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Abstract—The statistical theory of dynamical diffraction of Mössbauer radiation providing the account for the
mutual influence of coherent and elastic diffusion scattering has been considered. The sources of elastic and
inelastic diffuse scattering for a hematite crystal are analyzed. The theoretical results are compared with the res-
onance nuclear scattering data obtained in the experiments performed at the Photon Factory in Tsukuba, Japan.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Soon after the discovery of the Mössbauer effect in
1958, the process of diffraction of Mössbauer radiation
from crystals with resonance nuclei was studied in
detail for both ideal single crystals [1, 2] and polycrys-
tals [3]. The coherence of Mössbauer radiation as well
as the interference of the resonance and electron scat-
tering were established. It was also shown that the
effects of dynamical diffraction (the anomalous trans-
mission in the Laue diffraction, the total external reflec-
tion in the Bragg diffraction, etc.) should be studied on
perfect crystals purposefully enriched with a resonance
isotope. Thus, the suppression of inelastic channels of
nuclear reactions was studied on almost perfect iso-
tope-enriched lead [4], iron [5], FeBO3 [6], and hema-
tite [7] crystals. 

Recently, the widespread use of powerful synchro-
tron-radiation (SR) sources considerably increased the
interest in studying time-delayed signals of nuclear
radiation. The short (0.2 ns) SR pulses separated by
considerable time intervals (1–2 ns) provide the unique
possibility of separating the “fast” (elastic) electron and
the “slow” (resonance) nuclear Mössbauer-radiation
(MR) response of the crystal. 

Moreover, the polarization characteristics and the
high SR intensity allow unique experiments to be con-
ducted for pure nuclear scattering (yttrium-iron garnets
[8], iron borate [9], hematite [10]) and interference of
electron and nuclear scattering in hematite [11]. At
present, the theory and practice of the use of coherent
nucleus scattering are studied quite well [12–16]. 

Because of a very narrow width of nuclear levels,
the MR experiments require the use of specific crys-
tals–monochromators with a high energy resolution
necessary for diminishing the contribution from elec-
tron scattering and the special protection from vibra-
tions. The high MR sensitivity to the magnetic structure
and various dynamical excitations (phonons, structural
1063-7745/02/4701- $22.00 © 0001
phase transitions, diffusion, and relaxation) and its high
intensity open new possibilities for conducting experi-
ments on the diffuse scattering of Mössbauer radiation
and require the construction of a corresponding theory. 

An important notion for further consideration is
coherence (in application to both the electromagnetic
field of the incident beam and the field inside the crys-
tal) and an ensemble of atoms in the crystal. Because of
the high monochromaticity of Mössbauer radiation, the
coherence length l of the train of electromagnetic waves
generated by an individual nucleus in the emission of a
quantum is determined by the lifetime of the excited
state (τ ≈ Γ–1) and, for Co57, is equal in vacuum to l =
cτ = 30 m, i.e., has a value considerably exceeding the
coherence length for the X-ray radiation from conven-
tional sources (Γx ≈ 1 eV) with the same wavelength
(lx = 0.3 µm). The synchrotron radiation used in exper-
iments has an intermediate coherence length deter-
mined mainly by the energy resolution of the mono-
chromator used. 

In crystals, the radiation is scattered by a set of
atoms forming a coherent ensemble if all the nuclei
have the same scattering amplitude and are arranged
strictly periodically. However, in actual fact, it is not the
case and one has to single out a certain coherently scat-
tering volume ξ, which can be either larger or smaller
than the coherent volume of the electromagnetic field
(~Γc). In the final analysis, Γc is determined by the
dielectric constant of the medium [17], which makes its
calculation under diffraction conditions even more
complicated. Any deviations from the strict periodicity
in the arrangement of identical atoms give rise to dif-
fuse scattering with the intensity also dependent on the
volume in which it occurs. 

Moreover, in Bragg (reflection) diffraction, the key
parameter can be the penetration depth of the field into
the crystal, which coincides with the extinction length
Λ if the radiation is incident at the Bragg angle,
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whereas far from this angle, it coincides with the

absorption length . 

It should be emphasized that the region in which dif-
fuse waves are formed can also be finite. Thus, in the
case of thermal diffuse scattering (TDS), the largest
contribution comes from acoustic phonons having the
maximum wavelength in the given crystal, so that, in
this case, the whole crystal can be considered as a scat-
tering volume. However, one of the most attractive con-
cepts of the microscopic theory of phase transitions
attribute these transitions to instability of some optical
oscillations, whose excitation frequency decreases
anomalously with the approach to the transitions tem-
perature ω0 = |T – Tc|1/2 [18]. The condensation of “soft”
phonons makes the lattice rearrangement energetically
favorable and, in this case, the volume of the restruc-

tured region increases proportionally to . 

In the final analysis, the relationship of the distances
at which the coherent and incoherent waves are formed
determines the contribution of the coherent and diffuse
scattering into the total diffraction intensity. 

At present, attempts are being made to construct a
consistent statistical theory of dynamical diffraction
which would describe the interaction between the
coherently and diffusely scattered radiations. It was
established that the corrections for diffuse scattering in
the analysis of the structure and properties of real crys-
tals can considerably distort the ideal diffraction pattern
by imposing a certain basic limit on the accuracy of the
diffraction experiment. A high coherence of Mössbauer
radiation would allow one to approach this limit,
although this would require that very complicated
experiments be conducted. 

Below, we make an attempt to construct a theory of
statistical diffraction of Mössbauer radiation for a well-
known hematite crystal such that it would consistently
take into account incoherent elastic scattering (i.e.,
scattering occurring without a change in the frequency
of the scattered radiation) and its effect on the coherent
component. We also analyze inelastic-scattering chan-
nels (phonons, magnons, and critical fluctuations),
which can make a considerable contribution to the
intensity of diffuse scattering. 

We deliberately limit our consideration to a hematite
crystal, because it allows us to compare our results with
the data of the well-known diffraction experiments
made on imperfect crystals with a complex magnetic
structure. 

SOURCES OF DIFFUSE SCATTERING 

Consider possible sources of diffuse scattering of
Mössbauer radiation. Incoherent (diffuse) scattering
can be defined as a process in which some information
about the phase shift during scattering from individual
nuclei is lost. 

µa
1–

ω0
1–
C

Considering MR diffraction, one has to distinguish
between elastic and inelastic scattering. In elastic scat-
tering, a quantum is scattered in a random way, but its
energy remains constant and it can experience reso-
nance scattering and participate in dynamical diffrac-
tion. In inelastic scattering, e.g., by phonons, a quantum
acquires an additional energy (\ωs ≈ 10–3 eV), which
excludes its participation in dynamical scattering. This
consideration of the incoherent part of the diffraction
field of Mössbauer radiation drastically differs from
consideration in the case of X-rays [19]. 

Elastic Incoherent Processes

Spin incoherence. A nucleus of an isotope in the
ground state possesses a total angular momentum J =
\Ig, where Ig is the nuclear spin m = gµnIg. The projec-
tion of the magnetic moment onto the chosen quantiza-
tion axis can have 2Ig + 1 values 

(1)

Since the nuclear magneton 

(2)

is a thousand times less than the Bohr magneton µB, the
magnetic order in the system of nuclear spins can be
attained either in strong magnetic fields or at very low
temperatures (0.1 K). Since the Mössbauer line is very
narrow even in a relatively weak field of the atomic
moment, only the nuclei with definite moment projec-
tions can experience nuclear resonance. Statistically,
the number of such nuclei equals 

(3)

Thus, for the Fe57 isotope (Ig = 1/2), only a half of
the nuclei experience resonance coherent scattering. 

Isotopic incoherence. The natural content of the
resonance isotope is low (2.2%). Similar to binary solid
solutions [20], the replacement of Fe56 by Fe57 in a
hematite crystal results in small displacements of
neighboring atoms and changes the energy of their
interaction leaving the symmetry of the crystal lattice
unchanged. 

The isotope-enriched crystals grown from melt [21]
with the c-axis being normal to their surface had the
thickness T = 0.4 mm and the surface area 5 × 10 mm2.
The detailed X-ray study of the crystals [21, 22]
showed that they were slightly bent (with the curvature
radius 8–64 m) and had growth sectors (domains). 

The statistically complete description of any system
suggests the knowledge of all the moments of the polar-
izability distribution. We restrict our consideration only

mI Ig– Ig– 1 … Ig., ,+,=

µn
e"

mnc
---------=

wm 1/Z( ) βmIM–( )exp 1/(2Ig 1+ ),≈=

Z βmIM–( ), β 1–
exp

mI

∑ kT .= =
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to the first two moments—the average polarizability
and its dispersion for “magnetic reflections” with the
diffraction vector g = (h, h, h), where h = 2n + 1. The
polarizability of the hematite crystal per unit cell with
the arbitrarily distributed isotopes is determined by the
expression (see Appendix 1) 

(4)

where xk = Rj + rjk , Rj is the position of the jth unit cell
in the crystal, N is the total number of unit cells, and rjk

is the position of the kth atom in the jth unit cell (k = 1–
4). The σ-polarized SR radiation, scattering is deter-
mined by the following four transitions: 

(5)

The operators  are defined in such a way that 

(6)

if the kth position in the jth unit cell is occupied by the
isotope Fe57 and the projection of the moment mI is
fixed, and  = 0, if the position is occupied by Fe56 or
if the nucleus has a different projection of the magnetic
moment. 

Averaging over the ensemble of all the atoms partic-
ipating in diffraction yields the following expression
for polarizability per unit cell: 

. 

where  is the magnetic susceptibility of the crystal
consisting only of resonance isotopes, whereas the
summation is performed over the set of diffraction vec-
tors g of the crystal. 

By definition, polarizability dispersion of the crystal
is 

(8)

where Gkk' is the conditional probability to encounter
one Fe57 atom in the position k' if the other Fe57 atom is
in the positions k. Assuming that the isotopes are uni-
formly distributed over the crystal (Gkk' = 0), we can
conclude that the polarizability dispersion is almost N
times lower than the squared average polarizability for

χ̂ kα kβ–( ) 1/N( ) i kα kβ–( )xk( )ĉ jkχαβ
k

,exp
j 1=

N

∑=

χαβ
k

 = g0 Pαβ
k

Mk–( )C1
2

mg ∆ml,( )/ ∆El( i+ ).exp
l 1=

4

∑
ĉ jk

ĉ jk 1,=

ĉ jk

χ kα kβ–( )〈 〉 c/2( ) χ10
57δ kα kβ– g–( ),

g

∑=

χ10
57

Ω kα kβ–( ) χ̂ kα kβ–( )χ̂ kα kβ–( )〈 〉=

– χ̂ kα kβ–( )〈 〉 χ̂ kα kβ–( )〈 〉

=  1/N
2( ) ig xk xk'–( )(exp

k' 1=

N

∑
k 1=

N

∑
× χαβ

k χαβ
k' δk k', c/2( ) 1 c/2–( )( c/2( ) 1 δk k',–( )Gkk' ),+

(7)
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the reflection with the diffraction vector g: 

(9)

The latter expression provides no information on the
crystal structure because, when deriving this expres-
sion, we took into account only the spin and isotopic
incoherencies. 

Even if one considers not the total number N of the
unit cells but only the number of the unit cells which are
illuminated by the SR source with the cross section
0.9 × 4 mm2 [21], Nr = 1.6 × 1019, Equations (7) and (9)
cannot give the equivalent contributions to the intensity.
With the deviation of the incident radiation from the
Bragg angle, the contribution from the coherent scatter-
ing rapidly decreases, which reverses the situation. For
the hypothetical formation of clusters of Fe57 atoms, the
contribution to diffuse scattering caused by isotopic
incoherence can considerably increase. 

Obviously, the polarizability dispersion (9) attains
its maximum in the most isotope-enriched specimens
(c = 1). 

Formation of magnetic domains. The small width
of the Mössbauer line determines its high sensitivity to
fluctuations of the magnetic moment of atoms, M =
M0 + δM. If δM is of an order of 1T, 

(10)

the atom becomes “invisible” for a coherent beam
tuned to the energy E = \ω – µnM0. 

Figure 1 shows the rhombohedral unit cell of a
hematite crystal, the position of the magnetic moments
of atoms in the hexagonal magnetic structure above and
below the temperature of the Morin transition (TM =
253 K) [23], and the diffraction geometry. At room tem-
perature, the magnetic moments in the neighboring lay-
ers (e.g., MB and MA) are not exactly collinear but are
rotated by a small angle (10–4 rad) with respect to the
ideal position M0 in the plane normal to the c-axis (the
unit vector n), 

(11)

which changes the magnetic symmetry of the system
(the d-constant). 

The experimental data [21, 22] relate to the case
where the domain structure of the specimen is
destroyed by a 1 kG magnetic field applied either par-
allel to the diffraction plane H|| (along the c-axis) or
normally to it, H⊥ . In the field H||, the peak intensity of
the (777) reflection was higher by a factor of 1.5 than
the intensity in the field H⊥ . 

In terms of crystallography, the three directions of
the atomic magnetic moment (µFe(4.3 K) = 4.9µB) in
the hexagonal structure in Fig. 1b are equivalent, and

Ω kα kβ–( ) = 1/N( ) χ57 kα kβ–( )( )
2

c/2( ) 1 c/2–( ).

δM
Γ
µn

----- 10
7–
,≈=

m 0( ) d n MB,[ ] ,=
2
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Fig. 1. (a) Unit cell of a rhombohedral α-Fe2O3 crystal and (b, c) positions of magnetic moments in the hexagonal structure at the
temperature (b) above and (c) below TN [23]. 
the crystal has three domains of approximately equal
volumes. Now, direct the z-axis along the c-axis and the
axes lying in the (111) plane in such a way that 

(12)

And, apply the magnetic field H to an antiferromag-
netic crystal. The magnetic fields acting onto the mag-
netic moments in the neighboring layers, 

(13)

rotate the moments in such a way that 

(14)

Simultaneously, the average moment also slightly
changes [24]. As a result, the magnetic moment of the

M1 = µFe 0 1 0, ,( ), M2 3,  = µFe 1/2 3/2± 0, ,( ).

HB A, H NBAMA B,–=

MB A, HB A,,[ ] 0.=
C

atoms in the external field is rotated so that 

(15)

where N is the number of the magnetic moments per
unit volume. If the magnetic field is normal to the (111)
plane, the atoms in all the three domains possess the
same energy 

(16)

and, thus, preserve their volumes unchanged. 

If the magnetic field lies in the (111) plane, the
nuclei inside one of the domains have the minimum
Zeeman energy, and, therefore, this domain has a larger

M M0 1/NB A,( ) H
M0

M0
2

-------- M0H( )– 
  ,+=

NBA 6kT N/ Ng
2µB

2
S S 1+( )[ ] ,=

δEi MiH|| 0,= =
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volume than the other two 

(17)

At a certain value of Hc, almost all the magnetic
moments rotate normally to the applied field. Neverthe-
less, even in this case, some part of the crystal volume
Vd  cannot participate in the nuclear resonance because
of thermal vibrations 

(18)

With a further increase in the magnetic-field inten-
sity, the moments are aligned along the external field in
accordance with formula (15). 

Taking into account the random nature of the small-
domain distribution with respect to the incident beam,
one can state that the larger part of the crystal scatters
the Mössbauer radiation coherently, 

(19)

whereas its smaller part contributes to the polarizability
dispersion 

(20)

It should also be remarked that an increase in the
peak intensity of the magnetic (777) reflection by a fac-
tor of 1.5 because of rotation of the external field from
H⊥  to H|| observed in [21, 22] can be associated with an
increase in the number of dynamical reflections. If all
the magnetic domains in the H⊥  field have the same
Zeeman energy and only one region of the total external
reflection, then, in the case of H|| field, some additional
reflections appear at other values of the resonance
energy. 

Inelastic Incoherent Processes 

Scattering with participation of phonons. As has
already been indicated, if an X-ray quantum absorbs
one or several phonons with an energy of 10–3 eV, it
continues participating in diffraction (the linewidth is
of the order of 1 eV), whereas the Mössbauer quantum
upon such an absorption event cannot be scattered by
nuclei any more. Therefore, the thermal diffuse scatter-
ing can be considered within the Born approximation. 

If the field of the diffracted wave inside the crystal
can be considered as a sum of plane (Bloch) waves (see
Appendix 2), 

(21)

W1 βM1H⊥–( )/Z .exp=

ρ Vd/V( ) β Mi M1–( )H⊥–( ).exp
i 2 3,=

∑≈=

χ kα kβ–( )〈 〉 1 ρ–( ) χg
57δ kα kβ– g–( ),

g

∑=

Ωd ρχid kα kβ–( )( )
2
.=

Eg z( ) igr( ) ag
i

iqiz( ),exp
i 1=

4

∑exp=
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the cross section of scattering of one of the Bloch waves
with the pulse p within the unit solid angle into the
plane wave with the pulse p' has the form 

(22)

With due regard for crystal-lattice vibrations, the
component of the crystal polarizability corresponding
to diffuse scattering has the form [25, 26] (see Appen-
dix 2) 

(23)

where \ω is the photon energy, Es0 is the resonance
energy, En is the energy of the nth intermediate phonon
state, f is the state of the phonon system upon one scat-
tering event, and F is a certain constant. 

