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Abstract—We analyze within the continuous-time random walk approach, the kinetics of phase and population
relaxation in quantum systems induced by noise with the anomalously slowly decaying correlation function
P(t) ∝  (wt)–α, where 0 < α < 1. The relaxation kinetics is shown to be anomalously slow. Moreover, for α < 1,
in the limit of a short characteristic time of fluctuations w–1, the kinetics is independent of w. As α  1, the
relaxation regime changes from the static limit to narrowing of fluctuation. Simple analytical expressions are
obtained that describe the specific features of the kinetics. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The noise-induced relaxation in quantum systems is
a very important process observed in magnetic reso-
nance [1], quantum optics, nonlinear spectroscopy [2],
etc. These processes are often analyzed assuming con-
ventional stochastic properties of the noise: fast decay of
correlation functions and a short correlation time τc [1].
In the absence of memory, the relaxation is described
by very popular Bloch-type equations. The memory
effects are also discussed (within the Zwanzig projec-
tion operator approach [3]), but either in the lowest
orders in the fluctuating interaction V that induces the
relaxation or by approximate summation of terms of
different orders in V [4].

Recently, much attention was drawn to the pro-
cesses governed by noises with anomalously slowly
decaying correlation functions P(t) ∝  t–α with α < 1.
They are discussed in relation to spectroscopic studies
of quantum dots (see [5, 6] and references therein).
Similar problems are analyzed in the theory of stochas-
tic resonances [7].

Such anomalous processes cannot be properly
described by methods based on expansion in powers
of V. The goal of this paper is to analyze the corre-
sponding anomalous relaxation within the continuous-
time random walk approach (CTRWA) [8] with the use
of the recently derived non-Markovian stochastic Liou-
ville equation (SLE) [9], which enables one to describe
relaxation kinetics without the above-mentioned
approximations (expansions in V), although it assumes
the classical nature of the noise. In some physically rea-
sonable models, it allows description of the phase and
population relaxation kinetics in the analytical form

¶ The text was submitted by the author in English.
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even for multilevel systems. In particular, the kinetics is
shown to be strongly nonexponential.

2. GENERAL FORMULATION

We consider noise-induced relaxation in a quantum
system whose dynamical evolution is governed by the
Hamiltonian

(1)

where Hs is a term independent of time and V(t) is fluc-
tuating interaction, which models the effects of the
noise. The evolution is described by the density matrix
ρ(t) satisfying the Liouville equation (" = 1)

(2)

V(t)-fluctuations are assumed to be symmetric
(〈V〉  = 0) and to result from stochastic jumps between
the states |xν〉  in the (discrete or continuum) space
{xν} ≡ {x} with different V = Vν and H = Hν (i.e., differ-

ent  =  ≡ [Vν, …] and  = ):

(3)

We use the bracket notation |k〉  and |kk'〉 ≡ |k〉〈 k'| for

eigenstates of H (in the original space) and  (in the
Liouville space), respectively, and the notation |x〉  for
states in the {x}-space.

H t( ) Hs V t( ),+=

ρ̂ iĤ t( )ρ,–=

Ĥρ H ρ,[ ] Hρ ρH–[ ] .= =

V̂ V̂ν Ĥ Ĥν

9̂ xν| 〉V̂ν xν〈 | ,
ν
∑=

*̂ xν| 〉Ĥν xν〈 | .
ν
∑=

Ĥ
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The macroscopic evolution of the system under

study is determined by the evolution operator (t) in
the Liouville space averaged over V(t) fluctuations,

(4)

where (x, x' |t) is the averaged evolution operator and
Pe(x) is the equilibrium distribution in the {x} space.

Non-Markovian V(t) fluctuations are described with
the use of the CTRWA (which leads to the non-Mark-

ovian SLE [9] for (t)). It treats fluctuations as a

sequence of sudden changes of . The onset of any
particular change labeled by j is described by the matrix

 (in the {x} space) of the probabilities not to have
any change during time t and its derivative

These matrices are diagonal and independent of j:

except for

,

depending on the problem considered. For nonstation-
ary (n) and stationary (s) fluctuations [8],

respectively, where

is the matrix of average times of waiting for the
change [8].

In what follows, we operate mainly with Laplace
transforms, denoted as

5̂

ρ t( ) 5̂ t( )ρi,=

5̂ t( ) &̂ x xi t,( )Pe xi( ),
x xi,
∑=

&̂

&̂

V̂

P̂ j 1–

Ŵ j 1– t( ) dP̂ j 1– t( )
dt

---------------------.–=

P̂ j 1– t( ) P̂ t( ), Ŵ j 1– t( ) Ŵ t( ) dP̂ t( )
dt

--------------, j 1,>–= = =

P̂0 t( ) P̂i t( ), Ŵ0 t( ) Ŵi t( )≡ ≡ dP̂i t( )
dt

---------------–=

Ŵi t( ) Ŵn t( ) Ŵ t( ),= =

Ŵi t( ) Ŵs t( ) t̂w
1– τŴ τ( ),d

t

∞

∫= =

t̂w ττ Ŵ τ( )d

0

∞

∫=

Z̃ e( ) tZ t( )e et–d

0

∞

∫=
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for any function Z(t). In particular, noteworthy is the
relation

and suitable representations

(5)

in terms of a diagonal matrix (e) with

where  is a constant matrix and α ≤ 1 (see below).
Evolution in the {x}-space is governed by the jump

operator

where  is the nondiagonal matrix of jump probabili-
ties. This evolution results in relaxation to the equilib-
rium state |ex〉 , satisfying the equation

and is represented as

(see [9]). We note that (see Eq. (4))

(6)

The CTRWA leads to the non-Markovian SLE for

(x, xi |t) [9]. Solving this SLE yields [9]

(7)

where

(8)

In particular, in the case of n fluctuations (  = )

(9)

For s fluctuations (  = ),

Hereafter, for brevity, we omit the argument  of
all Laplace transforms unless is results in confusion.

P̂̃ j e( ) 1 Ŵ̃ j e( )–
e

-----------------------=

Ŵ̃ e( ) 1 Φ̂ e( )+[ ] 1–
,=

P̂̃ e( ) e e/Φ̂ e( )+[ ] 1–
=

Φ̂

Φ̂ e( )  e/ŵ( )α ,≈
e → 0

ŵ

+̂ 1 3̂,–=

3̂

+̂ŵα ex| 〉 0=

ex| 〉 Pe x( ) x| 〉 ,
x

∑=

ex〈 | x〈 |
x

∑=

5̂ t( ) ex〈 |&̂ ex| 〉 &̂〈 〉 .≡=

&̂

&̃
ˆ

P̂̃i Ω̂( ) Ω̂ 1– Φ̂ Ω̂( ) Φ̂ Ω̂( ) +̂+[ ]
1–
3̂Ŵ̃ i Ω̂( ),+=

+̂ 1 3̂,–=

Ω̂ e i*̂.+=

Ŵi Ŵ

&̃
ˆ

&̃
ˆ

n Ω̂ 1– Φ̂ Φ̂ +̂+( )
1–
.= =

Ŵi Ŵs

&̃
ˆ

Ω̂ 1–
&̃
ˆ

n+̂ Ω̂ t̂w( ) 1–
.–=

Ω̂
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3. USEFUL MODELS AND APPROACHES

3.1. Sudden Relaxation Model 

The sudden relaxation model (SRM) [9] assumes
sudden equilibration in the {x} space described by the
operator

(10)

where

For this ,

(11)

and

In model (10), we obtain

(12)

for any , where

(13)

and

3.2. Short Correlation Time Limit 

In practical applications, of special importance is
the short correlation time limit (SCTL) for V(t) fluctua-
tions, in which Eq. (12) can be markedly simplified. It
corresponds to large characteristic rates wc of the

dependence ( ) ≡ ( /wc):

wc @ ||V ||.
In this limit, the relaxation kinetics is described by the

first terms of the expansion of ( /wc) in small

/wc , because (e) is an increasing function of e with

Some important general conclusions, however, can be

made independently of the form of (Ω) (see below).

+̂ 1 e0| 〉 e0〈 |–( )Q̂
1–
,=

Q̂ 1 P0 x( ) x| 〉 x〈 | ,
x

∑–=

e0| 〉 P0 x( ) x| 〉 , e0〈 |
x

∑ x〈 | .
x

∑= =

+̂

ex| 〉 q̂ e0| 〉 ,=

q̂
Q̂ŵ α–

e0〈 |Q̂ŵ α– e0| 〉
------------------------------=

ex〈 | e0〈 | .=

5̃
ˆ

i P̂̃Qi〈 〉 q̂ 1– P̃Q〈 〉 1 q̂ 1– Ŵ̃Q〈 〉–[ ]
1–

Ŵ̃Qi〈 〉+=

Ŵ̃ i

P̂̃Qi

1 Ŵ̃Qi–

Ω̂
------------------, Ŵ̃Q 1 Φ̂Q̂+( ) 1–

= =

Ŵ̃Qi Ŵ̃ i Ŵ̃Q/Ŵ̃( ).=

Φ̂ Ω̂ Φ̂ Ω̂

Φ̂ Ω̂
Ω̂ Φ̂

Φ̂ e( ) 0.e → 0

Φ̂
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3.3. Models for Quantum Evolution 
and Fluctuations 

The obtained general results are conveniently illus-
trated with the quantum two-level model and the sto-
chastic two-state SRM for V(t)-fluctuations.

Quantum evolution of the two-level system is gov-
erned by the Hamiltonian (assumed to be a real matrix)

(14)

The two-state SRM suggests that fluctuations result
from jumps between two states (in the {x} space), for
example, |x+〉  and |x–〉 , whose kinetics is described by

(15)

Below, we consider two examples of these models.

1. Diagonal noise [10]:

and

(16)

2. Nondiagonal noise:

and, hence,

(17)

The first model describes dephasing, and the second
is useful for studying population relaxation.

In model (14), dephasing and population relaxation
are characterized by two functions.

1. The spectrum I(ω), which is taken in a form cor-
responding to Fourier-transformed free-induction-
decay (FTFID) experiments [11]:

(18)

2. The difference of level populations:

(19)

Hs

ωs

2
----- 1 0

0 1–
,=

9 9d 9n

9n 9d–

+| 〉
–| 〉

.=

+̂ 2 1 ex| 〉 ex〈 |–( ),=

ex| 〉 1
2
--- x+| 〉 x–| 〉+| 〉 .=

ωs 0, 9n 0,= =

9d ω0 x+| 〉 x+〈 | x–| 〉 x–〈 |–( ),=

Hν ±=
1
2
---ω0 +| 〉 +〈 | –| 〉 –〈 |–( ).±=

9d 0, 9n v x+| 〉 x+〈 | x–| 〉 x–〈 |–( ),= =

Hν ±= Hs v +| 〉 –〈 | –| 〉 +〈 |+( ).±=

I ω( ) 1
π
---Re s〈 |5̃

ˆ
iω( ) s| 〉 .=

N t( ) n〈 |5̂ t( ) n| 〉 .=
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In these two functions,

(20)

4. GENERAL RESULTS IN THE SCTL

Within the SCTL (||V ||/wc ! 1), particularly simple
results are obtained for ||Hs ||/wc ! 1. In the lowest order

in || ( /wc)|| ! 1,

(21)

(22)

This formula holds for any initial matrix  and, in
particular, for s fluctuations if

The more complicated SCTL case

can be analyzed by expanding  in powers of the
parameter

In particular, within the general two-level model
(Eq. (14)) with Vd = 0, in the second order in ξ, the diag-
onal and nondiagonal elements of ρ(t) are decoupled

and the corresponding elements of (t) are expressed
in terms of the universal function

(23)

(24)

where

(25)

s| 〉 1

2
------- +–| 〉 –+| 〉+| 〉 ,=

n| 〉 1

2
------- ++| 〉 ––| 〉–| 〉 .=

Φ̂ Ω̂

5̃
ˆ

5̃
ˆ

n
q̂ 1– Q̂Ω̂ 1– Φ̂ Ω̂( )〈 〉

q̂ 1– Q̂Φ̂ Ω̂( )〈 〉
-----------------------------------------≈ ≈

= 
ŵαΩ̂ 1– Φ̂ Ω̂( )〈 〉

ŵαΦ̂ Ω̂( )〈 〉
------------------------------------.

Ŵ̃ i

t̂w
1
wc

-----  ! 
1

Ω̂
---------.∼

Hs /wc 1≈

&̃
ˆ

ξ V / Hs  ! 1.=

5̂

Rk t( ) 1
2πi
-------- e

eiet

e ke/ Φ̂ e( )〈 〉+
----------------------------------,d

i∞–

i∞

∫=

µ〈 |5̂ t( ) µ| 〉 iωµt–( )Rkµ
t( )exp=

µ n +– –+, ,=( ),

ωµ µ〈 |Ĥs µ| 〉 , kn 2Re k+–( ),= =

k+– k–+* 1
2
---ωs

2– 9nq̂ 1– 1 Ŵ̃Q 2iωs( )–[ ] 9n〈 〉 .= =
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5. ANOMALOUS FLUCTUATIONS

The simplest model for anomalous fluctuations can
be written as [12]

(26)

where  is the matrix of fluctuation rates, diagonal in
the |x〉-basis. For simplicity,  is assumed to be inde-
pendent of x, i.e.,  ≡ w (this parameter can be associ-
ated with wc mentioned above). Model (26) describes
the anomalously slow decay of the matrix

(very long memory effects in the system [12]), for
which only the case of n fluctuations is physically sen-
sible.

In SCTL (22), model (26) yields the expression

(27)

which shows that (e) (and (t)) is independent of
the characteristic rate w. For α = 0 and α = 1, Eq. (27)
reproduces the static and fluctuation narrowing limits [1]:

and

respectively.
Of certain interest is the limit as α  1, in which

formula (27) predicts the Bloch-type exponential relax-
ation

(28)

controlled by the relaxation rate matrix

and accompanied by frequency shifts represented by

However, the matrices  and  (unlike those in the
conventional Bloch equation) are independent of the
characteristic rate w of V(t) fluctuations.

5.1. Dephasing for Diagonal Noise 

In model (16), the spectrum I(ω) can be obtained in
the general SRM (10),

(29)

Φ̂ e( ) e/ŵ( )α , 0 α 1,< <=

ŵ
ŵ

ŵ

Ŵ t( ) 1/t1 α+∝

5̃
ˆ

n e( ) Ω̂α 1–
e( )〈 〉 Ω̂ α

e( )〈 〉
1–
,=

Ω̂ e( ) e i*̂,+=

5̃
ˆ

n 5̂n

5̃
ˆ

n e( ) Ω̂ 1–
e( )〈 〉=

5̃
ˆ

n e( ) 1

Ω̂ e( )〈 〉
------------------,=

5̃
ˆ

n e( ) e iĤs α 1–( ) Ω̂ Ω̂( )ln〈 〉 e 0→+ +[ ] 1–
,≈

Ŵr α 1–( )Re Ω̂ Ω̂( )ln〈 〉 e 0→=

ĥ i α 1–( )Im Ω̂ Ω̂( )ln〈 〉 e 0→ .=

Ŵr ĥ

I ω( ) nα
ψ–

αψ+
α 1– ψ–

α 1– ψ+
α+

ψ–
α( )2 ψ+

α( )2
2ψ–

αψ+
α πα( )cos+ +

-------------------------------------------------------------------------------,=
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where

,

where θ(z) is the Heaviside step function and

In the two-state SRM (16),

(30)

where

(see also [6]). According to this formula, the anomalous
dephasing (unlike conventional dephasing [1]) leads to
broadening of I(ω) only in the region |ω| < ω0 and sin-
gular behavior of I(ω) at ω  ±ω0:

For α > αc ≈ 0.59 (αc satisfies the relation αc =
cos(παc/2)), the two-state-SRM formula also predicts
the occurrence of the central peak (at ω = 0) [6] of the
Lorenzian shape and width

whose intensity increases with increasing α – αc

(Fig. 1). At α ~ 1, the parameters of this peak are repro-
duced by Eq. (28), in which

The origin of the peak indicates the transition from
static broadening at α ! 1 to narrowing at α ~ 1 (see
Eq. (27)). For systems with complex spectra, this tran-
sition can, of course, be strongly smoothed. The behav-
ior of I(ω) is illustrated in Fig. 1 for different values of
the parameters of the model.

5.2. Dephasing for Nondiagonal Noise 

The model in Eq. (17) makes it possible to reveal
certain additional specific features of dephasing. We
restrict ourselves to analysis of the case where ||Hs || ~
ws * w and the most interesting part of the spectrum at
|ω| ~ ωs. Equations (23) and (24) show that the ele-

ψ±
β ω( ) ω 2Vd– βθ ω 2Vd–( )±[ ]〈 〉=

nα πα( )/π.sin=

I ω( )
nα

2ω0
---------θ y( ) y y 1– 2+ +

yα y α– 2 πα( )cos+ +
--------------------------------------------------,=

y
ω0 ω+
ω0 ω–
----------------=

I ω( ) 1

ω ω0±( )1 α–
-----------------------------.∼

wL

ω0 πα/2( )cos

α2 πα/2( )cos
2

–
--------------------------------------------,≈

I ω( ) 1
2π
------

πα/2( )ω0
1–tan

1 ω/wL( )2+
----------------------------------,≈

Ω̂ Ω̂ln〈 〉 e
π
2
---ω0.–=
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ments 〈µ|5(t)|µ〉 (µ = +–, –+), which describe phase
relaxation, are then given by

(31)

where

is the Mittag–Leffler function [12]. Therefore, for
|ω| ~ ωs ,

(32)

where

(33)

with

(34)

Formula (32) predicts singular behavior of I(ω) at
ω ~ ±ωs ,

and slow decrease of I(ω) with the increase of |ω ± ωs |,

µ〈 |5 t( ) µ| 〉 iωµt–( )Eα kµ wt( )α–[ ] ,exp=

Eα z–( ) 2πi( ) 1– yeyd

y zy1 α–+
----------------------

i∞–

i∞

∫=

I ω( ) I0 ωs ω+( ) I0 ωs ω–( ),+=

I0 ω( ) n0 φx x 1 α+ x 1 α– 2 x φxcos+ +( ) 1–
,sin=

x
ω

k+–
1/αω

-------------------, n0 π k+–
1/αω( )

–1
,==

φx
πα
2

-------=

+ x
πα/2( )sin

πα/2( )cos 2 α 1–– ωs/w+
-------------------------------------------------------- .arctansgn

I ω( ) 1

ω ωs± 1 α–
---------------------------,∼

I ω( ) 1

ω ωs± 1 α+
---------------------------.∼

0
–0.5 1.0

I

x
0 0.5

1

2

–1.0

1

2

3

4

Fig. 1. Spectrum I(x) = I(ω)ω0, where x = ω/ω0, calculated
in model (16) (using Eq. (29)) for different values of α =
5 (1), 7 (2), 8 (3), and 9 (4).
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In the limit ωs/w ! 1, we have

and, hence,

This implies that, for ωs/w ! 1, the spectrum I(ω) is
localized in the region |ω| < ωs and looks similar to I(ω)
for diagonal dephasing at α < αc . For ωs/w * 1, how-
ever, I(ω) is nonzero outside this region; moreover, in the
limit ωs/w @ 1, the spectrum I0(ω) becomes symmetric,
I0(ω) = I0(–ω), similarly to conventional spectra. 

It is worth noting that, for ωs/w ! 1, the functions
〈µ|5(t)|µ〉 and I(ω) are independent of w (in agreement
with Eq. (22)), because kµ ∝  (ωs/w)α and kµ(wt)α ∝
(ωst)α. In the opposite limit, however, kµ ~ w0 and,
therefore, the characteristic relaxation time behaves
as w–1.

5.3. Population Relaxation 

Specific features of the anomalous population relax-
ation can be analyzed with the model of nondiagonal
noise (17).

In particular, in the respective limits ||Hs || ~ ωs * w
and 1 – α ! 1, Eqs. (23), (24), and (28) imply that

(35)

where Eα(–x) is the Mittag–Leffler function defined
above and

φx παθ x( )≈

I0 ω( ) θ ω( ).∼

N t( ) Eα kn wt( )α–[ ] , N t( ) wα t–( ),exp= =

wα kn α 1( )w 1 α .–∼≈

0.1
5

N

τ
15

1

0 10 20

1

23
4

(a)

τ
1 10 100

(b)

Fig. 2. Population relaxation kinetics N(τ), where τ = E0t,
calculated with Eq. (36) (a) for large α and different r =
2v /ωs: α = 0.95, r = 1.0 (1); α = 0.95, r = 2.0 (2); α = 0.88,
r = 1.0 (3); α = 0.88, r = 2.0 (4); and (b) for small α = 0.3
(solid line) and α = 0.5 (dashed line) (r = 0.7). Straight lines
in (a) and (b) represent exponential (Eq. (35)) and t–α

dependences, respectively (in (a), they are shown by dashed
lines).
JOURNAL OF EXPERIMENTAL A
The first of these formulas predicts a very slow popula-
tion relaxation at

namely,

Similarly to I(ω), the function N(t) is in fact indepen-
dent of w in the limit ωs/w ! 1, because kn ∝  (ωs/w)α in
this case. In the opposite limit ωs/w > 1, the character-
istic time population relaxation behaves as w–1, because
kn is independent of w (as in the case of phase relax-
ation).

In the limit ||Hs ||, ||V || ! w, we obtain

(36)

where

(37)

and

Naturally, in the corresponding limits, expression (36)
reproduces formulas (35) with

and

(see Fig. 2). Outside these limits, N(t) can be evaluated
numerically (some results are shown in Fig. 2). In gen-
eral, N(t) is the oscillating function (of frequency ~E0)
with slowly decreasing average value and oscillation
amplitude: for E0t @ 1,

(except in the limit as α  1).

6. CONCLUSIONS

The above analysis of relaxation kinetics in quan-
tum systems induced by anomalous noise demonstrates
a number of specific features of this kinetics. They are
analyzed with the use of the two-level quantum model,
as an example, although the observed anomalous
effects can manifest themselves in more complicated
multilevel quantum systems. The proposed theoretical
method is quite suitable for analyzing these systems, a
study currently in progress.

Noteworthy is the fact that in some limits, the theory
predicts relaxation kinetics described by the Mittag–
Leffler function Eα[–(wt)α]. Following a number of
recent works (see [12]), this kinetics can be considered

t τ r> w 1– kn/w( )1/α ,=

N t( ) 1/tα .∝

N t( ) 1
2πi
-------- eeetωs

2
e

α 1– 4v 2Ωα 1– e( )+

ωs
2
e

α 4v 2Ωα e( )+
------------------------------------------------------,d

i∞–

i∞

∫=

Ωβ e( ) e 2iE0+( )β
e 2iE0–( )β+[ ] /2=

E0 v 2 ωs
2/4+ .=

kn 2α 1– πα/2( ) E0/w( )αcos≈

wα π 1 α–( )v 2/E0≈

N t( ) 1/tα∼
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a result of the anomalous Bloch equation with a frac-
tional time derivative. For brevity, we have not dis-
cussed the corresponding representations.

It is also interesting to note that, with increasing α,
the effects of the anomaly of fluctuations decrease but
still persist. To clarify them, we briefly consider the
model

in which 0 < α < 1, and w and ζ are constants with
ζ ! 1 (a small value of ζ ensures that W(t) > 0). Possi-
ble effects can be analyzed within the SCTL with the
use of Eqs. (22)–(24). For example, in the limit
||H ||/w ! 1, we obtain the formula

predicting the Bloch-type relaxation of both phase and
population, but with the rate

,

which depends on w as w–α and is, therefore, slower

than in the conventional Bloch equation (  ~ 1/w [1]).

Analysis also shows that, in the expression for ,
terms proportional to w(e/w)1 + α occur as well. They
lead to the inverse power-type asymptotic behavior of

observed, however, only at very long times t @ w–1.
In our brief analysis, we neglected the effect of a

possible natural width of lines corresponding to addi-
tional slow exponential relaxation in the system. It is

Φ e( ) e/w( ) ζ e/w( )1 α+ ,+=

5̃ e iĤs ζw α– i*̂( )
1 α+

iĤs( )1 α+
–〈 〉+ +[ ]

1–
,≈

Ŵr ζw α– Re i*̂( )
1 α+

iĤs( )1 α+
–〈 〉=

Ŵr

5̃

µ〈 | R̂ t( ) µ| 〉 1/t2 α+ ,∝
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clear that the developed method allows taking these
effects into account straightforwardly whenever
needed.
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Abstract—An analysis of general characteristics of light-induced forces is presented for arbitrary monochro-
matic masks in which optical pumping of atoms and spontaneous emission play an important role. Dependence
of regions of localization on detuning and ellipticity is determined for cyclic transitions of two types: J  J
with half-integer J and J  J + 1 with arbitrary J. Numerical simulations of atomic beam focusing with one-
and two-dimensional light masks show that spatial atom distributions with narrow features and high contrast
can be formed in dissipative masks. In particular, spherical aberration is substantially reduced when the pump-
ing field is tuned to a J  J + 1 transition with large J in lin ⊥ lin configuration as compared to nondissipative
masks. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Direct-deposition atom lithography is an effective
nanofabrication method using light-induced forces in
which a combination of coplanar light beams is used as
a mask for a well-collimated atomic beam impinging
on a substrate to create a film with modulated thickness
(see Fig. 1). The state of the art and potential applica-
tions of nanostructures created by this method were dis-
cussed in recent reviews [1, 2]. In the first successful
implementation of this technology, high spatial resolu-
tion (finer than 20 nm) was attained by focusing chro-
mium atoms in a standing wave, and effective applica-
tion was made of the resulting nanostructures [3]. Sub-
sequently, noncollinear two- and three-beam masks
were used to create periodic two-dimensional nano-
structures [4, 5]. It was demonstrated that gradients of
light intensity [3–5] and polarization [6] play a key role
in a light mask.

Two regimes of interaction between a light mask
and atoms should be distinguished. In the regime char-
acterized by coherent interaction between atoms and
far-off-resonant field [1, 2], the atomic beam is focused
by the adiabatic potential generated as a result of spa-
tially modulated shift of magnetic sublevels, whereas
spontaneous emission is negligible if the atom–field
interaction time is relatively short. The other (dissipa-
tive) regime in atom lithography, proposed in [7, 8],
combines focusing and cooling of atoms. In principle,
this combination can be used to fabricate smaller nano-
structures with enhanced contrast. In the latter regime,
the light-induced force is the resultant of conservative,
1063-7761/05/10104- $26.000584
dissipative, and random components associated with
the optical potential, optical friction, and diffusion in
the momentum space, respectively. It should be men-
tioned here that a detailed analysis of cooling and local-

 Atomic beam source

Two-dimensional
sub-Doppler

cooling

Light mask

Thin film of
deposited atoms

Substrate

k1 k2

kn

Fig. 1. Generic setup for direct-deposition atom litho-
graphy.
 © 2005 Pleiades Publishing, Inc.
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ization of atoms in nondegenerate states in standing
waves was presented in [9].

This paper deals with the effect of spontaneous
decay and optical pumping on the spatial distribution of
the light-induced force F0(r) acting on an atom at rest.
The present analysis is motivated by the following con-
siderations. First, since the atom–field interaction time
(on the order of 100 ns) exceeds the decay time of the
excited atomic state (on the order of 10 ns) in typical
experiments [1, 2], neither spontaneous emission nor
optical pumping can be ignored. Second, optical pump-
ing of atoms must be taken into account in calculating
the fluctuating force in the dissipative regime [7, 8]. An
analysis shows that the incoherent contribution to
atom-field interaction can substantially modify the
optical potential. Assuming that the interaction time is
much longer than the optical-pumping time, we obtain
compact analytical expressions for the steady-state
force F0(r) in several configurations of monochromatic
field for a wide range of the transition saturation param-
eter. We examine the spatial distribution of F0(r) and its
dependence on field invariants in one- and two-dimen-
sional configurations. Generally, the results obtained in
this study can be applied in both conservative and dis-
sipative regimes. In particular, we show that spherical
aberration is substantially reduced when the pumping
field is tuned to a J  J + 1 transition with large J in
the lin⊥ lin configuration. Numerical simulations of
atomic beam focusing based on a semiclassical (Lan-
gevin-equation) approach reveal that spatial atom dis-
tributions with narrow features and high contrast can be
formed by using certain one- and two-dimensional field
patterns.

2. MODEL

Consider a beam of atoms with angular momenta J0
and J1 in the ground and excited states, respectively.
The J0  J1 atomic transition is driven by the field of
s resonant monochromatic light beams with wavevec-
tors kn lying in a plane orthogonal to the atomic beam:

(1)

where the unit polarization vector e (e* · e = 1,
Im(e · e) = 0), the overall phase Φ, and the real ampli-
tude % of the overall field are functions of the position
vector r. The analysis that follows makes use of the sca-
lar field invariants

The former is proportional to the local intensity of the
field, and the latter carries information about its local

E r t,( ) iωt–( )E r( )exp c.c.,+=

E r( ) ikn r⋅( )Enexp
n 1=

s

∑ iΦ( )%e,exp= =

%2 E E*, (⋅ E E⋅ 2iΦ( ) e e⋅( )%2
.exp= = =
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phase and polarization. In particular, the degree of lin-
ear polarization can be represented as

The kinetics of atomic ensembles interacting with
resonant electromagnetic field are governed by quan-
tum master equations describing energy, momentum,
and angular-momentum transfer between atoms and
field. Momentum transfer is due to recoil effects in
mechanical atom–field interactions, which are gener-
ally weak since the photon momentum "k is small as
compared to the atomic momentum spread ∆p. There-
fore, the evolution of an atomic ensemble can follow at
least two essentially different regimes [10, 11]. In one
of these, the characteristic rate of relaxation of optically
pumped atoms to equilibrium with respect to internal
degrees of freedom can be estimated as

where γ is the rate of spontaneous decay of the excited
state and π1 is the normalized excited-state population.
Translational relaxation is much slower process, and
the corresponding rate is on the order of ("k/∆p)Γscatt ,
where Γscatt is the total rate of spontaneous and stimu-
lated photon scattering by atoms. Accordingly, the
kinetics of the translational degrees of freedom can be
adequately described in the semiclassical approxima-
tion, which leads to the concept of light-induced force
acting on atoms [10, 11]. To calculate the average force,
the atomic density matrix must be determined in the
zeroth-order approximation with respect to the recoil
parameter by solving exactly the generalized optical
Bloch equations. The required general solution is not
known for an atom moving with an arbitrary velocity in
an arbitrary field. However, an atom cooled to the Dop-
pler limit or a sub-Doppler temperature in transverse
directions can be treated as a slowly moving one [10];
i.e., it can be assumed that its displacement parallel to
the field within the optical pumping time is much
smaller than the period of spatial oscillation of the field:

In this approximation, the light-induced force can be
represented as a series

(2)

where F0(r) is the force on an atom at rest at a point r
that controls the focusing and localization of atoms.

The symmetric part of the tensor  is responsible for
momentum dissipation (optical friction). Note that

l e e⋅ ( (*⋅
%2

--------------------.= =

Γop γπ1,=

v Γop( ) 1–
 ! λ .

F r v,( ) F0 r( ) -̂ r( ) v …,+⋅+=

-̂
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both F0 and  can be expanded in terms of field gra-
dients [11]:

(3)

where gκ ⊕  gκ' denotes the tensor direct product. The
field gradients are defined by the expressions

(4)

Here, g1, g2, and g3 are the gradients of intensity, over-
all phase, and ellipticity, respectively, and the angle gra-
dients g4, g5, and g6 define the orientation of the polar-
ization ellipse relative to a reference coordinate system.
In particular, the angle φ defines the orientation of the
polarization ellipse relative to the axis perpendicular to
the polarization-ellipse plane. General properties of
these vectors in the regions of circular and linear polar-
ization of the overall field and in the neighborhoods of
its intensity peaks were analyzed in [12].

To find analytical expressions for the coefficients
Fκ , one must calculate the atomic density matrix in the
zeroth-order approximation with respect to the recoil
parameter and atom velocity, which can be done
approximately in certain special cases. In this study, we
analyze the steady-state regime in which the atom–field
interaction time τ is much longer than the optical pump-
ing time:

(5)

Compact analytical expressions for the density matrix
corresponding to arbitrary closed J0  J1 dipole tran-
sitions were found in [13]. These solutions are used
below to derive formulas for Fκ .

3. LIGHT-INDUCED FORCE 
ON AN ATOM AT REST

According to [13], the steady-state optical
coherences between magnetic sublevels of the ground
and excited states vanish for J  J – 1 transitions with
arbitrary J and for J  J transitions with arbitrary J
because of coherent population trapping. Therefore, the
steady-state light-induced force on atoms also vanishes
for transitions of these types. For the remaining J 

-̂

F0 "γ Fκgκ ,
κ 1=

4

∑=

-̂ " Xκκ 'gκ gκ ' Xκκ 'gκ gκ '⊗
κ κ ', 5=

6

∑+⊗
κ κ ', 1=

4

∑ ,=

g1 ∂r %, g2ln ∂rΦ, g3 ∂rl,= = =

g4 ∂rφ, g5 ∂rα , g6 ∂rβ.= = =

Γopτ  @ 1.
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J + 1 transitions with arbitrary J and J  J with half-
integer J,

(6)

where π1 is the total excited-state population,  = δ/γ is
the normalized detuning, and the local saturation
parameter

is defined so that its value is 1/2 when δ = 0 and I is
equal to the saturation intensity1 

The parameters α0, α1, and A depend only on the local
ellipticity. Making use of results reported in [15], we
obtain the following expressions.

For J  J + 1 transitions,

where Pn(x) denotes Legendre polynomials, ν = 0 for
integer J, and ν = 1 for half-integer J.

For J  J transitions with half-integer J,

1 We use the standard definition of saturation parameter (e.g.,
see [14]).
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The force F0 is the resultant of the scattering force (also
called radiation pressure force)

and the dipole (or gradient) force

The scattering force arises from stimulated absorption
of a photon by an atom followed by spontaneous emis-
sion and is an even function of detuning. The dipole
force arises from stimulated coherent emission and is

an odd function of detuning. When | | ≥ 10, the latter
contribution to F0 plays a dominant role; i.e., it is of pri-
mary interest for atom lithography. However, effects
due to the scattering force are also considered below.

4. DIPOLE FORCE

Expressions (6) for the coefficients in the expansion
of F0 in terms of field gradients can be used to represent
the dipole force as the product of the excited-state pop-
ulation π1(r) with the gradient of a dimensionless scalar
function Ψ(r):

. (7)

Even though the dipole force is not conservative in the
general case, the function Ψ is analogous to potential in
many respects. For example, every point where Fdip = 0
is either minimum or maximum point of Ψ. The zeros
of π1(r) are not associated with any additional zeros
of the dipole force. This can be shown by using formu-
las (8) and (10) for Ψ given below. In blue- and red-
detuned light fields, the dipole force drives atoms
toward the minimum and maximum points of Ψ,
respectively. When Sα1/α0 @ 1 (π1 ≈ 1/2), the dipole
force behaves as a conservative one, and the corre-
sponding potential is proportional to Ψ.

4.1. J  J Transitions with Half-Integer J 

For these transitions, the function Ψ(r) can be rep-
resented as

(8)

The corresponding dipole force never saturates in the
regions where the light field is circularly polarized
(< = 0) even if the light intensity is high. In these
regions,

where the effective potential is [16]

(9)

Fscatt "γ F2g2 F4g4+( )=

Fdip "γ F1g1 F3g3+( ).=

δ̃
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The physical explanation for the low saturation at the
points of circular polarization of the total field (e.g., σ+)
lies in the fact that all atoms are pumped into a dark
state |J0, m = J0〉 . Accordingly, the light-induced force
F0 vanishes at these points (the potential Veff, 1 reaches a
minimum) in any configuration of blue-detuned light
field.

When < ≠ 0, the dipole force Fdip is characterized as
follows. When Sα1/α0 @ 1, it is associated with the
optical potential

When S & 1, the dipole force is not conservative, and
the points where Fdip = 0 are determined to a lesser
degree by the spatial distribution of I, being mainly
associated with the extrema of the invariant

Moreover, the atoms interacting with a blue-detuned
mask are localized around the field nodes, where E = 0.
Therefore, the setup for atom lithography with δ > 0 can
be designed so that the atoms interacting with an arbi-
trary light mask are mainly attracted to the points of cir-
cular polarization and field nodes. Even though addi-
tional regions of localization may appear around the
minimum points of |(|, numerical simulations of spe-
cific field configurations have demonstrated that these
regions play an insignificant role in forming the spatial
distribution of deposited atoms. The distribution of
atoms interacting with a red-detuned mask on the sub-
strate is completely determined by the maxima of |(|.
In the general case, the regions of their localization do
not coincide with those of linear polarization or maxi-
mum intensity, even though coincidence of this kind is
characteristic of some field configurations used in cur-
rent experiments [12].

4.2. J  J + 1 Transitions 

In this case, the function Ψ in (7) is

(10)

where < 2J + 1P2J + 1(<–1) is an even function of < that
reaches a maximum when the field is circularly polar-
ized (< = 0) and monotonically decreases as |< |  1.
When S @ 1, the potential associated with the dipole
force Fdip is

In the general case, the dipole force has both potential
and solenoidal components. However, computations
show that the latter has a negligible effect on the local-
ization of atoms interacting with a light mask.
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For a J  J + 1 transition, the regions of localiza-
tion are determined by the combination of the distribu-
tions of I and |(|. Generally, these regions are distinct
both from those of circular (or linear) polarization and
from the nodes (or antinodes) of light intensity and can
be found only by analyzing the functions %(r), <(r),
and Ψ(r) simultaneously.

5. RADIATION PRESSURE FORCE

The radiation pressure force Fscatt plays an important
role in light masks, even though it is weaker by a factor
of γ/|δ| as compared to Fdip in far-off-resonant fields,
because the spatial distributions of these components of
F0 are essentially different in D-dimensional fields con-
figuration with D > 1. For example, Fscatt vanishes at
every point where the field is circularly polarized; i.e.,
it varies as C × δr with the distance δr from the point
(δr  0), where C is a constant vector [12]. The char-
acteristics of this force are discussed here for transi-
tions of the two types considered above.

5.1. J  J Transitions with Half-Integer J 

In this case, the radiation pressure force is

(11)

In the neighborhood of some point r0, the invariant (
at a point r can be represented as a decomposition in
terms δr = r – r0 up to second-order terms:

where (0 ≡ ((r0) and  is a symmetric tensor.
Accordingly,

where the first and second terms are potential and sole-
noidal vectors, respectively. The difference between the

conservative contributions of  and  manifests
itself in the difference of their respective effects on the
atom averaged over an arbitrary trajectory of length l,

Generally, the averaged dipole force 〈Fdip〉 l vanishes in
periodic and quasiperiodic symmetric field configura-
tions in the limit of l @ λ. Conversely, the effect of the
mean radiation pressure force tends to increase with l,
as in masks with unbalanced intensities of light beams
(the simplest one-dimensional example is a traveling
plane wave). This nonvanishing force drives atoms out

Fscatt

"γπ1H

4 2J 1+( )%4
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------------------------------------,=
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of the region of atom–field interaction. The solenoidal

component of  also gives rise to drift on length
scales l @ λ. It should also be noted that the dipole force
can be “rectified” (〈Fdip〉 l ≠ 0) in certain configurations,
which are generally not used as light masks. An exam-
ple of one-dimensional field configuration of this kind
was given in [15].

5.2. J  J + 1 Transitions 

For these transitions, the radiation pressure force is

(12)

Here, G is a solenoidal vector:

This additional contribution to the solenoidal compo-
nent of Fscatt is significant in the regions of circular field
polarization.

6. ONE-DIMENSIONAL FIELD 
CONFIGURATIONS

Symmetric one-dimensional field configurations
giving rise to light-induced forces with periodic poten-
tials are of special interest for atom lithography. Every
such configuration is a combination of two light beams
of equal amplitude %s counterpropagating along the z
axis. They can be parameterized by the angle θ between
the semimajor axes of the polarization ellipses of the
beams and their respective ellipticity angles ε1 and ε2.
By definition of the ellipticity angle, | | is the ratio
of semiminor to semimajor axis of the polarization
ellipse and the sign of ε is determined by the helicity of
the wave. Thus, the configurations considered in this
section are characterized by certain specific relations
between ε1, θ, and ε2. They constitute a broad class of
one-dimensional potentials depending on the light
beam polarizations and the type of atomic transition.
These configurations have common features: first,
localization regions correspond to maximum or mini-
mum points of the function Ψ considered above; sec-
ond, in far-off-resonant fields with δ > 0 and δ < 0,
atoms are attracted to minimum and maximum points
of the pseudopotential Ψ, respectively.

6.1. Simple One-Dimensional Configurations 

6.1.1. Elliptically polarized standing wave. In
this case, both overall phase and polarization are spa-
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tially uniform, and

where S0 is the saturation parameter for an individual
light beam. The radiation pressure force is

(13)

The corresponding expression for optical potential is
characteristic of a two-level atom in a nondegenerate
state interacting with a standing wave [9]. However, the
effective saturation parameter Seff = Sα1/α0 depends
both on the type of transition and on the field polariza-
tion (see Fig. 2). The focusing effect of a standing wave
is well known. In blue- and red-detuned fields, atoms
are attracted to intensity nodes and antinodes, respec-
tively.

6.1.2. lin^lin configuration. This configuration is
the superposition of counterpropagating linearly polar-

S z( ) 2S0 1 2kz( )cos+[ ] ,=

F z( ) ∂zU z( ),–=

U z( ) "δ
2

------ 1
2α1

α0
---------S z( )+ .ln=

0.8

0.6

0.4

0.2

–0.75 –0.50 –0.25 0 0.25 0.50 0.75
ε

1.0

Fig. 2. Effective saturation parameter (in arbitrary units) vs.
ellipticity angle in a standing wave for J  J + 1 transi-
tions with J = 0, 1, 2, 3, and 4 (solid curves, top to bottom)
and for J  J transitions with J = 1/2, 3/2, …, 9/2
(dashed curves, top to bottom).
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ized traveling waves with mutually orthogonal polar-
izations. Both phase and intensity gradients vanish, the
orientations of the major axes of the polarization ellipse
remain invariant, ellipticity varies as < = cos(2kz), and
the dipole force is

(14)

The results shown in Fig. 3 for several atomic tran-
sitions demonstrate qualitative difference in spatial dis-
tribution of the dipole force calculated by using (14)
between transitions of two types. First, the forces calcu-
lated for J  J + 1 transitions and J  J transitions
with half-integer J have opposite signs. Furthermore,
the force is anharmonic in the neighborhoods of the
points of circular polarization (where < = cos2ε  0)
for J  J transitions with half-integer J, except for
J = 1/2, because the force scales with ∝ < 2J according
to (9). For J  J + 1 transitions, the spatial distribu-
tion of the force tends to have a triangular shape; i.e.,
the domains of linear (harmonic) behavior of the force
around the points where < = 0 become wider. This ten-
dency is particularly pronounced when S @ 1, in which
case π1 ≈ 1/2 and the corresponding optical potential
can be approximately expressed as

Spherical aberration should be substantially weaker for
J  J + 1 transitions with large J, when atoms are
localized around points of circular polarization in
masks with δ < 0, as compared to transitions with small
J or standing-wave optical potentials. When S @ 1, the
difference between the two types of transitions also
manifests itself in the potential depth, which
approaches a limit that does not exceed "δln2/2 for
J  J + 1 transitions and increases as lnS for J  J

F z( ) ∂zV 2kzcos( ),–=

V <( ) "δ
π1 1 A/α1–( )

<
------------------------------- <.d∫=

V <( ) "δ
2 2J 1+( )
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Fig. 3. Dipole force (in units of "kδ) vs. kz in lin⊥ lin configuration: (a) J  J + 1 transitions with J = 1/2 (solid curve), 1 (dashed
curve), and 4 (dash–dot curve); (b) J  J transitions with J = 1/2 (solid curve), 3/2 (dashed curve), and 9/2 (dash–dot curve).
Saturation parameter is S0 = 1 for an individual light beam.
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Fig. 4. Dipole force (in units of "kδ) vs. kz in ε ⊥  ε configuration: (a) J  J + 1 transitions with J = 1/2 (solid curve), 1 (dashed
curve), and 4 (dash–dot curve); (b) J  J transitions with J = 1/2 (solid curve), 3/2 (dashed curve), and 9/2 (dash–dot curve).
Saturation parameter is S0 = 1 for an individual light beam, and ellipticity angle is ε = π/16.
transitions (in particular, its value is "δln(1 + 3S/2)/4
for the 1/2  1/2 transition).

6.2. One-Dimensional Configurations 
of Elliptically Polarized Waves 

Next, we consider field distributions characterized
by either two or four nonzero gradients gi . We single
out three classes of symmetric periodic optical poten-
tials parameterized by ε1, θ, and ε2 for which the light-
induced force averaged over λ vanishes.

Two of these classes correspond to ε1 = –ε2 = ε and
the combination of ε1 = ε2 = ε with θ = π/2. Hereinafter,
they are referred to as the ε–θ–  and ε ⊥  ε configura-
tions, respectively. The third one is the class of ellipti-
cally polarized standing waves, for which ε1 = ε2 = ε
and θ = 0.

6.2.1. e ^ e configuration. In this case, the scalar
field invariants are

(15)

Since the gradients of phase and angle φ vanish, so
therefore does the radiation pressure force. The inten-
sity and ellipticity of the overall field are nonuniform if
ε ≠ 0. According to Eq. (15), the intensity extremum
points, where I ~ %2, correlate with the points of circu-
lar polarization, where

At these points, it holds that 2kz = π/2(2n + 1) and the
function Ψ reaches its maxima and minima for J 
J + 1 and J  J transitions, respectively. The spatial
distributions of the corresponding dipole forces illus-
trated by Fig. 4 have minima of two types. The potential
distributions arising in the low-intensity regions when
blue-detuned waves are used to pump a J  J + 1
transition are analogous to those in the high-intensity

ε

%2
2%s

2
1 2ε 2kzsinsin–[ ] ,=

( 2%s
2

2ε 2kz.coscos=

l 2ε 2kz/ 1 2ε 2kzsinsin–[ ]coscos 0.= =
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regions of a red-detuned mask in the case of a J  J
transition.

6.2.2. e–q–  configuration. In this case, the field
invariants are

(16)

Accordingly, all of the four gradients gκ (κ = 1, …, 4)
do not vanish in the general case. The extremum points
of intensity correlate with the points of linear polariza-
tion, where < = 1. The function Ψ reaches its maxima at
these points for J  J transitions, while its minima
are reached at the intensity minimum points for J 
J + 1 transitions. However, Ψ reaches either minima or
maxima at the maximum points of I, depending on the
angular momentum, θ, and ε. When the ellipticity angle
is small and θ ≈ π/2, the potential distribution has min-
ima of two types (see Fig. 5) located at the intensity
maximum points for J  J + 1 when δ < 0 and at the
intensity minimum points for J  J when δ > 0. Since
the gradients of phase and angle φ do not vanish in the
general case (ε ≠ 0, ±π/4 and θ ≠ 0), radiation pressure
contributes to the optical potential, vanishing at the
points of linear polarization. This contribution substan-
tially modifies the resulting optical potential when
detuning is relatively small (|δ| ≈ γ).

6.3. Numerical Results 

We present the numerical results obtained in simu-
lations of atomic beam focusing in lin⊥ lin configura-
tion by the semiclassical Monte Carlo method intro-
duced into the theory of laser cooling in [17]. As noted
above, the spatial distribution of the dipole force F0 act-
ing on an atom at rest via J  J + 1 transitions is well
approximated by a triangle (Fig. 3a). Thus, the interval
where the optical potential has a parabolic profile wid-
ens with increasing J. This tendency should lead to a
substantial reduction of spherical aberration.

e

%2
2%s

2
1 θ 2ε 2kzcoscoscos+[ ] ,=

( 4%s
2 θcos 2ε 2kz i θ 2εsinsin+coscos+[ ] .=
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(a) 1/2  3/2 transitions; (b) 4  5 transitions. Saturation parameter is S0 = 0.158 for an individual light beam, and detuning
is δ = –5γ.
In addition to F0, we take into account optical fric-
tion (as a correction of first order in velocity) and diffu-
sion in momentum space. It is important that the rela-
tive effects of these dissipative and random forces as
compared to F0 depend on control parameters (detun-
ing, intensity, atom–field interaction time, incident
atomic-beam divergence, etc.), field configuration, and
type of atomic transition. The results of numerical sim-
ulations show that these effects are negligible.

Let us discuss the focusing effect on a beam of
cesium atoms caused by fields tuned to the 1/2  3/2
and 4  5 transitions. Figure 6 shows the distribu-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tions of the optical potential V(z), the friction coeffi-
cient ξ(z), and the diffusion coefficient D(z). Steep gra-
dients of ξ(z) and D(z) are observed when the angular
momentum is large (4  5 transition). Note that these
coefficients are small in the neighborhoods of potential
minima, where atoms are focused. Accordingly, their
effect on the spatial distribution of atoms in these
neighborhoods is weak.

The atomic beams used in our simulations were
assumed to have a Gaussian initial momentum distribu-
tion with ∆p⊥  = 10"k. Figure 7 shows the spatial distri-
bution of atoms after their interaction with the mask.
SICS      Vol. 101      No. 4      2005
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tions. Saturation parameter is S0 = 0.158 for an individual light beam, and detuning is δ = –5γ. Interaction time corresponds to a
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Note that the observed narrow peaks, with half-width at
half-maximum ∆x = 0.051λ in Fig. 7a and ∆x = 0.038λ
in Fig. 7b, are characteristic of the thick-lens regime.
The interaction time was set equal to a quarter of the
oscillation period at a minimum point of V(z): tint =
49.16γ–1 and 41.37γ–1 for the 1/2  3/2 and 4  5
transitions, respectively. The difference in ∆x is prima-
rily explained by difference between the spatial distri-
butions of the dissipative and random forces corre-
sponding to transitions of different types (Fig. 6). Fig-
ure 7 demonstrates that the pedestal normalized to its
initial value for the 4  5 transition, 5 = 0.19, is sub-
stantially lower than that for the 1/2  3/2 transition,
5 = 0.35, in agreement with the expected substantial
reduction of spherical aberration for the 4  5 tran-
sition.

7. TWO-DIMENSIONAL FIELD 
CONFIGURATIONS

We have also examined certain two-dimensional
field configurations formed by combining three or four
light beams. In the general case, a wide diversity of
relations between the spatial distributions of I, <, and Ψ
is observed. Therefore, to predict possible distributions
of deposited atoms, detailed preliminary analysis is
required of the fringe patterns of I(r) and <(r) for J 
J transitions (with half-integer J) and of the more com-
plicated function Ψ(r) for J  J + 1 transitions. As an
example, we consider the symmetric combination of
three light beams with ε1 = ε2 = ε3 = ε and equal ampli-
tudes %s [12] (see Fig. 8).

In this case,

%2 %s
2

= 3 C Z*Z 3–( )+[ ] , Z ikn r⋅( ),exp
n 1=

3

∑=

( %s
2

1 2C+( ) Z2 2Z*–( ) 2D Z2 3Z*–( )–[ ] ,=

C ei e j*⋅( )i j≠ , D  =  e i e j ⋅( ) i j ≠ ,=                                
JOURNAL OF EXPERIMENTAL A
where

is the polarization vector of the ith beam, and

.

Note that the condition

implies that C = 0 and the overall field intensity is uni-
form. Therefore, when the configuration parameters are
close to ε0 and θ0, the distributions of Ψ(r) and I(r) are
substantially different, and Ψ(r) and <(r) are strongly
correlated. Conversely, as ε  0 and θ  0, strong
correlation between 

 

I

 

 and 

 

Ψ

 

 is predicted. However, dis-
tinct distributions of 

 

I

 

, 

 

<

 

, and 

 

Ψ

 

 extremum points are
observed for intermediate values of these parameters.

Figures 9a–9c show, respectively, the distributions

of 

 

I

 

, 

 

<

 

, and 

 

Ψ

 

 obtained for  = 2 and  = 1/
in the case when 

 

Ψ

 

 is calculated for the 1  2 transi-
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Fig. 8.

 
 (a) Three-beam configuration. (b) Polarization

ellipse of an individual beam (  ε   is ellipticity angle).  
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Fig. 9. Contour plots of (a) intensity I(r), (b) ellipticity l(r), and (c) pseudopotential Ψ(r). Gray and black areas correspond to peaks
and troughs, respectively.
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2π/ 3

2π/30
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tion. Note that this distribution weakly depends on J.
The contour plots are restricted to the region

,

which corresponds to an elementary cell of this field
configuration. Figure 9 demonstrates that the maxima
of Ψ lie between extremum points of I and <, whereas
the minimum points of Ψ correlate with the maximum
points of <.

7.1. Numerical Results 

We present the numerical results obtained by simu-
lating the formation of periodic fine structures on the
substrate in the three-beam configuration considered
above. As in our one-dimensional simulations, we use
the semiclassical Monte Carlo method proposed
in [17], taking into account the corrections to the force
F0 acting on an atom at rest due to optical friction,

,

and the random force Frand responsible for diffusion in
momentum space. Thus, we have the dimensionless
Langevin equation

(17)

where the dimensionless time τ = t/ttrans , momentum
P = p/p0, force f0 = F0ttrans/p0, and other variables are

defined by using p0 =  and ttrans = 1/  as
momentum and time scales, respectively. Since the
recoil energy is

,

we have ttrans @ 1/γ; i.e., the translational relaxation
time determines the time scale of evolution of an
atomic ensemble.

kx 2π/3, ky 2π/ 3≤≤

Fdiss -̂ r( ) v⋅=

dP
dτ
------- f0 fdiss f rand,+ +=

"γm 2ωrecγ

"ωrec
"k( )2

2m
-------------=
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To compare the field distribution illustrated by

Fig. 9 (with  = 2 and  = 1/  for the 1  2
transition) with the corresponding distributions of
atoms, we assume that the incident atomic beam is uni-
form within the elementary cell mentioned above.
Other parameters are as follows: S0 = 0.25 for each light

beam;  = –10 or 10; and the spread of the transverse-
velocity distribution in the atomic beam is

which implies sub-Doppler cooling of the beam before
its interaction with the mask. The ratio of the mean lon-
gitudinal velocity 〈v z〉  in the atomic beam to the effec-
tive radius r0 of an individual light beam, tint = r0/〈v z〉 ,
determines the mean transit time through the mask,
which plays an important role in simulations. We also
used a Maxwellian longitudinal-velocity distribution.
The mean transit time was tint = 0.6ttrans . Note that this
tint can be implemented in experiments, and the corre-
sponding force F0 will have a significant effect on the
transverse distribution of atoms in a beam. Simulations
show that its effect is insignificant when tint ~ 0.1ttrans ,
and the cross-sectional distribution of atoms in the
beam remains almost uniform after its interaction with
the mask. In the opposite limit of tint @ ttrans , the trans-
verse distribution of atoms in the beam evolves into a
quasi-steady state and a dissipative optical lattice is
thus created [18]. The effect of Fdiss and Frand on this
process is substantial, and the contribution of these
forces must be taken into account.

Figures 10 and 11 show the results of numerical
simulations of thin films of atoms deposited on a sub-

strate obtained for  = –10 and 10, respectively.

The contour plots show atom distributions on the
substrate in the domain of |kx| ≤ 1.5 × 2π/3 and |ky| ≤
1.5 × 2π/  (larger than the elementary cell). These
distributions result from the interaction between the

εtan θtan 2

δ̃

∆v ⊥( )2〈 〉 0.1"γ/m,=

δ̃

3
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Fig. 10. Distribution of atoms on the substrate for the 1  2 transition: (a) contour plot; (b) normalized profile in cross section A;
(c) normalized profile in cross section B. Saturation parameter is S0 = 0.25, mean interaction time is tint = 0.6ttrans, and detuning is
δ = –10γ.
light mask and atoms uniformly distributed within an
elementary cell (rectangles with dashed boundaries in
Figs. 10 and 11) before the interaction. The larger rect-
angular domain was partitioned into a 100 × 173 grid,
and the resulting atom distributions were obtained by
counting the atoms in each grid cell at the final stage of
the interaction. The total number of atoms was 106 and
105 in the simulations illustrated by Figs. 10 and 11,
respectively. Figures 10 and 11 also show the cross-sec-
tional distributions of atoms along the mutually perpen-
dicular lines A and B. Solid and dashed profiles repre-
sent, respectively, the results obtained by taking into
account the forces fdiss and frand and by simulating only
the effect of f0 (Fig. 10). It is clear that the contributions
of the dissipative and random forces to the formation of
the resulting overall patterns are negligible within the
atom–field interaction times used in these simulations.
However, the effects of these forces on certain features
are quite obvious: frand reduces the peak heights,
whereas both peak widths and pedestals remain
JOURNAL OF EXPERIMENTAL A
unchanged. The light-induced force f0 plays a dominant
role in redistributing atoms in the neighborhoods of

maximum and minimum points of Ψ when  < 0

(Fig. 10) and  > 0 (Fig. 11), respectively.

We also varied both the field configuration parame-

ters , S0, and t0 and the parameters %s, i and  of indi-
vidual light beams. The atom distributions obtained by

simulating atom–field interactions for | | < 1 do not
exhibit any spatial pattern. This important observation
implies that the radiation pressure force cannot be used
to create patterned nanostructures in two-dimensional
masks. However, this force (as well as the rectified
dipole force) manifests itself in violations of symmetry
in field configurations. For example, a lateral shift of
the atomic ensemble as a whole is observed after its
interaction with a mask characterized by unbalanced

 or . Variation of S or t0 > 0.5t0 does not result in

δ̃
δ̃

δ̃ ε̃i

δ̃

%̃i ε̃i
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Fig. 11. Distribution of atoms on the substrate for the 1  2 transition: (a) contour plot; (b) normalized profile in cross section
A; (c) normalized profile in cross section B. Saturation parameter is S0 = 0.25, mean interaction time is tint = 0.6ttrans, and detuning
is δ = 10γ.
the appearance or disappearance of any regions of
localization, but can substantially modify the atom con-
centrations in the regions described above.

8. CONCLUSIONS

We have derived and analyzed expressions for the
light-induced force acting on an atom at rest in a mono-
chromatic light mask under steady-state conditions of
optical pumping. The analysis presented in this study
can be applied to determine the regions where atoms
concentrate on the substrate after their interaction with
a mask with arbitrary configuration and intensities of
the constituent light beams.

The results obtained apply to closed cyclic transi-
tions with arbitrary J in a wide range of mask parame-
ters (detuning δ, saturation parameter S, lateral size r0,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and others). These results can also be applied to three-
dimensional field configurations [19].
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Abstract—The influence of many-particle effects on the shape and values of the double differential cross sec-
tion for the resonant inelastic scattering of a linearly polarized X-ray photon by a free atom near the K and KL23
ionization thresholds has been theoretically analyzed for the neon atom. The calculations have been performed
using the nonrelativistic Hartree–Fock approximation for single-electron wavefunctions and the dipole approx-
imation for the anomalous dispersion component of the cross section. The analytical structure of the contact
part of the scattering cross section has been obtained beyond the dipole approximation. The effects of the radial
relaxation of electron shells, spin–orbit and multiplet splitting, and configuration interaction in the doubly
excited atomic states, as well as the Auger and radiative decays of the produced vacancies, are taken into
account. The nature and role of the effect of correlation amplitudes, which is responsible for the appearance of
the nonzero amplitudes of nonradiative transitions between intermediate and final single-electron states of the
same symmetry that are obtained in different Hartree–Fock fields, have been analyzed also. The calculations
are predictive and, for an incident-photon energy of 5.41 keV, agree well with experimental results for the Kα
X-ray emission spectrum of the neon atom. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Fast development of the technique for obtaining
X-ray synchrotron radiation [1] makes it possible to
study experimentally and theoretically the double dif-
ferential cross section for the inelastic scattering of a
photon by a free atom in the close vicinity (~±10 eV) of
the ionization thresholds of its deep shells. The double
differential cross section is a highly informative three-
dimensional (cross section, incident-photon energy,
and scattered-photon energy) quantum-mechanical
observable for this fundamental process in microcosm.
This process is almost one order of magnitude less
intense than the elastic (Rayleigh) photon–atom scat-
tering that occurs on atomic electrons [2, 3]. However,
as compared to Rayleigh scattering, the resonant inelas-
tic photon–atom scattering (Landsberg and Mandel-
stam [4], Raman [5], and Compton [6]) carries much
more information on the many-electron system under
study including that on the nature and role of many-par-
ticle effects and their quantum interference.

In theoretical analysis in the single available inves-
tigation for a free atom [7] (measurement and calcula-
tion of three-dimensional Lα, β X-ray emission spectra
of the xenon atom), as well as in pioneering theoretical
works by Åberg and Tulkki (the resonant inelastic
scattering of an X-ray photon near the K-shell ioniza-
tion threshold of neon, argon, and manganese, see
review [8]), a wide hierarchy of many-particle effects
was ignored, in particular, the radial relaxation of elec-
tron shells in the fields of formed core vacancies and the
multiple excitation/ionization of the atomic ground
1063-7761/05/10104- $26.000597
state, which accompany and substantially determine
the photon–atom interaction process [9].

Moreover, in addition to the problem of the inclu-
sion of many-particle effects, a number of other analyti-
cal aspects of the quantum theory of the process require
additional investigations. In particular, it is necessary to
reveal the analytical structure of the contact part of the
double differential cross section for inelastic scattering
beyond the dipole approximation for describing the
process even in the X-ray energy ranges of the incident
and scattered photons.

In this work, considering the neon atom as an exam-
ple (with nuclear charge number Z = 10 and ground-
state electron configuration [0] ≡ 1s22s22p6(1S0)), we
theoretically analyze for the first time the influence of
many-particle effects on the values and shape of the
double differential cross section for the resonant inelas-
tic scattering of an X-ray photon ("ω from 600 eV to
1.5 MeV) near the ionization threshold of a deep shell
of the free atom. In this analysis, we ignore the inelastic
scattering of the photon by the atomic nucleus, nuclear
nucleons, and electron–positron pairs produced in the
Coulomb field of the nucleus. Their effect on the inelas-
tic scattering cross section is insignificant in the X-ray
range of incident-photon energies [10]. In addition, we
attempt to determine the analytical structure of the con-
tact part of the double differential cross section for the
inelastic photon–atom scattering beyond the dipole
approximation.
 © 2005 Pleiades Publishing, Inc.
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Such investigations are important for modern phys-
ics, in particular, in view of the creation of an X-ray
laser with a neon-like plasma as an active medium [11]
and the acquisition of spectral data (e.g., X-ray emission
spectra of neon-like elements) for astrophysics [12].

2. THEORETICAL FOUNDATIONS
OF THE METHOD

2.1. Anomalous Dispersion Component 
of the Cross Section 

We specify the analytical structure of the anomalous
dispersion component of the double differential cross
section for the resonant inelastic scattering of a linearly
polarized photon near the ionization threshold of the 1s
shell of the neon atom as (hereinafter, completely filled
electron shells are omitted in the notation of a configu-
ration)

for the proposed experimental scheme e1, 2 ⊥  P. The
2snp and 2p5n(s, d) intermediate states are ignored,
because the ionization thresholds of the 2s and 2p shells
are far from the ionization threshold of the 1s shell
(e.g., I1s – I2s ≈ 822 eV). Here, "ω1 and "ω2 are the ener-
gies of the incident and scattered photons, respectively;
e1 and e2 are the polarization vectors of the incident and
scattered photons, respectively; and P is the scattering
plane containing the wavevectors k1 and k2 of the inci-
dent and scattered photons, respectively.

"ω1 0[ ] 1sn p P1
1( ) 2 p5m p S1

0 D1
2,( ) "ω2+ +

(t1)

(t2)
i

j

m

(a)

ω1

ω2 +

i

j

mω1

ω2 +
i

n

. . .

j

m
(b)

ω1
ω2

+

j

m

ω1
ω2

+

i

n
. . .

Fig. 1. Goldstone–Hubbard–Feynman diagrams for the
(a) anomalous dispersion and (b) contact amplitudes of the
inelastic scattering of an X-ray photon by a neon atom near
the ionization threshold of the 1s shell. For notation, see
Section 2.1. An ellipsis stands for an infinite series of dia-
grams.
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In this case, (e1 · e2)2 = 1 and the known general ana-
lytical expression for the anomalous dispersion compo-
nent of the double differential cross section for the res-
onant inelastic photon–atom scattering in the second
order of quantum-mechanical perturbation theory
(Kramers–Heisenberg–Waller formula) [8, 10] after the
summation/integration over the np intermediate and mp
final states of the discrete/continuous spectrum and
summation over the 1S0 and 1D2 terms has the form

(1)

(2)

(3)

(4)

A physical interpretation of the origin and analytical

structure of the scattering amplitude Rm  can be
given in terms of Goldstone–Hubbard–Feynman dia-
grams [13] of nonrelativistic quantum many-body the-
ory. Figure 1a (Fig. 1b, see Section 2.2) shows some
first (leading) terms of a series of diagrams for the

amplitude Rm  of the inelastic scattering of the X-ray
photon by the neon atom near the ionization threshold
of the 1s shell. In this figure, ω1(ω2) is the incident
(scattered) photon; i( j) = 1s(2p) is the vacancy; m = mp
and n = np are the final and intermediate photoelec-
trons, respectively; the arrow directed to the right (left)
means that the state is produced above (below) the f
Fermi level (the set of the quantum numbers of the
atomic valence shell); the wavy line means Coulomb
interaction; and time flows from left to right (t1 < t2). In
particular, the first diagram in Fig. 1a describes the
amplitude of the following process. At time t1, the deep
1s atomic shell absorbs the ω1 photon. As a result of the
1s  mp radiative transition (with the amplitude
~〈1s| |mp〉), an i(1s) vacancy and an m(mp) photoelec-
tron appear. At time t2 > t1, the ω2 photon is emitted in
the 1s  2p radiative decay of the 1s vacancy (with
the amplitude ~〈1s| |2p〉). As a result, the i(1s) vacancy
captures the 2p electron and a j(2p) valence vacancy is
formed.

The amplitude Anm in Eqs. (3) and (4) has the form

d2σ⊥

dω2 Ωd
----------------- r0

2ω2

ω1
------ρ ζ iQi,

i 1 2,=

∑=

Qi Rm
2 Im

2
+( )Lmi Ri

2 Ii
2+( )Ψi,+

m f>

∞

∑=

Rm
π

γ1s

------ S ω1 ∆n–( )AnmLn Rm
e( ),–=

n > f

Im π S AnmLn.=
n > f

ρ

ρ

r̂

r̂

Anm ω2 ω1 ∆n+–( )∆n 1s0 r̂ n pc〈 〉 n p+ mp〈 | 〉 ,=
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where

(5)

Here, (r) is the radial wavefunction of the np+ elec-
tron, etc. Amplitude (5) describes the absorption part of
the total scattering amplitude and is defined in terms of
the radiative transition amplitude from the initial state
to the intermediate state described by the correlation
wavefunction

In turn, the structure of the correlation wavefunction is
determined by the methods of nonorthogonal-orbital
theory [9] and is expressed in terms of the nonrelativis-
tic wavefunctions of single-electron states obtained in
various Hartree–Fock fields.

Owing to the appearance of a deep nl vacancy in the
atomic core, outer atomic residual shells first respond
to the destruction of the nl4l + 2 screen between them and
the atomic nucleus such that their average radii
decrease. The shift of the electron density of the atomic
residual shells toward the nucleus is accompanied by
the additional delocalization of the wavefunction of the
photoelectron. This delocalization results in a decrease
in the photoabsorption amplitude. The described effect
is known as the radial relaxation of the single-electron
wavefunctions that accompanies the formation of core
vacancies [3, 9].

In the problem under consideration, the radial relax-
ation effect is taken into account as follows. The wave-
functions of (n, 2)p+ electrons are obtained in the field
of a 1s deep vacancy by solving nonlinear integrodiffer-
ential equations for the self-consistent Hartree–Fock
field for the 1snp configuration of the intermediate
state. The wavefunctions of mp electrons are calculated
in the field of a 2p valence vacancy by solving Hartree–
Fock equations for the 2p5mp configuration of the final
state. The wavefunctions of the 1s0 and 2p0 core elec-
trons are determined by solving Hartree–Fock equa-
tions for the initial state configuration [0].

Note that |npc〉   |np0〉  and 〈np+|mp〉   δnm (Kro-
necker–Weierstrass symbol) if the radial relaxation is
ignored. Here, the wavefunction of the np0 electron is
obtained by solving the Hartree–Fock equation for the
1s0np0 configuration. As a result, amplitude (5)
assumes the form

1s0 r̂ n pc〈 〉 P1s0
r( )Pn pc

r( )r r,d

0

∞

∫=

n p+ mp〈 | 〉 Pn p+
r( )Pmp r( ) r.d

0

∞

∫=

Pn p+

n pc| 〉 n p+| 〉 2 p+| 〉
2 p0 n p+〈 | 〉
2 p0 2 p+〈 | 〉

-----------------------.–=

Anm ω2 ω1– ∆n+( )∆n 1s0 r̂ n p0〈 〉δ nm
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and the summation/integration in Eqs. (3) and (4) dis-
appears, which significantly simplifies the analytical
structure of cross section (1).

In Eqs. (1)–(3), the spectral functions have the form

atomic units are used (e = " = me = 1); r0 is the classical
electron radius; Ω is the solid angle of the emission of
the scattered photon; γ1s(2p) = Γ1s(2p)/2, where Γ1s(2p) is
the total (Auger plus radiative components) width of
the decay of the 1s(2p) vacancy;

δSO is the spin–orbit splitting constant of the 2p atomic
core shell; E are the total Hartree–Fock energies of the
corresponding configurations;  stands for the sum-

mation/integration over the discrete/continuous inter-
mediate states; and

Here, K is the product of the overlap integrals of the
radial wavefunctions of the electrons that are not
involved in the radiative transition, have identical sym-
metries, and exist in the ground-state atomic configura-
tion and configurations with the 1s vacancy K1s , as well
as in the configurations with the 1s and 2p vacancies

K1s2p . The amplitude  describes the emission part of
the total scattering amplitude and is defined in terms of
the amplitude of the radiative transition from the inter-

mediate state to the final state; i.e.,  ≈ 〈1s| |2p+〉 .
The quantity γb = Γbeam/2 appears in the spectral

functions Lmi and Ψi due to the integration of cross sec-
tion (1) with the experimentally determined distribu-
tion function ϕb over the energy of X-ray radiation inci-
dent on the atom [8]:

(6)

In this work, the Cauchy–Lorentz spectral function is
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used for the function ϕb:

The partial scattering amplitudes Ri and Ii are
obtained from Eqs. (3) and (4) by replacing the wave-
function of a discrete final state by the wavefunction of
a continuous state. In this case, the energy of the con-
tinuous-spectrum electron is determined as εi = ω1 –
ω2 – ∆i , εi ≥ 0, due to the energy conservation law in the
inelastic photon–atom scattering.

When integrating over the εp+ continuous interme-
diate states, the many-particle effect of the final-state
interaction is ignored in the Ri and Ii amplitudes. This
effect consists changing of the radial wavefunction of a
continuous-spectrum photoelectron due to the 2p 
1s radiative transition and electrostatic interaction of
the photoelectron with the εd continuous-spectrum
electron arising in the 1s  2p4εd Auger decay of the
1s vacancy. As was shown in [14], the inclusion of this
effect in the theoretical spectra of the absorption of an
X-ray photon by a deep shell of a light atom (Z ≤ 20)
almost does not change the single-electron approxima-
tion results.

However, since the total scattering amplitude enters
into cross section (1) along with the absorption and
emission components, the role of the final state interac-
tion in the spectra of resonant inelastic scattering is an
open problem and will be analyzed in future investiga-
tions.

Thus, we set

where δ is the Dirac delta function.

The amplitude  in Eq. (3) has the form

and describes photon-exchange inelastic scattering pro-
cesses (the atom is excited and emits the scattered ω2
photon earlier than it absorbs the incident ω1 photon).

Our calculation for the neon atom shows that the

contribution of the amplitude  does not exceed 1%
of the contribution of the first terms of the amplitude Rm

in Eq. (3). It is worth noting that the role of such
exchange amplitudes increases considerably for the
elastic (Rayleigh) photon–atom scattering. In particu-
lar, the exclusion of them for the case of the neon atom
results in almost 40% error in the calculation of the dif-
ferential cross section for elastic scattering near the
K-shell ionization threshold [3]. The contribution of
exchange processes to amplitude Im given by Eq. (4) is

ϕb ω1 ω,( )
γb

π
----- 1

ω1 ω–( )2 γb
2+

----------------------------------.=

εp+ εi p〈 | 〉 δ ε ε i–( ),

Rm
e( )

Rm
e( ) S ω2 In+( ) 1– Anm=

n > f

Rm
e( )
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on the order of γ1s(ω2 + In)–2 ! 1 and is neglected. Note
that exchange contributions are absent in the contact
part (see Section 2.2) of the total amplitude of inelastic
scattering.

