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Abstract—Immunoglobulin M (IgM) was immobilized from a solution by the method of charge self-assembly
on solid substrates (ordered polyelectrolytes and as-cleaved mica). The process of film formation and the struc-
tural organization was controlled and studied by the methods of atomic-force microscopy and X-ray reflecto-
metry. It was shown that adsorption from rather concentrated (0.680–0.068 mg/ml) IgM solutions gave rise to
formation of 100- to 150-Å-thick continuous protein layers. At lower concentrations (0.006 mg/ml), no contin-
uous protein films were formed. The substrates of mica-type atomically smooth surfaces provide a higher image
resolution, which, in turn, allows the observation of isolated IgM molecules and their aggregates. In the image
plane, the molecules have rounded contours 300–500 Å in diameter and 40–60 Å in height. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION 

In recent years, the efforts of numerous researchers
have been aimed at studying and employing the princi-
ples which underlay the functioning of biological sys-
tems. This approach is applicable to the design of sen-
sitive elements of immunosensors based on antigen–
antibody interactions [1]. The design of highly efficient
immunosensors requires the preparation of ordered
films of functionally active proteins, i.e., the obtaining
of immobilized monolayers of immunoglobulins or
protein assemblies on solid substrates. It should be
taken into account that changes in strength of interac-
tions between the protein molecules and the substrate
surface and between macromolecules upon protein
immobilization can give rise to aggregation on the sub-
strate surface and structural changes in macromole-
cules, resulting in the loss of the protein activity.
Hence, one has to develop appropriate procedures for
assembling mono- and multilayer highly organized
assemblies and comprehensive study of their struc-
tures. 

In recent years, atomic-force microscopy (AFM)
has been widely used for gaining information on the
structures of biological samples and interactions
between biomacromolecules. However, the application
of this method to biological samples is limited by
numerous factors such as sample “softness” and the
mode of macromolecule immobilization on a substrate
in order to attain a higher molecular resolution and
1063-7745/00/4506- $20.00 © 21001
image reproducibility. Thus, the data on the biomole-
cules dimensions determined by atomic-force micros-
copy method are sometimes inconsistent [2, 3]. 

Earlier, we demonstrated that protein films can be
assembled on a polyelectrolyte substrate by the method
of charge adsorption with the use of X-ray reflectome-
try and atomic-force microscopy to control the process
of formation of such multilayer assemblies [4]. 

Below, we describe our study of the structural orga-
nization of the films of immunoglobulin M adsorbed on
solid substrates as a function of the conditions of their
assemblage by the AFM and X-ray reflectometry meth-
ods. 

EXPERIMENTAL 

Materials and methods. Polyelectrolyte (PE) films
were prepared from solutions of various polymers—
poly(sodium styrenesulfonate) (PSS, M = 100000,
Serva), poly(allylamine hydrochloride) (PAA, M =
50000–65000, Aldrich), and poly(ethylenimine) (PEI,
M = 50000, Aldrich) as well as the salts MgSO4 · 7H2O,
NaBr, and NaCl (reagent grade, Reakhim). The solu-
tions were prepared with the use of tridistilled water
(pH 6.4). We also used tris-HCl (Merck), Sepharose
CL-4B (Pharmacia), and the Coomassie Brilliant Blue
R-250 dye (Bio-Rad). 

Monoclone immunoglobulin M (IgM) was isolated
using a procedure developed earlier [5]. At the final
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stage of protein purification by gel-filtration through
Sepharose CL-4B, we used only the fractions corre-
sponding to the region of the maximum and to the sub-
sequent elution-peak decrease, because, according to
the data of ultracentrifugation, only these fractions
were virtually free of associates. The protein solutions
were concentrated in an ultrafiltration cell (model
8050, Amicon) with a Diaflo PM-30 membrane. Before
the experiments, the solutions were filtered (an ME-25
membrane filter with a mesh diameter of 0.45 µm pro-
duced by Schleicher and Schuell). Protein concentra-
tions were measured by spectrophotometry at λ =
280 nm. The protein solutions were prepared in a
0.01 M tris-HCl buffer (pH 8.3) containing 0.1 M
NaCl. The homogeneity and purity of the initial protein
samples were checked by the immunoelectrophoresis
(the micro version) and analytical ultracentrifugation
methods [6]. 

The protein on the immunoelectrophoregrams and
the solid substrates was detected by coloring with a
0.5% aqueous solution of Coomassie Brilliant Blue
R-250 containing 35% ethanol and 10% acetic acid
(Reakhim). The removal of the excessive dye was per-
formed in the same medium [7]. 

Preparations of samples. An adsorbed protein
layer was formed on a glass substrate (40 × 10 × 2 mm)
preliminarily coated with a thin polyelectrolyte (PE)
film of the composition PEI + (PSS/PAA)n, where n is
the number of the PSS/PAA bilayers. Polyelectrolyte
films on glass substrates were obtained by charge self-
assembly method [8]. The second type of the substrate
for preparing an IgM layer was the surface of as-
cleaved mica. 

Immunoglobulin M molecules were immobilized by
immersing the substrates into the protein solutions at
room temperature. The time necessary for the forma-
tion of the adsorbed protein layer on the substrates var-
ied from two minutes to three hours. After protein
adsorption, the samples were washed with distilled
water or first with tris-HCl and then with water (two
minutes). The concentrations of IgM solutions varied
from 0.680 to 0.006 mg/ml. 

Atomic-force microscopy. Topographic images of
the protein and PE film surfaces were obtained using
the contact and taping AFM modes [9]. In the contact
mode, the 85-µm Si3N4 cantilevers were used (Park Sci-
entific Instruments; resonance frequency 120 kHz, cur-
vature radius of the tip was 500 Å). In the taping mode,
90-µm conducting Si cantilevers were used (Nanotekh-
nologiya-MDT; resonance frequency 165 kHz; curva-
ture radius of the tip was 200 Å). The studies were
made on P4-SPM-MDT and P47-SPM-MDT scanning
probe microscopes (Nanotekhnologiya-MDT). To
obtain precise metric data along the horizontal and ver-
tical directions, the microscope was calibrated against
the atomic images of highly oriented pyrolytic-graphite
surface (the accuracy of the measurements along the X-
and Y-axes was 1%) and against calibration test lattices
C

(the accuracy of measurements along the Z-axis was
10%). 

X-ray reflectometry. The formation of the films on
the substrates was checked by small-angle X-ray reflec-
tometry data [4]. The measurements were made on an
automated AMUR-K small-angle X-ray diffractometer
(designed and constructed at the Shubnikov Institute of
Crystallography of the Russian Academy of Sciences)
equipped with a proportional position-sensitive OD-2
detector used as a recorder. The reflectivity curve I(2θ)
was measured using the θ–2θ method. The scattering
angle 2θ varied from 0.5° to 3.0° (λ = 1.54 Å). The
angular resolution of the detector in this angular range
was 0.02°. The change in the film thickness with an
increase of the number of adsorbed layers was deter-
mined from the changes in the period of the Kissig
oscillations in the reflectivity curve. 

RESULTS AND DISCUSSION 

Earlier [10], we demonstrated that the surface mor-
phology of PE films practically did not change in the
range of n = 5–10. With this number of PE bilayers (the
thickness of the film is 200–500 Å), the error in the
determination of dimensions of the PE/protein films by
the method of X-ray reflectometry is minimal, and the
film thickness can be determined within an accuracy of
5% [4]. Since most of the surface of an IgM molecule
is negatively charged at pH > 5.5, we used PAA poly-
cations as the upper PE layer of the film in IgM adsorp-
tion. The X-ray reflection curves for the pure polyelec-
trolyte PEI + (PSS/PAA)8 film (curve 1) and the film
obtained after immobilization of IgM from the solution
containing 0.068 mg/ml of the protein at room temper-
ature (curve 2) are shown in Fig. 1. The thickness of the
immobilized protein layer was estimated from the
change in the angular distance between the maxima
(minima) of the Kissig oscillations. Under the experi-
mental conditions used, the thicknesses of the protein
layers attained up to 100 Å. 

The effect of the time of substrate exposure in the
IgM solution on the protein-film thickness was esti-
mated from the X-ray reflectometry data. A stable pro-
tein film was obtained from the solution containing
0.068 mg/ml of IgM within 30 minutes. The existence
of a protein layer on the PE film was confirmed by col-
oring of the substrate with a Coomassie solution. 

The atomic-force microscopy data demonstrated
that the change in the protein concentration in the solu-
tions affected the morphology of the surface of an
adsorbed IgM layer. The concentrations of the protein
in the solutions of about 0.6 mg/ml provided the forma-
tion of continuous protein layers on the surface of PE
films. With a decrease of the concentration to
0.006 mg/ml (at the same adsorption time), isolated
protein islands of approximately equal thicknesses
were observed. The topographs of the film surface of
the composition PEI + (PSS/PAA)5 before and after the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 1. X-ray reflection patterns from the polyelectrolyte film of composition PEI + (PSS/PAA)8 applied onto a glass substrate by
the method of charge self-assembly (1) before and (2) after immobilization of IgM on this substrate from a protein solution (at the
concentration of 0.068 mg/ml). 
application of a IgM layer from the protein solution of
the concentration equal to 0.698 mg/ml are shown in
Figs. 2a and 3a. The topographs were obtained in the
taping mode at a scan rate of 1.6 × 104 Å/s. One can see
the globules of various dimensions 250–300 Å in the
horizontal direction and 30–40 Å in height (the major
component of the PE layer) and rare individual agglom-
erates (attaining up to 900–1100 Å in length and 100–
127 Å in height) on the surface of the pure PE film
(Fig. 2a). The analysis of the surface profiles (one of
them is shown in Fig. 2b) and the histograms of height
distribution show that most of the heights (about
57.7%) range within ~30–40 Å. Morphologically, the
protein film firmly attached to the PE substrate (Fig. 3a)
seems to be smoother and more homogeneous than the
pure PE film. The topographs yield the following char-
acteristic dimensions of the globules on the surface:
270–400 Å (in the horizontal direction) and 60–70 Å
(along the height). The histogram of the height distribu-
tion shows that the dominant height (for about 60.5%
globules) is 50–60 Å. 

Digital processing of the atomic-force microscopy
data provided the analysis of the surface roughness.
The algorithms for calculating the roughness parame-
ters as a function of correlation roughness were
described in [9]. Comparing two-dimensional func-
tions of the correlation roughness, we came to a conclu-
sion that the correlation between the globule dimen-
sions is more pronounced for protein than for PE films.
Morphologically, the protein films were more homoge-
neous. The correlation lengths Lc were determined as
238 and 441 Å for the protein and PE films, respec-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      200
tively. Hence, the protein surface of the PE film is
coated with an almost continuous homogeneous layer,
thus levelling the surface roughness. 

The use of a PE film as a substrate providing a
strong immobilization of biomolecules makes it possi-
ble to achieve a good image reproducibility. However,
analysis of the images showed that the surfaces of these
films are pronouncedly rough, thus reducing the image
resolution. We believe that it is more expedient to
immobilize biomolecules in the studies of intermolecu-
lar interactions, using fine-grain salt-free films studied
in [10]. 

It should be emphasized that in [11], adsorption of
immunoglobulin IgG and anti-IgG was performed on
PE films. It was also shown that in this case, IgG mol-
ecules retained their activity in the antigen–antibody
interactions on the surface. 

To improve the resolution, IgM was adsorbed on a
smooth surface of as-cleaved mica [12]. A protein is
adsorbed on the mica surface due to electrostatic and
hydrophobic interactions. The negative charge density
on as-cleaved mica is about 2 e/nm2 [13]. Positively
charged regions of the protein molecule can interact
with negatively charged centers on the mica surface. In
this case, the neighboring protein molecules can inter-
act via their hydrophobic regions. Adsorption of a pro-
tein from the solutions with the concentrations of about
0.680–0.068 mg/ml results in the formation of a contin-
uous IgM film. The use of the AFM method in the tap-
ing mode provided imaging without breaking the layer
structure. 
0
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Fig. 2. (a) AFM image of the surface of the polyelectrolyte PEI + (PSS/PAA)5 film applied onto a glass substrate by the method of
charge self-assembly and (b) the profile of the surface parallel to the X-axis. The scanning range 5000 × 5000 Å. The experiment
was made in the taping mode; the loading force applied to the cantilever was ~10–8 N (Figs. 2–5). 
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Fig. 3. (a) AFM image of the surface of the IgM film formed on the PE film (Fig. 2) by deposition from a protein solution with a
concentration of 0.680 mg/ml and (b) the profile of the surface parallel to the X-axis. The scanning region was 5000 × 5000 Å. 
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Fig. 4. (a) AFM image of the surface of the IgM film adsorbed on as-cleaved mica after the removal of the protein layer by repeated
scanning of the corresponding film region (a square with a side of 15000 Å in the central region of the image) in the contact mode
(~10–7 N). (b) The scanning range was 38470 × 43000 Å. The profile of the surface along the direction indicated by an arrow in
Fig. 4a is parallel to the X-axis. 
Under the scanning conditions in the contact mode
with the application of the additional loading force
(pressure ~10–7 N), the protein film was partially
striped off the surface with the aid of an AFM cantile-
ver. In turn, this allowed us to evaluate the thickness of
C

the IgM film on the mica surface. The topograph of the
surface of the protein film on mica obtained upon scan-
ning a small area of this surface in the contact mode is
shown in Fig. 4a. A square region completely free of
immunoglobulin M can be seen in the topograph center.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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The protein stripped from the substrate is seen at the
periphery of the scanning region. The surface profile
obtained along the direction indicated by an arrow in
Fig. 4a is shown in Fig. 4b. On average, the thickness
of the IgM film evaluated from the difference between
the levels of the mica surface (within the square) and
the IgM surface layer was 120–150 Å. This result
agrees well with thickness of the protein film applied to
the PE substrate obtained from the X-ray data. 

We failed to determine the thickness of the protein
layer on the PE film by removing the protein in the
manner described above. Probably, our attempt was
unsuccessful because the PE film (stronger than the
IgM film) shows good adhesion to a glass substrate. In
this case, the visual inspection of a cleaned square (with
a depth of ~70 Å) does not allow an unambiguous
answer to the question as to whether it is only the pro-
tein layer that is stripped, because the morphologies of
the PE and the protein films are similar. 

Experiments on protein adsorption from solutions
on mica at lower concentrations indicated that isolated
IgM molecules can be characterized using the AFM
data. At low IgM concentrations in the solutions (of the
order of 0.006 mg/ml), both isolated IgM molecules
and characteristic protein aggregates are observed on
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Fig. 5. AFM images of individual IgM molecules and their
aggregates adsorbed on mica from the protein solutions with
low concentrations (Ò ≅  0.006 mg/ml). The scanning regions
were (a) 4200 × 3000 and (b) 1500 × 1000 Å. 
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the mica surface. Usually, the particles have rounded
shapes, and their average dimension along the horizon-
tal ranges within 400–500 and the height within 40–
60 Å (Fig. 5). There are also smaller particles with a
horizontal dimension of about 300 Å. Upon aggrega-
tion, molecules often form ellipsoidal particles with
dimensions of about 600 × 300 × 50 Å and more com-
plicated aggregations. 

As mentioned above, the known atomic-force
microscopy data on the dimensions of individual IgM
molecules are somewhat inconsistent. In [2], the
dimensions of individual IgM molecules adsorbed on
mica are indicated as 35 ± 5 nm. In [3], the diameter
and the height of the molecules were determined to be
75.4 ± 7.9 and 1.2 ± 0.2 nm, respectively, whereas the
use of another cantilever resulted in different values—
36.3 ± 6.5 and 2.8 ± 0.5 nm, respectively. 

The horizontal dimension of the macromolecules
indicated in our study may be erroneous. The AFM
image is, in essence, a convolution of the surface and
probe images, which results in overestimation horizon-
tal dimensions of the imaged objects due to the finite
dimension of the probe tip and the effect of the lateral
forces acting on the tip in the course of scanning. 

CONCLUSIONS 

Morphologically homogeneous IgM layers were
obtained on solid PE substrates and on as-cleaved mica.
It was shown that deposition from rather concentrated
protein solutions (0.680–0.068 mg/ml) provides the
formation of 100- to 150-Å-thick continuous protein
layers. Adsorption from solutions of lower protein con-
centrations (up to 0.006 mg/ml), no continuous protein
films are formed. The use of mica-like atomically
smooth surfaces allows imaging of individual IgM mol-
ecules and their agglomerations and determination of
their dimensions. The molecules in the image plane
have rounded contours 300–500 Å in diameter and are
40–60 Å in height. The protein-layer thickness evalu-
ated from X-ray reflectometry data agrees with the
thickness determined from the atomic-force micros-
copy data. 
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Abstract—The formation of nonuniform distributions of doping impurities (gallium or boron) in MBE-grown
epitaxial (110)Si layers has been predicted. The effect is caused by vacancy self-organization and is associated
with the formation of vacancy complexes consisting of one surface and two volume vacancies. The model sug-
gested takes into account the impurity capture by kinks and surface vacancies and also the transitions of atoms
between the surface and the bulk of crystal layers with due regard for the effect of an electric field induced by
impurity ions. The spatial vacancy-impurity structures are calculated numerically. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION 

The effect of the self-organization of epitaxial sili-
con layers grown from molecular beams in vacuum
opens new vistas for constructing superlattices with
unique quantum properties. Synergistic phenomena
occurring during doping of epitaxial silicon layers [1–4]
are of great importance for studying growth and the
doping processes in semiconductor crystals. 

Concentration self-oscillations of doping impurities
in molecular-beam epitaxy (MBE) of silicon single
crystals were first observed for (110)Si layers [1]. The
self-oscillations can be caused by self-organization of
either the system of impurities [1] or the system of sur-
face (S) and volume (V) vacancies in a growing crystal
[2]. Below, we consider a formal synergistic model [2]
and then use it to predict the space–time self-organiza-
tion of the vacancy–impurity system. We also use the
concept stating that growth of (110)Si layers proceeds
via growth of isolated chains of Si atoms [5]. 

A crystal surface is a powerful source of nonequilib-
rium S-vacancies formed because the growing atomic
chains are close to a distance of one atomic diameter.
The penetration of S-vacancies into the crystal bulk
occurs via diffusion and also because the surface is cov-
ered with a monolayer of Si atoms. 

We believe that the mechanism of the incorporation
of S-vacancies migrating over the surface and penetrat-
ing the crystal bulk is an autocatalytic process. It pro-
vides the formation of vacancy complexes consisting of
one S- and two V-vacancies located within a certain
neighborhood of the S-vacancy. The S-vacancy that
evolved into such complexes is smaller than the free
S-vacancy. To form a monolayer of Si atoms, the
S-vacancies of vacancy complexes migrate into the
1063-7745/00/4506- $20.00 © 21007
crystal bulk without capturing Si-atoms [6]. This
results in the quadratically increasing dependence of
the frequency of migration of S-vacancies into the crys-
tal bulk on the concentration of V-vacancies. 

The concentration of V-vacancies, which results in
depletion of the surface of S-vacancies, continues
unless the S concentration becomes lower than the crit-
ical value. This process is repeated again only upon a
time sufficient for restoration of the critical concentra-
tion of the vacancy complexes. Diffusion of S-vacan-
cies and impurity atoms over the crystal surface gives
rise to an autocatalytic process of penetration of S-
vacancies into the crystal bulk and the generation of the
vacancy- and impurity-concentration waves. 

Impurity atoms are captured by kinks and S-vacan-
cies and also diffuse from the subsurface layer into the
crystal bulk and are incorporated into the crystal. In this
case, an important part is played by blocking of impu-
rity atoms by mobile silicon adatoms and dimers in the
kinks and subsurface layers. A nonuniform distribution
of the vacancies in the bulk of a growing epitaxial layer
gives rise to formation of inhomogeneous impurity
structures.

KINETIC EQUATIONS 
AND THEIR SOLUTION 

Consider doping of (110)Si layers with gallium or
boron from molecular beams in vacuum such that no
molecular complexes of the Ga2-type can form on the
crystal surface [7]. 
000 MAIK “Nauka/Interperiodica”
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The kinetic equations that describe growth, doping
of epitaxial layer, and formation of vacancies are
[2, 5, 6] 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here, t is the time of epitaxial-layer growth; x and y are
the Cartesian coordinates of a point on the crystal sur-
face; nj (j = 1, 2, 3, 4) is the concentration of impurity
atoms with valence j; ω+ and ω– are the frequencies of

∂ρ1/∂t W0 2D ρ1 ρ1,( )ρ1
2–=

– D ρ1 N,( ) N h+( ) 1 n2/ N h+[ ]–( )[
+ D ρ1 n2,( )n2 D ρ1 ρ2,( )ρ2+

+ D ρ1 N N, ,( )N N h+( ) 1 n2/ N h+[ ]–( )2 ]ρ1,

∂ρ2/∂t D ρ1 ρ1,( )ρ1
2=

– D ρ2 N,( ) N h+( ) 1 n2/ N h+[ ]–( )[
+ D ρ2 n2,( )n2 D ρ2 n3,( )n3 D ρ1 ρ2,( )ρ1 ]ρ2,+ +

∂N /∂t 2D ρ1 ρ2,( )ρ1ρ2=

– D ρ1 N N, ,( )N 2N h+( ) 1 n2/ N h+[ ]–( )2ρ1,

∂n1/∂t W K n1 0,( ) D13CseX+[–=

+ D n1 N,( ) N h+( ) 1 n2/ N h+[ ]–( ) ]n1 K n2 n1,( )n2,+

∂n2/∂t D n1 N,( ) N h+( ) 1 n2/ N h+[ ]–( )n1=

– K n2 n1,( ) D ρ1 n2,( )ρ1 D ρ2 n2,( )ρ2+ +[ ]n2,

∂n3/∂t D13CseXn1 D ρ1 n2,( )ρ1[+=

+ D ρ2 n2,( )ρ2 ]n2 D ρ2 n3,( )ρ2 D34CveY ]n3+[–

+ D43CseXn4 D3 ∂2n3/∂x2 ∂2n3/∂y2+( ),+

∂n4/∂t D34CveY D ρ2 n3,( )ρ2+[ ]n3=

– W0 D43CseX+[ ]n4,

∂X/∂t D ρ1 N N, ,( )ρ1N N h )+(=

× 1 n2/ N h+[ ]–( )2/Cse D ρ1 Cs,( )ρ1e+

– D ρ1 N,( )ρ1 N h+( )γ 1 n2/ N h+[ ]–( )[

+ D ρ1 Cs,( ) ρ1e ρ1+( ) ω+ D43n4+ +

+ D13n1 ] X ω– D43n3 ]+ Y[+

– δCve
2 D ρ1 N,( )ρ1 N h+( ) 1 n2/ N h+[ ]–( )XY2

+ Ds ∂2X/∂x2 ∂2X/∂y2+( ),

∂Y /∂t D ρ1 N,( )ρ1 N h+( )γ 1 n2/ N h+[ ]–( )[=

× Cse/Cve ω+Cse/Cve D43n4 ] X+ +

– W0 ω– D43n3 ]+ + Y δCveCseD ρ1 N,( )+[

× ρ1 N h+( ) 1 n2/ N h+[ ]–( )XY2.
C

the diffusion transitions of S-vacancies into the bulk
and the reverse transition of V-vacancies into the S state,
such that ω+Cse = ω–Cve, where Cse and Cve are the equi-
librium concentrations of the S- and V-vacancies; N and
h are the kink concentrations associated with growth
processes and misorientation of the surface with
respect to (110)Si; W0 and W are the silicon and impu-
rity-flux densities measured in the units of the fre-
quency of a growing monolayer of silicon atoms; X =
Cs/Cse and Y = Cv/Cve are the relative concentrations of
S- and V-vacancies; K(n1, 0) and K(n2, n1) are the fre-
quencies of impurity adatom desorption and the transi-
tions of impurity from kinks to the desorbed state; Dij is
the frequency of the change of impurity valence from i
to j; D3 and Ds are the coefficients of surface diffusion
for “triply coordinated” impurity atoms and S-vacan-
cies; and D(a, b) and D(a, b, c) are the frequencies of
interactions between the objects with the concentration
a with the objects with the concentrations b and b, c. 

The factor (1 – n2/[N + h]) takes into account kink
poisoning with impurity and determines the fraction of
impurity-free kinks. The autocatalytically induced dif-
fusion of S-vacancies forming the vacancy complexes
into the crystal bulk is described by the terms

δ D(ρ1, N)ρ1(N + h)(1 – n2/[N + h])XY 2 and
δCveCseD(ρ1, N)ρ1(N + h)(1 – n2/[N + h])XY 2 in
Eqs. (8) and (9). Here, the frequency D(ρ1, N)ρ1(N + h)
determines the capture of a silicon adatom by a kink,

whereas the factor δ Y2 = δ  describes the prob-
ability of localization of two V-vacancies in the hemi-

sphere V0 = 2π /3 of the radius R0 in the vicinity of
the S-vacancy. The quantity δ = δ0Ω , where δ0 ≈1, is the
probability that an S-vacancy would pass from the
vacancy complex into the bulk during growth of a

monolayer of Si-adatoms. Ω ≈  is the number of pos-
sible distribution of two V-vacancies over N0 points of
the crystal lattice within the volume V0 . In the numeri-
cal computations, we assumed that R0 ≈ 7 and δ = 5 ×
105. The probability γ of migration of an S-vacancy not
entering the vacancy complex into the crystal bulk dur-
ing growth of a Si monolayer is assumed to be much
less than the probability δ0. 

Equations (1)–(9) take into account the mobility of
silicon dimers, which block impurity atoms in the kinks
(with a frequency of D(ρ2, n2)ρ2n2) and in the subsur-
face layer (with a frequency of D(ρ2, n3)ρ2n3). The
S-vacancies are generated mainly when the ends of the
atomic chains at the (110)Si surface approach one
another to a distance of one atomic diameter (with a fre-
quency of D(ρ1, N, N)ρ1N(N + h)(1 – n2/[N + h])2). The
equilibrium mechanism of vacancy generation (at a fre-
quency of Ge, which, in accordance with the principle
of detailed equilibrium, equals the frequency
D(ρ1, Cs)ρ1e of the equilibrium annihilation of S-vacan-

Cve
2

Cve
2 Cv

2

R0
3

N0
2
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SPACE–TIME SELF-ORGANIZATION OF THE VACANCY–IMPURITY SYSTEM 1009
cies) is less important. The kinetic equations describe
only the processes of surface diffusion of S-vacancies
and subsurface impurity atoms. These processes occur
more intensely than diffusion of V-vacancies and impu-
rity atoms in the first volume monolayer. 

To solve the system of Eqs. (1)–(9) at the crystal
surface, we have to introduce into consideration a dis-
crete spatial square net with a step of hs and substitute
the second partial derivatives by their discrete ana-
logues [8]. 

In the numerical computations of impurity, vacancy,
kink, adatom, and silicon dimer concentrations (mea-
sured in the atomic fractions), the domain of integration
for Eqs. (1)–(9) was chosen in the form of a square with
a side equal to 0.38 µm. All the concentrations were
assumed to be equal to 10–10 at all the boundaries of this
domain except for the values X = Y = 1 and n4 = 2 × 10–8.
The initial concentration values were assumed to be
equal to the corresponding values at the boundaries of
the integration domain. 

The computations were made at the parameter val-
ues characteristic of gallium-doped (110)Si layers [9]: 

(10)

(11)

(12)

(13)

(14)

(15)

(16)

δ = 5 × 105, γ = 0.07, (17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

ns = n1 + n2 + n3 + n4, (27)

(28)

ρ1s Cse 24/RT–( ),exp= =

Cve 30/RT–( )exp ,=

D ρ1 Cs,( ) 1013exp 35/RT–( ),=

D13 1013exp 36.5/RT– G–( ),=

ω+ 1013exp 50/RT–( ),=

D ρ1 N N, ,( ) 1013exp 26/RT–( ),=

D ρ1 N,( ) D ρ1 ρ2,( ) 1013exp 24/RT–( ),= =

D n1 N,( ) 1013 20/RT–( )0.03,exp=

D ρ1 ρ1,( ) 1013exp 30.64/RT–( ),=

D ρ2 n2,( ) 1013exp 50/RT–( ),=

D ρ2 N,( ) 1013exp 30/RT–( ),=

D ρ1 n2,( ) 1013exp 24/RT–( )0.004,=

K n1 0,( ) 1013exp 45/RT– G+( ),=

K n2 n1,( ) 1013exp 40/RT G+–( ),=

D ρ2 n3,( ) 1013exp E/RT– G–( ),=

E 24 1 0.3ln 1 ln 1 ns/2 10 7–×+( )+( )+( ),=

D3 1013exp 27.24/RT–( ),=
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(29)

(30)

(31)

In Eqs. (10)–(31), the activation energy is measured
in kcal/mol; the impurity concentration (31), in m–3 [10]. 

Usually, the energy of a vacancy formation far from
the silicon and germanium surface of these crystals is
evaluated as 1.9 eV ≈ 43.8 kcal/mol [11]. The energy of
vacancy formation in the first subsurface volume layer
of the crystal was taken to be 30% lower than the above
value, i.e., 1.3 eV ≈ 30 kcal/mol, whereas the energy of
the surface-vacancy formation was taken to be
24 kcal/mol ≈ 1.04 eV. Such low energies of the forma-
tion of equilibrium point defects at the crystal surface
are necessary to provide a nonuniform vacancy distri-
bution. 

If an epitaxial layer grows on the native semicon-
ductor substrate, the G value (the increment in energy
of an electric field of the crystal caused by the appear-
ance at the surface of one impurity atom) expressed in
the kT units, where k is the Boltzmann constant, is
determined from the equation 

(32)

Here, Nret = 1019 m–2 is the reticular density of atoms at
the (110)Si surface, ni is the intrinsic carrier concentra-
tion in the semiconductor, x0 is the Debye radius of
point charge screening in a semiconductor with the rel-
ative dielectric constant ε (for silicon, ε = 12): 

(33)

Here, ε0 is the electric constant, Ψ0 is the potential of
the electric field at the crystal surface in the kT/e units,
and e is the absolute value of the electron charge deter-
mined by the equation 

(34)

We also assume that the ionization degrees of all the
impurity atoms at the crystal surface are the same and
equal

(35)

with the effective energy being Ea = Ev + 3 kcal/mol,
where Ev is the energy of the valence-band top of sili-
con and F is the Fermi level. 

Ds 1013exp 27.24/RT–( ),=

D34 D43 1013exp 50/RT–( )= =

× 1 ns/ ni2 10 29–×( )[ ]2
+( ),

where   ni 106exp 47.195747(=

+ 1.9932522 10 3– T× 7422.7459/T ).–

G
Fa Ψ0cosh 1–( )/ Ψ0sinh

1
Nret/2

1/2 Ψ0cosh 1–( )1/2

x0ni Ψ0sinh
-----------------------------------------------------------Fa 1 Fa–( )+

----------------------------------------------------------------------------------------------.=

x0
2 kTεε0/ 2e2ni( ).=

eNretnsFa/ 2εε0nikT( )1/2 2 Ψ0/2( ).sinh=

Fa 1/ 2exp Ea F–[ ] /RT Ψ0–( ) 1+[ ] ,=
0
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RESULTS AND DISCUSSION 

At the initial stage (prior to formation of the station-
ary vacancy–impurity structure), one observes the self-
oscillations of the vacancy and impurity concentrations
with the period usually not exceeding 20–30 atomic
monolayers. The stationary vacancy and impurity dis-
tributions are formed within 1–2 s and have the form of
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Fig. 1. Stationary distribution of volume vacancy concentra-
tions in the plane of the gallium-doped epitaxial (110)Si
layer at h = 0, V = 25 µm/h, W = 7.155 × 10–4 s–1, and T =
845 K. Along the vertical axis, the points of a discrete net
with a step of hs = 0.01 µm represent the values of 10 logY.

One fourth part of the surface (0.19 × 0.19 µm2) is shown. 
C

cylinders with generatrices normal to the crystal sur-
face. 

Figures 1 and 2 show the stationary distributions of
V-vacancies and gallium atoms substituting tetrahe-
drally coordinated silicon atoms in the subsurface
region of the epitaxial (110)Si layer at the temperature
T = 845 K, the growth rate V = 25 µm/h, and the density of
the of adsorbed gallium-atom flux W = 7.155 × 10–4 s–1.
This W value corresponds to the impurity concentration
in the sublimating silicon source equal to 1018 cm–3. 

The oscillations in vacancy concentrations result
only in the change of n3 and n4 caused by diffusion of
S- and V-vacancies; therefore, the V-vacancy and Ga
concentration distributions in the crystal bulk n4 on the
whole, are similar. 

The regions with vacancy and impurity concentra-
tions one hundred times higher than their average con-
centrations have a diameter of about 0.01 µm and are
located at distances of about 0.1 µm from one another
and from the integration-domain boundaries. The char-
acteristic size of inhomogeneity in the impurity distri-
bution is about 0.02 µm. 

Variations in the diffusion coefficients D3 and Ds

result in deformation of the spatial vacancy and impu-
rity structures. In particular, a 20-fold decrease in Ds

results in the reduction of the distances between the
concentration maxima up to 0.03 µm. A decrease in D3
increases the average impurity concentration but does
not lead to “decomposition” of the vacancy–impurity
structure into smaller fragments. 

The time τ of diffusion spreading of the stationary
cylindrical-vacancy and impurity structures is quite
pronounced. At the substrate temperature T = 845 K
5
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Fig. 2. Stationary distribution of gallium concentration Nl = n4/2 × 10–23 cm–3 with respect to the surface of the epitaxial (110)Si

layer at h = 0, V = 25 µm/h, W = 7.155 × 10–4 s–1, and T = 845 K. Along the vertical axis, the points of the discrete net with a step
of hs = 0.01 µm represent the values of 10 Nl. One fourth part of the surface (0.19 × 0.19 µm2) is shown. log
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and the volume diffusion coefficient of V-vacancies and
impurities equal to 1013exp(–50/RT) ~1 s–1, this time is
τ ≈ 0.7 h at the diffusion length 0.01 µm. 

The frequency of diffusion jumps in D34 = D43
Eq. (30) and the impurity concentration ns decrease
with a decrease in W; the distribution of this concentra-
tion over the surface becomes uniform at W < 10–5 s–1,
whereas the self-organization and the inhomogeneity in
the vacancy distribution are preserved. 

At W > 10–2 s–1, the phenomenon of vacancy self-
organization and also inhomogeneity in impurity distri-
bution do not take place. This is explained by an
increase of the rate of the layer doping and is not asso-
ciated with kink poisoning. 

The vacancy self-organization can occur only
within narrow ranges of the growth rate, temperature,
the degree of surface misorientation of the substrate
with respect to (110)Si and the impurity-flux density.
Figure 3 shows the ranges of the growth-parameter
variations for an epitaxial layer calculated by the meth-
ods of qualitative theory of differential equations [12]
permitting self-oscillations of vacancy concentrations
and the formation of stationary space vacancy–impu-
rity structures. 

With an increase in the misorientation h of the sub-
strate with respect to the (110)Si, the temperature range
of self-oscillations of the vacancy system over the epi-
taxial-layer thickness increases. Thus, at V = 20 µm/h,
h = 0, and W < 5 × 10–6 s–1, the vacancy self-oscillations
arise in the temperature range of 830–848 K; at h = 5 ×
10–3, in the range of 800–830 K; and at h = 10–2, in the
range of 770–810 K. 

With an increase in h at the given temperature, the
range of epitaxial-layer growth rate providing the self-
oscillations of the vacancy system broadens. Thus, at
h = 0 and T = 847 K, this range equals 19.30 µm/h,
whereas at h = 0.005 and the same temperature it is 26–
49 µm/h. 

Simulation of doping of the epitaxial (110)Si layers
with boron was performed on the basis of Eqs. (1)–(9)
with the substitution of the impurity-adatom desorption
frequencies K(n1, 0) and the frequencies of impurity-
adatom detachment from the kinks K(n2, n1) by the val-
ues K(n1, 0) = 1013exp(–65/RT + G) and K(n2, n1) =
1013exp(–60/RT + G). In this case, the period of
vacancy–impurity self-oscillations increases by no
more than 20%, and, on the whole, the main results
obtained for doping with gallium remain valid for dop-
ing with boron. The experimentally observed period of
self-oscillations of the boron-concentration equals
250 Si-monolayers [1], which is much higher than the
period of the vacancy–impurity oscillations. Therefore,
the cause of the impurity self-organization described in
[1] is not associated with the self-organization of the
vacancy system of the crystal. 

In the case of growth of a semiconductor layer, the
concentration self-oscillations along the specimen
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
perimeter result in the formation of a 0.1-µm-thick wall
with an inhomogeneous vacancy distribution at the
moment 0.5 s after the beginning of the growth process.
At the moment 1 s after the beginning of the growth
process, the vacancy distribution within a half-area of
the specimen surface in the vicinity of its boundaries
becomes inhomogeneous. Then, a partial decomposi-
tion of the walls into individual fragments and cylindri-
cal regions penetrating the crystal normally to its sur-
face is observed far from the specimen boundaries. 

CONCLUSIONS 

The effect of space–time self-organization of the
vacancy–impurity system of a gallium- and boron-
doped homoepitaxial (110)Si layer has been predicted.
The effect is caused by the formation of vacancy com-
plexes consisting of one surface and two volume vacan-
cies. 

The growth rates, growth temperatures, and the
degree of the epitaxial-layer misorientation with
respect to the (110)Si layer, for which monotonic atten-
uating-oscillation and self-oscillation distributions of
vacancies and impurities can be observed along the
grown-layer thickness, have been determined. Depend-
ing on the conditions of the layer deposition and the
quality of the substrate preparation, the period of self-
oscillations can vary from 5 to 30 atomic monolayers. 

If the mobility of surface vacancies is sufficiently
high, the formation of a stationary space vacancy–
impurity structure is possible. This structure usually

15
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Fig. 3. The regions of vacancy distribution over the thick-
ness of the grown epitaxial (110)Si layer at h = 0 and W = 0
as functions of the reciprocal temperature and growth rate:
(1) monotonic, (2) oscillatory, and (3) attenuating oscilla-
tory distributions. 
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consists of a system of cylindrical tubes with a diameter
of about 0.1 µm, which are located normally to the crys-
tal surface. The vacancy concentration in tubes is 50–
100 times higher than the average concentration,
which, in turn, is higher by a factor of 103–104 than the
equilibrium concentration. The time necessary for the
formation of the stationary structure at the growth rate
25 µm/h and the temperature 845 K is not higher than
1–2 s. The characteristic dimension of elementary inho-
mogeneities in the vacancy and impurity distributions
ranges within 0.01–0.02 µm. Cylindrical tubes with
high vacancy and impurity concentrations are spaced
by distances of about 0.1 µm. 
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Abstract—The effect of thermal diffusion of boron on the structure of subsurface silicon layers has been stud-
ied by the method of triple-crystal X-ray diffractometry. The deformation and the static Debye–Waller factor
profiles are determined. The dependence of the structure parameters on diffusion duration is discussed. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Diffusion of elements of groups III and V of the
Periodic Table into the subsurface layer of silicon sin-
gle crystals is widely used in technology of semicon-
ductor materials [1, 2]. All the elements of groups III
and V form covalent bonds with silicon atoms and
occupy the crystal lattice positions. The presence in the
lattice of impurity atoms with covalent radii different
from those of the main elements gives rise to lattice
deformation.

The changes in the lattice parameter can be deter-
mined from the diffraction reflection (or rocking)
curves obtained in the double-crystal diffraction geom-
etry [3–5]. Solving the inverse X-ray diffraction prob-
lem and using rocking curves, one can also study the
deformation profile along the crystal depth [6–9].

However, this method cannot be used for studying
crystals with defects, because a double-crystal diffrac-
tion experiment does not provide the separation of
X-ray intensities scattered by defects and the ordered
part of the crystal lattice. In order to separate these two
types of scattering, one has to use the triple-crystal dif-
fraction scheme [10].

We had the aim to study the structure of the subsur-
face layers of silicon single crystals as a function of
thermal diffusion of boron atoms from the surface film
by the method of triple-crystal X-ray diffractometry.

EXPERIMENTAL

The (111) surfaces of the single crystal silicon
wafers were coated with 1000-Å-thick boron films. The
angle of surface misorientation with respect to the
(111) plane did not exceed 5′′ . Boron films were depos-
ited onto the 0.5-mm-thick silicon wafers with the aid
of a millisecond ruby laser with a free generation in
vacuum. The film thicknesses were determined from
the positions of the interference maxima on the inte-
grated curves of the X-ray total external reflection [11].
1063-7745/00/4506- $20.00 © 21013
Then, the specimens with deposited boron films
were annealed for 20, 40, or 60 min in a helium
(99.99%) atmosphere at 1000°C. The temperature was
uniformly increased within 50 min from 22 up to
1000°C.

The diffusion-induced changes in the subsurface
region of silicon single crystals were studied on a tri-
ple-crystal X-ray diffractometer (Cu  radiation, the
θ-2θ mode). The angular velocity of the analyzer was
two times higher than that of the specimen. We also
used scanning by an analyzer at the fixed angle of the
specimen rotation. The diffractometer was supplied
with a slit silicon monochromator with triple (111)
reflection. The analyzer was also a silicon single crystal
but with single (111) reflection.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 shows the calculated and experimental
rocking curves obtained in the θ–2θ mode. The zeroth
value of the angle corresponds to the exact Bragg posi-
tion, large angles are positive, small angles are nega-
tive.

The curve obtained from the initial substrate has
only one intense peak at θ = 0. A 20-min-long thermal
diffusion results in the formation of an additional weak
maximum in the range of positive angles. A 40-min dif-
fusion almost did not change the angular position of
this peak, but a 60-min diffusion displaced this peak to
zero.

The positions of additional peaks on the θ–2θ
curves coincide with the positions of additional max-
ima on the reduced-intensity function P(α) = Impα2/k ,
where Imp is the intensity of the main peak on the triple-
crystal curves and k is the normalization coefficient
determined from the condition P(α) = 1 for the crystal
prior to diffusion [4]. This shows that the use of the θ–2θ

Kα1
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Fig. 1. Experimental (solid lines) and calculated (dash lines) θ–2θ curves (1) prior to diffusion and upon (2) 20-, (3) 40-, and
(4) 60-min-diffusion.
mode does not allow recording of the radiation scat-
tered by defects [12, 13].

Figure 2 shows the triple-crystal spectra from the
specimens obtained in the scanning mode by an ana-
lyzer at the fixed angle of specimen rotation (α = –30″).
The spectrum of the initial silicon substrate is charac-
terized by the presence of a pseudopeak in the angular
position θ = –α and the main peak in the position
θ = −2α.

A 20-min diffusion gave rise to diffuse scattering in
the vicinity of zero and several-fold reduction of the
intensity of the main peak. A double increase of the dif-
fusion duration was accompanied by an almost double
reduction of the diffuse-scattering intensity with simul-
taneous double increase of the main-peak intensity.
A further increase of the diffusion time to 60 min
reduced diffuse scattering even more but increased the
intensity of the main peak.

Figure 3 shows the deformation and the static
Debye–Waller factor f profiles. A 20-min diffusion
results in the deformed layer with the minimum depth
L. The deformation, which is maximal in the vicinity of
the surface, exponentially decreases with the crystal
depth. The static Debye–Waller factor f, with the value
considerably less than unity at the surface, decreases
with the crystal depth down to ~38 µm and then starts
increasing, approaching the unity.

An increase of diffusion duration up to 40 min
results in an increase of the deformed-region depth and
the f factor in the subsurface layer. A one-hour diffusion
is characterized by a more pronounced deformation, an
C

increase of f in the vicinity of the surface, and a further
increase in L.

The appearance of an additional peak in the range of
positive angle on the θ–2θ curves upon diffusion is
explained by the presence of a layer with a negative
deformation. Penetrating into the crystal depth, boron
atoms occupy the positions at the lattice points. Since
the tetrahedral covalent boron radius (rB = 0.88 Å) is
smaller than that of silicon (rSi = 1.17 Å), the lattice
“shrinks.”

The angular position of an additional maximum is
proportional to deformation (∆d/d = –α , where
θB is the Bragg angle). It should be emphasized that the
θ-2θ curves provide the determination only of certain
effective deformation, because the deformation profile
is smooth and has no stepwise shape (Fig. 3).

Thus, a 20-min diffusion gives rise to the effective
deformation ∆d/d = –1.1 × 10−3. With an increase of dif-
fusion duration up to 40 min, the deformation remains
almost unchanged. According to Vegard’s law, defor-
mation is proportional to the concentration of impurity
atoms occupying the lattice points, ∆d/d = 1.44βC,
where β = (rBrSi)/NrSi = –4.97 × 10–24 cm3 is the defor-
mation coefficient (impurity-induced contraction)
[4, 14] and N = 4.99 × 1022 cm–3 is the density of silicon
atoms. Thus, to the maximum deformation in Fig. 4
(∆d/d = 1.4 × 10–3) there corresponds a boron concen-
tration of C ≈ 2 × 1020 cm–3, which is considerably
lower than the solubility limit (~1021 cm–3 at 1000°C
[1, 15]).

θBcot
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Fig. 2. Triple-crystal curves. Scanning with an analyzer at the fixed angle of specimen rotation α = –30″. For notation see Fig. 1.
A further increase of diffusion time up to 60 min is
accompanied by a considerable decrease of the abso-
lute value of the effective deformation (to 0.73 × 10–3)
and, thus, the boron concentration. This is explained by
the fact that for the time exceeding 40 min, the diffu-
sion and evaporation of the film resulted in its disap-
pearance. Thus, the condition of diffusion from a con-
stantly refilled source is not fulfilled anymore. Some
boron atoms, which diffused from the subsurface
region into crystal bulk, reduced the effective deforma-
tion.

The thickness of the deformed layer can be deter-
mined from the width of the maxima of the reduced-
intensity function [4]. During the 20-min diffusion, the
thickness of the deformed layer attained a value of
0.60 µm; with an increase of the diffusion duration up
to 40 and then 60 min, it increased up to 0.65 and
0.74 µm, respectively. Such a nonuniform change of the
deformed-layer thickness indicates that the diffusion
processes occurring at these stages are different.
Indeed, an increase of the deformed-layer thickness
with a simultaneous decrease of the effective deforma-
tion upon a 60-min thermal treatment indicates that the
condition of a constantly refilled diffusion source is not
fulfilled. Obviously, the film completely disappeared
within ~40 min, and, therefore, the deformed-layer
thickness could increase only due to diffusion from the
subsurface layer, which was also confirmed by the
deformation profiles in Fig. 3.

The deformation and the static Debye–Waller factor
profiles, ∆d(z)/d and f(z), were obtained by fitting the
theoretically calculated θ-2θ curves to the experimental
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
ones on the basis of the Taupin equations with due
regard for two polarization states and the convolution
[8, 16]. The unique solution of this problem can be
obtained only with the invocation of some additional
information. Therefore, we used as the initial approxi-
mation in numerical modeling the thickness of the
deformed layer (calculated from the peak width on the
reduced intensity curve), the maximum deformation
(determined from the angular position of this peak
under the assumption of a stepwise profile), and the
profile f(z) (obtained from the intensities of the main
peaks on the triple-crystal curves [17]).

Upon a 20-min diffusion, the maximum deforma-
tion was observed near the surface. Then, deformation
exponentially decreased with an increase of the crystal
depth, which corresponded to the existence of diffusion
layers [7].

An increase of the diffusion duration up to 40 min,
almost does not change the maximum deformation.
However, a decrease of deformation with the crystal
depth becomes more smooth. The unchanged value of
the maximum deformation indicates that under these
conditions, the boron concentration attains its limiting
value. The observed increase of the deformed-layer
thickness and a smoother decrease of the deformation
with the crystal depth indicates the occurrence of diffu-
sion from a constantly refilled source.

With a still further increase of diffusion duration up
to 60 min, the maximum deformation considerably
decreases, whereas the thickness of the deformed layer
increases.
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Fig. 3. Profiles of (1–3) the spatial deformation distribution ∆d(z)/d and (1'–3') the static Debye–Waller factor f(z). For notation see
Fig. 1.
In the process of diffusion, some lattice defects are
generated in the subsurface region, which is seen from
the formation of a diffuse maximum on triple-crystal
curves. The experimental points on the dependence of
the diffuse-maximum intensity on the angle of speci-
men rotation (on a double logarithmic scale) are
located along the lines with a slope close to 3–4, which
is characteristic of the loops in the Stokes–Wilson
region [4, 18, 19].

The considerable difference between the intensities
of the diffuse maxima at the positive and negative rota-
tion angles of the specimen indicates that these loops
consist of interstitial atoms. Indeed, some boron atoms
occupy interstitials between the lattice points. The esti-
mate made by the Weisser formula [1] yields the value
Bi/Bs ~10–5, where Bi and Bs are the boron concentra-
tions at interstitials and lattice points, respectively. The
existence of the dislocation loops of the interstitial type
in boron-doped silicon is confirmed by other indepen-
dent studies [20].

The radii of the loops estimated by the formula R ≈
1/h∆α, where h is the reciprocal-lattice vector and ∆α
is the angular width of the diffuse maximum, equal
0.34 µm. With an increase of diffusion duration, the dif-
fuse-scattering intensity decreases, which indicates the
reduced number of detects in the subsurface layer. This
is also confirmed by an increase of the minimum value
of the static Debye–Waller factor with an increase of
diffusion duration in Fig. 3.
C

The “degree of defectness” can decrease because of
smaller defect sizes and their lower concentration. The
unchanged angular width of diffuse scattering indicates
that the defects have stable dimensions [21]. A decrease
of the degree of defectness can be explained by a faster
increase of the diffusion region with time in compari-
son with the number of defects and the corresponding
decrease in the defect concentration.

It should be noted that we mean a defect concentra-
tion averaged over the diffusion region. The formation
of defects decreases the static Delye–Waller factor f,
which slowly increased in the vicinity of the surface
with an increase of the diffusion time up to 40 min.
A further increase of diffusion time up to 60 min is
accompanied by more intense increase of the static fac-
tor f.

The above studies lead to the following conclusion.
In the process of thermal diffusion of boron from the
deposited boron film into the silicon substrate, the sub-
strate lattice is “contracted.” During a 20- to 40-min
diffusion, the thickness of the deformed layer increases
almost without visible changes of the maximum defor-
mation. A further increase of the diffusion duration
results in an increase of the deformed-layer thickness
with a simultaneous decrease of the effective deforma-
tion. The deformation is maximal in the vicinity of the
surface and exponentially decreases with the crystal
depth. The diffusion layer contains the loops of intersti-
tial boron atoms. The maximum defect concentration is
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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observed in the layer located at a certain distance from
the surface.
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Abstract—The morphology of fracture faces formed upon discharge indentation of 6H-polytype of silicon car-
bide single crystals has been studied by optical methods. The experiments performed provided the evaluation
of face brittleness. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known, all the mechanical tests of crystals
can reveal a set of properties characterizing elasticity,
plasticity, and strength of these crystals. Usually all the
classical methods of evaluation of these properties are
based on the study of indentations (made by a mechan-
ical indenter on a crystal face) or traces in the form of
rosettes (revealed by the subsequent etching of the
crystal) [1]. It is also well known that an electric break-
down of a wide class of single crystal dielectrics can
result in the formation of traces in the form of oriented
discharge channels. In the process of discharge, the ele-
ments of plastic deformation can be formed and, in
some organic crystals, the so-called Fröhlich break-
down can also occur, which gives rise to crystal crack-
ing [2, 3].

An electric discharge in SiC crystals can result in
the formation of surface patterns consistent with the
crystal symmetry. Most often, the discharge provides
SiC luminescence in the green spectrum range and is
accompanied by various sonic effects. Two forms of
discharge—surface and bulk—can cause complete
crystal fracture. In this case, three main fracture modes
are possible over a rather wide energy range of electric
discharge, namely, the liquid-phase mode, explosion-
like evaporation, and mode and shock-type fracture
mode (the so-called Yutkin effect) [4–7, 8]. Despite the
fact that the main element of the fracture patterns is an
erosion pit, it is possible to create such discharge con-
ditions that the change in the morphology of the frac-
ture patterns would allow the evaluation of the strength
properties of SiC crystals and, in particular, the crystal
propensity to brittle fracture.

Below, we describe the experimental study of such
processes in silicon carbide crystals.

EXPERIMENTAL

The discharge indentation of SiC crystals was per-
formed on a laboratory setup consisting of a generator
of single pulses and a system of sliding steel needlelike
and cylindrical electrodes applied to crystal faces. The
1063-7745/00/4506- $20.00 © 21018
energy Ep of electric pulses ranged within 1.1 × 10–2–
0.9 J. The medium was a transformer oil at room tem-
perature. The specimens were platelike and bulk single
crystals of 6H-SiC polytype with natural and prelimi-
narily polished and etched (KOH melt) falls. The spec-
imen thickness varied within 450–4000 µm; the con-
centration of uncompensated donors was Nd – Na = 5 ×
1018 cm–3. The average dislocation density evaluated
from the hexagonal etch pits was ND = 1 × 104 cm–2 for
the platelike crystals and ND = 5 × 105 cm–2 for the bulk
crystals.

The morphological characteristics of indented
regions were studied by optical and chemical methods
(metallographic microscope, etching in the KOH melt)
and by scanning-electron microscopy (a BS-340 micro-
scope) in the mode of secondary ion emission.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Our studies showed that a shock acoustic wave gen-
erated during partial discharge provides the formation
of the fracture zone in the crystal, whose structure
depends on the properties of the initial crystal and the
experimental conditions. Consider the effect of such
intense factors as the face orientation and the disloca-
tion structure [1, 3].

The discharge indentation of the (0001) face can
give rise either to the local crystal fracture (Fig. 1a) or

the cleavage of the platelike crystal along the ( )
plane (Fig. 1b).

The fracture region consists of the basic depression;
a system of radial and circular cracks; and some
stressed regions (Fig. 1a, 3), whose boundaries can be
visualized due to effects of light interference [9].

The shape of the basic depressions depends on the
pulse energy. The use of the transient modes of face
fracture including SiC evaporation provided the forma-
tion of depressions with the shape close to paraboloids
of rotation with the axes coinciding with the [0001]
direction. In the case of pure brittle fracture, the depres-

1010
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Fig. 1. The (0001) fracture face of a platelike SiC crystal: (a) local fracture [(0001)Si face, Ep = 0.7 J, cylindrical electrode],
(1) radial cracks, (2) stressed region, (3) circular crack; (b) morphology of the SiC cleavage along the (1010) plane (cylindrical elec-
trode) (1) discharge region from the side of the (0001)Si face, (2) cleavage steps caused by channels of partial volume breakdown;
(c) snow-flake fracture pattern (scanning electron microscope, needlelike electrode, (0001)Si face), (1) the region of the needlelike
electrode contact with the specimen, (2) elongated erosion pits, (3) cracks (cleavages).
sions had, in addition to hexagonal elements, the sym-
metry elements of the face. Moreover, clearly bounded
fracture regions having no visible radial cracks were
also observed on the crystal surface. These regions had
arbitrarily shaped erosion pits limited by closed
hexagonal cracks at a certain distance from the pit
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
edges. The crack sides were parallel to the ( )
cleavage plane.

The detailed study of the material fragments
“cleaved out” from the crystal showed that they are
associated with the so-called secondary cracks parallel
to the (0001) face. Propagating upon a shock pulse in
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the field of residual stresses, these cracks intersect the
crystal surface and provide the detachment of some
material fragments. In this case, the effect of the dis-
charge indentation becomes similar to the effect pro-
duced by a sharp mechanical indenter [10].

The radial cracks emerging onto the crystal surface
were usually rather long; were oriented along the

[ ] and [ ] directions; and, according to their
structure, could be related to “brittle cracks” [1]. The
generation of radial cracks was mainly associated with
the crystal fracture along the cleavage planes. The cir-
cular cracks often played the role of the elements “clos-
ing” the radial cracks. The front of these cracks or front

1120 1010

50 µm

[0
00

1]

Fig. 2. Crack of a complicated shape with a cleavage (scan-

ning electron microscope, bulk SiC crystal, ( ) face,
Ep = 0.5 J).

1120

Table 1.  Brittleness of different faces of 6H-SiC crystals

6H-SiC
single crystals

Brittleness index***

(0001) C (0001) Si (11 0) (10 0)

Platelike crystals* 3 3 4 5

Bulk crystals** 4 4 4 5

    * Grown by the Lely method. 
  ** Grown by the method developed at the Leningrad Electro-
       chemical Institute (LETI method). 
*** Measured on the Ikornikova scale [12].

2 1
C

fragments often emerge to the face surface and, thus,
give rise to sectorial cleavage of the crystal.

The fracture of SiC crystals along the cleavage
planes resulted in the formation of an uneven surface
with cleavage micro- and macrosteps originating from
the basic depression (Fig. 1b). The formation of such
steps is caused by channels of partial volume break-
down of the crystal within the basic depression and the
propagation of a shock-wave-induced crack over the
planes located at different levels.

We should like to mention here the experiments
with a needlelike electrode applied to the (0001)Si face.
In this case, snowflake patterns similar to dislocation
rosettes were formed (Fig. 1c). However, etching of
SiC crystals with such fracture patterns in the KOH
melt revealed no traces of sliding. The etching pattern
had individual groups of hexagonal etch pits seemingly
associated with growth dislocations and etching
grooves along the cracks.

The formation of snowflake patterns can also be
caused by the orientation of electric discharges along

the energetically favorable [ ] directions and the
formation of the corresponding shock waves. This
mechanism is also confirmed by the formation of elon-
gated erosion pits (Fig. 1c).

Comparing the crystallographic indices of the frac-
ture traces forming a snowflake pattern (elongated ero-
sion pits, cracks, and “cleaved-out” regions) with the
well-known elements of brittle fracture in 6H-SiC crys-
tals (with the wurtzite structure) [1, 10, 11], one can
single out two main fracture systems—that along the

( ) cleavage planes and that along the (0001)
planes associated with parting. The latter phenomenon
is also confirmed by the presence of smooth steps of
“cleaved-out” material and cracks (Fig. 1c, 3).

The brittle fracture of the ( ) face began at the
energy E = 0.36 J. One of the diagonals of the basic
square depression was oriented parallel to the c-axis.
The fracture region had characteristic cracks and
cleaved-out regions of complicated shapes (Fig. 2),
which often distorted the shape of the basic depression.
In the experiments, the surface of this face had nets
formed by cracks intersecting at right angles. These
cracks corresponded to the fracture system formed

along the ( ) cleavage and the (0001) parting
planes.

The traces of noticeable brittle fracture of the

( ) face were observed even at low pulse energies
(E = 0.08 J). The electric break-down was accompanied
by pronounced cracking and crystal fracture via mate-
rial being layered off along the cleavage planes
(Fig. 3a). The ratio between the area of the basic
depression and the visible fracture region amounted
to 10. The fracture region usually had a well-developed
structure around a rectangular depression (Fig. 3b),

1120

1010

1120

1010

1010
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Fig. 3. The ( ) fracture face of a bulk SiC crystal (a) layering-off of the material along the cleavage plane (scanning electron
microscope, Ep = 0.5 J, cylindrical electrode); (1) discharge region, (2) fracture steps; (b) the structure of the fracture region (Ep =
0.1 J, cylindrical electrode) (1) basal depression, (2) rectilinear crack, (3) region of material layering-off (stressed zone) visualized
due to light refraction.

1010
whose angles served the origins of the rectilinear cracks
(Fig. 3b, 2) propagating in the [0001] directions. An
increase of the pulse energy resulted in the formation of

a multilevel fracture region along the [ ] direction
separated by regular steps and rather long cracks on the
crystal surface.

Using the results of the above experiments, we eval-
uated the brittleness of the 6H-SiC-polytype faces
(Table 1) according to the Ikornikova scale [12].

Table 1 shows that the SiC faces had various forms
of brittleness. This reflects the fact that the specific
characteristics of SiC deformation are determined by
the existence of directed covalent bonds in the crystal.

1010
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It is well known [7, 11] that SiC crystals experience
brittle fracture at temperatures below 600–500°C,
which is caused not by the change in the mechanism
providing plastic deformation but rather by a high value
of the Peierls barrier, which provides the occurrence of
the competing fracture process. The experiments show
that in the process of discharge indentation of SiC crys-
tals, fracture proceeds not only along the cleavage and
parting planes. Table 2 illustrates the location of the
elements of plastic deformation and fracture with
respect to the faces studied.

In terms of crystallography, Table 2 clarifies the for-
mation of faces possessing different brittleness if one
takes into the account that the corresponding brittleness
0
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1

50 µm

2

Fig. 4. Creek patterns [the (0001)C face, cylindrical elec-
trode] (1) cleavage microsteps, (2) interference bands.
C

index is determined by the number of cracks formed
owing to the above fracture and sliding systems. A
higher value of the brittleness for the faces of bulk crys-
tals seem to be explained by a higher density of dislo-
cations and other defects in such crystals [1, 14].

The relation between the dislocation structure of the
crystals and their brittle fracture is associated mainly
with two experimentally observed phenomena—the
formation of creek patterns and parting.

It is well known that the most widespread cause of
the cleavage-step formation is the presence of screw
dislocations intersecting the fracture plane [1, 3]. In
bulk SiC crystals grown along the [0001] direction, the
main contribution into the dislocation structure is given
by threading dislocations parallel to the c-axis [5, 11].
At the same time, the density of dislocations emerging
onto the (0001) face of the platelike crystals grown by
the Lely method is insignificant. Therefore, the dis-
charge indentation of the (0001) faces of bulk crystals
is characterized by the formation of a boundary built by
an ensemble of screw (threading) dislocations, which
generates a series of cleavage steps forming, in turn, the
creek patterns (Fig. 4). A similar situation is also

observed in the indentation of the ( ) face of fac-
eted crystals with a high density of basal dislocations
with screw components [14].

1010
Table 2.  Schematic location of the elements of plastic deformation and fracture with respect to the faces studied in 6H-SiC
crystals with the wurtzite structure

Indented face Possible sliding system [13]
Fracture system

cleavage parting

(0001) Pyramidal {10 0} (0001)

(1 12), 1/3 [1 1 ]

(12 2), 1/3 [ 2 3]

(11 0) Pyramidal {10 0} –

( 101), 1/3 [ 20]

(1 01), 1/3 [ 20]

Basal

(0001), [ 20]

(10 0)
(cleavage plane)

Pyramidal {1 20} –

(01 1), 1/3 [ 110]

(1 01), 1/3 [ 20]

Prismatic

(1 00), 1/3 [ 20]

(01 0), 1/3 [ 110]

1

2 2 3

1 1 1

2 1

1 1 1

1 1 1

1 1

1 1

1 2

1 1 1

1 1 1

1 2
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Platelike crystals with a pronounced defect-contain-
ing D-layer and a considerable density of basal disloca-
tions during indentation of the (0001) faces showed not
only the break along the cleavages but also the forma-
tion of even cleavages (steps) along the (0001) plane. It
seems that parting in such crystals can be caused by the
impurity mechanism of bond weakening (e.g., in the
D-layer) and by the break along the cleavage planes [1].

Thus, the fracture pattern formed by a single dis-
charge can be used for evaluating the face brittleness.

