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Abstract—We analyze within the continuous-time random walk approach, the kinetics of phase and population
relaxation in quantum systems induced by noise with the anomalously slowly decaying correlation function
P(t) O (wt)™, where 0 < a < 1. The relaxation kinetics is shown to be anomalously slow. Moreover, for a < 1,
in the limit of a short characteristic time of fluctuations w™, the kinetics is independent of w. Asa — 1, the
relaxation regime changes from the static limit to narrowing of fluctuation. Simple analytical expressions are
obtained that describe the specific features of the kinetics. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The noise-induced relaxation in quantum systemsis
a very important process observed in magnetic reso-
nance [1], quantum optics, nonlinear spectroscopy [2],
etc. These processes are often analyzed assuming con-
ventional stochastic properties of the noise: fast decay of
correlation functions and a short correlation time 1, [1].
In the absence of memory, the relaxation is described
by very popular Bloch-type equations. The memory
effects are also discussed (within the Zwanzig projec-
tion operator approach [3]), but either in the lowest
orders in the fluctuating interaction V that induces the
relaxation or by approximate summation of terms of
different ordersin V [4].

Recently, much attention was drawn to the pro-
cesses governed by noises with anomalously slowly
decaying correlation functions P(t) O t with a < 1.
They are discussed in relation to spectroscopic studies
of quantum dots (see [5, 6] and references therein).
Similar problems are analyzed in the theory of stochas-
tic resonances[7].

Such anomalous processes cannot be properly
described by methods based on expansion in powers
of V. The goal of this paper is to analyze the corre-
sponding anomal ous rel axation within the continuous-
time random walk approach (CTRWA) [8] with the use
of the recently derived non-Markovian stochastic Liou-
ville equation (SLE) [9], which enables one to describe
relaxation kinetics without the above-mentioned
approximations (expansionsin V), although it assumes
the classical nature of the noise. In some physically rea-
sonable models, it alows description of the phase and
population relaxation kinetics in the analytica form

T The text was submitted by the author in English.

even for multilevel systems. In particular, thekineticsis
shown to be strongly nonexponential.

2. GENERAL FORMULATION

We consider noise-induced relaxation in a quantum
system whose dynamical evolution is governed by the
Hamiltonian

H(t) = Hs+V(1), )

where H, is aterm independent of time and V/(t) isfluc-
tuating interaction, which models the effects of the
noise. The evolution is described by the density matrix
p(t) satisfying the Liouville equation (7 = 1)

p = -iH(t)p,
Hp = [H,p] = [Hp—pH].

V(t)-fluctuations are assumed to be symmetric
(W= 0) and to result from stochastic jumps between
the states |x,[Jin the (discrete or continuum) space
{x} ={x} withdifferent V=V, andH =H, (i.e., differ-

entV =V, =[V,..]and H = A,):

)

I = Zmu%w,

(€©)
¥ = 3 I -

We use the bracket notation [kCand |kk'C= [KIIK'| for
eigenstates of H (in the origina space) and A (in the
Liouville space), respectively, and the notation |x[Jfor
states in the { X} -space.
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The macroscopic evolution of the system under

study is determined by the evolution operator R (®)in
the Liouville space averaged over V(t) fluctuations,

p(t) = R(Dp;,

. . 4
R(1) = Z(g(X, Xi|t)Pe(Xi),

where (%, X'|t) isthe averaged evolution operator and
P.(X) isthe equilibrium distribution in the {x} space.

Non-Markovian V(t) fluctuations are described with
the use of the CTRWA (which leads to the non-Mark-

ovian SLE [9] for CAQ(t)). It treats fluctuations as a

sequence of sudden changes of V. The onset of any
particular changelabeled by j is described by the matrix

I5,- -1 (inthe{x} space) of the probabilities not to have
any change during timet and its derivative

_dPj_i(t)
da
These matrices are diagonal and independent of j:

db(t)
dt

Wi_1(t) =

Pi-a(t) = P(t), Wj_1(t) = W(t) = - i>1,

except for
_dPi(t)
dt '

depending on the problem considered. For nonstation-
ary (n) and stationary (s) fluctuations[8],

Po(t) = Pi(t), Wo(t) =Wi(t) =

Wi(t) = Wa(t) = W(t),

00

P}

Wi(t) = Ws(t) = T, IdT\iv(r),

respectively, where

ty = [dtTW(1)
I

is the matrix of average times of waiting for the
change [8].

In what follows, we operate mainly with Laplace
transforms, denoted as

[

Z(e) = J’oltZ(t)e*t
0
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for any function Z(t). In particular, noteworthy is the
relation
_ 1-W(e)
€
and suitable representations

Pi(e)

W(e) = [1+®(e)] ™, -
P(e) = [e+e/D(e)]
in terms of adiagonal matrix ® (e) with
b(e) = "(e/W)",
where W is a constant matrix and a < 1 (see below).

Evolution in the { x} -space is governed by the jump
operator

$=1-9
where & isthe nondiagonal matrix of jump probabili-

ties. This evolution results in relaxation to the equilib-
rium state |e,[] satisfying the equation

Fille 0= 0
and is represented as

l60= 3 PIXE)

Bl = 5O
(see[9]). We note that (see EQ. (4))
R(t) = @&)Yle = (91 (6)

The CTRWA leads to the non-Markovian SLE for
% (x, x[t) [9]. Solving this SLE yields[9]

G = Py(Q) + @ D@)[B(D) + X PW(D), ()
where
g = _@l
L= ®
Q=€e+id.

In particular, in the case of n fluctuations (W; = W)
G =% = dd+ )" ©)
For s fluctuations (Wi = W),
G =030t

Hereafter, for brevity, we omit the argument Q of
all Laplace transforms unlessis resultsin confusion.
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3. USEFUL MODELS AND APPROACHES
3.1. Sudden Relaxation Model

The sudden relaxation model (SRM) [9] assumes
sudden equilibration in the {x} space described by the
operator

P = (1-leTey)Q ™,
Q =

(10)
1-3 Po() XY,
where
o= $ oKL led = § ¥,
For thist,
le,U= gleol)
~ - Qw* (12)
[&d QW |e, 00
and
e = [&.

In model (10), we obtain
I 2 = 1.3 1 A
gii = [PQi[H' [ﬁ PQE[]_— Eﬁ WQq D/VQD (12)

for any \7vi , Where

<]

Po = 1};’\’@, Wo = (1+6Q)™

(13)
and

Wo, = Wi(Wo/W).

3.2. Short Correlation Time Limit

In practical applications, of special importance is
the short correlation time limit (SCTL) for V(t) fluctua-
tions, in which Eg. (12) can be markedly simplified. It
corresponds to large characteristic rates w, of the

dependence @ (Q) = ® (Q /w):

w, > V]|
In thislimit, the relaxation kinetics is described by the
first terms of the expansion of ®(Q/w,) in small
Q /w,, because @ () isan increasing function of € with

P(e) <=2 0.

Some important general conclusions, however, can be
made independently of the form of ® (Q) (see below).
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3.3. Models for Quantum Evolution
and Fluctuations

The obtained general results are conveniently illus-
trated with the quantum two-level model and the sto-
chastic two-state SRM for V(t)-fluctuations.

Quantum evolution of the two-level system is gov-
erned by the Hamiltonian (assumed to be areal matrix)

_ W10

o= |Va V| BO
Vi, =V4 FU
The two-state SRM suggests that fluctuations result

from jumps between two states (in the {x} space), for
example, |x,Cand [x_[Jwhose kinetics is described by

~

£ = 2(1-le[8)),
1 (15)
le 0= §||X+|]+|X_[|D

Below, we consider two examples of these models.
1. Diagonal noise[10]:
ws = 01 0‘/‘n = 0’
CVd = (‘)0(|X+|:|E(+| _lx—m—l)y

and
Hy=s = S50 T — ). (16)
2. Nondiagonal noise:
Va=0, V= v(xOx|-[xDX]),
and, hence,
Hy-. = Hex v([+H + |-0H). (17)

Thefirst model describes dephasing, and the second
isuseful for studying population relaxation.

In model (14), dephasing and population relaxation
are characterized by two functions.

1. The spectrum I(w), which istaken in aform cor-
responding to Fourier-transformed free-induction-
decay (FTFID) experiments[11]:

() = %Re@ﬂét(imﬂsﬂ (18)
2. The difference of level populations:
N(t) = MR (t)|nC (19)
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In these two functions,

0= ol |-+

>

1 (20)
nO= —|++0- —I
| ﬁll I

4. GENERAL RESULTS IN THE SCTL

Within the SCTL (|V]Jw, < 1), particularly simple
results are obtained for |H|J/w, << 1. In the lowest order

in[|®(Qwyll<1,

_ Q" d(@Q)0

R =R,

e (21)
[ QP(Q)U
= M]. (22)
W Q)T

This formula holds for any initial matrix W, and, in
particular, for sfluctuations if

2 1 1
%
The more complicated SCTL case

[Hdl/w.=1

can be analyzed by expanding CNQ in powers of the
parameter

& = |VI/|H{ < 1.

In particular, within the general two-level model
(Eg. (14)) with VV4=0, inthe second order in &, thediag-
onal and nondiagona elements of p(t) are decoupled

and the corresponding elements of R (t) are expressed
in terms of the universal function

foo jet

I S A
Rdt) = 2ﬂi_{o O ke (e (23
WRMMO= exp(-ie,)R (1) (20
(L =n, +— —+),
where
w, = QApE k, = 2Re(k,_),
(29)

oo = K = 3057 0,67 1~ Wo(2ie)] V4
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5. ANOMALOUS FLUCTUATIONS

The simplest model for anomalous fluctuations can
be written as [12]

d(e) = (e/W)?, O<a<l, (26)

where W is the matrix of fluctuation rates, diagona in
the [xEbasis. For simplicity, W is assumed to be inde-
pendent of x, i.e., W =w (this parameter can be associ-
ated with w, mentioned above). Model (26) describes
the anomalously slow decay of the matrix

W(t) O 2/t

(very long memory effects in the system [12]), for
which only the case of n fluctuationsis physically sen-
sible.

In SCTL (22), model (26) yields the expression
Ra(e) = O (&)IB ()T,

X (27)
Qe) = e+i ¥,

which shows that 97% (e) (and @{n (1)) isindependent of
the characteristic rate w. For a = 0 and a = 1, Eq. (27)
reproduces the static and fluctuation narrowing limits[1]:

§zn(e) = Q7 ()T
and
1

) = O (e)]

respectively.

Of certain interest isthe limit asa — 1, in which
formula (27) predicts the Bloch-type exponential relax-
ation

Rn(e) =[e +iFs+ (a-1)DINQ)T .o ", (29)
controlled by the relaxation rate matrix
W; = (a-1)Re@In(Q)1 _ o
and accompanied by frequency shifts represented by
h=i(a-1)ImRINQ)I 0.

However, the matrices W, and h (unlike those in the
conventional Bloch equation) are independent of the
characteristic rate w of V(t) fluctuations.

5.1. Dephasing for Diagonal Noise

In model (16), the spectrum |(w) can be obtained in
the general SRM (10),

R

I((D) = na 2 2
(W3)"+ (W) + 29 S cos(To)

(29
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where
Wi(w) = Ou-2V,"8[x(w-2V,)]0
where 6(2) is the Heaviside step function and
n, = sin(mo)/T
In the two-state SRM (16),

y+y'+2
@4y + 2cos(Ta)’

l(w) = Do e( ) (30)

where

W+ W
(.k)o_(k)

(seedso[6]). According to thisformula, the anomal ous
dephasing (unlike conventional dephasing [1]) leads to
broadening of I(w) only in the region |w|< wy and sin-
gular behavior of 1(w) at w — *wy:

1
(0 ap)' ™

For a > o, = 059 (a, satisfies the relation a, =
cos(ma/2)), the two-state-SRM formula also predicts
the occurrence of the central peak (at w = 0) [6] of the
Lorenzian shape and width

I (w) O

wocos(1al/2)

L~ ’
Jo? - cos(Ttar2)

1 tan(ma/2)w,
2T 1 + (wiw,)?

I (w)=
whose intensity increases with increasing o — o,
(Fig. 1). At a ~ 1, the parameters of this peak are repro-
duced by Eq. (28), inwhich

QInQ0 = —gwo.

The origin of the peak indicates the transition from
static broadening at a < 1 to narrowing at o ~ 1 (see
Eq. (27)). For systems with complex spectra, this tran-
sition can, of course, be strongly smoothed. The behav-
ior of I(w) isillustrated in Fig. 1 for different values of
the parameters of the model.

5.2. Dephasing for Nondiagonal Noise

The modédl in Eq. (17) makes it possible to reveal
certain additional specific features of dephasing. We
restrict ourselves to analysis of the case where |[H|| ~
W, = w and the most interesting part of the spectrum at
|w|~ w,. Equations (23) and (24) show that the ele-
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Fig. 1. Spectrum I(X) = [(w)wy, where X = w/wy, calculated
in model (16) (using Eq. (29)) for different values of a =
5(1),7(2), 8(3),and 9 (4).

ments (R (t)|uO( = +—, —+), which describe phase
relaxation, are then given by

MROMO= exp(=io,t)Eq[—k,(wt) ],

where

(31)

E,(-2) = (2T[|)_1J’ y+zy

is the Mittag—Leffler function [12]. Therefore, for
||~ s,

y

[(w) = ly(w+ W) + H(ws—w), (32)
where
lo(w) = nosing, (X7 +[x ™ + 2/x cosg,) ", (33)
with
w Va1
X = Va,’ No = (T[|k+—|
e|
_ Ta
=3
: (34)
+ sgnxarctan[ Sln(T[C(/Z)_l }
cos(Ta/2) + 27 wJw

Formula (32) predicts singular behavior of I(w) at

W ~ £,

1

|(})i (%Il—a’

and slow decrease of 1(w) with the increase of |w+ w|,
1

|wiu£|1+d.

2005

[(w) O

I(w) O
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Fig. 2. Population relaxation kinetics N(t), where T = Egt,
calculated with Eq. (36) (a) for large a and different r =
2v/wg o0 =0.95,r=1.0(1); a =0.95,r =2.0(2); o = 0.88,
r=10(3); a =0.88,r =20 (4); and (b) for smal a =0.3
(solidline) and a = 0.5 (dashed line) (r = 0.7). Straight lines
in (8) and (b) represent exponential (Eg. (35)) and t™©
F_Iepe?dences, respectively (in (), they are shown by dashed
ines).

In the limit w/w < 1, we have
@, = TTa6(Xx)

and, hence,
lo(w) 06(w).

This implies that, for w/w < 1, the spectrum I(w) is
localized intheregion |w |< w, and looks similar to 1(w)
for diagonal dephasing at a < a.. For w/w = 1, how-
ever, | (w) isnonzero outsidethisregion; moreover, inthe
limit wy/w > 1, the spectrum |4(w) becomes symmetric,
lo(w) = lo(—w), Similarly to conventional spectra.

It is worth noting that, for wy/w < 1, the functions
[[|R(t)|uCand 1 (w) are independent of w (in agreement
with Eq. (22)), because k, O (wdw)* and k,(wt)® O
(wd)®. In the opposite limit, however, k, ~ wP and,
therefore, the characteristic relaxation time behaves
asw,

5.3. Population Relaxation

Specific features of the anomal ous population relax-
ation can be analyzed with the model of nondiagonal
noise (17).

In particular, in the respective limits ||Hg|| ~ ws = W
and1-a <1, Egs. (23), (24), and (28) imply that

N(t) = Eo[-Ky(Wt)*], N(t) = exp(-w,t), (35)

where E,(—X) is the Mittag-Leffler function defined
above and

wy, =k, (a — 1)wOl-a.
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Thefirst of these formulas predicts avery slow popula
tion relaxation at

t>1, = wi(k,/w)",

namely,

N(t) O 1/t°%.
Similarly to I(w), the function N(t) is in fact indepen-
dent of win thelimit wdw < 1, because k, O (w/w)® in
this case. In the opposite limit wy/w > 1, the character-

istic time popul ation rel axation behaves asw, because
k, is independent of w (as in the case of phase relax-
ation).

In the limit ||Hg||, [M]] <€ w, we obtain

ieo 2 a-1 2
) +4v°Q, _
N(t) = i.J’oleet €+ AV D,-4(6)
2T wie +4vQ,(€)

—joo

(36)

where

Qg(e) = [(e +2iEy)P+ (e—2iEp)*/2  (37)

and

E, = JvZ+ w§/4.

Naturaly, in the corresponding limits, expression (36)
reproduces formulas (35) with

k, = 2" "*cos(Ttal/2) (Ey/w)®
and
w, =T(1—a)Vv*/E,

(see Fig. 2). Outside these limits, N(t) can be evaluated
numerically (some results are shown in Fig. 2). In gen-
eral, N(t) is the oscillating function (of frequency ~E,)
with slowly decreasing average value and oscillation
amplitude: for Egt > 1,

N(t) O1/t"
(exceptinthelimitasa — 1).

6. CONCLUSIONS

The above analysis of relaxation kinetics in quan-
tum systems induced by anomal ous noise demonstrates
anumber of specific features of thiskinetics. They are
analyzed with the use of the two-level quantum model,
as an example, although the observed anomalous
effects can manifest themselves in more complicated
multilevel quantum systems. The proposed theoretical
method is quite suitable for analyzing these systems, a
study currently in progress.

Noteworthy isthe fact that in somelimits, the theory
predicts relaxation kinetics described by the Mittag—
Leffler function E,[—(wt)?]. Following a number of
recent works (see [12]), this kinetics can be considered
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a result of the anomalous Bloch equation with a frac-
tional time derivative. For brevity, we have not dis-
cussed the corresponding representations.

It is aso interesting to note that, with increasing a,
the effects of the anomaly of fluctuations decrease but
still persist. To clarify them, we briefly consider the
model

®(e) = (e/w) +Z(elw)" "7,

in which 0 < a < 1, and w and { are constants with
¢ < 1 (asmal vaue of ¢ ensuresthat W(t) > 0). Possi-
ble effects can be analyzed within the SCTL with the
use of Egs. (22)—(24). For example, in the limit
|H|Jw < 1, we obtain the formula

1+a--1

R=[e+iPe+ W @ide) (A "'g7,
predicting the Bloch-type relaxation of both phase and
population, but with the rate

W, = 2w Redi%) " —(iAs)' "D,
which depends on w as w? and is, therefore, slower
than in the conventional Bloch equation (W, ~ L/w [1]).

Analysis also shows that, in the expression for R,

terms proportiona to w(e/w)'*® occur as well. They
lead to the inverse power-type asymptotic behavior of

[ R(t) Ju D /6%,

observed, however, only at very long timest > w.

In our brief analysis, we neglected the effect of a
possible natural width of lines corresponding to addi-
tional slow exponential relaxation in the system. It is
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clear that the developed method allows taking these
effects into account straightforwardly whenever
needed.
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Abstract—An analysis of general characteristics of light-induced forces is presented for arbitrary monochro-
matic masksin which optical pumping of atoms and spontaneous emission play an important role. Dependence
of regions of localization on detuning and ellipticity is determined for cyclic transitions of two types: J — J
with half-integer J and J — J + 1 with arbitrary J. Numerical simulations of atomic beam focusing with one-
and two-dimensional light masks show that spatial atom distributions with narrow features and high contrast
can be formed in dissipative masks. In particular, spherical aberration is substantially reduced when the pump-
ing fieldistunedtoaJ —= J + 1 transition with large J in linOlin configuration as compared to nondissipative

masks. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Direct-deposition atom lithography is an effective
nanofabrication method using light-induced forces in
which acombination of coplanar light beamsisused as
a mask for a well-collimated atomic beam impinging
on asubstrate to create a film with modulated thickness
(see Fig. 1). The state of the art and potential applica-
tions of nanostructures created by thismethod were dis-
cussed in recent reviews [1, 2]. In the first successful
implementation of this technology, high spatial resolu-
tion (finer than 20 nm) was attained by focusing chro-
mium atoms in a standing wave, and effective applica-
tion was made of the resulting nanostructures [3]. Sub-
sequently, noncollinear two- and three-beam masks
were used to create periodic two-dimensional nano-
structures [4, 5]. It was demonstrated that gradients of
light intensity [3-5] and polarization [6] play akey role
in alight mask.

Two regimes of interaction between a light mask
and atoms should be distinguished. In the regime char-
acterized by coherent interaction between atoms and
far-off-resonant field [1, 2], the atomic beam is focused
by the adiabatic potential generated as a result of spa-
tially modulated shift of magnetic sublevels, whereas
spontaneous emission is negligible if the atom—field
interaction time is relatively short. The other (dissipa
tive) regime in atom lithography, proposed in [7, §],
combines focusing and cooling of atoms. In principle,
this combination can be used to fabricate smaller nano-
structures with enhanced contrast. In the latter regime,
the light-induced force is the resultant of conservative,

dissipative, and random components associated with
the optical potential, optical friction, and diffusion in
the momentum space, respectively. It should be men-
tioned herethat adetailed analysis of cooling and local-

Atomic beam source

Two-dimensional
sub-Doppler
cooling

Light mask

Thin film of
deposited atoms

Substrate

Fig. 1. Generic setup for direct-deposition atom litho-
graphy.
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ization of atoms in nondegenerate states in standing
waves was presented in [9].

This paper deals with the effect of spontaneous
decay and optical pumping on the spatial distribution of
the light-induced force Fy(r) acting on an atom at rest.
The present analysisis motivated by the following con-
siderations. First, since the atom—field interaction time
(on the order of 100 ns) exceeds the decay time of the
excited atomic state (on the order of 10 ns) in typical
experiments [1, 2], neither spontaneous emission nor
optical pumping can be ignored. Second, optical pump-
ing of atoms must be taken into account in calculating
the fluctuating force in the dissipative regime [7, 8]. An
analysis shows that the incoherent contribution to
atom-field interaction can substantially modify the
optical potential. Assuming that the interaction timeis
much longer than the optical-pumping time, we obtain
compact analytical expressions for the steady-state
force Fy(r) in several configurations of monochromatic
field for awiderange of the transition saturation param-
eter. We examine the spatial distribution of Fy(r) andits
dependence on field invariants in one- and two-dimen-
siona configurations. Generally, the results obtained in
this study can be applied in both conservative and dis-
sipative regimes. In particular, we show that spherical
aberration is substantially reduced when the pumping
fieldistunedto aJ —= J + 1 transition with large J in
the linOlin configuration. Numerical simulations of
atomic beam focusing based on a semiclassical (Lan-
gevin-equation) approach revea that spatial atom dis-
tributions with narrow features and high contrast can be
formed by using certain one- and two-dimensional field
patterns.

2. MODEL

Consider a beam of atomswith angular momenta J,
and J; in the ground and excited states, respectively.
The J, —= J; atomic transition is driven by the field of
s resonant monochromatic light beams with wavevec-
torsk,, lying in a plane orthogonal to the atomic beam:

E(r,t) = exp(—iwt)E(r) +c.c.,

> 1

E(r) = z exp(ik, [F)E, = exp(i®)€e, @)
n=1

where the unit polarization vector e (¢ - e = 1,

Im(e - €) = 0), the overall phase @, and the real ampli-
tude € of the overall field are functions of the position
vector r. The analysisthat follows makes use of the sca-
lar field invariants

€ = EL[E*, J = ELE = exp(2iP)(e®)E>.

The former is proportional to the local intensity of the
field, and the latter carries information about its local
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phase and polarization. In particular, the degree of lin-
ear polarization can be represented as

The kinetics of atomic ensembles interacting with
resonant electromagnetic field are governed by quan-
tum master eguations describing energy, momentum,
and angular-momentum transfer between atoms and
field. Momentum transfer is due to recoil effects in
mechanical atom—field interactions, which are gener-
ally weak since the photon momentum 7%k is small as
compared to the atomic momentum spread Ap. There-
fore, the evolution of an atomic ensemble can follow at
least two essentially different regimes [10, 11]. In one
of these, the characteristic rate of relaxation of optically
pumped atoms to equilibrium with respect to internal
degrees of freedom can be estimated as

Mop = YTH,

wherey is the rate of spontaneous decay of the excited
state and 11, is the normalized excited-state popul ation.
Trangdlational relaxation is much slower process, and
the corresponding rate is on the order of (AK/AP) out
where 'y is the total rate of spontaneous and stimu-
lated photon scattering by atoms. Accordingly, the
kinetics of the trandlational degrees of freedom can be
adequately described in the semiclassical approxima-
tion, which leads to the concept of light-induced force
acting on atoms[10, 11]. To calcul ate the averageforce,
the atomic density matrix must be determined in the
zeroth-order approximation with respect to the recoil
parameter by solving exactly the generalized optical
Bloch equations. The required genera solution is not
known for an atom moving with an arbitrary velocity in
an arbitrary field. However, an atom cooled to the Dop-
pler limit or a sub-Doppler temperature in transverse
directions can be treated as a slowly moving one [10];
i.e., it can be assumed that its displacement parallel to
the field within the optical pumping time is much
smaller than the period of spatial oscillation of thefield:

V(M) " <A

In this approximation, the light-induced force can be
represented as a series

F(r,v) = Fo(r) + X(r) T + ..., )

where Fy(r) is the force on an atom at rest at a point r
that controls the focusing and localization of atoms.

The symmetric part of the tensor X is responsible for
momentum dissipation (optical friction). Note that
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both F, and % can be expanded in terms of field gra-
dients[11]:

4
I:0 = hyz Fngv
A \ k=1 . (3)
% = ﬁ|: Z XKK'gK U gK'+ Z XKK'gK U gKC|,

K,K'=1 K,K'=5

where g, U g, denotes the tensor direct product. The
field gradients are defined by the expressions

g, = 0,In€,
94 = 0,0, gs= 0,0,

g, = 0, P, gz =20l

4
Js = 0,P. “

Here, g;, 0, and g are the gradients of intensity, over-
all phase, and dlipticity, respectively, and theanglegra-
dients g,, g5, and g, define the orientation of the polar-
ization ellipserelative to areference coordinate system.
In particular, the angle @ defines the orientation of the
polarization ellipse relative to the axis perpendicular to
the polarization-€ellipse plane. General properties of
these vectorsin the regions of circular and linear polar-
ization of the overal field and in the neighborhoods of
itsintensity peaks were analyzed in[12].

To find analytical expressions for the coefficients
F., one must calculate the atomic density matrix in the
zeroth-order approximation with respect to the recoil
parameter and atom velocity, which can be done
approximately in certain special cases. In this study, we
analyze the steady-state regime in which the atom—field
interaction timet ismuch longer than the optical pump-
ing time:

MopT > 1. ()

Compact analytical expressions for the density matrix
corresponding to arbitrary closed J, —» J; dipole tran-
sitions were found in [13]. These solutions are used
below to derive formulasfor F,.

3. LIGHT-INDUCED FORCE
ON AN ATOM AT REST

According to [13], the steady-state optica
coherences between magnetic sublevels of the ground
and excited statesvanish for J — J—1 transitionswith
arbitrary J and for J — J transitions with arbitrary J
because of coherent population trapping. Therefore, the
steady-state light-induced force on atoms al so vanishes
for transitions of these types. For the remaining J —
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J + 1transitions with arbitrary J and J — J with half-
integer J,

Fl = _ZST[]_, F2 = T[l'

6111(1I—A/0(1)' ©)

F, = —nlaAiA/l—Iz, m =
1

F3:_

Sa,
Oy+2Sa,’

where 11, isthe total excited-state population, 5= olyis
the normalized detuning, and the local saturation
parameter

S = lNZL
2+85 =

is defined so that its value is /2 when d =0 and | is
equal to the saturation intensity®

_ 2rthiyc
N
The parameters o, o4, and A depend only on the local

ellipticity. Making use of results reported in [15], we
obtain the following expressions.

For J — J+ 1 transitions,

|

2]

_ 1 =)
o = GrvaaTeon 3, OP):
V+2, ..
4 Phyaa(l™
@ = P, A= 20,
C = (21 +1)(23-D1(23+1 + 1)1,

where P,(X) denotes Legendre polynomials, v = 0 for
integer J, and v = 1 for half-integer J.
For J — J transitions with half-integer J,

2]
0= ‘M Z C|P|(|_l)1
1=1,3,...
a, =2J+1, A=0,
. (1= 1)1172(23 + )1 (2] = — )11
C = (2'”)[ I } 2I-DNI+1+ D"

Iwe use the standard definition of saturation parameter (eg.,
see [14]).
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Theforce F,istheresultant of the scattering force (also
called radiation pressure force)

Feat = iY(F20; + F404)

and the dipole (or gradient) force
Fap = AY(F10; + F303).

The scattering force arises from stimulated absorption
of a photon by an atom followed by spontaneous emis-
sion and is an even function of detuning. The dipole
force arises from stimulated coherent emission and is

an odd function of detuning. When |0 | = 10, the latter
contribution to F, playsadominant role; i.e., itisof pri-
mary interest for atom lithography. However, effects
due to the scattering force are al so considered bel ow.

4. DIPOLE FORCE

Expressions (6) for the coefficients in the expansion
of Fyinterms of field gradients can be used to represent
the dipole force as the product of the excited-state pop-
ulation Tr(r) with the gradient of adimensionless scalar
function W(r):

Fap = 10 (r)o,W(r). (7)

Even though the dipole force is not conservative in the
general case, the function W isanalogousto potential in
many respects. For example, every point where Fg, =0
is either minimum or maximum point of Y. The zeros
of y(r) are not associated with any additional zeros
of the dipole force. This can be shown by using formu-
las (8) and (10) for W given below. In blue- and red-
detuned light fields, the dipole force drives atoms
toward the minimum and maximum points of W,
respectively. When Saq/ay > 1 (1 = 1/2), the dipole
force behaves as a conservative one, and the corre-
sponding potential is proportional to W.

4.1. J — J Transitions with Half-Integer J

For these transitions, the function W(r) can be rep-
resented as

W = In|9|. (8

The corresponding dipole force never saturates in the
regions where the light field is circularly polarized
(€=0) even if the light intensity is high. In these
regions,

Fdip:_arveffi
where the effective potential is[16]
1 QI 7?2 2541
= hdS .
Var,1 = 70 2J(2J+2)[(2J—1)!!} ¢ ©)
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The physical explanation for the low saturation at the
points of circular polarization of thetotal field (e.g., 0.)
lies in the fact that al atoms are pumped into a dark
state |J,, m = JoLl Accordingly, the light-induced force
Fo vanishes at these points (the potential Vi ; reachesa
minimum) in any configuration of blue-detuned light
field.

When ¢# 0, the dipole force Fy, is characterized as
follows. When Say/ag > 1, it is associated with the
optical potential

hd
Veff,Z = —2—|n|3’|

When S < 1, the dipole force is not conservative, and
the points where Fg, = 0 are determined to a lesser
degree by the spatial distribution of I, being mainly
associated with the extrema of the invariant

9] = [ECEI.

Moreover, the atoms interacting with a blue-detuned
mask arelocalized around the field nodes, where E = 0.
Therefore, the setup for atom lithography with &> 0 can
be designed so that the atoms interacting with an arbi-
trary light mask are mainly attracted to the points of cir-
cular polarization and field nodes. Even though addi-
tiona regions of localization may appear around the
minimum points of |$|, numerical simulations of spe-
cific field configurations have demonstrated that these
regions play an insignificant rolein forming the spatial
distribution of deposited atoms. The distribution of
atoms interacting with a red-detuned mask on the sub-
strate is completely determined by the maxima of |$|.
In the general case, the regions of their localization do
not coincide with those of linear polarization or maxi-
mum intensity, even though coincidence of thiskind is
characteristic of some field configurations used in cur-
rent experiments [12].

42.J — J+ 1Transtions
In this case, the function Win (7) is

1 2
23+1 (&0

where €2*1P,;, ,(€Y) is an even function of ¢ that
reaches a maximum when the field is circularly polar-
ized (€ = 0) and monotonically decreases as |[¢| — 1.
When S > 1, the potential associated with the dipole
force Fyp, is

2J+1
Y =

Poa(€H],  (10)

_ 15

Vg g = > .
In the general case, the dipole force has both potential
and solenoidal components. However, computations
show that the latter has a negligible effect on the local-
ization of atoms interacting with alight mask.
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For aJ — J + 1 transition, the regions of localiza-
tion are determined by the combination of the distribu-
tions of | and |$|. Generally, these regions are distinct
both from those of circular (or linear) polarization and
from the nodes (or antinodes) of light intensity and can
be found only by analyzing the functions €(r), €(r),
and W(r) simultaneously.

5. RADIATION PRESSURE FORCE

Theradiation pressure force F; playsanimportant
rolein light masks, even though it isweaker by afactor
of y/|3] as compared to F, in far-off-resonant fields,
because the spatial distributions of these components of
Fo areessentially different in D-dimensional fields con-
figuration with D > 1. For example, Fq; vanishes at
every point where the field is circularly polarized; i.e.,
it varies as C x or with the distance dr from the point
(&r — 0), where C isaconstant vector [12]. The char-
acteristics of this force are discussed here for transi-
tions of the two types considered above.

5.1. J— J Transitions with Half-Integer J
In this case, the radiation pressure forceis
ayTLH
423+ 1)€* ¢
H=i(%09%*-9%9*%03.9).

In the neighborhood of some point r, the invariant $
at apoint r can be represented as a decomposition in
termsor =r —r, up to second-order terms:

Foat =

(11)

$=9,+CLdr+0or (% CBr,

where $, = $(r,) and G is a Symmetric tensor.
Accordingly,

H = 2Im($,C* +29,9* Br) +i3r x[C x C*],

where the first and second terms are potential and sole-
noidal vectors, respectively. The difference between the

conservative contributions of Fiy, and Fiy, manifests

itself in the difference of their respective effects on the
atom averaged over an arbitrary trajectory of length I,

FQ = |‘1J’Fd|.

Generally, the averaged dipole force [, []vanishesin
periodic and quasiperiodic symmetric field configura-
tionsin the limit of | > A. Conversely, the effect of the
mean radiation pressure force tends to increase with |,
as in masks with unbalanced intensities of light beams
(the simplest one-dimensional example is a traveling
plane wave). This nonvanishing force drives atoms out
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of the region of atom-field interaction. The solenoidal

component of F7%. also gives rise to drift on length
scales| > A. It should also be noted that the dipole force
can be “rectified” ([Fgp,[J# 0) in certain configurations,
which are generally not used as light masks. An exam-
ple of one-dimensional field configuration of this kind

was given in [15].

52.J — J+ 1 Transitions
For these transitions, the radiation pressure forceis

Fo. = OAYmOB o, PaTHH O
Ua,e80 4(2J+1)(%I)%

(12)
(G), = ImY ()2, (E*);
i

Here, G isasolenoidal vector:
0, G =0.

This additional contribution to the solenoidal compo-
nent of F.; issignificant intheregions of circular field
polarization.

6. ONE-DIMENSIONAL FIELD
CONFIGURATIONS

Symmetric one-dimensional field configurations
giving rise to light-induced forces with periodic poten-
tials are of special interest for atom lithography. Every
such configuration is acombination of two light beams
of equal amplitude ‘€, counterpropagating along the z
axis. They can be parameterized by the angle 6 between
the semimajor axes of the polarization ellipses of the
beams and their respective elipticity angles €, and ¢,.
By definition of the dllipticity angle, |tane |isthe ratio
of semiminor to semimagjor axis of the polarization
ellipse and the sign of € is determined by the helicity of
the wave. Thus, the configurations considered in this
section are characterized by certain specific relations
between €, 0, and €,. They constitute a broad class of
one-dimensional potentials depending on the light
beam polarizations and the type of atomic transition.
These configurations have common features: first,
localization regions correspond to maximum or mini-
mum points of the function W considered above; sec-
ond, in far-off-resonant fields with & > 0 and & < O,
atoms are attracted to minimum and maximum points
of the pseudopotential W, respectively.

6.1. Smple One-Dimensional Configurations
6.1.1. Elliptically polarized standing wave. In
this case, both overall phase and polarization are spa-
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Fig. 2. Effective saturation parameter (in arbitrary units) vs.
dlipticity angle in a standing wave for J — J + 1 transi-
tionswithJ =0, 1, 2, 3, and 4 (solid curves, top to bottom)
and for J — J transitions with J = 12, 3/2, ..., 9/2
(dashed curves, top to bottom).

tially uniform, and
S(2) = 251+ cos(2kz)],

where §, is the saturation parameter for an individual
light beam. The radiation pressure forceis

F(z) = -0,U(2),

U(2) = @l [1+2ils( )} (13

The corresponding expression for optical potential is
characteristic of a two-level atom in a nondegenerate
state interacting with astanding wave[9]. However, the
effective saturation parameter Sy = Su,/d, depends
both on the type of transition and on the field polariza-
tion (see Fig. 2). Thefocusing effect of astanding wave
is well known. In blue- and red-detuned fields, atoms
are attracted to intensity nodes and antinodes, respec-
tively.

6.1.2. linLlin configuration. This configuration is
the superposition of counterpropagating linearly polar-
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ized traveling waves with mutually orthogonal polar-
izations. Both phase and intensity gradients vanish, the
orientations of the major axes of the polarization ellipse
remain invariant, ellipticity varies as ¢ = cos(2kz), and
the dipole forceis

F(z) = —0,V(cos2kz),

V(O) = héjnl(l A/al) (14

The results shown in Fig. 3 for several atomic tran-
sitions demonstrate qualitative differencein spatial dis-
tribution of the dipole force calculated by using (14)
between transitions of two types. First, theforces calcu-
lated for J —= J + 1 transitionsand J — J transitions
with half-integer J have opposite signs. Furthermore,
the force is anharmonic in the neighborhoods of the
points of circular polarization (where € = cos2e — 0)
for J — J transitions with half-integer J, except for
J = 1/2, because the force scales with ¢ according
to (9). For J — J + 1 transitions, the spatial distribu-
tion of the force tends to have a triangular shape; i.e.,
the domains of linear (harmonic) behavior of the force
around the points where ¢ = 0 become wider. This ten-
dency is particularly pronounced when S> 1, in which
case T, = 1/2 and the corresponding optical potential
can be approximately expressed as

hd

V(O = 53755 " Paa €.

Spherical aberration should be substantially weaker for
J — J + 1 transitions with large J, when atoms are
localized around points of circular polarization in
maskswith & < 0, as compared to transitions with small
J or standing-wave optical potentials. When S> 1, the
difference between the two types of transitions also
manifests itself in the potential depth, which
approaches a limit that does not exceed %6In2/2 for
J—= J+ 1transitionsand increasesasInSfor J — J

4F : -
(a) /,0 \' /:/\ (b) 0.4
oo /st
0.2\ Cr
4,7 K 40
Y \ /\‘l r~
1 1 1 1 -
M5 —1.00 05 0.5 1.0 1.5 -1.5 -1.0

iz 7, |.\ 7 kz
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\./ 044N

Fig. 3. Dipoleforce (in units of kd) vs. kzin linOlin configuration: (a) J — J + 1 transitionswith J = 1/2 (solid curve), 1 (dashed
curve), and 4 (dash—dot curve); (b) J — J transitions with J = 1/2 (solid curve), 3/2 (dashed curve), and 9/2 (dash—dot curve).

Saturation parameter is § = 1 for an individual light beam.
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Fig. 4. Dipole force (in units of #kd) vs. kzin € O € configuration: (a) J — J + 1 transitions with J = 1/2 (solid curve), 1 (dashed
curve), and 4 (dash—dot curve); (b) J — J transitions with J = 1/2 (solid curve), 3/2 (dashed curve), and 9/2 (dash—dot curve).
Saturation parameter is S = 1 for an individua light beam, and ellipticity angleis e = T716.

trangitions (in particular, its value is A8In(1 + 352)/4
for the /2 — 1/2 transition).

6.2. One-Dimensional Configurations
of Elliptically Polarized Waves

Next, we consider field distributions characterized
by either two or four nonzero gradients g,. We single
out three classes of symmetric periodic optical poten-
tials parameterized by €,, 6, and €, for which the light-
induced force averaged over A vanishes.

Two of these classes correspond to €, = —€, = € and
the combination of €, = €, = € with 6 = /2. Hereinafter,

they are referred to as the e-0—-€ and € U € configura-
tions, respectively. The third one is the class of dllipti-
cally polarized standing waves, for which e, = ¢, = ¢
and 06 =0.

6.2.1. € L € configuration. In this case, the scalar
field invariants are

€% = 2¢[1-sin2esin2ky],

(15)
$ = 2¢Zcos2ecos2kz.

Since the gradients of phase and angle ¢ vanish, so
therefore does the radiation pressure force. The inten-
sity and dllipticity of the overall field are nonuniform if
€ # 0. According to Eg. (15), the intensity extremum
points, where | ~ €2, correlate with the points of circu-
lar polarization, where

| = cos2ecos2kz/[1—sin2esin2kz] = 0.

At these points, it holds that 2kz = T/2(2n + 1) and the
function W reaches its maxima and minima for J —
J+ 1andJ — Jtransitions, respectively. The spatial
distributions of the corresponding dipole forces illus-
trated by Fig. 4 have minimaof two types. The potential
distributions arising in the low-intensity regions when
blue-detuned waves are used to pumpaJ — J+ 1
transition are analogous to those in the high-intensity
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regions of a red-detuned mask in the caseof aJ — J
trangition.

6.2.2. e0-& configuration. In this case, the field
invariants are

€? = 2%52 [1+ cosBcos2e cos2kz], (16)
$ = 4€2[cosh + cos2e cos2kz + i sinBsin2e] .

Accordingly, al of the four gradientsg, (k =1, ..., 4)
do not vanish in the general case. The extremum points
of intensity correlate with the points of linear polariza-
tion, where € = 1. Thefunction W reachesits maxima at
these points for J — J transitions, while its minima
are reached at the intensity minimum points for J —»
J+ 1 transitions. However, W reaches either minimaor
maxima at the maximum points of 1, depending on the
angular momentum, 6, and €. When the ellipticity angle
issmall and 8 = 172, the potential distribution has min-
ima of two types (see Fig. 5) located at the intensity
maximum pointsfor J — J + 1 when & < 0 and at the
intensity minimum pointsfor J— Jwhen 6> 0. Since
the gradients of phase and angle @ do not vanish in the
general case (g # 0, 2174 and 6 # 0), radiation pressure
contributes to the optical potential, vanishing at the
points of linear polarization. This contribution substan-
tially modifies the resulting optical potential when
detuning is relatively small (]d]=y).

6.3. Numerical Results

We present the numerical results obtained in simu-
lations of atomic beam focusing in lindlin configura:
tion by the semiclassical Monte Carlo method intro-
duced into the theory of laser cooling in [17]. As noted
above, the spatial distribution of the dipoleforce F, act-
ing on an atom at rest viaJ — J + 1 transitionsis well
approximated by atriangle (Fig. 3a). Thus, the interval
where the optical potential has a parabolic profile wid-
ens with increasing J. This tendency should lead to a
substantial reduction of spherical aberration.
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Fig. 5. Dipoleforce (in units of ko) vs. kzin e-8—& configuration: (a) J — J + 1 transitionswith J = 1/2 (solid curve), 1 (dashed

curve), and 4 (dash—dot curve); (b) J — J transitions with J = 1/2 (solid curve), 3/2 (dashed curve), and 9/2 (dash—dot curve).
Saturation parameter is S = 1 for an individua light beam, 8 = 173, and € = T/32.
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Fig. 6. Spatial distributions of optical potential V/(2), friction coefficient &(2), and diffusion coefficient D(2) in linOlin configuration:
(8) /2 — 3/2 transitions; (b) 4 — 5 transitions. Saturation parameter is §; = 0.158 for an individual light beam, and detuning

isd=-5y.

In addition to F,, we take into account optical fric-
tion (asacorrection of first order in velocity) and diffu-
sion in momentum space. It is important that the rela-
tive effects of these dissipative and random forces as
compared to F, depend on control parameters (detun-
ing, intensity, atom-field interaction time, incident
atomic-beam divergence, etc.), field configuration, and
type of atomic transition. The results of numerical sim-
ulations show that these effects are negligible.

Let us discuss the focusing effect on a beam of
cesium atoms caused by fields tuned to the 1/2 — 3/2
and 4 — 5 transitions. Figure 6 shows the distribu-
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tions of the optical potential V(2), the friction coeffi-
cient §(2), and the diffusion coefficient D(2). Steep gra-
dients of &(2) and D(2) are observed when the angular
momentum islarge (4 — 5transition). Notethat these
coefficients are small in the neighborhoods of potential
minima, where atoms are focused. Accordingly, their
effect on the gpatial distribution of atoms in these
neighborhoods is weak.

The atomic beams used in our simulations were
assumed to have a Gaussian initial momentum distribu-
tion with Ap = 104k. Figure 7 shows the spatia distri-
bution of atoms after their interaction with the mask.
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Fig. 7. Profiles of atomic beams focused onto a substrate in linClin configuration: (a) /2 — 3/2 transitions; (b) 4 — 5transi-
tions. Saturation parameter is § = 0.158 for an individual light beam, and detuning is & = —5y. Interaction time corresponds to a

quarter of the optical-potential oscillation period.

Notethat the observed narrow peaks, with half-width at
half-maximum Ax = 0.051A in Fig. 7aand Ax = 0.038A
in Fig. 7b, are characteristic of the thick-lens regime.
The interaction time was set equal to a quarter of the
oscillation period at a minimum point of V(2): t, =
49.16yt and 41.37y for the /2 — 3/2and 4 —~ 5
transitions, respectively. The difference in Ax is prima-
rily explained by difference between the spatial distri-
butions of the dissipative and random forces corre-
sponding to transitions of different types (Fig. 6). Fig-
ure 7 demonstrates that the pedestal normalized to its
initial valuefor the4 — Stransition, %2 = 0.19, is sub-
stantialy lower than that for the /2 — 3/2 transition,
%R = 0.35, in agreement with the expected substantial
reduction of spherical aberration for the 4 — 5 tran-
sition.

7. TWO-DIMENSIONAL FIELD
CONFIGURATIONS

We have aso examined certain two-dimensional
field configurations formed by combining three or four
light beams. In the general case, a wide diversity of
relations between the spatial distributionsof I, €, and W
is observed. Therefore, to predict possible distributions
of deposited atoms, detailed preliminary analysis is
required of the fringe patternsof I(r) and €(r) for J —
J transitions (with half-integer J) and of the more com-
plicated function W(r) for J — J + 1 transitions. Asan
example, we consider the symmetric combination of
three light beams with €, = €, = €5 = € and equal ampli-
tudes €, [12] (see Fig. 8).

Inthis case,
3
€*=8i3+C(z*2-3)], Z = Y exp(ik, 1),
n=1

$ = €X(1+2C)(Z°-22*)-2D(Z*-37*)],

C= (¢ Eé;’)#j, D=(e l:ej)i;tjl
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where

— ez"'eki >(ez

(|
N1+ e?
is the polarization vector of the ith beam, and

_ tan® + itane
1—itanBtane’

Note that the condition

tarfe. = 3c0s26, + 1
© " 3c0s26,-1

implies that C = 0 and the overal field intensity is uni-
form. Therefore, when the configuration parameters are
closeto g5 and 6,, the distributions of W(r) and I(r) are
substantialy different, and W(r) and €(r) are strongly
correlated. Conversely, ase — 0and 8 — O, strong
correlation between | and W is predicted. However, dis-
tinct distributions of |, €, and W extremum points are
observed for intermediate values of these parameters.

Figures 9a—9c show, respectively, the distributions

of I, ¢, and ¥ obtained for tane =2 and tan® = 1/./2
in the case when W is calculated for the 1 — 2 transi-

(b)

Fig. 8. (8 Three-beam configuration. (b) Polarization
ellipse of an individual beam (¢ is élipticity angle).
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Fig. 9. Contour plots of (a) intensity I(r), (b) elipticity I(r), and (c) pseudopotential W(r). Gray and black areas correspond to peaks

and troughs, respectively.

tion. Note that this distribution weakly depends on J.
The contour plots are restricted to the region

lkx| < 2103, |ky| <210./3,
which corresponds to an elementary cell of this field
configuration. Figure 9 demonstrates that the maxima
of W lie between extremum points of | and ¢, whereas

the minimum points of W correlate with the maximum
points of ¢.

7.1. Numerical Results

We present the numerical results obtained by simu-
lating the formation of periodic fine structures on the
substrate in the three-beam configuration considered
above. As in our one-dimensional simulations, we use
the semiclassicad Monte Carlo method proposed
in [17], taking into account the corrections to the force
F, acting on an atom at rest due to optical friction,

Fas = X(r) OV,

and the random force F,4,4 responsible for diffusion in
momentum space. Thus, we have the dimensionless
Langevin equation

dp

dt
where the dimensionless time T = t/t;,,, Momentum
P = p/p,, force fy = FgtyandPo, @nd other variables are
defined by using p, = JAym and t;,,s = 1/./2W,.y &
momentum and time scales, respectively. Since the
recoil energy is

= fo+fost frana (17)

we have t,,, > 1ly, i.e, the trandational relaxation
time determines the time scale of evolution of an
atomic ensemble.
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To compare the field distribution illustrated by

Fig. 9 (withtane =2 and tan® = 1/./2 forthel — 2
transition) with the corresponding distributions of
atoms, we assume that the incident atomic beam is uni-
form within the elementary cell mentioned above.
Other parametersare asfollows: §, = 0.25 for each light

beam; S =-10 or 10; and the spread of the transverse-
velocity distribution in the atomic beam is

HAv,) T = 0.1%y/m,

which implies sub-Doppler cooling of the beam before
itsinteraction with the mask. Theratio of the mean lon-
gitudinal velocity [v,[in the atomic beam to the effec-
tive radius ry of an individua light beam, t,; = ro/Lv,[)
determines the mean transit time through the mask,
which plays an important role in simulations. We also
used a Maxwellian longitudinal-velocity distribution.
The mean transit time was t;,; = 0.6t;,,,c- Note that this
t; can be implemented in experiments, and the corre-
sponding force F, will have a significant effect on the
transverse distribution of atomsin abeam. Simulations
show that its effect is insignificant when t;,, ~ 0.1t;,.,
and the cross-sectional distribution of atoms in the
beam remains ailmost uniform after its interaction with
the mask. In the opposite limit of t;; > ty..s, the trans-
verse distribution of atoms in the beam evolves into a
guasi-steady state and a dissipative optical lattice is
thus created [18]. The effect of Fg and F 4 ON this
process is substantial, and the contribution of these
forces must be taken into account.

Figures 10 and 11 show the results of numerical
simulations of thin films of atoms deposited on a sub-

strate obtained for & =—10 and 10, respectively.

The contour plots show atom distributions on the
substrate in the domain of |kx] < 1.5 x 2173 and |ky| <

1.5 x 217./3 (larger than the elementary cell). These
distributions result from the interaction between the
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Fig. 10. Distribution of atoms on the substrate for the 1 — 2 transition: (a) contour plot; (b) normalized profilein cross section A;
(c) normalized profilein cross section B. Saturation parameter is & = 0.25, mean interaction timeistj; = 0.6t;4s, and detuning is

5=-10y.

light mask and atoms uniformly distributed within an
elementary cell (rectangles with dashed boundaries in
Figs. 10 and 11) before the interaction. The larger rect-
angular domain was partitioned into a 100 x 173 grid,
and the resulting atom distributions were obtained by
counting the atomsin each grid cell at the final stage of
the interaction. The total number of atoms was 10° and
10° in the simulations illustrated by Figs. 10 and 11,
respectively. Figures 10 and 11 al so show the cross-sec-
tiona distributions of atoms along the mutually perpen-
dicular lines A and B. Solid and dashed profiles repre-
sent, respectively, the results obtained by taking into
account the forces f 4 and f,,,q and by simulating only
the effect of f, (Fig. 10). Itisclear that the contributions
of the dissipative and random forces to the formation of
the resulting overall patterns are negligible within the
atom-field interaction times used in these simulations.
However, the effects of these forces on certain features
are quite obvious: f,,4 reduces the peak heights,
whereas both peak widths and pedestals remain
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unchanged. Thelight-induced forcef, plays a dominant
role in redistributing atoms in the neighborhoods of

maximum and minimum points of ¥ when & < 0
(Fig. 10) and & >0 (Fig. 11), respectively.

We also varied both the field configuration parame-

ters S S, and t, and the parameters € ; and €; of indi-
vidual light beams. The atom distributions obtained by

simulating atomfield interactions for |&| < 1 do not
exhibit any spatial pattern. This important observation
implies that the radiation pressure force cannot be used
to create patterned nanostructures in two-dimensional
masks. However, this force (as well as the rectified
dipole force) manifestsitself in violations of symmetry
in field configurations. For example, a lateral shift of
the atomic ensemble as a whole is observed after its
interaction with a mask characterized by unbalanced

€, or g . Variation of Sor t, > 0.5t, does not result in

No. 4 2005



STEADY-STATE LIGHT-INDUCED FORCES IN ATOMIC NANOLITHOGRAPHY

x1073

595

1.0
A

(b)

0.4

0.2

0

Fig. 11. Distribution of atoms on the substrate for the 1 — 2 transition: (&) contour plot; (b) normalized profile in cross section
A; (c) normalized profilein cross section B. Saturation parameter is § = 0.25, mean interaction timeist;,; = 0.6ty,5ns, @1d detuning

isd = 10y.

the appearance or disappearance of any regions of
localization, but can substantially modify the atom con-
centrations in the regions described above.

8. CONCLUSIONS

We have derived and analyzed expressions for the
light-induced force acting on an atom at rest in amono-
chromatic light mask under steady-state conditions of
optical pumping. The analysis presented in this study
can be applied to determine the regions where atoms
concentrate on the substrate after their interaction with
a mask with arbitrary configuration and intensities of
the constituent light beams.

The results obtained apply to closed cyclic transi-
tions with arbitrary J in awide range of mask parame-
ters (detuning o, saturation parameter S, lateral sizer,,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

and others). These results can also be applied to three-
dimensional field configurations [19].
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Abstract—The influence of many-particle effects on the shape and values of the double differential cross sec-
tion for the resonant inel astic scattering of alinearly polarized X-ray photon by afree atom near the K and KL,5
ioni zation thresholds has been theoretically analyzed for the neon atom. The cal culations have been performed
using the nonrel ativistic Hartree—Fock approximation for single-electron wavefunctions and the dipol e approx-
imation for the anomalous dispersion component of the cross section. The analytical structure of the contact
part of the scattering cross section has been obtained beyond the dipole approximation. The effects of the radial
relaxation of electron shells, spin—orbit and multiplet splitting, and configuration interaction in the doubly
excited atomic states, as well as the Auger and radiative decays of the produced vacancies, are taken into
account. The nature and role of the effect of correlation amplitudes, which is responsible for the appearance of
the nonzero amplitudes of nonradiative transitions between intermediate and final single-electron states of the
same symmetry that are obtained in different Hartree—Fock fields, have been analyzed also. The calculations
are predictive and, for an incident-photon energy of 5.41 keV, agree well with experimental results for the Ka

X-ray emission spectrum of the neon atom. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Fast development of the technique for obtaining
X-ray synchrotron radiation [1] makes it possible to
study experimentally and theoretically the double dif-
ferential cross section for the inelastic scattering of a
photon by afree atom inthe close vicinity (~+10 eV) of
the ionization thresholds of its deep shells. The double
differential cross section is a highly informative three-
dimensional (cross section, incident-photon energy,
and scattered-photon energy) quantum-mechanical
observable for this fundamental process in microcosm.
This process is aimost one order of magnitude less
intense than the elastic (Rayleigh) photon—atom scat-
tering that occurs on atomic electrons [2, 3]. However,
ascompared to Rayleigh scattering, the resonant inelas-
tic photon—-atom scattering (Landsberg and Mandel-
stam [4], Raman [5], and Compton [6]) carries much
more information on the many-electron system under
study including that on the nature and role of many-par-
ticle effects and their quantum interference.

In theoretical analysisin the single available inves-
tigation for a free atom [7] (measurement and calcula-
tion of three-dimensional La, 3 X-ray emission spectra
of the xenon atom), as well asin pioneering theoretical
works by Aberg and Tulkki (the resonant inelastic
scattering of an X-ray photon near the K-shell ioniza-
tion threshold of neon, argon, and manganese, see
review [8]), awide hierarchy of many-particle effects
was ignored, in particular, the radial relaxation of elec-
tron shellsin thefields of formed core vacanciesand the
multiple excitation/ionization of the atomic ground

state, which accompany and substantially determine
the photon—atom interaction process [9].

Moreover, in addition to the problem of the inclu-
sion of many-particle effects, anumber of other analyti-
cal aspects of the quantum theory of the processrequire
additional investigations. In particular, it is necessary to
reveal the analytical structure of the contact part of the
double differential cross section for inelastic scattering
beyond the dipole approximation for describing the
process even in the X-ray energy ranges of the incident
and scattered photons.

In thiswork, considering the neon atom as an exam-
ple (with nuclear charge number Z = 10 and ground-
state electron configuration [0] = 1s22°2p5(1S)), we
theoretically analyze for the first time the influence of
many-particle effects on the values and shape of the
doubledifferential cross section for the resonant inelas-
tic scattering of an X-ray photon (%w from 600 eV to
1.5 MeV) near the ionization threshold of a deep shell
of thefreeatom. Inthisanalysis, weignoretheinelastic
scattering of the photon by the atomic nucleus, nuclear
nucleons, and electron—positron pairs produced in the
Coulomb field of the nucleus. Their effect on theinelas-
tic scattering cross section is insignificant in the X-ray
range of incident-photon energies[10]. In addition, we
attempt to determine the analytical structure of the con-
tact part of the double differential cross section for the
inelastic photon—-atom scattering beyond the dipole
approximation.

1063-7761/05/10104-0597$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Goldstone-Hubbard—Feynman diagrams for the
(a) anomalous dispersion and (b) contact amplitudes of the
inelastic scattering of an X-ray photon by aneon atom near
the ionization threshold of the 1s shell. For notation, see
Section 2.1. An ellipsis stands for an infinite series of dia-
grams.

Such investigations are important for modern phys-
ics, in particular, in view of the creation of an X-ray
laser with a neon-like plasma as an active medium [11]
and the acquisition of spectral data (e.g., X-ray emission
spectra of neon-like elements) for astrophysics[12].

2. THEORETICAL FOUNDATIONS
OF THE METHOD

2.1. Anomalous Dispersion Component
of the Cross Section

We specify the analytical structure of the anomalous
dispersion component of the double differential cross
section for the resonant inelastic scattering of alinearly
polarized photon near the ionization threshold of the 1s
shell of the neon atom as (hereinafter, completely filled
electron shells are omitted in the notation of a configu-
ration)

fiw, +[0] — 1snp(‘Py)— 2p°mp('S,, 'D,) +#w,

for the proposed experimental scheme e, , [1 P. The
2snp and 2p°n(s, d) intermediate states are ignored,
because the ionization thresholds of the 2sand 2p shells
are far from the ionization threshold of the 1s shell
(e.g., l1s—1,s=822€eV). Here, i, and i, arethe ener-
gies of theincident and scattered photons, respectively;
e, and e, arethe polarization vectors of theincident and
scattered photons, respectively; and P is the scattering
plane containing the wavevectors k, and k, of the inci-
dent and scattered photons, respectively.
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Inthiscase, (e, - )% = 1 and the known general ana-
lytical expression for the anomal ous dispersion compo-
nent of the double differential cross section for the res-
onant inelastic photon—-atom scattering in the second
order of quantum-mechanical perturbation theory
(Kramers—Hei senberg—Waller formula) [8, 10] after the
summation/integration over the np intermediate and mp
final states of the discrete/continuous spectrum and
summation over the 'S, and D, terms has the form

d’oy i
dw,dQ

20,
0(*)1

p Z GiQi, ()

i=12

[

Q=5 Rutllm+(R+IDW,

m> f

Rn = = S (0 —Ay)Agula—RY, 3

Yisn>f

lm = TS Apnby 4

n>f

A physical interpretation of the origin and analytical

structure of the scattering amplitude R,,./p can be
given in terms of Goldstone-Hubbard—Feynman dia-
grams [13] of nonrelativistic quantum many-body the-
ory. Figure 1a (Fig. 1b, see Section 2.2) shows some
first (leading) terms of a series of diagrams for the

amplitudeR,,./p of theinelastic scattering of the X-ray
photon by the neon atom near the ionization threshold
of the 1s shell. In this figure, w,(w,) is the incident
(scattered) photon; i(j) = 1s(2p) isthe vacancy; m=mp
and n = np are the final and intermediate photoelec-
trons, respectively; the arrow directed to the right (left)
means that the state is produced above (below) the f
Fermi level (the set of the quantum numbers of the
atomic valence shell); the wavy line means Coulomb
interaction; and time flows from left to right (t; <t,). In
particular, the first diagram in Fig. la describes the
amplitude of the following process. At timet;, the deep
1satomic shell absorbsthe w, photon. Asaresult of the
1s — mp radiative transition (with the amplitude
~[s|f jmpD), an i(1s) vacancy and an m(mp) photoel ec-
tron appear. At timet, > t;, the w, photon is emitted in
the 1s — 2p radiative decay of the 1s vacancy (with
the amplitude ~[197 [2p0). Asaresult, thei(1ls) vacancy
captures the 2p electron and a j(2p) valence vacancy is
formed.

The amplitude A, in Egs. (3) and (4) has the form

Anm = (032 -, + An)An Eﬂ.Solfl npc]:m| p+| mpD
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where

00

(so[ffnpd = J-Plso(r)Pan(r)rdri ()
0

[

mp,/mp0d= Ian(r)Pmp(r)dr.
0

Here, P, (r) istheradia wavefunction of the np, elec-

tron, etc. Amplitude (5) describesthe absorption part of
thetotal scattering amplitude and is defined in terms of
the radiative transition amplitude from the initial state
to the intermediate state described by the correlation
wavefunction

pdnp.U
np.0= |[np,+]|2 +%———
Inpb= Inp B-12p: 0 50

In turn, the structure of the correlation wavefunction is
determined by the methods of nonorthogonal-orbital
theory [9] and is expressed in terms of the nonrelativis-
tic wavefunctions of single-electron states obtained in
various Hartree—Fock fields.

Owing to the appearance of adeep nl vacancy inthe
atomic core, outer atomic residual shells first respond
to the destruction of the nl* *2 screen between them and
the atomic nucleus such that their average radii
decrease. The shift of the electron density of the atomic
residual shells toward the nucleus is accompanied by
the additional delocalization of the wavefunction of the
photoel ectron. This delocalization results in a decrease
in the photoabsorption amplitude. The described effect
is known as the radial relaxation of the single-electron
wavefunctions that accompanies the formation of core
vacancies|3, 9].

In the problem under consideration, the radial relax-
ation effect is taken into account as follows. The wave-
functions of (n, 2)p, electrons are obtained in the field
of alsdeep vacancy by solving nonlinear integrodiffer-
ential equations for the self-consistent Hartree—Fock
field for the 1snp configuration of the intermediate
state. The wavefunctions of mp electrons are calculated
inthefield of a2p valence vacancy by solving Hartree—
Fock equations for the 2p°mp configuration of the final
state. The wavefunctions of the 1s, and 2p, core elec-
trons are determined by solving Hartree-Fock equa-
tionsfor the initial state configuration [0].

Notethat |np.— [npoCand p, |mpl— 3, (Kro-
necker—Weierstrass symbol) if the radial relaxation is
ignored. Here, the wavefunction of the np, electron is
obtained by solving the Hartree—Fock equation for the
1s;np, configuration. As a result, amplitude (5)
assumes the form

Anm - (wz -t An)An Eﬂ.Solfl n pol:é nm
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and the summation/integration in Egs. (3) and (4) dis-
appears, which significantly simplifies the anaytical
structure of cross section (1).

In Egs. (1)—(3), the spectral functions have the form

Ve 1
T[(wl_wZ_Ami)z + Vf)’

mi

Ve 1

2 1 Yo '

atomic unitsareused (e=% =m,=1); ryistheclassica
electron radius; Q is the solid angle of the emission of
the scattered photon; y;4(2p) = IM1g2)/2, Where Mgy IS
the total (Auger plus radiative components) width of
the decay of the 1s(2p) vacancy;

A, = E(1snp) —E(0),
Ay = E(2p3,mp) —E(0) + 8,
A, = E(2p3,) —E(0) + 8,

5={0,i=180,i=2, ={2i=11i=2;

0o IS the spin—orhit splitting constant of the 2p atomic

core shell; E are the total Hartree—Fock energies of the

corresponding configurations, Sf stands for the sum-
n>

mation/integration over the discrete/continuous inter-
mediate states; and

’\/5 = D]-Sm 2p+|:KlsKls2p'

Here, K is the product of the overlap integrals of the
radial wavefunctions of the electrons that are not
involved in the radiative transition, have identical sym-
metries, and exist in the ground-state atomic configura-
tion and configurations with the 1svacancy K, aswell
as in the configurations with the 1s and 2p vacancies

Kyep- Theamplitude ./p describesthe emission part of
the total scattering amplitude and is defined in terms of
the amplitude of the radiative transition from the inter-

mediate state to the final state; i.e., //p = Qs|f |2p,0

The quantity y, = Mpear/2 @ppears in the spectral
functions L,; and W, due to the integration of cross sec-
tion (1) with the experimentally determined distribu-
tion function ¢, over the energy of X-ray radiation inci-
dent on the atom [8]:

do(w) _ d’oy(w)

Jo,d0 ] deaydey Po(@n @)dw. ©)
0

In this work, the Cauchy—L orentz spectral function is
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used for the function ¢,

Yb 1

Wy, W) = —=———,
b0y, ) T (o )+ v

The partial scattering amplitudes R, and |; are
obtained from Egs. (3) and (4) by replacing the wave-
function of adiscrete final state by the wavefunction of
a continuous state. In this case, the energy of the con-
tinuous-spectrum electron is determined as € = w;, —
w, -4, € =0, dueto the energy conservation law inthe
inelastic photon—atom scattering.

When integrating over the gp, continuous interme-
diate states, the many-particle effect of the final-state
interaction is ignored in the R and |; amplitudes. This
effect consists changing of the radial wavefunction of a
continuous-spectrum photoelectron due to the 2p —
1s radiative transition and electrostatic interaction of
the photoelectron with the ed continuous-spectrum
electron arising in the 1s — 2p“ed Auger decay of the
1svacancy. Aswas shown in [14], the inclusion of this
effect in the theoretical spectra of the absorption of an
X-ray photon by a deep shell of alight atom (Z < 20)
amost does not change the single-electron approxima-
tion results.

However, since thetotal scattering amplitude enters
into cross section (1) along with the absorption and
emission components, the role of thefinal stateinterac-
tion in the spectra of resonant inelastic scattering is an
open problem and will be analyzed in future investiga-
tions.

Thus, we set
Ep,lepl—d(e —¢),

where & isthe Dirac delta function.
The amplitude Rﬁﬁ) in Eq. (3) hasthe form

RY = S (w,+ 1) A
n>f

and describes photon-exchange inel asti ¢ scattering pro-
cesses (the atom is excited and emits the scattered w,
photon earlier than it absorbs the incident w, photon).

Our calculation for the neon atom shows that the

contribution of the amplitude Rff) does not exceed 1%
of the contribution of thefirst termsof the amplitude R,
in Eg. (3). It is worth noting that the role of such
exchange amplitudes increases considerably for the
elastic (Rayleigh) photon—atom scattering. In particu-
lar, the exclusion of them for the case of the neon atom
resultsin ailmost 40% error in the calculation of the dif-
ferential cross section for elastic scattering near the
K-shell ionization threshold [3]. The contribution of
exchange processes to amplitude |, given by EqQ. (4) is
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on the order of y,{(w, +1,) < 1 and is neglected. Note
that exchange contributions are absent in the contact
part (see Section 2.2) of the total amplitude of inelastic
scattering.

The partial amplitudes A,,,, given by Eq. (5) are cal-
culated in the dipole approximation for the Fourier
components of the electromagnetic field operator:

KO — 00 exp{i(k(F)} —1,

where k is the wavevector of the incident (scattered)
photon and r; is the radius vector of the jth electron of
theatom. Asisknown [10], the dipole approximation is
applicable under the condition A > r,, where A is the
photon wavelength and r, is the average radius of the
nl shell of the atom, which determines the radial inte-
gral of the radiative transition. For the X-ray energy
range studied in this work, this inequality is certainly
satisfied. Indeed, for incident-photon energies from
860 eV to 5.42 keV, the wavelength A ranges from
14.43t0 2.29 A and, therefore, A > r,(Ne) = 0.08 A.

Higher multipole orders of the amplitudes of the
radiative transition are disregarded in the calcul ation of
the amplitudes A,,,. However, we emphasize the fol-
lowing. A decrease in theratio A/r,, and an increase in
the scattering angle can lead to the necessity of going
beyond the dipole approximation even in the X-ray
energy ranges of the incident and scattered photons. In
particular, aswas shown in [15], theinclusion of higher
multipole orders in the calculation of the differential
cross section for the elastic scattering of the 22.1-keV
photon (A = 0.561 A) by the 1s shell of the aluminum
atom (r,4(Al) = 0.063 A) for a scattering angle of 0 =
150° changes the dipole-approximation result by afac-
tor of about 2.

