forbidden nP—'P transitions

can be characterized by theratio of |Jl/Lf1-1,lnp| ? tothesum
of the sguared matrix elements of allowed lines with
closevalues of frequency, i.e., of the nD—'P transitions
in zero field. As an example, Fig. 3 shows these ratios
for matrix elements (61), where four components cor-
respond to different statesin the field for the lower and
upper multiplets. The probabilities of dipole-forbidden
transitions essentially depend on the principal quantum
number of the upper state. The figures show that, in the
vicinity of F, = 3F,, where F, is the anticrossing field
of the upper nP level, these probabilities amount to
about 0.2% of the integrated probability of the dipole-
allowed transitions.

In aweak field, the probabilities of dipole-allowed
transitions increase quadratically with F,. However, in
the neighborhood of the anticrossing field of the upper
state, F, = F,, theinterference of sublevels givesriseto
inflection points on the curves corresponding to the

transitionsn3P, — n'3P,; after theinflection point, the
probabilities depend linearly on the field strength up to
Fo = 3F, (curves 1 and 2 in Fig. 3). Note that a similar
transition from quadratic to linear field dependence was
observed experimentally in [22] for the probability of
forbidden two-photon transitions to the Rydberg states
of acesium atom.

For curves 3 and 4, which describe the probabilities

of the transitions N3P, — n' 3P¢, the inflection points
lie near the anticrossing field of the lower state, which
fals outside the applicability domain of the zeroth-
order approximation for the coefficients ay, of the
upper level. One should also hotice the intersection of
curves 1 and 2 with curves 3 and 4, which indicates that
the probabilities of all transitions under consideration
become equal for Fy = 3F,.

In calculating the probabilities, we used the numer-
ical values of the polarizabilities B that were obtained
for the transitions n3S-—n'3S, and n3P-n'3P by the
model potential method [13] and are presented in
Table 4 for n and n' ranging from 2 to 6. The table
shows that the main contribution to the probabilities of
Tt transitions is made by the scaar polarizability O,
which has negative values and is from 1 to 2 orders of
magnitude greater than the tensor part @ in absolute
value. In this case, |B?] is a monotonically increasing
function of the principal quantum numbers of theinitial
and final states, unlike the tensor part @, which is not
only nonmonotonic but also may change sign as n and
n' increase. The antisymmetric part B®, which deter-
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mines the amplitudes of ¢ transitions, is positive and
virtually coincides with |B@|. Hence, the amplitudes of
o and T1 transitions (63) and (61) for the same field
strength are close in absolute value.

4.2. Transition Probabilitiesfor L' = L —2
For L' = L — 2, the sum over p in the correction
M (56) contains asingle term with p = 2:

UnL 2J'M'nLIM

(23 +1)L(L-1)(4—pd)
6(2L—1)

- (_1)J+L+S (65)

O O .
xcjn’;ﬂzuE L-2L ZDUL 11

where
o, = mL-2r[g”; + gl rinLO

is a second-order radial matrix element.

Note that the electric field changes the dipole selec-
tion rule for the orbital momentum without changing
the selection rule for the magnetic quantum number
AM =0, £1. Therefore, adipoletransition from the state
[nLIM[o the state [n'L — 2J'M'[For M| =L + 1 remains
forbidden because [M —M'| = 2 in this case.

The minimal value of the orbital momentum L = 2
in the case under consideration corresponds to the tran-
sitions n®D —» n'3S. The anticrossing field of the
3%D,_; states with M = 0 is approximately F,(3D) =
20 kV/em. Estimates show that, for such a field, the
probability of afield-induced transition may amount to,
at most, 10 of the probability of allowed transitions.
Therefore, to observe the transition 33D — 235 it is
necessary that the field strength F, be at least ten times
greater than F,(3D). Here, the superposition coeffi-
cients of the 3°D states reach their asymptotic values
(seeTables 2 and 3), and the matrix elements of all elec-
tric-field-induced transitions are expressed in terms of
the same quantity, which determines, for example, the
amplitude of any o transition:

FF
Mps= —=0;
DS > /15 1

= MY (°D, _,+2 %-n’s +1)

= MY(n°D, ., +1 -2~ n'®S,0)
= . 2MY(n°D,.,0 %~ n’S £ 1)

= 2.2 (n°D,.,0 2~ n’S £ 1).
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Table 4. Polarizabilities B® for the transitions nS—n'3S,
and n3P—n'3P in orthohelium

Line |[n3S-—n'3s n3P-n'3p

n n pO RO gD p@

2 | 3 | 34802 | 3693) | 3323 | 1.302)
2 | 4 | 90202 | 6953 | 6.193) | 29502
2 | 5 | 1963 | -1.32(4) | 1.17(4) | 5.80(2)
2 | 6 | -37303) | 232(4) | 2.06(4) | 1.04(3)
3 | 4 | 855Q3) | —279(4) | 2.494) | 9.80()
3 | 5 | 53303 | -370(4) | 3434) | 6.17(2)
3 | 6 | -890(3) | -5.69(4) | 531(4) | 1.233)
4 | 5 | 22194) | -1.35(5) | 1.12(5) | —2.22(3)
4 | 6 | —224(8) | -1.37(5) | 1.27(5) | -457(2)
5 | 6 | -9.60(4) | —4.94(5) | 373(5) | —1.33(4)

In this case, the amplitude of atttransition differs from
Mps only by anumerical factor:

MP(n®D, _,0 -~ nS,0)

—%SA/LDS.

Consider the field dependence of the probability of
1 and o transitions from the states n3F, and n'P,..
Here, like for the P-P transitions, the field dependence
of a matrix element includes, together with the linear
dependence, the dependence on the superposition coef-
ficients of the n'3P,. states (in this case, the superposi-
tion coefficients of the n3F; states virtualy coincide
with their asymptotic values).

Among the sublevels of the F multiplet, there are
isolated sublevels and the sublevels that interact by
pairs and by threes with wavefunctions (27) and (30),

respectively. For [WS| > 3¢, we can assume that

these sublevels are completely mixed, taking the limit

values of the superposition coefficients a(ﬁ)M from

Tables2 and 3. In thiscase, there are threefield-induced
Tt transitions whose matrix elements are linear in the
field:

= MO(M°D, .21 " n’S £1) =

MP(n®F0 >

I:F02+
B 47927

—n' Plo)
(66)
'“/‘/LFP ’

MP(n®F, 2 e n®p,+2)
M, A =12, (67)
=0
D/‘/LFFH )\ = 31
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and 12 Tt transitions with the matrix elements that
include, together with g, the dependence on the
superposition coefficients of the |n'*P,MO states.
Among these transitions are four transitions between
the stateswith M =0,

MP(n®F,0 ™ n'°P,0)

L““ (0) (0)
+./2 A =1,
) Dﬁ oo Aono) (69)
J
e oo, 2=
U

and eight transitions between the states with M = +1,
MP%F 1 0P+ 1)

E]b1 }\:11

e 0, 0
_ ﬁ(aZA+1—alx+1

D
OW/3lep
o

1l

A =2, (69)

(0) (0)

(@ne1Fapne1), A =3

Among o transitions are eight transitions whose matrix
elements are strictly proportional to F,

MO (n*Fy £ 1%~ n°p,0)

D¥ §‘/M/FP1 )\ = 11
0 (70)
=0, A=2
0 Jé
JM/FP! )\ 31

) D_/\/r'-/‘/’“FPl A 3!
MO (M3F, £3-2- 0P, £ 2)

_D_/\/rJ‘/LFPa A =2,

and 32 matrix elements whose matrix elements depend
on the superposition coefficients of the n'3P;M states
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withM =0,

MP(n°Fy £1 -2 n°P,0)

E]— EMFP(a(z(;\)'o"'«/éaé?\)o A =1,
D

(73)
= = [JMFP(ﬁag?\)o ag), A =2,
[l
D‘Z!/‘/LFP(a(zg)'o"'«/éag\)o A =3,
and withM = +1,
MP(N%F0 =3P £ 1)
(74)
= MFP(a(z(;\)ﬂ—a(l?\)ﬂ
MP(n®F,0-% n*P, £ 1)
%_ (a(Z?\)+1+a(1(;\)+l A= 1! (75)
M L0y h 2
MP(3E, £2-2 n %P+ 1)
DO A=1,
01
E [MFP(a(z?u-a‘l‘ill =2 (79
D

MFP(a(Z(;\)+1+a(l?\)+l A =3

T

4.3. Relation between the Amplitudes
of Electric-Field-Induced
and Electromultipole Transitions

The probability of dipole-forbidden transitions con-
tains, in addition to the field-induced part determined

by the matrix element J(/Lnn, a component determined
by the electroquadrupole interaction between an atom
and the field of a photon. For o* radiation along the
external field, both these corrections are different from

zero and the corresponding operator of quadrupole
interaction is expressed as [ 8]

O = |0(oomF 2
4.3

where a is the fine-structure constant. The ratio of the
first-order dipole matrix element (65) to the quadrupole

r°C,.4(6, 9),
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matrix element proves to be independent of the
momenta of interacting sublevels:

‘/‘/‘“I(‘llr)l — 2F00J|:—1
Mg'(r?) C“")n'n an'L —ﬂ r2|(an O (77)
2F,

=1 .
awn‘n( EnL—1 - EnL)

This expression is obtained with the use of a simple
estimate for the second-order radial matrix el ement that
takes into account the main contribution, to the Green

function g{" , , of thewavefunction of the state with the
orbital momentum L — 1 from the n shell,

. _mL-2r’nLD
Lot EnL—l_EnL .

For thelineswith L' =L, the ratio (77) has amore com-
plicated form and contains combinations of the super-
position coefficients of interacting sublevels. Numeri-
cal estimates for the absolute value of ratio (77) (for n
and n' ranging from 2 to 6) in the anticrossing field of
the lower level give values ranging from 10° to 10°.
Hence, one may neglect multipole corrections to the
probability of an electric-field-induced transition when
considering the anticrossing effects on the fine-struc-
ture sublevels.

5. CONCLUSIONS

The formulas and numerical results obtained above
for the superposition coefficients that define wavefunc-
tion (1) allow one to extract new information about the
spectral properties of an atom in afield. In particular,
the variation in the intensities of the Stark components
of multiplet lines makes it possible to accurately deter-
mine the ratio between the field and spin—orbit interac-
tions of orthohelium in adc electric field. The probabil-
ities of the radiative transitions versus F, obtained
above may be useful not only in describing experimen-
tally observed electro-optical effects but also in con-
trolling the optical spectra by adc electric field.

The properties of fine-structure components in an
electric field have been studied earlier for low-lying
states of alkaline atoms and alkalinelike ions by diago-
nalizing the matrix of the spin—orbit and Stark Hamil-
tonian on asmall number of effective sublevels[23]. In
particular, the results of the numerical calculations
obtained in [23] exhibit an effect similar to that
described above, namely, the equalization of the inten-
sities of the Stark components of doublet emission lines
(seeFig. 2) near the anticrossing field. The vanishing of
nearly half of the components of radiative multiplets as
the field strength increases results from the “destruc-
tion” of spin—orbit interaction by an electric field and
corresponds to the transition with enhancement of the
field to the Stark effect on a spinless atom.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

503

The field dependence of the intensities of dipole-
forbidden transitions is of no less interest. The decom-
position of the amplitude of afield-induced processinto
irreducible parts (56) makes it possible to reduce the
analysis to the calculation of the second-order radia
matrix elements that determine invariant atomic quan-
tities—the polarizabilities of transitions (59). The
numerical values of the polarizability tensor compo-
nents alow us to evaluate the probabilities of electric-
field-induced transitions not only qualitatively but also
guantitatively. In particular, in the anticrossing field of
the lower level, this probability may amount to 2—3% of
the probability of the dipole-allowed process both for 1t
and o transitions.

The method for calculating the wavefunctions of
multiplet states presented here may be useful for solv-
ing spectroscopy problems of quantum systems with
multiplet structure in an external electric field.
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of Superfluid Helium

V. N. Lokhman and G. N. Makarov*
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow oblast, 142190 Russia
*e-mail: gmakarov@isan.troitsk.ru
Received September 22, 2004

Abstract—A method of selecting molecules embedded in nanodroplets (clusters) of superfluid heliumis pro-
posed, which is based on the selective vibrational excitation of embedded molecules by intense IR laser radia-
tion. This action leadsto asignificant decrease in size of the excited clusters, after which these clusters are sep-
arated with respect to size via scattering of the cluster beam on acrossing atomic beam. The method is described
in detail and the possibility of selecting SFg molecules in liquid helium nanodroplets using the excitation by
CO, laser radiation and the angular separation via scattering on a xenon atomic beam is demonstrated. The
results show that, by using thistechnique, it is possible to separate molecul es with respect to isotope (element)
composition. Advantages and drawbacks of the method are analyzed. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, much attention has been devoted to
experimental and theoretical investigations of nanodi-
mensional superfluid helium droplets (clusters)
obtained upon gas efflux from cooled nozzle sources
(see, e.g., review papers [1-11]). The size of a cluster,
as determined by the number N of helium atomsin the
droplet, varies from several dozens of atomsto N = 107.
Special techniques have been developed for obtaining
such superfluid helium nanodroplets and introducing
single foreign molecules into these clusters, which
makes it possible to study the spectra of molecules and
molecular clusters at a very low temperature (T =
0.37 K) in liquid superfluid helium representing a soft
guantum matrix of the new type [1-9]. The results of
such spectroscopic measurements also provide impor-
tant information about the properties of superfluid
helium nanodroplets[5, 6, 9].

In addition, the experiments with molecules embed-
dedinligquid helium droplets open wide possibilitiesfor
the investigation of many physicochemical processes
on an atomic-molecular level at ultimately low temper-
atures. For example, by introducing molecules into
helium nanodroplets, it ispossibleto obtain long chains
of polar molecules oriented in a definite way inside the
droplets [12], which is of considerable interest for the
synthesis of biologically active molecules. Unique con-
ditions provided for the growth of molecular clusters
inside superfluid helium nanodroplets make it possible
to obtain high-energy isomers, for example, cyclic water
hexamers representing the smallest pieces of ice [13]. It
is also possible to study chemical reactions proceeding
inside helium nanodropletsat very low temperatures[14]
and the orientation effects accompanying the interac-
tion of molecules with nanodroplets [15].

Recently, we have suggested and analyzed the pro-
cess of selecting molecules embedded in superfluid
helium nanodropl etswith respect to isotope (elemental)
composition [16]. In the present paper, we report on the
results of a more extensive and deeper investigation of
the possibility of using beams of superfluid helium
nanodroplets (clusters) for such separation of embed-
ded molecules. The proposed method is described in
detail and the possibilities of thistechnique are demon-
strated and analyzed in application to helium droplets
containing SF; molecules.

2. PRINCIPLES OF THE METHOD

The results of previous experimental [1, 2, 17, 18]
and theoretical [19-22] investigations showed that
helium-4 (*He) nanodroplets (clusters) containing N >
100 particles occur in asuperfluid state [23]. Molecules
embedded in such droplets can freely rotate and exhibit
very narrow IR absorption band owing to arather low
temperature of the medium (T = 0.37 K [1-3, 6-9]). For
example, the total width of the absorption band due to
Vv vibrations of %Sk, molecules in a superfluid helium

nanodroplet is as small as 0.25 cm™ [24-26]. There-
fore, the IR absorption spectra can be amost com-
pletely resolved not only for the molecules such as SFg
and SiF, with relatively large (~5-10 cm™) isotope
shifts, but also for the molecules containing heavy ele-
ments whose isotope shiftsin the IR spectra are on the
order of (or smaller than) 1 cm™ (0sO,, Wk, UF;,
etc.). Thus, a sharp decrease in the absorption lines of
mol ecul es embedded in superfluid helium nanodropl ets
providesthe possibility of highly selective excitation of
these molecules using IR laser radiation: essentially,

1063-7761/05/10003-0505$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram of the experimental setup (see
the text for explanations).

only those helium clusters in a beam which contain
molecules of a selected isotope will be excited.

The absorption of radiation by molecules embedded
in aliquid helium nanodroplet leads to heating of this
droplet, which results in evaporation of a certain
amount of He atoms [1-9, 26]. For example, the
absorption of one quantum of aCO, laser radiation (A =
10 um, i = 0.12 eV) leads to the evaporation of about
200 atoms[1, 5, 9, 26]. As aresult of this evaporation,
the droplet cools down and its temperature again stabi-
lizesat T=0.37K [1, 7, 9. 27]. Both heating and evap-
oration of He atoms upon the absorption of alaser radi-
ation quantum proceed quite rapidly (within aperiod of
timet < 108107 s [26-29]). These phenomena pro-
vide a basis for the method of selecting molecules
embedded in superfluid helium nanodroplets with
respect to isotope and elemental composition.

The proposed method is essentialy as follows
(Fig. 1). A beam of superfluid helium nanodroplets
with embedded moleculesisirradiated at a certain dis-
tance Ax, from the nozzle output by intense laser radia-
tion whose frequency is in resonance with the vibra-
tions of molecules of a selected isotope. As was noted
above, only those helium clustersin abeam which con-
tain resonant molecules of the selected isotope will be
excited, while the other clusters (containing molecules
not absorbing thisradiation) will remain unexcited. The
absorption of radiation energy leads to heating of the
dropletsthat resultsin the evaporation of helium atoms.
Evaporated atoms isotropically fly away from clusters.
The binding energy per atom (expressed in kelvins) as
afunction of the number N of atomsin aliquid helium
cluster can be determined using the relation [19, 30]

E/N = —7.21+ 17.7IN"* - 595N 23, (1)

In large clusters (N = 10% — 107) the value of E/N is
approximately the same (about 7.2 K [19]) as in bulk
liquid helium, and this value decreases with a decrease
in the cluster size. For example, in clusters with N <
103, the binding energy per atom is E/N < 5.5 K, while
in clusterswith N < 200, this value does not exceed 4 K
[19]. It should be taken into account that the binding
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energy of He atoms in doped clustersis higher than in
impurity-free clusters [19]. The interaction between a
foreign article and helium atoms is stronger than the
interaction between He atoms in the same cluster. The
difference in binding energies significantly depends on
the impurity type and is more pronounced in small-size
clusters (N < 100) [19]. For example, the binding
energy per atom in a helium cluster containing one Sk
moleculeisE/N= 10K for N=100[19], but thisenergy
increasesto E/N = 20 K in clusters with N = 40.

Under conditions when an excited cluster have
absorbed 5-10 quanta of laser radiation with awavel ength
of about 10 um, the cluster loses 10002000 atoms. If the
clusters doped with foreign molecules in a beam ini-
tially contain N ~ (2-3) x 10° atoms, the absorption of
IR photons will lead to a significant decrease in the
cluster size. Clusters containing less than 10° atoms
may exhibit complete fragmentation upon excitation
with the formation of free (completely striped) Skg
molecules. Thus, the IR excitation under such condi-
tionsleadsto asignificant changein the cluster sizedis-
tribution as compared to that in the initial beam,
whereby selectively excited clusters will be much
smaller than unexcited ones.

The next stage consists in separation of the clusters
with respect to their dimensions. This is achieved via
scattering of the cluster beam on a crossing molecular
(or atomic) beam [31-33], which crosses the laser-
excited cluster beam at a distance of Ax, + Ax; from the
nozzle (Fig. 1). In particular, it is possible to use a
crossing beam of xenon or krypton atoms. The interac-
tion with this beam leads to separation of the cluster
beam with respect to the scattering angle [31] because
clusters of different sizes are deflected by unequal
angles. The scattering of helium clusters on the defl ect-
ing beam involves trapping of the particles of thisbeam
by the clusters (dropl ets) [31-33], whereby the moment
of atrapped particle istransferred to the corresponding
droplet. As aresult, the droplet is heated and a certain
number of He atoms is evaporated (as in the case of
laser-induced heating), which is determined by the
trapped particle energy. In the case of a monoatomic
beam, the cluster loses about 100-200 helium atoms,
while for polyatomic molecules, the number of evapo-
rated He atoms exceeds 600 [32]. In the course of scat-
tering on the crossing beam, liquid helium droplets of
smaller size are deflected by greater angles. Therefore,
selective excitation of the molecules inside liquid
helium clusters by high-power IR laser radiation, fol-
lowed by differential deflection of various clusters as a
result of their scattering by various angles provides a
means of selecting molecules embedded in liquid
helium nanodroplets. Below we present the corre-
sponding theoretical calculations, consider a particular
case of embedded SF; molecules, and analyze the per-
formance of the proposed method for selecting mole-
cules with respect to the isotope composition.
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3. RESULTS AND DISCUSSION
3.1. Calculation of the Cluster Sze Distribution

The cluster size distribution in a beam is described
by alog-normal distribution model [31, 32, 34, 35],

1 0 (InN-w
ex , 2
No /2Tt PO 20> U @

which is Gaussian in a coordinate system with the log-

arithmic abscissa scale. The mean value N and the
standard deviation Sare defined as

f(N) =

N = exp(u+0%2), S= NJexp(c®)-1, (3

where

0O N2 O
= Inp—_ 02=InD§+1%.

35+ N o5

The maximum of this distribution (N,) and the
f(Nmay) Value are given by the formulas [31, 35]
Nmax = eXp(H—02)1

2 4)
f(Npa) = g—}/z—_T—[expE% —pg.

The halfwidth of the asymmetric distribution

AN,, = exp(L—0° +0./In4)
—exp(p—0°—0./In4)

is approximately equal to the average cluster size [31].
Let us consider a log-normal distribution f(N) with

Ny = 1800, N = 2846, and S= 1701. For the sake of
simplicity, let the distribution be normalized to unity as

)

[f(N)IN = 1.

This distribution is quite close to that obtained experi-
mentally in [31]. A rather narrow distribution is used
for obtaining a sufficiently high selectivity (see Section
3.3 below). First, we will analyze transformation of the
cluster size distribution in the course of sequential (i)
pick-up of moleculesin the doping chamber, (ii) selec-
tive laser excitation, and (iii) trapping atoms of the
deflecting beam. Then we will obtain expressions for
the selectivity and efficiency of the proposed separation
process.

The probabilities of trapping molecules and atoms
are proportional to the cluster cross section gy, or N?3

(since oy ~ N?3). First, consider transformation of the
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initial log-normal distribution as a result of doping. In
the case of clusters doped by single molecules, the
resulting distribution function is

2/3 1

fs(N) = F(N) 5 (6)

If(N)E’,Nﬁgzlst’

where the last term isintroduced in order to restore the
normalization. The subsequent evaporation of m atoms
from each cluster caused by doping with single mole-
culesin the smplest case shifts the initia distribution
so that

fsS1(N) = fs(N + m).

L aser excitation leading to the evaporation of L mol-
ecules from each cluster changes the distribution to

fsSIL(N) = fs1(N+L), (7

where
J'fledN z1.
For L = 1200, the value of the integral
IfledN = 11L

is approximately 0.95.

In the course of scattering on the crossing atomic
beam, the distribution is modified to

213 fs1LdN
fs1Ls(N) = fs1L(N)E . ®

2/3
J’fle%% dN

where the last term is introduced (as in relation (6)) in
order to restore the normalization. Analogous transfor-
mation takes place for unexcited clusters as well. A
change in the cluster size distribution related to the
evaporation of He atoms caused by the trapping of
atoms from the deflecting beam is not taken into
account because this factor does not influence the angle
of cluster deflection.

Figure 2 illustrates the transformation of the cluster
size distribution function in the course of processes
described above, showing the initia log-normal distri-
bution (curve 1) and the distributions modified as a
result of the pick-up of zero-energy dopant molecules
(m = 0, curve 2) and the trapping of both dopant
molecules and atoms from a deflecting atomic beam
(curve 3). Curve 4 shows the result of the pick-up of
dopant molecules and the subsequent laser excitation,
while curve 5 reflects the influence of doping, the laser
excitation, and the trapping of atoms of the deflecting
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Fig. 2. The initial log-normal helium cluster size distribu-
tion (curve 1) and itstransformation in various stages of the
process for m = 0 (curves 2-5). See the text for explana-
tions.
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Fig. 3. The initial log-normal helium cluster size distribu-
tion (curve 1) and its transformation (2) upon pick-up of an
energetic doping molecule (m = 680) and trapping of an
atom of the deflecting beam and (3) upon pick-up of an
energetic doping molecule (m = 680), |aser-induced excita-
tion, and trapping of an atom of the deflecting beam.

beam. Thus, comparison of curves 3 and 5 shows the
pure effect of laser excitation. As can be seen from
Fig. 2, the difference between distributions 3 (without
laser excitation) and 5 (after the excitation) in the ideal
case (m = 0) is very large, especialy in the region of
small clusters (low N values).

Figure 3 shows the initial log-normal distribution
(curve 1) and the distributions 2, and 3 modified by the
pick-up of SF; molecules with m = 680 (these curves
which are counterparts of the curves 3 and 5, respec-
tively, in Fig. 2). As can be seen, the laser-induced
effect in this case is less pronounced, although the dif-
ference between curves 2 and 3 is till significant.
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When the cluster beam (with a cluster momentum of
Nm,.V,) is scattered on a monochromatic atomic beam
(with a momentum of each atom m,v,), the angle of
deflection upon scattering is (see Section 3.2)

_ MV, N = eV :ﬁ)
NMyeVy' omyv, 6’ ©
_ MV,
O MV

The transformation of the distribution of clusters with
respect to sizes into their distribution with respect to
deflection angles can be written as

K
f(N)dN —» sk g - G(0)de,

Cogs (10)

where

If(N)dN = J’G(e)de. (11)
In order to obtain the relations determining the

selectivity and efficiency of the process, we havetotake

into account the following transformations,
fslLs(N) — G1L(8), fsls(N)— G1(6).

In the case of clusters doped with single molecules, the

angle-dependent (differential) selectivity is defined by

theratio

G1L(6)

SIORE o8

(12)

Introducing integral functions of the type

1

1G(8)d8 = [G()d (13)
0

and assuming that all doped clusters deflected by angles
exceeding 6 are collected, we introduce the integral
selectivity as

IGLL(6)

1G1(0) - (14)

1S1(6) =

The efficiency of the separation process can be defined
as

IG1L(6)

1) = 1G1(0)

(15)

Analogous cal culations of the selectivity and efficiency
have been also performed for the case of clusters trap-
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ping two dopant molecules (some results of these cal-
culations are presented below in Section 3.3).

Figure 4 shows the angular distributions of doped
clusters (for m= 0) before (curve 1) and after (curve 2)
laser excitation, aswell asthe differential (curve 3) and
integral (curve 4) selectivities. As can be seen from
these results, arather high selectivity can be reached in
the limiting (ideal) case (m= 0).

3.2. Application to SF¢ Molecules

For example, let us consider the case of helium clus-
ters doped with SFg molecules. The content of sulfur
isotopesin the natural gasis as follows (%): *2S, 95.02;
35, 0.75; S, 4.2; and %S, 0.017 [36]. Theisotope shift
in the v; IR absorption band is about 8.5 cm™ per
atomic mass unit (amu) [37]. The absorption spectrum
of v; vibrations in 32SF; is well known [24-26]. The
maximum of the absorption band is at 946.55 cm™ and
the total width is about 0.25 cm™ [24-26]. This band
coincides quite well with a10.6 um generation band of
aCO, laser. In particular, the 10R(50) line of the 13CO,
laser (946.54 cm™) and the 10R(35) line of the
16013C80 laser (946.64 cm™) are in good resonance
with the absorption band of 3°SF,; embedded in super-
fluid helium droplets. Some emission lines of the CO,
laser fall in resonance with v; vibrations of the other
Sk, isotopomers occurring inside these droplets. At the
same time, optimum conditions for the selective excita-
tion of molecules embedded in superfluid helium clus-
ters are offered by tunable IR lasers, in particular, by
high-pressure CO, lasers with continuous frequency
tuning as well as by lasers on color centers.

It should be noted that the effective excitation of
clusters requires rather high laser radiation intensity,
such that the excitation rate would be comparable with
the energy relaxation rate. This condition can be
expressed as

olt,_r=1, (16)
where o isthe Sk absorption crosssection, | istheradi-
ation intensity [photons/(cm? s)], and Ty, _t is the char-
acteristic time of the excitation energy relaxation. In
order to provide that the clusters would be capable of
absorbing on the average, for example, about five
quanta, the excitation pulse duration T, must satisfy the
condition

1,2 101 1.

Assuming that the absorption cross section of SFg mol-
ecules inside helium clusters is equal to the gaskinetic
cross section (o = 2.4 x 107 cm? [38]), and that the
relaxation timeis 1y, _t = 0.56 ns [26], we obtain from
relation (16) an estimate of the laser radiation intensity
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Fig. 4. The angular distributions of (1) unexcited and
(2) laser-excited doped helium clusters scattered on an
atomic beam. Curves 3 and 4 show the angular dependence
of the differential and integral selectivity.

| = 7 x 10? photons/(cn?? s). Condition (16) is readily
satisfied if the clusters are excited using a CO, laser
with a pulse energy of E > 1072 J and a pulse duration
on the order of 100 ns.

Now let us consider in more detail the process of
cluster deviation via scattering on a crossing molecular
(or atomic) beam. As was noted above, a molecule col-
liding with a superfluid helium droplet is trapped and
itsmomentum istransferred to thisdroplet [ 31-33]. For
a helium cluster of mass m; = Nm, and velocity v,,
colliding with a particle of massm, and velocity v,ina
beam crossing the cluster beam at an angle of a, the
deflection angle 6 is given by the relation

sina
m,v,/m,v,+ cosa’

tan® =

(17)

Let the deflecting beam consist of xenon atoms with
m, = 131 amu and v, = 300 m/s. Inthe case of m; > m,
(e.g., m; =8000 amu) and v, = 1.6v, (v, =480 m/s[31]),
the angle 6 is relatively small and can be calculated
with sufficiently high precision as

mv, . 1m, v, .
0 = ——2-sina = =—%=—sna. (18)
NmMyV 4 Nmy. v,

For the cluster beam and the deflecting beam crossing
at an angle of a = 90°, helium droplets with N = 2000
will be deflected by an angle of 8 = 0.56° (0.01rad). In
these estimates we ignored the mass of the SF; mole-
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cule embedded in the droplet as compared to the dropl et
mass.

The selectivity of separation, for example, of 32SF;
and %Sk, molecules, is defined as

o= USRI SRy~

: (19)

[PSF s
where figures in square brackets denote the concentra-
tions of moleculesin theinitial gas (index 0) and in the
droplets deflected by angle 6 (asterisk). The selectivity
will exceed unity in the interval of angles 6 > 0.01 rad,
and it is below unity for smaller deflection angles
(curve3inFig. 4).

It should be noted that free SF; molecules, appear-
ing in the cluster beam as aresult of excitation and sub-
sequent evaporation of small doped clusters, will be
reflected by xenon atoms (in cases of direct impact) by
an angle of 8 = 30°. However, the probability of scatter-
ing on xenon atoms for such SF; molecules is much
smaller than that for the clusters because of asignificant

difference in the corresponding cross sections: o =
2.4 x 10715 cm? [38] versus oy = ,;N?3[19] (here o, =
2.2 x 107 cn?? is the effective cross section of a He
atom in clusters and oy is the cross section of a cluster
containing N such atoms [19]). For example, the cross
section of ahelium cluster with N =1000is oy = 2.08 x
1073 cm?, while that for N = 100 is o = 6 x 10714 cm?
[19]. Therefore, most of SFg moleculeswill be retained
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in the direct cluster beam, rather than deflected by the
xenon beam. Large-size clusters (N = 10%), which are
deflected according to relations (17) and (18) by very
small angles (6 < 0.1°), will be also practically retained
within the direct beam.

For these reasons, experiments on the separation of
embedded molecules via scattering are most conve-
niently carried out using the beams of medium-size

clusterswith N = (1-3) x 10%, in which case the excited
clusters are deflected by relatively large angles (8 = 2°—
3°). In addition, helium atoms are more readily evapo-
rated from such clusters because of sufficiently low
binding energy. In addition, a beam of relatively small
clusters has a narrower distribution width [31], which
allows a higher selectivity of separation to be obtained
upon scattering on a crossing beam. It should be noted
that, on the other hand, the mass of liquid helium drop-
lets is still rather large and the deflection angles upon
scattering are yet quite small (1°—2°). For this reason,
the experiments should be performed with well-colli-
mated cluster beams[31]. In addition, it is necessary to
provide for sufficiently large flight pathlengths (Ax, =
50 cm) after interaction with the deflecting beam, so as
to reach a high angular resolution (see Fig. 1). Finally,
it should be noted that, in the case of using pulsed CO,
lasers, the experiments are expediently performed with
modulated cluster beams so as to ensure approximately
equal on-off (duty) ratios for the laser and cluster
beams and reach a higher contrast in the selection of
embedded molecules.

3.3. Factors Influencing the Selectivity
and Efficiency of Separation

Let us consider the main factors influencing the
selectivity and efficiency of the process under consider-
ation. One of thefactors decreasing the selectivity isthe
finite width of the distribution of the velocity of parti-
cles(e.g., xenon atoms) in the defecting beam. We have
studied the dependence of the selectivity S on the
degree of monochromaticity of this atomic beam,
which was characterized by the ratio of the average
atomic velocity to the scatter of these velocities:

n =v/iAv.

The results of this analysis are presented in Fig. 5. As
can be seen, the selectivity for n = 5 differs but little
from Sfor the ideal monochromatic beam (cf. curves 2
and 1). Itisonly rather large scatter of the atomic veloc-
ities (N < 2) that significantly (by a factor of approxi-
mately three) reduces the selectivity (curve 3) as com-
pared to that for ideal monochromatic beam. Since the
values of n = 5 are usually readily achieved in experi-
ment, the distribution of atomic velocities in the
deflecting beam can be considered as weakly influenc-
ing the process selectivity. It should be also noted that
the primary helium cluster beams are a so characterized
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by very narrow velocity distributions with n = 50 (see,
e.g., [31-33]). Therefore, the influence of n on the
selectivity of separation can be ignored.

