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Abstract—The equilibrium and stability of a sheared force-free magnetic field in a collisionless plasma are
investigated, and the main features of charged particle motion in such a field are analyzed. A steady solution is
derived to the Vlasov–Maxwell equations for the charged particle distribution function that describes different
equilibrium configurations. The tearing instability of the magnetic field configurations is studied both analyti-
cally and by particle-in-cell simulations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equilibrium and stability of plasma configura-
tions in force-free magnetic fields have been studied for
many years [1]. The force-free magnetic field approxi-
mation is used to describe the equilibrium of magnetic
configurations in both space and laboratory plasmas
[2–4]. Such magnetic configurations are considered to
play an important role, e.g., in stellar atmospheres and
active regions emerging on the Sun, because the plasma
pressure there is much lower than the magnetic field
pressure, β = 8πp/B2 ! 1.

By force-free magnetic fields are meant those that
have no force effect on the plasma. In a low-pressure
plasma in an MHD equilibrium state, force-free mag-
netic fields satisfy the equations

(1)

These equations admit a broad class of solutions,
which have been thoroughly investigated in the litera-
ture [3]. The equilibrium and stability of plasmas in
force-free magnetic fields have been studied mainly in
the MHD approximation. However, the MHD approach
fails to hold for many problems, especially in astro-
physical applications. Hence, the plasma should be
described in terms of a collisionless model, in which it
is necessary to determine the equilibrium particle dis-
tribution functions satisfying the Vlasov–Maxwell
equations [5–7]. For the simplest force-free magnetic
configuration, this problem was solved in [8], in which
the question about the tearing instability of the config-
uration was also discussed.

Here, we continue the investigations that were
begun in [8, 9] and report the new results achieved in
this area. In [8], a general solution was obtained that
describes the trajectories of charged particles in a one-
dimensional force-free magnetic field and is expressed

B — B×( )× 0, — B⋅ 0.= =
1063-780X/03/2906- $24.00 © 0449
in terms of elliptic functions. In [9], the nontrivial fea-
tures of the motion of charged particles were discussed
in light of the fact that, in such a field, they undergo no
centrifugal or gradient drifts. In the present paper, we
analyze the main features of charged particle motion in
more detail and present a wider class of exact solutions
to the Vlasov–Maxwell equations in comparison with
that studied in [8, 9]. For clarity in describing the
results obtained here and in comparing them with the
previously published results, we solve the problem by
the same approach as in [8, 9] and keep the same nota-
tion. Note that, in recent papers [10, 11], an analogous
approach was employed to find exact solutions to the
Vlasov–Maxwell equations in the problem of the struc-
ture of relativistically strong electromagnetic waves in
a collisionless plasma.

We begin by considering a solution to the Vlasov–
Maxwell equations for the simplest force-free magnetic
field:

(2)

where α is a constant. This field is a solution to Eqs. (1)
in one-dimensional geometry, in which B depends only
on the y coordinate. Solution (2) is a particular solution
admitted by the Vlasov–Maxwell equations for force-
free magnetic fields. Below, we will find a more com-
plicated solution describing the plasma equilibrium in a
force-free field.

It is well known that the tearing instability plays a
very important role in magnetic field reconnection in
both astrophysical and laboratory plasmas [12, 13]. The
present work focuses on the linear stage of this instabil-
ity in magnetic field (2). In the nonlinear stage of the
instability, the plasma and magnetic field usually
evolve in an extremely complicated fashion [14–18]. In
order to study the nonlinear stage of the tearing insta-

B y( ) B0 αyexcos αyezsin+( ),=
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bility, we carried out numerical simulations with a
2D3V particle-in-cell (PIC) code. In contrast to [8], we
use the initial electron distribution that makes it possi-
ble to analyze namely the tearing instability. Since, in
[8], the electron drift velocity was chosen to be fairly
high, simulations showed the simultaneous develop-
ment of a tearing and a bending instability; hence, it
was rather difficult to compare the numerical results to
theoretical predictions. In the computations reported
here, the electron drift velocity was chosen to be much
lower, thereby making it possible to simulate the tear-
ing instability, resulting in the formation of magnetic
islands. The growth rate calculated numerically for the
linear instability stage coincides with that obtained ana-
lytically.

It should also be noted that, in simulating the non-
linear stage of the instability of plasma configurations
in a magnetic field, the boundary conditions are often
assumed to be periodic. The analytic solutions obtained
in [8] and in the present paper for plasma equilibrium
in a periodic magnetic field in the collisionless approx-
imation may be useful for the proper choice of the ini-
tial and boundary conditions when simulating colli-
sionless plasmas.

2. CHARGED PARTICLE MOTION
IN A PERIODIC SHEARED FORCE-FREE 

MAGNETIC FIELD

The charged particle motion in force-free magnetic
field (2) is described by the equations

(3)

(4)

(5)

Here, (v x , v y , v z) are the velocity components of a
charged particle, the subscript a stands for the particle
species (a = e, i ), and ma and ea are the mass and elec-
tric charge of a particle. Note that the only nonzero
component of the equilibrium electric field E is the y
component, because, in magnetic field (2), all of the
quantities depend solely on the y coordinate. Since the
Lorentz force also depends only on y, the electric field
can only arise as a result of charge separation in the
plasma. In what follows, we will assume that charge
separation does not occur and, hence, the electric field
is zero.

The general solution to these equations [8] describes
the trajectories of charged particles and can be
expressed in terms of elliptic functions. Below, we
derive an approximate solution to these equations that
makes it possible to analyze the particle motion.

∂v x

dt
---------

ea

cma

---------v yBz,=

dv y

dt
---------

ea

cma

--------- v zBx v xBz–( )
ea

ma

------Ey y( ),+=

dv z

dt
---------

ea

cma

---------v yBx.–=
The vector potential of magnetic field (2) is equal to

(6)

The independence of the vector potential on the x and z
coordinates implies the conservation of the correspond-
ing components of the generalized momentum:

(7)

(8)

where ωBa = eaB0/cma is the gyrofrequency of the par-
ticles of species a.

Expressions (7) and (8) and the energy integral

(9)

are the integrals of motion and thus determine the tra-
jectory of a particle. We assume that, at the initial
instant, the particle is at the coordinate origin and that
its velocity components along and across the magnetic
field are equal to v x (0) = v 0|| and vy(0) = v0⊥ , respec-
tively. For such a particle, expressions (7) and (8) yield

(10)

(11)

Substituting expressions (10) and (11) into the energy
integral, we obtain

(12)

which shows that the effective potential energy of a par-
ticle moving in the y direction is equal to

(13)

Now, we consider some general features of the charged
particle motion. When the initial velocity v 0⊥  of a par-
ticle across the magnetic field is sufficiently high, i.e.,
when the particle energy is higher than the maximum
effective potential energy,

(14)

the particle executes infinite motion along the y-axis.
Particles of this kind are called transit particles. A par-
ticle with v 0|| = 0 becomes transit when v 0⊥  > 2ωBa/α,
i.e., when its gyroradius becomes larger than the char-
acteristic scale on which the magnetic field varies.
When the energy of a charged particle is much higher
than the maximum effective potential energy, the mag-

A B0α
1– αyexcos αyezsin+( ).–=

Px mav x

ea

c
----Ax+ mav x

maωBa

α
--------------- αycos– C1,= = =

Pz mav z

ea

c
----Az+ mav z

maωBa

α
--------------- αsin y– C2,= = =

v x
2

v y
2

v z
2

+ + C3=

v x v 0||
ωBa

α
-------- 1 αycos–( ),–=

v z

ωBa

α
-------- αy.sin=

v y
2 2ωBa

2

α 2
------------ 1

αv 0||

ωBa

------------– 
  1 αycos–( )+ v 0⊥

2
,=

U y( )
ωBa

2

α 2
--------- 1

αv 0||

ωBa

------------– 
  1 αycos–( ).=

v 0⊥
2 4ωBa

2

α 2
------------ 1

αv 0||

ωBa

------------– 
  ,>
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netic field does not affect the particle motion in the y
direction and the particle trajectory is a helix with the
radius rBa = v0⊥ /ωBa, r = ωBa/v0⊥ α2 and a pitch of 2πα–1.
The helix moves as a whole along the x-axis with a con-
stant speed equal to –ωBa/α.

When inequality (14) fails to hold, the particle
motion in a magnetic field is finite; such particles are
called trapped particles. We first consider the case in
which the particle energy is much lower than the effec-
tive potential energy. If the initial particle velocity
along the magnetic field is zero, v0|| = 0, then potential

energy (13) is approximately equal to U(y) ≈ /2.
In this case, expressions (11) and (12) become

(15)

We can see that, in the (y, z) plane, the particles move
in the same manner as in a uniform magnetic field. Due
to the nonuniformity of magnetic field (2), the field-
aligned component of the particle velocity is nonzero
and equal to

(16)

Averaging over the period of gyration yields

(17)

We thus arrive at the same dependence as that for the
gradient and centrifugal drifts, the only difference
being that, in sheared magnetic field (2), the particle
drifts along the magnetic field lines rather than across
them.

Now, we consider how the motion of a particle
changes when its initial velocity along the magnetic
field is nonzero. First, according to expression (13), the
particle gyrofrequency will change: for low v 0⊥ , the

effective gyrofrequency is equal to  = ωBa(1 –

αv 0||/ωBa)1/2. Second, the particle moves along an ellip-
tical (rather than circular) trajectory whose semiaxes
are in the ratio (1 – αv 0||/ωBa)1/2. The motion of a parti-
cle with a sufficiently high initial velocity along the
magnetic field, v 0⊥  ~ ωBa/α, is rather complicated. For
the projection of the particle trajectory onto the (y, z)
plane, expression (12) gives

(18)

ωBa
2

y
2

v y v 0⊥ ωBat, v zcos v 0⊥ ωBat.sin= =

v x

ωBa

α
-------- 1 αycos–( )–

αv 0⊥
2

2ωBa

------------- ωBat( ).sin
2

–≈=

v x〈 〉 v 0⊥
αv 0⊥

4ωBa

-------------– v 0⊥
αrBa

2π
-----------.∼=

ω̃Ba

dy
dt
------ = 

ωBa

α
--------

α 2
v 0⊥

2

ωBa
2

--------------- 2 1
αv 0||

ωBa

------------– 
  1 αycos–( )–

 
 
  1/2

.±
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From expression (11), we obtain

(19)

Integrating this equation, we determine the trajectory of
a charged particle in the (y, z) plane:

(20)

Note that, for v 0⊥  ! ωBaα–1, we arrive at the circular
and elliptical trajectories discussed above. However,
even when v 0⊥  is high, the trajectory deviates from
being elliptical only slightly. The characteristic feature
of the particle motion in the case at hand is that the par-
ticles do not undergo centrifugal and gradient drifts [9].

3. SOLUTION TO THE VLASOV EQUATION 
FOR A PLASMA IN A FORCE-FREE MAGNETIC 

FIELD

The equilibrium of a plasma in a force-free mag-
netic field B = (Bx , 0, Bz) is described by the time-inde-
pendent (∂/∂t = 0) Vlasov equation

(21)

where fa is the distribution function of the particles of
species a. The integrals of motion of the Vlasov equa-
tion are the energy of a particle,

, (22)

and the components of its canonical momentum,

(23)

(24)

The solution to Eq. (21) for the equilibrium distribution
function can be searched for as a function of the inte-
grals of motion:

(25)

We choose a reference point y0 at which ϕ(y0) = 0,
Ax(y0) = 0, and Az(y0) = A0, where A0 is a constant. We

dz
dy
------

=  αy
α 2

v 0⊥
2

ωBa
2

--------------- 2 1
αv 0||

ωBa

------------– 
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 
 
  1/2–

.sin±
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1
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 

------------------------------------–

 
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2

=  
α 2
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2
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2

--------------- 2 1
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  1 αycos–( ).–

v y

∂ f a

∂y
--------

ea

ma

------
v yBz

c
------------

∂ f a

∂v x

---------+

+ Ey

v zBx v xBz–
c

------------------------------+ 
  ∂ f a

∂v y

---------
v yBx

c
------------

∂ f a

∂v z

---------– 0,=

W ma v x
2

v y
2

v z
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+ +( )/2 eaϕ+=

px mav x eaAx/c,+=
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assume that, at y = y0, the particle distribution is
described by a Maxwellian function with an anisotropic

temperature (Ta|| ≠ Ta⊥ ) and the drift velocity  =

( , 0, ):

(26)

Now, we express the distribution function at the
point y0 in terms of the integrals of motion. To do this,
we determine the dependence of v0 on these integrals
and insert it into (26). As a result, we arrive at the fol-
lowing dependence of the distribution function on the
integrals of motion:

(27)

where ∆Ta = Ta|| – Ta⊥ . Consequently, the distribution of
the particles of species a can be described by the func-
tion

(28)

where the drift velocity is equal to

(29)

In deriving distribution function (28), we took into
account the relationships

(30)

In a steady state, Maxwell’s equations for the vector
and scalar potentials, A and ϕ, reduce to

(31)

Vd
a0

Vdx
a0

Vdz
a0

f a y0 v0,( )

=  Ca

ma

2
------

v 0y
2

Ta⊥
--------

v 0x Vdx
a0

–( )
2

v 0z Vdz
a0

–( )
2

+
Ta||

-----------------------------------------------------------------+–
 
 
 

.exp

f a f a
W

Ta⊥
--------

∆Ta

2maTa⊥ Ta||
-------------------------- px

2
pz

2
+( )– 

  ,=

f a y v,( )
ma

3/2
na

2πma( )3/2
Ta||Ta⊥

1/2
----------------------------------------

ma

2
------

v y
2

Ta⊥
-------- -----–





exp=

+
v x Vdx

a
–( )

2
v z Vdz

a
–( )

2
+

Ta||
------------------------------------------------------------

–
ea

Ta⊥
--------ϕ y( ) 1

2
---

ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

y( )–




,

Vd
a ea

mac
---------

∆Ta

Ta⊥
---------A.=

f a vd

∞–

∞

∫ na y( )=

=  na

eaϕ y( )
Ta⊥

----------------–
1
2
---

ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

y( )+
 
 
 

.exp

d
2ϕ

dy
2

--------- 4πρe,–=
(32)

where the electric-charge and electric-current densities
have the form

(33)

(34)

It is easy to show that Eqs. (31) and (32) with charge
and current densities (33) and (34) have the first inte-
gral

(35)

We assume that the plasma consists of electrons and
ions of one species and that the quasineutrality condi-
tion is satisfied. Let us consider the case in which ϕ(y) =

0 and A2 =  is constant. In this case, Eq. (32)
becomes

(36)

Here,

(37)

where me is the mass of an electron, mi is the mass of an
ion, and ei = –ee = e. Note that the above definition of
the temperature anisotropy differs from the definition
used in [8]; as a result, the second term on the right-
hand side of Eq. (36) is opposite in sign to the corre-
sponding term in the equation for the vector potential in
[8]. The solution to Eq. (36) describes a one-dimen-
sional force-free magnetic field, which is the subject of
our analysis. As we have already shown, a one-dimen-
sional equilibrium force-free magnetic configuration
can exist only when the plasma temperature is anisotro-

d
2A

dy
2

----------
4π
c

------ j,–=

ρe ea f a vad

∞–

∞

∫
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∑=
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2

c
2
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∆Ta

Ta⊥
2

---------A
2

+
 
 
 
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a

∑

j ea f ava vad

∞–

∞

∫
a

∑=

=  
ea

2na

cma
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∆Ta
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---------A
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Ta⊥
--------–

1
2
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ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

+
 
 
 

.exp
a

∑

1
2
--- dϕ

dy
------ 

 
2 1

2
--- dA

dy
------- 

 
2

–

– 4π naTa⊥
eaϕ
Ta⊥
--------–

1
2
---

ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

+
 
 
 

exp
a

∑ const.=

A0
2

d
2A

dy
2

---------- α 2A+ 0.=

α 4πe
2

c
2
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-----------n
∆Te
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---------
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∆Ti

Ti⊥
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 
1/2
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pic in the directions along and across the magnetic
field. The weaker the anisotropies of the electron and
ion temperatures, the larger the constant α–1. In the lim-
iting case of isotropic temperatures, the magnetic field
becomes uniform.

The above solution is clearly a particular case of the
solutions admitted by Eqs. (31) and (32) with charge
and current densities (33) and (34). In order to find
solutions describing more complicated equilibrium
states of the plasma in a magnetic field, we impose the
following condition on the electron-to-ion temperature
anisotropy ratio:

(38)

which is an analogue of the electroneutrality condition
for a collisionless current sheet in the solution obtained
by Harris [5]. Using condition (38) and the quasineu-
trality condition ϕ(y) = 0, we reduce the first integral
(35) to

(39)

where k2 = 4π .

We represent the vector potential A in a complex
form, A = Ax + iAz = Rexp(iΨ), to obtain the equations

(40)

(41)

where M is a constant and q2 = 4π .

The M value for which Eq. (40) with R = R0 and,
accordingly, Eq. (36) with constant (37) have a solution
uniform along the y coordinate is equal to

(42)

We can see that M = α.
A more general case is that in which the functions R

and Ψ (the amplitude and the phase) are not constant.
The amplitude varies between Rmin and Rmax, and the
phase in the complex representation of the vector
potential also varies between its minimum and maxi-
mum values. Figure 1 illustrates the behavior of the
solution to Eqs. (41) and (39) in the form of a trajectory
along which the particle moves in the (Ax , Az) plane as
the y coordinate of the particle varies from –10/k to
10/k. The solution was obtained by integrating

e
2∆Te

Te⊥
2

me

---------------
ei

2∆Ti

Ti⊥
2

mi

--------------,=

1
2
--- dA

dy
------- 

 
2

k
2 1

2
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2

c
2
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∆Te
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2

---------A
2

 
 
 
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naTa⊥a∑

d
2
R

dy
2

--------- 
 

2
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2

R
3

-------– q
2
R

1
2
--- e

2

c
2
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∆Te

Te⊥
2

---------R
2

 
 
 

exp+ 0,=

dΨ
dy
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M

R
2
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naTa⊥
e

2

c
2
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2
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a∑

M qR0
2 1
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--- e
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c
2
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2
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2
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Eqs. (39) and (41) numerically for R(0) = q/k = 2,
R'(0) = 0, Ψ(0) = 0, and M = 1. We see nonlinear oscil-
lations from the minimum to the maximum amplitude
and back again. Because of the nonlinear dependence
of the phase on the coordinate, the trajectory precesses
in the (Ax , Az) plane.

4. TEARING INSTABILITY

The equilibrium configuration under analysis is
unstable against various instabilities, e.g., the Buneman
instability, the tearing instability, drift instabilities, and
some others. We restrict our analysis to the tearing
instability because it plays an important role in the
magnetic field reconnection. Below, we investigate the
stability of equilibrium distribution function (28) in
magnetic field (2) against perturbations that depend on
x, y, z, and t.

Based on the results obtained in [19–23], we esti-
mate the instability growth rate γ(k). We consider the
evolution of the following perturbations of the vector
potential:

(43)

where k = (kx , kz) is the wave vector and γ is the growth
rate. The perturbation A1(x, y, z, t) of the vector poten-
tial is described by the equation

(44)

A1 x y z t, , ,( ) A1 y( ) i kxx kzz+( ) γt+{ } ,exp=

∂2A1

∂y
2

----------- k
2A1–

4π
c

------
∂ j0

∂A0
---------A1 j1+ 

  ,=

Fig. 1. Trajectory along which a particle moves in the (Ax ,
Az) plane as the y coordinate of the particle varies from
−10/k to 10/k for R(0) = q/k = 2, R'(0) = 0, Ψ(0) = 0, and
M = 1.
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x

y

200δ

BxBz

300δ

Fig. 2. Computation region and initial magnetic field distribution.
where (∂j0/∂A0)A1 is the adiabatic component of the
perturbation of the electric current density and j1 is the
nonadiabatic component.

It is well known [12] that the problem of the tearing
instability should be solved in the outer region and also
in the inner region near the surface at which k · B = 0.
In the outer region, the problem reduces to that of ana-
lyzing adiabatic (slow) perturbations. In this case,
kinetic effects can be neglected and Eq. (44) reduces to
the following equation for the function Ψ = B1y/B0 =
i(kxA1z – kzA1x)/B0:

(45)

where κ = kα–1, k2 =  + , and the prime stands for
the differentiation with respect to the dimensionless
variable µ = αy.

The position of the resonance surface is determined
by the condition

(46)

which holds on the planes µj = – /kz + jπ, j = 0,
±1, ±2, ….

The solution to Eq. (45) depends on the wavenum-
ber κ and thus can be represented as a linear combina-

tion of the functions Ψ1 = sin  and Ψ2 =

cos  for κ < 1, the functions Ψ1 = 1 and Ψ2 = µ

for κ = 1, and the functions Ψ1 =  and

Ψ2 =  for κ > 1.
The solution to the Vlasov–Maxwell equations near

the resonance surface in the inner region was consid-
ered in [19, 24–26], and the solution for the inner
region of the plasma in a sheared magnetic field was
derived by Drake and Lee [14, 27]. In the latter case, the
width of the inner region is governed by the thermal

Ψ'' 1 κ 2
–( )Ψ+ 0,=

kx
2

kz
2

kx µcos kz µsin+ 0,=

kxarctan

1 κ 2
– µ

1 κ 2
– µ

κ 2
1– µsinh

κ 2
1– µcosh
motion of electrons along the magnetic field and the
dispersion relation has the form

(47)

where vTe is the electron thermal velocity, de = c/ωpe is

the collisionless skin depth, and ωpe =  is
the plasma frequency.

We consider a plasma configuration infinite in the y
direction. Matching the solutions for the outer and
inner regions, we obtain the equation

(48)

in which the possible discontinuity of the derivative at
the resonance surface is accounted for by δ functions.
Note that this equation coincides with the Schrödinger
equation for a particle moving in a periodic potential.
According to the Floquet theorem, the solutions in the
neighboring intervals differ only in a factor whose
absolute value is equal to unity:

(49)

(50)

where Q is a real number that characterizes the phase
difference between the neighboring resonance surfaces
and whose absolute value is less than or equal to unity.
Taking into account the fact that, at the resonance sur-
face, the function Ψ(µ) is continuous while its logarith-

∆'
Ψµ j 0+'

Ψµ j 0+
--------------

Ψµ j 0–'

Ψµ j 0–
--------------–

γ
κv Teα
---------------- deα( ) 2–

,= =

4πnee
2
/me

Ψ'' 1 κ 2
–( )Ψ ∆'δ µ µj–( )Ψ

j

∑–+ 0,=

Ψ µ( ) C1Ψ µ( ) C2Ψ µ( ), µ j 1– µ µ j,< <+=

Ψ µ( ) iQπ( ) C1Ψ µ π–( ) C2Ψ µ π–( )+( ),exp=

µ j µ µ j 1+ ,< <
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mic derivative jumps by an amount ∆', we arrive at the
equations

(51)

(52)

The condition that Eqs. (51) and (52) have a nontrivial
solution yields the following expressions for the jump ∆':

(53)

(54)

(55)

iQπ( ) C1Ψ µ j π–( ) C2Ψ µ j π–( )+( )exp

=  C1Ψ µ j( ) C2Ψ µ j( )+( ),

iQπ( ) C1Ψ' µ j π–( ) C2Ψ' µ j π–( )+( )exp

=  C1Ψ' µ j( ) C2Ψ' µ j( )+( ) ∆' C1Ψ µ j( ) C2Ψ µ j( )+( ).+

Qπcos  = 1 κ 2
– πcos ∆'

1 κ 2
– πsin

2 1 κ 2
–

------------------------------, κ 1;<+

4 Qπ/2sin
2

– π∆', κ 1;= =

Qπcos κ 2
1– πcosh ∆'

κ 2
1– πsinh

2 κ 2
1–

---------------------------------,+=

κ 1.>
Substituting ∆' into expression (47), we obtain a disper-
sion relation between γ, κ, and the longitudinal wave-
number Q. The equilibrium state in question is unstable
when κ2 + Q2 < 1. The instability growth rate is equal to

(56)

The growth rate is seen to be fastest at Q = 0.

5. NUMERICAL SIMULATIONS 
OF MAGNETIC RECONNECTION

IN A FORCE-FREE MAGNETIC FIELD

We have considered above the linear stage of the
tearing instability. The nonlinear stage of the instability
in a force-free magnetic field was simulated with the
2D3V Tristan PIC electromagnetic code [28]. The
dimensions of the computation region were chosen to
be 300δ in the x direction and 200δ in the y direction,

where δ = /ωpe (Fig. 2). The initial electron distribu-
tion was described by function (28). The electron tem-

γ

=  
2 Qπcos 1 κ 2

– πcos–( )κ 1 κ 2
–

1 κ 2
– πsin

------------------------------------------------------------------------------------ deα( )2αv Te.

Vd
e

PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003



TEARING INSTABILITY OF A FORCE-FREE MAGNETIC CONFIGURATION 457
perature anisotropy was Te||/Te⊥  = 1.12 and the drift

velocity was  = 0.8vTe .

The ion distribution function was assumed to be iso-
tropic, the ion temperature being Ti = Te||. The ion-to-
electron mass ratio was set to be mi /me = 1836. The
total number of particles in the simulations was 1.2 ×
107. The initial magnetic field was described by expres-
sion (2), in which the magnetic field strength corre-
sponded to the ratio ωpe/ωBe = 3.7 and its characteristic
scale length was α = 0.0314δ–1 (Fig. 2). Note that the
dimension of the computation region in the y direction
coincides with the spatial field period. The boundary
conditions were periodic in both the x and y directions.

Figure 3 illustrates how the squared y component of
the magnetic field evolves during the development of
the instability. According to the time evolution of

, the instability growth rate is equal to γ/ωpe =

Vd
e

By
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Fig. 6. Time evolutions of (a) the magnetic field energy,
(b) the electron kinetic energy, and (c) the ion kinetic
energy.
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0.0023 for ωpet > 1500 and, for ωpet > 3100, the insta-
bility saturates. The growth rate γ/ωpe = 0.0023 corre-
sponds to the linear reconnection stage. The dashed line

in Fig. 3 is the time evolution of  correspond-
ing to growth rate (56).

Figure 4 presents the magnetic field distributions in
the (x, y) plane at different times ωpet = (a) 0, (b) 2500,
(c) 2750, (d) 3000, (e) 3250, (f) 3500, (g) 3750, and
(h) 5000. The components Bx and By are presented as a
vector field, and the component Bz is shown by shades
of gray. We see that the tearing instability produces a
magnetic island. For ωpet > 3000 (Figs. 4d, 4e), both the
deviation of the resonance surface from its initial posi-
tion and the width of the island become on the order of
the dimension of the computation region in the y direc-
tion and the instability saturates, in which case the mag-
netic field topology changes in the way shown in
Figs. 4f–4h. The instability can saturate for two differ-
ent reasons. The first reason is the isotropization of the
electron velocity distribution. This is confirmed by
Fig. 5, which shows that, during the instability, the
electron velocity distribution becomes isotropic. The
ion velocity distribution remains isotropic from the
very beginning. The second reason is the finite length of
the computation region in the y direction: the effective
length of the magnetic configuration becomes too large
for the long-wavelength perturbations characteristic of
the tearing instability [12] to develop.

Figure 6 displays time evolutions of the (a) magnetic
field energy, (b) electron kinetic energy, and (c) ion
kinetic energy. We can see that, for ωpet ~ 3000, the
magnetic field energy is rapidly dissipated and the
plasma electrons and ions are accelerated.

6. CONCLUSION

We have investigated the behavior of a plasma in a
force-free magnetic field using the collisionless
approximation. An analysis of the particle trajectories
shows that only two kinds of plasma particles can exist
in such a field: transit particles and trapped ones.
Knowing the integrals of motion of the charged parti-
cles, we have obtained an equilibrium solution to the
Vlasov–Maxwell equations. This solution describes the
particle distribution function in force-free magnetic
field (2). The equilibrium is possible only when the
plasma temperatures along and across the magnetic
field are different. The characteristic scale length of the
magnetic field is determined by the degree to which the
plasma temperature is anisotropic. By taking into
account the possible plasma nonquasineutrality, we
have obtained a wider class of solutions describing
equilibrium magnetic configurations.

We have investigated the stability of an equilibrium
plasma configuration in force-free magnetic field (2)
and have shown that a configuration that is infinite in
the y direction is unstable against the tearing instability.

By
2( )log
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We have determined the growth rate of the tearing
instability in its linear stage. The results from numerical
simulations of this stage have been found to agree well
with analytical predictions. We have also numerically
investigated the nonlinear stage of the tearing instabil-
ity.
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Abstract—The possibility of suppressing the Rayleigh–Taylor instability in a low-density plasma, Π =

/c2 ! 1 (where ∆ is the thickness of the current-carrying slab), is investigated for the case in which the
electron currents are much higher than the ion currents. The suppression of this instability in an imploding
cylindrical liner by an axial external magnetic field B0z is considered. It is shown that, for the instability to be
suppressed, the external magnetic field B0z should be stronger than the magnetic field B0θ of the current flowing
through the liner. © 2003 MAIK “Nauka/Interperiodica”.

ωpi
2 ∆2
1. In recent years, the implosion of thin current-car-
rying plasma shells has been recognized as offering
great promise for generating high levels of pulsed
power in the form of electromagnetic radiation and
neutrons [1–3]. In such implosion processes, the Ray-
leigh–Taylor (RT) instability is one of the most danger-
ous instabilities preventing the compression of a cur-
rent-carrying plasma shell to small dimensions [4, 5].
As a magnetic piston converges toward the axis of the
system, it inevitably becomes subject to RT instability,
which violates the compactness of the converging
plasma shell and reduces the parameters of the source
of radiation and neutrons. In order to increase the effi-
ciency of a magnetic piston, it is necessary to reduce the
effect of instability on the imploding current-carrying
plasma shell. Hence, the investigation of RT instability
is important from the technological standpoint.

RT instability [6] certainly exists in one-fluid mag-
netohydrodynamics, when the influence of the Hall
effect can be neglected by virtue of the smallness of the
parameter Π–1 ! 1, where Π = 4πe2Zn∆2/Mc2, with ∆
the characteristic dimension of a plasma slab. When
Π ! 1 and the Hall effect plays an important role, opin-
ions in the literature are divided regarding the possibil-
ity of RT instability in two-fluid magnetohydrodynam-
ics (see [7, 8]). However, in view of the analogy
between the RT instability in magnetohydrodynamics
and the instability of a heavy liquid supported by a
lighter liquid, it is natural to suppose that RT instability
should also take place in two-fluid magnetohydrody-
namics. RT instability has been studied in many papers
(see, e.g., [9, 10]). In my recent works [11, 12], it was
shown that, in the limit Π ! 1, the linear equation for
this instability can be integrated for arbitrary density
and pressure profiles in the accelerated plasma slab.
According to the solution obtained in [11, 12], the
1063-780X/03/2906- $24.00 © 20459
shapes of the density and pressure profiles have no
effect on the instability growth rate.

Further analysis will be carried out based on a par-
ticular version of the two-fluid MHD model—a so-
called Hall plasma model, in which the plasma ions are
assumed to be unmagnetized [13].

2. The most widely used method for the stabilization
of an imploding liner consists in imposing an external
magnetic field parallel to the liner axis. This field makes
the liner more “rigid” and thus can, in principle, retard
the development of constrictions that grow from the
perturbations associated with the longitudinal plasma
inhomogeneity. It is known from experiments that the
instability can be suppressed even by a comparatively
weak longitudinal magnetic field B0z, which is substan-
tially weaker than the azimuthal magnetic field B0θ [14,
15]. That is why, in order to provide better insight into
the possibility of suppressing the instability, it is worth-
while to develop a simple analytic approach. Although
the general case of arbitrary parameter values is diffi-
cult to investigate analytically, the problem can be
greatly simplified by examining it in the limit of small

values of the parameter Π = /c2 ! 1. The analytic
solutions obtained in [11, 12] made it possible to draw
some conclusions about RT instability in the absence of
a longitudinal magnetic field in the parameter range
Π ! 1. It was shown that, for a low-density plasma, the
standard formula for the instability growth rate is valid
for an arbitrary density profile n(x) inside the slab and
an arbitrary pressure profile of the form p = p(n). In
other words, in such a plasma, RT instability in the lin-
ear stage cannot be suppressed by appropriately choos-
ing the plasma density profile. Below, the approach
developed previously will be generalized to study the
possibility of suppressing RT instability with a longitu-
dinal magnetic field.

ωpi
2 ∆2
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In further analysis, the characteristic current in the
liner and the characteristic liner radius will be assumed
to be J ≥ 1 MA and r ≤ 1 cm, respectively (which cor-
respond to a magnetic field of B > 105 G), and the char-
acteristic plasma density will be assumed to be ne ~
1017–1018 cm–3.

Note that, in [12], RT instability was considered
with allowance for the finite plasma pressure. However,
to simplify matters, the gas-kinetic pressure effects will
be neglected below. This indicates that the approach to
be developed is valid for the stage before the complete
collapse of the liner toward its axis. In this stage, the
thickness of the plasma shell can be assumed to be
much smaller than the characteristic liner radius, so that
we can use the plane plasma slab approximation.

3. In a number of papers, it was shown clearly that
the Hall effect cannot suppress RT instability [16–18].
At the same time, it was found that the one- and two-
fluid MHD equations describe the instability in differ-
ent ways. However, in those papers, the instability was
modeled by introducing a fictitious gravitational field.
Here, as in [11, 12], the model equations are derived by
passing directly into the moving frame of reference,
which makes the statement of the problem more ade-
quate.

We start with the set of two-fluid MHD equations.
Taking the sum of the equations of motion for ions and
electrons and accounting for the quasineutrality condi-
tion, we can obtain an equation for the plasma mass
velocity. We assume that the plasma is, on the one hand,
cold enough for the gas-kinetic pressure to be much
lower than the magnetic pressure, and, on the other, hot
enough for the dissipation associated with the plasma
resistivity to be negligible. Combining the two condi-
tions B2 @ 8πnT and σB @ enc and using the conductiv-
ity estimated in [19], σ . 0.5 × 1031T3/2 (where T is
expressed in ergs) [19], we arrive at the following nec-
essary condition for the density of the accelerated
plasma:

(1)

where the magnetic field and density are expressed in G
and cm–3, respectively.

This condition is fairly restrictive: it is satisfied only
for sufficiently strong magnetic fields. Note that a com-
paratively low temperature (in the stage of the acceler-
ation of a plasma shell in a liner, it is about 102 eV or
even lower) may be associated with a strong emission
from the shell.

Then, taking the curl of the equation of electron
motion and neglecting electron inertia (which is justi-
fied because the scale c/ωpe is much smaller than the
characteristic spatial scale ∆ of the accelerated shell),
we obtain an equation for the magnetic field evolution.

B
2
 @ 1.9 10

14–
n

5/4
,×
As a result, we arrive at the following set of equa-
tions describing the dynamics of a plasma shell accel-
erated by the magnetic field:

(2)

(3)

(4)

Here, we formally retain the finite plasma conductivity
in order to stress its possible role in establishing the ini-
tial equilibrium.

We treat the problem in plane geometry, regarding
the motion along the radial coordinate r as the motion
in the x direction, in which case the θ-component of the
magnetic field becomes the By component. We assume
that, at the instant the magnetic field begins to acceler-
ate the plasma, all of the quantities depend only on the
x coordinate.

The equations for the initial configuration of a
plasma slab accelerated by the magnetic field have the
form

(5)

(6)

. (7)

The field component B0z is described by an equation
analogous to Eq. (7).

The equations for perturbations are

(8)

(9)

(10)

(11)
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(12)

Here, the vector potential A, in terms of which the mag-
netic field components Bx and Bz are expressed,

,

satisfies the equation

(13)

In the equations for the perturbed quantities, we have
omitted the dissipative term by virtue of the condition
h = σB/enc @ 1. Note that, hereinafter, the quantities
without subscripts refer to perturbations.

We simplify the above equations by using the com-
pactness condition, which implies that the macroscopic
velocity V0 of the accelerated plasma slab is indepen-
dent of x and depends only on time. This condition can
be written as [13]

(14)

where the acceleration a0 of a current-carrying plasma
slab depends weakly on time.

We now transform the equations to an accelerated
frame of reference, i.e., to a frame moving with the
accelerated plasma slab in the negative x direction; this
indicates that, in the original (cylindrical) coordinate
system, the frame moves toward the liner axis. In order
to pass to the accelerated frame, we must switch to a
new spatial variable s:

(15)

Using the relationship

(16)

we obtain the equilibrium condition
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(17)

where

The field component B0z satisfies an analogous equa-
tion.

It can be seen that the characteristic spatial scale of
the structure of the field component B0y that forms in a
plasma with a high (but finite) conductivity σ is the skin
depth. However, when the characteristic dimension ∆
of the plasma slab is sufficiently large, we can neglect
the time variation of B0y and describe this component
by the equation

For a Hall plasma (Π ! 1), this yields the following
lower bound on the Hall parameter h:

(18)

In further analysis, we will assume that the stabiliz-
ing magnetic field B0z produced by external coils is con-
stant, in which case its spatial derivatives can be
neglected.

Of course, during the implosion of a current-carry-
ing plasma shell, in which the longitudinal magnetic
field remains constant because the conductivity σ is
sufficiently high, the magnetic flux density inside the
shell increases and the magnetic field at its inner bound-
ary becomes stronger. As the shell thickness decreases,
the growing longitudinal magnetic field penetrates into
the shell; as a result, the spatial gradients of the longi-
tudinal field in the shell may be nonzero. However, this
effect becomes important only in the final stage of the
implosion of the shell, when it approaches the axis of
the system.

Changing to the moving frame, we arrive at the fol-
lowing final set of equations:

(19)

(20)

(21)
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(22)

(23)

(24)

where

Here, the time derivative is taken at fixed s. Also, the
subscript in the y component of the perturbed magnetic
field is dropped, because the remaining magnetic field
components are expressed in terms of the perturbation
of the vector potential A.

We take the Fourier transformation of the final set in
the time t (changing into the frequency ω) and in the z
coordinate (changing into the wave vector kz) and non-
dimensionalize the equations according to the relation-
ships

where ∆ is the thickness of the accelerated slab in the x
direction,  is the characteristic strength of the mag-
netic field B0, and  is the characteristic electron den-
sity.
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As a result, we obtain the following basic set of
dimensionless equations:

(25)

(26)

, (27)

where ν0 and b0 are related by

(28)

In these equations, the constant longitudinal compo-
nent of the equilibrium magnetic field is neglected and
the prime denotes the derivative with respect to the
independent variable ξ.

4. Equations (25)–(28) describe the RT instability in
a reference frame moving with the acceleration a0 in the
negative x direction. Since, in their general form, the
equations are not amenable to analytic study, we restrict
ourselves here to considering the limiting case Π ! 1,
in which Eqs. (26) and (27) will contain the terms pro-

portional to 1/  @ 1 and also all of the terms with the
parameter Λ.

In this limit, we use equilibrium relationship (28) to
reduce Eq. (26) to

(29)
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We introduce the function w = bb0 and insert the expres-
sion for ν in (29) into Eq. (25) to get

(30)

Here, the expressions for a and  can be derived from
Eq. (27). We substitute expression (29) for ν into
Eq. (27) and, in the resulting equation, take into
account all the terms containing the parameter Λ. Then,
we introduce the function ϕ = w/ν0 to obtain

(31)

(32)

where the operator  is defined as

(33)

In expression (33) for the operator , the two-dimen-

sional Laplace operator  applies to all ξ functions to

the right of it; i.e.,  is an integral operator. Substitut-
ing expressions (31) and (32) into Eq. (30), we arrive at
the final equation for the function ϕ:
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(34)

Here, in contrast to earlier studies [11, 12], k · B0 ≡
kzB0z ≠ 0. For Λ = 0, this equation describes the RT
instability in the frame of reference comoving with an
accelerated current-carrying plasma slab, in which case
the unstable solution has a maximum in the region
where a0 · —n0 < 0. In the geometry adopted here, this

condition reduces to  < 0, which corresponds to the
outer boundary of the accelerated slab.

For Λ2 ≤ 1, the basic assumption of our analysis
allows us to neglect all terms in Eq. (34) that are pro-
portional to different powers of Π; as a result, Eq. (34)
becomes similar in structure to the equations derived in
[11, 12], thereby indicating that RT instability is again
possible.

The most important point in Eq. (34) is that we have
retained all of the terms that contain the parameter Λ,
thus providing a correct transition to the limit of a
strong external stabilizing magnetic field B0z such that
Λ2Π @ Ω2. In taking the limit, we can omit the last two
terms on the right-hand side of Eq. (34). In fact, for
Λ2Π @ Ω2, the last term formally vanishes because it is
proportional to Ω2/(Λ2Π) ! 1. As for the next to last

term, it includes  and, in the limit to be taken, is

much smaller than the term . For the same

reason, the term  on the left-hand side can also be
omitted. Hence, in the limit at hand, Eq. (34) simplifies
to

(35)

Using the definition of the operator , we can
readily verify that Eq. (35) reduces to a fourth-order
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differential equation for ϕ. Now, we consider the per-
turbations whose characteristic spatial scale is small in
comparison with the dimension of the plasma slab, κ ≡
kz∆ @ 1. For Λ2Π @ Ω2, the largest term in Eq. (35) is

, which requires that  = 0. Then, neglect-
ing the first term in comparison with the second term
and taking into account the condition |κ| @ 1, we can
represent Eq. (35) in the form

(36)

This equation implies that, for   0, the insta-
bility growth rate vanishes. However, it should be kept
in mind that the growth rate estimated from this equa-

tion, Ω ~ (κ )1/3, is not very small because of the
restricted range of variations of the parameter Π @
m/M, where m is the mass of an electron.

Hence, the criterion for the stabilization of RT insta-
bility in a low-density plasma by a magnetic field
directed along the axis of an imploding liner has the
form

(37)

Note that the quasiclassical approximation based on
Eq. (36) is also valid for the most dangerous mode with
|κ| = π, when the slab thickness is half the perturbation
wavelength. The stabilization criterion shows that, even
at the boundary of applicability of the quasiclassical
approximation, Π ~ 1, the constant external stabilizing
longitudinal magnetic field should be stronger than the
magnetic field of the current flowing through the liner.

5. Following papers [11, 12], it is worthwhile to dis-
cuss whether the pressure balance is satisfied at the
boundaries of the accelerated plasma slab. Under the
above assumptions, the approximate momentum con-
servation law has the form

(38)

We take into account the fact that the electric field is
much weaker than the magnetic field and switch to the
moving frame in accordance with the procedure
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–
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
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0.=
described in Section 3. As a result, we obtain the pres-
sure balance equation

(39)

Integrating this equation over s yields the pressure
balance condition at each of the slab boundaries in the
x direction:

(40)

where 〈…〉  denotes the difference between the values of
the quantities on both sides of each boundary.

Let us prove that, in condition (40), the first term,
which is associated with plasma inertia, undergoes no
jump at the plasma boundary. Since V0 ≡ V0(t), it is suf-
ficient to prove this assertion only for the factor NδVx ,
where δVx ≡ Vx – V0. In dimensionless form, this factor
can be found from the Fourier transformed equation
(22):

Equation (25) can be rewritten as

Since the right-hand side of this equation is finite, the

quantity ν – d(b0b)/dξ +  undergoes no jumps at
the slab boundaries and, therefore, vanishes there; i.e.,
the quantity ν0δVx also equals zero at the boundaries.

The second term in condition (40) accounts for the
magnetic field and contains the zero-order component;
accordingly, in order for this condition to be satisfied, it
is necessary that there be no surface currents in the
equilibrium state.

It should be kept in mind that, to first order in the
perturbations, the term with the magnetic field in con-
dition (40) coincides with the solution w =  to
within a numerical factor. Consequently, for a plasma
slab with zero density (  = 0) at the boundaries, evo-
lutionary condition (40) is always satisfied, provided
that the function ϕ is regular.
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AND WAVES

       
Small-Scale Alfvén Waves Localized near an Extremum
in the Finite-Amplitude Perturbation 
of the Radial Plasma Density Profile
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Abstract—A study is made of electromagnetic waves localized in the region where the radial plasma density
profile has an extremum between two local Alfvén resonances. Analytic expressions for the eigenfrequencies
and eigenmodes are obtained. It is shown that kinetic and inertial Alfvén waves can propagate in the vicinity of
a maximum and a minimum in the density profile, respectively. Passage to the limiting case in which the plasma
density is nonuniform and has a parabolic profile is considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The production and heating of plasma in controlled
fusion devices initiated active research on the processes
of conversion and absorption of electromagnetic waves
near Alfvén resonance [1–6]. It is well known that the
absorption of waves with frequencies ω < ωci is accom-
panied by significant plasma heating near the Alfvén
resonance point r = rA, at which the following relation-
ship is satisfied:

(1)

Here, ε1 = 1 +  – ω2) is the component of
the dielectric tensor of a cold collisionless plasma, with
the subscript α indicating the ions (i) and the electrons
(e); k|| is the projection of the wave vector onto the
direction of a constant magnetic field; c is the speed of
light in vacuum; ω is the wave frequency; and ωcα and
ωpα are the cyclotron and Langmuir frequencies of the
particles of species α, respectively. The coordinate
dependence enters the expression for ε1 through two
physical quantities: the external magnetic field B0(r)
and the plasma density n(r). In what follows, it is
assumed that only the plasma density depends on the
radial coordinate. However, when the possible radial
nonuniformity of the external magnetic field is taken
into account, the method for solving the problem and
the final results remain essentially the same. It is well
known [1] that the RF power absorbed in the Alfvén
resonance region is inversely proportional to dn/dr.
That is why the case in which n(r) has an extremum
near Alfvén resonance is of particular interest [7–10].

The density perturbation (nonuniformity) that has
an extremum is usually described by a squared parabola
(see, e.g., [7–10]). This approach is justified for electro-
magnetic oscillations localized in the immediate vicin-

ε1 rA( ) ck ||/ω( )2
.≈

ωpα
2

/(ωcα
2

α∑
1063-780X/03/2906- $24.00 © 0466
ity of the point of extreme density, where the density
profile deviates only slightly from a squared parabola,
or for a sufficiently large density perturbation. The dis-
persion properties of electromagnetic oscillations in
these cases have been studied fairly well. Thus, the
spectrum of oscillations in related problems is known
to have an infinite number of levels, because the
branches of a squared parabola are infinitely high.
Hence, approximating the density profile by a parabola
is equivalent to modeling a sufficiently deep potential
well. However, the depth of the well is actually finite,
so that the dispersion properties of the oscillations dif-
fer considerably from those in the problem with an infi-
nitely deep potential well [11]. For this reason, model-
ing a plasma density perturbation by a squared parabola
alone may be insufficient. In what follows, by analogy
with quantum mechanics, a density perturbation will be
referred to as a “potential well.”

2. FORMULATION OF THE PROBLEM

We consider a plasma cylinder that is uniform in
both the axial and azimuthal directions and is placed in
a constant uniform axial magnetic field. The radial
plasma density profile is modeled by the expression
(see Fig. 1)

(2)

Here, Nz = ckz/ω is the axial refractive index, kz is the
axial component of the wave vector, r is the radial vari-
able in cylindrical coordinates, r0 is the radial position
of the density extremum, a is the characteristic width of

the region where the density is perturbed,  is the

deviation of the quantity ε1 from the resonant value 
far from the position r0 of the extremum (|r – r0 | @ a),

ε1 r( ) Nz
2

1 M A/ r r0–( )/a( )cosh
2

+ +[ ] .=

MNz
2

Nz
2
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and  is the perturbation amplitude at the profile
ε1(r). We assume that the quantities A and M may be
positive or negative.

It is convenient to use function (2), which provides
a fairly good approximation of the radial density profile
not only in the vicinity of but also far from its maxi-
mum, because, at large distances from r0, the term with
the hyperbolic cosine can be neglected. Near the reso-
nance point r0, a constant plasma density is perturbed
(nonuniform) in an axisymmetric fashion, the radial
width a of the perturbation being prescribed. The sign
of each of the terms depends on the plasma parameters.
Given the density far from the point r0 (or the value of
the parameter M), we look for the eigensolutions to
Maxwell’s equations. Starting from the corresponding
eigenvalues, we determine the parameter range where
Alfvén eigenmodes can exist, specifically, the range of
values of the plasma parameters (in particular, the den-
sity perturbation amplitude) in the vicinity of the per-
turbation.

3. BASIC EQUATION

The equation for the radial component  of the
field of a wave can be derived from Maxwell’s equa-
tions with allowance for electron inertia and finite ion

Larmor radius (see, e.g., [1, 8, 10]). Setting  =
Er(r)exp[i(kzz + mϑ  – ωt)], we obtain

(3)

where εi are the components of the dielectric tensor of
a collisionless magnetized plasma. The term εT, which
accounts for finite ion Larmor radius effects [12], has
the form

(4)

The coefficient in front of the second derivative in

Eq. (3) is equal in order of magnitude to , where
ρLα = vTα /ωcα is the Larmor radius of the particles of
species α and vTα is their thermal velocity. Following
[1], we apply the so-called “narrow-slab” approach,
which implies that, in the resonance region, the plasma
parameters change gradually and the wave fields
depend strongly on the radial coordinate. Assuming
that the radial variations of the quantities εT and ε1/ε3
are gradual in this approximation, we introduce the
notation

(5)
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2
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We emphasize that the quantity ρ in formula (5) has the
dimensionality of length: it serves to normalize the
coefficient in front of the second derivative in Eq. (3)
and is of the same order of magnitude as (but not iden-
tical to) the ion Larmor radius.

Since, in the frequency range under consideration,
the component ε3 is negative and the component εT is
positive, the coefficient in front of the second derivative
may have different signs. The sign of the coefficient in
front of the highest derivative in Eq. (3) is very impor-
tant because it determines the conditions (a local max-
imum or a local minimum in the plasma density) in
which the eigenmodes can exist. Since the quantity εT

depends on the temperature of the plasma particles [see
formula (4)], it is of considerable interest to determine
the conditions under which quantity (5), being a func-
tion of the electron and ion temperatures, changes its
sign. It is convenient to plot the curve along which
quantity (5) is zero in the plane of the ion and electron
thermal velocities (see Fig. 2). For a plasma in which
both the ions and electrons are cold, vTi ! ω/ |kz | and
vTe ! ω/ |kz |, coefficient (5) is negative. Physically, this
indicates that the thermal velocities of the plasma par-
ticles can be neglected; hence, in expression (5), the
second term, which accounts for electron inertia, is
dominant. According to the generally accepted termi-
nology [13], the waves in such a plasma are called iner-
tial waves. On the contrary, for a plasma in which both
the ions and electrons are hot, coefficient (5) is positive
because it is primarily contributed by the ion thermal
motion, in which case the waves are called kinetic
waves.

Although, in the vicinity of Alfvén resonance, the
azimuthal electric field Eϑ and the axial magnetic field

Bz have logarithmic singularities, Eϑ, Bz ∝  ln|ε1 – |,
the combination iε2Eϑ + (cm/ωr)Bz on the right-hand
side of Eq. (3) is continuous and changes gradually.

Nz
2

0.30

0.15

0

–0.15

–0.30
–5.0 –2.5 0 2.5 5.0
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(ε1(r) – N2
z )/N2

z

Fig. 1. Radial profiles of the quantity (ε1 – )/  calcu-

lated for the fixed values δ = 10 and ρ/a = 0.05 in the case
of a maximum in the density profile. The dashed curve is for
the eigenmode with the radial number n = 0, the dashed-
and-dotted curve is for the mode with n = 1, and the dotted
curve is for the mode with n = 2.

Nz
2

Nz
2
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That is why this combination is usually set to be a con-
stant and is attributed to the pump wave [1, 8, 10]. Since
we are interested in the eigensolutions to Eq. (3) that
are localized in the vicinity of r = r0, we can assume that
the wave fields are negligible far away from r0 and,
thus, we can set the combination to be zero.

4. KINETIC ALFVÉN WAVES

Here, we consider the case of a hot plasma, in which
the coefficient in front of the second derivative in
Eq. (3) is positive. In order for the solution to be local-
ized, i.e., to decrease exponentially away from r0, the

quantity ε1 –  should be negative at |r – r0| @ a, which
corresponds to M < 0. In the above notation, we rewrite
Eq. (3) as

(6)

Nz
2

M– A
r r0–

a
------------ 

 cosh
2– ρ2 d

2

dr
2

--------+ + Er 0.=

vTi, (cm/s)22

3 × 107

2 × 107

1 × 107

0
109 1010 1011 1012

, (cm/s)2

Fig. 2. Curve along which the quantity εT +  in for-

mula (5) changes sign in the coordinate plane ( , ).

Above the curve, this quantity is positive and, below the
curve, it is negative. The calculations were carried out for a
deuterium plasma of density 3 × 1013 cm–3 and a magnetic
field of 39 kG.

ε1

ε3
----- c

2

ω2
------

v Te
2

v Ti
2

0.8

0

–0.8

–4 –2 0 2 4
(r – r0)/a

Er(r)

Fig. 3. Radial profiles of Er for n = 0, 1, and 2. The param-
eters and notation are the same as in Fig. 1.

v Te
2

Recall that the coefficient A may have different
signs. However, Eq. (6) has localized eigensolutions
only when A > 0, i.e., when the density profile has a
maximum (Fig. 1). This conclusion agrees with the
results of a numerical analysis carried out by Appert
et al. [14] for a plasma with hot electrons, vTe > ω/ |kz |.

Following [11], we introduce the notation

(7)

The replacement ξ =  reduces Eq. (6) to a

hypergeometric equation, whose solution is expressed
in terms of a hypergeometric function [15]:

(8)

At r – r0 @ a, function (8) is finite only when the quan-
tities δ and s are related by s = δ + n (the number n = 0,
1, 2, … corresponds to the number of zeros of the func-
tion Er). By the quantity δ, we mean the arithmetical
square root of δ2. Figure 3 shows the radial field com-
ponent Er calculated as a function of the radius from
expression (8) at n = 0, 1, and 2.

For different n, the values of ε1 at the point r0 are
equal to

(9)

The frequency for which resonance condition (1) is
satisfied corresponds to the Alfvén continuum [5, 13]
and is equal to ω = |kz |vA , where vA is the Alfvén speed.

Assuming that the correction to  on the right-hand
side of expression (9) is small and retaining only the
first term in the expansion in this correction, we find the
frequencies of the eigenmodes with different values
of n:

(10)

In order to determine to which type of waves in a
homogeneous plasma the waves localized between two
Alfvén resonances belong, we solve Eq. (6) in the
Wentzel–Kramers–Brillouin (WKB) approximation.

Setting  ∝  exp( ) (kra @ 1), we obtain the fol-
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lowing expression for the squared radial refractive

index  = :

(11)

This expression is plotted in Fig. 4 for the same param-
eters as in Figs. 1 and 3. In deriving expression (11), we
have introduced the notation

(12)

Far from the resonance region, the wave in question is
a fast magnetosonic wave, whereas, near the resonance,
it becomes an Alfvén wave. Far from the density pertur-
bation, the squared radial refractive index is negative,

 < 0; hence, the waves do not exist. In the vicinity of

the maximum in the perturbation, we have  > 0,
which indicates the existence of localized kinetic
Alfvén waves.

5. INERTIAL ALFVÉN WAVES

For a cold plasma, coefficient (5) in front of the sec-
ond derivative is negative, which corresponds to inertial
waves. The problem for such a system possesses local-
ized solutions only when the quantity ε1(r) far from the
point r0 (at infinity) is larger than its resonant value (1)
(M > 0) and has a minimum (A < 0) in the vicinity of the
point r0. The radial dependence of the quantity (ε1(r) –

 )/  differs from that shown in Fig. 1 only in sign
(note that the zero on the vertical axis in Fig. 1 is chosen

to correspond to the value ). Hence, using the
replacement

(13)
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Fig. 4. Radial dependence of the radial refractive index in
the case of a maximum in the density profile (which corre-
sponds to the propagation of kinetic Alfvén waves).
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we obtain, instead of Eq. (6), the following equation
describing the eigenmodes when the density profile has
a minimum:

(14)

Since Eq. (14) differs from Eq. (6) only in a constant
factor, its solutions are also represented by formula (8);
hence, the solutions for the first three eigenmodes
behave in the same manner as those shown in Fig. 3.

The eigenfrequencies of the inertial Alfvén waves
are equal to

(15)

Figure 5 shows the radial dependence of squared
radial refractive index (11) calculated for the same
plasma parameters as in Fig. 4. We can see that this
dependence has discontinuities in the intervals where

the imaginary part of  is nonzero.

6. DISCUSSION OF THE RESULTS
It is known from the theory of Alfvén resonance [1,

8–10] that, in the vicinity of the resonance point at
which condition (1) is satisfied, the field Er diverges as

∝ (ε1 – )–1. When electron inertia and finite ion Lar-
mor radius are taken into account, the solution becomes
finite but changes radically. As has been shown above,
the condition that the quantity ε1 reaches its resonant
value at only one point is not sufficient for the existence
of the localized perturbations. A necessary condition
for small-scale perturbations to be localized between

two points is that the quantity ε1 –  at these points
vanishes. Moreover, at the point of maximum density,
r = r0, the tensor component ε1 should take on a certain
value,

(16)
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Fig. 5. Radial dependence of the radial refractive index in
the case of a minimum in the density profile (which corre-
sponds to the propagation of inertial Alfvén waves).
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The amount by which the quantity ε1 exceeds its reso-
nant value depends on the δ value corresponding to the
plasma density far from the resonance point.

The quantity ε1(r0) given by expression (9) has a

minimum value (1 + δρ2/a2) at n = 0. In the model
developed here, the eigenmodes do not exist for ε1 –

 < δ ρ2/a2.

On the other hand, for sufficiently small δ values,
the amount by which the tensor component at hand
should exceed its resonant value in the case n = 0 can
be made arbitrarily small. This conclusion agrees with
the well-known result from quantum mechanics [11]: in
the corresponding quantum mechanical problem, the
zero radial mode can exist in a potential well (2) of arbi-
trarily small depth. For higher modes, quantity (9) is
finite (nonzero) for any δ value.

Note also that the applicability condition of the nar-
row-slab approach, ρ ! a, can easily be satisfied in
experiments. In the vicinity of Alfvén resonance, the

characteristic parameter  is small,  ~ ρ/a ! 1;
hence, a description of the plasma in terms of the
dielectric tensor turns out to be justified.

