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Abstract—The energy spectra of electrons are calculated in the adiabatic approximation when the excited 2s,
2p, and 3d states of the hydrogen atom areionized by asuperstrong ultrashort laser pulse. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

Recently, significant progress has been made in the
experimental investigation of theionization of atomsby
asuperstrong laser field. In particular, thisappliesto the
detailed measurements of the energy distribution of
electrons[1-4], aswell asto the dependence of theion-
ization probability on the phase of the light field that
arisesin ultrashort laser pulses[5].

New experimental results have stimulated theoreti-
cal studiesin which the ionization of atomsin astrong
laser field is considered both by analytical and numeri-
cal methods (see[6], aswell as[7-11]). The basic prob-
lem of the theory is associated with taking into consid-
eration how the Coulomb field of an atomic residual
affects the motion of an electron in the continuum. The
point is that, for an electron bound by short-range
forces, theionization theory in astrong field was devel -
oped asearly asthe classical work by Keldysh[12]. The
development of this method carried out in [13] (see
also [14]) alowed oneto obtain the spectraof tunneling
electrons that are in good agreement with the experi-
mental data of [15]. The authors of [13] put forward a
hypothesis that, after a simple modification, analytical
formulas that describe the electron spectra for the pho-
todetachment from negative ions (a short-range poten-
tial) can aso be applied to describe the ionization of
neutral atoms and positive ions with long-range Cou-
lomb interaction. The verification of this hypothesesis
one of the goals of the present paper.

Analytical methods for the description of electron
spectra under the ionization of neutral atoms and posi-
tive ions were also developed in [16, 17]. In [17], the
author applied the Volkov functions with a Coulomb
correction to describe the motion of a free electron in
the Coulomb field and the field of an electromagnetic
field; however, [18] cast serious doubt on the accuracy
of these functionsin the case of astrong field.

In the present work, we carried out the calculations
on the basis of adiabatic approximation that we pro-
posed and tested earlier in [19]. Recall that the basic
idea of the adiabatic approximation used is based on the
results of [20]. In that paper, the probability, found by
Keldysh, of the tunneling detachment of an electron
from a short-range potential was generalized to the case
of the tunneling ionization of an atom. This was done
by formally replacing the strength of the electricfieldin
the probability of tunneling in a dc field [21] by the
strength of an ac electric field of the light wave fol-
lowed by the averaging of this probability over thefield
cycle. In the adiabatic approximation [19], the ac field
isreplaced by adc field at an earlier stage, in the elec-
tron wavefunctions, which can be used for calculating
various quantities, e.g., the electron spectra in the
present case. After that, the quantities obtained are
averaged over the period of the field. It is obvious that
the accuracy of such an approach must be no less than
the accuracy of calculating the total probability of tun-
neling [22]. Other variants of the adiabatic approxima-
tion were considered in [23].

In this paper, we use the atomic system of units (£ =
e=m=1).

2. WAVEFUNCTIONS IN CONTINUUM

Consider an electron that moves in the Coulomb
potential due to a charge Z and in a laser field of
strength F(t) that islinearly polarized along axis z. The
wavefunction of the electron in the dipole approxima-
tion satisfies the Schrodinger equation

ia%w(r, t) = [—%DZ—% " zF(t)]W(r, ).

1

L et us construct a solution to the Schrédinger equa:
tion (1) that isvalid in the case of low frequencies w of
the field. We restrict consideration to the case of the
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Fig. 1. Effective potentials for the one-dimensiona
Schrodinger equations (7) (a) and (8) (b).

continuum. We will use the adiabatic approximation,
according to which the motion of an electron isadjusted
to the variation of the field. Physically, this means that
we neglect the inertial properties of the electron when
it interacts with thefield. According to the classical law
of variation of momentum, the applicability condition
of the adiabatic approximation in a continuous spec-
trum can be formulated as follows:

Es @)

where F is the characteristic value of the field strength
and E isthe characteristic value of the electron energy.
Condition (2) improves the applicability condition of
the adiabatic approximation that was formulated
in[19]: F/w < 1. Formula (2) is analogous to the rele-
vant condition that was first proposed in [16].

We write an adiabatic solution to Eq. (1) asfollows:
W(r,t) = ®(F, 1) |p-ryeXP(-EL), (€©)

where @ (F, r) is a solution to the stationary
Schrédinger equation in auniform dc field F:

[_%DZ—%HF}DE(FJ) = Ede(F,r). (4

One can see that function (3) and energy E depend
on time parametrically; this is the main approximation
of the present work.

It is convenient to solve sationary Schrodinger
equation (4) in squared parabolic coordinates i, v, ¢ [24]
that are related to the Cartesian coordinates by the for-
mulas

X = woos, y = vsng, z= (1 -v?). (5)

Coordinates (5) are related to the conventional para-
bolic coordinates (€, n) by simple formulas p? = € and
v? = 1. Squared coordinates are convenient for the
numerical solution of Schrodinger equation (4) because
the integration domain becomes more compact [25].
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The main properties of the squared parabolic coordi-
nates are summarized in Appendix A.

In these coordinates, the variablesin Eq. (4) are sep-
arated,

1 imo
O (F,r) = M(F, W)N(F,v)e ™, 6
and lead to two one-dimensiona Schrédinger equations,
2 2
[9—2+1_42m +2Eu2—Fu“+Zl}M(F, W = 0,(7)
du 4u
2 2
|:_d__2+1—42m + 2BV + |:V4+Zzi|N(F,\)) =0, (8
dv 4y

in which the separation constants Z, and Z, are related
by

Z,+7Z,=4Z.

Equation (7) describes afinite motion, and itseigen-
functions are characterized by a parabolic quantum
number n,. Equation (8) describes an infinite motion,
and its eigenfunctions can be characterized by the total
energy E (Fig. 1). Thus, the adiabatic solution to time-
dependent Schrodinger equation (1) can be expressed
as a parabolic wave

Wenm(r, 1)
1
= WM Enlm(F’ U) NEnlm(F’ V)lF =F(t) (9)

x exp[i(md — Et)].

A detailed description of the algorithm used for the
numerical solution of Egs. (7) and (8) is presented in
Appendix B.

3. AMPLITUDE AND PROBABILITY
OF THE PROCESS

Let us choose alaser pulsein the form
F(t) = Focoszg%cos(wt—G), t<T, (10)

where @ isthe phase of thelight field, which isessential
for short pulses, and T isthe FWHM of the pulse.

The differential (with respect to energy) probability
of the bound—free transition between the initial |iCand
final |f(statesis given by

2

aPy , (11)

dE

[Aa(t)ct
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where the wavefunction of the final state is assumed to
be normalized to the & function over the energy scale.
The transition probability is
Aq(t) = F(O)H|ziT (12
Thus, in contrast to the well-known study by
Keldysh [1, 2], who chose the Gordon—Volkov function
that describes the motion of an electron in aplane elec-
tromagnetic field as the wavefunction of the final state,
here we choose adiabatic functions that turn, asw — 0,
into an exact solution to the Schrédinger equation that
describes the motion of an electron in the Coulomb and
dc electric fields.

The wavefunction of the initial state in squared par-
abolic coordinatesis expressed as

Zexp[i(m¢ — Eqt)]

JTn’pv

fnlimai[%fHZim%}[%'

+[m +1,

0= |nynymi=
(13)

Here,

n = Ny +nNy

fom(x) = = [(LE T

x y(2m+ D12

(14)

' . X
1Fi(=n', m+1; X2) eXpD 2%,

1F; is a degenerate hypergeometric function, and E, =
-Z2/2n? is the energy of the bound state.

After the substitution of (9) and (13) into (12), the
expression for the amplitude of the processis rewritten
as

AlM
E “1\n2|( 1)

T i (15)
:J’ E n,n, (N, 1) eXpi (E — Ep)t] dt

T

where
m ZF
NEbn (N t) = “=[JaFo=I0Fd| . (16)
2n F=F(1)

\¢k = J-ukMEnl\m\(lFl’ H)fnuﬂa’l/\/:ﬁadu’
0

and ¢, differs from %, by the replacements p — v,
Menjm —= Negnm , @d ny —= ny. Thus, the ioniza-
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tion amplitude of the bound state is the Fourier image
of function (16) with respect to time at the frequency

—Ey

AT () = NEL (0, Qg e, (A7)
Strictly speaking, expression (16) isvalid only for pos-
itive half-cycles of the laser field. When integrating
in (11) over negative half-cycles, one should make an
additional change n;; == ny on the right-hand side
of (16) because the coordinates pL and v exchange their
rolesfor F < 0. Recall that the projection of the orbital
momentum of an electron onto the direction of linear
polarization is preserved; therefore, amplitude (17)
depends on m parametrically. Note that, generally
speaking, the adiabatic approximation cannot be
applied at the moments when the field F(t) changesiits
sign. However, this restriction does not significantly
tellson the amplitudein view of the common multiplier
F(t) in (12).

According to (11), the differential (with respect to
energy) probability of emission of an electron with apar-
abolic quantum number n, is obtained by squaring (17):

d p(m

m 2
JEPE R (M) = |A ()" (18)

The energy distribution of electrons integrated over
angles is abtained by summing the probabilities (18)
over al values of the parabolic quantum number n;:

dE (Emgh'nz' - Z |A(Em2‘1inz‘(n1)|2-

n =0

(19)

Thus, the use of parabolic coordinates does not
require the solution of a system of coupled differential
equations. One should only carry out asummation over
the contributions of all parabolic partial waves.

If theinitial state is defined by the principal n; and
the orbital I; quantum numbers, one should take asthe
initial state |id an appropriate superposition of
states (13) with parabolic numbersn;; and ny; (see, for
example, [26]):

[i0= |n;lmO
(20)

Z Cn Im+ nll—nZini_—lm+n2i—nh |nli nZimD
Najs Ny 2 2
The summation indicesin (20) run over nonnegative

integers that satisfy condition (14) and do not allow the
Clebsch—-Gordan coefficient to vanish identically.

4. DISCUSSION OF THE RESULTS

All the numerical results obtained in this paper refer
to the energy dependence of the emission probability of

No. 6 2005



1012

dP/dE, au
10!

10!
102
10°
104
10°

106

10!

102

103

10*

10°

0 0.5 1.0 1.5 2.0

o
)

Fig. 2. The spectra of electrons when the hydrogen atom is
ionized from the 2s (a) and 2p (b) states with m = 0. Solid
lines correspond to a cosine-shaped pulse; dashed lines, to
asine-shaped pulse; dot-and-dash lines represent the results
of the kinetic model (25) based on the data of [13]; and the
dotted line represents the results of the kinetic model based
on the results of [17]. Radiation parameters (10) are as fol-
lows: w=0.056 au (A =800 nm), the peak intensity is3.45 x

10 W/em? (Fg=0.1au), and T = 2.5 fs.

electron integrated over angles. First, note that the adi-
abatic approximation considered does not allow us to
compare our results with those of the studies [27-29],
in which the authors carried out analogous cal cul ations
for the ground state of the hydrogen atom. The laser
parameters used in those papers satisfy adiabaticity
condition (2) only for low energies. The energy spec-
trum of an electron turns out to be rather wide. It appre-
ciably decreases only for energies that fall outside adi-
abaticity condition (2).

Therefore, we carried out calculations for the ion-
ization of excited (2s, 2p, and 3d with [m| = 2) states of
the hydrogen atom for w = 0.056, F = 0.1, and T =
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Fig. 3. The spectra of electrons when the hydrogen atomis
ionized from the 2p state with |m| = 1 (a) and from the 3d
state with |[m| = 2 (b). The notation and the parameters are
the same asthosein Fig. 2.

2.5fs. The eectron spectra for the ionization from
excited states are narrower than those for the ionization
from the ground state, and the electron yield decreases
by several orders of magnitude for the energies that sat-
isfy the adiabaticity condition (2). Moreover, for
excited states, the energy of an electronin afield witha
maximal strength of F = 0.1 is greater than the binding
energy of the electron in atom; therefore, formally, the
results presented correspond to the case of barrier-sup-
pressed ionization. The question concerning the ioniza-
tion from the excited states of an atom was repeatedly
raised in the literature (see, for example, [4, 30]).

Theresults of calculations are represented in Figs. 2
and 3; the electron energy is measured in the units of

ponderomotive energy U, = F§/4oo2.
The results are compared with analogous results
obtained in the models considered in [13, 17]. In these
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works, analytic formulas were presented for the ioniza-
tion rates of an atom by linearly polarized monochro-
matic radiation. In these formulas, the ionization rates
naturally depend on the number of absorbed photons.
In both models, the quantity W,, was obtained by the
numerical integration of the differential (with respect to
angles) ionization rate:

1
daw, .
W, = 21TJ' dQn
0

The form of the latter formula depends on the model
used.

In [13], the initial state of an electron was taken
from the model of ashort-range potential, thefinal state
of the electron was described by the Gordon—\olkov
wavefunction, and the calculations were carried out in
the semiclassical approximation. Theresult for linearly
polarized radiation has the form

dW, _ pA’rk?
G0 - anhg 2

» VO (I =|mp)!
r%u 52! + 1)(I +|m|)!

P\m\5/1+ smdj
k> D
em (Cyt+isy)"

Here, the upper and lower signscorrespondto =1 and
W = 2, respectively;

(21)

2

(x1) exp[—ic, (& +zs,)]

™M

H=12

£+i8z(n—2z)—&°

T 4z ’
c, = tJ1-5;,
F2 (22)
S = c€+4z), z= —;,
40

- B

P is the Legendre polynomial; & = F - p/w?; E, is the
binding energy of the electron in the initial state; and |
and marethe orbital and magnetic quantum numbers of
the electron, respectively. The constants A, v, and K =
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2E, are determined by the wavefunction of theinitial
State

Do(r) = Ar' e Y (8, 9), (23)

for a short-range potential, v = 0.

For a neutral atom or a positive ion, formula (23)
with v = 1 provides a correct asymptotic description of
the wavefunction with appropriate replacements of the
normalization factor A and the binding energy E,;
therefore, an assumption was made in [13] that for-
mula (21) can also be applied to describe the ionization
electron spectra of neutral atoms, rather than solely for
negative ions. However, the neglect of the effect of the
Coulomb field of an atomic residual on the motion of a
free electron impliesthe neglect of rescattering phenom-
ena that have been observed in the recent work [31];
from the formal point of view, thisisnot admissiblein
the case of astrong field.

In [17], the Gordon—Volkov wavefunction with a
Coulomb correction was used for describing the fina
state of an electron. Here, we present a result for the
barrier-suppressed ionization of the s state of a hydro-
gen-like atom with the charge number Z and the princi-
pal quantum number n, by linearly polarized radiation:

dwW, _ p’w’zD’ IZEZ InG + pi+ pi y2/3] (20
dQ Rl 0 (2F)*°
Here,
Sl
D = 25

Fn

y = wZ/Fn, isthe Keldysh parameter; p, and p, are the
longitudinal and transverse (with respect to the polar-
ization vector) components of momentum, respec-
tively; and Ai isthe Airy function. Paper [17] does not
contain analytic expressions for the ionization rate of
the stateswith | > 0.

The rates (21) and (24) of ionization from the
excited states of the hydrogen atom proveto be so large
that their product multiplied by a time interval on the
order of the laser-pulse duration yields a probability
greater than 1. Therefore, in the present case, these
guantities should be treated precisely astransition rates
rather than transition probabilities per unit time.

To obtain reasonabl e results with the rates (21) and
(24), we wrote kinetic equations that were solved for a
pulse with the envelope from formula (10) (unfortu-
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Fig. 4. Electron yield under the tunneling ionization of the
hydrogen atom from the 1s state. Comparison of the results
of [29] (solid line) with those of the model of [13] (rhombs)
and the kinetic model (25) based on [13] (dot-and-dash
line). Radiation parameters are as follows: w = 0.074 au
(A = 680 nm), and the peak intensity is 2 x 10 W/cm?
(Fo=0.076 au).

nately, the dependence on the initial phase of the pulse
inthis caseislost):

N

dc, o dc,
- = - W,.C — = W.C
dt Zl "o gt nos (25)
n'=
Co(-T) =1, C,(-T) =0, n=1,..., Npu-

Here, C, is the probability of ionization with the
absorption of n photons, C, is the initial concentration
of neutral atoms, and N, IS the maximal number of
absorbed photons taken into account in the calcula-
tions.

System (25) can formally be solved in quadratures,
which, however, cannot be applied to numerical calcu-
lationsin view of the insufficiently smooth behavior of
theintegrands. Therefore, it ismore convenient to solve
numerically the kinetic equations themselves. Unfortu-
nately, this problem is stiff [32]. For such systems, spe-
cial numerical methods were developed in [33].

The solution of system (25) resultsin aset of ioniza-
tion probabilities that differ by the number of absorbed
photons. Then, these probabilities are interpol ated over
a continuous spectrum of energies. The values of the
probabilities contain at most seven correct digits; this
restricts N, and, hence, the upper boundary of the
energy spectra of electrons.

Asadditional information, Fig. 4 presents acompar-
ison of the electron spectra obtained in [29], when the
hydrogen atom is ionized from the ground state, with
the results obtained in [13] by multiplying the ioniza-
tion rate by the length of the laser pulse. One can see
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that the spectrum obtained in [13] has a substantialy
steeper slope compared with the results of [29]; appar-
ently, thisis associated with the neglect of rescattering
processes. The results of [29] cannot be compared with
the model of [17] because, for the radiation parameters
chosen in [29], the Keldysh parameter is not suffi-
ciently small.

The diagrams in Fig. 4 show that the electron spec-
trado not contain plateaulike regionsin which the elec-
tron distribution relatively weakly depends on energy.
Thisconclusionisin agreement with the results of [34],
in which the authors established theoretically and
experimentally that such plateaulike regions disappear
astheintensity of laser radiation intensity increases.

5. CONCLUSIONS

The main results obtained in the present paper are as
follows.

1. Within an adiabatic model, we have calcul ated the
energy spectra of electrons generated as aresult of ion-
ization of hydrogen atoms from excited states by an
intense laser pulse.

2. A kinetic model based on the analytic formulas
of [13] well describes the spectra of electrons in the
low-energy domain; however, in the high-energy
region, the agreement between the results of this model
and our resultsisworse. This fact by no meansimplies
that the model of [13] is inapplicable in the general
case, because our calculations were performed for a
very short laser pulse.

3. The same conclusion applies to the model pro-
posed in[17]. The results of thismodel can be compared
with the results of our calculations only in the case of
ionization of the hydrogen atom from the 2s state.
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APPENDICES
Appendix A

Sguared Parabolic Coordinates

Here, we present theform of the scalefactors (see, for
example, [24]) for squared parabolic coordinates (5):

h, = h, = Jp2+V? h, = pv.

(A1)
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Using these factors, we can construct al vector differ-
ential operators as applied to the given system of coor-
dinates. For example, the volume element has the form

d’r = pv(p®+v?)dpdvde. (A.2)

The components of the operator O are expressed as

BeL 9 p__1 0
p_ ] v ]
JEeso T REe
_10
D¢—uva¢.

Finally, the Laplacian in the variables (i, v, ¢) has the
following structure:

02 1 0 p of
W/ + V2R 7 1 2OR (A.4)
1 6[] v GD+ 2 -

Appendix B

General Description of the Algorithm

Formally, Eq. (7) corresponds to afinite one-dimen-
sional motion with “energy” Z,/2 (Fig. 14). The bound-
ary conditions for M(E, ) are given by

(2m +1)/2

M(F, W), o OH®™ %, (B.D)
1 F F
M(F W) D ep 5+ iy (B2)

Let o1 be the first classical turning point. A conve-
nient method for solving Eq. (7) isgiven by the step-by-
step expansion of M(F, W) in power series[25]. To this
end, the function M(F, ) is first expanded in a power
series

M(F, ) = pem 2 S Copp? (B.3)

p=0
inthe nel ghborhood of zero up to the p0| ntpu=w=1
and then is expanded in power series in the neighbor-

hoods of other points 1, < p; < [ that lie at a distance
of 0.5 from each other:

M(F 1) = % Cip(u—w)"; (B.4)

p=0
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i.e., in each interval [l, W+ 1], @ Separate expansion of
the function M(F, ) isused. The method of calculating
the coefficients C;, is described below. The summation
of series (B.3) and (B.4) is terminated when the abso-
lute values of three consecutive terms of the series are
less than the maximal of these values by a factor of
102, This method, which was proposed in [25], is con-
venient sinceit does not require the partition of theinte-
gration interval into alarge number of subintervals and
thereby significantly speeds up the calculations. The
oscillations of the function M(F, 1) do not produce any
appreciable effect on the stability of the algorithm.
Nevertheless, in the classically inaccessible domain
(u> ), thismethod leadsto incorrect results dueto the
effect of the exponentially growing solution of (7) that
violatesthe boundary condition (B.2). To overcomethis
drawback, we performed a standard numerical integra-
tion of Eqg. (7) in the classically inaccessible region
starting from the point [ satisfying the condition

1 0 F/2. ~
:@m-———u +—— <10°®
pod3 g

to the point [1; i.e, we integrated in backwards. The
boundary condition was chosen according to (B.2). The
separation constant Z, was determined from the condi-
tion of sewing together the logarithmic derivatives of
the function M(F, ) on the left and right of the turning

point i:

.(B.5)

d
—In|M(F,
an IM(F, w)| \eivo

d
= —In|M(F,
o O IM(F, p)l

The parameter Z; takes discrete values numbered by
the parabolic quantum number n; =0, 1, ..., which is
equal to the number of zeros of the function M(F, ).
For a given ny, it is convenient to seek the quantity

Z, ,, by solving (B.5) for Z, in a small neighborhood

of its semiclassical value Z{"1 " (see below):

(WKB)

Z0® —nz<z,, <7\ + Az,

AZ=01[Z{\?) -2 EWnTB)]

As arule, the difference between the exact and semi-
classical valuesof Z,,, isno greater than 1%. Thisdif-
ference decreases as energy E increases. For E > 1, the
contribution of the classically inaccessible region to the
observable characteristics of the ionization process
does not exceed 0.5%. I n this case, we can set thewave-
function M(F, W) equal to zero in the domain of u > 1

and restrict the analysis to the semiclassical formulas
for the expansion constant Z; .
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Equation (8) formally differs from (7) by the
replacements

F—-F, 2, —2,=42-2,. (B.6)
For E >0, Eq. (8) correspondsto an infinite one-dimen-
siona motion with energy Z,/2 (see Fig. 1b). Thus,
while moving in the direction of v, an electron passes

over the barrier. Denote by v the value of the coordi-
nate at which the barrier height attains its maximum:

a7

~2 _ 1
=5 -2-30

V73

where

V= Zi%[A/b(4a3+b)—2a3—b] "

CE - i
a—F, b—8F(4m 1).

The integration of Eq. (8) over theinterval 0< v < v
reproduces the corresponding procedure with Eq. (7)
up to the replacements (B.6). However, the boundary
condition for v — oo differs from (B.2); namely,

N(F, V)|, w

_A (B.7)
Y

nFovis E ol
stS Y +FU2v+(pq],

where A is anormalization constant and ¢, is the phase
calculated during the integration.

During the numerical integration of Eq. (8), the
asymptotic representation (B.7) proves to be virtually
inaccessible, because it becomes valid only for v ~
1000. The phase @, was calculated with the use of an
improved semiclassical approximation for the function
N(F, v) (see below):

Nwke(F, V)

D (B.8)

= msin[IX(v')dv' + B},

1 o
4K>(v)dv?

+ ]_Gk!i_:(\;) [% kZ(V)T,

1—4m?
V2

X*(v) = K¥(v) - k*(v)

(B.9)

K*(v) = +2EVP+Fv'+Z,.  (B.10)
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Here, B is a constant phase determined by the lower
limit of the phase integral and k?(v) makes the sense of
the square of the classical momentum. It can be shown
that, for v — oo, expressions (B.8)—B.10) imply for-
mula (B.7). Inthe domain of v > v , the numerical inte-
gration of Eq. (8) is continued with avariable step,

T
Avi=vi—v;_, = X(vi_y)’

which alows one to avoid a large number of oscilla-
tions at each step. Introducing the notation

a; = N(F, vi_) JX(Vi_1),
a, = N(F, vj)J/X(v),

a = IiX(v)dv,

Vica

we obtain the following expression for the constant D
in the function (B.8):

D® = (a’ + a5—2a,a,c0s0). (B.11)

The numerical integration of Eg. (8) is performed

until the difference between the values of D at two con-

secutive steps becomes less than 10610, The value

of v =V at which the integration is terminated is com-

parable with the value of 1 in magnitude. Thus, the
numerical solution to Eq. (8) is correctly brought to the
required asymptotic form (B.7) by using the semiclas-
sical approximation (B.8). The constant D in (B.8) is
related to the constant A in (B.7) by the formula D =
AFY4,

It is convenient to normalize the states of the contin-
uous spectrum (6) as follows:

[®emm(F. 1) Pen,m(F: r)d’r
= Bymdryn, O(E' —E).

The possibility of normalizing to the d function over
the energy scale is guaranteed by the infinite motion in
the direction of v. In this case, the main contribution to
the integral with respect to v is made by the domain of
v > 1, and condition (B.12) is simplified:

[

J-Mén'lm(Fa H)MEnlm(Fv l.l)dp. = 6n'1n11 (813)
0

(B.12)

[

J’VZN’g.nlm(F,v)NEnlm(F, v)dv = 3(E'—E). (B.14)
0
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The normalization constant of the function N(F, v)
is chosen according to its asymptotic behavior with the
use of (B.14). For large values of v, the function N(F, v)
can be expressed in terms of a linear combination of
outgoing N, and incoming N, parabolic waves. The
normalization to the d function over the scale of ener-
giesin atomic unitsisequivalent to the normalization to
the value of the flux in the outgoing wave lou = 1/2nt
[35]. Under condition (B.13), this assertion is equiva

lent to the requirement that D = /2/T.

Whenv > v, one can apply the semiclassical form
of the wavefunction (B8). Its convenient form for cal-
culationsis given below.

Appendix C
Calculation of Coefficients in the Expansions
of the Function M(F, )
The substitution of (B.3) and (B.4) into (7) leadsto the
following recurrence relations for the coefficients C;,,:
Z2,Con_1+2ECy _»,—FCqn_s

Con = 4n(n+ m) ;

(C.1)

1
C, = ———— WG s
T .EQ(n 1)(n=-2)uC -

+[(1-2)(n-3) +§1—m2+zlu?+2Eu:‘—Fu?}

X Ci oz + 2(Zyp; + 4ER —3FK))C g

. ) (C.2)
+(Zy + 12EY; —15F )G 4

+ 4(2E; —5FR))C; _s + (2E—15FPY)C, -6
U
-6Fu,C ;- FCi,n—BE

According to the boundary condition (B.1), we must
set

Co1=Cp2=Cy3=0

and choose the constant (B.1) with a nonzero initia
value. The initial values of C;, (i > 0) are calculated
from the condition of sewing together the series (B.3)
and (B.4) at the boundaries of their domains of defini-
tion. The sewing consistsin equating the functions and
their first and second derivatives to the left and right of
the boundary point p;. The second derivatives are
equated so that the one-dimensional Schrddinger equa-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

1017

tion (7) hold at the boundary point ; itself. Here, we
present the final results. For i = 1, we have

(2|m +1)/2 2n
Cio = My z ConM1

(2lml +1)/2

=W z [2n+|m| +3 :|COnuin g

Cpp = " 3 [(enimy? G o™

C1’_1 = ... = Cl,—S = O

Fori > 1, we have
Cio = z Ci—l,n(Aui)nv
n=0

z nCi—l,n(AUi)na

n=1

Ci=

1 n
Ci,= ézzn(n_l)ci—l,n(Aui) )

Ciu=..=C =0,

Here, Ap; = pi —Hi—1-

Appendix D

Semiclassical Formula
for the Separation Constant

To calculate the separation constant Z; for E> 0, a
semiclassical formula was derived in [36]. Here, we
present it as applied to squared parabolic coordinates.

Introduce the notation k = /2E . For
K< 311[nl + %(Iml + 1)}F
we have

(WKB) _ t Kk

1,ﬂ1 (t_l)z-lf’

where the parameter t > 1 is determined from the equa-
tion

t opll g .1 F
(1:_—1)3/22F1[|_§1 5 2 = 4[n1+ S(Im + 1)}k3,

n,==01....
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For
3 1
K >3n[nl+ é(lml + 1)}F
we have
(WKB) _ _ t E
l,nl (t+ 1)2F!
(t—l) i 3. 131 %

(t+1)% 2

= 16[n,+ 3(m + )] 5

The spectrum Z, isbounded from below: Z, > —E?/F.

Appendix E
Improved Semiclassical Approximation
A solution to the equation

d’N

— + W(V)N(v) = 0, (E.D
dv?

where W(v) > 0, is sought for in the semiclassical
approximation as

D .V B
msn{IX(v )dv +[3}.

The substitution of (E.2) into (E.1) leads to the fol-
lowing nonlinear equation for the unknown function
X(V):

N(v) = (E.2)

1dX

P 2 [ﬁXD = 0.
2Xd

2
X(v) + 4X2EHVD

(E.3)

If the function X(v) varies sowly, all the terms
of (E.3) that contain derivatives make a small contribu-
tion. Therefore, we use an iterative method for solving

Eq. (E.3) by taking X = /W as the zeroth step of itera-

tion. Asis known, the traditional semiclassical approx-
imation corresponds to this zeroth iteration step. The

first iteration step, i.e., the substitution of X = /W into
the derivativesin (E.3), yields
200y = WoLdW, 5 rdW
X°(v) =W AW g2 + Tewlavd (E.4)

As arule, Eq. (E.3) alows one to reproduce up to
eight significant digits obtained by numerically solving
Eq. (E.1). The second iteration step yields up to 14 sig-
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nificant digits; however, in this case, the formula for
X(v) proves to be unstable with respect to the variation
of the parameter W(v). Setting W(v) =k?(v) in (E.4), we
arrive a (B.8).

Appendix F

Calculation of the Outgoing Flux

In squared parabolic coordinates, the flux | through
the surface S defined by the equation v = const is
expressed as

| =IIdS\)|:J1

dS, = pv4/p®+vidudde,,

(F1)

where g, isaunit vector in the direction of v. It iswell-
known that the current density j in the state with the
wavefunction W is given by

i = %(w*mp EULTEEY (F2)

The components L in the squared parabolic coordinates
are given by formulas (A.3).

In the state (6) with the asymptotics (B.7), the out-
going component has the form

Now(F, V) = 2\];
(F3)
xexpﬂgﬁv +[v+|¢qj

Substituting (6) into (F.2) and (F.1), we obtain

low = %ﬁjmz(u)du. (F4)
0

Appendix G

Calculation of the Phase Integral

For definiteness, we choose v as the lower limit in
the phase integral of the function (B.8). Then,

0 = arcsin[N(F, v) Ff—(‘_’—)}

2
where N(F, v) isanormalized solution to Eq. (8).
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Let us single out analytically the growing terms
from the phase integral. To this end, we represent the
integrand as

X(v) = «/2EV2+ Fv4+E(v),

where
—oy = 1=an? o g'(v) |, 5('(v)’
=M TR0 Ied)
q(v) =k*(v),

and transform it by integrating by parts and singling out
€(v) = 2Ev? + Fv*:

IX(V')dV' = S(v)-3(v)

B'ZE vod 2

I vh 2 4(1-4m’)
3

24y 16[ v?

+ 250 () + 79 (v)a (V) —2q(v')2q"'<v'>} :
q(v) 0

X [1 + Z(VI)}_ﬂzd—V'

€(2) v
Here,
E?E vie(v) +=(v)
SV) = BET 30y T Ty
2(v) = Z,+ 1= 42m 5¢'(v)” —4q(V)q"(V)
4v 16q(v)
2
q'(v) = _1—43m + 4Ev + 4FV®,
2
q(v) = 3324 4E 4 10Ry?
2V
2
q”(v) = 6—(1;54”] ) 1 24Fv.
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Abstract—Corrections of the a2, a*, and o® orders are calculated for the Lamb shift of the 1S and 2S energy
levels of muonic hydrogen pp and muonic deuterium pd. The nuclear structure effects are taken into account
in terms of the charge radii of the proton rj, and deuteron ry for one-photon interaction, as well asin terms of
the electromagnetic form factors of the proton and deuteron for the case of one-loop amplitudes. The pd—up
isotope shift for the 1S-2Ssplitting isfound to be equal to 101003.3495 meV, which can betreated asareliable
estimate when conducting the corresponding experiment with an accuracy of 107°. The fine-structure intervals
E(1S) — 8E(29) in muonic hydrogen and muonic deuteron are calculated. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The structure of the energy levels of hydrogen-like
atoms is an important test for the Standard Model and
can be used to obtain more accurate values of a number
of fundamental constants (the fine structure constant,
the electron and muon masses, the proton charge
radius, etc.) [1-3]. In recent years, considerableinterest
in this area is associated with the muonic hydrogen
atom [4—6]. Thisinterest is primarily stimulated by the
intensification of experimenta investigations of the
2P-2S Lamb shift and hyperfine structure of the
muonic hydrogen atom. Measurement of the 2P-2S
Lamb shift with an accuracy of 3 x 107 will make it
possible to obtain the proton charge radius with an
accuracy of 1073, which is by an order of magnitude
better than the currently available accuracy known from
various sources including electron—proton scattering
and the 2P-2S Lamb shift in the hydrogen atom. Mea-
surement of the hyperfine splitting of the ground state
of the muonic hydrogen with a similar accuracy would
enable one to determine a new value of another funda-
mental parameter of the theory, the Zemach radius [7],
with an accuracy of 1073 [8, 9]. Then, it would be used
to calculate a new theoretical value for hyperfine split-
ting in the hydrogen atom and to obtain bounds on the
proton polarizability correction [10-12].

Finally, there is an additional experimental problem
of investigating the 1S-2S large fine structure in the
muonic hydrogen atom and the muonic hydrogen—
muonic deuterium isotope shift for this splitting [13, 14],
which makes it possible to acquire new data on the
charge radii of the proton and deuteron. It isworth not-
ing that both indicated quantities are among the most
accurately measured quantities for the hydrogen atom.
In particular, the current value of the hydrogen—deute-

rium isotope shift measured for the 1S-2S splitting, the
measurement accuracy for which increases by three
orders of magnitude in the past decade, is equal to [15]

Avis = [E(29) - E(19)]p - [E(29) —E(19)] 4

1

= 670994334.64(15) kHz, @

and the 1S-2Sinterval in hydrogen was measured with a
record accuracy of several hundredths of kilohertz [16]:

AV, ,s(H) = 2466061413187103(46) Hz,
S5 =19x10™

Experimental investigations of intervals (1) and (2) in
muonic hydrogen are yet under preliminary prepara-
tion.

Various contributions to the energy levels of muonic
atoms were theoretically evaluated many years ago in
[17-19] (see aso other references in review [1]). In
recent years, various correctionsin the energy spectrum
of muonic hydrogen were primarily calculated for the
2P-2S Lamb shift and the hyperfine structure of the S
levels[12, 20-23]. Inthose works, aparticle interaction
operator was constructed, which provided a®- and
ab-order corrections for the 2P-2S interval and the
hyperfine splitting of the 1Sand 2Slevels (a isthe fine
structure constant). At present, it is necessary to theo-
retically analyze corrections of ordersa?, a4, and a®in
the Lamb shift of the 1Sand 2Slevels of muonic hydro-
gen and muonic deuteron, in the up—ud isotope shift for
the 1S-2S transition, which remains unknown to date,
and in the fine structure interval E(1S) — 8E(2S). Such
calculations may promote more active experimental
investigations of fine structure intervals (1) and (2) in

1063-7761/05/10106-1021$26.00 © 2005 Pleiades Publishing, Inc.
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muonic hydrogen and, as a result, more accurate deter-
mination of fundamental physical constants such asthe
charge radii of the proton and deuteron and the muon
mass.

In thiswork, numerical results are obtained for con-
tributions of thea®, a4, and a® ordersin the 1S-2Ssplit-
ting and in the pp—ud isotope shift for this splitting.
Numerical values of certain contributions are calcu-
lated by known analytical formulas. Most contributions
for the 1Sand 2Senergy level sin muonic hydrogen and
the isotope shift are obtained for the first time in the
integral form, which is used for numerical estimates.
The dependence of the overwhelming majority of cor-
rections on the principal quantum number is nontrivial;
i.e., it is not reduced to a factor of 1/n®. The cause of
such a dependence is associated with the characteristic
photon momenta and will be discussed below. The aim
of thiswork isto cal culate quantum-mechanical correc-
tions in the muonic hydrogen—muonic deuteron isotope
shift for the 1S-2S transition and in the fine structure
interval E(1S) —8E(29), aswell asto obtain the numer-
ical values of these quantities with an accuracy of 10-°.
These values can be considered as reliable checkpoints
both for the realization of corresponding experiments
and for the extraction of more accurate values for the
charge radii of the proton and deuteron and the muon
mass from these experimental data.

The fine structure of the energy spectrum of hydro-
gen-like atoms has long been studied using various
methods [1, 14, 24]. With the accuracy to the (Za)*
terms, the energy levels of the S states of a hydrogen-
like atom consisting of the particles with massesm, and
m, are given by the expression
wza)* u(ZOt)“[1 3, W }
2

E.=m,+m,—
e o on3 4n  4m;m,n

p(1S): 1043927826470.3586 meV;
_ CHp(29): 1043929722866.0601 meV.
F1d(1S): 1981268455762.7537 meV;
Hhd(29): 1981270453188.8081 meV.

©)

Although the relative theoretical error in Eq. (3), which
is attributed to uncertainties in the fine structure con-
stant a and particle masses, is on the order of 107, we
present the numerical valuesin Eq. (3) with an accuracy
of 0.0001 meV, which is important for analyzing vari-
ous intervals of the fine structure of the energy spec-
trum. We used the following values of the fundamental
physical constants[3]:

oL = 137.03599976(50),
m, = 0.105658357(5) GeV,
m, = 0.938271998(38) GeV,
my = 1.875612762(75) GeV.
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The contribution of Eg. (3) to the pp—ud isotope shift
for the 1S-2S transition is decisive (see table). At the
same time, a number of important effects of both elec-
tromagnetic and strong interactions should be consis-
tently taken into account in order to obtain the isotope
shift with the accuracy to a® termsinclusively.

2. EFFECTS OF ONE-
AND TWO-LOOP VACUUM POLARIZATION
IN ONE-PHOTON INTERACTION

Our calculations of the energy spectra of hydrogen-
like atoms are performed using the quasipotential
method, where a bound state of two particles is
described by the Schrodinger-type equation [25, 26]

_gb® _ p’p

(G = Ww(p)
Dopg  2pH @

_ 99
- J.(ZT[)?’V(p’ d. M)UJM(Q)1

where
2 2 2 2 2
b = El - ml = EZ - m2,

Mg = E;E/M is the relativistic reduced mass, and M =
E, + E, is the bound-state mass. The quasipotential of
Eqg. (5) is constructed in QED perturbation theory by
means of off-shell two-particle scattering amplitude T
projected onto the positive frequency states at zero rel-
ative energies of the particles:

V =VvOev@ay®y

T=TY+7%+7%94 ®

v = 100 @ = 7@ 106 (g)

Since the muon mass is larger than the electron
mass, the Bohr radius of pp is smaller than the Bohr
radius of the hydrogen atom. As a result, the Bohr
radius of pup and the electron Compton wavelength are
of the same order of magnitude:

2
L. /i = 0737384,
pe | Me

wherem, isthe electron mass and 1 isthe reduced mass
of two particlesin the pup atom. For thisreason, vacuum
polarization effects in the energy spectrum of muonic
hydrogen increase significantly [27]. Figure 1 shows
one- and two-loop vacuum-polarization effects in the
one-photon interaction.

In order to evaluate the contribution from the dia-
gram shown in Fig. 1a (electron vacuum polarization) to
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Corrections of the a3, a*, and o® ordersin the Lamb shift of the 1Sand 2S energy levels of muonic hydrogen and muonic deuterium and in the isotope shift AE;g

Hp, meV

pd, meV

Contribution AE Formula,
to the atomic energy 1S 25 1S 25 1S Ref.
1 2 3 4 5 6 7
Fine-structure formula
E = my +m,_ MZO°  pE)*
2n? 2n® 1043927826470.3586 | 1043929722866.0601 | 1981268455762.7537 | 1981270453188.8081 | 101030.3530 E%
2
x [1 _3,_H }
4n  4nm;m,
a(Zo)?-order contribution of one-loop vac- (5)
uum polarization to 1y interaction ©6)
—1898.8379 —219.5849 —2129.2820 —245.3205 204.7085 (13)
a(Za)*-order Wichmann—Kroll contribution 0.0114 0.0012 0.0126 0.0014 —-0.0010 [28]
a®(Zar)-order contribution of two-loop vac- (15)
uum polarization (VP-VP) to 1y interaction ~1.8316 ~0.2426 21871 —0.2811 0.2616 (16)
a®(Za)-order contribution of two-loop vac- (19)
uum polarization (2-loop) to 1y interaction _12.6144 14112 14.0141 _1.5606 1.2476 (20)
a’(Za)?-order contribution of three-loop [30]
vacuum polarization (VP-VP-VP) to 1y (23)
interaction
—0.0029 —0.0003 —0.0034 —0.0004 0.0004 (24)
a’(Za)?-order contribution of three-loop [30]
vacuum polarization (VP-2-loop) to 1y (25)
interaction
—0.0223 —0.0030 —0.0251 —0.0035 0.0023 (26)
a’(Za)?-order contribution of three-loop —0.0340 —0.0045 —0.0380 —0.0050 0.0035 [30]
vacuum polarization (MN(P9) to 1y interac-
tion
a’(Za)?-order contribution of relativistic ef- [19]
fects and vacuum polarization in first-order
perturbation theory 0.1962 0.0249 0.2515 0.0322 —0.0480 (29)
a’(Za)?-order contribution of relativistic ef- [19]
fects and vacuum polarization in second-
order perturbation theory —0.2644 —0.0559 -0.3194 —0.0696 0.0413 (39)
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Table1l. (Contd.)

1 2 3 4 5 6 7
a?(Za)?-order contribution of two-loop vac- (41)
e o Zetion i ssconck orcer perturer ~2.0343 ~0.1532 ~2.3675 ~0.1750 03114 | (4
a®(Za)?-order contribution of three-loop (43)
‘c’)ﬂ‘é‘_’ggg"giﬁ?ﬂ;’tﬁ‘éx ti_ez)/r;" V) in sec- ~0.0061 ~0.0002 —0.0073 ~0.0005 0.0009 (45)
a’(Za)?-order contribution of three-loop (46)
‘éﬁ%‘fﬁ{?ﬁ%@iﬁfﬂ;ﬁ‘éﬁﬁrﬁy R V) in sec- ~0.0059 ~0.0016 —0.0069 ~0.0021 0.0005 47)
a(Za)*-order muon self-energy contribution [1]
and muon vacuum polarization contribution 51180 0.6543 0.9395 0.7594 _0.7164 [19]
a(Za)®-order radiative corrections 0.0355 0.0044 0.0414 0.0052 —0.0051 [1]
Radiative corrections and a?(Za)*-order [1
vacuum polariztion 0.0178 0.0025 0.0209 0.0029 ~0.0027 [19]
(Za)®-order recoil correction 0.3009 0.0428 0.1781 0.0253 0.1053 [1]
(Za)*-order nuclear structure contribution 38.5711 4.8214 213.4218 26.6825 —152.6597 (48)
[1, 23]
(Za)®-order nuclear structure contribution —0.1464 —0.0183 —2.9384 —-0.3674 2.4429 (51
[19, 23]
a(Za)*-order nuclear structure contribution (52)
and vacuum polarization 0.2127 0.0274 1.4155 0.1824 ~1.0478 (53)
a(Za)*-order nuclear structure contribution (54)
e toroation oo o i second-order 0.1327 0.0135 0.8913 0.0898 06823 | (55)
(Zo)5-order nuclear polarizability contribu- [38]
tion ~0.1201 ~0.0161 92.0511 11.5064 -80.6577 | [36, 39]
a(Za)*-order hadron vacuum polarization [40]
contribution 0.0864 ~0.0108 ~0.1010 ~0.0126 0.0128 [41]
Resulting contribution 1043927824598.8893 | 1043929722650.1499 | 1981268453925.6873 | 1981270452980.2974 | 101003.3495
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THEORY OF THE MUONIC HY DROGEN-MUONIC DEUTERIUM ISOTOPE SHIFT

the particle interaction operator, it is necessary to make
the following change in the photon propagator [27]:

A/ 1(23 +1)
_2 - 3T[I

S (k + 4mes ) '
For the hydrogen atom,

(7)

(=K% = k* Opi(Za)0 mi(Za)?,

where |, is the reduced mass of two particles in the
hydrogen atom. In this case, neglecting thefirst termin
the denominator on the right-hand side of Eq. (7), one
obtains

@
15Tm;

At the same time, when
k* Op®(Za)D mi(Za)?,

where my isthe muon mass, asin muonic hydrogen, the
parameters pa and m, are of the same order of magni-
tude and the expansion in a in the denominator of
Eqg. (7) isinvalid. In this case (for muonic hydrogen),
the particle interaction operator should be constructed
in the one-photon approximation, using exact expres-
sion (7). In what follows, we will take into account that
electron vacuum polarization makes a3-, a*, and
as-order contributions to the energy spectrum of the S
states.

Taking into account Eq. (7), the modification of the
Coulomb potential

VO(k) = —Z€e/K®

due to vacuum polarization is given by the following
expression in the momentum representation [27]:

1(22 +1) y

8
k? +4meE ®)

Vop(k) = —4nZ(de’ 5

The Fourier transform of Eqg. (8) yieldsthe correspond-
ing operator in the coordinate representation:

A/ 1(25 +1)

va(r) = TJdE
9
D Za exp( 2meEr)E

Thisexpression makesit possible to obtain the o®-order
correction for electron vacuum polarization in the
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(a) (b) i () § (d)

Fig. 1. One- and two-loop vacuum polarization effects in
the one-photon interaction.

energy spectrum of the 1Sand 2S states of the muonic
hydrogen atom. Using the wavefunctions of the 1Sand
2Sstatesin theform

2
l-lJloo(r) = %e—Wri
. (10)
- Wr
Wano(r) = T W/Q%l 2%
where W= piZa, we represent this correction as
_ p(zaYa,
BByel19) = gy { P(&)dE— 1(2) (11)
where
Pi(&) = 1+mV§, o(E) = J—l(zz n
and
2
AE,, vp(29) = _E%z_q
2 3 (12
p(&)de N 0
I Elpz(a) i) 2piE)”
where
2
P(&) = 1+ r\?\;ﬁ.

Electron vacuum polarization effects are very sensitive
to the structure of the bound state, because the charac-
teristic momentum of particlesin the muonic hydrogen
atomisequal to pu(Za). For thisreason, the contribution
of the amplitudes under consideration with electron
vacuum polarization is not reduced to the factor

lwC(0)|? o1/nd.

Its dependence on the principal quantum number is
more complex and is given by Egs. (11) and (12). The
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numerical values

p(1S): —1898.8379 meV;

p(2S): —219.5849 meV,
AE,, vp = %l ) )
CHd(1S): —2129.2820 meV;

Hhd(29): -245.3205 meV,

(13)

of the contribution of electron vacuum polarization for
the 1S and 2S states of muonic hydrogen and muonic
deuteron differ from each other due to the reduced mass
of two particles. The contribution of muon vacuum
polarization can be obtained from Eq. (8) by changing
m, — m,. This a®-correction in the energy spectrum
of the muonic hydrogen-like atom is presented in the
table along with the muon self-energy correction.

Let us consider the modification of the Coulomb
potentia due to the two-loop vacuum polarization (see
Fig. 1). The contribution of the first diagram containing
two sequentia loops can be found by means of double
change (7) in the photon propagator. In the coordinate
representation, the corresponding particle interaction
operator hasthe form

2 0 00

a 20
Viuveve(r) = ZS[p(E)dEfp(n)dn {5

ore. r
1 1 (14)

1
EZ_rIZ
and makes the following contribution to the energy

spectrum:

(&%exp(-2mcEr) —n’exp(-2menr))

X

2 2
a“(Za
AE;, vpyp(1S) = _%
1 O EZ nz 0
ZD 2 - 2 El (15)
—N"pi(&) pi(n)d
_ glp: —-1.8816 meV,
(pd: —2.1871 meV,

X d d
{p(é) E{p(n) n22

2 2
AEly,VP—VP(ZS) = —%
[ee] 0 l
x [p(&)dE [p(n)dn
‘1[ ‘1[ &-n’

(16)

x[ e 12 + 3 O

T038) piE) 2piE)
2 1 2 2 [

Noz <~ =
o3m)  pin) 2p2(n)D}

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

MARTYNENKO

_ ng: —0.2426 meV,
(ud: —0.2811 meV.

To calculate the contributions from the diagrams
shown in Figs. 1c and 1d, which are determined by the
second-order polarization operator, it is hecessary to
use the following substitution into the photon propaga
tor [29]:

1 o f(v)
K2 D"DI4m§+k2(l—v2)
0
1
(72 %

1-vO, o i dl=vo
T+ 2o

0 .
“H(3- v3)(1+ vz)[uzg—

+§Inl+vln1+v—lnl+vlnv}

2 1-v 2 1-v (17)

1+v
1-v

+ [%(3- v (1+v2) + V{]ln

1-v?

+[gv(3—v2)|n —2v(3—v2)lnv}

0
+3u(5-3v¥) g
8 0

Inthiscase, when cal culating the numerical value of the
contribution, it is convenient to use the coordinate rep-
resentation and to reduce the particle interaction poten-
tia to the form

270
AV:S/,Z—IoopVP = _éT
1
ot f(v)dv o O 2mgr O (18)
*G0 > eXpL- 0.
5 1-v 0,/1—yO

This potential provides the following correctionsin the
Lamb shift of the S levels of muonic hydrogen and
muonic deuteron:

2
i|10(2(ZO()2Vl2

AEly,2—|oopVP(:|-S) = _3T[2 e
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. (@ (b) ©
a C
9 J. f(v)dv . (19) ]
0 11— v
0 o+ Wil-v G
O m. 0
%Up —12.6144 meV,
Fig. 2. Three-loop vacuum polarization effects in the
[Hd: =14.0141 meV, (a b) one-photon interaction and (c) third-order perturba-
tion theory.
1 2 oW
AE,, 5. 2S5) = ——ua(Za) —
1y 2o0p ve o (za) 2 Using Egs. (7) and (17), the contribution of the dia-
gram shown in Fig. 2b to the potential can be repre-
L , .
) F(v)dv [1_ 5 . 3 } sented in the integral form
J;D wiisvi - P 2p) Ve _ _4ua’(Za)
1+ —-9] VP-2-loop VP 9_'_[3
0 2m, (20)
-1.4112 meV, f
= g Ip(E)dE S H)gy! (22)
pd: —1.5606 meV,
where 2 EZ
| ep(-2man Sl —ep(-2men - |
_ 1 r]2 _ EZ r_]2 _ 5.2
p3(v) - 2m
1+ ——E—; The correctionsto the energy spectrum of the pp and pd
Wyl-v atoms that correspond to these interactions are
Since we numericaly evaluate the contribution to the no’(za)?
energy spectrum, the corresponding results are pre- AEyp_ypyp(lS) = —————
sented with an accuracy of 0.0001 meV. 27T

3. THREE-LOOP VACUUM POLARIZATION
IN ONE-PHOTON INTERACTION

The three-loop vacuum polarization amplitudes in
one-photon interaction al so make a®>-order contribution
(see Figs. 2a and 2b). The diagram shown in Fig. 2a
makes the following contribution to the potential :

3
c Za o
Vypvpyp(r) = —

" (3m

XIp(n)dnfp(Z)dZ

Z4
X —2meC 2,2y, 2 52 21
e ey @

EA
(®-&)(n*-&?)

n’ }
(&-n*)(Z*-n?

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

+ exp(—2me&r)

+ exp(—-2mgnr)

XJ’D(E)dEJ’P(ﬂ)dﬂIP(Z)dZ
1 1 1

x g
[(EZ—nZ)(zz—ﬁ pi(E)

+ n
(n*-&)(n*-2%)pi(n)

. ¢ }
(-8 -n?)pi)

EJp —0.0029 meV,
(d: —0.0034 meV,

AEyp_ypyvp(295) = —

><jp(vi)dEJ’p(rl)dr1'|’p(Z)dZ

Vol. 101 No. 6 2005
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< g [ 11
2 2 2 2 2 3
" -n)E -)pa(8)  pa(€) 24

N n* 11
(nz—zz)mz—zz)[pé(n) pi(n)}

+ Z4

(-84

Frpel
-n)Lp3(Q) P00

_ %]Jp —0.0003 meV,
(pd: —0.0004 meV,
apa®(Za)’,
—_— d

or [p(&)dE

1

A EVP—Z—loop vp(1S) = —

x}f(n) dn -

2 EZ
n n’-g [pl(n) pl(E)}

: %m: —0.0223 meV,

pd: —0.0251 meV,
2ua’(Za)?

AEyp o 100pve(29) = —%

jp(z)dz If(”) d”
(26)

0, ) 0
! [pizn) ) pi(ln)} - [pitE) ) pi?&)}g

EJp —0.0030 meV,
(d: —0.0035 meV.

Inthefunction f(v) specified by Eq. (17), itisnecessary
to make the substitution

Jn°-1

n

v =

There are additional diagrams that express three-
loop correctionsin the polarization operator. They were
first calculated for the 2P—2S Lamb shift by Kinoshita
and Nio [30, 31]. The largest contribution to the energy
spectrum comes from the sixth-order vacuum polariza-
tion diagrams with one-electron loop (M®® contribu-
tions [30]). The estimate of their contribution to the
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Lamb shift of the 1Sand 2S energy levels is presented
in the table.

4. VACUUM POLARIZATION EFFECTS
WITH THE INCLUSION
OF RELATIVISTIC CORRECTIONS

Calculation of the energy spectrum of the Sstates of
muonic hydrogen with an accuracy of a® requires the
construction of the quasipotential using Egs. (5) and (6)
and taking into account relativistic effects of this order
(Breit Hamiltonian AVg). Taking into account electron

vacuum polarization, the Breit Hamiltonian AVy"~ was
obtained by Pachucki [19]. Omitting the spin-depen-
dent terms in the interaction operator, we represent
these Hamiltonians in the form

L, LD

AVg =
° Eéml 8m§]

+ @D_l + _1_55(”

qnz
PiPO

_ ZC( E)z_'_ril’j oK
2m,m,r 2 U

(27)

[(Zal

AV = (R TS +
B TJ anz iD

[na(r)— zazexp(z mEn)|

Zamgg’®

= ———exXp(-2mg&r)(1—-mg&r)

(28)

_ Za_exp(-2mgr)
2mm,"" r

x|, +—'(1+2mezr)}pJ

In first-order perturbation theory, potential (28) makes
the following contribution to the energy spectrum after
averaging over Coulomb wavefunctions (10):

AEYS'" = Wyg ,d AV [Wyg 2s0]

%lp(lS) 0.1962 meV; up(2S): 0.0249 meV, (29)
Ud(1S): 0.2515 meV; pd(2S): 0.0322 meV.

These corrections are of the a(Za)* order. The second-
order perturbation corrections in the energy spectrum
of the hydrogen-like system are determined by the
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THEORY OF THE MUONIC HY DROGEN-MUONIC DEUTERIUM ISOTOPE SHIFT

reduced Coulomb Green function [32], whose partial
expansion has the form

Go(r, 1) = 3 Gu(r, r)Yin() Yin(nY).  (30)
I, m

Theradial function g,,, (r, r') was obtained in [32] in the

form of the Sturm expansion in Laguerre polynomials.
For the 1Sand 2S states, this function has the form

Ly_1(X) Ly 1(X)

- [
Gu(r. 1) = -4p’zady
0%,

m(m-1)
(31)
S5_Xx_X 0 X+ X0
2 2 20Tz

Ly_ (X)L 1(X)
m(m-—2)

Baolr, 1) = —2uzza{ >
m=1m#2

P x-iDLi(x)Li(x')} (32)

(b “ox " oxU

where x = pZar and

X ,—M n
7o) = S-HE @)

0 (33)

arethe Laguerre polynomials. Certain terms of the qua-
sipotential include &(r) and, therefore, it is necessary to

know Gy (r, 0). The expression for the reduced Cou-
lomb Green function in this case was derived in [33]
using the Hostler representation for the Coulomb Green
function as a result of the subtraction of the pole term
in the form

- ZC( Zze—X/Z

Gus(r, 0) = T (34)
x [2x(Inx + C) + X* =5x—2],

: _ _Zap’e™”

Ges(r, 0) = 42X (35)

X [4x(x=2)(Inx+C) + x3—13x2+6x+4],

where C = 0.5772... is the Euler constant. In second-
order perturbation theory, one-loop vacuum polariza-
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tion makes the contribution
AE, sopr
- Z W AVelYn M ViplyyD  (30)
E E

m=1m#n

Cadlculating the matrix element of the operator p*, we
first use the substitution

p*14p® = (Hy+ Za/r)(H, + Za/r),
Ho, = p’/2p—2Zalr,
and then the algebraic transformations

VVPNJn

mm#n N m

= —pge = (1 = Iy M) Vel (37)
C Za |L|Jmm£pn4
+EnmJE|7m;nE ~ e Vel

The sums arising after the integration with reduced
Coulomb Green function (30) with respect to the coor-
dinatesr and r' are calculated taking into account that
1<&<owand

1

TrwWime - &

The characteristic matrix element for the 1S state has
the form

| = {%{-%e‘xdx{x'exp(—x' py(£))dx’

x[§_5_5+ Lin_l(xn;_l(x')}

2 2 2 m(m-—1)
L5 1 m® g
4p;(§) Zpl(é) pl(E)

[pu(®)-1""
Z

,(m=1)p" " *(€)
_ 1 - 1 _ |np1(E).
Pi(8) &, (m=-1)p &)  PiE)

Omitting numerous other intermediate analytical
expressions, we present the resulting numerical values
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(a) (b) (c) (d)

Fig. 3. Two- and three-loop vacuum polarization correc-
tionsin second-order perturbation theory.

of the corrections for the 1S and 2S levels in second-
order perturbation theory (36):

AE;,"
(39)
_ %Jp(lS): —0.2644 meV; pup(2S): —0.0559 meV,

Hd(1S): —0.3194 meV; pd(2S): —0.0696 meV.

5. TWO- AND THREE-LOOP VACUUM
POLARIZATIONS
IN SECOND-ORDER PERTURBATION THEORY

Two-loop vacuum polarization makes the following
contribution in second-order perturbation theory (see
Fig. 3a):

AESHT = WYVIGV WD (40)

This matrix element can be calculated using
Egs. (9), (31), and (32). Asaresult, we arrive at the fol -
lowing o?(Za)?-order corrections for the 1S and 2S
energy levels:

VP, VP _ _LJ.(XZ(Z(X)200 h
AEgoer (1) = T or? Ip(E)dE{p(n)dn

1

XF 111
2p3(E)pin)  PIEIPI(N)  Pi(E)pi(n) @
[p.(8) - 1] [py(n) — 1]

P2(E)Pr()(PL(E) + p2(n) —1)

+

1 Inpl(z)+p1(n)_1}
pa(E)pi(n)  Pu&)+pi(n) J

NELYP(2g) = MO(Za)

91t
(42)

XIp(E)dEIp(n)dnf(E, n-.

Here,

9
2p5(€) ps(n)

6 3
Pa(E)pa(n)  Pa(&)pa(n)

_ 9 L 183 39
2p3(8)pa(n)  8pa(E)pa(n)  2ps(E)pa(n)

3 .6 3
4p5(E)p3(n)  Pa(E)Pa(n)  2p3(E)ps(n)

+ 17 _ 6 _ 3
Po(E)pa(n)  pa(E)pa(n)  Pa(E)pa(n)

3 6 3
4p5(€)p3(n)  pa(E)pa(n)  2p3(E)pa(n)

_ z _ 7'(6—52)
a5(8)as(n)(z—1) 2a3(&)ax(n)(z—1)°p,(&)

7(6-52)

f(&n) = -

+

+

7'(4-32)

2a4(8)a%(n)(z-1)7py(n)  2a(8)a3(n)(z—1)?

7(4-32) , Z(=30+497-217)
2a5(8)ay(n)(z—1)°  4ay(&)ay(n)(z-1)°
_ Z(-18+27z-117)
4a3(&)as(n)(z—1)°pa(&)
__ Z(-18+27z-117)
4a3(&)as(n)(z—1)°po(n)
, 2(=10+132-57)
4a3(&)as(n)(z-1)°

+

+In(1-2)

x{_ 27 . 37
a5(€)as(n)  ax(&)az(n)pa(&)

37 _ 2
as(&)ax(n)pa(n)  as(&)az(n)

_ z _ o7 + 37
a5(8)az(n) 2a3(&as(n) 2a5(8)az(n)pa(€)
+ 323 _ z3 }

2a3(€)ad(n)p(n) 2a3(E)as(n) |
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where

_ a,(&)ax(n)

ay(8) = ~1, .
(&) = Po(8) p&)Pa()

The contributions from three-loop vacuum polariza-
tion in second-order perturbation theory that are shown
in Figs. 3b, 3c, and 3d are of the a3(Za)? order. To cal-
culate them, it is necessary to use the expressions for
one- and two-loop polarization operators. Integrating
with respect to the coordinates of the wavefunctions,
we represent these contributions in the form

2pa’(Za)’

3

AELDVPVP(1g) =
SOPT 2770

jp(&)d& Ip(”)d" (43)

x}p(Z)dZ[Ezg(E,Z)_nzg(n,Z)}
) pi(Q) | piE) pi(n)

where

_5 1 1
(44)

[pl(E) 1[p.(¢)-1] “In P1(&) + ps() -1
PL(&) + p.() -1 P1(&) P1(Q)

2pa (Za)

AESPVP(29) = IP(E)dE

(45)

XJ’p(n)dnJ’p(Z)dZE f(z’?z_nzf(”’o,

where the function f(§, ¢) is specified by Eq. (42);

Mo (Za)” (Za)

AEZPVPVP(1S) = J'f(v)dv

y 11 1
PREOEV) REOE) PREOEW)

(46)
Inpl(E) + (V) + 1} U
P1(&) +di(v)

x[ p.(&)au(v)
p1(&) +au(v) +1
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where
m,
du(v) = 1+—,
' WAV1- v?
and
3 2
AEZIOPVPVP ooy _4pa’(Za)
(47)
jf(v)dvjp(z)daf(z v),
0
where
puv) = 1+ —2e (y) = 2k

Wi1—v? W/1-v?

in the expression for the function f(&, v). The contribu-
tion of the corrections given by Egs. (41)—47) to the
isotope shift is equal to 0.3125 meV and individual
contributions for the Slevels are presented in the table.
Anaysis of the contribution of three-loop vacuum
polarization in third-order perturbation theory in
Fig. 2c shows that it is an order of magnitude smaller
than the contribution from the diagram shown in Fig. 3c
and thereby can be neglected.

6. EFFECTS OF THE STRUCTURE
AND POLARIZABILITY OF A NUCLEUS
AND VACUUM POLARIZATION

Strong interactions, which are associated with the
distributions of the electric charge and magnetic
moment of a nucleus, play an important role in the
energy spectrum of muonic hydrogen. In the leading
(Za)* order, the nuclear-structure effects are deter-
mined by the nuclear charge radius ry, which is a dif-
ferential characteristic of the electric-charge distribu-
tion. To calculate one-loop corrections, it is necessary
to know the form of electromagnetic form factors of the
nucleus. The contribution of nuclear structure effects
both to the hyperfine structure of energy levels and to
the Lamb shift was studied in [1, 19, 20, 23, 36]. The
leading nuclear-structure correction of the (Za)* order
in the energy spectrum of the Slevels of muonic hydro-
gen has the form (see the diagram shown in Fig. 4a)

AE «(nS) =

2 3 4.2
str, (ZG) n3u (Za) Bpﬂ (48)

wherer isthe rms proton radius. The numerical values

of this correction for thelevelswithn=1and 2 (at r, =
0.891 fm [1]) that are presented in the table have a sig-

nificant relative weight. For this reason, the reduction
of the error in determining the proton chargeradiusisa
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(b) ©
G

Fig. 4. Nuclear-structure and vacuum-polarization correc-
tions.

() (b)

Fig. 5. Nuclear-structure corrections of the (Za)® order. The
thick pointsin the diagrams are the nuclear vertex operators.

very urgent problem for obtaining a more accurate the-
oretical value for the Lamb shift of the Slevels. In the
case of deuterium, we use the value ry = 2.094 fm for
the deuteron charge radius [23].

Two-photon exchange amplitudes shown in Fig. 5
provide (Za)®-order corrections to the nuclear struc-
ture. In this case, the two-photon interaction quasipo-
tential can be evaluated using Egs. (5) and (6) [19, 20]
and the corresponding correction to the energy spec-
trum has the form of the one-dimensional integral

AE,  (ng) = H1Z4) (ZO‘) OlkV(k) (49)
r, (Za) T[I’l
0
where
_ 2(Fi-1)  8m,[F,(0) + 4m;F;(0)]
V(k) = +
m;m, my(my + my)k

K> 2
*o—l2(Fi-

mym,

1)(mf + m3) + 4FF,m; + 3F5mi]

A/k2+4mi

2mimy(m; —mp)k

x %<2[2(F§— 1)m? + 4F, F,m> + 3F2m3  (50)
0
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16m;ma(F3 — 1) E

—8miF,F,+
1t 1t 2 k2 0

N +a
ﬂ%[z(ﬁ 1)+ 4F,F, + 3F3

2m2(ml z)k

4 2
—8MiF,F, + —16m2('zl =) E

K 0
To perform numerical calculations based on Eq. (49),
we use the Dirac F; and Pauli F, form factors in the
parameterization obtained in [37]. Similar contribu-
tions for muonic deuteron were found in [23]. The
a>-order contribution associated with the nuclear struc-
ture also comes from electron vacuum polarization
effects shown in Figs. 4b and 4c. The particle interac-
tion operator corresponding to the amplitude in Fig. 4b
is given by the expression

M uo(n) = 2 et
: )
262

x| man) - - exp(-2mn) |,

and the contributions to the energy spectrum of the 1S
and 2Slevels have the form

DEg vp(19) = O((ZO()4u3r2 p(£)dg

" I Pi(E)

(52)
%HZmeED %.lp 0.1991 meV,
W O fud: 1.4155 meV,
and

s 3.2 (P(E)GE
AEg vp(29) = O‘(ZO() H rNJ- 2(5)

4me£[| 4meE 2 3 O
ETH w? U p2(2)+2p2(E)D} 39

_ ng 0.0257 meV,
pd: 0.1824 meV,

respectively. The contribution from electron vacuum
polarization and nuclear structure in second-order per-
turbation theory (see the diagram shown in Fig. 4c) is
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determined by the reduced Coulomb Green function

én(r, 0) given by Egs. (34) and (35). In this case, the
contributions to the shift of the Slevels are equal to

2
AEg, v, sopr(19) = —g-a(Za) 'y

(=)

 [RLEIE 2 3, 6) - 2p3(&) - 2p,(8) Inpy(E)]
1 P(8) (54)

B %{p: 0.1242 meV,
(ud: 0.8913 meV,

A Estr, VP; SOPT(ZS)

LA p(E)E
B e

x [— 12+ 23p,(E) —8p5(E) —4p5(E) + 4p3(E)  (55)
+4p,(8)(3-4p,(8) + 2p5(8)) Inpy(8)]

3 %lp: 0.0126 meV,
d: 0.0898 meV.

Two additional contributions of strong interaction to
the Lamb shift are caused by nuclear polarizability and
hadron vacuum polarization. The contribution of
nuclear polarizability to the shift of the Slevelsand the
hyperfine structure was obtained in [38] for muonic
deuteron and in [20, 21] for muonic hydrogen. The
a(Za)*-order contribution from hadron vacuum polar-
ization to the shift of the Slevelswas studied in [40, 41]
and is also presented in the table.

7. CONCLUSIONS

In this work, various QED effects, effects of the
structure and polarizability of the proton, and hadron
vacuum pol arization have been calcul ated for the Lamb
shift of the 1Sand 2Senergy levelsin muonic hydrogen
and muonic deuteron, as well as for the pp—ud isotope
shift for the 1S-2S splitting. Corrections of the a3, a4,
and a® orders, aswell as certain a®-order contributions
enhanced by Ina, are evaluated. We take into account
that the ratio pa/my is close to unit and focus on cal cu-
lation of the effects of electron vacuum polarization.
The numerical values of the contributions obtained in
this work were presented in the table. The table also
contains the Wichmann—Kroll correction [1, 28], muon
self-energy correction, and a(Za)*order contribution
from muon vacuum polarization [1, 19], a(Za)%-order
radiative corrections with a coefficient of about 10 [1],
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ab-order contributions from muon radiative effectswith
the inclusion of eectron vacuum polarization [1, 34],
and (Za)%-order recoil correction from two-photon
exchange diagrams, which is known in the anaytical
form [35]. References to many works are given, where
similar corrections were analyzed analytically or
numerically, although numerical results for the 1Sand
2Slevels are absent in those works. For comparison of
the results obtained in this work with calculations by
other authors, [1] is often used, because it accumulates
the recent results for the energy spectrums of simple
atoms and contains detailed references to previous
investigations.