The partial amplitudes Anm given by Eq. (5) are cal-
culated in the dipole approximation for the Fourier
components of the electromagnetic field operator:

where k is the wavevector of the incident (scattered)
photon and rj is the radius vector of the jth electron of
the atom. As is known [10], the dipole approximation is
applicable under the condition λ @ rnl , where λ is the
photon wavelength and rnl is the average radius of the
nl shell of the atom, which determines the radial inte-
gral of the radiative transition. For the X-ray energy
range studied in this work, this inequality is certainly
satisfied. Indeed, for incident-photon energies from
860 eV to 5.42 keV, the wavelength λ ranges from
14.43 to 2.29 Å and, therefore, λ @ r1s(Ne) = 0.08 Å.

Higher multipole orders of the amplitudes of the
radiative transition are disregarded in the calculation of
the amplitudes Anm . However, we emphasize the fol-
lowing. A decrease in the ratio λ/rnl and an increase in
the scattering angle can lead to the necessity of going
beyond the dipole approximation even in the X-ray
energy ranges of the incident and scattered photons. In
particular, as was shown in [15], the inclusion of higher
multipole orders in the calculation of the differential
cross section for the elastic scattering of the 22.1-keV
photon (λ = 0.561 Å) by the 1s shell of the aluminum
atom (r1s(Al) = 0.063 Å) for a scattering angle of θ =
150° changes the dipole-approximation result by a fac-
tor of about 2.

The calculation of all radial integrals of the radiative
transition is performed in the length form for the tran-
sition operator. Our analysis shows that the use of the
velocity form for the calculation of the integrals for
transitions involving the deep 1s shell in atoms with a
nuclear charge number Z ≥ 10 changes the absolute val-
ues of such integrals by no more than 1%. Thus, the
many-particle effect of correlations of the random
phase approximation with exchange [16] (for the case
of the neon atom, mixing of the 1snp configuration with
the 2smp and 2p5md configurations as a result of inter-
shell correlations) turns out to be negligibly small and
is ignored in this work.

2.2. Contact Part of the Cross Section 

A certain number of final states of the inelastic pho-
ton–atom scattering are not included in the anomalous
dispersion component of the total scattering amplitude,
but they are final states of so-called contact (Thomp-
son) scattering. In this case, in Goldstone–Hubbard–
Feynman diagrams for the scattering amplitude, four

k r j 0 i k r j⋅( ){ } 1,exp⇒⋅
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lines intersect at the interaction vertex (Fig. 1b): two
photon lines (ω1 and ω2), electron line (ml, m(l ± 1)),
and vacancy line (jl). In the case of the neon atom, these
are the (1s, 2s)ms, (1s, 2s)mp, and 2p5m(s, d) final
states.

Let us determine the analytical structure of the dou-
ble differential cross section for the inelastic contact
scattering of the linearly polarized photon by the atom
beyond the dipole approximation, which is traditionally
used for the X-ray range [8, 10]. We represent the
known general analytical expression for the double dif-
ferential cross section for the inelastic photon–atom
scattering in the second order of quantum-mechanical
perturbation theory [8, 10] in the form

(7)

where

(8)

(9)

In Eq. (8), the summation is performed over the

terms T ' of the fixed final state s12 ≡ n1 n2l2, as well
as over the projections M' of the total angular momen-
tum J' in the s12 final state, and the averaging is per-
formed over the projections M of the total angular

momentum J in the initial state s1 ≡ n1 .

In Eq. (7), the atomic units are used, Γ1 is the total
decay width of the n1l1 vacancy in the atomic core, N1
is the occupation number of the n1l1 shell of the atomic
ground state, N is the number of electrons in the atom,
and q is the scattering vector (momentum transferred to
the atom) whose absolute value for the case of inelastic
scattering is given by the expression

(10)

Here, θ is the scattering angle (the angle between the
wavevectors of the incident and scattered photons), c is
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the speed of light, rk is the radius-vector of the kth elec-
tron of the atom, and ∆12 = E(s12) – E(s1).

Let us transform expression (8) using the theory of
irreducible tensor operators [17]. We represent the
exponential in Eq. (9) in the form of the functional
series in the spherical functions C(t) and the

 

 t

 

th order
spherical Bessel functions 

 

j

 

t

 

 of the first kind. Taking
into account the Wigner–Eckart theorem for the matrix
element of the many-electron irreducible tensor transi-
tion operator,

orthogonality property of Wigner symbols; and the the-
orem of the summation of spherical functions, we
reduce Eq. (8) to the form

(11)

Here, the reduced matrix element of the transition oper-
ator 

 

Q

 

(

 

t

 

)

 

 in the 

 

LS

 

 coupling scheme is expressed as
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 atomic residual
shell.

Expression (7), together with Eqs. (11) and (12),
provides the desired analytical representation for the
double differential cross section for the inelastic con-
tact photon–atom scattering beyond the dipole approx-
imation (

 

qr

 

  0). In this case, in order to include the
effects of the spin–orbit splitting of the 
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l

 

1

 

 atomic core
shells (

 

l

 

1

 

 

 

≥

 

 1), it is necessary to make the change

and in order to take into account the distribution over
the energy of X-ray radiation incident on the atom, it is
necessary to perform integration (6).
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Moreover, the amplitudes of contact scattering that
interfere with the anomalous dispersion amplitude
should be included in addition to Eq. (7). For the case
of the neon atom in the proposed experimental scheme
(e1, 2 ⊥  P), in order to take into account the interference
between the contact and anomalous dispersion compo-
nents of the total amplitude of transition to the 2p5mp
final states, the following change is necessary in ampli-
tude (3):

(13)

We have not analyzed in detail the shape and values
of the cross section for contact scattering given by
Eq. (7) in wide X-ray and gamma ranges of the inci-
dent-photon energies. Such an analysis is a subject for
future investigations. However, to estimate the contri-
bution of the contact part of cross section to the total
scattering cross section near the K and KL23 ionization
thresholds, we analyze the shape and values of the mod-
ification of cross section (7) for the neon atom:

(14)

Rm Rm K1sK2 pρ
1/2– W0 2 p mp,( ).+
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Fig. 2. Double differential cross section for the resonant
inelastic scattering of a linearly polarized (perpendicularly
to the scattering plane) X-ray photon by a neon atom near
the K-shell ionization threshold I1s = 868.399 eV. Here,
ω1 (ω2) is the energy of the incident (scattered) photon, Ω
is the solid angle of the emission of the scattered photon,

 ≡ 7.941 × 10–26 cm2, Γbeam = 0.20 eV, Γ1s = 0.23 eV,

Γ2p = 3.95 × 10–8 eV, and δSO = 0.094 eV.

r0
2
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Here,

(15)

where

Inl is the ionization threshold of the nl shell of the
atomic ground state, and Γnl is the total decay width of
the nl atomic residual vacancy. Formula (14) follows
from Eq. (7) with allowance for interference (13) and
the following simplifications:

(i) only transitions to the εn(l, l, ± 1) continuous final
states are taken into account;

(ii) the effects of the spin–orbit splitting of the nl
atomic core shells (l ≥ 1) are disregarded.

In the dipole approximation for the contact transi-
tion operator in amplitude (9), the spherical Bessel
functions satisfy the relations j0(qr)  1 and
j1(qr)  0 and Eq. (15) is reduced to

(16)

We emphasize that the scattering-angle dependence of
the contact-scattering cross section given by Eq. (7)
disappears in the dipole approximation for the given
scheme of the proposed experiment.

Then, taking into account the relaxation of the elec-
tron shells of the atomic residual in the field of an nl
vacancy, we compare result (15) with result (16), which
is formally extended to the range 0 < qr < 1, and find
that they are noticeably different for nonzero scattering
angles even in the X-ray energy ranges of the incident
and scattered photons.

In this work, we do not compare result (14) with
results obtained in other approximations that have been
widely used in available papers to analyze Compton
scattering (the final state of inelastic scattering is a con-
tinuous state) [10, 18]. In particular, we do not consider
the so-called impulse approximation, because the main
condition of the applicability of this approximation,
qa0 @ 1 [19, 20], is not satisfied. Indeed, for the ener-

gies of the incident (  ~ 5500 eV) and scattered

(  ~ 880 eV) photons under investigation and using

Φnl W0
2 nl εnl,( ) lW1

2 nl εn l 1–( ),( )+=

+ l 1+( )W1
2

nl εn l 1+( ),( ),

Ψnl
1
2
---

1
π
---

ω1 ω2 Inl––
γnl

------------------------------,arctan+=

εn ω1 ω2 Inl, γnl––
Γnl

2
-------,= =

Φnl nl εnl〈 | 〉 2.

ω1
max

ω2
max
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005



MANY-PARTICLE EFFECTS IN RESONANT INELASTIC SCATTERING 603
Eq. (10) for the scattering angle, e.g., θ = 90°, we obtain
qa0 ≈ 1.5, where a0 is the Bohr radius.

3. CALCULATION RESULTS 
AND DISCUSSION

We consider a free neon atom as the object of inves-
tigation. Figures 2–7 and Tables 1 and 2 present the
scattering cross sections calculated by Eqs. (1) and (14)
for the X-ray energy ranges of the incident (ω1 =
860−5500 eV) and scattered (ω2 = 760–880 eV)
photons.

The values Γ1s = 0.23 eV (measured by X-ray pho-
toelectron spectroscopy and taken from [21]) and Γ2p =
3.95 × 10–8 eV (theoretical result taken from [22]) are
used for the total decay widths of the 1s and 2p vacan-
cies, respectively. The value Γbeam = 0.20 eV is taken for
the width parameter in the function ϕb in Eq. (6). Thus,
we assume that the spectral resolutions of the experi-

m = 3

m = 4

m = 5

12

8

4

0
849 850 851 852

ω2, eV

d2σ⊥ /dω2dΩ, r0
2/(eV sr)

Fig. 3. Role of the  and  correlation transition ampli-

tudes given by Eq. (17) for the principal quantum numbers
m = 3, 4, and 5 of the discrete final state. The dashed line
and circles are obtained without and with the inclusion of
the radial relaxation of electron shells, respectively, and the
solid line is calculated with allowance for radial relaxation
and correlation amplitudes. The incident-photon energy is
ω1 = 868.5 eV. The widths, parameter δSO, and notation are
the same as in Fig. 2.

Rm
C

Im
C
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ment in the energies of the incident (Γbeam) and scat-
tered (~Γ1s) photons are almost identical. The theoreti-
cal value δSO = 0.094 eV of the spin–orbit splitting con-
stant for the 2p shell is taken from [23].

3.1. Energy Range 
of the K-Shell Ionization Threshold 

Figure 2 shows cross section (1) in a close vicinity
of the K ionization threshold of the 1s shell I1s =
868.399 eV (nonrelativistic calculation performed in
this work). The wavefunctions and energies of the ini-
tial, intermediate, and final states are obtained in the
nonrelativistic single-configuration Hartree–Fock
approximation. States with n, m = 3, 4, and 5 are taken
as the np+ intermediate and mp final discrete states. The
amplitudes Anm with the principal quantum numbers
n = m determine the leading shape resonances in the
cross section: A33 > A44 > A55 for the photon energies (in
electronvolts) (ω1, ω2) = (865.420, 848.470), (867.030,
848.515), and (867.612, 848.530).

An example of the analytical solution to the problem
of taking into account the completeness of the set of
discrete states (n, m = 3, …, ∞) was recently given
in [24] for the case of the constructing the differential
cross section for resonant elastic (Rayleigh) scattering
of the X-ray photon near the K-shell ionization thresh-

2

1

0
845.0 845.5 846.0

ω2, eV

d2σ⊥ /dω2dΩ, r0
2/(eV sr)

Fig. 4. Role of the  and  correlation transition ampli-

tudes given by Eq. (20) in the region in which appears the
leading 1s0  3p+ resonance of the intermediate state.
The incident-photon energy is ω1 = 865.6 eV. The widths,
parameter δSO, and notation are the same as in Figs. 2 and 3. 
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old of the neon atom. The analytical solution to this
problem for the case of resonant inelastic scattering is
much more difficult because of the presence of two
(absorption and emission) components in the total scat-
tering amplitude and is a subject for future investiga-
tions.

The continuous spectrum channel of the 2p5εip final
state opens at ω1 = I1s and ω2 = 848.555 eV. For ω1 > I1s ,
cross section (1) has the spatially extended form of the
Kα1, 2 X-ray emission spectrum of the neon atom
(excited by the photon) [25].

Allowance for the radial relaxation of the electron
shells of states in the fields of the 1s and 2p vacancies
almost halves cross section (1). Cross section (1) calcu-
lated disregarding the relaxation effect coincides in
shape with the result obtained with the inclusion of this
effect and is not shown in order to avoid overloading
Fig. 2.

The “ribbed” structures that diverge at an angle of
45° on the (ω1, ω2) plane on both sides of each reso-
nance, as well as the threshold of the arising Kα1, 2
structure of the scattering spectrum, appear because
expression (1) for the cross section contains the spectral
functions Lmi (the denominator is minimal on the
straight lines specified by the equation ω1 = ω2 + ∆mi)
and the minimum energy (εi = 0) of the continuous-
spectrum electron (radiative-transition amplitude

912

906

852

856

ω2, eV

ω
1 , eV

d2σ⊥ /dω2dΩ, r2
0/(eV sr)

120

80

40

900

Fig. 5. Double differential cross section for the resonant
inelastic scattering of a linearly polarized X-ray photon by
a neon atom near the KL23 ionization threshold I1s2p =
914.637 eV. The widths, parameter δSO, and notation are
the same as in Fig. 2. The spectral characteristics of the scat-
tering resonances are given in Table 1 and the cross sec-
tions, in Table 2.
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〈1s0| |εip+〉  is maximal on the straight line specified by
the equation ω1 = ω2 + ∆i).

The j + 1/2 and j – 1/2 components of the spin–orbit
doublet of the 2p shell (j = 1) are virtually not resolved
in Fig. 2 (as well as in next figures), because the value
δSO = 0.094 eV is small compared to the width Γ1s =
0.23 eV for the neon atom.

The radial relaxation of electron shells results in the
appearance of not only the correlation wavefunction
|npc〉  in the transition from the initial state to the inter-
mediate state, but also nonzero 〈np+|εp〉  and 〈xp+|mp〉
amplitudes of nonradiative transitions between excited
states with the same symmetry that are obtained in dif-
ferent Hartree–Fock fields. These amplitudes are not
manifested in absorption and elastic scattering [3], but
are manifested in the resonant inelastic photon–atom
scattering as follows.

r̂

N = 1

0.32

0.24

0.08

0
848 850 852 856

ω2, eV

d2σ⊥ /dω2dΩ, r0
2/(eV sr)

0.16

854846

234567

α1, 2

α3 α4

Fig. 6. Kα X-ray emission spectrum of the neon atom. The
circles are experimental data from [25] (obtained in arbi-
trary units for the energy ω1 = 5410.17 eV of the X-ray
exciting photon corresponding to the Kα radiation of the
chromium atom). The solid line is theoretically calculated
in this work with Γ1s = (Kα1, 2) 0.50 and (Kα3, 4) 0.60 eV.
The parameters of the resonances of the theoretical Kα3, 4
structures of the spectrum that are marked by the digits are
presented in Table 2. The widths Γbeam and Γ2p , parameter
δSO, and notation are the same as in Fig. 2.
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(i) In the expressions for the Rm and Im amplitudes of
scattering to discrete states, the following components
appear:

(17)

Here, the correlation wavefunctions have the form

(18)

(19)

where

(ii) In the expressions for the Ri and Ii amplitudes of
scattering to continuous states, the following compo-
nents appear:

(20)

Here, the correlation wavefunctions have the form

(21)

(22)

where

We refer to the appearance of amplitudes (17) and
(20) with correlation functions (18), (19) and (21), (22),
respectively, as the effect of the correlation amplitudes
in the resonant inelastic scattering of the photon by the
free atom.

Amplitudes (17) describe the transition of the xp+
continuous intermediate state to the mp discrete final
states. This process almost doubles the scattering prob-
ability calculated disregarding this effect. Figure 3 shows
the corresponding calculation of cross section (1).

Amplitudes (20) describe the transition of the εip
continuous final state to the infinite Rydberg series of

Rm
C mp CR

+〈 | 〉= , Im
C γ1s mp CI

+〈 | 〉 .=

CR
+| 〉 ω1 x1s–( ) D x( )| 〉 x,d

0

∞

∫=

CI
+| 〉 D x( )| 〉 x,d

0

∞

∫=

D x( )| 〉  = x1s x1s ω2 ω1–+( )
1s0 r̂ x pc〈 〉

ω1 x1s–( )2 γ1s
2+

--------------------------------------- x p+| 〉 ,

x1s x I1s.+=

Ri
C εi p SR

+〈 | 〉 , Ii
C γ1s εi p SI

+〈 | 〉 .= =

SR
+| 〉 ω1 I1snp–( ) Bn| 〉 ,

n f>

∞

∑=

SI
+| 〉 Bn| 〉 ,

n f>

∞

∑=

Bn| 〉 I1snp I1snp ω2 ω1–+( )=

×
1s0 r̂ n pc〈 〉

ω1 I1snp–( )2 γ1s
2+

------------------------------------------ n p+| 〉 ,

I1snp E 1snp( ) E 0( ).–=
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the np+ intermediate states. As a result, a part of the
continuous spectrum εip falls in the “shadow” region
and is not realized as final states. Therefore, the scatter-
ing probability decreases compared to the value calcu-
lated disregarding this process. The corresponding cal-
culations of cross section (1) are shown in Fig. 4 and
indicate that the above process noticeably affects the
values and shape of the scattering cross section.

Thus, the simultaneous inclusion of amplitudes (17)
and (20) results in the redistribution of the scattering
probability from the long-wavelength region of the
energies of the incident and scattered X-ray photons to
the short-wavelength region.

3.2. Energy Range
of the KL23 Ionization Threshold 

It is reasonable to assume that allowance for the
multiple excitation/ionization of the ground state of the
neon atom results in the appearance of the nearest fine

0.06

0.02

0
800 880

ω2, eV

d2σ⊥ /dω2dΩ, r0
2/(eV sr)

0.04

840760

Fig. 7. Contact part of the double differential cross section
for the resonant inelastic scattering of a linearly polarized
(perpendicularly to the scattering plane) X-ray photon by a
neon atom near the K-shell ionization threshold. The circles
are calculated by Eq. (14) with the function Φnl given by
Eq. (15), the triangles are obtained in the dipole approxima-
tion by Eq. (14) with the function Φnl given by Eq. (16). The
scattering angle is θ = 90°. The incident-photon energy is
ω1 = 880 eV.
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structure of the double differential cross section for res-
onant inelastic scattering calculated in Section 3.1.

Near the KL23 ionization threshold (I1s2p = 914.637 eV,
nonrelativistic calculation performed in this work), we
consider only the processes of double excitation/ioniza-
tion that make the main contribution to the total inten-
sity of the multiple excitation/ionization of the ground
state of the neon atom. The leading role of the channels
of double excitation/ionization is corroborated, in partic-
ular, by the calculation [26] and measurements [27, 28]
near the I1s2p ionization threshold, as well as by calcu-

Table 1.  Double differential cross section for the resonant
inelastic scattering ω1 + [0]  |n〉   |2p4n1pn2p〉  + ω2 of
a linearly polarized (perpendicularly to the scattering plane)
X-ray photon by a neon atom near the KL23 ionization
threshold (see Fig. 5)

n n1, n2 ω1, eV , 

1 3, 3 902.42 156.57

2 3, 3 903.62 20.37

3 3, 4 904.92 29.16

4 3, 4 905.52 34.27

5 3, 3 906.02 45.59

6 3, 4 908.02 29.28

Note: ω1 is the incident-photon energy, |n〉  are intermediate states

[see Eqs. (24)] and |2p4n1pn2p〉  are final states. For all n, n1,
and n2 values, the emitted-photon energy is ω2 = 854.80 eV
(see Eq. (26)).

d2σ⊥

dω2dΩ
------------------

r0
2

eV sr
------------
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lation and measurement [29] near the KL1 ionization
threshold in the absorption spectrum of the X-ray pho-
ton by the neon atom.

At the first stage of the construction of the amplitude
Anm in Eqs. (3) and (4), double excitation processes are
considered for intermediate and final states. The wave-
functions and energies of the intermediate states are
obtained in the LS coupling scheme and in the nonrela-
tivistic multiconfiguration Hartree–Fock approxima-
tion by diagonalizing the secular-equation matrix con-
structed on the basis of the wavefunctions

(23)

where

 are the configuration mixing coefficients and LS is
the term of a pair of the n1l1 and n2l2 excited electrons.

The wavefunctions of the n1l1 and n2l2 excited elec-
trons are determined by solving Hartree–Fock equa-
tions averaged over the 1, 3P and LS terms of the
ζn1l1n2l2 configuration. The wavefunctions of the 1s,
2s, and 2p atomic residual electrons are obtained by
solving Hartree–Fock equations averaged over the 1, 3P
terms of the ζ configuration.

n| 〉 a12
LS ζn1l1n2l2 LS( ); P1| 〉 ,

l1 2,

∑
n1 2, f>
∑

LS

∑=

ζ 1s2s22 p5 P2S 1+( ),≡

n1l1n2l2 = 3 pmp, 3sm s d,( ), 3dmd , m = 3 4 5,, ,

a12
LS
Table 2.  Wavefunctions of the 1s2p5(L1S1)np(L2S2)ε'p intermediate and 2p4(L3S3)np(L4S4)ε'p final states of the resonant
inelastic scattering of a linearly polarized (perpendicularly to the scattering plane) X-ray photon by a neon atom near the KL23
ionization threshold and the energy at which the corresponding spatially extended structures arise in double differential cross
section (1) (see Fig. 5)

n L1S1 L2S2 L3S3 L4S4 ω1, eV ω2, eV N , 

3 ψ(1P) φ(1S) 902.40 851.32 1 0.0074

ψ(3P) φ(3P) 905.20 854.12 4 0.0221

ψ(1P) φ(1D) 905.70 854.61 5 0.0280

4 3P 2S 3P 2P 910.20 854.08 2 0.0074
1P 2S 1D 2P 911.15 855.03 6 0.0040

ε 3P 2S 3P 2P 914.60 854.11 3 0.0120
1P 2S 1D 2P 915.68 855.19 7 0.0068

Note: ω1 is the incident-photon energy [see Eqs. (30) and (31)], ω2 is the emitted-photon energy [see Eq. (32)], ψ(LS) is given by Eqs. (28),

φ(LS) is given by Eqs. (29), N is the ordinal number of a resonance, and d2σ⊥ /dω2dΩ is theoretical cross section (1) for ω1 = 5410.17 eV
at the Nth resonance maximum in Fig. 6 for the Κα3, 4 X-ray emission spectrum of the neon atom.

d2σ⊥

dω2dΩ
------------------

r0
2

eV sr
------------
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Wavefunctions (23) of states that make the main
contribution to the intensity of double excitation have

the form (components with | | ≥ 0.40 are retained)

(24)

The structures of the wavefunctions |2〉  and |5〉  indi-
cate that the 3p2–3s3d electrostatic interaction plays a
considerable role in the formation of intermediate
states of inelastic scattering of the X-ray photon by the
neon atom.

The resonance energies of the incident photon (ω1n)
as the energies of radiative transitions from the ground
state to states (23) are calculated by the formula

(25)

where En is the energy of state (23). Note that Eq. (25)
does not include a correlation energy of about 1–3 eV
for each electron [30]. This disregarded correlation
energy provides an estimate of the calculation accuracy
for radiative-transition energies (25).

The wavefunctions and energies of the final states
are obtained in the nonrelativistic single-configuration
Hartree–Fock approximation. The 2p43p2 configuration
is taken as the final state configuration for the transition
from the intermediate states |1〉 , |2〉 , and |5〉 . The
2p43p4p configuration is taken as the final state config-
uration for the transition from the intermediate states
|3〉 , |4〉 , and |6〉 .

It is assumed that the emitted-photon energy for all
radiative transitions to final states that involve states (24)
is given by the expression

(26)

where ω11 = 902.42 eV (see Table 1). Going beyond
approximation (26) is necessary primarily for the inclu-
sion of the configuration interactions in final states and
is a subject for future investigations.

The radial relaxation of electron shells in the fields
of the 1s and 2p vacancies in the structure of the ampli-
tudes of radiative transitions from the ground state to
states (24) and from states (24) to the 2p4(3p2, 3p4p)
final states is taken into account by the nonorthogonal
orbital method [9, 26]. In particular, for the 1s2p 

a12
LS

1| 〉 0.97 ζ3 p2 P3( )| 〉 ,=

2| 〉 0.47 ζ3 p2 D1( )| 〉 0.88 ζ3s3d D1( )| 〉 ,–=

3| 〉 ξ3 p4 p 0.70 P3( ) 0.70 D3( )+[ ]| 〉 ,=

4| 〉 ζ3 p4 p 0.70 P3( ) 0.60 D3( )–[ ]| 〉 ,=

5| 〉 ζ3 p2 0.70 D1( ) 0.60 S1( )+[ ]| 〉=

+ 0.43 ζ3s3d D1( )]| 〉 ,

6| 〉 0.90 ζ3 p4 p D1( )]| 〉 .=

ω1n En E 0( ),–=

ω2 ω11 E 2 p43 p2( )– E 0( ),+=
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3p2 excitation, the expression for the radial part (R) of
the amplitude of the radiative transition in the length

form is written as (  is the many-electron radiative-
transition operator):

(27)

where

Amplitude (27) was constructed using the Gram–
Schmidt orthogonalization method [31] and the general
quantum-mechanical requirement [32] that the wave-
function of the 1s2p  3p2 excited state be orthogo-
nal to the wavefunctions of lower-lying 1s  3p and
2s2p  3p2 excited states. The wavefunctions of the
1s0 (as well as 2s0), 2p0, 1s, 2s, 2p, 3p, and 2p+ electrons
are obtained by solving Hartree–Fock equations for the
1s22s22p6, ζ3p2, and 1s3p configurations, respectively.

It is worth noting that the ζn1dn2d and ζn1sn2(s, d)
components of states (24) are manifested in the scatter-
ing cross section only via their electrostatic mixing
with the ζn1pn2p components, because they do not con-
tribute to the matrix element of the radiative transition
operator in the dipole approximation. Indeed, transi-
tions to the ζn1dn2d states are forbidden by the selection
rule in the orbital quantum number l, and transitions to
the ζn1sn2(s, d) states are virtually forbidden under the
above requirement that the wavefunctions of these
states be orthogonal to the wavefunctions of low-lying
states with the same symmetry.

The calculation results for cross section (1) includ-
ing doubly excited states for the energy range near the
KL23 ionization threshold of the neon atom are given in
Table 1 and Fig. 5.

At the second stage of the construction of the ampli-
tude Anm in Eqs. (3) and (4), the excitation/ionization
processes (n = 3 and 4):

and the double ionization

are considered for intermediate and final states. Single-
electron wavefunctions of the intermediate and final
states are obtained by solving Hartree–Fock equations
averaged over the terms of the ζnp and 2p4np configu-
rations (n = 3, 4, ε), respectively.

D̂

0 D̂ ζ3 p2〈 〉 R M 1s0 r̂ φ1〈 〉 2 p0 φ2〈 | 〉 ,=

M 1s0 1s〈 | 〉 2s0 2s〈 | 〉 2 2 p0 2 p〈 | 〉 5,=

φ1| 〉 3 p| 〉 2 p| 〉
2 p0 3 p〈 | 〉
2 p0 2 p〈 | 〉

--------------------,–=

φ2| 〉 1 η2
–( )

1/2–
3 p| 〉 η 2 p+| 〉–( ), η 2 p+ 3 p〈 | 〉 .= =

ω1 0[ ] ζ npεp 2 p4npεp ω2,+ +

ω1 0[ ] ζε pε' p 2 p4εpε' p ω2,+ +
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The total wavefunctions and energies of the inter-
mediate and final states are determined in the LS cou-
pling scheme in the nonrelativistic single-configuration
Hartree–Fock approximation with allowance for the
multiplet splitting by diagonalizing the secular-equa-
tion matrices constructed on the basis of the |ζnp〉  and
|2p4np〉  wavefunctions, respectively. Calculating the
energy structure of the ζεpε'p and 2p4εpε'p states with
the εp and ε'p continuous-spectrum electrons, we
neglect the 1s–εp and 2p–εp electrostatic interactions
and set F2(2pεp) = G0, 2(2pεp) = G1(1sεp) = 0 in the sec-
ular-equation matrices for Slater integrals.

After the diagonalization of the secular-equation
matrices, we arrive at the following conclusions.

(i) Among the components of the ζnp multiplet of
intermediate states, only the (1, 3P)2S terms of the ζ3p
configuration are really mixed:

(28)

where |1, 3P, 2S〉  = |1s2p5(1, 3P)3p(2S).
(ii) Among the components of the 2p4np multiplet of

final states, only the (1S, 1D, 3P)2P terms of the 2p43p
configuration are actually mixed:

(29)

where |LS, 2P〉  = |2p4(LS)3p(2P)〉 .
The incident-photon threshold energies for the for-

mation of the extended structures of cross section (1)
that are associated with transitions to the intermediate
states corresponding to excitation/ionization and dou-
ble ionization are calculated by the formulas

(30)

(31)

Here, E(1, 3P) are the energies of states (28) and
E(LS, L'S') are the energies of the terms of the
ζ(LS)np(L'S') multiplet. The corresponding energies of
emitted photons are calculated by the formula

(32)

where E(k1n) and  are the total Hartree–Fock ener-

gies of the k1n = ζnp and k2n = 2p4np states and ET are the
energies of the terms (for n = 3, energies of states (28)
and (29)) of the corresponding multiplets with respect
to their centroids.

The calculation results for cross section (1) includ-
ing the states of excitation/ionization and double ion-

Ψ P1( ) 0.96 P1 S2,| 〉 0.28 P3 S2,| 〉 ,–=

Ψ P3( ) 0.28 P1 S2,| 〉 0.96 P3 S2,| 〉 ,+=

φ S1( ) 0.998 S1 P2,| 〉 0.057 P3 P2,| 〉 ,+=

φ D1( ) 0.935 D1 P2,| 〉 0.353 P3 P2,| 〉 ,+=

φ P3( ) = 0.934 P3 P2,| 〉   0.353–  D 
1 P 

2 ,| 〉 0.052 S 
1 P 

2 ,| 〉 ,–

ω1 E P1 3,( ) E 0( ), n– 3,= =

ω1 E LS L'S ',( ) E 0( ), n– 4 ε.,= =

ω2 E k1n( ) E k2n( )– ET k1n( ) ET k2n( ),–+=

Ek2n
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ization near the 

 

KL

 

23

 

 ionization threshold of the neon
atom are presented in Table 2 and Fig. 5.

 

3.3. Comparison of Theory with Experiment 

 

As the incident-photon energy increases, the spa-
tially extended structures of cross section (1) that are
presented in Figs. 2 and 5 evolve to the main 

 

K

 

α

 

1, 2

 

 and
satellite 

 

K

 

α

 

3, 4

 

 X-ray emission spectra of the neon atom,
respectively. Since the 

 

K

 

α

 

 X-ray emission spectrum of
the neon atom was measured in experiment [25] carried
out at the incident-photon energy 

 

ω

 

1

 

 = 5410.17 eV, the
theory and calculation methods developed in this work
can be tested. The calculation results of this work are
compared with experiment in Fig. 6.

The experimental 

 

K

 

α

 

 emission spectrum of the neon
atom was obtained in arbitrary units. For this reason, we
normalize it to the theoretical value of cross section (1)
near the 

 

α

 

3

 

 structure of the emission spectrum (see

 

N 

 

= 4 in Table 2). In this case, the theoretical spectrum
near the 

 

α

 

1, 2

 

 and 

 

α

 

3, 4

 

 structures of the emission spectra
was calculated with the total widths 

 

Γ

 

1

 

s

 

 = 0.50 and
0.60 eV, respectively, of the decay of the 1

 

s

 

 vacancy,
which are taken from [27] (synchrotron experiment on
measuring the spectrum of the photon absorption by the
neon atom near the 

 

K

 

 and 

 

KL

 

23

 

 ionization threshold).
The contribution of the contact part of the cross sec-

tion for 

 

ω

 

1

 

 = 5410.17 eV is equal to a negligibly small

value of about 10

 

–6

 

/eV sr and is ignored.

The theoretical calculation of this work agrees well
with the experimental data. The cause of the remaining
discrepancies of about 16% near the 

 
K

 
α

 

1, 2

 
 resonance of

the emission spectrum is not understood and is a subject
for future investigations.

Discussing the features of the evolution of the spa-
tially extended structures of cross section (1) (see
Fig. 5) to the emission-spectrum structure (see Fig. 6),
we mention that the role of the radial relaxation of elec-
tron shells in the fields of 1

 

s

 

 and 2

 

p

 

 vacancies decreases
as the incident-photon energy increases. Indeed, when

 

ω

 

1

 

 increases, in the amplitude of the radiative transition
to the intermediate state

where 

 

n

 

 = 3 and 4 and 

 

α

 

LS

 

 and 

 

β

 

LS

 

 are the angular coef-
ficients, the component

becomes negligibly small compared to the component

and the contribution of the additional term to the radial
integral 
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| |ε
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〉

 

 decreases strongly. As a result, the
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ratio Mn(3P)/Mn(1P) increases and the scattering proba-
bility is redistributed from the Kα4 region of the emis-
sion spectrum to the Kα3 region.

3.4. Calculation of the Contact Part
of the Cross Section 

Figure 7 shows the contact part of cross section (14)
calculated near the K-shell ionization threshold of the
neon atom with the function Φnl obtained in this work
(see Eq. (15)) and in the dipole approximation (see
Eq. (16)), which is formally extended to the range 0 <
qr < 1. The wavefunctions of the εn(l, l ± 1) continuous-
spectrum electrons in the final states are obtained by
solving Hartree–Fock equations for a configuration
containing an nl vacancy. The wavefunctions of nl elec-
trons in the initial states are determined by solving Har-
tree–Fock equations for the ground state configuration.
In calculating spectral functions Ψnl  in (14), we used
the total decay widths Γ1s = 0.23 eV and Γ2s = 0.05 eV
(measured from the experimental spectrum of the
absorption of the photon by the 2s shell of the neon
atom [33]), as well as the width Γ2p = 3.95 × 10–8 eV
and ionization thresholds I1s = 868.399 eV, I2s =
49.314 eV, and I2p = 19.845 eV (nonrelativistic calcula-
tion performed in this work).

The jumps in the scattering cross section in Fig. 7 at
the emitted-photon energies 830.866 and 860.155 eV
correspond to the condition of zero energy of the con-
tinuous-spectrum electron, ω2 = ω1 – I2s and ω2 = ω1 –
I2p , for the 2s0  ε(s, p) and 2p0  ε(s, p, d) transi-
tions, respectively. As follows from the results pre-
sented in Fig. 7, the contribution of the contact part of
the cross section to the total cross section of the process

is negligibly small [~0.07 /eV sr] compared to the
contribution of the anomalous dispersion component

[~250 /eV sr] in the region of the formation of the
Kα1, 2 structure in the scattering spectrum.

However, even in the X-ray energy ranges for the
incident and scattered photons and for nonzero scatter-
ing angles, the dipole approximation, in principle, sig-
nificantly changes not only the values but also the shape
of the contact part of the cross section compared to
those calculated beyond its framework. Moreover,
when the radial relaxation of electron shells in the field
of an nl atomic-residual vacancy is ignored, Φnl = 0 in
the dipole approximation, whereas Φnl ≠ 0 beyond the
framework of the dipole approximation (for qr > 0).

The inclusion of the configuration interaction and
multiple excitation/ionization in the initial and final
states of inelastic contact scattering, as well as the addi-
tional terms in the functions Wt(n1l1, n2l2) in Eq. (12),
when the radial relaxation of electron shells in the field
of the core vacancies (e.g., allowance for the change of
〈1s0|j1(qr)|εp+〉  by 〈1s0|j1(qr)|εpc〉  in Eq. (15)) is taken
into account, is a subject for future investigations.

r0
2

r0
2
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4. CONCLUSIONS

The basic results of this work are as follows.
The radial relaxation of the electron shells of the

intermediate and final states in the Hartree–Fock fields
of the deep 1s and valence 2p vacancies almost halves
the value (but does not change the shape of the surface)
of the double differential cross section for the resonant
inelastic scattering of the X-ray photon near the K-shell
ionization threshold of the neon atom.

In addition to the effects of the configuration inter-
action and multiplet splitting in the intermediate and
final states, the radial relaxation significantly deter-
mines the value, structure, and shape of the resonance
and the spatially extended thin structure in the double
differential cross section for inelastic scattering near
the KL23 ionization threshold of the neon atom.

When the incident-photon energy increases, the
contribution of the radial relaxation to the value and
shape of the double differential cross section for inelas-
tic scattering decreases, which determines the features
of the evolution of the spatially extended structures of
the cross section to the Kα X-ray emission spectrum of
the neon atom.

The radial relaxation is responsible for a new type of
many-particle effect—the effect of correlation ampli-
tudes in the resonant inelastic scattering of the X-ray
photon by the free atom. In turn, this effect significantly
determines the value and shape of the double differen-
tial cross section for scattering near the K-shell ioniza-
tion threshold of the neon atom.

The analytical structure of the contact part of the
double differential cross section for the inelastic scat-
tering of the photon by the free atom has been deter-
mined using the irreducible tensor operator method. It
has been shown that the transition from the found struc-
ture to, e.g., the dipole approximation for the theoreti-
cal description of the contact part of the cross section
strongly changes not only the values but also the shape
of the scattering cross section even in the X-ray energy
ranges of the incident and scattered photons.
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Abstract—The electron terms are constructed for oxygen dimer ions at large ion–atom distances taking into
account a certain scheme of summation of electron momenta on the basis of a hierarchy of various ion–atom
interactions. Because the number of interaction types exceeds that in the Hund scheme, a realistic hierarchy of
interactions and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme.
Electron terms are evaluated for the oxygen dimer ion in the case where the ground and first excited states of
an atom and an ion belong to the respective valence electron shells p4 and p3 and correspond to the range of
separations that determine the cross sections of resonant charge exchange in plasma. These electron terms allow
us to calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and
atom in the ground and first excited states in the range of collision energies of interest for oxygen plasmas. The
specific features of electron terms of the oxygen ion dimer and the cross section of electron transfer are ana-
lyzed. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In slow collision processes, electrons follow
changes of atomic fields and therefore the cross section
of a slow collision process is determined by the behav-
ior of electron terms for a quasimolecule consisting of
the colliding atomic particles. Below, we consider the
resonant charge-exchange processes

(1)

at low collision velocities compared to those of valence
electrons. Because the cross section of resonant charge
exchange is large in comparison with a typical atomic
cross section, i.e., the electron transfer proceeds at large
distances between colliding particles, analysis of elec-
tron terms is required at large ion–atom distances,
where various types of interactions may be separated.

The character of coupling of electron momenta may
be constructed on the basis of the Hund coupling
scheme [1–3], which consists in analyzing the hierar-
chy of interactions in the quasimolecule, which also
allows one to determine the quasimolecule quantum
numbers. Because the potentials of different interac-
tions depend on distances between atomic particles, the
coupling scheme and quantum numbers of the quasi-
molecule can vary with changing distances between
atomic particles. Therefore, for analysis of collision
processes, the relative trajectory of particle motion can

O+ 2 p3( ) S4 D2 P2, ,( ) O 2 p4( ) P3 D1 S1, ,( )+

O 2 p4( ) P3 D1 S1, ,( ) O+ 2 p3( ) S4 D2 P2, ,( )+

¶ The text was submitted by the authors in English.
1063-7761/05/10104- $26.00 0611
be conveniently divided into several parts such that a
certain type of coupling of electron momenta is realized
in each part [4–7]. The transition between different
coupling schemes leads to a change of quantum num-
bers of colliding particles.

The processes under consideration are of impor-
tance for a nonequilibrium dissociating oxygen plasma,
in particular, for atmospheric plasma at altitudes above
100 km. Indeed, oxygen is partially atomic at these alti-
tudes, due to oxygen dissociation under the action of
solar radiation. Because the cross section of resonant
charge exchange significantly exceeds the cross sec-
tions of other processes, including elastic collisions of
atoms and molecules, the resonant charge-exchange
process determines the mobility of ions in this plasma
and the parameters of other transport processes involv-
ing ions. Oxygen atoms and ions are in the ground and
lowest-excited electron states, and the cross sections of
resonant charge exchange depend on these states.
Because the distribution over these states at a given
point of space depends on external conditions, mea-
surement of the mobility for oxygen ions in different
electron states at this point allows us to determine the
atom distribution over the lowest electron states at a
specified point. Hence, determination of the cross sec-
tions of resonant electron transfer for oxygen atoms and
ions in different states has an applied interest.

The first stage of determining the cross sections is
the construction of electron terms of the quasimolecule,
which can be done on the basis of the standard Mul-
liken scheme of momentum summation [1]. This
scheme includes three types of interactions in the quasi-
molecule: Ve , the electrostatic interaction responsible
© 2005 Pleiades Publishing, Inc.
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for energy splitting at different angular momentum pro-
jections on the molecule axis; δf , which corresponds to
the spin–orbit interaction and other relativistic interac-
tions; and Vcurl, the rotational energy or Coriolis inter-
action, which accounts for the interaction between the
orbital and spin electron momenta with the rotation of
the molecular axis. Depending on the ratio between
these interaction energies, one can construct six cases
of Hund coupling [1–3], each of which corresponds to
a certain scheme of momentum summation and is char-
acterized by certain quantum numbers of the diatomic
molecule. These cases can be used as model ones for
analyzing certain transitions in atomic collisions [6–8].

This general scheme may be used for analyzing the
resonant charge-exchange process involving an ion and
an atom with nonfilled electron shells when different
schemes are possible for coupling of electron momenta
and, correspondingly, when the resonant charge-
exchange process is entangled with other processes
(rotation of electron momenta, transitions between fine
structure states) in different ways. Nevertheless, elec-
tron exchange and other transition processes usually
correspond to different trajectory segments, which
makes it possible to separate the exchange process from
other processes. It is therefore necessary to use the cor-
rect scheme of angular momentum coupling in the
quasimolecule, which consists of the colliding ion and
atom. Analysis of the resonant charge exchange for
halogens [9, 10] shows that the real character of angular
momentum coupling corresponds to none of the Hund
cases, because the number of different interactions is
greater than that used in the standard scheme. Never-
theless, the general concept of constructing electron
terms of a quasimolecule on the basis of the interaction
hierarchy remains valid and underlies the analysis.

Thus, the goal of this paper is to find the character

of coupling for the oxygen diatomic ion  at large
distances between the nuclei on the basis of construct-
ing an interaction hierarchy in this quasimolecule. This
allows us to evaluate the partial and average cross sec-
tions of resonant charge exchange in the case of oxygen
for the lowest state of electron shells. Solution of this
problem also gives a general scheme for determining
the cross section of resonant charge exchange for ion
and atom with nonfilled electron shells.

2. HIERARCHY OF ION–ATOM INTERACTIONS 
FOR OXYGEN

We determine the cross sections of processes (1) on
the basis of the asymptotic theory [11–13], i.e., as a
result of expansion of the cross section with respect to
the small parameter, the ratio of the typical atomic size
to the typical distance of electron transfer. This theory
uses a large electron transfer cross section compared to
the typical atomic cross section at low velocities, and its
first stage is evaluation of the electron terms for the
quasimolecule consisting of colliding particles. We find

O2
+
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the hierarchy of interactions at large distances between
O+(2p3) and O(2p4) and then the electron terms of this
system and quantum numbers for the description of the
molecular ion states.

Based on the experience for the case of halogen [9, 10],
as the basis ion–atom interactions at large distances R
we use the fine spin–orbit interaction for O+(2p3) and
O(2p4) and the quadrupole interaction of the ion charge
with the atom quadrupole moment. In this approxima-
tion, the Hamiltonian of the molecular ion at large dis-
tances between nuclei is given by

(2)

This is valid for light atoms in the case of the LS cou-

pling scheme for atoms and ions; here,  is the opera-

tor of the angular atom momentum,  is the atom spin

operator,  is the operator of the angular ion momen-

tum,  is the ion spin operator, and  is the quadrupole
momentum operator for the atom, and we take the inter-
action of a positively charged ion with the quadrupole
moment of valence electrons into account.

The parameters of the spin–orbit interaction of an
oxygen atom and its ion are given by a = 77 ± 2 cm–1

for the atom state 3P, b = 8.4 cm–1 for the oxygen ion
state 2D, and b = 0.7 cm–1 for the ion state 2P [14, 15].
Because the typical value of the ion–atom exchange
interaction potential is several cm–1, we can ignore the
fine splitting of levels in the last case. Correspondingly,
the matrix elements for the spin–orbit interaction are
[3, 16, 17]

(3)

where L and ML are the atom orbital momentum and its
projection onto the molecular axis, S and MS are the
atom spin and its projection on the molecular axis. For
the matrix elements of the ion spin–orbit interaction,
we have identical expressions.

Ĥ aL̂– Ŝ⋅ bÎ– ŝ⋅ eQ̂

R3
-------.–=

L̂

Ŝ

Î

ŝ Q̂

ML MS,〈 |L̂ Ŝ ML MS,| 〉⋅ MLMS,=

ML MS,〈 |L̂ Ŝ ML 1+ MS 1–,| 〉⋅

=  ML 1+ MS 1–,〈 |L̂ Ŝ ML MS,| 〉⋅

=  
1
2
--- L ML 1+ +( ) L ML–( ) S MS+( ) S MS– 1+( ),

ML MS,〈 |L̂ Ŝ ML 1– MS 1+,| 〉⋅

=  ML 1– MS 1+,〈 |L̂ Ŝ ML MS,| 〉⋅

=  L ML+( ) L ML– 1+( ) S MS 1+ +( ) S MS–( ),
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Table 1.  Diagonal matrix elements of the quadrupole moment QMM expressed in  for an oxygen atom with the electron shell 2p4

State 3P, M = 0 3P, M = ±1 1D, M = 0 1D, M = ±1 1D, M = ±2

QMM 1.6 –0.8 –1.87 –0.93 1.87

ea0
2

We consider the quadrupole interaction between an
ion and an oxygen atom, which, in this case, corre-
sponds to the second expansion term of the ion charge–
valence electron interaction:

in the small parameter r/R, where r is the valence elec-
tron coordinate in its atom, R is the distance between
the ion of charge e and the atom nucleus, and the aver-
age is taken over the wavefunction of the valence elec-
tron. The quadrupole moment of an individual electron
is then given by [18]

(4)

where r, θ are spherical coordinates of the valence elec-
tron and le and m are the orbital momentum of this elec-
tron and its projection on the molecular axis.

For oxygen, it is more convenient to consider a
valence electron shell as two p-holes in addition to a
completed p-electron shell. The hole quadrupole
moment differs from that of the electron by sign only.
The total wavefunction of these holes that corresponds
to the total orbital momentum of holes L and its projec-
tion M onto a given direction is given by

(5)

where ψ1m(i) is the wavefunction of the ith p-hole with
the momentum projection m and the Clebsch–Gordan
coefficient

is responsible for summation of the momenta of indi-
vidual holes into the momentum of the entire system.
Correspondingly, the electron shell is characterized by
quantum numbers L, –M in this case, and because its
atomic quadrupole moment is conserved under M 
–M, we ignore the difference between a hole and an
electron below.

We use the fact that the sum of quadrupole moments
of an electron shell and a hole shell is zero, and there-
fore, expressing the quadrupole moment of an electron

e2

R
----

e2

R r–
---------------–

q 2 r2P2 θcos〈 〉 2
le le 1+( ) 3m2–
2le 1–( ) 2le 3+( )

------------------------------------------r2,= =

ΨLM
1 1 L

m M m– M
ψ1m 1( )ψ1 M m–, 2( ),

m

∑=

1 1 L

m M m– M
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shell through the quadrupole moments of a hole shell,
it is necessary to change the sign of the quadrupole
moment. In another way, the sign of the electron qua-
drupole moment is reciprocal to that of a hole and
therefore, constructing the quadrupole moment of an
electron shell through those of individual holes, we
must change sign. Hence, the quadrupole moment of an
oxygen atom is given by

(6)

where qm is the quadrupole moment of an individual
electron with the momentum projection m on the
molecular axis, and, according to formula (3), we have

(7)

where  is the mean square of a valence electron orbit.

For an oxygen atom in the ground state, we have  ≈
2  [15], where a0 is the Bohr radius. For excited oxy-
gen atom states, we take

where J is the ionization potential for this state and JH

is the ionization potential for a hydrogen atom in the

ground state. In particular, it follows that  = 2.33
for the 1D-state of an oxygen atom. Table 1 contains
values of the quadrupole moments for an oxygen atom,
and we use these values for determination of electron
terms of a diatomic oxygen ion.

In addition, Table 2 contains the values of γ for oxy-
gen atom and ion states. The atom ionization potential
with transition to a given ion state is

(8)

where J0 is the oxygen ionization potential with the
electron transition from the ground atom state to the ion
ground state, ∆Ea is the atom excitation energy, and ∆Ei

is the ion excitation energy. Because a given ion state
results from a one-electron transition from an indicated
atom state, we ignore the cases of ion–atom interac-
tions if a given ion state cannot be formed from the indi-
cated atom state as a result of a one-electron transition.

M〈 |Q̂ M'| 〉 δMM'
1 1 L

m M m– M

2

qm qM m–+( ),
m

∑–=

q0
4er2

5
----------, q1 q 1–

2er2

5
----------,–= = =

r2

r2

a0
2

r2 1/γ2, γ2∼ J /JH,=

r2 a0
2

J J 0 ∆Ea– ∆Ei,+=
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In considering the electron terms of the quasimole-

cule , we start from large distances R between the
nuclei, where the electron energy is equal to

(9)

where ε0 corresponds to the atom and ion ground state,
such that ∆Ea and ∆Ei account for electron excitation of
the quasimolecule; J0 and j0 are the total electron
moments of the atom and ion in the ground fine state,
and the last terms in formula (9) take fine states of the
atom and ion into account. Therefore, in evaluating the
quasimolecule electron terms, we measure the quasi-
molecule energy from the value ε0 + ∆Ea + ∆Ei at large
separations, adding it to Hamiltonian (2) at finite sepa-
rations. Because the ion and atom parts of this Hamil-
tonian commute, we can add the ion and atom parts to
the electron energy independently. Quantum numbers
due to the ion part—the total ion angular momentum j
and its projection on the molecular axis mj—are con-
served at any ion–atom distances, whereas the atom
quantum numbers J and MJ are valid at large separa-
tions, or quantum numbers ML and MS are accurate
quantum numbers only if we neglect spin–orbit interac-
tion. Therefore, finding electron terms accurately, we
use the notation ML , MS or J, MJ for them only to label
the quasimolecule states.

In addition, because the quadrupole interaction is
symmetric during the transformation ML  –ML and
the spin–orbit interaction is symmetric during the trans-
formation ML + MS  –ML – MS , we find that the elec-
tron terms of a quasimolecule described by Hamilto-
nian (2) are degenerate with respect to the simultaneous
transformations

ML, MS  –ML, –MS. (10)

We can therefore restrict ourselves to a part of electron

terms for the diatomic ion  at large separations with

O2
+

ε ε0 ∆Ea ∆Ei
aJ J 1+( )

2
-----------------------+ + +=

–
aJ0 J0 1+( )

2
---------------------------- bj j 1+( )

2
---------------------

b j0 j0 1+( )
2

--------------------------,–+

O2
+

ML MS+ 0.≥

Table 2.  The parameter γ =  for various atom and ion
oxygen states

Atom state
3P 1D 1S

Ion state

4S 1.000 – –
2D 1.116 1.049 –
2P 1.170 1.107 1.030

J /JH
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In particular, if the oxygen atom is found in the ground
state O(3P), the number of nondegenerate electron
terms is six with respect to atom states.

In constructing the electron terms for the atom part,
we construct the Hamiltonian matrix elements

Next, by diagonalization of this matrix, we find the
energy positions at a fixed distance R between the
nuclei by solving the secular equation for the Hamilto-
nian matrix elements [3]. This is given by the vanishing
condition for the determinant,

(11)

Solutions E(R) of Eq. (10) give the positions of the
electron terms at a given separation R.

Table 3 gives the Hamiltonian matrix  for the
interaction of O+(4S) + O(3P) as an example. We here
use Hamiltonian (2), and the electron energies of an
oxygen diatomic ion at a given separation follow from
solution of Eq. (10). We can see that this matrix can be
divided into five independent blocks, such that one
block contains three diagonal elements, two identical
blocks contain two diagonal elements, and two identi-
cal blocks contain one diagonal element. These identi-
cal matrix blocks can be converted into each other by
transformations (10), and we include only one of the
two identical matrices in Table 2.

In Figs. 1–3, we give the electron terms of the oxy-
gen diatomic ion for the respective atom and ion states

O(3P) + O+(3S),

O(3P) + O+(2D),

and

O(1D) + O+(2D)

with the interactions in Hamiltonian (2) taken into
account. The range of separations is such that it makes
the main contribution to the cross section of resonant
charge exchange at thermal and eV-energies of colli-
sion. We characterize the atom state by the quantum
numbers J and MJ , the total atom momentum and its
projection on the molecular axis, which are precise
atomic numbers at very large separations and are used
as notation at smaller separations where the ion–qua-
drupole interaction becomes important. Correspond-
ingly, the electron terms of the oxygen diatomic ion are
described by the quantum numbers J, |MJ |, j, where j is
the total ion angular momentum.

3. ION–ATOM EXCHANGE INTERACTION 
POTENTIAL

The next step of our program is to determine the
ion–atom exchange interaction potential. It is small

ML MS,〈 |Ĥ ML' MS',| 〉 .

EδMLML' δMSMS' ML MS,〈 |Ĥ ML' MS',| 〉– 0.=

Ĥik
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compared to the interactions in Hamiltonian (2), and,
therefore, each electron term splits into levels with dif-
ferent parities. The ion–atom exchange interaction
removes the degeneration with respect to different mj ,

0, 0
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1, 1

2, 0
2, 1

2, 2
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10 11 12 13 14 15
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J = 0
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J = 2

R → ∞

Fig. 1.
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the ion momentum projection on the molecular axis.
The exchange ion–atom interaction allows us to evalu-
ate the partial cross section of resonant charge
exchange that proceeds inside a given electron term.
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Table 3.  The Hamiltonian matrix  for the quasimolecule O+(4S3/2) + O(3P) if the exchange ion–atom interaction is
neglected; the Hamiltonian is given by formula (2); a = 77 ± 2 cm–1

ML, MS 1, 1 1, 0 0, 1 1, –1 0, 0 –1, 1

1, 1 0 0 0 0 0

1, 0 0 –a 0 0 0

0, 1 0 –a 0 0 0

1, –1 0 0 0 –a 0

0, 0 0 0 0 –a –a

–1, 1 0 0 0 0 –a

Ĥik

–a
0.8e2a0

2

R3
------------------–

0.8e2a0
2

R3
------------------–

1.6e2a0
2

R3
------------------

a
0.8e2a0

2

R3
------------------–

1.6e2a0
2

R3
------------------

a
0.8e2a0

2

R3
------------------–
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The exchange ion–atom interaction results from the
transition of a valence electron from one atomic rest to
another one. This interaction divides the quasimolecule
states into even (g) and odd (u) according to the prop-
erty of the corresponding molecular wavefunction to
preserve or change sign as a result of reflection of all
the electrons with respect to the symmetry plane per-
pendicular to the molecular axis. If a valence electron
with an orbital momentum le and its projection µ on the
molecular axis is located in the field of two structure-
less cores, the exchange interaction potential  is
given by the formula [5, 7, 13, 19]

(12)

where R is the distance between the nuclei and γ and A
are the parameters of the asymptotic wavefunction of
the valence electron; the radial wavefunction of this
electron in the atom at large distances r from its center
is given by

Formula (12) contains the first term of the asymptotic
expansion with respect to the small parameter 1/γR for
the ion–atom exchange interaction potential at large

∆leµ

∆leµ R( ) A2R
2
γ
--- 1– µ–

e
Rγ– 1

γ
---– 2l 1+( ) le µ+( )!

le µ–( )! µ ! γ( ) µ-------------------------------------------,=
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1
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Fig. 3.
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distances between nuclei. For a valence p-electron, for-
mula (12) becomes

(13)

This one-electron interaction is the basis of the
exchange interaction potential in the case where the
interacting atom and ion have nonfilled electron shells
and the coupling of electron momenta for a transferring
electron and the atomic rest is of importance. We use
the LS coupling scheme, which suitable for light atoms.
Then, the wavefunction of an atom with n valence elec-
trons of momentum le is given by [16, 17, 20]

(14)

Here, Φ, ψ, and ϕ are the respective wavefunctions of
the atom, ion, and valence electron with the indicated
quantum numbers, µ and σ are the projections of the
angular momentum and spin of the valence electron,
the argument of the wavefunction indicates electrons

involved in each atomic particle, the operator  per-
mutes these electrons, and the parentage coefficient

(le, n) is responsible for addition of a valence elec-
tron to the ion for the construction of an atom for given
quantum numbers of these atomic particles.

The exchange interaction potential is given by the
formula [7, 13]

(15)

where Ψ1 is the wavefunction of the quasimolecule in
the case where a valence electron is located near the
first core (the electron is connected with the first
nucleus), Ψ2 corresponds to the electron location near

the second nucleus, and  is the Hamiltonian of the
electrons. We note that an accurate evaluation of this
interaction requires using the accurate wavefunctions
of the quasimolecule such that the interaction of a
valence electron located between the cores with both
cores is taken into account simultaneously. We assume
this to be fulfilled within the framework of the asymp-
totic theory. Using a general method of calculation of
the exchange interaction potential ∆(R) by analogy with

∆10 R( ) 3A2R
2
γ
--- 1–

e
–Rγ 1

γ
---–

,=

∆1 1±, R( ) 2
Rγ
-------∆10 R( ).=

ΦLSMLMS
1 2 … n, , ,( ) 1

n
-------P̂=

× Gls
LS le n,( ) le l L

µ m ML

1
2
--- s S

σ ms MS
l m s ms µ σ, , , , ,

∑

× ϕ
le

1
2
---µσ

1( )ψlsmms
2 … n, ,( ).

P̂

Gls
LS

∆ R( ) 2 Ψ1〈 |Ĥ Ψ2| 〉=

– 2 Ψ1〈 |Ĥ Ψ1| 〉 Ψ1〈 |1 Ψ2| 〉 ,

Ĥ
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ELECTRON TERMS AND RESONANT CHARGE EXCHANGE 617
that for case (a) of the Hund coupling [13, 21–23] and
using the properties of Clebsch–Gordan coefficients,
we obtain

(16)

Here, we take into account the character of the coupling
of electron momenta in the quasimolecule, such that,
the quantum numbers of an atomic core ls, ML – µ,
MS − σ and the atomic quantum numbers of a valence

electron leµ σ are first summed into the atomic quan-

tum numbers LSMLMS , and after the electron transition
to another atomic rest, the other quantum numbers of
the atomic core lsmms and electron quantum numbers

leµ σ' are summed into the atom quantum numbers LS,

m + µ, ms + σ'. We note that the electron spin projec-
tions are identical, σ = σ' in the fields of both cores
because of normalization of the electron spin wave-
functions. If we use the atom basis MLMS and the ion
quantum numbers are lsjmj , formula (16) becomes

(17)

In reality, due to the properties of the Clebsch–Gordan
coefficients, this formula is simplified. In particular, the

∆LSMLMSlsmms
R( ) n Gls

LS( )2
=

× le l L

µ ML µ– ML

1
2
--- s S

σ MS σ– MS

le l L

µ m m µ+µ σ σ', ,
∑

×
1
2
--- s S

σ' ms ms σ'+

∆leµ R( ).

1
2
---

1
2
---

∆LSMLMSlsjm j
R( ) n Gls

LS( )2
=

× le l L

µ ML µ– MLm ms,
∑

µ σ,
∑

× le l L

µ m m µ+

1
2
--- s S
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1
2
--- s S
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l s j
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× l s j

ML µ– MS σ– ML µ– MS σ–+
∆leµ.
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exchange interaction potential is conserved under the
transformations

ML, MS, mj  –ML, –MS, –mj . (18)

4. ION–ATOM EXCHANGE INTERACTION 
FOR THE DIATOMIC OXYGEN ION

Formula (17) gives the ion–atom exchange interac-
tion potential that determines the cross section of reso-
nant charge exchange at given quantum numbers. This
is considered below for different states of an oxygen
atom and an ion. We start from the ground state of the
atom and ion, with the ion–atom exchange interaction
potential given by formula (18). The analysis of this
case in [9, 10] was based on the limiting coupling cases
where the quasimolecule is characterized by the quan-
tum numbers J, MJ or J, ML depending on the relation
between spin–orbit and quadrupole interactions. We
now consider the general case numerically by the
Hamiltonian diagonalization for an arbitrary relation
between these values.

Formula (17) gives the ion–atom exchange interac-
tion potential at large separations for the ion ground
state O+(4S3/2) (l = 0, m = 0, s = j = 3/2). We then have
ML = µ, mj = ms , and formula (17) is reduced to the form

(le = 1, n = 4,  = –1/ )

(19)

Table 4 contains the values of the ion–atom interaction
potential obtained on the basis of formula (19). We
account for symmetry (18), and the one-electron exchange
interaction potentials are given by formulas (13).

We next use the same operation for determining the
exchange interaction potential for excited ion and atom
states at large separations. Table 5 contains the
exchange interaction potential for the quasimolecule
O+(2D) + O(3P), and Table 6 contains the exchange
interaction potentials for the quasimolecule O+(2D) +
O(1D) for the basis ML, MS, j, mj . Because ∆11(R) !
∆10(R) at large separations, we ignore ∆11(R) wherever
possible. We also take the symmetry of the exchange
interaction potential in (18) into account, and in the ML,
MS atom basis used, the identical values of the
exchange interaction potential correspond to quantum
numbers in parentheses.

The electron terms of the quasimolecule with the
ion–atom exchange interaction potential taken into
account can be found by diagonalization of the corre-
sponding Hamiltonian matrix. Because the splitting of

Gls
LS 3

∆LSMLMSlsms
R( ) 4

3
---∆1ML

R( )=

×
1
2
--- s S

σ MS σ– MS

1
2
--- s S

σ ms ms σ+

.
σ
∑
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618 KOSARIM, SMIRNOV
Table 4.  The exchange interaction potential  for the ground state of the quasimolecule O+(4S) + O(3P) at given

quantum numbers ML, MS of an atom and quantum numbers s, ms of an ion on the basis of formula (18)

ML, MS
1, 1 1, 0 0, 1 1, –1 –1, 1 0, 0

s, ms

∆11 ∆10 ∆11

∆11

∆LSMLMSsms

3
2
--- 3

2
---, 2

3
---∆11

1

3
-------∆11

2
3
---∆10

3
2
--- 1

2
---, 1 6+

3
----------------∆11

2 2+
3

----------------∆11
1 6+

3
----------------∆10

3 2+
3

--------------------∆11
1 6+

3
----------------∆11

2 2+
3

----------------∆10

3
2
--- 1

2
---–, 3 2+

3
--------------------∆11

2 2+
3

----------------∆11
2 3+

3
--------------------∆10

1 6+
3

----------------∆11
2 3+

3
--------------------∆11

2 2+
3

----------------∆10

3
2
--- 3

2
---–,

1

3
-------∆11

2
3
---∆11

1

3
-------∆10

1

3
-------∆11

2
3
---∆10

Table 5.  The exchange interaction potential for the quasimolecule O+(2D) + O(3P) at given quantum numbers ML, MS of an
atom and quantum numbers j, mj of an ion

ML, MS
1, 1 1, 0 0, 1 1, –1 0, 0 –1, 1

 j, mj

∆11
5
2
--- 5

2
---, 10 2+

2 10
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3 2
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2
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2
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5
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2
2
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2 2

5
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3 2
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1
5
--- 2 3

2
-------+ 

  ∆10
2
5
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5
2
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2
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5
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electron terms due to the exchange interaction depends
on a fine ion state, the number of electron levels in this
case increases in comparison with the case of Hamilto-
nian (2). Performing this diagonalization for each fine
ion state at a distance of 12a0 between the nuclei (this
distance determines the resonant charge-exchange
cross section in thermal collisions), we assume that the
renormalization of the exchange interaction potential in
comparison with the basis ML, MS, j, mj is the same in a
neighboring range of distances. This allows us to deter-
mine the exchange interaction potentials given in
Table 5 for the quasimolecule and in Table 7 for the
quasimolecule O+(2P) + O(3P). As the quantum num-
bers of the quasimolecule, we now take the total atom
momentum J and its projection MJ on the molecular
axis. Although these are accurate quantum numbers
only at very large separations, where the ion–atom qua-
drupole interaction can be ignored, they can be used for
labeling electron states of the quasimolecule.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
5. MIXING OF EXCHANGE INTERACTIONS
FOR COUPLED ELECTRON TERMS

Above, we have determined the ion–atom exchange
interaction potential in the basis ML, MS, j, mj , which
are not quantum numbers of the quasimolecule, and the
Hamiltonian matrix Hik is not diagonal in this basis. The
electron terms of the quasimolecule follow from diago-
nalization of the Hamiltonian matrix, and the electron
levels E(R) at a given separation are solutions of the
secular equation

Above (see Figs. 1–3), we solved this equation for
Hamiltonian (2) with the ion–atom exchange interac-
tion ignored. We now solve this equation including the
ion–atom exchange interaction potential into consider-
ation and determine the exchange interaction potential
for eigenstates of the quasimolecule.

Eδik Hik– 0.=
Table 6.  The exchange interaction potential (R) for quasimolecule O+(2D) + O(1D) at given quantum numbers

ML, MS of an atom and quantum numbers j, mj of an ion

ML, MS
2, 0 (–2, 0) 1, 0 (–1, 0) 0, 0
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Table 7.  The exchange interaction potential for the quasimolecule O+(2P) + O(3P) at given quantum numbers j, mj of an ion
obtained in the basis ML, MS

ML, MS

1, 1 1, 0 0, 1 1, –1 0, 0 –1, 1
j, mj
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We demonstrate this operation for the interaction of
the oxygen ion and atom in the ground states O+(3P) +
O+(4S). Table 3 then gives the Hamiltonian matrix with-
out the exchange interaction, and the matrix of the ion–
atom exchange interaction potential is diagonal in the
ML, MS, j, mj basis. We note that the matrix Hik in
Table 3 is divided into three blocks consisting of matri-
ces with one, two, and three diagonal elements. For a
block with one element, where ML = 1, MS = 1, the
exchange interaction potential is ∆11(R). For the two
other blocks, the exchange interaction follows from
diagonalization of the Hamiltonian matrix for the
gerade and ungerade states of the quasimolecule, and
the exchange interaction potential is the difference of
the electron energies for the gerade and ungerade quasi-
molecule states taking into account the smallness of the
exchange interaction potential in comparison with a
typical potential of electrostatic interaction.

We perform this operation analytically for a block
consisting of two diagonal terms. Diagonalization of
the Hamiltonian matrix gives the energy of two levels
as [3]

where the indices 1 and 2 relate to the first and second

EI II,
H11 H22+

2
-----------------------

H11 H22–( )2

4
------------------------------ H12

2+ ,±=
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states in the basis ML, MS . We next construct the energy
matrix for the interaction of an oxygen ion and an atom
with taking into account the exchange interaction in
addition to Hamiltonian (2). For the states under con-
sideration, according to the data in Table 3, we have

(20a)

where the plus sign corresponds to the gerade state and
the minus sign corresponds to the ungerade state. From
this, we have the energy levels of eigenstates given by

(20b)

H11 0.8
e2a0

2

R3
----------–
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2
-----,±=

H22 1.6
e2a0

2
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----------
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2
-----,±=

H12 a, ∆H H11 H22– 2.4
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2
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----------,= = =

EI E0 ε–
1
2
---∆I, EII± E0 ε 1

2
---∆II,±+= =
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2
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----------, ε 1.2
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Correspondingly, the exchange interaction potential for
each state is

(21)

As can be seen, if a = 0 and, hence, the Hamiltonian
matrix is diagonal in the ML, MS basis, we have ∆I = ∆1
and ∆II = ∆2 in accordance with the expression for the
Hamiltonian diagonal elements.

We use the expressions in Table 8 for the exchange
interaction potential at a distance of 12a0 between
nuclei for different electron terms; this distance deter-
mines the cross section of resonant charge-exchange
process in thermal collisions involving the O(3P) atom
and O+(4S3/2) ion in the ground states. We note that,
according to formula (13), at this distance, ∆10 = 6∆11,
which is used in Table 8. In Table 8, we give the values
of the coefficient

where  is the exchange interaction potential for
the basis MLMSms according to formula (19), and ∆ is its
value after diagonalization of the Hamiltonian matrix.
As follows from the data in Table 8, the value κ is close
to one; below, because of the logarithmic dependence
of the cross section on this value, we ignore the varia-
tion of the exchange interaction potential due to diago-
nalization of the Hamiltonian. This simplifies the
problem.

6. RESONANT CHARGE-EXCHANGE PROCESS 
FOR OXYGEN

The above values of the ion–atom exchange interac-
tion potentials allow us to determine the partial cross
sections of resonant charge exchange on the basis of the
asymptotic theory [11, 12]. The asymptotic theory of
resonant charge exchange is based on the assumption
that the main contribution to the cross section of this
process is given by large impact parameters of colli-
sions in comparison with the typical atomic size. Then,
the inverse value is a small parameter of the asymptotic
theory, and the cross section is represented as an expan-
sion over this small parameter. Hence, determination of
the exchange ion–atom interaction potential at large
separations allows us to determine the cross section of
resonant charge exchange. If electron terms are nonde-
generate, the relation between the probability and cross
section of this process and the exchange interaction
potential in the two-level approximation can be used [24].
In particular, this approximation is valid for the transi-

∆I

∆1 ∆2+
2

-----------------
∆H
4ε
-------- ∆1 ∆2–( ),+=

∆II

∆1 ∆2+
2

-----------------
∆H
4ε
-------- ∆1 ∆2–( ).–=

κ ∆
∆MLMS

--------------,=

∆MLMS
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tion of an s-electron between two structureless cores
(for example, for the processes H+–H, He+–He), and,
then, the cross section σex of the resonant charge-
exchange process is given by [11, 12, 24]

(22)

where

This formula can be used in the cases under consider-
ation for the structureless oxygen ion O+(4S) or if the
fine ion splitting is small compared to the exchange
interaction potential, as for O+(2P). We take quantum
numbers J, MJ to characterize the atom state at the
beginning. Of course, this is valid only at very large dis-
tances between the nuclei when the ion–quadrupole
interaction can be neglected. Therefore, we use these
quantum numbers for labeling the electron terms only.
In addition, the cross section of processes

(23)

is zero for the one-electron atom scheme under consid-
eration, because the transition of a p-electron cannot
lead to these processes.