Thecalculation of all radial integrals of theradiative
transition is performed in the length form for the tran-
sition operator. Our analysis shows that the use of the
velocity form for the calculation of the integrals for
transitions involving the deep 1s shell in atoms with a
nuclear charge number Z = 10 changes the absolute val-
ues of such integrals by no more than 1%. Thus, the
many-particle effect of correlations of the random
phase approximation with exchange [16] (for the case
of the neon atom, mixing of the 1snp configuration with
the 2smp and 2p°md configurations as a result of inter-
shell correlations) turns out to be negligibly small and
isignored in thiswork.

2.2. Contact Part of the Cross Section

A certain number of final states of the inelastic pho-
ton—atom scattering are not included in the anomalous
dispersion component of the total scattering amplitude,
but they are fina states of so-called contact (Thomp-
son) scattering. In this case, in Goldstone-Hubbard—
Feynman diagrams for the scattering amplitude, four
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lines intersect at the interaction vertex (Fig. 1b): two
photon lines (w; and w,), electron line (ml, m(l £ 1)),
and vacancy line (jl). Inthe case of the neon atom, these
are the (1s, 2s)ms, (1s, 2s)mp, and 2p°m(s, d) final
states.

Let us determine the analytical structure of the dou-
ble differential cross section for the inelastic contact
scattering of the linearly polarized photon by the atom
beyond the dipol e approximation, whichistraditionally
used for the X-ray range [8, 10]. We represent the
known general analytical expression for the double dif-
ferential cross section for the inelastic photon—atom
scattering in the second order of quantum-mechanical
perturbation theory [8, 10] in the form

d’c _ 2 20 T
do,d0 ro(e, [&,) o, |zf o Mplyn,  (7)
nl, <
where
— ' 2
M = (75 S A (n no), ®)
™ MM

A1MTM‘(n1, n,)
N
= 3, T™M| z exp{i(q [} [si, T'M'[)
k=1

) 9)
Y1 1

L = = '
T (w, —w, _A12)2 + Vi

r
T=LS), vy, = 51

In Eq. (8), the summation is performed over the

[X] =2x+ 1.

terms T of thefixed final state s, = nllyl_1 n,l,, aswell
as over the projections M' of the total angular momen-
tum J' in the s, fina state, and the averaging is per-
formed over the projections M of the total angular

momentum Jin theinitial state's, = nllzll.

In EQ. (7), the atomic units are used, I, is the total
decay width of the njl; vacancy in the atomic core, N;
is the occupation number of the nyl; shell of the atomic
ground state, N is the number of electronsin the atom,
and q isthe scattering vector (momentum transferred to
the atom) whose absol ute value for the case of inelastic
scattering is given by the expression

W W
q = |ki—kg = ﬁJupﬁ-zscose, B = ai (10)

Here, 6 is the scattering angle (the angle between the
wavevectors of the incident and scattered photons), cis
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the speed of light, r, isthe radius-vector of the kth elec-
tron of the atom, and A, = E(s;,) — E(S).

Let us transform expression (8) using the theory of
irreducible tensor operators [17]. We represent the
exponential in Eg. (9) in the form of the functional
series in the spherical functions C® and the tth order
spherical Bessel functions j; of the first kind. Taking
into account the Wigner—Eckart theorem for the matrix
element of the many-electron irreducible tensor transi-
tion operator,

N
QY = Y CPraiany;
k=1

orthogonality property of Wignher symbols; and the the-
orem of the summation of spherical functions, we
reduce Eg. (8) to the form

_ - "2
M = 17 5l THRY llsea T (1)
T t=0
Here, the reduced matrix element of the transition oper-
ator QW in the LS coupling scheme is expressed as
(1, T”Q(t)nslzl—lsb T)
= ()" s(s S)
] [} Nl Nl_l
x JN[L, L3, 311 LS (LySly)

XEHLL%ELJSD
oL, tOoJLto

(12)

x (I [1CY 1) Wi(ngl g, naly),
where

W, (nyly, noly) = Dhylyfj(gr)|n,l O

and L,S is the term of the nllil1 ' atomic residua
shell.

Expression (7), together with Egs. (11) and (12),
provides the desired analytical representation for the
double differential cross section for the inelastic con-
tact photon—atom scattering beyond the dipole approx-
imation (qr — 0). In this case, in order to include the
effects of the spin—orhit splitting of the n,|, atomic core
shells (I, = 1), it is necessary to make the change

MIlez - Z Zi(MIZle)i’
i=1,2
and in order to take into account the distribution over

the energy of X-ray radiation incident on the atom, it is
necessary to perform integration (6).
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d?>0/dw,dQ, rj/(eV sr)
20004

Fig. 2. Double differential cross section for the resonant
inelastic scattering of alinearly polarized (perpendicularly
to the scattering plane) X-ray photon by a neon atom near
the K-shell ionization threshold 1,5 = 868.399 eV. Here,

Wy (uy) isthe energy of the incident (scattered) photon, Q
is the solid angle of the emission of the scattered photon,
ro = 7.941 x 102 cm?2, Tpam = 0.20 &V, 15 = 0.23 &V,

[op=3.95x 1078 eV, and 85 = 0.094 €V.

Moreover, the amplitudes of contact scattering that
interfere with the anomalous dispersion amplitude
should be included in addition to Eq. (7). For the case
of the neon atom in the proposed experimental scheme
(e; , OP), in order to take into account the interference
between the contact and anomal ous dispersion compo-
nents of the total amplitude of transition to the 2p°mp
final states, the following change is necessary in ampli-
tude (3):

Rn— R+ KicKopp "Wo(2p, mp).  (13)

We have not analyzed in detail the shape and values
of the cross section for contact scattering given by
Eq. (7) in wide X-ray and gamma ranges of the inci-
dent-photon energies. Such an analysisis a subject for
future investigations. However, to estimate the contri-
bution of the contact part of cross section to the total
scattering cross section near the K and KL, ionization
thresholds, we analyze the shape and val ues of the mod-
ification of cross section (7) for the neon atom:

Wy
Owl

d’c
S o=y

d0,dG = "0, 2. (41 DKy WPy

nl<f

(14)
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Here,
®, = Wa(nl, g,1) + IW3(nl, £,(1 — 1))
+ (1 + )WE(nl, g,(1 + 1)),
W, = %+ ;lTarctanw—l_;?j_I”', =
where

_ | _ rnI
€n = W —Wo—1p, Ynu = 71

I, is the ionization threshold of the nl shell of the
atomic ground state, and I, is the total decay width of
the nl atomic residua vacancy. Formula (14) follows
from Eq. (7) with allowance for interference (13) and
the following simplifications:

(i) only transitionsto the e, (1, I, £ 1) continuousfinal
states are taken into account;

(ii) the effects of the spin—orbit splitting of the nl
atomic core shells (1 = 1) are disregarded.

In the dipole approximation for the contact transi-
tion operator in amplitude (9), the spherical Bessel
functions satisfy the reations jy(gr) — 1 and
j2(ar) — O and Eq. (15) isreduced to

®,, — e, 0. (16)

We emphasize that the scattering-angle dependence of
the contact-scattering cross section given by Eq. (7)
disappears in the dipole approximation for the given
scheme of the proposed experiment.

Then, taking into account the relaxation of the elec-
tron shells of the atomic residua in the field of an nl
vacancy, we compare result (15) with result (16), which
is formally extended to the range 0 < gr < 1, and find
that they are noticeably different for nonzero scattering
angles even in the X-ray energy ranges of the incident
and scattered photons.

In this work, we do not compare result (14) with
results obtained in other approximations that have been
widely used in available papers to analyze Compton
scattering (thefinal state of inelastic scattering isacon-
tinuous state) [10, 18]. In particular, we do not consider
the so-called impul se approximation, because the main
condition of the applicability of this approximation,
gap > 1[19, 20], is not satisfied. Indeed, for the ener-

gies of the incident (w;" ~ 5500 eV) and scattered
(wo™ ~ 880 eV) photons under investigation and using
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d*0/dw,dQ, r/(eV sr)
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Fig. 3. Role of the R% and Iﬁ correlation transition ampli-

tudes given by Eq. (17) for the principal quantum numbers
m= 3, 4, and 5 of the discrete final state. The dashed line
and circles are obtained without and with the inclusion of
theradial relaxation of electron shells, respectively, and the
solid line is calculated with alowance for radial relaxation
and correlation amplitudes. The incident-photon energy is
w; = 868.5 eV. Thewidths, parameter g5, and notation are

thesameasin Fig. 2.

Eqg. (10) for the scattering angle, e.g., 8 = 90°, weobtain
g3y = 1.5, where a, is the Bohr radius.

3. CALCULATION RESULTS
AND DISCUSSION

We consider afree neon atom as the object of inves-
tigation. Figures 2—7 and Tables 1 and 2 present the
scattering cross sections calculated by Egs. (1) and (14)
for the X-ray energy ranges of the incident (w; =
860-5500 eV) and scattered (w, = 760-880 €V)
photons.

Thevalues I, = 0.23 eV (measured by X-ray pho-
toel ectron spectroscopy and taken from [21]) and I, =
3.95 x 108 eV (theoretical result taken from [22]) are
used for the total decay widths of the 1s and 2p vacan-
cies, respectively. Thevaluel e, = 0.20 €V istaken for
the width parameter in the function ¢, in Eg. (6). Thus,
we assume that the spectral resolutions of the experi-
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d*6/dw,dQ, r§/(eV sr)

846.0
w,, eV

O 1
845.0 845.5

Fig. 4. Role of the RiC and IiC correlation transition ampli-
tudes given by Eq. (20) in the region in which appears the
leading 1s; — 3p, resonance of the intermediate state.
The incident-photon energy is w; = 865.6 eV. The widths,
parameter &g, and notation arethesameasin Figs. 2and 3.

ment in the energies of the incident (I',.,y,) and scat-
tered (~I" ;) photons are almost identical. The theoreti-
cal value 855 = 0.094 eV of the spin—orbit splitting con-
stant for the 2p shell istaken from [23].

3.1. Energy Range
of the K-Shell lonization Threshold

Figure 2 shows cross section (1) in a close vicinity
of the K ionization threshold of the 1s shell |5 =
868.399 eV (nonrelativistic calculation performed in
this work). The wavefunctions and energies of the ini-
tia, intermediate, and final states are obtained in the
nonrelativistic ~ single-configuration  Hartree—Fock
approximation. States with n, m= 3, 4, and 5 are taken
asthe np, intermediate and mp final discrete states. The
amplitudes A,,, with the principal quantum numbers
n=m determine the leading shape resonances in the
cross section: Aq3 > Ay, > Ag; for the photon energies (in
electronvolts) (w,, w,) = (865.420, 848.470), (867.030,
848.515), and (867.612, 848.530).

An exampleof theanalytical solution to the problem
of taking into account the completeness of the set of
discrete states (n, m = 3, ..., o) was recently given
in [24] for the case of the constructing the differential
cross section for resonant elastic (Rayleigh) scattering
of the X-ray photon near the K-shell ionization thresh-
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d’*0/dw,dQ, rj/(eV sr)

120‘ |

852 eV

0

Fig. 5. Double differential cross section for the resonant
inelastic scattering of a linearly polarized X-ray photon by
a neon atom near the KlLy3 ionization threshold |1, =

914.637 eV. The widths, parameter dgo, and notation are

thesameasin Fig. 2. The spectral characteristics of the scat-
tering resonances are given in Table 1 and the cross sec-
tions, in Table 2.

old of the neon atom. The analytical solution to this
problem for the case of resonant inelastic scattering is
much more difficult because of the presence of two
(absorption and emission) componentsin the total scat-
tering amplitude and is a subject for future investiga-
tions.

The continuous spectrum channel of the 2p°e;p final
stateopensat w, = I;;and w, = 848.555 eV. For w, > |4,
cross section (1) has the spatially extended form of the
Kay , X-ray emission spectrum of the neon atom
(excited by the photon) [25].

Allowance for the radial relaxation of the electron
shells of statesin the fields of the 1s and 2p vacancies
almost halves cross section (1). Cross section (1) calcu-
lated disregarding the relaxation effect coincides in
shape with the result obtained with the inclusion of this
effect and is not shown in order to avoid overloading
Fig. 2.

The “ribbed” structures that diverge at an angle of
45° on the (w,;, w,) plane on both sides of each reso-
nance, as well as the threshold of the arising Ka ,
structure of the scattering spectrum, appear because
expression (1) for the cross section contains the spectral
functions L,; (the denominator is minimal on the
straight lines specified by the equation w, = w, + Ay;)
and the minimum energy (g; = 0) of the continuous-
spectrum  electron  (radiative-transition amplitude
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d20/dw,dQ, r3/(eV sr)
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Fig. 6. Ko X-ray emission spectrum of the neon atom. The
circles are experimental data from [25] (obtained in arbi-
trary units for the energy w; = 5410.17 eV of the X-ray

exciting photon corresponding to the Ka radiation of the
chromium atom). The solid line is theoretically calculated
in this work with I = (Ko ) 0.50 and (Ka3 4) 0.60 eV.

The parameters of the resonances of the theoretical Ka 4

structures of the spectrum that are marked by the digits are
presented in Table 2. The widths IMyeqy and I pp,, parameter

00, and notation are the same asin Fig. 2.

Osy|? |§p.C0s maximal on the straight line specified by
the equation w; = w, + 4)).

Thej + 1/2 and j — 1/2 components of the spin—orbit
doublet of the 2p shell (j = 1) are virtually not resolved
in Fig. 2 (aswell asin next figures), because the value
0s0 = 0.094 eV is smal compared to the width Iy =
0.23 eV for the neon atom.

Theradial relaxation of electron shellsresultsin the
appearance of not only the correlation wavefunction
[np.[lin the transition from the initial state to the inter-
mediate state, but also nonzero p,|epOand 3Xp,|mpO
amplitudes of nonradiative transitions between excited
states with the same symmetry that are obtained in dif-
ferent Hartree—Fock fields. These amplitudes are not
manifested in absorption and elastic scattering [3], but
are manifested in the resonant inelastic photon—atom
scattering as follows.
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(i) Inthe expressionsfor the R,,and I,,,amplitudes of
scattering to discrete states, the following components
appear:

RS = MplCrT Iy, = yilnpC/ O (17)

Here, the correlation wavefunctions have the form

00

ICr0= I(wl —X5) [D(X) [, (18)

00

IC/ 0= [ID(x)(dXx,
I

[1s,|f|x
_Osfixed b o)

W —Xg5) TVYis

[D(X) CE X1o(Xqs + 0y — )

where
X1s = X+ g
(i) In the expressions for the R, and I; amplitudes of

scattering to continuous states, the following compo-
nents appear:

RS = BAST I = Vi BpST (20)
Here, the correlation wavefunctions have the form
|S;D: z ((*)1 - Ilsnp)anD (21)
n>f
S0="3 [B. (22)

n>f

where
|BnD= I1snp(|1snp+ (*)2_001)
[sy|fn
Sol | ch _inp.0]
(wl_llsnp) +yls
lisnp = E(1snp) — E(0).

We refer to the appearance of amplitudes (17) and
(20) with correlation functions (18), (19) and (21), (22),
respectively, as the effect of the correlation amplitudes
in the resonant inelastic scattering of the photon by the
free atom.

Amplitudes (17) describe the transition of the xp,
continuous intermediate state to the mp discrete final
states. This process amost doubl es the scattering prob-
ability calculated disregarding this effect. Figure 3 shows
the corresponding calculation of cross section (1).

Amplitudes (20) describe the transition of the gp
continuous final state to the infinite Rydberg series of
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Fig. 7. Contact part of the double differential cross section
for the resonant inelastic scattering of a linearly polarized
(perpendicularly to the scattering plane) X-ray photon by a
neon atom near the K-shell ionization threshold. Thecircles
are calculated by Eq. (14) with the function @, given by

Eqg. (15), thetriangles are obtained in the dipol e approxima-
tion by Eqg. (14) with thefunction @, given by Eq. (16). The
scattering angle is 8 = 90°. The incident-photon energy is
w; =880 €V.

the np, intermediate states. As a result, a part of the
continuous spectrum g;p falls in the “shadow” region
and is not realized asfinal states. Therefore, the scatter-
ing probability decreases compared to the value calcu-
lated disregarding this process. The corresponding cal-
culations of cross section (1) are shown in Fig. 4 and
indicate that the above process noticeably affects the
values and shape of the scattering cross section.

Thus, the simultaneous inclusion of amplitudes (17)
and (20) results in the redistribution of the scattering
probability from the long-wavelength region of the
energies of the incident and scattered X-ray photonsto
the short-wavelength region.

3.2. Energy Range
of the KL, lonization Threshold

It is reasonable to assume that alowance for the
multiple excitation/ionization of the ground state of the
neon atom results in the appearance of the nearest fine
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Table 1. Double differential cross section for the resonant
inelastic scattering w; + [0] — |nO— [2p*n,pnop3+ w, of
alinearly polarized (perpendicularly to the scattering plane)
X-ray photon by a neon atom near the KLo; ionization
threshold (see Fig. 5)

2 2
" s M “p &V di):;DQ ’ e\;osr
1 3,3 902.42 156.57
2 3,3 903.62 20.37
3 3,4 904.92 29.16
4 3,4 905.52 34.27
5 3,3 906.02 4559
6 3,4 908.02 29.28

Note: wy isthe incident-photon energy, [nChare intermediate states
[see Egs. (24)] and |2p4n1pn2pEBrefi nal states. For all n, ny,
and n, values, the emitted-photon energy is w, = 854.80 eV
(see Eq. (26)).

structure of the double differential cross section for res-
onant inelastic scattering calculated in Section 3.1.

Near the KL 53 ionization threshold (1,4, = 914.637 €V,
nonrelativistic calculation performed in this work), we
consider only the processes of double excitation/ioniza-
tion that make the main contribution to the total inten-
sity of the multiple excitation/ionization of the ground
state of the neon atom. The leading role of the channels
of double excitation/ionization is corroborated, in partic-
ular, by the calculation [26] and measurements [27, 28]
near the I, ionization threshold, as well as by calcu-

HOPERSKY et al.

lation and measurement [29] near the KL, ionization
threshold in the absorption spectrum of the X-ray pho-
ton by the neon atom.

At thefirst stage of the construction of the amplitude
A, in Egs. (3) and (4), double excitation processes are
considered for intermediate and final states. The wave-
functions and energies of the intermediate states are
obtained in the LS coupling scheme and in the nonrela-
tivistic multiconfiguration Hartree—Fock approxima-
tion by diagonalizing the secular-equation matrix con-
structed on the basis of the wavefunctions

InO= Z z zaistnlllnzlz(LS); P

LSny,>fl5,

(23)

where
1 =1s252p°(***'P),

n,l.n,l, = 3pmp, 3sm(s,d), 3dmd, m=3,4,5,

aizs‘ are the configuration mixing coefficients and LSis
the term of apair of the nyl; and n,l, excited electrons.

The wavefunctions of the n;l; and n,l, excited elec-
trons are determined by solving Hartree—Fock equa-
tions averaged over the 3P and LS terms of the
{nylin,l, configuration. The wavefunctions of the 1s,
2s, and 2p atomic residua electrons are obtained by
solving Hartree—Fock equations averaged over the 1 3P
terms of the ¢ configuration.

Table 2. Wavefunctions of the 1s2p°(L,S)np(L,S,)e'p intermediate and 2p*(L;S;)np(L,Sy)e'p final states of the resonant
inelastic scattering of alinearly polarized (perpendicularly to the scattering plane) X-ray photon by aneon atom near the KL 55
ionization threshold and the energy at which the corresponding spatially extended structures arise in double differential cross

section (1) (see Fig. 5)

2 2

n LS, LS, LsS; LS, Wy, &V Wy, &V N d(:o:;DQ , e\;_osr
3 W(P) o9 90240 | 851.32 1 0.0074
WEP) o3P) 90520 | 854.12 4 0.0221
W(P) o('D) 90570 | 854.61 5 0.0280
4 P 25 P %P 91020 | 854.08 2 0.0074
1p 25 1p 2p 91115 | 855.03 6 0.0040
£ P 75 P %P 91460 | 854.11 3 0.0120
1p 25 1p 2p 91568 | 855.19 7 0.0068

Note: w isthe incident-photon energy [see Egs. (30) and (31)], wy, is the emitted-photon energy [see Eq. (32)], W(LS) is given by Egs. (28),
QLS isgiven by Egs. (29), N isthe ordind number of aresonance, and dZGD/dedQ istheoretical cross section (1) for wy =5410.17 eV
a the Nith resonance maximum in Fig. 6 for the Kaz 4 X-ray emission spectrum of the neon atom.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

No. 4 2005



MANY-PARTICLE EFFECTS IN RESONANT INELASTIC SCATTERING

Wavefunctions (23) of states that make the main
contribution to the intensity of double excitation have

the form (components with |as5 | = 0.40 are retained)
[10= 0.97|23p°(*P)0)
|20= 0.47|73p*('D) - 0.88|73s3d('D) [
|30= [£3p4p[0.70(°P) + 0.70(°D)] ]

l40= |23p4p[0.70(°P) —0.60(°D)] J (24)

|50= [£3p°[0.70('D) + 0.60(*S)] O
+0.43|¢3s3d('D)] 0

|60= 0.90Z3p4p('D)]C

The structures of the wavefunctions [2Cand |50 ndi-
cate that the 3p>—3s3d electrostatic interaction plays a
considerable role in the formation of intermediate
states of inelastic scattering of the X-ray photon by the
neon atom.

The resonance energies of the incident photon (w,,,)
as the energies of radiative transitions from the ground
state to states (23) are calculated by the formula

Wy = En_ E(O), (25)
where E, is the energy of state (23). Note that Eq. (25)
does not include a correlation energy of about 1-3 eV
for each electron [30]. This disregarded correlation
energy provides an estimate of the calculation accuracy
for radiative-transition energies (25).

The wavefunctions and energies of the final states
are obtained in the nonrelativistic single-configuration
Hartree—Fock approximation. The 2p*3p? configuration
istaken asthefinal state configuration for the transition
from the intermediate states |10 |2[] and |50] The
2p*3p4p configuration is taken as the final state config-
uration for the transition from the intermediate states
|30) |40 and |61

It is assumed that the emitted-photon energy for al
radiative transitionsto final statesthat involve states (24)
is given by the expression

w, = wy ~E(2p"3p") + E(0), (26)
where wy; = 902.42 eV (see Table 1). Going beyond
approximation (26) is necessary primarily for theinclu-
sion of the configuration interactionsin final states and
is asubject for future investigations.

The radial relaxation of electron shellsin the fields
of the 1s and 2p vacancies in the structure of the ampli-
tudes of radiative transitions from the ground state to
states (24) and from states (24) to the 2p*(3p?, 3p4p)
final states is taken into account by the nonorthogonal
orbital method [9, 26]. In particular, for the 1s2p —

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

607

3p? excitation, the expression for the radial part (R) of
the amplitude of the radiative transition in the length

form is written as (D is the many-electron radiative-
transition operator):

0[D[Z3pTk = M [Lsylfl 9T2pd @,
where

(27)

M = [lsq1sl2s{2s32pd2p0,

Pd3p0
Pd2pC

-1/2
lp.0= (1-n% " “(1BpC-n|2p,0, n = 2p,3pQ

Amplitude (27) was constructed using the Gram-—
Schmidt orthogonalization method [31] and the general
guantum-mechanical requirement [32] that the wave-
function of the 1s2p — 3p? excited state be orthogo-
nal to the wavefunctions of lower-lying 1s — 3p and
2s2p — 3p? excited states. The wavefunctions of the
1s, (aswell as 2sy), 2py, 1s, 2s, 2p, 3p, and 2p, electrons
are obtained by solving Hartree—Fock equations for the
1s?2s°2p5, {3p?, and 1s3p configurations, respectively.

It is worth noting that the {n,;dn,d and {n;sn,(s, d)
components of states (24) are manifested in the scatter-
ing cross section only via their electrostatic mixing
with the {n,pn,p components, because they do not con-
tribute to the matrix element of the radiative transition
operator in the dipole approximation. Indeed, transi-
tionsto the {n,dn.d states are forbidden by the selection
rule in the orbital quantum number |, and transitions to
the {nysny(s, d) states are virtually forbidden under the
above requirement that the wavefunctions of these
states be orthogonal to the wavefunctions of low-lying
states with the same symmetry.

The calculation results for cross section (1) includ-
ing doubly excited states for the energy range near the
KL,3 ionization threshold of the neon atom are given in
Table 1 and Fig. 5.

At the second stage of the construction of the ampli-
tude A, in Egs. (3) and (4), the excitation/ionization
processes (n = 3 and 4):

o, 0= [3pE-[2p

@y +[0] —= Znpep — 2p°npep + w,,
and the doubleionization
w, +[0] —Lepe'p—» 2p'epe’p+ w,,

are considered for intermediate and final states. Single-
electron wavefunctions of the intermediate and final
states are obtained by solving Hartree—Fock equations
averaged over the terms of the {np and 2p*np configu-
rations (n = 3, 4, €), respectively.
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The total wavefunctions and energies of the inter-
mediate and final states are determined in the LS cou-
pling scheme in the nonrelativistic single-configuration
Hartree—Fock approximation with allowance for the
multiplet splitting by diagonalizing the secular-equa
tion matrices constructed on the basis of the |¢(npUand
[2p*np wavefunctions, respectively. Calculating the
energy structure of the {epe'p and 2pepe'p states with
the ep and €'p continuous-spectrum electrons, we
neglect the 1s—p and 2p—ep electrostatic interactions
and set F,(2pep) = Gy, »(2pep) = G,(1sep) =0inthesec-
ular-equation matrices for Slater integrals.

After the diagonalization of the secular-equation
matrices, we arrive at the following conclusions.

(i) Among the components of the {np multiplet of
intermediate states, only the (*3P)2S terms of the {3p
configuration are really mixed:

W('P) = 0.96['P, *S3-0.28['P, ’S[]

3 14 2 3 2 (28)
W(P) = 0.28| P, “Si+ 0.96| P, “S[)
where [* 3P, 2S = [12p%(* 3P)3p(%9).
(ii) Among the components of the 2p*np multiplet of
final states, only the (1S, D, 3P)?P terms of the 2p*3p
configuration are actually mixed:

o('S) = 0.998['S, *PC+ 0.057[°P, °P[

®('D) = 0.935['D, P+ 0.353[P, P[] (29)

o(°P) = 0.934°P, P 0.353|'D, *P3- 0.052['S, °P[}

where |LS, 2P |2p4(LS)3p(?P)1]

The incident-photon threshold energies for the for-
mation of the extended structures of cross section (1)
that are associated with transitions to the intermediate
states corresponding to excitation/ionization and dou-
bleionization are calculated by the formulas

w, = E(*°P)-E(0), n = 3, (30)
w, = E(LS L'S) —E(0), (31)

Here, E(*3P) are the energies of states (28) and
E(LS L'S) are the energies of the terms of the
{(LYnp(L'S) multiplet. The corresponding energies of
emitted photons are calculated by the formula

n=4e:¢.

W, = E(Kin) —E(Kan) + Er(Kin) —Er(kzn),  (32)

where E(k,,) and E,, are the total Hartree—Fock ener-

giesof thek,,, = {np and k,, = 2p*np states and E; arethe
energies of the terms (for n = 3, energies of states (28)
and (29)) of the corresponding multiplets with respect
to their centroids.

The calculation results for cross section (1) includ-
ing the states of excitation/ionization and double ion-
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ization near the KL,5 ionization threshold of the neon
atom are presented in Table 2 and Fig. 5.

3.3. Comparison of Theory with Experiment

As the incident-photon energy increases, the spa-
tialy extended structures of cross section (1) that are
presented in Figs. 2 and 5 evolve to the main Ka; , and
satellite Koz 4 X-ray emission spectraof the neon atom,
respectively. Since the Ka X-ray emission spectrum of
the neon atom was measured in experiment [25] carried
out at the incident-photon energy w, = 5410.17 €V, the
theory and cal culation methods devel oped in this work
can be tested. The calculation results of this work are
compared with experiment in Fig. 6.

The experimental Ka emission spectrum of the neon
atom was obtained in arbitrary units. For this reason, we
normalize it to the theoretical value of cross section (1)
near the a5 structure of the emission spectrum (see
N =4inTable 2). In this case, the theoretical spectrum
near the a; , and a5 4 structures of the emission spectra
was calculated with the total widths ', = 0.50 and
0.60 eV, respectively, of the decay of the 1s vacancy,
which are taken from [27] (synchrotron experiment on
measuring the spectrum of the photon absorption by the
neon atom near the K and KL ionization threshol d).

The contribution of the contact part of the cross sec-
tion for w, = 5410.17 eV is equal to anegligibly small

value of about 10-6r;/eV sr and isignored.

The theoretical calculation of this work agrees well
with the experimental data. The cause of the remaining
discrepancies of about 16% near the Ka; , resonance of
the emission spectrum is not understood and isasubject
for future investigations.

Discussing the features of the evolution of the spa-
tially extended structures of cross section (1) (see
Fig. 5) to the emission-spectrum structure (see Fig. 6),
we mention that the role of the radial relaxation of elec-
tron shellsinthefields of 1sand 2p vacancies decreases
as the incident-photon energy increases. Indeed, when
wy increases, in the amplitude of the radiative transition
to the intermediate state

M,(LS) = [0|D|Z(LS)npe'pd = a8, + BLsby,

wheren =3 and 4 and a, sand 3, s are the angular coef-
ficients, the component

a, = solf[np{T2pde'p.O
becomes negligibly small compared to the component
b, = [lso|fle'pT2pdn'p.0

and the contribution of the additional term to the radial
integral (1|7 |€p.Ldecreases strongly. As aresult, the

No. 4 2005



MANY-PARTICLE EFFECTS IN RESONANT INELASTIC SCATTERING

ratio M,,(°3P)/M,(*P) increases and the scattering proba-
bility is redistributed from the Ka, region of the emis-
sion spectrum to the Ka region.

3.4. Calculation of the Contact Part
of the Cross Section

Figure 7 shows the contact part of cross section (14)
calculated near the K-shell ionization threshold of the
neon atom with the function ®,; obtained in this work
(see Eg. (15)) and in the dipole approximation (see
Eq. (16)), which is formally extended to the range 0 <
gr < 1. Thewavefunctions of theg (1, | £ 1) continuous-
spectrum electrons in the final states are obtained by
solving Hartree-Fock equations for a configuration
containing an nl vacancy. The wavefunctions of nl elec-
tronsin theinitial states are determined by solving Har-
tree—Fock equations for the ground state configuration.
In calculating spectral functions W, in (14), we used
the total decay widthsT;;=0.23 €V and I, = 0.05 eV
(measured from the experimental spectrum of the
absorption of the photon by the 2s shell of the neon
atom [33]), as well as the width I',, = 3.95 x 108 eV
and ionization thresholds 1, = 868.399 eV, I, =
49.314 eV, and | ;, = 19.845 eV (nonrelativistic calcula-
tion performed in this work).

Thejumpsin the scattering cross sectionin Fig. 7 at
the emitted-photon energies 830.866 and 860.155 eV
correspond to the condition of zero energy of the con-
tinuous-spectrum electron, w, = w; — I, and w, = w,; —
| 5, for the 2s, — €(s, p) and 2p, — £(s, p, d) transi-
tions, respectively. As follows from the results pre-
sented in Fig. 7, the contribution of the contact part of
the cross section to the total cross section of the process

is negligibly small [~0.07r§/eV sr] compared to the
contribution of the anomalous dispersion component

[~250r(2)/eV st] in the region of the formation of the
Ka, , structure in the scattering spectrum.

However, even in the X-ray energy ranges for the
incident and scattered photons and for nonzero scatter-
ing angles, the dipole approximation, in principle, sig-
nificantly changes not only the val ues but al so the shape
of the contact part of the cross section compared to
those calculated beyond its framework. Moreover,
when the radial relaxation of electron shellsin thefield
of an nl atomic-residual vacancy isignored, ®, =0in
the dipole approximation, whereas @, # 0 beyond the
framework of the dipole approximation (for gr > 0).

The inclusion of the configuration interaction and
multiple excitation/ionization in the initia and final
states of inelastic contact scattering, aswell asthe addi-
tiona terms in the functions W(n,l,, nJl,) in Eq. (12),
when the radial relaxation of electron shellsin the field
of the core vacancies (e.g., allowance for the change of
(solia(ar)lep.Cby Asglia(ar)lepclin Eg. (15)) is taken
into account, is a subject for future investigations.
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4. CONCLUSIONS

The basic results of thiswork are as follows.

The radia relaxation of the eectron shells of the
intermediate and final states in the Hartree—Fock fields
of the deep 1s and valence 2p vacancies aimost halves
the value (but does not change the shape of the surface)
of the double differential cross section for the resonant
inel astic scattering of the X-ray photon near the K-shell
ionization threshold of the neon atom.

In addition to the effects of the configuration inter-
action and multiplet splitting in the intermediate and
final states, the radial relaxation significantly deter-
mines the value, structure, and shape of the resonance
and the spatially extended thin structure in the double
differential cross section for inelastic scattering near
the KL 5 ionization threshold of the neon atom.

When the incident-photon energy increases, the
contribution of the radial relaxation to the value and
shape of the double differential cross section for inelas-
tic scattering decreases, which determines the features
of the evolution of the spatially extended structures of
the cross section to the Ka X-ray emission spectrum of
the neon atom.

Theradial relaxation isresponsible for anew type of
many-particle effect—the effect of correlation ampli-
tudes in the resonant inelastic scattering of the X-ray
photon by the free atom. Inturn, this effect significantly
determines the value and shape of the double differen-
tial cross section for scattering near the K-shell ioniza-
tion threshold of the neon atom.

The analytical structure of the contact part of the
double differential cross section for the inelastic scat-
tering of the photon by the free atom has been deter-
mined using the irreducible tensor operator method. 1t
has been shown that the transition from the found struc-
ture to, e.g., the dipole approximation for the theoreti-
cal description of the contact part of the cross section
strongly changes not only the values but also the shape
of the scattering cross section even in the X-ray energy
ranges of the incident and scattered photons.
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Abstract—The electron terms are constructed for oxygen dimer ions at large ion—atom distances taking into
account a certain scheme of summation of electron momenta on the basis of a hierarchy of various ion—atom
interactions. Because the number of interaction types exceeds that in the Hund scheme, arealistic hierarchy of
interactions and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme.
Electron terms are evaluated for the oxygen dimer ion in the case where the ground and first excited states of
an atom and an ion belong to the respective valence electron shells p* and p® and correspond to the range of
separationsthat determine the cross sections of resonant charge exchangein plasma. These electron terms allow
usto calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and
atom in the ground and first excited statesin the range of collision energies of interest for oxygen plasmas. The
specific features of electron terms of the oxygen ion dimer and the cross section of electron transfer are ana-

lyzed. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In dow collision processes, electrons follow
changes of atomic fields and therefore the cross section
of aslow collision process is determined by the behav-
ior of electron terms for a quasimolecule consisting of
the colliding atomic particles. Below, we consider the
resonant charge-exchange processes

0'(2p%)(*s °D,’P) + 0(2p")(°P, 'D, '9)

(1)
— 0(2p")(’P,'D,"9) + 0" (2p’)(*s D, °P)

at low collision vel ocities compared to those of valence
electrons. Because the cross section of resonant charge
exchange is large in comparison with a typical atomic
crosssection, i.e., theelectron transfer proceeds at large
distances between colliding particles, analysis of elec-
tron terms is required at large ion—atom distances,
where various types of interactions may be separated.

The character of coupling of electron momentamay
be constructed on the basis of the Hund coupling
scheme [1-3], which consists in analyzing the hierar-
chy of interactions in the quasimolecule, which also
allows one to determine the quasimolecule quantum
numbers. Because the potentials of different interac-
tions depend on distances between atomic particles, the
coupling scheme and quantum numbers of the quasi-
molecule can vary with changing distances between
atomic particles. Therefore, for analysis of collision
processes, the relative trgjectory of particle motion can

T The text was submitted by the authors in English.

be conveniently divided into several parts such that a
certain type of coupling of electron momentaisrealized
in each part [4—7]. The transition between different
coupling schemes leads to a change of quantum num-
bers of colliding particles.

The processes under consideration are of impor-
tance for anonequilibrium dissociating oxygen plasma,
in particular, for atmospheric plasma at atitudes above
100 km. Indeed, oxygen is partially atomic at these alti-
tudes, due to oxygen dissociation under the action of
solar radiation. Because the cross section of resonant
charge exchange significantly exceeds the cross sec-
tions of other processes, including elastic collisions of
atoms and molecules, the resonant charge-exchange
process determines the mobility of ionsin this plasma
and the parameters of other transport processes involv-
ing ions. Oxygen atoms and ions are in the ground and
lowest-excited electron states, and the cross sections of
resonant charge exchange depend on these states.
Because the distribution over these states at a given
point of space depends on external conditions, mea-
surement of the mobility for oxygen ions in different
electron states at this point allows us to determine the
atom distribution over the lowest electron states at a
specified point. Hence, determination of the cross sec-
tions of resonant el ectron transfer for oxygen atoms and
ionsin different states has an applied interest.

The first stage of determining the cross sections is
the construction of electron terms of the quasimolecule,
which can be done on the basis of the standard Mul-
liken scheme of momentum summation [1]. This
schemeincludesthreetypes of interactionsin the quasi-
molecule: V;, the electrostatic interaction responsible

1063-7761/05/10104-0611$26.00 © 2005 Pleiades Publishing, Inc.
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for energy splitting at different angular momentum pro-
jections on the molecule axis; &, which corresponds to
the spin—orbit interaction and other relativistic interac-
tions; and V., the rotational energy or Coriolis inter-
action, which accounts for the interaction between the
orbital and spin electron momenta with the rotation of
the molecular axis. Depending on the ratio between
these interaction energies, one can construct six cases
of Hund coupling [1-3], each of which corresponds to
acertain scheme of momentum summation and is char-
acterized by certain quantum numbers of the diatomic
molecule. These cases can be used as model ones for
analyzing certain transitionsin atomic collisions [6-8].

This general scheme may be used for analyzing the
resonant charge-exchange processinvolving anion and
an atom with nonfilled electron shells when different
schemes are possible for coupling of electron momenta
and, correspondingly, when the resonant charge-
exchange process is entangled with other processes
(rotation of electron momenta, transitions between fine
structure states) in different ways. Nevertheless, elec-
tron exchange and other transition processes usualy
correspond to different trajectory segments, which
makesit possibleto separate the exchange processfrom
other processes. It istherefore necessary to use the cor-
rect scheme of angular momentum coupling in the
guasimolecule, which consists of the colliding ion and
atom. Analysis of the resonant charge exchange for
halogens|[9, 10] showsthat thereal character of angular
momentum coupling corresponds to none of the Hund
cases, because the number of different interactions is
greater than that used in the standard scheme. Never-
theless, the general concept of constructing electron
terms of a quasimolecule on the basis of theinteraction
hierarchy remains valid and underlies the analysis.

Thus, the goal of this paper is to find the character

of coupling for the oxygen diatomic ion O at large

distances between the nuclel on the basis of construct-
ing an interaction hierarchy in this quasimolecule. This
allows us to evaluate the partial and average cross sec-
tions of resonant charge exchange in the case of oxygen
for the lowest state of electron shells. Solution of this
problem also gives a general scheme for determining
the cross section of resonant charge exchange for ion
and atom with nonfilled electron shells.

2. HHERARCHY OF ION-ATOM INTERACTIONS
FOR OXYGEN

We determine the cross sections of processes (1) on
the basis of the asymptotic theory [11-13], i.e., as a
result of expansion of the cross section with respect to
the small parameter, the ratio of the typical atomic size
to the typical distance of electron transfer. This theory
uses alarge electron transfer cross section compared to
thetypical atomic cross section at low velocities, and its
first stage is evaluation of the electron terms for the
guasimolecule consisting of colliding particles. Wefind
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the hierarchy of interactions at large distances between
0O*(2p® and O(2p*) and then the electron terms of this
system and quantum numbers for the description of the
molecular ion states.

Based on the experiencefor the case of halogen[9, 10],
as the basis ion—atom interactions at large distances R
we use the fine spin—orbit interaction for O*(2p?) and
O(2p*) and the quadrupole interaction of theion charge
with the atom quadrupole moment. In this approxima-
tion, the Hamiltonian of the molecular ion at large dis-
tances between nuclei is given by

[ = —al B-bi @_%3. @)

Thisisvalid for light atoms in the case of the LS cou-
pling scheme for atoms and ions; here, L isthe opera-
tor of the angular atom momentum, S isthe atom spin
operator, | isthe operator of the angular ion momen-

tum, § istheion spin operator, and Q isthe quadrupole
momentum operator for the atom, and we take theinter-
action of a positively charged ion with the quadrupole
moment of valence electrons into account.

The parameters of the spin—orbit interaction of an
oxygen atom and itsion are given by a=77 + 2 cm
for the atom state P, b = 8.4 cm™ for the oxygen ion
state 2D, and b = 0.7 cm* for the ion state 2P [14, 15].
Because the typical value of the ion—atom exchange
interaction potential is several cm!, we can ignore the
fine splitting of levelsin thelast case. Correspondingly,
the matrix elements for the spin—orhit interaction are
[3, 16, 17]

M, MJL C5M_, M= M, Mg,
M, ML C5M, + 1, Mg— 10

= M_+1, Mg— 1L (8|M, MO ©)

= S AT+ DE-[ME+ MJE-M] D),

M, ML (M, -1, Mg+ 100

= M, -1, Mg+ 1L (5M, MO

= JIL+ ML =M+ 1)(S+|M{ + 1)(S—|MJ),

where L and M, are the atom orbital momentum and its
projection onto the molecular axis, S and Mg are the
atom spin and its projection on the molecular axis. For
the matrix elements of the ion spin—orbit interaction,
we have identical expressions.
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Tablel. Diagona matrix e ementsof the quadrupole moment Qy, expressedin eaf) for an oxygen atom with the electron shell 2p*

State SP,M=0
Qvm 16

P M=+%1
-0.8

D,M=0
-1.87

ID,M=#1
-0.93

D,M=+%2
1.87

We consider the quadrupole interaction between an
ion and an oxygen atom, which, in this case, corre-
sponds to the second expansion term of the ion charge—
valence electron interaction:

e _[_¢
R \|R-r]

in the small parameter r/R, wherer isthe valence elec-
tron coordinate in its atom, R is the distance between
theion of charge e and the atom nucleus, and the aver-
age is taken over the wavefunction of the valence elec-
tron. The quadrupole moment of an individual electron
isthen given by [18]

(I, +1)=3m* 3

— 2 -
g = 2°P,cosl = 2(2le_1)(2|e+3)r . @

wherer, 8 are spherical coordinates of the valence elec-
tron and |, and m are the orbital momentum of thiselec-
tron and its projection on the molecular axis.

For oxygen, it is more convenient to consider a
valence electron shell as two p-holes in addition to a
completed p-electron shell. The hole quadrupole
moment differs from that of the electron by sign only.
The total wavefunction of these holes that corresponds
to thetotal orbital momentum of holes L and its projec-
tion M onto agiven direction is given by

Wi = z{l ! L}wlmmww_m(zx 5)
mM-mM

m

where Y1,(i) is the wavefunction of the ith p-hole with
the momentum projection m and the Clebsch—Gordan

coefficient
1 1 L
mM-mM

is responsible for summation of the momenta of indi-
vidual holes into the momentum of the entire system.
Correspondingly, the electron shell is characterized by
guantum numbers L, —=M in this case, and because its
atomic quadrupole moment is conserved under M ——
—M, we ignore the difference between a hole and an
electron below.

We use the fact that the sum of quadrupol e moments
of an electron shell and a hole shell is zero, and there-
fore, expressing the quadrupole moment of an electron
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shell through the quadrupole moments of a hole shell,
it is necessary to change the sign of the quadrupole
moment. In another way, the sign of the electron qua-
drupole moment is reciprocal to that of a hole and
therefore, constructing the quadrupole moment of an
electron shell through those of individual holes, we
must change sign. Hence, the quadrupole moment of an
oxygen atom is given by

2
MIQIM D= By Y [; o hﬂ (An* Ga—n). (6)

m
where g, is the quadrupole moment of an individual
electron with the momentum projection m on the
molecular axis, and, according to formula (3), we have

N

der

_der? o 2er’
0o = 5 0. =041 =

= ™

where r? isthe mean square of avalence electron orbit.

For an oxygen atom in the ground state, we have r’ =

2a} [15], where a, is the Bohr radius. For excited oxy-
gen atom states, we take

2Oy, V2= Iy,

where J is the ionization potential for this state and Jy
is the ionization potential for a hydrogen atom in the

ground state. In particular, it follows that i = 2.33a;

for the D-state of an oxygen atom. Table 1 contains
values of the quadrupole moments for an oxygen atom,
and we use these values for determination of electron
terms of a diatomic oxygen ion.

In addition, Table 2 contains the values of y for oxy-
gen atom and ion states. The atom ionization potential
with transition to agiven ion state is

J = J°-AE, +AE, (8)

where J° is the oxygen ionization potential with the
electron transition from the ground atom state to theion
ground state, AE, isthe atom excitation energy, and AE;
is the ion excitation energy. Because a given ion state
results from a one-electron transition from an indicated
atom state, we ignore the cases of ion—-atom interac-
tionsif agivenion state cannot be formed from theindi-
cated atom state as aresult of a one-electron transition.
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Table2. Theparameter y=,/J/Jy, for variousatom and ion
oxygen states

Atom state
3P lD 15
lon state
45 1.000 - -
’p 1.116 1.049 -
p 1.170 1.107 1.030

In considering the electron terms of the quasimole-

cule OJZ', we start from large distances R between the
nuclei, where the electron energy is equal to

£ = 80+AEa+AEi+w
. . )
_aJo(Jo+1)+bj(j +1)_bJo(Jo+1)
2 2 2 '

where g, corresponds to the atom and ion ground state,
such that AE, and AE; account for electron excitation of
the quasimolecule; J, and j, are the total electron
moments of the atom and ion in the ground fine state,
and the last terms in formula (9) take fine states of the
atom and ion into account. Therefore, in evaluating the
guasimolecule electron terms, we measure the quasi-
molecule energy from the value g, + AE, + AF; at large
separations, adding it to Hamiltonian (2) at finite sepa-
rations. Because the ion and atom parts of this Hamil-
tonian commute, we can add the ion and atom parts to
the electron energy independently. Quantum numbers
due to the ion part—the total ion angular momentum |
and its projection on the molecular axis m—are con-
served at any ion—atom distances, whereas the atom
guantum numbers J and M; are valid at large separa-
tions, or quantum numbers M, and Mg are accurate
guantum numbers only if we neglect spin—orbit interac-
tion. Therefore, finding electron terms accurately, we
use the notation M, , Mg or J, M; for them only to label
the quasimolecule states.

In addition, because the quadrupole interaction is
symmetric during the transformation M, — —M, and
the spin—orbit interaction is symmetric during the trans-
formation M| + Mg— —M — Mg, wefind that the elec-
tron terms of a quasimolecule described by Hamilto-
nian (2) are degenerate with respect to the simultaneous
transformations

ML' MS I —ML, —Ms. (10)
We can therefore restrict ourselves to a part of electron
termsfor the diatomicion O, at large separations with

IM_ +Md 20.
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In particular, if the oxygen atom is found in the ground
state O(°P), the number of nondegenerate electron
termsis six with respect to atom states.

In constructing the electron terms for the atom part,
we construct the Hamiltonian matrix elements

M., MdH M}, Mg

Next, by diagonalization of this matrix, we find the
energy positions at a fixed distance R between the
nuclei by solving the secular equation for the Hamilto-
nian matrix elements[3]. Thisisgiven by the vanishing
condition for the determinant,

|EBu, By, ~ My, MM, M = 0. (1D)
Solutions E(R) of Eqg. (10) give the positions of the
electron terms at a given separation R.

Table 3 gives the Hamiltonian matrix Hix for the

interaction of O*(*S) + O(®P) as an example. We here
use Hamiltonian (2), and the electron energies of an
oxygen diatomic ion at a given separation follow from
solution of EqQ. (10). We can see that this matrix can be
divided into five independent blocks, such that one
block contains three diagonal elements, two identical
blocks contain two diagona elements, and two identi-
cal blocks contain one diagonal element. These identi-
cal matrix blocks can be converted into each other by
transformations (10), and we include only one of the
two identical matricesin Table 2.

In Figs. 1-3, we give the electron terms of the oxy-
gen diatomic ion for the respective atom and ion states
O(P) + O*(®S),

O(*P) + O'(?D),
and

O('D) + O*(°D)
with the interactions in Hamiltonian (2) taken into
account. The range of separationsis such that it makes
the main contribution to the cross section of resonant
charge exchange at therma and eV-energies of colli-
sion. We characterize the atom state by the quantum
numbers J and M;, the total atom momentum and its
projection on the molecular axis, which are precise
atomic numbers at very large separations and are used
as notation at smaller separations where the ion—qua-
drupole interaction becomes important. Correspond-
ingly, the electron terms of the oxygen diatomic ion are
described by the quantum numbers J, |M,|, j, wherej is
the total ion angular momentum.

3. ION-ATOM EXCHANGE INTERACTION
POTENTIAL

The next step of our program is to determine the
ion—atom exchange interaction potential. It is small
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compared to the interactions in Hamiltonian (2), and,
therefore, each electron term splitsinto levels with dif-
ferent parities. The ion—atom exchange interaction
removes the degeneration with respect to different m,

615
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Fig. 2.

the ion momentum projection on the molecular axis.
The exchange ion—-atom interaction alows us to evalu-
ate the partia cross section of resonant charge
exchange that proceeds inside a given electron term.

Table 3. The Hamiltonian matrix H;, for the quasimolecule O*(4S;,) + O(3P) if the exchange ion—atom interaction is
neglected; the Hamiltonian is given by formula(2); a= 77 + 2cm™

My, Ms 1.1 1.0 0.1 11 0.0 11
2 2
11 a2 0 0 0 0
R
2 2
1,0 0 _O'Sesao 0 0 0
R
2
01 0 -a 16 & 0 0 0
2 2
1,41 0 0 _0'863% —a 0
R
2 2
0,0 0 0 _a 1'683""0 —a
R
2 2
-1,1 0 0 0 _a _0.8e a
R3
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The exchange ion—atom interaction results from the
transition of avalence e ectron from one atomic rest to
another one. Thisinteraction divides the quasimolecule
states into even (g) and odd (u) according to the prop-
erty of the corresponding molecular wavefunction to
preserve or change sign as a result of reflection of al
the electrons with respect to the symmetry plane per-
pendicular to the molecular axis. If a valence electron
with an orbital momentum |, and its projection L on the
molecular axis is located in the field of two structure-

less cores, the exchange interaction potentia A, , is
given by the formula[5, 7, 13, 19]

g—1—\me—Rv—$(2| + 1) (I + [pl)!

A (R) = AR ,
% (le= It ult ()"

12)

where R is the distance between the nuclei and y and A
are the parameters of the asymptotic wavefunction of
the valence €lectron; the radial wavefunction of this
electron in the atom at large distances r from its center
is given by

1.

P(r) = ArY e, rys> 1.

Formula (12) contains the first term of the asymptotic
expansion with respect to the small parameter 1/yR for
the ion—atom exchange interaction potential at large
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distances between nuclei. For avalence p-€lectron, for-
mula (12) becomes

1

2
Ao(R) = 3A°R eV,

2
A 4(R) = F&Alo( R).

(13)

This one-electron interaction is the basis of the
exchange interaction potential in the case where the
interacting atom and ion have nonfilled electron shells
and the coupling of electron momentafor atransferring
electron and the atomic rest is of importance. We use
the LS coupling scheme, which suitable for light atoms.
Then, the wavefunction of an atom with n valence elec-
trons of momentum |, is given by [16, 17, 20]

1 -
0] (1,2,...,n) = =P
LSM, Mg A/ﬁ
LS .| L 1 s S
X z Gls (Iei n) ¢ 2 (14)
l,m,s,mg,p,0 Hm ML O my MS

X ¢|e:_Lu0(l)l-|JIsmms(21 AR n)'

Here, @, ), and ¢ are the respective wavefunctions of
the atom, ion, and vaence € ectron with the indicated
guantum numbers, 1 and o are the projections of the
angular momentum and spin of the valence electron,
the argument of the wavefunction indicates electrons

involved in each atomic particle, the operator P per-
mutes these electrons, and the parentage coefficient

G2 (I, n) is responsible for addition of avalence elec-

tron to the ion for the construction of an atom for given
guantum numbers of these atomic particles.

The exchange interaction potential is given by the
formula[7, 13]

A(R) = 2[W,|H|W,O

. (15)

—2[W[H|W, W 1|¥,L0]
where W; is the wavefunction of the quasimolecule in
the case where a valence electron is located near the
first core (the electron is connected with the first
nucleus), W, corresponds to the electron location near

the second nucleus, and H is the Hamiltonian of the
electrons. We note that an accurate evaluation of this
interaction requires using the accurate wavefunctions
of the quasimolecule such that the interaction of a
valence electron located between the cores with both
cores is taken into account simultaneously. We assume
this to be fulfilled within the framework of the asymp-
totic theory. Using a general method of calculation of
the exchangeinteraction potential A(R) by analogy with
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that for case (@) of the Hund coupling [13, 21-23] and
using the properties of Clebsch—-Gordan coefficients,
we obtain

2
ALSMLMSIsmmS(R) = n(GILsS)
1
Xz{le | L]E s S{Iel L}
woro M M- M 0 Mg—0 Mg Hmm+u

S S

(16)
1
X2 AIeu(R)-
o'm;mg+a
Here, wetakeinto account the character of the coupling
of electron momenta in the quasimolecule, such that,

the quantum numbers of an atomic core Is, M| — |,
Mg — o and the atomic quantum numbers of a valence

electron Ieu% o arefirst summed into the atomic quan-

tum numbers LSM, Mg, and after the electron transition
to another atomic rest, the other quantum numbers of
the atomic core Ismm, and electron quantum numbers

[ % o' are summed into the atom quantum numbersLS,

m + W, m, + ¢'. We note that the electron spin projec-
tions are identical, 0 = o' in the fields of both cores
because of normalization of the electron spin wave-
functions. If we use the atom basis M, Mg and the ion
quantum numbers are I§my, formula (16) becomes

2
ALSMLMSIsjmj(R) = n(GlLsS)

S i

M, o m, m

(17)

y I S ] A
ML_M MS_G ML_“'+MS_O- ¢

In reality, due to the properties of the Clebsch—Gordan
coefficients, thisformulais simplified. In particular, the
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exchange interaction potential is conserved under the
transformations

My, Mg M —» —M_, Mg, —m. (18)

4. ION-ATOM EXCHANGE INTERACTION
FOR THE DIATOMIC OXYGEN ION

Formula (17) gives the ion—atom exchange interac-
tion potential that determines the cross section of reso-
nant charge exchange at given quantum numbers. This
is considered below for different states of an oxygen
atom and an ion. We start from the ground state of the
atom and ion, with the ion—atom exchange interaction
potential given by formula (18). The analysis of this
casein [9, 10] was based on the limiting coupling cases
where the quasimolecule is characterized by the quan-
tum numbers J, M; or J, M, depending on the relation
between spin—orbit and quadrupole interactions. We
now consider the general case numericaly by the
Hamiltonian diagonalization for an arbitrary relation
between these values.

Formula (17) gives the ion—atom exchange interac-
tion potential at large separations for the ion ground
state O*(*S;,) (I =0, m=0, s=j = 3/2). We then have
M, =1, m=m, and formula(17) isreduced to theform

(l.=1,n=4, G =-1/./3)

4
ALSMLMSIsmS( R) = §A1ML( R)

1 (19)

xzé S S

¢ |0 Mg—0 Mg/ |0 m;m,+ 0

S S

NI

Table 4 contains the values of the ion—atom interaction
potential obtained on the bass of formula (19). We
account for symmetry (18), and the one-electron exchange
interaction potentials are given by formulas (13).

We next use the same operation for determining the
exchange interaction potential for excited ion and atom
states at large separations. Table 5 contains the
exchange interaction potential for the quasimolecule
O*(*D) + O(3P), and Table 6 contains the exchange
interaction potentials for the quasimolecule O*(?D) +
O(*D) for the basis M, Mg, j, m. Because Ajy(R) <
AH(R) at large separations, we ignore A,;(R) wherever
possible. We also take the symmetry of the exchange
interaction potential in (18) into account, and inthe M,
Mg atom basis used, the identical values of the
exchange interaction potential correspond to quantum
numbersin parentheses.

The electron terms of the quasimolecule with the
ion—atom exchange interaction potential taken into
account can be found by diagonalization of the corre-
sponding Hamiltonian matrix. Because the splitting of
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Table 4. The exchange interaction potential A, gy v sm, fOr the ground state of the quasimolecule O*(*9) + OC3P) at given
guantum numbers M, , Mg of an atom and quantum numbers s, mg of an ion on the basis of formula (18)

M, Mg

1,1 1,0 0,1 1,-1 -1,1 0,0
s, Mg
>5 11 §A11 10 73 11 11 éAlo
31
2’2 ! +?:ﬁsAn 2 +3A[2A11 L +3J6A10 £ ; ﬁA11 ! +3A[6A11 2 +3ﬁA10
3.1 J3+ .2 2+./2 J2+./3 1+./6 J2+./3 2+ .2
2’ 2 3 A11 3 A11 3 A10 3 All 3 AZl.l 3 AlO
3 3 1 2 1 1 f
S —A < —A A —A <
> 73 11 J;All NE 10 11 /3 11 3A10

Table 5. The exchange interaction potential for the quasimolecule O*(°D) + O(3P) at given quantum numbers M, , Mg of an
atom and quantum numbersj, m of anion

M., Mg
. 1,1 1,0 01 1,1 0,0 -1,1
Im

55 J10+2 J2 1 J2 1
22 A A A —A SN —A
2'2 11 Zm 11 /\[5 11 m 11 ,\/6 11 /\/TO 11
53 2 2 2 1 J2+1 J2
25 gAlo §A10 gAlo BAIO 5 AV EAlo
51 3 7 3 2 1n,, 30 3.2
> gﬂlo EAlo §A10 gAlo 5% + [j]Alo EAIO
5.1 2,2 A2 2.2 3.2 15,30 2
22 _5‘A10 _2‘A10 “5—A10 TO—AlO 5%+ [j]Alo gAlo
53 2 3./2 2 2 J2+1 1
> =Dl =0 Lo o Dl = Do £810
5 5 1, 10+2./5, 1, L. 2 La
575 2./5 11 /20 11 /10 11 /10 11 NG 11 J10 1
33 1 —f6+1 /6 -6 J6-2.3 3
55 162w 50 Lo 15210 0 Lo 0 Lo 1020
31 i 36 1 1 _[2-2 /2
>'5 %Alo 60 AV 15A10 1OA10 30 A EAIO
3 1 —/3 —3./2-./3 A2 NE: —2-2 1
22 “é‘d‘Alo 60 Bio 1‘5‘A10 ‘2‘6A10 30 Bio 10A10
3 3 -1 —/3-.2 -1 J3 J/6-2.3 -6
2 2 —A —A N2 N
272 1042 *° 20 Lo 5/3 10210 30 Lw 20 0
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el ectron terms due to the exchange interaction depends
on afineion state, the number of eectron levelsin this
case increases in comparison with the case of Hamilto-
nian (2). Performing this diagonalization for each fine
ion state at a distance of 12a, between the nuclel (this
distance determines the resonant charge-exchange
cross section in thermal collisions), we assume that the
renormalization of the exchange interaction potential in
comparison with the basis M, Mg, j, m isthesamein a
neighboring range of distances. This allows usto deter-
mine the exchange interaction potentials given in
Table 5 for the quasimolecule and in Table 7 for the
quasimolecule O*(?P) + O(®P). As the quantum num-
bers of the quasimolecule, we now take the total atom
momentum J and its projection M; on the molecular
axis. Although these are accurate quantum numbers
only at very large separations, where the ion—atom qua-
drupole interaction can beignored, they can be used for
labeling electron states of the quasimolecule.

619

5. MIXING OF EXCHANGE INTERACTIONS
FOR COUPLED ELECTRON TERMS

Above, we have determined the ion—atom exchange
interaction potential in the basis M, Mg, j, m, which
are not quantum numbers of the quasimol ecule, and the
Hamiltonian matrix H;, isnot diagonal inthisbasis. The
el ectron terms of the quasimolecule follow from diago-
nalization of the Hamiltonian matrix, and the electron
levels E(R) at a given separation are solutions of the
secular equation

|E6ik_ Hikl = 0

Above (see Figs. 1-3), we solved this equation for
Hamiltonian (2) with the ion—atom exchange interac-
tion ignored. We now solve this equation including the
ion—atom exchange interaction potential into consider-
ation and determine the exchange interaction potential
for eigenstates of the quasimolecule.

Table 6. The exchange interaction potential A sw mysi m (R) for quasimolecule O*(°D) + O(*D) at given quantum numbers

M, Mg of an atom and quantum numbersj, m of anion

M, Mg

: 2,0(-2,0) 1,0(-1,0) 0,0

jm

55 1 3

i —A N

2, 2 A]_O /\/B 10 mAll

53 +10 2+ .2 3 2 + [3

22 Dﬁs i 10 o A

51 1 1 3

51 = A 1 03

22 52 1 16510 ETM 10[ S
5 1 1 -1 3

2 _= —A —A g 2

> /10 10 5./2 10 Eil.0+10 An
5 3 —/5-1, —/2-1, 3(2+[3)A

2" 2 ,\[5 10 5/\[2 10 11

5 5 -1 1 J3

2 2 =A —A 22N

) ,\[5 10 /\/170 10 m 11

33 4 1+4./3 03 .

2’2 5010 20 Lo [20 10ﬂjA H
31 3 3 09 .

22 5B 26010 0 " 10 2 5 [ZDAH
3 1 6+3./2 -3 09,

2 2 20 Au 70 B0 6" 10 2 5 ﬂlAll
33 1 ~/3-4, 03 4

272 5810 20 Do (20 10[2['A H
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Table 7. The exchange interaction potential for the quasimolecule O*(?P) + O(3P) at given quantum numbersj, m, of anion

obtained inthe basis M|, Mg

M., Mg
: 1,1 1,0 0,1 1,1 0,0 -1,1
I, m
:-23, —g —2_A1[2A10 _—3“/:%2_ “@’Alo %AH —iflo %AH %Alo
%- % %An %Alo 3—}[2A11 %Alo F%An 3_A1[ZA10
%, —% _$A11 3_«1[2A10 —%An 3_A1f2A10 6_A]-[2A11 %Alo

We demonstrate this operation for the interaction of
the oxygen ion and atom in the ground states O*(°P) +
O*(*9). Table 3 then gives the Hamiltonian matrix with-
out the exchange interaction, and the matrix of theion—
atom exchange interaction potential is diagonal in the
M., Mg, j, m basis. We note that the matrix H, in
Table 3isdivided into three blocks consisting of matri-
ces with one, two, and three diagona elements. For a
block with one element, where M, = 1, Mg = 1, the
exchange interaction potential is A,4(R). For the two
other blocks, the exchange interaction follows from
diagonalization of the Hamiltonian matrix for the
gerade and ungerade states of the quasimolecule, and
the exchange interaction potential is the difference of
the el ectron energiesfor the gerade and ungerade quasi-
mol ecul e states taking into account the smallness of the
exchange interaction potential in comparison with a
typical potential of electrostatic interaction.

We perform this operation analytically for a block
consisting of two diagonal terms. Diagonalization of
the Hamiltonian matrix gives the energy of two levels
as[3]

_ H11"'H22_|_/\/(H11—H22)2

4 +|H12|2,

where the indices 1 and 2 relate to the first and second
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statesin the basis M, , M. We next construct the energy
matrix for the interaction of an oxygen ion and an atom
with taking into account the exchange interaction in
addition to Hamiltonian (2). For the states under con-
sideration, according to the datain Table 3, we have

2_2
ea, A
Hy = —0.8—3"_'5,
2_2
A
Hy, = 1.66—201—2, (20a)
2
e’a’

le = a., AH = Hll_H22 = 24?,

where the plus sign corresponds to the gerade state and
the minus sign corresponds to the ungerade state. From
this, we have the energy levels of eigenstates given by
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Correspondingly, the exchange interaction potential for
each state is

A+ A AH

A = 22+ ==(0-Dy),
2 4¢

A, = 1TZ_E(A1_A2)-

As can be seen, if a = 0 and, hence, the Hamiltonian
matrix isdiagonal inthe M, Mgbasis, we have A, = A,
and A, = A, in accordance with the expression for the
Hamiltonian diagonal elements.

We use the expressions in Table 8 for the exchange
interaction potential at a distance of 12a, between
nuclei for different electron terms; this distance deter-
mines the cross section of resonant charge-exchange
process in thermal collisions involving the O(°P) atom
and O*(*S;,) ion in the ground states. We note that,
according to formula (13), at this distance, A, = 64,4,

whichisusedin Table 8. In Table 8, we give the values
of the coefficient

K= D
Dy mg

where Ay, v, is the exchange interaction potential for

the basisM, Mgm, according to formula(19), and A isits
value after diagonalization of the Hamiltonian matrix.
Asfollowsfrom thedatain Table 8, the valuek is close
to one; below, because of the logarithmic dependence
of the cross section on this value, we ignore the varia-
tion of the exchange interaction potential due to diago-
nalization of the Hamiltonian. This simplifies the
problem.

6. RESONANT CHARGE-EXCHANGE PROCESS
FOR OXY GEN

The above values of the ion—atom exchange interac-
tion potentials allow us to determine the partial cross
sections of resonant charge exchange on the basis of the
asymptotic theory [11, 12]. The asymptotic theory of
resonant charge exchange is based on the assumption
that the main contribution to the cross section of this
process is given by large impact parameters of colli-
sionsin comparison with the typical atomic size. Then,
theinverse valueisasmall parameter of the asymptotic
theory, and the cross section is represented as an expan-
sion over thissmall parameter. Hence, determination of
the exchange ion—atom interaction potential at large
separations allows us to determine the cross section of
resonant charge exchange. If electron terms are nonde-
generate, the relation between the probability and cross
section of this process and the exchange interaction
potential inthe two-level approximation can be used [24].
In particular, this approximation is valid for the transi-
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Table 8. The values of k resulting from diagonalization of
the Hamiltonian matrix

My, Ms
1,1 1,0 01 )1-1|-11| 00

S, My

33

55 1 135 | 095 14 136 | 0.87
31

55 1 127 | 096 | 1.05 | 1.65 | 0.88
3 1

>75 1 125 | 096 | 1.65 | 1.05 | 0.88
3 3

> 1 118 | 095 | 1.37 | 1.37 | 0.88

tion of an s-electron between two structureless cores
(for example, for the processes H*-H, He*—He), and,
then, the cross section o, of the resonant charge-
exchange processis given by [11, 12, 24]
2
T
0u = 0 (22)

where

1 MRy _
VJZ:VA(%) = 0.28.

This formula can be used in the cases under consider-
ation for the structureless oxygen ion O*(*S) or if the
fine ion splitting is small compared to the exchange
interaction potential, as for O*(°P). We take quantum
numbers J, M; to characterize the atom state at the
beginning. Of course, thisisvalid only at very largedis-
tances between the nuclei when the ion—quadrupole
interaction can be neglected. Therefore, we use these
guantum numbers for labeling the electron terms only.
In addition, the cross section of processes

U .4 1 1 v A U
go (9 +0(D)—0O(D)+0 (90O
E o'(*s) + o('s) — O('s) + O* (") E
50°(D)+0('s) — O('S) + 0"(°D) &

(23)

is zero for the one-electron atom scheme under consid-
eration, because the transition of a p-electron cannot
lead to these processes.