The morphology of the fracture faces along the
cleavage and parting planes depends on the crystallo-
graphic orientation of the surface subjected to indenta-
tion, specific features of the dislocation structure, and
the geometry of the traces of partial volume breakdown
of the material.
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Abstract—A new approach has been suggested for evaluating the sensitivity of doped crystallization systems
to microgravitation. The approach is based on the differential analysis of the Burton–Prim–Slichter equation
under the boundary conditions characteristic of the growth processes on board spacecrafts. A new quantity has
been introduced into consideration—a sensitivity coefficient to microgravitation, Ks, proportional to the change
of the dopant concentration Cs in a growing crystal under the constant dynamical conditions resulting in the
diffusion of the boundary δ-layer in the melt. The Ks values are calculated for electrically active “small” dopants
in Ge and Si crystals. It is shown that the degree of impurity and electrophysical inhomogeneity in crystals
grown under the same microgravitation conditions on board a space vehicle is essentially dependent on the
dopant type. The principles of choosing dopants, as well as some technological procedures for reducing non-
controllable factors affecting the impurity homogeneity of semiconductor single crystals grown onboard a
spacecraft, are developed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The main trend of the space materials science of
semiconductors is the purposeful use of various factors
that can influence the material in a space flight (and,
first and foremost, microgravitation playing the role of
a technological medium) in order to develop new tech-
nologies of single crystal growth providing a highly
homogeneous distribution of electrophysical properties
over the crystal. The first successful steps along this
path have already been made. In particular, we man-
aged to grow Ge crystals from melts with the unique
microinhomoheneity of dopant distributions over the
crystal bulk (~1.0–1.5%) in an orbital flight [1, 2].
However, these results were obtained only in some of
the space experiments.

On the whole, numerous growth experiments on
board spacecrafts indicate the extreme sensitivity of the
impurity-distribution parameters in the solid phase to
the processes of heat and mass transfer (HMT) occur-
ring in melts during their crystallization [2]. This phe-
nomenon should be interpreted as the collective effect
of a number of factors on the hydrodynamic situation in
melts resulting in the specific stirring effects and the
noncontrollable thickness variation of the boundary
δ-layers (δlr) at the interfaces.

The dopant concentration in a solid phase is related
to the diffusion-layer thickness by the general Burton–
Prim–Slichter equation [3]

k = Cs /Cl = k0/[k0 + (1 – k0)exp(–vδlr /D)], (1)
1063-7745/00/4506- $20.00 © 21024
where k and k0 are the effective and the equilibrium
coefficients of impurity distribution, respectively; v is
the crystallization rate; and D is the coefficient of impu-
rity diffusion in the melt. It is seen that at the steady-
state crystallization rate v, the inhomogeneity of the
impurity distribution in a growing crystal is a function
of the variation in the thickness δlr of the effective dif-
fusion layer, which is determined by the intensity of
melt stirring dependent, in turn, on the dynamics of the
liquid flows in the vicinity of the crystallization front.
Thus, the key problem in growth of homogeneously
doped single crystals in space is the maintenance of the
given δlr value in the local regions of the crystallization
front at each given moment within the whole growth
process. Thus, first of all, it was necessary to establish
all the factors that can affect δlr on board spacecraft and
then to find the methods for purposeful control of these
factors on board spacecrafts by applying special exter-
nal factors to the melt.

However, the optimization of external crystalliza-
tion conditions is not a universal method. A higher
homogeneity of crystals can also be achieved by the
appropriate use of physical–chemical characteristics of
the crystallization system. In many “terrestrial techno-
logical” processes, positive results can be achieved
rather simply by the appropriate choice of dopant. An
analogous approach is also justified for technologies of
growth of semiconductor single crystals under the con-
ditions of an orbital flight.

The present study is aimed at developing the princi-
ples of the theoretical analysis of the sensitivity of the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Fragment of the record of technogenic microaccelerations along the axis of a crystal growing in a reactor of the zone-melting
Zona 4 setup on board a Photon spacecraft [5]. The servo drive for the melted-zone motion was switched on 40 minutes after the
beginning of the experiment.
melts doped with various impurities to microgravita-
tion during crystallization. The model objects were ele-
mental semiconductors.

CHARACTERISTIC FEATURES 
OF CRYSTALLIZATION ON BOARD 

SPACECRAFTS

The analysis of the dopant distribution along the
space-grown single crystals indicates that the intensity
of melt stirring under microgravitation was rather poor,
with the δlr value being much higher (of the order of 3–
6 mm) than that in terrestrial crystallization (0.1–1.0 mm).
The large thickness of δlr provides a high sensitivity of
the crystallization process (and also the inhomoge-
neous incorporation of impurities into a crystal) to var-
ious fundamental and technogenic factors.

The sources of technogenic microaccelerations
deteriorating the homogeneity of “space crystals” were
discussed earlier [2, 4]. Here, we only consider a record
of acceleration in the growth chamber of a Zona-4
growth setup caused by functioning of servo drive elec-
tric motors [5] (Fig. 1). Earlier [4], we considered the
dopant inhomogeneity in single crystals grown under
the conditions of noncontrollable vibrations on board
spacecrafts. The most hazardous vibrations on board
unmanned spacecraft are low-frequency vibrations in
the range <100 Hz.

The relation between the inhomogeneity and the
fundamental heat and mass transfer in the molten zone
is less studied. We should like to mention, first of all,
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
the thermogravitation convection still taking place
under residual quasistationary microaccelerations (of
the order of 10–4–10–5g0). In container-free (floating
zone) crystallization processes, an important contribu-
tion to the formation of inhomogeneous electrophysical
properties of a crystal growing in space is introduced
by the capillary-type (Marangoni) convection [6, 7]. It
was shown experimentally that the Marangoni convec-
tion can be considerably intensified in heavily doped
semiconductor melts by introducing a surfactant [8, 9],
which is localized in the regions adjacent to the free
melt surface and, with an increase of the dopant con-
centration, gradually propagates into the melt bulk.

The detailed analysis of various nonstationary con-
vection mechanisms in space-growth experiments is
beyond the scope of our article. However, we should
like to note that the simultaneous action of these mech-
anisms can give rise to the noncontrollable intensifica-
tion of melt stirring; oscillations in the thermal and dif-
fusion boundary layers at the crystallization front; and,
as a consequence, to the oscillations of the k-values of
the dopants present in the liquid phase.

ANALYSIS OF CRYSTALLIZING SYSTEM 
SENSITIVITY TO MICROGRAVITATION

Now, we show that inhomogeneous doping of a
crystal growing from melt under the conditions of non-
stationary stirring of the melt is essentially dependent
on the dopant type. Differentiating Eq. (1) with respect
to the hydrodynamically-dependent variable δlr, we
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(2)Ks
dk
dδlr
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Fig. 2. Schematic distribution of the dopant concentration in
the vicinity of the interface: (a) under the steady-state crys-
tallization conditions and (b) under the effect of the elevated
external microaccelerations giving rise to the boundary-
layer diffusion; (1) crystal and (2) melt.
C

The physical sense of the derivative dk/dδlr reflects the
sensitivity of k to the changes of the hydrodynamic sit-
uation in the vicinity of the crystallization front of the
melt, e.g., as a result of drastic changes in the intensity
of the nonstationary stirring process (Fig. 2). We should
also note that, in this case, the variations in the k = Cs/Cl
lead, first of all, to inhomogeneity of doping of a grow-
ing crystal, because the average dopant concentration
Cl far from the interface in a large melt volume only
slightly changes due to diffusion of the doped δ-layer:

(3)

Equation (2) can be applied to space crystallization for
comparative estimation of the sensitivities of various
doped crystallization systems to the effect of the non-
stationary microgravitation on the melt (the so-called
g-jitter). It should be emphasized that differentiation of
form (2) is appropriate if the crystallization rate is inde-
pendent of the variations in the hydrodynamic condi-
tions, v = const. In practice, this approximation signi-
fies that one considers only relatively “weak” factors
quickly acting onto the melt, which cannot consider-
ably change the thickness of the thermal boundary
layer δt . The rigorous estimation of the applicability
range of this approximation should be the subject of a
special study. Here, we should like to note that such an
estimation has the sense only for semiconductor melts,
where the ratios of the Prandtl and the Schmidt num-
bers have low values (Pr/Sc ~ 10–3). This signifies that
the thermal boundary layer is located inside the diffu-
sion one, i.e., δt < δlr. Therefore, the thermal boundary
layer is less sensitive to the changes in the liquid flow
than the diffusion layer.

As seen from Eq. (2), the value of the sensitivity
coefficient to microgravitation Ks depends on the
dopant kind via its physical–chemical constants k0 and
D. Consider an example of dopants widely used for Ge
and Si (see the table). We use the experimental data
obtained earlier in our study of the terrestrial Ge crys-
tallization and crystallization aboard an automatic Pho-
ton satellite. During horizontal growth of Ge by float-
ing zone technique in a Zona-4 setup under the earth
conditions, the stationary layer thickness was δlr ≅  1 mm
[8, 9]. In the space experiment by the floating zone
technique, the corresponding value was δlr ≅ 4–6 [7–9].
The above values are characteristic of a rate of v ≅  4–
5 mm/h used in these experiments. The estimates of v
and δlr are used to construct the dependences Ks = f(δlr)
for dopants listed in the table. The dependences of the
coefficients Ks of the crystallization systems on the sta-
tionary thickness δlr calculated by Eq. (2) are shown in
Fig. 3 and have a number of practically important fea-
tures.

For most of the dopants in Ge and Si melts, Ks =
f(δlr) are increasing functions (except for As, B, P, and
Si). Thus, the sensitivity of most crystallization sys-

dk d
Cs

Cl
----- 

  dCs

const
------------.≈=
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Physical and chemical parameters of the most important dopants for germanium and silicon single crystals [11–13]

Dopant
Equilibrium distribution coefficient k0 *Diffusion coefficient in melt D, cm2/s

in Ge in Si in Ge in Si

Donors P 8 × 10–2 0.35 ~1 × 10–4 5.1 × 10–4

As 2 × 10–2 0.3 1.26 × 10–4 2.4 × 10–4

Sb 3 × 10–3 2.3 × 10–2 5.5 × 10–5 1.5 × 10–4

Acceptors B – 0.8 – 2.4 × 10–4

Al – 3 × 10–3 – 2.3 × 10–5

Ga 8.7 × 10–2 8 × 10–3 7.5 × 10–5 4.8 × 10–4

In 1 × 10–3 4 × 10–4 1 × 10–4 6.9 × 10–4

* The data at temperatures close to the melting points of Ge and Si.
tems to the external dynamical factors (including the
apparatus vibrations) is really higher under the space
conditions than under the Earth’s conditions. In each
case, an increase of sensitivity (and deterioration of
doping homogeneity of a growing crystal) is propor-
tional to the slope of the corresponding curve.

The families of the calculated Ks = f(δlr) curves for
various dopants provide the choice of a concrete Ge- or
Si-based system, which is the least sensitive to
microaccelerations during crystal growth in space.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
Thus, inhomogeneity in the axial dopant distribution in
the doped Ge single crystals grown decreases in the row
Ge(Ga) Ge(P) Ge(As) Ge(Sb)
Ge(In), with all the other conditions being the same
(including the equal levels of microgravitation pertur-
bations on board the spacecraft). For Si, a similar row
of sensitivities to nonstationary microaccelerations is
different: Si(Al) Si(As) Si(B) ≈ Si(P) 
Si(Sb) Si(Ga) Si(In). Thus, it is possible to
choose the optimum dopant and grow a single crystal
0
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Fig. 3. Sensitivity coefficient of (a) doped Ge and (b) doped Si melts to microgravitation during crystallization versus the thickness
δlr. The calculations were performed by Eq. (2) for the following dopants: (1) P, (2) As, (3) Sb, (4) B, (5) Al, (6) Ga, and (7) In.
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with the preset conductivity type and the most homoge-
neous axial distribution of electrophysical properties
such as carrier concentration and mobility.

The sensitivity of most of the doped melt–crystal
systems to microgravitation changes with each new sta-
tionary value of δlr attained in the crystallization pro-
cess. In real growth processes in space, the thickness of
the boundary layer can be decreased by purposefully
creating a stable controllable artificial “soft” stirring of
the melt, which can also be optimized. Thus, for Sb-
doped Ge crystals, the value of Ks can be reduced
almost two times by decreasing δlr from 6 to 3 mm.

The latter fact can be used for development of new
technologies for growing homogeneous semiconductor
crystals in space under the influence of controllable
weak factors. One such factor is the application of an
external rotational low-induction magnetic fields to the
melt, the so-called magnetohydrodynamical factor. In
this case, the alternate field should necessarily be a
high-frequency one, such that the mass inertia of the
melt would suppress the development of oscillating
hydrodynamic flows at the crystallization front, thus
providing the formation of an averaged stable δ-layer
with a controllable thickness. In some experiments, the
rotary stirring fields with the induction of 0.1–0.2 mT
and the frequency of 400 Hz were used. The results
obtained confirm the strong effect of such fields on the
heat and mass transfer under the conditions of a space
flight [2, 6]. The programmed control of the boundary-
layer thickness is based on the following empirical for-
mula [10]:

δlr/D = (δlr/D)0exp(–γH2), (4)

where (δlr/D)0 is the conjugated parameter of the diffu-
sion δ-layer without an effect of the microhydrody-
namic factor, H is the magnetic-field intensity, and γ is
the empirical coefficient of sensitivity to the magneto-
hydrodynamic factor. For melts of metals in a 400-Hz
field, this coefficient is of the order of 10–8 m2 A–2 [10].

Increasing the magnetic field intensity H during
crystallization, it is possible to attain the necessary
value of δlr. On the one hand, in accordance with
Eq. (1), this causes a certain decrease of the doping level
in a growing crystal. On the other hand, in accordance
with Eq. (2), it also results in a better homogeneity of the
dopant distribution due to a reduced sensitivity to non-
controllable external vibrational accelerations.

CONCLUSIONS

A new approach is suggested for evaluating sensi-
tivity of doped crystallization systems to microgravita-
tion. It reduces to the differential analysis of the Bur-
ton–Prim–Slichter equation under the boundary condi-
tions typical of the experimental growth of crystals on
board spacecrafts.

The notion of the sensitivity coefficient to micro-
gravitation Ks = dk/dδlr is introduced. This coefficient is
C

proportional to the change in a dopant concentration Cs
in a growing crystal under the action of equal dynamic
factors onto the boundary δ-layer in the melt. Such an
action can be provided by any (controllable or random)
external forces resulting in the spreading of the diffu-
sion layer in the liquid zone, in particular, the onboard
accelerations (g-jitters) or alternate magnetic fields.
The coefficients Ks are calculated for electrically active
“small” dopants in germanium and silicon.

It is also shown that the degree of impurity and elec-
trophysical inhomogeneity in crystals grown in space,
with the microgravitation conditions being the same, is
essentially dependent on the dopant type. The princi-
ples for choosing appropriate dopants and the techno-
logical procedures reducing the effect of noncontrolla-
ble factors of the orbital flight on the crystallization
process and growth of semiconductor crystals with a
highly uniform the distribution of electrophysical prop-
erties are also suggested.
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Abstract—The analysis of skeletal growth forms leads to the conclusion that the universal Glansdorff–Prigog-
ine principle of evolution and the principle of the minimum entropy production in self-organizing processes (the
Klimontovich principle) are valid at some stages of skeleton evolution in NH4Cl crystals. However, in all these
cases, the principle of the maximum resistance of the system to the change in the value of the entropy produc-
tion can be applied. © 2000 MAIK “Nauka/Interperiodica”.
As far as we know, the morphology of skeletal crys-
tals was interpreted in terms of the variational princi-
ples of thermodynamics of irreversible processes only
in one article [1], despite the fact that such an analysis
seems to be rather important for understanding the
causes of formation and evolution of these crystal
forms often encountered in the crystallization under
both natural and laboratory conditions. In turn, such an
analysis can promote the development of the varia-
tional principles of nonequilibrium thermodynamics on
the basis of practical examples.

Skeletal crystals considered in numerous articles
[2–5] can be divided into two main classes:

Crystals with unbranched skeletal forms divided,
in turn, into the crystals with edge and vertex skeletons
[2]. The former are characterized by depression of faces
and preservation of edges, whereas the latter, by
depression of both faces and edges. In other words, the
latter crystals can grow only in the directions toward
crystal vertices. The surfaces of these skeletons are
either smoothly curved or stepped and are formed by
faces with small indices (Figs. 1a, 1b).

Branched skeletal forms (Fig. 1c). It seems that the
experiments on iodoform crystals performed by Dogiel
remain the only studies of the process of the transfor-
mation of a faceted crystal into a branched skeleton.
Experiments performed by Dogiel are also remarkable
for being the first attempt at studying the process of
skeleton formation made as far back as the 1870s [8, 9].
Unfortunately, the authors of the cited papers [8, 9]
only described their experiments but drew no conclu-
sions. Veœnberg [7], who reproduced the corresponding
figure, referred to [9]. However, it seems that the figure
was taken from one of Dogiel’s other publications,
which I myself failed to find. Lehman [10] also repro-
duced the same figure and also without the reference to
the original.
1063-7745/00/4506- $20.00 © 21029
The causes of a large variety of skeletal crystals are
still unclear. However, it is well known that the forma-
tion of a stepped nonbranched skeletal crystal is caused
by morphological instability during layer growth of the
crystal faces [3].

Usually, one makes no distinction between skeletal
crystals and dendrites. In fact, only those skeletal crys-
tals relate to dendrites whose development is accompa-
nied by misorientation of various skeletal branches
with respect to one another and the also of the crystal
structure within each individual branch [11, 12]. It
should be indicated that the morphology of such forma-
tions is referred to as dense branching morphology.

1 2 3

4

1 2 3 4 5

1 2 3

(a)

(b)

(c)

Fig. 1. Shape transformations of (a) a spherical NH4Cl crys-
tal into a smooth “vertex skeleton” in an aqueous solution
[6], (b) a faceted KCl crystal into the stepwise vertex skele-
ton in an aqueous solution [6], and (c) a faceted iodoform
crystal into a skeletal one in the alcohol solution [7] at room
temperature.
000 MAIK “Nauka/Interperiodica”
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However, we believe that these formations are often
mistakenly taken for branched unnsplit skeletons,
despite the fact that misorientations caused by crystal
split and skeleton formation are of a different nature.
These processes do not necessarily occur simulta-
neously. Therefore, one has to distinguish between the
terms skeleton and dendrite. The misoriented dendritic
formations, i.e., the forms of dense branching morphol-
ogy, were beyond the scope of the present study and
therefore are not considered in this article.

In many instances, the transition to the skeletal
growth is preceded by the periodic capture of solution
inclusions into the crystal and can be considered as a
precursor of the loss of faceting stability [13]. The skel-
eton formation begins with the appearance of a depres-
sion on the face. An unnbranched edge skeleton crystal
can be considered as an nonovergrown inclusion in a
face.

The moment of formation of a skeleton crystal may
or may not be accompanied by an increase in the face
growth rate [13]. Thus, an increase of the face growth
rate is not a necessary factor accompanying the begin-
ning of skeleton formation. A crystal that lost the face-
ting stability is gradually developed into a skeleton for-
mation with a constantly developing surface (Fig. 1). In
this case, the faces with rational indices have the ten-
dency to be “substituted” by surfaces with irrational
indices and higher surface energies. Stepped skeletons
(similar to those shown in Fig. 1b) are observed rather
rarely.

In addition to the transformation of convex forms
into skeleton ones, there are also some examples of the
jumpwise transition from one orientation of the skele-
ton trunks to another (see below).

Skeletal crystals should be considered as a specific
class of dissipative structures studied in nonequilibrium
thermodynamics [14]. Unbranched smooth skeletons
can be treated as a random (turbulent) dissipative struc-
ture in distinction from the skeletal forms characterized
by periodic structures.

Skeleton formation begins either with an increase of
the supersaturation above a certain critical value or, at
the given supersaturation, only with the attainment of a
certain critical crystal dimension. This dimension
decreases with an increase of supersaturation [3]. The
formation of various dissipative structures is also asso-
ciated with the attainment of certain threshold values of
the parameters characterizing these structures [14],
which makes the skeleton crystals even more similar to
dissipative structures traditionally considered in non-
equilibrium thermodynamics.

In what follows, we consider, for definiteness, crys-
tal growth from solutions under constant supersatura-
tion, temperature, and pressure. The variation of the
isothermal–isobaric potential of such a system during
C

crystal growth is described by the well-known expres-
sion

(1)

where ∆µ is the difference between the chemical poten-
tials of the substance crystallized in the solution and the
crystal (for simplicity, we consider here a single-com-
ponent crystal), m is the crystal mass, and γav is the spe-
cific free surface energy of the crystal averaged over the
surface S. The entropy production P is determined by
the derivative of G with respect to time τ at the given
absolute temperature T as [15]

(2)

Here  is the rate of the change in the crystal mass and

 is the rate of the change in the surface area (“surface
flow”). Thus, the parameter γav can be considered as a
driving force “conjugated” with this flow. It should be
indicated that, in principle, the surface area at the given
crystal mass can change arbitrarily; i.e.,  can also
vary irrespectively of . According to the Gibbs–
Duhem equation, γ is only slightly dependent on the
supersaturation of the solution on the crystal surface.

TRANSITION FROM THE CONVEX GROWTH 
FORM TO THE SKELETAL ONE

There are several approaches to the analysis of dis-
sipative structure formations within the variational
principles of the nonequilibrium thermodynamics. Hill
[1] limited such consideration to the discussion of the
principles of the minimum and the maximum entropy
production; however, there exist some more general
principles taking into account the variation of the
entropy production with time.

Universal evolution principle (the so-called
Glansdorff–Prigogine principle). In [14–17], the total
differential of the entropy production dP is represented
as a sum of two partial differentials dJP and dXP related
to the flows J and forces X. According to the Glans-
dorff–Prigogine principle, the quantity dJP can either
increase or decrease during the time-dependent entropy
production in the nonequilibrium process. No conclu-
sions about the ratio between the quantities dJP and dXP
were made. Therefore, no decisive conclusion can be
made about the sign of the dP variation (its increase or
decrease). At the same time, it is stated [14–17] that, in
an irreversible process having the tendency to the sta-
tionary state, the following inequality is valid:

(3)

In other words, in essence, the principle states that the
rate of the change of the entropy production caused by

dG ∆µdm– γavdS,+=

TP τd
d

G( )– ṁ∆µ γavṠ.–= =

ṁ

Ṡ

Ṡ
ṁ

dXP
dτ

---------- 0.≤
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the change of the driving forces can only decrease or be
equal to zero.

Since in accordance with the Glansdorff–Prigogine
principle, the quantity γ is changed during skeleton for-
mation, we can differentiate Eq. (2) with respect to γav
and then also with respect to τ under the condition that
∆µ is constant:

(4)

Consider the evolution of the crystal shown in
Fig. 1a. The above transformation of its shape results in
the fact that the relative area of the regions with irratio-
nal orientations and elevated values of the surface
energy γ increases, i.e., dγav/dτ > 0. Since during the
skeleton formation  continues to increase, then

∂ /∂γav > 0. It is obvious that the surface flow  and
the free surface energy γ are always positive. Further
on, if one takes a crystal even of a spherical shape, then,
at the constant linear growth rate (which is usually the

case at the constant supersaturation), the quantity 
increases with time. Thus, the signs of the changes in

γav and  are the same, and ∂ /∂γav > 0. Therefore,
according to Eq. (4), the derivative dXP/dτ is negative.
Similar speculations can also be made for the transfor-
mation of a faceted crystal into a skeletal one. There-
fore, the transition of a convex crystal into a smooth
skeletal (unbranched) one and then into a branched one
is quite consistent with the Glansdorff–Prigogine prin-
ciple.

A specific example of the periodic transformation of
a vertex ledge with a curved face into a step with ratio-
nal indices (Fig. 1b) shows a decrease in the surface
energy γav characterizing this ledge with time; i.e., the
sign of the dγav/dτ derivative is negative. Simulta-

neously with a decrease of γ, the quantity  increases.

Thus, ∂ /∂γav < 0. The sign of ∂ /∂γav can hardly be
predicted. In order to satisfy inequality (3), i.e., the
Glansdorff–Prigogine principle, the expression in
parentheses in Eq. (4) should be negative. However, it
is still unclear whether it is negative in this case.

Principle of minimum entropy production in
self-organizing processes (Klimontovich principle)
[18, 19]. According to this principle, a nonequilibrium
system with a dissipative (ordered) structure in the sta-
tionary state has a lower value of entropy production in
comparison with its value for the structure unstable
under the given conditions (the “comparison system”).
Now consider the quantity P described by Eq. (2). The
comparison system depends on the shape of the initial
convex crystal, and it can be either a spherical or a fac-
eted body formed under the same supersaturation and
the same mass flow. The values characterizing the

quantities  and γav for this crystal are less than the
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ṁ

ṁ Ṡ
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analogous values for the skeletal crystal. Thus, in
accordance with this principle and Eq. (2), the value of
P for a skeletal crystal is less than the corresponding
value for a convex crystal growing at the same value of
∆µ. We should like to emphasize that this is a euristic
principle, which, at present, can be illustrated by only
one example (transformation of a laminar liquid flow
into a turbulent one).

The principle of the maximum resistance of the
system to the change in the entropy production with
time. This principle is, in fact, the generalization of the
Klimontovich principle, which corresponds only to the
particular case where the entropy production increases
during the process. The principle of the maximum
resistance was formulated as the establishment of this
fact on an example of the stationary faceted growth
forms and stationary rounded forms of their dissolution
[20–22]. A growing crystal with flat faceting has an
increasing surface and therefore is characterized by an
increase in the entropy production with time. The crys-
tal “chooses” such a shape at which the entropy produc-
tion at each given moment is minimal; i.e., it changes
its shape at the minimum rate. On the contrary, during
dissolution, the crystal surface reduces, and the entropy
production also decreases with time. In this case, the
crystal “prefers” to choose the form which provides the
maximum entropy production at each given moment of
time. Thus, in this case as well the rate of the change in
the entropy production is minimal. Thus, the above
principle provides the combination of the stationary
growth and dissolution forms of crystals. In terms of
this principle, the transformation of a convex crystal
into a skeletal one is quite logical, because crystal
growth is accompanied by an increase of entropy pro-
duction, whereas skeleton formation hinders this pro-
cess. Thus, the formation of skeletal crystals can be
interpreted in terms of any of the above three varia-
tional principles.

ORIENTATIONAL TRANSITIONS 
OF BRANCHED SKELETAL CRYSTALS

The changes in the structure of a branched skeletal
crystal reduce to the reorientation of the directions of
skeleton branches under certain values of the relative
supersaturation and are studied in detail for NH4Cl
crystals at 25°C [23]. At σ . 0.11, the branches ori-
ented along the 〈100〉  directions change the orientation
to that along the 〈110〉  directions; at σ . 0.21, the
branch orientation along 〈110〉  is changed to that along
〈111〉 . The former orientational transition is seen on the
curve of the linear growth rate along the skeleton trunk
as a decrease in the growth rate, whereas the latter ori-
entational transition is accompanied by an increase of
the linear growth rate by a factor of 7–8 along the
branch axis (Fig. 2). The horizontal segment of the
growth rate in Fig. 2 corresponds to the transient super-
saturation region between two orientations, in which
the vertex of the skeleton branch splits. It should be
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noted that the existence of NH4Cl crystal with the ori-
entations of the skeleton branches along the 〈100〉 and
〈111〉  directions was described in [24, 25]. The orienta-
tional transitions in skeletal growth seem to be quite a
common phenomenon. They were also observed in
other halides with the same P lattice and also in halides
with the F lattice [25]. The jump in the growth rate in
the orientational transition mentioned above was also
confirmed in [26].

The second orientational transition in skeletal
NH4Cl crystals was interpreted as an illustration of the
principle of the maximum entropy production [1].
However, the first transition, occurring at a lower super-
saturation σ and accompanied by a decrease of the
entropy production (because of a tendency to a
decrease of the growth rate), was not mentioned in [1].
Thus, no unique interpretation of both orientational
transitions can be made on the basis of only one of the
extremum principles of entropy production (i.e., either
minimum or maximum), which makes these principles
somewhat deficient.

Now, consider each of the above transitions in the
skeletal NH4Cl structure separately.
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Fig. 2. Linear growth rate along the skeleton trunk of NH4Cl
crystals in aqueous solution as a function of relative super-
saturation at 25°C [23]. Various trunk orientations corre-
sponding to different σ values are shown.
C

With this aim, first analyze the γ values for various
faces of NH4Cl crystals. According to the theory devel-
oped in [27, 28], the specific surface energy of these
crystals should increase in the row of simple forms as
follows: {110}, {100}, and {111}, with the {110} faces
being the only faces of layer growth. However, the
aforementioned relates only to crystals, which are in
contact with their own vapors. Solvent adsorption can
change the picture. Moreover, the computations are
usually made for the total surface energy, whereas the
above equations include the free surface energy. It is
still unclear whether the face sequences for these two
types of energy are the same or different.

It is well known that NH4Cl crystals show quite
good cleavage along the cube faces [29]. This indicates
that (100) nets are the densest for these crystals, and
therefore, the cube faces are really morphologically
important. According to [29], the {211} form is the
most typical for NH4Cl crystals growing in aqueous
solutions without any additives. A very slow growth of
initially spherical NH4Cl crystals (Fig. 1a) results in
crystal faceting [6]. According to the photograph pub-
lished in [6], the prevailing growth form in these crys-
tals is tetragontrioctahedron, most probable, the {211}
form. According to [27, 30], at low supersaturations,
the CsCl-type crystals (including NH4Cl) have the
{110} form. With an increase of the supersaturation σ,
the crystals of this group acquire the {100} and {111}
faces (the latter appear rather rarely). Since the skeleton
formation in NH4Cl crystals begins at very law super-
saturations σ, it is hardly probable that the author of the
cited studies could follow the evolution of the crystal
form of NH4Cl in such a detail. It is more probable that
he observed this evolution on some other crystals of
this family. 

Kliya [31] made an attempt to obtain the equilib-
rium form of NH4Cl crystals in aqueous solutions by
keeping the skeletal crystals under the isothermal con-
ditions and observing their transformation into well-
faceted crystals. She indicates the faces formed in the
sequence {100}, {110}, {111}, and {211}; however, it
is unclear whether it corresponds to the sequence of
development of these faces in the crystal. Thus, it is
unclear from her article which is the sequence of γ val-
ues and how important the differences in γ values are
for formation of various simple forms. Still, it is
remarkable that she found the most important simple
forms of NH4Cl crystals in aqueous solutions.

Generalizing the data considered above [6, 27–31],
one can draw the conclusion that the minimum surface
energy γ in aqueous solutions should be possessed by
the {211} and {110} faces, the next value is possessed
by the {100} faces, and, finally, and the lowest γ values
are characteristic of the {111} faces. Thus, the most
important morphological zones of NH4Cl crystals are
〈110〉 , 〈100〉 , and 〈111〉 . It is along these zones that the
acute-bottom (singular) gullies should occur on the
polar γ diagram. In this case, there are two (100) and
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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two (110) faces and four (211) and four (111) faces in
the 〈110〉  zone; there are four (100) and four (110) faces
in the 〈100〉  zone; and there are six (110) faces in the
〈111〉  zone.

Considering the “saturation” of the above three
zones with the most important singular faces and the
above relationships for these faces, one can draw the
conclusion that the deepest gullies (having the mini-
mum γav values) should characterize the first of the
above zones, whereas the shallowest gullies (with the
maximum γav values), the last zone.

The 〈100〉   〈110〉  transition. The tip of the
branch is acutely angled, so that the surface energy of
the end of the skeleton trunk has the zeroth value. Here,
the decisive role is played by side surface of the
branches. In accordance with the above consideration,
in this transition, the γav value should decrease; i.e., the
derivative dγav/dτ < 0 should be less than zero. At the
same time, the growth rate along the trunk axis also
decreases and, therefore, the increment in the mass 

and the change in the area of the side surface  of the
skeleton trunk also decrease. Here, we ignored the fact
that the rates of side growth of branches are different
prior to and upon the transition because we believe that

this difference has only insignificant effect on . Thus,

in this transition, the changes in , , and γav are of the

same sign. Therefore, ∂ /∂γav > 0 and ∂ /∂γav > 0, and
the quantity in parentheses in Eq. (4) is positive. Thus,
both multipliers in the right-hand side of Eq. (4) have
different signs, and the Glansdorff–Prigogine principle
is inapplicable in this case.

The comparison system here is a skeletal crystal
with branches oriented along 〈100〉  and with the same
rate of mass change, . Since in this transition, γav and

 decrease, the value of P upon the transition increases
with respect to the corresponding value for the compar-
ison system in estimation of P by Eq. (2). Thus, in this
case, the Klimontovich principle is also not applicable.
At the same time, the entropy production decreases,
and the transition to the skeletal crystal with new
branch orientations smooths this decrease because of a

lower value of the term γav . In other words, it hinders
this decrease, in accord with the last of the three princi-
ples described above.

The 〈110〉   〈111〉  transition. As was indicated
above, the 〈111〉  face zone should have higher γav values
in comparison with analogous values for the 〈110〉
zone. Performing the analysis similar to that made
above, one can readily see that this transition confirms
both universal evolution (dXP/dτ < 0) and Klimontov-
ich principles. At the same time, this transition can also
be interpreted in terms of the latter of the three princi-
ples; i.e., in the 〈110〉   〈111〉  transition, the total
entropy production increases. An increase of the
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ṁ Ṡ

ṁ
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numerical value of the term responsible to the “area
flow” in Eq. (2) hinders an increase of the entropy pro-
duction, i.e., again “smooths” this increase. Thus,
unlike the previous transition, the 〈110〉  〈111〉 tran-
sition can be interpreted in terms of any of the above
three variational principles.

It follows from the above that at all the stages of the
shape evolution of NH4Cl crystals (the transformation
of a convex crystal into a skeletal one and two transi-
tions in the skeleton morphology), only the principle of
the maximum system resistance to the changes in the
entropy production remains valid.

Thus, the difference between the chemical poten-
tials is the key factor of the process, whereas the mass
flow introduces the major contribution to the entropy
production. On the contrary, the “surface flow” and its
contribution to the entropy production hinder any
changes in the entropy production.
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Abstract—It has been established that metal impurities M3+ (Fe3+, Cr3+) and M2+ (Co2+, Ni2+) have a different
effect on the kinetics of face growth of potassium dihydrophosphate (KDP) and potassium acid phthalate (KAP)
crystals, which can hardly be interpreted in terms of the existing concepts. The crystallochemical analysis and
computer modeling of the KDP structure provided the establishment of different mechanisms of incorporation
of M2+ and M3+ impurities into the crystal structure: the first impurities form impurity clusters, whereas the sec-
ond impurities occupy isolated positions. This fact predetermines the different deformation of the crystal matrix
caused by M2+ and M3+ ions. The allowance for this fact provided the interpretation of different distribution
coefficients of M2+ and M3+ impurities and their specific effect on the growth kinetics and defect concentration
in KDP and KAP crystals. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The effect of impurities on the growth kinetics of
crystals is provided by numerous physical and chemi-
cal factors in the interactions of impurity molecules
(ions, atoms, etc.) with a growing crystal [1–3]. In
modern growth theory, the impurity effect is associated
mainly with adsorption of impurities on crystal faces
and the corresponding changes of the kinetic and ther-
modynamic parameters of crystallization [4]. The more
pronounced influence of the first factor leads to the
well-known inverse dependences of the growth rates on
the impurity concentration, R(Ci), whereas the varia-
tion of the thermodynamics parameter (a decrease in
the free energy of growth steps) increases the growth
rate. Thus, the combined action of both factors can lead
to the dependence R(Ci) possessing the maximum in
the range of low-impurity concentrations [4] (the so-
called catalytic effect of impurity). The experiments
showed [5–7] that the catalytic effect is a phenomenon
characteristic of numerous organic impurities that are
not captured by a crystal during the growth process. At
the same time, we also established that the catalytic
effect of inorganic impurities (metal ions) incorporated
into the crystal matrix can manifest itself in more spe-
cific ways—it took place under high supersaturations
and was absent at low supersaturations, which was
inconsistent with the known theoretical concepts [4].

It can be assumed that the “anomalous” effect of
inorganic impurities is provided by local stresses aris-
ing in the crystal matrix due to incorporation of impu-
rity ions. It is well known that various stresses, e.g., dis-
location-induced ones, decrease the velocity of growth-
1063-7745/00/4506- $20.00 © 21035
step motion [8]. According to [9], an increase of the
thermodynamic potential of the crystal due to incorpo-
ration of impurity ions and, correspondingly, a decrease
of the driving force of crystallization can increase the
inhibitory effect of impurities adsorbed on crystal sur-
face. According to the assumption made in [10], this
factor can be even more pronounced than the effect of
impurity adsorption on the surface.

Below, we present the experimental data on the
effect of impurities of tri- and bivalent metals on the
kinetics of face growth of potassium dihydrophosphate
(KDP) and potassium acid phthalate (KAP) crystals
grown from aqueous solutions. We analyzed the mech-
anism of incorporation of tri- and bivalent cations into
the KDP structure on the basis of the crystallochemical
data and computer modeling of the KDP structure con-
taining Fe3+ and Fe2+ impurity ions. The results of this
analysis are compared with the data on the effect of
these impurities on growth kinetics.

EXPERIMENTAL METHOD

KDP and KAP crystals were grown in the kinetic
mode by the method described in [7, 11]. The impuri-
ties were introduced into a well-stirred (for 24 h) satu-
rated KDP and KAP solutions at the saturation temper-
atures 50 and 40°C, respectively. The growth experi-
ment was also performed within 24 h. The theoretical
modeling of the KDP structure was made by minimiz-
ing the energy of atomic interactions with the use of
partly covalent pair potentials [12] specially con-
structed for this compound.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Effect of (a) Ni2+ and (b) Co2+ impurities on the growth kinetics of KDP crystals; σ = 0.021.
EXPERIMENTAL RESULTS

The Effect of Bivalent and Trivalent Metal Impurities
on Growth Kinetics of KDP and KAP Faces

Figure 1 illustrates the effect of Co2+ and Ni2+ impu-
rities on growth kinetics of (101) and (100) faces of
KDP crystals. A decrease of the growth rate of the faces
with an increase of the impurity concentration is very
common and is especially well seen on the (100) face.1

For the (101) face, the scatter of the experimental
points is more pronounced; nevertheless, the general
character of the R(Ci) dependence shows that the cata-
lytic effect of impurities is absent even at the lowest
impurity concentrations. Similar dependences were
also obtained for KAP crystals (Fig. 2). An increase of
growth rates for the faces of KAP crystals with an
increase of the Co2+ content up to 0.4 × 10–7 mol
Co2+/mol in KAP is explained by the formation of mac-
rodefects: gas–liquid inclusions, cracks along the
cleavages, etc. Cracking can be associated with the
probable incorporation of Co2+ cations into the inter-
block layer along cleavage planes and formation of
hydrated complexes of the composition [Co(H2O)6]2+

pushing away the anionic layers [13]. Similar cracking,
although less marked, was observed in the presence
of Ni2+ impurities at the concentrations exceeding

1 Impurity concentration was determined as the ratio of the number
of moles of impurity to the number of moles of the matrix mate-
rial in the solution.
C

10−6 mol Ni2+/mol in KAP. It should be indicated that
the negative effect of M2+ impurities on KDP crystals at
elevated concentrations manifested itself in the forma-
tion of blocks especially pronounced in the presence of
the Ni2+ impurity.

Other types of R(Ci) dependences are characteristic
of the Cr3+ and Fe3+ impurities. Figure 3 shows that the
growth rates of the (101) face of KDP crystals and the
faces of KAP crystals first increase with an increase of
the Cr3+ concentration (the catalytic effect of impuri-
ties) and then start decreasing. Visually, the KAP crys-
tals remained homogeneous within the whole range of
impurity concentrations. The most pronounced cata-
lytic effect is observed for the Fe3+ impurity in KDP
crystals [Fig. 4a, the (101) face]. However, the effect
becomes steady-state only at high supersaturations, σ ≥
0.06. At lower supersaturations, the effect is absent
(Fig. 4b), which, as has already been indicated, contra-
dicts the theoretical model of crystal growth [4], where
a decrease of the energy of the edge step caused by
impurity adsorption is the major form of the manifesta-
tion of the catalytic effect of impurities.

Crystallochemical Analysis of Incorporation 
of the M2+ and M3+ Impurities into the KDP Structure

It was shown [14] that the impurity Fe3+ ion in a
KDP crystal should occupy the interstitial position with
the coordinates (0.25, 0.35, 0.125). The geometric con-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 2. Effect of (a) Ni2+ and (b) Co2+ impurities on the growth kinetics of KAP crystals, σ = 0.031.
ditions for incorporation of this ion require the removal
of the two nearest K+ ions and a hydrogen ion compen-
sating the charge of Fe3+ cation. The subsequent con-
sideration of the KDP structure containing Fe3+ impu-
rity [12] was based on this model and revealed essential
structural distortions in the nearest neighborhood of the
impurity ion. These results allowed us to analyze the
successive incorporation of Fe3+ cations into the KDP
structure.

The structure distortions revealed that the structure
has a “chain” of voids. The incorporation of a Fe3+ ion
into one of the links of this chain promotes the favor-
able conditions for incorporation of another similar ion
into the neighboring link of the chain (Fig. 5). How-
ever, the valence balance shows that certain portions of
this chain periodically accumulate positive charges. In
order to compensate these charges, some additional
vacancies are required. Therefore, at low concentra-
tions, Fe3+ ions would strive for isolated positions with
empty neighboring positions. The results of the above
analysis are also applicable to Cr3+ cations with the
ionic radii close to that of Fe3+:  = 0.67 Å,  =

0.64 Å.

The situation drastically changes for a bivalent cat-
ion, e.g., Fe2+, Co2+, or Ni2+. Similar to the case of a
trivalent ion, we used the method of the atom–atom
potentials (the GULP program [15]) and constructed
various models of a defect center for Fe2+ ions (the
results will be considered in another publication). The
calculations showed that for M2+ ions with the ionic
radii close to those of Fe3+ (Fe2+, Co2+, Ni2+), the posi-
tion with the coordinates (0.25, 0.35, 0.125) in the KDP
structure still remains the most favorable. Therefore,

r
Fe3+ r

Cr3+
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the results of the geometric analysis performed for Fe3+

are valid in this case as well. However, the geometric
requirements and the valence balance show that the
incorporation of a Fe3+ ion requires the removal from
the lattice of two K+ ions and one proton. At the incor-
poration of a Fe2+ ion, the crystal remains electrically
neutral if only two K+ ions are removed. To meet the
geometric conditions, the remaining H atom should be
displaced from its position by ~0.5 Å and thus be
“transformed” into another point defect. In other
words, bivalent cations distort the initial structure much
more pronouncedly than trivalent ones. Therefore, the
incorporation of a Fe2+ ion into the KDP structure is
energetically less favorable than that of a Fe3+ ion, with
the corresponding energies of defect formation being
+1.44 and –4.79 eV, respectively. (All the values were
obtained with the use of the refined set of pair poten-
tials, with the energy of formation of a Fe3+ defect
being different from the energy given in [12].)

The analysis of various types of incorporation of
M2+ ions into the neighboring links of the chain
described above showed that, contrary to the case of
trivalent cations, the distribution of bivalent cations in
geometrically favorable neighboring positions not only
provides the electroneutrality of the defect region but is
also somewhat more energetically favorable than the
formation of an isolated M2+ defect. Thus, for a defect
consisting, e.g., of three Fe2+ cations, the corresponding
energy equals +4.23 eV (+1.41 eV per impurity ion in
the chain in comparison with +1.44 eV in the isolated
position).

Thus, in a KDP crystal, the trivalent impurity “pre-
fers” to exist as an isolated ion, whereas the bivalent
cation, obeying the requirements of electroneutrality,
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“prefers” to form clusters. Such M2+ cluster formations
deform the crystal structure even more pronouncedly.
Therefore, they should provide a more pronounced
inhibitory effect M2+ than M3+ impurities.

RESULTS AND DISCUSSION 

It should be indicated that different structures of the
defect centers caused by incorporation of M2+ and M3+

impurities revealed by computer modeling are consis-
tent with the above fact of a stronger effect of impurity
cations on the formation of macrodefects and with the
characteristics of the coefficients k of M3+ and M2+ dis-
tribution in the crystal. It is well known [16, 17] that the
coefficients k of bivalent cations in KDP and KAP crys-
tals are much lower than those of trivalent ones. One of
the reasons for such a situation in KDP crystals is a
more pronounced deformation of the crystal lattice by
M2+ clusters hindering the incorporation of these cat-
ions into the lattice and also by a much higher energy
of formation of Fe2+ defects. On the other hand, the
incorporation of Fe3+ and Cr3+ cations with an increase
of their concentration in the starting solution and their
incorporation into isolated positions in the KDP crys-
tals show the necessity of filling the neighboring posi-
tion with these cations as well. As was indicated above,
this process, accompanied by the additional deforma-
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Fig. 3. Effect of Cr3+ impurity on the growth kinetics of (a)
KDP crystals σ = 0.063 and (b) KAP crystals σ = 0.031.
C

tion of the crystal matrix, hinders the incorporation of
impurity ions. This can be one possible cause for a
decrease of  in KDP crystals experimentally con-

firmed in [18].
Now, analyze the experimental data on growth

kinetics of KDP crystals in the presence of M2+ and M3+

impurities in terms of different deformability of the
crystal matrix. With due regard for this factor, the effect
of impurity on the growth kinetics should depend on
three parameters—the changes in the kinetic and ther-
modynamic factors and the structure deformation
caused by impurity incorporation. The first two factors
depend on the adsorption on the surface (e.g., of
organic molecules) and are analyzed in modern theory
of crystal growth. If no impurities are incorporated into
the crystal, only the first two factors are important, and
the catalytic effect of impurities can take place also in
the region of low impurity concentrations [7]. If the
impurity ions are captured by the crystal, the stresses
arising in the structure enhance the decelerating effect
of the kinetic parameter and, thus, decrease the relative
contribution of the thermodynamic factor. This, in turn,
reduces the catalytic effect of impurities. If deforma-
tions of the crystal lattice are pronounced even at a low
concentration of impurity ions, the catalytic effect does
not necessarily manifest itself in the whole range of the
impurity concentrations. This situation is implemented
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Fig. 5. Structure of a defect center formed by a Fe3+ ion in the KDP structure. Bold dashed lines show the rotation of PO4-tetrahedra
in the region of the primary defect A. For comparison, the corresponding tetrahedra in pure KDP crystals are shown by bold solid
lines. Thin dashed lines show the geometrically favorable “chains of voids.” Circles indicate the void centers, whereas squares indi-
cate hydrogen and potassium vacancies.
for bivalent ions. Therefore, the Co2+ and Ni2+ ions can
produce no catalytic effect on the growth kinetics of
KDP crystals.

Unlike M2+, the trivalent Fe3+ and Cr3+ ions forming
isolated impurity centers at low concentrations deform
the crystal matrix to a lesser degree. The contribution of
this factor to the total inhibitory effect of impurities is
much smaller, and the catalytic effect of impurities can
also be experimentally observed for Fe3+ and Cr3+.
However, the effect manifests itself mainly at high
supersaturations, which can be explained by a reduced
value of the coefficient k for Fe3+ and Cr3+ decreasing
with an increase of the supersaturation [19]. This pre-
determines the minimum Fe3+ and Cr3+ concentrations
under high supersaturations. Therefore, the contribu-
tion of the structure factor to the total inhibitory effect
of impurities on the growth kinetics at high supersatu-
rations should be minimal, and the catalytic effect
should take place. Nevertheless, for the (100) face of
KDP crystals, this effect is not observed even at high
supersaturations. This is explained by the fact that 

for the (100) growth pyramid of the KDP crystal is
higher than that for the (101) pyramid (which agrees
with the crystallochemical characteristics of the struc-
ture of these faces [14]). Obviously, the Fe3+ concentra-
tion on the (100) plane does not decrease to the values
necessary for the manifestation of the catalytic effect at
high supersaturations.

Thus, different mechanisms of Co2+ and Ni2+ incor-
poration, on the one hand, and Fe3+ and Cr3+ incorpora-
tion, on the other hand, allow one to explain the specific
features of the distribution of their coefficients, the
growth kinetics, and the defect formation in crystals.
Naturally, the scheme suggested above is of the quali-
tative nature because, at present, data on the coeffi-
cients of impurity capture in solutions at very low
impurity concentrations are very scarce, whereas the
program used in the calculations allows for the analysis

k
Fe3+
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of the “cluster” impurity center consisting of at least
three impurity atoms. This hinders the quantitative esti-
mation of stresses in the crystals at low impurity con-
centrations. Nevertheless, we believe that the above
facts confirm once again an important role of local
impurity-induced deformations in crystal growth.
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Abstract—A thermodynamic model of a quasiequilibrium between the solution and an elastically stressed
layer formed during growth of a two-component mixed crystal under nonstationary conditions has been con-
structed. The derived equations are solved numerically for the system potassium biphtalate–rubidium biphta-
late–water. It is shown that the inconsistency between the experimental and the calculated data are associated,
first and foremost, with the relaxation processes at defects. © 2000 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Growth of mixed crystals is essentially dependent
on formation of crystals with the fixed stoichiometry
and is associated with possible changes in the growing-
crystal composition caused by different crystallization
conditions. Any nonstationarity in growth conditions
for a mixed crystal results in the change of the crystal
composition because, in the general case, the coeffi-
cients of component distribution depend on all the
growth parameters. The nonstationary growth condi-
tions are also characteristic of natural crystallization
(which, in particular, results in the formation of zonal
crystals). In commercial crystallization, nonstationary
growth conditions are usually observed for crystals
whose properties vary over the volume [1]. Growth of
bizonal crystals [2] and heteroepitaxial films [3–5] in
which a crystalline layer is grown onto a nonnative sub-
strate can also be considered as nonstationary crystalli-
zation.

Numerous experimental data indicate that growth of
crystalline layers onto nonnative substrates differs from
growth of the films on native substrates under the same
conditions. In particular, the coefficients of compo-
nents distribution [1, 2], growth rates [1, 2], and the
equilibrium conditions [3, 4] in these two cases are dif-
ferent; the specific defects formed in these cases are
also different [2, 5]. It is shown [3, 4] that the differ-
ences are associated with internal stresses in a growing
layer caused, in turn, by different unit-cell parameters
of the layer and the substrate. The internal stresses
affect both the thermodynamic properties of the mate-
rial and the growth characteristics, in particular, the
kinetic coefficients of elementary reactions at the
growth point. On the other hand, the stresses them-
selves can vary and be redistributed during crystal
growth because of the varying thickness and composi-

1 Additional materials can be requested at the address
html:\\www.freebee.techno.ru/s_moshkin/Paper 97.htm.
1063-7745/00/4506- $20.00 © 21041
tion of the grown layer and formation of misfit disloca-
tions and other defects. Moreover, if the distribution
coefficients of the components differ from unity, the
composition of the growing layer and, therefore, the
stresses in this layer depend on the diffusion processes
in the boundary layer of the solution. The theoretical
model of the nonstationary growth of mixed crystals,
which takes into account all the above processes,
will be considered in a series of articles.

The present article, the first in this series, is devoted
to the thermodynamic analysis of equilibria and
quasiequilibria in the system substrate–stressed layer–
solution for a defect-free crystal. The simplified model
suggested here is the basic model for the further analy-
sis of the kinetic factors and the processes of stress
relaxation at defects, because the expressions obtained
for this model enter the systems of equations that
describe these more complicated processes.

CONDITIONS FOR EQUILIBRIUM 
IN THE SYSTEM LIQUID SOLUTION–SOLID 

SOLUTION

The equilibria in the system unstressed crystal–liq-
uid crystallization medium for ideal solutions are
described in detail in [6, 7]. Introduce the notation and
give several well known relationships necessary for the
further consideration. We assume that the crystal under
consideration is an isomorphous mixture of two com-
ponents, A and B, forming an ideal solid solution.
Denote the component concentrations in the crystal (in
molar fractions) as Xi (i = A, B), with XB = 1 – XA. The

chemical potentials of the components are  =  +

RT Xi), where  is the chemical potential of pure
ith component in the solid phase, R is the gas constant,
and T is the absolute temperature. We assume that the
crystallization medium is an ideal three-component
solution of the components A and B. The third compo-

µi
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(ln Mi
s
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nent C (solvent) does not enter the solid phase. Let Ci

be the concentrations of the components in the liquid

phase and  be the concentrations of the solution
which is in equilibrium with the crystal of the compo-
sition XA, XB. The chemical potentials of the compo-

nents in the solution are  =  + RT Ci). In ideal

solutions,  are independent of the component con-
centrations, and the condition for equality of chemical

potentials in the equilibrium  =  yields 

(1)

where ∆Mi =  – .

The compositions of the solution and the crystal can
be conveniently described in dimensionless variables
characterizing the component ratios in each phase,
namely,

The solubility of the isomorphous mixture C 0 (the
molar fraction of the total amount of salts in the equi-
librium solution) can be represented as a function of the
mixture composition γs:

(2)

The equilibrium values of the distribution coeffi-

cients ri = Xi/  can be determined from (1) as ri =
exp(–∆µi/RT). A more convenient form of the represen-
tation of the coefficient characterizing the component
distribution is

(3)

THE ALLOWANCE FOR STRESSES 
IN THE SYSTEM SUBSTRATE–GROWN 

LAYER–SOLUTION

Consider the situation, where a substrate with the
lattice parameters different from the parameters of the
crystal, which is in equilibrium with the solution of iso-
morphous mixture, is placed into the solution with the
component ratio γl. It should be mentioned that the dif-
ference in the substrate and crystal parameters is such
that it allows epitaxial growth. Such a substrate can be
a crystal of the same phase but its composition should
be different from the solution composition (in terms of
Eq. (1)). We assume that there is no mass transfer
between the substrate and the solution, which, corre-
sponds, e.g., to the case of complete coating of the sub-
strate with a grown layer. We also assume that the rate
of diffusion between the substrate and the growing
phase is negligible in comparison with the rates of the
exchange processes between the crystal and the liquid

Ci
0

µi
l Mi

l (ln

Mi
l

µi
s µi

l

Ci
0 Xi ∆Mi/RT( ),exp=

Mi
s Mi

l

γs XB/ XA XB+( ) XB, γl≡ CB/ CA CB+( ).= =

C0 1 γs–( ) ∆MA/RT( ) γs ∆MB/RT( ).exp+exp=

Ci
0

k rA/rB XACB
0 /CA

0 XB= =

=  ∆MB ∆MA–( )/RT( ).exp
C

phase. For simplicity, consider the cubic substrate and the
cubic growing phase, with the intergrowth plane (001).

Consider a thin layer of the “isomorphous mixture”
with the parameter a grown onto the substrate with the
parameter a1. We assume that in the intergrowth plane,
the substrate parameter acquires the value equal to that
of the substrate and that all the strains in this layer
remain elastic; in other words, no misfit dislocations
can be formed. For thin layers, this assumption is justi-
fied even at considerable differences between the layer
and substrate parameters [5]. Thus, the grown layer is
in an elastically stressed state, and the energy of elastic
stresses per unit volume is U = cijklεijεkl/2 [8], where εij

are the components of the strain tensor in the grown
layer and cijkl are the components of the elastic stiffness
tensor of the layer.

In our case, the stresses are parallel to the inter-
growth plane, and the coordinate axes of the system
coincide with the main axes of the strain and stress ten-
sors; in other words, all the components of the stress
tensor (except two) are zeroes. The corresponding com-
ponents of the strain tensor are ε11 = ε22 = ε = (a – a1)/a
or, taking into account that a ≈ a1, we have –ε = (a –
a1)/a1 . Since the parameter a in an ideal solid solution
linearly depends on the crystal composition, a = a0 +
ξXA, where ξ is a constant coefficient. The stress energy
of one mole of the substance in the grown layer can be

written as U = cNV(a0 – a1 + ξXA)2/ z, where c =
c1111 + c1122, N is the Avogadro number, V is the unit-
cell volume, and z is the number of formula units in the
unit cell.

Now, we can write the specific total thermodynamic
potential of a stressed layer grown onto the substrate,
ZS, for the particular case of a cubic crystal2 in the form

2 The stress energy in a grown layer for a noncubic crystal is

  where  and  are the dimensions of the unit-cell projection

onto the principal axes of the strain tensor for the grown layer in
the intergrowth plane,  are the coefficients in the equations that

describe the dependence of these dimensions on the concentration

of the component A,  are the components of the elastic-stiff-
ness tensor rotated toward the same axes. For monoclinic and tri-
clinic crystals, and for the intergrowth planes in general positions,
the determination of the principal axes of the strain tensor for the
grown layer is a nontrivial problem.

a1
2

U
NV
2z
--------

c11
* c12

*+( ) a01
* a11

*– ξ1
*X

A
+( )2

a11
*( )2

---------------------------------------------------------------------------





=

+
c22
* c21

*+( ) a02
* a12

*– ξ2
*XA+( )2

a12
*( )2

---------------------------------------------------------------------------




,

a0i
* a1i

*

ξ i
*

cij
*

Zs cNV a0 a1– ξ XA+( )2/a1
2z=

+ XA MA
s RT XA( )ln+( ) XB MB

s RT XB( )ln+( ).+
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The additional term in the expression for ZS related
to stresses nonlinearly depends on the component con-
centrations in the crystal. As a result, the total thermo-
dynamic potential for the crystal stops being additive
with respect to the component masses and concentra-
tions; in other words, the solid solution stops being
ideal [9]. In particular, this manifests itself in the fact
that the thermodynamic potentials are not uniform
functions of concentrations, i.e., ZS ≠ ∂Zs/∂Xi.

One should not use the derivative of the thermody-
namic potentials with respect to concentrations (i.e.,
the chemical potentials) in order to describe the equi-
libria in such systems. Instead, one has to use a more
general principle of the total thermodynamic potential
of the system (∆Zσ) in the equilibrium state [9], which
is also valid for nonideal systems. The variation in ∆Zσ
during growth of one mole of isomorphous mixture of
the composition XA from an infinite volume of the solu-
tion of the composition CA, CB on the substrate with the
unit-cell parameter a1 is

Obviously, in both equilibrium and quasiequilib-
rium processes, only a layer with the composition cor-
responding to the minimum ∆Zσ value can grow, i.e., a
layer which satisfies the condition

(4)

Equation (4) determines only a possible composi-
tion of the stressed crystalline layer. The direction of
the process occurring in the system depends on the sign
of ∆Zσ (the layer grows at ∆Zσ < 0); it is dissolved at
∆Zσ > 0 and both processes are in equilibrium at ∆Zσ = 0.
Thus, the second condition for the equilibrium in the
system is

(5)

One has necessarily to take into account that
Eqs. (4) and (5) describe the true equilibrium in the sys-
tems substrate–stressed layer–solution only in there is
no mass transfer between the substrate, on the one side,
and the grown layer and the solution, on the other. If a
substrate is the crystal of the same phase but of differ-
ent composition, only a quasiequilibrium can be
attained. In this case, the true equilibrium can be
attained only if the substrate is completely substituted
by the substance whose composition is determined by
Eq. (1).

Xii∑

∆Zσ cNV a0 a1– ξ XA+( )2/a1
2z=

+ XA RT XA/CA( ) ∆MA+ln( )

+ 1 XA–( ) RT 1 XA–( ) 1 γl–( )/γlCA( ) ∆MB+ln( ).

∂∆Zσ/∂XA RT γlXA/ 1 γl–( ) 1 XA–( )( )ln=

+ 2cNVξ a0 a1– ξ XA+( )/a1
2z 0.=

cNV a0 a1– ξ XA+( )2/a1
2z

+ XA RT XA/CA( ) ∆MA+ln[ ] 1 XA–( )+

× RT 1 XA–( ) 1 γl–( )/γlCA( ) ∆MB+ln[ ] 0.=
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No analytical solution of the system (4), (5) of tran-
scendental equations is possible. These equations can
be solved numerically for a concrete set of parameters
entering these equations.

EFFECT OF INTERNAL STRESSES 
ON EQUILIBRIA IN THE SYSTEM POTASSIUM 
BIPHTALATE–RUBIDIUM BIPHTALATE–WATER

The above equations were solved numerically for
the system potassium biphtalate (KBP)–rubidium biph-
talate (RBP)–water studied in detail experimentally
[1, 2]. This system clearly demonstrates the phenom-
ena provided by different chemical compositions of the
solution and the crystal [2], which is explained by a
considerable mismatch of the unit-cell parameters of
KBP and RBP.

Of course, the solutions in this system are far from
being ideal. However, all the above speculations remain
valid upon the substitution of the concentrations by the
activities under the condition that the activity coeffi-
cients are independent of the concentrations, i.e., for
regular solutions. As far as we know, there is no pub-
lished data on the activity coefficients for KBP and
RBP, however a number of experiments indicate that it
is possible to use the approximation of regular solutions
for the system under consideration. In particular, the
solubility isotherms for the system are not too far from
the linear dependence (1), whereas the distribution
coefficient is almost constant and close to the value cal-
culated by Eqs. (3). Moreover, the calculated results
given below, should be considered, first and foremost,
as the illustration of the above theoretical model.

In our experiments, a seeding (K,Rb)C8H5O4 crystal
of the composition γs was placed into the solution with
the component ratio, which is nonequilibrium with
respect to this crystal, γl = CRBP/(CRBP + CKBP). In the
calculations, we used the values of the constants deter-
mined experimentally. The potassium and rubidium
biphtalate crystals are orthorhombic; therefore, we
introduced the corresponding corrections into Eqs. (4)
and (5). We considered the {010} faces of the
(K,Rb)C8H5O4 crystals in which the main directions of
deformation coincided with the crystallographic a- and
c-axes. The values of the components cijkl of the elastic-
stiffness tensors were determined from the coefficients
sijkl of the elastic-compliance tensor [10].

Figure 1 illustrates the calculated data for the equi-
librium coefficient of Rb distribution in the layers
grown on a KBP substrate, and Fig. 2 shows the solu-
bility of the layer material depending on the ratio of the
component concentrations in the solution and in the
substrate.

The quantitative characteristic of the quasiequilib-
rium conditions obtained for the system provided the
calculation of the internal stress-induced changes in the
chemical potentials of the components of the growing
phase. Thus, in equilibrium, the chemical potentials of
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the components in the solid and the liquid phases are

equal and one can write ∆ (γs) = RT (γs,

σ)/ (γs)), where ∆ (γs) is the stress-induced change
in the chemical potential of the component i in the layer

of the composition γs; (γs) is the concentration of the
component i in the solution, which is in equilibrium
with an unstressed crystal of the compositions γs; and

(γs, σ) is the concentration of the component i in the
solution, which is in equilibrium with the stressed layer
of the same composition. The examples of the stress
contributions to the chemical potentials of the compo-
nents are shown in Fig. 3 as functions of the composi-
tion of the grown layer. These dependences confirm our
intuitive concept, according to which the component
reducing the stress can easily be incorporated into a
crystal. Figure 3 also shows the dependence of ∆Zs =
XKBP∆  + XRBP∆  (coinciding with the specific

molar energy of stresses) as a function of the layer com-
position.

For the systems, in which the temperature depen-
dences of the solubilities of pure components are close
to linear, it is possible to calculate the variations in the
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Fig. 1. (1, 2) Theoretically calculated and (3, 4) experimen-
tally measured coefficients of Rb distribution (kRb) in a KBP
crystal (1, 3) and (2, 4) unstressed layers grown on the (010)
face as functions of the solution composition γl at T = 50°C.
C

saturation temperature of the solution for the stressed

layer. Let (T) =  + αiT, where (T) are the sol-
ubilities of pure components at the temperature T and

 and αi be the constant coefficients. Then, using

Eq. (1), we can write ∆Mi = RT  + αiT). Substitut-
ing the latter expression into Eqs. (4) and (5) and solv-
ing the obtained system of equations, we can determine
the change in the saturation temperature with respect to
the stressed layer at the constant solution composition.
Figure 4 shows an example of the dependence of this
temperature for the (KBP + RBP) solution, which is in
equilibrium with the native crystal at 50°C, as functions
of the component ratio in the solution and the substrate
composition.