In Tables 9–13, we give the partial cross sections of
other electron transfer processes involving the electron
shells 2p3 and 2p4 for the oxygen ion and atom at ener-
gies of interest for plasma. The indicated quantum
numbers J, MJ of the atom and j, mj of the ion are accu-

σex

πR0
2

2
---------,=

1
v
----

πR0

2γ
---------∆ R0( ) 0.28.=

O+ S4( ) O D1( ) O D1( ) O+ S4( )+ +

O+ S4( ) O S1( ) O S1( ) O+ S4( )+ +

O+ D2( ) O S1( ) O S1( ) O+ D2( )+ + 
 
 
 
 
 

Table 8.  The values of κ resulting from diagonalization of
the Hamiltonian matrix

ML, MS
1, 1 1, 0 0, 1 1, –1 –1, 1 0, 0

s, ms

1 1.35 0.95 1.4 1.36 0.87

1 1.27 0.96 1.05 1.65 0.88

1 1.25 0.96 1.65 1.05 0.88

1 1.18 0.95 1.37 1.37 0.88

3
2
--- 3

2
---,

3
2
--- 1

2
---,

3
2
--- 1

2
---–,

3
2
--- 3

2
---–,
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Table 9.  The cross section of resonant charge exchange σex

(in 10–16 cm2) for the process O+(4S) + O(3P)  O(3P) +
O+(4S) at the collision energies 0.1 and 1 eV (in parentheses)
in the laboratory frame of reference

J, MJ
2, 2 2, 1 2, 0 1, 1 1, 0 0, 0

j, mj

60(48) 57(46) 54(43) 82(67) 60(48) 79(64)

61(49) 61(49) 60(48) 84(69) 61(49) 83(68)

60(48) 61(49) 61(49) 82(67) 60(48) 83(68)

54(43) 57(46) 60(48) 74(60) 54(43) 79(64)

Average 59(47) 59(47) 59(47) 81(66) 59(47) 81(66)

3
2
--- 3

2
---,

3
2
--- 1

2
---,

3
2
--- 1

2
---–,

3
2
--- 3

2
---–,

Table 10.  The cross section of resonant charge exchange σex

(in 10–16 cm2) for the process O+(2D) + O(3P)  O(3P) +
O+(2D) at the collision energies 0.1 and 1 eV in the labora-
tory frame of reference

J, MJ
2, 2 2, 1 2, 0 1, 1 1, 0 0, 0

j, mj

43(34) 41(33) 39(31) 34(26) 34(26) 39(31)

50(40) 50(40) 50(40) 44(34) 47(37) 52(41)

54(43) 55(45) 54(43) 50(40) 51(40) 57(46)

53(43) 56(45) 53(43) 51(40) 50(40) 57(46)

47(37) 51(40) 47(37) 47(37) 44(34) 52(41)

32(25) 36(28) 34(26) 34(26) 34(26) 39(31)

38(29) 35(26) 42(32) 39(30) 42(33) 29(21)

31(22) 37(28) 34(26) 38(29) 35(26) 39(30)

33(25) 38(29) 37(28) 35(26) 38(29) 39(30)

35(26) 24(16) 39(30) 42(33) 39(30) 29(21)

Average 42(32) 42(33) 41(32) 43(34) 41(32) 43(34)

5
2
--- 5

2
---,

5
2
--- 3

2
---,

5
2
--- 1

2
---,

5
2
--- 1

2
---–,

5
2
--- 3

2
---–,

5
2
--- 5

2
---–,

3
2
--- 3

2
---,

3
2
--- 1

2
---,

3
2
--- 1

2
---–,

3
2
--- 3

2
---–,
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rate only at large separations and are used for labeling
the electron states at intermediate separations when the
ion–atom quadrupole interaction is important. We also
note that the small parameter of the asymptotic theory
is now

(24)

In evaluating the cross section of electron transfer,
we use the values of the parameter γ in accordance with
the data in Table 2. Expanding with respect to this small
parameter, we keep two expansion terms in formula (22).
For the cases in Tables 8 and 9, the values of γR0 are
between 10 and 14. This means that the accuracy of the
asymptotic theory is about 1%. Of course, the real accu-
racy is worse because of additional factors [26] that
affect the accuracy of the cross sections. Nevertheless,
we estimate this accuracy at several percent.

1
γR0
--------- ! 1.

Table 11.  The cross section of resonant charge exchange σex

(in 10–16 cm2) for the process O+(2D) + O(1D)  O(1D) +
O+(2D) at the collision energies 0.1 and 1 eV in the labora-
tory frame of reference

J, MJ
2 1 0

j, mj

71(58) 62(49) 46(36)

66(53) 59(47) 53(42)

49(38) 46(35) 47(37)

58(46) 49(38) 47(37)

75(62) 59(47) 53(42)

62(49) 58(46) 46(36)

68(55) 60(48) 49(39)

59(47) 50(39) 54(43)

45(36) 44(34) 54(43)

53(41) 57(45) 49(39)

Average 61(48) 54(43) 50(40)
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If an electron term is degenerate for the quasimole-
cule consisting of a colliding ion and an atom, and if the
ion–atom exchange interaction removes this degener-
acy, the charge-exchange process in the course of ion–
atom collisions is entangled with other transition pro-
cesses. In the case under consideration, this degeneracy
relates to the projection of the ion total momentum on
the molecular axis, and, hence, the exchange process is
entangled with rotation of the ion total momentum.
However, because the ion–atom exchange interaction
potential decreases exponentially as the separation
increases, the region of the exchange process is narrow,
and, hence, the rotation angle of the molecular axis is
relatively small [5]. This allows us to separate the pro-
cess of resonant charge exchange from the processes of
moment rotation, i.e., to consider the resonant charge
process for each angular momentum direction of the
ion independently. Therefore, we evaluate the cross
section of resonant charge exchange for each ion
moment projection on the basis of formula (22).

On the basis of the partial cross sections of resonant
charge exchange in Tables 9–13, we can find the aver-
age cross sections (see Table 14) that are convenient for
applications. In averaging a cross section, we assume
that the population of electron levels of a given group is
proportional to the statistical weights of individual
states, which is valid at high temperatures. As a result,
in Table 12, we give the average cross sections of reso-
nant charge exchange for a given orbital momentum
and spin of the colliding ion and atom.

We note that the difference in the cross section for
ions in different states is determined mostly by different
ionization potentials of the oxygen atom in a given state
with ion formation in these states.

The cross sections obtained allow us to determine
the mobilities of an oxygen ion in atomic oxygen. In
particular, if the atoms are the ground electron and the
fine state O(3P2), the respective mobilities of the oxy-
gen ions O+(4S), O+(2D), and O+(2P) in atomic oxygen
are 2.6, 4.1, and 4.6 cm2/(V s); for the mixture of atoms
in the electron states O(3P2) and O(1D2) with equal pop-
ulations of these states at room temperature, the respec-
tive mobilities are 2.6, 3.8, and 4.3 cm2/(V s) at room
temperature. These values may be of interest for plas-
mas of Earth’s upper atmosphere and for a nonequilib-
rium gas-discharge oxygen plasma. We see that mea-
surement of the mobilities of ions in different states
makes it possible to analyze the atomic distribution
over excited states.

Thus, due to high symmetry of atoms and ions with
nonfilled electron shells, we obtain a large number of
electron terms within the framework of the LS coupling
scheme for a diatomic ion when the ion and the atom
have nonfilled electron shells. Because the exchange
interaction is shared between these states, the cross sec-
tions of resonant charge exchange are lower. This can
be demonstrated by comparing the cross sections of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
resonant charge exchange for the LS and j–j types of
electron coupling in the oxygen atom and ion. In the
case of j–j coupling, we have a lower symmetry and,
therefore, a simpler character for this process.

Table 12.  The cross section of resonant charge exchange σex

(in 10–16 cm2) for the process O+(2P) + O(3P)  O(3P) +
O+(2P) at given quantum numbers J, MJ of an atom and j, mj of
an ion at the collision energies 0.1 and 1 eV in the laboratory
frame of reference

J, MJ
2, 2 2, 1 2, 0 1, 1 1, 0 0, 0

j, mj

45(36) 45(35) 33(25) 38(29) 29(22) 45(35)

38(29) 41(32) 37(29) 36(28) 34(26) 39(31)

41(32) 40(31) 34(27) 34(26) 34(28) 39(31)

42(33) 45(36) 27(20) 41(32) 36(29) 45(35)

26(19) 36(28) 28(21) 42(33) 38(30) 24(18)

24(18) 39(30) 26(19) 39(30) 39(33) 24(18)

Average 36(28) 41(32) 31(24) 38(30) 36(28) 36(28)
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---,
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---,
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---–,
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---–,
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---,
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---–,

Table 13.  The cross section of resonant charge exchange σex

(in 10–16 cm2) for the processes O+(2D) + O(1D)  O(1D) +
O+(2D) and O+(2P) + O(1S)  O(1S) + O+(2P) (the last col-
umn) at the collision energies 0.1 and 1 eV in the laboratory
frame of reference

L, M
1D, ML = 2 1D, ML = 1 1D, ML = 0 1S, ML = 0

j, mj

38(30) 47(37) 46(36) 50(40)

38(29) 49(39) 50(40) 65(52)

34(25) 48(38) 50(40) 65(52)

28(21) 42(32) 46(36) 50(40)

35(27) 43(33) 47(37) 57(45)

30(23) 41(31) 47(37) 57(45)

Average 34(26) 45(35) 47(38) 58(46)
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---,
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The accuracy of the cross sections of resonant
charge exchange is mostly determined by the accuracy
of determination of the asymptotic coefficient A and,
according to the analysis in [23, 26], is several percent.
Comparing the ground state of a colliding ion and an
atom shows [8, 10] that the average cross section differs
by about 10% from that evaluated within the frame-
work of the Hund coupling. As regards the two-level

approximation for electron terms of , any coinci-
dence may be random, because this scheme of electron
term splitting does not take into account the important
special features of this interaction.

7. COMPARISON WITH OTHER SCHEMES
OF ELECTRON COUPLING

We have constructed the lowest electron terms of

 at large separations which determine the cross sec-
tions of resonant charge exchange. Of course, the char-
acter of coupling in this range of distances between the
nuclei differs from those at low separations [25]. We
next use the LS type of electron coupling in the atom
and ion, and the accuracy of using this coupling scheme
is about 2%, which is determined by the coincidence
with formula (9) of the level positions for fine states of
an oxygen atom located in the ground electron state.

Nevertheless, we use the j–j coupling scheme in the
case under consideration in order to understand the
dependence of the resonant charge-exchange cross sec-
tions on the coupling type. We consider the collision of
an oxygen ion and an atom in the ground electron
states, with the resonant charge-exchange process
occurring according to the scheme

(25)

O2
+

O2
+

O+ 1
2
--- 

 
2 3

2
--- 

 
3
2
---

O
1
2
--- 

 
2 3

2
--- 

 
2

2

+

O
1
2
--- 

 
2 3

2
--- 

 
2

2

O+ 1
2
--- 

 
2 3

2
--- 

 
3
2
---

+

Table 14.  The average cross sections of resonant charge
exchange σex (in 10–16 cm2) at the collision energies 0.1, 1,
and 10 eV (in brackets) in the laboratory frame of reference

Atom state
O(3P) O(1D) O(1S)

Ion state

O+(4S) 66(53)[44] 0(0)[0] 0(0)[0]

O+(2D) 42(33)[25] 56(44)[34] 0(0)[0]

O+(2P) 34(29)[22] 41(32)[24] 58(46)[35]
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instead of the process

(26)

that occurs in the case of the LS coupling scheme. As
follows from process (25), within the framework of the
j–j coupling scheme, the ion–atom exchange interac-
tion and the resonant charge-exchange process are
determined by the transition of a valence electron with
j = 3/2 from the field of one core to the other one.

Based on the j–j coupling scheme for valence elec-
trons in the atom and ion for the electron terms of the
ion dimer at large separations [23], we note that, in this
case, the character of the exchange splitting is simpler
than in the case of the LS coupling scheme. Indeed, we
represent the wavefunction of two valence electrons
from a nonfilled electron shell j = 3/2 of an oxygen
atom as

(27)

This wavefunction is simpler than formula (14) for the
LS coupling in an atom. From Eq. (15), we obtain the
ion–atom exchange interaction potential:

(28)

which is simpler than formula (17) for the LS coupling
in an atom and an ion. The one-electron exchange inter-
action potentials for case “c” of the Hund coupling,
which are used in this formula, are given by [22, 26]

(29)

where the one-electron exchange interaction potentials
∆10(R) and ∆11(R) for case “a” of the Hund coupling are
given by formula (13). Below, we neglect ∆11 compared
to ∆10.

We note that, according to formula (28), the ion–
atom exchange interaction potential (R) for the

O+ S4
3
2
--- 

  O P3
2( ) O P3

2( ) O+ S4
3
2
--- 

  ,+ +

ΦJ MJ
1 2,( ) 1

2
-------P̂ 3/2 3/2 J

m1 m2 MJm1 m2,
∑=

× ψ3
2
---m1

1( )ψ3
2
---m2

2( ).

∆J MJ jm j
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--- J
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--- 3
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ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005



ELECTRON TERMS AND RESONANT CHARGE EXCHANGE 625
j–j coupling in the atom and ion is unchanged under the
transformations

MJ, mj  –MJ, –mj . (30)

Table 15 contains the exchange interaction potentials in
the case of oxygen and the j–j coupling scheme. Evi-
dently, this scheme may be valid for heavy atoms of the
fourth group of the periodical table of elements.

Table 16 contains the partial cross sections for reso-
nant charge exchange. We see that they are in a
restricted range of values. The average cross sections of
the resonant charge-exchange process (25) at collision
energies of 0.1, 1, and 10 eV in the laboratory frame of
reference are 10–16 cm2. As follows from Table 16,
although the partial cross sections are different, the
average cross sections for a given total atom momen-
tum practically coincide.

Above, we have rigorously found the partial cross
sections of resonant charge exchange in slow collisions
for oxygen. We take into account various factors that

influence the positions of electron terms of the 
quasimolecule at large separations within the frame-
work of the LS coupling scheme for valence electrons.
This allows us to evaluate the partial cross sections. At
the next step, we can find the average cross sections of
resonant charge exchange by averaging over states
using a real distribution over excited states of the quasi-
molecule. Although this operation is accurate, it is quite
cumbersome, and it is therefore interesting to compare
accurate cross sections with those obtained in simpli-
fied schemes. We do not consider the two-level approx-
imation [24] suitable for transition of an s-electron
between two structureless cores. This approximation
was also used for oxygen (see, e.g., [27, 28]); it may
lead to a relatively large error, because it is restricted by
one transferring electron, while each valence electron
can in fact transfer to the ion core. In the case of oxy-
gen, this gives a factor of 7/3 [22, 26] for the exchange
interaction potential for case “a” of the Hund coupling.
For an ion and an atom in the ground electron state, this
leads to an error of approximately 20% [9] for the cross
section of resonant charge exchange and for the range
0.1–10 eV of the collision energies. Rejecting the
model of a transferring s-electron and a structureless
core, we restrict ourselves to cases “a” and “c” of the
Hund coupling for a valence p-electron and assume the
ion–atom exchange interaction potential to be indepen-
dent of the fine ion state.

Reducing the problem of the ion–atom exchange
interaction to the standard Hund coupling scheme for
the interaction of ion and atom valence electrons, we
can take this into consideration for the Hamiltonian if
we ignore the spin–orbit interaction for the atom
(Hund case “a”) or the ion–quadrupole interaction

O2
+
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(Hund case “c”). Therefore, averaging the exchange
interaction potential in (16) over ion and atom spins,
we obtain the ion–atom exchange interaction potential
for case “a” of the Hund coupling [5, 8, 13]:

(31)

In the same manner, in case “a” of the Hund coupling,
if we sum the atom orbital L and spin S momenta into
the total electron momentum J and average over ion

∆LSMLlsm R( ) n Gls
LS( )2

=

× le l L

µ ML µ– ML

le l L

µ m m µ+
∆leµ R( ).

µ
∑

Table 16.  The partial cross sections σex (in 10–16 cm2) of res-
onant charge-exchange process (25) at the collision energies
0.1, 1, and 10 eV in the laboratory frame of reference

MJ
0 1 2

mj

72(58)[45] 67(54)[42] 67(54)[42]

59(46)[35] 63(50)[38] 52(41)[32]

59(46)[35] 52(41)[32] 63(50)[38]

72(58)[45] 67(54)[42] 67(54)[42]

Average 65(52)[40] 63(50)[38] 63(50)[38]

3
2
---

1
2
---

1
2
---–

3
2
---–

Table 15.  The ion–atom exchange interaction potential
(R) for the j–j coupling scheme for oxygen
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Table 17.  The cross section of resonant charge exchange σex (in 10–16 cm2) for the process O+(4S) + O(3P) at given quantum
numbers J, MJ of an atom and j, mj of an ion at the collision energies 0.1 and 1 eV in the laboratory frame of reference. The
indicated quantum numbers are accurate only at large separations and are used for labeling the electron states at intermediate
separations where the ion–atom quadrupole interaction is important

Quantum numbers ML, Ms 1, 1 1, 0 1, –1 0, 0 –1, 1 0, 0

Quantum numbers J, MJ 2, 2 2, 1 2, 0 1, 1 1, 0 0, 0

Case a 69(56) 84(68) 63(51) 77(62) 51(41) 63(50)

Case c 63(51) 77(62) 81(66) 77(62) 56(44) 72(57)

Average for the accurate scheme 59(47) 59(47) 59(47) 81(66) 59(47) 81(66)
fine states according to formulas (14) and (17), we
obtain

(32)

In Table 17, cases “a” and “c” of the Hund coupling are
compared with a rigorous evaluation for the quasimol-
ecule under consideration. The general conclusion from
this and previous comparisons is that the average cross
sections for the precise and approximate methods are
close if we take into account the transition of any elec-
tron from the atom valence electron shell. If we reduce
the problem to electron transfer between two structure-
less cores, the difference in average cross sections may
reach 20%.

8. CONCLUSIONS

We have constructed the electron terms for the oxy-
gen ion dimer at large separations by an asymptotically
accurate method, with various interactions in this sys-

∆LSJ MJls j
R( ) n Gls

LS( )2
=

× le l L

µ ML µ– MLm ms,, m j ML MS, ,
∑

µ σ,
∑

× le l L

µ m m µ+

1
2
--- s S

σ MS σ– MS

×
1
2
--- s S

σ ms ms σ+

l s j

m ms m j

× l s j

ML µ– MS σ– ML µ– MS σ–+

× L S J

ML MS MJ

L S J

m µ+ ms σ+ m µ ms σ+ + +
∆leµ.
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tem taken into account within the framework of the LS
coupling scheme for the oxygen atom and ion. The
hierarchy of interactions in this quasimolecule is such
that the exchange electrostatic interaction is stronger
for lowest nonfilled electron shells p3 and p4 for the ion
and atom. As a result, the atom orbital momentum L, its
spin S, the ion orbital momentum l, and its spin s are the
quasimolecule quantum numbers. The spin–orbit inter-
action for an atom and an ion and the interaction of the
ion charge and the atom quadrupole moment are
weaker interactions. Because these interactions are
comparable, one can find the electron terms at large
separations with these interactions taken into account
by diagonalization of the Hamiltonian matrix. The
quasimolecule eigenstates are characterized by the total
ion angular momentum j and its projection mj on the
molecular axis; atom momenta and their projections are
mixed in eigenstates of the quasimolecule. The electron
term positions for the quasimolecule are determined for
each electron term of the diatomic oxygen ion; the
exchange interaction potentials for each electron term
and for each ion state are also evaluated at large separa-

tions. Although this is done for the quasimolecule ,
we thus obtain a general scheme for determining the
electron term energies and exchange interaction poten-
tials at large separations for an atom and its ion with
unfilled electron shells within the LS scheme of elec-
tron coupling.

We note that a general scheme developed for evalu-
ating electron terms and the cross sections of resonant
charge exchange is asymptotically accurate, but it is at
the same time quite cumbersome. Indeed, in the case of
O+(4S) + O(3P) interaction, we have nine electron terms
that are partially degenerate if we neglect the ion–atom
exchange interaction; taking into account the ion–atom
exchange interaction, we obtain 36 partially degenerate
electron terms. In the case of O+(2D) + O(3P) interac-
tion, we have 18 partially degenerate electron terms
with the ion–atom exchange interaction ignored and
90 electron terms with the ion–atom exchange interac-
tion taken into account. Because this method is cumber-
some, it may be simplified with partial loss of rigor but
with small loss in accuracy. Nevertheless, at least one

O2
+
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accurate evaluation is needed in the asymptotically
accurate scheme in order to know the accuracy of vari-
ous approximate methods. This procedure is fulfilled in
this paper in the case of oxygen.
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Abstract—A nanolocalized electron beam emitted from silicon nanotubes has been used to image the aperture
of a quartz capillary with a channel diameter of 100 nm. An analogous nickel-coated capillary was used as a tip
for imaging deposited organic nanostructures by means of femtosecond laser photoelectron projection micros-
copy (LPPM). Organic nanocomplexes deposited onto the tip surface change the dependence of the photoelec-
tron response signal on the energy density of probing femtosecond laser pulses. An analysis of the LPPM
images of capillary nanotips shows that the spatial resolution achieved in these experiments is on a level of
5 nm. © 2005 Pleiades Publishing, Inc. 
I. INTRODUCTION

The development of optical methods not limited by
diffraction is of considerable importance for the inves-
tigation of nanostructural composite materials. In this
context, reaching a spatial resolution on the level of
several nanometers is among the most urgent tasks in
nanooptics [1]. The method of scanning near-field opti-
cal microscopy (SNOM) in the standard realization is
based on the illumination of an object through a sub-
wavelength aperture [2] and the detection of light scat-
tered from the object. The SNOM image of a nano-
structure is obtained by placing it on a scanned sub-
strate at a distance of several nanometers from the
aperture. The spatial resolution reached using this
method in most cases falls within 30–100 nm. Methods
employing apertureless near-field microscopy are also
under development.

Ultrahigh spatial resolution in nanooptics can be
reached using a combination of the emission projection
microscopy with selective laser-induced photoemission
techniques [3]. In this geometry, the surface of a sharp
tip with the surface curvature radius much smaller than
the laser wavelength λ is projected onto a position-sen-
sitive detector by charged particles, which are emitted
from the point surface under the action of laser radia-
tion (for photoelectrons, the escape depth is typically
within several nanometers [4]) and move in the radial
electric field. As a result, a photoelectron projection
image of the nanodimensional tip surface magnified to
a macroscopic size (up to several centimeters) is
obtained in the detector plane. The use of laser pulses
of femtosecond duration is important for providing
effective laser-induced photoemission without signifi-
cant heating of the tip.

Capillary nanotips offer certain advantages as com-
pared to the classical tips of simpler topography. First,
1063-7761/05/10104- $26.000628
the image of the aperture (hole) of a capillary can pro-
vide a convenient reference signal. Second, sharp tips
with a hole in the central part are also of considerable
interest as nanowells for accommodating organic nano-
clusters. A proper nanowell, whose characteristic size
can be controlled by deposition of a thin film of variable
thickness, will naturally hinder the motion of the irradi-
ated nanocluster over the tip surface. Third, the aperture
can be used for supplying additional electrons to the
sample, which is important for the investigation of
weakly conducting nanostructures in the regime of
laser photoelectron projection microscopy (LPPM). It
should be noted that a nanolocalized electron beam
obtained at the capillary exit using an internal field-
emission cathode can be used for imaging the aperture
of the capillary.

This study was aimed at obtaining images of a
dielectric aperture and an organic nanostructure at the
tip of a 100-nm quartz capillary. Section 2 describes the
experimental setup, procedures, and methods used to
prepare nanodimensional tips for LPPM. Section 3 pre-
sents the results obtained for a quartz capillary nanotip
by LPPM using femtosecond laser radiation and a
nanolocalized electron beam. The concluding Section 4
summarizes the obtained results.

2. EXPERIMENTAL SETUP 
AND TECHNIQUES

Figure 1 shows a scheme of the laser projection
microscope. The setup is based on a vacuum chamber
in which a magnetic discharge pump of the Nord type
(Russia) provides an oilless vacuum on a level of
10−7 Torr. The main elements of such a microscope are
a sharp tip and a position-sensitive detector of charged
particles. We used a position-sensitive detector (Hama-
matsu Photonics K.K., Japan) comprising a pair of
 © 2005 Pleiades Publishing, Inc.
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microchannel plates with a diameter of 28 mm and a
luminescent screen. The image formed on the screen
was monitored by a CCD camera, transmitted to a com-
puter, and processed by an Argus-50 processor.

The tips were manufactured using commercially
available quartz capillaries with a channel diameter of
100 nm (µTIPTM, WPI, Israel) and glass capillaries with
a 1-µm channel (Pushchino, Russia). The tip of a capil-
lary could be coated with a nickel film of definite thick-
ness (determined by the deposition time) in an auxiliary
vacuum chamber (not depicted in Fig. 1). In order to
obtain organic nanostructures on the tip surface, a
nickel-coated capillary was dipped into a solution of
the organic dye Coumarin 153 (C153) in ethyl alcohol
(we used a solution concentration of nC153 ≈ 2.4 ×
1019 cm–3) and then dried. It should be noted that this
organic dye belongs to a group of promising chro-
mophores for biological macromolecules [5].

A capillary nanotip was fixed with a metal ring in a
sample holder, which was mounted on a special mov-
able feedthrough of the vacuum chamber. A bundle of
silicon nanotubes inserted into the capillary from the
rear end served as an internal cold electron emitter. The
tip and the emitter were provided with separate electric
leads. The assembly comprising the capillary nanotip
with the internal cold electron emitter was oriented so
that the tip was facing the position-sensitive detector.
The movable feedthrough allowed the tip to be adjusted
in the vertical direction and the tip axis to be rotated
within ±10° in the horizontal plane (Fig. 1). In most
experiments, a distance from the tip to the detector sur-
face was about L = 7 cm.

The LPPM measurements were performed using
femtosecond pulses of laser radiation with a wave-
length of λ ≈ 400 nm, a pulse duration of τp ≈ 100 fs,
and a pulse repetition rate of ≈76 MHz. Note that
400-nm light is effectively absorbed by C153 mole-
cules [6]. The pulses of 400-nm probing laser radiation
were obtained by focusing 800-nm fundamental radia-
tion of a femtosecond generator (Avesta Co., Russia)
pumped by a cw Millennia laser (Spectra Physics,
United States) onto a nonlinear BBO crystal. The sec-
ond harmonic pulses with an energy of 0.3 nJ generated
in this crystal were additionally attenuated using a neu-
tral metal filter. The output laser beam was focused by
an external quartz lens with a focal distance of fL ≈
12 cm and introduced into the vacuum chamber via a
special window.

3. EXPERIMENTAL RESULTS

In the first stage of experiments, we studied the sur-
face of an uncoated 100-nm quartz capillary. For this
purpose, a negative potential USi = –1.6 kV was applied
to the internal cold emitter, while the dielectric tip was
not biased (UT = 0, Fig. 1). In this case, the position-
sensitive detector monitored a beam of electrons emit-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ted from silicon nanotubes and transmitted through the
capillary aperture. Figure 2 shows the electron density
distributions observed for two orientations of the tip
relative to the detector.

A circular distribution of the emission current den-
sity in Fig. 2a can be explained using the following
qualitative considerations. For simplicity, let us con-
sider a conical cylinder with a large aspect ratio instead
of the capillary (Fig. 3). We may naturally suggest that
the internal nanotube cathode emits electrons within a
broad solid angle (about 1 sr). The fraction of electrons
ejected from the capillary without collisions with walls
(Fig. 3a) is apparently small, being proportional to d2

(where d is the aperture diameter). The main part of
emitted electrons strike the capillary walls in the imme-
diate vicinity of the emitter (Fig. 3b). We believe that,
in the case of a 100-nm capillary, the main contribution
to the detected signal is due to electrons ejected upon
inelastic reflection and secondary electron emission
along the capillary walls [7, 8] without subsequent col-
lisions with these walls. As can be see from Fig. 3b, the
electron density distribution in this case should have a
ring shape, in agreement with experiment. It should be
noted that a decrease in the kinetic energy of electrons
upon multiple inelastic collisions with walls leads to a
significant decrease in the efficiency of detection for
such electrons and, hence, their contribution in the first
approximation can be ignored.

The coefficient of magnification in these measure-
ments, which could be readily determined from the
experimental data, amounted to ME ≈ 3 × 105. An anal-
ysis of the electron density distribution in Fig. 2b also
allows the spatial resolution of LPPM images to be
evaluated. Indeed, the smearing of the inner part of the
ring in Fig. 2a is approximately v  ≈ 1.5 mm, from which
the spatial resolution can be estimated as v /ME ≈ 5 nm.

When the electron beam was passed through a 1-µm
glass capillary, the electron density distribution (Fig. 4)
was different from that observed for the 100-nm capil-
lary. According to the above model (Fig. 3b), the signal
related to collisionless ejection of electrons for a 1-µm
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Fig. 1. Schematic diagram of the experimental setup.
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Fig. 2. Aperture of a 100-nm quartz capillary imaged using a nanolocalized internal electron beam at (a) the normal and (b) altered
orientation of the tip.
aperture must be two orders of magnitude as large as
that for a 100-nm hole. The absence of a bright ring in
Fig. 4 is explained by the fact that these electrons do not
strike the detector, since the diameter of this ring
exceeds that of the microchannel plate size. The low
quality of the obtained image can be related to poor
spatial resolution (at the 100-nm level) and to inhomo-
geneity of the cross section of the ejected electron
beam. Assuming that the spot in Fig. 4 is a projection
image of the 1-µm aperture, we can estimate the corre-
sponding coefficient of magnification as MEG ≈ 5 × 103.
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Fig. 3. Schematic diagram of the nanolocalized electron
beam formation at the output of a capillary in the case of
ejection of electrons (a) without collisions and (b) upon
inelastic collisions with capillary walls.
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It should be noted that the electron beam obtained in
this case has a quite satisfactory divergence, which can
be estimated as approximately α ≈ 4 × 10–2 rad.

A nanolocalized electron beam obtained at the out-
put of a 100-nm capillary tip can be used for the shadow
imaging of nanostructures near the tip. We should like
to point out that it is also possible to generate an
ultrashort bunch of electrons by irradiating the internal
emitter with femtosecond laser radiation pulses (it is
expedient to use a single sharp point, such as an internal
cold cathode). This will ensure electron-microscopic

Fig. 4. Aperture of a 1-µm glass capillary imaged using
electrons emitted from the internal nanotube cathode.

1 mm
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Fig. 5. LPPM images of the aperture of a quartz capillary with a 100-nm channel covered with a (a) 25- and (b) 40-nm-thick layer
of nickel (for an observation time of 1.5 and 3 min, respectively).
imaging of nanostructures at a high temporal resolu-
tion. In particular, such nanolocalized beams can be
used for combined femtosecond electron and laser exci-
tation of a sample.

In the second stage of this study, we obtained LPPM
images of two 100-nm quartz capillaries covered with
nickel layers of different thicknesses (Fig. 5). The
thickness of a deposited nickel layer was 25 nm
(Fig. 5a) and 40 nm (Fig. 5b). Therefore, the difference
between the capillary channel diameters in the two
cases must be ∆d ≈ 30 ± 5 nm (this fact will be checked
in the subsequent analysis). In these experiments, the
internal cathode was not biased (USi = 0), while the tip
was at a small negative potential (UT = –300 V), which
was necessary for the effective detection of electrons
emitted from the capillary. Note that the photoelectron
response signal is linearly dependent on the laser radi-
ation energy density (Fig. 6a). This is related to the fact
that the applied static field (F ~ UT/3d ≈ 1 V/nm)
decreases the work function eϕWF (for nickel, eϕWF ≈
4.6 eV [7]) and thus provides for a single-photon-
induced electron emission from the metal surface irra-
diated by light quanta with λ = 400 nm.

In order to interpret the images, we have to evaluate
the magnification coefficient ML . This coefficient can
be calculated using an expression for the classical elec-
tron projector [9]:

(1)

where r is the tip radius, θ ≈ 1.5 [9], and η is a factor
taking into account a difference of the field distribution
at the capillary end from the radial configuration. This

ML
L

ηrθ
---------,≈
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSIC
104

103

n ≈ 1.14 ± 0.14

5 × 10–5 10–4

(a)

104

103

n ≈ 2.02 ± 0.06

10–5 10–4

(b)

Ph
ot

oe
le

ct
ro

n 
co

un
t, 

cp
m

Laser energy density, J/cm2

Fig. 6. Plots of the photoelectron current versus laser pulse
energy density for (a) a capillary covered with a 40-nm-
thick layer of nickel and (b) the same metallized capillary
with deposited Coumarin 153 dye molecules. Points present
the experimental data with error bars; solid lines correspond
to the (a) linear and (b) quadratic dependences of photocur-
rent on the laser pulse energy density.
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factor reflects a contraction of the image of the central
region of the capillary end due to converging field lines.
Assuming that η ≈ 2, we can estimate the magnification
coefficient as ML ≈ 4.7 × 105. This estimate will be
checked below.

The spatial resolution in LPPM is limited by a non-
zero initial transverse velocity component of emitted
photoelectrons relative to the static electric field direc-
tion. Indeed, an electron possessing a nonzero energy

10 nm
x

Fig. 7. LPPM image of the quartz capillary with a deposited
organic nanostructure. 
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Fig. 8. Plot of the photoelectron current versus time of irra-
diation of the sample at a laser pulse energy of 0.28 nJ.
Points represent the experimental data with error bars (data
acquisition time, 30 s); solid curve shows the results of
interpolation y = 102000e–t/1.16 + 69000; vx is the projec-
tion of the velocity of nanocomplex on the x axis (depicted
in Fig. 7).
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E0 = mv 2/2 is detected by a position-sensitive detector
with a spatial uncertainty of

(2)

For E0 ≤ 0.1 eV, the error of determination of the elec-
tron position is approximately ∆ ≈ δ/ML ≤ 5 nm. This
allows the proposed method to be used for the investi-
gation of nanostructures with characteristic dimensions
as small as ~5–10 nm, which is sufficient for LPPM
imaging of small clusters.

Let us analyze the LPPM images presented in Fig. 5
in terms of formula (1). According to this, the diameters
of channels in the capillaries coated with 25- and
40-nm-thick nickel films are d25 ≈ 35 ± 5 nm (Fig. 5a)
and d40 ≈ 11 ± 5 nm (Fig. 5b), respectively. The differ-
ence ∆d ≈ 24 ± 7 nm agrees (to within the experimental
uncertainty) with the estimate obtained above using the
relation between the hole size and the deposited layer
thickness. This agreement confirms the validity of the
assumptions made above.

Figure 7 shows the LPPM image of a nickel-coated
nanocapillary tip with a deposited organic nanostruc-
ture. The probability of photoinduced decomposition of
molecules on a metal-coated substrate significantly
decreases because the metal produces rapid quenching
of the excited molecular electronic states [10, 11]. Irra-
diation of such samples with femtosecond pulses of
400-nm laser radiation showed a quadratic dependence
of the photoelectron current on the laser energy density
(Fig. 6b). According to published data [12], the ioniza-
tion potential of an organic dye molecule is higher than
7 eV. Therefore, the photodetachment of one electron
from such a molecule requires several light quanta with
λ = 400 nm. It should be recalled that the dependence
of the photoelectron current on the laser energy density
measured before the application of dye molecules on
the tip surface was linear (Fig. 6a).

The characteristic size of the organic nanocomplex
imaged in Fig. 7 amounts to several tens of nanometers.
This nanostructure was imaged using femtosecond
laser pulses with an energy of E = 0.16 nJ. When the
laser pulse energy was increased to 0.28 nJ, the nano-
complex exhibited motions over the tip surface. This
was accompanied by a decrease in the photoelectron
current, which was well described by an exponential
function of the laser irradiation time (Fig. 8). We
believe that this behavior is caused by heating of the
sample, which leads to photoinduced decomposition or
desorption of fragments of the organic nanostructure.

Using the vacuum feedthrough (Fig. 1), it was pos-
sible to adjust the orientation of the capillary nanotip
relative to the detector and thus shift the image of the
capillary aperture to the center of the detector area. Fig-
ure 9 shows the measured photoemission intensity dis-
tribution (the contrast used to obtain these data did not
allow the image of the aperture to be observed simulta-

δ 2L E0/eUT( )1/2.≈
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10 nm

Fig. 9. The LPPM image of an adjusted nanocapillary with organic nanocomplexes at the tip (the contrast used to obtain this image
does not allow the image of the aperture in the central part of the detector area to be simultaneously observed). For better illustration,
the right-hand panel shows a three-dimensional pattern in which the height and brightness are proportional to the photoelectron
response magnitude.
neously). Note that the nanoclusters with characteristic
dimensions about 5–10 nm are imaged less brightly
than the main structure (representing approximately
20-nm organic cluster). This fact can be related to man-
ifestation of the limited (∆ ≈ 5 nm) spatial resolution of
the system. Indeed, when the size of a nanoobject
decreases below ∆, the characteristic size of the image
is unchanged but the number of emitted electrons
decreases.

4. CONCLUSIONS

We have successfully imaged an organic nanocom-
plex and a dielectric aperture at the tip of a 100-nm
quartz capillary. Using femtosecond LPPM, an approx-
imately 20-nm organic structure composed of Cou-
marin-153 molecules was imaged by LPPM with a
magnification coefficient of ML ≈ 4.7 × 105. An increase
in the laser pulse energy above a certain level leads to
the motion of the nanocomplex over the tip surface and
is accompanied by a decrease in the photoemission cur-
rent, which is well described by an exponential function
of the laser irradiation time with a decay time constant
of about 1 min. LPPM imaging of a metal-coated cap-
illary tip with a 10-nm aperture is evidence of the high
spatial resolution (on a level of ∆ ≈ 5 nm) achieved in
our experiments.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Using the internal cold cathode in the form of a bun-
dle of silicon nanotubes, it is possible to obtain a
nanolocalized electron beam at the output of a 100-nm
capillary tip. Such a beam was successfully used for
imaging the aperture of the quartz capillary with a mag-
nification coefficient of about ME ≈ 3 × 105 (note that
the magnification coefficients and the values of spatial
resolution determined by two methods were very
close). The electron beam obtained at the output of a
100-nm capillary tip can be used for the shadow imag-
ing of nanostructures near the tip aperture. By irradiat-
ing the internal emitter with femtosecond laser radia-
tion pulses, it is also possible to generate nanolocalized
ultrashort bunches of electrons.
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Abstract—The photon splitting γ  γγ in a strongly magnetized medium of arbitrary temperature and che-
mical potential is considered. In comparison with the case of a pure magnetic field, a new photon splitting channel
is shown to be possible below the electron–positron pair production threshold. The partial splitting amplitudes and
probabilities are calculated by taking into account the photon dispersion in a strong magnetic field and a charge-
symmetric plasma. An enhancement of the photon splitting probability compared to the case of a magnetic field
without plasma has been found to be possible under certain conditions. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The photon splitting into two photons, which is for-
bidden in a vacuum by the Farry theorem, but is possi-
ble in the presence of an electromagnetic field and/or a
plasma, is a shining example of the influence of an
active external medium on the reactions involving ele-
mentary particles. Remarkably, this exotic (at first
glance) process can play a significant role in astrophys-
ical phenomena. In particular, it is suggested that this
process could explain spectral features in some of the
radio pulsars [1] and the absence of radio emission in
recently discovered X-ray and gamma-ray sources, the
so-called anomalous X-ray pulsars (AXP) and soft
gamma repeaters (SGR) [2]. Such astrophysical objects
can possess a strong magnetic field that significantly
exceeds a critical value of Be = m2/e ≈ 4.41 × 1013 G1

and that reaches ~1014–1016 G [3]. In addition, analysis
of the spectra for some of these objects points to the
existence of a relatively hot and dense electron–
positron plasma in their neighborhood [3].

The theoretical study of the photon splitting γ 
γγ in an active external medium has a rather long his-
tory. In a magnetic field, this process has been consid-
ered by a number of authors (see, e.g., [4] where a
detailed list of previous papers can be found); among
the relatively recent papers are [5–12]. In particular, the
case of a strong magnetic field was considered in [6–9].
In an electron–positron plasma without any influence of
an external field, the propagation of photons was stud-
ied both in the case of a medium at rest [13] and in
the case where the plasma moves with an arbitrary

1 We use the natural system of units in which c = " = k = 1, where
m is the electron mass. Throughout this paper, e > 0 is the ele-
mentary charge.
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velocity [14]. In [14], the most general expression for
the photon splitting amplitude in a relativistic plasma
was derived by the method of temperature Green func-
tions. The effects of both components of the active
medium on the dispersive properties of photons and
their kinematics in a weakly magnetized, cold plasma
were simultaneously taken into account by Adler [15].
In [16], the Heisenberg–Euler Lagrangian for the effec-
tive six-photon interaction was used to derive an
expression for the photon splitting probability in a mag-
netized plasma by taking into account the photon dis-
persion in the plasma. The influence of a weak mag-
netic field and a medium of arbitrary temperature on the
modification of the photon splitting amplitude was con-
sidered in [17–19]. The influence of the plasma in this
case was shown to be negligible. However, the situation
can change significantly in the strong-field limit, which
has not been considered previously. It should also be
noted that no joint analysis of the influence of a magne-
tized plasma on the dispersive properties of photons
and on the modification of the photon splitting ampli-
tude was performed in the above papers.

In this paper, we consider the photon splitting γ 
γγ in the case of a strongly magnetized plasma where

 is believed to be much larger than the characteris-
tic parameters of the medium: the temperature T, the
chemical potential µ, and the photon energy. In Sec-
tion 2, the amplitude of the process in a strong mag-
netic field is calculated by taking into account the pho-
ton scattering by real electrons and positrons of the
medium. We show that the result obtained can be used
to calculate the amplitudes of the processes involving
neutrinos (γγ  ν ) and axions (a  γγ). In Sec-
tion 3, we analyze the photon splitting kinematics in a
strongly magnetized charge-symmetric (µ = 0) plasma

eB

ν
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with allowance made for the photon dispersion. We
point out that the renormalization of the photon wave-
functions near the cyclotron resonance should be taken
into account. In Section 4, the splitting probabilities of
real photons are calculated by taking into account the
dispersion laws and the renormalization of the wave-
functions. We discuss our results and present our con-
clusions in Section 5.

2. CALCULATING THE AMPLITUDE

In this section, we calculate the amplitude of the
process γ  γγ in a strongly magnetized medium. It
can be represented as the sum of two terms:

(1)

where }B is the amplitude of the process γ  γγ that
corresponds to a purely field contribution (µ = T = 0). It
is described by two Feynman diagrams (Fig. 1) and can
be taken from [8, 9, 20].

The second term on the right-hand side of Eq. (1)
corresponds to coherent photon scattering by real elec-
trons and positrons of the medium without any change
in their state (forward scattering) with the emission of
two photons. Graphically, such scatterings, for exam-
ple, by plasma electrons can be represented by the six
diagrams in Fig. 2. The cross at the end of the electron
line means that the particle belongs to the medium.
Such coherent scattering will give an additional contri-

} }B }pl,+=

γ(q) x
y

z

γ(q')

γ(q'')

+(γ' ↔ γ'')

Fig. 1. Feynman diagrams for the photon splitting in a mag-
netic field.

γ(q)

x
y

z

γ(q')γ(q'')

+ (photon permutations)

e(p) e(p)

Fig. 2. Additional photon scattering by electrons of the
medium with the emission of two photons in a magnetic
field in the presence of a plasma. The diagrams with the sub-
stitution p  –p will correspond to the scattering by
positrons.
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bution to the amplitude of the process γ  γγ. Let us
define the 6-matrix element of the plasma contribution
as the sum over all states including the corresponding
distribution functions:

(2)

Here, dnp is a phase volume element,

where L3 and L2 are the parameters that define the quan-
tization volume, V = L1L2L3. The 6-matrix elements

 describe the forward photon scattering with the
emission of two photons, respectively, by electrons and
positrons; (p) are the corresponding distribution
functions. In thermodynamic equilibrium and in the
rest frame of the plasma, the latter are

The summation in Eq. (2) is over the spins and Landau
levels of the plasma electrons and positrons.

In the strong-field limit, the plasma electrons and
positrons are at the ground Landau level, n = 0. The
well-known solutions of the Dirac equation in a mag-
netic field should be used to determine the matrix ele-
ments  in this limit. For the ground Landau level,
these solutions are known (see, e.g., [21]) to be repre-
sentable as (the vector potential was chosen to be A =
(0, Bx1, 0)

(3)

where

and e = ±1 denote the solutions for an electron with pos-
itive and negative energies, respectively. The bispinor

6pl np 6– f – p( ) 6+ f + p( )+[ ] .d∫
n s,
∑=

dnp

d p3d p2L3L2

2π( )2
------------------------------,=

6+−

f +−

f +− p( ) 1
p0 µ+−

T
---------------exp 1+

----------------------------------.=

6+−

ψpe

β1/4

2 πEpL2L3( )1/2
---------------------------------------=

× ie Epx0 p2x2– p3x3–( )–[ ]exp

×
ξe

2

2
-----– 

  ue p||( ),exp

Ep p3
2 m2+ , ξe β x1 e

p2

β
-----+ 

  ,= =

β eB,=
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amplitudes are

(4)

where

describes the state with the spin directed against the
field.

Using these solutions, we obtain the following
expression for the 6-matrix element that corresponds
to the diagrams in Fig. 2:

(5)

where  denotes the matrix element of the scatter-
ing by electrons (positrons) for the ith diagram. For
example,

(6)

Here, S(x, y) is the fermion propagator in a magnetic
field, which can be represented as [22]

(7)

(8)

where Aµ is the 4-potential, Fµν is the tensor of the
external constant uniform magnetic field. The transla-

tion-invariant part of the propagator (x – y) has sev-

ue p||( ) 1

Ep em+
------------------------

Ep em+( )Ψ
p3Ψ– 

 
 

,=

Ψ 0

1 
 
 

=

6pl
p3 p2dd

2π( )2
----------------- 6–

i( )
f – p( ) 6+

i( )
f + p( )+[ ] ,

i 1=

6

∑∫=

6+−
i( )

6–
1( ) ie3 β/π

2E 2ωV2ω'V2ω''V
-------------------------------------------------- d4xd4yd4z∫–=

× Sp pγ( )|| m+[ ]Π – ε'γ( )S z y,( ) ε''γ( )S y x,( ) εγ( ){ }
–i qx g'z– q''y–( )[ ]exp×

× i p z x–( )( )||[ ] i p z x–( )( )2–[ ]expexp

× β
2
--- z1

p2

β
-----+ 

 
2

x1
p2

β
-----+ 

 
2

+–
 
 
 

.exp

S x y,( ) iΦ x y,( )( )Ŝ x y–( ),exp=

Φ x y,( ) e ξµ Aµ ξ( ) 1
2
---Fµν ξ y–( )ν+ ,d

x

y

∫–=

Ŝ
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eral representations. For our purposes, it is convenient
to write it as a partial Fourier integral expansion:

(9)

Here, γα are the Dirac matrices in the standard repre-
sentation; the 4-vectors with the subscripts ⊥  and ||
refer, respectively, to the Euclidean {1, 2} and
Minkowski {0, 3} subspaces, when the field B is
directed along the third axis. For the arbitrary vectors
aα and bα , we have

(10)

where we introduced the matrices Λαβ = (ϕϕ)αβ and

 = ( )αβ related by  – Λαβ = gαβ =
diag(1, −1, –1, –1), ϕαβ = Fαβ/B is the tensor of the
external magnetic field reduced to dimensionless
form,  = εαβµνϕµν/2 is the dual tensor; the tensor
indices in the 4-vectors and the tensors in parentheses
are assumed to be folded sequentially: for example,
(aΛb) = aαΛαβbβ .

Changing the variables Y = z – y and Z = y – x in
Eq. (6) and integrating over x yields the following

Ŝ X( ) i
4π
------ τd

τtanh
-------------

0

∞

∫–=

× d2 p

2π( )2
------------- pγ( )|| m+[ ]Π – 1 τtanh+( )





∫

+ pγ( )|| m+[ ]Π + 1 τtanh–( )

– Xγ( )⊥
iβ

2 τtanh
----------------- 1 τtanh

2
–( )





×
βX ⊥

2

4 τtanh
-----------------–

τ m2 p||
2–( )

β
-------------------------– i pX( )||– 

  ,exp

d2 p d p0d p3, Π±
1
2
--- 1 iγ1γ2±( ),= =

Π±
2 Π±, Π± aγ( )||,[ ] 0.= =

a⊥α 0 a1 a2 0, , ,( ), a||α a0 0 0 a3, , ,( ),= =

ab( )⊥ aΛb( ) a1b1 a2b2,+= =

ab( )|| aΛ̃b( ) a0b0 a3b3,–= =

Λ̃αβ ϕ̃ ϕ̃ Λ̃αβ

ϕ̃αβ
SICS      Vol. 101      No. 4      2005



638 RUMYANTSEV, CHISTYAKOV
expression for :

(11)

The remaining elements  that correspond to the
diagrams with photon permutations can now be easily
obtained from Eq. (11). The substitution p  –p

allows the matrix elements  of the scattering by
positrons to be determined. In general, the 6-matrix
element for arbitrary particle momenta and magnetic
fields is rather difficult to calculate. Substituting the
propagator S(X) in Eq. (11) leads to an overly cumber-
some expression in the form of a double integral over
the proper time. Deducing the strong-field limit from
this expression is a fairly laborious task. In calcula-
tions, it proves to be more convenient to use the expan-
sion of the electron propagator in terms of the inverse
magnetic field strength. For this purpose, let us repre-
sent the translation-invariant part of the electron propa-

gator (X) as [23]
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(13)
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Ŝ+ X( ) i
4π
------ i γ ∂

∂X
------- 

 
||

– m+ δ||
2 X( )Π+–≈

×
βX ⊥

2

4
----------  Γ 0 

β
 

X
 

⊥
 

2

 
2

---------- , 
  ,exp
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where (X) = δ(X0)δ(X3), Γ(a, z

 

) is the incomplete
gamma function,

Only the combinations , , , and 
will contribute to the first two terms of the expansion of
the 

 

6

 

-matrix element in terms of the inverse magnetic
field strength.

Our analysis shows (for details, see the Appendix)

that the matrix elements  in the strong-field limit

(

 

β

 

 

 

@

 

 , ) can be transformed to  in such a way
that all of the even and odd (in external field, i.e., in 

 

ϕ

 

and ) terms will enter into the 

 

6

 

-matrix element (5)
in the form of odd and even (in 

 

µ

 

) functions, respec-
tively. This assertion is consistent with the generaliza-
tion of the Farry theorem to the case of a magnetized
medium considered in [24].

Since the scattering 

 

γ

 

e

 

±

 

  

 

γγ

 

e

 

±

 

 takes place without
any transfer of the 4-momentum to the plasma, this pro-
cess physically manifests itself as the photon splitting
with the corresponding conservation of all four energy–
momentum components. Equation (6), which describes
the scattering by a single electron, contains only three 

 

δ

 

functions. However, the 

 

6

 

-matrix element (5), which
includes the scattering by all plasma electrons and
positrons, contains an integral over the generalized
momentum 

 

p

 

2

 

, which gives the missing 

 

δ

 

 function. The
amplitude corresponding to the plasma contribution
can then be defined in the standard way,

(16)

Given Eq. (16), amplitude (1) can be represented as

(17)

where

(18)
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(19)

Here,

(20)

(21)

The function H(z) is defined as

(22)

The expression for πµνρ can be represented as
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where

The expression for vµνρ is

(25)

The derived expression for the amplitude is clearly
gauge-invariant, since

(26)

has the property of being real in the kinematic region

 ≤ 4m2,

(27)

and agrees with the previously derived expression for the
vector part of the amplitude of the process γγ   in
a pure magnetic field in the case where T = µ = 0 [23].

Note that Eq. (17) for the amplitude was derived in
the rest frame of the plasma. However, it can also be
generalized to the case where the plasma moves as a
whole along the magnetic field. For this purpose, it will
suffice to make the following substitution in the elec-
tron and positron distribution functions appearing in
integrals (20) and (21): f±(Ep)  f±(up), where uµ is
the 4-vector of the medium (u2 = 1). The condition for
the absence of an electric field in this frame can be writ-
ten in relativistically covariant form: uµϕµν = 0. Note
also that in contrast to the case of an electron–positron
plasma without any magnetic field, where introducing
the 4-velocity vector of the medium is required to write
the two- or three-photon vertex in covariant form [24],
in the presence of a magnetic field, as can be seen from
our result, the three-photon vertex can be represented in
covariant form without using the vector uµ . This is
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because an orthogonal basic can be constructed from
the field tensor and the 4-momentum vector:

using which any tensor can be represented in covariant
form.

To conclude this section, note that using result (17)
with the substitution

(28)

we can easily determine the amplitude of the process
γγ   in a strongly magnetized plasma, and with
the substitution

, (29)

we can determine the contribution of the axion–photon
interaction a  γγ induced by the plasma in a mag-
netic field to the amplitude. Here, CV and CA are the
vector and axial constants of the effective ννee
Lagrangian of the standard model,

θW is the Weinberg angle, the upper sign pertains to an
electron neutrino, the lower sign corresponds to muon
and tau neutrinos, jµ is the Fourier transform of the neu-
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Fig. 3. Photon dispersion in a strong magnetic field (B/Be =
200) and a charge-symmetric plasma (T = 1 MeV, µ = 0) at
various angles between the photon momentum and the mag-
netic field direction: θ = π/2 (upper solid curve), π/6 (middle
solid curve), and π/12 (lower solid curve). The dashed curve
represents the dispersion in the absence of a plasma.
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trino current, and gae is the dimensionless axion–elec-
tron coupling constant.

It is interesting to note the following. The ampli-
tudes of the processes γγ   and a  γγ in a
strong magnetic field are known to be independent of
the field strength [23, 25]. In contrast, as can be seen
from (17) and (18), the presence of a charge-asymmet-
ric (µ ≠ 0) plasma leads to a linear increase in the ampli-
tudes of these processes with magnetic field strength.
This may prove to be important when considering the
various applications of these processes in astrophysics.

3. THE PHOTON SPLITTING KINEMATICS

The kinematics of the process under consideration is
determined by both the vacuum polarization and the
photon scattering by plasma electrons and positrons.
The eigenvalues of the polarization operator for a
charge-symmetric plasma (µ = 0) can be taken from [26]
and be represented as

(30)

(31)

(32)

where

It follows from our analysis of the solutions to the
dispersion equations,

(33)

that the modes with λ = 1, 2 and with the polarization
vectors

(34)

are physical in the charge-symmetric case, just as in the
case of a pure magnetic field. However, it should be
emphasized that the coincidence of the polarization
vectors in the plasma is approximate, to within O(1/β).
At the same time, there are a number of differences
between the plasma and the magnetic field. The first
significant difference from the case of a pure magnetic
field is that for a mode-2 photon (Fig. 3), the situation
where this photon can have a positive value of q2 in the

kinematic region  ≤ 4m2 is possible. This is attribut-
able to the appearance of eigenmodes in the plasma
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with the frequency ωp that can be determined from the
equation

(35)

In this region, a new channel, γ2  γ1γ1, which is for-
bidden in a magnetic field in the absence of a plasma,
becomes possible. At the same time, the splitting chan-
nels γ1  γ2γ2 and γ1  γ1γ2, which are permitted in
a magnetic field [15], are kinematically closed in this
region. Another important difference is an essentially
different dependence of the dispersion law in variables

 and  on the angle between the photon momentum
and the magnetic field direction (see Fig. 3).

It follows from Eq. (31) that the eigenvalue of the
polarization operator 3(2)(q) is large near the electron–
positron pair production threshold. This suggests that
the renormalization of the wavefunction for a photon of
this polarization should be taken into account:

(36)

The amplitudes for the permitted channels γ1 
γ2γ2, γ1  γ1γ2, and γ2  γ1γ1 can be determined
from (17) and be represented as

(37)

(38)

(39)

Analysis shows that the function 7(+) < 0 almost in
the entire domain of parameters T, ω, and qz , while the
function H > 0 in this domain. Thus, the functions H
and 7(+), which define the dependences of the ampli-
tude on the magnetic field and the plasma, respectively,
appear in the derived expressions (37) and (38) with
opposite signs. Consequently, in contrast to the case of
a magnetic field, a plasma will suppress the amplitudes
of the channels γ1  γ2γ2 and γ1  γ1γ2. At the same
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time, as we show below, the probabilities of these pro-
cesses can be enhanced through the induced emission
of photons in the case of a cold charge-symmetric
plasma.

4. THE PHOTON SPLITTING PROBABILITY
IN A STRONGLY MAGNETIZED MEDIUM

The general expression for the photon splitting
probability can be written as

(40)

where

is the photon distribution function, and the factor gλ'λ'' =
1 – δλ'λ''/2 was introduced to allow for the possible iden-
tity of the photons in the final state.

In general, as can be seen from Eq. (40), calculating
the probability is a fairly complex mathematical prob-
lem. Analysis shows that a photon splits through all the
permitted channels with the highest probability when it
propagates perpendicularly to the magnetic field direc-
tion. For plasma parameters typical of astrophysical
objects (T = 50 keV, 250 keV, 1 MeV, µ = 0) and mag-
netic field strengths B = 100Be and 200Be , we numeri-

Wλ λ 'λ''→
gλ'λ''

32π2ω
---------------- }λλ 'λ''

2
Zλ Zλ'Zλ''∫=

× 1 f ω'+( ) 1 f ω''+( )

× δ ωλ k( ) ωλ' k k''–( )– ωλ'' k''( )–( ) d3k''
ωλ'ωλ''
---------------,

f ω
ω
T
---- 1–exp 

  1–

=

0.5
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W/W0 × 103

ω/2m
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2.5

Fig. 4. Relative probability of the channel γ1  γ1γ2 in a
strong magnetic field (B/Be = 100) and a charge-symmetric
plasma (µ = 0) at temperatures of 50 keV (solid line) and
250 keV (dotted line), W0 = (α/π)3m. The dashed curve rep-
resents the probability in a pure magnetic field (T = µ = 0) [8].
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cally calculated the photon splitting probabilities for
the channels γ1  γ1γ2, γ1  γ2γ2, and γ2  γ1γ1.
The results of our calculations are shown in Figs. 4–8.
We see from Figs. 4 and 5 that the photon splitting
probability can be higher than that in a pure magnetic
field. This is because allowance for the influence of a
plasma on the photon splitting in the low-temperature
limit, T ! m, is reduced only to allowance for the pho-
ton distribution functions and, as a result, leads to an
increase in the phase volume of the reaction. Indeed, at
temperatures T & 0.1m and fields B ≈ 100Be , the fol-

lowing estimate holds for the plasma frequency:  &
10–5m2. It follows from this estimate that the plasma
frequency is low compared to the characteristic (~T)
momenta on which integral (40) gains its value. This
allows 3(2)(q) to be represented as

(41)

ωp
2

3 2( )
q( ) ξq||

2,–≈

4

1

0 1 4 7

W/W0

ω/2m
2 3 5

2

3

6

Fig. 7. Relative probability of the channel γ1  γ2γ2 for
the same parameters as those in Fig. 6 (solid line). The
dashed line represents the probability in a pure magnetic
field (T = µ = 0) [8].

1

0
0.6 0.9

(W/W0) × 102

ω/2m
0.7 0.8

2

3

4

Fig. 5. Relative probability of the channel γ1  γ2γ2 for
the same parameters and notation as those in Fig. 4.
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where, for convenience, we introduced the parameter

that characterizes the degree of influence of the mag-
netic field. It thus follows that the dispersion law and
the renormalization of the wavefunctions for a photon
of the second mode can be written as

(42)

In addition, for typical fields in astrophysical
objects, ξ ≤ 0.1. In this case, the limit of collinear kine-
matics can be used. As we see from Eqs. (37) and (38),
the channel γ1  γ1γ2 in this limit will be suppressed
compared to the channel γ1  γ2γ2, as follows from

ξ α
3π
------ B

Be

-----,=

ω2 q⊥
2

1 ξ+
------------ q3

2, Z2
1

1 ξ+
------------.≈+=

20

5

0 1 5 7

W/W0

ω/2m
2 3 6

10

15

4

Fig. 6. Relative probability (solid line) of the channel
γ1  γ1γ2 in a strong magnetic field (B/Be = 200) and a
hot plasma (T = 1 MeV, µ = 0). The dashed line represents
the probability in a pure magnetic field (T = µ = 0) [8]; the
dotted line represents the asymptotic limit (43).
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Fig. 8. Relative probability of the channel γ2  γ1γ1 in a
strong magnetic field (B/Be = 200) and a hot plasma (T =
1 MeV, µ = 0).
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Figs. 4 and 5. On the other hand, as we see from Figs. 6
and 7, the influence of a hot plasma leads to the sup-
pression of the probabilities of the channels γ1  γ1γ2
and γ1  γ2γ2 compared to the case of a pure magnetic
field.

In the asymptotic limit m2 ≤ ω2sin2θ ≤ eB, we were
able to derive simple expressions for the probabilities
of the channels γ1  γ1γ2 and γ1  γ2γ2:

(43)

(44)

where u = cosθ, θ is the angle between the momentum
vector of the decaying photon k and the magnetic field
vector B,

An analytical expression for the probability of the
channel γ2  γ1γ1 can be derived in the case of a rare
photon gas (fω' = fω'' = 0) and be represented as

(45)

In the limit T = 0, the asymptotic formula (43) trans-
forms to the well-known expression in a strong mag-
netic field [8, 9, 20].

5. CONCLUSIONS

We have calculated the amplitude of the photon
splitting process γ  γγ, analyzed its kinematics, and
found the polarization selection rules. For the permitted
splitting channels, we calculated the corresponding
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ω
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------------------------------------------------ 1

1
ω
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8π2
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 
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probabilities by taking into account the photon disper-
sion and the renormalization of the photon wavefunc-
tions. Our results show that the presence of a plasma, on
the one hand, significantly changes the polarization
selection rules compared to the case of a pure magnetic
field. In particular, a new splitting channel, γ2  γ1γ1,
which is forbidden in the absence of a plasma, becomes
possible. On the other hand, we see from our numerical
calculations (Figs. 7 and 8) and the asymptotic formu-
las (43) and (44) that a hot plasma has an overwhelming
effect on the channels γ1  γ1γ2 and γ1  γ2γ2. Nev-
ertheless, as can be seen from Figs. 4 and 5, a cold
charge-symmetric plasma in combination with a strong
magnetic field is capable of enhancing the splitting
probability through these channels compared to the
case of a pure magnetic field.

Analysis of the case of a charge-asymmetric plasma
(µ ≠ 0) is a natural continuation of this work. For astro-
physical applications, it makes sense to compare the
calculated splitting probabilities through each channel
with the probability of the Compton photon scattering.
It is well known that in a weakly magnetized plasma,
the process γ  γγ can dominate over the Compton
scattering at certain parameters of the medium [17].
Therefore, exploring the possibility of such an effect
in a strongly magnetized plasma is of considerable
interest.

The results obtained can play an important role in
shaping the spectra of such astrophysical objects as soft
gamma repeaters (SGR).
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APPENDIX

TRANSFORMATION 
OF THE 6-MATRIX ELEMENTS

The calculation of the amplitude can be simplified
significantly if the 6-matrix elements corresponding to
the electron contributions are transformed to the
6-matrix elements corresponding to the positron con-

tributions. For example, let us transform the -6–
1( )
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matrix element corresponding to the first diagram in

Fig. 2 to the -matrix element of the scattering by
positrons corresponding to the same diagram, but with

the photon permutation εα(q)  (q') and the sub-

stitution p  –p. For this purpose, let us integrate (11)
over d4Y and d4Z with allowance made for the asymp-

totic form of propagator (12). In the limit β @ , ,

we obtain the following expression for :

(A.1)

Here,

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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(A.7)

(A.8)

Here, the subscripts –, +, or ⊥  show which of the com-

binations of propagators, , , , or ,
contributes to the corresponding part of the spur.

The -matrix element of the scattering by
positrons can be calculated in a similar way:

(A.9)

where  is defined similarly to (A.2), with

(A.10)

(A.11)

(A.12)
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(A.13)

(A.14)

(A.15)

Performing the charge conjugation operation on all
γ matrices under the spur sign in (A.9) and using the
properties of the operators Π± ,

we find that the spur of the matrices  can be trans-

formed to the spur of the matrices  in such a way
that

(A.16)

The remaining 6-matrix elements that define the
plasma contribution to the photon splitting can be calcu-
lated by photon permutation. Using now relation (A.16)
and Eq. (5), we can easily show that all of the even and
odd (in external field) terms will contain the difference
and sum of the electron and positron distribution func-
tions, respectively.

REFERENCES

1. A. C. Harding, M. G. Baring, and P. L. Gonthier, Astro-
phys. J. 476, 246 (1997).

@̂–⊥
6( )

pγ( )|| m–[ ]=

× εγ( )⊥ q'γ( )⊥
qγ( )⊥ i q'ϕγ( )+

2
--------------------------------------– ε''γ( )||





+ εγ( )|| q'γ( )⊥
qγ( )⊥ i q'ϕγ( )+

2
--------------------------------------– ε''γ( )⊥





×
pγ( )|| q'γ( )|| m–+

q'( )||
2 2 pq'( )||+

------------------------------------------- ε'γ( )||Π–,

@̂⊥ –
6( )

pγ( )|| m–[ ] εγ( )||
pγ( )|| qγ( )|| m–+

q||
2 2 pq( )||+

------------------------------------------=

× ε''γ( )⊥ q'γ( )⊥
qγ( )⊥ i qϕγ( )–

2
------------------------------------– ε'γ( )||





+ ε''γ( )|| q'γ( )⊥
qγ( )⊥ i qϕγ( )–

2
------------------------------------– ε'γ( )⊥




Π–,

@̂⊥⊥
6( ) 1

4
--- pγ( )|| m–[ ] εγ( )γβ ε''γ( )–=

× Λγ( )β i γϕ( )β+[ ] ε 'γ( )Π–.

Sp γµγν…Π+[ ] Sp γµγν…Π–[ ] ,=

Π±γ⊥µ γ⊥ν Π± Λµν– iϕµν±( )Π±,=

!̂
1( )

@̂
6( )

Sp!̂
1( )

Sp@̂
6( )*

.–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. M. G. Baring and A. C. Harding, Astrophys. J. Lett. 507,
L55 (1998).

3. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9
(1992).

4. V. O. Papanyan and V. I. Ritus, Tr. Fiz. Inst. im.
P. N. Lebedeva, Akad. Nauk SSSR 168, 120 (1986).

5. S. L. Adler and C. Schubert, Phys. Rev. Lett. 77, 1695
(1996).

6. V. N. Baier, A. I. Milstein, and R. Zh. Shaisultanov,
Phys. Rev. Lett. 77, 1691 (1996).

7. V. N. Baœer, A. I. Mil’shteœn, and R. Zh. Shaœsultanov, Zh.
Éksp. Teor. Fiz. 111, 52 (1997) [JETP 84, 29 (1997)].

8. M. V. Chistyakov, A. V. Kuznetsov, and N. V. Mikheev,
Phys. Lett. B 434, 67 (1998).

9. A. V. Kuznetsov, N. V. Mikheev, and M. V. Chistyakov,
Yad. Fiz. 62, 1638 (1999) [Phys. At. Nucl. 62, 1535
(1999)].

10. M. G. Baring, Phys. Rev. D 62, 016003 (2000).

11. J. I. Weise, M. G. Baring, and D. B. Melrose, Phys. Rev.
D 57, 5526 (1998).

12. C. Wilke and G. Wunner, Phys. Rev. D 55, 997 (1997).

13. D. B. Melrose, Plasma Phys. 16, 845 (1974).

14. V. de la Incera, E. Ferrer, and A. E. Shabad, Tr. Fiz. Inst.
im. P. N. Lebedeva, Akad. Nauk SSSR 169, 183 (1986).

15. S. L. Adler, Ann. Phys. (New York) 67, 599 (1971).

16. T. Bulik, Acta Astron. 48, 695 (1998).

17. P. Elmfors and B. Skagerstam, Phys. Lett. B 427, 197
(1998).

18. H. Gies, Phys. Rev. D 61, 085021 (2000).

19. J. M. Martinez Resco and M. A. Valle Basagoiti, Phys.
Rev. D 64, 016006 (2001).

20. A. V. Kuznetsov and N. V. Mikheev, Electroweak Pro-
cesses in External Electromagnetic Fields (Springer,
New York, 2003).

21. A. I. Akhiezer and V. B. Berestetskiœ, Quantum Electro-
dynamics, 4th ed. (Nauka, Moscow, 1981; Wiley, New
York, 1965).

22. J. Schwinger, Phys. Rev. 82, 664 (1951).

23. M. V. Chistyakov and N. V. Mikheev, Mod. Phys. Lett. A
17, 2553 (2002).

24. E. S. Fradkin, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad.
Nauk SSSR 29, 7 (1965).

25. N. V. Mikheev, A. Ya. Parkhomenko, and L. A. Vasi-
levskaya, Yad. Fiz. 63, 1122 (2000) [Phys. At. Nucl. 63,
1046 (2000)].

26. A. E. Shabad, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad.
Nauk SSSR 192, 5 (1988).

Translated by V. Astakhov
SICS      Vol. 101      No. 4      2005



  

Journal of Experimental and Theoretical Physics, Vol. 101, No. 4, 2005, pp. 646–652.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 128, No. 4, 2005, pp. 752–759.
Original Russian Text Copyright © 2005 by Postnikov, Loskutov.

                

NUCLEI, PARTICLES, FIELDS,
GRAVITATION, AND ASTROPHYSICS
Analysis of Small-Scale Wave Structures
in the Saturnian A Ring Based on Data

from the Cassini Interplanetary Spacecraft
E. B. Postnikova and A. Yu. Loskutovb

aKursk State University, ul. Radishcheva 33, Kursk, 305000 Russia
bMoscow State University, Vorob’evy gory, Moscow, 119992 Russia

e-mail: loskutov@chaos.phys.msu.ru
Received April 19, 2005

Abstract—The images obtained during the second half of 2004 by the Cassini interplanetary spacecraft are
analyzed. The method of analysis is based on the original algorithm of a continuous wavelet transform with a
complex Morlet wavelet that reduces the integral transform to solving a Cauchy problem for a system of partial
differential equations. This method is shown to be a fairly efficient tool for analyzing the instant variable peri-
odicity of the spatial particle inhomogeneity in the radial structure of Saturn’s rings. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

The structure of planetary rings generally and Sat-
urn’s rings specifically arouses constant scientific inter-
est in studying them as a dynamical system of many
particles (see, e.g., [1] for an overview of the status of
the problem as of 2002 and references). A characteristic
feature of Saturn’s main rings (A, B, C) is their small-
scale structure detected by the Voyagers. Its prelimi-
nary analysis (see [2–4]) led to a model for the forma-
tion of thin spiral density waves through the resonant
interaction of ring particles with Saturnian satellites.

Subsequently, a window Fourier transform was used
to analyze the Voyager data on the A ring [5]. This anal-
ysis revealed and identified about 40 resonance struc-
tures attributed to the influence of various Saturnian
satellites. At the same time, the authors of [5] pointed
out a number of resonance regions in which the
achieved resolution and the capabilities of the process-
ing algorithm did not allow any features in the ring mat-
ter distribution to be detected.

Over the last year, the data obtained by the Cassini
spacecraft, including high-resolution photographs
(see [6] for a preliminary report of the Cassini task
group), have opened up new opportunities for studies in
this field. The wavelet transform, a method of analysis
that has been actively developed in the past two
decades, can be used to process them. An important
advantage of this technique over other approaches (see,
e.g., [7]) is a high degree of localization of the basis
function in both the spatial and frequency domains.
This allows nonstationary signals to be effectively stud-
ied based on the concept of an instant frequency (or
period). The interrelationship between the window
1063-7761/05/10104- $26.000646
width and the instant period (the window contracts for
high-frequency signals and expands for low-frequency
signals; as a result, the effective number of oscillations
of the basis sine wave in the window is conserved)
favorably distinguishes the wavelet transform from the
window Fourier transform.

As applied to celestial mechanics, the wavelet anal-
ysis method has shown its efficiency in processing the
solution functions generated by Hamiltonian systems,
in particular, in the three-body problem [8] and in
studying the variations in the revolution periods of
asteroids in near-resonance regions [9]. As applied to
the Saturnian system, the wavelet transform was sug-
gested to be used to study the structure of the Encke gap
based on Voyager-2 data [10]. Since the main objective
of the authors of the cited paper was to identify struc-
tures of various scales in a noisy image, only real wave-
lets were used. However, determining the pattern of
local periodicity in Saturn’s ring structure requires
using a transform with a complex wavelet. The possible
efficiency of such an approach to this problem was
demonstrated with specific examples in [6, 11].

The main goal of this paper is to study the small-
scale structure of Saturn’s A ring using a new approach
to calculating the complex integral transform with a
Morlet wavelet based on the representation of the wave-
let transform as the solution to a system of partial dif-
ferential equations.

2. DESCRIPTION OF THE METHOD

The most suitable method for solving the problem of
distinguishing the instant period in a signal is the com-
 © 2005 Pleiades Publishing, Inc.
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plex continuous wavelet transform

(1)

(the asterisk denotes complex conjugate) in the ampli-
tude normalization

(2)

with the Morlet basis. In the exact form that satisfies the
admissibility condition

it is

(3)

The corresponding wavelet transform w(a, b) acts as a
local spectral distribution in periods a of the harmonics
that constitute the signal in the neighborhood of point b.