The main factor decreasing the selectivity is nonse-
lective thermal evaporation of atoms caused by the
pick-up of energetic dopant molecules. This effect is
illustrated in Fig. 6, where the integral selectivity and
efficiency are plotted versus deflection angle for vari-
ous numbers of evaporated He atoms (m = 0, 200, and
680). As can be seen, Ssharply decreases with increas-
ing m. These results indicate that, in the case of large
embedded molecules (such as SF;, 0sO,, and UF), it
is expedient to cool the gasin the doping chamber. For
example, the trapping of SF; molecules at 150 K leads
to the evaporation of only 160-170 atoms from a
helium droplet. According to Fig. 6, the integral selec-
tivity for 8 = 0.04 rad in this case is almost ten times
greater as compared to the Svalue upon Sk trapping at
room temperature.

Another factor that may lead to acertain decreasein
the selectivity is afinite size Ax;,,; of the region of inter-
action between adoped cluster beam and the deflecting
atomic beam (typically, Ax,, = 1 cm). However, for suf-
ficiently large flight pathlengths (Ax, = 50 cm), this
decrease in S is rather insignificant (on the order of
Ax;/A%,) and can be further reduced by increasing Ax, .

Now let us proceed to the analysis of factors influ-
encing the efficiency of separation. A decrease in the
efficiency (as well as of the selectivity) is primarily
related to the fact that the probability of trapping dopant
molecules by helium nanodroplets obeys the Poisson
distribution [32],

P(N) = NO$ exp(-nal),

(20)
where N, is the amplitude factor, n is the number den-
sity of molecules in the doping chamber, ¢ is the trap-
ping cross section, and L isthe length of the interaction
region. For these reasons, a certain fraction of clusters
of the primary beam will trap single dopant molecules.
Depending on the experimenta conditions (gas pres-
sure and the length of the interaction region in the dop-
ing chamber), the cluster beam may also contain arel-
atively large fraction of droplets trapping two or more
SFg molecules, which form SFg clusters inside these
droplets. It should be noted that helium droplets trap-
ping more than one SF; molecule will have smaller
dimensions compared to the size of droplets containing
a single dopant molecule, because a greater number of
He atoms is evaporated in the former case. Upon scat-
tering of the cluster beam on a crossing atomic beam,
these smaller clusters will be deflected by greater
angles, which may significantly decrease the selectiv-
ity. In order to avoid this, experiments should be per-
formed under conditions that minimize the fraction of
helium nanodroplets trapping more than one dopant
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Fig. 6. The angular dependences of the efficiency E (curves
1-3) and integral selectivity S (curves 1S-3S) for doped
helium clusters losing different numbers of atoms eva
porated upon doping: m = 0 (1), 200 (2), and 680 (3).
Curves 4 and 4S show the efficiency and selectivity, respec-
tively, for a beam containing clusters doped with one and
two moleculesin the 2:1 ratio (for m = 200).

molecule. However, this will also significantly reduce
the total number of doped helium clusters in the beam,
thus naturally decreasing the efficiency of the process.
For example, our calculations showed (Fig. 6) that, if the
fraction of clusters trapping two SFg molecules is about
half the number of clusters doped with asingle molecule,
both selectivity and efficiency (for 8 = 0.02 rad) for the
former fraction are also about twice as small as those
for the singly doped droplets.

Finaly, let us consider the possible influence of
double coallisions of the doped helium clusters with
atoms of the deflecting beam on the efficiency and
selectivity of the separation process. Such double colli-
sions, which become possible under the conditions of a
sufficiently high density of doped clusters and/or large
length of the interaction region (Ax,,), obviously affect
both the efficiency and selectivity of the process.
Indeed, the effect of double collisionsis essentially the
same as if the beam would be scattered twice from the
deflecting atomic beam. In the corresponding calcula-
tion, we have to take into account both the evaporation
of about 200 helium atoms upon trapping of the first
xenon atom (m = 200 for atoms trapped from a xenon
beam [32]) and the subsequent transformation of the
distribution function (multiplied by N?3) upon trapping
of the second atom.

We omit rather lengthy formulas describing the

sequential transformation of theinitial distribution and
present here only the most pessimistic result obtained
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upon calculation taking into account the aforemen-
tioned factors and the conversion of the size distribu-
tion into the angular distribution. Note that, since the
total deflection angle upon double collisionsis approx-
imately twice aslarge asthat upon single collisions, the
quantity k, in relations (9) and (10) is replaced by 2k,.
The values of selectivity and efficiency obtained with
allowance for all the above factors are presented in
Fig. 7 (curers 2S and 2, respectively) in comparison
with the corresponding results for single collisions
(curves 1Sand 1). As can be seen, the double collisions
significantly reduce the selectivity and dightly increase
the efficiency. For example, at an equa efficiency of
E = 0.1, the selectivity in the case of double collisions
decreases by a factor of about 2.5 as compared to that
intheregime of single collisions. Therefore, in order to
increase the selectivity, the experiments have to be car-
ried out under the conditions minimizing the probabil-
ity of double collisions (e.g., for asufficiently low den-
sity of atoms in the deflecting beam).

3.4. Estimates of the Yield of Enriched Products

Inview of the potential applicability of the proposed
method for the separation of isotopes, it is of interest to
estimate the yield of enriched products. Of course, we
are speaking of very rough estimates. The values pre-
sented below cannot be used as the initial data for cal-
culating the efficiency of a rea separation process.
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Such calculations can be based only on reliable experi-
mental results. Nevertheless, we believe that even
rough estimates of the product yield are expedient for
assessing the method.

The evaluations below proceed from the intensities
of real helium cluster beams and the capacity of diffu-
sion pumps used in real systems [5, 9]. It should be
noted that, owing to low binding energies of atoms in
small helium clusters (see Section 2), the formation of
liquid helium droplets usualy requires high densities
and low temperatures of gasin the expansion region [5],
both these factors|eading to a sufficiently high gasflow
rate. For this reason, the setups producing helium clus-
ter beams employ effective pumps (capable of ensuring
high pumping speeds) and/or nozzles with very small
apertures. The gas flow rate is proportional to the prod-

uct pd?T5"?, where d is the nozzle output diameter

and p, and T, are the gas pressure and temperature in
front of the nozzle. In the typical setups producing lig-
uid helium nanodroplets, the nozzle diameter is within
d = 5-20 um, the gas pressure ranges within py = 1-20
bar, and the temperature is T, = 10-30 K [5, 9]. In the
ideal gas approximation, anozzlewith d = 10 um operat-
ing at Ty = 20 K and p, = 15 bar provides for a gas flow
equivalent to that formed by a nozzle with d = 50 um
operating at room temperature and apressure of 2 bar [5],
which amounts to approximately 4 (bar cmd)/s
(=0.16 mmol/s). In order to pump this flow, adiffusion
pump must ensure a pumping speed of about 10000 I/s
for He (=4000 I/s for nitrogen) at a limiting working
pressure of about 3 x 10~ Torr. Under such conditions,
it is possible to obtain liquid helium nanodroplets con-
taining several thousand He atoms[5].

For the evaluation, we use the above estimate of the
gas flow rate—namely, 4 (bar cm®)/s (which corre-
sponds to a particle flux of about 10%° s1)—and con-

sider a beam of clusters with an average size of N =

103. If all clusters in the beam were doped with single
Sk molecules, the total Sk flux would be equal to
10Y s, However, let us take into account factors
decreasing this value, for example, in a system with a
two-dimensional (slit) nozzle with adlit width of 50 cm
(such nozzles were used in investigations of the excita-
tion and isotope-sel ective multiphoton IR dissociation
(ISMD) of UFg [39] and SF4 [40]. For the proposed
separation method, it also desirable to use dlit nozzles
(see Section 3.3). In the case of a narrow directed
beam, it is possibleto select about 10% of clustersfrom
theinitial flux, and no more that 20% of clusters can be
doped with single molecules.

Let us consider the case of a continuous cluster
beam excited by IR radiation of a CO, laser operating
at apulse repetition rate of f = 500 Hz (lasers operating
in this regime are used in practice for the laser separa-
tion of carbon isotopes [41, 42]). The fraction of |aser-
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excited clustersin the beam (i.e., the on—off ratio of the
excitation process) is

where Ax;,, is the length of the laser-irradiated region
and v, is the velocity of the cluster beam. The latter
value is typically about v, = 500 m/s [31, 32]. If the
laser pulse energy isabout 2 Jand the laser beam is per-
pendicular to the cluster beam, it is easy to provide for
an irradiated region with Ax;, = 20 cm (or alaser beam
cross section of 20 x 1 cm? inthisregion). Theresulting
energy flux is about 0.1 Jcm?, which is one order of
magnitude greater than the value required for the effec-
tive excitation of clusters (see relation (16)). Thus, the
on—off ratio of the excitation processisc; = 0.2.

Finally, we have to take into account that no more
than 20% of doped clusters can be deflected by single
collisions in the course of scattering on the atomic
beam. Therefore, we eventually deal with approxi-
mately a 10~ fraction of the initial beam, or with aflux
of Sk, molecules about 10** s. Taking into account
that, for the integral selectivity 1S = 10 the process
selectivity isE= 0.1 (seeFig. 6, curves2Sand 2 form =
200), the yield of SFg-enriched product will amount to
about 10%3 s or 3.6 x 10'¢ h™%, which is equivalent to
approximately 0.01 mg/h. Obviously, thisisavery low
yield, even though we have considered a small setup
with a single nozzle and a single pump.

It should be noted that small yields of enriched
product are characteristic, in particular, of the process
of isotope separation by ISMD in gasdynamically
cooled jets and flows. For example, the laser separation
of uranium isotopes using ISMD of UFg molecules
employs highly diluted mixtures with arelative density
of UFg moleculesin the carrier gas below 0.01 [39, 43].
The effective excitation and dissociation of molecules
requires rather high laser energy density (at least,
exceeding 1 Jcm? for the dissociation of preliminarily
excited molecules), which leadsto adecreasein the on—
off ratio of the excitation process down to ¢; < 0.001.
High selectivity (s= 3-5) can probably be reached only
at the expense of alow yield (<0.01). However, in the
case of isotope separation by ISMD in gasdynamically
cooled flows, it is possible to increase the gas pressure
in the doping chamber by two orders of magnitude (up
to 102 Torr). This implies that the gas flux also
increases by two orders of magnitude to reach about
10 s'. Thus, our estimates obtained taking into
account all the factors mentioned above show that the
yield of enriched products can amount to about 10'° s
or 3.6 x 108 h™1, which is about two orders of magni-
tude higher compared to the case of the cluster beam.
On the other hand, it should be noted that highly selec-
tive dissociation in the case of molecules characterized
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by small isotope shifts can be achieved only in high-fre-
guency IR fields, which significantly complicates the
process of isotope separation using the ISMD method.
In addition, it is necessary to provide high energy den-
sities and ensure a much greater (at least by two orders
of magnitude) contribution of laser photons to the dis-
sociation of molecules. This is related to rather high
dissociation energy and a low selectivity of this pro-
cess, whereby a considerable fraction of laser photons
is spent for the excitation of molecules containing iso-
topes other than the target one. In the case of cluster
beams, the sel ective excitation and dissociation of clus-
ters only requires a single-mode radiation of a moder-
ate-power laser. For this reason, one laser can irradiate
relatively greater volumes as compared to those in the
case of the ISMD process. The selectivity of excitation
in helium cluster beams can be aso higher.

In connection with the above evaluations, it should
be noted that the development of commercia systems
for the laser separation of uranium isotopes using the
ISMD of UFg moleculesis considered unprofitable (for
the modern level of laser technologies) [44]. Further
investigations (using the existing experimental facili-
ties) are necessary for the entire set of problems per-
taining to the development of laser systems and the
optimization of gasdynamic flows. The method under
consideration can probably find use for the laser sepa-
ration of exotic molecules and/or small amounts of
some isotopes. However, it is not excluded that further
progress in technology will make possible wide use of
such methods in the future.

4. CONCLUSIONS

The results of our investigation show that, using
selective vibrational excitation of superfluid helium
clusters containing embedded molecules by intense IR
laser radiation, followed by separation of the clusters
with respect to size via scattering of the cluster beam on
a crossing atomic beam, it is possible to select the
embedded molecules with respect to isotope (elemen-
tal) composition. In order to increase the process effi-
ciency, it is recommended to obtain the initial helium
cluster beams using slit nozzles and/or dlit diaphragms,
which allow the beams with large transverse dimen-
sions and large number of liquid helium nanodroplets
of optimum size to be obtained.

A significant advantage of using superfluid helium
droplets (clusters) for selecting molecules are (in addi-
tion to a low temperature of clusters and the related
very small width of the optical absorption bands of
embedded molecules) a low binding energy of He
atomsin clusters (7.2 K [19]) and the free rotation of
molecules inside the clusters. Because of the low bind-
ing energy, the absorption of asingle IR photon leadsto
asignificant decreasein the cluster size. A reduction in
the cluster size leads to further decrease in the binding
energy and, in turn, decrease requirements on the
pumping energy.
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In contrast to the method based onthe ISMD of mol-
ecules (see, e.g., [45-47] and referencestherein), which
is applicable only to polyatomic molecules, the method
under consideration can also be used for selecting small
(e.g., diatomic) molecules. Owing to the aforemen-
tioned free rotation, the IR absorption spectra of small
(e.g., di- and triatomic) molecules embedded in super-
fluid helium droplets contain narrow vibrational—rota-
tiona lines [1, 5, 9], which makes possible highly
selective excitation of the molecules. In the course of
doping of helium clusters with such small molecules,
their size distribution is not very strongly modified (as
compared to the case of large molecules) and the laser
excitation of such doped clusters can be performed with
ahigher selectivity (Fig. 6).

Another advantage of the separation method consid-
ered in this study is the possibility of exciting mole-
cules embedded in liquid helium droplets by means of
microwave radiation. The results of experiments show
(see, eg., [5. 9] and references therein) that use of the
microwave radiation for the excitation of molecules
inside the droplets and the evaporation of He atoms
from the excited molecules lead to the same effects as
the IR laser radiation. The main disadvantages of the
proposed method are a rather complicated procedure
and a relatively low yield. It should be noted that
detailed description of the methods of formation of lig-
uid helium nanodroplets and the methods of introduc-
ing single molecules (and clusters) into these droplets
canbefoundin[l, 2,5, 9].
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Abstract—We consider an interesting realization of the fundamental four-body problem: double ionization of
helium in superintense electromagnetic fields generated by highly charged ions in relativistic collisions. We
show how the simultaneous interaction of such fields with all three target constituents (which is not described
by first-order theory) strongly influences the collision dynamics even at very high collision energies and how a
“genuing” photoemission-like pattern may emerge in collisions at extreme relativistic energies. A very good
agreement with available experimental datais obtained. © 2005 Pleiades Publishing, Inc.

The question of the dynamics of quantum mechani-
cal few-particle systems on various time scales is
among the most interesting topics in modern atomic,
molecular, and optical physics[1]. One of fundamental
examples of the quantum few-body problem isgiven by
ionization of helium in collisions with fast highly
charged ions. During the last decade, there has been
remarkable progress in this field [1, 2]. Most of the
studies of helium ionization, however, have been per-
formed for singleionization and for nonrelativistic col-
lision velocities.

Whereas single ionization of helium is normally
treated as a three-body problem (projectile, “active”
electron, and recoil ion), doubleionization represents a
particularly strong challenge for theory because it is a
pure four-body problem. Indeed, a satisfactory (but still
incompl ete) understanding of helium double ionization
by charged projectiles has been reached only for colli-
sions with sufficiently fast electrons where the first
Born approximation (FBA) in the projectile-target
interaction isvalid. Helium double ionization by highly
charged ions is more difficult to describe, and it has
attracted much less attention so far. In particular,
helium double ionization by relativistic ions with such
ahigh charge Z, that Z,/v,, ~ 1 even for collision veloc-
ities v, approaching the speed of light ¢ (c = 137 a.u.)
has remained terraincognita to a large extent.

Thefirst measurements of differential cross sections
for doubleionization of helium in relativistic collisions

(1GeV/uU®, v,=120au., y=(1- v,/ 2=2,and
ZJv, = 0.77) were performed in [3]. Detailed experi-
mental studies of helium ionization by highly charged

ions in collisions at y = 1.5-2 are scheduled for 2005
(GSI, Germany) and collision energies up to those cor-

T This article was submitted by the authors in English.

responding to y = 30 will become routinely accessible
for atomic physics experiments in the near future [4].

Relativistic collisions with ions like U%* may
expose helium atoms to extreme conditions. Indeed,
rough estimates show that el ectromagnetic pulses with
effective power densities as high as 10% to 10%° W/cm?
can be generated by relativistic highly charged ionsin
collisions at y ~ 10-30 for impact parameters between
2 and 10 a.u. such that the whole target atom is exposed
to anearly homogeneous field. In addition, such pulses
are ultrashort and, despite the enormous intensities,
may “gently” irradiate the target, making its “snap-
shots” on the subatomic time scale.

Only afew attempts have been made to evaluate dif-
ferential cross sections for double ionization of helium
in relativistic collisions with highly charged ions. Esti-
matesin[3] and [5] were based on the Wei zsécker—Wil -
liams method of equivalent photons. However, for col-
lisonswith light targets, strictly speaking, this method
may be applied only at extremerelativistic energies|[6].
In addition, the results in [5] were obtained only for a
fixed collision impact parameter and cannot therefore
be related to experiment. In [7], helium ionization was
treated using the classical-trgectory Monte Carlo
approach. However, cross sectionsreported in [7] were
too small because this approach fails to properly
describe collisions with relatively small momentum
transfers, which become of great importance at very
high impact energies.

In this paper, we consider helium double ionization
in relativistic collisions with very highly charged ions
by developing an approach that, for the first time,
enabl es adetailed description of this extraordinary case
of the four-body quantum dynamical problem.

We start with the following remarks. First, even in
collisions with relativistic projectiles, the overwhelm-
ing majority of electronsemitted from light targets have

1063-7761/05/10003-0516$26.00 © 2005 Pleiades Publishing, Inc.
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nonrelativistic energi es! Therefore, we consider
helium ionization in the target frame and use a nonrel-
ativistic description for the electron motion. Second,
because the momentum exchange does not actually
exceed several atomic unitsin collisions of interest for
the present study, the recoil velocity of the target
nucleus and the deflection angle of the projectile are
always very small. This allows us to begin the consid-
eration with the semiclassical picture in which (i) only
the electrons are treated quantum mechanicaly; (ii) the
target nucleusisassumed to be at rest and istaken asthe
origin of the target frame; and (iii) in this frame, the
projectile moves along a straight-line classical trajec-
tory R(t) = b + v,t, whereb istheimpact parameter. The
corresponding Schrodinger equation is

AW _ O&Tim L AT 0
5 = DX 5t + TE e+ varzige. @
j=1

Here, p; isthe momentum operator for the jth atomic
electron, ¢; and A; are the scalar and vector potentials
of the projectile field at the position of the jth atomic
electron, and ¢ is the corresponding scalar potentia at
theorigin. Furthermore, Z, = 2 isthe charge of the target
nucleus and V,; = -Z/r, — Z/r, + 1/r,, isthe interaction
between the target particles, where r; is the coordinate
of the jth electron with respect to the target nucleus and
ri, =r,—r,. The spin-flip transitions are suppressed in
our case by a factor ~v,/c? compared to the non-spin-
flip ones, and the spin terms are therefore ignored in
Eq. (2).

In the Lorentz gauge, the projectile potentials are
given by [8]

z
¢j = ’

Sj

where s and s are the coordinates of the jth target elec-
tron and the target nucleus with respect to the projectile
ion given in the projectile rest frame.

Taking into account that in both the initial and final
channels the projectile velocity is much higher than
typical electron velocities (1-3 a.u.), we use the sym-
metric eilkonal approximation (SEA). In the SEA, the
state W is replaced by W, and W, in the initial and final
channels respectively, where

z
6=12 A =20, @

W) = Wi(ry, ro)exp(—igt)(vs+v x)™
x (v +v ) (Vs +v ) -
Wo(t) = W(ry, 1) exp(-igt)(vs—v E) ™

x (vs,—v &) "(vs,—v 5y) ",

1 Actually, in the target frame, the energies of most emitted elec-
trons do not exceed few atomic units (see Fig. 2).
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Y, and ; aretheinitial and final states of the three-body
target subsystem with energiesg; and &, v, = Zj/v,,, and
Ne = Z,Zlv,. We note that in Eq. (3), the Coulomb
boundary conditions (dueto the projectilefield) are sat-
isfied for all the three target particles.

Within the SEA, the prior form of the semiclassical
transition amplitudeis

ag(b) = —iI(dt@Pf(t)IW(t)IWi(t)U, (4)

where the distortion interaction W (t) is given by

WW, = (vs,—v [B) " "(vs,—v (8) P(vs—v (&)™

o (5)
x v exp(—ig;t) z (C; 0P, +v,D))u,
=1
with
Ci = _Si_l(sij(SJ + Sj,z)_l; Si'y(sj + Sj,z)_l; y_l)’ (6)

D, = (s5((s,+5,,) " —05vi(cs)

wheres ;=5 - V/Vpand (S, S.y) =5 =S, M/ Vp-

The full quantum dynamics of the collision cannot
be treated with semiclassical amplitude (4). However,
for collisons with very small projectile scattering
angles and negligible velocities of the target nucleus,
the quantum transition amplitude S; can be obtained
from semiclassical amplitude (4) as

Si(Q) = 5=[d’bep(iQ bay(b). (7

where Q is the two-dimensional transverse part (Q x
V,, = 0) of the momentum transfer g to thetarget. In con-
trast to the impact parameter b, the momentum transfer
is accessible to direct measurement. We have q =
(Q: Umin), Where Qi = wy/ v, With oy = & —g;.
Amplitude (7) is the first term of the symmetric
eikonal distorted wave series. The analysis shows that
for the most important part of the emission, the expan-
sion parameter of this seriesis essentially given by ¢ =

ZJv. Inrelaivistic collisions, ¢ does not exceed 0.01
even for the highest possible projectile charge states
Z,~ v,. Therefore, the first term of this series alone
may already be sufficient for a successful treatment of
the collision dynamics. Thisisto be contrasted with the
standard Born series, which isgenerated from Eq. (1) in
the usual way and has the expansion parameter v, =
ZJv,. In collisions with the heaviest bare nuclei, the
parameter v, is never much less than unity. Therefore,

No. 3 2005



518

not only might the first Born approximation be insuffi-
cient but also thewhole Born seriesislikely to become
meaningless.

The success of distorted wave models for nonrela-
tivistic ion—atom collisions was to a very large extent
caused by the facts that (i) the interaction between the
projectile and the target nucleus (the n—n interaction)
does not affect the el ectron emission spectraintegrated
over the projectile deflection angle and (ii) for colli-
sions with hydrogen-like targets, the transition ampli-
tude of type (7) can be evaluated anaytically provided
the n—n interaction is ignored. Taking into account the
interaction between the projectile and the second
“active’ target electron tremendously complicates cal-
culations, and the situation is certainly not simplified if
the n—n interaction must also be included, for instance,
in the case where the full collision dynamics has to be
considered.

Atv, ~ 1, adirect numerical integration of the mul-
tipleintegral in Eq. (7) faces difficulties becausein both
theinitial arid final channels, the motion of the projec-
tileisnot bounded in space. Therefore, theintegral over
R = d®v,dt in Eq. (7) is not absolutely convergent
and should be taken analyticaly. Theresult is

ivp
2nv Y @)
xfdzédzéﬁlJfIGl P+ G, [P, + Fy + Fog; ]

Si(Q) =

Here, { and & are two-dimensional vectors perpendicu-
lar to Vp,

G,

G(vpNp V5 §,8,0; 1y, 12),

Fi = F(Vpnp Vi 88,01y, 1p),

G, =Gy(ry~—ry),and F, = F4(r; ~—r,), where G
and F are expressions containing exponential, gamma,
and hypergeometric functions. The explicit forms of G
and F are very cumbersome and will be given else-
where.

We note that the right-hand side of Eg. (5) was writ-
ten with (; assumed to be an exact state of the free tar-
get. If thisis not the case, an additional term appearsin
the right-hand side of Eq. (5). However, if & # g, this
term makes zero contribution to the transition ampli-
tude. Therefore, there are no forma restrictions
imposed on y; and ; by the use of Eq. (8). Because the
three-body problem has no exact solution, the actual
choice of ; and | is dictated by two main points: these

2In collisions at very high y, where very small momentum trans-
fers contribute the most to double ionization, even for v, ~ 1, a
properly formulated first-order approach may be applied to the
total cross section for the double ionization.
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states should be “sufficiently good” and, simulta
neously, allow performing at least the ten-fold integra-
tion in Eq. (8) necessary to obtain the fully differential
Cross section

do 2

e = |54, 9
d?Qdk,d%k, IS )
where k; and k, are the electron momenta in the final
State.

Aswas already remarked, the SEA is superior to the
FBA atv,=Z/v,~ 1. Onewould expect that asv, —~
0, the results of both approximations converge if the
exact target states ; and ); can be used. However, even
with such states, the ultrarelativistic limits of these two
approaches are dtill different: the symmetric eikonal
approximation yields the correct asymptotic behavior
for cross sectionsasy — oo, but the first Born approx-
imation does not. This point is very important and
deserves a separate and detailed discussion. Here, we
only note that at v, < 1, the first Born approximation
with exact target states would strongly fail only at y ~
c/v?, and higher.

Theresults of both the SEA and FBA using approx-
imate target states J; and ) do not coincide even as
v, — 0. Therefore, a consistent way to “highlight”
higher order effects in the projectile-target interaction
isasfollows. For agivenv, ~c, caculationsinthe SEA
are performed for the actual projectile (Z,) and for the
proton impact. The first-order result for the actual pro-
jectile is then obtained from that for the proton using

the first-order scaling, i.e., via multiplication with Zf) )
We call thisfirst-order approach the SEA-1.
In calculations of the fully differential cross section

given by Eq. (9), we approximate theinitial state by the
four-parameter Hylleraas wavefunction

W = Ni[exp(=ar; —Bry) + (ry~—r;)] (10)
x[1-dexp(-Ary)],
where N; = 1.638 is the normalization factor, a =
1.4096, [3 = 2.2058, 6 = 0.6054, and A = 0.2420. Wave-
function (10) yields g, = —2.902 a.u., which is close to
the exact value —2.904 a.u. Thefina state istaken as

Pr = Wac— M Pscp;,
L g ()W ()X (F12) + (r e 1] D

J2

wherek, = (k; —k,)/2 and P4 isthe so-called 3C state,
a (symmetrized) product of three Coulomb waves
describing all pairwiseinteractions between the constit-
uents of the target. The above approximations are cho-
sen because they yield good results for helium double

WYac =
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Fig. 1. The fully differential cross section (in arb. units) as afunction of the polar emission angle 9, of the “first” electron, givenin
the plane defined by v, = (0, 0, vpp) and g = (Q, O, dyin). Emission energies E; = E; = 10 eV, azimuthal emission angles ¢, = ¢, =
0°.(a) Vp= 120 au., Q=0.25au., 4, =90°. The solid curve corresponds to the SEA, the dashed curve to the SEA without the n—n
interaction, the doted curve to the SEA-1. (b) v, = 137 au. (Y= 26), Q = 10" 3au, 9, =192°. The solid curve correspond to the

SEA, the dashed curve to the nonrelativistic SEA (¢ = «), the symbols are the experimental data on double photoionization [9] (the
incident real photon is polarized along the x axis) normalized to the SEA results.

ionization due to the photoeffect and by fast electrons
in collisions with relatively small momentum transfers.
Such collisions become especially important at relativ-
istic impact energies. In addition, with the states in
Egs. (10) and (11), the sixfold integrals over the elec-
tron coordinates in Eg. (8) can be reduced to two-fold
integrals.

The results for the fully differential cross section in
collisions with U%* are shown in Fig. 1. Two important
points should be mentioned.

First, within any first-order approach, the projectile
may exchange only asingle virtual photon with the tar-
get and can therefore directly interact with just one
electron. Double ionization may then only occur dueto
electron—electron correlations and/or rearrangement in
the target final state. However, the highly charged pro-
jectile, due to its strong field, can directly and very
effectively interact with all the three target particles
simultaneously. Therefore, such (higher-order) effects
in the projectile-target interaction, which are properly
described within the SEA, may profoundly influence
the collision dynamics (Fig. 1a). Not only the direct
interaction of the projectile with both electrons but also
the n—ninteraction (which itself doesnot lead to ioniza-
tion) may very strongly affect the fully differential
emission pattern.

Second, in collisions at very high y and very low Q,
the higher-order effects become of minor importance
even at v, ~ 1. A very interesting peculiarity of such
collisions is that the physics of the impact ionization
may become very similar to that of the photoeffect. A
certain similarity between impact ionization and photo-
ionization has been the subject of a long-term discus-
sion in studies of the double ionization by fast nonrela-
tivistic electrons. Such discussions, however, are of
superficial character and can even be misleading
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because the fundamental similarity between these pro-
cesses is only possible if y > 1. Indeed, the emission
pattern in Fig. 1b is amost indistinguishable from that
due to the photoeffect because it is produced by the
absorption of a virtual photon whose properties are
very close to those of areal photon [6]. As aresult, not
the virtual photon momentum q but its polarization e ~
q/wx — v,/c? [6], lmost perpendicular to g, determines
the shape of the emission cross section in Fig. 1b.

In [3], the emission spectrum differential in the
energy of one of the ejected electrons has been
reported. To produce such a spectrum from the cross
section in (9), one has to perform seven additional inte-
grations. Thistask isnot feasibleif ; and |; are given
by Egs. (10) and (11), but can be carried out if the terms
depending onr ,;, are neglected in these equation, which
allows evaluating the integrals over the electron coordi-
nates in Eq. (8) analytically. Of course, neglecting the
electron correlation would be a very improper approxi-
mation in the study of thefully differential crosssection
given by Eq. (9). Nevertheless, it is known that for col-
lisions with highly charged ions, this approximation
can still be used to estimate the total cross section and
the energy emission spectrum integrated over the
momentum transfer and all emission angles. The basic
reasonsfor thisaretwofold. First, the doubleionization
in our case is dominated by the so-called TS-2 process,
in which the electrons undergo transitions due to the
“direct” interaction between the projectile and each of
the two electrons. Second, while the electron—€lectron
interaction in the continuum can strongly affect angular
distributions, it cannot change the total energy of the
electrons.

The results of such calculations (o = 1.885, B =
21832,and6=00 g =-2876au. and ,,, = 1) are

shownin Fig. 2. For compl eteness, the energy spectrum
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Fig. 2. Energy spectraof electrons emitted in 1-GeV/u U%* +

He(lsz) collisions. Symbols are the experimental data
from [3]. See the text for more explanations.

of electrons emitted in singly ionizing collisionsis aso
displayed. For both single and double ionization, a
very good agreement between the SEA results and
experimental datais observed.* The overall effect of the
higher-order termsin the projectile—target interactionis
clearly seenin Fig. 2: it only slightly decreasesthe sin-
gle ionization cross section but is very strong for the
double ionization. Compared to the first-order resullt,
the energy spectrum for double ionization decreases
substantially slower as the emission energy increases
and is larger on an absolute scale by a factor of 10-30

3 Results for this spectrum were obtained by combining the SEA
and FBA with the Hartree—Fock description of the “active” elec-
tron. We note that within the effective three-body collision model,
where the (active) electron moves in the same Hartree-Fock
potential in both initial and final states, the results of SEA and

FBA nicely converge at v, < 1.

4We note that for ionization by 1-GeV protons, the SEA, with y;
and ;s used to produce the spectrum in Fig. 2, yields the double-
to-single ionization ratio 02*/o™ = 2 x 1073, which is quite close
to the established high-velocity limit for this ratio approximately
equal to 2.5 x 1073 (see, e.g., [10]).
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due to the large contribution from collisions in which
both target electrons are removed simultaneously by
their “independent” interactions with the projectile.

In conclusion, using a novel approach that treats,
withinthe SEA, theinteraction of the projectile with all
the three target constituents on an equal footing, we
have considered the double ionization of heliumin rel-
ativistic collisions with highly charged ions. By explor-
ing the basic dynamics of these collisions for the first
time, we have demonstrated how the direct interaction
of the projectile with al the three target particles can
strongly affect the fully differential cross section. We
have further shown that the fundamental similarity
between the impact double ionization and double pho-
toionization of helium naturally emerges in extreme
relativistic collisons with very small transverse
momentum transfers.
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Abstract—An experiment on preparation of entangled photon pairs (biphotons) in an arbitrary polarization
state isdescribed. The biphotons are qutrits (three-state quantum systems). They can be used in ternary quantum
cryptography protocols. A theoretically derived orthogonality criterion for the prepared biphotonsis validated
experimentally. The criterion can be used to identify orthogonal biphoton states. © 2005 Pleiades Publishing,

Inc.

1. BIPHOTONS AS QUTRITS

Most quantum cryptography protocols are based on
binary encoding (with qubits) [1, 2]. Qubits can be pre-
pared as polarization states of a single-photon wave
packet, states of a spin 1/2 particle, states of a single-
photon wave packet in atwo-arm interferometer, and in
various other ways.