Scattering of Mössbauer radiation occurs in two
stages—absorption of an electromagnetic quantum
with the wave vector k0 and emission of the quantum kg

after a certain time interval (τ = \/Γ) considerably
exceeding the period of the characteristic phonon vibra-
tions. Therefore, averaging over the states n and f is per-
formed separately and yields a factor in the form of the
sum of the Lamb–Mössbauer factors (Mj = M(k0) +
M(kg)) for the coherent scattering 

(24)

and not the Debye–Waller factor W(k0 – kg) as in the
case of X-ray diffraction. Limiting the consideration to
the single-phonon processes, we can reduce Eq. (23) to
the form 

(25)

Write the operator of the phonon displacement in
the secondary-quantization formalism, 

(26)

where N is the number of the unit cells, and eα(q) and
ωα(q) are the unit vector of the displacement and the
frequency of the phonon with the wave vector q of the
branch α, respectively. Hereafter, the complex-conju-
gated values are denoted by c.c. 

dσ
dΩ
-------

ω2

4π2
"

2
-------------- χ p p'–( ) 2

.=

F
ik0u j( )exp( )0n ikgu j–( )exp( )nf

"ω Es0– En– iΓ /2+
----------------------------------------------------------------------------,

nf

∑

M k0 g,( )–( )exp ik0 g, u j( )exp( )00,=

F
ik0u j( )exp( )0n M kg( )–( )exp

"ω Es0– En– iΓ /2+
----------------------------------------------------------------------

n

∑


+
M k0( )–( ) ikgu j–( )exp( )0 fexp

"ω Es0– iΓ /2+
-------------------------------------------------------------------------

f

∑ 



.

u j

=  "
2MNωα q( )
----------------------------Re âeα q( ) iqr j ωα q( )–( )exp( ),

α q,
∑
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Then the matrix element in (22) takes the form [27] 

(27)

The major contribution to the last expression comes
from acoustic phonons (ωα = cαq), which results in a
certain divergence of the cross section of thermal dif-
fuse scattering q–2 (or even q–4) with an approach to the
Bragg angle. 

Spin fluctuations. As is shown in Appendix 1, the
polarization coefficient in the expression for crystal
polarizability in the scattering of the wave with mag-
netic-field direction hα into the wave with hβ has the
form 

(28)

where uj is the direction of the external field (atomic
moment) at the jth nucleus. Obviously, under the effect
of thermal fluctuations, the atomic moments preserve
their directions only on average. These fluctuations can
conveniently be described using the spin-wave (mag-
non) formalism. Within the framework of the harmonic
approximation, the Hamiltonian of an antiferromag-
netic crystal is the sum of the contributions from two
magnetic sublattices 

(29)

where  and aq are the creation and the annihilation
operators of a spin wave, respectively. For a hematite
crystal in an external magnetic field H|| (T < TN), the
spectrum of elementary magnetic excitations is deter-
mined by the expressions [28]: 

(30)

(31)

where Ha is the field of crystallographic anisotropy (2–
3 kOe), Hex is the field of the antiferromagnetic
exchange between the sublattices (300 kOe), HD is the
Dzyaloshinski field, and Hn and ωph are provided by
weak interactions between electrons and nuclear spins
and phonons. It should be emphasized that even at
H = 0 and T = 0, the violation of the axial symmetry of
the magnetic subsystem results in a gap in the energy
spectrum. In this case, the correlation function of a spin
[29] relating the projections of spins at the sites j and

χ p p'–( ) ±
2

F
2

M j–( )exp≈

kT 2π( )3

2MN
-------------------- 1

ωα
2 q( )

--------------- 1 1

ωα
2 q( )

---------------+ 
 

g

∑
α q,
∑×

× p p'–( )eα
2δ p p'– qα g+ +( ).

Pαβ
j hαu j( ) hβu j( ),=

* "ωqaq
†
aq Ωqbq

†
bq,+

q

∑=

aq
†

ωq
2 ω2

H( ) v
2
q

2
, Ωq

2
+ Ω2

H( ) v
2
q

2
,+= =

ω2
H( ) g

2
H H HD+( ) 2HexHn+( ) gHexωph,+=

Ω2
H( ) g

2
HaHex ω2

H( ),+=
C

j + R is given by the following expression (the spec-
trally disordered system): 

(32)

According to the Bose statistics, the average
squared amplitude at high temperatures is 

(33)

Substituting expressions (30), (31), and (33) into
definition (32) and performing integration over q, we
arrive at 

(34)

where ξ is the dimension of the region of spin ordering 

(35)

with each of the branches of spin excitations (analogues
of the branches of the optical and acoustic vibrations)
having its own region of ordering. The numerical eval-
uation of the parameter ξ1 yields the value of 100–200
a ≈ 500–1000 Å. 

Incoherent scattering from an ensemble of spin
waves determines the following angular dependence of
diffuse scattering in the vicinity of the reflection (k' =
kg + q): 

(36)

This dependence is essentially different from the
dependence of q–2 for scattering from phonons and can
give rise to the appearance of the diffuse-scattering
“pedestal” considered below. 

It should be indicated that similar effects can also be
caused by the existence of nuclear spin waves [30],
whose collective motion arises due to hyperfine interac-
tions of nuclear and electron spins (the Sulla–Naka-
mura indirect exchange interaction). 

Fluctuations in the Vicinity
of a Phase Transition

With an approach to the phase-transition tempera-
ture, the spin system starts forming some ordered
regions, whose further increase gives rise to the forma-
tion of a new long-range order. In general, diffuse scat-
tering from these regions in the vicinity of the phase
transition is elastic, although some phonons also take
part in the formation of clusters of ordered spins. 

∆ = S j
z
S j R+

z〈 〉 S0
2

– 2S0/N( ) agaq
†〈 〉 iqR( ).exp

q

∑–≈

agaq
†〈 〉 kT /"ωq.=

∆
2S0

N"
-------- kT

ω2
H( ) v

2
q

2
+

---------------------------------- iqR( )exp
q

∑=

∼ c
R
--- R/ξ–( ),exp

ξ1 ω H( )/v , ξ2 Ω H( )/v ,= =

Ispin
dif

q( ) I 0( ) 1

1 ξ i
2
q

2
+

--------------------,
i 1 2,=

∑=
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Formally, we are interested in the spin correlation at
the neighboring sites. In the quasichemical approxima-
tion (the generalized Curie–Weiss theory of the average
field) [29, 31], the correlation length in the vicinity of
the transition can be obtained in a form similar to (34),
i.e., 

(37)

where M is the average value of the magnetic moment
(equal to zero at T > TC and to M0 at T = 0) and a is the
lattice constant. For a hematite crystal at room temper-
ature, T – TN ≈ 40 K. The latter expression yields the
correlation length equal to several interatomic dis-
tances. 

The number of articles dedicated to order–disorder
transition in the vicinity of the phase transition temper-
ature TC in magnetic crystals is among the largest in
physics of condensed state. The appropriately chosen
theoretical model and such methods as the cluster tech-
nique (the Bethe method [32]), the graph theory (Cay-
ley’s trees [33]), and the renorm-group methods [34],
etc.) allow the extraction of valuable information about
disorder in the spin system. The experiments on diffuse
scattering of Mössbauer radiation can also provide the
determination of such data. 

DYNAMICAL DIFFRACTION OF MÖSSBAUER 
RADIATION 

Let the z-axis be directed along the surface normal
(the c-axis) of the hematite crystal whose direction
coincides with the diffraction vector g = (hhh). The
incident radiation passed through a crystal–monochro-
mator can be approximated by a plane wave deviating
for δθ from the exact Bragg angle. 

In the general case of Mössbauer-radiation diffrac-
tion, the σ- and π-polarizations strongly interact
[13−15]. However, in some occasions, this definition is
quite profitable because the SR radiation is strongly
polarized and, therefore, the use of the appropriate dif-
fraction geometry (see Appendix 1) allows one to
assume that the radiation is scattered without the
change of its polarization. 

Under the conditions of dynamical diffraction, the
wave field with a known (σ) polarization can be repre-
sented as the sum 

(38)

where E0, g and k0, g are the amplitude and the wave vec-
tor of the transmitted and diffracted waves, respec-
tively. 

Usually, the wave field in crystals with large-scale
distortions is considered in terms of the Takagi–Taupin

ξ
TC

3 TC T /}–( )
-------------------------------- 

  1/2

a, } 1 M/M0( )2
,–= =

E r( ) E0 r( ) ik0r( )exp Eg r( ) ikgr( ),exp+=
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equations [35–37]: 

(39)

For symmetric diffraction, we have 

(40)

where χ0, g are the Fourier-components of polarizabil-
ity, γ0, g are the cosines of the angles formed by the inner
normal and the vector k0, and λ is the wavelength of the
incident radiation. 

Coherent wave field. With due regard for incoher-
ent processes, the amplitude of each wave equals the
sum of the coherent and diffuse components 

(41)

The same is true for crystal polarizability, 

(42)

It should be emphasized that in MR diffraction, the
parameter σ00 also becomes a fluctuating quantity.
However, we shall consider it to be a constant quantity
because the diffraction scattering is determined mainly
by the nondiagonal components σ01, 10; moreover, these
effects were considered in detail in the description of
the transmission of electromagnetic waves in a disor-
dered media—the Earth’s atmosphere [38]. 

Once the Takagi–Taupin equations [35, 36] are aver-
aged with due regard for two moments of the polariz-
ability distribution (the average value and dispersion
Ω), we arrive at the following system of equations for
the determination of coherent amplitudes: 

(43)

where 

(44)

The rigorous solution of system (43) with the use of
the Laplace transform is considered in Appendix 2. The
analysis of this solution shows that the wave field inside

dE0

dz
--------- iσ̂00E0 iσ̂01Eg,+=

dEg

dz
--------- i σ̂11 η+( )E0 iσ̂10Eg.+=

σ̂αβ
πχ̂ kα kβ–( )

λγ0
-----------------------------, η

2π 2θ0( )sin
λγg

---------------------------- θ θ0–( ),= =

E0 g, E0 g,
c δE0 g, .+=

σ̂ij σij δσij.+=

iσ00E0
c

– dE0
c
/dz+ iσ01Eg

c βσ2
L0 z( ),–=

i∆11Eg
c

– dEg
c
/dz+ iσ10E0

c βσ2
Lg z( ),–=

L0 z( ) z' i∆11 z z'–( )( )E0
c

z'( ),expd

0

z

∫=

Lg z( ) z' iσ00 z z'–( )–( )Eg
c

z'( ),expd

0

z

∫=

β π2

λγ0( )2σ2
---------------------Ω, σ2

 = σ10σ01, ∆11 η σ11.+= =
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the crystal consists of four Bloch waves with different
refractive and absorption indices [see Eqs. (21)]. 

Two strong Bloch waves can be described with the
use of the solution for an ideal crystal with the renor-
malized value of the crystal polarizability 

(45)

whereas two new Bloch waves are characterized by
polarizability vanishing at β  0, where 

(46)

The dependence of the refractive index for a split
line can be analyzed only by numerical methods,
because the crystal polarizability (both real and imagi-
nary parts) is strongly dependent on the quantum
energy. The calculation shows that with an increase of
the parameter β, the peak value of the refractive index
decreases, whereas the width of the rocking curve

increases proportionally to  (Fig. 2). 

Generally speaking, the effect of disorder in the
arrangement of isotopes on the coherent wave field is
relatively weak, but it manifests itself in the diffraction-
peak structure. 

Figure 3 shows the refractive index |R |2 as a function
of the angular deviation η and the energy of an incident
photon for the symmetric nuclear (777) reflection of
hematite. 

At present, the experiments on the scattering of
Mössbauer radiation are performed at a number of syn-
chrotron-radiation sources. Because of the time struc-
ture of the synchrotron radiation, the record of the dif-
fraction signal within the interval between the synchro-
tron-radiation pulses allows one to separate the
instantaneous electron response (the Rayleigh scatter-
ing) and the nuclear radiation which is generated within
microseconds. One such method was being developed
for a number of years for the NE3 station at the Accu-
mulation Ring (AR) of the Photon Factory, Tsukuba,

σ2 α2σ
2
, α2

β 0→
lim 1,=

α2 1, 1/2( ) 1 2β 1 2β+( )2
4β2

–±+{ } .=

α2

–0.5 0 0.5 1.0

2
l1.2

β

1

2
1

Fig. 2. Parameters (1) l1 and (2) l2 as functions of polariz-
ability dispersion β. 
C

(Japan) [10, 20, 21, 39, 40]. At a Mössbauer station, an
important role is played by X-ray optics used to reduce
the contribution of electron scattering to the total
recorded signal. In particular, the AR source is
equipped with an asymmetric channel-cut monochro-
mator with asymmetric (12, 2, 2) and (4, 2, 2) reflec-
tions, which can reduce the beam energy-width down to
6.7 meV. 

However, even this energy resolution is insufficient
for excitation of one of the hyperfine (Zeeman) nuclear
transitions in the available magnetic fields. Thus, at the
synchrotron-radiation pulse duration τ = 0.2 ns [10, 21,
22], all the split levels are equally excited (the beam
energy-width is ∆E = \/2τ ~ 10–5 eV). 

Figure 4 shows the experimental rocking curves cor-
responding to the nuclear magnetic (777) reflection for
natural and isotope-enriched (c = 0.022 and c = 0.95,
respectively) hematite crystals [10, 21, 22, 39, 40]. It is
seen that diffraction from the crystal with low isotope
concentration is characterized by a broad halo caused
by diffuse scattering and a rather low peak value. The
rocking-curve width is almost the same as for diffrac-
tion from the isotope-enriched crystals. This indicates
that the specimen experiences strong diffuse scattering
whose intensity increases proportionally to coherent-
scattering intensity, whereas the angular characteristics
change only slightly. Indeed, in the absence of diffuse
scattering, both the width and the height of the peak
should increase proportionally to the isotope concentra-
tion (the average structure factor). 

It should be emphasized that the total scattering
intensity of both diffuse and coherent scattering for the
isotope-enriched crystal (c = 0.95) dramatically
decreases with the deviation from the Bragg condition
by about 10 angular seconds (the inflection point). 

For comparison, Figure 5 shows the calculated
curves of the coherent-intensity distribution obtained
by the conventional method (Fig. 5a) and with the invo-
cation of the statistical theory [Fig. 5b, (777) reflection,
β = 0.1 in arbitrary units]. The curves were obtained by
integrating the intensity over the energy in the vicinity
of the resonance at the crystal thickness T = 10λ/g0. It
is seen that the statistical calculation yields a broader
rocking curve with a certain characteristic anomaly in
the center. 

Diffuse wave field. The experimentally observed
quantities are the intensities of the diffracted, Ig, and
transmitted, I0, waves which both have coherent and
diffuse components. The equations for determining the
coherent component have already been derived. Those
for determining the intensities of diffuse waves can be
obtained as the differences between the averaged and
coherent waves: 

(47)
In〈 〉 In

c
In

d
, δEn*δEn〈 〉+ In〈 〉 In

c
,–= =

In
c

En*〈 〉 En〈 〉 , n 0 g.,= =
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Fig. 3. The calculated reflection coefficient (coherent part) as a function of the angular deviation η and the energy of an incident
photon; (777) reflection. 
Using initial Takagi–Taupin Eqs. (39) and their
averaged variant, Eqs. (43), one can also derive differ-
ential equations for the total and the coherent intensi-
ties, 

(48)

Omitting here the transformations made, we per-
form averaging, and subtract the coherent component
from the total system of equations to arrive at the fol-
lowing diffuse wave intensities: 

(49)

d In〈 〉
dz

------------- Re En*
dEn

dz
--------- 

  ,=

dIn
c

dz
-------- Re En

c*dEn
c

dz
--------- 

  .=

dI0
d

dz
-------- Re iσ00I0

d
iσ01 δE0* z( )δEg z( )〈 〉+

=

+ βσ2
L0 z( )E0

c* z( )
 ,

dIg
d

dz
-------- Re i∆11Ig

d
iσ10 δEg* z( )δE0 z( )〈 〉+

=

β+ σ2
Lg z( ) Eg* z( ) 

 .
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In (49), we omitted both terms proportional to the odd
products of the fluctuation component of polarizabili-
ties and wave fields, 

(50)

and also the terms proportional to 

(51)

Using the well-known approximation from [35, 36],
we can represent the contribution from the averaged

δE0 g,* σ01 10,〈 〉 E0 g,
c δσ01 10,〈 〉 0,= =

δE0 g,* δσ01 10,〈 〉 δ E0 g,
c δE0 g,

c δσ01 10,〈 〉 0.= =

2000

0
–40 –30 –20 –10 0 10 20 30

1

2
I777

exp

∆θ, arcsec

Fig. 4. Experimental rocking curves for the nuclear (777)
reflection for (1) the crystal with the natural isotope concen-
tration (c = 0.022) and (2) the isotope-enriched (c = 0.95)
crystal; magnification ×40. 
2
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product of the fluctuations of the diffracted and trans-
mitted waves in the form 

(52)

In fact, the latter expressions introduce into consid-
eration the correlation length of the electromagnetic
field under conditions of the dynamical diffraction, Γc. 