However, in most practical applications, the second
term in Eq. (3) is disregarded if the basis frequency is
fairly high (in general, ω0 ≥ 5), and the following sim-
plified definition is used:

(4)

It corresponds to normalization (2) with const =

exp( /2). A significant advantage of this approxima-
tion is the simple relationship between the instant
period of the wavelet transform and the period of the
harmonic oscillation with frequency ω. In other words,
the two-dimensional plot of the distribution of the mod-
ulus of the wavelet transform for a complex monochro-
matic function has a line of maximum that corresponds
to the period a = ±ω0/ω. The factor, which is a Gaussian
function, performs a smoothing that automatically sup-
presses the signal noise. The relationship also remains
valid for a real function.

Varying the basis frequency allows the frequency
resolution to be changed: the higher the frequency ω0,
the more oscillations the basis wavelet function exe-
cutes on the characteristic window width and the closer
the modulus of the wavelet transform to the locally
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smoothed Fourier spectrum. At low ω0, it reveals an
individual spike.

It should be noted that, despite such advantages as
the simplicity of the algorithm and the high speed of
calculations, the standard method for calculating the
continuous wavelet transform associated with the inter-
mediate passage to the frequency domain and with the
use of the fast Fourier transform algorithm has a
number of shortcomings. The latter follow from pecu-
liarities of the fast Fourier transform: the initial data
must be represented by a sample of 2N equidistant
nodes. Departures from this condition lead to a signifi-
cant complication of the calculations and/or loss of
accuracy.

Therefore, in this paper, we introduce an alternative
algorithm based on the observation that the transform
obtained by the convolution with the Morlet wavelet
satisfies the differential equation

(5)

The latter was derived in [12], but it was used only to
demonstrate the local properties of the a priori known
wavelet transform.

Let us represent the result of the wavelet transform
as a sum of the real and imaginary parts:

for which Eq. (5) can be written as the system

(6)

(7)

To find the corresponding initial conditions, let us write
the integral transform (1) with kernel (4) as

This integral is known to be independent of the imagi-
nary subtrahend in the exponent, and the kernel of the
transform in the limit a  0 is a delta function. Con-
sequently, w(0, b) = f(b). The initial conditions for the
system of differential equations (6) and (7) follow from
the latter equality:

The modulus of the wavelet transform required for our
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Fig. 1. The Encke gap. The coordinate origin almost coincides with the position of the 11 : 10 resonance with Pandora. The next
wave structure is generated by the 15 : 14 resonance with Prometheus. The first wave train after the gap is generated by the 12 : 11
resonance with Pandora.
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Fig. 2. The far (from Saturn) edge of the Encke gap.
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Fig. 3. The outer part of the A ring containing the 4 : 3, 6 : 5, and 7 : 6 resonance with Janus, Pandora, and Prometheus, respectively.
analysis can be easily calculated:

3. IMAGE PROCESSING RESULTS 
FOR SEGMENTS OF THE A RING

We use the algorithm described above to analyze the
radial matter density distribution at the center of Sat-
urn’s A ring based on photographic data from the
Cassini spacecraft (July 2004). For our analysis, we
chose images from the NASA/JPL/Space Science Insti-
tute collection. A narrow stripe was separated from
each image in the radial direction: PIA06099 (1022 ×
20 pixels, Fig. 1a), PIA06094 (891 × 23 pixels, Fig. 2a),

w a b,( ) u2 a b,( ) v 2 a b,( )+ .=
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PIA06095 (902 × 23 pixels, Fig. 3a), and PIA06093
(855 × 20 pixels, Fig. 4a). It is easy to verify that the
curvature of the structures constituting the ring within
each sample may be disregarded. For clarity, all images
were significantly stretched in the transverse direction.

We used the pair of initial conditions u(0, b) = f(b)
and v(0, b) = 0, where the function f(b) is obtained by
averaging over the sample (Figs. 1b–4b). Since the sig-
nal length is finite, the Cauchy problem for Eqs. (6) and
(7) must be replaced with a boundary-value problem.
We used boundary conditions of the first kind: respec-
tively, the initial signal value at these points and zero
for the real and imaginary parts of the wavelet trans-
form.
SICS      Vol. 101      No. 4      2005
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Fig. 4. The density waves generated by the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.
Values that are sufficiently high and convenient for
interpreting the results should be chosen for the basis
frequency. The frequencies ω0 = π (Figs. 1c–4c), 1.5π
(Figs. 3d and 5b), and 2π (Fig. 3c and 5c) in dimension-
less units of the sample length satisfy these conditions.
At the last two basis frequencies, the regions distorted
by the edge effect were removed from the figures. A
quantitative criterion for this in the (b, a) plane is the
condition

where b0 = 0 or 1.
The image being processed (Fig. 1a) represents the

neighborhood of the Encke gap. A characteristic feature
that is not revealed by the window Fourier transform is
the possibility of tracing the distribution of the instant
spatial period of the wave structure of the Encke gap
edge. In the plot of the modulus of the wavelet trans-
form (Fig. 1c), the lines of maxima are painted black.
Note that the large-scale development of a spiral den-
sity wave, which is accompanied by an increase in its
instant period, admits of a continuous passage to the
line of maximum corresponding to the large-scale
spikes. As follows from Fig. 1c, the characteristic size
on such scales is on the order of the extent of the train
of resonant waves generated by the 11 : 10 and 15 : 14

b b0–( )2

2a2
---------------------–

 
 
 

exp 10 5– ,≥
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resonances with the satellites Pandora and Prometheus,
respectively. There is a clear overlap between the lines
of maxima of various resonances (Fig. 1c). A similar
structure (but without a detailed analysis) has also been
revealed recently [6]. However, only one line of maxi-
mum may be preserved in our approach, which allows
relatively low ω0 to be used. We also found a similar
overlap between the lines of maximum of the instant
period for the small-scale and large-scale (formed by
Pan) resonant wave structures in the outer part of the
Encke gap (Fig. 2).

Another type of inhomogeneity that the suggested
wavelet analysis method can reveal consists in the pres-
ence of a small-scale periodicity in the interresonance
intervals. The high (up to 270 m per pixel) resolution of
the Cassini images and the algorithm described above,
which admits (in view of the peculiarities of the numer-
ical solution of differential equations) of a small step in
scale variable, makes such a study possible.

To analyze in detail the small-scale structure in the
interresonance region, let us consider the density waves
generated by the resonances of Janus, Pandora, and
Prometheus. The characteristic ladder form of their
instant spatial period is shown in Fig. 3c. To achieve a
higher spatial resolution, let us increase the basis fre-
quency to ω0 = 1.5π (Fig. 3d) and 2π (Fig. 3e). To
increase the sensitivity to the modulus of a low ampli-
tude, we will use various shades of gray for high values.
This leads to a smearing of the resonance lines, allow-
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005
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Fig. 5. The region between the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.
ing an almost stably periodic signal on the segment
[0.35, 0.45] connecting the first two resonant wave
trains to be highlighted by brightness lines. A short-
wavelength signal is also detected on the segment
[0.52, 0.67] between the second and third resonances.
However, it has an unstable spatial frequency varying
within the range 75π–107π (in units of the sample
length). The second frequency is equal to the frequency
of the wave between the resonances of Janus (4 : 3) and
Pandora (6 : 5). Its refinement using the basis frequency
ω0 = 2π yields 108(±1)π and confirms the stability of
the monochromaticity.

The spiral density waves in Fig. 4 generated by the
resonances of Prometheus (12 : 11) and Mimas (5 : 3)
are among the most distinct in Saturn’s ring structure.
For this reason, they were studied in detail and modeled
using Voyager data (see the earlier papers [2–4] and [5]).
Let us analyze the interresonance region by the wavelet
method using a recent Cassini photograph. Analysis of
the images obtained by a transform with a high fre-
quency resolution (Figs. 5b, 5c) reveals no stable peri-
odicity in this region. However, the existence of an
unstable signal with a spatial frequency of 125π (see
Fig. 5c, where the lines of maxima are painted white)
can be easily seen. In fact, it is close to the highest fre-
quency of the resonant trains. In addition, a short region
of more intense periodicity with a frequency of 67π
AL OF EXPERIMENTAL AND THEORETICAL PHYS
occupying the segment [0.30, 0.41] of the signal under
study is revealed. Examining the feature of the instant
period on the segment [0.36, 0.38] with a shape similar
to the resonance inclined line of the instant period, we
can assume that the frequency of 67π is related to the
longest-wavelength resonant perturbations.

4. CONCLUSIONS

Thus, the continuous wavelet transform with a com-
plex Morlet wavelet is an efficient tool for studying the
spatial radial structure of Saturn’s rings. It enables the
evolution of the instant period to be traced in detail on
various scales. A detailed analysis of the wave pro-
cesses in Saturn’s ring matter should include the inter-
action of the long-wavelength perturbation segments
with the small-scale wave trains generated by the reso-
nant interaction with other satellites and the formation
mechanisms of nearly monochromatic waves in the
regions connecting the high-frequency ends of the res-
onant zones.

The main results that allow a wavelet analysis of
high-resolution Cassini images to be performed are the
following. There are overlaps between the lines of the
instant period of the resonant waves generated by Pan
and the smaller-scale wave trains generated by other
satellites near both boundaries of the Encke gap. In
ICS      Vol. 101      No. 4      2005
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addition, nearly monochromatic waves of various
extents, up to the joining of the resonant trains, can be
present in the interresonance regions.

It should be noted that our analysis is preliminary
one and is in further elaboration with allowance made
for the image adjustment depending on the inclination
at which the photographs were taken and the absolute
distances to the region of the rings under study.
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Abstract—The effective demagnetization factor neff of quasi-single-crystal and granular YBa2Cu3O7 – x thin
disks with different values of the edge barrier height, bulk pinning, and demagnetization is measured by a Hall
probe with the use of a trapped magnetic flux as a test field. As the trapped magnetic flux increases, neff reaches
a maximum as a function of the external field; the qualitative behavior of this maximum is independent of the
morphology of a sample. It is shown that, when the densities of intragranular and intergranular critical currents
differ by about one and a half orders of magnitude, the demagnetization factor neff is mainly determined by the
geometry of a sample rather than by the energy of Josephson coupling between grains. The experimental results
are in agreement with the results of calculations performed within the proposed model of isolated crystallites
(grains). © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Recently, nonlocal phenomena, demagnetization
phenomena, and the phenomena of bulk and edge pin-
ning of a magnetic flux in high-temperature supercon-
ductors (HTSCs) have been intensively studied for con-
structing a generalized model of the critical state of
type-II semiconductors (see, for example, [1–6]). It has
been found that, due to these phenomena, the distribu-
tion of the magnetic-flux and current-density profiles in
HTSC plates and films deviates from that described by
the Bean model [7]. Therefore, the following topics are
of considerable interest: (a) the transformation of the
demagnetization factor of a sample under an increasing
external magnetic field H0 [8, 9]: after the penetration
of the field into the sample, the effective demagnetiza-
tion factor neff , which represents an integral demagneti-
zation factor of individual crystallites (grains),
becomes a unified macroscopic demagnetization factor
n of the sample; and (b) the influence of the neff of a
sample on

(1) the processes of penetration (exit), distribution,
and trapping of a magnetic flux;

(2) the redistribution of the current density in
a sample;

(3) the transition [10] from the domain of fields in
which the critical state is established in a Josephson
medium [11, 12] to the domain of fields in which the crit-
ical state is established in individual crystallites [10, 13];

(4) the manifestation of the above-listed phenom-
ena; and

(5) the formation of macroscopic parameters of
HTSC samples.
1063-7761/05/10104- $26.00 0653
The dependence of demagnetization fields on the
prehistory of a sample and on the configuration of a
trapped magnetic flux [14, 15], as well as the demagne-
tization factor of a sample with the trapped magnetic
flux [2], have also been poorly studied.

To avoid difficulties associated with consideration
of the demagnetization factor of crystallites in analyz-
ing the processes that occur in a Josephson medium,
one usually assumes that all grains in HTSC samples
are of the same size and have the shape of either infinitely
long cylinders [13, 16] or infinitely thin plates [17] in a
longitudinal field.

In the present paper, we propose and demonstrate a
method for the experimental measurement of neff . In
dense, nearly sintered HTSC samples, neff is mainly
determined by the total demagnetization factor of crys-
tallites. It is well-known [18] that the critical current in
HTSC ceramics and polycrystals at 77.4 K decrease by
more than two orders of magnitude under the applica-
tion of a field of up to 100 Oe. When the local scattering
fields of Abrikosov vortices trapped into crystallites are
greater than the characteristic field H0m that suppresses
the intercrystallite (intergranular) critical current JcJ ,

1

weak bonds are broken. As a magnetic flux is trapped
by a sample and as this trapping becomes stronger, one
can observe the dynamics of the formation of isolated
conglomerates of crystallites, which represent either
noninteracting [13, 19] identically magnetized crystal-
lites [10] or their combinations. The magnetization I =
V–1ΣMg of a sample is determined by the screening

1 For YBa2Cu3O7 – x at a temperature of 77.4 K, H0m ≈ 22.5 Oe,
while the first critical magnetic field of grains is Hc1g ≈ 40 Oe [18].
© 2005 Pleiades Publishing, Inc.
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supercurrents Jcg = ccurlMg that are formed within indi-
vidual crystallites, where V is the sample volume, Mg is
the magnetic moment, and c is the velocity of light) [20].

As is known, the internal field in a sample is given
by [21]:

(1)

The greater the magnetization 4πnI of the sample, the
stronger the demagnetization field HD . To determine
the neff as a function of the density of the trapped mag-
netic flux Btr and H0 in two close regimes ZFC1 and
ZFC2 (see the explanation below), we magnetize a sam-

ple so that  > . The field magnitudes are
given by

, (2)

(3)

Let us subtract Eq. (2) from Eq. (3) to obtain

(4)

According to (4), the quantity Hi1 – Hi2 increases with

 – . Since a decrease in the sample volume
due to the suppression of weak bonds occurs faster than
the magnetization of crystallites, the quantity Hi1 – Hi2

grows faster than  – , although it follows the
same variation law. In Section 4, we present an algo-
rithm for calculating (for given H0 and Btr) the values of
neff from the experimental functions of H0:

(5)

The goal of the present paper is to develop a method
for measuring neff , to investigate the effect of H0 and Btr
and the sample morphology on neff , and to determine
the role of the demagnetization factor of crystallites in
the macroscopic distribution of the magnetic fields in
the vicinity of a sample and of the currents in a sample.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Since the ranges and the manifestations of the
demagnetization phenomena and of the edge and bulk
pinnings of a magnetic flux largely overlap, we carried
out the following procedures to investigate the function
neff(H0) and the effect of the sample morphology on
these phenomena:

Hi H0 HD.–=

Btr
ZFC2 Btr

ZFC1

H i2 H0 4πneffBtr
ZFC2–=

H i1 H0 4πneffBtr
ZFC1.–=

neff

H i1 H i2–

4π Btr
ZFC2 Btr

ZFC1–( )
------------------------------------------.=

Btr
ZFC2 Btr

ZFC1

Btr
ZFC2 Btr

ZFC1

neff Btr( ) Btr
ZFC2 Btr

ZFC1.–≡
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(1) bulk scanning of samples by an external field
[10, 15];

(2) simultaneous measurement of the above-men-
tioned parameters in the ZC, ZFC1, and ZFC2 regimes
(see below);

(3) measurement of the thickness of samples;

(4) study of the evolution of the spatial distribution
of a trapped magnetic flux [10, 15].

A comparative analysis was carried out on
YBa2Cu3O7 – x samples with different structures,
heights of the edge barrier, bulk pinning, and demagne-
tization. Quasi-single-crystal (nongranular) and
ceramic samples in the shape of a disk with a diameter
of 9 mm and different thicknesses were cut out of a
cylindrical ingot. Textured quasi-single-crystal sintered
samples (with the axis c parallel to the cylinder axis)
were synthesized by a seed crystal placed on the top of
the cylinder at a high temperature [22]. The examina-
tion of a mechanically well-polished surface of a sam-
ple along its perimeter through a microscope revealed
0.11-cm2 bright (single-crystal) blocks separated by
narrow green inclusions. This fact was confirmed by
mapping a trapped magnetic flux with a Hall probe.
Ceramic samples were synthesized by the standard
solid-phase technology and had a relative density of
~95% (the theoretical density was chosen as 6.38 g cm–3)
with the average size of grains of about 1 µm [10]. To
eliminate the inhomogeneity in the distribution of oxy-
gen at the butt ends with respect to the bulk of samples,
the end surfaces of the samples were cut out by a dia-
mond cutter. The temperature of the superconducting
transition (Tc, ∆Tc) was measured by the inductive
method; for polycrystalline and ceramic samples, we
obtained Tc ≈ 91.5 K and ∆Tc ≈ 0.8 and 3.5 K, respec-
tively. The measurements were carried out at liquid
nitrogen temperature in a constant magnetic field of up
to 1 kOe by a Hall probe with the working area equal to
50 × 50 µm2 and the sensitivity of about 20 µV G–1. The
equipment enabled us to detect a signal from the Hall
probe with an accuracy of at least 2.5 × 10–6 G and to
move the probe along the z axis from the center to the
periphery of a sample. At the center of a sample, at a
minimal distance of about 200 µm from its surface, we
measured the magnetic induction B(0) and Btr(0) (the
choice of the reference point of the coordinate z at z =
200 µm was associated with the thickness of the current
and Hall contacts on the surface of the Hall probe) as a
function of H0 and the normalized axial distributions

Btr(z)/ (0) versus the coordinate z; Btr(z) is the axial
dependence of Btr measured for different values of the

external field, and (0) is the maximal density of the
trapped magnetic flux at the center of a sample on its
surface. The dependence of Btr(0) on H0 (further,
Btr(H0)) was measured in the following regimes:

Btr
max

Btr
max
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Fig. 1. Typical magnetic-field dependences of the trapped magnetic flux density Btr(H0) for polycrystalline (a) and ceramic
(b) YBa2Cu3O7 – x samples with a diameter D = 9 mm and thickness d = 1 mm. Curves 1, 2, and 3, correspond to the FC, ZFC1,
and ZFC2 regimes, respectively. The temperature is 77.4 K.
(1) The FC regime. A sample in a given field is
cooled to the temperature of liquid nitrogen. Then, the
external field is switched off and, after 10 min (a period
sufficient for the relaxation of component Btr associated
with a viscous flow of the flux and the development of
a rigidly fixed vortex lattice), Btr is measured at the cen-
ter of the sample on its surface. After that, the sample is
heated to a temperature above Tc  and the experiment is
repeated at another value of H0.

(2) The ZFC1 regime. A sample is cooled to the tem-
perature of liquid nitrogen in zero magnetic field. Then,
an impulse of an external magnetic field is applied to
the sample, and, after 10 min, Btr is measured at the cen-
ter of the sample on its surface. After that, the sample is
heated to a temperature above Tc  and the experiment is
repeated at another value of H0.

(3) The ZFC2 regime. This regime differs from ZFC1
in that, after the initial trapping without changing the
magnitude of the trapped Btr and without heating a sam-
ple, an impulse of H0 of the next step is applied to the
sample and the total Btr is measured after 10 min, etc. In
this case, the amplitudes of the field steps are gradually
increased step by step by equal values. Such an
approach was applied to break, stage by stage, the weak
bonds by the scattering fields of the vortices trapped by
a sample and to guarantee the interaction of the external
field with individual crystallites. The impulse of the
external magnetic field of length τ ≥ 1 min was applied
perpendicular to the plane of the samples. To eliminate
the influence of spikes near the fronts that arise when
switching on the power supply of a solenoid with
inductance >10 H and to transform a rectangular
impulse into a trapezoidal one, the solenoid was
shunted by a 50-µF capacitor. The length τ was speci-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
fied depending on the supply voltage. These measures
were taken to eliminate the effect of the entry and exit
velocities of a magnetic field on the magnetization of
samples [23]. The component Hz of the Earth’s mag-
netic field was compensated by a coil, coaxial with the
solenoid, that produced an external magnetic field. The
experimental technique and the equipment have been
described in detail in [15, 24].

3. EXPERIMENTAL RESULTS

Figure 1 represents the typical magnetic-field
dependence Btr(H0) for polycrystalline (Fig. 1a) and
ceramic (Fig. 1b) samples with a diameter of D = 9 mm
and a thickness of d = 1 mm at a temperature of 77.4 K
in three measurement regimes. Curves 2 and the insets
to Fig. 1 show that the values of the first critical mag-
netic field for polycrystalline and ceramic samples are
Hc1 = H0/(1 – n) ≈ 14 Oe and Hc1 ≈ 0.5 Oe, respectively.
The function Btr(H0) for a polycrystalline sample
reaches a saturation at lower fields (at H0 ≈ 600 Oe)
compared with that for a ceramic sample (H0 > 650 Oe).

For a polycrystalline sample, (0) ≈ 22 G, whereas,

for a ceramic sample, (0) ≈ 42 G. The characteris-
tics show that a polycrystalline sample has a narrower
energy spectrum of the distribution of pinning centers
and has a high edge barrier and low bulk pinning com-
pared with a ceramic sample [25].

In the FC regime (curves 1 in Fig. 1), small mag-
netic fields penetrate into a sample and are trapped after
switching off the field. Such a situation is analogous to
the case of an infinite film with the demagnetization
factor n = 1 in a perpendicular magnetic field. In the

Btr
max

Btr
max
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ZFC1 regime (curves 2 in Fig. 1), the trapping of a mag-
netic field does not influence n. In the ZFC2 regime
(curves 3 in Fig. 1), before applying the next step of a
magnetic field, the trapped magnetic flux of the preced-
ing step is stored. For the ZFC1 and ZFC2 regimes, one
may assume that the influence of the edge and bulk pin-
nings on n is roughly identical; therefore, an increase in
neff (the shift of curves 3 toward curves 1 in Fig. 1) is

0 50 300
H0, Oe

200

15

20

1
2

4

10

5

100 150 250

Btr, G

25

5
6

3

Fig. 2. Functions Btr(H0) for polycrystalline samples with
diameter D = 9 mm and different thicknesses d; d = 5.7 mm
(curves 1 and 2), d = 2.2 mm (curves 3 and 4), and d =
0.7 mm (curves 5 and 6). Curves 1, 3, and 5 are recorded in
the ZFC2 regime, and curves 2, 4, and 6, in the ZFC1regime.
The temperature is 77.4 K.
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attributed to the increase of the trapped magnetic flux.
Figure 1 shows that a high value of a trapped field
produces a stronger effect on neff (the gap between
curves 1 and 3 for a ceramic sample is less than that for
a polycrystalline sample).

To find out the dependence of neff on the structure of
the trapped magnetic flux, we will analyze Btr and

Btr(z)/ (0) as a function of thickness d for a series of
samples measured in three regimes.

Figure 2 presents the function Btr(H0) for polycrys-
talline samples of diameter D = 9 mm with different
thicknesses d. Curves 1 and 2 correspond to d =
5.7 mm, curves 3 and 4 correspond to d = 2.2 mm, and
curves 5 and 6 correspond to d = 0.7 mm. Curves 1, 3,
and 5 are recorded in the ZFC2 regime, while curves 2,
4, and 6, in the ZFC1 regime. Figure 2 shows that, as d
decreases, the effect of the trapped magnetic flux on neff
becomes stronger in spite of the decrease in Btr . This
fact is clearly illustrated in Fig. 3a, which represents the

dependence of neff(Btr) ≡  –  on H0, obtained
from Fig. 2 by subtracting curves 2 from 1 (curve 1), 4
from 3 (curve 2), and 6 from 5 (curve 3). Figure 3b

demonstrates the dependence of neff(Btr) ≡  –

 on H0, which is obtained from Fig. 2 by subtract-
ing curves 2 from 3, Fig. 1. Curve 1 corresponds
to polycrystalline samples, and curve 2, to ceramic
samples.

Figure 4 demonstrates the normalized axial distribu-

tion Btr(z)/ (0) for polycrystalline samples with

Btr
max

Btr
ZFC2 Btr

ZFC1

Btr
ZFC2

Btr
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Btr
max
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Fig. 3.  –  as a function of H0. (a) Curve 1 represents the difference between curves 3 and 2 in Fig. 2, curve 2 represents

the difference between curves 3 and 4 in Fig. 2, and curve 3 represents the difference between curves 5 and 6 in Fig. 2. (b) Curve 1
is the difference of curves 3 and 2 in Fig. 1a and curve 2 is the difference of curves 3 and 2 in Fig. 1b. The temperature is 77.4 K.
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Fig. 4. Normalized axial distribution Btr(z)/ (0) for polycrystalline samples of diameter D = 9 mm. (a) d = 1 mm; curve 1 is

recorded in the FC regime and curve 2, in the ZFC2 regime. (b) Measurements in the ZFC2 regime for samples of different thick-
nesses: d = 8 mm (curve 1), d = 4 mm (curve 2), and d = 1 mm (curve 3). The temperature is equal to 77.4 K.

Btr
max
diameter D = 9 mm. In the FC regime, the distribution
of a trapped magnetic flux is more uniform than that in
the ZFC2 regime, because an originally uniform exter-
nal field is trapped more uniformly after its switching
off. Figure 4a shows that, in the case of a uniform mag-

netization, the function Btr(z)/ (0) decreases slower
(curve 1) than that in the case of a nonuniform magne-
tization (curve 2). According to Fig. 4b (see also
Fig. 3a), as the sample thickness decreases, its mor-
phology is changed, and the distribution of the trapped
magnetic flux becomes more nonuniform. Thus, a non-
uniform spatial distribution of the trapped magnetic
flux in a sample stronger deforms the field around this
sample. The variations in the amplitude of neff and the
area under the curve of neff(H0), as well as the displace-
ment of the maximum of this curve along the axis H0 as
the sample thickness is changed (Fig. 3a), are attributed
to the variation in the relative number of crystallites
with different sizes, shapes, and orientations with
respect to the external magnetic field, as well as with
the change in the arrangement of these crystallites.

Note that similar dependences were obtained for
ceramic samples.

4. DISCUSSION OF THE RESULTS

To interpret the dependence neff(H0) and demon-
strate the enhancement of the demagnetization of a
sample or of individual crystallites by a trapped mag-
netic flux and the distribution of a field around a sam-
ple, we will use the scheme shown in Fig. 5. When the
magnetic induction B0 is less than or equal to B0 ≤ Btr ,
the external magnetic field around a sample is either

Btr
max
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compensated or removed from its edges (see the solid
field lines (Btr ≠ 0) and the dashed lines (Btr = 0) in
Fig. 5). First, the difference between the effective diam-
eter and the thickness of a sample increases due to the
enhanced interaction between the increasing scattering
fields Btr and the field B0 . When B0 ≥ Btr , the external
field suppresses the scattering field of the trapped
magnetic flux, and the solid field lines approach the
edges of the sample and merge with the dashed lines.

Btr

B0

Fig. 5. Distribution of the field lines of the trapped magnetic
flux density Btr and the magnetic induction B0 around a
sample.
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Fig. 6. Calculated magnetic-field dependence of the effective demagnetization factor neff of a sample: (a) neff(H0) and (b) neff(Btr)
for the same sample as in Fig. 1a. The temperature is equal to 77.4 K.
As a result, the function neff(H0) passes through its
maximum.

The results cannot be explained within the interact-
ing loops model in a more general case. According
to [26], the size of a loop with a trapped magnetic flux
in a field of 50 Oe reaches a value of 30–40 µm and
decreases as the field increases. Therefore, the maxi-
mum of the function neff(H0), which is observed in a
field of about 200 Oe, can be explained with the use of
much smaller loops. Since the area of crystallites in a
polycrystalline sample is about 0.11 cm2 and the forma-
tion of a loop requires two to three crystallites, the loop
size must be very large, which contradicts the argu-
ments presented above.

The results can be explained based on the following
ideas. It is well known [27] that, for a sample in the
form of an oblate ellipsoid of rotation with the minor
axis d and diameter D @ d in an external uniform mag-
netic field directed along the minor axis, the thermody-
namic, or intrinsic, field Hi and magnetic induction B
are related to the external field H0 by the formula

(6)

where n = 1 – πd/D is the demagnetization factor in the
direction of the field. In a mixed state, to apply for-
mula (6), it is necessary that the sample should consist
of uniformly distributed identical magnetic moments—
dipoles [10]. Such a situation may occur in HTSC sam-
ples near the saturation point of the trapped magnetic
flux when the Bean model (Jcg = const) is valid within
the crystallites considered [13]. In this case [28], the
thermodynamic field Hi depends not only on the exter-
nal field H0 but also on the coordinate y, and the induc-
tion B additionally depends on Btr . A solution to Eq. (6)

1 n–( )H i H0 nB,–=
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is obtained by analyzing the dependence of B1 (y, H0)
and B2 (y, Btr, H0) on H0 measured in the ZFC1 and ZFC2
regimes. For the ZFC1 regime, formula (6) is rewritten
as

(7)

In (7), the quantity n specifies the onset of penetra-
tion of a magnetic field into a sample, and the variation
of n during the penetration of a field into a sample is
determined by the dependence of Hi and B1 on H0 and
the coordinate y. To determine neff in the ZFC2 regime,
we rewrite formula (7) as

(8)

Figure 6 shows the functions neff(H0) and neff(Btr)
calculated by formula (8) for a sample described in
Fig. 1a. Figures 3b (curve 1) and 6a show that the cal-
culated curves are in agreement with the experimental
ones. The values of neff ≈ 0.66 (for Btr = 0) and neff ≈
0.65 (in the range of fields where neff is independent of
Btr) coincide with a value of n ≈ 0.65 determined from
the geometrical size of a sample in the Meissner state.
This fact confirms the results of the present study and
agrees with the earlier experimental results stating that
dense, nearly sintered HTSC samples predominantly
consist of crystallites. According to Fig. 1 (curves 2),
the density of the critical current JcJ in a polycrystalline
sample is about 28 times greater than JcJ in a ceramic
sample. The values of the fields Hp at which the fronts
of these fields reach the axes of polycrystalline and

H i y H0,( )
H0 nB1 y H0,( )–

1 n–
---------------------------------------.=

neff

H i y H0,( ) H0–
H i y H0,( ) B2 y Btr H0, ,( )–
--------------------------------------------------------------.=
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ceramic samples are of the same order of magnitude;
this fact strongly differs from the estimates made by the
formula [7],

(9)

Hence, the fact that the value H0 ≈ 200 Oe of the field
at which the maxima of neff(H0) coincide (Fig. 3b) is
associated with the value of Jcg, which specifies
approximately equal magnetization currents (J = cId)
[10, 20] in polycrystalline and ceramic samples.

The analysis carried out shows that, when Jcg differs
from JcJ by about 28 times, the demagnetization factor
is mainly determined by the geometry of a sample,
rather than by the energy of Josephson coupling
between crystallites.

The results obtained in the present study are inter-
preted according to the conditions under which HTSC
samples with relatively low values of JcJ and high val-
ues of a magnetic flux trapped in crystallites were cho-
sen. For higher quality samples [30, 31], the degree of
such trapping is insufficient for suppressing JcJ . Since
Jcg ≥ 10JcJ even in high-quality HTSC samples, in the
range of strong fields, the suppression of JcJ and the
decomposition of a sample into individual crystallites
will occur due to the amplification of H0 and the asso-
ciated concentration of the field around the crystallites.

Thus, the character of neff(H0) is not changed as the
morphology (Fig. 3a) and the parameters of the sam-
ples change, which have different initial structures and
critical parameters (Fig. 3b). Taking into account that
HTSC films and single crystals are multiconnected
Josephson media, we can assume that a similar depen-
dence neff(H0) will also be observed in conventional
spatially inhomogeneous type-II semiconductors [32].

5. CONCLUSIONS

Thus, the study of the interaction between a mag-
netic flux trapped by a sample and an external field has
revealed that the dynamics of the effective demagneti-
zation factor can be investigated by an example of
quasi-single-crystal and granular YBa2Cu3O7 – x thin
disks. The effect of the external field and the magnitude
and the topology of the trapping of a magnetic flux on
neff has been analyzed. For given Btr and H0, the profile
of the thermodynamic magnetic field has been mea-
sured. As the trapped magnetic flux increases, the func-
tion neff(H0) shows a maximum whose qualitative
behavior is not changed under substantial variations of
the sample morphology. It has been shown that, when
Jcg ≥ 28JcJ , the demagnetization factor is mainly deter-
mined by the geometry of a sample, rather than by the
energy of Josephson coupling between crystallites.

The results obtained and the planned cycle of inves-
tigations contribute to the correct determination of fun-

Hp
2π
c

------JcJD.=
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damental quantities such as the first and second critical
magnetic fields and the practically important quantity
Jc , as well as to the improvement of the existing models
of the critical state of type-II semiconductors.
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Abstract—Roughly half the numerical investigations of the Anderson transition are based on consideration of
an associated quasi-1D system and postulation of one-parameter scaling for the minimal Lyapunov exponent.
If this algorithm is taken seriously, it leads to unambiguous prediction of the 2D phase transition. The transition
is of the Kosterlitz–Thouless type and occurs between exponential and power law localization (Pichard and
Sarma, 1981). This conclusion does not contradict numerical results if raw data are considered. As for interpre-
tation of these data in terms of one-parameter scaling, this is inadmissible: the minimal Lyapunov exponent
does not obey any scaling. A scaling relation is valid not for a minimal, but for some effective Lyapunov expo-
nent whose dependence on the parameters is determined by the scaling itself. If finite-sizedd scaling is based
on the effective Lyapunov exponent, the existence of the 2D transition becomes indefinite, but still rather prob-
able. Interpretation of the results in terms of the Gell-Mann–Low equation is also given. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

The one-parameter scaling hypothesis [1] leads to a
conclusion that there is no Anderson transition in two
dimensions. This statement has produced a breakth-
rough in the physics of disordered systems and led to
development of the concept of weak localization with
numerous experimental manifestations [2]. The recent
discovery of the 2D metal-insulator transition [3–6]
threatens to undermine the basic concepts of the theory.
It is still unclear whether this transition can exist for a
purely potential scattering or should it be related to dif-
ferent complications, such as interaction, spin-orbit
effects, etc. It will be shown below that the first possi-
bility is rather probable and does not suggest substan-
tial revision in the weak localization region [1].

Initially, the present investigation was motivated by
analysis of the methodical aspects of finite-sizedd
scaling [7], which is a basic concept of all recent
numerical studies of the Anderson transition [8–23].
There is the problem that numerical results have a ten-
dency to contradict all other information on the critical
behavior [24]. Practically all theoretical and experi-
mental investigations agree with the result of the Voll-
hardt and Wölfle self-consistent theory [25, 26]

(1)
ν

1/ d 2–( ), 2 d 4< <
1/2, d 4,>




=

s 1, 2 d ∞,< <=

¶ The article was translated by the author.
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where ν and s are critical exponents of the correlation
length and conductivity and d is dimensionality of
space. Indeed, the result in (1)

(a) distinguishes values dc1 = 2 and dc2 = 4 as the
lower and the upper critical dimensions;1 

(b) agrees with the result2 for d = 2 + e [33]

(2)

(c) agrees with the results ν = 1/2 [35, 36] and s = 1
[37] for d = ∞;

(d) satisfies the scaling relation s = (d – 2)ν for d <
dc2 [1];

(e) gives critical exponents independent of d for d >
dc2, as is usual for mean field theory;

1 The first is a consequence of one-parameter scaling [1], and the
second can be seen from different points [27, 28], the main of
which is renormalizability. The theory of disordered systems is
mathematically equivalent to the ϕ4 field theory with a “wrong”
sign of interaction [29–31]. The latter is renormalizable for d ≤ 4
and nonrenormalizable for d > 4 [32]. For d ≤ 4, the entire phys-
ics is determined by small momenta or large distances, in accor-
dance with the expected scale invariance. For d > 4, the atomic
scale cannot be excluded from the results and no scale invariance
is possible.

2 According to Wegner [34], the term of order e2 in (2) is finite,
large, and negative. However, this result was derived for the zero-
component σ-model, whose correspondence with the initial dis-
ordered system is approximate and valid for small e; therefore a
difference can arise in a definite order in e.

ν 1
e
--- 0+ e

0 0 e
1 O e

2( );+⋅+⋅=
 © 2005 Pleiades Publishing, Inc.
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(f) agrees with experimental results for d = 3, s ≈ 1,
ν ≈ 1 [38, 39].3 As for numerical results, they can be
summarized by the empirical formula ν ≈ 0.8/(d – 2) +
0.5 [17], which has evident fundamental defects [24].

The finite-sized scaling approach is based on the
philosophy that any dimensionless quantity A related to
a system spatially restricted on a scale L is a function of
a ratio L/ξ,

(3)

where ξ is the correlation length. To justify Eq. (3), let
us assume that the dependence of A on the parameters
can be expressed as its dependence on characteristic
length scales L, ξ, l1, l2, …. Taking ξ as a unit scale, we
can write

(4)

Near the critical point, the correlation length ξ is large
in comparison with microscopic scales l1, l2, … and
substitution l1/ξ = l2/ξ = … = 0 reduces (4) to (3). This
derivation is based on assumption that limiting transi-
tion li/ξ  0 is not singular and the right-hand side of
Eq. (4) does not become zero or infinity. Unfortunately,
there is no simple way to establish when such an
assumption is true.4 When Eq. (3) is valid, it makes it
possible to investigate the dependence of ξ on parame-
ters. If there is anything wrong with Eq. (3), it leads to
erroneous conclusions.

Below we present an analytical realization of the
commonly used variant of finite-sized scaling based on
the concept of the minimal Lyapunov exponent. Our
approach is based on an investigation of the second
moments for a solution of the Cauchy problem for the
Schrödinger equation (Section 3), and in this respect it
is close to [42, 43]. Nevertheless, justification of the
approach (Section 2) and interpretation of the results
(Section 3) are significantly different, and in fact we
disagree with most of the statements made in [42, 43].

Briefly, our results consist in the following. If the
concept of the minimal Lyapunov exponent is taken
seriously, it leads to unambiguous prediction of the 2D

3 These remarkable properties of result (1) arouse suspicion to
the fact that it is exact [40]. In reality, it can be obtained with-
out model approximations on the basis of symmetry consider-
ations [41].

4 Such a possibility exists in the field-theoretical formulation of the
problem. When the maximum microscopic scale l1 tends to zero,
the theory becomes divergent. In nonrenormalizable theories,
such divergences are unavoidable and relation (3) never holds. If
a theory is renormalizable, all divergencies can be absorbed in a
finite number of parameters (such as mass, coupling constant,
etc.) and renormalized Green functions (and quantities that can
be expressed via them) do not depend on li and exhibit scale
invariance. If quantity A has no clear field-theoretical interpreta-
tion, it is difficult to establish its independence on the “bare
mass,” “bare coupling,” etc. The latter quantities essentially
depend on li and are observable in condensed matter applications.

A F L/ξ( ),=

A F L/ξ l1/ξ l2/ξ …, , ,( ).=
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phase transition (Section 3). The transition occurs
between exponential and power law localization and,
consequently, it is of the Kosterlitz–Thouless type [7].
This conclusion does not contradict the numerical
results [8–13] if the raw data are considered (Section 4).
Interpretation of these data in terms of one-parameter
scaling is inadmissible: the minimal Lyapunov expo-
nent does not obey any scaling. We argue that a scaling
relation is valid not for minimal, but for some effective
Lyapunov exponent whose dependence on parameters
is determined by scaling itself (Section 5). After such
modification, existence of the 2D transition becomes
indefinite, but still rather probable (Section 6). Interpre-
tation of results in terms of the Gell-Mann–Low equa-
tion [1] is given in Section 7.

2. BASIC CONCEPTS

2.1. The concept of finite-sized scaling is taken
from the theory of phase transitions [44–46] and can be
discussed using a ferromagnet as an example. Instead
of an infinite 3D system, let us consider a system of size
L × L × Lz with Lz  ∞. Such a system is topologi-
cally one-dimensional and does not exhibit phase tran-
sition. The correlations in it are always paramagnetic
and there is a finite correlation length ξ1D . Relation of
ξ1D to the ferromagnetic phase transition in the 3D sys-
tem is expressed by the following statements. If T > Tc
and the 3D system is paramagnetic, then ξ1D obviously
coincides with the correlation length ξ of the 3D system
when L is sufficiently large:

ξ1D  ξ for L  ∞. (5)

If T < Tc and the 3D system is ferromagnetic, then the
following statement is valid:

(6)

which can be proved by contradiction. Indeed, let the
ratio c = ξ1D/L be finite for all L. Let us assume n @ c
and consider a system of size L × L × nL. The correla-
tions in the length direction are paramagnetic and the
average (along the cross-section) magnetic moment
changes its sign many times. This situation holds for all
L and, in particular, for L  ∞; however, such a ther-
modynamic limit is topologically three-dimensional
and a system should become ferromagnetic. This con-
tradiction proves (6).

If T = Tc , then any behavior

(7)

is possible. Indeed, the ratio c = ξ1D/L is finite or tends
to zero, and the above-considered system of size L ×
L × nL possesses paramagnetic correlations. Neverthe-
less, it is not a true paramagnet, because its correlation

ξ1D

L
-------- ∞ for L ∞,

ξ1D Lα 0 α 1≤<( ) for L ∞∝
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length ξ ~ ξ1D is divergent, as it should be at the critical
point.

Usually, relation (7) is suggested with α = 1,
because it is the only possibility compatible with scale
invariance. Indeed, if the quantities ξ1D, ξ, and L are
related by some functional relation which does not con-
tain any other scales, this relation assumes the form
F(ξ1D/L, ξ/L) = 0 if L is taken as the unit length. Solving
this relation for ξ1D/L we have

(8)

and ξ1D = F(0)L at the critical point in accordance
with (7) for α = 1.

As a result, the quantity

(9)

can be taken as a scaling variable whose dependence on
L is shown in Fig. 1a. It should be stressed, however,
that ξ1D is sensible to the 3D transition independently of
the existence of scale invariance. The latter is absent for
space dimensions d > 4 in the case of a ferromagnet.

2.2. Application of these considerations to the local-
ization theory is based on identification of ξ1D with the
inverse of the minimal Lyapunov exponent γmin ,

(10)

The Lyapunov exponents occur in the solution of the
Cauchy problem for the quasi-1D Schrödinger equation
with the initial conditions on the left edge of the system.
For example, the 1D Anderson model

(11)

can be rewritten in the form of the recurrence relation

(12)

where Tn is a transfer matrix. Then the initial condition
problem can be formally solved as

(13)

An analogous relation occurs for an arbitrary quasi-1D
system if the quantity ψn(r⊥ ), depending on the trans-
verse coordinate r⊥ , is considered as a vector ψn .

One can try to represent a matrix product Pn in
Eq. (13) as the nth power of a constant matrix T. Such a

ξ1D

L
-------- F

L
ξ
--- 

  ,=

g L( )
ξ1D

L
--------=

ξ1D
1

γmin
---------.∼

ψn 1+ ψn 1– Vnψn+ + Eψn=

ψn 1+

ψn

E Vn– 1–

1 0

ψn

ψn 1–

Tn
ψn

ψn 1–

,≡=

ψn 1+

ψn

TnTn 1– …T2T1
ψ1

ψ0

.=
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thing is possible, but only for the “Hermitian part” of
Pn . As any matrix, Pn can be represented as a product
of the unitary matrix Un and the Hermitian matrix Hn

(14)

where Hn has real eigenvalues and describes a system-
atic growth or decrease ψn , while Un has eigenvalues
with the unit modulus and describes an oscillatory
behavior. Representation Hn = Tn is constructive,
because the geometric mean of matrices

(15)

tends to a nonrandom limit for n  ∞ according to the
Oseledec theorem [47]. If a vector of initial conditions
in (13) is expanded in eigenvectors of T, while its eigen-
values λs are written as exp(γs), then the following
decomposition is valid for ψn(r⊥ ):

(16)

The quantities (r⊥ ) have no systematic growth in n,
while the Lyapunov exponents γs tend to constant val-

Pn TnTn 1– …T2T1 UnHn,≡=

Hn
2 Pn

+Pn,=

T Pn
+Pn( )1/2n

=

=  T1
+T2

+…Tn
+Tn…T2T1( )1/2n

ψn r⊥( ) A1hn
1( ) r⊥( )e

γ1n
=

+ A2hn
2( ) r⊥( )e

γ2n
… Amhn

m( ) r⊥( )e
γmn

.+ +

hn
s( )

(a)
g

L

T < Tc

T = Tc

T > Tc

(b)g

L

W < Wc

W = WcW > Wc

g∞

~ 1/lnL
1/β∞L

Fig. 1. (a) Typical dependences g(L) in the case of one-
parameter scaling; (b) dependences g(L) according to
Eq. (50).
SICS      Vol. 101      No. 4      2005



664 SUSLOV
ues in a large n limit. Only terms with positive γs are
kept in Eq. (16) and they are numerated in the order of
decreasing γs.

Following to Mott [48], we can construct eigenfunc-
tions of a quasi-1D system by matching two solutions
of the type (16) increasing from two opposite edges of
the system. The tails of the eigenfunction will be deter-
mined by the minimal Lyapunov exponent γmin ≡ γm and
these are grounds for relation (10).

2.3. Decomposition (16) is valid for nonaveraged
quantity ψn(r⊥ ) and its meaning consists in distinguish-
ing the self-averaging exponents γs . It will be shown in
Section 3 that the mean value of ψn(r⊥ ) does not obey
systematic growth,

(17)

while decomposition of type (16) is valid for its second
moment

(18)

with the same number of positive exponents βs . Squar-
ing (16) gives m2 terms that increase as exp(γin + γjn),
and the only possibility to have m terms in (18) suggests
averaging to zero for all terms with i ≠ j. The terms with
i = j are positive and cannot vanish in the course of aver-
aging:

(19)

The terms in (18) and (19) are in one-to-one correspon-
dence and relation between γs and βs can be discussed

ψn r⊥( )〈 〉 1,∼

ψn
2 r⊥( )〈 〉 B1 r⊥( )e

β1n
=

+ B2 r⊥( )e
β2n

… Bm r⊥( )e
βmn

+ +

ψn
2 r⊥( )〈 〉 A1hn

1( ) r⊥( )[ ] 2
e

2γ1n
=

+ A2hn
2( ) r⊥( )[ ] 2

e
2γ2n

…+

+ Amhn
m( ) r⊥( )[ ] 2

e
2γmn

〈 〉 .

(a)

(b)

Fig. 2. Solution of the Cauchy problem (a) and a 1D eigen-
function constructed according to Mott (b) in the situation
a = 0, b > 0.
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for a pure 1D system when (16) and (18) have only one
term in the right-hand side:

(20)

Finiteness of 〈ψn〉  is insignificant in comparison with
the exponential growth, and we accept 〈ψn〉  = 0. In fact,
we should discuss the usual relation between a typical
value of a random quantity x and its root mean square
value. If 〈x〉  = 0 and 〈x2〉  = σ2, then the typical value of
x should not be necessarily of order σ: one can state
only that |x | & σ. Indeed, according to the Chebyshev
inequality [49], the probability for |x | to be greater than

x0 is less then σ2/ . Values of x substantially greater
than σ are improbable and σ gives the upper estimate of
the distribution width. The lower estimate does not
exist in any form. Indeed, if distribution P(x) changes
on a scale of x ~ 1 and has a tail of |x |–α with 1 < α < 3,
then typical x ~ 1, while 〈x2〉  = σ2 = ∞. It is clear from
these considerations that the following relation holds
for the exponents in Eq. (20),

β ≥ 2γ, (21)

and there are no grounds for equality.
In fact, the relation between β and γ can be dis-

cussed more constructively, because ψn has a log-nor-
mal distribution [50]: i.e., the quantity τ = ln|ψn | has a
Gaussian distribution

, (22)

where the first and the second moments grow linearly
in n. It is easy to see that

, (23)

and (21) obviously holds. In the 1D Anderson model
we have for E = 0

(24)

for weak disorder, and

(25)

for strong disorder. For a typical distribution, Eq. (25)
suggests that b ! a. Analogous results are valid for
many models, and situation b & a should be considered
typical. In this case, β ~ γ and 1/β gives the correct esti-
mate of the correlation length ξ1D .

The situation b @ a can be discussed for an extremal
case when a = 0, b > 0. Then ψn has no systematic
growth but has rare peaks with increasing amplitude

ψn eγn, ψn〈 〉 1, ψn
2〈 〉 eβn.∼ ∼ ∼

x0
2

P τ( ) τ an–( )2

2bn
---------------------–

 
 
 

exp∼

ψn ean, ψn
2〈 〉 e 2a 2b+( )n∼ ∼

a b
1
8
--- V2〈 〉 , β 1

2
--- V2〈 〉= = =

γ a Vln〈 〉 , β V2〈 〉ln= = =
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(Fig. 2a). Then Mott’s construction of an 1D eigenfunc-
tion gives the typical “hybrid” state, which is a linear
combination of localized and extended states (Fig. 2b).
The length of the localized component is evidently on
the order of 1/β. Consequently, an exponent β provides
essential information which is not present in the mean
value of γ. This information can have a practical mean-
ing: parameter b determines the growth of all low even

moments (  ~ exp(2ma + 2m2b)n), while the
fourth moments enter the Kubo–Greenwood formula
for conductivity.

According to numerical studies [11], an arbitrary
(sth) term in Eq. (16) has a distribution of type (22) with
parameters as and bs . Therefore, relations γs = as , βs =
2as + 2bs hold for arbitrary s . We see that the second
moments of ψn(r⊥ ) give valuable information: (a) expo-
nents βs provide a rigorous upper bound for γs , βs ≥ 2γs;
(b) estimates βs ~ γs are valid in the typical case as * bs;
(c) βs are related to fluctuations of γs in the case as ! bs .
As for the heuristic relation with the Anderson transi-
tion, the use of the minimal exponents γmin and βmin is
on the same grounds. For example, scaling relations

(26)

can be postulated on the same level of rigorousness.
In [11], empirical scaling is stated for γminL and b/a
simultaneously. If this statement is taken seriously, it
justifies (26) for βminL; in fact, scaling is absent for all
these quantities (Sections 3–5).

3. SECOND MOMENTS FOR A SOLUTION
OF THE CAUCHY PROBLEM

The idea of the present approach can be found
in [51]. Let us rewrite the Schrödinger equation (11) for
the 1D Anderson model as a recurrence relation,
expressing ψn + 1 in terms of ψn , ψn – 1 and consider the
Cauchy problem with the fixed initial conditions for ψ1
and ψ0 . It is easy to see that ψ2 is a function of V1, ψ3
is a function of V2, V1, etc. So ψn and Vn are statistically
independent and can be averaged separately:

(27)

(28)

We have accepted that Vn are statistically independent and

(29)

ψn
2m〈 〉

1
γminL
------------ F

L
ξ
--- 

  and
1

βminL
------------- F

L
ξ
--- 

 = =

ψn 1+〈 〉 E ψn〈 〉 ψ n 1–〈 〉 ,–=

ψn 1+
2〈 〉 W2 E2+( ) ψn

2〈 〉=

– 2E ψnψn 1–〈 〉 ψ n 1–
2〈 〉  etc.+

Vn〈 〉 0, VnVn'〈 〉 W2δnn' .= =
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Equation (27) has the form (11) with Vn ≡ 0 and its solu-
tions are 

(30)

with 2cosp = E. Inside the allowed band, they have no
systematic growth and 〈ψn〉  ~ 1. Equation (28) for E = 0

is a difference equation for xn = ,

(31)

with exponential solution

(32)

In the case E ≠ 0, Eq. (28) is not closed and should be
completed by the equation

(33)

As a result, a set of difference equations arises for xn =

 and ψn = 〈ψnψn – 1〉

(34)

with exponential growth of solution.
This approach is easily generalized for an arbitrary

quasi-1D system. Consider the 2D Anderson model

(35)

and interpret it as a recurrence relation in n. Solving (35)
for the quantity ψn + 1, m averaging its square, we can
express it via the pair correlators of ψn, m containing
lower values of n. Constructing analogous equations for
other correlators, we end with the close system of dif-
ference equations for the quantities

(36)

which for E = 0 has the form

(37)

ψn〈 〉 ipn( )exp∼

ψn
2〈 〉

xn 1+ W2xn xn 1–+=

xn ψn
2〈 〉 eβn, 2 βsinh∼ W2.= =

ψn 1+ ψn〈 〉 E ψn
2〈 〉 ψ nψn 1–〈 〉 .–=

ψn
2〈 〉

xn 1+ W2 E2+( )xn xn 1– 2Eyn,–+=

yn 1+ Exn yn,–=

ψn 1+ m, ψn 1– m, ψn m 1+, ψn m 1–, Vn m, ψn m,+ + + +

=  Eψn m,

xm m', n( ) ψn m, ψn m',〈 〉 ,≡
ym m', n( ) ψn m, ψn 1– m',〈 〉 ,≡
zm m', n( ) ψn 1– m, ψn m',〈 〉 ,≡

xm m', n 1+( ) W2δm m', xm m', n( ) xm 1+ m', 1+ n( )+=

+ xm 1– m' 1+, n( ) xm 1+ m' 1–, n( ) xm 1– m' 1–, n( )+ +

+ xm m', n 1–( ) ym 1+ m', n( ) ym 1– m', n( )+ +

+ zm m' 1+, n( ) zm m' 1–, n( ),+

ym m', n 1+( ) xm 1+ m', n( )– xm 1– m', n( )– zm m', n( ),–=

zm m', n 1+( ) xm m' 1+, n( )– xm m' 1–, n( )– ym m', n( ).–=
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This is a set of linear equations with coefficients inde-
pendent of n, and its solution is exponential in n [52]:

(38)

The formal change of variable is useful

(39)

where l = m' – m. Then, we have (with tildes omitted)

(40)

The coefficients contain no m dependence, and solution
is exponential in m:

(41)

where allowed values for p, ps = 2πs/L, s = 0, 1, …,
L − 1 are determined by the periodical boundary condi-
tions in the transverse direction:

(42)

Excluding ym, l and zm, l from the first equation in (40),
we end with the equation

(43)

describing a single impurity in a periodic chain. For
L  ∞ its solution has the form xl ~ exp(ipl/2 – β|l |/2)
and the initial correlator

(44)

is localized in the transverse direction on the same scale
1/β, as the scale of its growth in n. As a result, the local-
ization length for the 2D system coincides with ξ1D.

xm m', n( ) xm m', eβn, ym m', n( ) ym m', eβn,= =

zm m', n( ) zm m', eβn.=

xm m', x̃m m', 1– x̃m l,  etc.,≡ ≡

eβ e β––( )xm l, W2δl 0, xm l, xm 1+ l,+=

+ xm 1– l, xm 1+ l 2–, xm 1– l 2+,+ +

+ ym 1+ l 1–, ym 1– l 1+, zm l 1+, zm l 1–, ,+ + +

eβym l, xm 1+ l 1–,– xm 1– l 1+,– zm l, ,–=

eβzm l, xm l 1+,– xm l 1–,– ym l, .–=

xm l, xle
ipm etc.,=

ψn m L+, ψn m, .=

xl 2+ e ip– xl 2– eip Vδl 0, xl+ + exl, xl L+ xl,= =

e 2 β, Vcosh
W2 βsinh

βcosh pcos–
---------------------------------,= =

ψn m, ψn m',〈 〉

∼ ip
m m'+

2
---------------- β m m'–

2
------------------– βn+

 
 
 

exp
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The positive exponents βs for finite odd L are deter-
mined by the equation

(45)

Their number is equal to L and coincides with a number
of positive Lyapunov exponents γs for the same prob-
lem.5 Allowed values of ps and βs become dense in the
large L limit, and the quantities β and p can be consid-
ered as continuous:

(46)

The minimal value of β is realized for p = π and can be
easily found in the large L limit:

(47)

The character of the solution is qualitatively changed at
the critical value Wc = 2. If W > Wc , Eq. (46) is solved
for β ~ 1, βL  ∞ and βmin tends to a constant in the
large L limit. If W < Wc , Eq. (46) has solution for βL =
const, β  0 and provides for the behavior6 βmin ∝
1/L for L  ∞. If W = Wc , solution is sought at con-
ditions βL @ 1, β ! 1, when Eq. (46) reduces to β2 =
8exp(–βL) and can be solved iteratively.

If the correlation length ξ1D is estimated as 1/βmin,
comparison with Section 2 leads to the conclusion that
a state with the long-range order (i.e., the metallic
phase) is absent. Exponential localization takes place
for W > Wc , while the critical behavior ξ1D ~ L is real-
ized in the entire range of W < Wc . The latter situation
corresponds to localization with the divergent correla-
tion length ξloc ~ L and should probably be interpreted
as power law localization. The transition at W = Wc is
of the Kosterlitz–Thouless type and should not be con-
fused with the usual Anderson transition.

5 The matrix T in Eq. (15) has dimensions 2L × 2L, but its eigenval-

ues occur in pairs of  and , so the number of positive γs is
equal to L. In the case of even L, the number of positive βs does
not coincide with L and there are difficulties in comparing (16)
and (18).

6 Vanishing of βmin for L = ∞ was obtained in [42].

2 βscosh pscos–( ) W2 βsL/2( ),coth=

ps 2πs/L, s 0 1 … L 1.–, , ,= =

e
γs e

γs–

2 βcosh pcos–( ) W2 βL/2( ).coth=

βmin

W2/2 1–( ), W2arccosh 4>
2
L
--- W2/4( ), W2arctanh 4<

2 Lln 2 Llnln– …+
L

------------------------------------------------, W2 4.=







=
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Calculating the first corrections to (47) related with
finiteness of L, we have for W > Wc

(48)

and for W < Wc ,

(49)

Defining the correlation length ξ as a scale, where
dependences (48), (49) reach their asymptotics (i.e.,
where the additional terms become comparable to the
main terms), we have (Fig. 3)

(50)

If W > Wc , the correlational length ξ coincides with the
localization length ξloc ~ ξ1D apart from the logarithmic
corrections. If W < Wc , the scales ξ and ξloc are substan-
tially different, as is typical for the metallic phase
(Fig. 3).

The scaling parameter g(L) can be defined as
1/βminL. Its dependence on L is determined by the equa-
tion

(51)

with p = π and presented in Fig. 1b. One can see the sig-
nificant difference from the typical scaling situation
(Fig. 1a). Absence of one-parameter scaling in Fig. 1b
is clear from the fact that g(L) is not constant for W =
Wc , as it should be according (8), (9). It is still more
evident for W < Wc , when different curves have differ-
ent constant limits for L  ∞ and certainly cannot be
matched by a scale transformation.

In the above considerations, we have estimated ξ1D
as 1/βmin. This can arouse doubts, because in the
absence of scaling the quantities βmin and γmin can be
very different. In fact, substitution βmin by γmin does not
lead to qualitative changes in the presented picture.
Indeed, βmin provides a rigorous upper bound for γmin
and (47) leads to

γmin  0 for L  ∞, if W < Wc. (52)

βmin β∞
W2

β∞sinh
-----------------e

β∞L
,+=

β∞
W2 2–

2
---------------- 

 arccosh=

g
1

βminL
------------- g∞

2 1/2g∞sinh( )2

W2L2
-----------------------------------,+= =

g∞
1

2 W2/4( )arctanh
---------------------------------------.=

ξ

1/ W2, W2 ∞ln

1/τ( )ln

τ
------------------, τ W Wc– 0=

W2, W2 0.







∼

2 1
gL
------cosh 2 pcos– W2cot

1
2g
------=
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This is sufficient for the existence of the 2D transition,
because in the large W region, the existence of expo-
nential localization is beyond any doubt and finiteness
of γmin has been reliably established by numerical inves-
tigations [8–11]. Of course, the upper bound for γmin
does not forbid it to decrease more rapidly than 1/L, as
it should be for a true metallic state. However, such a
possibility is reliably excluded by numerical studies
(Section 4). Nevertheless, substitution γmin by βmin can
change the position of the critical point and the charac-
ter of the critical behavior. Thus, the presented quanti-
tative results should be considered as illustrative.

The influence of the phase transition on conductivity
can be seen from the following arguments. Conduc-
tance G of a quasi-1D system of length l is roughly
given by the exponential exp{–2γminl} (see [11] and ref-
erences therein). Extrapolation to l ~ L suggests that
G ~ exp{–constL} for W > Wc , while for W < Wc the
exponential reduces to a constant (in view of γmin ~ 1/L)
and dependence G(L) is determined by a preexponen-
tial factor.

4. COMPARISON
WITH NUMERICAL RESULTS

The idea of power law localization was put forward
by Last and Thouless [53] and discussed in a number of
papers [54]. The statements, literally coinciding with
those of Section 3, were made by Pichard and Sarma in
1981 [7] as the result of a numerical study of the 2D
Anderson model. Their dependences of ξ1D on L are
presented in Fig. 4a, where values of disorder corre-
spond to the quantity

(53)

(so  =  = 6.928…), because a rectangular dis-

tribution of width  was used for Vn with 〈V2〉  =

W̃ W 12=

W̃c 48

W̃

ξ, ξloc

W2

~ 1/W2

~ W2

~ 1/lnW2
~ 1/lnτ

ξ
ξloc

ξloc/L

ξ

1/ τ

τ / τln

Wc
2

Fig. 3. Characteristic scales ξ and ξloc obtained under the
assumption ξ1D ~ 1/βmin .
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/12 ≡ W2. The dependences are clearly linear for

 < 6, while a tendency to saturation arises for  > 6

with a clear saturation for large .

The results of [7] are considered out of date [8–11],
and it is instructive to analyze the raw data of [10],
which are cited as the best in the context of the transfer

W̃
2

W̃ W̃

W̃
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5

0
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ξ1D
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Fig. 4. Numerical results for ξ1D [7], g = 1/γminL [10] and
parameter γ(L) related to the energy level statistics [13].
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matrix method (Fig. 4b). One can see that the scaling
parameter g = 1/γminL decrease convincingly only for

large . In the range of intermediate disorder (  =
4−7), one cannot say definitely whether is there a ten-
dency to unbounded decrease or to saturation. The data

for weak disorder (  < 4) are absent altogether.
Thus, the raw numerical data (Fig. 4b) do not dem-

onstrate absence of the 2D phase transition as stated by
the authors of [10]. The latter conclusion is based on
interpretation of these data in terms of one-parameter
scaling. However, such interpretation is surely invalid.
Absence of scaling for βmin suggests absence of scaling
for γmin , and this is confirmed by the similarity of
Figs. 1b and 4b. The use of βmin as the upper bound for
γmin leads to the conclusion that the curves for W < Wc
in Fig. 4b cannot decrease to zero and should tend to
finite limits. The scaling ansatz (8) can be formally
valid only in the case if these finite limits are the same
for all curves with W < Wc . Such a possibility does not
appear realistic in Fig. 4b and, in fact, can be excluded:
for small disorder, the lower bound given by 1/βminL
lies higher than all the data of Fig. 4b.

It is admitted in [8–11] that scaling relation (26) for
γmin is not proved, but it is stated that this relation has
been convincingly confirmed empirically. Scaling
curves g = F(L/ξ) of impressive quality are presented
in [10]. However, one should be very careful with
empirical proofs of scaling. It is possible to come up
with an algorithm that allows “proof” of empirical scal-
ing in practically any situation.

Let us discuss construction of scaling curves in
more detail. The raw numerical data are represented by
dependences g(L) for fixed values of disorder W0, W1,
W2,… (Fig. 5a). They should be plotted in Fig. 5b as
functions of L/ξ, where the value of ξ for each curve
should be chosen in such a manner that all curves coin-
cide. If the logarithmic scale is chosen along the L axis,
this procedure reduces to simple translation. Let the
curve for W0 be taken as a reference and a correspond-
ing value ξ0 be accepted as unity. Then this curve is car-
ried over to Fig. 5b without changes. Now the curve for
W1 is translated to match the curve for W0, a corre-

W̃ W̃

W̃

g

L

W0 (a)
W1

W2

g

L

W0 (b)

W1

ε

ε

Fig. 5. Construction of scaling curves in a situation with no
scaling.
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sponding value ξ1 is determined, and so on. In the log-
arithmic plot, the dependences g(L) have a simple form
(see Fig. 4b) and can be approximated by something
like parabolas. If the values W0 and W1 are close, the
corresponding curves are parabolas with slightly differ-
ent coefficients and they fit sufficiently well after trans-
lation.

Let us take e as the permissible error of fitting and
superimpose the curve for W1 in a crosswise manner
(Fig. 5b) on the curve for W0. If some part of the former
curve does not fit sufficiently well (dotted line in
Fig. 5b), the corresponding points can be debated on
reasonable grounds: scaling is a large-scale property
and the raw data for small L are not reliable. The curve
for W2 is superimposed analogously, etc. If there is suf-
ficient scattering of points, such a procedure will look
natural. If the scattering of points is small, one can take
a small step increment in W: then numerous curves will
densely fill a band of width e and the resulting scaling
curve will appear accurate.

One can see that it is rather difficult to recognize a
situation with no scaling from a situation when scaling
holds but there are significant corrections to it. In the
case under consideration, the situation is close to scal-
ing in the sense that scaling relation (26) is trivially
valid for L * ξ in the localized phase, when βmin ≈ 1/ξ
and g ≈ ξ/L in correspondence with Eq. (26) for
F(x) ≈ 1/x.

Certain comments should be made on the variant of
finite-sized scaling based on the level statistics [12]. In
this case, rather large systems are used, up to 10242 [13],
and localization of all states in 2D systems appear con-
vincing on the level of raw data (Fig. 4c), without inter-
preting them in terms of one-parameter scaling. How-
ever, this approach deals with crossover between the
metallic behavior at small L and localized behavior at
large L, and no attempt has been made to distinguish
between exponential and power law localization.

5. IS ONE-PARAMETER SCALING POSSIBLE?

In Section 3 we have shown violation of one-param-
eter scaling for the quantity βmin. If βmin ~ γmin , then
scaling is absent also for γmin . If βmin and γmin are essen-
tially different, a quasi-1D eigenfunction has a struc-
ture corresponding to both these parameters (see Fig. 2)
and scaling is impossible on physical grounds. Analysis
of numerical data (Section 4) confirms these conclu-
sions. Two possible conclusions can be derived:

(i) the one-parameter scaling hypothesis [1] is fun-
damentally wrong;

(ii) the minimal Lyapunov exponent is an incorrect
scaling variable.

Possibility (i) is not as absurd as it seems. Justifica-
tions for scaling in the σ-model approach [33] in fact
failed due to a high-gradient catastrophe [55, 56],
and absence of scaling on the level of distribution func-
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tions [57] set a problem of the correct choice of scaling
variables. As for experiment, it confirms the “theory of
quantum corrections” rather than the “theory of weak
localization.” Nevertheless, we consider the one-
parameter scaling hypothesis as physically convincing.
Its validity is confirmed (a) by analytical scaling in
quasi-random systems [58–60]; (b) by validity of scal-
ing relation s = ν(d – 2) in the Vollhardt and Wölfle type
theories [25, 26, 41]; (c) by renormalizability for d < 4
in the exact field theoretical formulation of the problem
[29–31] (see footnote 1).

Let us consider possibility (ii). It is clear from Sec-
tion 2 that the existence of scaling for the correlation
length ξ1D looks convincing, and this is confirmed by
the experience of the phase transitions theory [44–46].
As for relation (10) between ξ1D and γmin, this is not as
evident as it seems: for example, situations with
γmin > 0 and ξ1D = ∞ are known in quasi-random sys-
tems [58, 59, 61].7 Relation (10) is based on Mott’s
construction of eigenfunctions by matching two solu-
tions of type (16) that increase from two opposite edges
of the system. Exact matching needs all terms in
Eq. (16), and consequently, the coefficient Am is finite,
providing a length scale related to 1/γmin. These consid-
erations are valid for a sufficiently small number of
terms in Eq. (16). In the large L limit, a spectrum of the
Lyapunov exponents becomes quasi-continuous and a
number of terms in Eq. (16) tend to infinity. In such a
situation, no particular term in Eq. (16) is essential: it is
an integral effect from all terms corresponding to some
interval of the spectrum γs that matters.

Let us consider the coefficients As in Eq. (16),
appearing in Mott’s construction, as a function of γs

(Fig. 6). Two qualitatively different situations are pos-
sible. In the first of them (Fig. 6a), all As are of the same
order of magnitude; then the vicinity of γmin makes a
significant contribution and the length scale 1/γmin
indeed corresponds to the localization length ξ1D . In
the other situation (Fig. 6b), the contribution of the
vicinity of γmin is strongly suppressed and the length

7 In the 1D model (11) with Vn = Vcos(2πβn) and irrational β, the
Anderson transition holds for V = 2 [58, 59, 61]. The Lyapunov
exponent γ is positive for all irrational β in the V > 2 region [61].
Nevertheless, localization length diverges for certain values of β,
which are anomalously close to rational numbers [59].

(a)
|As|

γsγmin γmax

(b)
|As|

γsγmin γmaxγeff

Fig. 6. Coefficients As in Eq. (13), appearing in Mott’s con-
struction, as function of γs .
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scale 1/γmin has no physical meaning. The localization
length ξ1D is determined by some effective exponent γeff
that provides a suitable cutoff8 in the small γs region
(Fig. 6b)

(54)

According to (8), scaling relation (26) should be postu-
lated not for γmin but for γeff .

9 After that, the dependence
of γeff on parameters is determined by scaling itself.

The latter statement can be easily demonstrated in
the framework of the numerical algorithm. Let us return
to Fig. 5 but now accept that the curves for W0, W1, …
are related not to g = 1/γminL but to g = 1/ L where 
is the Lyapunov exponent with the fixed number n0. In
general, the curves for W0 and W1 cannot be fit well by
a scale transformation. One can improve the situation in
the following manner. Taking a step from W0 to W1, let
us replace  by , i.e., change the number of the
Lyapunov exponent. The curve for W1 will change its
form and we can choose ∆n = n1 – n0 from the condition
of the best fit with the curve for W0. Analogously, for
W2 we take , adjust n2, and so on. As a result, the
scaling construction will determine not only depen-
dence ξ(W) but also dependence n(W). Of course, these
dependences are not determined completely: the gen-
eral scale for ξ and initial number n0 remain arbitrary.

Thus we came to the constructive modification of
the commonly accepted numerical algorithm. This
modification makes it possible to improve the quality of
scaling and will probably resolve the contradictions
discussed in Section 1.

6. ANALYTICAL SCALING

The suggested algorithm can be realized analyti-
cally if the raw data are given in the form defining g =

8 It is evident from Eq. (44) that the sth term of Eq. (18) is local-
ized in the transverse direction on the same scale 1/βs as the scale
of its growth in n. An analogous property is expected for Eq. (16)
and provides the equality of the transverse and longitudinal corre-
lation lengths. The latter fundamental property is not spoiled
when the lower edge of spectrum γmin is replaced by the effective
cutoff γeff .

9 A quasi-1D eigenfunction contains a lot of scales 1/γ1, 1/γ2, …,
1/γm and all these scales are essential near its center. Small scales
succeedingly “die out” when one moves from the maximum of
the eigenfunction to its tails. Only scale 1/γm remains in the end,
but for the situation of Fig. 6b it occurs at such distances where
the eigenfunction is zero for all practical purposes. A single
parameter ξ1D cannot adequately describe all scales 1/γs . In the
best case, it can account for the most significant of them, those
which determine the general form of the eigenfunction and corre-
spond to the effective cutoff γeff .