The stresses in the growing layer depend on the
crystallographic orientation of the intergrowth plane.
Therefore, all the dependences shown in Figs. 1–4
should be different for different faces of various simple
forms of the crystal. Since under real conditions growth
of stressed layers is usually accompanied by formation
of various defects and, therefore, the local stress relax-
ation, the different portions of the same layer can have
different compositions and solubilities.
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calculated by Eq. (2) and (2) stressed layers grown onto the
(010) face of (1) K0.5Rb0.5C8H5O4 and (3) KBP crystals as
functions of the component ratio in the solution, γl, at T =
50°C.
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The calculation of the equilibrium composition of
the solution provides the determination of the supersat-
uration of the solution nonequilibrium with respect to
the stressed layer. The thermodynamic supersaturation
is determined as the difference between the chemical
potentials of any component of the given solution and
of the solution having the same ratio of the components
γl, which is in equilibrium with the stressed layer at the
same temperature. For a constant γl, the above-indi-
cated differences for both components are equal. How-
ever, because of different solubilities in different
regions of the grown layer (characterized by different
elastic stresses), only the local supersaturations of the
solution with respect to certain regions of the growing
surface should be considered.

COMPARISON WITH EXPERIMENT

The (K,Rb)C8H5O4 crystals used for studying the
composition and defects in the grown layers were syn-
thesized by the dynamic method of growth at lowering
of the temperature [11]. The mode of lowering of the
temperature provided the constancy of the relative
supersaturation (∆C/C0 ≈ Å 0.06 ) and the allowance for
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Fig. 3. Additional term describing the chemical potential

∆  of the components of (1) KBP and (2) RBP crystals

and (3) the total thermodynamic potential ∆Zs of the layer
grown on the (010) face of a KBP crystal as a function of the
layer composition XRb at T = 50°C.
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the dependence of solubility on temperature and γl and
the change in the mass of growing crystals in each
experiment. We grew crystals of three types: homoge-
neous (on a seed crystal obtained from the solution
used in the experiment), bizonal (on KBP seeds for
solutions with different γl), and gradient crystals (on
KBP seed from the solution, whose composition was
continuously varied during the experiment from γl = 0
to γl = 0.3). The methods used for growth of
(K,Rb)C8H5O4 crystals are described in detail else-
where [1, 2].

It is seen from the above figures that the most stress-
sensitive characteristic is the distribution coefficient k.
Figure 1 shows the experimental dependences of kRb in
unstressed (K,Rb)C8H5O4 crystals and stressed layers
of bizonal crystals grown on a KBP seed. The satisfac-
tory correspondence of the experimental kRb values for
the stressed layer with the theoretically calculated
dependence is observed only at small differences in the
compositions of the substrate and the layer (∆γ ≤ 0.07).
At pronounced differences ∆γ, the interzonal boundary
has quite a large number of defects, mainly misfit dis-
location forming at ∆γ ≥ 0.04. This results in a consid-
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Fig. 4. Supersaturation temperatures of the solution, T0,
with respect to the stressed layers grown onto the (010) face
of (1) KBP and (2) K0.5Rb0.5C8H5O4 crystals as functions
of the solution composition. (3) The solution saturated with
respect to the crystal of the same composition at 50°C.
0
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erable reduction of internal stresses at the growth front
and decreases the change in kRb.

It is rather difficult to determine the exact value of
the saturation temperature of the solution with respect
to the stressed layer, because, in the static growth mode
used for the determination of the saturation temperature
[11], the composition of the subsurface layer of the
solution changes with the seed dissolution. For less
accurate measurements in the dynamic mode, the
change in the saturation temperature of the solution
with respect to the grown layer was established only for
gradient crystals and it was shown that, at the end of the
experiment (when the solution composition corre-
sponds to γl = 0.25–0.30), the equilibrium between the
gradient crystal and the solution is attained at the tem-
perature by 1–1.5°C lower than the temperature of the
solution saturation with respect to the unstressed crys-
tal. The calculated stress (with due regard for the stress
redistribution in the crystal bulk during its growth) [12]
in the surface layer of a gradient crystal is lower by a
factor of 2–2.5 than in the grown layer of the bizonal
crystal with the same value of ∆γ. With due regard of
this fact, the experimental variation of the saturation
temperature for a gradient crystal amounts up to 50–
80% of its theoretical value. Such a good correspon-
dence is explained by a relatively low number of
defects in gradient crystals in comparison with their
number in bizonal crystals. As a result, the real stresses
at the growth front of gradient crystals are much closer
to the calculated values. The lower number of defects in
gradient crystals is explained, first of all, by the fact that
seed regeneration occurs in the solution of the same
composition, i.e., in the absence of any stresses. The
dislocation density determined by selective etching of
cleavages along the (010) planes [2] in the gradient
crystals is several times lower than that in the inter-
growth zone of bizonal crystals having the same calcu-
lated stresses.

Taking into account the limitations of the above the-
oretical model, the agreement of the data calculated on
the basis of this model with the experimental data
seems to be quite satisfactory. At the same time, it is
obvious that the quantitative description of real growth
processes occurring in mixed crystals under nonsta-
tionary conditions require the modification of this
C

model—introduction into it of the processes of defect
formation and internal-stress relaxation at defects.
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CRYSTAL GROWTH
The Mechanism of the Intergrowth Formation1
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pr. Lyudnikova 13, Vitebsk, 210717 Belarus
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1 As is well known [1], small crystals, which are
deposited from a supersaturated solution onto the faces
of a large crystal, can “stick” to these faces and form
“intergrowths.” The faces of such intergrowths, having
the same crystallographic indices, can have different
mutual orientations. A regular mutual orientation of the
crystals can be promoted by both internal and external
factors, in particular, the effect of vibrations [2, 3]. In
this work, we studied the characteristics of intergrowth
microcrystals and the crystalline substrate depending
on their dimensions. The experiments were made on
potassium aluminum alum and potassium dihydrogen
phosphate (KDP) crystals by the techniques described
elsewhere [2, 3]. The intergrowth along the {111}
planes was studied for alum–alum pair and along the
{100} planes for the KDP–KDP pair.

Small portions of alum crystals larger than 150 µm
or KDP crystals larger than 50 µm were introduced into
the native solution above the horizontal face of a 2- to
3-cm-large crystal of the same substance. Thus, small
crystals were deposited onto the face of the large crystal
and formed an intergrowth. Upon 5–10 min of deposi-
tion, the crystals were kept in the solution for 15–
20 min to provide better intergrowth. The saturation
temperature of all the solutions was 36.1°C. Deposition
and intergrowth took place at the supersaturation of
3.6°C for alum and 1.1°C for KDP. The number of
microcrystals intergrown with the substrate, their ori-
entations, and dimensions were determined under a
microscope with a rotating table. No less than a hun-
dred intergrowths were examined in each experiment.
The results were averaged over several experiments.

About 21% of all alum intergrowths were formed on
faces other than {111} and were not considered. All the
KDP intergrowths were attached to the substrate by the
{100} faces.

Experiments with alum showed that the regular
intergrowth along the {111} faces (with the misorienta-
tion angles 0° < α < 5°) was characterized by the epit-
axy coefficient K = 0.14. The epitaxy coefficient was
determined as K = n(h – a)/Nh, where n was the num-
ber of crystals under the epitaxial maximum on the his-

1 The paper is deposited at VINITI, 1999, Vitebsk, no. 2611-V99.
1063-7745/00/4506- $20.00 © 21047
togram (crystal distribution in the angle α), N was the
total crystal number, h was the maximum height, and a
was the background level [4]. It was established that the
average size of the microcrystals in regular inter-
growths is 11% less than the size averaged over all the
crystals intergrown with substrate. In other words, the
trend to the regular intergrowth increases for smaller
crystals.

The orientation of KDP microcrystals was
determined for several ranges of their dimensions:
D = 10–20, 20–30, and 30–40 µm. The epitaxy coeffi-
cient for the crystals from the range 10 < D < 20 µm
with the intergrowth faces {100} and the misorienta-
tion angle 0° < α < 10° was determined as K = 0.15. The
epitaxy coefficient for the ranges 20 < D < 30 µm and
30 < D < 40 µm was equal to K = 0.10 and K = 0.07,
respectively.

Thus, both alum and KDP show the trend to the reg-
ular intergrowth with a decrease of their dimensions.
The dimensions from 50 to 150 µm seem to be critical:
the crystals exceeding these dimensions show no ori-
ented intergrowth. Thus 10- to 20-cm-large crystals
show a preferable orientation with respect to the sub-
strate, whereas 30- to 40-cm-large crystals are charac-
terized by statistically distributed orientations.

The preferable orientation of deposited crystals was
observed earlier and was considered to be the result of
their electrostatic interaction with the substrate [5].
A small crystal can rotate from its initial position to the
position providing regular intergrowth under the condi-
tion that the time necessary for its complete “self-orien-
tation” does not exceed the time necessary for inter-
growth (i.e., the time necessary for crystallization of
the solution layer between a microcrystal and the large
crystal). It is obvious that the time of self-orientation is
shorter for small crystals because they are less inert.
Moreover, according to [6], the growth rate of microc-
rystals depends on their size [6], which should also
affect the process of crystal orientation.
000 MAIK “Nauka/Interperiodica”
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CRYSTAL GROWTH
Crystallographic Characteristics of Growth of Nepheline Single 
Crystals under Hydrothermal Conditions
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Abstract—Crystallographic characteristics of growth of nepheline single crystals Na3K[AlSiO4]4 on seeds par-
allel to the faces of the equilibrium and nonequilibrium forms of these crystals have been studied. Kinetics of
crystallization of nepheline single crystals in hydrothermal alkali solutions is studied for various crystallo-
graphic directions at different temperatures and supersaturations. It is established that growth rates of the crystal
faces decrease in the sequence  >  > V(0001) > . The activation energy of the crystalliza-

tion process for the (0001) monohedron and {10 1} pyramid faces are 38.5 ± 2.0 and 48.1 ± 2.0 kJ/mol, respec-
tively. Specific features of regeneration of nepheline crystals are studied. Two types of regeneration pyramids
are established, which differ by their crystallographic orientations with respect to the faces of the equilibrium
forms. It is also established that the optimum regeneration surfaces are normal to the {0001} and {10 0} faces
of the equilibrium forms of the crystals (with the 〈0001〉  and 〈1 00〉  zone axes, respectively). The morphology
of the growth surface of nepheline single crystals is studied. The mechanisms of face growth are established for
various substrate orientations. It is shown that the growth mechanisms are different in different regeneration
directions. The optimum shapes and the crystallographic orientations of the substrates providing a decrease of
the number of inherited defects and the maximum volume of the grown material are found. © 2000 MAIK
“Nauka/Interperiodica”.
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INTRODUCTION

Nepheline, a framework aluminosilicate of the com-
plicated composition (described by the ideal formula
Na3K[AlSiO4]4), is characterized by the hexagonal
symmetry with the noncentrosymmetric sp. gr. P63

determining its piezo- and pyroelectric properties [1].
The crystal structure of nepheline [2] can be considered
as a derivative of a high-temperature hexagonal tridym-
ite. Alumnum–oxygen and silicon–oxygen tetrahedra
form the framework, whose small voids are occupied
by sodium atoms, whereas larger voids are occupied by
potassium and sodium atoms. These connected voids
form channels providing ionic conductivity of the Na-
nepheline [3]. The nepheline structure [2] is character-
istic only of the middle members of the NaAlSiO4–
KAlSiO4 series, whereas the end members of this series
belong to other structure types [3–6]. In nature,
nepheline single crystals are encountered very seldom
and usually are of the volcanic origin. The natural
nepheline crystals most often occur as aggregates tex-
tured along the c-axis.

Under laboratory conditions, small (300–500 µm,
sometimes, 1–2 mm long) nepheline crystals have been
grown by the method of spontaneous crystallization
since the late nineties of the 19th century [7]. The
method of their growth reduced to the reaction between
1063-7745/00/4506- $20.00 © 21049
NaOH and Na2CO3 with various natural aluminosili-
cates at high temperatures [8, 9].

We grew large crystals of the composition close to
ideal (Na3K(AlSiO4)4) from hydrothermal solutions in
the temperature range of the thermodynamic stability
(T > 450°C) and in the metastable range (T < 450°C)
[10–13]. The hydrothermal media were alkali NaOH +
KOH solutions; the charge was prepared from crushed
natural nepheline or the mixture of SiO2 and the exces-
sive amount of Al2O3 oxide.

Below, we describe the further study of growth of
nepheline single crystals from high-temperature aque-
ous solutions. We consider the crystallographic aspect
of nepheline growth on seeds, the kinetics of seeded
growth, the morphology of growth surfaces, and the
real structure of the crystals grown.

1. EXPERIMENTAL
The preliminary study of sodium aluminosilicate

stability as a function of the medium composition and
temperature showed that the stability range of
nepheline in alkali solutions lies at temperatures above
~450°C (the calculated data [10], Fig. 1a). With the
temperature rise, the stability boundary between
nepheline and cancrinite is shifted to higher NaOH
concentrations (the experimental data [7], Fig. 1b). The
introduction of potassium ions into the system provides
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Stability fields of aluminosilicates: (I) nepheline, (II) nepheline-hydrate, (III) cancrinite, (IV) sodalite in the Na 2 O–Al2O3–

SiO2–H2O system [10, 11]. (a) Calculated and (b) experimental data. Notation:  and  are ion activities in the solution, m is

solution molality, ( equilibrium between Na-cancrinite and Na-nepheline-hydrate I; d equilibrium between Na-nepheline and
Na-cancrinite; j equilibrium between Na-cancrinite and Na-sodalite.
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no noticeable effect on the boundary shift. The
experiments on nepheline growth performed over a
wide temperature range led to the conclusion that
seeded growth of nepheline single crystals is possible at
considerably lower temperatures (of the order of
350°C) and also in the range of its thermodynamic
instability. Under metastable conditions, nepheline can
be grown only on seeds (which is explained by similar
structures of nepheline and nepheline-hydrate (stable
under these conditions), whereas the parasitic crystals
formed in the growth zone have the structure either of
the stable crystalline phase of nepheline-hydrate of the
composition NaAlSiO4 · nH2O or of cancrinite
Na8[AlSiO4]6{CO3(OH)2} · nH2O (depending on the
concentration of the solvent used). Metastable growth
of nepheline crystals on a seed is explained by the high
activity of the crystal surface, which forms a subsurface
layer with a structure similar to that of the substrate.

Nepheline single crystals were grown by the method
of direct temperature gradient at the constant tempera-
tures in the dissolution and the growth zones separated
by a baffle. The experiments were performed in 0.2-
and 1.0-l-autoclaves made of alkali-resistant steel. In
some cases, the inner surface was additionally lined
with Ag and Pt. For heating, two-zone furnaces were
C

used. The temperature in the dissolution zone was var-
ied within 350–500°C, the concentration of the NaOH
solvent was 3–15 wt % at T < 450°C and 3–22 wt % at
T > 450°C. The crystals for the studies of kinetics and
morphology were grown under the optimum growth
conditions (Table 1).

Nepheline crystals were grown onto the substrates
of various shapes and crystallographic orientations and
were cut out from natural or synthesized nepheline
crystals. In the first experiments, the seeds were unfac-
eted fragments of textured intergrowths of natural
nepheline (from Ural deposits). Seeded growth yielded
large nepheline crystals with a hexagonal habit, which
then were used to cut out the substrates of various crys-
tallographic orientations for further growth of
nepheline single crystals.

The kinetics of nepheline crystallization on oriented
seeds was studied at various q-ratios (one to two) in the
initial solution and at temperatures ranging within 350–
500°C (i.e., the ranges of metastable and stable
growth). Growth rates were measured on crystals
grown from ~20 × 20 × 1.5-mm-large (0001), {10 0},
{10 1}, and {11 0} oriented plane-parallel plates.

1
1 2
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Table 1.  Growth parameters of nepheline single crystals grown under the optimum conditions [12]

Main characteristics Variation ranges

Solvent NaOH 10–15 wt % + KOH 10–15 wt % 

at the volume ratio q = (NaOH/KOH) = 1–2

Charge Natural nepheline

Seed Natural nepheline; synthesized nepheline

Seed orientation (0001), (10 0) and (10 1) plates and bars elongated in [h 00] and [h 01] 
directions

Temperature in the growth zone 400–430°C

Temperature in the dissolution zone 420–470°C

Temperature difference 20–50°C

Fill coefficient 0.6–0.8

Open space of the baffle 3–10%

1 1 h h
The crystals grown were studied by the X-ray dif-
fraction (on DRON-4 and CAD-4F diffractometers)
and DTA (on DTA-TG Thermoflex, Rigaku Denki set-
ups) methods, by chemical analysis (silicate analysis,
X-ray microanalysis, JXA-840 setup), and by chemical
etching. Morphological studies were performed on
NEOPHOT-32 and MIM-8 microscopes.

2. RESULTS AND DISCUSSION

2.1. Symmetry and Composition of Grown Crystals

A typical crystal is shown in Fig. 2. Usually, the
crystals were faceted by the (0001) and (0001) mono-

hedron faces, the {01 0} hexagonal prism faces, and,

somewhat less often, by the {01 1} and {01 2} faces.
The hydrodynamic characteristics resulted in the fact
that the growth pyramids were represented by one or
two neighboring real faces of the same simple form.
The crystals had the dimensions up to 40 × 40 × 60 mm
(those grown in 1-l-large autoclaves) and 15 × 15 ×
20 mm (those grown in 0.2-l-large autoclaves). Regen-
eration of unfaceted fragments of natural or synthe-

sized nepheline provided the formation of the {10 1}

and {10 2} pyramid faces at the initial growth stages
(with ρ = 61.4° and 28.3°, respectively). During further
growth, these faces disappeared and, finally, the crys-
tals were faceted only with the prism and monohedron
faces (or faces of several monohedra if the crystals had
the twinning planes normal to the sixfold axis). Such an
equilibrium shape for nepheline crystals is shown in
Fig. 2b. The grown nepheline crystals are characterized
by the macrosymmetry 6mm or 6/mmm and not 6 (indi-
cated in the X-ray studies [2]). One of the causes of
such a high macrosymmetry of the grown nepheline
crystals is a high seed quality, preserving the texture of
the natural material. Usually, the seeds were plane-par-

1

1 1

1

1

CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
allel plates cut out normally to various crystallographic
directions and consisting of several individual 1.5–
2.0-mm-large blocks packed either parallel or antipar-
allel to the c-axis (–c ||+c) and misoriented in the (0001)
monohedron plane. Growth of nepheline crystals on
plane-parallel plates cut out normally to the 〈0001〉
direction provided the clear observation of the initial
texture (macropolycrystallinity) upon crystal etching.

c

a2

a1

(1010
–

)

(1011
–

)
(1012

–
)

(0001)

(a)

Fig. 2. Habit of nepheline crystals: (a) major simple forms;
grown single crystal (magnification  ×4); and (b) equilib-
rium form.

(b)
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Table 2.  Compositions of the starting charge and the crystals grown

Sample
Oxides, wt %

Formula
Na2O K2O MgO CaO Al2O3 SiO2 Fe2O3 FeO

1 15.94 6.00 0.76 0.35 32.37 43.63 0.41 0.17 Na2.96K0.74Al3.70Si4.19Fe0.04O16

2 15.27 7.86 – – 33.52 42.11 – 1.23 Na2.88K0.96Al3.84Si4.10Fe0.10O16

3 15.88 7.28 – – 33.60 43.24 – – Na2.96K0.88Al3.80Si4.16O16

4 16.43 7.08 – – 32.32 43.39 – 0.78 Na3.08K0.88Al3.68Si4.20Fe0.06O16

5 17.21 5.67 – – 33.98 42.50 – 0.64 Na3.20K0.68Al3.88Si4.08Fe0.04O16

6 16.81 6.31 – – 33.29 42.35 – 1.23 Na3.20K0.73Al3.80Si4.12Fe0.10O16

Note: Sample 1 is natural nepheline (from Ural deposits), samples 2–6 are grown single crystals.
The second cause of a higher symmetry is crystal
twinning during the growth process: the crystals
acquire the twinning plane normal to the c-axis. The
traces of this twinning plane are well seen on the prism
face (the twinning plane is usually well seen by the
naked eye in the vicinity of a wire on which the seed is
hanged). Unlike [14], where the synthesized nepheline
crystals were the polysynthetic albite-type twins, we
never observed any polysynthetic twinning.

The structural studies show that nepheline single
crystals grown without any substrates (spontaneous
nucleation in the cold zone of the autoclave at the
growth temperature of 430°C) possess the desirable
polar symmetry (a sixfold axis) and are characterized

by short-column or prismatic habit and the {01 0}
prism faces and the (0001) monohedron face. Usually,
the opposite end of the crystal (attaining the size of
5 mm) is fixed at the autoclave wall or on a mounting
wire.

The results of the chemical analysis of the initial
charge and the grown crystals are listed in Table 2. The
typical composition of the crystals grown in the pres-
ence of excessive sodium (q = 2) is described by the
formula Na3.20K0.68Al3.88Si4.08Fe0.04O16. Crystals grown
in Pt inserts had no traces of iron. Crystal parameters
were measured on crystals grown on seeds and on
spontaneously grown crystals containing no twins. The
lattice parameters were determined as a = 10.013(3)
and c = 8.406(2) Å and are consistent with the data in [2].

The differential thermal analysis (DTA) of the
grown nepheline crystals showed that they usually con-
tained about 1% water, which evaporated during crystal
heating to a temperature of 200°C. The DTA curves
obtained during heating and cooling show a reversible
phase transition at temperatures ranging within (940–
980)°C ± 5°C (depending on the potassium content).
This phase transition shows a weak hysteresis of ~10°C
and, according to [14], indicates the formation of a
high-temperature phase. At a temperature 160–200°C,
no phase transition characteristic of the varieties with
low potassium content was observed.

1

C

The major defects in the bulk of nepheline crystals
are gas–liquid and solid inclusions. The latter had the
form of needle- or platelike nepheline crystals with the
dimensions of 0.01–0.03 mm. The c-axis of the plate-
like inclusions was usually parallel to the c-axis of the
matrix crystal, whereas the needlelike crystals were
arranged at random. The gas–liquid inclusions were
located rather regularly and formed a subcellular struc-
ture clearly seen as a discontinuous subhexagonal net
of gas–liquid inclusions on the monohedron faces in the
transmitted light.

2.2. Growth Kinetics of Nepheline Crystals

Kinetics of nepheline crystals grown on seeds
depends on the solvent composition, the growth tem-
perature, the temperature difference ∆T, and the crystal-
lographic orientation of the seed. Growth kinetics was
studied on crystals with the composition
Na2.88K0.96Al3.84Si4.08Fe0.08O16 close to ideal,
Na3K(AlSiO4)4.

An essential effect on nepheline growth is produced
by the Na/K ratio in the initial solution. In the absence
of potassium in the alkali solution, the growth rates of
prism, monohedron, and pyramid faces were close to
zero. The surfaces of such orientations (preliminarily
etched in diluted HCl solutions) showed almost no
material increment, so that the experiments resulted
only in the appearance of growth morphology. This can
be explained by the fact that the end Na-containing
member of the NaAlSiO4–KAlSiO4 series has a struc-
ture different from that of the nepheline structure (mon-
oclinic, sp. gr. P21 [1] or P21/n, the beryllonite structure
type [1, 6, 14, 15]). The presence of nepheline seed did
not initiate growth of aluminosilicate with the
nepheline structure. Despite the presence of Na in the
nepheline charge, growth from pure KOH solutions did
not result in growth of crystals with the nepheline struc-
ture (sp. gr. P63); in fact, the crystals grown had the kal-
silite structure (K,Na)AlSiO4 (sp. gr. P63, the twice
shorter lattice parameter a = 5.149, c = 8.643 Å [6, 15]).
At the volume NaOH/KOH ratio ranging within 2.0–
0.5 (2 : 1–1 : 2), only nepheline crystals with the char-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 3. Kinetics of seeded nepheline Na3K[AlSiO4]4 crystallization in aqueous NaOH (15%) + KOH (15%) solutions. Dependence

of the growth rate of the (0001) monohedron and the { 2 0} prism faces on the temperature difference Tp at a constant growth

temperature (400°C) for (a) the (0001) monohedron and (b) the {10 1} pyramid at ∆T = const = 40°C.

1 1

1

acteristic compositions grew (see Table 2). The growth
rates of nepheline faces increased in the following
sequence  >  > V(0001) > . The

minimum growth rates were observed for the monohe-
dron and prism faces related to the equilibrium crystal
form, which were preserved in the final crystal faceting.
In the temperature range 350–500°C, growth rates var-

ied within the limits 0.01–0.06 mm/day for the {10 0}
prism, 0.02–0.40 mm/day for the monohedron, 0.07–

0.40 mm/day for the { 2 0}, and 0.3–0.6 mm/day for

the {10 1} pyramid faces. A higher potassium content
in the solution results in an increase of the face growth
rates. Thus, in growth from the solutions with 15 wt %
NaOH + 15 wt % KOH at ∆T = 30°C at a temperature

of 400°C, the growth rates along the 〈0001〉  and 〈 2 0〉
directions were equal to 0.02 and 0.10 mm/day, respec-
tively, at q = 2 and 0.03 and 0.16 mm/day at q = 1.

Dependence of the growth rates on the temperature
drop ∆T and the growth temperature for some faces are
shown in Fig. 3. It is seen that at constant temperature,
the growth rate varies with “relative supersaturation”
∆T by the parabolic law (within 0.02–0.40 mm/day for
the monohedron face at ∆T = 20–70°C and within 0.08–
0.40 mm/day for the pyramid faces at ∆T = 20–45°C.

We also calculated the activation energies for the

growth process of a monohedron and the {10 1} pyra-
mid faces from the data on the growth rate depending
on the inverse temperature (Fig. 4). These energies are
equal to 38.5 ± 2 and 48.1 ± 2 kJ/mol (9.2 ± 0.5 and
11.5 ± 0.5 kcal/mol, respectively). The values of the

V
1011{ } V

1210{ } V
1010{ }

1

1 1

1

1 1

1
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activation energies show that, in our experiments, the
growth rates are determined by the kinetics of the sur-
face processes and are not limited by the diffusion pro-
cesses occurring in the autoclave volume. Thus, it was
assumed that growth proceeds in the steady-state mode.
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the reciprocal temperature for the (0001) and {10 1} faces
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40°C.
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Fig. 5. Regeneration pyramids of nepheline crystals grown on seeds parallel to the {hk(h + k)0} and {hh2hl} faces. Solid lines show

the seed, arrows indicate the regeneration direction. Projections onto (a) the (0001) and (b) (1 00) planes, (c) final crystal habit,
and (d) a barlike seed.
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respectively.
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2.3. Regeneration of Nepheline Crystals

Regeneration of a crystal is the process of transfor-
mation of an initial arbitrary shape of the crystal into
the “faceted” growth form stable under certain condi-
tions [16]. Growth of single crystals on crystalline
seeds is always the regeneration process occurring dif-
ferently on different types of seed surfaces (singular,
belonging to the equilibrium form, or artificially set ori-
ented surface).

If a substrate is a plane-parallel plate with the deve-

loped (0001), {10 0}, or {10 1} faces represented in
faceting of the nepheline crystal and belonging to the
faces of the equilibrium form, then growth proceeds
normally to the substrate plane. The structural informa-
tion is transferred from the surface with the maximum
area present in the seed faceting to a growing crystal.
During growth, such faces are translated in parallel and,
thus, always remain in the final crystal faceting. In this
case, growth pyramids are formed whose bases are the
growing faces, and the vertices are located at the center
of the crystals (if growth is performed from a point seed
[17]). Nepheline crystals growing on such plane-paral-
lel substrates normally to the 〈0001〉 direction have the
texture (macropolycrystallinity) of natural seeds inher-
ited by the growing layer, which can clearly be revealed
by the etching of the (0001) monohedron face of the
grown crystal. As a result, crystal macrosymmetry
increases up to 6m or 6/mmm. Substrate defects (grain
boundaries, twins, and cracks) “pass” into the bulk of
the growing crystal. During crack healing and over-

1 1
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growth of solid inclusions, heterometry caused by dif-
ferent chemical and crystallochemical characteristics
of the seed plate and the overgrown material can give
rise to formation of some new defects (growth disloca-
tions, stresses).

To reduce the negative influence of seed defects
inherited by the overgrown material from a large area of
the seed, we chose seeds with the such shapes and the
crystallographic growth directions such that the maxi-
mum material mass would grow on the surfaces not
present in the final equilibrium crystal faceting. These
surfaces are the bases of regeneration pyramids [16],
whose vertices coincide with one of the crystal vertices
(the point of intersection of the real equilibrium faces
of the crystal). Such a face should have the minimum
possible area under the given experimental conditions.
Hereafter, discussing hydrothermal crystallization of
nepheline crystals, we use the term regeneration [16]
only if the face area diminishes during the growth pro-
cess and thus disappears from the final crystal faceting
because of “junction” of the faces of the equilibrium
forms. We studied nepheline growth on plane-parallel
seeds parallel to the faces of the equilibrium forms and
on the {10 1} and {10 2} pyramid faces (the so-called

regenerative growth) and the artificially set {11 0}

prism and {11 l} pyramid faces (l = 1–3). An example
of the regeneration pyramid for nepheline crystals is
shown in Fig. 5 with the preservation of the real a/c
ratio.

1 1

2

2
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(a)

(b)

Fig. 7. Morphology of growth surfaces of nepheline single crystals: (a) the (0001) face (magnification ×350) and (b) the (10 1)
face (magnification  ×200).

1

The approach used allowed us to find the appropri-
ately oriented substrate shape. For example, we used
the seeds cut off in the shape of a thin rectangular rod
with the (0001) and (000 ) monohedron faces, the

{01 0} and the {11 0} prism faces 1–3 mm long in the
direction of the c-axis. The substrate area from which
defects are inherited by the crystal is rather small, and
the minimum thickness of the seed is determined by the
experimental conditions under which the seed would
not be dissolved during the attainment of the required
temperature mode. The rods with the faces parallel to

the {1 00} and {11 l} faces provide regeneration

along the [11 l] directions (Figs. 5a, 5b). The habit of
the crystal grown on the seed of the former orientation
is shown in Fig. 5c; its growth proceeds along the

[11 0] direction.

The quality of the crystals depends on the crystallo-
graphic characteristics of seed regeneration and, thus,
also on the mechanism of the regeneration-surface

1

1 2

1 2

2

2

C

growth. The best nepheline crystals are obtained in the
case, where the regeneration plane is normal to one of
the equilibrium faces—(0001) monohedron face or the
(10 0) prism face (Fig. 6). These conditions are met by
the faces with both rational and irrational indices form-

ing the {hk( )0} zones (with k ≠ 0) with the 〈0001〉
axis and {hh l} zones (with h ≠ 0) with the 〈10 0〉
axis. The optimum growth directions in the zones cor-
responding to the maximum increment of the material

during regeneration are [11 0] and [11 l]. In the
former case, the growing (regenerating) planes are nor-
mal to the (0001) equilibrium face, whereas in the latter
case, they are normal to the equilibrium (1 00) face.

The highest growth rate is observed along the [11 0]
direction. In this case, regeneration pyramids are
formed hereafter referred to as type-1 regeneration pyr-
amids.

The regeneration pyramids of the 2nd type are
formed by the growing {hkil} faces in the general posi-

1

h k+

2h 1

2 2

1

2
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tions and the {h0 l} surfaces with the zone axis

〈 2 0〉 . In both cases, the regenerating faces are not
perpendicular to the faces of the equilibrium forms.
The growth mechanism and the quality of the material
overgrown onto these regeneration pyramids differ
from those of the previous type. Thus, nepheline crys-
tals grown on the substrates parallel to {10 1} and
{10 2} have regeneration pyramids with a much larger
number of gas–liquid inclusions in comparison with the
number of inclusions in the material overgrown on the

(11 0) and (11 l) surfaces.

The growth morphology of the surfaces of
nepheline crystals is determined by the type and the
growth mechanism of the corresponding face. Thus, the
(0001) and (000 ) monohedron faces and {10 0} prism
faces belonging to the equilibrium form (F-faces) grow
by the spiral–layer mechanism, i.e., layer by layer, and
are characterized by a macrorelief with one or several
macrospirals often seen with a naked eye. The surface
of the (0001) face is shown in Fig. 7. The macrostep
heights (measured on an interference microscope)
range within 700–1300 Å. Thin plateletlike nepheline
crystals are usually formed at the top of the dislocation
hillock at the site of dislocation emergence to the face
surface (a black platelet seen in the center in Fig. 7a). A
similar relief is also observed at the faces of another

equilibrium form—the {10 0} prism. In this case, the
growth hillocks are represented by polygonal spirals
elongated in the direction of the [0001] axis.

Morphologically, the regenerating faces of the
{10 1} and {10 2} pyramids are characterized by the
so-called “multiheaded growth” with numerous vicinal
cone-like hillocks on the faces (Fig. 7b) and clearly
seen growth steps. The pyramid faces originate from
numerous screw dislocations that emerge onto the sur-
face at the vertices of the vicinal hillocks normally to
the {10 1} and {10 2} pyramid faces [in the general
case {hkil} faces] according to the normal growth
mechanism (which reminds growth of the basal face of
quartz).

Morphology of regenerating planes normal to the
faces of the equilibrium forms is essentially different
from the above discussed. The layers propagate along

the [11 0] direction normal to the regeneration surface
(Fig. 8). In this case the surfaces of steps–islands are
parallel to the (0001) face of the equilibrium form. On

the (11 0) face, these steps are of the rounded or have
a polygonal (hexagon-like) shape. If one prevents the
contact between the (0001) face of the seed and the
growth medium using a platinum platelet, then it is pos-
sible to observe the formation of regeneration islands
with the subsequent layer propagation over the platelet

surface. On the (11 1) surface, regeneration results in
formation of faceted vicinal growth pyramids. The

h

1 1

1
1

2 2

1 1

1

1 1

1 1

2

2

2
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faces of these pyramids are parallel to the (10 0) faces
of the equilibrium prism.

The above characteristics of growth morphology
and regeneration surfaces show that the growth mecha-
nisms along different crystallographic directions and in
different types of regeneration pyramids are different.

1

(a)

(0001)

(1120)
_

(1120)

(0001)

(0001)

(b)

Fig. 8. (a) Growth accessories and (b) scheme of their for-

mation on the {11 0} prism surface. The (0001) surfaces
are hatched.

2
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CONCLUSIONS

Crystallographic characteristics of seeded growth of
nepheline single crystals, Na3K[AlSiO4]4, have been
studied. The higher macrosymmetry of the grown crys-
tals is explained by the inheritance of the initial-seed
texture and crystal twinning during the growth process.

The kinetics of nepheline crystallization from
hydrothermal alkali solutions was studied as a function
of growth temperature and relative supersaturation. The
growth rates along various crystallographic directions
decrease in the sequence  >  > V(0001) >

. The activation energies of crystallization are

determined for the (0001) monohedron face and the

{10 1} pyramid faces as 38.5 ± 2.0 and 48.1 ±
2.0 kJ/mol, respectively.

The specific features of regenerative growth of
nepheline single crystals are also studied. Two types of
regeneration pyramids are established, which are dif-
ferently oriented with respect to the faces of the equi-
librium forms of the (0001) monohedron and the

{10 0} prism. It is found that the optimum regenera-
tion surfaces for nepheline growth are normal to the
monohedron and a prism faces and form two zones of

{hk( )0} surfaces (at k ≠ 0) with the zone axis

〈0001〉  and {hh l} surfaces (at h ≠ 0) with the zone

axis 〈10 0〉 . Growth of nepheline crystals on seeds
with such orientation provides the formation of the

regeneration pyramids of the first type. The {h0 l}

surfaces with the zone axis 〈 2 0〉  and the {hkil} sur-
faces in the general position not perpendicular to the
equilibrium faces form the regeneration pyramids of
the second type. Growth mechanisms for the pyramids
of the first and the second types are different.

The morphology of growth surfaces of nepheline
single crystals is also studied.

V
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Abstract—A method for growing Cr4+ : Li2MgSiO4 single crystals with the longest luminescence lifetime of
all the orthosilicates and germanates is developed. The thermographic and X-ray diffraction analyses of the
crystals grown showed that Li2MgSiO4 crystals undergo a reversible phase transition in the temperature range
from 498 to 618°C. The low-temperature phase with the unit-cell parameters a = 6.2915(7), b = 10.688(1), c =
4.9946(5) Å, β = 90.479(9)°, Z = 4 is a monoclinically distorted high-temperature modification (isostructural)
to orthorhombic Li2MgGeO4 crystals. Within the experimental error, the unit-cell parameters of the low-tem-
perature phase linearly depend on temperature, but the angle β varies from 90.38° to 90°. The coefficients
of linear thermal expansion along the crystallographic axes are equal to 1.76 × 10–5, 1.26 × 10–5, and 1.74 ×
10−5 K–1; the coefficient of volume expansion is equal to 4.91 × 10–5 K–1. The phase transition is not accompa-
nied by any essential transformation of the structural motif and causes no fracturing or defect formation. © 2000
MAIK “Nauka/Interperiodica”.
Single crystals of Cr4+ : Li2MgSiO4 from the group
orthosilicates and germanates with the stoichiometric

compositions XO4 and Li2A2+XO4 (X = Si or Ge)
are of great interest as materials for solid-state lasers
tunable in the IR range. They possess the longest lumi-
nescence lifetime of all the Cr4+-doped materials.
According to [1], their lifetime ranges from 100 to
400 µs at 300 and 50 K, respectively; the luminescence
lifetime at room temperature is 60 µs [2]; the lumines-
cence is observed within the range 1100–1400 nm. 

No methods for growing laser-quality crystals of
this rather promising material have been developed as
yet. The luminescence [1] was studied on ceramic sam-
ples only. Growth of Li2MgSiO4 single crystals in the
shape of small ~8-mm-long and 1-mm-thick platelets
was reported in [3]. The crystals were grown from the
melt with the use of the lithium molybdate, Li2MoO4,
solvent. The lack of reliable data on structure and poly-
morphic transition for Li2MgSiO4 hinders growth of
optical-quality crystals. According to [3], Li2MgSiO4

does not undergo any polymorphic transformation at
heating to 1200°C; the corresponding X-ray diffraction
patterns are similar to those of tetragonal Li2MgSiO4

obtained in [4]. The existence of the tetragonal phase
reported in [4] has not been confirmed by the following
studies. The polymorphism of Li2MSiO4 (M = Mg, Zn,
Co) was described in [5], where it was also reported
that Li2MgSiO4 undergoes a phase transition in the

M2
2+
1063-7745/00/4506- $20.00 © 21059
vicinity of 600°C [5]. Both phases have structures sim-
ilar to that of the high-temperature phase of lithium
phosphate, γ-Li3PO4. No X-ray study was made.
According to [6], Li2MgSiO4 crystals are isostructural
to the high-temperature Li2MgGeO4 phase (the γ-
Li3PO4 structure type). 

In this study, we report growth of Cr4+ : Li2MgSiO4
single crystals and the data on their polymorphism the
thermal-expansion coefficient. 

Single crystals of the composition Cr4+ : Li2MgSiO4
were grown from flux. We tried several solvents,
namely, LiF and Li2MoO4 as well as lead, boron, vana-
dium, and sodium oxides. The study of phase formation
and the determination of the crystallization fields for
Li2MgSiO4 reduced to test crystallization in small vol-
umes of the melt (about 1 cm3) with the use of several
molar ratios of Li2MgSiO4 and the solvent. The temper-
ature of the crystallization onset was established from
the appearance of spontaneously grown crystals on a
platinum-wire probe. The cooling rate was 20–50°C/h.
The phases formed were identified using the X-ray
phase analysis. 

The test experiments showed that the PbO–B2O3–
LiF-solution based system (the activating ion was intro-
duced in the form of K2CrO4) is the most appropriate
for growing Cr4+ : Li2MgSiO4 crystals. The crystals
were grown on seeds located in the subsurface flux
layer and were grown to considerable dimensions in
000 MAIK “Nauka/Interperiodica”
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combination of this method with the Czochralski pull-
ing technique. The main defects in crystals were solu-
tion inclusions. The volume of the grown single crys-
tals was about 1 cm3. The luminescence studies
showed the excited-state lifetime the longest of all the
materials of this class—130 µs at the excitation by
Na3+  : YAG laser at a wavelength of 1064 nm [7]. 

The phase transformations in Li2MgSiO4 were stud-
ied with the use of the Setaram derivatograph in the
temperature range 20–1200°C. The experiments were
performed in a platinum crucible filled with 122.8 mg
of charge at a heating rate of 5°C/min; the standard was
Al2O3. 

The diffraction patterns from the initial sample at
room temperature were obtained with a DRON-4-13
X-ray diffractometer and in an FR-552 camera. High-
temperature measurements were performed using a
Guiniet-type camera (CuKα radiation with a semicon-
ductor-grade germanium as an internal standard). The
unit-cell parameters were refined by the least square
procedure using the Powder-2 program complex writ-
ten by P. N. Oleinikov. 

The X-ray studies of Cr4+ : Li2MgSiO4 were per-
formed in order to determine the crystallization fields
(a DRON-4-13 diffractometer) and showed that the
Li2MgSiO4 crystals were isostructural to Li2MgGeO4
(sp. gr. Pmna), which is consistent with the data from
[6]. However, the shape of some reflections (e.g., hkl
121, 131, etc.) showed that, in fact, they are the super-
positions of two reflections, which we managed to sep-
arate by obtaining diffraction patterns in an FR-552
camera providing a higher resolution and sensitivity.
Thus, several additional weak reflections were
recorded. These X-ray diffraction patterns were
indexed within a lower symmetry—monoclinic, proba-
ble sp. gr. P21/n—and not in the orthorhombic sp. gr.
Pmna.

Variation of the unit-cell parameters for Li2MgSiO4 at 20–
1000°C

T, °C
Unit-cell parameters

V/z, Å3

a, Å b, Å c, Å β, deg

20 6.2915(7) 10.688(1) 4.9946(5) 90.479(9) 83.96(4)*
400 6.332(2) 10.733(6) 5.016(3) 90.44(3) 85.2(2)*
490 6.343(2) 10.740(3) 5.024(2) 90.34(3) 85.7(1)
540 6.347(1) 10.746(2) 5.048(2) 90.30(3) 86.0(2)
600 6.3555(9) 10.756(2) 5.043(1) 90.38(2) 86.18(8)*
700 6.366(2) 10.783(4) 5.048(2) 86.6(2)**
800 6.381(1) 10.798(2) 5.062(1) 87.2(1)**
850 6.393(4) 10.807(5) 5.068(2) 87.6(2)**

1000 6.400(5) 10.820(8) 5.080(4) 88.0(4)**

* Monoclinic phase, sp. gr. P21/n.
** Orthorhombic phase, sp. gr.  Pmna, Z = 4.
C

The reversible phase transformation is observed in
the temperature interval of 498–618°C (with a maxi-
mum at 598°C). A nonsymmetrical shape of the corre-
sponding endothermal effect gradually decreasing
within 498–589°C and several weak peaks with feebly
marked endothermal effects seem to be associated with
the fact that restructuring starts in individual blocks of
the single crystal. Above the phase-transition tempera-
ture, the orthorhombic phase is stable, which is isos-
tructural to germanate of the same composition [8]. The
structure of Li2MgXO4 can be considered as the modi-
fied γ-Li3PO4 structure with lithium and magnesium
cations distributed over the lithium sites of the phos-
phate structure. The structure of the low-temperature
phase is, in fact, a monoclinically distorted structure of
a high-temperature modification. The refined unit-cell
parameters are listed in table. According to the X-ray
data, the sample still contains a monoclinic phase at
600°C, then, the phase transition is completed at
630°C. 

Within the experimental accuracy, the temperature
dependences of the unit-cell parameters and V/z for
Li2MgSiO4 are linear. The thermal expansion coeffi-
cients along the crystal axes X, Y, and Z are 1.76 × 10–5,
1.26 × 10–5, and 1.74 × 10–5 K–1, respectively; the
volume expansion coefficient equals 4.91 × 10–5 K–1.
A tendency to form a kink at about 600°C is character-
istic only of the b- and c-parameters. In fact, changes
essentially the phase transition changes only the angle
β (by ~0.4°). Therefore, this phase transition cannot
give rise to fracturing or defect formation and affect the
lasing properties of this crystal. This was confirmed by
the optical microscopy study of the all crystals grown.
In [8], the relation between the Li2MgGeO4 and

XO4 structures (the olivine structure type) was
established. The structures are formed by the hexagonal
close packing of oxygen atoms with X(4+) cations
being distributed over the tetrahedral sites. They differ
only by location of lithium and M(2+) cations. The Li
and Mg cations in the Li2MgXO4 (X = Si, Ge) are dis-
tributed over the tetrahedral positions; whereas in the
olivine structure, the M(2+) cations are distributed over
two positions and are surrounded with six oxygens
forming an octahedron. We also calculated the thermal
expansion coefficients for forsterite Mg2SiO4 (a =
5.982(1), b = 10.207(1), c = 4.756(1) Å, sp. gr. Pnma)
using the data from [9]. These coefficients along the
crystallographic axes are 1.50 × 10–5, 1.65 × 10–5, and
9.08 × 10−6 K–1; the volume expansion coefficient
equals 4.13 × 10–5 K–1. The corresponding coefficients
for Li2MgSiO4 only slightly differ from those for for-
sterite. 

Thus, we developed the method for growing Cr4+ :
Li2MgSiO4 single crystals—a promising material for
tunable solid-state lasers with the longest excited-state
lifetime. The high-temperature X-ray study revealed
two polymorphic modifications: a low-temperature

M2
2+
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monoclinic and a high-temperature orthorhombic ones.
The orthorhombic–monoclinic phase transition occur-
ring during crystallization does not affect the high qual-
ity of the crystals grown. The close thermal expansion
coefficients of Li2MgSiO4 single crystals with these
coefficients of forsterite (a widely used material for
tunable solid-state lasers) allows one to hope that the
mechanical strength Li2MgSiO4 single crystals can
make them competitive with forsterite in their use as
heated laser elements. 
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INFORMATION
Letter to the Editorial Board
Dear Sirs: 

Recently, you have published the paper entitled Crystal Structure of Strontium Hilgardite by
O. Ferro, D.Yu. Pushcharovskiœ, S. Teat, S.A. Vinogradova, E.V. Lovskaya, and I.V. Pekov
(Crystallogr. Rep., vol. 45, no. 3, p. 410). Soon after the publication, we received a letter from
the Commission on New Minerals and Mineral Names of the International Mineralogical
Association confirming that our proposal to revalidate kurgantaite had been approved
on July 4, 2000. Therefore, we recommend to refer to the structure described in our article
mentioned above as that of kurgantaite. 

D.Yu. Pushcharovskiœ

Translated by L. Man
1063-7745/00/4506- $20.00 © 2000 MAIK “Nauka/Interperiodica”1062
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Aida Aleksandrovna Urusovskaya
(1929–2000)
On June 26, 2000, Aida Aleksandrovna Urusov-
skaya passed away.

All those who knew Aida Aleksandrovna or, at least,
once had private or scientific contacts with her clearly
realized what a great and irreplaceable this loss is. Each
has his or her own memories, knows his or her own
Urusovskaya, and recollects her as a very bright person
possessing natural charm, modesty, a pure soul, and a
rare liking for hard work, which manifested itself in
various sides of her talent. She was a person who shared
the same fate as the country in which she was born and
worked.

Aida Aleksandrovna was born on January 18, 1929,
in Nizhniœ Novgorod. Even in her school years, she
showed an inclination to natural sciences and found
great pleasure in solving mathematical problems. Upon
graduating from school with a Silver Medal in 1947,
Urusovskaya entered the physics and mathematics fac-
ulty of Gorky (Nizhniœ Novgorod) State University. As
a postgraduate student of Academician Nikolai
Vasil’evich Belov, she defended her diploma work
devoted to the ramsaite structure. Professor Belov rec-
ommended that she enter the postgraduate course at the
Institute of Crystallography of the USSR Academy of
Sciences in Moscow under the guidance of Professor
M.V. Klassen-Neklyudova. Upon proving that she
could perform fine experiments, Klassen-Neklyudova
1063-7745/00/4506- $20.00 © 21063
agreed to guide Urusovskaya’s research (1952). Until
the very last days of her life, Urusovskaya was closely
related to the Institute of Crystallography, to which she
devoted more than half a century.

For experts in physics of plasticity in real crystals,
both in this country and abroad, Urusovskaya was iden-
tified with the Institute of Crystallography. Behind the
great authority enjoyed by Urusovskaya in the scien-
tific community, there were decades of hard work, con-
tinuous scientific search, high demands to herself
accompanied by the exceptional benevolence to all her
colleagues, the readiness to help everybody with valu-
able advice, cordiality, attention, and goodwill to all her
colleagues.

Urusovskaya started her scientific carrier in the
period of the worldwide discussion between the adher-
ents and adversaries of the concept of dislocations. In
that time, the adherence to any idea developed in the
West was always associated with the risk of being
accused of political unreliability with all the following
consequences. Despite this, Urusovskaya successfully
performed experimental studies (undertaken by the ini-
tiative of Klassen-Neklyudova) to confirm the exist-
ence of dislocations in crystals.

In the period between the defenses of her Candidate
(1955) and Doctoral (1981) Dissertations, Uruso-
vskaya studied the characteristics of microplasticity
000 MAIK “Nauka/Interperiodica”



 

1064

        

OBITUARY

  
and the nature of local barriers in ionic crystals using
the data on macroscopic deformation. She suggested
the method for treating the stress relaxation curves to
determine the density and velocity of dislocations and
to identify the nature of the hindrances limiting dislo-
cation motion. For the first time, she managed to reveal
the dislocation mechanism underlying the formation of
indentation figures, irrational twinning, and kink for-
mation. She showed that all these effects are caused by
dislocation glide. She also developed the detailed meth-
ods for studying the “defect” structure of cesium iodide
crystals (selective etching, volume decoration, and
preparation of specimens for transmission electron
microscopy study).

A new, remarkable page of her carrier had become
the investigation of the effect of electric and magnetic
fields on ionic crystals. For many years, Urusovskaya
guided the pioneering experimental studies, which
resulted in the discovery and the characterization of the
macroscopic magnetoplastic effect in nonmagnetic
crystals. She established that the application of low-
intensity (less than 0.5 T) magnetic fields can reduce
the yield stress of nonmagnetic materials by a consid-
erable factor and change the character of their stress–
strain curves.

Difficulties could not stop Urusovskaya in her sci-
entific work; it looked like the difficulties only trans-
formed her scientific work into everyday attempts of
overcoming all the barriers during her research, includ-
ing trying to overcome her illness. A deep interest in
science and a highly developed sense of responsibility
allowed her to continue her work until the very last days
of her life.
C

For several decades, Urusovskaya had taught
numerous graduate and postgraduate students and
numerous researchers from many scientific centers of
the ex-Soviet Union and present-day Russia who pre-
pared their dissertations under her guidance. Uruso-
vskaya is an expert in the field of mechanical properties
of crystals and is well known in the Baltic countries, the
Far East, Moldavia, Siberia, Georgia, and Ukraine. For-
eign scientists who had passed through her school now
successfully work in Poland and India. Urusovskaya, a
doctor in physics and mathematics professor, had
become the recognized authority in her field.

In addition to her scientific activity, her numerous
coworkers and colleagues remember other sides of her
creative nature. Her beautiful singing was always the
highlight of the institute’s parties and numerous confer-
ences, scientific schools, and seminars in which she
participated. She relaxed by singing Russian folk songs
and the so-called city songs (“romances”) as well as
classical music.

Sometimes, she changed from singing to splashes of
painting or making dresses for her concerts. No matter
what activity she was engaged in at the moment, she
made everything with devotedness, enthusiasm, inspi-
ration, and professionalism. Such a lucky combination
of harmony and balance in her mind, soul, and hands is
a rare gift in itself. Of course, such generosity and
wholeness of nature in our fractured and divided world
are too rare to disappear unnoticed. 

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Abstract—The rosette, tablet, and the first- and second-order hypertablet  groups of P-symmetries have
been fully derived at P . G20, G320, G4320, and G54320, respectively. The relation of these groups to the modeled

multidimensional symmetry groups is established. The formulas are derived for the total numbers of the 
groups in terms of the number of the initial symmetry groups of the category Gr… and the number of junior
groups generated by the groups of this category in their generalization with due regard for the above P-symme-
tries. © 2000 MAIK “Nauka/Interperiodica”.

Gr…
P

Gr…
P

1. All the generalizations of the Shubnikov antisym-
metry [1] and the Belov color symmetry [2], in which
the law of variation in the properties attributed to the
points of a figure is directly combined with an isometric
transformation acting on the points alone and indepen-
dent of their choice, are included into the unified
scheme of the Zamorzaev P-symmetry [3]. The devel-
opment of these ideas involving the generalization of
various categories of classical crystallographic symme-
try groups and their application to the physical crystal-
lography, science, and art are presented in [4] and [5],
respectively. The geometrical applications to the simi-
larity symmetry and the conformal and the multidimen-
sional symmetries are presented in [6–8]. The geomet-
rical principle underlying the classification of P-sym-
metries is especially fruitful for multidimensional
applications of the P-symmetry [8, 9, Sect. 1.2]. It
allows one to describe the category of the six-dimen-
sional point groups with the invariant three-dimen-
sional plane  in terms of the point crystallographic

groups  of these 32 P-symmetries [8, 10]; the cate-
gories of five- and six-dimensional plane point groups
G520 and G6320, in terms of the rosette and tablet groups

 and  [8]; the categories of the five- and six-
dimensional plane linear groups G521 and G6321, in

terms of the border and ribbon groups  and 
[8, 11]; and the category of the five-dimensional plane
groups G52, in terms of the two-dimensional (parquet)

groups  [12]. Later, the geometrical principle was
extended to hypercrystallographic P-symmetries [13]

G630

G30
P

G20
P G320

P

G21
P G321

P

G2
P

1063-7745/00/4506- $20.00 © 20887
and to the rosette, tablet, and hypertablet P-symmetries
[14–16].

Following the studies of simple and multiple anti-
symmetry [6], color symmetry (p-symmetry) [7], and
color antisymmetry ((p')-symmetries and (p, 2)-sym-

metries) [7], the focus in deriving the groups  of
the P-symmetry (generalizing the classical groups Gr…)
was made on obtaining the junior (color) groups. These
groups are of interest mainly for physical applications
(e.g. for the magnetic, electric, and magnetoelectric
symmetries). Moreover, multidimensional applications
require the study of senior (grey) groups (whose deriva-
tion is trivial) and the so-called intermediate groups,
completely absent in terms of simple antisymmetry. In
multiple antisymmetry, the role of such groups is
played by senior groups of certain kinds and junior
groups of some other kinds (the type CkMm). These
groups can be easily derived, provided the junior m
groups of independent kinds of the type Mm are known
[6]. However, it is by no means easy for p- and (p')-
symmetries and even much more difficult for the
P-symmetry. To facilitate the cumbersome calculation
of intermediate groups of the P-symmetry, Zamorzaev
[17] introduced the concept of strong isomorphism of
the groups and the isomorphism of the P-symmetries
and also proved the relation between the number of var-
ious junior groups of some P-symmetries and the num-
ber of different intermediate groups of other P-symme-
tries.

Along similar lines, all the symmetry groups, mak-
ing up the categories G(r + 2)r…, G(r + 3)(r + 2)r…, and
G(r + 4)(r + 3)(r + 2)r…, respectively, are interpreted in terms

Gr…
P
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of the classified groups  of the rosette, tablet, and
hypertablet P-symmetries [14–16]. However, the cited
publications reported only the calculation of the total

number of the groups  of the rosette, tablet, and
hypertablet P-symmetries for certain selected catego-
ries of the symmetry groups. The ever increasing
importance of the n-dimensional crystallography (see
e.g. [18]) aroused the interest in the complete deriva-
tion and a more detailed description of all the groups of
the rosette, tablet, and hypertablet P-symmetries of
each subdivision (i.e., point, space, plane, layer, etc)
and their application to the study of the corresponding
multidimensional symmetry groups.

In the present paper, the attention is primarily
focused on the classification of the rosette, tablet, and
hypertablet P-symmetries into isomorphism classes
with the aim to derive universal formulas for calculat-

ing the number of the groups  generated by an
arbitrary category Gr… generalized with due regard for
the above P-symmetries and to consider their possible
multidimensional applications.

2. One should remember the essence of P-symmetry
and some related facts. Each point of a figure is attrib-
uted at least one subscript i = 1, 2, …, p. Then, a certain
group P of substitutions of these subscripts is fixed, so
that the transformation of the P-symmetry of the figure
is called an isomeric transformation, which would
transform each point with the subscript i into a point
with the subscript ki, so that the substitution can be

written as ε =  ∈ P.

Any transformation of the P-symmetry g is a com-
mutative product of the symmetry transformation s and
the substitution ε. The transformations of the P-sym-
metry of the figure form the group G, whereas the sym-
metry transformations involved constitute the generat-
ing group S, and the substitutions of indices, the group
P1 . If P1 = P, then G is called a group of complete
P-symmetry; if e ⊂  P1 ⊂  P, it is called a group of
incomplete P-symmetry. If G is a group of complete
P-symmetry, then H = G ∩ S is its symmetry subgroup
and Q = G ∩ P is the subgroup of substitutions of indi-
ces. The group G is called senior if Q = P, junior if Q = e,
and intermediate (Q-intermediate) if e ⊂  Q ⊂  P. The
basic Zamorzaev theorem [7, 8] on P-symmetry states
the following. Any group G of the complete P-symme-
try can be derived from its generating group S by (i) sin-
gling out the normal devisors H and Q in S and P such
that there exists the isomorphism of the factor-group
S/H on P/Q, (ii) pairwise multiplication of the cosets
(matching in isomorphism), and (iii) the combination
of the obtained products.

In the scheme of P-symmetry, the rosette P-symme-

tries, whose zero-dimensional groups  model the
rosettes symmetry groups G20, are restricted to the p-

Gr…
P

Gr…
P

Gr…
P

1 2…p
k1 k2 kp 

 

G0
P

C

and (p')-symmetries at p = 1, 2, 3, 4, 5, 6 [14, 15]. The
groups of the substitutions, specifying the tablet
P-symmetries at P . G320, are derived from the groups
of substitutions specifying the rosette P-symmetries by
their generalization with due regard for antisymmetry
[14–16]. In other words, the substitutions characteriz-
ing the tablet P-symmetries are subdivided into gener-
ating (G), senior (C), and junior (M) groups [6], from
which it follows that the number of the tablet P-sym-
metries equals 31. This follows from the fact that this
number is equal to the number of the rosette antisym-

metry groups  modeling the tablet groups G320 [6].
In turn, the hypertablet P-symmetries of the first order
at P . G4320 are characterized [16] by such groups of
substitutions which are derived from the groups of sub-
stitutions specifying the rosette P-symmetries via their
generalization involving the twofold antisymmetry [6].
Consequently, there are 125 hypertablet P-symmetries
of the first order because the number of the rosette

groups of the twofold antisymmetry  modeling all
the groups of the hypertablet symmetry G4320 is also
125 [6], whereas the groups of substitutions specifying
these P-symmetries correspond to all types of fully
classified groups of twofold antisymmetry. These are
[6] G, ëi (senior of the kind i = 1, 2), C12 (senior of the
kind (1, 2)), åi (junior of the kinds i = 1, 2), M12, C1M2
(senior of the kind 1, junior of the kind 2), C2M1,
C12M1, and M1M2 (junior of the kinds 1 and 2).

Finally, at P . G54320, the hypertablet P-symmetries
of the second order are restricted to such P-symmetries
whose groups of substitutions are obtained from the
groups of substitutions of the rosette P-symmetries via
their generalization involving the threefold antisymme-
try [6]. Therefore, there are 671 such P-symmetries,
because the number of different rosette groups of the

threefold antisymmetry  is also 671 [6]. As regards
the groups of substitutions characterizing the above
hypertablet P-symmetries of the second order and

whose zero-dimensional groups  model all the
groups of the category G54320, these groups of substitu-
tions correspond to all the groups of the threefold anti-
symmetry obtained in their complete classification [6]:
G, ëi (i = 1, 2, 3), C1j (j = 2, 3), C23, C123, C1Cj, C2C3,
C1C23, C2C13, C3C12, C12C13, and C3 (senior of all seven
kinds); Mi, M1j, M23, M123; C1Mj, C1M23, C2M1, C2M3,
C3Mj, C3M12, C12Mj, C12M13, C13Mj, C13M12, C23Mk

(k = 1, 2), C23M12, C123Mi, C1C2M (senior of kinds 1
and 2, junior independently of the their kind), C2C3M,
C2C13M, C3C12M, C12C23M, M1Mj, M2M3, MkM123,
M3M12, M12M13, CjM2 (senior of the ith kind, junior of
other kinds), C12M2, C13M2, C23M2, C123M2 , and M3
(junior of all seven kinds).

Now, remember the concept of the strong isomor-
phism of the groups and the isomorphism of the
P-symmetries [17]. Two elements of a group are equiv-

G20
1

G20
2

G20
3

G0
P
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alently included into this group if there exists the group
automorphism mapping one element onto the other
one. The equivalent inclusion is preserved in group iso-
morphisms. Let G1 and G2 be the groups with set rela-
tionships of equivalence, which require the coincidence
of their orders and possesses the property of equiva-
lence. Then, the isomorphism of the group G1 on G2 is
called strong if it provides the property that all the
equivalent and equally included elements in G1 have
corresponding equivalent elements in G2 and the non-
equivalent elements equally included into G1 have cor-
responding nonequivalent elements in G2 . Further, the
P-symmetry is isomorphic to the P '-symmetry if the
groups of substitutions P and P ' specifying these
groups are strongly isomorphic, i.e., P  P '.

3. Now, proceed to the groups  for P . G20,
G320, G4320, and G54320. As was mentioned above, these
groups are classified into the senior, intermediate, and
junior ones. The derivation of the senior groups is triv-
ial: G = S × P, where S is the generating (classical)
group and P is the group of the substitutions of indices,
which characterizes the P-symmetry. The junior groups
of this P-symmetry are derived from certain generating
group S (in accordance with the basic theorem) only if
the latter possesses such a normal devisor H that S/H . P.
The same basic theorem also implies that the study
of Q-intermediate groups of the P-symmetry involves
the sorting of the nontrivial normal devisors Q of the
group of substitutions P. Then, it is also possible to
calculate the number of these groups if the junior
groups are known, because the number of different
Q-intermediate groups of the P-symmetry within the
given family is equal to the number of different junior
groups of the P-symmetry with the same generating
group if P/Q  P0 [17]. In this case, not only are the
numbers of different junior groups (in this family equal
to the number of various junior groups of the P0-sym-
metry) the same, but the numbers of intermediate
groups are also the same within the families of groups
of the isomorphic P-symmetries. The calculation of the

groups  of certain P-symmetries requires the
detailed analysis of only one group of each class of iso-
morphism and not of all the P-symmetries; therefore,
the calculation of the number of groups is essentially
simplified. Below, we make use of such a possibility.

4. Let us derive the universal formula for calculating

groups  of the rosette P-symmetries at P . G20.
The groups of the substitutions characterizing these P-
symmetries are subdivided into 9 classes of strong iso-
morphism: 1; 2, 1'; 3; 4; 6; 2'; 3'; 4'; 6'. Consequently,
generalizing the category Gr… containing K symmetry
groups with 10 rosette P-symmetries, we distinguish K
generating, 9 · K senior, and 2M2 + M3 + M4 + M6 +

M2' + M3' + M4' + M6' junior groups  (the subscript
P of the symbols MP denoting the number of junior

≈–

Gr…
P

≈–

Gr…
P

Gr…
P

Gr…
P
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groups indicates the specific P-symmetry associated
with the number MP, whereas the factor 2 indicates the
number of the P-symmetries within the class of isomor-
phism of the symmetry 2).

To calculate the number of Q-intermediate groups

 of these P-symmetries, one should first establish
all the possible nontrivial normal devisors Q for one
group of substitutions from each class of strong iso-
morphism and then construct the factor-group P/Q.