Re iσ01 δE0* z( )δEg z( )〈 〉( )

≈ 2 Re σ2( )Γ cI0
d

– 2 σ01
2Γ cIg

d
,+

Re iσ10 δEg* z( )δE0 z( )〈 〉( )

≈ 2 Re σ2( )Γ cIg
d

– 2 σ10
2Γ cI0

d
.+

20

15

10

5

(a)

Ic
g

(b)

30

20

10

0
–20 –10 0 10 20

∆θ, arcsec

Fig. 5. Calculated rocking curves for the coherent intensity;
(777) reflection: (a) calculation by the conventional method,
(b) calculation by the statistical theory (β = 0.1); dashed line
is obtained at the isotope concentration c = 0.022 (magnifi-
cation ×40), solid line is obtained at the isotope concentra-
tion c = 0.95. 
C

It should be remembered that these expressions are
not rigorous. 

In accordance with the fluctuation–dissipative theo-
rem, the fluctuations of the vector potential (the calibra-
tion A0 = φ = 0) are determined by the following expres-
sion [17] 

(53)

where (ω, k) is the Fourier-component of the
delayed Green’s function determined from the system
of equations in which the statistical characteristics of
the medium are expressed via the dielectric constant
eil(ω, r), 

(54)

Thus, the problem of determining the statistical
characteristics of the field is self-consistent. For
dynamical diffraction, one of such self-consistent solu-
tions was obtained in [41]. In the first approximation, it
reduces to (52). For simplicity, we limit ourselves to the
consideration of only this approximation. 

Finally, the system of equations for determining the
intensities of diffuse waves takes the form 

(55)

where the following notation was introduced: 

(56)

The correlation length of the electromagnetic field
Γc determines the volume of the region inside which the
field fluctuations are correlated. Under diffraction con-
ditions, it is natural to assume [36] that Γc has the same
order of magnitude as the extinction length, because
any deviation of the transmitted beam would also
affect, sooner or later, the diffracted beam and vice
versa. 

As follows from the above consideration, this
parameter is introduced phenomenologically rather
than calculated, because it is related to both coherence
and wave characteristics of the incident radiation and to
the parameters of the scattering medium. 

Ai r1( )A j r2( )〈 〉 ω k,( ) = coth
"ω
kT
------- 

  Im Dij
R ω k,( )( ),–

Dij
R

∂2

∂xi∂xl

--------------- δil∆–
ω2

c
2

------eil ω r,( )–
 
 
 

Dlk
R ω r r', ,( )

=  4π"δikδ r r'–( ).–

dI0
d

dz
-------- µ0I0

d
– ϕ0gIg

d
G0 z( ),+ +=

dIg
d

dz
-------- µgIg

d
– ϕg0I0

d
Gg z( ),+ +=

G0 g, z( ) Re βσ2
L0 g, z( )E0 g,

c* z( )( ),=

µ0 g, 2 Im σ11 00,( ) 2Re σ2( )Γ c,+=

ϕg0 0g, 2 σ10 01,
2Γ c.=
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In Bragg diffraction, the mutual scattering of trans-
mitted and diffracted diffuse waves can be ignored
[42−44]. Then 

(57)

The physical sense of Eq. (57) reduces to the competi-
tion of the two processes—transformation of coherent
waves into diffuse ones at the expense of the fluctua-
tions in polarizability (Gg(z)), which act as a source,
and absorption, which either efficiently removes the
radiation quanta from the diffuse beam or, at µg < 0,
adds the quanta to it. 

The intensity of the diffuse component at the
entrance surface of the crystal is obtained from (57) in
the form 

(58)

The analytical expressions for the coherent ampli-
tudes of transmitted and diffracted waves are derived in
Appendix 2. Substituting these expressions into (58),
we have 

(59)

where 

(60)

Ignoring rapidly oscillating terms, we can represent
the diffuse-wave intensity in the form 

(61)

where qk is the wave vector of the Bloch wave. The
intensities of elastically scattered diffuse waves are
directly proportional to the incident-wave intensity. In
the absence of the polarizability dispersion (β = 0), it
tends to zero. 

Figure 6 shows the calculated rocking curves of the
diffuse (Fig. 6a) and the diffuse and coherent (Fig. 6b)
components in the vicinity of the (777) reflection for
crystals with different isotope concentrations, c = 0.022
(dashed line) and c = 0.95 (solid line) at the polarizabil-

dIg
d

dz
-------- µgIg

d
– Gg z( ).+=

Ig
d

0( ) z' µgz'( )Gg z'( ).expd

0

T

∫–=

Gg z( ) Re ρg
kj

i q j qk*–{ } z( )exp[
j 1=

4

∑
k 1=

4

∑



=

∑ – i q j σ00*+{ } z( )exp




,

ρg
kj βσ2

E0
2

0( )
ξk*ξ j

i σ00 qk*–( )
--------------------------ψg

j ψg
k*.=

Ig
d

Re ρg
kj 1

i q j qk*–( ) µg+
-----------------------------------

j 1=

4

∑
k 1=

4

∑



=

–
1

i q j σ00*+( ) µg+
------------------------------------- 

 ,
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ity dispersion β equal 0.1. The curves were obtained by
integrating intensities over the energy in the vicinity of
the resonance at the crystal thickness T = 10λ/g0. The
allowance for polarizability dispersion reduced the
coherent component and led to the formation of the dif-
fuse-scattering pedestal. 

We used the correlation-length value 

The remaining parameters are indicated in Appen-
dix 1. Obviously, the diffuse-scattering plateau on the

Γ c 0.1
λγ0

πg0
--------.=

0.5
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0.1

0
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Fig. 6. Calculated rocking curves for hematite crystal; (777)
reflection: (a) diffuse scattering, (b) diffuse and coherent
scattering; dashed line is obtained at the isotope concentra-
tion c = 0.022 (magnification ×40) and solid line, at the iso-
tope concentration c = 0.95. 

∆θ, arcsec
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experimental curve in Fig. 4 can be explained by the
dramatic increase of the elastic diffuse scattering under
certain deviations from the Bragg angle. 

How to explain this anomaly in diffuse scattering?
Consider again initial differential equation (57). Under
conditions of the dynamical diffraction, the coherent
electromagnetic field penetrates the crystal for a depth
of the order of the extinction length. With the deviation
from the Bragg angle, the penetration depth first

Table 1.  Polarization factors in scattering occurring without
the change of polarization 

σσ transition ∆m = 0 ∆m = ±1

2P00 D2 D2

2P11 D2 –D2

2P10 –D2 cos2θ – D2 ± iM uzsin2θ

2P01 –D2 cos2θ – D2 7 iM uzsin2θ

Table 2.  Polarization factors in scattering occurring with the
change of polarization 

σπ transition ∆m = 0 ∆m = ±1

2P00 –Duz –Duz ± i δMsinθ
2P11 Duz –Duz ± i sinθδM

2P10 Duz Duz ± i sinθδM

2P01 –Duz –Duz 7 i δMsinθ

Note: θ is the Bragg angle; D = cosθδM. 

Table 3.  Polarizability of crystal as a function of the reflec-
tion index 

Reflection Φ00, 11 Φ10, 01

h is even 1 cos(6πuh) cos2θ
h is odd 1 7i cos(6πuh) sin2θ

Table 4.  Parameters of hyperfine levels 

me, mg ∆m δE, neV (1/2, 1, 3/2; mg, ∆ml)

3/2, 1/2 1 419

1/2, –1/2 1 –63

–1/2, 1/2 –1 63

–3/2, –1/2 –1 419

Note: The energy width of the levels is Γ0 = 17 meV.

C1
2

3
12
------

1
12
------

1
12
------

3
12
------
C

increases, then becomes equal to 

(62)

and, finally, exceeds the crystal depth at which diffuse

waves can be formed L = . Such an increase in the
volume within which diffuse waves are formed
increases, in turn, the diffuse intensity. However, with
the deviation from the Bragg angle, the intensity of the
coherent wave drastically decreases, thus compensat-
ing the pronounced anomaly in diffuse scattering with
an increase in the deviation from the Bragg condition. 

In this experiment, we did not separate the elasti-
cally and the inelastically diffusely scattered waves, so
that it was impossible to distinguish between the
described increase in the peak of elastic diffuse scatter-
ing and scattering by spin waves or fluctuations in the
vicinity of the phase transition. 

As the calculations show, the change in the correla-
tion length Γc results in the change of the height and the
shift of the diffuse peak, which can be used for deter-
mining Γc. 

CONCLUSION 

In recent decades, the interest in diffuse scattering of
X-rays has considerably increased. The development of
the experimental diffraction methods has stimulated the
widespread use of powerful sources of synchrotron
radiation, whose high intensity provided the detection
of weak diffuse signals. Considerable progress has also
been achieved in the development of the statistical the-
ory of diffraction in crystals with low defect concentra-
tions and its experimental verification. 

The study of the characteristics of diffuse scattering
of the Mössbauer radiation under the conditions of
dynamical diffraction provides valuable information
about the sources of both elastic (domain structure, iso-
topic and spin incoherence order fluctuation) and
inelastic (phonon and spin waves) diffusely scattered
radiation. 

The time structure of the synchrotron-radiation
beams allows the experimental study of the decay of
nuclear excitations in crystals and separation of the
delayed nuclear radiation and the fast electron
response. In terms of materials science, one of the
important problems is the separation of the coherent
and diffuse (elastic and inelastic) components [35, 36].
In principle, the elastic and inelastic components can be
separated with the use of a Mössbauer crystal–analyzer
tuned to a certain energy. The separation of the coherent
and elastic diffuse components can be made only by
numerical methods on the basis of a certain concrete
model. The theory developed above allows the consis-
tent analysis of the mutual effect of elastically scattered
diffuse and coherent waves. 

Also, this theory helps one to determine the correla-
tion length of electromagnetic fields Γc from the diffuse

µg 2qk'', k 1–4= =

µg
1–
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scattering data. It seems that further studies along these
lines would allow better understanding of the nature of
the fluctuations in the electromagnetic field inside crys-
tals in nuclear and electron scattering. 
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APPENDIX 1

Mössbauer Polarizability of Hematite Crystal 

A hematite crystals (α-Fe2O3) is rhombohedral (sp.

gr. ( )), with two molecules in the unit cell and
the lattice parameters a0 = 5.4243 Å, α = 55.17°, Vc =
100.5 Å3 (Fig. 1). 

The coordinates of four Fe+3 ions (A, B, C, and D)
can be represented in the a0 units with the positional
parameter u = 0.355 as 

(1.1)

As was indicated above, we limited our consider-
ation to the nuclear part of crystal polarizability. Let a
photon with the wave vector kα and the unit vectors of
the electric, eα, and magnetic, hα, fields be transformed
due to scattering into the state with the indices β (α, β =
0, g). The unit vectors of these fields are related by the
transversality condition 

(1.2)

Taking into account hyperfine splitting, the nuclear
component of susceptibility can be written as the sum
taken over several transitions between the levels of the
ground and excited states of a nucleus with different
values of the projections of the magnetic moment. Tak-
ing into account only the magnetic-dipole transitions,
the incident radiation with the σ polarization can be
written as 

(1.3)

where Mj is the Lamb–Mössbauer factor for the jth
atom of the unit cell, C1 is the Clebsch–Gordon coeffi-

D3d
6

R3c

A: u– u– u–, ,( ), B: u
1
2
---– u

1
2
---– u

1
2
---–, , 

  ,

C: 1
2
--- u– 1

2
--- u– 1

2
--- u–, , 

  , D: u u u, ,( ).

hα eα kα,[ ] /K .=

χ kα kβ–( ) cg0 i kα kβ–( )r j{ } Pαβ
j

exp
j

∑
l 1=

4

∑=

× M j–( ) 1
∆El i+
-----------------C1

2
Ig l Ie; mg ∆ml, , ,( ),exp
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cient, Ig and Ie are the moments of the ground and the
excited nuclear states, respectively, mg and ∆ml are the
projections of the moment onto the quantization axis in
the ground state and its change upon transition, and α
is the internal-conversion coefficient (α57 = 9). Thus we
have 

(1.4)

where  is the nuclear polarization factor dependent
on the direction of unit magnetic vectors of the incident
and scattered radiation, hα and hβ, and the direction of
the magnetic field at the nucleus of the jth atoms, uj, 

(1.5)

There are three temperature intervals within which a
hematite crystal possesses different magnetic struc-
tures. Above the Neél temperature (TN = 948 K), all the
magnetic moments of hematite are completely disor-
dered due to thermal vibrations (the paramagnetic
structure). 

In the temperature range TM < T < TN, where TM is
the temperature of the Morin transition (TM = 253 K),
the spins of iron atoms in the positions A (M1) and B
(M2 ≈ –M1) are directed almost opposite to each other,
which results in the formation in the bulk of a weak fer-
romagnetic moment (0.4 G cm3 g–1) normal to the main
spin direction in the (111) plane (Fig. 1). 

Below the temperature of the Morin transition
(T < TM), the spins are aligned in the direction of the c-
axis of the crystal, and hematite becomes antiferromag-
netic. 

In the experiments described in [10, 21, 22], a weak
magnetic field H||, was applied to the specimen parallel
to the diffraction plane (normally to the c-axis) (Fig. 1) 

(1.6)

which resulted in the transition of the specimen to the
single-domain state and the alignment of most of the
magnetic moments, Mi , of atoms normally to the
applied field H||

(1.7)

To study of the influence of spin fluctuations, we
took into account a weak ferromagnetic moment of the
crystal volume directed along the field, despite the fact
that its numerical value was very low, δM/M0 ≈ 10–4. 

Depending on the difference between the projec-
tions of the moments in the ground and excited states

g0
3λ 3

4π2
Vc

--------------- 1
2Ig 1+
----------------- 1

1 α+
-------------, ∆El– δEl/Γ .= =

Pαβ
j

Pαβ
j hαu j( ) hβu j( ).=

H|| H– 0 0, ,( ),=

MB A, δM– M± 0, ,( ), M M0
1

2M0
---------- δM( )2

.–≈=
2
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(∆m), several variants are possible: 

(1.8)

where (ux , uy , uz) is the right-hand set of the unit vec-
tors in the system of coordinates in which the vector uz

is parallel to M. Performing some obvious transforma-
tions, we can readily obtain 

(1.9)

It is convenient to consider the σ and π polarizations
of the incident radiation separately, 

(1.10)

Substituting the above expressions into definition
(1.9), we arrive at Pαβ for individual transitions. 

Diffraction of the incident σ-polarized radiation
proceeds mainly without the change of polarization
(Table 1), whereas the scattering channel changes the
polarization σ  π and can be considered with the
invocation of the perturbation theory because of the
smallness of δM (Table 2). 

If the incident radiation is σ-polarized, the main
process is the diffraction scattering without the change
of the polarization, whereas the scattering channel
changes the polarization, σ  π, which can be con-
sidered according to the perturbation theory (because
of the smallness of δM). Moreover, in scattering with
σ  σ, one has to take into account only four transi-
tions, these with ∆m = ±1. 

Kinematical scattering with the change of polariza-
tion, σ  π, reduces the number of coherent quanta
participating in dynamical diffraction. Taking into
account the smallness of the corresponding polarizabil-
ity component of the crystal, one can ignore a possible
inverse transition of the quantum, π  σ. Using the
expansion of the coherent beams in Bloch waves (see
Appendix 2), 

we obtain for the cross section of the kinematical elastic
scattering along the direction k'

ul ∆m 0=( ) uz,=

ul ∆m 1±=( ) 1

2
------- ux iuy±( ),+−=

Pαβ ∆m 0=( ) hαuz( ) hβuz( ),=

Pαβ ∆m 1±=( )
=  1/2( ) hαhβ( ) hαuz( ) hβuz( )– i hα hβ,[ ] uz( )+−{ } .
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σ θcos± 0 θsin, ,( ), h0 g,

π
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c
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l

iklr( ), klexp
l 1=

4

∑ qlz k0 g, ,+= =
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l 1=

4

∑∼

+ χ11
σπ k k'–( )a1 ) i k k'–( )x j( )exp

j

∑
2

.

C

Usually, the final formulas are simplified by tending
the final limits of summation over the unit cell number
j to infinity. Let the region of the crystal providing dif-
fraction be finite (N1 × N2 × N3), then the maximum of
the kinematical scattering is of finite width 

because

Because of the complicated variation of the coher-
ent-wave amplitudes with the deviation from the Bragg
angle, the resulting width of such kinematical peak can
exceed the width of the dynamical rocking curve. Thus,
the formation of a diffuse-scattering pedestal can addi-
tionally be caused by scattering with the change of
polarization. 

For the reflections g = (h, h, h) in the hematite crys-
tal, the summation for scattering with σ  σ over all
the iron atoms yields (without the allowance for weak
ferromagnetism) 

(1.11)

The values of coefficients  are listed in Table 3. 

In the case under consideration, the internal mag-
netic field splits the nuclear transition at the energy E =
14.413 keV into four symmetric levels with the devia-
tions El = E + δEl  whose parameters are indicated in
Table 4. 