In Tables 9-13, we give the partial cross sections of
other electron transfer processes involving the electron
shells 2p® and 2p* for the oxygen ion and atom at ener-
gies of interest for plasma. The indicated quantum
numbers J, M; of the atom and j, m; of theion are accu-
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Table 9. The cross section of resonant charge exchange O,
(in 10726 cm?) for the process O*(*S) + O(’P) — O(°P) +
O*(*9) at the collision energies 0.1 and 1 eV (in parentheses)
in the laboratory frame of reference

J M,

2,2 | 21 2,0 1,1 1,0 | 0,0

3

60(48) | 57(46) | 54(43) | 82(67) | 60(48) | 79(64)

61(49) | 61(49) | 60(48) | 84(69) | 61(49) | 83(68)

NI NIWw

60(48) | 61(49) | 61(49) | 82(67) | 60(48) | 83(68)

NIW NIw NIWw NIWw
NIwWw NIk

54(43) | 57(46) | 60(48) | 74(60) | 54(43) | 79(64)

Average | 59(47) | 59(47) | 59(47) | 81(66) | 59(47) | 81(66)

Table 10. The cross section of resonant charge exchange o,
(in 10716 cm?) for the process O*(°D) + O(°P) — O(°P) +
O*(?D) at the collision energies 0.1 and 1 eV in the labora-
tory frame of reference

KOSARIM, SMIRNOV

rate only at large separations and are used for labeling
the electron states at intermediate separations when the
ion—atom quadrupol e interaction is important. We also
note that the small parameter of the asymptotic theory
is now

L <1

R (24)

In evaluating the cross section of electron transfer,
we use the values of the parameter y in accordance with
the datain Table 2. Expanding with respect to this small
parameter, we keep two expansiontermsin formula (22).
For the cases in Tables 8 and 9, the values of YR, are
between 10 and 14. This means that the accuracy of the
asymptotic theory isabout 1%. Of course, thereal accu-
racy is worse because of additiona factors [26] that
affect the accuracy of the cross sections. Nevertheless,
we estimate this accuracy at several percent.

Table11. The cross section of resonant charge exchange o,
(in 10716 cm?) for the process O*(°D) + O(*D) —= O(*D) +
O*(°D) at the collision energies 0.1 and 1 eV in the labora-
tory frame of reference

Mo 2120 11| 1o 00 e 2 1 0
j»m i m
gg 43(34) | 41(33) | 39(31) | 34(26) | 34(26) | 39(31) gg 71(58) 62(49) 46(36)
gg 50(40) | 50(40) | 50(40) | 44(34) | 47(37) | 52(41) gg’ 66(53) 59(47) 53(42)
25 |5443) | 55(45) | 54(43) | 50(40) | 51(40) | 57(46) 23 49(39) 46(35) 47(37)
23 |5343) | 56(45) | 53(43) | 51(40) | 50(40) | 57(46) 2 58(46) 49(39) 47(37)
g, —g 47(37) | 51(40) | 47(37) | 47(37) | 44(34) | 52(42) g —g’ 75(62) 50(47) 53(42)
g, —g 32(25) | 36(28) | 34(26) | 34(26) | 34(26) | 39(31) g —g 62(49) 58(46) 46(36)
53 |38(29) | 35(26) | 42(32) | 39(30) | 42(33) | 29(21) 23 68(55) 60(48) 49(39)
g% 31(22) | 37(28) | 34(26) | 38(29) | 35(26) | 39(30) g% 59(47) 50(39) 54(43)
25 |33(25)| 38(29) | 37(28) | 35(26) | 38(29) | 39(30) 2 45(36) 44(34) 54(43)
S -3 |35(26)| 24(16) | 39(30) | 42(33) | 39(30) | 29(21) 23 53(41) 57(45) 49(39)
Average | 42(32) | 42(33) | 41(32) | 43(34) | 41(32) | 43(34)  Average |  61(48) 54(43) 50(40)
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If an electron term is degenerate for the quasimole-
cule consisting of acollidingion and an atom, and if the
ion—atom exchange interaction removes this degener-
acy, the charge-exchange process in the course of ion—
atom collisions is entangled with other transition pro-
cesses. In the case under consideration, this degeneracy
relates to the projection of the ion total momentum on
the molecular axis, and, hence, the exchange processis
entangled with rotation of the ion total momentum.
However, because the ion—atom exchange interaction
potential decreases exponentially as the separation
increases, the region of the exchange processis narrow,
and, hence, the rotation angle of the molecular axisis
relatively small [5]. This alows us to separate the pro-
cess of resonant charge exchange from the processes of
moment rotation, i.e., to consider the resonant charge
process for each angular momentum direction of the
ion independently. Therefore, we evaluate the cross
section of resonant charge exchange for each ion
moment projection on the basis of formula (22).

On the basis of the partial cross sections of resonant
charge exchange in Tables 9-13, we can find the aver-
age cross sections (see Table 14) that are convenient for
applications. In averaging a cross section, we assume
that the population of electron levelsof agivengroupis
proportional to the statistical weights of individual
states, which is valid at high temperatures. As a result,
in Table 12, we give the average cross sections of reso-
nant charge exchange for a given orbital momentum
and spin of the colliding ion and atom.

We note that the difference in the cross section for
ionsin different statesis determined mostly by different
ionization potentials of the oxygen atom in agiven state
with ion formation in these states.

The cross sections obtained allow us to determine
the mobilities of an oxygen ion in atomic oxygen. In
particular, if the atoms are the ground electron and the
fine state O(°P,), the respective mobilities of the oxy-
gen ions O*(*S), O*(°D), and O*(?P) in atomic oxygen
are2.6, 4.1, and 4.6 cm?/(V s); for the mixture of atoms
in the electron states O(°P,) and O(*D,) with equal pop-
ulations of these states at room temperature, the respec-
tive mobilities are 2.6, 3.8, and 4.3 cm?/(V s) at room
temperature. These values may be of interest for plas-
mas of Earth’s upper atmosphere and for a nonequilib-
rium gas-discharge oxygen plasma. We see that mea-
surement of the mobilities of ions in different states
makes it possible to analyze the atomic distribution
over excited states.

Thus, due to high symmetry of atoms and ions with
nonfilled electron shells, we abtain a large number of
electron terms within the framework of the LS coupling
scheme for a diatomic ion when the ion and the atom
have nonfilled electron shells. Because the exchange
interaction is shared between these states, the cross sec-
tions of resonant charge exchange are lower. This can
be demonstrated by comparing the cross sections of
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Table 12. The cross section of resonant charge exchange O,
(in 10716 cm?) for the process O*(?P) + O(’P) — O(°P) +
O*(°P) at given quantum numbers J, M; of an atom and j, m, of
anion at the collision energies 0.1 and 1 eV in the laboratory
frame of reference

M,
. 222120 11| 10/ 00
I m
gg 45(36) | 45(35) | 33(25) | 38(29) | 29(22) | 45(35)
g% 38(29) | 41(32) | 37(29) | 36(28) | 34(26) | 39(31)
g, —% 41(32) | 40(31) | 34(27) | 34(26) | 34(28) | 39(31)
g, —g 42(33) | 45(36) | 27(20) | 41(32) | 36(29) | 45(35)
%% 26(19) | 36(28) | 28(21) | 42(33) | 38(30) | 24(18)
%, -% 24(18) | 39(30) | 26(19) | 39(30) | 39(33) | 24(18)

Average | 36(28) | 41(32) | 31(24) | 38(30) | 36(28) | 36(28)

Table 13. The cross section of resonant charge exchange o,
(in 10718 cn?) for the processes O*(?D) + O(*D) — O(*D) +
O*(°D) and O*(°P) + O(*S) — O(19) + O*(°P) (thelast col-
umn) at the collision energies 0.1 and 1 eV in the laboratory
frame of reference

=M Ip, M, =2|'D, M, =1|'D, M, =0|1S M, =0
, » ML » My » M L
im
g, g 38(30) | 47(37) | 46(36) | 50(40)
g, % 38(29) | 49(39) | 50(40) | 65(52)
g, —% 34(25) | 48(38) | 50(40) | 65(52)
g, —g 28021) | 42(32) | 46(36) | 50(40)
%, % 35027) | 43(33) | 4737) | 57(45)
%, —% 3023 | 4131 | 4737) | 57(45)
Average | 34(26) | 4535 | 47(38) | 58(46)

resonant charge exchange for the LS and j- types of
electron coupling in the oxygen atom and ion. In the
case of j§ coupling, we have a lower symmetry and,
therefore, asimpler character for this process.
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Table 14. The average cross sections of resonant charge
exchange 0, (in 10716 cm?) at the collision energies 0.1, 1,
and 10 eV (in brackets) in the laboratory frame of reference

Atom state
O(P) o('D) o'
lon state
o'("9 66(53)[44] 0(0)[0] 0(0)[0]
O*(°D) 42(33)[25] 56(44)[34] 0(0)[Q]
O*(?P) 34(29)[22] 41(32)[24] 58(46)[35]

The accuracy of the cross sections of resonant
charge exchange is mostly determined by the accuracy
of determination of the asymptotic coefficient A and,
according to the analysisin [23, 26], is several percent.
Comparing the ground state of a colliding ion and an
atom shows|[8, 10] that the average cross section differs
by about 10% from that evaluated within the frame-
work of the Hund coupling. As regards the two-level

approximation for electron terms of O, any coinci-

dence may be random, because this scheme of electron
term splitting does not take into account the important
special features of thisinteraction.

7. COMPARISON WITH OTHER SCHEMES
OF ELECTRON COUPLING

We have constructed the lowest electron terms of

O, at large separations which determine the cross sec-

tions of resonant charge exchange. Of course, the char-
acter of coupling in thisrange of distances between the
nuclel differs from those at low separations [25]. We
next use the LS type of electron coupling in the atom
and ion, and the accuracy of using this coupling scheme
is about 2%, which is determined by the coincidence
with formula (9) of the level positions for fine states of
an oxygen atom located in the ground el ectron state.

Nevertheless, we use the j— coupling scheme in the
case under consideration in order to understand the
dependence of the resonant charge-exchange cross sec-
tions on the coupling type. We consider the collision of
an oxygen ion and an atom in the ground electron
states, with the resonant charge-exchange process
occurring according to the scheme

O+[%2%]§ + O[%Z%z} (25)
o] o lE )
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instead of the process
0'BsH+0(°P,) —O(P) +0'HsH,  (26)
2 2

that occurs in the case of the LS coupling scheme. As
follows from process (25), within the framework of the
j= coupling scheme, the ion—atom exchange interac-
tion and the resonant charge-exchange process are
determined by the transition of a valence electron with
j = 3/2 from the field of one core to the other one.

Based on the j+ coupling scheme for valence elec-
trons in the atom and ion for the electron terms of the
ion dimer at large separations [23], we note that, in this
case, the character of the exchange splitting is simpler
than in the case of the LS coupling scheme. Indeed, we
represent the wavefunction of two valence electrons

from a nonfilled electron shell j = 3/2 of an oxygen
atom as
3232 J
®y,(1,2) = Z [ }
m; m, M, (27)
x L|J§m (1)lng (2).
2™ 2m

This wavefunction is simpler than formula (14) for the
LS coupling in an atom. From Eq. (15), we obtain the
ion—atom exchange interaction potential :

3 3
AJMijJ(R) = z 2 2
33 |
X122 A; (R),
Em
m mm+m

which is simpler than formula (17) for the LS coupling
in an atom and an ion. The one-electron exchange inter-
action potentials for case “c” of the Hund coupling,
which are used in thisformula, are given by [22, 26]

(R) = Au(R),

le
NIw

(29)
A

(R) = 28,0(R) + 304 (R),

31
22

where the one-electron exchange interaction potentials
Ao(R) and A4 (R) for case“a’ of the Hund coupling are
given by formula (13). Below, we neglect A,; compared
to Ayp.

We note that, according to formula (28), the ion—
atom exchange interaction potential Ay, im (R) for the
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j— coupling in the atom and ion is unchanged under the
transformations

M, My — =M, -m,. (30

Table 15 contains the exchange interaction potentialsin
the case of oxygen and the j— coupling scheme. Evi-
dently, this scheme may be valid for heavy atoms of the
fourth group of the periodical table of el ements.

Table 16 contains the partial cross sections for reso-
nant charge exchange. We see that they are in a
restricted range of values. The average cross sections of
the resonant charge-exchange process (25) at collision
energiesof 0.1, 1, and 10 eV in the |aboratory frame of
reference are 10716 cm?. As follows from Table 16,
although the partial cross sections are different, the
average cross sections for a given total atom momen-
tum practically coincide.

Above, we have rigorously found the partial cross
sections of resonant charge exchangein slow collisions
for oxygen. We take into account various factors that

influence the positions of electron terms of the O,

guasimolecule at large separations within the frame-
work of the LS coupling scheme for valence electrons.
This allows us to evaluate the partial cross sections. At
the next step, we can find the average cross sections of
resonant charge exchange by averaging over states
using areal distribution over excited states of the quasi-
molecule. Although this operation isaccurate, it isquite
cumbersome, and it is therefore interesting to compare
accurate cross sections with those obtained in simpli-
fied schemes. We do not consider the two-level approx-
imation [24] suitable for transition of an s-electron
between two structureless cores. This approximation
was also used for oxygen (see, e.g., [27, 28]); it may
lead to ardlatively large error, becauseit isrestricted by
one transferring electron, while each valence electron
can in fact transfer to the ion core. In the case of oxy-
gen, this gives afactor of 7/3 [22, 26] for the exchange
interaction potential for case“a’ of the Hund coupling.
For anion and an atom in the ground el ectron state, this
leadsto an error of approximately 20% [9] for the cross
section of resonant charge exchange and for the range
0.1-10 eV of the collision energies. Rejecting the
model of a transferring s-electron and a structureless
core, we restrict ourselves to cases “a’ and “c” of the
Hund coupling for avalence p-electron and assume the
ion—atom exchange interaction potential to be indepen-
dent of the fineion state.

Reducing the problem of the ion—atom exchange
interaction to the standard Hund coupling scheme for
the interaction of ion and atom valence electrons, we
can take this into consideration for the Hamiltonian if
we ignore the spin-orbit interaction for the atom
(Hund case “d’) or the ion—quadrupole interaction
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Table 15. The ion—-atom exchange interaction potential
AJMijj (R) for the jH coupling scheme for oxygen

M;
0 1 2
m
3 Nz 1 1
> ?Alo éAlO §A10
1 1 1 1
= = —A =
2 6A10 3 /\/é 10 2A11
1 1 1 1
= = = —A
6A10 2A11 3./ 10
3 Nz 1 1
> 3 Do 3810 3810

Table16. Thepartial crosssections o, (in 1076 cm?) of res-
onant charge-exchange process (25) at the collision energies
0.1, 1, and 10 eV in the laboratory frame of reference

M
’ 0 1 2
m
g 7258)[45] | 67(54)[42] | 67(54)[42]
% 50(46)[35] | 63(50)[38] | 52(41)[32]
—% 50(46)[35] | 52(41)[32] | 63(50)[38]
—g 72(58)[45] | 67(54)[42] | 67(54)[42]
Average | 65(52)[40] | 63(50)[38] | 63(50)[38]

(Hund case “c"). Therefore, averaging the exchange
interaction potential in (16) over ion and atom spins,
we obtain the ion—atom exchange interaction potential
for case“a’ of the Hund coupling [5, 8, 13]:

ALSM,_Ism(R) = n(G‘ILS ’
XZ{Ie | L”'e -t }Aleu(R).
=M ML—H M| [pmm+p

In the same manner, in case “a’ of the Hund coupling,
if we sum the atom orbital L and spin S momenta into
the total electron momentum J and average over ion

(31)
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Table 17. The cross section of resonant charge exchange o, (in 10716 cm?) for the process O*(*S) + O(°P) at given quantum
numbers J, M, of an atom and j, my of anion at the collision energies 0.1 and 1 €V in the laboratory frame of reference. The

indicated quantum numbers are accurate only at large separations and are used for labeling the el ectron states at intermediate
separations where the ion—atom quadrupole interaction is important

Quantum numbers M|, Mg 1,1 1,0
Quantum numbers J, M, 2,2 2,1
Casea 69(56) 84(68)
Casec 63(51) 77(62)
Average for the accurate scheme 59(47) 59(47)

1,-1 0,0 1,1 0,0
2,0 1,1 1,0 0,0
63(51) 77(62) 51(41) 63(50)
81(66) 77(62) 56(44) 72(57)
59(47) 81(66) 59(47) 81(66)

fine states according to formulas (14) and (17), we
obtain

2
Disivys (R) = n(G)

SID

U, o m,ms,mJ,ML,MS
x{le L }
1 :
«|3 S S I s j
m mg m,
omgmg+ao
» I S i
M —-H Mg—0 M —p+Mg—0

<L S J L S J A
M, MgM,|m+yumg+om+u+ms+0 o

InTable 17, cases“a’ and “c¢” of the Hund coupling are
compared with arigorous evaluation for the quasimol-
ecule under consideration. The general conclusion from
this and previous comparisons is that the average cross
sections for the precise and approximate methods are
close if we take into account the transition of any elec-
tron from the atom valence electron shell. If we reduce
the problem to electron transfer between two structure-
less cores, the difference in average cross sections may
reach 20%.

1
é S S
(e}

(32)

8. CONCLUSIONS
We have constructed the electron terms for the oxy-
genion dimer at large separations by an asymptotically
accurate method, with various interactions in this sys-
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tem taken into account within the framework of the LS
coupling scheme for the oxygen atom and ion. The
hierarchy of interactions in this quasimolecule is such
that the exchange electrostatic interaction is stronger
for lowest nonfilled electron shells p® and p* for theion
and atom. Asaresult, the atom orbital momentumL, its
spin S, theion orbital momentum |, and its spin sarethe
guasimol ecule quantum numbers. The spin-orbit inter-
action for an atom and an ion and the interaction of the
ion charge and the atom quadrupole moment are
weaker interactions. Because these interactions are
comparable, one can find the electron terms at large
separations with these interactions taken into account
by diagonalization of the Hamiltonian matrix. The
guasimol ecul e eigenstates are characterized by thetotal
ion angular momentum j and its projection my on the
molecular axis; atom momentaand their projectionsare
mixed in eigenstates of the quasimolecule. The electron
term positions for the quasimol ecul e are determined for
each electron term of the diatomic oxygen ion; the
exchange interaction potentials for each electron term
and for each ion state are al so evaluated at large separa-

tions. Although this is done for the quasimolecule O;,

we thus obtain a general scheme for determining the
electron term energies and exchange interaction poten-
tids at large separations for an atom and its ion with
unfilled electron shells within the LS scheme of elec-
tron coupling.

We note that a general scheme devel oped for evalu-
ating electron terms and the cross sections of resonant
charge exchange is asymptotically accurate, but it is at
the same time quite cumbersome. Indeed, in the case of
O*(*S) + O(®P) interaction, we have nine electron terms
that are partialy degenerate if we neglect the ion—atom
exchange interaction; taking into account the ion—-atom
exchange interaction, we obtain 36 partially degenerate
electron terms. In the case of O*(°D) + O(°P) interac-
tion, we have 18 partially degenerate electron terms
with the ion—atom exchange interaction ignored and
90 electron terms with the ion—atom exchange interac-
tion taken into account. Because this method is cumber-
some, it may be simplified with partial loss of rigor but
with small loss in accuracy. Nevertheless, at least one
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accurate evaluation is needed in the asymptotically
accurate scheme in order to know the accuracy of vari-
ous approximate methods. This procedureisfulfilledin
this paper in the case of oxygen.
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Femtosecond Laser Photoemission Microscopy
of Capillary Nanotipswith Ultrahigh Spatial Resolution
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Abstract—A nanolocalized electron beam emitted from silicon nanotubes has been used to image the aperture
of aquartz capillary with achannel diameter of 100 nm. An analogous nickel-coated capillary was used as atip
for imaging deposited organic nanostructures by means of femtosecond laser photoel ectron projection micros-
copy (LPPM). Organic nanocomplexes deposited onto the tip surface change the dependence of the photoel ec-
tron response signal on the energy density of probing femtosecond laser pulses. An analysis of the LPPM
images of capillary nanotips shows that the spatial resolution achieved in these experiments is on a level of

5 nm. © 2005 Pleiades Publishing, Inc.

I. INTRODUCTION

The development of optical methods not limited by
diffraction is of considerable importance for the inves-
tigation of nanostructural composite materials. In this
context, reaching a spatial resolution on the level of
several nanometers is among the most urgent tasks in
nanooptics [1]. The method of scanning near-field opti-
cal microscopy (SNOM) in the standard realization is
based on the illumination of an object through a sub-
wavelength aperture [2] and the detection of light scat-
tered from the object. The SNOM image of a nano-
structure is obtained by placing it on a scanned sub-
strate at a distance of several nanometers from the
aperture. The spatial resolution reached using this
method in most cases falls within 30—-100 nm. Methods
employing apertureless near-field microscopy are also
under devel opment.

Ultrahigh spatia resolution in nanooptics can be
reached using a combination of the emission projection
microscopy with selective laser-induced photoemission
techniques [3]. In this geometry, the surface of a sharp
tip with the surface curvature radius much smaller than
the laser wavelength A is projected onto a position-sen-
sitive detector by charged particles, which are emitted
from the point surface under the action of laser radia-
tion (for photoelectrons, the escape depth is typically
within several nanometers [4]) and move in the radia
electric field. As a result, a photoelectron projection
image of the nanodimensional tip surface magnified to
a macroscopic size (up to several centimeters) is
obtained in the detector plane. The use of laser pulses
of femtosecond duration is important for providing
effective laser-induced photoemission without signifi-
cant heating of thetip.

Capillary nanotips offer certain advantages as com-
pared to the classical tips of simpler topography. First,

the image of the aperture (hole) of a capillary can pro-
vide a convenient reference signal. Second, sharp tips
with a hole in the central part are also of considerable
interest as nanowells for accommodating organic nano-
clusters. A proper nanowell, whose characteristic size
can be controlled by deposition of athin film of variable
thickness, will naturally hinder the motion of theirradi-
ated nanocluster over thetip surface. Third, the aperture
can be used for supplying additional electrons to the
sample, which is important for the investigation of
weakly conducting nanostructures in the regime of
laser photoelectron projection microscopy (LPPM). It
should be noted that a nanolocalized electron beam
obtained at the capillary exit using an internal field-
emission cathode can be used for imaging the aperture
of the capillary.

This study was aimed at obtaining images of a
dielectric aperture and an organic nanostructure at the
tip of a100-nm quartz capillary. Section 2 describesthe
experimental setup, procedures, and methods used to
prepare nanodimensional tipsfor LPPM. Section 3 pre-
sents the results obtained for a quartz capillary nanotip
by LPPM using femtosecond laser radiation and a
nanolocalized el ectron beam. The concluding Section 4
summarizes the obtained results.

2. EXPERIMENTAL SETUP
AND TECHNIQUES

Figure 1 shows a scheme of the laser projection
microscope. The setup is based on a vacuum chamber
in which a magnetic discharge pump of the Nord type
(Russia) provides an oilless vacuum on a level of
1077 Torr. The main elements of such a microscope are
a sharp tip and a position-sensitive detector of charged
particles. We used a position-sensitive detector (Hama-
matsu Photonics K.K., Japan) comprising a pair of

1063-7761/05/10104-0628%$26.00 © 2005 Pleiades Publishing, Inc.
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microchannel plates with a diameter of 28 mm and a
luminescent screen. The image formed on the screen
was monitored by a CCD camera, transmitted to acom-
puter, and processed by an Argus-50 processor.

The tips were manufactured using commercially
available quartz capillaries with a channel diameter of
100 nm (UTIP™, WP, Israel) and glass capillarieswith
a 1-um channel (Pushchino, Russia). Thetip of acapil-
lary could be coated with anickel film of definite thick-
ness (determined by the deposition time) in an auxiliary
vacuum chamber (not depicted in Fig. 1). In order to
obtain organic nanostructures on the tip surface, a
nickel-coated capillary was dipped into a solution of
the organic dye Coumarin 153 (C153) in ethyl alcohal
(we used a solution concentration of ngisz = 2.4 x
10%° cm®) and then dried. It should be noted that this
organic dye belongs to a group of promising chro-
mophores for biological macromolecules [5].

A capillary nanotip was fixed with ametal ring in a
sample holder, which was mounted on a special mov-
able feedthrough of the vacuum chamber. A bundle of
silicon nanotubes inserted into the capillary from the
rear end served as an internal cold electron emitter. The
tip and the emitter were provided with separate electric
leads. The assembly comprising the capillary nanotip
with the internal cold electron emitter was oriented so
that the tip was facing the position-sensitive detector.
The movabl e feedthrough allowed the tip to be adjusted
in the vertical direction and the tip axis to be rotated
within £10° in the horizontal plane (Fig. 1). In most
experiments, a distance from the tip to the detector sur-
face wasabout L =7 cm.

The LPPM measurements were performed using
femtosecond pulses of laser radiation with a wave-
length of A = 400 nm, a pulse duration of 1, = 100 fs,
and a pulse repetition rate of =76 MHz. Note that
400-nm light is effectively absorbed by C153 mole-
cules[6]. The pulses of 400-nm probing laser radiation
were obtained by focusing 800-nm fundamental radia-
tion of a femtosecond generator (Avesta Co., Russia)
pumped by a cw Millennia laser (Spectra Physics,
United States) onto a nonlinear BBO crystal. The sec-
ond harmonic pulseswith an energy of 0.3 nJ generated
inthis crystal were additionally attenuated using a neu-
tral metal filter. The output laser beam was focused by
an external quartz lens with a focal distance of f, =
12 cm and introduced into the vacuum chamber via a
specia window.

3. EXPERIMENTAL RESULTS

In the first stage of experiments, we studied the sur-
face of an uncoated 100-nm quartz capillary. For this
purpose, anegative potential Ug =—1.6 kV was applied
to theinternal cold emitter, while the dielectric tip was
not biased (U; = 0, Fig. 1). In this case, the position-
sensitive detector monitored a beam of electrons emit-
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Fig. 1. Schematic diagram of the experimental setup.

ted from silicon nanotubes and transmitted through the
capillary aperture. Figure 2 shows the electron density
distributions observed for two orientations of the tip
relative to the detector.

A circular distribution of the emission current den-
sity in Fig. 2a can be explained using the following
qualitative considerations. For simplicity, let us con-
sider aconical cylinder with alarge aspect ratio instead
of the capillary (Fig. 3). We may naturally suggest that
the internal nanotube cathode emits electrons within a
broad solid angle (about 1 sr). The fraction of electrons
gjected from the capillary without collisions with walls
(Fig. 3a) is apparently small, being proportional to d?
(where d is the aperture diameter). The main part of
emitted electrons strike the capillary wallsin theimme-
diate vicinity of the emitter (Fig. 3b). We believe that,
in the case of a 100-nm capillary, the main contribution
to the detected signal is due to electrons gected upon
inelastic reflection and secondary electron emission
along the capillary walls[7, 8] without subsequent col-
lisonswith these walls. As can be see from Fig. 3b, the
electron density distribution in this case should have a
ring shape, in agreement with experiment. It should be
noted that a decrease in the kinetic energy of electrons
upon multiple inelastic collisions with walls leads to a
significant decrease in the efficiency of detection for
such electrons and, hence, their contribution in the first
approximation can be ignored.

The coefficient of magnification in these measure-
ments, which could be readily determined from the
experimental data, amounted to Mg = 3 x 10°. An anal-
ysis of the electron density distribution in Fig. 2b also
alows the spatial resolution of LPPM images to be
evaluated. Indeed, the smearing of the inner part of the
ringin Fig. 2aisapproximately v = 1.5 mm, from which
the spatial resolution can be estimated as v/IMg = 5 nm.

When the electron beam was passed through a 1-um
glass capillary, the electron density distribution (Fig. 4)
was different from that observed for the 100-nm capil-
lary. According to the above model (Fig. 3b), the signal
related to collisionless gection of electrons for a 1-um
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Fig. 2. Aperture of a 100-nm quartz capillary imaged using a nanolocalized internal electron beam at (a) the normal and (b) altered

orientation of the tip.

aperture must be two orders of magnitude as large as
that for a 100-nm hole. The absence of abright ring in
Fig. 4isexplained by thefact that these electrons do not
strike the detector, since the diameter of this ring
exceeds that of the microchannel plate size. The low
quality of the obtained image can be related to poor
spatial resolution (at the 100-nm level) and to inhomo-
geneity of the cross section of the gected electron
beam. Assuming that the spot in Fig. 4 is a projection
image of the 1-um aperture, we can estimate the corre-
sponding coefficient of magnification asMgg =5 x 10°.

(a) NZg
Capillary
] e S
*5 = 8
w )
N

Capillary

k‘k

Emitter
Detector

LA

Fig. 3. Schematic diagram of the nanolocalized electron
beam formation at the output of a capillary in the case of
gjection of electrons (a) without collisions and (b) upon
inelastic collisions with capillary walls.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

It should be noted that the electron beam obtained in
this case has a quite satisfactory divergence, which can
be estimated as approximately a = 4 x 1072 rad.

A nanolocalized electron beam obtained at the out-
put of a100-nm capillary tip can be used for the shadow
imaging of nanostructures near the tip. We should like
to point out that it is also possible to generate an
ultrashort bunch of electrons by irradiating the internal
emitter with femtosecond laser radiation pulses (it is
expedient to use asingle sharp point, such asaninternal
cold cathode). This will ensure electron-microscopic

“+

1 pm

Fig. 4. Aperture of a 1-um glass capillary imaged using
electrons emitted from the internal nanotube cathode.
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Fig. 5. LPPM images of the aperture of a quartz capillary with a 100-nm channel covered with a (a) 25- and (b) 40-nm-thick layer

of nickel (for an observation time of 1.5 and 3 min, respectively).

imaging of nanostructures at a high temporal resolu-
tion. In particular, such nanolocalized beams can be
used for combined femtosecond el ectron and |aser exci-
tation of asample.

In the second stage of this study, we obtained L PPM
images of two 100-nm quartz capillaries covered with
nickel layers of different thicknesses (Fig. 5). The
thickness of a deposited nickel layer was 25 nm
(Fig. 5a) and 40 nm (Fig. 5b). Therefore, the difference
between the capillary channel diameters in the two
cases must be Ad = 30 £ 5 nm (this fact will be checked
in the subsequent analysis). In these experiments, the
internal cathode was not biased (Ug = 0), while the tip
was at a small negative potential (Ut =-300V), which
was necessary for the effective detection of electrons
emitted from the capillary. Note that the photoel ectron
response signal is linearly dependent on the laser radi-
ation energy density (Fig. 6a). Thisisrelated to the fact
that the applied static field (F ~ U;/3d = 1V/nm)
decreases the work function epy (for nickel, epye =
4.6 eV [7]) and thus provides for a single-photon-
induced electron emission from the metal surface irra-
diated by light quantawith A = 400 nm.

In order to interpret the images, we have to evaluate
the magnification coefficient M, . This coefficient can
be cal culated using an expression for the classical elec-
tron projector [9]:

~ L
ML~nre! (1)

where r isthe tip radius, 8 = 1.5 [9], and n is a factor
taking into account a difference of the field distribution
at the capillary end from the radial configuration. This

10*

S
Q.
o L 4
S0

10; 1 1 | 1 1 1 1 | 1
8 5% 1073 10
9 [ T T T T T T T T ]
% L n=2.02+0.06 )
2 ¢ ]
]
o

10*

103K

Il Il Il Il 1 T |
1073 1074
Laser energy density, Jom?

Fig. 6. Plots of the photoelectron current versus laser pulse
energy density for (a) a capillary covered with a 40-nm-
thick layer of nickel and (b) the same metallized capillary
with deposited Coumarin 153 dye molecules. Points present
the experimental datawith error bars; solid lines correspond
to the (8) linear and (b) quadratic dependences of photocur-
rent on the laser pulse energy density.
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Fig. 7. LPPM image of the quartz capillary with adeposited
organic nanostructure.

S
1110 V, = 2 nm/min
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X
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Photoel ectron count

0.7 x 10°
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Fig. 8. Plot of the photoelectron current versustime of irra-
diation of the sample at a laser pulse energy of 0.28 nJ.
Points represent the experimental data with error bars (data
acquisition time, 30 s); solid curve shows the results of

interpolation y = 1020007116 + 69000; v, is the projec-
tion of the velocity of nanocomplex on the x axis (depicted
inFig. 7).

factor reflects a contraction of the image of the central
region of the capillary end dueto converging field lines.
Assuming that n = 2, we can estimate the magnification
coefficient as M, = 4.7 x 10°. This estimate will be
checked below.

The spatial resolutionin LPPM islimited by anon-
zero initial transverse velocity component of emitted
photoel ectrons relative to the static electric field direc-
tion. Indeed, an electron possessing a nonzero energy
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E, = mv?/2 is detected by a position-sensitive detector
with a spatial uncertainty of

3= 2L(Ey/eU )" )

For E; < 0.1 eV, the error of determination of the elec-
tron position is approximately A = /M, < 5 nm. This
allows the proposed method to be used for the investi-
gation of nanostructures with characteristic dimensions
as smal as ~5-10 nm, which is sufficient for LPPM
imaging of small clusters.

Let usanayzethe LPPM images presented in Fig. 5
intermsof formula(1). According to this, the diameters
of channels in the capillaries coated with 25- and
40-nm-thick nickel films are d,s = 35 + 5 nm (Fig. 59)
and dy = 11 £ 5 nm (Fig. 5b), respectively. The differ-
ence Ad = 24 = 7 nm agrees (to within the experimental
uncertainty) with the estimate obtained above using the
relation between the hole size and the deposited layer
thickness. This agreement confirms the validity of the
assumptions made above.

Figure 7 shows the LPPM image of a nickel-coated
nanocapillary tip with a deposited organic nanostruc-
ture. The probability of photoinduced decomposition of
molecules on a metal-coated substrate significantly
decreases because the metal produces rapid quenching
of the excited molecular el ectronic states[10, 11]. Irra-
diation of such samples with femtosecond pulses of
400-nm laser radiation showed a quadratic dependence
of the photoelectron current on the laser energy density
(Fig. 6b). According to published data[12], the ioniza-
tion potential of an organic dye moleculeis higher than
7 eV. Therefore, the photodetachment of one electron
from such amolecule requires several light quantawith
A =400 nm. It should be recalled that the dependence
of the photoel ectron current on the laser energy density
measured before the application of dye molecules on
the tip surface was linear (Fig. 6a).

The characteristic size of the organic nanocomplex
imaged in Fig. 7 amountsto several tens of nanometers.
This nanostructure was imaged using femtosecond
laser pulses with an energy of E = 0.16 nJ. When the
laser pulse energy was increased to 0.28 nJ, the nano-
complex exhibited motions over the tip surface. This
was accompanied by a decrease in the photoelectron
current, which was well described by an exponential
function of the laser irradiation time (Fig. 8). We
believe that this behavior is caused by heating of the
sample, which leads to photoinduced decomposition or
desorption of fragments of the organic nanostructure.

Using the vacuum feedthrough (Fig. 1), it was pos-
sible to adjust the orientation of the capillary nanotip
relative to the detector and thus shift the image of the
capillary apertureto the center of the detector area. Fig-
ure 9 shows the measured photoemission intensity dis-
tribution (the contrast used to obtain these data did not
allow the image of the aperture to be observed simulta-
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Fig. 9. The LPPM image of an adjusted nanocapillary with organic nanocomplexes at the tip (the contrast used to obtain thisimage
doesnot allow theimage of the aperturein the central part of the detector areato be simultaneously observed). For better illustration,
the right-hand panel shows a three-dimensional pattern in which the height and brightness are proportional to the photoelectron

response magnitude.

neously). Note that the nanoclusters with characteristic
dimensions about 5-10 nm are imaged less brightly
than the main structure (representing approximately
20-nm organic cluster). Thisfact can be related to man-
ifestation of the limited (A =5 nm) spatial resolution of
the system. Indeed, when the size of a nanoobject
decreases below A, the characteristic size of the image
is unchanged but the number of emitted electrons
decreases.

4. CONCLUSIONS

We have successfully imaged an organic nanocom-
plex and a dielectric aperture at the tip of a 100-nm
quartz capillary. Using femtosecond L PPM, an approx-
imately 20-nm organic structure composed of Cou-
marin-153 molecules was imaged by LPPM with a
magnification coefficient of M, = 4.7 x 10°. Anincrease
in the laser pulse energy above a certain level leads to
the motion of the nanocomplex over the tip surface and
isaccompanied by a decrease in the photoemission cur-
rent, which iswell described by an exponential function
of the laser irradiation time with a decay time constant
of about 1 min. LPPM imaging of a metal-coated cap-
illary tip with a 10-nm aperture is evidence of the high
spatial resolution (on alevel of A =5 nm) achieved in
our experiments.
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Using theinternal cold cathodein the form of abun-
dle of silicon nanotubes, it is possible to obtain a
nanolocalized electron beam at the output of a 100-nm
capillary tip. Such a beam was successfully used for
imaging the aperture of the quartz capillary with amag-
nification coefficient of about Mg = 3 x 10° (note that
the magnification coefficients and the values of spatial
resolution determined by two methods were very
close). The electron beam obtained at the output of a
100-nm capillary tip can be used for the shadow imag-
ing of nanostructures near the tip aperture. By irradiat-
ing the internal emitter with femtosecond laser radia-
tion pulses, it isalso possible to generate nanol ocalized
ultrashort bunches of electrons.
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Abstract—The photon splitting y — yyin a strongly magnetized medium of arbitrary temperature and che-
mical potential isconsidered. In comparison with the case of apure magnetic field, anew photon splitting channel
isshown to be possible bel ow the electron—positron pair production threshold. The partia splitting amplitudes and
probabilities are calculated by taking into account the photon dispersion in a strong magnetic field and a charge-
symmetric plasma. An enhancement of the photon splitting probability compared to the case of a magnetic field
without plasma has been found to be possible under certain conditions. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The photon splitting into two photons, which isfor-
bidden in a vacuum by the Farry theorem, but is possi-
ble in the presence of an electromagnetic field and/or a
plasma, is a shining example of the influence of an
active external medium on the reactions involving ele-
mentary particles. Remarkably, this exotic (at first
glance) process can play asignificant role in astrophys-
ical phenomena. In particular, it is suggested that this
process could explain spectral features in some of the
radio pulsars [1] and the absence of radio emission in
recently discovered X-ray and gamma-ray sources, the
so-caled anomalous X-ray pulsars (AXP) and soft
gammarepesaters (SGR) [2]. Such astrophysical objects
can possess a strong magnetic field that significantly
exceeds a critical value of B, = m?/e = 4.41 x 102 G!
and that reaches ~10'“-10'¢ G [3]. In addition, analysis
of the spectra for some of these objects points to the
existence of a relatively hot and dense electron—
positron plasmain their neighborhood [3].

The theoretical study of the photon splitting y —~
yyin an active external medium has a rather long his-
tory. In amagnetic field, this process has been consid-
ered by a number of authors (see, eg., [4] where a
detailed list of previous papers can be found); among
therelatively recent papersare[5-12]. In particular, the
case of astrong magnetic field was considered in [6-9].
In an el ectron—positron plasmawithout any influence of
an external field, the propagation of photons was stud-
ied both in the case of a medium at rest [13] and in
the case where the plasma moves with an arbitrary

1 We use the natural system of unitsin which ¢ = # = k = 1, where
m is the electron mass. Throughout this paper, e > 0 is the ele-
mentary charge.

velocity [14]. In [14], the most general expression for
the photon splitting amplitude in a relativistic plasma
was derived by the method of temperature Green func-
tions. The effects of both components of the active
medium on the dispersive properties of photons and
their kinematics in a weakly magnetized, cold plasma
were simultaneously taken into account by Adler [15].
In[16], the Heisenberg—Euler Lagrangian for the effec-
tive six-photon interaction was used to derive an
expression for the photon splitting probability in amag-
netized plasma by taking into account the photon dis-
persion in the plasma. The influence of a weak mag-
netic field and amedium of arbitrary temperature on the
modification of the photon splitting amplitude was con-
sidered in [17-19]. The influence of the plasmain this
case was shown to be negligible. However, the situation
can change significantly in the strong-field limit, which
has not been considered previoudly. It should also be
noted that no joint analysis of theinfluence of amagne-
tized plasma on the dispersive properties of photons
and on the modification of the photon splitting ampli-
tude was performed in the above papers.

In this paper, we consider the photon splittingy —
yyin the case of a strongly magnetized plasma where

.JeB isbelieved to be much larger than the characteris-
tic parameters of the medium: the temperature T, the
chemical potential p, and the photon energy. In Sec-
tion 2, the amplitude of the process in a strong mag-
netic field is calculated by taking into account the pho-
ton scattering by real electrons and positrons of the
medium. We show that the result obtained can be used
to calculate the amplitudes of the processes involving

neutrinos (yy — vv) and axions (a — vyy). In Sec-

tion 3, we anayze the photon splitting kinematicsin a
strongly magnetized charge-symmetric (1 = 0) plasma
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Fig. 1. Feynman diagramsfor the photon splitting in amag-
netic field.
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Fig. 2. Additional photon scattering by electrons of the
medium with the emission of two photons in a magnetic
field in the presence of aplasma. The diagramswith the sub-
gtitution p — —p will correspond to the scattering by
positrons.

with allowance made for the photon dispersion. We
point out that the renormalization of the photon wave-
functions near the cyclotron resonance should be taken
into account. In Section 4, the splitting probabilities of
real photons are calculated by taking into account the
dispersion laws and the renormalization of the wave-
functions. We discuss our results and present our con-
clusionsin Section 5.

2. CALCULATING THE AMPLITUDE

In this section, we calculate the amplitude of the
process y — yyin a strongly magnetized medium. It
can be represented as the sum of two terms:

pls (1)

where .l is the amplitude of the processy — yythat
correspondsto a purely field contribution (U =T =0). It
is described by two Feynman diagrams (Fig. 1) and can
be taken from [8, 9, 20].

The second term on the right-hand side of Eq. (1)
corresponds to coherent photon scattering by real elec-
trons and positrons of the medium without any change
in their state (forward scattering) with the emission of
two photons. Graphically, such scatterings, for exam-
ple, by plasma electrons can be represented by the six
diagramsin Fig. 2. The cross at the end of the electron
line means that the particle belongs to the medium.
Such coherent scattering will give an additional contri-

M= Mg+ M
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bution to the amplitude of the processy — yy. Let us
define the ¥-matrix element of the plasma contribution
as the sum over all states including the corresponding
distribution functions:

Fo = zjdnp[y_f_(p)Jrﬂlh(p)]- )

n,s

Here, dnp is a phase volume element,

_ dp,dp,L;L,

d
" eny?

p

where L; and L, are the parameters that define the quan-
tization volume, V = L,L,L;. The &¥-matrix elements
S describe the forward photon scattering with the
emission of two photons, respectively, by electrons and
positrons; f. (p) are the corresponding distribution

functions. In thermodynamic equilibrium and in the
rest frame of the plasma, the latter are

fo(p) = ——o.

expw +1

The summation in Eqg. (2) is over the spins and Landau
levels of the plasma electrons and positrons.

In the strong-field limit, the plasma electrons and
positrons are at the ground Landau level, n = 0. The
well-known solutions of the Dirac equation in a mag-
netic field should be used to determine the matrix ele-

ments &5 in this limit. For the ground Landau level,

these solutions are known (see, e.g., [21]) to be repre-
sentable as (the vector potential was chosen to be A =
(01 BX11 O)

Bm
Yoo = ——
(24/ME, L,Ls)
x exp[—ie(E Xy — P2Xo — P3X3) | ©)
0&0

X exp D_EDUE( IR

where

Ep = f\/p:23+m2’ Ee = '\/B%(l'l-e%ﬁ;
B = eB,

and e = =1 denote the solutions for an electron with pos-
itive and negative energies, respectively. The bispinor
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amplitudes are

O + O
1 D(Ep em)lPD

—— , (4)

u(py) =

where

€

I
[
=)
[

describes the state with the spin directed against the
field.

Using these solutions, we obtain the following
expression for the $-matrix element that corresponds
tothe diagramsin Fig. 2:

S = Idpsdpzz[y‘”f () +FVL0)], )

where 9)(;) denotes the matrix element of the scatter-

ing by electrons (positrons) for the ith diagram. For
example,

W _ ie’./Bim 4 a2
d 2EA/2coV2w'V2co"V-r dxdydz
x Sp{ [(py),+ MM _(e'Y)S(z y)(e"Y)S(y, X)(ey)}
x exp[-i(gx—g'z—q'y)] (6)

x exp[i(p(z—x))y] exp[-i(p(z—x)).]

exp[)—z[% %( + = } :

Here, S, y) is the fermion propagator in a magnetic
field, which can be represented as [22]

S(x,y) = exp(id(x, ¥))S(x-y), ()

y

(x,) = ey AE) +3FwE-W0]  (®)

where A, is the 4-potential, F, is the tensor of the
external constant uniform magnetic field. The transla-

tion-invariant part of the propagator é(x —Y) has sev-
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eral representations. For our purposes, it is convenient
towriteit asapartial Fourier integral expansion:

00

P _ e dt
S(X) = “41 tanht
0
2
xJ’ d b +mM_(1 + tanht)
(2m°O

+[(py),+ mIMN (1 -tanht)

—(XY) g (1~ tanhT) ©
1l

1.,
d’p = dpodps, M. = 5(1iyay,),

n:=n, [N,(y)] =0
Here, y, are the Dirac matrices in the standard repre-
sentation; the 4-vectors with the subscripts 00 and ||
refer, respectively, to the Euclidean {1, 2} and
Minkowski {0, 3} subspaces, when the field B is
directed along the third axis. For the arbitrary vectors
a, and b, we have

ag = (0,a5,3,0), . = (20,033,
(ab)y = (aAb) = a;b; + ayb,,
(ab); = (a/Ab) = agh,—ashs,

(10)

where we introduced the matrices Aqz = (¢¢)qs and
/\0(|3 = (cl)cl)),,B related by /\u[} -~ Ng = Oop =
diag(1, -1, -1, 1), ¢, = Fqp/B is the tensor of the
external magnetic field reduced to dimensionless
form, §up = €4 P,0/2 is the dual tensor; the tensor

indices in the 4-vectors and the tensors in parentheses
are assumed to be folded sequentialy: for example,
(aAb) = az\ggbg.

Changing the variablesY =z—-yand Z=y - xin
Eqg. (6) and integrating over x yields the following

No. 4 2005



638
expression for

GO _ ie’(2m)’

- 2E.20V2wV2w'V

x 8(dz — 0 — 1) 8(0s — d — Gs) [ d*vd*z

o(w— W—w")

* Sp{[(py)y + mIN_(e'y)S(Y)(e"y) S(Z) (eY)}

) (11)
xexp[i((q+9g")Z+qY)]

x exp P2l _B . —d1)

exp[i(p(Y +2))
OBz, 52 . O
X eXpD_—[YD +Zo+2(YZ)o+ 2i(Y9Z)]0.
O

The remaining elements SV that correspond to the

diagrams with photon permutations can now be easily
obtained from Eq. (11). The substitution p — —p

alows the matrix elements ¥% of the scattering by

positrons to be determined. In genera, the &-matrix
element for arbitrary particle momenta and magnetic
fields is rather difficult to calculate. Substituting the
propagator (X) in Eq. (11) leads to an overly cumber-
some expression in the form of a double integral over
the proper time. Deducing the strong-field limit from
this expression is a fairly laborious task. In calcula-
tions, it proves to be more convenient to use the expan-
sion of the electron propagator in terms of the inverse
magnetic field strength. For this purpose, let us repre-
sent the trandlation-invariant part of the electron propa-

gator S(X) as[23]

S(X) = S(X) +5.(X) + 5:(X), (12)
N BX?
S(X) IBexp% 7 D
(13
E_Lg_p_y_)il.___n exp[_|(pX)l]
(27[) p||
Q(X)z—#[—i%a%g +m}6ﬁ(X)I‘I+
B BX? 9
X?
* &Xp—— re. > S
Si(X) = 21_[6”(X)();V)Dexp5 B4 5 (15)
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where 6ﬁ (X) = d(Xp)0(X3), T'(a, 2) is the incomplete
gamma function,

Maz) = J’ta‘le“dt

Only the combinations S.S_, S S, S S, and S5
will contribute to thefirst two terms of the expansion of
the ¥-matrix element in terms of the inverse magnetic
field strength.

Our analysis shows (for details, see the Appendix)
that the matrix elements ¥ in the strong-field limit

B> qé, qﬁ) can be transformed to ¢ in such away
that all of the even and odd (in external field, i.e., in ¢
and ¢ ) terms will enter into the ¥-matrix element (5)
in the form of odd and even (in y) functions, respec-
tively. This assertion is consistent with the generaliza-
tion of the Farry theorem to the case of a magnetized
medium considered in [24].

Sincethe scattering yet — yye* takes place without
any transfer of the 4-momentum to the plasma, this pro-
cess physically manifests itself as the photon splitting
with the corresponding conservation of al four energy—
momentum components. Equation (6), which describes
the scattering by asingle electron, contains only three d
functions. However, the ¥-matrix element (5), which
includes the scattering by al plasma electrons and
positrons, contains an integral over the generalized
momentum p,, which givesthe missing & function. The
amplitude corresponding to the plasma contribution
can then be defined in the standard way,

f 454 f "
g, =12m0@-a-0),
J20V 2w V2Ww'V

Given Eqg. (16), amplitude (1) can be represented as

(16)

M= g (@)es (a)es (@) BNS, + M), (A7)
where
© _ o (099" (99),
Mo = 250~ (q8q")
18
X [g(m)(qu q”) D (—q” —q,) (18)
- %)(—q”, q”) —(d-—aq"],
I'Iillv)p = —|4HEFE
x{(g9a") (Thyp + Vi) +(9'9(0")v 0oy
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# 2((o" = ) (D) bup * ()

= Guo(a")(d'd), + G (a")(ad),
+%G(d)(ad)y —Gup(a)(a"9),
G (@)(a"9)p —Gp(a)(d'D),
_1(69)u(09"),($9),
4(9¢q")
x[a5 + a7+ (qq)d [T

(D_)(q”, Qi|) - g(m_)(—cﬁp —q,)
~T(—a, ap) - (d —~a")1}.

Here,
Q _ Ay |, g )
uv(q) - %HV__TD[HH-}- (q||):|a
qy Oqy O (20)
g(i)(q) _ 2q2m2 d_pgf_(Ep)i f+(Ep),
TR qgi-a(pa))
(Di (a q”)
o Idps f(Ep) £ 1.(Ey) (22)
Ep [qf +2(pa) 1 [a)f +2(pq)”]
The function H(Z) is defined as
H(z) = z arctan -1, z=21,
Jz-1 Jz-1 22)
H(2 = 1D Z N1-2z- 2+inF%, z<1.

The expression for 11, can be represented as

—5—[(q0a"){ (¢a),(da"), (),
quqn qu

+($a)u(AQ")W(AG)eH
—(ADu(B ) (AG)H" = (AQ)u(AG)W (), H')
+ (99" (ADu(da")y (da)p(H —H")
+(q9") (BB (AQ)p(H = H")
+(90) (B (AG)(BA)p(H' = H)],
T = H+H' +H"+2{ qﬁqhqu'l'z

The =

(23)

—2m’[q5(q'q")H — g (aq”)H' =) (ag)H"]} (24)

. " ' " " -1
x{ oy —4mLa)d* — (gl
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where
1] 1]
H= Hm[i———Dm H = HD4B————Dm H sHEhm———mf'; .
Oqy O Oy’ 0 Dy U
The expression for v, is
Vi = T[uvp[.r[D*> Vi, H— g(+)(q”),
H T”(q;.), H" — T (],
Vo = S{(ad’ )||(qq")|| (q”)
(g ¢ ")? -
—(qa)(aq"), T (ap)
—(ag"),(aa"), T (ay)
qia)q;”
+ LA !,r I [g(mﬂ(q”- QE|)

T (=) —ap) + TS (=g, o)) + (g~ )]} -

The derived expression for the amplitude is clearly
gauge-invariant, since

1 ney -

qu pvp) = qv pvp qp pvl) =0, (26)

has the property of being real in the kinematic region
qj <4n?,

M(ag,9,9") = [M(-9, -9, —q")]*, (27)

and agreeswith the previously derived expression for the
vector part of the amplitude of the processyy—= vV in
apure magnetic field in the casewhere T = =0[23].
Note that Eq. (17) for the amplitude was derived in
the rest frame of the plasma. However, it can aso be
generalized to the case where the plasma moves as a
whole along the magnetic field. For this purpose, it will
suffice to make the following substitution in the elec-
tron and positron distribution functions appearing in
integrals (20) and (21): f.(E;) — f.(up), where u, is
the 4-vector of the medium (u? = 1). The condition for
the absence of an electric field in thisframe can be writ-
ten in relativistically covariant form: u,¢,, = 0. Note
also that in contrast to the case of an electron—positron
plasma without any magnetic field, where introducing
the 4-velocity vector of the medium isrequired to write
the two- or three-photon vertex in covariant form [24],
in the presence of amagnetic field, as can be seen from
our result, the three-photon vertex can be represented in
covariant form without using the vector u,. This is
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q25/4m2

Fig. 3. Photon dispersion in a strong magnetic field (B/Bg =
200) and a charge-symmetric plasma (T =1 MeV, u=0) at
various angles between the photon momentum and the mag-
neticfield direction: 8 = /2 (upper solid curve), /6 (middle
solid curve), and 1712 (lower solid curve). The dashed curve
represents the dispersion in the absence of a plasma.

because an orthogonal basic can be constructed from
the field tensor and the 4-momentum vector:

b(l) (¢Q)p b = (¢Q)p
2 H 2
Job Ja
b(s) _ qn(/\Q)p QD(/\Q)u b® = e

NCReTeE Jo
using which any tensor can be represented in covariant
form.

To conclude this section, note that using result (17)
with the substitution

. OE
&, — Jlu—,
K HA/ée
I-I(O 1) Cvl—l(o 1) + CA(T)HOI_I(O 1)

Hvp pvp avp

(28)

we can easily determine the amplitude of the process
YY— VV in astrongly magnetized plasma, and with
the substitution

iqae (0,1)
P q“Zme’ Hvp

we can determine the contribution of the axion—photon
interaction a — yyinduced by the plasma in a mag-
netic field to the amplitude. Here, C,, and C, are the
vector and axial constants of the effective vvee
Lagrangian of the standard model,

|—|(0 1)

avp 1

€ - ¢u0 (29)

1

Ca = %3,
A 2

B,y is the Weinberg angle, the upper sign pertains to an

electron neutrino, the lower sign corresponds to muon

and tau neutrinos, j,, isthe Fourier transform of the neu-

Cy = +1/2+2sin°6,,
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trino current, and g, is the dimensionless axion—elec-
tron coupling constant.

It is interesting to note the following. The ampli-
tudes of the processesyy — vV and a — yyin a
strong magnetic field are known to be independent of
the field strength [23, 25]. In contrast, as can be seen
from (17) and (18), the presence of a charge-asymmet-
ric (U # 0) plasmaleadsto alinear increasein the ampli-
tudes of these processes with magnetic field strength.
This may prove to be important when considering the
various applications of these processesin astrophysics.

3. THE PHOTON SPLITTING KINEMATICS

Thekinematics of the processunder considerationis
determined by both the vacuum polarization and the
photon scattering by plasma electrons and positrons.
The eigenvalues of the polarization operator for a
charge-symmetric plasma (1 = 0) can be taken from [26]
and be represented as

P (a) =505

~g°A(B), (30)

??(q) = ZB“[H B——m f‘*)(qm} ~q°A(B), (31)
n Dq”D
P9(q) =—9’A(B), (32)
where

_a _1nBO
A(B) = 3ngwgz |nBeD
It follows from our analysis of the solutions to the
dispersion equations,
-PM@) =0, =123, (33)

that the modes with A = 1, 2 and with the polarization
vectors

are physical in the charge-symmetric case, just asin the
case of a pure magnetic field. However, it should be
emphasized that the coincidence of the polarization
vectors in the plasma s approximate, to within O(1/p).
At the same time, there are a number of differences
between the plasma and the magnetic field. The first
significant difference from the case of a pure magnetic
field is that for a mode-2 photon (Fig. 3), the situation
where this photon can have a positive value of ¢? in the

kinematic region qﬁ < 4n¥ ispossible. Thisis attribut-
able to the appearance of eigenmodes in the plasma

eP(q) = e2(q) = (34)
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with the frequency wy, that can be determined from the
equation

W, —PP(w, k =0) = 0. (35)
In thisregion, anew channel, y, — y;y;, which isfor-
bidden in a magnetic field in the absence of a plasma,
becomes possible. At the same time, the splitting chan-
nelsy, — Yoy, and y; — ViY,, which are permitted in
a magnetic field [15], are kinematically closed in this
region. Another important difference is an essentially
different dependence of the dispersion law in variables

qj and g7 on the angle between the photon momentum
and the magnetic field direction (see Fig. 3).

It follows from Eq. (31) that the eigenvalue of the
polarization operator (q) is large near the electron—
positron pair production threshold. This suggests that
the renormalization of the wavefunction for a photon of
this polarization should be taken into account:

e = & NZo Z3 = 1-

The amplitudes for the permitted channels y; —
Ya¥2, Yo — YiYe, @nd y, —= yyy; can be determined
from (17) and be represented as

a@mgq). (36)
0w

My, = I4T[Egmslzw
CECEMCR
2 i (37)
x {H el “’(qﬁ)},
Dq” O

(q'7\q")
2 w2 2

[doq QD]

M122 =1 4“%_5

w| 1 E4m +)
><D(q/\q){HD—D+G~ (q)}+(q/\q)
570 I (39)

) 5, O
{HB%D"' g )(q”)} 0
Dq” O O

My = Myp(g~——a").

Analysis shows that the function 7™ < 0 almost in
the entire domain of parameters T, w, and q,, while the
function H > 0 in this domain. Thus, the functions H
and I ™, which define the dependences of the ampli-
tude on the magnetic field and the plasma, respectively,
appear in the derived expressions (37) and (38) with
opposite signs. Consequently, in contrast to the case of
amagnetic field, a plasmawill suppress the amplitudes
of thechannelsy; — V.V, andy; — v, V.. At the same

(39)
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Fig. 4. Relative probability of the channel y; — yjy>ina
strong magnetic field (B/B, = 100) and a charge-symmetric
plasma (1 = 0) at temperatures of 50 keV (solid line) and
250 keV (dotted line), Wy = (a/T[)3m. The dashed curve rep-
resentsthe probability in apure magneticfield (T=u=0) [§].

time, as we show below, the probabilities of these pro-
cesses can be enhanced through the induced emission
of photons in the case of a cold charge-symmetric
plasma.

4. THE PHOTON SPLITTING PROBABILITY
IN A STRONGLY MAGNETIZED MEDIUM

The general expression for the photon splitting
probability can be written as

9“ S [l 202,

Ao AN

*(1+ o) (1+ o) (40)

. . d3kn
x Oy (k) — oo (k —k") —wy.(k ))ooxoo :

where

- Chpl-

isthe photon distribution function, and the factor gy - =
1-9,,/2wasintroduced to allow for the possibleiden-
tity of the photonsin the final state.

In general, as can be seen from Eq. (40), calculating
the probability is afairly complex mathematical prob-
lem. Analysis shows that a photon splitsthrough all the
permitted channels with the highest probability when it
propagates perpendicularly to the magnetic field direc-
tion. For plasma parameters typical of astrophysical
objects (T = 50 keV, 250 keV, 1 MeV, |1 = 0) and mag-
netic field strengths B = 100B,, and 200B,, we numeri-
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Fig. 5. Relative probability of the channel y; — y,y, for
the same parameters and notation as those in Fig. 4.

WIW,

wW/2m

Fig. 7. Relative probability of the channel y; — y,ys for

the same parameters as those in Fig. 6 (solid line). The
dashed line represents the probability in a pure magnetic
field (T=p=0)[8].

cally calculated the photon splitting probabilities for
the channelsy; —= V1Y, Y1 — Yoo, and Y, —= Viyi.
The results of our calculations are shown in Figs. 4-8.
We see from Figs. 4 and 5 that the photon splitting
probability can be higher than that in a pure magnetic
field. This is because alowance for the influence of a
plasma on the photon splitting in the low-temperature
limit, T < m, is reduced only to allowance for the pho-
ton distribution functions and, as a result, leads to an
increase in the phase volume of the reaction. Indeed, at
temperatures T < 0.1m and fields B = 100B,, the fol-

lowing estimate holds for the plasma frequency: wf) =
10-5m?. It follows from this estimate that the plasma
frequency is low compared to the characteristic (~T)
momenta on which integral (40) gains its value. This
alows %?A(q) to be represented as

PP(q) =0, (42)
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WiW,

20

15 , i

10

w/2m

Fig. 6. Relative probability (solid line) of the channel
Y1 — Y1Y2 in astrong magnetic field (B/B, = 200) and a
hot plasma (T = 1 MeV, p = 0). The dashed line represents
the probability in a pure magnetic field (T = u = 0) [8]; the
dotted line represents the asymptotic limit (43).

WIW,

0.5
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0.4 0.5 0.6 0.7 0.8 0.9

wW/2m

Fig. 8. Relative probability of the channel y, — yjy; ina
strong magnetic field (B/B, = 200) and a hot plasma (T =
1MeV, u=0).

where, for convenience, we introduced the parameter

that characterizes the degree of influence of the mag-
netic field. It thus follows that the dispersion law and
the renormalization of the wavefunctions for a photon
of the second mode can be written as

2 1
+ 03, ZZ~1+E. (42)
In addition, for typical fields in astrophysical
objects, & < 0.1. In this case, the limit of collinear kine-
matics can be used. As we see from Egs. (37) and (38),
the channel y; — y;Y, in thislimit will be suppressed
compared to the channel y; — V.Y, as follows from
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Figs. 4 and 5. On the other hand, as we see from Figs. 6
and 7, the influence of a hot plasma leads to the sup-
pression of the probabilities of the channelsy; — v,y»
andy; — V,Y, compared to the case of apure magnetic
field.

In the asymptotic limit n? < w’sin®0 < eB, we were
able to derive simple expressions for the probabilities
of the channelsy;, — yiy, and y; — VoVs!

342
a’T
Wi e T
. (43)
u
x[(l—U)ZFEw(TE‘*(U —U)}
3.2
am
W1ﬂ22~ 4(A)
1 1

1- exp[—%)(l - u)} 1- exp[—?(l + u)} (44)
x Etanhz[é%(l— u)} +(U—» —u)é,

where u = cosB, 0 is the angle between the momentum
vector of the decaying photon k and the magnetic field
vector B,

z

xtanh®(x/4)dx

F(2) = .
o[1-exp(—x)] [1— exp%— %}

An analytical expression for the probability of the
channel y, — y;v; can be derived in the case of arare

photon gas (f; = f,; = 0) and be represented as

] "o
m +
W, ;1= 8T[222[HE+——E+ g )(qll)}

qn
(45)

qu
XDn -1+ e
. % (Q)

Inthelimit T =0, the asymptotic formula (43) trans-
forms to the well-known expression in a strong mag-
netic field [8, 9, 20].

5. CONCLUSIONS

We have calculated the amplitude of the photon
splitting processy — vy, analyzed its kinematics, and
found the polarization selection rules. For the permitted
splitting channels, we calculated the corresponding
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probabilities by taking into account the photon disper-
sion and the renormalization of the photon wavefunc-
tions. Our results show that the presence of aplasma, on
the one hand, significantly changes the polarization
selection rules compared to the case of a pure magnetic
field. In particular, a new splitting channel, y, — v,vi,
which isforbidden in the absence of aplasma, becomes
possible. On the other hand, we see from our numerical
calculations (Figs. 7 and 8) and the asymptotic formu-
las (43) and (44) that a hot plasmahas an overwhelming
effect on the channelsy; — yiy, andy; — V,Y,. Nev-
ertheless, as can be seen from Figs. 4 and 5, a cold
charge-symmetric plasmain combination with a strong
magnetic field is capable of enhancing the splitting
probability through these channels compared to the
case of a pure magnetic field.

Analysis of the case of a charge-asymmetric plasma
(1 # 0) isanatural continuation of thiswork. For astro-
physical applications, it makes sense to compare the
calculated splitting probabilities through each channel
with the probability of the Compton photon scattering.
It is well known that in a weakly magnetized plasma,
the process y — yy can dominate over the Compton
scattering at certain parameters of the medium [17].
Therefore, exploring the possibility of such an effect
ina strongly magnetized plasma is of considerable
interest.

The results obtained can play an important role in
shaping the spectraof such astrophysical objects as soft
gamma repeaters (SGR).
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APPENDIX

TRANSFORMATION
OF THE ¥-MATRIX ELEMENTS

The calculation of the amplitude can be simplified
significantly if the &-matrix elements corresponding to
the electron contributions are transformed to the
S-matrix elements corresponding to the positron con-

tributions. For example, let us transform the go.
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matrix element corresponding to the first diagram in

Fig. 2 to the $© _matrix element of the scattering by
positrons corresponding to the same diagram, but with
the photon permutation &,(q) ~—— €5 (q') and the sub-
gtitution p — —. For thispurpose, let usintegrate (11)
over d*Y and d*Z with allowance made for the asymp-

totic form of propagator (12). In the limit B > 7, qﬁ,

we obtain the following expression for gW.

ie’B(2m)°
AE.20V20 V20"V
x 3(w— W—w")d(d, — 0>, —05)8(ds — g5 —03) (A.1)

qh - qI)}Sp&Ai(l)

g)(l) —

x eXp[i%(ql—

Here,

~

1 1 1 1 1
=,Sﬁ(__) (1) (1 (1) (1)

A AL+ AP+ 42+ 4P+ 45 (a2

A2 = [2B-(q0)* = (ab)° + (AQ) +i(qda)]

(py); + (dy);+m
(@) +2(pa),

(ay)y * m(sy)nn_,

a)y

x[(py)y+ mlE'y)y (A.3)

(py); *+
g +2(p

x (€"Y),

(py); + (gy);+m
(@) +2(pa),
x (€"Y)gl(py), + (ay)+ m] (y)a_,

A% = {(py)y+ M E'y), (A.4)

&AQ(+1_) = —(py);+ mlE€'Y)al(py), + (dy);+ml
(py)y + (qy), + m (

A5)
(ey),m.,
o + 2(pa), :

X (€"Y)q

5;4(—1) = — + oy (PY)t+ (gy)y+m
0 [(py),+m]E'Y), (q')ﬁ 2000,

(qy)o+ i(orcbv)}

0
XE(S"V)D[(CW)D—# &) (A6)

(e (an, - PG ey, 1
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éﬁ(ml—) = —{(py);+ m]
(ay)s

. y
« He) (e, - P ey
(A7)
+ @y (g, - BW ey m
(py);* (qy) +m
X — (ey)n.,
g+ 2(pa), :
AL = 2(pyy+ mEy) "9

X [(AY)g+i(Yd)gl (€"Y)Yp(eY)I_.

Here, the subscripts —, +, or [J show which of the com-

binations of propagators, S.S., S.S., 85, or §5,
contributes to the corresponding part of the spur.

The 9 -matrix element of the scattering by
positrons can be calculated in asimilar way:

. 3 3
$O = €PN 50— w—a)
4E20V20V 265V
x 8(02 — 02— 02) (03 — Gz — 0f3) (A.9)
(6)
x eXp[ gz( ql)}Sp%
where B is defined similarly to (A.2), with

B = 28— (a0)’— (qb)° + (GAQ) =i (ddq)]

(py); * (qy);—m
x[(py)—ml €y) >
I I i +2(pa); (A.10)
wy (PY)+ (@Y)—m
x (€"y) (e'y)n.,
" @)z + 2(pg), :
BE = [(py)y—ml €y),L(pY)y+ (ay)y—m]
< (& (py);+ (aqy)y—m, | n (A.11)
Ve pay Ve
3 = [(py)—m ey ) PO
! 212(pg),  (A12)
x (€"Y)al(py) + (ay),—m] €'y), M.,
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B = [(py)—m

(ay) +i(q'oy)

< e = ey,

(A.13)
+ ey (arv)o - I ey, 0

y (py); *+ (dY)—
(a); +2(pg),

m(sly)”n_,

(py); *+ (Qy);—
ﬁ +2(pq),

@3(56—) = [(py),—ml(ey),

g o=l .
e @) - eyy,  (aag

+ (S"V)u[(qu)m - w} (€'Y)n Eﬂ_,

B = —-[(pv)” ml (ey)Yp("Y)

*[(AY)g +i(yo)gl €'Y).

Performing the charge conjugation operation on all
y matrices under the spur sign in (A.9) and using the
properties of the operators,,

SplyuYy---M] = Sply,yy-..M],
MeYu Yo Me = (- Auv—|¢pv)n+’

(A.15)

we find that the spur of the matrices A" can betrans-

formed to the spur of the matrices 3"
that

in such away

(1) (6)

Sp&d = —Sp% (A.16)
The remaining S-matrix elements that define the
plasma contribution to the photon splitting can be calcu-
lated by photon permutation. Using now relation (A.16)
and Eq. (5), we can easily show that al of the even and
odd (in external field) terms will contain the difference
and sum of the electron and positron distribution func-
tions, respectively.
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Abstract—The images obtained during the second half of 2004 by the Cassini interplanetary spacecraft are
analyzed. The method of analysisis based on the original algorithm of a continuous wavel et transform with a
complex Morlet wavel et that reduces the integral transform to solving a Cauchy problem for a system of partial
differential equations. This method is shown to be afairly efficient tool for analyzing the instant variable peri-
odicity of the spatial particle inhomogeneity in theradial structure of Saturn’srings. © 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

The structure of planetary rings generally and Sat-
urn’srings specifically arouses constant scientific inter-
est in studying them as a dynamical system of many
particles (see, eg., [1] for an overview of the status of
the problem as of 2002 and references). A characteristic
feature of Saturn’s main rings (A, B, C) istheir small-
scale structure detected by the Voyagers. Its prelimi-
nary analysis (see [2—4]) led to amodel for the forma:
tion of thin spiral density waves through the resonant
interaction of ring particles with Saturnian satellites.