In recent studies, it was proposed to use ternary
logic (qutrits) in quantum cryptography instead of
qubits [3-5]. These studies are generally motivated by
the higher efficiency [3] and higher security [6] of
guantum channels of higher dimension. A quitrit is a
three-state quantum system, as a three-level atom or a
spin 1 particle. However, photons are known as the best
means of data transmission. There exist severa meth-
ods for making photonic qutrits. In particular, ternary
encoding can use photon states obtained in athree-arm
interferometer [7], single-photon wave packets with
helical wavefronts [8], and four-photon states created
by parametric down-conversion [9].

The ternary quantum cryptography scheme pro-
posed in [4] made use of polarization-entangled states
of photon pairs (biphotons) obtained as aresult of spon-
taneous parametric down-conversion (SPDC). It isthe
simplest method for preparing an arbitrary polarization
state of aqutrit [10, 11], i.e., astate of the form

|WO= ¢,|2, 00 c,|1, 10+ c,)0, 20 1)

with arbitrary amplitudes c,, ¢,, and c;. The ket nota-
tion |m, nin (1) means m vertically polarized photons
and n horizontally polarized ones. Theoreticaly, the
resulting biphaotons belong to the same spatiotemporal
mode. Even though the biphotonic field created in an
experiment always spans a frequency—angle spectrum
of finite width, representation (1) isvalid if the optical
detector employed in the scheme does not resolve the

frequency—angular spectrum. By virtue of the normal-
ization

|c1|2 + |Cz|2 + |Cs|2 =1

and the unimportance of the overall phase of state (1),
abiphoton isdefined by four real numbers, e.g., thetwo
amplitudes

d, = |C1|1 d, = |C2|

and the two phases

b3 =arg(c,C3), $,5=arg(c,cs).
State (1) isaso conveniently represented asapair of
photonsin arbitrary pure polarization states [12]:

- a'(9,9)a' (9", ¢)|vach
a8, 0)a’ (9", o) |vaclll

where a'(8, ¢) and a'(9", ¢') are the operators of cre-
ation of photonsin arbitrary polarization modes charac-
terized by azimuthal (3, 9") and polar (¢, ") angles on
the Poincaré sphere.

Representation (2) can be used to depict a photon
pair on the Poincaré sphere. Furthermore, it can be
shown [12] that important polarization characteristics
of state (1), such as the Stokes vector and degree of
polarization, arereadily calculated by using representa-
tion (2). For example, the degree of polarization of
state (1) isuniquely determined by the angular distance
o between the points representing the states ¢, 9 and ¢,
9" on the Poincaré sphere:

2cos(a/2)
1+ cosz(c/ 2)

It should be emphasized here that this quantity isinter-
preted as the conventional (classical) polarization

)

P = ©)
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degree defined in terms of the Stokes parameters S, S;,
S,, and S;[13]:

psyAT 27 ()

Degree of light polarization (4) can be measured in
experiment as the maximum visibility of the modula-
tion observed in polarization-dependent intensity [14].
Since this quantity is completely determined by sec-
ond-order moments of the field, it is not an optimal
characteristic of biphotonic light (whose most interest-
ing properties manifest themselves in the behavior of
fourth-order moments). An alternative definition of
degree of polarization, the photon—photon polarization
degree formulated in terms of fourth-order moments,
has been proposed to describe the polarization state of
a biphoton [14-16]. However, since the “ photon—pho-
ton” polarization degree of apure state having the form
of (1) is aways unity [14], it provides no information
about the relative location of the two points represent-
ing a biphoton on the Poincaré sphere. Only the quan-
tity defined by (4) providesinformation of this kind.

We should also mention here the biphotons created
as mixed statesinstead of pure state (1). Inthiscase, the
components of state (1) are multiplied by phase factors
exhibiting classical fluctuations; i.e., the biphoton is a
statistical mixture of several basis states. A biphoton
state of this kind can be prepared by SPDC imple-
mented by means of incoherent pumpingin two or three
crystals. However, it cannot be represented as (2),
because (2) isapure state.

He-Cd

KRIVITSKII et al.

2. EXPERIMENT ON PREPARATION
OF A BIPHOTON WITH ARBITRARY DEGREE
OF POLARIZATION

An arbitrary state having the form of (1) can be pre-
pared by using aninterferometric schemeinwhich SPDC
is implemented by means of common pumping [17].
However, this scheme is impracticable because of its
instability. In this study, arbitrary biphotons (qutrits)
were prepared by using a different scheme, which does
not require the use of an interferometer.

First, we prepared and detected biphotons having an
arbitrary polarization degree (4), i.e., biphotons based
on photons in arbitrary polarization states (varying
from similar to orthogonal ones).

The experimental setup is schematized in Fig. 1.
Callinear, frequency-degenerate Type | SPDC was
implemented in two beta-barium borate (BBO) crystals
pumped by a 325 nm He-Cd laser. The optical axes of
the crystals were oriented so that vertically and hori-
zontally polarized photon pairs (states |0, 20and |2, O0)
were generated in the first and second crystals, respec-
tively. The ratio of the corresponding absolute ampli-
tudes were varied by rotating a half-wave plate placed
in the pump beam. In addition, the phase difference €
between the states |2, OCand |0, 2[was varied by tilting
two quartz plates with vertical optical axes. The light
generated by thetwo crystalswasthe coherent superpo-
sition

|W,0= sin(2x)|2, 00+ €°cos(2x)[0,20  (5)

where x isthe half-wave plate rotation angle relative to
the vertical axis. Thus, two of the four real parameters
that determine state (1) (X and €) could be varied so that

Ml 325 nm

MaA2 A2 TF P

M3

BBO

|

Al

CC

Fig. 1. Experimental setup: He-Cd = helium-cadmium laser; M1, M2, M3 = mirrors reflecting the pump beam; QP = quartz plates,
BBO = beta-barium borate crystals; P = pinhole; IF = interference filter; BS = nonpolarizing beamsplitter; A1, A2 = polarizers; D1,
D2 = detectors (avalanche photodiodes); CC = coincidence circuit; PC = Pockels cell.
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the polarization degree of the generated state would
take any value between 0 and 1.

Initially, the phase difference € was set equal to TU
By varying x from 0 to 45°, the generated state was
transformed from |2, OCinto |0, 2[Jso that the two points
corresponding to a biphoton state on the Poincaré
sphere traversed its equator (see Fig. 2), remaining
symmetric relative to the axis HV. This state can be rep-
resented as (2) with

9 =38'=2arctan[/cot(2X)], ¢ =0, ¢'=T10 (6)

In particular, we used x = 22.5° to obtain the state
[+45°, —45°[]i.e., apair of photons polarized linearly at
angles +45° relative to the vertical axis. The generated
light was totally unpolarized (with P = 0). Overall, the
degree of polarization varied from 1 to O; the angular
distance between the points representing the biphoton
on the Poincaré sphere varied from zero to 1.

Note that the degree of polarization P of state (5)
depends only on the rotation angle x of the half-wave
plate placed in the pump beam: P = |cos(4x)|. Thus,
when the plate was fixed in a certain position, the two
points on the Poincaré sphere corresponding to bipho-
ton (5) were located symmetrically with respect to the
axis HV and separated by a constant angular distance.
As the phase difference was varied, the points moved
simultaneously about the axis HV.

The pump beam that passed through the two crystals
was eliminated by a mirror, and the biphoton light was
selected both spatially and spectrally (by using a pin-
hole and a 10 nm bandwidth interference filter with
transmittance peak at 650 nm, respectively) and
directed into a Hanbury-Brown—Twiss interferometer
in order to detect fourth-order moments of the field.
The interferometer consisted of a 50% nonpolarizing
beamsplitter (a plane-parallel plate set at a small angle
of 15°, relative to the beam so that both reflected and
transmitted light polarizations were similar to that of
the incident light), two photodetectors (EG&G ava-
lanche photodiodes), and a coincidence circuit with a
resolution of 1.5 ns. Thin-film polarizers were inserted
into theinterferometer armsand used aslinear polariza-
tion filters.

3. DEMONSTRATION OF ORTHOGONALITY
OF BIPHOTONS (QUTRITS)

The prepared biphoton states were used to validate
the operational orthogonality criterion formulated
in[17]. It was shown in [17] that the orthogonality of
biphotons |W,Cand |W,[is equivaent to zero counting
rate in the Hanbury-Brown—Twiss interferometer out-
put when its input is the biphoton state |W;0and the
polarization filtersinserted into its arms select the pho-
ton polarization states that constitute |Y¥,L] The experi-
mental setup schematized in Fig. 1 always prepared the
state |W,[as apair of linearly polarized photons, while
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Fig. 2. Prepared states on the Poincaré sphere: (1) state
[2, O0generated at X = 0; (2) state |[+45°, —45°[) x = 22.5°%;
(3) state |0, 20) x = 45°; (4) state |R, LO(pair of left- and
right-polarized photons), x = 67.5°. The states |a, bOand
[a', b'Oprepared with x = 15° and 75°, respectively, were
studied in the present experiment.

different states |W,Owere used as input (both pairs of
linearly polarized photons and pairs of dlipticaly
polarized photons) and the biphoton polarization
degree varied from 1 to O (see above).

The state |, Owith a polarization degree of 0.5 was
selected asinput. In this case, the biphoton |W,[E |a, b[J
isrepresented by apair of pointslocated on the equator
of the Poincaré sphere at angles of £74.5° relativeto the
HV axis. According to (5), this state correspondsto x =
15°. Whereasthere exist an infinite number of biphoton
states |W,[orthogonal to theinput state, the orthogonal-
ity criterion uniquely determines the polarization state
of one of the photons that make up a biphoton if the
state of the other is preset. In our experiment, it was
convenient to set one polarizer in the Hanbury-Brown—
Twiss interferometer at an angle of 45° relative to the
vertical. A calculation showed that the other polarizer
must then be set at 60° to the vertical.

Figure 3a shows the coincidence rate measured ver-
sus X for € = twhen the polarizers were held at 45 and
60°. According to our calculations, the minimum coin-
cidence rate corresponds to x = 15°. When the half-
waveplateisfixed at x = 15° and polarizer Al isrotated
while polarizer A2 is held at 45°, then the minimum
coincidence rate corresponds to an angle of 60°
(Fig. 3b).

As the half-wave plate was rotated, the biphoton
state transformed into |0, 200(at x = 45°). With further
increase in the rotation angle, the two points represent-
ing the biphoton components moved in opposite direc-
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Fig. 3. Orthogondlity of biphotons in the case when both
input photons are linearly polarized (state |a, bTin Fig. 2),
€ =11, and polarizersheld at 45 and 60°: (&) coincidencerate
versus half-wave plate rotation angle X, the orthogonality
condition is satisfied at x = 15°; (b) coincidence rate versus
the polarizer rotation angle relative to the vertical, the
orthogonality condition is satisfied at an angle of 45°, the
other polarizer isheld at 60° relative to the vertical .

tions along a meridian of the Poincaré sphere (see
Fig. 2). At x = 67.5°, the output wasthe state |R, L[ ton-
sisting of circularly polarized photons. At x = 75°, the
degree of polarization of the output wasagain 0.5 (asin
|a, b0, but the corresponding biphoton (Ja', b'Cin Fig. 2)
consisted of elliptically polarized photons. Then, it can
be verified by calculation that the orthogonality condi-
tion is satisfied when the polarizers are oriented at 45
and —60°. Accordingly, the coincidence rate measured
for these polarizer positions versusthe rotation angle of
the half-wave plate placed in the pump beam reaches a
minimum at approximately x = 75° (Fig. 4).

Figure 5 shows the coincidence rate measured as a
function of € for x = 15° (i.e., input state |a, blin Fig. 2)
while the polarizers were held at 45 and 60°. The min-
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Fig. 4. Orthogonality of biphotons in the case when both
input photons are elliptically polarized (state |a', b'in
Fig. 2), € = 1, and polarizers held at 45 and —60°: coinci-
dence rate versus haf-wave plate rotation angle x. The
orthogonality condition is satisfied at x = 75°.

imum coincidence rate was observed in the vicinity of
E=TL

The curves plotted in Figs. 3-5 were calculated for
particular biphoton states and polarizer positions (e.g.,
see [18]). The only fitted parameter was the vertical
scale.

4. TRANSITION
TO AN ARBITRARY BIPHOTON STATE

To change from a biphoton with an arbitrary degree
of polarization (represented by two points separated by
an arbitrary angular distance on the Poincaré sphere) to
a biphoton in an arbitrary polarization state (repre-
sented by two arbitrary points on the Poincaré sphere),
one must be able to perform any required transforma-
tion of state (5). This can be done by varying ¢, X, and
two additional parameters characterizing state (5).
These parameters can be the retardation & and orienta-
tion a of aretarding plate placed in the prepared bipho-
ton beam.

Thefeasibility of transition from state (5) to state (1)
with aretarding plate of arbitrary thickness and orien-
tation added to the setup shown in Fig. 1 can be illus-
trated by performing a simple geometric construction
on the Poincaré sphere.

An arbitrary biphoton state |a, b(](see Fig. 6) can be
obtained by using aretarding plate with certain d and a
to transform the state [a', b'Crepresented by two points
on the Poincaré sphere located symmetricaly relative
to the axis HV. The required plate parameters are deter-
mined by the condition that the transformation on the
Poincaré sphere maps the symmetry axis of the pair
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Fig. 5. Coincidence rate versus phase € for half-wave plate
set x = 15° and polarizers set at 45 and 30°. The orthogonal -
ity condition issatisfiedat e = 1t

[a, bO(axis OC in Fig. 6) to the HV axis. Note that the
state |a', b'[tan be prepared by using the setup shownin
Fig. 1 so that the angular distance between pointsa and
b on the sphere and the angle of their rotation relative
to its equator are determined by the orientation x of
half-wave plate placed in the pump beam and the phase
difference €, respectively.

In other words, the retarding plate placed after the
two crystals will map state (5) to state (1) by rotating
the points representing the biphoton in Fig. 1 as a
whole. The resulting state (1) is characterized by the
four parameters g, X, o, and 8. One practical difficulty
inthis method isthat the parameter o can be varied only
by changing plates with different retardations.

To vary 0 by an arbitrary amount, one should use a
Pockels cell instead of a set of wave plates. Varying the
voltage applied to the cell, one can use it as aretarding
plate with variable retardation. The parameter o can be
varied gradually by revolving the cell about the bipho-
ton beam.

A state described by (1) was prepared by placing a
Pockelscell after thetwo crystalsin the optical arrange-
ment schematized in Fig. 1. The element used in the
Pockels cell was a3 cm long crystal of lithium niobate
cut along the optical z axis. When a dc voltage was
applied along the x axis, the crystal became weakly
birefringent, and the plane of its optical axes made an
angle of 45° with the xz plane. Asthe dc voltage applied
to the crystal was varied from zero to 2.8 kV, the phase
difference between the ordinary wave (polarized in the
plane of the optical axes, i.e., a an angle of 45° relative
to the xz plane) and the extraordinary wave (polarized
at an angle of —45° relative to the xz plane) increased
from zero to 21t Note that the cell acted as a zeroth-
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Fig. 6. Preparation of an arbitrary polarized biphoton [a, b0
by using the setup schematized in Fig. 1 and a Pockels cell
acting as aretarding plate with variable retardation and ori-
entation. The Pockelscell transformsthe state |a', b'Ctreated
by using the setup schematized in Fig. 1 into the desired
state [a, bl

order retarding plate with & varying between 0 and Tt
Thus, the electrically induced transformation of polar-
ization in the cell was similar at any frequency within
the SPDC bandwidth (about 40 nm) and, therefore,
within the bandwidth of the interference filter. Note
also that the orientation a of the optical axis of a Pock-
elscell treated as aretarding plate is determined by the
plane of the induced optical axes, i.e., makes an angle
of 45° with the direction of the electric field applied to
the cell.
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Fig. 7. Coincidence rate versus Pockels cell orientation
anglein the case of half-wave voltage applied to the Pockels
cell (retardation & = 172), half-wave plate orientation x =
22.5°, phase € = 11, and polarizers set at 45 and —45°.
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Fig. 8. Coincidence rate versus retardation o for Pockels
cell set at o = 22.5°, half-wave plate orientation x = 22.5°,
phase € = 11, and polarizers set at 45 and —45°.

To begin our measurements, we switched off the
voltage applied to the Pockels cell, placed the half-
wave plate at the angle X = 22.5° in the pump beam, and
set the phase difference € equa to 11 (see (5)). Thiscom-
bination of parameters corresponded to the highest
coincidence rate when the positions of the polarization
filterswere set at 45 and —45° so that the input state was
[+45°, —45°[INext, we applied the half-wave voltage to
the Pockels cell. Since the optical axis of the cell was
initialy aligned with the vertical direction, the bipho-
ton remained in the same state [+45°, —45°when the
half-wave voltage was applied: the cell executed arota
tion by Ttrelative to the axisHV on the Poincaré sphere.
The state of the output biphoton varied as the Pockels
cell was revolved, and the coincidence rate varied
accordingly. Figure 7 shows the coincidence rate versus
the angle a between the optical axis of the Pockels cell
and the vertical axis. It is clear that coincidences virtu-
aly vanished at a = 22.5° because the Pockels cell
transformed the selected state |[+45°, —45°into the
state |[H, VOlwhich is orthogonal to |+45°, —45°[]

Finally, we set a = 22.5° and varied the voltage
applied to the cell from zero to 2.8 kV. Figure 8 shows
the corresponding coincidence rate as a function of .
The minimum coincidence rate was reached at = 172,
as in the preceding case, because the states |H, Vand
[+45°, —45°are mutually orthogonal.

5. CONCLUSIONS

We have experimentally demonstrated the prepara-
tion of arbitrarily polarized two-photon states (qutrits).
The states were generated by using a scheme that did
not include any interferometer. This highly stable prep-
aration scheme can be employed in practical quantum
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cryptography. The arbitrarily polarized biphotons pro-
duced were utilized to validate amethod for identifying
orthogonal biphoton states based on zero counting rate
in the Hanbury-Brown—Twiss scheme. The feasibility
of experimental identification of orthogonal biphotons
(qutrits) means that they can be used in quantum data
transmission protocols, including quantum cryptogra-
phy protocols. The 12 biphoton states required to
implement the ternary analog of the BB84 protocol
were cal culated and represented on the Poincaré sphere
in[19].

We should also note that the present demonstration
of orthogonality of biphoton states generalizes the
well-known experiment on anticorrelation dip reported
in [20]. Previoudly, this effect was observed only for
similarly polarized [20] or orthogonally polarized [21]
photon pairs. The present study is the first demonstra-
tion of this effect for arbitrarily polarized photon pairs.
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Abstract—The stationary, spherically symmetric accretion of dark energy onto a Schwarzschild black holeis
considered in terms of relativistic hydrodynamics. The approximation of anideal fluid isused to model the dark
energy. General expressions are derived for the accretion rate of anideal fluid with an arbitrary equation of state
p = p(p) onto ablack hole. The black hole mass was found to decrease for the accretion of phantom energy. The
accretion processis studied in detail for two dark energy modelsthat admit an analytical solution: amodel with
alinear equation of state, p = a(p — pg), and a Chaplygin gas. For one of the special cases of alinear equation
of state, an analytical expression is derived for the accretion rate of dark energy onto a moving and rotating
black hole. The masses of al black holes are shown to approach zero in cosmological models with phantom
energy in which the Big Rip scenario isrealized. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, strong observational evidence that
the Universe is currently expanding with accel eration
has been obtained. In the Einstein theory of gravita-
tion, this positive acceleration is explained by the
dominance of dark energy with a negative pressurein
the Universe [1-4]. Severa theoretical models of dark
energy have been suggested: the vacuum energy (the
cosmological constant A) or such dynamical compo-
nents as quintessence [5-10] and k essence [11-13].
Models with dynamical dark energy seem more realis-
tic, since tracker [14, 15], or attractor, solutions are
realized in them. Thus, the problem of fine tuning the
parameters of the Universeis solved [11-13].

A peculiar property of cosmological models with
dark energy isthe possibility of a Big Rip [16, 17]: an
infinite increase in the scale factor of the Universein a
finitetime. The Big Rip scenario isrealized in the case
of dark energy, the so-caled phantom energy (for
which p + p < 0). In the Big Rip scenario, the cosmo-
logical phantom energy density tendsto infinity, and al
of the bound objects are torn apart up to subnuclear
scales. It should be noted, however, that the condition
p + p < 0aoneisnot enough for the Big Rip scenario
to be realized [18]. Alam et al. [19] analyzed data on
distant supernovas in a model-independent way and
showed that the presence of phantom energy with
-1/2 < plp < -1 in the Universe at present is highly
likely. The quantum properties of the phantom energy
in curved spacetime were considered in [20]. The
entropy of the Universefilled with phantom energy was
discussed in [21]. Model swith phantom energy are also
used to construct mole burrows [22, 23]. The accretion
of a scalar field onto a black hole from specia poten-
tials V() was considered in [24—29]. We use adifferent

approach to describe the accretion of dark energy onto
a black hole; more specifically, we model the dark
energy by an ideal fluid with a negative pressure.

In our recent paper [30] (see aso [31]), we showed
that the masses of all black holes in the Universe with
phantom energy gradually decrease, and the black
holes disappear completely by the Big Rip. In this
paper, we consider in detail the stationary spherical
accretion of dynamical dark energy onto a black hole.
The dark energy is modeled by an idea fluid with a
negative pressure. The history of research on the accre-
tion of an ideal fluid onto a compact object begins with
Bondi’s classic paper [32]. A relativistic generalization
was made by Michel [33] (see aso [34-41] for further
generalizations and supplements to Michel’s solution).
Carr and Hawking [42] considered the accretion of dust
and radiation onto a black hole by solving the complete
system of Einstein egquations and taking into account
the back reaction of the surrounding matter (see aso
[43] for a description of the progress made in this area
and for adiscussion of fundamental questions). Below,
we obtain asolution for the stationary accretion of atest
relativistic ideal fluid with an arbitrary equation of state
p(p) onto a Schwarzschild black hole. Using this solu-
tion, we show that the black hole mass decreases during
the accretion of phantom energy. The masses of black
holes can decrease during accretion in the case of phan-
tom energy due to the violation of the energy domi-
nance condition (p + p = 0) that underlies the theorem
on the nondecreasing area of the event horizon of a
classical black hole [44].

This paper is structured as follows. In Section 2, we
derive general equations for the spherical accretion of
an ideal fluid and describe basic parameters of the
steady energy flux onto a black hole. We consider an

1063-7761/05/10003-0528$26.00 © 2005 Pleiades Publishing, Inc.
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arbitrary equation of state, w = p/p, where the pressure
p can be positive (for ordinary matter) and negative (for
dark energy, including phantom energy w < —1). Note
that the parameter w of the equation of state need not be
constant in our approach. Accretion causes the black
hole mass to change: the mass increasesfor p + p >0
and decreases for p + p < 0. The energy flux turns out
to be completely determined by the black hole mass M,
the dark energy density at infinity p.,, and the equation
of statep=p(p) only if 0<dp/dp < 1. Inthiscase, there
isacritical point that fixes the flux just as for an ordi-
nary fluid. When the condition 0 < dp/dp < lisviolated,
the dark energy flux onto a black hole can formally be
arbitrary. For 0 < dp/dp < 1, we describe the method of
calculating the fluid parameters at the critical point and
the energy flux onto a black hole for given M, p.,, and
p = p(p). In Section 3, we consider specific models of
the equation of state for dark energy. In the first model,
we use a simple equation of state with alinear density
dependence of the pressure. We consider the specia
cases of accretion of several types of ideal fluid: ther-
mal radiation, matter with an ultrahard equation of

state, dark energy with dp/op S 0, and linear phantom
energy. The accretion rate of dark energy onto amoving
black hole was calculated for the special case of
dp/dp = 1. As the second model, we investigate the
accretion of a Chaplygin gas onto a black hole. The
evolution of the black hole mass in the Universe with
the Big Rip is considered in Section 4. The possibility
that the presence of phantom energy will lead the Uni-
verseto the Big Rip in the future has been discussed in
recent years. The problem of the fate of black holesin
this Universe is solved in a rather unexpected way:
black holes are not torn apart, but disappear by the Big
Rip dueto the accretion of phantom energy, irrespective
of their initial masses. In Section 5, we discuss the cor-
respondence between the accretion of dark energy
modeled by an idea fluid onto a black hole and the
accretion of a scalar field. The results obtained are
briefly discussed in Section 6.

2. GENERAL EQUATIONS
FOR SPHERICAL ACCRETION

Let us consider the stationary, spherically symmet-
ric accretion of an ideal fluid that models the dark
energy in the special case of a negative pressure onto a
black hole. The dark energy density is assumed to be
low enough for the metric to be a Schwarzschild one
with a high accuracy:

2|v|D 2MT " 2

- dt -l —-=—= dr
—r2(d92 + sin“0dg’),

where M is the mass of the black hole, r is the radial

coordinate, and 6 and ¢ are the angular spherical coor-
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dinates. We model the dark energy by an ideal fluid
with the energy—momentum tensor

Tpv = (p + p) upuv - pguvv (2)
where p is the density, p is the dark energy pressure,
and u* = dx"/dsistheradial 4-velocity component. The

pressure is assumed to be an arbitrary function of the
density, p = p(p). Integrating the zeroth (time) compo-

nent of the conservation law T, = 0 yields the first
integral of motion for stationary, spherically symmetric
accretion (Bernoulli's relativistic equation or the
energy equation):

1/2

2
(pP+PE-S+ug xu=C, (3)
where x = r/M, u = dr/ds, and C, is the constant deter-
mined below. To find the second integral of motion, we
use the equation for the component of the energy—
momentum tensor conservation law aong the 4-veloc-
ity ut:

u, T, = 0. 4
In our case, this equation is [45]
up,+(p+p)u, = 0. (5)
For the given equation of state
p=p(p), (6)

the auxiliary function n = n(p) can be defined by the
relation

dp _ dn

ptp N’

The function nisidentical to the particle concentration
for an atomic gas, but it can aso be used to describe a
continuous medium that does not consist of any parti-
cles. In this case, the “ concentration” nisaformal aux-

iliary function. For an arbitrary equation of state p =
p(p), we obtain a solution for n from Eq. (7):

(7)

pm[p + p(p)m ®)

Using (8), we find the sought second integral of motion
from Eqg. (5):

n(p)ux2 = —A, 9

where n,, (the dark energy “concentration” at infinity)
was introduced for convenience. In the case of a fluid
flow directed toward the black hole, u = dr/ds < 0, and,
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therefore, the numerical constant A > 0. From (3) and
(9), we can easily obtain

1/2

pt+tp 2 477 _
s adtls BIEReS (10
where
OO+ 00

L et usnow calculatetheradial 4-velocity component and
the fluid density on the event horizon of the black hole,
r = 2M. Setting X = 2, we obtain from Egs. (9)—11)

APu + P(Py) _ N°(Py)
4P+ P(Px)  n?(p.)

where py isthe density on the x = 2 horizon. Thus, hav-
ing specified the density at infinity p,,, the equation of
state p = p(p), and the flux A and using definition (7) of
the concentration, we can calculate the fluid density py
on the event horizon of the black hole from (12). Given
the density on the horizon p, we can easily determine
the radial fluid 4-velocity component on the horizon
from (9):

(12)

ANn(p..)

M T (00

Below, we will see that the constant A, which defines
the energy flux onto the black hole, can be calculated
for hydrodynamically stableideal fluidswith dp/op > 0.
This can be done by determining the fluid parameters at
the critical point. Following Michel [33], we find the
relationship between the parameters at the critical
point:

(13)

2 1 2 uz
u* = ’ V* = x ] 14
2%, 1-3u; (4
where
2_ _ N dp+p)_
vV 5+ dn 1. (a5)
Together with (7), thisyields
V2 = ci(p), (16)

where c§ = dp/op isthe square of the effective speed of

sound in the medium. We derive the following relation
for the critica point from Egs. (14), (16), (11),
and (10):

Ps + P(Ps) 2 12Pw + P(P.)
(o) [1+3cs(ps)] o) 17)

which fixes the fluid density at the critical point pfor
an arbitrary equation of state p = p(p). Specifying pj
and using (8), we can determine n(p). Accordingly, the
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quantities xjand upcan be calculated from (14) and

(16). Asaresult, the numerical constant A can be calcu-
lated by substituting the derived quantitiesinto (9). For

c2 <0or ¢& > 1, no critical point exists beyond the
event horizon of the black hole (x7> 1), implying that
the dark energy flux onto the black hole depends on the

initial conditions for an unstable ideal fluid (c§ <0)or

a“superluminal” fluid (¢Z > 1). Thisresult hasasimple
physical interpretation: the accreted fluid has a critical

point if its speed increases from subsonic to supersonic
values as it approaches the black hole. In contrast, for

c2 <0or ¢ > 1, thecritical point either does not exist
or is formally within the event horizon of the black

hole. It should also be noted that fluids with 2 < 0 are

hydrodynamically unstable (see [46, 47] for a discus-
sion).

Equation (10), together with (6), (8), and (9), defines
the accretion rate onto ablack hole. These equations are
valid for an idea fluid with an arbitrary equation of
state p = p(p), in particular, for a gas of massless parti-
cles (thermalized radiation) and a gas of massive parti-
cles. For agas of massive particles, the system of equa-
tions (9) and (10) reduces to a similar system of equa-
tions found by Miche [33]. It should be noted,
however, that Egs. (6), (8), (9), and (10) are also valid
for dark energy, including phantom energy withp + p<
0. In these cases, the concentration n(p) is positive for
any p, while the constant C, in Eq. (10) is negative.

The rate of change in the black hole mass (the
energy flux onto the black hole) through accretion is

M = —4mr’Ty.

Using (9) and (10), this expression can be rewritten
as[30]

M = 4AM[p., + p(p..)]. (18)

It follows from Eq. (18) than the mass of the black hole
increases as it accretes the gas of particleswhen p > 0,
but decreases as it accretes the phantom energy when
p + p < 0. In particular, thisimplies that the black hole
massesin the Universefilled with phantom energy must
decrease. This result is general in nature. It does not
depend on the specific form of the equation of state p =
p(p); only the satisfaction of the conditionp+p <0is
important. The physical cause of the decrease in the
black hole massis asfollows: the phantom energy falls
to the black hole, but the energy flux associated with
thisfall is directed away from the black hole.

If we ignore the cosmological evolution of the den-
Sity p.., then wefind the law of changein the black hole
mass from (18) to be

M = Mi%l—%_l, (19)
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where M; is the initial mass of the black hole, and T is
the evolution time scale;

_ 1
~ ATAM[p., + P(P.)]”

T (20)

3. ANALYTICAL ACCRETION MODELS
3.1. Model of a Linear Equation of Sate

Let us consider the model of dark energy with alin-
ear density dependence of pressure [30]:

p = a(p—po): (21)

where a and p, are constants. Among the other cases,
thismodel describes an ultrarelativistic gas (p = p/3), a
gas with an ultrahard equation of state (p = p), and the
simplest model of dark energy (p, =0 and a < 0). The
guantity o is related to the parameter w = p/p of the
equation of state by w = a(p — po)/p.

An equation of state with w = const < 0 throughout
the cosmological evolution is commonly used to ana-
lyze cosmological models. The matter with such an
equation of stateis hydrodynamically unstable and can
exist only for a short period. Our equation of state (21)
for a > 0 does not have this shortcoming. For a > 0, it
also allows the case of hydrodynamically stable phan-
tom energy to be described, which is not possible when
using an equation of state with w = const < —1. In the
real Universe, the equation of state changes with time
(i.e., wdependsont). Therefore, Eq. (21) hasthe mean-
ing of an approximation to the true equation of state
only in a limited p range. From the physical point of
view, the condition p > 0 must be satisfied for any equa-
tion of state in a comoving frame of reference. In par-
ticular, the state of matter with p =0, but p # 0, is phys-
ically unacceptable. The corresponding constraints
for the equation of state (21) are specified by condi-
tions (29) and (30) given below.

For a < 0, thereis no critical point for the accreted
fluid flow. For a > 0, using (14) and (16), we obtain the
parameters of the critical point

X =1+30( P = a
* 20 ' T 1+3a’

Note that the parameters of the critical point (22) in the
linear model (21) are determined only by dp/dp = a and
do not depend on py, which fixes the physical nature of
the fluid under consideration: a relativistic gas, dark
energy, or phantom energy. Note also that no critica
point exists beyond the event horizon of the black hole
for a > 1 (this corresponds to a nonphysical situation
with a superluminal speed of sound).

Let us calculate the constant A, which defines the
energy flux onto the black hole. We find from (8) that

Pert

Peif,

(22)

1(1+0q)

n , (23)

N,
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where we introduced the effective density
Per =P+ P = —poa +(1+a)p.
Using (17), we abtain
[Pet, Da/(“ a0 _ 1/2
= (1+3a) ", 24
Ty ] ( ) (24)

where pg,and pg, .. arethe effective densities at the crit-
ica point and at infinity, respectively. Substituting (24)
into (23) and using (9), we obtain for the linear model

(1 + 3a)(l+3o()/20(
= 4_0‘3/2

Itiseasytoseethat A= 4forO<a<1. A=4fora=1
(this correspondsto ¢, = 1); i.e., the constant Aison the
order of 1 for relativistic speeds of sound. Using (25),
we obtain from (20)

A (25)

(1+3a)/2a4-1
)(1+30() } . (26)

T = |TIM;(Po t Po

|: [ a3/2
To determine the fluid density on the event horizon of
the black hole, we substitute (23) into (12) to yield

p _ apO 8} _ apoDEED(l+d)/(l—G)
H 1+a ® 1+ U0 ;

where A is given by (25). For 0 < a < 1, the effective
density on the horizon p, 1 cannot be lower than Py ..
Theradial 4-velocity component on the horizon can be
found from (13) and (27):

(27)

—a/(1-a)
uy = _DZD
The value of u, changesfrom1to /2forO<a < 1.