Let us list a number of the features of the calcula
tions.

(i) For muonic hydrogen, vacuum polarization
effectsareimportant and give rise to the modification of
both the Breit particle interaction potential and the total
interaction operator, which provides the a®-order cor-
rections to the energy spectrum.

(i) In the leading (Za)* order and in the one-loop
amplitudes, proton-structure effectsin the energy spec-
trum of the Sstates are expressed in terms of the charge
radius of a nucleus (proton and deuteron) and in terms
of the nuclear electromagnetic form factor, respec-
tively.

(iii) Contributions to the nuclear polarizability (sec-
ond contribution of strong interaction) are estimated
using relations obtained in [20, 21, 38]. Contributions
from the structure and polarizability of a nucleusintro-
duce the largest theoretical error to the 1S-2Sinterval,
as well asto the isotope shift for this splitting.

Theresulting numerical values of the energies of the
1S and 2S states in muonic hydrogen and muonic deu-
teron, as well as the isotopic shift for the 1S-2Stransi-
tion, are presented in the table. They can be treated asa
reliable estimate for future experiments concerning
both the muonic hydrogen—muonic deuteron isotope
shift and the 1S-2S large fine-structure interval in
muonic hydrogen and muonic deuteron. The numerical
values of the corrections were cal culated with an accu-
racy of 0.0001 meV. For the 1S-2Stransition, the theo-
retical error of theresultsisdetermined by uncertainties
of the fundamental parameters (the fine structure con-
stant and the masses of the proton, deuteron, and
muon), which are on the order of 10~7. The a®-order
QED corrections provide an error on the order of 1078,
Uncertainties in the charge radii of the proton and deu-
teron make the largest contribution to the theoretical
error. Their relative contribution is on the order of 10
(rp=0.891fmandry=2.094 fm are used for the charge
radii of the proton and deuteron, respectively). Further
improvements of theoretical results presented in the
table are primarily associated with corrections to the
structure and polarizability of anucleus. Inview of this
circumstance, thefine structureinterval E(1S) —8E(29),
where the effects of the structure and polarizability of
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the nucleus are absent in the leading (Za)*-order cor-
rection, is of particular interest for the comparison of
the performed theoretical calculations with experimen-
tal data. The numerical values for this interval for
muonic hydrogen and muonic deuteron are

up: E(1S) —8E(29)
= —7307509956602.3099 meV,
ud: E(1S) - 8E(29)
= —13868895169916.6917 meV.

(56)

Therelative value of that part of the theoretical error in
Eq. (56) which is attributed to higher order corrections
isvery small (on the order of 107°).

The isotope shift in the muonic hydrogen—muonic
deuteron system for the 1S-2S splitting is an important
characteristic of the energy spectrums of these hydro-
gen-like atoms. The differencein the wavel engths emit-
ted by the isotopes of one element appears due to the
differencein theisotope masses, aswell asto the differ-
ence in the distributions of the charge of the nuclei. At
present, the proton and deuteron masses are known
with a quite high accuracy, whereas the characteristics
of the nuclear structure are determined less accurately.
Using the calculation results, one can express the dif-
ference of chargeradii between the deuteron and proton
in terms of the isotope shift:

2 2
ry B M
3 3
(1+ mullzmd) (1+m,/my) (57)

~ th
- W(AETS—AE%”),
vl

where the theoretical value A I~Ef'§, does not include the

(Za)*-order correction to the nuclear structure. Thus,
measurement of the p—ud isotope shift would provide
an additional test of QED and makeit possibleto obtain
a more accurate value of the deuteron charge radius
from Eqg. (57) after the determination of the proton
charge radiusin the PSI experiment [4].
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Abstract—Multidimensional configurationswith aMinkowski external spacetime and a spherically symmetric
global monopolein extra dimensions are discussed in the context of the braneworld concept. The monopoleis
formed with ahedgehoglike set of scalar fields ¢ with asymmetry-breaking potential V depending on the mag-
nitude @* = @¢. All possible kinds of globally regular configurations are singled out without specifying the
shape of V(¢). These variants are governed by the maximum value @, of the scalar field, characterizing the
energy scale of symmetry breaking. If @, < @ (where @ isacritical value of @related to the multidimensional
Planck scale), the monopole reaches infinite radii, whereas in the “strong field regime,” when @, = @, the
monopole may end with a finite-radius cylinder or have two regular centers. The warp factors of monopoles
with both infinite and finite radii may either exponentially grow or tend to finite constant values far from the
center. All such configurations are shown to be able to trap test scalar matter, in striking contrast to RS2 type
five-dimensional models. The monopole structures obtained analytically are also found numerically for the
Mexican hat potential with an additional parameter acting as a cosmological constant. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

According to a presently popular idea, our observ-
able Universe can belocated on afour-dimensional sur-
face, called the brane, embedded in a higher-dimen-
siona manifold, called the bulk. This “braneworld”
concept, suggested in the 1980s [1], is broadly dis-
cussed nowadays, mainly in connection with the recent
developments in supersymmetric string/M-theories[2].
One reason why we do not see any extradimensionsis
that the observed matter is confined to the brane and
only gravity propagatesin the bulk. There are numerous
applications of the braneworld concept to particle phys-
ics, astrophysics, and cosmology, such as the hierarchy
problem and the description of dark matter and dark
energy [3].

Most of the studies are restricted to infinitely thin
branes with deltalike localization of matter. A well-
known example is Randall and Sundrum’s second
model (RS2) [4], in which asingle Minkowski braneis
embedded in a five-dimensional anti-de Sitter (AdS)
bulk.

Thin branes can, however, only betreated asarough
approximation, because any fundamental underlying
theory, be it quantum gravity or string or M-theory,

T The text was submitted by the authors in English.

must contain a fundamental length beyond which the
classical spacetime description is impossible. It is
therefore necessary to justify the infinitely thin brane
approximation as a well-defined limit of a smooth
structure, athick brane, obtainable as a solution of cou-
pled gravitational and matter field equations. Such a
configuration is then required to be globally regular,
stable, and properly concentrated around a three-
dimensional surface that is meant to describe the
observed spatial dimensions. Topological defects
emerging in phase transitions with spontaneous sym-
metry breaking (SSB) are probably the best candidates
for thisrole.

It should be mentioned that the evolution of the Uni-
verse, according to modern views, contained a
sequence of phasetransitionswith SSB. A decisive step
toward cosmological applications of the SSB concept
wasmadein 1972 by Kirzhnits[5]. He assumed that, as
in the case of solid substances, a symmetry of afield
system, existing at sufficiently high temperatures,
could be spontaneously broken as the temperature falls
down. A necessary consequence of such phase transi-
tionsisthe appearance of topological defects. Thefirst
guantitative analysis of the cosmological conse-
guences of SSB was given by Zel’dovich, Kobzarev,
and Okun'’ [6]. Later, the SSB phenomenon and various
topological defects were widely used in inflationary

1063-7761/05/10106-1036$26.00 © 2005 Pleiades Publishing, Inc.
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Universe models and in attempts to explain the origin of
thelarge-scale structure of the Universe (see, eg., [7, 8]).

The properties of global topological defectsare gen-
erally described with the aid of a multiplet of scalar
fields playing the role of an order parameter. |f a defect
is to be interpreted as a braneworld, its structure is
determined by the self-gravity of the scalar field system
and may be described by a set of Einstein and scalar
equations.

In this paper, we analyze the gravitational properties
of candidate (thick) braneworlds with the four-dimen-
sional Minkowski metric as global topological defects
in extra dimensions. Our general formulation covers
such particular cases as a brane (domain wall) in five-
dimensional spacetime (one extra dimension), a global
cosmic string with winding number n = 1 (two extra
dimensions), and global monopoles (three or more
extra dimensions). We restrict ourselves to Minkowski
branes, because most of the existing problems are
clearly seen even in these comparatively simple sys-
tems; on the other hand, in the majority of physical sit-
uations, the inner curvature of the brane itself is much
smaller than the curvature related to brane formation,
and, therefore, the main qualitative features of
Minkowski branes should survivein curved branes.

Brane worlds asthick domain wallsin afive-dimen-
sional bulk have been discussed in many papers (see,
e.g., [9] and references therein). Such systems were
analyzed in ageneral formin [10, 11] without specify-
ing the symmetry-breaking potential; it was shown, in
particular, that all regular configurations should have an
AdS asymptotic form. Therefore, all possible thick
branes are merely regularized versions of the RS2
model, with al concomitant difficulties in matter-field
confinement. Thus, it has been demonstrated [11] that a
test scalar field has a divergent stress—energy tensor
infinitely far from the brane, at the AdS horizon. The
reason for that is the repulsive gravity of the RS2 and
similar models: gravity repels matter from the brane
and pushes it towards the AdS horizon. To overcome
this difficulty, it is natural to try considering a greater
number of extra dimensions. This was one of the rea-
sons for us to consider higher-dimensional bulks.

We study the simplest possible redlization of this
idea, assuming a static, spherically symmetric configu-
ration of the extra dimensions and a thick Minkowski
brane as a concentration of the scalar field stress-
energy tensor near the center. The possible trapping
properties of gravity for test matter are then determined
by the behavior of the so-called warp factor (the metric
coefficient acting as a gravitational potential) far from
the center, and we indeed find classes of regular solu-
tions where gravity is attracting.

Some of our results repeat those obtained in[12, 13],
which have discussed global and gauge ('t Hooft—
Polyakov-type) monopolesin extradimensions; amore
detailed comparison is given in Section 7.
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The paper is organized as follows. In Section 2, we
formulate the problem, introduce spacetimes with glo-
bal topological defects in the extra dimensions, write
the equations and boundary conditions, and demon-
strate a connection between the possibility of SSB and
the properties of the potential at aregular center. In Sec-
tion 3, we briefly discussthe trapping problem for RS2-
type domain-wall models and show that they always
have repulsive gravity and are unable to trap matter in
the form of atest scalar field. Section 4 is devoted to a
search for regular global monopole solutions in higher
dimensions by analyzing their asymptotic propertiesfar
from the center. All regular configurationsare classified
by the behavior of the spherical radius r and by the
properties of the potential. This leads to separation of
“weak gravity” and “ strong gravity” regimes, related to
maximum values of the scalar field magnitude.

In the weak gravity regime, the spherical radius r
tendsto infinity along with the distance from the center.
Such moderately curved configurations exist without
any restrictions of fine-tuning type. If the scalar field
magnitude exceeds some critical value, the radius r
either tends to a finite value far from the center or
returns to zero at afinite distance from the center, thus
forming one more centers, which should also be regu-
lar. Some cases require fine tuning of the parameters of
the potential, and, hence, one may believe that static
configurations can only exist if the scalar and gravita-
tional forces are somewhat mutually balanced.

In Section 5, we show that, in contrast to domain
walls, global monopoles in different regimes do pro-
vide scalar field trapping on the brane. Section 6 is a
brief description of numerical experiments with the
Mexican hat potential admitting shifts up and down,
equivalent to introducing abulk cosmological constant.
Their results confirm and illustrate the conclusions in
Section 4. Section 7 summarizes the results.

2. PROBLEM SETTING
2.1. Geometry
We consider a (D = d, + d; + 1)-dimensional space-
time with the structure M x R, x S™ and the metric

ds* = ¥

_ (eza(u)duz + eZB(u)dQZ)

Nyudx"dx’
gy )
Here,

Nwdxtdx’ = dt® - (dx)?

is the Minkowski metric in the subspace M,

Nw = diag(l, -1, ...,-1);
dQ isalinear element on a d;-dimensiona unit sphere
s* ; a, B, and y are functions of theradial coordinate u

No. 6 2005



1038

with the definition domain R, 0 R, to be specified | ater.
The Riemann tensor has a diagonal form, and its non-
zero components are

—20

RYpo = —6 %y

po?

b ~ 20 12, xab
R4 = (€ ZB—ezaB )Sed

R = 3ye (YY), 2
R"w = -3je " ("B
R*w = -8,30e °Y'B",
where
Shy = 3hdy— 843, €)

and similarly for 6?3 . Greek indices, v, ... correspond
to the dy-dimensional spacetime, and Latinindicesa, b,

... to d; angular coordinates on Sdl . We mostly bear in
mind the usual dimension d, = 4, but keep d, arbitrary
for generality.

A necessary condition of regularity is the finiteness
of the Kretschmann scalar

3{ = RABCDRCDAB.

(Capital indices A, B, ... correspond to all D coordi-
nates.) Inour case, J{ isasum of squares of al nonzero

R*cp. Hence, in regular configurations, all compo-
nents of Riemann tensor (2) are finite.

For the Ricci tensor, we have
R, = =8,e[y" +y'(-a'+doy' + )],
Ry = —e 2 [do(y" +y*~a'y)
+d,(B"+B°—a'p],
Rl = e%(d,-1)3),

—3me B+ B'(—a’ + doy' + d;B)].

(4)

2.2. Topological Defects

A global defect with a nonzero topological charge
can be constructed as a multiplet of d; + 1 real scalar

fields ¢, in the same way as, e.g., in [14]. It comprises
a hedgehog configuration in R, x Sdlz

@ = e(u)n“(xY),
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where n* is a unit vector in the (d; + 1)-dimensional
Euclidean target space of the scalar fields:

nknk = 1.

The total Lagrangian of the system is taken in the
form

L:_B._+1AB

St 5 0900 —V(9), ©)

where Risthe D-dimensional scalar curvature, k2 isthe
D-dimensional gravitational constant, and V is a sym-
metry-breaking potential depending on ¢?(u) = @R,

In the case where d; = 0, there is only one extra
dimension. Thetopological defect isaflat domainwall.
Combined with d, = 4, it iswidely considered with ref-
erence to our Universe. Regular thick Minkowski
branes supported by scalar fields with arbitrary poten-
tials were analyzed in [10, 11] (see aso Section 3
below).

The casewhered, = 1isaglobal cosmic string with
the winding number n= 1. If d, = 2, itisacosmic string
in four dimensions, whose gravitational properties are
reviewed in[15]. The case d, = 4 correspondsto astring
in extradimensions.

The case where d, = 2 and d, = 1 is a global mono-
pole in our four-dimensional spacetime. We have ana
lyzed it in detail in [16]. The case where d;, > 2 and
dy =1 is its multidimensional generalization to static
spherically symmetric spacetimes with d;-dimensional
rather than two-dimensional coordinate spheres[14]. It
was shown that such a heavy multidimensiona global
monopole leads to a multidimensional cosmology
where the symmetry-breaking potential at late times
can mimic both dark matter and dark energy.

In the case where d, =4 and d; > 2, we have amul-
tidimensional globa monopole entirely in the extra
spacelike dimensions. Different models of this kind
were studied in [12, 13, 17, 18]. In particular, such a
monopole in extra dimensions was used in an attempt
to explain the origin of inflation [17].

2.3. Field Equations

We use the Einstein equations in the form

B
g =B 3
Ra = —«°Ta, Ta = Ti-575TG

where T,Ei is the stress-energy tensor of the scalar field

No. 6 2005



GRAVITATING GLOBAL MONOPOLES IN EXTRA DIMENSIONS

multiplet. For our hedgehog configuration,

~ 2V
T D=2
~u 2V —20 2
=gz ¢ ¢
~b V)
Ta= -5 o’

So far, we did not specify the radial coordinate u.
For our purposes, the most helpful is the Gaussian
gauge with the real distancel along theradial direction
taken as a coordinate,

a =0, (6)
and the metric
ds® = €YU, dxdx’ - (dI*+e*PdQ?%.  (7)

Then, two independent components of the Einstein
equations take the form (the prime now denotes d/dl)

2

" . o 2
Y+ oy + diBY = S5V, ®
2
B+ doBy' + a7 = (dy - 1-K°g)e ™ - Zv (9)

The Einstein equation
G = —°T|

(where G,Ei is the Einstein tensor) is free of second-
order derivatives:

(doy' +d;B)? —doy™* —d, B

2 2 2 2 2 (10)
= k(@ =2V) +d,e?*(d, - 1 -k’¢?).
The scalar field equations
A Kk, OV _
0700 +5:J‘ =0
combineto yield an equation for ¢(1):
" 1 1 1 —, dV
@'+ (doy + A9 -che o = . (D)

Dueto the Bianchi identities, it isaconsequence of Ein-
stein equations (8)—(10). On the other hand, (10) is a
first integral of Egs. (8), (9), and (11).
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Inour analytical study, we do not specify any partic-
ular form of V(¢q). However, we suppose that V has a
maximum at ¢ = 0 and aminimum at some @=n > 0,
and, hence, V'(0) = V'(n) = 0. For convenience, we do
not single out a cosmological constant, which may be
identified with a constant component of the potential V
or, in many cases, with its minimum value.

The parameter n (as the scalar field itself) has the
dimension [IP-2/2] and thus specifies a certain length
scale N?(P-2 and energy scale n?®-2 (we use natural
units such that ¢ = 2 = 1). In the conventional case
D =4, n hasthe dimension of energy and characterizes
the SSB energy scale.

2.4. Regularity Conditions: A Regular Center

For the geometry to be regular, we must require
finite values of all Riemann tensor components (2). In
Gaussian gauge (6), the regularity conditions simply
state that

B, B" Y,y aefinite. (12)

For d; > O, in addition to (12), a special regularity

condition is needed at the center, which is a singular

point of the spherical coordinatesin R, x S* . Thecen-

ter is a point where the radiusr = €® turnsto zero. The
regularity conditions there, aso following from the
finiteness of Riemann tensor components (2), are the
same as in the usual static, sphericaly symmetric
spacetime: in terms of an arbitrary u coordinate, they
are given by

Y = Yo+ O(r?),
B = 1+0(r®) as r — 0,

wherey, isaconstant that can be set to zero by aproper

choice of scales of the coordinates x*. The second con-
dition in (13) follows, for d; > 1, from the finiteness of

the Riemann tensor components R'Z‘E (see (2)). Its geo-
metric meaning is the property of being locally Euclid-
eanatr =0, whichimpliesthat dr?=dl?, i.e, thecorrect
circumference-to-radius ratio for small circles. In the
special case where d, = 1, with the quotient space R, x

s* being two-dimensional, we obviously have
R4 = 0, but the second condition in (13) should still

be imposed to avoid a conical singularity.

Itisnatura to put | = O at aregular center, then | is
the distance from the center.

(13)

Regularity of the Ricci tensor components Ry =
R*“sc implies regularity of the stress-energy tensor
T2, whenceit follows that

V<o, eflg<e, e“lg] <o (14)
at any regular point and with any radial coordinate.
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2.5. Boundary Conditions

Domain walls. For d; = 0, the metric in (1) or (7)
describes a plane-symmetric five-dimensional space-
time, the coordinate | ranges over the entire real axis,
and the broken symmetry is Z,, the mirror symmetry
with respect to the plane | = 0. Thetopological defectis
a domain wall separating two vacua corresponding to
two values of asingle real scaar field @, e.g., ¢ = £n.
Accordingly, we assume that @(I) is an odd function,
whereas y(I) and V(@) are even functions, and the con-
ditionsat | =0 are

y(0) =y'(0) = ¢(0) = 0.

We thus have three initial conditions for the third-order
set of eguations (8) and (10) (Eg. (11) is their conse-
guence), because the unknown function 3 is absent in
this case.

Global stringsand monopoles. For d; > 0, the reg-
ular center requirement leadsto the following boundary
conditions for Egs. (8)—<10) at | = 0:

©(0) = y(0) =y'(0) =r(0) =0,

We havefiveinitial conditionsfor afifth-order set of
equations. However, | = 0, being a singular point of the
spherical coordinate system (not to be confused with a
spacetime curvature singularity), is also a singular
point of our set of equations. As a result, the require-
ments of the theorem on the solution existence and
uniquenessfor our set of ordinary differentia equations
are violated. It turns out that the derivative ¢'(0)
remains undetermined by (16). If we set ¢(0) = 0, we
obtain atrivial (symmetric) solution with ¢ =0 and a
configuration without a topological defect. In the case
whereV(0) =0, wearrive at theflat D-dimensional met-
ric: wethen havey=0and r =1 in (7). If, however,
V(0) # 0, the corresponding exact solutions to the Ein-
stein equations for d, > 1, d; > 1 till need to be found.
A direct inspection shows that it cannot be the de Sitter
or AdS space: the constant curvature metrics are not
solutions of the vacuum Einstein equations with a cos-
mological constant.

Nontrivial solutions exist if ¢'(0) # 0 and can corre-
spond to SSB. We note that the very possibility of SSB
appears as aresult of violation of the solution’s unique-
ness at r = 0 provided that a maximum of the potential
V(@) a ¢ = 0 corresponds to the center. The lacking
boundary condition that may lead to a unique solution
can now follow from the requirement of regularity at
the other extreme of the range of |, whose nature isin
turn determined by the shape of the potential.

Inwhat follows, assuming aregular center, wetry to
find all possible conditions at the other extreme of the
range R, of the Gaussian radial coordinate, providing the
existence of globally regular models with metric (7). In
other words, we seek solutions with asymptotic forms
such that the quantitiesin (2) arefinite. Other regularity

(15)

r'(0) = 1.(16)
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conditions, such as(14), then follow. In doing so, we do
not restrict the possible shape of the potential V(¢) in
advance. The cases under consideration are classified
by thefinal values of r = €® (infinite, finite, or zero) and
V (positive, negative, or zero). The scalar field ¢ is
assumed to be finite everywhere.

Without loss of generality, we assume that ¢(0) > 0
near | =0, i.e., that ¢ increases, at least initialy, aswe
recede from the center.

3. DOMAIN WALLS AND THE PROBLEM
OF MATTER CONFINEMENT

Below, we mostly consider configurations with d; =
2 that correspond to a global monopole in the spheri-

caly symmetric space R, x S* . Before that, we
briefly discuss the problem of matter confinement on
the brane and the complications involved in the five-
dimensional case.

The metric coefficient € in (1), sometimes called
thewarp factor, actually playstherole of agravitational
potential that determines an attractive or repulsive
nature of gravity with respect to the brane. If it forms a
potentia well with abottom on (or very near) the brane,
there is the hope that matter, at least its low-energy
modes, should be trapped.

It has been shown, in particular, that spin-1/2 fields
arelocalized dueto an increasing warp factor in (1 + 4)-
and (1 + 5)-dimensional models [19, 20]. It has aso
repeatedly been claimed that, in (1 + 4) dimensions, a
brane with an exponentially decreasing warp factor (as,
e.g., in the RS2 model) can trap spin-0 and spin-2
fields. Our calculation for a scalar field shows that this
is not the case.

A gravitational trapping mechanism suggested
in [21] was characterized there as a universal one, suit-
able for al fields. It is based on nonexponential warp
factors, which increase with distance from the brane
and approach finite values at infinity. This mechanism
was exemplified in [22] with aspecial choice of two so-
called “smooth source functions’ in the stress—energy
tensor, describing a continuous distribution of certain
phenomenological matter and vanishing outside the
brane.

Our analysis uses more natural assumptions: a sca-
lar field system admitting SSB, without any special
choice of the symmetry-breaking potential, under the
requirement of global regularity.

We briefly show, following [10, 11] (but in other
coordinates), that this approach in (4 + 1) dimensions
always leads to a decaying warp factor for any choice
of V(¢) and that such a system cannot trap atest scalar
field. We consider a domain wall in five dimensions,
and, hence, | O R, we set d; = 0 in our equations, the
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unknown (1) is absent, and Egs. (8) and (11) for y and
the single scalar field @ are given by

" 2 2k°
virdy = 7V, (17)

" 1 1 dV —_
@' +doy'e a0 0. (18)

Their first integral in (10) reducesto
2
2 K 2

Yz ——————(2V -0"). 19
V= g @V-9) (19)

The initia conditions at | = 0 corresponding to the Z,
symmetry (broken for the scalar field but preserved for
the geometry) have form (15).

Eliminating V from (17) and (19) and integrating
subject to (15), we obtain

(do—2)y'(l) = — jcp'zdl, (20)
0

and we conclude that y(I) is negative at al | > 0 and
describes gravitational repulsion from the brane; more-
over, ¥ monotonically growswith growing |. The only
possible regular solution corresponds to |Y(o)| < co.
Because y'(«) = 0 in this casg, it follows from Eq. (17)
that V(o) < 0, corresponding to anegative cosmol ogical
constant A = k(). Hence, the only possible regular
asymptotic form isAdS, with

a, h =const, h = .-A/6. (22)

The constant a depends on the particul ar shape of V(¢).
At = oo, thereisan AdS horizon (&' = 0), which, likea
black hole horizon, attracts matter and preventsitstrap-
ping by the brane.

We show thisfor d, = 4 and atest scalar field x with
the Lagrangian

&=ae™,

1 1 1
Ly = 50aX* "X =SMeX* X =M XX, (22)
where x* is the complex conjugate field and the last
term describes apossible interaction between x and the
wall scalar field ¢; A isthe coupling constant. The field
X (x*) satisfies the linear homogeneous (modified Fock—
Klein—-Gordon) equation

1
—0A(//99"%0sX) + (A@” + mg)x = 0.
Jg

Its coefficients depend on | only, and x(x*) may be
sought in the form

(23)

X(x*) = X(Nexp(=ip,x"), W =0123, (24)
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where p, = (E, p) is a constant four-momentum. The
function X(I) determines the x field distribution across
the brane and satisfies the equation

X" +4y' X'+ [€ V(B = p?) = A’ —m] X = 0. (25)

The x field is able to describe particles localized on

the brane only if its stress—energy tensor TlVJ [x] isfinite
in the whole five-space and decays sufficiently rapidly
at largel. Asan evident necessary condition of localiza-
tion, the x field energy per unit three-volume of the
brane must be finite, i.e.,

EulX] = I T:«/édl

i f e"e™(E +p")X* )
0

+ (M + A@?) X%+ X]dl < .

Inequality (26) implies a finite norm of the x field
defined as

IXI* = [~ax*xd = [e"Xd. 27)

At large |, because e —» o, the termswith A and
my in EQ. (25) can be neglected and the equation deter-
mining the behavior of x at large | can be written as

E2 _ p2
a’h?

X" —4hx' + p*e’™

X =0, P°= (28)

It is solved in terms of Bessel functions, and the solu-
tion has the asymptotic form

X = ce™?sin(Pe" +¢,), z-—» o, (29)
where C and ¢, are integration constants. We see that

quantity (29) is not only nonvanishing as| — oo, but
even oscillates with increasing amplitude. As a resullt,

the stress—energy tensor components Tﬁ [x] areinfinite

at | = . Moreover, integral (26) behaves as e" dl and

diverges. However, normalization integral (27) con-
verges because theintegrand behaves ase™. Thisresult
is sometimes treated as a sufficient condition for local-
ization, but, in our view, it is not true, because the very
existence of the brane configuration is put in doubt if
thetest field stress—energy tensor isinfinite somewhere.

Thus, atest scalar field with any masstendsto infin-
ity as| — o and develops an infinite stress—energy
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tensor; even itsinteraction with the @field that supports
the brane does not improve the situation. We conclude
that a single extra dimension is insufficient for provid-
ing gravitational attraction of matter to a regular iso-
lated brane.

4. A SEARCH
FOR REGULAR ASYMPTOTIC REGIMES

We now consider field equations (8)—(11) for global
monopoles, assuming d; = 2. The string case d; = 1 is
left aside, because it has some peculiarities that require
aspecial study.

4.1. Solutions with ther — oo Asymptotic Regime
We define

Vo =Y .. (30)

Evidently, | —= o asr —» oo, because, otherwise,
we would have ' — oo, violating the regularity con-
ditions. The derivatives ' and y' should tend to certain
constant values to be denoted by (., and v.,, respec-

tively. Both 3" and y"' vanish as| —» . Moreover, the
second term in the right-hand side of Eq. (9) also van-
ishes. Therefore, in the leading order of magnitude,
Egs. (8) and (9) take the form

Ve (doYie + diB) = Vo,

‘ ' . _ (3D
Bm(doyw + dlBOO) = _V°°'

We consider the caseswhen V., #0and V., =0 sep-
arately.

Al. V. # 0. Equations (31) immediately give

B = Vi = J-Vol/(D-1), Vo<O. (32)
An evident necessary condition of the existence of reg-

ular configurationsis V. < 0. We thus obtain

e’ 0e'o eB;“',
and the metric takes the asymptotic form

ds’= C,e™ I, dx'dx’ ~dI* - C,e™'de?,  (39)

with some positive constants C,; and C,. Equation (10)
holds automatically if ¢'(e) = 0, as should be the case
if we assume a finite asymptotic value of @. Finaly, in
Eqg. (11), al terms except dV/dg manifestly vanish as
| —= o0, and, hence, dV/dg also vanishes, which should
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be the case if the field ¢ reaches an extremum of the
potentia V.

Thefiniteness condition for @as| —» o separatesa
family of regular solutions among the continuum of
integral curvesleaving the regular center with different
slopes @ (0). Asis confirmed by numerical experiments,
if the potentia has only one extremum (minimum)

V., < 0, then there can be only one regular solution
withr —» o0, | — 0. However, there can be numerous
regular solutions if the potential has several extremum

points V., <0.

In particular, if theinitial maximum of the potential
islocated below the zero level, V(0) < 0, then there can
be a continuum of regular integral curves starting from
the regular center and returningto @=0at | —» 0. As
can be verified numerically (see Section 4), thereis a

bunch of such curves parametrized by ¢(0) O (0, @),

where @(0) = @, correspondsto alimiting regular curve
(separatrix), also starting at ¢(0) = 0 but ending at the
minimum V(n).

The metric in (33) solves the Einstein equations

with the stress—energy tensor Th = 8. V., having the
structure of a (negative) cosmological term. Moreover,
according to (2), the Riemann tensor has the structure
of aconstant-curvature space at large . In other words,
such solutions have an anti-de Sitter (AdS,) asymptotic
form far from the center. But the metric in (33) isnot a
solution to our equations in the whole space evenin the
case where ¢ = const. As already mentioned, for d, > 1
and d, > 1, constant-curvature metrics (dS, and AdS,)
are not solutions of the vacuum Einstein equations with
acosmological constant.

A2.V, =0.
Equations (31) are solved either by
Bo = Vo =0
or by

doYe + diB. = 0.

However, when we substitute the second condition in
Eqg. (10), taking into account that ¢ — O at largel, we
obtain

doyee + dsB = 0
and return to
B, =V, =0.

Thus, both 3" and y vanish at infinity, and we can try to
seek them as expansions in inverse powers of |:

Vi Yoo

B':BI—1+-BEZ+..., y'=I 2 (34
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Then, O(I7?) is the leading order in the Einstein equa
tions, and, to avoid contradiction,

should be on the order of O(I-) or smaller. Moreover,
because we assume that ¢ tendsto afinite value ¢q,, > 0,
we have ¢ = o(1/l) and scalar field equation (11) shows
that

dVv _

i
or smaller; i.e., @, should be an extremum of V(¢g). If
@(I) grows monotonically to @, > 0O, then @, isamini-
mum of V because, according to (11),

o(17)

a—(—p<0 as @ — Q..

However, if V(0) =0, one cannot exclude that ¢ returns
to zero as| — oo (seeitem (c) below).

In the case where @ — @, > 0, because
Ve, = dV/de(q.) = 0,
V(@) is decomposed as

1
V(@) = Vo @)(0— @)+ ..., (35)
where
d*v
Vv —,
(1) d(p2
and, therefore,
V = o(I7).
Asaresult, Egs. (8)—<10) lead to
Yi(=1+dyy, +diB;) = 0O, (36)
|2
Bu(=1+dey, +d,By) = r—z(dl—l—xchi), (37)

(doyy + d3B1)* — doy? — doP?

12 2 2 (38)
= dlr—z(dl_l_K @.).

Now, it can be easily verified that we must necessar-
ily set 3, = 1. Indeed, for any 3, # 0, we have

r = o’

Therefore, B, < 1isexcluded, becauseit leadstor <,
contrary to the above requirement. However, if we sup-
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pose that B, > 1, then 1?2 — 0 as| — o, and
Eq. (38) leads (if y; = 0) to

Bi=0
or (if y; # 0and then dgy; + d;3, = 1) to
doy: + d:B] = 1.

Both possibilities contradict the assumption that 3, > 1.
Thus, 3, = 1, and, hence,

r=kl, k = const>0,
at largel.
Equation (36) now leaves two possihilities,
v.=0
and
Y1 = —dld__ola

and we consider them separately in items (a) and (b).
Item (c) describes the case where expansions (34) do
not work.

(@ If y; =0, then Eq. (37) yields
K@,
d, -1

and Eq. (10) inthe same order is satisfied automatically.
The metric takes the asymptotic form

k2:1_

(39)

ds’ = e”"n,,dx'dx’ —dI’ = K4%dQ?,  (40)

wherey,, is aconstant (we cannot turn it to zero by res-

caling the coordinates x*, because such an operation has
already been done for making y = 0 at the center).

Thus, the whole metric has a flat asymptotic form,
up to a solid angle deficit in the spherical part due to
k? # 1. Such adeficit isacommon feature of topological
defects in the cases where they have (amost) flat
asymptotic forms. Its appearance due to cosmic strings
and global monopoles in spacetimes without extra
dimensions is discussed in detail in [8]. For a global
monopole in extra dimensions in the particular case
whered, = 4 and d; = 2, it was treated by Benson and
Cho [18]. We stress that the situation of a quasiflat
asymptotic form with a solid angle deficit is not gen-
eral. It occurs only for potentials with zero value at the
minimum,

V(g.) =0,
and even in that case, not always, see item B below.
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Namely, this geometry requires
/do—1
@] <@ = = —, (42)

i.e, @, should be smaller than the critica vaue @,
related to the D-dimensional Planck length. As @,
approaches @, k — 0, the deficit absorbs the whole
solid angle, and the above geometry disappears.

Scalar equation (11) shows how ¢ approaches @.,: in
the leading order, we have

d
—Egll—z = Voo 0.)(0— @.). (42)
Assuming
V(p(p((poo) ¢ 01
we obtain
o— @, O1/1°%

(b) If y; =—(d; — 1)/d,, then Eq. (37) leads to
Kz(pfo = dl_la

i.e.,

Q. = P,
while a substitution in (10) gives

(d;—1)(dp+d;-1) =0,

contrary to our assumption that d, — 1 > 1. Therefore,
this possibility does not lead to a regular asymptotic
regime.

() If V(0) =0, then aregular integral curve, starting
al=0and@=0, can finish again with ¢ — 0 as
| —= co. For largel and r, scalar field equation (11) for
|| 1reducesto

Q"+ (doy' +dip") @' - V,0 = 0, (43)

where
V, = V,0).

Because @ = 0isamaximum of V(¢) by assumption, we
assume that V, < 0.
If we further assume that the function

S(I ) - ed0V+ d,p

satisfies the condition

sls—0as | —»
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(which is the case, e.g., for any power-behaved func-
tion), the solution of Eq. (43) is an oscillating function
a largel,

—(doy +d;B)/2
o= qe " cos./[V4| (1 =1,)]1,

| — o0,

(44)

where @, and |, are arbitrary constants. Substituting this
in Eq. (8) and averaging cos” — 1/2, we obtain

|
v . JoK°|VA @6 il

26-2 ) & | o, (45)

It is easy to verify that, for d; > 2, when the integral
in (45) converges, the asymptatic form of the solution
forr=efandyisr=1Iand

y = Voo—vllldl_z, Vi Yo = CONSL,

i.e., we have aflat asymptotic regime.

Inthe special casewhered, = 2, theintegral diverges
logarithmically and the solution may be approximated
as (again)

r=|
and

e’ = const Inl.

This “logarithmic” asymptotic from resembles the
behavior of cylindrically symmetric solutions in stan-
dard general relativity.

4.2, Solutions
with ther — r7> 0 Asymptotic Regime

Evidently, a regular solution cannot terminate at
finiter and | < . Therefore, we seek aregular asymp-
toticregimeas| — oo, wherer and @tend tofinite lim-
its, rand @ and, hence, the quantities ', 3", ¢, and
@' vanish.

Moreover, in a regular solution, y should tend to a
finitelimit as| — o, and, hence, y' —= 0. Asaresult,
Egs. (8) and (9) at large | lead to

dy? = Vu = (Pt —dy+1),  (46)

where Vi = V (¢). We see that Vi < 0 and, in addi-
tion, the scalar field should be critical or larger, Q7= @
According to (46), at largel,

ty'=h:= /-V,/d,=0,

and Eq. (10), as in the previous cases, simply verifies
that the solutionis correct in the leading order. The sca-

(47)
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lar field equation gives afinite asymptotic value of V,=
dv/de:

V(@) = —di@,ri2. (48)

Thisvalueis negative if ¢7> 0.

We obtain different asymptotic regimes for nega-
tive, positive, and zero values of .

Bl. & ~ e h > 0. The metric has the asymptotic
form

ds’ = C’%e ", dxdx’ —dI*~r;dQ%  (49)
The extradimensiona part of the metric again
describes an infinitely long cylindrical tube, but now
the vanishing function g, = €? resembles ahorizon. The

substitution e = p (converting | = o« to afinite coordi-
nate value, p = 0) brings metric (49) to the form

ds’ = C*p’n,, dx*dx’ - :p —r2dQ®  (50)
p

Thus, p = 0 is a second-order Killing horizon in the
two-dimensional subspace parametrized by tand p; itis
of the same nature as, e.g., the extreme Reissner—Nord-
strom black hole horizon, or the AdS horizon in the sec-
ond Randall-Sundrum braneworld model. A peculiar-
ity of the present horizon is that the spatial part of the
metric, which at large| takesthe form p?(dx)?, isdegen-
erate at p = 0. The volume of the dy-dimensional space-
time vanishes as | — oo, and it remains degenerate
even if we pass to Kruskal-like coordinates in the (t, p)
subspace. However, the D-dimensional curvature is
finite there, indicating that the transition to negative
values of p (wheretheold coordinatel no longer works)
is meaningful .

One more observation can be made. According
to (46), the potential V is necessarily negative at largel.

1 One might wonder why we here do not obtain simple (first-order)
horizons, like those in the Schwarzschild and de Sitter metrics,
while such horizons generically appeared in the special case
dg = 1, which corresponds to spherically symmetric global mono-
polesin general relativity, considered in detail in [14, 16].

The reason is that for dg = 1, 65‘(', in (3) is zero, and the corre-
sponding component of the Riemann tensor is also zero regard-
less of the values of y. In terms of the Gaussian coordinate I, a
simple horizon occurs at some finite | = I, near which gy = e2V ~

(I —11)?, such that y —= oo. When d = 1, this does not lead to a

singularity, because only the combinations y* + y? and By are
then required to be (and actually are) finite. In the case where
dg > 1, instead of a horizon, we would have a curvature singular-
ity at finite |, a situation excluded from the present study.

We thus have a general result for the metric in (1): for dg > 1,
horizons can only be of order 2 or higher.
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On the other hand, Eqg. (8) may be rewritten in integral
form:

|
edoy + d1[3y| — _I doV + dlBVdI
0

(51)

The lower limit of the integral correspondsto aregular
center, where the left-hand side of (51) vanishes. As
| —= oo, it also vanishes due to y — —. Thus, the
integral in the right-hand side, taken from zero to infin-
ity, iszero. This means that the potential V() has alter-
nate sign and is positive in a certain part of the range
O g

Thus, purely scalar solutions of the monopole type
may contain second-order horizons. The degenerate
nature of the spatial metric at the horizon does not |ead
to acurvature singularity, and the sol utions may be con-
tinued in a Kruskal-like manner. Nevertheless, we do
not consider these solutions as ones describing viable
monopole configurations, because the zero volume of
the corresponding spatial section makes the density of
any additional (test) matter infinite. It is then impossi-
ble to neglect its backreaction, which evidently
destroys such a configuration.

B2. e/ ~ €', h > 0. The metric has the asymptotic
form

2 _2hl

ds’ = C%™"n,, dxtdx’ —dI* -}
C = const>0.

da, (52)

Thus, in the spherically symmetric extradimensional
part of the metric, we have an infinitely long d;-dimen-
sional cylindrical “tube” with an infinitely growing
gravitational potential g, = €.

With this cylindrical asymptotic form, according
to (47) and (48), the potential V tends to a negative
value and has a negative slope. Moreover, the integral
in Eq. (51) is negative and diverges at large | due to
growing €.

Regular solutionswith y'(e0) > 0 naturally ariseif the
potential V(@) is negative everywhere. We note, how-
ever, that, when V(0) is above zero, by (51), the func-
tion y(I) decreases near the center (I = 0) duetoV >0
and growsat largel. It therefore hasaminimum at some
| >0.

B3. V, =0. Thiscase containsone more asymptotic
regime where the extra space ends with aregular tube.

Indeed, we can once again use expansions (34), but
now with @jinstead of @, and 3; = 0in accordance with

r — rg Equation (9) (order O(1)) shows that
Kz(pi = dl_ 11

No. 6 2005



1046

P0= @

Equation (11) (order O(1)) gives a finite value of the
derivative

dv/ide(@) = —dy@. /15

Further, Eq. (8) (order O(17?)) yields
Y1(doY1— 1)”2 = -V,
showing that
vV = 0(17)
(or even smaller). Because
V = (dV/de(@))(e— @) +o(eo— @),
we have to conclude that
o—-@ = O(I7)

or smaller.
Now, assuming

V(@) = V,/1°+ ...,
we can find V, directly asthe leading termin

(dVv/de(@.)) (- @)

and, independently, from Eq. (9) (order O(I-?)), obtain-
ing the two expressions

and

)

2
*

V, = «(D-2)

whenceit followsthat d, =D -2, or d, = 1. Such a“crit-
ical” asymptoticregime (@ — @, 9y — 0,andr —
const) was indeed found for d, = 1 in our papers [14,
16] describing (d; + 2)-dimensional spherically sym-
metric global monopoles, but, as we see, it does not
exist in the case under consideration, d, > 1.

The only remaining possibility is that
0— @ = o)
and

y —= Y= congt,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

BRONNIKOV, MEIEROVICH

i.e., asolution tending, at large |, to the following sim-
ple “flux-tube” solution, valid for any d, and d;:

r=const, y=const, @ = @,

5 (53

V =0, dv/dg = —d,q,/r".
Such a solution can exist if the potential V(¢) has the
properties

V(gy) =0
and
dv/de(q,) <0,

and the last equality in (53) then relates the constant
radiusr to dvV/dg(@,,).

4.3. Solutions with ther — 0 Asymptotic Regime

Thelimitr — 0 meansacenter, and for it to bereg-
ular, conditions (12) must hold, and, hence, for our sys-
tem, initial conditions (16) with | = 0 should be
replaced, e.g., withl =1,> 0.

We now recall that conditions (16) determine the
solution to the field equations for agiven potential V()
up to the value of @. In particular, if there is one more
center at | =1, then, starting from it and choosing

@'(lo) = —9(0),

we obtain the same solution in terms of |, —| instead of
I. We thus obtain a solution with two regular centers
that is symmetric with respect to the middle point | =
l/2, to be called the equator. To be smooth there, it must
satisfy the conditions

B'=y =@ =0a | =1y2, (54
which implicitly restrict the shape of the potential.
Given a potentia V(q), conditions (54) create, in gen-
eral, threerelationsamong |y, @(0), and the free param-
eters of V(@)(if any). Eliminating |, and ¢(0), we must
obtain asingle “fine tuning” condition for the parame-
ters of the potential.

A necessary condition for the existence of such a
solution is that V(@) has a variable sign. This follows
from Eq. (51) by integration over the segment (0, 15/2):
the integral vanishes because y' = 0 at both ends.

Moreover, asfollowsfrom Egs. (9) and (10) with (54),

D_2— n \7
d Ve = Be + V91
1

re(d;—1-k’gl) = (55)
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Classification of global monopole solutionsfor arbitrary V(¢) by asymptotic types. Attraction or repulsion is understood with

respect to the center

Notation r V() (0] V% Asymptotic type
Al 00 V(n) <0 n<og 00 AdS, attraction
A2(a) 00 0 n<oq const Flat, solid angle deficit
A2(c),d; >2 o 0 0 const Flat
A2(c),d; =2 00 0 0 00 “Logarithmic”, attraction
B1 ' V<O b> Or —o0 Double horizon, repulsion
B2 o V<0 b> Or 00 Attracting tube
B3 ' 0 b= 0 const Trivia tube
C 0 V(0) 0 const Second center
leading to responds to an increasing warp factor far from the

diBe = (do— 1)\7e

(wheretheindex "€’ refersto values at the equator). If
r = €® is assumed to grow monotonically from zero to

its maximum value at the equator, we have 3; < 0.

Hence, V. < 0, and (55) implies that @, > @, i.e., the
scalar field at the equator must exceed its critical value.

The existence of asymmetric solutionswith two reg-
ular centers, corresponding to

@'(lo) #9'(0),

isalso possible. In this case, there would be no equator
in general, because 3 and ¢ would have maxima at dif-
ferent I; moreover, we would have in general,

y(lo) #y(0) = O,

and y(I) could even have no extremum. However,
becausey = 0 at both centers, the integral in (51) taken
from O to I, should vanish and hence, again, V would
have alternating sign.

The whole configuration with two regular centers

has the topology M® x Sd1+1, with closed extra
dimensions in the spirit of Kaluza—Klein models. The
main difference from them is that all variables now
essentially depend on the extra coordinatel.

The main properties of al regular asymptotic
regimesfound, which lead to aclassification of possible
global monopole configurations in extra dimensions,
are summarized in the table. The word “attraction” cor-
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brane.

5. SCALAR FIELD TRAPPING
BY GLOBAL MONOPOLES

We consider atest scalar field with Lagrangian (22)
in the background of global monopole configurations
described in Section 4. After variable separation (24),
the field equation for a p-mode of the scalar field X
becomes

X"+ (doy' +d; )X + (67 p*—p*)X = 0, (56)

where

is the d,-momentum sguared and

£ = A

is the effective mass sguared. The trapping criterion
consists, as before, in the requirements that the x field
stress—energy tensor must vanish far from the brane and
the total x field energy per unit volume of the brane
must befinite, i.e.,

d, +1
X

EwlX] = J'«/éd

x [ 2(E? + p?) X2 + P2X2 + X' dIl < .

(57)

The first requirement means that each term in the
square bracketsin (57) must vanish at largel.

We now check whether these requirements can be
met at different kinds of asymptotic regimes listed in
the table.
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Al. Attracting AdS asymptotic regime B ~ vy ~ K,
k> 0. At large |, Eq. (56) reduces to the equation with
constant coefficients

X"+ (D=1)X-p’X = 0,
and its solution vanishing as| —» « is

Xxoe?,

a= %[(D—l)k+J(D—1)2k2+4u2]. 9

It can bedirectly verified that the trapping requirements
are satisfied for all momentap and all pu?= 0.

A2(a). A quasiflat asymptotic regime with a solid
angle deficit. At large, Eq. (25) reducesto

X" +d, X/l + P°X = 0,

where

Yoo

andy,, isthe limiting value of y at | = 0. In terms of

Pz - p2 e—2

42

Y X,

thisequationis (at largel) rewritten as
Y"+P% =0,

while trapping condition (57) implies that
J'Idlxz(l)dl <o,

Therefore, only an exponentialy falling Y(I) issuitable.
In other words, the trapping condition is P? < 0, or

2 2V,

p><mi = p’e’”, (59)
where, now,
W = mg+ A"’
We note that
p° = E'-p’

is nothing else but the observable mass of afree x-par-
ticle if the observer watches its motion in the
Minkowski section | = 0 of our manifold, i.e., on the
brane. Hence, condition (59) means that the brane traps
all scalar particles of masses smaller than the critica
value m,, depending on the model parameters.
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A2(c) (d; > 2). This case differs from the previous
one only by the asymptotic value of ¢, which is now
zero, and, hence, L =m.

A2(c) (d, = 2). A “logarithmic” asymptotic regime,
e~ Inl. Because e ~ 1/(Inl)? — 0, the term with p?
drops out of Eg. (56), which then leads to the decreas-
ing solution

X Ol e

and a x-particleis trapped provided p = m, > 0.

B1. A horizon. As was remarked previoudly, we do
not regard this configuration viable and omit it from our
discussion.

B2. An attracting tube, r — rpandy=hl, h>0as
| —= co. Equation (56) takesthe form

X"+ dghX'—p?X = 0

and has the decreasing solutions

XOe®, a= %(d0h+ Ja2n? + ad).

AsinitemAl, it iseasy to verify that the trapping con-
ditions hold provided p? > 0.

B3. A trivial tube, both 3 and y tend to constants as
| — oo. In EQ. (56), the term with X' drops out at large
I, and an exponentially decreasing solution exists under
condition (59), where

(60)

2 _ 2 2 2
“ - m0+)\ (pcr'

C. These configurations have no large | asymptotic
regimes and are not interpreted in terms of branes.

A conclusion isthat scalar particles of any mass and
momentum are trapped by global monopoles with Al
and B2 asymptoatic regimeswith exponentially growing
warp factors and A2(c) with a logarithmic asymptotic
regime; they are trapped under restrictions (59) on the
particle's observable mass by monopoles with A2 and
B3 asymptotic regimes whose warp factors tend to con-
stant limits far from the brane.

6. NUMERICAL RESULTS:
MEXICAN HAT POTENTIAL

In this section, we present the results of our numer-
ica calculations, which confirm the classification of
regular solutions given above. We have used the Mexi-
can hat potential in the form (Fig. 1)

_ M in}
V = T|:€+%-_n_ﬂ:|.

It has two extremum pointsin the range @ = 0: a maxi-
mum at @=0and aminimum at ¢ =r. The SSB energy

(61)
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”/ 0>e>-1
/ -1>¢

Fig. 1. Mexican hat potential.

scale is characterized by n2©-2, while J/An deter-
mines, as usual, the length scale. The nonconventional
parameter € introduced in (61) moves the potential up
and down, which isequivalent to adding acosmological
constant to the usual Mexican hat potential.

Given potential (61), the nature of the solutions
essentially depends on its two dimensionless parame-

1049

ters: €, fixing the extremal values of the potential with
respect to zero, and k2n?, characterizing the gravita-
tiona field strength: as we remember from Section 4,
the asymptotic regimer —» o only exists when @,, <
@, Which isthe same as

If € > 0, potential (61) is always positive, and, in
accordance with item A1, regular solutions are absent.

In the conventional case where € = 0, in the range
0<k’n’<d, -1,

there are asymptotically flat regular solutions with a
solid angle deficit (classA2).

The most complex case 0 > € > -1 contains avariety
of possihilities. Regular solutions with the asymptotic
behavior r —= o as| — ® having y,, > 0 (caseAl)
exist in some range 0 < n < ng, where the separating
value n, depends on d,, d;, and €. As an example, such
aregular solution with k?n? =5, ¢ =-0.75, d, = 4, and
d, = 3ispresented in Fig. 2.

o r Y
1.0 T T T 60 T T T T 4 T T T
a0t o4 ot -
0.5+ .
00 AT l 4 0
1 1 1 R R e 1 1 1 -2 1 1 1 1
0 5 10 15 20 25 O 5 10 15 20 25 O 5 10 15 20 25

/

/

Fig. 2. A regular solution with an AdS asymptotic regime (type A1) for potential (61) with Kr]2 =5,e=-075dy=4,d,=3.

® r
0.8 2.4 -
0.6 22

2.0F e

0.4

1.8

0.2 16

.-

Fig. 3. Regular (except for dotted curves) solutions with the B2
Yoo >0.
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asymptotic regime (attracting tube), such that r — r;< c and
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-0.5

1.0 : : '

6 8§ 10 0 1 2 3 4
)

() 7 Y
1.0 T T 4 T T 0.1 T T
T~ ] / -
s ~
08 \ s ;0 7
e ‘ / \ 01t Y Y 5 ;]
0.6 1.7 ™2 \ - /... > \ /1
oo \ P \ 1 -02F W/ ¢ / .
041 If Voo 3 \ V¥ /
I \ | \ -0.3F \ / .
L \ v\ B B \ 7] /
02 X \ ' \ 04} N .
| g 1 \ M 1 \ -0.5 1 1
0 5 10 15 0 5 10 15 0 2 10 15
[ [ [
Fig. 5. Type-C solutions with two regular centers (r — 0, @ — 0,yY — O as| —= Ig).
¢ / Y
1.0 T T T T "' 1.0 T T T T T
..... s0l- 7
05F /£ - /J
/ /.~ A N 0.5 .""
/' \~\\ . I~ ’—'-_'/ ; -
0 NS 4 20r 7 R 2
~=E=T A el
b At d
et
//{/
_05 1 1 1 1 1 1 - 1 1 1 1
0 2 4 6 8 10 0 10 20 30 0 2 4 6 8 10

) /

Fig. 6. Regular solutions starting and terminating at ¢(0) = ¢(e) = 0. The limiting solid curve with ¢(0) = ¢, = 0.4401425 (sepa-

ratrix) terminates at () =n.

Depending on the parameters of the potential, there
are regular solutions with the asymptotic regimer —»

ro<e andy,, >0 (caseB2)inacertainrangeng <n <
Ne (seeFig. 3). Here, e =-0.9,d, =4, d, = 3. Thecurves
aregiven for k’n? =10, 12, 15, 20, 30, 40, and 45 (from
top down). The dotted curves (k°n? = 10 and k°n? = 45)
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correspond to singular configurations. It follows that,
for e= 0.9, d, = 4, d; = 3, the lower bound of this
parameter that leads to regular models is somewhere
between 10 and 12, while the upper bound is between
30 and 45.

An example of a regular solution with the asymp-

toticregimer — rp<co and y,, <0 (classB1), corre-
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sponding to asecond-order Killing horizon, isshownin
Fig. 4.

The value kn? = 17.37 is fine-tuned to the parame-
terse =-0.75, dy = 4, d; = 2 of this particular solution.

Other examples of fine-tuned regular solutions,
namely, type C with two regular centers(r — 0, ¢ —
0,y — Oatl — ), are presented in Fig. 5.

For all three curves, d,=4 and d; = 2. The curves (1,
2, and 3) correspond to € = —0.15, 0.5, and —0.9626,
respectively. The fine-tuned values of kn? are approx-
imately 2.637, 6.17, and 100.

In the case € < -1, the maximum V(0) < O is at or
below the zero level, and there is a possibility for the
integral curves to start and finish at the same value
@(0) = @(0) = 0. We then observe a whole family of

such regular curves in the range 0 < ¢(0) < @, (see
Fig. 6).

For the particular example presented (¢ = —1.5,
kn?=1, d, =4, d, = 3), thevalues of ¢(0) for the dotted
curvesending with@=0are0.2, 0.3, and 0.4 (from bot-
tom up). The limiting solid curve with ¢(0) = @, =
0.4401425 (separatrix) is a regular solution ending at
the minimum of the potential: ¢ —» n as| — .

The Mexican hat potential (61), with its only two
extrema at @ = 0 and @ = n, cannot demonstrate the
whole variety of solutions that appear with more
sophisticated potentials having additional maxima
and/or minima. Thus, for instance, class-A solutions
may have alarge-r asymptotic regime at any such extre-
mum.

7. CONCLUSIONS

We have abtained as many as seven classes of regu-
lar solutions of the field equations describing a
Minkowski thick brane with aglobal monopolein extra
dimensions (seetable).

Some of these classes, namely, A1 with an AdS
asymptotic behavior and B2 ending with an attracting
tube, have the exponentially growing warp factor e” at
large | and are shown to trap linear test scalar fields
modes of any mass and momentum.

Others, A2(a) and A2(c) for d, > 2, ending with aflat
metric at large |, have a warp factor tending to a con-
stant whose value is determined by the shape of the
potential V(¢). They are also shown to trap atest scalar
field, but the observable mass of the field is restricted
from above by a value depending on the particular
model of the global monopole.

Lastly, for d, = 2, i.e,, a three-dimensional global
monopole in the extra dimensions, class A2(c) solu-
tions have a logarithmically growing warp factor. All
test scalar field modes are trapped by this configuration,
but the slow growth of y(I) probably meansthat the test
field is strongly smeared over the extra dimensions.
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All such configurations, in sharp contrast to RS2-
like domain walls in five dimensions, are able to trap
scalar matter. It is certainly necessary to check whether
nonzero-spin fields are trapped as well and Newton’s
law of gravity holds on the brane in conformity with the
experiment. We hope to consider these subjects in our
future publications.

In addition to the trapping problem, a shortcoming
of RS2-type Minkowski branes is that they are neces-
sarily fine-tuned. Many of the global monopole solu-
tions, at least those existing in the weak gravity regime
(classA), are free of this shortcoming and are thus bet-
ter for thick brane model building.

Some resultsand conclusions of this paper were pre-
viously given in [12, 13]. The main difference of our
approach from theirsistheir boundary condition, which
is@=n in our notation. This excludes the cases where
the solution ends at a maximum or slope of the poten-
tial, such as symmetric solutions with two regular cen-
ters. Another difference is that they consider solutions
with an exponentially decreasing warp factor as those
leading to matter confinement on the brane. In our view,
such solutions with second-order horizons do not rep-
resent viable models of abraneworld. We conclude that
the present paper gives the most complete classification
of al regular solutions for global monopoles in extra
dimensions, which, even without gauge fields, seem to
be promising as braneworld models.
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Abstract—The cross section of the process e'e” — Tt*1T was measured in the spherical neutral detector
experiment at theVEPP-2M collider in the energy region 400 < ./s < 1000 MeV. This measurement was based
on about 12.4 x 106 selected collinear events, which include 7.4 x 10° e'e- — e*e™, 4.5 x 106 e'e” — T0'TT,

and 0.5 x 10% e"'e” — - selected events. The systematic uncertainty of cross section determination is 1.3%.
The p-meson parameters were determined as m, = 774.9 + 0.4 + 0.5 MeV, I'; = 146.5 + 0.8 + 1.5 MeV, and

o(p —= 1) = 1220 + 7 + 16 nb and the parameters of the G-parity suppressed decay w — Tt'1T as
o(w—10'7) =29.9+ 1.4+ 1.0 nb and @,, = 113.5+ 1.3+ 1.7°. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The cross section of thee*fe — TU'TT processinthe

energy region ./s < 1000 MeV can be described within
the vector meson dominance model and is determined
by thetransitionsV — 11T of the light vector mesons
(V=p,wp, p") intothefina state. The main contribu-
tion in this energy region comes from the p — 11T
and from the G-parity violating w — Tt*TT transitions.
Studies of the e*e” — 11T reaction allow determina-
tion of the p and w meson parameters and provide
information on the G-parity violation mechanism.

At low energies, the e'ee — TU'TT Cross section
makes the dominant contribution to the well-known
ratio
o(e'e —~ hadrons)

o(e'e — u'u)

R(s) =

which isused for calculation of the dispersion integrals
(for example, for evaluation of the electromagnetic run-
ning coupling constant at the Z-boson mass (S =

m%) or for determination of the hadronic contribution

ai™ to the anomal ous magnetic moment of the muon,

T The text was submitted by the authorsin English.

which is nowadays measured with very high accuracy
5x109)[1, 2.

Assuming conservation of the vector current (CVC)
in the isospin symmetry limit, the spectral function of
the 1t — ¢, decay can be related to the isovector
part of the e'ee —» TU'TC cross section. The spectral
function was determined with high precision in [3-5].
The comparison of the e'e — T TT cross section with
what follows from the spectral function provides an
accurate test of the CVC hypothesis.

The process e'e — TU'TT in the energy region

/s < 1000 MeV has been studied in several experi-
ments [6-19] for more than 30 years. In the present
work, we report on the results of the etes — T TT
cross section measurement with a spherical neutra

detector (SND) at 390 < ./s < 980 MeV.

2. EXPERIMENT

The SND [20] operated from 1995 to 2000 at the
VEPP-2M [21] collider; it worked in the energy range

/s from 360 to 1400 MeV. The detector contains sev-
era subsystems. The tracking system includes two
cylindrical drift chambers. The three-layer spherica
electromagnetic calorimeter is based on Nal(Tl) crys-
tals. The muon—veto system consists of plastic scintil-
lation counters and two layers of streamer tubes. The

1063-7761/05/10106-1053$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Energy deposition spectrafor electronswith energies
of 180, 300, 390, and 485 MeV in experiment (dots) and
MC simulation (histogram).

calorimeter energy and angular resolutions depend on
the photon energy as

(0/E)% = 4.2%/4/E[GeV]

and

0,0 = 0.82°//E[GeV] O 0.63°.

The tracking system angular resolution is about 0.5°
and 2° for the azimuthal and polar angles, respectively.

In 1996-2000, the SND collected datain the energy

region /s <980 MeV with an integrated luminosity of
about 10.0 pb™. The beam energy was calculated from
the magnetic field value in the bending magnets of the
collider. The accuracy of the energy setting is about
0.1 MeV. The beam energy spread varies in the range

from 0.06 MeV at ./s =360 MeV t00.35 MeV at ./s =
970 MeV.

3. DATA ANALYSIS

The cross section of the e'e — TTTT process was
measured as follows.

(1) The collinear events e'e- —» e'e, TTTT, WU~
were selected.

(2) The selected events were sorted into the two
classes: e'e” and 11T, Ut~ using the energy deposition
in the calorimeter layers.

(3) The e'ee — €' events were used for inte-
grated luminosity determination. The events of the
e'es — U process were subtracted according to the

theoretical cross section, integrated luminosity, and
detection efficiency.

(4) To determine the cross section of the e'e —
TCTC process, the number of ete — 1T events in
each energy point were normalized to the integrated

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

ACHASOV et al.

luminosity and divided by the detection efficiency and
radiative correction.

The detection efficiency was obtained from Monte
Carlo (MC) simulation [20]. The MC simulation of
SND isbased on the UNIMOD [22] package. The SND
geometrical model description comprises about
10000 distinct volumes and includes details of the
SND’s design. The primary generated particles are
tracked through the detector media with the following
effects taken into account: ionization losses, multiple
scattering, bremsstrahlung of electrons and positrons,
Compton effect and Rayleigh scattering, e*e” pair pro-
duction by photons, photoeffect, unstable particles
decay, interaction of stopped particles, and nuclear
interaction of hadrons [23-25]. After that, the signals
produced in each detector element are simulated. The
electronic noise, signal pile up, actual time, and ampli-
tude resolutions of the electronics channels and broken
channels were taken into account during processing of
the Monte Carlo eventsto provide an adaptabl e account
of variable experimental conditions.

The Monte Carlo simulation of the processes
e'es — e'e, WU, TUTT was based on the formula
obtained in [26-28]. The simulation of the process
e'e” — e'e” was performed with the cut 30° < 8. <

150° on the polar angles of the final electron and
positron.

The e'ee — e'e, Uy, and 11T events differ by
energy deposition in the calorimeter. In the efes —
e'e” events, the electrons produce an electromagnetic
shower with the most probable energy losses about 0.92
of the initial particle energy. The distributions of the
energy deposition of the electrons with different ener-
gies are shown in Fig. 1. The experimental and simu-
lated spectra are in good agreement. Muons lose their
energy by ionization of the calorimeter material
through which they pass, and their energy deposition
spectraare well modeled in simulation (Fig. 2). Similar
ionization losses are experienced by charged pions, and
this part of the charged pion energy deposition is well
described by simulation (Fig. 3). However, pions also
lose their energy due to nuclear interactions, which is
not so accurately reproduced in simulation. This leads
to some difference in the energy deposition spectrain
experiment and simulation for charged pions (Fig. 4).

The discrimination between electrons and pions in
the SND is based on the difference in the longitudinal
energy deposition profiles (deposition in calorimeter
layers) for these particles. To fully use the correlations
between energy depositions in the calorimeter layers,
the corresponding separation parameter was based on
the neural network approach [29]. For each energy
point, the neural network, a multilayer perceptron, was
constructed. The network had an input layer consisting
of seven neurons, two hidden layers with 20 neurons
each, and an output layer with one neuron. Asthe input
data, the network used the energy depositions of parti-
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Fig. 2. Energy deposition spectrafor the 500 MeV muonsin
experiment (dots) and MC simulation (histogram).

Ni/N T T
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0.02
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Fig. 4. Energy deposition spectra of the pions with the
energy E; = 300 MeV. Dots, experiment; histogram, MC
simulation.

clesin calorimeter layers and the polar angle of one of
the particles. The output signal Ry, is a number in the
interval from —0.5 to 1.5. The network was trained by
using simulated e'e — TU'TT and e'e” — €*e” events.
The distribution of the discrimination parameter Ry, is
showninFig. 5. Thee'es —» e'e eventsarelocated in
theregion Ry, > 0.5, and the e'e — 11T, WU~ events
arelocated at Ry, < 0.5.

3.1. Slection Criteria

During the experimental runs, the first-level trigger
[20] selects events with one or more tracksin the track-
ing system and with two clustersin the calorimeter with
a spatial angle between the clusters of more than 100°.
The threshold of energy deposition in a cluster was
equal to 25 MeV. Thethreshold of the total energy dep-
osition in the calorimeter was set equal to 140 MeV in

the energy region Js =850 MeV, and to 100 MeV, or
was absent altogether, bel ow 850 MeV. During process-
ing of the experimental data, event reconstruction is
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Fig. 3. Spectra of the ionization losses of the pionswith the
energy E;; > 360 MeV in the first calorimeter layer. Dots,

experiment; histogram, MC simulation.
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Fig. 5. The e/rtdiscrimination parameter distribution for all

collinear events in the energy region ./s from 880 to
630 MeV. Dots, experiment; histogram, MC simulation.

performed [20, 30]. For further analysis, events con-
taining two charged particles with |z < 10 cmand r <
1 cm were selected. Here, z is the coordinate of the
charged particle production point along the beam axis
(the longitudinal size of the interaction region depends
on the beam energy and varies from 1.5 to 2.5 cm) and
r isthe distance between the charged particle track and
the beam axis in the r@ plane. The polar angles of the
charged particles were bounded by the criterion 55° <
0 < 125°, and the energy deposition of each of them
was required to be greater than 50 MeV. The following
cuts on the acollinearity angles in the azimutha and
polar planes were applied: |A@|< 10° and |AB|< 10°. In
the event sample selected under these conditions, one
hasthe e'e- — e*e, TU'TT, WU~ events, cosmic muons
background, and asmall contributionfromthee'e —
TTTTO reaction at /s = m,,. The muon system veto was

used for suppressing the cosmic muon background
(veto=0).
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3.2. The Background from Cosmic Muons
and fromthe e*'e- — 11T Process

The number of background events from theete™ —
T process was estimated as

N3n(S) = O3n(S)esn(S)IL(S), (D

where 0,(S) isthe cross section of the ete” —» Tr'IT T
process with the radiative corrections taken into
account, IL(s) isthe integrated luminosity, and e;,(S) is
the detection probability for the background process
obtained from the simulation under the selection crite-
ria described above. The values of o4 (S) were taken
from the SND measurements [31]. Although 05,(m,) =
1300 nb, the e'e —= 311 process contribution to the
total number of collinear eventsat the w resonance peak
islessthan 0.3%. Theleading role in the suppression of
this background was played by the cuts on the acol-
linearity angles AB and Aq. In order to check the esti-
mate in (1), the events containing two or more photons

Events
T T T T T
¢
400+ ¢ -
t N8

200+ .
o &

1 1 1 1 1
100 120 140 160 180
My MeV

Fig. 6. Two-photon invariant mass m, distribution at
Js=m,

Eventes

10000

5000

0
-10 -5 0 5 10

Z cm

Fig. 7. Distribution of the z coordinate of the charged parti-
cle production point aong the beam axis for collinear
eventsat /s = 180 MeV. Histogram, all events; dashed dis-
tribution, events with muon system veto (veto = 1).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

ACHASOV et al.

with energy depositions of more than 200 MeV were
considered.

Because our selection criteria select theete- — 311
events with collinear charged pions and, therefore, the
neutral pion in these events has relatively low energy,
the constraint on the photon energy deposition greatly
suppresses the events other than e'e- — 3mevents. To
obtain the e'e — 31 event number n,,, the invariant
mass spectrum m,, (Fig. 6) was fitted by the sum of a
Gaussian function and a second-order polynomial:

G(rnyy) Nan + PZ(myy)(n - n3T[)'

The value of ny, agrees with events number calcul ated
according to (1).

The cosmic muon background was suppressed by
the muon-veto system. The z coordinate distribution
for the charged particle production point along the
beam axis is shown in Fig. 7 for collinear events. The
e*e” annihilation events have the Gaussian distribution
peaked at z = 0, while the cosmic background distribu-
tion is nearly uniform and clearly extends outside the
peak. As Fig. 7 shows, the muon system veto (veto = 1)
separates cosmic muons from the e*e= annihilation
events. The residual event number of the cosmic muon
background was estimated from the formula

T, @)

where v, = 1.3 x 1072 Hz is the frequency of cosmic
background detection under the applied selection crite-
riaand T isthe time the datawas taken. The value of v,
was obtained by using data collected in special runs
without beams in the collider. The first-level trigger
counting rate in these runs was 2 Hz. The contribution
of the cosmic background to the total number of

selected collinear events depends on the energy /s and
varies from 0.1 to 1%.