In deriving basic equation (6) from general equa-
tion (3), we imposed the corresponding boundary con-
ditions and set the combination on the right-hand side
of Eq. (3) to zero. In other words, we assumed that this
combination is small in comparison with the retained
terms that arise, e.g., from the finite ion Larmor radius
and electron inertia. A comparison of the omitted term
with the retained terms yields the following strong ine-
qualities:

(17)
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Fig. 6. Modeling of the profile of the quantity (ε1(r) –

)/ , which depends linearly on the plasma density, by

parabola (18) (solid curve) and hyperbolic cosine (2) in the
case of a maximum in the density profile. The calculations
were carried out for the mode with n = 3 and for different δ
values: δ = 1 (dashed curve), δ = 3 (dotted curve), and δ = 7
(dashed-and-dotted curve).

Nz
2
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2

Parenthetically, for a linear plasma density profile,
these inequalities are weaker because of the large addi-
tional factor (a/ρ)2/3 on the right-hand side. The first and
third of these strong inequalities can be satisfied
because they contain small factors (ω/ωci) and (ω/ωci)2

on the left-hand sides. The remaining inequality can
also be satisfied because the characteristic radial scale
a on which the plasma density varies is small in com-
parison with the value of the coordinate r0 of the density
extremum, a ! r0. It is clear that the first two of the ine-
qualities are strictly satisfied for symmetric pulses
(m = 0).

7. COMPARISON WITH EARLIER RESULTS

If the function ε1(r) approaches a large value far
from the resonance point (this corresponds to large δ
values and, consequently, to large plasma density per-
turbations), then potential well (2) in the vicinity of its
minimum can be approximated by a parabola. This
enables us to compare the above results with the results
obtained in [9, 10], where the plasma density perturba-
tion was modeled by a parabolic profile. To be specific,
we consider the case in which the density profile has a
maximum (see the solid curve in Fig. 6):

(18)

Neglecting absorption, the eigensolutions to Eq. (3)
with profile (18), i.e., the solutions to this equation with
zero on the right-hand side, can be found analytically.
They are expressed in terms of Hermite polynomials
[15]:

(19)

These solutions exist only for certain values of B:

(20)

in which case the eigenfrequencies are equal to

(21)

Let us compare the eigenfrequencies corresponding
to the parabolic density profile (18) with eigenfrequen-
cies (10). To do this, we assume that the electron and
ion temperatures (i.e., the values of the parameter ρ) are
the same in both cases. We also require that the values
of the quantity ε1 in profiles (2) and (18) should coin-
cide at the point of extreme density:
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The same requirement on the second derivative of this
quantity yields

(23)

In both problems, we number the eigensolutions by
consecutive positive integers n and require that equali-
ties (22) and (23) be satisfied for the corresponding n
values. It is easy to show that these equalities can be
consistent only when δ @ n. Then, in equality (22), we
can neglect n in comparison with δ to obtain the follow-
ing relationship between the density perturbation
widths in the cases of hyperbolic cosine (2) and para-
bolic profile (18):

(24)

It is seen that the width a of the region where density
perturbation (2) is localized changes depending on the
ε1 value, which is determined by the value of ε1 far from
the point r0. In the limit δ @ n, eigenfrequencies (21)
with the values of b satisfying relationship (24) coin-
cide with eigenfrequencies (10). For small n, the last
term in expression (9) can be neglected.

Now, we fix the width b of the parabolic profile and
approximate the potential well ε1(r) by a parabola and
a hyperbolic cosine with different δ values and with a
fixed value of n, which is taken to be n = 3. Figure 6
shows the potential well in the form of a parabola (solid
curve) and hyperbolic cosine (2) with different δ val-
ues: δ = 1 (dashed curve), δ = 3 (dotted curve), and δ =
7 (dashed-and-dotted curve). All the curves were calcu-
lated under conditions (22) and (23), implying that the
values of the function, as well as of its second deriva-
tive, coincide at the point r = r0. The eigenmodes in the
cases at hand are illustrated in Fig. 7. As δ increases, the
potential well (2) of finite depth is seen to become
closer in shape to parabolic density profile (18). Analo-
gously, from Fig. 7, we can see that, with increasing δ,
the radial profile of the field component Er(r) in the
case of a density perturbation of finite depth approaches
the curve corresponding to a parabolic density profile.

Let us compare eigenfrequencies (10) and (21). The
neighboring eigenfrequencies in spectrum (21) differ
by a small amount proportional to ρ/a. The spectrum of
eigenfrequencies (10) contains the square of the small
parameter ρ/a. However, at a given density value far
from r0, or, equivalently, at a fixed value of å, the quan-
tity δ is proportional to a/ρ (see Fig. 7). Consequently,
for δ @ n, the intervals between the eigenfrequencies of
the modes with neighboring radial numbers are the
same in both problems.

Near the curve along which quantity (5) is zero (see
Fig. 2), it is insufficient to retain only the small term

proportional to  in Eq. (3); it is also necessary
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to take into account higher order terms proportional to

.

8. CONCLUSION

We have analytically investigated electromagnetic
eigenmodes localized in the region where the radial
density profile of a hot plasma has a maximum (mini-
mum) of the finite height (depth) between two local
Alfvén resonances.

It is shown that, in a hot plasma, kinetic Alfvén
waves can propagate near a maximum in the plasma
density profile. The waves that can exist in the vicinity
of a minimum in the density profile in a cold plasma are
inertial Alfvén waves. This situation is analogous to
that with an infinitely deep parabolic potential well,
which was considered earlier, e.g., in [9, 10].

For an arbitrary value of the plasma density far from
the region where the density perturbation is localized
(or, in other words, for an arbitrary δ value), there exists
a critical value of the maximum (minimum) density at
which the eigenmodes can propagate. When the plasma
density at the point r0 of the maximum (minimum)
exceeds its resonant value determined by condition (1)
by an arbitrarily small amount, the necessary condition
for the existence of localized eigenmodes is that the
plasma density far from r0 be sufficiently close to the
resonant value.

We have determined the eigenfrequencies (10) and
(15) of Alfvén waves and have shown that they are
higher than the Alfvén continuum frequency in the case
of a maximum in the density profile and are lower than
this frequency when the density profile has a minimum.
We have also obtained an analytic expression for the
field of the eigenmodes [see formula (8) and Fig. 3].

The results of our analysis have been compared with
those obtained for a parabolic plasma density profile. In
the limit of an infinitely deep potential well (δ @ n), the
eigenmodes and their eigenfrequencies have been
found to be the same in both problems.
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0
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–0.4
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Fig. 7. Solutions to Eq. (6) with the density profiles shown
in Fig. 6. The notation is the same as in Fig. 6.
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Abstract—Charged particle transport and kinetic processes in a low-temperature dusty plasma are numerically
simulated. Dust grains are represented as spheres with a given radius. The self-consistent electric field in the
plasma surrounding a charged dust grain is calculated taking into account the perturbations of plasma quasineu-
trality near the grains. It is shown that applying an external electric field leads to a rearrangement of the plasma
space charge and a break of the spherical symmetry of the electron and ion density distributions around the
grain. The mutual influence of two identical charged dust grains is considered, and the energy of the electro-
static interaction between the grains is calculated. It is shown that this energy has a minimum at a certain finite
distance between the grains. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction between dust grains in a dusty
plasma is one of the most important phenomena deter-
mining the properties of this system. In particular, this
interaction results in the formation of dusty crystal
structures, which have been observed under various
conditions. A review of the studies on dusty plasma
structures is presented in [1]. In many experiments, it
was demonstrated that dust grains in a dusty plasma
usually acquire a negative electric charge. One of the
key problems is to find out the nature of the attraction
forces between likely charged dust grains. The attrac-
tion is usually explained by the electrostatic interaction
between the grains and the polarized ambient plasma
[2–5]. In those papers, the medium polarization was
analyzed under the assumption that the charged plasma
particles (electrons and ions) obey a Boltzmann distri-
bution. However, simulations of the grain charging pro-
cess in a dusty plasma [6] showed that the electron and
ion spatial distributions near the grain’s surface were
nonmonotonic and the equilibrium plasma particle dis-
tributions were not established. In [7], it was shown that
the departure from the equilibrium distribution was
more pronounced for the ions.

Simulations of [8, 9], in which the ions were mod-
eled by the Monte Carlo method, showed that a positive
space charge arose in the plasma region between the
grains, which resulted in their mutual attraction.

We note that, near the grain’s surface, where the
quasineutrality is disturbed, the electric field caused by
the grain charge is fairly strong and can attain 103–
104 esu, depending on the plasma parameters (in partic-
ular, the grain size). Because of the strong electric field
near the grain’s surface and the spatial inhomogeneity
of the field in this region, the electron temperature sig-
1063-780X/03/2906- $24.00 © 0473
nificantly differs from the gas temperature. This cir-
cumstance explains why the charged particle densities
observed in numerical simulations [7] substantially
deviate from a Boltzmann distribution.

Thus, although the mechanism for the interaction
between dust grains under laboratory conditions is
quite clear, the value of the interaction energy needs
additional study. An adequate plasma model should
accurately take into account the dynamics of charged
plasma particles. Moreover, the problem of the interac-
tion of two dust grains should be considered at least in
two-dimensional geometry.

In this paper, we propose a model describing
charged particle transport in a dusty plasma produced
by an electron beam and present the results of simula-
tions of the interaction between charged dust grains in
such a plasma.

2. PROBLEM FORMULATION AND BASIC 
EQUATIONS OF THE CHARGED PARTICLE 

DYNAMICS IN A LOW-TEMPERATURE DUSTY 
PLASMA

We study the phenomena occurring in a dusty
plasma with the dust component consisting of solid
metal or dielectric grains. The problems under investi-
gation are the process of grain charging and the forma-
tion of the charge distribution in the ambient plasma.
We consider a model problem in which dust grains are
assumed to be spheres with a given radius. The grains
can be either metal or dielectric; however, in this paper,
we present the results of calculations in which the
grains are assumed to be dielectric and the charge is dis-
tributed uniformly over the grain’s surface. The numer-
ical model also includes the surrounding plasma region.
The plasma consists of electrons and ions (in the gen-
2003 MAIK “Nauka/Interperiodica”
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eral case, there may be several ion species). In experi-
ments, an external electric field is usually applied to the
dusty plasma, which favors the formation of spatial
dusty structures. For this reason, the self-consistent
(including the external) electric field should also be
taken into account. In view of the axial symmetry of the
system under consideration, it is reasonable to solve the
problem in spherical coordinates in two-dimensional
geometry.

The proposed model of a low-temperature plasma
includes the continuity equations for charged particles.
The particle velocities are determined by the local value
of the electric field. The electron diffusion is also taken
into account, which is necessary because, under the
given conditions, the dust grains are negatively charged
and it is precisely the diffusion term that provides the
electron flow onto a grain. The ion flow near a dust
grain is provided by the ion drift in an electric field,
which is fairly high in this region. Under these condi-
tions, the contribution of the diffusive ion flow is insig-
nificant. The model is valid when the characteristic
dimensions of the problem are larger than the mean free
path of the charged particles, which amounts to 10–5 cm
at atmospheric pressure. Therefore, for grains with a
size of 10–4–10–3 cm, the model proposed can be
regarded as quite adequate.

The basic equations have the form

(1)

where ne and ni are the densities of the electrons and
positive ions, respectively; we and wi are the electron
and ion drift velocities; Qe and Qi are the terms describ-
ing the production and loss of electrons and ions; D is
the electron diffusion coefficient; and ϕ is the electric
potential.

We use a spherical coordinate system whose origin
coincides with the center of a spherical dust grain with
a radius Rd . Equations (1) should be supplemented with
the boundary conditions, which can be deduced from
the following considerations. If the charge of the sphere
is positive, then the ion drift velocity is directed out-
ward from the sphere. In this case, the density of the
positive ions is assumed to be zero at the grain’s sur-
face. For a negatively charged sphere, no boundary con-
ditions for the ions on the grain’s surface apply.

The electron transport equation contains the diffu-
sion term. Hence, the boundary conditions on the
grain’s surface must be imposed for either sign of the
grain charge. In view of the low efficiency of the known
mechanisms of electron production on the grain’s sur-
face in a low-temperature dusty plasma, we will assume
that the electron density near the grain’s surface is zero.

∂ne

∂t
-------- ∇ wene( )⋅+ ∇ D∇ ne( ) Qe,+⋅=

∂ni

∂t
------- ∇ wini( )⋅+ Qi,=

∆ϕ 4πe ne ni–( ),=
At infinity (far from the grain), the ion and electron
densities are assumed to be equal to their equilibrium
values, determined by plasmochemical processes.

Simulations were performed with allowance for the
external electric field. As a boundary condition for the
electric field, we assume that the field at infinity is equal
to the external field. Summarizing all the assumptions,
the boundary conditions can be written in the form

(2)

(3)

where Q is the grain charge in atomic units and E0 is the
external electric field, which depends on the specific
conditions of the problem.

We consider a nitrogen dusty plasma produced by a
high-power electron beam ionizing the gas with an ion-
ization rate of ~1016 s–1 cm–3. Under the given condi-
tions, the ion density attains ~1011 cm–3. We assume
that the plasma consists of positive ions and electrons.
The charge particle balance is determined by plasmo-
chemical reactions, including both the gas ionization by
the electron beam and electron–ion recombination:

where q is the ionization rate and β is the recombination
coefficient. In calculations, the recombination coeffi-
cient depended on the electric field and was on the
order of β ~ 10–6 cm3/s.

The dielectric dust grains were spheres with the
radius Rd = 12 µm. We considered the gas at atmo-
spheric pressure (p = 1 atm) and room temperature (T =
300 K). The dust density was assumed to be low enough
for the dust charge to have no effect on the average den-
sity of charged plasma particles. The known depen-
dences of the plasma kinetic coefficients on the electric
field for nitrogen were used. The grain charge was
determined by the balance of the currents of the plasma
electrons and ions. Simulations were performed until
the calculated quantities reached their steady state
values.

Two-dimensional simulations require considerable
computational resources; hence, the choice of an effi-
cient algorithm is of great importance for this kind of
problem. The algorithm used in this study is described
in detail in [10]. The simulations were separated into
several steps. The transport equations were solved
using a standard implicit scheme, and Poisson’s equa-
tion was solved using the expansion of the electric
potential in Legendre polynomials. The main problem
arising when using this method is providing the conver-
gence of the expansion series; therefore, the expansion

ni r = Rd( ) 0; for E r = Rd( ) 0;>=

ni r ∞( ) ni
eq( )

;=

ne r = Rd( ) 0; ne r ∞( ) ne
eq( )

;= =

∇ϕ r = Rd( ) Qe/Rd
2
,–=

∇ϕ r ∞( ) E0 r( ),–=

Qe Qi q βneni,–= =
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terms should be regularly checked for the convergence.
Simulations showed that in the modeling of a real
plasma with spherical dust grains, it is quite sufficient
to take into account six harmonics.

3. RESULTS OF SIMULATIONS OF A DUSTY 
PLASMA IN AN EXTERNAL ELECTRIC FIELD

The charging of a spherical grain with a radius of
12 µm in a nitrogen plasma and the establishment of the
spatial charge distribution around the grain were inves-
tigated. The ionization source power was taken to be
2 × 1016 cm–3 s–1.

Simulations were performed both without an exter-
nal electric field and in the presence of a fairly strong
external electric field with a strength of E0 = 900 V/cm.
The results of calculations are presented in Fig. 1.

It can be seen in the figure that applying the electric
field results in a significant redistribution of the space
charge around the grain. The electron density profile
shifts toward the grain’s surface, and a slight local max-
imum appears on the profile. The ion density profile
shifts in the opposite direction. As a result, the length of
the region in which the plasma quasineutrality is dis-
turbed changes substantially. Moreover, in the presence
of the electric field, a region appears in which the space
charge changes its sign. We note that, far from the grain
(in the quasineutral plasma), the plasma density
increases because the recombination coefficient
decreases considerably when the external electric field
is applied. Figure 2 shows the spatial profile of the self-
consistent electric field. It can be seen that, in the pres-
ence of the external field, the radial component of the
electric field changes its sign far from the grain’s sur-
face.

We also note that the region where quasineutrality is
disturbed is fairly large. The simulations were per-
formed for the Debye radius RDb ≈ 4 µm. It can be seen
in Fig. 1 that, in the absence of an external electric field,
the region where quasineutrality is disturbed is about
Ra ~ 25 µm. From Fig. 2, it is seen that Ra corresponds
to the distance at which the electric field significantly
decreases. Similar results in the absence of an external
field were obtained in [6, 7].

The calculated dependence of the grain charge on
the external electric field is shown in Fig. 3. The grain
charge is negative and its value agrees with the results
of calculations presented in [1, 6]. The negative sign of
the grain charge in a gas-discharge plasma was pointed
out by many authors; it is explained by the higher
mobility of electrons in plasma in comparison with that
of ions. It follows from the simulation results that the
grain charge can be increased severalfold by increasing
the external electric field within reasonable limits.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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Fig. 1. Radial profiles of the (1, 3) electron and (2, 4) ion
densities in the plasma surrounding the grain (1, 2) in the
absence of an external electric field and (3, 4) in the pres-
ence of an external field of 900 V/cm. The density profiles
are shown for the angle θ = 36° with respect to the direction
of the external field (Here and in the subsequent figures, the
radial coordinate is measured from the grain’s surface).
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Fig. 2. (1) Radial profile of the electric field in the plasma
surrounding the grain in the absence of an external electric
field and the profiles of the (2) radial and (3) tangential com-
ponents of the self-consistent electric field in the presence
of an external electric field of 900 V/cm for the angle θ =
36° with respect to the direction of the external field.
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Fig. 3. Charge of a spherical grain as a function of the exter-
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4. CHARGE DISTRIBUTION AND INTERACTION 
IN A TWO-GRAIN SYSTEM

The presence of attraction forces between dust
grains in a dusty plasma was unambiguously demon-
strated in the experiments of [11]. The shift of one of
the interacting grains by a laser beam results in a simi-
lar shift of the second grain. The problem of the inter-
action between two charged dust grains was considered
in [12]. In that paper, the electrostatic potential was
accurately calculated by using appropriate curvilinear
coordinates. However, in that paper, as well as in the
papers mentioned above, it was assumed that the
plasma particles obey a Boltzmann distribution. How-
ever, the numerical results obtained using more ade-
quate models show that the real plasma particle distri-
butions should differ significantly from a Boltzmann
one.

In [13], the interaction energy of two grains and its
dependence on the distance between these grains were
calculated. The interaction energy was found to be min-
imum at the distance r12 = 2.73RDb. This means that the
grains efficiently interact at a distance larger then the
Debye radius, i.e., in the region where the plasma sub-
stantially screens the grain charge. On the one hand,
this result is important because it corresponds to exper-
imental observations. On the other hand, in that paper,
a mechanism for the appearance of the attraction force
between likely charged grains in the polarized sur-
rounding medium was proposed based on a rather sim-
ple model. Unfortunately, the applicability of the
results of [13] is limited to the case of small grains with
the radii Rd ! RDb; moreover, that paper also used the
Debye screening model, which has a limited applicabil-
ity range, as has been discussed above.

The conclusion of [14] about the repulsion of likely
charged grains in plasma was made based on the colli-
sionless plasma model assuming the mirror reflection
of charged particles from the grain’s surface. In that
paper, the limited applicability of this model was also
indicated. In particular, this model is inapplicable to a
low-temperature dusty plasma of a high-pressure gas
discharge, which is considered in the present paper.
Hence, along with the interaction mechanism associ-
ated with anisotropy of gas-kinetic pressure in a two-
grain system [14, 15], the electrostatic interaction must
also be taken into account. We note that the possibility
of attraction between likely charged grains due to
plasma polarization was shown in [4, 8].

In the present paper, an evident symmetry of the
problem was used to calculate the charge distribution in
the system of two grains in plasma in the absence of an
external electric field. When the grains are identical and
have the same electric charge, there is a symmetry
plane lying halfway between the grains. In this case, the
solution of the problem reduces to the calculation of the
dynamics of charged plasma particles in the half-space
adjacent to one of the grains, and the electric field is
determined as a sum of the fields produced by the elec-
tric charges in both half-spaces:

(4)

where ρ(r) is the charge density; σ(r) is the surface
charge density; S1 and S2 are the grain surface areas; V1
and V2 are the symmetric plasma regions adjacent to the
first and second dust grains, respectively, and together
covering the entire region under consideration; and the
components of the electric potential ϕ(r) are equal to
the corresponding expressions in parentheses.

We note that, when the field is defined in such a
fashion, the electric field component perpendicular the
symmetry plane vanishes on this plane: E⊥  = 0.

The energy of a system of point charged particles
can be determined by the formula [16]

(5)

where the potential ϕi in the position of the charge ρi is
determined by all of the charges except for the given
one. Such an exclusion is necessary because the self-
energy of a charged particle increases without bound
with decreasing radius.

In the model under consideration, the charge distri-
bution is continuous and the charge density at any point
is finite. In numerical simulations, the space is divided
into the computational cells, in which the plasma space
charge, as well as other quantities, can be assumed to be
uniform. In this case, the self-energy of the small spa-
tial cells decreases with decreasing their size; therefore,
the expression defining the total energy of the system of
electric charges is finite.

Actually, to solve the problem of the interaction
between dust grains, we should consider the interaction
energy of the parts of the system of electric charges
(electrically charged grains together with adjacent
polarized plasma regions), rather than the total energy
of the electric charges. In view of the symmetry of the
problem, the interaction energy can be determined from
the formula

(6)

where the potential ϕ2(r1) is calculated by formula (4).
According to expression (6), the interaction energy is
determined by the interaction of charges located in one
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half-space with the electric field produced by charges
located in the other half-space. If the interaction energy
is negative, then one can speak of the tendency toward
the formation of a complex (quasi-molecule). In this
case, the dependence of the bond energy on the inter-
grain distance may be identified with a term of this
quasi-molecule.

To determine W as a function the intergrain distance,
we performed a series of calculations of the steady
charge density distribution and the self-consistent elec-
tric field in a two-grain system in the model described
above. All other conditions, such as the ionization
source power and the medium composition, were the
same as in the case of one grain.

–1800

–1900

–2000

–2100
0.024 0.028 0.032

r12, cm

W, eV

0.022

Fig. 4. Electrostatic interaction energy as a function of the
distance between two grains in a dusty plasma.
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Figure 4 shows the results of calculations. It can be
seen from the dependence W(r12) that the interaction
energy is negative and the depth of the potential well is
~103 eV. For comparison, this energy corresponds to
the kinetic energy of a dust grain of mass ~10–8 g mov-
ing at a velocity of ~0.5 cm/s. As is seen from the fig-
ure, the calculations were performed for a relatively
small number of the distances r12, because each calcu-
lation version required a fairly long computation time.
Nevertheless, the results of calculations clearly demon-
strate the presence of a minimum in the electrostatic
interaction energy. Along with the negative value of the
calculated energy, this testifies to the possibility of the
existence of a bound state in this system. The attraction
force can be estimated by the formula

(7)

According to this estimate, we have F ~ 10–6–10–7 dyn,
which is much smaller than the grain weight in the
Earth’s gravity field. We remember that the simulations
were performed in the absence of an external electric
field and the plasma was produced by an external
source. When analyzing the applicability of formula (7),
it should be taken into account that our model includes
the process of grain charging, which is associated with
the work done by external sources (plasma ionizers).
Hence, the negative potential of the grain obtained in
the calculations reflects the work done by these sources.
At the same time, the force calculated by formula (7)
neglects the interaction associated, e.g., with the
plasma pressure [14, 15]; therefore, no final conclusion
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Fig. 5. Radial profiles of the (1) electron and (2) ion densities in the plasma surrounding one of the two interacting grains (a) in the
direction toward the second grain and (b) in the opposite direction.
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about the formation of a bound state in a two-grain sys-
tem can be made based on formula (7) only.

Figure 5 shows the spatial distributions of the
charged particle densities in the direction toward the
second dust grain and in the opposite direction. We can
see that the charge density distributions differ from
those in the case of one grain (Fig. 1, curve 2). Toward
the second grain (Fig. 5a), the ion density at a distance
of ~40 µm from the grain’s surface substantially
exceeds the electron density and there is a slight maxi-
mum in the ion density profile. This agrees qualitatively
with the results of [8], in which an ion cloud between
the interacting grains was observed in numerical simu-
lations of a microwave-discharge dusty plasma. In view
of the symmetry of the problem, a similar cloud should
also form in the region adjacent to the second grain. In
the opposite direction (Fig. 5b), the distributions of the
charged particle densities are markedly different. A
characteristic feature of these distributions is the forma-
tion of regions with an alternating sign of the space
charge.

In the region immediately adjacent to the grain, the
electric field changes only slightly as compared to the
case of one grain, because, in this region, it is mainly
determined by the grain charge. Figure 6 shows the spa-
tial distributions of the electric field in the direction
toward the second dust grain and in the opposite direc-
tion. The curves coincide near the grain’s surface and
are different at a distance of 240 µm, where the second
dust grain is situated.
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Fig. 6. Radial profiles of the electric field in the plasma
surrounding two interacting grains (1) in the direction
toward the second interacting grain and (2) in the opposite
direction.
5. CONCLUSION

The interaction of charged grains in a low-tempera-
ture dusty plasma has been investigated numerically. To
calculate the grain charge and the polarization of the
surrounding plasma, the self-consistent electrostatic
problem has been solved with allowance for charged
particle transport in a plasma. Minimal simplifications
were adopted when formulating the problem: the sym-
metry of the problem allowed us to use two-dimen-
sional geometry, and the equations for charged particle
transport were reduced to the continuity equations,
which is quite justified under the given conditions.

We have also simulated the interaction between two
dust grains in a nitrogen plasma produced by an exter-
nal ionization source in the absence of an external elec-
tric field. Under the given conditions, the energy of
interaction between the grains (including the energy of
interaction with the polarized surrounding plasma) is
found to be negative and is minimum at a distance of
~250 µm between the grains. The attraction force
between two grains, which can be estimated from the
calculated dependence of the electrostatic interaction
energy on the intergrain distance, turns out to be weaker
than the weight of a grain in the Earth’s gravity field.

It has been found that, when the Debye plasma
model is used to calculate the grain charge screening,
significant errors are introduced for the most important
region near the grain’s surface. It turns out that the
region where the plasma quasineutrality is disturbed is
much larger than the Debye radius, because the equilib-
rium conditions, which are required for a Boltzmann
distribution to be established, are not satisfied there due
to the boundary effects.

The spatial distributions of the charged particle den-
sities and the self-consistent electric field were calcu-
lated for individual dust grains in the presence of an
external electric field. The break of spherical symmetry
in the presence of an external electric field leads to an
asymmetry of the charged particle distribution. It has
been shown that the grain charge depends on the exter-
nal electric field. Applying the external electric field
increases the grain charge by a factor of up to 4, which
should naturally increase the interaction force between
the grains.

The simulations have shown that the plasma particle
distribution in a system of two interacting grains is non-
uniform. In the direction toward the second interacting
grain, a positive space charge arises at a distance of
about one-sixth of the intergrain distance from the first
grain. (In view of the symmetry of the problem, a sim-
ilar positive space charge forms in the region adjacent
to the second grain.) In other words, the plasma charges
are redistributed so that the positive space charge in this
region increases in comparison with the spherically
symmetric case of one grain. This redistribution corre-
sponds to the plasma polarization, resulting in the
attraction of likely charged grains. In the opposite
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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direction, the plasma polarization markedly differs and
charged layers are formed.
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Abstract—Results are presented from experimental and theoretical studies of a space-charge lens for focusing
a negative-ion beam. The space-charge field and the beam ion trajectories are numerically calculated for the
lens used in the experiments. The results of calculations are compared with the experimental data. It is shown
theoretically and experimentally that the proposed device allows one to achieve the main operating conditions
of the space-charge lens: the inertial confinement of positive ions and the removal of electrons by an external
electric field. The focusing field of the lens attains ~100 V/cm, which provides a focal length of <20 cm. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concept of a space-charge lens for focusing a
positive-ion beam was first proposed by Gabor [1] and
then was further developed by Morozov [2, 3]. The effi-
ciency of such a lens was confirmed in many experi-
ments (see, e.g., [4]). The focusing field of the lens is
produced by a space charge of electrons that are
injected by a separate emitter or come from the lens
electrodes due to ion-induced emission and are con-
fined within the beam by an external magnetic field.

In [5], a space-charge lens for focusing a negative-
ion beam was proposed. In this case, the focusing space
charge is produced by positive ions that are generated
through the ionization of the working gas by an ion
beam and are confined within the beam by inertial
forces. It was proposed that the electrons produced in
this process be removed from the system by a longitu-
dinal electric field. Preliminary experiments showed
the high efficiency of such a lens.

This paper is devoted to a detailed study of the
device proposed in [5]. In particular, the space charge
field and trajectories of the beam ions are numerically
calculated for the lens used in experiment. The time
evolution of the particles produced due to the ionization
of argon by the beam is also studied. The results of cal-
culations are compared with the experimental data. The
theoretical and experimental results show that, under
our experimental conditions, it is possible to achieve
the main operating conditions of the space-charge lens:
the inertial confinement of positive ions and the
removal of electrons by an external electric field. The
ratio between the positive-ion and electron densities in
the lens varies within the range 101–103 and the focus-
ing field attains ~100 V/cm, which provides a focal
length of <20 cm.
1063-780X/03/2906- $24.00 © 20480
2. EXPERIMENTAL RESULTS

The space-charge lens for focusing a negative-ion
beam was investigated using the experimental setup
shown schematically in Fig. 1a. A beam of negative
ions with energies of ~10–12 keV and a current of ~10–
30 mA was extracted from surface-plasma source 1
through a 0.5 × 15-mm slit. The beam was preformed
and directed to lens 3–5 by an ≈2-kG magnetic field
produced by deflecting magnets 2. The beam diameter
was limited by the entrance aperture of the lens. The
beam current was measured by collector 7 with a diam-
eter of 10 cm. The beam compression ration was deter-
mined from a change in the current at collector 6 with a
diameter of 2 cm. The lens was placed ≈20 cm from the
source slit. The distance from the lens exit plane to the
collector was ≈30 cm. In the given configuration, the
beam radius at the collector should be minimum for a
lens focal length of ≈12 cm.

The lens was designed as follows. Lens chamber 4
was a metal cylinder 15 cm in diameter and 10 cm in
length with two grounded diaphragms with an inner
diameter of 5 cm at the ends. Removable metal grid cyl-
inder 5 with a diameter of 5 cm and length of 10 cm was
installed inside the lens chamber on its axis and was at
the potential of the lens chamber. The lens chamber was
insulated from the chamber walls; during operation, the
chamber potential can be varied from 0 to –2000 V.
Grounded electrodes 3 with a thickness of 1.5 cm and
an inner diameter of 5 cm were installed 0.5 cm from
the ends of the lens chamber. The working gas (argon)
was admitted through the end wall of the lens chamber.
The gas pressure in the lens could be varied in the range
10–4–1.5 × 10–3 torr. With such a lens design, the pres-
sure in the lens was higher than the pressure in the
beam-drift region by a factor of nearly 10.

A positive space charge in the lens was produced
through the ionization of the working gas by a negative-
ion beam. It was proposed that the electrons produced
by ionization and detachment from negative ions in col-
003 MAIK “Nauka/Interperiodica”



        

SPACE-CHARGE LENS FOR FOCUSING A NEGATIVE-ION BEAM 481

                                                                                                                                        
1

0 500 1000 1500 2000

2

3

4

5

–U, V

J/J0 1
3
5

2
4
6

J/J0

1
3
5

2
4
6

1

0 500 1000 1500 2000

2

3

4

5

–U, V

(a)

(b) (c)

Argon To the vacuum

H–

–U

1

2
3 4

5
6

7

Fig. 1. (a) Schematic of the experiment: (1) pulsed source of negative hydrogen ions, (2) deflecting magnets, (3) grounded inlet and
outlet electrodes, (4) lens chamber, (5) removable grid electrode, (6) collector for determining the beam density, and (7) beam-cur-
rent collector; (b) the ç– beam compression ratio as a function of the negative potential of the lens chamber in the presence of the
grid electrode at different argon pressures p = (1) 1.8 × 10–4, (2) 4.2 × 10–4, (3) 6.2  × 10–4, (4) 8 × 10–4, (5) 1.1 × 10–3, and (6) 1.7 ×
10–3 torr; and (c) the H– beam compression ratio as a function of the negative potential of the lens chamber without a grid electrode
at different argon pressures p = (1) 1.2 × 10–4, (2) 4.1 × 10–4, (3) 6 × 10–4, (4) 7.9 × 10–4, (5) 1.2 × 10–3, and (6) 1.7 × 10–3 torr.
The beam current is 10 mA and the beam ion energy is 12 keV.

 gauge
lision with neutral particles be expelled along the lens
axis by applying a negative potential to the chamber.

Experiments were carried out for two lens configu-
rations. In the first version, the lens contained grid elec-
trode 5 (Fig. 1a), and in the second version, this elec-
trode was absent (the numerical experiment was per-
formed for the second version).

The results of measurements are presented in Figs. 1b
and 1c. The figures show the beam compression ratio
(the ratio of the maximum current J of the ç– beam at
collector 6 in the regime of focusing to the maximum
beam current J0 at collector 6 in the regime without
focusing) in the collector plane as a function of the neg-
ative potential of the lens chamber at different values of
the argon pressure in the lens.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
It can be seen from the figures that the beam com-
pression ratio depends on both the gas pressure in the
lens and the potential at its central electrode. (The gas
pressure determines the value of the positive ion space
charge, whereas the negative potential determines the
efficiency of the removal of electrons from the lens in
the longitudinal direction.) The maximum beam com-
pression ratio is the same for both versions (with and
without grid 5). However, with the grid, the optimal
compression of the beam is reached even at a lens
potential of –200 V, whereas without a grid, it is
reached at a much lower potential; i.e., in the former
case, the removal of electrons from the lens is more effi-
cient.

Thus, it has been demonstrated experimentally that
the space-charge lens proposed can be very efficient
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and can provide a focal length of <20 cm. The lens effi-
ciency is determined by the gas pressure (by the value
of the positive space charge), provided that the elec-
trons are removed from the system by the longitudinal
electric field. The geometry of the lens only has an
effect on the efficiency with which the electrons are
removed from the lens.

3. NUMERICAL EXPERIMENT
We calculated the electric field and trajectories of

the beam particles in the space-charge lens for focusing
a negative-ion beam and investigated the time evolution
of the electrons and Ar+ ions produced by ionization.
The numerical studies were performed using the parti-
cle-in-cell (PIC) method [6, 7]; the plasma was
assumed to be collisionless.

A schematic of the numerical experiment is shown
in Fig. 2a. A uniform beam of negative H– ions with a
current of 10 mA and an energy of 12 keV entered the
lens through the entrance plane along the lens axis. The

H–

0
0

2

4

6

8

2 4 6 8 10 12 14
z, cm

r, cm
–2000 V

0 V

7
65

4
3

2
1

141210
642

–2000

8

–1500

–1000

–500

0

U, V

r, 
cm

–1622.8 V

z, cm

(b)

(‡)

Fig. 2. (a) Schematic of the numerical experiment and the
lines of the electric field generated by the electrodes inside
the lens; the main ionization region in the lens extends from
the axis to the dashed line; the arrows show the trajectories
of the beam ions and the atoms of the working gas (argon)
entering the lens. (b) Steady-state distribution of the electric
potential in the lens at t = 10–5 s.
beam diameter coincided with the diameter of the lens
entrance aperture and was equal to 5 cm. The potential
of the lens chamber was assumed to be –2000 V, and the
argon pressure in the lens transmission line was 1.5 ×
10–3 torr (the parameters corresponding to the regime of
optimal focusing in the experiment).

In the calculations, it was taken into account that,
during the interaction of the beam with the working
gas, the positive argon ions are produced through ion-
ization, whereas the electrons are produced through
both ionization and the neutralization of negative ions
in collisions with neutral particles (the probability of
the latter process is several orders of magnitude
higher). The lifetimes of the produced particles are pro-
portional to their path lengths and are limited by the
time required for the particles to leave the calculation
region.

At each time step, we introduced N+ = ∆tJIVIσIN
positive ions and Ne = ∆tJIVI(σI + σ–0)N electrons (in
the proportion 1 : 11) into the lens region occupied by
the beam. Here, ∆t is the time step, JI is the ion flux den-
sity at the lens inlet, VI is the volume of the ionization
region, σI is the cross section for the ionization of the
gas by the beam ions, σ–0 is the cross section for the
neutralization of the beam ions in collisions with gas
atoms, and N is the number of neutral particles in the
ionization region. The initial electron energies were
specified according to the calculated energy distribu-
tion (see [8]), and the initial directions of the electron
velocities were taken according to the angular distribu-
tion from [9]; the maximum of this distribution was in
the range 85°–95° with respect to the lens axis. The
coordinates of the new particles in the ionization region
were specified with the help of a random number gen-
erator. The trajectories of the new particles and the par-
ticles already occurring in the lens were calculated
from the equation of motion

where m, v, and q are the mass, velocity, and charge of
a particle, respectively, and EION , EE , EB , and EEL are
the components of the electric field produced by the
plasma ions, plasma electrons, beam ions, and elec-
trodes, respectively. The time step was ∆t = 10–11 s.
After a time of ∆T = 10–9 s, using the coordinates of all
the particles, we calculated the distribution of the space
charges of electrons, Ar+ ions, and H– beam ions by the
cloud-in-cell method [7]. The radial and longitudinal
dimensions of the spatial cell were equal to 0.1 cm.
Using the distribution of the total space charge ρ(z, r),
we calculated the potential U(z, r). Then, the particle
motion in the new electric field was calculated and a
new group of charged particles was introduced. The
calculation continued until the steady-state distribution
of the electric potential was established. The simulation
time was no longer than 10–5 s. Figure 2b shows a typ-

m
d
dt
-----v q EION EE EB EEL+ + +( ),=
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003



SPACE-CHARGE LENS FOR FOCUSING A NEGATIVE-ION BEAM 483
0–2 2 4 6 8 10 12 14 16

1.5

2.0

2.5

1.0

z, cm

log(NION/NE)

(‡)

1

2

2

3

4

5

6

7

4 6 8 10 12 14

0.03125–0.5000
–0.4375–0.03125
–0.9063…–0.4375
–1.375…–0.9063
–1.844…–1.375
–2.313…–1.844
–2.781…–2.313
–3.250…–2.781

z, cm

r, cm (b)

Fig. 3. (a) Axial profile and (b) spatial distribution of the ratio between the steady-state ion and electron densities in the lens at t =
10–5 s.

log(NION/NE)
ical steady-state potential distribution. The increase in
the potential in the center of the system due to the filling
of the working region with a positive charge is ≈300 V.

In the course of the lens formation, the positive
argon ions go away from the lens axis along the trajec-
tories close to the electric field lines (Fig. 2a) and
occupy the entire lens cavity with time. The electrons in
the working region move toward the lens axis and leave
the calculation region in the axial direction. Figures 3a
and 3b show the ratio between the steady-state electron
and positive-ion densities on the lens axis and in the
lens volume, respectively. In Fig. 3a, one can see three
minima associated with characteristic features of the
formation of the ion flow. A deep valley can be seen in
the central peak, which is explained by the fact that the
ion flux density in the central cross section is the high-
est and the electrons bunch there due to the lens sym-
metry. The positive-ion density exceeds the electron
density at least by one order of magnitude (the light
areas in Fig. 3b), and it is by two to three orders of mag-
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
nitude higher than the electron density in the region
adjacent to the central cross section (the dark areas in
Fig. 3b), which testifies that the ion component is pre-
dominant during the formation of the space charge dis-
tribution.

Figure 4 shows the calculated trajectories of the
negative-beam ions in the field of the lens in the steady-
state regime. The lens has a high focal power, but there
are significant aberrations caused by edge fluxes, which
can be avoided under real conditions by limiting the
diameter of the output beam and by reducing the influ-
ence of the electrodes. The focal length of the lens is
18 cm. At a collector radius of 1 cm, the beam compres-
sion ratio attains a value of ≈25, which is substantially
higher than that observed in the experiment (about 5).
However, this discrepancy can easily be explained tak-
ing into account the considerable phase space occupied
by the real beam and the initial asymmetry of the beam
emerging from the source slit.
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Thus, we have calculated the distributions of the
potential and charged particle densities in the working
region of the space-charge lens for focusing a negative-
ion beam. The assumptions that the electron density is
substantially reduced in the presence of a longitudinal
electric field and that an excess positive charge is pro-
duced in the lens have been confirmed. The calculated
value of the focal length of the lens is close to that mea-
sured in the experiment.

4. CONCLUSIONS

(i) The distributions of the space charge and electric
field in the space-charge lens for focusing a negative-
ion beam have been calculated numerically. The calcu-
lations demonstrate the high efficiency of both the iner-
tial confinement of positive ions in the lens and the
removal of electrons from the focusing region by a lon-

3
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–1
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–3
10 20 30 400
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r, Òm

Focus, z = 18 cm

Lens

Fig. 4. Calculated trajectories of the negative beam ions in
the field of the lens in the steady-state regime.
gitudinal electric field. As a result, the density of the
positive ions in the lens is two to three orders of magni-
tude higher than the electron density. The focal length
of the lens observed in calculations attains ≈20 cm.

(ii) It has been shown that the calculated values of
the focusing electric field and the focal length agree
well with the measured values.

(iii) It has been shown experimentally that the
geometry of the lens significantly affects the removal of
electrons from the lens.
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Abstract—Oscillations and the stability of the helical structures of likely charged particles undergoing Cou-
lomb interactions and confined in an axisymmetric potential well are studied theoretically. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A typical example of a strongly nonideal plasma is
provided by ordered structures of charged particles
confined by external fields. In plasma physics, such
structures are sometimes called quasi-crystals,
although they lack the quasi-crystalline order known in
solid-state physics [1]. One of the first experimentally
observed ordered structures was a system of micron-
sized iron and aluminum charged particles in a certain
configuration of an alternating and a static field [2]. In
later experimental investigations involving laser cool-
ing techniques, Coulomb crystals were observed to
form in various types of devices, e.g., in a Penning trap
[3, 4], an RF Paul trap [5–7], and storage rings [8, 9].
From a practical standpoint, interest in such systems is
associated with a new type of atomic clock [10] and the
schemes proposed for implementing a quantum com-
puter [11]. Crystals may also form in a purely electron
plasma [12] and a dusty plasma [13].

The nature of ordered structures that arise in various
devices is largely governed by the parameters of the
external confining field. In this paper, we investigate
quasi-one-dimensional structures that form in linear
Paul traps and storage rings. The simplest approxima-
tion for such structures is to describe them as a system
of singly charged ions that is uniform or periodic in a
certain direction (e.g., along the z-axis) and whose
transverse spreading is prevented by an external para-
bolic potential. During the laser cooling process, the
ion kinetic energy T decreases; as a result, the plasma
parameter e2/aT (where a is the characteristic distance
between the particles) amounts to about 104. As the
parameters of the confining potential change, various
structures that form during the cooling process undergo
numerous phase transitions. The behavior of such
structures has received much experimental, numerical,
and analytical study [15]. On the other hand, virtually
nothing is known about the oscillations and stability of
Coulomb crystals in linear devices.

Here, we develop a theory of linear oscillations of
Coulomb crystals exhibiting helical symmetry. We
begin with a review of the different equilibrium config-
1063-780X/03/2906- $24.00 © 20485
urations of charges in a linear device. Then, we derive
a general set of linearized equations. Finally, we use
these equations to calculate the spectra of oscillations
of the five simplest types of crystals.

2. STEADY STATES OF A CRYSTAL

We consider a system consisting of a large number
of likely charged particles confined in an external field
with the potential Uext(r), which prevents the system
from spreading in the transverse direction. We restrict
ourselves to considering the case in which the external
potential can be assumed to be independent of one of
the coordinates (the z coordinate) and harmonic in the
transverse coordinate. This case corresponds to two
experimental situations. First, in a Penning trap, as well
as in a Paul trap, the shape of any axisymmetric poten-
tial well Uext(r) ≈ 1/2[Kzz2 + K(x2 + y2)] near its bottom
is often highly anisotropic, Kz ! K. Accordingly, at z ≈ 0,
the longitudinal component of the external force can be
neglected. Second, in a toroidal device or storage ring,
charged particles are confined in the vicinity of the
closed axis; in this case, toroidal effects can be
neglected provided that particle excursions away from
the axis are small in comparison with the major radius
of the device.

It is acceptable to ignore the distinction between the
toroidal and axisymmetric devices in analyzing the
small oscillations of a crystal. However, in searching
for the spatial configurations of charges that would be
most advantageous from the energy standpoint, doing
so requires certain care. In a toroidal device, the line
density (or the mean distance between the particles) is
determined by the total number of particles and the
major radius of the torus and is independent of K. On
the other hand, in a highly anisotropic device, a
decrease in the parameter K, which characterizes parti-
cle confinement in the transverse direction, may change
the mean interparticle distance even near the bottom of
the potential well [14]. In describing the states that are
most favorable energetically, we neglect, for simplicity,
the dependence of the mean distance between the parti-
cles on the confinement parameter K. This dependence
003 MAIK “Nauka/Interperiodica”
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can be accounted for through an unessential renormal-
ization of the dimensionless parameter µ, which will be
introduced below.

The dynamics of the system is described by the
equations

(1)

where rn = (xn, yn, zn), r⊥ n = (xn, yn, 0), and q and m are
the charge and mass of a particle. In writing the formu-
las, it is convenient to assume that the total number of
particles is equal to 2N + 1.

In the steady state,  = 0; accordingly, the problem
reduces to that of looking for the coordinates rn of the
particles with which the right-hand side of Newton’s
equation (1) vanishes. Let us list some of the simplest
configurations that can take place at N  ∞. When the
external potential is sufficiently high, all particles occur
at the axis and form a linear chain (string), in which
they have the coordinates

(2)

Recall that the distance a between the particles is
assumed to be given. It is clear that, by virtue of the
symmetry of the system, the total force acting on the
nth particle in chain (2) is identically zero.

A somewhat more complicated case is that of a heli-
cal configuration, i.e., a helical chain (a helix) of parti-
cles with the coordinates

(3)

Substituting coordinates (3) into Eq. (1) and taking
the limit N  ∞, we can readily see that the balance
of the longitudinal forces and the balance of the angular

m ṙ̇n Kr⊥ n– q
2 rn rm–

rn rm–
3

---------------------, n
m N–=

m n≠

N

∑+ N…N ,–= =
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34

Fig. 1. Extrema of Madelung energy (7) in polar coordi-
nates (u, θ). The solid and dashed curves represent the solu-
tions to Eq. (8), and curves 1–4 are the solutions to Eq. (4)
with µ = (1) 1.674, (2) 0.305, (3) 0.098, and (4) 0.058.
momenta are satisfied exactly and that the condition for
the radial force to vanish yields

(4)

where

(5)

Here, we have introduced the dimensionless diame-
ter of the helix, u = 2R/a. The dimensionless quantity
µ = Ka3/q2 serves as a control parameter. Equation (4)
and its trivial solution u = 0, which corresponds to con-
figuration (2), represent only two relationships between
the three quantities µ, θ, and u. In other words, the con-
figuration of the system cannot be uniquely determined
from the purely mechanical force-equilibrium condi-
tion. This ambiguity is resolved by imposing an addi-
tional requirement that the total energy of the system be
minimum, which naturally applies to systems with dis-
sipation and, in particular, to laser-cooled systems. The
total potential energy of the system can be written as
U = , where the energy wn of an individual par-
ticle, which will be called, by analogy with solid-state
physics, the Madelung energy, is equal to

(6)

For both linear chain (2) and helical chain (3), this
energy diverges logarithmically as the total number of
particles tends to infinity. However, the difference in
the Madelung energies of each of these configurations
is finite and is, of course, independent of n. In dimen-
sionless form, it is convenient to write this difference as
w(h)n – w(s)n = (q2/a)ε(u, θ), where

(7)

The values of u that make this function an extremum
are given by Eq. (4), and the equation ∂ε/∂θ = 0 yields

(8)

Equations (4) and (8) uniquely determine the depen-
dence of the free parameters u and θ on µ.

Some insight into the extreme points of function (7)
is provided by Fig. 1, which presents the solutions to
Eq. (8) in polar coordinates (u, θ). The positions of the
maxima of ε(u, θ) are shown by solid curves, the con-
tinuations of which in the form of dashed curves corre-
spond to the minima. The dotted curves refer to the
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Fig. 2. Evolution of the structure of a Coulomb crystal as the confinement parameter of the device changes.
solutions to Eq. (4) that were obtained for different val-
ues of the parameter µ.

For a sufficiently high confining potential (µ > µ0 ≈
4.209), the state that is most advantageous from the
energy standpoint is that with linear chain (2), which is
at the origin of the coordinates in Fig. 1. In the range
µ0 > µ > µ1 ≈ 1.674, the most advantageous structure is
a zigzag, i.e., structure (3) with θ = π. In Fig. 1, the cor-
responding branch is marked with a Z. As µ increases,
the size of the zigzag increases from zero to a maxi-
mum value of umax ≈ 0.965. Then, at µ < µ1, the follow-
ing bifurcation occurs: the maxima of Madelung energy
(7) are now on the ray u > umax, θ = π (Fig. 1) and the
minima of this energy lie on the line H1, corresponding
to helical configuration (3) along which the angle θ
depends in a certain fashion on µ. The transition from
the zigzag to the first helix H1 is continuous. The two
transitions just described are illustrated schematically
in Fig. 2.

As the confining potential decreases further, the sys-
tem undergoes a series of phase transitions. Different
helical branches H2, H3, … in Fig. 1 are separated from
each other by potential barriers. As a rule, phase transi-
tions occur through the formation of more complicated,
tetrahedral structures. Altogether, there are ten phase
transitions from one to another of the relatively simple
structure, such as those shown in Fig. 2. All of these
phase transitions are well captured numerically and
many of them were observed experimentally. Finally, in
the range µ ≤ 0.05, a system forms that consists of sev-
eral nested cylindrical shells. The details of the analysis
of the Madelung energy for different configurations and
the results of numerical simulations can be found in the
review by Hasse and Schiffer [15].1 Table 1 presents the
ranges of variation of the parameter µ in which the
Madelung energy in different helical structures has an

1 It should be noted that, in [15], the role of the external parameter
is played by the dimensionless line particle density λ, which is
related to the parameter µ used here by the relationship µ =
3/(2λ3).
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absolute minimum. In Fig. 1, the corresponding por-
tions of the curves are shown by heavy lines. In the gaps
between the ranges given in Table 1, the minimum of
energy corresponds to a tetrahedral configuration,
which is not considered here. It should be noted that H2
and H3 helices are nearly isomeric: the difference
between the energies in them is about 0.01.

3. DISPERSION RELATION
In order to investigate oscillations of helical struc-

ture (3) and its stability, we represent the coordinate of
each particle in the form

(9)

We insert coordinates (9) into the equation of
motion (1) and linearize the resulting equation in small
deviations (δρn, δφn, δzn) from the equilibrium posi-
tions. As a result, we obtain an infinite set of equations,
which is too complicated to present here. Since the
group of symmetries of unperturbed helix (3) is Abe-
lian, the linearized set of equations is diagonalized by
the substitution

rn a
u
2
--- δρn+ 

  nθ δφn+( ),cos=

u
2
--- δρn+ 

  nθ δφn+( )sin n δzn+, .

Table 1.  Structures with a minimum Madelung energy.
Symbol S denotes linear chain (2)

Structure type Intervals of µ

S (4.207, ∞)

Z (1.674, 4.207)

H1 (0.768, 1.674)

H1 (0.305, 0.559)

H2 (0.094, 0.143)

H3 (0.050, 0.058)



488 GUSEŒN-ZADE, IGNATOV
(10)

where we have introduced an analogue of the plasma

frequency, ωp = , and the dimensionless
oscillation frequency ν. The dimensionless wave vector
lies in the first Brillouin zone –π < s < π. Hence, we
arrive at a homogeneous set of linear equations:

(11)

where the elements of the Hermitian matrix Q are
equal to
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and the quantity Dm is given by formula (5).

Equations (11) can be investigated analytically only
for a linear chain. The results presented below were
obtained from a numerical analysis of other types of
chains. The numerical procedure consisted in finding
the equilibrium radius u and pitch angle θ for certain
values of µ and calculating the eigenvalues and eigen-
vectors of Eqs. (11) for wavenumbers in the range
0 ≤ s ≤ π. Attention was largely focused on determining
the intervals of stability of helical configurations, i.e.,
the intervals of µ values in which ν2 > 0 for any values
of s. Such an analysis is required because a local or a
global minimum in the Madelung energy automatically
guarantees that the configuration is stable only against
long-wavelength perturbations with s = 0 but does not
guarantee its stability against arbitrary perturbations.

3.1. Linear Chain

For linear ion chain (2), the linearized equations of
motion are easy to solve. Since the oscillations of the
ions are symmetric, they can be resolved into longitudi-
nal oscillations with ρ0 = 0 and transverse oscillations
with z0 = 0 and an arbitrary plane of polarization. The
dimensionless oscillation frequencies are determined
by the expressions

(13)

(14)

The spectral curves of the longitudinal and trans-
verse oscillations are shown in Fig. 3. The function

(s) is maximum at s = π, which indicates that, as the
confinement parameter decreases to the value µ =

(π)/2 = 7ζ(3)/2 ≈ 4.207, the transverse oscillations
with s = π lose their stability and a linear chain contin-
uously evolves into a zigzag. This µ value coincides
with the stability boundary estimated for a linear chain
from energy considerations (Table 1).

3.2. Zigzag

Zigzag chain (3) with θ = π is characterized by three
oscillation branches. The polarization of one of them
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corresponds to purely azimuthal oscillations with φ0 ≠ 0,
ρ0 = 0, and z0 = 0. The polarization of the remaining two
corresponds to oscillations with δ0 = 0, ρ0 ≠ 0, and z0 ≠ 0.

Like a linear chain, a zigzag is stable over the entire
range in which it exists. As the confinement parameter
decreases to its minimum value µ ≈ 1.674, the group
velocity of the long-wavelength azimuthal oscillations
approaches zero. For µ < 1.674, a long-wavelength
instability develops, (ν2/s2)s → 0 < 0 (Fig. 4), which cor-
responds, obviously, to the continuous evolution of a
zigzag into helix H1.

3.3. Helix

As was noted above, there are three different helical
configurations that are most advantageous from the
energy standpoint; moreover, as the confinement
parameter µ changes, the absolute minimum of Made-
lung energy (7) may jump from branch to branch
(Fig. 1).

Helical configurations oscillate in a more compli-
cated fashion than the configurations considered above

1

2

8

6

4

2

s
π/4 π/2 3π/4 π

ν2

Fig. 3. Spectra (13) and (14) of (1) longitudinal and
(2) transverse oscillations of a linear chain for µ = 5.
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Fig. 5. Spectra of oscillations of helix H1 for µ = 1.04, u =
1.405, and θ = 2.548. The upper curve at s = 0 corresponds
to purely radial oscillations.
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do. As a rule, the oscillations of the particles are essen-
tially three-dimensional (δ0 ≠ 0, ρ0 ≠ 0, z0 ≠ 0). The only
exception is uniform oscillations with s = 0 (i.e., purely
radial oscillations), in which case the frequencies of the
azimuthal and longitudinal oscillations become zero.

A characteristic example of the dispersion curves
for oscillations of helix H1 is shown in Fig. 5. The inter-
vals of µ values where all of the configurations in ques-
tion are stable are presented in Table 2. An important
point is that, for all configurations, the intervals of sta-
bility either coincide with those in which the Madelung
energy has an absolute minimum (S and Z configura-
tions) or exceed them. As µ increases, the helix loses its
stability in a more complicated way than the linear
chain and zigzag do. As far as we can judge by the
numerical results, in most cases, the oscillations that
become unstable are those whose wavenumbers are
incommensurable with π. A characteristic example of
how helix H2 loses its stability is illustrated in Fig. 6.
This type of instability may give rise to more compli-
cated structures, such as helices with additional modu-
lation.
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Fig. 4. Spectra of oscillations of a zigzag at the stability
boundary for µ = 1.674, u = 0.965, and θ = π. Spectrum 1
refers to azimuthal oscillations.

ν2

0.10

0.08

0.06

0.04

0.02

s
π/4 π/2 3π/4 π

Fig. 6. Spectra of oscillations of helix H2 for µ = 0.06, u =
7.264, and θ = 1.753.
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4. CONCLUSION

The main qualitative conclusion from the above
analysis may be formulated as follows. A helical struc-
ture whose potential energy has an absolute minimum
is stable. On the other hand, as the confinement param-
eter changes, a crystal may remain stable even when its
configuration becomes energetically unfavorable.
Since different helical branches are separated from
each other by the potential barriers, the crystals may, in
principle, evolve into metastable states and the corre-
sponding hysteresis effects may come into play. We can
conclude by saying that, whereas the evolutions of a
linear chain into a zigzag and of a zigzag into a helix are
analogues of phase transitions of the second kind, the
evolutions of helices from one configuration into
another are analogous to phase transitions of the first
kind.
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Table 2.  Intervals of stability of different helical structures

Structure type Intervals of µ

S (4.207, ∞)

Z (1.674, 4.207)

H1 (0.708, 1.674)

H2 (0.084, 0.170)

H3 (0.033, 0.071)
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Abstract—It is well known that high-power directed wideband electromagnetic radiation in the microwave
range can be generated by a superluminal pulse of the electron emission current. The operation of a simple emit-
ting element driven by a superluminal current pulse and consisting of an accelerating diode with a photocathode
and a source of ionizing radiation that initiates electron emission from the cathode is considered. It is shown
that the parameters of an elementary superluminal source obey scaling relations that are determined by the
growth rate of the electron emission current from the photocathode and the parameters of the accelerating diode.
The limiting anode current density and the limiting values of the characteristics of electromagnetic radiation
achievable in such a system are determined. The effect of the finite dimensions of the accelerating system on
the parameters of the emitter is investigated, and the spatiotemporal characteristics of the generated electromag-
netic fields are obtained. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-power directed wideband electromagnetic
(EM) radiation in the microwave range can be gener-
ated by means of a superluminal electron emission cur-
rent pulse [1, 2] produced when the front of the electron
emission from the interface between a vacuum and a
medium propagates with a velocity v ph higher than the
speed of light c. In particular, a superluminal current
pulse is generated when a plane metal surface is irradi-
ated by a plane flux of radiation capable of producing
electron emission, in which case the phase velocity of
the moving emission front is equal to

(1)

where θ is the angle of incidence of the radiation.
The spatiotemporal distribution of the electron

emission current near the surface is phased in such a
way that an emitted EM wave propagates in the same
direction as the reflected wave of the ionizing radiation
(Fig. 1). At sufficiently large distances R from the
source, the amplitude of the emitted EM field is propor-
tional to the second derivative of the surface density of
the dipole moment P with respect to time; in turn, this
derivative is proportional to the energy of the electrons
emitted and the area S of the emitter surface [1, 2]:

(2)

where ρ(r, t) is the electron density in the dipole layer.
According to formulas (2), the higher the energy of

the emitted electrons, the higher the intensity and total
energy of the emitted EM radiation. Estimates [2] show

v ph c/ θ,sin=

E
w

H
w

Ṗ̇S/c
2
R, Ṗ̇∼ ∼ d

2P/dt
2

,=

P r t,( ) V ' r r'–( )ρ r' t,( ),d∫=
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that, in order for the energy and intensity of the gener-
ated EM radiation be of interest for practical purposes,
the energy of the emitted electrons should be on the
order of tens of kiloelectronvolts or higher. Under lab-
oratory conditions, the emission current of the high-
energy electrons can be generated by separating the
processes of the electron production and the formation
of the emitting dipole layer. Light or ionizing radiation
capable of producing electron emission is used only to
initiate the emission of electrons with the minimum
possible energy; the electrons emitted are then acceler-
ated to their final energies from hundreds to thousands

Ionizing
EM
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L X

Z

n

θ

O

Fig. 1. Elementary microwave source in a vacuum chamber
evacuated to a pressure of p < 0.005 mm Hg.
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of kiloelectronvolts by an external electric field. Sche-
matically, an EM radiation source supplied by a super-
luminal current pulse is a plane accelerating diode with
a grid anode irradiated at a certain angle by a plane flux
of ionizing or light radiation (Fig. 1). The plane front of
the ionizing radiation generates a superluminal current
pulse of the electrons emitted from a photocathode.
Then, the electrons are accelerated in the interelectrode
gap, pass through the grid anode, and form a superlumi-
nal current pulse above it. The current pulse so pro-
duced generates a high-power directed EM pulse near
the anode.