Thelinear model (21) describes the phantom energy
when

(28)

Pa O
pp 1+a

In this case, p + p < 0. However, the requirement that
the density p be nonnegative should be taken into
account. This parameter can formally be negativein the
range 0 < a < 1. Such a nonphysical situation imposes
a constraint on the linear model (21) under consider-
ation. For a physically proper description of the accre-
tion process, we must require that the density p be non-
negative. We obtain the following constraint on the
validity range of the linear model from (27) for hydro-
dynamically stable phantom energy:

—(1+a)/(1-a)
a |:1_[£E| :|<p_°°< a .
1+a [}l pp l+a

As follows from (29), at a given da, we can aways
choose the parameters p, and p., in such a way that
p>0foranyr>2M.

(29)

No. 3 2005



532 BABICHEYV et al.

Jul
1.0 T T T

(b)
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Fig. 1. Accreted fluid velocity u in the linear model (21) versus radia coordinate x.
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Fig. 2. Accreted fluid density normalized to the density at infinity, p/p.,, versusradial coordinate x for the linear model (21) (solid
curves). The dashed linesindicate the density of the A term, p/p., .

On the other hand, model (21) describesthequintes-  For some of the specific choices of a (more specifically,
sence (not the phantom energy) for the entire r range  for a = 1/3, 1/2, 2/3, and 1), p(x) and u(x) can be calcu-
only if p < 0. Consequently, aphysically proper descrip-  lated analytically (see the Appendix for details on these
tion of the quintessence can be obtained from (27) if calculations). In Figs. 1 and 2, the radial 4-velocity

component, u, and the density normalized to the density
at infinity, p/p., are plotted against the coordinate x =
a_ _P-__a« [1 . EED_(]'+G)/(1_G):| (30) r/2M. Figure 1a shows the plots of u(x) for hydrody-

1+a p, 1+ala  CiO namically stable fluids with ¢ >0 at a = 1/3, 1/2, 2/3,
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and 1 (the curves are arranged from top to bottom,
respectively). Figure 1b shows the plots of u(x) for

c2<0a o =-1.1, -2, and —1/2 (the curves are also
arranged from top to bottom). For this case, we chose
the boundary condition uy = 1 on the horizon. Figure 2a
shows the plots of p/p., for a hydrodynamically stable
fluid with a = 1 for various cases. py = 0 (the model of
neutron star matter); po/P., = 16/9 (the linear model of
nonphantom dark energy); po/p.. = 7/3 (the linear
model of phantom energy); and py/p., = 7/3 (the linear
model of phantom energy with p, = 0) (the curves are
arranged from top to bottom, respectively). Figure 2b
shows the plots of py/p., for a < 0 for various cases:
0 =—2, pp =0, and A = 4 (the linear model of phantom
energy, the upper curve); anda =-1/2, po=0,andA=4
(the linear model of nonphantom energy, the lower
curve). For thiscase, we chosethevelocity Juy|=1onthe
horizon.

3.2. Accretion onto a Moving
and Rotating Black Hole

Let us consider the accretion onto a moving and
rotating black hole in the special case of alinear equa-
tion of state with o = 1. The condition a = 1 allows an
exact analytical expression to be derived for the accre-
tion rate of dark energy onto ablack hole.

For a = 1, we easily find from (23) that

n

1/2
n, '

Pest

(31)

Peit, o
We obtain the following continuity equation for the par-
ticle concentration from (5):

(nu*),u = 0.

We canintroducethe scalar field @intermsof which the
fluid velocity can be expressed as follows (there is no
torsion in the fluid):

pP+p
n

U, = Q. (32
We derive an equation for the auxiliary function ¢ by
using Egs. (31) and (32),

¢, = 0. (33)

Exactly the same equation arises in the problem of the
accretion of afluid with the equation of statep=p [41].
Thus, we reduced the problem of a black hole moving
in dark energy with the equation of statep = p — p, to
the problem of afluid with an extremely hard equation
of state, p = p. Using the method suggested in [41], we
obtain the mass evolution law for amoving and rotating
black hole immersed in dark energy with the equation
of state p=p — py:

M = 4m(r? + a%)[p. + P(P.)] U, (34)
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where

r,= M+(M?—a®)™

is the radius of the event horizon for a rotating black
hole, a = J/M is the specific angular momentum of the
black hole (rotation parameter), and uo isthe zeroth 4-
velocity component of the black hole relative to the

fluid. Expression (34) for ugH = 0reducesto (18) for a
Schwarzschild (a = 0) black hole at rest.

3.3. Chaplygin Gas

Let us consider a Chaplygin gas with the following
equation of state as another example of the solvable
model:

p=—

p 1

where a > 0. The range of parameters p? < a represents
the phantom energy with a superlumina speed of
sound, implying that the phantom energy flux onto the
black hole is not fixed by the condition of its passage
through the critical point. The case of p? > a corre-

spondsto dark energy withp+p>0and0< cﬁ <1.We
can easily find from Eqg. (8) that

(35

pZ_G 1/2
P2 —a

The density at the critical point can be calculated
from (17) and (36):

(36)

n
N,

p2 = 4p>-3a. (37)

The velocity and the radial coordinate at the critical
point are given by

2
Xe = -P-"—°, ui = —95. (38)
a 4p00
We then find the constant A from Eq. (9):
2 3/2
= 4P
A = 4575 (39)

For 0< ¢ < 1, the constant A cannot be smaller than 4,
as in the case of the linear model. The evolution time
scale of the black hole mass without any cosmological
change in the dark energy density is given by
p2

T = 8T[Migw(poo+ poo) (40)
Note that Egs. (36)—<39) are applicable only for dark
energy with p + p > 0 and are invalid for phantom
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Fig. 3. Velocity u versus coordinate x for Chaplygin gas [35]

energy. On the black hole horizon,

- A
pH - 4poo!

-\ e
"4 (A18)%p% —a

For 0< ¢’ < 1, the density on the horizon p,, cannot be
lower than p.,, and u, changesfrom 1 to 1/2. The Chap-

lygin gas density distribution can be determined from
the general equations (9) and (10):

1/2 (41)

3/2

_ P R T
p= waGD B(_pzlj
° (42)
x[l_ﬁ%_gm_mgm“ _ZDT’Z
X0 pzd B E od]

The velocity distribution u(r) can be calculated by
using Egs. (9), (36), and (42). In Figs. 3 and 4, the
velocity u and the density normalized to the density at
infinity, p/p., are plotted against the coordinate x =
r/2M. Figure 3a shows the plots of u(r) for nonphantom

dark energy at pi, la = 3, 2, and 1.1 (the curves are
arranged from top to bottom, respectively). Figure 3b

shows the plots of u(r) for phantom energy at pfo la =

0.3, 0.5, and 0.9 (the curves are also arranged from top
to bottom, respectively). In this case, the boundary con-
dition uy = 1 is set on the horizon. Figure 4a shows the
plots of the normalized density, p/p.,, for nonphantom

dark energy at pfo /a =3, 2, and 1.1 (the curves are
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arranged from top to bottom, respectively). Figure 4b
shows the plots of the normalized density, p/p.,, for

phantom energy at pfo /a =0.9, 0.5, and 0.3 (the curves

are also arranged from top to bottom, respectively). For
this case, we chose the boundary condition uy = 1 on
the horizon.

4. THE FATE OF BLACK HOLES
DURING THE BIG RIP

Let us now consider the evolution of black holesin
the cosmological Big Rip scenario, where the scale fac-
tor a(t) increasesto infinity in afinitetime[16, 17]. For
simplicity, we take into account only the dark energy
and disregard the other forms of energy. In the linear
model (21), the Big Rip takes place at p + p < 0 and
o <-1. The following relation can be derived from
Friedmann’s equations in the case of a linear equation
of state:

|p + pl |:| a—3(1+a).
Setting, for simplicity, py = 0, wefind the evolution law
of the phantom energy density in this Universe:

—2
poo = pw,i%_% ’ (43)
where
T = _3_(1+a)[8_np 0 (44)

2 O3F=0

Here, p,, ; is the initial cosmological phantom energy,
and the initial time was chosen in such a way that the

No. 3 2005



THE ACCRETION OF DARK

ENERGY ONTO A

BLACK HOLE 535

/P

0.9

e
N

1.1 T T T

1.0

10

Fig. 4. Density normalized to the density at infinity, p/p,,, versus coordinate x for model (35) (solid curves). The dashed line indi-

cates the normalized density of the A term, p/p,, .

Big Rip occurs at time 1. We easily see from Egs. (20)
and (43) that the Big Rip takes place at o = dp/op < —1.
In general, the condition p + p < 0 aoneis not enough
for the cosmological evolution to be ended with the Big
Rip [18].

Using Eqg. (43), we find the evolution of the black
hole mass in the cosmological Big Rip scenario from
Eqg. (18):

where

Mo = (3/2)AY1+al, (46)

and M; is the initial mass of the black hole. At a = -2
and a typical value of A = 4 (which correspond to

uy =-1), Mo = 3/8. Inthelimit t —» T (i.e., near the
Big Rip), the t dependence of the black hole mass

becomes linear, M = Mg (T —t). When t approaches T,
the rate of decrease in the black hole mass ceases to
depend on the initial black hole mass and the phantom
energy density:

M = —Mo.

In other words, the masses of all black holes near the
Big Rip are approximately equal and approach zero.
Thisimpliesthat the accretion of phantom energy dom-
inates over the Hawking evaporation until the black
hole mass decreasesto the Planck mass. Formally, how-
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ever, al black holes in the Universe completely evapo-
rate during the Hawking radiation in the Planck time
before the Big Rip occurs.

5. THE ACCRETION OF A SCALAR FIELD

In this section, we compare our calculations of the
accretion of an ideal fluid with similar calculations of
the accretion of a scalar (nonphantom) field onto a
black hole[24—29]. The dark energy iscommonly mod-
eled by ascalar field with apotential V(¢). The approx-
imation of anideal fluidisrougher, sincethe scalar field
¢ and d,¢ cannot be unambiguously reproduced for
given p and p, which characterize an idea fluid.
Degspite this difference between the scalar field and the
ideal fluid, we will show that our results are in close
agreement with the corresponding calculations of the
accretion of ascalar field onto a black hole.

The Lagrangian of the scalar field isL = K -V,
where K is the kinetic term and V is the potential. For
the standard choice of the kinetic term

= 9,02,
the corresponding energy flux onto the black holeis
Or = (p,t(p,r-

Jacobson [24] found asolution for the scalar field in the
Schwarzschild metric for a zero potential, V = 0:

@ = @[t+2MIn(1-2M/r)],

where @, isthe scalar field at infinity. Frolov and Kof-
man [26] showed that this solution is also valid for
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many scalar fields with a nonzero potential V() under
certain conditions. For this solution,

T, = —(2M)2@a/r?

and, accordingly,

M = 41(2M)@o.

The energy—momentum tensor constructed using
Jacobson’s solution is identical to the energy—momen-
tum tensor for an idea fluid with an extremely hard
equation of state, p = p, after the substitution

P., — ipfo/Z, Po —> ipi/Z.

This is not surprising, since the theory of a scalar
field with a zero potentia, V(@) = 0, isidentical to the
model of an ideal fluid [48]. In view of this correspon-
dence, we easily see agreement between our result (18)

for M inthe case of p = p and the corresponding results
from [24, 26].

The Lagrangian of the scalar field that describes
the phantom energy must have a negative kinetic term
[16, 17], for example,

K =—,0"2

(see[49] for more general cases). In thiscase, the phan-
tom energy flux onto the black hole has the opposite
sign,

TOr = _(p,t(p,r’

where @isthe solution of the same Klein—-Gordon equa-
tion as that for the standard scalar field, but with the
substitution V — —V. For azero potential, this solution
is identical to Jacobson’s solution [24] obtained for a
scalar field with a positive kinetic term.

However, the Lagrangian with a negative Kinetic
term and V(@) = O does not describe the phantom
energy. At the same time, the solution for a scalar field
with V(@) = O isidentical to the solution for a positive
constant potential, V, = const, which can be chosen in
such away that

p = —@12+V,y>0.

Inthis case, the scalar field describesthe accreted phan-
tom energy with p > 0 and p < —p, which leads to a
decrease in the black hole mass at the rate

M = —41(2M)%@.

A simple example of phantom cosmology (but with-
out the Big Rip) is realized by a scalar field with the
potential

V = m¢’/2,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

BABICHEYV et al.

wherem~ 10-33 eV [50]. After ashort transition period,
this cosmological model approaches an asymptotic
state with

H=me/3"% @=2m/3"%

In the Klein—Gordon equation (with the substitution
V —= -V mentioned above), the term n? becomes
equal to the other terms only on the scale of the cosmo-
logical horizon, implying that, in this case, Jacobson’s
solutionisalso valid. Calculations of the corresponding
energy flux onto the black hole yield

M = —4m(2M)%gs = —64M>mP/3.

For My = Mg and m= 10-33 eV, the effective time of the
decrease in black hole massis

T = (3/64)M "M > 010% yr.

6. DISCUSSION AND CONCLUSIONS

In recent years, the concept of dark energy has been
accepted and extensively discussed in cosmology. The
possible existence of dark energy with a negative pres-
sure leads to new cosmological scenarios, including the
exotic model of the Universe in which al of the bound
objects are destroyed and which diesitself asaresult of
the Big Rip. To determine the fate of black holesin this
cosmologica scenario, we considered the spherically
symmetric, stationary accretion of dark energy mod-
eled by anideal fluid onto ablack hole. We derived gen-
eral equationsfor the accretion of an ideal fluid withthe
equation of state p = p(p) onto a Schwarzschild black
hole. In particular, these equations can be used to
describe the accretion of thermal radiation, dark energy,
and phantom energy. We also considered the accretion
onto a moving and rotating black hole in the special
case of an extremely hard equation of state, p = p. We
calculated the change in the black hole mass through
accretion. The black hole masses for p + p > 0 were
found to increase, asin the usual case. However, aqual-
itatively new result was obtained for phantom energy,
i.e., for a medium with p + p < 0. We found that the
black hole masses decrease in this situation. Using this
result, we solved the problem of the fate of black holes
in a universe that undergoes the Big Rip. It turns out
that al black holesin this Universe must decrease their
masses and disappear completely by the Big Rip. We
also considered the correspondence between the accre-
tion of dark energy inthemodel of anideal fluid and the
accretion of ascalar field.
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APPENDIX

Analytical Solutionsfor p(x) and u(x)

In the model under consideration (Section 3), ana-
lytical solutions can be found for the dependence of the
dark energy density and accretion rate on radius r.
Using Eqg. (23) for the concentration and Eq. (11) for
the constant C,, we derive the following equation for
P« from Egs. (9) and (10)

|:|peff 20/(1+a)
|1)eff,oo (47)
2 A2|:| D—Z/(1+a)
—_— 4 — = 1.
g [1 X xt qDeff N } !
Defining
_ 0 peff D2/(1+0()
“hul “9
we obtain the following equation from (47)
yH -5 Ly A oo (49)
4 ’

which can be solved analytically for certain values of a.
For a = 1/3, Eq. (49) reduces to a cubic equation:

3 27 .2 A2_
Z%I.—;@—Z +?—O,

where z = y¥3, Solving this equation yields the fluid
density distribution for a = 1/3:

(50)

2
o= @
where
EIZ[COS 2 _fo 30 2<x<3,
(52)
B [ cos x> 3,
B = arccos[z(a/L?’)m} (53)

537

and
-1
C3(1-2/%)%
2 108
27(1-2/x)° (1-2/x)x"

This solution corresponds to a thermalized photon gas
in which the photon mean free path is much smaller
than the radius of the black hole horizon, A, < 2M. In
this situation, the photon gas may be treated as an ideal
fluid. In the opposite case, Ay, > 2M, the photons are
free particles, and their accretion rate is determined by
the well-known cross section for the gravitational cap-
ture of relativistic particles by ablack hole. The corre-
sponding accretion rateis

M = 27mtM°p...

The case of a = 2/3 issimilar to the case considered
above. We obtain the following equation instead of (50):

3 27 A
Z%.—)—E—Z"'? = O,

where again z = y¥3. The fluid density distribution in

(54)

(55)

thiscaseis
_ 2 2 .52
P = £Po* tPu—zPEE (56)
where zis given by
EIZ[COS B 37 2<x<9/4,
(57)

DZ[COS X>9/4,

B is defined by Eq. (53), and

_ 1 b = 2187./3
== T— L
1-2/x 128(1 —2/x)x

For a = 1/2, (49) isaquadratic equation and hasasim-
ple analytical solution:

Dl{ 1-[1-3125(1-2/x)(16xY) 13 (1-2/x), 2<x<5/2,

Z—D

-{1+[1 3125(1 - 2/x)(16xY) 13 (1-2/1%),
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p = 2+[p, -2, (58)
where
(59)
x>5/2.
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For

=

10.

11

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
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a =1, Eq. (49) islinear iny, which gives
_ Po PO 2 40
o7 “_ED%H)_@%HX_ZD'

REFERENCES

N. Bahcall, J. P. Ostriker, S. Perlmutter, and P. J. Stein-
hardt, Science 284, 1481 (1999).

A. Riess, A. V. Filippenko, P. Challis, et al., Astron. J.
116, 1009 (1998).

S. J. Perlmutter, G. Aldering, G. Goldhaber, et al., Astro-
phys. J. 517, 565 (1999).

C. L. Bennett, M. Halpern, G. Hinshaw, et al., Astro-
phys. J., Suppl. Ser. 148, 1 (2003).

C. Wetterich, Nucl. Phys. B 302, 668 (1988).

P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17
(1988).

B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406
(1988).

J. A. Frieman, C. T. Hill, A. Stebbins, and |. Waga, Phys.
Rev. Lett. 75, 2077 (1995).

R. R. Cadwell, R. Dave, and P. J. Steinhardt, Phys. Rev.
Lett. 80, 1582 (1998).

A. Albrecht and C. Skordis, Phys. Rev. Lett. 84, 2076
(2000).

C. Armendariz-Picon, T. Damour, and V. Mukhanov,
Phys. Lett. B 458, 209 (1999).

C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardit,
Phys. Rev. Lett. 85, 4438 (2000).

T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62,
023511 (2000).

I. Zlatev, L. Wang, and P. Steinhardt, Phys. Rev. Lett. 82,
896 (1999).

P. Steinhardt, L. Wang, and |. Zlatev, Phys. Rev. D 59,
123504 (1999).

R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg,
Phys. Rev. Lett. 91, 071301 (2003).

B. Mclnnes, J. High Energy Phys. 0208, 029 (2002);
M. Bouhmadi-Lopez and J. A. J Madrid, astro-
ph/0404540.

U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky,
astro-ph/0311364.

S. Ngjiri and S. D. Odintsov, Phys. Lett. B 562, 147
(2003).

I. Brevik, S. Ngjiri, S. D. Odintsov, and L. Vanzo, hep-
th/0401073.

M. Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90,
201102 (2003).

(60)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

23.
24.
25.

26.

27.
28.

29.
30.

31

32.
33.
34.

35.
36.
37.

38.

39.
40.
41.

42.

45,

46.
47.

49.
50.

P. F. Gonzalez-Diaz, Phys. Rev. D 68, 084016 (2003).
T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999).

R. Bean and J. Magueijo, Phys. Rev. D 66, 063505
(2002).

A. Frolov and L. Kofman, J. Cosmol. Astrophys. Phys.
5, 9 (2003).

W. G. Unruh, Phys. Rev. D 14, 3251 (1976).

L. A. Urena-Lopez and A. R. Liddle, Phys. Rev. D 66,
083005 (2002).

M. Yu. Kuchiev and V. V. Flambaum, gr-qc/0312065.

E. O. Babichev, V. |. Dokuchaev, and Yu. N. Eroshenko,
Phys. Rev. Lett. 93, 021102 (2004).

E. O. Babichev, V. |. Dokuchaev, and Yu. N. Eroshenko,
Class. Quantum Grav. 22, 143 (2005).

H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).
F. C. Michel, Astrophys. Space Sci. 15, 153 (1972).

B. J. Carr and S. W. Hawking, Mon. Not. R. Astron. Soc.
168, 399 (1974).

M. C. Begelman, Astron. Astrophys. 70, 583 (1978).
D. Ray, Astron. Astrophys. 82, 368 (1980).

K. S. Thorne, R. A. Flammang, and A. N. Zytkow, Mon.
Not. R. Astron. Soc. 194, 475 (1981).

E. Bettwieser and W. Glatzel, Astron. Astrophys. 94, 306
(1981).

K. M. Chang, Astron. Astrophys. 142, 212 (1985).
U. S. Pandey, Astrophys. Space Sci. 136, 195 (1987).

L. I. Petrich, S. L. Shapiro, and S. A. Teukolsky, Phys.
Rev. Lett. 60, 1781 (1988).

B. J. Carr and S. W. Hawking, Mon. Not. R. Astron. Soc.
168, 399 (1974).

. E. Bettwieser and W. Glatzel, Astron. Astrophys. 94, 306

(1981).

. S.W. Hawking and G. F. R. Ellis, The Large Scale Sruc-

ture of Space-Time (Cambridge Univ. Press, Cambridge,
1973), Chap. 4.3.

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravita-
tion (Freeman, San Francisco, 1973).

J. C. Fabrisand J. Martin, Phys. Rev. D 55, 5205 (1997).

S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev.
D 68, 023509 (2003).

. V. N. Lukash, Zh. Eksp. Teor. Fiz. 79, 1601 (1980) [Sov.

Phys. JETP 52, 807 (1980)].
P. F. Gonzalez-Diaz, Phys. Lett. B 586, 1 (2004).

M. Sami and A. Toporensky, Mod. Phys. Lett. A 19, 1509
(2004).

Trandated by V. Astakhov

No. 3 2005



Journal of Experimental and Theoretical Physics, Vol. 100, No. 3, 2005, pp. 539-549.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 127, No. 3, 2005, pp. 610-622.

Original Russian Text Copyright © 2005 by Istomin.

NUCLEI, PARTICLES, FIELDS,
GRAVITATION, AND ASTROPHYSICS

Structure of the Magnetic Field
of the Jovian M agnetosphere

Ya. N. Istomin
Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, Moscow, 119991 Russia
e-mail: istomin@td.Ipi.ac.ru
Received October 8, 2004

Abstract—We exactly solved the problem of the interaction between the rotating magnetic field of Jupiter and
the equatorial plasmadisk formed by the gases flowing from the Jovian satellite lo. The disk is shown to expel
the Jovian magnetic field in both directions, inward, toward Jupiter, compressing its dipole magnetic field, and
outward. Jupiter spins up the disk up to velocities that correspond to nearly constant angular rotation, but with
an angular frequency lower than the angular frequency of Jupiter itself. The radial velocity of the plasmain the
disk approaches its azimuthal velocity. We determined the power of Jupiter’'s rotational energy losses. Part of
this energy is transferred to the disk, and the other part goes into heating the Jovian ionosphere. We show that
the Pedersen surface conductivity of the Jovian ionosphere must have a lower limit to maintain the electric
current that arises in the disk—rotating magnetic field system. This current in the Jovian magnetosphere flows
only aong the preferential magnetic surfaces that connect the inner and outer edges of the disk to the iono-

sphere. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The structure of the magnetic field of the Jovian
magnetosphere inside the magnetopause, i.e., the cavity
produced by the flow of the solar wind around the mag-
netic field of Jupiter with a scale length of ~100 Jupiter
radii [1], is determined by the interaction of the mag-
netic field frozen in the rotating central body with the
equatorial plasma disk surrounding this body. In astro-
physics, asimilar situation arises when the strong mag-
netic field of a neutron star or a white dwarf interacts
with an accretion disk rotating around the star. This
problem has never been solved completely [2]. In the
case of Jupiter, however, the disk is produced inside the
magnetosphere by its satellite |o. Here, the Jovian mag-
netic field is strong, and its rotation together with Jupi-
ter is faster than the Keplerian rotation of the disk in
this region. This implies that the centrifugal force will
accelerate the disk in the radial direction and expel it
outward. On the other hand, the disk plasma as an
amost ideal conductor seeks to expel the Jovian mag-
netic field from itself. If it is expelled completely, then
there will be no interaction between the rotating mag-
netic field and the disk, and the plasma produced by 1o
will not be able to escape from the magnetosphere due
to the conservation of angular momentum. The com-
promise liesin the fact that the disk expelsthe magnetic
field almost completely; it becomes nearly parallel to
the disk surface, leaving only a weak vertical compo-
nent B,. This component is much weaker than the
dipole field of Jupiter in the equatoria plane. While
interacting with the rotating disk, the magnetic field B,
generates aradial electric field E,. The electric field E,

workson thedisk ions, imparting therotation and radial
velocities to them. Clearly, the dipole structure of the
Jovian magnetic field cannot be preserved near the
disk; the disk will expel the dipole field in both direc-
tions, toward and away from Jupiter. Near the inner
edge of the disk, the magnetic field must be strongly
compressed, and the magnetic field lineswill be curved
in the direction opposite to the curvature of the dipole
field. The magnetic field will be severely distorted near
the equator, while the distortion in the remaining mag-
netosphere will be insignificant. The structure of the
magnetic field near the disk is of great importance,
since it determines the interaction of the rotating mag-
netic field with the conductive disk. Therefore, the
assumption that the magnetic field differs only dightly
from the dipole field in the magnetosphere is invalid
and yieldsincorrect results[3, 4], aswe will see below.

We consider an axisymmetric magnetosphere, since
the axis of the magnetic dipole frozen in the planetary
core is nearly orthogonal to the equatoria plane in
which the plasma disk is located. As aresult, the mag-
netic field in the magnetosphere produced by the dipole
and by the el ectric currentsflowing in the magnetosphere
and in the disk is axisymmetric. The axisymmetric mag-
netic field isdescribed in Section 2. In Section 3, we con-
sider a cold thin plasma disk. The approximation of a
thin plasma disk implies that its thickness is much
smaller than its radius. This approximation is applica-
ble not only to the plasma disk far from lo, but also to
the plasmatorus near |o. In Section 4, we study the clo-
sure of the electric currents that are produced by the
electric field generated by the rotating magnetic field in
the Jovian magnetosphere and ionosphere. The Jovian
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magnetosphere is assumed to be ideal and to produce
no resistance to the electric current. In contrast, theion-
osphere has afinite conductivity. Finally, in Section 5,
we determine the structure of the magnetic field dis-
torted by the loop of the current that flows through the
disk and the ionosphere and that is closed by the mag-
netospheric currents.

2. THE AXISYMMETRIC MAGNETIC FIELD

Let us first introduce convenient variables that
describe the magnetic field of the Jovian magneto-
spherein the simplest way. Sincethe magnetic dipoleis
inclined to the rotation axis of Jupiter at an angle of sev-
eral degrees, we assume the magnetosphere to be axi-
symmetric. All quantities depend only on two cylindri-
cal coordinates, the distance along the z axis and the
radius p. Let usintroduce the flux of the poloidal mag-
netic field f(p, 2). The magnetic field can be expressed
interms of f as

g - _lof

_dot _ 1of 1
P paz’ Tt pdp’

B, = =0. 1

0= 59 D
The function g(p, 2) describes the toroidal magnetic
field that emerges in the magnetosphere when the el ec-
tric current flows along the poloidal magnetic field. The
relation f = const is an equation for the magnetic sur-
faces on which the magnetic field lineslie. It is conve-
nient to describe the poloidal magnetic field lines not
only by the relation f = f(p, Z), but aso by p = p(z, f),
where f numbers the magnetic surfaces. The poloidal
magnetic field is then

B. = l'l:ﬁ_m D)_g:l_l B, = 1.|]3_ﬂ:|_1
P plbAlLofl, " 2 plbfl], -

For adipole magnetic field, the magnetic flux is

3 2
B,R;p
32"

fa = 2, 2

(p"+7)
Here, R;istheradius of Jupiter, and B, isthe amplitude
of Jupiter’'s surface magnetic field on its equator:

By = By = Ry)|eg-

It isimportant to know the magnetic flux in the equato-
rial z= 0 plane, fo(p) =f(p, z=0). The vertical magnetic
field on the equator isthen

It is convenient to measure the magnetic field strength
in units of B; and the distances p and z in Jupiter radii;

the unit for the magnetic flux isthen B; R§ . Relations (1)
remain the samein these dimensionless variables. For a
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dipolefield, the dimensionless magnetic flux is

2

' 1
fl = p—, fr. = =
d (p|2 + 2.2)3/2 0d p
In the Jovian magnetosphere, the electric currents flow
along magnetic field lines:

j = aB.
The quantity a(r) isan arbitrary scalar. From the poloi-
dal components of Maxwell’s equation

curl B = g
we then derive the relations

9(p.2) = o(f), a= '
These imply that the toroidal magnetic field and the
electric currentsin an axisymmetric magnetosphere are
functions of the poloidal magnetic flux f. Aswe will see
below, there are no bulk toroidal electric currentsin the
Jovian magnetosphere, j, = 0. In this case,

(curlB),=0

and the equation for the magnetic flux has the form of
Laplace's equation:

EEE'QD+62_f: 2
Papthogl 57 ~ - @

The function f is neither even nor odd in z due to the
electric currents flowing in the plasmadisk in the equa-
torial plane. Therefore, we expand the function f at
z> 0interms of exp(-Az). The solution of Eqg. (2) can
be represented as

00

f(p,2) = J'exp(—)\z))\le()\p)q)()\)d)\, z>0, (3
0

where J, is the Bessel function of the first order. The
arbitrary function ¢(A) in theintegrand is defined by the
boundary conditions for Eq. (2). For a dipole magnetic
field, $(A) = 1 (in dimensionless units). The deviation
of ¢ from unity describes the distortion of the Jovian
dipole magnetic field. It is convenient to express the
function ¢ in terms of the magnetic flux on thez= 0
equator, fy(p). Since

00

fo(p) = ple(Ap)cp(A)dA,
0

using the inverse Bessel transform, we obtain

[

O(A) = [fo(P)d(Ap)dp" (4)
0

Equations (3) and (4) define the magnetic field via the
boundary value of fy(p). Of course, we should also take
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into account the boundary conditions at other bound-
aries, more specificaly, at infinity and onthe p = 0 axis.
At these boundaries, f(p, zZ) must be finite, except for
the coordinate origin p? + 22 — 0, where f — f.

3. THE PLASMA DISK

The volcanic activity on lo is the source of gas that
continuously flowsinto the Jovian magnetosphere. This
neutral gas isionized near 10 by solar radiation. Thus,
plasma is produced inside the Jovian magnetosphere.
The plasma consists mostly of singly and doubly ion-
ized sulfur and oxygen ions and electrons. The mean
ion charge is Ze. The mean ion charge-to-mass ratio is
~10-'e/m,, where m, is the proton mass.

The Jovian strong magnetic field causes the plasma
to rotate with Jupiter's angular velocity, w; = 1.8 x

10 s™. The centrifugal force prevents the ions from
propagating into the Jovian magnetosphere, and these
form an equatorial plasmadisk. The height of thedisk is
small compared to its radius. The disk ions have radial,
V,, and azimuthal, v,, velocities. We consider a station-
ary and axisymmetric Jovian magnetosphere. All quanti-
ties are independent of the azimutha angle ¢ due to the
axial symmetry. The continuity equation for ionsis

10 M

S35 o pmi6(p— P1)d(2). ©)

(pni Vp) =

Here, M is the gas production rate of lo, and p; is the
inner edge of the disk, p; > P, (), iSthe orbital radius
of 10). The value of p,, is 4.2 x 10° km = 5.9R; (R; =
7.14 x 10* km). The gas production rate by 10’s volca-
noes is estimated to be M = 2 x 10% kg s. Integrating
Eqg. (5) over p and zyields

_ M
Vo2 = Srom
The quantity Z istheion surface density

> = Inidz.

O(p—py). (6)

O(X) is the Heaviside unit step function. Note the
important fact that the divergence of theion flux is zero

atp>p;.
Let us now write the equation of motion for ionsin
the disk:

mi(v [(O)v = ZeE + Ze[v xB] + F. @)
Jupiter exerts a gravitational force
F, = -mGM,/p

on the ions that must cause the ions to rotate with the
Keplerian velocity

vi = (GM,/p)*?
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(G is the gravitational constant, and M; is the mass of
Jupiter). The component of Eq. (7) directed along p
yields

2

a 2
2ot = ZE B - (@)

o3 b

We see from Eq. (8) that, in the absence of electromag-
netic fields B, and E,, theionsrotate with the Keplerian
velocity:

Vo= V.

In contrast, in astrong magnetic field B,, the ions move
at the electric drift velocity v, = —E,/B,. For corotation,
i.e., motion with Jupiter’s rotation velocity v, = wyp,
the disk plasmamust be polarized in such away that the
electric field

Ep = —w;pB,

is produced. The corotation velocity is equal to the
Keplerian velocity at adistance of p = 2.24R;. Sincethe
Keplerian velocity decreases with distance from Jupi-
ter, the corotation of the plasma disk implies that the
centrifugal force in the disk is larger than the gravita-
tional force, and the plasma must be accelerated in the
radial direction, dv,/dp > 0. However, this is not so
easy to achieve due to the conservation of angular
momentum. This follows from the other component of
Eq. (7) directed along ¢:

o4l e - _£E

Vo 5 + 5 v,B,. 9)
Note that there is no toroidal electric field, E, = 0, in
this equation, because, being stationary, the electric
field must be potential. Sincetheradial particle velocity
v, isnonzero (see Eq. (6)), Eq. (9) yields

Z

PVt —?fo(p) = const. (20

m
Equation (10) represents the law of conservation of
total angular momentum. The coefficient in front of the
second term in Eq. (10) is much larger than unity. It is
proportional to the ratio of the ion cyclotron frequency
in the Jovian magnetic field w, = ZeB;/m; to Jupiter’'s
angular frequency w,. We denote this ratio by Q. =
w,/w;,. It istheion cyclotron frequency in units of Jupi-
ter's angular frequency. At Ze/m = 0.1e/m, and B, =
4G, Q. is approximately equal to 2.2 x 10’. For a
dipole magnetic field, the two terms on the left-hand
side of EQ. (10) are of the same order of magnitude far

from Jupiter: p/R; = Q° = 2.8 x 102,

The conservation of angular momentum forbids the
radial motion of ionsin the Jovian strong magnetic field
if the latter is assumed to be close to the dipole field.
The only possibility for the disk plasma to move out-
ward is to expel a significant fraction of the magnetic
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field from the disk. Only if the magnetic flux changes
slowly in the disk,

Af,=B,;p°Q;,
does the radial motion of ions become possible. How-
ever, the small change in magnetic flux f, with distance
p impliesthat the vertical magnetic field B, in the equa-
torial planeisweak (see Eg. (1)).