APPENDIX 2

Coherent Wave Field. Exact Solutions 

Now, apply the Laplace transform [45] to system
(43) of Takagi equations for coherent waves. The use of
the conventional transformation rules 

(2.1)

δkm
π

4Nm

----------,=

F k k'–( ) i km km'–( )xm( )exp
xm 0=

Nm

∑
2

m 1=

3

∏=

=  
Nm 1+( ) km km'–( )/2( )sin

2

km km'–( )/2( )sin
2

----------------------------------------------------------------.
m 1=

3

∏

χαβ 2cg0
1

∆El i+
-----------------C1

2
Ig l Ie mg ∆ml, , , ,( )Φαβ

l
,=

Φαβ
l

6πuh( )Pαβ
n l,

uz( )cos=

+ 6πuh 3πh–( )Pαβ
n l,

uz–( ).cos

Φαβ
l

dE0 g,
c

z( )
dz

-------------------- se0 g, s( ) E0 g, 0( ),–⇒

i∆11z( )E0 g,
c

z( )exp s i∆11+( )e0 g,
c

s( ),⇒

z'g z'( )d

0

z

∫ g s( )/s⇒
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reduces the integro-differential system of the Takagi
equations to the algebraic system of equations for the
Laplace transforms 

(2.2)

where 

(2.3)

The solution to the latter system of equations has the
form 

(2.4)

where 

(2.5)

The zeroes of the function Det(s) determine four points
of the pole sk of the function e0, g. In other words, the
solution obtained consists of four waves (k = 1–4), 

(2.6)

The function D(s) can be represented as 

(2.7)

For symmetric diffraction, the positions of the pole
points are determined by the wave vectors of Bloch
waves in the crystal 

(2.8)

where the constants l1, 2 correspond to new values of the
crystal polarizability, 

(2.9)

Figure 2 shows the dependence of the parameter

 (dashed and solid lines) on polarizability disper-

A00e0
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-----------------,+ +=
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eg
c
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------------,= =

l s( ) s iσ00–( ) s i∆11–( ),=

D s( ) l βσ2
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2
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sion β. If the β values are low, the contribution of weak
reflections 

can be ignored in comparison with strong ones whose
polarizabilities are close to the polarizability of an ideal
crystal, 

Now, return to the calculation of the coherent-wave
amplitudes using known Laplace transforms (2.5).
According to the well-known rules considered in [45],
the initial function is equal to 

(2.10)

where sk are the points of the pole determined by (2.7), 

(2.11)

One can readily see that the poles of the expression
A00 are compensated with the corresponding parts of
the expression for D. Performing the necessary trans-
formations, we obtain 

(2.12)

where 

For Laue diffraction, the diffracted-wave amplitude
at the entrance surface of the crystal equals zero,
Eg(0) = 0. Thus, we have 

For Bragg diffraction, the boundary conditions
should be satisfied at the exit surface of the crystal, 

whence the diffracted-wave amplitude at the entrance

l1 3β2σ2≈

l2 σ2
1 2β+( ).≈
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surface of the crystal is determined by the expression 

(2.13)

where R is the reflection coefficient. 
To calculate the diffuse intensities, we have to use

not only the reflection coefficient, but also the coherent
wave field inside the crystal. Substituting the reflection
coefficient R into Eqs. (2.4), we obtain 

(2.14)

where 

(2.15)
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Abstract—Radiation-induced diffusion in tracks of swift ions caused by excitation of electrons and resulting
in the formation of dilatations has been considered. The expressions for the longitudinal and radial atomic dis-
placements are derived as well as those for the diagonal components of the strain tensor. The atomic-density
distribution in the vicinity of a track is obtained in terms of the parameters of the three-dimensional energy dis-
tribution in an excited electron gas. The results obtained theoretically are compared with the known experimen-
tal data. The suggested approach provides the evaluation of the time of formation of track dilatations, the mobil-
ity of the atoms in the target irradiated with swift ions, and the energy losses for formation of wirelike dilata-
tions in the tracks. It is shown that the ion irradiation of semiconductor crystals can be used for obtaining one-
dimensional quantum objects. © 2002 MAIK “Nauka/Interperiodica”.
The interaction of high-energy ions with matter is
accompanied by a considerable energy release into the
electron subsystem of the target, which occurs in the
narrow region along the track axis. This process gives
rise to such phenomena as anomalous defect formation
[1, 2], alloy amorphization [3, 4], the so-called aniso-
tropic expansion at low temperatures, and creep along
the directions normal to the ion beam [5–8]. A number
of theoretical studies are also devoted to the models of
thermal spike [9–12], Coulomb explosion [13–15], soft
phonon modes [16], modification of structure [17], and
the local electric field excited by δ-electrons in tracks
[18]. The wide use of semiconductor crystals as detec-
tors of high-energy ions stimulated the studies of their
degradation and, thus, also of all the accompanying
physical processes in the tracks. The characteristic fea-
tures of defect formation in silicon crystals irradiated
with 5.6-GeV Xe-ions and 0.21-GeV Kr-ions were
studied by the method of double-crystal X-ray diffrac-
tometry [19]. The experimental data obtained show that
the atomic density in the Kr-ion tracks decreases by
about 10%, which is indicated by the appearance of the
second maximum on the dependence of the interplanar
spacing ∆d on crystal depth at high irradiation doses.
This effect is attributed to ions that hit the “old” tracks
and whose track length exceeds the conventional value
by 10%. The modern methods of structural diagnostics
based on the triple-crystal X-ray diffractometry allows
one to single out diffuse scattering the study in detail
the specific features of dilatations in the swift-ion
tracks. These data show that it is possible to create one-
dimensional quantum objects by irradiating semicon-
ductor crystals with swift ions. The detailed review of
the research and application of low-dimensional quan-
tum systems [20] is focused on the systems based on
the semiconductor heterostructures. The recent
advances in the study of heterostructures and their use
1063-7745/02/4701- $22.00 © 20101
in laser technology stimulate the search for new alter-
native methods of obtaining low-dimensional quantum
systems. The irradiation of semiconductor crystals with
high-energy ions can be considered as a method for
obtaining one-dimensional quantum wires formed due
to mutual repulsion of atomic chains between which the
track axis is located. The energy released by swift ions
is spent mainly for the excitation of an electron gas with
a high value of the pressure gradient which can exceed
the shear modulus and give rise to an irreversible plastic
deformation of the lattice in a narrow region along the
track axis.

Below, we suggest a mechanism of formation of
track dilatations based on the diffusion of target atoms
caused by the pressure gradient of the electron gas
excited in the track region. The pressure of the electron
gas is determined by the spatial distribution of the
energy density of excited electrons. In the case of the
azimuthal symmetry, the electron-gas pressure P(z, r, t)
is a function of time t and the longitudinal and radial
coordinates, z and r. This corresponds to the case where
the electron distribution is independent of the electron-
momentum direction. If the relaxation time of an elec-
tron momentum τp is much less than the time of the
energy relaxation τ, the target atoms, which cannot be
displaced for too short a time τp ≈ 10–16–10–15 s, can be
displaced for the longer time τ. The considerable ioniza-
tion of target atoms in the track region provides their suf-
ficient mobility b within the relaxation time. Let the ori-
gin of the reference system be located on the irradiated
surface and the z-axis be directed along the direction of
the velocity of an impinging ion. Then the equation for
the averaged displacement velocities of target atoms
v(z, r) in a homogeneous isotropic medium has the form

(1)n0v b grad P z r t, ,( ),–=
002 MAIK “Nauka/Interperiodica”
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where n0 is the atomic density of the medium. It follows
from Eq. (1) that the displacement of an atom depends
on the degree of the spatial inhomogeneity of the elec-
tron-energy distribution. Equation (1) shows that, simi-
lar to the velocity field v(z, r), the displacement field
u(z, r) is also determined by the change in the local
shape of the isoenergetic surface at each point of the
track during relaxation. Consider the case where the
spatial shape of the isoenergetic surfaces is preserved
for rather a long time interval τp < t < τr. Then, the radial
dispersion of the spatial electron-energy distribution
P(z, r, t) varies noticeably only within the time of the
electron–electron collisions determined by the diffu-
sion coefficient of electrons χe ≈ v eltr ≤ 1 cm2/s. There-
fore, the spatial broadening of the distribution P(z, r, t)
with the characteristic radius r0 ≈ 1–2 nm can occur
within the time τr ≥ 10–14 s. It is also assumed that the
time-of-flight of an impinging ion is much shorter than
the relaxation time τ and that P(z, r, t) decreases by the
exponential law P(z, r, t) = p(z, r)exp(–t/τ) within the
time interval τp < t < τr. Then, Equation (1) gives the
displacement u determined by

(2)

Now, consider the effect of the spatial shape of the elec-
tron-energy distribution p(z, r) on the character of
deformations. Within the framework of this approach,
the constant mobility b of atoms is assumed to be
“switched-on” within the time interval when the target
atoms are ionized. Then the displacement field u(z, r)
becomes similar to the velocity field, and the target
atoms are displaced along the normal n(z, r) to the
isoenergetic surface passing through the given point

(3)

where s = [r2 + (z – z0)2]1/2 is the distance from the point
(z, r) to the track axis along the normal n(z, r), whereas
z0 is determined by the intersection of this normal with
the track axis. The ionized atoms displaced for the time
of electron relaxation τ participate in the recombination
with electrons and fix their positions because of a dras-
tic decrease in their mobility. The spatial electron-
energy distribution formed upon the relaxation of an
electron momentum has the form

(4)

where L is the path of an impinging ion, r0 is the char-
acteristic entrance radius of the isoenergetic surface,
and εe is the energy transferred by an ion for the excita-
tion of the electron gas. The functions f (x) and g(x)
determine the variation of the height and the width of
the Gaussian distribution along the track axis, where

n0u τb grad p z r,( ).–=

u z r,( ) τb
n0
-----dp

ds
------,–=

p z r,( )
εe

πγLr0
2

-------------- f z/L( ) g z/L( )r
2

r0
2

---------------------– ,exp=
C

x – z/L, γ = (x)/g(x) is the normalization factor.

The functions f(x) and g(x) should satisfy the condition
following from the definition of the stopping power of
an electron, Se(z). The radial integral

(5)

should behave as the function Se(z) possessing the max-
imum at the depth, where the velocity of an impinging
ion is approximately equal to the velocity of electrons
in the target atoms.

Each point with the coordinates (z, r) is projected
onto the point z0 on the track axis

(6)

where x = z/L. As follows from Eq. (6), the point on the
track axis (z, 0) is projected onto the point z0 = z – Rc,

where Rc = ( /2Lg)| f '(x)|/f(x) is the curvature radius
of the isoenergetic surface at the point of its intersection
with the track axis and z0 is the focal point.

Taking into account the explicit form of the pressure
given by Eq. (4), Equation (3) yields the following dis-
placement of an atom at the point (z, r) in the vicinity of
the track

(7)

where s(z, r) is the distance from the point (z, r) to the
point z0 .

As follows from Eq. (7), the maximum displace-

ment should be observed at a distance r ≈ r0/
from the track axis, where the energy distribution given
by Eq. (4) has the maximum derivative. At shorter dis-
tances from the track axis, the displacement decreases
because of the smallness of s(z, r), whereas at longer
distances, the decrease is caused by the smallness of
p(z, r).

The radial ur(z, r) and the longitudinal uz(z, r) dis-
placement components are determined by the direction
of the normal at the point (z, r) and are

(8)

According to Eq. (8), the atomic displacements along
the track axis have only the longitudinal components,
determined only by the change in the height of the
Gaussian distribution given by Eq. (4)

(9)

xfd
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ur z r,( ) u
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---r, uz z r,( ) u

s
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where Ω0 = πγ L is the conventional volume of the
track. The existence of the maximum of the function
f(x) results in the displacement of atoms toward the
irradiated surface of the crystal in the initial part of the
track and in the displacement into the crystal bulk in the
end part of the track. Equation (9) shows that the func-
tion f(x) should rapidly decrease at z ≥ L. The atomic
displacements in the vicinity of the track given by
Eqs. (8) result in the formation of a rarefied region with
n < n0 in the vicinity of the track axis and of a “com-
pressed” region with n > n0 at the track periphery. The
spatial density distribution n(z, r) is determined by the
diagonal components of the strain tensor uik(z, r) as

(10)

The diagonal components have the form

(11)

The factor /2L2 makes the longitudinal compo-
nent uzz much less than urr and uϕϕ along the whole track
length except for its end. At the distances of the order
of r0 from the track end, the longitudinal and the radial
components of the strain tensor are of the same order of
magnitude. The common factor u/s is determined by
Eq. (7). Equation Spuik = 0 defines the boundary surface
separating the rarefied and the compressed regions. The
smallness of uzz (the track end is ignored) results in the
following simple form of the boundary surface

(12)

The allowance for uzz leads to a more rigorous equation
of the boundary surface in the vicinity of the track end

(13)

which also includes an additional term proportional to

the small parameter λ = /4L2. The atomic displace-
ments give rise to the formation of a surface, where the
atomic density n attains the maximum value, whereas
Spuik, the minimum value. The equation of such a sur-
face can readily be obtained. Ignoring the longitudinal
component uzz of the strain tensor, we arrive at the
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expression for the radius of the maximum-density sur-
face

(14)

Comparing Eqs. (12) and (14), we see that the radius of
the maximum-density surface along almost the whole

track is larger by a factor of  than the radius of the
boundary surface. However, Equation (14) for the max-
imum-density surface becomes invalid at the track end,
where the longitudinal and the radial components of the
strain tensor become comparable. The rigorous equa-
tion of the maximum-density surface r = ϕ(z) can be
obtained by solving the nonlinear differential equation
ϕ' = –(∂n/∂z)/(∂n/∂r), where the coordinate r should be
replaced by ϕ(z). The points of the intersection of the
boundary and the maximum-density surfaces with the
z-axis are determined by the equations f '' = fg/λ and
( fg)'' = 2fg2/λ, respectively.

In order to compare the results obtained with the
known experimental data on experimentally measured
interplanar spacing 〈∆d〉 averaged over the radial coor-
dinate obtained by the X-ray diffractometry method,
one has, first, to derive the equation for the averaged
value of the longitudinal component of the strain tensor
given by Eq. (11),

Taking into account Eq. (5), we arrive at 〈∆d〉/d ~
−F ''(z/L. Proceeding from the fact that the function
F(z/L) should behave as the stopping power Se(z), we
assume that the function F(x) should have a deflection
point at the depth where the Bethe–Bloch deceleration
mechanism is changed for the Firsov mechanism. This
deflection point corresponds to the sign reversal of 〈∆d〉.
The second deflection point on 〈∆d〉  is provided by a
falling tail of the spatial distribution of excited elec-
trons at z ≥ L. Between the above two deflection points
on F(x), there is a dilatation region, where 〈∆d〉  > 0.
Outside this region, the atomic planes parallel to the
irradiated surface become closer to one another and
〈∆d〉  < 0. The 〈∆d〉  values measured during the low-
dose irradiation with 210-MeV Kr-ions (see curve 1 in
Fig. 1 in [19]) show the existence of the region with
〈∆d〉  > 0. However, outside this region, the lattice com-
pression is insignificant and, therefore, it could not be
recorded in [19], where the authors made the conclu-
sion that a 10% decrease in the density in the Kr-tracks
occurred because of the appearance of the second max-
imum of 〈∆d〉  at high irradiation doses. In fact, this
maximum corresponds to ions that hit “old” tracks and
whose track length thus increases by 10% of the con-
ventional value. In accordance with Eqs. (10) and (11),
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the atomic density along the track axis varies according
to the following equation:

(15)

The above equation allows the detailed analysis of the
experimental data. The atomic density attains the max-
imum value on the maximum-density surface described
by Eq. (14) quite satisfactorily everywhere except for
the end of the track

(16)

Equation (16) shows that the characteristic value of the
maximum density is lower by the factor of e2 than the
rarefaction value in Eq. (15), where e . 2.718. There-
fore, the experimental data obtained in [19] had no
maximum due to ions that are in the maximum-density
region because of high irradiation doses. According to
our estimates, this maximum should be very weak in
comparison with the maximum provided by the rarefied
regions. Equation (15) allows one to evaluate the relax-
ation time τ from the experimental data [19] on the rar-
efaction value in the track, (∆n/n0)exp ≈ 0.1 in a silicon
single crystal irradiated with 210-MeV-Kr-ions. Taking
into account that the mobility of the target atoms is b ≅
τ/M (where M is the mass of a target atom), we obtain

(17)

at the following parameters: εe = 100 MeV, n0 = 5 ×
1022 m3, r0 = 1 nm, L = 30 µm, M = 28mn ≅ 4.67 ×
10−23 g, and γ ≈ fg ≈ 1. The above expression takes into
account that the minimum in Eq. (15) is attained in the
vicinity of the maximum stopping power of an electron,
where f ''(z/L) ≅  0. Then, we can also obtain that the
mobility of silicon atoms in the track equals b ≈ 5.6 ×
108 s/g. In accordance with Eq. (7), the maximum dis-
placement equals u ≈ 0.02 nm. This corresponds to the
displacement velocity v  = u/τ ≈ 105 cm/s, i.e., the value
which is in good agreement with the velocity deter-
mined from the initial Eqs. (1) and (4)

Despite the fact that we consider irradiation of a
homogeneous isotropic medium, the comparison of the
data obtained with the experimental data on an irradi-
ated silicon single crystal [19] yields quite reasonable
b- and τ-values. This indicates that the model based on
the measurement of residual strains suggested here pro-
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vides reliable data on the displacement field in the
swift-ion tracks.