For the first four P-symmetries, the category Gr…
generates no intermediate groups. For the 4-symmetry,
we have Q =2 and 4/2  2; therefore, the number of the

2-intermediate groups  coincides with the number
of M2 junior groups generated by the category Gr… for
the symmetry 2. At the symmetry 6, we have Q = 2 and
3, while 6/2  3 and 6/3  2. Consequently, the number

of the Q-intermediate groups  coincides with the
number M2 + M3. For the (2')-symmetry, we have Q = 2
and 1', while P/2  P/1'  2; therefore, among the

groups , we have 2M2 Q-intermediate groups.
For the (3')-symmetry Q = 3 and P/3  2; therefore,

there are M2 3-intermediate groups . For the
(4')-symmetry and Q = 4 and 2', the factor-groups are
P/4  P/2'  2, while for Q = 2, the factor groups are
P/Q  2', whence it follows that there are 2M2 + M2'

Q-intermediate groups among  groups. Finally, for
the (6')-symmetry and Q = 2 the factor-group is
P/Q  3'; for Q = 3, the factor group is P/Q  2', while
for Q = 6 and 3', the factor group is P/6  P/3'  2.
Therefore, in this case, we obtain 2M2 + M2' + M3' inter-
mediate groups. Finally, we conclude that the generali-
zation of the category Gr… with due regard for 10
rosette P-symmetries yields 9M2 + M3 + 2M2' + M3'

Q-intermediate groups  (here, the symbol MP

retains its meaning and the numerical factors specify
the number of all the possible factor-groups P/Q
strongly isomorphic to the groups of the substitutions P
characterizing the above P-symmetries).

Thus, generalizing the K groups of the category Gr…
with due regard for 10 rosette P-symmetries, we arrive

at the complete number of the groups , which is
equal to 10 × K + 11 × M2 + 2 × M3 + M4 + M6 + 3 ×
M2' + 2 × M3' + M4' + M6'. These groups model the sym-
metry groups of the category G(r + 2)r…. Attributing the
values corresponding to the given category to MP, one

can confirm the numerical factors , , , ,

and  for P . G20 obtained earlier in [7, 8].

5. Let us derive a formula for calculating the number

of groups  of 31 tablet P-symmetries for P . G320.
The groups of substitutions specifying these P-symme-
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tries are now subdivided into 17 classes of isomor-
phism: (1) 1; (2) 2, 1, 2, 1', 1'; (3) 3; (4) 4, 4; (5) 6, 31,
6; (6) 2', ; (7) 21, 2', (1')1; (8) 3', ; (9) 4', ;

(10) 4'; (11) 6', ; (12) 6', (3')1; (13) 41; (14) 61;
(15) (2')1; (16) (4')1; and (17) (6')1, where the bar
under the symbol of the generating group element indi-
cates the combination of the corresponding subscript
substitution with the sign reversal.

Generalizing the category Gr… under consideration
with the tablet P-symmetries, we obtain K generating
30 × K senior and 5 × M2 + M3 + 2 × M4 + 3 × M6 + 2 ×
M2' + 3 × M21 + 2 × M3' + 2 × M4' + M4' + 2 × M6' + 2 ×
M6' + M41 + M61 + M(2')1 + M(4')1 + M(6')1 junior groups.
The symbols MP and numerical factors have the same
meaning as in the case of the rosette P-symmetries. The

number of the lacking Q-intermediate groups  of
the tablet P-symmetries can be obtained upon the deri-
vation of the corresponding general formula. This, in
turn, requires (see Sect. 3) a detailed study of all the
factor-groups P/Q for only the one group of the substi-
tutions from each class of strong isomorphism. Then
the number of the intermediate groups generated by the
category Gr… at the given P-symmetry must be multi-
plied by the number of P-symmetries in its class of iso-
morphism.

The classes (1)–(6), (8), (9), and (11) of the tablet
P-symmetries contain the rosette P-symmetries. Let us
determine the number of the Q-intermediate groups in

the category  at P-symmetries of these classes. For
the P-symmetries of the classes (1)–(3), the category
Gr… generates no intermediate groups. For the 4-sym-
metry, this category, as is shown in Sect. 4, generates
M2 intermediate groups. Therefore, since class (4) con-
tains two P-symmetries, the category in question gen-
erates 2M2 intermediate groups at the P-symmetries of
this class. Considering the P-symmetries of classes (5),
(6), (8), (9), and (11) in a similar way, one can find that
at the P-symmetries of the above nine classes of iso-
morphism containing the rosette P-symmetries, there
are 19M2 + 3M3 + 4M2' + 2M3' Q-intermediate groups

in the category .

For the remaining eight classes of the tablet P-sym-
metries containing no rosette symmetries, the calcula-

tion of the intermediate groups of the category 
should be considered in more detail. Thus, for the (21)-
symmetry and Q = 1, 2, and 2, we obtain P/Q  2. Con-
sequently, for this P-symmetry, the category Gr… gen-
erates 3M2 intermediate groups, whereas for the
P-symmetry of class (7), this category generates 9M2
intermediate groups, since the class mentioned above
contains 3 P-symmetries. For the (4')-symmetry and
Q = 4, 2', and , we obtain P/Q  2. If Q = 2, then
P/Q  21. Therefore, for the P-symmetry of class (10),

2–' 3–' 4–'

6–'

Gr…
P

Gr…
P

Gr…
P

Gr…
P

≈–

2–' ≈–
≈–
C

the category considered above generates 3M2 + M21
intermediate groups. For the (6')-symmetry and Q = 2,
we have P/Q  3'. If Q = 3, then P/Q  21; for Q = 3',
6, and , the factor-groups P/Q  2. As a conse-
quence, for the (6')-symmetry, the category considered
above generates M3' + M21 + 3M2 intermediate groups;
for the P-symmetries of class (12), the same category
generates 2M3' + 2M21 + 6M2 such groups.

It is easy to verify that for the eight classes (7), (10),
(12)–(17) of the tablet P-symmetries containing no
rosette symmetries, the category Gr… generates 39M2 +
M3 + 2M4 + 3M6 + 6M2' + 3M3' + 2M4' + 2M6' + 14M21 +
2M(2')1 intermediate groups, whereas for all the tablet
P-symmetries, there are 58 × M2 + 4 × M3 + 2 × M4 +
3 × M6 + 10 × M2' + 5 × M3' + 2 × M4' + 2 × M6' + 14 ×
M21 + 2 × M(2')1 Q-intermediate groups in the category

.

Summing up, the generalization of the K symmetry
groups of the category Gr… with due regard for 31 tablet
P-symmetries yields the complete number of the

groups  equal to 31 × K + 63 × M2 + 5 × M3 + 4 ×
M4 + 6 × M6 + 12 × M2' + 7 × M3' + 4 × M4' + M4' + 4 ×
M6' + 2 × M6' + 17 × M21 + M41 + M61 + 3 × M(2')1 +
M(4')1 + M(6')1. These groups model the symmetry
groups of the category G(r + 3)(r + 2)r….

Attributing the values corresponding to this cate-
gory, to MP, one can confirm the numerical data for

, , and  for P . G320 obtained in [14–16].

6. Now, derive the formula for calculating the

groups  of 125 hypertablet P-symmetries of the
first order for P . G4320. Following [19], we can abridge
the list of the P-symmetries and the specific types of the
Q-intermediate groups by using method A, which
reduces the procedure to writing down only one repre-
sentative of the symbols of three different groups P (or
Q) of the same form. Thus, writing (1 – A), we mean the
list 1-, *1-, and *1-, whereas writing (*21 – A), we
mean the list *21-, *2*1-, and 2*1-. A bar under the
symbol of a group element indicates to the combination
of the corresponding substitution of the indices with the
interchange of only the first signs “+” or “–”; the aster-
isks on the upper left of the symbol indicate the inter-
change of only the second signs; the combination of a
bar and an asterisk means simultaneous interchange of
both the first and the second signs.

The groups of the substitutions, specifying the
hypertablet P-symmetries of the first order, are distrib-
uted over 25 classes of strong isomorphism as follows:
(1) 1; (2) 2, (1 – A), (2 – A), 1', and (  – A) (altogether
11 P-symmetries); (3) 3; (4) 4 and (4 – A) (altogether
4 P-symmetries); (5) 6, (31 – A), and (6 – A) (altogether
7 P-symmetries); (6) 2' and (  – A) (altogether
4 P-symmetries); (7) (21 – A), 1*1, (*21 – A), ((1')1 – A),

≈– ≈–
3–' ≈–

Gr…
P

Gr…
P

G20
P G21

P G320
P
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P

1–'

2–'
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(2' – A), (( )*1 – A), and (2*' – A) (altogether

19 P-symmetries); (8) 3' and (  – A) (altogether 4

P-symmetries); (9) 4' and (  – A) (altogether 4 P-sym-
metries); (10) (4' – A) and (4*' – A) (altogether 6 P-sym-
metries); (11) 6', (  – A) (altogether 4 P-symmetries);
(12) (6' – A), ((3')1 – A), ((3*')1 – A), and (6*' – A) (alto-
gether 12 P-symmetries); (13) (41 – A) and ((*41 – A)
(altogether 6 P-symmetries); (14) (61 – A), 31*1, and
(*61 – A) (altogether 7 P-symmetries); (15) ((2')1 – A)
and ((2*')1 – A) (altogether 6 P-symmetries); (16)
21*1, (1')1*1, and (*2')1 – A) (altogether 5 P-symme-
tries); (17) ((4')1 – A) and ((4*')1 − A) (altogether
6 P-symmetries); (18) ((*4')1 – A) (altogether 3 P-sym-
metries); (19) ((6')1 – A) and ((6*')1 – A) (altogether
6 P-symmetries); (20) (3')1*1 and ((*6'1 − A) (alto-
gether 4 P-symmetries); (21) 41*1; (22) 61*1; (23)
(2')1*1; (24) (4')1*1; and (25)  (6')1*1. Taking into
account that classes (6) and (7), (9) and (10), (11) and
(12), (15) and (16), (17) and (18), and (19) and (20)
contain junior groups of antisymmetry from the same
family and thus are isomorphic to each other [6], we
obtain 25 nonisomorphic symmetries among 125
hypertablet P-symmetries of the first order and also
25 strongly nonisomorphic and 19 nonisomorphic
groups of the substitution groups characterizing 125
P-symmetries. This result confirms the statement made
in [17] that the relationship of strong isomorphism
divides any class of isomorphic groups into subclasses.

Using the statements made in Section 3, we con-
clude that generalization of the category Gr… with due
regard for 125 hypertablet P-symmetries of the first
order yields K generating K × 124 senior, 11 × M2 +
M3 + 4 × M4 + 7 × M6 + 4 × M2 + 19 × M21 + 4 × M3' +
4 × M4' + 6 × M4' + 4 × M6' + 12 × M6' + 6 × M41 + 7 ×
M61 + 6 × M(2')1 + 5 × M21*1 + 6 × M(4')1 + 3 × M(*4')1 + 6 ×
M(6')1 + 4 × M(*6')1 + M41*1 + M61*1 + M(2')1*1 + 4 ×
M(4')1*1 + M(6')1*1 junior (the symbols MP and the numer-
ical factors have the same meaning as earlier), and an
unknown number of intermediate groups.

Before proceeding to the search for the absent Q-
intermediate groups generated by the category Gr…
with due regard for the hypertablet P-symmetries of the
first order, we should like to note that the tablet P-sym-
metries are contained in 17 classes of isomorphism,
namely, (1)–(15), (17), and (19). Considering the
P-symmetries of these 17 classes of isomorphism in the
same way as 9 classes of isomorhism of the tablet
P-symmetries containing the rosette symmetries, in

Sect. 5, one can readily see that the category  con-
tains 279M2 + 14M3 + 12M4 + 21M6 + 44M2' + 22M3' +
12M4' + 12M6' + 6M6' + 85M21 + 12M(2')1 intermediate
groups.

Consider in more detail the Q-intermediate groups

 for the remaining 8 classes of isomorphism of the
hypertablet P-symmetries of the first order.

1–'

3–'

4–'

6–'

Gr…
P
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For the (21*1)-symmetry, if Q = (1 – A), 2, and (2 –
A), we obtain P/Q  21; if Q = (21 – A), (*21 – A), and
1*1, we have P/Q  2. In accordance with Section 3, it
follows that for the P-symmetry, the category Gr… gen-
erates 7M2 + 7M21 Q-intermediate groups, whereas for
the P-symmetries of class (16), the number of such
groups is five times higher.

For the ((*4')1)-symmetry, if Q = (2')1, (2*')1, *41,
*4', *4', , and , we obtain P/Q  2; if Q = *4,

*4, 21, 2', and (  – A), we have P/Q  21. For the
cases Q = 1 and 2, we have P/Q  4', whereas for Q =
2, we obtain P/Q  21*1. Consequently, there are
7M2 + 7M21 + 2M4' + M21*1 Q-intermediate groups of
this P-symmetry, while for the P-symmetries of class
(18), the number of such groups is three times higher.

For the ((*6')1)-symmetry and for Q = 3, we obtain
P/Q  21*1; for Q = 1, *2, and *2, we have P/Q  6'.
For the cases Q = 31, 3', (  – A), *6, and *6, we have

P/Q  21; for Q = (3')1, (3*')1, *61, *6', *6', , and

*6 , we have P/Q  2. Finally, if Q = *21, then P/Q  3'.
Thus, we conclude that for the ((*6')1)-symmetry, the

category  contains 7M2 + 7M21 + M3 + 3M6' +
M21*1 Q-intermediate groups; for the P-symmetries of
class (20), the number of such groups is four times
higher.

For the (41*1)-symmetry, if Q = (1 – A) and (2 – A),
the factor groups P/Q  41; if Q = 2, then P/Q  21*1.
For the cases Q = 4, (4 – A), and (21 – A), we have
P/Q  21; for Q = 1*1 and (*21 – A), we have P/Q 
4; finally, for Q = (41 – A), (*41 – A), and 21*1, we
obtain P/Q  2. Consequently, for the P-symmetry of
class (21), the category Gr… generates 7M2 + 4M4 +
7M21 + 6M41 + M21*1 intermediate groups. For the
(61*1)-symmetry, if Q = 3, we obtain P/Q  21*1,
whereas if Q = (1 – A), 2, and (2 – A) of the factor group
is P/Q  61. For Q = 1*1, (21 – A) , and (*21 – A), we
have P/Q  6; for Q = (31 – A), 6, and (6 – A), we have
P/Q  21; for Q = 21*1, we have P/Q  3. Finally, if
Q = 31*1, (61 – A), 6*1, and 6*1 then P/Q  2, from
which it follows that for the P-symmetry of class (22),
the category Gr… generates 7M2 + M3 + 7M21 + 7M6 +
7M61 + M21*1 intermediate groups.

For the ((2'1*1)-symmetry, if Q = (1 – A) and (2 –
A), the factor groups are P/Q  (2')1; if Q = 2, 1', and
(  – A), the factor groups are P/Q  21*1; whereas if
Q = 1*1, (*21 – A), the factor-groups are P/Q  2';.
Further, if Q = (21 – A), 2', (  – A), ((1')1 – A),
((1*')1 – A), (2' – A), and (2*' – A) then P/Q  21.
Finally, if Q = 21*1, ((1')1*1, (2*')1, (*2')1, ((2')1 – A),
( )*1, (2')*1, ( )*1, and (2')*1, then P/Q  2.
Hence, it follows that the total number of the Q-inter-
mediate groups generated by the category Gr… for the
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P-symmetry of class (23) equals 11M2 + 19M21 +
4M2' + 6M(2')1 + 5M21*1.

For the (4')1*1-symmetry and Q = (1 – A) and (2 –
A), the factor groups are P/Q  (4')1, whereas for Q =
2, we have P/Q  (2')1*1. If Q = 1*1 and (*21 – A),
then P/Q  4'; if Q = (21 – A) and (4 – A), then P/Q 
(2')1. Further, for Q = 4, 2', and (  – A), the factor-

groups are P/Q  21*1; while for Q = (41 – A), 4', (  –
A), (4*' – A), (4*' – A), ((2')1 – A), and ((2*')1 – A) , the
factor groups are P/Q  21. As a result, if Q = (*41 –
A) and 21*1, then P/Q  2', whereas if Q = 41*1,
((4')1 – A), (( )1 – A), ((*4')1 – A), and (2')1*1, the
factor groups are P/Q  2. Hence it follows that at the
P-symmetry of class (24), there are 11M2 + 4M2' +
19M21 + 5M21*1 + 6M(2')1 + 4M4' + M(2')1*1 + 6M(4')1

Q-intermediate groups in .

Finally, for the ((6')1*1)-symmetry and for Q = 3,
we obtain P/Q  (2')1*1; whereas for Q = (1 – A) and
(2 – A), we have P/Q  (6')1. If Q = 2, then P/Q 
(6')*1. For the cases Q = 1*1 and (*21 – A), the factor-
groups are P/Q  6'. In turn, if Q = 21*1, then P/Q 
3'; if Q = (21 – A), then P/Q  6'; whereas for the cases
Q = (31 – A) and (6 – A), we have P/Q  ( )*1. Fur-

ther, if Q = 6, 3', and (  – A), the factor groups are
P/Q  21*1, while if Q = (*61 – A) and 31*1, then
P/Q  2'. If Q = ((3')1 – A), ((3*')1 – A), (61 – A), 6',
(  – A), (6' – A), and (6*' – A), then P/Q  21; and
finally, if Q = 61*1, ((6')1 – A), ((6*')1 – A), ((*6')1 –
A), and (3')1*1, then P/Q  2. Thus, at the P-symmetry
of class (25), the category Gr… generates
11M2 + 19M21 + 4M2' + 5M21*1 + 6M(2')1 + 3M6' + M3' +
4M6' + M(6')*1 + 6M(6')1 + M(2')1*1 Q-intermediate groups.

It is easy to show that for the P-symmetries of the
isomorphism classes (16), (18), and (20)–(25) contain-
ing no tablet P-symmetries, the category Gr… generates
131M2 + M3 + 4M4 + 7M6 + 12M2' + 5M3' + 4M4' +
155M21 + 6M41 + 7M61 + 18M(2')1 + 6M(6')1 + 6M(4')1 +
6M4' + 15M6' + 24M21*1 + 2M(2')1*1 + M(6')*1 intermedi-
ate groups.

As a result, we conclude that the category  of
125 hypertablet P-symmetries of the first order con-
tains 410M2 + 15M3 + 16M4 + 28M6 + 56M2' + 27M3' +
16M4' + 16M6' + 240M21 + 7M61 + 30M(2')1 + 6M(4')1 +
6M(6')1 + 6M4' + 24M21*1 + 2M(2')1*1 + 21M6' + M(6')*1 +
6M41 intermediate groups in addition to the generating
senior and junior groups listed above.

Thus, generalizing the K symmetry groups of the
category Gr… with due regard for 125 hypertablet P-
symmetries of the first order, we obtain the complete

number of the groups  equal to 125 × K + 421 ×
M2 + 60 × M3 + 20 × M4 + 35 × M6 + 60 × M2' + 31 ×
M3' + 20 × M4' + 20 × M6' + 12 × M4' + 33 × M6' + 259 ×
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M21 + 12 × M41 + 14 × M61 + 36 × M(2')1 + 12 × M(4')1 +
12 × M(6')1 + 29 × M21*1 + 3 × M(*4')1 + 5 × M(*6')1 +
M41*1 + M61*1 + 3 × M(2')1*1 + 4 × M(4')1*1 + M(6')1*1.
These groups model the symmetry groups of the cate-
gory G(r + 4)(r + 3)(r + 2)r… of the (r + 4)-dimensional
Euclidian space.

Now, attributing the values, corresponding to the
category G20 to MP, one can confirm the numerical fac-

tor  for P . G4320 obtained in [16].

7. Without going into detail, we only indicate here
that, at P . G54320, the generalization of the category
Gr… containing K symmetry groups, with due regard
for 671 hypertablet P-symmetries of the second order,
yields K generating 670 K senior, 23M2 + M3 + 8M4 +
15M6 + 8M2' + 91M21 + 8M3' + 8M4' + 28M4' + 8M6' +
56M6' + 28M41 + 35M61 + 28M(2')1 + 71M21*1 +
28M(4')1 + 42M(*4')1 + 28M(6')1 + 56M(*6')1 + 14M41*1 +
15M61*1 + 14M(2')1*1 + 14M(4')1*1 + 7  +

9  + 14M(6')1*1 + 8  +  +  +

 +  +  junior groups (here,

bars, asterisks, the symbols MP, and the related numer-
ical factors have the same meaning as above, a circum-
flex over the symbol of an element indicates the combi-
nation of the corresponding substitution of indices with
the interchange only in the third signs “+” and “–”
attributed to the points), and also 3520M2 + 66M3 +
120M4 + 225M6 + 376M2' + 3766M21 + 171M3' +
120M4' + 112M4' + 120M6' + 301M6' + 112M41 +
140M61 + 392M(2')1 + 940M21*1 + 112M(4')1 +
42M(*4')1 + 112M(6')1 + 77M(*6')1 + 14M41*1 + 15M61*1 +
70M(2')1*1 + 14M(4')1*1 + 44  + 14M(6')1*1 +

 + 2  intermediate groups (here the

symbols MP have the same meaning as earlier, whereas
the numerical factors specify the number of all the pos-
sible factor-groups P/Q strongly isomorphic to the
group of the substitutions and characterizing the
P-symmetry indicated in the symbol MP).

Summing up, the generalization of the K symmetry
groups of the category Gr… with due regard for 671
hypertablet P-symmetries of the second order yields

the complete number of the  groups equal to 671 ×
K + 3543 × M2 + 67 × M3 + 128M4 + 240 × M6 + 384 ×
M2' + 3857 × M21 + 179 × M3' + 128 × M4' + 150 × M4' +
128 × M6' + 357 × M6' + 140 × M41 + 175 × M61 + 420 ×
M(2')1 + 1011 × M21*1 + 140 × M(4')1 + 84 × M(*4')1 +
140 × M(6')1 + 133 × M(*6')1 + 28 × M41*1 + 30 × M61*1 +
84 × M(2')1*1 + 28 × M(4')1*1 + 7 ×  + 53 ×

 + 28 × M(6')1*1 + 9 ×  +  +

 + 3 ×  +  + . These
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groups model the symmetry groups of the category
G(r + 5)(r + 4)(r + 3)(r + 2)r… of the (r + 5)-dimensional
Euclidian space.

Thus, the formulas for calculating the groups 
of the complete P-symmetry for P . G20, G320, G4320,
and G54320 are obtained.

8. In conclusion, we should like to emphasize that in
the course of the solution of the formulated problem,
the following subsidiary results are also obtained: (1)
The rosette, tablet, and hypertablet (of the first and sec-
ond orders) P-symmetries are distributed over the iso-
morphism classes (i.e., the classes containing the
P-symmetries characterized by the groups of substitu-
tions having the same structures). (2) The nontrivial
normal devisors of the groups of substitutions corre-
sponding to all the P-symmetries of each the type are
derived. (3) The factor-groups of the groups mentioned
above with respect to their normal devisors are con-
structed and the groups of substitutions, to which the
former groups are strongly isomorphic, are indicated.

All these results provided the derivation of such an
expression for calculating the complete number of the

groups  of the rosette, tablet, and hypertablet
P-symmetries, in which in addition to the numerical
factors, there are also the following multipliers: the
number of the initial symmetry groups and the number
of the junior groups generated by the category Gr… dur-
ing its generalization with one P-symmetry from each
class of isomorphism, into which all the P-symmetries
of each type are divided.
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Abstract—Single crystals of the composition NiP2 were synthesized from a tin-based flux. The crystal struc-
ture of the compound was determined by X-ray diffraction analysis; sp. gr. C2/c; PdP2 structure type; the unit-
cell parameters a = 0.6352(1) nm, b = 0.56042(9) nm, c = 0.5621(1) nm, β = 119.62(2)°; RF = 0.047 and Rw =
0.042 were calculated over 561 independent reflections with Fhkl > 4σ(Fnkl). © 2000 MAIK “Nauka/Interperi-
odica”.
Phosphide of the composition NiP2 has been studied
by X-ray powder diffraction analysis, which showed
that the crystals were monoclinic with two possible
space groups C2/c or Cc; the unit-cell parameters were
determined as a = 0.6366 nm, b = 0.5615 nm, c =
0.6072 nm, β = 126.22° [1]. Later, the atomic coordi-
nates in the NiP2 structure were also determined (sp. gr.
C2/c at the same unit-cell parameters) by the X-ray dif-
fraction study of the single crystals (the photographic
method, R = 0.096). The structure was related to the
PdP2 structure type [2]. The fact that the NiP2 structure
was established with the use of the unit-cell parameters
reported in [1] without any additional refinement and a
high value of the R factor have cast doubt upon the
validity of the structure determination of NiP2, in par-
ticular, after the NiP2 crystals were related to the PdP2

structure type [3]. In this connection, we decided to
reinvestigate the NiP2 structure. 

Single crystals of NiP2 phosphide were prepared by
crystallization from tin-based flux. The starting nickel
and red phosphorus powders of the purity grade no
worse than 99.7 wt % of the major component were
taken in the molar ratio of 1 : 3. The thoroughly mixed
components were pressed into a briquet. A part of the
briquet (1 g) and tin (2 g) were placed into a corundum
crucible then sealed into a quartz ampule, which was
heated in a muffle furnace to 1370 K at a rate of
100 K/day, and kept for 50 h at this temperature. Then
it was slowly cooled (150 K/day) to room temperature.
The tin matrix was dissolved in a dilute (1 : 1) hydro-
chloric acid; the undissolved residue was dried in air at
room temperature to yield gray plateletlike single crys-
tals. The single crystals were studied by the Laue and
rotation methods, and by obtaining the reciprocal lat-
tice photographs (KFOR camera, MoK radiation) and
using the method of diffractometry (KM-4 diffractome-
ter, λMoKα radiation, 2θmax = 80.17°). The structure
was solved by the direct methods with the use of the
CSD program package [4]. 
1063-7745/00/4506- $20.00 © 20894
The X-ray diffraction study confirmed that the NiP2
structure is monoclinic; sp. gr. C2/c; unit-cell parame-
ters a = 0.6352(1) nm, b = 0.56042(9) nm, c =
0.5621(1) nm, β = 119.62(2)°. The unit-cell parameters
determined in the present study substantially differ
from those reported in [1, 2]. The atomic coordinates
and thermal parameters (nm2 × 10–2) in the NiP2 struc-
ture are as follows: Ni in 4(c)—x = y = 1/4, z = 0, Biso =
0.56(2) (B11 = 0.66(3), B22 = 0.51(2), B33 = 0.55(2),
B12 = –0.07(2), B13 = 0.31(2), B23 = 0.01(2)); P in 8(f)—
x = 0.1995(2), y = 0.1153(2), z = 0.3361(2), Biso =
0.54(2) (B11 = 0.45(4), B22 = 0.60(3), B33 = 0.52(3),
B12 = 0.02(3), B13 = 0.22(3), B23 = 0.00(2)). The final
values of the reliability factors, RF = 0.047 and Rw =
0.042, were calculated over 561 independent reflec-
tions with Fhkl > 4σ(Fhkl). 

The atomic arrangement in the NiP2 structure
(Fig. 1a) confirms the PdP2 structure type [5]. Nikel
atoms are located in the centers of almost regular
squares of phosphorus atoms (δNi–P = 0.2200(2) and
0.2202(1) nm), whereas phosphorus atoms are located
in the centers of slightly distorted tetrahedra (Figs. 1b
and 1c, respectively) and form zigzag chains (Fig. 1d)
(δP–P = 0.2217(1) and 0.2222(2) nm). A characteristic
feature of the NiP2 structure is the minimum δNi–P inter-
atomic distance (0.2200 nm) shorter than the minimum
δP–P interatomic distance (0.2217 nm), with the latter
being close to the sum of the covalent radii of P atoms
(0.220 nm). The δNi–P distance (0.2200 nm) is substan-
tially shorter than the sum of the corresponding atomic
radii (rNi = 0.126 nm and rP = 0.110 nm [4]), which is
indicative of partial ionization of the atoms in the NiP2
structure. 

In order to determine the possible homogeneity
range of NiP2 phosphide, we examined crystallization
of specimens containing 0.55 and 0.70 molar fractions
of phosphorus, i.e., the specimens from two different
composition ranges—NiP2 + Ni5P4 and NiP2 + NiP3.
The specimens were prepared by sintering the charge of
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) NiP2 structure projected onto the XZ plane, (b) coordination polyhedron of [NiP4], (c) coordination polyhedron of
[P(Ni2P2)], and (d) zigzag chains of phosphorus atoms. 
the preliminarily pressed powdered components in
evacuated quartz ampules slowly (100 K/day) heated to
1070 K, kept at this temperature for 100 h, and then
cooled in the furnace. The X-ray phase analysis
(DRON-3M diffractometer, CuKα radiation) confirmed
that the specimens consisted of two phases. The unit-
cell parameters of NiP2 phosphide in the equilibrium
with Ni5P4 are a = 0.63608(3), b = 0.56142(3), c =
0.56297(2) nm, β = 119.535(2)°, V = 0.17492(2) nm3.
The unit-cell parameters of NiP2 phosphide in the equi-
librium with NiP3 are a = 0.63660(2), b = 0.56147(3),
c = 0.56302(2) nm, β = 119.573(2)°, V = 0.17503(2) nm3.
This fact indicates that the NiP2 phosphide has a narrow
homogeneity range at 1070 K. 
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Abstract—Crystal structures of Ca9R(VO4)7 compounds with R = Er (I), Tm (II), Yb (III), and Lu (IV) have
been studied by the Rietveld method. All these compounds are isostructural to Ca3(VO4)2 and crystallized in
the trigonal system (sp. gr. R3c, Z = 6) with the following unit-cell parameters: (I) a = 10.8554(5), c = 37.967(1) Å;
(II) a = 10.8550(5) and c = 37.950(1) Å; (III) a = 10.8564(5) and c = 37.924(1) Å; (IV) a = 10.8566(5) and
c = 37.880(1) Å. In compounds I–IV, the rare-earth and calcium cations statistically occupy three positions—
M(1), M(2), and M(5). The number of R3+ cations in the M(5) position increases from 1.3(1) for Er up to 3.0(1)
for Lu. The occupancy of the M(1) and M(2) positions with R3+ cations decreases with a decrease of the radius
of R3+. The data on the distribution of R3+ cations for the whole series (R = RE and Y) are given and discussed
in detail. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The present paper is the last part of the structural
study of the Ca9R(VO4)7 compounds (R = RE, Y).
Below, we present the data on the structure of
Ca9R(VO4)7 compounds with R = Er (I), Tm (II), Yb (III),
and Lu (IV) and summarize the data on the depen-
dences of unit-cell parameters and the cation distribu-
tions over the M(1)–M(5) positions of the initial
Ca3(VO4)2 structure [1] as functions of the radius of R3+

for the whole series of rare-earth cations.

EXPERIMENTAL

The synthesis of the samples, the conditions of
obtaining X-ray diffraction patterns, and the methods
used for the refinement of crystal structures are
described in detail in the previous parts of this study
[2, 3]. The structures of compositions I–IV were refined
by the Rietveld method [4] using the RIETAN-94 pro-
gram [5, 6]. According to the X-ray phase analysis,
compounds I–IV consist of only one phase. Table 1
presents the main data on the diffraction experiment
and the refinement of the structures of compounds
I−IV.

At the first stage of the structure refinement of com-
pounds I–IV, we used the f-curve for Ca2+ for all the
cationic positions. The occupancies obtained (Table 2,
nf-Ca) showed that R3+ cations occupy the M(1), M(2),
and M(5) positions, with the M(3) position being occu-
pied by calcium cations alone and the M(4) position
1063-7745/00/4506- $20.00 © 20896
being empty. Then, we refined the distribution of R3+

cations over the M(1), M(2), and M(5) positions with
due regard of their complete occupancy (nCa + mR = 1).
The M(4) position was taken to be vacant. For the M(3)
position, the f-curve for Ca2+ cations was used and the
occupancy was taken to be fixed and equal to unity:
nCa = 1. Thus, we obtained the following numbers of
R3+ cations per unit cell: 5.8 for I, 5.2 for II, 5.2 for III,
and 6.0 for IV. Further refinement was performed at the
fixed value of the R3+ cations in the unit cell (six). The
obtained distributions of R3+ cations over the positions
of the structure (nCa, mR) are indicated in Table 2.

As an example, Fig. 1 shows the experimental, cal-
culated, and the difference X-ray diffraction patterns
for the specimen of compound III. The atomic coordi-
nates and the parameters of atomic thermal vibrations
for compounds I–IV are indicated in Table 3.

DISCUSSION OF RESULTS

The unit-cell parameters and the number of R3+ cat-
ions in the M(1)–M(5) positions for the Ca9R(VO4)7
structures (R = RE, Y) are listed in Table 4. Figure 2
shows the dependence of the unit-cell parameters and
the number of R3+ cations on the radius of the R3+ cation
at the coordination number c.n. = 8 [7]. As is seen from
Fig. 2, each compound of the composition Ca9R(VO4)7
(R = RE, Y) is characterized by its own distribution of
R3+ cations over the structure positions. The occupancy
of the positions with R3+ cations regularly changes with
000 MAIK “Nauka/Interperiodica”
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Table 1.  Conditions of X-ray experiment and the refinement of the Ca9R(VO4)7 structures (R = Er (I), Tm (II), Yb (III), and
Lu (IV))

Characteristic
Compound

I II III IV

Sp. gr. R3c R3c R3c R3c

Z = 6 Z = 6 Z = 6 Z = 6

Range of angles 2θ, deg 10–140 10–110 10–110 10–110

Scan step, deg 0.01 0.01 0.01 0.01

Imax, pulse 34410 26711 25697 26806

Unit-cell parameters

a, Å 10.8554(5) 10.8550(5) 10.8564(5) 10.8566(5)

c, Å 37.967(1) 37.950(1) 37.924(1) 37.880(1)

V, Å3 3874.6 3872.6 3870.9 3866.5

Number of Bragg reflections 826 546 546 545

Number of refined parameters* 17 + 62 17 + 61 17 + 62 17 + 60

Reliability factors**

RWP; RP 4.24; 3.26 4.89; 3.77 4.02; 3.13 5.06; 3.76

RI; RF 3.95; 2.31 4.18; 1.91 3.05; 1.29 3.32; 1.66

S 1.46 1.85 1.53 1.89

(D–W) d 0.98 0.63 0.89 0.59

* The first number indicates the background and the profile parameters, the scale factor, the unit-cell parameters, and the zero shift; the
     second number indicates the positional and thermal atomic parameters and the occupancies.
** Calculated by formulas from [5].

Table 2.  Occupancies of the M(1), M(2), and M(5) positions in Ca9R(VO4)7 (R = Er (I), Tm (II), Yb (III), and Lu (IV) and
the number of R3+ cations in each position

Position
Compound

I II III IV

M(1) nCa 0.870(5) 0.893(5) 0.905(5) 0.909(6)

mR 0.130(5) 0.107(5) 0.095(5) 0.091(6)

Number of R3+ cations 2.3(1) 1.9(1) 1.7(1) 1.6(1)

nf–Ca 1.25(1) 1.26(1) 1.20(1) 1.23(1)

M(2) nCa 0.870(5) 0.873(5) 0.902(5) 0.925(5)

mR 0.130(5) 0.127(5) 0.098(5) 0.075(5)

Number of R3+ cations 2.3(1) 2.3(1) 1.8(1) 1.4(1)

nf–Ca 1.28(1) 1.30(1) 1.21(1) 1.19(1)

M(5) nCa 0.799(8) 0.702(8) 0.577(6) 0.499(7)

mR 0.221(8) 0.298(8) 0.423(6) 0.501(7)

Number of R3+ cations 1.33(5) 1.79(5) 2.54(5) 3.01(5)

nf–Ca 1.51(1) 1.77(1) 2.05(1) 2.30(1)

M(4) nf–Ca 0.014(8) –0.07(1) 0.04(1) –0.09(1)

M(3) nf–Ca 1.022(6) 0.999(6) 1.025(7) 1.048(6)

Note: nCa and mR are the occupancies of the position with calcium and R3+ cations, respectively, and nf–Ca is the occupancy of the position
calculated with the use of the f-curves for Ca2+.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 1. A fragment of the (1) calculated, (2) experimental, (3) difference, and (4) graphical representation of diffraction patterns from
Ca9Yb(VO4)7. The calculated diffraction pattern is shifted with respect to the experimental one by 2500 pulses.
a decrease of the radius of the R3+ cation for the whole
series of Ca9R(VO4)7 structures with R = RE, Y. These
compounds can be divided into two groups according
to the character of distribution of R3+ cations over the
structure positions. The first group is formed by com-
pounds with R = La–Eu; the occupancy of the M(3)
position with R3+ cations in this group monotonically
decreases—from 4.0 to 0.8 per unit cell; on the con-
trary, the occupancy of the M(1) and M(2) positions
with R3+ cations monotonically increases. In these com-
pounds, the M(5) position is occupied by Ca2+ cations
alone. The second group is formed by compounds with
R = Tb–Lu and Y; the occupancy of the M(5) position
with R3+ cations monotonically increases from 0.6 to
3.0 per unit cell, whereas the occupancy of the M(1)
and M(2) positions with R3+ cations monotonically
decreases. The M(3) position is filled with Ca2+ cations
alone. The Ca9Gd(VO4)7 compound separates these
two groups. In this compound, Gd3+ cations and cal-
cium statistically occupy the M(1) and M(2) positions,
whereas the M(3) and M(5) positions are completely
occupied by Ca2+ cations. The division of the
Ca9R(VO4)7 compounds into two groups is consistent
with the division suggested in [8] and is based on the
C

dependence of the unit-cell parameter on the size of an
R3+ cation.

The calculation of the Madelung constants for the
model whitlockite-like compounds [9] (the family to
which the structures under consideration belong)
showed that the most pronounced energy gain is
obtained if trivalent cations occupy the M(1), M(2), and
M(5) positions, whereas the minimum energy gain is
obtained if the M(3) position is occupied. As is seen
from Fig. 2, the R3+ cations occupy the M(1) and M(2)
positions in the whole series of Ca9R(VO4)7 com-
pounds with R = RE and Y.

The analysis of the interatomic distances in the
polyhedra of the Ca3(VO4)2 compounds showed that
rare earth cations can occupy the M(1), M(2), and M(3)
positions [10]. The largest polyhedron formed for the
M(3) positions in Ca3(VO4)2 and Ca9R(VO4)7 (R = RE
and Y): 〈M(3)–O〉  = 2.57 Å (for Ca3(VO4)2 and c.n. = 8
[1]). The M(2) position is surrounded with six oxygen
atoms located at distances of ~2.40 Å and two oxygen
atoms located at distances of ~2.85 Å. In Ca3(VO4)2,
〈M(2)–O〉 equals 2.41 Å at c.n. = 6; this distance is
2.53 Å at c.n. = 8. In Ca3(VO4)2, 〈M(1)–O〉  = 2.44 Å at
c.n. = 7. The sum of the ionic radii of La3+ and O2–

(rVIII(La3+) + r(O2–) = 2.58 Å [7]) is close to the aver-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Table 3.  Structural parameters of the Ca9R(VO4)7 compounds (R = Er (I), Tm (II), Yb (III), and Lu (IV))

Atom R3+ x y z Biso Atom R3+ x y z Biso

M(1)** I 0.7253(2) 0.8612(2) 0.4307(1) 0.87(4) O(12) III 0.015(1) 0.8615(8) 0.2584(3) 0.5*

II 0.7291(4) 0.8637(4) 0.4322(4) 0.93(8) IV 0.018(1) 0.8512(9) 0.2576(3) 1.04(7)

III 0.7268(3) 0.8631(3) 0.4311(1) 0.83(7) O(21) I 0.6973(9) 0.8979(9) 0.1781(3) 2.0(2)

IV 0.7283(4) 0.8641(4) 0.4308(1) 0.73(7) II 0.738(1) 0.919(1) 0.1799(4) 2.7(3)

M(2)** I 0.6134(2) 0.8235(2) 0.2338(1) 0.38(4) III 0.713(1) 0.910(1) 0.1777(4) 4.2(3)

II 0.6151(3) 0.8244(4) 0.2349(2) 0.47(7) IV 0.716(1) 0.911(1) 0.1792(4) 1.04(7)

III 0.6136(3) 0.8254(3) 0.2339(1) 0.43(6) O(22) I 0.760(1) 0.765(1) 0.1214(3) 1.0*

IV 0.6164(4) 0.8252(4) 0.2338(1) 0.70(7) II 0.765(2) 0.762(2) 0.1234(4) 2.5(4)

Ca(3)** I 0.1251(3) 0.2692(2) 0.3244(1) 1.12(5) III 0.762(1) 0.761(1) 0.1235(3) 1.4(3)

II 0.1236(4) 0.2707(3) 0.3255(2) 0.76(7) IV 0.763(1) 0.759(1) 0.1231(3) 1.04(7)

III 0.1231(3) 0.2700(3) 0.3246(1) 1.12(6) O(23) I 0.7208(8) 0.0154(7) 0.1115(2) 0.1(1)

IV 0.1207(4) 0.2664(3) 0.3233(1) 0.97(7) II 0.721(1) 0.021(1) 0.1117(4) 0.4(3)

M(5)** I 0 0 0 1.81(5) III 0.718(1) 0.013(1) 0.1103(3) 0.7(2)

II 0 0 0 1.92(8) IV 0.719(1) 0.014(1) 0.1098(3) 1.04(7)

III 0 0 0 1.60(5) O(24) I 0.5009(8) 0.7502(9) 0.1250(3) 0.9(1)

IV 0 0 0 0.75(5) II 0.498(1) 0.755(1) 0.1218(4) 0.3(3)

V(1) I 0 0 0.2669(1) 0.82(7) III 0.499(1) 0.752(1) 0.1243(4) 1.3(3)

II 0 0 0.2663(2) 0.8(1) IV 0.496(1) 0.751(1) 0.1235(3) 1.04(7)

III 0 0 0.2666(1) 1.1(1) O(31) I 0.5896(8) 0.9551(8) 0.0448(3) 0.5*

IV 0 0 0.2680(1) 1.3(1) II 0.600(1) 0.955(1) 0.0460(4) 0.5*

V(2) I 0.6836(2) 0.8575(2) 0.1338(1) 0.36(5) III 0.591(1) 0.955(1) 0.0463(3) 0.5*

II 0.6796(3) 0.8537(4) 0.1335(2) 0.52(8) IV 0.593(1) 0.954(1) 0.0460(3) 1.04(7)

III 0.6839(3) 0.8564(4) 0.1339(1) 0.18(7) O(32) I 0.567(1) 0.675(1) 0.0505(3) 1.3(2)

IV 0.6855(3) 0.8578(4) 0.1345(1) 0.30(7) II 0.557(1) 0.670(2) 0.0484(5) 1.5(3)

V(3) I 0.6550(2) 0.8472(3) 0.0321(1) 0.31(5) III 0.568(1) 0.680(1) 0.0507(3) 0.4(2)

II 0.6508(4) 0.8483(4) 0.0323(2) 0.39(8) IV 0.563(1) 0.685(1) 0.0523(3) 1.04(7)

III 0.6541(4) 0.8498(4) 0.0325(1) 0.81(8) O(33) I 0.8315(7) 0.926(1) 0.0464(3) 0.5*

IV 0.6546(4) 0.8535(4) 0.0325(1) 0.23(7) II 0.828(1) 0.923(2) 0.0379(3) 0.5*

O(11) I 0 0 0.3155(3) 1.0* III 0.830(1) 0.924(1) 0.0431(4) 0.5(2)

II 0 0 0.3086(6) 4.0(6) IV 0.8292(9) 0.920(1) 0.0400(3) 1.04(7)

III 0 0 0.3149(4) 0.5* O(34) I 0.6337(7) 0.8244(9) 0.9887(2) 1.4(1)

IV 0 0 0.3152(4) 1.04(7) II 0.637(1) 0.836(1) 0.9900(3) 0.5*

O(12) I 0.0107(8) 0.8543(6) 0.2582(2) 0.5* III 0.6291(8) 0.830(1) 0.9888(3) 0.2(2)

II 0.011(1) 0.8593(9) 0.2599(3) 0.6(3) IV 0.6219(9) 0.824(1) 0.9919(2) 1.04(7)

* The fixed value of Biso.
** The M(1), M(2), and M(5) positions are filled with Ca2+ and R3+ in the ratios given in Table 2; the occupancy of the Ca(3) position equals
     unity. Notation for oxygen atoms: the first number is the ordinal number of the vanadium atom, the second number is the ordinal number
     of the oxygen atom in a tetrahedron.
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Fig. 2. (a, b) The change in the unit-cell parameters and (c) the number of R3+ cations in the M(1)–M(5) positions depending on the
radius of the R3+ cations (at c.n. = 8 [7]) for the Ca9R(VO4)7 compounds (R = RE and Y).
aged interatomic distance in the position M(3) and con-
siderably exceeds the average distances for the M(1)
and M(2) positions. Therefore, the M(3) position is
occupied mainly by large cations, e.g., La3+. With a
decrease of the R3+ radius, the geometric mismatch of
the M(1) and M(2) positions decreases, and the main
part is played by the energy factor. Therefore, the occu-
pancy of the M(3) position with R3+ cations decreases,
whereas the occupancies of the M(1) and M(2) posi-
tions increase. The dimensions of the polyhedra for the
M(1) and M(2) positions are best satisfied by R cations,
R = Gd, Tb, Dy, Ho, and Y, with the radii varying within
1.04–1.01 Å (at c.n. = 8) [7]. As is seen from Fig. 2,
these cations occupy mainly the M(1) and M(2) posi-
tions almost in the same way.

In the initial Ca3(VO4)2 structure, the M(5) position
is somewhat sterically hindered, because the sum of the
ionic radii rVI(Ca2+) + r(O2–) = 2.40 Å [7] exceeds the
average 〈Ca(5)–O〉  distance equal to 2.30 Å [1]. The
cations with a radius less than that of calcium (rVI(Ca2+) =
1.00 Å) should remove the stresses by occupying the
position M(5). The M(5) position in the compounds
Ca9R(VO4)7 (R = RE and Y) is occupied first with Tb3+

(rVI = 0.923 Å). The process is more intense the smaller
C

the radius R3+. The occupancies of positions M(1) and
M(2) with R3+ cations decrease (a bell-shaped depen-
dence in Fig. 2). It seems that the energy gain due to
stress removal in the M(5) position is higher than that
in the case where the R3+ cations (R = Tb–Lu) are
located in the M(1) and M(2) positions. However, even
for Lu3+ (rVI = 0.848 Å), some Lu3+ cations are located
in the M(1) and M(2) positions.

It should also be emphasized that in the Ca9R(VO4)7
compounds (R = La–Eu), the occupancy of the M(2)
position with R3+ cations is lower than the occupancy of
the M(1) position. This agrees with the geometric
dimensions of these positions [a polyhedron for the
M(2) position is smaller than the polyhedron of the
M(1) position]. As was to be expected, the maximum
difference in the occupancy of the M(1) and M(2) posi-
tions with R3+ cations is observed for the largest La3+

cation. For the compounds with R = Gd–Lu and Y, the
M(1) and M(2) positions are equally (with due regard
for the experimental error) occupied with R3+ cations.

Using the data obtained, one can choose cations–
diluents for reducing the concentration quenching in
the Ca3(VO4)2-based luminescent materials [11–14].
Thus, the use of Gd3+ cations as diluents for Nd3+
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Table 4.  Unit-cell parameters of the Ca9R(VO4)7 compounds (R = RE and Y) and the number of R3+ cations in the structure
positions

R rVIII, Å [7]
Unit-cell parameters Number of R3+ cations in the position

a, Å c, Å V, Å3 M(1) M(2) M(3) M(5)

La 1.18 10.8987(5) 38.147(1) 3924.1(3) 1.6(3) 0.4(2) 4.0(2)

Ce 1.14 10.8552(5) 38.037(1) 3881.6(3) 1.1(1) 0.3(1) 1.1(1)

Pr 1.14 10.8808(7) 38.135(1) 3910.0(3) 2.1(2) 1.7(2) 2.2(2)

Nd 1.12 10.8720(5) 38.121(1) 3902.2(3) 2.3(2) 1.6(2) 2.0(2)

Sm 1.09 10.8652(5) 38.098(1) 3894.9(3) 2.7(1) 2.0(1) 1.3(2)

Eu 1.07 10.8651(5) 38.089(1) 3894.0(3) 2.8(3) 2.3(2) 0.8(2)

Gd 1.06 10.8631(5) 38.072(1) 3890.8(3) 3.1(1) 2.9(1)

Tb 1.04 10.8592(5) 38.035(1) 3884.2(3) 2.7(2) 2.7(2) 0.6(1)

Dy 1.03 10.8564(5) 38.009(1) 3879.6(3) 2.7(2) 2.6(2) 0.8(1)

Ho 1.02 10.8565(5) 37.995(1) 3878.3(3) 2.6(2) 2.6(2) 0.8(1)

Y 1.015 10.8588(5) 37.995(1) 3879.9(3) 2.6(2) 2.3(2) 1.0(1)

Er 1.00 10.8554(5) 37.967(1) 3874.6(3) 2.3(1) 2.3(1) 1.33(5)

Tm 0.99 10.8550(5) 37.950(1) 3872.6(3) 1.9(1) 2.3(1) 1.79(5)

Yb 0.98 10.8564(5) 37.924(1) 3870.9(3) 1.7(1) 1.8(1) 2.54(5)

Lu 0.97 10.8566(5) 37.880(1) 3866.5(3) 1.6(1) 1.4(1) 3.01(5)
reduces the Nd3+ concentration mainly in the M(1) and
M(2) positions but does not change the concentration in
the M(3) position. The use of La3+ cations as diluents
reduces the Nd3+ concentration mainly in the M(3)
position.
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Abstract—Single crystals of the composition Na3PO4 have been grown from flux. The unit-cell parameter of
the cubic crystals at room temperature was refined to a value of a = 7.424(1) Å; the atomic coordinates were
refined within the sp. gr. Fm3m. Electric conductivity of single crystals equals (2–4) × 10–3 Ω–1 cm–1 at 300°C.
The electron component of conductivity is less than the ionic one by three orders of magnitude. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Sodium orthophosphate of the composition Na3PO4

has two polymorphic modifications: the tetragonal
α-phase (sp. gr. P42c [1, 2]) existing at room tempera-
ture and the one transforming into the cubic γ-phase
(sp. gr. F432 [3] or Fm3m [4]) at 320–330°C. The struc-
ture of the γ-modification has a simple motif; however,
it is in fact rather complicated for the detailed analysis
of the mutual arrangement of the structural fragments.
Both types of the γ-phase structure are described in lit-
erature and characterized by considerable disorder of
oxygen atoms, which seems to be associated with the
rotation of tetrahedral PO4-groups. Sodium atoms in
the modification described by the sp. gr. F432 and
phosphorus atoms in the modification described by the
sp. gr. Fm3m are also disordered. All the structural
models of the γ-phase were suggested on the basis of
the data for polycrystal samples and are similar. They
differ only by the choice of the fixed cation occupying
a special position. In [3], the phosphorus atom is
located at the origin, whereas in [4], a sodium cation is
placed into the special position with the coordinates
(1/4 1/4 1/4).

The high-temperature modification is stabilized by
heterovalent substitutions, which results in a decease of
the number of cations per formula unit [5] and provides
the appearance of high ionic conductivity due to disor-
der in the Na+ subsystem. Thus, a solid electrolyte of
the composition Na2.5Zr0.125PO4 has the conductivity σ =
0.025 Ω–1 cm–1 at 300°C [6]. For the Na3 – x(P1 – xSx)O4

solid solutions, the conductivity increases with x and
attains the value of σ = 0.013 Ω–1 cm–1 at x = 0.5–0.6
and the temperature of 300°C [7].
1063-7745/00/4506- $20.00 © 20902
The conductivity of pure Na3PO4 studied on
polycrystal samples [1, 7–9] varies from 5 × 10–3 to
~10−5 Ω–1 cm–1 at 300°C. In the temperature range 300–
320°C, a jump in conductivity is observed, which is
associated with the α  γ phase transition accompa-
nied by the change of the activation energy [1, 7, 8].

There are no data on ionic conductivity of Na3PO4
single crystals; therefore, at present, no sufficiently jus-
tified conclusions on the structural models of ionic
transport can be made.

EXPERIMENTAL

Single crystals of the composition Na3PO4 were
grown from flux in the Na2O–P2O5–NaF–V2O5 system.
Crystallization was performed in a platinum crucible at
950–750°C. X-ray spectral analysis on a JEOL JXA
8600S spectrometer showed the presence of 0.1–0.15%
of V-impurity.

The samples chosen for the X-ray diffraction analy-
sis were rolled into spheres with a diameter of 0.3–
0.4 mm. The sample quality was checked by the Laue
diffraction patterns and also the widths and the intensi-
ties of diffraction maxima. The experimental sets of
diffraction–reflection intensities were obtained on an
automatic Enraf–Nonius diffractometer (MoKα radia-
tion, θ/2θ scan). The structure parameters were refined
in the full matrix approximation with the use of the
SHELX complex of programs [10].

Ionic conductivity was measured by the method of
impedance spectroscopy in the frequency range from 5
to 5 × 105 Hz (a TESLA BM-507 impedancemeter).
Prior to measurements, silver and graphite electrodes
were applied to the parallel surfaces of the samples.
000 MAIK “Nauka/Interperiodica”
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The measurements were performed both on oriented
and nonoriented samples on a setup described in detail
elsewhere [11] in a ~10 Pa vacuum and in air in the
temperature range 80–530°C. The data obtained were
processes using the EQUIVCRT package of programs
kindly provided by Dr. Boukamp [12].

Electron conductivity was determined by the Wag-
ner method of blocking electrodes at 250 and 400°C.
Applying the constant potential difference (0.025–
0.500 V) to the electrodes, we recorded the steady-state
current in the circuit for 10–30 min. The obtained cur-
rent–voltage characteristics were linear at the potentials
not exceeding 0.4 V; therefore, the conductivity was
calculated by the Ohm formula with due regard for geo-
metric dimensions of the single crystals studied.

RESULTS AND DISCUSSION

The Na3PO4 single crystals had a low stability and,
being stored for several days in air, disintegrated
(acquired the polycrystalline state). However, the stor-
age life in dry atmosphere increased several dozens
times. The X-ray phase analysis indicates that the sin-
gle crystals grown belong to the high-temperature
cubic modification.

The best single-crystal samples of Na3PO4 crystals
were used to measure the reflection intensities with I >
3σI collected within a half-sphere of the reciprocal
space up to the maximum value of sinθ/λ = 0.89 (alto-
gether 947 reflections). Upon averaging the crystallo-
graphically equivalent reflections (Rav = 0.016), the set
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
contained 81 crystallographically independent reflec-
tions. The refined value of the lattice parameter is a =
7.424(1) Å, which is consistent with the lattice param-
eter of the modification described by the sp. gr. Fm3m
[7]. For the modification described by the sp. gr. F432,
the unit cell parameter equals a = 7.512 Å.

The systematic extinctions indicated the face-cen-
tered unit cell. Since no indications to dissymmetriza-
tion were revealed, the structure parameters were
refined within the most symmetric sp. gr. Fm3m. In the
initial model, the cations occupied the special posi-
tions, whereas two different variants of the arrange-
ment of oxygen anions were considered. The first vari-
ant was based on the minimum crystal-lattice energy
calculated by the PMC program [13]. The second vari-
ant corresponded to the known data [3, 4]. Both initial
models yielded almost the same results. The final value

Atomic coordinates and parameters of atomic thermal vibra-
tions in the γ-Na3PO4 structure

Atom x/a y/b z/c Biso/Beq

P 0.000(0) 0.000(0) 0.000(0) 2.65(8)

O(1) 0.171(7) 0.113(7) 0.040(7) 8.2(8)

O(2) 0.019(6) –0.189(6) 0.094(6) 7.3(7)

O(3) –0.173(7) 0.096(7) 0.069(6) 8.8(8)

O(4) –0.016(7) –0.030(5) –0.206(4) 4.1(5)

Na(1) 0.453(5) 0.476(7) 0.487(6) 5.5(6)

Na(2) 0.254(5) 0.262(7) 0.282(4) 2.6(4)
y

x

y

x

z

(a) (b)

Fig. 1. (a) Arrangement of (PO4)3–-tetrahedra in the Na3PO4 structure projected onto the XY plane (sodium cations are depicted by
circles) and (b) one of possible motifs of the γ-modification structure.
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y

x

z

Fig. 2. Three-dimensional framework formed by sodium
cations in the structure of the γ-modification Na3PO4.
of the R-factor with due regard for anisotropy of atomic
thermal vibrations was 0.062. The atomic coordinates
obtained are listed in table. The main interatomic dis-
tances are P–O = 1.55–1.57 Å and Na–O = 2.20–2.98 Å.
The valence angles in PO4-tetrahedra range within
108°–111°.

Thus, the structure of the γ-Na3PO4 crystals can be
described as a cubic close packing of PO4 anions with
all the tetrahedral and octahedral voids being occupied
by Na cations. Because of a high structure symmetry,
the symmetry of a PO-tetrahedron is somewhat incon-
sistent with the octahedral symmetry of the central
atom of this tetrahedron, which gives rise to disorder in
the structure caused by statistical rotations of tetrahedra
and an increase of their averaged symmetry to octahe-
dral. Moreover, in order to saturate the valence
strengths of oxygen anions, the tetrahedron rotations
should provide necessary Na–O distances. This results
in the displacements of sodium cations from their fixed
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Fig. 3. Characteristic hodographs of Na3PO4 single crystals at three temperatures (a) 140, (b) 240, and (c) 500°C and (d) the equiv-

alent circuit describing these hodographs. The circuit parameters: (a) RV = 759 kΩ ,  = 6.6 × 10–12 F, n = 0.957; (b) RV = 2.04 kΩ ,

 = 1.2 × 10–10 F, nV = 0.958,  = 1.4 × 10–4 F, nint = 0.511; (c) RV = 66.4 Ω ,  = 1.5 × 10–2 F, nint = 0.329.
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special positions and, thus, also in additional disorder-
ing. The structure of the completely ordered low-tem-
perature α-modification can also be described as a
close packing of phosphate anions. However, in this
case, the structure is “compressed” along one of the
orthogonal axes, which results in the lattice distortion,
which lowers the symmetry to tetragonal. The orienta-
tion of PO4-tetrahedra is such that one of the threefold
pseudoaxes is located in the XY plane but is not directed
toward Na cations (Fig. 1a). In the γ-modification, the
threefold axes of PO4 tetrahedra are directed toward
sodium cations occupying the octahedral voids. In the
model suggested in [3], this axis coincides with the
coordinate axis, whereas, according to [4], the tetrahe-
dron axis should deviate from the coordinate axis. The
structure refinement performed in this study also shows
that the tetrahedron axis directed toward sodium cat-
ions deviates from the coordinate axis.

In the case of static disordering, the tetrahedra in the
structure can be differently oriented. Figure 1b shows
one of the possible variants, with the sodium cations
being located in the special positions.

The crystallographic positions occupied by sodium
cations form a three-dimensional lattice (Fig. 2). If this
lattice has some vacancies, thermal vibrations of atoms
or their heterovalent substitutions can give rise to cation
hoppings, which can be facilitated by rotations of the
anionic PO4 tetrahedra according to the well-known
“paddle-wheel” mechanism [14]. Thus, the Na3PO4

crystals have all the possibilities for transport of Na+

ions.
To confirm the above assumptions, we measured

conductivity of grown Na3PO4 single crystals. The
characteristic experimental impedance hodographs
(Z* = Z ' + jZ '') are shown in Figs. 3a–3c. The measure-
ments performed with the use of various electrodes
both in air and in vacuum showed no essential differ-
ences in the hodograph shape. At high temperatures,
the hodographs are straight lines forming an angle with
the abscissa. With a decrease of the temperature, a
slightly distorted semicircumference is formed, with
the center being located below the abscissa. At low
temperatures, only this circumference is left. These
hodographs are well described by the equivalent circuit
shown in Fig. 3d. The resistor RV relates to the bulk
resistivity of the crystals associated with the ionic
transport; the frequency-dependent elements QV(ω)
and Qint(ω) model the processes of electric relaxation in
the crystal bulk and at the electrode/electrolyte inter-
face. Conductivity along different directions in oriented
and nonoriented samples coincided within the mea-
surement errors.

Figure 4 shows the temperature dependences of
conductivity in Na3PO4 crystals. It is seen that σ-values
in single crystals (2–4 × 10–3 at 300°C) are higher than
conductivity in ceramic Na3PO4 samples [1, 7, 8] but
almost coincide with the results indicated in [9] for
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
doped Na3PO4 crystals. Despite the indication to a
jump in conductivity at 300–320°C [1, 7, 8] we
observed only the change in the conductivity-activation
energy at ~270°C. The values of Eact were slightly dif-
ferent for different single crystal samples (which seems
to be associated with crystal aging) and ranged within
0.99–1.09 and 0.33–0.41 eV at T < 270 and T > 270°C,
respectively.

Electron conductivity of Na3PO4 single crystals is
considerably lower than ionic conductivity (Fig. 4).
The electron-transport number (tel = σel /σtot) at the tem-
peratures of 250 and 400°C amounts to 0.0016. Elec-
tron conductivity of pure Na3PO4 crystals can even be
lower, because the value of tel obtained in our study can
be determined by the presence of V impurity (about
0.15%) in single crystals.
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Abstract—Rubidium oxovanadium(V) double diphosphate, RbVVOP2O7, was synthesized and characterized
for the first time by the methods of X-ray diffraction analysis. The compound was crystallized from a phospho-
ric acid-, Rb2CO3-, V2O5-, and ZnO- or CuO-containing melt at 290°C. The unit-cell parameters are a =
4.6820(3), b = 9.003(1), c = 16.333(2) Å, β = 94.17(1)°; sp. gr. P21/c, Z = 2. The crystal structure consists of
corrugated layers of diphosphate groups and sharing-vertices vanadium(V) octahedra. One of the oxygen atoms
of the oxo group belonging to the VO6-octahedron forms no contact with the phosphorus atom and participates
only the coordination of the rubidium atom. The V–O distance with the participation of the oxo atom is some-
what shortened whereas that with the participation of oxygen in the trans position, somewhat elongated. Rubid-
ium atoms are located between the layers. © 2000 MAIK “Nauka/Interperiodica”.
Vanadium(V) is readily reduced to V(IV) and then
to V(III) in polyphosphoric acid melts at 200–400°C. In
this temperature range, V(III)-containing compounds
are formed mainly in the M2O–V2O5–P2O5(H2O) sys-
tems, where M = Na, K, or Cs, i.e., in MVP2O7 (M = Na
[1], K [2, 3], or Cs [4]), Na3VP8O23 [5], MVHP3O10

(M = K [2] or Cs [6]), K2V2P8O24 [2], and Cs3V3P12O36

[7]. In this study, we made an attempt to prepare a dou-
ble phosphate of vanadium and rubidium in the above-
mentioned temperature range. A mixture of Rb2CO3,
V2O5, and an 85%-H3PO4 solution taken in the atomic
ratio Rb : V : P = 7.5 : 2 : 15 was heated in a Teflon cru-
cible for 7 days at 290°C. Under these conditions, a
fine-crystalline phase was formed in the melt. To sepa-
rate the crystals from the melt, the mixture was washed
with water. However, this resulted not only in the disso-
lution of the melt but of the solid phase as well. The
synthesis in the presence of Zn or Cu oxides yielded
larger yellow needlelike crystals also soluble in hot
water. Nevertheless they were separated from the melt
by rapid washing with a large amount of cold water.
Then the crystals were dried between the sheets of filter
paper under a lamp. The crystals thus obtained were not
hydroscopic. 