In the theory of a superluminal source [1, 2], the
main results were obtained in studying the operating
modes of an emitter in which the generated electromag-
netic wave did not have any significant effect on the
parameters of the accelerating system. However, it is
clear that, for high current densities of the accelerated
electrons, this effect should be taken into account:
when the current density is sufficiently high, the char-
acteristics of the generated EM radiation depend on the
parameters of the accelerated diode and, primarily, on
the parameters of the limiting current that can be pro-
duced above the anode. Although there are many papers
devoted to the problem of limiting currents (see [3–5]
and the literature cited therein), some features of the
generation of EM radiation by a superluminal emission
current pulse that do not manifest themselves in the
classical schemes of microwave generation remain
uninvestigated. In particular, since the EM radiation
pulse forms at the front of the emission current, the
achievement of high current densities at the anode is
determined not by the current density of the emitted
electrons but by the growth rate of the emission current.

Our objective here is to investigate the limiting char-
acteristics of the EM radiation generated by an elemen-
tary superluminal source. We present analytic estimates
and the results of numerical calculations of the param-
eters of a superluminal current pulse and EM radiation
generated when the emission electrons are accelerated
in a plane diode operating at high current densities.

2. ANALYTIC MODEL OF THE FORMATION
OF AN EMITTING DIPOLE LAYER

IN AN ELEMENTARY EMITTER

The feature of an emitting element (Fig. 1) based on
the generation of EM radiation by a superluminal cur-
rent pulse of the electrons accelerated in a plane diode
is that it generates two electromagnetic waves, which
will be referred to as “directed” and “guided” waves.
The interaction of these waves with the emitted elec-
trons governs the magnitude of the anode current and
the dipole moment above the anode.

In the free half-space above the anode (z > L), the
directed electromagnetic wave propagates in the direc-
tion in which the ionizing radiation is reflected (Fig. 1).
The parameters of the directed wave are determined by
the dynamics of the dipole layer of the electrons accel-
erated in the diode [see Eq. (2)]. It can be assumed that
this wave does not affect the anode current amplitude
because of the screening effect of the metal grid anode.

A superluminal current pulse produced by the elec-
trons moving in the interelectrode gap also generates an
electromagnetic wave that propagates in a plane
waveguide formed by the cathode and anode. Being
added to the field of the space charge of the emitted
electrons, the field of this guided electromagnetic wave
reduces the effective accelerating field in the diode and,
accordingly, lowers the limiting current density at the
anode and the density of the dipole moment of the elec-
trons above it.

The processes of the generation of EM radiation, the
formation of the dipole layer, and the electron motion
in the accelerating gap should be considered together
because they are closely related to each other. A theo-
retical study of such systems is based mainly on numer-
ical simulations. However, in some cases, the problem
of the initial stage of the formation of a dipole layer
(before the electron flow velocity becomes multivalued
[6]) can be investigated by approximate analytic meth-
ods, which make it possible to obtain scaling relations
for the main parameters of the electron current and to
estimate the limiting current densities at the anode
operating in a dynamic mode.

We consider the process of the formation of an elec-
tron dipole layer above the grid anode of an infinite
plane capacitor in the one-dimensional approximation.
We assume that the anode is transparent to electrons
and denote by L and ϕ0 the distance and the voltage
between the electrodes. It is well known that, when the
voltage ϕ0 is not too high, eϕ0/(mc2) = γ0 – 1 ! 1, the
electron motion can be treated as nonrelativistic. In
such a diode, the steady-state limiting current density is
described by the expression [5]

(3)

We assume that, under the action of ionizing radia-
tion incident on the emitting element, the cathode emits
electrons with a current density Jc(t) and a zero initial
velocity.

2.1. The Case of Normal Incidence 
of the Ionizing Radiation (θ = 0, v ph = ∞)

The normal incidence of ionizing radiation on an
emitting element is an exceptional case in which an
electromagnetic wave is not generated (v ph = ∞) and,
accordingly, there is no need to take into account the
effect of the fields of the directed and guided electro-
magnetic waves on the electron motion. Nevertheless,
this problem, even being considerably simplified, is of
interest because it makes it possible to derive the main
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scaling relations for the parameters of the electron cur-
rent.

Let the cathode (z = 0) start emitting electrons into
the accelerating gap at the time t = 0. We consider only
the initial stage of the formation of a dipole layer, up to
the time τr at which the emitted electrons begin to
return to the cathode and the electron flow velocity
becomes multivalued. In this stage, the space charge
that arises above the cathode by the time τ is equal to

(4)

Since the space charge produced changes the accel-
erating electric field of the capacitor, the motion of the
electrons injected at the time τ < τr is described by the
equation

(5)

where e and me are the charge and mass of an electron.
The electric field Ez(τ, z) acting on an electron emitted
from the cathode at the time τ has the form

(6)

Here, E0 = ϕ0/L is the initial accelerating electric field
in the diode; η(t) = 0 (t < 0) and 1 (t ≥ 0) is the Heavi-
side step function; and T*(τ) is the transit time of an
electron from the cathode to the anode, so an electron
emitted from the cathode at the time τ reaches the
anode at the time t = τ + T*(τ).

Since the accelerating field decreases as the space
change increases, the electron transit time from the
cathode to the anode becomes longer. As a result, the
electrons injected from the cathode during the time
interval ∆τ reach the anode during the time interval ∆t =

∆τ . Accordingly, the current density at the

anode Ja is related to the current density at the cathode
Jc(τ) by

(7)

Of course, for  ! 1, the current density may

be regarded as conserved: the current density above the
anode is equal to that at the cathode and the electron
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velocity at the anode does not depend on time and is
equal to

(8)

In this case, the characteristic time of the formation
of the dipole layer, Tp, can be estimated from the cur-
rent density at the cathode.

If we assume that the current density at the cathode
changes linearly with time (at least over the time inter-
val 0 < τ < τr),

(9)

then we obtain

(10)

The condition  ! 1 is satisfied when

(11)

i.e., when the transit time of an electron through the
interelectrode gap is much shorter than the time scale
on which the electric field in the gap changes. This con-
dition can be rewritten in terms of the growth rate of the
emission current from the cathode:

(12)

Under conditions (11) and (12), the characteristic
time of the formation of the dipole layer is Tp =

 = , the surface density

of the dipole moment is P0 =  = , the time

derivatives of the dipole moment density are equal to

 =  and  = , and the characteristic wave-

length of the generated EM radiation is λ =2πÂ =
2πcTp.

When the current density at the cathode changes at
a high rate, Jt ~ J0t, the time scale on which the acceler-
ated field in the interelectrode gap changes is compara-
ble with the electron transit time, Tm ~ T0. The space
charge of the electrons emitted from the cathode during
the time interval 0 < τ < Tm completely neutralizes the
external accelerating field; i.e., the electrons emitted at
the times τ > Tm do not contribute to the anode current.
Only after the time τ = τr , at which the electrons begin
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to return to the cathode, is the anode current again con-
tributed by the emission from the photocathode.
Accordingly, the time scales on which the anode cur-
rent and the dipole moment density change are deter-
mined by the times Tm and T0.

We assume that the current density changes linearly
with time [see expression (9)] and switch to the new
dimensionless variables

(13)

Substituting these variables into equation of motion (5),
we obtain the following parametric expressions for the
density of the current flowing through the anode and for
the time derivatives of the dipole moment density:

(14)

(15)

where the time at which an electron is emitted from the
cathode and the time at which it reaches the anode are
related by

(16)

Using formulas (14) and (15), we can estimate the
maximum values of the anode current and of the time
derivatives of the dipole moment density, as well as the
times at which the maximum values are achieved:

(17)

(18)

(19)

Figures 2–4 show the electron current and the deriv-
atives of the dipole moment density above the anode,
calculated from analytic expressions (17)–(19) and
obtained in the one-dimensional numerical modeling
with the two-dimensional EMC2D code [7], in which
Maxwell’s equations and the equations of electron
motion are solved self-consistently by a particle-in-cell
(PIC) method.
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In dimensional form, expressions (17)–(19) become

(20)

(21)

(22)

Expressions (17)–(22) show that, when the gener-
ated EM radiation (the directed and guided waves) has
a negligible effect on the motion of accelerated elec-
trons, such parameters as the anode current, the dipole
moment, and the EM radiation intensity obey certain
scaling relations and their asymptotic values are deter-
mined by the parameters of the accelerated diode.

2.2. The Case of Oblique Incidence of the Ionizing 
Radiation (θ ≠ 0, v ph < ∞)

In the case of obliquely incident ionizing radiation,
the phase velocity of the emission current from the
cathode surface is finite, c < v ph < ∞, which results in
the generation of EM waves (directed and guided
waves). The field of the guided mode affects the process
of electron acceleration in the interelectrode gap, and
the field of the directed mode influences the dynamics
of the dipole layer above the anode.

We consider the effect of a directed EM wave on the
dipole moment above the anode under the assumption
that the EM field of the directed wave is screened by the
anode and thus has no impact on electron motion in the
interelectrode gap. It is clear that the field Ew of the
emitted wave can be neglected when it is lower than
space-charge field E sch:

Near the emitting surface, the component  of the
electric field of the EM wave is determined by the first
derivative of the dipole moment [2]:

(23)

In order of magnitude, we have
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Fig. 2. Time evolutions of the anode current for different growth rates of the current density at the cathode. The solid curves show
the results of numerical calculations, and the dotted curves are analytical results.
where ε0 =  is the maximum energy of the elec-

trons accelerated in the diode and λD = v 0Tm is the char-
acteristic dimension of the electron dipole layer.

Consequently, when the angle of incidence of the
ionizing radiation satisfies the condition

(24)

the field of the EM wave has a significant effect on the
process under consideration: it decreases the deriva-
tives of the dipole moment density and somewhat
reduces the duration of the generated EM pulse.

The guided mode of the EM radiation has a greater
effect because it influences the electron acceleration
process. The reason is that the accelerating field of the
diode decreases not only because of the increase in the
space charge of the emitted electrons [see expression
(6)] but also because of the generation of the EM field
component . Accordingly, in equation of motion (5),
the electric field should be taken in the form
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θ 1
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(25)

Self-consistent PIC computations (Fig. 5) show that,
in the case of oblique incidence of the ionizing radia-
tion on an accelerating diode (when EM radiation is
generated), the total field of the EM wave and of the
space charge increases at a much faster rate and to a
greater value than does the space charge field alone in
the case of normal incidence. Hence, the guided EM
radiation leads to the following effects:

(i) the shortening of the electron transit time Tm from
the cathode to the anode and

(ii) the weakening of the accelerating electric field
in the interelectrode gap.

Accordingly, both the anode current and the deriva-
tives of the dipole moment decrease.

The amount by which the anode current decreases
can be estimated by assuming that the electron acceler-
ation in a diode with the guided mode of the EM radia-
tion is determined not by the initial accelerating electric
field E0 but by a certain effective electric field Eeff =

E τ z,( ) E0 4π Jc t '( ) t 'd

0

τ

∫– Ez
w

z τ,( ),–=

0 z L.< <
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Fig. 3. Time evolutions of the first time derivative of the surface density of the dipole moment for different growth rates of the cur-
rent density at the cathode. The solid curves show the results of numerical calculations, and the dotted curves are analytical results.
E0 – , where the field component  is given by for-
mula (23):

(26)

We assume that the angle of incidence is not too
large, π/4 < θ < π/3, and that the electron motion is non-
relativistic, β0 = v 0/c ≈ 0.5. Then, we insert Eeff into for-
mulas (20)–(22) to see that the amplitude of the anode
current and the second derivative of the dipole moment
density decrease by a factor of approximately two:

(27)

This result is confirmed by numerical calculations
with the EMC2D code (Figs. 6, 7).

The above analytic estimates obtained for the gener-
ation of microwaves by a superluminal electron emis-
sion current pulse formed by a plane diode allow us to
draw the following conclusions:
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(i) The anode current density and the time deriva-
tives of the dipole moment in an emitting element are
determined by the parameters of an accelerating diode
and by the growth rate of the electron emission current
from the cathode; in turn, this rate depends on the rate
of change of the ionizing radiation flux intensity.

(ii) The limiting current at the anode, (Ja)max, is
lower than the steady-state limiting current J0 and the
limiting values of the derivatives of the dipole moment
are smaller than the corresponding steady-state limiting
values because the electron current is limited by not
only the space charge field but also by the field of the
generated EM wave.

(iii) In a half-space above the anode, the parameters
of the anode current and the derivatives of the electron
dipole moment obey scaling relations (13), (17)–(19),
and (27).

(iv) An increase in the rate of electron emission from
the cathode changes not only the amplitude values of
the parameters of the dipole layer but also the time
dependence of the derivatives of the dipole moment
density: the characteristic time scale of the dipole
moment and the associated wavelength λ = 2πcTm both
decrease. This indicates that the spectrum of the gener-
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Fig. 4. Time evolutions of the second time derivative of the surface density of the dipole moment for different growth rates of the
emission current density at the cathode. The solid curves show the results of numerical calculations, and the dotted curves are ana-
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ated radiation can be changed by changing the electron
emission rate.

3. NUMERICAL SIMULATIONS 
OF THE MICROWAVE GENERATION 

AT A HIGH EMISSION RATE

The above estimates have been obtained from a one-
dimensional model of an infinitely long emitting ele-
ment. In actuality, the dimensions of a capacitor used to
form superluminal current pulses are usually too small
for it to be treated as a plane one with an infinite length
and an infinite width. Thus, in [8], the experiments on
microwave generation by superluminal current pulses
initiated by the front of soft X radiation from a laser–
plasma source were carried out with a capacitor with
voltage ϕ0 = 80 kV, length Lx = 80 cm, width 5 cm, and
interelectrode distance L = 2 cm. The configuration of
this accelerating system was used as the basis for our
numerical investigations of the effect of the finite
dimensions of an emitter on the parameters of a super-
luminal source. The investigations were carried out
with the EMC2D PIC code [7]. The geometry of the
system corresponded to that shown schematically in
Fig. 1. The initial electrostatic field of the capacitor
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
were computed by the finite-element method with the
help of the MATLAB software package [9] and then
were used as the input to the EMC2D code for calculat-
ing the dynamics of an electron cloud. It was assumed
that electron emission is initiated by the plane front of
the ionizing radiation incident at an angle of 60° and
that the current density changes linearly according to

the law Jt = 2.5 × 1010–5 × 1011  (a = 0.45–2.0).

3.1. Effects of the Finite Length of the Emitting Element

Figures 8–10 illustrate the results of calculations of
the anode current, the second derivative of the dipole
moment, and the rise time of the second derivative [all
normalized to their maximum values determined by
Eqs. (20)–(22)] as functions of the longitudinal coordi-
nate. The main effect of the finite length of an emitting
element is the spatial nonuniformity of the profiles of
the anode current and dipole moment density along the
capacitor; this effect is associated with the influence of
the generated radiation on the electron motion. At the
left end of the capacitor (Fig. 1), the EM radiation has
an insignificant effect on the formation of the current
pulse. However, the larger the distance from the left

A

Òm
2
 s

-------------
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Fig. 5. Time evolutions of the electric field Ez in the middle of the accelerating gap in the case of the oblique (θ = π/3) incidence of
the ionizing radiation on an infinitely long (one-dimensional) emitting element (with allowance for the generation of EM waves)
and in the case of normal (θ = 0) incidence (with no generation of EM waves). The calculations were carried out for a = 2.
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Fig. 6. Anode current density as a function of the growth
rate of the emission current density at the cathode in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation on an infinitely long (one-dimensional) emitting ele-
ment [with allowance for the generation of EM waves, for-
mula (27)] and in the case of normal (θ = 0) incidence [with
no generation of EM waves, formula (17)]. The symbols
show the results of numerical calculations.
end, the larger the amplitude of the generated EM wave
and the closer the parameters of the superluminal cur-
rent pulse to their limiting values corresponding to an
infinitely long emitter (Figs. 6, 7). For an emitter of
fixed length, an increase in the rate of electron emission
from the cathode is seen to somewhat reduce the degra-
dation of the parameters of the electron dipole moment
due to the effect of the guided EM wave (Fig. 9); how-
ever, as the length of the emitting surface increases, the
parameters in question always approach their asymp-
totic values given by formulas (27).

3.2. Effects of the Finite Transverse Dimensions
of the Emitting Element

For the width of an accelerating diode not to signif-
icantly distort the spatiotemporal distribution of the
electrons over the dipole layer, it should be much larger
than the distance between the electrodes. Calculations
show that the anode current and the derivatives of the
dipole moment are essentially the same as those pre-
dicted by the one-dimensional model. The difference
between the numerical and analytical results is the larg-
est at distances from the capacitor edge that are shorter
than the distance between the electrodes.
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Since the intensity of radiation generated in a distant
source region is determined by the second derivative of
the surface density of the dipole moment and the emit-
ter area, which is the anode area, the boundary effects
associated with the finite width of the capacitor reduce
the effective width of the emitting surface by an amount
of about (1–2) × L.

3.3. Calculation of the EM Fields

Recall that an elementary microwave source sup-
plied by a superluminal emission current pulse that is
formed by an accelerating diode generates two wide-
band radiation pulses—a directed pulse and a guided
pulse.

At sufficiently large distances R from the emitting
region, the amplitude of the EM field of the directed
wave can be estimated in terms of the delayed poten-
tials. The magnetic field is easier to estimate:

(28)

where Sa is the anode area.
For an emitting element of infinite width (–∞ < y < ∞),

this expression yields the following estimate for the
magnetic field:

(29)

Figure 11 presents the results of two-dimensional
calculations of the magnetic field in a distant region of
the microwave source, –∞ < y < ∞ and R/D = 5, where
D = Lxcosθ is the effective length of the radiating ele-
ment. We can see that, since the parameters of the gen-
erated radiation (the derivatives of the dipole moment
in Figs. 7, 8) approach their asymptotic values as the
growth rate of the emission current increases, the
amplitude of the directed EM radiation pulse and its
characteristic rise time also approach their limiting val-
ues, in which case the field amplitude reaches its max-
imum and the characteristic wavelength reaches its
minimum. A change in the characteristic wavelength of
the EM radiation alters its directional pattern, which is
characterized by the diffractional divergence angle

(30)

Figure 12 shows the angular distributions of the
maximum radiation flux density with respect to the
direction in which the ionizing radiation is reflected for
different growth rates of the emission current. As can be
seen, an increase in the emission rate and the corre-
sponding decrease in the characteristic radiation wave-
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length increases the directionality of the EM emission
from the source, which radiates energy into a cone with
a solid angle of about 2θD (Fig. 13).

The characteristic wavelength of the EM radiation
generated in the accelerating gap is far longer than the
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Fig. 7. Second derivative of the electron dipole moment in
the half-space above the anode as a function of the growth
rate of the emission current density at the cathode in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation on an infinitely long (one-dimensional) emitting ele-
ment [with allowance for the generation of EM waves, for-
mula (25)] and in the case of normal (θ = 0) incidence [with
no generation of EM waves, formula (19)]. The symbols
show the results of numerical calculations.
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(θ = π/3) incidence of the ionizing radiation for different
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a = (1) 0.45, (2) 0.64, (3) 1.42, and (4) 2.0.
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critical wavelength; i.e., the waveguide formed by the
cathode and anode is overcritical. Nevertheless, a
guided EM wave can propagate in the waveguide
because of the propagation of the emission current
along the cathode. As a result, the EM field emitted
through the open end of the waveguide is dipolar and
coherent with the directed EM wave emitted by a super-
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Fig. 11. Time evolutions of the magnetic field of the gener-
ated EM radiation propagating in the direction in which
obliquely (θ = π/3) incident ionizing radiation is reflected
for R/D = 5 and for different growth rates of the emission
current density at the cathode: a = (1) 0.45, (2) 0.64,
(3) 1.42, and (4) 2.0.
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Fig. 9. Profiles of the anode current along a capacitor in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation for different growth rates of the emission current den-
sity at the cathode: a = (1) 0.45, (2) 0.64, (3) 1.42, and
(4) 2.0.
luminal current source (both of them are generated by
the same ionizing radiation pulse and are in phase with
one another). Figure 14 illustrates the results from two-
dimensional simulations of the generation of EM radi-
ation and its propagation away from an elementary
emitter with (a) a screened and (b) an open waveguide
end. In both figures, we see the directed EM radiation
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Fig. 12. Angular distributions of the maximum EM radia-
tion flux density for different growth rates of the emission
current density at the cathode: a = (1) 0.45, (2) 0.64,
(3) 1.42, and (4) 2.0.
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from a superluminal current source. In Fig. 14b, we
also see a cylindrical EM wave emitted through the
open end of the waveguide structure. Accordingly, in an
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
emitter with an open waveguide end, the EM field
amplitude and the energy flux in the direction in which
the radiation is emitted most intensely are seen to sub-
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stantially exceed those in a system with a screened
waveguide end (Fig. 15).

4. CONCLUSION

Our studies have shown that the parameters of an
elementary superluminal source obey scaling relations
in terms of the growth rate of the electron emission cur-
rent from the cathode and the parameters of the accel-
erating diode (the voltage and the distance between the
electrodes). The limiting anode current density and the
limiting intensity and energy of the EM radiation that
can be achieved in such a source have been determined.
The maximum achievable anode current density is sub-
stantially lower than the steady-state limiting current
density because of the additional restrictions on the
electron current dynamics that are associated with the
influence of the field of the generated EM radiation.
The effect of the finite dimensions of the accelerating
system on the parameters of the emitter has been inves-
tigated. The spatiotemporal characteristics of the emit-
ted EM fields have been obtained as functions of the
parameters of the configuration of an accelerating sys-
tem and the rate of electron emission from the cathode.
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Abstract—A study is made of the interaction (“collision”) of two laser pulses with the same frequency but dif-
ferent durations, propagating toward one another in a low-density plasma. It is found that, in the interaction
region, the excitation of small-scale plasma fields localized within a distance on the order of the length of the
longer pulse is accompanied by the backscattering of each of the pulses. The frequency shift of the backscat-
tered radiation and its duration depend strongly on the lengths of the interacting pulses. It is shown that the spec-
trum of the long backscattered radiation “tail” that arises behind the shorter pulse as a result of its interaction
with the longer pulse contains satellites shifted from the laser frequency by the plasma frequency. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, increased attention has been given to
the nonlinear effects accompanying the propagation of
laser pulses in plasmas. Of particular interest is the
investigation of the physical processes occurring in the
interaction (collision) between two laser pulses propa-
gating in a plasma toward one another, with the focus
on such issues as the amplification of pulses [1, 2], the
acceleration of electron bunches [3, 4], the excitation of
superstrong wake fields [5], the generation of Bragg
mirrors [6], the possibility of deriving information
about the structure of the pulses [7], and some other
problems [8–11].

In this paper, the nonlinear scattering of two laser
pulses during their interaction in an underdense plasma
is investigated in one-dimensional geometry. It is
shown that, in the interaction region, laser pulses with
the same frequency but different lengths generate
small-scale plasma perturbations localized within a dis-
tance on the order of the length of the longer pulse. In
interacting with the small-scale perturbations, each of
the laser pulses is backscattered; the frequency shift
and duration of the backscattered radiation depend
strongly on the lengths of the colliding pulses. In the
interaction of two long laser pulses, each of them is
backscattered into a pulse whose frequency is equal to
the laser carrier frequency and whose duration is deter-
mined by the length of the laser pulse propagating in
the opposite direction. In the case of short laser pulses,
the spectrum of the backscattered pulses contains satel-
lites whose frequencies are shifted from the laser fre-
quency by an amount determined by the plasma fre-
quency and the ratio between the durations of the inter-
acting pulses. In the case of interaction of a long laser
pulse with a short counterpropagating laser pulse, the
1063-780X/03/2906- $24.00 © 0503
duration of the radiation pulse scattered in the propaga-
tion direction of the shorter pulse is determined by the
length of the longer pulse. The spectrum of the long
backscattered radiation tail that arises behind the
shorter laser pulse as a result of scattering contains sat-
ellites shifted from the laser frequency by the plasma
frequency.

1. SMALL-SCALE PLASMA DENSITY 
PERTURBATIONS GENERATED 

IN THE INTERACTION BETWEEN TWO 
COUNTERPROPAGATING LASER PULSES
We consider two laser pulses with the same fre-

quency but different durations, propagating toward one
another along the z-axis in a low-density plasma with
the electron density N0e (Fig. 1a). The electric field of
laser radiation can be represented as

(1.1)

where k0 = (ω0/c) ; ε(ω) = 1 –  is the
plasma dielectric function, ω0 is the laser frequency,

ωp =  is the plasma frequency (ω0 @ ωp),
e and me are the charge and mass of an electron, and c
is the speed of light. The amplitudes E±(z, t) of the elec-
tric fields of laser pulses propagating from left to right
(the plus sign) and from right to left (the minus sign) are
assumed to vary slowly on the spatial and time scales

 and .
When laser pulses begin to overlap, they generate

small-scale electron density perturbations δNe(z, t). In
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Fig. 1. Schemes illustrating the interaction between a long laser pulse and a short counterpropagating laser pulse and the generation
of small-scale plasma fields at different times. The envelopes of the laser electric field and high-frequency oscillations within the
laser pulses are represented by light solid curves and dotted curves, respectively. The field amplitudes are given in dimensionless

units. The heavy solid curves show the reduced amplitude of the density perturbations, , calculated as a function

of the dimensionless coordinate x =  from expression (1.5) at ωp = 0.25ω0 for two laser pulses with the same intensities but

different durations ωpτ– = , τ+ = 3τ–. Plots (a), (b), and (c) refer to the dimensionless times  = –9, 0, and 9.
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the linear approximation (δNe ! N0e) and under the
condition

(1.2)

the perturbations can be described by the equation [6]

(1.3)

We solve Eq. (1.3) assuming that, in the interaction
region, the pulses are Gaussian in shape:

(1.4)
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where ξ = z – Vgt and η = z + Vgt are the spatial coordi-
nates in the comoving frames of reference of the prop-
agating pulses, Vg = (k0/ω0)c2 is the group velocity of
the pulses, L± are their lengths, and the vectors E0± char-
acterize their polarization and the maximum ampli-
tudes of their electric fields. The coordinate system is
chosen in such a way that, at the initial instant t = 0, the
functions E+(z, t) and E–(z, t) are maximum at the point
z = 0 (Fig. 1b).

With allowance for relationships (1.4), the solution
to Eq. (1.3) that satisfies the condition for the electron
density to be unperturbed before the two linearly polar-
ized laser pulses start to interact has the form

(1.5)
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where τ = , L = Vgτ = , and τ± =

L±/Vg is the duration of the pulses. The time dependence
enters solution (1.5) through the function Φ(x, a) [6]:

(1.6)

It should be noted that the amplitude of the density
perturbations (1.5) depends on the polarization of the
laser pulses and is maximum when the vectors E0+ and
E0– are parallel or antiparallel to each other. When the
electric fields of the pulses are mutually orthogonal,
E0+E0– = 0, small-scale electron density perturbations
(1.5) are not generated. The reason is that, in this case,
the Lorentz force vanishes, because, in the field of
either pulse, the electrons move along the magnetic
field of the other pulse.

Now, using asymptotic expansions of the function
Φ(x, a), we investigate the spatiotemporal evolution of
density perturbations (1.5) generated by laser pulses
with different durations τ+ and τ–.

In the case of collision between two long laser
pulses (ωpτ± @ 1), the parameter ωpτ is large and func-
tion (1.6) is described by the asymptotic formula [6]

(1.7)

which is valid for a @ 1, x. As a result, we arrive at the
following expression for density perturbations (1.5):

(1.8)

The first term in parentheses in expression (1.8)
describes quasistatic electron density perturbations,
which are excited only during the time interval ∆t ≈

 and disappear after the interaction. Dur-
ing the entire interaction process, the amplitude of the
density perturbations excited in the interaction between

2τ+τ–

τ+
2 τ–

2
+

--------------------
2L+L–

L+
2

L–
2

+
----------------------

Φ x a,( ) a y a x y–( )[ ] y
2

–( ).expsind

∞–

x

∫=

Φ x a,( ) a
2

a
2

4x
2

+
------------------- x

2
–( )exp=

+
π

2
-------a

a
2

4
-----– 

  ax( ),sinexp

δNe z t,( )
N0e

---------------------
2e

2
k0

2E0+E0–

me
2ω0

2ωp
2

------------------------------–=

× 2t
2

τ+
2 τ–

2
+

----------------–
1

L
2

----- z Vgt
τ+

2 τ–
2

–

τ+
2 τ–

2
+

----------------+
 
 
 

2

–
 
 
 

exp




+
π

2
-------ωpτ

2z
2

L+
2

L–
2

+
------------------–

ωp
2τ2

4
------------–

 
 
 

exp

× ωpt kpz
τ+

2 τ–
2

–

τ+
2 τ–

2
+

----------------+
 
 
 

sin




2k0z( ).cos

τ+
2 τ–

2
+( )/2
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
two pulses with the same duration (τ+ = τ–) is maximum
at z = 0. In the case of pulses with different durations
(τ+ ≠ τ–), the position of maximum amplitude moves at

the velocity V = –Vg  in the propagation direc-

tion of the shorter pulse. The second term in parenthe-
ses in expression (1.8) implies that the plasma oscilla-
tions remaining in the interaction region after the inter-
action process has come to an end are exponentially
small.

In the case of collision between two short laser
pulses (ωpτ± ≤ 1) or between a short pulse (ωpτ– ≤ 1)
and a long pulse (ωpτ+ @ 1), the parameter ωpτ, charac-
terizing the time during which the pulses overlap, is
small, ωpτ ≤ 1. In this case, small-scale plasma pertur-
bations are excited by a short-term driving force (in a
shocklike fashion). Using the asymptotic representa-
tion [6]

(1.9)

which is valid for x > 0 such that x @ 1, a, we arrive at
the following expression for the density perturbations
that remain in the interaction region after the interac-
tion process has come to an end:

(1.10)

The plasma oscillations that are excited in the interac-
tion of two pulses with the same duration (τ+ = τ–) are
long-lived small-scale standing waves. The spatiotem-
poral evolution of the plasma perturbations generated
by two laser pulses with different durations is more
complicated. In the interaction between a short and a
long laser pulse, small-scale wake plasma fields are
excited behind the shorter pulse (Fig. 1b). The small-
scale plasma oscillations that remain in the interaction
region after the interaction process has come to an end
are localized within a distance on the order of the length
of the longer pulse (Fig. 1c). In this case, the positions
of the zeros of the density perturbation amplitude and
of its maxima and minima are determined by the func-
tion cos(2k0z) and are fixed in space, and the envelope
of the small-scale perturbations moves in the propaga-
tion direction of the shorter pulse.
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2. SCATTERING OF LASER PULSES
BY SMALL-SCALE PLASMA FIELDS

In interacting with one another, two laser pulses
generate small-scale plasma fields and are backscat-
tered by them. For the pulse propagating from left to

right, the electric field (z, t) of the backscattered
radiation satisfies the conventional equation of scatter-
ing theory [12]:

(2.1)

where the density perturbations δNe are given by
expression (1.5). An analogous equation is valid for a
laser pulse propagating in the opposite direction.

To solve Eq. (2.1), we apply the Fourier transforma-
tion in time and in the longitudinal coordinate:

(2.2)

With allowance for expressions (1.4), the Fourier trans-
formed electric field of the scattered pulse has the form

(2.3)

in which the Fourier transformed density perturbations
δNe(ω, k) can be found from Eq. (1.3):

(2.4)

ES
+

∂2

∂t
2

------- ωp
2

c
2 ∂2

∂z
2

-------–+
 
 
 

ES
+

z t,( )

=  ωp
2 δNe

N0e

--------- 1
2
---E+ iω0t– ik0z+( )exp c.c.+ ,–

ES
+

z t,( ) ω kdd

2π( )2
------------- iωt– ikz+( )ES

+ ω k,( ),exp∫=

ES
+ ω k,( ) t zdd iωt – ikz( )ES

+
z t,( ).exp∫=

ES
+ ω k,( ) 1

2
---E0+ 2π( )3/2

L+

ωp
2

ω2ε ω( ) c
2
k

2
–

----------------------------------=

× ω' k'dd

2π( )2
---------------

δNe ω ω'– k k'–,( )
N0e

---------------------------------------------∫

× δ ω' ω0– k' k0–( )Vg–[ ]
ω' ω0–( )2τ+

2

2
------------------------------– 

 exp




+ δ ω' ω0 k' k0+( )Vg–+[ ]
ω' ω0+( )2τ+

2

2
------------------------------– 

 exp




,

δNe ω k,( )
N0e

------------------------
e

2E0+E0–

4me
2ω0

2
---------------------

πk
2
Vgτ+τ–

ω2ε ω( )
------------------------- ω2τ2

4
-----------– 

 exp=

× k 2k0–
ω
Vg

------
τ+

2 τ–
2

–

τ+
2 τ–

2
+

----------------+
 
 
 

2
L+

2
L–

2
+
8

------------------–exp




+ k 2k0
ω
Vg

------
τ+

2 τ–
2

–

τ+
2 τ–

2
+

----------------+ +
 
 
 

2
L+

2
L–

2
+
8

------------------–exp




.

Taking into account expression (2.4), we integrate over
the frequencies ω' and wavenumbers k' in formula (2.3)
to obtain

(2.5)

where kp = ωp/Vg is the wavenumber of the plasma

oscillations, erf(z) =  is the error func-

tion of the complex argument, α± = [(k + k0)Vg – 3(ω –

ω0) ± 4ωp], and β± = [(k – k0)Vg – 3(ω + ω0) ± 4ωp].

The spectral density (ω, z) of the electric field of
the scattered pulse can be solved for by taking the
inverse Fourier transformation of expression (2.5) in
the longitudinal coordinate [see the first of formulas
(2.2)]. Applying the saddle point method, we find that
the main contribution to the integral over the wavenum-
bers comes from the residue at the pole k =

−ω , which corresponds to backscattering.
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Then, at large distances z < 0 from the region where the
density perturbations are localized, the Fourier trans-
formed backscattered field has the form

(2.6)

.

For the pulse propagating from left to right, the spa-
tiotemporal structure of the backscattered radiation can
be evaluated by taking the inverse Fourier transforma-
tion of formula (2.6) in time:

(2.7)

In deriving expression (2.7) from formula (2.6), we
used the following expansion in the small deviation Ω =
ω – ω0 from the laser frequency:

In this expansion, we neglected the terms of the second
order in Ω , which indicates the smallness of the disper-
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sive spreading of the backscattered radiation pulse and
is justified under the condition

.

Expression (2.7) can also be obtained directly by
solving a reduced version of Eq. (2.1) with allowance
for relationship (1.5).

For the pulse propagating from right to left, the elec-
tric field of the backscattered radiation is obtained in an
analogous manner. At large distances z > 0 from the
interaction region, it has the form

(2.8)

where the function Φ(x, a) is given by formula (1.6).

Electric fields (2.7) and (2.8) depend on the polar-
ization of laser pulses. The fields have maximum
amplitudes when the vectors E0+ and E0– are parallel or
antiparallel to each other and vanish when the vectors
E0+ and E0– are mutually orthogonal.

It follows from expressions (2.7) and (2.8) that, for
each of the laser pulses, the ratio of the amplitude of the
electric field of the backscattered radiation to the laser
field amplitude contains the product of the large quan-
tity k0L±, which is proportional to the number of spatial
periods of small-scale plasma perturbations, and the

parameter e2(E0+E0–)/ , which is small by vir-
tue of condition (1.2). In deriving expression (1.5) for
density perturbations, the contribution of the scattered
fields was assumed to be small and, accordingly, was

neglected. Thus, the condition  < |E0±| and inequal-
ity (1.2) yield the following restriction on the parame-
ters of the plasma and the laser pulses:

.

Let us analyze how electric fields (2.7) and (2.8)
depend on the duration of laser pulses. In the case of a
collision between two long laser pulses (ωpτ± @ 1), the
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electric field of the backscattered radiation with allow-
ance for asymptotic formula (1.7) has the form

(2.9)

The small-scale density perturbations excited in the
collision are quasistatic, and each of the two laser
pulses is backscattered into a radiation pulse whose
duration is determined by the length of the laser pulse
propagating in the opposite direction and whose fre-
quency is equal to the laser frequency.

An interaction between two short laser pulses
(ωpτ± ≤ 1) or between a long pulse (ωpτ+ @ 1) and a
short pulse (ωpτ– ≤ 1) is accompanied by the excitation
of plasma oscillations in the interaction region. In this
case, the electric fields of the backscattered radiation
pulses can be found by using asymptotic representa-
tion (1.9):

(2.10)

In the case of a collision between short laser pulses, we
see from expressions (2.10) that the frequency and
wavenumber of each of the backscattered radiation
pulses are shifted from the frequency and wavenumber

of the laser radiation by the amounts ω0 ± 

and k0 ± , respectively. The frequency shift

is strongly dependent on the ratio between the durations
of the laser pulses.

An analysis of the interaction of a long (ωpτ+ @ 1)
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interesting effect. According to formula (2.10), the
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backscattered electric field of the longer pulse at  @

1, ωpτ– has the form

(2.11)

According to the same formula, the backscattered elec-

tric field of the shorter pulse at  @ , ωpτ+ is

expressed as

(2.12)

The frequency of backscattered electric field (2.12) of
the shorter pulse is close to the laser frequency ω0, the
pulse length being comparable with the length L+ of the
longer laser pulse. Consequently, after the interaction,
this field has an insignificant impact on the spectral
parameters of the longer laser pulse and on its shape.
On the other hand, backscattered electric field (2.11) of
the longer pulse propagates in the direction of the
shorter laser pulse, thereby distorting the shape of the
latter and changing its spectrum. As a result, from for-
mula (2.11), we can see that, after the interaction, the
spectrum of the backscattered pulse propagating from
right to left contains not only the fundamental harmonic
at the laser carrier frequency ω0 but also satellite har-
monics at the frequencies ω0 ± ωp and the pulse length
is determined by the duration of the longer laser pulse.
Such an increase in the backscattered pulse length is
explained as being due to the scattering of the laser field
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Fig. 2. Laser fields calculated numerically from formulas (1.4), (2.7), and (2.8) as functions of the dimensionless coordinate
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fields E0± and are shown by light solid curves (and the dotted curves within) and a heavy solid curve, respectively. The calculations

were carried out for laser pulses with intensities I+ = I– = 5.1 × 1016 W/cm2 and durations ωpτ– = , τ+ = 5τ– and for a plasma
with ωp = 0.25ω0.
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the field of the shorter laser pulse, it gives rise to a long
radiation tail behind the latter. The results of numerical
calculations based on formulas (2.7) and (2.8) are illus-
trated in Fig. 2, which shows that a long backscattered
radiation tail actually arises behind a short laser pulse
after its interaction with a long laser pulse.

The spectral features of backscattered laser radia-
tion can be derived from a straightforward analysis of
expression (2.6). Simple transformations of this expres-
sion in the range of positive frequencies (ω > 0) yield

(2.13)

where the frequency dependence of the electric field of
the backscattered laser radiation is determined by the
function G+(ω),
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(2.14)

.

Resulting formulas (2.13) and (2.14) show that the
spectrum of the backscattered radiation contains satel-

lites at the frequencies ω = ω0 ± , which

depend on the ratio between the durations of the inter-
acting laser pulses.

From expression (2.13) for the electric field, we can
find the backscattered radiation energy  per fre-
quency interval dω:
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(2.15)

where  is the energy of the laser pulse propagating
from left to right.

The total energy  of the backscattered radiation
is obtained by integrating expression (2.15) over fre-
quency. For a collision between a long pulse (ωpτ+ @ 1)
and a short counterpropagating pulse (ωpτ– ≤ 1), the
integral over the frequency spectrum can be taken ana-
lytically,

(2.16)

dWS
+

dω
----------- = 

π3/2ωp
2τ–

2
k0

2
L+

2

4
---------------------------------τ+WL

+e
4 E0+E0–( )

2

16me
4ω0

4
c

4
--------------------------- G+ ω( )

2
,

WL
+

WS
+

ω G+ ω( ) 2
d

0

∞

∫ 2 2π
τ+

-------------- ωp
2τ–

2
–( ),exp=

0.06

0.04

0.02

0
–1.0 –0.5 0 0.5 1.0

0.4

0.3

0.2

0.1

0

(b)

–8 –6 –4 –2 0 2 4 6 8

1.0

0.8

0.6

0.4

0.2

0
–4 –2 0 2 4

x

Y
(a)

(c)

Fig. 3. Dependence of the function Y = |G+(ω)|2 on the
dimensionless frequency X = (ω – ω0)τ+ for different ratios
between the lengths of the interacting laser pulses: (a) the
interaction of two long pulses with the durations ωpτ+ = 5
and ωpτ– = 20, (b) the interaction of a long (ωpτ+ = 5) and
a short (ωpτ– = 1) pulse, and (c) the interaction of two short
pulses with the durations ωpτ+ = 2 and ωpτ– = 0.5.
and the total backscattered radiation energy is equal to

(2.17)

Figure 3 shows the backscattered radiation spectra
calculated for different ratios between the durations of
the interacting laser pulses. For two long laser pulses,
the frequency of the backscattered radiation coincides
with the laser carrier frequency (Fig. 3a). In the case of
a collision between a long and a short laser pulse, the
backscattering spectrum contains two satellites shifted
from the laser frequency by the plasma frequency
(Fig. 3b). In the case of two short laser pulses, the spec-
trum of the backscattered field contains satellites at the

frequencies ω = ω0 ± ; however, the spectral

peaks are close to one another and partially overlap,
which is a consequence of the short pulse lengths
(Fig. 3c).

It should be noted that the cold plasma approxima-
tion used here is valid for small-scale plasma oscilla-
tions under the assumption of a negligible spatial dis-
persion, i.e., only under the condition

(2.18)

where VT =  is the electron thermal velocity and Te

is the electron temperature. Additionally, the condition
that the Landau damping of small-scale plasma oscilla-
tions is insignificant during the entire interaction pro-
cess yields the restrictions

, (2.19)

which relate the durations of the laser pulses to the elec-
tron temperature.

CONCLUSION

In this paper, a simple one-dimensional hydrody-
namic model has been applied to study the nonlinear
scattering of two counterpropagating laser pulses in
their interaction in a plasma and to investigate the shape
of the backscattered radiation pulses and their spectral
parameters. In particular, it has been shown that a long
backscattered radiation tail arises behind a short laser
pulse after its collision with a long laser pulse and that
the length of the tail is comparable to the length of the
longer pulse. It has also been found that the backscat-
tered radiation spectrum contains satellites shifted from
the laser frequency by nearly the plasma frequency. The
presence of such satellites may provide the basis for
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diagnosing both the plasma and the interacting laser
pulses.

Note that the results obtained in one-dimensional
geometry change only slightly when the finite trans-
verse dimensions of the laser pulses are taken into
account. The difference is that, in three-dimensional
geometry, the electromagnetic radiation is scattered in
the near-backward (rather than backward) direction,
i.e., at such angles θ to the pulse propagation direction
that are close to π: π – θ ≤ 1/k0D, where D is the diam-
eter of the focal spot of laser light. Another difference
lies in the dependence of the amplitude of the electric
field of the backscattered laser radiation on the spatial
coordinates. However, the main conclusions of the one-
dimensional theory, specifically, those concerning the
spectral parameters of the backscattered radiation and
its longitudinal structure, remain valid in three-dimen-
sional geometry.

Let us estimate the electric field and the energy of
radiation backscattered in the interaction of a long laser
pulse with intensity I+ = 1.2 × 1015 W/cm2, duration
τ+ = 330 fs, and wavelength λ0 = 0.8 µm and a counter-
propagating, less intense, short laser pulse with inten-
sity I– = 1.2 × 1014 W/cm2, duration τ– = 14 fs, and the
same wavelength in a low-density plasma with electron
temperature Te = 20 eV and electron density N0e = 3.2 ×
1018 cm–3. The amplitude of the plasma density pertur-
bations excited in the interaction region is about δNe ≈
0.2N0e. After the interaction, the radiation pulse propa-
gating from right to left is longer by a factor of 30 times
than the original length of the shorter pulse because of
the contribution of the backscattered radiation of the
longer pulse. Although the electric field amplitude is
small,  ≈ 0.13E0–, backscattered radiation energy
(2.17) amounts to about 50% of the energy of the
shorter laser pulse. In this case, inequalities (2.18) and
(2.19) are satisfied, because the parameter δ2 is approx-
imately equal to 0.28 and, thus, the small-scale plasma
oscillations in question can be described in the cold
plasma approximation.

Since the above analysis assumes that the small-
scale density perturbations are linear [see Eq. (1.3) and
condition (1.2)], it is restricted to laser pulse intensities
of 1015–1016 W/cm2 at λ0 ≅  1 µm. In fact, however,
present-day laser devices can operate at far higher
intensities, in which case the electron density perturba-
tions are strongly nonlinear. It can be expected that the

ES
+

PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
backscattering efficiency will increase with laser inten-
sity; hence, it makes sense to speak of the possible
reflection of laser pulses from the interaction region.

The above analysis deals exclusively with the exci-
tation of radiation at a frequency close to the laser car-
rier frequency. However, two interacting laser pulses
can also generate low-frequency radiation at a fre-
quency twice the plasma frequency. This issue will be
addressed in a separate paper.
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Abstract—The turbulent properties of conducting fluids in an external constant magnetic field are known to
change with increasing field strength. A study is made of the behavior of the second-order structural function
of the velocity field in a homogeneous incompressible turbulent fluid in the presence of an external uniform
magnetic field. It is shown that, depending on the magnetic field strength, there may be different governing
parameters of the system in both the inertial and dissipative intervals of turbulence. This leads to new spectral
scalings that are consistent with experimental ones. © 2003 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Numerous investigations of turbulent flows of con-
ducting fluids at low Reynolds numbers in an external
uniform magnetic field B0 (see [1] and the literature
cited therein) show that the fluid properties charge sub-
stantially as the field strength increases. Here, we inves-
tigate the behavior of the second-order structural func-
tion for the velocity field in a homogeneous incom-
pressible turbulent fluid in the presence of the magnetic
field B0. The one-dimensional second-order structural
function is defined by the formula

D(r) = 〈[u'(r + r') – u'(r')]2〉 , (1)

where u' is the velocity of turbulent fluctuations. In the
inertial interval of turbulence, the structural function D
is a power function of r:

D(r) ~ Arα, (2)

where A is a parameter and α is the scaling index.
As was shown in [2, 3], the α values observed exper-

imentally at different magnitudes of the interaction

parameter N = Ha2/Re = σ /ρU (where σ is the con-
ductivity of the fluid, ρ is its density, Ha = B0(σ/ρν)1/2

is the Hartmann number, Re = LU/ν is the Reynolds
number, L and U are the characteristic length and char-
acteristic velocity, ν is the kinematic viscosity, and B0
is the strength of the external magnetic field) are equal
to 2/3, 4/3, 2, and 8/3. Note that, from a morphological
point of view, this sequence forms an arithmetic pro-
gression with a difference of 2/3. Below, we will see
that, in each turbulent regime, characterized by its own
scaling index α, the turbulent energy is transferred
along the spectrum by a certain mechanism and there

† Deceased.

B0
2
L

1063-780X/03/2906- $24.00 © 20512
are corresponding governing parameters in the inertial
interval of turbulence and the viscous interval of small-
scale turbulence.

2. KOLMOGOROV REGIMES
OF TURBULENCE

We begin with the most thoroughly studied Kol-
mogorov turbulent spectrum, which was obtained more
than 60 years ago by Kolmogorov under the assumption
that, for a developed steady-state homogeneous turbu-
lent flow of an incompressible fluid at a high Reynolds
number, the governing parameter in the inertial and vis-
cous intervals is the energy flux along the spectrum. In
the viscous interval, there are two governing parame-
ters: the energy flux ε and the viscosity ν, which serves
as an additional governing parameter of the turbulent
cascade. If the characteristic scale length LF of an exter-
nal force that maintains turbulence is much larger than
the characteristic length λi of the inertial interval, LF @
λi , then the structural function of turbulent fluctuations
of the velocity field has the form

D(r) ~ U2f , (3)

where U is the characteristic velocity of the turbulent
fluctuations and λ is their spatial scale.

In the inertial interval, in which the parameters of
the system are independent of ν (i.e., we can set ν = 0
in the Navier–Stokes equation), the energy is an inte-
gral of motion. Consequently, the energy flux ε along
the spectrum is the governing parameter. In essence,
Kolmogorov’s first hypothesis extends this property to
the dissipative interval of turbulent pulsations.

r
λ
--- 

 
003 MAIK “Nauka/Interperiodica”
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In the dissipative interval, the velocity of turbulent
pulsations and their characteristic scale length are equal
to Uν = Uk ~ (εν)1/4 and λν = λk ~ (ν3/ε)1/4. In the inertial
interval, the viscosity drops out of expression (3). As a
result, we obtain

D(r) ~ ε2/3r2/3. (4)

On the other hand, almost 20 years after the publica-
tion of Kolmogorov’s works, it was shown that the
Euler equation has another integral of motion, namely,
the helicity [4],

He = 〈u' · (— × u')〉 , (5)

which is associated with the violation of the mirror-
image symmetry of homogeneous isotropic turbulence.
A helical cascade in the regime of fully developed iso-
tropic turbulence was first investigated by Brissaud
et al. [5]. If there is a helicity flux η (which may be
introduced by analogy with the energy flux ε) in the
system, then it can be regarded (together with ε) as a
governing parameter in the inertial interval of turbu-
lence. At the same time, in [5], the fluxes ε and η were
also assumed to be governing parameters in the dissipa-
tive interval. From the experimental and numerical data
accumulated over the last 40 years, it has become clear
that helical turbulence is encountered as often as con-
ventional Kolmogorov turbulence; this may be attrib-
uted to the level of helicity of turbulent pulsations in the
system [6]. Interest in helical turbulence increased con-
siderably when it was recognized that it plays a funda-
mental role in the generation of moderately strong
large-scale magnetic fields (see [7] and the references
therein) and the formation of large-scale atmospheric
vortices (see [1] and the references therein).

By analogy with Kolmogorov’s hypothesis, we
now consider another case—the one in which, first,
the governing parameters for the development of tur-
bulence in the inertial interval are ε and η and, second,
in the dissipative interval, to these must be added the
viscosity ν. In this case, according to the Π theorem,
the characteristic scale of turbulence in the dissipative
interval (when the viscosity ν should be accounted
for) is equal to

(6)

where β is a free parameter.
We take into account the form of function (5) and

the asymptotic behavior of the function D(r) in the iner-
tial interval of turbulence and, following conventional
practice, set

(7)

where the velocity scales as Uη ~ ε–βη–(1 + 4β)/5ν(2 + 3β)/5

(the dependence of the exponents in the formula for Uη
on β stems from the fact that, in the dissipative interval,
the Reynolds number is approximately equal to unity,

λη εβν3 1 β–( )/5η 1 4β+( )/5–
,∼

D r( ) Uη
2 r

λη
----- 

  δ
,∼
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Re(λη) ~ 1). As a result, we obtain the relationship
between the parameters β and δ,

, (8)

and the scaling for the structural function,

(9)

Now, we consider two limiting cases in which, along
with ν, either ε or η is a governing parameter in the dis-
sipative interval. It should be noted that, in these cases,
the characteristic scale λ ~ ε/η of turbulent pulsations
and the velocity U ~ (ε2/η)1/3 in the inertial interval
depend on the two parameters ε and η, which are both
nonzero.

We have derived that, in the first case (which corre-
sponds to Kolmogorov turbulence), the helicity flux η
is not a governing parameter; i.e., η = η(ε). Therefore,
Eq. (9) yields δ = 2/3 and expression (6) gives β = –1/4.
As a consequence, we arrive at Kolmogorov’s depen-
dence of the second-order moment in the inertial inter-
val of turbulence:

(10)

In the second case (corresponding helical turbu-
lence), the energy flux ε drops out of expression (6);
i.e., β = 0 and δ = 4/3, and the scaling of the structural
function in the inertial interval has the form

(11)

In scalings (10) and (11), Cε and Cη are constants. Note
that these two scalings are actually observed in experi-
ments (see [1] and the literature cited therein).

Now, using the above expressions for the character-
istic scale and velocity of turbulent pulsations, we write
the effective Reynolds number as

(12)

Since the Reynolds number can be represented as the
ratio of the turbulent to the kinematic viscosity (see,
e.g., [8]), formula (12) leads to the following funda-
mentally important conclusion: as the helicity flux (and
the helicity itself) increases, the turbulent viscosity in
the system decreases according to the law η–4/3. Note
that this conclusion stems exclusively from the suffi-
ciently high level of helical turbulence in the system.
An analogous behavior of turbulent fields was also
observed in [9].

Hence, when ε is not a governing parameter in the
dissipative interval, we obtain δ = 4/3, which corre-
sponds to the helical scaling of the structural function
D(r) in the inertial interval. Since such scalings are typ-
ical of helical turbulent fields [6], we can conclude that
the situation in question, namely, that with ε(η), takes

β δ 4/3–
δ 2+

----------------=

D r( ) ε2

η
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place in real media. This conclusion is somewhat unex-
pected in view of the fact that, since Kolmogorov’s
time, it has become customary to think that ε is the gov-
erning parameter in the dissipative interval. For helical
turbulence, however, the conclusion reached here is
quite natural. In fact, as was shown in many papers (see
[1] and the literature cited therein), helical turbulence
slows the direct energy transfer from large to small
scales, gives rise to reverse energy cascades, reduces
turbulent viscosity, etc. As a combined result of all of
these processes, the energy flux ε in the dissipative
interval depends on the helicity flux η in a way that
reflects the behavior of the governing parameters at δ =
4/3 in the inertial interval.

In addition, note that the above interpretation of the
scalings obtained differs from the interpretation given
in [5] (which, basically, is accepted today). In fact,
according to [5], the helical scaling index δ = 4/3 refers
exclusively to the case ε = 0. However, this seems
highly doubtful, because it is unclear how to treat the
energy flux in the inertial interval, which plays the role
of the energy source. It is important to take into account
the fact that the parameter ε does not disappear in the
case under consideration but merely drops out of the
expression for the structural function D(r).

3. EFFECT OF THE MAGNETIC FIELD 
ON THE SCALING FOR TURBULENCE

A growing external magnetic field has a significant
effect on the properties of a turbulent flow of conduct-
ing fluid. In the presence of an external magnetic field
B0, the homogeneous correlation (and, therefore, struc-
tural) function

Q(r) = 〈u'(0)u'(r)〉 (13)

depends on the parameter N =  (see, e.g., [7]
and the references therein). However, for a magnetic
field weak enough that its influence on Q(r) can be
neglected, we arrive at spectral scalings close to the
Kolmogorov and helical scalings discussed above.

According to [7], the condition for the magnetic
field to be sufficiently weak in the first approximation
is formulated in terms of the harmonics of the Fourier
transformed correlation function:

(14)

where k is the wave vector of turbulent pulsations, B0 is
the external magnetic field, ρ0 is the fluid density, µ is
the magnetic permeability, νB = 1/µ0σ is the magnetic
viscosity, and σ is the electric conductivity of the fluid.
However, even sufficiently weak magnetic fields may
be important in the generation of helical turbulence [10,
11]. This fundamental effect should be taken into
account in investigating helical turbulence since helic-
ity plays an important role in the energy transfer along
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4 ω2
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---------------------------------------------------------------------- ! 1,
the spectrum and can substantially affect the magnetic
viscosity. Consequently, as the magnetic field
increases, condition (14) fails to hold, which, in turn,
should change the form of the function D(r).

Recall that, in the absence of an external magnetic
field, the mean energy of the turbulent fluctuations and
their helicity are the integrals of motion of the Euler
equation. In the Euler equation in the inertial interval, a
growing external magnetic field is accounted for by an
additional term, namely, the Lorentz force:

(15)

where j is the current density.

It is easy to show that, for Rem = µ0σUB0/λ ! 1, the
Lorentz force and the associated Joule dissipation
occur on all scales, in which case the energy and helic-
ity fluxes both become dependent on the magnetic field
and, therefore, fail to serve as the governing parameters
in the inertial and viscous intervals. At present, there is
a vast amount of experimental data obtained from lab-
oratory investigations of turbulence in an external con-
stant magnetic field. On the whole, these investigations
were carried out in the two main directions: the fluctu-
ations of the velocity field were measured along [2] and
across [3] the magnetic field.

In the first case, the scaling index in correlation
function (2) at a sufficiently strong field B0 was close to
α = 2, which was explained by the tendency of turbu-
lence to become two-dimensional [2].