ξ1D
1

γeff
-------.∼

γn0
γn0

γn0
γn1

γn2
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1/γpL as a function of p, W, L:

(55)

where p is a continuous number of the Lyapunov expo-
nent analogous to that in Eq. (51). Linearization of (55)
near some value τ0 gives

(56)

Analogous linearization for W1 near the value τ1 chosen
from the condition Q(p, W1, τ1) = Q(p, W, τ0)

(57)

gives a slope B different from A, and the linear portions
of dependences (56), (57) cannot be matched by a scale
transformation. Let us change p in Eq. (57) in such way
that equality A = B holds:

(58)

If p1, W1, τ1 are close to p, W, τ0, then correspondence
of (56) to (58) gives

(59)

,

or solving for ∆p and ∆τ,

(60)

If an increment of τ is interpreted as an increment
of lnξ,

(61)

then Eq. (58) takes the form

(62)

For infinitesimal increments, Eqs. (60)–(62) turn into a
set of the differential equations

g Q p W τ, ,( ), τ L,ln= =

g Q p Q τ0, ,( ) Qτ' p W τ0, ,( ) τ τ 0–( )+=

≡ g0 A τ τ 0–( ).+

g Q p W1 τ1, ,( ) Qτ' p W1 τ1, ,( ) τ τ 1–( )+=

≡ g0 B τ τ 1–( )+

g Q p1 W1 τ1, ,( ) Qτ' p1 W1 τ1, ,( ) τ τ 1–( )+=

≡ g0 A τ τ 1–( ).+

Qp' p W τ0, ,( )∆p QW' p W τ0, ,( )∆W+

+ Qτ' p W τ0, ,( )∆τ 0,=

Qτp'' p W τ0, ,( )∆p QτW'' p W τ0, ,( )∆W+

+ Qττ'' p W τ0, ,( )∆τ 0=

∆p
Qτ' QτW'' QW' Qττ''–

Qp' Qττ'' Qτ' Qτp''–
--------------------------------------∆W ,=

∆τ
QW' Qτp'' Qp' QτW''–

Qp' Qττ'' Qτ' Qτp''–
---------------------------------------∆W .=

∆τ ∆ ξ ,ln=

∆g Qτ' p W τ0, ,( )∆ L/ξ( ).ln=
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(63)

dp
dW
--------

QW' p W τ0, ,( )Qττ'' p W τ0, ,( ) Qτ' p W τ0, ,( )QτW'' p W τ0, ,( )–

Qp' p W τ0, ,( )Qττ'' p W τ0, ,( ) Qτ' p W τ0, ,( )Qτp'' p W τ0, ,( )–
-----------------------------------------------------------------------------------------------------------------------------------------,–=

d ξln
dW

------------
Qp' p W τ0, ,( )QτW'' p W τ0, ,( ) QW' p W τ0, ,( )Qτp'' p W τ0, ,( )–

Qp' p W τ0, ,( )Qττ'' p W τ0, ,( ) Qτ' p W τ0, ,( )Qτp'' p W τ0, ,( )–
-----------------------------------------------------------------------------------------------------------------------------------------,–=

dg
d L/ξ( )ln
---------------------- Qτ' p W τ0, ,( ),=
defining the dependences p(W), ξ(W) and g = F(L/ξ).
Equations (63) correspond to the usual scaling con-
struction (Sections 4 and 5) for the maximal system size
L0 = exp(τ0), where dependences g(lnL) are linearized
near lnL0 and only linear portions (marked in Fig. 4b)
are matched in the course of scale transformations. The
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τ0 dependence should vanish in the limit τ0  ∞ for
the approach to be self-consistent.

If the dependence (55) is given in the implicit form

(64)

then Eqs. (63) can be expressed in terms of G:

G g p W τ, , ,( ) 0,=
(65)

dp
dW
--------

GW' Ggτ'' Gτ' Gττ'' Gg'–( ) Gτ' GgW'' Gτ' GτW'' Gg'–( )–

Gp' Ggτ'' Gτ' Gττ'' Gg'–( ) Gτ' Ggp'' Gτ' Gτp'' Gg'–( )–
---------------------------------------------------------------------------------------------------------,–=

d ξln
dW

------------
Gp' GgW'' Gτ' GτW'' Gg'–( ) GW' Ggp'' Gτ' Gτp'' Gg'–( )–

Gp' Ggτ'' Gτ' Gττ'' Gg'–( ) Gτ' Ggp'' Gτ' Gτp'' Gg'–( )–
----------------------------------------------------------------------------------------------------------,–=

dg
d L/ξ( )ln
----------------------

Gτ'

Gg'
------.–=
All quantities in the right-hand side are functions of
g0, p, W, τ0, where τ0 is a constant parameter and g0 is
expressed in terms of p, W using the relation
G(g0, p, W, τ0) = 0.

Unfortunately, relation (64) for the conventional
Lyapunov exponents γs is not available; therefore, we
present here illustrative calculations for the exponents
βs when Eq. (64) has the form (51). The latter equation
can be simplified by expansion of cosh(1/gL) without
significant physical consequences.10 Thus, Eq. (64) can
be taken in the form

(66)

where 

Then Eqs. (65) reduce to

(67)

(68)

10It gives only restriction for L from below in the small g region.

G g p W τ, , ,( ) = 
2τ0–( )exp

g2
------------------------- ϕ p( ) W2 f g( ) = 0,–+

ϕ p( ) 2 1 pcos–( ), f g( ) coth 1/2g( ).= =

dϕ p( )
dW2

---------------
g0

2 f g0( )W2 2τ0–( )exp–

g0
2W2

----------------------------------------------------------–
ϕ p( )
W2

------------,= =

d ξln
d Wln
-------------- 1,–=
(69)

where g0 is a function of p, W determined by equation
G(g0, p, W, τ0) = 0. It is easy to solve (67), (68)

(70)

and obtain the relations

(71)

which make it impossible to find the dependence g =
F(L/ξ) in the implicit form

(72)

Here c0 and c1 are arbitrary constants. The quantity ϕ(p)
is restricted, 0 ≤ ϕ(p) ≤ 4 and scaling is possible only
for

(73)

dg
d ξln
------------

2g0 2τ0–( )exp

2 2τ0–( )exp W2g0
3 f ' g0( )+

---------------------------------------------------------------,=

ϕ p( ) 2 1 pcos–( ) c0W2, ξ
c1

W
-----= = =

W2 2τ0–( )exp

g0
2 f g0( ) c0–[ ]

----------------------------------,
dg
dg0
-------- 1,= =

c1
2g2 f g( ) c0–[ ] ξ /L( )2.=

W2 4
c0
---- Wc1

2 .≡<
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g = F(y)

y = ξ/L

(a)

g*
c0 > 1

c0 < 1

~y2/3

~y

g

L

(b)

g*

c0 > 1 c0 < 1

W < Wc1

Wc1 < W < Wc

W = Wc

W > Wc

g

L

(c)

Fig. 7. (a) Scaling function g = F(ξ/L) given by Eq. (72), (b) and (c) dependences g(L) for c0 > 1 and c0 < 1.
If W > Wc1, the quantity ϕ(p) takes its maximum value
at p = π and the concept of the minimal Lyapunov expo-
nent is restored; therefore, scaling is absent and the
results of Section 3 hold.

The situation is qualitatively different for c0 < 1 and
c0 > 1, when Wc1 > Wc and Wc1 < Wc , respectively. A
scaling function g = F(ξ/L) given by Eq. (77) is shown
in Fig. 7a: for c0 < 1 it is close to the one empirically
found in [10], while for c0 > I, a finite limit g* =
1/2arctanh(1/c0) is reached for ξ/L  0. The depen-
dences g(L) for W < Wc1 can be found from Eq. (66)
after substitution of ϕ(p) from Eq. (70), while for
W > Wc1 they remain the same as in Section 3 (Figs. 7b
and 7c). The behavior of the characteristic scales for
c0 > 1 and c0 < 1 is shown in Figs. 8a and 8b, respec-
tively.

It is clear from Figs. 7 and 8 that exponential local-
ization of all states takes place for c0 < 1 in correspon-
dence with the commonly accepted viewpoint, while
the phase with power law localization remains for
c0 > 1, though the behavior of characteristic scales
changes in comparison with Section 3. In fact, singu-
larity at the point Wc1 is false. It is related to our postu-
lation of exact scaling for W < Wc1, which is in fact
approximate. The correlation length ξ is finite near
Wc1, and corrections to scaling related to li /ξ (see
Eq. (4)) cannot be considered vanishingly small. With
corrections to scaling taken into account, the qualita-
tive difference between regions W < Wc1 and W > Wc1
disappears. There is good scaling for W & Wc1 and
absence of scaling for W * Wc1 , but destruction of
scaling occurs gradually due to the increase of correc-
tions to it.

Let us discuss the physical sense of an arbitrary
parameter c0. Formally, it occurs due to the absence of
initial conditions to Eqs. (63), while in the specific
Anderson model the value of c0 is definite. However,
we have not fixed the distribution function P(V) and
used only its first and second moments (see Eq. (27)).
Therefore, the initial equation (66) describes not one,
but a variety of Anderson models with different forms
of P(V). The values of c0 are different in these models,
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and we can expect them to cover both c0 < 1 and c0 > 1
regions.11 As a result, 2D systems can be divided into
two classes. The first class is characterized by exponen-
tial localization of all states, while in the second class
there is a phase transition between exponential and
power law localization. Division into two classes was
proposed by Zavaritskaya in the middle of 1980s on
experimental grounds (see [62] and references therein).

We should note that the above consideration has an
illustrative character. The initial Eq. (66) has another
form for the conventional Lyapunov exponents, and
substantial modification of the quantitative results is
possible. In particularly, instead of (70), one expects the
exponential dependence ξ ~ exp(const/W2) for the
correlation length, as follows from one-parameter scal-
ing [1] or from the Vollhardt and Wölfle theory [25].

7. INTERPRETATION IN TERMS
OF THE GELL-MANN–LOW EQUATION

In one-parameter scaling theory [1], a scaling vari-
able g(L) is defined as a conductance GL of a finite
block of size Ld in units of e2/h. The Gell-Mann–Low
equation is valid for it:

(74)

where β(g) has asymptotical behavior,

(75)

The zero term of the first asymptotics is related to the
existence of finite conductivity σ in the metallic state
(so GL ~ σLd – 2) and the additional term A/g is obtained
by a diagrammatical analysis [63]. The second asymp-

11Of course, there may be principal restrictions that make realiza-
tion of the case c0 > 1 impossible. At present, we know of any
such restrictions.

d gln
d Lln
------------ β g( ),=

β g( )
d 2–( ) A

g
--- … A 0<( ), q @ 1+ +

g, g ! 1.ln





=
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totics is related to assumption of exponential localiza-
tion (GL ~ exp(−constL)).

The latter assumption is not valid in the general
case. If power law localization takes place, then GL ~
L−α and

(76)

It is clear from the above considerations that the
β-function in the 2D case is not universal for small g
and can have a different behavior for different cases
(Fig. 9). This conclusion is quite natural from the view-
point of the general theory of phase transitions [29].
Indeed, scaling is a large-scale property and Eq. (74)
has a real sense only for |β(g)| ! 1 (that is, in the narrow
region near the horizontal axis in Fig. 9), when g(L)
slowly changes. In the other case, g(L) changes on an
atomic scale and there are no grounds for either scale
invariance or universality. From the general viewpoint,
existence of universal results (75) is rather random and
the assumption on universality of β(g) for all g [1] is an
obvious idealization (see [62] for experimental
aspects).

β g( ) α , g ! 1.–=

ξ, ξloc

W2

~1/W

1/lnW2

1/lnτ

ξ

ξloc

ξloc/L

ξ

1/ τ
τ / τln

Wc
2Wc1

2

c0 > 1

(a)

ξ, ξloc

W2

~1/W

ξ, ξloc

Wc1
2Wc

2

c0 <1

(b)

Fig. 8. Behavior of characteristic scales for (a) c0 > 1 and
(b) c0 < 1.

g*
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For d > 2, Eq. (74) has a fixed point g* that deter-
mines the existence of the Anderson transition. For d =
2 + e, g* is arranged in the large g region and disappears
in the limit e  0: i.e., the Anderson transition is
absent in the 2D case. This conclusion should not be
revised, because the true metallic state is indeed
absent (Section 3). The transition we have discussed is
situated deep in the localized phase and corresponds to
switching from one β-function to another during a
change in the external parameters. Consequently, no
substantial revision of the weak localization region is
necessary.

8. CONCLUSIONS

We have shown that the commonly accepted numer-
ical algorithm based on the transfer matrix method is
deficient, because the minimal Lyapunov exponent
does not obey any scaling. To restore scaling, a modifi-
cation of the algorithm is necessary which construc-
tively reduces to a change in the number of the
Lyapunov exponent in the course of scaling construc-
tions. This modification does not require a significant
increase in numerical work, because the higher
Lyapunov exponents in any case are determined in the
course of evaluating γmin [22]. In fact, one can take the
old raw data [8–11] and reinterpret them. This will
probably resolve the contradictions discussed in Sec-
tion 1.

Already at this stage one can interpret a strange drift
of results for d = 3 with increasing system size: ν = 0.66
[7], ν = 1.2 ± 0.3 [8], ν = 1.35 ± 0.15 [15], ν = 1.54 ±
0.08 [16], ν = 1.58 ± 0.02 [21]. For small L, the number
of terms in Eq. (16) is not very large and the maximal
scale 1/γmin is indeed related to the correlation length;
description of the Anderson transition is rough, but the

β

–α

d = 2 + ε

g

g*

lng

Fig. 9. Gell-Mann–Low function β(g) is not universal in the
small g region.
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results are correct in their roughness. For large L, the
difference between the minimal and effective Lyapunov
exponents becomes significant and the results, being
formally accurate, become in fact incorrect.

If the concept of the minimal Lyapunov exponent is
taken literally, it leads to unambiguous prediction of the
2D phase transition. This transition is of the Kosterlitz–
Thouless type and occurs between exponential and
power law localization. Modification of the algorithm
leads to division of 2D systems into two classes, the
first of which is characterized by exponential localiza-
tion of all states, while in the second class there is a
phase transition between exponential and power law
localization.
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ORDER, DISORDER, AND PHASE TRANSITIONS
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Features of Interatomic Force Interaction
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Abstract—Earlier experimental results on partial thermal vibrational spectra and on the atomic and electronic
structure of icosahedral i-AlCuFe quasicrystals are used for analyzing the role of Al, Cu, and Fe atoms in inter-
atomic interactions in these quasicrystals. A physical model proposed for the structure of i-AlCuFe quasicrys-
tals matches with the available experimental data and provides a qualitative description of the features of the
interatomic interaction. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The interest in quasicrystals is due to the unique
properties of these compounds. As a rule, stable quasi-
crystalline phases are synthesized in ternary systems of
metallic elements with the participation of transition
metals. In particular, the alloy Al0.62Cu0.255Fe0.125 is a
typical representative of icosahedral quasicrystals (with
a fivefold symmetry axis). It has been established
experimentally (see [1] and the literature therein) that
the resistivity of quasicrystals is much (sometimes
three orders of magnitude) higher than the resistivity of
the constituent metals. The thermal conductivity and
the thermal expansion coefficient of quasicrystals are
substantially lower than the relevant characteristics typ-
ical of metals. Optical properties of quasicrystals are
also unique (these compounds exhibit selective absorp-
tion in various regions of the electromagnetic radiation
spectrum. It has been established that the adhesion
coefficient of polar liquids at the quasicrystal surface is
considerably lower than at the surface of metals or
oxides. In addition, the quasicrystal surface exhibits a
much smaller friction coefficient and a high corrosion
resistance.

In the most general form, the atomic structure of
quasicrystals can be visualized as a network of mutu-
ally penetrating and quasi-periodically packed clusters
whose diameter is equal to several interatomic spacings.
In the case of icosahedral quasicrystals, these atomic
clusters are constructed from icosahedral or dodecahe-
dral shells with a fivefold symmetry axis [2]. The pres-
ence of narrow diffraction peaks in the electron [3],
X-ray [4], and neutron [5] diffraction patterns for qua-
sicrystals indicates the existence of the long-range
order in the atomic arrangement of these alloys. At the
same time, no spatial periodicity is observed since it is
incompatible with the existence of the fivefold and ten-
fold symmetry axes.
1063-7761/05/10104- $26.000676
The above-mentioned peculiar properties of quasic-
rystalline phases make these materials candidates for
various technical applications, on the one hand, and
stimulate experimenters and theorists in their quest for
the physical origin of these properties and for the
microscopic factors responsible for the stability of
these compounds, on the other hand. One of the possi-
ble trends in this direction is associated with analysis of
specific features in the atomic dynamics of quasicrys-
talline alloys. A direct method for obtaining such infor-
mation is the inelastic scattering of slow neutrons using
the isotopic contrast technique. In an earlier study [6],
we investigated experimentally the inelastic scattering
of cold neutrons from icosahedral quasicrystals having
a composition of Al0.62Cu0.255Fe0.125 and differing in the
isotopic composition of copper and iron. We managed
for the first time to reconstruct the partial spectra of
thermal vibrations of copper, iron, and aluminum ions
in this compound directly from experimental data with-
out using any model representation. Here, we carry out
a detailed analysis of the results obtained in [6], as well
as the results of independent studies, to clarify specific
features of the interatomic force interaction in an i-
AlCuFe icosahedral crystal.

2. DISCUSSION

Let us recall the main results obtained in [6]. Partial
vibrational spectra of copper, iron, and aluminum ions
display a number of peaks. It was found that Cu and Fe
atoms vibrate mainly in a relatively narrow energy
range in the vicinity of 16 and 30 meV, respectively,
while aluminum atoms vibrate in the entire energy
range up to 60 meV. It was found that the vibrational
spectrum of Cu atoms is much softer than the vibra-
tional spectrum of Fe atoms. This difference in the
spectra cannot be explained by the difference in atomic
 © 2005 Pleiades Publishing, Inc.
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masses alone since the atomic masses differ approxi-
mately by 10%, while the vibrational energies averaged
over the spectrum differ approximately by 40%. It
means that copper atoms in the quasicrystal studied
here are bound less strongly than iron atoms. In addi-
tion, although the density of vibrational states of copper
is mainly concentrated in the vicinity of 16 meV, it also
spreads to the range of high energies up to 60 meV. The
principal bandwidth in the vibrational spectrum of iron
atoms is quite large and considerably exceeds the prin-
cipal bandwidth in the vibrational spectrum of copper
atoms. It should be noted that the partial vibrational
spectra of Cu, Fe, and Al atoms in the quasicrystal stud-
ied here substantially differ from the vibrational spectra
in the corresponding pure metals [7–9]. In particular,
the mean vibrational energies of Cu and Fe atoms in the
quasicrystal are noticeably lower than in the corre-
sponding metals. At the same time, the cutoff energy in
the vibrational spectrum of Al atoms in the quasicrystal
(Emax ≈ 60 meV) is noticeably higher than the cutoff
energy in the case of metallic aluminum (Emax =
40 meV). These results indicate that force bonds are
tighter for Al atoms and weaker for Cu and Fe atoms in
the quasicrystal than in the crystals of these metals.

To explain these results, we can use the information
on the atomic and electronic structure of i-AlCuFe qua-
sicrystals. The extended X-ray absorption fine structure
(EXAFS) spectroscopy data available for i-AlCuFe
quasicrystal [10] and the 1/1 crystal phase of
Al(Si)-Cu-Fe approximating the quasicrystal [11] indi-
cate that the average coordination numbers of Cu and
Fe atoms in i-AlCuFe differ considerably. In particular,
it was shown in [10] that the nearest neighborhood of an
iron atom is characterized by a single coordination
sphere filled with Al and Cu atoms, while two such
spheres exist for copper atoms (the nearest sphere is
filled with Fe atoms and the next sphere is filled with Al
and Cu atoms). In addition, in accordance with the
model of the atomic structure based on neutron diffrac-
tion data obtained for a monocrystalline sample of an i-
AlCuFe quasicrystal [12], the atomic structure of the
alloy has the form of a network of mutually penetrating
atomic clusters. In each cluster of this type, a copper
atom is surrounded by twelve Al atoms arranged at the
vertices of an icosahedron of radius Ri = 2.75 Å and by
twenty atoms (approximately 10.5 Al atoms, 8.5 Cu
atoms, and one Fe atom) arranged at the vertices of a
dodecahedron of radius Rd = 4.07 Å. Approximately
half the vertices of the external dodecahedron are com-
mon for two neighboring clusters. The network of these
atomic clusters contains about 80% of all possible
atomic positions. The remaining positions belong to
clusters of a different type, in which an Fe atom is sur-
rounded by seven atoms distributed among the vertices
of a dodecahedron of radius Rd = 2.51 Å, which is
embedded in a completely filled icosahedron with Ri =
4.65 Å. In accordance with this structural model, three
types of positions for Cu atoms, 11 positions for Al
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atoms, and 20 positions for Fe atoms are available in
the structure of an i-AlCuFe quasicrystal.

In view of the above arguments, the difference in the
vibrational spectra of Cu and Fe atoms is naturally
explained since a substantial number of copper atoms
are in different surroundings as compared to iron and,
hence, are characterized by a different set of force
bonds. In addition, the appreciable width of the princi-
pal band in the vibrational spectrum of iron atoms can
also be explained by the many ways these atoms are
arranged upon a change in the nearest neighborhood
and, accordingly, by the difference in the interatomic
force interaction of Fe atoms in different possible posi-
tions.

It was noted above that the partial spectra of thermal
vibrations of Cu, Fe, and Al atoms obtained in [6]
exhibit peaks located in a wide energy range. Each such
spectrum was approximated by a superposition of the
minimal possible number of the Gaussian functions

(1)

where A, Ec , and W are fitting parameters. Fitting of the
parameters of the Gaussian function (1) was carried out
by the method of least squares using the χ2 criterion,
which was close to unity in all cases.

The results of such a division of experimentally
measured spectra into spectral bands are shown in the
figure; it can be seen that the vibrational spectra of cop-
per and aluminum consist of four bands, while the
vibrational spectrum of iron has two bands. It should be
noted that the positions of the spectral bands on the
energy scale in partial vibrational spectra of Cu and Al
atoms coincide to a high degree of accuracy (see table).
At the same time, the ratio of the energy values corre-
sponding to the vibrational bands of Fe (E1 = 9.8 meV
and E2 = 28.8 meV) and Al atoms (E2 = 14.5 meV and
E4 = 40.2 meV) is close to the square root of the recip-
rocal mass ratio:

Thus, we can conclude that the force coupling existing
between the Al and Fe atoms is stronger than the cou-

A
E Ec–

W
--------------- 

 
2

– ,exp

EFe

EAl
-------

MAl

MFe
--------- 0.7.≈ ≈

Positions of peaks in the partial vibrational spectra of Al, Cu,
and Fe atoms in i-AlCuFe quasicrystals

Atom E1, meV E2, meV E3, meV E4, meV

Al 7.8 ± 0.6 14.5 ± 0.3 25.3 ± 0.5 40.2 ± 0.8

Cu 7.2 ± 0.4 14.2 ± 0.1 22.1 ± 0.3 38.0 ± 1.8

Fe 9.8 ± 0.4 28.8 ± 0.4 – –
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pling observed in fcc aluminum and can be correctly
described using the simplest model of interaction
between the nearest neighbors. The intensity of this
force coupling varies depending on the local surround-
ings of iron in 20 possible positions and, apparently, is
almost independent of the presence of copper atoms in
the system. In turn, the vibrations of copper atoms can
be treated as quasi-local modes in a strongly modified
aluminum matrix.

The electronic structure of the icosahedral alloy
AlCuFe was studied in detail in [13], where the data on

0.02
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0

20 40 60
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0.008
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0
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Fig. 1. Partial thermal vibration spectrum of (a) copper,
(b) iron, and (c) aluminum atoms in an i-AlCuFe quasicrys-
tal. Solid curves describe the division into spectral bands.
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the partial densities of electron states of Al, Cu, and Fe
in the valence band were obtained using photoelectron
spectroscopy. These data show that the main density of
states in the d band of copper lies in the bulk of the
valence band at a depth much lower than the Fermi
level. At the same time, strong overlapping of the s and
p states of aluminum with the d states of iron is
observed in the vicinity of the Fermi level. This leads to
s, p–d hybridization, which is well known for quasi-
crystals as well as approximating phases and is con-
firmed in experiments [14]. A part of the valence elec-
trons in aluminum are engaged for filling the d band of
iron. In this case, iron plays the role of an element with
an effective negative valence and forms a rigid covalent
bond with aluminum [15]. In view of these arguments,
the fact that the vibrational spectrum of iron atoms is
harder than that of copper atoms can be naturally
explained, as well as the substantial increase in the cut-
off energy of the vibrational spectrum of aluminum
atoms as compared to that in crystalline fcc aluminum.

As regards copper, it can occupy a limited number
of positions and participates in the chemical bond with
its only one valence electron, minimizing the electron
energy of the system [16, 17]. Copper atoms perform
vibrations in the entire spectral band, but the probabil-
ity of these vibrations strongly depends on energy. The
maximal contribution from copper atoms to the spectral
distribution of thermal vibrations of the quasicrystal
corresponds to an energy of approximately 16 meV,
while the contribution from the vibrations of heavy
copper atoms for energies exceeding 30 meV is small.
In fact, this means that copper can be treated as a heavy
impurity in the light Al–Fe matrix, which is tuned, to a
considerable extent, to the force interaction in the
Al−Fe matrix.

3. CONCLUSIONS

Thus, the available experimental data on the partial
vibrational spectra of copper, iron, and aluminum
atoms in an icosahedral i-AlCuFe crystal are in good
agreement with the following model of its structure. A
skeleton of clusters formed mainly by aluminum atoms
is considerably modified and enforced by rigid covalent
bonds with iron. The stability of this system according
to the Hume–Rosary rule [17] is ensured by the addi-
tion of copper atoms with a single valence electron; to
exert the minimal effect on the Al–Fe skeleton, copper
occupies a very limited number of positions and is
tuned to the force interaction existing in the Al–Fe
matrix.
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Abstract—The binary icosahedral Zr80Pt20 system has been synthesized during the crystallization of an ini-
tially amorphous alloy fabricated by melt quenching on the surface of a rotating copper wheel. The temperature
and field dependences of the electrical resistivity and magnetoresistivity of the icosahedral and amorphous
phases are studied and compared in a temperature range of 1.5–300 K and magnetic fields up to 8 T. Supercon-
ductivity has been detected for the first time in the icosahedral and amorphous phases of the Zr80Pt20 system.
For both phases, the magnetoresistivity is positive and depends anomalously on the magnetic field. The anom-
alous behavior of magnetoresistivity is satisfactorily described by the theory of weak localization and electron–
electron interaction in three-dimensional disordered systems, which takes into account electron scattering by
superconducting fluctuations. The absolute values and temperature dependences of the electron–electron inter-
action constant and the times of inelastic scattering of conduction electrons are estimated for the icosahedral
and amorphous phases of this binary system. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The electronic transport properties of quasicrystals,
including their electrical resistivity and the effect of
quantum effects on the magnetokinetic properties of
amorphous and quasicrystalline systems [1–6], were
comprehensively studied in many works. Electron–
electron interaction in quasicrystalline and amorphous
systems results in qualitative and quantitative changes
in the properties of their electronic system, which can
be elucidated by studying quantum corrections to their
magnetoresistivity. The theory of anomalous magne-
toresistivity (AMR) [7] predicts two effects: “weak”
localization of conduction electrons and an increase in
the electron–electron interaction in the presence of
impurity scattering. These effects lead to the appear-
ance of corrections to classic conductivity, which
anomalously depend on temperature, magnetic field,
and some other factors.

It should be noted that quantum effects in supercon-
ducting quasicrystalline metal–metal systems have not
been studied in the published experimental works deal-
ing with the AMR phenomenon.

To obtain such information, in this work we compar-
atively study the structural, electronic, and supercon-
ducting properties of icosahedral quasicrystal Zr80Pt20
and its amorphous analog by measuring the tempera-
ture and field dependences of the resistivity.

Since a number of zirconium quasicrystalline
compounds (Zr70Pd30, Zr41.5Ni41.5Ti17) are supercon-
ductors [4, 8], the icosahedral quasicrystal Zr80Pt20 was
1063-7761/05/10104- $26.000680
assumed to have superconducting properties. The pres-
ence of superconductivity in these amorphous and qua-
sicrystalline states was experimentally supported in this
work.

We chose the Zr80Pt20 system to study magnetoki-
netic properties, since its structure has been compre-
hensively studied and it has been shown that an icosa-
hedral local atomic structure forms around both Zr and
Pt atoms [9].

The fact that this system can be in both the amor-
phous and quasicrystalline states is an important factor
for choosing this system: this allows one to study the
effect of a change in the short-range order without
changing component concentrations during the transi-
tion from the amorphous into the quasicrystalline state.

2. EXPERIMENTAL

The metastable binary icosahedral Zr80Pt20 system
was synthesized during the crystallization of an amor-
phous Zr80Pt20 alloy prepared by melt quenching (at a
rate of 106 K/s) on the outer surface of a rotating copper
wheel in an inert atmosphere. The starting electrolyti-
cally pure materials were placed in an ampule of boron
nitride, which has the maximum chemical resistance to
the melts of transition metals. They were induction-
heated with a VChG-440 high-frequency generator.
The melt was squeezed due to an excess argon pressure
through a hole 1 mm in diameter onto the wheel surface
rotating at a linear velocity of 40 m/s. The amorphous
 © 2005 Pleiades Publishing, Inc.
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samples thus fabricated were ribbons 1.5–2.0 mm wide
and about 0.03 mm thick. After measurements, these
amorphous samples were annealed in a flow of gaseous
helium in a quartz tube located in a muffle furnace. To
find conditions for preparing the most perfect icosahe-
dral sample, the samples were annealed at several tem-
peratures and were then rapidly quenched. Under the
optimum conditions for the production of the icosahe-
dral phase, a Zr80Pt20 sample was annealed at 873 K for
12 min and was then quenched at a rate of 103–104 K/s.

The structure of the samples before and after anneal-
ing was studied by X-ray diffraction on a diffractome-
ter. The X-ray diffraction pattern of the melt-quenched,
amorphous Zr80Pt20 sample is shown in Fig. 1a. The
shape of this pattern is typical of an amorphous metal
and demonstrates the absence of a long-range order.
The first broad maximum is localized near 2θ = 37°,
and the second is localized at 2θ = 63°. The X-ray dif-
fraction pattern of the icosahedral phase (Fig. 1b)
shows diffraction peaks that correspond to an icosahe-
dral structure; they were indexed according to the
scheme proposed in [10].

The temperature dependences of the resistivity and
magnetoresistivity were measured on 12-mm-long rib-
bon samples in a temperature range of 1.5–300 K in an
8-T magnetic field generating by a superconducting
solenoid. The magnetic field was oriented normal to the
current passing through a sample. The resistivities of
the samples were measured by the four-probe method.
The geometric factor of a sample s/l introduced a 10%
uncertainty in the absolute value of resistivity ρ. The
temperature was measured with a TSU carbon ther-
mometer. The temperature-measurement accuracy in
the range 1.5–30 K was ±0.01 K. At temperatures
T > 30 K, the temperature-measurement error was at
most 0.1%. The values of Tc were determined from the
resistivity data, at the center of the superconducting
transition.

3. BASIC RESULTS OF THE AMR THEORY
FOR THE THREE-DIMENSIONAL CASE

In the general case, the contribution of an applied
magnetic field to conductivity can be represented as

(1)

where the first term is the classic contribution to the
magnetoconductivity (MC) and the second term has a
quantum origin and is described in the framework of
the AMR theory. The condition for the applicability of
this theory is given by the inequality

(2)

where l is the electron mean free path and kF is the elec-
tron wavevector. An important feature of ∆σq(H) con-
sists in the fact that he effect of a magnetic field is sub-

∆σexp H( ) ∆σcl H( ) ∆σq H( ),+=

kFl 1,>
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
stantial even in the range of classically weak fields,
where ωcτ ! 1 and the contribution of ∆σcl(H) is negli-
gibly small. In terms of the AMR theory, ∆σq(H) is rep-
resented as a sum of different quantum corrections [7]:

(3)

The first quantum correction ∆σL(H) to the MC (see
Eq. (3)) is related to the localization of noninteracting
electrons, and the second correction is related to elec-
tron scattering by superconducting fluctuations (Maki–
Thomson correction). The first correction to the MR,
∆σL(H), is suppressed in magnetic fields H > Hϕ . The
second and third corrections, ∆σMT(H) and ∆σint(H),
take into account electron–electron interaction, and
they are suppressed at H > Hint . The coefficients c3 and

 are given in [7]. Analytical relations for the quan-
tum corrections ∆σL(H), ∆σMT(H), and ∆σint(H) were
published in [7], and they were used in [3] to analyze
the experimental data on the MR of superconducting
amorphous systems.

∆σq H( ) c3∆σL H( )=

– c3
int∆σMT H( ) c3

int∆σint H( ).+

c3
int
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Fig. 1. X-ray diffraction patterns of (a) amorphous and
(b) icosahedral Zr80Pt20 phases. The Bragg peaks corre-
sponding to icosahedral structure are indexed according to
the scheme proposed in [10].
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The scale of each contribution is specified by the
relation between the characteristic magnetic fields (Hϕ,
Hint) and the applied magnetic field in which magne-
toresistivity is measured. The characteristic scales of
Hϕ and Hint are Hϕ = "c/4eDτϕ and Hint = πckBT/2eD,
which separate the regions of weak and strong mag-
netic fields, where MC has the quadratic or square-root
dependence on the magnetic field, respectively.1 

In the magnetic-field range H ≤ Hϕ , where
∆σexp(H) ~ H2, AMR is mainly contributed by the quan-
tum effects related to the breakdown of the coherence
of electron wavefunctions because of inelastic electron
collisions. The characteristic electron phase-breaking
time is determined from theoretical relations in this
magnetic-field range.

In the magnetic-field range Hϕ ! H ! Hint , where
∆σexp(H) ~ H1/2, the theory predicts that AMR is mainly
contributed by the quantum effects related to electron–
electron interaction in the Cooper channel, by the so-
called Maki–Thomson corrections [7], which become
small at H @ Hint . In this magnetic-field range, the
Maki–Thomson corrections are expressed as
∆σMT(H) = –β(T)∆σL(H), where the dimensionless
quantity β(T) is experimentally determined and
depends only on the electron–electron interaction con-
stant g(T) [7].

Thus, an analysis of the experimental dependence of
the MC on the magnetic field within the framework of
the AMR theory can find the characteristic time τϕ of
electron phase relaxation caused by inelastic collisions

1 The diffusion coefficient was estimated by the relations kFl =

3Dm*" = 3/2kFσ/G0 , where G0 = e2/2π2 ≈ 1.23 × 10–5 (Ω m)–1

and m* is the effective electron mass. m* was estimated from the
data of [11].
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Fig. 2. Temperature dependence of the electrical resistivity
of Zr80Pt20 in (a) amorphous and (b) icosahedral states in
the temperature range of 1.5 to 300 K. The inset shows the
superconducting transition range (1.5–4 K).
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and to determine the β(T) parameter related to the elec-
tron–electron interaction constant g(T).

4. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 2 and the table give the measured tempera-
ture dependences of the electrical resistivity of the
Zr80Pt20 system in its amorphous and icosahedral states
in the temperature range 1.5–300 K.

The resistivity is seen to be high, and the icosahedral
and amorphous phases have a weak negative tempera-
ture coefficient of resistivity. The resistivity of the
icosahedral phase is slightly lower than that of the
amorphous phase.

Electron localization plays an important role in low-
temperature electron transport in amorphous alloys,
and it results from disorder in a system (Anderson
localization). Localization in a quasicrystal is caused
by the interference (phase coherence) of electron states,
and hence it is related to the system symmetry and
structure: the more perfect the material, the higher the
electron localization [12]. This behavior was also
observed in Zr70Pd30 quasicrystalline samples in [4]. A
comparison of the resistivities of Zr80Pt20 in the amor-
phous and icosahedral states over a wide temperature
range indicates electron localization in both phases.
The experimental values of ρ for both amorphous and
icosahedral systems can be used as the measure of
structural and electron disordering.

The inset to Fig. 2 shows the superconducting tran-
sition temperatures measured from the resistivities. The
samples are found to be superconductors with a transi-
tion temperature Tc = 3.48 K for the Zr80Pt20 amorphous
phase and Tc = 2.50 K for the icosahedral phase. Thus,
the transition from the amorphous into icosahedral state
in the system under study results in a decrease in Tc .

The conductivity of quasicrystals depends mainly
on two factors: electronic structure and electron-scat-
tering effects. It should be noted that it is difficult to
methodically separate these contributions in order to
find physical parameters that control certain electron-
scattering mechanisms. However, this procedure can be
made easier if some interaction mechanisms are sup-
pressed by choosing appropriate temperature and mag-
netic-field ranges. In this case, theoretical predictions
can correctly be compared with experimental results.

The measured MRs of the amorphous and icosahe-
dral Zr80Pt20 phases in magnetic fields up to 8 T in the
temperature range 1.5–5 K are given in the ∆σ(H) coor-
dinates (see Figs. 3 and 4); here, MC is expressed in
terms of MR as

As follows from ρ(H), the MR is positive and
depends anomalously on the magnetic field. A specific

∆σ H( ) σ 0( ) σ H( )–
ρ H( ) ρ 0( )–
ρ H( )ρ 0( )

------------------------------ ∆ρ H( )
ρ2 0( )

-----------------.≈= =
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feature of the Zr80Pt20 system is the fact the ∆ρ(H)/ρ2(0)
dependence has clearly pronounced sections that vary
as H2 in weak fields and as H1/2 in strong fields, which
are inherent in the ∆σ(H) behavior in three-dimensional
disordered systems.

Using the relations that determine the contributions
∆σL(H) and ∆σMT(H) [7] to the MC for weak spin-orbit
interaction and the slopes of the dependences of
∆ρ(H)/ρ2(0) on H2 (Fig. 3) and of ∆ρ(H)/ρ2(0) on H1/2

(Fig. 4), we determined the values of the parameters
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Fig. 3. Field dependence of magnetoresistivity ∆ρ(H)/ρ2(0)
in the low-field region for (a) icosahedral and (b) amor-
phous phases.
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β(T), which is related to the electron–electron interac-
tion constant g(T), and τϕ(T), which specifies the phase-
breaking time for a conduction electron due to inelastic
scattering. The characteristic feature of the MR is its
sharp decrease with increasing temperature, which
specifies a sharp decrease in the slopes for the quadratic
(H2) and square-root (H1/2) ∆σ(H) dependences. At T =
5 K, the magnetoresistivity becomes virtually compara-
ble with the experimental error.

The deviations of ∆ρ(H)/ρ2(0) from the H2 and H1/2

dependences are caused by the joint effect of two fac-
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Fig. 4. Field dependence of magnetoresistivity ∆ρ(H)/ρ2(0)
in the high-field region for (a) icosahedral and (b) amor-
phous phases.
Parameters of the systems under study in the weak spin-orbit coupling approximation (T = 3.7 K)

Sample
ρ, µΩ cm,
T = 6 K

ρ, µΩ cm,
T = 300 K

β(T) g(T) , K Tc, K
τϕ ,

10–11 s
Hϕ, T Hint, T

Dcalc,
cm2 s–1

Zr80Pt20 quasicrystalline phase 251.5 245.5 23 ~2.0 ~2.5 2.48 23.8 ~0.03 ~12 ~0.4

Zr80Pt20 amorphous phase 274.0 263.2 12 ~5.0 ~3.5 3.50 3.0 ~0.4 ~10 ~0.2

Note: ρ is resistivity; the parameter β(T) is related to the electron–electron interaction constant g(T);  is the calculated superconducting

transition temperature; Tc is the experimental superconducting transition temperature; τϕ is the relaxation time of the phase of elec-
tron wavefunction due to inelastic collisions; Hϕ and Hint are the characteristic magnetic fields separating the low- and high-field
regions, respectively; and Dcalc is the electron diffusion coefficient.

Tc*

Tc*
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tors, namely, by the suppression of the ∆σL(H) contri-
bution, which is caused by the localization of noninter-
acting electrons, with increasing magnetic field and by
an increase in the ∆σint(H) contribution, which is
related to electron–electron interaction.

The experimental data in Fig. 3 show that the mag-
netic-field range in which the H2 dependence is obeyed
for the amorphous phase is more than an order of mag-
nitude longer than the analogous H range for the quasi-
crystalline phase. The magnetic-field ranges where the
H2 dependence is obeyed agree well with the estimates
of Hϕ (see table) made for both phases in the system
under study.

Figure 4 shows the H1/2 dependence of ∆ρ(H)/ρ2(0)
in magnetic fields H @ Hϕ; as is seen, the magnetic-
field ranges where the H1/2 law is obeyed are compara-

0
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b

1.0 1.5
lnT

0.3

0.2

0.1

1/β

Tc = 2.48 K Tc = 3.5 K

Fig. 5. Temperature dependences of β for the Zr80Pt20 sys-
tem in (a) icosahedral and (b) amorphous states. Arrows
indicate the calculated values of  averaged over several

temperature points.
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lnT

lnτϕ

0.4

Fig. 6. Temperature dependence of τϕ for the Zr80Pt20 sys-
tem in (a) icosahedral and (b) amorphous states.
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ble for both phases. The scales of MR at the same tem-
peratures are of the same order of magnitude for both
phases. According to the conclusions of the AMR the-
ory [7], an increase in the magnetic field should result
in an increase in the role of electron–electron interac-
tion; in the case of superconducting disordered sys-
tems, this means the suppression of the ∆σL(H) contri-
bution, which is related to the localization of noninter-
acting electrons, and an increase in the ∆σMT(H)
contribution, which is caused by electron scattering by
superconducting fluctuations. The effect of the ∆σint(H)
contribution, which corresponds to electron–electron
interaction, depends on the ratio of H, at which the MR
is measured, and Hint , which is involved in the AMR
theory.

Hint was estimated to be less than 10–12 T in our
case. This means that the ∆σint(H) contribution to the
experimental MC in the magnetic-field range under
study is insignificant. This circumstance is also sup-
ported by the fact that, in this magnetic-field range, the
experimental MC can satisfactorily be described by two
contributions to the MC, namely, by ∆σL(H) and
∆σMT(H).

By studying the H dependence of ∆ρ(H)/ρ2(0) at
H ! Hint and different temperatures, we can determine
the temperature dependences of the β(T) parameter,
which is related to the electron–electron interaction
constant g(T), and the characteristic electron phase-
breaking time τϕ(T). The determined τϕ(T) temperature
dependence makes it possible to reveal the dominating
phase-breaking mechanism for conduction electrons in
disordered and irregular superconductors.

Therefore, we studied the H dependences of
∆ρ(H)/ρ2(0) for the Zr80Pt20 system in the temperature
range Tc < T < 5 K and magnetic fields up to 8 T. Fig-
ure 5 shows the temperature dependences of the β–1

coefficient on lnT. These dependences in the quasicrys-
talline and amorphous states of the Zr80Pt20 system are
linear within the limits of experimental error. Their
extrapolations to the intersection with the lnT axis
gives the calculated values of T* averaged over several
temperature points; these values coincide with the
experimental values.

This agreement between the values of Tc calculated
from the MR data (from the electron–electron interac-
tion constants g(T)) and the values of Tc determined
experimentally indicates that the relations of the AMR
theory for the case of weak spin-orbit interaction satis-
factorily describe the behavior of MR in superconduct-
ing quasicrystalline and amorphous systems.

For such systems, Fig. 6 shows the temperature
dependence of the electron phase-breaking time (τϕ(T))
in logarithmic coordinates. In each state, the experi-
mental points are seen to fall on one straight line within
the limits of experimental error, thus demonstrating the
τϕ ∝  T–2 dependence. A comparison of the electron
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005
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phase-breaking times τϕ for the quasicrystalline and
amorphous phases (see table) indicates a significant
increase in τϕ in the quasicrystalline phase. The pres-
ence of the temperature dependence of τϕ demonstrates
that, in the temperature range under study, the electron
phase relaxation time coincides with the time of elec-
tron inelastic scattering in an order of magnitude. This
means that, in the temperature range under study, the
main phase-breaking mechanism for conduction elec-
trons is their inelastic scattering by ion vibrations.

The main features of the experimental low-tempera-
ture behavior of MR are seen to be satisfactorily
described by the existing theory of weak electron local-
ization and electron–electron interaction in three-
dimensional disordered systems. Both effects are
observed in the AMR, and they can be separated in a
magnetic field. The contribution related to electron–elec-
tron interaction and caused by electron scattering by
superconducting fluctuations dominates, since |g(T)| > 1
at T > Tc .

5. CONCLUSIONS

The electronic and superconducting properties of
icosahedral crystal Zr80Pt20 and its amorphous analog
were studied and compared by measuring their electri-
cal resistivity and magnetoresistivity, and a number of
important parameters were determined.

The icosahedral and amorphous phases are charac-
terized by a high resistivity and a weak negative tem-
perature coefficient of resistivity, and the resistivity of
the icosahedral phase is slightly lower than that of the
amorphous phase.

We were the first to detect superconductivity in the
icosahedral and amorphous Zr80Pt20 phases, and the
superconducting transition temperature is lower in the
icosahedral phase.

The electron phase relaxation times τϕ were deter-
mined in both phases. The phase relaxation time in qua-
sicrystalline Zr80Pt20 was found to be much higher than
that of the amorphous analog, and this sharp increase is
explained by electron localization in the quasicrystal
that is related to a sample structure.

The detected decrease in the electron–electron inter-
action constant g(T) in the quasicrystal, which results in
a decrease in Tc , indicates weakening of the electron–
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
electron interaction in the quasicrystal as compared to
its amorphous analog.
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Abstract—The energies of the electron and hole weak-coupling polarons are determined in quantum rings of
finite width in a uniform magnetic field. It is shown that polaron corrections exhibit oscillatory behavior as a
function of a magnetic field. The effect of polaron corrections on the absorption and emission spectra of light
by excitons in a quantum ring is considered. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The electron–phonon interaction in reduced-dimen-
sion systems has been discussed in the literature since
the very beginning of the physics of low-dimensional
systems as an independent branch of solid-state phys-
ics. The effect of acoustic phonons on the mobility of
electrons in an inversion channel was considered as
early as 1982 by Ando et al. [1] by example of a two-
dimensional electron system in silicon. In low-dimen-
sional A3B5 systems (just as in bulk samples), polaron
phenomena due to optical phonons attract considerable
interest. These phenomena have been discussed in [2]
(quantum wires) and in [3, 4] (quantum dots) with
regard to the effect of a strong (in the sense that the
magnetic length is of the same order of magnitude or
less than the size of the domain where the charge carri-
ers move) magnetic field. By example of a quantum
dot, it was demonstrated in [4] that polaron phenomena
become more prominent as the size of a quantum dot is
reduced: a shift in the electron energy due to the cou-
pling to polar optical phonons is inversely proportional
to the radius of a quantum dot.

Quantum rings occupy a special position among
nanoobjects. The main topological feature of these
rings is that the domain where an electron moves is not
simply connected. This fact leads to Aharonov–Bohm
oscillations in a magnetic field. It is well known that
Aharonov–Bohm oscillations arise even if an electron
is not subject to a Lorentz force (a thin solenoid inside
a ring). However, from the experimental point of view,
a typical situation is when a uniform magnetic field is
applied to the system and the ring has a finite width. In
this case, the magnetic field may significantly affect the
radial motion of particles.

The manufacturing technology of quantum rings
with a characteristic radius of 10 to 100 nm was first
described in [5]. In an ensemble of self-organized InAs
quantum dots on the surface of GaAs, under certain
1063-7761/05/10104- $26.000686
conditions, InAs diffuses toward the boundaries of the
quantum dots. This gives rise to objects that look like
the crater of a volcano. At the center of the crater, a
region with a typical diameter of 20 nm is formed that
is free of InAs. The outer diameter of the crater is esti-
mated to range from 60 to 120 nm [5]. Thus, an ensem-
ble of rings is formed whose radii are comparable to the
effective Bohr radius of an electron in InAs.

Polaron phenomena in quantum rings of finite width
in a magnetic field must be characterized by distinctive
features. The main feature is the nonmonochromaticity
of the Aharonov–Bohm oscillations of a polaron shift,
which is attributed to the difference in the magnetic
fluxes that are enclosed by different electron trajecto-
ries. Moreover, when an exciton is generated, the con-
tributions of the electron and the hole to the polariza-
tion of the medium have opposite signs, and it is impor-
tant that the finiteness of the ring should be taken into
account when calculating the net effect determined by
the wavefunctions of the particles. The present paper is
devoted to the theoretical study of the formation of
magnetopolarons in a quantum ring with regard to the
radial motion of particles and the effect of polaron phe-
nomena on optical interband transitions.

2. ENERGY SPECTRUM 
AND WAVEFUNCTIONS OF PARTICLES

IN A QUANTUM RING

Several models of a potential have been proposed in
the current literature to take into account the finiteness of
the width of a quantum ring: a rigid-wall potential [6], a
parabolic potential [7], and (see [8]) potential energy of
the form

(1)

which will be used in the subsequent calculations.

V r( )
a1

r2
----- a2r2,+=
 © 2005 Pleiades Publishing, Inc.



        

MAGNETOPOLARON STATE OF PARTICLES IN QUANTUM RINGS OF FINITE WIDTH 687

                                                                        
Here, r is the radius vector of a particle in a polar sys-
tem of coordinates and a1 and a2 are certain parameters.
Potential (1) admits an analytic solution of the
Schrödinger equation in a magnetic field and, on the
other hand, allows one to simulate a ring of finite width.

The expansion of (1) near the minimum V(r0) =
min(V(r)) yields

, (2)

whence one can obtain a relation between a1 and a2 and
the experimentally determined parameters r0 and ω0 [5]:

(3)

where m* is the effective mass of a particle. Then, the
Hamiltonian of an electron in potential (1) in a uniform
magnetic field B = (0, 0, B) (the z axis is perpendicular
to the plane of the ring) is given by [8]

(4)

where ωB = eB/  is the cyclotron frequency of an

electron and  is the effective mass of an electron.

The solution to the Schrödinger equation ψ(r, ϕ) =
Eeψ(r, ϕ) for a lateral motion of an electron is expressed
as (hereupon, we consider states with the radial quan-
tum number nr = 0) [8]

(5)

here, le is the eigenvalue of the projection operator of
the angular momentum of an electron, Eg = 0.354 eV is

the bandgap energy of InAs, Ωe =  is the

combined frequency, and ae =  is the oscilla-
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tory length of an electron at the combined frequency
Ωe . The wavefunctions and the spectrum of holes can
be determined similarly. For further references, we
write out these parameters:

(6)

Here, the notations are analogous to those used in for-
mulas (5). In (5) and (6), the energy is measured from
the top of the valence band. In further calculations, we
assume, for simplicity, that the parameters r0 and ω0 are
the same for electrons and holes (unless otherwise
stated) and that the difference between electrons and
holes is attributed to the difference between their effec-
tive masses and the signs of their charges. This approx-
imation has a small effect on the results.

3. ELECTRON AND HOLE POLARONS

As pointed out above, the strong localization of par-
ticles in quantum rings may enhance their interaction
with longitudinal optical phonons and thereby signifi-
cantly change the quantization energies of the particles
(a polaron shift). To calculate the coupling energy of a
polaron, one should add the Hamiltonian (4) of free
phonons and electron–phonon interaction

(7)

to Hamiltonian (4), which describes the motion of an

electron in a quantum ring. Here, bq( ) are the cre-
ation (annihilation) operators of phonons with the

wavevector q, e is the electron charge, ε*–1 =  – 
is the effective optical permittivity, and ωq is the
phonon frequency. In the case of a weak-coupling
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polaron, the polaron correction can be calculated by
perturbation theory:

(8)

where Pll '(q) is the matrix element of the electron–
phonon interaction. The quantity ∆ depends on the type
of perturbation theory. It is well known (see, for exam-
ple, [9]) that the Rayleigh–Schrödinger perturbation
theory (∆ = 0) well describes only a correction to the
ground state of the system. For excited states, one
should apply the Wigner–Brillouin perturbation theory
with ∆ = ∆El – ∆EG. Here, ∆EG is a polaron correction

∆El

Pll' q( ) 2

El' El "ωq ∆–+–
------------------------------------------,

q l',
∑–=
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Fig. 1. Energy spectrum of a wide quantum ring.
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Fig. 2. Energy spectrum of a narrow quantum ring.
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to the ground state calculated for ∆ = 0. In the case of
dispersion-free optical phonons, (ωq = ωopt = const), the
polaron correction to the electron states is given by (see
the Appendix)

(9)

where F is a degenerate hypergeometric function and Γ
is the gamma function. The result for a hole polaron has
the same form, except the change ae  ah. Figure 1
shows the energy spectrum of an electron in a quantum

ring for "ω0 = 12"2/2m* . One can see that, when the
finiteness of the ring width is taken into account, the
spectrum significantly differs from the spectrum of the
one-dimensional model,

where Φ0 = hc/e is the quantum of a magnetic flux. Nat-
urally, one should expect that, as the ratio of the radial
quantum to the rotational one increases, the spectrum
of the system ever more closely approaches the spec-
trum El of the one-dimensional system. This fact is

illustrated in Fig. 2, where "ω0 = 400"2/2m* . The
arrow in this figure indicates the value of the magnetic
field equal to 1 T. The values of the quantum number le

are shown in the figure. In Figs. 1 and 2, energy is nor-
malized by the radial quantum "ω0. The polaron cor-
rections to the states with different values of le calcu-
lated by formula (9) are shown in Fig. 3. One can see
that, in addition to the oscillatory component, there
exists a smooth envelope that comes from the mag-
netic-field dependence of the radial wavefunctions of
an electron. Fig. 4a represents the magnetic-field
dependence of the ground state of an electron in a quan-
tum ring, and Fig. 4b shows the polaron correction
(∆EG) to this dependence calculated by formula (9).
One can see that this dependence is also oscillatory.
Similar to Fig. 3, the graph has an envelope; however,
this envelope much more weakly depends on magnetic
field than that for excited states. All the calculations
shown in Figs. 2–4 are performed for the ratio of

parameters given by "ω0 = 400"2/2m* .
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4. AN EXCITON POLARON 
AND INTERBAND OPTICAL TRANSITIONS

The absorption of a quantum of light with energy
greater than the bandgap energy of a material gives rise
to an electron–hole pair in a quantum ring. Each parti-
cle polarizes the medium, the polarization having oppo-
site signs for the electron and the hole. As a result, these
polarization wells partially compensate each other. As
is shown in [4], in spherical quantum dots, the compen-
sation is not exact when only the degeneracy of the
valence band of the material is taken into account. In
the case under consideration, due to the strong quanti-
zation in the vertical direction, the degeneracy is
removed; however, the polarizations are not fully com-
pensated because of the strong difference between the
effective masses of an electron and a heavy hole. Now,
we consider interband transitions. Before the absorp-
tion of a photon, a quantum ring has no charged parti-
cles and, hence, the medium is nonpolarized. After the
absorption (in the final state of the system), there is an
electron in the conduction band and a hole in the
valence band; this leads to the polarization of the mate-
rial. This means that the wavefunctions of the oscilla-
tors of the medium before (Φi) and after (Φf) the
absorption are not orthogonal: 〈Φi |Φf 〉  ≠ 0, because the
functions Φf have a displaced equilibrium state due to
the polarization [4]. Taking into account this circum-
stance, we can represent the absorption probability of a
quantum "ω of light in the dipole approximation as

(10)

where Eeh is the transition energy, EK = K"ωopt (K is an
integer) is the total energy of phonons that are involved
in the interband transition, WK is the emission probabil-
ity of K phonons during the transition, I(le, lh) is the
overlap integral of the envelopes of the electron and the
hole, and pCV is the Bloch amplitudes matrix element of
the interband transition. The emission probability WK

of phonons is determined by the scalar product of the
oscillation functions of the medium, 〈Φi |Φf 〉 . In the
case of dispersion-free optical phonons "ωq = "ωopt ,
this probability is determined by (see [4] for the details
of calculation)

(11)
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Fig. 4. (a) The ground state of an electron in a quantum ring
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where δEex is the total polaron shift of the exciton,
which is defined below (see (16) and (17)). The expres-
sion for the emission probability of a quantum of light

(12)

differs from the absorption probability (10) by the
Stokes shift ∆ES, which is given by (see [4])

(13)

Formulas (11) and (13) show that both the intensity of
phonon repetitions and the Stokes shift of the spectrum
are determined by the quantity δEex, which represents
the renormalization of the exciton spectrum due to the
formation of a polaron state. Below, we will show that
this quantity is an oscillating function of a magnetic
field (similar to the electron spectrum considered in the
previous section); this leads to the oscillations of the
Stokes shift and of the intensities of phonon repetitions.
Note that the oscillations of the intensity of exciton
luminescence in quantum rings have been predicted
in [10].

To determine δEex, we write out an expression for
the Hamiltonian of two particles, an electron and a hole,
in a quantum ring that interact with longitudinal
phonons:

(14)

Since the radius r0 may vary within rather wide lim-
its during the formation of quantum rings, one should
consider two possible situations. For sufficiently small
radii (r0 ! , where  is the effective Bohr radius of
an exciton in the ring material), the Coulomb interac-
tion can be neglected. In this case, the dynamics of the
electron and the hole are independent, and the
Schrödinger equation is decomposed into two equa-
tions, for the electron and the hole; the solution to these
equations is presented in the Section 2 (formulas (5)
and (6)). The polaron corrections to the spectrum of the
electron–hole pair are calculated by a formula similar
to (8), in which the matrix element Pll '(q) should be
replaced by a sum of the matrix elements of the elec-
tron–phonon and hole–phonon interactions (the third
term in (14)). The calculations yield

(15)

Here, ∆Ee and ∆Eh are the polarization shifts of an elec-
tron and a hole, respectively, and ∆Emix is a combined

Wem
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shift. Each of these contributions is calculated by a pro-
cedure analogous to that described in the Appendix.
The one-particle energy shifts ∆Ee and ∆Eh are calcu-
lated by formula (9); for ∆Emix, we obtain

(16)

where α is the set of quantum numbers (le, lh). Thus,
since the particles move independently for r0 !  and
each term in (15) is an oscillating function of a mag-
netic field, we should expect that the Stokes shift ∆ES
and the intensity WK will oscillate according to (11)
and (13).

In the opposite case, when r0 @ , we should take
into account the effect of the Coulomb potential on the
dynamics of particles; therefore, we fail to obtain an
exact analytic result. Let us carry out a qualitative anal-
ysis. By analogy with [11], we assume that the motion
is adiabatic in the radial direction. Following the calcu-
lation procedure described in [11], we obtain the fol-
lowing relations for the exciton spectrum:

(17)

Here, J = le + lh is the total momentum of the exciton.
The first term in the first equation is the energy of the
radial motion of particles, the second term is the energy
of motion of an exciton as a whole, and the last term
represents the energy of the bound state of the particles.
The angular brackets denote averaging with respect to
the radial coordinates re and rh of the particles. Note
that 〈B〉  depends on the magnetic field only via the
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effective oscillation length ae = .
However, Fig. 2 shows that, for sufficiently narrow
rings, the variation limits of the magnetic field are such
that ωBe/ω0 ! 1, and the quantity 〈B〉  very weakly
depends on the magnetic field. As regards the last term
in (17), according to [10], it is proportional to

(18)

In the limit of r0 @ , this expression is exponentially
small, and the effect of a magnetic field on the polaron
corrections to the spectrum (17) is negligible. It was
implicitly assumed in (17) that an electron and a hole in
the ring move along circles of identical radii. According
to [12], if we take into account that the radius of a circle

for an electron, , is different from the radius of a cir-

cle for a hole , we obtain

(19)

instead of (17); here, ∆Φ is proportional to –e(rh – re)B,
i.e., to the product of the dipole moment of an exciton
multiplied by the magnetic field. This correction leads
to a considerable reconstruction of the exciton spec-
trum [12].

Thus, in both situations, the spectra of an electron–
hole complex (formulas (5) and (6)) for r0 !  and of

an exciton (19) for ,  @ , considered as func-
tions of a magnetic field, have intersecting branches. In
particular, the ground state oscillates with a magnetic
field [12]. This leads to oscillations of ∆EG in expres-
sion (8) for the polaron correction and, hence, to the
oscillations of the polaron correction δEex to the opti-
cally active state J = le + lh = 0 of the exciton. As pointed
out above, the Stokes shift in the absorption and emis-
sion spectra of light, as well as the intensity of phonon
repetitions, are determined by the quantity δEex and,
hence, oscillate with a magnetic field. However, when

,  @ , the polaron shift may exhibit appreciable
oscillatory phenomena only for a radially polarized

exciton  ≠ .
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APPENDIX

Consider a procedure for calculating the matrix ele-
ment Pl → l'(q) of the electron–phonon interaction:

(A.1)

Here, ψM are electron wavefunctions (5), and the indi-

ces M and M ' are defined as M =  and

M' = . Let us orient the polar axis
along qx and represent the exponential function in (A.1)
as

(A.2)

Calculating the integrals in (A.1), we obtain

(A.3)

Substituting CM and Dq from (5) and (7), respectively,
into the expression obtained and squaring the modulus,
after simple calculations we arrive at

(A.4)
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we finally obtain the following expression (t2 =

/2):

(A.5)
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Abstract—Photoluminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n hetero-
structure) containing large-scale random potential fluctuations in the planes of heteroboundaries is studied. The
properties of excitons, in which a photoexcited electron and a hole are spatially separated in neighboring quan-
tum wells, were investigated upon variation of the power density of off-resonance laser excitation and temper-
ature (1.5–4.2 K), both under lateral (in the heteroboundary plane) confinement of the excitation region to a few
micrometers and without such a limitation (directly from the region of laser-induced photoexcitation focused
to a spot not exceeding 30 µm. Under low pumping (with a power smaller than a microwatt), interwell excitons
are strongly localized due to small-scale random potential fluctuations and the corresponding photolumines-
cence line is nonhomogeneously broadened to 2.5–3.0 meV. With increasing pumping power, the narrow line
of delocalized excitons with a width of approximately 1 meV emerges in a threshold manner (the intensity of
this line increases superlinearly near the threshold with increasing pumping). For a fixed pumping, the intensity
of this line decreases linearly upon heating until it completely vanishes from the spectrum. The observed effect
is attributed to Bose condensation in a quasi-two-dimensional system of interwell excitons. Within the proposed
model, we show that the linear mode in the behavior of the luminescence intensity until its disappearance in the
continuum of the photoluminescence spectrum upon a change in temperature is observed only for the con-
densed part of interwell excitons. At the same time, the luminescence of the above-the-condensate part of
excitons is almost insensitive to temperature variations in the temperature range studied. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

Tunnel-coupled quantum systems, superlattices,
and double quantum wells (DQWs) have been objects
of intense studies for a long time [1–16]. The interest in
such 2D systems is due, in particular, to the fact that
photoexcited electron and hole charge carriers can in
principle be separated in space. Excitons in which the
electron and the hole are in different quantum wells
(QWs) separated by a tunnel-transparent barrier can be
generated in DQWs with an electric bias voltage that is
applied perpendicularly to the layers and shifts energy
bands [2]. Such excitons are referred to as spatially
indirect (I), or interwell, excitons in contrast to direct (D)
intrawell excitons, in which the electron and the hole
are in the same QWs. In contrast to intrawell excitons,
interwell excitons are long-lived (the radiation lifetime
may attain tens of nanoseconds or more) due to partial
overlapping of the electron and hole wavefunctions
through a tunnel-transparent barrier in the direction of
the applied electric field. Consequently, such excitons
can be accumulated and the gas of interwell excitons
can be cooled to low temperatures close to the lattice
temperature. In view of the broken inverse symmetry,
interwell excitons exhibit peculiar properties (possess a
dipole moment even in the ground state). In the case of
a large dipole moment, such excitons cannot combine
1063-7761/05/10104- $26.000693
to form molecules or other many-particle exciton com-
plexes due to a strong dipole–dipole repulsion.

Excitons are composite bosons since they contain
two Fermi quasiparticles (band hole and band electron).
For this reason, their collective properties must obey
the Bose–Einstein statistics. Precisely this circum-
stance forms the basis of the assumption formulated in
a number of theoretical publications at the beginning of
the 1960s [17] and concerning the possibility of Bose–
Einstein condensation in a weakly nonideal diluted
exciton gas in semiconductors at low temperatures,

when  ! 1 (n is the exciton concentration, aex is the
Bohr radius of an exciton, and d is the dimension of the
system). A convenient model object for investigating
this effect in semiconducting heterostructures was
quasi-two-dimensional interwell excitons [2–5]. It
should be borne in mind, however, that Bose–Einstein
condensation at finite temperatures cannot occur in
principle in an ideal and unlimited 2D system with a
constant density of single-particle states. This is associ-
ated with divergence of the number of the filled states
in the case when the chemical potential µ tends to zero
and when fluctuations violate the order parameter [18].
Nevertheless, Bose–Einstein condensation may occur
at finite temperatures in quasi-two-dimensional sys-
tems with a spatial (lateral) confinement. If a 2D system

naex
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is confined in a plane and has a characteristic lateral
domain length L, the minimal energy E0 in the energy
spectrum of such a system can be on the order of E0 =
"2π2/ML2 (M is the lateral mass of an interwell exciton).
At temperatures below the critical temperature, macro-
filling of the lower energy state must take place (this
phenomenon is completely analogous to Bose conden-
sation in the 3D case). The relation between the critical
temperature Tc and the threshold concentration n0 start-
ing from which (i.e., for n > n0) the particles begin to
accumulate in the lower energy state is described by the
equation

(1)

where D(E) is the density of states and E0 ! Tc . The
critical temperature in the laterally confined 2D system
with a finite number of states is given by

(2)

i.e., it decreases logarithmically with increasing area
S ∝  L2 occupied by the 2D gas of Bose particles. gex is
the spin degeneracy factor, kB is the Boltzmann con-
stant, and L is the characteristic linear domain size.

Spatial limitations can be imposed on the free
motion of excitons in the planes of quantum wells due
to large-scale random potential fluctuations associated
with variations of QW widths w(r) at heteroboundaries.
Changes in the effective lateral potential U(r) = U(w(r))
can be attributed to these variations. Under quasi-equi-
librium conditions, the exciton density distribution is
determined by the equality µ(n(r)) + U(r) = µ, where
the chemical potential µ of interwell excitons is associ-
ated with their mean density and µ(n(r)) is the chemical
potential of the homogeneous exciton phase in the spa-
tial confinement region (domain). Obviously, µ(n(r)) <
µ since µ(n) = –Eex + δU (Eex is the exciton binding
energy) Consequently, it is easier to accumulate exci-
tons in the lateral localization region and the exciton
density in such regions, which actually play the role of
exciton traps, may substantially exceed their average
density in the QW planes [11]. The critical conditions
corresponding to Bose condensation of interwell exci-
tons can more easily be realized precisely in lateral
domains (traps).

It was shown by us earlier [19, 20] that the collective
state of interwell excitons emerges in DQWs in the
presence of large-scale random potential fluctuations
associated with fluctuations of the AlAs barrier width in
GaAs DQWs. Namely, the exciton condensation took
place when photoexcited interwell excitons accumu-
lated in macroscopically extended regions with lateral

n0 Tc( ) f E µ 0=,( )D E( ) Ed

E0

∞

∫=

=  D E( )Tc

Tc

E0
-----,ln

Tc
2π"

2n
gexkBM nS( )ln
-----------------------------------;≈
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confinement over a few micrometers [19]. To ensure the
operation under lateral confinement, we coated the sur-
face of the structure with an opaque metallic mask, in
which windows with a size from 0.5 to 10 µm were pre-
pared by electron-beam lithography; photolumines-
cence was excited and subsequently detected through
these windows. It was found that interwell excitons are
strongly localized for low densities of excitation and
low temperatures and the corresponding photolumines-
cence band is broadened nonhomogeneously (the pho-
toluminescence bandwidth amounts approximately to
2.5 meV). With increasing pumping, a very narrow line
of delocalized interwell excitons (with a width smaller
than 1 meV) emerges in a threshold manner. For a fixed
pumping, this line vanishes from the spectrum upon
heating, its intensity decreases not activationally, but in
accordance with a power law. The observed phenome-
non was attributed to Bose condensation in a quasi-two-
dimensional system of interwell excitons under the spa-
tial limitation determined by the sizes of lateral
domains (traps) with a width of a few micrometers.

A strong argument in favor of such an interpretation
is the strongly critical dependence of the observed
properties on the temperature and pumping intensity.
Since the temperature behavior of the exciton lumines-
cence intensity under Bose condensation is not of the
activation type and exhibits general features typical of
this phenomenon, we study here this effect in greater
detail using a structure with a slightly different lateral
confinement for interwell excitons as compared to [19].
We will try to answer the important question on the dif-
ference in the temperature dependences of the lumines-
cence intensity of condensed interwell excitons and the
above-the-condensate part in the temperature range
studied here.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

We studied GaAs/AlGaAs n–i–n heterostructure
with a GaAs/AlAs/GaAs DQW (the widths of GaAs
wells and the AlAs barrier are 120 and 11 Å, respec-
tively). The structure was grown by molecular-beam
epitaxy on an n-type doped GaAs substrate (the doping
impurity (Si) concentration was 1018 cm–3) with the
(001) crystallographic orientation. First, a 0.5-µm-
thick Si-doped GaAs buffer layer was grown on the
substrate, followed by a 0.15-µm-thick AlGaAs insulat-
ing layer (x = 0.33). Then GaAs/AlAs/GaAs DQWs
were grown, above which a 0.15-µm-thick AlGaAs
insulating layer was deposited. Further, a 0.1-µm-thick
Si-doped GaAs layer (with a Si concentration of
1018 cm–3) was grown. The entire structure was coated
by a 100-Å-thick GaAs layer. Four-monolayer AlAs
barriers were grown at the boundaries of DQWs with
AlGaAs layers. Growth-interruption technique was
used for epitaxial growth of AlAs. The application of
this technique resulted in the emergence of long-period
lateral random potential fluctuations associated with
fluctuations of the widths of AlAs barriers [21]. Then
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005
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1 × 1-mm2 contact area elements were prepared litho-
graphically on the structure. Metallic contacts prepared
from an Au + Ge + Pt alloy were deposited on the buffer
and doped layers at the top part of the area elements.
The sample resistance between built-in electrodes was
about 100 Ω at room temperature and was an order of
magnitude higher in liquid helium.

In a metallic mask (120-nm-thick Al film) deposited
on the surface of the n–i–n structure with the above
structure, apertures (windows) with a diameter from 0.5
to 10 µm were etched by explosive electron-beam epit-
axy. Experiments were made in such a way that photo-
luminescence signal excitation and detection was car-
ried out via single windows. The Al film was insulated
from the n+-junction region of the heterostructure.

The luminescence spectra were excited by a cw He–
Ne laser whose beam was focused to a spot with a
diameter of approximately 30 µm. We analyzed the
photoluminescence spectra directly from the photoex-
citation region since no appreciable exciton drift from
the region of their excitation was observed in this struc-
ture. At the exit from a wide-aperture double mono-
chromator (Ramanor U1000), the spectra were
recorded with the help of a multichannel optical detec-
tor (Si-based CCD camera) cooled with liquid nitrogen.
The sample was placed in a helium cryostat. The sam-
ple temperature in a range of 1.5–4.2 K was controlled
by pumping out 4He vapor and monitored by a resis-
tance thermometer. For a laser power below 10 µW, the
sample temperature virtually coincides with the bath
temperature.

3. EXPERIMENTAL

Figure 1 shows the behavior of the luminescence
spectra of interwell (Iex line) and intrawell (D line that
cannot be seen for such a representation of the spectra
and the T line) excitons upon variation of a bias voltage
shifting the size quantization levels in DQWs. The D
and T lines correspond to delocalized and localized
intrawell excitons. It can be seen that luminescence of
interwell excitons (Iex line) emerges in the spectra for
voltages U < –0.2 V. This happens when the resultant
Stark shift eFd (d is the distance between the electron
and hole in adjacent QWs and F is the electric field)
exceeds the difference between the binding energies of
intrawell and interwell excitons (i.e., eFd ≥ ED – EI).
With increasing applied voltage, the interwell exciton
line in the spectrum is shifted in accordance with a lin-
ear law (∆EI ∝  eFd). On the contrary, the shift of the
intrawell exciton is insignificant (see the inset to
Fig. 1). The intensity of the interwell exciton line
changes insignificantly upon variation of the voltage.
This indicates the high quality of the structure. The
increase in the T line intensity of a localized exciton
with voltage is the result of an increase in the current
passing through the structure.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Let us consider the behavior of luminescence of
interwell excitons upon a variation of pumping inten-
sity. For low densities of excitation (less than 1 µW),
the luminescence spectra exhibit a relatively broad
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Fig. 1. Photoluminescence spectra for various bias voltages
applied to the built-in gate. The inset shows the positions of
the direct exciton line (D), indirect exciton line (I), and the
line of a charged complex (T) as a function of voltage across
the gate. The temperature T = 2 K and the He–Ne laser
power P = 10 µW.
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Fig. 2. Photoluminescence spectra for various values of the
He–Ne laser power. Temperature is T = 2 K and the bias
voltage across the gate is U = –0.149 V. The inset shows the
intensity of the indirect exciton line as a function of the pho-
toexcitation power: experiment (circles) and theory (solid
curve).
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asymmetric band corresponding to interwell excitons
(the bandwidth is approximately 2.5 meV, Fig. 2). This
band is nonhomogeneously broadened and is due to
strong localization of interwell excitons at small-scale
fluctuations of the random potential associated with
residual charged impurities. With increasing pumping
(above 0.5 µW), a narrow line emerges in a threshold
manner in the violet edge of the broad band. The inten-
sity of this line increases superlinearly with pumping
(see the inset to Fig. 2) and the line is slightly shifted
(by approximately 0.5 meV) towards low energies.
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Fig. 3. Photoluminescence spectra for various temperatures.
The He–Ne laser power is P = 1 µW and the voltage across
the gate is U = –0.330 V.
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Fig. 4. Temperature dependence of the photoluminescence
intensity for an indirect exciton. The symbols correspond to
experimental results and the dashed straight lines are the
results of fitting by the formula I ∝  (1 – T/Tc). Dark squares
correspond to the He–Ne laser power P = 1 µW at Tc =
4.4 K, light squares correspond to P = 2 µW and Tc =
5.18 K, and dark circles correspond to P = 5 µW and Tc =
5.54 K. The inset shows the temperature dependence of the
indirect exciton line intensity for a 50-µm window (P =
1 µW and Tc = 7.43 K).
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Upon a further increase in pumping (to above 5 µW),
broadening of the narrow line of interwell excitons
begins and the monotonically broadened line is shifted
towards higher energies.