The energy losses of the electron gas for medium
deformation in the vicinity of the track can be estimated
by the formula

(18)

Thus, the losses of a swift ion for medium deformation
integrated over the track volume are equal to

and, with due regard for the 10% strain in silicon irra-
diated with 210-MeV Kr ions, is one-eightieth of the
energy of the electron gas excited by an impinging ion.
In accordance with expression (18), the maximum

stress arising at r ≅  r0/  is

For a silicon irradiated with 210-MeV Kr ions at r0 ≅
0.5 nm, we obtain the maximum stress  ≅  1.3 ×
1010 nm–2, which can be higher than the value of the
shear modulus G ≅  1010 nm–2, thus indicating, that
deformation of the irradiated specimen in the narrow
region along the track axis is of plastic rather than of
elastic nature and, thus, gives rise to nucleation of dis-
locations and specific track dilatations. The allowance
for the elasticity and friction forces in Eq. (1) results in
a more general equation for atoms of the medium under
electron-gas pressure

(19)

where ρ is the displacement of the atom in the medium
with the coordinates (z, r), ω0 is the natural frequency
of atomic vibrations in the irradiated medium, κ is the
coefficient of the motion deceleration in the medium,
which is determined by its viscosity, and
−(dp/ds)exp(−t/τ) is the force of the electron-gas pres-
sure. If β = (ω0τ)2/(1 + κτ) is of the order of unity, Equa-
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tion (19) yields the following atomic displacement at
the point (z, r)

The above equation describes the aperiodic vibrations
of an atom and its return to the initial position ρ = 0 if
the stress εd(z, r) corresponding to the displacement
ρ(z, r, t) does not exceed the value of the shear modu-
lus G. If β ! 1 (the situation considered in this article),
the energy of the δ-electrons is transferred to atoms of
the medium so quickly that the elasticity and the fric-
tion forces do not have enough time to bring the atoms
into their initial positions. As a result, the deformation
starts exceeding the shear modulus and, thus, becomes
irreversible.

In conclusion, it should be indicated that it would be
very useful to perform X-ray small-angle scattering
experiments on track dilatations in order to refine the
model parameters. Such measurements are sensitive to
radial deformations and, thus, can complement the dif-
fractometric data providing information mainly on lon-
gitudinal deformations. The X-ray diffractometric mea-
surements of radial deformations performed in the
asymmetric geometries are also possible, but these
experiments are associated with some additional exper-
imental difficulties. The refinement of the model
parameters with the invocation of the experimental
methods of the structural diagnostics would allow a
more correct description of the interactions between δ-
electrons and target atoms and also the evaluation of the
effect of the changed structural characteristics in crys-
tals irradiated with swift ions. The formation of wire-
like dilatations in semiconductor crystals irradiated
with high-energy ions allows the creation of one-
dimensional quantum objects. The track dilatations
with the transverse dimension of the order of r0 ≅
0.5 nm should give rise to additional quasistationary
electron levels with energies of the order of ε ≅  3 eV and
a width of ∆ε ≅  /τ ≅  0.025 eV. As a result, the irradiated
crystals would acquire anomalous electrophysical
properties inherent in the one-dimensional electron gas
in quantum wires.

ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research, project no. 00-02-17693.

ρ z r t, ,( )

=  u z r,( ) βt/τ–( )exp t/τ–( )exp–( )/ 1 κτ ω0
2τ2

–+( ).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
REFERENCES

1. A. Dunlop and D. Lesueur, Radiat. Eff. Defects Solids
126, 132 (1993).

2. A. Iwase and T. Iwata, Nucl. Instrum. Methods Phys.
Res. B 90, 332 (1994).

3. A. Benyagoub and L. Thome, Phys. Rev. B 38, 10205
(1988).

4. A. Audouard, E. Balanzad, S. Bouffard, et al., Phys. Rev.
Lett. 65, 875 (1990).

5. S. Klaumunzer, C. Li, and G. Schumacher, Appl. Phys.
Lett. 51, 97 (1987).

6. S. Klaumunzer, C. Li, S. Loffler, et al., Radiat. Eff.
Defects Solids 108, 131 (1989).

7. A. I. Ryazanov, A. E. Volkov, and S. Klaumunzer, Phys.
Rev. B 51, 12107 (1995).

8. H. Trinkaus and A. I. Ryazanov, Phys. Rev. Lett. 74,
5072 (1995).

9. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Zh.
Éksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. JETP 4, 173
(1957)].

10. I. M. Lifshitz, M. I. Kaganov, and L. V. Tanatarov, At.
Énerg. 6, 391 (1959).

11. T. Talemonde, C. Dufour, and E. Paumier, Phys. Rev. B
46, 14362 (1992).

12. K. Yasui, Nucl. Instrum. Methods Phys. Res. B 90, 409
(1994).

13. R. L. Fleuscher, P. B. Price, and R. M. Walker, J. Appl.
Phys. 36, 3645 (1965).

14. S. Klaumunzer, Ming Dong Hou, and G. Schumacher,
Phys. Rev. Lett. 57, 850 (1986).

15. D. Lesueur and A. Dunlop, Radiat. Eff. Defects Solids
126, 163 (1993).

16. A. Dunlop, P. Legrand, D. Lesueur, et al., Europhys.
Lett. 15, 765 (1991).

17. A. E. Volkov and V. A. Borodin, in High-Current Elec-
tronics and Modification of Materials, Ed. by D. Vais-
burg (Tomsk, 2000), Vol. 1, p. 231.

18. E. V. Metelkin and A. I. Ryazanov, Zh. Éksp. Teor. Fiz.
117, 420 (2000) [JETP 90, 370 (2000)].

19. A. R. Chelyadinskiœ, V. S. Varichenko, and A. M. Zaœtsev,
Fiz. Tverd. Tela (St. Petersburg) 40, 1627 (1998) [Phys.
Solid State 40, 1478 (1998)].

20. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg)
32, 3 (1998) [Semiconductors 32, 1 (1998)].

Translated by L. Man



  

Crystallography Reports, Vol. 47, No. 1, 2002, pp. 106–110. Translated from Kristallografiya, Vol. 47, No. 1, 2002, pp. 114–118.
Original Russian Text Copyright © 2002 by Kobyakov, Ponomarev.

                                        

REAL STRUCTURE
OF CRYSTALS

       
Specific Features of Oxygen Dissolution in Refractory Metals 
in Gas-Phase Deposition
V. P. Kobyakov and V. I. Ponomarev

Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences, 
Chernogolovka, Moscow oblast, 142432 Russia

Received January 20, 2000; in final form, February 28, 2001

Abstract—The phase composition of niobium specimens obtained by crystallization from the gaseous chlo-
ride–hydrogen mixture with regular addition of oxygen has been studied by the method of X-ray phase analysis.
It is established that the oxygen-containing niobium contains a solid solution of oxygen in niobium monoxide.
The specific feature of the phases revealed is an unusually pronounced deformation of the crystal lattice (with
an increase in the oxygen content in the specimen, the lattice parameter increases by 0.5–0.6%). It is concluded
that oxygen possesses elevated solubility in niobium and that during their gas-phase crystallization oxygen is
present in niobium monoxide in a “superstoichiometric” concentration. The results obtained are compared with
the known data on oxygen-enriched tungsten and chromium also obtained by various modifications of gas-
phase technology. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Oxygen-containing niobium (ON) is a promising
material for preparing electrodes for thermionic con-
verters. Its use in the manufacturing of anodes consid-
erably improves the output anode characteristic [1, 2].
The preparation of oxygen-containing niobium by crys-
tallization from the gas phase was first reported in [3].
In particular, it was indicated that gas-phase ON also
contains a certain unknown oxide responsible for a
number of ON properties never observed in pure nio-
bium—high values of microhardness and the work
function of electron and the ability to evolve oxygen
during heating in vacuum. Below, we consider the
structural aspects of oxygen-containing niobium
obtained by the gas-phase method and compare its
structure with the structures of other oxygen-containing
refractory metals obtained from the gas phase.

EXPERIMENTAL

Similar to [3], the specimens of oxygen-containing
niobium were prepared by the method of gas-phase
deposition from the gaseous chloride–hydrogen mix-
ture with a regular addition of oxygen at the growth rate
of about 0.1 mg cm–2 s–1 and the temperature of 1350 ±
10 K. To remove the residual stresses, the specimens
were subjected to 1-h-annealing in a (5–8) × 10–5 Pa
vacuum at 1400 K. The oxygen content in the speci-
mens was measured by the neutron-activation methods
according to the reaction O16(n, p)N14 [4]. The phase
composition of the specimens was studied on a com-
puter-controlled automated DRON-3M diffractometer
(CuKα radiation). The analysis was performed with the
use of the Powder Diffraction File (PDF2) database.
1063-7745/02/4701- $22.00 © 20106
RESULTS AND DISCUSSION

The oxygen-containing niobium specimens were
0.5–0.6-mm-thick rough layers on 17 × 17 × 3-mm-
large molybdenum substrates. The crystallites with
shining faces forming the rough surface were up to
1 mm in length and were misoriented within 20 angular
degrees. The diffraction patterns revealed the well-
developed texture with the [100] axis. It was estab-
lished that the successive polishing-away of the layers
of oxygen-containing niobium did not change the tex-
ture, which considerably hindered the analysis of the
diffraction patterns because the variation of the mutual
orientation of the specimen and an incident X-ray beam
changed the relative intensities of diffraction reflec-
tions. Moreover, polishing also changed the relative
ratio of phases in the specimen. To average the results,
we rotated the specimen and obtained several diffrac-
tion patterns from the same regions of the specimen.
This provided better reproducibility of the reflections
which lay within the 2θ angles from 0.02 to 0.03 angu-
lar degrees.

The results of the X-ray study of ON obtained by the
gas-phase deposition listed in Table 1 show that the ON
specimens consisted of two phases—pure niobium
(sp. gr. Im3m) and niobium monoxide (sp. gr. Fm3m).
Table 1 also lists the reflections from Nb and NbO taken
from the PDF2 Data File which were also observed in
textured specimens. These are usually the most intense
reflections. The presence of niobium monoxide in the
ON specimens is quite consistent with the known data,
of which the most reliable ones [7] provide the interpre-
tation of the mechanism of niobium monoxide crystal-
lization on the niobium surface.
002 MAIK “Nauka/Interperiodica”
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Table 1.  Structural parameters of oxygen-containing niobium specimens

ON19 with
1.90 wt % O

N12 with
1.24 wt % O

KN75 with
0.75 wt % O Nb 34–370, (JCPDS) NbO 15–535, (JCPDS)

d, nm I* d, nm I d, nm I d, nm I hkl d, nm I hkl

0.2987 2 0.2946 50 110

0.2361 86 0.2358 16 0.2350 100 0.2336 100 110

0.2109 4 0.2095 100 200

0.1658 100 0.1659 43 0.1652 18 200

0.1497 2 0.1484 100 220

0.1354 18 0.1352 100 0.1354 20 0.1348 28 211

0.1177 4 0.1178 3 0.1171 8 0.1168 8 220 0.1167 20 320

0.1048 13 0.1048 66 0.1047 12 0.1045 11 310

0.0959 4 0.0953 3 222

0.0956 4 – – 0.0941 100 420

0.0889 4 0.0885 30 0.0884 13 0.0883 13 321

0.0887 4 0.0864 3 0.0859 100 422

0.0831 6 0.0826 2 400 0.0825 50 510

0.0828 14 0.0828 5 0.0810 100

* Intensity.

Table 2.  Lattice parameters of the phases in the specimens

Phase composition of the
specimens and the lattice

parameters according to PDF2

Specimens

ON19 ON12 ON75

a, nm ∆a/a0, % a, nm ∆a/a0, % a, nm ∆a/a0, %

Nb (a0 = 0.33034 nm) 0.33242 +0.63 0.33212 +0.54 0.33172 +0.42

NbO (a0 = 0.42040 nm) 0.42104 +0.15 0.42274 +0.56 0.42004 –0.09
In accordance with [7], the interaction of oxygen
with the (110) niobium surface results in surface recon-
struction accompanied by the “lowering” of oxygen
atoms and formation of the rows of niobium atoms pro-
truding from the surface, i.e., the formation of the sur-
face structure with the same arrangement of atoms as
on the (110)NbO surface. The unit-cell dimensions of
this structure (0.286 × 0.436 nm) differ by not more
than 3.8% from the unit-cell dimensions of the
(110)NbO face (0.297 × 0.420 nm) in both directions.
Further growth of the NbO film proceeds on this initial
matrix.

Table 1 shows that diffraction reflections of both
niobium and niobium monoxide are displaced from
their positions. Using a special program written for a per-
sonal computer, we determined the lattice parameters of
the identified phases within an error of ±0.0003 nm
(figure and Table 2). According to [8–10], the formation
of the α-solid solution of oxygen in niobium is accom-
panied by the deformation of the niobium lattice with
the lattice parameter linearly increasing with the oxy-
gen concentration within its solubility limits. As was
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
shown in [8] (these data seem to be the first reliable data
to the effect), the homogeneous solid solutions
obtained by diffusion-induced saturation of the com-
pacted niobium with oxygen in vacuum at low partial
oxygen pressure could be quenched without the precip-
itation of niobium monoxide only if oxygen is present
in niobium in the concentration not exceeding 4.1 at. %
(0.75 wt %). The lattice parameter corresponding to
this composition is a = 0.3311 nm. The specimens
obtained in [8] by melting the niobium with an oxide-
containing alloy were two-phase specimens (with NbO
the second phase) with 2.60–3.76 wt % O. The lattice
parameter of such specimens was independent of oxy-
gen concentration and, when being quenched from the
1300–1400 K, varied within 0.3311–0.3313 nm. In
[9, 10], the ON specimens were prepared by the
method of diffuse saturation of compacted niobium
with oxygen in vacuum for considerable periods of
time. As a result, homogeneous specimens were
obtained with a lattice parameter up to 0.3317 nm and
the oxygen concentration in the solid solution of oxy-
gen in niobium about 4.3 at. % (0.77 wt %). The results
2
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obtained in [9] and [10] are well consistent (curve 1 in
figure at the oxygen content 0.00–4.3 at. %).

As is seen from Table 2, the ON75 specimen con-
sists of two phases, although in accordance with
[8−10], it should be located in the solid-solution region.
The lattice parameter of this specimen slightly exceeds
that for the ON specimens studied in [9, 10]. We did not
aim to prepare homogeneous specimens with an
extremely high concentration of dissolved oxygen;
moreover, our experimental conditions did not allow
rapid quenching of the specimens. Thus, we could
expect the partial decomposition of the solid solution
with the segregation of the oxide phase, however,
according to our estimates, the degree of such decom-
position was rather low. It should also be indicated that
the lattice parameter of the oxide phase in the ON75
specimen was close to the “normal value” of the NbO
lattice parameter (Table 2). Specimens ON12 and
ON19 with higher oxygen content considerably dif-
fered from the KN75 specimen. First of all, their lat-
tices were considerably distorted. If one assumes that
oxygen solubility in niobium in these specimens is very
high and the dependence a = f (C, at. % O) is still linear,
then the lattice parameters measured from the plots in
figure (a = 0.33212 and a = 0.33242 nm) correspond to
5.7 at. % (1.04 wt %) and 6.7 at. % (1.22 wt %) of dis-
solved oxygen. The neutron–activation analysis
showed 1.24 and 1.90 wt % of oxygen in these speci-
mens. The difference seems to be associated with oxy-

6

a, nm

C, at. % é

0.3325

0.3305

0.3315

0.3295
420

1

2

Lattice parameter of the solid solution of oxygen in niobium:
(1) according to [9, 10]; (2) by the experimental points with
due regard for the value a0 for “oxygen-free” niobium
(34-370 PDF2 card).
C

gen in the specimens present in the form of the oxide
phase. Then the ON12 specimen contains 1.4, and the
ON19 specimen, 4.6 wt % of the oxide recalculated for
stoichiometric NbO. Figure shows that the experimen-
tal data (curve 2) extrapolated to the “zero” lattice
parameter of niobium are somewhat higher than in
[9, 10] (curve 1). Our results better fit the straight line
at the first of two known a0 values for oxygen-free nio-
bium—a0 = 0.33034 nm (card 34-370 PDF2) and a0 =
0.33066 nm (card 35-789 PDF2). It should be indicated
that the value a0 [9, 10] considerably differs from the
above values taken from the PDF2 data base. We
believe that the scatter in the a0 values for oxygen-free
niobium is explained by the real degree of “freedom of
oxygen.” The figure shows that at high oxygen concen-
tration, our experimental points are lower than those of
the extrapolated dependence obtained by data [9, 10].
One can assume that the small slope of curve 2 is asso-
ciated with the insufficient and noncontrollable cooling
rate of the specimens in our study. At the same time,
bearing in mind the error in our measured lattice param-
eter (±0.00015 nm), the discrepancies revealed should
be recognized as insignificant.

