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Abstract—A kinetic description is developed for stimulated Brillouin scattering (SBS) in a dusty plasma with
negatively charged dust grains. The threshold for SBS and the width of its spectral line are determined in the
limits of weak and strong damping of the dust ion acoustic waves involved into the scattering process. For dif-
ferent mechanisms of the dissipation of dust ion acoustic waves, the threshold for SBS and the width of its spec-
tral line are obtained as functions of the dust grain charge and the dust number density. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable attention has been
devoted to the study of dusty plasmas (see, e.g., [1–4]).
A distinguishing feature of dusty plasma is that it con-
tains heavy charged grains, whose mass Md is much
larger than the mass of the ions Mi and which can carry
a fairly large effective electric charge Zd. The wave
properties of a dusty plasma differ from those of a con-
ventional plasma: in particular, the presence of dust
grains changes the wave spectra peculiar to the latter
and gives rise to new waves, which show up even in
such dusty plasmas that can easily be created under lab-
oratory conditions [3]. This is exemplified by dust ion
acoustic waves [5]. In view of the peculiar features of
these waves, it is of interest to consider how they man-
ifest themselves in a parametric instability such as stim-
ulated Brillouin scattering (SBS).

Before proceeding to a description of the distinctive
features of SBS in a dusty plasma, it is necessary to
recall the known results on dust ion acoustic waves and
on dusty plasma itself. In what follows, we will con-
sider a plasma consisting of electrons, one ion species,
and dust grains. The electroneutrality condition for
such a plasma has the form

(1.1)

where Ni is the ion density, ne is the electron density, Nd

is the dust number density, e is the charge of an electron,
|e|Zi is the charge of an ion, and eZd is the charge of a
grain. For simplicity, we assume that Zi = 1. The usual
practice is to speak of dusty plasma when the mass of the
grains in the plasma is several orders of magnitude larger
than that of the ions and the dust charge density is not too
low in comparison to the electron (or ion) charge density,
ZdNd ~ Ni. The latter condition is satisfied even for a
plasma in which the dust number density Nd is relatively
low, so that, owing to their large sizes, the grains can
carry a rather large charge,

(1.2)

ZiNi Zd Nd ne,+=

Zd @ 1.
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In the case in which the grains acquire a negative
charge primarily by absorbing the electrons that are
incident on their surfaces, condition (1.1) gives ne < Ni.
In such a plasma, dust ion acoustic waves can exist that
obey the dispersion relation [5]

(1.3)

and have the phase velocity

(1.4)

where k is the wavenumber, ωLi =  is the

ion Langmuir frequency, rDe =  is the
electron Debye radius, Te is the electron temperature,
and κB is Boltzmann’s constant. Note that, in this case,
the dust ion acoustic velocity is higher than the thermal
velocities of the ions and grains but is lower than the
electron thermal velocity.

In this paper, we are interested in the distinctive fea-
tures of SBS generated during the excitation of dust ion
acoustic waves. This is why, in Sections 2 and 3, we
present the relevant results on the contributions of the
electrons, ions, and grains to the longitudinal dielectric
function of the plasma. In Section 4, we present a
method of deriving the spectrum of the dust ion acous-
tic waves and present the rates of collisional and colli-
sionless damping of the dust ion sound by electrons, the
rate of its collisionless damping by ions, and the rate of
its damping due to collisions of ions with charged
grains. In Section 5, we describe the results from inves-
tigations of SBS under conditions of the weak damping
of dust ion acoustic waves. We obtain expressions for
the threshold of SBS and for the width of its spectral
line. We show that, in the range of large wavenumbers,
the properties of SBS at the threshold and its spectral
properties are associated with the collisionless Landau
damping by electrons. In the range of smaller wave-
numbers, the threshold for SBS and the width of its
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spectral line are determined by the dissipation of dust
ion acoustic waves due to collisions of electrons and
ions with grains. We investigate how the charge of dust
grains and their number density influence the threshold
intensity for SBS and its spectral line width. We derive
the scaling formulas that describe the dependence of
the threshold and spectral line width of the SBS on the
charge and number density of the dust grains under
conditions corresponding to different mechanisms for
the dissipation of dust ion acoustic waves. We show
that, under conditions such that the nonlocal nature of
electron transport is important, the threshold and spec-
tral line width of the SBS increase more rapidly with Zd

and Nd than they do in the limit of collisionless Landau
damping but less rapidly than in the limit when the col-
lisional damping by ions dominates. We also show that,
in a dusty plasma in which the electron density is much
lower than the ion density and in which collisional
damping is governed by the ion plasma component, the
threshold for SBS decreases with ne. In Section 6, we
study SBS under the conditions of strong collisionless
damping of the dust ion sound by ions. Such conditions
are of interest because they occur in dusty plasmas in
which the temperatures of the components are nearly
the same and the electron and ion densities are compa-
rable in magnitude. In this case, the threshold intensity
for SBS and its spectral line width are rather sensitive
to the value of the ratio Ni/ne = 1 + ZdNd/ne, which in
turn depends on the dust charge density. We show that,
as the parameter ZdNd increases, the dissipation of dust
ion sound begins to be governed by the mechanism of
weak Cherenkov dissipation (this limiting case is the
subject of Section 5). In Section 7, we discuss the con-
ditions under which the particle motion can be
described by using the kinetic approach, which under-
lies the theory of SBS in dusty plasmas.

2. ELECTRON CONTRIBUTION 
TO THE DIELECTRIC FUNCTION 

OF A DUSTY PLASMA

Here, we consider the electron contribution to the
dielectric function of a dusty plasma. Since the grain
charge is large, Zd @ 1, the electron scattering is gov-
erned primarily by their collisions with dust grains and
is characterized by the mean free path

(2.1)

where Λ is the Coulomb logarithm.

In what follows, we will be interested in dust ion
acoustic waves with the frequency ω and wavenumber
k. We consider conditions under which the electrons
can be described in a weakly collisional approximation,

(2.2)
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In this case, according to [6], the electron contribution
to the dielectric function is given by the expression

(2.3)

where me is the mass of an electron, vTe =  is

the electron thermal velocity, and Zeff = /ne ~
ZdNi/ne. The first two terms on the right-hand side of
expression (2.3) describe the conventional collisionless
electron contribution to the dielectric function of the
plasma; this contribution is valid in the frequency range

(2.4)

The second of these terms accounts for the dissipation
due to collisionless Landau damping by electrons. The
last term on the right-hand side of expression (2.3)
describes the weakly collisional electron contribution
to the plasma dielectric function [6]; this contribution is
valid under conditions (1.2) and (2.2) in the range of
sufficiently low frequencies:

(2.5)

According to [6], dust ion acoustic perturbations with
frequencies in range (2.5) only slightly affect the per-
turbation of the electron distribution and lead to small
corrections that are linear in frequency ω. In frequency
range (2.5), the formation of the electron distribution is
highly sensitive to the nonlocal nature of the electron
transport. In contrast, outside this frequency range, the
nonlocal electron transport effects are unimportant.

3. CONTRIBUTION OF THE IONS 
AND DUST GRAINS TO THE DIELECTRIC 

FUNCTION OF A DUSTY PLASMA
Here, we derive expressions for the contributions of

the ions and dust grains to the dielectric function of a
dusty plasma. An expression for the collisional ion con-
tribution to the longitudinal dielectric function,
δεi(ω, k), was obtained in [7] in studying ion acoustic
waves in a plasma with two ion species. In this expres-
sion, which was derived with the help of the Bhatna-
gar–Gross–Krook (BGK) collision integral, the main
dissipative term is the one that describes the contribu-
tion from collisions between different ion species.

In a kinetic approach in which the potential energy
of interaction between the particles is low in compari-
son to their kinetic energy, the distance between the
particles is much greater than their sizes but is far less
than the plasma Debye radius. Under such conditions,
the grains can be regarded as massive pointlike charged
particles similar to ions with a large charge. This
approach makes it possible to use the results of [7, 8] to
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describe the contributions of the positively charged ions
and negatively charged grains to the longitudinal
dielectric function of a dusty plasma. We take into
account the facts that the charge-to-mass ratio of the
grains is much smaller than that of the ions, ZdMi/Md ! 1,
and that, along with this inequality, the condition
MiNi ! MdNd usually holds with an ample margin for a
dusty plasma. As a result, in accordance with [7, 8], we
obtain the following expression for the collisional ion
contribution to the dielectric function of a dusty
plasma:

(3.1)

This expression is valid in the frequency range

(3.2)

which is characteristic of the dust ion sound. Here, vTi =

 is the ion thermal velocity, Ti is the ion tem-

perature, and νid = 4 e4 NdΛ/[3 (κBTi)3/2] is
the ion–dust collision frequency. Expression (3.1) does
not take into account the dissipative contribution due to
Landau damping by the ions,

(3.3)

which can be important in the wavenumber range

(3.4)

Expression (3.1) is certainly valid in the range of suffi-
ciently small wavenumbers that do not satisfy inequal-
ity (3.4). This expression is also valid in the range of
large wavenumbers (3.4), provided that the following
inequality holds under conditions (3.2):

(3.5)

If the inequality opposite to inequality (3.5) is satis-
fied, then, instead of expression (3.1), the ion contribu-
tion to the dielectric function is collisionless and is
described by the formula [9]

(3.6)

where rDi =  is the ion Debye radius and

F(x) = exp(–x2)  is the Dawson integral.
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Hence, expressions (3.1) and (3.6) describe the ion con-
tribution to the dielectric function of a dusty plasma in
the limit in which the dissipation of dust ion acoustic
waves is governed by the ion–dust collisions and in the
collisionless limit.

For frequencies ω satisfying condition (3.2), expres-
sion (3.6) can be rewritten in a simple form:

(3.7)

Note that, for frequencies satisfying condition (3.2) in
both collisional limit (3.1) and collisionless limit (3.7),
the imaginary part of the ion contribution δεi(ω, k) is
much smaller than its real part; this means that the dis-
sipation is relatively weak.

4. DAMPING OF DUST ION SOUND

In the long-wavelength limit

(4.1)

and in the range

(4.2)

the dispersion relation for longitudinal perturbations
with the frequency ω and wavenumber k,

(4.3)

has a solution in the form of (3.1). This solution to dis-
persion relation (4.3) corresponds to dust ion acoustic
waves that propagate with velocity (1.4) and are weakly
damped at the rate

(4.4)

In expression (4.4), the rate of damping of the dust
ion acoustic waves by electrons has the form

(4.5)

The first term on the right-hand side of expression (4.5)
describes collisionless Landau damping of the dust ion
acoustic waves by electrons. The second term accounts
for the damping of dust ion sound due to infrequent col-
lisions of slow subthermal electrons in a dusty plasma
in which the thermal electrons are collisionless. This
second term is valid under the conditions

, (4.6)

which are satisfied for a plasma in which the dust grains
carry moderate electric charges:

(4.7)
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In this case, if the inequality vTe/v S, di < Zeff holds under
condition (4.7), then, over the entire range of wavenum-
bers (4.6), the collisional damping of dust ion acoustic
waves by electrons predominates over collisionless
Landau damping. For smaller grain charges, Zeff <
vTe/v S, di , the collisional damping by electrons predom-
inates over the collisionless damping in a narrower

wavenumber range, 1 ! kled < . For dusty plasmas
in which the grain charge is fairly large and fails to sat-
isfy inequality (4.7) and for large wavenumbers that lie
beyond range (4.6), the second term in expression (4.5)
cannot be used to describe collisional damping by elec-
trons (see [10]).

Expression (4.4) also contains the rate of damping
of the dust ion acoustic waves by ions, γi . In the wave-
number range

(4.8)

and under inequalities (3.2) and (3.5), the damping rate
γi is determined mainly by collisions of ions with
charged dust grains (see also [11]):

(4.9)
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In the range of large wavenumbers that fail to satisfy
the right-hand side inequality in conditions (4.8), the
damping rate γi is governed by collisionless Landau
damping, so that we have

(4.10)

Note that, for dust ion acoustic waves obeying disper-
sion relation (1.3) and having velocity (1.4), inequali-
ties (4.2) are equivalent to the following restrictions on
the plasma parameters: me/Mi ! ne/Ni ! Te/Ti .

Under conditions such that vS, di ~ vTi, the collision-
less dissipation by ions is significant and the solution to
dispersion relation (4.3) describes strongly damped
dust ion acoustic waves, whose velocity and damping
rate can be determined by numerical simulations.

5. STIMULATED BRILLOUIN SCATTERING 
UNDER CONDITIONS OF THE WEAK DAMPING 

OF DUST ION ACOUSTIC MODES

Here, we consider a parametric instability such as
SBS. We treat the problem in a formulation that makes
it possible to study how the instability evolves with
time. We describe SBS by the dispersion relation
[12, 13]
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Here, ω0 and k0 are the frequency and wave vector of an
incident electromagnetic wave; ω0 – ω and k0 – k are
the frequency and wave vector of the scattered wave; ω
and k are the frequency and wave vector of an ion
acoustic mode involved in the SBS process; vE =
eE0/meω0 is the electron oscillatory velocity in the field
of the incident wave; and the transverse dielectric func-
tion εtr is given by the expression

(5.2)

where νed = vTe/led is the frequency of collisions of the
electrons with dust grains and ωLe is the electron Lang-
muir frequency. The frequency in Eq. (5.1) is generally
complex, ω  ω + iγ, where γ is the temporal growth
rate of the ion acoustic mode and, consequently, of the
scattered wave produced by it. In what follows, how-
ever, we will assume that the frequency ω is real.

εtr ω ω0– , k k0–( )

=  1
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In accordance with [12, 13], we invoke the notion of
the frequency detuning from resonance in order to write
the denominator of the right-hand side of Eq. (5.1) in its
conventional form:

(5.3)

where ∆ is the deviation from the parametric resonance
frequency.

We are interested in the possible onset and develop-
ment of an instability that grows with time at the rate

(5.4)

In our analysis, the development of the SBS instabil-
ity is attributed to the dust ion sound. First, we consider
the simplest case in which the dusty plasma conditions
correspond to a weak damping of the dust ion acoustic
modes that are involved in the SBS process and whose
phase velocity satisfies condition (4.2). Substituting
expression (2.3) for δεe and expression (3.1) or (3.7) for

ω ω0–( )2
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δεi into Eq. (5.1) and using formula (5.3), we can obtain
the following set of equations for ∆ and γ:

(5.5)

(5.6)

Here, γE = νed /(2 ) is the damping rate of the
transverse electromagnetic wave due to its absorption
in collisions of electrons with charged dust grains;

(5.7)

is the dimensionless pump field intensity; and ωS and γS

are given by expressions (1.3) and (4.4), respectively.
Equations (5.5) and (5.6) are linear in the small param-
eters γS/ωS and γ/ω.

These equations yield the following expression for
the frequency detuning:

(5.8)

Accordingly, the growth rate γ satisfies the equation

(5.9)

which yields the following equation for the boundary
(γ = 0) of the instability region:

(5.10)

Equation (5.10) describes the spectral line width of the
SBS: it determines the dependence of the frequency ω
at the boundary of the instability region on the pump
field intensity I. The instability threshold corresponds
to the minimum pump intensity Ith at which the damp-
ing rate of the dust ion acoustic mode vanishes, γ = 0,
and its frequency is equal to ωth. From Eq. (5.10) at the
instability threshold, we obtain the relationships
(cf. [12])
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Using these relationships, we can write the frequency
ωb at the instability boundary as
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Formula (5.13) is applicable over a fairly wide range of
pump field intensities,

(5.14)

It should be noted that, according to Eq. (5.9), the insta-
bility growth rate γ, as a function of the pump field
intensity I, is positive over the frequency range ωb– ≤
ω ≤ ωb+.

Formula (5.13) gives the following expression for
the spectral line width of the SBS:

(5.15)

Far above the threshold (I @ Ith), the spectral line width
increases as the square root of the pump field intensity.

In order to better understand what the restrictions
are that may be imposed on the range of applicability of
linear theory, we analyze the expression for the instabil-
ity growth rate. For simplicity, we consider the growth
rate at ω = ωth = ωS, in which case Eq. (5.9) yields

(5.16)

For pump intensities that are sufficiently far above the
threshold, we have

(5.17)

From this expression we can see that, in the case at
hand, the above condition for the growth rate of the
SBS instability to be low in comparison to the fre-
quency of the dust ion acoustic waves (see condition
(5.4)) reduces to the inequality

(5.18)

Let us discuss how the presence of dust affects the
spectral properties of the SBS as well as its properties
at the threshold. First of all, note that, in a plasma with
negatively charged dust, the frequency shift of SBS is
larger than that in a dust-free plasma with the same ion
composition, the same particle temperatures, and the
same ion density. The reason is that the velocity v S, di of
the dust ion acoustic waves, which determines the fre-

quency shift of SBS (see expression (1.4)), is  > 1
times higher than the velocity of the conventional ion
acoustic waves, which determines the frequency shift in
a dust-free plasma. An increase in the dust charge den-
sity ZdNd leads to an increase in the ratio Ni/ne and,
therefore, in the frequency shift of the SBS.

The increase in the velocity vS, di of dust ion acoustic
waves that is caused by an increase in the dust charge
density also changes the threshold for SBS and the
width of its spectral line. It is the change in the velocity
vS, di that changes the threshold and spectral line width
of the SBS under conditions in which the dissipation of
dust ion acoustic waves is determined by the collision-
less Landau damping by electrons (see the first term in
expression (4.5)) and by ions (see expression (4.10)).
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In this case, as the ratio v S, di /v Ti increases, the colli-
sionless Landau damping by ions becomes less intense
and, when the values of the ratio v S, di /v Ti are several
times larger than unity, it becomes unimportant over a
broad range (4.8) of wavenumbers k. Under conditions
corresponding to this limit, damping rate (4.4) of the
dust ion acoustic waves has the form

(5.19)

With expression (5.19), formulas (5.11) and (5.15) for
the threshold and spectral line width of the SBS can be
written as

(5.20)

(5.21)

Hence, the threshold for SBS is determined by the
product of the two quantities that depend on the param-
eters of the dust plasma component: (i) the ratio of the
slow damping rate γS of the longitudinal dust ion acous-
tic waves involved in the SBS process to their fre-
quency and (ii) the small ratio νed/ω0, which is associ-
ated with the damping of the electromagnetic wave that
is scattered due to electron–dust collisions in the
plasma. For a dusty plasma, the ratio νed/ω0 is larger
than that for a dust-free plasma with the same ion den-

sity by a factor of  ~ Zd @ 1; this indicates that,
in the former, the damping of electromagnetic waves is
more intense and the threshold for SBS is higher. In
turn, at a fixed amount by which the pump field inten-
sity exceeds the threshold, spectral line width (5.21) of
the SBS is directly proportional to growth rate (5.19) of
the dust ion acoustic waves. The first term on the right-
hand side of expression (5.19) refers to the dissipation
of dust ion acoustic waves due to ion–dust collisions.
The second term describes the collisionless Landau
damping of these waves by electrons. The last (third)
term accounts for the influence of the electron–dust col-
lisions on the damping of dust ion acoustic waves with
sufficiently small wavenumbers (4.6) under conditions
where the nonlocal nature of electron transport is
important.

Condition (4.7) fails to hold for a dusty plasma in
which the grains carry a large charge. In this case, the
last term drops out of expression (5.19) and the damp-
ing rate of the dust ion acoustic waves is determined by
a competition between the two effects described by the
first two terms in this expression. In the range of large

wavenumbers such that νidvTe/  ! k ! , the
dissipation of dust ion acoustic modes is governed
mainly by the collisionless Landau damping by elec-
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trons, in which case the expressions for the threshold
and spectral line width of the SBS can be written in the
following simple form:

(5.22)

(5.23)

From expression (5.22) we can see that the larger the
grain charge and the higher the dust number density, the
higher the instability threshold. We stress that, if the
dust charge density is so high that ZdNd ≈ Ni, and if, by
virtue of electroneutrality condition (1.1), we have ne =
Ni – ZdNd ! Ni , then even a slight increase in the dust
number density implies that the smaller the difference
of ZdNd from Ni , the higher the instability threshold.
Spectral line width (5.23) of the SBS also increases
with the parameter Ni/ne > 1.

In the range of relatively small wavenumbers such

that max{ , νid/v S, di} ! k ! νidvTe/ , the damp-
ing of dust ion acoustic waves is dominated by ion–dust
collisions, in which case we obtain the following
expression for the SBS instability threshold:

(5.24)

From expression (5.24), it is clear that, for a moderate
amount of dust in the plasma, and for ne ~ Ni , the larger
the grain charge and the higher the dust number density,
the higher the instability threshold. Under conditions
such that the negative charge in the plasma is carried
mainly by the dust grains, and for ZdNd ≈ Ni @ ne, the
lower the electron density, the lower the threshold for
SBS. Under such conditions, the spectral line width of
the SBS is determined by the ion–dust collision fre-
quency:

. (5.25)

This expression implies that the larger the grain charge
and the higher the dust number density, the wider the
spectral line of SBS.

For a plasma in which the dust grains carry a mod-
erate charge Zd consistent with condition (4.7), the
dependence of the threshold and spectral line width of
the SBS in wavenumber range (4.6) on the dust charge
and dust number density is of a fairly peculiar charac-
ter. This dependence is given by the last term in brack-
ets in expression (5.19) and reflects the influence of
nonlocal effects on the damping of dust ion acoustic
modes due to electron collisions. If, in this case, the
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condition kled <  is satisfied, then the collisionless
Landau damping by electrons, which is described by
the second term in expression (5.19), is less intense
than the collisional damping and the threshold and
spectral properties of SBS are governed by dissipation
due to collisions of electrons and ions with the dust
grains. When the damping of dust ion acoustic waves
by ions is unimportant, the spectral properties of SBS
and its threshold are governed by the collisional damp-
ing by electrons. In this limit, formulas (5.20) and
(5.21) for the threshold for SBS and for the width of its
spectral line become

(5.26)

(5.27)

Formulas (5.26) and (5.27) demonstrate how the nonlo-
cal effects associated with the damping of dust ion
acoustic modes due to electron collisions influence the
spectral properties of SBS and its threshold. From these
formulas we see that, with increasing dust charge and
dust number density, the threshold and spectral line
width of the SBS increase to a larger extent than they do
in the case described by formulas (5.22) and (5.23),
which refer to the collisionless Landau damping of dust
ion sound by electrons.

6. STIMULATED BRILLOUIN SCATTERING 
UNDER CONDITIONS OF THE STRONG 

DAMPING OF DUST ION ACOUSTIC MODES

Here, we consider the case in which ω ~ kvTi @ νid

and the dust ion acoustic waves involved in the SBS
process are subject to strong dissipation governed by
the collisionless Landau damping by ions. As in the
case of weak dissipation, which was considered above
and in which the set of Eqs. (5.5) and (5.6) was
obtained by substituting expression (3.7) into disper-
sion relation (5.1), we can substitute expression (3.6)
for δεi into the same dispersion relation to derive an
analogous set of equations for determining the fre-
quency detuning ∆ and growth rate γ. However, because
of the fairly strong dissipation by ions, it is impossible
to obtain a simple analytic solution to this set of equa-
tions, which thus can be solved only numerically. How-
ever, in order to determine the threshold for SBS and
the width of its spectral line, it is sufficient to consider
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the equation for the boundary of the instability region
that follows from this set and has the form (cf. [9])

(6.1)

The function

(6.2)

will be termed the boundary intensity. The meaning of
this term is that Eq. (6.1) determines the sought spectral
line width of the SBS at a given pump wave intensity I.
In expression (6.2), we introduce the notation Φα(z) =

Fα(z)/[ (z) + (z)], F1(z) = [1 – zF(z/ )], and

F2(z) = exp(–z2/2) (α = 1, 2). Equation (6.1),
which is an analogue of Eq. (5.10), determines the
instability boundary and makes it possible to describe
the instability region under conditions of strong colli-
sionless dissipation by ions. This is why, in Eq. (6.2),
we have omitted an unimportant small term associated
with the rate of damping by electrons (see expression
(4.5)). From formula (6.2) we see that, under the condi-
tions in question, Eq. (6.1) for the spectral line width of
the SBS contains only one dimensionless parameter

(6.3)

which determines the dynamic and dissipative proper-
ties of the dusty plasmas in which we are interested
here. The numerical solution of Eq. (6.1) makes it pos-
sible to study the threshold for parametric instability
and the spectral width of the instability region. Below,
these properties of the instability will be illustrated
graphically in the figures.

Curve 1 in Fig. 1 shows the dependence of the nor-
malized (to the quantity kvTi) frequency ω at the bound-
ary of the SBS instability region on the dimensionless
pump field intensity. The frequency was calculated
from Eq. (6.1) with ξ = 2. We can see from Fig. 1 that,

Ib ω( ) I .=

Ib ω( )
ξ Φ1 ω/kv Ti( )+[ ] 2 Φ2 ω/kv Ti( )[ ] 2

+
ξΦ2 ω/kv Ti( )

----------------------------------------------------------------------------------------,=
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π/2z

ξ NiTe/ neTi( ),=

1

0 0.5 I

2
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1.0 1.5 2.0 2.5
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kv Ti
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ωth
kv Ti
-----------
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1

2

Fig. 1. Boundary frequency ωb of a dust ion acoustic wave
subjected to SBS as a function of the pump field intensity I
for ξ = (1) 2 and (2) 7.
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Fig. 2. (a) Threshold intensity Ith for the SBS instability and
(b) threshold frequency ωth in a dusty plasma as functions
of the parameter ξ ≡ NiTe/(neTi).
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Fig. 3. Relative width of the spectral line of the SBS,
∆ω/ωth, as a function of the degree to which the instability
threshold is exceeded, I/Ith, for a dusty plasma characterized
by the same values of the parameter ξ as in Fig. 1.
at the SBS instability threshold, the ratio of the phase
velocity of the growing ion acoustic mode to the ion
thermal velocity is about ωth/kvTi ≅  2.2, which corre-
sponds to a fairly strong collisionless Landau damping
of the mode in the absence of a pump field. It is pre-
cisely the excess of the pump field intensity over the
threshold Ith that suppresses dissipation and causes the
mode to grow, thereby ensuring the amplification of the
scattered electromagnetic wave associated with this
mode. Curve 1 shows that, when the pump intensity
exceeds the threshold by a factor of only two, the width
of the instability region ∆ω becomes comparable to the
threshold frequency ωth, which is a consequence of
strong dissipation. Curve 2 in Fig. 1 was calculated for
a larger value of the parameter ξ, specifically, ξ = 7. We
can see that, in this case, the ion acoustic modes
involved in the SBS process are characterized by larger
values of the ratio of the phase velocity ω/k to the ion
thermal velocity vTi and, accordingly, are subject to the
weaker collisionless dissipation by ions (see expres-
sion (3.6)). In turn, this weaker dissipation can be sup-
pressed by a lower intensity pump field, so that the SBS
instability threshold is lower, which is demonstrated by
curve 2 in Fig. 1.

The above properties of the SBS at the threshold are
illustrated in Fig. 2. Figure 2a shows the dependence of
the threshold intensity Ith on the parameter ξ. We see
that the SBS instability threshold decreases sharply as
the parameter ξ increases, resulting in an increase in the
ratio of the phase velocity of the ion acoustic modes
involved in the SBS process to the ion thermal velocity,
ω/(kvTi), and, accordingly, in a weakening of the colli-
sionless dissipation by ions. Figure 2b shows the
dependence of the ratio of the threshold phase velocity
ωth /k of the ion acoustic mode to the phase velocity
v S, di (1.4) of the dust ion acoustic waves on the param-
eter ξ. For ξ ~ 1, the threshold phase velocity ωth/k of
the ion acoustic mode involved in the SBS process is
about two times higher than v S, di . As the parameter ξ
increases, this difference decreases and, for ξ ~ 10,
becomes as small as several percent. Hence, for large
values of the parameter, ξ @ 1, for which the collision-
less dissipation by ions is relatively weak, the threshold
frequency of the ion acoustic mode is about ωth ≈ kv S, di ,
which agrees with formula (5.12). In this case, we have

 ≈  ≡ ξ.

Another manifestation of the weakening of the dis-
sipation by ions with increasing parameter ξ is demon-
strated in Fig. 3, which shows how the relative width of
the SBS instability region, ∆ω/ωth, depends on the
degree to which the instability threshold is exceeded,
I/Ith, for different values of ξ. Curve 1 was calculated for
ξ = 2, which corresponds to strong collisionless dissi-
pation by ions. From Fig. 3, we can see that, even when
the pump field intensity exceeds the threshold by a fac-
tor of two, the SBS process involves growing ion acous-
tic modes with frequencies lying in a wide interval ∆ω,

ωth
2

/k
2
v Ti

2
v S di,

2
/v Ti

2
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whose width is comparable to the threshold frequency
ωth. Curve 2, which was calculated for ξ = 7, corre-
sponds to a far narrower frequency interval, which
determines the SBS instability region for the same
excess of the pump field intensity over the threshold
intensity. As the degree I/Ith to which the threshold is
exceeded increases, the situation does not change qual-
itatively. Consequently, for ξ = 2, the spectral line of
SBS is wider than that for ξ = 7. Hence, at a fixed value
of the ratio I/Ith, an increase in the parameter ξ leads to
a decrease in the width of the instability region. This
regular feature is directly associated with the weaken-
ing of dissipation by ions and is fully confirmed by for-
mula (5.15), which was derived in the weak dissipation
limit. We thus can conclude that the weaker the dissipa-
tion in the plasma, the narrower the spectral line of the
scattered radiation, provided that the amount by which
the pump field intensity exceeds the threshold is fixed.
It should be kept in mind, however, that different
threshold intensities Ith for the SBS instability corre-
spond to different values of the parameter ξ (see
Fig. 2a), so that different pump field intensities I corre-
spond to the different degrees I/Ith to which the thresh-
old is exceeded.

7. CONCLUSIONS

We have determined the threshold for the onset of
the SBS instability in a dusty plasma and have
described the width of the spectral line of SBS under
conditions such that this parametric instability is asso-
ciated with the excitation of dust ion acoustic modes.
We have studied these modes in the weak dissipation
limit (by taking into account such phenomena as the
Cherenkov interaction of electrons and ions with dust
ion sound, weakly collisional absorption by electrons,
and absorption due to collisions of ions with dust
grains) and also in the limit of strong collisionless Lan-
dau damping by ions. We have shown that the higher
the dust number density and the larger the effective
charge of dust grains, the stronger the effect of the dust
on the SBS properties.

However, the charge of the dust grains should not be
too large. The reason is that a large grain charge (see
condition (1.2)) can give rise to a fairly strong Coulomb
interaction between charged particles in a dusty
plasma. Our analysis was carried out for conditions
under which the dusty plasma can be described in the
kinetic approximation. This approach is justified for a
slightly nonideal plasma, when the energy of Coulomb
interaction between charged particles is low in compar-
ison with their kinetic energy and the collective effects
are important. Let us assume that the characteristic
grain radius a is much less than the mean intergrain dis-

tance d ~ . Since the grains carry a large charge,
Zd @ 1, the mean energy of their Coulomb interactions
is governed primarily by the interaction among them,
whereas the interaction with electrons and ions is

Nd
1/3–
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weaker. In this case, the condition for the potential
energy of Coulomb interaction among the grains to be
lower than their thermal energy can be written as

(Zde)2/d ~ (Zde)2  ! κBTd, where Td is the dust tem-
perature. Following [2], we rewrite this condition in the
form

(7.1)

where we introduce the intergrain interaction parame-
ter Γd.

Because of the large dust charge (see condition (7.1)),
the mean energy of Coulomb interaction of electrons
and ions with dust grains can exceed the mean energy
of Coulomb interaction between the electrons and the
ions. Under conditions (1.1) and (1.2), which imply that
the plasma is electrically neutral and the grain charge is
large, the inequality Nd ! Ni is satisfied. In this case, the
mean distance from an ion to the nearest grain is about
~0.5d and the absolute energy of Coulomb interaction
between ions and grains is about Zde2/(0.5d) ~

2Zde2 , the mean interaction energy of two ions

being . For a dusty plasma satisfying the condi-

tion Ni/  < Nd ≤ Ni/Zd, which indicates that the dust
number density is not too low and the dust charge is
large (Zd @ 1), we find that the mean energy of the ion–
dust Coulomb interaction exceeds that of the ion–ion
Coulomb interaction. As a result, the condition for the
energy of Coulomb interaction among the ions to be
weaker than their mean kinetic energy can be written as

2Zde2  ! κBTi or

(7.2)

Replacing the ion temperature Ti with the electron tem-
perature Te yields an analogous condition for the elec-
trons. The usual situation in dusty plasma is such that
Te ≥ Ti; therefore, the condition that the energy of Cou-
lomb interaction among the ions is weaker than their
mean kinetic energy is more stringent than the corre-
sponding condition for the electrons. Let us compare
inequalities (7.1) and (7.2). For dusty plasmas, the ine-
quality Td ≤ Ti is usually satisfied. Consequently,
because of the large grain charge (see condition (1.2)),
inequality (7.2) is weaker than inequality (7.1).