We studied in detail the behavior of the narrow line
of interwell excitons as a function of temperature and
found that this line vanishes from the spectrum at tem-
peratures T ≥ 5 K. Figure 3 illustrates the typical behav-
ior of the I line upon variation of temperature for a fixed
pumping. It can be seen that this line clearly dominates
over the structureless luminescence band of localized
excitons and has a higher intensity at T = 1.64 K and a
pumping power of 1 µW. With increasing temperature,
the intensity of the I line decreases, while its width
remains virtually unchanged, and at T = 4.2 K this line
practically vanishes against the background of the
structureless spectrum of localized excitons, which pre-
serves its shape. Essentially, the decrease in the I line
intensity with temperature is not of activation type.

Having measured the temperature dependence of
the I line intensity under various pumping intensities,
we established the following regularity in its tempera-
ture behavior (Fig. 4):

(3)

here, IT is the line intensity at temperature T and Tc is
the critical temperature corresponding to vanishing of
this line from the spectrum for a given fixed pumping.

We believe that the experimental results described
above indicate Bose condensation of interwell excitons
in micrometer-scale lateral domains; its origin is asso-
ciated with large-scale random potential fluctuations.
For low-intensity pumping and low temperatures, pho-
toexcited interwell excitons are strongly localized due
to small defects (e.g., residual charged impurities). This
situation corresponds to a broad, nonhomogeneously
broadened luminescence band of interwell excitons for
low excitation densities. Not more than one exciton can
be localized at a defect due to the strong dipole–dipole
repulsion; consequently, this luminescence channel is
rapidly saturated. According to our estimates, this is
observed in the investigated structures at concentra-
tions not exceeding 5 × 109 cm–2. Upon a further
increase in the pumping intensity above the percolation
threshold, interwell excitons become delocalized in a
domain. When the critical density is attained, excitons
are condensed to the lowest delocalized state. This is
manifested experimentally in the threshold emergence
of the narrow luminescence line, its superlinear growth,
and its shift towards lower energies upon filling of the
lower state in the domain by excitons obeying the
Bose–Einstein statistics. The strongest argument in
favor of exciton condensation is the critical temperature
dependence of the observed properties.

IT 1 T /Tc–( );∝
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4. DISCUSSION

Let us now consider the anticipated temperature
dependence of the luminescence intensity of quasi-two-
dimensional interwell excitons in the Bose condensate
in comparison with the luminescence intensity of the
part of excitons above the condensate. For this purpose,
let us analyze the following model system of interwell
quasi-two-dimensional excitons excited by cw laser
pumping. According to our estimates, the luminescence
quantum yield in the structure studied here is about 0.1;
consequently, a substantial part of excitons perish non-
radiatively with time τn . Radiative annihilation of exci-
tons accompanied by the emission of a photon occurs
over a time τr . We assume that the exciton gas temper-
ature in the region of interest coincides with the lattice
temperature since all characteristic times of exciton
departure from the system are much longer than their
relaxation time along the energy axis (τn , τr @ τT). All
these times may in principle be functions of tempera-
ture, but we assume that this dependence can be
ignored in the temperature range under investigation.
The quasi-equilibrium energy distribution of excitons is
of the classical (Boltzmann) or Bose type depending on
exciton concentration n and temperature T. It should be
borne in mind that excitons suffer direct radiative anni-
hilation and contribute to luminescence only within the
“light cone” determined by the momentum conserva-
tion law (in our case, excitons whose momentum com-
ponent in the plane is k ≤ 3 × 105 cm–1 emit photons; this
corresponds to an energy uncertainty δE of about
0.3 meV). To determine the luminescence intensity, we
must take into account the contribution of particles
from this energy interval. If the observed narrow lumi-
nescence line of interwell excitons has a width ∆ > δE,
this can be a consequence of nonhomogeneous broad-
ening. If we assume that the luminescence probability
is independent of energy, the temperature dependence of
luminescence intensity I can be established by determin-
ing the number of particles in the energy interval δE,

(4)

where f(E) is the distribution function. For the Boltz-
mann distribution, we have

(5)

It was mentioned above that macrofilling of the low-
est energy state takes place at a temperature below the
critical value (2). In accordance with formula (1), N0 =
n0(T)L2 is the number of above-the-condensate parti-
cles in the domain in question after the beginning of
condensation. The critical temperature is defined by
two variable parameters, viz., the exciton concentration
determined by the pumping power and the domain size,
as well as the lateral mass M of an interwell exciton. In

I f E( )D E( ) E,d

0

δE
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other words, it is determined by the minimal energy E0
of the system and by the number N0 of above-the-con-
densate particles in a domain. If we use the value of
M = 0.16m0, the observed value of Tc = 3 K corresponds
to n ~ 1010 cm–2 and L ~ 1 – 3µ (N0 ~ 100–300 and E0 ~
0.1 K), which corresponds to experimental conditions.

The particles in a macroscopically filled state must
be coherent (i.e., described by the same wavefunction);
consequently, it is natural to assume that the radiative
probability of annihilation of interwell excitons in the
condensate must be proportional to their number Nc;
accordingly, the luminescence intensity is proportional

to  (Nc is the number of particles in the condensate).
For incoherent above-the-condensate particles, the
luminescence intensity is proportional just to number
N0. The above considerations are in (at least qualitative)
agreement with the experimental observations. Direct
measurements of the luminescence kinetics under
pulsed laser pumping demonstrated [15] that the lumi-
nescence decay time of the narrow line corresponding
to the “condensate” part of excitons amounts to approx-
imately 10 ns at 2 K and is almost an order of magni-
tude shorter than the luminescence decay time for exci-
tons outside the condensate (this time exceeds 100 ns).
The dependence of luminescence on temperature or
pumping power can be determined from the balance
equations taking into account the above-mentioned fac-
tors. If w is the exciton generation rate per unit time at
a unit area element (which is determined by the pump-
ing power density), we have

(6)

in the absence of macrofilling. In this case, the lumines-
cence intensity I ∝  n/τr = wτ0/τr . Under the experi-
mental conditions, the quantum yield τ0/τr does not
exceed 0.1.

After the beginning of condensation, the balance
equation acquires the form

(7)

The threshold value w0 = n0/τ0 corresponds to the begin-
ning of condensation (Nc = 0). The luminescence inten-

sity of coherent excitons in the condensate is Ic ~ /τr .
At a fixed temperature at the beginning of condensa-

tion, Ic ∝  (w – w0)2L4 /τr; upon a further increase in
pumping, we have Ic ∝  (w – w0)L2. The dependence of
luminescence intensity changes when (w – w0)/w0 ∝
τr/2τ0N0.

Figure 2 illustrates the dependence of the lumines-
cence dependence of the condensed part of interwell
excitons on pumping intensity. The luminescence
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threshold of the exciton line and its superlinear increase
followed by a linear increase of the luminescence inten-
sity as a function of pumping intensity can be clearly
seen in the figure (see inset). The dynamic range of the
superlinear behavior of the intensity is determined by
the size of the domain (trap): the smaller the domain
area, the larger the range of the nonlinear behavior. The
theoretical curve in Fig. 2 is plotted for the following
values of parameters: τr/τ0 = 10 and N0 = 100.

Figure 5 shows the calculated temperature depen-
dence of the luminescence intensity for a system with
macroscopic filling of the lowest coherent state of inter-
well excitons (Bose condensate) and for a system with
the Boltzmann distribution for the same values of
parameters as in the inset to Fig. 2. It can be seen that
the temperature dependence of the luminescence inten-
sity for the Boltzmann distribution is very weak, while
the macrofilled state below critical temperature Tc

exhibits a sharp increase in the intensity upon cooling
and the dependence is close to linear. This is in good (at
least qualitative) agreement with experiment. The
intensity ratio is Ic/I0 ~ τr/τ0 at T ! Tc . It should be
emphasized that the experimentally observed strong
temperature dependence of the luminescence intensity
of the exciton condensate under steady-state pumping
is possible only provided that the radiative annihilation
probability for excitons in the condensate is consider-
ably higher than the radiative decay probability for
above-the-condensate excitons, and the luminescence
quantum yield of above-the-condensate excitons is
much smaller than unity. On the whole, these observa-
tions indicate that the collective state of excitons in the
condensate is coherent. The coherence scales have not
been measured as yet by a direct method (e.g., by mea-
suring the intensity correlator); however, in all proba-
bility these scales are close to the sizes of domain traps.

0.5

0
1 2 3 4
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T, K

Intensity, rel. units 

Fig. 5. Temperature dependence of luminescence intensity
for a system with coherent macrofilled state (A) for E0 =

8 µeV = 0.09 K, N0(Tc) = nL2 = 100, and τr/τ0 = 10 and for
a system with the Boltzmann distribution (B) with δE =
0.3 meV.
JOURNAL OF EXPERIMENTAL A
ACKNOWLEDGMENTS

This study was supported financially by the Russian
Foundation for Basic Research.

REFERENCES
1. Yu. E. Lozovik and V. I. Yudson, Zh. Éksp. Teor. Fiz. 71,

738 (1976) [Sov. Phys. JETP 44, 389 (1976)].
2. T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev.

Lett. 64, 3066 (1990).
3. J. E. Golub, E. E. Mendez, J. P. Harbison, and

L. T. Flores, Phys. Rev. B 41, 8564 (1990).
4. J. A. Kash, M. Zachau, E. E. Mendez, et al., Phys. Rev.

Lett. 66, 2247 (1991).
5. L. V. Butov, A. Zrenner, G. A. Abstreiter, et al., Phys.

Rev. Lett. 73, 304 (1994); L. V. Butov, in Proceedings of
the 23rd International Conference on the Physics of
Semiconductors (Berlin, 1996).

6. V. B. Timofeev, A. I. Filin, A. V. Larionov, et al., Euro-
phys. Lett. 41, 535 (1998).

7. V. B. Timofeev, A. V. Larionov, A. S. Ioselevich, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 67, 580 (1998) [JETP Lett.
67, 613 (1998)].

8. V. V. Krivolapchuk, E. S. Moskalenko, A. L. Zhmodikov,
et al., Solid State Commun. 111, 49 (1999).

9. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59,
4211 (1990).

10. X. M. Chen and J. J. Quinn, Phys. Rev. B 67, 895 (1991).
11. Xuejun Zhu, P. B. Littlewood, M. S. Hybersen, and

T. Rice, Phys. Rev. Lett. 74, 1633 (1995).
12. J. Fernandes-Rossier and C. Tejedor, Phys. Rev. Lett. 78,

4809 (1997).
13. Lerwen Liu, L. Swierkowski, and D. Nelson, Physica B

(Amsterdam) 249–251, 594 (1998).
14. Yu. E. Lozovik and O. L. Berman, Zh. Éksp. Teor. Fiz.

111, 1879 (1997) [JETP 84, 1027 (1997)].
15. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and C. Soe-

rensen, Zh. Éksp. Teor. Fiz. 117, 1255 (2000) [JETP 90,
1093 (2000)].

16. A. V. Larionov and V. B. Timofeev, Pis’ma Zh. Éksp.
Teor. Fiz. 73, 342 (2001) [JETP Lett. 73, 301 (2001)].

17. S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276
(1962) [Sov. Phys. Solid State 4, 199 (1962)]; I. M. Blatt,
K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962);
R. S. Casella, J. Appl. Phys. 34, 1703 (1963).

18. P. C. Hoenberg, Phys. Rev. 158, 383 (1967).
19. A. V. Larionov, V. B. Timofeev, P. A. Ni, et al., Pis’ma

Zh. Éksp. Teor. Fiz. 75, 689 (2002) [JETP Lett. 75, 570
(2002)].

20. A. A. Dremin, V. B. Timofeev, A. V. Larionov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 76, 526 (2002) [JETP Lett.
76, 450 (2002)].

21. D. Gammon, E. S. Snow, B. V. Shanabrook, et al., Phys.
Rev. Lett. 76, 3005 (1996).

Translated by N. Wadhwa
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005



  

Journal of Experimental and Theoretical Physics, Vol. 101, No. 4, 2005, pp. 699–707.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 128, No. 4, 2005, pp. 811–821.
Original Russian Text Copyright © 2005 by Romanov, Averkiev.

          

ELECTRONIC PROPERTIES
OF SOLIDS
Anomalous Magnetoresistance of Two-Dimensional Systems
in the Presence of Spin-Orbit Scattering

K. S. Romanov* and N. S. Averkiev
Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

*e-mail: const@stella.ioffe.ru
Received January 13, 2005

Abstract—A theory of weak localization in two-dimensional semiconductor structures and metal films is
developed for spin relaxation by the Elliott–Yafet mechanism. The theory is valid in the entire range of classi-
cally weak magnetic fields. It is shown that effects due to spin-orbit interaction substantially modify magne-
toresistance in both diffusive and ballistic regimes. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Weak localization is caused by interference of two
electron waves that are scattered by various impurity
configurations and propagate in opposite directions
along the same closed trajectory [1]. The most pro-
nounced weak localization is observed when phase
coherence is destroyed in classically weak magnetic
fields. Moreover, dephasing may be caused by spin
relaxation, phase relaxation, intersubband transitions,
and other factors. The corresponding carrier relaxation
times can be determined experimentally.

In the absence of magnetic field, when the dephas-
ing time is much longer than the momentum relaxation
time, the negative contribution to conductivity is due to
all possible closed trajectories. In nonzero magnetic
field, interference is effectively destroyed in the diffu-
sive regime when magnetic length is much larger than
mean free path and electron motion along a closed tra-
jectory involves many scattering events. Since dephas-
ing may also be due to spin relaxation, correct descrip-
tion of weak localization in real structures requires
characterization of effects due to spin relaxation. To
date, the role played by these effects has been well stud-
ied for all mechanisms of spin relaxation in semicon-
ductors and metals.

As magnetic length becomes comparable to the
mean free path with increasing magnetic field strength,
interference tends to break down even for trajectories
with relatively few scatterers, and the corresponding
carrier motion cannot be treated in diffusion approxi-
mation. In a number of studies, spin relaxation effects
in the ballistic (nondiffusive) regime were described in
phenomenological models without taking into account
microscopic mechanisms [2, 3]. The key mechanisms
responsible for spin relaxation in semiconductors and
metals are the Elliott–Yafet and Dyakonov–Perel
mechanisms. The former is associated with spin-flip
transitions due to electron scattering by impurities and
1063-7761/05/10104- $26.000699
phonons. The latter is observed only in crystals without
inversion symmetry and is associated with odd terms in
the Hamiltonian that determines the spectrum of elec-
trons or holes in a semiconductor. The analysis of spin
relaxation dominated by the Dyakonov–Perel mecha-
nism presented in [4] exposed the contribution of spin-
orbit interaction to the quantum correction to conduc-
tivity. The experimental studies presented in [5–7] were
focused on anomalous magnetoresistance in classically
weak magnetic fields, when magnetic length is compa-
rable to mean free path and spin relaxation is due to
elastic scattering by impurities. It was shown in those
studies that spin-flip scattering plays a dominant role in
InSb-based structures at low temperatures (see also [8]).
However, its contribution to magnetoresistance in the
ballistic regime has never been analyzed theoretically.

When spin-orbit interaction is weak, the contribu-
tion of the Elliott–Yafet spin relaxation mechanism to
dephasing must decrease with trajectory length or con-
centration of scatterers. Accordingly, the effects due to
the Elliott–Yafet spin relaxation mechanism are weaker
in the ballistic regime of weak localization as compared
to the diffusive regime. However, it was found that the
contribution of spin relaxation is significant even
beyond the scope of diffusion approximation [9].

In this paper, we develop a theory of weak localiza-
tion in two-dimensional semiconductor-based struc-
tures and metal films. The theory is valid in the entire
range of classically weak magnetic fields when the
Elliott–Yafet mechanism plays a dominant role in spin
relaxation.

2. WEAK LOCALIZATION
IN ZERO MAGNETIC FIELD

We consider the effect of weak localization on the
static conductivity of a two-dimensional system in both
zero and nonzero transverse magnetic fields. We
assume that the characteristics of the electron gas are
 © 2005 Pleiades Publishing, Inc.
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uch that the system behaves as a good conductor:
Fτ0 @ 1 (εF is the Fermi energy, τ0 is the quantum
elaxation time), both phase relaxation time τφ and spin
elaxation time τs are much larger than τ0, and scatter-
ng is due to short-range interaction.

Our calculations are performed by using a zero-tem-
erature diagrammatic technique. In this approach, the
normal” (Drude) conductivity corresponds to the sum
f loop diagrams with nonintersecting internal lines. It
as shown in [10] that only impurity-averaged dia-
rams of the two types illustrated by Figs. 1 and 2 sub-
tantially contribute to anomalous conductivity. The
nner part of these diagrams is called the Cooperon
ropagator. Accordingly, the conductivity is deter-
ined by calculating the Cooperon and using the result

n summing the diagrams of both types.

To express the conductivity in terms of impurity-
veraged Green functions, we must calculate the corre-
ator of the matrix elements for electron scattering by
mpurities. In [11], expressions for the matrix elements
αβ of an impurity quantum-well potential were
btained in the case when only one size-quantized sub-
and is occupied and carriers are described by the Kane
odel (the Fermi energy of two-dimensional electron

as is much smaller than the bandgap width). For a
hort-range potential, we have

Vαβ k k' a,( ) δαβ
πaz

λ
-------- A2 2B2+( )+sin

2





=

–k
α β

–k'

–k'–k α β

Fig. 1. Diagram representing the dominant contribution to
anomalous conductivity ∆σa in the diffusive regime. The
Cooperon is represented by the hatched area. Greek letters
denote spin indices.

–k –k'
βα

βα
–k'–k

γδ
g

Fig. 2. Diagram representing the weak-localization correc-
tion to conductivity in the ballistic regime: g is the trans-
ferred momentum in correlator (5); k and k' are the
momenta in the propagators meeting at the diagram’s
vertices.
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(1)

where k and k' denote, respectively, the two-dimen-
sional wavevectors of the incident and scattered parti-
cles in the quantum-well plane xy; A and B are Kane’s
coefficients (assumed to be small in the case of weak
spin-orbit interaction); a is the three-dimensional posi-
tion vector of the scattering impurity; V0 is the intensity
of a δ potential; and λ is the quantum-well width.

The expression for the required correlator obtained
by averaging over impurity position vectors is [12]

(2)

where

k, q and k', q' correspond to initial and final momenta,
respectively; n is the two-dimensional carrier concen-

tration. When spin-orbit interaction is weak, both c

and cx  are small (kF is the Fermi momentum).
Accordingly, further calculations are performed up to

first-order terms in c  and cx . It is clear from the
expression for the correlator that the constants cx and c
correspond to scattering with and without spin flip,
respectively.

In the diffusion approximation [1, 12], the calcula-
tion of the term proportional to c in the expression for
the correlator reduces to the replacement of τ0 with
transport time. Since the contribution corresponding to
c can also be taken into account by replacing τ0 with
transport time when the ballistic regime is considered

× π2

λ2
----- k k'⋅( )

πaz

λ
--------sin

2
+ 

 

+  2 B B 
2 + ( ) π

 
2

 λ ------ s αβ k k '+ ( )×[ ] z 
2

 
π

 
a

 
z λ ----------- 




 sin 
2

× 2
λ
---V0 i k k'–( )aρ–[ ] ,exp

Wαβγκ k k' q q',( )

=  W δαβδγκ 1 c k k'⋅ q q'⋅+( )+[ ]{
+ cx sαβ k k'+( )×[ ] z sγκ q q'+( )×[ ] z }

× δ2 k' q' k q––+( ),

W 2π( )2n
2V0

λ
--------- 

 
2 3

8
---λ λ 2 A2 2B2+( )π

2

λ2
-----+





=

+ λ A2 2B2+( )π
2

λ2
-----

2





1–

,

c A2 2B2, cx+
π2

3λ2
-------- 2AB B2+( )2

,= =

kF
2

kF
2

kF
2 kF

2
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–k, α –k', β

Q + k, γ Q + k', δ Q + k, γ Q + k', δ

–k, α –k', β –k, α –k', β

Q + k, γ Q + k', δ

–g, i

Q + g, i

Fig. 3. Cooperon equation in momentum representation.
for small cx  and c , the constant c is omitted here
to simplify calculations.

The Dyson equation for the impurity-averaged
Green function Gαβ(p, ω) is

(3)

where (p, ω) is the single-particle Green function
in the absence of impurities (summation over repeated
spin indices is performed).

Since the correlator is symmetric with respect to
spin indices, it can be shown that the solution to Eq. (3)
in the Born approximation is proportional to the iden-
tity matrix:

(4)

The total dephasing time τ contained in (4) is deter-
mined by parameters of the correlator:

where τ0 = (2π)2/mW is the momentum relaxation time

and τs = τ0/2cx  is the relaxation time for the z-projec-
tion of spin in the Elliott–Yafet mechanism (m is the
particle mass).

Henceforth, we denote the contributions to anoma-
lous conductivity represented by the diagrams in
Figs. 1 and 2 by ∆σa and by ∆σb, respectively. It can be
shown that all diagrams similar in order to these, but
having different form, cancel out when the spin-orbit

kF
2 kF

2

Gαβ p ω,( ) Gαβ
0 p ω,( )=

+ Gαγ
0 p ω,( )Gκη q ω,( )Gξβ p ω,( )∫

× W

2π( )4
------------- δγκδηξ 1 2cp+ q⋅( ){

+ cx sγκ p q+( )×[ ] z sηξ p q+( )×[ ] z } dq,

Gαβ
0

Gαβ p ω,( ) G p ω,( )δαβ,=

G p ω,( ) ω ξ p( )– i ω( )sgn
2τ

--------------------+
1–

.=

1
τ
--- 1

τ0
----

1
τ s
----,+=

pF
2
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effects are described by correlator (2), as they do in the
absence of spin-orbit interaction according to [10].

The corresponding expressions are

(5)

where GA(p) ≡ G(p, ω = –0) and GR(p) ≡ G(p, ω = +0)
denote advanced and retarded Green functions, respec-
tively, and Γαβγκ(k, k', Q) represents the Cooperon. Since
photon momenta are assumed to be small, the contribu-
tions of vertices reduce to products of k with k'.

The diagram shown in Fig. 3 represents the Coop-
eron equation

(6)

Since Eq. (6) contains the product GA(–g)GR(Q + g),
the dominant contribution to the integral corresponds to
the neighborhood of the Fermi surface. Since the loop
diagrams in Figs. 1 and 2 contain propagators meeting
at the vertices, the dominant contribution to conductiv-
ity corresponds to momenta k and k' of the Cooperon
Γαβγκ(k, k', Q) lying on the Fermi surface and |Q | is
small as compared to the Fermi momentum kF. There-

∆σa
e2

"

2πm2
------------- k k'⋅( )GA k( )GR k( )GA k'( )∫=

× GR k'( )Γαββα k– k'– k, , k'+( )dkdk',

∆σb
e2

"

2πm2
------------- k k'⋅( )GA k( )GR k( )GA k'( )∫=

× GR k'( )GA k g–( )GA k' g–( )

× Wαιοβ k k g– k' g k'–,( )

× Γιοβα k g– k', g– k k'+, g–( )dkdk'dg,

Γαβγκ k k' Q, ,( )

=  Wαβγκ –k Q k+ –k' Q k'+,( )

+ Wαιγο k Q k+ g Q g+,( )∫
× GA g–( )GR Q g+( )Γ ιβοκ g k' Q, ,( )dg.
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fore, Eq. (6) can be solved by assuming that |k | ≈ |k' | ≈
|g | ≈ kF and dropping Q in the arguments of the corre-
lator.

Equation (6) is equivalent to 16 independent scalar
equations. Their number is reduced by using the
relation

where  and α correspond to opposite spin orienta-
tions. Since

the complex conjugate of Eq. (6) has a similar form
with Γαβγκ(k, k', Q) replaced by (k, k', Q)*.
Therefore,

(7)

Conductivity can be evaluated without calculating

all components of . Since the vertices of the diagram
shown in Fig. 1 are not associated with spin-flip transi-
tions, the diagram contains only the Cooperon compo-
nents having the form Γαββα . The expression for the
correlator can be used to show that the following com-
ponents are also required to calculate the diagram
shown in Fig. 2:

Γ–+–+, Γ+–+–, Γ++––, Γ––++.

Thus, in view of relation (7), only four components are
required to calculate conductivity:

Γ++++, Γ–++–, Γ––++, Γ+–+–.

To solve Eq. (6), we introduce the angle coordinates
φ, φ', and ψ corresponding to the vectors k, k', and Q,
respectively. The integral of Eq. (6) over the magnitude
of g yields equations for the Cooperon components
enumerated above:

(8)

Wαβγκ k q' k' q',( )[ ] *

=  Wαβγ κ k q k' q',( ),

α

GA g–( )GR Q g+( )[ ] * GA g–( )GR g Q–( ),≈

Γαβγ κ

Γαβγκ k k' Q–, ,( )* Γαβγ κ k k' Q, ,( ).=

Γ̂

Γ++++ φ φ' ψ Q, , ,( ) W
τ

2πτ0
----------- 1

1 i QkFτ /m( ) θcos–
-----------------------------------------------

0

2π

∫+=

× Γ++++ ψ θ+ φ' ψ Q, , ,( )dθ

+
τ

4πτs
----------- iφ–( )exp i θ ψ+( )–( )exp+[ ] 2

1 i QkFτ /m( ) θcos–
--------------------------------------------------------------------------

0

2π

∫
× Γ–+–+ ψ θ+ φ' ψ Q, , ,( )dθ,

Γ–+–+ φ φ' ψ Q, , ,( ) WcxkF
2 iφ( )exp iφ'( )exp+[ ] 2=

+
τ

2πτ0
----------- 1

1 i QkFτ /m( ) θcos–
----------------------------------------------Γ–+–+ ψ θ+ φ' ψ Q, , ,( ) θd

0

2π

∫
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(9)

Thus, we have independent systems (8) and (9) for
Γ++++, Γ–+–+ and Γ–++–, Γ++––, respectively, where θ is
the angle between g and Q.

In the absence of spin-orbit interaction (cx = 0), the
latter equations in systems (8) and (9) reduce to homo-
geneous equations, Γ–+–+ and Γ–++– vanish, and the
remaining equations for Γ++++ and Γ++–– determine the
Cooperon propagator [10]. The present analysis is com-
plicated by the dependence of the Cooperon propagator
on φ, φ', and θ.

To solve systems (8) and (9), we represent the Coop-
eron as an expansion in the harmonics of φ:

(10)

where n is the harmonic number.
It is clear from the right-hand sides in (8) that only

the harmonics exp(–2iφ), exp(–iφ), and 1 are contained
in Γ++++(φ, φ', ψ, Q), while only exp(2iφ), exp(iφ), and
1 are contained in Γ–+–+. Thus, the series in (10) are
finite sums, and (8) and (9) reduce to exactly solvable
systems of eight linear algebraic equations. Moreover,
since expressions (1) and (2) are valid only to the low-
est order in spin-orbit coupling, systems (8) and (9) can
be solved in the first approximation with respect to τ/τs
and τ/τφ.

It follows from Eq. (8) that Γ–+–+ is on the order of
(τ/τs)Γ++++. Therefore, Γ++++ can be found by dropping
the term containing Γ–+–+ in the former equation in (8).

+
τ

4πτs
----------- iφ( )exp i θ ψ+( )( )exp+[ ] 2

1 i QkFτ /m( ) θcos–
-------------------------------------------------------------------

0

2π

∫
× Γ++++ ψ θ+ φ' ψ Q, , ,( )dθ,

Γ++–– φ φ' ψ Q, , ,( ) W
τ

2πτ0
----------- 1

1 i QkFτ /m( ) θcos–
-----------------------------------------------

0

2π

∫+=

× Γ++–– ψ θ+ φ' ψ Q, , ,( )dθ

–
τ

4πτs
----------- 2 2 φ ψ– θ–( )cos+

1 i QkFτ /m( ) θcos–
------------------------------------------------Γ–++– ψ θ φ' ψ Q, , ,+( ) θ,d

0

2π

∫
Γ–++– φ φ' ψ Q, , ,( ) 2WcxkF

2 1 φ φ'–( )cos+[ ]–=

+
τ

2πτ0
----------- 1

1 i QkFτ /m( ) θcos–
-----------------------------------------------Γ–++– ψ θ+ φ' ψ Q, , ,( ) θd

0

2π

∫

–
τ

4πτs
----------- 2 2 φ ψ– θ–( )cos+

1 i QkFτ /m( ) θcos–
------------------------------------------------Γ++–– ψ θ+ φ' ψ Q, , ,( ) θ.d

0

2π

∫

Γαβγκ φ φ' Q, ,( ) inφ( )Γαβγκ
n φ' Q,( ),exp

n

∑=
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Analogously, the term containing Γ–++– is dropped
in the former equation in (9), and the resulting equation
for Γ++–– is similar to the simplified former equation for
Γ++++ in (8). This equation is independent of angles;
i.e., it is analogous to the Cooperon equation for the
ballistic regime in the absence of spin-orbit interaction.
The final solution is

where the functions Zn depend on |Q |:

To find Γ–++–, we substitute the expression for Γ++––
into the latter equation in (9) and use expansion (10). As
a result, we obtain a rank 3 system of linear equations
for harmonic coefficients.

The final expression for Γ–++– calculated up to terms
of order τ/τs is

(11)

where e is the unit vector parallel to Q. Since Z0 ~ 1 and
Z1(Q) ~ Q in the diffusive regime, the terms in (11) that
contain Z1 can be neglected and an expression similar to
that found in [13] is obtained.

The remaining component Γ–+–+ can be neglected,
because it is on the order of (τ/τs)Γ++++ and its contri-
bution to (2) is multiplied by τ/τs .

Γ++++ k k' Q, ,( ) Γ++–– k k' Q, ,( ) W
1 Z0τ /τ0–
------------------------,= =

Zn
1

2π
------ θcos

n

1 τ /τφ iQkFτ /m( ) θcos–+
--------------------------------------------------------------- θ.d

0

2π

∫=

Γ–++– k k' Q, ,( ) W
2
----- 1

1 Z0τ /τ0– Z0τ /τ s+
----------------------------------------------





=

× 1
2Z1

2τ /τ s

1 Z0τ /τ0– Z0τ /τ s+
----------------------------------------------–

–
τ
τ s
---- 2

k k'+( ) e⋅
kF

-------------------------Z1
τ

2τ s
-------–

–
1

1 Z0τ /τ0– Z0τ /τ s–
----------------------------------------------

× 1
2Z1

2τ /τ s

1 Z0τ /τ0– Z0τ /τ s–
----------------------------------------------

τ
τ s
----+ +

+ 2
k k'+( ) e⋅

kF
-------------------------Z1

τ
2τ s
------- 2

τ
τ s
----





,+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
When the magnitude of Q is small, the expressions
for Γ++++ and Γ–++– reduce to those found in [13]. When
it is large, we obtain

(12)

The final expression for the anomalous contribution
calculated by taking into account the contributions of
spin-orbit interaction to the vertices of the diagrams in
Figs. 1 and 2 is the sum of ∆σa and ∆σb:

(13)

Since this result is obtained by performing calcula-
tions up to τ/τs . As τs   ∞, it reduces to the expres-
sion for the conductivity of a two-dimensional structure
obtained in [10] without using the diffusion approxima-
tion up to a factor of order τ/τφ.

In the limit of τ/τφ @ 1, expression (13) yields the
result obtained in [13] with

3. MAGNETORESISTANCE

The impurity-averaged Green function correspond-
ing to classically weak magnetic fields can be repre-
sented as follows [14]:

(14)

where GR, A(r) is the impurity-averaged Green function
for zero magnetic field. The phase factor is expressed as

where lB =  is magnetic length. It is assumed
here that H is parallel to the z axis and A = eyHzx .

The change from momentum to coordinate repre-
sentation is performed by replacing k with the corre-
sponding gradients. As a result, we have to deal with a

Γ++++ k k' Q, ,( ) W 1
1

DτQ
---------------- 1 τ

τ s
----– 

 + ,=

Γ–++– k k' Q, ,( ) 2
W

DτQ
---------------- τ

τ s
----.–=

∆σ e2

2π2
"

------------
1 τφ/τ+
1 τφ/τ s+
-------------------- 

  1 τ
2τφ
--------

11
2
------ τ

τ s
----+ +ln





–=

–
1
2
--- 1

2τφ

τ s
--------+ 

 ln 2ln–




.

1/τ s
x 1/τ s

z 1/τ so
z 0,= = =

τ /τ so
x cxkF

2 τ /2τ s.= =

GH
R A, r r',( )

=  
i

2lB
2

------- x x'–( ) y y'+( ) GR A, r r',( )exp

=  iΦ r r',( )[ ] GR A, r r'–( ),exp

Φ r r',( ) x x'–( ) y y'+( )
2lB

2
-----------------------------------,=

mc/eH
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much more complicated problem as compared to the
case when spin-orbit interaction is absent and the corr-
elator is a function of coordinates only. However, since
the angle dependence of the correlator is insignificant
in the diffusion approximation (see above), the Coop-
eron can be calculated by using the correlator averaged
over the angles associated with its arguments. The
averaged correlator matrix is independent of momenta,
and its coordinate representation is a function, not an
operator.

Accordingly, the correlator allowing for spin-orbit
effects beyond the scope of the diffusion approximation
is written in coordinate representation as an operator
containing spatial derivatives. For this reason, we use
the diagram shown in Fig. 4 instead of the correlator.
The corresponding expression (obtained as the inverse
Fourier transform of its momentum representation) has
the form

(15)

Since kF is much larger than 1/lB in classically weak
magnetic fields, the gradients of Green functions (14)

D δ r1 r1'–( )δ r2 r2'–( )δ r1 r2–( )∫=

× W0 δαβδγδ 1 c i—r1
i–( )—r2

i—r1'
i–( )—r2'

+( )+[ ]{

+ cx sαβ i—r1
i—r2

–( )×[ ] z sγδ i—r1'
i—r2'

–( )×[ ] z }

× GH
A ri r1,( )GH

A r2 rg,( )GH
R r2' rh,( )

× GH
R r f r1',( )dr1dr1' dr2dr2' .

i

f

g

h

1, α 2, β

2, δ1, γ

Fig. 4. The simplest diagram representing the correlator in
coordinate representation.
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can be calculated by treating the phase Φ(r, r') as inde-
pendent of the coordinates. Then,

(16)

where eij ≡ (ri – rj)/|ri – rj |.
As a result, the diagram in Fig. 4 is expressed as

(17)

It is clear now that the coordinate representation of the
correlator depends on the directions from points 1 and
2 to points i, f, g, and h and does not contain any deriv-
atives.

The coordinate representation corresponding to the
momentum representation in Fig. 3 must contain tad-
pole diagrams, since the differentiation operators in
both correlator and Cooperon must be replaced with
unit vectors of the directions (see Fig. 5). After replac-
ing the differentiation operators in the Cooperon with
unit vectors, we can remove these propagators. The

—r1
GH

R A, r1 r2,( )

=  —r1
iΦ r1 r2,( )( )GR A, r1 r2–( )exp[ ]

≈ iΦ r1 r2,( )∇ r1
GR A, r1 r2–( )[ ]exp

=  ikFe12GH
R A, r1 r2,( ),±

—r2
GH

R A, r1 r2,( ) ikFe21GH
R A, r1 r2,( ),±≈

D δ r1 r2–( )∫=

× W0 δαβδγδ 1 ckF
2 ei1eg1 e f 1eh1+[ ]–( ){

– cxkF
2 sαβ ei1 eg1–( )×[ ] z sγδ e f 1 eh1–( )×[ ] z }

GH
A ri r1,( )GH

A r2 rg,( )GH
R r2' rh,( )×

× GH
R r f r1',( )dr1dr2.
i

f

g

h

1, α 2, β

2, δ1, γ

i

f

g

h2, δ1, γ

1, α 2, β i

f

1, α

1, γ

2, β

2, δ

3, κ

3, ο

Fig. 5. Coordinate representation of the Cooperon equation in the presence of spin-orbit interaction.
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resulting equation for Γ is

(18)

where (r1, r2) corresponds to the extreme left dia-
gram in Fig. 5 (Cooperon) with tadpoles removed from

points i, f, g, and h; (r3, r2) is its analog corre-
sponding to the extreme right diagram in Fig. 5. Here,
the superscripts correspond to the legs of the removed
propagators, and the subscripts are spin indices. Thus,

the Cooperon (r1, r2) is a coordinate representa-
tion analogous to the Cooperon Γαβγδ(k, k') in the
momentum representation, and Eq. (18) is similar to
Eq. (6).

It is obvious that the solution (r1, r2) to
Eq. (18) must depend on the unit vectors ei1, ef1, e2g, ,
and e2h rather than on the exact locations of points i, f,
g, and h, respectively.

By analogy with the calculation of conductivity in
momentum representation discussed above, both loop
diagrams can be calculated by using only the Cooperon
components with an even number of positive (or nega-
tive) spin indices:

As in calculating the Cooperon in the momentum
representation, its complex conjugate can be combined
with the relation

to show that

Therefore, conductivity can be found by calculating
only

Changing from the unit vectors ei1, ef1, e2g, e2h , and e13
to the corresponding angles φ, φ', ψ, ψ', and θ, we

Γαβγδ
ifgh r1 r2,( )

=  W0 δαβδγδ cxkF
2 sαβ ei1 e2g+( )×[ ] z–{

× sγδ e f 1 e2h+( )×[ ] z }δ r1 r2–( )

+ W0 δακ δγο cxkF
2 sακ ei1 e13+( )×[ ] z–{∫

× sγο e f 1 e13+( )×[ ] z }

× GH
A r3 r1,( )GH

R r3 r1,( )Γκβοδ
33gh r3 r2,( )dr3,

Γαβγδ
ifgh

Γκβοδ
33gh

Γαβγδ
ifgh

Γαβγδ
ifgh

Γ––––
ifgh r1 r2,( ) Γ++++

ifgh r1 r2,( ) Γ–++–
ifgh r1 r2,( ),, ,

Γ+––+
ifgh r1 r2,( ) Γ–+–+

ifgh r1 r2,( ) Γ+–+–
ifgh r1 r2,( ),, ,

Γ++––
ifgh r1 r2,( ) Γ––++

ifgh r1 r2,( ).,

GH
A r1 r2,( )GH

R r1 r2,( )[ ] * GH
A r2 r1,( )GH

R r2 r1,( ),=

Γαβγ δ
ifgh r1 r2,( )[ ] * Γαβγδ

ifgh r2 r1,( ).=

Γ++++
ifgh r1 r2,( ) Γ–++–

ifgh r1 r2,( ),,

Γ+–+–
ifgh r1 r2,( ) Γ––++

ifgh r1 r2,( ).,
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rewrite Eq. (18) as

(19)

where

and Wαβγδ(r1, φ, φ', ψ, ψ') is expressed as

with σi denoting the ith Pauli matrix.
Equation (19) can be solved by the method applied

to systems (8) and (9) if the solution is represented as
the series expansion of the Cooperon in harmonics of
the third and fourth arguments. However, we note that
the arguments of Γαβγδ on its right-hand side span only
the subspace (r1, r2, φ, φ', ψ, ψ') of the space (r1, r2, φ,
φ' ≡ φ, ψ, ψ'). Therefore, we can calculate only Γαβγδ(r1,
r2, φ, φ' ≡ φ, ψ, ψ'), which is much easier to do because
we can use the expansion of the Cooperon in the har-
monics of one argument only. Once Γαβγδ is found in the
subspace of arguments, Γαβγδ is easily determined in the
entire space by substituting the calculated Γαβγδ(r1, r2,
φ, φ, ψ, ψ') into the right-hand side of Eq. (19). Accord-
ingly, we begin with solving the equation for Γαβγδ(r1,
r2, φ, φ', ψ, ψ').

By analogy with Eq. (6) for the Cooperon in the
momentum representation, this equation is equivalent
to several independent systems of rank 2 equations.
Conductivity can be calculated by solving only two: the
system for Γ++++ and Γ+–+– and the system for Γ++–– and
Γ–++–.

Applying the method used to solve systems (8) and
(9), we represent Γαβγδ(r1, r2, φ, φ, ψ, ψ') as a series
expansion in the harmonics of φ. As in the momentum
representation, the Cooperon contains a limited number
of harmonics. As a result of this substitution, we obtain
equations for individual harmonics whose kernels con-
sist of terms of the form

with different f(ψ, ψ').
In the method for solving Eq. (19) in the case of

cx = 0 proposed in [14], both the kernel of the integral

Γαβγδ r1 r2 φ φ' ψ ψ', , , , ,( )

=  Wαβγδ r1 φ φ' ψ ψ', , , ,( )δ r1 r2–( )

+ Wαοκδ r1 φ φ' θ θ, , , ,( )GH
A r3 r1,( )GH

R r3 r1,( )∫
× Γκβοδ r3 r2 θ θ ψ ψ', , , , ,( )dr3,

Γαβγδ r1 r2 φ φ' ψ ψ', , , , ,( ) Γαβγδ
ifgh r1 r2,( ),=

Wαβγδ r1 φ φ' ψ ψ', , , ,( ) W0 δαβδγδ{=

– cxkF
2 σαβ

x φsin ψsin+( ) σαβ
y φcos ψcos+( )–[ ]

× σγδ
x φ'sin ψ'sin+( ) σγδ

y φ'cos ψ'cos+( )–[ ] } ,

iθ( )GH
A r3 r1,( )GH

R r3 r1,( ) f ψ ψ',( ),exp
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Cooperon equation and its solution were represented as
series expansions in products of wavefunctions of a
particle with charge 2e moving in uniform magnetic
field. Since angle dependence vanishes in the absence
of spin-orbit interaction, the kernel of the integral equa-
tion for Γαβγδ(r1, r2, φ, φ, ψ, ψ') can be represented as

where GN are coefficients and ΨN, χ(r) is the wavefunc-
tion of a particle with charge –2|e | and electron mass m
in magnetic field parallel to the z axis. Since the abso-
lute term can also be represented as

the solution to the equation in the absence of spin-orbit
coupling has a simple form in the basis of functions
ΨM, χ(r2) (r1):

However, the kernel of the equation for Γαβγδ(r1, r2, φ,
φ', ψ, ψ') taking into account spin-orbit interaction con-
tains harmonics of the angle coordinate θ of the vector
r1 – r3. Accordingly, the expansion of the kernel in

GH
A r3 r1,( )GH

R r3 r1,( ) GNΨN χ, r3( )ΨN χ,* r1( ),
N χ,
∑=

W0δαβδγδδ r1 r2–( ) W0δαβδγδ ΨN χ, r2( )ΨN χ,* r1( ),
N χ,
∑=

ΨN χ,*

Γαβγδ r1 r2,( )

=  W0δαβδγδ
1

1 W0GN–
------------------------ΨN χ, r2( )ΨN χ,* r1( ).

N χ,
∑
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Fig. 6. Anomalous conductivity as a function of the normal-

ized magnetic field strength H/HD =  (HD is the mag-
netic field strength corresponding to magnetic length equal
to l) for several values of τ/τs and τ/τφ = 0.02.

l
2
/lB

2
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terms of ΨM, χ(r2) (r1) involves minor diagonals,
because

where

Nevertheless, since the correlator contains only a
finite number of harmonics of φ and φ', the ensuing sys-
tems of linear equations for the coefficients in the
expansions of the Cooperon components Γ++++, Γ+–+–,
Γ–++–, and Γ++–– in terms of the first angle argument
and ΨM, χ(r2) (r1),

split into an infinite number of rank 6 systems, which
can be solved by a standard method. In particular, the
system of equations for Γ++++ and Γ+–+– s splits into
systems relating the components Γ++++(M, N, L, ψ, ψ')
and Γ+–+–(M, N, L, ψ, ψ') with L = –1, 0, and 1. Analo-
gous systems are obtained for Γ–++– and Γ++––.

The resulting Γαβγδ(r1, r2, φ, φ, ψ, ψ') is substituted
into the right-hand side of Eq. (19) to find Γαβγδ(r1, r2,

φ, φ, ψ, ψ'). The corresponding components ,

, , and  can be found by using the
analogous components Γαβγδ(r1, r2, φ, φ, ψ, ψ').

The resulting expressions in terms of  for the dia-
grams shown in Figs. 1 and 2 are simple series expan-
sions, but their terms have a very complicated form. For
this reason, we present here only the conductivity cal-
culated by numerical summation of these series.

4. RESULTS AND DISCUSSION

Figure 6 shows the quantum correction to conduc-
tivity calculated as a function of magnetic field strength
for τ/τφ = 0.02 and several values of τ/τs . The figure
demonstrates that spin-orbit interaction reduces the
absolute value of the anomalous contribution to magne-

ΨN χ,*

iθ( )GH
A r3 r1,( )GH

R r3 r1,( )exp

=  1–( ) n n+( )/2RN n n+( )/2+
n ΨN n+ χ, r2( )ΨN χ,* r1( ),

N χ,
∑

RN
n m2

kF N!/ N n–( )!
--------------------------------------=

× r2

2lB
2

-------– r
l
--–

 
 
 

LN n–
n r2

lB
2

----
 
 
  r

lB

---- 
  n

exp r.d

0

∞

∫

ΨN χ,*

Γαβγδ r1 r2 φ φ ψ ψ', , , , ,( )

=  Γαβγδ M N L ψ ψ', , , ,( )
M N L χ, , ,
∑

× iLφ( )ΨM χ, r2( )ΨN χ,* r1( ),exp

Γ++++
ifgh
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ifgh Γ+–+–

ifgh Γ––++
ifgh

RN
n
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toresistance and plays a significant role in both weak
and strong magnetic fields (when lB > l and lB < l,
respectively). When τs < τφ, the correction to conductiv-
ity is a nonmonotonic function of magnetic field
strength having a shallow minimum. When τs > τφ, it is
a monotonic function qualitatively similar to that
obtained in the absence of spin-orbit interaction.

The model developed here can be used to determine
behavior of the anomalous contribution to magnetore-
sistance both in weak and relatively strong magnetic
fields (when diffusion approximation is inapplicable).
Qualitative understanding of behavior in strong fields
(when lB ! l) can be gained by calculating ∆σa and ∆σb
as given by expressions (5) with integrals taken only
over the regions where the third argument of the Coop-
eron exceeds 1/lB . The resulting asymptotic formulas
can be used to evaluate the spin-orbit correction to con-
ductivity in relatively strong fields:

(20)

We see that the leading-order weak-localization

contribution to conductivity is on the order of 1/ ,
and the contribution due to spin-orbit interaction is on

the order of τ/(τs ), i.e., the latter effect is weaker as
compared to that predicted for weak fields [13]. Thus,
an increase in trajectory length and impurity concentra-
tion does reduce the effects due to the Elliott–Yafet spin
relaxation mechanism. However, the results of accurate
calculations presented in Fig. 6 demonstrate that the
effect of spin-orbit interaction due to scattering by
impurities is still significant in fields for which lB ≈ l
and must manifest itself in experiments.

CONCLUSIONS

We have analyzed weak localization in the entire
range of classically weak magnetic fields for spin relax-
ation by the Elliott–Yafet mechanism. The anisotropic
correlator used in the present analysis reflects the
effects of both spin-orbit interaction and spin relaxation
in two-dimensional structures. The theory developed
here describes the variation of the contribution to
anomalous magnetoresistance due to the Elliott–Yafet
spin relaxation mechanism with increasing magnetic
field strength.

The dependence of spin relaxation time on both
Fermi momentum and band structure predicted by the

σa σb, 1 3τ
τ s
-----– 

  1
lB

----.∝

H

H
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proposed model can be used to determine the effect of
the mean occupation on the quantum correction to mag-
netoresistance. Calculations of anomalous magnetore-
sistance demonstrate that spin-relaxation effects are
significant in both strong and weak fields.
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Abstract—A theory describing the photoexcited current peaks in the spectral region corresponding to the ener-
gies of longitudinal optical phonons in semiconductors doped with shallow donors is developed. The expe-
rimental data available for n-GaAs are in good agreement with the results obtained using the proposed theory.
© 2005 Pleiades Publishing, Inc. 
I. INTRODUCTION

Let us consider the absorption of light by electrons
in a semiconductor doped with shallow donors in the
case of photon energies in the vicinity of the longitudi-
nal optical (LO) phonon energy. The sample tempera-
ture will be assumed sufficiently low to provide that all
impurity electrons are in the ground state of the donor
centers. In this case, the light quantum can be absorbed
in two ways (Fig. 1): first, with a direct electron transi-
tion from the donor ground state to the continuum, and
second, with the transition into any intermediate state
followed by LO phonon emission. It should be noted
that the initial and final electron states in the second
case are the same and are localized at the donor atoms.
The total energy of the final state of the electron–
phonon system is equal to the energy of the electron
state in the continuum upon a transition of the first type.
Therefore, the situation in the second case corresponds
to the Fano resonance [1]. Indeed, an electron can
absorb a light quantum and pass to a new state either in
the continuum or in the discrete spectrum with the same
energy. The interference of these transitions can lead to
the appearance of asymmetric peaks in the optical
absorption spectrum. In what follows, these absorption
peaks will be referred to as Fano resonances. Spectral
features, which were later called Fano resonances, had
been originally observed in silicon doped with accep-
tors [2] and reported three years before the paper by
Fano [1] was published.

The nature of Fano resonances was qualitatively
explained in [3–5], but no quantitative theory was pro-
posed at that time because approaches to the descrip-
tion of the states of shallow acceptors in silicon had not
yet been developed. Later, Fano resonances in the
absorption and photoexcited current (photocurrent) spec-
tra were observed for deep donor centers in silicon [6],
and more recently, these resonances were also reported
for the photoconductive response in GaAs and InP
doped with shallow donors [7]. However, to our knowl-
1063-7761/05/10104- $26.000708
edge, no quantitative theory of Fano resonances in
semiconductors doped with shallow donors has been
created until now. Moreover, the observed spectral fea-
tures have been frequently described either in terms of
formulas obtained by Fano [1], which refer to a partic-
ular case of the coinciding phases of matrix elements of
the operator of transitions to the continuum and to a dis-
crete level [5], or in terms of the approximate formulas
obtained in [8] (see, e.g., [7]).

The aim of this study was to develop a quantitative
theory of Fano resonances in the photocurrent spectrum
of a semiconductor doped with shallow hydrogen-like
donors. We have obtained a general expression for cal-

I

II

1

2

3

E
ne

rg
y

Fig. 1. Schematic diagram of the optical transitions for an
electron occurring in the donor ground state I and absorbing
a photon with the energy "ω0: (1) a transition to the contin-
uum; (2, 3) transitions to the resonance state |ϕq〉  via inter-
mediate states in the discrete spectrum and in the contin-
uum, respectively (II is the excited state).
 © 2005 Pleiades Publishing, Inc.
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culating Fano resonances in the absorption and photo-
current spectra, which is applicable to semiconductors
doped both with donors and with acceptors. According
to the proposed theory, formulas presented in [1]
and [8] do not provide adequate description in the gen-
eral case of the phenomenon under consideration. This
circumstance is related to the fact that the phase differ-
ence for the matrix elements of the electron transitions
to the continuum and to a localized state is generally
nonzero. The proposed theory is in good agreement
with experimental data available for GaAs and (with
somewhat less perfect coincidence) for InP.

2. CALCULATION OF THE PROBABILITY
OF ABSORPTION OF A LIGHT QUANTUM

Let us consider the probability of electron transi-
tions per unit time from the donor ground state to the
|ϕq〉  state under the action of light (Fig. 1). In the |ϕq〉
state, the electron again occurs in the donor ground
state, but an LO phonon with wavevector q also
appears. Obviously, a description of this process must
take into account the electron–photon and electron–
phonon interactions to within the second order of per-
turbation theory. Accordingly, the transition from initial
to final state can be subdivided into two stages (see,
e.g., [9]). In the first stage, the electron absorbs a pho-
ton and passes to an intermediate state; in the second
stage, the electron emits an optical phonon and passes
to the donor ground state. Note that the law of energy
conservation is obeyed for the entire process, but not
for each stage separately.

The Hamiltonian of this system can be written as

(1)

where the terms  and  describe the electron–
photon and electron–phonon interactions, respectively;

(2)

is the Hamiltonian of the electron moving in the field of
a donor atom; p is the operator of electron quasi-
momentum; µ is the effective electron mass in the con-
duction band; r is the radius vector of the electron; κ0 is
the low-frequency permittivity of the semiconductor;
and e is the electron charge.

In the dipole approximation, the operator of interac-
tion between the electron and a circularly polarized
electromagnetic wave propagating along the z axis can
be written as

(3)

where A is the amplitude of the electric field vector in
the wave. In expression (3), the first term describes the

H H0 V
ph

V
LO

,+ +=

V
ph

V
LO

H0
p2

2µ
------ e2

rκ0
--------–=

V
ph eA y ix–( )

2
-------------------------e iωt– c.c.,+=
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photon absorption and the second (complex conjugate)
term describes the emission. Since we are interested only
in the first process, the second term in expression (3) will
be not taken into consideration.

The operator of the interaction between the electron
and LO phonon has the following form [10]:

(4)

where V is the crystal volume, q is the wavevector,
ω0 is the circular frequency, 1/  = 1/κ∞ – 1/κ0, κ∞ is the

high-frequency permittivity, and  is the operator of
phonon creation. In expression (4), the first term
describes the phonon absorption and the second (Her-
mitian conjugate) term describes the phonon emission.
Since we are interested only in the first process, the sec-
ond term will be omitted.

Then, taking into account only the processes of
interest, we can write Hamiltonian (1) in a simpler form 

(5)

where Vph and VLO are the first terms in Eqs. (3) and (4),
respectively, without time-dependent exponential
terms.

Using the assumption of adiabatic switching of the
interaction [9] and relations of perturbation theory, we
obtain the following expression for the probability of
electron transition from the donor ground state denoted
|i〉  to the |ϕq〉  state:

(6)

where S is the transition matrix with elements

(7)

Ei is the energy of the donor ground state, and m is the
set of quantum numbers of an intermediate state. All the
intermediate states can be subdivided into two groups
as belonging to the discrete spectrum and the contin-
uum. We will take into account the fact that the elec-
tron–photon interaction operator is proportional to the
spherical function Y1, 1,

(8)

and that the wavefunction of the donor ground state is
isotropic. Therefore, the intermediate state has a unit
angular moment and a unit projection of the moment

V
LO

e
2π"ω0

Vκ
----------------

i
q
--- iqr– iω0t+( )bq

† h.c.,+exp
q

∑=

κ
bq

†

H H0 Vph iωt–( )exp VLO iω0t( ),exp+ +=

Wϕ i
2π
"

------ S 2δ "ω "ω0–( ),=

Sϕ i

ϕq VLO m〈 〉 m Vph i〈 〉
"ω0 Ei Em iλ+–+

----------------------------------------------------, λ 0,
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onto the z axis and, hence, is a p-type state. For this rea-
son, all intermediate states in the continuum can be
characterized only by the energy, and states in the dis-
crete spectrum, only by the principal quantum number n.
Below, we will assume that the energy of the optical
phonon is greater than the energy of ionization of a
shallow donor. Then, expression (7) can be rewritten as

(9)

where |n〉  is the wavefunction (normalized to unity) of
the intermediate state in the discrete spectrum and
|ψ(ε)〉  is the wavefunction in the continuum, which is
normalized as

In these expressions, Eϕ = "ω0 + Ei and “P” in front of
the integral denotes the principal value.

Passing from |n〉  to the new wavefunctions

which also belong to the discrete spectrum but are nor-
malized differently, we can rewrite Eq. (9) so that the
sum and integral will be replaced by a single term hav-
ing a form analogous to the integral in this expression.
However, the integration domain has to be expanded so
as to include the energies of the discrete spectrum. The
new wavefunctions ψ(E) belonging to the discrete
spectrum obey the normalization condition for the
functions of the continuum. In what follows, we use
this compact form in writing and assume that the elec-
tron energy in the continuum is positive, while the elec-
tron energies in the discrete spectrum vary from Ei to
zero. Using this substitution, we can readily take into
account the influence of states in the discrete spectrum
on the interaction between resonance states and states
in the continuum within the framework of the Fano the-
ory [1].

The state |ϕq〉  is a resonance state because its energy
belongs to the continuum and it interacts with states
ψ(ε) of the continuum by means of the electron–
phonon interaction. Thus, the system under consider-
ation is exactly the same as the system considered by
Fano [1, Section 5] for an analysis of the interaction of
several resonance states with states in the continuum.
Accordingly, the exact wavefunction corresponding to
the energy E can be written as (see [1, Eq. (46)])

(10)

Sϕ i

ϕq|VLO|n〈 〉 n|Vph|i〈 〉
"ω0 Ei En–+

--------------------------------------------------
n 2=

∞

∑=

+ P E
ϕq|VLO|ψ E( )〈 〉 ψ E( )|Vph|i〈 〉

"ω0 Ei E–+
----------------------------------------------------------------------d∫

+ iπ ϕq|VLO|ψ E( )〈 〉 ψ Eϕ( )|Vph|i〈 〉 ,

d3r ψ E( )〈 〉 ψ E'( )| 〉∫ δ E E'–( ).=

ψ E( )| 〉 δ E En–( ) n| 〉 ,=

Ψ E( )| 〉 aq E( ) ϕq| 〉 E'b E E',( ) ψ E'( )| 〉 ,d∫+
q

∑=
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where

(11)

(12)

(13)

In deriving relations (11)–(13), we set

because the off-diagonal elements of the Fq, q' matrix
vanish on averaging over the ensemble due to an arbi-
trary phase difference between Vq' and , while the
diagonal elements are inversely proportional to the sys-
tem volume. For this reason, the sum 
in [1, Eq. (49)] can be ignored.

The matrix elements of the operator of optical tran-
sition to the Ψ(E) state can be written as follows:

(14)

Taking into account relations (9), (11), and (12), this
expression can be rewritten as

(15)

Using the explicit expression

(16)

aq E( )
Vq* E( )
E Eϕ–
---------------- ∆ E( )[ ] ,cos–=

b E E',( )
Vq E'( )Vq* E( )
E E'–( ) E Eϕ–( )

---------------------------------------- δ E E'–( )+
q

∑–=

× ∆ E( )[ ] ,cos

∆ E( )[ ]tan π
Vq E( ) 2

E Eϕ–
--------------------,

q

∑–=

Vq* E( ) ϕq|VLO|ψ E( )〈 〉 .=

Fq q', P E'
Vq* E'( )Vq' E'( )

E E'–
----------------------------------d∫≡ 0,=

Vq*

Fq q', E( )aq'q'∑

Ψ E( )|Vph|i〈 〉 aq* E( )Sϕ i

q

∑=

+ E'b* E E',( ) Ψ E'( )|Vph|i〈 〉 .d∫

Ψ E( )|Vph|i〈 〉 ∆ E( )[ ]cos
E Eϕ–

--------------------------–=

× P E'Vq E( )Vq* E'( ) ψ E'( )|Vph|i〈 〉d

Ei

∞

∫



q

∑

× 1
Eϕ E'–
----------------- 1

E E'–
--------------+ 

 

+ iπVq E( )Vq* Eϕ( ) ψ Eϕ( )|Vph|i〈 〉




– ∆ E( )[ ] ψ E( )|Vph|i〈 〉 .cos

∆ E( )[ ]cos
E Eϕ–

E Eϕ–( )2 Γ2 E( )/4+
-----------------------------------------------------,–=
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where

and Γ(Eϕ)/" is the probability of electron transition
from a state in the continuum to the |i〉  state upon spon-
taneous emission of an optical phonon, we eventually
obtain the matrix element (15) in the following form:

(17)

where

Expression (17) is the main result of this investigation.
It should be noted that this formula was obtained with-
out using an explicit form of the Hamiltonian H0.
Therefore, Eq. (17) is also valid for semiconductors
doped with acceptors and for the semiconductors with
an anisotropic law of dispersion in the conduction band.

For an analysis of the behavior of the square of
matrix element (17) in the vicinity of Eϕ , we can put

(18)

Then, the square modulus of matrix element (17) can be
written as

(19)

Γ E( ) 2π Vq E( ) 2,
q

∑=

Ψ E( ) Vph i〈 〉
γ E Eϕ,( ) ψ E( )|V

ph
|i〈 〉

E Eϕ–( )2 Γ2 E( )/4+
-----------------------------------------------------=

× α E( ) iβ E( )
E Eϕ–

γ E Eϕ,( )
---------------------+ + ,

α E( ) P E'Vq E( )Vq* E'( ) ψ E'( )|Vph|i〈 〉d

Ei

∞

∫
q

∑=

× 1
Eϕ E'–
----------------- 1

E E'–
--------------+ 

 

× γ E Eϕ,( ) ψ E( )|Vph|i〈 〉( ) 1–
,

β E( )
ψ Eϕ( )|Vph|i〈 〉
ψ E( )|Vph|i〈 〉

----------------------------------,=

γ E Eϕ,( ) π Vq E( )Vq* Eϕ( ).
q

∑=

α 4 P E 'd

Ei

∞

∫ Vq E( )Vq* E'( ) ψ E '( )|Vph|i〈 〉
q

∑≈

× Eϕ E '–( ) 1– Γ ψ Eϕ( )|Vph|i〈 〉 1–( ),

β E( ) 1, γ E Eϕ,( )
Γ Eϕ( )

2
--------------- Γ

2
---= .≈=

Ψ E( )|Vph|i〈 〉 2 ψ E( )|Vph|i〈 〉 2

1 x2+
------------------------------------- α i x+ + 2≈

=  
ψ E( )|Vph|i〈 〉 2

1 x2+
------------------------------------- α x+( )2 1+[ ] ,
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where x = 2(E – Eϕ)/Γ is the dimensionless energy.
Expression (19) is analogous to the formula

obtained by Fano (see [1, Eq. (21)]) for a single reso-
nance level, which is frequently used for the description
of photocurrent peaks in the vicinity of the optical
phonon energy [5, 6]. Setting in [1, Eq. (21)] the param-
eter q (which is not related to the phonon wavevector)
equal to α + i, one can readily obtain expression (19).

Thus, the probability of absorption of a light quan-
tum is

(20)

3. CALCULATION OF FANO RESONANCES
IN THE PHOTOCURRENT SPECTRUM

FOR A HYDROGEN-LIKE DONOR

Let us calculate the matrix elements 〈ψ(E)|Vph|i〉  and
Vq(E) for a hydrogen-like donor described by Hamilto-
nian (2). Using an expression for the wavefunctions of
a hydrogen atom and passing to the new variables of
length (measured in units of the Bohr radius aB =
"2κ0/µe2) and energy (measured in units of ε0 =

µe4/"2 ) we can write the wavefunction of the donor
ground state as [9]

(21)

The wavefunctions of intermediate states in the dis-
crete spectrum can be expressed as [9]

(22)

and those in the continuum as

(23)

where (2r/n) are the generalized Laguerre polyno-
mials and the integration contour contains the branch-
ing points t = ±1/2.

The matrix elements of the operator of interaction
with electromagnetic radiation can be determined using
the formula for the transitions to states in the discrete

W ω( ) 2π
"

------ E Ψ E( )|Vph|i〈 〉 2δ "ω Ei E–+( )d∫=

=  
2π
"

------ Ψ "ω Ei+( )|Vph|i〈 〉 2
.

κ0
2

i| 〉 R10 r( )Y0 0, 2e r– / 4π.= =

n| 〉 Rn1 r( )Y11 θ ϕ,( ) 2

n2
----- n 2–( )!

n 1+( )![ ] 3
--------------------------e r/n––= =

× 2r
n
-----Ln 1+

3 2r
n
----- 

  Y11 θ ϕ,( ),

ψ E( )| 〉 2

2π 2kr( )2
---------------------- 1 1/k2+

1 e 2π/k––
--------------------- td∫°=

× e2ikrt t
1
2
---+ 

  i/k 2–

t
1
2
---– 

  i/k– 2–

Y11 θ ϕ,( ),

Ln 1+
3
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spectrum given in [11, Eq. (63.4)]. The matrix elements
of transitions to the continuum can be determined using
the method described in the same monograph [11, Para-
graph 71]. The resulting expressions for the matrix ele-
ments of transitions to the discrete spectrum and con-
tinuum are as follows:

(24)

(25)

where k is the electron wavenumber (expressed in units
of the inverse Bohr radius) corresponding to the energy
E. For passing to the dimensional units, Eq. (24) has to

be multiplied by aB, and expression (25), by aB/ .

In order to calculate Vq(E) via relations (4) and (5),
we have to determine the matrix element of the operator
exp(–iq · r). This can be done using expansion of the
exponent in terms of spherical harmonics [9]:

(26)

where jl(x) = Jl + 1/2(x) and Jl + 1/2(x) is the Bessel
function with a half-integer index. In particular, below
we will use the function

According to Eq. (13), the matrix element can be repre-
sented as Vq = 〈ψ(E)|VLO|ϕq〉 . The angular dependence

n|Vph|i〈 〉
eA

----------------------
1

3
------- 28n7 n 1–( )2n 5–

n 1+( )2n 5+
-------------------------------------,=

ψ E( )|Vph|i〈 〉
eA

-------------------------------- 1

1 e 2π/k––
---------------------=

× 16

3 1 k2+( )5/2
-------------------------------- 2

k
--- karctan– 

  ,exp

ε0

e iq r⋅– 4π i–( )l jl qr( )Ylm*
q
q
--- 

  Ylm
r
r
-- 

  ,
m l–=

l

∑
l 0=

∞

∑=

π/2x

j1 qr( ) qr( )sin
2

qr( )2
--------------------

qr( )cos
qr

-------------------.–=
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of the wavefunction |ψ(E)〉  (as a function of the electron
coordinates) is described by Y1, 1, while the electron
wavefunction in the |ϕq〉  state is spherically symmetric
(because the electron is in the donor ground state). As
is shown in the Appendix, the wavefunctions of the
continuum can be written as

(27)

where

while the wavefunctions in the discrete spectrum can be
written as

(28)

where

According to the law of angular moment conservation,
the angular moment of the emitted phonon is equal to
that of the absorbed photon (because the electron wave-
functions in the ground and resonance states are the
same) and Vq ~ (q/q). Using expressions (27) and
(28) and taking into account relation (4), we eventually
obtain

ψ E( )|e iq r⋅– |i〈 〉  = 
i

k2 π
------------ 1 1/k2+

1 e 2π/k––
---------------------I k q,( )Y1 1,*

q
q
--- 

  ,

I k q,( ) 16πk3 xxd

0

1

∫–=

× Im
qx k i–+
qx k– i–
---------------------- 

 
i/k

qx i–( )2 k2–[ ] –2

 
 
 

,

n|e iqr– |i〈 〉 i 4πI2 n q,( )Y11* q/q( ),–=

I2 n q,( ) rr2Rn1 r( )R1 0, r( ) qr( )sin

q2r2
------------------ qr( )cos

qr
-------------------– .d

0

∞

∫=

Y11*
(29)

α E( )

2P k'

2
k'
--- k'arctan– 

 exp

k'2 1 k'2+( )2
1 e 2π/k'––( )

------------------------------------------------------- 1

kϕ
2 k'2–

----------------- 1

k2 k'
2

–
----------------+ 

  qI k q,( )I k' q,( )d

0

∞

∫d

0

∞

∫

π
kϕ

3
-----

1 kϕ
2+

1 e
2π/kϕ–

–( ) 1 e 2π/k––( )
------------------------------------------------------

2
k
--- karctan– 

 exp

1 k2+( )5/2
---------------------------------------- qI k q,( )I kϕ q,( )d

0

∞

∫

--------------------------------------------------------------------------------------------------------------------------------------------------------------------=

+

1
4
--- 28n7 n 1–( )2n 5–

n 1+( )2n 5+
------------------------------------- 1

kϕ
2 1/n2+

---------------------- 1

k2 1/n2+
---------------------+ 

  qI2 n q,( )I k q,( )d

0

∞

∫
n 2=

∞

∑

1

kϕ
3

-----
1 kϕ

2
+

1 e
2π/kϕ–

–( ) 1 e 2π/k––( )
------------------------------------------------------

2
k
--- karctan– 

 exp

1 k2+( )5/2
---------------------------------------- qI k q,( )I kϕ q,( )d

0

∞

∫

------------------------------------------------------------------------------------------------------------------------------------------------------------,
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(30)

(31)

4. COMPARISON OF THEORY TO EXPERIMENT 
FOR GaAs AND InP

Contributions to the photocurrent are due to elec-
trons occurring in delocalized states upon the absorp-
tion of light quanta. For this reason, it might seem that
the photocurrent spectrum could be determined as a
product of Eq. (20) and the probability of an electron
occurring in such a delocalized state. However, using
relation (10) and taking into account the behavior of the
wavefunction ψ(E) at large r (where ψ(E) ∝  sin(kr + δ)),
one can readily check that the wavefunctions Ψ(E) and
ψ(E) at large r differ only by their phases, while their
amplitudes are the same (see calculations following
[1, Eq. (4)]). This situation implies that an electron in
the Ψ(E) state is fully delocalized and its interaction
with the resonance states does not lead to partial local-
ization of the wavefunction.

In the vicinity of a Fano resonance, the spectrum of
the photocurrent is significantly influenced by the fre-
quency dependences of the coefficients of light reflec-
tion and absorption. These coefficients rapidly vary in
this region as a result of the light absorption by trans-
verse optical (TO) phonons. Taking into account these
factors, the photocurrent can be expressed as

(32)

where B is a frequency-independent constant, I(ω) is
the incident light intensity, η(ω) is the optical absorp-
tion coefficient, and d is the thickness of a doped
region. The absorption and reflection of light in this
spectral interval are determined primarily by optical
oscillations of the lattice and can be described in terms
of the permittivity as [12]

(33)

β E( ) 1 e 2π/k––

1 e
2π/kϕ–

–
-----------------------

1 kϕ
2+

1 k2+
--------------

 
 
 

5/2

=

× 2
kϕ
----- kϕarctan

2
k
--- karctan– 

  ,exp

γ E Eϕ,( )
"ω0κ0

2π( )2κ
----------------- 1

kkϕ( )2
--------------- 1 1/k2+

1 e 2π/k––
---------------------=

×
1 1/kϕ

2+

1 e
2π/kϕ–

–
----------------------- I k q,( )I kϕ q,( ) q.d

0

∞

∫

J ω( ) BI ω( )W ω( )
A 2

-------------- 1 R ω( )–[ ] e η– ω( )x x,d

0

d

∫=

κ ω( ) κ∞
κ0 κ∞–

1 ω2

ωTO
2

---------– i
ωγ
ωTO

2
---------–

------------------------------------,+=
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where ωTO and γ are the frequency and the decay con-
stant of the TO phonon, respectively. Then, the reflec-
tion R(ω) and absorption η(ω) coefficients can be
expressed as

(34)

where c is the velocity of light.
Figure 2 shows the calculated and measured spectra

of the photocurrent in the region of the Fano resonance
in n-GaAs. The calculation was performed using the
following values of parameters for GaAs:

,

where m0 is the free electron mass. One spectrum
(Fig. 2, solid curve) was calculated for a particular case
where the thickness d of a layer producing the main
contribution to the photocurrent is much smaller than
1/η(ω). In this case, the photocurrent was calculated
using expression (32), where the integration over x gave
d. Another spectrum (Fig. 2, dashed curve) was calcu-
lated assuming that the photoelectron yield depth is
much greater than 1/η(ω). In this case, the integral in
Eq. (32) is equal to 1/η(ω). Apparently, the spectrum
for an arbitrary d value must fall between the two lim-
iting curves in Fig. 2.