Asregards the electrons supplied by 1o, the parame-
ter Q. for theseisat least afactor of 10* larger than that
for ions. The plasma el ectrons are strongly magnetized
and can move only along the f = const magnetic sur-

faces, giving rise to electric current directed toward
Jupiter on the surface

f=1f =f(p=p).

Thus, the plasma produced by Jupiter is separated: the
ions form the plasma disk in the equatoria plane, and
the electrons form the surface electric current J;. This
does not imply that the plasma disk is positively
charged; it is neutral. The electrons from the electron
sea of the Jovian magnetosphere neutralize any electric
charge.

4. THE MAGNETOSPHERIC
AND IONOSPHERIC CURRENTS

We assume the magnetospheric plasma to be ideal
with an infinite conductivity. Under steady-state condi-
tions, the magnetospheric plasma can rotate around the
z axis with an angular velocity w(p, 2). In a coordinate
system rotating with this angular velocity, the electric
field E' iszero. Therefore, the electric field in the labo-
ratory coordinate system is

= {[wxr] xB], E, = -wgg,
of
E, = —(A)a—z, E(p = 0.

The electric field must be potential, E =¥ , where W
is the electric potential. This implies that the angular
frequency w(p, 2) isonly afunction of the magnetic flux
f, w= w(f), and the electric potential is

f

W = fa(f)df

To pass the electric current J; through the Jovian iono-
sphere, the ionospheric potential W, cannot be equal to
the magnetospheric potential W due to the finite con-
ductivity of the Jovian ionosphere. Thus, the angular
velocity of the magnetospheric plasma w cannot be
equal to the angular velocity of theionosphere w, or the
angular velocity of Jupiter w;. In the coordinate system
comoving with theionosphere, thereisan electric field,

E; = R;sin6(w —w)B,,
E, = -R;snB(w — w)B,.
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Here, it is convenient to use the spherical coordinates

on the surface of Jupiter, (r = R;, 6, @), The magnetic

field in the ionosphere is weakly distorted by the elec-

tric currents and is dipolar,
B, = 2B,cosB, By = B;siné.

The electric field Eq produces a surface current in the

ionosphere,

Jig = ZpEq = 22:B;R;sin0cos8(wy — w),

where Z;, is the Pedersen surface conductivity of Jupi-
ter'sionospherein its polar region. The surface current
J; flowing in the ionosphere is related to the bulk cur-
rent in the magnetosphere j by the continuity equation

divyd; = —j,.

The divergence in this equation is taken along the sur-
face over which the current flows, and j,, is the compo-
nent of the bulk current j normal to this surface. A sim-
ilar equation relates the surface current flowing in the
disk J, to the magnetospheric current j. However, aswe
emphasized above (see Eq. (5)), the divergence of the
ion surface current is zero. At the same time, the disk
electrons can only rotate with the angular velocity of
the magnetosphere w(f), and the divergence of their
flux is also zero. Thus, the bulk electric current in the
magnetosphere| is absent everywhere, except the pref-
erential f = f; and f = f; magnetic surfaces where the
plasmadisk begins and ends, respectively. Recent ener-
getic electron measurements from the Galileo space-
craft have revealed an electric current only near 1o [5].
Thetotal electric current | produced by lois

_ ZeM _

Zm /
1ox10° el M___Oa
m, 01mh x10° (kgsH (1)

Half of this current flows in the northern hemisphere,
and the other half flows in the southern hemisphere.
The magnetospheric currents flow only along the mag-
netic field on the two magnetic surfaces,

. _ nZeMy
ji = B a(f =)
) (12)
. ZeM B
js = B4_ﬂmi6(f f3).

These currents close the surface current flowing in the
ionosphere

_ ZeM 1
4TR;m; N6’

(13)

6

This imposes the following dependence of the differ-
ence between the angular frequencies of the ionosphere
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and the magnetosphere on the magnetic flux f:

ZeM _1%1_ f o2
~ 8mm3, BJR?

xO(f —f3)O(f,—f).
Here, we used the fact that on the surface of Jupiter,

w-w

f = B,R3sin’®.

The angular frequency of the ionosphere w can differ
from the angular frequency of Jupiter itself w,. Thisis
attributable to the Ampere forces acting on the iono-
spheric plasma in which the electric currents flow. The
difference w; — w, isdetermined by thefriction between
the neutral atmosphere and the ionospheric plasma. Itis
commonly assumed that

w;—w; = k(w;—w),

where the constant k < 1 [6]. Introducing the effective
Pedersen conductivity

Zp = Zp(1-K),

we obtain the following dependence of the angular
velacity of the magnetosphere on the magnetic flux:

B ZeM f_lgl_ f o2
8mm, 23 B,R}”

f,>f>f,.

w(f) = w 1

Equation (14) showsthat the corotation of the magnetic
field breaks down in the entire region occupied by the
disk. This makesit possible to pass the electric current
| (11) through the ionosphere.

The magnetospheric electric currentsj, and j;inthe

region f; > f > f; generate the toroidal magnetic field
-9
B, = =, 15
0= b (15)
where
_ ., ZeM
g l"l'()4.,.[mI

The @ component of Maxwell’s equation
curl B = g
then yields an equation for the poloidal magnetic flux f:
0rl 6fD a f

Paphagl "

The right-hand side of Eq. (16) is nonzero only on the
f=f, and f = f; magnetic surfaces, where the magneto-
spheric electric currents flow along the magnetic field.

g5[5(1‘—1‘1)—5(f—f3)]- (16)
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Owing to the toroidal magnetic field, the field-aligned
electric currents al so havetoroidal componentsthat dis-
tort the poloidal magnetic field. Outside the f; and f;
surfaces, Eg. (16) isidentical to Eq. (2), and its solution
isdescribed by relations (3) and (4). However, thefields
on both sides of the discontinuity are different. The
relationship between the magnetic fields for f > f, and
f <f, aswell asfor f > f;and f < f; can be derived by inte-
grating Eq. (16) over f in a small neighborhood of the
f=f, and f = f; surfaces, respectively. This requires
passing to different independent variables (z, f) and
assuming that the magnetic surfaces are defined by the
relation p = p(z, f). Equation (16) takes the form

Sl ] B
SEEAER R o

2

= Z[8( - 12) = 8(f ~ f3)].

We assume that the shape of the magnetic surfaces is
the same on both sides of the discontinuity:

op = 9p
0z f=f 5+0 0z

Integrating Eq. (17) yields

f—f13—0

B: + B + B} = const. (18)
Thisexpression isthe only condition for the equality of
the magnetic pressures on both sides of the discontinu-
ity, and it directly follows from our equations.

5. THE STRUCTURE
OF THE MAGNETIC FIELD

Let us introduce the dimensionless (primed) vari-
ables that we use below by omitting the primes:

W = w0 r' = L V' = v
Wy’ Ry’ R;w;’
B f
B =—, f= , (19)
B, B,R;
_ 2nmi,\<;|>JR§z’ . 41T:?JJ

As aresult, dimensionless parameters appear. One of
these, mentioned in Section 3, is the ratio of the ion
cyclotron frequency to Jupiter’s angular frequency:

_ Q) 7 Zm BJ
Q. = ;7 = 216x 10572 4 (20)
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We also introduce Hill’s parameter H, first used by him
in 1979 [3]:

_ 8N BIR;
M

H
(21)

B g Mg
(hGJ 1 th[é x 10° kg S_]D '

The physical meaning of H will become clear below.
We al so define the Keplerian parameter, the ratio of the
Keplerian angular velocity on Jupiter’s surface to its
angular velocity:

M L2
Q. = BMO™ _ 343
© KR!

Finally, weintroduce another parameter, the ratio of the
magnetic field strength produced by the current 1/2 asiif
it flowed over Jupiter's surface to the proper magnetic
field of Jupiter B;:

(22)

. ZeMp, _ L, Zm,
B = rmRrB, - 10 5im
. 1 (23)
M 0Bsg

D S e = haay .
2x10° kgs*H4 G

Note that the magnetic field from the magnetospheric
current J/2in10’'sorbit isby afactor of 8B(p,/R;)?>=2.3
stronger than the Jovian dipole magnetic field at this
location. Thus, the dipole magnetic field at p < p; must
be compressed in accordance with relation (18).

The rotation velocity of the ionsin the plasma disk
is defined by Eg. (10),

v, = %pl”%%‘:(fl—fo). (24)

*p
We assume that the ion rotation velocity at p = p; = Py,
is equal to the Keplerian velocity v, which is lower
than the velocity of corotation with Jupiter. Indeed, the
ions are formed from the neutral gas corotating with lo.
Moving subsequently in the radial direction, the ions
acquire an additional toroidal velocity, approaching
corotation, Vo=P. Of course, the energy is drawn from
the work of the radial electric field E,. However, the
velocity v,, does not exceed the corotation velocity,
because the disk ends earlier, p < (Q.f,)Y2. At the same
time, the disk electrons rotate with the angular velocity
of the magnetic field lines w(f) defined by Eq. (14):

Q. . _
wp = p-pfe(1-fo) ™ (25

The velocity wp cannot be negative, implying that the
parameter H cannot be smaller than Q//f; > 10Q.. It
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thus follows that the Pedersen conductivity of theiono-
sphere cannot be low. At low conductivity >, the ion-
osphere cannot pass the electric current 1/2, because
Jupiter as a unipolar inductor [7] can produce only a
finite voltage,

Woa = 03 = ByRGW;.

Actualy, this voltage is even lower, since the electric
coupling between the disk and Jupiter passes through
the polar f = f; magnetic field line, ¥ = W, .f;. The
magnetospheric currents-ionosphere system is salf-
consistent: when the current | becomes large and the
ionosphere cannot pass it, a strong el ectron-accel erat-
ing eectric field emerges in the magnetosphere along
thef = f; magnetic field lines. The fast electrons precip-
itating into theionosphere produce additional ionization,
causing the ionospheric conductivity to increase [8].
Thus, the toroidal electric current

3, = ZBH—BZ(V(p—wp) (26)
0

flowsinthedisk; it leadsto adiscontinuity of theradial
magnetic field on the z= 0 disk surface:

B = -B

Plz:z+0 - = 6BZ(V¢—(&)p). (27)

Plz:z—O

The quantity v,— wpisafunction of p and fy(p) and is
defined by relations (24) and (25):

PPy, Q
P P

Q _ _
+ﬁcpfol(1— fo) v,

Ve—Wp = (fl_fO)

(28)

We see from Egs. (27) and (28) that the radial magnetic
field at p = p, isnegative:

Bo(p = p1, 2= +0) <0.

Here, we do not consider the case of alow ionospheric
conductivity close to the limiting value when the
parameter

H<Q fi'(1-f)™/(1-Q/pi?)
= 1.3Q ' (1-f,) ™

Below, we show that this is the instability region. For
large H, the magnetic field lines are curved inward,
toward Jupiter. This results from the expulsion of the
Jovian magnetic field by the disk. At large distances
P > Py, By(p, z=+0) changes its sign and becomes pos-
itive. Thisisthe region where the Jovian magnetic field
is expelled outward. We see that the Jovian magnetic
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field is expelled in both directions and not only out-
ward, as assumed previoudy [6]. It is important to
know the position of the point p = p, where the radial
magnetic field in the equatorial plane vanishes. Thef =
f, =fy(p,) magneticfield lineisnearly dipolar. All of the
f, <f < 1/p, magnetic field lines are expelled from the
region p, < p < p, and are pressed into the region p <
p:. The radial magnetic field B,(p, z = +0) is deter-
mined by the derivative of the magnetic flux with
respect to the z coordinate on the equator

of

= -0BZp(v,—wp).
> pP(Vy—wp)

(29)

z=+0

Let us define this derivative as afunction of fy(p). From
Egs. (3) and (4), we derive

of -—pjdp'fo(p')szl(Ap)Jl(Ap')dA.
0 0

0z

z=+0

The second integral in this equation is known [9], and
we obtain

of _ 2 d 1D de(x)f /x)dx
5—22:.,.0 T app O(p )
(30)
B dK(x) O
I i fo(px)dx%

0

Here, K(X) is the complete dliptic integra of the first
kind. Itisequal to W2 at x = O, but hasalogarithmic sin-
gularity for x — 1:

K(x) — In[16/(1—x°)]/2.

Equations (28)—30) close the system of equations that
define the function fy(p). Equations (6) and (8) that
define the disk surface density >(p) should be added to
these:

pva =1,
10vy _ ., Ok af0 (31)
2p ap - V(p_—F')—+Qc(V Ot)p)

Theintegral equation (30) can be simplified at p = p, >
p,. The magnetic flux fy(p) changes here only slightly.
The function dK(x)/dx increases rapidly near x = 1. In
the region 0 < x < p,/p, the magnetic flux in the second
integral of Eq. (30) may be assumed to be dipolar,

fo(px) = 1/px.
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As aresult, we obtain the equation

of 2p d1
392|,..0 T 0pp
O PO 17 PO [P
<BoniRg-2li8a-<a
p: p21

where E(X) is the complete elliptic integral of the sec-
ond kind. Since f, = fy(p,) is closeto f;, as we will see
below, the equation for p, is

01, PO
lplappKDpD

[P EEPlD
DpD UpU

app[
An approximate solution of this equation yields

P, = p1(2f1p1/3)_m-
However, f = 1/p,, and we obtain

ppz

po=3p,/2=8.9, f; = 0113.
Note that for a dipole,
fiqg=017>1,.

The projection of the point p; along the magnetic field
onto the Jovian ionosphere is a circumference in the
polar region

0, = arcsin(f;?) = 19.5°.
At the same time, the projection of lois
0,, = arcsin(p;"?) = 24.5°.

This 5° gap between |0’s footprint and the auroral oval
on Jupiter is actually observed [10].

Let us now check that f, is very close to f;. Indeed,
the left-hand side of Eq. (28) must be equal to zero at
p = p, and fy =f,. This determinesf,:

p3=Qpi” , Pofr(1-f)™
Q. H

The difference between the magnetic fluxes at p, and p,
isvery small,

<f,.

f,—f,=~p2/Q, =107

This implies that the magnetic field lines above the
plasmadisk are nearly parallel to its surface, except for
theregion p = p,. At the point

p=p+0,
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o
1.0

0.6r

0.2

Fig. 1. Poloidal magnetic flux fyin the equatorial z= 0 plane
versusradia distance p. The point p = p; correspondsto the
inner edge of the plasmadisk. The point p = p,, corresponds

tothe“middle” point wheretheradial magneticfield iszero.
The dashed line indicates the dipole magnetic flux fq = 1/p.

the vertical magnetic field B,= Q" isweak, and it may
be assumed to be zero. However, the radial magnetic
field is not weak,

Q
B, = —élepl[ 2
P1 32)

Q... _
—E -1 5= 2.

Thetoroidal magnetic field isalso strong (see Egs. (15)
and (23)):
0B
B, = —.
[ pl

The magnetic field strength is

+ B2 12 _ OB

o2
B, = (B o) iy

P1
(33
1/2
Q.. _
<DL ol 1- - -1 g %
o)t H 0 P1
To the left of the discontinuity, p = p; — 0, the radia
magnetic field in the equatorial plane B, is zero,
because the magnetic field lines are symmetric; the tor-
oidal field is also zero, B, = 0. Then, according to the
boundary condition (18),

B.(p=p,—0) = -B,.
This vertical magnetic field is stronger than the dipole

magnetic field a p = p;, By = 1/p;, as mentioned
above. For this reason, the magnetic field lines must be

(34)
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compressed at p < p;. Thus, either the radial magnetic
field at p > p; must be negative or

Vo—wp<O.
At low ionospheric conductivity,

Q. fi(1-f,) ™ <H<130.f"(1-f)™, (35)

the condition for the equality of the magnetic pressures
on both sides of the discontinuity cannot be satisfied,
and the f = f; boundary becomes unstable.

At
H>1.3Q.f'(1-f,)™",

the boundary condition (18) determines the derivative
of the magnetic flux f, with respect to the radius p at

p=p,—0:
df, = —6B[a + lel[l— 2
0p [p=p,-0 1

(36)

1/2

2
~FEria- ™ g
0

Under this condition and for fy(p) — l/pasp — 0,
Egs. (28)—(31) uniquely define the function fy(p), which
isshown in Fig. 1. The flux f, decreases from 1/p, to f;
near p = p,. We can estimate the width of the region of
the compressed magnetic field,

=~ 0.85.
0fo/0p |p=p,0 OB

Ap =

It israther small,

Ap/p,;=0.1.

To analyze the behavior of the magnetic flux on the
equator fy(p) at afairly large distance p > p,, let usfirst
integrate the equation of motion for ions (31). Taking
into account expressions (24) and (28), we abtain

fi(1+. /1= )
fo(1+./1—Fy)°

Thisisthe energy conservation law:

%_%1 = Qc(fl

0)_ﬁ| . (37)

Qx

1. 12__
2 ¢ p’

€ = sz+

€1 = é(py)-

The right-hand side of Eq. (37) is the source of energy
for the disk ions. Thisis the work of the radial electric
field on the ions. The electric field is produced by the
rotating magnetic field through Jupiter’srotation. All of
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the energy is draw from Jupiter’s rotation. The second
term on the right-hand side of this equation represents
the ohmic losses. Jupiter spends part of its rotational
energy on heating the ionosphere. The total energy
expenditure must be larger than the ohmic losses.
Expanding the last term in Eq. (37) near the point f, =
f,, we again obtain the condition

H>Q. f(1-f,) ™"

Itisidentical to the condition w > 0. Jupiter must spend
part of its rotationa energy on spinning up the plasma
disk.

At p > p,, theKeplerian rotation isinsignificant, and
we can write the expressions for the velocities of the
disk matter as

v, = [ZQC

As we show below, here we take into account the fact
that the change in magnetic flux is small,

f,—fo <fy.
In addition, the values of f, and f; themselves are low,
fo<fi=01<1
The radia velocitiesin the disk are always positive,

Q(fy—fo) <2p*(L—Q./H ).

We now also know the disk surface density, > = 1/pvp,
and can solve Egs. (29) and (30) to determine the func-
tion fy(p). Thefinal equationis

2
P
17 q, Hflﬂ[1+
pP>pPy

The function in sguare brackets is a weakly changing
function of p; it changes from 1 at small distancesto 2
at large distances. Therefore, the magnetic flux may be
assumed to decrease with increasing p,

Q,
Ve = —(fi—fo),

P (39)
1/2

Q. Q2 5
el ) = =5(f, = f
Hle( 1 0) pz( 1 0)

p(2H 2 +p?)"

fqo=f
° Hf+p’

}’ (39)

fo = f,—const Epz.

This implies that the vertical magnetic field above the
disk is constant,

B,(z=+0) = —2(1-Q/Hf,)/Q..

It is generated by the toroidal electric currents flowing
in the disk. The radial magnetic field B,(z = +0)
increases with distance,

B, = p(3B/H 1),
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because the magnetic field lines are drawn by the
increasing radial plasmamotion in the disk. Asaresult,
theinclination of the poloidal magnetic field to the disk

dz B, 2f f _
1[H 1 %pl

o= 55 = 7B, T 3BOO,

decreases with distance.
The parameters of the disk are

Q

— c[]
Vo = _Hflﬂp’
_ Q. -
Z:(vpp)lz _Hprz
1

We see that the disk at p > p, rotates with an almost
constant angular velocity

Q= 1-QJHf, <1,

which is lower than the angular velocity of Jupiter
itself. Thisrotation was measured from Voyager 1 [11].
The radial velocity of the disk matter also increases
with distance and tends to its toroidal velocity. The
angular velocity of the magnetic field lines w(p) (25)
initially also follows this law, but subsequently begins
to decrease:

CD 2
o= B-Ri-2f

At p = f;HY2, the rotation of the magnetosphere stops.
Thisisthe end of the plasmadisk that producesthe glo-
bal currents. The more accurate expression derived
from Eq. (39) is

ps = 0.73f,HY
The corresponding expression for the magnetic flux is
fg= f(QJHF) <T,.

At f < f;, the Jovian ionosphere cannot pass the current

1/2, because the surface current increases as sin0,
while the voltage decreases as sinf. Subsequently, the
electric current —/2 returns to the disk along the f = f;
magnetic surface.

The plasma disk does not disappear after closure of
the eectric current. It only ceases to interact with the
Jovian magnetic field. The magnetic field above the
disk becomes pardle to its surface, B, = 0. The disk
rotation slows down due to the conservation of angular
momentum,

(41)

_ Ps
V(p = V%B, p > P3
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Fig. 2. Poloidal magnetic field lines. The p; and p3 coordi-

nates are the edges of the plasmadisk. The heavy linesindi-
cate the electric currents flowing in the Jovian ionosphere
and magnetosphere (1/2) and in the plasma disk (I). The
angles of inclination of the magnetic field lines to the disk
are shown larger than in reality to understand the topology
of the magnetic field as awhole

The radia velocity in the disk increases because of the
centrifugal acceleration,

1/2
2 > U % ZQi P
Vo = |V, tV,——]-—H—= :
P |: P3 (93[' p P3 %‘ p|:|

and tendsto its limiting value approximately equal to
2 2,12
(Vo,tVg) -

The surface density = decreases proportionaly to p,
and the disk disappears in interplanetary space.

The boundary condition (18) on both sides of the
surface electric current flowing over the f = f; magnetic
surface may be considered as the equality of the total
pressures B%/2, + P if we take into account the pres-
sure P from the fast electrons of the return current. The
magnetic pressure on the left side of the discontinuity is
(B3 + B})/2. The toroidal magnetic field B, is given
by relation (15),

B, = —0B/p.

The radial magnetic field at p = p; is exactly the same
value, because w = 0 and v, = v,, there (see Eq. (27)).
Thus, we can satisfy the stability condition for thef =1,
boundary if the electron pressureis

P = B/2H, = B3/2W,.
The condition
P = B3/2u,

corresponds to equipartition and seems natural enough.

The structures of the magnetic field and the electric
current are shown in Fig. 2.
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6. DISCUSSION

We have shown that the structure of the Jovian mag-
netic field can be accurately determined analytically.
We used ideal approximations: an axisymmetric, highly
conductive magnetosphere with a cold thin disk. These
approximations are realistic. We showed that the disk
expels the Jovian magnetic field both outward and
inward, toward Jupiter. Asaresult, the magnetic field is
compressed in the region p < p;, where p; isthe inner
edge of the disk, and weakens in the remaining region
occupied by the disk. Dueto the field compression and
the curvature of magnetic field lines, the magnetic
image of the inner edge of the disk on Jupiter’'s surface
isobserved at higher latitudes than it would for adipole
magnetic field (f, < 1/p,, f; = 0.11). This corresponds to
a latitude of 70.5°, where an aurora is observed. It
turned out that the electric currents in the magneto-
sphere could flow only along the preferential f = f; and
f = f; magnetic surfaces that correspond to theinner and
outer edges of the disk, respectively. No bulk currents
flow in the magnetosphere. To maintain the el ectric cur-
rent 1/2 (11), the Jovian ionosphere must have a high
Pedersen surface conductivity 2. This is because the
Jovian rotating magnetic field can produce only afinite
electric voltage while interacting with the disk,

Y = B,Rw,f;.

On the other hand, the voltage

_ I

g (1-f,)%
must be applied to the conductive ionosphere. The con-
dition W > U must be satisfied. Here, it is convenient to

introduce a parameter that describes the ability of the
Jovian ionosphere to pass an electric current:

_w-u_, Q, Q,

K — =1— .
WY Hf (1-f,)" Hf,

(42)

As can be seen, many physical parameters of the mag-
netosphere and the disk contain K (see, e.g., Egs. (40)
and (41)). Note also that k isthe part of the total energy
lost by Jupiter and transferred to the disk:

Wd =WK.
Accordingly, the ohmic losses in the ionosphere are
Worm = W(1 —K).
Thisfollows from the energy conservation law (37):
W = 1B;Rj0,(f1— f3)
Zmyn M goBanyy,
O.lmi Eb X 103 kg S‘]DDi G] '

The parameter K is more suitable for this problem than
Hill’s parameter H, which has no clear physical mean-

= 6.9x10"%(f,—f5)
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ing. The quantity H could be treated as a dimensionless
value of the Pedersen surface conductivity 2, but it
would be more natural to measure 2, in units of the
ratio of the characteristic surface current

J = 1/4TR,

to the characteristic electric field
E = W../R,.

The dimensionless value of 3 would then be
s, = HI2Q,.

The value of H/Q_ ison the order of unity and isnot so
large as H.

The parameter K is positive. Moreover, the stability
condition for the f = f; boundary dictates the inequality
K > Kmin = 0.23. Thisimposes a constraint on the Peder-
sen surface conductivity of the Jovian ionosphere, 2, =
10-20 mho, but the Jovian cold polar ionosphere pos-
sesses no such high conductivity. However, as calcula
tions show [8], the ionization of the ionosphere by fast
precipitating electrons increases its conductivity to
these values. Thisimpliesthat, actually, an electric cur-
rent in the ionosphere exists only in the region where
the magnetospheric current J; invades the ionosphere.
Af is the region occupied by the magnetospheric cur-
rent. It is determined by the ionization of the gas emit-
ted by lo. The ionospheric current flows only between
thetwo f = f, and f = f; = f; — Af magnetic surfaces. The
return magnetospheric current will flow along thef = f;
magnetic surface. The forward and return electron cur-
rents flow almost together in the Jovian ionosphere, but
then diverge significantly in the magnetosphere. This
implies that the outer edge of the disk will be not at a
distance p; = f;HY?, as we obtained previously for a
constant ionospheric conductivity, but much closer:

Q.72 _ QML
Af0 Ok O

ps = (QAF)Y?

This expression follows from Eq. (39). If Af is ~1072,
then p; is ~102. The projection of the entire disk along
the magnetic field onto Jupiter’s surface will be only 1°
in this case.

In conclusion, note that the poloidal magnetic field
near the disk is similar in structure to the field near a
reconnecting current sheet [12]. The radia magnetic
fields above and under the disk are directed oppositely.
Thisis because the reconnection of theradial field took
place in the disk; the toroidal electric current generated
by the Jovian rotating magnetic field flows in it. The
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current loop that passes over the disk and through the
ionosphere and that is closed by the magnetospheric
currents emerged in order to transfer the angular
momentum of Jupiter to the disk. Since the disk matter
is continuously born out of the volcanic gases from lo,
it must be spun up to be moved far from Jupiter. Itisthe
Ampere force generated by the electric current flowing
in the Jovian ionosphere perpendicular to the magnetic
field that produces a braking torque acting on Jupiter.
Therefore, the current system found that connects Jupi-
ter and the disk is a mandatory attribute of the interac-
tion between the plasma disk and the Jovian rotating
magnetic field: the current cannot break anywhere or be
reclosed.
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Abstract—The results of investigation of hypersound damping in critical solutions with a closed phase-sepa-
ration region at temperatures bel ow the lower and above the upper critical points are presented. Available the-
ories of sound propagation during phase transitions fail to provide a description of experimental resultsin the
hypersound frequency range, in which the acoustic wavelength is comparable to fluctuations of the concentra-
tion. A new theoretical description (stemming from experimental data) proposed for hypersound damping in
the vicinity of the critical pointsis based on the scattering of a sound wave from devel oped fluctuations of the

concentration. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Approximately a century after the first observations
and attempts at explaining critical opalescence, Smolu-
chowsky [1] found a correct physical interpretation of
this remarkable phenomenon. He noted that the mean
intensity of fluctuations of certain parametersincreases
inthe vicinity of the critical point and, hence, the inten-
sity of light scattered from these fluctuations also
increases. Einstein [2] indicated the method for calcu-
lating the intensity of such fluctuations as well as the
intensity of light scattered from these fluctuations.

Experimental and theoretical investigations of pro-
cesses in the critical region is of special interest the
more so because the theory of the condensed state has
been developed insufficiently and the phenomena
occurring in the region of the critical point and in the
vicinity of second-order phase transitions in various
media proceed analogously; in other words, critical
phenomena exhibit isomorphism.

This important property of critical phenomena
makes it possible to select a convenient object of inves-
tigation and to extend the results to other objects that
have not been studied as yet. With such an approach to
analyzing the problem as a whole, it is necessary to
appropriately choose the order parameter, i.e., the
parameter varying during a phase transition and
strongly fluctuating in the critical region [3, 4]. Such a
parameter for a binary solution isits concentration.

The study of propagation of ultrasound and hyper-
sound provides important information on the dynamics
of processes occurring near the critical points. Informa-
tion on the velocity and damping of hypersound is usu-
aly obtained from the Mandelstam-Brillouin scatter-

ing spectra. These spectraareformed as aresult of light
scattering from thermal fluctuations of pressure.

In actual practice, therma hypersound (i.e., a hyper-
sonic Debye wave) does not attenuate on average [5, 6].
Density fluctuation or its spatial Fourier component
(Debye wave) emerging at a certain instant gradually
decays, giving rise to a wave with a different initial
phase. Scattering of light from such waves is precisely
the Mandelstam-Brillouin scattering. The intensity
spectrum of this scattering is determined by the corre-
lation function for Debye waves[7, 8]. The fluctuation-
dissipative theorem states that this correlation function
decreases exponentially with increasing time interval.
The exponent (half-width of the Mandelstam-Brillouin
lines) is equal to the product of velocity of sound V and
damping coefficient a of an artificially generated
acoustic wave of the same frequency [5, 7, 8]. The
width of the Mandelstam-Brillouin lines had been ana-
lyzed in detail by Leontovich [5] even before the fluc-
tuation-dissipative theorem was proved. Leontovich
showed that, once appearing, Fourier component Ap(t)
of density fluctuations (which is characterized by wave
vector g, frequency w, and initial phase @) variesintime
in accordance with the law [5]

Ap(t) = Aexp(-aVt)exp[i(wt—q [t +@)],

where Aisthe mean square amplitude of fluctuations[5].
The calculation of correlator [Bp(t)op(t + 1)0and the
spectrum of light scattered from such awave [5] shows
that the Mandel stam—Brillouin linewidth is determined
by damping coefficient a. The term “hypersound
damping coefficient” will be henceforth used precisely
in this meaning.

1063-7761/05/10003-0550$26.00 © 2005 Pleiades Publishing, Inc.
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Here, wereport on the results of experimental inves-
tigation of the temperature dependence of hypersound
velocity in critical solutions of guaiacol—glycerol with
a phase-separation region (i.e., with two critical phase-
separation points) and the temperature dependence of
the hypersound damping coefficient, which was deter-
mined from the Mandel stam-Brillouin scattering line-
width. A new theory describing the behavior of the
hypersound damping coefficient near the critical points
is developed and the results of approximation of the
experimental data using the formulas of the new theory
are considered.

2. EXPERIMENTAL RESULTS

We chose as the object of investigation a guaiacol—
glycerol solution with a closed phase-separation region
and two critical points. This solution is convenient due
to the fact that, first, its critical temperatures are close
to room temperature and, second, it has a broad critical
region of several degrees, while the entire critica
region for single crystals and solutions with a single
critical point spans only over fractions of a degree [4].
The coexistence of two critical points of phase separa-
tion (upper Ty and lower T,) for thissolution leadsto an
abnormally fast increasein correlation radiusr of con-
centration fluctuations and in characteristic time 1 of
their dispersal. For example, avalue of r.= 1000 A near
the liquid—vapor critical point is attained at a tempera-
ture exceeding the critical temperature by approxi-
mately 0.013°C, while the same value of the correlation
radius for the guaiacol—glycerol solution is attained for
[T-T.|=21.34°Cor |[T—Ty|=1.34°C. Thismakesit pos-
sible to approach the critical state in such a solution
very closely (i.e., experiments can be carry out in a
medium with a larger correlation radius of the order
parameter).

A guaiacol (CHZOCgH,OH)—glycerol (CsHgO;)
solution with high-purity components is homogeneous
inthe entire T—c phase plane (c isthe concentration). If,
however, we add asmall amount of athird substance to
such a solution (a water molecule for 27 molecules of
the solution or amolecule of CCl, for 170 molecul es of
the solution), a closed region (loop) appears on the
phase plane of the solution; the solution is heteroge-
neous (separated in two phases) inside the loop and
homogeneous outside this loop. The size of the closed
phase-separation region depends on the amount of the
third substance added to the solution.

Figure 1 schematically showsthe 3D phase diagram
of such asolution [9, 10] in the following coordinates:
temperature T, concentration ¢, and concentration C, of
the third substance. The diagram has the shape of an
inverted dome. The solution is separated into phases
inside the dome and is homogeneous outside it. The
cross sections of the dome by the T—c planes form
phase-separation regionswith two critical points (upper
and lower). These pointsform thelines of critical points
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Fig. 1. Schematic 3D phase diagram of a solution with a
closed phase-separation region: c is the concentration, T is
the temperature, C, is the concentration of the admixture, ¢,
is the critical concentration, T, and Ty, are the lower and

upper critical temperatures, Dry is the plane corresponding
to the solution without an admixture, DCP is the double
critical point, and SP is the peculiar point.

on the surface of the dome. The lines of the upper and
lower critical points merge at the vertex of the dome,
forming a double critical point.