In the second case, the scaling index α was close to
8/3; in some papers (see [1] and the literature cited
therein), this was attributed to the generation of super-
helical turbulence (super-helicity), ωs = 〈(— × u') · (— ×
— × u')〉 . In our opinion, however, the difference in the
properties of turbulent fluctuations along and across the
magnetic field stems from an increase in the anisotropy
of the turbulence in the presence of an external mag-
netic field. In fact, it is obvious from condition (14) that
the character of the interaction is different for trans-
verse modes (with k · B0 = 0) and longitudinal modes
(with k · B0 ≠ 0): the dissipation of transverse modes is
minimal, while the dissipation of longitudinal modes is
maximal.

Hence, the effect of Joule dissipation is greatest for
the spectral modes whose wave vectors k are parallel to
B0 and that thus correspond to the longitudinal harmon-
ics of the correlation function. In this case, choosing the
parameter γ = σB2/ρ, together with the viscosity ν, as a
governing parameter in the dissipative interval seems
quite logical. Then, using representation (7), we obtain
the characteristic velocity of the turbulent pulsations
and their characteristic scale, U ≈ (γν)1/2 and λB ~
(ν/γ)1/2, and also arrive at the following scaling for the
second-order structural function:

D(r) ~ (γr)2, (16)

ρdV/dt —P– j B,×+=
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which corresponds to a α spectrum with a spectral den-
sity index of –3. Consequently, the spectral index –3
arises as a result of the increasing influence of the mag-
netic field on the longitudinal modes of the turbulent
field. A similar line of reasoning was earlier suggested
in [2].

Note that the spectral index –3 is usually identified
with the transition of the turbulence to the two-dimen-
sional regime. In fact, the spectral index –3 is associ-
ated with the enstrophy conservation and is characteris-
tic of two-dimensional turbulence, in analogy to the
spectral index –7/3, which is associated with the helical
properties of a three-dimensional turbulent field. How-
ever, in the case of three-dimensional turbulence, the
spectral index –3 is associated exclusively with the lon-
gitudinal modes.

A conducting fluid in which the turbulent fluctua-
tions of the velocity field are transverse to the magnetic
field should be studied in a different manner. In this sit-
uation, as the magnetic field increases, the scaling
index α changes in a jumplike manner and instead of
being equal to 2, it is equal to 8/3, which corresponds to
a spectral density index of –11/3 (i.e., to the steeper
spectra) [3]. In order to explain the value α = 8/3, Bra-
nover et al. [3] assumed that, in this case, the governing
parameter in the inertial interval is the super-helicity
flux ηs = dωs/dt. However, this assumption is based
exclusively on the dimensionality of the quantity ηs . In
addition, since this quantity is not an integral of motion,
it is difficult to understand why it should be conserved
and why all the remaining quantities should depend
on it.

On the other hand, experimental data show that, as
the magnetic field strength increases, the turbulence
tends to become intermittent. As this occurs, the prop-
erties of the energy flux ε along the spectrum should
change. Why we again discuss the behavior of the func-
tion ε may be explained as follows: as the magnetic
field B0 increases, the field-aligned fluctuations can
decouple from the cross-field fluctuations; i.e., in the
first approximation, the longitudinal and transverse
fluctuations occur independently of each other and
Joule dissipation has essentially no effect on the trans-
verse modes. As a consequence, the parameter γ intro-
duced above ceases to be a governing parameter for
describing the development of turbulence.

Now, we again turn to the case in which the energy
and helicity fluxes can be the governing parameters in
the inertial interval of turbulence. It should be noted,
however, that, since the properties of the energy trans-
fer along the spectrum change as the intermittent activ-
ity of turbulence increases, the energy flux ε should be
treated as a function of the coordinates and time. In
other words, instead of ε, it is necessary to consider the
function ε(x, t), which was studied in many papers, the
first being [12, 13]. Usually, this approach reduces to
choosing a certain spatial region over which to average
the function ε. On the other hand, the energy pumped
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
into the small-scale fluctuations in the system by an
external force is independent of the properties of the
system. When ε depends on the coordinates, it is more
meaningful to switch from the global parameters (such
as the densities of the energy and helicity pumped into
the system and dissipated there) to the local ones (such
as, e.g., the energy and helicity flux densities).

The flux density of the energy pumped into the sys-
tem is described by the equation

,

where U ' is the characteristic velocity of the turbulent
fluctuations on the spatial scales on which an external
force is acting and V is the volume. Under steady-state
conditions, this flux density should be canceled by the
energy flux density along the spectrum, εV = –∂ε/∂V.
Consequently, in this case, the parameters εV and ηV =
∂η/∂V are the governing parameters for the formation
of turbulent spectra.

Repeating the above arguments, we find that the
expressions for the velocity field components perpen-
dicular to the magnetic field yield the following form of
the structural function in the inertial interval:

(17)

We thus arrive at the following possible scalings for tur-
bulence in two limiting cases:

10/3 – δ = 0  D⊥ (r) ~ r10/3, (18)

8/3 – δ = 0  D⊥ (r) ~ r8/3, (18‡)

the latter of which is a transient one. In the situation in
question, the effective Reynolds number analogous to
that in formula (12) has the form

(19)

In the dissipative interval, the scalings of the charac-
teristic parameters differ from those in the inertial inter-
val. In particular, the characteristic scale and velocity of
turbulent pulsations obey the scalings

(20)

which were derived with allowance for the fact that, at
the boundary of the dissipative interval, the Reynolds
number is equal to unity. The two limiting cases are
now treated as follows. For δ = 10/3, we obtain α = 0
and thus arrive at the above scalings for turbulent pul-
sations: λtη = (ν3/ηV)1/8 and U ~ (ν5/ηV)1/8. For δ = 8/3,
we obtain α = –1/7; i.e., the characteristic scale and
velocity of the turbulent pulsations obey the scalings
λtV ~ (ν3/εV)1/7 and UtV ~ (ν4εV)1/7.

∂
∂V
------- dU '2

dt
----------- 

  εV=

D⊥ r( ) εV
5
/ηV

4( )
2/3

ηV /εV( )δ
r

δ
.∼

ηV
2/3

εV
2/3

Reeff

εV
8/3

ηV
7/3ν

------------.=

λ t εV
βηV

1 7β+( )/8– ν3 1 β–( )/8
,∼

Ut εV
β– ηV
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4. CONCLUSION

The results of our study can be summarized as fol-
lows. Based on dimensionality considerations, we have
investigated MHD turbulence in the different regimes
that may occur depending on the relationships between
the governing parameters of the system, namely, the
energy and helicity fluxes, viscosity, etc. The classical
and helical scalings that have been obtained for the sec-
ond-order structural function are consistent with both
the available experimental data on the generation of tur-
bulence and the corresponding numerical results. We
have demonstrated that the external magnetic field has
a significant impact on the structural properties of tur-
bulent fields in a conducting fluid. We have shown that
the transient turbulent regime under analysis is not only
peculiar to the dynamics of a conducting fluid in an
external magnetic field but can also occur in response to
some external action, such as externally induced rota-
tion. The results obtained can be used to interpret the
experimental data on MHD turbulence and simulate the
generation of turbulence in conducting fluids, e.g., in
plasmas.
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Abstract—The kinetics of the nonthermal decomposition of nitrous oxide (N2O) in a nonequilibrium plasma
is investigated experimentally. A numerical model of the process is constructed and used to simulate the decom-
position of N2O in a high-current pulsed discharge. The most important channels for decomposition are
revealed by analyzing the results obtained. The role of the charged, electronically excited, and vibrationally
excited components is examined. It is shown that the mechanism for the thermally nonequilibrium decomposi-
tion of N2O in a high-current pulsed discharge is governed by the reactions involving ions and electronically
excited molecules. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, increased attention has been given to
the possibility of actively controlling burning process
by means of nonequilibrium low-temperature gas-dis-
charge plasmas [1–5]. In our earlier paper [6], we inves-
tigated the relative role of the excitation of the vibra-
tional and electronic degrees of freedom of the gas, the
ionization of molecules, and their dissociation in con-
trolling the ignition of a H2–air mixture. We showed
that the main governing parameters for ignition under
strongly nonequilibrium conditions are the distribution
of the discharge energy over different degrees of free-
dom of the gas and the rate of the relaxation reactions
in the initial ignition stage. In particular, we found that
the key role in low-temperature oxidation is played by
the production of vibrationally and electronically
excited molecules in the discharge. Otherwise, as the
temperature increases, the efficiency of the excitation
of the internal degrees of freedom somewhat decreases,
and the key role is played by the dissociation of mole-
cules and the production of chemically active O and H
atoms in the discharge stage. This circumstance leads to
the idea of using oxygen-carrying polyatomic mole-
cules, which are efficient sources of oxygen under the
discharge conditions, as a means of an additional con-
trol in initiating ignition by a nonequilibrium pulsed
discharge.

Note that one of the best known chemical com-
pounds of this kind is nitrous oxide, N2O, which is often
used as a source of atomic oxygen both at high temper-
atures and in the processes of plasmochemical deposi-
tion of silicon films, in which N2O is utilized in mix-
tures with silane [7].

The decomposition of nitrous oxide behind shock
waves has been investigated quite thoroughly under
both thermally equilibrium and weakly nonequilibrium
conditions. The cross sections for the electron impact
1063-780X/03/2906- $24.00 © 20517
excitation of nitrous oxides are known fairly well and
make it possible to model in detail both the discharge
phase and the afterglow stage. That is why, in this study,
we attempted to investigate the nonequilibrium regime
of the decomposition of N2O in a plasma of a nanosec-
ond pulsed discharge in order to clarify the effect of
reactions involving the electronically excited, charged,
and vibrationally excited components on the decompo-
sition kinetics.

In order to better understand the processes that
occur in an N2O plasma in the high-current discharge
phase and the discharge afterglow in the pressure range
from 1 to 8 torr at room temperature, we experimentally
studied the decomposition of nitrous oxide in a system
affected by a fast ionization wave. We carried out a
numerical modeling of this decomposition process and,
by comparing the measured data with the calculated
results, analyzed the kinetics of the plasmochemical
reactions in the system.

2. EXPERIMENTAL INVESTIGATIONS
OF THE DECOMPOSITION OF N2O 

IN A PULSED DISCHARGE

The experimental setup used in this study was
described in detail in [6]. The discharges were initiated
in a 47-mm-diameter and 20-cm-long quartz tube with
a high-voltage plane stainless-steel electrode and a low-
voltage ring stainless-steel electrode at its ends. The
low-voltage electrode was short-circuited to a grounded
shield of a feeding cable by eight wide brass bars and
was equipped with a CaF2 window for emission spec-
troscopy diagnostics. Negative voltage pulses with an
amplitude |Ugen | = 13 kV, a full width at half-maximum
(FWHM) of 25 ns, and a rise time of 2 ns were supplied
to the high-voltage electrode of the discharge tube from
a pulsed-voltage generator at a repetition rate f = 40 Hz
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental device: (1) quartz discharge tube, (2) high-voltage electrode, (3) low-voltage electrode, (4) end CaF2 window,
(5) capacitive detector, (6) back-current shunt, (7) TDS-380 oscilloscope, (8) pressure gauge, (9) C9-8 digital oscilloscope,
(10) photomultiplier, (11) MDR-23 monochromator, (12) to a system for pumping out and admitting gas mixtures, and (13) 50-Ω
coaxial cable for supplying pulsed voltage.

R

(Fig. 1). In the initial discharge stage, when the conduc-
tivity of the discharge plasma is low, a current pulse
propagating in a coaxial transmission line is reflected
from the open end of the line (i.e., from the high-volt-
age electrode). As a result, in the stage in which the ion-
ization wave propagates along the discharge gap, the
voltage at the high-voltage electrode doubles.

In this stage, the amplitude and shape of the dis-
charge current pulse were measured by a broadband
calibrated back-current shunt.

The time-integrated emission signals from the end
of the discharge tube were measured by an MDR-23
monochromator.

The absolute value of the pressure during the
decomposition of N2O molecules was measured by an
MD × 4S mechanotron.

Figure 2 shows part of the recorded near-ultraviolet
spectrum. One can clearly see the spectral bands of the
γ system of nitrous oxide.

A complete set of spectroscopic data and the data on
the dynamics of the total pressure in the system are
illustrated in Fig. 3. Under the same initial conditions,
we measured the emission intensities of the second pos-
itive system (the C3Πu transition, v ' = 0  B3Πg, v '' =
0; λ = 337.1 nm) (Fig. 3) and the first negative system

(the  transition, v ' = 0  , v '' = 0; λ =
391.4 nm) of molecular nitrogen, which is the main
decomposition product of N2O. These measurements

B
2Σu

+
X

2Σg
+

made it possible to determine the characteristic time of
production of molecular nitrogen in the decomposition
of N2O molecules (Fig. 4). The dynamics of the relative
density of NO molecules during the decomposition
process was measured from the emission intensity cor-
responding to the transition NO(A2Σ+)  NO(X2Π)
with λ = 237.02 ± 0.02 nm. The upper level for this
transition is populated by direct electron impact from
the ground state of NO molecules and also in chemical
reactions involving electronically excited molecules.
This circumstance substantially complicates the inter-
pretation of the measured data. Figure 5 shows the half-
times of the increase and decrease in the emission
intensity of the γ system of NO. Because of the low
mean power of the generator of the nanosecond pulses
(0.6 W), the gas temperature in the discharge device did
not differ appreciably from the temperature of the sur-
rounding air and, in all experiments, was in the range
T = 300 ± 5 K.

The data from pressure measurements (Fig. 4) pro-
vide additional important information on the conver-
sion rate of a triatomic reagent (N2O) into bimolecular
reaction products.

The total current through the discharge gap can be
obtained as a sum of the currents of the incident and
reflected pulses. Figure 6 shows the measured incident
and reflected current pulses and the calculated transmit-
ted current pulse at an initial gas pressure p = 4.1 torr.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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Fig. 2. Emission spectrum from a nanosecond discharge in N2O at a total pressure of 4 torr 50 s after the start of the decomposition
process.
For convenience in comparing the results obtained, the
sign of the reflected current pulse is reversed.

Figure 7 displays the maximum amplitude I and the
FWHM τ of the current pulse through the discharge gap
as functions of pressure. In the pressure range under
investigation, the current amplitude in the discharge
gap changed from I = 210 A at p = 3 torr to I = 110 A at
p = 7.5 torr.

The data from measurements of the discharge cur-
rent and voltage drop across the discharge gap made it
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
possible to estimate the electron density and the
reduced electric field after the gap is bridged by a fast
ionization wave (Fig. 8). The estimates were carried out
in the drift approximation. The electron drift velocity vd

was calculated for a given pulse with allowance for the
instantaneous gas composition by solving the Boltz-
mann equation in the two-term approximation. These
data, together with the data on the time behavior of the
current density j = I/S through the discharge gap,
enabled us to reconstruct the dynamics of the electron
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Fig. 3. The measured evolutions of the emission intensities in (a) the second positive nitrogen system (the transition from the

N2(C3Πu) level), (b) the first negative nitrogen system (the ( ( )) level), and (c) the γ system (the NO(A2Σ+) level) and

(d, e) the time evolutions of the gas pressure during the decomposition of N2O at different initial gas pressures.
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density in the high-current discharge phase, ne = j/(ev d)
(where e is an elementary charge).

In the parameter range under investigation, the
reduced electric field in the discharge gap changed
from E/n = 300 to 800 Td, which is close to the appli-
cability limit of the two-term approximation for solving
the Boltzmann equation in order to calculate the rates of
the inelastic processes in the electron–molecule colli-
sions at the lowest pressures in our experiments. The
effect of the violation of the two-term approximation
(which was observed, e.g., in our earlier paper [6])
should be taken into account when comparing the
experimental data and numerical results.

The maximum electron densities were found to lie
in the range ne . (0.9–2.2) × 1012 cm–3 (Fig. 8), which
correlates well with the results from measurements car-
ried out for other mixtures under similar conditions [8,
9, 6].

3. NUMERICAL MODEL OF THE NONTHERMAL 
DECOMPOSITION OF N2O
UNDER THE CONDITIONS 
OF A PULSED DISCHARGE

The calculations were carried out in a direct way;
i.e., we computed all subsequent current pulses through
the discharge gap with allowance for the changes in the
mixture composition during and between the pulses.

The numerical scheme was constructed based on the
model developed in [6]. In order to adequately describe
the decomposition of N2O in the presence of NO, N2,
and O2 molecules, the energy distribution function
(EDF) of the electrons was calculated with allowance
for the electron-impact excitation of nitric oxide and
nitrous oxide molecules. The cross sections for the cor-
responding processes were taken from [10].

The processes of the relaxation of the vibrationally
and electronically excited states, as well as the ion–
molecule and molecule–molecule processes, were
included in the kinetic scheme in the same manner as
was done in [6] in describing the nonthermal oxidation
of hydrogen in a H2–air mixture.

The dependence of the relaxation rate on the degree
of vibrational excitation of the reagents and products
was taken into account by using the model based on the
vibronic-term approximation [11].

The role of the vibrational excitation was taken into
account in all the processes involving N2O, NO, N2, and
O2 molecules. It was assumed that N2O molecules are
decomposed primarily through the excitation of anti-
symmetric vibrations (for high vibrational energies and
because of the rapid mixing of vibrational modes in an
anharmonic interaction, this assumption imposes
essentially no restrictions on the dynamics of the EDF
near the dissociation threshold).

In the kinetic scheme, every reaction is modeled by
a sequence of elementary processes, each of which
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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determines the rate of the reaction involving reagents in
certain vibrationally excited states and producing
reagents populated at certain levels.

As an example, the reaction

N2O + O  NO + NO

was modeled by the following sequence of elementary
processes:

N2O(v 3 = 0) + O  NO(0) + NO(0),

N2O(v 3 = 0) + O  NO(1) + NO(1),

.

.

.

N2O(v 3) + O  NO(w) + NO(w),

whose rate constants were calculated using the algo-
rithm developed in [11].

The remaining reactions incorporated into the
kinetic scheme were modeled in an analogous fashion.

The results from calculations of the population
dynamics of the individual vibrational states of differ-
ent molecules in the decomposition process show that
the distributions depend nonmonotonically on the
energy and that the upper levels are greatly overpopu-
lated. The local peaks in the distributions are associated
with the selective depopulation from the upper elec-
tronic states to the vibrational levels of the ground state
and the recombination fluxes to the upper levels.

The time evolutions of the total pressure and the rel-
ative density of N2(C3Πu) molecules at an initial pres-
sure p = 4.7 torr are given in Figs. 9 and 10, in which
the solid curves show the experimental data and the
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Fig. 6. (1) Incident, (2) reflected (with the opposite sign),
and (3) transmitted current pulses at an initial pressure p =
4.1 torr and at U = 26 kV.
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dashed curves show the numerical results. The density
of N2(C3Πu) in Fig. 9 is normalized to the maximum
theoretical density of these molecules, and the horizon-
tal dashed line in Fig. 10 indicates the total pressure in
the mixture in the case of the complete conversion of
the initial gas into a mixture of N2 and O2 gases.

Nearly the same shapes of the calculated and mea-
sured curves characterizing the production of N2(C3Πu)
molecules allow us to conclude that, for the conditions
of our experiments, the model based on solving the
Boltzmann equation in the two-term approximation
correctly describes the gas excitation by electron
impact. Also, the almost exact coincidence of the time
behavior of the experimental and numerical pressure
profiles indicates that the model is capable of correctly
reconstructing the kinetics of the decomposition of
N2O molecules in the afterglow stage.

The calculated and measured data on the time in
which the densities of the main components recorded in
our experiments change are compared in Figs. 4 and 5.
One can clearly see that, over the entire pressure range
under investigation, the proposed model well describes
both the rate of conversion of triatomic nitrous oxide
into diatomic reaction products (which is evidenced by
an increase in pressure during the decomposition of the
main reagent; see Fig. 4) and the time evolution of the
population of the upper radiating states of nitrogen
molecules and atoms.

0

0

0.2

0.4

0.6

0.8

1.0

50 100 150 200
t, s
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Fig. 9. Comparison between the calculations and the exper-
iment: the measured (solid curve) and calculated (dashed
curve) dynamics of the relative density of N2(C3Πu) mole-
cules in an N2O gas at an initial pressure p = 4.7 torr and at
U = 26 kV. Both curves are normalized to the theoretical
value of the density of N2(C3Πu) molecules in the case of
the complete conversion of the initial gas into a mixture of
N2 and O2 gases.
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The situation with the dynamics of the emission
intensity of the γ band of NO (Fig. 3) is far more com-
plicated. It is readily seen that the emission from NO
increases over a substantially longer time in compari-

son with the emissions from N2(C3Πu) and ( )
(Fig. 5). As a result, the density of NO(A2Σ+) becomes
maximum when the bulk of N2O molecules have
already been decomposed and the density of NO mole-
cules in the ground electronic state is low because of
their decomposition in the late discharge stages. This
circumstance makes it possible to assert that the
NO(A2Σ+) states are populated through the direct pro-
duction of the electronically excited nitric oxide mole-
cules rather than through the excitation of NO mole-
cules, e.g., in the reactions NO + e  NO(A2Σ+) + e
or NO + N2(A3Σu)  NO(A2Σ+) + N2, whose rates are
proportional to the instantaneous density of NO mole-
cules in the system. Unfortunately, there are no data on
alternative channels of the production of NO(A2Σ+)
molecules. That is why we considered several energet-
ically allowable channels for the production of these
excited molecular states. The calculated results that are
closest to the experimental data on the dynamics of the
emission intensity of the γ band were obtained under
the assumption that the NO(A2Σ+) state is mainly popu-
lated in the reaction N+ +   NO(A2Σ+) + O. Since

the density of negative oxygen ions  increases con-
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Fig. 10. Comparison between the calculations and the
experiment: the measured (solid curve) and calculated
(dashed curve) dynamics of the pressure in the mixture
resulting from an N2O gas at an initial pressure p = 4.7 torr
and at U = 26 kV. The horizontal dashed line indicates the
theoretical value of the total pressure in the mixture in the
case of the complete conversion of the initial gas into a mix-
ture of N2 and O2 gases.
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tinuously during the discharge, the population of the
NO(A2Σ+) state becomes maximum by the end of the
decomposition process; simultaneously, because of a
sharp decrease in the density of N+ atoms after the
decomposition of all N2O molecules, this state is rap-
idly depopulated in the late discharge stages, which
correlates well the experimentally observed population
dynamics (Fig. 5). Nevertheless, the question about the
possible channels of the excitation of the γ band under
our experimental conditions apparently remains open.

4. FLUXES OF ACTIVE PARTICLES
AND THE MAIN STAGES 

OF THE NONTHERMAL DECOMPOSITION 
OF N2O IN A PULSED DISCHARGE

In order to single out the most important processes
occurring in an afterglow discharge plasma, we ana-
lyzed the rates of reactions of the kinetic scheme for the
conditions of the first current pulse propagating
through the discharge gap originally filled with N2O at
a pressure of 4.7 torr and also for the conditions of the
1560th pulse, which corresponded to the decomposi-
tion of 50% of the initial nitrous oxide. To do this, in
simulating the discharge kinetics, we calculated the
instantaneous densities of the discharge plasma compo-
nents simultaneously with the absolute rates of all of
the reactions (i.e., the rate of the forward reaction
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Fig. 11. Dynamics of the densities of the components
involved into the fastest reactions in the initial decomposi-
tion stage in the discharge afterglow ([N2O]/[N2O]0 = 1):

(1) electrons, (2) O–, (3) NO–, (4) N2( ), and (5)

N(2D). The initial pressure of the N2O gas is p = 4.7 torr.
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minus the rate of the reverse reaction). The reactions
that proceed at high absolute rates give rise to particle
fluxes in the “reagents–final products” space. This
approach allowed us to follow the sequence of the main
reactions in which N2O decomposed into N2 and O2.

Figures 11 and 12 show the kinetic curves for the
components involved in the fastest reactions in the
afterglow plasmas of the above two current pulses.

From these figures, we can clearly see that, in the
initial stage of the decomposition of N2O (when the
densities of nitrogen and oxygen molecules in the mix-
ture are low), the kinetics is characteristically different
from the kinetics in the late stages (which are domi-
nated by the processes of the excitation of the electronic
levels of N2 molecules in the discharge plasma and their
dissociative deexcitation in collisions with N2O mole-
cules). In particular, the lifetime of the excited N2(A3Σu)
molecules increases because of the decrease in the rate
of their deexcitation in collisions with N2O molecules.
The lifetime of the negative nitrogen monoxide ions
decreases by almost three orders of magnitude because
the density of molecular oxygen increases during the
decomposition of N2O and the charge-exchange rate
increases. The density of the excited nitrogen atoms
N(2D) decreases markedly for the following reason. In
the initial stage, these atoms are efficiently produced in
the dissociation of N2O molecules by electron impact.
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Fig. 12. Dynamics of the densities of the components
involved into the fastest reactions in the final decomposition
stage in the discharge afterglow ([N2O]/[N2O]0 = 0.5):

(1) electrons, (2) O–, (3) NO–, (4) N2( ), (5) N(2D),
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However, in the late stages, the density of N2O mole-
cules decreases; as a result, the rate of this process
decreases, thereby reducing the density of N(2D)
atoms. The conversion time of the electrons also
becomes somewhat shorter.

The dynamics of the densities of the main neutral
components in the afterglow of the first discharge pulse
in an N2O gas at an initial pressure p = 4.7 torr is illus-
trated in Fig. 13. It can be seen that the process pro-
ceeds in several stages that are accompanied by the
slow decomposition of N2O and the production of
molecular nitrogen and oxygen. During the first pulse,
the densities of NO molecules and oxygen atoms in the
mixture are relatively high; then, during the decompo-
sition of N2O, these densities decrease.

As in the case of a system with a reacting H2–air
mixture, the time between the end of each current pulse
and the beginning of the next pulse can be divided into
four intervals: 0–10–7, 10–7–10–5, 10–5–10–3, and 10–3–
25 × 10–3 s.

We performed an analysis of the fluxes of active par-
ticles in the fastest chemical conversion reactions dur-
ing these intervals.

Let us consider the processes that are dominant in
each of above four intervals in the afterglow of the first
current pulse.

(i) In the first 10–7 s after the end of the pulse, the
fastest processes are those involved in the electron
transfer reactions

e– + N2O  O– + N2, (1)

O– + N2O  NO– + NO, (2)

in which N2O molecules are efficiently decomposed.
The second fast process is the dissociative quench-

ing of the electronically excited level N2( ) by
N2O molecules.

In this time interval, N2O molecules are also decom-
posed in the reaction N(2D) + N2O  NO + N2.

(ii) During the second interval (from 10–7 to 10–5 s),
the rate of reactions (1) and (2) increases considerably.
However, the decomposition of nitrous oxide is now
dominated by the reaction of dissociative quenching of

the electronically excited level N2( ) by N2O mol-
ecules.

(iii) The third interval (from 10–5 to 10–3 s) is char-
acterized by an increasing influence of the secondary
processes, namely, the reactions involving O and N
atoms.

(iv) For longer times (from 10–3 to 25 × 10–3 s), the
reactions responsible for the production of N2 and O2
molecules in the system become more intense. The
most important of these reactions are those involving
NO molecules:
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NO + O + M  NO2 + M,

NO2 + O  NO + O2,

NO + N  N2 + O. 

The general pattern of the decomposition kinetics
changes substantially as the N2O molecules decompose
and the nitrogen, oxygen, and nitric oxide molecules
are produced. Although the scheme of the main reac-
tions remains the same, the role of the reactions involv-
ing electronically excited nitrogen molecules and oxy-
gen ions increases considerably. The dynamics of the
densities of the main reaction products—molecular
nitrogen and oxygen—is clearly seen in Fig. 13b. The
production of molecular oxygen in the mixture leads, in
particular, to a decrease in the density of negative NO–

ions in fast charge-exchange reactions (Fig. 12).
Based on the above analysis, we can conclude that

the reactions involving ions and electronically excited
particles play a fundamental role in the decomposition
of nitrous oxide in a high-current pulsed discharge at
low temperatures.

The role of the reactions involving O atoms is rela-
tively unimportant because of the high energy threshold
of the reaction

N2O + O  NO + NO. 

In contrast to an H2–air mixture, in which the vibra-
tional excitation of H2 molecules substantially intensi-
fies the oxidation process, the vibrational excitation of
the gas does not have any important effect on the
decomposition of N2O molecules.

Under the conditions in question, vibrational excita-
tion cannot play any important role in the decomposi-
tion of nitrous oxide by the purely vibrational mecha-
nism [11] for intensifying the monomolecular decom-
position because of the high rates of the relaxation of
the EDF via the deformation mode at high vibrational
quantum numbers.

A decrease in the threshold (Θ . 14000 K) of the
reaction N2O + O  NO + NO also cannot result in
any significant (in comparison with other mechanisms)
decomposition of N2O molecules.

The above analysis shows that, under the conditions
in question, the nonequilibrium character of the vibra-
tional excitation manifests itself in a quite different
manner.

On the one hand, the vibrational excitation of the
gas substantially intensifies the reactions of the colli-

sional detachment of electrons from O–, , and NO–

ions. As a result, the recombination of charged particles
becomes somewhat more rapid, and reactions (1) and
(2) proceed at a slower rate. On the other hand, the
vibrational excitation of the gas somewhat increases the
mean electron energy in the discharge (because of
superelastic collisions) and, accordingly, the popula-

tion rate of the electronically excited level N2( ),

O2
–

A
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Fig. 13. Dynamics of the densities of the main components (a) in the afterglow of the first discharge pulse and (b) during the decom-
position process (the values of the density at the end of each subsequent current pulse are presented): (1) molecules, (2) atoms,
(3) electronically excited particles, (4) negatively charged particles, and (5) positively charged particles. The initial pressure of the
N2O gas is p = 4.7 torr.
thereby increasing the rate of the collisional dissocia-
tion of N2O molecules. The rate of direct electron
impact ionization of N2O also increases.

Both of these mechanisms have only an indirect
effect on the integral decomposition rate of N2O mole-
cules and, on the whole, do not significantly change the
rate of the decomposition process.

Hence, based on the results obtained in this section,
we can conclude that the mechanism for the thermally
nonequilibrium decomposition of nitrous oxide (N2O)
in a high-current pulsed discharge is governed by reac-
tions involving the ions and electronically excited mol-
ecules.
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Abstract—The structure of a discharge induced by a coaxial microwave plasmatron with a gas-supply channel
in the inner electrode of a coaxial waveguide is investigated. A plasmatron with a power of up to 10 W operates
at a frequency of 10 GHz. Depending on the operation regime, the discharge takes either a filament or torch
form. A plasma filament arises at low flow rates of the working gas (argon) and occurs at the border of the poten-
tial core of the gas jet. A torch discharge occurs at high flow rates and has the form of a hollow cone. In both
cases, the discharge arises in the potential core of the gas jet and does not spread beyond it. The distribution of
the microwave field in the discharge plasma is determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The structure of a torch discharge induced by a con-

ventional coaxial microwave plasmatron [1–3] is simi-
lar to that of an RF torch discharge [4, 5]. The main dif-
ference is that, in an RF torch discharge, the heated gas
leaves the discharge region due to upward convection,
whereas in a microwave torch, the working gas is blown
through the interelectrode channel and then is let out
into the atmosphere. When the working gas in a micro-
wave plasmatron is supplied through a special channel
in the central electrode [6–10] (rather than through the
interelectrode space), the discharge takes a specific
form. The plasmatrons of this type are called TIA
(Torche á Injection Axiale) plasmatrons. In this case,
the edge of the inner electrode (rather than the coaxial
outer electrode) acts as a nozzle forming the gas flow.
As a result, the microwave discharge is ignited not in
the central region of the argon jet, but at the border
between the potential core of the jet and the turbulent
boundary layer, which contains (besides argon) mole-
cules of the surrounding air. Because of the specific
conditions of discharge formation, the discharge struc-
ture in such a plasmatron differs significantly from that
in a conventional plasma torch [4].

The structure and dynamics of the discharge in var-
ious operating regimes of a plasmatron with a gas-sup-
ply channel in the central electrode were studied in [8–
10]. In [8, 9], the specific features of such a discharge
were attributed to the high electron density and the
presence of a plasma skin layer, as well as to the effect
of the surrounding air. In contrast, in [10], it was sug-
gested that the discharge structure can be strongly
affected by the structure of the cold gas jet. In all of
these studies, argon at approximately the same flow rate
was used as a plasma-forming gas; however, in [8, 9],
the discharge was fed with a microwave power of
1063-780X/03/2906- $24.00 © 0528
~1 kW at a frequency of 2.45 GHz, whereas in [10], the
power supplied to the discharge did not exceed 10 W
and the experiments were performed at a higher micro-
wave frequency (10 GHz).

This paper is aimed at studying the general features
of such discharges by a unified approach and acquiring
additional data on the microwave field distribution in
the discharge at a frequency of 10 GHz and an input
power of several watts. Attention is focused mainly on
investigating the discharge structure at different flow
rates of the plasma-forming gas (argon).

2. EXPERIMENTAL SETUP

In our experiments, we used a plasmatron in which
argon was supplied through an axial channel in the
inner electrode [6]. The channel diameter was varied
from 0.35 to 2 mm. The argon flow rate was no higher
than 2 l/min. The output power of the 10-GHz continu-
ous-wave magnetron exciting the discharge was up to
10 W. The discharge plasma was strongly nonequilib-
rium [6], and the electron energy distribution was far
from Maxwellian [8, 9]. Taking into account relatively
small plasma dimensions, this somewhat impedes the
study of the plasma using conventional investigation
techniques. To investigate the microwave field distribu-
tion in the discharge, we employed the method of a
small perturbing body (vibrating metal string) [11, 12].

Figure 1 presents a schematic of the plasmatron and
the block diagram of a system for measuring the micro-
wave field distribution in a discharge. The microwave
radiation is fed from magnetron 1 through ferrite valve
2 and attenuator 3 to a plasma torch in the form of coax-
ial waveguide 4 with nozzle 5 at its end. The end of the
coaxial waveguide with an inner electrode 4 mm in
diameter and outer electrode 10.5 mm in diameter is
2003 MAIK “Nauka/Interperiodica”
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tapered to a cone so that the output opening of the outer
electrode decreases to 4 mm and that of the inner elec-
trode decreases to 0.6–2 mm. The shape of the inner
electrode apex can be varied by changing the diameter
of the gas supply channel. In the feed circuit of the
torch, directional coupler 6 is inserted, which receives
the total microwave signal reflected from the matching
elements of the coaxial waveguide, torch nozzle, and all
of the other elements that reside in the surrounding
space near the nozzle. The reflected signal is recorded
with detector 7, loading the measurement channel of
the directional coupler. Since this signal is time-inde-
pendent, the input capacitance of oscilloscope 8, which
displays the signal, does not allow it to pass to the oscil-
loscope input. In the measurements, this signal was
used as a reference one.

When a small perturbing body (a sphere, disc, or
cylinder) is placed in the microwave field created by the
coaxial nozzle in the atmosphere or a discharge plasma,
the signal reflected from the perturbing body is added
to the reference signal. The amplitude of the reflected
signal is proportional to the electric field strength at the
position of the perturbing body, and the signal phase is
determined by the phase difference between the micro-
wave field at this point and the reference signal. If the
perturbing body is immobile, there will be no reflected
signal on the oscilloscope screen. However, when the
perturbing body is displaced from one point to another,
at which the electric field differs in amplitude or phase,
the time variations in the electric field will be displayed
on the oscilloscope screen.

In our experiment, vibrating steel string 9 (0.3 mm
in diameter and 80–100 mm in length) serves as a per-
turbing body. The string is fixed at its upper end and
hangs down freely. The string vibrations are excited
with electromagnet 11, which is placed near the string
support and is fed from audio-frequency generator 10.
The audio-frequency oscillator is also used to synchro-
nize the horizontal sweep of the oscilloscope. The sig-
nal reflected from the vibrating string provides infor-
mation about the electric field strength at the string
position, and, being superimposed on the reference sig-
nal, it also provides information about the phase differ-
ence between them.

The electric field profile across the discharge and the
amplitude–phase characteristic of the wave propagat-
ing along plasma jet 12 are displayed on the oscillo-
scope screen.

Figure 1 schematically illustrates the string vibra-
tions along the plasma axis. Obviously, such measure-
ments allow us to reveal only the character of the spatial
variations in the electric field or the change in the elec-
tric field at a given spatial point as the regime of plas-
matron feeding is changed or the plasmatron design is
modified. It should also be taken into account that the
measurement results are averaged over the string seg-
ment located in the plasma jet. The abelianization of the
measurement results, assuming the discharge to be
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
cylindrical in shape, allow us to determine the true elec-
tric field profile. Since the detector operates at the qua-
dratic segment of its characteristic, the oscilloscope
trace reflects the evolution of the electric field squared.

A cathetometer with a magnification of 15–20 was
used to monitor the discharge structure and measure its
dimensions. The discharge was also photographed.

3. EXPERIMENTAL RESULTS

Photographing the discharge and monitoring its
structure with a cathetometer revealed the following
features. In the middle of the torch, there is a constric-
tion (waist), which divides the discharge into two
parts—a conical part residing on the nozzle and a small
cylindrical part, which then transforms into a kind of
brush with a blurred end (Fig. 2a). The cone base diam-
eter is determined by the nozzle diameter, i.e., by the
diameter of the edge of the inner coaxial electrode. The
inner electrode was tapered so that the thickness of the
nozzle wall was as small as several tenths of a millime-
ter. As a result, the electric field at the nozzle edge is
fairly strong and highly nonuniform, which leads to the
ignition of a microwave discharge. Any eccentricity of
the inner electrode with respect to the outer one violates
the discharge symmetry.

A specific feature of the conical part of the discharge
is that the discharge occurs only in a thin layer on the
cone surface, the layer thickness being on the order of
the skin depth. From the inside, this layer is adjacent to
the conical region occupied by the unexcited working
gas. In [8, 9], it was hypothesized that the increase in
the electron density Ne, electron temperature Te, and gas
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Fig. 1. Schematic of the experimental setup.
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Fig. 2. Photograph of (a) a torch discharge and (b, c) a filament discharge.
temperature Tg at the border of the initial part of the dis-
charge is only due to the penetration of nitrogen or oxy-
gen through the surface of the potential core of the gas
jet from the surrounding air. However, this hypothesis
seems to be unconvincing; in particular, it does not
explain the conical shape of this part of discharge.

It has been found that, in the power range of 2–10 W,
the decrease in the argon flow rate to 1.0 l/min results
in a qualitative change of the discharge, which converts
into a steady-state filament discharge. The photograph
of such a discharge is shown in Fig. 2b. The point on the
nozzle edge on which the filament base resides is usu-
ally located closest to the outer coaxial electrode (it
happens because of the violation of the axial electrode
symmetry, which is very difficult to avoid in the exper-
iments). It is natural to expect that the microwave field
is maximum at this point. The filament is stretched not
along the velocity vector of the gas outflowing from the
nozzle but is inclined at a small angle (~6°) toward the
axis of the inner electrode. The filament radius is
around 0.15 mm. Assuming that the filament radius is
equal to the skin depth in the discharge plasma, the
electron density in the filament turns out to be higher
than 1012 cm–3, which agrees with the results of [6].

The increase in the argon flow rate at a fixed input
power leads to an increase in the filament length until it
reaches its maximum value at Q ≈ 1 l/min.

After the filament has reached its maximum length,
a similar filament (initially unstable) inclined at the
same angle to the axis arises at the diametrically oppo-
site point of the nozzle edge. The latter filament crosses
the former one, forming a scissorlike figure (Fig. 2c).
The number of filaments arising and vanishing at the
nozzle edge gradually increases with the argon flow
rate. At the same time, the rate of filament motion over
the perimeter of the nozzle opening also increases. This
motion is similar to that of an anode spot on the anode
of a voltaic arc. However, the filaments move not in the
nozzle plane but along the nozzle perimeter, thereby
forming a conical part of the discharge. As a result, a
hollow conical discharge region arises near the nozzle
(Fig. 2a); such a discharge was previously observed in
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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[8–10]. The angle between the cone generatrix and the
discharge axis is again ~6°, as in the case with a solitary
filament occurring at low argon flow rates. When com-
paring with the results of [8, 9], it should be remem-
bered that, in those papers, the inclination angle was in
the range 4°–8°, which does not contradict the results
of our study.

After the filament length L has reached its maximum
value, it begins to decrease. This is illustrated in Fig. 3,
which shows the plasma filament length as a function of
the argon flow rate Q at different input powers P. The
dependences were measured for a nozzle with the
diameter of the channel in the inner electrode equal to
0.8 mm. Whatever the power, the maximum length of
the plasma filament is reached at the same argon flow
rate of Q = 1 l/min. We note that a steady-state filament
discharge occurs only at argon flow rates in the range
Q = 0.2–1.0 l/min. A further increase in the argon flow
rate leads to both filament instability and a change in
the discharge structure.

The increase in the diameter D of the channel in the
coaxial inner electrode (i.e., the diameter of the nozzle
opening) leads to an increase in the maximum length of
the plasma filament. Simultaneously, the argon flow
rate at which this maximum is reached also somewhat
increases. Figure 4 shows the maximum filament length
Lmax (curve 1) and the argon flow rate Q (curve 2) cor-
responding to this maximum versus the diameter D of
the plasmatron nozzle opening. The dependences were
measured at the fixed discharge input power P = 5.9 W.
We note that the dependence of the maximum discharge
length on the nozzle opening diameter is linear.

The measurements of the electric field profile along
the filament show that a surface plasma wave propa-
gates along the filament [11]. As an example, Fig. 5 pre-
sents the amplitude–phase characteristics of the wave
propagating along the filament for plasmatrons with
two different diameters (0.6 and 0.8 mm) of the channel
in the inner electrode. In both cases, the input power is
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L, mm

Q, l/min

1
2
3

Fig. 3. Plasma filament length L vs. argon flow rate at input
powers of (1) 5.9, (2) 4.5, and (3) 3.0 W.
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5.3 W and the argon flow rate is 1.0 l/min. Under these
conditions, the filament length amounts to 6.0 and
7.5 mm, respectively. It follows from these depen-
dences that, in the latter case, the wave is slower by a
factor of 1.25–1.5. In this case (as in the case of a sur-
fatron [13]), the filament discharge is apparently sus-
tained by a slowed-down traveling surface plasma
wave. Since, under the same operating conditions, the
discharge formed by a nozzle with D = 0.6 mm is
shorter than that formed by a nozzle with D = 0.8 mm,
the electric field strength in the latter case is somewhat
lower.

The increase in the filament length is accompanied
by a decrease in the electric field inside the filament.
Figure 6 shows the maximum value of the electric field
squared E2 in the filament as a function of the gas flow
rate at a fixed power of P = 5.3 W and different nozzle
diameters. The electric field was measured at a distance
of z = 0.5 mm from the nozzle. Stable plasma filaments
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Fig. 4. Maximum discharge length Lmax and the corre-
sponding values of the argon flow rate Q and the electric
field squared E2 vs. nozzle diameter.
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Fig. 5. Profile of the electric field squared E2 along the dis-
charge axis for nozzle-opening diameters of (1) 0.6 and
(2) 0.8 mm.
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exist only at the descending branches of these curves.
After reaching the minimum on the curve E = F(Q)
(which corresponds to the maximum filament length),
the filament becomes unstable and begins to move
about the nozzle perimeter in a jumplike manner. It is
interesting to note that, at the minimum of the curve,

the electric field squared  is approximately
inversely proportional to the diameter D of the nozzle
opening. This can be seen in Fig. 4, in which the circles

show the measured values of  = F(D) and curve 3

shows the dependence  ≈ 1/D. The fairly good
agreement between the inversely proportional depen-
dence and the experimental results indicates that the

Emin
2

Emin
2

Emin
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Fig. 6. Electric field squared E2 in the filament discharge vs.
argon flow rate for nozzles with opening diameters of
(1) 0.35, (2) 0.6, (3) 0.8, and (4) 1.6 mm.

3

5

6

21 4 5 6 7 98

1

1'

2

2'

L, mm

P, W

4

Fig.7. Discharge length L vs. input power P with (curves 1,
2) and without (curves 1', 2') an additional supply of argon
through the interelectrode space for two rates of argon sup-
ply through the channel in the inner electrode: Q = (1, 1') 1.4
and (2, 2') 0.65 l/min.
squared electric field E2 in the filament is inversely pro-
portional to the filament length.

As was noted in [8, 9], the length of the conical part
of the discharge depends slightly on the microwave
input power, although the total torch length can be var-
ied by varying input power P. The study of the transfor-
mation of a filament into a torch shows that, as the input
power P and/or argon flow rate Q increase, the length L
of a stable steady-state plasma filament gradually
increases until it saturates or reaches its maximum
value, after which it begins to decrease. A further
increase in Q results in the change of the discharge
structure. As the input power increases, the dependence
L(P) at Q < 1 l/min saturates without an appreciable
change in the filament structure except for the appear-
ance at its end of an additional reddish glow, whose size
increases with ê. Seemingly, this extra glow is related
to the excitation of nitrogen outside the potential core
of argon jet.

4. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

Observations of the dynamics of the gas jet flowing
out of the nozzle [14] show that a potential core in the
shape of a cone residing on the nozzle is formed in the
jet. Inside the core, the outflowing gas (argon) is not
mixed with the surrounding air. In the rest of the jet,
intense turbulent mixing of the jet gas with the sur-
rounding air occurs. The cone height is higher by a fac-
tor of nearly 4.4–5 than the diameter of the nozzle
opening from which the jet is ejected. Hence, the cone
half-angle of the potential core is 6°.

Therefore, the discharge filament does not stretch
along the gas flow, as is the case of a torch discharge in
other types of plasmatrons, but, originating at the noz-
zle edge, propagates along the conical border of the
potential core of the jet. The filament length gradually
increases with increasing argon flow rate Q or input
power P. A significant fraction of the energy acquired
from the microwave field is carried away by the gas
flow not only along the filament but also across it. This
is an extra channel for thermal energy losses into the
surrounding space through the side surface of the fila-
ment, thereby appreciably contributing to the loss
caused by diffusion. As was shown in [8, 9], the diffu-
sion of the surrounding gas (particularly, nitrogen) into
the discharge naturally results in an increase in the gas
temperature on the surface of the conical part of the dis-
charge.

In [8], a special chamber filled with argon was used
to reduce the effect of nitrogen and oxygen penetrating
into the discharge from the surrounding space. In our
experiments, similar isolation of the discharge from the
surrounding air was accomplished by simultaneously
supplying argon through both the axial channel in the
central electrode and the interelectrode space. Figure 7
shows the lengths of the filament and torch discharges
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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as functions of the input power P with (curves 1 and 2)
and without (curves 1' and 2') an additional supply of
argon through the interelectrode space at a flow rate of
Q' = 1.5 l/min. In the latter case, argon was supplied
only through the channel in the central electrode. In
both cases, the filament discharge occurred at Q = 0.65
l/min, whereas the torch discharge occurred at Q = 1.4
l/min. It can be seen that, when the filament discharge
has not yet attained its maximum length, the supply of
argon through the interelectrode space increases the
discharge length by several tens of percent, whereas in
the case of a torch discharge, the extra supply of argon
increases the discharge length less significantly.

This result again confirms the influence of the struc-
ture of the working gas jet on the characteristics of the
discharge under study. The plasma filament is formed at
the border of the potential core of the gas jet and stops
elongating after leaving the cone region. Then, extra fil-
aments arise, which form the conical part of the dis-
charge. An increase in the microwave power or the
argon flow rate does not affect the height of this cone,
because it is completely determined by the size of the
potential core of the outflowing gas jet. A further
increase in the argon flow rate leads to a shortening of
the plasma torch because of an increase in the thermal
energy losses from the discharge. In this case, the dis-
charge diameter can somewhat increase far from the
nozzle.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
REFERENCES
1. J. D. Cobine and D. A. Wilbur, J. Appl. Phys. 22, 835

(1951).
2. S. Murayama, J. Appl. Phys. 39 (12), 5478 (1968).
3. S. P. Martynyuk, A. P. Motornenko, and A. Yu. Usikov,

Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 734 (1975).
4. S. I. Zilitinkevich, Telefoniya i Telegrafiya bez Pro-

vodov, No. 6, 652 (1928).
5. R. Grigorovich and D. Kristesku, Opt. Spektrosk. 6 (2),

129 (1959).
6. S. P. Martynyuk and A. P. Motornenko, Dokl. Akad.

Nauk Ukr. SSR, Ser. A, No. 2, 161 (1978).
7. M. Moisan, G. Sauve, Z. Zakrzewski, and J. Hubert,

Plasma Sources Sci. Technol. 3, 584 (1994).
8. J. Jonkers, L. J. M. Selen, J. A. M. van der Mullen, et al.,

Plasma Sources Sci. Technol. 6, 533 (1997).
9. J. Jonkers, A. Hartgers, L. J. M. Selen, et al., Plasma

Sources Sci. Technol. 8, 49 (1999).
10. A. Ya. Kirichenko, A. P. Motornenko, and O. A. Suvo-

rova, Radiofiz. Élektron. 6 (2), 252 (2001).
11. A. Ya. Kirichenko, A. P. Motornenko, A. F. Rusanov,

et al., Zh. Tekh. Fiz. 71 (4), 23 (2001) [Tech. Phys. 46,
386 (2001)].

12. A. Ya. Kirichenko, A. P. Motornenko, and O. A. Suvo-
rova, Ukr. Fiz. Zh. 46, 689 (2001).

13. M. Moisan and Z. Zakrzewski, J. Phys. D: Appl. Phys.
24, 1025 (1991).

14. Shih-I. Pai, Viscous Flow Theory (Van Nostrand, Prin-
ston, 1957; Inostrannaya Literatura, Moscow, 1962),
Vol. 2.

Translated by N.N. Ustinovskiœ



  

Plasma Physics Reports, Vol. 29, No. 6, 2003, pp. 534–537. Translated from Fizika Plazmy, Vol. 29, No. 6, 2003, pp. 573–576.
Original Russian Text Copyright © 2003 by Zharinov, Shumilin.

                                                                                                                                                                                                     

LOW-TEMPERATURE
PLASMA
High-Voltage Stage of a Vacuum Arc
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Abstract—An elementary theory of the cathode region at the high-voltage stage of an arc discharge is pro-
posed. The theory is based on the balance equations for the particles in an active plasma layer, the power balance
at the cathode, and the equation for the Richardson–Dushman electron emission with allowance for the Schot-
tky effect. The most characteristic features of this type of discharge are considered. A non-Langmuir cathode
sheath model is proposed for a low-voltage arc on a tungsten electrode. © 2003 MAIK “Nauka/Interperiodica”.
The literature on arc-discharge physics is mainly
devoted to low-voltage arcs at voltages on the order of
the ionization potential ui . It is obvious, however, that
there is also a high-voltage arc stage (HVAS), which
occurs, e.g., during vacuum breakdown, and after
which the discharge inevitably transforms into a low-
voltage arc.

Theoretical and experimental studies of the HVAS
are of interest for the following reasons:

(i) A HVAS seems to be significantly simpler to
investigate than a low-voltage arc because the cathode
surface can be treated as plane and solid (unmelted).
For high-melting cathodes (W, Ta, etc.), evaporation
can be ignored in comparison with cathode sputtering.
The electron emission is known to be described by the
Richardson–Dushman–Schottky (RDS) theory.

(ii) It is likely that studying the HVAS will help to
understand some amazing features of a low-voltage arc.

(iii) Experimental studies of the HVAS will allow
one to verify the RDS theory within the record ranges
of the current densities and electric fields, including
those corresponding to the field emission.

(iv) The highest voltage in the HVAS occurs when
the electric field at the cathode is zero and the value of
i (the ratio of the ion current density at the cathode, ji,
to the density of the electron current at the cathode) is

equal to i0 = , where m and M are the electron
and ion masses, respectively. In the regime of a zero
electric field, the gas target density n0 is minimum [1]
and is determined by the formula n0σiR ≈ i0 ! 1, where
σi is the ionization cross section and R is the cathode
spot radius. For tungsten, we have i0 ≈ 1.7 × 10–3;
hence, the mean square scattering angle of the cathode
electrons is negligibly small. Thus, in the HVAS, a
nearly collisionless electron beam, directed normally to
the cathode spot surface, is produced.

As i increases (i > i0) and the surface is deformed,
the beam spreads out. Hence, it is possible to experi-
mentally investigate the dynamics of a solid or fluid

m/M
1063-780X/03/2906- $24.00 © 20534
surface using a technique similar to the Muller electron
projector.

(v) The HVAS can be used in various applications;
apparently, it has long been used in pulsed accelerators.

All the above considerations inspire one to analyze
the quasi-steady HVAS.

The quasi-steady HVAS is described by two ele-
mentary algebraic equations

(1)

(2)

Equation (1) is the existence condition, and Eq. (2) is
the heat balance equation at the spot surface. Here, j is
the current density in the RDS model at i > i0, e is the
elementary charge, v 0 is the mean velocity of the atoms
produced due to the cathode self-sputtering (the flux
density of these atoms is q0 = ji(1 + γi)/e), γi is the self-
sputtering coefficient, ϕp is the discharge voltage, eϕ =
eϕ0 – e∆ϕ is the work function with allowance for the
Schottky effect (ϕ0 = 4.5 V), T is the surface tempera-
ture, and λ is the thermal conductivity.

Equation (1) takes into account that the angular
expansion of the atomic flow with the flux density q0
obeys the cosine law [2] and the electron beam is
directed normally to the flat surface of the spot of area
πR2 and is practically not scattered. Hence, we have

Since i = ji /j ! 1, then j ≈ const, σi ≈ const, and i ≤
σin0R. Moreover, n0 = ji(1 + γi)/ev 0 = ij(1 + γi)/ev 0;
hence, Eq. (1) is independent of n0, i, and T (i.e., they
can take any values) and depends only on the discharge
voltage through σi(ϕp), v 0(ϕp), and γi(ϕp). Condition
(1) is valid at R ≥ 3d, where d is the thickness of a one-

jR
ev 0

σi 1 γi+( )
-----------------------,≈

i ϕ p ui ϕ–+( ) ϕ λT
jR
-------.+≈

ji σi j n x( ) xd

0

∞

∫ σi jn0R.≈≤
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dimensional plane cathode sheath with the cathode fall
voltage ϕp.

In contrast, when d/R ≥ 3, the beam is highly diverg-
ing, as in the case of a spherical diode. However, even
in this case, a condition of type (1) holds accurate to an
arbitrary factor or correction function. This is also true
for a deformed spot surface. In the general case, the rig-
orous derivation of the condition of type (1) is not an
easy matter.

Below, in the qualitative analysis, we use approxi-
mate condition (1), which leads to the following for-
mula for the HVAS minimum current

(3)

Obviously, the total discharge current is Jp = ωJ, where
ω is the number of autonomous microarcs and Jp is
determined by the load of the external electric circuit.

The literature data on the v 0 and γi values are frag-
mentary and inexact [3]. In a qualitative analysis, it can
be assumed that, for tungsten, σi ≈ 2 × 10–17 cm2; v 0 ≈
4 × 105 cm/s; and

(4)

where ϕp is in volts. Then, the HVAS minimum current
(in amperes) is

where the electron current density is in A/cm2.
If j(T, ϕp) = const, then the microarc current

decreases with increasing voltage: an increase in the
voltage ϕp from 103 to 5 × 104 V leads to a 24-fold
decrease in the current due to the increase in the rate of
cathode sputtering. At high voltages (ϕp > 6 × 103 V),
the regime of a zero electric field (i = i0 ≈ 1.7 × 10–3) is
feasible. In this regime, the current density j0 is deter-
mined by the Richardson–Dushman law, whereas the
current J and radius R exponentially decrease with the
voltage (Fig. 1). For example, they decrease from J ≈
290 A and R ≈ 0.15 cm at ϕp = 7230 V (in this case, T ≈
4000 K) to J ≈ 11 A and R ≈ 6.4 × 10–3 cm at ϕp = 8960 V
(in this case, T ≈ 5000 K). At i > i0, J and R decrease
much more rapidly due to the Schottky effect.

It should be stressed that the energy density released
at the anode under the action of the electron beam is
extremely high. Accordingly, we assume that special
measures are taken to prevent the effect of the anode
material vapor.

In the literature, the terms “current per spot” and
“threshold current” are sometimes used; in fact, these
terms refer to the currents equivalent to current (3).

J
π
j
---

ev 0

σi 1 γi+( )
-----------------------

2

.≈

γi

10
3– ϕ p

1 10
4– ϕ p+

-------------------------,≈

J
3.2 10

7× 1 10
4– ϕ p+( )

2

j 1 10
3– ϕ p+( )

2
-------------------------------------------------------,≈
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Even with allowance for the Schottky effect, the
HVAS is feasible only at a sufficiently high tempera-
ture. For example, if j > 600 A/cm2, then, at ϕ = 3 V, we
should have T > 2500 K.

The Schottky effect leads to a sophisticated interre-
lation among the HVAS parameters. For a Langmuir
cathode sheath, the electric field at the cathode (in volts
per centimeter) is

Hence, for tungsten (M ≈ 184 amu) at ∆ϕ ≈ 3.8 ×
10−4 , we have

(5)

Here, the current density is determined by the formula

(6)

where τ = ln( j / j0), j0 = 120T 2 exp(–11600ϕ0 /T), ϕ0 ≈
4.5 V, and

(7)

The values of ϑ  lie in the range 0 ≤ ϑ  ≤ 1.4715 (Fig. 2).
At ϑmax = 1.4715, we have τ = 4 and the current density
corresponding to the maximum value of ϑ  is equal to
j * ≈ 54.6j0; at ϑ   0, there are two asymptotic val-
ues: j  j0 and j  ∞. In the range ϑ  < ϑmax, there
are two solutions: j1 < j * and j2 > j *. At T = const, the
ϑ  value increases with increasing i – i0; in this case, we
have dj1/di > 0 and dj2/di < 0. Thus, as i and ϑ  increase,
both solutions tend to j *. As i – i0  0, the current
density j2 tends to infinity because of the decrease in the
work function and the transition to field emission
becomes feasible. Experimental observations of this
transition would be of fundamental importance; how-
ever, it is extremely difficult to observe.