R ω( ) Re κ ω( )( ) 1–[ ] 2
Im2 κ ω( )( )+

Re κ ω( )( ) 1+[ ] 2
Im2 κ ω( )( )+

----------------------------------------------------------------------------------,=

η ω( ) 2ω
c

-------Im η ω( )( ),=

µ 0.0665m0, κ0 12.46, κ∞ 10.58,= = =

"ω0 36.588 meV 13[ ] , γ 0.001ωTO,= =

ωTO ω0 κ∞/κ0=
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20

0
280 290 300 310

J, rel. units

1/λ, cm–1

Fig. 2. The photocurrent spectra of n-GaAs at T = 4.2 K:
points represent the experimental data; solid and dashed
curves show the theoretical spectra calculated for ηd ! 1
and ηd @ 1, respectively (the spectra are normalized
to 100).
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Experimental photocurrent spectra were obtained
for an epitaxial n-GaAs layer grown by liquid phase
epitaxy on a semi-insulating GaAs substrate. The epil-
ayer was doped with silicon at a concentration of 8.3 ×
1014 cm–3 and had a thickness of 70 µm. The electron
mobility at 77 K was 5.9 × 104 cm2/(V s). The measure-
ments were performed at T = 4.2 K using a BOMEM
Fourier-transform spectrometer.

As can be seen from Fig. 2, the experimental curve
agrees well with the spectrum calculated for a thin
semiconductor layer. In the spectral interval studied,

100

80

60

40

20

0

280 290 300 310

J, rel. units

1/λ, cm–1

Fig. 3. Theoretical photocurrent spectra of n-GaAs calcu-
lated with (solid curve) and without (dashed curve) allow-
ance for the reflection.
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20

0

335 345 355 365

J, rel. units

1/λ, cm–1

Fig. 4. Theoretical photocurrent spectra of InP calculated
for ηd ! 1 (solid curve) and ηd @ 1 (dashed curve) (the
spectra are normalized to 100).
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the characteristic η value is on the order of 103 cm–1 and
ηd @ 1. It should be noted that the photocurrent spec-
trum for GaAs reported in [7] is more asymmetric than
our spectrum and shows a much worse agreement with
the results of calculations.

The calculation of α(E) showed that the contribution
to this value due to states of the discrete spectrum of
GaAs is about 28%. It should be also noted that the
spectrum of the photocurrent in n-GaAs calculated
using formula (19) is practically the same as that
obtained using the exact expression (17). The values of
α and Γ calculated using formulas (18) are as follows:

Figure 3 presents the results of photoresponse calcu-
lations for n-GaAs, which illustrate the influence of the
reflection coefficient on the shape of the Fano reso-
nance in the photocurrent spectrum. As can be seen,
allowance for the reflection makes the resonance peak
more asymmetric and narrow.

Figure 4 shows the theoretical spectra of the photo-
current in the vicinity of the Fano resonance for InP,
which were calculated for the following parameters:

The position of the calculated resonance peak is in good
agreement with that in the experimental spectrum
reported in [7]. However, the halfwidth of the measured
spectrum [7] is only about half the calculated value. In
addition, the experimental photocurrent peak for InP
(as well as that for GaAs) is more asymmetric than the
theoretical curve. The reason for the discrepancy
between calculations and the results of measurements
reported in [7] for both GaAs and InP remains unclear.
It should also be noted that the calculated halfwidth of
the photocurrent peak for GaAs is about half that for
InP (because ΓInP = 0.852 meV), whereas the half-
widths of the experimental resonance peaks for the two
semiconductors are approximately equal [7].

5. CONCLUSIONS

Let us consider the question why Fano resonances in
the photocurrent spectra of n-GaAs and n-InP are man-
ifested as peaks, whereas the same resonances in the
spectra of photocurrent and absorption in p-Si are man-
ifested as narrow dips. It should be noted that the ener-
gies of ionization for shallow donors in both materials,
GaAs and InP, are five to six times lower than the LO
phonon energy. For this reason, the electron upon
absorption of a light quantum with an energy equal to
that of the optical phonon passes to a high level in the

αGaAs 7.962, ΓGaAs 0.413 eV.= =

µ 0.081m0, κ0 12.2, κ∞ 9.487,= = =

"ω0 43.33 meV 13[ ] ,=

γ 0.001ωTO, "ωTO 38.21 meV.= =
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continuum. The probability of such transitions is not
high because the matrix elements of the dipole moment
rapidly decreases with increasing light quantum energy
in this region (i.e., the transition is almost prohibited).
Therefore, the probabilities of photon absorption via
resonance states (which are of the second order of
smallness) become greater than the probabilities of
direct transitions. Owing to the interaction between res-
onance states and states in the continuum, the wave-
function Ψ(E) of the continuum near the resonance
energy contains the wavefunctions ϕq of the resonance
states and the wavefunctions ψ(E'). As a result, the
probability of absorption of a photon with an energy
close to that of the optical phonon sharply increases.

The situation in boron-doped p-Si is substantially
different. Here, the optical phonon energy is about
64 meV and the ionization energy for boron is on the
same order of magnitude (about 45 meV). In this case,
the Fano resonance is close to the position of the maxi-
mum probability of acceptor ionization and, hence, the
probability of a direct transition to the continuum in
this spectral region significantly exceeds the probabili-
ties of transitions both to a resonance state and to states
with different energies in the continuum. For this rea-
son, an “admixture” of the resonance state leads to a
decrease in the absorption, which is manifested by nar-
row dips both in the photocurrent and in the absorption
spectrum.
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APPENDIX

Consider the matrix element 〈ψ(E)|exp(–iq · r)|i〉 .
Using the expressions for wavefunctions (21) and (23),
expansion (26), and the condition of orthonormaliza-
tion for the Ylm functions, one can obtain the following
expression for this matrix element:

(A.1)

ψ E( ) iq– r⋅( )exp i〈 〉

=  
i

k2
---- 1 1/k2+

π 1 e 2π/k––( )
------------------------------Y1 1,*

q
q
--- 

 –

× re r– qr( )sin
2

q2r2
-------------------- qr( )cos

qr
-------------------–d

0

∞

∫

× e2ikrt t
1
2
---+ 

  i/k 2–

t
1
2
---– 

  i/k– 2–

t.d∫°
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The integral with respect to r is readily calculated to
yield

(A.2)

The contour integral obtained using expression (A.2)
can be calculated only by numerical methods. How-
ever, sharp spikes of the integrand function make this
expression inconvenient for numerical calculations.
In order to reduce it to a more convenient form, expres-
sion (A.2) can be represented in an integral form, which
reduces the calculation to integration along a contour:

(A.3)

The contour integral involving the right-hand side of
expression (A.3) can be calculated using the theory of
residues. For this purpose, the integration contour is
selected in the form of a circle of infinite radius and the
residues are calculated in the two poles where the sum
x2 + (1 – 2ikt)2/q2 vanishes. The contour integral from
the first term in square brackets in the right-hand side of
Eq. (A.3) is zero. Consider the following function:

(A.4)

As can be seen, the integral in the right-hand side of
expression (A.4) is readily calculated by numerical
methods. Using relation (A.4), we obtain the required
expression (27).
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Abstract—The spectrum of neutral intersubband excitations in single and double quantum wells has been stud-
ied by the inelastic light scattering method. It is shown that excitation energies in an external magnetic field
have an anisotropic component proportional to the dipole moment of excitations along the growth axis of the
quantum wells. Consequently, the measurement of excitation energy in a magnetic field makes it possible to
experimentally estimate the quantitative measure of asymmetry of the quantum wells (dipole moment of the
intersubband transition). In addition, a parallel magnetic field makes it possible to considerably extend the
range of momenta studied since it shifts the dispersion curves in the momentum space by the value of the aniso-
tropic component. A new method is proposed for determining the symmetry of double quantum wells. In asym-
metric wells, intersubband excitations appear between the layers and have a large dipole moment along the
growth axis. In symmetric wells, the magnetic field itself induces the dipole moment of intersubband excitations
so that the excitation spectrum does not change upon magnetic field inversion. Analysis of energy anisotropy
in intersubband excitations in double quantum wells makes it possible to determine the symmetry of double
wells to a high degree of accuracy. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

It is well known that the Hamiltonian of a system of
positive and negative charges with a total charge equal
to zero in a constant uniform magnetic field exhibits
translational invariance. The corresponding integral of
motion is the generalized momentum all of whose com-
ponents commute with one another. For a system of two
particles, the generalized momentum can be repre-
sented in the form

(1)

where " = 1, subscripts “1” and “2” denote negatively
and positively charged particles, A is the vector poten-
tial, and B is the magnetic field strength [1, 2]. The gen-
eralized momentum in a magnetic field plays the same
role as the momentum in zero field (absorption or emis-
sion of electromagnetic waves by a neutral system may
serve as an example). The interaction with radiation
preserves the sum of the photon momentum and the
generalized momentum of the system [3].

In a two-dimensional (2D) space, a neutral system
has an analogous integral of motion [4]. Examples of
such systems are the 2D hydrogen atom and the Mott
exciton with a narrow semiconducting quantum well in
a magnetic field. Magnetoexcitons or magnetoplasma
modes, viz., bound states of a hole at the filled level and
an electron at one of the empty Landau levels, are less
obvious examples which, nevertheless, are important
for physical applications [5].

k i ∇ 1 ∇ 2+( )–
e
c
-- A1 A2–( ) e

c
-- r2 r1–( ) B× ,–+=
1063-7761/05/10104- $26.000717
In view of the finite width of the electron wavefunc-
tions in the direction of quantum well growth, quasipar-
ticles in wells are not two-dimensional, but quasi-two-
dimensional. However, this is immaterial as long as an
electron and a hole move in the same plane and the
energy gaps between size-quantized subbands in quan-
tum wells are larger than the energy of interaction
between the electron and the hole. If, however, the elec-
tron and the hole move in two spatially separated
planes, the system can be described in terms of a 2D
dipole (i.e., a neutral 2D quasiparticle having a nonzero
dipole moment d along the axis perpendicular to the
planes),

(2)

where n is the normal to the plane of the quantum well,

is the mean distance between the electron and hole, and
ψ0(1)(z) is the component of the electron (hole) wave-
function in the direction of growth of the quantum well.
In an external magnetic field oriented in the plane, vec-
tor [6, 7]

(3)

plays the role of the generalized momentum of the 2D
dipole and is preserved in scattering processes (here, P
is the kinematic momentum of the electron and hole in

d e z0 z1– n,–=

z0 z1– zψ0* z( )zψ0 z( ) zψ1* z( )zψ1 z( )d∫–d∫=

P P 1
c
---d B×+=
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the plane of the well) [8]. The kinetic energy of a 2D
dipole in an external magnetic field is a function of
kinematic momentum,

(4)

i.e., in addition to the generalized momentum, the
energy depends on the gauge contribution c–1d × B,
which is due to the impossibility of simultaneous van-
ishing of the vector potential in two spatially separated
layers. Thus, we can analyze dispersion of 2D dipoles
by applying an appropriately oriented magnetic field. If
the resonance condition

(5)

is satisfied, the kinematic momentum and, hence, the
kinetic energy of the dipole vanish. In spite of the fact
that the momentum transferred to a 2D dipole via scat-
tering processes is finite, it is “frozen” (stationary in the
plane).

Examples of 2D dipoles are Mott excitons in asym-
metric single and double quantum wells and (intersub-
band) electron excitations between charge quantization
subbands in asymmetrically doped single and double
quantum wells. Mott excitons in physically feasible
systems possess a large effective mass and nonpara-
bolic (usually unknown) dispersion relation, which is a
consequence of a complex valence band in semicon-
ducting materials of quantum wells. To observe the
effects associated with the presence of the gauge term
in the generalized momentum of excitons, strong mag-
netic fields are required, which noticeably affect the
quantizing potential of the wells and, accordingly, per-
turb the hole and electron states [9]. Conversely, the
energies of subband excitations in quantum wells vary
significantly even in the long-wave limit. Consequently
the experimental conditions required for fulfillment of
expressions (3)–(5) are created in weak magnetic fields
on the order of 1 T, which corresponds to a magnetic
quantization energy much lower than the characteristic
energy of intersubband quantization. Excitations in
double quantum wells, where the intersubband quanti-
zation energy can be infinitely small, constitute a spe-
cial case.

In addition to analysis of dispersion of 2D dipoles,
relations (3)–(5) can be used for experimental determi-
nation of physical characteristics of the confining
potential in single and double quantum wells. Experi-
mental methods for determining the potential asymme-
try in double quantum wells, which are interesting from
the standpoint of ferromagnetism and, probably, the
superfluidity discovered in quasicrystals, are of special
importance [10, 11]. The key parameter determining
the possible ground state of the electron system in dou-
ble quantum wells is the degree of spatial asymmetry.

E P( ) E P
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Here, we propose an experimental method for deter-
mining the degree of asymmetry and provide the most
complete contemporary analysis of the spectrum and
dispersion of intersubband excitations in single and
double quantum wells in a parallel magnetic field,
which generalizes our earlier results [12–15].

The article has the following structure. In Section 2,
the original experimental technique developed by the
authors for measuring the spectra of inelastic scattering
of light in an external parallel magnetic field (the field
and the momenta of the photons being excited and scat-
tered could be varied simultaneously). The intersubband
excitation spectrum in a magnetic field is considered in
Section 3, where the correctness of relations (3)–(5) is
confirmed experimentally for the energies of intersub-
band collective excitations [12]. The effect of the trans-
verse magnetic field component on relations (3)–(5) [13]
is analyzed in Section 4. In Section 5, the influence of a
parallel magnetic field on the one-particle excitation
energies is studied and a method for determining spatial
asymmetry of the electron system in double quantum
wells is demonstrated [14, 15].

2. EXPERIMENTAL TECHNIQUE

Experiments were made on a batch of high-quality
heterostructures grown using molecular-beam epitaxy.
The heterostructures were in the form of asymmetric
selectively doped AlxGa1 – xAs/GaAs single quantum
wells of width 120–450 Å and double symmetric quan-
tum wells of width 200 Å, separated by a 25-Å-wide
insulating barrier. The electron densities ns in the sam-
ples were (1–6.8) × 1011 cm–2 and the mobilities were at
a level of (1–2) × 106 cm2/V s. The electron concentra-
tions in the samples studied could be varied over a wide
range. For this purpose, the photodepletion technique
was used: under continuous photoexcitation by laser
radiation with a photon energy exceeding the energy
gap of the barriers in the quantum wells, ionized donors
in the barrier were neutralized and the electron concen-
tration decreased. The mechanism of this phenomenon
was considered in detail in [16]. Balancing of double
quantum wells was performed analogously. Since the
barrier absorption coefficient in the energy range of
photodepleting radiation is large and doping impurities
for each well are on different sides of the wells in the
barrier, the well located closer to the heterostructure
surface is depleted to a much higher extent than the well
lying at a larger distance from the surface. Thus, select-
ing the power density of photodepleting radiation, one
can smoothly vary the asymmetry of double quantum
wells [14].

In our experiment, an original two-fiber technique
was employed. The first fiber was used for exciting the
electron system, while the other fiber served for detect-
ing the inelastic light scattering signal (Fig. 1). The
component of the momentum q in the plane of a quan-
tum well, which was transferred to the electron system
ND THEORETICAL PHYSICS      Vol. 101      No. 4      2005
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Fig. 1. (a) Schematic diagram of resonant inelastic scattering of light: 1—fiber for supplying a laser beam to the sample; 2—fiber
collecting the scattered light; 3—holder with the sample. The holder and the fibers can be rotated about the z axis in a constant mag-
netic field. (b, c) Spectra of inelastic scattering of light for a sample with a 250-Å-wide quantum well for ns = 3.5 × 1011 cm–2,

measured at B = 1.2 T (b) and for B = 0 (c), q = 1 × 105 cm–1. Mutual orientation of vectors q and B is shown in the inset to (b).
during inelastic scattering of light was determined by
the arrangement of the fiber ends relative to the sample
surface. The maximal transferred momentum attained a
value of 1.2 × 105 cm–1. The fibers and the sample were
rigidly fixed to a rotating holder so that the sample was
either in the vertical or in the horizontal position. The
holder was placed in a cryostat containing a supercon-
ducting solenoid, in which the field was horizontal. The
angle between the directions of the magnetic field and
the momentum transferred to the electron system dur-
ing inelastic scattering of light could be varied by rotat-
ing the holder. In the horizontal orientation of the sam-
ple, the magnetic field was directed along the quantum
well plane (parallel magnetic field). For the vertical ori-
entation, a nonzero magnetic field component emerged
along the quantum well growth axis (transverse mag-
netic field). Measurements were made at a temperature
of 1.5 K. The electron system was excited by a tunable
titanium–sapphire laser with a photon energy higher
than the forbidden gap of the quantum well material
(GaAs), but smaller than the forbidden gap of the bar-
rier material (AlGaAs). The characteristic power den-
sity of excitation was 0.1–1 W/cm2. The signal from
inelastic scattering of light was fed to a triple Raman
spectrometer and was detected by a CCD camera. The
spectral resolution of the detecting system was
0.04 meV and the line widths of inelastic scattering of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
light ranged from 0.1 to 0.5 meV. Simultaneous mea-
surement of the inelastic scattering signal and the lumi-
nescence signal made it possible to monitor the electron
density under quasi-continuous excitation by light [14].

3. SINGLE QUANTUM WELL
IN A PARALLEL MAGNETIC FIELD

Intersubband excitation in a single asymmetrically
doped quantum well consists of an electron in the
empty excited subband, which interacts with a hole
under the Fermi level for electrons in the principal size-
quantized subband. In view of asymmetry of the confin-
ing potential, the electron and the hole are spatially sep-
arated in the quantum well growth direction. The
energy of interaction of the electron and hole is usually
much lower than the intersubband energy; conse-
quently, intersubband excitations can be treated as
well-defined 2D dipoles. The intersubband excitation
spectrum consists of two collective excitations, viz., the
charge density excitations (CDEs) and the spin density
excitations (SDEs) and the continuum of single-particle
excitations (SPEs) [17, 18]. Principal charge and spin
density excitations can be treated as the singlet and trip-
let states of excitons. Energy ESDE is lower than the sin-
gle-particle intersubband energy due to the Coulomb
interaction between the electron and hole (exciton
SICS      Vol. 101      No. 4      2005
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Fig. 2. Magnetic-field-dependence of the SPE band (1) and
energies ECDE (2) and ESDE (3). The inset shows the mea-
sured (symbols) and calculated by formula (5) (straight
line) values of Bc as a function of q. In calculations, we used
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oretical calculations.
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shift), while energy ECDE may be higher or lower than
the intersubband energy [19]. In addition to the exciton
shift, ECDE contains the macroscopic polarization
energy of the electron system (depolarization shift).
Consequently, in contrast to a Wannier–Mott exciton,
principal excitations of charge and spin density excita-
tions are nondegenerate.

Figure 1 shows examples of inelastic light scattering
spectra in zero field and in a parallel magnetic field of
1.2 T. A momentum of 1 × 105 cm–1 transferred to the
electron system in the plane of the well is directed at
right angles to the magnetic field vector. The spectra
consist of three main components, viz., a broad band
with an energy of 23.5 meV, which is connected with
intersubband SPEs, and two narrow lines correspond-
ing to two intersubband collective modes (SDE and
CDE) [17]. In a magnetic field, the SPE band is nar-
rowed. The width ∆ of the SPE band attains its minimal
value for Bc = 1.2 T and increases with increasing field.
In the same magnetic field, the energies of both collec-
tive modes have extrema (ECDE has a minimum and
ESDE has a maximum) (Fig. 2). Energies ECDE, ESDE, as
well as ∆, are anisotropic; if we rotate the holder with
the sample (i.e., change the direction of the momentum
relative to the direction of the magnetic field), the val-
ues of these quantities vary. Rotational anisotropy
decreases with the value of momentum q.

It can be proved that the anisotropy in the intersub-
band excitation energies is associated with the gauge
term in Eq. (4). For this purpose, we consider, for
example, quantity ECDE. When q = 0, the value of ECDE
is a quadratic function of the magnetic field (Fig. 3).
Applying a finite momentum q = 1 × 105 cm–1 so that
vector q is parallel to vector d × B, we observe the mag-
netic field shift by |c–1d × B| = 1 × 105 cm–1. Thus, the
dependence ECDE(c–1d × B) can be identified with the
dispersion relation and the quantity Bc can be identified
with the critical magnetic field for which equality (5) is
satisfied. Subsequently, the momentum of inelastic
light scattering in the quantum well plane and the gen-
eralized momentum of excitations will be identified
(q ≡ P).

To verify the dependence of the excitation energy on
P and c–1d × B, the relative orientation of vectors P and
d × B for c–1|d × B| = |P| = 1 × 105 cm–1 was varied con-
tinuously and the kinetic energy of excitations was
measured as a function of angle α between the direc-
tions of vectors P and d × B (Fig. 4). The observed
angular dependence can be described to a high degree
of accuracy by the expression

(6)

where m* is the effective mass of principal excitation,
obtained from the dispersion dependence depicted in
Fig. 3. We verified relations (3)–(5) for the remaining
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intersubband excitations. In spite of the fact that the
excitations under investigation differ in the quantum
numbers of intrinsic and spin degrees of freedom, they
possess the same dipole moments and their dispersion
dependences behave analogously. Singe-particle exci-

1.0

0.5

0 90 180 270 360
α, deg

ECDE(Π), meV

Fig. 4. Kinetic energy ECDE as a function of the angle
between the directions of vectors P and d × B for P = |d ×
B| = 1 × 105 cm–1.
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tations constitute a special case since they are not cou-
pled complexes with natural dispersion. The dispersion
relation for single-particle excitations can be obtained
from the difference in the dispersion relations of the
excited electron and hole and, hence, exhibits a depen-
dence on α different from that for collective excitations.
Measurements in the parallel magnetic field essentially
make it possible to distinguish collective excitations
from single-particle ones, which is a serious experi-
mental problem in the physics of excitations of low-
dimensional systems. Single-particle excitations will
be investigated in greater detail in Section 6.

4. A SINGLE QUANTUM WELL 
IN A TILTED MAGNETIC FIELD

Let us now consider dispersion of intersubband
excitations in an external magnetic field oriented at an
arbitrary angle to the quantum well plane. In this case,
the expression for the 2D generalized momentum is
analogous to Eq. (1), while the dispersion relations for
intersubband excitations are modified. Figures 5 and 6
show spectra of inelastic light scattering from intersub-
band excitations in a magnetic field with a nonzero
component along the quantum well growth axis. Quan-
tities ECDE and ESDE exhibit a weak dependence on the
magnetic field, which can be easily understood on
account of the fact that the main charge and spin density
excitations in a magnetic field are connected with inter-
3020
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Fig. 5. (a) Schematic diagram of resonant inelastic scattering of light in a tilted magnetic field. The holder and the fibers can be
rotated about the vertical axis. (b, c) Spectra of inelastic scattering of light for a sample with a 250-Å-wide quantum well for ns =

3.5 × 1011 cm–2, measured at P = c–1dB, vectors P and d × B are (b) parallel and (c) antiparallel. Mutual orientation of vectors q
and B is shown in the inset to (b).
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subband transitions conserving the Landau level num-
ber. If we disregard the nonparabolicity of the electron
effective mass in the subband splitting energy, the ener-
gies of all such transitions are equal and independent of
the magnetic field. In addition to such excitations lines,
the spectrum displays the B±n lines that form the nega-
tive and positive “fans” of the Landau levels emerging
from the intersubband quantization energy. These lines
are associated with intersubband Bernstein modes, viz.,
excitations with simultaneous variation of the size-
quantized subband index and the Landau level number.
For q  0, their energies can be expressed as

(7)

where Ω and ωc are the electron intersubband and
cyclotron frequencies [20]. With increasing quasi-
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Fig. 6. Spectra of inelastic scattering of light for a sample
with a 250-Å-wide quantum well for ns = 3.5 × 1011 cm–2

measured at P = c–1dB; vectors P and d × B are (a) parallel
and (b) antiparallel. The dashed curves describe the results
of theoretical calculations of excitation energies in the local
density approximation [20] under the assumption that the
parallel magnetic field component makes a contribution to
the excitation energy only via the gauge term c–1d × B; i.e.,
P = 0 (a) and P = 2 × 105 cm–1 (b). Line L0 is discussed
in [20].
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momentum, the energies of the B+1 (B–1) and CDE
(SDE) lines deviate from straight lines in the energy
resonance region so that formula (7) becomes inappli-
cable. It was shown in [20] that the dispersion relations
in the resonance regions are linear and determined by
the many-particle Coulomb interaction. For this reason,
we chose the magnetic field component along the quan-
tum well growth axis (1.5 T) for which the dispersion
dependence has the largest slope. As in the case of a par-
allel magnetic field, dispersion of collective excitations
is anisotropic upon a change in the mutual orientations of
vectors P and d × B.

Let us prove that the parallel magnetic field affects
the excitation energy only via the gauge term c−1d × B.
In a magnetic field oriented so that the magnetic field
component in the quantum well plane vanishes, we
measured the total dispersion ∆± of intersubband exci-
tations in the resonance region (Fig. 6). If, however, we
fix momentum P = 1 × 105 cm–1 and vary the magnetic
field component so that vector d × B is directed along
vector P, quantity ∆+(|P – c–1d × B|) exhibits the same
linear dependence on c–1d × B as that of ∆+(P) in the
case of zero parallel magnetic field,

(8)

the dispersion dependence is shifted along the abscissa
axis by the momentum of inelastic scattering of light
(Fig. 7) and ∆± = 0 for P = c–1d × B, although quantities
q and |d × B| differ from zero separately.

Thus, we can conclude that dispersion of intersub-
band dipole excitations for an arbitrary magnetic field
orientation relative to the quantum well plane is deter-
mined by the transverse magnetic field component. On
the other hand, the parallel component appears only in
the generalized momentum of excitations and shifts the
dispersion of excitations by c–1d × B in the momentum
space. By applying a parallel magnetic field, one can
measure the dispersion of intersubband magnetic exci-
tations in the range of momenta unattainable in stan-
dard experiments on inelastic scattering of light.

5. A DOUBLE QUANTUM WELL 
IN A PARALLEL MAGNETIC FIELD

Intersubband excitations in single quantum wells
have much in common with interlayer excitations in
double quantum wells. However, when the layer index
is not a good quantum number any longer (symmetric
double wells), the effect of a parallel field on excita-
tions in double and single quantum wells is quite differ-
ent. We will consider double quantum wells with a
weak tunnel coupling between the layers (the Fermi
energy of electrons is much higher than the tunnel
energy). Figure 8 shows typical light scattering spectra
for low-energy neutral excitations in double-layer elec-
tron systems (both symmetric and asymmetric). We

∆± P
1
c
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will call symmetric the state in which the electron sys-
tem Hamiltonian is specularly symmetric relative to the
center of the barrier in a double quantum well. In turn,
the state of the electron system is considered asymmet-
ric if the electron wavefunctions of the lowest quantum
subbands are concentrated in individual layers; i.e., the
indices of the layers and of size-quantized subbands are
identical quantum numbers. Strictly speaking, the
asymmetric state is correctly defined only in the
absence of tunnel coupling between the layers. How-
ever, in the case of weak tunneling, there exists a state
of asymmetric double quantum well, such that its fur-
ther asymmetrization does not lead to a change in the
wavefunctions (see the diagram in Fig. 9). In this case,
the layer indices can be regarded as “good” quantum
numbers.

The observed lines of inelastic scattering of light
correspond to interlayer (intersubband) single-particle
excitations and antisymmetric collective modes, an
acoustic plasmon in an asymmetric state, and a tunnel
plasmon in a symmetric state. We will not discus col-
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Fig. 7. Energy ECDE for B⊥  = 1.5 T as a function of P for

|c−1d × B| = 0 (1) and as a function of c–1|d × B| (vector
d × B is parallel to vector P) for P = 1 × 105 cm–1 (2). The
solid line is a linear approximation of experimental points.
The dashed line is the same approximation shifted by 1 ×
105 cm–1.
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lective modes [21] since their energies weakly depend
on the parallel field [22], and we will focus our atten-
tion on interlayer single-particle excitations. In accor-
dance with the energy and momentum conservation
laws, single-particle excitations are in the energy inter-
val [Ω – q , Ω + q ]; the inelastic scattering prob-
ability is maximal at the boundaries of the interval Ω ±
q  due to filling of the phase space of the excited

subband [23]. Here and below,  is the Fermi veloc-
ity in the layer with a higher (lower) electron density.

Figure 9 shows the spectra of inelastic light scatter-
ing for a sample in a double quantum well in the asym-
metric state for two magnetic field orientations in the
plane of the wells (along and across the momentum q
of inelastic scattering of light). As in the case of single
quantum wells, the energies of interlayer excitations
are anisotropic due to the fact that interlayer excitations
in the asymmetric states possess a very large dipole
moment along the axis of separation between the lay-
ers. In accordance with formulas (3)–(5), the energies
of one-particle excitations at the boundaries of the con-
tinuum are linear functions of the magnetic field and are
given by
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Fig. 8. Schematic of inelastic scattering of light in a double
quantum well in the (a) symmetric and (b) asymmetric
states. The solid curves describe the electron wavefunctions
for two lower size-quantized subbands. The dependence of
the intersubband gap Ω on the disbalance of quantum wells
is shown schematically by bold curves. Examples of the
spectra of inelastic scattering of light in (c) symmetric and
(d) asymmetric states of double quantum wells (TP, AP, and
ISPE stand for the tunnel plasmon, acoustic plasmon, and
interlayer single-particle excitations, respectively).
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For q ⊥  B, the kinetic energies of single-particle exci-
tations are zero in a critical magnetic field of 0.25 T, for
which neither q nor c–1d × B are equal to zero sepa-
rately. Using the value of the critical magnetic field, the
dipole moment of interlayer excitations can be assessed
from formula (5) as e × 240 Å, which matches with the
distance of 225 Å between the geometrical centers of
the quantum wells.

The change in the excitation spectrum upon a tran-
sition of a two-layer system to a symmetric state can be
grasped qualitatively by considering a nonrealistic
model of virtual interlayer excitations between two iso-
lated quantum wells (Fig. 10). The energies of intersub-
band excitations decrease in proportion to the decrease
in intersubband gap Ω . The critical magnetic field
(0.25 T) does not change since the dipole moment is
constant. A nontrivial situation arises when the term
|q – c–1d × B|  exceeds the intersubband gap Ω . In
this case, the spectrum acquires two branches of single-
particle excitations corresponding to direct electron tran-
sitions from the first to the second subband (branch A),

and reverse transitions from the second to the first sub-
band (branch B),

The dipole moments corresponding to excitations of
both branches are modulo equal but opposite in direc-
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Fig. 9. (a) Schematic diagram of inelastic light scattering in
an asymmetric double quantum well in two experimental
geometries with a momentum of light parallel (top) and per-
pendicular (bottom) to the magnetic field vector. (b) Corre-
sponding experimental spectra. Solid curves show the criti-
cal and zero magnetic fields.
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tion; consequently, an increase in the energy of one
branch in a magnetic field is accompanied by a decrease
in the energy in the other branch, and vice versa. For a
certain value of the system parameters,

the upper boundary of branch B exceeds that for
branch A, which leads to symmetrization of the excita-
tion spectrum (see Fig. 10).

This model describes virtual interlayer excitations,
which have the same dipole moment in any state. In real
double quantum wells, the dipole moment of excita-
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Fig. 10. Variation of the intersubband excitation spectrum in
a double quantum well upon a transition from the asymmet-
ric to the symmetric state. The double quantum well confin-
ing potential profile and the squares of the electron wave-
functions in the asymmetric (left) and symmetric (right)
cases are shown on the top. Dark regions correspond to
excitations from the first to the second quantum subband
(branch A), while light regions denote excitations from the
second to the first subband (branch B) disregarding tunnel-
ing. The regions in which the energies of the two branches
coincide are gray. Experimental points are shown by light
circles. Intersubband gap Ω for each state is indicated. In
the symmetric case (Ω = ∆SAS), the dashed curve shows the
upper boundary of excitations obtained in the tunnel Hamil-
tonian approximation.
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tions decreases upon symmetrization. Nevertheless,
excitation energies experience a shift in magnetic field
as if the dipole moment of excitations remained
unchanged (see Fig. 10). Such a behavior of the ener-
gies of intersubband excitations is associated with the
fact that, in contrast to single quantum wells, splitting
between the symmetric and antisymmetric subbands in
symmetric double quantum wells is smaller than or
comparable in magnitude to the magnetic quantization
energy in the range of magnetic fields under investiga-
tion. Consequently, the magnetic field changes single-
particle electron states in quantum wells. We will take
into account this change in the framework of the tunnel
Hamiltonian approximation [22, 24].

For two tunnel-coupled (generally different) quan-
tum wells a and b, the Hamiltonian of the electron sys-
tem can be written in the form

(9)

where

(10)

are the energies of electrons in quantum wells without
tunneling; E0 is the electron energy in the lowest quan-
tum subband of a single well; ∆E is the asymmetry

parameter; ∆SAS is the tunnel gap; , ak , , and bk are
the electron creation and annihilation operators in two
layers; and k is the electron momentum in the plane of
the well. This approximation is applicable for E0 @ ∆SAS

and E0 @ ∆E; i.e., the electron wavefunctions ψa and ψb

in each well vary only slightly as functions of these
parameters.

The electron energies in the subbands are given by

(11)

The electron wavefunctions in the subbands in the z
direction are given by

(12)
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1 Ẽk
i

–( )
2

+
-------------------------------------------------,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and are independent of momentum k. In the symmetric
case, we have

(13)

For ∆SAS ! ∆E, we obtain

(14)

In a parallel magnetic field B = (0, B, 0), the tunnel
Hamiltonian for ∆Ec ! E0 has the form

(15)

where

(16)

kB = eaB/c, 2a = za – zb is the distance between the cen-
ters of the layers. The electron energies assume the
form

(17)

The electron wavefunctions are transformed analo-

gously with the substitution   (B) and

  (B), thus acquiring a dependence on k.
Depending on the direction of the electron momentum,
the wavefunctions may be independent of magnetic
field (for kx = 0) or may vary with the field (for kx ≠ 0).
For example, for ∆E = 0, when the wavefunctions in the
subbands in zero field are symmetric and antisymmet-
ric combinations, the magnetic field under weak tunnel-
ing (2kxkB/m @ ∆SAS) leads to almost complete localiza-
tion of electrons in individual wells.

Let us now consider single-particle intersubband
excitations with small excitation momenta q in a weak
magnetic field (q ! kF, kB ! kF). The energy of excita-

Ψ1
1

2
------- ψa z( ) ψb z( )–[ ] ,=

Ψ2
1

2
------- ψa z( ) ψb z( )+[ ] .=

Ψ1 ψa z( ), Ψ2 ψb z( ).= =

H Ek
1 B( )ak

+ak Ek
2 B( )bk

+bk+
k

∑=

–
∆SAS

2
---------- ak

+bk bk
+ak+( )

=  Ẽk
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Ẽk
1 2,

Ẽk
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tions corresponding to transitions from the lower to the
upper subband (or back) has the form

(18)

Single-particle excitations form a continuum with a

density of states peak at cos( ) = ±1. Conse-
quently, two excitation branches corresponding to

angles ( ) = 0, π. For ∆SAS @ |∆E| and ∆SAS @
|2kFkB/m|, the energies of both excitation branches can
be represented in the form

(19)

For ∆SAS  0 and ∆E ≠ 0, we have interlayer exci-
tations with dipole moments ±d, d = (0, 0, 2ea). Spe-
cific expressions for transition energies are determined
by the relations between the quantities ∆E, qvF , and
c−1dBvF . For example, for ∆E > c–1dBvF , we have

(20)

In the symmetric case with weak tunneling, due to
rearrangement of wavefunctions, intersubband excita-
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Fig. 11. Critical magnetic field as a function of the dipole
moment for a single (triangles) and double (circles) quan-
tum wells. The profile of the confining potential and the
squares of the electron wavefunctions in the two lowest
size-quantized subbands of single quantum wells, corre-
sponding to the widest and narrowest wells, are shown sche-
matically.
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tions can be treated as interlayer excitations with a
dipole moment (acquired in the given case in a parallel
magnetic field) everywhere except a small range of
magnetic fields, in which ∆SAS ~ 2kFkB/m:

(21)

In this case, excitations corresponding to two interlayer
transitions are combined into two branches so that they
correspond to intersubband excitations in zero mag-
netic field. The critical magnetic field for the common
branches is not defined by formula (5), but is zero (see
Fig. 10).

It is expedient to compare the critical magnetic
fields for double-layer and single-layer systems as
functions of the dipole moment in zero magnetic field
(Fig. 11). The dipole moment can be determined by
using the electron wavefunctions obtained self-consis-
tently from one-dimensional Poisson and Schrödinger
equations by varying the asymmetry so that the calcu-
lated intersubband energy Ω becomes equal to the
experimental energy. From the known wavefunctions,
we can find the dipole moment

(22)

where n is the normal to the quantum well plane,

is the mean distance between electrons in two sub-
bands, and ψn(z) is the z component of the electron
wavefunction in the nth subband. In a single-layer sys-
tem, the dipole moment decreases with the well width
(see Fig. 11). In a double-layer system, the dipole
moment decreases upon symmetrization of the system
(see Fig. 10). The two systems (single- and double-
layer) differ in the effect of a parallel magnetic field on
the electron states in the size-quantized subbands. The
magnetic field completely transforms the wavefunc-
tions in the double-layer system, while the magnetic
field in the single layer system hardly affects the wave-
functions. As a result, the critical magnetic field is
inversely proportional to the dipole moment for a single
layer system, which is in accordance with expression
(5), while the critical field tends to zero upon symme-
trization of a double-layer system (see Fig. 11).

Inelastic scattering of light from single-particle
excitations in a parallel magnetic field can be used for
determining the asymmetry of a double-layer electron
system. For example, electron density disbalance of
two layers by just 3% transforms a symmetric electron
system into an asymmetric one [21]. In view of such a
small balancing range, a symmetric state can hardly be
established with the help of the standard magnetotrans-
port balancing procedure [25, 26]. On the other hand,
the dipole moment associated with the system asymme-
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try can be easily measured using inelastic light scatter-
ing. To transform a double-layer system into a symmet-
ric state, we must transfer a finite momentum to elec-
tron excitations and balance the system until the
excitation energies become symmetric to magnetic
field inversion. The accuracy of this method is deter-
mined by the relation between the inelastic light scat-
tering linewidth and the tunnel energy. According to
experimental estimates, the electron system can be bal-
anced in double quantum wells with a tunnel energy of
up to 0.1 meV.

6. CONCLUSIONS

It has been shown that dispersion of intersubband
excitations in a quantum well placed in a parallel mag-
netic field is anisotropic. The anisotropic contribution
to energy is a linear function of the magnetic field and
the momentum of excitations. The method for deter-
mining the dipole moment of excitations, which char-
acterizes the asymmetry of the confining potential, has
been demonstrated. The symmetry between the mag-
netic-field-induced shift in the momentum space and
excitation momentum opens a unique possibility for
studying the dispersion of intersubband excitations; the
experimentally accessible range of momenta can be
doubled thereby. In addition, this makes it possible to
eliminate a serious experimental problem associated
with a change in the excitation momentum by using an
experimental configuration similar to that used in this
article, in which the momentum is fixed while the par-
allel field varies. It has been shown that interlayer
(intersubband) excitations in double quantum wells in
an asymmetric state possess a large dipole moment and
their behavior in a parallel magnetic field is analogous
to the behavior of intersubband excitations in single
quantum wells. In the symmetric case, on the contrary,
the magnetic field transforms the electron wavefunc-
tions so that excitation energies acquire an anisotropic
component, and excitations themselves become effec-
tively interlayer excitations. A new method has been pro-
posed for measuring the asymmetry of double layers.
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Abstract—We have analytically and numerically studied the self-action dynamics of laser radiation in a plasma
with ionized gas clusters. Based on the simplified model of a cluster in the form of a superposition of two
charged (electron and ion) bunches, we analyze the nonlinearity mechanisms. We refine the electrodynamic
cluster model by the molecular dynamics method. The polarization behavior of the plasma bunch in the main
part of the laser pulse is shown to be the same as that in the simplified model. We investigate the self-action
dynamics of laser radiation under conditions when the nonlinearity of the stratified medium is determined by
the anharmonicity of the electron motion in the cluster, while the group velocity dispersion is determined by
both the background plasma and the ionized clusters. Since the characteristic field for the electron nonlinearity
depends strongly on the cluster size, the peculiarities of the self-action dynamics result from plasma bunch
expansion. The spatiotemporal evolution of the wave field is shown to be accompanied by pulse self-compres-
sion near the trailing edge. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Experimental studies of the interaction between
laser radiation and cluster targets have become particu-
larly topical in recent years in connection with pros-
pects for solving such important application problems
as the initiation of nuclear reactions, the acceleration of
charged particles, and the production of an intense
X-ray source for biomedical applications (see, e.g.,
[1−5]). Cluster targets are materials composed of a ran-
dom set of atomic and molecular clusters. The great
variety of structural features of cluster targets is deter-
mined by the properties of chemical elements and by
the Van der Waals interaction between molecules. A
broad class of atoms forms a condensed phase with free
electrons, i.e., a system with “metallic” nanoirregulari-
ties [6]. For a number of chemical elements, a cluster is
a stable structure with a definite number of atoms and
their mutual spatial arrangement [7]. Since the interac-
tion between atoms has anisotropic properties, fractal
(porous) clusters can be formed [8]. Gas cluster targets
are mainly used in laser radiation–material interaction
experiments. Clusters are formed in them during the
expansion of a dense jet of rare gases into a vacuum.
Such a cluster target composed of condensed rare-gas
atoms had the practical advantages of gas targets, while
making it possible to realize the processes characteris-
tic of a medium with a density close to the solid density.
Such effects as the formation of multiply charged ions
with completely vacant inner shells (hollow ions) [5],
the generation of high harmonics [9], and the genera-
tion of ions with energies above 1 MeV [3] at radiation
intensities lower than those in a homogeneous gas were
observed using cluster targets. The interaction of laser
radiation with a cluster plasma is usually interpreted
based on the model of an isolated cluster in a strong
1063-7761/05/10104- $26.000728
electric field. However, the observation of wave-field
self-focusing in a cluster plasma [5, 10] indicates that
the radiation–medium interaction is self-consistent in
nature. This problem is discussed in [10, 11].

In this paper, we investigate the self-action of an
ultrashort laser pulse in a nanodispersed cluster plasma.
After the formulation of the problem (Section 2), in
Section 3, we consider the polarization dynamics of a
plasma bunch in an electric field. The nonlinearity
mechanisms of a nanodispersed medium are discussed
in Section 4. The final section presents the results of our
numerical simulations of the self-consistent evolution
of an ultrashort laser pulse in a stratified medium. In the
Conclusions, we discuss the relationship between the
theory and the experimentally observed peculiarities of
the laser self-focusing in a cluster plasma.

2. FORMULATION OF THE PROBLEM

The electrodynamic model of the interaction
between ultrashort laser pulses and clusters is based on
the following assumptions. Almost all of the electrons
at the pulse leading edge are removed from their atoms,
remaining inside the cluster. This inner ionization pro-
duces a fine-dispersed medium composed of plasma
bunches and a background plasma. Subsequently, the
ionized clusters expand and lose some of their electrons
into the surrounding space; i.e., outer ionization takes
place. Experimental studies show that the characteristic
lifetime of a plasma bunch is ~100–300 fs [3, 10] and
that the main part of a femtosecond laser pulse propa-
gates in a rare plasma with ionized clusters in which the
electron density exceeds its critical value. In the linear
regime of interaction, the electrodynamic properties of
a cluster plasma for laser wavelengths that appreciably
 © 2005 Pleiades Publishing, Inc.
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exceed the characteristic separation between the clus-
ters, λ @ Lc , can be analyzed in the approximation of an
effective refractive index of the medium neff [12]. For
spherical clusters with a uniform plasma distribution,
the refractive index is

(1)

Here,

is the background plasma permittivity, ω is the wave
frequency,

Nbg is the background plasma electron density, 9 is the
relative volume occupied by the clusters,

is the cluster plasma permittivity,

and N is the cluster electron density.
To investigate the self-action of laser radiation in a

cluster plasma, we will primarily use the parameters of
the medium and the laser pulse in a self-focusing exper-
iment [10]. This experiment was carried out using laser
radiation with a wavelength of 800 nm, an intensity of
5 × 1015 W cm–2, and a pulse duration of 100 fs in a
medium with clusters 30 nm in diameter.

Figure 1 shows a plot of the effective refractive
index squared (1) against the field frequency. We see
from this figure that the presence of ionized clusters
leads to a noticeable modification of the eigenmode
spectrum near the geometrical resonance of the plasma
bunch. For waves with frequencies

,

the refractive index of a nanodispersed medium is
larger than unity (neff > 1); hence, the resonant interac-
tion of electromagnetic radiation with plasma particles
becomes possible [13] The dispersion of the pulse
group velocity v g is normal (∂v g/∂ω < 0) in this fre-
quency range and anomalous (∂v g/∂ω > 0) at higher fre-
quencies, as in a homogeneous plasma.

We use an approach that is popular in electrodynam-
ics of continuous media to construct the self-consistent
picture of the interaction between laser radiation and a
cluster plasma. Initially, based on a model of the
medium, we determine the (linear and nonlinear)
responses of the macrosystem to the presence of a field.
Subsequently, we find the nonlinear field modification

neff
2 nbg

2 9
εc 1–
εc 2+
-------------.+=

nbg
2 1 ωbg

2 /ω2–=

ωbg
2 4πe2Nbg/m,=

εc 1 ωp
2/ω2–=

ωp
2 4πe2N /m,=

ω ≤ ωc ωp/ 3=
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using the Maxwell equations in a medium whose per-
mittivity depends on the radiation intensity. Since the
constitutive equations are complex, we use simplified
models that reflect the structural features of the medium
at the initial stage of our study of the characteristic fea-
tures of the radiation–material interaction. This
description of the macrosystem is successful, because
the effective permittivity of the medium (e.g., (1)) is
averaged over a volume containing quite a few microir-
regularities and, hence, depends weakly on the fine
structural features of the material. To derive the consti-
tutive equations (2) in a cluster plasma, we use and
substantiate the model of a nonlinear oscillator in Sec-
tion 3. Clearly, in the linear approximation, Eq. (1) for
the effective permittivity can be easily derived by using
this model and by taking into account the contribution
of the background plasma to the polarization of the
medium. Subsequently, in Section 4, we consider the
nonlinearity mechanisms that lead to radiation self-
action and determine the characteristic fields for these
effects and relaxation times. Finally, in Section 5, we
consider the self-consistent picture of the spatiotempo-
ral evolution of an ultrashort laser pulse in a nanodis-
persed medium under typical conditions of cluster non-
linearity and group velocity dispersion of the medium
determined by both the ionized clusters and the back-
ground plasma.

3. CLUSTER POLARIZATION DYNAMICS

When the interaction of laser pulses with a cluster
plasma is investigated, two stages of the process that
differ greatly in pattern should be distinguished. At the
first stage, which is strongly nonstationary and takes a
time of the order of several field oscillation periods,
inner ionization of clusters takes place and plasma
bunches are formed. The subsequent (main) part of the
pulse propagates in a strongly inhomogeneous medium
composed of expanding plasma bunches.

Let us next consider the dynamical processes in the
model of an isolated cluster in an external variable elec-
tric field. First, we will analyze the polarization behav-

0

1

neff
2

ωbg ωc ω

Fig. 1. Effective refractive index squared  versus fre-

quency of the incident radiation ω. The dashed line indi-
cates the corresponding dependence in the absence of
clusters.

neff
2
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ior of the medium using the simplified model of a
spherical cluster and then consider a more rigorous
model that includes both the cluster ionization and its
structural changes. In both cases, we will assume that
the cluster size is much smaller than the wavelength.
This condition is satisfied in experiments on the inter-
action of laser radiation with cluster targets and allows
the processes in an isolated cluster to be considered
under the assumption that the external electric field is
uniform.

3.1. Polarization Dynamics 
of a Spherical Cluster 

To find the nonlinear response of the medium at the
laser frequency, let us first consider the simplified
model of a cluster1 in the form of a superposition of two
uniformly charged spheres of radius a: positively
charged “heavy” and negatively charged “light”
spheres. In the presence of an external electric field
E(t), the charged-particle density n increases and the
cluster is polarized. The displacement x of the center of
mass of the electron subsystem along the field is
described by the equation2 

(2)

where the oscillation eigenfrequency ωc = ωp/  of the
electron subsystem (the dipole resonance frequency of
the sphere) was introduced. The change in plasma den-
sity inside a cluster during the ionization of atoms is a
rather complex process. The various (tunneling, above-
barrier, thermal, etc.) ionization mechanisms are dis-
cussed in detail in [14]. However, for our purposes,
determining the (linear and nonlinear) dipole moment
that emerges during field cluster ionization proves to be
sufficient for the ionization to be fast near the pulse
leading edge. We will describe the actual cluster ioniza-
tion process by a model field dependence of ionization,

(3)

1 The simplified cluster model was used previously in [15] to study
the harmonic generation effects in a cluster plasma.

2 Equation (2) describes the dynamics of a plasma bunch with a
variable number of particles and, in fact, implies that the particles
at the time of their production (or loss) have a velocity equal to
the mean velocity of the distribution. This approximation is ade-
quate to allow for the particle losses through outer ionization. The
appearance of new particles via ionization will be taken into
account more accurately if the density n in the first term on the
left-hand side of Eq. (2) is placed under the sign of the time deriv-
ative. This corresponds to the production of electrons with a zero
velocity at the point with x = 0. Note, however, that this inaccu-
racy has virtually no effect on the results at the high ionization
rate that takes place for intense ultrashort laser pulses.

d
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----- a3n
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td

----- 
  ωc

2 a6nx

x2 a2+( )3/2
--------------------------+
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where ωa is the atomic frequency, na is the atomic den-

sity in the cluster, and Ea is the atomic field (Ea = e/ ,
ra is the atomic size). Here, it is important that the
plasma density at electric fields of the order of the
atomic fields reaches a stationary value, n = na , on time
scales shorter than the duration of the pulse leading
edge. Below, we will compare the results obtained
using this simple model with our numerical simulations
of the ionization kinetics by the molecular dynamics
method (see Section 3.2). It is convenient to represent
the system of equations (2) and (3) in dimensionless
form:

(4)

(5)

where we normalized the displacement x and the cluster
size a to the initial cluster size a0 (x/a0  x, a/a0 
a), the density n to the maximum charged-particle den-
sity equal to the atomic density na in the cluster
(n/na  n), and the electric field E to the atomic field;
the variable t is related to the dimensional time as t 
ωct; and the parameters α, δ, and q are defined by the
relations

(q is the total number of ionized particles in the volume
of the atom).

Let us consider the behavior of a cluster in an exter-
nal harmonic electric field

For a stationary ionized cluster (a = 1, n ≈ 1) in the lin-
ear regime (x ! a = 1), Eq. (4) describes the forced
oscillations with the frequency of the external field ω
and the free oscillations with the frequency ωc = 1
excited during cluster ionization. Under the experimen-
tal conditions, the external electric field is a low-fre-
quency one, ω ≈ 0.1ωc ! ωc . At electric fields of the
order of the atomic fields, the inner cluster ionization
occurs on time scales much shorter than the period of
free oscillations. This implies that the interaction of the
incident radiation with the plasma is nonadiabatic.
Since the plasma density in the cluster increases much
faster than the field amplitude, let us estimate the
amplitude of the free oscillations in the approximation
of instantaneous ionization. Assuming that a = 1 and

ra
2

d
dt
----- a3n

dx
dt
------ 

  a3nx

x2/a2 1+( )3/2
--------------------------------+ δna3

q
--------E t( ),=

∂n
∂t
------ α 1 n–( ) 1

E
------ 2/3 E–( ),exp=

α 4ωa/ωc, δ ra/a0, q 4πn0ra
3/3= = =

E t( ) E0 t( ) ωt.cos=
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n = θ(t – t0) (θ(t) is the Heaviside unit step function) in
Eq. (3), we find the amplitude of the free oscillations

and the amplitude of the forced oscillations

Thus, the dipole moment of the free cluster oscillations
is of the same order of magnitude as that at the fre-
quency of the external field.

The radiative damping time scale (τr ≈ ((ka)3ωc)–1,
where k is the wave number) of the free oscillations
even for large clusters is

(6)

i.e., it exceeds the duration of the femtosecond laser
pulses used. However, the amplitude of the free oscilla-
tions can change as the ionized cluster expands. At a
fixed total number of particles inside the cluster, the fre-
quency of the free oscillations decreases proportionally
to a–3/2. In accordance with the adiabatic invariant, their
amplitude increases rather slowly (proportionally to
a3/4). At the same time, the amplitude of the forced
oscillations increases much faster:

(7)

i.e., proportionally to a3. As a result, the free oscilla-
tions become invisible against the background of the
forced oscillations in a certain time, and their contribu-
tion to the polarization can be disregarded.

Our numerical analysis of the system of equations (4)
and (5) in an external periodic electric field

(8)

with a relaxation time scale of 1/γ confirms the results
of the above qualitative analysis of the cluster polariza-
tion dynamics. The initial conditions were chosen to be
the following:

(9)

The calculations were performed for ω = 0.1, E0 =
0.3, and α = 10. Figure 2 shows the time evolution of
velocity for a cluster expanding as

The expansion coefficient, β = 0.003, was chosen in
such a way that the electron plasma frequency in the

A0

δE t0( )
q ωc
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--------------------------
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----------------≈=
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ionized cluster decreased to the frequency of the exter-
nal field at a time equal to 2/3 of the laser pulse dura-
tion. We see (inset to Fig. 2) the excitation of intense
free oscillations at the leading edge.

As the cluster expands, the amplitude of the forced
oscillations increases as (7) to values at which the elec-
tron nonlinearity begins to play a stabilizing role. The
transition between the linear (x ∝  a3) and nonlinear
(x ∝  a) regimes is clearly seen in Fig. 2 and occurs (for
the parameters used in our numerical calculations) at
ωt > 1350. On these time scales, the oscillator fre-
quency decreases to the frequency of the external field,
but the free oscillations are excited weakly, since the
process is nonstationary. An increase in external field
E0 leads to an increase in oscillation amplitude to val-
ues on the order of the plasma bunch size a and to the
subsequent detachment of the electron component from
the ion component, i.e., to the cluster decay. In what
follows, we will consider the interaction of ultrashort
laser pulses of moderate intensity at which the nonlin-
earity is weak with clusters.

3.2. A Kinetic Model of the Cluster Dynamics 

Simulations of the processes by the molecular
dynamics method are increasingly used to study the
kinetic effects in a cluster [16]. Despite its well-known
shortcomings, we investigated the polarization dynam-
ics of a cluster in an external electric field by this
method. Our numerical calculations show the follow-
ing. During its evolution, the cluster loses its electrons
(outer ionization takes place) and expands (predomi-
nantly in the direction of the external field); these pro-
cesses prove to be mutually stimulating. The electron
cloud oscillates at the frequency of the external field

200 400 600 800 1000 1200 1400 1600
ωt
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Fig. 2. The oscillation dynamics of an expanding cluster
exposed to an external quasi-harmonic electric field. At
ωt > 1350, the linear oscillatory regime becomes nonlinear,
which is accompanied by the stabilization of the oscillation
amplitude. The inset illustrates the evolution of the cluster
at the initial stage immediately after its ionization.
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against a background of the expansion of the ion sub-
system. These oscillations are accompanied by elec-
trons periodically “splashing out” into the surrounding
space at times corresponding to the maximum acceler-
ation. As a result, the near-boundary region of the clus-
ter is depleted in electrons. The fraction of the electron
losses in the outer ionization process reaches half of the
total number. However, despite the new details in the
picture of cluster dynamics (a self-consistent expansion
of the plasma bunch, a deviation of the shape from a
sphere, a nonuniform electron density distribution
inside the ionized cluster, etc.), the qualitative behavior
of the dipole moment (an integrated characteristic) of
the cluster (Fig. 3) is the same as that in the simplified
model (Fig. 2). We clearly see an increase in the ampli-
tude of the forced oscillations attributable to cluster
expansion followed by the stabilization determined by
nonuniformity saturation. The electrodynamic
response of a cluster to an external field at the initial
stage of its evolution is shown separately on an
enlarged scale, in the inset to Fig. 3. We see that the
high-frequency component of the process, as in the
simplified model, decreases appreciably in a time of the
order of several oscillation periods of the external field.
Apart from the cluster expansion, the internal dissipa-
tive relaxation of high-frequency irregularities also
contributes to the damping; this eventually leads to the
rise in the temperature of the electron subsystem
observed in numerical experiments.

At ωt = 90, the frequency of the external field is
equal to the “current” frequency of the free oscillations
of the cluster, and one might expect the object’s reso-
nant properties to manifest themselves. However, since
the process is nonstationary, the resonant amplification
of the oscillations manifests itself weakly.

20 60 8040 100 120
ωt

5 10 15 20–5 × 10–4

0
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0

0.005

0.010
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Fig. 3. The time dependence of the mean electron velocity
qualitatively resembles the results obtained in the simplified
model for the motion of an electron sphere against the back-
ground of an expanding ion sphere.
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Thus, a comparative analysis indicates that the
simple model in which the expansion rate is fixed (Sec-
tion 3.1) satisfactorily describes the polarization
dynamics of a cluster in the main part of an electromag-
netic pulse.

4. ANALYSIS 
OF SELF-ACTION MECHANISMS

Before we turn to a self-consistent description of the
self-action effects, let us consider in more detail the
self-action mechanisms in a cluster plasma and esti-
mate the characteristic fields for the nonlinear effects
and the relaxation time scales.

The amount of material in the gaseous state (outside
clusters) is variously estimated to reach 90%. The Kerr
nonlinearity of the atoms of the background medium
can play a certain (focusing) role near the leading edge
of a laser pulse. As the gas is ionized, its contribution
becomes appreciably weaker. For ultrashort laser
pulses, the relativistic nonlinearity related to the depen-
dence of the electron mass on the oscillation velocity in
the wave field is commonly considered as the main
nonlinearity mechanism. However, the characteristic
field for this nonlinearity exceeds appreciably the
threshold value for the cluster decay (10). Below, we
consider other possibilities.

4.1. Electron Nonlinearity 

In the model of uniformly charged spheres in a field
with a frequency ω much lower than the eigenfre-
quency of the ionized cluster, we can estimate the max-
imum amplitude of the external field from Eq. (2),

(10)

at which the oscillations of the plasma bunch remain
localized near the ion core. If the amplitude of the
forced oscillations is on the order of the cluster size a,
the oscillatory system decays (the electron cloud is
detached from the ion cloud).

To determine the characteristic field for the electron
nonlinearity of the cluster, let us find the nonlinear cor-
rection to x from (2) using the perturbation method
(x ! a). Averaging over the field period yields

(11)

Thus, the nonlinearity is a focusing one; the character-
istic field is

(12)

i.e., it is virtually identical to field (10) at which the
cluster decays. When the total number of particles
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inside the plasma bunch is conserved (  = const),
this implies that the characteristic field for the electron
nonlinearity decreases with cluster expansion as

(13)

The cluster dipole moment

in this approximation is

(14)

Given relation (13), it can be seen that the nonlinear
part of the polarization increases with cluster expansion
as the seventh power of the plasma bunch size,

(15)

4.2. Ionization Nonlinearity 

Our numerical analysis of the processes inside a
cluster by the molecular dynamics method shows that
some of the electrons are lost even at fields weaker than
the plasma bunch decay field (10).3 To estimate this
effect, we proceed as follows. Let us consider a test
electron located near the cluster boundary. The force of
inertia acting on it in an oscillating electric field is

(16)

This electron will not return to the cluster during the
oscillations if the centrifugal force (16) exceeds the
force of attraction to the uncompensated ion charge of
the cluster

(17)

Comparing (16) and (17), let us estimate the charge q
that the cluster will lose in an oscillating external elec-
tric field:

(18)

Thus, the outer cluster ionization causes the dipole
moment of the plasma bunch to decrease,

The characteristic field for the ionization nonlinearity

(19)

3 In what follows, we will call this process outer ionization.
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appreciably exceeds the corresponding field for the
electron nonlinearity (15).

The inverse process, the settling of electrons on the
cluster surface, is possible in the presence of a back-
ground plasma. Estimates indicate that the effect of this
recombination is appreciably weaker than the contribu-
tion from the outer ionization and that the characteristic
field for the recombination nonlinearity is considerably
larger than (15).

A similar conclusion can also be reached for the
thermoionic emission of electrons from the cluster.
Assuming the temperature of the plasma bunch to be
equal to (larger than) the electron oscillation energy, the
cluster charge can be easily estimated using the expres-
sion for the number of thermal electrons emitted by a
heated surface [14]. It differs little in magnitude from
that obtained above from the balance of forces (18).
Consequently, the striction nonlinearity also dominates
over the thermal-ionization nonlinearity in this case.

4.3. Striction Nonlinearity 

In view of the structural peculiarities of the cluster
plasma, the possibilities of the ponderomotive action of
the field on the medium are enhanced significantly. On
the one hand, the background plasma density is redis-
tributed in the nonuniform field of the wave beam, as in
a homogeneous medium. In our case, however, the
relaxation time scale of the ordinary striction nonlin-
earity, τs = L⊥ /v s (L⊥  is the transverse scale of the wave
beam, and v s is the speed of ion sound), appreciably
exceeds the laser pulse duration, τs @ τ, which signifi-
cantly weakens its role. Another possibility is associ-
ated with the deformation of an ionized cluster in a
wave field. The time scale of this process for a cluster
is τc ≈ a/v s , i.e., considerably (by a factor of a/L⊥ )
shorter than the plasma redistribution time on the trans-
verse scale of the beam. Let us determine the nonlinear
polarization of a plasma bunch as it is deformed in a
wave field. Following [12], we assume that the deforma-
tion consists in uniform contraction or extension of the
object and that its shape remains unchanged. The expres-
sion for the total thermodynamic potential of a spherical
body in an external uniform electric field is [12]

(20)

where Φ0 pertains to the body in the absence of a field
at fixed pressure P and temperature T; ε and V are the
permittivity and volume of the body, respectively, con-
sidered as functions of P and T. Hence, the change in
volume ∆V = V – V0 (V0 is the initial volume of the
body) can be found by differentiating ε with respect to

the pressure (at constant T and ). For an ionized clus-
ter (a medium in which the permittivity depends on the

Φ Φ0 P T,( ) V
16π
---------3 ε 1–( )

ε 2+
-------------------E

2
,–=

E
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density, ε – 1 ~ 1/V, and the equation of state is PV =
RT), we get

(21)

As a result, we obtain the same expression for the
dipole moment

of a plasma bunch as that for the electron nonlinear-
ity (14). The characteristic field for the (focusing) stric-
tion nonlinearity under the conditions in question
(|εc| @ 1) is

(22)

Comparing the characteristic fields of the electron (12)
and striction (22) nonlinearities,

(23)

we note that the electrostriction effect is dominant for
clusters with a size a much larder than the Debye
length rD . However, the relaxation time scale of the
electrostriction nonlinearity

(24)

is comparable to the duration of the laser pulses used in
our experiments even for the initial cluster size. The
expansion of plasma bunches is accompanied by a fur-
ther weakening of the contribution from the striction
nonlinearity.

The following conclusions can be drawn from our
analysis of the nonlinearity mechanisms that lead to the
self-action of electromagnetic radiation. Since the ion-
ized-cluster size exceeds the Debye length (a > rD), the
striction nonlinearity of a plasma bunch in an electric
field (Section 4.3) has the lowest threshold. However,
the time scale of the electrostriction nonlinearity is
longer than (on the order of) the duration of the laser
pulses under consideration. In addition, the characteris-
tic field for the inertia-free electron nonlinearity (12)
decreases with cluster expansion at an appreciably
higher rate than the corresponding field for the electros-
triction nonlinearity (22). As regards the ionization and
recombination nonlinearities, they not only are deter-
mined by higher characteristic fields, but also weaken
one another. Thus, we have every reason to believe that
the self-action dynamics in the main part of the laser
pulse is determined by the electron nonlinearity of
plasma bunches in a fine-dispersed medium.
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5. SELF-ACTION DYNAMICS
OF LASER RADIATION IN A CLUSTER PLASMA

The above analysis of the electrodynamic processes
in a cluster plasma leads to the following formulation of
the problem. Let us next consider the spatiotemporal
evolution of an ultrashort laser pulse in a nanodispersed
medium in which the nonlinearity is determined by the
system of plasma bunches, while the group velocity
dispersion is determined by the ionized clusters and the
background plasma. We assume that the spherical clus-
ters expand according to a given law and that the non-
linearity mechanism is associated with the anharmonic-
ity of the electron motion (Section. 4.1).

5.1. Equation of Nonlinear Optics 

To describe the self-action dynamics of radiation at
a frequency ω much shorter than the eigenfrequency of

the ionized cluster ωc = ωp/ , but higher than the
background plasma frequency ωbg (see Fig. 1), we use
the following equation for a wavepacket propagating
along the z axis:

(25)

The last term in Eq. (25) describes the background
plasma effect. We define the cluster-related polarization
as

where nc is the cluster density. We find the dipole
moment of a single cluster p by solving Eq. (2) by the
perturbation method. In the approximation under con-
sideration, it differs from (14) in that it includes the
dynamical part of Eq. (2). As a result, we obtain the fol-
lowing expression for the polarization of the cluster
subsystem:

(26)

where ωc is the frequency of the free oscillations of a
cluster with the initial size a0. In Eq. (26), we took into
account the fact that the total number of particles in the
volume is conserved as the cluster expands (na3 =
const). Substituting (26) into (25) yields an equation for
the electric field of the wave beam,

(27)
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where

The linear dispersion relation for a field

in a medium with fixed parameters is

(28)

It describes the waves in the approximation of weak
dispersion of the cluster subsystem (see Fig. 1). For
quasi-monochromatic radiation, expanding the right-
hand side near the central frequency ω0 yields

(29)

Hence, we obtain

(30)

for the group velocity of the wavepacket v g = ∂ω/∂kz

and

(31)

for the group velocity dispersion parameter. Thus, in a
cluster plasma with a low background density,

, (32)

the group velocity dispersion is normal (k2 > 0). More-
over, as the cluster expands, inequality (32) is satisfied
better and better; i.e., the dispersion of the medium
remains normal. If, however, the background plasma
density is fairly high and the plasma (anomalous) dis-
persion dominates at the leading edge of the wave-
packet,

(33)

the plasma cluster expansion can lead to a change of the
dispersion from anomalous to normal inside the pulse.
In this more complex regime of wave field propagation,
expansion (29) is not enough, and the third-order dis-
persion should be taken into account. Our calculations
show that the coefficient ∂3k/∂ω3 is positive and equal
to

(34)
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To describe the self-action dynamics of wavepackets,
we can pass from Eq. (29) to the equation for the com-
plex amplitude of the field envelope. In our case, the
cluster is a nonstationary object. To use the standard
procedure for shortening (27), we assume that the clus-
ter expansion rate is the same in the beam cross section
(

 

b

 

 = 

 

b

 

(

 

t

 

, 

 

z

 

) depends only on the time and the longitudi-
nal coordinate inside the pulse). As a result, for the
complex amplitude of the envelope

we obtain an equation in the frame of reference moving
with the local group velocity (30) in the adiabatic
approximation:

(35)
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. Equa-
tion (35) does not include the correction for the nonsta-
tionarity of the medium. It is well known [17] that in a
nonstationary medium, the expression for the permit-
tivity 
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) in the wave equation should be substituted
with

The correction to the quasi-stationary value of 
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proves to be significant near the geometrical resonance
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/ . Since we are interested in the processes in
the range of parameters

in which the permittivity 
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(

 

ω

 

, 

 

t

 

) is close to unity, this
correction can be ignored. This equation differs from
the equations that are usually obtained in this case by
the term containing the dependence of the group veloc-
ity on the wavepacket amplitude.

To investigate the self-action dynamics in a cluster
plasma, it is convenient to pass from Eq. (35) to an
equation in dimensionless variables:

(36)
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where

amax is the maximum cluster size reached at the pulse
trailing edge. Since these coefficients depend strongly
on the cluster size (e.g., the coefficient of the nonlinear-
ity is proportional to a7), we assume, for simplicity, that
d = dmin = 0 at the leading edge. Depending on the back-
ground plasma density, the cluster expansion rate, and
the pulse duration, the parameter χ can be positive or
negative and change sign inside the pulse.

Let us next consider the self-action of laser radiation
in a cluster plasma separately for normal (χ > 0), anom-
alous (χ < 0), and combined dispersions. Since the
coefficients in (36) depend on τ, Eq. (36) is not a
Hamiltonian equation. Therefore, the only integral rela-
tion that holds here is the total pulse energy integral
related to the absence of dissipation in the system:

(37)

We can find from the corresponding continuity equation,

(38)

that the center of mass of an axisymmetric wavepacket
moves with the velocity

(39)

i.e., generally nonuniformly. This leads to a change in
the laser pulse shape, which also takes place in a homo-
geneous medium where it is determined by the depen-
dence of the group velocity on the wavepacket ampli-
tude. In our case of an expanding cluster, the sharp
increase in d and χ when passing from the leading edge
of the pulse to its trailing edge makes the deformation
of the envelope near the trailing edge the dominant
process.

To investigate the self-action in a cluster plasma, let
us turn to numerical simulations of the evolution of the
system.

Ψ A/Acr, Acr
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ωcamax
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τ 2ωξ
c

----------, rnew

ω2amax
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∂
∂τ
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∂
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----- τ Ψ 2 τ r⊥dd∫=

=  d7/2 Ψ 4/2 iχ Ψ*Ψτ ΨΨτ*–( ) τ r⊥ ,dd+(∫–
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5.2. Self-Action 
in a Normally Dispersive Medium 

The self-action of a laser pulse in a homogeneous
medium with normal group velocity dispersion (χ > 0)
is determined by the competition between the trans-
verse self-focusing compression and the longitudinal
spreading. For three-dimensional wavepackets with a
power P exceeding its critical value, the self-compres-
sion process is predominant (see, e.g., [18–23]) and is
accompanied by a significant field strengthening near
the system’s axis. Estimation of the critical self-focus-
ing power in a cluster plasma yields

(40)

where Pcr = 11.7 is a quantity well known from the the-
ory (the dimensionless critical power of an axisymmet-
ric homogeneous wave beam). Considering (40) as a
local relation, we conclude that the part of the pulse (the
τ region) in which self-focusing is possible is deter-
mined by the condition P/Pc > 1 and that optimal con-
ditions for self-focusing are created in the τopt section
where the ratio P/Pc ~ Pa7 reaches its maximum. Thus,
the increase in cluster size on the pulse length displaces
the τopt section to the trailing edge. Apart from the
deformation of the envelope profile of a three-dimen-
sional wavepacket, the nonlinear dispersion in a homo-
geneous medium [24] also affects the self-focusing rate
by enhancing it at low values of α and weakening or
even preventing self-focusing at high values of this
coefficient.

The results of our numerical analysis of the self-
action dynamics of a Gaussian wavepacket for normal
dispersion are presented in Figs. 4 and 5.

The initial distribution was specified in the form

(41)

with the parameters ar = 4, aτ = 20, and A0 = 1. In
numerically solving Eq. (39), we approximated the
dependence d(τ) by a piecewise linear function of the
longitudinal coordinate,

which models a power-law increase in cluster size on
the laser pulse length. According to qualitative models,
the field maximum shifts rapidly to the pulse trailing
edge. The position of the maximum is determined pri-
marily by the optimal conditions for self-focusing and,
thus, depends on the pulse intensity profile and the crit-
ical power profile. Since the group velocity depends on
the amplitude, strengthening of the self-focusing field
gives rise to a paraxial energy flux toward the pulse
leading edge. Accordingly, the field peak shifts to the
region where the characteristic field for the nonlinearity

Pc

a0

a
----- 

 
7 c2

4αω2
-------------Ecr

2 cPcr,=

ψ z = 0 r τ, ,( ) = A0 0.5 r/ar( )2– 0.5 τ /aτ( )2–( )exp

d 0, τ 0, d> τ/aτ , τ 0,<–= =
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increases, and the self-focusing process weakens. As
the maximum shifts, it fragments, as in a homogeneous
nonlinear medium with normal dispersion.