Inequality (7.1), which contains only the absolute
dust temperature, density, and change, can also be writ-
ten as

(7.3)

Condition (7.3) refers to slightly nonideal plasmas in
which the density of energetic dust grains is sufficiently
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low. This condition is very sensitive to the charge Zd of
the dust grains: the larger the dust charge Zd, the easier
the condition is to satisfy. On the other hand, according
to condition (1.2), the charge of a grain should be much
larger than unity. Let us show that this can be the case.

An example of a dusty plasma that contains nega-
tively charged dust grains and is slightly nonideal, i.e.,
satisfies condition (7.3), is a plasma at altitudes of about
80 km in the Earth’s upper atmosphere (see, e.g., [4]).
For such a plasma, we have Nd ~ 10 cm–3, Ni ~ 103 cm–3,
and the particle temperature is about 150 K, so that con-
dition (7.3), which indicates that the plasma is slightly
nonideal, and condition (1.2) are satisfied for grains
whose charges lie in the range 1 ! Zd ! 200. Under the
assumption that the grains are charged primarily by
absorbing the electron and ion fluxes onto their sur-
faces, the order-of-magnitude estimate of the maximum
possible grain charge is provided by the formula [2]

(7.4)

For a grain with a characteristic radius of a ~ 5 µm, for-
mula (7.4) gives Zd ~ 45, which agrees with condition (7.3)
for the plasma to be slightly nonideal. Hence, under the
above conditions in the Earth’s ionosphere, the kinetic
description of a dusty plasma is justified.

In conclusion, note that we have considered the SBS
process under conditions in which the change in the
dust charge in the field of a dust ion acoustic wave can
be ignored. This approach is justified in situations when
SBS develops on time scales shorter than the character-
istic time scale of the dust charge variation and the dust
charge variation itself has an insignificant effect on the
spectral properties of the SBS process and on its prop-
erties at the instability threshold. According to formulas
(5.20) and (5.21), the threshold for SBS and the width
of its spectral line are governed by the dissipative prop-
erties of the dusty plasma, namely, by the damping rate
of the dust ion acoustic waves involved in the scattering
process. In Appendix 1, the expression for the damping
rate of the dust ion sound is derived with allowance for
dust charging by electron and ion fluxes (see formulas
(A1.15)–(A1.17)) and the conditions are determined
under which the effect of this charging on the dissipa-
tion of dust ion acoustic waves can be ignored. Inequal-
ity (A1.19) implies that, in a plasma with an equilib-
rium dust charge, the grain charge variations have a
weak effect on the damping of dust ion sound when the
electron temperature is much higher than the ion tem-
perature or when the dust charge density is lower than
the electron charge density. In determining the SBS
threshold, the grain charge variations in a plasma with
a strongly nonequilibrium dust charge can be ignored
when the grains are small enough for the characteristic
frequencies of variation of their charge to be low (see
formulas (A1.8)–(A1.10)) and the variation in Zd to
make a small contribution to the damping rate of the
dust ion acoustic waves (see formula (A1.16)).

Zd Tea/e
2

700Te eV[ ]  a µ[ ] .≈∼
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APPENDIX 1

Contribution of the Grain Charge Variation
to the Damping Rate of the Dust Ion Sound

In a dusty plasma in which the grains are charged by
electron and ion fluxes onto their surfaces, each grain
acquires a negative charge eZd in accordance with the
equation (see, e.g., [3])

(A1.1)

In this case, electroneutrality condition (1.1) implies
that ne < Ni . For an equilibrium dusty plasma, Eq.
(A1.1) yields the following equation for the equilib-
rium dust charge:

(A1.2)

This equation has the solution

(A1.3)

Figure 4 shows how the function g depends on the
parameter nevTe/(NivTi) for an isothermal plasma, in
which Te = Ti (curve 1), and for a plasma with hot elec-
trons such that Te = 10Ti (curve 2). From Fig. 4, we can
see that the solution to Eq. (A1.2) that determines the
equilibrium negative dust charge exists only in the
range ne/Ni > vTi/vTe . Figure 4 also demonstrates that,
over a fairly broad range of values of the parameter
nevTe/(NivTi), the function g takes on values on the
order of unity, so that the equilibrium grain charge is
given by the approximate expression Zd ~ aTe/e2 (cf.
formula (7.4)).

Let us calculate the contribution of the variation in
the grain charge to the damping rate of the dust ion
acoustic waves. To do this, we consider a small pertur-
bation of the electric potential in a dusty plasma and
represent it in the form

(A1.4)
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Poisson’s equation yields the following equation for the
perturbation amplitude δω:

(A1.5)

where the longitudinal dielectric function δε(ω, k) of a
dusty plasma takes into account the grain charge varia-
tion, δρe = eδne and δρi = –eδNi are the perturbed
charge densities of the electrons and ions, and δρd =
eNdδZd is the perturbed dust charge density. The last
expression is written under the assumption that the
grains are infinitely heavy and immobile, which is jus-
tified for the dust ion acoustic waves under consider-
ation here (those whose phase velocities are high
enough to satisfy condition (4.2)).

We describe the perturbations of the electron and
ion densities and the perturbed dust charge density by
the same spatiotemporal dependence as that used for
the perturbing electric potential, namely, by formula
(A1.4). We consider perturbations (A1.4) that are suffi-
ciently fast compared to the dust charge variation, i.e.,
those that satisfy the inequality

(A1.6)

In order to determine the conditions under which the
dust charge variation has an insignificant impact on the
properties of the dust ion sound, we restrict ourselves to
the simplest approximation in which the temperatures
of the plasma components are assumed to be unper-
turbed. In this case, Eq. (A1.1) leads to the following
expression for the perturbed grain charge:

(A1.7)

where we introduce the effective frequencies

(A1.8)

(A1.9)

(A1.10)

The frequency νQ is the dust charging frequency and
the frequencies νQe and νQi characterize the grain
charge variations caused by variations in the electron
and ion densities in the plasma. Substituting expression
(A1.7) into Eq. (A1.5) yields

(A1.11)
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With the electron and ion partial contributions, δεe =
4πeδne/(k2δϕ) and δεi = –4πeδNi/(k2δϕ), expression
(A1.11) for the dielectric function of a dusty plasma
becomes

(A1.12)

where the function δεe(ω, k) is given by formula (2.3)
and the function δεi(ω, k) is given by formula (3.1) or
(3.6).

We assume that the following inequalities are satis-
fied:

(A1.13)

Keeping only the lowest order terms in the small
parameters determined by inequalities (A1.13), we
reduce expression (A1.12) to

or

(A1.14)

For simplicity, we consider the case of a weak
damping by electrons and ions such that the imaginary
parts  and  are small in comparison to the real
parts. The dispersion relation for the dust ion sound has
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Fig. 4. Function g, which determines the equilibrium charge
of the grains, vs. parameter nevTe/(NivTi) for a dusty plasma
with Te = (1) Ti and (2) 10Ti.
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the form δε(ω, k) = 0. The real component of this rela-
tion is dispersion relation (1.3) for dust ion acoustic
waves having velocity (1.4). As for the imaginary com-
ponent, it makes it possible to determine the damping
rate of the dust ion acoustic waves with allowance for
variations in the dust grain charge:

(A1.15)

Here, the first two terms on the right-hand side cor-
respond to electron contribution (4.5) and ion contribu-
tion (4.9) or (4.10) to the damping rate of the dust ion
sound; these contributions were considered in Section 4.
The last (third) term accounts for the contribution of the
dust charge variation caused by electron and ion fluxes
to the damping rate of the dust ion acoustic waves. This
term has the form

(A1.16)

It is obvious that, under the condition |γQ | ! γe + γi , this
last contribution can be ignored.

Let us consider this condition for a dusty plasma in
which the equilibrium grain charge is described by
Eq. (A1.2). In this case, condition (A1.6) holds automat-
ically and we have νQe = νQi, so that expression (A1.16)
for the relevant contribution to the damping rate
becomes

(A1.17)

When collisional damping by the ions, which governs
damping rate (4.9), predominates over that by the elec-
trons, the condition that the damping rate γQ be low
takes the form 2|γQ | ! νid or

(A1.18)

Taking into account formula (A1.3) for the equilibrium
dust charge and the relationship g ~ 1, which is valid for
moderate electron densities, we rewrite inequality
(A1.18) as

(A1.19)

Hence, in a dusty plasma with comparable charge
densities of the electrons and dust grains and with
nearly equilibrium dust charge, the dust charge varia-
tion has an insignificant effect on the damping of dust
ion sound when the electron temperature substantially
exceeds the ion temperature, Te @ Ti . Note that the
lower the dust charge density, the easier the condition
(A1.19) is to satisfy. It should be stressed that, under the
conditions of weak damping of the dust ion acoustic
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waves (γS ! ωS) and for |γQ | ! γe + γi, inequality
(A1.13) is comparatively easy to satisfy.

Inequalities (A1.6) and (A1.13), as well as condition
(A1.16), which indicates that the damping rate γQ is
lower than γe + γi, are also comparatively easy to satisfy
for a dusty plasma with a slowly changing dust charge.
The reason is that the smaller the grains, the lower the
characteristic frequencies νQi , νQe, and γQ, which deter-
mine the dust charge variation and the contribution γ0 to
the damping rate. Consequently, for a plasma with suf-
ficiently small grains, there is no need to take into
account the dust charge variations when discussing the
dissipative properties of the dust ion sound.

APPENDIX 2

In conclusion, we will say a few words about papers
[11, 14], which were brought to our attention by the
reviewer. Unlike us, Tsytovich et al. [14] studied an
incompletely ionized plasma and, consequently, they
took into account the important effect of collisions with
neutrals. In this connection, the authors of [14] consid-
ered the problem of dust acoustic waves in an essen-
tially collisional dusty plasma merely as the simplest
example of problems in which oscillations are investi-
gated using a Maxwellian distribution. Our analysis
also involves a Maxwellian distribution function. Note,
however, that the content of [14] is not concerned
directly with the issues under discussion here because,
in [14], a study was made of dust acoustic waves,
whose frequency is much lower than the frequency of
dust ion acoustic waves and which thus cannot manifest
themselves in the range of frequency shifts of SBS that
was considered above.

Note also that, in [14], nothing was said about the
negligible role of Landau damping for dust ion acoustic
waves (not to be confused with dust acoustic waves,
which are the subject of [14]).

In [11], Tsytovich and Watanabe studied the prob-
lem of how to take into account the evolution of the dust
charge. Accounting for the evolving grain charge leads
to a new spectrum of dust ion acoustic waves (see for-
mula (19) from [11]). However, over a fairly broad
range of wavenumbers of dust ion acoustic waves in
long-wavelength limit (4.1),

, (A2.1)

the new spectral details revealed in [11] do not manifest
themselves and the spectrum of dust ion sound that was
obtained in our study (see formulas (1.3), (1.4)) is valid.
This fairly broad range of wavenumbers k is restricted

1

2π
---------- a

rDi

------max 1
Zd Nd

ne

------------,
 
 
 

 ! krDe ! 1
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by the left- and right-hand inequalities (A2.1) under the
condition

(A2.2)

Hence, our approach applies to a dusty plasma in
which the dust grains are quite small and the electron
density is not too low. We are grateful to the reviewer,
whose comments allowed us to derive conditions
(A2.1) and (A2.2). Note that, in [11], Landau damping
was not considered. As for the collisional damping, the
right-hand side of formula (4.9) obtained in our study
coincides with the main term on the right-hand side of
formula (22) obtained in [11].

Finally, we should say a few words about aperiodic
instabilities revealed in [11]. According to inequality (23)
from [11], the characteristic time scale on which such
instabilities develop is larger than the reciprocal of the
ion–dust collision frequency. On the other hand, this
collision frequency is much lower than the frequency of
the dust ion acoustic waves in which we are interested
here (see formula (3.2)). This naturally justifies the
quasi-steady approach that was used above to treat SBS
and in which the changes that occur in the plasma dur-
ing one period of the dust ion acoustic waves and that
may give rise to the aperiodic instability considered in
[11] can be ignored. We emphasize that, according to
inequality (23) in [11] and to formulas (4.4), (4.9), and
(5.16) derived in our study, the growth rate of the SBS
instability exceeds that of the aperiodic instability

1

2π
---------- a

rDi
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=  1.7 10
4– a µm[ ]

0.1
------------------ 

  Ni Òm
3–[ ] /10

8

Ti eV[ ] /0.1
---------------------------------- ! 
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-----,×
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revealed in [11]. This indicates that the time scale of the
parametric SBS instability is too short for the aperiodic
instability to develop.

REFERENCES
1. M. Rosenberg, Astrophys. Space Sci. 277 (6), 125

(2001).
2. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz.

Nauk 167, 1215 (1997) [Phys. Usp. 40, 1163 (1997)].
3. P. K. Shukla, Phys. Plasmas 8, 1791 (2001).
4. D. A. Mendis and M. Rosenberg, IEEE Trans. Plasma

Sci. 20, 929 (1994).
5. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).
6. V. P. Silin, Usp. Fiz. Nauk 172, 1021 (2002).
7. K. Yu. Vagin, K. N. Ovchinnikov, and V. P. Silin, Kratk.

Soobshch. Fiz., No. 5, 18 (2002).
8. K. Yu. Vagin, K. N. Ovchinnikov, and V. P. Silin, Kratk.

Soobshch. Fiz., No. 5, 32 (2002).
9. K. Yu. Vagin, K. N. Ovchinnikov, V. P. Silin, and

S. A. Uryupin, Kvantovaya Élektron. (Moscow) 32, 629
(2002).

10. K. Yu. Vagin, submitted to Fiz. Plazmy.
11. V. N. Tsytovich and K. Watanabe, Contrib. Plasma Phys.

43, 51 (2003).
12. L. M. Gorbunov, Zh. Éksp. Teor. Fiz. 55, 2298 (1968)

[Sov. Phys. JETP 28, 1220 (1968)].
13. V. P. Silin, Parametric Action of High-Power Radiation

on Plasmas (Nauka, Moscow, 1973), p. 147.
14. V. N. Tsytovich, U. de Angelis, and R. Bingham, Phys.

Rev. Lett. 87, 185003 (2001).

Translated by O.E. Khadin



  

Plasma Physics Reports, Vol. 30, No. 8, 2004, pp. 652–661. Translated from Fizika Plazmy, Vol. 30, No. 8, 2004, pp. 704–712.
Original Russian Text Copyright © 2004 by Vaulina.

                                                                        

DUSTY
PLASMA

       
Transport Properties of Nonideal Systems with Isotropic Pair 
Interactions between Particles

O. S. Vaulina
Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, 

Izhorskaya ul. 13/19, Moscow, 125412 Russia
Received October 2, 2003; in final form, December 11, 2003

Abstract—Results are presented from numerical investigations of the mass transfer and pair correlation in sys-
tems of interacting grains for different types of isotropic interaction potentials. The parameters are determined
that govern the transport properties of nonideal dissipative systems with a large variety of model potentials. An
analytic approximation for the dust grain diffusion coefficient in strongly nonideal systems is obtained. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Problems associated with transport processes in dis-
sipative systems of interacting particles are of consider-
able interest for different fields of science and technol-
ogy (hydrodynamics, plasma physics, molecular bio-
physics, medical engineering, physics and chemistry of
polymers, etc.) [1–8]. A good experimental model for
studying such transport processes is provided by a lab-
oratory dusty plasma—a weakly ionized gas with
micron-size dust grains [8–13]. In a dusty plasma, such
grains can acquire a considerable electric charge and
can form liquidlike and solidlike quasi-steady dust
structures.

Investigations of the properties of nonideal dusty
plasmas can play an important role in the development
of new phenomenological models for nonideal liquid-
like systems. Such investigations take on special impor-
tance because, in contrast to the theory of gases, the
theory of liquids deals with strong interactions between
particles and thus does not contain a small parameter
that can provide an analytic description of the states of
a liquid and of its thermodynamic properties [1–7].
Another difficulty in studying nonideal media is associ-
ated with the fact that, in most cases, the actual poten-
tials of interaction between particles in physical sys-
tems are unknown. Therefore, the prevailing view is
that this difficulty cannot be resolved in terms of molec-
ular theory alone. As a result, a new model approach,
called the concept of effective semiempirical model
potentials, has been developed and has become widely
accepted. In this approach, the shape of model poten-
tials is almost always specified in advance and the
parameters of a chosen model function are recon-
structed from the experimentally measured parameters
of the medium under investigation [14, 15].

In contrast to the particles of actual liquids and
gases, micron-size dust grains in plasmas are large
enough to be recorded by a video camera. This greatly
1063-780X/04/3008- $26.00 © 0652
simplifies the use of nonintrusive methods for diagnos-
ing them and offers the possibility of studying the phys-
ical properties of nonideal systems at the kinetic level.
The common practice is to describe the interaction
between grains in a dusty plasma by a Yukawa-type
screened Coulomb potential,

U = a0exp(–r/λ)/r. (1)

Here, r is the distance; λ is the screening length; and a0

is a parameter equal to (eZp)2 for two identical grains of
charge eZp, where e is the charge of an electron. Poten-
tial (1) agrees well with both the data from measure-
ments of the forces of interaction between two dust
grains [14] and the results of numerical calculations of
the structure of the screening cloud [15], but only for
short distances from a grain, r < 5λD, where λD is the
plasma Debye radius. The longer the distance r from
the grain, the weaker the screening effect; at distances
r @ λD, the potential U behaves asymptotically as a
power function, U ∝  r–2 [16] or U ∝  r–3 [17]. The cited
papers [14–17] present the results of investigations of
solitary grains in a plasma. At present, there is no final
explanation of how the shape of the intergrain interac-
tion potential is affected by the presence of other parti-
cles in a dust cloud, the gas ionization processes, the
collisions of electrons and ions with the neutral parti-
cles of the surrounding gas, and a host of other factors.
Hence, the actual potentials of interaction between dust
grains in a plasma are unknown (as is the case in many
physical problems in which it is necessary to take into
account the interparticle interaction forces), so that an
important task for the physics of nonideal dusty plas-
mas and for other branches of natural science is to
determine the parameters that govern the state of a sys-
tem of interacting particles. As an example, in [18, 19],
the two dimensionless parameters were found that are
responsible for the mass transfer processes in Yukawa
dissipative systems (with κ = rp/λ < 6–7) and for their
2004 MAIK “Nauka/Interperiodica”
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phase state. These are the effective coupling parameter
Γ* = Γ{(1 + κ + κ2/2)exp(–κ)}1/2 and the scaling

parameter ξ = eZp{(1 + κ + κ2/2)exp(–κ)np/πmp}1/2.

Here, np is the particle density, Γ = (Zpe)2/(Trp) is the
Coulomb coupling parameter, T is the particle temper-

ature, rp =  is the mean interparticle distance, and
νfr is the coefficient of friction of grains against neutrals
of the surrounding gas. In [20–22], the numerical
model just described was checked against the condi-
tions of laboratory experiments with dusty plasmas in
different types of gas discharges. Experimental investi-
gations showed that the dynamics of dust grains in the
plasma under analysis can be described in terms of the
two main parameters, Γ* and ξ; however, determining
the parameters of the interparticle interaction potential
requires additional information about its shape.

Hence, it was pointed out that the mass transfer pro-
cesses and the spatial correlation between the grains in
Yukawa systems (κ < 6–7) are determined by the ratio
of the second derivative U'' of the pair interaction
potential U(r) at the mean intergrain distance rp to the
particle temperature T. In the systems under study, the
crystallization and melting processes (Γ* ~ 102–106)
and the formation of regular dust clusters (Γ* ~ 22–25)
were observed to occur at fixed values of the effective
parameter Γ* [18, 19]. It is logical to suppose that,
under certain conditions, systems with a wider variety
of pair interaction potentials will also possess these
properties. In order to confirm this supposition, we have
analyzed the mass transfer processes, the shape of the
pair correlation functions, and the conditions for phase
transitions in systems with different types of radial
repulsive potentials, described by the different superpo-
sitions of power functions and exponentials that are
used to model repulsion in the kinetics of interacting
particles [3–7]:

(2)

(3)

(4)

Here, a1, a2, κ1, κ2, and n are the parameters that were
varied in simulations and Uc = a0/r is the Coulomb
potential. Along with potential (1), of particular interest
for dusty plasma physics are model potentials (3) and
(4) (the latter at n = 1 and n = 2), which makes it possi-
ble to take into account weakening of the screening
effect with increasing interparticle distance [14–17].
Analogous models are also applied to account for
repulsion between atoms in covalent metals or in poly-
mer physics [3–7].

νfr
1–

np
1/3–

U Uca1 rp/r( )n
,=

U Uc a1 κ1r/rp–( )exp a2 κ2r/rp–( )exp+[ ] ,=

U Uc a1 κ1r/rp–( )exp a2 rp/r( )n
+[ ] .=
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2. PARAMETERS OF THE NUMERICAL 
PROBLEM

A correct simulation of grain transport in a dusty
plasma requires the use of the molecular dynamics
method, which is based on solving a set of ordinary dif-
ferential equations involving the Langevin force Fbr
that takes into account random impacts of the surround-
ing gas molecules and other stochastic processes caus-
ing the dust grains to relax to an equilibrium (steady-
state) kinetic temperature T, characterizing the energy
of their stochastic (thermal) motion [7, 23, 24]. Micro-
scopic processes occurring in uniform extended clouds
of interacting dust grains are usually modeled by using
periodic boundary conditions and by taking into
account not only the random forces Fbr that are respon-
sible for dust thermal motion but also the pair interac-
tion forces Fint [18–24]:

(5)

where l = |lk – lj | is the interparticle distance, mp is the
mass of a particle, νfr is the friction coefficient of dust
grains [25, 26], and Fint(l) = –∂U/∂l is the pair interac-
tion–driven force. The computations were carried out
for Yukawa potentials with κ = 2.4 and 4.8. The screen-
ing length λ was chosen to provide a correct simulation
of the dynamics of the systems under investigation (the
cell size of the numerical grid being R @ λ) [27]. Addi-
tional simulations were carried out for different combi-
nations of power functions and exponentials given by
formulas (2)–(4).

The pair correlations in systems of particles inter-
acting by means of different types of isotropic repulsive
potentials (1)–(4) were analyzed by solving three-
dimensional equations of motion (5) for different val-
ues of the effective parameters that were introduced by
analogy with the parameters obtained for Yukawa sys-
tems, specifically, the effective coupling parameter

(6)

and the scaling parameter

(7)

where the characteristic frequency of collisions among
the grains is given by relationship

(8)

and  is the effective grain charge defined by

(9)

mp

d
2lk

dt
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Note that the use of notation (9) makes it possible to
analyze each of potentials (1)–(4) in terms of the effec-
tive parameters (Γ*, ξ, ω*). For Yukawa potential (1),

the effective charge can be written as  = eZp(1 + κ +

κ2/2)1/2exp(–κ/2).

Qp*

1

10 2

2

 É* = 17.5

 É* = 77

g(r/rp)

r/rp

Fig. 1. Illustration of pair correlation functions g(r/rp) for
different model potentials and for different values of the
parameters ξ and Γ*. For Γ* = 77, the solid curve refers to
ξ = 0.14 and U/Uc = exp(–4.8r/rp), the triangles refer to ξ =
0.14 and U/Uc = 0.1exp(–2.4r/rp) + exp(–4.8r/rp), and the
circles refer to ξ = 1.22 and U/Uc = exp(–4.8r/rp) + 0.05rp/r.
For Γ* = 17.5, the solid curve refers to ξ = 1.22 and U/Uc =
exp(–2.4r/rp), the triangles refer to ξ = 1.22 and U/Uc =
0.1exp(–2.4r/rp) + exp(–4.8r/rp), and the circles refer to ξ =

0.14 and U/Uc = 0.05(rp/r)3.

2

200 40 60 80 100 120

3

1

Γ*

S1, g1

Fig. 2. Dependence of the first maxima of the structure fac-
tor S1 (heavy curve) and of the pair correlation function g1
(light curve) on Γ*. The closed diamonds are for the values
of g1 in the Yukawa dispersive model (νfr = 0) [28], the tri-
angles are for the values of g1 in the OCP model [29], and
the circles are for the values of S1 in the OCP model [29].
The vertical bars show the absolute deviations for different
values of the scaling parameter in the range ξ = 0.04–3.6
and for different potentials satisfying condition (10).
Simulations of the pair interactions were carried out
for 125 particles in the central numerical cell, the total
number of particles being up to about 3000. The inter-
particle interaction potential was cut off at the distance
Lcut = 4rp. The extent to which the calculated results are
independent of the number of particles and on the cut-
off distance was checked in additional test simulations
that were carried out for systems with Γ* = 1.5, 17.5,
25, 49, and 92, for 512 particles in the central cell and
for Lcut = 7rp. The final results of these simulations were
found to differ by no more than ±(1–3)%, which does
not exceed the computational errors. The computation
procedure was described in detail in [18, 22]. The scal-
ing parameter was varied in the range between ξ ≈ 0.04
and ξ ≈ 3.6, which is typical of the conditions of exper-
iments with gas discharge plasmas. The value of the
effective parameter Γ* was varied from 1 to 110.

Numerical simulations showed that, in the systems
under study, the mass transfer processes, the formation
of ordered structures, and the phase states are described
completely by the effective parameter Γ*, provided that
the long-range potentials obey the empirical condition

(10)

which, in a first (linear) approximation, is the condition
that the pair interaction forces at the mean interparticle
distance are stronger than the forces driven by colli-
sions between the dust grains.

3. FORMATION OF ORDERED STRUCTURES

The formation of ordered structures in the systems
under study was analyzed with the help of the pair cor-
relation function g(r) and the structure factor S(q). The
shapes of the pair correlation functions g(r) calculated
for different model potentials obeying empirical condi-
tion (10), for two different values of the parameter Γ*,
and for different values of ξ are compared in Fig. 1. The
dependence of the first maxima (g1, S1) of the correla-
tion functions g(r) and S(q) and of the positions of the
maxima (r = dg1, q = dS1) on the parameter Γ* is illus-
trated in Figs. 2 and 3, in which the vertical bars show
the absolute deviations of the plotted quantities for dif-
ferent values of the scaling parameter in the range ξ =
0.04–3.6 and for different potentials given by formulas
(1)–(4). In order to compare the results from the calcu-
lation of the pair correlation function of the particles in
the dissipative systems under examination (νfr ≠ 0) with
the solution to the reversible equations of motion for
Yukawa dispersive systems (νfr = 0, ξ  ∞) and with
the results obtained in the one-component plasma
(OCP) model, Fig. 2 also presents the maxima of the
functions g(r) and S(q) that were obtained in [28, 29].

An analysis of the results of our numerical simula-
tions shows that the spatial correlation of the grains in
the systems under study is independent of the friction
coefficient νfr and is determined completely by the

2π U' rp( ) U'' rp( ) rp,>
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value of the effective parameter Γ*—from the values
corresponding to systems in a gaseous state (Γ* ~ 1) to
the values corresponding to the crystallization point
(Γ* ~ 102–104). In all of the systems under investiga-
tion, the dust was observed to crystallize in body-cen-
tered cubic (bcc) lattice. The positions of the first max-
ima of the correlation functions g(r) and S(q) for a crys-
talline structure correspond to a bcc lattice: dg1 ≅
(3 /4np)1/3, dS1 ≅ 2π( )1/3, and kp = 2π  (see
Fig. 3). The first maxima of g(r) and S(q) are seen to
increase sharply (by a jump) in magnitude from 2.65 to
3.1 in the range of values of the normalized coupling
parameter Γ* from the crystallization point,  ≅  102–

104, to the melting point in the system,  ≅  106–107

(Fig. 3). Hence, the value  ≅  104.5 (±2) may serve
as a criterion for the phase transition from a liquidlike
system to a bcc lattice.

Since the value  ≅  104.5 (±2%) is independent
of the viscosity of the surrounding gas, this criterion
agrees with the results of simulations of crystallization
in Yukawa systems by the molecular dynamics methods
in which the friction between particles is ignored [28–
31]. The relevant results of these simulations differ

from the value  ≅  104.5 by no more than ±5%; this
discrepancy can be attributed to the differences in the
numerical methods used to analyze the system (differ-
ent numbers of particles, different integration steps,
etc.) and also to the choice of the Γ* value (either at the
melting point or at the crystallization point). The calcu-

lated value  ≅  104.5 (±2%) also agrees with the
results of theoretical investigations carried out by Slat-
tery et al. [32]. For the coupling parameter at the phase
transition line in the OCP model, they obtained the
value 105(±3%), which agrees with the results of calcu-
lations carried out for different criteria for liquid–crys-
tal phase transitions (crystallization) [33] and crystal–
liquid phase transitions (melting) [34].

To conclude this section, note that, since the shape
of the correlation functions g(r) in question, i.e., those
satisfying condition (10), is determined by the value of
the effective parameter Γ*, the methods for reconstruct-
ing the interparticle interaction potential from the
experimental data on the structure factor on the basis of
the hyperchain approximation, which makes use of the
direct functional relationships between g(r), S(q), and
U(r) [5, 6, 29], are inapplicable to the systems under
analysis. It should also be noted that the results
obtained here can explain the wide use of different phe-
nomenological criteria for crystallization and melting,
which are formulated in terms of the fixed maximum
values of the correlation functions or in terms of the
fixed relationships between the maximum and mini-

3 2np np
1/3

Γ c*

Γ cm*

Γ cm*

Γ cm*

Γ cm*

Γ cm*
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mum (at r ≠ 0) values of these functions at the phase
transition lines regardless of the type of interparticle
interaction potential.

1.05

200 40 60 80 100 120

1.15

0.95

Γ*

dS1/k, dg1/rp

Fig. 3. Dependence of the relative position dS1/kp of the
maximum of S1 (heavy curve) and of the relative position
dg1/rp of the maximum of g1 (light curve) on Γ*. The
dashed line and dotted line show the positions of the max-
ima of the correlation functions for a bcc lattice. The verti-
cal bars show the absolute deviations for different values of
the scaling parameter in the range ξ = 0.04–3.6 and for dif-
ferent potentials satisfying condition (10).
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Fig. 4. Dependence of the ratio D(t)/D0 on tνfr for the
Yukawa potential (κ = 2.4) and for different values of the
parameters ξ and Γ*: (1) ξ = 0.41, Γ* = 80; (2) ξ = 0.14,
Γ* = 80; (3) ξ = 0.14, Γ* = 60; (4) ξ = 0.14, Γ* = 30; and
(5) ξ = 0.04, Γ* = 80. Curve 6 shows the ratio D(t)/D0 cal-
culated from formula (12). The triangles show the points
along curves 3 and 2 (with ξ = 0.14 and Γ* = 60 and 80,
respectively) for which the calculations with the potential
U/Uc = exp(–4.8r/rp) + 0.05rp/r were carried out.
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4. EVOLUTION OF THE MASS TRANSFER 
PROCESSES

In contrast to the phase states, the mass transfer pro-
cesses in the systems under study are determined by the
two main parameters, Γ* and ξ (see Fig. 4). The coeffi-
cient of diffusion of the dust grains, D = (t), and

the time evolution of the dust mass transfer, D(t), were
analyzed based on the relationship

(11)

where ∆l(tjk) = l(tj) – l(tk) is the distance by which the
ith particle is displaced during the time t ≡ tjk = ( j – k)∆t
from its initial position li(tk) at the time tk, k = 1–Nt , j =
k(Nt + k), ∆t is the time resolution (determined, e.g., by
the frame frequency of a video camera or the time inter-
val between successive outputs of the information on
the grain position in numerical solution of the prob-
lems), Nt∆t is the total measurement time (e.g., the
duration of a video recording or the run time of the
code), the symbol 〈 〉N denotes averaging over the
ensemble (N), and the symbol 〈 〉 t denotes averaging
over all time intervals of duration t = tjk during the total
measurement time Nt∆t.

Figure 4 displays the dependence of the ratio of the
function D(t) for charged grains to the coefficient of
diffusion of noninteracting Brownian grains, D0 =

D
t ∞→
lim

D t( ) l t( ) l 0( )–
2〈 〉 N〈 〉 t/6t=

≅ 1
N p6Ntt jk

---------------------- ∆li t jk( )( )2
,

i 1=

N p

∑
k 1=

j k–( ) const=

Nt

∑

2

20 4

6

10Dmax/D0, tmaxνfr

ξ

4

8

1

2

1 3

Fig. 5. Dependence of the ratio Dmax/D0 (curve 1) and of
the quantity tmaxνfr (curve 2) on the parameter ξ. The dotted
curves show the approximations of Dmax/D0 and tmaxνfr by
relationships (13) and (14), respectively.
T/(νfrmp), on time (expressed in units of the inverse fric-

tion rate ) for systems with different pair interaction
potentials and with different values of the parameter ξ.
Curve 6 is the exact solution to the Langevin equation
for noninteracting grains [7]:

(12)

Hence, on time scales longer than the inverse fric-
tion rate (νfr @ 1), we have D(t) = D0, whereas, on short
time scales (νfrt ! 1), the grain undergoes ballistic
motion: 〈[∆l(t)]2〉 ≈ 3Tt2/mp and D(t) ∝ t.