Subsequently, awindow Fourier transform was used
to analyzetheVoyager dataon theA ring [5]. Thisanal-
ysis revealed and identified about 40 resonance struc-
tures attributed to the influence of various Saturnian
satellites. At the same time, the authors of [5] pointed
out a number of resonance regions in which the
achieved resolution and the capabilities of the process-
ing algorithm did not allow any featuresin the ring mat-
ter distribution to be detected.

Over the last year, the data obtained by the Cassini
spacecraft, including high-resolution photographs
(see[6] for a preliminary report of the Cassini task
group), have opened up new opportunitiesfor studiesin
thisfield. The wavelet transform, a method of analysis
that has been actively developed in the past two
decades, can be used to process them. An important
advantage of this technique over other approaches (see,
e.g., [7]) is a high degree of localization of the basis
function in both the spatial and frequency domains.
Thisalows nonstationary signalsto be effectively stud-
ied based on the concept of an instant frequency (or
period). The interrelationship between the window

width and the instant period (the window contracts for
high-frequency signals and expands for low-frequency
signals; as aresult, the effective number of oscillations
of the basis sine wave in the window is conserved)
favorably distinguishes the wavel et transform from the
window Fourier transform.

As applied to celestial mechanics, the wavelet anal-
ysis method has shown its efficiency in processing the
solution functions generated by Hamiltonian systems,
in particular, in the three-body problem [8] and in
studying the variations in the revolution periods of
asteroids in near-resonance regions [9]. As applied to
the Saturnian system, the wavelet transform was sug-
gested to be used to study the structure of the Encke gap
based on Voyager-2 data[10]. Since the main objective
of the authors of the cited paper was to identify struc-
tures of various scalesin anoisy image, only real wave-
lets were used. However, determining the pattern of
local periodicity in Saturn’s ring structure requires
using atransform with acomplex wavelet. The possible
efficiency of such an approach to this problem was
demonstrated with specific examplesin [6, 11].

The main goal of this paper is to study the small-
scal e structure of Saturn’sA ring using a new approach
to caculating the complex integral transform with a
Morlet wavel et based on the representation of the wave-
let transform as the solution to a system of partial dif-
ferential equations.

2. DESCRIPTION OF THE METHOD

The most suitable method for solving the problem of
distinguishing the instant period in asignal isthe com-

1063-7761/05/10104-0646$26.00 © 2005 Pleiades Publishing, Inc.
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plex continuous wavel et transform
dt
w(a, b) = If(t)w*ﬂ 7 ®

(the asterisk denotes complex conjugate) in the ampli-
tude normalization

J’ ‘wg%%‘%t = const 2)

withtheMorlet basis. In the exact form that satisfiesthe
admissibility condition

J'llJ(E)dE =0,
itis

J2n
n&n

2
[exp(—looOE) expD Z‘J‘ﬂexpD S0

W(E) =
©)

The corresponding wavelet transform w(a, b) actsas a
local spectral distribution in periods a of the harmonics
that constitute the signal in the neighborhood of point b.

However, in most practical applications, the second
term in Eq. (3) is disregarded if the basis frequency is
fairly high (in general, wy, = 5), and the following sim-
plified definition is used:

2
— exp(-icE) exp DEZE @)

T

It corresponds to normalization (2) with const =

exp(wé /12). A significant advantage of this approxima-
tion is the simple relationship between the instant
period of the wavelet transform and the period of the
harmonic oscillation with frequency w. In other words,
the two-dimensional plot of the distribution of the mod-
ulus of the wavelet transform for a complex monochro-
matic function has aline of maximum that corresponds
to the period a = wy/w. Thefactor, which isa Gaussian
function, performs a smoothing that automatically sup-
presses the signal noise. The relationship also remains
valid for areal function.

Varying the basis frequency allows the frequency
resolution to be changed: the higher the frequency wy,
the more oscillations the basis wavelet function exe-
cutes on the characteristic window width and the closer
the modulus of the wavelet transform to the localy

W(e) =
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smoothed Fourier spectrum. At low «y, it reveals an
individual spike.

It should be noted that, despite such advantages as
the simplicity of the algorithm and the high speed of
calculations, the standard method for calculating the
continuous wavel et transform associated with the inter-
mediate passage to the frequency domain and with the
use of the fast Fourier transform algorithm has a
number of shortcomings. The latter follow from pecu-
liarities of the fast Fourier transform: the initial data
must be represented by a sample of 2N equidistant
nodes. Departures from this condition lead to a signifi-
cant complication of the calculations and/or loss of
accuracy.

Therefore, in this paper, we introduce an alternative
algorithm based on the observation that the transform
obtained by the convolution with the Morlet wavelet
satisfies the differential equation

%"2 9 i, 2Bw(a b) = 0. )
op? 0a OGL'D

The latter was derived in [12], but it was used only to
demonstrate the local properties of the a priori known
wavelet transform.

Let us represent the result of the wavelet transform
asasum of thereal and imaginary parts:

w(a, b) = u(a, b) +iv(a b),
for which Eqg. (5) can be written as the system

ou _ 9° u, v

38 adb + Wy 5 (6)

v _ _d°v Jau

35 - aabz—woab. (7)
To find the corresponding initial conditions, let uswrite
the integral transform (1) with kernel (4) as

® eXp[_iD_T —iwg
w(a, b) = J' f(t) dt.

—co

Thisintegral is known to be independent of the imagi-
nary subtrahend in the exponent, and the kernel of the
transform in the limit a — O isadelta function. Con-
sequently, w(0, b) = f(b). The initial conditions for the
system of differential equations (6) and (7) follow from
the latter equality:

u(0, b) = Re(f(b)),
v(0,b) = Im(f(b)).

The modulus of the wavelet transform required for our
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(a)

(b)
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b

Fig. 1. The Encke gap. The coordinate origin amost coincides with the position of the 11 : 10 resonance with Pandora. The next
wave structure is generated by the 15 : 14 resonance with Prometheus. The first wave train after the gap is generated by the 12 : 11

resonance with Pandora.

0.10

0.05r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2. Thefar (from Saturn) edge of the Encke gap.
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0 0.1

0.9 1.0

b

Fig. 3. The outer part of the A ring containing the4 : 3,6 : 5, and 7 : 6 resonance with Janus, Pandora, and Prometheus, respectively.

analysis can be easily calculated:

w(a, b)l = Ju¥(a,b) + v¥(a, b).

3. IMAGE PROCESSING RESULTS
FOR SEGMENTS OF THE A RING

We use the algorithm described aboveto analyze the
radial matter density distribution at the center of Sat-
urn’s A ring based on photographic data from the
Cassini spacecraft (July 2004). For our analysis, we
choseimages from the NA SA/JPL/Space Science I nsti-
tute collection. A narrow stripe was separated from
each image in the radia direction: PIA06099 (1022 x
20 pixels, Fig. 1a), PIA06094 (891 x 23 pixels, Fig. 2a),

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

PIA06095 (902 x 23 pixels, Fig. 3a), and PIA06093
(855 x 20 pixels, Fig. 49). It is easy to verify that the
curvature of the structures constituting the ring within
each sample may be disregarded. For clarity, all images
were significantly stretched in the transverse direction.

We used the pair of initial conditions u(0, b) = f(b)
and v(0, b) = 0, where the function f(b) is obtained by
averaging over the sample (Figs. 1b—4b). Sincethe sig-
nal lengthisfinite, the Cauchy problem for Egs. (6) and
(7) must be replaced with a boundary-value problem.
We used boundary conditions of the first kind: respec-
tively, the initial signal value at these points and zero
for the real and imaginary parts of the wavelet trans-
form.
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(b)

(©)

2 0.3 04

0.5

0.6 0.7 0.8 0.9 1.0

b

Fig. 4. The density waves generated by the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.

Values that are sufficiently high and convenient for
interpreting the results should be chosen for the basis
frequency. The frequencies wy, = Tt (Figs. 1c-4c), 1.51
(Figs. 3d and 5b), and 2t (Fig. 3c and 5¢) in dimension-
less units of the sample length satisfy these conditions.
At the last two basis frequencies, the regions distorted
by the edge effect were removed from the figures. A
guantitative criterion for this in the (b, a) plane is the
condition

o 2a 0O

whereb,=0or 1.

The image being processed (Fig. 1a) represents the
neighborhood of the Encke gap. A characteristic feature
that is not revealed by the window Fourier transformis
the possibility of tracing the distribution of the instant
spatia period of the wave structure of the Encke gap
edge. In the plot of the modulus of the wavelet trans-
form (Fig. 1c), the lines of maxima are painted black.
Note that the large-scale development of a spiral den-
sity wave, which is accompanied by an increase in its
instant period, admits of a continuous passage to the
line of maximum corresponding to the large-scale
spikes. As follows from Fig. 1c, the characteristic size
on such scales is on the order of the extent of the train
of resonant waves generated by the 11 : 10 and 15 : 14

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

resonances with the satellites Pandora and Prometheus,
respectively. There is a clear overlap between the lines
of maxima of various resonances (Fig. 1c). A similar
structure (but without a detailed analysis) has also been
revealed recently [6]. However, only one line of maxi-
mum may be preserved in our approach, which allows
relatively low wy, to be used. We aso found a similar
overlap between the lines of maximum of the instant
period for the small-scale and large-scale (formed by
Pan) resonant wave structures in the outer part of the
Encke gap (Fig. 2).

Another type of inhomogeneity that the suggested
wavelet analysis method can reveal consistsin the pres-
ence of a small-scale periodicity in the interresonance
intervals. The high (up to 270 m per pixel) resolution of
the Cassini images and the algorithm described above,
which admits (in view of the peculiarities of the numer-
ical solution of differential equations) of asmall stepin
scale variable, makes such a study possible.

To analyze in detail the small-scale structure in the
interresonance region, let us consider the density waves
generated by the resonances of Janus, Pandora, and
Prometheus. The characteristic ladder form of their
instant spatial period is shown in Fig. 3c. To achieve a
higher spatial resolution, let us increase the basis fre-
guency to wy, = 1.51 (Fig. 3d) and 21t (Fig. 3€). To
increase the sensitivity to the modulus of alow ampli-
tude, wewill use various shades of gray for high values.
This leads to a smearing of the resonance lines, allow-
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f T T

| |
0.25 0.30
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0.35

| |
0.40 0.45 0.50

Fig. 5. Theregion between the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.

ing an amost stably periodic signal on the segment
[0.35, 0.45] connecting the first two resonant wave
trains to be highlighted by brightness lines. A short-
wavelength signal is also detected on the segment
[0.52, 0.67] between the second and third resonances.
However, it has an unstable spatia frequency varying
within the range 75r=1071 (in units of the sample
length). The second frequency is equal to the frequency
of the wave between the resonances of Janus (4 : 3) and
Pandora (6 : 5). Itsrefinement using the basisfrequency
Wy, = 2nyields 108(x1)1t and confirms the stability of
the monochromaticity.

The spira density wavesin Fig. 4 generated by the
resonances of Prometheus (12 : 11) and Mimas (5 : 3)
are among the most distinct in Saturn’s ring structure.
For this reason, they were studied in detail and modeled
using Voyager data(seethe earlier papers[2—4] and [9]).
Let us anayze the interresonance region by the wavel et
method using a recent Cassini photograph. Analysis of
the images obtained by a transform with a high fre-
guency resolution (Figs. 5b, 5¢) reveals no stable peri-
odicity in this region. However, the existence of an
unstable signal with a spatial frequency of 1257t (see
Fig. 5c, where the lines of maxima are painted white)
can be easily seen. In fact, it is close to the highest fre-
guency of theresonant trains. In addition, ashort region
of more intense periodicity with a frequency of 671t

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

occupying the segment [0.30, 0.41] of the signal under
study is revealed. Examining the feature of the instant
period on the segment [0.36, 0.38] with a shape similar
to the resonance inclined line of the instant period, we
can assume that the frequency of 671 is related to the
longest-wavel ength resonant perturbations.

4. CONCLUSIONS

Thus, the continuous wavel et transform with acom-
plex Morlet wavelet is an efficient tool for studying the
spatial radial structure of Saturn’s rings. It enables the
evolution of the instant period to be traced in detail on
various scales. A detailed analysis of the wave pro-
cesses in Saturn’s ring matter should include the inter-
action of the long-wavelength perturbation segments
with the small-scal e wave trains generated by the reso-
nant interaction with other satellites and the formation
mechanisms of nearly monochromatic waves in the
regions connecting the high-frequency ends of the res-
onant zones.

The main results that allow a wavelet analysis of
high-resolution Cassini images to be performed are the
following. There are overlaps between the lines of the
instant period of the resonant waves generated by Pan
and the smaller-scale wave trains generated by other
satellites near both boundaries of the Encke gap. In
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extents, up to the joining of the resonant trains, can be (2004).
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Abstract—The effective demagnetization factor ng of quasi-single-crystal and granular Y Ba,Cuz0- _, thin
disks with different values of the edge barrier height, bulk pinning, and demagnetization is measured by a Hall
probe with the use of atrapped magnetic flux as atest field. As the trapped magnetic flux increases, ny; reaches
amaximum as a function of the external field; the qualitative behavior of this maximum is independent of the
morphology of asample. It is shown that, when the densities of intragranular and intergranular critical currents
differ by about one and ahalf orders of magnitude, the demagnetization factor ng; is mainly determined by the
geometry of asamplerather than by the energy of Josephson coupling between grains. The experimental results
are in agreement with the results of calculations performed within the proposed model of isolated crystallites

(grains). © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Recently, nonlocal phenomena, demagnetization
phenomena, and the phenomena of bulk and edge pin-
ning of a magnetic flux in high-temperature supercon-
ductors (HTSCs) have been intensively studied for con-
structing a generalized model of the critical state of
type-11 semiconductors (see, for example, [1-6]). It has
been found that, due to these phenomena, the distribu-
tion of the magnetic-flux and current-density profilesin
HTSC plates and films deviates from that described by
the Bean model [7]. Therefore, the following topics are
of considerable interest: (@) the transformation of the
demagnetization factor of asample under an increasing
external magnetic field H, [8, 9]: after the penetration
of the field into the sample, the effective demagnetiza-
tion factor ny;, which represents an integral demagneti-
zation factor of individual -crystallites (grains),
becomes a unified macroscopic demagnetization factor
n of the sample; and (b) the influence of the ny; of a
sampleon

(2) the processes of penetration (exit), distribution,
and trapping of a magnetic flux;

(2) the redistribution of the current density in
asample;

(3) the transition [10] from the domain of fields in
which the critical state is established in a Josephson
medium[11, 12] to the domain of fieldsinwhichthecrit-
ical stateisestablished inindividua crystallites[10, 13];

(4) the manifestation of the above-listed phenom-
ena; and

(5) the formation of macroscopic parameters of
HTSC samples.

The dependence of demagnetization fields on the
prehistory of a sample and on the configuration of a
trapped magnetic flux [14, 15], aswell asthe demagne-
tization factor of a sample with the trapped magnetic
flux [2], have also been poorly studied.

To avoid difficulties associated with consideration
of the demagnetization factor of crystallites in analyz-
ing the processes that occur in a Josephson medium,
one usually assumes that al grains in HTSC samples
areof the same size and have the shape of either infinitely
long cylinders [13, 16] or infinitely thin plates[17] in a
longitudinal field.

In the present paper, we propose and demonstrate a
method for the experimental measurement of Ny . In
dense, nearly sintered HTSC samples, ny is mainly
determined by the total demagnetization factor of crys-
tallites. It iswell-known [18] that the critical current in
HTSC ceramics and polycrystals at 77.4 K decrease by
more than two orders of magnitude under the applica-
tion of afield of up to 100 Oe. When the local scattering
fields of Abrikosov vorticestrapped into crystallitesare
greater than the characteristic field Hy,,, that suppresses
the intercrystallite (intergranular) critical current J;,*
weak bonds are broken. As a magnetic flux is trapped
by a sample and as this trapping becomes stronger, one
can observe the dynamics of the formation of isolated
conglomerates of crystalites, which represent either
noninteracting [13, 19] identically magnetized crystal-
lites [10] or their combinations. The magnetization | =
V2IM, of a sample is determined by the screening

LFor YBayCuz0; _y at atemperature of 77.4 K, Hgy, = 22.5 Oe,
while thefirst critical magnetic field of grainsisHgyq = 40 Oe[18].
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supercurrents J, = ccurl M, that are formed within indi-
vidua crystallites, where V is the sample volume, M is
the magnetic moment, and cisthe velocity of light) [20].

Asis known, the internal field in a sampleis given
by [21]:

Hi = Ho—Hp. )

The greater the magnetization 4tml of the sample, the
stronger the demagnetization field Hy. To determine
the ng; as afunction of the density of the trapped mag-
netic flux B, and H, in two close regimes ZFC, and
ZFC, (seethe explanation below), we magnetize asam-

ple so that BtszCZ > Btszcl. The field magnitudes are
given by
Hiz = Ho—4mngBY ", 2
Hip = Ho— 4By ©)
Let us subtract Eq. (2) from Eqg. (3) to obtain
— His —Hi,
" e “

According to (4), the quantity H;; — H;, increases with

ZFC. ZFC . .
B, ° — B, '.Sinceadecreasein the sample volume

dueto the suppression of weak bonds occurs faster than
the magnetization of crystallites, the quantity H;; — Hj»

grows faster than BtzrFC2 - BtZrFC1 , dthoughit followsthe

same variation law. In Section 4, we present an algo-
rithm for calculating (for given H, and By,) the values of
Ng from the experimental functions of Hy:

ZFC,

ZFC,
neff(Btr) = Btr

- Btr (5)

The goal of the present paper isto develop a method
for measuring ng;, to investigate the effect of Hy and By,
and the sample morphology on ng, and to determine
the role of the demagnetization factor of crystallitesin
the macroscopic distribution of the magnetic fields in
the vicinity of asample and of the currentsin asample.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Since the ranges and the manifestations of the
demagnetization phenomena and of the edge and bulk
pinnings of a magnetic flux largely overlap, we carried
out the following proceduresto investigate the function
ng(Ho) and the effect of the sample morphology on
these phenomena:
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(1) bulk scanning of samples by an externa field
[10, 15];

(2) simultaneous measurement of the above-men-
tioned parameters in the ZC, ZFC,, and ZFC, regimes
(see below);

(3) measurement of the thickness of samples;

(4) study of the evolution of the spatial distribution
of atrapped magnetic flux [10, 15].

A comparative analysis was carried out on
YBa,Cu;0,_, samples with different structures,
heights of the edge barrier, bulk pinning, and demagne-
tization. Quasi-single-crystal  (nongranular) and
ceramic samplesin the shape of adisk with a diameter
of 9 mm and different thicknesses were cut out of a
cylindrical ingot. Textured quasi-single-crystal sintered
samples (with the axis ¢ parallel to the cylinder axis)
were synthesized by a seed crystal placed on the top of
the cylinder at a high temperature [22]. The examina-
tion of a mechanically well-polished surface of a sam-
ple along its perimeter through a microscope revealed
0.11-cm? bright (single-crystal) blocks separated by
narrow green inclusions. This fact was confirmed by
mapping a trapped magnetic flux with a Hall probe.
Ceramic samples were synthesized by the standard
solid-phase technology and had a relative density of
~95% (the theoretical density was chosen as6.38 g cm?)
with the average size of grains of about 1 um [10]. To
eliminate the inhomogeneity in the distribution of oxy-
gen at the butt ends with respect to the bulk of samples,
the end surfaces of the samples were cut out by a dia-
mond cutter. The temperature of the superconducting
transition (T., AT, was measured by the inductive
method; for polycrystalline and ceramic samples, we
obtained T, = 91.5 K and AT, = 0.8 and 3.5 K, respec-
tively. The measurements were carried out at liquid
nitrogen temperature in a constant magnetic field of up
to 1 kOe by aHall probe with the working areaequal to
50 x 50 um? and the sensitivity of about 20 uV G. The
equipment enabled us to detect a signal from the Hall
probe with an accuracy of at least 2.5 x 10° G and to
move the probe along the z axis from the center to the
periphery of a sample. At the center of a sample, at a
minimal distance of about 200 um from its surface, we
measured the magnetic induction B(0) and B, (0) (the
choice of the reference point of the coordinate zat z =
200 pm was associ ated with the thickness of the current
and Hall contacts on the surface of the Hall probe) as a
function of H, and the normalized axial distributions

B.(2)/ B (0) versus the coordinate z, B,(2) isthe axial
dependence of B,, measured for different values of the

external field, and By (0) isthe maximal density of the
trapped magnetic flux at the center of a sample on its

surface. The dependence of B,(0) on H, (further,
B,(Hy)) was measured in the following regimes:
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Fig. 1. Typical magnetic-field dependences of the trapped magnetic flux density By (Hp) for polycrystalline (a) and ceramic
(b) YBay,Cu307 _, samples with a diameter D = 9 mm and thickness d = 1 mm. Curves 1, 2, and 3, correspond to the FC, ZFC,,

and ZFC, regimes, respectively. The temperatureis 77.4 K.

(1) The FC regime. A sample in a given field is
cooled to the temperature of liquid nitrogen. Then, the
external field is switched off and, after 10 min (aperiod
sufficient for the relaxation of component B,, associated
with aviscous flow of the flux and the devel opment of
arigidly fixed vortex lattice), B, is measured at the cen-
ter of the sample on its surface. After that, the sampleis
heated to atemperature above T, and the experiment is
repeated at another value of H,.

(2) The ZFC, regime. A sampleiscooled to thetem-
perature of liquid nitrogen in zero magnetic field. Then,
an impulse of an externa magnetic field is applied to
the sample, and, after 10 min, B, ismeasured at the cen-
ter of the sample on its surface. After that, the sampleis
heated to a temperature above T, and the experiment is
repeated at another value of Hy.

(3) TheZFC, regime. Thisregimediffersfrom ZFC,
in that, after the initial trapping without changing the
magnitude of the trapped B, and without heating a sam-
ple, an impulse of Hy of the next step is applied to the
sample and thetotal B, ismeasured after 10 min, etc. In
this case, the amplitudes of the field steps are gradually
increased step by step by equa values. Such an
approach was applied to break, stage by stage, the weak
bonds by the scattering fields of the vortices trapped by
asample and to guarantee the interaction of the external
field with individual crystalites. The impulse of the
external magnetic field of length T = 1 min was applied
perpendicular to the plane of the samples. To eliminate
the influence of spikes near the fronts that arise when
switching on the power supply of a solenoid with
inductance >10 H and to transform a rectangular
impulse into a trapezoidal one, the solenoid was
shunted by a 50-uF capacitor. The length T was speci-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

fied depending on the supply voltage. These measures
were taken to eiminate the effect of the entry and exit
velocities of a magnetic field on the magnetization of
samples [23]. The component H, of the Earth’'s mag-
netic field was compensated by a coil, coaxia with the
solenoid, that produced an external magnetic field. The
experimental technique and the equipment have been
described in detail in [15, 24].

3. EXPERIMENTAL RESULTS

Figure 1 represents the typical magnetic-field
dependence B,(H,) for polycrystaline (Fig. 1a) and
ceramic (Fig. 1b) sampleswith adiameter of D =9 mm
and athickness of d = 1 mm at atemperature of 77.4 K
in three measurement regimes. Curves 2 and the insets
to Fig. 1 show that the values of the first critica mag-
netic field for polycrystalline and ceramic samples are
Hy = Hy/(1—n) =14 Oeand H,, = 0.5 Oe, respectively.
The function B,(H,) for a polycrystalline sample
reaches a saturation at lower fields (at Hy = 600 Oe€)
compared with that for aceramic sample (H, > 650 Oe).

For apolycrystalline sample, B (0) = 22 G, whereas,

for aceramic sample, B;™ (0) = 42 G. The characteris-

tics show that a polycrystalline sample has a narrower
energy spectrum of the distribution of pinning centers
and has a high edge barrier and low bulk pinning com-
pared with a ceramic sample [25].

In the FC regime (curves 1 in Fig. 1), small mag-
netic fields penetrate into a sample and are trapped after
switching off the field. Such a situation is analogous to
the case of an infinite film with the demagnetization
factor n = 1 in a perpendicular magnetic field. In the
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Fig. 2. Functions By (Hg) for polycrystalline samples with
diameter D = 9 mm and different thicknessesd; d = 5.7 mm
(curves 1 and 2), d = 2.2 mm (curves 3 and 4), and d =
0.7 mm (curves 5 and 6). Curves 1, 3, and 5 are recorded in
the ZFC, regime, and curves 2, 4, and 6, in the ZFC,regime.

The temperatureis 77.4 K.

ZFC, regime (curves2in Fig. 1), the trapping of amag-
netic field does not influence n. In the ZFC, regime
(curves 3in Fig. 1), before applying the next step of a
magnetic field, the trapped magnetic flux of the preced-
ing step is stored. For the ZFC,; and ZFC, regimes, one
may assume that the influence of the edge and bulk pin-
ningson nisroughly identical; therefore, anincreasein
Ngs (the shift of curves 3 toward curves 1 in Fig. 1) is
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attributed to the increase of the trapped magnetic flux.
Figure 1 shows that a high value of a trapped field
produces a stronger effect on ng (the gap between
curves 1 and 3 for aceramic sampleislessthan that for
apolycrystaline sample).

To find out the dependence of ng; on the structure of
the trapped magnetic flux, we will analyze B, and

B.(2)/ B (0) asafunction of thicknessd for aseries of
samples measured in three regimes.

Figure 2 presents the function B, (H,) for polycrys-
talline samples of diameter D = 9 mm with different
thicknesses d. Curves 1 and 2 correspond to d =
5.7 mm, curves 3 and 4 correspond to d = 2.2 mm, and
curves 5 and 6 correspond to d = 0.7 mm. Curves 1, 3,
and 5 are recorded in the ZFC, regime, while curves 2,
4, and 6, in the ZFC, regime. Figure 2 shows that, asd
decreases, the effect of the trapped magnetic flux on Ny
becomes stronger in spite of the decrease in B,,. This
factisclearly illustrated in Fig. 3a, which representsthe

dependence of ngk(B,,) = BtZ,FCZ - BtZ,FC1 onH,, obtained
from Fig. 2 by subtracting curves 2 from 1 (curve 1), 4

from 3 (curve 2), and 6 from 5 (curve 3). Figure 3b

demonstrates the dependence of ng(B,) = BtZ,FC2 -
BtZrFC1 on H,, which isobtained from Fig. 2 by subtract-

ing curves 2 from 3, Fig. 1. Curve 1 corresponds
to polycrystalline samples, and curve 2, to ceramic
samples.

Figure 4 demonstrates the normalized axial distribu-
tion B,(2)/By " (0) for polycrystalline samples with

BZFC, _ BZFC, G
12 T T T T T T T

10

1
0 100 200 300 400 500 600 70
H,, Oe

.  asafunctionof Hy. (a) Curve 1 representsthe difference between curves3and 2in Fig. 2, curve 2 represents

the difference between curves 3 and 4 in Fig. 2, and curve 3 represents the difference between curves 5 and 6 in Fig. 2. (b) Curve 1
isthe difference of curves 3 and 2 in Fig. 1aand curve 2 is the difference of curves 3 and 2 in Fig. 1b. The temperatureis 77.4 K.
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Fig. 4. Normalized axial distribution By(2)/ B{?ax (0) for polycrystalline samples of diameter D =9 mm. (8) d = 1 mm; curve 1is

recorded in the FC regime and curve 2, in the ZFC, regime. (b) Measurements in the ZFC, regime for samples of different thick-
nesses. d = 8 mm (curve 1), d = 4 mm (curve 2), and d = 1 mm (curve 3). The temperature is equal to 77.4 K.

diameter D = 9 mm. In the FC regime, the distribution
of atrapped magnetic flux is more uniform than that in
the ZFC, regime, because an originally uniform exter-
nal field is trapped more uniformly after its switching
off. Figure 4a shows that, in the case of auniform mag-

netization, the function B, (2)/ By (0) decreases slower

(curve 1) than that in the case of a nonuniform magne-
tization (curve 2). According to Fig. 4b (see aso
Fig. 38), as the sample thickness decreases, its mor-
phology is changed, and the distribution of the trapped
magnetic flux becomes more nonuniform. Thus, a non-
uniform spatial distribution of the trapped magnetic
flux in a sample stronger deforms the field around this
sample. The variations in the amplitude of ng and the
area under the curve of ng(H,), aswell asthe displace-
ment of the maximum of this curve along the axisH, as
the samplethicknessis changed (Fig. 3a), are attributed
to the variation in the relative number of crystallites
with different sizes, shapes, and orientations with
respect to the external magnetic field, as well as with
the change in the arrangement of these crystallites.

Note that similar dependences were obtained for
ceramic samples.

4. DISCUSSION OF THE RESULTS

To interpret the dependence ng(Hy) and demon-
strate the enhancement of the demagnetization of a
sample or of individual crystallites by a trapped mag-
netic flux and the distribution of afield around a sam-
ple, we will use the scheme shown in Fig. 5. When the
magnetic induction B, is less than or equal to B, < By,
the external magnetic field around a sample is either
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compensated or removed from its edges (see the solid
field lines (B, # 0) and the dashed lines (B, = 0) in
Fig. 5). First, the difference between the effective diam-
eter and the thickness of a sample increases due to the
enhanced i nteraction between the increasing scattering
fields B,, and the field By. When B, = B, the external
field suppresses the scattering field of the trapped
magnetic flux, and the solid field lines approach the
edges of the sample and merge with the dashed lines.

= ......:'.'

N
U
i

Fig. 5. Distribution of thefield lines of the trapped magnetic
flux density By, and the magnetic induction By around a

sample.
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Fig. 6. Calculated magnetic-field dependence of the effective demagnetization factor ng; of a sample: (8) nes(Hg) and (b) Nege(Byy)
for the same sample asin Fig. 1a. The temperatureis equal to 77.4 K.

As a result, the function ng(Hg) passes through its
maximum.

The results cannot be explained within the interact-
ing loops model in a more general case. According
to [26], the size of aloop with a trapped magnetic flux
in afield of 50 Oe reaches a value of 30—40 pm and
decreases as the field increases. Therefore, the maxi-
mum of the function ng(Ho), which is observed in a
field of about 200 Oe, can be explained with the use of
much smaller loops. Since the area of crystallitesin a
polycrystalline sampleisabout 0.11 cm? and the forma-
tion of aloop requirestwo to three crystallites, the loop
size must be very large, which contradicts the argu-
ments presented above.

The results can be explained based on the following
ideas. It is well known [27] that, for a sample in the
form of an oblate elipsoid of rotation with the minor
axisd and diameter D > d in an external uniform mag-
netic field directed along the minor axis, the thermody-
namic, or intrinsic, field H; and magnetic induction B
arerelated to the external field H, by the formula

(1-n)H; = Hy—nB, (6)

where n = 1 — 1d/D isthe demagnetization factor in the
direction of the field. In a mixed state, to apply for-
mula (6), it is necessary that the sample should consist
of uniformly distributed identical magnetic moments—
dipoles[10]. Such asituation may occur in HTSC sam-
ples near the saturation point of the trapped magnetic
flux when the Bean model (J., = const) is valid within
the crystallites considered [13]. In this case [28], the
thermodynamic field H; depends not only on the exter-
nal field H, but also on the coordinate y, and the induc-
tion B additionally dependson B,,. A solution to Eq. (6)
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is obtained by analyzing the dependence of B; (y, Ho)
and B, (Y, By, Hg) on Hy measured inthe ZFC, and ZFC,
regimes. For the ZFC, regime, formula (6) is rewritten
as

Ho—nBy(y, H
H ey, Ho) = BB o) )

In (7), the quantity n specifies the onset of penetra-
tion of amagnetic field into a sample, and the variation
of n during the penetration of a field into a sample is
determined by the dependence of H; and B, on H, and
the coordinate y. To determine ng in the ZFC, regime,
we rewrite formula (7) as

n.. = Hi(y, Ho) —Hq
o Hi(y, Ho) = Ba(Y, By, Ho)

(8)

Figure 6 shows the functions ng(Hg) and ng(By,)
calculated by formula (8) for a sample described in
Fig. 1a Figures 3b (curve 1) and 6a show that the cal-
culated curves are in agreement with the experimental
ones. The values of ng = 0.66 (for B, = 0) and ng =
0.65 (in the range of fields where ny; is independent of
B,,) coincide with a value of n = 0.65 determined from
the geometrical size of a sample in the Meissner state.
This fact confirms the results of the present study and
agrees with the earlier experimental results stating that
dense, nearly sintered HTSC samples predominantly
consist of crystallites. According to Fig. 1 (curves 2),
the density of the critical current J.;in apolycrystaline
sample is about 28 times greater than J.; in a ceramic
sample. The values of the fields H, at which the fronts
of these fields reach the axes of polycrystalline and
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ceramic samples are of the same order of magnitude;
thisfact strongly differsfrom the estimates made by the
formula[7],

21
Hp, = ?JCJD. 9

Hence, the fact that the value Hy = 200 Oe of the field
at which the maxima of ng(H,) coincide (Fig. 3b) is
associated with the value of Jy, which specifies
approximately equal magnetization currents (J = cld)
[10, 20] in polycrystalline and ceramic samples.

The analysis carried out showsthat, when J, differs
from Jg,; by about 28 times, the demagnetization factor
is mainly determined by the geometry of a sample,
rather than by the energy of Josephson coupling
between crystallites.

The results obtained in the present study are inter-
preted according to the conditions under which HTSC
samples with relatively low values of J_; and high val-
ues of amagnetic flux trapped in crystallites were cho-
sen. For higher quality samples [30, 31], the degree of
such trapping is insufficient for suppressing J,;. Since
Jog 2 10J.; even in high-quality HTSC samples, in the
range of strong fields, the suppression of J.; and the
decomposition of a sample into individual crystallites
will occur due to the amplification of H, and the asso-
ciated concentration of the field around the crystallites.

Thus, the character of ng(H,) is not changed as the
morphology (Fig. 3a) and the parameters of the sam-
ples change, which have different initial structures and
critical parameters (Fig. 3b). Taking into account that
HTSC films and single crystals are multiconnected
Josephson media, we can assume that a similar depen-
dence ng(Hp) will also be observed in conventional
spatially inhomogeneoustype-11 semiconductors[32].

5. CONCLUSIONS

Thus, the study of the interaction between a mag-
netic flux trapped by a sample and an external field has
revealed that the dynamics of the effective demagneti-
zation factor can be investigated by an example of
quasi-single-crystal and granular YBa,Cu;O,_, thin
disks. The effect of the external field and the magnitude
and the topology of the trapping of a magnetic flux on
N has been analyzed. For given B, and H,, the profile
of the thermodynamic magnetic field has been mea-
sured. Asthe trapped magnetic flux increases, the func-
tion ngk(Hg) shows a maximum whose qualitative
behavior is not changed under substantial variations of
the sample morphology. It has been shown that, when
Jog = 28], the demagnetization factor is mainly deter-
mined by the geometry of a sample, rather than by the
energy of Josephson coupling between crystallites.

The results obtained and the planned cycle of inves-
tigations contribute to the correct determination of fun-
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damental quantities such asthe first and second critical
magnetic fields and the practically important quantity
J., aswell asto theimprovement of the existing models
of the critical state of type-11 semiconductors.
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Abstract—Roughly half the numerical investigations of the Anderson transition are based on consideration of
an associated quasi-1D system and postulation of one-parameter scaling for the minimal Lyapunov exponent.
If thisalgorithm istaken serioudly, it leads to unambiguous prediction of the 2D phasetransition. Thetransition
is of the Kosterlitz—Thouless type and occurs between exponential and power law localization (Pichard and
Sarma, 1981). This conclusion does not contradict numerical resultsif raw data are considered. Asfor interpre-
tation of these data in terms of one-parameter scaling, this is inadmissible: the minimal Lyapunov exponent
does not obey any scaling. A scaling relation is valid not for aminimal, but for some effective Lyapunov expo-
nent whose dependence on the parameters is determined by the scaling itself. If finite-sizedd scaling is based
on the effective Lyapunov exponent, the existence of the 2D transition becomesindefinite, but till rather prob-
able. Interpretation of the resultsin terms of the Gell-Mann—L ow equation is aso given. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

The one-parameter scaling hypothesis [1] leadsto a
conclusion that there is no Anderson transition in two
dimensions. This statement has produced a breakth-
rough in the physics of disordered systems and led to
development of the concept of weak localization with
numerous experimental manifestations [2]. The recent
discovery of the 2D metal-insulator transition [3-6]
threatens to undermine the basic concepts of the theory.
It is still unclear whether this transition can exist for a
purely potential scattering or should it be related to dif-
ferent complications, such as interaction, spin-orbit
effects, etc. It will be shown below that the first possi-
bility is rather probable and does not suggest substan-
tial revision in the weak localization region [1].

Initially, the present investigation was motivated by
analysis of the methodical aspects of finite-sizedd
scaling [7], which is a basic concept of all recent
numerical studies of the Anderson transition [8-23].
Thereis the problem that numerical results have a ten-
dency to contradict all other information on the critical
behavior [24]. Practically all theoretical and experi-
mental investigations agree with the result of the Voll-
hardt and Wélfle self-consistent theory [25, 26]

v = au/(d-2), 2<d<4
Ho, d>a4, 1
s=1, 2<d<om,

T The article was translated by the author.

where v and s are critical exponents of the correlation
length and conductivity and d is dimensionality of
space. Indeed, the result in (1)

(a) distinguishes values d; = 2 and d, = 4 as the
lower and the upper critical dimensions;!

(b) agrees with the result® for d = 2 + € [33]

v==+0E"+0 +0O(); 2

m =

(c) agreeswith theresultsv = 1/2[35, 36] ands=1
[37] for d = oo;

(d) satisfies the scaling relation s= (d — 2)v for d <
do [11;

(e) gives critical exponents independent of d for d >
de,, asisusual for mean field theory;

L Thefirstisa consequence of one-parameter scaling [1], and the
second can be seen from different points [27, 28], the main of
which is renormalizability. The theory of disordered systems is

mathematically equivalent to the ¢ field theory with a “wrong”
sign of interaction [29-31]. The latter is renormalizableford< 4
and nonrenormalizable for d > 4 [32]. For d < 4, the entire phys-
ics is determined by small momenta or large distances, in accor-
dance with the expected scale invariance. For d > 4, the atomic
scale cannot be excluded from the results and no scale invariance
ispossible.

2 According to Wegner [34], the term of order € in (2) is finite,
large, and negative. However, this result was derived for the zero-
component g-model, whose correspondence with the initial dis-
ordered system is approximate and valid for small €; therefore a
difference can arise in adefinite order in e.

1063-7761/05/10104-0661$26.00 © 2005 Pleiades Publishing, Inc.
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(f) agrees with experimental resultsford =3, s= 1,
v = 1[38, 39] 3 As for numerical results, they can be
summarized by the empirical formulav = 0.8/(d — 2) +
0.5[17], which has evident fundamental defects[24].

The finite-sized scaling approach is based on the
philosophy that any dimensionless quantity A related to
asystem spatially restricted on ascae L isafunction of
aratio L/€,

A = F(L/?), 3

where & isthe correlation length. To justify Eq. (3), let
us assume that the dependence of A on the parameters
can be expressed as its dependence on characteristic
length scalesL, &, I, I,, .... Taking & asaunit scale, we
can write

A = F(LIE 1/E,1LIE,...). (4)

Near the critical point, the correlation length € is large
in comparison with microscopic scales I, I,, ... and
substitution 1,/€ =1,/& = ... = 0 reduces (4) to (3). This
derivation is based on assumption that limiting transi-
tion /¢ — Oisnot singular and the right-hand side of
Eq. (4) does not become zero or infinity. Unfortunately,
there is no simple way to establish when such an
assumption is true.* When Eqg. (3) isvalid, it makes it
possible to investigate the dependence of & on parame-
ters. If there is anything wrong with Eqg. (3), it leads to
erroneous conclusions.

Below we present an analytical realization of the
commonly used variant of finite-sized scaling based on
the concept of the minimal Lyapunov exponent. Our
approach is based on an investigation of the second
moments for a solution of the Cauchy problem for the
Schrddinger equation (Section 3), and in this respect it
is close to [42, 43]. Nevertheless, justification of the
approach (Section 2) and interpretation of the results
(Section 3) are significantly different, and in fact we
disagree with most of the statements made in [42, 43].

Briefly, our results consist in the following. If the
concept of the minimal Lyapunov exponent is taken
serioudly, it leads to unambiguous prediction of the 2D

3 These remarkable properties of result (1) arouse suspicion to
the fact that it is exact [40]. In reality, it can be obtained with-
out model approximations on the basis of symmetry consider-
ations [41].

4Such apossibility existsin the field-theoretical formulation of the
problem. When the maximum microscopic scale | tends to zero,
the theory becomes divergent. In nonrenormalizable theories,
such divergences are unavoidable and relation (3) never holds. If
atheory is renormalizable, al divergencies can be absorbed in a
finite number of parameters (such as mass, coupling constant,
etc.) and renormalized Green functions (and quantities that can
be expressed via them) do not depend on |; and exhibit scale
invariance. If quantity A has no clear field-theoretical interpreta-
tion, it is difficult to establish its independence on the “bare
mass,” “bare coupling,” etc. The latter quantities essentially
depend on |; and are observable in condensed matter applications.
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phase transition (Section 3). The transition occurs
between exponential and power law localization and,
consequently, it is of the Kosterlitz—Thouless type [7].
This conclusion does not contradict the numerical
results [8-13] if the raw data are considered (Section 4).
Interpretation of these data in terms of one-parameter
scaling is inadmissible: the minimal Lyapunov expo-
nent does not obey any scaling. We argue that a scaling
relation isvalid not for minimal, but for some effective
Lyapunov exponent whose dependence on parameters
is determined by scaling itself (Section 5). After such
modification, existence of the 2D transition becomes
indefinite, but still rather probable (Section 6). Interpre-
tation of results in terms of the Gell-Mann—Low equa-
tion [1] isgiven in Section 7.

2. BASIC CONCEPTS

2.1. The concept of finite-sized scaling is taken
from the theory of phase transitions[44—46] and can be
discussed using a ferromagnet as an example. Instead
of aninfinite 3D system, let us consider asystem of size
L x L x L, with L, — co. Such a system is topologi-
cally one-dimensional and does not exhibit phase tran-
sition. The correlations in it are always paramagnetic
and there is a finite correlation length &, . Relation of
&.p to the ferromagnetic phase transition in the 3D sys-
tem is expressed by the following statements. If T > T,
and the 3D system is paramagnetic, then &, obviously
coincideswith the correlation length & of the 3D system
when L is sufficiently large:

If T< T, and the 3D system is ferromagnetic, then the
following statement is valid:

S0 oo for L 00 (6)

L - - ’
which can be proved by contradiction. Indeed, let the
ratio ¢ = &,p/L befinitefor all L. Let usassumen > c
and consider asystem of sizeL x L x nL. The correla-
tions in the length direction are paramagnetic and the
average (along the cross-section) magnetic moment
changesits sign many times. Thissituation holdsfor all
L and, in particular, for L —» co; however, such ather-
modynamic limit is topologicaly three-dimensional
and a system should become ferromagnetic. This con-
tradiction proves (6).
If T=T,, then any behavior

Ep0L" (0O<as<l) for L—» o (7)

ispossible. Indeed, theratio ¢ = &;p/L isfinite or tends
to zero, and the above-considered system of size L x
L x nL possesses paramagnetic correlations. Neverthe-
less, it is not atrue paramagnet, because its correlation
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length & ~ &, isdivergent, asit should be at the critical
point.

Usualy, relation (7) is suggested with a = 1,
because it is the only possibility compatible with scale
invariance. Indeed, if the quantities &5, &, and L are
related by some functional relation which does not con-
tain any other scales, this relation assumes the form
F(&,o/L, &/L) = 0if L istaken asthe unit length. Solving
thisrelation for &;5/L we have

b - o ©

and &, = F(O)L at the critical point in accordance
with (7) fora = 1.
As aresult, the quantity

Elo

a(L) = 9)

can be taken as a scaling variable whose dependence on
L is shown in Fig. 1a It should be stressed, however,
that &, issensibleto the 3D transition independently of
the existence of scaleinvariance. The latter isabsent for
space dimensions d > 4 in the case of aferromagnet.
2.2. Application of these considerationsto the local-
ization theory is based on identification of &, with the
inverse of the minimal Lyapunov exponent Yin ,

1
ElD O—.

ymln (10)

The Lyapunov exponents occur in the solution of the
Cauchy problem for the quasi-1D Schrodinger equation
with theinitial conditionson theleft edge of the system.
For example, the 1D Anderson model

WnertWno + Vo, = EY,

can be rawritten in the form of the recurrence relation

(11)

E-V, -1
1

Wn
Wn-1

W,
WPn_1

=T, . (12)

lIJn+1
W,

where T, isatransfer matrix. Then theinitial condition
problem can be formally solved as

Wn+1
Wn

An analogous relation occurs for an arbitrary quasi-1D
system if the quantity @, (rp), depending on the trans-
verse coordinate r, is considered as a vector y, .

One can try to represent a matrix product P, in
Eq. (13) asthe nth power of a constant matrix T. Such a

Wy

0

=T, Th g ToT, (13)
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’ Qa)/ T<T,
T=T,
xT>TC
st o) L
W< W,
W=W,

Fig. 1. (a) Typica dependences g(L) in the case of one-
parameter scaling; (b) dependences g(L) according to
Eq. (50).

thing is possible, but only for the “Hermitian part” of
P,. As any matrix, P,, can be represented as a product
of the unitary matrix U,, and the Hermitian matrix H,,

Py = ToToos... T,T =U H,,
HZ = PP,

where H,, has real eigenvalues and describes a system-
atic growth or decrease U,,, while U, has eigenvalues
with the unit modulus and describes an oscillatory
behavior. Representation H, = T" is constructive,
because the geometric mean of matrices

T = (PP

(14)

ot + 1/2n (15)
= (T,T,...T, T,...T,T,)
tendsto anonrandom limit for n —» oo according to the
Oseledec theorem [47]. If avector of initial conditions
in (13) isexpanded in eigenvectors of T, whileitseigen-
values A are written as exp(ys), then the following
decomposition isvalid for Y, (rp):

Wa(ro) = Ah(rp)e”™
@) Yan (m) n (16)
+ANh(rp)e” +.. + Aghy (rp)e ™.

The quantities h' (r)) have no systematic growth in n,
while the Lyapunov exponents y; tend to constant val-
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Fig. 2. Solution of the Cauchy problem (a) and a 1D eigen-
function constructed according to Mott (b) in the situation
a=0,b>0.

ues in alarge n limit. Only terms with positive y; are
kept in EQ. (16) and they are numerated in the order of
decreasing V..

Following to Mott [48], we can construct eigenfunc-
tions of a quasi-1D system by matching two solutions
of the type (16) increasing from two opposite edges of
the system. The tails of the eigenfunction will be deter-
mined by the minimal Lyapunov exponent Vi, = Yim and
these are grounds for relation (10).

2.3. Decomposition (16) is valid for nonaveraged
guantity W,(ro) and its meaning consists in distinguish-
ing the self-averaging exponentsy,. It will be shownin
Section 3 that the mean value of ,(rp) does not obey
systematic growth,

[pn(ro)dol, 17

while decomposition of type (16) isvalid for its second
moment

W2(ro)0 = By(ro)e™
+ BZ(rD)eB2n +..+ Bm(rD)eBm

with the same number of positive exponents 3. Squar-
ing (16) gives n? terms that increase as exp(yin + y;n),
and the only possibility to have mtermsin (18) suggests
averaging to zerofor al termswithi #j. Thetermswith
i =] are positive and cannot vanish in the course of aver-
aging:

(18)

n

W2(ro)0 = (AN (ro)] %™
+( (AN (ro)]"e™) + ..

+ AN (ro)] %™

Thetermsin (18) and (19) arein one-to-one correspon-
dence and relation between y, and [3 can be discussed

(19)
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for apure 1D system when (16) and (18) have only one
term in the right-hand side:

Y, 0", 1, Opo €™ (20)
Finiteness of W, Uis insignificant in comparison with
the exponential growth, and we accept [ ,[3= 0. In fact,
we should discuss the usual relation between a typical
value of arandom quantity x and its root mean square
value. If X(= 0 and X°[= @2, then the typical value of
x should not be necessarily of order 0. one can state
only that [x| = o. Indeed, according to the Chebyshev
inequality [49], the probability for |x| to be greater than
Xo is less then 02/x§. Values of x substantially greater
than o areimprobable and o givesthe upper estimate of
the distribution width. The lower estimate does not
exist in any form. Indeed, if distribution P(x) changes
onascaleof x~1andhasatail of x| *withl<a <3,
then typical x ~ 1, while X’[l= 02 = . It is clear from
these considerations that the following relation holds
for the exponentsin Eq. (20),

B=2y,
and there are no grounds for equality.
In fact, the relation between 3 and y can be dis-
cussed more constructively, because ,, has a log-nor-
mal distribution [50Q]: i.e., the quantity T = In|,| has a
Gaussian distribution

(21)

(1—an)d

: (22)
2bn 0

P(1) DexpD-
[l

where the first and the second moments grow linearly
inn. Itiseasy to see that

lIJ Dean D.p2|:|]:I e(2a+ 2b)n (23)
and (21) obvioudly holds. In the 1D Anderson model
we havefor E=0

a=b=3i0/40 B=i0/0 (24)
8 2
for weak disorder, and
y=a=0OnVvO B=InVO (25)

for strong disorder. For atypical distribution, Eq. (25)
suggests that b < a. Analogous results are valid for
many models, and situation b < a should be considered
typical. Inthiscase, 3 ~yand 1/ givesthe correct esti-
mate of the correlation length &, .

The situation b > a can be discussed for an extremal
case when a = 0, b > 0. Then @, has no systematic
growth but has rare peaks with increasing amplitude
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(Fig. 24). Then Mott’s construction of an 1D eigenfunc-
tion gives the typical “hybrid” state, which is a linear
combination of localized and extended states (Fig. 2b).
The length of the localized component is evidently on
the order of 1/B3. Consequently, an exponent 3 provides
essentia information which is not present in the mean
value of y. Thisinformation can have a practical mean-
ing: parameter b determines the growth of all low even

moments (>0 ~ exp(2ma + 2nmPb)n), while the

fourth moments enter the Kubo—Greenwood formula
for conductivity.

According to numerical studies [11], an arbitrary
(sth) termin Eq. (16) hasadistribution of type (22) with
parameters a, and b, . Therefore, relations y, = a, B =
2a, + 2b, hold for arbitrary s. We see that the second
moments of Y,(ry) give valuableinformation: (a) expo-
nents 3 provide arigorous upper bound for v, Bs= 2y
(b) estimates 3~ y; arevalid in the typical casea, = b,
(c) B;arerelated to fluctuations of y, inthe case a, < b.
As for the heuristic relation with the Anderson transi-
tion, the use of the minimal exponents V., and B, IS
on the same grounds. For example, scaling relations

1 _pOo g 1 - g0
yminL - FQD and Bminl— FEED

(26)

can be postulated on the same level of rigorousness.
In[11], empirical scaling is stated for y,,,L and b/a
simultaneoudly. If this statement is taken serioudly, it
justifies (26) for B,,.L; in fact, scaling is absent for all
these quantities (Sections 3-5).

3. SECOND MOMENTS FOR A SOLUTION
OF THE CAUCHY PROBLEM

The idea of the present approach can be found
in [51]. Let usrewritethe Schroédinger equation (11) for
the 1D Anderson model as a recurrence relation,
expressing W, , ; interms of Y,,, W, _, and consider the
Cauchy problem with the fixed initial conditions for ;
and |),. It is easy to see that Y, is afunction of V,, Y5
isafunction of V,, V4, etc. So Y, and V,, are statistically
independent and can be averaged separately:

Opy . 0= ELp -0, 0 (27)

g, 0= (W +E”) 0

) (28)
_ZED-pann—lD"' IIIJ n—ll:| etc.

We have accepted that V,, are statistically independent and

vO=0, OV,V,O0= W3,,. (29)
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Equation (27) hastheform (11) with V,,=0and its solu-
tionsare

(p 0 exp(ipn) (30)

with 2cosp = E. Inside the allowed band, they have no
systematic growth and [, 1. Equation (28) for E =0

is a difference equation for x, = [P,

Xnr1 = WX+ Xy (31)
with exponential solution
x, = Opo0e™, 2sinhp = WA (32)

Inthe case E # 0, EQ. (28) is not closed and should be
completed by the equation

W, W0 = EQp- 0y, 0 (33)

Asaresult, aset of difference equations arises for x,, =
[y and Yy = G, 40

Xne1 = (W2 + E2)xn + X,_1—2EVY,,

Yn+1 =

with exponential growth of solution.
This approach is easily generalized for an arbitrary
quasi-1D system. Consider the 2D Anderson model
l-|'|n+1, m + l-I'ln—l, m + l-IJn, m+1 + qJn, m-1 + Vn, ml-IJn, m (35)
= Ell*'n, m
and interpret it asarecurrencerelation in n. Solving (35)
for the quantity .1 , averaging its square, we can
express it via the pair correlators of ,, ,, containing
lower values of n. Constructing anal ogous equationsfor

other correlators, we end with the close system of dif-
ference equations for the quantities

Xm, m‘(n) = lj-pn, qun, m‘D’
Ym, m'(n) = |]~|Jn, qun—l, m'[l
Zn, m'(n) = Ij-I"n—l,mu*'n, m'Dv

which for E = 0 has the form

(34)
Exn - ynv

(36)

2
Xm, m'(n + 1) =W 6m, m Xm, m‘(n) + X+, m‘+1(n)
+ X1 1) F Xing 1 py—1(N) + X r—1(N)

+ Xm, m‘(n_ 1) + Ym+ 1, m'(n) + ym—l, m'(n)

F 20 s(0) + 2y 2 (), (57
Yoot 1) = — X1 (1) = X1 (1) = Zo (),
21+ 1) = Xm0 2(7) ~ X mr2(7) — Y ().
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Thisisaset of linear equations with coefficients inde-
pendent of n, and its solution is exponential in n[52]:

— Bn _ Bn
Xmm'n _Xmm‘e ' mm‘n - mm'e '
,m(N) , Y m(N) = Y, (38)
Zoymi(N) = Z €™
The formal change of variable is useful
Xm, m = ;(m, m-1 E )N(m,l Etc-a (39)

where| = m' —m. Then, we have (with tildes omitted)

B

_B _ 2
(€ =€) Xm1 = WO oXm 1 + X1,

T Xmo1 1 T Xme 12 T Xmog, 142

FTYmevic1 P Ymeni+1F Zmi+1 T Zmi-1s (40)
B _
€ ym,l - _Xm+1,l—1_xm—1,l+1_zm,l’
B _
eZm,l - _Xm,l+1_xm,l—1_ym,l-

The coefficients contain no m dependence, and solution
isexponential in m:
Xmi = x€"" etc, (41)

where alowed values for p, p, = 2re/L, s=0, 1, ...,
L — 1 are determined by the periodical boundary condi-
tions in the transverse direction:

lIJn,m+L = lI-Jn,m- (42)
Excluding y,,,; and z,, | from the first equation in (40),
we end with the equation
X|+2e_ip+x|—2eip+V6|,oX| = €X, XL =X,
Wsinh
cosh3 — cosp’

(43)
e = 2coshf3, V =

describing a single impurity in a periodic chain. For
L — o itssolution hasthe form x, ~ exp(ipl/2 — B |/2)
and the initial correlator

Ij~|"n,qun,m'E|
O m+m m-m] .0 (44)
HexpOp— B 5 B
O 0

islocalized inthetransverse direction on the same scale
1/B, asthe scale of itsgrowth in n. Asaresult, thelocal-
ization length for the 2D system coincides with &,.
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The positive exponents 3, for finite odd L are deter-
mined by the equation

W?coth(B.L/2),
0,1,...,L—1.

2(cosh,— cosps)

45
ps = 2ms/L, s 45

Their number isequal to L and coincides with anumber
of positive Lyapunov exponents y, for the same prob-
lem.® Allowed values of ps and 3, become dense in the
large L limit, and the quantities 3 and p can be consid-
ered as continuous:

2(coshP — cosp) = Wcoth(BL/2). (46)

The minimal value of 3 isrealized for p = Ttand can be
easily found in the large L limit:

marccosh(W/2-1), W’>4

O
2 arctanh(W?/4), W’ <4

Bmin = BL (47)
RInL—-2InInL + ... 2 _
0 3 , W =4,

The character of the solution is qualitatively changed at
the critical value W, = 2. If W> W, Eq. (46) is solved
for B~ 1, L — o and B, tends to a constant in the
large L limit. If W< W,, Eq. (46) has solution for BL =
const, 3 — 0 and provides for the behavior® Bmin O
VL for L — oo. If W=W,, solution is sought at con-
ditions BL > 1, B < 1, when Eq. (46) reduces to 3% =
8exp(—pBL) and can be solved iteratively.

If the correlation length & is estimated as 1/B .,
comparison with Section 2 leads to the conclusion that
a state with the long-range order (i.e., the metallic
phase) is absent. Exponential localization takes place
for W> W, while the critical behavior &, ~ L isreal-
ized in the entire range of W < W,. The latter situation
corresponds to localization with the divergent correla-
tion length &,,. ~ L and should probably be interpreted
as power law localization. The transition at W = W, is
of the Kosterlitz—Thouless type and should not be con-
fused with the usual Anderson transition.

5 Thematrix Tin Eqg. (15) hasdimensions 2L x 2L, but its eigenval-

s

ues occur in pairs of e ande , S0 the number of positiveygis
equal to L. In the case of even L, the number of positive 34 does
not coincide with L and there are difficulties in comparing (16)
and (18).

6 Vanishing of By, for L = oo was obtained in [42].
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Calculating the first correctionsto (47) related with
finiteness of L, we have for W> W,

_ W2 L
Bmin - Boo+ thBwe ]
Wz (48)
B, = arccoshD >0
and for W< W,
1 2(sinh1/2g.,)°
OBl T T
min (49)

-1

I 2arctanh (W2/4)
Defining the correlation length & as a scale, where
dependences (48), (49) reach their asymptotics (i.e.,

where the additional terms become comparable to the
main terms), we have (Fig. 3)

El/lnwz, W~ oo

in(1/
so 0o jwew) 0 (s0)
0 Wt
2 WA— 0.

If W> W, the correlational length & coincides with the
localization length &, ~ &, apart from the logarithmic
corrections. If W< W,, thescales§ and &, are substan-
tially different, as is typical for the metallic phase
(Fig. 3).

The scaling parameter g(L) can be defined as
1/BinL. Itsdependence on L isdetermined by the equa-
tion

1 2 1

2costh 2cosp = W cotZg

with p = Ttand presented in Fig. 1b. One can seethesig-

nificant difference from the typical scaling situation

(Fig. 1a). Absence of one-parameter scaling in Fig. 1b

is clear from the fact that g(L) is not constant for W =

W,, as it should be according (8), (9). It is still more

evident for W < W,, when different curves have differ-

ent constant limitsfor L — oo and certainly cannot be
matched by a scale transformation.

In the above considerations, we have estimated &,
as 1/B.n- This can arouse doubts, because in the
absence of scaling the quantities B, and Y, can be
very different. In fact, substitution 3, bY Vi, does not
lead to qualitative changes in the presented picture.
Indeed, B, provides a rigorous upper bound for Vi,
and (47) leadsto

Yimin — 0 for L — oo, if W< WL

(51)

(52)
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Fig. 3. Characteristic scales & and §),. obtained under the
assumption &1p ~ 1/Bin -

Thisis sufficient for the existence of the 2D transition,
because in the large W region, the existence of expo-
nential localization is beyond any doubt and finiteness
of viin hasbeen reliably established by numerical inves-
tigations [8-11]. Of course, the upper bound for Vi,
does not forbid it to decrease more rapidly than 1/L, as
it should be for a true metallic state. However, such a
possibility is reliably excluded by numerical studies
(Section 4). Nevertheless, substitution Y, by By, can
change the position of the critical point and the charac-
ter of the critical behavior. Thus, the presented quanti-
tative results should be considered asillustrative.

Theinfluence of the phase transition on conductivity
can be seen from the following arguments. Conduc-
tance G of a quasi-1D system of length | is roughly
given by the exponential exp{—2ymi.l} (see[11] and ref-
erences therein). Extrapolation to | ~ L suggests that
G ~ exp{—constL} for W > W, while for W < W, the
exponential reducesto aconstant (in view of y,;, ~ /L)
and dependence G(L) is determined by a preexponen-
tial factor.

4. COMPARISON
WITH NUMERICAL RESULTS

The idea of power law localization was put forward
by Last and Thouless[53] and discussed in anumber of
papers [54]. The statements, literally coinciding with
those of Section 3, were made by Pichard and Sarmain
1981 [7] as the result of a numerical study of the 2D
Anderson model. Their dependences of &, on L are
presented in Fig. 4a, where values of disorder corre-
spond to the quantity

W = W.J/12 (53)

(so W, = /48 = 6.928...), because a rectangular dis-
tribution of width W was used for V, with V2=
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Fig. 4. Numerical results for §1p [7], 9 = Uyl [10] and
parameter y(L) related to the energy level statistics[13].

W’ /12 = W2. The dependences are clearly linear for
W <6, while atendency to saturation arises for W >6
with aclear saturation for large W.

Theresults of [7] are considered out of date [8-11],
and it is ingtructive to anayze the raw data of [10],
which are cited as the best in the context of the transfer
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matrix method (Fig. 4b). One can see that the scaling
parameter g = 1/y,,;,L decrease convincingly only for

large W. In the range of intermediate disorder (\7V =
4-7), one cannot say definitely whether is there a ten-
dency to unbounded decrease or to saturation. The data

for weak disorder (\7V < 4) are absent altogether.

Thus, the raw numerical data (Fig. 4b) do not dem-
onstrate absence of the 2D phase transition as stated by
the authors of [10]. The latter conclusion is based on
interpretation of these data in terms of one-parameter
scaling. However, such interpretation is surely invalid.
Absence of scaling for 3, suggests absence of scaling
for ymin, and this is confirmed by the similarity of
Figs. 1b and 4b. The use of 3, as the upper bound for
Vmin 1€20S to the conclusion that the curves for W < W,
in Fig. 4b cannot decrease to zero and should tend to
finite limits. The scaling ansatz (8) can be formally
valid only in the case if these finite limits are the same
for al curves with W < W,. Such a possibility does not
appear redigticin Fig. 4b and, in fact, can be excluded:
for small disorder, the lower bound given by 1/B3,.L
lies higher than all the data of Fig. 4b.

Itisadmitted in [8-11] that scaling relation (26) for
Vimin IS NOt proved, but it is stated that this relation has
been convincingly confirmed empirically. Scaling
curves g = F(L/E) of impressive quality are presented
in[10]. However, one should be very careful with
empirical proofs of scaling. It is possible to come up
with an algorithm that allows “proof” of empirical scal-
ing in practically any situation.

Let us discuss construction of scaling curves in
more detail. The raw numerical data are represented by
dependences g(L) for fixed values of disorder W,, W,
W.,... (Fig. 5a). They should be plotted in Fig. 5b as
functions of L/&, where the value of & for each curve
should be chosen in such amanner that all curves coin-
cide. If thelogarithmic scaleis chosen along the L axis,
this procedure reduces to simple trandation. Let the
curve for W, be taken as a reference and a correspond-
ing value & be accepted as unity. Then thiscurveiscar-
ried over to Fig. 5b without changes. Now the curve for
W, is trandated to match the curve for W,, a corre-
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sponding value &, is determined, and so on. In the log-
arithmic plot, the dependences g(L) have asimpleform
(see Fig. 4b) and can be approximated by something
like parabolas. If the values W, and W, are close, the
corresponding curves are parabolaswith dightly differ-
ent coefficients and they fit sufficiently well after trans-
lation.

Let us take € as the permissible error of fitting and
superimpose the curve for W, in a crosswise manner
(Fig. 5b) onthe curvefor W,. If some part of the former
curve does not fit sufficiently well (dotted line in
Fig. 5b), the corresponding points can be debated on
reasonable grounds: scaling is a large-scale property
and the raw datafor small L are not reliable. The curve
for W, is superimposed analogoudly, etc. If thereis suf-
ficient scattering of points, such a procedure will look
natural. If the scattering of pointsis small, one can take
asmall step increment in W: then numerous curves will
densely fill a band of width e and the resulting scaling
curve will appear accurate.

One can see that it is rather difficult to recognize a
situation with no scaling from a situation when scaling
holds but there are significant corrections to it. In the
case under consideration, the situation is close to scal-
ing in the sense that scaling relation (26) is trivially
valid for L = § in the localized phase, when (B, = 1/§
and g = &/L in correspondence with Eq. (26) for
F(X) = 1/x.

Certain comments should be made on the variant of
finite-sized scaling based on the level statistics [12]. In
this case, rather large systems are used, up to 1024%[13],
and localization of all statesin 2D systems appear con-
vincing on the level of raw data (Fig. 4c), without inter-
preting them in terms of one-parameter scaling. How-
ever, this approach deals with crossover between the
metallic behavior at small L and localized behavior at
large L, and no attempt has been made to distinguish
between exponential and power law localization.

5. 1S ONE-PARAMETER SCALING POSSIBLE?

In Section 3 we have shown violation of one-param-
eter scaling for the quantity Brin- If Bmin ~ Ymin. then
scaling isabsent also for Yyin - If B @0d Vi are essen-
tially different, a quasi-1D eigenfunction has a struc-
ture corresponding to both these parameters (see Fig. 2)
and scaling isimpossible on physical grounds. Analysis
of numerical data (Section 4) confirms these conclu-
sions. Two possible conclusions can be derived:

(i) the one-parameter scaling hypothesis [1] is fun-
damentally wrong;

(i) the minimal Lyapunov exponent is an incorrect
scaling variable.

Possibility (i) is not as absurd as it seems. Justifica-
tions for scaling in the o-model approach [33] in fact
failed due to a high-gradient catastrophe [55, 56],
and absence of scaling on the level of distribution func-
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Fig. 6. Coefficients Agin Eq. (13), appearing in Mott’s con-
struction, as function of ys.

tions [57] set a problem of the correct choice of scaling
variables. Asfor experiment, it confirms the “theory of
quantum corrections’ rather than the “theory of weak
localization.” Nevertheless, we consider the one-
parameter scaling hypothesis as physically convincing.
Its validity is confirmed (&) by analytical scaling in
quasi-random systems [58-60]; (b) by validity of scal-
ing relation s=v(d—2) intheVollhardt and Wdlfle type
theories [25, 26, 41]; (c) by renormalizability for d < 4
inthe exact field theoretical formulation of the problem
[29-31] (seefootnote 1).

Let us consider possibility (ii). It is clear from Sec-
tion 2 that the existence of scaling for the correlation
length &, looks convincing, and this is confirmed by
the experience of the phase transitions theory [44-46].
Asfor relation (10) between &, and V., thisisnot as
evident as it seems. for example, situations with
Vmin >0 and &,5 = o are known in quasi-random sys-
tems [58, 59, 61].” Relation (10) is based on Mott's
construction of eigenfunctions by matching two solu-
tions of type (16) that increase from two opposite edges
of the system. Exact matching needs all terms in
Eqg. (16), and consequently, the coefficient A, is finite,
providing alength scale related to 1/y,,,,,. These consid-
erations are valid for a sufficiently small number of
termsin Eq. (16). Inthelarge L limit, a spectrum of the
Lyapunov exponents becomes quasi-continuous and a
number of terms in Eq. (16) tend to infinity. In such a
situation, no particular termin Eq. (16) isessential: itis
an integral effect from all terms corresponding to some
interval of the spectrum y, that matters.

Let us consider the coefficients A in Eq. (16),
appearing in Mott's construction, as a function of v,
(Fig. 6). Two qualitatively different situations are pos-
sible. Inthefirst of them (Fig. 6a), all A;are of the same
order of magnitude; then the vicinity of y,,;, makes a
significant contribution and the length scale 1iy.,
indeed corresponds to the localization length &;5. In
the other situation (Fig. 6b), the contribution of the
vicinity of vy, is strongly suppressed and the length

7 In the 1D model (11) with V,, = Vcos(2mtf) and irrational 3, the
Anderson transition holds for V = 2 [58, 59, 61]. The Lyapunov
exponent y is positive for al irrational B intheV > 2 region [61].
Nevertheless, localization length diverges for certain values of 3,
which are anomalously close to rational numbers [59].
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scale Uy, has no physical meaning. The localization
length &, is determined by some effective exponent vy
that provides a suitable cutoff® in the small v region
(Fig. 6b)

1
&1p OU—
P Yeit

(54)
According to (8), scaling reI ation (26) should be postu-
|ated not for v, but for y.° After that, the dependence
of Y On parametersis determined by scaling itself.