The efee —~ 1T events are concentrated in the
Ry discrimination parameter region Ry, < 0.5. The

cosmic background events at energiesof /s > 600 MeV
also fal in the area Ry, < 0.5, because the energy dep-
osition of the cosmic muons is much lower than the
energy depositioninthee'e —» e*e” events. For lower
center-of-mass energies, the cosmic background moves
to the area Ry, > 0.5, because the energy depositions
areclosein this case.

3.3. Detection Efficiency

The Apand A6 distributions of thee*te- — e*e~and
e'ec — TU'TT events are shown in Figs. 8-11. Experi-
ment and simulation agree rather well. As a measure of
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Fig. 8. The Ag distribution of the e'e” — e'e” events.
Dots, experiment; histogram, MC simulation.
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Fig. 10. The A8 distribution of the e'e” — e*e™ events.
Dots, experiment; histogram, MC simulation.

the systematic uncertainty dueto the AG cut, thefollow-
ing value was used:

o (©)
where

-
One =

n,(JAB] <10°) | m(|AB| < 10°)
N, (186] < 20°) / M (186] < 20°)’

X = TiT(€e).

Here, n,(]JAB| < 10°) and m,(JAB| < 10°) are the numbers
of experimental and simulated events selected under
the condition |AB| < 10°, while N,(JA6| < 20°) and
M,(]AB] < 20°) are the numbers of experimental and
simulated events with |AB| < 20°. &, does not depend
on energy, itsaverage valueis equal t0 0.999, and it has
a systematic spread of 0.4%. This systematic spread
was added to the error of the cross section measurement
at each energy point. The systematic error due to the Ag
cut is significantly lower and was neglected.
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Fig. 9. The A distribution of the e'e” — T"1T events.
Dots, experiment; histogram, MC simulation.

NJ/N
O. 1 5 T T T

0.10

0.05

0
-10 -5 0 5 10
AB, deg

Fig. 11. The A8 distribution of the e'e” — Tt'1T events.
Dots, experiment; histogram, MC simulation.

The polar angle distributions for the e'e- — e'e”
and e'e- — TTTT processes are shown in Figs. 12 and
13. The ratio of these 6 distributions is shown in
Fig. 14. The experimental and simulated distributions
arein agreement. To estimate the systematic inaccuracy
due to the 6 angle selection cut, the following ratio was
used:

_ 0(8,)
o7 §(55°)

(4)

where

0(8,)

_ N (6,<6<180°-86,) / M, (6,<6<180°-6,)
"~ N(6,<0<180°—-8,) | M.(8,<6<180°-8,)’

50° < 6, < 90°.

Here, N, {6, < 6 < 180° — 8,), N(6, < 6 < 180° — 6,),
M, (6, < 6 <180° —8,), and M(6, <0 <180° -6,) are
the experimenta and simulated ete — 11T and
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Fig. 12. The 8 angle distribution of the e'e™ —» e'e™
events. Dots, experiment; histogram, MC simulation.
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Fig. 13. The 8 angle distribution of the e'e” — '
events. Dots, experiment; histogram, MC simulation.
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Fig. 14. The ratio of 8 distributions of the e'e™ — '
and e'e” — e"e processes. Dots, experiment; histogram,
MC simulation.

e'e” — e'e event numbers in the angular range 6, <
0 < 180° —6,. The maximal difference of o from unity
was found to be 0.8%. This value was taken as a sys-
tematic error &, = 0.8% associated with the angular
selection cut.
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In the tracking system, the particle track can be lost
due to reconstruction inefficiency. The probabilities of
finding the track were determined by using the experi-
mental data themselves. It was found to be €, = 0.996
for electrons and €,; = 0.995 for pions. In simulations,
these values do not actually differ from unity, whilein
reality, the probability of finding the track for electrons
is dlightly greater than for pions. Therefore, the detec-
tion efficiency was multiplied by the correction coeffi-
cient

2
8o = EE—TE = 0.997. )

Pions can belost dueto the nuclear interaction in the
detector material before the tracking system, for exam-
ple, via the reaction TEN — TN, with the final pion
scattered at a large angle, or via the charge exchange
reaction TN — T°N. Asameasure of systematic inac-
curacy associated with this effect, the difference from
unity of the following quantity was used:

o g
S = O—o7 . ©)

Here, N and M are the pion numbersin experiment and
simulation; n and mare the pion numbersin experiment
and simulation in the case where a track in the drift
chamber nearest to the beam pipe was detected, but the
corresponding track in the second drift chamber and
associated cluster in the calorimeter was not found. The
probability of particlelosswasdivided by 3, theratio of
the amounts of matter between the drift chambers and
before the tracking system. The deviation of .,y from
1 was taken as a systematic error, 0, = 0.2%.

Uncertainties in simulation of pion nuclear interac-
tions imply that the cut on the particle energy deposi-
tion leadsto an inaccuracy in the detection efficiency of
the e"'e- — TU'TT process. To take thisinaccuracy into
account, the detection efficiency was multiplied by the
correction coefficients. The correction coefficients
were obtained by using events of the e'e” — T
reaction [30-32]. Pion energiesin the e'e” —» 10T T
events were determined via the kinematic fit. The pion
energieswere divided into 10-MeV-wide bins. For each
bin, the correction coefficient (Fig. 15) was obtained as

ni/NiT, @

Ogs50 = [m—/M-

wherei is the bin number, N; and M; are the pion num-
bersin experiment and simulation selected in theith bin
by the kinematic fit without any cut on the energy dep-
osition in the calorimeter, and n; and m are the pion
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numbersin experiment and simulation under the condi-
tion that the pion energy deposition is greater than
50 MeV. To estimate systematic errors in determining
these correction coefficients, we considered the ratio of
the probability that both pions in simulated e'es —
TUTTC events have an energy deposition of more than
50 MeV to the quantity (m/M;)2. Thisratio is 0.994 at

Js > 420 MeV and about 0.97 at ./s < 420 MeV. The
difference of this ratio from unity was taken as a sys-
tematic error O ., 55 in determining the &¢ .. 5 correction

coefficient: Ogsg = 0.6% a /s > 420 MeV and
Ogs>5 = 3% at /S < 420 MeV.

In the energy region ./s = 840-970 MeV, the prob-
ability of hitting the muon—veto system for muons and
pions variesfrom 1 to 93% and from 0.5 to 3%, respec-
tively. The usage of the muon system veto for event
selection (veto = 0) leads to inaccuracy in the determi-
nation of the measured cross section due to the uncer-
tainty in the smulation of the muons and pions travers-

ing the detector at ./s > 840 MeV. To obtain the neces-
sary corrections, the events close to the median plane
@< 10° 170° < < 190°, @ > 350°, where the cosmic
background is minimal, were used. The e'e” — TT'TT
cross section was measured with (veto = 0) and without
(veto = 0) using the muon system, and the following
correction coefficient was obtained for each energy
point:

o(e'e — 11T ; veto = 0)

Oeto = .
% o(e'e — U veto = 0)

(8)

It was found that 8,4, = 0.95 a /s = 970 MeV and
quickly risesto 1 for lower energies.

The detection efficiencies of the processese'e™ —»
TUTT, WU, and e*e after all the applied corrections are
shown in Fig. 16. The detection efficiency is indepen-
dent of energy for the e'e — e*e reaction, but
dependsonit for the e'e — YU~ and TU'TT processes.
The decrease in the e'ee — P~ process detection

efficiency at ./s > 800 MeV is caused by the fact that
the probability of muons hitting the muon system
increases with energy. The detection efficiency of the

ete” — TUTT process at /s > 500 MeV is determined
mainly by the cuts on the pion angles. Below 500 MeV,
the detection efficiency decreases due to the cut on the
pion energy deposition in the calorimeter. A statistical
error of <1% for the detection efficiency determination
was added to the cross section measurement error at
each energy point. The total systematic error of deter-
mining the detection efficiency Oy = Ogsg59 [ Opyg 0
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Fig. 15. The dg > 5o correction coefficient associated with
the pion energy deposition cut vs. the pion energy Ep,.
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Fig. 16. The detection efficiencies eq;; (%), €g (w), and

g, (o) of the e’e™ — 7171, Py~ and e"e” processes.
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Op IS Oy = 1% at /s = 420 MeV and Oy = 3.1% at
Js <420 MeV.

3.4. Measurement
of theetfee — 11T Cross Section

The number of selected eventsin theregionsRy,, < 0.5
and Ry, > 0.5 are

N = NT[T[+ Nee+ Npu + Np + N3T[’ (9)

M = Myt Mg+ My + M, + Mg, (20

Here, N and M are the event numbers in the respective
regions Ry < 0.5 and Ry, > 0.5. N;;, M, and Ng;;, Mg,
are the numbers of background events due to cosmic
muons and the e'e- — TT*TTTC process, calculated as

described above. Thee'e” — p*u process event num-
ber can be written as

Ny = 0pu€uu(l—€,) 1L, (11)

My = Opp€pp€pul L, (12)

where 0, is the e'e” — I~ process cross section
obtained according to [27], €, is the process detection
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Fig. 17. The percentage of the ete™ — e*e™ (1), i1 (2),
prp~ (3), TP (4), and cosmic background (5) vs. the
energy ./s.
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Fig. 18. The 6 angle distributions of al collinear events at

/s from 880 to 630 MeV. Dots, experiment; histogram,
MC simulation.

efficiency, €, is the probability for the e'e” — P~
process events to have Ry, > 0.5, and IL is the inte-
grated luminasity,

Mee

IL = ————,
Oee€ecee

(13)
where g, and e, are the detection efficiency and the
probability of having Ry, > 0.5 for the processe'e —
e*er, and 0, is the process cross section with the 30° <
0 < 150° angular cut for the electron and positron in the
final state. The cross section g, was calculated using
the BHWIDE 1.04 [33] code with the accuracy 0.5%.
The e'e~ — 1111 process event number with Ry, > 0.5
and the e*'e — e*e process event number with Ry <
0.5 can be written as

l1-€

Nee = € eeMee = )\eeMee1
ee
1-€

MT[T[ = € eeNT[T[ = }\T[T[NT[T['
ee
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The e'e — e*e process event number with R, > 0.5
and the e'e- — TT'TT process event number with Ry, <
0.5are

_ M=M,—A{N=N,)

Mee K—DA- ) (14)
Ny = N— N, — Mg, (15)
where
Aoy (=€) + NoylIL
e O-eeseeeee
K = 1+ Opy€pp€up T May/| L.
Oeeeeeeee

The percentage of each process in the selected events

versus the energy /s is shown in Fig. 17. The experi-
mental angular distributions agree with the sum of dis-
tributions for each process weighted according to its
contribution (Fig. 18).

The e'ee — TU'TT process cross section is calcu-
lated from the formula

_ Nnn
T ILg(1—€,p)
0
— Oce€ec€ee D( _A)\T[T[_
En(l—€xdOM—M,
OUN-N,

O-T'[T[

(16)

ooBoo

To estimate the systematic uncertainty due to e-1t
discrimination, the pseudo Ttrtand pseudo ee eventsin
the experiment and simulation were formed. The
pseudo Ttrtevents were constructed by using pionsfrom
the ete- — 1T TP reaction. To construct the pseudo
Ttevent with pions having an energy E,, two charged
pions with energies E,; such that |E, — E,| < 10 MeV
were used from two separate e'e — TUTTTC events.
Of course, such pseudo Tirteventsarein general not col-
linear, but thisis irrelevant for our purposes here. The
pseudo ee event was constructed analogously from the
particles of two separate collinear events such that their
partners in these events have energy depositionsin the
calorimeter layers typical for electrons. Figures 19 and
20 show the probabilities for the discrimination param-
eter to have values less than some magnitude in exper-
iment and simulation for such pseudo events. Using
these distributions, the corrections to the probabilities
for the separation parameter Ry, to be greater or less
than 0.5 was aobtained. The difference between cross
sections measured with and without these corrections
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was taken as a systematic error, and its value does not
exceed 0.5% for different energy points.

The cross sections obtained, together with the radi-
ative corrections 9,4, including the initial- and final-
state radiation, are presented in Table 1. The 8,4 radia-
tive correction was calculated according to [28]. The
accuracy of its determination is 0.2%. Given the radia-
tive corrections, the Born cross section for thee*e™ —
TUTC process can be obtained as

Onr(S)
Oraa(S)

The value of §,4(S) depends on the cross section at
lower energies, and it was therefore calculated itera
tively. Theiteration stops when its val ue changes by not
morethan 0.1% in consecutiveiterations. Theform fac-
tor values

0,(S) = (17)

2
1 A

2 _ 3s _
|Fn(s)| - _,?ZB;:,O-HH(S)I B - S

are also listed in Table 1. To evaluate the value of

o(e'e —» hadrons)

R(S)= + — + - !
olee —Hu )

which is used in calculating dispersion integrals, the
bare cross section e'e- — Tt*TT is used (the cross sec-
tion without vacuum polarization contribution but with
the final-state radiation taken into account),

(9 = o(IL-N(’H+2ash, (19

where T1(s) is the polarization operator calculated
according to [27] from the known e*'e- — hadrons
cross section [34]. The last factor takes the final-state
radiation into account, and a(s) has the form [35]

1+B° 4 Ch=B0, o 0 1-BO
B [4L|2EH_+G]+2L|2D—1TG]

2 143 1+8
~3Ingging=g 2InBInl_B}

a(s) =

4 175, . 22
~3lIn 2-4|nB+B—3[Z(1+B)-2}

1+
1-B

2
xIn +§1+B.
2 [32
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P(R,m < Ry
101 T T T T

1.00

0.99

0.98

0.97 I I I !
0.2 0.4 0.6 0.8 1.0 1.2

R e/Tt

Fig. 19. The probability of the pseudo mtrtevents to have an
R/ Value less than some Ry. Dots, experiment; histogram,

MC simulation.

P(R, > Ry,
1.01 T T T T

1.00

0.99

0.98

0.97
-0.2 0 0.2 0.4 0.6 0.8

Re/T[

Fig. 20. The probability of the pseudo ee events to have an
Ry value greater than some Ry. Dots, experiment; histo-
gram, MC simulation.

Here,

X

Li(x) = —fatin(1-t)rt.
0

The values of 6% (s) arelisted in Table 1.

The total systematic error of the cross section deter-
mination is

Ogs = Oy U osq@ alj

Here, a4 is the systematic error of the detection effi-
ciency determination, O, is the systematic error asso-
ciated with the e-Tt separation, g,_ is the systematic
error of the integrated luminosity determination, and
O, 1S the uncertainty of the radiative correction calcu-
lation. The magnitudes of various contributions to the
total systematic error are shown in Table 2. The total
systematic error of the cross section determinations is

Ofad-
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Table 1. Theresultsof the e'e” —» Tt'1T” cross section measurements. o,isthe e'e — Tt'1T~ cross section with the radi-
ative corrections due to theinitial- and final -state radiation taken into account, d,q iSthe radiative correction due to theinitial-
and final-state radiation, o, and |F 2 are the cross section and the form factor of the e'e” — Tr"TT” process after the radiative

pol

corrections were undressed, and o, isthe e'e” — TtTT undressed cross section without vacuum polarization but with the

final-state radiation. Only uncorrelated errors are shown. The correlated systematic error ags is 1.3% for Js <420 MeV and
3.2% for /s < 420 MeV

«[S, MeV Opn ND Orad 0o, Nb |Fn|2 Gfglp nb
970.0 118.12+ 2.76 1.491 79.20+ 1.85 3.91+£0.09 753+1.81
958.0 137.16 £ 2.94 1.454 94.34 £ 2.02 456 +0.10 92.16 £ 1.97
950.0 150.02 £ 2.85 1.430 104.88 + 1.99 499+ 0.09 102.35+ 1.94
940.0 166.55 + 2.27 1.400 119.00 £ 1.62 5.56 + 0.08 116.01 £ 1.58
920.0 20499+ 7.14 1.340 152.96 £ 5.33 6.89+£0.24 148.60 £ 5.18
880.0 310.82 + 3.52 1.220 254.67 + 2.88 10.65+ 0.12 24594 +2.78
840.0 513.80+ 4.76 1.106 464.48 + 4.30 17.99+ 0.17 446.64 + 4.13
820.0 676.03 £ 5.99 1.055 640.60 = 5.68 23.86+0.21 614.57 £ 5.45
810.0 760.19 + 6.58 1.032 736.34 + 6.37 26.90+ 0.23 704.79 + 6.10
800.0 856.66 + 7.32 1.013 845.61 + 7.23 30.28 + 0.26 807.33+6.90
794.0 890.86 + 7.43 1.009 883.09 + 7.37 31.25+0.26 838.38 = 7.00
790.0 892.35+17.70 1.015 879.09+17.44 30.86 + 0.61 8290.16 + 16.45
786.0 926.47 + 7.84 1.031 898.19 + 7.60 31.28 + 0.26 84292+ 7.13
785.0 941.34 +9.33 1.032 911.99+9.04 31.70+£0.31 858.12 + 8.51
784.0 989.76 + 20.12 1.025 966.05 + 19.64 33.51+0.68 915.22 + 18.61
783.0 1060.12 + 11.38 1.010 1050.08 + 11.27 36.35+ 0.39 1005.99 + 10.80
782.0 1123.55 + 26.83 0.989 1136.34 + 27.14 39.26 £ 0.94 1102.62 + 26.33
781.0 1158.03 + 10.80 0.971 1192.83 + 11.12 41.13+0.38 1169.48 + 10.90
780.0 1211.67 £ 9.98 0.957 1266.56 + 10.43 43.59 £ 0.36 1252.62 + 10.32
778.0 1273.38 £ 9.47 0.944 1349.27 + 10.03 46.25+0.34 1343.80 £ 9.99
774.0 1282.06 + 9.49 0.938 1366.85 + 10.12 46.48 £ 0.34 1361.99 + 10.08
770.0 1249.25 + 9.26 0.935 1336.51 + 9.91 45.08 £ 0.33 1330.42 + 9.86
764.0 1247.24 + 9.35 0.932 1338.62 + 10.04 44.61 £ 0.33 1331.35+9.99
760.0 1244.74 + 9.58 0.927 1342.60 + 10.33 4439+ 0.34 1335.30 + 10.27
750.0 1219.07 + 21.50 0.920 1325.56 + 23.38 4295+ 0.76 1321.82 + 23.31
720.0 989.95 + 6.62 0.910 1087.59 + 7.27 33.15+£0.22 1091.88 + 7.30
690.0 71799+ 7.78 0.915 784.79 + 8.50 2250+ 0.24 789.95 + 8.56
660.0 515.95 + 5.87 0.923 558.83 + 6.36 15.07 + 0.17 561.19 + 6.39
630.0 382.69 + 8.35 0.933 410.32 + 8.95 10.41 £ 0.23 411.22 + 8.97
600.0 287.18 + 10.56 0.940 305.50 + 11.23 7.30+0.27 305.61 + 11.23
580.0 255.24 + 14.39 0.945 270.24 + 15.24 6.22 £ 0.35 269.85 + 15.22
560.0 226.60 + 12.41 0.948 239.01 + 13.09 5.30+0.29 238.63 + 13.07
550.0 21752+ 1751 0.950 228.99 + 18.43 499+ 0.40 228.29 + 18.37
540.0 212.67 £ 13.55 0.952 22347 +14.24 478 £0.30 222.82 +14.20
530.0 200.04 + 22.75 0.953 210.00 + 23.88 4.42 +0.50 209.43 + 23.82
520.0 178.13+ 10.25 0.954 186.73 + 10.75 3.87+0.22 186.26 + 10.72
510.0 174.28 £ 16.65 0.954 182.60 £ 17.45 3.73+£0.36 181.82+17.38
500.0 175.22 + 10.78 0.955 183.52 +11.29 3.70+0.23 182.77+£11.24
480.0 165.18 + 9.58 0.955 172.90 + 10.03 3.41+£0.20 172.29 + 9.99
470.0 143.94 £ 13.21 0.955 150.71 £ 13.83 2.94 +0.27 150.22 + 13.78
450.0 141.32 +14.21 0.954 148.10 + 14.89 2.86+0.29 147.42 + 14.82
440.0 116.15+ 15.58 0.953 121.86 + 16.35 2.35+0.32 121.34 + 16.28
430.0 111.27 £ 12.60 0.952 116.86 £ 13.23 2.26 £ 0.26 116.41 £ 13.18
410.0 127.38 £ 19.11 0.949 134.23+£ 20.14 2.64+0.40 133.84 + 20.08
390.0 121.81 + 22.48 0.944 128.98 + 23.80 2.65+0.49 128.76 + 23.76
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Oy = 1.3% a /S 2 420 MeV and 0y, = 3.2% at /s <
420 MeV.

4. THE efee — 11t CROSS SECTION ANALY SIS
4.1. Theoretical Framework

In the framework of the vector meson dominance
model, the cross section of the e'e” — TT*TT processis

2
4Tt
2
S3/

OndS) = Pl S) | Arn(S)|”. (19)

Here, P,(9) isthe phase space factor:

1
Pr(S) = Gn(S),  On(S) = 54/5—4my.
The amplitudes of the y* — Tt°1T transition are given
by
|An(S)*
ryme/mo(V — 1'm) e®

Dy(s) Jadm)|

(20)

s

V=p wpp"

where
Dy(s) = m{ —s—i/sly(s),

ru(s) = STV—1,9).
f

Here, f denotes the final state of the V vector meson
decay, m, is the vector meson mass, and 'y, = I"\,(m,)).
The following forms of the energy dependence of the
vector meson total widths were used:

ro(9) = I r g i)
S dn(m,,)
Uy ()
+ 2 B(w — TtY)
qny(mw)
W, (8)
+—P2 T B(w —» 3m),
Wyn(moy B )
2 3
— rT]V qT[(S) — 1 n
V()_ Sqi( Vs V_psp1p
Here,
o = s—m’
my 2/\/—5 1

W,,(9) is the phase-space factor for the prt— 7T
final state [30—-32]. In the energy dependence of the p,
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Table 2. Various contributions to the systematic error of the
determination of the e"e” —» TT'TT" cross section. oy is the
total systematic error, and O = Og » 50 [ Oy U Og iSthesys-
tematic inaccuracy of the detection efficiency determination

E Contribution Contribution
TOr 1 at /s =420 MeV, % | at /s <420 MeV, %
Ok 50 0.6 3.0
O 0.2 0.2
o 0.8 0.8
Ot 1.0 3.1
Ogep 05 05
oL 0.5 05
Orad 0.2 0.2
Ogs 13 32

p', p" mesonswidths, only theV —» 1UTT decays were
taken into account. This approach is justified in the

energy region ./s < 1000 MeV. Nowadays, the p', p"
decays are rather poorly known, and therefore the same
approximation was also used for fitting the data above

1000 MeV. The w-meson mass and width were taken
from the SND measurements: m,, = 782.79 MeV and

r,=8.68MeV [31].
The relative decay probabilities were calculated as

o(V—X)

BV —X) = =5

o(V) = S oV —=X),

_ 121mB(V —e'e)B(V —= X)
= - ,

o(V— X)

Inthe analysis presented here, we used o(w — 1) =
155.8 nb and o(w — 3m) = 1615 nb obtained in the
SND experiments[31, 36].

The parameter @, isthe relative interference phase
between the vector mesons V and p, and, hence, Qop =
0. The phases @, can deviate from 180° or 0°, and their
values can be energy-dependent due to mixing between
vector mesons. The phases @,, and @, were fixed at
180° and 0°, because these values are consistent with
the existing experimental data for the e'ee — 1T
reaction.
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Taking the p—w mixing into account, the w — TT'TT
and p — TUTT transition amplitudes can be written
as[37, 38]

(0) ,(0) 0)
= Yo% 1—%8(5)
W T p- T Dp(s) g(O)
yp 21)
(0) ,(0) ©)
%yaTon gwnj
+ === g(s) + ,
©)
Dm(s) gpn
where
_y
g(s) = ————2—,
) = 5.9-0,09
_ r3myyB(Y — e'e)q™?
9wl = [ 4100 } ’
_ [emiryB(V — m'm) v
|gVﬂTl - 3 .
an(my)

The superscript (0) denotes the coupling constants of
the bare, unmixed state. 1, isthe polarization operator
of the p—w mixing:

Mow(S) = Re(M(s)) +ilm(My (),  (22)

and Im(I,,,(s)) can be written as

ngﬁingfflnﬂi(s)
® = D____________
Im(I l, (s) fs TS
(23)
gg()?i\gi?%ﬂiy(s) + gé?nyS%yQﬁy(S) DD

3 0

where

_ [3FVB(V — PV)T’2
vpy = .
! Gy (My)

We neglected the contributionsto Im(1,,(s)) dueto the
VP intermediate state (V = w, p, P =11, ). Therea part
Re(M,.(S)) can be represented as

Re(My,(s)) = Re(Mp(s)) + Re(My(s)),  (24)
where
—4ng(°)g(°)
Re(Mp(s)) = —2= (25)

is the one-photon contribution to Re(M,.(s)). We
assume that the energy dependence of Re(M,,(s)) is
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negligible and can then be expressed by using the mea-
sured branching ratio

Mo(My)

B(w— ) = =
w

g(0) 2
g(m,) + g;*;’;j (26)

pTT

(0) 4(0) (0)
' 4T[g g gwn 2 2
Re(Mp,) = p\; @y 4 (O)"(mw—mp)
pTTT

wB(w—~ 1)

Py [Pu(ma) =Dy(m)f

or
+0
O
(27)

~ [gé‘ﬂygﬁfiﬂiy(mm) + gony Qo Ay (M)
3

2 12

(0
g U
+———‘("0’)TT?nwrw} E :

pTIT

Equation (21) can be rewritten as

A +-+A +—:/\/:7_gl
W T p-TITT 20

[yme My o(V — TTTT) fypdS)

Dy(s) Ja(my)’

(28)

a3
V=wp
where

— rVT[Tl(s)
Pl S) = 0 ()’

and

g© g©
FonlS) = 1=226(5),  TomS) = £(5) + ="
Y pTTt
The theoretical value of the phase @, can be calculated

from the above expressions:

(ppw = arg( fmnr(mw)) - arg(fpnn(mp)) =101°.
The phase @, is amost independent of energy. In this
caculation, we assumed that the w — TT°71T transition
proceeds only viathe p—w mixing, that is, g’ = 0. To

© 0 (0)

determine the gy 9yv » and gyp, coupling constants,
the corresponding measured decay widths were used.

4.2. Fit to the Experimental Data

The p' and p" parameters were determined from the
fit to the ete- — 11T cross section measured in the
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energy region ./s < 2400 MeV by OLYA and DM2
detectors [17, 39], together with the isovector part of
the e*e — TU'TT cross section cal culated by assuming
the CV C hypothesis from the spectral function of the
T~ — 1TV, decay measured by CLEO |1 [5],

Ama)’B(t —mrfv) m 1

M B(T — eVevs) 121V, > Sew
1 1N
my(m? —m@)’(m? + 2m) NAM

onn( m ) =
(29)

X

where m is the central value of the Tt pair invariant
mass for theith bin, Am isthe bin width, N; isthe num-
ber of entries in the ith bin, N is the total number of
entries, |V4| is the CKM matrix element, and Sy =
1.0194 is the radiative correction [3, 5, 40].

The p' and p" parameters obtained were used in fit-
ting to the SND data (Table 3, Fig. 21). The free param-
eters of the fit were m,, ', o(p —= TTTT), O(w —~
TUTT), @, aNd o(p' —= TUTT). The first fit was per-
formed with o(p" — 1*1T), p' and p" masses, and
widths fixed at the values obtained from the fit to the
CLEO Il and DM2 data. The second and third fits were
done without the p" meson. The p' mass and width were
fixed by using the results of the fit to the CLEO Il and
DM2 data (the second variant in Table 3) and to the
OLYA data (the third variant in Table 3). The values of
the p and w parameters exhibit a rather weak model
dependence.

5. DISCUSSION

The comparison of the e"e~ — 11T cross section
obtained in the SND experiment with other results [8,

1065

o, nb

1000

500

1 1 1
400 600 800 /s MeV

Fig. 21. The e"e” — T 1T cross section. Stars are the
SND data obtained in this work; the curve is the result of
fitting.

9, 17-19] isshown in Figs. 22-25. In the energy region

/s <600 MeV, all experimental data are in agreement
(Fig. 22). Above 600 MeV, the OSPK (ORSAY-ACO)
[8] and DM1 [9] points lie about 10% lower than the
SND ones(Fig. 23). The SND cross section exceedsthe
OLYA and CMD measurements[17] by (6 = 1)% inthis
energy region (Fig. 24). The systematic error of OLYA
measurement is 4%, and the OLYA data agree with the
SND result. The systematic uncertainty of the CMD
result is 2%, and, hence, the difference between the
SND and CMD resultsis about 2.5 of the joint system-
atic error. At the same time, the SND and CMD data
below 600 MeV agreewell (Fig. 22). The average devi-
ation between CMD2 [18] and SND data is (1.4 *
0.5)%; the systematic inaccuracies of these measure-
ments are 0.6 and 1.3%, respectively. In the KLOE
experiment at the @-factory DAF®NE, the form factor
IF(s)]? was measured by using the “radiative return”
method with the systematic error 0.9%[19]. In[19], the

Table 3. Fit results. The column number N corresponds to the different choices of the p' and p" parameters

N 1 2 3

m, MeV 7749+04 7749+ 04 7749+ 04
Mo MeV 146.2+£ 0.8 146.4 £ 0.8 146.3+0.8
o(p — '), nb 1222+ 7 1218+ 7 1219+ 7
o(w — '), Nb 302+14 30.3+14 303+14
bper deg 1136+ 1.3 1134+ 1.3 1135+ 1.3
my, MeV 1403 1403 1360
My, MeV 455 455 430
o(p' —» T'1T), nb 38+03 1.8+0.2 1.9+0.2
Mg, MeV 1756
Iy MeV 245
o(p" — 1), nb 1.7
X2/Ngt 50.2/39 48.8/39 49.4/39
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Oexp/ Ot

1.4
1.2F I 1
e

_ I
SEpisiin pittiy
0.8 1 0
0.6
4(|)0 4%0 S(I)O 55|0
Js,Mev

Fig. 22. The ratio of the e'e” — 11T cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (%, this work), CMD (0),
OLYA (a), and DM1 (¥) [9, 17] results are presented.

Oexp/ Ot
1.2
1.0F
i T
%
0.8+ %
1 1 1 1
600 700 800 900
Js, MeV

Fig. 24. The ratio of the e"e” — T'TT cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (%, this work), OLYA (a), and
CMD (0) [17] results are presented.

bare form factor is listed. In order to compare the
KLOE result with the SND one, we therefore appropri-
ately dressed the form factor. The results of this com-
parison are shown in Fig. 25. The KLOE measurement
is in conflict with the SND result as well as with the
CMD2 one.

The p-meson parameters m,, 'y, o(p — TTTT)
were determined from the study of the e'e — 11T

cross section. The p meson mass and width were found
to be

m 7749+ 0.4+ 05 MeV,

p

o = 1465+ 0.8+ 1.5 MeV.
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Oexplcfit
1.2

0.8r

600 700 800 900
Js, MeV

Fig. 23. The ratio of the e'e” — 11T cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (%, this work), DM1 (v), and
OSPK (O) [8, 9] results are presented.

oexp/ Ofit
1.2r

1.1

1LOFHH
0.9
0.8 1 1 1
600 700 800 900
Js, Mev

Fig. 25. The ratio of the e"e” — T'TT" cross section
obtained in different experiments to the fit curve (Fig. 21).
The shaded area shows the systematic error of the SND
measurements. The SND (&, this work), CMD2 (m), and
KLOE (@) [18, 19] results are presented.

The systematic error is related to the accuracy of the
determination of the collider energy, to the uncertainty
of the model, and to the error of determination of the
cross section. The p-meson parameters were studied in
other e*e~ experiments by using the processes e'e™ —
T [17, 18], e'e — pmt— T T [32, 41], and the
T~ — 1T, decay [3, 5]. The SND results are in
agreement with these measurements, as is shown in
Figs. 26 and 27.

The parameter o(p — 1°1T) Was found to be
o(p—~ ) = 1220+ 7+ 16 nb,
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mp,MeV
780
7781
776}
774+
772+
7 9 9 S g9 2 %
m [} o
2 8 g &8 & E £
» — 7 P fﬂ Lﬁ &)
M O g =2 ©

Fig. 26. The p-meson mass m, measured in this work
(SND-05) and in [3, 5, 17, 18, 32, 41]. The shaded area
shows the average of the previous results.

which corresponds to
B(p—>¢€e)B(p 1)
= (4.991 + 0.028 + 0.066) x 10",

Mp—€e) = 7.31+0.021 + 0.11 keV.

The systematic error includes systematic uncertainties
in the cross section measurement and the model depen-
dence. A comparison of the I'(p — e*e") obtained in
this work with other experimental results [8, 17, 18]
and with the PDG world average [42] is shown in
Fig. 28. The SND result exceeds al previous measure-
ments. It differs by about 1.5 standard deviations from
the CM D2 measurement [ 18] and by two standard devi-
ations from the PDG world average [42]. The differ-
ence of the p-meson leptonic widths obtained by SND
and CMD2 should be attributed mainly to the differ-
ence in the total widths of the p-meson rather than to
the difference in the cross section values. The value
o(p — 1'1r) = 1198 nb, which can be obtained by
using the CMD2 cross section data reported in [18],
agrees with the SND result within the measurements
errors.

The parameter o(w — T10'1T) Was found to be

o(w— 1) = 29.9+ 1.2+ 1.0 nb,
which corresponds to
B(w—»>e€ee)B(w—» 1)
= (1.247 £ 0.062 + 0.042) x 10°°.

The systematic error is related to the model depen-
dence, to the error of determination of the cross section,
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Fig. 27. The p meson width I, measured in this work
(SND-05) and in [3, 5, 17, 18, 32, 41]. The shaded area
shows the average of the previous results.

and to the accuracy of determination of the collider
energy. In the previous studies of the e'e — TU'TT
reaction, the relative probability of the w — TU'TT
decay was also reported. The comparison of B(w —
1T'1T) = 0.0175 £ 0.0011 obtained by using the SND
data and the PDG value of the w — €"e decay width
[42] with the results of other experiments is shown in
Fig. 29. The SND result is the most precise.

The phase @,,, was found to be
@, = 1135+13+1.7°.

Thisvalue differsby six standard deviationsfrom 101°,
which is expected under the assumption that the w —

Fp_ ete), keV

8_
¢

7-#

6_

Slﬁ [a\] wy 9\l
T T P T
&) IS\ < M
: E 5t
wn

O o o

Fig. 28. The value of ['(p — e'e") obtained in this work
(SND-05) and in [8, 17, 18]. The shaded area shows the
world average value [42].
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B(w - 1)
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0.02

0.01
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CMD2-02
OLYA-85

DM1-78

OSPK-72

Fig. 29. The value of B(w — 1111 obtained in thiswork
(SND-05) and in [8, 9, 17, 18]. The shaded area shows the
world average value [42].

TU'TUC transition proceeds via the p—w mixing mecha

nism. If theratio gﬁ’%#gfﬁln isthe free parameter of the

fitinstead of the phase @, it follows that
g©
== 0.11+0.01.

(0)
gpm‘r

This ratio corresponds to the too large direct transition
width

r%w — ') = 1.82+0.33 MeV,
while the natural expectationis
r%w-— ) =a’r,=8kev.
We note that the analysis of the OLYA and CMD2 data

61'[1‘{
150°+-
100° -
50°F
0 | | | |
500 600 700 800 900
Js, Mev

Fig. 30. The mrtscattering phase in the P-wave. Dots and
circles are the results of the phase measurementsin [43, 44]
by using the reaction TN — TtTiN. The curve is the phase

of theamplitude Ay _ i+ Ap . obtained from the fit
to the SND data presented in this work.
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[17, 18] gives similar values of the @, phase. This
result can point out that a considerable direct transition
w — TUTT exists. On the other hand, this discrepancy
can aso be attributed to inadequacies of the applied
theoretical model.

The comparison of the phase arg(Ap o+

ST
Ap, . n+n_) with the Ttirtscattering phase in the P-wave
[43, 44] is shown in Fig. 30. These phases must be
equal in the purely elastic scattering region. The agree-
ment is satisfactory, and, in any case, no significant dif-
ference is observed in the energy region ./s = m,.

The comparison of the e"'e~ — TTTT cross section
obtained under the CV C hypothesis from the T spectral
function of the T~ — 1T, decay [3, 5] with the
isovector part of the cross section measured in this
work isshown in Fig. 31. The cross section obtained by
SND was undressed from the vacuum polarization, and
the contribution from the w — T decay was
excluded. The cross section calculated from the T spec-
tral function was multiplied by a coefficient that takes
into account the difference in the T and T masses:

_ oA
L HOSTWNETE

4(9) = S l(s=(m,+m )

x (s=(m,—m_))]".

The average deviation of the SND and 1 data is about
1.5%. For amost all energy points, this deviation is

Gexp/ Ot

1.2

—

0.8

]
1000
Js, MeV

1 1 1
400 600 800
Fig. 31. The ratio of the e"e” —— 11T cross section cal-
culated from the T° — n‘T[O\)T decay spectral function
measured in [3, 5] (o, CLEO I1; o, ALEPH) to the isovector

part of the ete™ — 11T cross section measured in this
work. The shaded area shows the joint systematic error.
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within the joint systematic error (about 1.6%). The 10%

difference between thee*e and T dataat /s > 800 MeV,
which was claimed in [45], is absent.

Using the cfﬁ'[ (s) cross section (Table 1), the contri-
bution to the anomal ous magnetic moment of the muon

due to the 11T (y) intermediate state in the vacuum
polarization was cal cul ated via the dispersion integral

a, (T 390 < A/s< 970 MeV)

St
_ fMi” - RK(S) 4
O3mrd & ’
Shin
where s, = 970 MeV, s, = 390 MeV, K(s) is the
known kernel and

O_pol
R(s) = -

o(e'e — p'p)

+ - +—_4T[G2
olee — W)= >3-

The integral was evaluated by using the trapezoidal
rule. To take the numerical integration errors into
account, the correction method suggested in [46] was
applied. As aresult, we obtained

a, (77 390 < ./s< 970 MeV)
= (488.7+2.6+6.6) x 107°.

Thisis about 70% of the total hadronic contribution to
the anomal ous magnetic moment of the muon (g —2)/2.

If the integration is performed for the energy region
corresponding to the CMD2 measurements [18], then
theresultis

a,(mm) = (385.6+5.2) x 107,

which is 1.8% (one standard deviation) higher than the
CMD2 result:

a,(mm) = (378.6+35) x 107",

Hence, no considerable difference between the SND
and CMD2 results is observed.

6. CONCLUSIONS

The cross section of the process e'e” —» TU'TT was
measured in the SND experiment at the VEPP-2M col-

lider in the energy region 390 < ./s <980 MeV with an
accuracy of 1.3% at /s = 420 MeV and 3.4% at ./s <
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420 MeV. The measured cross section was analyzed in
the framework of the generalized vector meson domi-
nance model. The following p-meson parameters were
obtained:

m, = 7749+ 0.4% 0.5 MeV,

r

o = 1465+ 0.8+ 1.5 MeV,

o(p— 1) = 1220+ 7 + 16 nb.

The parameters of the G-parity suppressed process
e'e — w — T'TT were measured with high preci-
sion. The measured value

o(w—> Tm) = 29.9+14+10nb

corresponds to the relative probability

B(w—> T1m) = 1.75+ 0.11%.

The relative interference phase between the p and w
mesons was found to be

@, = 1135+ 13+ 1.7°,

This result is in conflict with the naive expectation
@, = 101° from the p—w mixing. The SND result
agreeswith the cross section calculated from the 1 spec-
tral function data within the accuracy of the measure-
ments. Using the measured cross section, the contribu-
tion to the anomalous magnetic moment of the muon
due to the tt'rT(y) intermediate state in the vacuum
polarization was calcul ated:

a, (T 390 < /s < 970 MeV)
= (488.7+2.6+6.6) x 107°.
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Abstract—Singularitiesin the metric of classical solutions of the Einstein equations (the Schwarzschild, Kerr,
Reissner—Nordstroem, and Kerr—Newman solutions) give rise to generalized functionsin the Einstein tensor. A
technique based on the limiting sequence of solutionsis used to analyze these functions, which can have amore
complex behavior than the Dirac & function. We show that the solutions will satisfy the Einstein equations
everywhereif the energy—momentum tensor has an appropriate singular addition of nonelectromagnetic origin.
When this addition term is included, the total energy turns out to be finite and equal to mc?, while the angular
momentum for the Kerr and Kerr—Newman solutions is mca. Since the Reissner—Nordstroem and Kerr—New-
man solutions correspond to apoint chargein classical electrodynamics, theresult allows usto take afresh look
at the divergence of the self-energy of a point charge. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

One of the main principlesof general relativity isthe
equality of the inertial and gravitational masses. How-
ever, at first glance, the classical (Schwarzschild, Kerr,
Reissner—Nordstroem, and Kerr—Newman) sol utions of
the Einstein equations do not satisfy this principle. For
the Schwarzschild and Kerr solutions, the energy—
momentum tensor and, hence, the self-energy are equal
to zero; for the Reissner—Nordstroem and Kerr—New-
man solutions, the self-energy is infinite, while the
gravitational massisfinite for all these solutions.

The fact that the above solutions do not satisfy the
Einstein equations in the entire space may be responsi-
ble for this inconsistency. A common property of the
solutions is the presence of 1/r and 1/r2 singularitiesin
the metric. This suggeststhat the Einstein tensor, which
depends on the second derivatives of the metric, may
contain generalized functions that are lost after direct
differentiation’ and, therefore, are disregarded in the
energy—momentum tensor. Previoudly, this question
was explored for the solutions mentioned above in the
Kerr—Schild representation [1, 2]. It was shown in these
papers that the Einstein tensor actually contains gener-
alized functionsthat can have amore complex behavior
than the Dirac d function.

The self-energy and the angular momentum can be
defined in an invariant way. We supplemented the stud-
ies [1, 2] by considering other representations of the

1 For example, in electrostatics, the potential of a poi nt charge is

2090 _ -0

Ad =—-4red(r), while direct differentiation ylelds E 6 FEn

solutions and calculated the total self-energy and the
angular momentum. Singular additions to the energy—
momentum tensor lead to finite energy and angular
momentum. Possible physical causes of the finiteness
of the self-energy in general relativity werealso consid-
eredin[3].

2. ANALOGY WITH ELECTROSTATICS

A method that allows one to determine whether a
generalized function appears when differentiating a
singular function is easiest to explain using electrostat-
ics as an example. The potential of a point charge

e
6 =" @)

satisfies the Poisson equation
Ad = —ATmp, ()]

where p = ed(r). One way to make sure that thisis the
case consists in the following. Let us substitute poten-
tial (1) with anonsingular function of the form

(3e  erd

¢ = -G(F—Ir )+§ %e(fo—f) ©)

where 6(X) is the Heaviside step function (8(x) = 1 for
x> 0and B(x) = 0 for x < 0). Substituting this potential
in (2), we find that ¢ is the solution of the Poisson
equation for the charge density

) @
TU
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Thevolumeintegral of (4) doesnot dependonryandis
equal to e. If we passto the limit r, — 0, then
¢ —err, p—edr);

i.e., thelimit of solution (3) correspondsto the presence
of a point source with charge e at the coordinate origin
and isthe solution of Eq. (2). It is easy to show that this
result does not depend on the chosen potential in the
regionr <rg; the behavior of the potential at r =ryisnot
necessarily smooth. The result is always the same: in
thelimitr, — 0, the potential is¢ = e/r and the charge
density isp = ed(r).

A method of describing point sourcesthat issimpler
than the method presented above, more specifically, the
Fourier transform, is commonly used in classical elec-
trodynamics. This method is efficient in electrodynam-
ics, because the Maxwell equations are linear. How-
ever, in the case of genera relativity, the equations are
nonlinear, and probably the simplest approach to study-
ing point objects consists in the solution smoothing
procedure described above. Below, we apply thisproce-
dureto the classical solutions of the Einstein equations.

3. SELF-ENERGY

What the self-energy means in general relativity is
not atrivial question. In general, this question is solved
using the energy—momentum pseudotensor (see,
e.g., [4] and references therein). The shortcoming of
this approach is that the definition of the self-energy of
asystem istied to a specia (Cartesian) coordinate sys-
tem and is not invariant relative to coordinate transfor-
mations. The energy—momentum pseudotensor allows
an energy density to be assigned to the gravitational
field, which, however, cannot be localized.

The self-energy can be defined using the energy—
momentum tensor only for fields and matter. For sta-
tionary or static solutions, thereis aKilling vector, & =
0/0t that generates a conserved current,

J = TE, (5)
where TL is the energy—momentum tensor and &k =
(1, 0, 0, 0) are the contravariant components of the vec-

tor & [5]. Since [0, = 0, the following conservation law
holds:

dgt Id3xJ—_gJ° = —IdSqug]Jg. (6)

If the energy density is defined as the zero component
of this current, then the total energy

E = J'd3xA/—_gJ° = J’daw——gTEEk ©

will not depend on the coordinates used.
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4. REISSNER-NORDSTROEM METRIC

The Reissner—Nordstroem solution [6] in Cartesian
coordinates can be represented as

ds? = qadtz—%—%(ndx)z—dxz, ©)

where

r’—2mr + Q°
2
r

b =

(m and Q are the mass and the charge, respectively),?
n = x/r. This solution satisfies the Einstein equations

G* = 8nT', 9

where

ik _ Lorpiek . 1 ik Inf]
T = P+ 20 FF g

is the energy—momentum tensor of the electromagnetic
field everywhere, except the point r = 0 a which the
solution is singular. The structure of the singularity of
the tensor G'* and the behavior of the emerging gener-
alized function can be clarified using a procedure simi-
lar to that described in Section 2.

Let us consider ametric of form (8) with the follow-
ing continuous function substituted for ®:

~ 1
O = r—z(r2—2mr +Q)0(r —ry)

L (10)
+5(rg—2mro + Q%)8(ro—r).
lo

In this case, the metric becomes nonsingular and trans-
forms to metric (8) in the limit r, — 0. The require-
ment that the metric be continuous is necessary, since
the first derivatives of the metric tensor appear in the
Einstein equations nonlinearly. If we admit of disconti-
nuities in the functions g, then the squares of the &
functions will appear in the equations. At the same
time, the second derivatives appear in the equationslin-
early; therefore, we may admit of discontinuitiesin the
first derivatives if we understand the next differentia-
tion in the sense of generalized functions.

2 We use the units in which the gravitationa constant and the speed
of light are equal to 1.
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The energy—momentum tensor corresponding to the
smoothed metric can be derived from the Einstein equa-
tions. The (0, 0) component of thistensor is

1 2
To = é‘ﬁGg =9 0)
(11)
QZ
+B— 5730(ro—r).
rr? ro 8mrr

The first term on the right-hand side is the energy den-
sity of the electrostatic field in the region r > ry. The
second term, which arose from the metric smoothing,
doesnot vanishin thelimit r, — 0. The self-energy of
the constructed solution is

Qn .

2r0 En 2rfd

It can be shown that result (12) does not depend on
the metric smoothing method. In the limit r, — 0,
Eq. (11) can be written as

(12)

TS = md(r) + 5Q7w (1), (13
Here, w(r) isageneralized function defined by the fol-
lowing integration rule:

J’f(r)m(r)d?’x = J’Lz(o)dax,

4tr (19

where f(r) is a bounded smooth function. The limiting
expression (13) does not depend on the metric smooth-
ing method either. The Fourier transform of the func-
tionw(r) is

w(K) = Im(r) e’ "d

The function

= —-Ikl (15

1
4mr?

everywhere, except the point x = 0; therefore, the quan-
tity (1/2)Q%w(r) in Eq. (13) describes the energy den-
sity of the electrostatic field. Since thereisasingularity
at the coordinate origin, @ (k = 0) = 0; i.e., the integral
of w(r) is zero throughout the space. Thisimplies that
the divergence of the electrostatic field energy is offset
by an infinite negative energy at the center.

The remaining components of the energy—momen-
tum tensor in the limitry — O are

w(r) =

T =0, (16)
Tg = %[m(BnanB—éaB)é(r) an
+Q*(2ngNg —Byp)w(r)].
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The Fourier transform of the spatial energy—momen-
tum tensor componentsis

2
~a _ TIQ’k

kokep
ar, (18)

For the Schwarzschild metric (Q=0in (8)), theterm
md(r) in T\, which corresponds to a point charge, can
be obtained directly if the presence of theterm A(1/r) in

GL is taken into account. A more complex generalized

function w(r) emerges as the source in the case of
Q# 0. It owesits origin to the fact that A(1/r?) appears
in Gy.

Thus, the Schwarzschild and Reissner—Nordstroem
solutions can be extended to the entire space if a point
source is added to the energy—momentum tensor. This
assertion can be applied both to a point charge and to a

black hole, since the charge-mass relation was used
nowhere.

In standard units, Eq. (13) can be written as

0 = mc28(r) +%Q2m(r), (19)

where w(r) is defined in (14). Note that the gravita-
tional constant does not appear in this expression. It is
easy to verify that the limiting formulas (16)—18) for
the energy—momentum tensor do not depend on the
gravitational constant either. Therefore, the results are
also valid for flat space-time. Thus, general relativity
allows the energy—momentum tensor of a stationary (or
uniformly moving) point chargeto befound in classical
electrodynamics. In this case, the total energy of the
charge isfinite.

5. KERR-NEWMAN METRIC

Let us use the same procedure to anayze the struc-
ture of the singularity in the Kerr—Newman metric [7]:

ds® = n, dx'dx*

o 20
+‘PEdt (rx +r[xxa]u+aﬂ(aD<))de (20)
O r(r +a) D
Here,
2
Yy = _9__:_2_@_2, (21)
2, (ax)
2

r
where a is a space vector, a is its magnitude, and r is
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Fig. 1. Electric (8) and magnetic (b) field linesfor the Kerr-
Newman solution. Theregion of closed electricfield linesis
hatched.

defined by the equation
r*—r’(x*-a’) - (ax)* = 0. (22)

It is easy to show that this is the standard Kerr—
Schild representation if the vector a is directed along
the z axis. The surfaces of constant r are €ellipsoids of
revolution whose axis coincides with the direction of
the vector a. At r = 0, the dlipsoid degenerates into a
disk of radius a. On this disk, the metric is continuous,
but the components of the metric and the 4-potential of
the field have a kink, while the electromagnetic field
strengths have a discontinuity (see the figure). This
implies that there is a singular distribution of mass,
charge, and currents on the disk that is not embodied in
the energy—momentum tensor of the electromagnetic
field.
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Let us construct a solution similar to solution (10)
by substituting W with the function

2
Q_—Zgl(rze(r—ro)
r2_'_(a 2)

r
2
=-2mr
T LT
24 (alk
0 2
o

Y =

(23)
-r).

The constructed solution is continuous everywhere, but
its derivative has adiscontinuity at r =r,. To satisfy the
Einstein equations, the (0, 0) component of the energy—
momentum tensor must have the form

I SIS
, To(2Mro— Q%) (ro-3(a3)°)
8rr’(r' + (ax)?)

2 2 2
r 1
=2 Do(r o)

y (r4rg_(a D()4+ r632+ rZ(a D()ZaZ)

(ro+(am)?)’

O(ro—r) (24)

, To(Mro(rs—3(a 39°) - Q°(rs—(a %))
81(15+ (aX)*)’

x (rga’ = (a 3)*)8(r —ro),
where
p = r’+(ax)’r’
The contribution from each of the three parts of Tg to

the self-energy for r, — O isadiverging quantity, but
the divergences remarkably cancel out in the sum:

e. @, Qlo+a)n

ar, 4rla
5ra+a’)\
+(2mr g — Q%) o0 2a) -3 (25)
4rga r'd]

_2Q°-5mr, , (2Q°rg—m(5ro+a)) _ o
2r, 2r,a -

where

A = arctan [ED.

]
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Thefirst, second, and third rows of thisformula are the
contributionsfrom theregionsr >ry, r <ry, and the sur-
facer =rg, respectively. The contribution from each of
the regions depends on the metric smoothing method.
For example, if the functions g, are chosen in such a
way that the derivatives dg;/or are continuous at r,
then the term with the & function will disappear in
Eqg. (24). However, the total energy E, asin the case of
the Reissner—Nordstroem metric, does not depend on
the metric smoothing method (see Appendix). The
result obtained can also be extended to the Kerr metric
(it will sufficeto set Q = 0in Egs. (20)—(25)).

The energy—momentum tensor also allows the total
angular momentum of the system to be determined.
Because of the azimuthal symmetry, there is a Killing
vector, n = 0/0¢, that allows the following conserved
current to be introduced:

01" = 0.

I' = T\, (26)

The total angular momentum is defined by the equality

M = IonJ—T;l" = Idst?gTEnk (27)
The contributionsfromtheregionsr >ry, r <r,, andthe
surface r = ry to integral (27) in the limit r; —= 0O
diverge, but these divergences cancel out, and the total
angular momentum proves to be finite, irrespective of
the metric smoothing method:

M:Q_Zg\tﬁ+r_ __+
4 0Ly, al r(J]
27 O
+(2mry— Q)[A§+%+a _SMo_3ag 5
43> 4 da 4rg

5mry—2Q1 2Q0 @ snfl _
—(a"‘f)D\ﬁ o2 o aro z—gé—ma.

In our calculations, we used the Mathematica 5 code
(Wolfram Research, Inc.).

6. CONCLUSIONS

As we showed here, for the Schwarzschild, Kerr,
Reissner—Nordstroem, and Kerr—Newman solutions to
satisfy the Einstein eguations in the entire space,
including ry = 0, singular terms containing generalized
functions must be added to the energy—momentum ten-
sor. In this case, the total energy for all solutions is
finite and equal to mc?. For solutions with a nonzero
charge, thisaddition playstherole of Poincarétensions;
i.e., an infinite negative mass that compensates for the
electrostatic energy of the charge islocated at the cen-
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ter. The emergence of a negative mass when regulariz-
ing the metric was also pointed out in [8].

Thefact that the gravitational attraction for test par-
ticles transforms to repulsion even at the classical
radius Q%/mc? also suggests the existence of a negative
mass for solutions with a nonzero charge. This can be
verified by analyzing the equations of motion for test
particles.

It follows from the results obtained that a self-con-
sistent classical electron modd cannot be constructed
without invoking additional fields (or matter) with
unusual properties. These fields must give a negative
contribution to the energy.
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APPENDIX

The smoothed solutions and the corresponding total
energy were analyzed in a number of papers (see,
e.g., [8] and referencestherein). Here, we show that our
definition of E (Eq. (7)) yields aresult that is not only
invariant relative to coordinate transformations, but
also does not depend on the metric smoothing method
in the important specia case where the Kerr metric
structure (20) is retained after smoothing.

The commutator of the covariant derivatives (see,
eg.,[9)is

(00 -0,098; = EmRmikI’ (29)

where R,y is the Riemann tensor. Multiplying this
expression by g yields the Ricci tensor on the right-

hand side:
O0E -0,08 = <Ry (30)
In this formula, &' is an arbitrary vector. Let &' be the

Killing vector. The second term in (30) then vanishes,
and the following relation is obtained:

0" = R, (31)
Since & X is an antisymmetric vector, we have
oo = L9 _gik g (32)
J—gox axt
and arrive at the equality
O(R'g) = 0. (33)
No. 6 2005
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It turns out that not only TE,, but also the vector RYE,
is conserved. It thus follows that the equality

kaR

O«(REY) = E (34)

where Ris the scalar curvature, is valid. However, the
latter expression is obvious, since the Killing vector is
a generator of transformations that do not change the
metric.

It follows from equality (32) written in the form

Rkl _ ik 35
& = J_a (J_E ) (35)

that the quantity
Idsx«/—_QIRk|E| - fds/\/__g&i;k; (36)

thus, it does not depend on the metric smoothing
method in theregionr <.

For ametric of form (20) with an arbitrary function
W(r, 0), the scalar curvatureis

R = —ﬂe—a—[(r +a’cos e)LP(r 0)].

J-gor®

The formula can be verified by direct, but cumbersome
calculations. Therefore, theintegral of the scalar curva-
ture appearing in the total energy,

(37)

—%IRA/—gdrdedq) = %
0’ (38)

31"+ aoos’®) w(r, )] or sinadado,
r

does not depend on the behavior of W(r, 8) intheregion
I <rq. In other words, quantity (38) does not depend on
the metric smoothing method in theregionr <rg either.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

GOLUBEV, KELNER

We only need to require that the following equality
hold:

oW(r.0) —o
ar r=0

It follows from Egs. (36) and (38) that the scalar

[Re- %QEF%Ek@d3x,

which is proportional to self-energy (7), is insensitive
to the metric smoothing method.

In asimilar way, we can prove that the total angular
momentum (27) does not depend on the metric smooth-
ing method either. The proof is easier, since the term
with the scalar curvature does not contribute to the total
angular momentum.

(39)
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Abstract—The temperature dependence of the zero-field susceptibilities of 2D and 3D Ising lattices with
anisotropic coupling is analyzed. Infinite 2D and 3D lattices are approximated, respectively, by ensembles of
independent L x oo and L x L x o chain clustersthat areinfinitely long in the strong-coupling (J) direction. This
approach is used as abasisfor aquantitative description of available experimental data on the magnetic suscep-
tibilities of the 2D anisotropic |sing ferromagnet [(CH53)3sNH]FeCl; - 2H,0 (FeTAC) and the quasi-one-dimen-
sional 3D systems CoCl, - 2NCsHs and FeCl, - 2NCsH5 in the entire experimental temperature range. A method
is proposed for determining the relative interchain coupling strength J/J from the maximum susceptibility
value, which improves the accuracy of estimates for J'/J by more than an order of magnitude. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Various currently known materials are Ising mag-
nets [1, 2]. Even though the Ising coupling has an
extremely simple form, the macroscopic properties of
these materials, such as magnetic susceptibility, are
very difficult to calculate. It should be noted that no rig-
orous closed-form expression for the longitudinal com-
ponent of susceptibility has been obtained to this day
even in exactly solvable Ising models. Moreover, there
are reasons to believe that no such expression can be
found in the class of differentially finite (holonomic)
functions[3-5] (see also [6]).

The subject of thisstudy isthe magnetic susceptibil-
ity of quasi-one-dimensional |sing magnets. Systems of
two types are considered: anisotropic square lattices
with coupling constants J and J' such that |J/J| < 1, and
simple cubic lattices with dominant interaction along
one axis represented by J and equal constants J' of
interaction aong the remaining two orthogonal axes.

Crystals of [(CH3);NH]FeCl; - 2H,0 (FeTAC) have
a 2D magnetic lattice consisting of bonded spin chains
lying in aplane [7-10Q]. In crystals of CoCl, - 2NC:H;
[11-14] and FeCl, - 2NCsH5 [15-17], chains of mag-
netic ions are bonded into 3D systems. All of these
materialsaretypical quasi-1D Ising superantiferromag-
netsthat can be modeled by effective spin-1/2 Hamilto-
nians (with J> 0 and J' < 0). As temperature decreases,
ferromagnetically ordered spin chains become antifer-
romagnetically ordered. Their magnetic susceptibilities

have distinct maxima at temperatures T,,, above the
respective critical points T.. The phase transition man-
ifests itself in the susceptibility curve as an inflection
point where the tangent line to the curve is infinitely
steep (intheideal case).

The susceptibility of a 2D Ising lattice was calcu-
lated in [18] for the entire temperature range (in theory,
from zero to infinity). The approximation used in that
study (decoupling of many-spin correlation functions)
is accurate within 0.35% in the isotropic model. How-
ever, the analysis presented below shows that the error
in the coordinates of the susceptibility maximum
amounts to tens of percent even for J/J =-0.1 (J > Q).
Therefore, this approximation cannot be applied to
guasi-1D systemsin practical calculations.

The results obtained for 3D systems are even less
accurate. The most reliable calculations of susceptibil-
ity for such systems make use of power series expan-
sions. For the zero-field longitudinal susceptibility of
the isotropic simple cubic Ising lattice, high-tempera-
ture expansions to the 25th- and even 32th-order terms
were obtained in [19, 20] and [21], respectively. How-
ever, analogous expansions for anisotropic lattices are
known only to the 10th- or 11th-order terms (see [22]
and [23], respectively). Moreover, partial sums of the
seriesrapidly diverge with increasing | attice anisotropy.
In what follows, it is demonstrated that the available
high-temperature series expansions of superantiferro-
magnetic susceptibility [24] result in unacceptably
large errors for |J'[/J = 10 (even after their conver-
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gence is improved by Padé-Borel resummation). Note
that interpretation of the experimental data discussed
here requires modeling with an even smaller value of
this parameter.

In this paper, susceptibilities are calculated by using
cluster ssimulation. It is well known [25-27] that vari-
ous characteristics cal culated by thismethod (including
susceptibility) converge to their values for an infinite
system at an exponential rate with increasing cluster
size everywherein the parameter space except for anar-
row critical region. However, this region cannot be
resolved by modern experimental methods for the
guasi-1D materials discussed here.

In view of the specific anisotropy to be modeled,
chain clusters of infinite length in the direction of the
dominant interaction J are used as subsystems (L x o
stripsand L x L x co parallelepipedsfor 2D and 3D sys-
tems, respectively). Undesirable surface effects are
eliminated by setting periodic boundary conditions in
the transverse directions for subsystems of both types.
Furthermore, frustration is obviated by using chains of
lengthL =2, 4, ... (measured in units of the lattice con-
stant), with the only exception of asingle chain (L = 1).
Thus, the magnetic lattice of an L9~ x co superantifer-
romagnetic cluster (in space of dimensiond = 2 or 3)
consists of two identical interpenetrating sublattices
with opposite magnetic moments.

In Section 2, formulas for susceptibilities are pre-
sented, including both general expressions well suited
for computations and exact asymptotic ones. The cum-
bersome analytical formulas derived for few-chain sub-
systems are relegated to the Appendix. In Section 3, the
strip width ensuring the accuracy required to calculate
the susceptibility of FETAC isdetermined. In Section 4,
the corresponding calculated results are presented. Sec-
tions 5 and 6 contain results for 3D systems analogous
to those presented in the preceding two sections. Sec-
tion 7 summarizes the principal results of this study.

2. CALCULATION OF SUSCEPTIBILITIES
The anisotropic Ising Hamiltonian is written as

1 1 zZ_Z
i, 1]

_ 1 z 7
H = _ZJZO‘Gi
4, jo

where the Pauli matrices o arelocalized at the sites of

asguare or simple cubic lattice. The sumswith [, jCand
[i,]] aretaken over the nearest-neighbor pairs aong the
directions corresponding to J and J', respectively.

According to Kubo's linear response theory [28, 29],
the static zero-field susceptibility tensor is

B
va = _Bwvmqu+IdB'wv(B')MpD (2)
0
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Here, pandv standfor x, y, or z; B = 1/kg T istheinverse
temperature measured in energy units (ks is Boltz-
mann’s constant); angle brackets denote ensemble-
averaged quantities; M, is the projection of the mag-
netic moment of the system on the p axis; and M, (B) =
ePHM, e isa component of magnetization in the Mat-
subara representation.

Note that superantiferromagnets, being character-
ized by zero total spontaneous sublattice magnetiza-
tions, have zero magnetic moments in the absence of
applied field: M, 0. Therefore, the first term on the
right-hand side of (2) vanishes under the conditions
considered in this study.

The component of the magnetic moment parallel to
thezaxisis

N
1 z
M, = §9||UB_ZlGi , ©)

where g is the longitudinal g factor, pg is the Bohr
magneton, and N is the total number of particlesin the
system. Since M, commutes with Hamiltonian (1) and
[M,[= O, the expression for the molar zero-field longitu-
dinal (parallel) susceptibility obtained by substituting (3)
into (2) is

N N gZUZ N
= lim =2 = AJITB Z 5%
Xi(T) = lim X = 20T I\IIIEnoo‘Zl 005 (4
]:

where N, isAvogadro’s number and iy is any particular
site in a uniform lattice (x;, is independent of its loca-
tion). To evaluate the longitudinal susceptibility, one
must calculate and add up all spin—spin correlation
functions and take the infinite-lattice limit.

Thelongitudinal susceptibilities of single-, double-,
and four-chain Ising models are known in analytical
form (see Appendix). An analysis of these formulas
showsthat the predicted variation of the susceptibilities
of superantiferromagnetic clusters with temperature is
in qualitative agreement with experimental data. The
susceptibility curve hasapeak (seeFig. 1), and itsmag-
nitude indefinitely increases with lattice anisotropy. At
temperatures below the maximum point, the suscepti-
bility curve has an inflection point that approximately
corresponds to the critical point of the entire system.
The dope of the tangent line at the inflection point
increases with the number of chains in a subsystem,
approaching infinity.

For subsystems consisting of a larger number of
chains, the susceptibility can be found only by numeri-
cal methods. One formula well suited for computing

No. 6 2005



MAGNETIC SUSCEPTIBILITY

the longitudinal susceptibility of an L9-* x o Ising
cluster by the transfer matrix method is[30, 31]

5)
z—lu RO

Here, the primed sum skips the term withs=1; n =
L9-1 is the number of chains in a cluster; A and f
denote eigenvalues and the corresponding eigenvectors
of the transfer matrix, respectively (the largest eigen-
value A, is nondegenerate by the Perron—Frobenius the-

orem [32]); and the matrix G, isdefined as

O = 1x..x1x0g,x1x.. x1, (6)
Inthisdirect product of n matrices, the kth multiplicand
is the Pauli matrix a,, and the remaining ones are two-
dimensional identity matrices. The 2 x 2"-by-2 x 2
transfer matrix V has the elements

[0, .-y

o,V|oy, ...,00

= exp ZGG+ K'[Z](O'O' +00} ™
i

i=1

where g; = £1 are collinear spinsin the cross section of
an L9-1 x oo |attice, K = J/2kgT, and K' = J/2kT. The
transfer matrix V is a positive real symmetric one.
Expression (5) follows from (4); i.e, it can be
derived from Kubo's linear response theory. A physi-
cally equivalent expression that has a somewhat differ-
ent form was obtained by developing a perturbation
seriesin external field for the transfer matrix [33, 34].

The key problem in evaluating the susceptibility is
thus reduced to the eigenval ue—ei genvector problem for
thetransfer matrix V. Here, thisproblem is solved either
by direct numerical diagonalization of the matrix V or
by diagonalizing the subblocks constituting the transfer
matrix block diagonalized by using cluster symmetries.

Starting again from Kubo’s formula (2), one can
readily show that the expression for the transverse sus-
ceptibility x;isalinear combination of afinite number
of local 0% correlation functions. These correlation
functionsand x; have been calculated only for isotropic
2D lsing lattices [35-37].

The available analytical expressions for the trans-
verse susceptibilities of single- and double-chain Ising
models are written out in the Appendix. Figure 2 shows
these susceptibilities as functions of temperature and
demonstrates that the transverse susceptibility of a
guasi-2D system only dlightly deviates from that of a
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0.8+

0.4

0 1 2 3
kgT/J
Fig. 1. Longitudinal susceptibility for Ising chain models

(measured in units of N Agﬁué /J) vs. normalized tempera-

ture: (1) linear ferromagnetic chain; (2) double chain with
ZJ13 =-0.5 (3 > 0); (3) four-chain cylinder with J > 0 and
zJ/2)=-0.1.

X0
0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0
kgT/\J|

Fig. 2. Zero-field transverse susceptibility (measured in

units of N AgéuzB/J) vs. normalized temperature: (1) 1D

chain (J' = 0); (2) double chain with Z|J'/J| = 0.1; (3) free
spins (J=J'=0).

single chain in the entire temperature range, in contrast
to the longitudinal susceptibility. Therefore, practical
calculations of the transverse susceptibility of atypical
guasi-2D magnet can be performed by using the for-
mulafor asingle chain.

No. 6 2005



1080

An Ising magnet is an easy-axis one. The suscepti-
bility of such a material in polycrystalline (powder)
formis

1 2
Xp = 3Xi* 3Xo- (8)

At high temperatures, the longitudinal susceptibility
of an Ising magnet obeys the Curie-Weiss law:

X(M=ss, T oo ©

This expression follows from the lowest order termsin
the high-temperature expansion of the susceptibility of an
infinite Ising lattice with anisotropic coupling [22, 23].
The Curie constant in (9) is expressed as

N gzuz
— A B

= "2k (10)
and the Curie-Weiss temperature is

_ 1,10
'3——D]+§Z'JD

(11)
Here, Z isthe number of nearest-neighbor chainsin the
system: Z =2 and 4 for 2D and 3D lattices, respectively.

It follows from exact low-temperature expansions
obtained in [36, 38, 39] that the longitudinal suscepti-
bility of the entire system in the two- or higher dimen-
siona space vanishes exponentially as T — 0. At
absolute zero temperature,

X(0) = 0.

Since the clusters with even L considered here have
zero magnetic moments and an infinitesimal external
field cannot induce any magnetic moment that
requires afinite amount of work to be done, boundary
condition (12) is automatically satisfied for L4-1 x o
subsystems with d > 1.