The composition of the synthesized RbVOP2O7 was
established from the X-ray diffraction data (Table 1).
The structure was solved using the Patterson function.
The atomic coordinates and thermal parameters were
refined by the least squares method in the anisotropic
approximation (Table 2) with the use of the SHELX97
program package [8]. Vanadium atoms are in oxidation
state V, which is not characteristic of vanadium phos-
phates formed in this temperature range. 
1063-7745/00/4506- $20.00 © 20907
A RbVOP2O7 crystal has a layer structure. The
diphosphate groups (two PO4 tetrahedra share an oxy-
gen vertex) and VO6 octahedra form corrugated layers.
Each octahedron shares five oxygen vertices with four
diphosphate groups, one group sharing two vertices
with the octahedron (Fig. 1). The sixth vertex of the
octahedron [the O(8) atom of the oxo group] is “free”
and participates only in the coordination sphere about
the Rb atom. The V–O distances within octahedra vary
over a wide range. The minimum V–O distance in the
oxo group is 1.583(3) Å, whereas the maximum dis-
tance (to the oxygen atom in the trans position with
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Fig. 2. RbVOP2O7 structure projected along the [100] direction. 
respect to the former atom) is 2.237(3) Å. The remain-
ing distances range from 1.866(3) to 1.938(3) Å. In the
diphosphate group, the O(4) atom remains “free” and,
thus, is coordinated with three Rb atoms. 

The rubidium atoms are located between the layers
(Fig. 2). The nearest environment of a rubidium atom
consists of seven oxygen atoms. The Rb–O distances
range from 2.828 to 3.166 Å. The shortest Rb–Rb dis-
tance in the layer is 4.001 Å. 

In the series of compounds with the analogous for-
mulas (KNbOP2O7 [9] and CsNbOP2O7 [10]) studied
earlier and RbVOP2O7, the RbVOP2O7 and KNbOP2O7
compounds have substantially different structures. The
latter compound is not a layer structure, because the
oxygen atom (located in the trans position with respect
to the niobyl oxygen atom) of the NbO6 octahedron of
C

one layer is shared by the diphosphate group of another
layer. The RbVOP2O7 and CsNbOP2O7 structures differ
mainly in the interatomic V–O and Rb–O distances,
which are shorter than the Nb–O and Cs–O distances.
This, in general, results in a 2-Å decrease of the param-
eter c in the RbVOP2O7 structure. 

In conclusion, it should be mentioned that con-
densed vanadium(V) phosphates are studied insuffi-
ciently. The data were obtained mainly for vana-
dium(V) monophosphates of the following types:
V(V)- and P(V)-containing monophosphates statisti-
cally distributed over the anionic part of the compound
(for example, NaP0.34V0.66O3 [11]), heteropolycom-
pounds of composition [CN3H6]8HPV14O42 · 7H2O [12],
and vanadium(V) monophosphates (for example,
Na2(VO2)PO4 and K2(VO2)PO4 [13]). Some phos-
Table 1.  Main crystallographic parameters, details of the X-ray data collection and the refinement of the RbVOP2O7 structure

System Monoclinic System Monoclinic

a, Å 4.6820(3) Diffractometer* IPDS (Stoe)

b, Å 9.003(1) Scanning mode ω/2θ
c, Å 16.333(2) 5959

β, deg 94.17(1) 1533

Sp. gr. P21/c 1186

Z 2 109

V, Å3 686.6(1) Rint 0.043

ρcalc, g/cm3 3.157 wR2 0.083

µ, mm–1 8.96 R1 0.035

2θmax, deg 56 Gof 0.94

Crystal dimensions, mm 0.05 × 0.05 × 0.2

* λ MoKα; graphite monochromator; ψ-scan, absorption correction was applied to the X-ray data set. 
** Na is the number of measured reflections, Ni is the number of independent reflections, No is the number of independent reflections with
     I > 2σ(I), and Np is the number of the parameters to be refined.

Na
**

Ni
**

No
**

N p
**
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Table 2.  Atomic coordinates and thermal parameters in the RbVOP2O7 structure

Atom x/a y/b z/c Beq, Å2 Atom x/a y/b z/c Beq, Å2

Rb 0.4041(1) 0.64103(6) 0.08860(3) 2.06(1) O(3) 0.3347(8) 0.2268(3) 0.1498(2) 1.42(5)

V 0.4076(2) 0.5688(1) 0.33873(5) 0.95(1) O(4) 0.1436(8) 0.3490(3) 0.0170(2) 1.65(6)

P(1) 0.0740(3) 0.2817(1) 0.0957(1) 0.91(2) O(5) 0.1062(8) 0.4354(3) 0.3047(2) 1.47(5)

P(2) –0.1402(3) 0.3884(1) 0.2442(1) 0.90(2) O(6) –0.3914(8) 0.4966(3) 0.2471(2) 1.33(5)

O(1) –0.1603(7) 0.1637(3) 0.0877(2) 1.26(5) O(7) –0.2099(7) 0.2274(3) 0.2544(2) 1.09(5)

O(2) –0.0464(8) 0.4138(3) 0.1520(2) 1.17(5) O(8) 0.5582(8) 0.4651(3) 0.4073(2) 1.63(6)
phates containing both V(V) and V(IV) (for example,
Na2(P2V3O13) [14]) were also described in the litera-
ture. A diphosphate of the composition K(V3P4O17) was
prepared from condensed vanadium phosphates [15];
however, this compound also includes V(V) and V(IV).
Therefore, rubidium oxovanadium(V) diphosphate of
the composition RbVOP2O7 synthesized and described
above is the first representative of condensed vanadium
phosphates containing vanadium in oxidation state V. 
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Abstract—Czochralski-grown LnSc3(BO3)4 single crystals (Ln = La, Ce, Pr, Nd, or Tb) were studied by the
methods of X-ray diffraction analysis. All the crystals, except for Ln = Tb, belong to the huntite family. The
crystals with Ln = La, Ce are monoclinic, sp. gr. C2/c, a = 7.727(1) Å, b = 9.840(1) Å, c = 12.046(3) Å, β =
105.42(2)° and a = 7.721(3) Å, b = 9.834(3) Å, c = 12.041(3) Å, β = 105.39(3)°, respectively. The PrSc3(BO3)4
crystals were grown from the melt of the composition (Pr1.1Sc2.9)(BO3)4. They are also monoclinic, sp. gr. C2, a =
7.7138(6) Å, b = 9.8347(5) Å, c = 12.032(2) Å, β = 105.387(7)°. Crystals grown from the charge of the com-
position (Pr0.99Nd0.11Sc2.9)(BO3)4 are isostructural to NdSc3(BO3)4 (sp. gr. P321 or P3). The unit-cell parame-
ters of the latter crystals are twice as large (a = 9.779(2) × 2 Å, c = 7.943(1) × 2 Å) as those of huntite (sp. gr.
R32), unlike the crystals grown from the melt of the composition (Pr1.25Sc2.75)(BO3)4 (sp. gr. P321, a =
9.7829(5) Å, c = 7.9428(5) Å). The structure of the (Tb0.25Sc0.75)BO3 crystal (a = 4.773(5) Å, c = 15.48(1) Å)
can be derived from the calcite-type structure (CaCO3) with the statistical distribution of Tb and Sc atoms over

two crystallographically independent positions in the space group R . © 2000 MAIK “Nauka/Interperiodica”.3
INTRODUCTION 

A sharp change in the crystal structure in the regular
series of chemical compounds with retention of the
quantitative ratios between the structural units is called
morphotropy. In this work, we studied a morphotropic
series of the Czochralski-grown LnSc3(BO3)4 com-
pounds of the huntite family. 

In the structure of huntite (CaMg3(CO3)4, sp. gr. R32;
ahex and chex), Ca atoms are located in the centers of dis-
torted trigonal prisms, whose upper and lower bases are
somewhat misoriented (not quite parallel); Mg atoms
are located in the centers of distorted octahedra; and B
atoms are surrounded with oxygen atoms occupying
the vertices of equilateral [B(1)] and isosceles [B(2)]
triangles (Fig. 1). In the structures of the huntite family,
a huntite-type sublattice with the sp. gr. R32 and the
parameters ahex and chex can be singled out [1]. 

The data on the crystal structures of rare-earth scan-
dium borates are scarce, and the information on their
symmetry is sometimes contradictory. According to the
results of the X-ray diffraction analysis, Czochralski-
grown LaSc3(BO3)4 single crystals belong to the mon-
oclinic system, sp. gr. ë2/Ò [2], which is in agreement
with the data reported in [3]. The comparison of the
X-ray goniometric data for rare-earth scandium and alu-
minum borates [4], a huntite-like structure (sp. gr. R32),
was proposed for the polycrystalline LnSc3(BO3)4 com-
1063-7745/00/4506- $20.00 © 20910
pounds (Ln = Ce, Pr, Nd, or Sm). However, X-ray dif-
fraction study of the crystal structure of Czochralski-
grown NdSc3(BO3)4 crystals showed that these crystals
possess a superstructure with respect to the huntite
structure (the sp. gr. P321 or P3 with the doubled unit-
cell parameters) [5]. The single-crystal
(La0.5Nd0.5)Sc3(BO3)4 solid solution, also grown by the
Czochralski method, can crystallize in the space groups
R32 or C2/c depending on the seed type [6]. It was sug-
gested [7–9] that the LnSc3(BO3)4 single crystals (Ln =
Gd or Y), grown from flux belong to the sp. gr. R32.
X-ray diffraction study of the Czochralski-grown
single crystals (Ce1 – xGdx)Sc3(BO3)4 solid solutions
(x = 0.2 or 0.3), provided the establishment of the space
group and the unit-cell parameters (P321, a = ahex, c =
chex) [10]. 

The determination of the symmetry and structures
of rare-earth scandium borates of the huntite family has
acquired a great importance, because rare-earth scan-
dium borates are promising materials for laser matrices
and nonlinear optics. Different symmetries of these
crystals and their possibility to change the space group
with the loss (or acquisition) of a center of symmetry is
directly associated with the loss (or acquisition) of non-
linear-optical properties by a laser crystal. Thus, the
creation of efficient actively nonlinear media based on
these compounds is impossible without the establish-
ment of structural transitions in these compounds. 
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Connection of the polyhedra in the structure of the huntite type (sp. gr. R32). 

O(3)
All the aforesaid motivated our study of these com-
pounds. 

EXPERIMENTAL 

Rare-earth scandium borates were grown from
melts on a Kristall-3 apparatus according to a proce-
dure reported in [11]. X-ray diffraction studies of pow-
dered specimens were carried out on a DRON-2.0 dif-
fractometer (λCuKα radiation, planar graphite mono-
chromator, angular range 2° < 2θ < 75°, scan rate
1 °/min, diagram-tape velocity 60 mm/h) and on an
HZG-4A diffractometer (λCuKα radiation). The quali-
tative phase analysis of the specimens was performed
with the use of the automated PDF-2 data base. No
admixture phases were found within the accuracy of
X-ray phase analysis (< 2 wt %). The unit-cell parame-
ters of the powdered single crystals were refined by the
least squares method. 

The X-ray diffraction data were collected from sin-
gle crystals ground to spheres (0.5 mm in diameter) on
an automated four-circle CAD-4 diffractometer (MoKα
radiation, graphite monochromator, ω–θ scanning
technique, scanning range for diffraction reflections
1.0 + 0.34tanθ, scan rate was 1–7 °/min) at room tem-
perature. The unit-cell parameters were determined
with the aid of automated indexing of 20–25 reflections
with the interplanar spacings d > 0.874 Å. 
PHY REPORTS      Vol. 45      No. 6      2000
The experimental data were corrected for the
Lorentz and polarization factors and anomalous scat-
tering, the absorption corrections were introduced by
the North–Phillips method, and the correction for iso-
tropic extinction was introduced by the Zachariasen
method. 

The crystal structures were refined by the full-
matrix least squares method with the use of anisotropic
thermal parameters for almost all the atoms. All the
computations were carried out by the SHELXL97 pro-
gram package. For all single crystal specimens, we col-
lected X-ray data and performed the computations
using the same procedures. In the computations, we
used the atomic scattering curves for neutral atoms. 

Both single crystals and polycrystalline specimens
were tested for possible asynchronous generation of the
second harmonic. The characteristics of the laser used
were as follows: the lasing wavelength 1.064 µm, the
pulse repetition frequency 10 Hz, the pulse duration
18 ns, and the radiation power density in the pulse
20 MW/cm2. 

RESULTS AND DISCUSSION 

Indexing of the X-ray diffraction patterns obtained
from a powdered specimen of blend obtained from the
charge of the composition TbSc3(BO3)4 showed that the
crystal under study had a hexagonal unit cell similar to
that of ScBO3 [2] and, consequently, the (Tb,Sc)BO3
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Table 1.  Crystallographic data and details of X-ray diffraction study

Characteristic (Tb,Sc)BO3 PrSc3(BO3)4 (Pr,Nd)Sc3(BO3)4

Sp. gr. R C2 P321 or P3

a, Å 4.773(5) 7.7138(6) 9.779(2) × 2

b, Å 9.8347(5)

c, Å 15.48(1) 12.032(2) 7.943(1) × 2

β, deg 105.387(7)

V, Å3 305.4(8) 880.1(1) 657.9(2) × 8

dcalc, g/cm3 4.32 3.86 3.87

µ(MoKα), cm–1 110.5 77.25 77.5

sinθ/λmax, Å–1 1.078 0.903 0.804

Total number of reflections 721 2720* 1937**

Number of reflections with I > 2σ(I) 581 2571* 1546**

Rhkl/Rw, % 5.15/6.09 3.06/7.56* 7.7/10.3**

* Computations were made within the sp. gr. C2/c. 
** Computations were made for the sublattice of the sp. gr. P321. 

3

composition. X-ray diffraction study of a single crystal
on an automated diffractometer revealed some addi-

tional h 0l-type reflections with l ≠ 2n. These reflec-

tions are allowed in the sp. gr. R  and R3 but are for-

bidden in the sp. gr. R c, in which ScBO3 (the calcite
type CaCO3) crystallizes. No generation of the second
harmonic was observed in the crystals under study,
which indicates the centrosymmetric sp. gr. R . 

The details of the X-ray diffraction study are given
in Table 1. The atomic coordinates and thermal param-
eters are listed in Table 2. 

By varying the mixed f curves for Tb and Sc, the
lowest R factor was obtained for the composition
(Tb0.25Sc0.75)BO3 , which is close to the initial charge
composition. In the transition from the ScBO3 (rSc =
0.75 Å structure, r is the ionic radius of Sc at the coor-
dination number of 6 [13]) to the (Tb0.25Sc0.75)BO3
structure (rTb = 0.92 Å), the Sc position is split into two
positions with the lower symmetry and larger unit-cell
parameters: a = 4.748(1) Å, c = 15.262(2) Å for ScBO3
and a = 4.773(5) Å, c = 15.48(1) Å for (Tb,Sc)BO3
(Fig. 2). In the latter structure, (Tb,Sc)(1) and
(Tb,Sc)(2) “atoms” occupy the centers of regular octa-

h

3

3

3

Table 2.  Coordinates of the basis atoms and thermal para-
meters (Å2 × 103) for the (Tb,Sc)BO3 structure 

Atom x/a y/b z/c Ueq

(Tb,Sc)(1) 0 0 0 7.9(2)

(Tb,Sc)(2) 0 0 0.5 7.9(2)

B(1) 0 0 0.2497(8) 4.2(6)

O(1) 0.7116(2) 0.0001(1) 0.2498(3) 6.2(2)
C

hedra (the (Tb,Sc)–O distances equal to 2.141(2) and
2.139(2) Å, respectively), whereas B atoms occupy the
centers of regular planar triangles (the B–O equals
1.377(2) Å). 

Unfortunately, the refinement of the position occu-
pancies provided no determination of the differences in
the compositions of various crystallographic positions,
because the R factor remained almost the same irre-
spective of the types of the f curves used. In other words,

the structure is well described within the sp. gr. R c. It
can be assumed that the observed symmetry violation is
caused by partial cation ordering over the crystallo-
graphic positions of the structure. A similar situation
was also observed for the LaSc3(BO3)4 : Cr crystals [2].
Thus, for the chromium-activated crystals, the mono-
clinic symmetry of the nominally pure crystal is
changed to the triclinic system because of partial order-
ing of chromium ions over the octahedral positions in
the structure. 

An increase in the radius of a rare-earth element or
its concentration should lead to splitting of the oxygen
positions and complete ordering of the Ln and Sc atoms
in the positions accompanied by a change of the coor-
dination-polyhedron symmetries and, consequently,
the symmetry of the crystal. In this case, the coordina-
tion environment of the Sc atoms should remain octa-
hedral (the angle of the mutual rotation of the triangular
bases is ϕ = 60°) or distorted octahedral (ϕ ≠ 60°),
which is most typical of Sc atoms, whereas the changes
in the coordination polyhedra should be observed, first
and foremost, for the Ln atoms (rLn > rSc). The distortion
of an octahedron is most probably associated with a
decrease in the ϕ angle (0° < ϕ ! 60°), i.e., with its
transformation into a trigonal prism with a larger vol-
ume; moreover, it is well known that the rare-earth ele-

3

RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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1/2 (Ln,Sc) (2)

0(Ln,Sc) (1)
~ 1/4 B

5/6 (Ln,Sc) (2)

1/3(Ln,Sc) (1)
~ 7/12 B

2/3(Ln,Sc) (1)
~ 5/12 B

1/6 (Ln,Sc) (2)

Fig. 2. Coordination polyhedra in the (Tb,Sc)BO3 structure (sp. gr. R ). 3
ments of the first half of the series tend to be located in
the trigonal-prism-based coordination polyhedra [14].
A combination of a trigonal prism and an octahedron is
characteristic of borates of the huntite family. 

Actually, the single-crystal solid solutions of the
composition (Ce,Gd)Sc3(BO3)4 (rGd = 0.94 Å, rCe  =
1.01 Å) crystallize in the sp. gr. P321 and have the
structures derived from the huntite structure [11]. Com-
pared to the latter (the sp. gr. R32), the structure of
(Ce,Gd)Sc3(BO3)4 has twice the number of the crystal-
lographic positions occupied by atoms with the reten-
tion of the same unit-cell parameters (a = ahex, c = chex).
The (Ce,Gd)(1) and (Ce,Gd)(2) “atoms” occupy the
centers of distorted trigonal prisms (ϕ ≈ 15°), whereas
Sc(1) and Sc(2) atoms occupy the centers of distorted
octahedra, B(1) and B(2) atoms occupy the centers of
equilateral triangles, and B(3) and B(4) atoms occupy
the centers of isosceles and scalene triangles, respec-
tively. In the cases of the ratios Ce : Gd = 0.8 : 0.2 or
0.7 : 0.3, a superstructure is formed (a = chex, b = bhex,
c = 2ahexcos30°, β ~ 90°, sp. gr. A2), which is not
observed in the case of Ce : Gd ≈ 0.68 : 0.32 [1]. 

The NdSc3(BO3)4 compound (rNd = 0.98 Å) has a
superstructure with respect to the huntite-type structure
with the doubled unit-cell parameters a = 9.775(1) × 2 Å,
c = 7.930(2) × 2 Å [1], sp. gr. P321 or P3 [5]. In the dis-
ordered NdSc3(BO3)4 structure, the atomic positions
(primarily, the positions occupied by the oxygen
atoms) are weakly displaced with respect to the
positions in the NdGa3(BO3)4 huntite-type structure
(sp. gr. R32) with a smaller unit-cell volume and a
higher symmetry. 

The PrSc3(BO3)4 single crystal (rPr = 0.99 Å), grown
from a charge of the composition (Pr1.1Sc2.9)(BO3)4,
belongs to the monoclinic system (Table 1). The sys-
tematic-absence conditions for the overwhelming
majority of reflections indicated the space group ë2/Ò
APHY REPORTS      Vol. 45      No. 6      2000
or Cc (h + k = 2n for hkl; h = 2n, l = 2n for h0l; h = 2n
for h00). However, a small number of additional h0l
reflections with l = 2n – 1 and I ≥ 3σ(I), characteristic
of the sp. gr. C2/m, C2, or Cm, were found. For these
crystals, the asynchronous generation of the second
harmonic indicated a noncentrosymmetric structure
(most probably described by the space group C2, a sub-
group of C2/c). Since the number of additional reflec-
tions was small, we refined the crystal structure within
the sp. gr. C2/c. The positional and the thermal param-
eters of the structure are listed in Table 3. 

In the PrSc3(BO3)4 structure, Pr atoms occupy the
centers of distorted trigonal prisms (ϕ ≈ 10°; Pr–O,
2.434–2.456(2) Å); Sc(1) and Sc(2) atoms are located
in distorted octahedra (Sc(1)–O, 2.062–2.139(2) Å;
Sc(2)–O, 2.047–2.132(2) Å); and B(1) and B(2) atoms
are surrounded with oxygen atoms located at the verti-
ces of scalene triangles (Fig. 3) (B–O, 1.368–1.380(3) Å;
O–B–O, 117.2–123.1(2)°). 

Table 3.  Coordinates of the basis atoms and thermal para-
meters (Å2 × 103) for the PrSc3(BO3)4 structure (sp. gr. C2/c)

Atom x/a y/b z/c Ueq

Pr 0 0.0343(1) 0.250 7.1(1)

Sc(1) 0 0.5733(1) 0.250 4.1(1)

Sc(2) 0.0476(1) 0.2500(1) 0.5251(1) 4.3(1)

B(1) 0.2025(3) 0.3034(2) 0.2261(2) 5.3(6)

B(2) 0.2457(3) 0.0247(2) –0.0004(2) 6.2(6)

O(1) 0.2035(2) 0.5581(2) 0.7398(1) 9.5(5)

O(2) 0.2472(2) 0.1155(2) 0.4951(2) 6.8(5)

O(3) 0.0688(2) 0.2354(2) 0.1484(1) 8.6(5)

O(4) 0.3880(2) 0.0951(2) 0.0682(1) 6.7(5)

O(5) 0.3391(2) 0.2282(2) 0.2947(1) 11.3(3)

O(6) 0.4025(2) 0.4107(2) 0.0686(1) 7.2(5)
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Fig. 3. Connection of the polyhedra in the LaSc3(BO3)4 structure (sp. gr. C2/c). 
However, single crystals grown from the charge of
composition (Pr1.25Sc2.75)(BO3)4 are isostructural to
(Ce,Gd)Sc3(BO3)4 (a = 9.7829(5) Å, c = 7.9428(5) Å,
the sp. gr. P321), which may be caused by redistribu-
tion of the Pr and Sc cations over the crystallographic
positions of the structure accompanied by the change of
the crystal symmetry. Some more detailed studies are
necessary to prove the existence of the monoclinic and
triclinic polymorphous modifications of PrSc3(BO3)4
crystals. 

The addition of a small amount of Nd to
PrSc3(BO3)4 yielded the charge of the composition
(Pr0.99Nd0.11Sc2.9)(BO3)4, provided the formation of the
(Pr,Nd)Sc3(BO3)4 solid solution. This solid solution
belongs to the trigonal system (sp. gr. P321) with a
superstructure of the NdSc3(BO3)4 type and the dou-
bled unit-cell parameters (Table 1). Unfortunately, we
failed to determine the Pr : Nd ratio in the crystal by the
X-ray diffraction analysis. 

Similar to the isostructural LaSc3(BO3)4 crystals
(rCe = 1.03 Å) with the parameters of the monoclinic
unit cell a = 7.727(1) Å, b = 9.840(1) Å, c = 12.046(3) Å,
β = 105.42(2)° [2], the CeSc3(BO3)4 crystals (rCe =
1.01 Å) belong to the centrosymmetric monoclinic
(space group C2/c) with the unit-cell parameters a =
7.721(3) Å, b = 9.834(3) Å, c = 12.041(3) Å, β =
105.39(3)°. 

In contrast to the crystals of LaSc3(BO3)4 and
CeSc3(BO3)4, the loss of the center of symmetry
observed in PrSc3(BO3)4 crystals is caused by small
displacements of oxygen atoms in comparison with
their positions in the centrosymmetric LaSc3(BO3)4
structure (Fig. 3). These displacements may be caused
by the vacancies in the boron positions and the easy
gliding of the oxygen planes with respect to each other
[1]. The above behavior of the PrSc3(BO3)4 crystal
structure indicates that it is on the verge of instability—
the partial replacement of Pr or Sc atoms by smaller
or   larger size atoms should lead to the formation
of    structures of the LaSc3(BO3)4 (sp. gr. C2/c),
C

(Ce,Gd)Sc3(BO3)4 (sp. gr. P321), or NdSc3(BO3)4 (a
superstructure, sp. gr. P321 or P3) types. This assump-
tion is indirectly supported by the fact that, depending
on the growth conditions, the (La0.5Nd0.5)Sc3(BO3)4
solid solution, in which the weighted average radius of
the cation in the Ln position (rLa, Nd ~ 1.00 Å) is close to
the Pr radius, can crystallize in both trigonal and mon-
oclinic systems [6]. 

Our study shows that the Czochralski-grown rare-
earth scandium borate crystals in the series of rare-earth
elements are transformed with an increase of the radius

of the rare-earth element: Sc4(BO3)4 (sp. gr. R c) 

(Tb,Sc)2(Sc,Tb)2(BO3)4 (sp. gr. R )  LnSc3(BO3)4

(sp. gr. P321)  NdSc3(BO3)4 (superstructure, sp. gr.
P321 or P3)  PrSc3(BO3)4 (sp. gr. C2)  CeSc3(BO3)4
(sp. gr. C2/c)  LaSc3(BO3)4 (sp. gr. C2/c). 

The LnM3(BO3)4 crystal structures (M = Al, Ga, Cr,
or Fe) also belong to the huntite family (the structure
classification can be found in reviews [15–18]). The
LnGa3(BO3)4 and LnFe3(BO3)4 compounds crystallize
in the huntite structure type (sp. gr. R32). The
LnCr3(BO3)4 compounds form a morphotropic series.
Thus, the compound with Ln = Nd belongs to the mon-
oclinic system (sp. gr. C2/c), whereas the compounds
with Ln = Sm or Gd belong to the trigonal system
(sp. gr. R32). The structures of the LnAl3(BO3)4 com-
pounds are more diversified, although they differ from
LnSc3(BO3)4, structures with characteristic disorder
[1]. The LnAl3(BO3)4 compounds with Ln = Pr–Lu are
isostructural to huntite (sp. gr. R32). In addition, the
polymorphs or the polytypes described by the space
group C2/c are known for the compounds with Ln = Pr–
Eu, whereas polymorphs or polytypes described by the
space groups C2/c and C2 are known for the com-
pounds with Ln = Pr and Gd (the structures of alumi-
num and scandium borates described by the space
group C2 are different). Probably, such structural
behavior of rare-earth borates depends on the size ratio
of Ln and M atoms and the growth conditions. 

3

3
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CONCLUSIONS 

It was found that the Czochralski-grown
LnSc3(BO3)4 compounds with Ln = La, Ce, Pr, Nd, or
Tb form a morphotropic series. The LaSc3(BO3)4 and
CeSc3(BO3)4 compounds are isostructural and have
centrosymmetric monoclinic structures, unlike the non-
centrosymmetric monoclinic PrSc3(BO3)4 crystal,
whose structure is almost unstable. The partial replace-
ment of the praseodymium by the neodymium and an
increase in the praseodymium concentration in the melt
change the monoclinic symmetry to trigonal either with
the doubling of the unit-cell parameters in comparison
with the huntite structure (the structure of the
NdSc3(BO3)4 type) or without parameter doubling
(the  structure of the (Ce,Gd)Sc3(BO3)4 type). The
(Tb,Sc)BO3 structure has no trigonal prisms typical of
Ln atoms in the structures of the huntite family. This
fact may be attributed to the tendency of the rare-earth
elements of the second half of the series to be located
in octahedra. 

Apparently, the morphotropic series is formed due
to the “rigidity” of the B-polyhedra, which control the
stability of the crystal structure. With the change of the
compositions of prismatic or octahedral positions and
the formation of vacancies in the boron position
because boron volatility in the course of growth, the
symmetry of the B-polyhedra changes, which, in turn,
results in the change of the symmetry group. 

The general tendency observed for the LnM3(BO3)4
compounds with M = Al, Sc, or Cr is the change of the
symmetry from monoclinic to trigonal with a decrease
of the radius of the rare-earth element and the forma-
tion of individual the scandium borate structures. 
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STRUCTURE OF INORGANIC COMPOUNDS

                                         
Crystal Structure of Crystal Hydrate NaCs5Mo7O24 · 5H2O
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Abstract—The structure of NaCs5Mo7O24 · 5H2O was established by X-ray diffraction analysis (λMo, 7279
reflections, Raniso = 5.3%). The parameters of the triclinic unit-cell are as follows: a = 10.517 Å, b = 10.824 Å,

c = 16.916 Å, α = 66.94°, β = 67.14°, γ = 72.40°; Z = 2; P . The compact groups consisting of seven MoO6-
octahedra are linked into a three-dimensional framework via a system of hydrogen bonds. Five independent Cs
atoms are located in large cavities of the framework. The coordination environment of a Na atom is an octahe-
dron formed by oxygen atoms of water molecules. © 2000 MAIK “Nauka/Interperiodica”.

1

The studied crystals were grown by evaporation of
an aqueous solution of the mixture of Na2MoO4 and
Cs2MoO4 in the 1 : 3 ratio. The transparent colorless
plateletlike crystals are unstable at room temperature.
The X-ray diffraction data were collected on an auto-
mated CAD-4F Enraf-Nonius diffractometer (MoKα
radiation, graphite monochromator, ω/2θ scan, variable
scan rate, sinθ/λ ≤ 0.7 Å–1) from a 0.25 × 0.125 ×
0.125-mm-large crystal in a silicone oil. The triclinic
1063-7745/00/4506- $20.00 © 20916
unit-cell parameters were refined over 25 strong reflec-
tions as a = 10.517(2) Å, b = 10.824(4) Å, c =
16.916(15) Å, α = 66.94(5)°, β = 67.14(4)°, γ =
72.40(5)°, V = 1606 Å3 . The total of 7279 reflections
with the integrated intensities Ihkl > 3σ(I) were mea-
sured. The drift of intensities of the control reflections
was no higher than 5% throughout the X-ray data set.
The experimental absorption curve was not measured.
All the calculations associated with the structure solu-
H2O
H2O

H2O

H2O

H2O

H2O
H2O

H2O

H2O

Na

H2O
Cs

Cs

Cs
Cs

Cs

Cs

Cs

Na

Cs

H2O

Cs

c

a

H2O

The NaCs5Mo7O24 · 5H2O structure projected onto the ac-plane.
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Atomic coordinates and isotropic thermal parameters for NsCs5Mo7O24 ⋅ 5H2O

Atom x/a y/b z/c Beq, Å2

Mo(1) 0.21813(10) 0.20577(11) 0.14031(7) 1.35

Mo(2) –0.02547(9) 0.05238(9) 0.32845(6) 0.87

Mo(3) 0.26953(9) –0.12221(10) 0.21755(7) 1.25

Mo(4) –0.32962(10) 0.27097(11) 0.38768(7) 1.48

Mo(5) –0.01503(9) –0.07529(10) 0.17180(7) 1.10

Mo(6) –0.30269(9) 0.11684(10) 0.25387(7) 1.10

Mo(7) –0.06749(10) 0.39287(10) 0.22874(7) 1.31

Cs(1) 0.35648(9) 0.33498(8) 0.64844(6) 2.28

Cs(2) 0.30562(8) 0.06002(10) 0.38348(6) 2.15

Cs(3) 0.98632(11) 0.28703(10) 0.98000(6) 2.68

Cs(4) 0.62754(9) 0.02669(15) 0.07814(7) 3.35

Cs(5) 0.44646(12) 0.42575(12) 0.86566(11) 4.16

Na –0.1557(6) –0.3961(5) –0.4630(4) 3.03

O(1) 0.3127(10) 0.3082(10) 0.1413(8) 3.02

O(2) 0.0389(10) 0.4808(9) 0.2316(7) 2.93

O(3) –0.1164(8) –0.1920(8) 0.1955(6) 1.98

O(4) –0.3851(7) –0.0131(8) 0.2768(6) 1.37

O(5) 0.2900(9) 0.1947(9) 0.0317(6) 2.39

O(6) –0.1826(8) 0.5178(8) 0.1763(6) 2.26

O(7) 0.0867(8) –0.0566(9) 0.0622(6) 1.83

O(8) –0.3997(9) 0.2584(9) 0.1993(7) 2.88

O(9) 0.3747(8) –0.1379(9) 0.1142(5) 2.22

O(10) –0.4435(9) 0.4093(8) 0.3432(7) 2.63

O(11) 0.3546(8) –0.2423(9) 0.2890(6) 2.23

O(12) –0.3942(10) 0.2370(10) 0.5029(6) 2.18

O(13) 0.3247(7) 0.0391(8) 0.2052(5) 1.32

O(14) –0.1815(8) 0.3681(8) 0.3553(6) 1.58

O(15) 0.1195(7) –0.2054(7) 0.2340(5) 1.58

O(16) –0.3881(7) 0.1276(8) 0.3773(5) 1.58

O(17) 0.1054(7) –0.0834(7) 0.3595(5) 1.22

O(18) –0.1403(8) 0.0790(8) 0.4280(5) 1.67

O(19) 0.0517(7) 0.3366(7) 0.1249(5) 1.51

O(20) –0.1510(7) 0.0901(7) 0.1478(5) 1.34

O(21) 0.0718(7) 0.1999(7) 0.2797(5) 1.22

O(22) –0.1309(6) –0.0363(6) 0.3050(4) 1.13

O(23) 0.0993(6) 0.0445(6) 0.1889(5) 0.99

O(24) –0.1769(6) 0.2275(7) 0.2685(5) 1.39

O(25)* 0.2977(10) 0.1944(9) 0.5294(7) 3.19

O(26)* 0.0065(12) 0.2669(12) 0.4678(7) 4.04

O(27)* 0.0009(12) 0.4127(10) 0.6160(7) 3.90

O(28)* 0.7147(15) 0.4620(14) 0.5373(9) 5.11

O(29)* 0.3022(16) 0.3832(16) 0.3081(12) 6.99

* H2O molecules.
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tion and refinement were made by the SHELXS86 [1]
and AREN [2] program packages. The arrangement of
the Mo atoms was determined by the SHELXS86 pro-
gram package. Then the Cs, Na, and O atoms were
localized by the method of successive approximations
by the AREN program package with due regard for
crystallo chemical considerations. In the course of the
refinement, the absorption correction (µrmax = 1.4) for
an arbitrarily shaped sample was applied [3]. The dis-
tribution of the R factor in sinθ/λ is indicative of sub-
stantial extinction in the crystals. The anisotropic
refinement of the model by the full-matrix least squares
method with allowance for the secondary-extinction
coefficient resulted in Rw = 6.4% and R = 5.3%. The
final coordinates of the basis atoms and their individual
isotropic temperature factors (the anisotropic tempera-
ture factors can be obtained from the authors) are given
in the table. The NaCs5Mo7O24 · 5H2O structure pro-
jected onto the (010) plane is shown in the figure.

In this type of the coordination, polyhedra of Mo
atoms and the mode of their mutual arrangement indi-
cate that the compound under study belongs to block
structures. The coordination octahedron of a Mo atom
is formed by oxygen atoms. The [MoO6]-octahedra
share the edges and the vertices to form a block of
seven octahedra. This block corresponds to the hepta-
nuclear anion of the composition [Mo7O24]6–. The
Mo(2) octahedron with bridging vertices is located in
the center of this block. The oxygen vertices of the
remaining six octahedra are either terminal or bridging.

The structure under study exhibits the features typi-
cal of many oxygen-containing compounds of Mo [4].
The Mo–O distances in the octahedra vary over a wide
range. The following characteristic features inherent in
all the Mo-octahedra can be followed on a Mo(1) octa-
hedron containing two shortest bonds [Mo(1)–O(1)
(1.707 Å) and Mo(1)–O(5) (1.732 Å)] in the cis posi-
tions with respect to one another; the long Mo(1)–
O(23) (2.164 Å) bond in the trans position with respect
to the shortest Mo(1)–O(1) bond (1.707 Å); two equal
C

Mo(1)–O(13) and Mo(1)–O(19) bonds of the interme-
diate lengths (1.974 and 1.927 Å, respectively) in the
trans positions with respect to one another. The sums of
the bond lengths belonging to the trans partners are
3.871, 3.980, and 3.901 Å. The average Mo–Mo dis-
tance in the octahedra linked via sharing the edge is
3.294 Å. The lengths of the O–O edges in the octahedra
vary within a narrow range (the average value 2.75 ±
0.1 Å).

The water molecules form the hydrogen bonds with
the oxygen atoms of the anionic [Mo7O24]6– blocks. The
O–O distances range within 2.800–3.154 Å; the corre-
sponding oxygen atoms are located at small distances
from molybdenum (1.706–1.936 Å). As a result, the
anionic [Mo7O24]6– blocks are linked by via a system of
hydrogen bonds and form infinite corrugated chains
along the c-axis (figure).

The nearest environment of the Na atom is formed
by six water molecules located at the vertices of a dis-
torted octahedron.

The alkaline Cs atoms occupy the cavities of the
framework and are surrounded by oxygen atoms of the
anionic [Mo7O24]6– block. The Cs–O bond lengths
range within 2.7–3.0 Å.
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Abstract—Dissymmetrization of α-alum crystals of two isomorphous series, (NH4,K)Al(SO4)2 · 12H2O and
K(Al,Cr)(SO4)2 · 12H2O, with different values of anomalous birefringence has been studied by X-ray diffrac-
tion methods. Dissymmetrization is revealed mainly from the comparison of the intensities of crystallographi-

cally equivalent reflections in the space group Pa  characteristic of alum. The degree of dissymmetrization
depends on the position in which the isomorphous replacements occurs, as well as on the growth sector of the
crystal, and shows a good correlation with birefringence. © 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Although anomalous birefringence in the crystals of
solid solutions of alum has been known since the late
nineteenth century [1], its origin is still unclear. Numer-
ous indirect data [2] confirm the assumption that opti-
cal anomalies of alum crystals are associated with the
mechanism of growth dissymmetrization [3]. In
essence, the mechanism reduces to the following: the
sites of one regular system of points, which are crystal-
lographically equivalent in the crystal bulk, become
nonequivalent on its surface or at the end of a growth
step and can orderly be occupied by the ions of the solid
solution in the process of crystal growth. During crystal
growth, this ordered surface-layer structure is “buried”
in the crystal bulk and thus becomes “frozen” [4]. How-
ever, one cannot directly relate this phenomenon to the
observed optical anomalies without preliminary exper-
imental analysis of dissymmetrization of the crystal
structure. The present study is devoted to the analysis of
specific features of dissymmetrization of the crystal
structure of α-alum depending on the type of substitut-
ing cations and birefringence by the method of X-ray
diffraction analysis. 

As is well known, α-alum (sp. gr. Pa ) has the
composition A+M3+(SO4)2 · 12H2O, where A+ = K+,

N , Rb+, Tl+, etc., and M3+ = Al3+, Cr3+, Fe3+, etc. The
end members of the isomorphous series are isotropic,
whereas all the other members possess anomalous bire-
fringence described in detail in our earlier study [5].
Maximum birefringence is observed in the growth sec-
tors of the (111) octahedron faces and is much lower
(by an order of magnitude) in the growth sectors of
weakly developed (100) cube faces and (110) rhom-
bododecahedron faces. The birefringence is an order of
magnitude less. The birefringence strength ∆ = ng – np
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depends on the molar fraction x of one of the compo-
nents of a binary isomorphous mixture according to the
parabolic law ∆ = 4∆maxx(1 – x) and attains its maxi-
mum value ∆max ≈ n × 10–5 in the middle of the series.
In the growth sector 〈111〉, the optical indicatrix is a
biaxial ellipsoid, close to a uniaxial one, whose major
axes (essentially different from two other axes) is
almost normal to the growth front. For isomorphous
series in which the substitution occurs in the position
A+, this axis is np; if substitution occurs in the position
M3+ – ng, this axis is np. In the growth sectors 〈100〉 and
〈110〉, the indicatrix orientation is less regular and can-
not be described in such a simple way. 

CHECKING OF CRYSTAL HOMOGENEITY 
AND PREPARATION OF SPECIMENS 

We studied crystals of two isomorphous series,
(NH4,K)Al(SO4)2 · 12H2O (the first series) and
K(Al,Cr)(SO4)2 · 12H2O (the second series), i.e., the
crystals with substitution in the positions A+ and M3+,
respectively. Alum crystals were grown from aqueous
solutions by the method of isothermal decrease of
supersaturation at 30°C; the initial supersaturation
∆C/C was varied from 0.05 to 0.3. The composition of
the grown crystals was determined by the methods of
flame photometry (for the first series) and calorimetry
(for the second series). 

To reveal possible heterogeneity of alum crystals,
we analyzed the diffraction-maximum profiles of single
crystals [6]. Proceeding from the nature of the optical
indicatrix, an inhomogeneous chemical layer most
probably formed along the direction normal to the
growth front (e.g., along the [111] growth direction in
the 〈111〉  growth sector). Therefore, we obtained dif-
fraction reflections from the crystals of the composition
000 MAIK “Nauka/Interperiodica”
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Table 1.  Characteristics of specimens of alum crystals A+M3+(SO4)2 · 12H2O

Specimens KV1 KV2 KV3

Composition A = K0.49(NH4)0.51 A = K0.49(NH4)0.51 A = K

M = Al M = Al M = Al0.95Cr0.05

Growth sector 〈111〉 〈100〉 〈111〉
∆ = ng – np, 10–5 6.0 1.0 1.6

a, Å 12.212(2) 12.212(2) 12.170(2)

b, Å 12.211(3) 12.211(2) 12.172(2)

c, Å 12.214(1) 12.211(2) 12.171(2)

aav, Å 12.213(2) 12.211(2) 12.171(2)

α, deg 90.01(1) 89.99(1) 90.01(1)

β, deg 90.02(1) 90.01(1) 90.00(1)

γ, deg 89.99(2) 90.01(1) 90.01(1)

Table 2.  Crystallographically equivalent reflections in the diffraction class m  and its subgroups 

Diffraction group Group multiplicity Equivalent reflections 

m 24 hkl      lhk      klh      hk       lh       kl

h l      l k      k h      h       l       k

l      k      h                 

kl      hk      lh             h  l

6 L3||[111]      L3||[ 11]      L3||[1 1]      L3||[ 1]

hkl         kl        h l        l 

        h        k       hk

lhk        hk        l k        k

        l       h        lh

klh         lh        k h        h

        k        l        kl

mmm 8 hkl      h l      l      kl

hk       h             k

2/m 4 L2||[100]      L2||[010]      L2||[001]

hkl        hkl         hkl

kl       h l       l

             

h       k     hk

2 hkl       

3

3 l k h

k h l kl hk lh

hk lh kl hkl lhk klh

h l k h l l k k h

3 1 1 11

h k hk

hkl kl h l l

l h lh

lhk hk l k k

k l kl

klh lh k h h

k hk h

l kl hkl h l

h k hk

hkl hkl hkl

kl h l l

l hkl
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(K0.49(NH4)0.51)Al(SO4)2 · 12H2O (with the maximum
birefringence strength), from the (111) growth planes
in the 〈111〉  growth sector, and from the (110) growth
planes in the 〈110〉  growth sector. For comparison, sim-
ilar experiments were also performed for “nongrowth”
(111) and (110) planes of the corresponding growth
sectors. The standard was an isotropic KAl(SO4)2 ·
12H2O crystal. 

The profiles of the 555, 666, 777 and 440, 660, 880
diffraction maxima were obtained from the growth
faces and from the oriented sawn surfaces of the 5- to
15-mm-large crystals on a DRON-2.0 diffractometer
(point-by-point record, 2θ-θ scan, CoKα-radiation,
graphite monochromator, scan step 0.02°, time con-
stant 5 s). The Co-radiation was chosen due to its high
resolution power at far 2θ angles. The theoretical dif-
fraction patterns calculated for various models showed
that the use of this radiation would allow the establish-
ment of the pronounced distortions of reflection pro-
files even in the case of large concentration differences
(up to 5 : 1) and slight (about 10%) composition differ-
ences of alternating layers. 

All the reflections from both the standard crystal
and the crystal under study were symmetric and, thus,
indicated the absence of the noticeable chemical inho-
mogeneity in the layers along the growth directions and
in the directions inclined to these directions. Computer
simulation showed a good correspondence between the
reflection profiles calculated for one-component mod-
els and the corresponding experimental profiles for
these models. The dimensions of the coherent-scatter-
ing regions varied within 1100–1300 Å. Thus, if the
crystals were chemically heterogeneous, this heteroge-
neity was insignificant and could hardly be the source
of the optical anomalies observed in alum. 

For the further study, we chose three specimens with
different birefringence strengths (Table 1). The KV1
and KV2 specimens from various growth sectors of the
same single crystal possessed the maximum birefrin-
gence strength within the first isomorphous series [5].
In the KV3 specimen from the second isomorphous
series, the chromium concentration and, therefore, bire-
fringence were quite low, because alum with high chro-
mium content is instable and is decomposed in the air
atmosphere. 

Spherical specimens with diameters ranging within
0.2–0.4 mm were obtained by slight dissolution of spe-
cially prepared specimens cut out from the correspond-
ing growth sectors with dimensions exceeding 0.5 mm
in water. 

ANALYSIS OF SYMMETRY 

The study of the specimens by the Weissenberg
method showed no violations of the cubic symmetry
(sp. gr. Pa ). 

The further study of the symmetry of alum single
crystals was performed on a Syntex P21 single-crystal
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four-circle X-ray diffractometer (θ/2θ scan for the KV1
specimen and the ω scan for the KV2 and the KV3 spec-
imens; MoKα-radiation, graphite monochromator). The
unit-cell parameters were determined using the least
squares procedure over 25 reflections (10.0.0, 880, and
12.0.4 reflections and all the crystallographically
equivalent reflections within the cubic diffraction class

m ). They showed no deviations from the cubic sym-
metry (Table 1). Moreover, neither the satellite nor the
odd h00-, 0h0-, or 00h-type reflections forbidden in

sp. gr. Pa  were revealed. 

The preliminary analysis of the symmetry was
based on the comparison of the reflection intensities

equivalent in the diffraction class m  and its sub-

3

3

3

Table 3.  Values of the parameter χ for coordinate reflections 

Specimens

Reflections
KV1 KV2 KV3

200, 020, 002 1 3 1

400, 040, 004 57 7 28

600, 060, 006 32 2 25

800, 080, 008 – – 2

10.0.0, 0.10.0, 0.0.10 3 2 13

12.0.0, 0.12.0, 0.0.12 2 1 2

14.0.0, 0.14.0 0.0.14 1 1 1

Table 4.  Values of the parameter χ for intensities of general-
type reflections for the cubic and the orthorhombic symmetries

Sp
ec

im
en

s

R
efl

ec
tio

ns Cubic 
symmetry Orthorhombic symmetry

χ = χav χ1 χ2 χ3 χav

KV1 332 5 4 3 5 1

132 15 6 5 3 10

421 6 4 3 3 2

251 4 2 4 2 1

KV2 332 4 3 4 3 1

132 4 4 3 2 1

421 7 7 5 3 1

251 3 3 3 2 1

KV3 332 9 4 not determined 6 2

132 22 21 20 5

421 17 10 15 3

251 5 3 3 1

Note: The comparison of the intensities of the equivalent reflec-
tions for the trigonal and the monoclinic models did not con-
firm the above data and therefore are omitted here. For nota-
tion see the text. 
0
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Fig. 1. Relative integrated intensities of reflections equivalent to the 132 reflection in the diffraction class  m  for specimens (a) KV1
(σI = ±(0.5–1.5) arb. units), (b) KV2 (σΙ = ±(0.9–1.1) arb. units), and (c) KV3 (σI = ±(2.3–2.7) arb.units). The upper number shows

the intensity for the hkl-type reflections, the lower number, the intensity of the hk -type reflections. 

3

l

groups. The division of all the reflections into groups of
equivalent reflections was made under the assumption
of trigonal (four variants), orthorhombic, monoclinic
(three variants), and triclinic symmetries (Table 2). 

To compare the intensities of the corresponding
groups of reflections, we used the parameter χ =

, where Imax and Imin are the maximum and

the minimum reflection intensities and σmax is the max-
imum experimental error of their determination, which
was evaluated by scanning along the ψ-axis and com-
paring the intensities of centrosymmetric reflections.
The parameter χ was calculated in two variants: inside

Imax Imin–
σmax

-----------------------
C

each group of reflections, which were assumed to be
equivalent (χ1, χ2, …), and between different groups,
which were characterized by the average intensities in
the corresponding groups of reflections (χav). Obvi-
ously, if χ1, χ2, … < χav, the differences between the
reflection intensities within the group are less than the
differences in the intensities of various groups (at χav > 3)
and the assumption about the lower symmetry (dissym-
metrization) is justified; otherwise, it is not. 

Scanning along the ψ-axis with a step of 10° con-
firmed that the differences in the intensities are not
associated with the specimen shape and multiple reflec-
tion. 
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Table 5.  Values of the parameter χ for the intensities of general-type reflections for the specimen KV3 of the trigonal symmetry

hkl χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χav

332 2 1 1 1 1 2 3 1 1 0.2 2 3 7

132 2 2 0.2 2 2 2 4 2 2 1 0.4 1 20

421 2 2 3 1 1 1 4 2 2 0.4 1 2 15

251 3 1 3 0.3 1 0.4 1 0.6 0.2 0.4 0.4 2 4

Note: For notation see the text. 

Table 6.  Violation of the symmetry elements in the diffraction class m  of the specimen KV3

Symmetry
element

Equivalent
reflections

Total number of 
equivalent reflections

Number of groups of reflections not obeying
the symmetry element under the conditions that

χ =  > 3 ε =  > 1

 number
of groups of
reflections

percentage of 
the total number 

of groups

 number
of groups of
reflections

percentage of 
the total number 

of groups

my hkl 1308 138 10.55 6 0.46

h l

mz hkl 1187 187 15.75 8 0.67

hk

31 hkl 458 170 37.12 7 1.53

lhk

klh

32 h 867 339 39.10 27 3.11

l

k

33 h l 1356 514 37.91 14 1.03

l k

k h

34 hk 849 270 31.80 27 3.18

lh

kl

3

Imax Imin–

σmax
------------------------

Imax Imin–

Imin
------------------------

k

l

k l

hk

lh

k

h

l

l

k

h

Comparing the intensities of coordinate reflections
(Table 3), we established that the parameter was χ > 3,
at least for one group of reflections; in other words, the
intensities of two reflections in the group were essen-
tially different and the symmetries of all the three alum
specimens were lower than cubic. For the specimens
KV1 and KV3, the intensities were considerably differ-
ent. For the specimen KV2, the intensities were differ-
ent only for the 400 reflections, which indicated a lower
degree of dissymmetrization in this specimen. 
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
For the specimen KV2, the real symmetry was lower
than the cubic symmetry, but the structural distortions
were insignificant (Fig. 1; Tables 3 and 4), so that no
justified conclusions about the crystal symmetry could
be made. The intensity analysis of reflections of the
general type allowed us to exclude the assumptions
about the trigonal and monoclinic symmetries for the
specimens KV1 and KV3 (Fig. 1). The intensities of the
corresponding reflections for the KV1 specimen dif-
fered much more than for the specimen KV2 (Figs. 1a, 1b;
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Table 4) from the same isomorphous series (Table 1).
The KV1 specimen also possessed a much more pro-
nounced birefringence strength. These results and the
data obtained from the intensity analysis of the coordi-
nate reflections (Table 3) indicate a more pronounced
(in comparison with the specimen KV2 from the 〈100〉
growth sector) dissymmetrization of the specimen KV1
from 〈111〉  growth sector despite the fact that both
specimens have the same composition. The intensity
ratio of the specimen KV1 obeys the orthorhombic
symmetry sufficiently well (the diffraction class mmm)
(Table 4). Nevertheless, the χ1, χ2, and χ3 values con-
siderably exceed the value 3, which indicates the viola-
tion of the orthorhombic symmetry. 

The KV3 specimen from the second isomorphous
series possessing a low birefringence strength (compa-
rable with that of the KV2 specimen) is characterized
by the most pronounced differences in the intensities of
the corresponding reflections. The intensity ratios
(Fig. 1c, Tables 3–5) indicate the triclinic symmetry,
whence it follows that the substitution in the position
M3+ (specimen KV3) gives rise to a more pronounced
dissymmetrization than the substitution in the position

40

Symmetry elements

30

20

10

0

%

my

mz

31
32 33

34

Fig. 2. Percentage of groups of reflections violating the
symmetry elements of the diffraction class m  in the KV3
specimen. 

3

C

A+ (specimen KV1). Using the analogy with a ruby
crystal [7], one can assume that the substitution of Al3+

by Cr3+ results in the displacement of the orderly dis-
tributed impurity cation Cr3+ from the Al3+ position,
which promotes the further dissymmetrization. 

Thus, the analysis of the intensities of selected
X-ray diffraction reflections showed that the symmetry
of all the alum crystals studied is lower than cubic. The
degree of their dissymmetrization depends not only on
the impurity concentration but also on the position
occupied by these impurities and, if the crystal compo-
sition is constant, also on the growth sector, which
agrees quite well with the data on the birefringence
strength (Table 1). 

For a more detailed checking of possible triclinic
symmetry of the KV3 specimen, a three-dimensional
set of intensities was collected within half of the recip-
rocal space (2θ = 0°–80°, 0 ≤ h ≤ 19, –19 ≤ k ≤ 19,
−19 ≤ l ≤ 19) on the same diffractometer (ω-method,
MoKα-radiation, graphite monochromator, 5929 reflec-
tions with I > 3σ(I)). All the experimental intensities
were corrected for the LP-factor and absorption for
spherical specimens (µr = 0.085). 

Studying dissymmetrization in garnets, Takéuchi
[8] suggested to evaluate the degree of invalidity of
individual symmetry elements in a crystal with the aid
of a histogram showing the fraction of reflections not
obeying the symmetry operation under consideration.
In the construction of the histogram for the KV3 speci-
men (Fig. 2, Table 6), the intensities were taken to be
different if they differed by more than 3σ. The analysis
of this histogram showed that the symmetry planes and
the threefold symmetry axes in the crystal under study
were considerably invalid. It should be emphasized that
the symmetry axes were “violated” to a considerably
larger degree than the symmetry planes, with the frac-
tions of reflections not obeying various threefold axes
or symmetry planes being rather close. 

With due regard of all possible subgroups of the

space group of alum (Pa , Fig. 3), the analysis of the
histogram in Fig. 2 led to the conclusion that the sym-

3

Pa3

P3

P213

P3 P21/b(P21/c, P21/a) Pbc21(Pb21a, P21ca)

Pb(Pc, Pa)

P212121

P1

P1 P2111(P1211, P1121)

Pbca

Fig. 3. Possible space groups of birefringent alum crystals (subgroups of the group Pa ). 3
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metry of the specimen KV3 considerably differs from

the symmetries of the cubic space groups Pa  and P213

and the trigonal groups P  and P3. The deviation from
the symmetries of the orthorhombic and the monoclinic
groups were also quite pronounced, although some-
what less marked. 

Even if the studied alum crystals were really chem-
ically heterogeneous, this heterogeneity was insignifi-
cant and could hardly give rise to any optical anoma-
lies. 

The different intensities of X-ray reflections equiv-

alent in the diffraction class m  allow for the interpre-
tation of birefringence of alum crystals—it is caused by
lowering of their symmetry to triclinic, which seems to
be associated with partial ordering of cations that can
substitute one another. In particular, such ordering was
revealed in birefringent garnet crystals [8]. However,
one should not exclude that the established differences
in the reflection intensities are caused not only by dis-
symmetrization, but also by some additional factors,
e.g., anisotropic extinction. 

The results obtained at this stage of the study indi-
cate that the degree of the assumed dissymmetrization
of the crystals depends on the position in which the iso-
morphous substitution occurs and, at the constant crys-
tal composition, also on the growth sector of the crys-
tal, which is consistent with the birefringence data. In
the alum crystals K(Al0.95Cr0.05)(SO4)2 · 12H2O (the
〈111〉  growth sector), the “violation” of both threefold
symmetry axes and the symmetry planes is observed,
with the violation of the threefold axis being more pro-
nounced than the violation of the symmetry planes. At

3

3

3
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the same time, all the observed violations of various
symmetry planes were close, as were all the violations
of various threefold symmetry axes. 
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Abstract—The structure of Na0.395Ho0.605F2.210 (I) and Na0.446Yb0.554F2.108 (II) crystals has been studied by
the neutron diffraction method. A low occupancy of the main positions of fluorine atoms (Fc) is established.
Interstitial fluorine atoms in crystal (I) occupy two positions, 48i and 32f, with the parameter w = 0.293 (the so-
called relaxed fluorine atoms). In crystal (II), interstitial fluorine atoms occupy four positions, general 48i, 32f
(w = 0.322), 32f (v = 0.414) positions and the special 4b position (1/2, 1/2, 1/2) in the center of the large cubic
void (the so-called Goldschmidt position). © 2000 MAIK “Nauka/Interperiodica”.
Among the nonstoichiometric phases with the fluo-
rite structure formed in the fluorine-containing sys-
tems, the Na0.5 − xR0.5 + xF2 + 2x solid solutions show the
maximum difference in the valences of substituted Na+

and R3+ cations (R = Pr–Lu, Y). In comparison with
well-known fluorite phases of the composition
M1 − xRxF2 + x, the content of rare-earth trifluorides in the
Na0.5 – xR0.5 + xF2 + 2x phases is substantially higher,
whereas M2+ ions are absent (M = Ca, Sr, Ba, Cd, Pb).
The defect structure (where some positions are not
fully occupied) of Na0.5 – xR0.5 + xF2 + 2x phases is still not
clearly understood.

The first X-ray diffraction study of Na0.39Y0.61F2.22
was undertaken in 1983 [1], whereas the crystals of the
M1 – xRxF2 + x type have been intensely studied since
1969. The second X-ray and neutron-diffraction studies
of this phase were made in 1997 [2] and showed that
additional fluorine atoms occupy the 48i and 32fc posi-
tions with the parameter w = 0.293 (the so-called
“relaxed” F atoms).

The study of a phase with one rare-earth element
(yttrium) cannot yield a complete picture of the defect
structure of Na0.5 – xR0.5 + xF2 + 2x solid solutions for the
whole series of rare-earth elements. Different thermal
behavior and different types of the atomic ordering
observed in nonstoichiometric phases with lowering of
the temperature [3] provide indirect evidence on differ-
ent structures of the phases containing rare-earth ele-
ments from the beginning and the end of the RE series.

To observe the evolution of the defect
Na0.5 − xR0.5 + xF2 + 2x structure with different rare-earth
elements, we studied the phases with R = Ho (I) and
1063-7745/00/4506- $20.00 © 20926
Yb (II). We expected that phase (I) would be analogous
to the yttrium-containing phase, because yttrium is
located between Ho and Er in the rare-earth system and
is located two elements apart from ytterbium.

Single crystals of compositions I
(Na0.395Ho0.605F2.210) and II (Na0.446Yb0.554F2.108) have
been grown by Stockbarger method at the Institute of
Crystallography of the Russian Academy of Sciences
under the conditions minimizing the oxygen content in
the grown crystals. The rare-earth content has been
refined using the compositional dependences of the
unit-cell parameters [4].

The diffraction data were collected on a Syntex dif-
fractometer at the source of the VVRTs reactor of the
Karpov Research Institute of Physical Chemistry (λ =
1.167, Cu-monochromator). Both crystals studied
showed no deviations from the fluorite symmetry
(sp. gr. Fm3m). The experimental data were collected
for the complete sphere of the reciprocal space.

For compound I: a = 5.520(1) Å; 740 reflections
with Ihkl > 3σ; Rav = 5.54%; 34 crystallographically inde-
pendent reflections; the specimen diameter 5.23 mm.

For compound II: a = 5.452(1) Å; 687 reflections
with Ihkl > 3σ; Rav = 5.73%; 28 crystallographically inde-
pendent reflections; the specimen diameter 5.05 mm.

The Fourier synthesis, the refinement by the full-
matrix least squares method with the use of the Gram–
Charlier expansion to account for the anharmonicity of
atomic thermal vibrations up to the 3rd order of Fc (in
compound I), and the introduction of the extinction
correction (Becker–Coppens type-1) have been made
with the use of the PROMETHEUS program [5].
000 MAIK “Nauka/Interperiodica”
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a/2

a√2/4

[001]
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Fig. 1. Maps of the difference nuclear density obtained by subtracting the isotropic defect model of the fluorite structure for
(a) Na0.395Ho0.605F2.210 and (b) Na0.446Yb0.554F2.108 solid solutions, section by x – y = 0 plane. Solid isolines represent the positive
nuclear density; dashed lines, the negative neutron density; dot and dash lines indicate the zeroth nuclear density. The isolines are
spaced by 0.02 × 10–12 cm/Å3. The coordinate grid is drawn in unit-cell fractions.
The refinement of structures I and II under the
assumption of the 100% occupancy of the cationic
position involved the refinement of position occupan-
cies, atomic positional, and thermal vibration parame-
ters by the least squares method.

The analysis of the (110) Fourier sections obtained
after the subtraction of the isotropic defect fluorite
model (Rw = 16.9%, R = 11.2% for I and Rw = 12.1%,
R = 7.5% for II) shows the residual nuclear density for
crystal I in two positions, 48i and 32f: with the param-
eter w = 0.293 (the relaxed fluorine atom). The peak
height is 0.10 × 10–12 cm/Å3 for fluorine in the 48i posi-
tion and 0.16 × 10–12 cm/Å3 for fluorine in the 32f posi-
tion (Fig. 1a).

For crystal II, the residual nuclear density is
observed in the following four positions: (1) 48i with
the maximum height 0.08 × 10–12; (2) 32f with the
parameter w = 0.322 (the relaxed fluorine atom) with
the maximum height 0.10 × 10–12 cm/Å3; (3) 32f with
the parameter v = 0.414 and the maximum height
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
0.04 × 10–12 cm/Å3; and (4) in 4b with the maximum
height 0.08 × 10–12 cm/Å3 (Fig. 1b).