We see from Fig. 5a how strongly the wavepacket
dynamics depends on the initial conditions. For a pulse
with an initial amplitude of A0 = 1, we have a relatively
small maximum strengthening, Amax/A0 ≈ 5.5, at a dis-
tance of z ≈ 8.5 from the entrance to a nonlinear
medium. An increase in the initial amplitude to A0 =

–25–30 –20 –15 –20 –5 0 5 10 15 20 25
τ

0

0

0

0

5
r

z = 0.04

z = 7.13

z = 7.63

z = 8.16

Fig. 4. The pattern of isolines of a field with the initial dis-
tribution ψ(z = 0, r, τ) = exp(–0.5(r/4)2 – 0.5(τ/20)2) for
consecutive pulse positions in the case of normal disper-
sion. The splitting of the field peak into two secondary
peaks is typical of a homogeneous medium without nonlin-
ear dispersion.
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1.25 causes a sharp increase in the field strengthening
at half the distance. The computational accuracy in the
numerical scheme used is determined by the longitudi-
nal cell size; when longitudinal field scales of the order
of the cell size appear, the accuracy becomes insuffi-
cient and the computation is interrupted. The computa-
tion of the case with A0 = 1.25 was interrupted because
the accuracy was violated at Amax/A0 ≈ 40. However, we
believe that there is no real singularity in the solution,
but the same processes as those in the case with a
smaller amplitude A0 take place; these processes also
lead to the limitation of the singularity, but at much
higher intensities in the peak. Figure 5b illustrates the
behavior of the characteristic scales of the field peak in
the case with A0 = 1. The characteristic scales ar and aτ
were defined here as the (respectively, radial and longi-
tudinal) distances at which the field decreased by a fac-
tor of e compared to its maximum value. The dotted
curve in Fig. 5b shows that the field distribution is not
isotropized during the evolution (the ratio aτ/ar of the
longitudinal and transverse scales does not tend to
unity), which is also typical of self-action in a homoge-
neous medium [18–23].

5.3. Self-Action 
in an Anomalously Dispersive Medium 

At a fairly high background plasma density

( /ω2 > / ), the group velocity dispersion in
the medium is anomalous. In this case, a self-action
regime is realized in which the dispersion is determined
by the background plasma, while the nonlinearity is
determined by the ionized clusters. A peculiar feature

ωbg
2 αamax
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Fig. 5. Dynamical picture of the parameters that characterize the field structure. Panel (a) shows the dynamics of the field maximum.
For the case with an initial amplitude of A0 = 1 (curve 1), the maximum field strengthening, Amax/A0 ≈ 5.5, is reached at a distance
z ≈ 8.5 from the entrance into a nonlinear medium. Increasing the initial amplitude to A0 = 1.25 (curve 2) leads to a sharp increase
in maximum field strengthening (in fact, to the formation of a field singularity) at half the distance, z ≈ 4.14. Panel (b) shows the
behavior of the transverse, ar (solid line), and longitudinal, aτ (dashed line), characteristic scales of the field peak. The dotted line
indicates a ratio of aτ /ar .
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of this self-action regime in a homogeneous medium is
the possibility of distributed (three-dimensional) col-
lapse. As a result, one might expect the highest rate of
spatiotemporal self-focusing. Clearly, the decrease in
the characteristic field for the electron nonlinearity as
the ionized clusters expand will also contribute to this
process.

Our numerical simulations of the self-action
dynamics of laser radiation for anomalous dispersion

–15–20 –10 –5 0 5 10 15 20
τ

0

0

0

0

5
r

z = 0.04

z = 10.04

z = 18.93

z = 19.29

Fig. 6. The pattern of isolines of a field ψ(z = 0, r, τ) =
0.71exp(–0.5(r/4)2 – 0.5(τ/20)2) for consecutive pulse posi-

tions in the case of anomalous dispersion ( /ω2 = 2α).

There is a clear tendency for the maximum in the field peak
to shift to the pulse leading edge at the final evolutionary
stage.

ωbg
2
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confirm the features noted above. The self-focusing of
a wavepacket proves to be possible when much milder
conditions than those in a normally dispersive medium
are satisfied (the field strength in the case with field col-
lapse shown in Fig. 6 is half that for the case without
any singularity in Fig. 4). A characteristic feature in the
system’s evolution is the tendency for the wave field
structure to be symmetrized (see Fig. 7b). The corre-
sponding singular solutions of the nonlinear
Schrödinger equation with a finite energy flux into the
singularity in the regime of spherically symmetric col-
lapse were constructed in [25, 26].

Just as in a normally dispersive medium, the initial
evolutionary stage is characterized by a shift of the field
maximum to the pulse trailing edge, to the region of
optimal self-focusing conditions. As the amplitude
increases, the nonlinear dispersion also increases in
importance: as the velocity increases, the field maxi-
mum begins to shift toward the pulse leading edge,
where the role of nonlinear effects weakens. The pat-
tern of field isolines corresponding to the last computed
evolution times clearly shows a tendency for the field
maximum to escape from the peak. Clearly, the time it
takes for the field maximum to traverse the characteris-
tic longitudinal scale of the peak serves as a criterion in
this case. If this occurred earlier than the formation of a
singularity in the solution, then this would imply escape
from the regime of collapse.

Based on the well-known behavior of the singularity
of the solution in the homogeneous case (|ψ| ∝  ζ–1/2,
ζ = 0 is the singularity formation time) [25, 26], we
conclude that the nonlinear dispersion has time to pre-
vent the collapse, since the distance that the field peak
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Fig. 7. The dynamical picture of the parameters that characterize the field structure. Panel (a) shows the dynamics of the field max-
imum. The solution with an initial amplitude of A0 = 0.71 (curve 1) approaches the singularity at a distance z ≈ 19.3 from the
entrance into a nonlinear medium. When the amplitude is increased to A0 = 1.25, the singularity is formed earlier (curve 2), at z ≈
3.6. Panel (b) shows the behavior of the transverse, ar (solid line), and longitudinal, aτ (dashed line), characteristic scales of the
pulse. The dotted line indicates aτ /ar ratio, which is close to unity at the final evolutionary stage. Such symmetrization of a con-
tracting structure is typical of spherically symmetric collapse.
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traverses in the “time” ζ0 is logarithmically large in this
case:

However, the field amplitudes reached by this time are
so large and the characteristic scales are so small that,
in fact, collapse can be said to take place.

Thus, the presence of a background plasma signifi-
cantly affects the self-action dynamics, and this effect
is particularly strong for pulses in which the character-
istic dispersion and diffraction scales are of the same
order of magnitude: the pulse shortening in an anoma-
lously dispersive medium has virtually no effect on the
singularity formation conditions and time, while a sig-
nificant increase in radiation intensity is required for
self-focusing to take place in a normally dispersive
medium (a cluster plasma without any background).

At a lower background plasma density,

,

the medium has a combined dispersion: the group
velocity dispersion is anomalous at the leading edge of
the pulse and normal at its trailing edge. Since the clus-
ter and plasma dispersions have opposite signs, they
compensate each other to some degree; in the section
where

the compensation is full. Since the region of effective
self-action shifts to the pulse trailing edge and back,
which is typical of both types of dispersion of the
medium, the behavior of the solution is intermediate
between the two behaviors considered above.

6. CONCLUSIONS

We considered the self-action dynamics of laser
radiation in a cluster plasma. Based on the model of an
isolated cluster in the form of a plasma bunch in a back-
ground plasma, we substantiated the constitutive equa-
tion for a nanodispersed ionized medium. A compara-
tive analysis of the nonlinearity mechanisms showed
that the electron nonlinearity of an ionized cluster
related to the anharmonicity of the electron oscillations
in the laser field has the lowest threshold in the field of
an ultrashort laser pulse. The response of the medium to
the field action and particularly its nonlinear part were
found to depend strongly on the ionized-cluster size.
Therefore, in constructing the self-consistent picture of
the interaction between laser radiation and a cluster
plasma, we made the necessary allowance for the
plasma bunch expansion corresponding to experimen-
tal data.

ψ 2 ζ ζ /ζ0( ) ∞.ln∝d

ζ0

ζ

∫ ζ → 0

ωbg
2 /ω2 αamax

3 /a0
3<

ωbg
2 /ω2 αa3/a0

3,=
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We investigated the self-action dynamics of an
ultrashort laser pulse. The evolution of the envelope of
a wavepacket is determined by the electron nonlinearity
of an ionized cluster and by the dispersion of a highly
inhomogeneous medium. The evolution of the system
was shown to be similar for all types of group velocity
dispersion (normal, combined, and anomalous). For a
rare background plasma at a laser power exceeding the
critical self-focusing power, the self-action dynamics
of a wavepacket develops as in a homogeneous medium
with normal dispersion. The new features related to the
sharp dependence of the critical self-focusing power on
the cluster size manifest themselves in an appreciable
increase in the compression rate of the wave beam, the
attainment of higher fields, and the shift of the field
maximum to the pulse trailing edge. Since the self-
compression of the wave field takes place mainly in the
trailing part of the pulse, the pattern of self-action for
combined dispersion (anomalous dispersion at the lead-
ing edge changes to normal dispersion at the trailing
edge) is virtually identical to that for normal dispersion.
In a fairly dense background plasma, in which the dis-
persion is anomalous, the formation of an almost spheri-
cally symmetric region of a strong field should be noted
among the new features in the self-action dynamics.

In application to an experimental study of the inter-
action between laser radiation and a cluster plasma, a
strong dependence of the processes under consideration
on the ionized-cluster size should be noted. It turns out
that the self-action of laser radiation is similar in pattern
over a wide range of parameters of the medium if the
power exceeds the critical self-focusing power. Here,
one might expect both an appreciable shortening of the
pulse duration and a decrease in the transverse size of
the wave beam passed through the medium.

The critical power for the electron nonlinearity,

, (42)

decreases greatly with increasing relative size of the
expanding ionized cluster. The possibility of experi-
mental observation of the self-action effects in a cluster
plasma is thus seen to depend significantly on the clus-
ter expansion rate. The critical power is fairly large near
the pulse leading edge. However, in the dynamical
regime, a twofold increase in size compared to the ini-
tial size decreases the critical power by one and a half
orders of magnitude. For example, for the parameters of
the experiment [10] (λ = 800 nm, a0 ≈ 300 Å, na ≈
1024 cm–3), the critical self-focusing power is

(43)

Thus, for peak powers in these experiments of P ~
1010 W, the threshold conditions for the observation of
self-focusing will be satisfied if the cluster size near the
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field maximum increases by a factor of a/a0 = 3. Hence,
we conclude that the self-focusing experiments in [10]
can be interpreted in terms of the suggested mecha-
nism. It should be noted that the absorbability of self-
focusing inferred from the critical power parameter
should be considered as an overestimate, as suggested
by our numerical simulations of the self-focusing
dynamics in a medium with normal group velocity dis-
persion. An even larger decrease in threshold character-
istics might be expected at a higher background plasma
density and for anomalous dispersion.
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Abstract—A complete theory of turbulent boundary layer flow over a flat plate with uniform wall suction is
proposed. The theory relies on an asymptotic analysis of the Reynolds equations and dimensional consider-
ations and does not involve any special closure hypotheses. Characteristics of the turbulent boundary layer with
suction are calculated for the entire range of flow parameters by using the known characteristics of a reference
flow (turbulent boundary layer over an impermeable flat plate). The velocity and shear stress profiles, the dis-
tribution of skin friction along the plate, and integral flow characteristics are obtained by using only the
known velocity profile in the reference flow. The normal Reynolds stresses are calculated by using analogous
characteristics of the reference flow. Results are presented in terms of scaling variables. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Turbulent boundary layer flow is generally modeled
by using various semiempirical hypotheses about tur-
bulent transport, turbulence model equations, and other
approximations. The relatively few results that can be
obtained without invoking any hypotheses (for zero-
pressure-gradient flows) include Prandtl’s law of the
wall, von Kármán’s velocity defect law, the logarithmic
velocity profile, the von Kármán skin-friction law, and
certain scaling relations for Reynolds stress components.

These results can be called “exact” to the extent that
they were derived by dimensional analysis under very
general assumptions [1–3] (see also [4]).

It was shown in [5–9] that the variety of “exact”
solutions can be substantially increased by using the
fact that the flow in a turbulent boundary layer with
transpiration is determined by a finite number of known
parameters [5–7]. Accordingly, there exists a universal
relation between turbulent shear stress and mean-veloc-
ity gradient. For the dynamic problem, this fact can be
used to reduce the momentum equation to a first-order
ordinary differential equation. Its analysis yields a scal-
ing law for the mean velocity profile extending the log-
arithmic law for velocity to flows with transpiration.

This approach makes use of dimensional analysis
and the physical assumptions underlying the classical
results [1–3], but essentially relies on equations of
motion.

The approach developed in [5–7] can be extended to
other boundary layer problems depending on a finite
number of parameters. In particular, it was shown
in [8, 9] that the Reynolds stress components in a zero-
pressure-gradient boundary layer flow over a flat plate
with uniform transpiration are universal functions of
1063-7761/05/10104- $26.000741
the streamwise-velocity gradient. For boundary layers
with suction [9], these functions can be completely
determined by using known characteristics of a refer-
ence flow, namely, the well-studied turbulent boundary
layer flow over an impermeable flat plate. In particular,
only the profile of streamwise velocity in the reference
flow is required to find the relation between shear stress
and velocity gradient.

In the present analysis, a closure condition derived
by this method is used to solve the problem for an arbi-
trary suction velocity by the asymptotic method devel-
oped in [10, 11] for boundary-layer equations at high
Reynolds numbers.

The resulting “exact” profiles of mean velocity,
Reynolds stress components, skin friction coefficient,
and integral flow characteristics are expressed in terms
of scaling variables and compared with DNS results
and experimental data. This comparison can be used to
evaluate the experimental accuracy.

2. STATEMENT OF THE PROBLEM

Consider the incompressible turbulent boundary
layer flow over a smooth flat plate with a constant free-
stream velocity Ue and a constant wall suction velocity
vw parallel to the normal vector. The turbulent flow is
assumed to develop from an origin located at the lead-
ing edge of the plate. The effect of free-stream fluctua-
tions on the boundary layer flow is neglected.

2.1. Closure Condition 

The mean flow characteristics (streamwise-velocity
gradient, turbulent shear stress, and boundary-layer
 © 2005 Pleiades Publishing, Inc.
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thickness ∆) are universal functions of Cartesian coor-
dinates x and y and flow parameters:

(1)

where ν is kinematic viscosity and the origin of the Car-
tesian coordinate system is set at the leading edge of the
plate. The definition of ∆ is given in the context of the
analysis presented below. Before this is done, this quan-
tity is tentatively treated as the transverse length scale
of turbulent boundary layer flow.

The first and third equations in (1) are solved for x
and Ue , and the results are substituted into the second
equation in (1) to obtain

By applying Buckingham’s Π-theorem, this relation is
rewritten as

(2)

where S is a universal function for the class of flows
considered here, which are parameterized by ν, vw, and
Ue . It is assumed that this function is continuous at

and differentiable inside these intervals. Moreover, it is
assumed that

It was shown in [7] that this condition must be satisfied
if the reference flow over an impermeable flat plate has
a logarithmic velocity distribution.

Expression (2) relates shear stress to the mean-
velocity gradient. Since the dependence of this relation
on the suction velocity must weaken with increasing
distance from the wall, the parameter β is defined so
that the denominator contains the local Reynolds num-
ber Rl .

∂u
∂y
------ F1 x y ν v w Ue, , , ,( ),=

u'v '〈 〉 F2 x y ν v w Ue, , , ,( ),=

∆ F3 x ν v w Ue, , ,( ),=

u'v '〈 〉 F4 y ν v w ∆ ∂u
∂y
------, , , , 

  .=

u'v '〈 〉 y
∂u
∂y
------ 

 
2

S Rl β η, ,( ), Rl–
y2

ν
----∂u

∂y
------,= =

β
v w

Rly∂u/∂y
-----------------------, η y

∆
---,= =

0 Rl ∞, ∞– β 0, 0 η ∞ ,<≤ ≤ ≤≤ ≤

S ∞ 0 0, ,( ) 0.≠
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Analogously, the normal Reynolds stress compo-
nents are expressed as

(3)

where S1, S2, and S3 are universal functions. However,
the continuity condition holds only for S2, which
describes the behavior of the Reynolds stress compo-
nent associated with transverse velocity fluctuations.
According to theoretical results presented in [12, 13]
and supported by measurements, its behavior near the
wall is similar to that of shear stress. Therefore, there
exists a nonzero quantity

, (4)

where κ = 0.41 is von Kármán’s constant and σ2 = 0.95
according to experimental data [4].

The behavior of the stress components 〈u'2〉  and
〈w'2〉 , which are associated with velocity fluctuations
parallel to the wall, is more complicated:

(5)

where A1 and A3 are universal constants. According to
the results of the direct numerical simulations of turbu-
lent boundary layer flow performed in [14] for Rey-
nolds numbers Rδ* (based on the displacement thick-
ness) not higher than 2000,1 

(6)

The conditions formulated here for S, S1, S2, and S3 are
based on the following physical assumptions [12, 13]:
viscosity is essential only within a thin viscous sub-
layer, and the behavior of 〈u'v '〉  and 〈v '2〉  near the wall
is independent of the outer length scale (boundary-
layer thickness), whereas the stress components 〈u'2〉
and 〈w'2〉  must depend on this scale because of the sub-
stantial anisotropy of near-wall turbulence.

1 The numerical value A3 = 0.66 given in [14] must be a misprint,
because the value in (6) is obtained by processing the data pre-
sented therein.

u'2〈 〉 y
∂u
∂y
------ 

 
2

S1 Rl β η, ,( ),=

v '2〈 〉 y
∂u
∂y
------ 

 
2

S2 Rl β η, ,( ),=

w'2〈 〉 y
∂u
∂y
------ 

 
2

S3 Rl β η, ,( ),=

S2 ∞ 0 0, ,( ) κ /σ2( )2=

S1 ∞ 0 η, ,( ) A1κ
2 η O 1( ),+ln–=

S3 ∞ 0 η, ,( ) –A3κ
2 ηln O 1( ), η 0,+=

A1 1.1, A3 0.36.= =
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2.2. Change of Variables 

The streamfunction ψ(x, y) of the mean flow satis-
fies the boundary-layer equation for zero-pressure-gra-
dient flow:

(7)

The following change of variables is performed
in (7) [10]:

(8)

The independent variables ξ and η are defined as the
logarithm of the Reynolds number based on the bound-
ary-layer thickness and the normalized distance from
the wall, respectively. In addition to the dimensionless
streamfunction Ψ(ξ, η), the unknown function Λ(ξ) is
introduced here. It is defined as the slope of ∆ as a func-
tion of the streamwise coordinate. By virtue of (2),
Ψ(ξ, η) and Λ(ξ) satisfy the following equation [10]:

(9)

(10)

(11)

where B = vw/Ue is the normalized wall suction veloc-
ity. Boundary conditions (10) and (11) are set on the
plate and in the free stream, respectively. In accordance
with the order of the differential equation, two condi-
tions (for velocity and shear stress) are set at the outer
boundary.

To find an asymptotic solution to problem (9)–(11)
at ξ  ∞, a small parameter ε and a new independent
variable are introduced:

Thus, the small parameter used in the present analysis
is inversely proportional to the logarithm of the Rey-
nolds number based on the transverse length scale of
the flow.

ψyψxy ψxψyy– νψyy u'v '〈 〉–( )y,=

x 0, y> 0: ψy 0, ψx v w,–= = =

y ∞: ψy Ue, u'v '〈 〉 0.

ψ Ue∆Ψ ξ η,( ), Λ ξ( )
dR∆

dRx

---------, ξ R∆,ln= = =

Rx

Uex
ν

---------, R∆
Ue∆

ν
----------.= =

Λ ΨηΨξη Ψηη Ψ Ψξ+( )–[ ]

=  ηΨηη( )2S Rl β η, ,( ) e ξ– Ψηη+[ ] η ,

Rl eξη2Ψηη , β B η RlΨηη( ) 1– .= =

ξ  >  ∞ – , η 0:= 
Ψ

 

η

 

0,

 
Λ Ψ Ψ

 

ξ

 

+

 
( )

 

B

 

,–= =

η ∞ : Ψη 1, ηΨηη S Rl β η, ,( ) 0,

ζ εξ , 1/ζ O 1( ).= =
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The normalized wall suction velocity is expressed as

(12)

i.e., the transverse velocity component at the wall is
assumed to be a small quantity of second order in ε.

The solution is represented by different asymptotic
expansions in ε for different flow regions. In the trans-
verse direction, two regions develop: an outer region
and a near-wall region. In the former, molecular viscos-
ity can be neglected in the boundary-layer equations
and the characteristic length scale is the boundary-layer
thickness. In the latter, the characteristic length scale is
determined by the condition that turbulent and viscous
stresses are similar in order of magnitude.

3. NEAR-WALL REGION

The variables used in the near-wall region are

(13)

where cf is the skin friction coefficient.

According to [7], since v+ is a small quantity (esti-
mated as v+ = O(ε) below), the near-wall velocity and
shear-stress profiles can be related to the velocity pro-

file (y+) in the turbulent boundary layer flow over an
impermeable plate:

(14)

(15)

The profile of rms transverse-velocity fluctuation
can also be expressed in terms of known functions:

(16)

The first term on the right-hand side in (16) is the cor-
responding profile in the reference flow, and the con-
stant σ2 is defined by (4). The estimate O(v+

 

) for the
remainder term in (14)–(16) is uniformly valid for all

 

y

 

+

 

 

 

≥

 

 0.

B ε2b, b O 1( );= =

y+

yUe cf /2
ν

-----------------------, u+

ψy

Ue cf /2
--------------------,= =

v +

v w

Ue cf /2
--------------------,=

u+
0

 

E

 
2

 

v

 

+

 
------ 1

 

v

 

+

 

u

 

+

 

+ 1–

 
( )≡

 

u

 

+
0

 

y

 

+

 
( )

 

O

 

v

 

+

 
( )

 

,+=

2
v +
------

du+

dy+
-------- u'v '〈 〉 +– 1– 

  u+
0 y+( ) O v +( ),+=

y+ 0.≥

v '2〈 〉 + v '2〈 〉 +
0

y+( )
v +

2σ2
---------u+

0 y+( ) O v +( ),+ +=

y+ 0.≥
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Outside the viscous sublayer, the function  exhib-
its logarithmic asymptotic behavior:

(17)

The role of von Kármán’s constant κ is played by

. According to experimental data, C0 =
2.05 [4].

4. OUTER REGION

Generally, two regions develop in a boundary layer
with suction along the streamwise direction [11, 15]. In
the upstream (moderate-suction) region, the shear
stress at the wall is similar in order of magnitude to that
in the outer region. While the wall suction velocity
remains constant, a strong-suction region develops as
the Reynolds number increases downstream of the
moderate-suction region, where the shear stress at the
wall is much stronger than that in the outer region. The
Reynolds stress components in the outer region are
comparable to Λ2(ξ) in order of magnitude. The moder-
ate-suction solution obtained in [11] has a singularity at

which corresponds to a vanishing leading-order term in
the expansion of Λ(ξ).

To analyze the strong-suction flow in the neighbor-
hood of this singular point (or line if the flow variable
in question depends on the transverse coordinate), a
new variable s = O(1) is introduced by the following
formula [15]:

(18)

where k is a constant parameter to be determined.
The function Λ(ξ) is a quantity on the order of ε in

the moderate-suction region. Since its leading-order
part vanishes at the singular point [11], the strong-suc-
tion solution is sought in the following form (see [15]):

(19)

(20)

Here, Ψw(ξ) is the streamfunction value on the wall,
and g(s, 0) = 0 accordingly. By virtue of the second wall
boundary condition in (10) combined with (12) and
(19), it holds that

(21)

u+
0

u+
0 y+( ) 1

κ
--- y+ln C0+( ) w+ y+( ),+=

w+ y+( ) O y+
α–( ), y+ ∞, α 0.>=

S ∞ 0 0, ,( )

ζ 2κ b–( ) 1/2– ,=

s ξ 2κ B–( ) 1/2– k B–( )ln––=

=  ε 1– ξ 2κ b–( ) 1/2––[ ] 2k εln– k b–( ),ln–

Λ ξ( ) ε2bλ s( )– O ε3( ),+=

Ψ ξ η,( ) Ψw ξ( ) η ε2bg s η,( )– O ε3( ).+ +=

Ψw ξ( )
dΨw ξ( )

dξ
-------------------+ 1

λ s( )
---------- O ε( ).+=
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Substituting (19)–(21) into Eq. (9), using (18), and
taking the limit for s = O(1) and 1/η = O(1) as ε  0,
one obtains a partial differential equation for g(s, η)
and λ(s):

(22)

Hereinafter, S is used to denote S(∞, 0, η) for brevity.
The moderate-suction solution corresponds to the

limit of Eq. (22) as

(23)

The function f(η) satisfies the following boundary
value problem for an ordinary differential equation:

(24)

The solution to problem (24) is

(25)

The function f '(η) describes the velocity profile in tur-
bulent boundary layer flow over an impermeable flat
plate [10]. It follows from (25) that its asymptotic form
at the wall is

(26)

where A0 is a constant. Expression (26) is obtained by
evaluating the integral in (25) by parts.

The opposite limit, λ = 0, corresponds to the asymp-
totic suction boundary layer (one-dimensional flow in
which all averaged flow variables depend only on the
distance from the wall [9]). This region develops far
downstream from the plate’s leading edge. Setting
λ = 0 in Eq. (22) yields the following boundary value
problem for an ordinary differential equation in g:

(27)

Hence,

(28)

ηgηη( )2S[ ] η 1 ηλ+( )gηη+ λgsη ,=

g s 0,( ) gη s ∞,( ) 0, ηgηη S
η ∞→
lim 0.= = =

s ∞, λ s( ) ∞, g s η,( ) λ s( ) f η( ).–

η f ''( )2S[ ] ' η f ''+ 0,=

f 0( ) f ' ∞( ) 0, η f '' S
η ∞→
lim 0.= = =

f ' η( ) Φ ηd

2η S
--------------, Φ η( )

η

∞

∫–
ηd

S
-------.

η

∞

∫= =

f ' η( )
F1

κ
----- ηln A0 F1ln–+( ) O ηα( ),+=

η 0, α 0, F1 f ∞( )–≡> Φ 0( )
2

------------,=

ηg''( )2S[ ] ' g''+ 0,=

g 0( ) g' ∞( ) 0, ηg'' S
η ∞→
lim 0.= = =

g'
h2

4
-----, h η( )–

ηd

η S
-----------.

η

∞

∫= =
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The formula for h(η) in (28) is used to obtain the fol-
lowing logarithmic asymptotic expression at the wall:

(29)

where A∞ is a constant.

Thus, solutions to Eq. (22) describe the entire family
of velocity profiles in turbulent boundary layers with
suction, including the limit cases of flow over an imper-
meable plate and asymptotic boundary layer flow.

Equation (22) has the first integral

(30)

(31)

The analysis presented below makes use of the function
γ(s, η) related to g(s, η) as follows:

(32)

Substituting (32) into (30) yields

Hence, the asymptotic form of γ(s, η) at the wall is

(33)

where A(s) is some function.

5. MATCHING OF SOLUTIONS

The skin friction coefficient is sought in the follow-
ing form [15]:

(34)

The solutions for the outer and near-wall regions of
the boundary layer flow are matched with the use
of (14), (17), (32), and (33) as follows. The wall vari-
ables y+ and u+ are related to the outer variables η and
Ψη by expressions (13), where the first one can be
rewritten by using (18) as

(35)

It follows from (12) and (34) that

(36)

h η( ) 1
κ
--- ηln A∞ F1ln–+( )– O ηα( ),+=

η 0, α 0,>

ηgηη( )2S 1 λη+( )gη λ g gs+( )–+ G,=

G s( ) λ s( ) g s ∞,( ) d
ds
-----g s ∞,( )+ .–=

gη γ2/4– γ G.–=

ηγη( )2S 1 O η( ), η 0.+=

γ s η,( ) 1
κ
--- ηln A s( ) F1ln–+[ ]– w s η,( ),–=

w s η,( ) O ηα( ), η 0, α 0,>=

cf

2
---- ε2b– ε4b2t s( ) O ε5( ).+ +=

y+ ε2k b–( )k cf

2
---- 2κ

ε b–
------------- s+ 

  η .exp=

v + ε b–– O ε2( ).+=
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According to (20) and (32),

(37)

Rewrite (14) in terms of the outer variables by
using (13) and (35), taking into account (34), (36), and
(37). For s = O(1) and 1/η = O(1), consider the expan-
sion of (14) in ε to terms of order unity. The expansion
of the left-hand side of (14) is

(38)

By virtue of asymptotic formula (17), the expansion of
the right-hand side is

(39)

Equating like terms in (38) and (39), one obtains k =
−1/2 and

According to the asymptotic matching principle [16],
this equality is compared to asymptotic formula (33) to
obtain

(40)

(41)

The latter relation here is used as a closure condition to
solve boundary value problem (22) for g(s, η) and λ(s).
The former combined with (31) relates the skin friction
coefficient to the resulting solution. Relation (40) can
also be derived from the integral momentum equation
for turbulent boundary layer flow.

To solve boundary value problem (22) under addi-
tional condition (41), only the function S(∞, 0, η) is
required. By virtue of Eq. (24), it can be expressed in
quadratures by using its relation to f '(η):

(42)

Since f '(η) describes the velocity profile in turbulent
boundary layer flow over an impermeable plate, it is
well known from experimental data. In this study, it is
calculated by using an empirical formula proposed
in [17]:

(43)

Ψη  = 1 ε2b
γ2 s η,( )

4
------------------- γ s η,( ) G s( )+ O ε3( ).+ +

2

ε b–
------------- γ2 4γ G 4t+ +– O ε( ).+

2

ε b–
-------------

2k 1+
κ

--------------- εln 1
κ
--- ηln s+++ +

k
1
2
---+ 

  b–( )ln C0+ + O ε( ).+

γ2 4γ G 4t+ +
1
κ
--- ηln s C0+ +( ).–=

t s( ) G s( ),=

A s( ) F1ln– s C0 2κ G s( ).–+=

S
f f ∞( )– η f '–

η f ''( )2
------------------------------------.=

f ' η( )
F1

-------------
1
κ
--- ηln 0.55 1 πη( )cos+( )–[ ] ,=

0 η 1,≤< F1
1.55

κ
----------, η y

∆
---.= =
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Fig. 1. Experimental results from [18, 19] (symbols) and computed curves of (a) skin friction coefficient and (b) displacement thick-
ness plotted in terms of scaling variables for the strong-suction flow: s—[18]; h—[19] (indirect measurements); j—[19] (mea-
sured with floating elements).
The boundary-layer thickness ∆ is defined here as the
distance from the wall to the point where the stream-
wise mean-velocity component differs from Ue by
0.5%. This definition of boundary-layer thickness
related to a specific velocity profile in the reference
flow is used in what follows.

6. SCALING LAWS

6.1. Skin Friction and Displacement Thickness 

Define the scaling variables 

(44)

By virtue of (20), the displacement thickness is

(45)

By the definition of Λ(ξ) in (8), it holds that

For the strong-suction region, these expressions are
combined with (18) and (19) to obtain

(46)

(47)

Representations (46) and (47), boundary value prob-
lem (22) for g(s, η) and λ(s), the ensuing relations (31)

Z
δ*

x 
 
 

B–( )1/2 1+− 2κ–

B–
----------- 

  R
δ*

x 
 
 

.exp≡

δ* ε2beξ g s ∞,( ) O ε( )+[ ] .–=

Rx
eξd

Λ ξ( )
------------.

∞–

ξ

∫=

Zδ* –g s ∞,( )es O ε( ),+=

Zx
es

λ s( )
---------- sd

∞–

s

∫ O ε( ).+=
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and (41), and expression (40) for t(s) suggest that the
distributions of skin friction and displacement thick-
ness along the plate obey the following scaling laws in
the strong-suction region:

(48)

where Φ1 and Φ2 are universal functions.

Figure 1a shows the distribution of skin friction
coefficients along the plate plotted by representing
experimental results from [18, 19] in terms of scaling
variables (44) and using (48). Here, the intervals of the
Reynolds number and normalized suction velocity cor-
respond to well-developed turbulent boundary layer
flow: 4 ≤ Rx × 10–5 ≤ 20 and 1.2 ≤ –B × 103 ≤ 2.4 in [18],
and 3.8 ≤ Rx × 10–5 ≤ 35 and 1 ≤ –B × 103 ≤ 3.6 in [19].
In [18], the skin friction coefficient was determined
indirectly from measured velocity profiles. In [19], it
was determined both indirectly by three different meth-
ods and directly by using “floating elements” on the
wall surface.

Small values of Zδ* correspond to the moderate-suc-
tion region. In agreement with the scaling law formu-
lated above, the data points shown in Fig. 1a tend to fol-
low a unique curve with increasing Zδ*, approaching the
solution obtained by computing boundary value problem
(22), (41) (see Section 10).

Figure 1b shows the distribution of displacement
thickness along the plate measured in [18, 19]. It is
clear that the measured results plotted in terms of vari-
ables (44) can be approximated by a single curve. How-

Z
δ*

x 
 
 

ln Φ
1

2 
 
 

t( ) O B–( ),+=

t
cf /2 B+

B2
------------------- O B–( ),+=
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y/∆*
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Fig. 2. Experimental velocity profiles from [21] plotted in terms of scaling variables for Rx × 10–5 = 4.0 (s), 6.8 (h), 9.3 (n), 12 (x),
15 (e), and 20 (,): (a) B = –0.0012, –0.036 ≤ q ≤ – 0.029; (b) B = –0.0024, –0.1 ≤ q ≤ – 0.072.
ever, this curve approaches the computed solution only
within a small interval corresponding to the strong-suc-
tion region.

6.2. Velocity and Reynolds Stress Components 

Solution of (37) as a quadratic equation for γ, com-
bined with (40) and (14), yields

(49)

Here, Ee denotes the value of E in the free stream. Rela-
tion (49) demonstrates that velocity profiles outside the
viscous sublayers of boundary layers with suction
depend on a single variable q. When q = 0, scaling
law (49) reduces to the well-known velocity defect law
for the flow over an impermeable flat plate. By virtue
of (23), (31), and (40),

(50)

The other limit case, q = –∞, corresponds to the asymp-
totic boundary layer, where

A convenient representation of results makes use of
the transverse length scale defined as

(51)

For the flow over an impermeable plate, it reduces to

Ee E–
2 Ue u–( )

Ue cf /2 B+ cf /2 Bu/Ue++( )
------------------------------------------------------------------------------=

=  γ q η,( ) O cf( ),+

q
B

cf /2 B+
------------------------≡ 1

t
-----– O B–( ), ∞– q 0.≤ ≤+=

γ 0 η,( ) f ' η( )
F1

-------------.–=

γ ∞– η,( ) h η( ).=

∆* Ee E–( ) y.d

0

∞

∫=
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the boundary-layer thickness δ*/  introduced
in [20]. By virtue of (49), it holds that

(52)

For q = 0, this expression combined with (50) yields

In Fig. 2, the velocity profiles measured in [21] for
turbulent boundary layer over a flat plate with suction
are represented in terms of scaling variables (49) for
several Reynolds numbers and two values of B. The
corresponding intervals of q are specified in the figure
caption to Fig. 2. Solid curves represent velocity pro-
files in the turbulent boundary layer flow over an imper-
meable flat plate. Since the experimental conditions
correspond to small values of q, all data points lie close
to the curves, except for the points representing the vis-
cous sublayer.

The Reynolds stress components also obey one-
parameter scaling laws. Substituting (37) into (2) and (3)
yields

(53)

(54)

cf /2

∆*
∆

------ γ q η,( ) ηd

0

∞

∫ O cf( ).+=

∆*
∆

------ F1 O cf( ).+=

ν∂u/∂y u'v '〈 〉–

Ue c f /2 B+ B–( )
----------------------------------------------

=  Q q η,( ) S ∞ 0 η, ,( ) O cf( ),+

v '2〈 〉
Ue cf /2 B+ B–( )
---------------------------------------------

=  Q q η,( ) S2 ∞ 0 η, ,( ) O cf( ),+

Q q η,( )
ηγη q η,( )

1 q–
------------------------ qγ q η,( )

2
--------------------- 1– 

  , ∞– q 0.≤ ≤=
SICS      Vol. 101      No. 4      2005



748 VIGDOROVICH
20

10

0 0.07 0.14

(a)

2
Ue u–

v w–
---------------

u'v '〈 〉–
v w–

----------------------

–By/δ*, y/∆*

1
2

20

10

0
10–3 10–1

(b)

2
Ue u–

v w–
---------------

–By/δ*, y/∆*

1

2

10–2

10

5

0
10–3 10–1

(c)

–By/δ*, y/∆*

1

2

10–2

Fig. 3. Velocity (a, b) and turbulent shear stress (c) profiles in asymptotic boundary layer calculated by using (28) (solid curves) and
predicted in DNS studies [22, 23] (dashed curves). Curves 1 and 2 are plotted with ∆∗  and –δ*/B (2) used as a transverse length
scale, respectively.
The formulas for the components 〈u'2〉  and 〈w'2〉  are
analogous to (54). The expressions for shear stress and
rms transverse velocity fluctuation must hold every-
where outside the viscous sublayer. The scaling laws
for the streamwise and spanwise velocity fluctuations
are valid in the narrower region where asymptotic rep-
resentations (5) hold.

By virtue of Eqs. (24) and (27), formula (53)
reduces to

(55)

in the limit cases of q = 0 and q = –∞, respectively.
By using (4), (5), and (33), the following expansions

are obtained for the Reynolds stress components:

(56)

These results show that there exists a near-wall region
where both square root of shear stress and rms trans-
verse velocity fluctuation are proportional to the loga-

ν∂u/∂y u'v '〈 〉–

cfUe
2/2

--------------------------------------- 1 η f ' η( ) f η( )–
f ∞( )

----------------------------------- O cf( ),+ +=

ν∂u/∂y u'v '〈 〉–
v w–

------------------------------------------- h η( )
2

----------- O cf( ),+=

ν∂u
∂y
------ u'v '〈 〉–

v w

2κ
------- ηln O 1( ),+=

u'2〈 〉3 A1v w
2

4κ2
-------------3 ηln– O 1( ),+=

v '2〈 〉
v w

2κσ2
------------ ηln O 1( ),+=

w'2〈 〉3 A3v w
2

4κ2
-------------3 ηln– O 1( ), η 0.+=
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rithm of distance from the wall, while the rms stream-
wise and spanwise velocity fluctuations behave as the
logarithm to the power 3/2. All constants in (56) are
known from experimental data for the turbulent bound-
ary layer flow over an impermeable flat plate.

6.3. Asymptotic Boundary Layer 

As applied to the asymptotic boundary layer, formu-
las (49) and (51) reduce to

(57)

Taking the integral in (28) by parts yields

Hence,

Thus, the values of the integral in (52) corresponding to
q = 0 and –∞ differ by a factor of two.

By squaring both sides of (57) and integrating the
result across the boundary layer, the following relation
is obtained:

2
Ue u–

v w–
--------------- h η( ) O cf( ),+=

∆* 2
Ue u–

v w–
--------------- y.d

0

∞

∫=

h ηd

0

∞

∫ 2F1.=

∆*
∆

------ 2F1 O cf( ).+=

δ*
B∆
-------–

h2

4
----- ηd

0

∞

∫ O cf( ).+=
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It holds that

(58)

This relation is derived by rewriting (25) with the use
of (28) as

(59)

setting η = 0, and taking into account asymptotic
laws (26) and (29).

Figures 3a, 3b, and 3c show, respectively, linear and
semilogarithmic plots of velocity and turbulent shear-
stress profiles. Solid and dashed curves represent the
results of calculations based on (28) and the DNS
results obtained for B = –0.00361 and Rδ* = 1000
in [22, 23]. Even though the simulations were per-
formed for a relatively low Reynolds number, the solid
and dashed curves shown in Figs. 3a and 3b demon-
strate very good agreement outside the viscous sub-
layer, while those in Fig. 3c are in fair agreement. The
dashed curves shown in Figs. 3b and 3c contain inter-
vals of logarithmic behavior, which are relatively nar-
row because of the low Reynolds number, in agreement
with theoretical predictions.

Figures 2 and 3 demonstrate that the profiles of
velocity and shear stress in the outer region measured
and computed in [21] and [22, 23], respectively, are in
good agreement with theory when represented in terms
of the outer scaling variables. When plotted in terms of
the near-wall scaling variables, the same set of data
points does not follow scaling laws (14) and (15). In
particular, the velocity profiles have logarithmic por-
tions with slopes close to 1/κ, but they are shifted rela-
tive to the velocity profile predicted for the turbulent
boundary layer flow over an impermeable plate. This
discrepancy between computed and measured results
can be attributed, respectively, to the low Reynolds
number used in [22, 23] and the error of near-wall
velocity measurements with a Prandtl–Pitot tube in
flows with transpiration in [21] (see [24]).

Figure 4 shows the rms velocity fluctuations in the
asymptotic boundary layer with suction plotted by
using the results reported in [22, 23]. For comparison,
the figure also shows line segments corresponding to
scaling laws (56) with constants known for the turbu-
lent boundary layer flow over an impermeable plate.
Figure 4 demonstrates that at least curves 2 and 3
(which represent the y and z components of velocity

h2

4
----- ηd

0

∞

∫
F1D

κ
----------, D A0 A∞.–= =

f ' Φh' ηd
2

---------------

η

∞

∫ hΦ
2

-------– ηh2

4
---------

h2

4
----- η ,d

η

∞

∫+ += =
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fluctuations, respectively) have distinct logarithmic
portions.

6.4. Boundary-Layer Shape Factors 

By virtue of (20), the velocity profile in the outer
region can be represented as

Hence, the following expressions are obtained for inte-
gral characteristics of boundary layer flow:

(60)

Ue u–
v w

--------------- gη s η,( ) εg1 s η ε, ,( ),+=

g1 s η ε, ,( ) O 1( ), ε 0.=

δ*
B∆
------- g s ∞,( ) εI1 s( ),+=

θ
B∆
------- g s ∞,( ) εI1 s( ) Bg s ∞,( )I s( ) O ε3( ),+ + +=

δ**
2B∆
----------- = g s ∞,( ) εI1 s( )

3B
2

-------g s ∞,( )I s( ) O ε3( ),+ + +

I1 s( ) g1 s η ε, ,( ) η ,d

0

∞

∫=

I s( )
gη s η,( )2[ ] ηd

g s ∞,( )
---------------------------------,

0

∞

∫–=

10

5

0
10–4 10–3 10–2 10–1

y/∆*

u'2〈 〉3

v w–( )2/3
---------------------, 

v '2〈 〉
v w–

----------------- w'2〈 〉3

v w–( )2/3
---------------------,

1

2

3

Fig. 4. Rms velocity fluctuations in asymptotic boundary
layer based on results reported in [22, 23]: (1) 〈u'2〉;
(2) 〈v '2〉; (3) 〈w'2〉 .
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where θ and δ** are the momentum and energy thick-
nesses, respectively. Formulas (60) entail the relations

Combined with (40), they determine relations between
the boundary-layer shape factors, suction velocity, and
skin friction coefficient:

(61)

By virtue of (32) and (50), it follows that

in the limit case of the flow over an impermeable
flat plate. This integral is known as Clauser’s shape
factor [20]. Calculations based on (43) yield

(62)

1
B
--- 1 θ

δ*
------– 

  I s( ) O ε( ),+=

1
B
--- 2

3
--- δ**

δ*
---------– 

  I s( ) O ε( ).+=

1 θ/δ*–

cf /2 B+ B–
--------------------------------- Φ q( ) O cf( ),+=

2/3 δ**/δ*–

cf /2 B+ B–
--------------------------------- Φ q( ) O cf( ),+=

Φ q( ) qI s( )
q 1–
-------------.=

Φ 0( ) f '2 ηd

F1
3

-------------

0

∞

∫=

Φ 0( ) 6.61.=

1 θ/δ∗–

cf /2 B+ B–
---------------------------------

B

cf /2 B+
------------------------–

15

10

5
0 0.1 0.2 0.50.3 0.4

Fig. 5. Boundary-layer shape factor: experimental results
from [18, 19] (symbols) and computed curve. Symbol nota-
tion is the same as in Fig. 1.
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In the opposite limit case of asymptotic boundary
layer, it is expressed as

The numerical value Φ(–∞) = 39.3 combined with (61)
and B = –0.00361 can be used to find the shape factor
for the asymptotic boundary layer flow: δ*/θ = 1.17. Its
value calculated by using DNS results reported in [22, 23]
is 1.29.

Figure 5 compares the values of the boundary-layer
shape factors measured in [18, 19] with a curve com-
puted as described in Section 10. According to mea-
surements reported in [18] and [19], Clauser’s shape
factor varies from 6.4 to 6.9 and from 5.6 to 6.4, respec-
tively. The latter result is considerably lower than both
6.8 (recommended in [20]) and the value in (62) calcu-
lated in this study. The results obtained for the flow with
suction by using data from [19] also lie below the cal-
culated curve.

7. NEAR-MODERATE-SUCTION REGIME
The sum of the two expressions for gη in the limit

cases,

,

solves Eq. (22) with right-hand side set to zero. Substi-
tuting

(63)

into (22) and changing from s to the independent vari-
able τ = 1/λ, one finds that the functions ϕ(τ, η) and

(64)

solve the boundary value problem

(65)

(66)

(67)

(68)

Expression (68) is equivalent to (31) rewritten by
using (58) and taking into account (63).

Φ ∞–( )

κ h4 ηd

0

∞

∫
16F1D
-------------------.=

λ f ' h2/4–

gη λ f ' h2/4– ϕη+=

Ω τ( ) dλ
ds
------– dτ

τ2 sd
----------= =

Φ τh+( ) η Sϕηη( )η τ η Sϕηη( )2[ ] η+

=  Ω τ2ϕτη f '–( ),

ϕ τ 0,( ) ϕη τ ∞,( ) 0, η Sϕηη
η ∞→
lim 0,= = =

s τ( ) A τ( ) F1 C0– 2κ t τ( ),–ln–=

t τ( )
F1

2

τ2
-----

F1D
κτ

----------
F1

2Ω τ( )
τ

------------------–
ϕ τ ∞,( )

τ
------------------–+=

– τΩ τ( ) ϕ τ ∞,( )d
dτ

---------------------,

0 τ ∞ .<≤
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7.1. Asymptotic Solution to Boundary Value Problem 

As τ  0, the asymptotic solution to boundary
value problem (65)–(67) is sought as a regular expan-
sion in terms of τ:

(69)

(70)

The derivative of (70) is combined with the definition
of Ω(τ) in (64) to obtain

(71)

It follows from (68), (69), and (71) that

(72)

Taking the limit of (32) as τ  0 and using (40) and
(72) yields

Therefore, A(τ) = A0 + O(τ), and differentiation of (67)
combined with (72) and (64) yields

Substituting (69) and (71) into (65), one obtains lin-
ear ordinary differential equations for ϕ0 and ϕ1:

(73)

(74)

The solution to Eq. (73) satisfying free-stream
boundary condition in (66) is

(75)

In view of (75), the solution to Eq. (74) satisfying
the conditions set on the outer boundary has the form

(76)

ϕ τ η,( ) ϕ0 η( ) τϕ 1 η( ) O τ2( ),+ +=

s τ( ) σ1τ
1– σ2 O τ( ).+ +=

Ω τ( ) Ω 0( ) O τ2( ).+=

t F1τ
1– O 1( ), τ 0.+=

γ f '/F1– O τ( ).+=

Ω 0( ) 1/2κ F1.=

Φ η Sϕ0''( )' f '
2κ F1
------------+ 0,=

Φ η Sϕ1''( )' ηϕ 0''( )2
S[ ] ' h η Sϕ0''( )'+ + 0.=

ϕ0'
N1 ηd

2κη S
------------------

η

∞

∫
hN1 N2–

2κ
----------------------,= =

N1
f ' ηd
F1Φ
-----------, N2

η

∞

∫–
h f ' ηd
F1Φ

--------------.

η

∞

∫–= =

ϕ1'
N3 ηd

2κ F1η S
------------------------

η

∞

∫–
N4 hN3–

2κ F1
----------------------,= =

N3
N1

κ
------ h– 

  f ' ηd

Φ2
-----------,

η

∞

∫=

N4
N1

κ
------ h– 

  h f ' ηd

Φ2
--------------.

η

∞

∫=
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Since the function S is given by (42), the latter inte-
gral in (25) can be calculated in explicit form:

Substituting (69) and (71) into the first integral of
Eq. (65),

(77)

using (75) and (76); and taking the left-hand side of
Eq. (77) yields the following expressions required for
further analysis:

(78)

Analogous calculations are performed to find an
asymptotic expansion of t as given by (68), which
yields

(79)

7.2. Asymptotic Forms of Universal Functions 

The expansion of γ for a near-moderate-suction
regime is sought in the following form:

(80)

Substituting (80) into (32), using (79), equating the
result to (63) combined with (69), and taking into
account (75) and (76), one obtains

(81)

Combined with the expressions for a0 and a1 and

Φ 2 f f ∞( )– η f '– .=

η S Φ τh+( )ϕηη τ η Sϕηη( )2
+

+ τ η+( )ϕη ϕ– Ω f τ2ϕη–( )+

=  Ω f ∞( ) τ2 ϕ τ ∞,( )d
τd

---------------------– ϕ τ ∞,( )–

ϕ0 ∞( )
F1

κ
----- N1 0( ) 1

2
---– 

  ,=

ϕ1 ∞( )
N2 0( ) 2N3 0( )–

2κ
--------------------------------------

N1
2 0( )

4κ2
--------------.–=

t
F1

τ
----- a0

a1τ
F1
-------- O τ2( ), τ 0,+ + +=

a0

D N1 0( )–
2κ

-------------------------,=

a1
2N3 0( ) N2 0( )–

4κ
--------------------------------------

D2 2DN1 0( )–

8κ2
-----------------------------------.–=

γ q η,( ) f ' η( )
F1

-------------–
γ1 η( )

t
-------------

γ2 η( )
t

------------- O t 3/2–( ),+ + +=

t ∞.

γ1
h2

4
----- f '2

4F1
2

---------–
a0 f '
F1

---------
hN1 N2–

2κ
----------------------,–+=

γ2
γ1 2a1+( ) f '

2F1
-----------------------------

hN3 N4–
2κ

----------------------.+=
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asymptotic representations (26) and (29), this yields

(82)

Thus, while the first term in expansion (80) has a loga-
rithmic asymptotic form, the functions γ1 and γ2 have no
singularities on the wall. Calculations performed with
the use of (43) yield the following values of the con-
stant parameters in (82):

A0 = 0.230, A∞ = –1.809, N1(0) = 0.601,

N2(0) = 6.233, N3(0) = 3.354, N4(0) = 38.35.

The asymptotic expansion of the function A in (33)
can now be written as

(83)

The functions Φ1 and Φ2 defined by (46), (47) are
calculated by integrating (63) and using (58) and (69):

By using (79) to change to the variable t in this expan-
sion and taking into account (67), (78), and (83), the
following asymptotic expression for Φ1 is obtained:

(84)

Evaluating the integral in (47) by parts yields

γ1 0( )
D2 2DN1 0( )–

4κ2
-----------------------------------

N2 0( )
2κ

--------------,+=

γ2 0( )
DN3 0( )

2κ2
-------------------

N4 0( )
2κ

--------------.–=

A A0 κγ1 0( )t 1/2–– κγ2 0( )t 1–– O t 3/2–( ),+=

t ∞.

g τ ∞,( ) = F1
2τ 1–– F1D/κ– ϕ0 ∞( ) ϕ1 ∞( )τ O τ2( ),+ + +

τ 0.

Φ1 t( ) Φ1
∞ t( ) b1t 1/2– b2t 1– O t 3/2–( ),+ + +=

t ∞,

Φ1
∞ t( ) –2κ t t A0 C0,–+ln+=

b1
D N1 0( )– 1+

2κ
---------------------------------- κγ1 0( ),–=

b2

2N3 0( ) N2 0( )–
4κ

--------------------------------------=

+
N1

2 0( ) 2D– 2N1 0( ) 1–+

8κ2
------------------------------------------------------------- κγ2 0( ).–

Φ2 s τ Ω 0( )τ–
3
2
---Ω2 0( )τ2 O τ3( ),+ +ln+=

τ 0.
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By using (79) to change to the variable t in this expan-
sion and taking into account (67) and (83), this expan-
sion is rewritten as

(85)

8. NEAR-ASYMPTOTIC BOUNDARY-LAYER 
FLOW REGIME

To analyze the opposite limit of λ  0, i.e., a near-
asymptotic boundary-layer flow regime, the expression

(86)

is substituted into Eq. (22), and λ is treated as an inde-
pendent variable instead of s. The functions ψ(λ, η) and

(87)

solve the boundary value problem

(88)

(89)

(90)

(91)

8.1. Eigenvalue Problem 

It follows from (88) that the function ψ0(η) ≡
ψ(0, η) is the solution to the ordinary differential equa-
tion

(92)

Φ2 t( ) Φ2
∞ t( ) b1

1
κ
---– 

  t 1/2–+=

+ b2
1

2κ2
--------+ 

  t 1– O t 3/2–( ), t ∞,+

Φ2
∞ t( ) –2κ t t A0 C0.–+ln–=

gη –h2/4 λψη+=

Ω1 λ( ) dλ
ds
------– Ω λ 1–( )= =

h η Sψηη( )η λ η Sψηη( )2[ ] η ληψ ηη+ +

+ Ω1 λψλη ψη+( ) h

2 S
----------+ 0,=

ψ λ 0,( ) ψη λ ∞,( ) 0, η Sψηη
η ∞→
lim 0,= = =

s λ( ) A λ( ) F1ln– C0– 2κ t λ( ),–=

t λ( )
F1D

κ
----------λ λψ λ ∞,( ) Ω1 λ( ) λ–[ ]+=

+ λ2Ω1 λ( ) ψ λ ∞,( )d
dλ

----------------------,

0 λ ∞ .<≤

h η Sψ0''( )'
ωψ0'

F1
---------- h

2 S
----------+ + 0,=

ω F1Ω1 0( ),=

ψ0 0( ) ψ0' ∞( ) 0, η Sψ0''
η ∞→
lim 0.= = =
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If h is treated as an independent variable in (92),
then the following equation is obtained for the function
z(h) = :

Its solution can be represented near the wall as

(93)

where the estimate for the remainder term is derived
from (29). Consequently, the near-wall asymptotic
behavior of  follows a logarithmic law.

By solving (32) as a quadratic equation for γ and
using (86), the function γ is expressed as

Hence, in view of asymptotics (29), (33), and (93), it
follows that

(94)

This expression is substituted into closure condition (90)
and the result is differentiated with respect to λ. By vir-
tue of (87), this yields an equation for ω:

(95)

Thus, the leading terms of asymptotics of the
desired functions can be found by solving eigenvalue
problem (92), (95).

The last two terms on the left-hand side of Eq. (92)
are moved to the right, and the result is treated as a sec-
ond-order equation with known right-hand side and
solved by using the free-stream boundary conditions.
Thus, an equation subject to initial conditions is
replaced with an equivalent integral equation:

(96)

Then, the solution can be represented as a series expan-
sion in ω:

ω  0, 

ψ0'

d2z

dh2
-------- ωη Sz

F1h
------------------ η

2
---+ + 0,=

z 0( ) dz 0( )
dh

------------- 0, 0 h ∞.<≤= =

z F1 Z1 ω( )h Z2 ω( )+[ ] O e κh–( ), h ∞,+=

ψ0'

γ h2 4λψη– 4t+ 2 t.–=

A A∞ 2κ F1λZ1 ω( ) 2κ t O λ2( ),+ + +=

λ 0.

2κωZ1 ω( ) 1+ 0.=

ψ0' η( ) ω 1 h η( )
h η1( )
-------------–

ψ0' η1( )
F1

----------------- η1 f ' η( ).+d

η

∞

∫=

ψ0' η( ) = f ' η( ) ωF1 h η( )M η( ) 1– f η( )

F1
2

-----------– O ω2( ),+ +

M
f ' ηd

F1
2h

-----------,

η

∞

∫–=
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which is combined with (26) and (29) to obtain

A numerical analysis of (96) shows that Eq. (95) has
an infinite number of positive roots (see the graph of its
right-hand side in Fig. 6) and no negative roots. The
smallest root is ω = 1.423.

Thus, the desired asymptotic solution cannot be
uniquely determined by analyzing boundary value
problem (88)–(90) for a parabolic equation in the
neighborhood of λ = 0. The value of ω is found numer-
ically in Section 10 by taking into account the initial
conditions at λ = ∞.

8.2. Asymptotic Behavior of the Universal Functions 

Expression (91) can be rewritten as

(97)

By virtue of (86), (90), and (94), the function Φ1 in (48)
is represented as

Combined with (97), this expression becomes

(98)

By virtue of (47), (90), and (94), the function Φ2 sat-

Z1 ω( ) –1 M 0( )ω O ω2( ), ω 0,+ +=

M 0( ) 0.40.=

t
F1D

κ
----------

ωψ0 ∞( )
F1

--------------------+ λ O λ2( ), λ 0.+=

Φ1 D1
D
κ
----

F1

ω
-----

κψ0 ∞( )
F1D

-------------------+ λ– O λ2( ),+ln+=

λ 0, D1 A∞ C0.–=

Φ1 D1
D
κ
---- κ t

ωD
--------– O t2( ), t 0.+ln+=

6

10–1 100 103101 102

3

0

–3

–6

ω

2κωZ1(ω) + 1

Fig. 6. Right-hand side of Eq. (95).
SICS      Vol. 101      No. 4      2005



754 VIGDOROVICH
isfies the relation

In view of (97), it is equivalent to

(99)

By eliminating t from (98) and (99), the displacement
thickness is determined as a function of the streamwise
coordinate:

These relations demonstrate that the asymptotic
suction boundary layer develops only as Rx  ∞. In
this limit, both cf /2 + B and the difference of the current
and asymptotic values of displacement thickness vanish
exponentially.

9. SKIN-FRICTION LAW AND VELOCITY
AND REYNOLDS-STRESS PROFILES

9.1. Universal Skin-Friction Law 

The expressions for skin friction in flow over a flat
plate obtained in [11] for moderate and zero suction

Φ2exp
D1exp

ω
---------------- λln– O 1( ), λ 0.+=

Φ2exp
D1exp

ω
---------------- tln– O 1( ), t 0.+=

Zδ*
D
κ
---- D1

1
ω
---- D1 Zxω D1exp–( )exp– …,+exp=

Zx ∞.

B

cf /2 B+
------------------------–

0.5

–1.0
0 0.1 0.2 0.50.3 0.4

1.5

1.0

0

–0.5

–lnWδ*

Fig. 7. Skin friction coefficients in flows over impermeable
plates and plates with suction: experimental results
from [18, 19] (symbols) and computed curve. Symbol nota-
tion is the same as in Fig. 1.
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velocity can be written as

(100)

To unify (100) and (48) into a universal skin-friction
law, expression (34) for skin friction coefficient is sub-
stituted into (100) and the limit is taken for t = O(1) as
B  –0. The result is

(101)

with  and  given by (84) and (85), respectively.
The universal skin-friction law valid in the entire range
of suction velocity has the form

(102)

In the case of moderate suction, when 1/t = O(B), skin-
friction law (102) is equivalent to (100) by virtue
of (84) and (85). In the case of strong suction, when t =
O(1), it follows from (101) that (102) is equivalent
to (48).

For the near-moderate-suction regime, asymptotic
expansions (84) and (85) yield

(103)

t  ∞.

For the near-asymptotic boundary-layer flow
regime, (98) and (99) yield

(104)

t  0.

Figure 7 shows experimental results from [18, 19]
represented in the variables used in universal skin-fric-

W
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x 
 
 

cf /2( )1/2

cf /2 B+( ) 1/2±--------------------------------≡

× 2κ
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------ cf /2 cf /2 B+–( ) A0– C0+exp

× R
δ*

x 
 
 

O cf( ).=

W
δ*

x 
 
 

ln Z
δ*

x 
 
 

ln Φ
1

2 
 
 
∞ t( )– O B–( )+=

Φ1
∞ Φ2

∞

W
δ*

x 
 
 

ln Γ
1
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 
 

t( ) O cf( ),+=

Γ i t( ) Φi t( ) Φi
∞ t( ), i–≡ 1 2.,=

Γ1 t( ) b1t 1/2– b2t 1– O t 3/2–( ),+ +=

Γ2 t( ) b1
1
κ
---– 

  t 1/2– b2
1

2κ2
--------+ 

  t 1– O t 3/2–( ),+ +=

Γ1 t( ) – tln D– D
κ
---- 2κ t

κ t
ωD
-------- O t2( ),+–+ln+=

Γ2 t( ) tln tln–( )ln D–+=
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1
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------- 

  ,+ +ln
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36
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0
–20 –12 –4

cf /2 B+

B
------------------------–

–4

–20

–28
–36 –28 –20 –12

lnZ*
x

–4

–12

Fig. 8. Experimental results from [18, 19] (symbols) and computed curves of (a) skin friction coefficient and (b) displacement thick-
ness plotted in terms of universal variables. Symbol notation is the same as in Fig. 1.

–28

lnZδ**

lnZδ**

(a) (b)
tion law (102) and the curve of –Γ1 versus t–1/2 = –q
computed by solving the boundary value problem. In
agreement with asymptotic expansions (103), the com-
puted curve has the slope –b1 = 1.19 at the origin,
reaches a maximum at –q = 0.15, and tends to –∞ as
−q  ∞, as predicted by (104).

The experimental results reported in [18] substan-
tially differ from the corresponding numerical predic-
tions even for the flow over an impermeable plate. The
experimental data points taken from [19] lie fairly close
to the origin at q = 0, but widely deviate from the com-
puted curve with increasing suction velocity.

The use of the variable Wδ* makes it possible to find
the leading-order part of the relation between Reynolds
number, suction velocity, and skin friction coefficient.
Accordingly, Γ1 plays the role of a relatively small cor-
rection to a known leading-order term at q = O(1),
which is determined from experimental data as the dif-
ference of large quantities. Therefore, the discrepancy

between the values of  derived from the results
reported in [19] and those predicted by using skin-fric-
tion law (102) does not exceed 7%. The discrepancy
can be explained by the aforementioned inaccuracy of
velocity measurements, which were performed in [19]
by using a Prandtl–Pitot tube.

Moving  and  to the left-hand sides in (102),
using the expression for t in (48), and collecting like
terms, one obtains an alternative form of the universal
skin-friction law:

(105)

cf /2

Φ1
∞ Φ2

∞

Z
δ*

x 
 
 
*ln Φ

1

2 
 
 

t( ) O cf( ),+=

Z
δ*

x 
 
 
*

c f

2
----- B–( ) 1+− 2κ c f /2

B
--------------------- 

  R
δ*

x 
 
 

.exp≡
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By virtue of (101), the variables Zx , Zδ*, , and 

have similar values up to O( ). However, whereas
scaling law (48) is valid only for strong-suction flows,
universal law (105) is consistent with experimental
results in the entire range of suction velocity. This is
illustrated by Fig. 8a, where the data presented in
Fig. 1a are plotted in terms of the variables used
in (105). Here, the experimental data points follow a
unique curve and are close to the computed curve. Even
though the disagreement between the experimental
results of [18, 19] and the predicted curve is less pro-
nounced in terms of the variables used in (105) as com-
pared to those in (102), the largest discrepancy is also
observed at high suction velocities.

Since the distribution of displacement thickness
shown in Fig. 8b is plotted in terms of the modified
variables used in (105), the scatter of experimental data
points is also reduced as compared to Fig. 1b and good
agreement with computed results is achieved in the
entire range of parameters.

The universal skin-friction law formulated above
can be derived by a different method as follows. Add-
ing (14) and (49) term by term, using asymptotics (17)
and (33), substituting

(106)

and taking the double limit as y+  ∞ and η  0,
one obtains

(107)

Zx* Zδ**

B–

y+
cf

2
----R∆η ,=

R∆ln
2κ
B

------
cf

2
---- B+

cf

2
----– 

 =

–
cf

2
----ln A q( ) C0– F1ln– O cf( ).+ +
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In view of expression (45) for displacement thickness and
relations (41) and (46), it is clear that scaling law (107) is
equivalent to (105).

9.2. Velocity and Reynolds Stress Profiles 

Scaling law (49) describes the velocity distribution
across the boundary layer outside the viscous sublayer,
while scaling law (14) is valid in the near-wall region
and the part of the outer region where E has a logarith-
mic profile. A composite expansion that unifies (49)
and (14) can be written in two forms:

(108)

The functions (y+) and γ(q, η) describe the velocity
distributions in the near-wall and outer regions, respec-
tively, whereas w+(y+) and w(q, η) represent their devi-
ations from logarithmic laws in the viscous sublayer
and free stream, respectively. When y+ = O(1) and
R∆  ∞, the former expression in (108) reduces
to (14) by virtue of (106) and the asymptotic form of
w(q, η) given by (33). When 1/η = O(1) and R∆  ∞,
substituting asymptotic expression (17) yields

By virtue of (49) and (107), this expression is equiva-
lent to (33). The uniform validity of the latter expres-
sion in (108) is demonstrated analogously.

It follows from (107) that the scaling factor

R∆  relating the transverse coordinates used in the
outer and near-wall regions is a function of two argu-
ments, v+ and q. Therefore, unified velocity profile (108)
is also a function of two variables, v+ and q.

To derive composite expansions of the unified pro-
files of shear stress and rms transverse velocity fluctua-
tion, asymptotic expression (33) is used to represent the
right-hand sides of (53) and (54) as follows:

Combining (15) with (53) and (16) with (54), one

E u+
0 y+( ) w q η,( ) O cf( ),+ +=

Ee E– γ q η,( ) w+ y+( )– O cf( ),+=

0 η ∞ .<≤

u+
0

E
1
κ
--- ηln R∆ln

cf

2
----ln C0+ + + 

 =

+ w q η,( ) O cf( ).+

cf /2

Q q η,( ) S ∞ 0 η, ,( ) P q η,( ) Π q η,( ),+=

Q q η,( ) S2 ∞ 0 η, ,( ) P q η,( )
σ2

------------------ Π2 q η,( ),+=

P q η,( ) q
2κ 1 q–( )
----------------------- ηln A q( ) F1ln–+[ ] 1

1 q–
-----------,+=

Π q η,( ) O ηα( ), Π2 q η,( ) O ηα( ), η 0.= =
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obtains scaling laws for shear stress,

and rms transverse velocity fluctuation,

which are uniformly valid across the boundary layer.

10. NUMERICAL ANALYSIS

In computations, problem (65)–(67) is solved for
0 ≤ τ ≤ a (0.8 ≤ a ≤ 1.5), and then problem (88)–(90)
was solved for 0 ≤ λ ≤ 1/a.

By rewriting (65) as

(109)

solving (109) as a second-order equation with a known
right-hand side, and using the free-stream conditions
in  (66), the following integrodifferential equation is
obtained for ϕη:

ν∂u/∂y u'v '〈 〉–
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--------------------------------------------- Q q η,( ) S ∞ 0 η, ,( )=
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2
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0 y+( ) 2 1 q–( )Π q η,( )

q
--------------------------------------- O cf( ),+ +

v '2〈 〉
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u'v '〈 〉–

Ue cf /2 B+( ) B–
---------------------------------------------
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0
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Fig. 9. Velocity (a) and turbulent shear stress (b) profiles in boundary layer flow calculated for q = 0 (1), –0.25 (2), –1.5 (3),
and −∞ (4).
Substituting

ϕη = hy

to avoid singularity of the desired function on the wall,
one obtains

(110)

Relation (67) entails the closure condition

(111)

Equations (110) and (111) for y(τ, η) and Ω(τ) are
computed by an iterative method on the rectangular
domain {0 ≤ τ ≤ a, 0 ≤ η ≤ 1} partitioned into a uniform
grid.2 For a prescribed Ω(τ) (Ω(τ) ≡ Ω(0) at the first
iteration step), Eq. (110) is solved to determine y(τ, η)
on each τ layer, with the integral approximated by Gre-
gory’s formula (modified trapezoid rule that is exact for
third-degree polynomials). The partial derivative with
respect to τ is approximated by using the values of the
desired function on the current and previous τ layers;
i.e., the scheme is fully implicit in τ. The calculated val-

2 Since the function S(∞, 0, η) is calculated by using (43), the
domain of η is restricted to [0, 1].

y τ η,( ) 1
h η1( )
h η( )
-------------– G2 τ η 1,( ) η1,d

η

∞

∫=

G2 τ η,( )
Ω τ2hyτ f '–( )

Φ τh 2τη Shyη 2τy–+ +
----------------------------------------------------------------.=

Ω τ( ) 2κ F1 2κτ 2 y τ 0,( )d
τd

-------------------+
1–

.=
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ues of y(τ, η) are substituted into (111) to compute new
values of Ω(τ) by smoothed numerical differentiation.

Computations has shown that Ω(τ) is nearly con-
stant on the interval 0 ≤ τ ≤ a and the iterative process
can be terminated after performing the third iteration
step.

Boundary value problem (88)–(90) is solved by a
similar method. Equation (88) is represented as

The equivalent integrodifferential equation

after substituting

is rewritten as

(112)

η Sψηη( )η H1–
1

2 S
----------,–=

H1 λ η,( )
Ω1 λψλη ψη+( )
h 2λη Sψηη+
-------------------------------------.=

ψη τ λ,( ) h η1( ) h η( )–[ ] H1 λ η 1,( ) η1 f ' η( ),+d

η

∞
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ψη hz=
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h η1( )
h η( )
------------- 1– H2 λ η 1,( ) η1

f ' η( )
h η( )
-------------,+d

η

∞
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H2 λ η,( )
Ω1 zλ z+( )

1 2λη Szη 2λz/h–+
-----------------------------------------------------.=
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The following closure condition is used:

(113)

The initial values of z(1/a, η) are calculated by using
the known y(a, η) and the constraint that follows
from (63) combined with (86), with Ω1(λ) ≡ Ω(1/a) at
the first iteration step.

As in the former problem, Ω1(λ) is a slowly varying
function on [0, 1/a] and the iterative process can be ter-
minated after performing the third iteration step.

Note that the computed results are stable with
respect to the only empirical function used in the anal-
ysis, f '(η).

The calculated limit value F1Ω1(0) equals the small-
est root of Eq. (95). Thus, the function –F1dλ/ds mono-
tonically increases from 1/2κ = 1.220 at λ = ∞ to 1.423
at λ = 0.

Figure 9 shows the distributions of velocity and
shear stress computed for several values of q. In Fig. 9b,
the curves for q = 0 and –∞ are plotted by using formu-
las (55).

Computed results are also presented in Figs. 1, 5, 7,
and 8.

11. CONCLUSIONS

A closure condition is derived for turbulent bound-
ary layer flow over a flat plate with suction in the form
of a universal relation between shear stress and mean-
velocity gradient. The mean velocity is determined by
using only one empirical function: the velocity profile
in the turbulent boundary layer flow over an imperme-
able flat plate. The only characteristic of the profile that
is important with regard to computations is the exist-
ence of an interval of logarithmic near-wall behavior.

As a result, the distributions of velocity, shear stress,
and skin friction are calculated in the entire range of
parameters by solving averaged equations under very
general physical assumptions without invoking any
special closure hypotheses.

The theory developed here can be used to calculate
the rms transverse velocity fluctuation in the entire flow
and the rms streamwise and spanwise velocity fluctua-
tion in the outer region of the boundary layer. These
calculations can be performed by using only the corre-
sponding distributions for the flow over an imperme-
able plate.

Universal distributions of mean velocity, shear
stress, and rms transverse velocity fluctuation are
obtained for the near-wall region of the boundary layer.
The distributions of these quantities outside the viscous
sublayer represented in terms of scaling variables are
described by a family of curves depending only on q.
Their profiles in the entire boundary-layer flow are
functions of two variables, v+ and q.

Ω1 λ( ) 2κz λ 0,( ) 2κλ z λ 0,( )d
dλ

-------------------+
1–

.–=
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The Reynolds stress components associated with
streamwise and spanwise velocity fluctuations also
obey one-parameter scaling laws in the outer region of
the boundary layer.

There exists a near-wall region where both square
root of shear stress and rms transverse velocity fluctua-
tion are proportional to the logarithm of the distance
from the wall, while the rms streamwise and spanwise
velocity fluctuations scale with the logarithm to the
power 3/2.

The skin-friction distribution is described by a sin-
gle scaling curve for flows with arbitrary suction veloc-
ities at various Reynolds numbers.

Far downstream, the limit of asymptotic boundary
layer is approached as Rx  ∞. In this limit, all flow
variables depend only on the transverse coordinate. The
corresponding values of cf /2 + B and difference
between the current and asymptotic displacement
thicknesses vanish exponentially.
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