When the interaction is taken into account, the
behavior of the function D(t) on short time scales
remains the same and the ratio D(t)/D0 on time scales
t < tmax/2 is determined by formula (12) for noninteract-
ing grains (see Fig. 4). On longer time scales, the func-
tion D(t) reaches its maximum value Dmax, which can
be used to analyze the mass transfer processes for short
observation times. Note that the coefficient Dmax is
smaller than D0 and approaches the latter as the viscos-
ity (νfr) of the surrounding gas increases. Figure 5 gives
the dependences of the maximum value of the ratio
D(t)/D0 and its temporal position tmaxνfr on the parame-
ter ξ. It should be noted that the ratio Dmax/D0 and the
temporal position tmaxνfr are both independent of the
parameter Γ*. An empirical fit of the numerical results
for the curves D(t) that decrease monotonically after
reaching their maximum value yields the following
relationship for the dependence Dmax(ξ):

(13)

For the temporal position tmax of the maximum of the
ratio D(t)/D0 in the case of weakly dissipative systems
with ξ > 0.25, this empirical fit gives

(14)

where b = 4. Approximate relationships (13) and (14)
describe the results of numerical simulations (see
Fig. 5) with an accuracy of about 5%. The relationships
were obtained by solving the problem of the motion of
a one-dimensional oscillator whose frequency is given
by the formula

(15)

and corresponds to the characteristic oscillation fre-
quency of particles in a bcc lattice [18]. The frequency
ωc is close to the mean oscillation frequency of parti-
cles in a liquidlike Yukawa system, obtained by pro-
cessing the autocorrelation functions of their velocities

[35]:  ≈ (  + )/(4π), where ω⊥  and ω|| are the
frequencies of transverse and longitudinal oscillations,
respectively.

νfr
1–

D t( )/D0 1 1 νfrt–( )exp–[ ] /νfrt.–=

Dmax D0/ 1 bξ+( ).≈

tmaxνfr π/ bξ( )2
1–[ ]

1/2
,=

ωc
2

2 U'' rp( ) / πmp( ) 4ω*2,≡=

ωc
2

2ω⊥
2 ω||

2
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The behavior of the functions D(t) under analysis
illustrates how statistical equilibrium is established in a
slightly perturbed system. Simulations show that a sys-
tem of interacting particles can be characterized by the
equilibrium values of the transport coefficients only on
time scales t @ tmax; this is in contrast to a system of
Brownian particles, for which we have D(t) = D0 on

time scales t @ . The analysis of the behavior of the
function D(t) for short observation times can be useful
for obtaining independent estimates of the parameter ξ,
which contains information about the interparticle
interaction potential, and for recovering the dust grain
temperature T (when the resolution of a measuring
instrument is insufficient to correctly determine the
velocity spectrum of dust grains).

5. THERMAL DIFFUSION COEFFICIENT

On infinitely long time scales (t  ∞), the func-
tion D(t) (11) approaches its constant value D =

(t), which corresponds to the standard definition

of the particle diffusion coefficient as one of the main
coefficients describing transport processes. The results
of simulations of the diffusion of dust grains for differ-
ent values of the scaling parameter ξ and for different
model potentials (1)–(4) are illustrated in Fig. 6 in the
form of the dependence of the ratio of the diffusion
coefficient of the charged grains, D, to that of the
Brownian grains, D0, on the effective coupling parame-
ter. It is easy to see that the diffusion coefficients of dust
grains interacting by means of different potentials (1)–
(4) are determined by the two main parameters, Γ* and
ξ. Recall that, as the effective coupling parameter
increases to a value of Γ* ~ 106, the dust in such sys-
tems crystallizes in a bcc lattice, in which case the dif-
fusion coefficient of the grains decreases rapidly to zero
(see Fig. 6).

The normalized function D* = D(1 + ξ)/D0 ≡ D(νfr +
ω*)mp/Tp, averaged over all values ξ ≈ 0.045–3.65 and
over all potentials (1)–(4) used in simulations, is shown
in Fig. 7. The scatter in the values of this function does
not exceed ±5% for different values of the parameters
under analysis (U and ξ) and for different values of Γ*,
except for the range of values of the effective coupling
parameter from 22 to 30, in which the spread in the cal-
culated D* values is larger (±10%), and the diffusion
coefficient depends nonmonotonically on Γ* (see
Figs. 6, 7). This latter result can be attributed to the for-
mation of regular dust clusters at Γ* > 22–25 and leads
to conclusions about the possible effect of the type of
intergrain interaction potential on the dynamics of the
phase transition in question. The formation of such
clusters, which was revealed earlier in numerical inves-
tigations of Yukawa systems [17, 36], provides a topo-
logical confirmation of the melting scenario observed
in some experimental studies [36–38].

νfr
1–

D
t ∞→
lim
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Hence, it is found that, for weakly correlated sys-
tems, as well as for strongly correlated systems, the
normalized function D* is determined by the effective

0.2
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2

25 75

 D/D0

3

4

κ = 2.4

κ = 4.8

Fig. 6. Dependence of the ratio D/D0 on the parameter Γ*
for Yukawa dissipative systems (closed and open squares)
with different κ values [17] and systems with potentials (2)–(4)
(triangles) whose parameters are given in the caption in
Fig. 1 and for different values of the scaling parameter: ξ =
(1) 0.14, (2) 0.41, (3) 1.22, and (4) 3.65.
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Fig. 7. Dependence of the normalized function D* (light
curves), averaged over the results of numerical simulations,
on the parameter Γ* and approximation of this function
(heavy curves) by relationship (16) for (1) ξ ≥ 0.41 and
(2) ξ ≤ 0.14. The values of D* for Yukawa dispersive sys-
tems (ξ  ∞) [35] are also shown for κ = 0.16 (open cir-
cles), 0.48 (closed circles), 0.97–2.26 (triangles), 3.2 (open
squares), 4.8 (closed squares), and 8 (dotted curve).
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coupling parameter Γ*. For strongly correlated sys-
tems, we have Γ* > 40–50 and the diffusion coefficient
can be represented in a form analogous to that for
Yukawa systems [17]:

(16)

where  = 102 is the crystallization point, c = 2.9 for
ξ ≥ 0.41, and c = 3.15 for ξ ≤ 0.14. For Γ* values from
50 to 102, the error of approximating the calculated D
values by formula (16) does not exceed 3%. For smaller
Γ* values (up to 40), the approximation error is larger,
7–13%, and, for Γ* ≈ 30, it is as large as 25–30%. Rela-
tionship (16) agrees with the theory of “jumps” devel-
oped for molecular liquids [1] and offers the possibility
of determining the effective coupling parameter Γ*
from the results of measurements of the mean distance
between dust grains, their temperature, and their diffu-
sion coefficient in liquidlike systems without making
any additional assumptions about the shape of the pair
intergrain interaction potential. The results from
numerical calculations of D* that are shown in Fig. 7
can be useful in diagnosing weakly correlated systems
with Γ* < 50. Earlier, the forces of intergrain interac-
tions in the processes of thermal diffusion of dust grains
were taken into account by means of virial expansions
or by using relationships analogous to those describing
critical phenomena in liquids [2, 35, 39]. Both of these
approaches require that the coefficients in the corre-
sponding approximations be additionally recalculated
for different values of the parameters of the system
under consideration.

In order to compare the results calculated here with
the results of calculations of the self-diffusion coeffi-
cient in dispersive Yukawa systems (νfr ≡ 0, ξ  ∞),
Fig. 7 also depicts the results of numerical simulations

D
TΓ*

12π ω* νfr+( )mp

----------------------------------------- c
Γ*
Γ c*
-------– 

  ,exp≅

Γ c*

–0.04

1.5
0

2.5

0.02

U(r/rp), eV

r/rp
–0.02

0.04

1

2

1.0 2.0

–0.06

0.5

Fig. 8. Illustration of pair interaction potentials for sodium:
curve 1 and triangles are for the first Parskin–Rahman
potential and curve 2 and circles are for the second Parskin–
Rahman potential.
carried out by Ohta and Hamaguchi [35] for potentials
with κ ~ 0.15–4.85 and for systems with Np = 600–
1000. It is easy to see that, for all values of the coupling
parameter Γ* from about 15 to 100, the values of the
normalized self-diffusion coefficient D* for dispersive
systems agree well (to within ±3%) with the results of
simulations of weakly dissipative systems with ξ ≥
0.41. In contrast to the calculated results presented here
(which were obtained by the Brownian molecular
dynamics method and with periodic boundary condi-
tions), Ohta and Hamaguchi [35] used a method based
on solving the reversible equations of motion (this
method requires that the calculated results be renormal-
ized from time to time in order for the system to remain
in thermodynamic equilibrium) and simulated a system
consisting of an infinite number of particles by special
tensor transformations. Because of the latter approxi-
mation, the final values of the diffusion coefficient can
depend on the boundary conditions and, accordingly,
can differ somewhat (by an amount of up to about 10–
15% for Γ* < 15) from the numerical results given in
Fig. 7.

To conclude this section, note that, as the screen-
ing parameter increases, potential (1) fails to satisfy
condition (10) even for κ > 5.1. However, since con-
dition (10) is empirical and merely determines the cor-
responding lower limit (for most of the potentials under
discussion, the factor π in this condition can be
replaced with 4), the transport properties of Yukawa
systems are determined by the parameters (Γ*, ξ) up to
κ ~ 7. A comparison of the D* value for κ ~ 8 [35] with
the numerical results obtained here for κ < 5 is given in
Fig. 7.

6. TRANSPORT PROPERTIES OF SYSTEMS
WITH ATTRACTIVE PAIR POTENTIALS 

BETWEEN GRAINS

Since condition (10), which determines the scales
on which transport processes occur in nonideal systems
with different potentials of interaction between the par-
ticles, was derived by analyzing different isotropic
repulsive potentials (1)–(4), it is expedient to examine
the transport properties of systems with attractive pair
potentials between the grains. As an example, we con-
sider the pair correlation functions g(r) and the self-dif-
fusion coefficients D calculated numerically by Parskin
and Rahman [40] for two different attractive potentials
(see Fig. 8). The first potential (shown by curve 1 in
Fig. 8) agrees well with the data from measurements of
the pair correlation function g(r) for sodium at a tem-
perature of about 100°C by a method based on neutron
scattering and with the data from measurements of the
diffusion of sodium atoms under the same conditions.
The second potential (shown by curve 2 in Fig. 8) is
close to the potentials calculated in [41] for sodium
with the help of the Born–Green theory. Each of the two
Parskin–Rahman potentials satisfies condition (10). In
[40], the transport properties of sodium were calculated
PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004
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by the molecular dynamics method (i.e., by solving the
reversible equations of motion) for about 600 particles.
Both the potentials were truncated at a distance of about
8.2 Å, the mean interparticle distance rp being about
3.4 Å. The results from calculating the correlation
functions and the function D(t) are shown in Figs. 9 and
10. For the first potential (curve 1 in Fig. 8), the self-dif-
fusion coefficient D = (t) was calculated to be

about 5.8 × 10–5 cm2/s, and the same coefficient for the
second potential was found to be D ≈ 1.9 × 10–5 cm2/s.

It is easy to see that the pair correlation function cal-
culated for the first potential is close to that calculated
in the present paper for Γ* ≈ 77. For the coefficient of
self-diffusion in liquid sodium (νfr ≡ 0), formula (16)
can be rewritten as

(17)

For Γ* ≈ 77, formula (17) yields D ≈ 5.77 × 10−5 cm2/s,
which is in complete accord with the results of [40].
Taking into account the maximum value of the correla-
tion function calculated for the second potential
(Fig. 9), we see that this value of the self-diffusion
coefficient corresponds to the metastable region
between the melting and crystallization lines for the
system under investigation, Γ* ≈ 104 ± 2 (see Fig. 2).
This agrees well with the results of calculations of the
r.m.s. deviation of the interparticle distance that were
carried out by Randolph [42] for a potential close to the
potential under consideration here (see curve 2 in
Fig. 8). Randolph revealed that 〈(∆l)2〉  behaves in a
manner characteristic of those for solid bodies. It is
incorrect to calculate the diffusion coefficient in the
metastable region from formula (17) (see Fig. 6),
because, in this case, the formula gives D ≈ 3 ×
10−5 cm2/s, which is somewhat larger than the value
D ≈ 1.9 × 10–5 cm2/s, obtained in [40].

It is worth noting that the temporal positions tmax of
the maxima of the function D(t) for the two Parskin–
Rahman potentials agree completely with the values of
the effective coupling parameter Γ* obtained by ana-
lyzing the pair correlation functions (see Fig. 10). Thus,
the Γ* value calculated from relationship (14) for the
first potential was found to be about Γ* ≈ 76.5 (tmax ≈
1.44 × 10–13 s) and the corresponding Γ* value for the
second potential was about 106.5 (tmax ≈ 1.22 × 10–13 s).
However, for both of the potentials, the values of the
effective coupling parameter calculated from for-
mula (13) with allowance for the maximum values Dmax
of the functions D(t) were found to be underestimated:
Γ* ≈ 53.5 (Dmax ≈ 7.4 × 10–5 cm2/s) and Γ* ≈ 84 (Dmax ≈
5.9 × 10–5 cm2/s) for the first and second potentials,
respectively. This could stem from the truncation of the
pair interaction potentials at fairly short distances
(~2.5rp) as well as from an insufficiently large number

D
t ∞→
lim

D
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πmp

---------- 2.9
Γ*
Γ c*
-------– 

  .exp≅
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of particles in the ensemble over which the averaging
was performed [21].

To conclude this section, note that the existing data
from measurements of the diffusion coefficient for liq-
uid sodium at temperatures of T ~ 100°C yield D ~
(3.8 ± 4) × 10–5 cm2/s [41, 43], which agrees well
with the results of calculations from formula (17):

1

0

3
g(r/rp)

r/rp

2

1 2

Fig. 9. Pair correlation functions g(r/rp) obtained in calcu-
lations [45] for the first (triangles) and second (circles) Par-
skin–Rahman potentials. The heavy curve shows the results
of modeling the pair correlation function in a system with
Γ* = 77.

2

40 8

4

t, 10–13 s

6

1

2

2 6

D(t), 10–5 Òm2/s
8

Fig. 10. Time dependences D(t) calculated for (1) the first
(solid curve) and for (2) the second (circles) Parskin–Rah-
man potentials [45].
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D(T = 100°C) ≈ 3.3 × 10–5 cm2/s and D(T = 125 °C) ≈
4 × 10–5 cm2/s.

7. CONCLUSIONS

In the present paper, a numerical analysis has been
carried out of the mass transfer and diffusion processes
in the dust plasma component and of the spatial corre-
lation between the dust grains interacting by means of
various types of isotropic repulsive potentials over a
wide range of phase states (Γ* ~ 1–110) of nonideal sys-
tems. The dimensionless parameters that are responsi-
ble for the mass transfer process in the dust component
and for the phase state of dissipative systems with long-
range potentials obeying empirical condition (10) have
been determined. These are the effective coupling
parameter Γ* and the scaling parameter ξ. Along with
the particle temperature, they completely determine the
transport properties of the systems under consideration.
It has been shown that, for a wide variety of the isotro-
pic potentials of the intergrain interaction, the shape of
the pair correlation function g(r) is determined by the
value of the effective parameter Γ*. This circumstance
eliminates the possibility of recovering the shape of
such potentials by inverting the function g(r). An ana-
lytic approximation for the particle diffusion coefficient
D in strongly nonideal systems (with Γ* > 50) has been
derived that makes it possible to determine the diffu-
sion coefficient D as a function of the particle tempera-
ture Tp and of the parameters Γ* and ξ.

The results obtained can be used to develop new
methods for passive (nonintrusive) diagnostics of non-
ideal liquidlike systems and for the analysis of the
effect of interparticle interaction on the transport prop-
erties of a system in the course of the experiment. The
numerical model proposed here can also be applied to
describe the properties of simple monatomic liquids, at
least those that crystallize in bcc lattices, such as, e.g.,
liquid alkali metals. However, such a description
requires an analysis of the transport properties of these
liquids (such as the self-diffusion coefficients and pair
correlation functions); this will be dealt with in our
future papers.
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Abstract—An analytic study is made of the following problems: the instability of a plasma against the excita-
tion of vortex turbulence, the turbulence saturation amplitude, the types and spatial structures of the nascent
vortices, and their nonlinear growth rates in an electrostatic plasma lens for focusing high-current ion beams.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The objective of this paper is to analytically investi-
gate the excitation of vortex turbulence in a plasma lens
for focusing high-current ion beams [1, 2]. The radial
focusing electric field in the lens is created by an elec-
tron cloud. At each point within the lens, the density of
the cloud electrons n0e is higher than the ion beam den-
sity n0i by the amount Ne ≡ n0e – qin0i/e, where qi and e
are the charges of an ion and an electron, respectively.
In other words, the space charge of an ion beam is
overneutralized by the electrons of the plasma lens. The
radial electron density distribution is approximately
uniform, which ensures that the lens aberrations are
low. The lens is in the form of a cylinder of finite length;
the secondary electrons are emitted from its inner sur-
face when it is bombarded by peripheral beam ions. It
is these electrons that form the focusing cloud [1, 2].
The lens is in the magnetic field of a short solenoid. The
solenoidal magnetic field structure is such that, as the
emitted secondary electrons move from the ends of the
cylinder toward its center, the field acts to displace them
toward the solenoid axis.

The cylinder is separated along its length into sev-
eral azimuthally symmetric rings, which are kept at def-
inite electric potentials. Most of the electrons are con-
fined within the plasma lens by the space charge of the
ion beam during its transport. It is these electrons that
make it possible to achieve high beam currents. The
remaining electrons are confined within the plasma lens
by the magnetic field of the short solenoid and by the
electric field of the ring electrodes. It is these electrons
that produce the radial electric field focusing an ion
beam.

It was shown in [1–3], however, that such a plasma
lens is unstable against the excitation of oscillating
fields that act as a source of lens aberrations. The exci-
tation of oscillations is attributed to the specific spatial
structure of the magnetic field of the short solenoid: the
longitudinal magnetic field H0(r) increases from the
axis of the solenoid toward its surface. In other words,
1063-780X/04/3008- $26.00 © 20662
it is the positive radial magnetic field gradient dH0/dr > 0
that causes the plasma to become unstable against the
bunching of the electrons that are uniformly distributed
over the lens.

Since the field configuration in the plasma lens is
governed by the crossed radial focusing electric field
E0r and longitudinal magnetic field H0, the electrons
drift along the azimuthal coordinate θ with the velocity

Vθ0 = –eE0r/meωHe = ( /2ωHe)(Ne/n0e)r ≡ rωθ0, where
ωHe = eH0/mec is the electron gyrofrequency.

Any perturbation of the initially uniform electron
density gives rise to an electric field perturbation in its
vicinity. Consequently, in the vicinity of the density
perturbation, the field configuration is that of the
crossed perturbed electric and longitudinal magnetic
fields. This results in vortex electron dynamics in the
field of the density perturbation. The vortex electron
dynamics in crossed radial electric and longitudinal
magnetic fields is being widely studied for the cases of
a purely electron plasma [4–7] as well as charged and
quasineutral plasmas [3, 8–12].

This paper is devoted to a theoretical study of the
excitation of vortex perturbations in a plasma lens.

2. DYNAMIC EQUATIONS FOR NONLINEAR 
VORTEX PERTURBATIONS

Here, we derive equations describing the excitation
of nonlinear vortex perturbations in a cylindrical
plasma lens and the properties of these perturbations.
To do this, we use the electron hydrodynamic equations

(1)

where ∂t ≡ ∂/∂t and the vector ωHe has the same direc-
tion as the magnetic field in the definition of ωHe.

ωpe
2

∂tV V —⋅( )V+  = e/me( )—ϕ wHe V× V th
2

/ne( )—ne,–+

∂tne — neV( )+ 0,=
004 MAIK “Nauka/Interperiodica”
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Assuming that the ions are unmagnetized, we describe
them by the hydrodynamic equations

(2)

and Poisson’s equation for the electric potential ϕ,

(3)

Here, V and ne are the electron velocity and electron
density, Vth is the electron thermal velocity, Vi and ni are
the ion density and ion velocity, and qi and mi are the
charge and mass of an ion.

As will be shown below, the spatial scales on which
the vortex perturbations occur are much larger than the
electron Debye radius rde ≡ Vth /ωpe , where ωpe ≡
(4πn0ee2/me)1/2. This allows us to ignore the last term on
the right-hand side of the first of Eqs. (1).

By analogy with [12], Eqs. (1) can be reduced to the
equations

(4)

(5)

which describe the nonlinear transverse dynamics of
the electrons and also their linear longitudinal dynam-
ics under the assumptions wHe = ezωHe and ∂zωHe = 0. In
Eqs. (4), we take into account only the lowest order
terms in the longitudinal perturbations; i.e., we omit the
terms that are nonlinear in the longitudinal perturba-
tions and also the terms that contain the products of the
quantities describing the linear longitudinal perturba-
tions with any of the quantities describing the trans-
verse perturbations. There are three reasons for treating
the longitudinal electron dynamics in a linear approxi-
mation: the length of the plasma lens is greater than its
radius, the longitudinal scales of the vortex perturba-
tions are close to the length of the lens, and the trans-
verse scales of the perturbations are smaller than the
lens radius. The notation in Eqs. (4) and (5) is as fol-
lows: V⊥  and Vz are the transverse and longitudinal
electron velocities, respectively; ez is a unit vector
directed along the system axis; and the vorticity α,
which characterizes the vortex motion of the electrons,
is given by the expression

(6)

where α0 is the unperturbed value of α. The physical
meaning of the vorticity α becomes especially obvious
if we introduce the angular velocity of rotation of the

∂tVi Vi —⋅( )Vi+ qi/mi( )—ϕ ,–=

∂tni ∇ niVi( )+ 0=

∆ϕ 4π ene qini–( ).=

dt α ωHe–( )/ne[ ] α 0 ωHe–( )/ne0[ ]∂ zVz,=

dt0Vz e/me( )∂zϕ ,=

dt ∂t V⊥ —⊥⋅( ),+≡
dt0 ∂t Vθ0∇ θ+≡ ∂t ωθ0∂θ,+=

∂z ∂/∂z, ∂θ ∂/∂θ,≡ ≡

α ez ∇ V×( )⋅≡ r
1– ∂rrVθ r

1– ∂θVr,–=
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electrons in the vortex, Ω ≡ Vθ/r, in terms of which the
vorticity has the form

(7)

For Ω ≠ Ω(r) and Vr = 0, the vorticity is two times the
angular velocity of rotation of the electrons, α = 2Ω.

From Eqs. (1) we obtain the following equation for
the transverse electron velocity V⊥ :

(8)

or

(9)

Retaining the lowest order (linear) terms in Eqs. (8)

and (9) and taking the limit ( )(Ne /n0e) ! 1, we
get

(10)

With allowance for the dependence ωHe(r), from
Eq. (6) and relationship (10) we obtain the following
approximate expression for the vorticity:

(11)

where E0r is the radial focusing electric field and φ is the
electric potential of the vortex perturbation.

Expression (11) yields the following relationship for
the unperturbed vorticity:

(12)

Expression (11) is convenient for the physical inter-
pretation of the relation between the perturbation of the
electron density δne and the vortex motion of electrons
in a plasma lens. In order to understand this relation, we
consider the limiting case in which the ions are
assumed to be immobile and the radial magnetic field

α 2Ω r∂rΩ r
1– ∂θVr.–+=

V⊥ e/meωHe( ) ez —⊥ ϕ×( )=

– ωHe
1– ∂t ez V⊥×( ) ωHe

1– ez V⊥ —⊥⋅( )V⊥×( )–

V⊥ e/meωHe( ) ez Er0×( )– e/meωHe( ) ez —⊥ φ×( )+=

– ωHe
1– ∂t ez V⊥×( ) ωHe

1– ez V⊥ —⊥⋅( )V⊥×( ),–

—ϕ —φ E0r.–≡

ωpe
2

/ωHe
2

V⊥ e/meωHe( ) ez —⊥ ϕ×( ) e/meωHe
2( )∂t—⊥ ϕ+≈

=  Vθ0 e/meωHe( ) ez —⊥ φ×( ) e/meωHe
2( )∂t—⊥ φ.+ +

α 2eE0r/rmeωHe– eE0r/me( )∂r 1/ωHe( )–≈
+ e/meωHe( )∆⊥ φ e/me( ) ∂rφ( )∂r 1/ωHe( )+

+ e/me( )∂t ez —⊥ ωHe
2– —⊥ φ×( )⋅( )

=  ωpe
2

/ωHe( )Ne/ne0 rωpe
2

Ne/2ne0( )∂r 1/ωHe( )+

+ e/meωHe( )∆⊥ φ e/me( ) ∂rφ( )∂r 1/ωHe( )+

+ e/me( )∂t ez —⊥ ωHe
2– —⊥ φ×( )⋅( ),

α0 2eE0r/rmeωHe– eE0r/me( )∂r 1/ωHe( )–≈

=  ωpe
2

/ωHe( )Ne/ne0 rωpe
2

Ne/2ne0( )∂r 1/ωHe( ).+
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gradient is ignored. In this case, Eq. (3) and expres-
sion (11) give the following approximate expression

(13)

Here, the first term describes the electron motion along
closed trajectories in the crossed fields of the plasma
lens and the second term indicates that any perturbation
δne of the electron density sets the electrons into vortex
motion. Expression (13) also implies that, when the
amplitude of the vortex perturbations is sufficiently
small, the vorticity has the same sign over the entire
plasma lens. In some regions within the lens, the vortic-
ity can change its sign when the amplitudes of the vor-
tices become larger than a certain value.

As will be shown below, the characteristic perturba-
tion frequencies are on the order of the ion plasma fre-
quency ωpi . We take this circumstance into account and
assume that the electron gyrofrequency is much higher
than the electron plasma frequency, ωHe @ ωpe. We also
retain terms up to first order in ωpe/ωHe and use the fact
that, according to expression (11), the vorticity α is pro-

portional to /ωHe. As a result, keeping only the low-
est order terms in Eqs. (4), we arrive at the equations

(14)

where the electron density ne is determined from Pois-
son’s equation:

ne = ne0 + (qi/e)δni + ∆φ/(4πe). (15)

We single out the vortex motion in crossed fields
with the velocity Vv θ in the azimuthal direction and the
time derivative ∂τ, which describes how the vortex per-
turbation changes with time, to obtain

(16)

Since the beam ions are heavy and fly rapidly (with
the velocity Vib) through the plasma lens, their dynam-
ics can be described in a linear approximation. From
Eqs. (2) we obtain the following equation for the ion
density perturbation δni = ni – ni0:

(17)

where Vib is the unperturbed longitudinal velocity of the
ion beam.

Equations (9) and (14)–(17) describe the excitation
and properties of finite-amplitude vortex perturbations.
In what follows, we will use these equations to describe
the structure of vortex perturbations, the excitation of
linear vortex perturbations, and the excitation of non-
linear small-amplitude vortex perturbations.

α ωpe
2

/ωHe( )Ne/ne0 ωpe
2

/ωHe( )δne/ne0.+≈

ωpe
2

dt ωHe/ne( ) ωHe/n0e( )∂zVz, dt0Vz≈  = e/me( )∂zφ,

dt ∂τ V⊥ ∇ ⊥⋅( ) Vv θ∇ θ,–+=

dt0 ∂τ Vθ0∇ θ Vv θ∇ θ–+≡ ∂τ ωθ0∂θ Vv θ∇ θ.–+=

∂t Vib∂z–( )2
ni ∂τ Vib∂z– Vv θ∇ θ–( )2

ni≡
=  ni0 qi/mi( )∆φ,
3. LINEAR THEORY OF THE DEVELOPMENT 
OF INSTABILITY IN A PLASMA LENS

We first consider the development of instability in
the linear approximation. To do this, we derive the lin-
ear dispersion relation for the oscillations excited in a
cylindrical plasma lens. Representing the dependence
of the perturbed quantities on z and θ in the form
exp(ikzz + ilθθ), from Eq. (17) we obtain

(18)

where kz and lθ are the longitudinal and azimuthal
wavenumbers of the perturbation, ω is the perturbation
frequency, and Vib is the unperturbed longitudinal
velocity of the ion beam. Substituting expression (18)
into Eq. (15) yields

(19)

In the linear approximation, Eqs. (14) become

(20)

Equations (19) and (20) give the following equation
for φ:

(21)

Under the assumption that the radial gradient of the
magnetic field of a short solenoid, ∂rH0, is independent
of radius, from Eq. (21) we obtain the following linear
dispersion relation, which describes the development of
instability:

(22)

where k is the wavenumber.

4. EXCITATION OF SMALL-AMPLITUDE FAST 
VORTEX PERTURBATIONS

By fast vortex perturbations, we mean the perturba-
tions whose phase velocity is close to the azimuthal
electron drift velocity, Vph ≈ Vθ0. In turn, by the phase
velocity, we mean the quantity Vph ≡ Re(ω/kθ), where
Reω is the real part of the frequency and kθ is the azi-
muthal component of the wave vector. In the approxi-
mation in which kz = 0, ω = ω(0) + δω, and |δω| ! ω(0),
linear dispersion relation (22) for fast vortex perturba-
tions gives

δni ni0 qi/mi( )∆φ/ ω kzVib–( )2
,–=

β∆φ/4πe δne, β 1 ωpi
2

/ ω kzVib–( )2
,–= =

ne n0e δne.+=

dt ωHe/ne( ) eωHe/mene0( )ikz
2φ/ ω lθωθ0–( ),–=

ωθ0 Vθ0/r.≡

ωpe
2

/ωHe
2( )∇ θφ∂rωHe β ∂t∆φ ωθ0∂θ∆φ+( )+

=  ikz
2φωpe

2
/ ω lθωθ0–( ).

1 ωpi
2

/ ω kzVbi–( )2
–

– ωpe
2

lθ/r( )∂r 1/ωHe( )/ k
2 ω lθωθ0–( )[ ]

– ωpe
2

kz
2
/ k

2 ω lθωθ0–( )2[ ] 0,=

ω 0( ) ωpi lθωθ0,= =
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, (23)

where n0i is the unperturbed ion density.

Formulas (23) imply that the azimuthal wavenum-
ber of the excited vortex perturbations is equal to

(24)

From this expression we see that, for typical experi-
mental parameters (Ne/n0e ≈ 0.1), the perturbations that
are excited in a strong magnetic field at a low electron
density are those with lθ > 1.

Formulas (23) also imply that the frequency at
which fast vortex perturbations are excited is equal to
the ion plasma frequency ωpi and that the rate γq at
which the perturbations grow is proportional to the
square root of the radial magnetic field gradient
(∂rH0)1/2.

In deriving formulas (23), we used the inequality

(25)

which is valid provided that the space charge of an ion
beam is slightly overneutralized by the electrons of the
lens (Ne/n0e ! 1), the electron gyrofrequency ωHe is
slightly nonuniform, and the plasma density is low
(ωpe/ωHe ! 1).

5. EXCITATION OF SMALL-AMPLITUDE SLOW 
VORTEX PERTURBATIONS

By slow vortex perturbations, we mean the perturba-
tions whose phase velocity is much lower than the azi-
muthal electron drift velocity, Vph ! Vθ0. At kz = 0, lin-
ear dispersion relation (22) for such perturbations gives

(26)

where γs is the growth rate of the small-amplitude slow
vortex perturbations and Reωs is the real part of their
frequency. From expressions (26) we see that the spa-
tial scales on which slow vortex perturbations are
excited are inversely proportional to the square root of
the radial magnetic field gradient, (∂r H0)1/2. In other
words, the smaller the magnetic field gradient, the
wider the slow vortices. Expressions (26) also show
that the growth rate of the slow vortex perturbations is
proportional to the cube root of the angular frequency
of rotation of the electrons in the crossed fields of the
plasma lens, i.e., to the cube root of the degree to which
the plasma is nonequilibrium.