At concentrations C, of the third substance for
which phase-separation region does not emerge in the
solution any longer, each T—c plane contains a point
near which we observe an increase in the scattered light
intensity and in the correlation radius of concentration
fluctuations. Such a point on the T—c plane, which lies
on the vertical that drops from the double critical point
onto this plane and is closest to the double critical point
in the 3D phase space, isreferred to asapeculiar point.
Peculiar points form a line of peculiar points between
the double critical point and the peculiar point of the
T—c plane corresponding to C, = 0.

We analyzed the temperature dependences of the
velocity and damping coefficient of hypersound above
the upper critica point and below the lower critical
point in a solution with a phase-separation region as
well asin solutionswith adouble critical point and with
peculiar points [11-14].

The velocity of hypersound was determined from
the displacement of the Mandel stam—Brillouin compo-
nents in the spectrum of molecular scattering of light,
while the damping coefficient was determined from the
widths of these components. The spectra were studied
on a setup with a multipass piezoscanned Fabry—Perot
interferometer manufactured at Burleigh [11].

The temperature dependences of the velocity and
damping coefficient of hypersound [11-14] as well as
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Fig. 2. Temperature dependences of the velocity of hyper-
sound (AT =7.28°C (1) and AT = 0.062°C (1') [11, 13]) and
ultrasound with frequency 2.8 MHz (AT =7.2°C (2) [15]) in
guaiacol—-glycerol solutions with different phase-separation
regions.
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Fig. 3. Results of approximation of experimental curves
a(T) by formulas (31)—36) for solutions with AT = 7.28°C
[11] (@) and AT = 0.062°C (double critical point) [11] (b).
Solid curves are the results of fitting and the dashed curves
describe background damping og. Points marked by
crosses are not taken into account in the approximation.
Points bounding the regions of approximation are encircled.
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the velacity of propagation of ultrasound in such asolu-
tion [13, 15] exhibit a number of peculiar features.

(i) The value of the temperature coefficient dv/dT of
the hypersound velocity for T > T, ishalf aslarge asfor
T<T,.

(i) A temperature region existsin the vicinity of the
double critical point and peculiar points, where
dv/dT = 0.

(iii) The temperature coefficients of the velocity of
ultrasound for T> Ty and T < T, areidentical.

(iv) For T < T_, anomalously strong dispersion of
sound attaining 22% is observed (Fig. 2).

(v) The hypersound damping coefficient sharply
increasesin the vicinity of the upper, lower, and double
critical points. This increase is observed against the
background of a broad and smooth attenuation peak.
Such a background damping is determined by features
of the main components of the solution and is not asso-
ciated with critical phenomena (Fig. 3).

(vi) Inthe vicinity of the peculiar point, an increase
in the damping coefficient in the form of anarrow peak
against the background of abroad damping peak isalso
observed (Fig. 4).

All these clearly manifested features characterizing
the propagation of hypersound in a solution with a
closed phase-separation region have not been explained
theoretically so far. Attempts at using the existing theo-
riesfor this purpose were unsuccessful.

3. THEORY

Propagation of ultra- and hypersound in the vicinity
of critical pointsand phasetransitionswas studied exper-
imentally and theoretically along time ago [16-18].

Fixman [17] and Kawasaki [18] described the
behavior of the velocity and absorption coefficient of
ultrasound in the vicinity of the critical points of phase
separation on the basis of interacting mode theories.
Theformulas of these theories arein satisfactory agree-
ment with the experimental data obtained in the ultra-
sonic frequency range, in which Qt < 1 (Q is the fre-
guency of sound and T is the critical fluctuation relax-
ation time).

However, in the high-frequency range in which
Q1 > 1, the formulas of the above-mentioned theories
give a decrease in the damping coefficient of sound in
thevicinity of the critical points, while our experiments
reveal asharp increasein itsvalue.

One of the authors of this paper [19, 20] developed
atheory of propagation of sound in the vicinity of the
critical points of phase separation taking into account
nonlocality; in combination with the theory of interact-
ing modes, this theory led to expressions correctly
describing the experimental dataeven for Qt > 1. Com-
parison with the experiment was carried out in the fre-
guency range 0 < Qt < 50 (for frequencies of ultra-
sound up to 75 MHZz).
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In Chaban’stheory [19, 20], fluctuations of the con-
centration are expanded into a Fourier spectrum in
wavevector k. In this case, thermodynamic potential ®
(per unit volume) associated with fluctuations of the
concentration has the form [21]

B |Ck|2
-, = dk .
0 = 2t )

Here, |c’ is the spectral intensity of concentration

fluctuations with wavevector k, x(kr.) = 1/[1 + (kr)?F] is
the Ornstein—Zernicke function, and r. is the correla-
tion radius for concentration fluctuations. The value of
B for critical concentrations tends to zero as we
approach the critical points. We write here the expres-
sions for B in the vicinity of an ordinary critical point
aswell asthe critical points of the closed phase-separa-
tion region, the double critical point, and the peculiar
point:

B = By[|T-TJ+dy(c—c)T", (1)
B = B[(T-Ty)(T-Ty) +dy(c-c)T’, (2
B = BI[(T-To)*+do(c—co)", 3)

B = By [(T-Tep) +as(c—Cpp)’ +a,]".  (4)

Here, yisthe critical index of the generalized suscepti-
bility; c is the mean concentration; T, ¢, Ty, Cy, and
Tep, Cpp are the absolute temperatures and concentra-
tions of the ordinary critical, double critical, and pecu-

liar points, respectively; andd, d, dy, a;, a,and B, B,

BY, BI¥ are constants. Here, we disregard the smooth-
ing of the binodal vertex in the vicinity of the critical
point, which leads to the dependence B [ (c — ¢.)%. In
the case of large closed phase-separation regions, y =
1.25 for the critical points. Scattered light intensity I,
correlation radius r. diffusion coefficient D, and char-

acteristictimet = ri/D of fluctuation relaxation can be
expressed in terms of B:

| = A%Ezlg’—;, (5)
re = rea(Bi/B)Y?, (6)
D = [6mnro(B,/B)" ", (7)
1 = 14(B,/B)*”. )

Here, € is the dielectric constant; kg is the Boltzmann
constant; n isthe shear viscosity; and r.;, 1,, and A are
constants. For the double critical and peculiar points,
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Fig. 4. Result of approximation of experimental curvesa(T)

by formulas (32)—37) for a solutions with a peculiar point

[14]. The solid curve is the result of fitting and the dashed

curve describes background damping ag. Points bounding

the regions of approximation are encircled.

we must substitute BY and BE" for B, in these formu-
las.

It was shown in [19, 20] that the ultrasound absorp-
tion coefficient divided by the square of frequency Q as
a function of temperature and concentration is
described by the formula

a _ KeTpVoT @B+
— = ——— = F.(Q1). 9

Q% 4rfrp?topH 1(Q1) ®
Here, p isthe density of the solution, V, is the velocity
of sound extrapolated from aregion far from the critical
point, and F,(Q1) is a function of Qt, which is given
in[20] in integrated form. The plot of this function in
theinterval 1 < Qt < 40isalso givenin[19, 20]. This
theory makes it possible to correctly describe the
behavior of the dispersion in the velocity and absorp-
tion coefficient of ultrasound in the vicinity of the crit-
ical points up to Q1 = 50.

However, attempts at applying the theory developed
in [19, 20] for calculating the hypersound damping
coefficient in a solution with a phase-separation dome
were not successful [22]. The experimental data[11-14]
pertain to the range 10* < Qt < 10%, In this range, the
upper integration limit for function F;(Qt) cannot be
set at infinity, but should be assumed to be equal to the
cutting factor b = 5 introduced in [20]. This value cor-
responds approximately to the condition of equality
between the correlation radius and wavelength of the
Fourier component of the concentration fluctuations.
For such an upper limit in the range 10* < Qt < 10%°,
function F,(Qt) is found to be proportiona to (Qt)=2.
This dependence |eads to a sharp decrease in the damp-
ing coefficient with decreasing distance from the criti-
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cal and peculiar points. The damping coefficient is
found to be proportional to B2+ and decreases in
the critical region.

The unsuccessful attempt at describing the behavior
of the damping coefficient of hypersound using the the-
ory developed in [19, 20] stimulated the search for a
new mechanism responsible for the experimental facts
established in [11-14].

It should be noted that the above-mentioned theories
[17—20] described precisely the absorption of ultra
sound, i.e., lossesin an acoustic wave dueto the conver-
sion of its energy into heat. Such a conversion is due to
adelay in the change in the density of the medium rel-
ative to the change in the pressure of the medium upon
the relaxation of the medium (relaxation in concentra-
tion fluctuations in our case). However, attenuation of
the acoustic wave can be due to absorption or scattering
of sound from inhomogeneities. We assumed that the
main mechanism of hypersound damping in a medium
with devel oped fluctuationsfor large values of QT isthe
scattering of a hypersonic wave from concentration
fluctuations. The damping coefficient associated with
scattering of the acoustic wave describes the width of
the Mandelstam-Brillouin components in analogy to
the absorption coefficient in [5]. In the case of ultra-
sound, this mechanism is insignificant since the ultra-
sound wavelength is much larger than the correlation
radius under the standard experimental conditions. The
hypersound wavelength in the experiments [11-14] is
comparable to the correlation radius. This leads to
strong scattering of hypersound, which is associated
with an incoherent composition of scattered waves
(their intensities are added).

L et us calcul ate the hypersound damping coefficient
associated with scattering of hypersound from concen-
tration fluctuations. These calculations repeat in many
respects the calculations of the intensity of light scat-
tered from concentration fluctuations in the vicinity of
the critical points which were carried out by Fabelin-
kit [8].

Compressibility B of aliquid and its density change
upon a variation of the concentration. To simplify the
analysis, we assumethat the rel ative change in the com-
pressibility is much larger than the relative change in
the density. The final formulas derived here can easily
be generalized to the case when the change in the den-
Sity istaken into account. L et us suppose that a medium
contains a spherical region of radius a, in which com-
pressibility 3, differs from the volume-averaged com-
pressibility 3. The pressure in an acoustic wave scattered
inthisregion is given by the known expression [23]

_ a’Bs Bexp(lqr)
p pO 3 B r

(10)

where py is the pressure in the incident plate acoustic
wave, g isthe wavenumber of the acoustic wave, and r
isthe distance from the center of thisregion to the point
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under investigation. We assume that intensity | of the
scattered wave isequal to thetime-averaged energy flux
through asphere of radius L with its center at the center
of the region studied here,

T[pom asﬁl—ﬁjz
pVoU3 p O

where v, is the velocity of displacement of particlesin
the acoustic wave.

Let uswritetheratio (B; — B)/B intheform

B.—B _ oBAc

B dc B’
where Ac is the deviation of the concentration from the
mean value in the region studied. In the subsequent
analysis, we assumethat aregion of radiusaisaregion
with correlation radius r.. The intensity of hypersound

scattered from fluctuations of the concentration per unit
volume is described by the expression

I = 4nL’pvy|, _, (11)

| 2021’ apF(Ac)”
sc 0 9/\ Q?CD Bz

(12)

Here, |y istheintensity of theincident acoustic wave, A

is the hypersound wavelength, and (Ac)2 is the vol-
ume-averaged square of deviation of the concentration
from the mean value,

b/r

J‘ X (kr ) k?dk

2T[B

(Ac)® =

(13)
2T[k

(b arctanb).

C

Here, as before, b is the cutoff factor. Substituting
expression (13) into (12) and setting b = 5, we obtain

Il = 1,G/B,
where
73(211) k T(GB/ac)

9N*B?

After atime interval of 1 s, the intensity of the hyper-
sound wave becomes

| = 1,(1=GV,/B), (14)

which corresponds to the following hypersound damp-
ing coefficient per unit length:

o = GIB. (15)

Substituting into this formula the expressions for B in
the vicinity of the ordinary critical points, critical
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points of a solution with a closed phase-separation
region, and double critical and peculiar points, we
obtain, respectively,

o = §[|T—TC| +dy(c—c)]”, (16)
a = BE[(T_TU)(T—TL)+d1(C_Cc)2]_y’ (17)
_ G 2 2,y
a = =[(T-Ty +do(c-c)] ', (18)
B,
a = —GP—P[(T_TPP)2+aPP(C_CPP)2+a2]_y' (19)

1

These formulas mainly differ by the expressionsin the
brackets. Allowance for variation of the density with
the concentration only leads to a certain change in the
factorsin front of the brackets.

As the temperature approaches the double critical
point, formula (18) for ¢ = c, gives the following tem-
perature dependence of a:

o O(T-Ty)™. (20)
L et us now discuss which value of y must be chosen for
this formula. For ordinary critical phase-separation
points, we havey = 1.25. For the doublecritical point, the
value of yisapparently different. It wasshownin[24, 25]
that the critical index of the correlation radius in the
vicinity of the double critical point is equal approxi-
mately to 0.5. Inthisregion, r, 0 B2 (I (T —Ty)™; con-
sequently, y =1 and

a O(T-Te) 7 (21)

For large closed regions of phase separation, the
hypersound damping coefficient is described by for-
mula (17), where T—T, = const (or T — T, = const); for
C = ¢, the dependence a(T) in the vicinity of tempera-
ture T, hasthe form

aOdT-T47,

wherey = 1.25. For small phase-separation regions, itis
convenient to represent the expression in the bracketsin
formula (17) in the form

a OB O [(T-T,)’-ATY/4+d(c-c)?”", (22)

where AT =T, —T_, while T, is, as before, the temper-
ature corresponding to the double critical point and
coinciding with the center of the phase-separation
region. Thus, for small phase-separation regions, for T,

¢ = c., we have

o O[(T-To) -AT /4], (23)
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while for the peculiar point we can write

a O[(T-Tep)?+a,] " (24)

It remains unclear which value of y should be taken in
these expressions. For closed phase-separation regions
of various widths, this value must vary from 1 to 1.25.

4. COMPARISON OF EXPERIMENTAL RESULTS
WITH THE THEORY

Let usfirst consider the behavior of the velocity of
hypersound in the vicinity of the critical points and the
peculiar point and then compare the experimental data
on damping with the theoretical dependences obtained
in the previous section.

Scattering of hypersound from concentration fluctu-
ations does not change the velocity of hypersound.
However, the mechanism considered in [19, 20] leads
to the following expression for the velocity of sound:

ke TPVe @_EJZFZ n)

4rerip?lopd

V = vo[l—
(25)

Function F,(Qt) isgivenin [20] in integrated form. For
QT varying in the range 10°-10%, function F,(Qt), as
well as F,(Qr), is proportional to (Q1)™2. According to

estimates, the second term in the brackets is much
smaller than the last term. Consequently, we can write

V-V, _ keTpVod’B
Vo 8Tr B ap

(b—arctanb). (26)

The dependence of B on the temperature and con-
centration for small phase-separation regions has the
form (22); the only term depending on p in this expres-
sion isAT. The dependence AT(p) was not measured for
our solution, but for an analogous solution of
a-picoline-D,0, this dependence has the form

AT = A,/Po—P,

where p, = 208 am and A, = (201 + 0.12) x
1078 °C cm dyne V2 [22, 26]. Note that the measured
dependence AT(C,) has an analogous form in our
case[9, 10].

(27)
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Assuming that the AT(p) dependence for a guaia-
col—glycerol solution has a form similar to (27), we
obtain

19°B _ A

Bopt 767(y-1

(28)
2 —

X[(T—TO)Z—ATT+d(c—cC)2} .

Noting that

2 3v
= (T-T =B vde-c)’| . @9

and substituting expressions (28) and (29) into (26), we
find that

V-V, kgTpVi .4
= A —1)(b - arctanb
Vo 1281713 V(Y= 1) )

(30)

3v-2

x[(T—To)Z—ATTZw(c—cC)Z} ,

where v is the critical exponent of the correlation
radius, 3v —2< 0.

Thus, in accordance with relation (30), a peak at the
critical concentration must be observed on the concen-
tration dependence of the velocity of hypersound at
constant temperature against the background of a
smooth variation of the velocity from itsvalue in glyc-
erol to the value in guaiacol. The width of this peak
decreases and the height increases as the temperature
approaches the critical value. The qualitative concen-
tration dependences of the velocity of hypersound
observed earlier [27] were precisely of thistype.

The results of measurements of the damping coeffi-
cient of hypersound [11-14] enabled usto compare the
above theoretical description with experiment not only
qualitatively, but also quantitatively. For this purpose,
we used formulas (17)—(24) to approximate the experi-
mentally measured temperature dependence of hyper-
sound damping in guaiacol—glycerol solutions with
phase-separation regions AT = 7.28°C and AT =
0.062°C (i.e., with a double critical point) and with a
peculiar point [11, 14] at the critical concentration.

For convenience of approximation of measured
dependences a(T) by formulas (17)—(24), we intro-
duced the reduced temperature,

o T-TYT-Ty) _ (T-T) - (AT/2)°

TS T

. (3D

Then B = B,eY, where B, = B, T3’ isa constant, and we
obtain the following expression on account of the fact

that B = 1/pV? and that total damping coefficient a(T) is
the sum of the component associated with critical fluc-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

KRIVOKHIZHA et al.

tuations and described by formula (16) and the back-
ground damping coefficient ag(T):

2.-Y
a(e) = ag(T) +o.811kBTq“p2ng%% %;_

It should be noted that, although the background
damping is usually defined as damping in the absence
of critical fluctuations, in the present case we must use
effective background damping coefficient for ag(T). It
must contain, in addition to the damping coefficient
associated with mechanisms not related to critical fluc-
tuations (such as relaxation in a viscous liquid), the
absorption coefficient associated with all other mecha-
nisms. For this reason, the effective background damp-
ing coefficient ag(T) outside the critical region (i.e., for
T-Ty,>7°Candfor T, — T > 7°C) is plotted directly
through the experimental points (see Figs. 3 and 4).

The experimental data were approximated using the
least-squares method for a linear dependence of the
logarithm of normalized critical damping coefficient,

a(T)—oag(T)
0.811ksTq p?Va(ap/ac)®

on the logarithm of reduced temperature (31).

The values of p, V,, and refractive index n required
for calculating the values of q, which appear in expres-
sion (33), are known for various solutions and temper-
atures [11-14] and amount to (subscript 7.28 corre-
sponds to the width of the phase-separation region)

P ,s[g/cm’] = 1.1892 — (T —20°C) x 8.912 x 10",

(32)

(33)

Poep[g/cm’] = 1.1892 — (T — 20°C) x 8.9075 x 107,
N, = 1.497 — (T —50°C) x 4.6 x 10™*,
Npep = 1.497 — (T —50°C) x 4.593 x 107,
Vo [m/s] = 2410-11.83T[°C],
Vou[m/s] = 2129-6.77T[°C]
for asolution with AT = 7.28°C and
Vo [M/s] = 2410-11.39T[°C],
Vou[m/s] = 2046 -5.67T[°C]

for asolution with adouble critical point. Here, V, and
Vo, are the velocities of hypersoundat T< T, and T >
Ty, respectively.

The temperature dependence of quantity df/dc is
defined in terms of quantities dV/dc and dp/oc for vari-
ous temperatures:

ac p?0cy/2 (39
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It was found that, if concentration ¢ is measured in vol-
ume fractions, the temperature dependence of quantity
0Vy/oc obtained from the data presented in [27] in the
entire temperature interval 33°C < T < 85°C of interest
is correctly described by the expression

Vv
‘D(T)[@} = _1.4644 x 10° + 7.9280 x 10°T
oc S (35)

—1783T% +18.306T°>—0.0708T* (T in °C).

Under the same condition, expression (34) can be writ-
ten in terms of the difference in the densities of the
solution components, Ap = 0.126 g/cm?;

0B _ (0126 ,0Volp 1
oc Up 3¢ ViHov? (36)
Substituting expression (35) as well as the values of
p(T) given above into this formula, we obtain the

empirical expression for the temperature dependence of
quantity op/dc, which is used in normalization (33).
The values of y and B, were defined by approxima-
tion by formula (32) of the experimental data presented
in Fig. 3a for the solution with AT = 7.28°C and in
Fig. 3b for the solution with adouble critical point.

For the solution with a peculiar point, the approxi-
mation was carried out in the same way, the only differ-
ence being that the reduced temperature had the form

2
€pp = ——‘——‘(T TPZP) e (37)
Tep
instead of (31). Parameter a,, having the meaning of the
squared distance from the peculiar point to the double
critical point along the C, axis (seeFig. 1), wasinitially
unknown and was determined by minimizing the resid-

ual root-mean-square error of approximation: ,/a, =

2.39°C. The values of p and n were the same as for the
solution with a double critical point; the velocity of
hypersound below and above the critical points was
defined as V, = 2332 — 11.26T[°C] and Vyy[m/s] =
2008 — 6.167T[°C] [14]. The result of approximation
was given above in Fig. 4.

It should be noted that formulas (10)—(19) describe
the attenuation of sound due to scattering from spheri-
cal fluctuationsand arevalid aslong asr, << A. For scat-
terersof sizer =2 A/4, theincreasein the scattering coef-
ficient with r is substantially slowed; the scattering
coefficient attains its maximum value a r = 1.5A and
then decreases [28]. For this reason, the experimental
points for which r, > 2500 A were disregarded in
approximation (see Fig. 3). It should be noted that the
dependence of the scattering coefficient on the particle
size, which was theoretically obtained in [28], also
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explains nonmonotonicity in the dependence a(T) in
the immediate vicinity of the upper and lower critical
phase-separation points, where the value of r. becomes
comparable with A.

As aresult of approximation, we obtained the fol-
lowing critical indicesy. y=1.14+0.21 (ory=1.22 +
0.22 in the case of minimization of the residual approx-
imation error a by varying the values of T, and T,) for
the solution with AT = 7.28°C, y = 0.90 + 0.21 for the
solution with adoublecritical point, andy=1.03+ 0.10
for the solution with a peculiar point. These values of y
correspond to the theoretical prediction given by for-
mulas (17)—<(19), (23), (24), and (32).

5. CONCLUSIONS

We have studied the behavior of the velocity and
damping coefficient of hypersound in solutions with a
closed phase-separation region, a double critical point,
and a peculiar point and proposed an explanation for
the sharp increase in the damping coefficient of hyper-
sound, which is observed in the vicinity of the critical
and peculiar points. A theory describing the behavior of
hypersound in the critical region, based on the mecha-
nism of hypersound scattering from concentration fluc-
tuations, has been proposed. A comparison of our for-
mulas with the experimental data has revealed good
agreement.
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ORDER, DISORDER, AND PHASE TRANSITIONS
IN CONDENSED SYSTEMS

TheVortex State of an Antiferromagnet
with Uniaxial Anisotropy
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Institute of Magnetism, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine,
Kiev, 03142 Ukraine
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Abstract—For themodel of an antiferromagnet with easy-axis anisotropy, we have determined the multisoliton
state that corresponds to the domain boundary on the surface of which antiferromagnetic vortices of various
topological charges are localized. We analyze the pattern of interaction between the vortices. We show that
repulsive and attractive forces equivalent to the forces of electrostatic interaction between point chargesin a
plane act between the vortices with like and unlike topological charges, respectively. However, there is a steady
state in this case, since these vortices in the model of auniaxial antiferromagnet have an infinite effective mass
and do not change their relative positions. We give a general solution that describes the vortex structures on the
surface of the domain boundary. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Planar domain boundaries (DBs) and isolated stripe
domains are among the best studied elements of
domain structures. Their mathematical images are one-
dimensional soliton solutions of the Landau-Lifshitz
equations in the form of kinks and breathers, respec-
tively.

The magnetic and antiferromagnetic solitonsin two-
and three-dimensional systemsarelesswell understood
than their one-dimensional counterparts. The first mul-
tidimensional solution that describes the vortex states
in an isotropic ferromagnet (FM) wasfound by Belavin
and Polyakov [2]. Khodenkov [2, 3] pointed out the
existence of a class of particular solutions to the Lan-
dau-Lifshitz equations in the model of an easy-axis
FM, considered the solution describing a single mag-
netic vortex [2] and a pair of interacting vertices [3],
and surmised that such vortex structures exist in easy-
axis antiferromagnets (AFMs).

When the domain structure in collinear antiferro-
magnetic systems is considered, no problem of allow-
ing for the magnetodipole contributions exists. The
equations of motion for the antiferromagnetic vector
are invariant to the Lorentz transformation and admit
the existence of adynamical soliton state. In this paper,
we find a three-dimensional solution of the Landau—
Lifshitz equationsthat describesafamily of topological
solitons for the model of an easy-axis AFM. The solu-
tion admits a dynamical generalization and incorpo-
rates the influence of the magnetic field directed along
the anisotropy axis.

We discuss the interaction and stability of a system
of antiferromagnetic vortices in actual antiferromag-
netic systems.

L et usconsider the model of an unbounded two-sub-
lattice AFM with easy-axis anisotropy whose direction
coincides with the z axis of the coordinate system. The
AFM is assumed to be in a uniform magnetic field
directed along the easy axisin z. The expression for the
energy density of thissystemis

W= 1AM?+ 92—1(VLi)2+ 92—2(VMi)2

2
—%Lﬁ—%mi— M,H,

where A is the uniform exchange constant; a,, a, are
the nonuniform exchange constants; 3,, 3, are the
uniaxial anisotropy constants; i = x,y,Zz M =M, + M,
isthe magnetization vector; M ,, M, are the magnetiza-
tions of the AFM sublattices; L = M, — M, isthe anti-
ferromagnetic vector, the main parameter of the sys-
tem; and

(1)

0 0 0
\% eXax + eyay + eZaZ.

Based on the natural (for an AFM) assumption that
the relativistic interaction energy is negligible com-
pared to the exchange energy, the equations of motion
for the vectors M and L can be reduced to one equation
for the antiferromagnetic vector L. For a system with
the energy density (1), this equation is[4]

« Gz _ 10°1] _ 200l
[I EV czatﬂ} c? at(l ol
] ?)
+2(1-n)) I xe](I &) = 0,
C

1063-7761/05/10003-0559$26.00 © 2005 Pleiades Publishing, Inc.
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where | = L/2M, is the reduced antiferromagnetic vec-

tor, h = H/2M,./AB, is the reduced magnetic field
directed along the anisotropy axis parallel to the z axis,

¢ = (A4uMy/h) ./ Ad, isthe characteristic velocity, w, =

c/d (& = Ja,B,) is the characteristic length, and , is
the Bohr magneton.

This procedure for deriving the equations of motion
for AFMs can be familiarized with, for example, in [4]
and [5].

Equation (2) hasafairly wide validity range defined
by the relations

H< AM,, M?*<L? (3)

The components of the vector M can be expressed in
terms of the vector L and its derivatives [5]:

- f oL L x[HxL]. @
8H,AM, Ot 4AM;

Since the length of the antiferromagnetic vector is
virtually constant in approximation (3), for the subse-
guent calculations, it is appropriate to introduce the
angular variables 6 and ¢ related to the components of
the vector L by

| = (sinBcosd, sinBsing, cosB). 5

Equation of motion for AFM (2) in terms of the angular
variables takes the form

gtsm 0(d —wy,) + 2div[(D )sin’8] = 0,
6V + W (VO - (b —w)] O

x sinBcosO = 0,

where wy, = 2uyH/A and the dots over the functions
denote time differentiation.

In order not to restrict the generality of our analysis,
let us pass to a different orthogonal coordinate system
with unit vectors e, e,, €;. In doing so, we assume that
the new coordinate system is oriented arbitrarily with
respect to the original one.

Equations (6) remain unchanged, with the only dif-
ference that

e lve,d el
198 26 9L

Theradius vector of apoint in spacein the new coordi-
nate systemis

V=

p = e +en+ed.

Let us consider the localized antiferromagnetic
states that would be homogeneous at infinity. Since we
examine various antiferromagnetic configurations, the
explicit form of the boundary conditions is concretized
below.
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Assuming that the antiferromagnetic configuration
moves at constant velocity v aong the § axis, werepre-
sent the polar and azimuthal angles of the antiferromag-
netic vector as

8(p) = 2arctanexp[u(&*, n, )],
¢ = W(E*,n. Q)+ wt,

where &* = (£ — vt)/ /1 - v?/c® and o isthe antiferro-
magnetic-vector precession frequency.

Introducing the variable &* essentially implies the
passage to a comoving coordinate system that uni-
formly moves together with the antiferromagnetic con-
figuration.

(7)

Given that
2
98 _ = sno, g8 = sinBcoso,
ou auz

Egs. (6) in the comoving coordinate system transform
into

Jdu
227 (VU (V* ) + —L2— ZHD
¥ NRIIES
x sinBcosB = —c*(V**Y)sin, ®
vew oy

(V*u) - c(V*qJ) —oo0+w 2————-———
B: J1-v?lc 208+
x sinBcosB = —c*(V*?u)sin®,

where

R A B
\% _e16§*+e26n+e36Z’ W= W-wy.

In particular, it follows from Egs. (8) that these become
identitiesif Y and u are harmonic functions and satisfy
the equations

(V*?u)sin® = 0, (V*°y)sin® = 0. )

At the sametime, these quantities must satisfy the addi-
tional conditions

Vo Ju _
— =0,
J1—v?c298
AV Y)° - +

40) QHJ; -0
All—vzlczaa

Let us determine the localized antiferromagnetic
configurations that satisfy Egs. (9) and (10).

(V*u)(V*y) +

A(V*u)’ - (10)
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2. VORTEX STATES IN THE MODELS
OF EASY-AXIS AND ISOTROPIC AFMs

(1) Let usrequire, for example, that 8 =0 or 6 = 1,
00/0&* = 0, and the derivative oy/0&* be bounded for

&* —> +oo,

In the simplest case, these conditions can be satis-
fied by choosing Y and uin theform of linear functions:

U= (§*—&g)/0*, W = k&* + U,

2
5 = 1-(vic) (11)
1—(wlwy) = (v/c)
k=<2
C C2_V2

where ), and &, are the integration constants.

Configuration (7), (11) describes a 180-degree DB
whose uniform motion is accompanied by a precession
of the antiferromagnetic vector. The dynamical proper-
ties of this structure were studied in detail in [5]. Basi-
caly, &, definesthe DB coordinate.

Our objective is to find a three-dimensional multi-
soliton solution. We seek this solution in the form of a
DB with the coordinate &, and the azimuthal angle Y,
modulated in space by assuming that

u(p, t) = &£*/0* —&y(n, {)/0%,

(12)
W(p,t) = k&* +Po(n, ).

Substituting (12) into (9), we find that the sought
functions &, and Y, must satisfy the equations

_ Daz azD
sinG —-—+3Z—2Dlpo(r],1) =0,

Con?
. Daz 62D =
Snew+£ﬂﬁo(n,l) = 0.

The additional conditions (10) for these quantities take
the form

D8, 081" _ 5u2f¥, g2 f¥af
Con0 * Oaz0 Oon 0l baz 0

%QE_O.{.QLE_OQE_O =0
an on ol o _

(14

For Egs. (13) to turninto an identity in the region of
spacewheresin® # 0, Yy(n, ) and &y(n, ) must bethe
solutions of the Laplace equations and harmonic func-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

561

tions. The additional conditions (14) are satisfied auto-
matically if these functions are related by the Cauchy—
Riemann conditions:

aEO(an) - 6*6L|Jo(r],Z)

9C on (15)
0&o(n. ) _ —6*6%(”’0

N I

Thus, the coordinate &y(n, {) of the DB and the azi-
muthal angle Yy(n, ¢) of the magnetization vector are
arbitrary conjugate harmonic functions.

Such aresult also holdsfor the FM model with easy-
axis anisotropy [2, 3]. It is easy to show that this rela-
tionship between &y(n, ¢) and Wy(n, ¢) holds for the
soliton configurations of isotropic FMs and AFMs.

Certain boundary conditions should be specified to
unambiguously determine the AFM configuration. In
this paper, from the entire variety of conjugate har-
monic functions, we choose those that describe the
antiferromagnetic vortices by assuming that

EO(nv Z)

N 16
=6*zvkln[éi*J(n—nk)2+(Z—Zk)2J+Cl, 10
k=1

where C; is an arbitrary constant that defines the DB
location along the & axis, N is the number of vortices,
(N €)) isthe coordinate of the core of vortex k, and v,
is anumber that defines its topological charge. Below,
we return to the question of v, values.

We find from the Cauchy—Riemann conditions (15)
that, to an arbitrary constant, the function yy(n, ¢) con-

jugateto &g(n, ) is

Wo(n, () = ZVkarCtanEz—sz (17)

where C, isthe integration constant.

The coordinate &y(n, ¢) of the DB and the azimuthal
angle Y(n, ¢) of the magnetization vector (see (16) and
(17)) are harmonic functions on the entire n¢ plane,
except for the coordinates (n,, ¢,) of the vortex cores,
since the Laplace equation for &y(n, ¢) at these points
does not turn into an identity.

Nonetheless, Egs. (16) and (17) are still the solution
of Egs. (13), since sinB becomes zero at the singular

points (ny, {) where &q(n, {) and Yu(n, ¢) are not har-
monic functions.
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Fig. 1. Image of the surface of the AFM DB with two vortices at (8) zero (v1 = —v,) and (b) nonzero (v, = v, < 0) total topological

charges of the vortices.

Thus, we found a three-dimensiona solution of the
equations of motion for AFM:;

08(p. t)

& —&(n, Q)
o3
N (18)
d(p,t) = Z\)karctangz1 Z, D+ k&* + w't + C,.