The latter statement can be easily demonstrated in
theframework of the numerical algorithm. Let usreturn
to Fig. 5 but now accept that the curves for W, W, ...
arerelated notto g = Lyl buttog= 1y, L wherey,

is the Lyapunov exponent with the fixed number n,. In
general, the curves for W, and W, cannot be fit well by
ascaletransformation. One canimprovethesituationin
the following manner. Taking a step from W, to W, let
us replace y, by vy, , i.e, change the number of the

Lyapunov exponent. The curve for W, will change its
form and we can choose An = n; —n, from the condition
of the best fit with the curve for W,. Analogously, for

W, we take v, , adjust n,, and so on. As a result, the

scaling construction will determine not only depen-
dence &(W) but also dependence n(W). Of course, these
dependences are not determined completely: the gen-
eral scalefor & and initial number ny remain arbitrary.

Thus we came to the constructive modification of
the commonly accepted numerical agorithm. This
modification makesit possible to improve the quality of
scaling and will probably resolve the contradictions
discussed in Section 1.

6. ANALYTICAL SCALING

The suggested agorithm can be realized analyti-
caly if the raw data are given in the form defining g =

8t is evident from Eq. (44) that the sth term of Eq. (18) is local-
ized in the transverse direction on the same scale 1/B4 as the scale
of its growth in n. An analogous property is expected for Eq. (16)
and provides the equality of the transverse and longitudinal corre-
lation lengths. The latter fundamental property is not spoiled
when the lower edge of spectrum vy, is replaced by the effective
CUtOff Vet .

9A quasi-1D eigenfunction contains a lot of scales 1/y;, 11y, ...,
1y, and all these scales are essentia near its center. Small scales
succeedingly “die out” when one moves from the maximum of
the eigenfunction to its tails. Only scale 1/y,, remains in the end,
but for the situation of Fig. 6b it occurs at such distances where
the eigenfunction is zero for al practical purposes. A single
parameter &, cannot adequately describe all scales 1/ys. In the
best case, it can account for the most significant of them, those
which determine the general form of the eigenfunction and corre-
spond to the effective cutoff yes.
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1ly,L asafunction of p, W, L:

T = InL,

g = Q(p, W, 1), (55)

where p is a continuous number of the Lyapunov expo-
nent analogousto that in Eq. (51). Linearization of (55)
near some value 1, gives

g = Q(p, Q, Tp) + Qr(p, W, To) (T —To)

=go+ A(T-Ty). 0

Analogouslinearization for W, near the value T, chosen
from the condition Q(p, W;, 11) = Q(p, W, 1)
g = Q(p, Wy, Ty) + Qi(p, Wy, T)(T-Ty)
=g+ B(1-T1,)

gives aslope B different from A, and the linear portions
of dependences (56), (57) cannot be matched by ascale
transformation. Let uschangep in Eq. (57) in such way
that equality A = B holds:

g = Q(p1, Wy, T1) + Qr(py, Wy, T)(T—Ty)
=0o+ A(T—Ty).

(57)

(58)

If p;, W, T, are closeto p, W, 1y, then correspondence
of (56) to (58) gives

Qu(P, W, To)Ap + Qu(p, W, o) AW

+Qi(p, W, 1p)AT = 0,
Q:p(P, W, T0)Ap + Quw( Py W, T) AW

+ Q'rlt( p- W- 1--O)A.[ = O.

(59)

or solving for Ap and Art,

QTQTXV QWQ"TTAW

QpQr — Qi Qyp
_ QuQrp = QQuw

QpQr — Qi
If an increment of T is interpreted as an increment
of Ing,

Ap =
(60)

At AW.

At = AIng, (61)
then Eq. (58) takes the form
Ag = Qi(p, W, Tp)AIn(L/E). (62)

For infinitesimal increments, Egs. (60)—<62) turn into a
set of the differential equations
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9__ — Q;N( p! W! TO) Q'TIT( p! W! TO) - Q'T( p! W’ TO)Q‘T'\N( pv W! TO)
AW Qu(p, W, T0) Qe (P, W, To) = Qi(P, W, To) Qi( Py W, To)
ding _  Qu(p, W, To) Qew(P, W, To) — Qu(P. W, Tg) Qrp(P, W, To) (63)
dw

QL(p, W, T0) QL (P, W, Tg) — Qi(p, W, To) Qi(p, W, Tg)

49 __ - Qu(p.w,o),

din(L/?)

defining the dependences p(W), (W) and g = F(L/E).
Equations (63) correspond to the usua scaling con-
struction (Sections4 and 5) for the maximal system size
L, = exp(ty), where dependences g(InL) are linearized

T, dependence should vanish in the limit Ty — oo for
the approach to be self-consistent.
If the dependence (55) is given in the implicit form

near InL, and only linear portions (marked in Fig. 4b) G(g, p.W.T) =0, (64)
are matched in the course of scale transformations. The  then Egs. (63) can be expressed in terms of G:
dp _  Gw(GyGi—GrGy) — Gi(GgnG: — G'T'WG'g)
dW  G(G}G: - GLG,) —Gi(GlG.—GiGy) |
ding _  Gy(GgwG: —GrwGq) = Gu(GgpG: - Gy Gg) (65)
AW GGy G: -G Gy) — Gi(GyyGi — GryGy)
dg_ _ G
din(L/E) Gy
All quantitiesin the right-hand side are functions of d 20.eXp (=21
Jo, P, W, Ty, Where 1, is a constant parameter and g, is dIr?E = 9P > 03) : , (69
expressed in terms of p, W using the relation 2exp(=210) + W'go f'(9o)

G(do, P, W T9) = 0.

Unfortunately, relation (64) for the conventional
Lyapunov exponents y; is not available; therefore, we
present here illustrative calculations for the exponents
Bs when Eq. (64) has the form (51). The latter equation
can be simplified by expansion of cosh(JJgL) without
significant physical consequences OThus, Eq. (64) can
be taken in the form

exp(= 2To)

G(g, p,W, 1) = +d(p) —Wf(g) =0,(66)

where

¢(p) = 2(1-cosp),
Then Egs. (65) reduceto

f(g) = coth(1/29).

do(p) _ Jof (Qo)W — exp(-21¢) _ ¢(p) 67)
dw? oW W
ding _
dinw ~ (68)

101t gives only restriction for L from below in the small g region.
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where g, is a function of p, W determined by equation
G(go, p, W, 1p) = 0. It is easy to solve (67), (68)

o

¢(p) = 2(1-cosp) = W', &= (70)
and obtain the relations
W2 = exp(=21,) dg _ 1 (71)

gol f(go)—col 9%
which make it impossible to find the dependence g =
F(L/¢) intheimplicit form
cig’Tf(9)—cdl = E/L)". (72)
Here cyand ¢, are arbitrary constants. The quantity ¢(p)

isrestricted, 0 < ¢(p) < 4 and scaling is possible only
for

4
w2<c—osw§1.

(73)
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Fig. 7. (a) Scaling function g = F(&/L) given by Eq. (72), (b) and (c) dependences g(L) for cg> 1 and ¢y < 1.

If W> W, the quantity ¢(p) takes its maximum value
at p = tand the concept of the minimal Lyapunov expo-
nent is restored; therefore, scaling is absent and the
results of Section 3 hold.

The situation is qualitatively different for ¢, < 1 and
Co > 1, when W, > W, and W, < W,, respectively. A
scaling function g = F(&/L) given by Eq. (77) is shown
in Fig. 7a for ¢, < 1 it is close to the one empirically
found in [10], while for ¢, > I, a finite limit g* =
1/2arctanh(1/cy) is reached for &/L — 0. The depen-
dences g(L) for W< W, can be found from Eq. (66)
after substitution of ¢(p) from Eqg. (70), while for
W > W, they remain the same asin Section 3 (Figs. 7b
and 7c). The behavior of the characteristic scales for
Co>1and ¢y < 1isshownin Figs. 8aand 8b, respec-
tively.

Itisclear from Figs. 7 and 8 that exponential local-
ization of all states takes place for ¢, < 1 in correspon-
dence with the commonly accepted viewpoint, while
the phase with power law localization remains for
Co> 1, though the behavior of characteristic scales
changes in comparison with Section 3. In fact, singu-
larity at the point W, isfalse. It isrelated to our postu-
lation of exact scaling for W < W4, which is in fact
approximate. The correlation length € is finite near
W, and corrections to scaling related to 1,/€ (see
Eqg. (4)) cannot be considered vanishingly small. With
corrections to scaling taken into account, the qualita-
tive difference between regions W < W, and W > W4
disappears. There is good scaling for W = W,; and
absence of scaling for W = W, but destruction of
scaling occurs gradually due to the increase of correc-
tionstoit.

Let us discuss the physical sense of an arbitrary
parameter ¢,. Formally, it occurs due to the absence of
initial conditions to Egs. (63), while in the specific
Anderson model the value of ¢, is definite. However,
we have not fixed the distribution function P(V) and
used only its first and second moments (see Eq. (27)).
Therefore, the initial equation (66) describes not one,
but a variety of Anderson models with different forms
of P(V). The values of ¢, are different in these models,
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and we can expect them to cover bothcy<landcy> 1
regions.! As aresult, 2D systems can be divided into
two classes. Thefirst classis characterized by exponen-
tial localization of al states, while in the second class
there is a phase transition between exponential and
power law localization. Division into two classes was
proposed by Zavaritskaya in the middle of 1980s on
experimental grounds (see[62] and referencestherein).

We should note that the above consideration has an
illustrative character. The initial Eq. (66) has another
form for the conventional Lyapunov exponents, and
substantial modification of the quantitative results is
possible. In particularly, instead of (70), one expectsthe
exponential dependence & ~ exp(const/W?) for the
correlation length, as follows from one-parameter scal-
ing [1] or from the Vollhardt and Wdlfle theory [25].

7. INTERPRETATION IN TERMS
OF THE GELL-MANN-LOW EQUATION

In one-parameter scaling theory [1], a scaling vari-
able g(L) is defined as a conductance G, of a finite

block of size L9 in units of €¥/h. The Gell-Mann-Low
equation isvalid for it:

ding _

e = B, (74)
where 3(g) has asymptotical behavior,
E(d 2)+A+ (A<0), g>1
B(9) = O g ' (75)
Elng, g<1

The zero term of the first asymptotics is related to the
existence of finite conductivity o in the metalic state

(so G, ~ 0L9-?) and the additional term A/gis obtained
by a diagrammatical analysis[63]. The second asymp-

116f course, there may be principal restrictions that make realiza-
tion of the case ¢y > 1 impossible. At present, we know of any
such restrictions.
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Fig. 8. Behavior of characteristic scales for (a) ¢y > 1 and
(b)cp< 1

totics is related to assumption of exponential localiza-
tion (G, ~ exp(—constL)).

The latter assumption is not valid in the genera
case. If power law localization takes place, then G, ~

L®and

B(g) = -a, g<1l

(76)

It is clear from the above considerations that the
B-function in the 2D case is not universal for small g
and can have a different behavior for different cases
(Fig. 9). Thisconclusion is quite natural from the view-
point of the general theory of phase transitions [29].
Indeed, scaling is a large-scale property and Eq. (74)
hasareal senseonly for |3(g)| < 1 (that is, in the narrow
region near the horizontal axis in Fig. 9), when g(L)
slowly changes. In the other case, g(L) changes on an
atomic scale and there are no grounds for either scale
invariance or universality. From the general viewpoint,
existence of universal results (75) is rather random and
the assumption on universality of 3(g) for all g[1] isan
obvious idedlization (see [62] for experimental

aspects).
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Fig. 9. Gell-Mann—Low function 3(g) is not universal in the
small g region.

For d > 2, Eq. (74) has a fixed point g* that deter-
mines the existence of the Anderson transition. For d =
2+ ¢, g* isarranged in the large g region and disappears
in the limit e — 0O: i.e., the Anderson transition is
absent in the 2D case. This conclusion should not be
revised, because the true metallic state is indeed
absent (Section 3). The transition we have discussed is
situated deep in the localized phase and corresponds to
switching from one B-function to another during a
change in the external parameters. Consequently, no
substantial revision of the weak localization region is
necessary.

8. CONCLUSIONS

We have shown that the commonly accepted numer-
ical algorithm based on the transfer matrix method is
deficient, because the minimal Lyapunov exponent
does not obey any scaling. To restore scaling, a modifi-
cation of the algorithm is necessary which construc-
tively reduces to a change in the number of the
Lyapunov exponent in the course of scaling construc-
tions. This modification does not require a significant
increase in numerical work, because the higher
Lyapunov exponents in any case are determined in the
course of evaluating Yy, [22]. In fact, one can take the
old raw data [8-11] and reinterpret them. This will
probably resolve the contradictions discussed in Sec-
tion 1.

Already at this stage one can interpret a strange drift
of resultsfor d = 3 withincreasing system size: v = 0.66
[7,v=12%£03[8],v=135+£015[15],v=154
0.08[16],v =1.58+0.02 [21]. For small L, the number
of termsin Eqg. (16) is not very large and the maximal
scale 1/y,,, is indeed related to the correlation length;
description of the Anderson transition is rough, but the
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results are correct in their roughness. For large L, the
difference between the minimal and effective Lyapunov
exponents becomes significant and the results, being
formally accurate, become in fact incorrect.

If the concept of the minimal Lyapunov exponent is
taken literally, it leadsto unambiguous prediction of the
2D phasetransition. Thistransition is of the Kosterlitz—
Thouless type and occurs between exponential and
power law localization. Modification of the algorithm
leads to division of 2D systems into two classes, the
first of which is characterized by exponentia localiza-
tion of al states, while in the second class there is a
phase transition between exponential and power law
localization.
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Abstract—Earlier experimental results on partial thermal vibrational spectraand on the atomic and electronic
structure of icosahedral i-AlCuFe quasicrystals are used for analyzing the role of Al, Cu, and Fe atomsin inter-
atomic interactions in these quasicrystals. A physical model proposed for the structure of i-AlCuFe quasicrys-
tals matches with the available experimental data and provides a qualitative description of the features of the
interatomic interaction. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The interest in quasicrystals is due to the unique
properties of these compounds. As arule, stable quasi-
crystalline phases are synthesized in ternary systems of
metallic elements with the participation of transition
metals. In particular, the alloy AlggCugysssF€y 105 IS @
typical representative of icosahedral quasicrystals (with
a fivefold symmetry axis). It has been established
experimentally (see [1] and the literature therein) that
the resistivity of quasicrystals is much (sometimes
three orders of magnitude) higher than the resistivity of
the constituent metals. The thermal conductivity and
the thermal expansion coefficient of quasicrystals are
substantially lower than the rel evant characteristicstyp-
ical of metals. Optical properties of quasicrystals are
also unique (these compounds exhibit selective absorp-
tion in various regions of the electromagnetic radiation
spectrum. It has been established that the adhesion
coefficient of polar liquids at the quasicrystal surfaceis
considerably lower than at the surface of metals or
oxides. In addition, the quasicrystal surface exhibits a
much smaller friction coefficient and a high corrosion
resistance.

In the most general form, the atomic structure of
quasicrystals can be visualized as a network of mutu-
aly penetrating and quasi-periodically packed clusters
whose diameter is equal to several interatomic spacings.
In the case of icosahedral quasicrystals, these atomic
clusters are constructed from icosahedra or dodecahe-
dral shells with a fivefold symmetry axis [2]. The pres-
ence of narrow diffraction peaks in the electron [3],
X-ray [4], and neutron [5] diffraction patterns for qua-
sicrystals indicates the existence of the long-range
order in the atomic arrangement of these alloys. At the
same time, no spatial periodicity is observed sinceit is
incompatible with the existence of the fivefold and ten-
fold symmetry axes.

The above-mentioned peculiar properties of quasic-
rystalline phases make these materials candidates for
various technical applications, on the one hand, and
stimulate experimenters and theorists in their quest for
the physical origin of these properties and for the
microscopic factors responsible for the stability of
these compounds, on the other hand. One of the possi-
bletrendsin thisdirection is associated with analysis of
specific features in the atomic dynamics of quasicrys-
talinealoys. A direct method for obtaining such infor-
mation istheinelastic scattering of slow neutronsusing
the isotopic contrast technique. In an earlier study [6],
we investigated experimentally the inelastic scattering
of cold neutrons from icosahedral quasicrystals having
acomposition of Alg g,CuUq 255F€.125 and differing in the
isotopic composition of copper and iron. We managed
for the first time to reconstruct the partial spectra of
thermal vibrations of copper, iron, and aluminum ions
in thiscompound directly from experimental datawith-
out using any model representation. Here, we carry out
adetailed analysis of theresults obtained in [6], aswell
as the results of independent studies, to clarify specific
features of the interatomic force interaction in an i-
AlCuFeicosahedra crystal.

2. DISCUSSION

Let usrecall the main results obtained in [6]. Partial
vibrational spectra of copper, iron, and aluminum ions
display a number of peaks. It was found that Cu and Fe
atoms vibrate mainly in a relatively narrow energy
range in the vicinity of 16 and 30 meV, respectively,
while aluminum atoms vibrate in the entire energy
range up to 60 meV. It was found that the vibrational
spectrum of Cu atoms is much softer than the vibra-
tional spectrum of Fe atoms. This difference in the
spectra cannot be explained by the difference in atomic

1063-7761/05/10104-0676$26.00 © 2005 Pleiades Publishing, Inc.
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masses alone since the atomic masses differ approxi-
mately by 10%, whilethe vibrational energies averaged
over the spectrum differ approximately by 40%. It
means that copper atoms in the quasicrystal studied
here are bound less strongly than iron atoms. In addi-
tion, although the density of vibrational states of copper
ismainly concentrated in the vicinity of 16 meV, it also
spreads to the range of high energies up to 60 meV. The
principal bandwidth in the vibrational spectrum of iron
atomsis quite large and considerably exceeds the prin-
cipal bandwidth in the vibrational spectrum of copper
atoms. It should be noted that the partial vibrational
spectraof Cu, Fe, and Al atomsin the quasicrystal stud-
ied here substantially differ from the vibrational spectra
in the corresponding pure metals [7-9]. In particular,
the mean vibrational energiesof Cu and Featomsinthe
guasicrystal are noticeably lower than in the corre-
sponding metals. At the same time, the cutoff energy in
the vibrational spectrum of Al atomsin the quasicrystal
(Emax = 60 meV) is naticeably higher than the cutoff
energy in the case of metalic auminum (E,. =
40 meV). These results indicate that force bonds are
tighter for Al atoms and weaker for Cu and Fe atomsin
the quasicrystal than in the crystals of these metals.

To explain these results, we can use the information
on the atomic and electronic structure of i-AlCuFe qua-
sicrystals. The extended X -ray absorption fine structure
(EXAFS) spectroscopy data available for i-AlCuFe
quasicrystal [10] and the 1/1 crysta phase of
Al(Si)-Cu-Fe approximating the quasicrystal [11] indi-
cate that the average coordination humbers of Cu and
Featomsin i-AlCuFe differ considerably. In particular,
it was shown in[10] that the nearest neighborhood of an
iron atom is characterized by a single coordination
sphere filled with Al and Cu atoms, while two such
spheres exist for copper atoms (the nearest sphere is
filled with Fe atoms and the next sphereisfilled with Al
and Cu atoms). In addition, in accordance with the
model of the atomic structure based on neutron diffrac-
tion data obtained for amonocrystalline sample of ani-
AlCuFe quasicrystal [12], the atomic structure of the
aloy hasthe form of anetwork of mutually penetrating
atomic clusters. In each cluster of this type, a copper
atom is surrounded by twelve Al atoms arranged at the
vertices of an icosahedron of radius R = 2.75 A and by
twenty atoms (approximately 10.5 Al atoms, 8.5 Cu
atoms, and one Fe atom) arranged at the vertices of a
dodecahedron of radius Ry = 4.07 A. Approximately
half the vertices of the external dodecahedron are com-
mon for two neighboring clusters. The network of these
atomic clusters contains about 80% of al possible
atomic positions. The remaining positions belong to
clusters of a different type, in which an Fe atom is sur-
rounded by seven atoms distributed among the vertices
of a dodecahedron of radius Ry = 2.51 A, which is
embedded in a completely filled icosahedron with R =
4.65 A. In accordance with this structural model, three
types of positions for Cu atoms, 11 positions for Al

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vaol. 101

677

Positions of peaksin the partial vibrational spectraof Al, Cu,
and Fe atomsini-AlCuFe quasicrystals

Atom | E;, meV E,, meV Ez, meV E4, meV
Al 78+06 | 145+03 | 25.3+£05|40.2+0.8
Cu 72+04 | 142+01|221+03|380+18
Fe 98+04 | 288+04 - -

atoms, and 20 positions for Fe atoms are available in
the structure of an i-AlCuFe quasicrystal.

In view of the above arguments, the differencein the
vibrational spectra of Cu and Fe atoms is naturally
explained since a substantial number of copper atoms
are in different surroundings as compared to iron and,
hence, are characterized by a different set of force
bonds. In addition, the appreciable width of the princi-
pal band in the vibrational spectrum of iron atoms can
also be explained by the many ways these atoms are
arranged upon a change in the nearest neighborhood
and, accordingly, by the difference in the interatomic
force interaction of Fe atomsin different possible posi-
tions.

It was noted above that the partial spectraof thermal
vibrations of Cu, Fe, and Al atoms obtained in [6]
exhibit peaks|ocated in awide energy range. Each such
spectrum was approximated by a superposition of the
minimal possible number of the Gaussian functions

Aexp[—%%‘%z] : (1)

where A, E., and W arefitting parameters. Fitting of the
parameters of the Gaussian function (1) was carried out
by the method of least squares using the x? criterion,
which was close to unity in al cases.

The results of such a division of experimentaly
measured spectra into spectral bands are shown in the
figure; it can be seen that the vibrational spectraof cop-
per and aluminum consist of four bands, while the
vibrational spectrum of iron hastwo bands. It should be
noted that the positions of the spectral bands on the
energy scale in partial vibrational spectra of Cu and Al
atoms coincide to a high degree of accuracy (seetable).
At the same time, the ratio of the energy values corre-
sponding to the vibrational bands of Fe (E; = 9.8 meV
and E, = 28.8 meV) and Al atoms (E, = 14.5 meV and
E, = 40.2 meV) is close to the square root of the recip-

rocal mass retio:
E_Fe = ’m =0.7
EAI MFe

Thus, we can conclude that the force coupling existing
between the Al and Fe atoms is stronger than the cou-

No. 4 2005



678

gcw meV-!
002 T T T T T
(a)
0.01F _
1 * .I * ) 2
0 20 40 60

SFes meV-!
0.008 T T T T T

(b)

E, meV

Fig. 1. Partial thermal vibration spectrum of (a) copper,
(b) iron, and (c) aluminum atomsin an i-AlCuFe quasicrys-
tal. Solid curves describe the division into spectral bands.

pling observed in fcc aluminum and can be correctly
described using the simplest model of interaction
between the nearest neighbors. The intensity of this
force coupling varies depending on the local surround-
ings of iron in 20 possible positions and, apparently, is
almost independent of the presence of copper atomsin
the system. In turn, the vibrations of copper atoms can
be treated as quasi-local modes in a strongly modified
aluminum matrix.

The electronic structure of the icosahedral alloy
AlCuFe was studied in detail in [13], where the data on
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the partial densities of electron states of Al, Cu, and Fe
in the valence band were obtained using photoel ectron
spectroscopy. These data show that the main density of
states in the d band of copper lies in the bulk of the
valence band at a depth much lower than the Fermi
level. At the sametime, strong overlapping of the sand
p states of auminum with the d states of iron is
observed in the vicinity of the Fermi level. Thisleadsto
s, p—d hybridization, which is well known for quasi-
crystals as well as approximating phases and is con-
firmed in experiments [14]. A part of the valence elec-
trons in aluminum are engaged for filling the d band of
iron. Inthis case, iron playstherole of an element with
an effective negative valence and formsarigid covalent
bond with aluminum [15]. In view of these arguments,
the fact that the vibrational spectrum of iron atoms is
harder than that of copper atoms can be naturally
explained, aswell as the substantial increase in the cut-
off energy of the vibrational spectrum of aluminum
atoms as compared to that in crystalline fcc aluminum.

As regards copper, it can occupy a limited number
of positions and participates in the chemical bond with
its only one valence electron, minimizing the electron
energy of the system [16, 17]. Copper atoms perform
vibrations in the entire spectral band, but the probabil-
ity of these vibrations strongly depends on energy. The
maximal contribution from copper atomsto the spectral
distribution of thermal vibrations of the quasicrysta
corresponds to an energy of approximately 16 meV,
while the contribution from the vibrations of heavy
copper atoms for energies exceeding 30 meV is small.
In fact, this means that copper can be treated as a heavy
impurity in the light Al-Fe matrix, which is tuned, to a
considerable extent, to the force interaction in the
Al-Fe matrix.

3. CONCLUSIONS

Thus, the available experimental data on the partial
vibrational spectra of copper, iron, and auminum
atoms in an icosahedral i-AlCuFe crystal are in good
agreement with the following model of its structure. A
skeleton of clusters formed mainly by aluminum atoms
isconsiderably modified and enforced by rigid covalent
bonds with iron. The stability of this system according
to the Hume—Rosary rule [17] is ensured by the addi-
tion of copper atoms with a single valence electron; to
exert the minimal effect on the Al—-Fe skeleton, copper
occupies a very limited number of positions and is
tuned to the force interaction existing in the Al-Fe
matriX.
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Abstract—The binary icosahedral ZrgyPty, System has been synthesized during the crystallization of an ini-
tially amorphous all oy fabricated by melt quenching on the surface of arotating copper wheel. The temperature
and field dependences of the electrical resistivity and magnetoresistivity of the icosahedral and amorphous
phases are studied and compared in atemperature range of 1.5-300 K and magnetic fields up to 8 T. Supercon-
ductivity has been detected for the first time in the icosahedral and amorphous phases of the ZrgyPty, System.
For both phases, the magnetoresistivity is positive and depends anomalously on the magnetic field. The anom-
alous behavior of magnetoresistivity is satisfactorily described by the theory of weak |ocalization and electron—
electron interaction in three-dimensional disordered systems, which takes into account electron scattering by
superconducting fluctuations. The absolute values and temperature dependences of the el ectron—electron inter-
action constant and the times of inelastic scattering of conduction electrons are estimated for the icosahedral
and amorphous phases of this binary system. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The electronic transport properties of quasicrystals,
including their electrical resistivity and the effect of
guantum effects on the magnetokinetic properties of
amorphous and quasicrystalline systems [1-6], were
comprehensively studied in many works. Electron—
electron interaction in quasicrystalline and amorphous
systems results in qualitative and quantitative changes
in the properties of their electronic system, which can
be elucidated by studying quantum corrections to their
magnetoresistivity. The theory of anomalous magne-
toresistivity (AMR) [7] predicts two effects. “weak”
localization of conduction electrons and an increase in
the electron—electron interaction in the presence of
impurity scattering. These effects lead to the appear-
ance of corrections to classic conductivity, which
anomalously depend on temperature, magnetic field,
and some other factors.

It should be noted that quantum effectsin supercon-
ducting quasicrystalline metal—-metal systems have not
been studied in the published experimental works deal-
ing with the AMR phenomenon.

To obtain such information, in thiswork we compar-
atively study the structural, electronic, and supercon-
ducting properties of icosahedral quasicrystal ZrgyPt,,
and its amorphous analog by measuring the tempera-
ture and field dependences of the resistivity.

Since a number of zirconium quasicrystalline
compounds (ZrgPdsy, Zrs;5NigsTiyz) are supercon-
ductors[4, 8], theicosahedral quasicrystal ZrgyPt,, was

assumed to have superconducting properties. The pres-
ence of superconductivity in these amorphous and qua-
sicrystalline stateswas experimentally supportedin this
work.

We chose the Zrg,Pt,, system to study magnetoki-
netic properties, since its structure has been compre-
hensively studied and it has been shown that an icosa-
hedral local atomic structure forms around both Zr and
Pt atoms [9].

The fact that this system can be in both the amor-
phous and quasicrystalline states is an important factor
for choosing this system: this allows one to study the
effect of a change in the short-range order without
changing component concentrations during the transi-
tion from the amorphous into the quasicrystalline state.

2. EXPERIMENTAL

The metastable binary icosahedral Zrg Pty system
was synthesized during the crystallization of an amor-
phous Zrg,Pt,, aloy prepared by melt quenching (at a
rate of 10° K/s) on the outer surface of arotating copper
wheel in an inert atmosphere. The starting electrolyti-
cally pure materials were placed in an ampule of boron
nitride, which has the maximum chemical resistance to
the melts of transition metals. They were induction-
heated with a VChG-440 high-frequency generator.
The melt was squeezed due to an excess argon pressure
through ahole 1 mmin diameter onto the wheel surface
rotating at alinear velocity of 40 m/s. The amorphous
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samples thus fabricated were ribbons 1.5-2.0 mm wide
and about 0.03 mm thick. After measurements, these
amorphous samples were annealed in aflow of gaseous
helium in a quartz tube located in a muffle furnace. To
find conditions for preparing the most perfect icosahe-
dral sample, the samples were annealed at several tem-
peratures and were then rapidly quenched. Under the
optimum conditions for the production of the icosahe-
dral phase, aZrgyPt,, sample was annealed at 873 K for
12 min and was then quenched at arate of 10°-10*K/s.

The structure of the samples before and after anneal -
ing was studied by X-ray diffraction on a diffractome-
ter. The X-ray diffraction pattern of the melt-quenched,
amorphous ZrgyPt,, sample is shown in Fig. 1a The
shape of this pattern is typical of an amorphous metal
and demonstrates the absence of a long-range order.
The first broad maximum is localized near 26 = 37°,
and the second islocalized at 20 = 63°. The X-ray dif-
fraction pattern of the icosahedral phase (Fig. 1b)
shows diffraction peaks that correspond to an icosahe-
dral structure; they were indexed according to the
scheme proposed in [10].

The temperature dependences of the resistivity and
magnetoresistivity were measured on 12-mm-long rib-
bon samplesin atemperature range of 1.5-300 K in an
8-T magnetic field generating by a superconducting
solenoid. The magnetic field was oriented normal to the
current passing through a sample. The resistivities of
the samples were measured by the four-probe method.
The geometric factor of a sample ¢/l introduced a 10%
uncertainty in the absolute value of resistivity p. The
temperature was measured with a TSU carbon ther-
mometer. The temperature-measurement accuracy in
the range 1.5-30 K was +0.01 K. At temperatures
T>30 K, the temperature-measurement error was at
most 0.1%. The values of T, were determined from the
resigtivity data, at the center of the superconducting
transition.

3. BASIC RESULTS OF THE AMR THEORY
FOR THE THREE-DIMENSIONAL CASE

In the genera case, the contribution of an applied
magnetic field to conductivity can be represented as

AGep(H) = Ac®(H) +Ac%(H), (1)

where the first term is the classic contribution to the
magnetoconductivity (MC) and the second term has a
guantum origin and is described in the framework of
the AMR theory. The condition for the applicability of
thistheory is given by the inequality

kel > 1, 2

wherel isthe electron mean free path and k- isthe el ec-

tron wavevector. An important feature of Ac9(H) con-
sistsin the fact that he effect of amagnetic field is sub-
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Fig. 1. X-ray diffraction patterns of (a) amorphous and

(b) icosahedral ZrggPt,g phases. The Bragg pesks corre-

sponding to icosahedral structure are indexed according to
the scheme proposed in [10].

stantial even in the range of classicaly weak fields,
where w,T < 1 and the contribution of Ag®(H) is negli-

gibly small. Interms of the AMR theory, Ac%(H) isrep-
resented as a sum of different quantum corrections[7]:

AGY(H) = c,Ac™(H)

—c5'ac" T (H) + c5"'Aac™(H).

©)

Thefirst quantum correction Ac'-(H) to the MC (see
Eq. (3)) isrelated to the localization of noninteracting
electrons, and the second correction is related to elec-
tron scattering by superconducting fluctuations (Maki—
Thomson correction). The first correction to the MR,
Ac“(H), is suppressed in magnetic fieldsH > H,. The
second and third corrections, AcMT(H) and Ac'™(H),
take into account €electron—electron interaction, and
they are suppressed at H > H, .. The coefficients ¢; and
ci' are given in [7]. Analytical relations for the quan-
tum corrections Ac-(H), AcMT(H), and Ac'™(H) were
published in [7], and they were used in [3] to analyze
the experimental data on the MR of superconducting
amorphous systems.
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Fig. 2. Temperature dependence of the electrical resistivity
of ZrggPtyg in (a) amorphous and (b) icosahedral states in
the temperature range of 1.5 to 300 K. The inset shows the
superconducting transition range (1.5-4 K).

The scale of each contribution is specified by the
relation between the characteristic magnetic fields (H,,
H;») and the applied magnetic field in which magne-
toresistivity is measured. The characteristic scales of
Hy and H;,, are H, = Aic/4eDt,, and H;, = TickgT/2€D,
which separate the regions of weak and strong mag-
netic fields, where M C has the quadratic or square-root
dependence on the magnetic field, respectively.

In the magnetic-field range H < H,, where
A0g(H) ~H2, AMRismainly contributed by the quan-
tum effects related to the breakdown of the coherence
of electron wavefunctions because of inelastic electron
collisions. The characteristic electron phase-breaking
time is determined from theoretical relations in this
magnetic-field range.

In the magnetic-field range Hy < H < H;,, where
AC,(H) ~ H¥2, the theory predictsthat AMR ismainly
contributed by the quantum effects related to electron—
electron interaction in the Cooper channel, by the so-
called Maki—Thomson corrections [7], which become
small at H > H,,. In this magnetic-field range, the
Maki-Thomson corrections are expressed as
AcMT(H) = —B(T)Ac-(H), where the dimensionless
guantity B(T) is experimentaly determined and
depends only on the electron—electron interaction con-

stant g(T) [7].

Thus, an analysis of the experimental dependence of
the MC on the magnetic field within the framework of
the AMR theory can find the characteristic time 1, of
electron phase relaxation caused by inelastic collisions

1 The diffusion coefficient was estimated by the relations kel =
3D 7i = 3/2k0/Gy, Where Gg = €4/218 = 1.23 x 107° (Q m)*

and m* is the effective electron mass. m* was estimated from the
data of [11].
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and to determine the 3(T) parameter related to the elec-
tron—electron interaction constant g(T).

4. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 2 and the table give the measured tempera-
ture dependences of the electrical resistivity of the
ZrgoPty System in its amorphous and icosahedral states
in the temperature range 1.5-300 K.

Theresistivity isseen to be high, and theicosahedral
and amorphous phases have a weak negative tempera-
ture coefficient of resistivity. The resistivity of the
icosahedral phase is dlightly lower than that of the
amorphous phase.

Electron localization plays an important rolein low-
temperature electron transport in amorphous alloys,
and it results from disorder in a system (Anderson
localization). Locdization in a quasicrystal is caused
by the interference (phase coherence) of electron states,
and hence it is related to the system symmetry and
structure: the more perfect the material, the higher the
electron localization [12]. This behavior was aso
observed in Zr,yPd,, quasicrystalline samplesin [4]. A
comparison of the resistivities of ZrgyPt,, in the amor-
phous and icosahedral states over a wide temperature
range indicates electron localization in both phases.
The experimental values of p for both amorphous and
icosahedral systems can be used as the measure of
structural and electron disordering.

Theinset to Fig. 2 shows the superconducting tran-
sition temperatures measured from theresistivities. The
samples are found to be superconductors with a transi-
tion temperature T, = 3.48 K for the Zrg,Pt,, amorphous
phase and T, = 2.50 K for the icosahedral phase. Thus,
the transition from the amorphousinto icosahedral state
in the system under study resultsin adecreasein T,.

The conductivity of quasicrystals depends mainly
on two factors: electronic structure and electron-scat-
tering effects. It should be noted that it is difficult to
methodically separate these contributions in order to
find physical parameters that control certain electron-
scattering mechanisms. However, this procedure can be
made easier if some interaction mechanisms are sup-
pressed by choosing appropriate temperature and mag-
netic-field ranges. In this case, theoretical predictions
can correctly be compared with experimental results.

The measured MRs of the amorphous and icosahe-
dral ZrgyPt,, phases in magnetic fieldsup to 8 T in the
temperature range 1.5-5 K aregiven in the Ac(H) coor-
dinates (see Figs. 3 and 4); here, MC is expressed in
terms of MR as

_ _ _ p(H)—p(0) _ Ap(H)
Ac(H) = a(0)—o(H) NCIHO pZ(O) .

As follows from p(H), the MR is positive and
depends anomalously on the magnetic field. A specific
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Ap/pz, (Qcm)™!
6 T T

(a)

(b) ° 3.7K

Fig. 3. Field dependence of magnetoresistivity Ap(H)/p2(0)
in the low-field region for (&) icosahedral and (b) amor-
phous phases.

feature of the Zrg,Pt,, systemisthe fact the Ap(H)/p?(0)
dependence has clearly pronounced sections that vary
as H? in weak fields and as HY? in strong fields, which
areinherent inthe Ac(H) behavior in three-dimensional
disordered systems.

Using the relations that determine the contributions
Ac*+(H) and AcMT(H) [7] to the MC for weak spin-orbit
interaction and the dopes of the dependences of
Ap(H)/p?(0) on H? (Fig. 3) and of Ap(H)/p?(0) on HY?
(Fig. 4), we determined the values of the parameters

683
Ap/pz, (Qcm)™!
T T
300F 30K |
(a)
200+ 33 ]
3.5
100+ -
3.7
.7 s 4.2
0 3 6 9
60 T T
37K
(b)
40
201
0 3 6 9

B2, 102 T2
Fig. 4. Field dependence of magnetoresistivity Ap(H)/p2(0)
in the high-field region for (a) icosahedral and (b) amor-
phous phases.

B(T), which is related to the electron—electron interac-
tion constant g(T), and T4(T), which specifiesthe phase-
breaking time for a conduction electron dueto inelastic
scattering. The characteristic feature of the MR is its
sharp decrease with increasing temperature, which
specifiesasharp decreasein the slopesfor the quadratic
(H?) and sguare-root (H¥?) Ac(H) dependences. At T =
5K, the magnetoresi stivity becomes virtually compara-
ble with the experimental error.

The deviations of Ap(H)/p?(0) from the H2 and HY?
dependences are caused by the joint effect of two fac-

Parameters of the systems under study in the weak spin-orbit coupling approximation (T = 3.7 K)

P, uQ cm, | p, uQ cm, " Ty, . Deae

Sample T=6K T=300K B(T) g(T) TC ’ K TC: K 10—11 s H¢’ T Hlnt’ T sz S—l
ZrgyPty quasicrystalline phase 2515 2455 23 ~20 | ~25 | 248 | 238 | ~0.03| ~12 | ~04
ZrgoPtyo amorphous phase 274.0 263.2 12 ~50 | ~35 | 350 30 |~04 ~10 | ~0.2

Note: pisresistivity; the parameter 3(T) isrelated to the electron—electron interaction constant g(T); T isthe cal cul ated superconducting
transition temperature; T, isthe experimental superconducting transition temperature; Ty isthe relaxation time of the phase of elec-
tron wavefunction due to inelastic collisions; Hy and Hjyy, are the characteristic magnetic fields separating the low- and high-field
regions, respectively; and D¢y is the electron diffusion coefficient.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

No. 4 2005



684

1/B
0.3 ¢
0.2+
0.1F T.,=248K T.=35K
/ 1
0 1.0 1.5

InT
Fig. 5. Temperature dependences of {3 for the ZrggPtyg sys-
tem in (a) icosahedral and (b) amorphous states. Arrows
indicate the calculated values of T} averaged over several
temperature points.
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Fig. 6. Temperature dependence of T for the ZrgoPtyg sys-
temin (a) icosahedral and (b) amorphous states.

tors, namely, by the suppression of the Ac“-(H) contri-
bution, which is caused by the localization of noninter-
acting electrons, with increasing magnetic field and by
an increase in the Acg™(H) contribution, which is
related to electron—electron interaction.

The experimental datain Fig. 3 show that the mag-
netic-field range in which the H? dependence is obeyed
for the amorphous phase is more than an order of mag-
nitude longer than the analogous H range for the quasi-
crystalline phase. The magnetic-field ranges where the
H2 dependence is obeyed agree well with the estimates
of H, (see table) made for both phases in the system
under study.

Figure 4 shows the HY2 dependence of Ap(H)/p?(0)
in magnetic fields H > H,; as is seen, the magnetic-
field ranges where the HY? law is obeyed are compara-
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ble for both phases. The scales of MR at the same tem-
peratures are of the same order of magnitude for both
phases. According to the conclusions of the AMR the-
ory [7], an increase in the magnetic field should result
in an increase in the role of electron—electron interac-
tion; in the case of superconducting disordered sys-
tems, this means the suppression of the Ac-(H) contri-
bution, which is related to the localization of noninter-
acting electrons, and an increase in the AcMT(H)
contribution, which is caused by electron scattering by
superconducting fluctuations. The effect of the Ac™™(H)
contribution, which corresponds to electron—electron
interaction, depends on theratio of H, at which the MR
is measured, and H;., which is involved in the AMR
theory.

H;; was estimated to be less than 10-12 T in our

case. This means that the Ac™™(H) contribution to the
experimental MC in the magnetic-field range under
study is insignificant. This circumstance is also sup-
ported by the fact that, in this magnetic-field range, the
experimental M C can satisfactorily be described by two
contributions to the MC, namely, by Ac-(H) and
AcMT(H).

By studying the H dependence of Ap(H)/p?(0) at
H < H,, and different temperatures, we can determine
the temperature dependences of the B(T) parameter,
which is related to the electron—electron interaction
constant g(T), and the characteristic electron phase-
breaking time 1,(T). The determined 1,(T) temperature
dependence makes it possible to reveal the dominating
phase-breaking mechanism for conduction electronsin
disordered and irregular superconductors.

Therefore, we studied the H dependences of
Ap(H)/p?(0) for the ZrgPt,, System in the temperature
range T. < T < 5K and magnetic fieldsup to 8 T. Fig-

ure 5 shows the temperature dependences of the B
coefficient on InT. These dependencesin the quasicrys-
talline and amorphous states of the Zrg,Pt,, system are
linear within the limits of experimental error. Their
extrapolations to the intersection with the InT axis
givesthe calculated values of T* averaged over several
temperature points; these values coincide with the
experimental values.

This agreement between the values of T, calculated
from the MR data (from the electron—electron interac-
tion constants g(T)) and the values of T, determined
experimentally indicates that the relations of the AMR
theory for the case of weak spin-orbit interaction satis-
factorily describe the behavior of MR in superconduct-
ing quasicrystalline and amorphous systems.

For such systems, Fig. 6 shows the temperature
dependence of the electron phase-breaking time (T,(T))
in logarithmic coordinates. In each state, the experi-
mental points are seen to fall on one straight line within
the limits of experimental error, thus demonstrating the
T, O T2 dependence. A comparison of the electron
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phase-breaking times 1, for the quasicrystalline and
amorphous phases (see table) indicates a significant
increase in 1, in the quasicrystalline phase. The pres-
ence of the temperature dependence of T, demonstrates
that, in the temperature range under study, the electron
phase relaxation time coincides with the time of elec-
tron inelastic scattering in an order of magnitude. This
means that, in the temperature range under study, the
main phase-breaking mechanism for conduction elec-
tronsistheir inelastic scattering by ion vibrations.

The main features of the experimental |low-tempera-
ture behavior of MR are seen to be satisfactorily
described by the existing theory of weak electron local-
ization and electron—electron interaction in three-
dimensional disordered systems. Both effects are
observed in the AMR, and they can be separated in a
magnetic field. The contribution related to electron-elec-
tron interaction and caused by electron scattering by
superconducting fluctuations dominates, since [g(T)| > 1
aT>T,.

5. CONCLUSIONS

The electronic and superconducting properties of
icosahedral crystal ZrgPt,, and its amorphous analog
were studied and compared by measuring their electri-
cal resigtivity and magnetoresistivity, and a number of
important parameters were determined.

The icosahedral and amorphous phases are charac-
terized by a high resistivity and a weak negative tem-
perature coefficient of resistivity, and the resistivity of
the icosahedral phase is slightly lower than that of the
amorphous phase.

We were the first to detect superconductivity in the
icosahedral and amorphous Zrg,Pt,, phases, and the

superconducting transition temperature is lower in the
icosahedral phase.

The €electron phase relaxation times 1, were deter-
mined in both phases. The phase relaxation timein qua:
sicrystalline ZrgyPt,, was found to be much higher than
that of the amorphous analog, and this sharp increaseis
explained by eectron localization in the quasicrysta
that is related to a sample structure.

The detected decreasein the el ectron—el ectron inter-
action constant g(T) in the quasicrystal, which resultsin
adecrease in T, indicates weakening of the electron—
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electron interaction in the quasicrystal as compared to
its amorphous analog.
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Abstract—The energies of the electron and hole weak-coupling polarons are determined in quantum rings of
finite width in a uniform magnetic field. It is shown that polaron corrections exhibit oscillatory behavior as a
function of a magnetic field. The effect of polaron corrections on the absorption and emission spectra of light
by excitonsin aquantum ring is considered. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The el ectron—phonon interaction in reduced-dimen-
sion systems has been discussed in the literature since
the very beginning of the physics of low-dimensional
systems as an independent branch of solid-state phys-
ics. The effect of acoustic phonons on the mobility of
electrons in an inversion channel was considered as
early as 1982 by Ando et al. [1] by example of atwo-
dimensional electron system in silicon. In low-dimen-
sional A;B;5 systems (just as in bulk samples), polaron
phenomenadue to optical phonons attract considerable
interest. These phenomena have been discussed in [2]
(quantum wires) and in [3, 4] (quantum dots) with
regard to the effect of a strong (in the sense that the
magnetic length is of the same order of magnitude or
less than the size of the domain where the charge carri-
ers move) magnetic field. By example of a quantum
dot, it was demonstrated in [4] that polaron phenomena
become more prominent as the size of aquantum dot is
reduced: a shift in the electron energy due to the cou-
pling to polar optical phononsisinversely proportional
to the radius of a quantum dot.

Quantum rings occupy a specia position among
nanoobjects. The main topological feature of these
ringsis that the domain where an electron movesis not
simply connected. This fact leads to Aharonov—Bohm
oscillations in a magnetic field. It is well known that
Aharonov—-Bohm oscillations arise even if an electron
is not subject to a Lorentz force (athin solenoid inside
aring). However, from the experimental point of view,
atypical situation is when a uniform magnetic field is
applied to the system and the ring has a finite width. In
this case, the magnetic field may significantly affect the
radial motion of particles.

The manufacturing technology of quantum rings
with a characteritic radius of 10 to 100 nm was first
described in [5]. In an ensemble of self-organized InAs
guantum dots on the surface of GaAs, under certain

conditions, InAs diffuses toward the boundaries of the
guantum dots. This gives rise to objects that look like
the crater of a volcano. At the center of the crater, a
region with atypical diameter of 20 nm is formed that
isfree of InAs. The outer diameter of the crater is esti-
mated to range from 60 to 120 nm [5]. Thus, an ensem-
ble of ringsisformed whoseradii are comparableto the
effective Bohr radius of an electron in InAs.

Polaron phenomenain quantum rings of finitewidth
in amagnetic field must be characterized by distinctive
features. The main feature is the nonmonochromaticity
of the Aharonov—Bohm oscillations of a polaron shift,
which is attributed to the difference in the magnetic
fluxes that are enclosed by different electron trajecto-
ries. Moreover, when an exciton is generated, the con-
tributions of the electron and the hole to the polariza-
tion of the medium have opposite signs, and it isimpor-
tant that the finiteness of the ring should be taken into
account when calculating the net effect determined by
the wavefunctions of the particles. The present paper is
devoted to the theoretical study of the formation of
magnetopolarons in a quantum ring with regard to the
radial motion of particles and the effect of polaron phe-
nomena on optical interband transitions.

2. ENERGY SPECTRUM
AND WAVEFUNCTIONS OF PARTICLES
IN A QUANTUM RING

Several models of a potential have been proposed in
the current literature to take into account the finiteness of
the width of a quantum ring: arigid-wall potential [6], a
parabolic potential [7], and (see[8]) potential energy of
the form

V() = Lrar? €
r

which will be used in the subsequent calculations.
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Here, r isthe radius vector of a particle in a polar sys-
tem of coordinates and a; and a, are certain parameters.
Potential (1) admits an analytic solution of the
Schrédinger equation in a magnetic field and, on the
other hand, allows oneto simulate aring of finite width.

The expansion of (1) near the minimum V(ry) =
min(V(r)) yields

%2

20(r —14)?, )

m
V(r) = const + 5

whence one can obtain arelation between a; and a, and
the experimentally determined parametersr, and wy, [5]:

W, = J8a/m*, ry = (a/ay)"’, 3

where m* is the effective mass of a particle. Then, the
Hamiltonian of an electron in potential (1) inauniform
magnetic field B = (0, 0, B) (the zaxisis perpendicular
to the plane of thering) is given by [§]

2maLror or ¢ a¢2
@)
_Ith_Q_er:wérz a, Mg wpr’
> 8 2 8

where wg = eB/mj ¢ is the cyclotron frequency of an
electron and m? is the effective mass of an electron.

The solution to the Schrodinger equation Hey(r, ¢) =
E(r, ) for alateral motion of an electronisexpressed
as (hereupon, we consider states with the radial quan-
tum number n, = 0) [§]

4

D 2

Wy, = CyrMexpi——e'",
O 4a

oo 1 [T 1

M a‘2./|+:|‘ 2Mr(M+1)/\/Z_[i (5)

*
M? = I§+2m—92al,

f

I
E. = ﬁQe%M; 1%+ EeﬁwBe+ Eq;

here, |, is the eigenvalue of the projection operator of

the angular momentum of an electron, E; = 0.354 €V is

the bandgap energy of InAs, Q. = Jwa,+ 5 is the
combined frequency, and a, = ,/A/m} Q. isthe oscilla-
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tory length of an electron at the combined frequency
Q.. The wavefunctions and the spectrum of holes can
be determined similarly. For further references, we
write out these parameters:

0 (20

Wy = CyrNexpi——e ",
O 4a
c .1 [T 1
Al NN+ 1) /2 ©
*
N2 = 24 ZThE
f

+ I
E, = —thENZ lg—zhﬁoosh.

Here, the notations are analogous to those used in for-
mulas (5). In (5) and (6), the energy is measured from
the top of the valence band. In further calculations, we
assume, for simplicity, that the parametersr, and w, are
the same for electrons and holes (unless otherwise
stated) and that the difference between electrons and
holesis attributed to the difference between their effec-
tive masses and the signs of their charges. This approx-
imation has a small effect on the results.

3. ELECTRON AND HOLE POLARONS

As pointed out above, the strong localization of par-
ticles in guantum rings may enhance their interaction
with longitudinal optical phonons and thereby signifi-
cantly change the quantization energies of the particles
(apolaron shift). To calculate the coupling energy of a
polaron, one should add the Hamiltonian (4) of free
phonons and electron—phonon interaction

H=T.+ Zhooqb;bq + Z Fq(r)(bg + b;),
q g

_ gt _ € /2T[ﬁ00 iqr
Fq(r) = quq = a E—*qeq ,

to Hamiltonian (4), which describes the motion of an

electron in a quantum ring. Here, bq(b;) are the cre-
ation (annihilation) operators of phonons with the

(7)

wavevector g, eisthe electron charge, e* 1 = €. — g5
is the effective optical permittivity, and w, is the
phonon frequency. In the case of a weak-coupling
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Fig. 2. Energy spectrum of a narrow quantum ring.

polaron, the polaron correction can be calculated by
perturbation theory:

|P||'(Q)|2
AE, = — ,
| ;E,.—Eﬁﬁwq—A (8)
A = AE, —AE,

where P,.(q) is the matrix element of the electron—
phonon interaction. The quantity A depends on the type
of perturbation theory. It iswell known (see, for exam-
ple, [9]) that the Rayleigh-Schrédinger perturbation
theory (A = 0) well describes only a correction to the
ground state of the system. For excited states, one
should apply the Wigner—Brillouin perturbation theory
with A = AE, — AE;. Here, AE; is apolaron correction
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to the ground state calculated for A = 0. In the case of
dispersion-free optical phonons, (w, = W, = const), the
polaron correction to the electron statesis given by (see
the Appendix)

_ € ﬁwpot A(Ie_'lze:)
AE(L) = XE —E, +fiw,—A’
2 + M2+ +
Al—11) = M“(Al/2+ M2+ M/2+ 1) ©

F2(Al,+ 1)F (M + 1) (M’ + 1)

Lt e 2[43' 0
l MM, +
F >3 1; Al + 1, tD’

where F is adegenerate hypergeometric function and I
isthe gammafunction. Theresult for ahole polaron has
the same form, except the change a, — a,,. Figure 1
shows the energy spectrum of an electron in a quantum

ring for fiwy, = 12422 r5 . One can see that, when the

finiteness of the ring width is taken into account, the
spectrum significantly differs from the spectrum of the
one-dimensional model,

#? (Olng
E = + —
2m*r§B O

where @, = hc/eisthe quantum of amagnetic flux. Nat-
urally, one should expect that, as the ratio of the radial
guantum to the rotational one increases, the spectrum
of the system ever more closely approaches the spec-
trum E, of the one-dimensional system. This fact is

illustrated in Fig. 2, where fiwy, = 400A2/2m¥ r5. The

arrow in this figure indicates the value of the magnetic
field equal to 1 T. The values of the quantum number |,
are shown in the figure. In Figs. 1 and 2, energy is nor-
malized by the radial quantum %wy,. The polaron cor-
rections to the states with different values of |, calcu-
lated by formula (9) are shown in Fig. 3. One can see
that, in addition to the oscillatory component, there
exists a smooth envelope that comes from the mag-
netic-field dependence of the radial wavefunctions of
an dectron. Fig. 4a represents the magnetic-field
dependence of the ground state of an electronin aquan-
tum ring, and Fig. 4b shows the polaron correction
(AEg) to this dependence calculated by formula (9).
One can see that this dependence is also oscillatory.
Similar to Fig. 3, the graph has an envelope; however,
this envel ope much more weakly depends on magnetic
field than that for excited states. All the calculations
shown in Figs. 2-4 are performed for the ratio of

parameters given by 7oy, = 40072/2n r5 .
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4. AN EXCITON POLARON
AND INTERBAND OPTICAL TRANSITIONS

The absorption of a quantum of light with energy
greater than the bandgap energy of amaterial givesrise
to an electron—hole pair in a quantum ring. Each parti-
cle polarizesthe medium, the polarization having oppo-
sitesignsfor the electron and the hole. As aresult, these
polarization wells partially compensate each other. As
isshownin[4], in spherical quantum dots, the compen-
sation is not exact when only the degeneracy of the
valence band of the material is taken into account. In
the case under consideration, due to the strong quanti-
zation in the vertical direction, the degeneracy is
removed; however, the polarizations are not fully com-
pensated because of the strong difference between the
effective masses of an electron and a heavy hole. Now,
we consider interband transitions. Before the absorp-
tion of a photon, a quantum ring has no charged parti-
cles and, hence, the medium is nonpolarized. After the
absorption (in the final state of the system), thereisan
electron in the conduction band and a hole in the
valence band; this leadsto the polarization of the mate-
rial. This means that the wavefunctions of the oscilla
tors of the medium before (®) and after (') the
absorption are not orthogonal: [@'|®f 3~ 0, because the
functions @' have a displaced equilibrium state due to
the polarization [4]. Taking into account this circum-
stance, we can represent the absorption probability of a
quantum Aw of light in the dipole approximation as

2T
Waps = ?|pcv|2||(|ey |h)|2
(10)
x Yy W O(Ey,—Ex —fiw),
2

where Eq, is the transition energy, Ex = Khiwy, (K isan
integer) isthe total energy of phononsthat are involved
in theinterband transition, W isthe emission probabil-
ity of K phonons during the transition, I(l,, I,) is the
overlap integral of the envelopes of the electron and the
hole, and p¢, isthe Bloch amplitudes matrix element of
the interband transition. The emission probability Wy
of phonons is determined by the scalar product of the
oscillation functions of the medium, [@'|®f ] In the
case of dispersion-free optical phonons 7w, = 70y,
this probability is determined by (see[4] for the details
of calculation)

.S o0 So

W, = —2_ ] Y
<7 P20

0Ky
S Ay

(11)
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Fig. 3. Polaron corrections to the electron energy as afunc-
tion of amagnetic field for stateswith different |, in aquan-

tum ring.
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where OE,, is the total polaron shift of the exciton,
which is defined below (see (16) and (17)). The expres-
sion for the emission probability of a quantum of light

2m
Wen = - [Pev| (1 (le 1n)[*
(12)

differs from the absorption probability (10) by the
Stokes shift AEg, which is given by (see [4])

AEg = 23E,,. (13)

Formulas (11) and (13) show that both the intensity of
phonon repetitions and the Stokes shift of the spectrum
are determined by the quantity dE,,, which represents
the renormalization of the exciton spectrum due to the
formation of a polaron state. Below, we will show that
this quantity is an oscillating function of a magnetic
field (similar to the electron spectrum considered in the
previous section); this leads to the oscillations of the
Stokes shift and of theintensities of phonon repetitions.
Note that the oscillations of the intensity of exciton
luminescence in quantum rings have been predicted
in[10].

To determine 8E,,, we write out an expression for
the Hamiltonian of two particles, an electron and ahole,
in a quantum ring that interact with longitudinal
phonons:

H = Te+Tp+Ve(|re—ry) + Zhwqbgbq
‘ (14)
+ Z(Fq(re)_Fq(rh))(bq"'biq)-

Since theradiusry, may vary within rather wide lim-
its during the formation of quantum rings, one should
consider two possible situations. For sufficiently small

radii (r, < a§ , where a isthe effective Bohr radius of
an exciton in the ring material), the Coulomb interac-
tion can be neglected. In this case, the dynamics of the
electron and the hole are independent, and the
Schrodinger equation is decomposed into two equa-
tions, for the electron and the hole; the solution to these
equations is presented in the Section 2 (formulas (5)
and (6)). The polaron corrections to the spectrum of the
electron-hole pair are calculated by a formula similar
to (8), in which the matrix element P,;.(q) should be
replaced by a sum of the matrix elements of the elec-
tron—phonon and hole—phonon interactions (the third
termin (14)). The calculationsyield
OE., = AE.+AE, + AE,. (25)
Here, AE, and AE,, are the polarization shifts of an elec-
tron and a hole, respectively, and AE,;, is a combined
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shift. Each of these contributionsis calculated by apro-
cedure analogous to that described in the Appendix.
The one-particle energy shifts AE, and AE,, are calcu-
lated by formula (9); for AE,,,,, we obtain

2
€ Wy B, _ o
g* C Eq — Eq + i), —A

AEmix =

By .o = [T(Al+2)I (Al +1)

x JTIM+ DI (M + DI (N+ ) (N + )]

[E+—+—+1g (16)

2 2

Al, Al
a, ‘a, " dqx Al+Al,

Al + Al 21‘[
2 0

IZAe O
r +§+2+1D

1 2
Ale+tM'+M+2 - (g
xFH 5 Ao+ 1 —be D

[pl +N+N+2

(q||ah)2|]
D > VAL +L —

2 D

where a is the set of quantum numbers (I, I,). Thus,

since the particles move independently for r, < a and

each term in (15) is an oscillating function of a mag-
netic field, we should expect that the Stokes shift AEg
and the intensity Wy will oscillate according to (11)
and (13).

In the opposite case, whenr, > ag , we should take

into account the effect of the Coulomb potential on the
dynamics of particles; therefore, we fail to obtain an
exact analytic result. Let us carry out a qualitative anal-
ysis. By analogy with [11], we assume that the motion
isadiabatic in theradial direction. Following the calcu-
lation procedure described in [11], we obtain the fol-
lowing relations for the exciton spectrum:

Ey = B+ (B + (Eu(®)]

B = 42 17)
2(mErg+mirn)
Here, J = I, + |, is the total momentum of the exciton.
The first term in the first equation is the energy of the
radial motion of particles, the second term isthe energy
of motion of an exciton as a whole, and the last term
represents the energy of the bound state of the particles.
The angular brackets denote averaging with respect to
the radial coordinates r, and r,, of the particles. Note
that (BJdepends on the magnetic field only via the
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effective oscillation length a, = /A/M Jwh, + o
However, Fig. 2 shows that, for sufficiently narrow
rings, the variation limits of the magnetic field are such
that wg/wy, <€ 1, and the quantity [BOvery weakly
depends on the magnetic field. As regards the last term
in (17), according to [10Q], it is proportional to

*
—2Ttr o/ ag

[E,,(P)I0 e . (18)

Inthelimit of r, > af , thisexpression is exponentially
small, and the effect of a magnetic field on the polaron
corrections to the spectrum (17) is negligible. It was
implicitly assumed in (17) that an electron and aholein
thering move along circlesof identical radii. According
to[12], if wetakeinto account that the radius of acircle

for an electron, ry, is different from the radius of acir-
clefor ahole rg,weobtain

E, = Erad+<BBJ+%q:Ez>+ Ea(®)d (19

instead of (17); here, A® is proportional to—e(r,—r.)B,
i.e., to the product of the dipole moment of an exciton
multiplied by the magnetic field. This correction leads
to a considerable reconstruction of the exciton spec-
trum[12].

Thus, in both situations, the spectra of an electron—
hole complex (formulas (5) and (6)) for ry < aj and of

an exciton (19) for rg, rg > ag , considered as func-
tions of amagnetic field, have intersecting branches. In
particular, the ground state oscillates with a magnetic
field [12]. This leads to oscillations of AEg in expres-
sion (8) for the polaron correction and, hence, to the
oscillations of the polaron correction dE,, to the opti-
caly active state J=1.+1,,= 0 of the exciton. As pointed
out above, the Stokes shift in the absorption and emis-
sion spectra of light, as well as the intensity of phonon
repetitions, are determined by the quantity oE,, and,
hence, oscillate with a magnetic field. However, when

ro, rg > ag , the polaron shift may exhibit appreciable
oscillatory phenomena only for a radially polarized
exciton r # rh.
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APPENDIX
Consider aprocedure for calculating the matrix ele-
ment P, _ (q) of the electron—phonon interaction:

P._@) = DLIJM'|quiqD|lIJMD (A1)

Here, Yy are electron wavefunctions (5), and the indi-
ces M and M' are defined as M = /I + 2m* a,/4” and

M = JI2+2m*a,/i°. Let us orient the polar axis

along q, and represent the exponential functionin (A.1)
as

gt = eiquZikJ(qsr)eik"’. (A.2)
k
Calculating the integralsin (A.1), we obtain
N e
P, (@) = DaCuCwn(iay)
rd;_'%'\"'*'\"*a] le=le M +M+2
02 2 U_,772 "2
x I—lg+1 (2a;) (A-3)
Fle=lc+1)2° ©
de=le, M +M+2 . _%ad
><FD > + 5 ple—la+1; — > 0

Substituting Cy, and D, from (5) and (7), respectively,
into the expression obtained and squaring the modulus,
after simple calculations we arrive at

2
2 _ ehooOpt
P (@ = e al
I_2[Q|e+ M'+M + 24
2.2 Al,
X 27T - 2 H A (A4
rial,+ HrM+nrv+d 2 8
2.2
2le M+ M +2, 0@
X FPESE + S Al + 1

Now, we must sum this expression over the wavevec-
tors of al phonons. Replacing the sum over wavevec-
tors by the integral, for

71 Wop
£*a,

I(:,j)slpua L@ =

'
1
le - 1t
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we finally obtain the following expression (t* =
qzaz/2):

r2[.Qle+ M'+ M+ 24
g 2 U

el T F2(Al,+ 1)F (M + 1)F (M’ + 1)

AI
(A.5)

d_xtAler[Ne+ M'+M+2

[t Fo 2
0

POl + 1 —t%.
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Abstr act—Photoluminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n——n hetero-
structure) containing large-scal e random potential fluctuationsin the planes of heteroboundariesis studied. The
properties of excitons, in which a photoexcited electron and ahole are spatially separated in neighboring quan-
tum wells, were investigated upon variation of the power density of off-resonance laser excitation and temper-
ature (1.5-4.2 K), both under lateral (in the heteroboundary plane) confinement of the excitation region to afew
micrometers and without such a limitation (directly from the region of laser-induced photoexcitation focused
to aspot not exceeding 30 pm. Under low pumping (with a power smaller than a microwatt), interwell excitons
are strongly localized due to small-scale random potential fluctuations and the corresponding photolumines-
cence line is nonhomogeneously broadened to 2.5-3.0 meV. With increasing pumping power, the narrow line
of delocalized excitons with a width of approximately 1 meV emerges in a threshold manner (the intensity of
thislineincreases superlinearly near the threshold with increasing pumping). For afixed pumping, theintensity
of thisline decreases linearly upon heating until it completely vanishes from the spectrum. The observed effect
isattributed to Bose condensation in aquasi-two-dimensional system of interwell excitons. Within the proposed
model, we show that the linear modein the behavior of the luminescence intensity until its disappearance in the
continuum of the photoluminescence spectrum upon a change in temperature is observed only for the con-
densed part of interwell excitons. At the same time, the luminescence of the above-the-condensate part of
excitonsis almost insensitive to temperature variations in the temperature range studied. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

Tunnel-coupled quantum systems, superlattices,
and double quantum wells (DQWS) have been objects
of intense studiesfor along time[1-16]. Theinterestin
such 2D systems is due, in particular, to the fact that
photoexcited electron and hole charge carriers can in
principle be separated in space. Excitons in which the
electron and the hole are in different quantum wells
(QWSs) separated by a tunnel-transparent barrier can be
generated in DQWSs with an electric bias voltage that is
applied perpendicularly to the layers and shifts energy
bands [2]. Such excitons are referred to as spatially
indirect (1), or interwell, excitonsin contrast to direct (D)
intrawell excitons, in which the electron and the hole
are in the same QWs. In contrast to intrawell excitons,
interwell excitons are long-lived (the radiation lifetime
may attain tens of nanoseconds or more) due to partial
overlapping of the electron and hole wavefunctions
through a tunnel-transparent barrier in the direction of
the applied electric field. Consequently, such excitons
can be accumulated and the gas of interwell excitons
can be cooled to low temperatures close to the lattice
temperature. In view of the broken inverse symmetry,
interwell excitons exhibit peculiar properties (possess a
dipole moment even in the ground state). In the case of
a large dipole moment, such excitons cannot combine

to form molecules or other many-particle exciton com-
plexes due to a strong dipole—dipole repulsion.

Excitons are composite bosons since they contain
two Fermi quasi particles (band hole and band el ectron).
For this reason, their collective properties must obey
the Bose-Einstein statistics. Precisely this circum-
stance forms the basis of the assumption formulated in
anumber of theoretical publications at the beginning of
the 1960s [17] and concerning the possibility of Bose-
Einstein condensation in a weakly nonideal diluted
exciton gas in semiconductors at low temperatures,

when nal, < 1 (nistheexciton concentration, a, isthe

Bohr radius of an exciton, and d is the dimension of the
system). A convenient model object for investigating
this effect in semiconducting heterostructures was
guasi-two-dimensional interwell excitons [2-5]. It
should be borne in mind, however, that Bose-Einstein
condensation at finite temperatures cannot occur in
principle in an ideal and unlimited 2D system with a
constant density of single-particle states. Thisis associ-
ated with divergence of the number of the filled states
in the case when the chemical potential p tendsto zero
and when fluctuations violate the order parameter [18].
Nevertheless, Bose-Einstein condensation may occur
at finite temperatures in quasi-two-dimensional sys-
temswith aspatial (lateral) confinement. If a2D system

1063-7761/05/10104-0693$26.00 © 2005 Pleiades Publishing, Inc.
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is confined in a plane and has a characteristic lateral
domain length L, the minimal energy E, in the energy
spectrum of such a system can be on the order of Ej =
A2T®/ML? (M isthelateral mass of aninterwell exciton).
At temperatures below the critical temperature, macro-
filling of the lower energy state must take place (this
phenomenon is completely analogous to Bose conden-
sation in the 3D case). The relation between the critical
temperature T, and the threshold concentration n, start-
ing from which (i.e,, for n > ny) the particles begin to
accumulatein the lower energy state is described by the
equation

no(Te) = [ 1(E. 1= 0)D(E)dE
E, (1)

- Tc
= D(E)TCInEO,

where D(E) is the density of states and E; < T.. The
critical temperaturein the laterally confined 2D system
with afinite number of statesis given by

_ om’n .
Te= GokeMIN(nS)’ @)

i.e., it decreases logarithmically with increasing area
SO L2 occupied by the 2D gas of Bose particles. gq, is
the spin degeneracy factor, kg is the Boltzmann con-
stant, and L is the characteristic linear domain size.