ωθ0 ωpe
2

/2ωHe( ) Ne/n0e( ), Ne n0e qin0i/e–≡=

δω = iγq, γq ωpe/k( ) ωpi/2( ) lθ/r( ) ∂r 1/ωHe( )[ ] 1/2
,≈

lθ ωpi/ωθ0 2 me/mi( )1/2 ωHe/ωpe( ) n0e/Ne( ).= =

Ne/n0e( ) r/ωHe( )ωpe
2 ∂r 1/ωHe( )  ! me/mi,

γs 3/2
4/3( ) ωpi

2
lθ ωpe

2
/2ωHe( ) Ne/n0e( )[ ]

1/3
≈

=  3/2
4/3( ) ωpi

2
lθωθ0[ ]

1/3
,

k
2

1/Vθ0( )ωpe
2 ∂r 1/ωHe( ), Re ωs– γs/ 3.= =
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Expressions (26) for the growth rate were derived
under the inequality

(27)

Using expressions (26) and inequality (27), it can be
shown that the phase velocity of the perturbations is in
fact much lower than the azimuthal electron drift veloc-
ity, Vph ! Vθ0, and that the azimuthal wavenumbers lθ of
the excited perturbations are small.

Let us now consider how the finite value of the lon-
gitudinal wavenumber, kz ≠ 0, affects the instability
growth rate. Taking into account the nonzero wavenum-
ber kz, from linear dispersion relation (22) we obtain the
following expression for the growth rate of the slow
vortex turbulence:

(28)

From this expression, we see that, when the longitudi-
nal dynamics of the ions and electrons is taken into
account, the result is that the growth rate becomes
slower. The fastest growing perturbations are those
with the smallest azimuthal wavenumbers kz (≈π/L),
i.e., with the greatest longitudinal dimensions, which
are close to the length of the plasma lens.

Comparing expressions (23) and (26) and using ine-
qualities (25) and (27), it can be shown that the growth
rate of slow vortex perturbations substantially exceeds
that of fast vortex perturbations, γs @ γq.

6. SPATIAL STRUCTURE OF A FAST VORTEX

Here, we describe the spatial structure of a fast vor-
tex in a frame of reference in which the vortex is at rest
and is steady. In other words, we consider the vortex in
a frame of reference that rotates with the angular veloc-
ity ωph ≡ Vph/rq, where rq is the radial position of the
vortex center. The instability that develops in an ini-
tially homogeneous plasma gives rise to a series of
closely spaced regions in which the electron density is
alternately elevated and depressed (for brevity, these
regions will be referred to as electron bunches and elec-
tron cavities, respectively). We thus consider a sequence
of alternating electron-bunch and electron-cavity vorti-
ces that is stretched along the azimuthal coordinate θ.

In the approximation ( )(Ne/n0e) ! 1, we
ignore the time-dependent terms and the terms that are
nonlinear in φ and obtain from Eqs. (9) the expression

(29)

which describes the quasi-steady electron dynamics in
the fields of the plasma lens and of the vortex perturba-
tion. Expression (29) gives the following expressions

lθ @ n0e/Ne( )2ωpiωHe/ωpe
2

.

γs 3/2
4/3( )ωpi

2/3
lθωθ0 kzVbi–( )1/3≈

× 1 kz
2
/ 2kz

2
lθ/r( ) lθωθ0 kzVbi–( ) ∂r 1/ωHe( )+[ ]–{ }

1/3
.

ωpe
2

/ωHe
2

V⊥ –e/ meωHe( ) ez Er0×( )=

+ e/ meωHe( ) ez —φ×( ),
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for the radial and azimuthal components of the electron
velocity:

(30)

We represent the azimuthal electron velocity Vθ as a
sum of the phase velocity Vph of the perturbation and
the electron oscillatory velocity δVθ in the azimuthal
direction, Vθ = Vph + δVθ. Since, by definition, we have
Vθ = rdθ/dt, we can represent the time derivative dθ/dt
in the form dθ/dt = dθ1/dt + ωph, where ωph =

(Ne/n0e)( /2ωHe) . From expressions (30) we
then obtain the equations

(31)

We consider small deviations of r from rq and take into
account only the first nonzero term in the expansion of
ωHe(r) in powers of δr ≡ r – rq in the vicinity of rq. We
then integrate Eqs. (31) to obtain the equation

(32)

which describes the electron oscillatory dynamics in
the field of the vortex perturbation.

Using Eq. (32), we can show that the hump of the
electric potential acts to trap the electrons and thereby
to form a vortex. Let us determine the vortex boundary,
i.e., the boundary between the trapped electrons, which
move along closed orbits and form the vortex, and the
transit electrons, which move outside the vortex and
oscillate in its field. Using Eqs. (31), we can show that,
in a frame of reference rotating with the angular veloc-

ity ωph = (Ne/n0e)( /2ωHe) , the electrons
trapped by the cavity and the electrons trapped by the
bunch rotate in opposite directions. Specifically, the
electrons that are trapped by the bunch rotate in a clock-
wise direction. Note that, in the laboratory frame of ref-
erence, all the electrons also drift in the clockwise
direction with the angular velocity Vθ0/r along the azi-
muthal coordinate θ. In addition, from Eqs. (31), we
can see that the electrons that are at large distances from
the vortex boundary lag behind the vortex, while the
electrons that are near the boundary of the vortex over-
take it.

Using Eq. (32), from the condition  = δrcl

we obtain the following expression for the boundary of

Vr = e/ meωHe( )—θφ, Vθ–  = Vθ0 e/ meωHe( )—rφ,+

Vθ0 e/ meωHe( )Er0– ωpe
2

/2ωHe( ) Ne/n0e( )r.= =

ωpe
2 |r rq=

dθ1/dt ωpe
2

/2( ) Ne/n0e( ) 1/ωHe r( ) 1/ωHe rq( )–[ ]=

+ e/ rmeωHe( )∂rφ,

dr/dt e/ meωHer( )∂θφ.–=

δr( )2
2ωHe rq( )φ/ πeNerq ∂rωHe( ) r rq=[ ]–

=  const,

ωpe
2 |r rq=

δr φ φ0–=
the electron-bunch vortex:

(33)

where δrcl is the radial width of the vortex. Expressions
(33) describe electron motion along the electron-bunch
vortex boundary. From expression (33) we obtain the
radial width of the electron-cavity vortex:

(34)

From this expression, we see that the radial width of the
electron-cavity vortex is greater than δrcl . We also see
that this width is inversely proportional to
[(Ne /n0e)(ωpe /ωHe)∂r ωHe]1/2 and is directly propor-

tional to ; in other words, the radial width of the
electron-cavity vortex depends strongly on the radial
magnetic field gradient and on the vortex amplitude.
For small values of the ratios Ne/2n0e and ωpe/ωHe, the
radial width δrq of the vortex at low values of φ0 and (of
course) at small electron density perturbations can
become as large as δrq ≈ R/2, where R is the plasma
lens radius.

Note that Eqs. (31) in which the electron gyrofre-
quency ωHe(r) is not expanded in powers of δr ≡ r – rq

is also integrable. To see this, we approximate the elec-
tron gyrofrequency by ωHe(r) = ωH0(1 + µr2/R2). We can
then integrate these equations to get

(35)

From the condition  = rq + δrcl and from solu-

tion (35) we obtain the following equation for the
boundary of the electron-cavity vortex:

(36)

In turn, Eq. (36) and the condition  = rq + δrq

yield the equation for the radial width of the electron-
cavity vortex:

(37)

7. STRUCTURE OF A SLOW VORTEX
Here, we consider a vortex whose phase velocity Vph

is much lower than the electron drift velocity, Vph ! Vθ0.
In contrast to the case of a fast vortex, all the electrons

δr 2 φ φ0+( ){±=

× ωHe rq( )/ πeNerq ∂rωHe( ) r rq=[ ] δrcl( )2
+ }

1/2
,

δrq 4φ0ωHe rq( )/ πeNerq ∂rωHe( ) r rq=[ ][=

+ δrcl( )2 ]
1/2

.

φ0
1/2

2φ πeNer
2

1 ωH0/2ωHe rq( )–[+

– ωHe r( )/2ωHe rq( ) ] const.=

r φ φ0–=

2 φ φ0+( )R
2ωHe rq( )/ ωH0µπeNe( )

+ rq
2

r
2

rq δrcl+( )2
–[ ] r

4
rq δrcl+( )4

–[ ] /2– 0.=

r φ φ0–=

φ04R
2ωHe rq( )/ πeNeωH0µ( )

=  δrq δrcl–( ) 2rq δrq δrcl+ +( )

× rq δrq δrcl+( ) δrq
2 δrcl

2
+( )/2+[ ] .
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overtake a small-amplitude slow vortex by virtue of the
condition Vph ! Vθ0.

In the laboratory frame, all of the electrons in a
small-amplitude slow vortex rotate in a clockwise
direction because, for such a vortex, the vorticity α has
the same sign over the entire plasma lens, α > 0.

To describe the spatial structure of the electron tra-
jectories in the field of a small-amplitude slow vortex,
we turn to Eqs. (30). We insert the definition Vθ = rdθ/dt
into these equations and eliminate θ in them to obtain
the following equation for the electron trajectories in
the field of a sequence of small-amplitude slow vortices
that is stretched along the azimuthal coordinate θ:

(38)

Equation (38) describes the radial positions of the elec-
trons through the dependence of the electric potential
φ(θ, r) on θ and r. It is also instructive to describe the
radial positions of the electrons in terms of the depen-
dence of their perturbed density δne(θ, r) on θ and r. To
do this, we ignore kz to obtain from Eqs. (16) and lin-
earized equation (20) the equation

(39)

From Eq. (39), we see that the smaller the radial mag-
netic field gradient, the larger the amplitude of the
radial oscillations of the electrons at a given amplitude
of their density perturbation.

The structure of the slow vortices changes radically
when their amplitudes become so large that the vortic-
ity α no longer has the same sign (α > 0) over the entire
plasma lens. Namely, according to approximate expres-
sion (11), the vorticity α changes sign, α < 0, within the
electron cavities in a sequence of vortices of suffi-
ciently large amplitudes (such that δne > Ne). In this
case, within the electron-cavity vortices, the electrons
rotate in the direction opposite to that of their rotation
in the crossed fields of the plasma lens. Unlike in the
case of a fast vortex, all of the electrons that move out-
side a large-amplitude slow vortex overtake it by virtue
of the inequality Vph ! Vθ0. Under the condition δne >
Ne, a slow vortex is similar in structure to the Rossby
vortex [13].

8. EXCITATION OF NONLINEAR VORTICES
Here, we describe the excitation of small-amplitude

nonlinear vortex perturbations to within terms contain-
ing quadratic nonlinearities. In this way, we describe
the excitation of individual nonlinear vortices in the
sequence; it will be seen later that the amplitude φ0 of
the individual vortices is smaller than the saturation
amplitude of the strongly nonlinear individual vortices,
φ0 < φsm.

We use two small parameters—the small ratio
ωpe/ωHe ! 1 and the small vortex amplitude φ0. Since
ωpe @ ω, we have ω/ωHe ! 1 (where ω is the perturba-

r
2 φ/ πeNe( )+ const.=

r ∂rωHe( ) 1– ωH0/ne0( )δne– const.=
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tion frequency). Comparing the second term on the left-
hand side of the first of Eqs. (1) with the second term on
the right-hand side of this equation, we see that the
amplitude can be assumed to be small under the ine-
quality

(40)

A comparison of inequality (40) with relationship (62)
(see below) shows that the amplitude of the vortex can
be regarded as small if it is smaller than the saturation
amplitude of the strongly nonlinear individual vortices,
φ0 ! φsm.

Above, we have arrived at the following conclusion
based on expression (28): the only vortices that are
excited are those with the shortest possible longitudinal
inhomogeneity scales consistent with the length of the
plasma lens. This conclusion allows us to treat nonlin-
ear vortices in the limit kz = 0.

Since the ions fly rapidly through the plasma lens
and are much heavier than the electrons, we can
describe them in a linear approximation. In this case,
the vortices can be described by Eqs. (9) and (16) and
also, in accordance with Eqs. (14), (15), and (17), by
the equations

(41)

(42)

Using the time-independent linear terms of Eq. (9),
or, equivalently, the time-independent terms of
Eq. (10),

(43)

we obtain from Eqs. (16) and (41) the following nonlin-
ear evolutionary equation, which contains higher order
nonlinear terms and describes, together with Eq. (42),
the excitation of nonlinear vortices and their spatial
structure:

(44)

Ignoring the nonlinear terms reduces Eqs. (42) and (44)
to Eqs. (19) and (20) with kz = 0, which describe the
excitation of perturbations in a linear approximation. In
the next two sections, we will use Eqs. (42) and (44) as
the basis for describing nonlinear vortices.

9. EXCITATION OF A NONLINEAR SLOW 
VORTEX

In the steady-state case and without allowance for
the interaction with ions, Eq. (44) yields the following

φ0 ! me/e( )ωHe
2

R
2
/π2

.

dt ωHe/ne( ) 0,≈
ne ne0 qi/e( )δni ∆⊥ φ/ 4πe( ),+ +=

∂t
2
ni ∂τ Vv θ∇ θ–( )2

ni≡ ni0 qi/mi( )∆⊥ φ.=

V⊥ Vθ0 e/ meωHe( ) ez —⊥ φ×( ),+≈

∂τ Vθ0 Vv θ–( ) —θ⋅+[
+ e/ meωHe( ) ez —⊥ φ×( ) —⊥⋅( ) ]ωHe/ ne0[

+ qi/e( )δni ∆⊥ φ/ 4πe( )+ ] 0.≈
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equation for a slow vortex whose azimuthal rotation
velocity is low (Vθs ! Vθ0):

(45)

Taking into account the fact that the unperturbed elec-
tron density is uniform in the radial direction, we can
rewrite Eq. (45) as

(46)

It is seen that the dimensions of the vortex are deter-
mined by its amplitude φ0; the radial nonuniformity of
the electron gyrofrequency ωHe; and the extent to which
the space charge of an ion beam is overneutralized,
Ne /n0e (in the expression for Vθ0). The higher the non-
uniformity of the electron gyrofrequency ωHe and the
less the extent Ne/n0e to which the beam is overneutral-
ized, the smaller the vortex with a fixed amplitude φ0.

Equation (46) can be rewritten as

(47)

Recall that the azimuthal rotation velocity of a slow
vortex satisfies the condition Vθs ! Vθ0. In the steady-
state case, Eq. (47) for a slow vortex reduces to the cor-
responding equation derived in [8].

Let us now describe the excitation of a slow vortex.
To do this, we take into account the ion contribution to
Eq. (44) and retain the time-dependent terms (i.e., those
with ∂τ) in this equation. As a result, we arrive at the
approximate equation

(48)

From Eqs. (42) and (48) we obtain the following partial
differential equation, which describes the excitation of
the vortex:

(49)

We ignore the change in the angular velocity of the vor-
tex due to its interaction with the ions and use the rela-
tionship ∂τφ = γNLsφ (where γNLs is the nonlinear rate at
which a slow vortex is excited) to represent Eq. (49) in
the form

(50)

We introduce the quantity lθNL through the relationship
 ≡ lθNLφ0/2. It can be seen that the quantity

Vθ0 Vsθ–( )∇ θ e/ meωHe( ) ez —⊥ φ×( ) —⊥⋅( )+[ ]

× ωpe
2 ∆⊥ φe/me+( )/ωHe 0.≈

Vθ0 Vsθ–( )—θ∆⊥ φ —θφ( )ωpe
2 ∂r 1/ωHe( )–

+ e/meωHe( ) ez —⊥ φ×( ) —⊥⋅( )∆⊥ φ 0.≈

1 Vsθ/Vθ0–( )—θ∆⊥ φ

– 2ωHe n0e/Ne( ) —θφ( )r
1– ∂r 1/ωHe( )

+ 2 e/meωpe
2( )r

1–
n0e/Ne( ) φ ∆⊥ φ,{ } r θ, 0,=

φ ∆⊥ φ,{ } r θ, —rφ( )—θ∆⊥ φ —θφ( )—r∆⊥ φ–≡

=  r
1– ∂rφ( ) ∂θ∆⊥ φ( ) ∂θφ( ) ∂r∆⊥ φ( )–[ ] .

∂τ∆⊥ φ 4πqi Vθ0∇ θ( ) )δni.–≈

∂τ
3∆⊥ φ ωpi

2
Vθ0∇ θ( )∆⊥ φ.–≈

γNLs
3 ∆⊥ φ ωpi

2
Vθ0∇ θ( )∆⊥ φ.–≈

∂θφ φ φ0/2=
lθNL so introduced is determined by the angular dimen-
sions of the vortex. Using Eq. (50), we can estimate the
nonlinear rate of excitation of a slow vortex by

(51)

In the linear approximation, the quantity lθNL is the lin-
ear azimuthal wavenumber and, as is seen from expres-
sions (26) and (51), the growth rate γNLs, to within a fac-
tor on the order of unity, passes over to the linear
growth rate γs of the homogeneous slow vortex turbu-
lence. From expression (51) we also see that the nonlin-
ear excitation rate of the slow vortex is proportional to
the cube root of the electron-to-ion mass ratio, γNLs ∝
(me/mi)1/3, as is the case with γs.

10. EXCITATION OF A NONLINEAR FAST 
VORTEX

When the radial nonuniformity of the electron
gyrofrequency ωHe is ignored, the rate of excitation of a
fast vortex perturbation and the electron term in the dis-
persion relation both vanish. In this case, the linear ion
contribution is to be taken into account even in the
equation for a steady-state fast vortex. However, in the
steady-state approximation, we ignore the radial non-
uniformity of ωHe. As will be clear later, the vortex is
only excited at the expense of the radial nonuniformity
of the electron gyrofrequency.

In the steady-state case, from Eqs. (42) and (44) we
obtain the equations

(52)

(53)

which can be reduced to the equation

(54)

Recall that, in the steady-state linear approximation,
the following relationships are valid: Vθq ≈ Vθ0 and

(Vθq—θ)2φ ≈ – . However, in the nonlinear case
(i.e., when nonlinearities are taken into account), these
relationships are satisfied only approximately.

Let us now describe the excitation of a fast vortex.
To do this, we take into account the time-dependent
term with ∂τ in Eq. (44) and the radial nonuniformity of
ωHe. As a result, we arrive at the equation

(55)

γNLs ωpe
2 ωθ0lθNL me/mi( )[ ]

1/3
≈ ωpi

2 ωθ0lθNL( )
1/3

.=

Vθ0 Vθq–( )—θ e/ meωHe( ) φ, { } r θ,+[ ]
× ∆⊥ φ qiδni4π+( ) 0,≈

φ, { } r θ, r
1– ∂rφ( )∂θ ∂θφ( )∂r–[ ] ,=

Vθq—θ( )2δni n0i qi/mi( )∆⊥ φ,≈

Vθ0 Vθq–( )—θ e/ meωHe( ) φ, { } r θ,+[ ]

× Vθq—θ( )2 ωpi
2

+[ ]∆ ⊥ φ 0.≈

ωpi
2 φ

∂τ∆⊥ φ 4πqi∂τδni —θφ( )ωpe
2 ∂r 1/ωHe( ).≈+
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Since higher order terms in Eq. (54) satisfy the relation-

ship (Vθq—θ)2φ ≈ – , from Eqs. (42) and (55) we
obtain the approximate equation

(56)

which describes the excitation of a fast vortex. We
introduce the nonlinear wavenumber through the rela-

tionship ∆φ ≡ – φ. The nonlinear wavenumber κNL

so introduced is determined by the radial and angular
sizes of the vortex. Using Eq. (56), we obtain the fol-
lowing estimate for the nonlinear rate of excitation of a
fast vortex:

(57)

A comparison of expression (57) with the last of

expressions (23) shows that the growth rate  is pro-
portional to the linear growth rate of the homogeneous
fast vortex turbulence. From expression (57), we also
see that the vortex is excited by the radial gradient of
ωHe. In the linear approximation in which the equality
ωpi/Vθ0 = kθ is satisfied, the nonlinear wavenumber κNL
is the linear wavenumber k and the nonlinear growth

rate  passes over to linear growth rate (23).

11. SATURATION OF THE EXCITED 
HOMOGENEOUS VORTEX TURBULENCE

In a homogeneous plasma, the instability appears as
the bunching of uniformly distributed electrons. The
instability stops growing (i.e., the bunching process ter-
minates) when the electrons evolve into a slow (adia-
batic) dynamic stage, in which the frequency Ωtr of the
oscillations of the electrons within the vortex (i.e., the
electrons trapped by the vortex) exceeds the instability
growth rate, Ωtr > γ. If the vortex continue to grow and,
accordingly, continue to trap more and more electrons,
then the equally dense layers of electrons with Vθ > Vph
and with Vθ < Vph in the vicinity of the vortex boundary
would mix to form a ring-shaped layer of the same den-
sity near the vortex boundary. Hence, the condition for
saturation of the plasma instability against the excita-
tion of homogeneous vortex turbulence has the form

Ωtr ≥ γ. (58)

Using formulas (23), (31), (33), and (58), we can show
that the instability saturates when the electric potential
φ0 of the fast vortex increases to

. (59)

Hence, the amplitudes φ0 of the vortex perturbations
of the homogeneous plasma turbulence cannot exceed
the saturation amplitude φsat. However, in a sequence of
widely spaced individual vortices, the amplitudes of the
vortex perturbations can continue to increase above the

ωpi
2 φ

∂τ
2∆φ ωpi

2
/2Vθq( )φωpe

2 ∂r 1/ωHe( ),≈

κNL
2

γNL
q( ) ωpe/κNL( ) ωpi

2
/2Vθ0( )∂r 1/ωHe( )[ ]

1/2
.≈

γNL
q( )

γNL
q( )

φsat me/e( ) ωHeωpi/ lθk
2( )[ ] 2n0e/Ne( )≈
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saturation amplitude because the electrons in vortices
with φ0 > φsat can exhibit nonadiabatic dynamic
behavior.

Let us compare the saturation amplitude φsaq with
the maximum possible amplitude φsm of the vortices in
such a sequence. The amplitude φsm is determined by
the condition that the magnetic force no longer keeps
the electrons of a vortex in closed orbits around the vor-
tex axis, so that the electrons can move across the mag-
netic field. In other words, an electron-bunch vortex can
expand across the magnetic field. This indicates that the
electron bunching process terminates. Thus, from the
condition

, (60)

which indicates that the forces keeping the electrons in
closed trajectories cease to be in balance, we can deter-
mine the maximum possible saturation amplitude φsm
of the vortex. In condition (60), Er is the electric field of
the vortex, δnev is the perturbed electron density in the
vortex, and Vθ is the azimuthal electron velocity in the
vortex. This condition implies that, under the inequality

(61)

the electrons can move freely across the magnetic field
and, accordingly, the vortex can expand freely across
the field. As a result, using Poisson’s equation (3), we
arrive at the following expression for the saturation
amplitude of the vortex:

(62)

The saturation amplitude close to that given by expres-
sion (62) was obtained in [2]. From this expression we
can see that, if the ion beam is overneutralized by the
electrons nearly to the maximum possible extent, i.e., if

(63)

then no vortex perturbations are excited within the
plasma lens.

We now compare the saturation amplitude φsat of the
instability of a plasma against the excitation of a homo-
geneous vortex turbulence with the amplitude φsm in the
case when the extent to which the beam is overneutral-
ized, Ne/n0e, is far from maximal:

(64)

It can be seen from expression (64) that the inequality
φsat ! φsm is satisfied for heavy ions and for strong mag-
netic fields. Consequently, there is an ample margin in
the vortex amplitude with respect to the breaking of the
growing homogeneous vortex turbulence into individ-
ual vortices.

meVθ
2
/r eEr– meωHeVθ≥

ωpe
2 δnev Ne+( )/n0e ωHe

2
/2≥

φsm me/ ek
2( ) ωHe

2
/2 Ne/n0e( )ωpe

2
–[ ] .≈

Ne H0
2
/ 8πmec

2( ),≈

φsat/φsm 4/lθ( ) n0e/Ne( ) ωpi/ωHe( ).≈
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12. CONCLUSIONS
We have theoretically investigated the excitation of

vortices in a plasma lens for focusing high-current ion
beams. It is shown that any perturbation of the density
of electrons in a lens sets them into vortex motion.
There are two types of vortex perturbations that can be
excited on ion time scales in a plasma lens. These are
fast perturbations whose phase velocities Vph are close
to the azimuthal electron drift velocity in the crossed
radial focusing electric and longitudinal magnetic
fields, Vph ≈ Vθ0, and slow perturbations with Vph ! Vθ0.
The instability of a plasma against the excitation of
homogeneous vortex turbulence saturates at a low level
when the frequency of oscillations of electrons in
closed orbits within a growing vortex becomes higher
than the instability growth rate. At large amplitudes, a
sequence of spatially separated nonlinear vortices is
excited. The nonlinear growth rates are proportional to
the linear growth rates of the instability of a plasma
against the excitation of homogeneous vortex turbu-
lence and depend on the amplitudes of the vortices.

Since the instability develops in an initially homo-
geneous plasma, the vortices are excited in pairs,
namely, an electron bunch is excited simultaneously
with a neighboring electron cavity.

Such behavior of electrons was observed in experi-
ments with a purely electron plasma [4–6], with a
charged plasma in a lens [2, 8], and with a plasma in
crossed radial electric and longitudinal magnetic fields
[10].
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Abstract—A kinetic equation for the electrons scattered by acoustic phonons in a solid is derived, and relation-
ships between power-law asymptotic solutions and the particle and energy fluxes in phase space are established.
The dependence of the nonextensivity parameter on the intensity of the particle flow in phase space is deter-
mined for a nonequilibrium solid-state plasma with sources and sinks. The formation of a steady-state nonequi-
librium electron distribution function in a semiconductor with a source and a sink in phase space is numerically
simulated using the Landau and Fokker–Planck collision integrals. The nonequilibrium electron distributions
formed in the solid-state plasmas of semiconductors and of a Sb/Cs cathode are studied experimentally. It is
shown that, within the electron energy range of 5–100 eV, the electron distribution functions decrease with
energy according to a power law. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the development of high-power particle
and radiation sources is stimulating great interest in the
properties of nonequilibrium systems. The presence of
sources and sinks in momentum space can lead to the
formation of nonequilibrium particle distribution func-
tions with power-law tails even in spatially uniform
systems. The inapplicability of the local equilibrium
approximation to such situations is related to the pres-
ence of particle flows in phase space. In the second sec-
tion of this paper, the asymptotic properties of such
nonequilibrium states are studied, their relation to the
nonextensive Tsallis’ thermodynamics is established,
and the dependence of the nonextensivity parameter on
the intensity of the particle flow in phase space (i.e., on
the intensities of sources and sinks) is determined.

The third section is devoted to numerical simula-
tions of the formation of a steady-state nonequilibrium
distribution of particles with a long-range repulsion
potential. The collisional dynamics of such a system is
studied using spatially uniform nonlinear Landau and
Fokker–Planck collision integrals, which are model
representations of the Boltzmann collision integral. In
numerical simulations, completely conservative differ-
ence schemes are used.

In the fourth section, we consider the conduction
and emission properties of a semiconductor plasma
irradiated with intense particle or laser beams.
1063-780X/04/3008- $26.00 © 0671
In the fifth section, the formation of nonequilibrium
electron distribution functions (EDFs) in the plasmas of
semiconductors and of a Sb/CS cathode is studied
experimentally. To study these functions, the method of
the secondary electron emission induced by fast low-Z
ions was employed. The formed EDFs are measured,
the coefficients of the secondary ion-induced electron
emission are determined, and their relationship to the
source power in the ion’s track is found.

2. STEADY NONEQUILIBRIUM STATES 
OF SYSTEMS WITH STATIONARY PARTICLE 

FLOWS IN PHASE SPACE

Quasi-steady nonequilibrium states of particle sys-
tems can be studied by solving kinetic equations with
allowance for sources and sinks. Power-law particle
energy distributions were first predicted theoretically in
[1–4] and then observed experimentally in [5, 6]. In [1,
2], it was shown using a similarity transformation that
the kinetic Boltzmann equation for a spatially uniform
system has exact stationary power-law solutions. In [3,
4], it was shown by directly calculating the Boltzmann
and Landau collision integrals in kinetic equations that
the power-law distributions of the form

(1)

where s is an exponent and A is a constant, are station-
ary solutions for which particle (or energy) fluxes in

F E( ) AE
s–
,=
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phase space are nonzero constants. These particle states
are similar to turbulent Kolmogorov spectra of waves
and depend only on the integral characteristics of the
source and sink [4].

In particular, nonequilibrium spatially uniform sys-
tems with a component obeying a power-law distribu-
tion include electron subsystems of semiconductors
exposed to radiation with a photon energy on the order
of the width of the forbidden zone [7] or electron sub-
systems in metals that undergo ionization caused by α
particles propagating in them [5].

In [1–4], the exponent s of power-law solutions to
the kinetic Boltzmann equation depended only on the
degree of homogeneity of the particle interaction poten-
tial. In those papers, both the dispersion properties of a
plasma with a power-law electron distribution and the
ionization equilibrium in such nonequilibrium steady
states were studied. In [8, 9], it was shown that plasma
oscillations with a linear dispersion can exist in a
plasma with two components of the distribution func-
tion, equilibrium and nonequilibrium. These plasma
oscillations could be of importance for many interac-
tions in semiconductor plasma, in particular, for the
plasmon mechanism of superconductivity [10].

2.1. Basic Equations

It is of interest to examine the cases in which the
effect of a source on the deviation of the distribution
function from equilibrium can be clearly traced.

Exact solutions to the Boltzmann equation for a spa-
tially uniform gas were first obtained in [11] within a
special collisional model (a gas of Maxwellian mole-
cules) for the relaxation to a thermodynamic equilib-
rium. The generalization to a nonequilibrium case was
performed in [12]. Note that the method described in
[11] was generalized to a wide class of power-law inter-
molecular potentials [13].

One can construct mathematical models for the col-
lision integral in kinetic equations so that these equa-
tions, on one hand, become more appropriate for anal-
ysis and, on the other hand, still possess some of their
important properties inherent to complete nonlinear
equations, such as conservation laws and the H theorem
[11, 14].

In this paper, we investigate the features of steady-
state nonequilibrium particle distributions in systems
with sources and sinks by the example of the interac-
tions of electrons with phonons in a solid-state plasma.
Main attention is paid to the evolution of such states
with changes in the parameters of nonequilibrium (par-
ticle fluxes) in a system, rather than their time evolution.

To describe electron kinetics, we use a spatially uni-
form nonlinear (because of the incorporation of quantum
statistics) kinetic equation with sources and sinks [15]:

(2)∂f
∂t
-----

1

4πv
2

------------- ∂
∂v
-------Π f v,{ }– Ψ v( ).+=
In the case of an isotropic medium, it is convenient to
change the variables: ε = v 2/2 and F(ε) =

4π , where v  is the particle velocity nor-
malized to the mean particle velocity v 0T in the initial
state.

Let us consider an important class of sources that
are localized in energy space, S+(ε) = Qiεiδ(ε – εi). The
sinks are often written in the form S–(ε) = ν(ε)F(ε).
Using these model representations, the expression
describing the sources and sinks can be written as

(3)

For charged particles interacting with phonons, the
expression for the particle flux in the kinetic equation
takes a simple form,

(4)

where the diffusion coefficient D(v ) and the drag force
F(v ) for a particle moving in phase space are power-
law functions of the electron energy (the corresponding
expressions for some particular cases are given in [16]).
Within the region where the flux P is constant, the equa-
tion for the steady-state distribution function (for the
above type of interaction) is

(5)

where T0(ε) = . After substituting f(ε) =

− , this equation converts into the second-

order linear equation

(6)

2.2. Solutions to Eq. (6)

A general solution to Eq. (6) is

(7)

where Iχ(z) and Kχ(z) are the modified Bessel function
of the first and second kinds, respectively. The integra-
tion constants are determined from the matching condi-
tion for solution (7) and the equilibrium solution in the
regions beyond the inertial interval.

To clarify the effect of the degree to which the sys-
tem is nonequilibrium (the source intensity) on the
shape of the EDF in a solid, we present the results from
the numerical solution of the kinetic equation for sev-
eral P values.
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The solutions to the kinetic equation for the case of
electron scattering by the phonons with a temperature
of T0 = 0.1EF (where EF is the Fermi energy) are shown
in Fig. 1. It can be seen that the nonequilibrium part of
the distribution function increases with source inten-
sity.

The time evolution of the EDF is illustrated in
Figs. 2–4. Figures 2 and 3 show how the distribution
function and the particle flux in phase space relax to

0
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Fig. 1. Distribution functions of the electrons scattered by
acoustic phonons at T = 0.1EF for P = (1) –0.81, (2) –0.4,
and (3) –0.1.
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Fig. 2. Distribution function as a function of time and
energy for P = –0.4.
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their steady-state values in the presence of sources and
sinks. It can be seen from Fig. 3 that phase space
regions with a quasi-constant energy flux eventually
form. It follows from Figs. 3 and 4 that, in the region
where the flux is constant, quasi-power-law zones arise
in the distribution function. The regions with zero flux
(see Figs. 2, 4) correspond to the equilibrium Fermi
function.