One can eliminate T from Eqs. (1), (2), (4), and (7)
and obtain the dependence ϑ(i) at a fixed ϕp. As a

E 5700 ϕ pM( )1/4
j i i0–( )[ ] 1/2

.≈

E

∆ϕ 0.055ϕ p
1/2

j
1/4

i i0–( )1/4
.≈

ϑ τ τ /4–( ),exp=

ϑ T 640ϕ p
1/8

j0
1/4

i i0–( )1/4
.≈
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Fig. 1. Decimal logarithms of the (1) cathode spot tempera-
ture T [K], (2) arc current J0 [A], (3) electron current density

on the cathode j0 [A/cm2], and (4) spot radius R [cm] vs.
voltage ϕp in the regime of a zero electric field at the
cathode.
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result, any fixed ϕp value corresponds to certain definite
dispersions ∆i = i(ϕp) – i0 and ∆J(ϕp) characterizing the
ranges of the admissible i and J values. The dispersions
∆i and ∆J rapidly decrease with increasing voltage. For
example, when ϕp increases from 50 to 2000 V, ∆i
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1.2

0.8
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0
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θ

Fig. 2. Parameter θ vs. τ = ln( j/j0).
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Fig. 3. Dispersion ∆i vs. voltage ϕp.
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Fig. 4. Dependence of τ = ln( j/j0) on the voltage ϕp at the
cathode spot temperatures T = (1) 3000, (2) 4000, (3) 5000,
(4) 5500, and (5) 6000 K.
decreases from 0.11 to 2.6 × 10–3, i.e., by a factor of
about 40 (see the dependence in Fig. 3, which was
obtained at λ ≈ 1.2 W/(cm K)). Figure 4 presents the
solutions to the set of Eqs. (1), (2), (4), and (7) at a fixed
temperature. As ϕp increases, the dispersion tends to
zero, the Schottky effect disappears, and the current
density tends to j0.

According to Eqs. (3) and (4), the HVAS evolution
can start from a single spot with a current of J ≈ 290 A
and radius of R ≈ 0.15 cm, corresponding to ϕp ≈ 7.2 ×
103 V and T ≈ 4000 K. As i increases, the number of
microarcs increases in an avalanche-like manner; the
voltage ϕp decreases; and the discharge current Jp = ωJ,
dispersion, and current density j = j0exp(t) increase.
Note that HVAS filamentation develops and Jp grows
within the original spot with an initial temperature of
4000 K, rather than on the cold cathode surface.

Obviously, Jp and ϕp vary rapidly in time. Conse-
quently, the filamentation dynamics strongly depends
on the intrinsic variable reactance of the microarcs.
Thus, the HVAS is also a very sophisticated phenome-
non, and an exact non-steady-state theory of the HVAS
is still lacking.

In conclusion, let us consider the problem of a field-
emission microarc with a current density of j ~
108 A/cm2, which, until now, has been regarded as
debatable.

As is the case of the HVAS, the low-voltage tung-
sten arc is feasible due to cathode sputtering. At the
sputtering threshold (e.g., at γi ≈ 10–4), the sputtered
atoms accumulate near the cathode due to ionization
and resonant charge transfer [1]. Equations (1) and (2)
also apply to a low-voltage arc at i ! 1. The main dis-
tinctive feature of the field-emission arc is the intense
Coulomb deceleration of the ions moving to the cath-
ode against the electron flow. As a result, the ions decel-
erate and the electron beam rapidly spreads out because
of scattering. Hence, the Langmuir model of the cath-
ode sheath is not applicable here. In this case, a
quasineutral cathode sheath described by the equation

(8)

can arise. Then, we have j(r) = σcdφ/dr, where σc is the
Coulomb conductivity of the plasma,

(9)

with Te being the electron temperature in eV. On the
other hand, we have j(r) ≈ jER2/r2 and Te(φ) ≈ (Tc +
2φ/3), where Tc is the cathode temperature and jE is the
emission current density. Hence, we obtain

(10)

∇ 2φ 4π j/νe ji/ν i–( ) 0= =

σc 13Te
3/2

,≈

jE 13 Tc
2
3
---φ+ 

 
3/2dφ

dr
------.≈
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It follows from this that, at φ  0 and r ~ R, the elec-
tric field at the cathode is

(11)

At Tc = 2500 K ≈ 0.2 eV, we have E ≈ 0.8jE; i.e., in
accordance with the Fowler–Nordheim theory, E ≈ 8 ×
107 V/cm at jE ≈ 108 A/cm2. After integrating Eq. (10),
we obtain

(12)

According to Eq. (1), at ϕp ! 103 V, we have

From here, we obtain ϕp ≈ 16.5 V (for jE ≈ 108 A/cm2)
and R ≈ 3.2 × 10–5 cm. Microspots with such dimen-
sions were mentioned in review [4] and monograph [5].

It is possible that the above estimates are not suffi-
ciently convincing. Nevertheless, the question of a
quasineutral cathode sheath is worthy of detailed and
comprehensive theoretical consideration.

To conclude, a qualitative analysis of the quasi-
steady HVAS can stimulate more comprehensive and
systematic theoretical and experimental studies aimed

dφ
dr
------

c

jE

13Tc
3/2

---------------.≈

jER 2.9ϕ p
5/2

.≈

jR 3.2 10
3× .≈
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at evaluating the fundamental processes in an arc dis-
charge.
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Abstract—The equilibrium and stability of a sheared force-free magnetic field in a collisionless plasma are
investigated, and the main features of charged particle motion in such a field are analyzed. A steady solution is
derived to the Vlasov–Maxwell equations for the charged particle distribution function that describes different
equilibrium configurations. The tearing instability of the magnetic field configurations is studied both analyti-
cally and by particle-in-cell simulations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equilibrium and stability of plasma configura-
tions in force-free magnetic fields have been studied for
many years [1]. The force-free magnetic field approxi-
mation is used to describe the equilibrium of magnetic
configurations in both space and laboratory plasmas
[2–4]. Such magnetic configurations are considered to
play an important role, e.g., in stellar atmospheres and
active regions emerging on the Sun, because the plasma
pressure there is much lower than the magnetic field
pressure, β = 8πp/B2 ! 1.

By force-free magnetic fields are meant those that
have no force effect on the plasma. In a low-pressure
plasma in an MHD equilibrium state, force-free mag-
netic fields satisfy the equations

(1)

These equations admit a broad class of solutions,
which have been thoroughly investigated in the litera-
ture [3]. The equilibrium and stability of plasmas in
force-free magnetic fields have been studied mainly in
the MHD approximation. However, the MHD approach
fails to hold for many problems, especially in astro-
physical applications. Hence, the plasma should be
described in terms of a collisionless model, in which it
is necessary to determine the equilibrium particle dis-
tribution functions satisfying the Vlasov–Maxwell
equations [5–7]. For the simplest force-free magnetic
configuration, this problem was solved in [8], in which
the question about the tearing instability of the config-
uration was also discussed.

Here, we continue the investigations that were
begun in [8, 9] and report the new results achieved in
this area. In [8], a general solution was obtained that
describes the trajectories of charged particles in a one-
dimensional force-free magnetic field and is expressed

B — B×( )× 0, — B⋅ 0.= =
1063-780X/03/2906- $24.00 © 0449
in terms of elliptic functions. In [9], the nontrivial fea-
tures of the motion of charged particles were discussed
in light of the fact that, in such a field, they undergo no
centrifugal or gradient drifts. In the present paper, we
analyze the main features of charged particle motion in
more detail and present a wider class of exact solutions
to the Vlasov–Maxwell equations in comparison with
that studied in [8, 9]. For clarity in describing the
results obtained here and in comparing them with the
previously published results, we solve the problem by
the same approach as in [8, 9] and keep the same nota-
tion. Note that, in recent papers [10, 11], an analogous
approach was employed to find exact solutions to the
Vlasov–Maxwell equations in the problem of the struc-
ture of relativistically strong electromagnetic waves in
a collisionless plasma.

We begin by considering a solution to the Vlasov–
Maxwell equations for the simplest force-free magnetic
field:

(2)

where α is a constant. This field is a solution to Eqs. (1)
in one-dimensional geometry, in which B depends only
on the y coordinate. Solution (2) is a particular solution
admitted by the Vlasov–Maxwell equations for force-
free magnetic fields. Below, we will find a more com-
plicated solution describing the plasma equilibrium in a
force-free field.

It is well known that the tearing instability plays a
very important role in magnetic field reconnection in
both astrophysical and laboratory plasmas [12, 13]. The
present work focuses on the linear stage of this instabil-
ity in magnetic field (2). In the nonlinear stage of the
instability, the plasma and magnetic field usually
evolve in an extremely complicated fashion [14–18]. In
order to study the nonlinear stage of the tearing insta-

B y( ) B0 αyexcos αyezsin+( ),=
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bility, we carried out numerical simulations with a
2D3V particle-in-cell (PIC) code. In contrast to [8], we
use the initial electron distribution that makes it possi-
ble to analyze namely the tearing instability. Since, in
[8], the electron drift velocity was chosen to be fairly
high, simulations showed the simultaneous develop-
ment of a tearing and a bending instability; hence, it
was rather difficult to compare the numerical results to
theoretical predictions. In the computations reported
here, the electron drift velocity was chosen to be much
lower, thereby making it possible to simulate the tear-
ing instability, resulting in the formation of magnetic
islands. The growth rate calculated numerically for the
linear instability stage coincides with that obtained ana-
lytically.

It should also be noted that, in simulating the non-
linear stage of the instability of plasma configurations
in a magnetic field, the boundary conditions are often
assumed to be periodic. The analytic solutions obtained
in [8] and in the present paper for plasma equilibrium
in a periodic magnetic field in the collisionless approx-
imation may be useful for the proper choice of the ini-
tial and boundary conditions when simulating colli-
sionless plasmas.

2. CHARGED PARTICLE MOTION
IN A PERIODIC SHEARED FORCE-FREE 

MAGNETIC FIELD

The charged particle motion in force-free magnetic
field (2) is described by the equations

(3)

(4)

(5)

Here, (v x , v y , v z) are the velocity components of a
charged particle, the subscript a stands for the particle
species (a = e, i ), and ma and ea are the mass and elec-
tric charge of a particle. Note that the only nonzero
component of the equilibrium electric field E is the y
component, because, in magnetic field (2), all of the
quantities depend solely on the y coordinate. Since the
Lorentz force also depends only on y, the electric field
can only arise as a result of charge separation in the
plasma. In what follows, we will assume that charge
separation does not occur and, hence, the electric field
is zero.

The general solution to these equations [8] describes
the trajectories of charged particles and can be
expressed in terms of elliptic functions. Below, we
derive an approximate solution to these equations that
makes it possible to analyze the particle motion.

∂v x

dt
---------

ea

cma

---------v yBz,=

dv y

dt
---------

ea

cma

--------- v zBx v xBz–( )
ea

ma

------Ey y( ),+=

dv z

dt
---------

ea

cma

---------v yBx.–=
The vector potential of magnetic field (2) is equal to

(6)

The independence of the vector potential on the x and z
coordinates implies the conservation of the correspond-
ing components of the generalized momentum:

(7)

(8)

where ωBa = eaB0/cma is the gyrofrequency of the par-
ticles of species a.

Expressions (7) and (8) and the energy integral

(9)

are the integrals of motion and thus determine the tra-
jectory of a particle. We assume that, at the initial
instant, the particle is at the coordinate origin and that
its velocity components along and across the magnetic
field are equal to v x (0) = v 0|| and vy(0) = v0⊥ , respec-
tively. For such a particle, expressions (7) and (8) yield

(10)

(11)

Substituting expressions (10) and (11) into the energy
integral, we obtain

(12)

which shows that the effective potential energy of a par-
ticle moving in the y direction is equal to

(13)

Now, we consider some general features of the charged
particle motion. When the initial velocity v 0⊥  of a par-
ticle across the magnetic field is sufficiently high, i.e.,
when the particle energy is higher than the maximum
effective potential energy,

(14)

the particle executes infinite motion along the y-axis.
Particles of this kind are called transit particles. A par-
ticle with v 0|| = 0 becomes transit when v 0⊥  > 2ωBa/α,
i.e., when its gyroradius becomes larger than the char-
acteristic scale on which the magnetic field varies.
When the energy of a charged particle is much higher
than the maximum effective potential energy, the mag-

A B0α
1– αyexcos αyezsin+( ).–=

Px mav x

ea

c
----Ax+ mav x

maωBa

α
--------------- αycos– C1,= = =

Pz mav z

ea

c
----Az+ mav z

maωBa

α
--------------- αsin y– C2,= = =

v x
2

v y
2

v z
2

+ + C3=

v x v 0||
ωBa

α
-------- 1 αycos–( ),–=

v z

ωBa

α
-------- αy.sin=

v y
2 2ωBa

2

α 2
------------ 1

αv 0||

ωBa

------------– 
  1 αycos–( )+ v 0⊥

2
,=

U y( )
ωBa

2

α 2
--------- 1

αv 0||

ωBa

------------– 
  1 αycos–( ).=

v 0⊥
2 4ωBa

2

α 2
------------ 1

αv 0||

ωBa

------------– 
  ,>
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netic field does not affect the particle motion in the y
direction and the particle trajectory is a helix with the
radius rBa = v0⊥ /ωBa, r = ωBa/v0⊥ α2 and a pitch of 2πα–1.
The helix moves as a whole along the x-axis with a con-
stant speed equal to –ωBa/α.

When inequality (14) fails to hold, the particle
motion in a magnetic field is finite; such particles are
called trapped particles. We first consider the case in
which the particle energy is much lower than the effec-
tive potential energy. If the initial particle velocity
along the magnetic field is zero, v0|| = 0, then potential

energy (13) is approximately equal to U(y) ≈ /2.
In this case, expressions (11) and (12) become

(15)

We can see that, in the (y, z) plane, the particles move
in the same manner as in a uniform magnetic field. Due
to the nonuniformity of magnetic field (2), the field-
aligned component of the particle velocity is nonzero
and equal to

(16)

Averaging over the period of gyration yields

(17)

We thus arrive at the same dependence as that for the
gradient and centrifugal drifts, the only difference
being that, in sheared magnetic field (2), the particle
drifts along the magnetic field lines rather than across
them.

Now, we consider how the motion of a particle
changes when its initial velocity along the magnetic
field is nonzero. First, according to expression (13), the
particle gyrofrequency will change: for low v 0⊥ , the

effective gyrofrequency is equal to  = ωBa(1 –

αv 0||/ωBa)1/2. Second, the particle moves along an ellip-
tical (rather than circular) trajectory whose semiaxes
are in the ratio (1 – αv 0||/ωBa)1/2. The motion of a parti-
cle with a sufficiently high initial velocity along the
magnetic field, v 0⊥  ~ ωBa/α, is rather complicated. For
the projection of the particle trajectory onto the (y, z)
plane, expression (12) gives

(18)

ωBa
2

y
2

v y v 0⊥ ωBat, v zcos v 0⊥ ωBat.sin= =

v x

ωBa

α
-------- 1 αycos–( )–

αv 0⊥
2

2ωBa

------------- ωBat( ).sin
2

–≈=

v x〈 〉 v 0⊥
αv 0⊥

4ωBa

-------------– v 0⊥
αrBa

2π
-----------.∼=

ω̃Ba

dy
dt
------ = 

ωBa

α
--------

α 2
v 0⊥

2

ωBa
2

--------------- 2 1
αv 0||

ωBa

------------– 
  1 αycos–( )–

 
 
  1/2

.±
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From expression (11), we obtain

(19)

Integrating this equation, we determine the trajectory of
a charged particle in the (y, z) plane:

(20)

Note that, for v 0⊥  ! ωBaα–1, we arrive at the circular
and elliptical trajectories discussed above. However,
even when v 0⊥  is high, the trajectory deviates from
being elliptical only slightly. The characteristic feature
of the particle motion in the case at hand is that the par-
ticles do not undergo centrifugal and gradient drifts [9].

3. SOLUTION TO THE VLASOV EQUATION 
FOR A PLASMA IN A FORCE-FREE MAGNETIC 

FIELD

The equilibrium of a plasma in a force-free mag-
netic field B = (Bx , 0, Bz) is described by the time-inde-
pendent (∂/∂t = 0) Vlasov equation

(21)

where fa is the distribution function of the particles of
species a. The integrals of motion of the Vlasov equa-
tion are the energy of a particle,

, (22)

and the components of its canonical momentum,

(23)

(24)

The solution to Eq. (21) for the equilibrium distribution
function can be searched for as a function of the inte-
grals of motion:

(25)

We choose a reference point y0 at which ϕ(y0) = 0,
Ax(y0) = 0, and Az(y0) = A0, where A0 is a constant. We

dz
dy
------

=  αy
α 2

v 0⊥
2

ωBa
2

--------------- 2 1
αv 0||

ωBa

------------– 
  1 αycos–( )–

 
 
  1/2–

.sin±

α 2
1

αv 0||

ωBa

------------– 
  2

z
v 0⊥

ωBa 1
αv 0||

ωBa

------------– 
 

------------------------------------–

 
 
 
 
 

2

=  
α 2

v 0⊥
2

ωBa
2

--------------- 2 1
αv 0||

ωBa

------------– 
  1 αycos–( ).–

v y

∂ f a

∂y
--------

ea

ma

------
v yBz

c
------------

∂ f a

∂v x

---------+

+ Ey

v zBx v xBz–
c

------------------------------+ 
  ∂ f a

∂v y

---------
v yBx

c
------------

∂ f a

∂v z

---------– 0,=

W ma v x
2

v y
2

v z
2

+ +( )/2 eaϕ+=

px mav x eaAx/c,+=

pz mav z eaAz/c.+=

f a f a W px pz, ,( ).=
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assume that, at y = y0, the particle distribution is
described by a Maxwellian function with an anisotropic

temperature (Ta|| ≠ Ta⊥ ) and the drift velocity  =

( , 0, ):

(26)

Now, we express the distribution function at the
point y0 in terms of the integrals of motion. To do this,
we determine the dependence of v0 on these integrals
and insert it into (26). As a result, we arrive at the fol-
lowing dependence of the distribution function on the
integrals of motion:

(27)

where ∆Ta = Ta|| – Ta⊥ . Consequently, the distribution of
the particles of species a can be described by the func-
tion

(28)

where the drift velocity is equal to

(29)

In deriving distribution function (28), we took into
account the relationships

(30)

In a steady state, Maxwell’s equations for the vector
and scalar potentials, A and ϕ, reduce to

(31)

Vd
a0

Vdx
a0

Vdz
a0

f a y0 v0,( )

=  Ca

ma

2
------

v 0y
2

Ta⊥
--------

v 0x Vdx
a0

–( )
2

v 0z Vdz
a0

–( )
2

+
Ta||

-----------------------------------------------------------------+–
 
 
 

.exp

f a f a
W

Ta⊥
--------

∆Ta

2maTa⊥ Ta||
-------------------------- px

2
pz

2
+( )– 

  ,=

f a y v,( )
ma

3/2
na

2πma( )3/2
Ta||Ta⊥

1/2
----------------------------------------

ma

2
------

v y
2

Ta⊥
-------- -----–





exp=

+
v x Vdx

a
–( )

2
v z Vdz

a
–( )

2
+

Ta||
------------------------------------------------------------

–
ea

Ta⊥
--------ϕ y( ) 1

2
---

ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

y( )–




,

Vd
a ea

mac
---------

∆Ta

Ta⊥
---------A.=

f a vd

∞–

∞

∫ na y( )=

=  na

eaϕ y( )
Ta⊥

----------------–
1
2
---

ea
2

c
2
ma

-----------
∆Ta

Ta⊥
2

---------A
2

y( )+
 
 
 

.exp

d
2ϕ

dy
2

--------- 4πρe,–=
(32)

where the electric-charge and electric-current densities
have the form

(33)

(34)

It is easy to show that Eqs. (31) and (32) with charge
and current densities (33) and (34) have the first inte-
gral

(35)

We assume that the plasma consists of electrons and
ions of one species and that the quasineutrality condi-
tion is satisfied. Let us consider the case in which ϕ(y) =

0 and A2 =  is constant. In this case, Eq. (32)
becomes

(36)

Here,

(37)

where me is the mass of an electron, mi is the mass of an
ion, and ei = –ee = e. Note that the above definition of
the temperature anisotropy differs from the definition
used in [8]; as a result, the second term on the right-
hand side of Eq. (36) is opposite in sign to the corre-
sponding term in the equation for the vector potential in
[8]. The solution to Eq. (36) describes a one-dimen-
sional force-free magnetic field, which is the subject of
our analysis. As we have already shown, a one-dimen-
sional equilibrium force-free magnetic configuration
can exist only when the plasma temperature is anisotro-

d
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dy
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pic in the directions along and across the magnetic
field. The weaker the anisotropies of the electron and
ion temperatures, the larger the constant α–1. In the lim-
iting case of isotropic temperatures, the magnetic field
becomes uniform.

The above solution is clearly a particular case of the
solutions admitted by Eqs. (31) and (32) with charge
and current densities (33) and (34). In order to find
solutions describing more complicated equilibrium
states of the plasma in a magnetic field, we impose the
following condition on the electron-to-ion temperature
anisotropy ratio:

(38)

which is an analogue of the electroneutrality condition
for a collisionless current sheet in the solution obtained
by Harris [5]. Using condition (38) and the quasineu-
trality condition ϕ(y) = 0, we reduce the first integral
(35) to

(39)

where k2 = 4π .

We represent the vector potential A in a complex
form, A = Ax + iAz = Rexp(iΨ), to obtain the equations

(40)

(41)

where M is a constant and q2 = 4π .

The M value for which Eq. (40) with R = R0 and,
accordingly, Eq. (36) with constant (37) have a solution
uniform along the y coordinate is equal to

(42)

We can see that M = α.
A more general case is that in which the functions R

and Ψ (the amplitude and the phase) are not constant.
The amplitude varies between Rmin and Rmax, and the
phase in the complex representation of the vector
potential also varies between its minimum and maxi-
mum values. Figure 1 illustrates the behavior of the
solution to Eqs. (41) and (39) in the form of a trajectory
along which the particle moves in the (Ax , Az) plane as
the y coordinate of the particle varies from –10/k to
10/k. The solution was obtained by integrating

e
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Eqs. (39) and (41) numerically for R(0) = q/k = 2,
R'(0) = 0, Ψ(0) = 0, and M = 1. We see nonlinear oscil-
lations from the minimum to the maximum amplitude
and back again. Because of the nonlinear dependence
of the phase on the coordinate, the trajectory precesses
in the (Ax , Az) plane.

4. TEARING INSTABILITY

The equilibrium configuration under analysis is
unstable against various instabilities, e.g., the Buneman
instability, the tearing instability, drift instabilities, and
some others. We restrict our analysis to the tearing
instability because it plays an important role in the
magnetic field reconnection. Below, we investigate the
stability of equilibrium distribution function (28) in
magnetic field (2) against perturbations that depend on
x, y, z, and t.

Based on the results obtained in [19–23], we esti-
mate the instability growth rate γ(k). We consider the
evolution of the following perturbations of the vector
potential:

(43)

where k = (kx , kz) is the wave vector and γ is the growth
rate. The perturbation A1(x, y, z, t) of the vector poten-
tial is described by the equation

(44)

A1 x y z t, , ,( ) A1 y( ) i kxx kzz+( ) γt+{ } ,exp=

∂2A1

∂y
2

----------- k
2A1–

4π
c

------
∂ j0

∂A0
---------A1 j1+ 

  ,=

Fig. 1. Trajectory along which a particle moves in the (Ax ,
Az) plane as the y coordinate of the particle varies from
−10/k to 10/k for R(0) = q/k = 2, R'(0) = 0, Ψ(0) = 0, and
M = 1.
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x
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200δ

BxBz

300δ

Fig. 2. Computation region and initial magnetic field distribution.
where (∂j0/∂A0)A1 is the adiabatic component of the
perturbation of the electric current density and j1 is the
nonadiabatic component.

It is well known [12] that the problem of the tearing
instability should be solved in the outer region and also
in the inner region near the surface at which k · B = 0.
In the outer region, the problem reduces to that of ana-
lyzing adiabatic (slow) perturbations. In this case,
kinetic effects can be neglected and Eq. (44) reduces to
the following equation for the function Ψ = B1y/B0 =
i(kxA1z – kzA1x)/B0:

(45)

where κ = kα–1, k2 =  + , and the prime stands for
the differentiation with respect to the dimensionless
variable µ = αy.

The position of the resonance surface is determined
by the condition

(46)

which holds on the planes µj = – /kz + jπ, j = 0,
±1, ±2, ….

The solution to Eq. (45) depends on the wavenum-
ber κ and thus can be represented as a linear combina-

tion of the functions Ψ1 = sin  and Ψ2 =

cos  for κ < 1, the functions Ψ1 = 1 and Ψ2 = µ

for κ = 1, and the functions Ψ1 =  and

Ψ2 =  for κ > 1.
The solution to the Vlasov–Maxwell equations near

the resonance surface in the inner region was consid-
ered in [19, 24–26], and the solution for the inner
region of the plasma in a sheared magnetic field was
derived by Drake and Lee [14, 27]. In the latter case, the
width of the inner region is governed by the thermal

Ψ'' 1 κ 2
–( )Ψ+ 0,=

kx
2

kz
2

kx µcos kz µsin+ 0,=

kxarctan

1 κ 2
– µ

1 κ 2
– µ

κ 2
1– µsinh

κ 2
1– µcosh
motion of electrons along the magnetic field and the
dispersion relation has the form

(47)

where vTe is the electron thermal velocity, de = c/ωpe is

the collisionless skin depth, and ωpe =  is
the plasma frequency.

We consider a plasma configuration infinite in the y
direction. Matching the solutions for the outer and
inner regions, we obtain the equation

(48)

in which the possible discontinuity of the derivative at
the resonance surface is accounted for by δ functions.
Note that this equation coincides with the Schrödinger
equation for a particle moving in a periodic potential.
According to the Floquet theorem, the solutions in the
neighboring intervals differ only in a factor whose
absolute value is equal to unity:

(49)

(50)

where Q is a real number that characterizes the phase
difference between the neighboring resonance surfaces
and whose absolute value is less than or equal to unity.
Taking into account the fact that, at the resonance sur-
face, the function Ψ(µ) is continuous while its logarith-

∆'
Ψµ j 0+'

Ψµ j 0+
--------------

Ψµ j 0–'

Ψµ j 0–
--------------–

γ
κv Teα
---------------- deα( ) 2–

,= =

4πnee
2
/me

Ψ'' 1 κ 2
–( )Ψ ∆'δ µ µj–( )Ψ

j

∑–+ 0,=

Ψ µ( ) C1Ψ µ( ) C2Ψ µ( ), µ j 1– µ µ j,< <+=

Ψ µ( ) iQπ( ) C1Ψ µ π–( ) C2Ψ µ π–( )+( ),exp=

µ j µ µ j 1+ ,< <
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mic derivative jumps by an amount ∆', we arrive at the
equations

(51)

(52)

The condition that Eqs. (51) and (52) have a nontrivial
solution yields the following expressions for the jump ∆':

(53)

(54)

(55)

iQπ( ) C1Ψ µ j π–( ) C2Ψ µ j π–( )+( )exp

=  C1Ψ µ j( ) C2Ψ µ j( )+( ),

iQπ( ) C1Ψ' µ j π–( ) C2Ψ' µ j π–( )+( )exp

=  C1Ψ' µ j( ) C2Ψ' µ j( )+( ) ∆' C1Ψ µ j( ) C2Ψ µ j( )+( ).+

Qπcos  = 1 κ 2
– πcos ∆'

1 κ 2
– πsin

2 1 κ 2
–

------------------------------, κ 1;<+

4 Qπ/2sin
2

– π∆', κ 1;= =

Qπcos κ 2
1– πcosh ∆'

κ 2
1– πsinh

2 κ 2
1–

---------------------------------,+=

κ 1.>
Substituting ∆' into expression (47), we obtain a disper-
sion relation between γ, κ, and the longitudinal wave-
number Q. The equilibrium state in question is unstable
when κ2 + Q2 < 1. The instability growth rate is equal to

(56)

The growth rate is seen to be fastest at Q = 0.

5. NUMERICAL SIMULATIONS 
OF MAGNETIC RECONNECTION

IN A FORCE-FREE MAGNETIC FIELD

We have considered above the linear stage of the
tearing instability. The nonlinear stage of the instability
in a force-free magnetic field was simulated with the
2D3V Tristan PIC electromagnetic code [28]. The
dimensions of the computation region were chosen to
be 300δ in the x direction and 200δ in the y direction,

where δ = /ωpe (Fig. 2). The initial electron distribu-
tion was described by function (28). The electron tem-

γ

=  
2 Qπcos 1 κ 2

– πcos–( )κ 1 κ 2
–

1 κ 2
– πsin

------------------------------------------------------------------------------------ deα( )2αv Te.

Vd
e
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perature anisotropy was Te||/Te⊥  = 1.12 and the drift

velocity was  = 0.8vTe .

The ion distribution function was assumed to be iso-
tropic, the ion temperature being Ti = Te||. The ion-to-
electron mass ratio was set to be mi /me = 1836. The
total number of particles in the simulations was 1.2 ×
107. The initial magnetic field was described by expres-
sion (2), in which the magnetic field strength corre-
sponded to the ratio ωpe/ωBe = 3.7 and its characteristic
scale length was α = 0.0314δ–1 (Fig. 2). Note that the
dimension of the computation region in the y direction
coincides with the spatial field period. The boundary
conditions were periodic in both the x and y directions.

Figure 3 illustrates how the squared y component of
the magnetic field evolves during the development of
the instability. According to the time evolution of

, the instability growth rate is equal to γ/ωpe =

Vd
e

By
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Fig. 6. Time evolutions of (a) the magnetic field energy,
(b) the electron kinetic energy, and (c) the ion kinetic
energy.
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0.0023 for ωpet > 1500 and, for ωpet > 3100, the insta-
bility saturates. The growth rate γ/ωpe = 0.0023 corre-
sponds to the linear reconnection stage. The dashed line

in Fig. 3 is the time evolution of  correspond-
ing to growth rate (56).

Figure 4 presents the magnetic field distributions in
the (x, y) plane at different times ωpet = (a) 0, (b) 2500,
(c) 2750, (d) 3000, (e) 3250, (f) 3500, (g) 3750, and
(h) 5000. The components Bx and By are presented as a
vector field, and the component Bz is shown by shades
of gray. We see that the tearing instability produces a
magnetic island. For ωpet > 3000 (Figs. 4d, 4e), both the
deviation of the resonance surface from its initial posi-
tion and the width of the island become on the order of
the dimension of the computation region in the y direc-
tion and the instability saturates, in which case the mag-
netic field topology changes in the way shown in
Figs. 4f–4h. The instability can saturate for two differ-
ent reasons. The first reason is the isotropization of the
electron velocity distribution. This is confirmed by
Fig. 5, which shows that, during the instability, the
electron velocity distribution becomes isotropic. The
ion velocity distribution remains isotropic from the
very beginning. The second reason is the finite length of
the computation region in the y direction: the effective
length of the magnetic configuration becomes too large
for the long-wavelength perturbations characteristic of
the tearing instability [12] to develop.

Figure 6 displays time evolutions of the (a) magnetic
field energy, (b) electron kinetic energy, and (c) ion
kinetic energy. We can see that, for ωpet ~ 3000, the
magnetic field energy is rapidly dissipated and the
plasma electrons and ions are accelerated.

6. CONCLUSION

We have investigated the behavior of a plasma in a
force-free magnetic field using the collisionless
approximation. An analysis of the particle trajectories
shows that only two kinds of plasma particles can exist
in such a field: transit particles and trapped ones.
Knowing the integrals of motion of the charged parti-
cles, we have obtained an equilibrium solution to the
Vlasov–Maxwell equations. This solution describes the
particle distribution function in force-free magnetic
field (2). The equilibrium is possible only when the
plasma temperatures along and across the magnetic
field are different. The characteristic scale length of the
magnetic field is determined by the degree to which the
plasma temperature is anisotropic. By taking into
account the possible plasma nonquasineutrality, we
have obtained a wider class of solutions describing
equilibrium magnetic configurations.

We have investigated the stability of an equilibrium
plasma configuration in force-free magnetic field (2)
and have shown that a configuration that is infinite in
the y direction is unstable against the tearing instability.

By
2( )log
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We have determined the growth rate of the tearing
instability in its linear stage. The results from numerical
simulations of this stage have been found to agree well
with analytical predictions. We have also numerically
investigated the nonlinear stage of the tearing instabil-
ity.
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Abstract—The possibility of suppressing the Rayleigh–Taylor instability in a low-density plasma, Π =

/c2 ! 1 (where ∆ is the thickness of the current-carrying slab), is investigated for the case in which the
electron currents are much higher than the ion currents. The suppression of this instability in an imploding
cylindrical liner by an axial external magnetic field B0z is considered. It is shown that, for the instability to be
suppressed, the external magnetic field B0z should be stronger than the magnetic field B0θ of the current flowing
through the liner. © 2003 MAIK “Nauka/Interperiodica”.

ωpi
2 ∆2
1. In recent years, the implosion of thin current-car-
rying plasma shells has been recognized as offering
great promise for generating high levels of pulsed
power in the form of electromagnetic radiation and
neutrons [1–3]. In such implosion processes, the Ray-
leigh–Taylor (RT) instability is one of the most danger-
ous instabilities preventing the compression of a cur-
rent-carrying plasma shell to small dimensions [4, 5].
As a magnetic piston converges toward the axis of the
system, it inevitably becomes subject to RT instability,
which violates the compactness of the converging
plasma shell and reduces the parameters of the source
of radiation and neutrons. In order to increase the effi-
ciency of a magnetic piston, it is necessary to reduce the
effect of instability on the imploding current-carrying
plasma shell. Hence, the investigation of RT instability
is important from the technological standpoint.

RT instability [6] certainly exists in one-fluid mag-
netohydrodynamics, when the influence of the Hall
effect can be neglected by virtue of the smallness of the
parameter Π–1 ! 1, where Π = 4πe2Zn∆2/Mc2, with ∆
the characteristic dimension of a plasma slab. When
Π ! 1 and the Hall effect plays an important role, opin-
ions in the literature are divided regarding the possibil-
ity of RT instability in two-fluid magnetohydrodynam-
ics (see [7, 8]). However, in view of the analogy
between the RT instability in magnetohydrodynamics
and the instability of a heavy liquid supported by a
lighter liquid, it is natural to suppose that RT instability
should also take place in two-fluid magnetohydrody-
namics. RT instability has been studied in many papers
(see, e.g., [9, 10]). In my recent works [11, 12], it was
shown that, in the limit Π ! 1, the linear equation for
this instability can be integrated for arbitrary density
and pressure profiles in the accelerated plasma slab.
According to the solution obtained in [11, 12], the
1063-780X/03/2906- $24.00 © 20459
shapes of the density and pressure profiles have no
effect on the instability growth rate.

Further analysis will be carried out based on a par-
ticular version of the two-fluid MHD model—a so-
called Hall plasma model, in which the plasma ions are
assumed to be unmagnetized [13].

2. The most widely used method for the stabilization
of an imploding liner consists in imposing an external
magnetic field parallel to the liner axis. This field makes
the liner more “rigid” and thus can, in principle, retard
the development of constrictions that grow from the
perturbations associated with the longitudinal plasma
inhomogeneity. It is known from experiments that the
instability can be suppressed even by a comparatively
weak longitudinal magnetic field B0z, which is substan-
tially weaker than the azimuthal magnetic field B0θ [14,
15]. That is why, in order to provide better insight into
the possibility of suppressing the instability, it is worth-
while to develop a simple analytic approach. Although
the general case of arbitrary parameter values is diffi-
cult to investigate analytically, the problem can be
greatly simplified by examining it in the limit of small

values of the parameter Π = /c2 ! 1. The analytic
solutions obtained in [11, 12] made it possible to draw
some conclusions about RT instability in the absence of
a longitudinal magnetic field in the parameter range
Π ! 1. It was shown that, for a low-density plasma, the
standard formula for the instability growth rate is valid
for an arbitrary density profile n(x) inside the slab and
an arbitrary pressure profile of the form p = p(n). In
other words, in such a plasma, RT instability in the lin-
ear stage cannot be suppressed by appropriately choos-
ing the plasma density profile. Below, the approach
developed previously will be generalized to study the
possibility of suppressing RT instability with a longitu-
dinal magnetic field.

ωpi
2 ∆2
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In further analysis, the characteristic current in the
liner and the characteristic liner radius will be assumed
to be J ≥ 1 MA and r ≤ 1 cm, respectively (which cor-
respond to a magnetic field of B > 105 G), and the char-
acteristic plasma density will be assumed to be ne ~
1017–1018 cm–3.

Note that, in [12], RT instability was considered
with allowance for the finite plasma pressure. However,
to simplify matters, the gas-kinetic pressure effects will
be neglected below. This indicates that the approach to
be developed is valid for the stage before the complete
collapse of the liner toward its axis. In this stage, the
thickness of the plasma shell can be assumed to be
much smaller than the characteristic liner radius, so that
we can use the plane plasma slab approximation.

3. In a number of papers, it was shown clearly that
the Hall effect cannot suppress RT instability [16–18].
At the same time, it was found that the one- and two-
fluid MHD equations describe the instability in differ-
ent ways. However, in those papers, the instability was
modeled by introducing a fictitious gravitational field.
Here, as in [11, 12], the model equations are derived by
passing directly into the moving frame of reference,
which makes the statement of the problem more ade-
quate.

We start with the set of two-fluid MHD equations.
Taking the sum of the equations of motion for ions and
electrons and accounting for the quasineutrality condi-
tion, we can obtain an equation for the plasma mass
velocity. We assume that the plasma is, on the one hand,
cold enough for the gas-kinetic pressure to be much
lower than the magnetic pressure, and, on the other, hot
enough for the dissipation associated with the plasma
resistivity to be negligible. Combining the two condi-
tions B2 @ 8πnT and σB @ enc and using the conductiv-
ity estimated in [19], σ . 0.5 × 1031T3/2 (where T is
expressed in ergs) [19], we arrive at the following nec-
essary condition for the density of the accelerated
plasma:

(1)

where the magnetic field and density are expressed in G
and cm–3, respectively.

This condition is fairly restrictive: it is satisfied only
for sufficiently strong magnetic fields. Note that a com-
paratively low temperature (in the stage of the acceler-
ation of a plasma shell in a liner, it is about 102 eV or
even lower) may be associated with a strong emission
from the shell.

Then, taking the curl of the equation of electron
motion and neglecting electron inertia (which is justi-
fied because the scale c/ωpe is much smaller than the
characteristic spatial scale ∆ of the accelerated shell),
we obtain an equation for the magnetic field evolution.

B
2
 @ 1.9 10

14–
n

5/4
,×
As a result, we arrive at the following set of equa-
tions describing the dynamics of a plasma shell accel-
erated by the magnetic field:

(2)

(3)

(4)

Here, we formally retain the finite plasma conductivity
in order to stress its possible role in establishing the ini-
tial equilibrium.

We treat the problem in plane geometry, regarding
the motion along the radial coordinate r as the motion
in the x direction, in which case the θ-component of the
magnetic field becomes the By component. We assume
that, at the instant the magnetic field begins to acceler-
ate the plasma, all of the quantities depend only on the
x coordinate.

The equations for the initial configuration of a
plasma slab accelerated by the magnetic field have the
form

(5)

(6)

. (7)

The field component B0z is described by an equation
analogous to Eq. (7).

The equations for perturbations are

(8)

(9)

(10)

(11)

ρdV
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4π
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------ — ρV( )⋅+ 0,=

∂B
∂t
------- — V B×[ ]×[ ] c

4πe
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(12)

Here, the vector potential A, in terms of which the mag-
netic field components Bx and Bz are expressed,

,

satisfies the equation

(13)

In the equations for the perturbed quantities, we have
omitted the dissipative term by virtue of the condition
h = σB/enc @ 1. Note that, hereinafter, the quantities
without subscripts refer to perturbations.

We simplify the above equations by using the com-
pactness condition, which implies that the macroscopic
velocity V0 of the accelerated plasma slab is indepen-
dent of x and depends only on time. This condition can
be written as [13]

(14)

where the acceleration a0 of a current-carrying plasma
slab depends weakly on time.

We now transform the equations to an accelerated
frame of reference, i.e., to a frame moving with the
accelerated plasma slab in the negative x direction; this
indicates that, in the original (cylindrical) coordinate
system, the frame moves toward the liner axis. In order
to pass to the accelerated frame, we must switch to a
new spatial variable s:

(15)

Using the relationship

(16)

we obtain the equilibrium condition

∂By
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(17)

where

The field component B0z satisfies an analogous equa-
tion.

It can be seen that the characteristic spatial scale of
the structure of the field component B0y that forms in a
plasma with a high (but finite) conductivity σ is the skin
depth. However, when the characteristic dimension ∆
of the plasma slab is sufficiently large, we can neglect
the time variation of B0y and describe this component
by the equation

For a Hall plasma (Π ! 1), this yields the following
lower bound on the Hall parameter h:

(18)

In further analysis, we will assume that the stabiliz-
ing magnetic field B0z produced by external coils is con-
stant, in which case its spatial derivatives can be
neglected.

Of course, during the implosion of a current-carry-
ing plasma shell, in which the longitudinal magnetic
field remains constant because the conductivity σ is
sufficiently high, the magnetic flux density inside the
shell increases and the magnetic field at its inner bound-
ary becomes stronger. As the shell thickness decreases,
the growing longitudinal magnetic field penetrates into
the shell; as a result, the spatial gradients of the longi-
tudinal field in the shell may be nonzero. However, this
effect becomes important only in the final stage of the
implosion of the shell, when it approaches the axis of
the system.

Changing to the moving frame, we arrive at the fol-
lowing final set of equations:

(19)

(20)

(21)
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(22)

(23)

(24)

where

Here, the time derivative is taken at fixed s. Also, the
subscript in the y component of the perturbed magnetic
field is dropped, because the remaining magnetic field
components are expressed in terms of the perturbation
of the vector potential A.

We take the Fourier transformation of the final set in
the time t (changing into the frequency ω) and in the z
coordinate (changing into the wave vector kz) and non-
dimensionalize the equations according to the relation-
ships

where ∆ is the thickness of the accelerated slab in the x
direction,  is the characteristic strength of the mag-
netic field B0, and  is the characteristic electron den-
sity.
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As a result, we obtain the following basic set of
dimensionless equations:

(25)

(26)

, (27)

where ν0 and b0 are related by

(28)

In these equations, the constant longitudinal compo-
nent of the equilibrium magnetic field is neglected and
the prime denotes the derivative with respect to the
independent variable ξ.

4. Equations (25)–(28) describe the RT instability in
a reference frame moving with the acceleration a0 in the
negative x direction. Since, in their general form, the
equations are not amenable to analytic study, we restrict
ourselves here to considering the limiting case Π ! 1,
in which Eqs. (26) and (27) will contain the terms pro-

portional to 1/  @ 1 and also all of the terms with the
parameter Λ.

In this limit, we use equilibrium relationship (28) to
reduce Eq. (26) to

(29)
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We introduce the function w = bb0 and insert the expres-
sion for ν in (29) into Eq. (25) to get

(30)

Here, the expressions for a and  can be derived from
Eq. (27). We substitute expression (29) for ν into
Eq. (27) and, in the resulting equation, take into
account all the terms containing the parameter Λ. Then,
we introduce the function ϕ = w/ν0 to obtain

(31)

(32)

where the operator  is defined as

(33)

In expression (33) for the operator , the two-dimen-

sional Laplace operator  applies to all ξ functions to

the right of it; i.e.,  is an integral operator. Substitut-
ing expressions (31) and (32) into Eq. (30), we arrive at
the final equation for the function ϕ:
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(34)

Here, in contrast to earlier studies [11, 12], k · B0 ≡
kzB0z ≠ 0. For Λ = 0, this equation describes the RT
instability in the frame of reference comoving with an
accelerated current-carrying plasma slab, in which case
the unstable solution has a maximum in the region
where a0 · —n0 < 0. In the geometry adopted here, this

condition reduces to  < 0, which corresponds to the
outer boundary of the accelerated slab.

For Λ2 ≤ 1, the basic assumption of our analysis
allows us to neglect all terms in Eq. (34) that are pro-
portional to different powers of Π; as a result, Eq. (34)
becomes similar in structure to the equations derived in
[11, 12], thereby indicating that RT instability is again
possible.

The most important point in Eq. (34) is that we have
retained all of the terms that contain the parameter Λ,
thus providing a correct transition to the limit of a
strong external stabilizing magnetic field B0z such that
Λ2Π @ Ω2. In taking the limit, we can omit the last two
terms on the right-hand side of Eq. (34). In fact, for
Λ2Π @ Ω2, the last term formally vanishes because it is
proportional to Ω2/(Λ2Π) ! 1. As for the next to last

term, it includes  and, in the limit to be taken, is

much smaller than the term . For the same

reason, the term  on the left-hand side can also be
omitted. Hence, in the limit at hand, Eq. (34) simplifies
to

(35)

Using the definition of the operator , we can
readily verify that Eq. (35) reduces to a fourth-order
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differential equation for ϕ. Now, we consider the per-
turbations whose characteristic spatial scale is small in
comparison with the dimension of the plasma slab, κ ≡
kz∆ @ 1. For Λ2Π @ Ω2, the largest term in Eq. (35) is

, which requires that  = 0. Then, neglect-
ing the first term in comparison with the second term
and taking into account the condition |κ| @ 1, we can
represent Eq. (35) in the form

(36)

This equation implies that, for   0, the insta-
bility growth rate vanishes. However, it should be kept
in mind that the growth rate estimated from this equa-

tion, Ω ~ (κ )1/3, is not very small because of the
restricted range of variations of the parameter Π @
m/M, where m is the mass of an electron.

Hence, the criterion for the stabilization of RT insta-
bility in a low-density plasma by a magnetic field
directed along the axis of an imploding liner has the
form

(37)

Note that the quasiclassical approximation based on
Eq. (36) is also valid for the most dangerous mode with
|κ| = π, when the slab thickness is half the perturbation
wavelength. The stabilization criterion shows that, even
at the boundary of applicability of the quasiclassical
approximation, Π ~ 1, the constant external stabilizing
longitudinal magnetic field should be stronger than the
magnetic field of the current flowing through the liner.

5. Following papers [11, 12], it is worthwhile to dis-
cuss whether the pressure balance is satisfied at the
boundaries of the accelerated plasma slab. Under the
above assumptions, the approximate momentum con-
servation law has the form

(38)

We take into account the fact that the electric field is
much weaker than the magnetic field and switch to the
moving frame in accordance with the procedure
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

–
1

4π
------ EiEk BiBk+( )





0.=
described in Section 3. As a result, we obtain the pres-
sure balance equation

(39)

Integrating this equation over s yields the pressure
balance condition at each of the slab boundaries in the
x direction:

(40)

where 〈…〉  denotes the difference between the values of
the quantities on both sides of each boundary.

Let us prove that, in condition (40), the first term,
which is associated with plasma inertia, undergoes no
jump at the plasma boundary. Since V0 ≡ V0(t), it is suf-
ficient to prove this assertion only for the factor NδVx ,
where δVx ≡ Vx – V0. In dimensionless form, this factor
can be found from the Fourier transformed equation
(22):

Equation (25) can be rewritten as

Since the right-hand side of this equation is finite, the

quantity ν – d(b0b)/dξ +  undergoes no jumps at
the slab boundaries and, therefore, vanishes there; i.e.,
the quantity ν0δVx also equals zero at the boundaries.

The second term in condition (40) accounts for the
magnetic field and contains the zero-order component;
accordingly, in order for this condition to be satisfied, it
is necessary that there be no surface currents in the
equilibrium state.

It should be kept in mind that, to first order in the
perturbations, the term with the magnetic field in con-
dition (40) coincides with the solution w =  to
within a numerical factor. Consequently, for a plasma
slab with zero density (  = 0) at the boundaries, evo-
lutionary condition (40) is always satisfied, provided
that the function ϕ is regular.
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Small-Scale Alfvén Waves Localized near an Extremum
in the Finite-Amplitude Perturbation 
of the Radial Plasma Density Profile
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Abstract—A study is made of electromagnetic waves localized in the region where the radial plasma density
profile has an extremum between two local Alfvén resonances. Analytic expressions for the eigenfrequencies
and eigenmodes are obtained. It is shown that kinetic and inertial Alfvén waves can propagate in the vicinity of
a maximum and a minimum in the density profile, respectively. Passage to the limiting case in which the plasma
density is nonuniform and has a parabolic profile is considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The production and heating of plasma in controlled
fusion devices initiated active research on the processes
of conversion and absorption of electromagnetic waves
near Alfvén resonance [1–6]. It is well known that the
absorption of waves with frequencies ω < ωci is accom-
panied by significant plasma heating near the Alfvén
resonance point r = rA, at which the following relation-
ship is satisfied:

(1)

Here, ε1 = 1 +  – ω2) is the component of
the dielectric tensor of a cold collisionless plasma, with
the subscript α indicating the ions (i) and the electrons
(e); k|| is the projection of the wave vector onto the
direction of a constant magnetic field; c is the speed of
light in vacuum; ω is the wave frequency; and ωcα and
ωpα are the cyclotron and Langmuir frequencies of the
particles of species α, respectively. The coordinate
dependence enters the expression for ε1 through two
physical quantities: the external magnetic field B0(r)
and the plasma density n(r). In what follows, it is
assumed that only the plasma density depends on the
radial coordinate. However, when the possible radial
nonuniformity of the external magnetic field is taken
into account, the method for solving the problem and
the final results remain essentially the same. It is well
known [1] that the RF power absorbed in the Alfvén
resonance region is inversely proportional to dn/dr.
That is why the case in which n(r) has an extremum
near Alfvén resonance is of particular interest [7–10].

The density perturbation (nonuniformity) that has
an extremum is usually described by a squared parabola
(see, e.g., [7–10]). This approach is justified for electro-
magnetic oscillations localized in the immediate vicin-

ε1 rA( ) ck ||/ω( )2
.≈

ωpα
2

/(ωcα
2

α∑
1063-780X/03/2906- $24.00 © 0466
ity of the point of extreme density, where the density
profile deviates only slightly from a squared parabola,
or for a sufficiently large density perturbation. The dis-
persion properties of electromagnetic oscillations in
these cases have been studied fairly well. Thus, the
spectrum of oscillations in related problems is known
to have an infinite number of levels, because the
branches of a squared parabola are infinitely high.
Hence, approximating the density profile by a parabola
is equivalent to modeling a sufficiently deep potential
well. However, the depth of the well is actually finite,
so that the dispersion properties of the oscillations dif-
fer considerably from those in the problem with an infi-
nitely deep potential well [11]. For this reason, model-
ing a plasma density perturbation by a squared parabola
alone may be insufficient. In what follows, by analogy
with quantum mechanics, a density perturbation will be
referred to as a “potential well.”

2. FORMULATION OF THE PROBLEM

We consider a plasma cylinder that is uniform in
both the axial and azimuthal directions and is placed in
a constant uniform axial magnetic field. The radial
plasma density profile is modeled by the expression
(see Fig. 1)

(2)

Here, Nz = ckz/ω is the axial refractive index, kz is the
axial component of the wave vector, r is the radial vari-
able in cylindrical coordinates, r0 is the radial position
of the density extremum, a is the characteristic width of

the region where the density is perturbed,  is the

deviation of the quantity ε1 from the resonant value 
far from the position r0 of the extremum (|r – r0 | @ a),

ε1 r( ) Nz
2

1 M A/ r r0–( )/a( )cosh
2

+ +[ ] .=

MNz
2

Nz
2
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and  is the perturbation amplitude at the profile
ε1(r). We assume that the quantities A and M may be
positive or negative.

It is convenient to use function (2), which provides
a fairly good approximation of the radial density profile
not only in the vicinity of but also far from its maxi-
mum, because, at large distances from r0, the term with
the hyperbolic cosine can be neglected. Near the reso-
nance point r0, a constant plasma density is perturbed
(nonuniform) in an axisymmetric fashion, the radial
width a of the perturbation being prescribed. The sign
of each of the terms depends on the plasma parameters.
Given the density far from the point r0 (or the value of
the parameter M), we look for the eigensolutions to
Maxwell’s equations. Starting from the corresponding
eigenvalues, we determine the parameter range where
Alfvén eigenmodes can exist, specifically, the range of
values of the plasma parameters (in particular, the den-
sity perturbation amplitude) in the vicinity of the per-
turbation.

3. BASIC EQUATION

The equation for the radial component  of the
field of a wave can be derived from Maxwell’s equa-
tions with allowance for electron inertia and finite ion

Larmor radius (see, e.g., [1, 8, 10]). Setting  =
Er(r)exp[i(kzz + mϑ  – ωt)], we obtain

(3)

where εi are the components of the dielectric tensor of
a collisionless magnetized plasma. The term εT, which
accounts for finite ion Larmor radius effects [12], has
the form

(4)

The coefficient in front of the second derivative in

Eq. (3) is equal in order of magnitude to , where
ρLα = vTα /ωcα is the Larmor radius of the particles of
species α and vTα is their thermal velocity. Following
[1], we apply the so-called “narrow-slab” approach,
which implies that, in the resonance region, the plasma
parameters change gradually and the wave fields
depend strongly on the radial coordinate. Assuming
that the radial variations of the quantities εT and ε1/ε3
are gradual in this approximation, we introduce the
notation

(5)
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We emphasize that the quantity ρ in formula (5) has the
dimensionality of length: it serves to normalize the
coefficient in front of the second derivative in Eq. (3)
and is of the same order of magnitude as (but not iden-
tical to) the ion Larmor radius.

Since, in the frequency range under consideration,
the component ε3 is negative and the component εT is
positive, the coefficient in front of the second derivative
may have different signs. The sign of the coefficient in
front of the highest derivative in Eq. (3) is very impor-
tant because it determines the conditions (a local max-
imum or a local minimum in the plasma density) in
which the eigenmodes can exist. Since the quantity εT

depends on the temperature of the plasma particles [see
formula (4)], it is of considerable interest to determine
the conditions under which quantity (5), being a func-
tion of the electron and ion temperatures, changes its
sign. It is convenient to plot the curve along which
quantity (5) is zero in the plane of the ion and electron
thermal velocities (see Fig. 2). For a plasma in which
both the ions and electrons are cold, vTi ! ω/ |kz | and
vTe ! ω/ |kz |, coefficient (5) is negative. Physically, this
indicates that the thermal velocities of the plasma par-
ticles can be neglected; hence, in expression (5), the
second term, which accounts for electron inertia, is
dominant. According to the generally accepted termi-
nology [13], the waves in such a plasma are called iner-
tial waves. On the contrary, for a plasma in which both
the ions and electrons are hot, coefficient (5) is positive
because it is primarily contributed by the ion thermal
motion, in which case the waves are called kinetic
waves.

Although, in the vicinity of Alfvén resonance, the
azimuthal electric field Eϑ and the axial magnetic field

Bz have logarithmic singularities, Eϑ, Bz ∝  ln|ε1 – |,
the combination iε2Eϑ + (cm/ωr)Bz on the right-hand
side of Eq. (3) is continuous and changes gradually.

Nz
2
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–0.15
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(ε1(r) – N2
z )/N2

z

Fig. 1. Radial profiles of the quantity (ε1 – )/  calcu-

lated for the fixed values δ = 10 and ρ/a = 0.05 in the case
of a maximum in the density profile. The dashed curve is for
the eigenmode with the radial number n = 0, the dashed-
and-dotted curve is for the mode with n = 1, and the dotted
curve is for the mode with n = 2.

Nz
2

Nz
2
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That is why this combination is usually set to be a con-
stant and is attributed to the pump wave [1, 8, 10]. Since
we are interested in the eigensolutions to Eq. (3) that
are localized in the vicinity of r = r0, we can assume that
the wave fields are negligible far away from r0 and,
thus, we can set the combination to be zero.

4. KINETIC ALFVÉN WAVES

Here, we consider the case of a hot plasma, in which
the coefficient in front of the second derivative in
Eq. (3) is positive. In order for the solution to be local-
ized, i.e., to decrease exponentially away from r0, the

quantity ε1 –  should be negative at |r – r0| @ a, which
corresponds to M < 0. In the above notation, we rewrite
Eq. (3) as

(6)

Nz
2

M– A
r r0–

a
------------ 

 cosh
2– ρ2 d

2

dr
2

--------+ + Er 0.=

vTi, (cm/s)22

3 × 107

2 × 107

1 × 107

0
109 1010 1011 1012

, (cm/s)2

Fig. 2. Curve along which the quantity εT +  in for-

mula (5) changes sign in the coordinate plane ( , ).

Above the curve, this quantity is positive and, below the
curve, it is negative. The calculations were carried out for a
deuterium plasma of density 3 × 1013 cm–3 and a magnetic
field of 39 kG.

ε1

ε3
----- c

2

ω2
------

v Te
2

v Ti
2

0.8

0

–0.8

–4 –2 0 2 4
(r – r0)/a

Er(r)

Fig. 3. Radial profiles of Er for n = 0, 1, and 2. The param-
eters and notation are the same as in Fig. 1.

v Te
2

Recall that the coefficient A may have different
signs. However, Eq. (6) has localized eigensolutions
only when A > 0, i.e., when the density profile has a
maximum (Fig. 1). This conclusion agrees with the
results of a numerical analysis carried out by Appert
et al. [14] for a plasma with hot electrons, vTe > ω/ |kz |.

Following [11], we introduce the notation

(7)

The replacement ξ =  reduces Eq. (6) to a

hypergeometric equation, whose solution is expressed
in terms of a hypergeometric function [15]:

(8)

At r – r0 @ a, function (8) is finite only when the quan-
tities δ and s are related by s = δ + n (the number n = 0,
1, 2, … corresponds to the number of zeros of the func-
tion Er). By the quantity δ, we mean the arithmetical
square root of δ2. Figure 3 shows the radial field com-
ponent Er calculated as a function of the radius from
expression (8) at n = 0, 1, and 2.

For different n, the values of ε1 at the point r0 are
equal to

(9)

The frequency for which resonance condition (1) is
satisfied corresponds to the Alfvén continuum [5, 13]
and is equal to ω = |kz |vA , where vA is the Alfvén speed.

Assuming that the correction to  on the right-hand
side of expression (9) is small and retaining only the
first term in the expansion in this correction, we find the
frequencies of the eigenmodes with different values
of n:

(10)

In order to determine to which type of waves in a
homogeneous plasma the waves localized between two
Alfvén resonances belong, we solve Eq. (6) in the
Wentzel–Kramers–Brillouin (WKB) approximation.

Setting  ∝  exp( ) (kra @ 1), we obtain the fol-
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lowing expression for the squared radial refractive

index  = :

(11)

This expression is plotted in Fig. 4 for the same param-
eters as in Figs. 1 and 3. In deriving expression (11), we
have introduced the notation

(12)

Far from the resonance region, the wave in question is
a fast magnetosonic wave, whereas, near the resonance,
it becomes an Alfvén wave. Far from the density pertur-
bation, the squared radial refractive index is negative,

 < 0; hence, the waves do not exist. In the vicinity of

the maximum in the perturbation, we have  > 0,
which indicates the existence of localized kinetic
Alfvén waves.