Spatial limitations can be imposed on the free
motion of excitons in the planes of quantum wells due
to large-scale random potential fluctuations associated
with variations of QW widthsw(r) at heteroboundaries.
Changesinthe effective lateral potential U(r) = U(w(r))
can be attributed to these variations. Under quasi-equi-
librium conditions, the exciton density distribution is
determined by the equality p(n(r)) + U(r) = 4, where
the chemical potential 1 of interwell excitonsis associ-
ated with their mean density and p(n(r)) isthe chemical
potential of the homogeneous exciton phase in the spa-
tial confinement region (domain). Obvioudly, p(n(r)) <
K since p(n) = —E, + dU (E, is the exciton binding
energy) Consequently, it is easier to accumulate exci-
tons in the lateral localization region and the exciton
density in such regions, which actually play the role of
exciton traps, may substantially exceed their average
density in the QW planes [11]. The critical conditions
corresponding to Bose condensation of interwell exci-
tons can more easily be redized precisely in lateral
domains (traps).

It was shown by us earlier [ 19, 20] that the collective
state of interwell excitons emerges in DQWSs in the
presence of large-scale random potential fluctuations
associated with fluctuations of the AlAsbarrier widthin
GaAs DQWs. Namely, the exciton condensation took
place when photoexcited interwell excitons accumu-
lated in macroscopically extended regions with lateral
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confinement over afew micrometers[19]. To ensurethe
operation under lateral confinement, we coated the sur-
face of the structure with an opague metallic mask, in
which windowswith asizefrom 0.5 to 10 um were pre-
pared by electron-beam lithography; photolumines-
cence was excited and subsequently detected through
these windows. It was found that interwell excitons are
strongly localized for low densities of excitation and
low temperatures and the corresponding photol umines-
cence band is broadened nonhomogeneously (the pho-
toluminescence bandwidth amounts approximately to
2.5 meV). With increasing pumping, avery narrow line
of delocalized interwell excitons (with awidth smaller
than 1 meV) emergesin athreshold manner. For afixed
pumping, this line vanishes from the spectrum upon
heating, itsintensity decreases not activationally, but in
accordance with a power law. The observed phenome-
non was attributed to Bose condensation in aquasi-two-
dimensional system of interwell excitonsunder the spa-
tia limitation determined by the sizes of lateral
domains (traps) with awidth of afew micrometers.

A strong argument in favor of such an interpretation
is the strongly critical dependence of the observed
properties on the temperature and pumping intensity.
Since the temperature behavior of the exciton lumines-
cence intensity under Bose condensation is not of the
activation type and exhibits general features typical of
this phenomenon, we study here this effect in greater
detail using a structure with a dlightly different lateral
confinement for interwell excitons as compared to [19].
We will try to answer the important question on the dif-
ferencein the temperature dependences of the lumines-
cence intensity of condensed interwell excitons and the
above-the-condensate part in the temperature range
studied here.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

We studied GaAgAlIGaAs n——n heterostructure
with a GaAs/AIAs/GaAs DQW (the widths of GaAs
wells and the AlAs barrier are 120 and 11 A, respec-
tively). The structure was grown by molecular-beam
epitaxy on an n-type doped GaAs substrate (the doping
impurity (Si) concentration was 10 cm3) with the
(001) crystallographic orientation. First, a 0.5-um-
thick Si-doped GaAs buffer layer was grown on the
substrate, followed by a0.15-pm-thick AlGaAsinsul at-
ing layer (x = 0.33). Then GaAJAIAYGaAs DQWs
were grown, above which a 0.15-um-thick AlGaAs
insulating layer was deposited. Further, a 0.1-pm-thick
Si-doped GaAs layer (with a Si concentration of
10 cm3) was grown. The entire structure was coated
by a 100-A-thick GaAs layer. Four-monolayer AlAs
barriers were grown at the boundaries of DQWSs with
AlGaAs layers. Growth-interruption technique was
used for epitaxial growth of AlAs. The application of
thistechnique resulted in the emergence of long-period
lateral random potential fluctuations associated with
fluctuations of the widths of AlAs barriers [21]. Then
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1 x 1-mm? contact area elements were prepared litho-
graphically on the structure. Metallic contacts prepared
fromanAu + Ge + Pt aloy were deposited on the buffer
and doped layers at the top part of the area elements.
The sample resistance between built-in €l ectrodes was
about 100 Q at room temperature and was an order of
magnitude higher in liquid helium.

Inametallic mask (120-nm-thick Al film) deposited
on the surface of the nH-n structure with the above
structure, apertures (windows) with adiameter from 0.5
to 10 um were etched by explosive el ectron-beam epit-
axy. Experiments were made in such away that photo-
luminescence signal excitation and detection was car-
ried out via single windows. The Al film was insulated
from the n*-junction region of the heterostructure.

The luminescence spectrawere excited by acw He—
Ne laser whose beam was focused to a spot with a
diameter of approximately 30 um. We analyzed the
photoluminescence spectra directly from the photoex-
citation region since no appreciable exciton drift from
the region of their excitation was observed in this struc-
ture. At the exit from a wide-aperture double mono-
chromator (Ramanor U1000), the spectra were
recorded with the help of a multichannel optical detec-
tor (Si-based CCD camera) cooled with liquid nitrogen.
The sample was placed in a helium cryostat. The sam-
ple temperature in arange of 1.54.2 K was controlled
by pumping out “He vapor and monitored by a resis-
tance thermometer. For alaser power below 10 pW, the
sample temperature virtually coincides with the bath
temperature.

3. EXPERIMENTAL

Figure 1 shows the behavior of the luminescence
spectra of interwell (1, line) and intrawell (D line that
cannot be seen for such a representation of the spectra
and the T line) excitons upon variation of abias voltage
shifting the size quantization levels in DQWSs. The D
and T lines correspond to delocalized and localized
intrawell excitons. It can be seen that luminescence of
interwell excitons (I, line) emerges in the spectra for
voltages U < 0.2 V. This happens when the resultant
Stark shift eFd (d is the distance between the electron
and hole in adjacent QWs and F is the electric field)
exceeds the difference between the binding energies of
intrawell and interwell excitons (i.e., eFd = E; — E)).
With increasing applied voltage, the interwell exciton
line in the spectrum is shifted in accordance with alin-
ear law (AE, O eFd). On the contrary, the shift of the
intrawell exciton is insignificant (see the inset to
Fig. 1). The intensity of the interwell exciton line
changes insignificantly upon variation of the voltage.
This indicates the high quality of the structure. The
increase in the T line intensity of a localized exciton
with voltage is the result of an increase in the current
passing through the structure.
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Fig. 1. Photoluminescence spectrafor various bias voltages
applied to the built-in gate. The inset shows the positions of
the direct exciton line (D), indirect exciton line (1), and the
line of acharged complex (T) asafunction of voltage across
the gate. The temperature T = 2 K and the He-Ne laser
power P = 10 pW.

Intensity *
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5000}

1.540 1.545 1.550 Energy, eV

Fig. 2. Photoluminescence spectrafor various values of the
He—Ne laser power. Temperature is T = 2 K and the bias
voltage acrossthe gateis U = -0.149 V. Theinset showsthe
intensity of theindirect exciton line asafunction of the pho-
toexcitation power: experiment (circles) and theory (solid

curve).

Let us consider the behavior of luminescence of
interwell excitons upon a variation of pumping inten-
sity. For low densities of excitation (less than 1 pW),
the luminescence spectra exhibit a relatively broad
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Fig. 3. Photoluminescence spectrafor various temperatures.
The He—Ne laser power is P = 1 pW and the voltage across
thegateisU =-0.330 V.
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Fig. 4. Temperature dependence of the photoluminescence
intensity for an indirect exciton. The symbols correspond to
experimental results and the dashed straight lines are the
results of fitting by theformulal O (1 - T/T). Dark squares
correspond to the He-Ne laser power P = 1 pW at T, =
4.4K, light squares correspond to P = 2 pW and T, =
5.18 K, and dark circles correspond to P = 5 pW and T; =

5.54 K. Theinset shows the temperature dependence of the
indirect exciton line intensity for a 50-um window (P =
1 pW and T, = 7.43 K).

asymmetric band corresponding to interwell excitons
(the bandwidth is approximately 2.5 meV, Fig. 2). This
band is nonhomogeneously broadened and is due to
strong localization of interwell excitons at small-scale
fluctuations of the random potential associated with
residual charged impurities. With increasing pumping
(above 0.5 pW), a narrow line emerges in a threshold
manner in the violet edge of the broad band. The inten-
sity of this line increases superlinearly with pumping
(see the inset to Fig. 2) and the line is dlightly shifted
(by approximately 0.5 meV) towards low energies.
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Upon a further increase in pumping (to above 5 pW),
broadening of the narrow line of interwell excitons
begins and the monotonically broadened line is shifted
towards higher energies.

We studied in detail the behavior of the narrow line
of interwell excitons as a function of temperature and
found that this line vanishes from the spectrum at tem-
peratures T =5 K. Figure 3illustrates the typical behav-
ior of thel line upon variation of temperaturefor afixed
pumping. It can be seen that thisline clearly dominates
over the structureless luminescence band of localized
excitons and has a higher intensity at T = 1.64 K and a
pumping power of 1 uW. With increasing temperature,
the intensity of the | line decreases, while its width
remains virtually unchanged, and at T = 4.2 K thisline
practically vanishes against the background of the
structurel ess spectrum of localized excitons, which pre-
serves its shape. Essentially, the decrease in the | line
intensity with temperature is not of activation type.

Having measured the temperature dependence of
the | line intensity under various pumping intensities,
we established the following regularity in its tempera-
ture behavior (Fig. 4):

L O(1-TIT); ©)

here, I is the line intensity at temperature T and T is
the critical temperature corresponding to vanishing of
this line from the spectrum for a given fixed pumping.

We believe that the experimental results described
above indicate Bose condensation of interwell excitons
in micrometer-scale lateral domains; its origin is asso-
ciated with large-scale random potential fluctuations.
For low-intensity pumping and low temperatures, pho-
toexcited interwell excitons are strongly localized due
to small defects (e.g., residual charged impurities). This
situation corresponds to a broad, nonhomogeneously
broadened luminescence band of interwell excitons for
low excitation densities. Not more than one exciton can
be localized at a defect due to the strong dipole—dipole
repulsion; consequently, this luminescence channel is
rapidly saturated. According to our estimates, this is
observed in the investigated structures at concentra-
tions not exceeding 5 x 10° cm. Upon a further
increase in the pumping intensity above the percolation
threshold, interwell excitons become delocdized in a
domain. When the critical density is attained, excitons
are condensed to the lowest delocalized state. This is
manifested experimentally in the threshold emergence
of the narrow luminescenceline, its superlinear growth,
and its shift towards lower energies upon filling of the
lower state in the domain by excitons obeying the
Bose-Einstein statistics. The strongest argument in
favor of exciton condensation isthe critical temperature
dependence of the observed properties.
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4. DISCUSSION

Let us now consider the anticipated temperature
dependence of the luminescenceintensity of quasi-two-
dimensional interwell excitons in the Bose condensate
in comparison with the luminescence intensity of the
part of excitons above the condensate. For this purpose,
let us analyze the following model system of interwell
guasi-two-dimensional excitons excited by cw laser
pumping. According to our estimates, the luminescence
qguantum yield in the structure studied hereisabout 0.1;
consequently, a substantial part of excitons perish non-
radiatively with time t,,. Radiative annihilation of exci-
tons accompanied by the emission of a photon occurs
over atime T,. We assume that the exciton gas temper-
ature in the region of interest coincides with the lattice
temperature since al characteristic times of exciton
departure from the system are much longer than their
relaxation time along the energy axis (t,, T, > 17). All
these times may in principle be functions of tempera-
ture, but we assume that this dependence can be
ignored in the temperature range under investigation.
The quasi-equilibrium energy distribution of excitonsis
of the classical (Boltzmann) or Bose type depending on
exciton concentration n and temperature T. It should be
borne in mind that excitons suffer direct radiative anni-
hilation and contribute to luminescence only within the
“light cone” determined by the momentum conserva-
tion law (in our case, excitons whose momentum com-
ponent inthe planeisk < 3 x 10° cm™ emit photons; this
corresponds to an energy uncertainty oE of about
0.3 meV). To determine the luminescence intensity, we
must take into account the contribution of particles
from this energy interval. If the observed narrow lumi-
nescence line of interwell excitons has awidth A > &E,
this can be a consequence of nonhomogeneous broad-
ening. If we assume that the luminescence probability
isindependent of energy, the temperature dependence of
luminescence intensity | can be established by determin-
ing the number of particlesin the energy interval oE,

SE

|0 [ f(E)D(E)CE, (4)

where f(E) is the distribution function. For the Boltz-
mann distribution, we have

| O01—exp(—0E/T). 5)

It was mentioned above that macrofilling of the low-
est energy state takes place at atemperature below the
critical value (2). In accordance with formula (1), Ny =
no(T)L? is the number of above-the-condensate parti-
cles in the domain in question after the beginning of
condensation. The critical temperature is defined by
two variable parameters, viz., the exciton concentration
determined by the pumping power and the domain size,
aswell asthe lateral mass M of an interwell exciton. In
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other words, it is determined by the minimal energy E,
of the system and by the number N, of above-the-con-
densate particles in a domain. If we use the value of
M =0.16m,, the observed value of T, = 3K corresponds
ton~10%cm?and L ~1—3u (Ny ~ 100-300 and E, ~
0.1 K), which corresponds to experimental conditions.

The particles in a macroscopicaly filled state must
be coherent (i.e., described by the same wavefunction);
consequently, it is natural to assume that the radiative
probability of annihilation of interwell excitons in the
condensate must be proportional to their number N
accordingly, the luminescence intensity is proportional

to NC2 (N, isthe number of particlesin the condensate).

For incoherent above-the-condensate particles, the
luminescence intensity is proportional just to number
Ny. Theabove considerationsarein (at least qualitative)
agreement with the experimental observations. Direct
measurements of the luminescence kinetics under
pulsed laser pumping demonstrated [15] that the lumi-
nescence decay time of the narrow line corresponding
tothe“condensate” part of excitons amountsto approx-
imately 10 nsat 2 K and is ailmost an order of magni-
tude shorter than the luminescence decay time for exci-
tons outside the condensate (this time exceeds 100 ns).
The dependence of luminescence on temperature or
pumping power can be determined from the balance
eguationstaking into account the above-mentioned fac-
tors. If wisthe exciton generation rate per unit time at
aunit area element (which is determined by the pump-
ing power density), we have

W = ﬂ, 1 = 1 + l (6)
TO TO L
in the absence of macrofilling. In this case, the lumines-
cence intensity | O n/t, = wWty/T,. Under the experi-
mental conditions, the quantum yield 14/T, does not
exceed 0.1.
After the beginning of condensation, the balance
equation acquires the form

Ne , Ne, No

wL? = .
Tr Tn TO

(7)

Thethreshold valuew, = ny/1, correspondsto the begin-
ning of condensation (N, = 0). The luminescence inten-

sity of coherent excitonsin the condensateisl . ~ Nf It,.
At a fixed temperature at the beginning of condensa-
tion, I, O (w —W0)2L4T§/Tr; upon a further increase in
pumping, we have |, O (w — w)L2. The dependence of
luminescence intensity changes when (w — wg)/w, O
T,/219Np.

Figure 2 illustrates the dependence of the lumines-

cence dependence of the condensed part of interwell
excitons on pumping intensity. The luminescence
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Fig. 5. Temperature dependence of luminescence intensity
for a system with coherent macrofilled state (A) for Eg =
8 ueV = 0.09 K, No(To) = nL? = 100, and 1,/1 = 10 and for

a system with the Boltzmann distribution (B) with &E =
0.3 meV.

threshold of the exciton line and its superlinear increase
followed by alinear increase of the luminescenceinten-
sity as a function of pumping intensity can be clearly
seen in the figure (see inset). The dynamic range of the
superlinear behavior of the intensity is determined by
the size of the domain (trap): the smaller the domain
area, the larger the range of the nonlinear behavior. The
theoretical curve in Fig. 2 is plotted for the following
values of parameters: 1,/1, = 10 and N, = 100.

Figure 5 shows the calculated temperature depen-
dence of the luminescence intensity for a system with
macroscopic filling of the lowest coherent state of inter-
well excitons (Bose condensate) and for a system with
the Boltzmann distribution for the same values of
parameters as in the inset to Fig. 2. It can be seen that
the temperature dependence of the luminescenceinten-
sity for the Boltzmann distribution is very weak, while
the macrofilled state below critical temperature T,
exhibits a sharp increase in the intensity upon cooling
and the dependenceisclosetolinear. Thisisin good (at
least qualitative) agreement with experiment. The
intensity ratio is IJl, ~ T/Tp a T < T.. It should be
emphasized that the experimentally observed strong
temperature dependence of the luminescence intensity
of the exciton condensate under steady-state pumping
is possible only provided that the radiative annihilation
probability for excitons in the condensate is consider-
ably higher than the radiative decay probability for
above-the-condensate excitons, and the luminescence
guantum yield of above-the-condensate excitons is
much smaller than unity. On the whole, these observa-
tions indicate that the collective state of excitonsin the
condensate is coherent. The coherence scales have not
been measured as yet by a direct method (e.g., by mea-
suring the intensity correlator); however, in all proba-
bility these scales are close to the sizes of domain traps.
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Abstract—A theory of weak localization in two-dimensional semiconductor structures and meta films is
developed for spin relaxation by the Elliott—Yafet mechanism. The theory isvalid in the entire range of classi-
cally weak magnetic fields. It is shown that effects due to spin-orbit interaction substantially modify magne-
toresistance in both diffusive and ballistic regimes. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Weak localization is caused by interference of two
electron waves that are scattered by various impurity
configurations and propagate in opposite directions
along the same closed trgjectory [1]. The most pro-
nounced weak localization is observed when phase
coherence is destroyed in classically weak magnetic
fields. Moreover, dephasing may be caused by spin
relaxation, phase relaxation, intersubband transitions,
and other factors. The corresponding carrier relaxation
times can be determined experimentally.

In the absence of magnetic field, when the dephas-
ing time is much longer than the momentum relaxation
time, the negative contribution to conductivity is dueto
al possible closed trgjectories. In nonzero magnetic
field, interference is effectively destroyed in the diffu-
sive regime when magnetic length is much larger than
mean free path and electron motion along a closed tra-
jectory involves many scattering events. Since dephas-
ing may also be due to spin relaxation, correct descrip-
tion of weak localization in real structures requires
characterization of effects due to spin relaxation. To
date, therole played by these effects has been well stud-
ied for al mechanisms of spin relaxation in semicon-
ductors and metals.

As magnetic length becomes comparable to the
mean free path with increasing magnetic field strength,
interference tends to break down even for trgjectories
with relatively few scatterers, and the corresponding
carrier motion cannot be treated in diffusion approxi-
mation. In a number of studies, spin relaxation effects
in the ballistic (nondiffusive) regime were described in
phenomenological models without taking into account
microscopic mechanisms [2, 3]. The key mechanisms
responsible for spin relaxation in semiconductors and
metals are the Elliott—Yafet and Dyakonov—Perel
mechanisms. The former is associated with spin-flip
transitions due to electron scattering by impurities and

phonons. Thelatter is observed only in crystals without
inversion symmetry and is associated with odd termsin
the Hamiltonian that determines the spectrum of elec-
trons or holes in a semiconductor. The analysis of spin
relaxation dominated by the Dyakonov—Perel mecha-
nism presented in [4] exposed the contribution of spin-
orbit interaction to the quantum correction to conduc-
tivity. The experimental studies presented in [5—7] were
focused on anomal ous magnetoresistancein classically
weak magnetic fields, when magnetic length is compa-
rable to mean free path and spin relaxation is due to
elastic scattering by impurities. It was shown in those
studies that spin-flip scattering plays a dominant role in
InSh-based structures at low temperatures (see adlso [8]).
However, its contribution to magnetoresistance in the
ballistic regime has never been analyzed theoreticaly.

When spin-orbit interaction is weak, the contribu-
tion of the Elliott—Yafet spin relaxation mechanism to
dephasing must decrease with trajectory length or con-
centration of scatterers. Accordingly, the effects due to
the Elliott—Yafet spin rel axation mechanism are weaker
inthe ballistic regime of weak |ocalization as compared
to the diffusive regime. However, it was found that the
contribution of spin relaxation is significant even
beyond the scope of diffusion approximation [9].

In this paper, we develop atheory of weak localiza-
tion in two-dimensional semiconductor-based struc-
tures and metal films. The theory is valid in the entire
range of classically weak magnetic fields when the
Elliott—Yafet mechanism plays a dominant role in spin
relaxation.

2. WEAK LOCALIZATION
IN ZERO MAGNETIC FIELD

We consider the effect of weak localization on the
static conductivity of atwo-dimensional systemin both
zero and nonzero transverse magnetic fields. We
assume that the characteristics of the electron gas are

1063-7761/05/10104-0699%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Diagram representing the dominant contribution to
anomalous conductivity Ag, in the diffusive regime. The
Cooperon is represented by the hatched area. Greek |etters
denote spin indices.

Fig. 2. Diagram representing the weak-localization correc-
tion to conductivity in the ballistic regime: g is the trans-
ferred momentum in correlator (5); k and k' are the
momenta in the propagators meeting at the diagram’s
vertices.

such that the system behaves as a good conductor:
€Ty > 1 (g is the Fermi energy, 1, is the quantum
relaxation time), both phase relaxation time 1, and spin
relaxation time 1 are much larger than 1, and scatter-
ing is due to short-range interaction.

Our calculations are performed by using azero-tem-
perature diagrammatic technique. In this approach, the
“normal” (Drude) conductivity corresponds to the sum
of loop diagrams with nonintersecting internal lines. It
was shown in [10] that only impurity-averaged dia-
grams of the two typesillustrated by Figs. 1 and 2 sub-
stantially contribute to anomalous conductivity. The
inner part of these diagrams is called the Cooperon
propagator. Accordingly, the conductivity is deter-
mined by cal culating the Cooperon and using the result
in summing the diagrams of both types.

To express the conductivity in terms of impurity-
averaged Green functions, we must calculate the corre-
lator of the matrix elements for electron scattering by
impurities. In [11], expressions for the matrix elements
Vg Of an impurity quantum-well potential were
obtained in the case when only one size-quantized sub-
band is occupied and carriers are described by the Kane
model (the Fermi energy of two-dimensional electron
gas is much smaller than the bandgap width). For a
short-range potential, we have

2Ta,

. ..o s
Vop(k —= k', a) = Eﬁuﬁ[ + (A% +28B?)
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Ta
%\iﬂk[k)smz )\%}
1)
2213,
O

+(ZB+B) ~

[0 X (K + k)] 8in” =22

2 : ,
x =Voexp[-i(k —k)agl,
where k and k' denote, respectively, the two-dimen-
sional wavevectors of the incident and scattered parti-
cles in the quantum-well plane xy; A and B are Kane's
coefficients (assumed to be small in the case of weak
spin-orbit interaction); a is the three-dimensional posi-
tion vector of the scattering impurity; V, istheintensity
of ad potential; and A isthe quantum-well width.

The expression for the required correlator obtained
by averaging over impurity position vectorsis[12]

WaByK(k — K, q— q')

= W{ 3,0, [1+c(k k' +q )]

. : )
+ CX[G(XB X (k +k )] z[o.yK X (q + q )] z}

x & (k'+q -k —q),
where

[2quB 2,52 2 TC

- (211) nD)\ D%)\H\ (A“+2B ))—\—2

)\[(A2+ zsz)g}zg ,

ie

c=A%+2B% ¢, = 3—)\2(2AB+ B?)?,

k, g and k', g' correspond to initial and final momenta,
respectively; n is the two-dimensional carrier concen-

tration. When spin-orbit interaction is weak, both ckﬁ

and cxkﬁ are smal (k- is the Fermi momentum).
Accordingly, further calculations are performed up to

first-order terms in ck? and c,kZ. It is clear from the
expression for the correlator that the constants ¢, and ¢
correspond to scattering with and without spin flip,
respectively.

In the diffusion approximation [1, 12], the calcula-
tion of the term proportional to ¢ in the expression for
the correlator reduces to the replacement of 1, with
transport time. Since the contribution corresponding to
c can also be taken into account by replacing 1, with
transport time when the ballistic regime is considered
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-k, a -k, B -k,a -k, B -k, a -g, i -k, B
| | ’ x
Q+Kk,y Q+Kk', 0 Q+k,yQ+k,d0 Q+Kk,y Q+g,i Q+Kk', o

Fig. 3. Cooperon equation in momentum representation.

for small ¢,k? and ck?, the constant ¢ is omitted here
to simplify calculations.

The Dyson equation for the impurity-averaged
Green function Gyg(p, w) is

Gap(P, @) = Gog(p, W)

+ jeﬁy(p, @) Gy (0, 0) Gep(p, @)

)
x %1{ 8,3, (1+2cp 1)

+¢[ox(p+0a)],[o: x(p+0a)],}dg,

where Ggﬁ (p, w) is the single-particle Green function
in the absence of impurities (summation over repeated
spin indices is performed).

Since the correlator is symmetric with respect to
spinindices, it can be shown that the solution to Eq. (3)
in the Born approximation is proportional to the iden-
tity matrix:

GaB(pi (*)) = G(p, w)éuﬁf
isgn(w) 7™ (4)
G(p. @) = [w-&(p) + AT

The total dephasing time t contained in (4) is deter-
mined by parameters of the correlator:

1_1,1
T

To Ts

where T, = (2m)%mW is the momentum relaxation time

and 1,=Ty/2¢, p,2: isthe relaxation timefor the z-projec-

tion of spin in the Elliott—Yafet mechanism (m is the
particle mass).

Henceforth, we denote the contributions to anoma-
lous conductivity represented by the diagrams in
Figs. 1 and 2 by Ag, and by Aoy, respectively. It can be
shown that all diagrams similar in order to these, but
having different form, cancel out when the spin-orbit
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effects are described by correlator (2), asthey do inthe
absence of spin-orbit interaction according to [10].

The corresponding expressions are

ezﬁz [k k)G (k)G"(k)G" (k")
mim

Ao, = >

x GR(K) gppa(—K, =K', k + k") dkdk',

et
21TIm
x GR(K)G Nk —g)G (k' - g)

Aoy, = 5

k (k') G (k)G (k)G (K'
J’( )G (k)G (k)G" (k") -

XWonoB(k —k -0 k‘_g - kl)
X[ opa(k—0,k'—g, k + k' —g)dkdk'dg,

where GA(p) = G(p, w = -0) and GR(p) = G(p, w = +0)
denote advanced and retarded Green functions, respec-
tively, and I"gg,(K, K', Q) representsthe Cooperon. Since
photon momenta are assumed to be small, the contribu-
tions of vertices reduce to products of k with k'.

The diagram shown in Fig. 3 represents the Coop-
eron equation

raByK(k’ klv Q)
= WaByK(_k - Q + k, k' HQ + kl)

(6)
+IWalyo(k - Q + k1 g— Q + g)

x G*(-9)G™(Q + g)F pox (9, k', Q)dg.

Since Eg. (6) contains the product GA(—g)GR(Q + g),
the dominant contribution to theintegral correspondsto
the neighborhood of the Fermi surface. Since the loop
diagramsin Figs. 1 and 2 contain propagators meeting
at the vertices, the dominant contribution to conductiv-
ity corresponds to momenta k and k' of the Cooperon
apy(K, K', Q) lying on the Fermi surface and |Q] is
small as compared to the Fermi momentum kg. There-
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fore, EQ. (6) can be solved by assuming that [k | = |k'| =
lg] = ke and dropping Q in the arguments of the corre-
lator.

Equation (6) is equivalent to 16 independent scalar

eguations. Their number is reduced by using the
relation

[WaByK(k - ql1 K'—> ql)] *

= WGBVR(k —q, k' — q')’
where 0 and a correspond to opposite spin orienta-
tions. Since

[G"(-9)G"(Q +9)]* =G"(-9)G*(g-Q),
the complex conjugate of Eq. (6) has a similar form
with Toa(K, K', Q) replaced by ram(k, k', Q)*.
Therefore,

Mook KL —Q)* = T (kK. Q). (D)

Conductivity can be evaluated without calculating

all components of I . Since the vertices of the diagram
shown in Fig. 1 are not associated with spin-flip transi-
tions, the diagram contains only the Cooperon compo-
nents having the form I ygg,. The expression for the
correlator can be used to show that the following com-
ponents are also required to calculate the diagram
shownin Fig. 2:

r—+—+! I_+—+—- I_++—a r—++-

Thus, in view of relation (7), only four components are
required to calculate conductivity:

r++++a r—++—a r——++! I_+—+—-

To solve Eq. (6), weintroduce the angle coordinates
@, @, and Y corresponding to the vectorsk, k', and Q,
respectively. Theintegral of Eg. (6) over the magnitude
of g yields equations for the Cooperon components
enumerated above:

2n

T 1
* o] Tk /m) cose
0

F++++((p, (pv llJvQ) =W

X r++++('~IJ + G, (pll l.|J, Q)de

T lexp(-ig) + exp(-i(0 + W)’
4nts_! 1—i(Qkst/m)cos6
X, (W+86,¢,,Q)d6,
M@ 6,9, Q) = We ki exp(io) + exp(i@)]”

2mn

+ L -
2nT0I1—|(Qk
0

(8)

1 1
£T/m) coser‘“’f(qJ +6,¢,y,Q)do
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LT [exp(ie) + exp(i(8 + W)’
4nrJ 1—i(Qkgt/m)cos6
0

x r++++(UJ + e’ (pl! lIJ, Q)de’

21

T 1
* o] Tk /m) cose
0

M (0, 9,0,Q =W

X F++__(llJ + e: (P', LIJ, Q)de

2n

T 2+2cos(@-— qJ—E))r
4mJ 1—-i(Qket/m) cosB
0

(W +6,¢,1,Q)db,
9)

M@ ¢, Y,Q) = —2We KF[ 1 + cos(¢— ¢)]

21

T 1 ,
* 2T[T0I 1—|(Qk,:'l'/m) Coser_-*“*'_(l‘IJ + e’ (p! LIJ! Q)de
0

21
T 2+2cos(9—y—6)
ant) 1-i(Qket/m)cosB
0

r++—(llJ + 9, (p" lIJ, Q)de

Thus, we have independent systems (8) and (9) for
Meveer Tyandl_,,_, ., _, respectively, where 0 is
the angle between g and Q.

In the absence of spin-orbit interaction (c, = 0), the
latter equations in systems (8) and (9) reduce to homo-
geneous equations, _,_, and _,,_ vanish, and the
remaining equationsfor I'.,,, and I',,__ determine the
Cooperon propagator [10]. The present analysisiscom-
plicated by the dependence of the Cooperon propagator
on @, @, and 6.

To solve systems (8) and (9), we represent the Coop-
eron as an expansion in the harmonics of ¢:

I—GBVK((pl (p- Q) = z exp(in(p)l';ByK((p', Q)! (10)

where n is the harmonic number.

It is clear from the right-hand sides in (8) that only
the harmonics exp(-2i@), exp(—i), and 1 are contained
inT.l(@ @, 4, Q), while only exp(2i¢), exp(i¢), and
1 are contained in I'_,_,. Thus, the series in (10) are
finite sums, and (8) and (9) reduce to exactly solvable
systems of eight linear algebraic equations. Moreover,
since expressions (1) and (2) are valid only to the low-
est order in spin-orbit coupling, systems (8) and (9) can
be solved in the first approximation with respect to T/t
and 1/1,,.

It follows from Eq. (8) that I'_,_, is on the order of
(t/t Yl 4414 Therefore, I, ., can be found by dropping
theterm containing I'_, _, in the former equationin (8).
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Analogously, the term containing I_, ,_ is dropped
in theformer equation in (9), and the resulting equation
for,,__issimilar to the simplified former equation for
+++ In (8). This equation is independent of angles,
i.e, it is analogous to the Cooperon equation for the
ballistic regimein the absence of spin-orbit interaction.
Thefinal solutionis

. . W
r++++(ku k 1 Q) = r++_(k’ k ! Q) = 1—20-[/-[01

where the functions Z,, depend on |Q]:

2n n
_ cos 0
Zn = 2T[J-1+'[/Tq,—(iQk,:T/m)COSGde
0

Tofind I'_,,_, we subgtitute the expression for I, __
into the latter equationin (9) and use expansion (10). As
aresult, we obtain arank 3 system of linear equations
for harmonic coefficients.

Thefinal expressionfor I'_,,_calculated up to terms
of order 1/t,is

WD 1
_++—(k K', Q) Dl ZOT/TO + ZOT/TS
5 [ ~ ZZfT/TS
1-Zyt/tg+ Zyt/T,
Lkt L]
T Ke 2Ts (11
_ 1
1-Z,t/ty—Zytltg
5 [1 275t/ + X
1 20T/T0 ZOT/TS TS

(k +k)e, T T
Ke ZlZTJ *o

[ |

where eisthe unit vector parallel to Q. Since Z, ~ 1 and
Z,(Q) ~ Qinthediffusiveregime, thetermsin (11) that
contain Z; can be neglected and an expression similar to
that found in [13] is obtained.

The remaining component I_,_, can be neglected,
because it is on the order of (t/t)l ..., and its contri-
bution to (2) is multiplied by t/1,.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

703
When the magnitude of Q is small, the expressions

forl,,,.andl_,,_reducetothosefoundin[13]. When
itislarge, we obtain

M (K K, Q) = W[l +

1 T[]
JD_TQ%_T_SD}

Wt
J_QT

Thefinal expression for the anomal ous contribution
calculated by taking into account the contributions of
spin-orbit interaction to the vertices of the diagramsin
Figs. 1 and 2 isthe sum of Ac, and Ao,

(12)

M. (k,k,Q) =

Ao =

¢ On D1+Tcp/TD[ T Ut
2n2hm EiL+r(p/rQ 21 ZTJ

--| gu— —In2

Since this result is obtained by performi ng calcula
tions up to t/t,. AS T, — oo, it reduces to the expres-
sion for the conductivity of atwo-dimensional structure
obtained in [10] without using the diffusion approxima-
tion up to afactor of order 1/1,,.

In the limit of T/t, > 1, expression (13) yields the
result obtained in [13] with

¢
(13)

1t = 1té = 1tg, = 0,

TS, = ¢k = 1/21..

3. MAGNETORESISTANCE

The impurity-averaged Green function correspond-
ing to classically weak magnetic fields can be repre-
sented as follows [14]:

GA(r, 1)

_ A RA(, o1
—exp[mé(x x)(y+>/)}e .y @4

= exp[i®(r, r)] G (r =1,

where GRA(r) is the impurity-averaged Green function
for zero magnetic field. The phase factor isexpressed as

(1) = LX)

where lg = J/mc/eH is magnetic length. It is assumed
herethat H is paralel tothezaxisand A = g H x.
The change from momentum to coordinate repre-

sentation is performed by replacing k with the corre-
sponding gradients. As aresult, we have to deal with a
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Y

i LLa2,pB g

f 1,y2,d h

Fig. 4. The simplest diagram representing the correlator in
coordinate representation.

much more complicated problem as compared to the
case when spin-orhit interaction is absent and the corr-
elator isafunction of coordinates only. However, since
the angle dependence of the correlator is insignificant
in the diffusion approximation (see above), the Coop-
eron can be calculated by using the correlator averaged
over the angles associated with its arguments. The
averaged correlator matrix isindependent of momenta,
and its coordinate representation is a function, not an
operator.

Accordingly, the correlator allowing for spin-orbit
effects beyond the scope of the diffusion approximation
is written in coordinate representation as an operator
containing spatial derivatives. For this reason, we use
the diagram shown in Fig. 4 instead of the correlator.
The corresponding expression (obtained as the inverse
Fourier transform of its momentum representation) has
the form

D = J'5(r1—r'1)6(r2—r'2)6(r1—r2)
X WO{ 6a85y5[1 + C(inl(_i)Vr2 + in'l(_i)Vr‘z)]
+C [0 x(1V, =iV )] [os*x(1V,=i1V.)],} (19)
X Gh(r;, 1) Gu(r 2 Tg)GH(r )

x GR(r ¢, ry)drdridr,drb.

Since ke is much larger than Vlg in classically weak
magnetic fields, the gradients of Green functions (14)

ROMANOV, AVERKIEV

can be calculated by treating the phase ®(r, r') asinde-
pendent of the coordinates. Then,

V.,Gi (1)
= Vo [exp(id(ry, 12))G A (r=r)]

= exp[iD(ry, 1,)0, G A (ry—1y)] (16)

L R A
- ilkFelzGH (r11 rz)’

VrzGﬁ'A(rlv r5) = #ikee, Gy (1o, 1),

whereg; = (r; —r;)/|r; —r;].
Asaresult, thediagram in Fig. 4 is expressed as

D = J’E’)(rl—rz)
X Wo{ 84p8,5(1 — Cke[ €641 + €1161])
—CkElOp * (61—l [oy s (61—} (17)
X Gh(ri, F1)GR(r2 M) Ga(r 1)

x GR(r ¢, ry)dr,dr,.

It is clear now that the coordinate representation of the
correlator depends on the directions from points 1 and
2to paintsi, f, g, and h and does not contain any deriv-
atives.

The coordinate representation corresponding to the
momentum representation in Fig. 3 must contain tad-
pole diagrams, since the differentiation operators in
both correlator and Cooperon must be replaced with
unit vectors of the directions (see Fig. 5). After replac-
ing the differentiation operators in the Cooperon with
unit vectors, we can remove these propagators. The

g i L,a2,pB g i l,a 3,K 2,B
- : - : - ; \\:
i 5 P & '
h f 1,y2,0 h f Ly 3,0 2,0
Fig. 5. Coordinate representation of the Cooperon equation in the presence of spin-orbit interaction.
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resulting equation for I is
3835011 rp)
= Wl 60([36y6_cxkF[GGB X (61 + €y)],
x[oys% (€11 +€)] }O(r —ry)

2 (18)
+IW0{ Ouk Oyo— CxKE[ Oy X (€1 + €13)],

X [Gvo x (efl + 613)] z}
X Gh(ra r1)Gh(ra M) iaas(rs ro)drs,

where r‘;g';é (r4, r,) correspondsto the extreme left dia-

gramin Fig. 5 (Cooperon) with tadpoles removed from

pointsi, f, g, and h; [aas (r3, r) is its analog corre-

sponding to the extreme right diagram in Fig. 5. Here,
the superscripts correspond to the legs of the removed
propagators, and the subscripts are spin indices. Thus,
the Cooperon yivs (T, T5) is a coordinate representa-
tion analogous to the Cooperon Mg sk, k') in the
momentum representation, and Eq. (18) is similar to
Eq. (6).

It is obvious that the solution Tuis(ry, p) to
Eq. (18) must depend on the unit vectors €, €;, €y,
and ey, rather than on the exact locations of pointsi, f,
g, and h, respectively.

By analogy with the calculation of conductivity in
momentum representation discussed above, both loop
diagrams can be calculated by using only the Cooperon

components with an even number of positive (or nega-
tive) spin indices:

FI (1, 1), Tpna (P 1), T8 (r, ),
Ifgh Aryry), rl—fgh+(r11 ra), rlfgh (ry,ry),

fgh
Lg—(rl’ ra), F_++(I’1, 2).

As in calculating the Cooperon in the momentum
representation, its complex conjugate can be combined
with the relation

[Ga(ry, r2)Gr(ry, ro)l*
to show that
[P0 (r s, 12)]* = Tags(ra ).
By

Therefore, conductivity can be found by calculating
only

Gh(ra r)Ga(ra ry),

fgh fgh
I+E’++(|'1- ra), I"_E+_(r1,r2),

fgf—(rl, ra), rfl(rlnrz)-

Changing from the unit vectors &, €;, €, €, and €3
to the corresponding angles ¢, @, Y, ¢', and 6, we
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rewrite Eq. (18) as
Capys(F o 2 @ @, W, 0')
Wopys(rs, @ @, W, W)d(r—r,)
(19)

+ [Wooca(r 1, @, 6,6, B8)Gi(rs r1)Ga(rary)

x rKBOB(rS! r21 el e, l.IJ, l]J')dI'3,
where

Capys(F 2@ @, W, W) = riufgCE(rl’ ra),
and Weg,o(r 1, @, @, U, ') is expressed as
ch|3y6(rlv o, (P, lIJ, qJI) = WO{ 60([36v6

—CkE[ 0y (sing-+ Sin) — 0%y (cosp+ cosy)]

x[ays(sing + siny') —ays(cosg + cosy)]}

with o' denoting the ith Pauli matrix.

Equation (19) can be solved by the method applied
to systems (8) and (9) if the solution is represented as
the series expansion of the Cooperon in harmonics of
the third and fourth arguments. However, we note that
the arguments of ;5,5 ON its right-hand side span only
the subspace (r4, r,, @, @, Y, ') of the space (ry, ry, @,
@ =, §, I"). Therefore, we can calculate only T yg,5(r 1,
r, @ ¢ =@, Y, "), whichismuch easier to do because
we can use the expansion of the Cooperon in the har-
monics of one argument only. Oncel 45 5isfoundinthe
subspace of arguments, I" 45,5 iS €asily determined in the
entire space by substituting the calculated I gg5(r 4, I,
@, @, Y, P into the right-hand side of Eq. (19). Accord-
ingly, we begin with solving the equation for I"yg,5(r 1,
r21 (p! (plv llJv l-|JI)

By analogy with Eq. (6) for the Cooperon in the
momentum representation, this equation is equivalent
to several independent systems of rank 2 equations.
Conductivity can be calculated by solving only two: the
systemforl, ., andl,_,_andthesystemforl,,__and
M.

Applying the method used to solve systems (8) and
(9), we represent Iygo(r1, 2, @ @ Y, Y') as a series
expansion in the harmonics of @. As in the momentum
representation, the Cooperon contains alimited number
of harmonics. Asaresult of this substitution, we obtain
equations for individual harmonics whose kernels con-
sist of terms of the form

exp(i8)Gp(rs, r1)Gp(rs r) f (W, ¥),

with different f(y, 4).

In the method for solving Eq. (19) in the case of
¢, = 0 proposed in [14], both the kernel of the integral

No. 4 2005



706

100

4 Lo R RTE] Lo L
0.01 0.1 1 10
(U/1g)?

Fig. 6. Anomalous conductivity as afunction of the normal -

2,2
ized magnetic field strength H/Hp = | /s (Hp isthe mag-
netic field strength corresponding to magnetic length equal
to ) for several values of T/t and t/t,=0.02.

Cooperon equation and its solution were represented as
series expansions in products of wavefunctions of a
particle with charge 2e moving in uniform magnetic
field. Since angle dependence vanishes in the absence
of spin-orbit interaction, the kernel of theintegral equa-
tion for I gg,s(r 1, 12, @, @, Y, W') can be represented as

Gh(ra r)GR(rars) = 3 G Wy (ra) Wi y(ry),

N, X

where GN are coefficients and Wy ,(r) is the wavefunc-
tion of a particle with charge —2Je| and electron massm
in magnetic field parallel to the z axis. Since the abso-
[ute term can also be represented as

Wi0450,60(r1 —13) = Woéuﬁéyéz Wh, X(I‘Z)WE’X(I‘ 1)
N, X

the solution to the equation in the absence of spin-orbit
coupling has a simple form in the basis of functions

l'PM, x(r 2) kIJK‘ X (rl):

M apys(r 1 12)

1

= W060[36y6z mwm,x(rz)wﬁ,x(fl)-

N, X 0

However, the kernel of the equation for I"yg,5(r 1, 2, @,
@, Y, ") taking into account spin-orbit interaction con-
tains harmonics of the angle coordinate 8 of the vector
r,—rs. Accordingly, the expansion of the kernel in
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terms of Wy ,(r,) Wy, (r1) involves minor diagonals,
because

exp(i8)Gyi(rs, r1)G(rs ry)

= z( 1)(”]‘+n)/2R‘l{l1‘+(n+\n\)/2LpN+n X(rZ)LP x(rl)

N, X
where
no_ m2
Ke/NH/(N =n)!

[

xIexpE}—ZI -DLN n%—D rD dr.
0

Nevertheless, since the correlator contains only a
finite number of harmonics of @and ¢, the ensuing sys-
tems of linear equations for the coefficients in the
expansions of the Cooperon componentsl, .., M_,_,
M., and I,,__interms of the first angle argument

and l'IJM, x(rZ) me X (r l)v

rané(rl’ ra @ G lIJ, lp)

3

M, N, L, X

x exp(iL@) Wy ,(r2) Wy 4 (r1),

split into an infinite number of rank 6 systems, which
can be solved by a standard method. In particular, the
system of equations for I',,,, and I',_,_ s splits into
systems relating the components I, ..(M, N, L, Y, ¢")
andl,_,_(M,N, L, y, ) withL =-1, 0, and 1. Anao-
gous systems areabtained for I'_,,_and ', ,__.

The resulting I qg,5(r 1, 2, @, @, P, P') is substituted

into the right-hand side of Eq. (19) to find I gg,4(r 1, 12,
® @, Y, Y. The corresponding components 9", |
rifgh

—++—

rané(M1 N, L! LIJ’ llJ')

" and '™, can be found by using the
analogous components I g (1 1, 2, @, @, W, U').

Theresulting expressionsintermsof Ry, for thedia-

grams shown in Figs. 1 and 2 are simple series expan-
sions, but their terms have avery complicated form. For
this reason, we present here only the conductivity cal-
culated by numerical summation of these series.

4. RESULTS AND DISCUSSION

Figure 6 shows the quantum correction to conduc-
tivity calculated as afunction of magnetic field strength
for 1/1, = 0.02 and several values of 1/1,. The figure
demonstrates that spin-orbit interaction reduces the
absolute value of the anomal ous contribution to magne-
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toresistance and plays a significant role in both weak
and strong magnetic fields (when Iz > | and I < |,
respectively). When 1, < 1, the correction to conductiv-
ity is a nonmonotonic function of magnetic field
strength having a shallow minimum. When 1, > 1, it is
a monotonic function qualitatively similar to that
obtained in the absence of spin-orbit interaction.

The model developed here can be used to determine
behavior of the anomalous contribution to magnetore-
sistance both in weak and relatively strong magnetic
fields (when diffusion approximation is inapplicable).
Qualitative understanding of behavior in strong fields
(whenlg < 1) can be gained by calculating Ao, and Ao,
as given by expressions (5) with integrals taken only
over the regions where the third argument of the Coop-
eron exceeds 1lg. The resulting asymptotic formulas
can be used to evaluate the spin-orbit correction to con-
ductivity in relatively strong fields:

0, 0, U %L_QTDE_

20
TSDIB ( )

We see that the leading-order weak-localization

contribution to conductivity is on the order of 1/./H,
and the contribution due to spin-orbit interaction is on

the order of r/(rsA/ﬁ ), i.e., thelatter effect isweaker as
compared to that predicted for weak fields [13]. Thus,
anincreasein trajectory length and impurity concentra-
tion doesreduce the effects due to the Elliott—Yafet spin
rel axation mechanism. However, the results of accurate
calculations presented in Fig. 6 demonstrate that the
effect of spin-orbit interaction due to scattering by
impurities is still significant in fields for which Iz = |
and must manifest itself in experiments,

CONCLUSIONS

We have analyzed weak localization in the entire
range of classically weak magnetic fieldsfor spin relax-
ation by the Elliott—Yafet mechanism. The anisotropic
correlator used in the present analysis reflects the
effects of both spin-orbit interaction and spin relaxation
in two-dimensional structures. The theory developed
here describes the variation of the contribution to
anomalous magnetoresistance due to the Elliott—Yafet
spin relaxation mechanism with increasing magnetic
field strength.

The dependence of spin relaxation time on both
Fermi momentum and band structure predicted by the
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proposed model can be used to determine the effect of
the mean occupation on the quantum correction to mag-
netoresistance. Calculations of anomal ous magnetore-
sistance demonstrate that spin-relaxation effects are
significant in both strong and weak fields.
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Abstract—A theory describing the photoexcited current peaksin the spectral region corresponding to the ener-
gies of longitudinal optical phonons in semiconductors doped with shallow donors is developed. The expe-
rimental data available for n-GaAs are in good agreement with the results obtained using the proposed theory.
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[. INTRODUCTION

Let us consider the absorption of light by electrons
in a semiconductor doped with shallow donors in the
case of photon energiesin the vicinity of the longitudi-
nal optical (LO) phonon energy. The sample tempera-
ture will be assumed sufficiently low to provide that all
impurity electrons are in the ground state of the donor
centers. In this case, the light quantum can be absorbed
in two ways (Fig. 1): first, with adirect electron transi-
tion from the donor ground state to the continuum, and
second, with the transition into any intermediate state
followed by LO phonon emission. It should be noted
that the initial and final electron states in the second
case are the same and are localized at the donor atoms.
The total energy of the final state of the electron—
phonon system is equal to the energy of the electron
state in the continuum upon atransition of thefirst type.
Therefore, the situation in the second case corresponds
to the Fano resonance [1]. Indeed, an electron can
absorb alight quantum and pass to a new state either in
the continuum or in the discrete spectrum with the same
energy. Theinterference of these transitions can lead to
the appearance of asymmetric peaks in the optical
absorption spectrum. In what follows, these absorption
peaks will be referred to as Fano resonances. Spectral
features, which were later called Fano resonances, had
been originally observed in silicon doped with accep-
tors [2] and reported three years before the paper by
Fano [1] was published.

The nature of Fano resonances was qualitatively
explained in [3-5], but no quantitative theory was pro-
posed at that time because approaches to the descrip-
tion of the states of shallow acceptorsin silicon had not
yet been developed. Later, Fano resonances in the
absorption and photoexcited current (photocurrent) spec-
tra were observed for deep donor centers in silicon [6],
and more recently, these resonances were also reported
for the photoconductive response in GaAs and InP
doped with shallow donors[7]. However, to our knowl-

edge, no quantitative theory of Fano resonances in
semiconductors doped with shallow donors has been
created until now. Moreover, the observed spectral fea
tures have been frequently described either in terms of
formulas obtained by Fano [1], which refer to a partic-
ular case of the coinciding phases of matrix elements of
the operator of transitionsto the continuum andto adis-
crete level [5], or in terms of the approximate formulas
obtained in [8] (see, e.g., [7]).

The aim of this study was to develop a quantitative
theory of Fano resonancesin the photocurrent spectrum
of a semiconductor doped with shallow hydrogen-like
donors. We have obtained a general expression for cal-

Energy

i

I

Fig. 1. Schematic diagram of the optical transitions for an
electron occurring in the donor ground state | and absorbing
aphoton with the energy #wy: (1) atransition to the contin-
uum; (2, 3) transitions to the resonance state |¢qvia inter-
mediate states in the discrete spectrum and in the contin-
uum, respectively (1 isthe excited state).

1063-7761/05/10104-0708%$26.00 © 2005 Pleiades Publishing, Inc.



FANO RESONANCES IN THE IMPURITY PHOTOEXCITATION SPECTRA

culating Fano resonances in the absorption and photo-
current spectra, which is applicable to semiconductors
doped both with donors and with acceptors. According
to the proposed theory, formulas presented in [1]
and [8] do not provide adequate description in the gen-
eral case of the phenomenon under consideration. This
circumstance isrelated to the fact that the phase differ-
ence for the matrix elements of the electron transitions
to the continuum and to a localized state is generally
nonzero. The proposed theory is in good agreement
with experimental data available for GaAs and (with
somewhat less perfect coincidence) for InP.

2. CALCULATION OF THE PROBABILITY
OF ABSORPTION OF A LIGHT QUANTUM

Let us consider the probability of electron transi-
tions per unit time from the donor ground state to the
|¢Ostate under the action of light (Fig. 1). In the |0
state, the electron again occurs in the donor ground
state, but an LO phonon with wavevector q aso
appears. Obviously, a description of this process must
take into account the electron—photon and electron—
phonon interactions to within the second order of per-
turbation theory. Accordingly, thetransition frominitial
to final state can be subdivided into two stages (see,
e.g., [9]). In thefirst stage, the electron absorbs a pho-
ton and passes to an intermediate state; in the second
stage, the electron emits an optical phonon and passes
to the donor ground state. Note that the law of energy
conservation is obeyed for the entire process, but not
for each stage separately.

The Hamiltonian of this system can be written as

H = Ho+ VP + V", 1)

where the terms V™" and V" describe the electron—
photon and el ectron—phonon interactions, respectively;
2 2

p- €

20 rKg &)

isthe Hamiltonian of the electron moving in thefield of
a donor atom; p is the operator of electron quasi-
momentum; W is the effective electron massin the con-
duction band; r istheradius vector of the electron; Ky is
the low-frequency permittivity of the semiconductor;
and e isthe electron charge.

In the dipole approximation, the operator of interac-
tion between the electron and a circularly polarized
electromagnetic wave propagating along the z axis can
be written as

Ho =

eA(y—ix)e_mn +

2

where A is the amplitude of the electric field vector in
the wave. In expression (3), the first term describes the

—ph
v = c.c.,

©)
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photon absorption and the second (complex conjugate)
term describesthe emission. Sincewe areinterested only
inthefirst process, the second termin expression (3) will
be not taken into consideration.

The operator of the interaction between the electron
and LO phonon has the following form [10]:

VO = e IZT\[/thozlanp(_iqr +iopt)b +h.c., (4)
q

where V is the crystal volume, q is the wavevector,
wy isthecircular frequency, K = 1/K,,—1/Ky, K, isthe

high-frequency permittivity, and bg is the operator of
phonon creation. In expression (4), the first term
describes the phonon absorption and the second (Her-
mitian conjugate) term describes the phonon emission.
Sincewe areinterested only inthefirst process, the sec-
ond term will be omitted.

Then, taking into account only the processes of
interest, we canwrite Hamiltonian (1) inasimpler form

H = Hy+ V™ exp(—iot) + V-exp(iwgt),  (5)
where VP" and VO are thefirst termsin Egs. (3) and (4),
respectively, without time-dependent exponential
terms.

Using the assumption of adiabatic switching of the
interaction [9] and relations of perturbation theory, we
obtain the following expression for the probability of
electron transition from the donor ground state denoted
liCXo the |4 [istate:

2T,
Wy = 51S°8(fiw~fia), (6)
where Sis the transition matrix with e ements
VO | VP io
v Ao

%3

E; is the energy of the donor ground state, and misthe
set of quantum numbers of anintermediate state. All the
intermediate states can be subdivided into two groups
as belonging to the discrete spectrum and the contin-
uum. We will take into account the fact that the elec-
tron—photon interaction operator is proportional to the
spherical function Yy 4,

VP = eArA/%TYM(G, ),

and that the wavefunction of the donor ground state is
isotropic. Therefore, the intermediate state has a unit
angular moment and a unit projection of the moment

howy+ E—E,+iA '’

(8)
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onto the zaxis and, hence, isap-type state. For thisrea
son, all intermediate states in the continuum can be
characterized only by the energy, and states in the dis-
crete spectrum, only by the principal quantum number n.
Below, we will assume that the energy of the optical
phonon is greater than the energy of ionization of a
shallow donor. Then, expression (7) can be rewritten as

R \Vi Ty [\ Vi [l
Soi = 22 hw,+E —E,

n=

DV WEDD B0 o
hwy,+E —E

+PIdE

+ T, IV W (E)Om (E,) VP

where |n{is the wavefunction (normalized to unity) of
the intermediate state in the discrete spectrum and
|Ww(e)0is the wavefunction in the continuum, which is
normalized as

J'dar Op(E)p (E')O= 3(E—FE).

In these expressions, E, = fiwy, + E; and “P" in front of
the integral denotes the principal value.
Passing from |nto the new wavefunctions

W(E)U= Jo(E—-Ey)Ink]

which also belong to the discrete spectrum but are nor-
malized differently, we can rewrite Eq. (9) so that the
sum and integral will be replaced by a single term hav-
ing aform analogous to the integral in this expression.
However, the integration domain has to be expanded so
asto include the energies of the discrete spectrum. The
new wavefunctions Q(E) belonging to the discrete
spectrum obey the normalization condition for the
functions of the continuum. In what follows, we use
this compact form in writing and assume that the elec-
tron energy in the continuum is positive, while the el ec-
tron energies in the discrete spectrum vary from E; to
zero. Using this substitution, we can readily take into
account the influence of states in the discrete spectrum
on the interaction between resonance states and states
in the continuum within the framework of the Fano the-
ory [1].

The state |,[1s aresonance state because its energy
belongs to the continuum and it interacts with states
Y(e) of the continuum by means of the electron—
phonon interaction. Thus, the system under consider-
ation is exactly the same as the system considered by
Fano [1, Section 5] for an analysis of the interaction of
several resonance states with states in the continuum.
Accordingly, the exact wavefunction corresponding to
the energy E can be written as (see [1, Eq. (46)])

|w(E)O= Zaq(E)|¢qD+IdE'b(E, ENW(E)L (10)
q
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where
a(E) = b EL L coslA(E)], (1)
N = Vo(E)Vq (E) .
b(E, E) = —[Z(EiE)(Eq_Etb)+6(E—E)} 12
x cos[A(E)],

_ Vo(E)®

tan[A(E)] = -1y ———,
% E-E, (13)

VE(E) = oIV Iw(E)T

In deriving relations (11)—(13), we set

Vi (E)Vq(E)

= PI dE =

because the off-diagonal elements of the F, ; matrix

vanish on averaging over the ensemble due to an arbi-

trary phase difference between V; and Vg , while the

diagonal elementsareinversely proportional to the sys-

tem volume. For this reason, the sum zq, Foq(E)ag
in[1, Eq. (49)] can beignored.

The matrix elements of the operator of optical tran-
sition to the W(E) state can be written as follows:

OW(E) ViD= za:; (E)Sy:
q

=0,

(14)
+J’dE'b*(E, E) W(E)|V*"|i0

Taking into account relations (9), (11), and (12), this

expression can be rewritten as

_cos[A(E)]

phyiim —
W(E)|IVTiD E—E¢

xy @vIdE'vq(E)v;(E') p(E) |V™"io
q E;

n 1 1 0
“E,_E E-EJ (13)
+ITV,(E)Vq (Ey) CW(Ey) [V IIDE
— cos[A(E)] @y (E)|VP")iO
Using the explicit expression
E-E
cos[A(E)] = 0 , (16)
J(E—E,)? +T%(E)/4
No. 4 2005
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where
M(E) = 2ny [Vo(B)[",
q

and I (Ey)/% is the probability of electron transition
from a state in the continuum to the |i Cstate upon spon-
taneous emission of an optical phonon, we eventually
obtain the matrix element (15) in the following form:

Y(E, Ey) Gp(E)|[V™"liD

DW(E)|Vi0 =
J(E—E,)?+TXE)/4 an
. E-E
x [G(E) +iB(E) + T(E E:)}’

where

00

a(E) = z PIdE'Vq(E)V;‘(E') ap(E)|IVP"|io

9 g

o1l .. 110
“E,-E

E-EU

x (Y(E, Ey) (E) VIO,

_ Op(Ey) V7|0
[p(E)VPiD

= TS Vo(E)V; (Ey).
q

B(E)

y(Ev E¢)

Expression (17) isthe main result of thisinvestigation.
It should be noted that this formula was obtained with-
out using an explicit form of the Hamiltonian H,.
Therefore, Eq. (17) is aso valid for semiconductors
doped with acceptors and for the semiconductors with
an anisotropic law of dispersionin the conduction band.
For an analysis of the behavior of the sguare of
matrix element (17) in the vicinity of E,, we can put

0

a=4y PJ’dE'Vq(E)VZ;(E') [p(E")|V™"i0

a E
x (Ey —E") (I [ (E,)VPliTTH, (18)
BE) =1, y(EE) =TT

Then, the square modul us of matrix element (17) can be
written as

.12
| oW (E) Vi) = | Hu(f)JrI\)/(zhlld la +i+x?

o (19)
— |D-|J(E)|V2 |I|j [(a +X)2+1],

1+ X
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where x = 2(E — E)/T" isthe dimensionless energy.

Expression (19) is analogous to the formula
obtained by Fano (see [1, EQ. (21)]) for a single reso-
nancelevel, whichisfreguently used for the description
of photocurrent peaks in the vicinity of the optica
phonon energy [5, 6]. Settingin[1, Eq. (21)] the param-
eter g (which is not related to the phonon wavevector)
equal to a + i, one can readily obtain expression (19).

Thus, the probability of absorption of a light quan-
tumis

W(w) = 27”] dE| W (E)V™"lid*8(hiw + E; — E)
21T 2 (20)
= 7|DIJ(ﬁ(o+ E) Vi,

3. CALCULATION OF FANO RESONANCES
IN THE PHOTOCURRENT SPECTRUM
FOR A HYDROGEN-LIKE DONOR

Let us calculate the matrix elements @ (E) [VP"|i Cand
V,(E) for ahydrogen-like donor described by Hamilto-
nian (2). Using an expression for the wavefunctions of
a hydrogen atom and passing to the new variables of
length (measured in units of the Bohr radius ag =

h?Ky/ue?) and energy (measured in units of g, =

ue“/hZKé) we can write the wavefunction of the donor
ground state as [9]
0= Ryo(r)Yeo = 267/ /4m. (21)

The wavefunctions of intermediate statesin the dis-
crete spectrum can be expressed as [9]

2 (n—2)! —r/n
— [————¢
A [(n+ 1)1

I
2 EvL. (0, 0),

InO= R,1(r)Y.(6, ¢) =
(22)

xg[Ls
n

and those in the continuum as

2 1+ 1/K
E)O= dt
lW(E) 2k 1= e 2

' i/k—2 k-2
9 ezukrtB " 12% B_% Y11(6, 9),

(23)

where Lﬁ +1(2r/n) arethe generalized L aguerre polyno-
mials and the integration contour contains the branch-
ing pointst = +1/2.

The matrix elements of the operator of interaction
with electromagnetic radiation can be determined using
the formula for the transitions to states in the discrete
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spectrum givenin[11, Eq. (63.4)]. The matrix elements
of transitionsto the continuum can be determined using
the method described in the same monograph [11, Para-
graph 71]. The resulting expressions for the matrix ele-
ments of transitions to the discrete spectrum and con-
tinuum are as follows:

Vi _ 1 [2°n"(n-1)*""° ot
A - Rl imiamrs (24)
J3N (n+1)
E|L|J(E)|Vph|iD:F
eA 1_ g2k
(25

16 02
X mexp D—Earctan %,
wherek is the electron wavenumber (expressed in units

of the inverse Bohr radius) corresponding to the energy
E. For passing to the dimensional units, Eq. (24) hasto

be multiplied by ag, and expression (25), by ag/./g, .

In order to calculate V(E) viarelations (4) and (5),
we haveto determine the matrix element of the operator
exp(-q - r). This can be done using expansion of the
exponent in terms of spherical harmonics[9]:

oAl _ 4nz z (i) J|(qr)Ylmw:|Ylm%Ev (26)

l=0m=-

wherej,(X) = JTU2XJ, 4 12(X) and J, , 1»(X) isthe Bessel
function with a half-integer index. In particular, below
we will use the function

sinz(qr)_cos(qr)
(ar)?  ar

According to Eq. (13), the matrix element can be repre-
sented as V, = ) (E)|V-°|$,[] The angular dependence

ja(ar) =

ALESHKIN et al.

of thewavefunction |P(E)[{asafunction of the electron
coordinates) is described by Y; ;, while the electron
wavefunction in the | [istate is spherically symmetric
(because the electron is in the donor ground state). As
is shown in the Appendix, the wavefunctions of the
continuum can be written as

—I i 1 1/k *
[p(E)|e" " |iD= 'f ks ol q)Yl,l%,(zn
where

1
I(k,q) = —16nk3Idxx
0
><|mDEﬂXJrk 'D [(qx—0)2—K] 5,
Fox— 0

whilethe wavefunctionsin the discrete spectrum can be
written as

[hle'¥|i0 = —i V4Tt ,(n, q) Y5 (a/a),

where

(28)

(0, q) = fdrr Ru(n)Rs o[ 23 -2 80

According to the law of angular moment conservation,
the angular moment of the emitted phonon is equal to
that of the absorbed photon (because the el ectron wave-
functions in the ground and resonance states are the

same) and V, ~ Y1; (a/0). Using expressions (27) and
(28) and taking into account relation (4), we eventually
obtain

. exp —EarctankD 1 1
2P(dK (dal (k, g)1 (K, q)
[ 2(1+ KA)}(1- "””k)Ekz —kﬂ{

a(E) =

1+k;

exp D—E arctan %w

.
ke (1—e ™) (1-

TN (1K) {dql (k, @)1 (ky, @) o
%12 h/zgnr:(f 1)21)25 5% +11/n2 e +11,nE{dqlz(n, a)! (k, )
1 1+ k4, exp%—éarctanl% 1
kqm/(l e " (1-e?™) (14K qul(k D4 0
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1— e—ank L+ k2D
B(E) = o, o
—e OL+k

(30)
X expu( arctank, — Earctanl%
hoky 1 [1+1/K°
E, Ey) = /
Y(E Ey) = (2m )2'(kk¢) o2k
(31)

/1“3;'?; J1 910

4. COMPARISON OF THEORY TO EXPERIMENT
FOR GaAs AND InP

Contributions to the photocurrent are due to elec-
trons occurring in delocalized states upon the absorp-
tion of light quanta. For this reason, it might seem that
the photocurrent spectrum could be determined as a
product of Eq. (20) and the probability of an electron
occurring in such a delocalized state. However, using
relation (10) and taking into account the behavior of the
wavefunction Y(E) at larger (where Q(E) O sin(kr + &)),
one can readily check that the wavefunctions W(E) and
W(E) at large r differ only by their phases, while their
amplitudes are the same (see calculations following
[1, Eqg. (4)]). This situation implies that an electron in
the W(E) state is fully delocalized and its interaction
with the resonance states does not lead to partial local-
ization of the wavefunction.

In the vicinity of a Fano resonance, the spectrum of
the photocurrent is significantly influenced by the fre-
guency dependences of the coefficients of light reflec-
tion and absorption. These coefficients rapidly vary in
this region as a result of the light absorption by trans-
verse optical (TO) phonons. Taking into account these
factors, the photocurrent can be expressed as

_ W(w) o (@)
J(w) = Bl(0w)—L) e [1— R(w)]I dx,  (32)

where B is a frequency-independent constant, 1(w) is
the incident light intensity, n(w) is the optical absorp-
tion coefficient, and d is the thickness of a doped
region. The absorption and reflection of light in this
spectral interval are determined primarily by optical
oscillations of the lattice and can be described in terms
of the permittivity as[12]

K(W) = K, + - , (33)
W Wy
1-—=——i=t
Wro Wro
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J, rel. units
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Fig. 2. The photocurrent spectra of n-GaAs at T = 4.2 K:
points represent the experimental data; solid and dashed

curves show the theoretical spectra calculated for nd < 1
and nd > 1, respectively (the spectra are normalized

t0 100).

where wyg and y are the frequency and the decay con-
stant of the TO phonon, respectively. Then, the reflec-
tion R(w) and absorption n(w) coefficients can be
expressed as

R(w) = [Re(/k(w)) — 1] +1m’ (VK(w))
[Re(/k(@)) + 1]+ Im*(/k(@))

nw) = —C—Im(m(w)),

(34)

where c isthe velocity of light.

Figure 2 shows the cal culated and measured spectra
of the photocurrent in the region of the Fano resonance
in n-GaAs. The calculation was performed using the
following values of parameters for GaAs:

p = 0.0665m,, Kk, = 1246, K, = 10.58,

hw, = 36.588 meV [13], y = 0.001w;p,

Wro = Won/Kal/Ko,

where my is the free electron mass. One spectrum
(Fig. 2, solid curve) was calculated for a particular case
where the thickness d of a layer producing the main
contribution to the photocurrent is much smaller than
1/n(w). In this case, the photocurrent was calculated
using expression (32), where theintegration over x gave
d. Another spectrum (Fig. 2, dashed curve) was calcu-
lated assuming that the photoelectron yield depth is
much greater than 1/n(w). In this case, the integral in
Eqg. (32) is equal to 1/n(w). Apparently, the spectrum
for an arbitrary d value must fall between the two lim-
iting curvesin Fig. 2.

No. 4 2005



714

J, rel. units
T T T T

100+ n b

80

60

40

20

T
-~
P
1

1
310
/A, cm™!

| | |
280 290 300

Fig. 3. Theoretical photocurrent spectra of n-GaAs calcu-
lated with (solid curve) and without (dashed curve) allow-

ance for the reflection.
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Fig. 4. Theoretical photocurrent spectra of InP calculated
for nd < 1 (solid curve) and nd > 1 (dashed curve) (the

spectra are normalized to 100).

Experimental photocurrent spectra were obtained
for an epitaxial n-GaAs layer grown by liquid phase
epitaxy on a semi-insulating GaAs substrate. The epil-
ayer was doped with silicon at a concentration of 8.3 x
10* cm2 and had a thickness of 70 um. The electron
mobility at 77 K was 5.9 x 10* cm?/(V s). The measure-
ments were performed at T = 4.2 K using a BOMEM
Fourier-transform spectrometer.