This solution describes the family of static antiferro-
magnetic vortices localized on the surface of amoving
DB. The vortex axes can be oriented arbitrarily with
respect to the anisotropy axis.

An important result of our study is the conclusion
that the presence of vortices on the surface of the DB
does not affect the dynamical parameters of the latter,
sincethe DB velocity, the precession frequency, and the
wavenumber k do not depend on the topological charge
of the individual vortices and the vortex structure as a
whole.

It followsfrom our qualitative analysis of configura-
tion (18) that the points in space where the condition
&* =&y(n, Q) issatisfied form the DB surfacein passing
through which the antiferromagnetic vector component
I,=1 - echangesits sign. Figure 1 shows fragments of
such surfaces for variousAFM configurations.

Clearly, if the total charge of the system of vortices,
Vi is zero, then the DB surface far from it is flat.

If, aternatively, this charge is nonzero, then the DB
shape is close to the surface formed by the rotation of

the &* =( Zka)lnﬂ curve around the &* axis.

Inthe easy-axisAFM model, the DB surface asymp-
totically extends to infinity along the vortex axis, con-
tracting exponentialy. In fact, the validity range of this
result is determined by the restrictionsin using the con-
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tinual approach of the phenomenological theory of
antiferromagnetism. A natural restriction of the antifer-
romagnetic vortex diameter is the lattice parameter a.

(2) The next localized configuration whose exist-
enceisallowed by the easy-axisAFM model isthefam-
ily of vortices moving at constant velocity over the sur-
face of a180-degree DB.

To determinethis structure, | et us specify the bound-
ary conditions by requiring that 6 =0 or 8 = 11, 00/0¢ =
0, and the derivative d/0¢ be bounded for { — oo.
Asin the previous case, we seek a solution in form (7)
by assuming that the functions u(p, t) and Y(p, t) satisfy
Egs. (9) and the additional conditions (10).

The simplest soliton solution of Egs. (9) and (10)
corresponding to the specified boundary conditionsisa
planar 180-degree DB:

8 = 2arctan(e”), u = (L-L,)/3,

¢ = (*)Ht + qJO!
where {, and ), are the integration constants.

We seek a three-dimensional multisoliton configu-
ration in the form of DB (19) with the coordinate {, and
the azimuthal angle ), modulated in space by assuming
that

(19)

u(p. 1) = FT-To(&* M),

Wo = Wo(E*, N)-

Substituting (20) into (9), we find that the sought func-
tions {, and Y, must satisfy the equations

(20)

sne%+ ‘; 9 _Lyy(g*,n) = 0,
snel% + 9 Lz (e« ) = 0. -
on® o E og+ s
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(b)
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_

| /] ]

_10 0 10 g

Fig. 2. (a) Image of the surface of the AFM DB with one vortex moving at constant velocity v paralel to the & axis and (b) the
isolines formed by the sections of this surface by planes perpendicular to the { axis. Theratio V2= 0.9.

The additional conditions (10) for these quantities take
the form

8, Pl _ 2%, 2%
Gond Tl T PGend T hpl
Wy, W% _

an on  9E*de*

As in the previous case, the system of equations and
additional conditions (21) and (22) has a solution that
describes the family of vortices. However, these vorti-
ces execute simultaneous motion at constant velocity
along the surface of the DB at rest.

The expression that describes this configuration is

tane(g ) _ expﬂz Zo(f FI)E’
N
~ n-n)1- v/c%] (23)
q)(p,t)—gvkarctané( - D
+wyt + C,,
where
ZO(E*vn)
N
- 6zvkln§J(n—nk)z+Mm+cr
- ’I1c* O

The points in space where the condition ¢ =
(o(&*, n) is satisfied from the DB surface, in passing
through which the antiferromagnetic vector component
I,=1- e, changesits sign. Figure 2a shows a fragment
of this surface that contains an antiferromagnetic vortex
moving at constant velocity. Figure 2b display the iso-
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lines formed by the section of the vortex by planes per-
pendicular to its axis. Figure 2 illustrates the Lorentz
transformation of the structure of the vortex caused by
its motion: the linear sizes of the vortex in the direction

of its motion reduce by afactor of 1/,/1 — v?/c”.

(3) By arranging the vortices in space in a certain
way, we can obtain various AFM configurations.
Below, we give two of these defined by elementary
functions.

For example, if vortices (23) with identical topolog-
ical chargesv, = v arearranged in theform of aperiodic
chain along then axis, then the distribution of the angle
¢ can be represented as

d(p,t) = v Z arctanmz* rD+wHt+C2,

where d is the vortex period. The result of the summa-
tion of this series can be expressed in terms of elemen-
tary functions [6]:

(24)

n=—oo

o(p. 1)

_ (U oy CEEC
varctan[tanDCI DcothD . D} + wyt + C,.

(25)

Based on the expression for the function ¢(p, t), wefind
thefunction u(p, t) conjugatetoit; the polar angle of the
antiferromagnetic vector can then be written as

e(p! t) — Z_ZO(E*I r])
=82 = exp| 0] (29)
where
Co(€%,n) = 5\é|n[sinhzg—%§—%+ sinzg—-:j—rg} +C,.
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In asimilar way, we can show that the configuration
of the antiferromagnetic vector for a chain of vortices
with aternating signs of the topological charge is
defined by

tan9(92, t) _ exp[iz —10(62*. n)}
(27)

_ sin(ttn/d)
d(p,t) = VarCtan[—sinh(nE*/d)} +wyt + C,,

where

. _ <V .[cosh(m&*/d) — cos(mtn/d)
Co€*,n) = 62'”[cosh(nz*/o|) ¥ cos(nn/d)] +Cy

We will not analyze the distribution of the antiferro-
magnetic vector for these configurations and give only
the images of the surfaces that separate the domains
with the opposite signs of the antiferromagnetic vector
component I, (Fig. 3). Aswe see from Fig. 3b, the DB
surface is flat far from the chain of vortices with alter-
nating signs of the topological charge. If, however, the
signs are identical, then the DB far from the chain of
vortices consists of two flat regions oriented at an angle
X relativeto each other (Fig. 3a). Thisangle dependson
the topological charge v and the vortex period d and is
defined by

X = T[—2arctan"—d—V6.

(4) Thetransformation of the derived configurations
when passing to the isotropic AFM model is of consid-
erable interest.

The configuration that corresponds to the family of
vortices in an isotropic AFM can be obtained without
additional calculations from relations (18), (23), (26),
and (27) by passing to thelimit 3; — 0 (8 —= o).

Thus, for an AFM whose structure is described
by (23), passing to the limit yields

en®@Y = /0 -no+ e &0
k (28)

_ N—N«O
d(p,t) = v, arctan ] 0T Wt + Cy,
p Z k Q*_EKD H 2

where ¢ is an arbitrary constant in units of reciprocal
length.

Relations (28) define a configuration with two-
dimensional modulation of the antiferromagnetic vec-
tor in the §n plane. In the static case, this structure
closely coincides with the family of Belavin—Polyakov
solitons [1] and may be considered as a special case of
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the soliton configurations of easy-axis anisotropic
systems.

When passing to anisotropic AFM, expressions (25)
and (26), which describe the chain of vorticeswith like
charges, transform into

~ * v/2
ten®80) = & sin? T+ sine ]

2 Od 0 OgO
(29)
d(p,t) = varctan[tan%%rgcoth%’fI %} +wyt+C,,

where C; and C, arearbitrary constants.

For the chain of vorticeswith alternating signs of the
topological charge, the distribution of the antiferromag-
netic vector in an isotropic system can be written as

v/2

tan%;_t _ &, [posh(mé/d) — cos(mryd)r]

Leosh(m&*/d) + cos(mn/d) (30)
- nsin(tn/d) 0
d(p,t) = Varctanmm+wHt+Cz.

It follows from Egs. (28)—(30) that the vortices in
the isotropic AFM model have a two-dimensional
structure and differ fundamentally from the vorticesin
an AFM with easy-axis anisotropy. Our qualitative
analysisof the results obtained shows that including the
easy-axis anisotropy modifies the two-dimensional dis-
tribution of the antiferromagnetic vector for vortex
structures typical of the isotropic AFM model and
causes their modulation in the third direction.

(5) Returning to the topological charge, note that
Khodenkov [3] discussed the possibility of the exist-
ence of vorticesin an AFM with half-integer values of
v, =h+ 12 wheren, =0, +1, £2, .... At suchv,, there
must be a geometrical boundary that separates the
regions with | and . Since the AFM states with | and
- are totally equivalent, the nonuniqueness of the vec-
tor | is believed to be unrelated to any discontinuity in
spin density and showsthat peculiar nonuniform distri-
butions of the vectorsM ; and M, can exist. Thisisvalid
in the macroscopic theory based on the requirement
that the magnetic sublattices M, and M, be indistin-
guishable [5]. At the same time, as we show in the next
subsection, the macroscopic continual approximationis
not self-sufficient. For example, when the energy char-
acteristics of the vortex structure are determined, one
has to impose constraints on the sizes of the domain of
integration and to use the crystal cell parameter. In this
case, the assertion that the magnetic sublattices are
indistinguishable becomes incorrect. In addition,
although the | and - states are equivalent in energy
terms and with respect to the external fields, this equiv-
alency may turn out to break at the banks of the geomet-
rical boundary where there is a contact between the
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Fig. 3. Images of the surfaces of the AFM DB with chains of vortices with (a) identical and (b) alternating signs of the topological
charge arranged periodically along then axis (the structures are described by Egs. (27), (28), and (29), respectively) and theisolines
formed by the sections of these surfaces by planes perpendicular to the C axis.

regions with | and - and a layer with ferromagnetic
coupling can be formed.

The discussion of this question is beyond the scope
of our study. We only emphasize that a soliton configu-
ration with an integer topological charge correspondsto
the continuity condition for both the antiferromagnetic
vector and the subl attice magnetization vectors, M ; and
M,,. Therefore, below, we discuss AFM configurations
withv, =0, 1, 2, ....

(6) Let us consider the influence of dissipative prop-
erties of the medium on the dynamics of vortex struc-
tures. We take into account the dissipation by means of
the dissipative function whose density in the simples
form (equivalent to the Hilbert—Landau form for ferro-
magnets) for the angular variablesis proportional to

A5 - g s'o)
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where T is a phenomenological parameter that charac-
terizes the relaxation time of the system.

Given the dissipative terms, the equations of
motion (6) take the form

—g—t(cb —wH)sinze—%cbsjnZe +cPdiv[(Vo)sin'e] =

6+ %e — V20 + [w2 + CA(V ) (31)

—(d —0,)*]sinBcosd = 0.

For simplicity, we exclude the magnetic field from our
analysis by assuming that w, = 0 and consider the
motion of the family of vortices on the surface of the
DB at rest by including the dissipation in the nonrela-
tivistic limit v3/c? — 0. It iseasy to show that the sys-
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tem of equations (31) in this case has the solution

tane(EZ,t _ expD+Z Zo(p s

(32)

C,,

_ h OnN—Nkn
DA SO

where

Ze ) =85 vinf/in-n)*+ (g -8 015+ C.,
k

& (1) = &,(0) + voT(1 — €M) isthe coordinate of the vor-
tex core, and v, istheinitia velocity.

Thus, the motion of the core of an antiferromagnetic
vortex issimilar in pattern to the motion of aparticlein
adissipative medium. The velocity decreases exponen-
tidly. Inthetravel time, the vorticesdisplace by thedis-
tance vt.

3. THE INTERACTION
BETWEEN ANTIFERROMAGNETIC VORTICES.
INSTABILITY OF THE VORTEX STATE

Let us turn to the interaction between antiferromag-
netic vortices (18) and (23) and to the stability of such
states. For simplicity, wewill consider configuration (23)
inthe static case (v =0, wy = 0).

If wewritethevolumeintegral of the energy density
(1) for AFM in the static case for configuration (23)
and perform integration over the variable ¢, then, given
condition (22), we will obtain the following result:

U= uweﬂdzdn(vuzo)z, (33)

where
V = elaaE —’ €= 8/\/ BIMO’

€ isthe energy per unit surface area of the 180-degree

AFM DB, U, = —2B,M2V + €Sis the energy of the
AFM with the DB, and Sis the cross-sectiona area of
the AFM sample in the &n plane; the second term
in (33) represents the intrinsic energy of the system of
vortices.

We perform integration in the &n plane over acircu-
lar area containing the family of antiferromagnetic vor-
tices. We assume that the center of the circlelieswithin
the region where the antiferromagnetic vortex cores are
concentrated and that its radius R is much larger than
thesizeof thisregion (R> |&], [nd). In what follows, it
IS hecessary to pass to the limit by letting R approach
the AFM boundaries.
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Through integration by parts and based on the diver-
gence theorem, expression (34) for the energy of the
vortex system can be transformed into

U-U, = efdl(zovmzo)n—sﬂdzdnzovézo. (34)

The first integral in (34) is calculated over a circular
path with alargeradius R, dl isthe element of length of
the path. The subscript n means that the projection of
the vector {,V{, onto the normal to the element of
length of the path is taken in the integrand.

Following the distribution of the vector | far from
the vortex structure, we note that it coincides with the
distribution for one vortex with a charge equal to the
total charge of the system. Indeed, given the condition
R > |&J, |nd, expression (23) can be represented as

e(p,t) 0. {=Co(& )y
5 o

tan—=5— = exprt

(35)
d(p,t) = Z\)karctan%—]g +C,,
k

where
%(8.n) = 8 vinft/n’+ £+ C,
k

whereupon the integral in question can be easily calcu-
lated. Calculating the second integral in (34) causes no
difficulty either, since

0820 = 21y UB(E-8)8(N-ny).
k

Finally, we obtain

2

U-U, = Eézv@ IntR

k

EZV kanD6 5 (36)

where

R = /\/(Ei —Ek)2 +(n; —nk)z,

Ry is the separation between the vortex axes.

Ati # Kk, the second term in (36) defines the vortex
interaction energy. Clearly, this energy does not depend
on the influence of the remaining neighbors. The force
of interaction has the same form as that for point
chargesin aplane:

ouU _
OR;, = 2Bv

E = 2n&e,

Fik = (37)

Ik2
ik

Accordingly, the vortices repel and attract each other
for like and unlike topological charges, respectively.
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Expression (36) for the energy of the vortex system
shows that the continual approximation of the macro-
scopic theory, according to which the intrinsic energy
of an individual vortex is an unbounded quantity, since
Ry =0at i =k, islimited. This explains the stationary
configurations (18) and (23) that exist despite the inter-
action between individua vortices. Indeed, since the
intrinsic energy in the continual approximation, as well
as the effective vortex mass, is infinitely high, the influ-
ence of thefinite (in magnitude) interactions between the
vortices cannot change their relative positions.

The situation will change if the constraints deter-
mined by the period of the crystal structure areimposed
on the diameter of the vortex core. Therefore, when
writing R; in (36), weassumethat R; = aK, whereK isan
integer. The uncertainty related to the introduction of
parameter K for materials with &/a > K is of no funda-
mental importance, sinceit leads only to relatively small
energy correctionsthat do not depend on the samplesizes
and the vortex arrangement. Consequently, the parameter
K can generally be excluded from our analysis.

Dividing the system’s energy (36) by the intrinsic
energy of the vortices and the interaction energy, we
write

U-u, = EEZV@ InEJaD EZVV InER' (38)

k

It is easy to seethat the energy of the family of vortices
with a zero total charge is always bounded. If the total

topological charge of the systemisnonzero, % , v #0,

then the vortex energy is determined by the AFM sizes
and increasesinfinitely asR — oo, just asthe disclina-
tion energy in AFM [5].

In conclusion, let us compare the potential energy
U(v4, v,) of a pair of vortices with charges v, and v,
with the energy U(v) of one vortex whose charge is
equal to thetotal chargev = v, + v, of this pair. Asfol-
lows from relation (36), the difference between these
energiesis

AU = U(v)—-U(vy,v,) = 2Ev,v,In(Ry,/a). (39)

This result indicates that the vortex is unstable against
its decay into components with an elementary charge.
At the same time, if the neighboring vortices have
unlike charges, their merger is energetically favorable.

Thus, in actual physical systems, the stable exist-
ence of vortex structuresis possible only in the case of
artificial nucleation and stabilization. For example, vor-
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tices of thistype can be nucleated in easy-axisferromag-
netic systems near ferromagnetic dotswith asmall diam-
eter (much less than the DB thickness parameter d) in a
ferromagnetic medium if there is a magnetic exchange
interaction between the dot material and the medium.

4. CONCLUSIONS

Note that all of the configurations considered are a
specia case of a more general distribution of the anti-
ferromagnetic vector:

R B £ £ 5)
(40

u—u
b(p,t) = kaarctana/ _V"E +wyt + C,,
k

where

Lo v) = 85 wn(/(u=-u)*+(v -v )9 +C,,
k

ui&, n), v(&, n) are any conjugate harmonic functions,
Uy, v, are arbitrary constants. Note that expression (16)
also solves the Landau—Lifshitz equations in the FM
model with easy-axis anisotropy.
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Abstract—The magnetic phase diagram of the Fe/Cr/Fe three-layer structure with almost ideal interlayer
boundaries was constructed. The effective interlayer interaction in this structure was described by the “half-
angle coupling” model. Various system configurations were analyzed taking into account crystalline anisotropy,
and the ground state of the system was determined. The behavior of the structure in an external magnetic field
applied along easy and hard magnetic axes was studied. The magnetization curves M(H) characteristic of struc-
tures with various interface roughness parameter and interlayer exchange values were described and analyzed.
The experimental situation is discussed. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Interest in multilayer structures of the Fe/Cr type
has not lessened for almost two decades and has been
continuously stirred up by new experimenta results.
For these structures, such striking effects as giant mag-
netoresistance, the long- and short-period oscillations
of the effective interaction of ferromagnetic Fe layers
depending on the thickness of antiferromagnetic Cr
spacers between them, the phase dlip of thisinteraction,
the noncollinear magnetization configurations of
neighboring ferromagnetic layers, etc. (in particular,
see reviews [1-4]), have been observed for the first
time. Studies of the special features of the magnetic
coupling of ferromagnetic layersin the structures under
consideration alow conclusions to be drawn on two
factors that play a determining role. First, this is spe-
cific spin ordering, called spin density wave, inthe anti-
ferromagnetic chromium interlayer [3]. The second
factor is inevitable roughness of boundaries between
iron and chromium layers determined by the technolog-
ical conditions of multilayer structure growth [1, 5].
These two factors were simultaneously taken into
account at a qualitative level in the “bilinear-biqua-
dratic’ model [6], which presupposed the division of
the Fe layers into ferromagnetic domains, the absence
of deformation of the antiferromagnetic structurein the
Cr spacer, and tiff exchange coupling at the Fe/Cr
interface. Thismodel givesthe dependence of the effec-
tive exchange energy E(J)) on the angle Y between the
magnetizations of neighboring ferromagnetic layersin
the form of the sum of terms proportional to cosyy and
cos?|, along with the coefficients that depend on the
temperature and spacer thickness. Remarkably, the esti-
mates obtained in [7] on the assumption different from
that made in [6], that is, on the assumption of a weak

spin structure deformation in the antiferromagnetic
spacer and uniformly magnetized ferromagnetic plates,
gave the E(y)) functional dependence of magnetic cou-
pling energy similar in form to that reported in [6].

Note that, for the first time, the term proportional to
cos’ was introduced into the interlayer interaction
energy purely phenomenologically, to explain a non-
collinear magnetic configuration of the Fe/Cr/Fe three-
multilayer structure [8]. Since then, the model sug-
gested in [6] has been used in virtually all experimental
worksto interpret the data on the magnetic properties of
Fe/Cr-type systems. Sometimes, this was done fairly
successfully [4, 7]. Nevertheless, many facts do not fit
such interpretation. Thisis especialy true of structures
prepared using optimum technol ogies and having high-
quality interlayer boundaries. For instance, the data on
the reflection of polarized neutrons and the magnetoop-
tical Kerr effect obtained in [9] for [Fe/Cr](001) super-
lattices grown at 250°C, with an estimated noncorre-
lated interface roughness of order 10 nm, led the
authors to seek an explanation of the behavior of inter-
layer coupling in terms of the “proximity magnetism”
model [10], different in principle from that suggested
in[6]. This model is, however, more suitable for
describing systems with strong exchange interaction
between local moments at the ferromagnet/antiferro-
magnet boundary such as Fe/Mn structures [11] rather
than Fe/Cr-type systems in which this interaction is
weak [12, 13] and spin density is strongly delocalized
in spacers.

The recent data obtained in [14] in studying
Fe/Cr/Fe(001) sandwiches by Kerr magnetometry and
Mandelstam-Brillouin light scattering show that the
character of interlayer interaction changes substantially
depending on the structure and quality of the Fe/Cr

1063-7761/05/10003-0568%$26.00 © 2005 Pleiades Publishing, Inc.



MULTILAYER STRUCTURES OF THE IRON/CHROMIUM TY PE

interface. According to [14], the experimental data on
structures with weakly rough interfaces can be inter-
preted more correctly using the proximity magnetism
model [10] or the so-called half-angle coupling model
than the model suggested in [6]. The half-angle cou-
pling model will be considered in more detail in what
follows.

The inhomogeneous antiferromagnetic state of the
type of spin density wave formed in Cr spacers over a
broad range of thickness and temperature values is
extremely sensitive to the quality and geometry of the
interface. A self-consistent description of this state
(charge-induced spin density wave) was suggested
in[12, 13]; it was based on the theory of a localized
spin density wave [15] suggested more than 15 years
ago to describe the properties of dilute chromium-
based aloys. The approach developed in [12, 13]
allowed several unusual properties of Fe/Cr-type mag-
netic nanostructures to be explained. First and fore-
mosgt, this relates to the description of phase diagrams
(temperature—spacer thickness) for superlattices of
various orientations and compositions ([Fe/Cr](001)
[1-3], [Fe/Cr, _,Fe](001) [16], [Fe/Cr](011) [17], and
[Cr;_,Mn,/Cr](001) [18]). The widely known phenom-
enon of the phase dlip of effectiveinterlayer interaction
in awhisker-grown Fe/Cr/Fe(001) three-layer structure
with a wedge-like spacer [1-3] and the recently
observed phenomenon of the rearrangement of the
structure of spin density wave caused by the introduc-
tion of d-doping submonolayers of some metals [19]
also fit this scheme well.

A new mechanism of interlayer magnetic coupling
was suggested in [20-22] for the Fe/Cr/Fe(001) three-
layer structure with rough interlayer boundaries and
thick iron layers. In this mechanism, the antiferromag-
netic spacer acquires substantial exchange stiffness at
high (compared with the Néel point Ty) temperatures
because of the formation of a charge-induced spin den-
sity wave. The approach suggested in [21, 22] was used
to substantiate the existence of noncollinear states and
obtain an equation for the energy E(Jy) whose value and
form substantially depended on the quality of Fe/Cr
interfaces. The E() function takes the traditional form
of bilinear-biquadratic interaction only in the limit of a
high concentration of monatomic steps (we will use the
term “monostep”) at interfaces. In the opposite situa-
tion, when the relief of the Fe/Cr boundary surface is
modulated by broad terraces, the E()) analytic depen-
dence obtained in [21, 22] has no phenomenological
analog.

In this work, we study the behavior of the magneti-
zation M of aFe/Cr/Fe(001) three-layer structurein an
external magnetic field H. We confine our consider-
ation to a structure with a low concentration of
monosteps at the boundaries between the antiferromag-
netic spacer and ferromagnetic plates, which are
assumed to be sufficiently thick for considering them
uniformly magnetized. Precisely in this (of course ide-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 100

569

alized) situation do the special features of the state with
charge-induced spin density wave and of the M(H)
dependencefor the Fe/Cr structure with an almost ideal
interface explicitly manifest themselves. The opposite
situation with a high concentration of monosteps at
interfaces is characteristic of systems with a bilinear-
biquadratic interlayer coupling in an externa field,
which have repeatedly been analyzed theoretically [4].

2. THE HALF-ANGLE COUPLING MODEL
FOR INTERLAYER MAGNETIC COUPLING
IN A Fe/Cr/Fe THREE-LAYER STRUCTURE

Recall the main characteristics of the mode [22].
The temperature range Ty, < T < T, corresponding to
short-range antiferromagnetic order in the chromium
spacer is considered; here, T, < T, where T is the
Curie temperature of the iron plates. The thickness of
the ferromagnetic layers is assumed to be sufficiently
large, and the magnetization density Swithin the ferro-
magnetic layers can be considered uniform and temper-
ature-independent at T, < T.. At the same time, the
thickness L of the antiferromagnetic spacer can vary
over afairly wide range provided the condition L > 2,
where &, is the spin density wave coherence length, is
satisfied. The magnetization density of the antiferro-
magnetic sublattices a(r) can be very inhomogeneous
and strongly depend on temperature over the tempera-
ture range under consideration, [13]. A detailed
description of the system with the Ginzburg-Landau
expansion of its thermodynamic potential is presented
in[12, 13, 20, 21, 22] in terms of the antiferromagnetic
order parameter, that is, the spin density wave ampli-
tudein the spacer A(r) = Uo(r), where U isthe effective
spin density wave potential. The reason why A(r) is
nonzero above the Néel temperature of bulk chromium
isanincrease in the electronic spin susceptibility close
to the interface because of charge flowing between the
Fe and Cr layers. This effect can be formally described
as alocal increase in the coupling constant U, which
determines the characteristic temperature Ty(L) of the
appearance of short-range antiferromagnetic order in
the spacer on the scale of the amplitude correlation
length &(T) ~ &1 — T/T\ Y2

In spite of its comparatively small contribution to
the amplitude of spin density wave, the exchange inter-
action component of order SA at the Fe/Cr interface to
asubstantial extent determines the details of the spatial
dependence of the A(r) vector and its orientation with
respect to ferromagnetic layer magnetization. The role
played by the exchange component becomes especially
important for a multilayer structure with nonideally
smooth (rough) interfaces, because charge and
exchange potential fluctuations are inevitable near such
surfaces. Unlike the Coulomb interaction, the exchange
contribution to the surface energy sharply changes sign
as the thickness of the spacer decreases by as little as
one chromium monolayer. Such a dependence of the
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energy on whether the number N of monolayersiseven
or odd allows long-wave spacer thickness fluctuations
for a three-layer structure with rough surfaces to be
modeled in a fairly smple way [22]. The equilibrium
magnetic configuration of the system, namely, the spin
density wave structure A(r) and the angle ) between
the moments of the ferromagnetic layers, is determined
by balance between the surface exchange energy at the
Fe/Cr interface and the energy of a nonuniform spin
density wave deformation within the spacer. For athin
spacer, L < D, where D isthe interpolation length [13],
the spin density wave amplitude A(r) is almost con-
stant, and the problem reduces to considering static
spin density wave orientation fluctuations. This prob-
lem was solved exactly by representing the spacer as a
set of fragments with even and odd numbers of chro-
mium monolayers N and lengths |, and |, respectively.
These fragments are taken to aternate periodically
along one of the directions in the Fe/Cr interface plane.
The characteristic scale of vector A(r) rotations caused
by exchange potential jumps at monosteps is the angle
correlation length (L, T) ~ (AL)Y2.

A general equation for the interlayer coupling
energy E(Y) was obtained in [22]. In the limit of strong
roughness (p{ > 1), where p = 2(l, + 1)t isthe density
of monosteps, the E(y) dependence has the form

E() = A cosy + Azcoszlp. (D)

In theweak roughnesslimit (p{ < 1), that is, for the
interface with broad terraces, we have

E(p) = Blcos%-g+ stin%% @

Here, A, , and B, , arethe coefficients depending on the
temperature T, spacer thickness L, and density of
monosteps p and also on the interface roughness
parameter b =1 /I.. The magnetic phase diagram of the
model Fe/Cr/Fe three-layer structure with bilinear-
biquadratic interlayer coupling (Eq. (1)) was con-
structed in [23]. A similar problem for the half-angle
coupling model (Eq. (2)) has not been studied and will
be solved in this work.

Let us consider a symmetrical Fe/Cr/Fe(100) three-
layer structure (called trilayer below) taking into
account the fourfold crystallographic axes in the iron
layers and assuming that the external magnetic field H
liesin theinterface plane (y, z). We also assume that the
magnetization M is uniformly distributed over the vol-
ume of each ferromagnetic plate, and its amplitude is
independent of the external field. The magnetic
moment of each plate rotates as a whole in the (y, 2)
plane, because the demagnetizing field is much stron-
ger than the anisotropy field K. The energy of the mag-
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netic structure under consideration per unit area of its
Cross section can be written as

E = —dHM(cosd, + cosd,)

_(“1<_6M(cos4(¢l+a)+cos4(¢2+0()) 3)

-0 . b1 —9n
+BlcosD 5 D+B2S'nD——2—_D'

The meaning of the termsin (3) is obvious. Here, d is
the thickness of the ferromagnetic layer, a isthe angle
between the easy axis n, and external field H, and ¢, »
is the angle between the vector H and magnetic
moment M, , of theright or |eft plate. Below, we only
consider two variants, when the external field H is
applied either along the easy (a = 0) or hard (a = 17/4)
magnetic axis of the ferromagnetic layers.
Let usintroduce the dimensionless values

8-——E—— h-—H—
T dKM’ Tk’ @
| :_.9'._ :L: IO
dKM’ 1+b I+

wherea, b>0,a=—B; + B,), b=B,/B,, and | isthe
dimensionless exchange coupling amplitude between
the iron and chromium layers. For an ideal Fe/Cr(100)
interface, we would have A = 0 or 1. It follows that the
N\ parameter (0 < A < 1) determines the degree of inter-
face roughness. Let us use the new variables

h— ¢ N Pl
cos >0 n = cosp >0 5)

m =

They describe the polarization and orientation, respec-
tively, contributions to the applied field dependence of
the total trilayer magnetization g = nm (measured in
saturation magnetization 2M units). In the new denota-
tions, we have

g(mn) = —2hmn ¥ %f(m)f(n)

—I(Am+ (1=A)J1-m), (6)

f(p) = 8p'-8p"+1, p=(nm),
where minus correspondsto the angle a = 0 and plusto
a =174,

Let us consider the ground state of the system
(mg, ng) a H = 0. In all cases except two trivial Situa-
tionswith A =0and A = 1, functional (6) is minimum
for noncollinear configurations of the plate magnetic
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moments (m, # 0, 1), which can be oriented strictly
symmetrically with respect to the easy (n, =0, 1) or

hard (n, = 1/./2) magnetic axis. These configurations
will be denoted by NCE and NCH, respectively. Irre-
spective of the interlayer coupling | value, energy equi-

librium between them is attained if A = 1/./2 or A =

1-12./2. Intheinterval 1 —1//2 <A < 1/./2, the
ground state has the NCH configuration, and in the 0 <

A<1-1/.J2 and 1/./2 < A < Lintervals, its configu-
ration is NCE. The boundaries of the absolute and rela-
tive instability of the magnetic states of the trilayer are
shownin Fig. 1 inthe (I, A) coordinates. The samefig-
ure contains some curves corresponding to a constant
W, angle betweenthe M ; and M, vectors. It follows that
the magnetic state of a Fe/Cr/Fe-type multilayer struc-
ture is very sensitive to the integral roughness parame-
ter A\ of interlayer boundaries and changes jumpwise at

A=V 2andAN=1-1.2.
The equation that explicitly describes the equilib-

rium magnetization configuration for weak interlayer
coupling | < 1 hastheform

no =01, my=1IA/2, 0<A<1-1//2,
Ny = r/l—i my, = —j—§+!£2-/%1:£)
1-1/J2<NA<1//2, %
n=01, my= 1-'2(1—5/\)2,
1/.2<N<1.

If interlayer coupling isstrong (I > 1), we have

A L 2ANA-N)*(2A-1)

T R @A T WA

(8)

where“+”" isusedif 0<A<1-1//2 or 1.2 <A<1

and“~" if 1-1/,/2< A\ <1/ /2. Thesquare of the equi-
librium m = m, value as a function of the A\ parameter
isshown in Fig. 2 for some intermediate | values| ~ 1.

A characteristic feature of our model with almost
ideal plane interfaces is the absence of collinear states
in the zeroth order with respect to the (p{) < 1 param-
eter. It could be shown that a region of collinear states
appears on the (A, I) phase plane as surface roughness
increases, and this region broadens as the (p() parame-
ter grows.
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3. THE BEHAVIOR OF THE TRILAYER
IN A MAGNETIC FIELD APPLIED
ALONG THE EASY MAGNETIC AXIS

Because of the presence of not only the ground but
also metastable states in the structure under consider-
ation at H = 0, orientation transitions between various

Fig. 1. Phase diagram of the Fe/Cr/Fe(100) three-layer
structure in the (I, A) coordinates. The vertical lines A =
UY.J2 and A =1 - 1/./2 are the boundaries between the
NCH and NCE states. The linesH and E are the boundaries

of the absolute stability of the NCH and NCE states, respec-
tively. The numbered curves are the states with constant gy

angle values: (1) 7178, (2) 5178, (3) 3178, and (4) 1v8.

mg
1.0

0.8

0.6

04

0.2

Fig. 2. Dependence mg (A\) at various interlayer coupling
parameter values: | = 0.1, 1.0, 2.0, 6.0, and .
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Fig. 3. Magnetization curves of athree-layer structure with
the parameters A = 1/2 and | = 1 in symmetrical pg(h)
(dashed line) and asymmetric py(h) (solid line) configura-

tionsin afield applied along the easy axis. The energies cor-
responding to these magnetic configurations eg(h) and ey (h)

are shown at the bottom. At the h* = 0.182 point, an orien-
tation transition occurs.

magnetic configurations can occur when an external
field isswitched on. Let usfirst consider a system char-
acterized by the A parameter from the interval 1 —
1/.J/2< A < 1/.J2 in field H applied along the easy
magnetic axis (a = 0). The transition from the NCH
statewith ny = 1/./2 to the NCE state with n, = 1 occurs
asthefield increases through some intermediate config-
uration of plate moments M, , canted with respect to
the anisotropy field; that is, n, # 0, 1, 1/./2.. Thisasym-
metric state can only be described analyticaly in the
limit of |A—1/2| < 1,

ho

1
Eaky
J2h+2A -1
%l | +2./2 D'

Ny =

9

It existsintheinterval 0 <h < h* < 1. Intheweak cou-
pling approximation (I < 1), we obtain

0l 0
h* IDA/Q /\D

When the field value exceeds the critical value h*, an
NCE-type state symmetrical with respect to the vector
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H becomes more energetically favorable,

_ 1I(1-A)
M = 1A + 1)’

1-m<1.