The parameters in these compounds were refined for
several models (which had different thermal parameters
and additional positions for fluorine atoms). Table 1
gives the data for only the final model for compound I,
because it seems to be most reliable (34 independent
structure factors, 13 parameters to be refined). Table 2
lists the data for five structure models of compound II
in the isotropic approximation. As was indicated [6],
the nuclear density at the point (1/2, 1/2, 1/2) of the dif-
ference synthesis depends on the strategy of refinement
of all the atoms in the structure. For four models (1–4,
Table 2), we assumed that no atom was located at this
point. However, the difference Fourier maps for all
these models showed the nuclear density at (1/2, 1/2,
1/2). Table 2 shows that model 5 [R-factors, the quality
of difference syntheses, and the sum of position occu-
pancies by F atoms (partial occupancy of 48i, 32f with
w = 0.32, the so-called relaxed F atoms, 32f with w =
0.41, and 4b)] is more advantageous than models 1–4.
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Table 1.  The data for refined structures Na0.395Ho0.605F2.21 (I) and Na0.446Yb0.554F2.108 (II)

Atoms, position Parameters* I II

(Na, R); 4a (000) B × 102 1.367 (27) 1.904 (37)

F; 8c (1/4, 1/4, 1/4) g 1.001 (6) 1.498 (18)

B × 102 Biso = 1.776 (39) Beq = 3.204 (87)

B11 = B22 = B33 × 102 – 0.0270 (4)

C123 × 103 – 0.0288 (30)

F; 48i (1/2, u, u) g 0.626 (17) 0.238 (19)

u 0.125 (1) 0.135 (6)

B11 × 102 0.0498 (40) 0.0182 (57)

B22 = B33 × 102 0.0219 (19) 0.0081 (28)

B23 × 102 0.0181 (18) 0.0154 (33)

Beq × 102 3.804 (39) 1.36 (40)

F; 32f (w, w, w) g 0.583 (10) 0.192 (31)

w 0.293 (1) 0.322 (6)

Biso × 102 1.600 (77) 2.8 (6)

F; 32f (v, v, v) g – 0.150 (64)

w – 0.414 (15)

Biso × 102 – 5.120 (1.68)

F; 4b (1/2, 1/2, 1/2) g – 0.030 (12)

Biso – 1.99 (77)

Rw 2.1% 2.4%

R 1.6% 1.9%

* The values of atomic thermal parameters are measured in Å2; g is the total occupancy of the corresponding position.
Table 2.   Isotropic thermal parameters B (Å2), heights of the
residual maxima ρ (10–12 cm/Å2) on difference nuclear-den-
sity maps, and the reliability factor R (%) for five models of
structure II

Characteristics
Models

1 2 3 4 5

Rw 12.1 8.8 7.3 5.8 5.1

R 7.5 5.9 4.9 4.3 3.7

BFc 3.31 3.28 3.26 3.12 3.06

BFi 2.32 2.76 1.89 1.62

BFf (www) 1.20 0.90 0.70

BF'f(vvv) 1.55 1.44

BFb 1.04

ρFi 4

ρFf(www) 5 5 2 2

ρFf(vvv) 2 2 1

ρFb 4 2 3 3

The total occupancy
g of the positions
of fluorine atoms

1.50 1.91 1.99 2.11 2.108
C

The refinement of models 4 and 5 in the anharmonic
approximation of thermal vibrations of F atoms in the
4c positions (up to the 3rd order of magnitude) and
anisotropic approximation for F atoms in the position
48i improved the quality of the difference map and
reduced the R-factors. However, the difference synthe-
sis of the nuclear density for model 4 still showed the
residual density in the (1/2, 1/2, 1/2) position, with the
reliability factors being Rw = 2.7% and R = 2.4%. The
refinement of model 5 has significantly improved the
difference synthesis and reduced the R-factors down to
Rw = 2.4% and R = 1.9%. The quality of the difference
nuclear-density map, the reliability factors, and the sum
of the occupancies of fluorine atoms favor model 5
refined in the anharmonic anisotropic approximation
(Table 2), with the following four additional positions
of F atoms being simultaneously occupied: 48i, 32f
with w = 0.322, 32f with v = 0.414, and 4b. Table 1
summarizes the final data of the refinement for both
compounds.

It was established that the main anionic positions
are not fully occupied with fluorine atoms. Crystal I has
four vacancies per unit cell, i.e., a half of the main posi-
tions of fluorine atoms by 50%. Crystal II has two
vacancies per unit cell, i.e., the main fluorine position is
occupied by 25%. 
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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As was to be expected, the location of additional flu-
orine atoms in I is similar to that in Na0.5 – xY0.5 + xF2 + 2x.
Two interstitial positions, 48i and 32f with w = 0.293
(relaxed fluorine atoms), are occupied [1, 2]. In crystals
II, four positions are partially occupied—48i, 32f with
w = 0.322 (relaxed F), 32f with v = 0.414, and 4b (1/2,
1/2, 1/2) (the Goldshmit position) in the center of large
empty cubes.

Thus, for the first time the evolution of the defect
structure of nonstoichiometric fluorite phases of the
composition Na0.5 – xR0.5 + xF2 + 2x with rare-earth ele-
ments from holmium to ytterbium has been established.
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Abstract—The crystal structure of a new high-strontium representative of the eudialyte family has been
refined. The mineral is isostructural to kentbrooksite and differs from the latter mainly by isomorphously
replaced Mn (by Sr) in the M(3)-polyhedron “conjugated” with a polyhedral NbFe3 cluster. © 2000 MAIK
“Nauka/Interperiodica”.
The mineral barsanovite [1, 2] (an analogue of kent-
brooksite [3]) differs from the other representatives of
the eudialyte family by the different combination of the
elements which prevail in the key positions for isomor-
phic replacements; by a pronounced acentric arrange-
ment of the structural fragments; and, as a conse-
quence, by the stable piezoelectric effect in the crystals
[1, 2]. In this article, we report the structure determina-
tion of a barsanovite-like mineral somewhat loosely
called Fe,Sr-kentbrooksite. This mineral was discov-
ered by one of the authors in volatile alkaline- and rare-
element-enriched ultraagpaitic pegmatites at the
Alluaiv Mountain of the Lovozero alkaline massif (the
Kola Peninsula). This mineral occurs as unfaceted
greenish yellow grains up to 0.5–1 mm in diameter and,
similar to barsanovite, is one of the optically negative
uniaxial representatives of the eudialyte family. 

The composition of the Fe,Sr-kentbrooksite, which
was determined by electron-microprobe analysis, cor-
responds to the empirical formula (with respect to the
sum of the cations equal to 53; Z = 3)

Na13.34K0.23Ca4.86Sr1.53Fe2.01 
× Mn1.44REE0.29Zr3.11Ti0.19Hf0.04Nb0.67Si25.39O75.76Cl0.87.
The structural data for the mineral and the details of the
X-ray diffraction study are given in Table 1. 

Assuming that the crystal structure of this mineral is
similar to that of barsanovite, we used the atomic coor-
dinates reported in [2] as a starting model. The atomic
coordinates, the equivalent atomic thermal parameters,
and the occupancies of the positions for Fe,Sr-kent-
brooksite are given in Tables 2 and 3. The notation of
the atomic positions corresponds to [2] except for some
Na positions and a number of anions. Since the inter-
atomic distances between the framework atoms are typ-
ical of this mineral, Table 4 lists only the distances in
the polyhedra of the extraframework atoms. 
1063-7745/00/4506- $20.00 © 20930
The X-ray diffraction study demonstrated that the
new mineral is structurally similar to kentbrooksite.
Similar to the structures of other representatives of this
family, the structure of the mineral is based on the
framework of three- and nine-membered rings of SiO4-
tetrahedra and Zr- and Ca-octahedra. Because of the
deficiency of Ca atoms in the mineral, the octahedra

Table 1.  Structural data for the new mineral and details of
the X-ray diffraction study 

Values 

Unit-cell parameters, Å a = 14.245(2), c = 29.959(10)

Unit-cell volume, Å3 V = 5264.8

Sp. gr., Z R3m; 3

Radiation, λ, Å MoKα

Crystal dimensions, mm 0.35

Diffractometer CAD-4

Scanning mode ω/2θ
sinθ/λ, Å–1 <0.703

Ranges of the indices of mea-
sured reflections

–16 < h < 20, –20 < k < 20,
–26 < l < 42

Rint for equivalent reflections 0.024

Total number of reflections 4366 I > 3σ(I)

Number of independent
reflections

1439 |F | > 4σ(F)

Program AREN [4]

Absorption correction DIFABS [5]

Number of independent
positions

47

R factor upon anisotropic
 refinement 

0.033
000 MAIK “Nauka/Interperiodica”
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Table 2.  Coordinates and equivalent thermal parameters (Beq) of the framework atoms 

Atom x/a y/b z/c Beq, Å2 Atom x/a y/b z/c Beq, Å2

Zr 0.3280(1) 0.1640(1) 0.1667(1) 1.15(3) O(6) 0.5714(3) 0.6104(3) 0.2260(1) 1.2(2)

Ca 0.4052(1) 0.3314(1) 0.3331(1) 0.99(3) O(7) 0.2528(3) 0.2259(3) 0.2066(1) 1.3(2)

Si(1) 0.6092(1) 0.6044(1) 0.0970(1) 0.64(8) O(8) 0.4420(5) 0.2210(4) 0.2905(2) 1.8(3)

Si(2) 0.1400(1) 0.0700(1) 0.0800(1) 1.0(1) O(9) 0.1800(2) 0.360(3) 0.2201(2) 1.0(3)

Si(3) 0.2693(1) 0.3253(1) 0.2367(1) 0.59(8) O(10) 0.1840(6) 0.0920(4) 0.1307(2) 1.8(3)

Si(4) 0.2097(1) 0.4194(1) 0.0744(1) 0.8(1) O(11) 0.1787(2) 0.3574(4) 0.0282(2) 1.2(3)

Si(5) 0.5262(1) 0.2631(1) 0.2505(1) 0.8(1) O(12) 0.6051(2) 0.3952(2) 0.2532(2) 1.3(3)

Si(6) 0.4602(1) 0.5398(1) 0.2559(1) 0.7(1) O(13) 0.2330(6) 0.1165(4) 0.0433(2) 1.7(3)

O(1a)* 0.2076(5) 0.6038(4) 0.2496(2) 1.1(1) O(14) 0.4845(2) 0.5154(2) 0.3047(1) 1.2(3)

O(1b)* 0.212(3) 0.606(2) 0.269(1) 1.8(9) O(15) 0.0146(5) 0.5073(3) 0.1153(2) 1.2(3)

O(2) 0.4000(4) 0.2979(4) 0.1251(1) 1.7(2) O(16) 0.0612(2) 0.1224(3) 0.0732(2) 1.4(3)

O(3) 0.6246(3) 0.0348(3) 0.0448(1) 1.1(2) O(17) 0.2742(3) 0.5484(4) 0.0659(3) 3.9(3)

O(4) 0.0429(3) 0.2989(3) 0.2891(1) 1.2(2) O(18) 0.4718(6) 0.2359(4) 0.2020(2) 1.8(3)

O(5) 0.1065(4) 0.3877(5) 0.1069(1) 2.0(2)

* The occupancies of the O(1a) and O(1b) positions are 0.8 and 0.2, respectively. 

Table 3.  Coordinates, equivalent thermal parameters (Beq), multiplicities (Q), and occupancies of the positions (q) of the ext-
raframework atoms 

Atom x/a y/b z/c Beq, Å2 Q q

Fe 0.4980(2) 0.5020(2) 0.0008(2) 1.16(8) 9 0.29(1)

Si(7) 0.3333 0.6667 0.0871(1) 1.01(8) 3 1.00

M(1) 0.3333 0.6667 0.2951(1) 1.48(4) 3 1.00

M(2) 0.1820(1) 0.3640(1) 0.3304(1) 1.04(3) 9 0.71(2)

M(3) 0.4672(2) 0.2336(1) 0.0486(1) 1.30(2) 9 1.00

Na(1a) 0.198(1) 0.099(1) 0.2869(3) 3.6(2) 9 0.50(3)

Na(1b) 0.210(1) 0.105(1) 0.2854(3) 3.3(2) 9 0.50(2)

Na(2a) 0.1089(3) 0.2178(5) 0.1540(2) 2.1(3) 9 0.53(3)

Na(2b) 0.127(4) 0.254(5) 0.148(2) 7(1) 9 0.10(4)

Na(2c) 0.0788(7) 0.1576(9) 0.1721(5) 3.6(5) 9 0.37(3)

Na(3a) 0.5682(4) 0.1364(5) 0.1725(2) 2.7(3) 9 0.55(4)

Na(3b) 0.5557(4) 0.1114(5) 0.1806(3) 2.4(4) 9 0.45(3)

Na(4a) 0.497(2) 0.775(2) 0.1732(5) 2.6(5) 18 0.15(3)

Na(4b) 0.4742(6) 0.7371(4) 0.1876(2) 3.5(2) 9 0.70(6)

OH(1) 0.3333 0.6667 0.1403(4) 1.3(5) 3 0.92(4)

OH(2) 0.6024(3) 0.3976(3) –0.0032(2) 2.1(2) 9 1.00

H2O(1) 0.619(4) 0.381(4) 0.095(3) 9.5(9) 9 0.20(2)

H2O(2) 0.0 0.0 0.282(3) 10.9(6) 3 0.50(9)

Cl(1) 0.6667 0.3333 0.1018(2) 2.4(2) 3 0.60(4)

Cl(2) 0.0 0.0 0.2513(3) 2.2(2) 3 0.50(4)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Table 4.  Characteristics of the coordination polyhedra of the extraframework atoms 

Position Composition (Z = 1) Coordination 
number

M–O distance

range average 

Fe 2.62Fe2+ 4 2.066(6)–2.073(6) 2.070

Si(7) 3.0Si 4 1.591(5)–1.59(1) 1.59

M(1) 2.1Nb + 0.9Si* 6 1.900(6)–2.065(7) 1.983

M(2) 3.34Fe2+ + 2.02Mn + 0.58Ti + 0.31Zr + 0.13Hf 5 2.092(5)–2.151(1) 2.114

M(3) 5.40Sr + 2.88Na + 0.72K 11 2.528(5)–2.930(4) 2.683

Na(1a) 4.5Na 8 2.50(1)–2.86(1) 2.68

Na(1b) 4.5Na 8 2.44(1)–3.01(1) 2.69

Na(2a) 4.77Na 8 2.540(8)–2.817(6) 2.655

Na(2b) 0.9Na 8 2.41(8)–2.84(8) 2.64

Na(2c) 3.33Na 7 2.39(1)–3.06(1) 2.66

Na(3a) 4.95Na 9 2.53(1)–2.988(9) 2.68

Na(3b) 4.05Na 9 2.49(1)–3.01(7) 2.67

Na(4a) 2.7Na 6 2.27(1)–2.93(2) 2.61

Na(4b) 6.3Na 8 2.24(1)–3.000(6) 2.66

* The coordination number of Si is 4. 
forming the six-membered rings are isomorphically
occupied by Ca and other elements; thus, the composi-
tion of this position is described as
(Ca4.85Mn0.85REE0.30)Σ6. 
C

It is a common practice to single out the so-called
“key” microregions in the compounds of the eudialyte
structural type. Similar to barsanovite [1, 2], one of
these microregions is characterized by the statistical
b

a

Fragment of the Fe,Sr-analogue of kentbrooksite projected onto the (001) plane. The rings of Ca octahedra are hatched with solid
lines. The M(3) polyhedra are filled with dots. 
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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distribution of Fe2+ ions over two alternative positions.
In fact, these ions are located in a planar “square” at the
junction of the six-membered rings of Ca octahedra and
in the M(2) position based on the same “square” but are
completed with an additional OH group (a five-vertex
polyhedron). Two positions occupied by Fe atoms are
spaced by a distance of 0.441(2) Å. 

The second key microregion is, in fact, the central
region of the pair of the nine-membered silicon–oxy-
gen rings. A Si-tetrahedron is located in the center of
one of these rings. The M(1) octahedral position is
located in the center of the second nine-membered ring.
The M(1) position is occupied by Nb (70%) and Si
atoms. In the specimen studied, no splitting of this posi-
tion into two new positions (octahedral and tetrahedral)
typical of such structures was observed. An additional
OH group “closing” the Si-tetrahedron was not local-
ized either. Apparently, this is explained by low (com-
pared to Nb) occupancy of the position by “lighter” Si
atoms. Three five-vertex iron polyhedra are linked via a
Nb octahedron, thus forming a polyhedral NbFe3 clus-
ter characteristic of barsanovite. 

In the structure of the mineral, the M(3) position
(see figure) close to the cluster should also be consid-
ered as a key microregion. In most of the representa-
tives of the eudialyte family, this position is occupied
by Na atoms, whereas in kentbrooksite, this position is
occupied along with Na also by Mn (prevailing ele-
ment), an Mn, REE, and Sr. In the new mineral, this
position is occupied mainly by Sr, which distinguishes
the new mineral from kentbrooksite. 
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
The new mineral contains a small number of H2O
molecules and OH groups, whereas Cl atoms are
located on a threefold axis. 

The crystallochemical formula of the new mineral
based on the X-ray diffraction data agrees with the
results of the chemical analysis and can be written
according to the {framework}–{zeolite portion}
scheme (Z = 3) as follows: {(Ca4.85Mn0.85REE0.30)Σ6 ×
Zr3[Si3O9]2[Si9O24(OH,O)3]2}{Si1.0(Si0.3Nb0.7) ×
[Fe1.99Mn0.67Ti0.20Zr0.10Hf0.04]Σ3(Sr1.80Na0.96K0.24)Σ3 ×
Na12(OH)3.92Cl1.1 · 11H2O}. 
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Abstract—The crystal structures of two marialite samples (S-1 and S-2) with the meionite component (9.6 and
17.0%, respectively) and the compositions (Na3.35Ca0.38K0.24)Σ3.97(Si8.78Al3.22 )Σ1.01O24Cl0.92 and

(Na3.21Ca0.68K0.11)Σ3.90(Si8.56Al3.44 )Σ1.01O24Cl0.90, respectively, from the Kukurt deposit (the Pamirs,

Tadzhikistan) were refined using the X-ray powder diffraction data by the Rietveld method. The chemical com-
positions of the samples S-1 and S-2 correspond to the discontinuity in the existence region of the marialite–
meionite solid solution. The structures of S-1 and S-2 marialites were refined in the anisotropic/isotropic
approximation (the Pearson function) to the reliability factors Rp = 4.80 and 5.00, Rwp = 6.10 and 6.50, RB =
3.70 and 3.50, RF = 4.70 and 4.90; s = 1.39 and 1.28, respectively. The unit-cell parameters were determined as
a = 12.049(1) Å, c = 7.5670(8) Å, V = 1098.49(2) Å3 for S-1 and a = 12.037(1) Å, c = 7.5535(1) Å, V =
1097.18(1) Å3 for S-2, the sp. gr. I4/m, Z = 2. The analysis of the X-ray diffraction data allowed the refinement
of the trend in the behavior of the unit-cell parameters depending on the composition of the Si–Al–O framework
of scapolite. © 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION 

Scapolite is extensively studied as a widespread
rock-forming mineral. This study was undertaken as a
part of the systematic structure studies of the minerals
of the scapolite group performed at the Department of
Crystallography and Crystal Chemistry at the Faculty
of Geology of the Moscow State University [1–7]. The
results presented below are of interest, because the
samples of two marialites studied belong to the discon-
tinuity in the existence range of the series of the mari-
alite–meionite solid solutions suggested in our earlier
studies [4, 6]. The data on the refined structures of nine
scapolite samples containing 0.02–7.6 and 21.2–56.3%
of the meionite component are complemented with the
results of the structural studies of marialites with 9.6
and 17.0% of the meionite component. For minerals of
the scapolite group described by the general formula
M4T12O24A [where the major components are M (Na
and Ca), T (Si and Al), and A (Cl, CO3, and SO4)], the
meionite component is determined as Me = 100[Ca/(Na +
Ca + K)] (%). Scapolites form a series of marialite–
meionite solid solutions. The ideal formulas of the end
members of the solid-solution series are
Na4Al3Si9O24Cl(Ma) and Ca4Al6Si6O24CO3(Me). In
1998, the S-dominant scapolite, which received the
name of silvialite and having the ideal formula
Ca4Al6Si6O24(SO4), was recognized as the third mineral
type of the scapolite group [8]. However, many prob-
1063-7745/00/4506- $20.00 © 20934
lems of the crystal chemistry of scapolites have not
been solved as yet. 

One of the problems constantly discussed is the
number of fragments in the series of the marialite–
meionite solid solutions. According to [9, 10], the
series of the marialite–meionite solid solutions consists
of three fragments (A, B, and C)—Na4Al3Si9O24Cl
(marialite)–CaNa3Al4Si8O24Cl, CaNa3Al4Si8O24Cl–
NaCa3Al5Si7O24CO3 , and NaCa3Al5Si7O24CO3–
Ca4Al6O24CO3 (meionite)—and two discontinuity
regions at 20–25% of Me (between the A and B frag-
ments) and 60–67% of Me (between the B and C frag-
ments). In [11, 12], the total series of the marialite–
meionite solid solutions was divided into three isomor-
phous series with 9.0 > Si > 8.4, 8.4 > Si > 7.3, and
7.3 > Si > 6.0 and two regions of discontinuity corre-
sponding to changes in the unit-cell-parameters. Since
the numbers of silicon atoms per formula unit Si (apfu)
equal to 7.3 and 8.4 correspond to (Al4.7Si7.3O24) and
(Al3.6Si8.4O24), respectively, one can think that the stud-
ies [9, 10] and [11, 12] lead to the same conclusions.
However, these conclusions are not supported by the
sufficient number of X-ray of diffraction data. 

The Rietveld method is the optimal approach to
solving the problems of stereochemistry and crystal
chemistry of scapolites. The refinement of the scapolite
structures based on X-ray powder diffraction data
obtained over a wide composition range allows one not
000 MAIK “Nauka/Interperiodica”
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only to update the structural data and to measure the unit-
cell parameters with a high degree of accuracy (which is
very important for constructing parameter–composition
diagrams for solid solutions) but also to obtain system-
atic information for the whole series of samples. In this
article, we report the results of the crystal structure
refinement for two scapolite samples from the Kukurt
deposit (the Pamirs, Tadzhikistan), S-1 and S-2, with 9.6
and 17.0% of meionite and the compositions
(Na3.35Ca0.38K0.24)Σ3.97(Si8.78Al3.22 )Σ1.01O24Cl0.92 and

(Na3.21Ca0.68K0.11)Σ3.90(Si8.56Al3.44 )Σ1.01O24Cl0.90, res-

pectively, which correspond to the discontinuity in the
existence region of the marialite–meionite solid solu-
tions, which was assumed earlier. 

EXPERIMENTAL 

The scapolite samples, including the microprobe-
analysis data (which were used to obtain the above-
given chemical formulas for the minerals studied),
were mineralogically described in [9]. 

The X-ray diffraction data for S-1 and S-2 marialites
were collected on an automated ADP-2 diffractometer
(λCuKα radiation, Ni filter, the step in 2θ equal to
0.02°, the exposure time at a point 5 s). All the compu-
tations were performed using the WYRIET program
(version 3.3) [13]. No reflections with h + k + l ≠ 2n
exceeding the background, which would be inconsis-
tent with a body-centered lattice, were observed.
Hence, the structure was refined within the sp. gr. I4/m.
The starting atomic coordinates were those reported in
[1]. The peak profiles were approximated by the Pear-
son function with 6FWHM, where FWHM is the aver-
age peak width at a half-height. The asymmetry was
refined for 2θ < 40°. The ionic scattering curves were
used. The refinement was made by adding parameters
and the continuous graphical modeling of the back-
ground. Using the chemical-analysis data [9], we
placed Na and Ca atoms into the M positions at the con-
stant composition of the K position (A are Cl atoms).
The occupancies of the T positions were refined using
the f curve for silicon. 

RESULTS AND DISCUSSION 

The details of X-ray data collection and structure
refinement for two marialite samples are given in Table 1.
The atomic coordinates and thermal parameters are
listed in Table 2. 

Stoichiometry. Apparently, the deficiency of
negative charges in the chemical formulas of the scapo-
lite samples should be compensated with the introduc-
tion into the formulas the calculated amounts of
(CO3)2– anions. Then, S-1 and S-2 marialites can be
described by the crystallochemical formulas
(Na3.35Ca0.38K0.24)Σ3.97(Si8.78Al3.22)Σ12.0O24[Cl0.96(SO4)0.02
(CO3)0.07]Σ2.05 and (Na3.21Ca0.68K0.11)Σ4.00 ×

F0.01
3+

F0.01
3+
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(Si8.56Al3.44)Σ12.0O24[Cl0.93(SO4)0.02(CO3)0.14]Σ2.09, respec-
tively, Z = 2, sp. gr. I4/m, ρcalc = 2.54 and 2.49 g/cm3,
respectively. The refined occupancies of the M posi-
tions agree well with the chemical-analysis data. In our
previous studies [3, 6], we reported the data for scapo-
lites with the compositions ranging within Me0.2–Me7.6

and Me21.2–Me56.3. It was assumed that the region of
existence of the series of solid solutions has the discon-
tinuity in the range Me7.6–Me21.2. The compositions of
the samples S-1 (9.6% of Me, Si/Al = 2.73, Si(apfu) =
8.78) and S-2 (17.0% of Me, Si/Al = 2.49, Si(apfu) =
8.56) correspond to the discontinuity range assumed
earlier. The stoichiometry of the series of marialite–
meionite solid solutions is determined depending on
type of isomorphous replacement [11]—the change in
the Si/Al ratio in the tetrahedral T positions in the
framework; the 2M+  M 2+ replacement in the M
positions in the framework cavities (usually, Na+ and
K+ are replaced by Ca2+), and the 2A–  A2– anionic
replacements in the A positions in the framework cavi-

ties (mainly, Cl– ions are replaced by  and S-con-
taining anions). Evidently, there is no simple quantita-
tive correlation between all the three types of isomor-
phous replacements. Thus, scapolites with the same
Si/Al ratio can have different amount of the meionite
component (Me) irrespective of the composition of the
A position. For example, S-1 marialite differs from
PAM-2 (7.5% of Me, Si/Al = 2.73, Si(apfu) = 8.78) [3]

     

CO3
2–
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-2 marialites containing 9.6 and 17.0%
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Characteristic
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S
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a

 

, Å 12.049(1) 12.037(1)
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, Å 7.5670(8) 7.5720(1)

 

V

 

0

 

, Å

 

3

 

1098.49(2) 1097.18(1)

Sp. gr.

 

I4/m I4/m

 

Number of Bragg reflections 1257 1257

Number of parameters in
the refinement 

72 72

 

R

 

p

 

0.048 0.050

Rwp 0.061 0.065

Rexp 0.044 0.051

RB 0.037 0.035

RF 0.047 0.049

s* 1.39 1.28

DWD** 1.14 1.41

1.910 1.666

* s = Rwp/Rexp where Rexp is the expected value of Rwp. 
** DWD is the Durbin–Watson d statistics [14]. 

*** σx is the factor used in the calculations of standard deviations [15]. 

σx
***
0
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Table 2.  Atomic coordinates and thermal parameters in the structures of S-1 and S-2 marialites containing 9.6 and 17.0% of
Me, respectively 

S-1 S-2

x y z Biso (Å2) x y z Biso (Å2)

M

0.3744(7) 0.2964(7) 0.5 3.4(2) 0.3727(5) 0.2973(8) 0.5 5.0(2)

T(1)

0.3381(5) 0.4109(5) 0 1.3(1) 0.3375(5) 0.4130(4) 0 1.4(1)

T(2)

0.6615(3) 0.9145(3) 0.7938(3) 1.70(2) 0.6618(3) 0.9161(3) 0.7937(4) 1.43(7)

O(1)

0.4524(8) 0.353(1) 0 1.3(3) 0.4566(8) 0.3527(8) 0 2.8(3)

O(2)

0.695(1) 0.8790(8) 0 1.9(3) 0.6911(9) 0.8846(8) 0 2.3(2)

O(3)

0.3507(7) 0.9480(7) 0.785(1) 2.9(3) 0.3479(5) 0.9480(7) 0.781(1) 3.0(2)

O(4)

0.2719(7) 0.3731(5) 0.822(1) 1.8(2) 0.2706(7) 0.3748(4) 0.8278(9) 3.1(2)

Cl

0.5 0.5 0.5 5.5(4) 0.5 0.5 0.5 6.0(3)
by the amount of the meionite component but has the
same amounts of silicon and aluminum. 

Unit-cell parameters. The dependences of the unit-
cell parameters a, c, and V on the number of Si atoms
per formula unit for two scapolite samples with due
regard of the data from [3, 6] are graphically presented
in Figs. 1a–1c. The characteristic dependence of the
parameter a on the composition is shown in Fig. 1a.
Our results and the structural data [3, 5] show that there
is no obvious dependence of the parameter a on
Si(apfu) in the composition range 9 > Si > 8.34. In the
range 8.17 > Si > 7.47, the parameter a linearly
increases with the Si(apfu) content. The dependence of
the parameter c on the composition is shown in Fig. 1b.
In the composition range 9 > Si > 8.34, the parameter c
increases from 7.5427 to 7.5809 Å. In the range 8.17 >
Si > 7.47, the parameter c gradually decreases. An anal-
ogous dependence of the parameter c on the composi-
tion was described in [9] on the basis of the known
X-ray diffraction data and the unit-cell parameters
measured for scapolites from the Pamirs. The unit-cell
volume V as a function the Si-content is shown in
Fig. 1c. In the composition range 9 > Si > 8.34, no cor-
relation between the silicon content and the unit-cell
volume is observed, whereas in the range 8.17 > Si >
7.47, the unit-cell volume gradually increases. 

Thus, there is no direct correlation between the
change in the parameter a (V0) and the Si-content in the
range 9 > Si > 8.34 corresponding to sodium-enriched
marialites. Our data confirm the conclusions [16] on the
specific behavior of Na-enriched scapolites in the com-
C

position range 9 > Si > 8.34. Thus, irrespectively of the
Ca2+ and Al3+ contents, no regular changes in the
parameter a (V0) were observed. 

The T, M, and A positions in the crystal structure
of scapolite. The Si–Al framework of scapolites is
composed of two types of four-membered rings of SiO4

and AlO4 tetrahedra. The rings of the first type consist
only of T(1) tetrahedra with the vertices aligned in the
same direction. The rings of the second type consist of
T(2) tetrahedra. The rings of both types are linked and
form a framework such that five-membered rings are
formed along the c-axis of the unit cell. The Na+ and
Ca2+ cations are located in the channels of this frame-
work (the M position). In the samples studied, the aver-
age 〈T–O〉  distances indicate that the T(1) position is
completely occupied by Si atoms (〈T(1)–O〉 = 1.598–
1.615 Å), whereas the T(2) position is statistically
occupied with Si and Al atoms (〈  T(2)–O〉  = 1.656–
1.660 Å). A T(1) tetrahedron, in which the O–T(1)–O
angles range within 108.1°–111.4°, is more regular
than the T(2) tetrahedron, in which the O–T(2)–O
angles range over a wider range (from 102.9° to
114.4°). It is commonly agreed that the T–O distances
in the framework tetrahedra increase due to a higher Al
content and, to a lesser degree, a higher content of more
electropositive Ca atoms and not Na atoms. However,
our data did not confirm this assumption, because no
such correlations were observed in the composition
range 9 > Si > 8.34. 
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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The refinement of the occupancy of the M position
by the Ca2+, Na+, and K+ ions demonstrated that this
position is occupied only partly. Although the chemical
analysis indicated that this position was completely
occupied, the refinement performed in our study
revealed the presence of some vacancies in the S-1 and
S-2 structures (7 and 10%, respectively). In the S-1 and
S-2 samples, the 〈M–O〉  distances are equal (within the
experimental error, 2.77 and 2.79 Å, respectively),
although the content of “smaller” Ca atoms is higher in
the S-2 sample. At coordination number 8, the effective

9
Si(apfu)

8 7

1120

1100

1080

V,Å3

7.60

7.56

7.52

c,Å

12.2

12.1

12.0

a,Å

Fig. 1. Unit-cell parameters of scapolite as functions of Si
content (the number of Si atoms per formula unit, apfu):
(a) a, (b) c, and (c) V; r correspond to the data obtained in
the present study and e indicates the data of our earlier stud-
ies [3, 6]. 

(a)

(b)

(c)
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ionic radii of Ca2+ and Na+ are 1.12 and 1.16 Å, respec-
tively [17]. The potassium content (rK+ = 1.31 Å) pro-
duces no effect on the “size” of the M position. The
results of the X-ray diffraction study of scapolite allows
one to state that the M position is much less sensitive to
the variations in the composition (namely, to the varia-
tion in the cation–ligand distances) than the T positions
in the framework. In the crystal structures of our sam-
ples, the A position was occupied by Cl– ions. This
position had the maximum isotropic thermal parame-
ters. 

Bond angles in the framework. In the Si–Al
framework of scapolites, the T–O–T angles along the
c-axis of the unit cell are close to 139°. This value is
energetically more favorable for an unstrained Si–O–Si
fragment [18]. The 〈T(2)–O(2)–T(2)〉 angles vary from
138.8° to 142.8°, and the 〈T(1)–O(4)–T(2)〉 angles vary
from 137.7° to 138.9°. The T(2)–O–T(2)' bond is virtu-
ally aligned along the c axis, whereas the T(1)–O–T(2)
bond is inclined to it. Apparently the stability of the
scapolite framework is higher at the maximum number
of the Si–O–Si fragments with angles close to 139°.
The T–O–T fragments along the a (b) axis are strained
(the bond angles are close to 160°). Here, two types of
angles can be distinguished, namely, the T(1)–O(1)–
T(1)' angles between T(1) tetrahedra and the T(1)–
O(4)–T(2) angles between tetrahedra of different types.
All three atoms forming the T(1)–O(1)–T(1)' angle are
located exactly in the (001) plane, whereas the plane of
the T(1)–O(4)–T(2) angle is inclined to the (001) plane,
but the inclination angle is substantially smaller than
the angle between the T(1)–O–T(2) plane and the
c-axis. For the scapolite sample under study, the 〈T(1)–
O(1)–T(1)'〉  and 〈T(1)–O(4)–T(2)〉  angles range from
159.4° to 159.8° and from 149.0° to 148.4°, respec-
tively. 

CONCLUSIONS 

The structures of two marialite samples were refined
by the Rietveld method. Analyzing the X-ray diffrac-
tion data for the minerals of the scapolite group, one
can draw the conclusion that the marialite–meionite
series are continuous series of solid solutions existing
in the range of Si content 9 > Si > 8.34. The samples
have the space group I4/m, with Si(Al) atoms being sta-
tistically distributed over the T positions of the frame-
work. 

For the first time, an increase in the parameter c with
a decrease of the silicon content in the marialite
structure was observed in the range of the Si content
9 > Si > 8.34. 

The topological analysis of the T–O–T bond angles
in the framework of scapolite demonstrated that differ-
ent “response” of the parameters a and c on the compo-
sition variation is associated with the degree of strain of
the Si–O–Si bonds along the [100], [010], and [001]
directions. 
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Abstract—The crystal structure of the nickel(II) complex NiL2 , in which the ligand is the 2-(2'-N-phenylami-
nonaphthylazo)-1-octylbenzimidazole derivative, is determined by X-ray diffraction analysis. The crystals are
triclinic, a = 10.938(5) Å, b = 12.628(7) Å, c = 20.180(9) Å, α = 81.68(5)°, β = 80.70(4)°, γ = 82.03(4)°, Z =

2, and space group P  [the heavy-atom method, full-matrix anisotropic–isotropic least-squares refinement,
R1 = 0.0713 for 1910 reflections with F ≥ 4σ(F)]. The structural units are octahedral molecular complexes with
five-membered chelate metallocycles. The vertices of the coordination octahedron of the Ni atom are occupied
by the N atoms of two planar ligands. The Ni–N bond lengths are 2.05–2.11(5) Å. Some molecular fragments
are disordered. © 2000 MAIK “Nauka/Interperiodica”.

1

INTRODUCTION

Determination of the crystal structure of the
nickel(II) complex NiL2 (I) with 2-(2'-N-phenylami-
nonaphthylazo)-1-octylbenzimidazole (HL) is a part
of   our investigation into the problem of the chelate
isomerism (formation of five- or six-membered
chelate      rings) in metallochelate complexes of
o-amino(hydroxy, mercapto)azo compounds (see [1, 2]
and references therein). 

Schemes 1 and 2 represent the possible structures of
the complexes considered in [2]:

Here, X = O, S, N, or Ts (Ts = SO2C6H4-Me-p); M = Ni,
Cu, or Pd; and R is an aromatic heterocyclic substituent. 
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Metallochelate complexes with the ligands in which
hetaryl substituents contain the donor N atom capable
of coordinating the metal atom are of particular
interest. 

Such compounds were assigned the structures with
four- and six-membered metallocycles (involving the
hetaryl N atom) [3–6]. However, the formation of two
five-membered metallocycles (with the hetaryl N atom
not involved in metal coordination) seemed more favor-
able [4, 7]. This structure was found by X-ray diffrac-
tion analysis in the palladium(II) hetarylamine com-
plex [1] (II). The formation of five-membered metallo-
cycles appeared to be possible in the case when both N
atoms of the azo group were involved in the metal coor-
dination; an example of this coordination mode is pro-
vided by the binuclear tetrahedral copper(I) complex
with an azoheteroaromatic radical as a ligand [2, 8]. 

In this paper, we report the results of the X-ray
structure analysis of complex I with a highly branched
ligand HL (scheme 3). 

EXPERIMENTAL 

The synthesis of crystals I was described in [2]. 

Crystals I are dark blue and have a prismatic habit.
The unit cell is triclinic, a = 10.938(5) Å, b = 12.628(7) Å,
c = 20.180(9) Å, α = 81.68(5)°, β = 80.70(4)°, γ =
82.03(4)°, V = 2702.8 Å3 , M = 2015.9, F(000) = 1068,
000 MAIK “Nauka/Interperiodica”
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Coordinates and thermal parameters Ueq and Uiso of non-hydrogen atoms in compound I

Atom x y z Ueq/Uiso, Å2 Atom x y z Ueq/Uiso, Å2

Ni 0.1617(2) 0.4572(2) 0.2535(1) 0.0486(7) N(1b) 0.067(1) 0.5593(9) 0.1841(5) 0.057(3)

N(1a) 0.342(1) 0.4716(9) 0.1992(6) 0.063(3) N(2b) 0.0862(9) 0.348(1) 0.2109(5) 0.052(3)

N(2a) 0.227(1) 0.5560(8) 0.3093(6) 0.053(3) N(3b) 0.226(1) 0.3104(9) 0.3029(5) 0.050(3)

N(3a) 0.011(1) 0.4895(9) 0.3283(6) 0.054(3) N(4b) 0.113(1) 0.246(1) 0.2298(5) 0.059(3)

N(4a) 0.155(1) 0.5903(8) 0.3607(6) 0.060(3) N(5b) 0.229(1) 0.131(1) 0.3118(6) 0.065(4)

N(5a) 0.051(1) 0.5788(9) 0.4181(7) 0.066(4) C(1b) 0.008(1) 0.508(1) 0.1494(7) 0.055(4)

C(1a) 0.404(2) 0.534(1) 0.2250(7) 0.050(4) C(2b) 0.020(1) 0.391(1) 0.1613(7) 0.056(4)

C(3a) 0.344(2) 0.582(1) 0.2850(8) 0.055(4) C(3b) –0.052(1) 0.3328(9) 0.1253(6) 0.077(5)

C(3a) 0.410(1) 0.6498(8) 0.3192(6) 0.062(4) C(4b) –0.043(1) 0.2209(9) 0.1352(6) 0.11(1)

C(4a) 0.3599(9) 0.6978(9) 0.3770(6) 0.071(5) C(5b) –0.104(2) 0.1672(7) 0.0977(8) 0.17(1)

C(5a) 0.431(1) 0.7591(9) 0.4042(5) 0.086(6) C(6b) –0.175(2) 0.225(1) 0.0503(9) 0.24(2)

C(6a) 0.552(1) 0.7725(9) 0.3736(7) 0.083(5) C(7b) –0.184(2) 0.337(1) 0.0403(8) 0.20(2)

C(7a) 0.6021(9) 0.725(1) 0.3158(6) 0.086(6) C(8b) –0.122(1) 0.3909(7) 0.0778(7) 0.11(1)

C(8a) 0.531(1) 0.6632(9) 0.2886(5) 0.074(5) C(9b) –0.130(2) 0.506(2) 0.067(1) 0.104(7)

C(9a) 0.594(1) 0.614(1) 0.2296(9) 0.073(5) C(10b) –0.074(2) 0.562(1) 0.1011(8) 0.075(5)

C(10a) 0.532(2) 0.552(1) 0.1986(7) 0.065(4) C(11b) 0.060(1) 0.6686(7) 0.1785(6) 0.069(5)

C(11a) 0.381(2) 0.434(2) 0.134(1) 0.07(1) C(12b) –0.038(1) 0.720(1) 0.2192(7) 0.121(8)

C(12a) 0.402(2) 0.503(1) 0.075(1) 0.07(1) C(13b) –0.048(2) 0.831(1) 0.2188(9) 0.15(1)

C(13a) 0.436(2) 0.462(2) 0.013(1) 0.09(1) C(14b) 0.039(2) 0.8907(7) 0.178(1) 0.15(1)

C(14a) 0.449(2) 0.352(2) 0.0114(9) 0.09(1) C(15b) 0.138(2) 0.839(1) 0.137(1) 0.18(1)

C(15a) 0.428(3) 0.282(1) 0.071(1) 0.12(2) C(16b) 0.148(1) 0.728(1) 0.1374(7) 0.136(9)

C(16a) 0.394(3) 0.323(2) 0.1326(9) 0.11(1) C(17b) 0.188(1) 0.227(1) 0.2796(7) 0.063(4)

C(11c) 0.392(2) 0.400(2) 0.156(1) 0.06(1) C(18b) 0.2959(7) 0.2637(7) 0.3510(4) 0.050(4)

C(12c) 0.339(2) 0.397(2) 0.098(1) 0.06(1) C(19b) 0.3589(9) 0.3089(7) 0.3924(5) 0.068(5)

C(13c) 0.391(2) 0.323(2) 0.054(1) 0.08(1) C(20b) 0.4233(9) 0.243(1) 0.4399(4) 0.084(5)

C(14c) 0.496(2) 0.252(2) 0.067(1) 0.11(1) C(21b) 0.425(1) 0.1318(9) 0.4460(5) 0.098(6)

C(15c) 0.549(2) 0.255(2) 0.125(1) 0.12(1) C(22b) 0.362(1) 0.0865(6) 0.4046(5) 0.092(6)

C(16c) 0.497(2) 0.329(2) 0.169(1) 0.07(1) C(23b) 0.2973(7) 0.1525(8) 0.3571(4) 0.059(4)

C(17a) 0.043(2) 0.552(1) 0.3674(9) 0.059(4) C(24b) 0.201(2) 0.028(1) 0.296(1) 0.090(6)

C(18a) –0.1099(8) 0.4740(7) 0.3537(5) 0.052(4) C(25b) 0.310(3) –0.034(2) 0.259(2) 0.15(1)

C(19a) –0.191(1) 0.4147(7) 0.3323(5) 0.067(5) C(26b) 0.361(4) 0.013(3) 0.201(2) 0.20(2)

C(20a) –0.311(1) 0.4100(8) 0.3672(6) 0.083(5) C(27b) 0.478(6) –0.070(4) 0.161(2) 0.24(2)

C(21a) –0.3498(8) 0.4645(9) 0.4235(6) 0.090(5) C(28b) 0.590(6) –0.061(4) 0.133(4) 0.33(3)

C(22a) –0.269(1) 0.5238(8) 0.4448(5) 0.081(5) C(29b) 0.671(7) –0.126(6) 0.095(4) 0.24(4)

C(23a) –0.1488(9) 0.5285(6) 0.4099(5) 0.064(4) C(30b) 0.735(7) –0.082(4) 0.036(4) 0.29(3)

C(24a) –0.038(2) 0.640(1) 0.4738(9) 0.081(5) C(31b) 0.828(4) –0.138(4) 0.003(3) 0.27(2)

C(25a) –0.064(2) 0.761(1) 0.452(1) 0.097(6)

C(26a) –0.048(2) 0.819(2) 0.513(1) 0.105(7)

C(27a) 0.087(2) 0.824(2) 0.520(1) 0.093(6)

C(28a) 0.096(2) 0.878(2) 0.584(1) 0.112(7)

C(29a) 0.222(3) 0.894(2) 0.595(2) 0.16(1)

C(30a) 0.226(3) 0.948(3) 0.657(2) 0.22(2)

C(31a) 0.283(5) 0.906(4) 0.703(2) 0.28(2)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 1. Structure of complex I. The disordered fragment of ligand  A is shown by dashed lines. 

Fig. 2. Projection of complex I onto the plane of the main part of both independent ligands. The internal symmetry axis of the com-
plex (C2) lies in the plane of the figure. Labels A and B denote the corresponding ligands. 
µMo = 0.41 mm–1, ρcalcd = 1.239 g/cm3, Z = 2, and space

group P . 

The experimental data were obtained on a Syntex
P21 diffractometer (λMoKα, graphite monochromator,
θ/2θ scan mode, 2θmax = 48°). 

The structure was determined by the heavy-atom
method using the SHELXL93 program [9]. A part of

1

CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
the hydrogen atoms was located from the difference F
maps. The full-matrix least-squares anisotropic (isotro-
pic for H and disordered C atoms) refinement resulted
in wR2 = 0.2301 and GOOF = 0.73 for 3874 averaged
reflections and the final value R1 = 0.0713 for 1910
observed reflections [F ≥ 4σF]. 

In the course of the refinement, the cyclic fragments
of the structure were restrained to be planar and the
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N(1a) C(11a)

C(12a)
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C(12c)
C(13c)
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C(15c)

C(16c)

C(11c)
N(1a)
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Fig. 3. Statistical disordering of the phenyl rings of ligand  A in the region of interlayer contacts. The layers are parallel to the plane
of the figure. 
C−C bonds of the phenyl rings, other than those
involved in the metallocycles, were restrained to be
equal in length (1.395 Å). 

In the structure solution, we found that one of the
phenyl rings is disordered over two positions [C(11a)–
C(16a) and C(11c)–C(16c)]. They were taken into
account at the last stages of the refinement. 

The coordinates of the non-hydrogen atoms in the
structure are listed in the table. 

Analysis of the anisotropic thermal parameters
revealed that the positions of some atoms tend to split.
This is especially true for the atoms of the six-mem-
bered C(3b)–C(8b) fragment of the more “rigid” ligand B.
To a lesser degree, this trend is exhibited by the atoms
of the hydrocarbon “tails” and, to the smallest degree,
by an analogue of the disordered phenyl ring; that is,
the C(11b)–C(16b) ring in which the position of the
C(14b) atom is only slightly split. 

RESULTS AND DISCUSSION 

Based on the data of magnetochemical measure-
ments (µeff = 3.68 µB at 297 K) and UV spectra (absorp-
tion in the 8000–10200 range and at 12400 cm–1), com-
plex I was assigned a tetrahedral structure with six-
membered metallocycles [5]. 

According to the data of our X-ray diffraction study,
crystal structure I is formed by octahedral molecular
complexes with five-membered chelate metallocycles.
C

These complexes are shown in Fig. 1. All vertices of the
coordination octahedron of the Ni atom are occupied
by the nitrogen atoms of two chemically equivalent
ligands, namely, 2-(2'-N-phenylaminonaphthylazo)-1-
octylbenzimidazole anions. The Ni–N bond lengths are
2.05–2.08(1) Å; the only exception is provided by the
Ni–N(1a) bond, which is slightly elongated [2.11(1) Å].
This elongation is probably due to the statistical disor-
dering of the C(11a)–C(16a) phenyl ring attached to
N(1a). The angular distortions of the coordination
polyhedron are more significant: the N(1a)NiN(3a) and
N(1b)NiN(3b) angles between the bonds to the oppo-
site vertices are 155.6(5)° in both cases. The deviations
of the above atoms from their mean plane, which is
arbitrarily considered an equatorial plane of the octahe-
dron, indicate its tetrahedral distortion [the dihedral
angle between planes N(1a)NiN(1b) and
N(3a)NiN(3b) is 33°]. The angle between the bonds to
the axial vertices N(2a) and N(2b) is close to the linear
angle and equal to 171.9(4)°. 

In other words, complex I is formed by two planar
(within 3σ) tridentate ligands (A and B), which tend to
be mutually perpendicular (the dihedral angle is 88°)
and are bonded to the Ni atom through three active
coordination nitrogen centers each. This structure cor-
responds to the meridional isomer of the octahedron
with the twofold rotation axis. Thus, the internal sym-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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metry of the coordination center of the central Ni atom
is close to C2 (Fig. 2). 

Although the ligands are chemically equivalent,
they differ in crystal-chemical behavior. Figure 2 shows
that two halves of molecular complex I are geometri-
cally different. The largest difference is observed in the
orientation of the phenyl substituents. In one of the
ligands (B), the phenyl ring is perpendicular to the main
plane of the molecule (87°). In the other ligand (A), the
corresponding ring is disordered over two positions
that deviate from the main plane of the ligand almost
symmetrically in opposite directions (66° and 58°); the
dihedral angle between these two positions is 57°
(Fig. 3). In complex II, which contains a similar ligand,
the angle between the plane of the phenyl substituent
and the main plane of the ligand is 65°.

The orientations of the octyl chains provide one
more geometric difference between the ligands in I.
The chain labelled b is stretched and aligned perpendic-
ular to the planar fragment to which it is attached
(Figs. 1, 2), whereas its analogue in the other half of the
molecule is bent. In both ligands, the atoms close to the
terminal atoms of the chain, specifically the C(30a) and
C(31a) atoms, can be disordered over closely spaced
positions. 

The position of the C(3b)–C(8b) phenyl ring of
ligand B is split. The degree of splitting increases with
an increase in the distance of the atom from the center
of the complex and reaches the maximum value for the
most distant atom C(6b) [C(6b)···C(6b') 0.7 Å]. The
position of the C(3b) atom only tends to split. A similar
splitting, even though less pronounced, is observed for
the C(11b)–C(16b') ring. This splitting is resolved only
for the most distant atom C(14b), the two positions of
which are spaced at 0.15 Å. 

Let us consider the reasons for the statistical disor-
dering of some components of the structure. Note that
all disturbances of the equivalence and symmetry (dis-
ordering of the phenyl rings of ligand A, six-membered
fragments of ligand B and, to some extent, hydrocarbon
chains) are observed along the directions parallel to the
x-axis, which is the shortest crystal axis. All the regions
of disordering are concentrated at the boundaries of the
layers, which are distinguished in the structure and
aligned parallel to the coordinate plane (001) (Fig. 4).
Each layer has a rather dense structure, and the layers
are the regions of a relatively stable structure. The pla-
nar parts of the complexes form virtually the closest
packing within the layer. Ligands A that are related by
the inversion centers and translations along the x- and
y-axes form a dense system of structural fragments par-
allel to one another. A similar system is formed by the
B ligands in the perpendicular direction. Both systems
mutually strengthen each other. The hydrocarbon
“tails” and the phenyl rings of ligand B fill small cavi-
ties in the packing of the main parts of the complexes. 

We can assume that the (001) plane is the growth
surface in the course of the crystal formation. At the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      200
free surface of a separate layer, the phenyl rings of
ligand A assume random orientations. Possibly, their
initial orientation is the same as in ligand B, that is, per-
pendicular to the main part of the molecule. The pack-
ing of each next layer should result in a “conflict” situ-
ation (Fig. 3), which is avoided by the rotation of the
phenyl rings of the “conflicting” ligands. The compro-
mise orientation is reached spontaneously. It has no
effect on similar neighboring regions; therefore, struc-
ture I is statistically disordered. It is important that, in
the process of packing the layers, the phenyl ring
achieves one of the two possible equilibrium positions
(ring A or C, Fig. 3). Note that the A position is identical
to that observed in II. One of the four combinations of
ring contacts cannot occur, since it corresponds to the
C(13a)···C(13a') distance equal to 1.84 Å. This means
that the C orientation can occur twice as often as A.
However, the least-squares refinement resulted in iden-
tical site-occupation factors 0.48 ± 0.02 for the atoms
of both variants. Moreover, the isotropic thermal
parameters of the corresponding atoms in two ligands
were found to be almost equal. It follows that the actual
mutual arrangement of the rings is the same in two vari-
ants: the rings are rotated by a considerable angle (57°).

x
z

y

0

Fig. 4. Structure of a layered fragment in I. The disordered
phenyl rings are shown by dotted lines. The layers are per-
pendicular to the plane of the figure and to the z-axis. 
0
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The combination of parallel rings, which is most con-
venient for steric reasons, is not formed at all. 
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Abstract—The crystal structures of N-(salicylidene)-tris(hydroxymethyl)methylamine (I) and N-(5-chlorosal-
icylidene)-tris(hydroxymethyl)methylamine (II) have been determined. Crystals I are monoclinic, a =
10.518(2) Å, b = 8.691(2) Å, c = 12.513(2) Å, β = 101.54(2)°, space group P21, Z = 4, and R = 0.046. Crystals II
are triclinic, a = 7.196(1) Å, b = 10.248(2) Å, c = 16.835(3) Å, α = 100.57(3)°, β = 90.42(3)°, γ = 94.68(3)°,

space group P , Z = 4, and R = 0.072. The asymmetric cells in both crystals contain two independent mole-
cules. In structure I, the molecules occur in two tautomeric forms: benzenoid and quinoid. In structure II, both
molecules are in the quinoid form. © 2000 MAIK “Nauka/Interperiodica”.

1

INTRODUCTION 

It is known that salicylaldimines in solutions can
occur in two tautomeric forms [1–3]: 

          Benzenoid                       Quinoid 
For the most part, the crystallization of these com-

pounds results in the benzenoid form of aldimines.
However, the equilibrium can be shifted toward the for-
mation of the quinoid form with a change in the nature
of both the solvent and substituents in the benzene ring
and at the nitrogen atom. 

In this respect, it was of interest to determine the
structure of N-(salicylidene)-tris(hydroxymethyl)meth-
ylamine (I) and N-(5-chlorosalicylidene)-
tris(hydroxymethyl)methylamine (II) prepared from a
methanol–dimethylformamide (3 : 1) solution and to
elucidate how the nature of the substituent in the ben-
zene ring of azomethine affects the formation of its par-
ticular form. 

EXPERIMENTAL 

Salicylaldimine I was prepared according to the fol-
lowing procedure. A solution of salicylaldehyde
(10 mmol) in dimethylformamide (10 ml) was added to
a solution of tris(hydroxymethyl)aminomethane

C

OH

N R

H

C

O

N R

H H
1063-7745/00/4506- $20.00 © 20945
(10 mmol) in methanol (30 ml) with stirring and heat-
ing in a water bath (50°C). A slow evaporation of the
resulting dark-orange solution for 2 days led to the pre-
cipitation of a yellowish-orange finely crystalline com-
pound (the yield was 63%). The compound was filtered
off with a glass filter, washed in a small amount of
methanol, and dried in air. The composition of the com-
pound obtained was determined by elemental analysis. 

For C11H15NO4 anal. calcd. (%): C, 58.67; H, 6.67;
N, 6.22. 

Found (%): C, 58.51; H, 6.60; N, 6.01. 
Compound II was synthesized using a similar proce-
dure by the interaction of a methanol solution of
tris(hydroxymethyl)aminomethane with a dimethylfor-
mamide solution of 5-chlorosalicylaldehyde (the molar
ratio of reactants was 1 : 1). The yield was 65% of the
theoretically calculated value. 

For C11H14NO4Cl anal. calcd. (%): C, 50.87; H,
5.39; Cl, 13.68; N, 5.39. 

Found (%): C, 50.80; H, 5.21; Cl, 13.56; N, 5.27. 
Azomethines I and II were readily soluble in dimethyl-
formamide and dimethylsulfoxide and, upon heating,
in water and alcohols. Single crystals I and II suitable
for the X-ray diffraction analysis were obtained by the
recrystallization of the studied compounds from a
methanol–dimethylformamide solution (3 : 1). 

The main crystal data and the refinement parameters
for compounds I and II are given in Table 1. The X-ray
diffraction analysis was carried out on a DAR-UMB
000 MAIK “Nauka/Interperiodica”
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Table 1.  Crystal data, data collection, and refinement parameters for structures I and II

Empirical formula C11H15NO4 C11H14NO4Cl

M 225.24 519.36

T, K 293(2) 293(2)

λ, Å 0.71073 0.71073

Crystal system Monoclinic Triclinic

Space group P21 P

a, Å 10.518(2) 7.196(1)

b, Å 8.691(2) 10.248(2)

c, Å 12.513(3) 16.835(3)

α, deg 90 100.57(3)

β, deg 101.54(2) 90.42(3)

γ, deg 90 94.68(3)

V, Å3 1120.7(4) 1216.0(4)

Z 4 4

ρcalcd, Mg/m3 1.335 1.418

µ, mm–1 0.102 0.317

Crystal size, mm 0.2 × 0.2 × 0.3 0.15 × 0.2 × 0.4

No. of measured reflections 1757 2236

No. of unique reflections 1589 [R(int) = 0.0177] 2020 [R(int) = 0.0224]

No. of reflections/no. of parameters 1576/299 1960/344

Goodness-of-fit on F2 0.962 1.098

R [I > 2σ(I)] R1 = 0.0464, wR2 = 0.1175 R1 = 0.0720, wR2 = 0.1820

R (for all reflections) R1 = 0.0479, wR2 = 0.1338 R1 = 0.0823, wR2 = 0.2338

Residual (maximum and minimum)
densities in difference Fourier
synthesis (e Å–3)

0.423 and  –0.331 0.856 and –0.307

1

diffractometer (CuKα radiation, graphite monochroma-
tor, ω–θ/2θ scan mode) at room temperature. No cor-
rection for absorption was applied to the intensity data.
Both structures were solved by the direct methods
using the SHELXS86 program package [4]. The refine-
ment was performed by the least-square method in the
anisotropic approximation for the non-hydrogen atoms
and in the isotropic approximation for the hydrogen
atoms with the use of the SHELXL93 program package
[5]. The positions of the hydrogen atoms were obtained
from geometric considerations, and the most probable
orientations of the hydrogen atoms in the carboxyl OH
groups were determined from the difference Fourier
synthesis. These data were refined by the least-squares
C

procedure. The coordinates of the non-hydrogen atoms
in structures I and II are listed in Tables 2 and 3, respec-
tively. 

DESCRIPTION OF STRUCTURES 

The asymmetric cells in both crystals contain two
independent molecules A and B (Figs. 1, 2). In mole-
cule A (II), the alcohol oxygen atoms are disordered in
the C(CH2OH)3 fragment. For each of the C(9A),
C(10A), and C(11A) carbon atoms, two peaks were
located from the difference Fourier synthesis and were
then refined as oxygen atoms with a multiplicity of 0.5.
The bond lengths and angles in the planar salicylaldi-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Table 2.  Coordinates of the non-hydrogen atoms (×104) and
their equivalent isotropic thermal parameters Ueq (Å2 × 103)
in structure I

Atom x y z Ueq

O(1A) –2225(5) –1275(5) 9040(4) 34(1)

O(2A) –1093(6) 3414(6) 6100(5) 45(1)

O(3A) 336(5) 679(6) 8202(4) 42(1)

O(4A) –2684(5) 320(6) 4690(4) 42(1)

N(1A) –1989(5) –291(6) 7098(4) 25(1)

C(1A) –3471(7) –2336(7) 7386(6) 29(2)

C(2A) –4378(7) –3396(7) 6901(6) 32(2)

C(3A) –4868(6) –4431(9) 7496(6) 35(2)

C(4A) –4431(8) –4484(9) 8581(7) 47(2)

C(5A) –3575(8) –3381(9) 9154(6) 44(2)

C(6A) –3026(7) –2247(7) 8535(6) 31(2)

C(7A) –2866(7) –1274(8) 6727(5) 29(2)

C(8A) –1288(6) 718(8) 6501(6) 30(2)

C(9A) –1794(7) 2364(7) 6614(6) 36(2)

C(10A) 197(7) 568(9) 7046(6) 40(2)

C(11A) –1415(7) 182(7) 5352(6) 39(2)

O(1B) –2240(5) 3197(6) 14027(4) 39(1)

O(2B) –2651(6) 1656(7) 9704(5) 57(2)

O(3B) –1073(5) –1453(5) 11089(4) 37(1)

O(4B) 326(5) 1327(6) 13204(4) 45(1)

N(1B) –2023(6) 2268(6) 12125(5) 33(2)

C(1B) –3440(6) 4244(7) 12409(6) 28(2)

C(2B) –4380(6) 5358(8) 11906(5) 36(2)

C(3B) –4921(7) 6432(11) 12493(7) 47(2)

C(4B) –4517(8) 6370(11) 13649(7) 49(2)

C(5B) –3620(8) 5359(10) 14106(6) 49(2)

C(6B) –3098(6) 4263(7) 13568(5) 31(2)

C(7B) –2912(6) 3291(8) 11754(5) 31(2)

C(8B) –1267(7) 1280(7) 11502(5) 27(2)

C(9B) –1379(6) 1822(8) 10321(5) 35(2)

C(10B) –1768(6) –345(8) 11570(5) 33(2)

C(11B) 127(6) 1398(7) 12076(5) 32(2)

Table 3.  Coordinates of the non-hydrogen atoms (×104) and
their equivalent isotropic thermal parameters (Å × 103) in
structure II

Atom x y z Ueq

Cl(1A) 2491(4) 8282(2) 5620(1) 80(1)

O(1A) 467(7) 7599(5) 2184(3) 51(1)

N(1A) 547(7) 5042(5) 2094(3) 35(1)

C(1A) 1111(8) 6612(6) 3323(4) 36(2)

C(2A) 1563(10) 6793(7) 4149(4) 45(2)

C(3A) 1838(10) 8036(7) 4601(4) 48(2)

C(4A) 1617(11) 9142(8) 4248(5) 59(2)

C(5A) 1170(11) 8998(7) 3443(5) 52(2)

C(6A) 885(9) 7739(6) 2941(4) 38(2)

C(7A) 928(9) 5294(6) 2853(4) 40(2)

C(8A) 435(9) 3744(6) 1527(4) 35(2)

C(9A) 1683(13) 3966(7) 829(5) 60(2)

C(10A) –1559(10) 3388(8) 1221(5) 56(2)

C(11A) 1142(11) 2656(6) 1931(4) 53(2)

Cl(1B) 2551(4) 2844(2) 4408(1) 81(1)

O(1B) 4565(7) 4572(4) 7839(3) 48(1)

O(2B) 1122(8) 431(5) 8267(4) 66(2)

O(3B) 5203(8) –960(6) 8743(4) 76(2)

O(4B) 5441(8) 3190(5) 9500(3) 63(2)

N(1B) 4432(7) 2090(5) 7966(3) 35(1)

C(1B) 3879(9) 2785(6) 6722(4) 36(2)

C(2B) 3436(9) 2402(7) 5899(4) 48(2)

C(3B) 3195(10) 3324(8) 5424(5) 54(2)

C(4B) 3447(11) 4675(8) 5750(5) 60(2)

C(5B) 3896(10) 5105(7) 6556(5) 52(2)

C(6B) 4150(9) 4191(6) 7089(5) 39(2)

C(7B) 4020(8) 1805(6) 7206(4) 36(2)

C(8B) 4442(9) 1176(6) 8549(4) 34(2)

C(9B) 2430(9) 1028(7) 8873(4) 43(2)

C(10B) 5083(10) –177(7) 8161(4) 45(2)

C(11B) 5793(10) 1847(7) 9240(4) 47(2)

O(2A) 1428(10) 5157(7) 550(4) 54(3)

O(2AA) 3513(16) 3801(16) 826(10) 62(6)

O(3A) –2895(11) 3207(7) 1767(5) 54(3)

O(3AA) –2542(17) 4247(12) 911(7) 52(5)

O(4A) 1115(10) 1509(6) 1354(5) 47(3)

O(4AA) 197(19) 2209(13) 2544(7) 59(5)
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Fig. 1. Structure of molecule I. 
mine fragments and in the C(CH2OH)3 groups of the
studied compounds are in agreement with the data
available in the literature [6–12]. The superposition of
independent molecules in compounds I and II is dis-
played in Fig. 3. The molecules are the rotamers in
which the C(CH2OH)3 groups are rotated about the
N(1)–C(8) bonds. In compound I, the

Table 4.  Parameters of intramolecular hydrogen bonds in
structures I and II

D–H ⋅ ⋅ ⋅A (H ⋅ ⋅ ⋅A), Å D–H ⋅ ⋅ ⋅A, 
deg D ⋅ ⋅ ⋅A, Å

I

N(1A)–H(1A) ⋅ ⋅ ⋅O(1A) 1.94(1) 137(1) 2.634(8)

O(1B)–H(1B) ⋅ ⋅ ⋅N(1B) 1.82(1) 150(1) 2.566(8)

II

N(1A)–H(1A) ⋅ ⋅ ⋅O(1A) 1.89(1) 139(1) 2.601(7)

N(1B)–H(1B) ⋅ ⋅ ⋅O(1B) 1.89(1) 138(1) 2.585(7)
C

C(7)N(1)C(8)C(9), C(7)N(1)C(8)C(10), and
C(7)N(1)C(8)C(11) torsion angles are equal to
108.1(7)°, 132.2(7)°, and 17.0(9)° in molecule A and
14(1)°, 109.3(8)°, and 132.8(7)° in molecule B. In com-
pound II, these angles are 126.6(7)°, 114.0(7)°, and
171.4(9)° in molecule A and 87.9(7)°, 34.5(8)°, and
154.7(6)° in molecule B. Two tautomeric forms are
observed in crystal I (Fig. 1): the proton is localized at
the N(1A) nitrogen atom in molecule A and at the O(1B)
oxygen atom in molecule B (the latter being in a ben-
zenoid form). According to the Cambridge Structural
Database (Version 5.14) [6], the majority of the struc-
tures containing the salicylaldimine fragment have a
benzenoid form. Note that the shortest O–C distance
(1.334 Å) in this fragment is observed in 2-(4,6-dime-
thyl-2-pyridyliminomethyl)phenol [7]. In molecule B
(I), this distance is equal to 1.340(8) Å and virtually
coincides with that in N-salicylidene-p-dimethylami-
noaniline (1.343 Å) [8] and 2-(4-methyl-2-pyridylimi-
nomethyl)phenol (1.336 Å) [9]. In N-phenylsalicylaldi-
mine-5-sulfamate [10], in which the proton is localized
at the azomethine nitrogen atoms, the O–C distance in
the salicylaldimine fragment is equal to 1.298 Å. In
compound I, the O–C distance in molecule A is equal
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 2. Structure of molecule II. 
to 1.268 Å, which virtually coincides with those in
molecules A [1.287(8) Å] and B [1.277(8) Å] in com-
pound II. 