At high temperatures, the transverse susceptibility
obeysthe Curie law [36, 40]:

(12)

C
Xo(T) = 75 T— w. (13)

(Itisequal to the magnetic susceptibility of free spins.)
The Curie constant in (13) is expressed as
Cc = NAQ%HE

O 4kB ]
where g is the transverse g factor. As T — 0, the
transverse susceptibility tends to a finite limit [35, 36]

(14)
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(see also [40]). For the anisotropic lattices of interest
for the present study,

NAgsz-ZB

Xo(0) = 2210+ 2137 (15)

An expression for the relative interchain coupling
strength is found by combining (11), (14), and (15):

|J] _ 2C5—9%c(0)

J T 2C,+9%,(0) (16)
For |J')/J > 0, it entail s the constraint
C
Xo(0) <5 (17)

Thus, the susceptibility measured at high temperatures
imposes a constraint on its value at extremely low tem-
peratures. A comparison shows that the experimental
data obtained for FETAC in [7] satisfy inequality (17).
According to (8)—«11), (13), and (14), the powder
susceptibility at high temperatures also decreases as

C
Xp(T):TT@ (T —= ), (18)
where
g (o1, .0
= —=l Uy 2z34 20
Grodks 20

At zero temperature, the powder susceptibility reduces
to its transverse component:

_ _ Nagiis
%) = 3T+ 210y @

Expressions (19)—(21) combined with theinequality
(gi — 2g%)? 2 0 yield a congtraint on the relative cou-
pling strength in an anisotropic system:

31 2C=40x,(0)
H = ZC+40x,(0)’ (22)

This inequality, in turn, entails an upper bound for the
low-temperature plateau in powder susceptibility with
e>0:

C

Xo(0) < 75 (23)
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0.12 . T |

10 V')iI=1

0.08

0.04

0 1 2

1
3 kgTlJ

Fig. 3. Longitudinal susceptibility for L x co superantiferro-
magnetic Ising stripswith L = 2-10 and |J'//J = 1 (measured

in units of NAgﬁué 1J).

Itisshown in Section 6 that available experimental data
for CoCl, - 2NCsH5 [11] support thisinequality.

3. CONVERGENCE ANALY SIS
OF CLUSTER EXPANSIONS FOR 2D SYSTEMS

Before applying any particular approximation to
guantify experimental data, it should be verified that the
systematic error of the approximation is smaller (at
least, not greater) than the measurement errors.

First, let us analyze the convergence of cluster
expansions for 2D systems. Figures 3 and 4 show the
longitudinal susceptibilitiesof L x o Ising stripswith L
varying from 2 to 10 computed for |J'|/J = 1 and 1073,
respectively. Theinterval between these extreme values
containsthe relative interchain coupling strengths char-
acteristic of most Ising magnets actually used in exper-
iments. When |J'/J| issmaller, dipole—dipoleinteraction
plays asignificant role.

The susceptibilities were computed by using for-
mula (5), where the eigenval ues and eigenvectors were
found by direct numerical diagonalization of the start-
ing transfer matrices having dimensions no higher than
210 = 1024 with the use of the C subroutines tred2 and
tqli [41]. The output data also included the coordinates
of the susceptibility maximum.

Figures 3 and 4 illustrate the convergence of suscep-
tibility with increasing subsystem size. In both extreme
cases, |J/J = 1 and 1073, the curves obtained for the
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X
120 | .
V')J =103
80}
401 n
| 1
0 0.1 0.2 kgT/J

Fig. 4. Longitudinal susceptibility for L x co superantiferro-
magnetic Ising strips with L = 2-10 and |J'})/J = 10™ 3 (mea-

sured in units of NAgﬁué 1J).

strips with L = 8 and 10 nearly coincide; i.e., these
results correspond to the infinite 2D lattice up to the
resolution of the graphs.

The approximation accuracy can be reliably esti-
mated by comparing the maximum values of longitudi-
nal susceptibility. The maximum is in the subcritical
region, where the convergence follows a stretched
exponential, if not a power, law.

Table 1 lists the coordinates of the longitudinal sus-
ceptibility maxima for 1sing cylinders. The extrapola-
tion to the thermodynamic limit (L = o) was performed
by applying the Shanks transform [26, p. 225], which

maps asequence{a} to{a } according to the formula

2
A_1q 41—
a_1ta,,—24

a = (24)

Theresults presented in Table 1 demonstrate thefol -
lowing trends. The relative estimation error decreases
with weakening interchain coupling from 1.3% for
|J/J= 1 to 0.27% for |J'|/J = 103. Furthermore, the
maximum longitudinal susceptibility increases with
decreasing |J'|/J as

(max)

JX 0.1

||2 5 = m (25)
NAQ| Mg
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Table 1. Coordinates of longitudinal-susceptibility maxima
for cyclic L x co superantiferromagnetic Ising strips with dif-
ferentLand A= [J'/J(JI>0,J' < O) upper and lower values
are kg Tad/J and Jx|(|" “)IN Ag”pB , respectively. Extrapola

tionto 2D stripswith L = oo is performed by applying Shanks
transform (24) to stripswith L = 6, 8, and 10.

L A=1 | A=10" | A=102 | A=103
2 | 1.957443 | 0593380 | 0.301827 | 0.193399
0.080142 | 0.853605 | 8.577071 | 85.786055
4 | 1723455 | 0563281 | 0.292302 | 0.189102
0.097244 | 1.000137 | 10.019720 |100.203811
6 | 1.640401 | 0550014 | 0.287992 | 0.187135
0.101008 | 1.034448 | 10.360714 |103.612905
8 | 1603729 | 0543665 | 0.285905 | 0.186177
0.102075 | 1.044801 | 10.463915 |104.644760
10 | 1587364 | 0.540669 | 0.284914 | 0.185721
0.102404 | 1.048171 | 10.497584 |104.981419
o | 157(2) | 0538(3) | 0.2840(9) | 0.1853(5)
0.1026(2) | 1.050(2) |1051(2) |105.1(2)

However, the error of estimation of the maximum
value, unlike kgT,,./J, is @most independent of lattice
anisotropy. For L = 10, it is approximately 0.2%. This
accuracy is sufficient for quantitative description of
available experimental data.

Let us now discuss the accuracy of the approxima
tion used in [18]. According to Table 1, we find that the
maximum longitudinal susceptibility of the 2D lattice
with |J')/J = 107 corresponds to kgT,/J = 0.538(3),

and its value is JX{"™/Nagipa = 1.050(2). On the

other hand, the results presented in [18, Fig. 5] for the
same superantiferromagnet demongtrate that the maxi-

mum has the coordinates kg Tq,/J = 0.656 and Jx ™ =

0.809 (with redefined coupling constants). Thus, the
errors of estimation of the maximum value and the cor-
responding temperature in the approximation used
in[18] are 22 and 23%, respectively; i.e., the theory
developed in [18] is too inaccurate to be applicable to
experimental data even for weakly anisotropic lattices.

Theinverse variation of maximum longitudinal sus-
ceptibility of superantiferromagnetic lattices with rela-
tive interchain coupling strength described by empiri-
cal formula (25) can be explained as follows. The criti-
cal temperature for anisotropic 2D Ising lattice satisfies
the equation [42]

snh— [J] snh— [J] = 1.

KT, KT (26)
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As|J)/J — 0, this equation yields

kBTc O J ]

|J'
=2 4
O] kBTcD

J J

(27)

On the other hand, the longitudinal susceptibility of a
typical quasi-1D Ising superantiferromagnet at temper-
atures dightly above the maximum point is well
approximated by the formula for the longitudina sus-
ceptibility of asingle Ising chain. Moreover, the maxi-
mum point approaches the critical temperature with
increasing lattice anisotropy. Therefore, assuming that

Toax = Te and X{™ 0 x{" (Tra), We combine (27)
with (A.1) to obtain

(max)

X
NAQWB

o g™

558 - (28)

Thedatalisted in Table 1 demonstrate that relation (28)
holds in a surprisingly wide interval extending almost
to|J]=J.

4. ZERO-FIELD MAGNETIC SUSCEPTIBILITY
OF SINGLE-CRYSTAL FeTAC

Single crystals of ferrous trimethylammonium chlo-
ride (FETAC) are characterized by the most pronounced
quasi-one-dimensional magnetic ordering among the
class of compounds described by the formula
[(CHZ)sNH]IMX 3 - 2H,0, where M denctes a metal
(such as Co, Fe, or Ni) and X is chlorine or bromine
(see[8, 43] and referencestherein). Physical properties
of FETAC are the subject of extensive experimental
studies.

The static zero-field magnetic susceptibility of
FeTAC single crystals was measured in [7] at tempera:
tures ranging from 1.4 to 300 K. The susceptibility
along the easy axis (crystallographic b axis) is inter-
preted as the longitudinal susceptibility: x, = X

According to [7], its maximum value ™ =
100 cm®/mol is reached at T, = 3.18(2) K, and the
critical temperature determined from the steepest
slope of longitudinal susceptibility below T, iS T, =
3.12(2) K (i.e.,, T,/T. = 1.02). At temperatures well
above T, the susceptibility obeysthe Curie-Weisslaw.

The quantitative interpretation of measured suscep-
tibilities presented in [7] is based on the single-chain
approximation. Therefore, it is applicable only at tem-
peratures above T,.,,. By fitting the longitudinal sus-
ceptibility of the 1D Ising chain to experimental data
points in the interval between 6 and 18 K, it was found
that C, = C;; = 5.52(4) cm? K/mol (Curie constant) and
9 = Jkg = 16.6(1) K [7]. Combining these results
with (10), we obtain the longitudinal g factor: g, =
7.67(3).
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Moreover, the relative interchain coupling strength
was estimated in [7] by using awell-known expression
for the susceptibility of a quasi-1D system with cou-
pling between chains described in the molecular field
approximation [44],

(MFA) _

Xi = (29)

(lD)/%l ZC” I(IlDH

By fitting this theoretical formulato experimental data
on susceptibility in the interval between 3.2 K (again
above T,,,,) and 18 K, the approximate value J/J = -2 x

103 was obtained [7].

According to the results of measurements of the spe-
cific heat of FETAC reportedin[8], T, = 3.125(5) K and
Jkg = 17.7(3) K. Onsager’s solution (26) was used
in[8] to obtain |J/J] = 1.3 x 103 for FETAC.

Before discussing the results on FETAC obtained in
the present study, let us note that the use of dependence
of kgTJ/J on J/J is not the best method for finding the
interchain coupling strength in quasi-1D systems.
Indeed, (27) entails the following relation between the
relative errors in normalized interchain coupling and
reduced temperature:

i

ke Tq7 xKeTqy
030 = [1+DJ }6

0 650 (30

Therefore, the error in |J')/J estimated from T, increases
with coupling anisotropy (since kg T/J decreases).

The same conclusion can be reached in a different
manner. Transcendental equation (26) is easily solved
on acomputer to obtain curve 1in Fig. 5. However, the
inaccuracy of input data should be taken into account.
Following [8], let us use T, = 3.125 + 0.005 K and
Jkg = 17.7 £ 0.3 K. Then, kgT/J = 0.177 + 0.003, the
corresponding relative error is 1.7%, and the relative
error in the result |J')/J = (1.1-1.4) x 102 obtained by
solving (26) is 12%. This sharp increase in eror is
explained by arapid increase in the stegpness of curve 1
with decreasing J/J (see Fig. 5).

Alternatively, theratio |J'|/J can be determined for a
superferromagnetic system by using maximum suscep-
tibility values (curve 2 in Fig. 5). According to (25),

IX™ INAgjus varies in inverse proportion to |J'/J.

Thisrelation obviously implies that the respectiverela
tive errorsin these parameters are equal ; therefore,

515 = 5(x™) + s+ 8(C).

030 (31)

One important advantage of this method for estimating
|J'|/J over the one discussed above is that the error is
independent of lattice anisotropy.
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Fig. 5. Reduced critical temperature (curve 1) and maxi-
mum value of normalized longitudinal susceptibility
(curve 2) vs. |J|/J for 2D superantiferromagnetic Ising lat-
tices.

The principal result of this section is a quantitative
description of the magnetic susceptibility of FETAC in
the entire temperature range down to absolute zero.
Computations were performed for a 10-chain strip to
ensure that the approximation error is much smaller
than measurement errors. (L x co stripswith L =12, 14,
and larger could easily be simulated on a modern com-
puter if necessary.)

Expression (5) for longitudinal susceptibility con-
tains three parameters: J/kg, g, and J/J. Asin [7], the
function x> (T) wasfitted to experimental datapoints
at temperatures of 6 K and higher to obtain Jkg =

16.6 K and g, = 7.67. By matching the computed max-
imum susceptibility with that measured in [7] (T =

318K, x ™ =100 cm®mol), it was found that J/J =
—0.00138 with an error in the last digit.

Figure 6 demonstrates that the curve computed in
the present study agrees with experimental data for
FeTAC obtained in [7]. It should be reiterated here that
the theoretical description of experimental data on sus-
ceptibility given in [7] is valid only at temperatures
above the maximum point, when the single-chain
approximation is applicable.
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5. CLUSTER EXPANSIONS
FOR 3D SYSTEMS

Modern computers can be used to simulate 3D Ising
chain clusters only for L < 4. Note that exact expres-
sionsare available for the susceptibilities of the double-
chain cluster and the 2 x 2 x o parallelepiped (see
Appendix).

To find the eigenval ues of the 65536 x 65536 trans-
fer matrix of the cyclic 4 x 4 x o |sing parallel epiped,
both lattice and spin symmetries were used to represent
it in ablock diagonal form consisting of 433 x 433 and
372 x 372 subblocks, whose eigenvalues and eigenvec-
tors are required to calculate the susceptibility given
by (5) [34]. Exact diagonalization of these relatively
small subblocks can readily be performed on a PC.

The next larger cluster that should have been simu-
lated inthe present study isthe 6 x 6 x co parallel epiped.
However, the corresponding transfer matrix is 2% x 2%,
and the dimensions of the subblocksinits block diago-
nal form determined by using the symmetries of the
system (as in the case of the 4 x 4 x o cluster) are
119583470 and 119539680 [34]. The complete solu-
tion of the spectral problem for these matrices is far
beyond the capabilities of present-day supercomputers.
To date, computations have been performed for the 6 x
6 x oo |Sing system only at the quantum limit and afew

Xp» cm3/mol

100 -

80

60

40

0 2 4 6 8 10 12 14
T.K
Fig. 6. Magnetic susceptibility of FETAC aong the crystal-
lographic b axis. measurement data from [7] (symbols) and
X2 (T) calculated for Jkg = 16.6 K, gy = 7.67, and

J1J=-1.38 x 1072 (curve).
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lowest eigenvalues of the corresponding sparse Hamil-
tonian matrix have been calculated [45].

For this reason, the present analysis is restricted to
2x00,2x2x00, and4x4xoo clusters. Figure 7 illus-
trates the convergence of the zero-field susceptibilities
computed for 3D clusters (curves 2—4) with respect to
the number of chains in a cluster. The trends shown
here are qualitatively similar to those manifested in the
2D simulations (Figs. 3 and 4): the maximum suscepti-
bility increases with the cluster size, while the corre-
sponding reduced temperature decreases. ASL — oo,
the coordinates of the maximum must approach their
respective limits. However, these limits cannot be cal-
culated by Shanks extrapolation for lack of solution for
the 6 x 6 x oo cluster. (Unfortunately, the 2 x oo chain
cannot be used in an extrapol ation process, becauseitis
not atruly 3D cluster.)

The accuracy of the 4 x 4 x « approximation used
here for comparison with experiment can be estimated
indirectly by invoking the results of a Padé-Borel
resummation of high-temperature expansions for the
susceptibility of an anisotropic 3D Ising lattice [24]. In
that study, the coordinates of the superantiferromag-
netic susceptibility maximum were presented as func-

Xio

6

\'[iJ =102

0 0.2 0.4 0.6 0.8
kgT/J

Fig. 7. Longitudina susceptibility for Ising clusters with
[F)I = 1072 (measured in units of NAgﬁué 13): (1) linear
ferromagnetic chain; (2) double chain with quadrupled
interchain coupling; (3) cyclic 2 x 2 x c and (4) cyclic 4 x
4 x oo parallelepipeds. The crossisthe maximum cal culated
in [24]. The transverse susceptibility of alinear Ising chain
(measured in unitsof N gépé 1J) is shown for comparison

(curve5).
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tions of J/J (see Table 1 in [24]). In the isotropic case
(93 = 1), when high-temperature expansions must
lead to reliable results, it was found that kT, 5/J =

2.400(25) and Jx|™ INAgipa = 0.058 [24]. In this

study, IX\ma " INAGiHE = 0.05547 is obtained for
the 4 x 4 x oo | attice, which islower by 4.35%. By anal-
ogy with the 2D simulations, it can be assumed that the
relative error in the maximum value is independent of
lattice anisotropy. (Actualy, the error even dightly
decreases with |J'J/J, which can easily be demonstrated
by using theresultsfor L = 4 presented in [24, Table 1].)
Then, the error of the 4 x 4 x oo @pproximation must be
about 4%. Since theoretical results are compared here
with experimental data on powder susceptibility, which
are not very accurate, the 4 x 4 x oo cluster approxima-
tion iswell suited for such a comparison.

As mentioned in the Introduction, high-temperature
expansions lead to increasingly inaccurate results with
decreasing |J'/J|, because they contain a small number
of terms. The crossin Fig. 7 represents the susceptibil-
ity maximum calculated in [24] for |J'|/J = 1072, with
ksT/J = 0.385(5) and Jx/NagiLia = 4.40(75). Accord-
ing to the figure, high-temperature expansions are even
less reliable than the 2 x 2 x oo approximation for this
degree of anisotropy. These results cannot be compared
to experimental data for such highly anisotropic super-
antiferromagnets as CoCl, - 2NCgHs (with |J'|/J < 1072).
Now, it is clear that the formal quantitative comparison
of thiskind presented in [24] is groundless.

Table 2 summarizes the coordinates of the suscepti-
bility maximum calculated for the 4 x 4 x o superanti-
ferromagnetic cluster. (The maximum longitudinal sus-
ceptibility is divided by 3 with a view to comparing
with powder susceptibility.) Asinthe case of 2D lattice,
the maximum longitudinal susceptibility varies in
inverse proportion with |J'|/J:

(4><4><oo)

‘JX”' max ~ 0019
3Nagiug 9173

(32)

Thisbehavior isexplained by anal ogy with the 2D case:
when the coupling between chains is described in the
molecular field approximation (while the intrachain
coupling is modeled exactly), the critical temperature
for the ferromagnetic simple cubic Ising lattice satisfies
the transcendental equation [44]

_Zaondd 0
KgT, = 2J expD(BTCD.

(33)

Since T, = T, and the maximum susceptibility is on

the order of xﬁlD) (T, for anisotropic superantiferro-

magnetic lattices with sufficiently high anisotropy, the
law formulated in (28) follows again from Eq. (A.1).
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Table 2. Normalized coordinates of |ongitudinal-suscepti-
bility maximum as a function of J'/J for 4 x 4 x oo |attices
withJ>0andJ' <0

I Ka T %xﬁf‘ga‘;* =)
~1.0000 25833625 0.01849229
~0.1000 0.7155626 0.18871242
~0.0100 0.3399309 1.89015328
~0.0095 0.3346111 1.98964522
—0.0090 0.3301889 2.10018741
~0.0085 0.3254978 2.22374800
~0.0080 0.3207257 2.36273906
~0.0075 0.3158513 2.52025948
~0.0070 0.3105331 2.70029750
~0.0065 0.3052407 2.90802557
~0.0060 0.2996506 3.15038075
~0.0055 0.2936108 3.43680225
~0.0050 0.2875449 3.78048335
~0.0045 0.2808194 4.20055926
—0.0040 0.2738453 472563875
~0.0035 0.2661257 5.40079611
~0.0030 0.2578018 6.30088685
~0.0025 0.2483499 7.56111673
~0.0020 0.2378198 9.45146198
~0.0015 0.2252555 12.6019164
~0.0010 0.2095811 18.9030324

Table 3 lists the coordinates of the inflection point
below the maximum and the corresponding slopes of
the susceptibility curve. It is clear that the abscissa of
the inflection point isalower bound for critical temper-
ature (cf. [34]). The numerical results presented in
Table 3 demonstrate arapid increase in the normalized
X' = 0x/0T with decreasing |J'|/J and show that the sus-
ceptibility at the critical point also variesin inverse pro-
portion to |J'|/J.

6. POWDER MAGNETIC SUSCEPTIBILITY
OF CoCl, - 2NC4Hs AND FeCl, - 2NC.Hs

The spin systems of crystals of the pyridine com-
plexes of cobalt and iron(ll) chlorides are 3D Ising lat-
tices with quasi-1D coupling [1, 2]. In these com-
pounds, Co?* or Fe?* ions are linked by next-nearest-
neighbor superexchange coupling through chlorineinto
linear chains separated by pyridine rings, which are
responsible for interchain coupling. At temperatures on
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Table 3. Normalized coordinates of the inflection point of
longitudinal susceptibility below its maximum and the values
of susceptibility and its temperature derivative at the inflec-
tion point as functions of J'/J for 4 x 4 x oo |atticeswith J> 0
andJ'<0

713 ke T/ %x;fi“‘”) % (4%)
~1.0000 | 1.947425 0.06298528 | 0.01244998
~0.1000 | 0.621899 3.41073780 | 0.13753748
~0.0100 | 0311571 | 110.197410 1.39414706
~0.0095 | 0.307526 | 119.120733 1.45608732
—0.0090 | 0.303649 | 127.885372 1.53655666
—0.0085 | 0.209877 | 139.597874 1.63723231
~0.0080 | 0.296189 | 151066706 1.76240864
—0.0075 | 0291462 | 166.471661 1.85697964
—0.0070 | 0287312 | 182.003965 2.00942967
—0.0065 | 0281839 | 205.372014 211081321
—0.0060 | 0277612 | 227.136261 2.33597593
—0.0055 | 0272541 | 254505992 2 55608624
—0.0050 | 0.267087 | 290.445604 281257312
—0.0045 | 0.260747 | 336.356921 3.06639337
—0.0040 | 0.254937 | 394.237723 3.50292699
—0.0035 | 0.248861 | 473.481579 410957821
—0.0030 | 0.241041 | 591045463 472049719
—0.0025 | 0.232527 | 745.165859 5.60393084
~0.0020 | 0.222934 | 1017.23093 6.95010013
~0.0015 | 0211715 | 1510.16621 9.23674430
~0.0010 | 0.197356 | 2567.00852 13.6273345

the order of the critical temperature, the only signifi-
cantly populated level in the energy level system of
metal ionsmodified by the single-ion anisotropy fieldis
the ground-state Kramers doublet, which is separated
from higher levelsby alarge energy gap. Therefore, the
coupling between these ions can be modeled by an
effective spin-1/2 Hamiltonian.

The data points in Fig. 8 represent the zero-field
magnetic susceptibilities of polycrystalline CoCl, -
2NC;H;5 and FeCl, - 2NCgH5 powders measured in [11]
and [17], respectively.

For CoCl, - 2NCsH; crystals, the Curie constant is
C = 2.82(5) cm®/moal, the Curie-Weiss temperature is
© =4.95(5) K, and the low-temperature limit value of
powder susceptibility is X,(0) = 0.14(1) cm®/mol [11].
These numerical values are consistent with upper
bound (23). Unfortunately, inequality (22) cannot be
used to obtain any useful quantitative information
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because of a large experimental error. However, large
values of maximum susceptibility (see Fig. 8) suggest
that theinterchain coupling isweak. The corresponding
contribution to longitudinal susceptibility can be
ignored, since it is much smaller than the x,(0) mea-
surement error. If the contribution of J' is aso ignored,
then the decoupled system (19)—21) yields Jkgz =
114K, g, = 6.26, and g5 = 5.05, and only the value of
J/J isrequired to calculate the susceptibility curve.

The critical temperature and maximum susceptibil-
ity calculated for the 3D Ising lattice as functions of
||/ are quaitatively similar to those shown in Fig. 5
for the 2D model. Numerical values of kyT./J in the 3D
Ising model can be found in a recent paper ([34],
Table 3, the values in the T, column divided by 2).
Using thesevaluesand taking T, = 3.17(2) K and J/kg =
10.6(6) K for CoCl, - 2NCsH5 from [11], we obtain
IIYI = 0.0069 ez with an error of 30%. Analo-
gously, taking T. = 6.6(3) K and J/kg = 25(2) K for
FeCl, - 2NCgHs from [17], we obtan [J|/J =
0.0038" 002 i.e., the corresponding error is even
larger. Therefore, |J|/J should again be determined
from the maximum susceptibility.

Figure 7 demonstrates that the transverse suscepti-
bility in the neighborhood of the longitudinal-suscepti-
bility maximum point is amost constant, and its value

predicted by (15) combined with (A.12) is[x* (0) +

(1D)

X5 o 172 = 0.27496 (measured in units of J/N,gAH .
Accordingly, the maximum powder susceptibility of
quasi-1D superantiferromagnetswith 103 < |J'|/J< 1072
can be calculated as

(max)

pr
NTTH

(4% 4 x )

~ 1-‘]X||, max

2
2-Almx 10,1833 20
NAQ; s

|:bIID ,

(34)

with IX e /3N GF 15 taken from Table 2.

Using the experimental value X" = 3.9 cm3mol
for CoCl, - 2NCsHs determined from Fig. 4 in [11] and
applying the 4 x 4 x oo cluster model, we find that
|J|/J = 6.53 x 10°3.

Curve 1in Fig. 8 isthe powder susceptibility

XM =30 M+ 271 (@)

calculated by using the parameters obtained for CoCl, -
2NCsHs. Here, the maximum is located at 3.48 K,
which agrees with T, = 3.51(1) K measured in [11].
The inflection point bel ow the maximum of the theoret-
ical curveislocated at 3.2 K. Thisresultisalso consis-
tent with T, = 3.17(2) K determined by measuring spe-
cific heat in [11].
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0 10 20 30
T,K

Fig. 8. Temperature dependence of CoCl, - 2NCgHs (1) and
FeCl, - 2NCsH5 (2) powder susceptibility: measurement
data from [11] (circles) and [17] (crosses) and theoretical
predictions based on (35) with J/kg = 11.4 K, J/J = —6.53 x
1073, g = 6.26, and g = 5.05 for CoCl;, - 2NCsHs and

Jkg = 245K, /)= -5.65x 1073, g, =7.07, and g = 6.85
for FeCl, - 2NCsHj (curves).

The experimental datafor FeCl, - 2NCsH; presented
in[17] were used to obtain C = 4.5 cm®/mol, © =8.5K,

Xp(0) = 0.12 cm®/mol, and x ™ = 2.7 cm3/mol. Again,

the model parameters were adjusted to find J/kg =
245K, |3 = 5.65 x 103, g, = 7.07, and g, = 6.85.
These parameters were used in (35) to obtain curve 2 in
Fig. 8, forwhich T, =7.2K and T, = 6.7 K. According
to [17], Jkg = 25(2) and T, = 6.6(3); i.e., the estimates
for J/ks and T, obtained in this study agree with exper-
imental data within measurement error.

7. CONCLUSIONS

The temperature dependence of the longitudinal and
transverse zero-field susceptibilities of 2D and 3D Ising
latticeswith anisotropic coupling isanalyzed. The anal-
ysisis based on approximations of the original lattices
with ensembles of independent chain clusters that are
infinitely long in the strong-coupling direction.

A detailed treatment is presented of the ferromag-
netic intrachain and antiferromagnetic interchain cou-
plings that constitute the superantiferromagnetic cou-
pling characteristic of the modeled systems. For this
coupling configuration, longitudinal susceptibility has
amaximum whose value variesin inverse proportion to
interchain coupling strength. An explanation is pro-
posed for the inverse proportionality.

It is found that the relative error in the value of the
maximum calculated for clusters of the samefinite size
L isindependent of lattice anisotropy.
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For highly anisotropic superantiferromagnets, it is
shown that the interchain coupling strength can be
determined much more accurately by using the maxi-
mum value than the critical temperature, whereas the
latter method is applicable to weakly anisotropic sys
tems.

A convergence analysis of cluster expansions per-
formed for 2D systems showsthat L x oo strips of width
L = 10 can be used to cal culate the maximum suscepti-
bility up to an error of 0.2%. If required, clusters of
larger size can be used to improve accuracy. Currently,
strips of width L < 10 can be simulated on a standard
PC. Simulations for widths up to L = 16 can be per-
formed on supercomputers. Strips of larger size can be
simulated by using the symmetry of L x o cylindersand
representing the transfer matrix in block diagonal form.

Three-dimensional simulation is an essentialy dif-
ferent task. The susceptibility of L x L x oo Ising sys-
temswith L < 4 can be calculated on a PC, whereas the
6 x 6 x 0o problem cannot be solved on any supercom-
puter even after the transfer matrix isreduced to ablock
diagonal form.

The approximation accuracy achieved in this study
is sufficient for awell-founded quantitative description
of the magnetic susceptibilities measured for rea 2D
and 3D anisotropic Ising superantiferromagnets. The
present numerical results obtained are valid in the
entire experimental temperature range.

The agreement achieved between theory and exper-
iment strongly suggests that FETAC, CoCl, - 2NCsHs,
and FeCl, - 2NC;H;5 can be very accurately treated as
Ising magnets.

The accuracy of estimation of |J'|/J isimproved from
one or two to three digits.
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APPENDIX

The formulas given below were used in analyzing
experimental data.

Longitudinal Susceptibility

The zero-field longitudinal susceptibility of a 1D
Ising chainis

2 2
NA9||UBeJ/kBT

akgT (A1)

Xi(T) =

Thelongitudinal susceptibility of adouble-chain 1D
(2 - 1D) Ising model is expressed as follows [46, 47]
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(see dso [48]):
X(sz)(T) _ NAgﬁpé et
I 4kgT Acosh(ZJ'/2kgT)
J 230
EA+ cosh kBTS'nhZKBTD (A.2)
J . 230
%A+ smh SmZkBTD
where
J 2 7J' D
A = ETJ'[+ cosh smh 2_k 10 (A.3)

The expression for the longitudinal susceptibility of
a four-chain (4 - 1D) Ising model (a truly 3D cluster,
such as 4 x oo cylinder or 2 x 2 x oo parallelepiped)
is[30]

NAgiHs
16k, T

(A% — 4e”sinh’X)F + 4AGe’sinhx
(A2 —2A¢’sinh2xcoshy + 46?sinh’ X)R,R,

(4 DlD)(T) —
(A.9)

X

where
_ 1/2
Ry, = [1+ (~/2coshxsinhy + coshyﬁ ,
A = (J/2coshxcoshy + sinhy + R;)
x («/2coshxcoshy — sinhy + R,),

B = 4[1+ (J/2coshxsinhy + coshy+R,)  (A.5)

x (J2coshxsinhy — coshy + R,)],
F = cosh’y—2cosh’xsinh’y + RR, + B—3,

G = 2./2(R, + R,) + coshxsinhy(2B —F),

withx = J/ksTandy = ZJ/2kgT.

According to these formulas, the longitudinal sus-
ceptibility either increases indefinitely or vanishes
(exponentiadly) as T — 0, depending on whether the
zero-temperature ordered state has nonzero or zero
magnetic moment. In particular, if J>0and J' <0, then
the longitudinal susceptibility vanishes at T = 0. As
T — oo, the susceptibility vanishes according to the
Curie-Weiss law (9). It should be noted here that the
constant parameters in the law are the correct Curie
constant and Curie-Weiss temperature given by (10)
and (11), respectively.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

YURISHCHEV

Transverse Susceptibility

The zero-field transverse susceptibility of a linear
Ising chainis[36, 49, 50]

N 2 2
X(o(T) = ~ake
A.6
J JI2kg T (A-6)
X[tanh + > }
2ks T cosh (J/12kgT)

The zero-field transverse susceptibility of a double-
chain Ising model with interchain coupling strength ZJ'
has the form [51]

(ZDID)(T) = 16NAgDp-B(A1 B.G,;

(A7)
+ 2A262 - 28263 + A364_ BgGs),
where
1 2J+7) . 1
= +
AT N Nl )
L 21-73 2 . ZJ
he=—Z< 4+ Zgnhi=
ST T T AB)
1 23423 1 . 21-27
A N F N i Sl N e L vt o
4 23+2Y
A; = 2J+Z,J,smh T A, —-2A,,
1 20423 .0
B, = 53373000 T O
2J 27 23 0
T23- zJH: 0N zJHmSh o
J+z‘J' 0
B, = 2J+zJH: osh - (A.9)
1 21-723
+ —
ST—ZF o ot o
20+7) 0 .
Bs = 2J+2JH°Sh ke T —In 2By
12T
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27J Dllz
2k TU
J zJ

S=R+ coshg— cosh2kBT

R = %H cosh
(A.11)

The transverse susceptibility is invariant under the
sign changesJ — —Jand J' — —J'. At absolute zero
temperature, susceptibility (A.7) reducesto (15), which
is the correct value for a system of any dimensionality.
Figure 2 demonstrates that the transverse susceptibility
is nearly constant at low temperatures, reaches a maxi-
mum at a higher temperature, and followsthe high-tem-
perature Curie law (13), (14).

The coordinates of the maximum of transverse sus-
ceptibility (A.6) are

kT o
TSr = 0.418778..., . |XDZ'“32X = 0.299919..
9] NaOoHs

(A12)

For the double-chain Ising model with Z[J/J] = 0.1
(curve 2 in Fig. 2), the transverse-susceptibility maxi-
mum has the coordinates (0.480876, 0.288263).
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ORDER, DISORDER, AND PHASE TRANSITIONS
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Transition from the Ferromagnetic State
to the Spin Glass Statein Ordered Fe, 5 _,Aly 5. Alloys
and the Temperature Evolution of the Magnetic Structure
of the Fey,0Aly 5 Alloy
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Abstract—The magnetic structure of ordered alloys Fey75_,Alg s+« (X = 0, 0.025, and 0.05) is studied by

M dssbauer 5'Fe spectroscopy in atemperature range of 5-295 K. Anincreasein the Al concentrationat T=5 K
induces atransition from collinear ferromagnetism (x = 0) to amagnetic structure of the cluster-spin-glass type
(x =0.05). The unexpectedly strong effect of aluminum on the magnetic structure is explained by the anoma-
lousdly high probability of formation of frustrated magnetic configurations with a large number of Al atomsin
the nearest neighborhood of Fe atoms. Thisanomaly is associated with the establishment of a short-range order,
which is akey factor determining the radical change in the magnetic structure in a narrow range of Al concen-
tration. The “intermediate” phase of the Fey 70Alg3 aloy (100 K < T < 200 K) is a mixed-type magnetically
ordered phase whose magnetic structure is determined by the competition of opposite exchange interactions.
The nominally “ferromagnetic” phase of this alloy (T > 200 K) is characterized by strong violation of the
long-range ferromagnetic order, which is due to the effect of the antiferromagnetic superexchange interac-

tion. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Ordered Fey5_,Algos.y aloys with a DO;-type
structure exhibit interesting and unexpected magnetic
properties in a narrow range of concentrations x = 0—
0.05. The Fey7sAl, 55 aloy is a collinear ferromagnet
with ahigh Curie temperature (T = 750 K); however, a
dlight increase in the Al concentration induces an
abrupt low-temperature transition to the spin glass
phase (at x = 0.05). The magnetic phase diagram of the
Fey 0Alp 30 aloy includes three magnetic phases with
different properties [1-4]. At temperatures above T ~
200K (upto T ~ 400 K), the behavior of the magnetic
susceptibility corresponds to the ferromagnetic (FM)
type of ordering. A decrease in temperature from T =
200 K to T = 100 K is accompanied by a monotonic
decreasein the magnetization. A blurred peak observed
in the vicinity of Tg; = 100 K indicates a transition to
the spin glass (SG) phase. The FM (T > 200 K) and SG
(T < 100 K) phases are separated by a broad region of
an “intermediate’” phase, whose magnetic origin
remains unknown. In accordance with the phase dia
gram proposed in [1-4], the intermediate phase may be
paramagnetic (or superparamagnetic); however, this
assumption has not been directly confirmed in experi-
ments at the microscopic level.

Important information on the magnetic properties of
the ordered Fe, ,5Al .50 dloy has been obtained recently

by neutron scattering method. The small-angle neutron
scattering method was used in [5] for studying the slow
spin dynamics typical of SG systems. The measure-
ments were made at temperatures below 100 K (within
the SG phase of the Fe, 1Al 3, @loy). Inthe model pro-
posed in [5], the SG phase contains FM clusters of var-
ious size with a random orientation of magnetic
moments, as well as regions with rapidly fluctuating
magnetic moments (paramagnetic zones). Theinelastic
neutron scattering method was applied in [6] for study-
ing spin excitations for the SG and FM phases (at 18
and 294 K). It was found that the spin dynamicsin these
two phases is anomalous. Strong perturbations of the
long-range FM ordering were observed for the nomi-
nally ferromagnetic phase. Anomalies in the spin
dynamics in the SG phase are explained by the forma-
tion of FM-type clusters formed at low temperatures as
a result of spin correlations over short distances. The
results of these publications indicate a complex mag-
netic behavior of the ordered Fe,,0Algs aloy and
necessitate more detailed studies at the microscopic
level.

Here, we report on the results of investigation of
local spin configurations in ordered Fep,5_Algos s«
aloys (x =0, 0.025, 0.05) and temperature evolution of
the magnetic structure of the Fe,;0Alg3 aloy using
M 6sshauer 57Fe spectroscopy. M ésshbauer spectroscopy
is an effective method for studying magnetic systems

1063-7761/05/10106-1091$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Crystal structure of the ordered alloy Feg75Alq 5.

Largelight circles denote Fe-l atoms, hatched circles denote
Fe-1l atoms, and small circles are Al atoms.

T=295K

x=0.05
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-8 -4 0 4 8 -8 -4 0 4
Velocity, mm/s

o0

Fig. 2. Mossbauer spectra of the Feg 75 _ yAlg o5 + x aloys
(x=0,0.025, and 0.05) measured at T=5K (left) and 295 K
(right). Solid curves are the results of approximation of the
spectra by the superposition of magnetic subspectra or the
hyperfine magnetic field distribution function.

with a complex magnetic structure. The efficiency of
the method is determined by the high sensitivity of
hyperfine interaction parameters to the properties of
local spin configurations. Analysis of hyperfine field
distribution (HFD) functions makes it possible to
observe various types of local spin configurations and
to classify these configurations in accordance with the
hyperfine field intensity and temperature dependences
of HFD components. In particular, objective informa-
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tion can be obtained on frustrated and paramagnetic
states (if such states are present in the system), on the
effect of the competition of opposite exchange interac-
tions on the magnetic structure, and on the behavior of
magnetic configurations in an external magnetic field.

2. EXPERIMENT

Alloys with different auminum concentrations
(Feo7sAlo2s, Feo725Alo27s, and Feyz0Alg50) were pre-
pared by arc melting in argon using metalswith a purity
not worse than 99.98%. The ingots were homogenized
at 1200 K over aweek. To obtain aloysin the ordered
state, the powders prepared from the ingots were
annealed at 400 K during aweek, after which the tem-
perature was gradually reduced to 300 K during the
next week. The MOssbauer absorption spectra for >’Fe
were measured in a temperature range of 5295 K
embracing all the three above-mentioned magnetic
phases of the Fey,0Alp3, aloy. Resonance detectors
were used to enhance the resonant absorption effect and
the resolving power for detecting M 6ssbauer radiation.
The Mdssbauer spectrawere analyzed using two differ-
ent procedures. The HFD functionsfor all spectrawere
calculated using the histogram technique [7]. In our
calculations, we took into account possible differences
inisomer shiftsfor configurations with different values
of the hyperfine field. The method for calculating the
HFD functions made it possible to use the procedure of
direct minimization of x? functional, which rules out
the indeterminacy associated with the smoothing pro-
cedure. The spectrawith awell-resolved structure were
also analyzed using the procedure of approximation of
spectra by a superposition of discrete magnetic sub-
spectra.

3. RESULTS

Figure 1 shows the crystal structure of the
Fey75Al4 05 aloy in the case of perfect ordering of the
DO, type (space group Fm3m). The unit cell consists of
two mutually penetrating sublattices, one of which con-
tains only Fe atoms (Fe-1l sites with coordinates (1/4,
1/4, 1/4), while the other contains Fe atoms (Fe-| sites
with coordinates (0, 0, 0)) as well as Al atoms (sites
with coordinates (1/2, 0, 0)). In the case of perfect
ordering, the occupancy ratio of Fe-I/Fe-Il sitesis 0.5.
Fe-l and Fe-Il atoms have eight and four Fe atoms as
their nearest neighbors, respectively (configurations
Fe(8) and Fe(4)). The magnetic moment of an Fe atom
strongly depends on the number of neighboring Fe
atoms and is approximately 2.5ug for an Fe-l site and
approximately 1.50p for an Fe-ll site [8]. In accor-
dance with the neutron diffraction data [2], excess Al
atoms are predominantly localized in the Fel/Al
sublattice in the case of a deviation from stoichiometry
(x>0).
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3.1, Mdsshauer Spectra of Fey5Alg o5, F€ 725Al 0075,
and Fe, oAl 30 Alloys at 5 and 295 K

Figure 2 shows the Mdssbauer absorption spectra
for three Fey 75— ,Alg 25 4 « lloys (x = 0, 0.025, and 0.05)
measured at temperatures of 5 and 295 K. It can be
clearly seen that a slight increase in the Al concentra-
tion strongly affects the spectral structure. At T= 5K,
the discrete structure of the spectra is observed for all
three alloys; however, aloys with x > 0 exhibit a sharp
decrease in the intensity of the high-field components
of the spectra. For the Fey/5Alg,5 and Fey7o5Al 0075
aloys, the discrete structure of the spectrum is pre-
served at T = 295 K also, while no such structure is
observed for the Fey,0Aly5 aloy at this temperature
and the intensity of the low-field components (central
part of the spectrum) sharply increases. These results
clearly indicate that the substitution of Al atoms for
even asmall part of Fe sitesisaccompanied by a strong
perturbation of the ferromagnetic structure typical of
the Fey75Al, 5 aloy. The results of approximation of
the spectra for the Fey15Alq .5 and Fey755Al g 575 alloys
by the superposition of magnetic subspectraat T=5K
aregivenin thetable. For the stoichiometric Fey 75Al o5
alloy, about 96% of the entire intensity are determined
by the four subspectra (A, B, C, and D), which corre-
sponds to a high degree of aloy ordering. The most
intense subspectra with magnetic hyperfine fields (By)
of 33.5 and 23.9 T correspond to Fe-l and Fe-ll sites
with eight and four nearest Fe atoms, respectively (Fe(8)
and Fe(4) configurations; see, for example, [9, 10]). The
presence of B and C subspectraindicates adlight viola-
tion of the perfect long-range atomic order (it is well
known that perfect atomic ordering is never attained in
the Fey 75Al 025 aloy). A small part of Al atomsislocal-
ized at the sites of the Fe-I1 sublattice; a corresponding
part of Fe-1l atoms move to the Al sites of the Fe-1/Al
sublattice. As a result, Fe(7) (subspectrum B) and
Fe(5) (subspectrum C) configurations appear. Low-
intensity subspectraE and F correspond to Fe-11 sitesin
configurations Fe(3) and Fe(2) (the origin of these sub-
spectrawill be considered below).

The spectrum of the Fey7,5Alp .75 alloy at T =5 K
acquires new subspectra, and the intensity of the sub-
spectra corresponding to Fe-ll sites with B,; = 18 and
14T sharply increases. It can be seen from the table
that the intensity of the F subspectrum (Fe-11(2) config-
uration) is practically equal to the intensity of the E
subspectrum (Fe-11(3) configuration). This result can-
not be explained by the assumption on the statistical
nature of substitution of Al atoms for Fe sites. Even if
we assume (in accordance with the results obtained
in[2]) that all excess Al atoms are localized in the
Fe-1/Al sublattice, the probability of the emergence of
the Fe-11(2) configuration, which is expected from the
binomia distribution, turns out to be severa times
lower than the observed probability. The interpretation
of this anomaly is of key importance for determining
how the Al concentration affects the magnetic proper-
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Results of approximation of the Mdssbauer spectra of the
Fey75Al005 and Fey7o5Al 0075 aloys by the superposition of
magnetic subspectraat T = 5 K; By, is the hyperfine magnetic
fiddd and | is the relative intensity of the subspectrum (in data
processing, relative intensities are normalized to 100%). The
errorsin determining B; and | are0.1 T and 1-2%, respectively

x=0 x=0.025
By, T I, % By, T I, %

A 335 26 333 11
B 31.6 13 315 10
C 27.9 14 29.8 4

27.8 10
D 23.9 43 23.9 37

22.6 10
E 185 18.3 10
F 14.0 1 14.0 8

ties of Fe-Al aloys since the formation of low-field
configurations directly reflects the frustration of
exchange bonds, which accompanies the transition to
the state with a magnetic structure of the SG type.

The Fegy0Alp4 adloy a T = 5 K exhibit a sharp
increase in the number of the low-field HFD compo-
nents and in their relative intensity. The total intensity
of components with B,; < 20 T exceeds 40%; compo-
nents with B; < 10 T (with a total intensity of about
20%) also appear. It isimportant to note, however, that
the HFD function at T = 5 K has no components with
zero hyperfine field; the minimal observed value of By,
is approximately 2.5 T. At the same time, components
corresponding to the FM type of ordering are observed
with an appreciable probability. In particular, the rela-
tive intensities of the components corresponding to
unperturbed configurations Fe-1(8) and Fe-11(4) in the
Fep70Al 3 aloy are approximately 5 and 17%, respec-
tively. Such an HFD structure corresponds to a mag-
netic structure of the cluster spin glass type, in which
FM clusters separated by walls with a high concentra-
tion of frustrated sites are formed. Our results show that
FM clusters constitute at |east 40-50% of the alloy vol-
ume and that sites at the interfaces are characterized by
abroad distribution of exchange fields.

3.2. Temperature Dependence
of the Mean Hyperfine Field and |somer Shift

The temperature dependences of the hyperfine field
(both mean value of the field and individual HFD com-
ponents) for alloys with x = 0 and 0.025 do not display
any noticeable anomalies and are typica of systems
with FM ordering. The temperature dependence of the
mean hyperfine field B,;Ofor the ordered Fe,-0Alg 5
alloy isshown in Fig. 3. This dependence exhibits typ-

No. 6 2005



1094

(B
22 T T T T T T T
2015 e
18l %8 © Bappi =0 .
16 | OO [ ] Bappl = 0.2 T |
o
14 % §
s ° [ X
121 o e 8¢50%0, o
10+ OOOOO o O |
8 1 1 1 1 1 1 1
0 50 100 150 200 250 300
T, K

Fig. 3. Temperature dependence of the mean hyperfine
magnetic field [B,¢Ofor the Fey70Alg3g aloy. Light and

dark circles correspond to measurements in zero external
magnetic field and in the field By, = 0.2 T, respectively.
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Fig. 4. Dependence of the isomer shift of the Mossbauer
line on the number of Fe atomsin the nearest neighborhood.

ical features reflecting the temperature evolution of the
magnetic structure of the alloy. In the region of the SG
phase (T < 100 K), anincrease in temperature isaccom-
panied by arapid decrease in the mean hyperfine field.
Upon afurther increase in temperature, mean field vari-
ations become smoother and do not exceed approxi-
mately 2 T in the entire temperature range from 100 to
295K. Inthevicinity of T= 150 K, aclearly manifested
broad minimum of [B,:[lis observed. It can be seen
from Fig. 3 that this minimum disappears upon the
application of a weak magnetic field (B, = 0.2 T).
Beyond this minimum, such a magnetic field does not
noticeably affect the value of (B[l

The behavior of [B,;Lin the region of the SG phase
resembl es the temperature dependence of B, typical of
reentrant spin glasses (RSGs) (see, for example, [11]), in
which atransition from the SG to FM phase takes place
at T = Tgs. However, the situation for the Fe, Al 30
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aloy radically differs from that for ordinary RSGs
since atransition not to the FM phase, but to astate with
a different magnetic structure (intermediate phase)
occurs at Tgs. In the region of the intermediate phase,
the value of B,;[remains substantial, although consid-
erably smaller than in the case of FM ordering. This
phase is obviously neither ferromagnetic nor paramag-
netic, but isa“mixed” phase whose magnetic structure
isformed as aresult of competition between compara:
ble ferromagnetic and antiferromagnetic (AFM)
exchange interactions. The broad minimum on the tem-
perature dependence of [B[Jin the vicinity of T =
150 K indicates that exchange FM and AFM interac-
tions exhibit different temperature dependences and
that the concentration of frustrated sites emerging as a
result of competition of the FM and AFM interactions
attainsits maximal value at T = 150 K. Since such sites
are characterized by strong thermal fluctuations of the
magnetic moment, the fraction of Fe atomswith aweak
hyperfine field increases. Frustration of Fe sites is
accompanied by the formation of a broad distribution
of exchange fields. The exchange fields for a certain
fraction of Fe sites turn out to be close to zero (which
determines the emergence of a low-field peak in the
HFD function; see Section 3.3). The Fe atoms occupy-
ing these sites are partly aligned in the applied weak
magnetic field, which explains the disappearance of the
By;[Iminimum in the field of 0.2 T (Fig. 3).

It follows from the temperature dependence of the
magnetic susceptibility that the role of the ferromag-
netic exchange should increase with temperature. It can
be expected that the corresponding change in the bal-
ance of the competing interactions should be accompa-
nied by an increase in the value of B[l It can be seen
from Fig. 3 that a certain increase in the value of B[]
isobserved in the region of transition from the interme-
diate phase to the nominal FM phase (in the tempera-
turerange of 180-220 K); however, theincreasein B[]
isquite small (Ilessthan 10%). Thismeansthat theAFM
component of the exchange interaction in a wide tem-
perature range is not small and does not vanish in the
region of the nominal FM phase (T > 200 K); for this
reason, the transition between the two phases occurs
smoothly, without sharp variationsin the exchangefield
distribution. This assumption is confirmed by the
results of analysis of the temperature evolution of the
HFD (see Section 3.3).

Figure 4 shows the dependence of the isomer shift
(I'S) of the Mdssbhauer line on the number n of nearest
Featoms. (The datawere obtained asaresult of approx-
imation of the Mdssbauer spectra by the superposition
of the magnetic subspectra for aloys with x = 0 and
0.025.) It can be seen that the IS rapidly increases upon
adecreasein the number of neighboring Fe atoms from
7 to 4. (In particular, this makes it possible to reliably
identify the HFD components corresponding to a Fe-l
configuration with a large number of neighboring Fe
atoms.) Such a behavior of the IS corresponds to the
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theoretical model of the Fe-Al atomic interaction,
according to which thisinteraction islocal and is deter-
mined by the 3d(Fe)-3p(Al) hybridization [12]. With
increasing number of neighboring Al atoms, the screen-
ing effect of hybridized electrons on the s component of
the electron wavefunction becomes stronger, which
causes a decrease in the electron density in the region
of the nucleus (and hence an increase in the value of
thelS).

3.3. Hyperfine Field Distribution Function
for the Fey 10Al 50 Alloy

Figure 5 shows the Mossbauer spectra of the
Fey0Al 3 alloy at several temperaturesin the region of
the SG phase and corresponding HFD functions. At
temperatures below approximately 50 K, the well-
resolved discrete structure of the HFD is preserved. At
temperatures above 50 K, the HFD discrete structureis
blurred; the intensity of high-field components
decreases most rapidly in the region of B = 20-35T.
Accordingly, the intensity of the low-field components
increases; at T = 85 K, the relative intensity of compo-
nentswith By < 7 T is close to 25%. The observed vari-
ations of the HFD structure are obviously due to rapid
enhancement of thermal fluctuations of the magnetic
moment for Fe sites with a suppressed exchange field.
It can be seen from Fig. 5 that alocal HFD peak formed
at T=105K intheregion of 3-5T corresponds to sites
with the maximal degree of frustration. Suppression of
exchangeinteractionsleads to decomposition of the SG
cluster structure; however, aconsiderable fraction of Fe
sites remain in states with a well-defined magnetic
moment and with values of B,; exceeding 10 T. We can
state that the phase emerging at temperatures above the
SG transition point is not paramagnetic and contains
regions with the FM type of ordering.

The behavior of the HFD function at high tempera-
tures appears unexpected. In accordance with the mag-
netic phase diagram proposed in [1-4], the Fey 10Al 50
aloy at T > 180-200 K is ferromagnetic. It would be
natural to expect that an increase in temperature would
lead to gradual formation of the HFD structure typical
of a system with FM-type ordering. (Such a transfor-
mation of the HFD can be expected if the exchange
AFM interaction decreases much more rapidly than the
FM interaction upon an increase in temperature.)
Experimental data do not confirm this assumption. In
the entire range of temperatures corresponding to the
intermediate phase (100-200 K), the HFD function
experiences only slight changes associated with varia-
tion of the low-field peak height in theregion of 3-5T.
Competing exchange interactions exhibit different tem-
perature dependences, but this differenceisnot aslarge
as expected. Moreover, the HFD function changes
insignificantly upon a transition to the nominal “ferro-
magnetic” phase as well (T > 200 K). The HFD func-
tion at temperatures of 150 and 270 K are compared in
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Fig. 5. Mossbaver spectra of the Feg 70Alg 3o aloy at sev-

era temperaturesin theregion of the SG phase (left) and the
corresponding hyperfine field distribution functions (right).

Fig. 6. It can be seen that the two distributions are quite
similar. The main difference is associated with a dight
change in the shape of the low-field peak and an
increasein the peak height intheregion of B;= 15T at
T = 270 K. This corresponds to a small change in the
value of [B,;0upon a transition from the region of the
intermediate phase to the nominal ferromagnetic phase
(see Fig. 3). The high-field wing of the HFD function
(B > 10 T) is represented by a broad distribution of
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hyperfine fields and has no awell-defined structure that
could indicate predominant formation of certain spin
configurations of the FM type. The results clearly dem-
onstrate that the role of the AFM exchange is quite
important in the entire temperature range studied here.
At T > 200 K, the ferromagnetic exchange interaction
dominates; however, violation of the long-range FM
order in the nominal ferromagnetic phase is significant
and the magnetic structure of this phase is determined
to a considerable extent by the competition of opposite
exchange interactions.

4. DISCUSSION AND CONCLUSIONS

4.1. Dependence of the Magnetic Sructure of the Alloys
at T= 5K on the Aluminum Concentration

In accordance with the generally accepted assump-
tion, the variations of magnetic properties of Fe-Al
aloys are determined by the competition of opposite
exchange interactions, viz., the direct FM interaction
between neighboring Fe atoms and the indirect (super-
exchange) AFM interaction via Al atoms (Fe-Al-Fe)
[3, 13, 14]. An increase in the Al concentration
increases the number of exchange AFM bonds, which
must suppress the resultant exchange interaction and
gradualy transform the FM structure into an AFM
structure or astructure of the SG type. This process can
be considered, for example, in the framework of the sta-
tistical model of distribution of exchange fields, which
is based on the percolation theory [15]. However, the
change in the magnetic structure occurs in a very nar-
row concentration range in the aloys studied here,
whichisdifficult to explain in the framework of the sta-
tistical approach. In accordance with theoretical esti-
mates (see [3] and literature cited therein), the ratio
=Jarm/Jem OF competing exchange interaction constants
is close to 0.3. It can easily be seen that the necessary
condition for the formation of frustrated sitesisthat six
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out of eight exchange bonds be antiferromagnetic
(Fe(2) configuration). Such aconfiguration is ruled out
for Fe-l sites, but ispossible for Fe-11 sites (which have
four AFM-type bonds for the stoichiometric composi-
tion Fey 75Al.25). However, in the case of the statistical
distribution of Al atoms over the sites of the Fe-1/Al
sublattice of nonstoichiometric alloys, the probability
of formation of the Fe-11(2) configuration is quite low
(~0.05for x=0.025and ~ 0.15 for x = 0.05). These esti-
mates strongly contradict the experimental data,
according to which the probabilities of formation of
frustrated Fe-ll sites (B,; < 18 T) is approximately
thrice as high (~0.15 for x = 0.025 and ~ 0.45 for x =
0.05). The anomalously high probability of formation
of frustrated Fe-11 sites should be regarded as the main
reason for the strong influence of Al atoms on the mag-
netic structure. This anomaly can easily be interpreted
from the standpoint of physics. We believe that the only
possible explanation is the assumption on the emer-
gence of the short-range atomic order (SRO) resulting
in a considerable increase in the probability of forma:
tion of configurations for Fe-1l sites with alarge num-
ber of neighboring Al atoms (Fe(2) configurations in
the alloy with x = 0.025 and the Fe(2) and Fe(1) config-
urations in the alloy with x = 0.05). This mechanism
should be treated as a consequence of the strong Fe-Al
atomic interaction determined by the formation of
hybrid electron orbitals 3d(Fe)-3p(Al) [12]. It should
be noted that the tendency towards the establishment of
the SRO is observed even in the stoichiometric
FeysAl 5 aloy (in the form of a dight violation of
regular alteration of Feand Al atomsin the Fe-1/Al sub-
lattice). In nonstoichiometric alloyswith an elevated Al
concentration, the SRO becomes the key factor deter-
mining the rapid transition from ferromagnetism to a
magnetic structure of the spin glass type. Analysis of
relative intensities of the HFD components correspond-
ing to the Fe-11(3), Fe-11(2), and Fe-11(1) configurations
makes it possible to gain information on the nature of
distribution of Al atoms in the establishment of the
SRO. To explain the high probability of formation of
the Fe-ll(2) and Fe-llI(1) configurations, we must
assume that extended regions with a high local Al con-
centration are formed in the planes of the Fe-I/Al sub-
lattice (the size of these regionsis equal to several lat-
tice constants). The formation of such regions explains
the observed intensity ratio |(Fe(2))/1(Fe(3)) (which
increases with the effective radius of Al-enriched
regions). For arandom distribution of excessAl atoms,
thisratio must be equal to 0.17 (for x = 0.025) and 0.36
(for x = 0.05), while the experimentally observed value
are approximately equal to 0.9 and 2.0, respectively.

If we assume (in accordance with the result obtained
in [2]) that Al atoms are practically absent in the Fe-I1
sublattice, all exchange bonds for Fe-l sites in the
Fey70Alps aloy remain ferromagnetic (Fe-l-Fe-ll).
However, for the experimentally obtained high concen-
tration of frustrated Fe-Il sites, most Fe-1 atoms (about
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60%) have at least four frustrated Fe-11 atoms with a
suppressed exchange field and a small magnetic
moment among their nearest neighbors. Attenuation of
exchange bonds of the FM type changes the balance of
the competing interactions and leads to destruction of
the long-range ferromagnetic order in regions with ele-
vated local Al concentration. These regions form the
boundaries between clusters, while the FM-type order-
ing is preserved in regions with a lower local Al con-
centration. Mdssbauer spectroscopy data confirm the
results obtained by the neutron scattering method,
according to which the low-temperature phase of the
Fep70Alp 3 aloy is acluster spin glass [2, 4-6]. How-
ever, our results do not confirm the model [5], accord-
ing to which FM clusters at alow temperature are sep-
arated by extended paramagnetic zones containing Fe
atoms with rapidly fluctuating magnetic moments.
Such regions should correspond to states of Fe atoms
with zero hyperfine field; however, no such states were
observed at low temperatures.

4.2. Temperature Evolution of the Magnetic Sructure
of the Fey 7oAl .59 Alloy

Analysis of the temperature dependence of the HFD
shows that the cluster SG structure of the Fey70Alg 30
aloy israpidly destroyed at temperatures above 50 K.
This processis primarily determined by the behavior of
Fe atoms at the interfaces between the clusters. For Fe
sites with a suppressed exchange field, an increase in
temperature enhances thermal fluctuations of the mag-
netic moment (and reduces the observed value of the
hyperfine field). This leads to a rapid decrease in the
valueof [By;[{seeFig. 3) and to anincreaseintheinten-
sity of low-field HFD components (see Fig. 5).

Our results do not confirm the hypothesis according
to which the intermediate phase of the Fe, ;0Alq 5, aloy
(in the temperature range 100-200 K) is paramagnetic.
The high relative intensity of components with strong
hyperfine fields (closein value to the hyperfinefieldsin
the ferromagnetic phase) clearly indicates the presence
of a long-range magnetic ordering. At temperatures
above Ty = 100 K, the relative intensity of HFD com-
ponents with zero hyperfine field does not exceed 10%,
while the total intensity of the low-field components
with B; = 3-5 T does not exceed 30%. It cannot be
stated either that the FM clusters determining the prop-
erties of the low-temperature SG phase are preserved at
T > 100 K. Since the HFD exhibits no resolved discrete
structure in the region of the intermediate phase, our
results do not provide detailed information on the mag-
netic structure of this phase. At the same time, these
data undoubtedly indicate that the intermediate phaseis
magnetically ordered rather than paramagnetic. We can
assume that a network of spins whose mutual orienta-
tion is randomly determined by the balance of the
exchange FM and AFM bonds at the local leve is
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formed at T> 100 K. In all probability, many loca spin
configurations are noncollinear in this case. This does
not follow directly from the experimental data, but
makes it possible to explain the absence of a discrete
structure in the high-field part of the HFD.

The behavior of the HFD during a transition to the
nominal ferromagnetic phase (T > 200 K) appears unex-
pected. The results considered above (see Section 3.3)
indicate that thistransition is not accompanied by arad-
ical change in the HFD structure and, hence, the mag-
netic structure of the ferromagnetic phase differs from
the structure of the intermediate phase less strongly
than expected. Moreover, the expected significant
increase in the value of [B,;[lwas not observed either
during a transition to the ferromagnetic phase (see
Fig. 3). These results lead to the conclusion that viola-
tion of the FM order observed earlier by the neutron
scattering method is strong and that the magnetic struc-
ture of the Fey ,0Alp 50 dloy at T > 200 K isfar from the
structure predicted for a collinear ferromagnet. Among
other things, this means that athough the role of the
competing AFM exchange interaction decreases upon
an increase in temperature, it remains significant in the
entire temperature range studied here.
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Abstract—M agnetic properties of GdFe;(BO5), single crystalswere investigated by 5’Fe-M 6ssbauer spectros-
copy and static magnetic measurements. In the ground state, the GdFe;(BOs3), crystal is an easy-axis compen-
sated antiferromagnet, but the easy axis of iron moments does not coincide with the crystal C; axis, deviating
from it by about 20°. The spontaneous and field-induced spin reorientation effects were observed and studied
in detail. The specific directions of iron magnetic moments were determined for different temperatures and
applied fields. Large values of the angle between the Fe** magnetic moments and the C; axis in the easy-axis

phase and between Fe** moments and the a, axis in the easy-plane phase reveal the tilted antiferromagnetic

structure. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The crystal GdFe;(BOs3), belongs to the family of
rare-earth borates RM4(BO3),, where R is a rare-earth
element and M =Al, Ga, Fe, Sc, and hasatrigonal sym-
metry with the space group R32 (D;h) [1, 2]. These
materials first attracted great interest because of prom-
ising nonlinear and laser properties [3-5]. Quite
recently, a magnetoelectrical effect was found in
GdFe;(BO),, which suggests that this crystal be con-
sidered as a new multiferroic material [6].

The crysta structure of GdFey(BO5), can be repre-
sented by layers oriented perpendicular to the C; axis
and consisting of trigonal GdOg prisms and smaller
FeO; octahedrons [2]. The FeO, octahedrons are con-
nected by edges and create one-dimensiona spiral
chainsdirected along the threefold C; axis (Fig. 1). The
shortest Fe—Fe interionic distance in chains is about
3.155 A and that between chains is 4.361 A, whereas
the shortest Fe-Gd distance is 3.746 A [2]. Exchange
interaction between iron ions from different chains is
weak and the chains are mutually independent.

Magnetization and magnetic susceptibility mea-
surements have shown that GdFe;(BOs), is an antifer-
romagnet with the Néel temperature Ty, = 38 K and its
magnetic moments are directed along the crystal C,
axis [7, 8]. It was suggested that magnetic ordering
relates to Fe ions, whereas Gd ions are paramagnetic at

T The text was submitted by the authors in English.

least down to liquid-helium temperature [7]. However,
recent studies of antiferromagnetic resonance [9] indi-
cated that a possible magnetic ordering of the Gd ions
at low temperatures can play an essentia role in mag-
netic anisotropy of the crystal and influence the direc-
tion of the iron magnetic moment. The competition of
the magnetic anisotropy and indirect coupling between
Fe-O—Fe chains via Gd** results in arange of interest-
ing magnetic behavior and, in particular, may be
responsible for the spin-reorientation effect observed
in[7, 10]. In addition to the low-temperature magnetic
transitions, astructural phase transition was observed at
156 K [11]; two electronic and structural phase transi-
tions induced by high pressuresat P = 26 GPaand P =
42 GPaand at room temperature were found by optical
and X-ray studies[12].

Calculations predicted [6] that the electric polariza-
tion and the magnetostriction appearing in
GdFe,(BO,), at low temperatures (the magnetoel ectri-
cal effects) are the result of changes in magnetic sym-
metry during the spin-reorientation transition induced
by an applied magnetic field.

Thus, detailed information about distinctive features
of the spin-reorientation effect in GdFey(BO,), is
extremely important for understanding the low-temper-
ature properties and the nature of the magnetoelectrical
effect in this material.

In the present paper, in addition to static magnetic
measurements, >’Fe-M0Ossbauer spectroscopy studies
were carried out at different temperatures and in an
applied magnetic field with single-crystalline samples
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of GdFey(BO;),. The temperature and magnetic-field
induced spin-reorientation transitions of the Fe** mag-
netic moments were found and investigated on both
macroscopi c and microscopic scales.

2. EXPERIMENTAL

High-quality crystals of GdFe;(BO3), were grown
by the flux method [7]. The crystals were transparent
and had green color. The unit cell parameters are a =
9.5491(6) A and ¢ = 7.5741(5) A. For the M&ssbauer
measurements, a platelet with dimensions of 8 x 5 mm?
and thickness of 0.3 mm was cut from the bulk single
crystal. The C; axis was in the plane of the platelet.

Static measurements of magnetization and magnetic
susceptibility were carried out using avibrating-sample
magnetometer with a superconducting magnet in the
temperature range 4.2-300 K. An external magnetic
fieldupto 7.5 T was applied parallel and perpendicular
to the C; axis.

The 5"Fe-M 6sshauer spectrawere recorded in trans-
mission geometry with standard spectrometers operat-
ing in the constant acceleration regime. Gamma-ray
sources of 5’Co(Cr) and 5’Co(Rh) were used. Three sets
of M&sshauer experiments have been carried out with
the single-crystalline sample.

In thefirst set, the Mdssbauer spectrawere recorded
at temperatures of 5, 20, 40, and 300 K in zero applied
magnetic field and with the propagation vector k, of the
M6ssbauer gamma rays directed perpendicular to the
crystal platelet.

In the second set, the spectrawere recorded at 4.2 K
in external magnetic fieldsH =0, 0.3,and 1.0 T applied
in the plane of crystal platelet perpendicular to the
direction of the sample C; axis. The propagation vector
of the Mésshauer gamma rays was directed perpendic-
ular to the crystal platelet; i.e., the C; axis, the applied
field, and the gamma rays were all mutually perpen-
dicular.

In thethird set, the spectrawererecorded at 4.2K in
external magneticfieldsH =0, 2.0,and 4.0 T appliedin
the plane of the crystal platelet, but parallel to the Cy
axis.

3. RESULTS AND DISCUSSIONS

3.1. Summary Results
of the Static Magnetic Measurements

Temperature dependences of the direct x and recip-
rocal 1/x magnetic susceptibility with the applied field
0.1 T are shown in Fig. 2. Two anomalies are observed
when the field H is applied parallel and perpendicular
to the crystal C; axis. At 38 K, the deviation of x7(T)
from the linear law implies a transition from the para-
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Fig. 1. A fragment of the GdFe3(BO3), crystal structure

showing the oxygen octahedra (the iron ions sites) generat-
ing helical chains along the Cs axis[2].

magnetic to an antiferromagnetic state, and the sharp
anomaly near 10 K indicates a change of the magnetic
structure of GdFe;(BO5),.

Thefield dependences of the magnetization M(H) at
4.2 K are shown in Fig. 3. When the magnetic field is
perpendicular to the C; axis, the M(H) dependence is
amost linear in the range of 0 < H < 3 T, and magneti-
zation vanishes at zero field (see Fig. 3, inset @). This
behavior indicatesthat the ground state of GdFey(BOs),
is a compensated antiferromagnet. When H is parallel
to the C; axis, a sharp increase in magnetization was
observed at the critical field H,o,, = 0.6 T. At this point,
M reaches the value typical of that for the case when
H isperpendicular to the C; axis (see Fig. 3). Thisindi-
cates that a magnetic moment reorientation from the C
axis to the plane perpendicular to the C; axis occurs.
With a further increase in field, an additional anomaly
isobserved near H= 3.1 T (seeinset b to Fig. 3), which
can be attributed to the appearance of the spontaneous
magnetic moment induced in the basal plane.