5. INERTIAL ALFVÉN WAVES

For a cold plasma, coefficient (5) in front of the sec-
ond derivative is negative, which corresponds to inertial
waves. The problem for such a system possesses local-
ized solutions only when the quantity ε1(r) far from the
point r0 (at infinity) is larger than its resonant value (1)
(M > 0) and has a minimum (A < 0) in the vicinity of the
point r0. The radial dependence of the quantity (ε1(r) –

 )/  differs from that shown in Fig. 1 only in sign
(note that the zero on the vertical axis in Fig. 1 is chosen

to correspond to the value ). Hence, using the
replacement

(13)
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Fig. 4. Radial dependence of the radial refractive index in
the case of a maximum in the density profile (which corre-
sponds to the propagation of kinetic Alfvén waves).
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we obtain, instead of Eq. (6), the following equation
describing the eigenmodes when the density profile has
a minimum:

(14)

Since Eq. (14) differs from Eq. (6) only in a constant
factor, its solutions are also represented by formula (8);
hence, the solutions for the first three eigenmodes
behave in the same manner as those shown in Fig. 3.

The eigenfrequencies of the inertial Alfvén waves
are equal to

(15)

Figure 5 shows the radial dependence of squared
radial refractive index (11) calculated for the same
plasma parameters as in Fig. 4. We can see that this
dependence has discontinuities in the intervals where

the imaginary part of  is nonzero.

6. DISCUSSION OF THE RESULTS
It is known from the theory of Alfvén resonance [1,

8–10] that, in the vicinity of the resonance point at
which condition (1) is satisfied, the field Er diverges as

∝ (ε1 – )–1. When electron inertia and finite ion Lar-
mor radius are taken into account, the solution becomes
finite but changes radically. As has been shown above,
the condition that the quantity ε1 reaches its resonant
value at only one point is not sufficient for the existence
of the localized perturbations. A necessary condition
for small-scale perturbations to be localized between

two points is that the quantity ε1 –  at these points
vanishes. Moreover, at the point of maximum density,
r = r0, the tensor component ε1 should take on a certain
value,

(16)
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Fig. 5. Radial dependence of the radial refractive index in
the case of a minimum in the density profile (which corre-
sponds to the propagation of inertial Alfvén waves).
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The amount by which the quantity ε1 exceeds its reso-
nant value depends on the δ value corresponding to the
plasma density far from the resonance point.

The quantity ε1(r0) given by expression (9) has a

minimum value (1 + δρ2/a2) at n = 0. In the model
developed here, the eigenmodes do not exist for ε1 –

 < δ ρ2/a2.

On the other hand, for sufficiently small δ values,
the amount by which the tensor component at hand
should exceed its resonant value in the case n = 0 can
be made arbitrarily small. This conclusion agrees with
the well-known result from quantum mechanics [11]: in
the corresponding quantum mechanical problem, the
zero radial mode can exist in a potential well (2) of arbi-
trarily small depth. For higher modes, quantity (9) is
finite (nonzero) for any δ value.

Note also that the applicability condition of the nar-
row-slab approach, ρ ! a, can easily be satisfied in
experiments. In the vicinity of Alfvén resonance, the

characteristic parameter  is small,  ~ ρ/a ! 1;
hence, a description of the plasma in terms of the
dielectric tensor turns out to be justified.

In deriving basic equation (6) from general equa-
tion (3), we imposed the corresponding boundary con-
ditions and set the combination on the right-hand side
of Eq. (3) to zero. In other words, we assumed that this
combination is small in comparison with the retained
terms that arise, e.g., from the finite ion Larmor radius
and electron inertia. A comparison of the omitted term
with the retained terms yields the following strong ine-
qualities:

(17)
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Fig. 6. Modeling of the profile of the quantity (ε1(r) –

)/ , which depends linearly on the plasma density, by

parabola (18) (solid curve) and hyperbolic cosine (2) in the
case of a maximum in the density profile. The calculations
were carried out for the mode with n = 3 and for different δ
values: δ = 1 (dashed curve), δ = 3 (dotted curve), and δ = 7
(dashed-and-dotted curve).

Nz
2
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2

Parenthetically, for a linear plasma density profile,
these inequalities are weaker because of the large addi-
tional factor (a/ρ)2/3 on the right-hand side. The first and
third of these strong inequalities can be satisfied
because they contain small factors (ω/ωci) and (ω/ωci)2

on the left-hand sides. The remaining inequality can
also be satisfied because the characteristic radial scale
a on which the plasma density varies is small in com-
parison with the value of the coordinate r0 of the density
extremum, a ! r0. It is clear that the first two of the ine-
qualities are strictly satisfied for symmetric pulses
(m = 0).

7. COMPARISON WITH EARLIER RESULTS

If the function ε1(r) approaches a large value far
from the resonance point (this corresponds to large δ
values and, consequently, to large plasma density per-
turbations), then potential well (2) in the vicinity of its
minimum can be approximated by a parabola. This
enables us to compare the above results with the results
obtained in [9, 10], where the plasma density perturba-
tion was modeled by a parabolic profile. To be specific,
we consider the case in which the density profile has a
maximum (see the solid curve in Fig. 6):

(18)

Neglecting absorption, the eigensolutions to Eq. (3)
with profile (18), i.e., the solutions to this equation with
zero on the right-hand side, can be found analytically.
They are expressed in terms of Hermite polynomials
[15]:

(19)

These solutions exist only for certain values of B:

(20)

in which case the eigenfrequencies are equal to

(21)

Let us compare the eigenfrequencies corresponding
to the parabolic density profile (18) with eigenfrequen-
cies (10). To do this, we assume that the electron and
ion temperatures (i.e., the values of the parameter ρ) are
the same in both cases. We also require that the values
of the quantity ε1 in profiles (2) and (18) should coin-
cide at the point of extreme density:
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The same requirement on the second derivative of this
quantity yields

(23)

In both problems, we number the eigensolutions by
consecutive positive integers n and require that equali-
ties (22) and (23) be satisfied for the corresponding n
values. It is easy to show that these equalities can be
consistent only when δ @ n. Then, in equality (22), we
can neglect n in comparison with δ to obtain the follow-
ing relationship between the density perturbation
widths in the cases of hyperbolic cosine (2) and para-
bolic profile (18):

(24)

It is seen that the width a of the region where density
perturbation (2) is localized changes depending on the
ε1 value, which is determined by the value of ε1 far from
the point r0. In the limit δ @ n, eigenfrequencies (21)
with the values of b satisfying relationship (24) coin-
cide with eigenfrequencies (10). For small n, the last
term in expression (9) can be neglected.

Now, we fix the width b of the parabolic profile and
approximate the potential well ε1(r) by a parabola and
a hyperbolic cosine with different δ values and with a
fixed value of n, which is taken to be n = 3. Figure 6
shows the potential well in the form of a parabola (solid
curve) and hyperbolic cosine (2) with different δ val-
ues: δ = 1 (dashed curve), δ = 3 (dotted curve), and δ =
7 (dashed-and-dotted curve). All the curves were calcu-
lated under conditions (22) and (23), implying that the
values of the function, as well as of its second deriva-
tive, coincide at the point r = r0. The eigenmodes in the
cases at hand are illustrated in Fig. 7. As δ increases, the
potential well (2) of finite depth is seen to become
closer in shape to parabolic density profile (18). Analo-
gously, from Fig. 7, we can see that, with increasing δ,
the radial profile of the field component Er(r) in the
case of a density perturbation of finite depth approaches
the curve corresponding to a parabolic density profile.

Let us compare eigenfrequencies (10) and (21). The
neighboring eigenfrequencies in spectrum (21) differ
by a small amount proportional to ρ/a. The spectrum of
eigenfrequencies (10) contains the square of the small
parameter ρ/a. However, at a given density value far
from r0, or, equivalently, at a fixed value of å, the quan-
tity δ is proportional to a/ρ (see Fig. 7). Consequently,
for δ @ n, the intervals between the eigenfrequencies of
the modes with neighboring radial numbers are the
same in both problems.

Near the curve along which quantity (5) is zero (see
Fig. 2), it is insufficient to retain only the small term

proportional to  in Eq. (3); it is also necessary
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to take into account higher order terms proportional to

.

8. CONCLUSION

We have analytically investigated electromagnetic
eigenmodes localized in the region where the radial
density profile of a hot plasma has a maximum (mini-
mum) of the finite height (depth) between two local
Alfvén resonances.

It is shown that, in a hot plasma, kinetic Alfvén
waves can propagate near a maximum in the plasma
density profile. The waves that can exist in the vicinity
of a minimum in the density profile in a cold plasma are
inertial Alfvén waves. This situation is analogous to
that with an infinitely deep parabolic potential well,
which was considered earlier, e.g., in [9, 10].

For an arbitrary value of the plasma density far from
the region where the density perturbation is localized
(or, in other words, for an arbitrary δ value), there exists
a critical value of the maximum (minimum) density at
which the eigenmodes can propagate. When the plasma
density at the point r0 of the maximum (minimum)
exceeds its resonant value determined by condition (1)
by an arbitrarily small amount, the necessary condition
for the existence of localized eigenmodes is that the
plasma density far from r0 be sufficiently close to the
resonant value.

We have determined the eigenfrequencies (10) and
(15) of Alfvén waves and have shown that they are
higher than the Alfvén continuum frequency in the case
of a maximum in the density profile and are lower than
this frequency when the density profile has a minimum.
We have also obtained an analytic expression for the
field of the eigenmodes [see formula (8) and Fig. 3].

The results of our analysis have been compared with
those obtained for a parabolic plasma density profile. In
the limit of an infinitely deep potential well (δ @ n), the
eigenmodes and their eigenfrequencies have been
found to be the same in both problems.
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0
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–0.4
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Fig. 7. Solutions to Eq. (6) with the density profiles shown
in Fig. 6. The notation is the same as in Fig. 6.
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Abstract—Charged particle transport and kinetic processes in a low-temperature dusty plasma are numerically
simulated. Dust grains are represented as spheres with a given radius. The self-consistent electric field in the
plasma surrounding a charged dust grain is calculated taking into account the perturbations of plasma quasineu-
trality near the grains. It is shown that applying an external electric field leads to a rearrangement of the plasma
space charge and a break of the spherical symmetry of the electron and ion density distributions around the
grain. The mutual influence of two identical charged dust grains is considered, and the energy of the electro-
static interaction between the grains is calculated. It is shown that this energy has a minimum at a certain finite
distance between the grains. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction between dust grains in a dusty
plasma is one of the most important phenomena deter-
mining the properties of this system. In particular, this
interaction results in the formation of dusty crystal
structures, which have been observed under various
conditions. A review of the studies on dusty plasma
structures is presented in [1]. In many experiments, it
was demonstrated that dust grains in a dusty plasma
usually acquire a negative electric charge. One of the
key problems is to find out the nature of the attraction
forces between likely charged dust grains. The attrac-
tion is usually explained by the electrostatic interaction
between the grains and the polarized ambient plasma
[2–5]. In those papers, the medium polarization was
analyzed under the assumption that the charged plasma
particles (electrons and ions) obey a Boltzmann distri-
bution. However, simulations of the grain charging pro-
cess in a dusty plasma [6] showed that the electron and
ion spatial distributions near the grain’s surface were
nonmonotonic and the equilibrium plasma particle dis-
tributions were not established. In [7], it was shown that
the departure from the equilibrium distribution was
more pronounced for the ions.

Simulations of [8, 9], in which the ions were mod-
eled by the Monte Carlo method, showed that a positive
space charge arose in the plasma region between the
grains, which resulted in their mutual attraction.

We note that, near the grain’s surface, where the
quasineutrality is disturbed, the electric field caused by
the grain charge is fairly strong and can attain 103–
104 esu, depending on the plasma parameters (in partic-
ular, the grain size). Because of the strong electric field
near the grain’s surface and the spatial inhomogeneity
of the field in this region, the electron temperature sig-
1063-780X/03/2906- $24.00 © 0473
nificantly differs from the gas temperature. This cir-
cumstance explains why the charged particle densities
observed in numerical simulations [7] substantially
deviate from a Boltzmann distribution.

Thus, although the mechanism for the interaction
between dust grains under laboratory conditions is
quite clear, the value of the interaction energy needs
additional study. An adequate plasma model should
accurately take into account the dynamics of charged
plasma particles. Moreover, the problem of the interac-
tion of two dust grains should be considered at least in
two-dimensional geometry.

In this paper, we propose a model describing
charged particle transport in a dusty plasma produced
by an electron beam and present the results of simula-
tions of the interaction between charged dust grains in
such a plasma.

2. PROBLEM FORMULATION AND BASIC 
EQUATIONS OF THE CHARGED PARTICLE 

DYNAMICS IN A LOW-TEMPERATURE DUSTY 
PLASMA

We study the phenomena occurring in a dusty
plasma with the dust component consisting of solid
metal or dielectric grains. The problems under investi-
gation are the process of grain charging and the forma-
tion of the charge distribution in the ambient plasma.
We consider a model problem in which dust grains are
assumed to be spheres with a given radius. The grains
can be either metal or dielectric; however, in this paper,
we present the results of calculations in which the
grains are assumed to be dielectric and the charge is dis-
tributed uniformly over the grain’s surface. The numer-
ical model also includes the surrounding plasma region.
The plasma consists of electrons and ions (in the gen-
2003 MAIK “Nauka/Interperiodica”
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eral case, there may be several ion species). In experi-
ments, an external electric field is usually applied to the
dusty plasma, which favors the formation of spatial
dusty structures. For this reason, the self-consistent
(including the external) electric field should also be
taken into account. In view of the axial symmetry of the
system under consideration, it is reasonable to solve the
problem in spherical coordinates in two-dimensional
geometry.

The proposed model of a low-temperature plasma
includes the continuity equations for charged particles.
The particle velocities are determined by the local value
of the electric field. The electron diffusion is also taken
into account, which is necessary because, under the
given conditions, the dust grains are negatively charged
and it is precisely the diffusion term that provides the
electron flow onto a grain. The ion flow near a dust
grain is provided by the ion drift in an electric field,
which is fairly high in this region. Under these condi-
tions, the contribution of the diffusive ion flow is insig-
nificant. The model is valid when the characteristic
dimensions of the problem are larger than the mean free
path of the charged particles, which amounts to 10–5 cm
at atmospheric pressure. Therefore, for grains with a
size of 10–4–10–3 cm, the model proposed can be
regarded as quite adequate.

The basic equations have the form

(1)

where ne and ni are the densities of the electrons and
positive ions, respectively; we and wi are the electron
and ion drift velocities; Qe and Qi are the terms describ-
ing the production and loss of electrons and ions; D is
the electron diffusion coefficient; and ϕ is the electric
potential.

We use a spherical coordinate system whose origin
coincides with the center of a spherical dust grain with
a radius Rd . Equations (1) should be supplemented with
the boundary conditions, which can be deduced from
the following considerations. If the charge of the sphere
is positive, then the ion drift velocity is directed out-
ward from the sphere. In this case, the density of the
positive ions is assumed to be zero at the grain’s sur-
face. For a negatively charged sphere, no boundary con-
ditions for the ions on the grain’s surface apply.

The electron transport equation contains the diffu-
sion term. Hence, the boundary conditions on the
grain’s surface must be imposed for either sign of the
grain charge. In view of the low efficiency of the known
mechanisms of electron production on the grain’s sur-
face in a low-temperature dusty plasma, we will assume
that the electron density near the grain’s surface is zero.

∂ne

∂t
-------- ∇ wene( )⋅+ ∇ D∇ ne( ) Qe,+⋅=

∂ni

∂t
------- ∇ wini( )⋅+ Qi,=

∆ϕ 4πe ne ni–( ),=
At infinity (far from the grain), the ion and electron
densities are assumed to be equal to their equilibrium
values, determined by plasmochemical processes.

Simulations were performed with allowance for the
external electric field. As a boundary condition for the
electric field, we assume that the field at infinity is equal
to the external field. Summarizing all the assumptions,
the boundary conditions can be written in the form

(2)

(3)

where Q is the grain charge in atomic units and E0 is the
external electric field, which depends on the specific
conditions of the problem.

We consider a nitrogen dusty plasma produced by a
high-power electron beam ionizing the gas with an ion-
ization rate of ~1016 s–1 cm–3. Under the given condi-
tions, the ion density attains ~1011 cm–3. We assume
that the plasma consists of positive ions and electrons.
The charge particle balance is determined by plasmo-
chemical reactions, including both the gas ionization by
the electron beam and electron–ion recombination:

where q is the ionization rate and β is the recombination
coefficient. In calculations, the recombination coeffi-
cient depended on the electric field and was on the
order of β ~ 10–6 cm3/s.

The dielectric dust grains were spheres with the
radius Rd = 12 µm. We considered the gas at atmo-
spheric pressure (p = 1 atm) and room temperature (T =
300 K). The dust density was assumed to be low enough
for the dust charge to have no effect on the average den-
sity of charged plasma particles. The known depen-
dences of the plasma kinetic coefficients on the electric
field for nitrogen were used. The grain charge was
determined by the balance of the currents of the plasma
electrons and ions. Simulations were performed until
the calculated quantities reached their steady state
values.

Two-dimensional simulations require considerable
computational resources; hence, the choice of an effi-
cient algorithm is of great importance for this kind of
problem. The algorithm used in this study is described
in detail in [10]. The simulations were separated into
several steps. The transport equations were solved
using a standard implicit scheme, and Poisson’s equa-
tion was solved using the expansion of the electric
potential in Legendre polynomials. The main problem
arising when using this method is providing the conver-
gence of the expansion series; therefore, the expansion

ni r = Rd( ) 0; for E r = Rd( ) 0;>=

ni r ∞( ) ni
eq( )

;=

ne r = Rd( ) 0; ne r ∞( ) ne
eq( )

;= =

∇ϕ r = Rd( ) Qe/Rd
2
,–=

∇ϕ r ∞( ) E0 r( ),–=

Qe Qi q βneni,–= =
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terms should be regularly checked for the convergence.
Simulations showed that in the modeling of a real
plasma with spherical dust grains, it is quite sufficient
to take into account six harmonics.

3. RESULTS OF SIMULATIONS OF A DUSTY 
PLASMA IN AN EXTERNAL ELECTRIC FIELD

The charging of a spherical grain with a radius of
12 µm in a nitrogen plasma and the establishment of the
spatial charge distribution around the grain were inves-
tigated. The ionization source power was taken to be
2 × 1016 cm–3 s–1.

Simulations were performed both without an exter-
nal electric field and in the presence of a fairly strong
external electric field with a strength of E0 = 900 V/cm.
The results of calculations are presented in Fig. 1.

It can be seen in the figure that applying the electric
field results in a significant redistribution of the space
charge around the grain. The electron density profile
shifts toward the grain’s surface, and a slight local max-
imum appears on the profile. The ion density profile
shifts in the opposite direction. As a result, the length of
the region in which the plasma quasineutrality is dis-
turbed changes substantially. Moreover, in the presence
of the electric field, a region appears in which the space
charge changes its sign. We note that, far from the grain
(in the quasineutral plasma), the plasma density
increases because the recombination coefficient
decreases considerably when the external electric field
is applied. Figure 2 shows the spatial profile of the self-
consistent electric field. It can be seen that, in the pres-
ence of the external field, the radial component of the
electric field changes its sign far from the grain’s sur-
face.

We also note that the region where quasineutrality is
disturbed is fairly large. The simulations were per-
formed for the Debye radius RDb ≈ 4 µm. It can be seen
in Fig. 1 that, in the absence of an external electric field,
the region where quasineutrality is disturbed is about
Ra ~ 25 µm. From Fig. 2, it is seen that Ra corresponds
to the distance at which the electric field significantly
decreases. Similar results in the absence of an external
field were obtained in [6, 7].

The calculated dependence of the grain charge on
the external electric field is shown in Fig. 3. The grain
charge is negative and its value agrees with the results
of calculations presented in [1, 6]. The negative sign of
the grain charge in a gas-discharge plasma was pointed
out by many authors; it is explained by the higher
mobility of electrons in plasma in comparison with that
of ions. It follows from the simulation results that the
grain charge can be increased severalfold by increasing
the external electric field within reasonable limits.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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Fig. 1. Radial profiles of the (1, 3) electron and (2, 4) ion
densities in the plasma surrounding the grain (1, 2) in the
absence of an external electric field and (3, 4) in the pres-
ence of an external field of 900 V/cm. The density profiles
are shown for the angle θ = 36° with respect to the direction
of the external field (Here and in the subsequent figures, the
radial coordinate is measured from the grain’s surface).
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Fig. 2. (1) Radial profile of the electric field in the plasma
surrounding the grain in the absence of an external electric
field and the profiles of the (2) radial and (3) tangential com-
ponents of the self-consistent electric field in the presence
of an external electric field of 900 V/cm for the angle θ =
36° with respect to the direction of the external field.
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4. CHARGE DISTRIBUTION AND INTERACTION 
IN A TWO-GRAIN SYSTEM

The presence of attraction forces between dust
grains in a dusty plasma was unambiguously demon-
strated in the experiments of [11]. The shift of one of
the interacting grains by a laser beam results in a simi-
lar shift of the second grain. The problem of the inter-
action between two charged dust grains was considered
in [12]. In that paper, the electrostatic potential was
accurately calculated by using appropriate curvilinear
coordinates. However, in that paper, as well as in the
papers mentioned above, it was assumed that the
plasma particles obey a Boltzmann distribution. How-
ever, the numerical results obtained using more ade-
quate models show that the real plasma particle distri-
butions should differ significantly from a Boltzmann
one.

In [13], the interaction energy of two grains and its
dependence on the distance between these grains were
calculated. The interaction energy was found to be min-
imum at the distance r12 = 2.73RDb. This means that the
grains efficiently interact at a distance larger then the
Debye radius, i.e., in the region where the plasma sub-
stantially screens the grain charge. On the one hand,
this result is important because it corresponds to exper-
imental observations. On the other hand, in that paper,
a mechanism for the appearance of the attraction force
between likely charged grains in the polarized sur-
rounding medium was proposed based on a rather sim-
ple model. Unfortunately, the applicability of the
results of [13] is limited to the case of small grains with
the radii Rd ! RDb; moreover, that paper also used the
Debye screening model, which has a limited applicabil-
ity range, as has been discussed above.

The conclusion of [14] about the repulsion of likely
charged grains in plasma was made based on the colli-
sionless plasma model assuming the mirror reflection
of charged particles from the grain’s surface. In that
paper, the limited applicability of this model was also
indicated. In particular, this model is inapplicable to a
low-temperature dusty plasma of a high-pressure gas
discharge, which is considered in the present paper.
Hence, along with the interaction mechanism associ-
ated with anisotropy of gas-kinetic pressure in a two-
grain system [14, 15], the electrostatic interaction must
also be taken into account. We note that the possibility
of attraction between likely charged grains due to
plasma polarization was shown in [4, 8].

In the present paper, an evident symmetry of the
problem was used to calculate the charge distribution in
the system of two grains in plasma in the absence of an
external electric field. When the grains are identical and
have the same electric charge, there is a symmetry
plane lying halfway between the grains. In this case, the
solution of the problem reduces to the calculation of the
dynamics of charged plasma particles in the half-space
adjacent to one of the grains, and the electric field is
determined as a sum of the fields produced by the elec-
tric charges in both half-spaces:

(4)

where ρ(r) is the charge density; σ(r) is the surface
charge density; S1 and S2 are the grain surface areas; V1
and V2 are the symmetric plasma regions adjacent to the
first and second dust grains, respectively, and together
covering the entire region under consideration; and the
components of the electric potential ϕ(r) are equal to
the corresponding expressions in parentheses.

We note that, when the field is defined in such a
fashion, the electric field component perpendicular the
symmetry plane vanishes on this plane: E⊥  = 0.

The energy of a system of point charged particles
can be determined by the formula [16]

(5)

where the potential ϕi in the position of the charge ρi is
determined by all of the charges except for the given
one. Such an exclusion is necessary because the self-
energy of a charged particle increases without bound
with decreasing radius.

In the model under consideration, the charge distri-
bution is continuous and the charge density at any point
is finite. In numerical simulations, the space is divided
into the computational cells, in which the plasma space
charge, as well as other quantities, can be assumed to be
uniform. In this case, the self-energy of the small spa-
tial cells decreases with decreasing their size; therefore,
the expression defining the total energy of the system of
electric charges is finite.

Actually, to solve the problem of the interaction
between dust grains, we should consider the interaction
energy of the parts of the system of electric charges
(electrically charged grains together with adjacent
polarized plasma regions), rather than the total energy
of the electric charges. In view of the symmetry of the
problem, the interaction energy can be determined from
the formula

(6)

where the potential ϕ2(r1) is calculated by formula (4).
According to expression (6), the interaction energy is
determined by the interaction of charges located in one
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half-space with the electric field produced by charges
located in the other half-space. If the interaction energy
is negative, then one can speak of the tendency toward
the formation of a complex (quasi-molecule). In this
case, the dependence of the bond energy on the inter-
grain distance may be identified with a term of this
quasi-molecule.

To determine W as a function the intergrain distance,
we performed a series of calculations of the steady
charge density distribution and the self-consistent elec-
tric field in a two-grain system in the model described
above. All other conditions, such as the ionization
source power and the medium composition, were the
same as in the case of one grain.

–1800

–1900

–2000

–2100
0.024 0.028 0.032

r12, cm

W, eV

0.022

Fig. 4. Electrostatic interaction energy as a function of the
distance between two grains in a dusty plasma.
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Figure 4 shows the results of calculations. It can be
seen from the dependence W(r12) that the interaction
energy is negative and the depth of the potential well is
~103 eV. For comparison, this energy corresponds to
the kinetic energy of a dust grain of mass ~10–8 g mov-
ing at a velocity of ~0.5 cm/s. As is seen from the fig-
ure, the calculations were performed for a relatively
small number of the distances r12, because each calcu-
lation version required a fairly long computation time.
Nevertheless, the results of calculations clearly demon-
strate the presence of a minimum in the electrostatic
interaction energy. Along with the negative value of the
calculated energy, this testifies to the possibility of the
existence of a bound state in this system. The attraction
force can be estimated by the formula

(7)

According to this estimate, we have F ~ 10–6–10–7 dyn,
which is much smaller than the grain weight in the
Earth’s gravity field. We remember that the simulations
were performed in the absence of an external electric
field and the plasma was produced by an external
source. When analyzing the applicability of formula (7),
it should be taken into account that our model includes
the process of grain charging, which is associated with
the work done by external sources (plasma ionizers).
Hence, the negative potential of the grain obtained in
the calculations reflects the work done by these sources.
At the same time, the force calculated by formula (7)
neglects the interaction associated, e.g., with the
plasma pressure [14, 15]; therefore, no final conclusion
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Fig. 5. Radial profiles of the (1) electron and (2) ion densities in the plasma surrounding one of the two interacting grains (a) in the
direction toward the second grain and (b) in the opposite direction.



478 PETRUSHEVICH
about the formation of a bound state in a two-grain sys-
tem can be made based on formula (7) only.

Figure 5 shows the spatial distributions of the
charged particle densities in the direction toward the
second dust grain and in the opposite direction. We can
see that the charge density distributions differ from
those in the case of one grain (Fig. 1, curve 2). Toward
the second grain (Fig. 5a), the ion density at a distance
of ~40 µm from the grain’s surface substantially
exceeds the electron density and there is a slight maxi-
mum in the ion density profile. This agrees qualitatively
with the results of [8], in which an ion cloud between
the interacting grains was observed in numerical simu-
lations of a microwave-discharge dusty plasma. In view
of the symmetry of the problem, a similar cloud should
also form in the region adjacent to the second grain. In
the opposite direction (Fig. 5b), the distributions of the
charged particle densities are markedly different. A
characteristic feature of these distributions is the forma-
tion of regions with an alternating sign of the space
charge.

In the region immediately adjacent to the grain, the
electric field changes only slightly as compared to the
case of one grain, because, in this region, it is mainly
determined by the grain charge. Figure 6 shows the spa-
tial distributions of the electric field in the direction
toward the second dust grain and in the opposite direc-
tion. The curves coincide near the grain’s surface and
are different at a distance of 240 µm, where the second
dust grain is situated.
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Fig. 6. Radial profiles of the electric field in the plasma
surrounding two interacting grains (1) in the direction
toward the second interacting grain and (2) in the opposite
direction.
5. CONCLUSION

The interaction of charged grains in a low-tempera-
ture dusty plasma has been investigated numerically. To
calculate the grain charge and the polarization of the
surrounding plasma, the self-consistent electrostatic
problem has been solved with allowance for charged
particle transport in a plasma. Minimal simplifications
were adopted when formulating the problem: the sym-
metry of the problem allowed us to use two-dimen-
sional geometry, and the equations for charged particle
transport were reduced to the continuity equations,
which is quite justified under the given conditions.

We have also simulated the interaction between two
dust grains in a nitrogen plasma produced by an exter-
nal ionization source in the absence of an external elec-
tric field. Under the given conditions, the energy of
interaction between the grains (including the energy of
interaction with the polarized surrounding plasma) is
found to be negative and is minimum at a distance of
~250 µm between the grains. The attraction force
between two grains, which can be estimated from the
calculated dependence of the electrostatic interaction
energy on the intergrain distance, turns out to be weaker
than the weight of a grain in the Earth’s gravity field.

It has been found that, when the Debye plasma
model is used to calculate the grain charge screening,
significant errors are introduced for the most important
region near the grain’s surface. It turns out that the
region where the plasma quasineutrality is disturbed is
much larger than the Debye radius, because the equilib-
rium conditions, which are required for a Boltzmann
distribution to be established, are not satisfied there due
to the boundary effects.

The spatial distributions of the charged particle den-
sities and the self-consistent electric field were calcu-
lated for individual dust grains in the presence of an
external electric field. The break of spherical symmetry
in the presence of an external electric field leads to an
asymmetry of the charged particle distribution. It has
been shown that the grain charge depends on the exter-
nal electric field. Applying the external electric field
increases the grain charge by a factor of up to 4, which
should naturally increase the interaction force between
the grains.

The simulations have shown that the plasma particle
distribution in a system of two interacting grains is non-
uniform. In the direction toward the second interacting
grain, a positive space charge arises at a distance of
about one-sixth of the intergrain distance from the first
grain. (In view of the symmetry of the problem, a sim-
ilar positive space charge forms in the region adjacent
to the second grain.) In other words, the plasma charges
are redistributed so that the positive space charge in this
region increases in comparison with the spherically
symmetric case of one grain. This redistribution corre-
sponds to the plasma polarization, resulting in the
attraction of likely charged grains. In the opposite
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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direction, the plasma polarization markedly differs and
charged layers are formed.
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Abstract—Results are presented from experimental and theoretical studies of a space-charge lens for focusing
a negative-ion beam. The space-charge field and the beam ion trajectories are numerically calculated for the
lens used in the experiments. The results of calculations are compared with the experimental data. It is shown
theoretically and experimentally that the proposed device allows one to achieve the main operating conditions
of the space-charge lens: the inertial confinement of positive ions and the removal of electrons by an external
electric field. The focusing field of the lens attains ~100 V/cm, which provides a focal length of <20 cm. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concept of a space-charge lens for focusing a
positive-ion beam was first proposed by Gabor [1] and
then was further developed by Morozov [2, 3]. The effi-
ciency of such a lens was confirmed in many experi-
ments (see, e.g., [4]). The focusing field of the lens is
produced by a space charge of electrons that are
injected by a separate emitter or come from the lens
electrodes due to ion-induced emission and are con-
fined within the beam by an external magnetic field.

In [5], a space-charge lens for focusing a negative-
ion beam was proposed. In this case, the focusing space
charge is produced by positive ions that are generated
through the ionization of the working gas by an ion
beam and are confined within the beam by inertial
forces. It was proposed that the electrons produced in
this process be removed from the system by a longitu-
dinal electric field. Preliminary experiments showed
the high efficiency of such a lens.

This paper is devoted to a detailed study of the
device proposed in [5]. In particular, the space charge
field and trajectories of the beam ions are numerically
calculated for the lens used in experiment. The time
evolution of the particles produced due to the ionization
of argon by the beam is also studied. The results of cal-
culations are compared with the experimental data. The
theoretical and experimental results show that, under
our experimental conditions, it is possible to achieve
the main operating conditions of the space-charge lens:
the inertial confinement of positive ions and the
removal of electrons by an external electric field. The
ratio between the positive-ion and electron densities in
the lens varies within the range 101–103 and the focus-
ing field attains ~100 V/cm, which provides a focal
length of <20 cm.
1063-780X/03/2906- $24.00 © 20480
2. EXPERIMENTAL RESULTS

The space-charge lens for focusing a negative-ion
beam was investigated using the experimental setup
shown schematically in Fig. 1a. A beam of negative
ions with energies of ~10–12 keV and a current of ~10–
30 mA was extracted from surface-plasma source 1
through a 0.5 × 15-mm slit. The beam was preformed
and directed to lens 3–5 by an ≈2-kG magnetic field
produced by deflecting magnets 2. The beam diameter
was limited by the entrance aperture of the lens. The
beam current was measured by collector 7 with a diam-
eter of 10 cm. The beam compression ration was deter-
mined from a change in the current at collector 6 with a
diameter of 2 cm. The lens was placed ≈20 cm from the
source slit. The distance from the lens exit plane to the
collector was ≈30 cm. In the given configuration, the
beam radius at the collector should be minimum for a
lens focal length of ≈12 cm.

The lens was designed as follows. Lens chamber 4
was a metal cylinder 15 cm in diameter and 10 cm in
length with two grounded diaphragms with an inner
diameter of 5 cm at the ends. Removable metal grid cyl-
inder 5 with a diameter of 5 cm and length of 10 cm was
installed inside the lens chamber on its axis and was at
the potential of the lens chamber. The lens chamber was
insulated from the chamber walls; during operation, the
chamber potential can be varied from 0 to –2000 V.
Grounded electrodes 3 with a thickness of 1.5 cm and
an inner diameter of 5 cm were installed 0.5 cm from
the ends of the lens chamber. The working gas (argon)
was admitted through the end wall of the lens chamber.
The gas pressure in the lens could be varied in the range
10–4–1.5 × 10–3 torr. With such a lens design, the pres-
sure in the lens was higher than the pressure in the
beam-drift region by a factor of nearly 10.

A positive space charge in the lens was produced
through the ionization of the working gas by a negative-
ion beam. It was proposed that the electrons produced
by ionization and detachment from negative ions in col-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Schematic of the experiment: (1) pulsed source of negative hydrogen ions, (2) deflecting magnets, (3) grounded inlet and
outlet electrodes, (4) lens chamber, (5) removable grid electrode, (6) collector for determining the beam density, and (7) beam-cur-
rent collector; (b) the ç– beam compression ratio as a function of the negative potential of the lens chamber in the presence of the
grid electrode at different argon pressures p = (1) 1.8 × 10–4, (2) 4.2 × 10–4, (3) 6.2  × 10–4, (4) 8 × 10–4, (5) 1.1 × 10–3, and (6) 1.7 ×
10–3 torr; and (c) the H– beam compression ratio as a function of the negative potential of the lens chamber without a grid electrode
at different argon pressures p = (1) 1.2 × 10–4, (2) 4.1 × 10–4, (3) 6 × 10–4, (4) 7.9 × 10–4, (5) 1.2 × 10–3, and (6) 1.7 × 10–3 torr.
The beam current is 10 mA and the beam ion energy is 12 keV.

 gauge
lision with neutral particles be expelled along the lens
axis by applying a negative potential to the chamber.

Experiments were carried out for two lens configu-
rations. In the first version, the lens contained grid elec-
trode 5 (Fig. 1a), and in the second version, this elec-
trode was absent (the numerical experiment was per-
formed for the second version).

The results of measurements are presented in Figs. 1b
and 1c. The figures show the beam compression ratio
(the ratio of the maximum current J of the ç– beam at
collector 6 in the regime of focusing to the maximum
beam current J0 at collector 6 in the regime without
focusing) in the collector plane as a function of the neg-
ative potential of the lens chamber at different values of
the argon pressure in the lens.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
It can be seen from the figures that the beam com-
pression ratio depends on both the gas pressure in the
lens and the potential at its central electrode. (The gas
pressure determines the value of the positive ion space
charge, whereas the negative potential determines the
efficiency of the removal of electrons from the lens in
the longitudinal direction.) The maximum beam com-
pression ratio is the same for both versions (with and
without grid 5). However, with the grid, the optimal
compression of the beam is reached even at a lens
potential of –200 V, whereas without a grid, it is
reached at a much lower potential; i.e., in the former
case, the removal of electrons from the lens is more effi-
cient.

Thus, it has been demonstrated experimentally that
the space-charge lens proposed can be very efficient
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and can provide a focal length of <20 cm. The lens effi-
ciency is determined by the gas pressure (by the value
of the positive space charge), provided that the elec-
trons are removed from the system by the longitudinal
electric field. The geometry of the lens only has an
effect on the efficiency with which the electrons are
removed from the lens.

3. NUMERICAL EXPERIMENT
We calculated the electric field and trajectories of

the beam particles in the space-charge lens for focusing
a negative-ion beam and investigated the time evolution
of the electrons and Ar+ ions produced by ionization.
The numerical studies were performed using the parti-
cle-in-cell (PIC) method [6, 7]; the plasma was
assumed to be collisionless.

A schematic of the numerical experiment is shown
in Fig. 2a. A uniform beam of negative H– ions with a
current of 10 mA and an energy of 12 keV entered the
lens through the entrance plane along the lens axis. The

H–
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Fig. 2. (a) Schematic of the numerical experiment and the
lines of the electric field generated by the electrodes inside
the lens; the main ionization region in the lens extends from
the axis to the dashed line; the arrows show the trajectories
of the beam ions and the atoms of the working gas (argon)
entering the lens. (b) Steady-state distribution of the electric
potential in the lens at t = 10–5 s.
beam diameter coincided with the diameter of the lens
entrance aperture and was equal to 5 cm. The potential
of the lens chamber was assumed to be –2000 V, and the
argon pressure in the lens transmission line was 1.5 ×
10–3 torr (the parameters corresponding to the regime of
optimal focusing in the experiment).

In the calculations, it was taken into account that,
during the interaction of the beam with the working
gas, the positive argon ions are produced through ion-
ization, whereas the electrons are produced through
both ionization and the neutralization of negative ions
in collisions with neutral particles (the probability of
the latter process is several orders of magnitude
higher). The lifetimes of the produced particles are pro-
portional to their path lengths and are limited by the
time required for the particles to leave the calculation
region.

At each time step, we introduced N+ = ∆tJIVIσIN
positive ions and Ne = ∆tJIVI(σI + σ–0)N electrons (in
the proportion 1 : 11) into the lens region occupied by
the beam. Here, ∆t is the time step, JI is the ion flux den-
sity at the lens inlet, VI is the volume of the ionization
region, σI is the cross section for the ionization of the
gas by the beam ions, σ–0 is the cross section for the
neutralization of the beam ions in collisions with gas
atoms, and N is the number of neutral particles in the
ionization region. The initial electron energies were
specified according to the calculated energy distribu-
tion (see [8]), and the initial directions of the electron
velocities were taken according to the angular distribu-
tion from [9]; the maximum of this distribution was in
the range 85°–95° with respect to the lens axis. The
coordinates of the new particles in the ionization region
were specified with the help of a random number gen-
erator. The trajectories of the new particles and the par-
ticles already occurring in the lens were calculated
from the equation of motion

where m, v, and q are the mass, velocity, and charge of
a particle, respectively, and EION , EE , EB , and EEL are
the components of the electric field produced by the
plasma ions, plasma electrons, beam ions, and elec-
trodes, respectively. The time step was ∆t = 10–11 s.
After a time of ∆T = 10–9 s, using the coordinates of all
the particles, we calculated the distribution of the space
charges of electrons, Ar+ ions, and H– beam ions by the
cloud-in-cell method [7]. The radial and longitudinal
dimensions of the spatial cell were equal to 0.1 cm.
Using the distribution of the total space charge ρ(z, r),
we calculated the potential U(z, r). Then, the particle
motion in the new electric field was calculated and a
new group of charged particles was introduced. The
calculation continued until the steady-state distribution
of the electric potential was established. The simulation
time was no longer than 10–5 s. Figure 2b shows a typ-

m
d
dt
-----v q EION EE EB EEL+ + +( ),=
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Fig. 3. (a) Axial profile and (b) spatial distribution of the ratio between the steady-state ion and electron densities in the lens at t =
10–5 s.

log(NION/NE)
ical steady-state potential distribution. The increase in
the potential in the center of the system due to the filling
of the working region with a positive charge is ≈300 V.

In the course of the lens formation, the positive
argon ions go away from the lens axis along the trajec-
tories close to the electric field lines (Fig. 2a) and
occupy the entire lens cavity with time. The electrons in
the working region move toward the lens axis and leave
the calculation region in the axial direction. Figures 3a
and 3b show the ratio between the steady-state electron
and positive-ion densities on the lens axis and in the
lens volume, respectively. In Fig. 3a, one can see three
minima associated with characteristic features of the
formation of the ion flow. A deep valley can be seen in
the central peak, which is explained by the fact that the
ion flux density in the central cross section is the high-
est and the electrons bunch there due to the lens sym-
metry. The positive-ion density exceeds the electron
density at least by one order of magnitude (the light
areas in Fig. 3b), and it is by two to three orders of mag-
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
nitude higher than the electron density in the region
adjacent to the central cross section (the dark areas in
Fig. 3b), which testifies that the ion component is pre-
dominant during the formation of the space charge dis-
tribution.

Figure 4 shows the calculated trajectories of the
negative-beam ions in the field of the lens in the steady-
state regime. The lens has a high focal power, but there
are significant aberrations caused by edge fluxes, which
can be avoided under real conditions by limiting the
diameter of the output beam and by reducing the influ-
ence of the electrodes. The focal length of the lens is
18 cm. At a collector radius of 1 cm, the beam compres-
sion ratio attains a value of ≈25, which is substantially
higher than that observed in the experiment (about 5).
However, this discrepancy can easily be explained tak-
ing into account the considerable phase space occupied
by the real beam and the initial asymmetry of the beam
emerging from the source slit.
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Thus, we have calculated the distributions of the
potential and charged particle densities in the working
region of the space-charge lens for focusing a negative-
ion beam. The assumptions that the electron density is
substantially reduced in the presence of a longitudinal
electric field and that an excess positive charge is pro-
duced in the lens have been confirmed. The calculated
value of the focal length of the lens is close to that mea-
sured in the experiment.

4. CONCLUSIONS

(i) The distributions of the space charge and electric
field in the space-charge lens for focusing a negative-
ion beam have been calculated numerically. The calcu-
lations demonstrate the high efficiency of both the iner-
tial confinement of positive ions in the lens and the
removal of electrons from the focusing region by a lon-

3
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–1

–2

–3
10 20 30 400
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r, Òm

Focus, z = 18 cm

Lens

Fig. 4. Calculated trajectories of the negative beam ions in
the field of the lens in the steady-state regime.
gitudinal electric field. As a result, the density of the
positive ions in the lens is two to three orders of magni-
tude higher than the electron density. The focal length
of the lens observed in calculations attains ≈20 cm.

(ii) It has been shown that the calculated values of
the focusing electric field and the focal length agree
well with the measured values.

(iii) It has been shown experimentally that the
geometry of the lens significantly affects the removal of
electrons from the lens.
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Abstract—Oscillations and the stability of the helical structures of likely charged particles undergoing Cou-
lomb interactions and confined in an axisymmetric potential well are studied theoretically. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A typical example of a strongly nonideal plasma is
provided by ordered structures of charged particles
confined by external fields. In plasma physics, such
structures are sometimes called quasi-crystals,
although they lack the quasi-crystalline order known in
solid-state physics [1]. One of the first experimentally
observed ordered structures was a system of micron-
sized iron and aluminum charged particles in a certain
configuration of an alternating and a static field [2]. In
later experimental investigations involving laser cool-
ing techniques, Coulomb crystals were observed to
form in various types of devices, e.g., in a Penning trap
[3, 4], an RF Paul trap [5–7], and storage rings [8, 9].
From a practical standpoint, interest in such systems is
associated with a new type of atomic clock [10] and the
schemes proposed for implementing a quantum com-
puter [11]. Crystals may also form in a purely electron
plasma [12] and a dusty plasma [13].

The nature of ordered structures that arise in various
devices is largely governed by the parameters of the
external confining field. In this paper, we investigate
quasi-one-dimensional structures that form in linear
Paul traps and storage rings. The simplest approxima-
tion for such structures is to describe them as a system
of singly charged ions that is uniform or periodic in a
certain direction (e.g., along the z-axis) and whose
transverse spreading is prevented by an external para-
bolic potential. During the laser cooling process, the
ion kinetic energy T decreases; as a result, the plasma
parameter e2/aT (where a is the characteristic distance
between the particles) amounts to about 104. As the
parameters of the confining potential change, various
structures that form during the cooling process undergo
numerous phase transitions. The behavior of such
structures has received much experimental, numerical,
and analytical study [15]. On the other hand, virtually
nothing is known about the oscillations and stability of
Coulomb crystals in linear devices.

Here, we develop a theory of linear oscillations of
Coulomb crystals exhibiting helical symmetry. We
begin with a review of the different equilibrium config-
1063-780X/03/2906- $24.00 © 20485
urations of charges in a linear device. Then, we derive
a general set of linearized equations. Finally, we use
these equations to calculate the spectra of oscillations
of the five simplest types of crystals.

2. STEADY STATES OF A CRYSTAL

We consider a system consisting of a large number
of likely charged particles confined in an external field
with the potential Uext(r), which prevents the system
from spreading in the transverse direction. We restrict
ourselves to considering the case in which the external
potential can be assumed to be independent of one of
the coordinates (the z coordinate) and harmonic in the
transverse coordinate. This case corresponds to two
experimental situations. First, in a Penning trap, as well
as in a Paul trap, the shape of any axisymmetric poten-
tial well Uext(r) ≈ 1/2[Kzz2 + K(x2 + y2)] near its bottom
is often highly anisotropic, Kz ! K. Accordingly, at z ≈ 0,
the longitudinal component of the external force can be
neglected. Second, in a toroidal device or storage ring,
charged particles are confined in the vicinity of the
closed axis; in this case, toroidal effects can be
neglected provided that particle excursions away from
the axis are small in comparison with the major radius
of the device.

It is acceptable to ignore the distinction between the
toroidal and axisymmetric devices in analyzing the
small oscillations of a crystal. However, in searching
for the spatial configurations of charges that would be
most advantageous from the energy standpoint, doing
so requires certain care. In a toroidal device, the line
density (or the mean distance between the particles) is
determined by the total number of particles and the
major radius of the torus and is independent of K. On
the other hand, in a highly anisotropic device, a
decrease in the parameter K, which characterizes parti-
cle confinement in the transverse direction, may change
the mean interparticle distance even near the bottom of
the potential well [14]. In describing the states that are
most favorable energetically, we neglect, for simplicity,
the dependence of the mean distance between the parti-
cles on the confinement parameter K. This dependence
003 MAIK “Nauka/Interperiodica”
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can be accounted for through an unessential renormal-
ization of the dimensionless parameter µ, which will be
introduced below.

The dynamics of the system is described by the
equations

(1)

where rn = (xn, yn, zn), r⊥ n = (xn, yn, 0), and q and m are
the charge and mass of a particle. In writing the formu-
las, it is convenient to assume that the total number of
particles is equal to 2N + 1.

In the steady state,  = 0; accordingly, the problem
reduces to that of looking for the coordinates rn of the
particles with which the right-hand side of Newton’s
equation (1) vanishes. Let us list some of the simplest
configurations that can take place at N  ∞. When the
external potential is sufficiently high, all particles occur
at the axis and form a linear chain (string), in which
they have the coordinates

(2)

Recall that the distance a between the particles is
assumed to be given. It is clear that, by virtue of the
symmetry of the system, the total force acting on the
nth particle in chain (2) is identically zero.

A somewhat more complicated case is that of a heli-
cal configuration, i.e., a helical chain (a helix) of parti-
cles with the coordinates

(3)

Substituting coordinates (3) into Eq. (1) and taking
the limit N  ∞, we can readily see that the balance
of the longitudinal forces and the balance of the angular

m ṙ̇n Kr⊥ n– q
2 rn rm–

rn rm–
3

---------------------, n
m N–=

m n≠

N

∑+ N…N ,–= =

ṙ̇n

rn 0 0 na, ,( ).=

rn R nθ( )cos R nθ( )sin na, ,[ ] .=
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34

Fig. 1. Extrema of Madelung energy (7) in polar coordi-
nates (u, θ). The solid and dashed curves represent the solu-
tions to Eq. (8), and curves 1–4 are the solutions to Eq. (4)
with µ = (1) 1.674, (2) 0.305, (3) 0.098, and (4) 0.058.
momenta are satisfied exactly and that the condition for
the radial force to vanish yields

(4)

where

(5)

Here, we have introduced the dimensionless diame-
ter of the helix, u = 2R/a. The dimensionless quantity
µ = Ka3/q2 serves as a control parameter. Equation (4)
and its trivial solution u = 0, which corresponds to con-
figuration (2), represent only two relationships between
the three quantities µ, θ, and u. In other words, the con-
figuration of the system cannot be uniquely determined
from the purely mechanical force-equilibrium condi-
tion. This ambiguity is resolved by imposing an addi-
tional requirement that the total energy of the system be
minimum, which naturally applies to systems with dis-
sipation and, in particular, to laser-cooled systems. The
total potential energy of the system can be written as
U = , where the energy wn of an individual par-
ticle, which will be called, by analogy with solid-state
physics, the Madelung energy, is equal to

(6)

For both linear chain (2) and helical chain (3), this
energy diverges logarithmically as the total number of
particles tends to infinity. However, the difference in
the Madelung energies of each of these configurations
is finite and is, of course, independent of n. In dimen-
sionless form, it is convenient to write this difference as
w(h)n – w(s)n = (q2/a)ε(u, θ), where

(7)

The values of u that make this function an extremum
are given by Eq. (4), and the equation ∂ε/∂θ = 0 yields

(8)

Equations (4) and (8) uniquely determine the depen-
dence of the free parameters u and θ on µ.

Some insight into the extreme points of function (7)
is provided by Fig. 1, which presents the solutions to
Eq. (8) in polar coordinates (u, θ). The positions of the
maxima of ε(u, θ) are shown by solid curves, the con-
tinuations of which in the form of dashed curves corre-
spond to the minima. The dotted curves refer to the
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Fig. 2. Evolution of the structure of a Coulomb crystal as the confinement parameter of the device changes.
solutions to Eq. (4) that were obtained for different val-
ues of the parameter µ.

For a sufficiently high confining potential (µ > µ0 ≈
4.209), the state that is most advantageous from the
energy standpoint is that with linear chain (2), which is
at the origin of the coordinates in Fig. 1. In the range
µ0 > µ > µ1 ≈ 1.674, the most advantageous structure is
a zigzag, i.e., structure (3) with θ = π. In Fig. 1, the cor-
responding branch is marked with a Z. As µ increases,
the size of the zigzag increases from zero to a maxi-
mum value of umax ≈ 0.965. Then, at µ < µ1, the follow-
ing bifurcation occurs: the maxima of Madelung energy
(7) are now on the ray u > umax, θ = π (Fig. 1) and the
minima of this energy lie on the line H1, corresponding
to helical configuration (3) along which the angle θ
depends in a certain fashion on µ. The transition from
the zigzag to the first helix H1 is continuous. The two
transitions just described are illustrated schematically
in Fig. 2.

As the confining potential decreases further, the sys-
tem undergoes a series of phase transitions. Different
helical branches H2, H3, … in Fig. 1 are separated from
each other by potential barriers. As a rule, phase transi-
tions occur through the formation of more complicated,
tetrahedral structures. Altogether, there are ten phase
transitions from one to another of the relatively simple
structure, such as those shown in Fig. 2. All of these
phase transitions are well captured numerically and
many of them were observed experimentally. Finally, in
the range µ ≤ 0.05, a system forms that consists of sev-
eral nested cylindrical shells. The details of the analysis
of the Madelung energy for different configurations and
the results of numerical simulations can be found in the
review by Hasse and Schiffer [15].1 Table 1 presents the
ranges of variation of the parameter µ in which the
Madelung energy in different helical structures has an

1 It should be noted that, in [15], the role of the external parameter
is played by the dimensionless line particle density λ, which is
related to the parameter µ used here by the relationship µ =
3/(2λ3).
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absolute minimum. In Fig. 1, the corresponding por-
tions of the curves are shown by heavy lines. In the gaps
between the ranges given in Table 1, the minimum of
energy corresponds to a tetrahedral configuration,
which is not considered here. It should be noted that H2
and H3 helices are nearly isomeric: the difference
between the energies in them is about 0.01.

3. DISPERSION RELATION
In order to investigate oscillations of helical struc-

ture (3) and its stability, we represent the coordinate of
each particle in the form

(9)

We insert coordinates (9) into the equation of
motion (1) and linearize the resulting equation in small
deviations (δρn, δφn, δzn) from the equilibrium posi-
tions. As a result, we obtain an infinite set of equations,
which is too complicated to present here. Since the
group of symmetries of unperturbed helix (3) is Abe-
lian, the linearized set of equations is diagonalized by
the substitution

rn a
u
2
--- δρn+ 

  nθ δφn+( ),cos=

u
2
--- δρn+ 

  nθ δφn+( )sin n δzn+, .

Table 1.  Structures with a minimum Madelung energy.
Symbol S denotes linear chain (2)

Structure type Intervals of µ

S (4.207, ∞)

Z (1.674, 4.207)

H1 (0.768, 1.674)

H1 (0.305, 0.559)

H2 (0.094, 0.143)

H3 (0.050, 0.058)
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(10)

where we have introduced an analogue of the plasma

frequency, ωp = , and the dimensionless
oscillation frequency ν. The dimensionless wave vector
lies in the first Brillouin zone –π < s < π. Hence, we
arrive at a homogeneous set of linear equations:

(11)

where the elements of the Hermitian matrix Q are
equal to
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and the quantity Dm is given by formula (5).

Equations (11) can be investigated analytically only
for a linear chain. The results presented below were
obtained from a numerical analysis of other types of
chains. The numerical procedure consisted in finding
the equilibrium radius u and pitch angle θ for certain
values of µ and calculating the eigenvalues and eigen-
vectors of Eqs. (11) for wavenumbers in the range
0 ≤ s ≤ π. Attention was largely focused on determining
the intervals of stability of helical configurations, i.e.,
the intervals of µ values in which ν2 > 0 for any values
of s. Such an analysis is required because a local or a
global minimum in the Madelung energy automatically
guarantees that the configuration is stable only against
long-wavelength perturbations with s = 0 but does not
guarantee its stability against arbitrary perturbations.

3.1. Linear Chain

For linear ion chain (2), the linearized equations of
motion are easy to solve. Since the oscillations of the
ions are symmetric, they can be resolved into longitudi-
nal oscillations with ρ0 = 0 and transverse oscillations
with z0 = 0 and an arbitrary plane of polarization. The
dimensionless oscillation frequencies are determined
by the expressions

(13)

(14)

The spectral curves of the longitudinal and trans-
verse oscillations are shown in Fig. 3. The function

(s) is maximum at s = π, which indicates that, as the
confinement parameter decreases to the value µ =

(π)/2 = 7ζ(3)/2 ≈ 4.207, the transverse oscillations
with s = π lose their stability and a linear chain contin-
uously evolves into a zigzag. This µ value coincides
with the stability boundary estimated for a linear chain
from energy considerations (Table 1).

3.2. Zigzag

Zigzag chain (3) with θ = π is characterized by three
oscillation branches. The polarization of one of them
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corresponds to purely azimuthal oscillations with φ0 ≠ 0,
ρ0 = 0, and z0 = 0. The polarization of the remaining two
corresponds to oscillations with δ0 = 0, ρ0 ≠ 0, and z0 ≠ 0.

Like a linear chain, a zigzag is stable over the entire
range in which it exists. As the confinement parameter
decreases to its minimum value µ ≈ 1.674, the group
velocity of the long-wavelength azimuthal oscillations
approaches zero. For µ < 1.674, a long-wavelength
instability develops, (ν2/s2)s → 0 < 0 (Fig. 4), which cor-
responds, obviously, to the continuous evolution of a
zigzag into helix H1.

3.3. Helix

As was noted above, there are three different helical
configurations that are most advantageous from the
energy standpoint; moreover, as the confinement
parameter µ changes, the absolute minimum of Made-
lung energy (7) may jump from branch to branch
(Fig. 1).

Helical configurations oscillate in a more compli-
cated fashion than the configurations considered above

1

2

8

6

4

2

s
π/4 π/2 3π/4 π

ν2

Fig. 3. Spectra (13) and (14) of (1) longitudinal and
(2) transverse oscillations of a linear chain for µ = 5.
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π/4 π/2 3π/4 π
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Fig. 5. Spectra of oscillations of helix H1 for µ = 1.04, u =
1.405, and θ = 2.548. The upper curve at s = 0 corresponds
to purely radial oscillations.
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do. As a rule, the oscillations of the particles are essen-
tially three-dimensional (δ0 ≠ 0, ρ0 ≠ 0, z0 ≠ 0). The only
exception is uniform oscillations with s = 0 (i.e., purely
radial oscillations), in which case the frequencies of the
azimuthal and longitudinal oscillations become zero.