Therefore, the presence of chlorine atom in the
5-position of the benzene ring of compound II leads to
the transfer of the proton to the azomethine nitrogen
atom. At the same time, salicylaldimine in crystal I is
characterized by two tautomeric forms. It should be
noted that, in aldimine [10], in which the proton is
localized at the nitrogen atom, the SO3 group occupies
the 5-position of the benzene ring. 

In molecules A and B of both compounds, the O(1)
and N(1) atoms form the intramolecular hydrogen
bonds. The parameters of hydrogen bonds are pre-
sented in Table 4. Moreover, in structure I, molecules A
and B are linked by the hydrogen bonds O(1A)···O(2B)
and O(1A)···O(3B) and form chains running along the
twofold screw axis due to the hydrogen bonds O(3A)–
H(3A)···O(3B) (–x, y + 1/2, –z + 2) and O(4B)–
H(4B)···O(2A) (–x, y – 1/2, –z + 2). These chains related
by a translation along the c axis are joined by the hydro-
gen bonds O(2A)–H(2A)···O(1B) (x, y, z – 1) and
O(4A)–H(4A)···O(1B) (x, y, z – 1). 

In structure II, the molecules are linked into a three-
dimensional framework by the hydrogen-bond system.
GRAPHY REPORTS      Vol. 45      No. 6      2000
Fig. 3. Superposition of independent molecules I and II. 
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However, their analysis is made difficult by the disor-
dering of the alcohol oxygen atoms in molecule A. 
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Abstract—The crystal structure of pyruvic acid methyldithiocarbomethoxyhydrazone C5H8N2O2S2 is deter-
mined by X-ray diffraction. The crystals are orthorhombic, a = 6.510(5), b = 19.124(4), c = 6.855(6) Å, and
space group P212121. The structure is solved by direct methods and refined to R = 0.057 for 923 reflections. The
interatomic distances in the molecule agree with the data for noncoordinated thiosemicarbazones. In the struc-
ture, the double S=C bond [1.634(7) Å] is shorter than that in noncoordinated carbohydrazones containing a
fragment of pyruvic acid. © 2000 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

The discovery of antibacterial, antiviral, and antitu-
mor activities in hydrazones stimulated their synthesis
and studies of structure and biological activity with the
purpose to find more efficient and less toxic com-
pounds. The main factors responsible for the biological
activity of this class of compounds are the sulfur atom
and the mobile hydrogen atom of the hydrazine residue.
Replacement of these atoms or groups as a whole in a
hydrazone by other organic radicals may result in a pro-
found change in their biological activity. In this work,
we determined the X-ray crystal structure of pyruvic
acid methyldithiocarbomethoxyhydrazone and calcu-
lated the geometric parameters of the molecule.

EXPERIMENTAL

The composition of the compound is C5H8N2O2S2 (I).
Yellow prismatic crystals are orthorhombic,
a = 6.510(5), b = 19.124(4), c = 6.855(6) Å, Z = 4, space
group P212121, µ = 1.22 cm–1, and dcalcd = 1.50 g/cm3.
A crystal, 0.2 × 0.3 × 0.5 mm, was chosen for the X-ray
study. The intensities of 923 unique reflections with
I > 2σ were obtained on a DAR-UMB diffractometer
with CuKα radiation (graphite monochromator). The
structure was solved by direct methods with the
SHELXS86 program [1] using the default parameters.
The non-hydrogen atoms were refined in the anisotro-
pic approximation by a least-squares procedure with
the SHELX76 program package [2] to R = 0.070. The
H atoms were found from a difference synthesis of
electron density (except for the hydrogen atom of the
hydroxyl group). The refinement of the structure with

† Deceased.
1063-7745/00/4506- $20.00 © 20951
consideration for individual thermal parameters of
hydrogen atoms lowered the R factor to 0.057. No
absorption correction was applied.

The final atomic coordinates in the structure are
listed in the table. A fragment of the structure is shown
in the figure.

RESULTS AND DISCUSSION

Molecule I (figure) is nearly planar. The O(1) atom
of the carboxyl group shows the largest deviation from the
rms plane through the non-hydrogen atoms (0.054 Å).
The azomethine atom C(2) is coplanar with the dithio-
carbamide fragment of the molecule. The torsion angle
C(1)N(1)N(2)C(2) is actually 180°. A similar planar

Atomic coordinates (×104) and Ueq (×103) in pyruvic acid
methyldithiocarbomethoxyhydrazone

Atom x y z Ueq

S(1) 8090(3) 5939(1) 4543(5) 45

S(2) 3487(3) 6149(1) 4380(4) 36

O(1) –479(9) 4340(3) 4437(15) 46

O(2) 350(9) 3221(3) 4367(15) 53

N(1) 5321(10) 4948(3) 4502(16) 37

N(2) 3359(9) 4710(3) 4446(13) 31

C(1) 5733(12) 5645(3) 4496(14) 30

C(2) 3083(11) 4035(3) 4469(14) 29

C(3) 919(12) 3825(4) 4436(15) 36

C(4) 4686(14) 3482(4) 4541(23) 47

C(5) 4539(18) 7028(4) 4314(23) 53
000 MAIK “Nauka/Interperiodica”
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A fragment of the structure of pyruvic acid methyldithiocarbomethoxyhydrazone.
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N(1)

N(2)

S(2)
S(1)
structure is observed in molecules of pyruvic acid thi-
osemicarbazone (II) [3].

The interatomic distances in the molecule are com-
mon for noncoordinated thiosemicarbazones [3–14]
and are close to the corresponding distances in mole-
cule II. A significant difference is observed only
between the lengths of the S(1)=C(1) double bonds. In
molecule II, these bonds are 1.675(3), 1.689(3), and
1.692(3) Å, whereas the corresponding distance in I
shortens to 1.634(7) Å.

The orientation of the S(1)=C(1) and N(1)–N(2)
bonds relative to the pair of atoms C(1) and N(1) is
trans, which is characteristic of this class of com-
pounds.

Thus, the substitution of the S-methyl fragment for
the NH2 group in the molecule of pyruvic acid thi-
osemicarbazone results in the only change in the
molecular structure, namely, the shortening of the S=C
double bond that exceeds the triple standard deviation.

Hydrogen bonds involving S(1), N(1) imine nitro-
gen, and O(1) carboxyl oxygen atoms are formed
between the molecules related by the a translation
(figure). The hydrogen bonds are characterized by the
following parameters: N(1)…O'(1) bond is 2.971 Å,
H(1)…O'(1) bond is 2.38 Å, and the N(1)–H(1)…O'(1)
angle is 146°; and O'(1)…S(1) bond is 3.379 Å,
H'(2)…S(1) bond is 2.38 Å, and the O'(1)–H'(2)…S(1)
angle is 151°. These hydrogen bonds link the molecules
in the crystal into infinite chains running along the a-
axis. The chains are held together by van der Waals
interactions. 
C
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Abstract—A convenient simple method is proposed for the crystallochemical analysis of polysystem pseudo-
symmetric structures. The basic statistical data on the structures of polysystem crystals available in the Cam-
bridge Structural Database are discussed. The role of molecular association in formation of the pseudosymme-
try in organic crystals is discussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Molecular-crystal engineering is a new vigorously
developing field of materials science and crystal chem-
istry. Within the framework of this approach, molecular
interactions play a decisive role in the formation of
crystal structures, with the hydrogen bonds being of
primary importance [1–3]. Therefore, the studies of
molecular association in crystals via intermolecular
hydrogen bonding is the most important line of investi-
gations in this field. Earlier, we have considered the
role of hydrogen bonding in the formation of crystal
structures of hydroxyl-containing derivatives of hydro-
pyridine [4, 5]. In the cited works, it was also indicated
that crystal structures built by molecules occupying
more than one (Z ' > 1) system of crystallographically
independent positions are the most widespread for
hydroxyl-containing compounds forming strong
hydrogen-bonded associates and received the name of
polysystem crystals. According to the data available in
the Cambridge Structural Database (CSD), polysystem
crystals amount up to 8% of the total number of all the
studied crystals. Polysystem structures constitute 21%
of all the crystal structures of 3- and 4-hydroxyl-con-
taining hydropyridine derivatives found in CSD (from
a total of 120 compounds). It was also shown [6, 7] that
polysystem crystals are often observed in other classes
of hydroxyl-containing compounds (40% of alcohols
and 45% of cholesterol derivatives). Apparently, it is
possible to state that compounds capable of strong
intermolecular hydrogen bonding should, most proba-
bly, have the unit cells with Z ' > 1.

The aim of this work is to clarify the role of hydro-
gen bonding in the formation of polysystem structures
in some hydroxyl-containing compounds. We restrict
our consideration to the crystallostructural aspect
ignoring the thermodynamic and kinetic factors,
despite the fact that they also play an important part in
the formation of crystal structures.
1063-7745/00/4506- $20.00 © 20953
BASIC PRINCIPLES OF CRYSTALLOCHEMICAL 
ANALYSIS OF POLYSYSTEM CRYSTALS

First, consider some necessary statistical informa-
tion on polysystem crystal structures based on the CSD
data. Polysystem structures are most often observed in
low-symmetry crystal systems especially in those
described by the sp. gr. P1 [8]. Also, the percentage of
structures with Z' > 1 is noticeably higher in chiral
groups than in the corresponding centrosymmetric ones
[9] (Table 1). The statistical studies [10] demonstrated
that the geometric characteristics of the crystallograph-
ically independent molecules in polysystem crystals
are usually similar. In some cases, it was possible to
establish approximate symmetry transformations
(pseudosymmetry elements) relating crystallographi-
cally independent molecules. Davies and Willer believe
that approximate symmetry elements are present in
about 27% of polysystem structures.1

The established transformations most often corre-
spond to the crystallographic symmetry elements—
center of inversion, rotation and screw axes, mirror and
glide planes, translations, etc. The only difference from
conventional symmetry consists in that these transfor-
mations, unlike the crystallographic operations, are
obeyed only approximately. This is associated, first of
all, with the facts that the structures of crystallographi-
cally independent molecules are not quite equivalent
(and, sometimes, are even substantially different) and
also because the position of the pseudosymmetry ele-
ment in the unit cell does not coincide with any of the
special crystallographic positions in a particular space
group. At the same time, the position of the pseudosym-
metry element is not arbitrary. Usually, a pseudosym-
metry element is located in the vicinity of one of the
special positions in the unit cell. Displacing this pseu-
doelement by a certain value ∆r and placing it to the
corresponding “special” point, we arrive at the more

1 Private communication [8].
000 MAIK “Nauka/Interperiodica”
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symmetric space group (supergroup) than that of a real
crystal (Fig. 1). Thus, the space group of a real crystal
containing a pseudosymmetry element is a subgroup of
the space group (supergroup) of a certain hypothetical
crystal. The displacement of the pseudoelement (∆r)
can be considered as a criterion for pseudosymmetry of
the crystal structure [11]. Abrahams [12] assumed that
at ∆r < 0.1 Å, the probability of the wrong determina-
tion of the space group is rather high.

In the general case, if H is the real space group of the
crystal containing a pseudosymmetry element, its

Table 1.  Occurrence of polysystem crystals

Space group N* Space group N*

P1 45% P 11.3%

P21 14% P21/c 5.7%

C2 12.2% C2/c 3%

P212121 4.5% Pbca 3%

* N percentage of polysystem crystals from the total number of
crystals described by this space group.

1

C

supergroup G can be obtained as follows:

G = H + (g/t)H, where g( , m, 2, 21) and t are the rota-
tional and the translational components, respectively.
There are two major types of supergroups. Supergroup
of type 1 possesses a higher symmetry class, with the
unit-cell parameters and the volume being preserved.
Supergroup of type 2 possesses the same symmetry
class, but the translational parameters and the unit-cell
volume are reduced by an integer factor.

Now, consider the typical instances of pseudosym-
metry in a number of polysystem crystals of hydroxyl-
containing compounds forming stable local associates
due to intermolecular hydrogen bonding.

Crystal Structure of the 1 : 1 Adduct 
of Nitrosalicylic Aldehyde with Piperidine 

(sp. gr. Pna21, Z ' = 2) [13]

Intermolecular hydrogen bonding gives rise to for-
mation of crystallographically independent pairs of
molecules—strong tetramers (Fig. 2). Within these tet-
ramers, the proton is transferred from the hydroxyl

1

x

y

(b)

x

y

∆r

(a)

1/4

1/4

1/4

Fig. 1. Schematic representation of the molecule arrangement in (a) the polysystem crystal of the sp. gr. P21, Z ' = 2 possessing a
pseudocenter and (b) the supergroup P21/c, Z ' = 1.
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Fig. 2. Molecular packing of the adduct of nitrosalicylic aldehyde with piperidine in (a) the real crystal structure with Pna21, Z ' = 2 and
(b) the hypothetical supergroup Pnma, Z ' = 1.

x

0 z

1/4

(a)
group of salicylic aldehyde to the nitrogen atom of pip-
eridine. The independent pairs of the molecules in tet-
ramers are related to one another by an approximate
center of inversion (center of pseudoinversion) with the
coordinates (x = 0.375, y = 0.484, z = 0.491). The crys-
tallographically independent molecules have similar
geometries: the average deviation of the atomic coordi-
nates obtained upon bringing into coincidence of the
centers of gravity of the molecules using the least
squares method equals 0.21 Å. The molecular packing
is shown in Fig. 2a. Small tetramer displacements with
respect to one another (∆r = 2.1 Å) hinder the appear-
ance of the crystallographic center of inversion and
give rise to the formation of a polysystem pseudosym-
metric crystal. The displacement of the base associate
and a pseudocenter to a special crystallographic point
with the coordinates [x = 0.5, y = 0.5, z = 0.5] would
lead to the formation of the packing shown in Fig. 2b
and, correspondingly, to the corresponding supergroup
Pnma with Z ' = 1. In a real crystal, no such packing
with the preservation of the unit-cell parameters is pos-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
sible because of overlapping piperidine fragments (the
distance between the nearest carbon atoms is 1.386 Å).
On the other hand, an increase of the unit-cell parame-
ters would make the packing rather loose.

The relation between the supergroup and the sym-
metry group of the real crystal may be written as fol-

lows: (Pnma, Z ' = 1) = (Pna21, Z ' = 2) + [0.5, 0.5, 0.5].

Crystal Structure of 3,4-dihydroxy-2-oxo-1-methyl-
4-phenylpiperidine (sp. gr. Pca21, Z' = 2) [4]

The crystallographically independent molecules in
this compound have similar geometric characteristics.
The average deviation of the atomic coordinates from
the average value is 0.017 Å. Hydrogen bonding gives
rise to formation of pseudocentrosymmetric dimers
forming, in turn, infinite chains. The crystal structure as
a whole consists of superimposed chains displaced rel-
ative each other to form optimum packing, which pre-
vents the appearance of the crystallographic center of
inversion in the real crystal. The displacement of the

1
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Fig. 2. (Contd.)

1/4
1/41/4

z

x

0

(b)
base associate together with the pseudocenter by
∆r = 1.5 Å to the “special” point with the coordinates
[x = 0.0, y = 0.25, z = 0.0] would have led to the cen-
trosymmetric structure with the symmetry supergroup
Pbcn and Z ' = 1. The relation between the supergroup
and the symmetry group may be written as follows:

4-Hydroxybiphenyl (sp. gr. P212121, Z' = 2) [14]

The compound has two polymorphs—monoclinic
(P21/c) and orthorhombic (P212121). In both modifica-
tions, the molecules are linked by OH⋅⋅⋅O hydrogen
bonds into infinite chains parallel to the y-axis. In the
orthorhombic modification, there are two molecules
per asymmetric unit. Both molecules are planar and
have similar geometric parameters. The deviations in
the atomic coordinates do not exceed 0.04 Å. The crys-
tallographically independent molecules are related by
the local twofold rotation pseudoaxis intersecting the yz

Pbcn Z ' 1=,( ) Pca21 Z ' 2=,( ) 1 0 0.25 0, ,[ ] .+=
C

plane at the point [y = 0.25, z = 0.03] (Fig. 3a). The dis-
placement of the base pair of the molecules together
with the twofold rotation pseudoaxis by the small dis-
tance ∆r = 0.5 Å to the position with the coordinates
[y = 0.25, z = 0] would lead to the appearance of the
crystallographic twofold axis, a double decrease in the
c-parameter, and, thus, to the supergroup P22121 with
Z ' = 1 (Fig. 3b). This case is an example of the super-
groups of the second type (the same symmetry class,
but twice smaller unit-cell). The relation between the
supergroup and the symmetry group may be written as
follows: (P21212, Z ' = 1) = (P22121, Z ' = 2) + c/2.

In this case, the formation of pseudosymmetry is
obviously associated with the asymmetry (directional-
ity) of the hydrogen bonding rather than with the asso-
ciate displacement with respect to one another. In this
connection, the localization of the hydrogen atom of
the hydroxyl group is of considerable importance. In
[15], both modifications were studied at different tem-
peratures ranging from 295 to 80 K. Using the analogy
with the biphenyl modifications [16], the authors hoped
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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(a)

(b)

1/4 1/4
1/4

x

0 z

x

0 z

Fig. 3. Molecular packing of 4-hydroxybiphenyl in (a) the real (P212121, Z ' = 2) and (b) the hypothetical (P21212, Z ' = 1) space
groups.
to prove the existence of the phase transformation from
the monoclinic 4-hydroxybiphenyl to the orthorhombic
modification. However, no signs of this transformation
were revealed. At the same time, the authors believed
that they found the indication to a possible phase trans-
formation of the orthorhombic modification in the tem-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      200
perature range from 295 to 242 K. Unfortunately, no
details to the effect are given [15].

RESULTS AND DISCUSSION

The above data raise the natural question whether
the supergroup obtained upon the analysis of the pack-
0
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Table 2.  Crystallographic parameters of three polymorphic modifications of 8-(2-hydroxyethyl)adenine

Space group P212121 P212121 P21/c

Modification I II III
Z ' 1 2 3

a 13.556 13.572 13.543

b 8.271 8.248 8.290

c 7.340 14.508 22.591

β 90 90 104.97

ρcalcd, g/cm3 1.445 1.466 1.457

Crystallization conditions Evaporation of an unsatu-
rated aqueous solution

Slow evaporation of a
dilute aqueous solution

Rapid cooling of a
saturated aqueous solution
ing is only a mere hypothetical abstraction or it can
really exist in crystals under some particular condi-
tions. Based on the CSD data, it may be concluded that
supergroups can really be formed in crystals (at least in
some instances). As examples, we refer to the following

A A

A A

BB

B B

x

0 y∆r

Fig. 4. Layer formed by hydrogen bonding in the polymor-
phic modifications of 8-(2-hydroxyethyl)adenine (the two-
fold screw pseudoaxes in modification II are indicated by
double lines).
C

polymorphic modifications of the compounds available
in CSD. These are: o-aminobenzoic acid AMBACO,

(Pbca, Z ' = 1) = (P21cn, Z ' = 2) + (0, 0, 0.25); 1,1-
diethyl-3-thiobenzoylthiourea FAJTIT, (P21/n, Z ' = 1) =

(Pn, Z ' = 2) + (0.5, 0.5, 0.5); 2,5-dihydroxybenzoic

acid BESKAL, (P21/c, Z ' = 1) = (Pn, Z ' = 2) + (0, 0, 0);
bis(4-ethoxycarbonylphenyl) biphenyl-4,4'-dicarboxy-

late SILXUG, (P21/c, Z ' = 1) = (Pn, Z ' = 2) + (0, 0.5, 0);
and 8-(2-hydroxyethyl)adenine FABFUJ, (P212121,
Z ' = 1) = (P212121, Z ' = 2) + c/2. Moreover, the phase
transformations were also established between various
modifications of SILXUG and AMBACO.

Now, consider three known modifications of 8-(2-
hydroxyethyl)adenine FABFUJ [17] in more detail
(Table 2). In all the modifications, the molecules are
linked to form similar planar layers by the systems of
intermolecular hydrogen bonds (Fig. 4). Different
modes of layer packing are obtained by using crystalli-
zation under different conditions (Table 2). This gives
rise to the formation of various crystal structures.
Apparently, modification I can be considered as a
supergroup of the second type with respect to modifica-
tion II (Fig. 5). By displacing the twofold screw
pseudoaxis in modification II by ∆r = 1.28 Å, we arrive
at the unit cell of twice smaller volume. This unit cell is
analogous to that of modification I, i.e., (P212121, Z ' =
1) = (P212121, Z ' = 2) + c/2. The pseudosymmetry of
modification II appears because the layers connected
by hydrogen bonds are displaced with respect to each
other. Apparently, this fact is also responsible for pseu-
dosymmetry of polymorphic modification III of 8-(2-
hydroxyethyl)adenine. In the latter structure, the super-
unit described by the same symmetry class and with the
three-times smaller unit-cell volume can be singled out.
Its parameters are c' = 1/3c, i.e., (P21/c, Z ' =
1) = (P21/c, Z ' = 3) + c/3. The pseudosymmetry of this
modification was described in detail elsewhere [17].

Noteworthy is the fact that modification II grown
under conditions the closest to equilibrium has the
highest density and is completely ordered, whereas

1

1

1

1
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0 z

x x

0 z

(a) (b)

Fig. 5. Packing of layers of 8-(2-hydroxyethyl)adenine in modifications (a) I and (b) II.
modifications I and III are partly disordered along the
c-axis. Unfortunately, no possible phase transforma-
tions in these crystals were examined in [17].

However, as was mentioned above, polymorphic
transformations of the second type (the group with the
pseudosymmetry  the supergroup) have been
observed. For example, such phase transformation was
observed in the modifications of o-aminobenzoic acid
AMBACO [18, 19]: I (P21cn, Z ' = 2)  81°C  II
(Pbca, Z ' = 1). Modification I consists of crystallo-
graphically independent neutral molecules and zwitte-
rions related by a pseudocenter of inversion with the
coordinates [x = –0.0053, y = –0.0095, z = –0.2595].
The phase transformation to supergroup II takes place
at 81°C and is accompanied by the proton migration,
the displacement of the pseudocenter by ∆r = 0.2 Å,
TALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
and the rotation of the molecules with respect to one
another by about 30°ë (Fig. 6).

Emphasize once again that strong molecular associ-
ates are observed in all the crystal structures considered
above. It can be suggested that these associates and
their fragments can be present (at least partly) also in
the initial mother liquor used for crystallization. In such
a situation, the crystal is formed from more or less sta-
ble fragments rather than from isolated molecules,
which apparently leads to the loss of the maximum
symmetry because of small displacements of the frag-
ments with respect to one another in order to form a
closer packing. Such displacements provide the appear-
ance of pseudosymmetry in crystals containing strong
molecular associates.
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Fig. 6. Transformation of the o-aminobenzoic acid dimer upon the phase transformation I  II (thin and solid lines, respectively).
We believe that the systematic studies of the pseu-
dosymmetry in polysystem crystals are rather promis-
ing for prediction of new polymorphic modifications of
various compounds and the search for materials that
can undergo phase transformations. Note that similar
considerations have been quite successful in the search
for inorganic crystals among the known inorganic
structures with a pseudosymmetry [20] that may
undergo ferroelectric–paraelectric phase transforma-
tions.
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PHASE TRANSITIONS

                                
Structural Transformations 
in Pb(Mg1/3Nb2/3)0.8Ti0.2O3 Single Crystals in Electric Field

I. N. Zakharchenko, O. A. Bunina, P. N. Timonin, and V. P. Sakhnenko
Research Institute of Physics, Rostov State University, 

pr. Stachki, Rostov-on-Don, 344090 Russia
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Abstract—Phase transitions in single crystals of a ferroelectric–relaxor of the composition
Pb(Mg1/3Nb2/3)0.8Ti0.2O3 in applied electric fields E ranging from 0 to 5 kV/cm have been studied by X-ray dif-
fraction method. The evolution of the shape of the 224 reflection and the integrated intensity of the 005 reflec-
tions were studied in the field-cooled mode in the temperature range 290–430 K. Four temperature anomalies
were established in the range of the fields used. It is concluded that, prior to the formation of the rhombohedral
ferroelectric phase, the crystals exist in three inhomogeneous phases—ergodic and nonergodic dipole glasses
and a mixed phase with the coexisting ferroelectric and glassy regions. The mechanism of the effect of Ti+4 ions
on the phase transition in the crystal are also discussed. © 2000 MAIK “Nauka/Interperiodica”.
The phase transitions in the single crystals of the
Pb(Mg1/3Nb2/3)1– xTixO3 solid solutions ((1 – x)PMN–
xPT), (x = 0.2) in an applied electric field have been
studied by X-ray diffraction methods. At x < 0.4, the
crystals were identified with ferroelectrics–relaxors
with a diffuse maximum of the temperature depen-
dence of the dielectric constant ε. The position of this
maximum depends on the frequency, anomalous dis-
persion in ε at low frequencies, and the hysteresis loop
formed below the maximum of ε [1–3]. Thus, the
dielectric properties of the crystals are similar to those
of a pure Pb(Mg1/3Nb2/3)TiO3 (PMN) crystal, a classi-
cal representative of relaxors [4]. However, it is well
known that a pure PMN crystal remains cubic up to the
temperature of T = 5 K [5, 6], whereas, as the X-ray dif-
fraction data show, the crystals of the composition (1 –
x)PMN–xPT with 0.06 < x < 0.3 undergo the phase tran-
sition to the rhombohedral phase occurring via interme-
diate dipole-glass and mixed phases [2, 7, 8]. At the
same time, the study of the PMN structure in external
electric fields showed that cooling below T ≈ 210 K
provides the polarization of a PMN crystal in an elec-
tric field E above a certain threshold value (~2 kV/cm)
applied along the [111] direction [9–12].

A “field-induced ferroelectric phase” also exists in
PMN–PT crystals [13–15]; however, the phase diagram
of these crystals constructed in the coordinates “electric
field (E)–temperature (T)” should differ from all the
similar diagrams for pure PMN [9–11] undergoing the
ferroelectric transition at E = 0. The present study is
aimed to establish the characteristic features of the
phase diagram E–T of a crystal with the composition
0.8PMN–0.2PT.

According to the electrophysical measurements [2],
the crystals of the composition 0.8PMN–0.2PT
1063-7745/00/4506- $20.00 © 20961
undergo the dipole–glass transition at the temperature
TDG = 352 K and the ferroelectric transition at TF = 324 K.
At the temperature TM = 333 K, a mixed phase is
formed in which the regions of glassy and ferroelectric
phases coexist. Somewhat different phase-transition
temperatures were obtained in the X-ray diffraction
studies [8]: TDG = 375, TM = 336, and TF = 323 K. It was
shown that the ferroelectric phase consists of domains
with rhombohedrally distorted unit cells [7, 8].

In this connection, we undertook an X-ray diffrac-
tion study of phase transitions in 0.8PMN–0.2PT in
constant fields ranging within E = 0–5 kV/cm and
applied along the [100] direction in the temperature
range of 290–430 K. The field orientation results in the
formation of a polydomain structure in the ferroelectric
phase and, similar to the case of E = 0, splitting of some
reflections, which provides the establishment of the
phase transition by studying the neighborhood of a sin-
gle reflection of the cubic phase.

EXPERIMENTAL

The experiments were performed on a DRON 3.0
diffractometer (Cu  monochromatic radiation).
Platinum electrodes transparent for X-ray radiation
were applied onto the (001) surface of the crystals.
Similar to our previous studies [13–15], we used a
device which provided the switching-on of an electric
field with the simultaneous variation of the specimen
temperature. The reflection profiles were recorded
using θ–2θ and 1θ scan with the use of a wide counter
aperture for measuring the integrated intensities. The
detailed description of the intensity-data collection and
further processing of these data are considered else-
where [13–15].

Kα1
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Fig. 1. Temperature dependences of the Gaussian parameters (intensity I, width ∆2θ and position 2θ) of the maximum approximat-
ing the 224 reflection at the field intensities E equal to (a) 0, (b) 3, and (c) 4 kV/cm. Dashed vertical lines indicate the points of
anomalies in the profile shape.
The measurements were made in the so-called field-
cooled mode; i.e., the field was switched on at T =
450 K, the crystal was kept for 15 min at this tempera-
ture, and then was cooled in a constant field. The time
intensity of one reflection was recorded for about
10 min.

The temperatures of the phase transformations were
determined from the changes of the profile parameters
of the 224 reflection sensitive to rhombohedral distor-
tions of the unit cell. Moreover, we also analyzed the
integrated intensity of the 005 refection, whose struc-
ture factor noticeably varied upon the disappearance of
the center of inversion in the perovskite-like unit
cell [13].

RESULTS

The shapes of the 224-reflection profiles obtained in
the field-cooled mode were analyzed using their
approximation by a sum of several Gaussians. It was
C

established that the best approximation was attained for
three Gaussians at T > TF and four Gaussians at T < TF

(the only exception are the data obtained in the field E =
4 kV/cm; in this case, three Gaussians provided a quite
satisfactory approximation irrespectively of the tem-
perature). Figure 1 shows the temperature dependences
of the Gaussians parameters for some field intensities.
At T > TF, the maximum intensity I was usually pos-
sessed by a Gaussian with the average width of
∆(2θ) ≈ Å 0.2° , which corresponded to scattering from
the randomly-deformed cubic crystalline matrix.
A wider Gaussian (∆(2θ) ≈ 0.4°) can be interpreted as
a result of scattering by mesoscopic (of the order of
500 Å) polar (rhombohedral) clusters [8]. It is more
difficult to explain the origin of a weak narrow line
(∆(2θ) < 0.1°). This line can be caused by scattering
from clusters with the Nb : Mg order [16] or by the
rather large (>2000 Å) deformed clusters of pure
PbTiO3.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Irrespectively of the intensity of an applied electric
field, the temperature dependences of the parameters of
these lines show pronounced anomalies at four differ-
ent temperatures, which are only slightly dependent on
the intensity of the applied field (Fig. 1): TDG1 ≈ 390–400,
TDG2 ≈ 360–370, TM ≈ 333–345, and TF ≈ 324–335 K.
The temperature TF corresponds to splitting of the 224
reflection into three lines having approximately equal
widths and is, in fact, the temperature of transition to
the ferroelectric rhombohedral phase [8], whereas all
the remaining temperatures correspond to the kinks on
the temperature dependences of the widths and intensi-
ties of the reflection components. Being the signs of the
changes in both the dimensions and number of polar
clusters and appearance of additional inhomogeneous
deformations in the crystal caused by atomic displace-
ments, these anomalies also provide evidence for the
considerable restructuring occurring in the crystal.
Y REPORTS      Vol. 45      No. 6      2000
At the same time, the above-indicated kinks can also
be caused by the use of inadequate procedure of reflec-
tion-profile decomposition into Gaussian components
(an extremely large number of fitting parameter) used
in Eq. (9). In order to exclude this error and indepen-
dently confirm that the anomalies in the 224 refection
profile really correspond to the structural changes
occurring in the crystal, we studied the temperature
dependence of the integrated intensity of the 005 refec-
tion in various electric fields. The rhombohedral distor-
tions do not cause splitting of this reflection; however,
its structure factor can considerably increase with the
loss of the unit-cell center of inversion. This effect can
also be accompanied by other factors affecting the
reflection intensity such as variations in the effective
Debye–Waller factor (i.e. root-mean square atomic
deviations) and extinction associated with both the
changes in the global atomic structure (the primary
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extinction) and the smaller dimensions of the coher-
ency regions (the secondary extinction) [17].

The temperature dependence of the integrated inten-
sity of the 005 refection at various electric-field inten-
sities is shown in Fig. 2. At T > TDG1, the intensity of
this reflection is almost constant but starts increasing
below this temperature, which seems to be associated
with the change of the structure factor caused by addi-
tional atomic displacements “violating” the centrosym-
metricity of cubic unit cells. At still lower temperatures,
the intensity continues increasing and shows noticeable
kinks at the temperatures corresponding to the anoma-
lies in the shape of the 224 refection. These kinks seem
to be associated with switching-on of the extinction
mechanisms of increasing scattered intensity. Thus,
these data confirm the structural changes occurring in
the crystal at the above-indicated temperatures.

The most pronounced intensity increase is observed
in the ferroelectric phase. Of the above three factors
affecting the intensities of this phase, only the changes
C

in the extinction conditions can explain this effect.
A decrease of extinction due to the formation of
smaller blocks observed in the phase-transition in
BaTiO3 crystals was explained by coexistence of vari-
ous phases [18]. In the phase transition region, the
reflection intensities first increased and then decreased
approaching the initial values. In our case, no increase
of block dimensions was observed.

CONCLUSIONS

The data obtained lead to the conclusion that the
0.8PMN–0.2PT crystals in the fields E < 5 kV/cm
undergo the same set of phase transitions as in the
absence of an electric field, with the transition temper-
atures being only slightly dependent on the intensity of
the applied field. The phase diagram constructed by the
points corresponding to the anomalies in the shape of
the 224 reflection is shown in Fig. 3. The ferroelectric
phase transition is also observed in an electric field,
which indicates that it is a first-order phase transition.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 2. Temperature dependence of the integrated intensity of the 005 reflection. Vertical lines correspond to anomalies in the shape
of the 224 reflection. The probable existence ranges of the phases (denoted by letters) are indicated (see text).
The absence of characteristic jumps in the dielectric
parameters [1, 2] in the field-cooled mode is explained
by very large relaxation times inherent in the inhomo-
geneous phases preceding the ferroelectric phase. This
hinders the determination of the equilibrium dielectric
parameters of the crystal during the time of the experi-
ment. However, such jumps can be observed during
heating of the ferroelectric phase, as is the case for pure
PMN in the fields with E > 2 kV/cm [9].

A new result obtained in this study is the existence
of structural anomalies at TDG1 ≈ 390–400 K which lead
to the assumption about the existence of one more
phase—the dipole glass type (DG1) at TDG2 < T < TDG1.
The latter phase is characterized by additional random
atomic displacements violating the unit-cell cen-
trosymmetricity. However, in distinction from the non-
ergodic glassy phase DG2 , the atomic displacements in
the DG1 phase should be uncorrelated on a macro-
scopic scale, because this phase is not ergodic. Indeed,
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
the curve of the threshold field necessary for the transi-
tion to the polar phase upon zero field-cooling [14] (the
curve with signs “+”) (Fig. 3) does not go outside the
boundaries of the DG1 phase. This signifies that only
this phase and the mixed phase DG + FE are not
ergodic; in other words, the crystal state in this phase
depends on the path on the T–E diagram.

It should also be emphasized that the above T–E
phase diagram differs from the phase diagram of pure
PMN by the shape of the threshold-field curve. For
PMN, this curve, determining the range of existence of
the induced ferroelectric phase, lies at E > 2 kV/cm [9–
11], whereas for 0.8PMN–0.2PT crystals, the thresh-
old-field curve approaches the axis E = 0, so that the
spontaneous ferroelectric transition can also take place
in the absence of an electric field. Thus, the addition of
Ti ions to PMN reduces the energy barrier between the
glassy and the ferroelectric phases in the range of their
coexistence.
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Fig. 3. Phase diagram of a 0.8PMN–0.2PT crystal corresponding to the shape anomalies for the 224 refection. The line with the
signs “+” represents the dependence of the threshold field for the transition to the polar phase upon cooling in the zero-field-cooled
mode [14].
At the same time, similar to the case of pure PMN,
the field E ≈ 2 kV/cm is critical for the 0.8PMN–0.2PT
structure even at high temperatures. The field depen-
dences of the parameters determined from the 224 pro-
file at T = 410 K (we mean the “pseudocubic” unit-cell
parameters corresponding to the centers of the Gauss-
ians and the widths and the relative intensities of these
Gaussians at E > 2 kV/cm) show considerable changes,
indicating a drastic decrease of the fraction of mesos-
copic polar clusters in the total volume of the crystal. It
seems that such clusters merge together because of
polarization switching under the effect of an applied
field, whose intensity becomes higher than the average
coercive field of a cluster (~2kV/cm). As a result, the
enlarged polar regions become the elements of a
pseudocubic matrix in which the ferroelectric phase is
energetically more favorable than the dipole-glass
phase at rather low temperatures. Obviously, the thresh-
old field, providing the formation of the ferroelectric
phase in the zero-field-cooled mode for pure PMN,
remains equal to the coercive field of polar clusters also
C

at T < 210 K [9–11]. This signifies that, with a decrease
of the temperature, the polarization orientations in this
crystal are still random, whereas a decrease of the
threshold field to zero at T = TF in 0.8PMN–0.2PT crys-
tals indicates their spontaneous switching and also a
gradual increase of the dimensions of the energy polar-
ized regions. This conclusion is confirmed by the
noticeable narrowing of the broadest component of the
224 reflection at T < TDG2 and E > 0 (Figs. 1b, 1c).

The most probable cause of spontaneous switching
of polar clusters in PMN–PT crystals is the reduction of
the intensity of the random electric field “fixing” the
direction of the local polarization. This reduction is
explained by the fact that the cells with Ti+4 ions are
neutral, whereas the cells containing the Mg+2 and Nb+5

are not. A more detailed study of the mechanism of
spontaneous ferroelectric transition and preceding tran-
sitions to glassy phases in the crystal under question
requires a much larger volume of information. Thus,
the determination of the temperature evolution of the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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profile parameters of a large number of reflections
(similar to that described above for the 224 refection)
would allow the construction of the temperature depen-
dences of the cluster dimensions, their average defor-
mations, and the deformations of the pseudocubic crys-
tal matrix [19]. These data would help to clarify the
nature of phase transitions taking place in PMN and the
related crystals.
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PHASE TRANSITIONS
Effect of Uniaxial Pressures on the Phase Transitions 
in (NH4)BeF4 Crystals
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Abstract—The effect of uniaxial mechanical pressure along the principal crystallophysical directions on the
phase transitions paraelectric–incommensurate–commensurate ferroelectric phases in (NH4)2BeF4 crystals is
studied by the optical method. It is established that the Gx and Gy pressures applied along the x- and y-axes shift
the phase transitions towards lower temperatures, whereas the Gz pressure applied along the z-axis, towards
higher temperatures. The possible existence of a triple point on the phase diagram is indicated. © 2000 MAIK
“Nauka/Interperiodica”.
Two phase transitions are established in (NH4)2BeF4
crystals: a second-order transition from the paraelectric
phase to the incommensurate phase at Ti  = 183 K and
a first-order transition from the incommensurate phase
to the ferroelectric commensurate phase at TC = 177 K
[1, 2]. Both high-temperature and low-temperature
(ferroelectric) phases are orthorhombic and described

by the sp.gr. Pnam-  and Pn21a- , respectively
[3]. The incommensurate phase is characterized by the
wave vector qI = (1 – δ)ac, where δ ≈ 0.02.

Earlier, the effect of a hydrostatic pressure p on the
phase transitions in (NH4)2BeF4 crystals was studied by
various methods. The dielectric-constant measure-
ments [4] showed that the pressures up to 10 kbar shift
the phase transitions towards lower temperatures, with
the coefficients being dTi/dp = –1.7 and dTC/dp =
−2.2 K/kbar. The same coefficients obtained from the
studies of the temperature dependences of velocities of
sound propagation [5] were found to be dTi/dp ~ 2.39
and dTC/dp ~ 2.93 K/kbar. The dielectric-constant mea-
surements performed in [6] under pressures up to
6 kbar yielded dTC/dp = –6.7 K/kbar; the values of the
dielectric constants obtained in [4] and [6] were almost
equal.

We had the aim to study the effect of the uniaxial
mechanical pressure along the principal crystallophys-
ical directions on the position of phase-transition points
in the (NH4)2BeF4 crystal by the optical method. Within
the temperature range studied, the crystals remained
biaxial, optically negative, with the axis orientations
X || Ng and Y || Np (Ng and Np are the bisectors of the
obtuse and the acute angles between the optical axes,
respectively).

The effect of the uniaxial pressure on the tempera-
ture and spectral behavior of birefringence was deter-
mined from the changes in the interference pattern
recorded on a DFS-8 spectrograph. The sample in the

D2h
16 C2v

9
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diagonal position between the crossed nicols was
placed into a cryostat. The interference spectrum in the
focal plane of the spectrograph formed by a transmitted
light beam consisted of a set of alternating vertical dark
and light fringes. The condition for the formation of the
interference fringes in the spectrum is the fulfillment of
the equality

(1)

where k is the order of the interference fringe, d is the
width of a sample along the direction of beam propaga-
tion, i and j are the crystallophysical directions, and ni
and nj are the corresponding refractive indices.

With the temperature variation, the interference
fringes are shifted and birefringence is determined as

(2)

The compression of a sample results in a spectral
shift of the interference fringes in the focal plane of the
spectrograph. The temperature- and pressure-induced
changes in birefringence ∆ni are then determined as

(3)

The measurements were made at pressures up to
Gi ≈ 200 bar. An accuracy of birefringence determina-
tion was δ∆ni = ±2 × 10–5.

The temperature dependences of birefringence ∆nz
and ∆nx in the range of phase transitions for various
directions of pressure application are shown in Figs. 1a
and 1b.

The application of the pressure GX increases, while
the application of the pressures GY and GZ decreases
birefringence by about 1.2 × 10–4, 1.7 × 10–4, and 0.6 ×
10–4, respectively. The phase transitions are accompa-
nied by the abrupt changes in the slopes of the curves
∆nz(T) and ∆nx(T). For example, d∆nz/dT ≈ −7.20 × 10–5

d ni n j–( ) kλ ,=

∆ni λ T,( ) kλ /d T( ).=

∆ni T Gi,( ) kλ /d T G,( ).=
000 MAIK “Nauka/Interperiodica”
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and –1.80 × 10–5 K–1 at GX ≠ 0; d∆nx/dT ≈ −0.80 × 10–5

and –0.45 × 10–5 K–1 at GZ ≠ 0 at 190 and 180 K, respec-
tively. At GX ≠ 0 and GY ≠ 0, both phase transitions are
shifted towards lower temperatures (Ti = 180.8 and
TC = 173.8, Ti = 181.2 and TC = 174.6 K, respectively),
whereas at GZ ≠ 0, to higher temperatures (Ti = 183.6
and TC = –178.80 K).

Figure 2 shows the pressure dependences of the
phase-transition points, which allow more accurate
evaluation of the shifts of phase transitions:
dTi/dGX = −0.011, dTC/dGX = –0.016, dTi/dGY = –0.009
and dTC/dGY = –0.012, dTi/dGZ = 0.003, and
dTC/dGZ = 0.005 K/bar. The simultaneous effect of all
the uniaxial pressures leads to the shift of the phase
transitions towards lower temperatures:
dTi/dG = dTi/dGX + dTi/dGY + dTi/dGZ = –0.017 K/bar,
dTC/dG = dTC/dGX + dTC/dGY + dTC/dGZ = –0.023 K/bar.
This qualitatively agrees with the effect of a hydrostatic
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pressure on phase transitions. However, the tempera-
ture coefficients characterizing the displacements of the
phase transitions under the effect of hydrostatic pres-
sure are considerably lower than those for the uniaxial
pressures. This evidences a more pronounced effect of
uniaxial pressures on the crystal structure. The uniaxial
pressures GX and GY increase and shift the temperature
range of the existence of the incommensurate phase
towards lower temperatures, while the pressure GZ nar-
rows this interval. Extrapolation of the GZ(T) depen-
dences (see Fig. 3) shows that the incommensurate
phase in (NH4)2BeF4 crystals can disappear under the
pressure GZ ≈ 2.3 kbar and the temperature T ≈ 190 K,
and the crystal can undergo a paraelecric–ferroelectric
phase transition.

Consider the changes in the physical properties of
the crystals observed under the effect of uniaxial
stresses in terms of possible structural changes. As is
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Fig. 2. Temperature–baric dependences for the phase transi-
tion points Ti and TC of (NH4)2BeF4 crystals. Pressures:
(1) GX; (2) GY; (3) GZ.
0
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well known [7], the structure of this crystal at room
temperature is described by the sp.gr. Pnma. In this
case, tetrahedral BeF4-groups are slightly distorted,
while two nonequivalent ammonium ions are charac-
terized by different distortions. For example, an NH4
(1) ion, surrounded with five BeF4-ions (1), is distorted
only slightly, whereas an NH4-ion (2) surrounded with
six BeF4-groups is distorted much more. The structure of
the crystal in the paraelectric phase can be considered as
a partly disordered state with respect to small rotations of
BeF4-groups preferably around the pseudo-sixfold axis
X [8, 9].

The phase transition into a ferroelectric phase is
accompanied by more pronounced rotations of BeF4-
tetrahedra about all the three axes of the structure
(without essential changes in the configuration), but
preferably around the X-axis. In this process, a tetrahe-
dron is “frozen” in one of the positions of the paraelec-
tric phase. If the effects of the applied field and the tem-
perature decrease affect the crystal structure in the
same way, the condition for a thermodynamic equilib-
rium in the phase transition is satisfied also at higher
temperatures. Otherwise, the phase-transition tempera-
ture is shifted towards lower temperatures.

Since the phase transition to the ferroelectric phase
is accompanied by a more pronounced rotation of the
BeF4-tetrahedra around the X-axis, the uniaxial pres-
sure applied along the X-axis “compresses” the tetrahe-
dra, i.e., hinders their rotation, and thus does not allow
the crystal to transit to a new phase. Correspondingly,

0
T, K

GX, Y

175 180 185TC Ti

200

0
T, K

GZ

175 180 185TC Ti

200

Fig. 3. The G–T phase diagrams for a (NH4)2BeF4 crystal.
The temperature range of existence of the incommensurate
phase (at TC < T < Ti) under the pressure GX is limited by
the horizontal lines; then under the pressure GY, by the ver-
tical lines.
C

lower temperatures are required to provide a phase
transition under the pressure Gx.

The rotation of the BeF4-tetrahedra during a phase
transition occurs in the YZ-plane. The shift of the
phase-transition point towards lower temperatures
under the pressure GY may be associated with the fact
that GY hinders the rotation of the BeF4-tetrahedra
around the X-axis, and thus results in the fulfillment of
the corresponding condition for the thermodynamic
equilibrium at somewhat lower temperatures. The pres-
sure GZ facilitates the rotation of BeF4-tetrahedra dur-
ing the incommensurate–commensurate ferroelectric
phase transition and, thus, facilitates the transition into
a ferroelectric phase, which can now occur at higher
temperatures.

The main cause of the higher temperature sensitivity
of birefringence of crystals under the uniaxial pressure
appears to be the character of the interactions between
the modulated structure and the uniaxial deformation.
It is well-known that soliton pinning at defects or at the
crystal lattice gives rise to metastable states. The uniax-
ial pressure in the vicinity of the incommensurate phase
affects the spatial ordering of a soliton structure. An
increase of the temperature sensitivity of the incom-
mensurate phase under the uniaxial pressure is
explained by the pressure-induced changes in the soli-
ton structure.
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Abstract—The nonstoichiometry of the yttrium–iron garnet has been analyzed. The predominant types of point
defects and their concentrations in Y3Fe5O12 and other rare-earth iron garnets are established. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Materials based on rare-earth iron garnets are
widely used in various magnetic and magnetooptical
devices [1, 2] in technology. The technology of synthe-
sis and treatment of oxide crystals is associated with the
formation of various defects affecting the physico-
chemical properties of the resulting materials. Below,
we consider only point defects very important for gar-
nets and, in particular, oxides and which are dictated by
the necessity of elaborating the theory of nonstoichio-
metric compounds and the simple methods for identify-
ing the type of defects and evaluating their concentra-
tions.

The studies of the nonstoichiometry δ in the
Y3Fe5O12 – δ garnets [3–12] yielded contradictory infor-
mation on the nature of cation defects in yttrium–iron
garnet (YIG). Unfortunately, the interpretation of these
results leads to umbiquous conclusions not only about
the concentration but also about the nature of cation
defects in YIG. Hence, the lack of rigorous analytical
relationships between the physical characteristics of
yttrium–iron garnet and δ hinders the efficient fast
quantitative analysis of nonstoichiometry.

The main purpose of this was to determine the pre-
dominant types of intrinsic defects giving rise to nons-
toichiometry of yttrium–iron garnet and to evaluate
their concentrations.

PROCEDURE FOR THE QUANTITATIVE 
EVALUATION OF DEFECT CONCENTRATIONS

The garnet unit cell contains eight formula units,
{C3}[A2](D3)O12. Brackets in the formula indicate that
the C, A, and D ions occupy crystallographically non-
equivalent positions in the garnet structure. These posi-
tions differ in the coordination environment formed by
1063-7745/00/4506- $20.00 © 20971
oxygen atoms; namely, the {C}, [A], and (D) ions are in
dodecahedra, octahedra, and tetrahedra of oxygen
atoms, respectively. The valences of the ions and their
distribution over the nonequivalent {C}, [A], and (D)
positions in the garnet unit cell and the analysis of the
most probable type of structural defects were per-
formed [11, 13] with the use of the algorithm presented
in Fig. 1. This algorithm is based on the comparison of
the experimental unit-cell parameter a with the refer-
ence parameter ar = f(rc, ra, rd) defined by the functional
dependence [14]:

(1)

where b1 = 7.02954; b2 = 3.31277; b3 = 2.49398; b4 =
3.34124; b5 = –0.87758; b6 = –1.38777; and rc, ra, and
rd are weighted average radii of the ions [15] occupying
the {C}, [A], and (D) positions, respectively. The
yttrium–iron garnet was synthesized by the solid-phase
technology, and the samples were studied by X-ray
phase analysis on a DRON diffractometer (FeKα radia-
tion, a manganese β-filter).

NONSTOICHIOMETRY OF Y3Fe5O12

The variation in the unit-cell parameter of the
yttrium–iron garnet was studied as a function of Y3+

content on crystals grown by the solid-phase technol-
ogy in air at T = 1400–1500 K. The nonstoichiometry
of YIG was specified by the ratio of the sintered oxides
(the Y2O3 : Fe2O3 ratio ranged from 3 : 4.8 to 3 : 5.2).
The dependence of the unit-cell parameter of
YxFe8 − xO12 crystals on the concentration of the Y3+

ions is shown in Fig. 2a. It is seen that the unit-cell
parameter increases with an increase of nonstoichiom-
etry. The estimation of the probability of intrinsic-
defect formation in yttrium–iron garnet demonstrated

ar b1 b2rc b3ra b4rd b5rcra b6rcrd,+ + + + +=
000 MAIK “Nauka/Interperiodica”
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Thermodynamical estimation of the probability of dissociation 
reactions of the components of the blend (simple oxides)

under the conditions used in the synthesis of garnets 

í  is the temperature, τ  is the synthesis duration,
and î are conjugate phases)

Construction of the crystallochemical model of the cation
and defect distribution over the unit cell of garnet

Calculation of the unit-cell parameter: ar = f (rc, ra, rd)

No

No

Yes

Yes

Validity check

End

‡r = ‡

Fig. 1. Algorithm for constructing and calculating crystallochemical models of garnets.

(PO2 
is the oxygen pressure in the gas phase,
[16] that the energetically most favorable anionic
vacancies are those formed with the change in the
charge of some Fe ions occupying octahedral positions.
This conclusion is consistent with the experimental
results [6, 8]. In addition, the experimental [12] and
theoretical [16] studies demonstrated that at x > 3,
excessive Y3+ ions occupy the octahedral positions,
whereas at x < 3, the empty dodecahedral positions are
filled with Fe ions. In the latter case, the probability of
a change in the valence of the iron ions increases due to
the larger size of the {Fe2+} ion compared to that of the
{Fe3+} ion. Consequently, the crystallographic model
of the nonstoichiometric yttrium–iron garnet can be
represented as follows:

(2)

where 

(2a)

and 

(2b)

Y3 λ0–
3+

Feλ0

2+{ } Yλ1

3+
Fe5 x– λ0– λ–

3+
Feλ

2+[ ] Fe3
3+( )O12 δ– ,

x 3: λ0≥ 0, δ λ /2= =

x 3: λ0< 3 x, δ– λ λ0+( )/2.= =
C

For the nonstoichiometric compositions of model
(2), the following analytical equation for the calcula-
tion of the λ values was obtained according to the
above-mentioned algorithm (Fig. 1):

(3)

where 

Here, ∆r{ij} = r{i} – r{j}, Y = Y3+, Fe = Fe3+, and Fe* = Fe2+.

The analysis of the results of calculations (Fig. 2b)
showed that “dissolution” of an excessive amount of
Fe2O3 in the yttrium–iron garnet led to an increase in
the total concentration of the Fe2+ ions in the garnet due

λ
6 a α1–( ) 3xα2– 2λ0

2α3 λ0α4+ +
3β1 β2λ0–[ ]β3

---------------------------------------------------------------------------------,=

α1 b1 b2r Y{ } b4 b6r Y{ }+( )r Fe( )+ +=

– β1 r Fe[ ] 1.5∆r Fe Y,[ ]+( ), α2 β1∆r Fe Y,[ ] ,=

α3 b2 b6r Fe( )+( )∆r Y Fe*,{ } b2r Fe[ ] ,–=

α4 β2∆r Fe Y,[ ] ,=

β1 b3 b5r Y{ } , β2+ b5∆r Y Fe*,{ } , β3 ∆r Fe* Fe,[ ] .== =
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to the appearance of the {Fe2+} ions in the dodecahe-
dral positions and an increase in the concentration of
the [Fe2+] ions in the octahedral positions. Fe ions prob-
ably also fill interstices in accordance with the follow-

ing reaction [7]: Fe2O3  2F  + 3/2O2 + 6e'. An
increase in the conductivity observed in [10] explains
an increase in the number of electrons in the conduction
band with an increase of the concentration of [Fe2+]

(and F ) ions. However, we failed to separate the

contributions of the [Fe2+] and F  ions to an increase
of the unit-cell parameter observed at x < 3 and to take
them into consideration in the calculation of the com-
position of the crystallochemical model (2).

For the samples of the yttrium–iron garnet (Table 1)
sintered from oxides taken in the ratio Y2O3 : Fe2O3 =
3 : 5 at T = 1400–1500 K, the crystallochemical formula

can be represented as {Y3}[F F ](Fe3)O12 – δ,
where the λ and δ values were calculated according to
Eq. (3). The calculated values given in Table 1 are close
to the δ values (0.005–0.015 formula units) determined
for polycrystalline YIG samples [3]. For single crystals,
the δ values obtained from the thermogravimetric data
[6] are somewhat less than those obtained in our calcu-
lations. The inconsistency can be explained by the fol-
lowing facts:

(1) The thermogravimetric method [6] is based on
measurements of the changes in the sample weight,
and, consequently, it allows one to estimate only a
change in δ but not the initial nonstoichiometry, which
can be substantial.

(2) Single-crystal samples can contain excessive
yttrium ions [12, 17], which can lead to underestima-
tion of δ (Fig. 2).

The nonstoichiometry of the garnet may depend not
only on the conditions of its synthesis but also on the
conditions of its subsequent treatment. After storage of
the crystals (which were synthesized in an oxygen
atmosphere) in air (  ≈ 0.21 × 105 Pa) at T = 1273 K,
the unit-cell parameter a of YIG increased from
12.3744 ± 0.0003 to 12.3753 ± 0.0003 Å. Assuming
that this increase is caused by the change in the charge
of iron ions in the garnet to Fe2+ upon the formation of
anionic vacancies as a result of the reaction

Y3Fe5O12  {Y3}[F F ](Fe3)O12 – δ + δ/2O2, (4)

the change in the concentration of the Fe2+ ions was cal-
culated from Eq. (3). It was found that the initial (after
synthesis) λ value and the λ value after crystal storage
in air are 0.012 and 0.02 formula units, respectively. In
other words, the change in the partial pressure of oxy-
gen led to the change in the concentration of the Fe2+

ions by 0.008 formula units (∆δ = 0.004 formula units).
After irradiation with neutrons, the unit-cell parameter
of the yttrium–iron garnet was increased by 0.063 Å

ei
3+

ei
3+

ei
3+

e2 λ–
3+

eλ
2+

PO2

e2 λ–
3+

eλ
2+
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      200
[18]. Assuming that the formation of anionic vacancies
and [Fe2+] defects is responsible for the change in the
parameter a, the composition described by formula (2)
can be calculated from Eq. (3). We obtained λ = 0.58,
which exceeds the maximum λ value (0.07) calculated

2.98
x

3.00 3.02 3.04 3.06

0.04

0.08

0

λ i

{Fe2+}

[Fe2+] [Y3+]

(b)

12.379

12.384

12.374

(a)
a, Å

Fig. 2. Concentration dependences of (a) the unit-cell
parameter of YxFe8 – xO12 and (b) the concentration of iron

([Fe2+]) and yttrium ([Y3+]) ions in the octahedral positions
and {Fe2+} ions in the dodecahedral positions in the
yttrium–iron garnet.

Table 1.  Unit-cell parameters a of the

{Y3}[ ](Fe3)O12 – δ garnets determined from the
(12 2 2)α X-ray diffraction line

a, Å B, deg B, mm λ δ

12.3743 0.542 52 0.011 0.006

12.3769 0.25 24 0.035 0.018

12.3776 0.375 36 0.042 0.021

12.3779 0.396 38 0.044 0.022

12.3783 0.177 17 0.048 0.024

12.3791 0.208 20 0.056 0.028

12.3794 0.166 16 0.058 0.029

12.3803 0.292 28 0.066 0.033

12.3805 0.25 24 0.068 0.034

12.3806 0.208 20 0.069 0.035

12.3806 0.218 21 0.069 0.035

Note: B is the half-width of the (12 2 2)α X-ray diffraction line; λ is the
concentration (formula units) of the [Fe2+] ions calculated by
Eq. (3); δ = 0.5λ characterizes the deficiency in the anionic sub-
lattice; the accuracy: ∆a = ±0.0003 Å and ∆B = ±0.5 mm.

Fe2 λ–
3+

Feλ
2+
0
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by us for YIG (Table 1) by more than eight orders of
magnitude.

The results of the calculations (Table 1) were used
to construct the dependences of the unit-cell parameter
a of YIG and the half-width B of the X-ray diffraction
line (12 2 2)α on the nonstoichiometry of yttrium–iron
garnet (Fig. 3):

a = 12.373 + 0.216δ, B = 47.1 – 791.7δ. (5)

The linear correlation for the linear correlation between
the B and δ values is characterized by the coefficient
r2 = 0.47, which is obviously inadequate to perform
quantitative nonstoichiometry determination with the
use of the B value. However, this coefficient allows the
qualitative estimate of nonstoichiometry.

NONSTOICHIOMETRY OF RARE-EARTH 
IRON GARNETS

The experimental unit-cell parameters a of rare-
earth iron garnets are larger than the reference values ar
(Table 2) calculated according to Eq. (1). In the first

0.005
δ

0.010 0.020 0.025 0.030 0.0350.015
15

25

35

45

12.372

12.374

12.376

12.378

12.380

a, Å B, mm

1
2

Fig. 3. (1) Unit-cell parameter a and (2) the half-width B of
the (12 2 2)α X-ray diffraction line as functions of nonsto-
ichiometry (δ) of yttrium–iron garnet.
C

approximation, similar to the case of yttrium–iron gar-
net, this fact may be related to the change in the garnet
composition due to formation of the [Fe2+] ions and
anionic vacancies. Hence, the crystallochemical for-
mula of rare-earth iron garnets can be written as

{R3}[F F ](Fe3)O12 – δ, (6)

where δ = 0.5λ and R3+ is a rare-earth ion. The λ-values
for iron garnets of the rare-earth RFeG series described
by formula (6) were evaluated with the use of the max-
imum values amax (Table 2) calculated for a particular
garnet [19, 20]. The maximum values λmax (correspond-
ing to amax) calculated according to Eq. (3) are given in
Table 2. Apparently, the concentration of the [Fe2+] ions
in rare-earth iron garnets is not higher than 0.15 for-
mula units.

The distribution of ions and defects in the yttrium–
iron garnet can be represented by the following crystal-
lochemical model: 

{ F }[ F F ](F )O12 – δ,

where λ0 = 0 and δ = λ/2 at x ≥ 3 and λ0 = 3 – x and δ =
(λ + λ0)/2 at x < 3.

The anion deficiency in YIG polycrystals from
0.005 to 0.035 formula units. The dependence of
the unit-cell parameter on the δ value at Y3+/Fe3+ = 3 : 5
is determined by the formula a = 12.373 + 0.216δ +
10−6 Å.

In rare-earth iron garnets

{R3}[F F ](Fe3)O12 – δ 

with δ = 0.5λ (R3+ is a rare-earth ion), the concentration
of the [Fe2+] ions is not higher than 0.15 formula units.
One would expect that the characteristics of defect for-
mation established in this work would also be valid for
isomorphous solid solutions of rare-earth iron garnets.

e2 λ–
3+

eλ
2+

Y3 λ0–
3+

eλ0

2+
Yλ1

3+
e5 x– λ0– λ–

3+
eλ

2+
e3

3+

e2 λ–
3+

eλ
2+
Table 2.  Unit-cell parameters of the {R3}[ ](Fe3)O12 – δ [19] iron garnets

R3+ Pr(s) Nd(s) Sm Eu Gd Dy Tb

amax 12.646 12.596 12.535 12.498 12.47 12.414 12.435

ar 12.6314 12.5901 12.5281 12.4868 12.4661 12.4248 12.4041

λmax 0.145 0.058 0.08 0.107 0.037 0.092 0.096

R3+ Ho Er Tm Yb Lu Y

amax 12.384 12.349 12.325 12.302 12.29 12.378

ar 12.3834 12.3421 12.3214 12.3008 12.2801 12.3731

λmax 0.005 0.063 0.033 0.011 0.089 0.046

Note: The amax values (Å) were determined experimentally; the ar values were calculated by Eq. (1) at λ = 0; single crystals [20] are marked
with the letter s.