We found that the critical field of reorientation,
H,er, decreases with increasing temperature. Figure 4
presents tentative magnetic phase diagrams showing
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Fig. 2. Temperature dependences of the reciprocal 1/x and direct x magnetic susceptibility in the magnetic field H = 0.1 T applied

parallel (a) and perpendicular (b) to the C; axis.

the values of critical fields H,,, and corresponding tem-
peratures at which the magnetic moment reorientation
occurswhen the external field is parallel and perpendic-
ular to the C; axis. Along with our data of the static
magnetic measurements, the resultsin [6] from electric
polarization and magnetostriction measurements and
the resultsin [9] from the antiferromagnetic resonance
measurements are al so included in the phase diagram of
Fig. 4. One can see that different methods give good
agreement for the critical field and its dependence on
temperature. The dashed lineisavisual guide that sep-
aratesthe two magnetic phases at the reorientation tran-
sition from the easy-axis state to the easy-plane state.

3.2. 5"Fe-Mossbauer Spectroscopy Results

1. The >Fe-Mossbauer spectra of the first set of
measurements in zero applied field are shownin Fig. 5.
At temperatures of 5 and 20 K, the magnetic hyperfine
splitting of resonance lines indicates a magnetic order-
ing of the Fe ions. A single six-line spectrum with a
rather narrow linewidth showsthat all iron ions occupy
equivalent crystal sites, even though the antiferromag-
netic ordering implies the existence of at least two iron
magnetic sublattices. The magnetic hyperfine field H,;
at a®’Fenuclei and the isomer shift (1S) values are typ-
ical of the high-spin Fe** state (see table). At 40 and
300 K, the spectra show a slightly asymmetric quadru-
pole doublet characteristic of the iron paramagnetic
state. The line broadening at 40 K (see table) is appar-
ently related to atrace of magnetic ordering becausethe
Néel temperatureis very close to this temperature. The
decrease of the IS value with increasing temperature
from 5 to 300 K (see table) is related to the second-
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order Doppler shift. However, the evident increase of
the IS at the transition from the antiferromagnetic to
paramagnetic state is an indication of some changesin
the chemical bonds and/or the electronic state of the
iron ions, which can be related to crystal distortion at
the magnetic transition [6].

Special attention should be paid to the behavior of
the line intensities in the spectra at 5 and 20 K (see
Fig. 5). Ingeneral, thelineintensities are defined by the
probabilities of the Mdssbauer transitions between
nuclear sublevels and depend on the angle 8 between
the propagation vector k, of the gamma rays and the

direction of magnetic hyperfine field H,; at the >’Fe
nuclei, which should coincide with the iron magnetic

H,T

Fig. 3. The field dependences of GdFe;(BO3), magnetiza-
tion at 4.2 K in the magnetic field applied parallel (1) and
perpendicular (2) to the C3 axis. Insets (a) and (b) show the
observed anomalies on an enlarged scale.
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Fig. 4. The tentative magnetic phase diagram for GdFe;(BO3), showing the values of critical fields H,,, and corresponding tem-
peratures at which the iron moments reorientation occurs when the external field is parallel (a) and perpendicular (b) to the C; axis.
Along with our data (m), the data from the electric polarization (C) and magnetostriction (O) measurements [6] and the data from
the antiferromagnetic resonance measurements (a) [9] are shown. In both (&) and (b), the dashed lineis avisual guide for the eye
and separates the two magnetic phases at the reorientation transition from the easy-axis state to the easy-plane state.

moment. For a thin absorber, the intensities |; (i = 1,
2,..., 6) of asix-line Zeeman spectrum arein aratio of

liililg=lgils:l, =3:a:1,
where
4sin’0
= — 1)
1+cos 8
In a powder sample, a spherical average of the angle
distribution (cos?6 = 1/3, sin?0 = 2/3) gives
lpilyil=lgils:1,=3:2: 1.

At arandom orientation of asingle crystal, the 8 value
can be obtained from

2(1,+1,)

5

i=1

cos’™® = 1—

)

Thus, it follows from the spectrain Fig. 5 that at
temperatures between 5 and 20 K, the iron magnetic
moment in GdFe;(BOs), changes its orientation. From
the lineintensity ratio in Eq. (2), we found that theiron
moments make the angle 6 = 68 + 3° with the k,, vector
at 5K, and thisangle changes at 20 K. The low-temper-
ature value of 8 indicates that the iron magnetic
moments are not in the crystal plane but deviate from it
by the angle f = 90° — 68° =22 + 3°.

Additional information on the direction of the iron
magnetic moment can be obtained from the behavior of
the quadrupole shift in the Zeeman spectrum below the

298 K

-16

-8 0 8 16

v, mm/s

Fig. 5. The 5/Fe-Mosshauer spectra of the GdFey(BO3),
single crystal recorded at temperatures 5, 20, 40, and 298 K
in zero applied magnetic field.
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Fig. 6. Effects of reorientation of the Fe magnetic momentsin GdFe;(BO3), deduced from the M dssbauer measurements under the

assumption that the hyperfine magnetic field H, at the 5"Fenuclei coincides with the iron magnetic moment M. Mutual directions
of the crystal C; axis, the main axis of the electric-field gradient V,, the applied magnetic field H, the gamma-ray propagation vec-
tor k,,, and theiron magnetic moments M are shown for different temperatures (a) and applied magnetic fields (b). In the case where
the antiferromagnetic iron sublattices are collinear, the arrow M in (&) and (b) represents the iron antiferromagnetic vector L.

Néel temperature. When the magnetic hyperfine inter-
action is much stronger than the electric quadrupole
interaction, the quadrupole shift of the spectral lines
observed below the Néel temperature, (€°9Q),s, and

the true quadrupole splitting €2gQ (which can be
obtained above the Néel temperature) are related by

30052¢ -1
—s

(6°9Q) s = €°Q 3)

Here, Q isthe nuclear quadrupole moment and ¢ isthe
angle between the direction of the iron magnetic

moment and the main axis of electric-field gradient
eq=V,, = 0°V/0Z° [13]. We neglect the asymmetry
parameter N = (Vi — Viy)/V in Eq. (3) because of the
local C; symmetry.

Thus, the angle dependence of (€°qQ),,s Can be used
to find the direction of iron moment relative to the crys-
tal axesif the main axis of the electric-field gradient V,,
is known. Due to crystallographic reasons, we suppose
that in the paramagnetic state of GdFe;(BO;),, the sign
of the quadrupole interaction is negative. From the qua-
drupole shift at T =5 K (Fig. 5), we found the angle ¢
between Fe moments and V,, direction to be 18 + 2°. It

Hyperfine parameters of the 5"Fe-Mssbauer spectra of the GdFe;(BO3), single crystal: Hy; is the hyperfine magnetic field

at a®Fe nuclei, IS is the isomer shift relative to a-Fe at room temperature, QS is the quadrupole shift (splitting), I is the
linewidth, H is the applied magnetic field, and ¢ is the angle between the direction of iron magnetic moments and the main
axis of electric-field gradient V,,

T K H T Hy¢, kOe IS, mm/s QS, mm/s I, mm/s ¢
5 0 526.5(2) 0.503(3) —0.247(6) 0.365(8) 18.3+2.0°
20 0 481.7(2) 0.504(2) +0.107(4) 0.333(6) 728+ 20°
40 0 ~0 0.554(2) 0.290(2) 0.431(3) -
300 0 0 0.390(2) 0.292(2) 0.300(3) -
External field H is perpendicular to the C; axis
4.2 0 527.7(6) 0.485(7) —0.269(15) 0.39(2) 12+8°
42 0.3 527.7(5) 0.497(6) —0.270(15) 0.37(2) 12+ 8°
4.2 1.0 527.2(4) 0.497(5) —0.243(11) 0.38(2) 19.2+2.0°
External field H is parallel to the C; axis
4.2 0 527.8(4) 0.510(5) —0.232(10) 0.380(13) 215+2.0°
4.2 2.0 529.8(2) 0.500(4) +0.120(7) 0.362(10) 762+ 15°
4.2 4.0 529.4(2) 0.493(3) +0.144(6) 0.349(8) 87.3+15°
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No. 6 2005
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issignificant that theangles =22+ 3°and ¢ =18
2° agree within their uncertainties and indicate that V,,
coincideswiththe crystal C; axis. Thissuggeststhat the
main axis of the electric-field gradient at an iron nuclei
is directed along the local threefold axis of an oxygen
octahedral (see Fig. 1). Thisaso showsthat at 5 K, the
iron moments are not directed precisely along the C,4
axis, but rather at an angle of about 20°.

From the quadrupol e shift, we derive an increase of
the ¢ angleto 73 + 2° at 20 K. If there are no structural
transitions between 5 and 20 K, the V,, direction should
remain along the C; axis. This means that at 20 K, the
iron magnetic moments include the angle 73 + 2° with
the C; axis (Fig. 6a) and deviate from the basal plane by
about 18 * 2°. The intensities of the second and fifth
spectral lines also change (Fig. 5), supporting the rota-
tion of theiron spins.

Thus, two independent Mdssbauer spectra parame-
ters, theline intensity and the quadrupol e shift, indicate
that the reorientation of iron magnetic moments occurs
in GdFe;(BO,), at temperaturesbetween 5and 20K. In
Fig. 6a, mutual directions of the crystal C; axis, the
main axis of the electric-field gradient V,,, the gamma-
ray propagation vector k,, and the iron magnetic
moments M are shown for different temperatures under
the assumption that the direction of the magnetic hyper-
finefield H,; at °"Fe nuclel coincides with the direction
of the iron magnetic moments.

2. In the second setup of experiments, the ky vector,
the C; axis, and the external magnetic field H were all
mutually perpendicular. The spectra of this series
recorded at 4.2 K are shown in Fig. 7a. The external
fieldsof 0.3and 1.0 T applied perpendicul ar to the crys-
tal C; axis do not significantly change the hyperfine
parameters at 4.2 K (seetable). Theiron magnetic sub-
lattices do not lead to the absorption line split and the
values of the magnetic hyperfine field H,; are
unchanged (see table). This correlates with the sugges-
tion that H and H; are ailmost perpendicular. The areas
of spectral lines2 and 5 show that thefieldsH; (and the
Fe moments) are not perpendicular to the gamma-ray
beam but are at angles of about 8 =68 +5° (at H=10
andH=03T)and6=65+5° (aaH=10T)tothek,
vector. The values of the angle ¢ between the Fe
moments and V,, (i.e., the C; axis), estimated from the
guadrupole shift, are the samefor all H and closeto the
value estimated above at 5 K for zero applied field (i.e.,
¢ isnear 20°) within experimental error.

Thus, this series of experiments supportsthe conclu-
sion derived in Section 3.2.1 that in the low-tempera-
ture phase of GdFe;(BO,), near 4.2 K, the Fe moments
deviate from the C; axis by an angle of about 20°.

3. The spectra of the third set of experiments with
the external field applied along the C; axisare shownin
Fig. 7b, and the hyperfine parameters are listed in the
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Fig. 7. 5’Fe-M&ssbauer spectra of the GdFe;(BO3), single
crystal recorded at 4.2 K in external magnetic field applied
perpendicular (a) and parallel (b) to the crystal C; axis.

table. At a fixed temperature of 4.2 K, the changes in
intensities of spectrum lines 2 and 5 clearly show the
spin reorientation effect induced by the applied field. In
the field of 4.0 T, al Fe magnetic moments line up
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along the k, vector (6 = 0). This meansthat the angle 3
between the iron moments and the C; axisis near 90°.
The behavior of the quadrupole shift supports this
observation: the estimated angles ¢ are about 76.2 +
15°aH=2Tand87.3+1.5°aH=4T (seeFig. 6b).
The agreement of the 3 and ¢ anglevaluesat H =4T
again supports the conclusion made in Section 3.2.1
that V,, direction coincides with the crystal C; axis.

Thus, the external field applied along the C; axis
rotates the iron spins in the (aCs) plane of the crystal
towards the basal plane (see Fig. 6b). At H = 4T, the
iron moments are oriented perpendicular to the C; axis
and also perpendicular to the applied field.

It should be noted that if the antiferromagnetic iron
sublattices are collinear, the arrow M in Fig. 6 repre-
sents the iron antiferromagnetic vector L.

In the basal plane of GdFe;(BO,),, there are three
twofold a, axes at the angles 120° relative to each other.
However, the M dssbauer experiment showsthat in spite
of the equivalence of the three a, axes, the iron
moments in the basic plane are aligned completely
along only one of the a, axes, just the one directed per-
pendicular to the crystal platelet. It seemsthat in athin
crystal platelet, the surface anisotropy plays an impor-
tant role in the iron spin orientation.

In the case of collinear antiferromagnetic ordering
of two Fe sublattices, the external field applied along
the antiferromagnetic vector would increase (Hy =
Hys + H) or decrease (H,; = H; — H) the total field H,y
at iron nuclei in these sublattices. But the M éssbauer
spectra in Fig. 7 show that the applied field does not
split the absorption lines and only slightly modifies the
H,,: value. Rotation of the iron spins normal to H with
a negligible contribution of the H,; projection onto H
explains this behavior.

4. SUMMARY

From the two series of M dssbauer measurements on
GdFe,(BO,), single crystals, we have established that
the main axis of the electric-field gradient, V,, is
directed along the crystal C; axis.

Our phase diagram in Fig. 4 obtained from the mag-
netic static measurements shows good agreement with
magnetic resonance [9] and electrical polarization and
magnetostriction data [6]. The >'Fe-M 6ssbauer spec-
troscopy data confirm the spin reorientation transition,
first observed in GdFe;(BO3), by the magnetic static
measurements, and give new information on the spe-
cific orientation of the iron magnetic moments and the
values of angles between the moments and crystal axes
at different temperatures and applied fields. In the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

KHARLAMOVA et al.

ground state at 4.2 K, the GdFey(BOs), crystal is an
easy-axis compensated antiferromagnet. However, the
easy axis of the iron moments deviates from the crystal
C, axis by about 20°.

At about 10 K, the iron magnetic moments reorient
spontaneously from the easy axis towards the basal
plane. However, at 20 K, the moments are not entirely
in the basal plane but deviate from it at about 18°. At
4.2 K, the external field of 1.0 T, applied perpendicular
to the C; axis, does not influence the iron spins direc-
tion. This correlates with the magnetization behavior
shownininset ato Fig. 3. Thefield H applied along the
C; axis gradually rotates iron moments in the (aCj)
plane toward the basal plane, and at H = 4 T, the
moments are entirely in the plane. In the basic plane,
the iron moments are directed along the crystal a, axis,
which is perpendicular to the crystal platelet.

Thus, we have found that the magnetic structure of
GdFey(BO3), is more complicated than it was sug-
gested in [9]. The large values of the angle between the
Fe** magnetic moments and the C; axisin the easy-axis
phase and between the Fe** moments and the a, axisin
the easy-plane phase reveal a tilted antiferromagnetic
structure. The origin of thistilting is the competition of
the two contributions to the magnetic anisotropy from
the Fe** and Gd®* sublattices. The decreasing of sym-
metry below the structural phasetransitionat T =156 K
and also below the Néel temperature Ty, = 38 K [6] pro-
vides an additional contribution to the deviation of the
magnetic moments from the crystallographic axes.
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Abstract—The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square
2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external mag-
netic field has been analyzed. Such amodel is applicable for sufficiently small dots with perpendicular anisot-
ropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic
moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire
set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low
fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dotsin
strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of
the system, then near the extended sections of the surface, and finally expands over the entire interior of the
array. The critical field at which this simplest state is destroyed is much more weakly than the value character-
istic of theideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing
field always begins far from the borders. Despite such different behaviors, the magnetic structure in the inter-
mediate range of fieldsthat is obtained with both increasing and decreasing field for finite arrays strongly differs
from that characteristic of theideal infinite system. The role of simple stacking faults of the magnetic dot lattice
(such assingle vacanciesor their clusters) in the remagnetization of the system has been analyzed. The presence
of such faultsis shown to give rise to the appearance of local destructions of the chesshoard antiferromagnetic

order at fields that are much wesker than those for an ideal lattice. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION AND FORMULATION
OF THE PROBLEM

In recent years, considerable attention in the physics
of magnetism has been focused on artificial magnetic
materials created using current nanotechnologies.
Among these materials are magnetic superstructures
containing ferromagnetic elements (films, clusters, and
small magnetic particles) that have a characteristic size
of tens or hundreds of nanometers and are separated by
nonmagnetic layers (see [1-3]). Such materials are
important for applications in systems of high-density
magnetic recording and can be used to realize logical
operations [4]. Moreover, such materials are of interest
as essentially new objects of the fundamental physics
of magnetism.

One-dimensional superstructures consisting of fer-
romagnetic metal films that have a thickness of several
atomic layers and are separated by layers of nonmag-
netic or antiferromagnetic metals are most widely
known. Active study of 2D superstructures such as lat-
tices of submicron magnetic particles (which are often
called magnetic dots) on anonmagnetic substrate began

in the last decade. Magnetic dots are often manufac-
tured from soft magnetic materials such asiron, nickel,
cobalt, and permalloy [1-3, 5, 6], but materials with
high anisotropy such as dysprosium [7] are also used.
Interaction between single particles in such asystemis
determined by the magnetic dipole interaction of their
magnetic moments; i.e., they constitute a pure realiza-
tion of dipole magnets, which have been studied theo-
retically for more than fifty years [8-12]. For dipole-
coupled systems, many physical properties that are
absent for standard crystal magnets with exchange spin
interaction are known, such as the existence of the
degenerate ground state with nontrivial degeneration
[9-11]. For dipole 2D systems, the Mermin-Wagner
theorem is inapplicable and true long-range order is
present [13]. Two-dimensiona systems with Ising
dipoles exhibit a cascade of phase transitions induced
by the external magnetic field [14].

Creation and experimental investigation of arrays of
magnetic dots introduce a new physical content to the-
oretical study of dipole coupled systems. For many
materials, such as compounds containing rare earth

1063-7761/05/10106-1106$26.00 © 2005 Pleiades Publishing, Inc.
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ions, granulated magnetic materials, diluted solid solu-
tions of paramagnetic ionsin nonmagnetic crystals, the
Situation seems to be similar to that inherent in arrays
of magnetic dots. However, arrays of magnetic dots
have physical properties that are absent for al of the
above systems. First, these systems, in contrast to lay-
ered crystals, are truly two-dimensional. For the dipole
interaction, in contrast to the case of exchange cou-
pling, the behavior of purely two-dimensional layered
systems significantly differs from that of quasi-two-
dimensional layered systems [13]. Second, the scale of
the dipole interaction between two spins does not
exceed severa kelvins even for high spins S = 7/2,
whereas even for the smallest magnetic dots with avol-
ume of 10°-10° nm?, the characteristic magnetic
moment exceeds 10* g, where g is the Bohr magne-
ton and the characteristic energy is comparableto or even
higher than the energy of thermal motion at room temper-
ature (see the discussion of this problem in [12, 14]).
Moreover, for compounds with the high density of rare
earth ions, the exchange interaction is weak but is not
completely negligible. A quite weak (compared to
dipole) ferromagnetic or antiferromagnetic exchange
interaction between nearest neighbors|eadsto different
inhomogeneous magnetic states: labyrinth domains
[15-22], stripe domains [15-19], or vortices [20-22].
These states significantly differ from the chessboard
antiferromagnetic structure that appears due to the
dipole interaction [14, 16], and such systems cannot be
treated as purely dipole.

A large magnetic moment is also characteristic of
granulated magnetic materials, but arrays of magnetic
dots, in contrast to the latter materials, are characterized
by high spatia regularity. It is worth recalling a new
class of materials, namely, molecular crystals of high-
spin molecules whose total magnetic moment reaches
tens of Bohr magnetons [23]. However, these materials
arethree-dimensional and it isimportant that the size of
the magnetically active part of a molecule is much
smaller than the size of the entire molecule. For this
reason, the interaction between magnetic moments is
weak.

Thus, arrays of magnetic dots are specific materias
with a purely two-dimensional, very regular, lattice
structure and long-range dipole interaction between
magnetic moments at a sufficiently high temperature
[12, 14]. It isreasonableto call them artificial antiferro-
magnetic materials. Phase transitions induced by the
strong magnetic field, including the spin-flop transition
known for acrystalline antiferromagnet, are possiblein
them [24, 25]. However, there is a specific point com-
mon for one- and two-dimensional superstructures. All
superstructures are large (to hundred layers in the one-
dimensional case and tens of thousands dotsin the two-
dimensional case), but finite systems. The border ele-
ments (surface) are expected to play much more con-
siderable role for them in the formation of the proper-
ties of the transition. Long ago, Mills [26] and Keffer
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and Chow [27] found that in antiferromagnets in which
the border of a crystal contains spins of only one sub-
lattice, the spin-flop transition begins near the border at

afield that is weaker by afactor of ﬁ than the transi-
tionfield intheinterior. It is clear that the possibility of
realizing this interesting phenomenon is primarily
determined by the quality of the surface and it is diffi-
cult to observe this phenomenon for the real (not atom-
ically smooth) surface of the crystal. Probably for this
reason, attempts to experimentally find the surface
spin-flop transition at the border of asingle crystal have
been unsuccessful [28]. However, such atransition was
observed for one-dimensional superstructures in the
form of multilayer Fe/Cr films with antiferromagnetic
interaction between layers grown on an anisotropic
MgO(110) substrate [29-31]. Two-dimensiona sys-
tems provide a higher possibility of realizing localized
transitions at the border of the surface system, as well
ason various irregularities of arrays of dots (defects).

In this work, we analyze both analytically and
numerically the ground state of a square array of mag-
netic dots in the presence of the external magnetic field
for both finite arrays of dots and arrays with irregulari-
ties. The model is described in Section 2. We primarily
consider the Ising case, where the state of a single dot
can be described by a certain effective magnetic
moment, which is perpendicular to the plane of the sys-
tem. Such asimplification is applicable for sufficiently
small dots with perpendicular anisotropy that are in a
single-domain state [6, 7], but it can also be applied for
dotsin astrongly inhomogeneous vortex state (see[32,
33] and below). For the magnetic field perpendicular to
the system plane, the entire set of the statesis analyzed
from the chessboard antiferromagnetic order of mag-
netic momentsin weak fields to the ferromagnetic state
of the system with the parallel orientations of the mag-
netic moments of different dotsin strong fields. For the
infinite system, such amodel exhibitsarich set of states
at intermediate magnetic field strengths[14]. Aswill be
shown in Sections 3 and 4, in the presence of the border
or stacking faults in the lattice, the critical fields at
which the indicated simple phases lose stability are
much weaker than those for the infinite system. In Sec-
tion 5, intermediate magnetic structures are found using
numerical simulation. Theforms of the structuresin the
intermediate field range strongly differ from those char-
acteristic of the ideal infinite system and are consider-
ably determined by the form of the array. The results
are discussed in Section 6.

2. DESCRIPTION OF THE MODEL

To describe the system, we suppose that the state of
the array is represented by the set of the total magnetic
moments , of dots. We consider a system of the mag-
netic moments of dotslocated at thesites| = a(ne, +le))
of the square lattice, where a is the lattice constant, n
and | are integers, and e is the unit vector of the corre-
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sponding axis. The Hamiltonian of the system that
includesthe dipol einteraction of such asystem of mag-
netic momentsin the presence of both the external mag-
netic field and magnetic anisotropy for each dot can be
written in the form [34]

0 = zM Chy —3(w [:’)(lll' [v)
PIK =1
(1)

=5 [B(w &)+ pyy H.
|

Here, the first term describes the dipole interaction
between the magnetic dots, v = (I = I')/]l = I'|, B is the
anisotropy constant for a single dot, and the external
field H isassumed to be parallel to the normal vector to
the system plane. Anisotropy is supposed to be uniaxial
with the easy axis along the z axis, which is perpendic-
ular to the system plane, so that 3 > 0 and the state of a
single dot is characterized by perpendicular magnetiza-
tion; in this case, w, = e, Where |, is the magnetic
moment of one dot. This property is inherent in dots
elongated along the z axis (for details, see [6, 12]).
Another important system for which the model of Ising
dipolesisapplicableis an array of magnetic dotsin the
vortex state. Such a state is realized for approximately
circular dots made of soft magnetic materials when the
radiusislarger than a certain critical vaue Rz R;; Ry <
100 nm for permalloy. For quite thin dots with thick-
nessL < R (dotswith L = 20-30 nm arereally studied),
the magnetization M can be considered as independent
of the z coordinate perpendicular to the magnetic dot
plane; i.e., M = M(r, X), where r and x are the polar
coordinates in the dot plane. In this case, the structure
of the vortex is similar to the structure well known for
magnetic vorticesin two-dimensional easy-planeferro-
magnets (see, e.g., [35]). The vortex corresponds to the
magneti zation

M = MJe,cosb + sinB[e,cos(X + ¢,)
+esin(x +¢o)l},

where M, isthe saturation magnetization and 8 = 6(r) is
the polar angle of magnetization. For magnetic dots, the
same distribution is realized with ¢, = +17/2, which
givesdivM = 0 and leads to the closure of the magnetic
flux, i.e., to adecreasein the magnetostatic energy [32].
Taking ¢, = /2 for definiteness, we write

M = Mg[e,cosb + (—esin + e ,cosx)sinf]. (2)

Two values 6(r) = 0 and Ttare possible and, correspond-
ingly, cosB(r = 0) = p = £1 at the center of the dot (at
r=0). For r > A,, the function 6(r) exponentially

approaches T/2. Here, A, = ,/A/4TIM? is the exchange
length, where A is the inhomogeneous exchange con-
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stant. For permalloy, Ay =5 nm. The discreteindex pis
called the vortex polarization and has the sense of the
T, topologica charge of the vortex [35]. Thus, out-of-
plane magnetization is nonzero only in the core region
r < Ay, and the magnetic moment p of the dot may
assume two values

= PHoe, P = £l Mo = 2MELAM,,  (3)
where & = 1.361. Since A < R, the magnetic moment
of the core is much smaller than the value for the satu-
rated dot. As aresult, the state of the dot is quadruple
degenerate, i.e., double degenerate in ¢, = £102 and
double degenerate in the core polarization p = +1. Tak-
ing into account only the dipole interaction between
dots in the framework of the model given by Eq. (1),
one can consider that all dots are in two states, up and
down. Here, the difference between the energies of a
magnetic dot in the vortex state and adot magnetizedin
the system plane serves as magnetic anisotropy.
Detailed experimental and theoretical investigations of
the ground state of arrays of dots show that this anisot-
ropy is large enough to ensure the Ising orientation of
the magnetic moments of dots (see, e.g., [6, 12] and ref-
erences therein).

Thus, both above cases, though exhibiting signifi-
cantly different physical pictures, can be described
using model (1) under the assumption that the moments
of all dotsare parallel or antiparallel to the normal vec-
tor e, to the system plane. We assume that the external
field H isalso parallel to the zaxis and perform analyt-
ical calculations only for this Ising case. In this case,
the sign of the magnetic moment at agiven siteis deter-
mined only by the sign of the projection of the effective
field on the z axis and a quite complete analysis can be
performed analytically. The numerical analysisis per-
formed without the restriction , || e, using the total
Hamiltonian given by Eq. (1) (see Section 5).

3. EFFECTS OF THE FINITENESS
OF THE ARRAY UNDER MAGNETIZATION

For the description of the ground state and magneti-
zation processes for real arrays of magnetic dots (in
contrast to theidealized model of theinfinite array), the
problem of the effect of system bordersis most substan-
tial, because in principle it cannot be removed. An
important role is played by the array edge, where the
effectivefield of the dipole interaction is expected to be
minimal and the corresponding magnetic dots are the
most sensitiveto the external magnetic field. Werestrict
our analysis to the simplest case, where the array of
dots is sguare. In this and following sections, we also
assume that the array is large enough to ignore the
direct effects of the size of the system. We primarily
consider only the simplest geometry of the system, sup-
posing that the array has the rectangul ar shape with the
borders parallel to certain trandation vectors of the ini-
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tial array of magnetic dots. We will consider the (1, 0)
and (1, 1) vectors. In this case, analysis of the stability
of the most significant states, saturated and antiferro-
magnetic, can be performed analytically using only one
dipole sum, which should be determined numerically,
for each of these states.

For the infinite array of dots, analysis of possible
states in the presence of the magnetic field issimplified
due to the invariance of the system under translation by
the trangdlation vector of the array of dots. States peri-
odic with atrand ation period multipleto the period a of
the array of dots were considered in [14]. Among these
states, only two states—saturated, which we call ferro-
magnetic (FM), and chessboard antiferromagnetic
(CAFM) stable at weak fields—had the same square
symmetry as the initial array of dots. The remaining
statesrealized in theintermediate field range were char-
acterized by lower obligue symmetry. The existence of
any trandational invariance significantly simplifies the
problem and enables one to reduce it to the search for
the finite configuration of dots with the minimum
energy for given average magnetization, which is in
essence the difference between the numbers of up- and
down-magnetized dots. In the case under consideration,
there is no tranglational symmetry, but other properties
can be used. Indeed, analyzing the effect of the borders,
we primarily analyze the behavior of the dotslocated at
the border, treating the remaining dots of the array asa
reservoir governing the behavior of the border dots. The
set of the dots of the array generates the dipole interac-
tion field Hp on the border dots with magnetic moment
Ko. Thisfield isgiven by the formula

Hp = —9Ho/dp,,

where Hp isthe Hamiltonian of the dipole interaction
between magnetic dots, which is specified by the first
termin Eqg. (1). If the total magnetic fieldH, = H + Hp
acting onthisdot is parallel to its magnetic moment, the
state of the dot is energetically favorable and stable. If
the vector H, becomes antiparallel to the vector p, at a
certain value H; of the external field H, the magnetic
moment of thisdot isreversed. It is expected that, in the
immediate vicinity of H,, this reversal does not lead to
change in the state of magnetic dots forming the reser-
voir. We verify the applicability of this approach by
comparing the results with the data of the numerical
analysis. In essence, this approach is equivalent to the
energy approach, which is used in [14] to analyze the
stability of the ferromagnetic and CAFM states (see
below).

We start with the simplest case of the square array of
dots with sides parallel to the elementary-trandation
vectors. We consider the most significant cases of the
ferromagnetic array for which p, = poe, and the CAFM
state in which the magnetic moment of the dot in the
site specified by the numbers n and | is equa to
(-1)"*'*1 These states in the infinite array are stable
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Fig. 1. Semi-infinite lattice of magnetic dots and the choice
of the coordinate axes.

for H>H; and H < H,, respectively, where the charac-
teristic fields H, and H; are on the order of py/a3,
Hy < H; and were calculated in [14]. In what follows,
we will sometimes use the dimensionless quantity h =
H(uy/a®)™. In order to calculate the field on a given dot,
it is convenient to take the coordinate system with the
origin at this dot and with the axes parallel to the border
of thearray (Fig. 1). Thedipole magnetic field at the dot
located in the coordinate origin n = | = 0 isgenerated by
all other dots of the array and is given by the expression
Hp = Hpe,, where

llo pnl
Ho = =5 = 4
0 =~ (4)

3 2 2,32
n,l(n +| )

Here, the factor p, | = +1 gives the magnitude of the
magnetic moment p, = p,, 1€, of the dot with the coor-
dinate | = (ne, + lg)a and nand | are integers at least
one of which is not equal to zero.

For all cases of interest, namely, for a magnetic dot
located at the edge of the array or at its border and for
arrays of dots in the ferromagnetic or CAFM states, a
certain common property is easily seen. The sum in
Eqg. (4) can be expressed in terms of two auxiliary
sums. the single sum o over dots located at the ray
beginning at the coordinate origin (half the coordinate
axis) and the double sum o, over dots located in one of
the array sectors that is bounded by the dashed line in
Fig. 1. These sums are defined as

- pO n pn,l 5
’ nzl IZlnzl(l + n2)3/2 ®
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Fig. 2. Magnetic structure of the border and edge of the
square array of magnetic dots in the external magnetic field

H = hug/a®, where (a) h = h®¥9¢ = 1,562, at which the rever-
sd of the magnetic moment occurs at the edge of the sys-

tem; (b) h=hPoder = 2 222 gt which thefirst reversal of the
magnetic moment occurs at the border of the system; and
(c) h = 2.264. The distribution of reversed moments at the
border when thefield increasesisillustrated in panel (c) and
Fig. 3. Inthisand all following figures, magnetic dots mag-
netized upward and downward are shown by light and dark
circles, respectively.

and can be easily calculated. The sum o) isexpressedin
terms of the Riemann ¢ function, whereas the sum o,
can be determined numerically and its values will be
presented below. It is easy to see that, for the simplest
ferromagnetic and CAFM structures, the field of the
dipoleinteraction at aborder dot is determined by these
two sums. The field on a magnetic dot located at the
infinite rectilinear border (such asthey axisin Fig. 1)
far from the edges has the form

pyborcer — —e%j(scr.+ 20,)., ()

and the field on a magnetic dot at the edge of the array
is given by the expression

He = —ez¥(20|+q). 7)

In order to compare thiswith the results obtained in [14],
we write the field on the dot inside the infinite array in
asimilar form,

H' = —4ezz—§(0|+q). ©)

We begin with the ferromagnetic state, for which
both sums (5) are positive and are equal to

of = {(3) = 1.202057, o = 1.056439,

where the latter sum is calculated numerically with the
summation up to n = | = 10% For definiteness, we sup-
posethat all moments are directed upward. In this case,
the dipole field is negative on all dots of the array, i.e.,
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Hp = —Hpe,, and for the stability of the ferromagnetic
state, the presence of an upward external magnetic field
exceeding Hp is necessary. It is easily seen that the Hp
value at the border pointsislessthan that in the volume.
For this reason, when the saturating magnetic field
decreases, magnetic dots located at the center of the
system are the first dots that lose stability at the field

H<H, = 42(c" + 7).
a
The substitution of o™ valuesyields H, = 9.03622/a5,
which was previously obtained in [14]. The character-

istic fields at the border or edge are much weaker
than Hy:

Ho

H™% = 571886812, Ho
a3

H3'% = 3.4604624=
a

(9

and the ferromagnetic states for them remains stablein
a much wider interval of the external magnetic field.
This property does not mean that the effect of the bor-
der on the formation of the state, where the magnetic
moments of some dots are reversed, is negligibly small.
As will be shown below, the presence of the border is
also substantia in this case. In fact, the border for the
ferromagnetic state serves as “repulsive inhomogene-
ity” for all states containing reversed spins. Numerical
analysis confirms this statement (see Section 5). How-
ever, a “classical” surface effect, such as the surface
spin-flop transition [26, 27, 29-31], where the nucle-
ation of inhomogeneity occurs near the border of the
system and then extends to the interior of the sample, is
absent for the ferromagnetic state with decreasing
external magnetic field.

The above scenario is realized for the CAFM state,
which is the ground state in the absence of field and
holds stability to a certain critical field. For theinfinite
system, this critical value is H, = 2.645886,/a3 [14].
Numerical analysis shows that such a CAFM state is
also the ground state for finite systems not only of rect-
angular shape with sides parallel to the (1, 0) and (0, 1)
vectors but also of various shapes with acute angles, as
well as of circular shape. However, as the field
increases, the instability of the CAFM state is devel-
oped by reversing the magnetic moments of dots in
“weak sections,” first at the edge of the array and then
at its border (see Fig. 2). In order to demonstrate this
behavior, we note that, for the case of the CAFM struc-
ture, sums (5) with alowance for the factor p,, =

(-1)"*'*1 have different signs:

off = —gz(s) = -0.901543, o7 = 0.2400712.

Note that the sum o”*" does not contain any contri-
bution from the nearest neighbors of the edge spin and
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issmall in absolute value as compared to 0|, of , and

of . Thisisexplained by the faster decreasein the alter-

nating sums corresponding to the CAFM structure. Fur-
thermore, it is clear that the dipole field on a magnetic
dot at the edge of the array is parallel to the magnetic
moment of the dot, and its magnitudeis

Hete = Bo(oloh — 077y = 1563014252, (10)
a a

For a dot with the upward magnetic moment, the
external magnetic field, which is supposed to always be
directed upward, stabilizes this state. The state of the
magnetic dot at the edge of the array inthe CAFM state
with the downward magnetic moment becomes unsta-
ble at the magnetic fild H = HS®. Further, the mag-

netic moment of this dot is reversed at H = HS®. This

reversal can be treated as the beginning of the destruc-
tion of the CAFM state in the finite array. We note that
it occurs at the field that is much weaker (by a factor
of 1.7) than the instability field for the infinite system.
This state is then stable and does not change until the
external field increases to the value

Hoder = Bo3|ohF| _ 207F) = 2.204481652, (12)
a a

at which the reversals of spins at the border of the array
begin. The critical fields presented above are in good
agreement with the values obtained in numerical simu-
lation of this system for a quite small size of the system
(30 x 30 dots, see Figs. 2, 3). It is interesting that the
field at which the reversal of the magnetic moment in
the interior of the system occurs (at thisinstant, the bor-
der is yet incompletely saturated, see Fig. 3) is quite
close to the value hy = 2.646 obtained for the infinite
system. All of these facts clearly demonstrate the rapid
convergence of dipole sums for antiferromagnetic con-
figurations of the dipoles.

Thefurther evolution of the distribution of magnetic
moments proceeds due to the reversal of the moments
of dotsin the interior of the system (see Section 5). Itis
worth noting that the border, which contains a large
number of moments aligned with the field, quite signif-
icantly affectsthe distribution of the magnetic moments
of dots in the interior. Thus, it becomes necessary to
analyze other forms of arrays.

As an example, let us discuss a case opposite in
some respectsto that discussed above. It isan “ oblique-
square” array, i.e., a rectangular system with borders
parallel to the diagonals of the elementary cell of the
array of dots, i.e., to (1, 1) vectors (see Fig. 114). For
numerical analysis, we take the array that has a shape
close to a square, sides containing only downward and
upward magnetic moments, and different configura-
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Fig. 3. Magnetic structure of the square array of magnetic
dotsat thefirst reversal of the magnetic moment far from the
border for thefield h = 2.642.

tions of magnetic moments at the edges of the system.
For the ideal CAFM state, the left and right edges con-
tain dots with the downward and upward moments,
respectively, and both these dots belong to the section
of the border with the upward and downward moments,
respectively. Two remaining edges of the system, upper
and lower, contain a compensated pair of magnetic
dots. Analysis showsthat these two edge states are quite
stable agai nst the action of the magnetic field. Figure4a
shows the fragment of such a system in the state with
one reversed moment at the edge.

An edge with the downward magnetized magnetic
dot and the adjacent border with the same-type dots evi-
dently constitute a weak link of the CAFM structure
against remagnetization. The calculation of instability
fields of these fragments is similar to the procedure
described above. In this case, it is not necessary to
numerically calculate two-dimensional dipole sums
additional to those already known. Indeed, let usrepre-
sent the instability field of the edge dot in the form

H® = (20,+ 0, )po/a’,

where g is the sum of the fields of the dots located at
the border ray and o, are the sum of the fields of the
remaining dots. In the border ray parallel to the (1, 1)

axis, the distance between dots is equal to ./2a and,

therefore, 0, = {(3)/24/2 = 0.424991. It is easy to deter-
mine g, , because 4(0; + 0, ) is the sum of the fields of
all dots in the CAFM structure of the infinite system.
This quantity naturally coincides with the above-dis-
cussed instability field of the infinite CAFM structure,
which is equal to —4(o, + 0, ) = 2.645886. From this

No. 6 2005



1112

Fig. 4. Evolution of the magnetic structure of the oblique-
square array of magnetic dots (see text): (a) h = h®9€ =
0.239, the reversal of the magnetic moment at the edge of

the system; (b) h = hP'd&" = 0,899, the first reversal of the
magnetic moment at the border; (c) h = 2.55, the end of the
magnetization of the border layer; and (d) h=2.642, thefirst
reversal in the interior of the system.

relation, it is easy to find the double sum o, =
-1.0864628 without numerical calculation. Further, the
instability field of the magnetic dot located at the edge,
where downward magnetized borders converge, is
found as

Ho

H?dge — _(20'+0L)“_‘3) = 0.2364802—3 (12)
a a

As expected, this field is small compared to al of the
above-presented instability fields for the array with the
border along the (1, 0) and (O, 1) vectors and is one
tenth of the value for the infinite system. Correspond-
ingly, theinstability field of dotsin the downward mag-
netized border for the array with sides along the (1, 1)
vectorsis also small:

Ho

H" = _(30,+20,)= = 0.897952L2 (1)
a a

[cf. Egs. (12) and (13) with Egs. (10) and (11)].
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Both these values are in good agreement with values
obtained numerically (Figs. 4aand 4b). Then, the mag-
netization of the oblique-square system occurs via
almost the same scenario as in the case of the square
system with sides along the (1, 0) and (O, 1) vectors.
Since the characteristic fields H®% and H™% gre
smaller than the respective values for the direct-square
system, the magnetization of the border of this system
is redlized in a wider field interval. From the value

HY = 0.2365u/a% to the volume field H, =

2.642y,/a3, only the states of magnetic dots on the ini-
tially downward magnetized surface change (Figs. 4b
and 4c). The border isamost completely remagnetized
to the instant that reversed moments appear in the inte-
rior of the system (Fig. 4d).

4. MAGNETIZATION
OF THE ARRAY OF DOTS WITH DEFECTS

When analyzing the properties of rea arrays of
magnetic dots, the question arises about the role of vio-
lation of theideal array structure. Methods used for the
production of arrays of magnetic dots enable one to
obtain samples with very high spatial regularity. How-
ever, for technological applications, it may be neces-
sary to produce arrays with controlled irregularities the
simplest of which isavacancy in the array of magnetic
dots. Such vacancies single or united into clusters also
evidently constitute a weak link for the destruction of
the CAFM order of the array of dots with increasing
field, as occursfor the spin-flop transition in low-dimen-
siond antiferromagnets with atomic vacancies [36].
Analytical calculation of the instability field of the
CAFM structure near such defects appears to be easy,
and the corresponding fields strongly differ from both
the volumefield H, and the above-di scussed fiel ds H&d%e

and Hde |t will be shown that the magnetization of a
given cluster of vacancies occurs via several jumps of
the magnetic moment at certain field values. Analyzing
such a step curve, one can determine the presence of
certain defects in the array of magnetic dots without
detailed scanning of the entire array, which can be used
for diagnostics of the series of samples.

We start with the analysis of asingle vacancy in the
CAFM dtate of the square array. It is evidently suffi-
cient to anayze only one of two equivalent cases,
where a dot with the upward or downward moment is
removed from the structure. For definiteness, we sup-
pose that the vacancy correspondsto the removal of the
dot (or dots) with the upward total moment. Then, dots
with the uncompensated downward magnetic moment
are located near it. They constitute a weak link of the
system in the presence of the positive field, which is
discussed here.

Hereinafter, the structure of the vacancy is denoted
by the fractiona number, where the numerator is the
number of removed magnetic dots and the denominator
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istheir magnetic moment inthe CAFM state. For asin-
gle vacancy (index 1/1, see Fig. 5), the most “vulnera-
ble” dot is a magnetic dots with a downward magnetic
moment that is located immediately near the site from
which the magnetic dot is removed. Its magnetic
moment is expected to be the first that is reversed. It is
evident that the field at this dot is weaker than that for
theideal array by py/a®, whichisthefield that is gener-
ated at this site by the dot removed from the array.
Therefore, the first-instability field is equal to

Ho

P
a

Ho

(1) _
Hix = Ho —
a

= 1.645886

which isin good agreement with a value of 1.642p/a3
(Fig. 5b). Thisvalue is somewhat higher than the value
Hedee = 1.56,/a® for the direct square array, but is
noticeably less than the value for the infinite system.
The calculation of thereversal field for the second mag-
netic moment is also trivial. Formally assuming the
existence of an “antidot” with the doubled magnetic
moment at the place of the dot with the reversed mag-
netic moment, we obtain

2
Ho 189588652

(2a) a

(2) — 4@
Hy: = Hyp +

(Fig. 5¢).

Simple analysis shows that the reversals of subse-
guent magnetic moments near the single vacancy occur
at fields exceeding the volume field H,. Thus, the exist-
ence of the single vacancy gives rise to the appearance
of two jumps of the total magnetic moment by a value
of 2u,, which are well separated in the field value. In
other words, two minimum “quanta’ of the magnetic
moment of a given system may be localized at the sim-
plest single vacancy; then vacancy is saturated and is
not already involved in the magnetization process.

Let us now consider the compensated double
vacancy formed when two neighboring dotsthat belong
to different sublattices in the CAFM structure (index
2/0) are removed. It is intuitively clear that such a
defect is weaker than the uncompensated defect.
Indeed, elementary calculation shows that the instabil-
ity field for the magnetic moment is higher than the
value for the single vacancy:

_ oy 10 _ Ho
H,, = Hy+ =1 —== = 1.770886
2/0 0 ag%]‘ 8:| a3

(numerical simulation gives a coefficient of 1.753,
Fig. 6). An additional reason to treat this defect asweak
isthat it can localize only one elementary deviation of
the magnetic moment. If one moment is reversed, no
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Fig. 5. Evolution of the magnetic structure of the array of
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Fig. 7. Evolution of the magnetic structure of the array of
magnetic dots near a double uncompensated vacancy:

@h< h(zlg unperturbed state; (b) h = h(zlg = 0.642, the

first reversal; and (c) h = h(zzg =1.349, the second reversal.

instabilities near the defect are observed when the field
increases from H,,, to Hy,.

Double, triple, etc., uncompensated vacancies are
stronger and stronger attractive centers. For an uncom-
pensated double vacancy, which is obtained by remov-
ing two nearest magnetic dots with moments parallel in
the CAFM structure (Fig. 7), thefirst instability field is
aready weaker than the field H®% of the reversal of the
angular magnetic moment for the most typical square
array with the sides along the (1, 0) and (0, 1) axes. In
this case, the first reversed magnetic moment is the
magnetic moment of the dot equidistant from both
empty sites and the field of thisreversal isequa to

2o

3
a

Ho
2

HS2 = Ho— = = 0.645886

There are two such dots, but the reversal occurs at one
of them. After thereversal of thefirst dot, thefield at the
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Fig. 8. Evolution of the magnetic structure of the array of
magnetic dots near a triple vacancy: (a) the unperturbed
state and (b) the state with four reversed moments. Digits 1—
4 in the circles indicate the order of reversals of the corre-
sponding moment. According to numerical simulation,
these reversals occur at fieldsh = hg}g =0.552, h= h(;; =

0.802, h = 1.869, and h = 1.892. We point to the closeness
of the last two reversals (see text).

second dot increases and its magnetic moment is stable
up to thefield

HQ) = {4 oMo 13529932,

B2 a’

The verification of the fields on the remaining dots and
numerical simulation show that therole of such adefect
ends at this point, see Fig. 7. The double uncompen-
sated vacancy, aswell asthe single vacancy, may local-
ize two elementary magnetic moments. This defect
should be treated as quite strong, because the character-
istic fields are noticeably lower than those for the above
case of the single vacancy.

The three simple examples discussed above provide
sufficient understanding of how to calculate fields at
which loca reversals of dots near rather complex
defects. Let us consider the general problem for a
vacancy that is obtained by removing a certain number
of magnetic dots from the sitesv of the ideal lattice. In
order to determine thefirst reversal field, it is sufficient
to calculate thefield at all dotsfor which the reversal of
the moment is expected. Thisfield at a certain magnetic

dot located a the site n (nth dot), H, = H"e,

H, = h{" py/ad, is determined by the finite sum over
vacancies:

HY =
31
zIV— |

where the numbers p, = +1 determine the sign of the
magnetic moment in the ideal CAFM structure at the
site v of the array from which the magnetic dot is
removed. The reversal of the magnetic moment in the

external field H® = |H'Y | occurs at the dot for which

Hf]l) is negative and its absolute value is minimal. In
order to find the next candidate for the reversal, it is
necessary to find the fields H,, on other sites neighbor-
ing the vacancy with allowance for the field change at

(14)
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the reversal of the first dot. As aresult, for the system
with vacancies|ocated at the dots with vectorsv, where
several magnetic moments of the dots located at the
sites | are already reversed, the field at the nth dot is
determined by the expression

H{v,l} =H.e, H,=hpula’,

Ho Py Ho 1
= Ho—— + 272 :
oo a32|v_n|3 a3Z||_n|3

Here, we usethe fact that areversal always occursfrom
the downward position to the upward position and the
sign of the corresponding termsis defined. The appear-
ance of afactor of 2 in the sum over the reversed dots
was explained above. Thereversal of the nth dot is pos-
sible for H,, < 0, which occurs when the externa field
increases to |H,|.

We now apply this general consideration to describe
the system of three uncompensated vacancies |located
along one line (Fig. 8). In this case, two reversals of
magnetic moments occur according to the same sce-
nario as for the double vacancy. They occur for dots
equivalent in the CAFM structure, but the moments of
these dots are not reversed simultaneously. The dis-
tance between them is small enough so that the reversal
of thefirst dot delaysthereversal of the second dot. The
corresponding fields are given by the expressions

(15

a _ Ho Uo
HY) = HO—;% SJ% = 0556443
HE) = Y+ Ho = 080644352,
4a° a’

The next change in the magnetic state of the system has
the following feature: two magnetic moments are
reversed almost simultaneously at close fields HS)

and H(3‘,‘3),:

2
@+ o - 4© 4 0.0223607H2.
(ay/20)° a’

The difference between these fields is caused by the
mutual effect of two quite strongly spaced magnetic
dots (see Fig. 8). Thus, thetriple vacancy localizesfour
states: two single states and one double state.

The above examples well demonstrate the laws of
the appearance of deviations in magnetic moments
localized at various defects. For a cluster consisting of
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any finite number of vacancies, calculation is reduced
to that of a finite sum and, although it becomes rather
cumbersome as the number of vacanciesincreases, itis
guite easy.

Let us also present the minimum instability field for
the CAFM structure in the presence of extended
defects—compensated and uncompensated infinite
lines of vacancies. It is clear that, for the uncompen-
sated line of vacancies, in which upward magnetized
dotsareremoved from acertain line parallel to thearray

vector (1, 1) or (1, -1), theinstability field H, ismin-
imal and equal to

00

Ho 1 _ Ho
Ho— 2= Z — = 0.386811;,

1) _
H - 3
a To(1+n)

oofoo

which is in good agreement with the value of
0.3895}1/a® obtained in numerical simulation.

For the compensated line of vacancies that is paral-
lel tothe (1, O) or (O, 1) array vector, the instability field
of one of the magnetic dots adjacent to the line of
vacanciesis given by the expression

- (<" }
Ly (1+n)*
Ho

-
a

3

HY, = HO—&’[—1+2
a

= 2.218423

Numerical simulation yields a value of 2.212y/a%.

Finally, for the compensated line of vacancies of the
above type that ends with the magnetic dot with the
downward moment, the instability of this end occurs at
the quite low field

end _ (_1)n —
HZo = Ho-3 Y = 1.7443432

This value is in good agreement with the value of
1.7351p/a3 obtained in numerical simulation.

The results for fields at which the localized viola-
tions of the CAFM structure appear at a given defect,
are systematized in Fig. 9. For comparison, the horizon-
tal straight lines in this figure show the characteristic
fields H, of the volume instability, as well as the rever-
sal fields for the magnetic moment at the edge and bor-
der of the square array. It appearsthat two characteristic
fields of different natures, namely, the instability field
of the magnetic dot near the compensated line of vacan-
cies and the field of the dot reversa at the end of the
uncompensated line are close to each other. These val-
ues are also close to the border-instability field. For this
reason, all these values are shown by the same horizon-
tal dashed line in this figure. The difference between
them appears in the third decimal place and this close-
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Fig. 9. Instability fields of the CAFM structure of the square
array of magnetic dots. The horizontal straight lines are the
fields for the defect-free system: the solid line is the bulk-
instability field Hy; the dashed and dotted lines are the

reversal fields for the magnetic moment at the border and
edge of the array, respectively; the short dashes are the char-
acteristic fields for the defects of the array that are shown
over the defect index, seetext. The dataare given for (I) the
uncompensated line of vacancies and (Il) the end of the
compensated line of vacancies. Two close fields for the tri-
plevacancy in thereal scale of thefigure are represented as
the thicker dash. In this scale, the three characteristic fields
mentioned in the text are indistinguishable.

nessislikely accidental. We emphasi ze that the charac-
teristic instability fields for the interior and for
extended defects (the infinite line of vacancies and the
border) are in essence the lower borders of regions
whereaseriesof instabilitiesdevelops (see, e.g., Figs. 2
and 4). In order to emphasi ze this fact, the correspond-
ing regions located above these fields (“continuous
spectrum of instabilities’) are shown by different
hatchings.

5. PROCESSES OF MAGNETIZATION
OF THE ARRAY IN INTERMEDIATE FIELDS

In the preceding sections, we showed that the insta-
bility field H>e of the CAFM structure near the bor-
der of magnetic dots is much lower than the value H,
determined in [14] for the infinite array. In the entire
field interval H™ < H < H,, an increase in the mag-
netic moment occurs due to the reversals of the mag-
netic moments of dotsat the border. Further, for H = H,
the volume instability is realized and the presence of
the completely (or partialy) remagnetized borders of
the system amost does not affect this field for the
CAFM structure. Analysis of the states of the system
for intermediate fields was performed by numerical
minimization of total Hamiltonian (1) without the con-
straint u, || e,, which was realized by means of an orig-
inal code.

Numerical analysis was performed with the stan-
dard Gauss-Seidel algorithm. The ferromagnetic or
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CAFM state realizing the minimum for strong and
weak fields, respectively, is taken as the initial state.
Calculation was performed beginning with a weak or
strong field and with a given step Ah from 2.5 x 104 to
102 and most calculations were performed with steps
of Ah =25 x 102 and 5 x 1072 (the latter value for
larger systems). Simulation correspondsto two regimes
usually used in experiment, namely, the magnetization
of asample from the unmagnetized state when the field
increases from zero and the demagnetization of the sat-
urated state when the field decreases. Calculation
shows quite rapid convergence of the iteration proce-
dure. The code provides automatic calculation of not
only energy but also the z projection of the total mag-
netic moment. The specific feature of this problem is
the presence of single-site anisotropy dueto whichitis
necessary to accurately determine the direction of the
magnetic moment in a given site at each iteration step
with the inclusion of both interaction with neighbors
and the effective field of single-site anisotropy. (With-
out single-site terms, it is sufficient to perform itera-
tions by reversing the magnetic moment along the
effective interaction field.)

It is important that the inclusion of single-site
anisotropy does not affect the energy of the Ising states
found above and that the ani sotropy constant 3 does not
appear inal of the aboveformulasfor thecritical fields.
However, analysis of the general problem with allow-
ancefor both the possibility of the deviation of the mag-
netic moment from the given axis and the presence of
single-site anisotropy is fundamentally important for
determining the stability of Ising states with respect to
the transition to planar states. We are primarily inter-
ested in Ising states, which are easily studied analyti-
cally, but the inclusion of the transverse components of
moments, as well asthe obliquefield, is not difficult in
numerical minimization. Numerical calculations were
performed with two anisotropy constants 3 = 1/a® and
5/a%. Most calculations were carried out with 3 = 1/a8,
becauseit is difficult to find aminimum at larger 3 val-
ues. For such a small 3 value, the transition to planar
states is sometimes observed. These states correspond
to very complex noncollinear structures, which are con-
siderably determined by the shape of the array. For 3 =
5/ad, the Ising structure is always stable. Thus, the sta-
bility of structures obtained in [14] under the assump-
tion 3 — o iscorroborated at moderate 3 values.

Our numerical analysis showsthat the bulk-instabil-
ity field for sufficiently small arrays (from 30 x 30 to
50 x 50) of various shapes coincides (with an accuracy
to three decimal places) with the previously determined
value h = 2.642. However, the bulk magnetization pro-
cess in the presence of the field increasing from Hg is
much more sensitive to the existence of borders.

Both investigation of the idea infinite system and
our numerical analysis show that, as the dimensionless
field increases by a quite small value, the finite density
of magnetic dots with reversed (with respect to the
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CAFM structure) forms in the array. We characterize
this value by the parameter

m = Mo/ MoN, (16)
where M, is the total magnetic moment of the system
at agiven field and N isthe number of the magnetic dots
in the system. In the CAFM and saturated ferromag-
netic states, m= 0 and 1, respectively; i.e., this param-
eter serves as the reduced magnetization. When a non-
zero [even small (m < 0.05)] density of the reversed
dots appears in a sufficiently large system, the effect of

the borders on the behavior of the system becomes sig-
nificant.

Indeed, in an infinite system at a given smal m
value, the structure is formed due to the dipol e interac-
tion of reversed dots against the background of the
CAFM structure. For a finite system, there is an addi-
tiona factor of the mean magnetic field induced by
reversed dots. It is expected that the density of reversed
dots is approximately constant in the greater part of a
sufficiently large system. However, the magnetic field
generated by magnetization is not constant over the
array space even in this case. As was shown above, this
field is maximal at the center, is weaker at the border,
and is minimal at the edge of the array, so that these
threefield valuesarein aratioof 9: 6 : 3 [see Eq. (8)].
Thus, the magnetization-induced “macroscopic” field
depends on the distance from the center of the system;
moreover, its symmetry presents the geometry of the
array.

An additional factor is directly associated with the
field of magnetic dotsthat are located at the border and
are upward magnetized for H < H,. Already, when the
field only dlightly exceeds this critical value, the
appearance of a superlattice of reversed dots whose
density islow for small H —H, valuesis expected even
in the infinite system. However, such a “network” of
reversed dotsisin contact in its periphery with the bor-
der and is completely sensitive to the presence of the
border. For uncompensated borders, which exist in sys-
tems such as an oblique sguare, the difference is stron-
ger and is determined not only by the shape of the array
but also by the property of the border, which can be
magnetized upward or downward. The effect of the
completely or partially magnetized border dictates a
certain structure for periphery regions adjacent to it and
this structure expands to the central region of the array.
Since different sections of the border are oriented dif-
ferently, such a quasi-constant action of the border sec-
tions on the central region is often contradictory and
can giveriseto frustration effects.

This smple analysis clearly demonstrates the com-
plexity and ambiguity of all factors affecting the mag-
netic structure of afinite array of dipole-coupled dots
for H > H,. In this case, it is reasonable to use direct
numerical simulation. We start with the most character-
istic example of the square array with sides parallel to
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Fig. 10. Magnetic structures of the central region of the square array of magnetic dots for the reduced magnetization m = (a) 1/16,
(b) 1/3, (c) 4/9, (d) 2/3, and (€) 11/12 and the dimensionless field h = (a) 2.748, (b) 4.134, (c) 5.154, (d) 7.102, and () 8.168.

the (1, 0) and (0, 1) vectors and then briefly discuss
other geometries of the system.

Figure 10 shows the centra regions of the square
array, where surface layers containing the completely
magnetized border and adjacent layer are removed for
clearness. These data generaly corroborate the afore-
mentioned tendency: the structure of the central region
of a finite array is formed as compromise due to the
competition between several contradictory factors. Asa
result, the ordered | attice of reversed dots characteristic
of the infinite system does not appear even for small m
values such as 1/16 (Fig. 10a).

As the field increases further, the number of
reversed moments increases and the distance between
them becomes much shorter than the size of the system.
However, this increase proceeds against the back-
ground of the already formed network of deviations
from the CAFM structure, which is considerably
adapted to the shape of the system and the macroscopic
dipole filed generated by magnetization. For this rea
son, for moderate values m= 0.3-0.5, oblique superlat-
tices, which are characteristic of the infinite system and
whose elements are observed for small m vaues, are
not observed. Instead of them, the fragments of therect-
angular superlattice of deviationsfrom the CAFM state
are formed. The basic element of such a lattice is the
line of upward magnetized magnetic dots that is paral-

prising.
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lel tothe (1, 0) or (0O, 1) axis (horizontal or vertical sec-
tions consisting of open circles in figures). Approxi-
mately equal numbers of the horizontal and vertical
sections of such linesare clearly seenin awide mrange
(see Figs. 10b-10d). For m values close to 1/2, the
square lattice covers the greater part of the array (see
Figs. 10c and 12a for m = 4/9 and 1/2, respectively).
This sguare lattice should be considered as most favor-
able with allowance for symmetry dictated by the bor-
der. It is worth noting that, for m values close to 1/2
(data for m = 4/9, 1/2, or 5/9 were presented in [14]),
various oblique lattices of reversed magnetic moments
are redized in the infinite array. Their characteristic
feature is the presence of (2, 1) and (1, 2) tranglation
vectors; i.e., they arein poor agreement with closed sur-
faces with the (0, 1) or (1, O) borders discussed above,
aswell aswiththe (1, 1) and (-1, 1) bordersthat will be
briefly discussed below. As was mentioned in [14], the
difference between the energies of different structures
with a given m value is small. For this reason, even a
small surface effect may strongly change the structure
of the lattice and the result obtained above is not sur-

With a further increase in the field h to 7.5-8, an
almost saturated state is formed, where magnetic dots
with the downward moment form a structure with quite
alow density. In this state, the specific orienting effect
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(b)

Fig. 11. Magnetic structures arising after the destruction of
the saturated state for (a) the oblique square array and
(b) approximately circular array.

(a) (b)

(©) (d)

Fig. 12. Magnetic structure corresponding to the reduced
magnetization m= 1/2 for the central region of the arrays of
magnetic dots of the shape of (a) square, (b) oblique square,
(c) circle, and (d) structure obtained in [14] for the infinite
lattice (shown for comparison).

of the bordersis already absent (the borders, aswell as
the most part of the array, are upward magnetized), but
the inhomogeneity of the mean field of the array that is
generated by magnetization m< 1 is completely mani-
fested. In this case, the properties are the same as for
H = H,: the local short-range order is similar to that
arising for lattice statesin the infinite system, but more
or less amorphous structure really appears for a finite
system (see Fig. 10e). The presence of an extremely
irregular structure near the saturation field corresponds
to experiment (see Fig. 10in [6]).

The appearance of the same structures accompanies
the destruction of the saturated ferromagnetic state,
which occurswhen thefield decreasesfrom H; . For this
process, the effect of the finiteness of the array that is
associated with the total inhomogeneous dipolefield is
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clearer. In the saturated state, the field of the magnetic
dipole interaction at each dot is negative; i.e, it is
directed opposite to the magnetic moment of the dot.
For this reason, such a state exists only for finite field
values H > H,. The absolute value of the dipolefield is
maximal at the center of the array and is minimal at its
periphery (at the border and particularly at the edges).
Therefore, as the field decreases, the magnetic
moments of dots at the center of the system are first
reversed. However, the nonzero, even very small, den-
sity of reversed dots cannot be formed due to their
strong dipole interaction. When a dot is reversed,
changeinthefield at neighboring dotsis on the order of
2uy/ad, which is comparable with the difference
between h; and ht®, Therefore, competition between
the interaction of nearest neighbors and the total field
generated by al dots of the array is important in the
process of the destruction of the ferromagnetic state.
Similar to the process of the destruction of the CAFM
order in weak fields (but owing to another cause), the
border here dictates the structure of the state with alow
density of reversed dotsfor small H; —H values. With a
further decrease in the field, this structure affects the
globa symmetry of magnetic states with m= 0.5. Asa
result, with both anincreasein thefield from the CAFM
state and a decrease in the field from the ferromagnetic
state, similar structures appear in the intermediate
region. It is worth noting that the hysteresis effects
appear to be weak in such a seemingly nonergodic sys-
tem. The dependence of the form of the structure real-
ized in intermediate fields on the magnetic field varia-
tion step Ah in the simulation processis also negligibly
weak in the range from 2.5 x 10 to 102,

Thus, analysis of the square array shows that the
shape of the array strongly affectsthe distribution of the
magnetic moments of dotsin the array. To demonstrate
that this conclusion is general, we perform numerical
simulation for an oblique square array with sides along
the (1, 1) and (-1, 1) vectors and for an approximately
circular array. Both arrays are cut from the 50 x 50 |at-
tice. Detailed analysis of numerous numerical data for
these two cases is beyond the scope of this paper and
we discuss only general properties.

The most characteristic case isthe destruction of the
saturated ferromagnetic state when the field decreases.
As was aready mentioned above, the structure arising
in this case is a result of the competition between the
interaction of nearest dots and interaction of each dot of
the array with the weakly inhomogeneous total field of
the almost saturated arrays. Analysis of the destruction
of the ferromagnetic state for two above-indicated
geometries shows that, similar to the direct square con-
sidered above, the structure whose general geometry is
determined by the shape of the system isformed at the
initial stage. The structure of the cloud of reversed dots
for H values close to H; ailmost completely reproduces
the shape of the array (Fig. 11).
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For states with moderate magnetization, the struc-
ture is harder, but the shape of the array isagain prima-
rily determined by the distribution of the magnetic
moments of dots. Figures 12a-12c show the identical
square fragments of the arrays of three different shapes
described above that are cut from the central part of the
array. The field values are chosen such as to ensure the
same magnetization m = 1/2 in the periphery region
after cutting. Figure 12d shows the periodic structure
corresponding to the energy minimum of the infinite
lattice for m = 1/2. The differences between these states
are clearly seen. The ideal structure with m= 1/2 con-
stitutes a weakly deformed triangular lattice, which is
the feature of such structures for many m values [14].
For finite systems, the structure elementsin the form of
an amost regular hexagon are almost invisible except
one such fragment in the right upper quadrant in Fig.
12c for the case of the circular system. From the view-
point of global properties, the ideal structure has lower
symmetry, because it is noninvariant under rotation by
90°. This property is manifested in the orientation of its
specific elements, which are the lines that contain
upward magnetized magnetic dots and are aligned
(Fig. 12d) along the (0, 1) direction. It is clear that the
structure rotated by 90° with the same lines along the
(1, O) direction is energetically equivalent to the struc-
ture shown in Fig. 12d, which determines the low sym-
metry of these states. In contrast, such an anisotropy is
absent for al structures of real systems. In view of this
circumstance, the case of the square array (Fig. 12a) is
instructive, where, asin theidea case (Fig. 12d), finite
sections of such lines with upward magnetized dots
exist, but the orientation of these fragments is chaotic.
For an oblique square, such lines are amost absent, but
“relicts’ of the CAFM structure appear in the form of
lines that contain magnetic dots with downward mag-
netic moments and are directed along the diagonals of
the initial sguare lattice (Fig. 12b). Such lines are
absent for the ideal structure and they are very dightly
manifested for the circular array. The existence of these
lines paralld to the borders of the system is evidently
the manifestation of the geometry of the array borders
in the magnetic structure of its central part. It is inter-
esting that such a structure is closest to that observed
experimentally (see Fig. 10 in [6]) for afield equal to
almost half the saturation field. Unfortunately, data on
the shape of the array are absent in that paper. For the
circular system, wherethe effect of the symmetry of the
system borders on its magnetic structure is expected to
be minimal, theideal structureshowninFig. 12disalso
not observed in the pure form. Only oneimportant frag-
ment of it, which is absent for square arrays, is present:
the existence of pairs of magnetic dots with downward
momentsthat are connected by the (2, 1) or (1, 2) trans-
lation vector, which represents the property of the ideal
lattice at the level of the short-range order. We point to
ahigher symmetry of the state asawhole. Indeed, only
pairs of such dots that are connected by one of these
vectors, e.g., vector (2, 1) inFig. 12d, are present for the
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ideal lattice, whereas pairs with both such vectors are
present with the same probability for the finite array.
We also emphasize that such elements are almost
absent for the square geometry cases (Figs. 12a, 12b).

6. DISCUSSION AND CONCLUSIONS

In summary, it is reasonable to briefly discuss prob-
lems that remain beyond the scope of this paper. The
numerical analysisof the problem of thetransition from
the out-of-plane (Ising) states to planar states when the
magnetic field varies for various anisotropy constants 3
is of interest. In fact, this means the construction of a
phase diagram on the (h, ) plane. Analysis of the zero
field case shows [12] that, even for an extremely dense
lattice of cylindrical magnetic dots made of soft mag-
netic materials, Ising states are stable for sufficiently
large shape factors L/R > 2, where R and L are the
radius and height of adot. In fact, these states are stable
when the anisotropy energy is comparable with the
energy of interaction between neighboring dots. The
experiment presented in [6] corroborates this rule.

It is rather difficult to theoretically analyze planar
states. Our preliminary numerical data indicate that
they correspond to complex noncollinear structures,
which are characterized both by significant two-dimen-
sional inhomogeneity with a scale of about the sample
size, and by the presence of regions where neighboring
magnetic moments are substantially noncollinear. The
character of these structuresis considerably determined
by the shape of the array. It is evident that such states
can be analyzed only numerically.

The effect of the violation of pure axial symmetry
on Ising states analyzed above is also of interest. The
simplest example of such aviolation isthe deviation of
the external field from the given axis of the array
(zaxis). Preliminary numerical investigations of this
case show that, for moderate values of the anisotropy
constant 3 = 5/a° and for thefield h, = 1 along the sym-
metric direction, the inclusion of the transverse mag-
netic field h = 0.2 (field inclination by approximately
11°) gives rise to the appearance of small deviations
(less than 1.5°) of magnetic moments from the given
axis, but does not affect the out-of-plane structure of
magnetic moments that is of interest. More detailed
investigations of the role of anisotropy and the mag-
netic-field inclination and the properties of planar
states, as well as a discussion concerning a very inter-
esting question on the effect of the random spread of the
parameters of single magnetic dots, are beyond the
scope of thiswork.