In the region where the EDF is nonequilibrium, it is
well approximated by power-law functions with an
exponent that varies only slightly with increasing
source intensity. This is clearly seen in Fig. 4, which
shows a steady-state EDF between the source and sink
on a double logarithmic scale.

 

2.3. Tsallis’ Nonextensive Thermodynamics

 

As was mentioned above, steady-state nonequilib-
rium distributions (SND) of particles in phase space
play the same role in spatially uniform systems as Max-
wellian distributions in Gibbs’ thermodynamics. The
presence of such great deviations from the exponential
dependence should significantly change the thermody-
namic properties of a system.

Note that, over the last fifteen years, great progress
has been achieved in the thermodynamics of strongly
nonequilibrium systems; the results obtained indicate
the existence of non-Gibbs (power-law) distributions in
such systems. Let us briefly outline the results that will
be needed further for our analysis.
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Fig. 3. Particle flux in phase space as a function of time and
electron energy for P = –0.4.
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In 1988, K. Tsallis [17] attempted to extend the
applicability range of thermodynamics and statistic
mechanics to systems in which entropy does not pos-
sess the property of extensivity [17].

It is well known that, in conventional thermodynam-
ics, the equilibrium state corresponds to the maximum
possible entropy at a given energy, volume, etc. In addi-
tion, it is assumed that entropy is an extensive quantity.
This assumption immediately leads to some important
consequences.

Let us recall the definition of an extensive quantity.
Let the system consists of two independent subsystems
A and B. Entropy is an extensive quantity if the entropy
of the entire system is equal to the sum of the subsystem
entropies:

In statistical physics, entropy is treated via the num-
ber of system microstates. In trying to define entropy so
that it is an extensive quantity, statistical physics has to
invoke a hypothesis of molecular chaos. This hypothe-
sis assumes that, before a collision, any colliding mol-
ecules be definitely uncorrelated, i.e., not affecting one
another. For many (but not for all) systems, this is a
quite reasonable assumption. It is from this assumption
that the Boltzmann expression for the entropy of a
closed system follows:

where i is the number of the system microstate, pi is the
probability that the system is in this microstate, and the
summation is performed over all microstates.

After [17], a great number of systems were studied
in which the extensivity of entropy and the Boltzmann
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Fig. 4. Distribution functions for P = (1) –0.81, (2) –0.4, and
(3) –0.1.
thermodynamics were violated. Examples of such sys-
tems are a cold interstellar dust cloud of sufficiently
large size and a system of colliding high-energy had-
rons whose interaction is characterized by strong corre-
lations. There are other systems that cannot be
described by Boltzmann thermodynamics. The reasons
why Boltzmann thermodynamics is inapplicable are
quite different [17]. These could be “memory effects,”
due to which the current state of the system depends not
only on the values of the system parameters at a given
instant but also on the values they had some time ago.

Memory effects can easily violate the hypothesis of
molecular chaos. These effects imply that, before a col-
lision, individual particles “remember” one another, so
that their motion is not completely uncorrelated.
Hence, thermodynamic relations must be refined with
allowance for additional correlations. An attempt at
such a refinement was made by Tsallis [17]. In his ther-
modynamics, the logarithmic and exponential func-
tions in the conventional expressions for entropy and
distribution function were formally replaced with
expressions containing power-law functions:

  

  

with a certain numerical parameter q. Note that, as q
tends to unity, lnq(x) and expq(x) transform into the
ordinary logarithmic and exponential functions (this
can easily be checked, e.g., by their differentiation). A
new formula for entropy is

(8)

As q  1, the q-entropy converts into the conven-
tional Boltzmann entropy.

The main consequence of such a substitution is that
q-entropy is no longer an extensive function. When the
system is divided into two independent subsystems, A
and B, we obtain

Thus, the parameter q is a measure of system nonex-
tensivity. We note that, generally, the parameter q is not
in any way limited and can take any value from –∞ to
+∞; certain restrictions can, however, be imposed in
solving one or another specific problem.

In [18], it was shown that the condition for the
q-entropy to be at maximum leads to power-law func-
tions

(9)
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1 q–
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-------------------,=
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The above functional form of the q-entropy was
chosen rather arbitrarily, and its main importance is as
a model description of nonextensivity.

Thus, there is a set of different thermodynamics.
Indeed, for q = 1, the above general approach results in
conventional thermodynamics. If q is not equal to unity,
then the physical situation is qualitatively different
from equilibrium thermodynamics.

2.4. Features of the Electron Kinetics
in Semiconductor Plasma at Energies Higher

than the Fermi Energy

In studying the relaxation of high-energy electrons
in semiconductor plasma, it is best to use a kinetic
equation in the form of a nonlinear Fokker–Planck
equation with a Landau collision integral. Below, we
use dimensionless variables: the velocity is in units of
the thermal velocity and time in units of the electron–
electron relaxation time τee, which, in the case of Cou-

lomb interaction, is equal to τee = , where

lnΛ is the Coulomb logarithm. The dimensionless EDF

f(v , t) is normalized so that np = (v , t)v 2dv  = 1 and

E = (v , t)v 4dv  =  = 1, where T is the electron

temperature in energy units.

At high source intensities, the relaxation of the par-
ticle flow between collisions should be taken into
account. For this reason, it is necessary to move from
the conventional representation of the Fokker–Planck
equation in the form of a parabolic equation to a set of
equations of hyperbolic type:

(10)

To simplify analysis, we reduce the expression for
the particle flux to a symmetric form [23],

(11)
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The calculation of flux (12) in velocity space for a
power-law EDF described by Eqs. (10) yields the fol-
lowing expression:

(12)

with the constants

(13)

This function, which represents a surface in (v , q)
space, is shown in Fig. 5. The steady-state states corre-
spond to regions in which the flux does not depend on
velocity. Two such regions are seen in Fig. 5. The first
is the region with q = 1, which corresponds to an equi-
librium Maxwellian solution, while the second corre-
sponds to states with power-law asymptotes obtained in
[3–5].

The hyperbolic character of the set of equations
allows one to efficiently use the method of straight lines
to numerically analyze the system evolution. The
dependence of the EDF on velocity (or energy) is rep-
resented by its values at discrete points. The time evo-
lution of the EDF values at these points can easily be
described by the set of nonlinear ordinary differential
(over time) equations.

Note that, in the case of quantum statistics, the for-
mal generalization of an equilibrium Maxwell–Gibbs
distribution function with the use of function (12) to
nonequilibrium states is ambiguous. Indeed, an equilib-
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Fig. 5. Particle flux in phase space vs. velocity and nonextensivity parameter q.
rium Fermi function can be represented in two equiva-
lent forms:

(14)

Substituting function expq(x) for the exponential
function in these expressions, we obtain two nonequiv-
alent generalizations to nonequilibrium states for a
Fermi function. At q  1, both these functions con-
vert into a Fermi distribution function. However, when
deviating from equilibrium, variations in the distribu-
tion function

(15)
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occur mainly in the region near the Fermi energy, while
the second function

(16)

acquires a power-law asymptote at high energies. One
can prove that distribution function (15) is a good
approximation for the EDF formed in the interactions
with phonons, while distribution function (16) ade-
quately describes steady-state nonequilibrium solu-
tions to a kinetic equation with a Landau collision inte-
gral with allowance for corrections related to the Fermi
statistics.

So far, we have considered the formation of an SND
with sources and sinks localized in momentum space. It
should be noted that one often has to deal with systems
in which both the source and the sink are nonlocalized.
In particular, wake ionization is a source that is not
localized in momentum (energy) space. Moreover, the
source intensity is often insufficient to provide a univer-
sal nonequilibrium distribution throughout the interval
between the source and sink (see [19, 20]). In these
cases, it is necessary to resort to numerical simulations.
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1 expq
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3. NUMERICAL SIMULATIONS 
OF THE FORMATION OF STEADY-STATE 

NONEQUILIBRIUM PARTICLE DISTRIBUTIONS

A specific feature of systems of particles interacting
via the Coulomb potential is that the scattering cross
section increases without bound as the momentum
transferred tends to zero. For gaseous and semiconduc-
tor plasmas with a large Coulomb logarithm (lnΛ = 10–
15), one can restrict oneself to the expansion of the inte-
grand in the collision integral in small momenta trans-
ferred (a diffusion approximation) and to represent the
collision integral in the Landau or Fokker–Planck form
[21, 22], which are model representations of the Boltz-
mann collision integral. In this model [23–25], the
moments of the exact and model collision integrals
coincide up to the third-order tensor moment and the
forth-order scalar moment. Conservation laws for
energy and the number of particles, as well as the Bolt-
zmann H theorem, are valid. The model collision inte-
gral provides a correct representation of the equations
for the twenty-moment Grad approximation. Finally,
the exact solution to the Landau equation for Max-
wellian molecules (β = 4) is the exact solution to the
Boltzmann equation. Below, we will consider long-
range potentials (U ∝  r–β, with 1 ≤ β ≤ 4, where r is the
distance between the interacting particles), for which a
local nonequilibrium particle distribution can form (see
[3]). Note that the dynamics of particles interacting via
the Coulomb repulsion potential (β = 1) can be consid-
ered using kinetic equations in either the Landau or
Fokker–Planck form.

3.1. Formulation of the Problem

In the case of an isotropic distribution function
f(v , t), the Landau collision integral is

(17)

where Γ = 4πe4(lnΛ)/m and the symmetric kernel
Q(v , w) = Q(w, v ) in the case of Coulomb potential has
the form Q(v , w) = –2/3w3 for w ≤ v  and Q(v , w) =
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−2/3v 3 for w ≥ v. The equilibrium solution to Eq. (17)
is a Maxwellian distribution function

where  kB is the Boltzmann constant,
and T is temperature. If there are no sinks (sources),
then the number of particles and the system energy do
not vary over time:

The distribution function f(v , t) is bounded at v  = 0
and quite rapidly decreases as t  ∞. Below, we use
dimensionless variables: the velocity in units of the

thermal velocity VT =  and time in units of the
electron–electron relaxation time τee, which is τee =

 in the case of Coulomb interaction. The

function f(v , t) is normalized so that np = 1, E = 1 and

 = 2/3; consequently, in Eq. (17), the constant Γ is
equal to unity.

Note that, when numerically simulating a low-den-
sity collisional plasma (β = 1) under laboratory condi-
tions or for astrophysical applications, the Fokker–
Planck collision integral

is commonly used in the kinetic equation. For numeri-
cal simulations, it is most suitable to represent the Fok-
ker–Planck equation in symmetric form (11).

We consider the formation of a steady-state non-
equilibrium solution in the presence of particle or
energy flows in velocity space using the above modified
versions of the Landau and Fokker–Planck collision
integrals in forms (17) and (11), respectively. In this
case, the right-hand side of the kinetic equation is
added with the terms accounting for the presence of a
particle (energy) source (sink):

(18)

The source (sink) function was modeled by an expo-
nential function with a variable width in momentum
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space, S± ~ I±exp{–α1(v  – v±)2}; a δ function in the
form S± ~ I±δ(v  – v±)/v 2; or

(19)

In this case, if I+ = I–, then an energy flow from the

source to sink arises; if I+ = , then a particle flow

arises. The flow direction is determined by the positions
of v – and v+. Either a Maxwellian distribution or a δ
function was used as an initial distribution. In simula-
tions, we employed a fully conservative implicit differ-
ence scheme [23–25], for which discrete analogues of
conservation laws hold true and which allow one to per-
form long-run calculations without error accumulation.
An infinite velocity interval was replaced with the max-
imum interval 10vT–14vT, in which the distribution
function was set at zero. The initial distribution δ(v  –
v 0) was approximated in the following way: the δ func-
tion was set at zero for all of the velocities except for
one point (usually, v0 = 1).

Since the problem of relaxation is a kind of test, we
first consider the Cauchy problem for the initial distri-
bution f 0(v ) = δ(v  – 1)/v 2. In our calculations, we used
the kinetic equation with either the Fokker–Planck or
Landau collision integral in form (11) or (17), respec-
tively. When S± = 0, these equations are analytically

S± I±
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2
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Fig. 6. Distribution functions obtained from the Fokker–
Planck equation with a source and a sink of the form S± ~

I±exp{–α1(v  – v±)2} with α1 = 100, v– = 4, and v+ = 7. The
dashed and solid curves refer to the times t = 25 and 100,
respectively.
equivalent and, in the limit t  ∞, lead to a Max-
wellian distribution fMaxw. Let us now discuss the results
of numerical simulations.

3.2. Discussion of the Simulation Results

In [23], the formation of a nonequilibrium distribu-
tion function was numerically simulated for the kinetic
equation with either the Landau or Fokker–Planck col-
lision integral in the presence of energy and particle
flows in momentum space that were sustained by a
source and a sink. For this purpose, the right-hand sides
of kinetic equations (17) and (11) were supplemented
with various types of sources S+ and sinks S–. First,
solutions were obtained for the case where the positions
of a source and a sink in momentum space were
matched with the direction of a flow sustained by colli-
sions. Note that analytic consideration of equations for
the case of a localized source and sink gives a correct
flow direction, namely, from high to low velocities [3].
It was shown in [23] that, within the interval between
the source and sink, an SND (of the Kolmogorov kind)
of particles is established with time. This distribution
corresponds to the presence of an energy flow in
momentum space, whereas beyond this interval, the
distribution function is thermodynamically equilib-
rium. When using the Landau equation, the particle dis-
tribution relaxes to an SND by more than one order of
magnitude faster than when the Fokker–Planck equa-
tion is used. As was noted above, the positions of the
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Fig. 7. Distribution functions obtained from the Fokker–
Planck equation with a source and a sink of the form S± ~

I±exp{–α1(v  – v±)2} with α1 = 10, v– = 3, and v+ = 5. The
dashed and solid curves refer to the times t = 25 and 100,
respectively.
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source and sink and the direction of flow in momentum
space should be matched with one another. To make
sure once again that this requirement is important, we
performed calculations with the interchanged positions
of the source and sink in energy space. It turned out that
variations in the flow intensity by several orders of
magnitude did not influence the equilibrium particle
distribution when the source and sink positions were
not matched with the flow direction.

The dependence of the EDF on the degree of the
source and sink localization in energy space is illus-
trated in Figs. 6 and 7. It can seen that the behavior of
the SND in most of the interval between the source and
sink does not depend on the degree of the source (sink)
localization; this indicates the local (universal) charac-
ter of the solution.

Figure 8 shows the distribution functions for differ-
ent flow intensities. It is found that, for low intensities
of the source I+ (sink I–), a universal nonequilibrium
distribution is formed in the velocity range v  ≤ v+. This
is due to (i) a decrease in the cross section for Coulomb
scattering with increasing velocity (~v –3) and (ii) the
ever-present flow of energy and particles (due to Cou-
lomb diffusion) toward the region of the main (“back-
ground”) equilibrium distribution. Consequently, as the
source (sink) intensity increases, a universal nonequi-
librium particle distribution is formed that occupies a
progressively larger space between the source and sink.
Such behavior is related to a decrease in the fraction of
the flow transferred to the background plasma. It is
worth noting that the increase in intensity is accompa-
nied by an increase in the magnitude of the nonequilib-
rium distribution function in proportion to the flux
magnitude [3].

Let us examine the form of the distribution function
for power-law interaction potentials with the exponents
1 ≤ β ≤ 4. Note that β = 1 corresponds to the Coulomb
interaction potential, β = 2 corresponds to dipole inter-
action, and β = 4 describes the interaction of so-called
Maxwellian molecules. Figure 9 shows nonequilibrium
distribution functions for the case of a steady-state
energy flow with an intensity of I = 0.01 and β = 1, 2,
and 4. It can be seen that, for all these β values, the
exponents of the formed nonequilibrium power-law
distribution functions are close to one another, which
agrees with the results of [3]. The magnitude of the
nonequilibrium part of distribution function decreases
with increasing β. These results are in qualitative agree-
ment with the above analytic predictions.

4. FORMATION OF THE EDF
IN THE INTERACTION OF RADIATION

AND PARTICLE BEAMS WITH SOLID-STATE 
PLASMA

In this section, we consider the conduction and
emission properties of a semiconductor plasma irradi-
ated with intense particle or laser beams.
PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004
A comparison of the characteristic times of ioniza-
tion and relaxation shows that, in the case at hand, the
steady-state EDF should be determined mainly by elec-
tron–electron collisions [3]. Hence, it can be obtained
from the condition that the Boltzmann collision integral
(for a semiconductor plasma, the Landau or Fokker–
Planck collision integral) be zero.
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Fig. 8. Steady-state distribution function obtained from the
Landau equation for β = 1 and an exponential source sink
and sink at two values of the flux intensity in phase space:
I1 = 0.01 and I2 = 0.001 (v– = 4, v+ = 5).
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Fig. 9. Steady-state nonequilibrium distribution functions
vs. squared velocity for a constant energy flux with an inten-
sity of I = 0.01. The source and sink are in the form of δ
function (19) with v– = 4 and v+ = 8. Curves 1, 2, and 3 are
calculated using the collision integrals in the Landau form
with exponents β = 1, 2, and 4, respectively.
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It follows from the above analysis that, for a semi-
conductor plasma in the energy range E – EF > EF, a
power-law distribution with a nonzero flux of energy or
particles in momentum space can be established. This
distribution is formed due both to collisions with elec-
trons whose energy is in the range E – EF > EF and
background (equilibrium) electrons.

It was shown above that a nonequilibrium electron
distribution is close to a universal distribution if the
intensity of the flow produced by the source and sink in
momentum space is sufficiently high.

Let us consider, as an example, the irradiation of a
solid-state plasma with a beam of fast ions (with veloc-
ities higher than the velocities of atomic electrons) or
high-power electromagnetic radiation with the fre-
quency ω satisfying the condition "ω @ kBT. In both
these cases, a great number of high-energy electrons
arise that, in accordance with the above consideration,
form a nonequilibrium steady-state EDF. When the dis-
tribution function is nonequilibrium, the emission cur-
rent density is anomalously high since the distribution
function decreases very slowly over the inertial inter-
val. The plasma conductivity is determined by the den-
sity of current carriers. In the case of a nonequilibrium
EDF, the carrier density in semiconductor plasma is
very high in comparison to the case of an exponentially
decreasing equilibrium EDF. Therefore, when a semi-
conductor plasma is irradiated with intense radiation or
particle beams, an anomaly in the emission and con-
duction properties of plasma should be observed.
Indeed, such an anomaly was observed, e.g., in [26, 27].

Supplying additional kinetic energy to a solid-state
plasma results in the ionization of atoms and the pro-
duction of a rather large number of free electrons with
energies higher than the equilibrium (thermal) energy
[28]. Under these conditions, nonequilibrium distribu-
tions of free electrons can form [3, 4]. It was shown in
a series of theoretical and experimental studies that,
when a solid-state plasma is irradiated with fast ion
beams, a steady-state nonequilibrium power-law EDF

f(E) = αI1/2E–s (20)

is formed in the plasma due to the presence of a particle
(energy) flow produced by a source (ionization) and a
sink (electron emission) in momentum space. In
Eq. (20), α is the normalizing factor, I is the particle
(energy) flux, s is an exponent [4, 5], and E is the total
electron energy in a solid (E = ϕ + EF + eU, where ϕ is
the work function and eU is the energy relative to the
electron energy in vacuum). Power-law distributions
are characterized by a rather large fraction of high-
energy electrons. For example, when a Be sample is
irradiated with 4.9-MeV α particles, the fraction of
electrons with energies higher than Ep = 18.9 eV (where
Ep is the energy of plasma eigenmodes in beryllium)
can exceed 37% [29].

When the velocity v  of an incident ion is much
higher than the velocities of the target’s electrons, the
elastic losses are negligibly small, whereas the inelastic
energy losses, which are usually called ionization loss,
are described by the Bethe–Bloch formula [30]

(21)

where m is the electron mass; Z1 is the charge number
of the incident ions; Z2 is the atomic number of the tar-
get material; and N and I are the density and the average
excitation potential of the target’s atoms, respectively.
It follows from formula (21) that, at high energies, the
ionization loss decreases as v –2. The introduction of an
extra charge in a quasineutral equilibrium solid-state
plasma leads to the displacement of free electrons with
respect to their equilibrium positions and to the excita-
tion of plasma eigenmodes (plasmons) [31]. Thus, the
energy lost by an ion due to its deceleration is trans-
ferred to the target’s electrons in two ways: a certain
fraction of the energy is spent on the excitation of plas-
mons, while the rest energy is transferred to individual
electrons in collisions (in particular, in collisions with
atoms, which then become ionized) [28]. Such a non-
equilibrium external action significantly changes the
distribution function of free electrons [4].

A fraction of the nonequilibrium electrons that have
proper magnitudes and momentum directions can
escape from the target; i.e., these electrons can take part
in the process of secondary ion-induced electron emis-
sion (SIEE). The emission proceeds in three stages:

(i) origin of nonequilibrium electrons,
(ii) their collisions and motion (diffusion) toward

the surface of a solid, and
(iii) overcoming the potential barrier by these elec-

trons and their escape into vacuum.
Such an approach is believed to most comprehen-

sively account for the SIEE features and has been
widely used since the Sternglass study [32] (see also
[33]). The processes of electron diffusion to the surface
and overcoming the potential barrier seem to be the
same for the electrons produced by ion bombardment
and the electrons produced as a result of target irradia-
tion by electron or laser beams [34].

An integral characteristic of SIEE is the SIEE coef-
ficient γ, often called the electron yield (see [35]). The
electron yield γ is defined as the ratio of the number of
knocked-out secondary electrons Ne to the number of
incident ions Ni ,

γ = Ne/Ni . (22)

The SIEE coefficient depends substantially on the
energy of incident ions. It has been shown both theoret-
ically and experimentally that, for low-Z ions, the elec-
tron yield γ is proportional to the average specific ion-
ization loss of ion energy in matter, dE/dx [32, 35, 36].

A much more informative characteristic of SIEE is
the electron energy distribution. It has been shown
experimentally that the energy spectra of secondary
electrons are of power-law character [6, 37, 38]. When

dE/dx– 4πZ1
2
e

4
/mv

2( )Z2N 2mv
2
/I( ),ln=
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studying electron emission from some metals, it was
shown that the distribution functions of the electrons
knocked out by low-Z ions are piecewise power-law
functions with different exponents s for different
energy ranges [5, 6, 39].

As was shown in [40], emissivity variations accom-
panying the irradiation of a sample with intense
charged particle beams can be efficiently used to create
new energy sources. One such source is a secondary-
emission radioisotope current source [41] that converts
the energy of α particles into electrical energy using the
nonequilibrium properties of the electron distributions.
Since the efficiency of this source is proportional to the
difference between the electron yields of the employed
emitter materials (γ2 – γ1) [41], it is necessary to use an
emitter with the maximum possible γ2 value to increase
the source efficiency.

At present, the available literature data on the emis-
sion properties of materials irradiated with fast ion
beams mainly refer to metals. Note that no data are
available in the literature on the efficient electron emit-
ters widely used in the photoemission and electronic
techniques. Among the most widely used efficient emit-
ters of secondary electrons are emitters based on Sb/Cs
compounds. Due to the large coefficients of secondary
electron emission (SEE) and photoemission (this is
usually related to the low potential barrier at the bound-
ary between the sample surface and vacuum), such
compounds have been widely used in manufacturing
the photocathodes and dynodes in photomultipliers and
other devices [42]. To illustrate, the SEE coefficient σ
for Sb/Cs compounds is 3–4 at low energies of primary
electrons (Ee ~ 100 eV) and reaches its maximum value
of σmax = 8–10 at Ee = 500–600 eV [42]. Such large SEE
coefficients are presumably explained not only by the
low work function for this material but also the forma-
tion of a power-law nonequilibrium distribution func-
tion.

5. EXPERIMENT

This section is devoted to our experimental studies
aimed at revealing the main features of the EDFs
formed during the irradiation of a Sb/Cs cathode and
certain semiconductors with a beam of fast low-Z ions.

5.1. Experimental Setup

A schematic of the experimental setup used to study
the EDFs formed in the solid-state plasmas of semicon-
ductors and of a Sb/Cs cathode irradiated with a beam
of fast low-Z ions is shown in Fig. 10.

An electrostatic Van de Graaf generator used as a
source of primary particles provided beams of H+ or
He+ ions. Energy spectra of SIEE electrons were mea-
sured for H+ beams with ion energies from 1.00 to
2.25 MeV and He+ beams with ion energies from 1.75
to 2.25 MeV. The ion energy was varied with a step of
PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004
0.25 MeV. The cathode used as a target was a Sb/Cs
layer deposited on a massive nickel substrate. The layer
thickness was less than the mean free path of the inci-
dent ions in Sb/Cs. A 10-mm-diameter target (1) fixed
in a copper mount was installed on a movable holder
(2). The ion beam collimated by a system of dia-
phragms was incident onto the target and caused SIEE
from its surface. The target plane was normal to the
beam axis. The beam diameter on the target surface was
3 mm, and the ion current density was no higher than
30 µA/cm2. The chamber was evacuated with an NMD-
0.4-1 magnetic-discharge pump and an NVPR-16D
backing pump with a liquid nitrogen trap. In all our
experiments, the residual gas pressure in the vacuum
chamber was no higher than 10–6 torr.

The electrons emitted from the target surface were
intercepted by a spherical collector consisting of two
100-mm-radius hemispheres (3). The target and the
holder were set inside the collector. The gap between
the hemispheres was 15 mm. The diameter of the
entrance window of the hemisphere was 10 mm.
Besides the collector current, we also measured the tar-
get current IT, which was the sum of the beam ion cur-
rent IB and the current of the secondary electrons that
reached the collector: IT = |IC | + IB. The measured IC and
IT currents amplified by electrometric amplifiers (4 and
5, respectively) were applied to a PC (7) through an
analog-to-digital converter (6). To calibrate the mea-
surement system, a Faraday cup (8) was set behind the
rear hemisphere. The Faraday cup allowed us to
directly measure the ion beam current IFC when the tar-
get was removed from the beam path. The diameter and
length of the Faraday cup were 20 and 130 mm, respec-
tively. The current from the Faraday cup IFC was mea-
sured with an F303 current meter (9). The SIEE coeffi-
cient was determined by the formula

γ = |IC |/(IT – |IC |). (23)

10 5 6 7

4

9
8

1

2

3

Rc

H+, He+

Fig. 10. Schematic of the experimental setup: (1) target,
(2) target holder, (3) hemispheres, (4, 5), electrometric
amplifiers, (6) analog-to-digital converter, (7) PC, (8) Fara-
day cup, (9) F303 current meter, and (10) saw-tooth voltage
generator.
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By measuring the energy spectrum of SIEE elec-
trons with a spherical analyzer and assuming that emis-
sion is produced by a point source, one can reconstruct
the EDF inside the target [20]. When the EDF is power-
law function (20), the derivative of the emission current
with respect to the electron energy, dI/dU, can be writ-
ten as

dI/dU = B(EF + ϕ + eU)–s + 1, (24)

where B is a constant. Hence, on a logarithmic scale,
dependence (24) is a straight line with a slope equal to
–s + 1.

The energy distributions of the secondary emission
electrons were measured with a spherical collector
operating in the energy-analyzer regime with a retard-

101 102

10–1

100

2

EF + ϕ + eU, eV

dI
/d

U
, a

rb
. u

ni
ts

1

Fig. 11. Typical dependence of  on
, plotted on a double logarithmic scale,

for a Sb/Cs cathode bombarded with 1.75-MeV He+ ions.
Energy ranges 1 (5–30 eV) and 2 (30–100 eV) correspond
to the exponents s1 = 2.9 and s2 = 2.5, respectively.

dI/dU( )log
EF ϕ eU+ +( )log

Table 1

Ion Energy, MeV
Exponent

s1 s2

H+ 1.25 2.9 2.5

1.50 3.0 2.5

1.75 2.9 2.5

2.00 3.0 2.4

2.26 3.0 2.6

He+ 1.75 2.9 2.5

2.00 2.8 2.2

2.26 2.8 2.3
ing field varied in the range 0–100 V with a step of 1 V.
The retarding electric potential was applied between
the target (1) and two hemispheres (3). Since the radius
of the energy analyzer significantly exceeded the target
size, the field distribution was close to spherical. A
5-mm-diameter ceramic tube with an outer surface cov-
ered with a resistive layer served as a target holder (2).
The specific resistance of the layer Rc was varied non-
linearly along the tube so that the holder potential did
not disturb the field inside the energy analyzer. One end
of the resistive layer was in contact with the target,
whereas its other end was grounded. The retarding
potential was applied to the target from a saw-tooth
generator (10) controlled by a PC (7). Thus, the current
flowing along the resistive layer produced the needed
potential distribution along the holder. In experiments,
the secondary electrons moved along radial trajectories
and reached the collector. When the retarding voltage
was applied to the target, only the electrons whose
energy was high enough to get through the retarding
field reached the collector. The computer software for
controlling the experiment allowed the gathering of a
7-s-long time sample consisting of 100 measurements
of the electron emission current for each value of the
retarding field. These 100 experimental points were
then averaged, and the resultant value of the electron
current was stored in the PC memory. By differentiat-
ing the measured dependence of the collector current
on the retarding voltage (the so-called retarding
curves), one can deduce the energy spectrum of SIEE
electrons and then reconstruct the EDF.

The exponents s of power-law EDFs were evalu-
ated as follows. First, the time samples of the electron
emission current were processed and the delay curves
were differentiated. Then, the dependences of dI/dU
on the total electron energy EF + ϕ + eU in the com-
pound under study, plotted on a logarithmic scale,
were approximated by straight lines. According to for-
mula (24), the slopes of these straight lines are equal
to –s + 1.

5.2. Experimental Results and Discussion

The measurements of the energy spectrum of SIEE
electrons show that, over the entire ion energy range
under study, the nonequilibrium EDF formed in the
plasma of a Sb/Cs cathode is a power-law function.

A typical nonequilibrium EDF obtained for a sam-
ple bombarded with 1.75-MeV He+ ions is shown in
Fig. 11. The experimental points are quite well fit by
two straight lines corresponding to two different expo-
nents, s1 and s2, in the energy ranges of 5–30 eV and
30–100 eV, respectively. These exponents for the two
parts of the EDF in the above energy ranges are shown
in Table 1 as functions of the energy of the incident H+

and He+ ions.
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In our opinion, the exponent of a power-law distri-
bution function of secondary electrons could depend on
the energy (specific ionization loss) of fast ions. It
seems that it is the specific ionization loss that deter-
mines the intensity of the source of extra particles in
momentum space. It was shown in [4, 43] that, under
certain conditions, the exponent is independent of the
structure of the source and sink. In this case, it can be
said to be a universal power-law distribution function
with an exponent equal to –5/4 [43]. In our previous
experiments with a He+ beam and thin metal films, in
which the exponents s were measured, it was shown
that the absolute value of the exponent s1 of a power-
law distribution function in the first energy range corre-
sponding to slow electrons (E < 35 eV) decreases with
increasing specific ionization loss of ions in a substance
[39]. In [38], it was pointed out that the fraction of fast
electron increases with increasing energy of the inci-
dent ions. It can be seen from Table 1 that the exponents
s1 for different incident ions and, accordingly, different
specific ionization losses in a Sb/Cs sample differ insig-
nificantly, although, for protons, the exponent increases
with ion energy and decreases with specific ionization
loss. No such dependence was observed for helium
ions. It should be noted that variations in the exponent
do not exceed 10%; to deduce the exact dependence of
the exponent on the energy loss requires additional
study.

Figure 12 shows the dependence of the electron
yield γ on the energy of the incident H+ and He+ ions for
a Sb/Cs cathode. It can be seen that, for the Sb/Cs com-
pound under study, the electron yield γ exceeds that for
some metals [35]. The reason could be as follows. As
was mentioned above, a fraction of the nonequilibrium
electrons produced in a solid-state plasma under bom-
bardment with a beam of fast charged particles diffuse
toward the surface and escape into vacuum. Electron
emission proceeds from the surface layer, whose thick-
ness is much less than the depth to which the ions pen-
etrate into the target and is determined by the features
of the electron motion toward the surface. In metals, the
generated electrons, while diffusing toward the surface,
interact mainly with conduction electrons. This interac-
tion may proceed via pair collisions and collective
effects—the excitation of plasmons. Due to the large
density of conduction electrons in metals, the probabil-
ity of electron–electron interactions and, accordingly,
the effective escape depth of secondary electrons are
small. In semiconductors, the density of conduction
electrons is low; hence, the escape depth of secondary
electrons can be quite large. Since Sb/Cs compounds
possess semiconductor properties [42], the escape
depth of nonequilibrium electrons can be larger than in
metals. The higher (compared to metals) value of the
SIEE coefficient can be, to a certain extent, explained
by this factor.