In ahigh externa field, (10) describes gradual trilayer
magnetization saturation. Formally, the asymptotic
transition to the ferromagnetic state ash —» co and the
occurrence of a sharp orientation transition at the h*
point make the behavior of the Fe/Cr structure with an
amost ideal interlayer boundary in an external mag-
netic field substantially different from that of a struc-
ture with fairly rough boundaries [24, 25].

In order to obtain a general picture of the behavior
of our system in an applied field, we numerically stud-
ied functional (6) over wide ranges of | and A varia
tions. The field dependence of the total magnetization
u(h) of the three-layer structure with the parameters| =
land A\ =21/2isshowninFig. 3. The puy(h) curve, which
meets the extremum condition for two-parameter func-
tional (6),

n, =1,

(10)

de(m n) _ de(m,n)

om on =0

corresponds to the trilayer magnetic configuration
asymmetric with respect to the external field direction,
whereas the pg(h) curve obtained from the equation
dg(m, 1)/0m = 0 corresponds to the NCE configuration.
The g (h) and e4(h) energies of these configurations are
shown at the bottom of Fig. 3. This pictureistypical of
a system that has the NCH state at h = 0; that is, it has

Aintherange 1 — 1/./2 < A < 1/./2. The py(h) and
Hg(h) functions are not single-valued, and only those of
their branches along which magnetization increases
with the field are stable. It follows that the sequence of
the magnetization of a three-layer structure is as fol-
lows. First, in the interval 0 < h < h*, magnetization
increases under asymmetric configuration conditions
from the remanent magnetization pg = py(h = 0) to
Kn(h*). Next, at the h = h* point, where g\(h) = e4h),
the system switches to symmetrical NCE configuration
conditions, and magnetization jumpwise reaches a
value of pug(h*) and gradually attains saturation (1 —p ~
h™t —» 0) as the field increases in the interval h* <
h < . Figure 2 in essence illustrates changes in the
remanent magnetization g (recall that p = mn) as a
function of | and A.

The behavior of the structure with A from the inter-
val 0< A <1-1/./2 inafield applied aong the easy
axis also attracts attention. At H = 0, this structureisin
the NCE state with almost antiparalel M; and M,
moments (135° < Y, < 180°). In awesk field (0 < h <
hT), the NCE sate is retained; that is, the plate
moments are symmetrical with respect to the direction
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of H, and the magnetization of thetrilayer increaseslin-
early as h grows, 1 = Pg + h, where ur = IN/2. At the

point h¥ =1(1—1/./2 — ), the system switches to an
asymmetric state, in which

1
n0= 72%4-%’
(11)
I 1, J2h+1(2A-1)
0 /\/é 4 .

When thefield increasesto h =1(1/./2 — ), the sys-
tem, however, returnsto the symmetrical NCE state and
then reaches saturation ash — oo,

1-pOh™— 0.

To summarize, two first-order orientation transitions
sequentially occur in the system as the applied field
strength increases. A similar  phenomenon was
observed experimentally [26].

4. THE BEHAVIOR OF THE TRILAYER
IN A FIELD APPLIED
ALONG THE HARD MAGNETIC AXIS

Let us briefly describe the special features of the
behavior of the Fe/Cr/Fe(100) three-layer structurein a
magnetic field applied along the hard axis (o = 174). An
analysis showsthat the symmetrical stateis morefavor-
able energetically than asymmetric in a system with the

integral roughness parameter 1 —1/./2 <A < 1/./2 at
any field value h > 0. In other words, the symmetrical
structure of the NCH state (n=1) isretained in an exter-
nal field. The magnetization p(h) = pg(h) monotoni-
cally increases from the remanent value Uy (see Fig. 2)
tosaturation: p?>=1-1(1-A)/2hif h> (1,1). The p(h)
dependence for A = 1/2 isshownin Fig. 4.

As has been mentioned, the three-layer structure

with the A parameter satisfying the condition 1/./2 <
N <1lisintheNCE stateat h=0. A weak magneticfield
applied aong the hard axis changes the state of thissys-
tem to asymmetric. The system then experiences afirst-
order transition at the point h = h*(l, A) to the NCH
state. Given | ~ 1, h* is of several tenths according to
numerical estimates, and the magnetization of the
trilayer at the point h = h* increases by avalue of about
saturation magnetization.

The structure with A from theinterval 0 < A <1 —

1/./2 behaves similarly. It also undergoes a first-order
phase transition at point h = h*, but the corresponding
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Fig. 4. Field dependences of the magnetization of a three-
layer structure with the parameter A = 1/2 at various inter-
layer coupling values (1 = 0, 1, 4, and 8) in afield applied
aong the hard axis.

magnetization jump is then comparatively insigni-
ficant.

5. CONCLUSIONS

Let us formulate the principal results of thiswork.

(1) We constructed the (A, I) phase diagram of the
Fe/Cr/Fe three-layer structure with effective interlayer
interaction described by the half-angle coupling model.
Various configurations of the system were analyzed
taking into account crystalline anisotropy, and the
ground state of the system was found.

(2) The behavior of the structurein amagnetic field
applied along either the easy or hard axis was studied.
The M(H) magnetization curves were described and
analyzed for structures with different A and | parame-
ters.

Interlayer interaction in the Fe/Cr/Fe system with
awedgelike spacer and thick (of order 100 A) plates
was studied in detail depending on the quality of inter-
faces in works [7, 14] already mentioned in the Intro-
duction. A characteristic sharp minimum of the fre-
guency of the optical branch of spin waves in the satu-
ration field and a well-defined linear region, which,
with a kink, transforms into saturation along the mag-
netization curve constructed in the Arrott coordinates,
are observed for samples with strongly rough inter-
faces. These special features are well reproduced by the
bilinear-biquadratic exchange model. However, for
samples with smoother interfaces, the magnetization
curve reaches saturation asymptotically, without akink,
and the magnetic field dependence of the frequency of
the optical branch of spin waves has virtually no mini-
mum. Moreover, over the whole range of spacer thick-
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Fig. 5. Dependences [E(Y)of the energy of a three-layer
structure at various variance W values obtained for [AC= 1/4
and| = 1.

nessesL = 0-40 A and at all measurement temperatures
T=77-473 K, the half-angle coupling model describes
the experimental magnetization curves M(H) of the
samples with smooth interfaces no worse than the prox-
imity magnetism model.

We attach great importance to the studies performed
in [5], where the morphology of interlayer boundaries
in the Fe/Cr/Fe(001) three-layer structure with 5 nm
thick plates grown on the Ag(001)/Fe/GaAs(001) sub-
strate was analyzed in detail. The optimum temperature
conditions for layer-by-layer structure growth were
found to produce high-quality interfaces between iron
and chromium layers with a longitudinal roughness
correlation length of about 20 nm. The optimized sam-
ples manifested well-defined two-monolayer oscilla
tions of interlayer interaction in magnetooptica mea-
surements. Their M(H) hysteresis loopsat an L > 1.2
nm spacer thickness had definitely flat regions at M =
Mg, Mg=Mg=(M; + M,)/2inlow field H (an almost
90° coupling between the ferromagnetic plates) and
almost jumpwise reached the saturation state at H =
+10-20 kA/m.

Also note that the half-angle coupling model
qualitatively satisfactorily reproduces the special
features of the M(H) dependences obtained for
[Fe(14 A)/Cr(74 A)](001) superlattices [25]. When a
field isapplied aong the hard axis, magnetization in the
first hysteresis loop quadrant gradually decreases as H
lowers from the Mg saturation to remanent magnetiza-
tion value Mg = 0.7Mg. When afield is applied along
the easy axis, M(H) drops in alow field H < 100 Oe
from 0.9Mgto 0.54M.

Let us consider the applicability of our model with
regard to the temperature and spacer thickness. The
interlayer coupling effect in Fe/Cr-type structures is
related just to the phase diagram region Ty(L) < T <
Tn(L) where acommensurate spin density wave (we use
the terminology of [2]) exists in the spacer, and the
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Ty(L) lineisaboundary between this phase and a phase
with an incommensurate spin density wave. The calcu-
lations in [12, 13] were performed on the assumption
that L > 2¢,, but the E(y) angular dependence of inter-
layer interaction (and its particular case (2)) was
obtained using a general-type functional for orientation
spin density wave fluctuations. We may therefore hope
that (2) will be valid also for thinner spacers L ~ 28,
naturally, the B, (L, T) dependence will then be differ-
ent from that obtained in [22]. The E(y) dependencein
form (2) was found on the assumption that the mean
distance between monosteps ~p~* and the angular cor-
relation length { were no less than the thickness of the
spacer itself, L < (¢, p™). Note that a particular case
of (2) for B, = B, was obtained in terms of the model of
interlayer coupling in ferromagnet/antiferromagnet
structures [27] different from that suggested in [22].

The E(y) dependence was derived in [22] with mod-
eling Fe/Cr interface roughness by a one-dimensional
periodic structure of monosteps parallel to each other.
This modd is, of course, far from reality. Spacer frag-
mentswith aconstant N value that have different shapes
and areas make their contribution to the effective cou-
pling between the ferromagnetic plates. Nevertheless,
the theoretical estimates obtained in [22] show that the
major contribution to effective interlayer exchange is
made by fragments with the largest area, which isin
agreement with experiment [5].

For a structure with almost ideal interlayer bound-
aries, that is, in the limit {p < 1, we can qualitatively
estimate the effect of fluctuations of the distance
between neighboring monosteps by averaging inter-
layer exchange energy (2) over some dstatistical A
parameter distribution. For instance, suppose that A has
a Gaussian distribution with the variance W and geo-
metric mean [ALl The dependence of the energy of the
trilayer [E(W)Con Wfor [AC=1/4and | = 1isshownin
Fig. 5. The equilibrium ), angle value shifts from the
value corresponding to the mean [AOvalue (Y, = 143°
at W=0) top,=90° (asW —» ).

This approach to the interpretation of experimental
data appears to be reasonable if the cross size of the
region from which the signal isread is much larger than
the mean distance between monosteps. Notethat alaser
beam is focused on the surface of a sample into a spot
with a diameter of order 0.1 mm when the magnetiza-
tion curves of three-layer Fe/Cr/Fe structures are mea-
sured using the magnetooptical Kerr effect [14].

In our view, in most experiments performed with
Fe/Cr/Fe(001) trilayers and [Fe/Cr](001) superlattices,
effective interlayer exchange coupling was accompa-
nied by orientation changes (deformations) in spin den-
sity wave in the chromium spacer, which were induced
by monatomic steps at interlayer boundaries. The
appearance of ferromagnetic domain walls can most
likely be expected in structures with very thin (d <
10-15 A) iron layers. The parameter region where
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magnetization nonuniformity in iron layers should be
taken into account can be qualitatively estimated as
dy < Lo, where y is the exchange stiffness of iron and
d ~ A? is the exchange stiffness of the chromium layer
determined in [22] in terms of the charge-induced spin
density wave model.
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Abstract—Third-harmonic generation during reflection of el ectromagnetic radiation from athin superconduct-
ing film with a mixed d- and s-order parameter is studied theoretically. The dependence of the third harmonic
intensity on the temperature and amplitude of an incident wave is cal culated in the framework of the Ginzburg—
Landau theory for superconductors with a two-component order parameter, and its behavior in the vicinity of
transitions between phases with different symmetriesis analyzed. It is shown, in particular, that the third har-
monic intensity inthevicinity of thetemperature corresponding to thed = d + sphasetransition substantially
increases and is a nonanalytic function of the amplitude of the incident wave, while no singularity in the non-
linear response is observed for thed = d + istransition. The linear reflection coefficient is found to be virtu-
ally insensitive to these phase transitions. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In spite of the fact that cuprate superconductors
(HTSCs) with a superconducting transition tempera-
ture an order of magnitude higher than in normal super-
conductors were discovered 18 years ago, the problem
of symmetry of the superconducting order parameter
remains at the focus of researchers attention. It has
been almost commonly accepted that the order para-
meter with d symmetry dominates in HTSC materials
[1, 2]. At the same time, some experiments on Raman
scattering [ 3], measurements of surface impedance [4],
tunneling between an HTSC and a hormal supercon-
ductor [5], and angular resolution photoemission [1, 6]
indicate that the s component of the order parameter is
also present along with the order parameter with d sym-
metry.

The concept of mixed s+ €°d symmetry of the order
parameter for high-T, superconductors was apparently
discussed for the first timein [7, 8] and was used, for
example, for anayzing the experimental data on
nuclear magnetic resonance in YBCO [9] and for inter-
preting Josephson measurementsin HTSCs[10]. Many
microscopic models proposed for describing the HTSC
mechanism in cuprates have led to the conclusion that
mixed symmetry of the order parameter is possible for
high-T, superconductors. Superconductors with a
mixed-symmetry order parameter can be phenomeno-
logically described using the Ginzburg—Landau theory
including two equations for interacting order parame-
ters and the Maxwell equations supplemented with an
expression for supercurrent, which is the sum of not

only theindividua currents of the s and d components,
but also the interference component [11-13].

Here, we concentrate our attention on nontrivial
electrodynamic properties of such superconductors, in
particular, on a peculiar nonlinear response associated
with the presence of the interference current. Calculat-
ing the generation of the third harmonic of incident
radiation in athin superconducting film using the Ginz-
burg—L andau theory for atwo-component order param-
eter by way of example, wewill show that the nonlinear
response is extremely sensitive to possible phase tran-
sitions between superconducting phases with different
symmetries and that this response may substantially
increase in the vicinity of phase transitions. In particu-
lar, we will show that the third harmonic intensity
noticeably increases in the vicinity of the temperature
corresponding to thed = d + sphasetransitionandis
anonanalytic function of the amplitude of the incident
wave, while no singularity is observed in the nonlinear
response during thed = d + istransition. On the other
hand, the linear reflection coefficient is found to be vir-
tually insensitive to these phase transitions. Thus,
experimental investigation of nonlinear characteristics
of superconductors is an interesting tool for studying
transitions between phases with different symmetries
of the order parameter.

The paper has the following structure. In Section 2,
the electrodynamic part of the problem is considered.
Under the assumption of weak nonlinearity and local
nature of the relation between the vector potential and
the current in the superconductor, the problem of inci-
dence of aplane wave on athin superconducting filmis

1063-7761/05/10003-0576$26.00 © 2005 Pleiades Publishing, Inc.
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solved. The relationship between the amplitude of the
incident wave and the amplitudes of reflected and trans-
mitted waves at the frequencies of the incident wave
and its third harmonic is determined. In Section 3, the
expressions connecting the electric current with the
vector potential at various temperatures corresponding
to phases with different symmetries of the order param-
eter are derived by solving the Ginzburg—L andau equa-
tions for superconductors with a mixed s and d order
parameter. In Section 4, the results are analyzed and the
potentialities of the linear and nonlinear electrody-
namic diagnostics of the symmetry properties of the
order parameter in superconductors are compared.

2. REFLECTION
OF AN ELECTROMAGNETIC WAVE
FROM A THIN SUPERCONDUCTING FILM

Let us consider the problem of normal incidence of
alinearly polarized electromagnetic wave with circular
frequency w and with electric field amplitude E;,. on a
thin homogeneous superconducting film of thicknessd
(Figs. 1 and 2). We must find the electromagnetic field
distribution outside and inside the film. We write the
Maxwell equations

curlB = :—La—E+4—nj, divB = 0,
cot c
_ 10B . _
curlE = T divE = 4mp.

Here, E and B are the electric and magnetic fields and
p and j are the charge and current densities. We intro-
duce in the usual manner the vector and scalar poten-
tialsA and @ so that B = curlA and E = —c0A/ot - [ .
Substituting these expressions into the system of the

Maxwell equations and choosing the calibration
divA =0, we abtain the following equation for A:
19°A _ 4m
AA—Czatz =< Q)

Considering that expression div E = 0 holds in our
problemin view of the transverse nature of electromag-
netic waves, we find that potential ¢ satisfies the
Laplace equation, which in our case has a solution ¢ =
const. Thus, the system of Maxwell equations is
reduced to asingle equation for A.

To close this equation, we must find the dependence
of current density j on the electromagnetic field. We
will refer to this dependence asthe constitutive relation.
The current density in a superconductor is an explicit
function of the vector potential and the order parameter.
In the case of aLondon superconductor, thisfunctionis
linear and local in A. We assume that the order param-
eter has two components 4 and Y, associated with the
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Fig. 1. Incidence of an electromagnetic wave on asupercon-
ducting film (3D projection). The incident, reflected, and
transmitted waves of frequency «, which are re-emitted
upwards and downwards at tripled frequency 3w, are indi-
cated. The lower and upper surfaces of the film coincide
with the planes z = 0 and z = d, respectively. The incident
wave propagates along the z axis. The x and y axes coincide
with the crystallographic axes of the crystal.

Fig. 2. Incidence of an electromagnetic wave on asupercon-
ducting film (top view). The electric and magnetic field vec-
torsin the incident, reflected, and transmitted waves of fre-
quency w, as well as the fields in the waves re-emitted
upwards and downwards at tripled frequency, are indicated.
All fields are shown for the same instant. The fields are
shown for z = 0 for waves propagating in the lower half-
space and for z = d for waves propagating in the upper half-
space.

d and s ordering, respectively. Then the constitutive
relation in this calibration can be written in the form

j = fH(ll»'d, lIJs)A! (2)

where f isacertain rank two tensor. It is well known
that the superconducting order parameter is suppressed
by amagnetic field. In our case, this effect |eads to the
dependence of Y4 and 5 on the vector potential, Py s =
Pg, (A). Consequently, after the substitution of gy (A)
into Eq. (2), dependence j(A) becomes nonlinear.
Equation (1) will be also nonlinear in A, which leadsto
generation of harmonics in our problem. We will
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assume that the nonlinearity is weak in the sense that
the changes in the order parameter associated with the
effect of the magnetic field are small ascompared to the
characteristic value of the order parameter itself in zero
magnetic field. The dependences Yy (A) can then be
presented intheform iy ¢= WS s + Gy A), where Yg
are the values of the order parameter components in
zero magnetic field and Gy (A) are the deviations
caused by themagnetic field, |Gy (A)| < |wS J . Substi-
tuting these relations into Eg. (2) and expanding func-

tion f(qu, Yy into a series in the vicinity of point

(ng, llJS), we can obtain therelation for the current den-
sity inthefilm,

) _le <«
] = —=c(4m) "1I/A°A +G(A)A, (3)
H2 £ 0 0
where 1/A° = -4mc* f (g, Ys) isthe tensor connect-
ingj and A in the linear approximation,

G(A) = %ﬂ(m& PO)Gy(A)

L of
oy,

To simplify calculations, we will assumein this section
>
that tensor 1/A° can be represented in the form 1/A? x

0., Where 9, is a unit tensor (at a later stage, we will

(Wg, W)GL(A) +c.c.

find f (Wg, W) and see in which cases this assumption
isvalid). Thismeansthat j and A are pardléd if wedis-
regard the term nonlinear in A in expression (3). We

>
will henceforth assumethat the valuesof /A2and G (A)
are known and analyze Eq. (1) with expression (3) for
the current density in the film. Considering that the cur-
rent flows only in the film, we can write thisequationin
the form

OA 412 4
> <z<

Ep, z>d or z<0.

We assume that film thickness d is much smaller than
the characteristic scale of variation of A in the film.
Then we can assume that the electromagnetic field and
current distributions in the film are uniform in coordi-
nate z. Taking into account the fact that the film isinfi-
nitely large in the xy plane, we can assume that the cur-
rent and electromagnetic field distributions in the film
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are uniform. It should be noted that the London pene-
tration depth in HTSC materials is on the order of
2000 A ; consequently, the film thickness must be much
smaller than this value. In fact, the experimental thick-
ness of the filmsis of the same order of magnitude. In
our estimates, we will assume that the film thicknessis
1000 A (i.e., half as large as the London penetration
depth). In this case, the uniform current approximation
naturally cannot be treated as completely satisfactory;
however, caculations show that the error will be not
large; in addition, the error cannot influence the quali-
tative effects we are going to predict. For this reason,
we will use the thin film approximation. In this case,
Eq. (4) can be written in the form

°A  19°A 01, 4w, O

— —=— = do(z A-—G(A)AD. 5

7 op - W@AISA-TEMAL ()

It would be recalled that nonlinear effects are regarded
asweak. This means that

A

).\_2 .

Then Eq. (5) can be solved using perturbation theory.
We will seek the solution in the form A = A, + A®),
whereA, isthe solution to Eqg. (5) disregarding the non-
linear term and A® is a correction determined by the
nonlinear term in the equation. In fact, the zeroth
approximation corresponds to the linear problem of
reflection of an electromagnetic wave from the film,
while the first approximation corresponds to the prob-
lem of generation of harmonics aswell asthe influence
of nonlinear effects on the solution in the linear approx-
imation.

Let usfirst consider the zeroth order of perturbation
theory. It follows from Eq. (5) that the equation for A,
has the form

°A, 10°A

07 ot
This equation describes the reflection of an incident
wave from the film. Solving this equation, we find that
the reflection coefficient is given by

Sa0n] <

1
= dd(2)SA,. 6
(Z))\2 ! (6)

icd/20N
1+icd/20N

and the transmission coefficient is

1

T, = —————.
1+icd/2wA

Let us estimate the value of quantity cd/wA? appearing
in the reflection and transmission coefficients. If the
wave frequency w ~ 10° Hz, then the value of cd/wA?

No. 3 2005



HIGH-FREQUENCY NONLINEAR RESPONSE OF THIN SUPERCONDUCTING FILMS

for an HTSC film with A ~ 2 x 10° cm is on the order
of 10° even for afilm of thickness on the order of 10°.
Consequently, we must assume that cd/cwA? > 1. In this
case, |1+ R|<1and|[T| <1, i.e, thewaveisreflected
amost completely. Then we can assume to a high
degree of accuracy that the amplitude j, of the current
density in the film is connected only with E;,. via the
simple relation j, = cE;,/2md. Consequently, we must
assume in the subsequent solution that the linear cur-
rent j, = jesinwt in the film is preset (the preset current
approximation); i.e., we have

i1 = joSinwt = 5 dE,nCsnwt @)
For the subsequent calculation in the first order of per-
turbation theory, we must know A,(z = 0) since it is
quantity A that appears in the nonlinear part of Eq. (5).
This quantity can be determined most easily from
Eq. (3) inthe linear approximation. This gives

4TI, 2.

Al(z=0) = —N°),, (8)
and linear current j, is directly connected with the
known quantity E;,...

Let us now consider the first order of perturbation
theory. Equation (5) leads to the following equation
for AQ:;

’A%
07

19°A%
c? at?

01 AT, O ®)
= d3(2) %A(D —~Z2G(A)AD.
¢ 0
In fact, this equation describes the emission of electro-
magnetic waves by extraneous current,

<>
e = G(AI)AI|Z:0

AT 41, »
= -Gy,

flowing through the film. Let us consi der the frequency
spectrum of thisradiation. It isclear from the symmetry
of the problem that the film emits identically in both
directions; consequently, the spectra of radiation in the
upward and downward directions coincide. Since

(10)

<>

G (A)A isavector function of the vector argument and
a constant magnetic field is absent in the problem, it is
clear from symmetry considerationsthat the expression
for the extraneous current,

4"9% 23\ E,ncsnoo% X ESnwt,
can contain only odd harmonics of frequency w. Conse-
guently, the spectrum of radiation generated by thiscur-
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rent will contain only such harmonics. Wewill beinter-
ested in third harmonic radiation since it is must stron-
ger than radiation at higher harmonics. The amplitude
of the wave emitted at the third harmonic will be
referred to as the nonlinear response. To single out the
part describing the process at frequency 3w from

Eq. (9), we derive the equation for A360 , Viz., the coef-

ficient of sin3wt in the Fourier series for A®. For this
purpose, we multiply Eqg. (9) by mlwsin3wt and inte-
grate over the period 2mw? of the incident wave. This
gives

0*A%) (3(0) AD

02 &
(11)
= d6(z)5A<” an esdja
where
21w
. _w o .
Jesw = 7 I jeo(t)sin3wtdt. (12

0

Solving this eguation, we obtain the vector potential
amplitude in the emitted wave in the form

A;a(i = R3w4T[C_1)\ 2j e3w?
where

icd/2(3w)\°

R, . =
* 7 1+icd/2(3w)\

isthe coefficient of reflection of awave with frequency
3w from the film. Considering that cd/wA® > 1, we
obtain the electric field amplitude in the nonlinear
response,

121X,

Ega(ﬂ = -l —21 e3w* (13)
C

It isthisformulathat will be used in subsequent analy-
sissince we will usually determine precisaly j .., how-
ever, to analyze the result, we will now proceed alittle
further. Formulas (10) and (12) imply that quantity j s,

can be represented in the form
jezo = ROV o)y (14)

where

4T[)\
h(A% jq

A1, 2. . . .
X?E—?AZJ oS nw%snwtsantdt.
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Substituting this expression for |, into relation (13)
and considering that j, and E;,,. are connected viarela-
tion (7), we obtain the following expression for the non-
linear response amplitude in terms of the amplitude of
the incident wave:

2

e . WA
ES = —6ih(A’, jo) =1 Eine (15)

Let us anayze the results. First of dl, it is clear that

these results can easily be generalized to the case when
>

guantity 1/A* cannot be represented in the form
(1/A\?)d,.. For this purpose, we must assume that A2 in

<>
formulas (13)—(15) is a tensor reciprocal to 1/A” and
multiply it by the vector standing on theright of it. Fur-
ther, werecall that the nonlinearity isregarded asweak;

this means that |h| < 1, which immediately implies
that the nonlinear responseis much smaller than thelin-
ear one. However, the attenuation associated with
amost total reflection of the incident wave also exists.
Indeed, the result contains asmall factor wA%/cd, which
is due to the fact that the incident wave experiences
almost total reflection. Since the value of wA%/cd is on

the order of 10-° according to our estimates, while IIHII

is not greater than 1072, the nonlinear response is sup-
pressed by at |east six orders of magnitude as compared
to the linear response.

Let us now consider this result from the standpoint
of subsequent considerations. Formulas (13)—15)
make it possible to express the nonlinear response
amplitude in terms of the amplitude of the incident
wave if we know the constitutive relation for the film.
“— «>
In other words, knowing 1/A% and G (A), we can
immediately find the nonlinear response. Obviously,
the obtained relations are valid for any constitutive
equation; the only requirement is that the constitutive
equation should be decomposable into the sum of parts,
which are linear and nonlinear in A. Consequently, we
must first find the constitutive equation in the frame-
work of our model of the superconductor. Then, we
must find extraneous current j, and its Fourier trans-
form j, in terms of the linear current. After this, it
only remains for us to use formula (15) for the nonlin-
ear response.

3. NONLINEAR RESPONSE
OF A SUPERCONDUCTOR
WITH A COMPLEX TWO-COMPONENT
ORDER PARAMETER

In this section, we will find the constitutive relation
for a thin superconducting film with a two-component
order parameter. We consider a thin HTSC film with
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cuprate layers paralel to its surface and will find the
constituent relation using the Ginzburg-L andau theory.
We assume that the film has a complex two-component
order parameter, whose first component, ¢, =
f4exp(i8y), is associated with d pairing and the second
component, Y, = fexp(i6y), is due to s pairing. It is
known [14] that the crystal lattice of an HTSC-type
compound may possess various types of symmetry.
Depending on the preparation method, these can be
symmetry groups D,;,, D,,, and others. We will con-
sider the D4, symmetry, whichis usually realized in the
case of high-temperature annealing of the sample. In
this case, we can write the Ginzburg-Landau free
energy intheform [11]

F = I{ ad|lle|2 + b2|qu|4 + Vd|Hqu|2

+aPd?+ by Wd* + yTIWd® + ba| Wl |wg

*2,.2 *2,.2

+ bA(l-'Js l-IJd + l-|Jd l-IJs) + yv((nyws)*(nywd) (16)

- (nxlps)* (nzlpd) + C-C-)
+(8m) (curlA)?} d’r ,dz,

where M = -l — 2ecA; as g = a5 «(T — T o), and the
x and y axes are directed along the a and b crystallo-
graphic axes, respectively. Since a generally accepted
microscopic theory of HTSC has not been worked out
asyet, we are not aware of parameters appearing in this
functional. Thus, we must make certain assumptions.
We assume that Ty > T due to the fact that the d com-
ponent of the order parameter is predominant. In addi-
tion, we assume that T, — T, ~ T to separate by temper-
ature the effects associated with closeness to T, from
those associated with closeness to T,. Note that in this
case there are no temperatures for which the expres-
sionsfor ag=ay(T—-Ty) and a,= ayT —Ty), which can
be obtained from expansion in temperaturein the vicin-
ity of Ty and T, are valid simultaneously. For this rea-
son, our assumption generally contradicts the condition
of the applicability of the Ginzburg—Landau theory.
However, it will be shown below that it is only impor-
tant for our analysis to establish the temperature at
which a, = 0; consequently, we can use the simplest
expression for ageven when Ty — T, ~ T;. In addition, we
introduce only a certain quantitative error using a func-
tiona of type (16) in the entire temperature range. As
regards the remaining parameters of the theory, we can
estimate them using the BCS theory [15], according to
which parameters b, b,, b;, and b, have the same order
of magnitude, as do parametersy,, vy, Y,, and also ag
and ag.
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Let us now find the constitutive relation. For this
purpose, we derive the expression for current density
by varying functiona (16) in A. We recall that parame-
tersf, and f; are also uniform since the current density
is uniform in the coordinate. Taking into account this
circumstance in the relation obtained as aresult of vari-
ation, we arrive at the following expression for current
density [12]:

] = 2engvy+2enyv, = 2enyvgcos(8y—0); (17)

here,
2e
ng = 5 Vo= 2y i —TAS, ng = £,

2e

Vg = Z\Id%ﬂ:9 — A ng =

) NNy,
c s''d

de

AT

vsd = ZVV%’E@ s-’-ﬁjH d—

(the bar over avector C = Cy, + C,x, means that C =
CyYo — CXo). It can be seen that the current is the sum
of the current of the d component, the current of the s
component, and the interference part. It can easily be
proved that quantities v, vg, V4, and 8, — 6, are gauge
invariant. We have aready fixed a calibration for A
(divA = 0) and now choose a calibration for phases 6
and 6,. Let us assume that 6, = 0 and 6,4 = 6,. In this
case, the order parameter components Yy and Ui are
determined by three real numbers fy, fs, and 6,, from
which fy and f, are responsible for the moduli of the
order parameter components and 6, is the angle
between 4 and i on the complex plane. To get rid of
the cosine, we write the expression for current density
in the form

2
i = 2 {yy(UP+ VA + V. FA + 2y, U, (18)

where U = fjcos0, and V = fsinB,. In this expression,
the quantity fs, U, and V determining the order parame-
ters must be found from the condition that these quan-
tities are responsible for the free energy minimum. To
derive the equations for these quantities, we vary the
freeenergy in Y% and Y . Taking into account the uni-

formity of f,, U, and V in the resulting relations, we
obtain the following system of equations for the order
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parameters:
% 4¢° 1] 3 2 2
st ——Z—VSA |:|fs+ 2blfs + beS(U +V )
C
, (19)
#20,1(U7 V) + 22y, (K- AU = O
2
By + t—iydAEU +2b,(U% + VAU
2 (20)
+ (by + 2b,) f2U + C—ezyv(Ai-Ai)fs = 0,
e vty
C (21)

+2b,(U%+ V)V + (b;—2b,) f2V = 0.

We must find all solutions to this system and choose
from these sol utions the one associ ated with the deepest
minimum of the free energy. We will refer to such
asolution as a minimizing solution. The form of sys-
tem (19)—21) implies that the minimizing solution isa
function of A, which leads precisely, as mentioned
above, to a nonlinear congtitutive relation. It should
also be noted that our task is to analyze the relation
between the nonlinear response and phase transitions.
Consequently, we must find the nonlinear response as a
function of temperature so that, by varying tempera-
ture, to be able to carry out our analysis in the vicinity
of phase transitions and far away from them and thus
determine the effect of phase transitions on the nonlin-
ear response. In addition, we must also determine its
dependence on other parameters of the Ginzburg-Lan-
dau theory. For thisreason, wewill seek the minimizing
solution for the entire temperature range as well as for
acertain range of other parameters of the theory.

Unfortunately, it is impossible to find exact solu-
tionsto system (19)—(21) in most cases. Hence, we will
use an approximate method based on perturbation the-
ory using the fact that the magnetic field and the vector
potential are small. It should be recalled that the effects
associated with the suppression of the order parameter
by the magnetic field are assumed to be weak. Then, in
solving the system of equations, we can assume that

4¢°

?ysd,vAz < asd (22)

and solve the system using perturbation theory. In the
zeroth order of perturbation theory, we set A = 0 and
solve the system to find the order parameters minimiz-
ing the free energy in zero electromagnetic field. Sub-
stituting this solution into relation (18), we obtain the
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