Thus, the above results may be applied to the sys-
tems of magnetic dots with various properties of a sin-
gle dot under the condition that magnetic moments are
collinear to the given axis of the system. Inthiscase, the
anisotropy of a single dot is unimportant and the char-
acteristic field Ho= po/a® is the only parameter impor-
tant for comparison with experiment. The characteristic
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instability fields studied here and in [14] range from
0.23H[[see Eq. (12)] to H; = 9H; Let us discuss these

fields for various systems, primarily those realized
experimentally. We start with the case of dots in the
homogeneous state. Consider magnetic dotsin theform
of aright circular cylinder with adiameter D = 2R and
height L made of a material with the saturation magne-
tization M. In this case, Y, = TR?LM,. For dense lat-
tices, the diameter D of adot iscomparablewith thelat-
tice constant a and the thickness of the dot may signif-
icantly vary. For this reason, it is convenient to
introduce the shape parameter A = L/R and write the
characteristic field in the form

H, = TAM(R/a)®. (17)

The system of dots with 2R = L = 200 nm made of
dysprosium (41iMl, = 34 kOe) and organized in anot too
dense sguare lattice with a period a = 500 nm was used
in[7] and is characterized by afield H7= 200 Oe. Mag-

netic dots made of soft magnetic materials such as per-
malloy constitute a more standard case. In these sys-
tems, perpendicular magnetization isrealized for A = 2
[12] and quite dense lattices with a up to 1.1 x 2R are
studied [1-3, 5, 6]. Detailed experimental data are pre-
sented in [6] for sufficiently large (several centimeters
squared) lattices of magnetic dots with a period of
100-200 nm, which are made of various soft magnetic
materials with perpendicular magnetization and have a
diameter of 60-180 nm and L/R< 6. Even for lower sat-
uration magnetization of soft magnetic materials (e.g.,
41iM = 10 and 6 kOe for permalloy and nickel, respec-
tively), such systems may have higher Hjvalues reach-

ing several kilo-oersteds due to the high lattice density
and large A value.

For magnetic dots in the vortex state made of stan-
dard materials such as permalloy for which My is high,
the vortex core size does not exceed 15-20 nm. For this
reason, Hpis quite low and is 30 Oe even for the opti-

mum sizes L = 50 nm and 2R = a = 200 nm. However,
weak effective fields of remagnetization of single mag-
netic dots are a positive factor for their usein the logic
elements of computers. The scheme of such a device
wasrealized in [4] on the basis of a system of dotswith
aradius of less than 50 nm and planar magnetization.

Thus, our analysis reveal s the considerabl e effect of
borders on the character of the magnetization of finite
arrays of dipole-coupled particles (magnetic dots). Dif-
ferences in the behavior of area system and idealized
model of the infinite |attice are most substantial in the
region of the destruction of the CAFM order. For a
finite system, thisdestruction first occurs at the edges of
the system, then near the extended regions of the sur-
face, and only then expands to the entire interior of the
array. In this case, the critical field at which this sim-
plest state is destroyed is much weaker than the field
characteristic for theideal infinite system. In contrast to
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this scenario, when the field decreases, the destruction
of the saturated state always begins far from the bor-
ders. By means of numerical analysis, we determine
intermediate magnetic structures that are formed after
the loss of the stability of the indicated simple phases.
It turns out that magnetic structures in the intermediate
field region, which are obtained when the field both
increases and decreases, for finite arrays strongly differ
from those characteristic of the ideal infinite system.

We showed that, in the presence of simple stacking
faults such as single vacancies or their clusters in the
lattice, localized deviations from the CAFM structure
appear on these faults for quite weak fields. The mag-
netization curve of clusters of vacancies consists of sev-
eral jumps with very characteristic relations between
the fields and jump values. In essence, the section of
such a step magnetization curve can be treated as an
indicator of this magnetic defect. Therefore, analysis of
the magnetization process for an array of magnetic dots
for fields weaker than the instability field of the ideal
CAFM structure can be used for diagnostics on the
structure quality of series of samples. For comparison
with experiment, it is important that all characteristic
fieldsfor both afinite array with theideal lattice and lat-
tice with vacancies are expressed in terms of the quan-
tity Hgthat is universal for a given system and is spec-
ified by Eq. (17). This characteristic field is determined
by the lattice constant for dots and the material and
magnetic structure of asingle dot of the array, isprima:
rily sensitive to the lattice density, and may vary from
tens to thousands of oersteds for various systems.
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Abstract—High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 x 10! cm™)
array of self-organized Ge, ;Sig 3 quantum dots in silicon with different boron concentrations ng is determined
by acoustic methods. The measurements of the absorption coefficient and the vel ocity of surface acoustic waves
(SAWSs) with freguencies of 30-300 MHz that interact with holes localized in quantum dots are carried out in
magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (ng = 8.2 x
10 cm), it is shown that, at temperatures T < 4 K, the HF conductivity is realized by the hopping of holes
between the states localized in different quantum dots and can be explained within atwo-site model in the case
of w1y > 1, where wisthe SAW frequency and 1 is the relaxation time of the populations of the sites (quantum
dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states
at the mobility threshold. Intheinterval 4 K < T < 7 K, the HF conductivity is determined by a combination of
the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found
that the temperature dependence of the hopping HF conductivity approaches saturation at T* = 4.5 K, which
points to a transition to the regime of wTy < 1. A value of To(T*) = 5 x 107° sis determined from the condition

wT(T*) = 1. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Quantum dots represent a limiting case of low-
dimensional systemsin which the motion of particlesis
restricted in all three dimensions. Quantum dots are
often called artificial atoms, because their electron
spectra are discrete in spite of the fact that a real dot
may consist of tens of thousands of atoms. The conduc-
tivity of dense arrays (ensembles) of quantum dots is
different from zero even at very low temperatures. The
transport properties of germanium quantum-dot ensem-
blesin silicon d-doped with boron with adensity of n =
3 x 10" cm2 were studied in detail in [1]. The authors
of these studies came to the conclusion that the conduc-
tivity at low temperatures is realized by the hopping
of holes between the localized states of different quan-
tum dots.

The complexity of the objectsto be investigated and
the ambiguity in the interpretation of their transport
properties requires application of other experimental

methods, for example, acoustic methods, that allow one
to determine the high-frequency (HF) conductivity of a
system in a contactless way. This method has already
been used by the present authors, in particular,
for investigating the HF conductivity in a system with
pure germanium quantum dotsin silicon at low temper-
atures[2]. Theseinvestigations have also led to the con-
clusion about the hopping mechanism of HF conduc-
tivity.

For the first time, the absorption of surface acoustic
waves (SAWSs) by a system with quantum dotswas used
in[3] for studying the properties of large (250-500-nm)
guantum dots in N-GaAs/AlGaAs samples that were
obtained by holographic lithography followed by ion
etching. The authors of [3] interpreted their results as
relaxation absorption associated with the transitions of
the electrons localized in quantum dots between the
energy levels within the same quantum dot [4].

1063-7761/05/10106-1122$26.00 © 2005 Pleiades Publishing, Inc.
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200 nm
undoped silicon
GeSi

10 nm
undoped silicon

d-layer of boron

50 nm
undoped silicon
Si(001),
substrate doped
with boron
ng = 10" cm~

3

Fig. 1. Structure of samples.

In the present paper, we apply acoustic methods to
investigate the HF conductivity of an ensemble of
Ge, 7SI 3 quantum dotsin asilicon matrix. The compo-
sition was determined by the Raman scattering tech-
nique. The dc transport properties of such systems [5]
differ from the properties of samples with pure germa-
nium quantum dots [1]. This difference is likely to be
associated with the fact that the potential well for holes
in the region of Ge,,Si, 3 dots is shallower than that in
the case of pure germanium dots.

2. EXPERIMENTAL RESULTS

Acoustic methods consist in measuring the acousto-
electric characteristics—the absorption and the veloc-
ity of SAWSs; this allows one to determine the HF con-
ductivity of systems by a noncontact method.

Since germanium and silicon are not piezoelectric
materias, we applied a hybrid technique, in which a

Al', dB/cm

1123

SAW propagates along the surface of a piezodielectric
LiNbO; plate, while a sample is slightly pressed by a
spring to the surface of the LiNbO; plate. In this case,
the electric field induced by the SAW and having the
same frequency as the SAW penetrates into the sam-
ple; however, mechanicaly, the sample remains
uncoupled [6]. The absorption of the SAW and the
changeinitsvel ocity are determined by the HF conduc-
tivity of the sample under investigation.

The measurements were carried on four samples
with adense array (n = 3 x 10'* cm) of self-organized
Gy 7Sip3 quantum dots in a magnetic field of 18 T. The
structure of samples is shown in Fig. 1. The layer
of quantum dots lies at a depth of 2000 A from the
surface of a sample. The quantum dots have the shape
of pyramids with a 120 x 120 A2 square base and a
height of about 20 A. The samples were & doped with
boron with a concentration of ng= 2.7 x 10** cm= and
6.8 x 10" cm (sample 1), 8.2 x 10 cm2 (sample 2),
and 11 x 10" cm? (sample 3). The measurements were
carried out in the range of temperatures from 1 to 20 K
with SAWSsof frequenciesfrom 30to 300 MHz. A mag-
netic field was applied perpendicular to the plane in
which the quantum dots were formed. The measure-
ments of the sample with ng = 2.7 x 10 cm did not
reveal any acoustoelectric phenomena within the mea-
surement accuracy.

Figure 2 represents the absorption Al =" (H) — T (0)
and the velocity AV/V = [V(H) — V(0)]/V(0) of a SAW
of frequency f = 28 MHz as a function of the magnetic
field strength for sample 2 in the range of temperatures
from 1 to 4 K. In high magnetic fields, these quantities
approach saturation. It isworth noting that, as the mag-
netic field increases, the absorption decreases,; i.e.,
Al <0. Inmagnetic fields of H < 5T, both the absorp-
tion and the velocity of the SAW are proportional to H?.
For H > 5 T, the magnetic-field dependence of the

AV/V(1073)

(a)

1.0

(b)

14
HT

14
HT

0

Fig. 2. (a) Absorption A" and (b) relative velocity variation AV/V of a SAW as a function of magnetic field H for ssmple2 at T =

14K and f = 28 MHz.
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Fig. 3. Thefunction AF(HZ) forsample2at T=4K andf=
29.5 MHz.
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Fig. 4. Thefunction Al (H) for sample 2 for T=5-20K and
f=28 MHz.

absorption Al' deviates from the quadratic behavior as
demonstrated in Fig. 3 by measurements carried out on
sample2 at T=4.2K and f = 29.5 MHz.

All the other samples exhibit similar behavior, butin
different temperature intervals: the higher the boron
doping level, the lower the temperatures at which the
samples exhibit this behavior. Sample 1 exhibits such
behavior upto 8 K, sample 2, upto 4.2 K, and sample 3,
only upto 2.8K.

Figure 4 represents the function Al (H) for sample 2
in the temperature interval 5-20 K and at a SAW fre-
guency of 28 MHz. One can see that, when T > 5, the
quantity Al' (H) is negative and increases with tempera-
ture; when T > 6 K, it changesits sign.

As temperature increases, AI' becomes positive in
all the samples; in sampleswith higher concentration of
boron, Al' changesits sign at lower temperatures.
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3. DISCUSSION
OF EXPERIMENTAL RESULTS

3.1. Low Temperatures

At low temperatures (Fig. 2a), the absorption mono-
tonically decreases as the magnetic field increases,
Al(H) < 0. Such behavior in AI'(H) is typical of the
hopping HF conductivity and isusually associated with
a decrease in the overlap of the wavefunctions of elec-
trons (holes) localized at the centers between which the
hopping occurs. The function Al (H) was quantitatively
analyzed in [7] within the model of hydrogen-like dot
centers. The hopping character of the HF conductivity
in the objects under investigation was aso confirmed
by dc measurements [5]; the results of these measure-
ments were interpreted under the assumption that the
hopping of holes occurs between the states that are
localized in different quantum dots.

Within this model, the hopping absorption of SAWS
by localized carriers in a strong magnetic field is
described by the interpolation formula

AT (H) = =T (0) + B/H®

(B isacoefficient), which can rigorously be justified in
the case of hydrogen-like centers [8]. This formula
makes it clear that a strong transverse magnetic field
suppresses the hopping absorption and that Al (H) = —
(0) asH — oo. Thus, it becomes possible to deter-
mine the absorption IM(0) in the absence of a magnetic
field. The function AI'(H) in a strong magnetic field
approaches saturation, which is clearly seenin sample 2
at very low temperatures (Fig. 28). When the saturation
could not be attained in the magnetic fields available in
the experiment, we determined the value of " (0), which
corresponds to the intersection of the linear function
AT (1/H?) with the vertical axisas 1/H? — 0; this situ-
ation is demonstrated in Fig. 5 for sample 1.

The simultaneous measurement of the absorption
and the velocity of a SAW allows one to determine the
complex HF conductivity

o" = 0,(w) —io,(w)

at afrequency of w = 21 [6]. As pointed out above, in
the range of magnetic fieldsH — oo, the parameters™
and AV/V and the conductivities o, and o, in the
absence of a magnetic field can be determined by the
formulas

AV L oy BV = _ 1+2,(0)
V(H ) V(O) A[l zi(0)+[1+zz(0)]£;
FO) = - kAS,(0) i}
21(0) +[1+2,(0)]
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Here,

A = 110.2b(k) exp[—2k(a + d)],

4110,
S o= 't(K),
I ssV ( )

k and V are the wavevector and the velocity of a SAW,
respectively; the functions b(k) and t(k) depend on k,
the gap a between a sample and the lithium niobate
plate, the depth d of the plane with quantum dots, and
the dielectric constants of lithium niobate and vacuum;
and g, isthe dielectric constant of a sample [6].

One can solvethis system of equationsfor =,;(0) and
2,(0) (and, hence, determine 0,(0, w) and 0,(0, w))
only if the gap a between a sample and the surface of
the lithium niobate plate is known. Unfortunately, the
earlier developed method [6] cannot be directly applied
to this case because it is based on the assumption that
the conductivity does not depend on frequency. This
assumption was justified for delocalized electrons [6]
and is inapplicable to the study of dielectric samples
with quantum dots. Therefore, we determined the gap
by the number of Newton's rings produced at the con-
tact of the sample and lithium niobate planes; for this
purpose, we made a hole in the sample holder. This
method is not very accurate; however, it makesit possi-
ble to eval uate the absol ute values of the conductivities
0,(0, w) and to determine their dependence on the mag-
netic field, frequency, and temperature. In our experi-
ment, the gap a varied from 0.3 to 0.7 um, depending
on the sample setup.

By solving the system of equations (1) with aknown
value of the gap a for 2,(0) and Z,(0), we determined
04(0, w) and 0,(0, w) for various SAW frequencies and
temperatures. The conductivity components o; and 0,
proved to be independent of frequency to within 15 and
25%, respectively. The temperature dependence of
0,(0) and 0,(0) for sample 2 at low temperatures is
shown in Fig. 6; one can see that 6, > o, at these tem-
peratures. In al the samples, the temperature depen-
dence of the real part of conductivity is well described

by the power law ¢!’ = BT24, where B; is the propor-

tionality factor and i is a sample number. To illustrate
thisfact, intheinset to Fig. 6, we plot 0(1')/Bi asafunc-

tion of T?# for different samples. One can see that all
points lie on the same straight line to a good degree of
accuracy. The power-law dependence of the HF con-
ductivity o,(0) on temperature and its independence of
frequency qualitatively agree with the predictions of
the two-site model of hopping HF conductivity under
the assumption that the period of a SAW is much
smaller than the typical relaxation time 1, of the popu-
lation of sites [7, 8]. According to this model, the
absorption of aSAW and the variation of itsvelocity are
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Fig. 5. Thefunction AF(]JHZ) for sample 1 for temperatures
of Ty =55K and T, = 8 K and a SAW frequency of f =

143 MHz.

0,,0, 1077 Q7!

Fig. 6. 01(0) and 0,(0) versus temperature for sample 2.

The inset represents o' /B; as a function of T2 for sam-

ples1 (0), 2 (%), and 3 (v).

associated with the absorption and emission of phonons
during the relaxation of the populations of two-site
clustersto their adiabatically equilibrium values. When
WT, > 1, the real part of conductivity must be propor-
tiona to 1/ty O T°, where the exponent o depends on
the interaction mechanism. Thus, if the hopping con-
ductivity is dominant, then the temperature behavior of
0, must be the same for different samples, asis demon-
strated in theinset to Fig. 6.

Another prediction of the two-site model isatransi-
tion to a temperature-independent absorption at low
frequencies, where the condition wt, < 1isfulfilled. In
this regime, absorption must be proportiona to fre-
guency. In spite of relatively low frequencies of the
SAWSs, such aregime has not been directly observed at
low temperatures.
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If we assume that all the holes from boron atoms
populate the states in the quantum dots, then there are,
on average, 2.3 holes per dot in sample 1, 2.7 in sam-
ple 2, and 3.7 in sample 3. This means that, in samples
1and 2, two lower lying states are predominantly occu-
pied, while the third excited state is occupied only in
some of the dots.

It is natural to assume that the hops (in which
phonons take part) between dots with occupied and
empty states may lead to the relaxation absorption like
in macroscopicaly homogeneous doped semiconduc-
tors. In this case, the dc conductivity corresponds to a
percolation cluster constructed from localized states of
guantum dots. Therefore, the dc conductivity must
decay exponentially with temperature, as observed in
sample 2 [5].

According to the two-site model, which is based on
hydrogen-like localized states, the transition from the
dependence Al [0 H2 in aweak magnetic field to Al [
H= in a strong field occurs at ay = &, where a, =

JchleH is the magnetic length and & is the decay
length of alocalized state [9]. This formula alows one
to evaluate the decay length §. Unfortunately, this pro-
cedure cannot be quantitatively applied to the present
situation because the effective attenuation length &; in
a system consisting of granules may be substantially
renormalized (see, for example, [10-13]). In a typical
situation, the effective attenuation length increases
compared with the attenuation length in the intergranu-
lar region, and reliable estimates can be made only for
& > | > &, wherel isthe intergranular distance. If we
apply the two-site model with renormalized parameters
to study a system of quantum dots, then we obtain & =
80 A for sample 1 and & = 120 A for samples 2 and 3.
Since the strong inequalities presented above are not
satisfied, these estimates must be considered as merely
tentative ones. Apparently, the strong inequality o, >
0,, which follows from the theory of hopping HF con-
ductivity for hydrogen-like dot centers, is not satisfied
for the same reason.

3.2. High Temperatures

The figures presented above show that, in strong
magnetic fields, the quantity |AI(H)| increases up to
T=4.2 K (see Fig. 2a); for T > 4.2 K, it dtarts to
decrease (Fig. 4). If the hopping mechanism of conduc-
tivity, which was assumed to be dominant at low tem-
peratures (1-4.2 K), was the only mechanism, then,
according to theoretical predictions, the condition
WT, < 1 would hold at sufficiently high temperatures
and the temperature dependence would approach satu-
ration. Since there are no such phenomenain the exper-
iment, it is natural to assume that there is another con-
ductivity mechanism that plays the dominant role at
high temperatures.
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We assume that, at high temperatures, the main role
is played by the activation of carriers to the mobility
threshold. Below, we will show that this assumption is
self-consistent. Since theimaginary part of the HF con-
ductivity in the region of diffusion at the percolation
level is small, formulas (1) for an arbitrary magnetic
field can be substantially simplified:

_TH)-T© _ _Z(H) %.(0
V() KA 1+32(H) 1+52(0)
_V(H)-VO) _ 1 1
v(H) V(0)A 1+33(H) 1+5%(0)

Thisyields the following useful relation:

n(H)z,(H)+1
Zy(H)-n(H)’

where n(H) = y(H)/v(H). In particular, if the experi-
mentally measured absorption I'(H) has a maximum at
a certain value of magnetic field H = H,,, then
21(Hme) = 1, and Z,(0) is determined from the mea-
sured value of N(H, %) as

1+n(H )
1_r](Hmax)'

It is this method by which the HF conductivity was
determined in the interval of temperatures T = 7-8 K,
where the function I' (H) attainsits maximum. The con-
ductivity 2,(0) at T = 12 K wasdetermined by aformula

of type (1) under the condition Zf (0) > 1. It turns out

that the temperature dependence of conductivity hasthe
form 0,(0) O exp(—E,/ksT), where E, is the activation
energy; i.e., g,(0) obeys the activation law. However,
this exponential dependence was measured in a very
narrow temperature interval. To extend thisinterval, we
chosethevalueof o, at T=4.2 K asthefourth point, so
that this value does not exceed 20% of the hopping con-
ductivity at the given temperature. From this depen-
dence, the activation energy E,(H = 0) was found to be
2.5meV.

The exponential behavior of the conductivity as a
function of /T and its large absolute value, o,(0) ~

10° Q1 for T > 12 K, confirm our hypothesis that the
absorption is attributed to the diffusion at the mobility
threshold. The results thus obtained, together with the
low temperature data, are represented by dotsin Fig. 7.

In the range of intermediate temperatures (4—7 K),
the HF conductivity is determined by a sum of the con-
tribution of hopping between localized states in differ-
ent quantum dots and the contribution of diffusion at
the percolation level. The latter contribution depends
on temperature by an activation law and should dlightly

2,(0) =

>,(0) = 2
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differ from the experimentally observed static conduc-
tivity. Interpolating the experimenta results from the
low- and high-temperature regions by a smooth curve
(Fig. 7) and subtracting from this curve the result
obtained by extrapol ating the high temperature data, we
obtain the temperature dependence of the purely hop-
ping contribution to the conductivity. This dependence
is shown in Fig. 8. One can see that the temperature
dependence of the hopping contribution approaches
saturation, which is in qualitative agreement with the
predictions of the renormalized two-site model. If the
saturation region starts at a temperature of T* = 45K,
asin Fig. 8, then the condition wTty(T*) = 1 isfulfilled,

where w = 21tf (f = 30 MHz); hence, 1o(T*) =5 x 107°s.

3.3. Nonlinear Regime

We investigated the dependence of Al and AV/V on
amagnetic field for various intensities of SAWS.

Figure 9 represents AI' = '(H) —IM'(0) as afunction
of the magnetic field strength for various intensities of
SAWsfor sample 2. The SAW frequency was 28 MHz;
the measurements were carried out at T = 4.2 K. When
the SAW intensity at the input of a sample increased
(the output power of the HF generator increased by
23 dB), AI' was independent of the SAW intensity W,
with afurther increase of W, |Al'| started to decrease in
absolute value and changed its sign at a certain value
of W. The quantity AV/V was virtualy independent
of W,

Within the model that accounts for the temperature
dependence of Al'(H), one may assume that the contri-
bution of del ocalized charge carriersto the conductivity
increases with the SAW intensity.

Figure 10 represents Al' as a function of the signal
attenuation at the output of the HF generator for amag-
netic field strength of H = 5.8 T. It is worth noting that
this effect is of threshold character. According to the
preliminary analysis, the threshold value of the electric
field €. induced by the SAWSs is roughly proportional
to the SAW frequency and weakly depends on the mag-
netic field. The presence of the threshold and the pro-
portionality of the threshold field to the SAW frequency
gualitatively agree with the assumption that the nonlin-
earity mechanism is attributed to the so-called impurity
breakdown—the tunneling of holes to the mobility
threshold in the inhomogeneous field of the acoustic
wave. This nonlinearity mechanism was observed in
bulk InSb samples [14]. Let us estimate the threshold
electric field ‘€, for this mechanism:

€. = KE,/2e,
where e is the electron charge. For E, = 2.5 meV and

f =30 MHz, such an estimate yields a value of €, =
1Vicm.
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The €electric field induced by a SAW can be deter-
mined by the following formula[15]:

332m
€|* = K27(€1+30)

kexp[—2k(a + d)] W (3)
2 2 2
by(K)[Z1(0) +[1+ Z,(0)]°]

where K? is the electromechanical coupling constant
for LiNbOg; Wisthe SAW power at the input of asam-
ple divided by the width of the acoustic beam (whichis
equal to the aperture of the interdigital transducers that
generate a SAW in lithium niobate); and b, (k) isafunc-
tion that depends on the gap a, depth d of the layer with
guantum dots, and the dielectric constants of lithium
(g1), vacuum (gy), and asample ().
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However, the electric field induced by a SAW at the
input of a sample is very roughly determined in the
experiment because, in addition to the transducer loss,
one should take into account the loss in the transmis-
sion line, which is not matched to a sample. Therefore,
the power at theinput of asampleis measured to within
an order of magnitude. Our experimental estimate of
the threshold field by formula (3) yields €. = 4 V/cm,
which, with regard to the aforesaid, does not contradict
the assumption about the impurity breakdown. How-
ever, the unambiguousidentification of the nonlinearity
mechanism requires additional investigations.

4. CONCLUSIONS

The complex HF conductivity of samples with a
self-organized lattice of Ge,;Si; 5 quantum dotsin sili-
con has been determined by acoustic methods. We have
shown that, in the low-temperatureregion (T < 4 K), the
HF conductivity isdetermined by the hopping over sev-
eral quantum dots and is reasonably interpreted in
terms of the two-site model with arenormalized local-
ization length [9-12]. At extremely low temperatures,
the characteristic relaxation time 1, is greater than the
period of the acoustic wave. This leads to aweak (log-
arithmic) frequency dependence and power-law tem-
perature dependence of the HF conductivity. As tem-
perature increases, the relaxation time decreases, and,
a T = 4.5 K, the temperature dependence of the hop-
ping contribution approaches saturation, which is
attributed to the transition to the regime of wt, < 1,
where the two-site model predicts very weak (logarith-
mic) temperature dependence and allows one to evalu-
ate the time 14(4.5 K) = 5 x 10° s. As temperature
increases, there arises an additional contribution to the
HF conductivity that depends on temperature by the
activation law. As temperature increases further, this
mechanism becomes the principal one and is inter-
preted as a diffusion over the states at the mobility
threshold. Figure 11 represents, for comparison, the dc

conductivity (o‘fc) measured in a sample whose prop-
erties are close to those of sample 2, and the HF con-

ductivity (o'l1f determined from the acoustic measure-

ments on sample 2, as functions of temperature. One
can see that these curves diverge at low temperatures;

d hf . . ..
moreover, a;° < a, , which is characteristic of the

region of hopping conductivity. The curves approach
each other in the range of temperatures where the con-
ductivity through delocalized states seems to appear on
the scene; in this case, the HF conductivity should not
differ from the static conductivity.

In[5], the temperature dependence of magnetoresis-
tancein samples 1 and 2 was studied in magnetic fields
of upto 6 T. The activation behavior of the resistance at
low temperatures in different magnetic fields was
explained within the model of multiparticle correla-

No. 6 2005



MECHANISMS OF LOW-TEMPERATURE HIGH-FREQUENCY CONDUCTIVITY

tions of holes localized in quantum dots, which lead to
the formation of electron polaronsin a disordered two-
dimensional system. However, theresults of the present
paper do not give any grounds for this assumption,
because they are explained by simpler arguments. The
observed temperature dependence of the electric con-
ductivity for T > 5 K was interpreted in [5] as a mani-
festation of variable-range hopping conductivity. In our
view, the absolute value of the conductivity (greater
than 10°° Q1) is too large for the realization of this
mechanism.

Thus, in our view, the hopping mechanism of con-
ductivity in Si/Ge systems with a dense array of self-
organized Ge, ;Si, 5 quantum dots (n = 3 x 10 cm™) is
changed, as temperature increases, to the conductivity
through delocalized states. We could distinguish these
mechanisms and investigate their characteristics as
functions of temperature and a magnetic field.

Note that the nature of states at the percolation level
in the material investigated is not quite clear. Appar-
ently, the high density of quantum dots and their large
size may lead to a significant overlap of the wavefunc-
tions of individual quantum dots, as well as to the
strong Coulomb interaction of carriersin different dots.
Itislikely that the delocalized states are formed by the
impurity band of boron in silicon; however, the nature
of delocalized states in these systems requires addi-
tional analysis.
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Abstract—The current—voltage characteristics of Cu—K,3M0O5 point contacts between a metal and a semi-
conductor with a charge density wave (CDW) are studied for various diameters of the contacts in awide range
of temperatures T and voltages V. In theinterval 80 K =< T < 150 K, the current—voltage characteristics are cor-
rectly described in the framework of asemiconductor model: screening of an external electric field causes CDW
deformation, shiftsthe chemical potential of quasiparticles, and changesthe point contact resistance. It isshown
that the chemical potential isabove the middle of the Peierls gap in equilibrium and approaches the middle upon
an increase in temperature. The current-voltage characteristics of point contacts with a diameter d = 100 A
exhibit a sharp decrease in resistance for |V| > V;, which is associated with the beginning of local CDW dliding
within the contact region. The V,(d, T) dependence can be explained by the size effect in the CDW phase dip.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

A charge density wave (CDW) emerges in a low-
dimensional conductor upon a decrease in temperature
as a result of the Peierls transition. In this case, an
energy gap 2A is formed on the Fermi surface, as a
result of which the conductor passes to a semimetallic
(NbSe;) or semiconducting (blue bronze K, ;M 005 and
TaS;) state [1]. The emerging state is characterized by
a periodic modulation of electron density p = p, +
p;cos(gx + @), where p, and p; are the mean value and
amplitude of electron density modulation, q = 2kt isthe
wavevector of the CDW, and @ is the CDW phase.
Three-dimensional CDW ordering allows us to treat it
as an electronic crystal. In the Peierls state at a finite
temperature, single-electron excitations (electrons and
holes) always exist and determine the conductivity and
other kinetic properties of the system in electric fields
below the critical value (i.e., when aCDW cannot move
in the crystal as a single entity). Allowance for the
effect of single-electron excitations is most important
for CDWs with complete diel ectrization of the electron
spectrum. In this case, a Peierls conductor possesses
physical properties analogous to those of a semicon-
ductor. However, considerable differences between the
properties of semiconductors with CDWs and conven-
tional semiconductorsexist eveninweak electricfields.
For example, any change in the CDW wavevector is
associated with achangeinthe CDW charge and, hence
(in view of electroneutrality), with achange in the bal-
ance between thermal single-electron excitations [2].
This, in turn, may lead to a considerable change in the
linear conductivity ensured by these excitationsat alow

temperature. Thus, a change in the CDW wavevector
plays the same role in semiconductors with CDWs as
doping in conventional semiconductors—it changesthe
concentration of electrons and holes. The concept of a
semiconductor with CDWs as an ordinary semiconduc-
tor with adoping level depending on external perturba-
tion (temperature T or eectric field E) was used
in [3, 4] for describing the thermopower and conductiv-

ity of TaS;.

The development of these ideas |ed to the construc-
tion of a semiconductor model of CDWs [5]. The
essence of this model is that transport properties for a
stationary (pinned) CDW are determined by electron
and hole excitations over the Peierls gap 2A, while the
difference p—ninthelinear concentrations of quasipar-
ticles changes upon a change in the CDW wavevector
g: 9—09o = (p—n)/T, whereqy isthevalueof gat T=0.
It was shown in the framework of this model that the
temperature dependence of conductivity in unipolar
semiconductors with CDWs is mainly determined by
the q(T) dependence, g(T) — g, O exp(—A/KT), where k
is the Boltzmann constant. The behavior of the ther-
mopower, Hall effect, and temperature hysteresis in
conductivity was adequately explained for various
compounds in terms of the shift in the chemical poten-
tial  relative to the middle of the band gap. The chem-
ical potentia shift dC is in one-to-one correspondence
with the CDW deformation dq, i.e., with deviation of g
from the equilibrium value caused by a change in tem-
perature or electric field.

The application of an electric field smaller than or
on the order of the threshold field E; to a Peierls semi-
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conductor in the vicinity of contacts with a conducting
metallic leads results in the extension or compression
of the CDW. Upon a further increase in the field, the
deformation attains its critical value, the CDW is rup-
tured and generated or annihilated over a CDW period;
i.e., phase dlip centers are formed and the CDW begins
its motion.

In traditiona geometry for measuring transport
properties, the area of contact leads made of a nhormal
metal is comparable to the transverse size of samples
with CDWs; in this case, the critical shift in the chemi-
cal potential isasarule on the order of afew millielec-
tronvolts (i.e., is much smaller than the value of kT
practically at all temperatures). The conversion of the
current of normal charge carriersinto the CDW current
in this geometry was studied in detail in [6, 7]. Mea
surements of the spatial variation of the CDW wavevec-
tor showed that the CDW deformation in the contact
region exists on the macroscopic scale of lengths. It was
shown in our previous publication [8] that the situation
changes qualitatively if the meta—-CDW contact is of
microscopic size. In this case, the electric field is
mainly localized in the contact region with asize on the
order of the contact diameter [9]. A very large CDW
deformation and, accordingly, a considerable shift in
the chemical potential for a stationary CDW can be
attained. The proposed technique makes it possible in
principleto determinethelocal position of the chemical
potential level at various temperatures.

Here, we report on the results of a detailed experi-
mental study of the characteristics of Cu-K,3M00,
point contacts in atemperature range of 77-200 K. The
experimental results are used for determining the tem-
perature dependences of the position of the chemical
potential and the electric field screening coefficient
near the contact between the norma metal and blue
bronze. We also show that atransition to the local dlid-
ing of a CDW can be observed upon an increase in the
contact diameter. The behavior of the threshold charac-
teristics of CDWSs in this case can be considered from
the standpoint of the existence of a peculiar size effect
associated with the fact that the phase dlip conditions
are determined by the diameter of the point contact.

In Section 2, physical processes in the vicinity of a
point contact are described in the framework of the
semiconductor model. The experimental technique is
described in Section 3. The results of measurements of
the temperature evolution in high-resistance Cu—
K 3Mo0O; contacts are described in Section 4. In Sec-
tion 5, the results of analogous studies for low-resis-
tance contacts are considered. The effect of the contact
diameter on the characteristics of aPeierls conductor in
the vicinity of the contact with a norma metal are also
discussed. In Section 6, the results are considered in the
framework of the semiconductor model of CDWs.
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2. THEORETICAL MODEL

It was mentioned above that the electric field is
localized in asmall regioninthevicinity of apoint con-
tact [9]. If both materials are isotropic, the size of this
region is approximately equal to the contact diameter.
In our case of the contact between a norma metal and
an anisotropic semiconductor with CDWSs, the depth of

this region is larger by afactor of /A, where Aisthe
conductivity anisotropy (of the order of 10° for
K3M00O3[1]) in the case when the current flows along
conducting chains. Let us consider the processes occur-
ring in such aregion for a contact between ameta (Cu
in our case) and blue bronze (K,sM00;) upon the
application of a positive voltage. The results obtained
in [8] show that the CDW deformation &q in the vicin-
ity of the point contact under the action of the electric
field disturbs the balance between electrons and holes
(i.e., leads to a change in the concentration difference
p — n). Consequently, a chemical potential shift 8 =
0q(d¢/dg) emergesin this case. As aresult, the contact
resistance changes.

It is known from the measurements of thermopower
and the Hall effect [10] that blue bronze exhibits n-type
conductivity in the Peierls state. This means that the
chemical potential in equilibrium is shifted above the
effective middle of the Peierls energy gap determined
from the condition p,n = pp, where p, and p, are the
mobilities of electron and hole excitations, respectively.

Figure 1 shows the energy band diagram in the
vicinity of apoint contact. The positive sign of the bias
voltage V corresponds to the downward shift of the
chemical potential (weassumethat 8¢ > 0). Inthiscase,
the maximum of the contact resistance corresponds to
the position of the chemical potential at the effective

Fig. 1. Diagramillustrating distortion of energy bandsin the
vicinity of ametal—-CDW (n-type semiconductor) point con-
tact for a positive bias voltage. The dashed curve marks the
effective middle of the Peierls gap (electrostatic potential);
C isthe chemical potential measured from the middle of the
gap. In the vicinity of the contact, the electric field is partly
screened: the slope of the electrostatic potential is smaller
that of the electrochemical potential (middle solid curve).
The electrochemical potential intersects the middle of the
gap (transition from the n-type to p-type conductivity).
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middle of the gap. Upon a further increase in the volt-
age, a transition from electron to hole conductivity
takes place. Indeed, it can be seen from Fig. 1 that the
CDW deformation near the contact occurs in such a
way that the electric field determined by the electro-
static potential gradient (dashed curve in Fig. 1)
decreases in the vicinity of the contact: the CDW is
deformed under the action of this electric field until the
field vanishes or its action is compensated by pinning
forces.

For an appreciable CDW deformation, the chemical
potential may be located below the middle of the gap,
which corresponds to the hole-type conductivity. The
dependence of the contact resistance R on the bias volt-
age is asymmetric with a peak shifted to the region of
positive voltages. The transition through the peak is
precisely thetransition to the hole-type conductivity. To
obtain a quantitative description of the R(V) depen-
dence, we must take into account the fact that the
change in the resistance of the contact region occurs
nonuniformly (see Fig. 1). For simplicity, we present R
as the sum R(d0) + R,, where R, is independent of V,
while R(8() is determined by the conventional formula
for the conductivity of quasiparticles (u,n + p,p). We
assume that quantity o is proportiona to the voltage
(6 =DbV). The casewhen b = 1 correspondsto complete
screening of the applied field, i.e., the absence of bend-
ing in the energy bands depicted in Fig. 1. In other
words, we represent the region of the voltage drop as
the series connection of two subcircuits (with auniform
shift of the chemical potentia and with a resistance
independent of V):

cosh[b(V — Vg)/KT]

R(V) = Ro. (1)

This is an expression with four fitting parameters: V,
corresponds to the maximal resistance (the chemical
potential is at the effective middle of the gap), while
guantity bV, gives an estimate of the initial shift {; in
the chemical potential relativeto the effective middle of
the gap. The value of R; is several times higher than R,
asarule i.e, the CDW is deformed practically in the
entire region of the contact voltage drop. Formula (1)
was successfully used in [8] for describing the R(V)
dependences for Cu—K,;M00; point contacts at T =
77 K. The properties of Cu-TaS; point contacts were
studied and analyzed analogously [11]; voltage V,
turned out to be negative, which corresponds to the
p-type quasi particle conductivity, which isknown to be
inherent in TaS; [12].

3. EXPERIMENT

Blue bronze crystals differ from other quasi-one-
dimensional conductors with CDWs in their relatively
large sizes, which facilitates the preparation of point
contacts, including those for passage of current through
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chains. We selected crystals with a perfect surface per-
pendicular tothe b axisof thecrystal. In some cases, the
surface was obtained by directional cleavage of theini-
tial crystal. Electrochemically sharpened copper wires
50 and 75 um in diameter were used as normal elec-
trodes. The radius of the tip curvature did not exceed
1 pum. Point contactswereformed directly at alow tem-
perature with the help of a precision mechanical trans-
mission system. The contact diameter d was estimated
from the value of itsresistance R using the Sharvin for-
mula[13]

R= p_i a = dJA,
a
where p =0.2 Q cmistheresistivity of K,3MoO; along
the chainsat T =77 K and | = 10 nm is the mean free
path [1]. The entire system was in a gaseous heat-
exchange medium, in which the temperature can be
varied from 77 to 300 K. We prepared and studied con-
tacts in a wide range of contact resistances from units
to several hundreds kiloohms at T = 78 K. Applying a
voltage to high-resistance contacts (R = 30-40 kQ,
d = 100 A), we could not attain the critical CDW defor-
mation corresponding to the beginning of phase dlip. In
the case of large-area contacts, we could observe alocal
CDW dliding in the contact region. It was difficult to
obtain temperature dependences for high-resistance
contacts due to their low stability (especialy upon a
change in temperature). In some cases, however, we
could trace the characteristics of such contactsin wide
temperature ranges. In addition, temperature evolution
of the contact characteristics was also studied as fol-
lows: the characteristics of two or three contacts were
measured at each preset temperature.

4. HIGH-RESISTANCE CONTACTS

It was shown in [8] that an appreciable CDW defor-
mation can be attained for point contacts with a small
characteristic size (as arule, d = 100 A); in this case,
the chemical potential may be shifted below the effec-
tive middle of the Peierls gap (8( > (). The measure-
ments were made at the liquid nitrogen temperature. In
this section, we describe the results of analysis of char-
acteristics for such contacts upon a change in tempera-
ture. Figure 2 shows the R(V) dependences for a con-
tact, for which the measurements could be made in a
temperature range of 80-190 K. At alow temperature,
the curves are asymmetric and the resistance peak is
displaced towards positive voltages.

It can be seen that the voltage V, corresponding to
the resistance peak decreases upon an increase in tem-
perature and becomes close to zero at T = 140 K. At
T > 140 K, the R(V) dependence becomes almost sym-
metric. It is interesting to note that the nonlinearity of
the current—voltage characteristic (IV curve) is aso
preserved above the Peierl s transition temperature Tp =
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183 K, which indicates the existence of a fluctuation
CDW inKy3Mo00O; at T > Tp. Inthis case, the observed
nonlinearity may be associated with alowered density
of states near the Fermi level, which is a result of fluc-
tuations of the CDW order parameter a8 T > T,
(pseudogap) [14]. In accordance with the results
obtained in [15], the fluctuation threshold contribution
to conductivity was observed for thin TaS; samples at
temperatures exceeding the Peierls transition tempera-
ture by 40 K.

At T <80-90 K, the R(V) curves become noticeably
asymmetric not only about V =0, but also relative to V,,
(i.e., these curves cannot be described by expression (1)
any longer). Such aform of the R(V) dependence obvi-
ously reflects low-temperature anomalies of CDWSs
[16]. Such effects will not be considered here. The
results of investigation of point contacts between anor-
mal metal and blue bronze at low temperatures are
described in [17].

To verify whether or not the observed characteristics
of point contacts can be attributed to the properties of
microscopic volumes of a Peierls conductor, it is expe-
dient to compare the temperature dependences of the
point contact resistance with an analogous dependence
obtained for abulk sample. Light circlesin Fig. 3 show
the resistance obtained for the point contact whose
characteristics are represented in Fig. 2 at V = 0, while
dark circles correspond to V = V,. The solid straight
line correspondsto the activation dependence at an acti-
vation temperature of T, = 720 K, which is in good
agreement with the available results of measurement of
the Peierls gap A = 50-70 meV (500-700 K) in
Kp3sM00O;, which were obtained in tunnel experi-
ments [18] in which the reflection and absorption of
light [19] were measured. The obtained value of T, is
also in good agreement with the activation energy of
conduction for bulk blue bronze samples [1, 10]. The
experimental valuesof Rfor V=V, at |low temperatures
are in better agreement with the activation dependence
than the values of resistance at VV = 0. This result could
be expected: in accordance with relation (1), the value
of R(V,) corresponds to the position of the chemical
potential at the middle of the gap.

To obtain morereliableinformation in atemperature
range of T=80-200 K, we measured the characteristics
of various contacts at several preset values of tempera-
ture. In spite of the spread in these values, the qualita-
tive pattern of temperature variation of the IV curves
was the same for all contacts and corresponded to the
data depicted in Fig. 2. For example, the value of volt-
age V, decreased with increasing temperature. At high
temperatures (T > 140 K), the R(V) dependences for all
contacts became amost symmetric relative to the
change in the polarity of the applied voltage.

Figure 4 shows by way of example the results
obtained for three different contactsat T = 119.6 K. At
a fixed temperature, the voltage corresponding of the
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Fig. 2. R(V) dependences for a contact in the temperature
range 80-190 K.
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Fig. 3. Temperature dependences of the resistance of the
same contact asin Fig. 2 at V=0 (light circles) and V = Vg

(dark circles). The slope of the straight line corresponds to
the activation energy To = 720 K.

resistance peak on the R(V) curveswas almost the same
for al contacts and corresponded to approximately the
same value of bias voltage.

5. LOW-RESISTANCE CONTACTS

Point contacts with a resistance R(V) < 30 kQ at
nitrogen temperature exhibited a considerably higher
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Fig. 4. Experimental R(V) dependences for three different
Cu—-K3MoO3 contacts at T = 119.6 K (solid curves). The

dashed curves describe the results of fitting with the help of
formula (1).

stability, which allowed us to analyze their characteris-
ticsindetail in awidetemperaturerange. A distinguish-
ing feature of the characteristics of such contacts is a
sharp decreasein theresistance at a certain bias voltage

R; kQ

T T T T T
35+ .
25+ .
15+ .

5 1 1 1 1 1
-200 -100 0 100 200
V,mV

Fig. 5. Ry(V) dependences for a Cu—K g 3M 005 contact with
R=26kQaT=77KandV=0.
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+V;, which is often of the “breakdown” type. For better
visualization, it is expedient to plot the differential and
not the ordinary resistance of such contacts as a func-
tion of voltage. Figure 5 shows the dependence of the
differential resistance R, = dV/dl on the bias voltage at
T =77 K for acontact in which this effect is manifested
most clearly. For V =V, > 0, the resistance of this con-
tact abruptly decreases by amost an order of magni-
tude. For V = —|V,|, a sharp variation of R, can also be
seen. However, the amplitude of the resistance jump for
the negative bias voltage is much smaller than for the
positive bias voltage. In most cases, the jump in differ-
ential resistance can be clearly traced for both voltage
polarities.

Figure 6 shows the temperature evolution of the
R4(V) dependence for a contact of thistypein atemper-
ature range of 80-154 K. It should be noted that the
Ry(T) curve for zero bias voltage follows the activation
dependence with an activation energy of T,= 700K in
this case also.

At ahigh temperature (T > 130 K), the dependences
become amost symmetric about V = 0 and the curves
are qualitatively similar to differential 1V curves for a
typical conductor with CDWs. Inthe latter case, asharp
decrease in the differentia resistance is observed after
the attainment of the threshold electric voltage corre-
sponding to the beginning of CDW dlip. Figure 7 shows
the temperature dependence of voltage V, for the same
contact.

In some cases, we could trace the variation of the
parameters of contacts upon adecreasein theresistance

=

10

100

1
-200 —-100 0 200

V, mV

Fig. 6. Temperature evolution of the Ry(V) dependence for
a low-resistance Cu—Kp3M003 contact. The temperature
increases from 80 to 154 K in the downward direction.
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(i.e.,, upon an increase in their area). The latter was
attained by smoothly increasing the force applied to the
tip of the normal electrode. Figure 8 shows the differ-
ential IV curvesobtained at T =77 K for one of the con-
tacts. It can be seen that, upon a decrease in the contact
resistance, the value of V, monotonically decreases.

6. DISCUSSION

We begin the discussion of results with high-resis-
tance contacts. Using formula (1), we obtained the the-
oretical R(V) dependences and varied the fitting param-
etersto attain the best agreement with the experimental
data. Dashed curvesin Fig. 4 illustrate theresults of this
procedure. Dark circles in Fig. 9 show the initial posi-
tion of the chemical potential at various temperatures,
obtained as aresult of the above procedure for the sam-
ple whose R(V) dependences are depicted in Fig. 2.
Light circles in the same figure represent the data
obtained as aresult of fitting for the R(V) dependences
measured at these temperatures for various contacts.
The spread in the values in the latter case can be
explained by thefact that pinning leadsto spatially non-
uniform deformation of CDWs, which can be mani-
fested in spatial fluctuations of the chemical potential

on the order of ,/E,(d¢/dq) [20], which may reach

1meV a low temperatures. However, qualitative
agreement between the results obtained in both types of
experiments can be clearly seen. In further analysis of
the results, we will disregard the initial deformation (at
zero bias voltage).

It can be seen from Fig. 9 that the upward shift in the
chemical potential decreases upon heating and virtually
vanishesat T = 140 K. Above thistemperature, negative
values of V, were obtained in some cases (the initial
position of the chemical potential islower than the mid-
dle of the energy gap). A certain additional shift of the
chemical potential may be due to the initial CDW
deformation (at zero bias voltage) discussed above.

However, the most probable explanation is as fol-
lows. With increasing temperature, the resistance of the
contact region of blue bronze decreases. The relative
contribution from the resistance of the boundary
increases accordingly. In this case, one should expect a
manifestation of barrier (tunnel) effects in the charac-
teristics of point contacts (namely, the effect of reflec-
tion of normal carriers injected from the normal metal
from the barrier associated with the Peierls energy gap)
[21, 22]. The reflection of carriers is manifested in the
experiment in the form of excess differential resistance
of the contact between the normal metal and the semi-
conductor with CDWs in the region of |V| < A. This
effect was reliably observed in the system with CDWs
with incomplete dielectrization of the electron spec-
trum (in NbSe;) [23, 24], in which the presence of non-
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Fig. 8. Ry(V) dependences for a Cu—Kg3Mo003 contact

upon a decrease in its resistance (increase in diameter) at
T=77K.

condensed carriers in CDW's ensures effective screen-
ing of the electric field and, hence, the absence of a
noticeable band distortion in the contact region.

Figure 10 shows the curves describing the differen-
tial resistance of the contact whose characteristics are
depicted in Fig. 2 in the range of low bias voltages at
temperatures close to Tp. It can be seen that, as we
approach Tp, the curves become more and more asym-
metric relative to the R, peak and exhibit a fine struc-
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Fig. 10. Temperature dependence of the differential 1V
curves of the contact shown in Fig. 2 in the region of small
bias voltages at atemperature close to Tp. The arrows indi-

cate approximate positions of voltages corresponding to the
energy gap.

ture. An asymmetric form of the IV curves for atunnel
structure of the meta-insulator—-CDW type was
recently obtained theoretically in [25]; for |V| > Ale,
where oscillations of the density of states are pre-
dicted (). Such a behavior can be explained by the
presence of the open CDW boundary.

Differential 1V curves of a direct meta—-CDW con-
tact (without an insulating barrier) also reflect peculiar-
ities of the density of states, which is confirmed by the
results obtained by studying materials with CDWs and
with asemimetallic ground state[23, 24]. In the case of
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complete dielectrization of the spectrum upon the
Peierls transition (the case with K, sM00O5;) at low tem-
perature, these features are indistinguishable against
the background of much stronger effects of CDW
deformation in the contact region. Tunnel effectsin the
metal—K,3;M00; point contact can be manifested at
temperatures close to Tp. Obvioudly, the energy gap is
strongly blurred at so high temperatures. Arrows in
Fig. 10 denote the approximate positions of the bias
voltages corresponding to the Peierls energy gap. It can
be seen that this singularity in IV curves is manifested
a T =160 K. It should be noted once again that these
features of IV curves corresponding to the Peierls
energy gap arealso observed at T > Ty, which may indi-
cate the existence of the fluctuation order parameter of
CDWs.

As a result of manifestation of tunnel effects, the
dependences of resistance R=V/I on the biasvoltagein
a temperature range near T, are also asymmetric with
the resistance peak displaced to the region of negative
voltages. Consequently, the description of characteris-
tics of contacts only in the framework of the semicon-
ductor model based on formula (1) disregarding tunnel
effectsin the temperature range 160-190 K is not quite
correct.

An interesting result was obtained for the screening
coefficient b in approximating the R(V) dependences by
formula (1). Figure 11 shows the temperature depen-
dence of coefficient b for the same contact asin Fig. 2.
It can be seen that screening of the field by a CDW
decreases with temperature, which may indicate an
increase in transverse rigidity and, hence, coherence of
the CDW. Indeed, the electric field deformsthe CDW in
thelocal region in the vicinity of the contact. However,
owing to the interaction with neighboring chains (pin-
ning), the deformation region turns out to be larger and
increases upon cooling. This process can be treated as
an effective increase in the coherence volume.

Conversely, CDW screening at T > 140 K becomes
almost complete; i.e., the electrostatic potential does
not change at the sample surface. The screening param-
eters obtained for individual contacts at fixed tempera-
tures exhibited a considerable spread in the values of b
and are not shown in the figure. However, the general
tendency towards a decrease in screening (coefficient b)
upon cooling could be traced in al cases.

The electric field penetration depth in the semicon-
ductor with CDWs increases with the contact diameter.
Phase dlip is facilitated in this case. Indeed, a single
event of phase dip correspondsto the emergenceor dis-
appearance of a CDW period. In this case, the change
in the wavevector can be estimated as 0q = 217/a, where

a=d./A isthe diameter of the region of field penetra-
tion to the bulk of the sample; the corresponding value
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of 8, can easily be determined if we know the temper-
ature dependence R(T) of the resistance:

~x,dC _ -21m R(T)
OCen= 0050 = KT 2 R(B00 K)' 2

Thevalue for d¢/dq was borrowed from [20], where the
temperature dependence of mobilities u was ignored.
Until 8¢ reaches a value approximately equal to 0,
phase dlip, as well as the propagation of the CDW, is
ruled out. The value of 8¢, isinversely proportional to
a and, hence, to the contact diameter d. As the value of
d increases, it becomes possible to attain the critical
deformation of the CDW at a certain bias voltage V;. In
acertain sense, this voltage can betreated asthe critical
voltage for the onset of local (over alength on the order
of a) CDW dliding. At a lower voltage (i.e., smaller
value of 8(), the appearance or disappearance of a
CDW period over length a is disadvantageous since it
would lead to the emergence of an even stronger CDW
deformation of the opposite sign.

The above scenario of CDW depinning determined
by phase dlip is apparently realized in low-resistance
contacts whose characteristics are depicted in Figs. 5,
6, and 8. Estimate (2) gives areasonable value of d(,;
substituting T = 120 K, R(T)/R(300 K) = 30, and a =
300 A into this formula, we obtain 3Z,; = 10 meV,
which is comparable with the value of V,b (see Figs. 7
and 11). To obtain this estimate, the value of the bulk
threshold field is not required; i.e., CDW breakdown is
not determined by impurity pinning in the given model.

Thetemperature behavior of the threshold voltage V;
in point contacts differs from the temperature evolution
of the threshold field E; in bulk K,3sM00; samples.
Indeed, thevalue of E, for bluebronzeat T > 50K either
increases monotonically with temperature [10], or
increasesintheinterval 50K < T< 100 K and decreases
upon a further increase in temperature [26] depending
on the crystal quality. It can be seen in Fig. 7 that the
value of V, in our case monotonically decreases in the
entire temperature range 80-160 K. This is not aston-
ishing since the beginning of CDW dlip in the case of a
point contact is determined by phase slip rather than by
CDW pinning. Expression (2) qualitatively describes
the increase in V, upon cooling. From the standpoint of
physics, such a behavior is associated with an increase
in the CDW elastic modulus d¢/dg. The experimental
results are satisfactorily described by a dependence of
the type V = Vyexp(Ty/T), where T, = 200 K (dashed
straight line in Fig. 7). This activation energy is less
than half the value of A, which contradicts formula (2).
Some experimental data indicate, however, that the
CDW édastic modulus increases upon a decrease in
temperature at a lower rate [27]. The decrease in the
value of d¢/dq is probably associated with afinite den-
sity of states in the gap. The existence of such statesin
semiconductors with CDWSs was predicted theoreti-
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cally in [28] for amplitude solitons. In addition, fluctu-
ation-induced blurring of the edges of the electron and
hole bands should a so be taken into account.

Figure 12 shows the dependence of voltage V; on the

quantity 1/,./R,(0) proportional to the contact diameter
[13]. It can be seen that the threshold voltage monoton-
ically decreases with increasing contact diameter,
which also agrees with expression (2). A increasein the
threshold field upon a decrease in the transverse size of
the sampleswas observed earlier in the study of thesize
effect in NbSe; [29-31] and in TaS; [4]; it was con-
cluded that E; O 1/d, where d isthe sample thickness. It
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can be seen from Fig. 12 that our experimental values
of V, are also in good agreement with the hyperbolic
dependence (dashed curve). However, in accordance
with relation (2), CDW breakdown is associated not
with overcoming of bulk pinning, but with the size lim-
itation imposed on phase dip (i.e., phase slip occurs
over a limited length). Thus, relation (2) describes the
dependences of V, on the temperature and size of the
contact; these dependences can be explained by the size
effect in phase dip.

7. CONCLUSIONS

Thus, we have studied and analyzed the evol ution of
the properties of metal-CDW point contacts upon a
change in the contact diameter and temperature. In the
temperature range 80-150 K, the experimental datacan
be adequately described in the framework of the semi-
conductor model of CDWs [5]. We demonstrated that
the contact resistance is determined by a microscopic
region whose size is determined by the contact diame-
ter and anisotropy in the conductivity of a Peierls sam-
ple. It is in this region that the conductivity changes
appreciably under the action of the electric field:
screening of the externa electric field leads to CDW
deformation, chemical potential shift for quasiparticles,
and a change in the point contact resistance. The tem-
perature dependence of the position of the chemical
potential has been determined. It is shown that the
chemical potential in equilibrium is above the middle
of the Peierls gap and approaches its middle upon an
increasein temperature. It isfound that local movement
of CDWSsin the contact region can be observed only for
large values of the contact diameter (d = 100 A). For
this type of contacts, we have determined the depen-
dence of the CDW breakdown voltage on the contact
diameter and temperature and proposed a model
explaining these dependences by the size effect in the
CDW phase dlip. At temperatures close to Tp, the dif-
ferential 1V curves of the contacts reveal the features of
the spectrum of single-particle excitations. The
observed nonlinearity of the IV curvesa T > Tp is
explained by the existence of the CDW fluctuation
order parameter.

On the whole, the results open a new field in CDW
physics, i.e., semiconductor and dynamic properties of
CDWs in microscopic volumes under huge electric
fields and CDW deformation. It is shown that a point
contact can be used as a local probe for studying the
energy structure of CDWSs. Point-contact studies of
CDWs are being continued. It would be interesting to
study point contacts using metalswith various values of
the work function as well as samples with various val-
ues of the bulk threshold field E; asnormal counterelec-
trodes. Of special importance is the study of metal—
CDW point contacts at temperatures below liquid nitro-
gen temperature.
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Abstract—Nonlinear evolution of two-dimensional convection patterns is considered for an incompressible
binary mixture with negative Soret coupling in ahorizontal layer subjected to finite-frequency vertical vibration
of arbitrary amplitude. A numerical analysisis performed under impermeability conditionson rigid boundaries,
which can beimplemented in alaboratory experiment. The dependence of flow intensity on vibration amplitude
isexamined for thefirst and second resonance regionsin the parameter space of thermal vibrational convection.
The numerical results agree with the stability boundaries of equilibrium states predicted by linear theory. A
qualitative difference in the dynamics of nonlinear oscillation is exposed between the regions corresponding to
critical perturbations at the subharmonic and fundamental frequencies. Regular and chaotic dynamics, as well
as hysteretic transitions between the fundamental and subharmonic modes, are revealed. © 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

Investigations of phenomena leading to pattern for-
mation in homogeneous systems date back to studies by
Bénard and von Ké&rmén. Self-organization processes in
multicomponent fluid mixtures lead to various flow
regimes. Recent experimental [1-3] and theoretical [4—7]
investigations of convection in binary fluid mixtures
have revealed regimes characterized by diverse spatial
and temporal behavior. The complexity of convection
patterns has been attributed to thermodiffusion (Soret
effect), which manifestsitself as a concentration gradi-
ent induced by a temperature gradient. In the case of
negative Soret coupling, when diffusion of the lighter
component toward the “cold” boundary reduces buoy-
ancy effects, binary-mixture convection under constant
gravity can be caused by oscillatory instability. Nonlin-
ear evolution of perturbations under supercritical con-
ditions can result in the formation of stationary pat-
terns, standing or traveling waves, localized traveling
waves, and “chevrons.”

In applications, the performance of technological
systems can be altered by vibration, ac electric field, or
temperature modulation. The Kapitza pendulum is a
classical example of vibration-induced qualitative
change in the response of a physical system to pertur-
bation of its state of equilibrium [8]. Stability and non-
linear dynamics of convective systems are also strongly
maodified by external modulation [9], which can be used

to control fluid dynamics and heat or mass transfer in
various technological systems.

The effect of vibration on the regime of binary fluid
convection, steady flow pattern, and the possibility of its
destabilization is a subject of considerable interest [10].
The analysis presented in [11] was focused on convec-
tive stability of a quasi-equilibrium state and supercrit-
ical regimes of Soret-driven binary-mixture convection
between impermeable horizontal solid plates in the
limit of high-frequency vibration with interdependent
amplitude and frequency under off-resonance condi-
tions. It was shown that thermally driven convection in
a binary mixture with negative Soret coupling evolves
into a stationary pattern rather than an oscillatory
regime of thermal vibrational convection. The thresh-
old for the onset of this pattern differs from the critical
condition predicted by linear stability theory and
depends on the nonlinear dynamics of the system.

In this paper, we analyze the nonlinear stage of con-
vection driven by atemperature gradient across a hori-
zontal layer of a mixture with negative Soret coupling
between impermeable solid boundaries. The system is
subjected to finite-frequency vertical vibration of arbi-
trary amplitude. We examine the effect of vibration
amplitude on the evolution of convection patterns cor-
responding to different resonance regions in the param-
eter space and reveal hysteretic transitions between
nonlinear oscillations at the fundamental and subhar-
monic frequencies, as well as transitions between regu-
lar and chaotic dynamics.

1063-7761/05/10106-1140$26.00 © 2005 Pleiades Publishing, Inc.
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2. STATEMENT OF THE PROBLEM

Consider the layer of abinary fluid mixture between
perfectly heat-conducting impermeable solid plane
boundaries located at z= 0 and z = h and held at con-
stant temperatures T(0) = @ and T(h) = 0. (The cases of
© < 0and © > 0 correspond to heating from above and
below, respectively.) Even though no concentration
gradient is imposed, the relative motion of the mixture
components due to thermodiffusion (Soret effect) gives
rise to a concentration gradient even in an initially
homogeneous mixture [12].

The equation of stateis
p=p(1-B:T-B:C), Q)

where P is the mixture density corresponding to the
mean values of temperature and concentration; T and C
are the deviations of temperature and concentration
from their respective mean values; and

[og

Br = -H2 Lo
"7 “Thoto &

BC_TE)

are the thermal and solutal expansion coefficients,
respectively. Assuming that C is the concentration of
the lighter component, we have 3 > 0.

The layer harmonically oscillates along the z axis,
with frequency Q and amplitude b. In the oscillating
frame of reference, the modul ated gravitational acceler-
ation is g + bQ2sin(Qt)n, where g is the static gravita-
tional acceleration and n is the unit vector aong the z
axis.

The equation of motion for the binary mixture con-
tains terms representing the forces due to concentration
gradientsin amodulated gravity field. In addition to the
heat and continuity equations, the model includes an
evolution equation for the concentration of the lighter
component in which the concentration flux contains
both Fickian and Soret diffusion terms:

j = —-pD(0C+a0T),

where D is the diffusion coefficient and a is the Soret
coefficient. The temperature and concentration gradi-
ents are antiparallel and parallel in systemswitha <0
and a > 0 (positive and negative Soret coupling),
respectively. Inwhat follows, both D and o are assumed
to be independent of temperature.

Using h, h?/v, x/h, ©, B:©/Bc, and pvx/h? (wherev
is kinematic viscosity and X is thermal diffusivity) as
reference length, time, velocity, temperature, and pres-
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sure, respectively, we write the convection equationsin
the Boussinesqg approximation as

g—\t/+—(v (M)v = —0Op+Av

+(Gr + Gr,sinwt)(T + C)n,

%—:I[—+VE|]T = —AT divv = 0,

%‘thvmc = —A(C wT),

)

Here, v isthe flow velocity, and p is the dynamic pres-
sure. The dimensionless parametersinclude the separa-
tionratio Y (Y > 0and Y < 0 correspond to positive and
negative Soret coupling, respectively), Gr is the
Grashof number, Gr, isthevibrational Grashof number,
Pr isthe Prandtl number, and Sc isthe Schmidt number.

Boundary conditions of different types can be used
to analyze binary fluid convection. In terms of experi-
mental feasibility, the most realistic conditions corre-
spond to impermeabl e isothermal rigid boundaries:

z=0 v=0 T=1 2€_¢% -y,
0z 0z 3

R _ . 9C_ aT _

z=1. v=0, T=0, 35 lpaZ—O.

In a state of hydrostatic equilibrium, the vertical
concentration and temperature gradients are balanced:
v=0, Ty=-z GC,=-Y(z-1/2),

(Gr + Gr,sinwt)Z’ 4
Py = 5 + const.

Pressure is eliminated by introducing the stream-
function W defined by the relations

oW ow
Vi = E’ v, = _&' (5)
No. 6 2005
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Fig. 1. Critical values of wavenumber and Grashof-number
modulation amplitude vs. inverse modulation frequency for
Y =-0.3 (negative Soret coupling). In the absence of vibra-
tion, the system is in a state of stable equilibrium (Gr =
4000).
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|
198 199 200

Fig. 2. Time variation of streamfunction (dashed curve) and
modulated Grashof number (solid curve) at a point inside
the convection cell: Gr,, = 2720, w = 21.10 (first resonance

region).

Then, the system of equations describing thermal vibra-
tional convection in a binary mixture is rewritten in
terms of the vorticity y-component ¢ = (curlv),, tem-
perature, and concentration as follows:

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

MYZNIKOVA, SMORODIN

00, 1pWao Wy

ot Prlozox ox oz
= A¢ + (Gr +Gr, snwt)a(T;C)
0T , PWIT 0WwaTy _
ot "Oazax ox ozl - AT’ ©)
0C, @¥oC 9d¥oQy _ 1
ot TCazax ox 9zl A(C W,
AW +¢ = 0.

The boundary conditions are rewritten accordingly:

z=0: Y =0, a——LP=0, T=1,
0z
aC oT _
0z lIJ62 =0,
z=1. Y =0, a—qJ:O, T =0,
i ™
0C_ 2T _ g
az ‘oz
W(0,2) = W(L,2), ¢(0,2) = ¢(L,2),
T(0,2) = T(L,2), C(0,2) = C(L,2).

To compute convection in a cell of length L, we use
periodic boundary conditions on the vertical cell
boundaries, which facilitates comparison of nonlinear
dynamics of convection patterns with the behavior of
critical perturbations with wavenumber k = 217L pre-
dicted by thelinear analysis of stahility of abinary mix-
ture under modulated gravity.

3. NONLINEAR EVOLUTION
OF FUNDAMENTAL-FREQUENCY
AND SUBHARMONIC PERTURBATIONS

Theresults presented in this paper were obtained for
Pr=0.75and Sc= 1.5, which are characteristic of agas-
eous mixture.

Figure 1 shows the critical wavenumbers and
boundaries of resonance regionsin the parameter space
corresponding to the onset of instability predicted by
the Floquet theory for a mixture with negative Soret
coupling (Y < 0).

When Gr, = 0, the system with ¢ = —0.3 becomes
convectively unstable as the Grashof number increases
to Gr,,= 4347. The corresponding neutral perturbations
have the frequency w, = 10.64. At Gr = 4000 < Gr,,,, the
binary mixture remains at rest. The hydrostatic equilib-
rium of the mixture becomes unstable with increasing
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Fig. 3. Visuaization of (a) streamfunction, (b) temperature, and (c) concentration fields in the subharmonic mode: Gr,, = 2720, w=

21.10 (first resonance region).

Gr, . The strongest destabilizing effect of resonant mod-
ulation is predicted for w = 21.10 = 2wy, (subharmonic
resonance). Under this condition, the horizontal length
scal e of the convective pattern is determined by the crit-
ical wavenumber k., = 2.71, and the corresponding crit-
ical vibrational Grashof number Gr,,,, = 680.30 is sub-
stantially lower than that in the case of positive Soret
coupling. The minimum of the neutral curve corre-
sponding to the fundamental resonance region is
located at w = 7.75 = wy,, and the corresponding critical
parameters are k., = 2.48 and Gr,,, = 3754. Additional
minima correspond to 2wy/m, where mis an integer. In
those regions, the destabilizing effect is weaker. The
critical wavenumbers for parametric instability with
respect to subharmonic and fundamental-frequency

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

perturbations shown in thetop panel of Fig. 1 monoton-
icaly decrease with increasing perturbation period
within the respective instability regions.

To compute the vorticity, temperature, and concen-
tration fields, we solved nonlinear problem (6), (7) by
the fractional time-stepping method, using an alternat-
ing-direction implicit scheme. The streamfunction was
found by the successive overrelaxation method at each
time step.

The parameters used in computer simulations of
finite-amplitude convection regimes were taken from
the results of the linear analysis. Numerical simulations
were performed for parameter values lying on the ver-
tical linesin Fig. 1.
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Fig. 4. Maximum value of streamfunction vs. Grashof-
number modulation amplitude for w = 21.10 (first reso-
nance region).
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Fig. 5. Maximum value of streamfunction vs. Grashof-
number modulation amplitude for w = 7.75 (second reso-
nance region).

W, Gr. x 1073

|
196 198 200
t
Fig. 6. Time variation of streamfunction (dashed curve) and
modulated Grashof number (solid curve) at a point inside
the convection cell: Gr,, = 3950, w = 7.75 (second resonance

region).

When m=1 and w = 21.10 (first resonance region),
oscillatory perturbations with k., = 2.71 evolve into a
subharmonic regime of thermal vibrational convection.
Thevariation of the streamfunction at aparticular point
inside a convection cell (e.g., at x=L/4, z=1/2) isrep-
resented by the dashed curve in Fig. 2. Its period is
twice the modulation period:

Gry (wt) = Gr+ Gr,sin(wt).