Sb/Cs compounds have low work functions [44].
The relatively low potential barrier at the boundary
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between such a compound and vacuum may lead to an
increase in the fraction of nonequilibrium electrons
leaving the solid. The work function determines the
cutoff energy for the nonequilibrium power-law EDF
formed in a solid-state plasma. Since the exponent
within the first energy interval is fairly high (see Table 1
and [6, 37–39]), even a slight decrease in the work
function leads to a significant increase in the SIEE coef-
ficient.

Our experiments have shown that, for all of the ener-
gies of H+ and He+ ions, the EDFs formed in a semicon-
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Fig. 12. Electron yield γ for a Sd/Cs cathode vs. energy of
incident H+ and He+ ions.
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Fig. 13. Distribution function of the nonequilibrium elec-
trons for GaAs bombarded with 1.25-MeV He+ ions, plot-
ted on a double logarithmic scale.
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ductor plasma are power-law functions. Figure 13
shows (on a double logarithmic scale) a typical non-
equilibrium EDF formed in a GaAs sample bombarded
with 1.25-MeV He+ ions. The experimental points can
be well fit by a single straight line corresponding to the
exponent s = 2.9 throughout the entire range of electron
energies in vacuum (5–100 eV). Table 2 presents the
exponents s obtained by processing the experimental
data for all the samples under study and all the energies
of the incident ions.

It was shown in our early experiments [20] that the
EDFs formed in metal plasmas are piecewise power-

3100 3200 3300 3400 3500 3600 3700

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5
γ

dE/dx, MeV/cm

Fig. 14. Electron yield for germanium vs. specific ioniza-
tion loss dE/dx for He+ ions.
law functions with different exponents in different
energy ranges. At least two such ranges were revealed.

In our opinion, the piecewise power-law shape of
the EDFs in experiments with metals, namely, the pres-
ence of two characteristic energy ranges, could be
related to two different mechanisms for energy transfer
from a fast incident ion to the electron subsystem of a
solid. These mechanisms are (i) the excitation of collec-
tive plasma oscillations with a subsequent ionization in
the electric field of these oscillations and (ii) inelastic
collisions, resulting in the direct ionization of atoms.
The energy of the electrons produced due to ionization
via plasma oscillations cannot exceed the plasmon
energy Ep in a substance. In semiconductors, the energy
of plasmons related to conduction electrons is much
lower than the ionization potential of atoms. For this
reason, the distribution function in a semiconductor
plasma is characterized by one power-law segment
throughout the entire electron energy range under
study.

The measurements of the energy spectrum of SIEE
electrons have shown that, for all of the ion energies
under study, the nonequilibrium EDFs formed in
plasma are power-law in character.

As was mentioned above, the main integral charac-
teristic of SIEE is the electron yield γ. Table 3 shows the
yields of electron emission induced by He+ ions for
some semiconductors. It can be seen from Fig. 14 that,
in germanium, the measured values of γ plotted versus
the ionization loss dE/dx for He+ ions are well fitted by
a straight line; i.e., these quantities are indeed propor-
tional to one another.
Table 2

Ion Energy, MeV
Exponent s

GaAs Ge CdTe

He+ 1.00 – 2.8 –

1.25 2.9 2.8 –

1.50 2.9 2.8 –

1.75 2.6 2.7 2.9

2.00 2.6 2.8 2.8

2.26 2.7 2.8 2.9

H+ 1.00 3.1 2.9 3.1

1.25 2.9 2.8 3.0

1.50 2.8 2.9 3.0

1.75 2.8 2.6 2.7

2.00 2.7 2.6 2.7

2.26 3.0 2.8 2.8
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6. CONCLUSIONS

In this paper, we have shown that the presence of
sources and sinks in a spatially uniform system leads to
the formation of SNDs with power-law tails. A kinetic
equation for the electrons scattered by acoustic
phonons in a solid has been derived, and relations
between power-law asymptotic solutions and the parti-
cle and energy fluxes in phase space have been estab-
lished. The nonextensive thermodynamics of a non-
equilibrium solid-state plasma has been developed
based on the SNDs under study.

Numerical simulations of the formation of SNDs
show that, for particles with Coulomb interaction, an
SND is formed between the source and sink. Starting
from a certain intensity of the source (sink), the power-
law distribution function has the same exponent; i.e., it
is universal. A radical change in the EEDF under non-
equilibrium conditions leads to an anomalous increase
in the conductivity and emissivity of the substance.

The experimental data on the EEDFs formed in the
solid-state plasma of a Sb/Cs cathode irradiated with a
beam of fast low-Z ions are presented. In all of the
experiments with H+ and He+ ions, the nonequilibrium
EEDFs in the energy range from 5 to 100 eV are found
to have a piecewise power-law shape with different
exponents in the energy ranges of 5–30 and 30–100 eV.
The power exponents are expected to depend on the
energy (specific ionization loss) of fast ions, and this
was indeed observed for protons in the former energy
range.

Our experimental studies of the formation of non-
equilibrium electron distributions in a semiconductor
plasma exposed to ion beams have shown that EEDFs
have power-law asymptotes with one exponent. This is
related to the low energy of the plasma oscillations car-
ried by the conduction electrons.
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Abstract—The objective of the present paper is to develop an analytic theory of cylindrical low-power RF
plasma sources operating at an industrial frequency (f = 13.56 MHz, ω = 8.52 × 107 s–1). Inductive surface excit-
ers of electromagnetic fields (exciting antennas) are considered that are positioned either at the side surface of
the cylinder or at one of its end surfaces. In the latter case, the plasma flows out of the source through the oppo-
site end surface of the cylinder. A study is made of elongated systems in which the length L of the cylinder
exceeds its diameter 2R and of planar disk-shaped systems with L < 2R. Simple analytic expressions are derived
for electromagnetic fields excited by the antenna in the source plasma. The equivalent plasma resistance and
the equivalent RF power deposited in the plasma are calculated for systems with prescribed parameters, i.e., in
a non-self-consistent model. Up to now, such sources have been investigated mainly through the numerical
solution of the complicated general electrodynamic equations. In the Introduction, the problem is formulated
in general terms and the geometry of the sources, as well as the characteristic parameters of the source plasma,
is discussed. In Section 2, plasma sources operating without an external magnetic field are investigated. In Sec-
tion 3, helicon plasma sources in a sufficiently strong external magnetic field are considered. Analytic predic-
tions are compared with the results from solving the problem numerically without using the helicon approxi-
mation. Section 4 gives a brief discussion of an electron cyclotron resonance–based RF plasma source. In the
Conclusion, the main results of the paper are summarized and the technological efficiency of the sources under
consideration is estimated at a qualitative level. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We begin by discussing the geometric features of
the plasma sources that are the subject of the present
study. We are interested in cylindrical sources elon-
gated along the cylinder axis (L > 2R) and in planar
disk-shaped cylindrical sources with L < 2R (see
Figs. 1a, 1b). The sources differ not only in shape but
also in the arrangement of antennas at the cylinder sur-
face. In an elongated plasma source, the electromag-
netic field is produced by a current-carrying antenna
positioned at the side surface of the cylinder (Fig. 1a)
and, in a planar source, the antenna is positioned at the
closed end, opposite to the end through which the
plasma flows out of the cylinder (Fig. 1b).

In a planar source, the end surface through which
the plasma flows out of the cylinder is a metal grid.
Since the grid cells are assumed to be small, the bound-
ary conditions at the grid can be written as

(1.1)

For an elongated plasma source with an antenna at its
side surface, the same boundary conditions are satisfied
at the upper closed end of the cylinder. In a planar disk-
shaped source, the current-carrying antenna is posi-
tioned at the upper end surface of the cylinder, so that
the boundary conditions at this surface are not fixed but
instead are derived from the field equations. As for the

Er z L= Eϕ z L= 0.= =
1063-780X/04/3008- $26.00 © 20687
side surface of a planar source, it is usually metallic, so
that the boundary conditions at this surface should have
the form

(1.2)

In contrast, in an elongated plasma source, it is at the
side surface of the cylinder that the current-carrying
antenna is positioned, so that the boundary conditions
at this surface are not fixed but are derived from the
field equations.

Let us now discuss the design of the antennas in
question. In the most general case, the current density
in the antenna positioned at the side surface of the cyl-
inder can be represented as

(1.3)

where F1(ϕ, z) is an arbitrary function of its arguments,
which can be expanded in a Fourier series. Below, the
problem will be solved for an individual term of the
Fourier series under the assumption that the antenna
current is azimuthally symmetric and the arbitrary

function has the form F1(ϕ, z) ~ iϕI0sin , where I0 is

the net antenna current and iϕ is a unit vector in the azi-
muthal direction (see formula (3.6) for details).

Eϕ r R= Ez r R= 0.= =

j r( ) δ r R–( )F1 ϕ z,( ),=

πz
L
-----
004 MAIK “Nauka/Interperiodica”
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The current density in the antenna positioned at the
end surface of the cylinder is represented in an analo-
gous form. In the general case, the antenna current den-
sity can be written as

(1.4)

In what follows, however, we will be interested in an
azimuthally symmetric antenna current and will use the

function F2(ϕ, r) ~ iϕI0J1 , where I0 is the net

antenna current, J1(x) is a first-order Bessel function,
and µ ≈ 3.8 is the first root of the Bessel function
(J1(µ) = 0) (see formula (2.2) for details).

Let us now discuss the mechanisms by which the RF
energy is dissipated within the plasma of the source. We
are interested in a plasma with the following parame-
ters: the neutral gas pressure is p0 < 10–3 torr (which
corresponds to a neutral density of n0 ≤ 3 × 1013 cm–3)
and the electron density is ne ≈ 1010–1013 cm–3. In such
a plasma, two dissipation mechanisms—collisionless
dissipation due to the Cherenkov absorption of the field

j r( ) δ z( )F2 ϕ r,( ).=

µr
R
------ 

 

z

z

L

L
R

R

jϕ (z)

jϕ (r)

O

z = 0

(a)

(b)

Fig. 1. Schematics of (a) an elongated plasma source and
(b) a planar disk-shaped plasma source.
by the plasma and collisional field dissipation due to
collisions of plasma electrons with plasma ions and
with gas atoms and molecules—play an important
role. In this case, the collision frequency can be repre-
sented as

(1.5)

where the electron temperature Te is in eV, the gas pres-
sure p0 is in torr, the electron density ne is in cm–3, and
the collision frequency is in s–1. Note that, in source
plasmas, the electron temperature satisfies the condi-
tion Te @ Ti ~ T0, where Ti is the ion temperature and T0
is the gas temperature (which is usually on the order of
room temperature). Such plasma parameters result
from the large difference between the mass of the elec-
trons and the masses of heavy particles (ions and neu-
trals), in which case the collisional energy exchange
between electrons and heavy particles is hindered. For
typical experimental conditions such that Te ~ 5 eV and
VTe ≈ 108 cm/s, and for ne ≤ 1013 cm–3 and p0 ≤ 10−3 torr,
we have νe ≤ 3 × 107 s–1. Under these conditions, the
collisional dissipation of the RF energy in the plasma
can be assumed to be weak because ω = 8.5 × 107 s–1 @
νe ≤ 3 × 107 s–1.

For the above plasma parameters, the mean free path
of an electron is on the order of l = VTe/νe ≥ 3 cm. It can
be shown that the maximum efficiency of a plasma
source operating in a steady mode is achieved when the
length of the system only slightly exceeds the electron
mean free path l, i.e., when

(1.6)

In what follows, this condition will be assumed to be
always satisfied.

The second, purely collisionless, dissipation mech-
anism is governed by both the electron thermal motion
and the geometric dimensions of the system. The con-
tribution of this mechanism to the collision frequency is
determined by the parameters kVTe ≈ πVTe/L and
πVTe/R. The characteristic geometric dimensions of an
elongated RF plasma source are L ≥ 10 cm and
R ≤ 10 cm, while those of a planar source are L ≤ 10 cm
and R ≥ 10 cm. As a result, we have kVTe ≈ (1–2) ×
107 s–1 ! ω, so that the collisionless RF energy dissipa-
tion in the sources is also weak. On the other hand, we
have kVTe ~ νe, which indicates that the collisionless
dissipation is comparable in importance to the colli-
sional dissipation. This is why we will assume that both
of the dissipation mechanisms operate simultaneously
in the plasma.

The external magnetic field is longitudinal only,
B0 || z. It has an important effect on the operating modes
of the plasma sources. It is easy to show that, even for

νe = νen νei Te6 10
9
p0

3 10
5–
ne×

Te3/2
------------------------,+×≈+

L 2–3( )le 10 cm.≈≤
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relatively weak external magnetic fields (5 ≤ B0 ≤
500 G), the following conditions hold:

(1.7)

where ωLe =  is the electron Langmuir fre-
quency and Ωe = eB0/mc is the electron gyrofrequency.
These conditions will be assumed to be satisfied for
plasma sources with an external magnetic field.
Sources with a longitudinal magnetic field are the sub-
ject of Sections 3 and 4 of the present paper. The objec-
tive of Section 2 is to investigate plasma sources with-
out a magnetic field (B0 = 0).

Let us now discuss the question of the RF power that
is to be deposited in the plasma of the source (i.e., the
power that ensures the operation of the source). This
power depends substantially on the mass of an ion, M,
which is assumed to be about 30–40 masses of a hydro-
gen atom (M ~ 10–22 g). In this case, the plasma flows
out of the source with a velocity on the order of the ion
acoustic speed (provided that the plasma ions are not
accelerated by any additional means),

For an ion density of ni ≈ 1012 cm–3, this formula yields
the following estimate for the density of the ion current
from the source:

(1.8)

Since the plasma thermal energy is determined by the
electron temperature Te, which is about 5 eV, the den-
sity of the power flux from the source through a unit
area of the end surface of the cylinder is equal in order
of magnitude to

(1.9)

so that the net power flux from the source is

(1.10)

where the total area of the end surface of the cylinder,
S, is expressed in cm2. For an elongated system with
R < 10 cm, we have 3W < 150 W, whereas for a planar
disk-shaped source with R > 10 cm, the net power flux
is 3W > 150 W.

It is also an easy matter to estimate the total power
that is to be deposited in the discharge plasma in order
to maintain the steady-state operation of the source. To

ωLe 10
10

 s
1– Ωe>≥

eB0

mc
-------- ω 8.5 10

7
 s

1–
,×≈≥=

4πe
2
ne/me

v s

Te

M
----- 3 10

5
 Òm/s.×≈=

j = eniv s 5 10
10–×( ) 10

12
( ) 3 10

5×( ) 1

3 10
9×

----------------- 
  A

Òm
2

---------≈

≈ 5 10
2– A

Òm
2

---------.×

PW niv sTe niv sMv s
2

+≈

≈ 2niv sTe 0.5 
W

Òm
2

---------,≈

3W SPW 0.5S W,≈=
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do this, we must take into account not only the electron
plasma heating to a temperature of Te ~ 5 eV but also
the power lost to ionize neutral gas atoms and, in the
absence of a magnetic field, the power carried to the
side surface of the cylinder by the plasma. Unfortu-
nately, the amount of power expended on ionizing the
gas atoms in an RF discharge is very high—about
100 eV (most of the field energy is spent on the excita-
tion of atoms, which is followed by the emission of
optical photons from the excited atomic states). As a
consequence, the net RF power absorbed by the plasma
in the source is higher than the net power flowing out of
the source by one or even two orders of magnitude, i.e.,

3W ≈ 103–104 W.

To conclude this section, we will say a few words
about additional power losses during the acceleration of
ions in plasma sources serving as ion implanters. The
problem concerning the power of an ion accelerator is
a separate issue and is not related to the problem of the
RF power fed into a plasma source. In what follows, we
will not deal with the ion-accelerator-related problem,
because it goes beyond the scope of this paper, the pri-
mary goal of which is to investigate the steady-state
operation of RF plasma sources. Strictly speaking, the
above estimates are valid merely at a qualitative level.
The problem of the power expenditure of the plasma
source should be treated in terms of a self-consistent
source model. Here, we restrict ourselves to a non-self-
consistent model in which all the parameters of the
source plasma are assumed to be prescribed and time-
independent.

2. PLASMA SOURCE WITHOUT AN EXTERNAL 
MAGNETIC FIELD

Below, in order to illustrate how the theory of induc-
tive plasma sources is to be constructed, we consider
the simplest examples of these devices. We begin by
considering plasma sources operating in the absence of
an external magnetic field. It is easy to see that, in a
plasma with the above densities, the electromagnetic
field excited by an antenna in the frequency range under
analysis is subject to the skin effect, the skin depth
being rsk ~ c/ωLe ~ 3 cm. This indicates that an elon-
gated source without a magnetic field does not hold
promise for technological applications: the parameters
of such a plasma source are nonuniform in the radial
direction because of the radially nonuniform distribu-
tion of the RF field. That is why, in this section, we
restrict ourselves to planar disk-shaped plasma
sources.1 

In a planar disk-shaped plasma source, the current-
carrying antenna is assumed to be positioned at the

1 Here, the question about the equalization of each of the plasma
parameters in the radial direction by different transport processes
is deliberately set aside because it requires separate study.
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upper end of the cylinder (Fig. 1b) and to have the form
of an Archimedes spiral,

(2.1)

where a is the spiral radius. In the limit a ! R, the azi-
muthal current density in the antenna can be written, to
a good accuracy, as

(2.2)

where I0 is the net azimuthal current in the antenna,
J1(x) is a first-order Bessel function, µ ≈ 3.8 is the first
root of the Bessel function (J1(µ) = 0), and

q =  ≈ 2.7.

In the absence of an external magnetic field, the
electromagnetic fields described by axisymmetric solu-
tions to Maxwell’s equations have three nonzero com-
ponents:

(2.3)

For a source with the geometry in question, these com-
ponents satisfy the following set of Maxwell’s equa-
tions:

(2.4)

where we have differentiated the components with
allowance for their radial dependence. The azimuthal
component of the electric induction, Dϕ(z), is assumed
to be related to the electric field component Eϕ(z) by an
integral relationship that is derived from the kinetic the-
ory of a bounded plasma. Under the conditions of a pro-
nounced anomalous skin effect, in which we are inter-
ested here, i.e., when the inequalities

ωLe @ ω, L > c/ωLe (2.5)

are satisfied, we can pass over to the limit of a plasma
that is semi-infinite in the z direction, assuming that
L  ∞. If we adopt a model in which the electrons are
specularly reflected from the surface z = 0, then we
obtain (see [1], Sections 17, 18)

(2.6)

ρ aϕ ,=

jϕ
I0µδ z( )

R 1 J0 µ( )–[ ]
-------------------------------J1 µ r

R
--- 

  e
iωt–

=

=  
I0

R
----qδ z( )J1 µ r

R
--- 

  e
iωt–

,

µ
1 J0 µ( )–
----------------------

Eϕ z r,( ) Eϕ z( )J1 µ r
R
--- 

  ,=

Br z r,( ) = Br z( )J1 µ r
R
--- 

   and Bz z r,( ) = Bz z( )J0 µ r
R
--- 

  .

ic
∂Eϕ

∂z
---------– ωBr+ 0,

cµ
R
------Eϕ iωBz– 0,= =

∂Br

∂z
--------

µ
R
---Bz– i

ω
c
----Dϕ+

4π
c

------ jϕ z( ),=

Dϕ z( ) z'ε̂tr z z'– ω,( )Eϕ z'( ).d

∞–

∞

∫=
Here, (z – z', ω) is the influence function, the Fourier
transform of which,

(2.7)

is the transverse dielectric function of an isotropic col-
lisional electron plasma [2],

(2.8)

where J+(x) =  (for details about the func-

tion J+(x), see [1, 2]).

Equations (2.4) can readily be reduced to one equa-
tion for the electric field component Eϕ(z) in the plasma
region (z ≥ 0):

(2.9)

where the current density jϕ(z) is given by expression (2.2)

without the factor . We solve this equation

by the method described in Sections 17 and 18 of [1].
Specifically, we continue the function Eϕ(z) into the
region z < 0 in such a way that the resulting function is
even. To do this, we take into account the following
boundary conditions, which are a consequence of
Eqs. (2.4) themselves:

(2.10)

where α =  and the braces denote the

jump in the corresponding quantity at z = 0. Without
going into the details of the technique for solving the
problem at hand, we present the final expression for the
field component Eϕ(z) in the plasma of the source:2 

(2.11)

2 Note that this way of solving the problem implies that the side
metal surface of the source is continued into the vacuum region
z < 0. This assumption makes it possible to find analytic solu-
tion (2.11) and, at the same time, it does not qualitatively change
the final results, even if for no other reason than the field is not
absorbed in this region.

ε̂tr

εtr ω k,( ) zε̂tr z ω,( )e
ikz–

,d∫=

εtr ω k,( ) 1
ωLe
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ω ω iνe+( )
--------------------------J+
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where

(2.12)

with k0 =  ≈  (which refers to the operating

frequency ω = 8.52 × 107 s–1 of the RF plasma source
under consideration).

We can now calculate the RF field power deposited
in the plasma of the source and to determine the effec-
tive plasma resistance. To do this, we begin with the
general expression (2.11), which is valid under the con-
ditions of both weak and strong spatial dispersion, and
also take into account the radial dependence of the elec-
tric field in the plasma. In this way, we arrive at the fol-
lowing general formula:

(2.13)

From formula (2.13), we can see that the deposited
power 3W depends weakly on the source radius R; in
particular, it is essentially independent of R in the range
R > 20 cm. It can also be seen that, in the range of low
plasma densities (when the spatial dispersion is negligi-
ble and the RF power dissipation is of a collisional
nature), the deposited power increases in proportion to
the density ne; on the other hand, in the range of high
plasma densities (under anomalous skin effect condi-
tions), the deposited power decreases gradually accord-

ing to the law  and the RF power is dissipated
through collisionless Cherenkov absorption.

The results of calculations from formula (2.13) are
illustrated in Fig. 2, which shows how the effective
plasma resistance Reff depends on the plasma density in
the range 5 × 1011 ≤ ne ≤ 1013 cm–3 for sources of differ-
ent radii R. The conclusion that follows from Fig. 2 is
rather pessimistic: even for optimum conditions at ω ~
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 (according to this figure, such conditions corre-

spond to sources with R ≥ 20 cm and ne ~ 5 × 1011 cm–3),
the effective plasma resistance does not exceed 1.5 Ω ,
which is clearly too low for technological applications.

3. HELICON PLASMA SOURCES

In this section, we develop an analytic theory of RF
plasma sources in an relatively weak external magnetic
field. In the literature, such sources are known as heli-
con sources. The helicon plasma source was first pro-
posed by R.W. Boswell [3] and its theory was first
developed by F.F. Chen [4]. However, experimental
investigations carried out by Aleksandrov et al. [5]
failed to provide much support for Chen’s theory, as
was pointed out in a review by Shamray et al. [7]
(review articles on plasma sources can be found in [7],
which contains a detailed bibliography on the subject).
A correct theory of helicon plasma sources was con-
structed in [8–10]. Here, we will follow those papers in
general terms.

We restrict ourselves to elongated helicon plasma
sources in which an antenna is positioned at the side
surface of the cylinder3 (see Fig. 1) and that operate
with a constant external magnetic field B0 parallel to the
z axis (i.e., B0 || z). The frequencies are assumed to sat-
isfy the conditions

(3.1)

which impose lower and upper (for ne ≤ 1013 cm–3) lim-
its on the magnetic field strength B0: 20 ! B0 ! 103 G.
The source plasma parameters are assumed to satisfy
the conditions

(3.2)

3 We do not consider here planar disk-shaped helicon sources
because they have virtually no applications in plasma technolo-
gies.
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where kz =  (n = 1, 2, 3, …) is the longitudinal com-

ponent of the wave vector and k⊥  =  is its transverse

component, with µn being the roots of the Bessel func-
tion or of its derivative. Under these assumptions, we
can describe the plasma by the dielectric tensor [2]

(3.3)

with the elements

(3.4)

The ranges and values of the plasma source parameters
are the same as those given above, namely, ne = 1011–
1013 cm–3, Te = 5 eV, p0 ≈ 10–3 torr, R ≈ 5 cm, and L ≈
10 cm. It is easy to see that these parameters satisfy
conditions (3.1) and (3.2).

In cylindrical coordinates, Maxwell’s equations for
an axisymmetric low-frequency electromagnetic field
in a magnetized plasma reduce to the following two
coupled equations for H and E waves, i.e., for the field
components Bz and Ez, represented in the form
f(r, z)exp(–iωt):

(3.5)

where

The current density jϕ in an antenna positioned at the
side surface of the source (Fig. 1a) is given by the
expression

(3.6)

where kz =  is the longitudinal wavenumber and I0 is

the net antenna current.
In the general case, Eqs. (3.5) are very difficult to

solve because they describe two coupled waves—the
so-called E and H waves. It is only in the case of longi-
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tudinal propagation in a spatially infinite plasma that
these waves are decoupled and are eigenmodes of the
oscillations of a magnetized plasma, specifically, trans-
verse eigenmodes (helicons) and longitudinal eigen-
modes (Trivelpiece–Gould modes). For a cylindrical
source, Eqs. (3.5) can generally be analyzed only
numerically (this was done by Aleksandrov et al. [11]).
However, in the so-called helicon limit, i.e., in the limit
of a sufficiently dense plasma and sufficiently strong
magnetic field,

  0, (3.7)

the set of Eqs. (3.5), in a first approximation, can be
split into two independent subsets: one for H waves and
one for E waves. The conditions of applicability of limit
(3.7) are given by the inequalities

(3.8)

(k2 =  + ), which are known as the applicability
conditions for the helicon approximation and determine
the region of sufficiently strong fields and sufficiently
dense plasma. Note that the right-hand part of the sec-
ond of inequalities (3.8) is the condition for the plasma
to be transparent to the helicon field.

Inequalities (3.8) allow us to ignore the term with
the field component Ez in the second of Eqs. (3.5) Then,
taking into account the relationship

we arrive at the following equation for the H wave, i.e.,

for the helicon field component :

(3.9)

It is this equation that will be solved analytically below.

Note that the quantity  =  –  contains a small

(second) term that correctly describes the absorption of
a helicon field in a plasma because Img is negligibly
small.

Hence, in the helicon approximation, we deal with
the following situation. An antenna with an azimuthal
current of density jϕ excites a purely helicon field (an
H wave) in a magnetized dense plasma. This wave then
generates a low-frequency quasi-potential E wave (an
oblique Langmuir wave, or a Trivelpiece–Gould
mode), which is described by the first of Eqs. (3.5). In
contrast to the helicon wave (which, under the condi-
tions adopted here, is weakly absorbed by the plasma
because of the smallness of Img), the E wave field is
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generally dissipated fairly efficiently and thereby heats
the plasma.

We solve Eq. (3.9) separately for the region outside
the plasma (r > R, jϕ = 0) and for the plasma region
(r < R, jϕ = 0). Then, we match the solutions at the
plasma surface with the help of the boundary condi-
tions that can be obtained from Eqs. (3.5) by integrating
them across an infinitely thin layer around the side
surface of the source with allowance for the antenna
current:

(3.10)

These conditions were derived by using explicit expres-
sion (3.6) for the antenna current density at the side sur-
face of the cylinder.

The general solution to Eq. (3.9) inside and outside
the plasma region has the form

(3.11)

where

(3.12)

According to boundary conditions (3.10), the coeffi-
cients C1 and C2 satisfy the equations

(3.13)

Resolving these equations, we readily obtain the fol-
lowing expressions for C1 and C2:

(3.14)

(3.15)

Unlike in plasma sources operating without an
external magnetic field, in the plasma sources under
consideration, this field can excite internal waves
within the plasma. The waves so generated are
described by the dispersion relation

(3.16)
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which corresponds to the limit C1, 2  ∞. These are

internal helicon waves satisfying the condition  > 0.
For an elongated plasma source (such that L ≥ 10 cm,
R ≤ 5 cm), this condition enables us to rewrite disper-
sion relation (3.16) in the form

(3.17)

To a good accuracy, the solutions to dispersion relation
(3.17) can be represented as

(3.18)

where n = 1, 2, 3, …. Using these solutions, we obtain
the following formula for determining the resonant val-
ues of the magnetic field (or of the plasma density):

(3.19)

Based on inequalities (3.8), we can write the appli-
cability conditions for the helicon approximation in an
explicit form:

where the magnetic field is expressed in G and the
dimensions are given in cm.

In the case of a source with L = 15 cm and R = 5 cm,
these conditions can be satisfied only for sufficiently
dense plasmas (ne @ 1011 cm–3) and sufficiently strong
magnetic fields (B0 @ 10 G). It is also obvious that con-
dition (3.19) for the existence of an internal helicon
wave should not go beyond the applicability conditions
for the helicon approximation. For the above values of
the plasma parameters, this is in fact the case when ne >

7 × 1011  ≥ 4 × 1011 cm–3.

Thus, under conditions (3.16)–(3.19), i.e., when
internal helicon waves can be excited, we arrive at the
following expressions for the electric field components
in the plasma region r ≤ R:

(3.20)

where C1 is given by formula (3.14).
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elongated plasma source, the field components  and
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weak dissipation of the helicon field energy in the
plasma. As a result, the helicon field (in particular, its

component ) begins to excite a low-frequency quasi-
potential E wave (a Trivelpiece–Gould mode). To a
high accuracy, this E wave is of a potential nature; the
potential of its field is determined by Poisson’s equa-
tion with a source term:

(3.21)

The right-hand side of this equation is assumed to be
prescribed, so that we deal with a differential equation
for oscillations subjected to a driving force. In fact, sub-

stituting the field component  given by the first of
expressions (3.20) into Poisson’s equation (3.21) yields
the equation

(3.22)

Solving this equation, we obtain the forced solution

(3.23)

The field components  and  of the potential
Trivelpiece–Gould mode excited by a helicon wave
have the form

(3.24)

These expressions show that, along with the helicon
resonance, which is described by dispersion relation
(3.16), there could, in principle, exist the Trivelpiece–
Gould resonance, provided that the following condition
is satisfied:

(3.25)

This is the condition under which a helicon wave can
excite internal potential E-waves. Under resonance

condition (3.25), the field component  increases
substantially; consequently, the maximum operating
efficiency of a plasma source will obviously be
achieved under the double resonance condition, i.e.,
when helicon resonance condition (3.16) and condi-
tion (3.25) for the resonant excitation of a potential
Trivelpiece–Gould mode are satisfied simultaneously.
It should be noted, however, that, for an elongated hel-
icon plasma source for which inequalities (3.8) are sat-
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isfied, the second term in condition (3.25) is always
much larger than the first term; in other words, in the
helicon approximation, the Trivelpiece–Gould reso-
nance is impossible, so that, in such a source, double
resonance cannot occur.

In any case, the total field in the plasma is the sum
of the helicon and potential fields:

(3.26)

To conclude this section, we briefly discuss the
question of the amount of RF field power that is
absorbed by the plasma of the source,

(3.27)

The last term in braces in this expression can be ignored
because of the smallness of Img. Substituting the
explicit expressions for the field components Ez and Er

into formula (3.27) and performing integration in the
resulting formula, we finally obtain

(3.28)

where Reff is the equivalent ohmic resistance of the
plasma in the source.

Figures 3–8 show the dependence of the resistance
Reff on the magnetic field B0 for R = 5 cm and for differ-
ent values of L and ne. In these figures, the solid curves
are the corresponding curves from [11] and the dotted
curves were calculated from formula (3.28). We can see
that, near the helicon resonances, which are given by
approximate relationship (3.18), ohmic resistance
increases abruptly by more than one order of magni-
tude. Moreover, the field components that are absorbed

most efficiently are the  component of the helicon

wave field and the  component of the potential field
of the Trivelpiece–Gould mode. Note also that the
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tively with those calculated exactly for a plasma trans-
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parent to the helicon field. This qualitative agreement
concerns the positions of resonances and the magni-
tudes of resistance at them. The plasma region transpar-
ent to the helicon field and the region of applicability of
the helicon approximation are shown, respectively, by
the black and gray lines at the bottom of each of
Figs. 3–8. It should be stressed, however, that the
curves obtained from the exact solution are smoother
than those calculated from the helicon solution.