As can be seen from Fig. 2, the experimental curve
agrees well with the spectrum calculated for a thin
semiconductor layer. In the spectral interval studied,
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the characteristic n valueisonthe order of 10° cm™ and
nd > 1. It should be noted that the photocurrent spec-
trum for GaAs reported in [7] is more asymmetric than
our spectrum and shows a much worse agreement with
the results of calculations.

Thecalculation of a(E) showed that the contribution
to this value due to states of the discrete spectrum of
GaAs is about 28%. It should be also noted that the
spectrum of the photocurrent in n-GaAs calculated
using formula (19) is practically the same as that
obtained using the exact expression (17). The values of
o and I' calculated using formulas (18) are as follows:

Ogaas = 7.962, T gaas = 0413 €V.

Figure 3 presentsthe results of photoresponse calcu-
lations for n-GaAs, which illustrate the influence of the
reflection coefficient on the shape of the Fano reso-
nance in the photocurrent spectrum. As can be seen,
allowance for the reflection makes the resonance peak
more asymmetric and narrow.

Figure 4 shows the theoretical spectra of the photo-
current in the vicinity of the Fano resonance for InP,
which were calculated for the following parameters.

p = 0.081my,

Ko = 12.2, K, = 9.487,

hw, = 43.33 meV [13],

Yy = 0.001lw;g, AW = 38.21 meV.

The position of the cal culated resonance peak isin good
agreement with that in the experimental spectrum
reported in [ 7]. However, the halfwidth of the measured
spectrum [7] is only about half the calculated value. In
addition, the experimental photocurrent peak for InP
(aswell asthat for GaAs) is more asymmetric than the
theoretical curve. The reason for the discrepancy
between calculations and the results of measurements
reported in [7] for both GaAs and InP remains unclear.
It should aso be noted that the cal culated halfwidth of
the photocurrent peak for GaAs is about half that for
InP (because I = 0.852 meV), whereas the half-
widths of the experimental resonance peaks for the two
semiconductors are approximately equal [7].

5. CONCLUSIONS

L et usconsider the question why Fano resonancesin
the photocurrent spectra of n-GaAs and n-InP are man-
ifested as peaks, whereas the same resonances in the
spectraof photocurrent and absorption in p-Si are man-
ifested as narrow dips. It should be noted that the ener-
gies of ionization for shallow donors in both materials,
GaAs and InP, are five to six times lower than the LO
phonon energy. For this reason, the electron upon
absorption of alight quantum with an energy equal to
that of the optical phonon passes to a high level in the
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continuum. The probability of such transitions is not
high because the matrix elements of the dipole moment
rapidly decreases with increasing light quantum energy
in thisregion (i.e., the transition is amost prohibited).
Therefore, the probabilities of photon absorption via
resonance states (which are of the second order of
smallness) become greater than the probabilities of
direct transitions. Owing to the interaction between res-
onance states and states in the continuum, the wave-
function W(E) of the continuum near the resonance
energy contains the wavefunctions ¢, of the resonance
states and the wavefunctions Y(E'). As a result, the
probability of absorption of a photon with an energy
close to that of the optical phonon sharply increases.

The situation in boron-doped p-Si is substantially
different. Here, the optical phonon energy is about
64 meV and the ionization energy for boron is on the
same order of magnitude (about 45 meV). In this case,
the Fano resonance is close to the position of the maxi-
mum probability of acceptor ionization and, hence, the
probability of a direct transition to the continuum in
this spectral region significantly exceeds the probabili-
ties of transitions both to aresonance state and to states
with different energies in the continuum. For this rea-
son, an “admixture” of the resonance state leads to a
decrease in the absorption, which is manifested by nar-
row dips both in the photocurrent and in the absorption
spectrum.
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APPENDIX

Consider the matrix element [ (E)|exp(—q - r)|il]
Using the expressions for wavefunctions (21) and (23),
expansion (26), and the condition of orthonormaliza-
tion for the Y, functions, one can obtain the following
expression for this matrix element:

W (E)lexp(=iq )[i0

_ i 1+1/K v* 0
K2 n(l—e —2T[Ik 11[&]

Idre [sm (ar) coz(rqr)}

(A.2)

x‘erikrt% N %I/k—Z% B %—i/k—Zdt.
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The integral with respect to r is readily calculated to
yield

_r+2| rt Sn(qr) COS(qr)
J’dr ‘ [ o’ aqr }
(A.2)

_ Dl 1- c?|kt[

l-2ikig md
arctan a D_E}H

The contour integral obtained using expression (A.2)
can be calculated only by numerical methods. How-
ever, sharp spikes of the integrand function make this
expression inconvenient for numerical calculations.
In order to reduce it to amore convenient form, expres-
sion (A.2) can berepresented in anintegral form, which
reduces the calculation to integration along a contour:

1-2ikt fL—2ikpy
—gl+ q [arctanDTD—ﬂ%
(A.3)
_ ;{1_%1 ZIKIDJ. dx }
q X+ (1-2ikt)*/q

The contour integral involving the right-hand side of
expression (A.3) can be calculated using the theory of
residues. For this purpose, the integration contour is
selected in the form of acircle of infinite radius and the
residues are calculated in the two poles where the sum
X2 + (1 — 2ikt)?/g? vanishes. The contour integral from
thefirst term in square bracketsin the right-hand side of
Eq. (A.3) iszero. Consider the following function:

53

ilk—2 ilk=2

I(k, q) = afdt%+1£

X[l - 2|kq]J, dx
x+(1 2ikt)*/q

1

= —161Kk° J’dxx

(A.4)

D[qx+ k

2 | 2,-4]
D[h [(qx )—k]g

As can be seen, the integral in the right-hand side of
expression (A.4) is readily caculated by numerical
methods. Using relation (A.4), we obtain the required
expression (27).
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Abstract—The spectrum of neutral intersubband excitationsin single and double quantum wells has been stud-
ied by the inelastic light scattering method. It is shown that excitation energies in an external magnetic field
have an anisotropic component proportional to the dipole moment of excitations along the growth axis of the
guantum wells. Consequently, the measurement of excitation energy in a magnetic field makes it possible to
experimentally estimate the quantitative measure of asymmetry of the quantum wells (dipole moment of the
intersubband transition). In addition, a parallel magnetic field makes it possible to considerably extend the
range of momenta studied sinceit shiftsthe dispersion curvesin the momentum space by the val ue of the aniso-
tropic component. A new method is proposed for determining the symmetry of double quantum wells. In asym-
metric wells, intersubband excitations appear between the layers and have a large dipole moment along the
growth axis. In symmetric wells, the magnetic field itself induces the dipole moment of intersubband excitations
so that the excitation spectrum does not change upon magnetic field inversion. Analysis of energy anisotropy
in intersubband excitations in double quantum wells makes it possible to determine the symmetry of double

wellsto ahigh degree of accuracy. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Itiswell known that the Hamiltonian of a system of
positive and negative charges with a total charge equal
to zero in a constant uniform magnetic field exhibits
trandational invariance. The corresponding integral of
motion isthe generalized momentum all of whose com-
ponents commute with one another. For asystem of two
particles, the generalized momentum can be repre-
sented in the form

k = =i(0,+02) + S(A1=A.) = =(r,=1,) B, ()

where 7 = 1, subscripts “1” and “2” denote negatively
and positively charged particles, A is the vector poten-
tial, and B isthe magnetic field strength [ 1, 2]. The gen-
eralized momentum in a magnetic field plays the same
role asthe momentum in zero field (absorption or emis-
sion of electromagnetic waves by aneutral system may
serve as an example). The interaction with radiation
preserves the sum of the photon momentum and the
generalized momentum of the system [3].

In atwo-dimensional (2D) space, a neutral system
has an analogous integral of motion [4]. Examples of
such systems are the 2D hydrogen atom and the Mott
exciton with anarrow semiconducting quantum well in
a magnetic field. Magnetoexcitons or magnetoplasma
modes, viz., bound states of ahole at thefilled level and
an electron at one of the empty Landau levels, are less
obvious examples which, nevertheless, are important
for physical applications[5].

In view of the finite width of the electron wavefunc-
tionsin the direction of quantum well growth, quasi par-
ticlesin wells are not two-dimensional, but quasi-two-
dimensional. However, thisisimmaterial aslong asan
electron and a hole move in the same plane and the
energy gaps between size-quantized subbands in quan-
tum wells are larger than the energy of interaction
between the electron and the hole. If, however, the el ec-
tron and the hole move in two spatially separated
planes, the system can be described in terms of a 2D
dipole(i.e., aneutral 2D quasiparticle having anonzero
dipole moment d along the axis perpendicular to the
planes),

= —e|zy—2zyn, 2
where n isthe normal to the plane of the quantum well,

-2 = IOlZLIJZ)k (Dz40(2) —IlelJ’f (2z4.(2)

is the mean distance between the €l ectron and hole, and
Wo)(2) is the component of the electron (hole) wave-
function in the direction of growth of the quantum well.
In an external magnetic field oriented in the plane, vec-
tor [6, 7]

P:H+%d><B 3)

plays the role of the generalized momentum of the 2D
dipole and is preserved in scattering processes (here, IT
is the kinematic momentum of the electron and hole in

1063-7761/05/10104-0717$26.00 © 2005 Pleiades Publishing, Inc.
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the plane of the well) [8]. The kinetic energy of a 2D
dipole in an external magnetic field is a function of
kinematic momentum,

HH)zE%—%dX%% (4)

i.e., in addition to the generalized momentum, the
energy depends on the gauge contribution c'd x B,
which is due to the impossibility of simultaneous van-
ishing of the vector potential in two spatially separated
layers. Thus, we can anayze dispersion of 2D dipoles
by applying an appropriately oriented magnetic field. If
the resonance condition

P:%de )

is satisfied, the kinematic momentum and, hence, the
kinetic energy of the dipole vanish. In spite of the fact
that the momentum transferred to a 2D dipole via scat-
tering processesisfinite, itis“frozen” (stationary inthe
plane).

Examples of 2D dipoles are Mott excitons in asym-
metric single and double quantum wells and (intersub-
band) electron excitations between charge quantization
subbands in asymmetrically doped single and double
quantum wells. Mott excitons in physically feasible
systems possess a large effective mass and nonpara-
bolic (usually unknown) dispersion relation, whichisa
consequence of a complex valence band in semicon-
ducting materials of quantum wells. To observe the
effects associated with the presence of the gauge term
in the generalized momentum of excitons, strong mag-
netic fields are required, which noticeably affect the
guantizing potential of the wells and, accordingly, per-
turb the hole and electron states [9]. Conversely, the
energies of subband excitations in quantum wells vary
significantly even in thelong-wave limit. Consequently
the experimental conditions required for fulfillment of
expressions (3)—(5) are created in weak magnetic fields
on the order of 1 T, which corresponds to a magnetic
guantization energy much lower than the characteristic
energy of intersubband quantization. Excitations in
double quantum wells, where the intersubband quanti-
zation energy can be infinitely small, constitute a spe-
cial case.

In addition to analysis of dispersion of 2D dipoles,
relations (3)—(5) can be used for experimental determi-
nation of physical characteristics of the confining
potential in single and double quantum wells. Experi-
mental methods for determining the potential asymme-
try in double quantum wells, which areinteresting from
the standpoint of ferromagnetism and, probably, the
superfluidity discovered in quasicrystals, are of specia
importance [10, 11]. The key parameter determining
the possible ground state of the electron system in dou-
ble quantum wells is the degree of spatial asymmetry.
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Here, we propose an experimental method for deter-
mining the degree of asymmetry and provide the most
complete contemporary analysis of the spectrum and
dispersion of intersubband excitations in single and
double gquantum wells in a parallel magnetic field,
which generalizes our earlier results [12-15].

The article has the following structure. In Section 2,
the origina experimental technique developed by the
authors for measuring the spectra of inelastic scattering
of light in an external parallel magnetic field (the field
and the momenta of the photons being excited and scat-
tered could be varied simultaneously). The intersubband
excitation spectrum in a magnetic field is considered in
Section 3, where the correctness of relations (3)—5) is
confirmed experimentally for the energies of intersub-
band collective excitations [12]. The effect of the trans-
verse magnetic field component on relations (3)—(5) [13]
isanalyzed in Section 4. In Section 5, theinfluence of a
parallel magnetic field on the one-particle excitation
energiesisstudied and amethod for determining spatial
asymmetry of the electron system in double quantum
wellsis demonstrated [14, 15].

2. EXPERIMENTAL TECHNIQUE

Experiments were made on a batch of high-quality
heterostructures grown using molecular-beam epitaxy.
The heterostructures were in the form of asymmetric
selectively doped AlLGa, -, A9GaAs single quantum
wells of width 120-450 A and double symmetric quan-
tum wells of width 200 A, separated by a 25-A-wide
insulating barrier. The electron densities ng in the sam-
pleswere (1-6.8) x 10'* cm and the mobilitieswere at
aleve of (1-2) x 108 cm?/V s. The electron concentra-
tionsin the samples studied could be varied over awide
range. For this purpose, the photodepletion technique
was used: under continuous photoexcitation by laser
radiation with a photon energy exceeding the energy
gap of the barriersin the quantum wells, ionized donors
in the barrier were neutralized and the el ectron concen-
tration decreased. The mechanism of this phenomenon
was considered in detail in [16]. Balancing of double
guantum wells was performed analogously. Since the
barrier absorption coefficient in the energy range of
photodepleting radiation islarge and doping impurities
for each well are on different sides of the wellsin the
barrier, the well located closer to the heterostructure
surfaceisdepleted to amuch higher extent than the well
lying at alarger distance from the surface. Thus, select-
ing the power density of photodepleting radiation, one
can smoothly vary the asymmetry of double quantum
wells[14].

In our experiment, an original two-fiber technique
was employed. The first fiber was used for exciting the
electron system, while the other fiber served for detect-
ing the inelastic light scattering signal (Fig. 1). The
component of the momentum q in the plane of a quan-
tum well, which was transferred to the electron system
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Fig. 1. (a) Schematic diagram of resonant inelastic scattering of light: 1—fiber for supplying alaser beam to the sample; 2—fiber
collecting the scattered light; 3—holder with the sample. The holder and the fibers can be rotated about the z axisin a constant mag-

netic field. (b, ¢) Spectra of inelastic scattering of light for a sample with a 250-A-wide quantum well for ng = 3.5 x 10 cm,
measured at B=1.2 T (b) and for B=0(c), q = 1 x 10° cm™>. Mutual orientation of vectors q and B is shown in the inset to (b).

during inelastic scattering of light was determined by
the arrangement of the fiber ends relative to the sample
surface. The maximal transferred momentum attained a
value of 1.2 x 10° cm. The fibers and the sample were
rigidly fixed to arotating holder so that the sample was
either in the vertical or in the horizontal position. The
holder was placed in a cryostat containing a supercon-
ducting solenoid, in which the field was horizontal. The
angle between the directions of the magnetic field and
the momentum transferred to the electron system dur-
ing inelastic scattering of light could be varied by rotat-
ing the holder. In the horizontal orientation of the sam-
ple, the magnetic field was directed along the quantum
well plane (parallel magnetic field). For the vertical ori-
entation, a nonzero magnetic field component emerged
along the quantum well growth axis (transverse mag-
netic field). Measurements were made at atemperature
of 1.5 K. The electron system was excited by atunable
titanium—sapphire laser with a photon energy higher
than the forbidden gap of the quantum well material
(GaAs), but smaller than the forbidden gap of the bar-
rier material (AlGaAs). The characteristic power den-
sity of excitation was 0.1-1 W/cm?. The signal from
inelastic scattering of light was fed to a triple Raman
spectrometer and was detected by a CCD camera. The
spectral  resolution of the detecting system was
0.04 meV and the line widths of inelastic scattering of
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light ranged from 0.1 to 0.5 meV. Simultaneous mea-
surement of the inelastic scattering signal and the lumi-
nescence signal madeit possibleto monitor the electron
density under quasi-continuous excitation by light [14].

3. SINGLE QUANTUM WELL
IN A PARALLEL MAGNETIC FIELD

Intersubband excitation in a single asymmetrically
doped quantum well consists of an electron in the
empty excited subband, which interacts with a hole
under the Fermi level for electronsin the principal size-
guantized subband. In view of asymmetry of the confin-
ing potential, the electron and the hole are spatially sep-
arated in the quantum well growth direction. The
energy of interaction of the electron and holeis usually
much lower than the intersubband energy; conse-
guently, intersubband excitations can be treated as
well-defined 2D dipoles. The intersubband excitation
spectrum consists of two collective excitations, viz., the
charge density excitations (CDEs) and the spin density
excitations (SDESs) and the continuum of single-particle
excitations (SPEs) [17, 18]. Principal charge and spin
density excitations can be treated asthe singlet and trip-
let states of excitons. Energy Eqye islower than the sin-
gle-particle intersubband energy due to the Coulomb
interaction between the electron and hole (exciton
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Fig. 2. Magnetic-field-dependence of the SPE band (1) and
energies Ecpg (2) and Egpg (3). The inset shows the mea-
sured (symbols) and calculated by formula (5) (straight
line) values of B asafunction of . In calculations, we used
the value of dipole moment d = e x 54 A obtained from the-

oretical calculations.

ECDE(I_I ), meV

1.0

0.5

%\d x B[, 10° cm

Fig. 3. Kinetic energy Ecpg asafunction of c‘1|d x B|. Vec-

tor ¢~Xd x B for two valuesof P =0 (1) and 2 x 10°cm™ (2)
isdirected along momentum P. Kinetic energy Ecpg = O for

P=cldxB=0.
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shift), while energy E-pe may be higher or lower than
the intersubband energy [19]. In addition to the exciton
shift, Ecpg contains the macroscopic polarization
energy of the electron system (depolarization shift).
Consequently, in contrast to a Wannier—Mott exciton,
principal excitations of charge and spin density excita:
tions are nondegenerate.

Figure 1 shows examples of inelastic light scattering
spectrain zero field and in a parallel magnetic field of
1.2 T. A momentum of 1 x 10° cm™ transferred to the
electron system in the plane of the well is directed at
right angles to the magnetic field vector. The spectra
consist of three main components, viz., a broad band
with an energy of 23.5 meV, which is connected with
intersubband SPEs, and two narrow lines correspond-
ing to two intersubband collective modes (SDE and
CDE) [17]. In a magnetic field, the SPE band is nar-
rowed. Thewidth A of the SPE band attainsits minimal
valuefor B, = 1.2 T and increases with increasing field.
In the same magnetic field, the energies of both collec-
tive modes have extrema (Epe has a minimum and
Egoe has amaximum) (Fig. 2). Energies Eqpg, Egpe, @S
well as A, are anisotropic; if we rotate the holder with
the sample (i.e., change the direction of the momentum
relative to the direction of the magnetic field), the val-
ues of these quantities vary. Rotationa anisotropy
decreases with the value of momentum q.

It can be proved that the anisotropy in the intersub-
band excitation energies is associated with the gauge
term in Eq. (4). For this purpose, we consider, for
example, quantity Ecpe. When g = 0, the value of Eqpe
is a quadratic function of the magnetic field (Fig. 3).
Applying a finite momentum q = 1 x 10° cm™ so that
vector g isparalel to vector d x B, we observe the mag-
netic field shift by [c'd x B| = 1 x 10° cmr™. Thus, the
dependence Epe(cid x B) can be identified with the
dispersion relation and the quantity B, can beidentified
with the critical magnetic field for which equality (5) is
satisfied. Subsequently, the momentum of inelastic
light scattering in the quantum well plane and the gen-
eralized momentum of excitations will be identified
(Q=P).

To verify the dependence of the excitation energy on
P and c'd x B, therelative orientation of vectors P and
d x B for cl|d x B|= |P] =1 x 10° cm* was varied con-
tinuously and the kinetic energy of excitations was
measured as a function of angle a between the direc-
tions of vectors P and d x B (Fig. 4). The observed
angular dependence can be described to a high degree
of accuracy by the expression

2

1 1 ]
2m*BD_Ed B,

where m* is the effective mass of principal excitation,
obtained from the dispersion dependence depicted in
Fig. 3. We verified relations (3)—(5) for the remaining

E(II) = (6)
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Fig. 4. Kinetic energy Ecpg as a function of the angle
between the directions of vectorsP and d x B for P = |d x
B|=1x10°cm™.

intersubband excitations. In spite of the fact that the
excitations under investigation differ in the quantum
numbers of intrinsic and spin degrees of freedom, they
possess the same dipole moments and their dispersion
dependences behave analogously. Singe-particle exci-
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tations constitute a special case since they are not cou-
pled complexes with natural dispersion. The dispersion
relation for single-particle excitations can be obtained
from the difference in the dispersion relations of the
excited electron and hole and, hence, exhibits a depen-
denceon a different from that for collective excitations.
Measurementsin the parallel magnetic field essentially
make it possible to distinguish collective excitations
from single-particle ones, which is a serious experi-
mental problem in the physics of excitations of low-
dimensional systems. Single-particle excitations will
be investigated in greater detail in Section 6.

4. A SINGLE QUANTUM WELL
IN A TILTED MAGNETIC FIELD

Let us now consider dispersion of intersubband
excitations in an external magnetic field oriented at an
arbitrary angle to the quantum well plane. In this case,
the expression for the 2D generalized momentum is
analogous to Eq. (1), while the dispersion relations for
intersubband excitations are modified. Figures 5 and 6
show spectra of inelastic light scattering from intersub-
band excitations in a magnetic field with a nonzero
component along the quantum well growth axis. Quan-
tities Eqpe and Egoe exhibit a weak dependence on the
magnetic field, which can be easily understood on
account of thefact that the main charge and spin density
excitationsin amagnetic field are connected with inter-

(a)

Bn CDE

(b)

Intensity

()

CDE
B, SDE

15

20 25 30
Raman shift, meV

Fig. 5. (8) Schematic diagram of resonant inelastic scattering of light in atilted magnetic field. The holder and the fibers can be
rotated about the vertical axis. (b, ¢) Spectra of inelastic scattering of light for a sample with a 250-A-wide quantum well for ng =

3.5 x 101 cm 2, measured at P = ¢ dB, vectors P and d x B are (b) parallel and (c) antiparallel. Mutual orientation of vectors g

and B is shown in the inset to (b).
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Fig. 6. Spectra of inelastic scattering of light for a sample
with a 250-A-wide quantum well for ng = 3.5 x 10* cm™
measured at P = ¢1dB; vectors P and d x B are (a) parallel
and (b) antiparallel. The dashed curves describe the results
of theoretical calculations of excitation energiesin the local
density approximation [20] under the assumption that the
parallel magnetic field component makes a contribution to

the excitation energy only viathe gauge term cldxB;i.e,
P=0(a)andP=2x10° cm™ (b). Line Lg is discussed
in[20].

subband transitions conserving the Landau level num-
ber. If we disregard the nonparabolicity of the electron
effective massin the subband splitting energy, the ener-
giesof all such transitions are equal and independent of
the magnetic field. In addition to such excitationslines,
the spectrum displays the B, lines that form the nega-
tive and positive “fans” of the Landau levels emerging
from the intersubband quantization energy. These lines
are associ ated with intersubband Bernstein modes, viz.,
excitations with simultaneous variation of the size-
quantized subband index and the Landau level number.
For g —= O, their energies can be expressed as

nzo0, @)

where Q and w, are the electron intersubband and
cyclotron frequencies [20]. With increasing quasi-

Eg:n = |Q£nwy,
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momentum, the energies of the B,; (B_;) and CDE
(SDE) lines deviate from straight lines in the energy
resonance region so that formula (7) becomes inappli-
cable. It was shown in[20] that the dispersion relations
in the resonance regions are linear and determined by
the many-particle Coulomb interaction. For thisreason,
we chose the magnetic field component along the quan-
tum well growth axis (1.5 T) for which the dispersion
dependence hasthe largest dope. Asin the case of apar-
alel magnetic field, dispersion of collective excitations
isanisotropic upon achangein the mutual orientations of
vectors P and d x B.

Let us prove that the parallel magnetic field affects
the excitation energy only viathe gauge term c™*d x B.
In a magnetic field oriented so that the magnetic field
component in the quantum well plane vanishes, we
measured the total dispersion A* of intersubband exci-
tationsin the resonance region (Fig. 6). If, however, we
fix momentum P = 1 x 10° cm™* and vary the magnetic
field component so that vector d x B is directed along
vector P, quantity A*(JP — c'd x B|) exhibits the same
linear dependence on c*d x B as that of A*(P) in the
case of zero parallel magnetic field,

A*D‘P—%dxs‘; (8)

the dispersion dependence is shifted along the abscissa
axis by the momentum of inelastic scattering of light
(Fig. 7) and A* =0 for P = cId x B, athough quantities
g and |[d x B| differ from zero separately.

Thus, we can conclude that dispersion of intersub-
band dipole excitations for an arbitrary magnetic field
orientation relative to the quantum well plane is deter-
mined by the transverse magnetic field component. On
the other hand, the parallel component appears only in
the generalized momentum of excitations and shiftsthe
dispersion of excitations by c'd x B in the momentum
space. By applying a parallel magnetic field, one can
measure the dispersion of intersubband magnetic exci-
tations in the range of momenta unattainable in stan-
dard experiments on inelastic scattering of light.

5. A DOUBLE QUANTUM WELL
IN A PARALLEL MAGNETIC FIELD

Intersubband excitations in single quantum wells
have much in common with interlayer excitations in
double quantum wells. However, when the layer index
is not a good quantum number any longer (symmetric
double wells), the effect of a parallel field on excita
tionsin double and single quantum wellsis quite differ-
ent. We will consider double quantum wells with a
weak tunnel coupling between the layers (the Fermi
energy of electrons is much higher than the tunnel
energy). Figure 8 shows typical light scattering spectra
for low-energy neutral excitationsin double-layer elec-
tron systems (both symmetric and asymmetric). We
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IPl, 10° cm™
0 1 2 3

—_—

ECDE(I_I ), meV

Ecpe(P), meV

%\d x B, 10° em™

Fig. 7. Energy Ecpg for B = 1.5 T as afunction of P for
|c™ld x B| = 0 (1) and as a function of cld x B| (vector
d x B is parallel to vector P) for P = 1 x 10° cm™ (2). The
solid line is a linear approximation of experimental points.
The dashed line is the same approximation shifted by 1 x

10° cmL.

will call symmetric the state in which the electron sys-
tem Hamiltonian is specularly symmetric relative to the
center of the barrier in a double quantum well. In turn,
the state of the electron system is considered asymmet-
ric if the electron wavefunctions of the lowest quantum
subbands are concentrated in individual layers; i.e., the
indices of the layers and of size-quantized subbands are
identical quantum numbers. Strictly speaking, the
asymmetric state is correctly defined only in the
absence of tunnel coupling between the layers. How-
ever, in the case of weak tunneling, there exists a state
of asymmetric double quantum well, such that its fur-
ther asymmetrization does not lead to a change in the
wavefunctions (see the diagram in Fig. 9). In this case,
the layer indices can be regarded as “good” quantum
numbers.

The observed lines of inelastic scattering of light
correspond to interlayer (intersubband) single-particle
excitations and antisymmetric collective modes, an
acoustic plasmon in an asymmetric state, and a tunnel
plasmon in a symmetric state. We will not discus col-
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Fig. 8. Schematic of inelastic scattering of light in adouble
quantum well in the (a) symmetric and (b) asymmetric
states. The solid curves describe the electron wavefunctions
for two lower size-quantized subbands. The dependence of
theintersubband gap Q on the disbalance of quantum wells
is shown schematically by bold curves. Examples of the
spectra of inelastic scattering of light in (c) symmetric and
(d) asymmetric states of double quantum wells (TP, AP, and
ISPE stand for the tunnel plasmon, acoustic plasmon, and
interlayer single-particle excitations, respectively).

lective modes [21] since their energies weakly depend
on the parallel field [22], and we will focus our atten-
tion on interlayer single-particle excitations. In accor-
dance with the energy and momentum conservation
laws, single-particle excitations are in the energy inter-
val [Q-qve , Q+qVe ]; theinelastic scattering prob-
ability is maximal at the boundaries of theinterval Q +
qVve, due to filling of the phase space of the excited

subband [23]. Here and below, Ve, isthe Fermi veloc-
ity inthe layer with ahigher (lower) electron density.

Figure 9 shows the spectra of inelastic light scatter-
ing for asamplein adouble quantum well in the asym-
metric state for two magnetic field orientations in the
plane of the wells (along and across the momentum g
of inelastic scattering of light). Asin the case of single
guantum wells, the energies of interlayer excitations
are anisotropic dueto the fact that interlayer excitations
in the asymmetric states possess a very large dipole
moment along the axis of separation between the lay-
ers. In accordance with formulas (3)—(5), the energies
of one-particle excitations at the boundaries of the con-
tinuum arelinear functions of the magnetic field and are
given by

Qiqul+%dBvFl, q || B,
1
Q=+ q_deBVFl’ g UB.
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Fig. 9. (8) Schematic diagram of inelastic light scattering in
an asymmetric double quantum well in two experimental
geometrieswith amomentum of light parallel (top) and per-
pendicular (bottom) to the magnetic field vector. (b) Corre-
sponding experimental spectra. Solid curves show the criti-
cal and zero magnetic fields.

For g [ B, the kinetic energies of single-particle exci-
tationsare zeroin acritical magnetic field of 0.25T, for
which neither g nor c*d x B are equal to zero sepa-
rately. Using the value of the critical magnetic field, the
dipole moment of interlayer excitations can be assessed
from formula (5) ase x 240 A, which matches with the
distance of 225 A between the geometrical centers of
the quantum wells.

The change in the excitation spectrum upon a tran-
sition of atwo-layer system to asymmetric state can be
grasped qualitatively by considering a nonrealistic
model of virtual interlayer excitations between two iso-
lated quantum wells (Fig. 10). The energies of intersub-
band excitations decrease in proportion to the decrease
in intersubband gap Q. The critical magnetic field
(0.25T) does not change since the dipole moment is
constant. A nontrivial situation arises when the term

lg—cd x B|vg, exceeds the intersubband gap Q. In

this case, the spectrum acquires two branches of single-
particle excitations corresponding to direct electron tran-
sitions from the first to the second subband (branch A),

[Q—‘q—%dXB

Ve, Q+la-cdxBlv, |,

and reverse transitions from the second to the first sub-
band (branch B),
)

The dipole moments corresponding to excitations of
both branches are modulo equal but opposite in direc-

[o,—Q+ q—%de
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Fig. 10. Variation of theintersubband excitation spectrumin
adouble quantum well upon atransition from the asymmet-
ric to the symmetric state. The double quantum well confin-
ing potential profile and the sgquares of the electron wave-
functions in the asymmetric (left) and symmetric (right)
cases are shown on the top. Dark regions correspond to
excitations from the first to the second quantum subband
(branch A), while light regions denote excitations from the
second to the first subband (branch B) disregarding tunnel-
ing. The regions in which the energies of the two branches
coincide are gray. Experimental points are shown by light
circles. Intersubband gap Q for each state is indicated. In
the symmetric case (Q = Agag), the dashed curve shows the

upper boundary of excitations obtained in the tunnel Hamil-
tonian approximation.

tion; consequently, an increase in the energy of one
branch in amagnetic field isaccompanied by adecrease
in the energy in the other branch, and vice versa. For a
certain value of the system parameters,

the upper boundary of branch B exceeds that for
branch A, which leads to symmetrization of the excita-
tion spectrum (see Fig. 10).

This model describes virtual interlayer excitations,
which have the same dipole moment in any state. In real
double quantum wells, the dipole moment of excita-
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tions decreases upon symmetrization. Nevertheless,
excitation energies experience a shift in magnetic field
as if the dipole moment of excitations remained
unchanged (see Fig. 10). Such a behavior of the ener-
gies of intersubband excitations is associated with the
fact that, in contrast to single quantum wells, splitting
between the symmetric and antisymmetric subbands in
symmetric double quantum wells is smaller than or
comparable in magnitude to the magnetic quantization
energy in the range of magnetic fields under investiga-
tion. Consequently, the magnetic field changes single-
particle electron states in quantum wells. We will take
into account this change in the framework of the tunnel
Hamiltonian approximation [22, 24].

For two tunnel-coupled (generaly different) quan-
tum wells a and b, the Hamiltonian of the electron sys-
tem can be written in the form

+ + A + +
H = Zafiakak“LEibkbk_TSAs(akbk"‘bkak)%
K

(9)
= Z(EiA;Ak +ELB/B,),
k
where
, AE K
EﬁzonJ_r—é-+ErTq (10)

are the energies of electrons in quantum wells without
tunneling; E, is the electron energy in the lowest quan-
tum subband of a single well; AE is the asymmetry

parameter; Aqsisthetunnel gap; a, , a,, by, and b, are
the electron creation and annihilation operators in two
layers; and k is the electron momentum in the plane of
thewell. Thisapproximationisapplicablefor Ey > Agag
and E, > AE; i.e., the electron wavefunctions |, and Y,
in each well vary only dlightly as functions of these
parameters.

The electron energiesin the subbands are given by

2
E,+ zk— + %A/AE2 + M.

m

=12

Ev’ = (11)

The €electron wavefunctions in the subbands in the z
direction are given by

W = Clu.(2) + Con(2), i = 1,2,

c. Asas

- ~i 2’ (12)
JD2s+ 4(EL—El)

2(EL—E)

Cib - 2 1 ~i2
A/ASAS+4(Ek—Ek)
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and are independent of momentum k. In the symmetric
case, we have

1
¥, “f[wa(Z) Us(2)], -
W, = Tz[llla(z) +Wy(2)].
For Agys << AE, we obtain
Wi = 0a(2), ¥, = Uy(2). (14)

In a paralld magnetic field B = (0, B, 0), the tunnel
Hamiltonian for AE, < E, hasthe form

H = Y[ EBaia + EB)bb,
k

_ATSAS(a;bk + b;ak)] (15)
= 3 [Ex(B)AA + EX(B)B(B,
k
where
E1%(B) = E,+AE 4 (Fke) *hy o) + kj, (16)
2 2m

ks = eaB/c, 2a = z, — 7, is the distance between the cen-
ters of the layers. The electron energies assume the
form

2 2
~12 _ k™ + kg
Ei " (B) = Ey+ > -
1 kakﬂz 2

The eectron wavefunctions are transformed analo-

gously with the substitution Ey> —» E;*(B) and

B’ - E° (B), thus acquiring a dependence on K.

Depending on the direction of the electron momentum,
the wavefunctions may be independent of magnetic
field (for k, = 0) or may vary with the field (for k, # 0).
For example, for AE = 0, when the wavefunctionsin the
subbands in zero field are symmetric and antisymmet-
ric combinations, the magnetic field under weak tunnel-
ing (2kkg/m > Ao leadsto almost complete localiza-
tion of electronsin individual wells.

Let us now consider single-particle intersubband

excitations with small excitation momenta g in aweak
magnetic field (g < kg, kg < kg). The energy of excita-
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Fig. 11. Critical magnetic field as a function of the dipole
moment for a single (triangles) and double (circles) quan-
tum wells. The profile of the confining potential and the
squares of the electron wavefunctions in the two lowest
size-quantized subbands of single quantum wells, corre-
sponding to the widest and narrowest wells, are shown sche-
matically.

tions corresponding to transitions from the lower to the
upper subband (or back) has the form

ke LH 2k|=><kHD2 2
— +J%3E—TD +0%d.  (18)

EISPE -

Single-particle excitations form a continuum with a

density of states peak at cos(I;,\q) = +1. Conse-
quently, two excitation branches corresponding to

angles (k/F,\q) =0, Tt For Agg > |AE| and Agg >
[2kekg/m, the energies of both excitation branches can
be represented in the form
£ _ Keq 1 - 2kaE|]2
Eispe = Bsas* >m ZASAS%ME oo
For Agss — 0 and AE # 0, we have interlayer exci-
tations with dipole moments +d, d = (0, O, 2ea). Spe-
cific expressions for transition energies are determined
by the relations between the quantities AE, qvg, and
cldBv¢. For example, for AE > c*dBvg, we have

AE + Eq—%dE%vF

In the symmetric case with weak tunneling, due to
rearrangement of wavefunctions, intersubband excita-

(19)

+
EISPE -

. (20)
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tions can be treated as interlayer excitations with a
dipole moment (acquired in the given casein aparalel
magnetic field) everywhere except a small range of
magnetic fields, in which Agag ~ 2k:kg/m:

Ejspe = g% %dB V. (21)

In this case, excitations corresponding to two interlayer
transitions are combined into two branches so that they
correspond to intersubband excitations in zero mag-
netic field. The critical magnetic field for the common
branches is not defined by formula (5), but is zero (see
Fig. 10).

It is expedient to compare the critical magnetic
fields for double-layer and single-layer systems as
functions of the dipole moment in zero magnetic field
(Fig. 11). The dipole moment can be determined by
using the electron wavefunctions obtained self-consis-
tently from one-dimensional Poisson and Schrodinger
equations by varying the asymmetry so that the calcu-
lated intersubband energy Q becomes equal to the
experimental energy. From the known wavefunctions,
we can find the dipole moment

d = —e|zg— 24N, (22)

where n isthe normal to the quantum well plane,

Zyo—Zpn = J’leIJS (2)zd0(2) —J’leIJ’{ (2)z44(2)

is the mean distance between electrons in two sub-
bands, and Y,(2) is the z component of the electron
wavefunction in the nth subband. In asingle-layer sys-
tem, the dipole moment decreases with the well width
(see Fig. 11). In a double-layer system, the dipole
moment decreases upon symmetrization of the system
(see Fig. 10). The two systems (single- and double-
layer) differ in the effect of a parallel magnetic field on
the electron states in the size-quantized subbands. The
magnetic field completely transforms the wavefunc-
tions in the double-layer system, while the magnetic
field in the single layer system hardly affects the wave-
functions. As a result, the critical magnetic field is
inversely proportional to the dipole moment for asingle
layer system, which is in accordance with expression
(5), while the critical field tends to zero upon symme-
trization of a double-layer system (see Fig. 11).

Inelastic scattering of light from single-particle
excitations in a parallel magnetic field can be used for
determining the asymmetry of a double-layer electron
system. For example, electron density disbalance of
two layers by just 3% transforms a symmetric electron
system into an asymmetric one [21]. In view of such a
small balancing range, a symmetric state can hardly be
established with the help of the standard magnetotrans-
port balancing procedure [25, 26]. On the other hand,
the di pole moment associated with the system asymme-
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try can be easily measured using inelastic light scatter-
ing. To transform adouble-layer system into a symmet-
ric state, we must transfer a finite momentum to elec-
tron excitations and balance the system until the
excitation energies become symmetric to magnetic
field inversion. The accuracy of this method is deter-
mined by the relation between the inelastic light scat-
tering linewidth and the tunnel energy. According to
experimental estimates, the electron system can be bal-
anced in double quantum wells with atunnel energy of
up to 0.1 meV.

6. CONCLUSIONS

It has been shown that dispersion of intersubband
excitations in a quantum well placed in a parallel mag-
netic field is anisotropic. The anisotropic contribution
to energy is alinear function of the magnetic field and
the momentum of excitations. The method for deter-
mining the dipole moment of excitations, which char-
acterizes the asymmetry of the confining potential, has
been demonstrated. The symmetry between the mag-
netic-field-induced shift in the momentum space and
excitation momentum opens a unique possibility for
studying the dispersion of intersubband excitations; the
experimentally accessible range of momenta can be
doubled thereby. In addition, this makes it possible to
eliminate a serious experimental problem associated
with a change in the excitation momentum by using an
experimental configuration similar to that used in this
article, in which the momentum is fixed while the par-
ald field varies. It has been shown that interlayer
(intersubband) excitations in double quantum wellsin
an asymmetric state possess a large dipole moment and
their behavior in a paralel magnetic field is analogous
to the behavior of intersubband excitations in single
guantum wells. In the symmetric case, on the contrary,
the magnetic field transforms the electron wavefunc-
tions so that excitation energies acquire an anisotropic
component, and excitations themselves become effec-
tively interlayer excitations. A new method has been pro-
posed for measuring the asymmetry of double layers.
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Abstract—We have analytically and numerically studied the self-action dynamicsof laser radiation in aplasma
with ionized gas clusters. Based on the simplified model of a cluster in the form of a superposition of two
charged (electron and ion) bunches, we analyze the nonlinearity mechanisms. We refine the electrodynamic
cluster model by the molecular dynamics method. The polarization behavior of the plasma bunch in the main
part of the laser pulse is shown to be the same as that in the simplified model. We investigate the self-action
dynamics of laser radiation under conditions when the nonlinearity of the stratified medium is determined by
the anharmonicity of the electron motion in the cluster, while the group velocity dispersion is determined by
both the background plasma and the ionized clusters. Since the characteristic field for the electron nonlinearity
depends strongly on the cluster size, the peculiarities of the self-action dynamics result from plasma bunch
expansion. The spatiotemporal evolution of the wave field is shown to be accompanied by pul se self-compres-
sion near the trailing edge. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Experimental studies of the interaction between
laser radiation and cluster targets have become particu-
larly topical in recent years in connection with pros-
pects for solving such important application problems
astheinitiation of nuclear reactions, the accel eration of
charged particles, and the production of an intense
X-ray source for biomedical applications (see, eg.,
[1-5]). Cluster targets are materials composed of aran-
dom set of atomic and molecular clusters. The great
variety of structural features of cluster targets is deter-
mined by the properties of chemical elements and by
the Van der Waals interaction between molecules. A
broad class of atomsforms a condensed phase with free
electrons, i.e., asystem with “metallic” nanoirregulari-
ties[6]. For anumber of chemical elements, acluster is
a stable structure with a definite number of atoms and
their mutual spatial arrangement [7]. Since the interac-
tion between atoms has anisotropic properties, fractal
(porous) clusters can be formed [8]. Gas cluster targets
are mainly used in laser radiation—material interaction
experiments. Clusters are formed in them during the
expansion of a dense jet of rare gases into a vacuum.
Such a cluster target composed of condensed rare-gas
atoms had the practical advantages of gastargets, while
making it possible to realize the processes characteris-
tic of amedium with adensity closeto the solid density.
Such effects as the formation of multiply charged ions
with completely vacant inner shells (hollow ions) [5],
the generation of high harmonics [9], and the genera-
tion of ions with energies above 1 MeV [3] at radiation
intensities lower than those in ahomogeneous gas were
observed using cluster targets. The interaction of laser
radiation with a cluster plasma is usually interpreted
based on the model of an isolated cluster in a strong

electric field. However, the observation of wave-field
self-focusing in a cluster plasma [5, 10] indicates that
the radiation—medium interaction is self-consistent in
nature. This problem is discussed in [10, 11].

In this paper, we investigate the self-action of an
ultrashort laser pulsein ananodispersed cluster plasma.
After the formulation of the problem (Section 2), in
Section 3, we consider the polarization dynamics of a
plasma bunch in an electric field. The nonlinearity
mechanisms of a nanodispersed medium are discussed
in Section 4. Thefinal section presentsthe results of our
numerical simulations of the self-consistent evolution
of an ultrashort laser pulsein astratified medium. Inthe
Conclusions, we discuss the relationship between the
theory and the experimentally observed peculiarities of
the laser self-focusing in a cluster plasma.

2. FORMULATION OF THE PROBLEM

The electrodynamic modd of the interaction
between ultrashort laser pulses and clustersis based on
the following assumptions. Almost al of the electrons
at the pulse leading edge are removed from their atoms,
remaining inside the cluster. Thisinner ionization pro-
duces a fine-dispersed medium composed of plasma
bunches and a background plasma. Subsequently, the
ionized clusters expand and |ose some of their electrons
into the surrounding space; i.e., outer ionization takes
place. Experimental studies show that the characteristic
lifetime of a plasma bunch is ~100-300 fs [3, 10] and
that the main part of a femtosecond laser pulse propa-
gatesin arare plasmawith ionized clustersin which the
electron density exceeds its critical value. In the linear
regime of interaction, the electrodynamic properties of
acluster plasmafor laser wavelengths that appreciably
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exceed the characteristic separation between the clus-
ters, A > L, can be analyzed in the approximation of an
effective refractive index of the medium ng [12]. For
spherical clusters with a uniform plasma distribution,
the refractiveindex is

g.—1

2 2
NG = n,+V )
eff bg 8c+2

ey
Here,
Nog = 1—wop /e’

is the background plasma permittivity, w is the wave
frequency,

We = 41" Npy/m,

Ny, is the background plasma electron density, V" isthe
relative volume occupied by the clusters,

g = 1-w/w’
isthe cluster plasma permittivity,
w; = 4me’N/m,

and N isthe cluster electron density.

To investigate the self-action of laser radiation in a
cluster plasma, we will primarily use the parameters of
the medium and the laser pulsein a self-focusing exper-
iment [10]. This experiment was carried out using laser
radiation with a wavelength of 800 nm, an intensity of
5 x 10® W cm, and a pulse duration of 100 fsin a
medium with clusters 30 nm in diameter.

Figure 1 shows a plot of the effective refractive
index squared (1) against the field frequency. We see
from this figure that the presence of ionized clusters
leads to a noticeable modification of the eigenmode
spectrum near the geometrical resonance of the plasma
bunch. For waves with frequencies

WS W, = W/A/3,

the refractive index of a nanodispersed medium is
larger than unity (ng > 1); hence, the resonant interac-
tion of electromagnetic radiation with plasma particles
becomes possible [13] The dispersion of the pulse
group velocity v is normal (dvg/0w < 0) in this fre-
quency range and anomalous (9v/dw > 0) at higher fre-
guencies, as in a homogeneous plasma.

We use an approach that is popular in el ectrodynam-
ics of continuous mediato construct the self-consistent
picture of the interaction between laser radiation and a
cluster plasma. Initially, based on a model of the
medium, we determine the (linear and nonlinear)
responses of the macrosystem to the presence of afield.
Subsequently, we find the nonlinear field modification
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Fig. 1. Effective refractive index squared ngﬁ versus fre-

quency of the incident radiation w. The dashed line indi-
cates the corresponding dependence in the absence of
clusters.

using the Maxwell equations in a medium whose per-
mittivity depends on the radiation intensity. Since the
constitutive equations are complex, we use simplified
modelsthat reflect the structural features of the medium
at theinitial stage of our study of the characteristic fea-
tures of the radiation—material interaction. This
description of the macrosystem is successful, because
the effective permittivity of the medium (e.g., (1)) is
averaged over avolume containing quite afew microir-
regularities and, hence, depends weakly on the fine
structural features of the material. To derive the consti-
tutive eguations (2) in a cluster plasma, we use and
substantiate the model of a nonlinear oscillator in Sec-
tion 3. Clearly, in the linear approximation, Eqg. (1) for
the effective permittivity can be easily derived by using
this model and by taking into account the contribution
of the background plasma to the polarization of the
medium. Subsequently, in Section 4, we consider the
nonlinearity mechanisms that lead to radiation self-
action and determine the characteristic fields for these
effects and relaxation times. Finally, in Section 5, we
consider the self-consistent picture of the spatiotempo-
ral evolution of an ultrashort laser pulse in a nanodis-
persed medium under typical conditions of cluster non-
linearity and group velocity dispersion of the medium
determined by both the ionized clusters and the back-
ground plasma

3. CLUSTER POLARIZATION DYNAMICS

When the interaction of laser pulses with a cluster
plasma is investigated, two stages of the process that
differ greatly in pattern should be distinguished. At the
first stage, which is strongly nonstationary and takes a
time of the order of several field oscillation periods,
inner ionization of clusters takes place and plasma
bunches are formed. The subsequent (main) part of the
pulse propagates in a strongly inhomogeneous medium
composed of expanding plasma bunches.

Let us next consider the dynamical processesin the
model of anisolated cluster in an externa variable elec-
tric field. First, we will analyze the polarization behav-
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ior of the medium using the simplified model of a
spherical cluster and then consider a more rigorous
model that includes both the cluster ionization and its
structural changes. In both cases, we will assume that
the cluster size is much smaller than the wavelength.
This condition is satisfied in experiments on the inter-
action of laser radiation with cluster targets and allows
the processes in an isolated cluster to be considered
under the assumption that the external electric field is
uniform.

3.1. Polarization Dynamics
of a Spherical Cluster

To find the nonlinear response of the medium at the
laser frequency, Iet us first consider the simplified
model of acluster! in the form of a superposition of two
uniformly charged spheres of radius a: positively
charged “heavy” and negatively charged “light”
spheres. In the presence of an external electric field
E(t), the charged-particle density n increases and the
cluster is polarized. The displacement x of the center of
mass of the electron subsystem along the field is
described by the equation?

6 3

3 a nx ena
= E(D), (2

dt dtD oE+ad)¥?  m

where the oscillation eigenfrequency w, = wy/ J3 of the
electron subsystem (the dipole resonance frequency of
the sphere) was introduced. The change in plasma den-
sity inside a cluster during the ionization of atomsis a
rather complex process. The various (tunneling, above-
barrier, thermal, etc.) ionization mechanisms are dis-
cussed in detail in [14]. However, for our purposes,
determining the (linear and nonlinear) dipole moment
that emerges during field cluster ionization provesto be
sufficient for the ionization to be fast near the pulse
leading edge. We will describe the actual cluster ioniza-
tion process by amodel field dependence of ionization,

on _ 0 2Eq
T = 4w,(n, n)IEI exp - 3|E|D’ 3

1 The simplified cluster model was used previously in [15] to study
the harmonic generation effects in a cluster plasma.

2 Equation (2) describes the dynamics of a plasma bunch with a
variable number of particles and, in fact, implies that the particles
at the time of their production (or loss) have a velocity equal to
the mean velocity of the distribution. This approximation is ade-
quate to allow for the particle losses through outer ionization. The
appearance of new particles via ionization will be taken into
account more accurately if the density n in the first term on the
left-hand side of Eq. (2) is placed under the sign of the time deriv-
ative. This corresponds to the production of electrons with a zero
velocity at the point with x = 0. Note, however, that this inaccu-
racy has virtually no effect on the results at the high ionization
rate that takes place for intense ultrashort laser pulses.
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where w, is the atomic frequency, n, is the atomic den-

sity in the cluster, and E, isthe atomic field (E, = e/rj,
r, is the atomic size). Here, it is important that the
plasma density at electric fields of the order of the
atomic fields reaches a stationary value, n = n,, ontime
scales shorter than the duration of the pulse leading
edge. Below, we will compare the results obtained
using this simple model with our numerical simulations
of the ionization kinetics by the molecular dynamics
method (see Section 3.2). It is convenient to represent
the system of eguations (2) and (3) in dimensionless
form:

d s, dx a’nx _ 4na’

gt "o’ 1) 5 q E(D, 4
on _ o1 B
i a(l n)IEIeXp( 2/3|E), (5)

wherewe normalized the displacement x and the cluster
sizeatotheinitia cluster size ay (x/a; — X, alag —»
a), the density n to the maximum charged-particle den-
sity equal to the atomic density n, in the cluster
(n/ny — n), and the electric field E to the atomic field;
the variablet isrelated to the dimensional timeast —~
w.t; and the parameters a, d, and q are defined by the
relations

o = 4w/w, O =rla, = 4mnyra3

(gisthetotal number of ionized particlesin the volume
of the atom).

Let us consider the behavior of acluster in an exter-
nal harmonic electric field

E(t) = Ey(t)coswt.

For astationary ionized cluster (a=1, n=1) inthelin-
ear regime (X < a = 1), Eq. (4) describes the forced
oscillations with the frequency of the external field w
and the free oscillations with the frequency w, = 1
excited during cluster ionization. Under the experimen-
tal conditions, the external electric field is a low-fre-
guency one, w = 0.1w, < w,. At electric fields of the
order of the atomic fields, the inner cluster ionization
occurs on time scales much shorter than the period of
free oscillations. Thisimpliesthat theinteraction of the
incident radiation with the plasma is nonadiabatic.
Since the plasma density in the cluster increases much
faster than the field amplitude, let us estimate the
amplitude of the free oscillations in the approximation
of instantaneous ionization. Assuming that a = 1 and
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n=0(t —ty) (B(t) isthe Heaviside unit step function) in
Eq. (3), we find the amplitude of the free oscillations

__OE(t) _dE(ty)
q(wi-w?)  d

and the amplitude of the forced oscillations

_ OEq(1)
==

Thus, the dipole moment of the free cluster oscillations
is of the same order of magnitude as that at the fre-
guency of the external field.

The radiative damping time scale (1, = ((ka)3w,)™,
where k is the wave number) of the free oscillations
even for large clustersis

A

1, = 10°(2Ww,) 010°(2TW w); (6)

i.e., it exceeds the duration of the femtosecond laser
pulses used. However, the amplitude of the free oscilla-
tions can change as the ionized cluster expands. At a
fixed total number of particlesinsidethecluster, thefre-
guency of the free oscillations decreases proportionally
to a2, |n accordance with the adiabatic invariant, their
amplitude increases rather slowly (proportionaly to
a¥4. At the same time, the amplitude of the forced
oscillations increases much faster:

3
A= 6% (1), 7

i.e., proportionally to a3. As a result, the free oscilla-
tions become invisible against the background of the
forced oscillationsin acertain time, and their contribu-
tion to the polarization can be disregarded.

Our numerical analysisof the system of equations (4)
and (5) in an externa periodic electric field

E(t) = Eo(1-exp(-yt))coswt (8)

with arelaxation time scale of 1/y confirms the results
of the above qualitative analysis of the cluster polariza-
tion dynamics. Theinitial conditions were chosen to be
the following:

dx
dt
The calculations were performed for w = 0.1, E, =

0.3, and a = 10. Figure 2 shows the time evolution of
velocity for acluster expanding as

x() =0, =(t=0)=0, nt=0)=0. (9

a = 1+0.003t.

The expansion coefficient, 3 = 0.003, was chosen in
such a way that the electron plasma frequency in the
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Fig. 2. The oscillation dynamics of an expanding cluster
exposed to an external quasi-harmonic electric field. At
wt > 1350, the linear oscillatory regime becomes nonlinear,
which is accompanied by the stabilization of the oscillation
amplitude. The inset illustrates the evolution of the cluster
at theinitial stage immediately after itsionization.

ionized cluster decreased to the frequency of the exter-
nal field at atime equal to 2/3 of the laser pulse dura-
tion. We see (inset to Fig. 2) the excitation of intense
free oscillations at the leading edge.

As the cluster expands, the amplitude of the forced
oscillationsincreases as (7) to values at which the elec-
tron nonlinearity begins to play a stabilizing role. The
transition between the linear (x 0 a® and nonlinear
(x O a) regimesisclearly seenin Fig. 2 and occurs (for
the parameters used in our numerical calculations) at
wt > 1350. On these time scales, the oscillator fre-
guency decreases to the frequency of the external field,
but the free oscillations are excited weakly, since the
process is nonstationary. An increase in external field
E, leads to an increase in oscillation amplitude to val-
ues on the order of the plasma bunch size a and to the
subsequent detachment of the el ectron component from
the ion component, i.e., to the cluster decay. In what
follows, we will consider the interaction of ultrashort
laser pulses of moderate intensity at which the nonlin-
earity isweak with clusters.

3.2. AKinetic Model of the Cluster Dynamics

Simulations of the processes by the molecular
dynamics method are increasingly used to study the
kinetic effectsin a cluster [16]. Despite its well-known
shortcomings, we investigated the polarization dynam-
ics of a cluster in an externa electric field by this
method. Our numerical calculations show the follow-
ing. During its evolution, the cluster loses its electrons
(outer ionization takes place) and expands (predomi-
nantly in the direction of the external field); these pro-
cesses prove to be mutually stimulating. The electron
cloud oscillates at the frequency of the external field
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Fig. 3. The time dependence of the mean electron velocity
qualitatively resemblesthe results obtained in the simplified
model for the motion of an electron sphere against the back-
ground of an expanding ion sphere.

against a background of the expansion of the ion sub-
system. These oscillations are accompanied by elec-
trons periodically “splashing out” into the surrounding
space at times corresponding to the maximum acceler-
ation. As aresult, the near-boundary region of the clus-
ter is depleted in electrons. The fraction of the electron
lossesin the outer ionization process reaches half of the
total number. However, despite the new details in the
picture of cluster dynamics (a self-consistent expansion
of the plasma bunch, a deviation of the shape from a
sphere, a nonuniform electron density distribution
inside theionized cluster, etc.), the qualitative behavior
of the dipole moment (an integrated characteristic) of
the cluster (Fig. 3) is the same as that in the smplified
model (Fig. 2). We clearly see anincreasein the ampli-
tude of the forced oscillations attributable to cluster
expansion followed by the stabilization determined by
nonuniformity  saturation. The  electrodynamic
response of a cluster to an external field at the initial
stage of its evolution is shown separately on an
enlarged scale, in the inset to Fig. 3. We see that the
high-frequency component of the process, as in the
simplified model, decreases appreciably in atime of the
order of several oscillation periods of the external field.
Apart from the cluster expansion, the internal dissipa-
tive relaxation of high-frequency irregularities also
contributes to the damping; this eventually leads to the
rise in the temperature of the electron subsystem
observed in numerical experiments.

At wt = 90, the frequency of the external field is
equal to the " current” frequency of the free oscillations
of the cluster, and one might expect the object’s reso-
nant properties to manifest themselves. However, since
the process is nonstationary, the resonant amplification
of the oscillations manifestsitself weakly.
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Thus, a comparative anaysis indicates that the
simple model inwhich the expansion rateis fixed (Sec-
tion 3.1) satisfactorily describes the polarization
dynamics of acluster inthe main part of an electromag-
netic pulse.

4. ANALYSIS
OF SELF-ACTION MECHANISMS

Before we turn to a self-consistent description of the
self-action effects, let us consider in more detail the
self-action mechanisms in a cluster plasma and esti-
mate the characteristic fields for the nonlinear effects
and the relaxation time scales.

The amount of material in the gaseous state (outside
clusters) is variously estimated to reach 90%. The Kerr
nonlinearity of the atoms of the background medium
can play acertain (focusing) role near the leading edge
of alaser pulse. As the gas is ionized, its contribution
becomes appreciably weaker. For ultrashort laser
pulses, the relativistic nonlinearity related to the depen-
dence of the electron mass on the oscillation velocity in
the wave field is commonly considered as the main
nonlinearity mechanism. However, the characteristic
field for this nonlinearity exceeds appreciably the
threshold value for the cluster decay (10). Below, we
consider other possibilities.

4.1. Electron Nonlinearity

In the model of uniformly charged spheresin afield
with a frequency w much lower than the eigenfre-
guency of theionized cluster, we can estimate the max-
imum amplitude of the external field from Eq. (2),

€ Emax

e = 0.4a,

m o’ (10)

at which the oscillations of the plasma bunch remain
localized near the ion core. If the amplitude of the
forced oscillations is on the order of the cluster size a,
the oscillatory system decays (the electron cloud is
detached from the ion cloud).

To determine the characteristic field for the electron
nonlinearity of the cluster, let us find the nonlinear cor-
rection to x from (2) using the perturbation method
(x < a). Averaging over the field period yields

_ e 3 ¢|g* 0

[l
E(t)L+3 .
mw; O 4m2w§a%

X (11)

2

Thus, the nonlinearity is afocusing one; the character-
isticfieldis
E, = mooia;
e
i.e, it is virtually identical to field (10) at which the
cluster decays. When the total number of particles

(12)
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inside the plasma bunch is conserved (wZa® = const),

this implies that the characteristic field for the electron
nonlinearity decreases with cluster expansion as

E.0a”(t). (13)
The cluster dipole moment
p = wea’xmle
in this approximation is
p = a’E(t)(1+ |E[/E). (14)

Given relation (13), it can be seen that the nonlinear
part of the polarization increaseswith cluster expansion
as the seventh power of the plasma bunch size,

p'tOa’. (15)

4.2. lonization Nonlinearity

Our numerical analysis of the processes inside a
cluster by the molecular dynamics method shows that
some of the electrons are lost even at fields weaker than
the plasma bunch decay field (10).3 To estimate this
effect, we proceed as follows. Let us consider a test
electron located near the cluster boundary. The force of
inertiaacting on it in an oscillating electric field is

F, = eEw’/oy. (16)
This electron will not return to the cluster during the
oscillations if the centrifugal force (16) exceeds the
force of attraction to the uncompensated ion charge of
the cluster

F, = eg/a’. (17)

Comparing (16) and (17), let us estimate the charge q
that the cluster will lose in an oscillating external elec-
tric field:

q< Ew’a’/wy. (18)
Thus, the outer cluster ionization causes the dipole
moment of the plasma bunch to decrease,

e|E|w’
——— p.

NL _
Ap— = n
mw,a

The characteristic field for the ionization nonlinearity

2
E = =E, (19)

3 In what follows, we will call this process outer ionization.
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appreciably exceeds the corresponding field for the
electron nonlinearity (15).

The inverse process, the settling of electrons on the
cluster surface, is possible in the presence of a back-
ground plasma. Estimatesindicate that the effect of this
recombination is appreciably weaker than the contribu-
tion from the outer ionization and that the characteristic
field for the recombination nonlinearity is considerably
larger than (15).

A similar conclusion can aso be reached for the
thermoionic emission of electrons from the cluster.
Assuming the temperature of the plasma bunch to be
equal to (larger than) the electron oscillation energy, the
cluster charge can be easily estimated using the expres-
sion for the number of thermal electrons emitted by a
heated surface [14]. It differs little in magnitude from
that obtained above from the balance of forces (18).
Consequently, the striction nonlinearity also dominates
over the thermal-ionization nonlinearity in this case.

4.3. Sriction Nonlinearity

In view of the structural peculiarities of the cluster
plasma, the possibilities of the ponderomotive action of
the field on the medium are enhanced significantly. On
the one hand, the background plasma density is redis-
tributed in the nonuniform field of the wave beam, asin
a homogeneous medium. In our case, however, the
relaxation time scale of the ordinary striction nonlin-
earity, T3 = Ly/vs (L isthe transverse scale of the wave
beam, and v; is the speed of ion sound), appreciably
exceeds the laser pulse duration, T, > 1, which signifi-
cantly weakens its role. Another possibility is associ-
ated with the deformation of an ionized cluster in a
wave field. The time scale of this process for a cluster
is T, = alvg, i.e, considerably (by a factor of a/Lp)
shorter than the plasmaredistribution time on the trans-
verse scale of the beam. Let us determine the nonlinear
polarization of a plasma bunch as it is deformed in a
wavefield. Following [12], we assume that the deforma-
tion consists in uniform contraction or extension of the
object and that its shape remains unchanged. The expres-
sion for the total thermodynamic potential of a spherical
body in an external uniform electric field is[12]

® = cD"(p’-r)_1611 e+2

(20)

where @, pertains to the body in the absence of afield
at fixed pressure P and temperature T; € and V are the
permittivity and volume of the body, respectively, con-
sidered as functions of P and T. Hence, the change in
volume AV =V -V, (V, is the initial volume of the
body) can be found by differentiating € with respect to

the pressure (at constant T and E ). For anionized clus-
ter (amedium in which the permittivity depends on the
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density, € — 1 ~ 1/V, and the equation of state is PV =
RT), we get

AV _ 3(s.—1)" E

vV o (. +1)? 16TP’ D)

As a result, we obtain the same expression for the
dipole moment

p = a’E(t)(1+AV/V)

of a plasma bunch as that for the electron nonlinear-
ity (14). The characteristic field for the (focusing) stric-
tion nonlinearity under the conditions in question
(lec| > 1) is

E, = 4(1P)"?/1./3. (22)
Comparing the characteristic fields of the electron (12)
and striction (22) nonlinearities,

E._ a

(23)

E, 21y

we note that the electrostriction effect is dominant for
clusters with a size a much larder than the Debye
length rp. However, the relaxation time scale of the
electrostriction nonlinearity

.= (M/m)"?alr 0, (24)
is comparable to the duration of the laser pulsesused in
our experiments even for the initial cluster size. The
expansion of plasma bunches is accompanied by a fur-
ther weakening of the contribution from the striction
nonlinearity.

The following conclusions can be drawn from our
analysis of the nonlinearity mechanismsthat lead to the
self-action of electromagnetic radiation. Since the ion-
ized-cluster size exceedsthe Debye length (a > rp), the
striction nonlinearity of a plasma bunch in an electric
field (Section 4.3) has the lowest threshold. However,
the time scale of the electrogtriction nonlinearity is
longer than (on the order of) the duration of the laser
pulses under consideration. In addition, the characteris-
tic field for the inertia-free electron nonlinearity (12)
decreases with cluster expansion at an appreciably
higher rate than the corresponding field for the electros-
triction nonlinearity (22). As regards the ionization and
recombination nonlinearities, they not only are deter-
mined by higher characteristic fields, but also weaken
one another. Thus, we have every reason to believe that
the self-action dynamics in the main part of the laser
pulse is determined by the electron nonlinearity of
plasma bunches in a fine-dispersed medium.
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5. SELF-ACTION DYNAMICS
OF LASER RADIATION IN A CLUSTER PLASMA

The above analysis of the el ectrodynamic processes
inacluster plasmaleadsto the following formulation of
the problem. Let us next consider the spatiotemporal
evolution of an ultrashort laser pulsein ananodispersed
medium in which the nonlinearity is determined by the
system of plasma bunches, while the group velocity
dispersion is determined by theionized clusters and the
background plasma. We assume that the spherical clus-
ters expand according to a given law and that the non-
linearity mechanism is associated with the anharmonic-
ity of the electron motion (Section. 4.1).

5.1. Equation of Nonlinear Optics

To describe the self-action dynamics of radiation at
afrequency w much shorter than the eigenfrequency of

the ionized cluster w, = wy/ J3, but higher than the
background plasma frequency wy, (see Fig. 1), we use
the following equation for a wavepacket propagating
along the z axis:

2 o°P
poe CZ%—%—CZADEMna <+ wpE = 0. (25)
t z t

0°E

The last term in Eq. (25) describes the background
plasmaeffect. We define the cluster-rel ated polarization
as

PC = nCp7

where n; is the cluster density. We find the dipole
moment of a single cluster p by solving Eg. (2) by the
perturbation method. In the approximation under con-
sideration, it differs from (14) in that it includes the
dynamical part of Eq. (2). Asaresult, we obtain thefol-
lowing expression for the polarization of the cluster
subsystem:

0 2.7 20gga3%0
P. = na’E[L+ %a —nca‘ga—2 Eza . (26)
= o Lral]

where wy, is the frequency of the free oscillations of a
cluster with theinitial size a,. In Eq. (26), we took into
account the fact that the total number of particlesin the
volume is conserved as the cluster expands (na® =
const). Substituting (26) into (25) yields an equation for
the electric field of the wave beam,

0’E_ 0°(bE) _g__QZ_%)az(bE)D

ot at?  wior’l a2 U
°0E D L0°E 2 &0
+a = "=0-c"=—= —CAE+ W E = 0,
ot’0 EQ z
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where
a = 4mn.ay, b = a’la.
The linear dispersion relation for afield
E Dexp(ik,z—iwt)

in amedium with fixed parametersis

_ (0(1+ab) —wl, + ab?w’/w?)"?

c

K, (28)

It describes the waves in the approximation of weak
dispersion of the cluster subsystem (see Fig. 1). For
quasi-monochromatic radiation, expanding the right-
hand side near the central frequency wy, yields

Hence, we obtain

Vg = c(1—h/2w’ —ab/2 —3ab’w’ /26 (30)
for the group velocity of the wavepacket v, = dw/ok,
and

_ 0%k, _ — 0oy + 3ub’w’/w;

2

k
26m

(31)
w’c
for the group velocity dispersion parameter. Thus, in a
cluster plasmawith alow background density,

whg < 30b’w'/wy;, (32)
the group velocity dispersion is normal (k, > 0). More-
over, asthe cluster expands, inequality (32) is satisfied
better and better; i.e., the dispersion of the medium
remains normal. If, however, the background plasma
density is fairly high and the plasma (anomalous) dis-
persion dominates at the leading edge of the wave-
packet,

Whg > 30b’w'/ Wy, (33)
the plasma cluster expansion can lead to achange of the
dispersion from anomalous to normal inside the pulse.
In this more complex regime of wave field propagation,
expansion (29) is not enough, and the third-order dis-
persion should be taken into account. Our calculations

show that the coefficient 3°%k/dw® is positive and equal
to

% _ 3 My el (34)
0w’ wc’Ow’ ﬁ
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To describe the self-action dynamics of wavepackets,
we can pass from Eqg. (29) to the equation for the com-
plex amplitude of the field envelope. In our case, the
cluster is a nonstationary object. To use the standard
procedure for shortening (27), we assume that the clus-
ter expansion rate is the same in the beam cross section
(b = b(t, 2) depends only on the time and the longitudi-
nal coordinate inside the pulse). As a result, for the
complex amplitude of the envelope

we obtain an equation in the frame of reference moving

with the local group velocity (30) in the adiabatic
approximation:

G OA o 7l APA(b" A
2|kZaZ+2|me Eir 3t
(35
3, 0A

2 2
—wC==ky== + ApA + ab™ LA

0 0% CE,
where k, = 0@/0z, z. is the coordinate of the center of
mass of the wavepacket, and dv,/dt = V. At afixed fre-
quency k,, V,, and b are generally functions of &. Equa-
tion (35) does not include the correction for the nonsta-
tionarity of the medium. It iswell known [17] that in a
nonstationary medium, the expression for the permit-
tivity g(w, t) in the wave equation should be substituted
with

The correction to the quasi-stationary value of g(w, t)
proves to be significant near the geometrical resonance

w = wJ /3. Since we are interested in the processes in
the range of parameters

Wpg < W < W/A/3,

in which the permittivity e(w, t) is close to unity, this
correction can be ignored. This equation differs from
the equations that are usually obtained in this case by
the term containing the dependence of the group veloc-
ity on the wavepacket amplitude.