Another difference between the ON19 and ON12
specimens, on the one hand, and the ON75 specimen,
on the other, is that the oxide phase in these specimens
shows considerable displacement of the X-ray diffrac-
tion reflections (Tables 1 and 2). The strain of the NbO
lattice in the ON12 specimen is ∆a/a0 = 0.56%. Similar
observations were also made in [5, 6], where this effect
determined from the data of secondary-ion mass-spec-
trometry, X-ray phase analysis, and X-ray diffraction
analysis was attributed to the formation of metastable
“superstoichiometric” niobium monoxide NbO1.2
formed only in gas-phase deposition of niobium with
the simultaneous incorporation of oxygen into the lat-
tice (as was also observed in the present study). For ON
specimens obtained by different methods (e.g., diffu-
sion-induced saturation of the compact niobium with
oxygen in vacuum or melting of niobium with oxide-
containing alloy), no excessive lattice deformation was
revealed, whereas the oxygen concentration in oxide
corresponded to the stoichiometric composition
NbO0.95–NbO [3, 5, 6]. Under the assumption that the
KN19 and KN12 specimens contain the metastable
NbO1.2 oxide, its content would not exceed 1.2 and
4.0 wt %, whence it follows that the total increase in
oxygen content in niobium is not necessarily accompa-
nied by its uniform distribution between the solid solu-
tion and the precipitated oxide. Here, the main part
seems to be played by the technological parameters of
the specimen preparation, e.g., a cooling rate. The
cause of such a behavior of oxygen dissolution in nio-
bium should be explained by the configuration of the
outer 4d45s1 electrons in niobium atoms [11] having
half-filled and even vacant d-orbitals. Some vacancies
are filled due to electron interactions between the
framework niobium atoms [12–14]. At the temperature
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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of gas-phase deposition of a niobium layer, the remain-
ing half-filled d- and p-orbitals of oxygen atoms
become hybridized, which results in a slightly higher
solubility of oxygen in niobium than in diffusion-
induced saturation of niobium with oxygen [6]. The
lone pairs of p-electrons of oxygen and vacant d-orbit-
als of niobium form the donor–acceptor bonds and for-
mation of superstoichiometric NbO1 + x oxide. It was
indicated [5, 6] that the above reasoning is valid only
for ON specimens formed due to oxygen incorporation
into the niobium layer from the gas phase.

It is interesting to compare the results obtained for
the niobium grown from the gas phase with the analo-
gous data obtained for other d-transition bcc metals not
dissolving oxygen, and, in particular, with the data on
tungsten deposited from the gaseous chloride phase
with addition of oxygen [15]. Oxygen solubility in con-
ventional tungsten is negligibly low—about 0.06 at. %
(0.005 wt %) at 2000 K [16]. In accordance with [15],
the outer electron shell of tungsten has the configura-
tion 5d56s1 because of the “fall” of one s-electron onto
the closest d-shell in the transition from an isolated
atom to the crystal (for comparison, the outer electron
shell of molybdenum is 4d55s1 and that of chromium,
3d54s1 [11]). In all these cases, there are no vacant
d-orbitals, and, thus, oxygen cannot be dissolved in
these metals. The revealed oxygen traces are associated
with lattice defects.

It was revealed [15] that the tungsten layer obtained
from the gaseous chloride phase can incorporate up to
10−1 wt % oxygen. The maximum change in the lattice
parameter did not exceed 0.01%, which is close to the
measurement error. The electron microscopy studies
revealed no inclusions in the specimen either. Taking
into account these data and the indirect proof given in
[15], we concluded that oxygen is incorporated into the
bulk of the tungsten crystal. This effect was explained
by the formation of the adsorption tungsten suboxide
W3O on the crystallization front which, in the course of
tungsten-layer deposition, is buried in the deposit bulk.
The formation of pure surface W3O suboxide results
from the surface reconstruction of the tungsten sub-
strate at the initial stage of its interaction with oxygen
[17]. Thus, the use of the chloride gas-phase technol-
ogy [15] provided the dissolution of oxygen even in the
metal where the oxygen constitutionally cannot be dis-
solved.

Chromium films prepared by the method of vacuum
condensation on the glass substrates were studied in
[18]. Similar to tungsten, chromium atoms contain no
vacant d-orbitals, i.e., constitutionally cannot dissolve
oxygen. Nevertheless, it was shown that with an
increase of the partial oxygen pressure in the range
from 10–5 to 10–3 Pa, the oxygen content in the chro-
mium deposit linearly increases from the trace amounts
up to about 32 at. % (8 wt %), i.e., up to the complete
transformation of the sputtered chromium into the
Cr2O3 oxide. The lattice parameter of chromium
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
increased up to a = 0.2895 nm, which corresponded to
the ∆a/a0 = 38% lattice strain. The diffraction patterns
from chromium films deposited under elevated partial
oxygen pressure were characterized by high back-
ground intensity in comparison with the background
intensity from the films deposited in high vacuum. It is
believed [18] that the high background intensity can be
explained by the presence of chromium oxide either in
the amorphous or ultradispersed state, since the X-ray
diffraction patterns from the films obtained at p(O2) >
7 × 10–4 Pa showed the reflections due to Cr2O3, whose
intensity increased with an increase of p(O2).

These results [18] seem to be very interesting
because, with an increase in oxygen content dissolved
in chromium, the diffraction reflections are displaced,
i.e., oxygen is dissolved in the metal where, constitu-
tionally, it should not be dissolved. One can assume
that, similar to the case of tungsten, the mechanism of
formation of surface compounds and their “burial” is
the same.

The above comparison led us to the conclusion that
the incorporation of nonequilibrium oxygen into the
lattice of refractory bcc metals is possible only if the
metal bulk is formed in the presence of oxygen and
simultaneous adsorption of metal and oxygen atoms
from the gas phase onto the growth surface. This condi-
tion is satisfied if one uses the gas-phase methods,
because only these methods allow one to obtain the
nonequilibrium metastable products. If the well-estab-
lished collective of metal atoms interacts with oxygen,
the equilibrium conditions for the synthesis are met and
the reaction yields the products corresponding to the
equilibrium phase diagrams. Each metal–oxygen sys-
tem has its own individual features and its own limits of
oxygen adsorption, which are determined not only by
the outer electron shells of metal atoms but also by the
differences in the methods used for preparing metal
layers.
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Abstract—The conditions necessary for the formation of regular domain structures in lithium niobate crystals
used for quasi-synchronous non-linear optical transformations of laser radiation have been considered. The
analysis of the mechanism and the kinetics of domain formation during thermoelectric repolarization showed
that the true thickness of domain boundaries characterized by the combination of the faces of some simple
forms of a crystal depends on both angles between the directions of the vectors of the temperature gradient and
the spontaneous-polarization and on the homogeneity of the initial crystal. © 2002 MAIK “Nauka/Interperiod-
ica”.
INTRODUCTION

The synthesis of ferroelectric crystals with regular
domain structures allows the creation of new crystalline
elements for nonlinear optics. In particular, LiNbO3
crystals with a regular domain structure were used for
manufacturing electrooptical modulators for nonpolar-
ized radiations [1, 2]. The design of nonlinear-optical
devices based on quasi-synchronous interactions in
both bulk crystals [3, 4] and elements of integrated
optics [5, 6] is under way.

METHODS OF FORMATION OF REGULAR 
DOMAIN STRUCTURES

There are several methods for the formation of reg-
ular domain structures of which the main are:

—Formation of domain structures during crystal
growth [5, 6] (regular domain structures with a period
up to several microns). The shortcoming of the method
is the fact that the shape and the orientation of the
domain boundaries are determined by the shape and the
orientation of the crystallization front, whereas the
domain size is determined by the parameters of the
growth process (such as temperature oscillations, con-
ditions of formation of growth striation, etc.), which
considerably restrict the possibilities of the method;

—Scanning of a crystal by an electron beam [7, 8],
which provides the domains with high reproducibility
of the structural parameters and a distance between the
walls up to several microns, which makes this method
very promising for obtaining regular domain structures
characterized by nonlinear–optical interactions and
doubling of the laser-radiation frequency under the
conditions of quasiphase matching in second-harmonic
generation. This method can be used to create domain
1063-7745/02/4701- $22.00 © 20111
structures only in relatively thin (up to tens of microns)
surface layers;

—Formation of regular domain structure by pulling
a crystal through the temperature zone with the temper-
ature gradient under the simultaneous action onto the
crystals of sign-alternating electric field (the so-called
postgrowth thermoelectric treatment) [9, 10]. In its
essence, the method reduces to the motion of a crystal
in a temperature field (Fig. 1) varying from T > TC to

(‡) (b)Eex
Ec

TC

Tp

x
v

x

+Ps

–Ps

Uex

Ec = Eex

T

Fig. 1. Scheme of the repolarization process during forma-
tion of a regular domain structure by the method of post-
growth thermoelectric treatment of the crystal: (a) the tem-
perature field in the repolarization zone and (b) the depen-
dence of the coercive field Ec on temperature, where x is the
coordinate along the direction of crystal motion and v  is the
velocity of this motion; Uex is the variable potential differ-
ence changing the sign depending on the time t and induc-
ing a sign-alternating field Eex in the crystal; and TC and Tp
are the Curie and repolarization temperatures, respectively.
002 MAIK “Nauka/Interperiodica”
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T < TC (where TC is the Curie temperature). The applied
electric field results in crystal polarization (+Ps) in the
region where T < TC. If prior to the field switching-on,
the crystal polarization had the opposite sign (–Ps),
then, at T = TC a domain boundary is formed, which is
shifted to low temperatures until the moment when the
external field (Eext) would become equal to the coercive
field (Ec), increasing with a decrease in the tempera-
ture. In other words, the domain boundary stops in the
temperature zone slightly lower than TC. This tempera-
ture can be called the repolarization temperature, Tp.
The repolarization process proceeds in two stages—(i)
the initial nucleation of wedgelike domains in the near-
electrode region and (ii) growth of microdomains from
the sites of their nucleation into the crystal depth with
the subsequent side intergrowth. The initial nucleation
and growth of domains usually proceed from the elec-
trode whose sign determines the direction of polariza-
tion Ps of a newly formed domain but can also occur in

500 µm

X

Z

Fig. 2. Growth of domains from the electrode by merge of
microdomains formed in the crystal bulk. The period of the
domain structure is 35 µm.
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Fig. 3. Time of domain growth as a function of the intensity
of the applied electric field.
C

those regions of the crystal bulk (Fig. 2) where either
local overstresses or reduced Tp caused by the presence
of defects or concentration inhomogeneity are
observed. The domain nucleation with the opposite
polarization starts at a certain threshold field intensity
at the given temperature. The rate of domain growth at
T close to TC increases, whereas the time of domains
growth decreases with the electric-field intensity by the
logarithmic law (Fig. 3).

With the motion of a crystal to the low-temperature
region, the domain boundary is moved together with
the crystal. The switching of polarity Eex repeats the
repolarization process, and a new domain boundary is
formed at a distance d = v t (where t is the time of the
action of the field of the given polarity and v  is the
velocity of the crystal motion). The periodic (with the
period t) repolarization of the external field results in
the formation of a regular domain structure with a set
domain size.

The thermoelectric treatment provides the forma-
tion of a regular domain structure with any preset ori-
entation of domain boundaries relative to the crystallo-
graphic axes in bulk crystals with rather high domain-
size reproducibility over the whole crystal volume.
Such structures are used to design the diffraction elec-
tro-optical modulators of unpolarized laser radiation.
Unfortunately this method cannot be used to obtain
polydomain crystals with a period less than 20–225 µm.
Such structures cannot be used for the implementation
of quasi-synchronous nonlinear optical interactions of
the optical beams in the generation of radiation har-
monics of semiconductor or Nd-containing lasers,
because the coherent length of the interaction for lith-
ium niobate crystals attains several microns.

Among several alternative methods of formation of
regular domain structures in lithium niobate crystals,
only the thermoelectric treatment allows one to obtain
volume elements with the maximum effective interac-
tion length and the minimum domain period limited to
several tens of microns. The problem of reducing the
domain period can be solved based on the analysis of
the kinetics of domain repolarization in an applied
external electric field, the laws of growth of the domain
boundaries, and their interaction with the defects of the
crystal structure.

DIFFUSION OF DOMAIN BOUNDARIES DURING 
FORMATION OF REGULAR 

DOMAIN STRUCTURE

The minimum domain size in a regular domain
structure is determined by the deviation of the domain
boundaries from the ideal plane. Obviously, if the
domain boundary is rough and is characterized by the
roughness parameter ∆ (here the term roughness has the
same sense as in the characterization of the outer-sur-
face roughness, i.e., ∆ is the deviation of the relief
height of the domain boundary from the middle line of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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the profile S (Fig. 4), then the distance d between two
adjacent boundaries cannot be less than ∆, otherwise
the boundaries would merge together at the sites of
their contacts and the regular domain structure would
disintegrate into individual segments with opposite
signs of spontaneous polarization.

If a regular domain structure is obtained by the
method of postgrowth electrothermal treatment, the
shape of the domain boundaries depends on the homo-
geneity of the applied electric field and the shape of the
repolarization-temperature (Tp) isotherm in the region
of domain nucleation. The creation of regular domain
structures in a homogeneous electric field of a flat
capacitor (except for the region of the edge effects, with
the varying density of the force lines) provides such
conditions that the shape of the domain boundaries is
determined by the thermal-field isotherm and the
homogeneity of the crystal.

The profile of the thermal-field isotherm in the
region of domain nucleation is determined by the
design of the thermal unit and can be close to a flat one.
The minimum temperature of domain repolarization
depends not only on the intensity of the electric field,
but also on the composition and the structural perfec-
tion of the crystal. Therefore, even for an ideally planar
thermal-field isotherm in a real (inhomogeneous) crys-
tal, it is impossible to create ideally planar domain
boundaries.

The shape and the roughness of a domain boundary
depend on several factors related directly to the crystal
properties. One of the reasons for the appearance of the
parameter ∆ determining the true thickness of the
domain boundary is an increase in the domain-wall
energy because of ion charges during the formation of
a regular domain structure under conditions where k
and Ps form an angle α ≠ 90° (where k = n/d is the spa-
tial-periodicity vector, n is the normal to the domain
boundary, and d is the domain size). This can occur if
Ps and grad T form an angle different from 90°. The
domain walls which arise during the cooling of grown
crystals as a broken zigzaglike surface are formed by
the planes among which the most often encountered

ones are those of a rhombohedron, { }. The same
effect is also observed in the formation of domain
boundaries by the method of thermoelectric treatment
under the condition that either Ps || gradT or Ps and
gradT form an angle smaller than 90°.

This effect can be explained by the fact that with a
decrease of the angle α formed by Ps and k (an increase
of the angle between Ps and the domain wall), a polar-
izing charge ρs = |Ps |cosα is formed on the domain
wall. Then, the corresponding field at the domain
boundary becomes equal to

(1)

1012

Es

Ps

εε0
-------- α .cos=
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This field is partly compensated with free charges of

density ρ = , where t is the time of the action

of the external electric field of the given polarization
(the moment t = 0 corresponds to the beginning of the
repolarization cycle), σ is electrical conductivity, and
|E | is the strength of an uncompensated electric field of
the domain boundary. As a result, the following electric
field arises in the vicinity of the domain boundary

(2)

The change of |E | with time is determined by the

Maxwell relaxation |E | = |E0 |exp , where τ = .

Thus, we have

(3)

(4)

The field |E | and the external field |Eex | move the
domain boundary if the difference |Eex | – |E | exceeds
the coercive field |Ec |.
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Fig. 4. Schematic domain boundary at (a) k || Ps (s is the
average position of the domain boundary); (b) at k forming
an angle β with Ps .
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At the end of the repolarization cycle at t = T (where
t is the time of the action of the field of the given polar-
ity), the domain boundary is fixed in the position where
the uncompensated field of ion charges is equal to

(5)

Here |E0 | is the field of coupled charges at t = 0, i.e.,
in the absence of any compensation with free charges,
which, according to (1), is equal to

(6)

Thus, the angle formed by the domain-boundary
normal N and Ps (Fig. 4a) at the moment t can be

E Eex Ec–=

=  
Ps

εε0
-------- αmincos E0 T /τ–( )exp 1–[ ] .+

E0 Es max

Ps

εε0
-------- αmax.cos= =

Z

X 100 µm

X

Z

Fig. 6. Intersection of domain boundaries by block bound-
aries revealed by etching. The period of the domain struc-
ture equals 80 µm.

Fig. 5. Domain boundaries at k ⊥ Ps. The period of the
domain structure equals 60 µm.
C

defined as

(7)

If relaxation proceeds so fast that T @ τ, then

cosαmin = .

TRUE THICKNESS OF DOMAIN BOUNDARIES 
AS A FUNCTION OF CRYSTAL HOMOGENEITY 

AND THE TEMPERATURE GRADIENT 
IN THE REPOLARIZATION ZONE

The formation of a domain boundary in lithium nio-
bate starts with the nucleation of needle-like domains
with length determined by the condition |Eex | = |Ec |.
The angles between the domain-boundary normals and
Ps are equal to (±αmax). The subsequent growth of
domains in the polar and the side directions results in
the transformation of the needles into the pyramidal
formations with an increase of α up to αmin (Fig. 4). At
the distance L between the nucleus centers, the height

of these pyramids is δ =  (Fig. 4a), which cor-

responds to the double roughness parameter of the
boundary and can be considered as the true thickness of
the domain boundary if the normal k to the average
position of the domain boundary forms an angle of β =
0 with Ps. A domain boundary is the superposition of
such pyramids (Fig. 4c) with their number being equal
to the number of nuclei and their height being directed
along the polar axis.

The true thickness of the domain boundary at β ≠ 0
(Fig. 4b) is

2∆ = δcosβ. (8)

As follows from Fig. 4, the true thickness of the
domain boundary decreases with the approach of TC to
Tp, in other words, with an increase of gradT in the
repolarization zone.