A characteristic example of the dispersion curves
for oscillations of helix H1 is shown in Fig. 5. The inter-
vals of µ values where all of the configurations in ques-
tion are stable are presented in Table 2. An important
point is that, for all configurations, the intervals of sta-
bility either coincide with those in which the Madelung
energy has an absolute minimum (S and Z configura-
tions) or exceed them. As µ increases, the helix loses its
stability in a more complicated way than the linear
chain and zigzag do. As far as we can judge by the
numerical results, in most cases, the oscillations that
become unstable are those whose wavenumbers are
incommensurable with π. A characteristic example of
how helix H2 loses its stability is illustrated in Fig. 6.
This type of instability may give rise to more compli-
cated structures, such as helices with additional modu-
lation.
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π/4 π/2 3π/4 π
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Fig. 4. Spectra of oscillations of a zigzag at the stability
boundary for µ = 1.674, u = 0.965, and θ = π. Spectrum 1
refers to azimuthal oscillations.
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Fig. 6. Spectra of oscillations of helix H2 for µ = 0.06, u =
7.264, and θ = 1.753.
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4. CONCLUSION

The main qualitative conclusion from the above
analysis may be formulated as follows. A helical struc-
ture whose potential energy has an absolute minimum
is stable. On the other hand, as the confinement param-
eter changes, a crystal may remain stable even when its
configuration becomes energetically unfavorable.
Since different helical branches are separated from
each other by the potential barriers, the crystals may, in
principle, evolve into metastable states and the corre-
sponding hysteresis effects may come into play. We can
conclude by saying that, whereas the evolutions of a
linear chain into a zigzag and of a zigzag into a helix are
analogues of phase transitions of the second kind, the
evolutions of helices from one configuration into
another are analogous to phase transitions of the first
kind.
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Table 2.  Intervals of stability of different helical structures

Structure type Intervals of µ

S (4.207, ∞)

Z (1.674, 4.207)

H1 (0.708, 1.674)

H2 (0.084, 0.170)

H3 (0.033, 0.071)
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Abstract—It is well known that high-power directed wideband electromagnetic radiation in the microwave
range can be generated by a superluminal pulse of the electron emission current. The operation of a simple emit-
ting element driven by a superluminal current pulse and consisting of an accelerating diode with a photocathode
and a source of ionizing radiation that initiates electron emission from the cathode is considered. It is shown
that the parameters of an elementary superluminal source obey scaling relations that are determined by the
growth rate of the electron emission current from the photocathode and the parameters of the accelerating diode.
The limiting anode current density and the limiting values of the characteristics of electromagnetic radiation
achievable in such a system are determined. The effect of the finite dimensions of the accelerating system on
the parameters of the emitter is investigated, and the spatiotemporal characteristics of the generated electromag-
netic fields are obtained. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-power directed wideband electromagnetic
(EM) radiation in the microwave range can be gener-
ated by means of a superluminal electron emission cur-
rent pulse [1, 2] produced when the front of the electron
emission from the interface between a vacuum and a
medium propagates with a velocity v ph higher than the
speed of light c. In particular, a superluminal current
pulse is generated when a plane metal surface is irradi-
ated by a plane flux of radiation capable of producing
electron emission, in which case the phase velocity of
the moving emission front is equal to

(1)

where θ is the angle of incidence of the radiation.
The spatiotemporal distribution of the electron

emission current near the surface is phased in such a
way that an emitted EM wave propagates in the same
direction as the reflected wave of the ionizing radiation
(Fig. 1). At sufficiently large distances R from the
source, the amplitude of the emitted EM field is propor-
tional to the second derivative of the surface density of
the dipole moment P with respect to time; in turn, this
derivative is proportional to the energy of the electrons
emitted and the area S of the emitter surface [1, 2]:

(2)

where ρ(r, t) is the electron density in the dipole layer.
According to formulas (2), the higher the energy of

the emitted electrons, the higher the intensity and total
energy of the emitted EM radiation. Estimates [2] show

v ph c/ θ,sin=

E
w

H
w
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2
R, Ṗ̇∼ ∼ d

2P/dt
2

,=

P r t,( ) V ' r r'–( )ρ r' t,( ),d∫=
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that, in order for the energy and intensity of the gener-
ated EM radiation be of interest for practical purposes,
the energy of the emitted electrons should be on the
order of tens of kiloelectronvolts or higher. Under lab-
oratory conditions, the emission current of the high-
energy electrons can be generated by separating the
processes of the electron production and the formation
of the emitting dipole layer. Light or ionizing radiation
capable of producing electron emission is used only to
initiate the emission of electrons with the minimum
possible energy; the electrons emitted are then acceler-
ated to their final energies from hundreds to thousands

Ionizing
EM
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Photo-Lx

L X

Z

n

θ

O

Fig. 1. Elementary microwave source in a vacuum chamber
evacuated to a pressure of p < 0.005 mm Hg.
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of kiloelectronvolts by an external electric field. Sche-
matically, an EM radiation source supplied by a super-
luminal current pulse is a plane accelerating diode with
a grid anode irradiated at a certain angle by a plane flux
of ionizing or light radiation (Fig. 1). The plane front of
the ionizing radiation generates a superluminal current
pulse of the electrons emitted from a photocathode.
Then, the electrons are accelerated in the interelectrode
gap, pass through the grid anode, and form a superlumi-
nal current pulse above it. The current pulse so pro-
duced generates a high-power directed EM pulse near
the anode.

In the theory of a superluminal source [1, 2], the
main results were obtained in studying the operating
modes of an emitter in which the generated electromag-
netic wave did not have any significant effect on the
parameters of the accelerating system. However, it is
clear that, for high current densities of the accelerated
electrons, this effect should be taken into account:
when the current density is sufficiently high, the char-
acteristics of the generated EM radiation depend on the
parameters of the accelerated diode and, primarily, on
the parameters of the limiting current that can be pro-
duced above the anode. Although there are many papers
devoted to the problem of limiting currents (see [3–5]
and the literature cited therein), some features of the
generation of EM radiation by a superluminal emission
current pulse that do not manifest themselves in the
classical schemes of microwave generation remain
uninvestigated. In particular, since the EM radiation
pulse forms at the front of the emission current, the
achievement of high current densities at the anode is
determined not by the current density of the emitted
electrons but by the growth rate of the emission current.

Our objective here is to investigate the limiting char-
acteristics of the EM radiation generated by an elemen-
tary superluminal source. We present analytic estimates
and the results of numerical calculations of the param-
eters of a superluminal current pulse and EM radiation
generated when the emission electrons are accelerated
in a plane diode operating at high current densities.

2. ANALYTIC MODEL OF THE FORMATION
OF AN EMITTING DIPOLE LAYER

IN AN ELEMENTARY EMITTER

The feature of an emitting element (Fig. 1) based on
the generation of EM radiation by a superluminal cur-
rent pulse of the electrons accelerated in a plane diode
is that it generates two electromagnetic waves, which
will be referred to as “directed” and “guided” waves.
The interaction of these waves with the emitted elec-
trons governs the magnitude of the anode current and
the dipole moment above the anode.

In the free half-space above the anode (z > L), the
directed electromagnetic wave propagates in the direc-
tion in which the ionizing radiation is reflected (Fig. 1).
The parameters of the directed wave are determined by
the dynamics of the dipole layer of the electrons accel-
erated in the diode [see Eq. (2)]. It can be assumed that
this wave does not affect the anode current amplitude
because of the screening effect of the metal grid anode.

A superluminal current pulse produced by the elec-
trons moving in the interelectrode gap also generates an
electromagnetic wave that propagates in a plane
waveguide formed by the cathode and anode. Being
added to the field of the space charge of the emitted
electrons, the field of this guided electromagnetic wave
reduces the effective accelerating field in the diode and,
accordingly, lowers the limiting current density at the
anode and the density of the dipole moment of the elec-
trons above it.

The processes of the generation of EM radiation, the
formation of the dipole layer, and the electron motion
in the accelerating gap should be considered together
because they are closely related to each other. A theo-
retical study of such systems is based mainly on numer-
ical simulations. However, in some cases, the problem
of the initial stage of the formation of a dipole layer
(before the electron flow velocity becomes multivalued
[6]) can be investigated by approximate analytic meth-
ods, which make it possible to obtain scaling relations
for the main parameters of the electron current and to
estimate the limiting current densities at the anode
operating in a dynamic mode.

We consider the process of the formation of an elec-
tron dipole layer above the grid anode of an infinite
plane capacitor in the one-dimensional approximation.
We assume that the anode is transparent to electrons
and denote by L and ϕ0 the distance and the voltage
between the electrodes. It is well known that, when the
voltage ϕ0 is not too high, eϕ0/(mc2) = γ0 – 1 ! 1, the
electron motion can be treated as nonrelativistic. In
such a diode, the steady-state limiting current density is
described by the expression [5]

(3)

We assume that, under the action of ionizing radia-
tion incident on the emitting element, the cathode emits
electrons with a current density Jc(t) and a zero initial
velocity.

2.1. The Case of Normal Incidence 
of the Ionizing Radiation (θ = 0, v ph = ∞)

The normal incidence of ionizing radiation on an
emitting element is an exceptional case in which an
electromagnetic wave is not generated (v ph = ∞) and,
accordingly, there is no need to take into account the
effect of the fields of the directed and guided electro-
magnetic waves on the electron motion. Nevertheless,
this problem, even being considerably simplified, is of
interest because it makes it possible to derive the main
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scaling relations for the parameters of the electron cur-
rent.

Let the cathode (z = 0) start emitting electrons into
the accelerating gap at the time t = 0. We consider only
the initial stage of the formation of a dipole layer, up to
the time τr at which the emitted electrons begin to
return to the cathode and the electron flow velocity
becomes multivalued. In this stage, the space charge
that arises above the cathode by the time τ is equal to

(4)

Since the space charge produced changes the accel-
erating electric field of the capacitor, the motion of the
electrons injected at the time τ < τr is described by the
equation

(5)

where e and me are the charge and mass of an electron.
The electric field Ez(τ, z) acting on an electron emitted
from the cathode at the time τ has the form

(6)

Here, E0 = ϕ0/L is the initial accelerating electric field
in the diode; η(t) = 0 (t < 0) and 1 (t ≥ 0) is the Heavi-
side step function; and T*(τ) is the transit time of an
electron from the cathode to the anode, so an electron
emitted from the cathode at the time τ reaches the
anode at the time t = τ + T*(τ).

Since the accelerating field decreases as the space
change increases, the electron transit time from the
cathode to the anode becomes longer. As a result, the
electrons injected from the cathode during the time
interval ∆τ reach the anode during the time interval ∆t =

∆τ . Accordingly, the current density at the

anode Ja is related to the current density at the cathode
Jc(τ) by

(7)

Of course, for  ! 1, the current density may

be regarded as conserved: the current density above the
anode is equal to that at the cathode and the electron
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velocity at the anode does not depend on time and is
equal to

(8)

In this case, the characteristic time of the formation
of the dipole layer, Tp, can be estimated from the cur-
rent density at the cathode.

If we assume that the current density at the cathode
changes linearly with time (at least over the time inter-
val 0 < τ < τr),

(9)

then we obtain

(10)

The condition  ! 1 is satisfied when

(11)

i.e., when the transit time of an electron through the
interelectrode gap is much shorter than the time scale
on which the electric field in the gap changes. This con-
dition can be rewritten in terms of the growth rate of the
emission current from the cathode:

(12)

Under conditions (11) and (12), the characteristic
time of the formation of the dipole layer is Tp =

 = , the surface density

of the dipole moment is P0 =  = , the time

derivatives of the dipole moment density are equal to

 =  and  = , and the characteristic wave-

length of the generated EM radiation is λ =2πÂ =
2πcTp.

When the current density at the cathode changes at
a high rate, Jt ~ J0t, the time scale on which the acceler-
ated field in the interelectrode gap changes is compara-
ble with the electron transit time, Tm ~ T0. The space
charge of the electrons emitted from the cathode during
the time interval 0 < τ < Tm completely neutralizes the
external accelerating field; i.e., the electrons emitted at
the times τ > Tm do not contribute to the anode current.
Only after the time τ = τr , at which the electrons begin
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to return to the cathode, is the anode current again con-
tributed by the emission from the photocathode.
Accordingly, the time scales on which the anode cur-
rent and the dipole moment density change are deter-
mined by the times Tm and T0.

We assume that the current density changes linearly
with time [see expression (9)] and switch to the new
dimensionless variables

(13)

Substituting these variables into equation of motion (5),
we obtain the following parametric expressions for the
density of the current flowing through the anode and for
the time derivatives of the dipole moment density:

(14)

(15)

where the time at which an electron is emitted from the
cathode and the time at which it reaches the anode are
related by

(16)

Using formulas (14) and (15), we can estimate the
maximum values of the anode current and of the time
derivatives of the dipole moment density, as well as the
times at which the maximum values are achieved:

(17)

(18)

(19)

Figures 2–4 show the electron current and the deriv-
atives of the dipole moment density above the anode,
calculated from analytic expressions (17)–(19) and
obtained in the one-dimensional numerical modeling
with the two-dimensional EMC2D code [7], in which
Maxwell’s equations and the equations of electron
motion are solved self-consistently by a particle-in-cell
(PIC) method.
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In dimensional form, expressions (17)–(19) become

(20)

(21)

(22)

Expressions (17)–(22) show that, when the gener-
ated EM radiation (the directed and guided waves) has
a negligible effect on the motion of accelerated elec-
trons, such parameters as the anode current, the dipole
moment, and the EM radiation intensity obey certain
scaling relations and their asymptotic values are deter-
mined by the parameters of the accelerated diode.

2.2. The Case of Oblique Incidence of the Ionizing 
Radiation (θ ≠ 0, v ph < ∞)

In the case of obliquely incident ionizing radiation,
the phase velocity of the emission current from the
cathode surface is finite, c < v ph < ∞, which results in
the generation of EM waves (directed and guided
waves). The field of the guided mode affects the process
of electron acceleration in the interelectrode gap, and
the field of the directed mode influences the dynamics
of the dipole layer above the anode.

We consider the effect of a directed EM wave on the
dipole moment above the anode under the assumption
that the EM field of the directed wave is screened by the
anode and thus has no impact on electron motion in the
interelectrode gap. It is clear that the field Ew of the
emitted wave can be neglected when it is lower than
space-charge field E sch:

Near the emitting surface, the component  of the
electric field of the EM wave is determined by the first
derivative of the dipole moment [2]:

(23)

In order of magnitude, we have
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Fig. 2. Time evolutions of the anode current for different growth rates of the current density at the cathode. The solid curves show
the results of numerical calculations, and the dotted curves are analytical results.
where ε0 =  is the maximum energy of the elec-

trons accelerated in the diode and λD = v 0Tm is the char-
acteristic dimension of the electron dipole layer.

Consequently, when the angle of incidence of the
ionizing radiation satisfies the condition

(24)

the field of the EM wave has a significant effect on the
process under consideration: it decreases the deriva-
tives of the dipole moment density and somewhat
reduces the duration of the generated EM pulse.

The guided mode of the EM radiation has a greater
effect because it influences the electron acceleration
process. The reason is that the accelerating field of the
diode decreases not only because of the increase in the
space charge of the emitted electrons [see expression
(6)] but also because of the generation of the EM field
component . Accordingly, in equation of motion (5),
the electric field should be taken in the form
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(25)

Self-consistent PIC computations (Fig. 5) show that,
in the case of oblique incidence of the ionizing radia-
tion on an accelerating diode (when EM radiation is
generated), the total field of the EM wave and of the
space charge increases at a much faster rate and to a
greater value than does the space charge field alone in
the case of normal incidence. Hence, the guided EM
radiation leads to the following effects:

(i) the shortening of the electron transit time Tm from
the cathode to the anode and

(ii) the weakening of the accelerating electric field
in the interelectrode gap.

Accordingly, both the anode current and the deriva-
tives of the dipole moment decrease.

The amount by which the anode current decreases
can be estimated by assuming that the electron acceler-
ation in a diode with the guided mode of the EM radia-
tion is determined not by the initial accelerating electric
field E0 but by a certain effective electric field Eeff =

E τ z,( ) E0 4π Jc t '( ) t 'd

0

τ

∫– Ez
w

z τ,( ),–=

0 z L.< <
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Fig. 3. Time evolutions of the first time derivative of the surface density of the dipole moment for different growth rates of the cur-
rent density at the cathode. The solid curves show the results of numerical calculations, and the dotted curves are analytical results.
E0 – , where the field component  is given by for-
mula (23):

(26)

We assume that the angle of incidence is not too
large, π/4 < θ < π/3, and that the electron motion is non-
relativistic, β0 = v 0/c ≈ 0.5. Then, we insert Eeff into for-
mulas (20)–(22) to see that the amplitude of the anode
current and the second derivative of the dipole moment
density decrease by a factor of approximately two:

(27)

This result is confirmed by numerical calculations
with the EMC2D code (Figs. 6, 7).

The above analytic estimates obtained for the gener-
ation of microwaves by a superluminal electron emis-
sion current pulse formed by a plane diode allow us to
draw the following conclusions:
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(i) The anode current density and the time deriva-
tives of the dipole moment in an emitting element are
determined by the parameters of an accelerating diode
and by the growth rate of the electron emission current
from the cathode; in turn, this rate depends on the rate
of change of the ionizing radiation flux intensity.

(ii) The limiting current at the anode, (Ja)max, is
lower than the steady-state limiting current J0 and the
limiting values of the derivatives of the dipole moment
are smaller than the corresponding steady-state limiting
values because the electron current is limited by not
only the space charge field but also by the field of the
generated EM wave.

(iii) In a half-space above the anode, the parameters
of the anode current and the derivatives of the electron
dipole moment obey scaling relations (13), (17)–(19),
and (27).

(iv) An increase in the rate of electron emission from
the cathode changes not only the amplitude values of
the parameters of the dipole layer but also the time
dependence of the derivatives of the dipole moment
density: the characteristic time scale of the dipole
moment and the associated wavelength λ = 2πcTm both
decrease. This indicates that the spectrum of the gener-
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ated radiation can be changed by changing the electron
emission rate.

3. NUMERICAL SIMULATIONS 
OF THE MICROWAVE GENERATION 

AT A HIGH EMISSION RATE

The above estimates have been obtained from a one-
dimensional model of an infinitely long emitting ele-
ment. In actuality, the dimensions of a capacitor used to
form superluminal current pulses are usually too small
for it to be treated as a plane one with an infinite length
and an infinite width. Thus, in [8], the experiments on
microwave generation by superluminal current pulses
initiated by the front of soft X radiation from a laser–
plasma source were carried out with a capacitor with
voltage ϕ0 = 80 kV, length Lx = 80 cm, width 5 cm, and
interelectrode distance L = 2 cm. The configuration of
this accelerating system was used as the basis for our
numerical investigations of the effect of the finite
dimensions of an emitter on the parameters of a super-
luminal source. The investigations were carried out
with the EMC2D PIC code [7]. The geometry of the
system corresponded to that shown schematically in
Fig. 1. The initial electrostatic field of the capacitor
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
were computed by the finite-element method with the
help of the MATLAB software package [9] and then
were used as the input to the EMC2D code for calculat-
ing the dynamics of an electron cloud. It was assumed
that electron emission is initiated by the plane front of
the ionizing radiation incident at an angle of 60° and
that the current density changes linearly according to

the law Jt = 2.5 × 1010–5 × 1011  (a = 0.45–2.0).

3.1. Effects of the Finite Length of the Emitting Element

Figures 8–10 illustrate the results of calculations of
the anode current, the second derivative of the dipole
moment, and the rise time of the second derivative [all
normalized to their maximum values determined by
Eqs. (20)–(22)] as functions of the longitudinal coordi-
nate. The main effect of the finite length of an emitting
element is the spatial nonuniformity of the profiles of
the anode current and dipole moment density along the
capacitor; this effect is associated with the influence of
the generated radiation on the electron motion. At the
left end of the capacitor (Fig. 1), the EM radiation has
an insignificant effect on the formation of the current
pulse. However, the larger the distance from the left

A

Òm
2
 s

-------------
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Fig. 5. Time evolutions of the electric field Ez in the middle of the accelerating gap in the case of the oblique (θ = π/3) incidence of
the ionizing radiation on an infinitely long (one-dimensional) emitting element (with allowance for the generation of EM waves)
and in the case of normal (θ = 0) incidence (with no generation of EM waves). The calculations were carried out for a = 2.
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Fig. 6. Anode current density as a function of the growth
rate of the emission current density at the cathode in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation on an infinitely long (one-dimensional) emitting ele-
ment [with allowance for the generation of EM waves, for-
mula (27)] and in the case of normal (θ = 0) incidence [with
no generation of EM waves, formula (17)]. The symbols
show the results of numerical calculations.
end, the larger the amplitude of the generated EM wave
and the closer the parameters of the superluminal cur-
rent pulse to their limiting values corresponding to an
infinitely long emitter (Figs. 6, 7). For an emitter of
fixed length, an increase in the rate of electron emission
from the cathode is seen to somewhat reduce the degra-
dation of the parameters of the electron dipole moment
due to the effect of the guided EM wave (Fig. 9); how-
ever, as the length of the emitting surface increases, the
parameters in question always approach their asymp-
totic values given by formulas (27).

3.2. Effects of the Finite Transverse Dimensions
of the Emitting Element

For the width of an accelerating diode not to signif-
icantly distort the spatiotemporal distribution of the
electrons over the dipole layer, it should be much larger
than the distance between the electrodes. Calculations
show that the anode current and the derivatives of the
dipole moment are essentially the same as those pre-
dicted by the one-dimensional model. The difference
between the numerical and analytical results is the larg-
est at distances from the capacitor edge that are shorter
than the distance between the electrodes.
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Since the intensity of radiation generated in a distant
source region is determined by the second derivative of
the surface density of the dipole moment and the emit-
ter area, which is the anode area, the boundary effects
associated with the finite width of the capacitor reduce
the effective width of the emitting surface by an amount
of about (1–2) × L.

3.3. Calculation of the EM Fields

Recall that an elementary microwave source sup-
plied by a superluminal emission current pulse that is
formed by an accelerating diode generates two wide-
band radiation pulses—a directed pulse and a guided
pulse.

At sufficiently large distances R from the emitting
region, the amplitude of the EM field of the directed
wave can be estimated in terms of the delayed poten-
tials. The magnetic field is easier to estimate:

(28)

where Sa is the anode area.
For an emitting element of infinite width (–∞ < y < ∞),

this expression yields the following estimate for the
magnetic field:

(29)

Figure 11 presents the results of two-dimensional
calculations of the magnetic field in a distant region of
the microwave source, –∞ < y < ∞ and R/D = 5, where
D = Lxcosθ is the effective length of the radiating ele-
ment. We can see that, since the parameters of the gen-
erated radiation (the derivatives of the dipole moment
in Figs. 7, 8) approach their asymptotic values as the
growth rate of the emission current increases, the
amplitude of the directed EM radiation pulse and its
characteristic rise time also approach their limiting val-
ues, in which case the field amplitude reaches its max-
imum and the characteristic wavelength reaches its
minimum. A change in the characteristic wavelength of
the EM radiation alters its directional pattern, which is
characterized by the diffractional divergence angle

(30)

Figure 12 shows the angular distributions of the
maximum radiation flux density with respect to the
direction in which the ionizing radiation is reflected for
different growth rates of the emission current. As can be
seen, an increase in the emission rate and the corre-
sponding decrease in the characteristic radiation wave-
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length increases the directionality of the EM emission
from the source, which radiates energy into a cone with
a solid angle of about 2θD (Fig. 13).

The characteristic wavelength of the EM radiation
generated in the accelerating gap is far longer than the
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Fig. 7. Second derivative of the electron dipole moment in
the half-space above the anode as a function of the growth
rate of the emission current density at the cathode in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation on an infinitely long (one-dimensional) emitting ele-
ment [with allowance for the generation of EM waves, for-
mula (25)] and in the case of normal (θ = 0) incidence [with
no generation of EM waves, formula (19)]. The symbols
show the results of numerical calculations.
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critical wavelength; i.e., the waveguide formed by the
cathode and anode is overcritical. Nevertheless, a
guided EM wave can propagate in the waveguide
because of the propagation of the emission current
along the cathode. As a result, the EM field emitted
through the open end of the waveguide is dipolar and
coherent with the directed EM wave emitted by a super-
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Fig. 11. Time evolutions of the magnetic field of the gener-
ated EM radiation propagating in the direction in which
obliquely (θ = π/3) incident ionizing radiation is reflected
for R/D = 5 and for different growth rates of the emission
current density at the cathode: a = (1) 0.45, (2) 0.64,
(3) 1.42, and (4) 2.0.
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Fig. 9. Profiles of the anode current along a capacitor in the
case of the oblique (θ = π/3) incidence of the ionizing radi-
ation for different growth rates of the emission current den-
sity at the cathode: a = (1) 0.45, (2) 0.64, (3) 1.42, and
(4) 2.0.
luminal current source (both of them are generated by
the same ionizing radiation pulse and are in phase with
one another). Figure 14 illustrates the results from two-
dimensional simulations of the generation of EM radi-
ation and its propagation away from an elementary
emitter with (a) a screened and (b) an open waveguide
end. In both figures, we see the directed EM radiation
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Fig. 12. Angular distributions of the maximum EM radia-
tion flux density for different growth rates of the emission
current density at the cathode: a = (1) 0.45, (2) 0.64,
(3) 1.42, and (4) 2.0.
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Fig. 14. Spatial distribution of the magnetic field at the time t = 5 ns for two versions of an elementary emitter: (a) with a screened
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from a superluminal current source. In Fig. 14b, we
also see a cylindrical EM wave emitted through the
open end of the waveguide structure. Accordingly, in an
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
emitter with an open waveguide end, the EM field
amplitude and the energy flux in the direction in which
the radiation is emitted most intensely are seen to sub-
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stantially exceed those in a system with a screened
waveguide end (Fig. 15).

4. CONCLUSION

Our studies have shown that the parameters of an
elementary superluminal source obey scaling relations
in terms of the growth rate of the electron emission cur-
rent from the cathode and the parameters of the accel-
erating diode (the voltage and the distance between the
electrodes). The limiting anode current density and the
limiting intensity and energy of the EM radiation that
can be achieved in such a source have been determined.
The maximum achievable anode current density is sub-
stantially lower than the steady-state limiting current
density because of the additional restrictions on the
electron current dynamics that are associated with the
influence of the field of the generated EM radiation.
The effect of the finite dimensions of the accelerating
system on the parameters of the emitter has been inves-
tigated. The spatiotemporal characteristics of the emit-
ted EM fields have been obtained as functions of the
parameters of the configuration of an accelerating sys-
tem and the rate of electron emission from the cathode.
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Abstract—A study is made of the interaction (“collision”) of two laser pulses with the same frequency but dif-
ferent durations, propagating toward one another in a low-density plasma. It is found that, in the interaction
region, the excitation of small-scale plasma fields localized within a distance on the order of the length of the
longer pulse is accompanied by the backscattering of each of the pulses. The frequency shift of the backscat-
tered radiation and its duration depend strongly on the lengths of the interacting pulses. It is shown that the spec-
trum of the long backscattered radiation “tail” that arises behind the shorter pulse as a result of its interaction
with the longer pulse contains satellites shifted from the laser frequency by the plasma frequency. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, increased attention has been given to
the nonlinear effects accompanying the propagation of
laser pulses in plasmas. Of particular interest is the
investigation of the physical processes occurring in the
interaction (collision) between two laser pulses propa-
gating in a plasma toward one another, with the focus
on such issues as the amplification of pulses [1, 2], the
acceleration of electron bunches [3, 4], the excitation of
superstrong wake fields [5], the generation of Bragg
mirrors [6], the possibility of deriving information
about the structure of the pulses [7], and some other
problems [8–11].

In this paper, the nonlinear scattering of two laser
pulses during their interaction in an underdense plasma
is investigated in one-dimensional geometry. It is
shown that, in the interaction region, laser pulses with
the same frequency but different lengths generate
small-scale plasma perturbations localized within a dis-
tance on the order of the length of the longer pulse. In
interacting with the small-scale perturbations, each of
the laser pulses is backscattered; the frequency shift
and duration of the backscattered radiation depend
strongly on the lengths of the colliding pulses. In the
interaction of two long laser pulses, each of them is
backscattered into a pulse whose frequency is equal to
the laser carrier frequency and whose duration is deter-
mined by the length of the laser pulse propagating in
the opposite direction. In the case of short laser pulses,
the spectrum of the backscattered pulses contains satel-
lites whose frequencies are shifted from the laser fre-
quency by an amount determined by the plasma fre-
quency and the ratio between the durations of the inter-
acting pulses. In the case of interaction of a long laser
pulse with a short counterpropagating laser pulse, the
1063-780X/03/2906- $24.00 © 0503
duration of the radiation pulse scattered in the propaga-
tion direction of the shorter pulse is determined by the
length of the longer pulse. The spectrum of the long
backscattered radiation tail that arises behind the
shorter laser pulse as a result of scattering contains sat-
ellites shifted from the laser frequency by the plasma
frequency.

1. SMALL-SCALE PLASMA DENSITY 
PERTURBATIONS GENERATED 

IN THE INTERACTION BETWEEN TWO 
COUNTERPROPAGATING LASER PULSES
We consider two laser pulses with the same fre-

quency but different durations, propagating toward one
another along the z-axis in a low-density plasma with
the electron density N0e (Fig. 1a). The electric field of
laser radiation can be represented as

(1.1)

where k0 = (ω0/c) ; ε(ω) = 1 –  is the
plasma dielectric function, ω0 is the laser frequency,

ωp =  is the plasma frequency (ω0 @ ωp),
e and me are the charge and mass of an electron, and c
is the speed of light. The amplitudes E±(z, t) of the elec-
tric fields of laser pulses propagating from left to right
(the plus sign) and from right to left (the minus sign) are
assumed to vary slowly on the spatial and time scales

 and .
When laser pulses begin to overlap, they generate

small-scale electron density perturbations δNe(z, t). In
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Fig. 1. Schemes illustrating the interaction between a long laser pulse and a short counterpropagating laser pulse and the generation
of small-scale plasma fields at different times. The envelopes of the laser electric field and high-frequency oscillations within the
laser pulses are represented by light solid curves and dotted curves, respectively. The field amplitudes are given in dimensionless

units. The heavy solid curves show the reduced amplitude of the density perturbations, , calculated as a function

of the dimensionless coordinate x =  from expression (1.5) at ωp = 0.25ω0 for two laser pulses with the same intensities but

different durations ωpτ– = , τ+ = 3τ–. Plots (a), (b), and (c) refer to the dimensionless times  = –9, 0, and 9.
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the linear approximation (δNe ! N0e) and under the
condition

(1.2)

the perturbations can be described by the equation [6]

(1.3)

We solve Eq. (1.3) assuming that, in the interaction
region, the pulses are Gaussian in shape:

(1.4)
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where ξ = z – Vgt and η = z + Vgt are the spatial coordi-
nates in the comoving frames of reference of the prop-
agating pulses, Vg = (k0/ω0)c2 is the group velocity of
the pulses, L± are their lengths, and the vectors E0± char-
acterize their polarization and the maximum ampli-
tudes of their electric fields. The coordinate system is
chosen in such a way that, at the initial instant t = 0, the
functions E+(z, t) and E–(z, t) are maximum at the point
z = 0 (Fig. 1b).

With allowance for relationships (1.4), the solution
to Eq. (1.3) that satisfies the condition for the electron
density to be unperturbed before the two linearly polar-
ized laser pulses start to interact has the form

(1.5)
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where τ = , L = Vgτ = , and τ± =

L±/Vg is the duration of the pulses. The time dependence
enters solution (1.5) through the function Φ(x, a) [6]:

(1.6)

It should be noted that the amplitude of the density
perturbations (1.5) depends on the polarization of the
laser pulses and is maximum when the vectors E0+ and
E0– are parallel or antiparallel to each other. When the
electric fields of the pulses are mutually orthogonal,
E0+E0– = 0, small-scale electron density perturbations
(1.5) are not generated. The reason is that, in this case,
the Lorentz force vanishes, because, in the field of
either pulse, the electrons move along the magnetic
field of the other pulse.

Now, using asymptotic expansions of the function
Φ(x, a), we investigate the spatiotemporal evolution of
density perturbations (1.5) generated by laser pulses
with different durations τ+ and τ–.

In the case of collision between two long laser
pulses (ωpτ± @ 1), the parameter ωpτ is large and func-
tion (1.6) is described by the asymptotic formula [6]

(1.7)

which is valid for a @ 1, x. As a result, we arrive at the
following expression for density perturbations (1.5):

(1.8)
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two pulses with the same duration (τ+ = τ–) is maximum
at z = 0. In the case of pulses with different durations
(τ+ ≠ τ–), the position of maximum amplitude moves at

the velocity V = –Vg  in the propagation direc-

tion of the shorter pulse. The second term in parenthe-
ses in expression (1.8) implies that the plasma oscilla-
tions remaining in the interaction region after the inter-
action process has come to an end are exponentially
small.

In the case of collision between two short laser
pulses (ωpτ± ≤ 1) or between a short pulse (ωpτ– ≤ 1)
and a long pulse (ωpτ+ @ 1), the parameter ωpτ, charac-
terizing the time during which the pulses overlap, is
small, ωpτ ≤ 1. In this case, small-scale plasma pertur-
bations are excited by a short-term driving force (in a
shocklike fashion). Using the asymptotic representa-
tion [6]

(1.9)

which is valid for x > 0 such that x @ 1, a, we arrive at
the following expression for the density perturbations
that remain in the interaction region after the interac-
tion process has come to an end:

(1.10)

The plasma oscillations that are excited in the interac-
tion of two pulses with the same duration (τ+ = τ–) are
long-lived small-scale standing waves. The spatiotem-
poral evolution of the plasma perturbations generated
by two laser pulses with different durations is more
complicated. In the interaction between a short and a
long laser pulse, small-scale wake plasma fields are
excited behind the shorter pulse (Fig. 1b). The small-
scale plasma oscillations that remain in the interaction
region after the interaction process has come to an end
are localized within a distance on the order of the length
of the longer pulse (Fig. 1c). In this case, the positions
of the zeros of the density perturbation amplitude and
of its maxima and minima are determined by the func-
tion cos(2k0z) and are fixed in space, and the envelope
of the small-scale perturbations moves in the propaga-
tion direction of the shorter pulse.
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2. SCATTERING OF LASER PULSES
BY SMALL-SCALE PLASMA FIELDS

In interacting with one another, two laser pulses
generate small-scale plasma fields and are backscat-
tered by them. For the pulse propagating from left to

right, the electric field (z, t) of the backscattered
radiation satisfies the conventional equation of scatter-
ing theory [12]:

(2.1)

where the density perturbations δNe are given by
expression (1.5). An analogous equation is valid for a
laser pulse propagating in the opposite direction.

To solve Eq. (2.1), we apply the Fourier transforma-
tion in time and in the longitudinal coordinate:

(2.2)

With allowance for expressions (1.4), the Fourier trans-
formed electric field of the scattered pulse has the form

(2.3)

in which the Fourier transformed density perturbations
δNe(ω, k) can be found from Eq. (1.3):
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Taking into account expression (2.4), we integrate over
the frequencies ω' and wavenumbers k' in formula (2.3)
to obtain

(2.5)

where kp = ωp/Vg is the wavenumber of the plasma

oscillations, erf(z) =  is the error func-

tion of the complex argument, α± = [(k + k0)Vg – 3(ω –

ω0) ± 4ωp], and β± = [(k – k0)Vg – 3(ω + ω0) ± 4ωp].

The spectral density (ω, z) of the electric field of
the scattered pulse can be solved for by taking the
inverse Fourier transformation of expression (2.5) in
the longitudinal coordinate [see the first of formulas
(2.2)]. Applying the saddle point method, we find that
the main contribution to the integral over the wavenum-
bers comes from the residue at the pole k =

−ω , which corresponds to backscattering.
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Then, at large distances z < 0 from the region where the
density perturbations are localized, the Fourier trans-
formed backscattered field has the form

(2.6)

.

For the pulse propagating from left to right, the spa-
tiotemporal structure of the backscattered radiation can
be evaluated by taking the inverse Fourier transforma-
tion of formula (2.6) in time:

(2.7)

In deriving expression (2.7) from formula (2.6), we
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sive spreading of the backscattered radiation pulse and
is justified under the condition

.

Expression (2.7) can also be obtained directly by
solving a reduced version of Eq. (2.1) with allowance
for relationship (1.5).

For the pulse propagating from right to left, the elec-
tric field of the backscattered radiation is obtained in an
analogous manner. At large distances z > 0 from the
interaction region, it has the form

(2.8)

where the function Φ(x, a) is given by formula (1.6).

Electric fields (2.7) and (2.8) depend on the polar-
ization of laser pulses. The fields have maximum
amplitudes when the vectors E0+ and E0– are parallel or
antiparallel to each other and vanish when the vectors
E0+ and E0– are mutually orthogonal.

It follows from expressions (2.7) and (2.8) that, for
each of the laser pulses, the ratio of the amplitude of the
electric field of the backscattered radiation to the laser
field amplitude contains the product of the large quan-
tity k0L±, which is proportional to the number of spatial
periods of small-scale plasma perturbations, and the

parameter e2(E0+E0–)/ , which is small by vir-
tue of condition (1.2). In deriving expression (1.5) for
density perturbations, the contribution of the scattered
fields was assumed to be small and, accordingly, was

neglected. Thus, the condition  < |E0±| and inequal-
ity (1.2) yield the following restriction on the parame-
ters of the plasma and the laser pulses:

.

Let us analyze how electric fields (2.7) and (2.8)
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electric field of the backscattered radiation with allow-
ance for asymptotic formula (1.7) has the form

(2.9)

The small-scale density perturbations excited in the
collision are quasistatic, and each of the two laser
pulses is backscattered into a radiation pulse whose
duration is determined by the length of the laser pulse
propagating in the opposite direction and whose fre-
quency is equal to the laser frequency.

An interaction between two short laser pulses
(ωpτ± ≤ 1) or between a long pulse (ωpτ+ @ 1) and a
short pulse (ωpτ– ≤ 1) is accompanied by the excitation
of plasma oscillations in the interaction region. In this
case, the electric fields of the backscattered radiation
pulses can be found by using asymptotic representa-
tion (1.9):
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backscattered electric field of the longer pulse at  @

1, ωpτ– has the form

(2.11)

According to the same formula, the backscattered elec-

tric field of the shorter pulse at  @ , ωpτ+ is

expressed as

(2.12)

The frequency of backscattered electric field (2.12) of
the shorter pulse is close to the laser frequency ω0, the
pulse length being comparable with the length L+ of the
longer laser pulse. Consequently, after the interaction,
this field has an insignificant impact on the spectral
parameters of the longer laser pulse and on its shape.
On the other hand, backscattered electric field (2.11) of
the longer pulse propagates in the direction of the
shorter laser pulse, thereby distorting the shape of the
latter and changing its spectrum. As a result, from for-
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Fig. 2. Laser fields calculated numerically from formulas (1.4), (2.7), and (2.8) as functions of the dimensionless coordinate
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were carried out for laser pulses with intensities I+ = I– = 5.1 × 1016 W/cm2 and durations ωpτ– = , τ+ = 5τ– and for a plasma
with ωp = 0.25ω0.
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the field of the shorter laser pulse, it gives rise to a long
radiation tail behind the latter. The results of numerical
calculations based on formulas (2.7) and (2.8) are illus-
trated in Fig. 2, which shows that a long backscattered
radiation tail actually arises behind a short laser pulse
after its interaction with a long laser pulse.

The spectral features of backscattered laser radia-
tion can be derived from a straightforward analysis of
expression (2.6). Simple transformations of this expres-
sion in the range of positive frequencies (ω > 0) yield

(2.13)

where the frequency dependence of the electric field of
the backscattered laser radiation is determined by the
function G+(ω),
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(2.14)

.

Resulting formulas (2.13) and (2.14) show that the
spectrum of the backscattered radiation contains satel-

lites at the frequencies ω = ω0 ± , which

depend on the ratio between the durations of the inter-
acting laser pulses.

From expression (2.13) for the electric field, we can
find the backscattered radiation energy  per fre-
quency interval dω:
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(2.15)

where  is the energy of the laser pulse propagating
from left to right.

The total energy  of the backscattered radiation
is obtained by integrating expression (2.15) over fre-
quency. For a collision between a long pulse (ωpτ+ @ 1)
and a short counterpropagating pulse (ωpτ– ≤ 1), the
integral over the frequency spectrum can be taken ana-
lytically,

(2.16)
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Fig. 3. Dependence of the function Y = |G+(ω)|2 on the
dimensionless frequency X = (ω – ω0)τ+ for different ratios
between the lengths of the interacting laser pulses: (a) the
interaction of two long pulses with the durations ωpτ+ = 5
and ωpτ– = 20, (b) the interaction of a long (ωpτ+ = 5) and
a short (ωpτ– = 1) pulse, and (c) the interaction of two short
pulses with the durations ωpτ+ = 2 and ωpτ– = 0.5.
and the total backscattered radiation energy is equal to

(2.17)

Figure 3 shows the backscattered radiation spectra
calculated for different ratios between the durations of
the interacting laser pulses. For two long laser pulses,
the frequency of the backscattered radiation coincides
with the laser carrier frequency (Fig. 3a). In the case of
a collision between a long and a short laser pulse, the
backscattering spectrum contains two satellites shifted
from the laser frequency by the plasma frequency
(Fig. 3b). In the case of two short laser pulses, the spec-
trum of the backscattered field contains satellites at the

frequencies ω = ω0 ± ; however, the spectral

peaks are close to one another and partially overlap,
which is a consequence of the short pulse lengths
(Fig. 3c).

It should be noted that the cold plasma approxima-
tion used here is valid for small-scale plasma oscilla-
tions under the assumption of a negligible spatial dis-
persion, i.e., only under the condition

(2.18)

where VT =  is the electron thermal velocity and Te

is the electron temperature. Additionally, the condition
that the Landau damping of small-scale plasma oscilla-
tions is insignificant during the entire interaction pro-
cess yields the restrictions

, (2.19)

which relate the durations of the laser pulses to the elec-
tron temperature.

CONCLUSION

In this paper, a simple one-dimensional hydrody-
namic model has been applied to study the nonlinear
scattering of two counterpropagating laser pulses in
their interaction in a plasma and to investigate the shape
of the backscattered radiation pulses and their spectral
parameters. In particular, it has been shown that a long
backscattered radiation tail arises behind a short laser
pulse after its collision with a long laser pulse and that
the length of the tail is comparable to the length of the
longer pulse. It has also been found that the backscat-
tered radiation spectrum contains satellites shifted from
the laser frequency by nearly the plasma frequency. The
presence of such satellites may provide the basis for
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diagnosing both the plasma and the interacting laser
pulses.

Note that the results obtained in one-dimensional
geometry change only slightly when the finite trans-
verse dimensions of the laser pulses are taken into
account. The difference is that, in three-dimensional
geometry, the electromagnetic radiation is scattered in
the near-backward (rather than backward) direction,
i.e., at such angles θ to the pulse propagation direction
that are close to π: π – θ ≤ 1/k0D, where D is the diam-
eter of the focal spot of laser light. Another difference
lies in the dependence of the amplitude of the electric
field of the backscattered laser radiation on the spatial
coordinates. However, the main conclusions of the one-
dimensional theory, specifically, those concerning the
spectral parameters of the backscattered radiation and
its longitudinal structure, remain valid in three-dimen-
sional geometry.

Let us estimate the electric field and the energy of
radiation backscattered in the interaction of a long laser
pulse with intensity I+ = 1.2 × 1015 W/cm2, duration
τ+ = 330 fs, and wavelength λ0 = 0.8 µm and a counter-
propagating, less intense, short laser pulse with inten-
sity I– = 1.2 × 1014 W/cm2, duration τ– = 14 fs, and the
same wavelength in a low-density plasma with electron
temperature Te = 20 eV and electron density N0e = 3.2 ×
1018 cm–3. The amplitude of the plasma density pertur-
bations excited in the interaction region is about δNe ≈
0.2N0e. After the interaction, the radiation pulse propa-
gating from right to left is longer by a factor of 30 times
than the original length of the shorter pulse because of
the contribution of the backscattered radiation of the
longer pulse. Although the electric field amplitude is
small,  ≈ 0.13E0–, backscattered radiation energy
(2.17) amounts to about 50% of the energy of the
shorter laser pulse. In this case, inequalities (2.18) and
(2.19) are satisfied, because the parameter δ2 is approx-
imately equal to 0.28 and, thus, the small-scale plasma
oscillations in question can be described in the cold
plasma approximation.

Since the above analysis assumes that the small-
scale density perturbations are linear [see Eq. (1.3) and
condition (1.2)], it is restricted to laser pulse intensities
of 1015–1016 W/cm2 at λ0 ≅  1 µm. In fact, however,
present-day laser devices can operate at far higher
intensities, in which case the electron density perturba-
tions are strongly nonlinear. It can be expected that the

ES
+
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backscattering efficiency will increase with laser inten-
sity; hence, it makes sense to speak of the possible
reflection of laser pulses from the interaction region.

The above analysis deals exclusively with the exci-
tation of radiation at a frequency close to the laser car-
rier frequency. However, two interacting laser pulses
can also generate low-frequency radiation at a fre-
quency twice the plasma frequency. This issue will be
addressed in a separate paper.
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Abstract—The turbulent properties of conducting fluids in an external constant magnetic field are known to
change with increasing field strength. A study is made of the behavior of the second-order structural function
of the velocity field in a homogeneous incompressible turbulent fluid in the presence of an external uniform
magnetic field. It is shown that, depending on the magnetic field strength, there may be different governing
parameters of the system in both the inertial and dissipative intervals of turbulence. This leads to new spectral
scalings that are consistent with experimental ones. © 2003 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Numerous investigations of turbulent flows of con-
ducting fluids at low Reynolds numbers in an external
uniform magnetic field B0 (see [1] and the literature
cited therein) show that the fluid properties charge sub-
stantially as the field strength increases. Here, we inves-
tigate the behavior of the second-order structural func-
tion for the velocity field in a homogeneous incom-
pressible turbulent fluid in the presence of the magnetic
field B0. The one-dimensional second-order structural
function is defined by the formula

D(r) = 〈[u'(r + r') – u'(r')]2〉 , (1)

where u' is the velocity of turbulent fluctuations. In the
inertial interval of turbulence, the structural function D
is a power function of r:

D(r) ~ Arα, (2)

where A is a parameter and α is the scaling index.
As was shown in [2, 3], the α values observed exper-

imentally at different magnitudes of the interaction

parameter N = Ha2/Re = σ /ρU (where σ is the con-
ductivity of the fluid, ρ is its density, Ha = B0(σ/ρν)1/2

is the Hartmann number, Re = LU/ν is the Reynolds
number, L and U are the characteristic length and char-
acteristic velocity, ν is the kinematic viscosity, and B0
is the strength of the external magnetic field) are equal
to 2/3, 4/3, 2, and 8/3. Note that, from a morphological
point of view, this sequence forms an arithmetic pro-
gression with a difference of 2/3. Below, we will see
that, in each turbulent regime, characterized by its own
scaling index α, the turbulent energy is transferred
along the spectrum by a certain mechanism and there

† Deceased.

B0
2
L

1063-780X/03/2906- $24.00 © 20512
are corresponding governing parameters in the inertial
interval of turbulence and the viscous interval of small-
scale turbulence.

2. KOLMOGOROV REGIMES
OF TURBULENCE

We begin with the most thoroughly studied Kol-
mogorov turbulent spectrum, which was obtained more
than 60 years ago by Kolmogorov under the assumption
that, for a developed steady-state homogeneous turbu-
lent flow of an incompressible fluid at a high Reynolds
number, the governing parameter in the inertial and vis-
cous intervals is the energy flux along the spectrum. In
the viscous interval, there are two governing parame-
ters: the energy flux ε and the viscosity ν, which serves
as an additional governing parameter of the turbulent
cascade. If the characteristic scale length LF of an exter-
nal force that maintains turbulence is much larger than
the characteristic length λi of the inertial interval, LF @
λi , then the structural function of turbulent fluctuations
of the velocity field has the form

D(r) ~ U2f , (3)

where U is the characteristic velocity of the turbulent
fluctuations and λ is their spatial scale.

In the inertial interval, in which the parameters of
the system are independent of ν (i.e., we can set ν = 0
in the Navier–Stokes equation), the energy is an inte-
gral of motion. Consequently, the energy flux ε along
the spectrum is the governing parameter. In essence,
Kolmogorov’s first hypothesis extends this property to
the dissipative interval of turbulent pulsations.

r
λ
--- 

 
003 MAIK “Nauka/Interperiodica”
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In the dissipative interval, the velocity of turbulent
pulsations and their characteristic scale length are equal
to Uν = Uk ~ (εν)1/4 and λν = λk ~ (ν3/ε)1/4. In the inertial
interval, the viscosity drops out of expression (3). As a
result, we obtain

D(r) ~ ε2/3r2/3. (4)

On the other hand, almost 20 years after the publica-
tion of Kolmogorov’s works, it was shown that the
Euler equation has another integral of motion, namely,
the helicity [4],

He = 〈u' · (— × u')〉 , (5)

which is associated with the violation of the mirror-
image symmetry of homogeneous isotropic turbulence.
A helical cascade in the regime of fully developed iso-
tropic turbulence was first investigated by Brissaud
et al. [5]. If there is a helicity flux η (which may be
introduced by analogy with the energy flux ε) in the
system, then it can be regarded (together with ε) as a
governing parameter in the inertial interval of turbu-
lence. At the same time, in [5], the fluxes ε and η were
also assumed to be governing parameters in the dissipa-
tive interval. From the experimental and numerical data
accumulated over the last 40 years, it has become clear
that helical turbulence is encountered as often as con-
ventional Kolmogorov turbulence; this may be attrib-
uted to the level of helicity of turbulent pulsations in the
system [6]. Interest in helical turbulence increased con-
siderably when it was recognized that it plays a funda-
mental role in the generation of moderately strong
large-scale magnetic fields (see [7] and the references
therein) and the formation of large-scale atmospheric
vortices (see [1] and the references therein).

By analogy with Kolmogorov’s hypothesis, we
now consider another case—the one in which, first,
the governing parameters for the development of tur-
bulence in the inertial interval are ε and η and, second,
in the dissipative interval, to these must be added the
viscosity ν. In this case, according to the Π theorem,
the characteristic scale of turbulence in the dissipative
interval (when the viscosity ν should be accounted
for) is equal to

(6)

where β is a free parameter.
We take into account the form of function (5) and

the asymptotic behavior of the function D(r) in the iner-
tial interval of turbulence and, following conventional
practice, set

(7)

where the velocity scales as Uη ~ ε–βη–(1 + 4β)/5ν(2 + 3β)/5

(the dependence of the exponents in the formula for Uη
on β stems from the fact that, in the dissipative interval,
the Reynolds number is approximately equal to unity,

λη εβν3 1 β–( )/5η 1 4β+( )/5–
,∼

D r( ) Uη
2 r

λη
----- 

  δ
,∼
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Re(λη) ~ 1). As a result, we obtain the relationship
between the parameters β and δ,

, (8)

and the scaling for the structural function,

(9)

Now, we consider two limiting cases in which, along
with ν, either ε or η is a governing parameter in the dis-
sipative interval. It should be noted that, in these cases,
the characteristic scale λ ~ ε/η of turbulent pulsations
and the velocity U ~ (ε2/η)1/3 in the inertial interval
depend on the two parameters ε and η, which are both
nonzero.

We have derived that, in the first case (which corre-
sponds to Kolmogorov turbulence), the helicity flux η
is not a governing parameter; i.e., η = η(ε). Therefore,
Eq. (9) yields δ = 2/3 and expression (6) gives β = –1/4.
As a consequence, we arrive at Kolmogorov’s depen-
dence of the second-order moment in the inertial inter-
val of turbulence:

(10)

In the second case (corresponding helical turbu-
lence), the energy flux ε drops out of expression (6);
i.e., β = 0 and δ = 4/3, and the scaling of the structural
function in the inertial interval has the form

(11)

In scalings (10) and (11), Cε and Cη are constants. Note
that these two scalings are actually observed in experi-
ments (see [1] and the literature cited therein).

Now, using the above expressions for the character-
istic scale and velocity of turbulent pulsations, we write
the effective Reynolds number as

(12)

Since the Reynolds number can be represented as the
ratio of the turbulent to the kinematic viscosity (see,
e.g., [8]), formula (12) leads to the following funda-
mentally important conclusion: as the helicity flux (and
the helicity itself) increases, the turbulent viscosity in
the system decreases according to the law η–4/3. Note
that this conclusion stems exclusively from the suffi-
ciently high level of helical turbulence in the system.
An analogous behavior of turbulent fields was also
observed in [9].

Hence, when ε is not a governing parameter in the
dissipative interval, we obtain δ = 4/3, which corre-
sponds to the helical scaling of the structural function
D(r) in the inertial interval. Since such scalings are typ-
ical of helical turbulent fields [6], we can conclude that
the situation in question, namely, that with ε(η), takes

β δ 4/3–
δ 2+

----------------=

D r( ) ε2

η
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2/3 η

ε
--- 

 
δ
r

δ
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D r( ) Cηη2/3
r

4/3
.=

Reeff
ε5/3

νη 4/3
------------.∼



514 GOLBRAIKH et al.
place in real media. This conclusion is somewhat unex-
pected in view of the fact that, since Kolmogorov’s
time, it has become customary to think that ε is the gov-
erning parameter in the dissipative interval. For helical
turbulence, however, the conclusion reached here is
quite natural. In fact, as was shown in many papers (see
[1] and the literature cited therein), helical turbulence
slows the direct energy transfer from large to small
scales, gives rise to reverse energy cascades, reduces
turbulent viscosity, etc. As a combined result of all of
these processes, the energy flux ε in the dissipative
interval depends on the helicity flux η in a way that
reflects the behavior of the governing parameters at δ =
4/3 in the inertial interval.

In addition, note that the above interpretation of the
scalings obtained differs from the interpretation given
in [5] (which, basically, is accepted today). In fact,
according to [5], the helical scaling index δ = 4/3 refers
exclusively to the case ε = 0. However, this seems
highly doubtful, because it is unclear how to treat the
energy flux in the inertial interval, which plays the role
of the energy source. It is important to take into account
the fact that the parameter ε does not disappear in the
case under consideration but merely drops out of the
expression for the structural function D(r).

3. EFFECT OF THE MAGNETIC FIELD 
ON THE SCALING FOR TURBULENCE

A growing external magnetic field has a significant
effect on the properties of a turbulent flow of conduct-
ing fluid. In the presence of an external magnetic field
B0, the homogeneous correlation (and, therefore, struc-
tural) function

Q(r) = 〈u'(0)u'(r)〉 (13)

depends on the parameter N =  (see, e.g., [7]
and the references therein). However, for a magnetic
field weak enough that its influence on Q(r) can be
neglected, we arrive at spectral scalings close to the
Kolmogorov and helical scalings discussed above.

According to [7], the condition for the magnetic
field to be sufficiently weak in the first approximation
is formulated in terms of the harmonics of the Fourier
transformed correlation function:

(14)

where k is the wave vector of turbulent pulsations, B0 is
the external magnetic field, ρ0 is the fluid density, µ is
the magnetic permeability, νB = 1/µ0σ is the magnetic
viscosity, and σ is the electric conductivity of the fluid.
However, even sufficiently weak magnetic fields may
be important in the generation of helical turbulence [10,
11]. This fundamental effect should be taken into
account in investigating helical turbulence since helic-
ity plays an important role in the energy transfer along

σB0
2
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µρ0
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2ηνk
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2ω2
– k B0⋅( )2

/µρ0+

νB
2
k

4 ω2
+( ) ν2

k
4 ω2

+( )
---------------------------------------------------------------------- ! 1,
the spectrum and can substantially affect the magnetic
viscosity. Consequently, as the magnetic field
increases, condition (14) fails to hold, which, in turn,
should change the form of the function D(r).

Recall that, in the absence of an external magnetic
field, the mean energy of the turbulent fluctuations and
their helicity are the integrals of motion of the Euler
equation. In the Euler equation in the inertial interval, a
growing external magnetic field is accounted for by an
additional term, namely, the Lorentz force:

(15)

where j is the current density.

It is easy to show that, for Rem = µ0σUB0/λ ! 1, the
Lorentz force and the associated Joule dissipation
occur on all scales, in which case the energy and helic-
ity fluxes both become dependent on the magnetic field
and, therefore, fail to serve as the governing parameters
in the inertial and viscous intervals. At present, there is
a vast amount of experimental data obtained from lab-
oratory investigations of turbulence in an external con-
stant magnetic field. On the whole, these investigations
were carried out in the two main directions: the fluctu-
ations of the velocity field were measured along [2] and
across [3] the magnetic field.

In the first case, the scaling index in correlation
function (2) at a sufficiently strong field B0 was close to
α = 2, which was explained by the tendency of turbu-
lence to become two-dimensional [2].

In the second case, the scaling index α was close to
8/3; in some papers (see [1] and the literature cited
therein), this was attributed to the generation of super-
helical turbulence (super-helicity), ωs = 〈(— × u') · (— ×
— × u')〉 . In our opinion, however, the difference in the
properties of turbulent fluctuations along and across the
magnetic field stems from an increase in the anisotropy
of the turbulence in the presence of an external mag-
netic field. In fact, it is obvious from condition (14) that
the character of the interaction is different for trans-
verse modes (with k · B0 = 0) and longitudinal modes
(with k · B0 ≠ 0): the dissipation of transverse modes is
minimal, while the dissipation of longitudinal modes is
maximal.

Hence, the effect of Joule dissipation is greatest for
the spectral modes whose wave vectors k are parallel to
B0 and that thus correspond to the longitudinal harmon-
ics of the correlation function. In this case, choosing the
parameter γ = σB2/ρ, together with the viscosity ν, as a
governing parameter in the dissipative interval seems
quite logical. Then, using representation (7), we obtain
the characteristic velocity of the turbulent pulsations
and their characteristic scale, U ≈ (γν)1/2 and λB ~
(ν/γ)1/2, and also arrive at the following scaling for the
second-order structural function:

D(r) ~ (γr)2, (16)

ρdV/dt —P– j B,×+=
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which corresponds to a α spectrum with a spectral den-
sity index of –3. Consequently, the spectral index –3
arises as a result of the increasing influence of the mag-
netic field on the longitudinal modes of the turbulent
field. A similar line of reasoning was earlier suggested
in [2].

Note that the spectral index –3 is usually identified
with the transition of the turbulence to the two-dimen-
sional regime. In fact, the spectral index –3 is associ-
ated with the enstrophy conservation and is characteris-
tic of two-dimensional turbulence, in analogy to the
spectral index –7/3, which is associated with the helical
properties of a three-dimensional turbulent field. How-
ever, in the case of three-dimensional turbulence, the
spectral index –3 is associated exclusively with the lon-
gitudinal modes.

A conducting fluid in which the turbulent fluctua-
tions of the velocity field are transverse to the magnetic
field should be studied in a different manner. In this sit-
uation, as the magnetic field increases, the scaling
index α changes in a jumplike manner and instead of
being equal to 2, it is equal to 8/3, which corresponds to
a spectral density index of –11/3 (i.e., to the steeper
spectra) [3]. In order to explain the value α = 8/3, Bra-
nover et al. [3] assumed that, in this case, the governing
parameter in the inertial interval is the super-helicity
flux ηs = dωs/dt. However, this assumption is based
exclusively on the dimensionality of the quantity ηs . In
addition, since this quantity is not an integral of motion,
it is difficult to understand why it should be conserved
and why all the remaining quantities should depend
on it.