The convection pattern is a standing wave: the stream-
function, temperature, and concentration fields oscil-
late about their mean values at every point. The spatial
distributions of these variables at a certain instant are
represented by the contour maps shown in Fig. 3. The
curve of W, .(Gr,) shown in Fig. 4 demonstrates that
local bifurcation of the equilibrium state to a standing-
wave pattern occurs as a result of a soft-mode instabil-
ity at Gr, = 625. Thecritical Grashof numbers predicted
by linear theory and nonlinear computations differ by
approximately 8%. It should be noted that the outcome
of pattern formationinamodulated field isqualitatively
different from that in the limit of high-frequency vibra-
tion, when a dow transient oscillatory process leads to
the formation of a stationary convection pattern that
exists in a subcritical region of the parameter space as
well. This can be explained by the resonant effect of
modulation on natural oscillatory convection in a
binary mixture.

In the region of instability with respect to funda-
mental-frequency perturbations (corresponding to
m=2), the system exhibits hysteretic transitions
between different convection patterns. Figure 5 shows
the flow intensity (maximum value of streamfunction)
versus Gr, . Above the threshold Gr,,, = 3700 (which dif-
fers from that predicted by linear theory by not more
than 1.5%), a soft-mode instability leads to nonlinear
oscillation at the gravity-modulation frequency illus-
trated by the dashed curve in Fig. 6, which represents
the time evolution of the streamfunction at a particular
point in the convection cell (x = L/4, z=1/2). Figure 6
demonstrates that the period of nonlinear oscillation is
equal to the modulation period of Grp; Note that the

streamfunction has a nonzero mean value in this
regime. With increasing modulation amplitude, the
oscillation amplitude reaches a maximum and
decreases to zero at Gr,, = 5105.

At Gr, = 5119, ahard onset of oscillation at the sub-
harmonic frequency is observed, with an amplitude
severa times larger than that of the fundamental-fre-
guency mode. This regime remains stable with further
increasein Gr,.

Gradually reducing the parameter Gr,,, we observe
how the oscillatory pattern of convection becomes
more complicated. Figures 7a—7f show the oscillation
spectra obtained by post-processing numerical data

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101 No. 6 2005
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Fig. 7. Spectra of regular and chaotic oscillations in the second resonance region: Gr, = 5612 (a), 5400 (b), 5255 (c), 5161 (d),

4692.5 (), 4692.4 (f).

with a fast Fourier transform agorithm. The spectrum
obtained for Gr, = 5612 (Fig. 7a) contains the subhar-
monic mode with frequency vy, = v/I2 = 0.617 (v =
w/2m) and higher subharmonic modes with frequencies
v = kvy, (k =1, 3,5, ...); i.e, this spectrum corre-
sponds to a subharmonic regime of regular oscillation.
At lower vibration frequencies, sidebands with fre-
quencies (v, £ V,;)/2 appear, asillustrated by Fig. 7b for
Gr, = 5400. In the interval 4692.5 < Gr, < 5375, we
observe chaotic oscillations with continuous spectra
dominated by the half-frequency and higher subhar-
monic modes, asillustrated by Figs. 7c and 7efor Gr, =
5255 and 4692.5, respectively. It should be noted here
that chaotic convection is observed at relatively low
supercriticality, when Gr, /Gr,, < 1.27. The interval of
modulation amplitude indicated above contains a peri-
odicity window where a 1/3-subharmonic oscillation
mode is observed, as illustrated by the spectrum for
Gr, = 5161 shown in Fig. 7d. At Gr,, < 4692.5, the cha-
otic regime becomes unstabl e and the system oscillates
at the fundamental frequency (v = 1.234) with asmaller
amplitude (see Fig. 7f). At 4692.5 < Gr, < 5105, theres-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

onance regionsin the parameter space overlap and two
convection regimes characterized by different heat
transfer rates emerge and disappear via hysteretic tran-
sitions as the modulation amplitude increases or
decreases.

4. CONCLUSIONS

Theresults obtained in this study illustrate the emer-
gence, nonlinear evolution, and stabilization of ther-
mally driven convection patternsin ahorizontal layer of
a binary mixture with negative Soret coupling sub-
jected to vertical vibration with arbitrary frequency. It
isshown that the supercritical flow regimes characteris-
tic of the first and second resonance regions in the
parameter space develop via soft-mode transitions at
threshold parameter values consistent with predictions
of linear stability theory. A spectral analysis of time-
domain data performed to examine the behavior of non-
linear convection patterns in the second resonance
region reveals diverse regular and chaotic regimes
involving transitions between fundamental-frequency
and subharmonic modes.
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Abstract—The kinetic theory of gases is applied to analyze slow translational motion of low-concentration
particles driven by an external force in a homogeneous gas. The analysis takes into account the diffusion due
to the difference in accel eration between particles and moleculesin internal and external forcefields. A general
expression is derived for the particle drag force in hydrodynamic, free-molecular, and intermediate regimes.
Thisexpression reducesto asimplerelation between the drag force and its valuesin the hydrodynamic and free-
molecular limits and the force of intermolecular interaction between particles and gas molecules. In the case of
spherically symmetric potential of interaction between the particle and molecules, the drag force is the har-
monic mean of itslimit values. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Thelast decade has seen rapid progressin nanotech-
nologies (e.g., see[1-3]). The need to devel op methods
for synthesis and assembly of nanostructures stimulates
theoretical prediction of their characteristics based on
available experimental data, which obviously include
characteristics of motion of nanoparticles and nanopar-
ticle aggregates in gases [4-9]. Even though the kinetic
theory of gases can be considered complete [10, 11],
intermolecular interaction between polyatomic gas
molecules or atoms and a particle or an ion remains an
issue [10-14]. Moreover, expressions (e.g., for particle
or ion drag force or mobility) obtained in the free-
molecular and hydrodynamic limits of the theory are
mutually inconsistent [11]. One simple method for
determining the characteristics particle motion in the
intermediate regime relies on the use of formal averag-
ing procedures or correction factors involving empiri-
cal parameters. In particular, the coagulation rate in the
intermediate regime has been successfully determined
by using the harmonic-mean approximation [15, 16]. In
the most accurate calculations of the particle drag
force, acorrection factor isintroduced into the Stokes
law [17, 18]. Despite numerous attempts to match the
expressions for the drag force obtained for limit
regimes, in particular, by correcting boundary condi-
tions or introducing empirical parameters, the problem
remains unsolved [11].

Generally, it is assumed that an external force field
does not accelerate the motion of aparticleor anionin
both free-molecular and hydrodynamic limits. In the
free-molecular limit, when the gas is not perturbed by
particle motion, the drag force on a particle or an ion
moving in a gas with a mass-average velocity V,, is
related to the binary diffusion coefficient by the
Stokes-Einstein formula[12]

(D

where kg is Boltzmann's constant and T is temperature.
Note that this relation is exact only in the limit of van-
ishing external field [12]. The subscript “diff” in (1)
refers to the free-molecular limit interpreted as the
regime of diffusive particle motion (when forces are
negligible). The subscript “hydr” used below refers to
the hydrodynamic limit, in which the particle velocity
is constant, the force acting on it isfinite, and diffusion
is negligible. In both limits, particle acceleration is
neglected and diffusion due to the difference in acceler-
ation between particles and molecules moving in a
force field is ignored accordingly. In the intermediate
regime, the acceleration of particles or ions by aforce
field becomes increasingly important as the particle-
molecule collision frequency decreases with particle
size. In this paper, we analyze particle motion in both

1063-7761/05/10106-1147$26.00 © 2005 Pleiades Publishing, Inc.
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Drag force predicted for intermediate regimes of particle
motion between hydrodynamic and free-molecular limits:
(1) Stokes law; (2) Basset's formula; (3) Epstein’s approxi-
mation; (4) Millikan's formula; (5) harmonic mean.

limit regimes and in the intermediate regime, taking
into account particle acceleration by aforce field.

2. AVAILABLE MODELS

In the free-molecular limit, when the perturbation of
the state of the gas caused by a moving particle is neg-
ligible, the expression for the binary diffusion coeffi-
cient known from the kinetic theory of gases can be
used to rewrite (1) for a sphere as follows[10]:

8p(R+R)"QL "
3(ksT/2mp)™?

(11
_ 8mn(R+RY"0%L " [,
3\ my, ”

diff = p

)

where p is the gas pressure; u = mymy/(m, + m,) isthe
reduced mass; m, and my are the particle and gas-mole-
cule masses, respectively; Rand R, are the correspond-

ing radii; Q’l‘z(l’ Y is the reduced collision integral; and
A isthe mean free path related to the absol ute viscosity
ng by the formula

\ = (TrkBT/ng)llzng.

Y

In the hydrodynamic limit, the motion of the gas
perturbed by a moving particle is approximately
described by the Stokes equations subject to the imper-
meability and no-slip conditions

Ug, = U Ug = Up, (€©)

where U, and U,, are the respective gas and particle
velocities, and the subscripts n and T denote the gas-

pn:
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velocity components normal and tangential to the parti-
cle surface.

Available solutions to the Stokes equations for vari-
ous systems have been used to obtain expressions for
the drag force [19]. In particular, the drag force acting
on aspherical particle executing a trandational motion
is given by the classical Stokes law

Fryar = —6TINGRU,,. 4

It can be shown that this expression (valid in the
hydrodynamic limit) isinconsistent with expression (2)
(valid in the free-molecular limit). In one attempt to
match them, the no-dlip condition was replaced with a
partial dip boundary condition for the flow around a
body. A solution to the Stokes equation for dip flow
around a sphere was found by Basset (see [19]):

1+2n,/R
Foya = —snngRupﬁE, 5)

wherethe dlip coefficient 3 vanishesand goestoinfinity
in the case of mirror and diffuse reflection of molecules
from the particle surface. A more accurate calculation
(see[11]) leadsto the expression

1+2a,./2/ITANR

F = —611n,RU
e o e 38 /2N R

(6)

with a, = 1.0161.

By introducing empirical parameters A, a;, and a,
into the Stokes law, the following expression attributed
to Cunningham, Knudsen, Weber, and Millikan has
been obtained for the drag force on a spherical particle:

6mn,RU,

F= 1+ Kn(A+a,exp(—a,/Kn))’ 0

where Kn = A/Ris the Knudsen number. The values of
A, a;, and a, are based on experimental data obtained
for small particles by Millikan with coauthors. Thefol-
lowing values have been adopted by taking into account
the results of subsequent experiments: A = 1.257, a, =
040, and a, = 1.1 [17]. Expression (7), hereinafter
referred to as Millikan’s formula, is generally used asa
standard for validating other theoretical models [18].
However, this expression does not allow for intermo-
lecular interaction in an intermediate regime, which
strongly depends on the molecular species[11].

The figure shows results obtained by using expres-
sions (2), (4), (6), and (7) as the dimensionless drag
force versus the Knudsen number. The collision inte-
gral in (2) is represented in Epstein’s approximation,

Q’{Z(l' Y =1 + a8, with accommodation coefficient

o = 1. The figure demonstrates that the results calcu-
lated by using expressions (4) and (6) deviate from the
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predictions based on (2) as Kn — oo; i.e,, the hydro-
dynamic model overestimates the force.

To match the expressions for the drag force in the
hydrodynamic and free-molecular limits, we consider
below possible madifications in solutions to the Stokes
equation made by introducing corrections allowing for
difference in molecule and particle acceleration by a
force field into the gas-molecule and particle velocity
distributions.

3. PARTICLE ACCELERATION
BY A FORCE FIELD

We consider the effect of particle diffusion due to
the difference in acceleration between particles and gas
molecules by a force field on their motion in an inter-
mediate regime. For simplicity, our anaysis is
restricted to slow translational motion of low-concen-
tration particles driven by an external force in a homo-
geneous gas. Under this restriction, we can ignore both
nonlinear terms with respect to the hydrodynamic
velocity of a particle and changesin pressure, tempera-
ture, and concentrations of particles and molecules.
However, this model can be applied to solve a broad
variety of practical problems.

Following [11], weintroduce correctionstaking into
account acceleration of particles and molecules by a
force field into the corresponding velocity distribution

functions f{” (k=1 and 2 for molecules and particles,
respectively):

fi = B+ o),
i = n(B/m)*exp(-BCh), (8)
Ck = Vk_Ukl Bk = mk/ZkBT

Here, ) denotes a velocity distribution functions in

the zeroth approximation; C, andV, arethe thermal and
total velocities of the kth component, respectively; n, is

the concentration of the kth component; and ¢<k1) isthe

perturbation of the molecule or particle distribution
function caused, respectively, by particle or molecule
motion. For isothermal incompressible flows, this cor-
rection iswritten as

2
o = B;”kccmuk——zD(ck D O

where n is the total concentration of mixture compo-
nents, n, isthe absol ute viscosity of the kth component,

D, = D, (C)), and the thermodynamic force that drives
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the kth component in the absence of concentration and
overall pressure gradientsis expressed as

d, = P (10)

P Omx
For abinary mixture, when d, + d, = 0, this expression
reduces to

(11)

where m, and m, are the molecule and particle masses,
p, P1, ad p, are the total, gas, and particle densities;
and F; and F, are the forces acting on the molecule
and particle, respectively. We use expression (11) to
rewrite (9) asfollows:

2
e LS ICHGITAR
. (12)
1 2\
x(Dk—Dk)D;q—l(ckEFl)—;n—z(ckEFz)H,

where summation over repeated indices is assumed; i,
j =1, 2, and 3 denote vector componentsin acoordinate
system (N, T4, Ty).

Thefunction D, = D, (C,) isdefined in terms of diif-
fusion coefficients Dy, by an integral relation [11]:

1
Du = g [ i CDKCIV (13)

According to [11], the coefficients Dy, for abinary mix-
ture arerelated to D, can be represented as

_ Pomm, _ P MMy
1 = 2121 22 T oM
Pi(p/ P /
1(p/n) 0m
m;m
Dy, = Dy = - - 22 12-

(p/n)

Equation (12) is derived without taking into account
internal degrees of freedom of molecules and particles.
Even though difficult problems arise in analyzing the
effects due to internal degrees of freedom and configu-
ration of interacting particles, polyatomic gases can be
described by methods devel oped in the kinetic theory of
gases [10, 11]. In these methods, description of the
dependence of a velocity distribution function on
molecular or particle rotation characteristics is reduced
to representation of transport coefficients as functions
of these characteristics. Following this approach, we
apply expression (12) to polyatomic molecules and par-
ticles, assuming that the influence of rotation character-
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istics can be described by formulas for viscosity and
diffusion coefficients.

The expression for the drag force in the hydrody-
namic limit is obtained by assuming that the particle
velocity is determined by its hydrodynamic velocity.
Accordingly, we calculate the particle velocity aver-
aged over molecular and particle velocitiesand volume,
using the above particles and gas-molecul e distribution
functions modified by taking into account the accelera-
tion of particles and gas molecules by aforcefield:

S
WPD_ npng
(15)
[ o o,

VgVp v

Here, the angle brackets denote averaging over avolume
v. Since the direction of trandational mation of particles
isparalel totheexternal force, expression (15) iswritten
in scalar form with n, denoting the unit vector in the
direction of the external force. We rewrite this expres-
sion as

V= U, + Uy, (16)
where U,, is the hydrodynamic velocity. The diffusion
velocity Uy depends on the difference in acceleration
between molecules and particles by aforce field:

Ugsr = U§>i(ftf+ Uidr#f, a7
2 pip
Vi = =3 pmynp
k=1 (18)
(O)f(O) ) L
X{ [ [(n,DVp)==2-(Dy= D) (C LF)AV,dVy)
p' g
VQVD v
2
int  _ p1p2
diff — — n"
£ Punp (19
f(O)f(O)
x{ [ [(n, V) —2—(Df — D) (Cy (Fi)AV,dV,y)
npng
ngp v
m. m
Fip = —ffngFldv = _f F.0,, (20)
v

where the diffusion velocities USy and Ul are asso-
ciated with the external and internal forces acting on
particles. Expression (18) is written by assuming that
the external force acts only on particles; for particle
moving with constant velocities, it is counterbalanced
by the drag force (F, = —F;). Expressions (19) and (20)
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are written by using the fact that the internal forces
[F,[) exerted on the particle by surrounding molecules
are counterbalanced the respective forces [F,[] exerted
by the particle on the molecules:

40 = 0.

Theforce F, contained in expression (20) is exerted by
the particle on a gas molecule. Since the particle con-
centration is assumed to be low, interparticle interac-
tions are not taken into account.

Using (13) to calculate the integral of expression (18)
with respect to velocities, we obtain

et _ PP,
diff pp

Substituting (14) and using the expression p = nkg T, we
rewriteit as

(D22 —Da)F. (21)

nm;p; Dy,

ext __ . _ i L
Ugtr = —(P1—P2) p3 kBTF' (22)

When the particle concentration in the gas is low, this
expression reduces to

D
—ZF,

U et _ _
diff kBT

(23)

To calculate diffusion velocity (19), we must know
certain characteristics of the forces acting on molecules
and particles. In the case of central forces, the volume-
averaged accelerations of molecules and particles van-
ish; i.e., these forces do not contribute to the diffusion
velocity. Otherwise, we have to take into account the
asymmetry of internal forces.

Using (13) and (14) to calculate the integral of
expression (19) with respect to velocities, we obtain

i nm;p,; D
Uldr:}f = (pl_pZ) p]é 1ﬁFim,zl

(24)

whereF;,; ,isthe component of the force exerted on the
particle by surrounding moleculesparalléel tothe external
force. For low-concentration particles, expression (24)
reduces to

D
it )

int
Ut =
diff int, z*
kg T

(25)

According to expressions (24) and (25), if the force
F,: exerted by gas molecules on the particle is asym-
metric, then its volume-averaged value is finite. For
example, if the center of charge of a particle moving in
externa eectric field falls behind its center of mass,
then the force exerted on the particles by the molecules
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polarized by the field generated by the particleis paral-
lel to the direction of its motion, and so isits diffusion
velocity. When both interaction potential and particle’s
orientation are known, the mean value of F;; can be
represented in explicit form. In particular, if the charge
distribution is known for a charged particle, then we
can find the ion—dipole interaction force between the
particle and neutral molecules polarized by the field
generated by the particle [13].

Using (23) and (25), we rewrite expression (16) as

- kBT kBT int, z* (26)

/= U,

According to (16) and (26), the mean particle veloc-
ity isalinear combination of its hydrodynamic and dif-
fusion velocities. Therefore, the mean velocity [V,0
(interpreted as hydrodynamic velocity) in formulas
derived in the hydrodynamic limit should be replaced
by the velocity U, determined from (26):

thdr D12 D12 O
= —— — —F + — .
F B/p pD kBTF kBT Flnt, 7] (27)
Using Stokes-Einstein formula (1), we rewrite this
expression as

Faitt + Fint, 2
F = Fg—0——. 28
WO or + Fhyar (28)
Thus, when the acceleration of particles and mole-
cules by a force field is taken into account, the drag
force can be expressed in terms of its values in the
hydrodynamic and free-molecular limits and the force
of interaction between a particle and surrounding gas
molecules. The value of the force in the hydrodynamic
limit used in this expression is determined without
allowancefor the effects of diffusion and dip. Thelatter
effect is taken into account in the expression for the
force in the free-molecular limit in terms of the binary
diffusion coefficient.

In the case of acentral interaction potential, the drag
force can be represented as the harmonic mean of the
drag forces determined in the free-molecular and
hydrodynamic limits:

1-
F Fdiff

1,1

: 29
thdr ( )

The results of calculations using expression (29)
shown in the figure demonstrate that the values of the
drag force given by the harmonic mean and Millikan’s
formula are virtually equal in both hydrodynamic and
intermediate regimes. The discrepancy between these
predictions at high Knudsen numbers can be explained
by the neglected interaction between particles and mol-
ecules.
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Expressions (28) and (29) are obtained by represent-
ing thedrag forcein terms of the mean particle vel ocity,
which is a linear combination of the limit velocities.
Therefore, expressions analogous to those presented
above may bevalid for other characteristics determined
by particle velocities. In particul ar, particle coagulation
rate can be calculated as a harmonic mean [15, 16] by
assuming its proportionality to the frequency of colli-
sions between particles, which is determined by the
their relative velocity.

Thus, it is shown here that the harmonic mean is a
theoretically well-grounded approximation applicable
when particle-molecule interactions can be described
by a spherically symmetric potential.

Expressions (28) and (29) determine the particle
drag force when its values in the hydrodynamic and
free-molecular limits are known. Since particle dynam-
icsin the limit regimes have been well studied for par-
ticles of various shapes, these expressions can be used
to calculate the drag force for particles of any size,
including nanoparticles.

Note that the free-molecular regime is interpreted
here as particle motion driven by an external force that
does not perturb the state of the gas; i.e., theforceis set
to zero in the free-molecular limit. This approach is
used only to determine the diffusion coefficient defined
without taking into account the diffusive fluxes due to
difference in accel eration between molecules and parti-
cles. The validity of the diffusion coefficients obtained
in the free-molecular limit for large particles is ques-
tionable because of limited applicability of Boltz-
mann’s equation to kinetics of large particles. However,
methods other than the classical one (Chapman—
Enskog method) can be applied to solve Boltzmann's
equation. In particular, the probability of collisions
between molecules of the same species can be higher
than the collision probability between molecules of dif-
ferent species[20]. A solution based on this model can
be applied to particles of size much greater than the
mean free path. When the gas is treated as isothermal
and incompressible, this solution reduces to the Chap-
man—-Enskog approximation. Thus, we can apply the
formulas obtained for the drag force Fg in the free-
molecular limit, at least, to nanoparticles.

4. CONCLUSIONS

Thekinetic theory of gasesis applied to analyze the
effect of external and interna forces on slow transla-
tional motion of low-concentration particlesin ahomo-
geneous gas. The expressions for the drag force
obtained in the hydrodynamic limit are matched with
those obtained in the free-molecular limit by introduc-
ing acorrection allowing for difference in molecule and
particle acceleration by a force field. The simple
expression presented in this paper is a smple relation
between the drag force and its values in the hydrody-
namic and free-molecular limits and the force of inter-
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molecular interaction between particles and gas mole-
cules. When this interaction can be described by a
spherically symmetric potential, the drag force is the
harmonic mean of its limit values. The results of this
study make it possible to calculate the drag force for
particles of any size by using known expressions
obtained for the limit regimes.
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Abstract—A reativistic generalization of quasi-Chaplygin (quasi-gas) equations describing the evolution of
unstable media with negative compressibility is proposed. Examples of the media whose dynamics can be
described by the proposed equations are considered. An analytic solution to these nonlinear equations is
obtained for the 1D case. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Nonlinear evolution of many unstable media can be
described in the long-wave approximation by quasi-

Chaplygin equations (QCEs)
dv _ 2 Um g _ g
a - COmm) * dt - at+(VD)l (11)
d0s 4o, (Ov) = 0, (12)

dt

where ppjis the effective density (dimensionless quan-

tity), v isthe velocity, ¢, isthe velocity of “sound” and
m is the parameter referred to as the azimuth number.
These equations differ from the ideal gas equations
only in that they contain negative compressibility.
However, this difference is essentia since, instead of
running waves inherent in conventional gases, standing
perturbations growing in time become prevalent. Such
instabilities are encountered in nature quite often; for
instance, about 50 such examplesareconsideredin[1, 2],
where a general theory of the QCEsisformulated. The
properties of the system of QCEs were studied system-
aticaly later in [3]. Mediawhose evolution is described
by QCEs are usually referred to as quasi-Chaplygin or
guasi-gaseous media. The existence of analytic solu-
tions to nonlinear equations (1.1), (1.2) is a consider-
able advantage of these equations both in the 1D case
and 2D (stationary) case. Consequently, generaiza-
tions of these equations for which analytic solutions
exist are of interest for describing specific physical pro-
cesses as well as for testing numerical methods
employed for solving similar nonlinear equations
belonging to the class of incorrect problems for which
small-scale perturbations that grow the most rapidly
play adecisive role.

In this paper, we propose a relativistic generaliza-
tion of QCEs (1.1) and (1.2) and demonstrate its rela-

tionship with anumber of physical problems. In the 1D
case, these equations have the form

i o, _ o0 c 0 1/m

ot T YaY T mBJ()T Yozl (9
9 g,9 ,.,90

%/a +u Inp* = EJaT+ya£y. 1.4

Thetime coordinate in these equationsist = ct, cisthe
velocity of light,

y = (1-v3cA)™ = coshy

is the Lorentz parameter, z is the coordinate, and u =
yv/c = sinhy is the spatial component of the four-
dimensional velocity; the meaning of rest of the nota-
tion remains unchanged. Equations (1.3) and (1.4) will
be referred to as relativistic quasi-Chaplygin equations
(RQCE) since these equations are transformed into
one-dimensional equations (1.1) and (1.2), respec-
tively, in the nonrelativistic limit (v/c — 0). In this
generalization, we proceeded from Egs. (1.3) and (1.4)
derived earlier in [4] for m = =1, which describe the
dynamics of a plasmain a relativistic skinned current
pinch in the “narrow channel” approximation in zero
longitudinal magnetic field. The plasma was treated as
nonrelativistic in its own coordinate system and was
described using the conventional isentropic equation
with an exponent of 5/3. These equations (for m=-1)
were used in [4, 5] for anaytically calculating the
energy spectrum of particles accelerated in a pinch
when sausage-type instabilities grow iniit. It was found
that this spectrum successfully describes the energy
spectrum of galactic ultrarays in the entire range of
observed energies, which led to the hypothesis on gen-
eration of galactic ultraraysin cosmic current pinches.

1063-7761/05/10106-1153$26.00 © 2005 Pleiades Publishing, Inc.
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Equations (1.3) and (1.4) can be derived from the
equations of motion and continuity in relativistic fluid
dynamics [6]:

«0U _ ap k0p
WU — = —/& —uu —, 15
ax*  ox ax~ (19
o) _ o, (1.6)
0X

wherew = e + pisthe enthalpy; e=pc?, p, p, and n are
the mass density, pressure, and number density nin the
intrinsic frame of reference; and x¥, Uk, and u, are the

4-vectors of coordinates and velocity, uk = (y, wi/c).
Three spatial components of Eq. (1.5) form areativis-
tic generalization of the Euler equation, while the tem-
poral component isthe consequence of the former three
components (the scalar product of the velocity vector
and the vector equation of motion (i = 1, 2, 3) leadsto
Eqg. (1.5) for i = 0). Equation (1.6) is a continuity equa-
tion.

To derive Egs. (1.3) and (1.4) from Egs. (1.5) and
(1.6), we assume that

com
1+m*

1+1/m

e = p*cz p = @7

for quasi-Chaplygin media with m # -1 and p =
-ct Inpyfor m = —1. The above expressions for “pres-
sure” p can be derived from Eq. (1.1) by multiplying it
by pand writing itsright-hand side in the conventional
form —(p. It should be noted that quantitiese and p in
formulas (1.7) have dimensions of the square of veloc-
ity. Henceforth, we will disregard pressure in the for-
mula for enthalpy, setting w = prg? Substituting
Eq. (1.7) into (1.5), we obtain the relativistic quasi-
Chaplygin equation of motion,

2

dowy = —gp, 1, 4

wherepg =—c>mp; "
the form of Eqg. (1.3).

Let us now consider the continuity equation (1.6).
Substituting pfor nin this equation leads to Eq. (1.4).

It should be noted that this substitution automatically
implies that “effective” density pin Eq. (1.6) pertains
to the intrinsic frame of reference; i.e, under the
Lorentz transformation, this quantity behaves as con-
ventional density.

Concluding the section, we can make a few brief
remarks concerning the generalization of quasi-Chap-
lygin equationsto the case of strong gravitational fields,
i.e., the form of the QCE in the general theory of rela

. Inthe 1D case, this equation has
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tivity. Since the RQCE were derived from Egs. (1.5)
and (1.6) of relativistic fluid dynamics, the above-men-
tioned generalization of the QCE should be carried out
in accordance with the algorithm employed in relativis-
tic fluid dynamics. For this purpose, conventional
derivativesin Egs. (1.5) and (1.6) should be replaced by
covariant derivatives (see [6]) and then relations (1.7)
should be used.

2. REDUCTION
OF NONLINEAR EQUATIONS (1.3)
AND (1.4) TO LINEAR EQUATIONS

To solvethe “1D” RQCE, we will employ the locus
technique, according to which a transition should be
made to reciprocal functions z = z(x, y) and T = (X, y)

with the variable x = (colc)zpi/m . Differentiating these

functions with respect to T and z, we obtain the expres-
sionsfor the derivatives,

dy _ 10z ox _ 10z
Jox’ ot~ Jay
0T x 0t y’ 2.1)
oy _ 10t ax _ 13t
0z Jox' 0z  Joy’
where
g 019z ooz
dyox dxady

is the Jacobian of the transition. Substituting Egs. (2.1)
into RQCEs (1.3) and (1.4), we arrive at the equations

VQE_UQI - my 62 GTD

X  0X 0 ayD
(2.2)

0z_ 0T _ a_z_ o1

Vay ay ax Yo

Then we introduce coordinate Z and time T' = ct' of an
event in the intrinsic frame of reference (in which the
volume element under investigation is at rest). These
guantities are related to coordinate z and time 1 of the
same even in the laboratory reference frame via the
Lorentz transformation:

Z' = yz—urt,

T = yT—uz (2.3

Differentiating functions Z(x, y) and T'(x, y) with
respect to variablesx and y and taking into account rela-
tions (2.2), we obtain the expressions

%_I_GT'D

0z _ xo1g 0z _
v _% * X oy’

ay moxJ ax
which lead to the following equation:

(2.4)

xa—T+(1+m xm)— mZE@—T—TD = 0. (25)
ox° 6y
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Let usfirst consider this equation in the nonrelativistic
approximation (v/c — 0), inwhichy = en, wheren =
vicy and € = ¢/c < 1. Passing in Eq. (2.5) to variables

n and r = x¥%/e = pijzm and proceeding to the limit
€ — 0, wearrive at the Darboux equation for function
(X, ¥), which istransformed into 1" in the nonrel ativis-
tic approximation:
2 2

01 (L*2mot 40t _ (2.6)
ar r or 6n2
For m=-1/2, Eq. (2.6) isa 2D Laplace equation, while
for other values of m it can be reduced, in accordance
with [1], to a 3D Laplace equation. From the multitude
of solutions to the Laplace equation, we will be inter-
ested only in solutions describing perturbations in
unstable media, which vanish in the limitt — —co. In
the genera theory of the QCES, such perturbations and
solutions are referred to as spontaneous. Their evolu-
tion occurs smoothly, without breaking or sharpening
of profilestypical of nonlinear systemswithout dissipa-
tions.

Spontaneous solutions were obtained in [1, 2] using
amethod based on anal ogy with electrostatic problems.
In this analogy, function t(r, ) istreated as an electro-
static potential and the unperturbed state of the system
(pp=1, v =0) correspondsto pointr, = 1,y =0inthe
r, N space. The “electrostatic” potential t(r, n) pos-
sesses the required singularity T — —oo at this point if
we place “electric charges’ at this point. Analytically,
this is reduced to substitution of the density of these
chargesfor zero on theright-hand side of Eq. (2.6), i.e.,
to atransition from the L aplace equation to the Poisson
equation.

The same substitution should also be performed in
the general equation (2.5) by writing it in the form

ot ot
Xﬁ +(1+ m—xm)&

2.7)

20T [ _
+mM==——-15 = o(X, y),
Dayz O

where o(x, y) is the density of the “charges’ concen-
trated at point X, = €2, y, = 0, which corresponds to the
unperturbed state of the medium (p7=1, v = 0). Inthis

case, solutionsto Eq. (2.7) are spontaneous sol utions of
the RQCEs.

3. THE GREEN FUNCTION
OF RELATIVISTIC QUASI-CHAPLYGIN
EQUATIONS

Before writing the Green function of Eq. (2.7), we
will write particular solutions to homogeneous equa-
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tion (2.5). For positive azimuthal numbers m > 0, these
solutions have the form

T(xy) = Ly(xm)exp(-lyldy),

= [1+0
qn_ 1+m1

where L' (xm) are Laguerre polynomials. For negative

azimuthal numbers m < O, particular solutions have a
different form:

(3.1)

T'(xy) = h(x)Ln"(xIm) exp(-lylay),

h(x) = X"exp(~xIm), @, = /1+1|%|”.

We will seek the Green function G of Eq. (2.7) (o =
(X —Xg)0(y —VYp)) intheform of aseriesin the Laguerre
polynomials, which form a complete set of functions.
As a result of simple transformations, we obtain an
expression for G, whichisapplicable both for m>0and
for m< Q; this equation has the form

G(¢, Y, Co, Yo) = B(C, (o)

2 LML)
2 g, (n+[m +1)

(3.2)

(3.3)

exp(-]y — Yo|an).

where = X|m| = €2r?jm|, I" is the gamma function, and
quantities g, are defined by formulas (3.1) and (3.2).
For m > 0, function B({, {y) depends only on (;

B(C, ¢o) = b(Zy), where

b(Zo) = ~(2Im) L5 exp(Lo),
and function B(, ¢,) for m< Qisafunction of  aone:
B(Z, o) = b().

Let us pass to the nonrelativistic case (v/ic — 0).
For € = cy/c — 0O, wereplace sum (3.3) by anintegral.
Taking into account the formula

Im|/2

LM@Q) = %%E I (24/n2),

whichisvalidfor { — 0and n > |m| (see[7]), we can
write thisintegral in the form

1 dqd"

2|mlelr 0

. (3.4)
X_[J‘m‘(qr)J‘m‘(qro) exp(—|u’ — ug| ) da,

0

G(r,ro, U',Up) =

where
1/2m ' 174
r = , =
P+ 2lmlc,
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This formulais valid both for m> 0 and for m< O; it
should be noted that the exponent of factor (ry/r)™ con-
tains azimuthal number m and not its absolute value.
Theintegral in formula (3.4) can be expressed in terms
of the second-order L egendre function Qy,_ 12 [8]:

ij(qr)J\m‘(qro) exp(—{u' — ug|g)dq
0 (3.5)

-1 g AU —up)®+ 2+ 1l
T /rof m-vel] 2ror u)
Let us multiply the Green function by “charge” e =

21icot|my, where the positive constant thas the dimen-

sion of time (it will be shown in the next section that
2mcotis the wavelength of a perturbation along the z

axis). Using Egs. (3.4) and (3.5) in the nonrelativistic
case and the values u, =0 and r, = 1 for the unperturbed
state of the medium, we obtain theformulagivenin[1, 2],

t v
T = 1" Qu_12(X), (3.6)
*
where
> X or

Expression (3.4) can be derived directly from
Eqg. (2.6). Its particular solutions have the form

T = r"J,(gr)exp(xqu’),

where J.(qr) is the Bessel function and u' = n/2m| =
v/2|m|c,. Consequently, to derive the Green function (3.4)
from Eq. (2.6), we must carry out the substitution 0 —»
o(r —rg)d(n —ng) ontheright-hand side of Eq. (2.6) and
then use the familiar Fourier—Bessel integral transfor-
mation (Hankel transformation):

00

f(r,u) = jf(q, u')Jim(qr)da,
0 (3.7)

00

O(r—ro) = roIqJ\m\(qr)J\m\(qro)dQ-
0
This leads to the previous result (3.4)

4. PARAMETRIC COORDINATE
REPRESENTATION

The formula for coordinate Z can be obtained by
integrating Egs. (2.4) into which we must substitute the
expression T' = er{5. Let usfirst perform these calcula-
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tions for the linear stage of evolution of perturbation,
forwhichu' — Oandr —= 1 sothat formula(3.6) can
be reduced to

(4.1)

Here, we have used the asymptotic form for the Leg-
endre function (Q(coth§) = € for § — ), which can
be obtained from the hypergeometric representations of
thisfunction (see [7]). Expressions (2.4) and (4.1) lead
to the following expression for the coordinate:

z _ |m u'
— = —arctan—.
Cots m r-1

Thus, we obtain the formulas

0, = I’ = 1—4mexp-tcos—%-,
t,  Coly
4.2
% t .
— = 4mexp—sin
Co t,  Colyx

z

for the density and velocity, which describe perturba-
tions periodic in coordinate z.

Let us consider the general case in which the Green

function G can be expressed by formula (3.3). Using
formulas (2.4) and (3.3), we obtain

7 = +6,B(Z.40) ¥ G (43
n=0

where the plus and minus signs are used for y —y, > 0
and y —y, < 0, respectively, and g, is the nth term of
sum (3.3) for G,

_1d . ¢d m 5\
Fn = q—nEIl’fad—Zln[B(Z,Zo)Ln (Z)]H (4.4)

It should be noted that factor {/min the formulafor F,
contains azimuthal number mitself and not its absolute
value. The nonrelativistic limit of formula (4.3) can be
obtained in the same way asin atransition from expres-
sion (3.3) to (3.4).

Let usconsider in detail thistransition for a Chaply-
gin gas, for which dependences p{z, t) and v(z,t) inthe
nonrelativistic case are described by explicit formulas.
For quasi-Chaplygin media with m < 0, including the
Chaplygin gas, formula (4.3) for v/ic — 0 leadsto the
formula

VA
Cots

_ J_rT[r‘mHlJ'J\m\+1(qr)‘]‘m‘(q) (4.5)
0

x exp(-u’|g)da,
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in which the plus sign is take for u' = v/2|m|c, < 0 and
the minus sign corresponds to u' > 0. We will consider
below only a Chaplygin gas for which m = -1/2. For
such agas, integral (4.5) can easily be evaluated since
the Bessel functions appearing in it have asimple form:

2 .
Jip(q) = Jn:qan,

Jur(0) = ;g sing - cosct)

Integrating expression (4.5) and considering that for-
mula (3.6) assumes in the present case the form

(see[7])

L. 1ln[u'z+<r—1)2]

4.6
b 2 Lu+(r+1)? 49

we obtain, using the Lorentz transformation, the fol-
lowing expression for coordinate z pertaining to the lab-
oratory system of coordinates:

z _ 2u'r
Colx ul+1-r?

4.7)

Inverting formulas (4.6) and (4.7), we obtain the
explicit dependencesfor the density and velocity on the
coordinate and time,

1. _sinh(t/t,)
P«(20) = = Gan(ut,) - cos(degty)’
. 4.8)
v(zt) _ Sin(Z/coty)
Co sinh(t/t,)’

which weregivenin[1, 2]. For t —= —o, these expres-
sions are transformed into expressions (4.2) for m =
-1/2, which describe the linear stage of evolution of a
perturbation.

5. UNSTABLE MEDIA DESCRIBED
BY RELATIVISTIC QUASI-CHAPLYGIN
EQUATIONS

We will consider below the following examples. a
1D Chaplygin gas, aVan der Waals gasin theinstability
domain, and acylinder of aliquid with surface tension.
In the nonrelativistic case, the evolution of these media
can be described by quasi-Chaplygin equations (1.1)
and (1.2), inwhich the azimuthal numbersarem=-1/2,
1, and -2, respectively (see[1, 2]). We will prove that
the dynamics of these quasi-Chaplygin (or quasi-gas-
eous) mediain the relativistic case can be described by
RQCEs(1.3) and (1.4). To thisend, we use the equation
of mation (1.5) and continuity equation (1.6) in relativ-
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istic fluid dynamics. Disregarding pressure in the for-
mula for entropy (p < pc?), we can write these equa-
tionsfor the 1D case,

9 . .,90
S’ar * “aﬂy

0
a(nV) +

amp

Po P
po ogjat

g _
a—z(nu) =0, (5.2

where all quantities have the previous meaning and the
zero subscript corresponds to unperturbed values of the
corresponding quantities. The continuity equation (5.2)
can be written in the form (1.4) for pp=n.

One-dimensional Chaplygin gas. This hypothetic
gas considered by Chaplygin [9] is characterized by a
peculiar adiabat p = pyp/p aong which the pressure
increases upon a decrease in density. If we introduce
the dimensionless effective density p = p/po,

Egs. (5.1) and (5.2) for such a gas assume the form of
the RQCEs (1.3) and (1.4), inwhichm=—1/2 and c; =

Po/Po-

Van der Waals gas in an unstable domain. The
equation of state for real gases can be approximately
described by the familiar Van der Waals model

p = 8Tp(3-p) " -3p%,

where all quantities are reduced to their values at the
critical point [10]. We will consider an isothermal pro-
cess. It iswell known that at a temperature lower than
the critical point (T < 1), region 0 < p < 3 contains an
interval of values of p in which dp/dp < O, while
dp/dp = 0 to the left and right of this region. Standing
perturbations increasing with time emerge in the gas
precisely in thisinterval of densities, where the deriva-
tive dp/dp is smaller than zero. The evolution of such
perturbations can be described analytically using quasi-
Chaplygin equations. For this purpose, we must repre-
sent dp/dp as a power function of density. It can easily
be verified that this can be done only at low tempera
tures in the interval 8T/9 < p < 3, in which dp/dp =
—6p < 0; this leads to RQCEs with an azimuthal num-
ber of m = 1. However, the gas pressure is negative in
this density range and, hence, the quasi-Chaplygin
description is formal in the present case.

A cylinder of liquid with surface tension. Let us
consider perturbations of such a cylinder, which are
distributed along its axis and which split the cylinder
into drops due to surface tension. For the long-wave
perturbations that will be considered below, the pres-
sure produced by surface tension can be described by
the formulap = o{a(z t), where ois the surface ten-

sion and a(z, t) isthe radius of the cylinder. We will use
for the same perturbations the narrow channel or jet
approximation [6], in which the pressure, density and
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longitudinal velocity of a liquid in a cylinder are
assumed to be constant over the cross section. Under
these conditions, the equation of longitudinal motion
assumes the form (5.1), while the continuity equation,
as shown in[1, 4], has the form of Eq. (5.2), in which
number density n should be replaced by the effective

density p= pazlpoaé . Further, we assume that the den-
sity of the liquid changes insignificantly (i.e., we set
p = const). As aresult, the equation of motion and the
continuity equation can be written in the form of the

RQCEs, in which m = -2, ¢; = 0[{2pa,, and p=

a%a’.

This instability leads to extrusion of particles from
walists to bulge regions located between waists; liquid
particles are accelerated in this process. At the instant
the waists rupture, the energy distribution function for
the macroscopic motion of particles is completely
formed. We denote this function by F(E), where E =
yMc? is the energy and M is the rest mass of a particle.
Let us calculate the function F(E). An analogous prob-
lem was considered in [4] for a skinned plasma pinch.
Here, we repeat the cal culation procedure as applied to
our problem. The number of particles over an element
of length dz of a cylinder of radius a(z, t) is dN=
ynta?dz, where yn and n are the number densities of
particlesin the laboratory and intrinsic frames of refer-
ence. Conseguently, we obtain the equation

F(E) = (5.3)

for function F(E), in which zero indices correspond to
unperturbed values of quantities. Evaluating the deriv-
aive

dz _ 9z ade
dy ~ 6y ady’

we must bear in mind that the F(E) spectrum is calcu-
lated at afixed instant 1(¢, y) = const, which gives

d¢ _ ot |j3'[|j

dy ~— oyled -
Asaresult, we obtain

F(E) = Kp*\_/[a_za_r _0zompuT

ulayal “atayded @ ©OY

where
TIon,
Mc?

In theseformulas, T and z are the time and coordinatein
the laboratory system of coordinates, which are con-

K = = const.
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nected with time ' and coordinate Z in theintrinsic sys-
tem of coordinatesviathe L orentz transformation (2.3).

Henceforth, we will consider only perturbations that
are periodic along the cylinder. In accordance with the
general theory of QCEs [1, 2], such perturbations can
be described by the “Coulomb” solution to Eq. (2.7),
i.e., by the Green function (3.3), in which ;= €?jm| and
Yo = 0. At the instant of rupture of waists, the radius of
bulges between thewaiststendsto infinity sothat { —
0in the bulges. In this case, for m= -2, we obtain from
Egs. (3.3) and (2.4) the following expressions for the
bulge region: T' = {fy(y) and Z ~ C3. In these expres-
sions, we have

n! L2(0)L2(2¢)

fO(y) 42 a, r(n+3) €X p(_lqun)i (5 5)
an = [1+22T,

where Lﬁ isaLaguerre polynomial with superscript 2.

Using Lorentz transformations (2.3), we obtain from
these formulas the following expressions for T and z

1=0%fy(y)coshy, z=’f,(y)sinhy.

Substituting these formulasinto Eq. (5.4) and consider-

ing that pj= 4€%/¢?, we obtain the following expression

for the F(E) spectrum:

fo(y)
sinhy”

For ultrarelativistic energies, weretain in formula (5.5)
for fo(y) only the term with n = 0. Considering that E =

yMc? ~ ¢’ for y > 1, we find that the spectrum is given
by

F(E) = const (5.6)

F(E > Mc?) DE ¢+,

(5.7

Plasma pinch. Concluding the section, we recall
that the relativistic dynamics of skinned plasma pinch
in zero longitudina magnetic field can aso be
described by the RQCEs with azimuthal number m =
-1 (see[4]).

6. CONCLUSIONS

Quasi-Chaplygin equations describe the evolution
of many unstable media (with a negative compressibil-
ity) encountered in nature. Analytically, these media
differ in the value of parameter m known as the azi-
muthal number. A distinguishing feature of these non-
linear equations is that they have analytic solutions. In
view of these two circumstances, it is natural to carry
out a relativistic generalization of quasi-Chaplygin
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equations and construct analytic solutions for them.
This was done in the present study, In this generaliza-
tion, we proceeded from the equations of one-liquid
relativistic fluid dynamics as well as from the results
obtained in [4], where a relativistic generalization of
quasi-Chaplygin equations for m= -1 was obtained for
a plasma pinch. In [4], a relativistic pinch was treated
as asource of acceleration for cosmic rays.

In our work, we carry out this generalization for
equations with an arbitrary value of azimuthal number
m and give examples of the media (Chaplygin gas, Van
der Waals gas in an unstable domain, and a cylinder of
liquid with surface tension) whose dynamics can be
described by the proposed relativistic quasi-Chaplygin
eguations. An analytic solution to these nonlinear equa-
tion is obtained for the 1D case.
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Abstract—Acousto-optic soliton generation via stimulated Brillouin self-scattering is predicted for light prop-
agating at the speed of sound under electromagnetically induced transparency conditions. As in stimulated
Raman self-scattering, the frequency of the electromagnetic component is gradually Stokes shifted asitsinten-
sity increases; the acoustic component has no carrier frequency. This phenomenon is explained by the possibil-
ity of forward stimulated Brillouin scattering, which is forbidden in nondispersive media. In contrast to stimu-
lated Raman self-scattering, the Stokes shift of the electromagnetic component approaches aconstant limit after
the pulse has propagated to a certain distance. It is shown that the predicted soliton generation does not involve
any threshold condition and can occur at extremely low input pulse intensities. © 2005 Pleiades Publishing,

Inc.

1. INTRODUCTION

Investigation of various acousto-optical effectsis a
major area of research in nonlinear optics. The most
outstanding examples are stimulated Raman scattering
(SRS) and stimulated Brillouin scattering (SBS) [1], in
which scattered Stokes waves are generated by interac-
tion of light with optical and acoustic phonons, respec-
tively [2]. In both phenomena, an important role is
played by energy transfer from the pump and Stokes
waves to vibrational modes of the medium.

The discovery of stimulated Raman self-scattering
(SRSS) of femtosecond optical pulses [3] has opened
new prospects for SRS studies and applications, partic-
ularly in fiber optics [1]. The occurrence of this phe-
nomenon does not depend on any threshold condition,
because femtosecond pul ses have wide bandwidths and
therefore become coherently coupled with optical
vibrational modes as soon as they enter the nonlinear
medium [3, 4]. Asthe pulse continues to propagatein a
dispersive medium, an increasingly Stokes-shifted soli-
ton is generated. In a nondispersive medium, SRSS
does not | ead to soliton generation and the optical-pulse
spectrum substantially broadens, splitting into lines[4].

Unlike SRS or SRSS, forward SBS is forbidden by
energy and momentum conservation in elementary
photon—phonon scattering events[1, 2]. Thisistruefor
weakly dispersive media, where the relative SBS fre-
guency shift can barely reach 0.01%. Therefore, the
refractive indices corresponding to the input and scat-
tered-wave freguencies cannot be substantially differ-
ent, and light scattering by acoustic phonons cannot
lead to any phenomenon analogous to soliton genera-
tion via SRSS.

However, recent experimental observations of
ultraslow light propagation in gases [5] and solids [6]
under electromagnetically induced transparency (EIT)
conditions have revealed new possibilities for control-
ling dispersion characteristics of optical materials. It
was shown in [7] that SBS characteristics drastically
change as the group velocity of light approaches the
speed of sound inthe medium. The most important con-
sequence is the possibility of forward scattering due to
combined effects of nonlinearity and dispersion [7].
Since solitons can be generated in a nonlinear disper-
sive medium, a question arises about the possibility of
stimulated Brillouin self-scattering (SBSS, an analog
of SRSS) leading to simultaneous generation of a
Stokes-shifted soliton and a coherent acoustic phonon.
This possibility is explored in the present studly.

The paper isorganized asfollows. In Section 2, non-
linear wave equations are derived for collinearly prop-
agating optical and longitudinal acoustic waves under
EIT conditions. The slowly-varying-envel ope approxi-
mation is applied to rewrite the genera system of inte-
grodifferential equations as Zakharov-type equations
for an optical pulse envelope, which are then reduced to
theYajima—Oikawa system in a unidirectional approxi-
mation. In Section 3, the physics of the soliton solution
to this system is analyzed. The results of this analysis
and numerical estimates suggest that soliton generation
via SBSS can be observed in experiments. In Section 4,
the defocusing of an SBSS acousto-optic soliton by
transverse perturbations is analyzed. The Conclusions
section summarizes the principal results and highlights
the similarities and distinctions between SBSS and
SRSS.
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2. NONLINEAR WAVE EQUATIONS

Consider an isotropic medium characterized by an
ultraslow group velocity v, of light propagation under
EIT conditions, which are characterized by an almost
vanishing resonant absorption coefficient and coherent
population trapping [8].

Following [7], let us start with the energy and
momentum conservation laws for an SBS event:

kin = kout+ka1 (1)

where w,, and w,, are the frequencies of the incident
and scattered photons, respectively; Q is the acoustic-
phonon frequency; and k;,, Ko, and k, are the corre-
sponding wavevectors.

The second equation in (1) yields

win = wout + Q,

. 20
Kz = (Kin ko) + Koy sin', @

where 8 isthe angle between k;, and k ;. Sincek, = Q/a
(a is the speed of sound in the medium) and K, o =
Win outin, ou/C = Ky (C isthe speed of light in free space,
and ny, o = N(W, o) are the refractive indices at w,
and wy,;, respectively), it holds that

ok _Q
éa(win_wout) - —V—’

where v, isthe group velocity of light at w,,. Therefore,
Eqg. (2) can be rewritten as

kin - kout =
g

ML 1002 - M@ Qrg 20

T Vg]Q 4 c O VgDsm > 3

In the genera case, Eq. (3) should be treated as a
quadratic equation for the Stokes shift Q due to SBS.
For a nondispersive medium, v, = c/ny,. Since n, ~ 1,
c> a, and Q < w,,, the second termsin both parenthe-
ses can be neglected and Eqg. (3) reduces to a well-
known expression [2, 9]:
r’|ino‘)ina :

_ 0
Q=2 smz‘.

If vy =aunder EIT conditions, then it follows from
Eq. (3) that Q = n;,wa/cfor 8 #0. Inthecaseof 6 =0
(forward scattering), Eq. (3) is an identity for any Q;
i.e., the Stokes shift due to forward SBS cannot be
determined from energy and momentum conservation
in a scattering event.

The polarization response Pﬁo’ (r, t) of an unde-

formed dispersive medium to alinearly polarized field
E(r, t) can be represented as

00

PO, 1) = xWE(r, 1) + [Xo(OE(r, t-T)dr, (4
0
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where xfﬁ) is the dielectric susceptibility of the host
material (treated as a nondispersive medium in the case
of an off-resonance optical-pul se carrier frequency) and
Xo(T) isthe susceptibility of the dispersive medium con-
sisting of resonant impurities (which are responsible
for EIT).

The modulation of both host and resonant-impurity
susceptibilities due to the coupling between electro-
magnetic waves and acoustic phonons is described by
performing the change (see [2, 9])

XY o Xm = XY —yau, (5)

whereu(r, t) islongitudinal strain, y; = —0X,,,/0u), isthe
electrostriction coefficient [9], and the index “0O"
denotes the properties of the undeformed medium.

Modulation of the nonlocal susceptibility Xo(T) in
expression (4) istaken into account by substituting Xq(t)
with X(t, u(r, t)). Thedelay in the impurity polarization
response to strain is heglected here, because the acous-
tic phonon spectrum is separated from the resonant
optical absorption spectrum.

The Taylor series expansion of x(t, u(r, t)) inu(r, t)
about T yields

X(T,u(r, 1)) = Xo(T) = (T)u(r, 1), (6)

where

Expressions (4)—6) are used to write the photon—
phonon coupling term responsible for SBS as

Vig = %u[ylE2+ EJ'F(T)E(I’,'[—T)dT:|. @)
0

The polarization response modulated by the coupling
with acoustic phononsis

P.(r,t) = PO(r, 1)

- €S)
—u[ylE +J’F(T)E(r, t—T)dTi|.

Since the first terms in the brackets in (7) and (8)
correspond to acoustic modulation of the susceptibility
of anonresonant host crystal, they do not represent the
effect of SBS on EIT. The second terms in these brack-
ets describe the effect of acoustic phonons on the non-
local polarization response of a resonant impurity,
which is responsible for slow light propagation under
EIT conditions. In other words, theseterms describethe
effect of SBS on EIT conditions. As mentioned above,
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the effect of EIT on SBS primarily manifestsitself by a
decrease in the group velocity of light to the speed of
sound and the ensuing possibility of forward scattering.

Expressions (4), (7), and (8) are combined with
Maxwell’s equation for the electric field of the optical
pulse,

10°E _ 4md°P,
pE-=2= =0 ©)
o’ o ot?
and the Hamiltonian density of the acoustic field,
p2 1 2 2
Va - ﬂn + Epma (DS) ) (10)

where p,,, is the mean density of the medium, a is the
longitudinal speed of sound, sisthe displacement field
related to the strain field u by the equation u = 05/0z
(both optical and acoustic pulses propagate along the z
axis), and p is the displacement momentum density.

Using the Hamiltonian equations
os _oH op_ oH
ot op’ ot os’

with
H = [(Va+ Vi)d'r,

and substituting (8) into (9), we obtain

AE__ma_E = 4_72-[
¢’ ot c
920
x =X (T)E(r, t—1)dt (11)
ot 4
. O
—U[V1E+IF(T)E(F,I—T)dT}D
0 O
2
Au_—ligi; = 2
a“ ot 2pa
(12)

02[ 2 h
x—|y,E"+E r(T)E(I’,t—T)dT},
0z {

where

isthe refractive index of the host crystal.

Integrodifferential equations (11) and (12) providea
self-consistent model of SBSin a dispersive medium.
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The electric field of a quasi-monochromatic pulse
with carrier frequency w and wavenumber k can be rep-
resented as

E(r,t) = Q(r, t)exp[i(wt -

where (r, t) isaslowly varying envelope (see [10]).

Expression (13) is substituted into (11), and the
function (r, t — 1) is represented by the Taylor series
expansion in 1. Restricting the expansion to the lowest
order dispersive terms, we write

kz)] +c.c., (13)

J’X(T)E(r t-T)dt = [X(w)qj_,%’()g%lf

(14
_1@x XDalIJ i@xne’y oL
20y 6%&30?}%['(“ k2] + ec.
where

00

X(w) = IX(T)eXIO(—in)dT-
0

Theintegral

0

J'F(T)E(r, t—1)dt
0

in (11) and (12) is represented by an analogous expan-
sion.

Substituting (13) and (14) into Egs. (12) and (11)
and dropping the fastest oscillating terms, we obtain

ks’
6 ot

1y, kza oY
Vg atD Zat

o,
Daz
(15)

(16)

e = A+ (o)
isthe group velocity of the optical pulse,
n = [1+4n(x7) + X(w)]
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isthe total refractive index,

_0(1/vy)
27w

isthe group-velocity dispersion parameter,

:2_ﬂ[§_6_ X wagx}
3% onl waoP T
Y =VYi1tYa

00

Yo(w) = J’F(T)exp(—iwr)dT,

and A is the transverse Laplace operator.

Whereas electromagnetic field is represented by an
envelopein Egs. (15) and (16), acoustic waves are rep-
resented by strain, because the acoustic pulse has no
carrier frequency in the general case.

Since X(w) = 0 [8] and 98°n/dw? = O [11] at the
absorption-line center frequency under EIT conditions,
it followsthat n=n,, and k, = 2(dn/dw)/c > 0 (group dis-
persion is positive at the absorption-line center).

The resonant-impurity concentration in solidsused in
experiments on EIT varies within 0.05-0.1% of the con-
centration of atoms of the nonresonant host material [6].
Therefore, v, < y; and it can be assumed that y = ;.

The ratios of the terms containing the factor
(9y,/0w) to thefirst termsin the respective brackets are
on the order of (wT,)™ < 1, where 1, isthe pulse dura-
tion. The former terms characterize the nonlinear dis-
persion dueto the effect of SBS on EIT. Both nonlinear
dispersion and the last term on the left-hand side of
Eqg. (15) can be neglected for nanosecond optical pulses
(with w ~ 10" s?), because (wt,)™ ~ 10°. Then,
Egs. (15) and (16) reduce to Zakharov-type equations
[12] in the absence of transverse perturbations.

The analysis of system (15), (16) presented here
shows that the effect of SBS on EIT conditions is neg-
ligible in the case of a quasi-monochromatic resonant
optical pulse. However, EIT substantially modifies SBS
characteristics; in particular, forward scattering of light
with v, = a becomes possible. This equality is the con-
dition for the Zakharov—Benney resonance between
long and short waves[13]: the group vel ocity of ashort-
wave (electromagnetic) component is equa to the
phase velocity of along (acoustic) wave. Indeed, it fol-
lows from Egs. (1) written for collinear propagation
that

0w _
v

Q (*)m (*)out
2T “ok Ve

kin kout

This condition corresponds to the highest efficiency of
coupling between acoustic waves and ultraslow light.
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In this case, EQ. (16) can be conveniently rewrittenin a
guasi-unidirectional approximation [13]. Since (5) is
actually an expansion, the first term on the right-hand
sidein (16) issmall. In the paraxial approximation

ADu<a—u

07

whichisvalidif (IyR)? < 1 (I, and Rarethelongitudinal
and transverse pulse dimensions, respectively), trans-
verse perturbations can be treated as long-wavelength
ones; i.e., the acousto-optic pulse is quasi-one-dimen-
sional. Introducing the “local” time

T=t-zla=t-2v,
and the “slow” coordinate
{=pz

with asmall parameter 1 on the order of the right-hand
side in (16), neglecting terms on the order of p?, and
dropping the terms representing nonlinear dispersion
and third-order linear dispersion, we rewrite Egs. (15)
and (16) as

oW, k0’ _ c
‘9272 PYE —oug 2nmooADqJ’ (17)
az BaT(|llJ| )+ -ADIUdT, (18)

where

_ 2wy _ Y
T en, k= 2p,a°

3. ACOUSTO-OPTIC SOLITON

Equations (17) and (18) are equivalent to the
Yajima—Oikawa system [14], which has the one-soliton
solution

W = Ynexp(-i(Qt-a2))sech =20
, ’ (19)

_ 2t =2V

U = u,sech O i

where

_ [k f _

Q. km 1

=3 Eq—g—g 0
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and the propagation velocity v is determined by the
relation

1
v

[ORE

—k,Q. (20)

According to the expression for u,,, the acoustic
component corresponds to compressive strain if y <0
and to dilatationa strain otherwise.

Solution (19) contains two free parameters, which
can be defined as the duration T, and amplitude ,,, of
the electromagnetic component. The parameter Q
should be interpreted as a “nonlinear” shift of the car-
rier frequency due to forward SBS. It follows from the
expressionsfor a, B, and Y, that Q = 0. In view of (13)
and (19), thisimpliesthat the optical pulse frequency is
Stokes shifted,

Ww— w0-—Q;

i.e., energy istransferred from the photon to the phonon
generated in each SBS event. As shown in Section 2,
the value of Q cannot be determined by using energy
and momentum conservation laws for a photon—
phonon scattering event if vy=aand 6 =0.

The value of Q depends on the input pulse parame-
ters and can be determined by solving an appropriate
inverse scattering problem [14]. Alternatively, the shift
can be found by solving system (17), (18) numericaly
for different values of the input pulse parameters. Note
also that the asymptotic value of the Stokes shift is pro-
portional to the input pulse intensity 1o, ~ qJﬁ“ which
characterizes an ensemble of photons rather than an
individual photon. The shifted optical pulse is detuned
from resonance with a quantum transition in impurity
atoms, and its group velocity increases according
to (20), because the slowest light propagation under
EIT conditionsis observed in the transparency window,
which correspondsto exact resonance with theimpurity
transition [8].

It follows from the analysis presented above that
there are no formal restrictionsfor the value of Q infor-
ward scattering when v, = a. However, there exists an
upper limit for Q for physical reasons. First, Q < wsince
Y isaslowly varying envelope (see (13) and (19)). Sec-
ond, the value of Q must be much smaller than the EIT
window, which is determined by the pump Rabi fre-
quency Q,: Q < Q,. Note that the entire optica-pulse
spectrum must remain within the transparency window.
This restriction can be written as

1
> —,
P Qp

T

The present analysis of soliton solution (19) shows
that stimulated Brillouin self-scattering analogous to
SRSS can be implemented under conditions of forward
SBS (light propagation at the speed of sound). Indeed,
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the Stokes shift Q of the pulse carrier frequency gradu-
ally increases with the input pulseintensity to the upper
limit indicated above, while there is no lower limit
for Q. Therefore, SBSSis analogous to SRSSin that it
does not involve any threshold condition [3, 4].

It follows from Egs. (15) and (16) (or (17) and (18))
that the input pulse generates an acoustic video pulse (a
carrier-free elastic wave), whereas the acoustic pulse
cannot generate an electromagnetic wave in the
absence of incident light.

Soliton generation via SBSS can be interpreted as
gradual energy transfer from an optical pulseto an elas-
tic wave. Eventually, the shift approaches alimit value;
i.e., the wave evolves into soliton (19) with a constant
Q. This “ Stokes saturation” is explained by the lower
efficiency of the photon—phonon coupling (responsible
for forward SBS) in a pulse detuned from the center of
the EIT window.

Let us estimate the parameters of an acousto-optic
soliton described by (19). Experiments on ultraslow
light propagation were performed at a temperature of
5K on an insulator (Y,SiOs crystal) doped with rare-
earth (praseodymium) ions to a concentration of 0.05%
[6], because these ions are characterized by narrow
inhomogeneous broadening of transition lines. The
group velocity of light with input intensity I, =
470 W/cm? was slowed down to v = 4.5 x 10% cm/s,
while the speed of sound was higher by two orders of
magnitude. Since the group velocity of ultraslow light
under EIT conditions varies as does the pump Rabi fre-
quency squared (i.e., linearly with 1) [5], the condition
vy = ais satisfied when |, ~ 50 kW/cm?. The corre-
sponding Rabi frequency is

_d [4rmgl,
Qp~ﬁ/\/ c '

where d is the dipole moment of the resonant-impurity
transition. For d = 5 x 108 SGSE unitsand n,, = 2, it
followsthat Q, ~ 10 s™. Setting Q ~ 10" st and 1, ~
1 nsin (19) in accordance with conditions imposed
above and using the fact that a < ¢, we obtain

0 cow a’

1 }E]+w@5 won _1
Vy Cc

Since 0°n/duy’ = 0 for an optical pulse resonant with an
impurity transition, we have

- [o0lm) - 2om . 2
k2 = [awﬂ/gﬂ} ~ cld) wa’ (21)
If n,=2,y~1[9], pm=20g/cm?, a= 5 x 10° cmV/s, and
w= 3 x 10® s, then the intensity of the soliton’s elec-
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tromagnetic component is

C 2

nN,aQ pc’
Iopt:4_T[l-|Jm:L_ P

2
7 (*)(oorpy)z 010 W/cm®.

The corresponding values of the relative strain
amplitude u,, and acoustic pulse intensity |, are

Uy~ — L (110°,
nay(ootp)

| = pna’u’/2 0107° Wiem?’.

Thus, asoliton whose duration is afew nanoseconds
has an extremely low intensity, which is primarily
determined by its el ectromagnetic component.

It follows from Egs. (14) and (15) that

1.1,
vV a

on
]

Using the estimates above, we obtain 2Q/w ~ 107°.
Thus, the propagation velocity of an acousto-optic soli-
ton described by (19) differs from the linear speed of
sound only by a negligible 10-3%.

Note that the electromagnetic component of the
pulse vanishes when Q = 0; i.e., the input pulse energy
is entirely converted into the energy of an elastic-strain
soliton. To find conditions for this phenomenon to
occur, one must solve a boundary value problem for
Egs. (17) and (18), which requires a separate analysis.

4. EFFECTS
OF TRANSVERSE PERTURBATIONS

Experimental observability of soliton (19) depends
on its stability with respect to transverse perturbations.
The Ritz—Whitham averaged-Lagrangian method is
applied hereto allow for transverse dynamics [17].

The Lagrangian density corresponding to system (17),
(18) is

op* . o0u
L= 0z v az0
ks o2 20U C 2
+ =22 +alyl E—mmmqﬂ (22)

* 35l 55 97 50V

where U isrelated to strain by the equation

_au
ot’

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

SAZONOV

In view of the remark about the quasi-one-dimen-
sional dynamics of the acousto-optic pulse made at the
end of Section 2, atria solution issought in the form of
modified one-dimensional soliton (19):

Y = |k2|Jo%pexp[_ng_g_i‘mc.‘i’¢}
<ot s3-)

_ ks 2]
U= -&ptanh[pB—VD}.

The dynamic variables p and ® introduced here can be
interpreted as the inverse soliton duration and the
eikonal of its electromagnetic component, respectively.
They are to be determined as functions of coordinates,
while Q is treated as a constant parameter of a well-
devel oped soliton.

After substituting (23) into (22), an averaged
Lagrangian is found by integration with respect to the
“fast” variable T (asdonein [18] for different nonlinear
eguations):

(23)

_ cap 00 1
N=———(Ldt = - O,
- kazj P35, ~5P(Ls )? o0
ck, (0 Dp)
+2nmw(Q p’13) —b—=L 70

where
_ _ﬁ_[uf cAC 1}_
3n,,w U6 Nm® 20
The Euler—Lagrange equations for p and @ corre-
sponding to (24) are

d
>+ Oo(pOs®) = 0,

00, (0u®)*, ck,
0z 2 2n,w

ap P

5

System (25) has aone-dimensional solution equiva-
lent to (19),

(p°-Q%) = b

_ 1 _
p=== const,
® = 0y = o1y
2n,w T

p

which substantiates the validity of the averaged-
Lagrangian method.
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Transverse perturbations are taken into account in
the left- and right-hand sides of the second equation
in (25). According to the definition of b, this coefficient
vanishes as w ~ /A — oo, which corresponds to the
eikonal approximation in geometric acousto-optics
(A is the wavelength of the electromagnetic compo-

nent). Therefore, the term bA;./p/./p in (25) repre-
sents diffraction effects in the transverse pulse dynam-
ics, whiletheterm (J®)%/2 isresponsiblefor thetrans-
verse dynamics in the eikona approximation
(nonlinear refraction) [18, 19].

In the general case, nonlinear system (25) isdifficult
to analyze. As afirst step, consider soliton (19) weakly
perturbed by transverse perturbations:

1

p==+p;, P =0Dy+d,,
TP
where
1
pl < ) CD]_ < q)o.
TP
Substituting
P, @ =expli(gz+ay o],

into Eq. (25) linearized with respect to p; and ®;, we
obtain the “dispersion” relation

i = 2wt

Since K,, Q > 0, this relation holds only if q is real.
Therefore, acousto-optic soliton (19) is stable with
respect to small transverse perturbations.

Before proceeding to a quantitative analysis of non-
linear behavior of transverse perturbations, note that
system (25) with zero right-hand sides is formally
equivalent to the continuity equation and Cauchy theo-
remfor inviscid flows[20], with p, ®, and z correspond-
ing to fluid density, velocity potential, and time, respec-
tively. Comparing the second eguation in (25) with the
Cauchy theorem written as

"Ha

+bqg (26)

2
a_(D + (DDCD) +Id_P
0z 2 p
where P corresponds to static pressure, we obtain the
following “isentropic” equation

= const,

dP_C_kzz

dp nmwp

Then, the criterion for the soliton’s stability with
respect to self-focusing isidentical to the stability con-
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dition of the*inviscid flow” described by Egs. (25) with
zero right-hand sides:

dP
dp°

(see [21, 22]). Since k, > O for the process considered
here, we conclude that nonlinearity has a defocusing
effect in the eikonal approximation. Thisisan expected
result, because solitons can be generated under condi-
tions of defocusing nonlinearity only in the spectral
region of normal group dispersion [1, 10].