Expression (4) describes the monotonic dependence
α(E), whereas, in actual fact, the angle α often corre-
sponds to an angle formed by the faces of the simple
forms. For lithium niobate, such a simple form is the

{ }-rhombohedron. This signifies that the electro-
static energy of the domain boundary cannot depend on
α monotonically and forms the minima at the sites
where the domain boundary coincides with the simple-
form faces. In other words, one can state that the coer-
cive force depends on α and that this dependence has
the maxima at the sites where the position of the
domain boundary coincides with the faces of some sim-
ple forms.

If the regular domain structures are formed under
the conditions such that gradT ⊥ Ps, the domain walls
are parallel to the polar direction; no charges can be

αmincos
Eex Ec–

Es

------------------------- T /τ–( )exp 1–[ ] α max.cos+=

Eex Ec–
Es

-------------------------

L
2
--- αmintan

1012
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formed on these walls and, therefore, no kinks can be
formed either. The domain walls are flattened and the
domain boundary becomes smoother and thinner
(Fig. 5).

There are some other reasons resulting in the distor-
tion of the flat shape of the domain boundary which are
associated with crystal inhomogeneity. The correlation
between the domain-boundary positions and the profile
of the Curie-temperature isotherm in the crystal bulk
depends on the constancy of the composition and the
structural perfection of the crystal. It was established
that composition inhomogeneities affect the Curie tem-
perature and that the interaction of the domain bound-
aries with the structure defects results in domain pin-
ning on growth layers and block boundaries.

Figure 6 illustrates the distortion of domain bound-
aries by block boundaries in LiNbO3 crystals during the
formation of a regular domain structure under the con-
ditions gradT ⊥ Ps. It is seen that the block boundaries
are “dragged” by the domain walls into the region of
higher temperatures. This can be explained by an
increase of the Curie temperature in the region of the
block boundaries due to an increase of the concentra-
tions of impurities and point defects in these regions.
Knowing the value of gradT in the repolarization region
and the distance D of the domain-wall deviation caused
by the block boundary (or the growth stria), one can
evaluate the change in the Curie temperature in the
vicinity of the structural defect as ∆Tc = DgradT. On the
other hand, the ratio D = ∆Tk/gradT signifies that the
domain-boundary distortions from the flat shape can be
reduced by increasing the temperature gradient in the
repolarization zone. Thus, the block boundaries pin the
domain walls. Repolarization is also hindered by pile-
ups of dislocations which leave some regions where the
domains have the opposite sign in a newly formed
domain (Fig. 7).

Fig. 7. Localization of domains of opposite signs at disloca-
tion pile-ups revealed by selective etching. The period of the
domain structure equals 65 µm.

Z

X

CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
Another example of the effect of crystal inhomoge-
neity on the position of domain boundaries is the
domain curvature in the region of concentration inho-
mogeneities caused by growth stria (Fig. 8). This cur-
vature can be explained by the influence of the compo-
sition on the Curie temperature. A chemical inhomoge-
neity of doped crystals (e.g., LiNbO3:Mg) and, as a
result, the variation in TC result in disintegration of
domains into individual islands, even at such distances
between the walls and the models of regular domain-
structure formation at which the formation of a regular
domain structure in pure and homogeneous crystals
occurs in the steady-state mode.

An electric field sufficient for the formation of a reg-
ular domain structure by zone repolarization has upper
and the lower limits. It seems that the more intense the
polarizing field, the easier the formation of the regular
domain structure and the higher the domain-wall qual-

X

Z
250 µm

X

Z

Fig. 9. Formation of domain islands at low intensity of the
repolarizing field (Eex = 0.25 V/cm).

Fig. 8. Intersection of the concentration inhomogeneity by
domain boundaries in the striation band. The period of the
domain structure equals 35 µm.
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ity. However, in actual fact, an increase in the polariz-
ing-field intensity increases the conductivity, which, at
high temperatures, results in an increase of the defect
concentration in the crystal because of electrolysis.
Therefore, it is desirable that repolarization occur in the
vicinity of the lower field limit, El. The value of El is
determined by the fact that a decrease in E below El
results in the disintegration of domains into individual
islands (Fig. 9). The existence of the lower limit of the
field intensity in the formation of a regular domain
structure is explained by the fact that, at low values of
the applied electric field, the rates of formation of
wedgelike domains and their growth into the crystal
bulk are too low to provide the complete filling with
domains of the crystal region within which the repolar-
ization boundary moved within the time of the applica-
tion of a positive or a negative electric field.

CONCLUSION
The minimum distance between the domain bound-

aries that can be obtained by creating a regular domain
structure by repolarization of a crystal moving in the
temperature field with a temperature gradient depends
on the variation in the roughness heights of the domain
boundary, which are, in fact, a set of wedgelike protru-
sions along the normal k to the boundary. The value of
the roughness parameter ∆ is determined by the true
width of the domain boundary dependent on the angle
formed by k and Ps and the crystal homogeneity. The
size of the domains can be reduced by increasing the
C

homogeneity of the crystals used for the formation of
regular domain structures and by an increase in the tem-
perature gradient in the repolarization zone.
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Abstract—The transport characteristics of the α-AgI1 – xClx solid solutions have been calculated by the molec-
ular dynamics method. It is established that the diffusion coefficient of cations decreases with an increase in the
concentration of chlorine atoms, which agrees with the well-known experimental data on the behavior of ionic
conductivity. © 2002 MAIK “Nauka/Interperiodica”.
As is well known, the high-temperature α-phase of
silver iodide possesses high ionic conductivity [1] and,
because of its rather simple crystal structure, is used as
a model system in the studies of ionic-transport pro-
cesses in solids in studies by various methods including
the computer simulation. In a row of quasibinary sys-
tems AgI–AgX, where X = Br, Cl [1–6], and AgI–MI
(M = Cu, Cs) [7–10], the α-AgI-based solid solutions
exist in a rather wide concentration and temperature
ranges. The concentration dependences of ionic con-
ductivity (σi) of α-AgI1 – xClx (0 < x < 0.25) solid solu-
tions [6] indicate the reduction of electrical conductiv-
ity of the material with an increase in chlorine concen-
tration in the specimen. (In a low-temperature
β-AgI1 − xClx phase, conductivity increases with an
increase of x [6] because the introduction of chloride
ions into the silver iodide matrix results in a higher con-
centration of Frenkel defects [11].)

Recently, we calculated the diffusion coefficient of
Ag+ in copper-doped silver iodide [12] and established
that the variations in the mobile cationic subsystem
deteriorate the transport characteristics of the solid
solutions. Below, we describe the study of the effect of
substitutions in the rigid anionic sublattice on diffusion
of silver cations in the AgI–AgCl system performed by
the molecular dynamics (MD) method. 

The computations were made by the specially mod-
ified program suggested earlier in [13] for studying the
bulk properties of solid electrolytes. The atomic motion
was calculated by the fifth-order predictor–corrector
algorithm, whereas electrostatic interactions were cal-
culated by the Ewald method. Simulation was made for
a system consisting of 256 ions, i.e., the pixel consisted
of 64 unit cells including 128 anions and 128 cations.
The anions formed a body-centered cubic lattice,
whereas two cations were randomly located in the cen-
ters of the cube faces of the unit cell. The iodine and
1063-7745/02/4701- $22.00 © 20117
chlorine atoms in the anionic positions were randomly
placed. 

The first Born–Mayer–Huggins interaction poten-
tial was used in the form 

where r is the interionic distance, zi is the effective
charge of the ith ion, the parameters Hij and nij enter the
term which describes the repulsion energy caused by

the overlap of electron shells, and Pij = 0.5(αi  + αj )
is the parameter of the dipole–dipole interaction (αi is
the electron polarizability of the ith ion and Wij is the
parameter entering the term provided by the van der
Waals interaction). 

The concrete parameters of the interparticle poten-
tial were taken from [11] and are listed in Table 1. 

The effective anion charge was taken to be equal to
z(I–) = –0.6e, z(Cl–) = –0.7e, and the charge of the silver
cations was chosen based on the condition of the elec-
trical neutrality of the crystal [14, 15]. The electron polari-
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Table 1.  Parameters of ion interactions

Type of
the i – j pair

nij

Ag+ – Ag+ 11 0.014804 0.0

Ag+ – I– 9 114.64 0.0

Ag+ – Cl– 11 127.645 0.0

I– – I– 7 446.64 6.9832

I– – Cl– 7 266.317 2.11074

Cl– – Cl– 11 17152.23 2.11074

* In e2/Å units (14.39 eV).

Hij
* Wij

*
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zabilities were αAg = 0, αI = 6.52 × 10–3, and αCl = 3.45 ×
10–3 mm3 [11]; the pixel size equal to a = 0.5062 nm
was determined from the experimental data for AgI
[16, 17]. 

The time step 5 × 10–15 s provided the stability of the
total energy of the system within an accuracy of 0.2%.
The particle velocities at the initial moment were
assumed to be zero; then, using the thermalization
mechanism [13], the system temperature was brought
to the set level. The characteristics of the simulated
crystal were determined from the data of about 104 iter-
ations. 

The MD computations provided the determination
of the coefficient of particle self-diffusion from the
analysis of the root-mean square deviations of ions

( (t)) in accordance with the relationship 

where Dk is the diffusion coefficient of a k-type particle
and Bk is the Debye–Waller factor. 
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Concentration dependences of the diffusion coefficients of
silver cations in AgI1 − xClx solid solutions. (1–4) Solid
phase, (5–7) melt, (8) AgI at 700 K (experiment [18]),
(9) calculated from the electrical conductivity data at 500 K [6]. 

Table 2.  Heiven coefficient HR for the α-AgI phase

T, K

433 0.69 0.67

623 0.69 0.59

813 0.82 0.56

* Experimental [18, 19].
** Calculated [20].

HR
* HR

**
C

The analysis of the root-mean square deviations of
silver cations and iodide and chloride anions indicate
that only silver cations participate in the translational
motions in the high-temperature α-phase, whereas the
iodide and chloride anions vibrate about their equilib-
rium positions. The good agreement of the calculated
(for the composition α-AgI0.992Cl0.008) and the experi-
mental (for pure α-AgI [18]) diffusion coefficients at
700 K (Fig. 1) confirms the validity of the chosen inter-
action potential. 

The figure shows the concentration dependences of
the diffusion coefficient DAg of silver cations. A de-
crease of DAg with an increase of the chlorine concen-
tration in the solid solutions is observed at all the tem-
peratures (Figure, points 1–4). The decrease of conduc-
tivity in the α-Ag1 – xCuxI solid solution in the range of
weak nonstoichiometry of α-Ag1 – xCuxI (in the vicinity
of x < 0.1) was first observed by Ihara et al. [6]. For
comparison, the figure also shows the experimental
data on the diffusion coefficients of cations at 500 K
calculated from the experimentally measured conduc-
tivities by the Nernst–Einstein ratio 

where n is the number of the charge carriers (ze). The
Heiven ratio HR = D/Dσ is about 0.58 for all the compo-
sitions at 500 K, which agrees with the Heiven coeffi-
cients determined experimentally for α-AgI [18, 19]
and calculated by the Monte–Carlo method [20]
(Table 2). Since HR < 1 in the whole temperature range
studied, this indicates the cooperative character of the
motion. Okasaki [21], considering the “caterpillar”
mechanism of the motion, obtained a correlation coef-
ficient equal to 0.5–0.66, which is close to the experi-
mentally determined value HR = 0.58. 

The activation energy of diffusion is ED = 0.14 ±
0.01 eV for all the solid solutions studied and is close
to the value ED ≈ 0.15 eV for the nonstoichiometric
α-Ag1 − xCuxI phases with substitutions in the cationic
sublattice [12]. 

The analysis of the (t) curves shows that the crys-
tals of the composition α-AgI1 – xClx melt at lower tem-
peratures than the crystals of pure silver iodide. As is
seen from the figure (points 5–7), upon crystal melting,
D sightly increases, whereas, for pure silver iodide, the
value of electrical conductivity in the melt is slightly
lower than in the solid phase [19]. 

The MD computations lead to some assumptions
about the phase diagram of the AgI–AgCl system in the
range of α-phase existence (still not studied) based on
the data on solid-solution melting. It seems that the
phase diagram of the AgI–AgCl system differs from the
phase diagram of the similar AgI–AgBr system [2],
because with an increase in the temperature the stability
range of the α-AgI1 – xClx phase decreases. 

Dσ
σkT

n ze( )2
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rk
2
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As follows from the above consideration, silver dif-
fusion in α-AgI1 – xClx solid solutions decreases with an
increase in the Cl– concentration, which indicates the
existence of some optimum relationships between the
dimensions of the mobile particles and conductivity
channels in crystalline solid electrolytes [22]. It can
also be assumed that with an increase in the chloride
ion concentration (the ionic radius of chlorine rCl =
0.181 is less than the iodine radius r = 0.216 nm), the
parameter of the solid solutions decreases in accor-
dance with Vegard’s law and therefore the “free vol-
ume” available for diffusion of cations also decreases,
which would have resulted in lower conductivity. How-
ever, our studies showed that a decrease in the lattice
parameter practically does not affect the transport char-
acteristics. The analysis of the structural characteristics
of α-AgI based on the EXAFS data [23, 24] allowed us
to establish that the most favorable path of Ag+ trans-
port is provided by the transition from the tetrahedral
position via the trigonal one to another tetrahedral posi-
tion and overcoming the potential barrier of 0.04–
0.07 eV. The theoretical consideration within the sto-
chastic model [25] indicates the pronounced depen-
dence of ion mobility on the shape of the potential relief
along which the particles move. In other words, even at
the same value of the potential barrier, the mobilities
and, therefore, also the diffusion of silver ions are dif-
ferent, because the particles move along different
reliefs with different geometric and force characteris-
tics of I and Cl atoms. Thus, the conclusion made in [12]
regarding strongly correlated cation motion in α-AgI-
based solid solutions has been confirmed once again. 
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Abstract—Complex studies of the optical and structural properties and the elemental composition of a series
of yttrium iron garnets (YIG) grown from flux have been performed with due regard for the crystallographic
orientation of the platelets. It has been established that the presence of Mn, Ba, and V microimpurity ions at a
level of a few thousandths of a percent can play a stabilizing role in the synthesis of perfect crystals with the
garnet structure. The criterion of the quality of the grown crystals is formulated as the ratio of the total number
of  Y and Fe cations to the number of oxygen anions (in wt %). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The crystals of yttrium iron garnets (YIG) of a rather
high quality are characterized by high values of optical
transparence, specific Faraday rotation in the IR range,
and excellent microwave parameters [1, 2]. Despite the
enormous number of publications on the properties and
nonstoichiometry of crystals with the garnet structure,
these characteristics were always considered ignoring
the crystallographic orientation of the specimens.

It is well known that, according to the phase dia-
gram [3], growth of YIG crystals from flux results in a
slight deficit of oxygen ions in the structure. It is usu-
ally believed that the oxygen deficit is compensated
with the formation of Fe2+ ions providing the neutrality
of the YIG molecule [4, 5]. The estimation of the prob-
ability of intrinsic-defect formation in YIG crystals
showed that the formation of anion vacancies accompa-
nied by the change of the charge of some Fe-ions occu-
pying the octahedral positions is energetically advanta-
geous [4]. The garnet structure is the most appropriate
for the arrangement of various types of cations with
variable valences and concentrations in three sublat-
tices of the structure.

EXPERIMENTAL

We studied YIG crystals grown from flux based on
the PbO–PBF2–B2O3 systems in both statistical and
dynamical modes. The relative concentration of Mn
ions and the weight ratio of the main cations, Y/Fe,
were determined by neutron–activation analysis and
X-ray photoelectron spectroscopy. The photoelectron
spectra were recorded on an ES 2401 electron spec-
trometer in a 10–6 Pa vacuum with the use of the Kα
magnesium line at the energy of 1253 eV. The concen-
1063-7745/02/4701- $22.00 © 20120
tration of Ba-ions replacing Y-ions in the dodecahedral
sublattice is determined by the method of X-ray radio-
metric analysis with the use of an Am241 excitation
source. The characteristics of the YIG specimens stud-
ied, their orientation, lattice parameters, the Ba/Y ratio
(hereafter indicated in wt %), and other impurities
revealed in the crystals are indicated in table. To study
the anisotropy of defect distribution in YIG crystals, the
specimens were cut in the shape of 1.6–2.5 mm-thick
platelets parallel to the (110), (111), and (100) planes.
The X-ray diffraction patterns were obtained on a
DRON-3 diffractometer (Fe Kα radiation) with the
accuracy in the lattice parameter determination being
±2 × 10–3 Å. The transmission spectra of the YIG spec-
imens including two unoriented specimens, 32-NO and
45-NO, were recorded on a Beckman spectrometer in
the unpolarized light in the range 1000–2000 nm at
293 K. The absorption coefficient a was calculated by
the standard formula with due regard for the reflection
coefficient R and the refractive index n = 2.3, namely:

α = d–1ln{(1 – R)2/(2I/I0) + [(1 – R)2/(2I/I0) + R2]1/2},

R = (n – 1)2/(n + 1)2,

where d is the platelet thickness in cm and I0 and I are
the intensities of the incident and the transmitted light,
respectively.