The general conclusion of this section can be formu-
lated as follows. The above investigation of analytic
solutions for a helicon plasma source in different limit-
ing cases has confirmed the correctness of the numeri-
cal solution to the problem that was obtained in [11],

102

101

100

10–1

R, Ω

1

2
‡
b

0 40 80 120 160 200
B, G

Fig. 3. Dependence of the effective plasma resistance on the
magnetic field for R = 5 cm, L = 10 cm, and ne = 1012 cm–3.
Curve 1 is the corresponding curve from [11] and curve 2
was calculated from formula (3.28). Line ‡ denotes the
plasma region transparent to the helicon field and line b
indicates the region of applicability of the helicon approxi-
mation.
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Fig. 4. The same as in Fig. 3, but for L = 20 cm.
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according to which elongated helicon plasma sources
are capable of operating efficiently over a broad range
of plasma parameters both near to and far from the hel-
icon resonances, because the effective plasma resis-
tance in the density range ne ~ 1011–1013 cm–3 is higher
than tens (or even hundreds) of ohms.

4. CYCLOTRON PLASMA SOURCE

In this section, we briefly discuss the prospects for
utilizing an RF antenna in an electron cyclotron reso-
nance–based plasma source. As is usual in cyclotron
sources, use is made of short-wavelength microwaves
in the centimeter range (see [12]). It will be shown,
however, that, in sources with a plasma density of ne ≤
1011 cm–3, an RF antenna may operate efficiently at the
frequency f = 13.56 MHz.

First, note that the analysis of a cyclotron source is
very similar to that carried out in Section 2 for a plasma
source without a magnetic field. The reason is that the
cyclotron wave in a plasma can be treated as if it were
propagating in a “quasi-longitudinal” direction, in
which case the electromagnetic wave field has the same
nonzero components as the wave field considered in the
previous section. The only difference is in the expres-
sion for the effective dielectric function [2] (cf. expres-
sion (2.8)):

(4.1)

It is this expression that should be substituted into for-
mula (2.13), in which, in addition, the integration over
k should be replaced by integration over kz. The results
of calculations carried out in this approximation are
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Fig. 5. The same as in Fig. 3, but for ne = 3 × 1012 cm–3.
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illustrated in Fig. 9 in the form of the dependence
Reff(ne) for different values of B0. We can see that the
effective resistance Reff, as a function of plasma density,
has a broad peak that is displaced toward stronger mag-
netic fields as the density increases. This is a conse-
quence of the collective nature of cyclotron waves: the
higher the plasma density, the larger the amount by
which the frequency of these waves deviates from Ωe [2],

(4.2)

Relationship (4.2) implies that the resonant fre-
quency is close to the electron gyrofrequency. Conse-
quently, at a given operating frequency of the source,
resonance is achieved only in the range Ωe > ω (i.e.,
only for B0 > 5 G). At weaker magnetic fields, reso-
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Fig. 6. The same as in Fig. 3, but for L = 20 cm and
ne = 3 × 1012 cm–3.
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Fig. 7. The same as in Fig. 3, but for ne = 1013 cm–3.
nance does not occur, as can be seen from Fig. 9. Note
also that expression (4.1) and the results obtained in
this section are valid only under conditions correspond-
ing to the quasi-longitudinal propagation of a cyclotron
wave and to a small deviation of the resonant frequency
from the cyclotron frequency (but when |ω – Ωe | @
kVTe), i.e., under the conditions

(4.3)

For a plasma source with the parameters indicated in
Fig. 9, these inequalities impose a lower limit on the
allowable plasma density and an upper limit on the
allowable external magnetic field.

It is important to emphasize that, according to Fig. 9,
the effective plasma resistance is high, Reff > 20 Ω , in
the plasma density range ne ~ (1–5) × 1010 cm–3. This
indicates that cyclotron RF sources hold great promise
for plasma technology.

To conclude this section, note that the formulas
derived here can also be used to describe cyclotron
plasma sources operating at higher frequencies such
that the vacuum wavelength is greater than the source

radius,  > R, in which case the RF field that is

excited by the antenna and maintains the plasma in the
source can be described by the above approach. Pro-
gressing to higher frequencies and, accordingly, to
stronger magnetic fields will make it possible to work
with gases at higher pressures, to produce plasmas with
higher densities ne, and to increase the allowable non-
uniformity of the magnetic field B0. In this way, it
seems expedient to raise both the frequency ω and mag-
netic field B0 by approximately one order of magnitude
(i.e., f ~ 50–100 MHz and B0 ≥ 100 G), to utilize gases
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Fig. 9. Plasma resistance vs. plasma density for R = 30 cm and for different magnetic field strengths: B0 = 0 G (closed circles), 2 G
(open circles), 4 G (closed squares), 5 G (open squares), 7 G (closed triangles), and 9 G (open triangles).
at pressures of P0 ~ 10–2–10–1 torr, and thereby to
achieve high operating efficiencies at plasma densities
of ne ~ 1012–1013 cm–3.

5. CONCLUSIONS
Summarizing the results of the above analytic study

of inductive RF plasma sources, we can draw the fol-
lowing conclusions.

(i) Inductive RF plasma sources without an external
magnetic field hold little promise for technological
applications. Because of the pronounced skin effect, the
only sources that can be of interest from a practical
standpoint are planar disk-shaped sources, in which,
even under optimum conditions (R > 20 cm, ne ~
1011 cm–3), the effective resistance of the plasma col-
umn is ≤1.5 Ω . Consequently, such sources can operate
efficiently only with antennas whose resistance is lower
than 1 Ω .

(ii) In contrast, elongated helicon RF plasma sources
and planar disk-shaped ones (with a length of L ≥ 5–
10 cm) are far more efficient: over a broad density
range (ne ~ 1011–1013 cm–3) and at magnetic fields of
B0 ~ 100–200 G, the effective plasma resistance in the
regions of helicon resonances is higher than tens of
ohms, which provides efficient operation with almost
all types of inductive antennas. It should be emphasized
that, in helicon sources, the effective plasma resistance
is governed not only by the absorption of the antenna-
generated helicon wave but also by the absorption of
the longitudinal wave (the Trivelpiece–Gould mode),
which is excited in the plasma by the helicon field. In
this case, the helicon field and the field of the Trivel-
piece–Gould mode are of comparable importance.

(iii) An unexpected result is the efficient operation of
cyclotron RF sources working under conditions of a
broad resonance at plasma densities of (1–5) × 1010 cm–3

in a weak magnetic field (5 < B0 < 10 G). The effective
plasma resistance in planar disk-shaped cyclotron
sources exceeds 20–30 Ω , so that choosing the type of
an inductive antenna presents no problem.
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Abstract—The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel
is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular
rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear
azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The depen-
dence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on
the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited
by a relativistic laser pulse in a wide plasma channel is analyzed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As early as 1960, L.P. Pitaevskiœ [1] predicted the
effect of the magnetization of a medium by a circularly
polarized electromagnetic field. This phenomenon,
which is associated with the excitation of the axial com-
ponent of the magnetic field during the propagation of
circularly polarized electromagnetic radiation in a
medium, was called the inverse Faraday effect (IFE), as
opposed to the conventional Faraday effect—the rota-
tion of the plane of polarization of an electromagnetic
wave propagating along a constant magnetic field.
Somewhat later, magnetization induced by a circularly
polarized electromagnetic radiation was observed
experimentally in paramagnetic crystals, diamagnetic
glasses, and inorganic and organic liquids [2–4]. After
the magnetization effect was revealed experimentally
in a laboratory plasma [5], theoretical papers appeared
in which the excitation of quasistatic magnetic fields in
the field of a circularly polarized electromagnetic wave
of constant amplitude was investigated using different
approaches: macroscopic [6], quantum-mechanical [7],
and hydrodynamic [8–10]. Recent advances in the gen-
eration of subpicosecond terawatt laser pulses have
added to further interest in the IFE. Experimental inves-
tigations have been carried out on the excitation of an
axial magnetic field in a plasma produced during the
irradiation of solid-state and gaseous targets by circu-
larly polarized laser pulses of moderate [11, 12] and
relativistic [13] intensities, including the measurement
of the magnetic field strength. There also appeared a
large number of theoretical papers devoted to a descrip-
tion of the IFE effect for relativistically strong laser
radiation [14–26]. In the literature, however, the data on
the strength of the axial magnetic field at moderate and
relativistic intensities of radiation fluxes are contradic-
tory. Thus, according to the results presented in [14,
15], in the interaction of a circularly polarized nonrela-
1063-780X/04/3008- $26.00 © 20698
tivistic laser light with a homogeneous plasma, the
strength of the axial magnetic field is proportional to
the square of the laser field amplitude. More detailed
investigations [16, 17] showed that the strength of the
axial magnetic field in an initially homogeneous
plasma irradiated by a low-energy radiation flux is pro-
portional to the fourth power of the laser field ampli-
tude, so that, in [14, 15], the axial magnetic field was
greatly overestimated. The strength of the axial mag-
netic field is proportional to the squared amplitude of a
low-intensity laser field only when the density distribu-
tion of the plasma electrons in a plane transverse to the
propagation direction of the laser radiation is nonuni-
form. In [8, 9], it was shown that this is indeed the case
for a circularly polarized electromagnetic wave of con-
stant amplitude. As was already mentioned, the data on
the axial magnetic field strength at relativistic laser
intensities are also contradictory. In [13, 25], it was pre-
dicted that the magnetic field strength should increase
linearly with the laser field amplitude. A logarithmic
dependence of the strength of the axial magnetic field
on the laser intensity was predicted in [15]. However,
most authors [14, 18–20, 24] have arrived at the conclu-
sion that the magnetic field strength should saturate at
relativistic amplitudes of the laser field. In [13, 22],
along with the conventional mechanism for the excita-
tion of magnetic fields under IFE conditions (which is
associated with the generation of an azimuthal current
by a circularly polarized electromagnetic wave),
another possible mechanism was discussed: the gener-
ation of axial magnetic fields by the betatron oscilla-
tions of fast electrons in a plasma channel. A strongly
nonlinear regime of the excitation of the axial magnetic
field during the self-focusing and channeling of a circu-
larly polarized long relativistic laser pulse in a plasma
was investigated numerically by Kim et al. [24]. In
[25], Zhu et al. applied the kinetic model developed in
004 MAIK “Nauka/Interperiodica”
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their earlier work [26] to explain the experimental
results of Najmudin et al. [13] and also discussed the
influence of suprathermal electrons on the strength of
the axial magnetic field.

The present paper is devoted to an analytic study of
the excitation of quasistatic magnetic fields by a circu-
larly polarized laser pulse in a plasma channel with a
radially nonuniform electron density distribution. The
analysis that follows is based on the relativistic hydro-
dynamic equations for a cold plasma. The main objec-
tive of the paper is to generalize the results obtained in
[9] in studying a circularly polarized electromagnetic
wave of constant amplitude to the case of an arbitrary
dependence of the laser field amplitude on the spatial
coordinates. It is shown that, when the radial nonuni-
formity of the electron density and the finite spatial
dimensions of a laser pulse are taken into account, cir-
cular rotation of the plane of polarization of the laser
radiation gives rise to a nonlinear azimuthal current and
generates the radial and axial magnetic field compo-
nents, which, in a weakly relativistic approximation,
are proportional to the second power of the laser field
amplitude. This result differs radically from the one
obtained for the interaction of a circularly polarized
laser pulse with an initially homogeneous plasma, in
which case the strength of the magnetic fields is propor-
tional to the fourth power of the laser field amplitude
[16, 17]. Another objective of the present paper is to
examine in detail how the distribution of the magnetic
field components over the plasma channel depends on
the spatial dimensions and intensity of the plasma pulse
and on the channel width. The spatial structures of the
azimuthal current and axial magnetic field are investi-
gated as functions of the plasma channel width for long
laser pulses of moderate intensity. It is shown that a
long laser pulse propagating in a wide plasma channel
whose width considerably exceeds the plasma wave-
length gives rise to two annular current layers, in which
the currents flow in opposite directions. In this case, the
axial magnetic field is analogous to that produced by
two long coaxial solenoids: it is maximum at the chan-
nel axis, falls off to zero with distance from the axis,
and then reverses its direction. For a moderate-intensity
long laser pulse propagating in a narrow plasma chan-
nel whose width is less than the plasma wavelength, the
axial magnetic field is maximum at the channel axis and
decreases to zero away from the axis, but does not
reverse its direction. In these circumstances, only one
annular current layer arises in the plasma channel and
the magnetic field is similar to that produced by a long
solenoid. It is found that, when the finite length of the
laser pulse is taken into account, the magnetic field
acquires additional (radial and azimuthal) components.
For a moderate-intensity laser pulse with spatial dimen-
sions greater than the plasma wavelength, the condition
is derived under which the radial and axial magnetic
field components associated with the circular rotation
of the plane of polarization of the laser radiation sub-
stantially exceed the azimuthal magnetic field compo-
PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004
nent—the only one excited by a linearly polarized laser
pulse. Under this condition, the spatial distribution of
the magnetic field is investigated and the pattern of the
magnetic field lines is outlined. It is shown that the spa-
tial distribution of the magnetic field is then similar to
that produced by a solenoid of finite length and that the
laser pulse itself resembles a magnetic dipole traveling
at the speed of light. The propagation of a relativistic
laser pulse with large spatial dimensions in a wide
plasma channel is investigated. It is shown that, for a
relativistically strong radiation, the radial and axial
magnetic fields are linearly proportional to the laser
field amplitude and occur on spatial scales that exceed

the laser pulse dimensions by a factor of .

1. BASIC EQUATIONS

We consider a plasma channel in which the electron
density Ne(r) depends only on the radial coordinate r =

 and assume that a circularly polarized laser
pulse propagates along the channel axis (the z axis).
The electric field of the pulse has the form

(1.1)

Here, ω0 and k0 are the laser carrier frequency and laser
wavenumber, respectively; E0(r, ξ) is the laser field
amplitude, which is assumed to vary slowly with time

(on the time scale ) and space (on the spatial scale

); ξ = z – Vgt is the longitudinal coordinate in a
frame of reference comoving with the pulse; Vg =
c2k0/ω0 is the laser pulse group velocity; c is the speed
of light; ex , ey, and ez are unit vectors along the axes of
a Cartesian coordinate system; and the quantity λ,
which characterizes the rotation of the plane of polar-
ization of the laser pulse, takes on the values λ = ±1,
corresponding to the left-hand (λ = 1) and right-hand
(λ = –1) polarized laser radiation. That the electric field
of the laser pulse has a component along the z axis
stems from the fact that laser radiation is a transverse
electromagnetic field.

In order to investigate the generation of quasistatic
magnetic fields by laser field (1.1) in a plasma channel,
we turn to the following relativistic hydrodynamic
equation for the averaged (over high-frequency laser
oscillations) electron momentum p(r, t) in a cold
plasma (see, e.g., [14, 16]):

(1.2)
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We also use Maxwell’s equations for the quasistatic
electric and magnetic fields, E(r, t) and B(r, t):

(1.3)

(1.4)

, (1.5)

where e and me are the charge and mass of an electron.
Equations (1.2)–(1.5) are written in the linear approxi-
mation in slowly varying quantities. In these equations,
the influence of the laser pulse is taken into account
through the relativistic factor γ, which, for circularly
polarized laser field (1.1), has the form

(1.6)

and also through the nonlinear current density jE =
e〈δNL · VL〉 , which contains the averaged (over the high-
frequency laser oscillations) product of the rapidly
varying electron velocity VL and the high-frequency
electron density variation δNL. Using the continuity
equation

and the equation for the electron momentum pL =
γmeVL in the laser field,

we obtain the following expressions for the rapidly
varying perturbations of the electron density and elec-
tron velocity in an underdense plasma, ω0 @ ωp(r):

where ωp(r) =  is the local plasma fre-

quency.

— E× 1
c
--- ∂

∂t
-----B,–=

— B× 1
c
--- ∂

∂t
-----E

4πe
mecγ
------------Ne r( )p

4π
c

------ jE,+ +=

— p
e
c
--B+× 0=

γ 1
e

2
E0

2
r ξ,( )

me
2ω0

2
c

2
------------------------+ ,=

∂
∂t
-----δNL — Ne r( )VL( )⋅+ 0=

∂
∂t
-----pL eEL,=

δNL r t,( )
eE0 r ξ,( )

2meω0
2

---------------------- iω0t– ik0z+( )exp=

× ∂
∂x
------ iλ ∂

∂y
-----+ 

  Ne r( )
γ

-------------
 
 
 

c.Ò.,+

VL r t,( ) ie
2meω0γ
------------------- iω0t– ik0z+( )exp=

× ex iλey

iez

k0
------ ∂

∂x
------ iλ ∂

∂y
-----+ 

 + +
 
 
 

E0 r ξ,( ) c.Ò.,+

4πe
2
Ne r( )

me

--------------------------
Using these formulas, we find that the nonlinear cur-
rent density jE = jEeϕ has only the azimuthal component
jE. Under the condition ω0 @ ωp(r), this component sat-
isfies the relationship

(1.7)

where eϕ is a unit vector in the azimuthal direction. This
relationship implies that the nonlinear current density
jE is directly related to the circular rotation of the plane
of polarization, so that it vanishes for a linearly polar-
ized (λ = 0) laser pulse. Relationship (1.7) is a general-
ization of the corresponding relationship obtained in
[9] (in studying a circularly polarized constant-ampli-
tude electromagnetic wave) to the case of an arbitrary
dependence of the electric field amplitude E0(r, ξ) on
the spatial coordinates.

Eliminating the electric and magnetic fields in Eqs.
(1.2)–(1.5), we reduce them to a single equation that
describes slow time variations of the electron momen-
tum:

(1.8)

where kp(r) =  is the local plasma wavenumber.

If Eq. (1.8) is solved, then the quasistatic electric and
magnetic fields generated by a laser pulse in a plasma
channel can be calculated from relationships (1.2) and
(1.5). Note that, when intense laser light irradiates a
plasma, it gives rise to low-frequency electron density
perturbations δNe(r, t), which are described by the
equation

. (1.9)

In deriving expression (1.7) for the nonlinear current, as
well as in writing Eqs. (1.4) and (1.8), the density per-
turbations were assumed to be small and, accordingly,
were ignored. This assumption corresponds to a linear
approximation in the slowly varying quantities and is
valid under the condition δNe ! Ne(r). In expression
(1.6) for the relativistic factor, the contribution of the
slow electron motion is also ignored, which is valid

under the condition  @ p2, where pE = eE0L/ω0 is the
momentum of an electron in the laser field.

In accordance with formulas (1.6) and (1.7),
Eq. (1.8) implies that the electron momentum has three
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nonzero components, pr, pz, and pϕ, which are described
by the equations

(1.10)

(1.11)

. (1.12)

In deriving Eqs. (1.10) and (1.12), the group velocity of
the laser pulse was assumed to be equal to the speed of
light. This assumption is justified in view of the above
condition ω0 @ ωp(r), which indicates that the plasma
density is low.

According to formula (1.5), the radial and longitudi-
nal components of the electron momentum, pr and pz,
give rise to the azimuthal component of the magnetic
field:

(1.13)

while the electron momentum component pϕ is respon-
sible for the generation of the radial and axial magnetic
field components, Br and Bz:

(1.14)

(1.15)

From Eqs. (1.10)–(1.12) and relationships (1.6),
(1.7) and (1.13)–(1.15), it follows that a linearly polar-
ized laser pulse (λ = 0) excites only the azimuthal mag-
netic field Bϕ in a plasma channel. The magnetic field
excited by a circularly polarized laser pulse (λ = ±1) has
three nonzero components, Br, Bz, and Bϕ, two of
which—the radial (Br) and axial (Bz) components—are
completely governed by the circular rotation of the
plane of polarization of the laser radiation.

In what follows, we will consider the propagation of
a laser pulse in a plasma channel with a parabolic elec-
tron density profile,

(1.16)
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where Rch is the channel radius and N0e is the electron
density at the channel axis. We assume that the pulse is
Gaussian in shape,

(1.17)

where E0L is the maximum amplitude of the electric
field of the laser radiation and RL and L are the radius of
the pulse and its length. A laser pulse that has a moder-
ate intensity such that the electron oscillatory velocity
VE = eE0L/(meω0) in the laser field is much lower than
the speed of light, VE ! c, and whose power does not
exceed the critical power required for self-focusing,

(1.18)

can be consistent with the plasma channel under the
condition

(1.19)

where kp0 = kp (r = 0) is the plasma wavenumber at the
channel axis. In this case, the transverse diffractive
spreading of the laser pulse is prevented by the focusing
effect of the plasma channel, and the propagating pulse
keeps its radius unchanged [27–29].

2. SPATIAL DISTRIBUTION OF THE MAGNETIC 
FIELD EXCITED BY A MODERATE-INTENSITY 
LONG LASER PULSE IN A PLASMA CHANNEL

Let a moderate-intensity (VE ! c) laser pulse with a
low power satisfying condition (1.18) and with a great
length (kp0L  ∞) propagate under consistency con-
dition (1.19) in a plasma channel with an electron den-
sity profile in the form of (1.16). In this case, according
to relationships (1.7) and (1.10)–(1.15), the pulse gives
rise only to the azimuthal electron momentum compo-
nent pϕ and to the axial magnetic field Bz, which, to sec-
ond order in the laser field amplitude, is described by
the equation

(2.1)

where E0(r) = (r, ξ) = E0Lexp .

Note that, according to Eq. (2.1), it is only for a
channel with a radially nonuniform electron density
distribution that the magnetic field strength is propor-
tional to the squared amplitude of the electric field of
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the laser pulse. For a spatially homogeneous plasma
channel, the strength of the laser-generated quasistatic
magnetic field is proportional to the fourth power of the
laser field amplitude [16, 17].

Equation (2.1) can be readily solved in the two lim-
iting cases: a wide laser pulse (kp0RL @ 1) and a narrow
laser pulse (kp0RL ! 1). For a wide pulse (kp0RL @ 1),
the second term on the left-hand side of Eq. (2.1) is
small and the radial profile of the magnetic field in the
plasma channel is described by the expression

. (2.2)

This expression agrees with the corresponding expres-
sion obtained in [9] in studying the excitation of the
axial magnetic field component by a circularly polar-
ized constant-amplitude electromagnetic wave in a
radially inhomogeneous plasma.

We substitute formula (1.16) for the electron density
profile in the plasma channel into expression (2.2) and
take into account the radial dependence E0(r) of the
laser field amplitude. As a result, we arrive at the fol-
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Fig. 1. Spatial profiles of the normalized magnetic field B =

Bz , normalized current density J =

jϕ , normalized laser intensity I =

, and normalized electron density N = Ne(r)/N0e

along the dimensionless transverse coordinate x = r/RL for a
circularly polarized long (kp0L  ∞) laser pulse propa-
gating in a wide plasma channel (Rch = 3RL).
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lowing explicit expression for the spatial structure of
the magnetic field:

. (2.3)

Expression (2.3) was derived using consistency condi-
tion (1.9), which, for a wide laser pulse (kp0RL @ 1)
leads to the inequality Rch @ RL. This radial profile of
the magnetic field is governed by the total quasistatic
azimuthal current with the density

. (2.4)

The expression for this current density follows from
Eq. (1.12) and relationship (1.7). In the nonrelativistic
limit (VE ! c), and under the condition kp0RL @ 1, it has
the form

. (2.5)

Expression (2.5) describes the total azimuthal current
excited by a wide laser pulse in a plasma channel. This
current turns out to be substantially lower than nonlin-
ear current (1.7). The reason lies in the partial neutral-
ization of the nonlinear current jE and the current

, which is carried by the slow electrons. In

fact, in the zeroth approximation, Eq. (1.12) in which
the terms with small radial derivatives are ignored

yields jE +  = 0. This relationship corre-

sponds to the condition for the total current to vanish,
jϕ = 0. It is only in the first approximation that taking
small radial derivatives into account in Eq. (1.12) leads
to expression (2.5), in which case the total azimuthal

current density is estimated by jϕ ≅   ! jE.

With allowance for the pulse shape and electron
density profile in the plasma channel, we obtain from
formula (2.5) the radial dependence of the current den-
sity:

. (2.6)

Radial profiles of the axial magnetic field (2.3) and the
total azimuthal current density (2.6) in a wide plasma
channel are shown in Fig. 1. The magnetic field is stron-
gest at the channel axis r = 0. As r increases, the mag-
netic field strength decreases. At r = RL, the magnetic
field vanishes and, at r > RL, it points in the opposite
direction. This magnetic field structure in a plasma
channel is governed by the onset of two annular current

Bz

2λecE0L
2

meω0
3
Rch

2
--------------------- 1 r

2

RL
2

------–
 
 
  r

2

RL
2

------–
 
 
 

exp–=

jϕ jE

eNe r( )
meγ

---------------- pϕ+=

jϕ
λe

3

2me
2ω0

3
----------------- ∂

∂r
-----1

r
--- ∂

∂r
----- E0

2
r( ) r

kp
2

r( )
------------- ∂

∂r
-----Ne r( ) 

 =

eNe r( )
me

---------------- pϕ

eNe r( )
me

---------------- pϕ

jE

kp0
2

RL
2

--------------

jϕ
4λe

3
N0eE0L

2

me
2ω0

3
kp0

2
Rch

2
------------------------------ r

RL
2

------ 2 r
2

RL
2

------–
 
 
  r

2

RL
2

------–
 
 
 

exp–=
PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004



EXCITATION OF MAGNETIC FIELDS 703
layers, in which the currents flow in opposite direc-
tions, and is similar to the field structure produced by
two long coaxial solenoids. Since the current in the
inner layer is stronger, it determines the direction and
strength of the magnetic field in the axial region. The
effect of the outer layer is less significant because of the
lower current density. The larger the distance from the
axis, the weaker the effect of the inner current layer.
(This situation is similar to that with a solenoid, outside
of which the magnetic field is weak.) At large distances
from the axis, the direction of the magnetic field and its
strength are governed by the outer layer, in which the
current density is relatively low and the current flows in
the direction opposite to that of the current in the inner
layer. As a result, the magnetic field far from the axis of
the plasma channel reverses its direction and is weaker
than that in the axial region.

For a narrow laser pulse (kp0RL ! 1), we obtain from
Eq. (2.1) the relationship

(2.7)

Using this relationship and taking into account the
radial dependence of the laser field amplitude E0(r) and
electron density profile (1.16), we can determine the
spatial distribution of the magnetic field in the plasma
channel:

. (2.8)

The expression for the total azimuthal current that
excites the magnetic field (2.8) in a narrow plasma
channel follows from Eq. (1.12) in the nonrelativistic
approximation under the condition kp0RL ! 1. In this
case, we find that the nonlinear current is considerably
higher than the current carried by the slow electrons,

jϕ ≅  jE @ Ne(r)pϕ, and the radial dependence of the

current density jϕ has the form

. (2.9)

Radial profiles of the magnetic field (2.8) and the azi-
muthal current density (2.9) in a narrow plasma channel
are shown in Fig. 2. The magnetic field is maximum at
the channel axis and its strength decreases in the radial
direction on the characteristic radial scale RL, which is
much larger than the channel radius, RL @ Rch. How-
ever, unlike the case of a wide plasma channel, the mag-
netic field does not reverse its direction. Such a distri-
bution of the magnetic field results from the presence of
only one annular current layer in the plasma channel
and is analogous to the magnetic field distribution in a
long solenoid.
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For an electromagnetic wave of constant amplitude
(RL  ∞), and for an arbitrary radial profile of the
electron plasma density, Eq. (2.7) is also easy to inte-
grate. Having done this, we obtain the following
expression for the axial magnetic field:

(2.10)

which, in the nonrelativistic limit, coincides with the
corresponding expression derived in [9].

Note that, for a long nonrelativistic laser pulse, the
conditions for the applicability of the linear approxima-
tion in the momentum of the slow electrons,

 @ p2, are satisfied by an ample margin. Note
also that the electron density perturbations δNe ! Ne(r)
can be ignored under the inequality

(2.11)

which follows from relationship (1.9).
Conditions (1.18) and (2.11) impose restrictions on

the plasma density and on the laser field amplitude and
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, and normalized electron density N = Ne(r)/N0e

along the dimensionless transverse coordinate x = r/RL for a
circularly polarized long (kp0L  ∞) laser pulse propa-
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laser power. For a wide laser pulse, condition (2.1) is

satisfied because its right-hand side is large,  @ 1,
and its left-hand side (the ratio of the electron oscilla-
tory velocity to the speed of light) is small. In this case,
inequality (1.18) imposes more stringent restrictions on
the laser pulse parameters. For a narrow pulse, condi-
tion (1.18) is satisfied by an ample margin and the
restrictions on the plasma density and laser field ampli-
tude are replaced by inequality (2.11).

3. SPATIAL DISTRIBUTION OF THE MAGNETIC 
FIELD EXCITED BY A FINITE-LENGTH 
MODERATE-INTENSITY LASER PULSE

IN A PLASMA CHANNEL

Here, we consider the effect of the finite length of
the laser pulse on the magnetic field structure in the
plasma channel. If the length L of the laser pulse is
comparable to its radius RL, then, according to
Eqs. (1.10)–(1.12) and relationships (1.13)–(1.15), the
pulse excites all the three components of the quasistatic
current and magnetic field. Let us investigate the sim-
plest case of the propagation of a moderate-intensity
(VE ! c) laser pulse with a low power satisfying condi-
tion (1.18) and with large spatial dimensions (kp0L @ 1,
kp0RL @ 1) in a wide plasma channel (Rch @ RL) under
the consistency condition. In this case, to second order
in the laser field amplitude, we obtain from Eqs. (1.10)–
(1.12) the following expressions for the momentum
components:

(3.1)

(3.2)

. (3.3)

The spatial distribution of the magnetic field in a wide
plasma channel can be determined from formulas
(1.13)–(1.15) with allowance for relationships (3.1)–
(3.3):

(3.4)

(3.5)

. (3.6)

Note that the magnetic fields excited by a long laser
pulse (kp0L @ 1) do not extend beyond the pulse region.

kp0
2

RL
2

pr
e

2

2meω0
2
ckp

2
r( )

-------------------------------- ∂2

∂r∂ξ
------------E0

2
r ξ,( ),=

pz
e

2

2meω0
2
ckp

2
r( )

-------------------------------- ∂2

∂ξ2
--------E0

2
r ξ,( ),=

pϕ
λe

2
E0

2
r ξ,( )

2meω0
3

---------------------------- 1
Ne r( )
------------- ∂

∂r
-----Ne r( )=

Bϕ
e

2meω0
2

---------------- ∂2

∂ξ2
--------

E0
2

r ξ,( )

kp
2

r( )Ne r( )
--------------------------- ∂

∂r
-----Ne r( )

 
 
 

,–=

Br
λec

2meω0
3

---------------- ∂
∂ξ
------ E0

2
r ξ,( ) 1

Ne r( )
------------- ∂

∂r
-----Ne r( ) 

  ,=

Bz
λec

2meω0
3

----------------1
r
---–

∂
∂r
----- E0

2
r ξ,( ) r

Ne r( )
------------- ∂

∂r
-----Ne r( ) 

 =
In the case of a short pulse (kp0L ≤ 1), this assertion is
valid only for the axial and radial components of the
magnetic field, in accordance with Eq. (1.12) and
expressions (1.14) and (1.15). The azimuthal magnetic
field excited by a short laser pulse in a plasma channel
is nonzero not only in the pulse region but also in the
region of the wake plasma wave behind the pulse; in the
latter region, however, the azimuthal magnetic field
decreases exponentially with distance from the trailing
edge of the pulse [30–32].

Using expression (1.17) for the laser pulse shape
and formula (1.16) for the electron density profile, we
arrive at the following expressions describing the spa-
tial structure of the magnetic fields in a wide plasma
channel:

(3.7)

(3.8)

. (3.9)

Note that, for sufficiently long pulses satisfying the
conditions

(3.10)

where ωp0 = ωp (r = 0) is the plasma frequency at the
channel axis, the magnetic field components Br and Bz,
which are associated with the circular rotation of the
plane of polarization of the laser radiation, substantially
exceed the Bϕ component.

A short laser pulse (kp0L ≤ 1) propagating in a
plasma channel predominantly excites the azimuthal
magnetic field component Bϕ, while the rotation of the
plane of polarization plays a minor role in the excitation
of the magnetic fields. In other words, the structure of
the magnetic fields is the same as in the case of a lin-
early polarized pulse.