To perform ageneral analysis of transverse dynam-
ics (including self-diffraction effects), we drop the
assumption that transverse perturbations are small.
Then, system (25) is equivalent to a quintic nonlinear
Schrodinger equation:

aQ_

gADQ+“HQ|Q 27)

where
: b _ Ccky
9= i«/;’ n= 4n,w’

and the complex-valued function Q is defined by the
relation

. k. 2
Q= J[Sexp[zl—gjgnzg z+ D}' (28)

Thus, stability analysis of the soliton described by
Eq. (19) isequivalent to stability analysis of the spatial
“beam” described by Eq. (27). Here, the integra
moment method developed in [23] is applied.

Equation (27) corresponds to the “Hamiltonian”

H = IB;2|DDQ|2+%|Q|%dS (29)

and entails the conservation of
N=pq%s

wheretheintegral is performed over the xy plane. If the
soliton radius sguared is defined as the second-order
moment

R = % [riQas, (30)

where r is radius in a cylindrical coordinate system
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(see[23)]), then it follows from Eq. (27) that

drR® _ 2 .
where
J =1g[Q(0nQ*) —Q*(UpQ)] = pUnd.
The derivative of Eq. (31) yields
d°R* _ 16~
= —H = const. (32
dZ N

Since k, > 0, both n and H are strictly positive;
i.e., (32) impliesthat

d’R?

07 >0.

Therefore, acousto-optic soliton (19) must exhibit
defocusing behavior.

Assuming that the el ectromagnetic component has a
plane wavefront at z= 0,

Oq¢,-0 = 0,

and substituting the expression for j into (31), we
obtain

R

T dz z=0:0.

Then, the solution to Eq. (32) is

R = Ry/1+(Z1)%,

where R, isthe “initial” soliton radius and

| = Ry/N/8H

isthe soliton defocusing length.

The first and second terms on the right-hand sides
in(27) and (29) represent the contributions to trans-
verse dynamics due to diffraction and nonlinear disper-
sion, respectively. These terms play a dominant role in
the eikonal approximation and in the limit of g — oo,
respectively. Their relative importance can be quanti-
fied by introducing the dimensionless parameter

(33)

5 0(R/J/act,)’.

If 1, ~ 1 ns(see above) and R~ 30 um, then 5 ~ 1073,
and the inequality (I;/R)? < 1 holds because |, ~ at,, ~
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10 um. Under these conditions, diffraction effects are
much stronger than those due to nonlinear refraction;
i.e., the first terms on the right-hand sides in (27)
and (29) are much larger than the second ones. Since
|QF? = p, we have

2
I0,Q? 0 %.
Then,
Ro
A/7_b,
where |4 is the diffractive spread. In thislimit, Eq. (27)
reducesto alinear equation. Suppose that awell-devel -

oped soliton has an axially symmetric Gaussian trans-
verse profile with characteristic radius Ry at z= 0:

=1, =

O 20
Q(r,z=0) = J/p(r,z=0) = Jﬁexp%)—zr—R{%

where p, istheinverse duration of the soliton onitscen-
terline and r is radius in a cylindrical coordinate sys-
tem. Then, the solution to Eq. (27) with zero last term is

_ oo -
Q(f,z)‘1+izlldex 2Ry (L+izllg)| >

Comparing (34) with (28) and dropping the first
term in the exponent in the latter expression by virtue
of the inequality & < 1, wefind p and @ in trial solu-
tion (23):

RS r’
p(r,2) = pogzexpg——@%, (35)
2
= _ . /2barctanZH+ —Z (36)

HE 205+ 2

where Ris given by (33) with | replaced by |.

An analysis of expressions (23) and (36) shows that
the paraxial portions of the electromagnetic pulse com-
ponent move faster than its peripheral portions; i.e., the
pulseis defocusing.

According to (33), the acousto-optic soliton exhibits
diffractive spread analogous to that characteristic of
quasi-monochromatic beams propagating in free space.
Moreover, expressions (33)—36), which describe the
diffractive spread of the soliton, are similar to analo-
gous expressions for quasi-monochromatic beams[24].

The pulse radius increases by afactor of /2 over the
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distance | 4, while the amplitudes of its electromagnetic
and acoustic components decrease by a factor of 2
and 4 according to (35) and (23), respectively. For the
parameters of the pulse and optical material used
above,

lg DwRﬁ/cD 1cm.

The dynamics of asoliton with 2R, ~ 0.1 cmisdom-
inated by nonlinear refraction. Retaining only the sec-
ond termin (29), we obtain | = |4, Where

lgr = RowT,./Npalc

is the defocusing length under nonlinear-refraction
conditions. For the parameter values used above, | 4 ~

10° cm. Thisimplies that the defocusing is sufficiently
slow; i.e., soliton generation via SBSS can be observed
experimentally.

5. CONCLUSIONS

The analysis presented above shows that forward
Brillouin scattering of ultraslow light propagating at the
speed of sound under conditions of electromagnetically
induced transparency makes it possible to observe a
new phenomenon: soliton generation via stimulated
Brillouin self-scattering. The Stokes shift of an optical
pulse can have any value within an interval, depending
on the input conditions, rather than a certain value
determined by the sound-to-light speed ratio and the
input carrier frequency, as in the case of “classical”
SBS. The shift increases with input pulse intensity,
being limited from above by the condition that the opti-
cal-pulse spectrum remains within the EIT window.

This paper presents the simplest model of SBSS. As
in the analyses of SRSS presented in [1, 4], the group-
velocity dispersion parameter isassumed to be constant
within the carrier bandwidth of the optical pulse. This
assumption is justified by the fact that the center fre-
guency of the EIT window correspondsto an inflection
point in the frequency dependence of the resonant-
impurity refractive index; i.e., its frequency derivative
varies very slowly within the transparency window. In
the general case, a numerical analysis of system (11),
(12) should be performed, with x(t) and g(t) defined,
respectively, asthe Fourier preimages of the frequency-
dependent susceptibility x(w) and el ectrostriction coef-
ficient y,(w) within the EIT window.

SBSS is analogous to SRSS in that it does not
involve any threshold condition. It isalso important that
SBSS can be observed when the input pulseintensity is
as low as 10 W/cm?, which is generally sufficient for
manifestation of nonlinear effectsunder EIT conditions
[7, 15, 16]. Onefundamental distinction between SRSS
and SBSSliesinthefact that thelatter phenomenon can
manifest itself only by soliton generation; i.e., disper-
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sionisessentia. Otherwise, forward SBSisimpossible,
whereasit is akey prerequisite for SBSS.

The Stokes shift in the optical-pulse frequency is
associated with the generation of an acoustic video
pulse, which evolvesinto an acousto-optic soliton. This
effect is of both fundamental and applied interest: soli-
ton generation via SBSS can be considered as a mech-
anism of optical-to-acoustic pulse conversion. Conver-
sion mechanisms of this kind were analyzed for col-
linear (under EIT conditions) and noncollinear
propagation of acoustic pulsesand light in [25] and [26],
respectively.

SBSS offers a mechanism for generation of optical
solitons with tunable carrier frequency depending on
input intensity, as in SRSS. The Stokes shift due to
SBSSis on the order of 10°% of the carrier frequency,
which is much smaller than that due to SRSS. Further-
more, the substantialy lower intensity of the solitons
generated via SBSS and the generation of carrier-free
acoustic pulses are distinctive features of the phenome-
non predicted in this study that have no analogs in
SRSS.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 05-02-16422a.

REFERENCES

1. G. Agrawal, Nonlinear Fiber Optics (Academic, San
Diego, 1995; Mir, Moscow, 1996).
2. R. H. Pantell and H. E. Puthoff, Fundamental s of Quan-

tum Electronics (Wiley, New York, 1969; Mir, Moscow,
1972).

3. E. M. Dianov, A. Ya. Karasik, P. V. Mamysheyv, et al.,
Pis'ma Zh. Eksp. Teor. Fiz. 41, 242 (1985) [JETP Lett.
41, 294 (1985)].

4. V.N.Serkin, T. L. Belyaeva, G. H. Corro, and M. Aguero
Granados, Kvantovaya Elektron. (Moscow) 33, 325
(2003).

5. L. V. Hau, S. E. Harris, Z. Dutton, and C. Behroozi,
Nature 397, 594 (1999).

6. A.V.Turukhin,V.S. Sudarshanam, M. S. Shahriar, et al.,
Phys. Rev. Lett. 88, 023602-1 (2002).

7. A. B. Matsko, Yu. V. Rostovtsev, M. Fleishhauer, and
M. O. Scully, Phys. Rev. Lett. 86, 2006 (2001).

8. S E. Harris, Phys. Today, No. 6, 36 (1997).

9. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New
York, 1989; Mir, Moscow, 1980).

10. S.A. Akhmanov, V. A. Vydloukh, and A. S. Chirkin, The
Optics of Femtosecond Laser Pulses (Nauka, Moscow,
1988) [in Russian].

11. S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46,
R29 (1992).

12. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972)
[Sov. Phys. JETP 35, 908 (1972)].

No. 6 2005



988

13.

14.

15.

16.

17.

18.

19.

20.

SAZONOV

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Mor-
ris, Solitons and Nonlinear Wave Equations (Academic,
London, 1984; Mir, Moscow, 1988).

N. Yadjimaand M. Oikawa, Prog. Theor. Phys. 56, 1719
(1976).

H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936
(1996).

M. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419
(2000).

S. K. Zhdanov and B. A. Trubnikov, Zh. Eksp. Teor. Fiz.
92, 1612 (1987) [Sov. Phys. JETP 65, 904 (1987)].

S. V. Sazonov, Zh. Eksp. Teor. Fiz. 125, 1409 (2004)
[JETP 98, 1237 (2004)].

N. V. Karlov and N. A. Kirichenko, Oscillations, Waves,
and Structures (Fizmatlit, Moscow, 2001) [in Russian].

I. I. OI’khovskii, A Course of Theoretical Mechanics for
Physicists (Mosk. Gos. Univ., Moscow, 1978) [in Rus-
sian].

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

21.

22.

23.

24,

25.

26.

S. V. Sazonov, Zh. Eksp. Teor. Fiz. 119, 419 (2001)
[JETP 92, 361 (2001)].

S. V. Sazonov, Usp. Fiz. Nauk 171, 663 (2001) [Phys.
Usp. 44, 631 (2001)].

S. N. Vlasov, V. |. Talanov, and V. A. Petrishchev, |zv.
Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).

S.A. Akhmanov and S. Yu. Nikitin, Physical Optics, 2nd
ed. (Nauka/Mosk. Gos. Univ., Moscow, 2004; Claren-
don, Oxford, 1997).

A.V. Gulakov and S. V. Sazonov, Pis mazZh. Eksp. Teor.
Fiz. 79, 746 (2004) [JETP Lett. 79, 610 (2004)].

A. A. Zabolotskii, Zh. Eksp. Teor. Fiz. 126, 155 (2004)
[JETP 99, 133 (2004)].

Translated by A. Betev

No. 6 2005



Journal of Experimental and Theoretical Physics, Vol. 101, No. 6, 2005, pp. 989-998.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 128, No. 6, 2005, pp. 1134-1144.

Original Russian Text Copyright © 2005 by Parkhomenko, Shalagin.

ATOMS, MOLECULES,

OPTICS

Probe Field Spectroscopy in Three-Level A Systems
under Arbitrary Collisional Relaxation
of L ow-Frequency Coherence

A.l. Parkhomenko and A. M. Shalagin

Institute of Automation and Electrometry, Shberian Branch, Russian Academy of Sciences,
Novosibirsk, 630090 Russia

e-mail: par @iae.nsk.su; shalagin@iae.nsk.su
Received April 26, 2005

Abstract—We investigate theoretically the spectrum of weak probe field absorption by three-level atoms with
the A configuration of levelsin the field of a strong electromagnetic wave acting on an adjacent transition and
colliding with buffer gas atoms. Analysisis carried out for the general case of arbitrary collisional relaxation of
low-frequency coherence at atransition between two lower levels. It is shown that, in the absence of collisiona
relaxation of low-frequency coherence, the probe field spectrum always exhibits clearly manifested anisotropy
with respect to mutual orientation of wavevectors of the strong and probe radiation (even under small Doppler
broadening). It is found that the probe field spectrum may acquire under certain conditions supernarrow reso-
nances with awidth proportional to the diffusion coefficient for atomsinteracting with radiation. Thisfact may
form the basis for a spectroscopic method for measuring transport frequencies of collisions between absorbing
and buffer particles. A large-amplitude supernarrow resonance (with an amplitude much larger than the ampli-
tude of the resonance near the line center), which is observed in the far wing of the absorption line, exhibits
collisiona narrowing (a nonlinear spectroscopic analog of the Dicke effect) at collision frequencies severa
orders of magnitude lower that the Doppler linewidth. Simple working equations proposed for describing the

probe field spectrum are convenient for experimental data processing. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The probe field method in nonlinear spectroscopy is
an effective tool for studying spectroscopic characteris-
tics and various relaxation processes in quantum sys-
tems. The essence of the method is that aweak (probe)
fields “probes’ the structure of atomic states perturbed
by another strong field [1-3].

A large number of publications are devoted to probe
field spectroscopy. One of the most actively investi-
gated systems is the three-level A system, in which
transitions between the upper and each of the two lower
levels of the system are dipole-allowed (see, for exam-
ple, [1-10] and the literature cited therein). In their
studies, most authors used simple relaxation models. In
particular, it was assumed that complete phase mis-
match is observed in induced polarization at all transi-
tions during collisions leading to a changein the veloc-
ity. On the other hand, this assumption isnot valid for a
number of real experimental objects. For example, col-
lisons of alkali metal atoms with nonmagnetic buffer
particles do not break coherence between the hyperfine
structure components of the ground electron state [11].
It was found that this circumstance leads to a radical
change in the shape of spectral lines, which is undoubt-
edly important for solving a number of problems that

have aroused arevival of interest (e.g., coherent capture
of occupancies [12, 13], electromagnetically induced
transparency [14], and lasing without population inver-
sion [12-17]).

Here, we analyze theoretically the spectrum of
probe field absorption by three-level atoms with the A
configuration of the levelsin the field of a strong elec-
tromagnetic wave acting on the adjacent transition. We
assume that atoms arein the atmosphere of a buffer gas
and experience collisions with its particles. Anaysisis
carried out for the general case of arbitrary collisional
relaxation of low-frequency coherence at the transition
between two lower levels (collisional relaxation may
either be absent or, on the contrary, be quite effective).
At the sametime, we assume that collisions completely
disturb the phase of the dipole moment induced by radi-
ation at optical transitions between the common upper
level and the lower levels.

Unexpectedly, the probefield spectrum turned out to
be highly sensitive to collisions and motion of atoms
even in cases when such factors can apparently be dis-
carded. For example, the Dicke collisional narrowing
effect for the probe field resonancein the far wing of the
absorption line, which was discovered in the present
study, may be strongly manifested at collision frequen-

1063-7761/05/10106-0989%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Energy level diagram. Solid arrows denote transi-
tionsinduced by radiation, while dashed arrows show spon-
taneous radiative transitions.

cies several orders of magnitude smaller than the Dop-
pler width (it should be recalled that the Dicke effect in
traditional spectroscopic problems [1, 2] is noticeably
manifested only at collision frequencies larger than the
Doppler width).

In the case of small Doppler broadening (relative to
the coallision frequency), the probe field spectrum
should apparently be insensitive to the mutual orienta-
tion of the wavevectors of strong and probe radiations.
Nevertheless, the probe field spectrum is strongly
anisotropic to mutual orientation of wavevectors even
in this case.

This study is devoted to analysis of these and other
previously unknown features of the probe field spec-
trum of three-level A\ systems.

2. GENERAL EXPRESSIONS

Let us consider the interaction of strong and probe
radiation with the gas of three-level absorbing particles
mixed with a buffer gas. The energy level diagram of
absorbing particlesisshown inFig. 1. Let astrong field

ReEexp(ik [F —iwt)
bein resonance with the m—n transition and aweak field
ReE, exp(ik, [ —iw,t)

be in resonance with the adjacent m- transition. The
polarization of the medium at the probe field frequency
is determined by the density matrix element p,(V),
where v is the particle velocity. These matrix elements
can easily be found from the system of kinetic equa-
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tions for density matrix elements (resonance approxi-
mation, see[1, 2])

Ma .
[+ 2 =i(Qou=ky 1) pm(v)

= Spm (V)] +1G[Pu(V) = Pmm(V)] +1Gpn (V),

Od . O D
%d_t +i[Qo— Qo + (ky—k) Dl]gpm(v)
= S[pnl(v)] +iG* pml(v) _iGppnm(V)’
where
QO = W— Wy, QOp = (*)p_(*)ml’
G- UmE o _dnE (2

2h 1 TR 2

Here, p;; (v) isthevelocity distribution of particlesat the
ith level (i =m, n); §p;;(v)] are collision integrals; I,
is the total spontaneous rate of decay of the excited
level m(viathem — nand m— | channels); d,, and
d,, are the matrix elements of the dipole moments of
the m—n and mH transitions; and w,,,, and w,, are the
frequencies of the m—n and mH transitions.

We will consider the case when collisions com-
pletely disturb the phase of the dipole moment induced
at the mH transition, but when collisional relaxation of
low-frequency coherence p,, (V) isarbitrary. We assume
that collisionintegral §p,, (V)] inrelation (1) satisfiesthe
conventiona approximation for the present case[1, 3]

SPm(V)] = v miPmi(V), ©)

wherethe* departure” frequency v, isacomplex quan-
tity in the general case. For the collision integral
9p.(V)], wewill usethe model of strong collisions[1],

S[pnl(v)] = -Vvp nI(V) + OpnIW(V)v
Pri Ej'pm(V)dV,

where W(v) is the Maxwell velocity distribution and v
and v are the “departure” and “arrival” frequencies,
which are generally complex quantities. The value
v =0 corresponds to the absence of phase memory in
collisions (collisions induce complete relaxation of
coherence p,, (V). In the case of absolute phase mem-
ory in collisions (the absence of collisiona relaxation
of coherence p, (v)), the frequenciesv and v of depar-
ture and arrival are real-valued and identical [1],

(4)

ERVE RV ®)

where v, has the meaning of the average transport fre-
guency of elastic collisions between active and buffer
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particles [18]. Quantity v,, is connected with diffusion
coefficient D for particles interacting with radiation via
the relation [19]

D = vi/2v,, (6)
where v+ is the most probable velocity of absorbing

particles.

Under steady-state and spatially homogeneous con-
ditions, we obtain the following relations from Eq. (1)
combined with (3) and (4):

A (V)Pmi (V) = 1GL[PI(V) = Pmm(V)] +i1Gpy(V),
Ao(V)P(V) = VpyW(V) =i G,Pnm(V) ()
+iG*py(Vv),
where

My .
)\1(\/) = ?+VmI_I(QOp_ku B/),
Aa(V) = V+i(Qo— Qg +q V), (8)
a=k,—k, pj EIpij(V)dV-

In view of the low intensity of the probe field, matrix
elementsp;; (v) and p,,(V) in Egs. (7) can be assumed to
be known and determined by the action of the strong
field alone. Further, we assume that collisional transi-
tions between levelsn and | are absent. In this case, all
particles pass from level nto level | under the action of
the strong field. Consequently, in Egs. (7) we can set

pmm(v) = pnm(v) = 01 pII(V) = NW(V), (9)

where N isthetotal concentration of absorbing particles.

Here, we will analyze the probe field absorption
spectrum. Using system of equations (7) combined
with relations (9), we derive the following expression
for the probability P, of probe field absorption at fre-
quency w, (the number of radiation absorption events
per unit time for an absorbing atom):

2 .
P, = Y Re[i G} prml

. 10)
0 22 (
= 2|Gu|2ReDI2—V1|G|~‘] A,
0 —V|1D
where
_ W(v)dv
M Py ywmwre
(11)

| = Ai(V)W(V)dv =19
| IMwnxw+mF ’

Thus, the calculation of the probe field spectrum in the
model of strong collisions is reduced to evaluation of
the corresponding integrals.
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3. ANALYSIS
OF THE PROBE FIELD SPECTRUM

It is difficult to analyze expression (10) in the gen-
eral form, although the specific probe field spectrum for
various sets of parameters (intensity of strong radiation,
its frequency, collision frequencies, and the extent of
manifestation of the phase memory) can easily be
obtained from numerical calculations. To clarify the
physical pattern, we will first consider various special
casesfor which relatively simple analytic results can be
obtained from expression (10).

3.1. Homogeneous Broadening

We begin our analysis from the case of homoge-
neous broadening of the absorption line at the m- tran-
sition, when the Doppler width k, vy issmaller than T

M

r>kywvy = ?+Revm|. (12)

In this case, for not very high radiation intensity, such
that

IGI* < [v(I =iQ), (13)

formula (10) for the probe field absorption probability
can be substantially simplified and assumes the form®

_ 2 . 6> o8
P, = 2|G,| Re%L I st (14)
Here, the following notation has been introduced:
- (avo)’
M =(v-v)'+ > , £=0Q,-Q,
2[v+i(Q,—-Q H
[V +i(Qo—Qqp)] (15)

Q, = Qou—Vm, Q= Qo+ (V-Vv-v,)",
q=k,—k|.

Here and below, prime and double prime indicate the
real and imaginary parts of a complex number, respec-
tively.2

Formula (14) for the absorption probability is simi-
lar in structure to the corresponding formula for parti-
cles at rest (see, for example, [1, 2]). The only differ-

L1t should be noted that condition (13) depends on radiation fre-
quency detuning Q and can be satisfied even for |G| = T for large
detunings (|Q| > TN).

2A formula analogous to expression (14) was recently derived
in[10], where the probe field spectrum for athree-level A system
is considered under possible conservation of phase memory dur-
ing collisions at al atomic transitions simultaneously. The main
attention in [10] was paid to analysis of the shape and positions of
the components of the Autler-Townes doublet associated with
field splitting of the upper level in the A system.
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P/P, P[Py P,/Py
T T T T T T T T T T T T T T T
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Fig. 2. Dependences of the probe field absorption probability P, on the frequency detuning Q,, in the case of homogeneous broad-
ening of the absorption line at the mH transition (I > k, v) and in the absence of collisional relaxation of low-frequency coherence

at the n transition (v =v), |G|/kv =5, VK, vt = 10; Tk, vr =

toky, 11 kandk, 1t k, respectively; Q =0 (a), Q/kvy =15 (b),
0l = Q +[G/Q on amagnified scale.

enceisthat the relaxation constant I'; should be gener-
alized to take into account the diffusion motion of
particles (second term in formula (15) for I',). In the
case of phase memory conservation in collisions at the
n transitions, relaxation constant I'; is determined
only by the second (diffusion) term. Thus, motion of
atoms should always be taken into account in analysis
of the probe field spectrum, even in the case of small
Doppler broadening relative to the collision frequency.

The quantity I, is anisotropic to mutual orientation
of wavevectors of strong and probe radiation. If phase
memory is preserved at the - transition and the mag-
nitudes of the wavevectors differ insignificantly
(k= k,| < k), the value of I'; for counterpropagating
(k, 11 k) and unidirectional (k, 11 k) waves may dif-
fer by many orders of magnitude. This means that the
probe field spectrum exhibits a clearly manifested
anisotropy to mutual orientation of the wavevectors of
the strong and probe radiations even in the limit of
small Doppler broadening.

Considering thelimiting casel’; — Oinformula(14),
we can easily note that the maximal values of P, are
attained under the condition

= |G%.

This condition leads to the well-known result (see, for
example, [1, 2]) that the probe field spectrum has two
components whose peaks lie in the vicinity of Q, =

0, where

oly Qr = J4|G)* + Q%

(Q + Qg), (16)
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102, and (k- ky)/k = 10™*; solid and dashed curves correspond
and 50 (c); the inset shows the resonance in the vicinity of Q, =

In accordance with these formulas, the distance
between the spectral component peaksis Q. In spite of
the limitations used in deriving formula (16), it defines
the position of spectral components to a high degree of
accuracy for any values of the parameters of the
problem.

Figure 2 shows the genera form of the probe field
spectrum for various detunings Q of the strong field fre-
quency in the case of homogeneous broadening (12)
and phase memory conservation at the n- transition. In
the case of exact resonance for the strong field (Q = 0),
a“negative” symmetric structure exists at the line cen-
ter (dip in Fig. 2a). With increasing |Q|, a narrow reso-
nance peak appearsin the wing of the absorptionlinein
the vicinity of Q, = Q" (Figs. 2b and 2c). The behav-
ior of this resonance is quite peculiar: its amplitude
remains unchanged and equal to the amplitude of the
resonance near the absorption line center even for a
large detuning |Q,| > I (far wing of the absorptionline;
see Fig. 2¢); theresonance width rapidly decreaseswith
increasing |Q| and may be smaller than the natural lin-
ewidth ... In the vicinity of Q, = Q, the probe field
spectrum acquires adip (see Fig. 2); absorption of radi-
ation becomes much weaker and practically vanishes
under certain conditions (“ dark resonance” [12, 13]). In
all figures, the unit of measurement is the quantity Py,
viz., the absorption probability for probe radiation at
the line center at the mH transition in the limit of alow
intensity of the strong field. In accordance with for-
mula (10), we have

W(v)dv

A(v) a7

Py = 2|G,° Re[S vy
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In the case of homogeneous broadening of the absorp-
tion line (I > k,vy), we have

in the case of Doppler broadening (I" < k,vy), we have

P — 2'\/1_-[|GU|2
°T  kvy
pvT

Let us consider in greater detail various regions of
the probe field spectrum. For a small strong field fre-
guency detuning

|Q<T, (18)

it followsfrom formula(14) that the probefield spectrum
can be described by the formula®

_ 2
P, = 2|G|
E |G| % (19)
G
R :
Q= Te .

iQ, G . O
0 . FZ[F1+ %_I(QH_Q)}D

In accordance with this formula, the probe field spec-
trum contains two Lorentz profiles, which are summed
with different signs. The first term in the braces
describes the L orentz absorption line of width I, which
istypical of the case with an extremely low intensity of
the strong field. The second term describes the dip in
the vicinity of Q, = Q with the half-width I'; + |GJA/T
against the background of the Lorentz profile with half-
width ", which is associated with thefirst term. The dip
width is anisotropic to mutual orientation of the
wavevectors of the strong and probe radiations
(Fig. 3a). It can be seen from the figure that the reso-
nancein the case of counterpropagating wavesis broad-
ened to such an extent that the dashed curve is almost
horizontal.

Anisotropy is manifested most strongly in the case
of alow radiation intensity (|G|* < I'T ;), when the half-
width of the dip is equal to I';. In the case of phase
memory conservation at the n transition, quantity I';
in formula (19) satisfies the following expression:

r,=qg?D. (20)

3 In the formulas for the probe field spectrum, quantity I"; (15) can
be assumed to be real-valued (we can carry out the substitution
', — Rel 1) under the condition v' > qv, which is in fact
always satisfied in the case (12) of homogeneous broadening of
the absorption line).
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-0.01 0 0.01
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Q,/kyVr

Fig. 3. Dependences P,(Q,,) in the case of homogeneous

broadening for exact resonance for the strong field (Q = 0);
collisions preserve phase memory at the nH transition,

vk, = 10, (k—ky)/k = 1074, [/k, vy = 1072 solid and
dashed curves correspond to k, 11 k andk,, 11 k, respec-
tively; |G|/kvt = 0.1 (a; the inset shows the general view of
the spectrum) and 1.5 (b).

Thus, the dip width in this case turns out to be propor-
tional to diffusion coefficient D for particlesinteracting
with radiation. This circumstance may serve as the
basis for a spectroscopic method for measuring the dif-
fusion coefficient of absorbing particles in the buffer
gas atmosphere.

With increasing radiation intensity (for |G|> ~TT ,),
the widths of the dips for unidirectional and counter-
propagating waves become comparable; however, in
the latter case no appreciable bleaching of the medium
takes place (Fig. 3b). As the radiation intensity
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increases further (for |G| > I'T ,), the anisotropy of the
probe field spectrum practically disappears (see
Fig. 2a).
Let us consider the case of extremely strong detun-
ing of the strong field frequency:
|Q|>T. (21
In this case, formula (14) for the probe field absorption
probability can be transformed to

2
P - 2|GH| E r2
YT e, +1640)
u
+ . (F1+V)V - 2% (22)
(FL+y)’+(Q,-Q-|GQ)° 0
_|6’r
i

In accordance with this formula, the probe field spec-
trum consists of two Lorentz profiles with half-widths
" and ', + v, which are located in the vicinity of

_ a0 |G
Y
and
pnac
Q“ = Q“ ~Q+?,
respectively.

The width 2(I"; + y) of the resonance in the far wing
of the line (in the vicinity of Q, = Q) is anisotropic to
mutual orientation of the wavevectors of the strong and
probe radiations (see the inset to Fig. 2¢) and may be
smaller than the natural linewidth I ..

If phase memory is preserved during the - transi-
tion, the quantity I'; is defined by formula (20) and,
hence, the resonance width depends on the diffusion
coefficient D of particlesinteracting with radiation. The
ratio a of the amplitude of the resonancein the far wing
of the line to the amplitude of the resonance in the
vicinity of the line center is given by

y (23)

and is close to unity for I'; <€ y (see Fig. 2c). Thus, for
I, < T, the amplitude of the resonance in the far wing
of the line does not decrease with increasing strong
field frequency detuning up to values of

Q| O|G| JT1T .
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In the absence of phase memory at the - transition,
we have '} ~ T > y and, hence, the resonance in the
wing of the line is weakly pronounced (its relative
amplitude aissmall).

Expressing quantity I'; from Eq. (23), we arrive at
therelation

V' oy? V' a

2D (1-a) &
~ 2p_yl-a
=1+ a]dD-0E

Vr

which can be used to find the extent of phase memory
conservation in collisions, characterized by parameter
V'V (0< V' V' < 1) from the relative amplitude a of the
resonance in the line wing. The second approximate
equality in formula (24) (with diffusion coefficient D
on the right-hand side) is in fact exact in the case of a
high extent of phase memory conservation at the n-

transition (for 1 — v'/v' < 1) since we can set
- _ 2
v' = v, = vi/2D

on the right-hand side of the first equality in this case.

3.2. Doppler Broadening

Let us now analyze the case of Doppler broadening
of the absorption line at the mH transition (k, vy > I).
Figure 4 shows typical probe field spectra for various
values of detuning Q. As compared to the case of
homogeneous broadening considered earlier, the line
profile P,(Q,) experiences considerable changes: the
spectrum anisotropy increases, and the amplitude of the
narrow resonance in the absorption line wing (in the

vicinity of Q, = Q” increases with detuning Q
(Figs. 4b and 4c) and is found to be much larger than
the amplitude of the resonance near the line center
when |Q|> T (see Fig. 4c).

Let us consider in detail the most interesting case of
Doppler broadening for a large detuning of the strong
radiation frequency,

Q| > kv, >T. (25)
Let us suppose that the radiation intensity is not too

high (seerelation (13)) and thefollowing conditionsare
satisfied:

2
v'>qvq, k“vT%,
, (26)
f +k el £0
or q uz_z—z- s
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Fig. 4. Dependences P,(Q,,) in the case of Doppler broadening of the absorption line at the mH transition (k, vt > I'); collisions
preserve phase memory at the - transition (V = v), [GJkvy = 0.5, vk, vy = 1072, T /k vy = 1072 (k- k )k = 10 solid and
dashed curves correspondtok, 11 k andk, 11 K, respectively; Q =0 (a), Q/kvt =1 (b), and 10 (c); theinset shows the resonance

inthe vicinity of Q, = fo) =Q+|G |2/Q on amagnified scale.

and

2|GJ?

1QIr > (k, vo) or V' > (k) aF

) (27)
f +k———IGI =0
or g gz 0

We can provethat formula (22) for the absorption prob-
ability under conditions (25)—27) correctly describes
the resonance in the line wing (in the vicinity of Q,, =
Q +|G|/Q, thesecond termin formula (22)). However,
the resonance at the line center (in the vicinity of Q , =
—GJA/Q) cannot be described by formula (22); this res-
onance should be analyzed proceeding from the genera
formula (10).

To analyze the resonance in the vicinity of the
absorption line center, let us consider the special case of
equality of the wavevectors of the strong and probing
radiation (k,, = k). In this case, formula (10) for P, can
be substantially simplified and assumes the form

P - 2"/;[|GH|2
. K,V
| 4 28
SN R
0 JTV G w(b) H

k,vile+i(v—=v)T](e, +iv')
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where
w(b)=1 IeXp( (=)
O |G2|31 G| A (29)
b =
K VT{ V' +8%1 v +81%

w(b) being the probability integral of a complex argu-
ment, which istabulated in [20].

Under Doppler broadening conditions for the
absorption line (I < k,v+), parameter b in formula (28)
may be small (|b| = 1). Inthis case, we can set

w(b) = exp(-b°),
which immediately leads to the following expression

following from formula (28) in the absence of colli-
sions (v, v = 0):

_ 2/mG,?
T T
30
gL Q-0 (kuVT)%.

Numerical analysis shows that, in the absence of colli-
sions, formula (30) is a good approximation of the
exact, but more cumbersome expression (28) for any
value of parameter b. Thisisdueto the fact that the con-
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Fig. 5. Dependences P(Q,) in the vicinity of Q,, = Q +
|G|2/Q in the case of Doppler broadening; Q/kvy = 10,
M f/kyvr = 1072 (k—ky)/k = 10 solid and dashed curves
correspond to Kk, t1 k and k, 11 k, respectively;
(@ |Gkvy=0.5,vik,vr= 10729 =v (1), V' V' =0.99(2),
0.95(3), 0.9 (4), 0.5 (5); v =0 (6); ky 11 k for any ratio
v /v (7); the inset shows curves 6 and 7 on a magnified
scale; (b) [Glkvy = 0.1 (IG] = |Ql,Ja/k, ). Qenir/k VT =
10.002; v = 0 (1); v'/kvy = 107° (2), 107 (3), 107 (4);
1073 (5); 102(6), 107 (7); k,, 11 k for any ratio v'/kv (8).

dition |b| =< 1 of applicability of this formula in the
vicinity of spectral components (near Q, = fo)) is
always satisfied (the exponent in formula (30) vanishes
for Q, = Q). However, in the detuning range, where
|b] > 1, the absorption probability islow (as compared
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to the unit of measurement P,) and, hence, the difference
between the results of calculation by formulas (28) and
(30) issmall.

In addition, numerical analysis shows that for a
large detuning of the strong radiation frequency (25),
formula (30) correctly describes the resonance near the
line center in the presence of collisionsand for any rela
tion between k,, and k as well, in spite of the fact that
this formulawas derived for the special casewhenk,, =

k and v, v = 0. Summarizing the above arguments, we
conclude that the probe field absorption probability for
alarge value of |Q]|in the case of Doppler broadening
(under conditions (25)—27)) is described by the
formula

> - AGO/mr [_m@

H r WV Pl—o kyvy O
(31)

N (Caty)y 2%

(M +y)+(Q,-Q-1G1Q) 0

In accordance with this formula, the probe field
spectrum consists of a Lorentz profile with half-width
I, +y, whichislocated in thefar wing of theline (in the
vicinity of Q, = Q + |G]//Q) and a Doppler profile of
half-width k, vy, which is located near the line center
(in the vicinity of Q, = -G[4¥Q). The ratio A of the
amplitude of the resonancein the far wing of thelineto
the amplitude of the resonance near the line center is
given by

A = M—L
Jurfaty

and can be much larger than unity (see Fig. 4c).

Expression (32) can be used for deriving a relation
connecting the relative amplitude A of the resonancein
the line wing with the degree of phase memory conser-
vation in collisions:

(32)

Jav)' 1
2v? 1+|G|1Q%?

Y=1
v
(33)
_le“VT _15.

v'iU/mra
For ahigh degree of phase memory conservation at the
- transition (for 1 — v'/V' < 1), the collision fre-

guency V' on the right-hand side of Eqg. (33) can be
expressed in terms of diffusion coefficient D:

Vi = vy, = v$/2D.

Pay attention to the fact that the amplitude and width
of the resonance in the line wing are strongly sensitive

No. 6 2005



PROBE FIELD SPECTROSCOPY IN THREE-LEVEL A SYSTEMS

to phase memory effects in collisions in spite of the
smallness of the collision frequency as compared to the
Doppler width (Fig. 53).

It is well known (see, for example, [1, 2]) that the
Dicke effect is noticeably manifested in traditional
spectroscopic problems only when the collision fre-
guency is much larger than the Doppler linewidth.
However, in the case considered here, the Dicke effect
is strongly manifested even for a collision frequency
much smaller than the Doppler width. The physical rea
son for this effect can easily be grasped using the con-
cepts of field-induced level splitting (such asplitting is
aso known as the Autler—Townes effect, or the
dynamic Stark effect).

In a strong field, level m with unperturbed energy
(0) splitsinto two sublevels with quasi-energies E( )

For particles moving at a velocity v, quasi-energy E'

is afunction of v due to the fact that the frequency of
the field acting on a particle depends on its vel ocity:

EQ(v) = ER +700(v),

(34)

Q(v) = :—ZL[Q—kvt JaIGE+ (Q—k ).

For particleswith afixed velocity v, detuning Aif) (v) of
the probe field frequency at the transition between the
sublevel with quasi-energy E (v) and level | with

energy E isgiven by

En (V) ~E”
h (35)
= Q,—k, -0 (v).

AP (V) =0, —k, [V —

For |G| < |Q|, we abtain
AOW) = Q-0 |G| _qv—k w|G|
|G|2 GI* o
Oy —
A, (v)-Qu+Q -k, Ev+kEvQ

For aninsignificant difference between the wavevectors
(k, =k, q < k), the Doppler shiftin detuning A}’ (v) is
small ascomparedtok, - v. Thisis precisely the reason
for strong manifestation of the Dicke effect in the case
of collisions preserving phase memory for the reso-
nanceinthelinewing for low collision frequencies (for
V' > qvy, kv |G/Q? ; however, v' can be much smaller
than k,v). For g < k, the condition for manifestation of
the Dicke effect, which was derived from the qualitative
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pattern, coincides with condition (26) weakly selective
to the rates of interaction of atoms with radiation.

It can be seen from relations (36) that the Doppler
shift in detuning A\ (v) in the particular case when
q = —k|G[¥Q? (we can substitute k, for k in the case
when q < k) disappears and all atoms resonantly inter-
act with the probe field irrespective of their velocity.
Thus, aresonance free of Doppler broadening emerges
inthiscaseinthevicinity of Q, = Q + |G]/Q. Thisres-
onance is correctly described by formula (31) even in
the absence of collisionsif the condition |Q|I > (k,v+)?
is satisfied (see formula (27)).

Figure 5b illustrate the behavior of the resonance
free of Doppler broadening in the line wing (for q =
-k|G|/Q?) as a function of the collision frequency in
the case when phase memory is preserved. The ampli-
tude of the resonance is a complex function of the col-
lision frequency. When the value of v' increases from
zero to a certain small value (to v'/k vy ~ 107 for the
parameters corresponding to Fig. 5b), the resonance
amplitude first decreases (curves 1, 2, and 3) and then
increases substantially with increasing v' (curves 4
and 5), attaining its maximum value for v'/k,v; ~ 1073,
Upon a further increase in v', the resonance amplitude
decreases again (curves 6 and 7).

4. CONCLUSIONS

In this paper, the spectrum of a weak probe field
absorption by three-level atoms with the A configura-
tion in the presence of astrong field at an adjacent tran-
sition is studied theoretically. It was assumed that
atoms are in the buffer gas atmosphere and experience
collisions with gas particles.

It is shown that most interesting features in the
probe field spectrum are observed in the absence of col-
lisona relaxation of low-frequency coherence at the
transition between two lower levels of the A system. In
this case, the absorption spectrum always exhibits
clearly manifested anisotropy to mutual orientation of
the wavevectors of the strong and probe radiations even
in the limit of weak Doppler broadening relative to the
collision frequency. Supernarrow resonances with a
width much smaller than the natural width may appear;
the characteristics of such resonances (width and
amplitude) are connected in a certain manner with the
diffusion coefficient for atoms interacting with radia-
tion. This may form the basis for the development of a
spectroscopic method for measuring the atomic diffu-
sion coefficient.

The resonance in the far wing of the absorption line
may experience Dicke collisional narrowing even for
very small (ascompared to the Doppler width) collision
frequencies. Unexpectedly, it was found that the ampli-
tude of the resonance in the far wing of the absorption
line may exceed the amplitude of the resonance at the
line center by several orders of magnitude. This result
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is beyond the framework of conventional concepts,
according to which the cross section of nonresonant
radiative processesis always smaller than the cross sec-
tion of resonant processes. Simple working eguations
are derived, which can be used for determining param-

eter V' /V', viz., the degree of phase memory conserva-
tion in collisions at the n- transition, from the relative
amplitude of the resonance in the line wing.

The features of the probe field spectrum noted in
this study are manifested most clearly for ahigh degree
of phase memory conservation in collisions at the
transition (for 1— V' /v' < 1). For atoms of alkali metals
(which are successfully simulated by the A level dia-
gram) in the atmosphere of inert buffer gases, the cross
section of collisiona transitions between the n and |
hyperfine structure components of the ground state is
6-10 orders of magnitude smaller than the gas-kinetic
cross sections [11]. Consequently, we can expect for
such objects a high degree of phase memory conserva
tionin collisions, so that 1 — v'/v' < 1075. Thus, atoms
of akali metals in the atmosphere of inert gases are
suitable objects for detecting and studying the effects
considered in thiswork.
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Abstract—Mesoscopic or macromolecular conducting ringswith afixed number of electronsare shown to sup-
port persistent currents due to the Aharonov—Bohm flux, and the “ spontaneous’ persistent currents without the
flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-sym-
metric environment. In the free-standing macromol ecular ring, symmetry breaking removes the azimuthal peri-
odicity, which is further restored at the increasing field, however. The dynamics of the Aharonov—Bohm loop
in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that
transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied
to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that
can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence
of an externally applied static electric field perpendicular to amagnetic field, the macromolecular ring switches
between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers. © 2005 Ple-

iades Publishing, Inc.

1. PERSISTENT CURRENTS
IN MESOSCOPIC SYSTEMS

Persistent currents have been predicted for mesos-
copic conducting ballistic or quasiballistic loops ([1]*
and references therein, [2]) that do not show the effect
of superconductivity and that have been extended to
diffusive rings [3]. The current appears in the presence
of a magnetic field as a result of the Aharonov—Bohm
effect [4], demonstrating the specia role of the vector
potential in quantum mechanics. As discussed in [5],
persistent currents are similar to orbital currentsin nor-
mal metalsfirst considered by Teller [6] in hisinterpre-
tation of Landau diamagnetism in metals [7], but are
specific to the doubly connected geometry of conduc-
tors (loops, hollow cylinders, etc.). Persistent currents
have been observed in indirect [8, 9] as well as direct
[10, 11] experiments, showing the single-flux-quantum
@, = hc/e periodicity in the resistance of thin Nb wires
[8] and networks of isolated Cu rings [9], and in single-
loop experiments on metals [10] and semiconductors
[11]. In[12], the periodic variation of resistivity in

T The text was submitted by the author in English.

1 This paper proved exact periodicity of ring energy as a function
of the magnetic flux with the period hc/e, although with an indef-
inite amplitude.

molecular conducting cylinders (carbon nanotubes)
was attributed to the Altshuler—Aronov—Spivak effect
[13], a companion to the classical Aharonov—Bohm
mechanism with the twice smaller periodicity in mag-
netic flux @, = hc/2e. A further trend in macromol ecu-
lar persistent currents [14-16] is in the quantum com-
putational [17] prospects of using the Aharonov—Bohm
loops as qubits with an advantage of easier (radiation-
free) manipulation of qubit states, and in the increased
decoherence times compared to macroscopic
“Schradinger cat” structures (Josephson junctions).

The present paper focuses on ballistic Aharonov—
Bohm rings, like those naturally found in molecular
crystals with metalloorganic complexes as the building
blocks [18, 19]. We approximate such macromolecular
structures as rings with resonant hopping of electrons
between the near-site atoms or complexes serving as
electron localization sites. As shown in [14], the small-
est (three-site) persistent current ring displays a
N\-shaped energy configuration (Fig. 1) with two degen-
erate ground states, at the external flux through the ring
equal to half the normal-metal flux quantum, ® = hc/2e.
At acertain number of electronsin the ring, persistent
current appears at zero field (the “spontaneous’ cur-
rent). The spontaneous persistent current loop, to be
discussed below, achieves the degenerate state at zero

1063-7761/05/10106-0999%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. A A-shaped energy configuration in the Aharonov—
Bohmring. Arrowsindicate atransition between degenerate
states |00and |10through virtual transition to the control
state |clJ

(a) (b)

Fig. 2. (a) Models of mesoscopic and nanoscopic Aha
ronov—Bohm loops: a one-dimensional continuous |oop;
(b) adiscrete loop with regularly spaced centers of electron
localization (sites); (c) a 3-dimensional loop in the form of
a cylinder with a longitudina dimension of L = 2nR and
transverse dimensions of L, L,.

field or, if the degeneracy is lifted by the electron—
phonon coupling, at reasonably small fields.

Persistent current is avoltage-free nondecaying cur-
rent that exists as a manifestation of the fact that the
ground state of adoubly connected conductor in amag-
netic field isa current-carrying one. This statement was
proved for ballistic loops[2] and for diffusive rings[3].
There is no principa difference between these
extremes. Counterintuitively, a ballistic structure does
not show infinite conductivity, as was sometimes
naively supposed; a dc resistance of the loop isinfinite
rather than zero when adc electric field isapplied to the
system. In the case where a current is fed through the
structure, no voltage appears provided the magnitude of
the current is smaller than a certain critical value. This
applies to both elastic and inelastic scatterings. The
magnitude of the critical current of a balistic ring
smoothly matchesthe current of the diffusivering when
the mean free path of the electron becomes large. In a
dirty limit, | < L, wherel isthe electron mean free path
and L isthering circumference, the critical value of the
persistent current decreases proportionally to I/L
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according to [20], or to (I/L)Y? according to numerical
simulation [5]. The nondecaying current does not even
require severe restrictions on the so-called “phase
breaking” mean free path |,. In fact, the normal-metal
supercurrent is an analogue of the “nonquantum”
Josephson effect [21, 22], the one in which the phase of
superconductor is considered a classical variable.
Stronger criteria (the dephasing length larger than the
system size, and the analogous requirement in the time
domain, that the “decoherence time” is larger than the
characteristic time of observation) apply to persistent
current rings as quantum computational tools, which
are analogs of macrascopic quantum tunneling [23—
26]. Persistent current is a thermodynamic property,
clearly distinct from the dissipative currents in conduc-
tors, and can in principle exist in a system that has the
vanishing Ohmic conductance.

2. SPONTANEOUS PERSISTENT CURRENTS

Persistent current in a ballistic ring appears due to
the Aharonov—Bohm flux. The current, however, can
also occur when the external magnetic field is zero, in
which case it is called the spontaneous current. Such a
situation was noticed accidentally by various authors,
in particular, [27, 28], but did not seem convincing, did
not attract attention dueto fixed chemical potential con-
figuration studied, and was attributed to the effect of
Peierls instability in the ring [29-32] (with the latter
paper criticized [33, 34] in regard to the inaccuracy of
the mean-field approximation). In fact, the fixed-num-
ber-of-particle ring with an odd number of electrons
displays a number of structural instabilities, of which
the Peierls transformation [35] and the Jahn-Teller
effect [36] are the best known examples, or generaly,
amore complex atom rearrangement when the ground
state proves degenerate in a symmetric configuration.

The origin of the spontaneous current can be under-
stood asfollows. We consider aone-dimensional ringin
thefield of avector potential created by athin, infinitely
long solenoid perpendicular to the plane of the ring and
piercing the ring (Fig. 2a). The electron energy in the
ringis

h’ LA

€, = -, (D)
" 2mL2%1 P

where A = ®/L is the angular component of the vector

potential (P is the total magnetic flux of the solenoid)

and n =0, £1, 2, .... Such a state corresponds to the

current
_ Cdg, _ eh N
T mL281 D¢

whichiszeroat ®=0andn=0, butisnonzeroatn # 0
even at zero flux. At T=0, € ectrons, in thetotal number
N, occupy the lowest possible energies compatible with
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the Pauli exclusion principle, i.e., such that each stateis
occupied with two electrons with opposite spins at
most. Therefore, the ground state of one or two elec-
trons is that of n = 0, and hence has zero current at
@ =0. But the state with the next electron number,
N=3, aready resumesatn=1orn=-1,orisina
superposition of these states, a|10+ B}-1L] depending
on the way the state at the initial condition is prepared,
and therefore carries a current unless a # B. If thereis
no decoherence of the state due to the interaction of the
loop with the environment, the current persists in time
without any voltage applied along the loop. This
applies to a ballistic perfectly symmetric ring. The
inhomogeneity in the ring, aswell as scattering of elec-
trons by impurities, may result in a nondegenerate cur-
rent-free state. Thisisillustrated in Fig. 3 for the ring
with a d-functional barrier Vy0(x), which results in the
Kronig—Penney equation for energy,

Vol sin(21k) _ ln
cos(21Kk) + 26, ok cos%n o ()]

The electron energy is € = g,k?, where k = k, is one of
solutionsto Eq. (2) and €, = h%2mL?2. The same conclu-
sion is obtained for a discrete Aharonov—Bohm ring
(Fig. 2b), to be considered in detail below.

Figure 4 shows the maximum value of persistent
current, aswell asthat of the spontaneous current intro-
duced above, versus the number of electronsin athree-
dimensional ballistic ring (the one with the electron
mean free path | = c0) modeled as afinite-length hollow
cylinder (Fig. 2c) with the rectangular cross section
L, x L, containing a finite number of perpendicular
electron channels

Ny = L1L2k,2:.
217

We note that the magnitude of the current in a ballistic
ring is not evg/L, as is sometimes suggested (v is the
Fermi velocity), but

eve
L

(seealso[2]). The dependence J,(N) a T=0isirreg-
ular due to the contribution to the total current of both
the negative and positive terms originating from differ-
ent electron eigenstates.

Figure 5 explains the origin of persistent current as
a bistability effect in a ring. While the electron energy
has a minimum at @ = 0 for an even number of elec-
trons, it acquires a maximum when the number of elec-
trons is odd. The inductive energy, to be included
below, shifts the position of minimain that curve only
very dightly. The spontaneous current has the same
order of magnitude as the maximum persistent current,

Y
Ji D—FNH?
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Fig. 3. Ground state energies and currentsin the continuous

ring with 3 electrons at various strengths of the barrier: g =
0(1),1(2,2(0).
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Fig. 4. Persistent current versus the number of electronsin
aring with ratio cross-sectional dimensionsL : Ly : L, =
10: 1 : 1 (configuration with spin). The upper curve is the
maximum current in units of Jo = evg/L at given N; the dot-
ted curve is the amplitude of the first harmonic of Jpeo(P);
and the curve at negative J isthe spontaneous persistent cur-
rent, also in units of Jg. The dashed curveis the square root

of the number of perpendicular channels N.

and it is an inseparable part of the Aharonov—Bohm
effect in aballistic ring.

In a one-dimensional loop, discrete quantum states
are

1 ine
l-IJn = —€ , (3)
JL
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Fig. 5. Examples of the occurrence of a bistable configura-
tion in a ring. Energy versus flux in aring of 10 (1) and
11 (2) electrons. Curve 2 is shifted downward for conve-
nience but is not reset.

where 0 isthe azimuthal angle, with the energies given
by (1) plus the inductive energy of the current. For the
loop with three electrons, this gives the total energy,

2¢?

E(f) = & P45 1- [+ (N, @

corresponding at ® = 0 to two spin-1/2 states with n =
0 and one state with n =1 or n = 1. The last term in
Eq. (4) is the magnetic inductive energy and & is the
inductance (of the order of the ring circumference, in
the units adopted). The current

_ _edE
V= o
isequal to
e€
J(f) = Jo(x1-3If]), Jo = f ©)

and isnonzero at f = 0 in either of the states+. Theratio
of the magnetic energy to the kinetic energy is on the
order of

S ()

~ 2c%, 4TmcR R

where a, is the Bohr radius. Thisis avery small quan-
tity, and therefore the magnetic energy is unimportant
in the energy balance of the loop. The total flux in the
loopisf=fg, +2nj(f), wheref,, istheexternal flux and
j(f) = J(f)1J,. The correction to the externally applied
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flux is significant only at very small fieldsf,, ~ n; oth-
erwise we can ignore this contribution.

When a persistent-current loop is placed in an elec-
tric field perpendicular to a magnetic field, the system
coherently switches between the discreet states of the
loop providing for quantum transitions (quantum logi-
cal gates) in the loop performing as a qubit in a quan-
tum computer. This aspect of persistent currentsin bal-
listic loopsis analyzed in Section 3.

The property of a nonzero spontaneous persistent
current thus demonstrated for noninteracting electrons
survives strong electron—electron coupling but col-
lapses when the coupling to the lattice isincluded. This
isconsidered in detail in Section 4. In what follows, the
structural transformation in the ballistic ring is investi-
gated in an exact way by considering the ring dynamics
in the tight-binding approximation [37, 38]. The “lat-
tice” (the atomic configuration of the loop) can respond
to the bistable state by a readjustment of atoms similar
to the Peierls transition (doubling of the lattice period
in aone-dimensional atomic chain, see, e.g., [39, 40]),
or by amore general lattice transformation that does not
reduceto simple doubling. Whentheloop isintherigid
background in the periodic lattice on a substrate of a
much stronger bound solid, the degeneracy may not be
lifted, or may remain in a very narrow interval of the
externally applied field.

3. DYNAMICS OF PERSISTENT CURRENTS
IN CROSSED ELECTRIC
AND MAGNETIC FIELDS

The Hamiltonian of the ring consisting of N sites
localizing electrons at equidistant angular positions is
0,=2m/Nis

N
HO =1 z (a;an+1ela + a;+ 1a-ne_m) ’ (7)
n=1

where a;, isafermionic operator creating (and a,, anni-
hilating) the electron at the site R,, in the ring with the
periodic boundary condition ay,; = &, and a =
2NN, is the phase related to the Aharonov—Bohm
flux threading the ring. Placing the ring in the homoge-
neous electric field perpendicular to the magnetic field
(Fig. 6) resultsin the extraterm

N
21 _+
H, = V,) cos—a,a, (8)
2.

being added to the Hamiltonian. The Hamiltonian H, is
diagonalized by the angular momentum (i.e., m=0, 1,
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..., N—=1) eigenstates A,|00such that

N-1
+ 1 + 21mmn
A, = — ) a,exp : 9
JNZ N

These states have the energies

_ 21 D
€, = 2T cosW En - qT(J] (10)

plotted versus the flux in Fig. 7. The electronic config-
uration at ® = ®y/2 has a A-shaped energy structure
with two degenerate ground states shown in Fig. 1,
which were suggested as |00and |L0components of a
qubit in [14, 15]. The time evolution of angular-

momentum eigenstates A,,|0Cis periodic at certain val-

ues of V, and at the value of the flux equal to half the
flux quantum @®y/2 = hc/2e.

In the eigenbasis of the operators A,,,, the Hamilto-
nian H, + H; at N = 3in the absence of an electric field
istransformed into the diagonal form (we scaleall ener-
giesin units of 1)

~ p-1oog
HO = szAmAm = E 020 E (11)
m 00 0-10
and the Hamiltonian H, becomes
qovyv
H, = Ev 0vh (12)
gvyv 0

where v = V/21. We let the m = 1 and m = 3 states be
denoted by [0Cand |1C]in the qubit terminology, and the
excited state m = 2 by |c[J(the “control” state coupling
qubit states to the “qugate,” or the quantum logic gate).

The eigenstates of Hy + H; versus v at @ = ®y/2 are
presented in Fig. 8. We assume that at t < 0, the poten-
tial isV, = 0, such that the system at t = 0 is a superpo-
sition of the angular momentum states A,|00with cer-

tain amplitudes C,(0). At alater time and at a constant
value of V, C,(t) evolves as

Ca(t) = > exp(=i(Ho+ H)1)nCr(0).  (13)
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Fig. 6. Scheme of a 3-site qubit in the electric field perpen-
dicular to the magnetic field.
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Fig. 7. Curves 1 and 3 are energy versus magnetic flux
dependences in the degenerate states carrying opposite cur-
rents. The current is found as the derivative j = —coe/0®.
Curve 2 corresponds to the zero-current virtual state at the
operating point of a qubit at the half-flux quantum @ =
Py/2.

For a step function V(t) = V0(t), this gives the depen-
dence[14]

Ca(t) = ZSZi(Vo)eXp(—i Ext) Sr(Vo)Cin(0), (14)
m, k

where g,(V,) are eigenenergies of the Hamiltonian H, +
H1(Vo) and S,(V,) are the unitary matrices transform-
ing from the noninteracting eigenbasis (the one corre-
sponding to Hy) to the eigenbasis of the full Hamilto-
nian Hy + Hy. It isimplied in Eq. (14) that at a fixed
valueof V,, thetimeevolutionisperformed astheinter-
play between the three different eigenenergies. Thisis
sufficient evidence that if the eigenenergies are appro-
priately adjusted, the population of the auxiliary state
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Fig. 8. Energy versus electrostatic potential. Curves 1 and 3
(solid and dotted lines) are the energies that become degen-
erate at Vo = 0, and curve 2 (the dashed line) is the energy

of theauxiliary control state |cLIThe arrowsindicatethe val-
ues of the potential V corresponding to the operational

points of the bit-flip and Hadamard gates.

(in the angular-momentum basis) can vanish for certain
initial conditions. At these time instants, the three-state
system instantaneously collapses into the qubit sub-
space without loss of any information if the auxiliary
state |clwas initially unoccupied. A necessary condi-
tion for the instantaneous collapse into the qubit sub-
space (i.e., the degenerate-level subspace) is a com-
mensuration condition between the eigenenergies
&(Vo), k=1, 2, 3 such that the exponential factors in
Eq. (14) destructively interfere at fixed tune instants to
destroy the nondiagonal correlations. The required
commensuration can be expressed by the condition

(15)

for integer v. Equation (15) guarantees periodic col-
lapses of the wavefunction onto the desired basis, and
the next step isto find whether the desired gugate oper-
ations can be realized simultaneously in this basis. For
the corresponding values of the potential respecting
Eq. (15), wefind

Vy(v) = —3%[\;2 Fv+ 1+ (V—1)JV2+4v +1].(16)

€3—€; = V(€,—&;)

In particular, we note that for v = 1, we have V§? = -2
and at v = 3, we have

vy = —5(13+ 2./22) = —-4.9735,

and we succeeded in finding two qugatesin our first few
attempts. As shown below, these two casesyield the bit-
flip and Hadamard transformations of the qubit [17].
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Thev = 1 case can be explicitly proved by verifying
the identity

0o O 0
_ o-1-1 _1El]
expHitd—1 2 100

9 0-1-1-1(H

(17)
1% l1+c+s S —1+c+s%
= _D — D!
20 S 2(c—9) S g
O0—-1l+c+s S l1+c+s

where

c = cos(t./6), s = iﬁsin(n/é).

Ats=0(i.e.,, c==1), thetransformation matrix of qubit
states is block-diagonalized in the subspace of states 1,
3(i.e., thequbit states |0L]|10) and the upper state 2 (i.e.,
the auxiliary “control” state |c). In particular, for ¢ =
-1, the bit-flip is performed between the qubit states.

InFig. 9, the populations p,(t) = |C,(t)? of the states
are plotted for the mentioned casesv =1 andv = 3. The
instantaneous collapse to the qubit subspaceis obtained
at=t;forv=21andatt=t;forv =3if theauxiliary
level is unoccupied at t = 0. We found these critical
times as (in units of /1)

Tt
t, = — = 1.2825,
1 /\/6

(18)
T
t. = = 0.7043,
T 2[Ep(Vo) ~Es(Vo)l,y -
where the eigenenergies are
2
E;a(Vo) = 1+;/O/2 $g )1—\%J +\§),
(19)

V
Ex(Vo) = —1—50

for V, < 0. We note that the configuration (t;, v = 1) per-
formsthe bit-flip |00~ |10)whereas (t;, v = 3) creates
the equally populated Hadamard-like superpositions of
[OCand |10 These operations are represented in the qubit
subspace by the matrices (overall phases are not shown)

Oq 10 01 0
G =0%0ad G =1l 0 (o
0100 J20- 10

The dotted lines show the time dependence of the aux-
iliary population. The arrows indicate the “ operational

No. 6 2005



SPONTANEOUS AND PERSISTENT CURRENTS

point” of the qugate, the time of evolution correspond-
ing to the return to the invariant qubit. The G, transfor-
mation manifests the bit-flip (NOT gate) and G; is
similar to the Hadamard gate [17] except for the phase
shift 172.

4. QUANTUM BISTABILITY
AND SPONTANEOUS CURRENTS
IN A COUPLED ELECTRON-PHONON SYSTEM

In the tight-binding approximation, the Hamiltonian
of the loop in the secondary quantized formis given by

N N
+ ia;
H = Z(Tjajcajﬂ,ce ’+H.c.)+UanTnj1

i=1 i=1

N

+V Z NioNj+1.0

j=10,0'

(21)

N N

1 02, 1 2

+§W-zl(ej_ej) +§K‘zl(ej—ej+1) ,
i= j=

where 1; isthe hopping amplitude between two adjacent
configurational sites, j andj + 1,
nic = ai+0aic1

T, = T,+9(6;-6.1), (22)

and

_ 2

Gj = -T\I—+(9j—9j+1)f

(23)

isthe Aharonov-Bohm phase (a Peierls substitution for
the phase of hopping amplitude). Next, aj+(, is the cre-
ation (and g, is the annihilation) operator of the elec-
tronat sitej withspino; 6,,j=1, 2, ..., Naretheangles
of distortion of site locations from their equilibrium

positions e? = 211/N satisfying the requirement

N
zei =0;

j=1

and g is the éectron—phonon coupling constant. The
interaction in Eq. (22) reflectsthe property that the hop-
ping amplitude depends on the distance between the
localization positions and assumes that the displace-
ment 6, — 6, , ; issmall in comparison to 2r7N. U and V
are Hubbard parameters of the on-site and intrasite
interactions. W is the binding energy of the loop to
external environment (a substrate) such that the loop
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Fig. 9. Evolution diagrams of the quantum gate G, (a) and
G3 (b). Solid and dashed lines are the time dependences of

the population of states |0Cand |1 The dotted line showsthe
time dependence of the auxiliary-state population. The
arrow indicates the “operational point” of the qugate, i.e.,
the evolution time corresponding to the return to the invari-
ant qubit subspace.

passes into the azimuthally symmetric configuration
0, =6 asW— oo

The parameters are assumed such that the systemis
not superconductive (e.g., U > 0; anyway, the supercon-
ductivity is not allowed for a 1D-system and it is for-
bidden for a small system). The last term in Hamilto-
nian (21) is the élastic energy and K is the stiffness
parameter of the lattice.

In the smallest loop, the one with three sites (N = 3),
only two free parameters of the lattice displacement, X;
and X,, remain:

B, = X1+ X,

92 = _X1+ Xz, 93 = _2X2, (24)
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Fig. 10. Lower curve: current versus magnetic flux in a
3-site loop with 3 noninteracting electrons. Upper curve:
energy versus flux in the loop. The hopping parameter is
1o = —1. The energy is reset and arbitrarily shifted upward
for clarity.
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Fig. 11. Spontaneous persistent current versus flux for 1o =

—1 and various values of the Hubbard parameter U: U =0
(1),-2(2),2(3),-5(4),5(5),-10(6), 10 (7).

which are decomposed with respect to secondary quan-
tized Bose operators b, and b, as

K .
X, = B (b, + b)),
(29
X, = 3%(5

System (21) is solved numerically with the ABC com-
piler [41], which includes the creation—annihilation

(b +by).
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operators as its parameter types. These are generated as
compiler macros with sparse matrices

(Ny) (N2)

o1 -,

(No)

uc, -,

A, = C, fermionic sector,

L (26)

B, bosonic sector,
where 1™ isthe unit matrix of size2; CV , n=1, ...,

N are Fermi/Bose operators in a space of the same
dimension,

cV = (uD)" "a(0v)" (27)

and a, u, and v arethe 2 x 2 matrices (with 0 being the
symbol of the Kronecker matrix product):

O O

a—DOOD

o100

(28)
O 0 O O
u=0t%, v=0t0,
go10d 0ond
and

D—l fermionic sector

’ 29
= Dl bosonic sector. (29)

The bosons are considered hardcore bosons, such that
there are only two discrete states for each mode of dis-
placement. We calculate the ground state of Hamilto-
nian (21) asafunction of the magnetic flux f (aclassical
variable). In application to real atomic (macromolecu-
lar) systems, we can consider X; and X, as classica
variables because quantum uncertainties in the coordi-
nates (AXy , ~ (A/Mw)Y?) are typically much smaller
than theinteratomic distances (M isthe mass of an atom
and w ~ 10% s is the characteristic vibration fre-
guency). The energy of the loop is calculated as afunc-
tion of X; and X, and further minimized with respect to
X; and X, for each value of f. The nonzero values of X;
and X, signify a“lattice” (the ionic core of the macro-
molecule) instability against the structural transforma-
tion, analogous to the Peierls transition.

In the noninteracting system (U, V, W, g = 0), the
energy versus the flux f shows a kink with a maximum
atf =0 (Fig. 10) inthe half-filling case, i.e., at anumber
of electrons n equal to the number of sites N, aswell as
in a broader range of values of n at larger N. Actually,
asis clear from Fig. 4, such a dependence is typical of
any N = 3 system for a number of (fixed) values of n.

The 3-site loop's E(f) dependence is shown in
Fig. 10 together with the dependence of the current
on f. The latter shows a discontinuity at f = 0 of the
same order of magnitude as the standard value of the
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persistent current. The current at f = 0 is paramagnetic
because the energy vs. flux has a maximum rather than
aminimum at f = 0. The on-site interaction reduces the
persistent current amplitude near zero flux (Fig. 11) but
does not removeitsdiscontinuity at f = 0. Therefore, the
strongest opponent of the Aharonov—Bohm effect, the
electron—electron interaction, leaves the current quali-
tatively unchanged.

On the other hand, the electron—phonon interaction
(considered here classically in regard to lattice vibra-
tion) flattens the E(f) dependence near the peak value
(see Fig. 124). At large tiffnesses K, this flattening
remains important only for small magnetic fluxes,
much smaller than the flux quantization period A® =
d,. We note that the persistent current peak reducesin
its amplitude only dslightly near ® = 0. Asis seen from
Fig. 12b, the el ectron—phonon interaction splitsthe sin-
gularity at ® = 0totwo singularitiesat ® = +dg,,. Out-
sidetheinterval —®g,, < ® < dg ., the structural trans-
formation is blocked by the Aharonov—Bohm flux. The
range of magnetic fluxes between -, and ®g,, deter-
mines the domain of the devel oping lattice transforma:
tion, which signifiesitself with nonzero values of lattice
deformations X; and X,. This property allows usto sug-
gest that the spontaneous persistent current state (a
peak of dissipationless charge transport at or near the
zero flux) remains at a nonzero ® when the electron—
phonon coupling is not too strong or when the lattice
stiffnessis larger than a certain critical value.

5. DISCUSSION

In conclusion, we considered the Aharonov—Bohm
effect in an angul ar-periodic macromolecular structure,
like that of an aromatic cyclic molecule, and estab-
lished the existence of a persistent current and also a
spontaneous current when the Aharonov—Bohm flux is
not applied to thering. Strong coupling of electron hop-
ping to the ion core of the molecule removes the spon-
taneous current, which is nevertheless restored at a
(small) magnetic field, or when the loop has large tiff-
ness or is strongly bound to an external azimuthal-peri-
odic environment (asubstrate). Degenerate states of the
loop at @ = dy/2 and at ® = 0 may serve as components
of aqubit that are operated by static voltages applied in
the plane of the loop perpendicular to the direction of
the Aharonov—Bohm flux.

The papers of Gatteschi et al. [18, 19] are particu-
larly noteworthy, in which an azimuthal-periodic
molecular structure (a “ferric wheel”
[Fe(OMe),(O,CCH,CI)]40) exhibited periodic variation
of its magnetization as a function of the magnetic flux;
we assume that the periodicity with large period can be
attributed to persistent currents. The above macromo-
lecular structure is more complex than the one we con-
sidered because it contains magnetic ions with strong

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

1007

E
-3.0

-3.1

-3.2

-33

O/,

(b)

1
01 01 03 05
O/,

1
-05 -03

Fig. 12. Energy (@) and current (b) versus flux in a loop of
noninteracting el ectrons coupled to the lattice with the cou-
pling parameter g = 1 and various values of the stiffness
parameter K: K =2 (1), 3(2), 5(3), 10 (4), 20 (5).

exchange interactions such that the actual magnetic
field in the ring may be larger than the externally
applied field. If this suggestion proves correct, it will
open the possibility of engineering macromolecular
structures (qubits and qugates) based on the Aharonov—
Bohm effect, for purposes of quantum computation.
Apart from this, the very existence of anonzero nonde-
caying current in a nonsuperconductive system is, in
our opinion, of fundamental physical interest.
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