On the other hand, experimental data show that, as
the magnetic field strength increases, the turbulence
tends to become intermittent. As this occurs, the prop-
erties of the energy flux ε along the spectrum should
change. Why we again discuss the behavior of the func-
tion ε may be explained as follows: as the magnetic
field B0 increases, the field-aligned fluctuations can
decouple from the cross-field fluctuations; i.e., in the
first approximation, the longitudinal and transverse
fluctuations occur independently of each other and
Joule dissipation has essentially no effect on the trans-
verse modes. As a consequence, the parameter γ intro-
duced above ceases to be a governing parameter for
describing the development of turbulence.

Now, we again turn to the case in which the energy
and helicity fluxes can be the governing parameters in
the inertial interval of turbulence. It should be noted,
however, that, since the properties of the energy trans-
fer along the spectrum change as the intermittent activ-
ity of turbulence increases, the energy flux ε should be
treated as a function of the coordinates and time. In
other words, instead of ε, it is necessary to consider the
function ε(x, t), which was studied in many papers, the
first being [12, 13]. Usually, this approach reduces to
choosing a certain spatial region over which to average
the function ε. On the other hand, the energy pumped
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
into the small-scale fluctuations in the system by an
external force is independent of the properties of the
system. When ε depends on the coordinates, it is more
meaningful to switch from the global parameters (such
as the densities of the energy and helicity pumped into
the system and dissipated there) to the local ones (such
as, e.g., the energy and helicity flux densities).

The flux density of the energy pumped into the sys-
tem is described by the equation

,

where U ' is the characteristic velocity of the turbulent
fluctuations on the spatial scales on which an external
force is acting and V is the volume. Under steady-state
conditions, this flux density should be canceled by the
energy flux density along the spectrum, εV = –∂ε/∂V.
Consequently, in this case, the parameters εV and ηV =
∂η/∂V are the governing parameters for the formation
of turbulent spectra.

Repeating the above arguments, we find that the
expressions for the velocity field components perpen-
dicular to the magnetic field yield the following form of
the structural function in the inertial interval:

(17)

We thus arrive at the following possible scalings for tur-
bulence in two limiting cases:

10/3 – δ = 0  D⊥ (r) ~ r10/3, (18)

8/3 – δ = 0  D⊥ (r) ~ r8/3, (18‡)

the latter of which is a transient one. In the situation in
question, the effective Reynolds number analogous to
that in formula (12) has the form

(19)

In the dissipative interval, the scalings of the charac-
teristic parameters differ from those in the inertial inter-
val. In particular, the characteristic scale and velocity of
turbulent pulsations obey the scalings

(20)

which were derived with allowance for the fact that, at
the boundary of the dissipative interval, the Reynolds
number is equal to unity. The two limiting cases are
now treated as follows. For δ = 10/3, we obtain α = 0
and thus arrive at the above scalings for turbulent pul-
sations: λtη = (ν3/ηV)1/8 and U ~ (ν5/ηV)1/8. For δ = 8/3,
we obtain α = –1/7; i.e., the characteristic scale and
velocity of the turbulent pulsations obey the scalings
λtV ~ (ν3/εV)1/7 and UtV ~ (ν4εV)1/7.

∂
∂V
------- dU '2

dt
----------- 

  εV=

D⊥ r( ) εV
5
/ηV

4( )
2/3

ηV /εV( )δ
r

δ
.∼

ηV
2/3

εV
2/3

Reeff

εV
8/3

ηV
7/3ν

------------.=

λ t εV
βηV

1 7β+( )/8– ν3 1 β–( )/8
,∼

Ut εV
β– ηV
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4. CONCLUSION

The results of our study can be summarized as fol-
lows. Based on dimensionality considerations, we have
investigated MHD turbulence in the different regimes
that may occur depending on the relationships between
the governing parameters of the system, namely, the
energy and helicity fluxes, viscosity, etc. The classical
and helical scalings that have been obtained for the sec-
ond-order structural function are consistent with both
the available experimental data on the generation of tur-
bulence and the corresponding numerical results. We
have demonstrated that the external magnetic field has
a significant impact on the structural properties of tur-
bulent fields in a conducting fluid. We have shown that
the transient turbulent regime under analysis is not only
peculiar to the dynamics of a conducting fluid in an
external magnetic field but can also occur in response to
some external action, such as externally induced rota-
tion. The results obtained can be used to interpret the
experimental data on MHD turbulence and simulate the
generation of turbulence in conducting fluids, e.g., in
plasmas.
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Abstract—The kinetics of the nonthermal decomposition of nitrous oxide (N2O) in a nonequilibrium plasma
is investigated experimentally. A numerical model of the process is constructed and used to simulate the decom-
position of N2O in a high-current pulsed discharge. The most important channels for decomposition are
revealed by analyzing the results obtained. The role of the charged, electronically excited, and vibrationally
excited components is examined. It is shown that the mechanism for the thermally nonequilibrium decomposi-
tion of N2O in a high-current pulsed discharge is governed by the reactions involving ions and electronically
excited molecules. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, increased attention has been given to
the possibility of actively controlling burning process
by means of nonequilibrium low-temperature gas-dis-
charge plasmas [1–5]. In our earlier paper [6], we inves-
tigated the relative role of the excitation of the vibra-
tional and electronic degrees of freedom of the gas, the
ionization of molecules, and their dissociation in con-
trolling the ignition of a H2–air mixture. We showed
that the main governing parameters for ignition under
strongly nonequilibrium conditions are the distribution
of the discharge energy over different degrees of free-
dom of the gas and the rate of the relaxation reactions
in the initial ignition stage. In particular, we found that
the key role in low-temperature oxidation is played by
the production of vibrationally and electronically
excited molecules in the discharge. Otherwise, as the
temperature increases, the efficiency of the excitation
of the internal degrees of freedom somewhat decreases,
and the key role is played by the dissociation of mole-
cules and the production of chemically active O and H
atoms in the discharge stage. This circumstance leads to
the idea of using oxygen-carrying polyatomic mole-
cules, which are efficient sources of oxygen under the
discharge conditions, as a means of an additional con-
trol in initiating ignition by a nonequilibrium pulsed
discharge.

Note that one of the best known chemical com-
pounds of this kind is nitrous oxide, N2O, which is often
used as a source of atomic oxygen both at high temper-
atures and in the processes of plasmochemical deposi-
tion of silicon films, in which N2O is utilized in mix-
tures with silane [7].

The decomposition of nitrous oxide behind shock
waves has been investigated quite thoroughly under
both thermally equilibrium and weakly nonequilibrium
conditions. The cross sections for the electron impact
1063-780X/03/2906- $24.00 © 20517
excitation of nitrous oxides are known fairly well and
make it possible to model in detail both the discharge
phase and the afterglow stage. That is why, in this study,
we attempted to investigate the nonequilibrium regime
of the decomposition of N2O in a plasma of a nanosec-
ond pulsed discharge in order to clarify the effect of
reactions involving the electronically excited, charged,
and vibrationally excited components on the decompo-
sition kinetics.

In order to better understand the processes that
occur in an N2O plasma in the high-current discharge
phase and the discharge afterglow in the pressure range
from 1 to 8 torr at room temperature, we experimentally
studied the decomposition of nitrous oxide in a system
affected by a fast ionization wave. We carried out a
numerical modeling of this decomposition process and,
by comparing the measured data with the calculated
results, analyzed the kinetics of the plasmochemical
reactions in the system.

2. EXPERIMENTAL INVESTIGATIONS
OF THE DECOMPOSITION OF N2O 

IN A PULSED DISCHARGE

The experimental setup used in this study was
described in detail in [6]. The discharges were initiated
in a 47-mm-diameter and 20-cm-long quartz tube with
a high-voltage plane stainless-steel electrode and a low-
voltage ring stainless-steel electrode at its ends. The
low-voltage electrode was short-circuited to a grounded
shield of a feeding cable by eight wide brass bars and
was equipped with a CaF2 window for emission spec-
troscopy diagnostics. Negative voltage pulses with an
amplitude |Ugen | = 13 kV, a full width at half-maximum
(FWHM) of 25 ns, and a rise time of 2 ns were supplied
to the high-voltage electrode of the discharge tube from
a pulsed-voltage generator at a repetition rate f = 40 Hz
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental device: (1) quartz discharge tube, (2) high-voltage electrode, (3) low-voltage electrode, (4) end CaF2 window,
(5) capacitive detector, (6) back-current shunt, (7) TDS-380 oscilloscope, (8) pressure gauge, (9) C9-8 digital oscilloscope,
(10) photomultiplier, (11) MDR-23 monochromator, (12) to a system for pumping out and admitting gas mixtures, and (13) 50-Ω
coaxial cable for supplying pulsed voltage.

R

(Fig. 1). In the initial discharge stage, when the conduc-
tivity of the discharge plasma is low, a current pulse
propagating in a coaxial transmission line is reflected
from the open end of the line (i.e., from the high-volt-
age electrode). As a result, in the stage in which the ion-
ization wave propagates along the discharge gap, the
voltage at the high-voltage electrode doubles.

In this stage, the amplitude and shape of the dis-
charge current pulse were measured by a broadband
calibrated back-current shunt.

The time-integrated emission signals from the end
of the discharge tube were measured by an MDR-23
monochromator.

The absolute value of the pressure during the
decomposition of N2O molecules was measured by an
MD × 4S mechanotron.

Figure 2 shows part of the recorded near-ultraviolet
spectrum. One can clearly see the spectral bands of the
γ system of nitrous oxide.

A complete set of spectroscopic data and the data on
the dynamics of the total pressure in the system are
illustrated in Fig. 3. Under the same initial conditions,
we measured the emission intensities of the second pos-
itive system (the C3Πu transition, v ' = 0  B3Πg, v '' =
0; λ = 337.1 nm) (Fig. 3) and the first negative system

(the  transition, v ' = 0  , v '' = 0; λ =
391.4 nm) of molecular nitrogen, which is the main
decomposition product of N2O. These measurements

B
2Σu

+
X

2Σg
+

made it possible to determine the characteristic time of
production of molecular nitrogen in the decomposition
of N2O molecules (Fig. 4). The dynamics of the relative
density of NO molecules during the decomposition
process was measured from the emission intensity cor-
responding to the transition NO(A2Σ+)  NO(X2Π)
with λ = 237.02 ± 0.02 nm. The upper level for this
transition is populated by direct electron impact from
the ground state of NO molecules and also in chemical
reactions involving electronically excited molecules.
This circumstance substantially complicates the inter-
pretation of the measured data. Figure 5 shows the half-
times of the increase and decrease in the emission
intensity of the γ system of NO. Because of the low
mean power of the generator of the nanosecond pulses
(0.6 W), the gas temperature in the discharge device did
not differ appreciably from the temperature of the sur-
rounding air and, in all experiments, was in the range
T = 300 ± 5 K.

The data from pressure measurements (Fig. 4) pro-
vide additional important information on the conver-
sion rate of a triatomic reagent (N2O) into bimolecular
reaction products.

The total current through the discharge gap can be
obtained as a sum of the currents of the incident and
reflected pulses. Figure 6 shows the measured incident
and reflected current pulses and the calculated transmit-
ted current pulse at an initial gas pressure p = 4.1 torr.
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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Fig. 2. Emission spectrum from a nanosecond discharge in N2O at a total pressure of 4 torr 50 s after the start of the decomposition
process.
For convenience in comparing the results obtained, the
sign of the reflected current pulse is reversed.

Figure 7 displays the maximum amplitude I and the
FWHM τ of the current pulse through the discharge gap
as functions of pressure. In the pressure range under
investigation, the current amplitude in the discharge
gap changed from I = 210 A at p = 3 torr to I = 110 A at
p = 7.5 torr.

The data from measurements of the discharge cur-
rent and voltage drop across the discharge gap made it
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
possible to estimate the electron density and the
reduced electric field after the gap is bridged by a fast
ionization wave (Fig. 8). The estimates were carried out
in the drift approximation. The electron drift velocity vd

was calculated for a given pulse with allowance for the
instantaneous gas composition by solving the Boltz-
mann equation in the two-term approximation. These
data, together with the data on the time behavior of the
current density j = I/S through the discharge gap,
enabled us to reconstruct the dynamics of the electron
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Fig. 3. The measured evolutions of the emission intensities in (a) the second positive nitrogen system (the transition from the

N2(C3Πu) level), (b) the first negative nitrogen system (the ( ( )) level), and (c) the γ system (the NO(A2Σ+) level) and

(d, e) the time evolutions of the gas pressure during the decomposition of N2O at different initial gas pressures.
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density in the high-current discharge phase, ne = j/(ev d)
(where e is an elementary charge).

In the parameter range under investigation, the
reduced electric field in the discharge gap changed
from E/n = 300 to 800 Td, which is close to the appli-
cability limit of the two-term approximation for solving
the Boltzmann equation in order to calculate the rates of
the inelastic processes in the electron–molecule colli-
sions at the lowest pressures in our experiments. The
effect of the violation of the two-term approximation
(which was observed, e.g., in our earlier paper [6])
should be taken into account when comparing the
experimental data and numerical results.

The maximum electron densities were found to lie
in the range ne . (0.9–2.2) × 1012 cm–3 (Fig. 8), which
correlates well with the results from measurements car-
ried out for other mixtures under similar conditions [8,
9, 6].

3. NUMERICAL MODEL OF THE NONTHERMAL 
DECOMPOSITION OF N2O
UNDER THE CONDITIONS 
OF A PULSED DISCHARGE

The calculations were carried out in a direct way;
i.e., we computed all subsequent current pulses through
the discharge gap with allowance for the changes in the
mixture composition during and between the pulses.

The numerical scheme was constructed based on the
model developed in [6]. In order to adequately describe
the decomposition of N2O in the presence of NO, N2,
and O2 molecules, the energy distribution function
(EDF) of the electrons was calculated with allowance
for the electron-impact excitation of nitric oxide and
nitrous oxide molecules. The cross sections for the cor-
responding processes were taken from [10].

The processes of the relaxation of the vibrationally
and electronically excited states, as well as the ion–
molecule and molecule–molecule processes, were
included in the kinetic scheme in the same manner as
was done in [6] in describing the nonthermal oxidation
of hydrogen in a H2–air mixture.

The dependence of the relaxation rate on the degree
of vibrational excitation of the reagents and products
was taken into account by using the model based on the
vibronic-term approximation [11].

The role of the vibrational excitation was taken into
account in all the processes involving N2O, NO, N2, and
O2 molecules. It was assumed that N2O molecules are
decomposed primarily through the excitation of anti-
symmetric vibrations (for high vibrational energies and
because of the rapid mixing of vibrational modes in an
anharmonic interaction, this assumption imposes
essentially no restrictions on the dynamics of the EDF
near the dissociation threshold).

In the kinetic scheme, every reaction is modeled by
a sequence of elementary processes, each of which
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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The symbols show the experimental data, and the curves
show the calculated results.
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determines the rate of the reaction involving reagents in
certain vibrationally excited states and producing
reagents populated at certain levels.

As an example, the reaction

N2O + O  NO + NO

was modeled by the following sequence of elementary
processes:

N2O(v 3 = 0) + O  NO(0) + NO(0),

N2O(v 3 = 0) + O  NO(1) + NO(1),

.

.

.

N2O(v 3) + O  NO(w) + NO(w),

whose rate constants were calculated using the algo-
rithm developed in [11].

The remaining reactions incorporated into the
kinetic scheme were modeled in an analogous fashion.

The results from calculations of the population
dynamics of the individual vibrational states of differ-
ent molecules in the decomposition process show that
the distributions depend nonmonotonically on the
energy and that the upper levels are greatly overpopu-
lated. The local peaks in the distributions are associated
with the selective depopulation from the upper elec-
tronic states to the vibrational levels of the ground state
and the recombination fluxes to the upper levels.

The time evolutions of the total pressure and the rel-
ative density of N2(C3Πu) molecules at an initial pres-
sure p = 4.7 torr are given in Figs. 9 and 10, in which
the solid curves show the experimental data and the
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Fig. 6. (1) Incident, (2) reflected (with the opposite sign),
and (3) transmitted current pulses at an initial pressure p =
4.1 torr and at U = 26 kV.
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dashed curves show the numerical results. The density
of N2(C3Πu) in Fig. 9 is normalized to the maximum
theoretical density of these molecules, and the horizon-
tal dashed line in Fig. 10 indicates the total pressure in
the mixture in the case of the complete conversion of
the initial gas into a mixture of N2 and O2 gases.

Nearly the same shapes of the calculated and mea-
sured curves characterizing the production of N2(C3Πu)
molecules allow us to conclude that, for the conditions
of our experiments, the model based on solving the
Boltzmann equation in the two-term approximation
correctly describes the gas excitation by electron
impact. Also, the almost exact coincidence of the time
behavior of the experimental and numerical pressure
profiles indicates that the model is capable of correctly
reconstructing the kinetics of the decomposition of
N2O molecules in the afterglow stage.

The calculated and measured data on the time in
which the densities of the main components recorded in
our experiments change are compared in Figs. 4 and 5.
One can clearly see that, over the entire pressure range
under investigation, the proposed model well describes
both the rate of conversion of triatomic nitrous oxide
into diatomic reaction products (which is evidenced by
an increase in pressure during the decomposition of the
main reagent; see Fig. 4) and the time evolution of the
population of the upper radiating states of nitrogen
molecules and atoms.

0

0

0.2

0.4

0.6

0.8

1.0

50 100 150 200
t, s

[N2(C3Πu)]/[N2(C3Πu)]max

Fig. 9. Comparison between the calculations and the exper-
iment: the measured (solid curve) and calculated (dashed
curve) dynamics of the relative density of N2(C3Πu) mole-
cules in an N2O gas at an initial pressure p = 4.7 torr and at
U = 26 kV. Both curves are normalized to the theoretical
value of the density of N2(C3Πu) molecules in the case of
the complete conversion of the initial gas into a mixture of
N2 and O2 gases.
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The situation with the dynamics of the emission
intensity of the γ band of NO (Fig. 3) is far more com-
plicated. It is readily seen that the emission from NO
increases over a substantially longer time in compari-

son with the emissions from N2(C3Πu) and ( )
(Fig. 5). As a result, the density of NO(A2Σ+) becomes
maximum when the bulk of N2O molecules have
already been decomposed and the density of NO mole-
cules in the ground electronic state is low because of
their decomposition in the late discharge stages. This
circumstance makes it possible to assert that the
NO(A2Σ+) states are populated through the direct pro-
duction of the electronically excited nitric oxide mole-
cules rather than through the excitation of NO mole-
cules, e.g., in the reactions NO + e  NO(A2Σ+) + e
or NO + N2(A3Σu)  NO(A2Σ+) + N2, whose rates are
proportional to the instantaneous density of NO mole-
cules in the system. Unfortunately, there are no data on
alternative channels of the production of NO(A2Σ+)
molecules. That is why we considered several energet-
ically allowable channels for the production of these
excited molecular states. The calculated results that are
closest to the experimental data on the dynamics of the
emission intensity of the γ band were obtained under
the assumption that the NO(A2Σ+) state is mainly popu-
lated in the reaction N+ +   NO(A2Σ+) + O. Since

the density of negative oxygen ions  increases con-
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Fig. 10. Comparison between the calculations and the
experiment: the measured (solid curve) and calculated
(dashed curve) dynamics of the pressure in the mixture
resulting from an N2O gas at an initial pressure p = 4.7 torr
and at U = 26 kV. The horizontal dashed line indicates the
theoretical value of the total pressure in the mixture in the
case of the complete conversion of the initial gas into a mix-
ture of N2 and O2 gases.
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tinuously during the discharge, the population of the
NO(A2Σ+) state becomes maximum by the end of the
decomposition process; simultaneously, because of a
sharp decrease in the density of N+ atoms after the
decomposition of all N2O molecules, this state is rap-
idly depopulated in the late discharge stages, which
correlates well the experimentally observed population
dynamics (Fig. 5). Nevertheless, the question about the
possible channels of the excitation of the γ band under
our experimental conditions apparently remains open.

4. FLUXES OF ACTIVE PARTICLES
AND THE MAIN STAGES 

OF THE NONTHERMAL DECOMPOSITION 
OF N2O IN A PULSED DISCHARGE

In order to single out the most important processes
occurring in an afterglow discharge plasma, we ana-
lyzed the rates of reactions of the kinetic scheme for the
conditions of the first current pulse propagating
through the discharge gap originally filled with N2O at
a pressure of 4.7 torr and also for the conditions of the
1560th pulse, which corresponded to the decomposi-
tion of 50% of the initial nitrous oxide. To do this, in
simulating the discharge kinetics, we calculated the
instantaneous densities of the discharge plasma compo-
nents simultaneously with the absolute rates of all of
the reactions (i.e., the rate of the forward reaction
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Fig. 11. Dynamics of the densities of the components
involved into the fastest reactions in the initial decomposi-
tion stage in the discharge afterglow ([N2O]/[N2O]0 = 1):

(1) electrons, (2) O–, (3) NO–, (4) N2( ), and (5)

N(2D). The initial pressure of the N2O gas is p = 4.7 torr.
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minus the rate of the reverse reaction). The reactions
that proceed at high absolute rates give rise to particle
fluxes in the “reagents–final products” space. This
approach allowed us to follow the sequence of the main
reactions in which N2O decomposed into N2 and O2.

Figures 11 and 12 show the kinetic curves for the
components involved in the fastest reactions in the
afterglow plasmas of the above two current pulses.

From these figures, we can clearly see that, in the
initial stage of the decomposition of N2O (when the
densities of nitrogen and oxygen molecules in the mix-
ture are low), the kinetics is characteristically different
from the kinetics in the late stages (which are domi-
nated by the processes of the excitation of the electronic
levels of N2 molecules in the discharge plasma and their
dissociative deexcitation in collisions with N2O mole-
cules). In particular, the lifetime of the excited N2(A3Σu)
molecules increases because of the decrease in the rate
of their deexcitation in collisions with N2O molecules.
The lifetime of the negative nitrogen monoxide ions
decreases by almost three orders of magnitude because
the density of molecular oxygen increases during the
decomposition of N2O and the charge-exchange rate
increases. The density of the excited nitrogen atoms
N(2D) decreases markedly for the following reason. In
the initial stage, these atoms are efficiently produced in
the dissociation of N2O molecules by electron impact.
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Fig. 12. Dynamics of the densities of the components
involved into the fastest reactions in the final decomposition
stage in the discharge afterglow ([N2O]/[N2O]0 = 0.5):
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However, in the late stages, the density of N2O mole-
cules decreases; as a result, the rate of this process
decreases, thereby reducing the density of N(2D)
atoms. The conversion time of the electrons also
becomes somewhat shorter.

The dynamics of the densities of the main neutral
components in the afterglow of the first discharge pulse
in an N2O gas at an initial pressure p = 4.7 torr is illus-
trated in Fig. 13. It can be seen that the process pro-
ceeds in several stages that are accompanied by the
slow decomposition of N2O and the production of
molecular nitrogen and oxygen. During the first pulse,
the densities of NO molecules and oxygen atoms in the
mixture are relatively high; then, during the decompo-
sition of N2O, these densities decrease.

As in the case of a system with a reacting H2–air
mixture, the time between the end of each current pulse
and the beginning of the next pulse can be divided into
four intervals: 0–10–7, 10–7–10–5, 10–5–10–3, and 10–3–
25 × 10–3 s.

We performed an analysis of the fluxes of active par-
ticles in the fastest chemical conversion reactions dur-
ing these intervals.

Let us consider the processes that are dominant in
each of above four intervals in the afterglow of the first
current pulse.

(i) In the first 10–7 s after the end of the pulse, the
fastest processes are those involved in the electron
transfer reactions

e– + N2O  O– + N2, (1)

O– + N2O  NO– + NO, (2)

in which N2O molecules are efficiently decomposed.
The second fast process is the dissociative quench-

ing of the electronically excited level N2( ) by
N2O molecules.

In this time interval, N2O molecules are also decom-
posed in the reaction N(2D) + N2O  NO + N2.

(ii) During the second interval (from 10–7 to 10–5 s),
the rate of reactions (1) and (2) increases considerably.
However, the decomposition of nitrous oxide is now
dominated by the reaction of dissociative quenching of

the electronically excited level N2( ) by N2O mol-
ecules.

(iii) The third interval (from 10–5 to 10–3 s) is char-
acterized by an increasing influence of the secondary
processes, namely, the reactions involving O and N
atoms.

(iv) For longer times (from 10–3 to 25 × 10–3 s), the
reactions responsible for the production of N2 and O2
molecules in the system become more intense. The
most important of these reactions are those involving
NO molecules:
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A
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NO + O + M  NO2 + M,

NO2 + O  NO + O2,

NO + N  N2 + O. 

The general pattern of the decomposition kinetics
changes substantially as the N2O molecules decompose
and the nitrogen, oxygen, and nitric oxide molecules
are produced. Although the scheme of the main reac-
tions remains the same, the role of the reactions involv-
ing electronically excited nitrogen molecules and oxy-
gen ions increases considerably. The dynamics of the
densities of the main reaction products—molecular
nitrogen and oxygen—is clearly seen in Fig. 13b. The
production of molecular oxygen in the mixture leads, in
particular, to a decrease in the density of negative NO–

ions in fast charge-exchange reactions (Fig. 12).
Based on the above analysis, we can conclude that

the reactions involving ions and electronically excited
particles play a fundamental role in the decomposition
of nitrous oxide in a high-current pulsed discharge at
low temperatures.

The role of the reactions involving O atoms is rela-
tively unimportant because of the high energy threshold
of the reaction

N2O + O  NO + NO. 

In contrast to an H2–air mixture, in which the vibra-
tional excitation of H2 molecules substantially intensi-
fies the oxidation process, the vibrational excitation of
the gas does not have any important effect on the
decomposition of N2O molecules.

Under the conditions in question, vibrational excita-
tion cannot play any important role in the decomposi-
tion of nitrous oxide by the purely vibrational mecha-
nism [11] for intensifying the monomolecular decom-
position because of the high rates of the relaxation of
the EDF via the deformation mode at high vibrational
quantum numbers.

A decrease in the threshold (Θ . 14000 K) of the
reaction N2O + O  NO + NO also cannot result in
any significant (in comparison with other mechanisms)
decomposition of N2O molecules.

The above analysis shows that, under the conditions
in question, the nonequilibrium character of the vibra-
tional excitation manifests itself in a quite different
manner.

On the one hand, the vibrational excitation of the
gas substantially intensifies the reactions of the colli-

sional detachment of electrons from O–, , and NO–

ions. As a result, the recombination of charged particles
becomes somewhat more rapid, and reactions (1) and
(2) proceed at a slower rate. On the other hand, the
vibrational excitation of the gas somewhat increases the
mean electron energy in the discharge (because of
superelastic collisions) and, accordingly, the popula-

tion rate of the electronically excited level N2( ),

O2
–

A
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Fig. 13. Dynamics of the densities of the main components (a) in the afterglow of the first discharge pulse and (b) during the decom-
position process (the values of the density at the end of each subsequent current pulse are presented): (1) molecules, (2) atoms,
(3) electronically excited particles, (4) negatively charged particles, and (5) positively charged particles. The initial pressure of the
N2O gas is p = 4.7 torr.
thereby increasing the rate of the collisional dissocia-
tion of N2O molecules. The rate of direct electron
impact ionization of N2O also increases.

Both of these mechanisms have only an indirect
effect on the integral decomposition rate of N2O mole-
cules and, on the whole, do not significantly change the
rate of the decomposition process.

Hence, based on the results obtained in this section,
we can conclude that the mechanism for the thermally
nonequilibrium decomposition of nitrous oxide (N2O)
in a high-current pulsed discharge is governed by reac-
tions involving the ions and electronically excited mol-
ecules.
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Abstract—The structure of a discharge induced by a coaxial microwave plasmatron with a gas-supply channel
in the inner electrode of a coaxial waveguide is investigated. A plasmatron with a power of up to 10 W operates
at a frequency of 10 GHz. Depending on the operation regime, the discharge takes either a filament or torch
form. A plasma filament arises at low flow rates of the working gas (argon) and occurs at the border of the poten-
tial core of the gas jet. A torch discharge occurs at high flow rates and has the form of a hollow cone. In both
cases, the discharge arises in the potential core of the gas jet and does not spread beyond it. The distribution of
the microwave field in the discharge plasma is determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The structure of a torch discharge induced by a con-

ventional coaxial microwave plasmatron [1–3] is simi-
lar to that of an RF torch discharge [4, 5]. The main dif-
ference is that, in an RF torch discharge, the heated gas
leaves the discharge region due to upward convection,
whereas in a microwave torch, the working gas is blown
through the interelectrode channel and then is let out
into the atmosphere. When the working gas in a micro-
wave plasmatron is supplied through a special channel
in the central electrode [6–10] (rather than through the
interelectrode space), the discharge takes a specific
form. The plasmatrons of this type are called TIA
(Torche á Injection Axiale) plasmatrons. In this case,
the edge of the inner electrode (rather than the coaxial
outer electrode) acts as a nozzle forming the gas flow.
As a result, the microwave discharge is ignited not in
the central region of the argon jet, but at the border
between the potential core of the jet and the turbulent
boundary layer, which contains (besides argon) mole-
cules of the surrounding air. Because of the specific
conditions of discharge formation, the discharge struc-
ture in such a plasmatron differs significantly from that
in a conventional plasma torch [4].

The structure and dynamics of the discharge in var-
ious operating regimes of a plasmatron with a gas-sup-
ply channel in the central electrode were studied in [8–
10]. In [8, 9], the specific features of such a discharge
were attributed to the high electron density and the
presence of a plasma skin layer, as well as to the effect
of the surrounding air. In contrast, in [10], it was sug-
gested that the discharge structure can be strongly
affected by the structure of the cold gas jet. In all of
these studies, argon at approximately the same flow rate
was used as a plasma-forming gas; however, in [8, 9],
the discharge was fed with a microwave power of
1063-780X/03/2906- $24.00 © 0528
~1 kW at a frequency of 2.45 GHz, whereas in [10], the
power supplied to the discharge did not exceed 10 W
and the experiments were performed at a higher micro-
wave frequency (10 GHz).

This paper is aimed at studying the general features
of such discharges by a unified approach and acquiring
additional data on the microwave field distribution in
the discharge at a frequency of 10 GHz and an input
power of several watts. Attention is focused mainly on
investigating the discharge structure at different flow
rates of the plasma-forming gas (argon).

2. EXPERIMENTAL SETUP

In our experiments, we used a plasmatron in which
argon was supplied through an axial channel in the
inner electrode [6]. The channel diameter was varied
from 0.35 to 2 mm. The argon flow rate was no higher
than 2 l/min. The output power of the 10-GHz continu-
ous-wave magnetron exciting the discharge was up to
10 W. The discharge plasma was strongly nonequilib-
rium [6], and the electron energy distribution was far
from Maxwellian [8, 9]. Taking into account relatively
small plasma dimensions, this somewhat impedes the
study of the plasma using conventional investigation
techniques. To investigate the microwave field distribu-
tion in the discharge, we employed the method of a
small perturbing body (vibrating metal string) [11, 12].

Figure 1 presents a schematic of the plasmatron and
the block diagram of a system for measuring the micro-
wave field distribution in a discharge. The microwave
radiation is fed from magnetron 1 through ferrite valve
2 and attenuator 3 to a plasma torch in the form of coax-
ial waveguide 4 with nozzle 5 at its end. The end of the
coaxial waveguide with an inner electrode 4 mm in
diameter and outer electrode 10.5 mm in diameter is
2003 MAIK “Nauka/Interperiodica”
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tapered to a cone so that the output opening of the outer
electrode decreases to 4 mm and that of the inner elec-
trode decreases to 0.6–2 mm. The shape of the inner
electrode apex can be varied by changing the diameter
of the gas supply channel. In the feed circuit of the
torch, directional coupler 6 is inserted, which receives
the total microwave signal reflected from the matching
elements of the coaxial waveguide, torch nozzle, and all
of the other elements that reside in the surrounding
space near the nozzle. The reflected signal is recorded
with detector 7, loading the measurement channel of
the directional coupler. Since this signal is time-inde-
pendent, the input capacitance of oscilloscope 8, which
displays the signal, does not allow it to pass to the oscil-
loscope input. In the measurements, this signal was
used as a reference one.

When a small perturbing body (a sphere, disc, or
cylinder) is placed in the microwave field created by the
coaxial nozzle in the atmosphere or a discharge plasma,
the signal reflected from the perturbing body is added
to the reference signal. The amplitude of the reflected
signal is proportional to the electric field strength at the
position of the perturbing body, and the signal phase is
determined by the phase difference between the micro-
wave field at this point and the reference signal. If the
perturbing body is immobile, there will be no reflected
signal on the oscilloscope screen. However, when the
perturbing body is displaced from one point to another,
at which the electric field differs in amplitude or phase,
the time variations in the electric field will be displayed
on the oscilloscope screen.

In our experiment, vibrating steel string 9 (0.3 mm
in diameter and 80–100 mm in length) serves as a per-
turbing body. The string is fixed at its upper end and
hangs down freely. The string vibrations are excited
with electromagnet 11, which is placed near the string
support and is fed from audio-frequency generator 10.
The audio-frequency oscillator is also used to synchro-
nize the horizontal sweep of the oscilloscope. The sig-
nal reflected from the vibrating string provides infor-
mation about the electric field strength at the string
position, and, being superimposed on the reference sig-
nal, it also provides information about the phase differ-
ence between them.

The electric field profile across the discharge and the
amplitude–phase characteristic of the wave propagat-
ing along plasma jet 12 are displayed on the oscillo-
scope screen.

Figure 1 schematically illustrates the string vibra-
tions along the plasma axis. Obviously, such measure-
ments allow us to reveal only the character of the spatial
variations in the electric field or the change in the elec-
tric field at a given spatial point as the regime of plas-
matron feeding is changed or the plasmatron design is
modified. It should also be taken into account that the
measurement results are averaged over the string seg-
ment located in the plasma jet. The abelianization of the
measurement results, assuming the discharge to be
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
cylindrical in shape, allow us to determine the true elec-
tric field profile. Since the detector operates at the qua-
dratic segment of its characteristic, the oscilloscope
trace reflects the evolution of the electric field squared.

A cathetometer with a magnification of 15–20 was
used to monitor the discharge structure and measure its
dimensions. The discharge was also photographed.

3. EXPERIMENTAL RESULTS

Photographing the discharge and monitoring its
structure with a cathetometer revealed the following
features. In the middle of the torch, there is a constric-
tion (waist), which divides the discharge into two
parts—a conical part residing on the nozzle and a small
cylindrical part, which then transforms into a kind of
brush with a blurred end (Fig. 2a). The cone base diam-
eter is determined by the nozzle diameter, i.e., by the
diameter of the edge of the inner coaxial electrode. The
inner electrode was tapered so that the thickness of the
nozzle wall was as small as several tenths of a millime-
ter. As a result, the electric field at the nozzle edge is
fairly strong and highly nonuniform, which leads to the
ignition of a microwave discharge. Any eccentricity of
the inner electrode with respect to the outer one violates
the discharge symmetry.

A specific feature of the conical part of the discharge
is that the discharge occurs only in a thin layer on the
cone surface, the layer thickness being on the order of
the skin depth. From the inside, this layer is adjacent to
the conical region occupied by the unexcited working
gas. In [8, 9], it was hypothesized that the increase in
the electron density Ne, electron temperature Te, and gas
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Fig. 1. Schematic of the experimental setup.
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Fig. 2. Photograph of (a) a torch discharge and (b, c) a filament discharge.
temperature Tg at the border of the initial part of the dis-
charge is only due to the penetration of nitrogen or oxy-
gen through the surface of the potential core of the gas
jet from the surrounding air. However, this hypothesis
seems to be unconvincing; in particular, it does not
explain the conical shape of this part of discharge.

It has been found that, in the power range of 2–10 W,
the decrease in the argon flow rate to 1.0 l/min results
in a qualitative change of the discharge, which converts
into a steady-state filament discharge. The photograph
of such a discharge is shown in Fig. 2b. The point on the
nozzle edge on which the filament base resides is usu-
ally located closest to the outer coaxial electrode (it
happens because of the violation of the axial electrode
symmetry, which is very difficult to avoid in the exper-
iments). It is natural to expect that the microwave field
is maximum at this point. The filament is stretched not
along the velocity vector of the gas outflowing from the
nozzle but is inclined at a small angle (~6°) toward the
axis of the inner electrode. The filament radius is
around 0.15 mm. Assuming that the filament radius is
equal to the skin depth in the discharge plasma, the
electron density in the filament turns out to be higher
than 1012 cm–3, which agrees with the results of [6].

The increase in the argon flow rate at a fixed input
power leads to an increase in the filament length until it
reaches its maximum value at Q ≈ 1 l/min.

After the filament has reached its maximum length,
a similar filament (initially unstable) inclined at the
same angle to the axis arises at the diametrically oppo-
site point of the nozzle edge. The latter filament crosses
the former one, forming a scissorlike figure (Fig. 2c).
The number of filaments arising and vanishing at the
nozzle edge gradually increases with the argon flow
rate. At the same time, the rate of filament motion over
the perimeter of the nozzle opening also increases. This
motion is similar to that of an anode spot on the anode
of a voltaic arc. However, the filaments move not in the
nozzle plane but along the nozzle perimeter, thereby
forming a conical part of the discharge. As a result, a
hollow conical discharge region arises near the nozzle
(Fig. 2a); such a discharge was previously observed in
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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[8–10]. The angle between the cone generatrix and the
discharge axis is again ~6°, as in the case with a solitary
filament occurring at low argon flow rates. When com-
paring with the results of [8, 9], it should be remem-
bered that, in those papers, the inclination angle was in
the range 4°–8°, which does not contradict the results
of our study.

After the filament length L has reached its maximum
value, it begins to decrease. This is illustrated in Fig. 3,
which shows the plasma filament length as a function of
the argon flow rate Q at different input powers P. The
dependences were measured for a nozzle with the
diameter of the channel in the inner electrode equal to
0.8 mm. Whatever the power, the maximum length of
the plasma filament is reached at the same argon flow
rate of Q = 1 l/min. We note that a steady-state filament
discharge occurs only at argon flow rates in the range
Q = 0.2–1.0 l/min. A further increase in the argon flow
rate leads to both filament instability and a change in
the discharge structure.

The increase in the diameter D of the channel in the
coaxial inner electrode (i.e., the diameter of the nozzle
opening) leads to an increase in the maximum length of
the plasma filament. Simultaneously, the argon flow
rate at which this maximum is reached also somewhat
increases. Figure 4 shows the maximum filament length
Lmax (curve 1) and the argon flow rate Q (curve 2) cor-
responding to this maximum versus the diameter D of
the plasmatron nozzle opening. The dependences were
measured at the fixed discharge input power P = 5.9 W.
We note that the dependence of the maximum discharge
length on the nozzle opening diameter is linear.

The measurements of the electric field profile along
the filament show that a surface plasma wave propa-
gates along the filament [11]. As an example, Fig. 5 pre-
sents the amplitude–phase characteristics of the wave
propagating along the filament for plasmatrons with
two different diameters (0.6 and 0.8 mm) of the channel
in the inner electrode. In both cases, the input power is
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Q, l/min

1
2
3

Fig. 3. Plasma filament length L vs. argon flow rate at input
powers of (1) 5.9, (2) 4.5, and (3) 3.0 W.
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5.3 W and the argon flow rate is 1.0 l/min. Under these
conditions, the filament length amounts to 6.0 and
7.5 mm, respectively. It follows from these depen-
dences that, in the latter case, the wave is slower by a
factor of 1.25–1.5. In this case (as in the case of a sur-
fatron [13]), the filament discharge is apparently sus-
tained by a slowed-down traveling surface plasma
wave. Since, under the same operating conditions, the
discharge formed by a nozzle with D = 0.6 mm is
shorter than that formed by a nozzle with D = 0.8 mm,
the electric field strength in the latter case is somewhat
lower.

The increase in the filament length is accompanied
by a decrease in the electric field inside the filament.
Figure 6 shows the maximum value of the electric field
squared E2 in the filament as a function of the gas flow
rate at a fixed power of P = 5.3 W and different nozzle
diameters. The electric field was measured at a distance
of z = 0.5 mm from the nozzle. Stable plasma filaments
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Fig. 4. Maximum discharge length Lmax and the corre-
sponding values of the argon flow rate Q and the electric
field squared E2 vs. nozzle diameter.
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Fig. 5. Profile of the electric field squared E2 along the dis-
charge axis for nozzle-opening diameters of (1) 0.6 and
(2) 0.8 mm.
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exist only at the descending branches of these curves.
After reaching the minimum on the curve E = F(Q)
(which corresponds to the maximum filament length),
the filament becomes unstable and begins to move
about the nozzle perimeter in a jumplike manner. It is
interesting to note that, at the minimum of the curve,

the electric field squared  is approximately
inversely proportional to the diameter D of the nozzle
opening. This can be seen in Fig. 4, in which the circles

show the measured values of  = F(D) and curve 3

shows the dependence  ≈ 1/D. The fairly good
agreement between the inversely proportional depen-
dence and the experimental results indicates that the

Emin
2

Emin
2

Emin
2
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Fig. 6. Electric field squared E2 in the filament discharge vs.
argon flow rate for nozzles with opening diameters of
(1) 0.35, (2) 0.6, (3) 0.8, and (4) 1.6 mm.
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Fig.7. Discharge length L vs. input power P with (curves 1,
2) and without (curves 1', 2') an additional supply of argon
through the interelectrode space for two rates of argon sup-
ply through the channel in the inner electrode: Q = (1, 1') 1.4
and (2, 2') 0.65 l/min.
squared electric field E2 in the filament is inversely pro-
portional to the filament length.

As was noted in [8, 9], the length of the conical part
of the discharge depends slightly on the microwave
input power, although the total torch length can be var-
ied by varying input power P. The study of the transfor-
mation of a filament into a torch shows that, as the input
power P and/or argon flow rate Q increase, the length L
of a stable steady-state plasma filament gradually
increases until it saturates or reaches its maximum
value, after which it begins to decrease. A further
increase in Q results in the change of the discharge
structure. As the input power increases, the dependence
L(P) at Q < 1 l/min saturates without an appreciable
change in the filament structure except for the appear-
ance at its end of an additional reddish glow, whose size
increases with ê. Seemingly, this extra glow is related
to the excitation of nitrogen outside the potential core
of argon jet.

4. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

Observations of the dynamics of the gas jet flowing
out of the nozzle [14] show that a potential core in the
shape of a cone residing on the nozzle is formed in the
jet. Inside the core, the outflowing gas (argon) is not
mixed with the surrounding air. In the rest of the jet,
intense turbulent mixing of the jet gas with the sur-
rounding air occurs. The cone height is higher by a fac-
tor of nearly 4.4–5 than the diameter of the nozzle
opening from which the jet is ejected. Hence, the cone
half-angle of the potential core is 6°.

Therefore, the discharge filament does not stretch
along the gas flow, as is the case of a torch discharge in
other types of plasmatrons, but, originating at the noz-
zle edge, propagates along the conical border of the
potential core of the jet. The filament length gradually
increases with increasing argon flow rate Q or input
power P. A significant fraction of the energy acquired
from the microwave field is carried away by the gas
flow not only along the filament but also across it. This
is an extra channel for thermal energy losses into the
surrounding space through the side surface of the fila-
ment, thereby appreciably contributing to the loss
caused by diffusion. As was shown in [8, 9], the diffu-
sion of the surrounding gas (particularly, nitrogen) into
the discharge naturally results in an increase in the gas
temperature on the surface of the conical part of the dis-
charge.

In [8], a special chamber filled with argon was used
to reduce the effect of nitrogen and oxygen penetrating
into the discharge from the surrounding space. In our
experiments, similar isolation of the discharge from the
surrounding air was accomplished by simultaneously
supplying argon through both the axial channel in the
central electrode and the interelectrode space. Figure 7
shows the lengths of the filament and torch discharges
PLASMA PHYSICS REPORTS      Vol. 29      No. 6      2003
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as functions of the input power P with (curves 1 and 2)
and without (curves 1' and 2') an additional supply of
argon through the interelectrode space at a flow rate of
Q' = 1.5 l/min. In the latter case, argon was supplied
only through the channel in the central electrode. In
both cases, the filament discharge occurred at Q = 0.65
l/min, whereas the torch discharge occurred at Q = 1.4
l/min. It can be seen that, when the filament discharge
has not yet attained its maximum length, the supply of
argon through the interelectrode space increases the
discharge length by several tens of percent, whereas in
the case of a torch discharge, the extra supply of argon
increases the discharge length less significantly.

This result again confirms the influence of the struc-
ture of the working gas jet on the characteristics of the
discharge under study. The plasma filament is formed at
the border of the potential core of the gas jet and stops
elongating after leaving the cone region. Then, extra fil-
aments arise, which form the conical part of the dis-
charge. An increase in the microwave power or the
argon flow rate does not affect the height of this cone,
because it is completely determined by the size of the
potential core of the outflowing gas jet. A further
increase in the argon flow rate leads to a shortening of
the plasma torch because of an increase in the thermal
energy losses from the discharge. In this case, the dis-
charge diameter can somewhat increase far from the
nozzle.
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A. V. Zharinov and V. P. Shumilin

Lenin All-Russia Electrotechnical Institute, Krasnokazarmennaya ul. 12, Moscow, 111250 Russia
Received October 31, 2002

Abstract—An elementary theory of the cathode region at the high-voltage stage of an arc discharge is pro-
posed. The theory is based on the balance equations for the particles in an active plasma layer, the power balance
at the cathode, and the equation for the Richardson–Dushman electron emission with allowance for the Schot-
tky effect. The most characteristic features of this type of discharge are considered. A non-Langmuir cathode
sheath model is proposed for a low-voltage arc on a tungsten electrode. © 2003 MAIK “Nauka/Interperiodica”.
The literature on arc-discharge physics is mainly
devoted to low-voltage arcs at voltages on the order of
the ionization potential ui . It is obvious, however, that
there is also a high-voltage arc stage (HVAS), which
occurs, e.g., during vacuum breakdown, and after
which the discharge inevitably transforms into a low-
voltage arc.

Theoretical and experimental studies of the HVAS
are of interest for the following reasons:

(i) A HVAS seems to be significantly simpler to
investigate than a low-voltage arc because the cathode
surface can be treated as plane and solid (unmelted).
For high-melting cathodes (W, Ta, etc.), evaporation
can be ignored in comparison with cathode sputtering.
The electron emission is known to be described by the
Richardson–Dushman–Schottky (RDS) theory.

(ii) It is likely that studying the HVAS will help to
understand some amazing features of a low-voltage arc.

(iii) Experimental studies of the HVAS will allow
one to verify the RDS theory within the record ranges
of the current densities and electric fields, including
those corresponding to the field emission.

(iv) The highest voltage in the HVAS occurs when
the electric field at the cathode is zero and the value of
i (the ratio of the ion current density at the cathode, ji,
to the density of the electron current at the cathode) is

equal to i0 = , where m and M are the electron
and ion masses, respectively. In the regime of a zero
electric field, the gas target density n0 is minimum [1]
and is determined by the formula n0σiR ≈ i0 ! 1, where
σi is the ionization cross section and R is the cathode
spot radius. For tungsten, we have i0 ≈ 1.7 × 10–3;
hence, the mean square scattering angle of the cathode
electrons is negligibly small. Thus, in the HVAS, a
nearly collisionless electron beam, directed normally to
the cathode spot surface, is produced.

As i increases (i > i0) and the surface is deformed,
the beam spreads out. Hence, it is possible to experi-
mentally investigate the dynamics of a solid or fluid

m/M
1063-780X/03/2906- $24.00 © 20534
surface using a technique similar to the Muller electron
projector.

(v) The HVAS can be used in various applications;
apparently, it has long been used in pulsed accelerators.

All the above considerations inspire one to analyze
the quasi-steady HVAS.

The quasi-steady HVAS is described by two ele-
mentary algebraic equations

(1)

(2)

Equation (1) is the existence condition, and Eq. (2) is
the heat balance equation at the spot surface. Here, j is
the current density in the RDS model at i > i0, e is the
elementary charge, v 0 is the mean velocity of the atoms
produced due to the cathode self-sputtering (the flux
density of these atoms is q0 = ji(1 + γi)/e), γi is the self-
sputtering coefficient, ϕp is the discharge voltage, eϕ =
eϕ0 – e∆ϕ is the work function with allowance for the
Schottky effect (ϕ0 = 4.5 V), T is the surface tempera-
ture, and λ is the thermal conductivity.

Equation (1) takes into account that the angular
expansion of the atomic flow with the flux density q0
obeys the cosine law [2] and the electron beam is
directed normally to the flat surface of the spot of area
πR2 and is practically not scattered. Hence, we have

Since i = ji /j ! 1, then j ≈ const, σi ≈ const, and i ≤
σin0R. Moreover, n0 = ji(1 + γi)/ev 0 = ij(1 + γi)/ev 0;
hence, Eq. (1) is independent of n0, i, and T (i.e., they
can take any values) and depends only on the discharge
voltage through σi(ϕp), v 0(ϕp), and γi(ϕp). Condition
(1) is valid at R ≥ 3d, where d is the thickness of a one-

jR
ev 0

σi 1 γi+( )
-----------------------,≈

i ϕ p ui ϕ–+( ) ϕ λT
jR
-------.+≈

ji σi j n x( ) xd

0

∞

∫ σi jn0R.≈≤
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dimensional plane cathode sheath with the cathode fall
voltage ϕp.

In contrast, when d/R ≥ 3, the beam is highly diverg-
ing, as in the case of a spherical diode. However, even
in this case, a condition of type (1) holds accurate to an
arbitrary factor or correction function. This is also true
for a deformed spot surface. In the general case, the rig-
orous derivation of the condition of type (1) is not an
easy matter.

Below, in the qualitative analysis, we use approxi-
mate condition (1), which leads to the following for-
mula for the HVAS minimum current

(3)

Obviously, the total discharge current is Jp = ωJ, where
ω is the number of autonomous microarcs and Jp is
determined by the load of the external electric circuit.

The literature data on the v 0 and γi values are frag-
mentary and inexact [3]. In a qualitative analysis, it can
be assumed that, for tungsten, σi ≈ 2 × 10–17 cm2; v 0 ≈
4 × 105 cm/s; and

(4)

where ϕp is in volts. Then, the HVAS minimum current
(in amperes) is

where the electron current density is in A/cm2.
If j(T, ϕp) = const, then the microarc current

decreases with increasing voltage: an increase in the
voltage ϕp from 103 to 5 × 104 V leads to a 24-fold
decrease in the current due to the increase in the rate of
cathode sputtering. At high voltages (ϕp > 6 × 103 V),
the regime of a zero electric field (i = i0 ≈ 1.7 × 10–3) is
feasible. In this regime, the current density j0 is deter-
mined by the Richardson–Dushman law, whereas the
current J and radius R exponentially decrease with the
voltage (Fig. 1). For example, they decrease from J ≈
290 A and R ≈ 0.15 cm at ϕp = 7230 V (in this case, T ≈
4000 K) to J ≈ 11 A and R ≈ 6.4 × 10–3 cm at ϕp = 8960 V
(in this case, T ≈ 5000 K). At i > i0, J and R decrease
much more rapidly due to the Schottky effect.

It should be stressed that the energy density released
at the anode under the action of the electron beam is
extremely high. Accordingly, we assume that special
measures are taken to prevent the effect of the anode
material vapor.

In the literature, the terms “current per spot” and
“threshold current” are sometimes used; in fact, these
terms refer to the currents equivalent to current (3).

J
π
j
---

ev 0

σi 1 γi+( )
-----------------------

2

.≈

γi

10
3– ϕ p

1 10
4– ϕ p+

-------------------------,≈

J
3.2 10

7× 1 10
4– ϕ p+( )

2

j 1 10
3– ϕ p+( )

2
-------------------------------------------------------,≈
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Even with allowance for the Schottky effect, the
HVAS is feasible only at a sufficiently high tempera-
ture. For example, if j > 600 A/cm2, then, at ϕ = 3 V, we
should have T > 2500 K.

The Schottky effect leads to a sophisticated interre-
lation among the HVAS parameters. For a Langmuir
cathode sheath, the electric field at the cathode (in volts
per centimeter) is

Hence, for tungsten (M ≈ 184 amu) at ∆ϕ ≈ 3.8 ×
10−4 , we have

(5)

Here, the current density is determined by the formula

(6)

where τ = ln( j / j0), j0 = 120T 2 exp(–11600ϕ0 /T), ϕ0 ≈
4.5 V, and

(7)

The values of ϑ  lie in the range 0 ≤ ϑ  ≤ 1.4715 (Fig. 2).
At ϑmax = 1.4715, we have τ = 4 and the current density
corresponding to the maximum value of ϑ  is equal to
j * ≈ 54.6j0; at ϑ   0, there are two asymptotic val-
ues: j  j0 and j  ∞. In the range ϑ  < ϑmax, there
are two solutions: j1 < j * and j2 > j *. At T = const, the
ϑ  value increases with increasing i – i0; in this case, we
have dj1/di > 0 and dj2/di < 0. Thus, as i and ϑ  increase,
both solutions tend to j *. As i – i0  0, the current
density j2 tends to infinity because of the decrease in the
work function and the transition to field emission
becomes feasible. Experimental observations of this
transition would be of fundamental importance; how-
ever, it is extremely difficult to observe.

One can eliminate T from Eqs. (1), (2), (4), and (7)
and obtain the dependence ϑ(i) at a fixed ϕp. As a

E 5700 ϕ pM( )1/4
j i i0–( )[ ] 1/2

.≈

E

∆ϕ 0.055ϕ p
1/2

j
1/4

i i0–( )1/4
.≈

ϑ τ τ /4–( ),exp=

ϑ T 640ϕ p
1/8

j0
1/4

i i0–( )1/4
.≈
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Fig. 1. Decimal logarithms of the (1) cathode spot tempera-
ture T [K], (2) arc current J0 [A], (3) electron current density

on the cathode j0 [A/cm2], and (4) spot radius R [cm] vs.
voltage ϕp in the regime of a zero electric field at the
cathode.
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result, any fixed ϕp value corresponds to certain definite
dispersions ∆i = i(ϕp) – i0 and ∆J(ϕp) characterizing the
ranges of the admissible i and J values. The dispersions
∆i and ∆J rapidly decrease with increasing voltage. For
example, when ϕp increases from 50 to 2000 V, ∆i
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0
τ

θ

Fig. 2. Parameter θ vs. τ = ln( j/j0).
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Fig. 3. Dispersion ∆i vs. voltage ϕp.
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Fig. 4. Dependence of τ = ln( j/j0) on the voltage ϕp at the
cathode spot temperatures T = (1) 3000, (2) 4000, (3) 5000,
(4) 5500, and (5) 6000 K.
decreases from 0.11 to 2.6 × 10–3, i.e., by a factor of
about 40 (see the dependence in Fig. 3, which was
obtained at λ ≈ 1.2 W/(cm K)). Figure 4 presents the
solutions to the set of Eqs. (1), (2), (4), and (7) at a fixed
temperature. As ϕp increases, the dispersion tends to
zero, the Schottky effect disappears, and the current
density tends to j0.

According to Eqs. (3) and (4), the HVAS evolution
can start from a single spot with a current of J ≈ 290 A
and radius of R ≈ 0.15 cm, corresponding to ϕp ≈ 7.2 ×
103 V and T ≈ 4000 K. As i increases, the number of
microarcs increases in an avalanche-like manner; the
voltage ϕp decreases; and the discharge current Jp = ωJ,
dispersion, and current density j = j0exp(t) increase.
Note that HVAS filamentation develops and Jp grows
within the original spot with an initial temperature of
4000 K, rather than on the cold cathode surface.

Obviously, Jp and ϕp vary rapidly in time. Conse-
quently, the filamentation dynamics strongly depends
on the intrinsic variable reactance of the microarcs.
Thus, the HVAS is also a very sophisticated phenome-
non, and an exact non-steady-state theory of the HVAS
is still lacking.

In conclusion, let us consider the problem of a field-
emission microarc with a current density of j ~
108 A/cm2, which, until now, has been regarded as
debatable.

As is the case of the HVAS, the low-voltage tung-
sten arc is feasible due to cathode sputtering. At the
sputtering threshold (e.g., at γi ≈ 10–4), the sputtered
atoms accumulate near the cathode due to ionization
and resonant charge transfer [1]. Equations (1) and (2)
also apply to a low-voltage arc at i ! 1. The main dis-
tinctive feature of the field-emission arc is the intense
Coulomb deceleration of the ions moving to the cath-
ode against the electron flow. As a result, the ions decel-
erate and the electron beam rapidly spreads out because
of scattering. Hence, the Langmuir model of the cath-
ode sheath is not applicable here. In this case, a
quasineutral cathode sheath described by the equation

(8)

can arise. Then, we have j(r) = σcdφ/dr, where σc is the
Coulomb conductivity of the plasma,

(9)

with Te being the electron temperature in eV. On the
other hand, we have j(r) ≈ jER2/r2 and Te(φ) ≈ (Tc +
2φ/3), where Tc is the cathode temperature and jE is the
emission current density. Hence, we obtain

(10)

∇ 2φ 4π j/νe ji/ν i–( ) 0= =

σc 13Te
3/2

,≈

jE 13 Tc
2
3
---φ+ 

 
3/2dφ

dr
------.≈
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It follows from this that, at φ  0 and r ~ R, the elec-
tric field at the cathode is

(11)

At Tc = 2500 K ≈ 0.2 eV, we have E ≈ 0.8jE; i.e., in
accordance with the Fowler–Nordheim theory, E ≈ 8 ×
107 V/cm at jE ≈ 108 A/cm2. After integrating Eq. (10),
we obtain

(12)

According to Eq. (1), at ϕp ! 103 V, we have

From here, we obtain ϕp ≈ 16.5 V (for jE ≈ 108 A/cm2)
and R ≈ 3.2 × 10–5 cm. Microspots with such dimen-
sions were mentioned in review [4] and monograph [5].

It is possible that the above estimates are not suffi-
ciently convincing. Nevertheless, the question of a
quasineutral cathode sheath is worthy of detailed and
comprehensive theoretical consideration.

To conclude, a qualitative analysis of the quasi-
steady HVAS can stimulate more comprehensive and
systematic theoretical and experimental studies aimed

dφ
dr
------

c

jE

13Tc
3/2

---------------.≈

jER 2.9ϕ p
5/2

.≈

jR 3.2 10
3× .≈
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at evaluating the fundamental processes in an arc dis-
charge.
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