Fe2 λ–
3+

Feλ
2+
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Polarizability of Fluoride Ions in Fluorides 
with Fluorite-Type Structure
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Abstract—The Wilson–Curtis equation ln(αan) = ln( ) – b/d2 relating the anion polarizability αan to the
anion–cation distances d in cubic NaCl-type alkali halides of the composition MX (M = Li, Na, K, Rb, Cs; X =
F, Cl, Br, I) is found to be valid for the family MF2 and M1 – xRxF2 + x crystals (M = Ca, Sr, Ba, Cd and R is a
rare-earth metal) with the fluorite-type structure. © 2000 MAIK “Nauka/Interperiodica”.

αan
0

Today, the “defect” crystals of the composition
M1 − xRxF2 + x (M = Ca, Sr, Ba, Cd and R is a rare-earth
metal) with the fluorite (CaF2) structure and almost
ionic bonding are extensively studied by various phys-
icochemical methods as model solid-state materials
for  optics [1, 2]. Recently, it was shown that, within
the  framework of ionic bonding, the concepts of
ionic  radii [3, 4] and optical ionic refractions [2, 5]
are  also applicable to fluorite-type M1 − xRxF2 + x and
Na0.5 − xR0.5 + xF2 + 2x crystals. It was also shown that the
refractive index can be used for determining the chem-
ical composition of the M1 − xRxF2 + x solid solutions
with unit-cell parameters (commonly used in the deter-
mination of the composition) only slightly depending
on the RF3 concentration, e.g., for Sr1 – xNdxF2 + x. As
was shown in [2], the change in the refractive index of
M1 – xRxF2 + x crystals by a value of ∆n = 0.002 corre-
sponds to the change in the concentration of the rare-
earth component by ∆x = 0.01 (1 mol % RF3).

Fedorov [2] used the constant ionic refraction of flu-
orine equal to RF = 2 cm3/mol to create a system of
ionic refractions of rare-earth elements in M1 – xRxF2 + x

crystals. However, it is well known [6, 7] that the crys-
tal field reduces the electronic polarizability of anions
αan or refraction RF = 4παF/3 in ionic crystals in com-
parison with the polarizability of free anions and that
the value of αan depends mainly of the distances
between anions and cations. Thus, fluoride anions in
the MF2 and M1 – xRxF2 + x crystals should be character-
ized by different polarizabilities αF or refractions RF.

Wilson and Curtis [8] suggested the following equa-
tion taking into account the effect of environment on
the polarizability αan of anions for a number of cubic
1063-7745/00/4506- $20.00 © 20976
alkali halide crystals MX (M = Li, Na, K, Rb, Cs; X = F,
Cl, Br, I) with a sodium chloride structure:

ln(αan) = ln( ) – b/d2, (1)

where b is the parameter characterizing the interaction
of ions (the binding energy of ions in the crystal) and d
is the shortest distance between an anion and a cation.
We undertook this study to verify the validity of Eq. (1)
for the family of MF2 crystals (M = Ca, Sr, Ba, Cd) and
anion-excessive M1 – xRxF2 + x solid solutions on their

basis (cubic system CaF2 structure type, sp. gr. Fm m,
Z = 4).

α an
0

3

Unit-cell parameters, refractive indices, and cation polariza-
bilities for MF2 and M1 – xRxF2 + x crystals

Crystal a, Å [1, 4] n [2, 6] αM, Å3 [9] αR, Å3 [9]

BaF2 6.200 1.475 1.564

SrF2 5.800 1.438 0.865

CaF2 5.463 1.434 0.472

CdF2 5.390 1.562 1.088

Ba0.72La0.28F2.28 6.115 1.525 1.564 1.048

Ca0.72La0.28F2.28 5.620 1.505 0.472 1.048

Ca0.77Y0.23F2.23 5.593 1.490 0.472 1.048

Ca0.77La0.23F2.23 5.507 1.475 0.472 0.56

Ca0.9La0.1F2.1 5.521 1.455 0.472 1.048

Ca0.9Y0.1F2.1 5.482 1.450 0.472 0.56
000 MAIK “Nauka/Interperiodica”
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Polarizabilities of fluoride anions in the fluorite-type crystals of the compositions (1) MF2 (M = Ba, Sr, Ca, Cd), (2) Ca1 − xLaxF2 + x
(x = 0.1, 0.23, 0.28), (3) Ca1 – xYxF2 + x (x = 0.1, 0.23), and (4) Ba1 – xLaxF2 + x (x = 0.28).
In the range of optic frequencies for cubic MF2 and
M1 – xRxF2 + x crystals, the Clausius–Mossotti equation
is valid, i.e.,

(n2 – 1)/(n2 + 2) = (4π/3)ΣNjαj, (2)

where n is the refractive index and Nj is the concentra-
tion of ions of the jth kind characterized by the electron
polarizability αj. In the visible spectral range, the elec-
tron polarizability provided by the shift of the electron
shell of ions with respect to the core gives the main con-
tribution to the total polarizability of the crystal,
whereas the ionic and dipole components can be
ignored. The sum of the products Njαj in Eq. (2) is
related to the molecular polarizability α as follows:

α = Σpjαj (3)

(the additivity principle), where pj = VmolNj are the
molar fractions of the jth species (the number of ions of
the jth kind per molecule) and Vmol is the molecular vol-
ume.

With regard for the fact that Vmol = a3/4, the molar
polarizabilities for fluorite-type crystals are found from
Eqs. (2) and (3) in the form

α = 3a3(n2 – 1)/16π(n2 + 2), (4)

where a is the unit-cell parameter and α = αM + 2αF for
MF2 and α = (1 – x)αM + xαR + (2 + x)αF for
M1 − xRxF2 + x.

According to [7, 8], the electronic polarizability αcat
of cations for cubic alkali halide åï crystals only
slightly differs from the electronic polarizability  of
free cations. Taking as the first approximation that
αcat ≈  and using the cation polarizabilities given by

α cat
0

α cat
0
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Pauling [9], it is possible to determine the polarizabili-
ties αF of fluoride anions in MF2 and M1 – xRxF2 + x crys-
tals from Eqs. (2)–(4). The experimental data used for
calculating polarizabilities of fluoride anions in the
MF2 crystals (M = Ba, Sr, Ca, Cd) and Ca1 – xLaxF2 + x,
Ca1 – xYxF2 + x, and Ba1 – xLaxF2 + x solid solutions are
given in table. The unit-cell parameters and the refrac-
tive indices of solid solutions are obtained from the a =
a(x) and n = n(x) plots [1, 2, 4]. The αF values are aver-
aged over the polarizabilities of fluoride ions from var-
ious crystallographic positions. The shortest distances
between the anions and cations in fluorite-type struc-

tures are d = a/4.

The figure shows the polarizabilities of fluoride ions
in the ln(αF), d–2 coordinates. The processing of the
data by the least squares procedure show that experi-
mental dots fit the straight line with the slope b =
4.27 Å–2 (the linear-correlation coefficient Rcor = 0.98).

The polarizability of free fluoride anions is  = 2.2 Å3.

Thus, the variation of the polarizability of fluoride
anions in the family of fluorite-type MF2 and
M1 − xRxF2 + x crystals (M = Ca, Sr, Ba, Cd, and R is a
rare-earth metal) is satisfactorily described by Eq. (1).
The latter equation provides the calculation of the
refractive indices n of the nonstoichiometric
M1 − xRxF2 + x phases from the known cation polarizabil-
ities αj.
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Abstract—A method for studying ferroelectric domains in the crystals of the triglycine sulfate group is devel-
oped. It can be used, in particular, to dope crystals for pyroelectric applications. The method combines the use
of the electrooptic effect and the surface decoration with nematic liquid crystals. It also provides an opportunity
to characterize the degree of bulk and surface homogeneity of polar plates from the topographs of their switch-
ing in a uniform quasistatic electric field. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The crystals of triglycine sulfate (TGS) group, such
as undoped TGS proper, deuterated TGS (DTGS), and
the same crystals doped with L-α alanine (LATGS and
LADTGS), are used as pyroelectric materials. The
crystals are monoclinic, show a large number of growth
pyramids, and can be grown from the solutions as both
ferroelectric and paraelectric phases. During the layer
growth, crystallographically nonequivalent pyramid
faces incorporate different amounts of dopants from the
solution varying from layer to layer. This results in sec-
torial and zonal inhomogeneity of the dopant distribu-
tions in the crystal [1, 2]. In turn, this promotes the for-
mation of internal domain structure with charged
boundaries and the stable inhomogeneity of their ferro-
electric, switching, and, thus, pyroelectric characteris-
tics. Unfortunately, the growth conditions and the local
processes of dopant incorporation into the crystal can-
not always be stabilized. That is why the problem of the
control of platelets cut out from the single crystals
grown, which are intended for pyroelectric applica-
tions, is very important.

EXPERIMENTAL TECHNIQUES

Among a number of techniques used for a nonde-
structive quality control of ferroelectrics, an efficient
method is the visualization of ferroelectric domains and
the switching process with the use of nematic liquid
crystals (NLC)—the so-called static and dynamic NLC
methods [3–7]. Usually, the platelet surfaces are sub-
jected to preliminary mechanical treatment (grinding
and polishing), which strongly affects the static orien-
tation of the liquid-crystal director. Therefore, the
dynamic method is preferable [5], whose essence
reduces to optical imaging of inhomogeneities arising
in the NLC layer deposited onto the polar surface of a
ferroelectric in the course of switching in an electric dc-
1063-7745/00/4506- $20.00 © 20979
or ac-field. Under specially chosen regimes, both the
individual moving domain walls and the global topo-
graphic patterns of switched platelets can be revealed.
Similar to most of the other high- and medium-resolu-
tion techniques, the NLC method is sensitive only to
the surface effects. However, the domain structures and
densities at the surface and in the bulk can considerably
differ. That is why the NLC method is supplemented by
the electrooptical method sensitive to the bulk pro-
cesses. The latter was developed at the Shubnikov Insti-
tute of Crystallography (Moscow) and was first applied
to non-linear-optics and electrooptics materials [8, 9].
Because of a high phase sensitivity (2π × 10–6), accu-
racy (1%), and resolution (0.1 mm) appropriate for
topography (although it is somewhat lower than for the
NLC method), this method of domain study is also
applicable to other optically transparent ferroelectric
materials, in particular, to pyroelectric crystals of the
TGS group. The electrooptical method for the control
of domains uses the hysteresis behavior of the effective
electrooptical coefficient in ferroelectrics and its insen-
sitivity to the leakage of the surface charge and, thus,
provides recording either local hysteresis loops from a
small fixed area (or, more exactly, from volumes of the
order of ~(0.1 mm)2l, where l is the platelet thickness)
or the functions of depending on the domain density
during polar-plate scanning at the given value of the
electric field. The electrooptical and NLC methods are
complementary. For thin platelets, the results obtained
by both methods are consistent as far as the field-
switching characteristics and topographs are con-
cerned. These data show different types of growth inho-
mogeneities in crystals—sectorial, zonal, block, and
granular inhomogeneities. In addition, the electroopti-
cal method allows the observation of small-scale inter-
nal inhomogeneities with the characteristic size of the
order of 0.1–1 mm. For a platelet completely covered
by electrodes, the local static electrooptical loops are
multicomponent (double, triple, etc.) even in the case of
000 MAIK “Nauka/Interperiodica”
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usual symmetric integral hysteresis loop measured, for
example, by the Soyer–Tower method. The local loops
correspond to the dependence of the electrooptical
coefficient at a given point in an applied field. In some
cases, they can also reveal a partial or unipolar switch-
ing (especially at a slowly varying switching field) and
do not exhibit any definite “coercive” or “bias” field.
Therefore, it is more expedient to characterize the
switching-process stages by certain threshold voltages
dependent on the location of the area under study on the
sample history. These features of local switching in an
applied uniform electric field are associated with the
presence of more or less fixed charged growth defects
and, hence, with the domain nuclei and the pinned
boundaries. The advantages of the methods of testing of
the local quality in comparison with the characteristics
of the integral ones become quite obvious at low values
of the average domain densities; in other words, they
are seen well on most of the uniform polarized plate-
lets. In addition, the local methods are especially con-
venient for the studying the domain structure.

EXPERIMENTAL RESULTS

Below, we give several examples of inhomogeneity
characterization of some pyroelectric materials of the
TGS group, in particular, conventional and deuterated
TGS doped by L-α alanine grown from the solution
during lowering of the temperature and at fixed super-
saturation and temperature in the ferroelectric and
paraelectric phases. The L-α alanine concentration in
the growth solution ranged within 10–40 wt % (hereaf-
ter, this content is indicated in parentheses after the
abbreviation of the corresponding crystal). Earlier, it
was shown that L-α alanine dopant was nonuniformly
distributed over different growth pyramids and, on
average, is lower than that in the growth solution by
about a factor of 90–100 [10]. Other dopants also pro-
duce a pronounced effect on the rate of face growth and
the single crystal morphology [11]. The sectorial inho-
mogeneity of such crystals is well revealed by the NLC
method [2] from the topographs of switching [6, 7]. In
the present study, the additional quantitative data on the
domain density distribution and on the local hysteresis
loops provided by the electrooptical method are consid-
ered for the first time, and the results obtained by the
both methods are compared. As usual, the platelets were
cut out from large (110)-type growth sectors. The sam-
ples were selected upon characterization of inhomoge-
neity of the polished ferroelectric platelets by visualiz-
ing the switching process by the dynamic NLC method.
We used nematic liquid crystals with both positive and
negative dielectric anisotropy, i.e., the mixtures of
cyanobiphenyls (∆ε > 0), MBBA, and C-40 (∆ε < 0).

Figures 1a and 1b show two photographs of a set of
four successive (from the outer edge to the seed) pol-
ished 3-mm-thick cuts of the L-α-alanine-doped TGS
crystal. The pictures were taken in the course of switch-
ing in nematic liquid crystals (cyanobiphenyl mix-
C

tures). Figure 1a corresponds to the switching at dc

voltage V= = 200 V and ac voltage  = 120 V at the
frequency of f = 70 Hz and Fig. 1b, to V= = 500 V. The
pronounced switching inhomogeneity revealed in the
platelets at fixed applied fields is related to different
local concentration of L-α alanine and its distribution
over the pyramids, layers, and blocks during crystal
growth. In the case under study, the LATGS(10) crystal
was grown by the method of temperature lowering.

Combining the NLC method with the method of
polarization microscopy, we managed to reveal even
smaller details of the switching process at the surface.
Thus, Figs. 2a–2d illustrate the large-scale (layer) and
small-scale (granular) macroscopic structural inhomo-
geneities as well as the coexistence of the “hard” and
“soft” switching modes. In polar platelets, we usually
observed the boundary between the unswitched and
switched regions. We also managed to establish the
general crystallographic orientation of the boundary, its
small fluctuations, and its small displacements at a slow
variation of the applied uniform electric field. In this
case, the polished 25 × 25 × 1.1-mm3-large platelet was
cut out from the LADTGS(30) crystal grown by the
method of supersaturation at a fixed temperature (the
paraelectric phase) and was studied at bias voltages
(a) 300, (b) 350, (c) 450, and (d) 550 V. The details
were visualized by the dynamic NLC method with

∆ε < 0 (LC-440);  = 80 V and f = 100 Hz.

To reveal the characteristic points at the surfaces of
the ferroelectric platelets, the optical-switching pat-
terns observed in a polarization microscope with the
use of the NLC method can be represented as schematic
“topographs” by taking a number of successive photo-
graphs. The electrooptical method also provides the
“construction” of the topographic patterns but, in con-
trast to the NLC method, for both the switching field
and the domain density. The latter ranges from zero to
1 (or to –1, depending on the matrix sign). The topo-
graphs of the domain density can be constructed at dif-
ferent levels of the gray scale; however, the process is
rather cumbersome. Therefore, we limited ourselves to
the demonstration of only some selected profiles of the
domain density (scans) and of some local hysteresis
loops (with the comparison with the corresponding data
obtained by the NLC method).

A simplified schematic “topograph” of the inhomo-
geneous LADTGS(20) sample is shown in Fig. 3a. The
25 × 25 × 0.81-mm-large sample was cut from a large
crystal grown by the method of temperature lowering.
Using a nematic liquid crystal (MBBA) in the low-fre-
quency (about 100 Hz) ac-electric field with a high
(more than 50 V) amplitude, we managed to obtain the
dynamic contrast from the regions with different
switching parameters colored in correspondence with
the levels of the gray scale; the voltages at which they
were revealed are given in parentheses. The light gray
region denoted as “60 V” is switched via nucleation and

V~
eff

V~
eff
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(a) (b)

(c) (d)

Fig. 2. Visualized switching region and large- and small-scale (granular) macrostructural inhomogeneity in the polar LADTGS(30)

platelet made by the dynamic NLC method with ∆ε < 0;  = 80 V, and f = 100 Hz at different bias voltages: (a) 300, (b) 350,

(c) 450, and (d) 550 V. The platelet dimensions: 25 × 25 × 1.1 mm.

V~
eff

(a) (b)

Fig. 1. Optical patterns of inhomogeneous switching for four successive polar cuts of the LADTGS(10) crystal obtained by the
dynamic NLC method at different values of the switching voltage: (a) 200 and (b) 500 V. The platelets were 3 mm thick.
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Fig. 3. (a) Topograph of the inhomogeneous 25 × 25 × 0.81-mm-large LADTGS(20) platelet obtained by the NLC visualization of
ferroelectric switching; (b) normalized local electrooptical hysteresis loops at the points  A, B, and C of the platelet; (c) the results
of the electrooptical scanning along the a' direction through the points A, B, and C of the same platelet at bias voltages ranging within
0–400 V.

90

a'
intergrowth of the rows of one-dimensional domain
nuclei elongated in the crystallographic direction a' =
asinβ. In the topograph, we also see the pyramid and
growth level boundaries revealed by the NLC method
in the course of the switching process (indicated by
bold black lines). A thin horizontal line indicated the
direction of electrooptical scanning. At the points A, B,
and C of this scan, we measured the local loops of the
electrooptical hysteresis considered below.

Figure 3b shows the local hysteresis loops
LADTGS(20) plate obtained by the electrooptical
C

method at the points A, B, and C. The multicomponent
character of the hysteresis loops illustrates the inhomo-
geneity of the switching associated with the growth
(dopant) inhomogeneity. Figure 3b agrees with the data
obtained by the NLC and electrooptical methods. In
addition, electrooptical scanning of the LADTGS(20)
platelets allowed the construction of the domain-den-
sity curves along the a' axis at different values of the
bias voltage at room temperature (Fig. 3c). One can
clearly see the growth-induced inhomogeneity and a
pronounced scatter in switching voltages. According to
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
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Fig. 4. (a) Normalized local electrooptical hysteresis loop at the point X of the c scan obtained at the fixed rate of voltage variation
(0.33 V/s) for 0.99-mm-thick almost homogeneous polar LATGS(10) platelet, (b) the results of electrooptical scanning along the
direction c through the point X of the same platelet at bias voltages ranging from 70 to 90 V (solid and dashed lines correspond to
the increasing and the decreasing voltages, respectively).

(b)
the data obtained by the electrooptical method, a jump
in the domain density at the boundary between the
points A and B equals 0.28. At the boundary between
the regions denoted as 150 and 300 V to the right of the
point C and not covered by Fig. 3c (see also Fig. 3a),
this jump is about 0.14. The gray-scale levels in Fig. 3a
are chosen arbitrarily and do not correspond to the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 6      2000
domain density. Using the electrooptical method, we
revealed an additional fine layered structure between
the points B and C (see scans 100 and 102 V). This
structure seems to be “internal” since it was not
revealed by the NLC method. The homogeneity or
inhomogeneity of the polar plates in the ac planes is
reflected by both the general switching pattern and the
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scatter in the switching voltages and the local hysteresis
loops. The (internal) inhomogeneity of polar cuts along
the polar b-axis can be successfully revealed by elec-
trooptics. It is discussed in more detail below in con-
nection with the possibility (discovered recently) to
extend the NLC method to nonpolar crystal cuts. In
general, this inhomogeneity is associated with a signif-
icant difference in the switching characteristics of
domains located in the near-surface layers and in the
platelet bulk.

In Fig. 4a, we show the local hysteresis loop
obtained by the electrooptical method at the point X of
the c scan for “almost homogeneous” 0.99-mm-thick
polished polar LATGS(10) platelet. The LATGS(10)
crystal, from which the platelet was cut, was grown in
the paraelectic phase by the supersaturation technique
at room temperature. The shape of this loop is close to
a rectangular single-component one (in fact, the loop is
formed by three components, but under the similar con-
ditions we sometimes observed the single-component
loops). It is also saturated and symmetric with respect
to its displaced center. All these features characterize
the homogeneity degree of the sample under study. The
distributions of the domain density for this platelet
(determined from the data on electrooptical scanning at

T = 16.5°C,  = 16 V, f = 6 kHz) at different bias
voltages are shown in Fig. 4b, from which it is seen that
the insignificant scatter of switching voltages, the
smooth coinciding curves obtained at the direct (solid
lines) and reverse (dashed lines) runs, and the existence
of only one switching center show the “growth” homo-
geneity of the ferroelectric platelets under study. Such
a homogeneity is also confirmed by the shape of the
local hysteresis loops (see the loop at the point X of the
given scan, Fig. 4a). Here, the inhomogeneity observed
is on a larger scale than in crystals without L-α-alanine
dopant, which manifests itself only during switching in
the bias fields and is characterized by one macroscopic
defect per 1 cm2 of the surface or per the surface as a
whole for the homogeneous platelet. This leads to the
switching and insignificant scatter in the switching
fields (see Fig. 4b). Note that in the ac plane, the (010)
pyramids are the most homogeneous—their domain
density (at the fixed field) is constant and the layered
structure manifests itself in a more pronounced scatter
of the switching field and deviations of the loops from
the rectangular shape.

Therefore, the inhomogeneity of TGS group of fer-
roelectrics revealed by our method reflects the distribu-
tion of defects in real crystals. This distribution is char-
acterized by the aggregation of domains into macro-
scopic structures in accordance with their switching
voltage and the contribution to the domain-density vari-
ation. The typical macroscopic structures are growth
pyramids, layers, blocks, and grains. The transition to
the homogeneous state corresponds to the simultaneous
increase of the macroscopic-structure scale and a
decrease in the switching-voltage scatter.

V~
eff
C

CONCLUSIONS

This method is suggested for characterization of
inhomogeneities in pyroelectric materials such as crys-
tals of the triglycine sulfate group. It is based on the
simultaneous use of the decoration with nematic liquid
crystals and the electrooptical scanning. We compared
and analyzed the switching and domain-density inho-
mogeneities in polar platelets cut out from ferroelectric
LATGS and LADTGS crystals grown by different
methods from the solutions with different contents of
L-α alanine. In particular, it was confirmed that the
crystals grown by the fixed supersaturation method are
more homogeneous than the crystals grown by the
method of temperature lowering. This concerns both
growth pyramids (in sectors) and internal pyramids in
growth layers (in zones). Thin ferroelectric and pyro-
electric platelets with the most homogeneous distribu-
tion of the L-α alanine dopant in the ac plane are
obtained by growing a single (010) pyramid and con-
trolling its internal layer growth inhomogeneity by the
electrooptical method.
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Abstract—The existence conditions of the circular cones of propagation directions for isonormal electromag-
netic waves of two independent branches for weakly absorptive optically uniaxial crystals with the same phase
velocities (which corresponds to the zero birefringence) have been studied, and the opening angles of these
cones have been determined. It is shown that these cones are formed solely due to absorption. The circular cones
of directions, which correspond to the equal absorption coefficients of two independent isonormal waves, were
also studied in a similar way. The regions of existence of these cones are described in the explicit analytical
form. The dependence of the opening angles of these cones on the components of the complex tensor of the
inverse electric permittivity of crystals is also analyzed. It is shown that these two types of cones cannot coexist
for one crystal. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

The fundamental characteristics of the optical prop-
erties of crystals are the dependences of refractive indi-
ces and absorption coefficients of electromagnetic
waves on the directions of their propagation. These
dependences are represented by the corresponding
wave surfaces, which have two sheets because, along
an arbitrary direction of an anisotropic medium, two
independent isonormal waves can propagate, the veloc-
ities and degrees of absorption of which in the general
case are different. In transparent crystals of any sym-
metry, the geometry of the refractive-index surface is
well known [1–3]. However, for absorptive crystals, it
is rather difficult to describe the refractive-index sur-
faces. The complicated form of the corresponding
equations makes it necessary to limit the consider con-
sideration to particular numerical examples [2, 4].
Alternatively, we deal with highly symmetric anisotro-
pic absorptive media here, providing the simplification
of the general equations, which allows the exhaustive
analytical examination of these surfaces. Such media
are represented by hexagonal, tetragonal, and trigonal
crystals with one highest order symmetry axis coincid-
ing with the optical axis of the crystals. The optical
properties of these crystals are analogous to the proper-
ties of transversely isotropic media. According to the
definition of the optical axis [1, 2, 5], the velocities and
the absorption coefficients of both independent
branches of electromagnetic waves along the optical
1063-7745/00/4506- $20.00 © 20985
axis coincide. However, in absorptive crystals, the
phase velocities and, therefore, also the refractive indi-
ces of two independent isonormal waves with different
absorption coefficients can coincide along the direction
different from the optical axis. This direction can be
related as an optical pseudoaxis. Obviously, the same
velocities of the isonormal waves correspond to the
zero birefringence. The equal absorption coefficients of
isonormal waves (but at different refractive indices) can
also exist for the waves propagating along the direc-
tions not parallel to the optical axis. The specific direc-
tions of both types form cones, and, since the media
studied are transversely isotropic, all these cones are
circular. 

Below, we describe our study of the characteristics
of the surfaces of electromagnetic waves propagating in
absorptive optically uniaxial crystals. The first of the
two articles of this cycle is devoted to the establishment
of the conditions for existence of the above-indicated
cones and the dependence of their opening angle on the
material characteristics. In fact, we deal with intersec-
tion of sheets in two-sheet wave surfaces for the crys-
tals studied.

We restrict ourselves to the case of weakly absorp-
tive crystals with due regard for the electromagnetic
fields, which preserve their wave structure at distances
considerably exceeding the wavelength (cf. [5, 6]). 
000 MAIK “Nauka/Interperiodica”
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INITIAL RELATIONSHIPS 

Thus, we consider the propagation of plane electro-
magnetic waves with the frequency ω, which are har-
monic in space and time (t), along the direction m
(m2 = 1) in absorptive crystals 

(1)

Here, n is the refractive index, which is a function of the
direction m, and c is the velocity of light in vacuum.
The amplitudes of the electric and magnetic fields, E
and H, respectively, depend on the coordinate r as 

(2)

where E(0) and H(0) are the vectors characterizing the
wave polarization and n' is its absorption coefficient
also dependent on m. By definition, the phase velocity
of such a wave is 

(3)

The concrete form of the dependences n(m) and
n'(m) is determined by the dielectric characteristics of
the crystal, namely, by the permittivity tensor or the

reciprocal permittivity tensor . The tensor  relates
the electric field E to the induction D in an electromag-
netic wave: 

(4)

In absorbtive crystals, the tensor  is complex: 

(5)

The imaginary part of tensor (5) describes absorption
of an electromagnetic wave. 

Being a material characteristic of the transversely

isotropic media, the tensor  in the standard crystallo-
physical reference system (where the axis x3 is parallel
to the highest-order symmetry axis [3]) is diagonal with
two of the three components being equal

(6)

The components β1, β3, , and  determine all the
characteristics of the media under consideration. 

For optically uniaxial crystals, the Maxwell equa-
tions, satisfied by electromagnetic fields (1) and (2), are
decomposed into two independent systems [1, 2]. One
of these systems describes the ordinary waves, whereas
the other, the extraordinary ones. In the case of weak
absorption, these systems of equations yield the follow-

E
H

E r t,( )

H r t,( )
≡ E 0( ) r( )

H 0( ) r( )
eiω nmr c t–⁄( ).=

E 0( ) r( )

H 0( ) r( )

E 0( )

H 0( )
e ω– n'mr c⁄ ,=

v c n.⁄=

B̂ B̂

E B̂D.=

B̂

B̂ β̂ iβ'ˆ .–=

B̂

B1 B2 β1 iβ1' , B3– β3 iβ3' .–= = =

β1' β3'
C

ing refractive indices and absorption coefficients of
ordinary (o) and extraordinary (e) waves: 

(7)

(8)

(9)

(10)

In the above equations, the angle θ is formed by the
wave normal m and the axis x3. We used the following
notation: 

(11)

(12)

(13)

In these equations, we used not only the components of

tensor  (6) but also the refractive indices and the
absorption coefficients measured directly in the experi-
ment. We also used the following notation in Eqs. (11)
and (12): 

(14)

Taking into account that phase velocity (3) is real and
the intensity of electromagnetic waves decreases dur-
ing their propagation, we arrive at the following ine-
qualities: 

(15)

In fact, quantity ξ (13) in expressions (7)–(10) is a
small parameter (ξ2 ! 1) determining the effect of
absorption. 

CONES OF ZERO BIREFRINGENCE 

Equating the refractive indices of two independent
branches (7) and (8) upon singling out the root θ = 0,

no
1
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3
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we arrive at the equation 

(16)

where 

(17)

Since the parameter ξ is small, Eq. (16) can be satisfied
only if the difference (1 – γ) is also small (which signi-
fies weak dielectric anisotropy of the crystal). Under
these conditions, q  1 and the second term in the
curly brackets can be ignored. Equation (16) is then
considerably simplified and yields 

(18)

Above, the following notation is used: 

(19)

(20)

(21)

(22)

In fact, Eqs. (18) represent two equivalent solutions
of Eq. (16). The cones of zero birefringence with the
opening angle 2ψ exist if the material characteristics of
the crystal satisfy the following inequalities, written
below in two following equivalent forms (Fig. 1): 

(23)

These cones exist in the three-dimensional region of
variation of the parameters γ, γ', and ξ. This region is
determined by relationships (19), (20), and (23)
(Fig. 2). At the boundaries of this region, the opening
angle of the cone takes its minimum and maximum
values: 

γ  γmax, ψ  0, (24)

γ  γmin, ψ  π/2. (25)

In the middle of this region, we have 

(26)

At the ψ angles set by Eq. (18), the refractive indices
of the ordinary and the extraordinary waves are given
by Eq. (7), with the absorption coefficients being differ-
ent and determined by the Eqs. (9) and (10). 

The results obtained can easily be interpreted. If
there is no absorption and the dielectric anisotropy is
weak [i.e., the parameter γ Eq. (11) is close to unity],
the refractive indices no and ne are close to one another
(Fig. 1). Under these conditions, even a low absorption
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can essentially change the difference between the
refractive indices. Indeed, if the absorption is such that
the parameters γ, γ', and ξ satisfy the relationships (19),
(20), and (23), the refractive indices of two isonormal
waves are equal along the propagation directions char-
acterized by the angles ψ set by formula (18). 

The conditions for the existence of the above cones
seem to be rather severe: the width of the existence
region is of the order of ξ2 {where ξ ~ , Eq. (13)}
(Fig. 2). This region is extremely narrow in the vicinity
of the point γ = γ' = 1 corresponding to the isotropy of
the medium. However, one should take into account
that the material characteristics of the crystal are fre-
quency-dependent; therefore, varying ω, it is possible
to satisfy conditions Eq. (23). Indeed, at the frequencies
close to resonance (in the vicinity of the poles of the
complex permittivity tensor), the components of tensor

 Eq. (8) can be represented as [7] 

(27)

For low dielectric anisotropy, the resonance fre-
quencies ω1 and ω3 and the coefficients A1 and A3 are
considered to be close to one another. In Eq. (27), the
absorption parameters δj are assumed to be small, with
both δj and Aj being frequency-independent. 

For simplicity, we also assume that the parameters
in Eq. (27) satisfy the following inequalities: 

(28)

In this case, the cones exist only in a very narrow

no'

B̂

B j
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0 δ1 δ3 ! ω3 ω1–( ) ω1⁄  ! 1, ω ω1.–<
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ψ

Fig. 1. The section of the refractive-index surface under the
condition of the fulfillment of Eqs. (22): (1) ne, (2) no. 
0



988 ALSHITS et al.
1

γ'

0 1 γ

3

2

1
π/2 ù ψ > 0

3/2 ξ2

1 γ

3/4 ξ2
3/8 ξ2

3/8 ξ2

1

2

3
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frequency range (Fig. 3): 

(29)

where 

(30)

(31)

Thus, despite the severe condition (23), the exist-
ence of the cones of zero birefringence is not limited to
“exotic crystals” alone, which have very specific
parameters. These cones can exist in the vicinity of the
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Fig. 3. Angle ψ as a function of frequency ω in the vicinity
of the resonance frequencies ω1 and ω3 . 
C

resonance frequency of the dielectric-constant tensor in
various media. 

CONES OF EQUAL ABSORPTION 
COEFFICIENTS 

Equating Eqs. (9) and (10) for  and , respec-
tively, we arrive at the expressions describing the cones
of equal absorption of isonormal waves. Upon singling
out the root θ = 0, this equation can be represented in
the form 

(32)

which is a square equation with an unknown ,
whereas its coefficients are the functions of two mate-
rial characteristics, γ and γ', of the crystals. Unlike the
previous case, the value of γ should not be close to
unity. 

The solution of Eq. (32) has the form 

(33)

where 

(34)
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The cones of equal absorption of isonormal waves
exist in the two-dimensional region of the variation of
the γ and γ' parameters (Figs. 4, 5). One can see that,
similar to the previous case of the cones of equal veloc-
ities, this region is described by inequalities (23), where
the interval limits, γmax and γmin, are substituted by the
functions 

(35)

respectively. 

Similar to the previous case, the angle  attains its
minimum and maximum values at the boundaries of the

γ̃max 2γ' 1+( ) 3, γ̃min⁄ γ'( )23 ,= =

ψ̃

Fig. 4. The surface (γ, γ'). ψ̃

π/2

0

1

2

3
γ

3

2

1

ψ∼

γ'
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existence region; expressions (23) and (24) become
valid upon the following substitutions: ψ  ,
γmax  , and γmin  . In the middle of the
existence range (Fig. 5, 2), we have 

(36)

For angles  satisfying Eq. (33), the absorption
coefficients for the ordinary and the extraordinary
waves are described by Eq. (9). The refractive indices
of these waves are described by Eqs. (7) and (8). 

It is seen from the results obtained (Figs. 4–6) that
the existence range in the vicinity of the isotropy point
(γ = γ' = 1) is very narrow. Thus, if γ' = 1.1, the bound-
aries of the variation range of the parameter γ are set by
the values 

 ≈ 1.0666,  ≈ 1.0656,  –  ≈ 0.0010.

With a further increase in the distance from the isot-
ropy point, this interval increases, and, at γ' = 2, we
obtain 

 ≈ 1.67,  ≈ 1.59,  –  ≈ 0.08.

However, even if the anisotropy is not too strongly pro-
nounced (the existence region of the equal-absorption
cones is rather narrow), it is possible to “enter” this
region because of the frequency dispersion of the
dielectric constant. Thus, in the vicinity of the close
resonance frequencies ω1 and ω3 [see Eq. (27)], a nar-
row frequency range can arise in which the angle  can
vary over the whole range of its values: 0 <  ≤ π/2.
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This situation is analogous to that considered for the
cones of equal velocities (Fig. 3). 

RESULTS AND DISCUSSION

Traditionally, the transparent nonabsorptive opti-
cally uniaxial crystals are divided into two groups—
positive and negative—depending on the mutual loca-
tion of the sheets in the two-sheet surface of the refrac-
tive indices no, e(m) [2, 3]. This terminology uniquely
determines the sign of the birefringence in these crys-
tals. If the sheet no(m) is located inside the sheet ne(m),
then the crystal is optically positive; if the sheet no(m)
is located outside the sheet ne(m), the crystal is opti-
cally negative. However, if optically uniaxial crystals
are absorptive, this classification cannot be regarded as
universal anymore because, as we have seen, the sheets
can intersect one another (Fig. 1). 

The comparison the existence regions of the cones
of the equal velocities and cones of the equal absorp-
tion coefficients shows that these regions do not overlap
(Figs. 2, 5). In other words, in an absorptive optically

0 γ

ψ

∼ ∼

0.63 0.65 0.67 1.31 1.32 1.33

∼ ∼

∼

π/4

π/2

γ' = 0.5 γ' = 1.5

0 γ'0.1 0.2 0.3 1.76 1.80 1.84
∼ ∼

π/4

π/2

γ = 0.5 γ = 1.5

Fig. 6. The sections of the surface (γ, γ') by the planes γ =
const and γ' = const. 

ψ̃

C

uniaxial crystal, these two types of cones cannot coex-
ist. In particular, this signifies that no cones of optical
axes can exist in the crystals under study. Only a cone
of one of the two above types can exist, or no cones
exist at all. 

It should be indicated that the directions along
which the absorption coefficients of two independent
sheets coincide can be of practical interest. Indeed, if
the waves propagate along an arbitrary direction of the
absorptive crystal, then, generally speaking, they are
absorbed differently. At a sufficiently large distance
from the source, only one wave can “survive,” namely,
the one which is less absorbed by the crystal. However,
if the propagation direction of the wave is chosen in
such a way that the waves are absorbed, then the ampli-
tude ratio of these waves is constant during their prop-
agation. This may be important for designing and con-
structing various optical devices based on the interfer-
ence of the waves with various polarizations. 
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Abstract—The conditions are established under which extraordinary electromagnetic waves in absorptive opti-
cally uniaxial crystals have a group velocity parallel to the wave normal (which corresponds to the definition of
ordinary waves). It is shown that absorption can result in the formation of a circular cone of propagation direc-
tions of such specific ordinary waves, which can be formed only in nontransparent crystals. If the directions of
wave propagation corresponding to the extreme directions of the refractive-index surface are symmetric (i.e.,
located along the optical axis or normally to it), absorption can cause the transformation of the refractive-index
maximum into the minimum. The circular cones of the directions of wave propagation, for which the absorption
coefficients of electromagnetic waves have extreme values, are also studied. © 2000 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

As is well known, both ordinary and extraordinary
waves can propagate in transparent optically uniaxial
crystals. Ordinary waves can propagate along an arbi-
trary direction in a crystal and, in accordance with the
definition given elsewhere [1], have a group velocity
parallel to the wave normal (the propagation direction).
This property is also inherent in extraordinary waves,
but only if these waves propagate along two symmetric
directions (along the optical axis and normally to it).
This becomes quite clear if one takes into account that
the direction of the group velocity is parallel to the geo-
metric normal to the refractive-index surface [2]. It
should also be indicated that the refractive-index sur-
face of ordinary waves is a sphere, whereas that of
extraordinary waves, an ellipsoid of rotation.

Below, we show that because of absorption, the
group velocity of an extraordinary wave can be parallel
to the wave normal also for the nonsymmetric direc-
tions of propagation (for the symmetric directions of
propagation, this property takes place at any degree of
absorption). The establishment of the propagation
directions of such “specific ordinary waves” is closely
related to the characteristic features of the refractive-
index surfaces of absorptive optically uniaxial crystals
begun in [3].

In essence, our approach reduces to the consideration
of only weakly absorptive crystals, where the electro-
magnetic fields preserve their wavelike structure within
the distances much longer than the wavelength [4, 5].

All the initial relationships necessary for the further
consideration can be found in [3].
1063-7745/00/4506- $20.00 © 20991
ORDINARY WAVES CAUSED 
BY ABSORPTION

Consider the geometric characteristics of refractive-
index surfaces of absorptive optically uniaxial crystals
(Figs. 1a–1d).

In a nonabsorptive isotropic medium, the tensor of
the reciprocal dielectric constant is real; its diagonal
components are equal; and the difference γ – 1, which
characterizes the dielectric anisotropy goes to zero.
Under such conditions, the refractive-index surface of
extraordinary waves ne(m) degenerates into a sphere. If
γ – 1 ≠ 0, this surface is an ellipsoid of rotation and, if
this ellipsoid is substantially different from a sphere,
the weak absorption cannot qualitatively change its
geometry.1 However, if the difference γ – 1 is small and
the ellipsoid only slightly differs from a sphere, then
weak absorption can give rise to the formation of a new
extremum on the surface, and the derivative dne/dθ
goes to zero at angles ϑ  = χ satisfying the equation

(1)

Here,

(2)

(3)

(4)

1 The refractive-index surface of ordinary waves remains a sphere
irrespective of the degree of absorption.

χ
γmax γ–
γ γmin–
------------------.arctan=
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γmin γmin 3ξ2
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Fig. 1. Refractive-index surfaces for absorptive optically uniaxial crystals at different ratios of the anisotropy parameters: (a) γ ≥
γmax, (1) ne, (2) n0; (b) conditions Eq. (6) are met, i.e., the cone of specific ordinary waves and the cone of zero birefringence coexist
(here, χ is the angle determining the cone of specific ordinary waves, and angle ψ determines the cone of the zero birefringence).

(c) Conditions Eq. (7) are fulfilled (i.e., there exists only the cone of specific ordinary waves); (d) γ ≤ ² . Arrows indicate the
normals to the refractive-index surface and correspond to specific ordinary waves.

γmin
We should like to emphasize that Eq. (1) and the
analogous equation determining the cones of zero bire-
fringence are similar [3]. These equations differ only by
the substitution γmin  . Thus, the upper bound-
ary of the existence of these cones γmax considered here
corresponds to the upper limit of the existence of cones
of zero birefringence. However, the lower limits are dif-
ferent:  < γmin (here, γmin is the lower limit of the
region of existence of the cones of zero birefringence
[3], whereas  is the lower limit of the existence
region of the cones of specific ordinary waves). The
region of existence of extrema is somewhat wider
(Fig. 2).

One can readily see that the extremum points con-
sidered here are the maxima. For angles χ satisfying
Eq. (1), we have

(5)

The existence of these extrema and, therefore, the
specific ordinary waves due to absorption, correlates
with the existence of cones of zero birefringence.
Indeed, both exist simultaneously if the following con-
dition is fulfilled (Fig.1b):

γmin ≤ γ < γmax. (6)

At the same time, under the condition

 < γ < γmin, (7)

only specific ordinary waves can exist (Fig. 1c).
Outside ranges (6) and (7), neither specific ordinary
waves nor the cones of zero birefringence can exist
(Figs. 1a, 1d).

The cones studied here can exist solely due to
dielectric anisotropy. In the transition to an isotropic

γmin

γmin

γmin

ne χ( ) ne( )max n0

γmax γ–( )2

8 β1 γmax γmin–( )
------------------------------------------.+= =

γmin
C

absorbing medium, where γ = γ ' = 1 and γmax =  = 1,
the region of existence of these cones disappears.

Now consider the symmetric extrema of the func-
tion ne(ϑ) at ϑ = 0 (ne(ϑ = 0) ≡ n0) and at ϑ  = π/2 (ne(ϑ  =
π/2) ≡ ) located on the surface ne(m). One can easily
see that at γ ≥ γmax, the value of n0 corresponds to the
maximum, whereas the value of , to the minimum

(Fig. 1a). On the other hand, at γ ≤ , the situation is

reversed; i.e., n0 corresponds to the minimum and  to
the maximum (Fig. 1d). If the surface ne(m) has a
nonsymmetrically located maximum [i.e., conditions
Eqs. (6) or (7) are fulfilled], both n0 and  necessarily
correspond to the minima (Figs. 1b, 1c). It should also
be indicated that, in transparent optically uniaxial crys-
tals, the extrema of n0 and  have opposite signs,
whence it follows that absorption can give rise to the
change of the extremum sign; i.e., it can transform the
maximum into the minimum.

EXTREMA OF THE (m) SURFACE

In this case, no special constraints are imposed on
the parameter γ. In addition to the extrema correspond-
ing to the wave propagation along the optical axis and
normally to it, the function (ϑ) can also have an

extremum at an angle ϑ  =  satisfying the following
equation:

(8)

where

 = (2γ' +1)/3, (9)

 = 3γ '/(γ ' + 2). (10)

γmin

ne

ne

γmin

ne

ne

ne

ne'

ne'

χ̃

χ̃ arccot
γ̃max γ–

γ γ̃min–
------------------ 3

γ' 2+
------------- 
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The absorption coefficient for this extremum (the max-
imum) is determined by the formula

(11)

The existence of extrema (8) correlates with the
existence of the cones of equal absorption of isonormal
waves [3]. This correlation can be described by ine-
qualities (6) and (7) upon the substitutions γmax 

, γmin  min, and   . Then, condi-
tions (6) describe the region in which the cones of the
extreme absorption and the cones of equal absorption
coefficients coexist, whereas conditions (7) describe
the region in which only the cones of extreme absorp-
tion exist (Fig. 3). The upper limit  of the existence
region of extrema (8) coincides with the upper limit of
the existence region of cones of equal absorption coef-
ficients. However, the lower limits are different: the
region of existence of extrema (8) is wider, because

 ≤  ≡ . (12)

Here,  is the lower limit of the existence region of

cones of equal absorption coefficients [3], whereas 
is the lower limit of the existence region of the cones of
extreme absorption. These maxima of absorption coef-
ficients exist solely because of dielectric anisotropy; in
the transition to an absorptive isotropic medium, where

 =  = 1, the region of existence of these max-
ima disappears.

Qualitatively, the geometry of the surface (m) is
analogous to the geometry of the surface ne(m)
described above (Figs. 1a–1d).

CONCLUSIONS
The comparison of the existence regions of the

cones of specific ordinary waves and the cones of the

ne' χ̃( ) ne'( )max n0'
2

3 3
---------- γ' 1–( )3

γ 1–( )2 γ' γ–( )
------------------------------------= = .

γ̃max γ̃ γmin γ̃min

γ̃max

γ̃min γ̃min γ'( )23

γ̃min

γ̃min

γ̃max γ̃min

ne'
C

extreme absorption shows that the regions of their
existence do not overlap (Figs. 2, 3). A similar situation
also takes place for the cones of zero birefringence and
cones of equal absorption coefficients [3].

Under certain conditions, the cones considered
above can exist in the vicinity of the resonance frequen-
cies of the permittivity tensor of the crystal [3].

All the phenomena discussed are caused by the
crystal anisotropy and disappear at the anisotropy
parameter tending to zero.

Thus, we managed to establish the characteristic
features of the effect of absorption on the optical prop-
erties of uniaxial crystals. It is shown that the absorp-
tion effect is not reduced to a mere decrease of electro-
magnetic-wave intensities during their propagation in
the crystal. It can lead to qualitatively new phenomena
not taking place in transparent crystals.
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with Inclined Domain Boundaries
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Abstract—It is shown that a stripe domain structure with inclined domain boundaries provides the character-
istic trapezoidal distribution of the Faraday component of magnetization responsible for the magnetooptical dif-
fraction. The distribution of the light field diffracted from the domain structure is obtained, and the dependences
of the intensity and polarization characteristics of this field on the structure parameters are determined. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The theoretical aspects of magnetooptical diffrac-
tion from domain structures of single crystal ferrite gar-
nets films and thin plates of rare-earth orthoferrites
have been considered in numerous studied [1–7]. Most
of the theoretical studies of magnetooptical diffraction
were performed in the approximation of the binary dis-
tribution of magnetization in the magnetic lattice. In
real stripe domain structures, the thickness of domain
walls is much less than the width of the stripe domains,
which justifies the use of the above approximation for
describing magnetooptical diffraction from domain
structures with vertical domain boundaries. However,
the binary distribution of magnetization cannot explain
some anomalies of the magnetooptic diffraction
observed in the experiments with the films character-
ized by inclined domain boundaries [8, 9]. This is asso-
ciated, first and foremost, with the fact that the real dis-
tribution of the Faraday component of magnetization
responsible for light diffraction from stripe domain
structures with inclined domain boundaries is more
complicated than a binary distribution.

Domain boundaries in garnet films are vertical only
if one of the crystallographic planes, e.g., (111), coin-
cides with the film plane. However, the technology of
film treatment is such that the plane normal to the film
always slightly deviates from the exact crystallographic
direction [10]. The deviation of the easy-magnetization
plane and the domain boundary from the surface nor-
mal can exceed the corresponding deviation of the
[111] axis.

The general form of a stripe domain structure with
inclined domain boundaries is shown in Fig. 1a. For
typical Bi-containing ferrite-garnet films, the exchange
constant is A ≈ 3 × 10–7 erg/cm, the constant of uniaxial
anisotropy is K ≈ 5 × 104 erg/cm3, and the saturation
magnetization is 4πM0 ≈ 103 G. The thickness of

domain walls equals ∆ ≅  π  ≈ 0.1 µm, and theA/K
1063-7745/00/4506- $20.00 © 20995
domain width equals S ≅  (2πL )
1/2

 ≈ 5 µm (at
the film thickness L ≈ 10 µm). Since ∆ ! S, the transi-
tion over the domain boundary results in the stepwise
spin rotation by an angle of 180°.

The distribution of the Faraday magnetization com-
ponent along the direction of light propagation in stripe
domain structure and, therefore, the effective magne-
tooptic parameter Q(y) are proportional to this magne-
tization component and are essentially dependent on
the inclination angle β of domain boundaries. Thus,
under the normal light incidence onto the specimen
(Fig. 1a), the magnetooptical parameter distribution is
of the trapezoidal type if the width of the transition
region δ = L  < S. If δ = S, the trapezoidal distribu-
tion acquires a sawtooth shape (Fig. 1c). If δ > S, the
Q(y) distribution changes into trapezoidal again, with
the maximum value of the effective magnetooptic
parameter  = Q0(1 – 2∆/δ), half-period S ' = δ – ∆,
and the width of the transitions region δ' = δ – 2∆
(Fig. 1d). Below, we describe our study of the effect of
domain-boundary inclination on the intensity and
polarization characteristics of the light field diffracted
from the magnetic-domain lattices with the above types
of the magnetization distribution and the effective mag-
netooptical parameter.

BASIC RELATIONSHIPS

Let a laser beam be normally incident onto a single
crystal layer with a stripe domain structure and inclined
domain boundaries. In this case, Mz is the component of
the magnetization vector M in the film, which is distrib-
uted in the film according to the trapezoidal law along
the 0Y-axis. In the approximation of thin layers (L !
D2/λ, where D is the period of the domain structure and
λ is the wavelength of the light wave), the distribution

AK /M0
2

βtan

Q0'
000 MAIK “Nauka/Interperiodica”
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of the light transmitted by the layer in the far zone is
determined as

(1)

where the factor C = (1/ )exp[ik0(z + /2z)],
k0 = 2π/λ, f = y0/λz, y0 is the coordinate in the plane of
the diffraction pattern (i.e., on the screen), and y is the
current coordinate of the exit surface of the film. The
integration limits in Eq. (1) are determined by the area
of the illuminated region equal to a = (2N + 1)D, where
N is a large integer (N ≈ 50 at the laser-beam diameter
a ≈ 1 mm and D ≈ 10 µm). If the light propagates in the
longitudinal direction in the medium (k || M, where k is

E y0 z,( ) C E y L,( ) 2πify–( )exp y,d∫=

λz y0
2

z

y

Q(y)
Q0

–Q0

–δ/2 δ/2 S
–S

(a)

(b)

Q0

–Q0

S
–S –δ/2 δ/2

(c)

Q0

–Q'0

δ'/2–S'

S

Q'0

S'
∆

(d)

Fig. 1. (a) Stripe domain structure with inclined boundaries
and (b–d) various types of the distribution of the effective
magnetooptic parameter.
C

the wave vector of the light wave), the eigenwaves of
the system are circularly polarized waves and the field
in the medium is described by the expression

(2)

Here,  is the field at the entrance surface of the film

and the wave number is k = k0 , where ε is the dielec-
tric constant of the medium (in the general case, it is a
complex quantity, whose imaginary part determines
light attenuation in the film). The dependence of the
magnetooptical parameter on the coordinate y is deter-
mined in accordance with the trapezoidal law (Fig. 1b)
with the widths of the oppositely magnetized domains
being different:

(3)

where S1 + S2 = D. With due regard for Eq. (2), the field
at the exit surface of the film is determined as

(4)

Substituting the above expression into Eq. (1) and inte-
grating the result, we arrive at the distribution of the cir-
cular components of the diffracted field in the observa-
tion plane:

(5)

where J± is the sum of five integrals corresponding to
the domains of setting the function Q(y). Upon calcula-
tions, we obtain

Here, bi = Si – δ, α± = πfδ ± FL, and F = πQ0/λ is the
specific Faraday rotation of the polarization plane. The
analysis of Eq. (5) shows that, in the general case, the
diffraction maxima of the magnetooptic diffraction
spectrum are located at the points f = n/D, where n = 0,
±1, ±2, …, whereas their angular positions and widths
are determined by the relationships sinϕn = nλ/D and
∆ϕn = λ/a, respectively. The further analysis of Eq. (5)
is performed for various particular cases of the stripe

E
±

E0
±

ik± y( )z[ ] , k± y( )exp k 1 Q y( )/2+−( ).= =

E0
±

ε

Q y( )

2Q0 S1 y–( )/δ, S1 δ/2 y S1≤ ≤–

Q0, δ/2 y S1 δ/2–≤ ≤
2Q0y/δ, δ/2 y δ/2≤ ≤–

Q0, S2– δ/2 y δ/2–≤ ≤+–

2Q0 y S2+( )/δ, S2 y S2– δ/2,+≤ ≤––

=

E
±

y( ) E0
±

ikL( ) ikLQ y( )/2+−[ ] .expexp=

E
±

y0( ) i
2
---CE0

± πfasin
πfDsin

----------------- ikL( )J±,exp=

J± 2i
1
πf
------ δ

α±
------– 

  α±sin=

–
δ

α+−
------ 2πif S2( )exp 2πif S1–( )exp–[ ]

+ δ
α+−
------ 1

πf
------– 

  i α± 2πf b2+( )[ ]exp{

– i α± 2πf b1+( )–[ ] } .exp
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domain structure. In the case of linearly polarized inci-
dent radiation, the polarization state of the diffracted
light field can be most conveniently analyzed not in
terms of the circular components E± but rather in the
Cartesian components Ex = (E+ + E–)/2 and Ey = (E+ –
E–)/2i . In what follows, it is assumed that the field is
E0 = txE0, i.e., that the field is x-polarized.

Now determine the field in the zeroth diffraction
maximum of the nonsymmetric stripe domain structure
with due regard for inclination of domain boundaries.
Assuming that f = 0 in Eq. (5) and passing to the Carte-
sian field components, we obtain

(6)

where the constant A = CE0a. It follows from Eq. (6)
that the polarization plane in the zeroth maximum is
rotated with respect to the polarization plane of the
incident radiation by an angle of

(7)

For rather thin films, the condition FL ! 1 should be
fulfilled, and expression (7) is transformed into the
relationship

(8)

whence it follows that, in this case, the contribution of
transition regions to the formation of the light-field
polarization in the zeroth order of diffraction is unes-
sential. For thick films with considerable specific Fara-
day rotation, the rotation of the polarization plane in the
zeroth maximum should essentially be determined by
the width of the transitional region. Thus, for a thick
film with FL ≈ π/2, the following relationship should be
fulfilled:

(9)

For vertical domain boundaries (δ = 0, bi = Si), the rota-
tion of the polarization plane in the zeroth maximum is
determined by the well-known relationship

(10)

whence it follows that for a symmetric stripe domain
structure with both inclined and vertical domain bound-
aries, θ0 = 0; in other words, the field in the zeroth dif-
fraction maximum is polarized in the same way as the
incident radiation.

Figure 2 shows the rotation angle of the polarization
plane of the light field in the zeroth diffraction maxi-
mum θ0 as a function of the asymmetry parameter ∆S/D
of the stripe domain structure (Fig. 2a) for two values

E
0( ) A

D
----e

ikL tx
2δ
FL
------- FL b1 b2+( ) FLcos+sin





=

---– ity b1 b2–( ) FLsin




,

θ0

b2 b1–( )FL
2δ b1 b2+( )FL FLcot+
--------------------------------------------------------- .arctan=

θ0 ∆S/D( )FL[ ] ,arctan=

θ0 π b2 b1–( )/4δ[ ] .arctan≅

θ0 ∆S/D( ) FLtan[ ] ,arctan=
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of the effective thickness of the film (FL = π/2 and π/12)
and (Fig. 2b) for the effective thickness at the fixed
value of the asymmetry parameter (∆S/D = 0.5). The
above dependences are given for several values of the
transition-region widths (curves 1–7): δ/D = 0, 0.1, …,
0.6. It is seen that for thin films (FL ! 1), the effect of
the domain boundary inclination is unessential,
whereas in the films with FL = π/2 and with vertical
grain boundaries the angle θ0 is independent of the
domain-structure asymmetry.

π/2

π/4

0 0.4 0.8 ∆S/D

θ0

FL = π/2

FL = π/12

1
2

3
4
5
6
7

1
7

π/2

π/4

(a)

(b)

π/2π/40 FL

1

2

3

4

5
6
7

Fig. 2. Dependences of (a) the rotation angle of the polariza-
tion plane θ0 in the zeroth diffraction maximum on the
asymmetry parameter ∆S/D of the stripe domain structure
and (b) the effective thickness of the film, FL, at ∆S/D = 0.5
(curves 1–7) for several values of the parameter δ/D: 0,
0.1, …, 0.6 (curves 1–7).
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SPECTRUM OF MAGNETOOPTIC DIFFRACTION 
FROM SYMMETRIC STRIPE DOMAIN 

STRUCTURES

The further analysis is performed for a symmetric
stripe domain structure (b1 = b2 = b). In this case, the
distribution of the diffracted light field has the form

(11)

E A ikL( ) πfasin
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m = 3

(a)

        /A × 103
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(b)
2

1

0 0.2 0.4 δ/D

Fig. 3. Dependence of the field amplitude in the first four
diffraction maxima on the transition-region width δ/D for
the symmetric stripe domain structure.

Ey
m( )

Ex
m( )
C

One can readily determine the changes in the diffrac-
tion spectrum caused by inclination of the domain
boundaries. Unlike a symmetric stripe domain structure
with vertical domain walls, the diffraction spectrum
from the stripe domain structure with inclined domain
boundaries has, along with the odd maxima of the
y-polarization (fD = 2n – 1), the even maxima (fD = 2n)
with the x-polarization:

(12)

As was to be expected [5], at δ = 0, the diffraction spec-
trum has only odd orders of diffraction with the
y-polarization:

(13)

Consider the particular case of a stripe domain
structure with the sawtooth distribution of the Mz-com-
ponent. In this case, δ = D/2 and the magnetooptic dif-
fraction spectrum is provided by the transitional
regions with the linear law of the distribution of the
effective magnetooptic parameter Q(y):

(14)

Figures 3a and 3b show the dependences of the field
amplitudes in the first two odd and the first two even
diffraction maxima on the width δ/D of the transition
region for the film with the symmetric stripe domain
structure of the thickness L = 8 µm and the parameters
F = 1 °/µm and α = 500 cm–1. It is seen that the field
amplitude is maximal in the even orders at δ ≠ 0,
whereas in the odd orders, the film amplitude is maxi-
mal only in the case of the vertical domain boundaries.
The formation of a kink at δ/D = 0.5 is characteristic of
the above dependences and is associated with a
decrease of the maximum magnetooptic parameter
observed with a further increase of the angle of
domain-boundary inclination.

+
δ
α–
-----

α–

2
-----

πfD α––
2

---------------------sinsin




.

Ex
2n( )

Ae
ikL δ

D
----

α–sin
α–

-------------
α+sin

α+
--------------+

=

–
D

πnδ
--------- FL

2πnδ
D

-------------
 ,sincos

Ey
2n 1–( )

iAe
ikL δ

D
----

α–sin
α–

-------------
α+sin

α+
--------------–

=

+
D

π n 1/2–( )δ
----------------------------- FL

2n 1–( )πδ
D

---------------------------cossin 
 .

Ex
2n( )

0, Ey
2n 1–( ) iA

π n 1/2–( )
------------------------- FL ikL( ).expsin= =

Ex
2n( )

1–( )n 1+
A

FL FLsin

πn( )2 FL( )2–
--------------------------------- ikL( ),exp=

Ey
2n 1–( )

1–( )n 1+
iA

FL FLcos

π2 n 1/2–( )2 FL( )2–
-------------------------------------------------- ikL( ).exp=
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Figure 4 shows the field amplitude in the first two
diffraction orders as a function of the effective film
thickness for various values of the δ/D parameter. In the

first order of diffraction, the  field (which was
polarized orthogonally with respect to the polarization
of the incident wave, Fig. 4a) has the maximum value
of the parameter δ ≤ D/2 at the film thicknesses

(15)

At δ > D/2, the maximum of the diffracted field
shifts to the lower thickness values determined by the
expression

(16)

The maxima of the diffracted field with the incident-

wave polarization  (Fig. 4b) correspond to the

thickness , which is the first positive root of the
equation

(17)

where x = FL. The above dependences show that

 >  and the maximum amplitudes attained in
the indicated orders of diffraction are essentially
dependent on the width δ of the transition region, i.e.,
the inclination angle of domain boundaries.

ADDITIONAL ORDERS OF MAGNETOOPTIC 
DIFFRACTION

Along with the maxima of even and odd diffraction
orders, the spectra of magnetooptic diffraction have
two symmetric maxima formed due to diffraction from
the transitional regions characterized by the linear dis-
tribution law Q(y) not observed in the spectra from
stripe domain structure with vertical domain walls.
These maxima are located at the points πf = ±γ, where
γ = FL/δ. The angular positions of these maxima are set
by the angles ϕδ = ±λFL/πδ. The corresponding field
components are determined as follows:

(18)

In the case of a sawtooth pattern from the stripe domain
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structure (S = δ), we have

(19)

whence it follows that at FL ! 1, the field in the diffrac-
tion maxima of the orders under study is polarized

almost along the x-axis and /  = ±iF2L2/2. Com-
paring the field amplitudes in the indicated additional

Ex
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Fig. 4. Dependence of the field amplitude in (a) the first and
(b) the second diffraction maxima on the effective thickness
of the film for various values [curves (1–7)] of the parameter
δ/D = 0, 0.1, …, 0.6.
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and main (plus and minus first) orders of diffraction
show that, for the films with FL ! 1 and a/S @ 1, we
have

(20)

The distinguishing feature of these additional diffrac-
tion orders is the dependence of the orientation of the
polarization plane of the field in the diffraction maxi-

mum θδ =  on the width δ of the transi-
tion region. For the film with the parameters F ≅
1 °/µm, L ≅ 8, D ≅ 8, δ ≅ 2 µm, and the light wavelength
λ = 0.63 µm, the angular position of the above orders of
diffraction is set by the angles ϕ(1) ≅  4.5° and ϕ(δ) ≅  1°.

MAGNETOOPTIC DIFFRACTION SPECTRUM 
FROM AN ISOLATED DOMAIN BOUNDARY

Consider the diffraction spectrum formed by a laser
beam focused on the inclined domain boundary and
transmitted by the transition region with the linear
dependence Q(y). Assuming that the beam width equals
the width δ of the transition region, we obtain from
Eq. (11)

(21)

where the upper and the lower signs in the expression
for the component Ey relate to the regions with a
decreasing and an increasing dependences Q(y),
respectively. For the regions of both types, the spectrum
of magnetooptic diffraction should have the zeroth
maximum (f = 0) and two side maxima (f = ±FL/πδ). In
this case, the field in the zeroth and side maxima in the
region with the decreasing dependence Q(y) has the
form

(22)
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C

With the change of the increasing type of the transition

region to a decreasing one, the signs before 
change to the opposite ones; i.e., the light field in these
two cases is polarized in different ways. The angular
position of the diffraction orders of the side reflections
for the film with the above parameters is determined by
the angle ϕδ ≈ 1°.

The above analysis of the specific features of mag-
netooptic diffraction can be performed in more detail
by changing the trapezoidal distribution of the magne-
tooptic parameter by another, more adequate (to the
real magnetization) distribution in the stripe domain
structure with inclined domain boundaries. However, it
is the comparison of the results obtained in such analy-
sis with the corresponding experimental data that can
provide the establishment of the real distribution.
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