To investigate the self-action dynamics in a cluster
plasma, it is convenient to pass from Eqg. (35) to an
equation in dimensionless variables:

OV . 74,20, 712 J0_ o¥
gz TG () — 5 (36)

+AW+d"P WPy = 0,
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where
6 3
JBWE,, 100a;,, W’z
W= AAG Ay = T Zpw =
wcamax wCC
2_6 1/2
_ 2w W am,(200) 7
T="", lpw = ,
c Cu,
3 2 2
_ a — A2 wbgwc
d=—= X=d-—=
Amax 300 A

Amax 1S the maximum cluster size reached at the pulse
trailing edge. Since these coefficients depend strongly
on the cluster size (e.g., the coefficient of the nonlinear-
ity isproportional to a’), we assume, for simplicity, that
d=d,,;, = 0at theleading edge. Depending on the back-
ground plasma density, the cluster expansion rate, and
the pulse duration, the parameter x can be positive or
negative and change sign inside the pulse.

L et us next consider the self-action of laser radiation
inacluster plasmaseparately for normal (x > 0), anom-
alous (x < 0), and combined dispersions. Since the
coefficients in (36) depend on 1, Eg. (36) is not a
Hamiltonian equation. Therefore, the only integral rela-
tion that holds here is the total pulse energy integral
related to the absence of dissipation in the system:

IILPIZderD = W. (37)

We can find from the corresponding continuity equation,

o|W|? 0 72042 0 Uik w Wk
o7 +6Td |W +|0T)((LlJ W —-wyr)

+idiv(W* 0% — WO, W*) = 0,

(38)

that the center of mass of an axisymmetric wavepacket
moves with the velocity

_d 2
u-= dTJ'TILIJI drdrg @)
= —J'(d7’2|w|4/2+ ix(W* W, —WW)drdr,

i.e., generally nonuniformly. This leads to a change in
the laser pul se shape, which also takes place in ahomo-
geneous medium where it is determined by the depen-
dence of the group velocity on the wavepacket ampli-
tude. In our case of an expanding cluster, the sharp
increasein d and X when passing from the leading edge
of the pulse to its trailing edge makes the deformation
of the envelope near the trailing edge the dominant
process.

To investigate the self-action in acluster plasma, let
us turn to numerical simulations of the evolution of the
system.
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5.2. SAlf-Action
in a Normally Dispersive Medium

The sdlf-action of alaser pulse in a homogeneous
medium with normal group velocity dispersion (x > 0)
is determined by the competition between the trans-
verse self-focusing compression and the longitudinal
spreading. For three-dimensional wavepackets with a
power P exceeding its critical value, the self-compres-
sion process is predominant (see, e.g., [18-23]) and is
accompanied by a significant field strengthening near
the system’s axis. Estimation of the critical self-focus-
ing power in acluster plasmayields

(40)

where P, = 11.7 isaquantity well known from the the-
ory (the dimensionless critical power of an axisymmet-
ric homogeneous wave beam). Considering (40) as a
local relation, we concludethat the part of the pulse (the
T region) in which self-focusing is possible is deter-
mined by the condition P/P, > 1 and that optimal con-
ditions for self-focusing are created in the T, section
where the ratio P/P, ~ Pa’ reaches its maximum. Thus,
theincreasein cluster size on the pulse length displaces
the T,y Section to the trailing edge. Apart from the
deformation of the envelope profile of a three-dimen-
sional wavepacket, the nonlinear dispersion in a homo-
geneous medium [24] al so affects the self-focusing rate
by enhancing it at low values of o and weakening or
even preventing self-focusing at high values of this
coefficient.

The results of our numerical analysis of the self-
action dynamics of a Gaussian wavepacket for normal
dispersion are presented in Figs. 4 and 5.

Theinitial distribution was specified in the form
WY(z=0,r1,1) = Agexp(—0.5(r/a,)>— 0.5(1/a,)?) (41)

with the parameters a, = 4, a, = 20, and A, = 1. In
numerically solving Eq. (39), we approximated the
dependence d(t) by a piecewise linear function of the
longitudinal coordinate,
d=0, t>0, d=-t/a, 1<0,

which models a power-law increase in cluster size on
the laser pulse length. According to qualitative models,
the field maximum shifts rapidly to the pulse trailing
edge. The position of the maximum is determined pri-
marily by the optimal conditions for self-focusing and,
thus, depends on the pulse intensity profile and the crit-
ical power profile. Since the group vel ocity depends on
the amplitude, strengthening of the self-focusing field
gives rise to a paraxia energy flux toward the pulse
leading edge. Accordingly, the field peak shifts to the
region wherethe characteristic field for the nonlinearity
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h

z=8.16
0 ! ! LT ! ! !
-30-25-20-15-20-5 0 5 10

I

1
15 20 25
T

Fig. 4. The pattern of isolines of afield with the initial dis-
tribution Y(z = 0, 1, T) = exp(-0.5(r/4)% — 0.5(1/20)?) for
consecutive pulse positions in the case of normal disper-
sion. The splitting of the field peak into two secondary
peaksistypica of a homogeneous medium without nonlin-
ear dispersion.

increases, and the self-focusing process weakens. As
the maximum shifts, it fragments, asin a homogeneous
nonlinear medium with normal dispersion.

We see from Fig. 5a how strongly the wavepacket
dynamics depends on the initial conditions. For a pulse
with aninitial amplitude of A, = 1, we have ardatively
small maximum strengthening, A,./A; = 5.5, a adis-
tance of z = 8.5 from the entrance to a nonlinear
medium. An increase in the initial amplitude to Ay =

737

1.25 causes a sharp increase in the field strengthening
at half the distance. The computational accuracy in the
numerical scheme used is determined by the longitudi-
nal cell size; when longitudinal field scales of the order
of the cell size appear, the accuracy becomes insuffi-
cient and the computation isinterrupted. The computa-
tion of the case with A, = 1.25 was interrupted because
the accuracy wasviolated at A,,,/A; = 40. However, we
believe that there is no real singularity in the solution,
but the same processes as those in the case with a
smaller amplitude A, take place; these processes aso
lead to the limitation of the singularity, but at much
higher intensities in the peak. Figure 5b illustrates the
behavior of the characteristic scales of the field peak in
the case with A, = 1. The characteristic scales a, and a,
were defined here as the (respectively, radial and longi-
tudinal) distances at which the field decreased by afac-
tor of e compared to its maximum value. The dotted
curve in Fig. 5b shows that the field distribution is not
isotropized during the evolution (the ratio a,/a, of the
longitudinal and transverse scales does not tend to
unity), which isalso typical of self-action in ahomoge-
neous medium [18-23].

5.3. Sdf-Action
in an Anomalously Dispersive Medium

At a fairly high background plasma density
(00pg /0P > 0@, /33, the group velocity dispersion in
the medium is anomalous. In this case, a self-action
regimeisrealized in which the dispersion is determined

by the background plasma, while the nonlinearity is
determined by the ionized clusters. A peculiar feature

Maximum field a,, ar
20 T T T T T T T T 18 I— \I T T T T T T
18- @  716F AN ®
16 g AN
14} N -
14- 1 12_ \\ -
12_ T 1 \
10} 2 11 \ ]
8 JUPA N _
gL 4% e N
l===°" N\ el .
6 16 ~
4l 1 | 4+ \\ i
~
2+ 4 2r N A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 5. Dynamical picture of the parametersthat characterize thefield structure. Panel (a) shows the dynamics of the field maximum.
For the case with an initial amplitude of Ag = 1 (curve 1), the maximum field strengthening, Anad/Ao = 5.5, isreached at a distance
z= 8.5 from the entrance into a nonlinear medium. Increasing the initial amplitude to Ag = 1.25 (curve 2) leads to a sharp increase
in maximum field strengthening (in fact, to the formation of afield singularity) at half the distance, z= 4.14. Panel (b) shows the
behavior of the transverse, &, (solid line), and longitudinal, a; (dashed line), characteristic scales of the field peak. The dotted line

indicates aratio of a;/a,.
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Fig. 6. The pattern of isolines of afield Y(z=0,r, 1) =
0.71exp(—0.5(r/4)?— 0.5(1/20)?) for consecutive pul se posi-

tions in the case of anomalous dispersion (ooﬁg lw? = 2a).
Thereisaclear tendency for the maximum in the field peak
to shift to the pulse leading edge at the final evolutionary
stage.

of this self-action regime in a homogeneous mediumis
the possibility of distributed (three-dimensional) col-
lapse. As aresult, one might expect the highest rate of
spatiotempora self-focusing. Clearly, the decrease in
the characteristic field for the electron nonlinearity as
the ionized clusters expand will also contribute to this
process.

Our numerical simulations of the self-action
dynamics of laser radiation for anomalous dispersion

ZHAROVA et al.

confirm the features noted above. The self-focusing of
a wavepacket proves to be possible when much milder
conditions than those in a normally dispersive medium
are satisfied (thefield strength in the case with field col -
lapse shown in Fig. 6 is half that for the case without
any singularity in Fig. 4). A characteristic featurein the
system’s evolution is the tendency for the wave field
structure to be symmetrized (see Fig. 7b). The corre-
sponding singular solutions of the nonlinear
Schrédinger equation with afinite energy flux into the
singularity in the regime of spherically symmetric col-
lapse were constructed in [25, 26].

Just as in anormally dispersive medium, the initial
evolutionary stageis characterized by ashift of thefield
maximum to the pulse trailing edge, to the region of
optimal self-focusing conditions. As the amplitude
increases, the nonlinear dispersion also increases in
importance: as the velocity increases, the field maxi-
mum begins to shift toward the pulse leading edge,
where the role of nonlinear effects weakens. The pat-
tern of field isolines corresponding to the last computed
evolution times clearly shows a tendency for the field
maximum to escape from the peak. Clearly, the time it
takes for the field maximum to traverse the characteris-
tic longitudinal scale of the peak servesasacriterionin
this case. If thisoccurred earlier than the formation of a
singularity in the solution, then thiswould imply escape
from the regime of collapse.

Based on the well-known behavior of the singularity
of the solution in the homogeneous case (|Y| O {72,
(=0 is the singularity formation time) [25, 26], we
conclude that the nonlinear dispersion has time to pre-
vent the collapse, since the distance that the field peak

Maximum field a,, a;
20 T T T T T T T T T 18 T T T T T T T T T T
IR

B _ N
18 (a) 16 N ®
16+ - L \ i
A 14 N
l4r 2 112t AN 1
12+ -

10+ N\ .

10+ e g

8 T T

6L | o6fr . 4
41+ 114 4F 4
2+ —4 2+ e

] L 1 1 1 1 1 1 1 1 1

| | |
0 2 4 6 8 10 12 14 16 18

1
200 2 4 6 8

1 1 1 1
10 12 14 16 18 20

Fig. 7. The dynamical picture of the parametersthat characterize the field structure. Panel (a) shows the dynamics of the field max-
imum. The solution with an initial amplitude of Ay = 0.71 (curve 1) approaches the singularity at a distance z = 19.3 from the

entrance into a nonlinear medium. When the amplitude is increased to Ay = 1.25, the singularity is formed earlier (curve 2), at z=
3.6. Panel (b) shows the behavior of the transverse, a, (solid line), and longitudinal, a; (dashed line), characteristic scales of the
pulse. The dotted line indicates a;/a, ratio, which is close to unity at the final evolutionary stage. Such symmetrization of a con-

tracting structureis typical of spherically symmetric collapse.
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traversesinthe“time” {,islogarithmically largeinthis
case:

-0

IIllJI d¢ 0In(C/Co) ——

However, the field amplitudes reached by this time are
so large and the characteristic scales are so small that,
in fact, collapse can be said to take place.

Thus, the presence of a background plasma signifi-
cantly affects the self-action dynamics, and this effect
is particularly strong for pulses in which the character-
istic dispersion and diffraction scales are of the same
order of magnitude: the pulse shortening in an anoma-
lously dispersive medium has virtually no effect on the
singularity formation conditions and time, while asig-
nificant increase in radiation intensity is required for
self-focusing to take place in a normally dispersive
medium (a cluster plasma without any background).

At alower background plasma density,
WA VER

the medium has a combined dispersion: the group
velocity dispersion is anomalous at the leading edge of
the pulse and normal at itstrailing edge. Since the clus-
ter and plasma dispersions have opposite signs, they
compensate each other to some degree; in the section
where

2 2 3,.3
W/ W™ = aa’/ay,

the compensation is full. Since the region of effective
self-action shifts to the pulse trailing edge and back,
which is typical of both types of dispersion of the
medium, the behavior of the solution is intermediate
between the two behaviors considered above.

6. CONCLUSIONS

We considered the self-action dynamics of laser
radiation in a cluster plasma. Based on the model of an
isolated cluster in the form of aplasmabunch in aback-
ground plasma, we substantiated the constitutive equa-
tion for a nanodispersed ionized medium. A compara-
tive analysis of the nonlinearity mechanisms showed
that the electron nonlinearity of an ionized cluster
related to the anharmonicity of the el ectron oscillations
in the laser field has the lowest threshold in the field of
an ultrashort laser pulse. Theresponse of the mediumto
the field action and particularly its nonlinear part were
found to depend strongly on the ionized-cluster size.
Therefore, in constructing the self-consistent picture of
the interaction between laser radiation and a cluster
plasma, we made the necessary alowance for the
plasma bunch expansion corresponding to experimen-
tal data.
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We investigated the self-action dynamics of an
ultrashort laser pulse. The evolution of the envelope of
awavepacket is determined by the electron nonlinearity
of an ionized cluster and by the dispersion of a highly
inhomogeneous medium. The evolution of the system
was shown to be similar for all types of group velocity
dispersion (normal, combined, and anomalous). For a
rare background plasma at alaser power exceeding the
critical self-focusing power, the self-action dynamics
of awavepacket devel ops asin ahomogeneous medium
with normal dispersion. The new featuresrelated to the
sharp dependence of the critical self-focusing power on
the cluster size manifest themselves in an appreciable
increase in the compression rate of the wave beam, the
attainment of higher fields, and the shift of the field
maximum to the pulse trailing edge. Since the self-
compression of the wave field takes place mainly in the
trailing part of the pulse, the pattern of self-action for
combined dispersion (anomalous dispersion at thelead-
ing edge changes to normal dispersion at the trailing
edge) isvirtually identical to that for normal dispersion.
In afairly dense background plasma, in which the dis-
persion is anomalous, the formation of an amost spheri-
cally symmetric region of a strong field should be noted
among the new features in the self-action dynamics.

In application to an experimental study of the inter-
action between laser radiation and a cluster plasma, a
strong dependence of the processes under consideration
on the ionized-cluster size should be noted. It turns out
that the self-action of laser radiationissimilar in pattern
over a wide range of parameters of the medium if the
power exceeds the critical self-focusing power. Here,
one might expect both an appreciable shortening of the
pulse duration and a decrease in the transverse size of
the wave beam passed through the medium.

The critical power for the electron nonlinearity,

2

7 0
m%"i‘*’a@ x 102 W,

= a0 TS (42)

decreases greatly with increasing relative size of the
expanding ionized cluster. The possibility of experi-
mental observation of the self-action effectsin a cluster
plasmais thus seen to depend significantly on the clus-
ter expansion rate. The critical power isfairly large near
the pulse leading edge. However, in the dynamical
regime, atwofold increase in size compared to the ini-
tial size decreases the critical power by one and a half
orders of magnitude. For example, for the parameters of
the experiment [10] (A = 800 nm, a; = 300 A, n, =
10% cm3®), the critical self-focusing power is

P, = 10%(a,/a)’ W. (43)
Thus, for peak powers in these experiments of P ~
10 W, the threshold conditions for the observation of
self-focusing will be satisfied if the cluster size near the
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field maximum increases by afactor of a/a; = 3. Hence,
we conclude that the self-focusing experimentsin [10]
can be interpreted in terms of the suggested mecha-
nism. It should be noted that the absorbability of self-
focusing inferred from the critical power parameter
should be considered as an overestimate, as suggested
by our numerical simulations of the self-focusing
dynamics in a medium with normal group velocity dis-
persion. An even larger decrease in threshold character-
istics might be expected at a higher background plasma
density and for anomal ous dispersion.
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Abstract—A complete theory of turbulent boundary layer flow over aflat plate with uniform wall suction is
proposed. The theory relies on an asymptotic analysis of the Reynolds equations and dimensional consider-
ations and does not involve any special closure hypotheses. Characteristics of the turbulent boundary layer with
suction are calculated for the entire range of flow parameters by using the known characteristics of areference
flow (turbulent boundary layer over an impermeable flat plate). The velocity and shear stress profiles, the dis-
tribution of skin friction along the plate, and integral flow characteristics are obtained by using only the
known velocity profilein the reference flow. The normal Reynolds stresses are cal culated by using anal ogous
characteristics of the reference flow. Results are presented in terms of scaling variables. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Turbulent boundary layer flow is generally modeled
by using various semiempirical hypotheses about tur-
bulent transport, turbulence model equations, and other
approximations. The relatively few results that can be
obtained without invoking any hypotheses (for zero-
pressure-gradient flows) include Prandtl’s law of the
wall, von Kérméan's velocity defect law, the logarithmic
velocity profile, the von Kérman skin-friction law, and
certain scaling relations for Reynolds stress components.

Theseresults can be called “exact” to the extent that
they were derived by dimensiona analysis under very
general assumptions [1-3] (see also [4]).

It was shown in [5-9] that the variety of “exact”
solutions can be substantially increased by using the
fact that the flow in a turbulent boundary layer with
transpiration is determined by afinite number of known
parameters [5-7]. Accordingly, there exists a universal
relation between turbul ent shear stress and mean-veloc-
ity gradient. For the dynamic problem, this fact can be
used to reduce the momentum equation to a first-order
ordinary differential equation. Itsanalysisyields ascal-
ing law for the mean velocity profile extending the log-
arithmic law for velocity to flows with transpiration.

This approach makes use of dimensiona analysis
and the physical assumptions underlying the classica
results [1-3], but essentially relies on eguations of
motion.

The approach developed in [5—7] can be extended to
other boundary layer problems depending on a finite
number of parameters. In particular, it was shown
in[8, 9] that the Reynolds stress componentsin a zero-
pressure-gradient boundary layer flow over aflat plate
with uniform transpiration are universal functions of

the streamwise-velocity gradient. For boundary layers
with suction [9], these functions can be completely
determined by using known characteristics of a refer-
ence flow, namely, the well-studied turbulent boundary
layer flow over an impermeableflat plate. In particular,
only the profile of streamwise velocity in the reference
flow isrequired to find the rel ation between shear stress
and velocity gradient.

In the present analysis, a closure condition derived
by this method is used to solve the problem for an arbi-
trary suction velocity by the asymptotic method devel-
oped in [10, 11] for boundary-layer equations at high
Reynolds numbers.

The resulting “exact” profiles of mean velocity,
Reynolds stress components, skin friction coefficient,
and integral flow characteristics are expressed in terms
of scaling variables and compared with DNS results
and experimental data. This comparison can be used to
evaluate the experimental accuracy.

2. STATEMENT OF THE PROBLEM

Consider the incompressible turbulent boundary
layer flow over a smooth flat plate with a constant free-
stream velocity U, and a constant wall suction velocity
v,, parallel to the normal vector. The turbulent flow is
assumed to develop from an origin located at the lead-
ing edge of the plate. The effect of free-stream fluctua-
tions on the boundary layer flow is neglected.

2.1. Closure Condition

The mean flow characteristics (streamwise-velocity
gradient, turbulent shear stress, and boundary-layer

1063-7761/05/10104-0741$26.00 © 2005 Pleiades Publishing, Inc.
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thickness A) are universal functions of Cartesian coor-
dinates x and y and flow parameters.

Ju
a{ = Fi(x, y,v,v,,U),
WvO= Fy(X, Y, V, Vy, Uy), D

A = Fy(x,v,v,,Uy),

wherev iskinematic viscosity and the origin of the Car-
tesian coordinate systemis set at theleading edge of the
plate. The definition of A is given in the context of the
analysis presented below. Beforethisisdone, thisquan-
tity is tentatively treated as the transverse length scale
of turbulent boundary layer flow.

The first and third equations in (1) are solved for x
and U,, and the results are substituted into the second
equation in (1) to obtain

wvD= Fv, v,,.4, SE

By applying Buckingham'’s N-theorem, this relation is
rewritten as

e _Y au
[rvD= E/M SR.B.M). R= T3
y 2
- w -y
B= R you/dy’ = A

where Sis a universal function for the class of flows
considered here, which are parameterized by v, v,,, and
U.. It isassumed that this function is continuous at

O0LR <o, —0<B<0, 0<N<o,

and differentiable inside these intervals. Moreover, itis
assumed that

(oo, 0,0) # 0.

It was shown in [7] that this condition must be satisfied
if the reference flow over an impermeabl e flat plate has
alogarithmic velocity distribution.

Expression (2) relates shear stress to the mean-
velocity gradient. Since the dependence of thisrelation
on the suction velocity must weaken with increasing
distance from the wall, the parameter 3 is defined so
that the denominator contains the local Reynolds num-
ber R.
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Analogously, the normal Reynolds stress compo-
nents are expressed as

2
o= JSHS(R.B.).
2o~ 0,041
V= 450 SRB ), 3

wh= JEHS(R.B.).

where S, S,, and S; are universal functions. However,
the continuity condition holds only for S,, which
describes the behavior of the Reynolds stress compo-
nent associated with transverse velocity fluctuations.
According to theoretical results presented in [12, 13]
and supported by measurements, its behavior near the
wall is similar to that of shear stress. Therefore, there
exists a nonzero quantity

Sy(,0,0) = (k/0,)%, 4)

wherek = 0.41 isvon K&rman’s constant and o, = 0.95
according to experimental data[4].

The behavior of the stress components [W?and
(W2L) which are associated with velocity fluctuations
parallel to the wall, is more complicated:

Si(,0,n) = —Ak’Inn +O(1), -
Sy(w,0,n) = —Agk’Inn +O(1),

n—0,

where A; and A; are universal constants. According to
the results of the direct numerical simulations of turbu-
lent boundary layer flow performed in [14] for Rey-
nolds numbers Ry (based on the displacement thick-
ness) not higher than 2000,

Al =

11, A, = 0.36. (6)

Theconditionsformulated hereforS S, S,, and S; are
based on the following physical assumptions [12, 13]:
viscosity is essential only within a thin viscous sub-
layer, and the behavior of [W'v'Uand 0V*?Cinear the wall
is independent of the outer length scale (boundary-
layer thickness), whereas the stress components [i'2[]
and DW2Cmust depend on this scale because of the sub-
stantial anisotropy of near-wall turbulence.

L The numerical value A = 0.66 given in [14] must be a misprint,

because the value in (6) is obtained by processing the data pre-
sented therein.
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2.2. Change of Variables

The streamfunction Y(x, y) of the mean flow satis-
fies the boundary-layer equation for zero-pressure-gra-
dient flow:

ququy_ququy = (way_ EUVDW
x>0, y=0: ¢, =0, Y, =-v,, ()
y—o §, —U, Wvi—0.

The following change of variables is performed
in(7) [10]:

dR
= UAWEN), AE®) = g7 &= IR,
U.X XA ®
R, = —, R,=—.
v v

The independent variables & and n are defined as the
logarithm of the Reynolds number based on the bound-
ary-layer thickness and the normalized distance from
the wall, respectively. In addition to the dimensionless
streamfunction W(g, n), the unknown function A(€) is
introduced here. It is defined asthe slope of A asafunc-
tion of the streeamwise coordinate. By virtue of (2),
W(E, n) and A(§) satisfy the following equation [10]:

AW We, =W (W + W)

= [(NW)*S(R, B, ) + €W, ], 9)
R =en’¥,, B=BNRY,)"

&>-—0, n=0:

W, =0, AW+W;) = -B, (19

N — ! qu] — 1, nq'}nn/\/S(le Bf ﬂ) — 0, (11)

where B = v,,/U, is the normalized wall suction veloc-
ity. Boundary conditions (10) and (11) are set on the
plate and in the free stream, respectively. In accordance
with the order of the differential equation, two condi-
tions (for velocity and shear stress) are set at the outer
boundary.

To find an asymptotic solution to problem (9)—11)
at { — oo, asmall parameter € and a new independent
variable are introduced:

¢ = €g,

Thus, the small parameter used in the present analysis
is inversely proportional to the logarithm of the Rey-
nolds number based on the transverse length scale of
the flow.

1/ = O(1).
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Thenormalized wall suction velocity isexpressed as

B =¢°h, b= O(L); (12)
i.e., the transverse velocity component at the wall is
assumed to be a small quantity of second order in €.

The solution is represented by different asymptotic
expansionsin € for different flow regions. In the trans-
verse direction, two regions develop: an outer region
and anear-wall region. In the former, molecular viscos-
ity can be neglected in the boundary-layer equations
and the characteristic length scaleisthe boundary-layer
thickness. In the latter, the characteristic length scaleis
determined by the condition that turbulent and viscous
stresses are similar in order of magnitude.

3. NEAR-WALL REGION
The variables used in the near-wall region are

y - yUe/\/Cf/2 U, = qu
+ v ’ + '
U /ci/2 (13)
— VW
U, Jc/2

where ¢; is the skin friction coefficient.

According to [7], since v, isasmall quantity (esti-
mated as v, = O(€) below), the near-wall velocity and
shear-stress profiles can be related to the velocity pro-

file u (y,) in the turbulent boundary layer flow over an
impermesable plate:

2 (JTH Vit —1) = W(y,) + O(v.),

+

EDdUJ,_ v a0 — 0
V+D,dy+ v -15 = u(y,) + O(v.), (15)

y.20.

E=

(14)

<

The profile of rms transverse-velocity fluctuation
can a'so be expressed in terms of known functions:

Jo = Jody,) + ZV—C;ZuS(yJ +O(v.),

y,.20.

(16)

The first term on the right-hand side in (16) is the cor-
responding profile in the reference flow, and the con-
stant o, is defined by (4). The estimate O(v,) for the
remainder term in (14)—16) is uniformly valid for al
y, = 0.
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Outside the viscous sublayer, the function uf exhib-
its logarithmic asymptotic behavior:

1
Ug(y+) = E(Iny+ + CO) + W+(y+),

w.(y.) = O(y:"),

The role of von Kérman's constant k is played by

(0, 0,0). According to experimental data, C, =
2.05[4].

(17)
a>0.

y+4> 001

4. OUTER REGION

Generally, two regions develop in a boundary layer
with suction along the streamwise direction [11, 15]. In
the upstream (moderate-suction) region, the shear
stressat thewall issimilar in order of magnitude to that
in the outer region. While the wall suction velocity
remains constant, a strong-suction region develops as
the Reynolds number increases downstream of the
moderate-suction region, where the shear stress at the
wall is much stronger than that in the outer region. The
Reynolds stress components in the outer region are
comparable to A(€) in order of magnitude. The moder-
ate-suction solution obtained in[11] hasasingularity at

= 2x(-b)™,

which correspondsto a vanishing leading-order termin
the expansion of A(§).

To analyze the strong-suction flow in the neighbor-
hood of this singular point (or line if the flow variable
in question depends on the transverse coordinate), a
new variable s = O(1) is introduced by the following
formula[15]:

s = £ -2k(-B) ™’ —kIn(-B)
= £ '[& — 2k (=b) ™4 — 2kIne —KIn(=b),

where k is a constant parameter to be determined.

The function A(€) is a quantity on the order of € in
the moderate-suction region. Since its leading-order
part vanishes at the singular point [11], the strong-suc-
tion solution is sought in the following form (see [15]):

(19)

(18)

A(E) = —€”bA(s) + O(e%),

W(E,N) = W,(8) +n—¢e’bg(s n) +O(%). (20)

Here, W, (&) is the streamfunction value on the wall,
and g(s, 0) = 0 accordingly. By virtue of the second wall
boundary condition in (10) combined with (12) and
(19), it holds that

dw.(8) _ 1
BT; = @4‘0(8)

Wy (8) + (21)
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Substituting (19)—21) into Eg. (9), using (18), and
taking the limit for s= O(1) and 1/n = O(1) ase — 0,
one abtains a partial differential equation for g(s, n)
and A(s):

[(NGn)°y + (L +NA)Gry = e,

22
05,0 = gy(s®) = 0, limng,/S=0.

Hereinafter, Sis used to denote S, O, ) for brevity.

The moderate-suction solution corresponds to the
limit of Eq. (22) as

§—> —, A(S) —, g(s,n) — A(s)f(n). (23)

The function f(n) satisfies the following boundary
value problem for an ordinary differential equation:

[(nf")’S +nf" =0,

f(0) = f'(w) = 0, limnf"./S=0. (24)
r]_.oo
The solution to problem (24) is
. _ ) ddn _ oodr]
f =[—=, o = [—. 25
() {zn[s (n) ‘!—fs (25)

The function f'(n) describes the velocity profile in tur-
bulent boundary layer flow over an impermeable flat
plate [10]. It follows from (25) that its asymptotic form
a thewall is

() = ZX(Inn + A~ InFy) + O(n°),

(26)
n-—»0 a>0, F,=.-f(w) = 93§29),

where A, is a constant. Expression (26) is obtained by
evaluating the integral in (25) by parts.

The oppositelimit, A = 0, correspondsto the asymp-
totic suction boundary layer (one-dimensional flow in
which all averaged flow variables depend only on the
distance from the wall [9]). This region develops far
downstream from the plate's leading edge. Setting
A =0in Eq. (22) yields the following boundary value
problem for an ordinary differential equation in g:

[(ng")’s'+g" =0,

o0 = g(=) = 0, limng'ys=o0.
Hence,
o= h - (o (28)
In./s
No. 4 2005



TURBULENT BOUNDARY LAYER OVER A FLAT PLATE

The formula for h(n) in (28) is used to obtain the fol-
lowing logarithmic asymptotic expression at the wall:

h(n) = —=(Inn + A, = InF;) +O(n°),

a >0,

(29)
n—0,

where A, is a constant.

Thus, solutionsto Eq. (22) describethe entire family
of velocity profiles in turbulent boundary layers with
suction, including the limit cases of flow over an imper-
meable plate and asymptotic boundary layer flow.

Equation (22) hasthe first integral

(NGy) S+ (1+An)g, —A(g+g) = G,  (30)

G(9) = M) gl ) + Qs ?| @

Theanalysis presented bel ow makes use of the function
y(s, n) related to g(s, n) asfollows:

gy = —Y/4-yJ/G.
Substituting (32) into (30) yields

(NV,)*S = 1+0(n),
Hence, the asymptatic form of y(s, n) at thewall is

(32
n—o0.

V(s n) = ~=[Inn + A(s) ~ InF] ~w(s,n),

w(s,n) = O(n%,
where A(S) is some function.

(33)

n—0, a>0,

5. MATCHING OF SOLUTIONS

The skin friction coefficient is sought in the foll ow-
ing form [15]:
% = _g2b+£*b2t(s) + O(%).
The solutions for the outer and near-wall regions of
the boundary layer flow are matched with the use
of (14), (17), (32), and (33) as follows. The wall vari-
ablesy, and u, are related to the outer variablesn and
W, by expressions (13), where the first one can be
rewritten by using (18) as

(34)

= (b [Fen 2L 2K S IECY
It follows from (12) and (34) that
v, = —e./-b+O(£?). (36)
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According to (20) and (32),

W, =1+ szb[@ ry(s n)A/G(s)] +O(£9). (37)

Rewrite (14) in terms of the outer variables by
using (13) and (35), taking into account (34), (36), and
(37). For s=0(1) and 1/n = O(1), consider the expan-
sion of (14) in € to terms of order unity. The expansion
of the left-hand side of (14) is

T—«/V ?+4y./G+ 4t + O(e).
£

By virtue of asymptotic formula (17), the expansion of
theright-hand sideis

2 +2k+1lns+1+[lnn +s
ed-b K K

+ v %In(—b) ¥ CO] +0(g).

(38)

(39)

Equating like terms in (38) and (39), one obtains k =
-1/2 and

y:+4y./G+4t = —%(Inn +5+Cy).

According to the asymptotic matching principle [16],
this equality is compared to asymptotic formula (33) to
obtain

t(s) = G(s),

A(s)—InF,; = s+ Cy—2K./G(S). (41)

The latter relation hereis used as a closure condition to
solve boundary value problem (22) for g(s, n) and A(s).
The former combined with (31) relates the skin friction
coefficient to the resulting solution. Relation (40) can
also be derived from the integral momentum equation
for turbulent boundary layer flow.

To solve boundary value problem (22) under addi-
tional condition (41), only the function S, 0, n) is
required. By virtue of Eq. (24), it can be expressed in
quadratures by using itsrelation to f'(n):

_ f=f(0)— r]f
(nf")’

Since f'(n) describes the velocity profile in turbulent
boundary layer flow over an impermeable plate, it is
well known from experimental data. In this study, it is
calculated by using an empirical formula proposed

in[17]:
f'(n) _ %[Inn —0.55(1 + cos(Ttn))],

(40)

(42)

Fi
1.55 y “3)
< = == = 2
O<n<l, F L n A
Vol. 101 No. 4 2005
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Fig. 1. Experimental resultsfrom [18, 19] (symbols) and computed curves of (a) skin friction coefficient and (b) displacement thick-
ness plotted in terms of scaling variables for the strong-suction flow: 0—[18]; 0—[19] (indirect measurements); m—{19] (mea-

sured with floating elements).

The boundary-layer thickness A is defined here as the
distance from the wall to the point where the stream-
wise mean-velocity component differs from U, by
0.5%. This definition of boundary-layer thickness
related to a specific velocity profile in the reference
flow is used in what follows.

6. SCALING LAWS
6.1. Skin Friction and Displacement Thickness
Define the scaling variables

I 2K[]
z_ =(-B)""lexp=R (44)
il U8 =g
oxo oxo
By virtue of (20), the displacement thicknessis
5* = —e’be’[g(s, ) + O(g)]. (45)

By the definition of A(§) in (8), it holds that

For the strong-suction region, these expressions are
combined with (18) and (19) to obtain

Zs = —g(s, o)’ + O(g), (46)

S
S

zZ, = I)%ds+0(e). (47)

Representations (46) and (47), boundary value prob-
lem (22) for g(s, n) and A(s), the ensuing relations (31)
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and (41), and expression (40) for t(s) suggest that the
distributions of skin friction and displacement thick-
ness along the plate obey the following scaling laws in
the strong-suction region:

InZ_, = ®_ (t)+0(/-B),

O
o8 B4 @)

where @, and ®, are universal functions.

Figure 1a shows the distribution of skin friction
coefficients along the plate plotted by representing
experimental results from [18, 19] in terms of scaling
variables (44) and using (48). Here, the intervals of the
Reynolds number and normalized suction velocity cor-
respond to well-developed turbulent boundary layer
flow: 4< R x10°<20and1.2<-Bx10°<2.4in[18],
and3.8<R,x10°<35and 1<-Bx10°<3.6in[19].
In [18], the skin friction coefficient was determined
indirectly from measured velocity profiles. In [19], it
was determined both indirectly by three different meth-
ods and directly by using “floating elements’ on the
wall surface.

Small values of Z. correspond to the moderate-suc-
tion region. In agreement with the scaling law formu-
lated above, the data points shown in Fig. latend to fol-
low a unique curve with increasing Z, approaching the
solution obtained by computing boundary value problem
(22), (41) (see Section 10).

Figure 1b shows the distribution of displacement
thickness along the plate measured in [18, 19]. It is
clear that the measured results plotted in terms of vari-
ables (44) can be approximated by asingle curve. How-

No. 4 2005



TURBULENT BOUNDARY LAYER OVER A FLAT PLATE 747
E.-E E.-E
20 T T 20 V, T T
%

(a)

10

0
1073

1
1072

(b)

10

0
1073

. R Sy
107! !

1
1072

Fig. 2. Experimental velocity profilesfrom [21] plotted in terms of scaling variablesfor R, x 10°=40 (0),6.8(0),9.3(a),12 (>),

15 (¢), and 20 (v): (@) B =—0.0012, —-0.036 < q < — 0.029; (b) B =

ever, this curve approaches the computed solution only
within asmall interval corresponding to the strong-suc-
tion region.

6.2. VEelocity and Reynolds Stress Components

Solution of (37) as a quadratic equation for y, com-
bined with (40) and (14), yields

_ 2(Ug—u)
Ue(J/ci/2+ B+ /ci/2 + Bu/U,)

e

= y(q,n) +O(.Jcr), (49)
- B __1 - —oo
q_m ﬁ+o(ﬁ)' <qg<0.

Here, E. denotesthevalue of E inthe free stream. Rela
tion (49) demonstrates that velocity profiles outside the
viscous sublayers of boundary layers with suction
depend on a single variable g. When g = 0, scaling
law (49) reduces to the well-known velocity defect law
for the flow over an impermeable flat plate. By virtue
of (23), (31), and (40),

vo.n) = L

The other limit case, g = —0, correspondsto the asymp-
totic boundary layer, where

Y(=,n) = h(n).

A convenient representation of results makes use of
the transverse length scale defined as

(50)

00

A*zga-aw. (51)

For the flow over an impermeable plate, it reduces to
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~0.0024, -0.1< q < —0.072.

the boundary-layer thickness &*/./c:/2 introduced
in [20]. By virtue of (49), it holds that

% = [v(@ ) +0([c). (52)
0

For g = 0, this expression combined with (50) yields

B = F+0( /o).

In Fig. 2, the velocity profiles measured in [21] for
turbulent boundary layer over aflat plate with suction
are represented in terms of scaling variables (49) for
several Reynolds numbers and two values of B. The
corresponding intervals of q are specified in the figure
caption to Fig. 2. Solid curves represent velocity pro-
filesin the turbulent boundary layer flow over animper-
meable flat plate. Since the experimental conditions
correspond to small values of g, all data pointslie close
to the curves, except for the points representing the vis-
cous sublayer.

The Reynolds stress components also obey one-
parameter scaling laws. Substituting (37) into (2) and (3)
yields

Jvou/oy— U'v'D
Ug(./c{/2+ B—-B)
= Q(g, N)~/S(=, 0,n) +O(.J/cy),
Ninlan
U(./c;/2+ B—B)
= Q(9,n)/Sy(, 0,n) + O(./cy),

Yo (9. N ay(a,n) O
ioq O 2 -1 —»<qs0.

(53)

(54)

Q(q.n) =
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Fig. 3. Velocity (a, b) and turbulent shear stress (c) profilesin asymptotic boundary layer cal culated by using (28) (solid curves) and
predicted in DNS studies [22, 23] (dashed curves). Curves 1 and 2 are plotted with Apand —6*/B (2) used as a transverse length

scale, respectively.

The formulas for the components [“Cand Lh2Care
analogous to (54). The expressions for shear stress and
rms transverse velocity fluctuation must hold every-
where outside the viscous sublayer. The scaling laws
for the streamwise and spanwise velocity fluctuations
arevalid in the narrower region where asymptotic rep-
resentations (5) hold.

By virtue of Egs. (24) and (27), formula (53)
reduces to
vou/dy— [u'v' _ nf'(n)—~f(n)
et 1+—+O( Ct),
c, U2 f () S

(55)
A/vaula_)\//; v _ h(2n) + O(ﬁf),

in the limit cases of g = 0 and g = —oo, respectively.
By using (4), (5), and (33), thefollowing expansions
are abtained for the Reynolds stress components:

[au o Vi
véy—m viad= Klnr]+0(1),
2
TR —3/A41V2W|nn +0(1),
K

/0=

(56)

2

-

These results show that there exists a near-wall region
where both square root of shear stress and rms trans-
verse velocity fluctuation are proportional to the loga-

Inn+0O(1), n—0.
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rithm of distance from the wall, while the rms stream-
wise and spanwise velocity fluctuations behave as the
logarithm to the power 3/2. All constants in (56) are
known from experimental datafor the turbulent bound-
ary layer flow over an impermeable flat plate.

6.3. Asymptotic Boundary Layer

Asapplied to the asymptotic boundary layer, formu-
las (49) and (51) reduceto

2, [2Y = h(n) + O(c),

A, =2}
0

Taking theintegral in (28) by partsyields

(=)

Ihdn = 2F,.

(57)

U.—u
v dy.

Hence,

AA—* = 2F,+0(./c).

Thus, the values of theintegral in (52) corresponding to
g = 0 and — differ by afactor of two.

By sguaring both sides of (57) and integrating the
result across the boundary layer, the following relation
is obtained:

5 _
—BA = 4dn O(.Jcr).

No. 4 2005



TURBULENT BOUNDARY LAYER OVER A FLAT PLATE

It holds that
(58)

This relation is derived by rewriting (25) with the use
of (28) as

wd)hdn__h_(b nh?
== 2
n

setting n = 0, and taking into account asymptotic
laws (26) and (29).

Figures 3a, 3b, and 3c show, respectively, linear and
semilogarithmic plots of velocity and turbulent shear-
stress profiles. Solid and dashed curves represent the
results of calculations based on (28) and the DNS
results obtained for B = —0.00361 and Ry = 1000
in[22, 23]. Even though the simulations were per-
formed for arelatively low Reynolds number, the solid
and dashed curves shown in Figs. 3a and 3b demon-
strate very good agreement outside the viscous sub-
layer, while those in Fig. 3c arein fair agreement. The
dashed curves shown in Figs. 3b and 3c contain inter-
vals of logarithmic behavior, which are relatively nar-
row because of the low Reynolds number, in agreement
with theoretical predictions.

7 dn , (39)

n

Figures 2 and 3 demonstrate that the profiles of
velocity and shear stress in the outer region measured
and computed in [21] and [22, 23], respectively, arein
good agreement with theory when represented in terms
of the outer scaling variables. When plotted in terms of
the near-wall scaling variables, the same set of data
points does not follow scaling laws (14) and (15). In
particular, the velocity profiles have logarithmic por-
tions with slopes close to /K, but they are shifted rela-
tive to the velocity profile predicted for the turbulent
boundary layer flow over an impermeable plate. This
discrepancy between computed and measured results
can be attributed, respectively, to the low Reynolds
number used in [22, 23] and the error of near-wall
velocity measurements with a Prandtl—-Pitot tube in
flows with transpiration in [21] (see [24]).

Figure 4 shows the rms velocity fluctuations in the
asymptotic boundary layer with suction plotted by
using the results reported in [22, 23]. For comparison,
the figure also shows line segments corresponding to
scaling laws (56) with constants known for the turbu-
lent boundary layer flow over an impermesable plate.
Figure 4 demonstrates that at least curves 2 and 3
(which represent the y and z components of velocity
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Fig. 4. Rms velocity fluctuations in asymptotic boundary
layer based on results reported in [22, 23]: (1) NEN
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fluctuations, respectively) have distinct logarithmic
portions.

6.4. Boundary-Layer Shape Factors

By virtue of (20), the velocity profile in the outer
region can be represented as

Ue—
VW
g9:(s n.€) = O(1),

Hence, the following expressions are obtained for inte-
gral characteristics of boundary layer flow:

u
= gy(s,n) +€g,(s,n,€),

e— 0.

g; g(s, ) +€l(s),
—B% = g(s, ) +¢£l,(s) + Bg(s, ©)I(s) + 0(83), (60)

= (s ) +E1(9) + 20(s, )1(9) + Ofe),

0

Il(s) = Igl(sl Ws)dn,
0

lgy(s.n)*ch

'®) =)
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Fig. 5. Boundary-layer shape factor: experimental results
from[18, 19] (symbols) and computed curve. Symbol nota-
tionisthesameasin Fig. 1.

where 8 and &** are the momentum and energy thick-
nesses, respectively. Formulas (60) entail the relations

é 66*5 = I(s) + O(g),
é%—%*g = 1(s) + O(e).

Combined with (40), they determine relations between
the boundary-layer shape factors, suction velocity, and
skin friction coefficient:

1-6/5*
—_—— = O(,/c:),
JCi/2+B—-B (@) + o)
2/3 — o**/d*
et = (D (@) , 6
—risop @O (62)
_ ql(s)
() = 427

By virtue of (32) and (50), it follows that

f*d
®(0) = J’—Es—”

0 1
in the limit case of the flow over an impermeable

flat plate. This integral is known as Clauser’'s shape
factor [20]. Calculations based on (43) yield

®(0) = 6.61. (62)
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In the opposite limit case of asymptotic boundary
layer, it is expressed as

K Ih“dn
16F D

The numerical value ®(—o0) = 39.3 combined with (61)
and B = —0.00361 can be used to find the shape factor
for the asymptotic boundary layer flow: /6 = 1.17. Its
value cdculated by using DNSresultsreported in[22, 23]
is1.29.

Figure 5 compares the values of the boundary-layer
shape factors measured in [18, 19] with a curve com-
puted as described in Section 10. According to mea-
surements reported in [18] and [19], Clauser's shape
factor variesfrom 6.4 to 6.9 and from 5.6 to 6.4, respec-
tively. The latter result is considerably lower than both
6.8 (recommended in [20]) and the valuein (62) calcu-
lated in thisstudy. Theresults obtained for theflow with
suction by using datafrom [19] aso lie below the cal-
culated curve.

() =

7. NEAR-MODERATE-SUCTION REGIME

The sum of the two expressions for g, in the limit
cases,

A'—h%/4,

solves Eg. (22) with right-hand side set to zero. Substi-
tuting

gy = M =h*/4+¢, (63)

into (22) and changing from s to the independent vari-
able t = /A, onefinds that the functions ¢(t, n) and

d\ _ dt

Q) = -5 = = (64)
solve the boundary value problem
(@ + Th)(N/Shon)y + TSPy T, )

= QT ~ 1),
6(1,0) = (1, ) =0, limn./Spy = 0, (66)

s(t) = A(1) - InF, — Cy— 2k /t(1), (67)
|=1 F.D FiQ(1) ¢(1,)
t()_ Kt 1 T
68
TQ(T)dq)(T 00), (69
0<1<o.

Expression (68) is equivalent to (31) rewritten by
using (58) and taking into account (63).
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7.1. Asymptotic Solution to Boundary Value Problem

As 1T — 0, the asymptotic solution to boundary
value problem (65)—(67) is sought as a regular expan-
sion in terms of T:

¢(1,n) = do(n) +104(n) + O(T"), (69)

s(1) = 0,1 +0,+O(1). (70)

The derivative of (70) is combined with the definition
of Q(1) in (64) to obtain

Q(1) = Q(0) +O(19). (72)
It follows from (68), (69), and (71) that
Jt= Fith+0(1), 11— 0. (72)

Taking the limit of (32) ast — 0 and using (40) and
(72) yields

y = — f'/F, + O(1).

Therefore, A(T) = Ay + O(1), and differentiation of (67)
combined with (72) and (64) yields

Q(0) = V2kF,.
Substituting (69) and (71) into (65), one obtainslin-
ear ordinary differential equationsfor ¢, and ¢,:

P(N/Shg)’ +ﬁ =0

d(N/SP;) +[(Nds)°S' + h(n/Sps) = 0. (74)

The solution to Eqg. (73) satisfying free-stream
boundary conditionin (66) is

(73)

Nidn _ hN;—
J'ZKnA/_S 2K ’
. (75)
- = _chf'dn
F,o' 2 Fo
n n

In view of (75), the solution to Eq. (74) satisfying
the conditions set on the outer boundary has the form

N5dn

Ny —hN;
IZKFln«/_S

2kF, '’

f'dn

N3 = _I-D?l_% o2’
hf'd
IDKl FE 2r]

(76)
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Since the function Sis given by (42), the latter inte-
gral in (25) can be calculated in explicit form:

® = 2/T—f(o)—nf.

Substituting (69) and (71) into the first integral of
Eq. (65),

NA/S(® + Th)dy, + T(N /S yy)”
+(T+N)0, -0 +Q(f -1°%,)
- Q[f(w)—TZd——————q)(;T’m)}—tb(T,m)
using (75) and (76); and taking the left-hand side of

Eq. (77) yields the following expressions required for
further analysis:
EM(O) -3

N,(0) —2N4(0) N;(0)
2K ol

(77)

bo(w) =
(78)

¢1() =

Analogous calculations are performed to find an
asymptotic expansion of t as given by (68), which
yields

f=2a+ 8 h0w), 1o-0,
T F,
_ D-Ny(0)
= —2Kl : (79)
_ 2Ng(0) = Ny(0) D? ~2DN,(0)
1 4K 8K2

7.2. Asymptotic Forms of Universal Functions
The expansion of y for a near-moderate-suction
regime is sought in the following form:
f! (n) y:(n) vz(n)
Fy Wt

f —> o0,

Substituting (80) into (32), using (79), equating the
result to (63) combined with (69), and taking into
account (75) and (76), one obtains

y(a,n) = - +0(t™%%),

(80)

_h? f? af' hN, -
ET et E T
(81)
— (V1+231)f'+hN3—N4
2 2F, 2k

Combined with the expressions for a, and a; and
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asymptotic representations (26) and (29), thisyields

D*—2DN,(0) , N2(0)

y1(0) = > )
DiIK(O) N (0?K (62
Y2(0) = 222 - SK .

Thus, while the first term in expansion (80) has aloga-
rithmic asymptotic form, thefunctionsy; and y, have no
singularities on the wall. Calculations performed with
the use of (43) yield the following values of the con-
stant parametersin (82):

A,=0.230, A,=-1.809, N,(0)=0.601,
N,(0) = 6.233, N4(0) =3.354, N,(0)=38.35.

The asymptotic expansion of the function A in (33)
can now be written as

A = Ag—Ky ()12 —ky,(0)t ™ + O(t™%),

{ —> 00,

(83)

The functions @, and ®, defined by (46), (47) are
calculated by integrating (63) and using (58) and (69):

9T, ) = —F1T " = F,D/K + (o) + (o) T + O(T"),
T— 0.
By using (79) to change to the variable t in this expan-
sion and taking into account (67), (78), and (83), the
following asymptotic expression for @, is obtained:
®y(t) = BI(t) + byt + byt + O(t™),
t — 00, (84)

D7 (t) = =2kt + Int+ Ay—C,,

_ D-Ny(0)+1
by = =2 =——xy(0),
b, = 2Na0) =Ny(0)

4K

N?(0) - 2D + 2N, (0) -1
L Ni(0) - 1(0) —ky,(0).

Evaluating the integral in (47) by partsyields

®, = s+INT—Q(0)T + 392(0)1% oY),

T— 0.
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By using (79) to change to the variablet in this expan-
sion and taking into account (67) and (83), this expan-
sion isrewritten as

Py(t) = @5() + b, —

1m,.- -
Fhot o H O, e, (89)

Dy (t) = —2k./t—InJt+ A,—C,.

8. NEAR-ASYMPTOTIC BOUNDARY-LAYER
FLOW REGIME

To analyze the oppositelimit of A — 0, i.e., anear-
asymptotic boundary-layer flow regime, the expression

(86)

is substituted into Eq. (22), and A istreated as an inde-
pendent variableinstead of s. Thefunctions (A, n) and

_ 2
g, = —hI4+ 2y,

_dA _ 4
Q%(A) = -5 = QA7) (87)
solve the boundary value problem
h(N/SWnn)g + AL VSW) To + ANy,
(88)

h
+ Ql()\l-l—')\r] + l-I'lr]) + 2_,\/_8 =0,

WA 0) = Yy, ) = 0, limn /Sy, = 0, (89)

s(A\) = A(A) =InF,—Cy—2k Jt(N), (90)
t(A) = %MWO\.OO)[QM)—A]
+)\291(A)W, (1)
O0<A<oo,

8.1. Eigenvalue Problem

It follows from (88) that the function Yy(n) =
(0, n) isthe solution to the ordinary differential equa-
tion

h(nJSusy + 2%+ N = g

Fi ZA/_S_ ’
w = F,0Q,(0), (92)
Wo(0) = Wo(e) = 0, nli[nmnfswz; = 0.
No. 4 2005
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If his treated as an independent variable in (92),
then the following equation is obtained for the function

z(h) = Wy:

2
d_Z + (.Or],\/_SZ_'_ ﬂ = O,
dh? F.h 2

dz(O)

z(0) = =0, 0sh<o,

Its solution can be represented near the wall as

z = Fi[Z)(0)h+Z,(w)] +O(e™"), h—» e, (93)

where the estimate for the remainder term is derived
from (29). Consequently, the near-wall asymptotic

behavior of Y, follows alogarithmic law.

By solving (32) as a quadratic equation for y and
using (86), the function y is expressed as

_ 2
y = Jh*=4Ay, + 4t -2,k

Hence, in view of asymptatics (29), (33), and (93), it
follows that

A = A, +2KF,AZ,(w) + 2K/t + O(AY),
A — 0.

This expression is subgtituted into closure condition (90)
and theresult is differentiated with respect to A. By vir-
tue of (87), thisyields an equation for c:

2KwZ(w)+1 = 0.

(94)

(95)

Thus, the leading terms of asymptotics of the
desired functions can be found by solving eigenvalue
problem (92), (95).

The last two terms on the left-hand side of Eq. (92)
are moved to theright, and the result istreated as a sec-
ond-order equation with known right-hand side and
solved by using the free-stream boundary conditions.
Thus, an eguation subject to initial conditions is
replaced with an equivalent integral equation:

h(n) ]w'o(m)
h(ny)J F.

Then, the solution can be represented as a series expan-
sionin w:

W) = 1) + wF, M) -1- @} + O(W),

1

dn,+ f'(n). (96)

Wy(n) = w}[l—
n

o o= (Lo
F2h
n
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Fig. 6. Right-hand side of Eq. (95).

which is combined with (26) and (29) to obtain

Z,(w) = -1+ M(0)w+O(w’), w—0,

M(0) = 0.40.

A numerical analysisof (96) showsthat Eg. (95) has
an infinite number of positive roots (see the graph of its
right-hand side in Fig. 6) and no negative roots. The
smallest root isw = 1.423.

Thus, the desired asymptotic solution cannot be
uniquely determined by analyzing boundary value
problem (88)—(90) for a parabolic equation in the
neighborhood of A = 0. The value of wisfound numer-
ically in Section 10 by taking into account the initial
conditionsat A = co.

8.2. Asymptotic Behavior of the Universal Functions

Expression (91) can be rewritten as
¢ = [%9 ; EHJEO-(?;)})\ +O(\3), A —=0. (97)
1

By virtue of (86), (90), and (94), thefunction ®, in (48)
is represented as

®, = D1+|n§—[al K‘“O( )}MO()\)

)\ - O, Dl = Aoo _Co.
Combined with (97), this expression becomes

D

Kt 2
®, =D, +In=——+0(t t— 0. 9
1 1 nK oD (1), (98)

By virtue of (47), (90), and (94), the function ®, sat-
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Fig. 7. Skin friction coefficientsin flows over impermesble
plates and plates with suction: experimental results
from [18, 19] (symbols) and computed curve. Symbol nota-
tionisthesameasin Fig. 1.

isfiesthe relation

D
exp®, = -exfo Lk +0(1), A = 0.
Inview of (97), it is equivalent to
expD,
expd, = — " Int+0(1), t—0. (99)

By eliminating t from (98) and (99), the displacement
thicknessis determined as afunction of the streamwise
coordinate:

D

Zg = Eexle—éexp(Dl—Zxooexleh

Z,—» o,

These relations demonstrate that the asymptotic
suction boundary layer develops only as R, —» . In
thislimit, both ¢;/2 + B and the difference of the current
and asymptotic values of displacement thicknessvanish
exponentially.

9. SKIN-FRICTION LAW AND VELOCITY
AND REYNOLDS-STRESS PROFILES

9.1. Universal Skin-Friction Law

The expressions for skin friction in flow over aflat
plate obtained in [11] for moderate and zero suction
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velocity can be written as
__ ()™
P8 (c/2+B)*?
0oXxg

xexp[_(m Jel2+B) A+ Co|  (100)
= O(,/c).

xR
e

DXD
To unify (100) and (48) into auniversal skin-friction
law, expression (34) for skin friction coefficient is sub-
stituted into (100) and the limit is taken for t = O(1) as
B — —0. Theresultis

=Inz -®° (t)+O(J~B)  (101)

with @7 and ®, given by (84) and (85), respectively.
The universal skin-friction law valid in the entire range
of suction velocity has the form

= T (D400,
Ax8 B
Fi(t) = (1) — D7 (1),

InW
(102)
i =1,2.

In the case of moderate suction, when 1/t = O(B), skin-
friction law (102) is equivalent to (100) by virtue
of (84) and (85). In the case of strong suction, whent =
0(2), it follows from (101) that (102) is equivalent
to (48).

For the near-moderate-suction regime, asymptotic
expansions (84) and (85) yield

F,(t) = bt ™2+ bt "+ 0O(t™),

Mat) = thy—

124 L, + iﬂt +O(t™3), (103)

t —> o0,
For the near-asymptotic boundary-layer flow
regime, (98) and (99) yield

r(t) = =InJt- D +In= +2KJt--—-+0(t)

M,(t) = InJt+In(=Int) =D
(104)

_ 0lp
Inw + 2K A/t + OEIn'd]’

t—0.

Figure 7 shows experimental results from [18, 19]
represented in the variables used in universal skin-fric-
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Fig. 8. Experimental resultsfrom[18, 19] (symbols) and computed curves of (a) skin friction coefficient and (b) displacement thick-
ness plotted in terms of universal variables. Symbol notation isthe same asin Fig. 1.

tion law (102) and the curve of —I'; versus t7/2 = —q
computed by solving the boundary value problem. In
agreement with asymptotic expansions (103), the com-
puted curve has the slope -b; = 1.19 at the origin,
reaches a maximum at —q = 0.15, and tends to —o as
—-q — o, as predicted by (104).

The experimental results reported in [18] substan-
tidly differ from the corresponding numerical predic-
tions even for the flow over an impermeable plate. The
experimental data pointstaken from[19] liefairly close
totheorigin at q =0, but widely deviate from the com-
puted curve with increasing suction velocity.

The use of the variable W5 makesit possible to find
the leading-order part of the relation between Reynolds
number, suction velocity, and skin friction coefficient.
Accordingly, I'; playstherole of arelatively small cor-
rection to a known leading-order term at q = O(1),
which is determined from experimental data as the dif-
ference of large quantities. Therefore, the discrepancy

between the values of ,/c;/2 derived from the results
reported in [19] and those predicted by using skin-fric-
tion law (102) does not exceed 7%. The discrepancy
can be explained by the aforementioned inaccuracy of
velocity measurements, which were performed in [19]
by using a Prandtl—Pitot tube.

Moving ®7 and ®; to the left-hand sidesin (102),
using the expression for t in (48), and collecting like
terms, one obtains an aternative form of the universal
skin-friction law:

* —_
InZ = ®_ (1) +O(/c),
oxg

(105)
«  _ |G 71 [PKAJC2
0xo 0xo
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By virtue of (101), the variables Z,, Z., Z5 , and Z;.

have similar values up to O(.,/~B). However, whereas
scaling law (48) is valid only for strong-suction flows,
universal law (105) is consistent with experimental
results in the entire range of suction velocity. This is
illustrated by Fig. 8a, where the data presented in
Fig. 1a are plotted in terms of the variables used
in (105). Here, the experimenta data points follow a
unique curve and are close to the computed curve. Even
though the disagreement between the experimental
results of [18, 19] and the predicted curve is less pro-
nounced in terms of the variables used in (105) as com-
pared to those in (102), the largest discrepancy is aso
observed at high suction velocities.

Since the distribution of displacement thickness
shown in Fig. 8b is plotted in terms of the modified
variablesused in (105), the scatter of experimental data
pointsis also reduced as compared to Fig. 1b and good
agreement with computed results is achieved in the
entire range of parameters.

The universal skin-friction law formulated above
can be derived by a different method as follows. Add-
ing (14) and (49) term by term, using asymptotics (17)
and (33), substituting

C
Y+ = ,\/;RAW

and taking the double limit asy, — o andn — 0,
one obtains

2Kk (S ol
= +B—
IRy B2 B N 20

—|n£ + A(q) —Co— InF, + O(/c).

(106)

(107)
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Inview of expression (45) for displacement thicknessand
relations (41) and (46), it isclear that scaling law (107) is
equivalent to (105).

9.2. Vel ocity and Reynolds Stress Profiles

Scaling law (49) describes the velocity distribution
across the boundary layer outside the viscous sublayer,
while scaling law (14) is vaid in the near-wall region
and the part of the outer region where E has alogarith-
mic profile. A composite expansion that unifies (49)
and (14) can be written in two forms:

E = ul(y,) +w(g,n) +O(J/cy),
E.—E = y(q,n) —w.(y,) + O(Jc),

0<n<o,

(108)

The functions u® (y,) and y(g, n) describe the velocity

distributions in the near-wall and outer regions, respec-
tively, whereas w,(y,) and w(q, n) represent their devi-
ations from logarithmic laws in the viscous sublayer
and free stream, respectively. When y, = O(1) and
Ry — o, the former expression in (108) reduces
to (14) by virtue of (106) and the asymptotic form of
w(g, n) given by (33). When 1/n = 0O(1) and Ry, — o,
substituting asymptotic expression (17) yields

_1 ¢ . ~0
= Kann+lnRA+lnA/;+Cqj

+w(g, n) +O(.Jc).

By virtue of (49) and (107), this expression is equiva
lent to (33). The uniform validity of the latter expres-
sion in (108) is demonstrated analogously.

It follows from (107) that the scaling factor

Ry ./Ci/2 relating the transverse coordinates used in the

outer and near-wall regions is a function of two argu-
ments, v, and g. Therefore, unified velocity profile (108)
isaso afunction of two variables, v, and g.

To derive composite expansions of the unified pro-
files of shear stress and rmstransverse velacity fluctua-
tion, asymptotic expression (33) is used to represent the
right-hand sides of (53) and (54) as follows:

Q(a, N)~S(e, 0,n) = P(q,n) +M(a,n),
Q(q,n)./S(@, 0,n) = %’j)mz(q,n),

PQ.N) = seri—gyl NN+ AG) ~ InFi] + 72

M(g,n) = 0%, MNya,n) =0O(n%,
Combining (15) with (53) and (16) with (54), one

n —0.
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obtains scaling laws for shear stress,

~vou/dy — [u'v'l] )
U [el2TB_B) = Q(g,n)v¥( n)

L aw.(ys)
2(1 D +0(./cy),

2gdu. o
v.Olay, " MYH-l

2A-9)@.N) 4 o, fc)),
q

0
= u(y,) +
and rms transverse vel ocity fluctuation,

JOvo
U.(/c/2+B-B)

= Q(a,N)J/Sx(,0,n)

qQw.(ys)
20 20,(1-0)

9 0/~ _10
A VB - 2R+ o),

+ V+(1_q)
q

u+(y+)

M,(a,n) +O(.Jc),

0sn<o,

which are uniformly valid across the boundary layer.

10. NUMERICAL ANALYSIS

In computations, problem (65)—67) is solved for
O<t<a(0.8<acx 15), and then problem (88)—90)
was solved for 0< A < l/a.

By rewriting (65) as

(N/SPyq)y = Gy,
Q(T°¢,, — )
® + th+ 21N /S,

solving (109) as a second-order equation with a known
right-hand side, and using the free-stream conditions
in (66), the following integrodifferential equation is
obtained for ¢,

(109)

Gl(Tv r]) =

00

¢q(t.n) = fIh(n) —=h(N)]G.(T, 1) dN;.
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Fig. 9. Velocity (a) and turbulent shear stress (b) profiles in boundary layer flow calculated for g = 0 (1), -0.25 (2), —-1.5 (3),

and —oo (4).

Substituting
¢y =hy

to avoid singularity of the desired function on the wall,
one obtains

yen) = f{1-5 |Gt n o,
n 2 (110)
Ga(t ) = A )

® + th+ 21 /Shy, - 21y

Relation (67) entails the closure condition

Q1) = [2KF1+2KTZW}4. (111)

Equations (110) and (111) for y(t, n) and Q(1) are
computed by an iterative method on the rectangular
domaln{O <1<a,0<n<1} partitioned into auniform
grld For a prescribed Q(t) (Q(t) = Q(0) at the first
iteration step), Eq. (110) is solved to determine y(t, n)
on each T layer, with the integral approximated by Gre-
gory’sformula(modified trapezoid rulethat is exact for
third-degree polynomials). The partial derivative with
respect to t is approximated by using the values of the
desired function on the current and previous T layers;
i.e., theschemeisfully implicitint. Thecalculated val-

2 Since the function e, 0, n) is calculated by using (43), the
domain of n isrestricted to [0, 1].
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uesof y(1, ) are substituted into (111) to compute new
values of Q(1) by smoothed numerical differentiation.

Computations has shown that Q(1) is nearly con-
stant on the interval 0 < T < a and the iterative process
can be terminated after performing the third iteration
step.

Boundary value problem (88)—(90) is solved by a
similar method. Equation (88) is represented as

(n'\/_SLIer)n = _Hl_zb—s’
QAP + W)

H, (A n) = 22 W)
) h+2An /Sy,

The equivalent integrodifferential equation

00

Wy(T,A) = J'[h(rll)—h(ﬂ)] Hi(A,ng)dn, + f'(n),

n
after substituting

g, = hz

isrewritten as

_ “rh(ny) f'(n)
Z(A,n)—{[h(n) 1[H(\ nayan, + gL, -

Q,(z,+2)
H,(A\,n) = .
O.n) 1+ 2An/Sz, —2\z/h
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The following closure condition is used:

dz(), 0)

Ql()\)z—[ZKz()\,O)+2K)\ - T. (113)

The initial values of z(1/a, n) are calculated by using
the known y(a, n) and the constraint that follows
from (63) combined with (86), with Q,(A) = Q(L/a) at
thefirst iteration step.

Asintheformer problem, Q,(A\) isaslowly varying
function on [0, 1/a] and the iterative process can be ter-
minated after performing the third iteration step.

Note that the computed results are stable with
respect to the only empirical function used in the anal-
ysis, f'(n).

The calculated limit value F;Q,(0) equalsthe small-
est root of Eq. (95). Thus, the function —F,dA/ds mono-
tonically increases from 1/2k = 1.220 at A = o0 t0 1.423
aAi=0.

Figure 9 shows the distributions of velocity and
shear stress computed for several valuesof g. InFig. 9b,
the curvesfor g = 0 and —o are plotted by using formu-
las (55).

Computed results are also presented in Figs. 1, 5, 7,
and 8.

11. CONCLUSIONS

A closure condition is derived for turbulent bound-
ary layer flow over aflat plate with suction in the form
of auniversal relation between shear stress and mean-
velocity gradient. The mean velocity is determined by
using only one empirical function: the velocity profile
in the turbulent boundary layer flow over an imperme-
ableflat plate. The only characteristic of the profile that
is important with regard to computations is the exist-
ence of an interval of logarithmic near-wall behavior.

Asaresult, the distributions of velocity, shear stress,
and skin friction are calculated in the entire range of
parameters by solving averaged equations under very
general physica assumptions without invoking any
special closure hypotheses.

The theory developed here can be used to calculate
the rmstransverse vel ocity fluctuation in the entire flow
and the rms streamwise and spanwise velocity fluctua-
tion in the outer region of the boundary layer. These
calculations can be performed by using only the corre-
sponding distributions for the flow over an imperme-
ableplate.

Universal distributions of mean velocity, shear
stress, and rms transverse velocity fluctuation are
obtained for the near-wall region of the boundary layer.
Thedistributions of these quantities outside the viscous
sublayer represented in terms of scaling variables are
described by a family of curves depending only on q.
Their profiles in the entire boundary-layer flow are
functions of two variables, v, and g.
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The Reynolds stress components associated with
streamwise and spanwise velocity fluctuations also
obey one-parameter scaling laws in the outer region of
the boundary layer.

There exists a near-wall region where both square
root of shear stress and rms transverse velocity fluctua-
tion are proportional to the logarithm of the distance
from the wall, while the rms streamwise and spanwise
velocity fluctuations scale with the logarithm to the
power 3/2.

The skin-friction distribution is described by a sin-
gle scaling curve for flowswith arbitrary suction veloc-
ities at various Reynolds numbers.

Far downstream, the limit of asymptotic boundary
layer is approached as R, — 0. In thislimit, all flow
variables depend only on the transverse coordinate. The
corresponding values of ¢/2 + B and difference
between the current and asymptotic displacement
thicknesses vanish exponentialy.
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