Note that the excitation of the axial, radial, and azi-
muthal components of the magnetic field in the interac-
tion of a circularly polarized laser pulse of moderate
intensity with an initially homogeneous plasma was
considered by Gorbunov and Ramazashvili [17]. They
found that the amplitudes of all the magnetic field com-

ponents are proportional to . For the radial and
axial components, this result can be readily understood
in terms of expression (1.7) for the nonlinear current

Bϕ r ξ,( )
2eE0L

2

meω0
2

--------------- 1

kp0
2

L
2

------------- 1 2
ξ2

L
2

-----– 
  r

Rch
2

-------=

× r
2

RL
2

------– ξ2

L
2

-----–
 
 
 

,exp

Br r ξ,( )
2λecE0L

2

meω0
3

--------------------- ξ
L

2
----- r

Rch
2

------- r
2

RL
2

------– ξ2

L
2

-----–
 
 
 

,exp–=

Bz r ξ,( )
2λecE0L

2

meω0
3
Rch

2
--------------------- 1 r

2

RL
2

------–
 
 
  r

2

RL
2

------– ξ2

L
2

-----–
 
 
 

exp–=

ωp0

ω0
--------kp0L @ 1,

RL

L
------,

E0L
4

PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004



EXCITATION OF MAGNETIC FIELDS 705
3

2

1

0

–1

–2

–3 3210–1–2
x

y

Fig. 3. Magnetic field lines in the plane of the dimensionless variables y = r/RL and x = ξ/L in the case where a circularly polarized
laser pulse whose length satisfies conditions (3.10) propagates in a wide plasma channel.
density. In fact, if the electron density is uniform, then
the nonlinear current density (1.7) and the radial and
axial magnetic field components (1.14) and (1.15) are
proportional to the fourth power of the laser field ampli-
tude. This dependence is determined by relativistic
effects and also by the electron density perturbations
due to the ponderomotive force effects of the laser radi-
ation.

Let us now consider the magnetic field excited in a
plasma channel by a long laser pulse whose length sat-
isfies inequalities (3.10). In this case, the generation of
a quasistatic magnetic field is largely governed by the
circular rotation of the plane of polarization of the laser
pulse and the axial and radial magnetic field compo-
nents (3.9) and (3.8) appreciably exceed the azimuthal
component (3.7). In this case, if the width of the laser
pulse is much greater than its length, Br @ L, then the
pulse predominantly generates the radial component of
the magnetic field, Br @ Bz. The magnetic field excited
in a plasma channel by a laser pulse whose width is less
than its length, L @ RL, has a substantial axial compo-
nent, Bz @ Br.

With allowance for expressions (3.5) and (3.6), the
equation for the magnetic field lines,

(3.11)

has the solution

Br

Bz

-----
dr
dz
-----,=
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(3.12)

Taking into account the laser pulse shape and the elec-
tron density profile in the plasma channel, we can
reduce this solution to

(3.13)

where C is an arbitrary constant.
Figure 3 shows the lines of the magnetic field

excited by a laser pulse in a wide plasma channel. The
direction of the magnetic field depends on the laser
polarization. For a right-polarized pulse (λ = 1), the
magnetic field in the axial region points in the positive
direction along the z axis and, at large distances from
the axis, it points in the opposite direction. For a left-
polarized pulse, the magnetic field is oriented in the
opposite manner. The magnetic field strength is deter-
mined by the concentration of the magnetic field lines
and is maximum near the axis of the plasma channel.
This magnetic field structure is governed by the azi-
muthal current, whose density jϕ is described by the
expression

(3.14)
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which derives from formulas (2.4), (1.7), and (1.17)
and Eq. (1.12) and differs from expression (2.6) in that
it contains the finite length of the laser pulse (in the
direction along the z axis).

Figure 4 shows contour lines jϕ = const of the quasi-
static current density for a laser pulse propagating in a
wide plasma channel. Near the channel axis, the density
of the azimuthal current is high and the current itself
flows in a counterclockwise direction. As the distance
from the axis increases, the current decreases to zero
and reverses its direction. The decisive role in the rever-
sal of the magnetic field direction is played by the finite
length of the laser pulse and the finite longitudinal size
of the region where the azimuthal current flows, rather
than by the presence of the second current layer, in
which the current density is low. In this case, the spatial
distribution of the magnetic field is analogous to that of
the magnetic field of a finite-length solenoid and the
laser pulse itself resembles a magnetic dipole propagat-
ing at the speed of light.

Let us check the conditions for the applicability of
the linear approximation in the slowly varying quanti-
ties to a moderate-intensity laser pulse with large spa-
tial dimensions. Taking into account expressions (1.6),
(1.17), and (3.1)–(3.3), we can see from formula (1.9)
that the electron density perturbations are small, δNe !
Ne(r), under the conditions

. (3.15)

Since the quantities on the right-hand side are large and

the left-hand side is the small ratio  ! 1, these
conditions are satisfied by a large margin. From expres-

sions (3.1)–(3.3) we find that the condition  @ p2,
under which the momentum of the slowly moving elec-
trons can be ignored, also holds. Another condition that
relates the laser pulse parameters and the plasma den-
sity is given by inequality (1.18). For a pulse with large

spatial dimensions (  @ 1), it places a more severe
restriction on the laser radiation intensity than does the
condition that the electron oscillatory velocity be lower
than the speed of light.

4. SPATIAL DISTRIBUTION OF THE MAGNETIC 
FIELD EXCITED BY A RELATIVISTIC LASER 

PULSE IN A PLASMA CHANNEL

Here, we consider the propagation of a relativisti-
cally strong (pE ≥ mec) laser pulse with large spatial
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dimensions (  @ 1,  @ 1) in a wide
plasma channel. In this case, the electron density per-
turbations are small and, by virtue of relationship (1.9),
they can be ignored. From Eqs. (1.10)–(1.12) we then
obtain the following expression for the electron
momentum components

(4.1)

(4.2)

. (4.3)

Taking into account formulas (4.1)–(4.3), from rela-
tionships (1.13)–(1.15) we obtain expressions describ-
ing the spatial distribution of the magnetic field excited
by a relativistic laser pulse in a wide plasma channel:

(4.4)

(4.5)

. (4.6)

In the nonrelativistic limit (pE ! mec), relation-
ships (4.4)–(4.6) give expressions (3.4)–(3.6), which
imply that the magnetic field components are propor-
tional to the squared amplitude of the electric field of
the laser pulse.

We assume that, in the strongly relativistic limit, the
laser pulse is described by Gaussian profile (1.17) with
fixed spatial dimensions. At the same time, it is known
[33] that, for pE @ mec, a laser pulse with an overcritical
power is subject to relativistic self-focusing, enhanced
by the focusing action of the plasma channel. However,
calculations show that, in this case, the transverse
dimensions of a laser pulse are reduced insignificantly.

Thus, for the parameter values  = 4 and

 = 0.1, the radius of the pulse decreases by 25%
as it travels a distance equal to one-half of the Rayleigh
length. Assuming that the path of the laser pulse is
much shorter than the Rayleigh length, taking into
account expression (1.17) for the laser pulse shape,
using the condition Rch @ RL, and adopting the ultrarel-
ativistic limit pE @ mec, we obtain from relationships
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(4.4)–(4.6) expressions describing the spatial distribu-
tion of the magnetic field in a wide plasma channel:

(4.7)

(4.8)

(4.9)

For a laser pulse long enough to satisfy the inequal-
ities

(4.10)

the radial and axial components of the magnetic field
considerably exceed its azimuthal component. In this
case, the excitation of the magnetic field is completely
determined by the rotation of the plane of polarization
of laser radiation and the magnetic field strength is lin-
early proportional to the laser field amplitude.

With allowance for relationships (4.5) and (4.6),
Eq. (3.11) for the magnetic field lines has the solution

(4.11)

For a relativistically strong laser pulse (pE @ mec), this
solution takes the form

(4.12)

where C is an arbitrary constant. The pattern of the lines
of the magnetic field excited by a long relativistic laser
pulse in a wide plasma channel differs insignificantly
from that shown in Fig. 3, which refers to a weakly rel-
ativistic laser pulse. Accordingly, the spatial distribu-
tion of the magnetic fields given by expressions (4.8)
and (4.9) is analogous to that in the case of a moderate-
intensity laser pulse. The only difference is that the
dimensions of the region in which the magnetic field is

localized are somewhat larger (by a factor of ). The
reason for this is that, in the strongly relativistic limit,
the magnetic field strength is proportional to the first
power of the amplitude of the electric field of the laser
pulse.

In the strongly relativistic limit, the plasma density
perturbations are small, δNe ! Ne(r); they can be
ignored under the conditions

(4.13)
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which follow from relationships (1.9), (1.6), and (1.17).
All of the results obtained in this section are valid under
inequalities (4.13), which place restrictions on the laser
pulse intensity: although the pulse can be relativisti-
cally strong (pE @ mec), its intensity should not exceed
the limits imposed by these inequalities.

CONCLUSIONS

In this paper, the generation of a quasistatic mag-
netic field by a circularly polarized laser pulse in a
plasma channel with a parabolic radial electron density
profile has been investigated. It is shown that, in a chan-
nel with a radially nonuniform electron density, circular
rotation of the plane of polarization of moderate-inten-
sity laser radiation leads to the excitation of the radial
and axial magnetic field components, whose strengths
are proportional to the squared amplitude of the electric
field of the laser pulse. The above analysis differs from
the conventional analysis of the inverse Faraday effect
in an inhomogeneous plasma [9] in that it takes into
account not only the excitation of the axial component
of the magnetic field but also the excitation of the radial
magnetic field component due to the finite length of the
laser pulse. The spatial distribution of the magnetic
field has been examined and the pattern of the magnetic
field lines has been outlined for a relativistic laser pulse
with spatial dimensions greater than the plasma wave-
length. It has been pointed out that such a field is anal-
ogous to the magnetic field produced by a finite-length
solenoid. The propagation of a relativistic laser pulse
with large spatial dimensions in a wide plasma channel
has also been considered, and it has been found that the
strength of the radial and axial magnetic fields is pro-
portional to the first power of the laser field amplitude.

Let us now apply formula (4.6) to estimate the
strength of the axial magnetic field generated by a circu-
larly polarized relativistic laser pulse under the experi-
mental conditions of [13]. Note that expression (4.6) is
valid not only for a plasma channel but also for arbi-
trary radial variations of the electron density. In the
experiments of [13], laser pulses with the wavelength
λ0 = 1.054 µm, a duration of about one picosecond
(10−12 s), an intensity of 1019 W/cm2 (in vacuum), and a
focal spot size of about 20 µm (RL = 10 µm) (in vac-
uum) were focused onto a gaseous (helium) target. The
density of the ionization-produced helium plasma was
about 2.8 × 1019 cm–3. The parameters of the plasma
and of laser pulses in those experiments satisfied the
applicability conditions for relationship (4.6), specifi-
cally, the spatial dimensions of strongly relativistic

laser pulses exceeded the plasma wavelength,  @ γ

and  @ γ. Assume first that the electron density
in the plasma column produced during the ionization of
a gaseous target varies only slightly. Then, under the
condition that the plasma density at the peak intensity
of the pulse is essentially uniform, formula (4.6) yields

kp0
2

L
2

kp0
2

RL
2

the following expression for the maximum magnetic
field strength at the pulse axis: Bz(r = 0, ξ = 0) =

λc2E0L/( ). Suppose next that, as a result of self-
focusing, the maximum intensity of the laser radiation
in the gas amounts to 1020 W/cm2 [34] and that, in
accordance with the energy conservation law, the trans-
verse size of the pulse is equal to 3.2 µm. In this case,
the strength of the axial magnetic field is estimated by
≈2.2 MG, which agrees with the experimental value of
(2.6 ± 0.6) MG.

Note that, under the experimental conditions of
[13], the finite duration of a laser pulse can lead to the
generation of weak radial and azimuthal magnetic
fields. However, in [13], nothing was said about the
detection of such fields. According to formula (4.8), the
radial magnetic field is maximum at ξ = L and r = RL: it

is given by the expression Br = 0.184λc2E0L/( )
and is equal to 4.3 kG, which is almost 500 times
weaker than the axial magnetic field. Such a low
strength of the radial magnetic field is attributed to the
fact that laser pulses have a short duration (about one
picosecond) and a long length (L = 300 µm). The azi-
muthal magnetic field is even weaker: according to
expression (4.7), it is as low as about 400 G.

It should be stressed that, in [11–13], the results of
all the experimental measurements were compared
with the theoretical predictions of [15]. It was noted
earlier that, in [15], the dependence of the strength of
the axial magnetic field on the laser field amplitude for
low-energy radiation fluxes was described incorrectly.
In addition, for a relativistically strong laser pulse, for-
mula (12) from [15] implies that, as the radiation inten-
sity increases, the axial magnetic field strength
decreases and vanishes when the laser field amplitude

becomes equal to  = 15.801. From the
physical point of view, however, this result seems to be
rather strange. The source of erroneous results lies in
the fact that, in [15], Eq. (9) for the magnetic field con-
tains not the current associated with the slow electron
motion but rather the so-called magnetization current,
which was found by summing up the magnetic
moments of each electron in a homogeneous plasma
and by calculating the total magnetization vector. This
procedure for determining the plasma magnetization
and magnetization current seems to be incorrect. The
correct procedure is to calculate the magnetic field
strength and plasma magnetization from Maxwell’s
equations, which take into account both the nonlinear
current jE and the current carried by the slowly moving
electrons.

The attempt that was recently made in [25] to
explain the experimental results of [13] cannot be con-
sidered successful. It is only for a plasma electron tem-
perature of about 300 keV that the axial magnetic field
obtained in [25] is relatively close to the magnetic fields
measured experimentally in [13], but such a tempera-
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ture cannot be achieved in ionizing a neutral helium gas
by laser pulses. Moreover, some of the theoretical
results derived in [25] are erroneous. Thus, formulas
(11)–(13) from that paper imply that a circularly polar-
ized relativistic laser pulse excites only the axial and
azimuthal components of the magnetic field in a plasma
and does not excite the radial component. In this case,
however, the magnetic field lines are not closed and the
condition — · B = 0 fails to hold. Formulas (11)–(13) in
[25] also imply that a linearly polarized laser pulse
propagating in a plasma excites not only the azimuthal
component of the magnetic field but also its radial com-
ponent and that, even for an axisymmetric pulse, these
two magnetic field components depend on the azi-
muthal angle, in which case the condition — · B = 0 is
again violated. Yet it is well known [35, 36] that a lin-
early polarized laser pulse propagating in a plasma
excites only the azimuthal magnetic field component
(in particular, in the region of the wake plasma wave
behind its trailing edge).

In the present paper, it has been found that the axial
and radial magnetic fields given by expressions (4.8)
and (4.9) depend linearly on the amplitude of the elec-
tric field of a relativistically strong laser pulse. This lin-
ear dependence is associated with restrictions (4.13),
which are imposed on the radiation intensity in linear
theory (i.e., in the linear approximation in the slowly
varying quantities). For larger laser pulse amplitudes,
the magnetic field strength is likely to saturate, as evi-
denced by the results of numerical calculations of the
axial magnetic field generated during the self-focusing
and channeling of a circularly polarized relativistic
laser pulse [24]. However, this problem goes beyond
the scope of linear theory: it requires solving a very
complicated, strongly nonlinear set of equations with
allowance for cavitation effects.
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Abstract—The production of excited xenon iodides and iodine dimers in the plasma of a longitudinal dc glow
discharge is investigated. The discharge was ignited in iodine vapor and Xe/I2 mixtures at xenon pressures of
P(ïÂ) = 0.1–1.5 kPa and deposited powers of 10–100 W. The current–voltage characteristics of a glow dis-
charge, the plasma emission spectra in the spectral range of 200–650 nm, and the intensities of spectral lines
and molecular bands are studied as functions of the deposited power and the xenon partial pressure in a Xe/I2
mixture. It is found that the discharge plasma emits within the spectral range of 206–343 nm, which includes
the 206-nm resonant line of atomic iodine and the XeI(B–X) 253-nm and I2(B–X) 343-nm molecular bands. The
power deposited in the plasma and the xenon pressure P(ïÂ) are optimized to achieve the maximum UV emis-
sion intensity. The 7-W total UV power emitted from the entire surface of the cylindrical discharge tube is
achieved with an efficiency of ≤5%. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The wide use of high-power sources of spontaneous
UV and VUV emission in microelectronics, ecology,
and medicine have inspired the study and development
of active media for electric-discharge lamps based on
noble gas monohalogenides and halogen dimers [1].
The most simple of these are low-pressure excimer–
halogen lamps pumped by a dc glow discharge [2–5]
operating mainly with mixtures of heavy noble gases
with Cl2 or HCl molecules. However, the lifetime of
such lamps operating in a static-gas mode does not
exceed 100 h per single gas fill [2]. This stems from the
attachment of halogen-containing molecules to the
metal electrodes and the quartz tube wall, which are
significantly heated by a glow discharge at discharge
currents higher than 20–30 mA. Insulating the elec-
trodes from a corrosive chlorine-containing plasma
(e.g., in low-pressure excimer lamps pumped by a bar-
rier discharge) enables one to increase the lifetime of a
sealed-off lamp to 2000 h [6]. The output power and
efficiency of a lamp operating on the XeBr 283-nm
emission band are 1.5–2 times higher than for lamps
operating on the KrCl 222-nm and XeCl 308-nm emis-
sion bands. This means that it is expedient to use less
corrosive halogens (bromine or iodine) in low-pressure
excimer lamps. The use of such working mixtures also
holds promise for lamps operating with a dc glow dis-
charge; thus, a lifetime of 1000 h was achieved in a
lamp operating on a Xe/I2 (P ≤ 600 Pa) mixture [7]. In
that paper, the main attention was given to the I* emis-
sion at λ = 206 nm. However, conditions for the produc-
tion of XeI(B) and  molecules in a dc glow discharge
and their contribution to the UV emission from a steady
low-density plasma are still poorly studied [8]. These

I2*
1063-780X/04/3008- $26.00 © 20710
problems have been studied in more detail only for the
plasma of a barrier discharge in Xe(Kr)/I2 mixtures at
total pressures of 34–50 kPa [9, 10].

This paper is devoted to studying conditions for the
production of XeI(B) and I2(B) molecules in a steady
low-density electric-discharge plasma.

2. EXPERIMENTAL SETUP

A glow discharge in a Xe/I2 mixture was ignited in
a cylindrical quartz tube with a transparency at λ =
200-nm of no less than 70%. The inner diameter of the
discharge tube was 1.4 cm. The distance between the
cylindrical electrodes made of sheet nickel was 19 cm.
High-purity iodine crystals were placed in a special
socket behind the anode.

The plasma emission was studied using an MDR-2
monochromator and FÉU-106 photomultiplier. The rel-
ative spectral sensitivity of the recording system was
calibrated by the emission from SI 8-200 U and DVS-
25 lamps in the spectral ranges 400–1000 and 200–
400 nm, respectively. A glow discharge was supplied
by a high-voltage dc power source (Jch = 1–50 mA,
Uch ≤ 10 kV). Before puffing xenon, the discharge tube
was pumped down to a residual pressure of 5 Pa. When
the residual pressure exceeded 30–40 Pa, emission
from the 2+ system of molecular nitrogen appeared
within the spectral range of 300–400 nm against the
background of the iodine bands. This was accompanied
by a decrease in the lifetime of the iodine lamp. In
experiments, we used high-purity xenon from the Bal-
ashikha Oxygen Works. The discharge tube was cooled
with a fan, and the temperature of the socket with
iodine crystals was usually close to room temperature.
004 MAIK “Nauka/Interperiodica”



        

PRODUCTION OF XeI(

 

B

 

) AND I

 

2

 

(

 

B

 

) MOLECULES 711

                                                                                                   
At the maximum discharge current, the tube tempera-
ture might exceed the room temperature by 10–15°C;
hence, the pressure of the saturated iodine vapor in the
tube was no higher than 130–170 Pa [11]. The total UV
emission power was measured by the method described
in [12]. Since we used a UFS-5 light filter, only the
emission power in the wavelength range of λ ≤ 400 nm
was determined. This fact should be taken into consid-
eration for an I2 plasma, because it is an intense emis-
sion source in the visible and IR spectral regions.

3. PLASMA EMISSION CHARACTERISTICS
The dc glow discharge in Xe/I2 mixtures was quite

homogeneous only at xenon partial pressures of
P(ïÂ) ≤ 400 Pa and average currents of ≥40–50 mA.
For such mixtures, a decrease in the discharge current
led to the appearance of a bright plasma filament
against the weak blue background emission of a diffuse
discharge. The diameter of the filament decreased from
8–10 to 2–3 mm with decreasing discharge current. As
the xenon partial pressure increased to 1.0–1.5 kPa, the
glow discharge existed in the form of a plasma filament
(whose diameter decreased with xenon partial pressure)
against the background of the weak glow discharge
emission throughout the range of the discharge currents
under study. Such behavior of the discharge corre-
sponds to the regime of dynamic contraction of a glow
discharge. Typical current–voltage characteristics are
shown in Fig. 1. For a noncontracted glow discharge,
the subnormal and normal stages can be distinguished.
For a contracted discharge, the ignition voltage
decreases with increasing P(ïÂ), while the discharge
voltage varies nearly in inverse proportion to the aver-
age current.

The emission spectra from the plasma of a glow dis-
charge in iodine vapor and Xe/I2 mixtures are shown in
Fig. 2. For a discharge in iodine vapor, the spectrum
contains the 206-nm resonant line of atomic iodine and
the system of I2(B–X) vibronic bands within the spectral
range of 320–342 nm. In Xe/I2 mixtures, there is also
the quite intense XeI(B–X) 253-nm band. The emission
intensity from the high-lying (v  = 9, 10) vibrational lev-
els of I2(B) (the 318- to 330-nm band system in Fig. 2a)
decreases because of the vibrational relaxation in colli-
sions with Xe atoms. For a glow discharge in a Xe/I2
mixture at P(Xe) = 266 Pa, the relative emission inten-
sities of , XeI*, and atomic iodine, measured with
allowance for the relative spectral sensitivity of the
monochromator and photomultiplier, were found to be
1.0/0.3/0.7, respectively. Hence, due to the large width
of the molecular bands, the spectral range 230–342 nm
contains more than one-half of the total UV emission
power from the glow discharge plasma.

The most intense spectral lines of iodine and xenon
atoms were observed within the range of 400–600 nm
against the background continuum. The emission inten-
sities of the molecular bands and atomic lines as func-

I2*
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Fig. 1. Current–voltage characteristics of a longitudinal
glow discharge in Xe/I2 mixtures at P(Xe) = (1) 133,
(2) 800, and (3) 1600 Pa.
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Fig. 2. Emission spectra of a glow discharge in (a) Xe/I2
mixture at P(Xe) = 133 Pa and (b) iodine vapor.
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tions of the power deposited in the discharge are shown
in Fig. 3. The increase in the power from 10 to 110 W
resulted in a nearly linear increase in the emission
intensities of iodine and xenon iodide molecules. The
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Fig. 3. Emission intensities of (a) the molecular bands and
(b) the atomic spectral lines vs. power deposited in a glow
discharge in a Xe/I2 mixture at P(Xe) = 133 Pa: (1) XeI(B–X)
253 nm, (2) I2(B–X) 342 nm, (3) II 206 nm, and (4) XeI(7p–6s)
476.1 nm.

Maximum emission intensities of the spectral lines and
bands versus the xenon partial pressure and the power depos-
ited in a discharge in Xe/I2 mixtures

λ, nm Power, W
Xenon pressure, Pa

0.13 0.26 0.80 1.60

206 15 10.3 38.3 16.4 10.2

I* 30 20.5 72.9 25.2 12.6

45 31.6 100 32.5 –

253 15 0.32 2.09 0.58 0.32

XeI (B–X) 30 0.48 2.86 0.55 0.18

45 0.58 0.54 0.48 –

342 15 0.18 0.23 0.1 0.022

I2 (B–X) 30 0.29 0.37 0.09 0.018

45 0.37 0.48 0.07 –

×100
emission intensity of the 253-nm band was approxi-
mately twice as high as the intensity of the 342-nm
band. The emission intensities of the spectral lines of
atomic iodine and xenon also depended almost linearly
on the glow discharge power. Therefore, the excitation
of atoms in the plasma under study is most probably
related to direct electron impacts and (for iodine atoms)
to the reaction of the dissociative excitation of iodine
molecules by electrons.

The results of the optimization of the emission
intensity of the I2(B–X) and XeI(B–X) bands, as well as
the resonant line of atomic iodine, with respect to the
xenon partial pressure and the power deposited in the
discharge are shown in the table.

It can be seen that the most efficient production of
excited molecules takes place in a noncontracted glow
discharge at P(Xe) = 130–270 Pa. A further increase in
P(ïÂ) (to higher than 270 Pa) affects first of all the
emission intensity of the iodine dimer band. The pro-
duction efficiency of XeI* molecules decreases sharply
as P(Xe) decreases from 270 to 130 Pa. At P(Xe) >
130 Pa, the production efficiency of xenon iodide
decreases as the discharge power increases to greater
than 30 W.

The UV power emitted through the sidewall of dis-
charge tube was as high as 6–7 W at an efficiency of
≤5%. The lamp lifetime for a single gas fill was no
shorter than 500 h.

In summary, the study of the production of excited
iodine dimers and xenon iodide in a longitudinal dc
glow discharge have shown that the UV emission spec-
trum from the plasma in the spectral range 230–350 nm
consists of two broad bands with maxima at λ = 342
and 253 nm, the intensities of which exceed the inten-
sity of the II 206-nm emission line. In contrast to exci-
mer–halogen UV–VUV sources operating with Ar(Kr,
Xe)/Cl2 mixtures, in lamps working with iodine vapor,
the resonant line emission of atomic iodine comprises a
significant fraction of the total emission. The optimum
partial pressure of xenon lies in the range 130–270 nm.
For the most uniform stage of a glow discharge (at
P(Xe) ≤ 130 Pa), the emission intensities of the molec-
ular bands and the 206-nm line increase linearly with
the discharge power in the range of 10–130 W without
any tendency to saturation. The maximum UV emission
power of 7 W has been achieved with an efficiency
of ≈5%.
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Abstract—The experimentally observed nonmonotonic dependence of the breakdown delay time on the mag-
netic field strength is analyzed theoretically. Calculations with allowance for both an increase in the electric
field in the avalanche head because of the change in the diffusion coefficients and an apparent increase in the
pressure in the presence of a magnetic field demonstrate that such a dependence is indeed possible. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electron avalanches are initial macroscopic objects
determining the further evolution of breakdown. Their
time behavior [1, 2] in the delayed stage of breakdown
is very difficult to diagnose; this dictates the necessity
of the development of advanced avalanche models. It
has been shown experimentally [3, 4] that, both in the
longitudinal (H||) and transverse (H⊥ ) magnetic fields,
the breakdown delay time τ0, which is primarily deter-
mined by the time during which an avalanche (or ava-
lanches) evolves to the critical size, can be a nonmono-
tonic function of the magnetic field (under the condi-
tions of [3, 4], a local minimum was observed in the
dependence τ0 = f(H). This is difficult to explain in
terms of a single electron avalanche, taking into
account that, in contrast to the classical concept, an ava-
lanche in a strong electric field can split into space
charge bunches [5].

This paper (which is a continuation of papers [2–4])
is aimed at the numerical study of the possibility of the
existence of a nonmonotonic dependence τ0 = f(H) in
the delayed stage of breakdown. The study of this prob-
lem is of fundamental importance from the theoretical
standpoint, as well as for solving the applied problems
of gas insulation. Under experimental conditions such
that the oscillation period of a pulsed magnetic field is
~150 µs and the breakdown lasting ~1 µs is synchro-
nized with the maximum magnetic field, we can
assume that the field H varies only slightly in the course
of breakdown. The time τ0 is determined from the
waveform of the voltage (from the instant at which the
voltage reaches its maximum value to the instant when
it abruptly falls off). Note that both the classical and
state-of-art streamer concepts of the streamer develop-
ment admit the presence of avalanches propagating at a
certain angle to the main direction of the discharge. It is
also well known that, when breakdown develops from
multiple avalanches, as in the cases under consideration
1063-780X/04/3008- $26.00 © 20714
here, the distribution of the field and space charge also
predetermine the possibility of developing such ava-
lanches.

2. RESULTS AND THEIR ANALYSIS

It is well known [1] that τ0 = (1/(α0v0)[ln(JK/J0)],
where J0 is the current of the seed electrons, JK is the
current by the instant at which the voltage sharply falls
off, α0 is the first ionization coefficient, and v 0 is the
drift electron velocity. In the presence of a magnetic
field, we have τH = (1/(αHvH))[ln(JK/J0)]. In terms of
the concept of equivalent pressure [6] (the magnetic
field action is considered to be equivalent to an increase
in the collision frequency), assuming that the ratio JK/J0
is weakly sensitive to variations in H, we obtain τH =
[(1 + k2)/(αHvH)]ln(JK/J0). Here, k = ωτ, ω is the Lar-
mor frequency, and τ is the mean free time of a particle.

Taking into account that α/P = f(E/P), where P is the
gas pressure and E is the external electric field, we have

αH = P0A exp[(–BP )/(E + ∆EH)],
where A and B are constants and ∆EH is the increase in
the electric field in the avalanche head in the presence
of a magnetic field. According to [7], this increase can
be estimated from the relationship rH = r0[(3 + k2)/3(1 +
k2)2]1/2, where rH and r0 are the radii of the avalanche
head in the presence and absence of a magnetic field,
respectively.

From the condition that, irrespective of external
conditions, the electric field in the avalanche head dur-
ing the avalanche–streamer transition must be equal to
the external field (the Mick condition), we have E0 =
EH, where EH and E0 are the electric fields in the ava-
lanche head in the presence and absence of a magnetic
field, respectively. The increase in the avalanche field in
the longitudinal magnetic field H|| is then ∆EH =

1 k
2

+( ) 1 k
2

+( )
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Table

Gas
H, kOe

0     12 25 50 75 100 150
α/P (cm torr)–1

Nitrogen α0/P 0.0598 0.0594 0.0544 0.0484 0.0444 0.0413 0.0260

αH/P 0.0598 0.0605 0.0623 0.0586 0.0519 0.0460 0.0365

Argon α0/P 0.0621 0.0610 0.0601 0.0448 0.0310 0.0131 0.0095

αH/P 0.0621 0.0632 0.0664 0.0587 0.0514 0.0429 0.0320

Helium α0/P 0.0634 0.0603 0.0511 0.0275 0.0112 0.0038 –

αH/P 0.0634 0.0712 0.0646 0.0470 0.0412 0.0372 –
eexp(αl)/{4πε0 [(3 + k2)/3(1 + k2)2]}, because at H = 0

we have ∆E0 = eexp(αl)/4πε0 . Here, l is the distance
covered by the avalanche (for rough estimates, this dis-
tance can be assumed to be equal to the interelectrode
distance d), e is the electron charge, and ε0 is a constant.

The table presents the results of calculations of α0/P
and αH/P as functions of E/P with account taken of the
changes ∆E0 and ∆EH, respectively. The values of A and
B are given in the literature. For example, for He under
these conditions, we find A ≈ 3 and B ≈ 26, while for
nitrogen we have A ≈ 8.8 and B ≈ 275. The quantities A
and B have dimensions of (cm torr)–1 and V/(cm torr),
respectively. The values of the dimensionless quantity k
are also known.

In the table, the conditions for all of the gases are
identical: P = 760 torr, the interelectrode distance is
0.3 cm, and the overvoltage is 10%. The voltages are
specified as follows: 11.9 kV for nitrogen, 3.2 kV for
argon, and 1.4 kV for helium.

Our calculations have shown that, when ∆EH is sub-
stituted for ∆E0, a region where α reaches its maximum
appears in the dependence (α/P)H = f(E/P)H, which
agrees qualitatively with the experimental results [2–4].
In the case of a multiple avalanche, the interpretation of
the problem can be ambiguous, whereas in the case of
a single avalanche, the development of breakdown
seems to be more monotonic and no minima occur in
the dependence τ0 = f(H||). Let us estimate the effi-
ciency with which the magnetic field affects the break-
down. For nitrogen at P = 760 torr, d = 0.1 cm, E/P =
50 V/(cm torr), and H = 100 kOe, we have ∆P ≈ 10%.
Under the same conditions, but for H = 200 kOe, we
have ∆P ≈ 40%. For argon at d = 0.2 cm, P = 760 torr,
E/P = 13 V/(cm torr), and H = 100 kOe, we have ∆P ≈
20%, whereas for H = 200 kOe, we have ∆P ≈ 55%. For
helium under similar conditions, the values of ∆P are
equal to 30 and 75%, respectively. Therefore, under

r0
2

r0
2

PLASMA PHYSICS REPORTS      Vol. 30      No. 8      2004
identical conditions, the magnetic field more efficiently
influences breakdowns in helium, which is quite a nat-
ural result.

It is evident that, in the longitudinal field H||, the
time τ0 should be shorter because of the increase in the
space charge density in an avalanche, whereas in the
transverse field H⊥ , this time should be longer because
the electron heating slows down. The nonmonotonic
effect of the magnetic field on τ0 may be attributed to a
competition of the factors ∆E, ∆EH, and ∆P at certain
strengths of the magnetic field H.

The main result of this study is that the calculated
data correlate satisfactorily with the experimental
dependences, demonstrating a nonmonotonic effect of
the magnetic field on the breakdown delay time. This
effect is explained by the presence of avalanches prop-
agating in different directions. The effect is more pro-
nounced during the avalanche–streamer transition.
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