RESULTS AND DISCUSSION

The garnet structure is cubic with eight
{C3}[A2](D3)O12 formula units in the unit cell (the
curved and square brackets and the parentheses indicate
the positions of cations with the dodecahedral, octahe-
dral, and tetrahedral coordination relative to oxygen,
respectively).
002 MAIK “Nauka/Interperiodica”
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The quality of the grown YIG crystals was deter-
mined from the absorption coefficient α at the wave-
length λ = 1300 nm and the lattice parameter a. The
fluctuations of the growth rates with time give rise to
oscillations in impurity concentrations in the crystal
and, thus, determine the zonal or striation structure [6].
The zonal inhomogeneity in the impurity distribution
results in the formation of dislocation sources, internal
stresses, and other crystal defects. It was concluded [7]
that the growth rates of the (211)- and (110)-type faces
in the crystal with the garnet structure are almost twice
as low as the growth rate of the (111) face. We observed
different variants of incorporation of Ba-ions for each
orientation and their different effect on the specimen
transparence. With a four-time increase in the Ba con-
centration in the (111) oriented platelets, the a value
decreases from 23.5 to 17 cm–1 (curve 2 in Fig. 1),
whereas an increase of the number of Ba ions by an
order of magnitude in the (110)-oriented specimens,
gives rise to an increase of a from 0.4 to 13.2 cm–1

(curve 1 in Fig. 1).

The barium concentration (wt %) with respect to
yttrium ions is indicated in Table 1. It is seen that the
concentration of Ba-ions in the growth pyramid on the
(110) face considerably differs from the expected value
for the habit-forming face, which favors the formation
of crystals with rather perfect crystal structure (speci-
mens 7, 43, 52, and 41) and high transparence (α u
5 cm–1). Curve 3 in Fig. 1 corresponds to specimens
with rather high concentrations of Ba-ions and other
inclusions, which often interact with one another (spec-
imens 41, 3, 32-NO, 45-NO, and 22-Bi). The different
run of the curves for the (110)- and (111)-orientated
crystals leads to the conclusion that the Ba/Y ratio
influences the a-parameter by different mechanisms. It
is possible that the reticular density of cations in the
octahedral and dodecahedral positions produces an
important effect, which is much more pronounced for
the (110) faces than for the (100) and (111) faces [8, 9].

In addition to Ba ions, the YIG crystals also contain
some other impurities, e.g., Mn and Sm ions with
valences varying from 2 to 4. For (110)- and (111)-ori-
ented platelets with the Ba and Mn impurities, we
observed the following: in the specimens with mini-
mum Ba-concentration, the concentration of Mn ions
was higher (specimens 7 and V-3); in other words, the
maximum concentration of one impurity corresponds
to the minimum concentration of the other impurity. At
first glance, this correlation is rather surprising,
because the Ba- and Mn-ions replacing the Fe-ions
occupy different sites in the crystal lattice (Ba occupies
the dodecahedral sites and Mn, the octahedral ones).
Therefore, these impurities do not compete with one
another. One possible explanations of this fact is the
incorporation of a large divalent Mn-ion into the
dodecahedral sublattice. In this case, the Mn-ion starts
competing with Ba- or Pb-ions. The established fact
shows that Ba-and Mn-impurities mutually enhance
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
their effect on the concentration of optically-active
defect centers in YIG.

Figure 2 shows the dependence Y/Fe = f[ln(Ba/Y)]
demonstrating the different character of incorporation
of Ba ions into the (100)- and (111)-oriented specimens
of the garnet structure. Possibly, at a relative low
growth rate of the (110) face, the Ba-ions, both at low
and high concentrations, are incorporated into the
structure in a more uniform way, which explains the
slight change in the Y/Fe ratio (by 0.91–0.96) for this
orientation accompanied by the change of Ba-concen-
tration from 0.023 to 0.90 for pure (without impurities)
crystals and up to 1.556 for Bi-substituted YIG crystals.
The high growth rate of the (111) face provides the
incorporation of a noticeable number of Ba-ions
(curve 2 in Fig. 2) distributed more uniformly than in
the first case, which explains the considerable range of
the Y/Fe variation (0.86–0.97). The most pronounced
scatter (0.83–1.089) in the Y/Fe ratio is observed for the
(100)-oriented plates. The corresponding curve is not
shown in Fig. 2 because there were only three plates of
this type. The nonmonotonic character of the Y/Fe vari-
ation for differently oriented plates seems to be the con-
sequence of the growth anisotropy which could be esti-
mated only qualitatively—it was minimal for the (110)-
oriented plates, intermediate for the (111)-oriented
ones, and maximal for the (100)-oriented specimens.

It should be emphasized that neither the Y/Fe ratio
nor the lattice parameter can be used as reliable criteria

Characteristics of YIG crystals studied

Speci-
men

Orienta-
tion α, cm–1 a, Å Ba/Y,

wt % Other impurities

30 110 24.6 12.374 0.165 Mn

50 110 13.2 12.374 0.243 –

51 110 10.0 12.372 –

22-Bi 110 5.60 12.390 1.556 Sm, Mn, Bi

32-HO HO 7.20 – 1.62 V, Pb

52 110 5.15 12.377 0.95 Sm, V, Pb, Bi

50'' 110 6.91 12.374 1.40 –

43 110 3.60 12.371 0.08 –

41 110 1.27 12.377 0.90 Sm, Mn

7 110 0.40 12.370 0.023 Sm, Mn, Pb, Bi

V-3 111 23.5 12.375 0.08 Mn, Pb

V-1 111 20.7 12.365 0.16 Mn, Pb

III-6 111 17.3 12.363 0.73 Mn, Pb

46 111 10.2 12.370 –

34 111 6.16 – 2.10

42 111 0.90 12.376 0.58

VI-4 100 23.5 12.378 0.32 Mn

3 100 2.33 12.375 0.083 Sm, Mn

31 100 2.19 12.365 0.06
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for evaluating the degree of perfection of YIG single
crystals, which can be illustrated by the following
examples. Specimen 30 with the (110) orientation has
the Y/Fe ratio close to that for the stoichiometric com-
position; still, it was not sufficient for relating it to the
best specimens of the series studied, because the total
number of cations was small and the plate had poor
transparency (α = 24.6 cm–1) despite the “good” lattice
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Fig. 1. Dependence of α on ln(Ba/Y) at the wavelength λ =
1300 nm for differently oriented YIG specimens: (1) (110)-
orientation (filled circles), (100)-orientation (open circles);
(2) (111)-orientation; and (3) NO-specimens and specimens
with high impurity concentrations.
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Fig. 2. The Y/Fe ratio as a function of ln(Ba/Y) for differ-
ently oriented YIG specimens: (1) (110) and (2) (111) ori-
entations.
C

parameter (a = 12.374 Å). Specimen 3 with the (100)
orientation had the Y/Fe ratio equal to 1.089, i.e., far
from the ideal value (0.954), but its absorption coeffi-
cient was lower by an order of magnitude than this
coefficient for specimen 30, whereas the lattice param-
eter almost equals the lattice parameters of the “best”
YIG crystals. Table 1 from [10] yields more such exam-
ples. Continuing the discussion to the effect [2, 11], we
would like to state that neither the lattice parameter nor
the Y/Fe ratio can serve as an unambioguous criterion
for evaluating the quality of multicomponent crystals
with the garnet structure.

The study of 18 differently oriented YIG specimens
allowed us to formulate the criterion for evaluating
their quality—it is the ratio of the total number of Y-and
Fe-cations to the number of O anions. The oxygen con-
tent in the specimens was calculated as the difference
between the weight of the specimen and the weight of
the total number of cations. The use of this method is
quite justified because the crystal density and the struc-
ture constants differ only insignificantly. The depen-
dence α = f((Y + Fe)/O) for the specimens studied is
described by a parabola with the points of this parabola
corresponding to specimens of different degrees of per-
fection. The best YIG specimens with a composition
close to stoichiometric [S = (Y + Fe)/O ~ 2.84] are
characterized by low α-values, well-balanced concen-
trations of Ba-, Mn-, Pb-, and Bi-impurities, and the
clearly pronounced minimum [10]. This minimum on
the dependence α = f (S) for specimens 41, 42, 44, 7, 3,
and 31 leads to the conclusion that the crystals possess
the highest perfection among all the crystals studied.

The competing effect of different impurities on the
α-value is clearly seen on the specimen having a pro-
nounced concentration of Sm and a low concentration
of Ba-ions (specimens 52 and 3) and vice versa (speci-
mens 42 and 32-NO), which is also well seen from
Fig. 3 (curve 1). Specimen 41 has only a small number
of Ba- and Sm- ions and is highly transparent (α =
1.3 cm–1). The YIG specimens without Sm-ions have a
high concentration of Ba-ions (specimen 32-NO). The
preferable location of Sm-ions in the dodecahedral sub-
lattice is partly provided by the fact that the ionic radius
of Sm is less than that of Ba (rSm < rBa), moreover, the
effective coefficient of the distribution of a three-
charged Sm-ion equals 1.1. Another variant of interac-
tion is observed at the simultaneous incorporation of V-
and Ba-ions into the lattice (Fig. 3, curve 2). Figure 3
presents the results of the analysis of the X-ray photo-
electron spectroscopy data for the opposite surfaces of
2.5-mm-thick specimen 52 with α = 5.15 cm-1): one
surface of the specimen has only the Sm-impurities,
whereas the other surface has low concentrations of
Ba-, V-, Pb-, and Bi-impurities. Thus, the Sm-ions
dominate in the competition for the dodecahedral posi-
tions with Ba-, Pb-, and Bi-ions. It should be indicated
that X-ray photoelectron analysis was made for one
surface of seven YIG specimens and for both surfaces
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only of specimen 52; the results of the X-ray radiomet-
ric analysis for both sides of the specimens were aver-
aged and the Ba/Y column of Table 1 gives only this
averaged value.

The concentrations in wt % were determined by
energy dispersive analysis (EDA) for both the main ele-
ments (Y, Fe, and O) and for the technological impuri-
ties (Ba, Mn, Pb) for five YIG specimens of different
qualities. The EDA analysis was made on a large sur-
face area of the specimen (8 mm in diameter) and also
on six to eight small (180 × 240-µm) areas. The fluctu-
ations in the concentration of the main components and
the Y/Fe ratio increase almost linearly with the reduc-
tion of the specimen transparency. At an arbitrary
choice of the studied surface regions, the Y concentra-
tion in a poor-quality specimen V-3 varied within
3.5 wt %, the variation in the Fe concentration was
slightly less (~2 wt %). The inhomogeneities in the Mn
distribution are seen from the fact that they were
detected only within one or two regions of the YIG
platelet. The variations in the Ba concentration in dif-
ferent regions of the YIG specimens were of a more
smooth character.

The best specimens with α < 1 cm–1 showed the
presence of Sm-, Mn-, Ba-, Pb-, and Bi-microimpuri-
ties, with the first two having the valence varying from
two to four, which is of great importance for leveling
the electric neutrality of a garnet molecule in the case
where a certain part of divalent Ba-and Pb-ions are
incorporated into the dodecahedral sublattice.

CONCLUSIONS

The complex studies of the optical and structural
properties and the elemental composition of YIG crys-
tals studied with due regard for their crystallographic
orientation lead to the following conclusions.
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Fig. 3. Dependence of (1) Sm/Y and (2) V/Fe ratios on
ln(Ba/Y).
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The impurity-free YIG crystals (within the accuracy
of the methods used) have a considerable absorption
coefficient (10–12 cm–1 (specimens 46 and 51)). As was
indicated earlier [9], the Y/Fe ratio ranging within
0.023–0.58 wt % results in the minimum α-values for
three orientations of the YIG crystals. This can be asso-
ciated with the suppression of dislocation generation
due to incorporation of Ba-ions into the garnet struc-
ture.

The presence of Sm-, Mn-, Ba-, and V-microimpuri-
ties (at a level of several thousandths of a percent) can
play the stabilizing role in the formation of a perfect
YIG structure.

An increase of the Ba concentration in the (110)-ori-
ented YIG platelets results in a higher absorption coef-
ficient, whereas, for the (111)-oriented platelets, in a
lower α value. It is established that the incorporation of
impurities is of a competing nature for the following
pairs of ions: Mn–Ba and Sm–Ba. Quite a different sit-
uation is observed for the incorporation of V-ions
instead of Fe-ions in the sublattice.

The quality criterion for the series of the specimens
studied has been formulated. The YIG quality is deter-
mined by the ratio of the total number of Y- and Fe-cat-
ions (Y + Fe) to the number of O-anions (in our case,
expressed in wt %).
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Abstract—The conditions for existence of the regions with a local negative curvatures on the refraction surface
of the bulk elastic oscillations and formation of anomalies, which are absent in the model of an infinite crystal
and in piezoelectric plates with the convex refraction surface, have been determined for a cubic piezoelectric
plate with two metallized surfaces. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

The existence of an additional oscillation, which
cannot be classified as an intrinsic oscillation of the sys-
tem and is formed only in the presence of a bulk elastic
wave incident onto the surface of a piezoelectric crys-
tal, is one of the most typical characteristics of phonon
dynamics of finite piezoelectric crystals [1] and is asso-
ciated with the effect of a quasistatic electromagnetic
field. If such an additional oscillation is localized at the
crystal surface, the so-called accompanying surface
oscillation, its allowance is very important for the anal-
ysis of the nature of the interaction between the piezo-
electrically active acoustic waves and the crystal sur-
face. The analysis of the reflection (refraction) condi-
tions of elastic waves along the boundary of a
piezoelectric crystal showed that, in terms of the elastic
field structure, one can distinguish qualitatively differ-
ent types of accompanying surface oscillations. The
existence of the accompanying surface oscillations of
the first type does not make the spatial structure of the
elastic field of a transverse piezoelectrically active
wave more complicated in comparison with that in a
nonpiezoelectric crystal: the field of elastic displace-
ments remains one-component. The presence of the
accompanying surface oscillation of the second type
gives rise to the formation of an elastic field of a piezo-
electrically active acoustic SH-wave of an additional
partial oscillation in the spatial structure of the elastic
field. The character of the reflection (refraction) of an
elastic wave at the boundary of the piezoelectric crys-
tals in these cases is qualitatively different. For a first-
type accompanying surface oscillation, the curve
formed due to the intersection of the refraction surface
by the sagittal plane is convex, and all the reflected
(refracted) waves belong to different branches of the
phonon spectra. For the second type of the accompany-
ing surface oscillation, the analogous curve can have
both “parabolic” (the regions with the zero curvature)
1063-7745/02/4701- $22.00 © 20124
and “concave” points (i.e., the regions having negative
Gaussian curvature). In particular, in terms of reflection
(refraction) of a bulk elastic wave at the crystal bound-
ary, the existence of such a region can give rise to the
disappearance of the second-type accompanying sur-
face oscillation and the formation, along with the nor-
mal reflected wave, also of an additional bulk elastic
wave with the same polarization (the so-called effect of
multibeam reflection (refraction) of the waves without
the change of the branch) [1]. Naturally, the local
geometry of the wave-vector surface for normal bulk
oscillations of the type under consideration in an infi-
nite crystal should also be reflected in the structure of
their spectrum, because the spatial distribution of the
amplitude of the bulk oscillations results from the inter-
ference of the incident and the bulk waves reflected
from the specimen boundaries. 

An additional argument confirming the essential
influence of the refraction-surface configuration on the
structure of the spectrum of the bulk elastic oscillations
is the fact that the presence on the slowness surface of
the region with negative Gaussian curvature is a suffi-
cient condition for the formation of the generalized
shear surface acoustic wave (SAW) propagating in the
vicinity of the mechanically free surface of a piezoelec-
tric crystal [2]. 

The conditions of the formation and propagation of
bulk elastic waves in infinite plates have been consid-
ered in a large number of articles [3–13]. However, the
focus was made on the study of the structure and dis-
persion of specific bulk waves for which the energy
flow is parallel to the plate surface. The interest in this
type of bulk phonons was determined, first and fore-
most, by the fact that the conditions of their existence
are closely related to the conditions of formation of sur-
face acoustic waves. Thus, the results obtained in [6–
12] show that, in accordance with the possible exist-
ence of two types of accompanying surface oscillations
002 MAIK “Nauka/Interperiodica”
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in a finite piezoelectric plate whose surface is free of
mechanical stresses, the specific first- and second-type
bulk SH-waves are formed. For the first-type normal
acoustic oscillations, the field of elastic displacements
is a one-component bulk wave (in this case, no forma-
tion of the regions with the negative curvature is possi-
ble on the wave-vector surface spectrum irrespectively
of the values of the elasticity moduli that can satisfy the
stability conditions for the given crystalline state). For
the second type of specific bulk waves, the spatial struc-
ture of the field of elastic displacements is two-compo-
nent, because, along with the bulk component, it also
includes an additional partially inhomogeneous oscilla-
tion localized at the crystal surface. 

The influence of the piezoelectric effect on the dis-
persion law of the mode of the spectrum of bulk elastic
SH-waves whose energy flow is not parallel to the
mechanically free surface of the piezoelectric plate was
analyzed in [3–5]. The computations performed in
these studies showed that the dispersion curves Ω(k)
characterizing the spectrum of symmetric elastic SH-
oscillations can be related to the forward waves irre-
spectively of the mode, ν, and the wave number, k
(∂Ω/∂k > 0). The corresponding dispersion curve Ω(k)
for the antisymmetric modes of the spectrum of acous-
tic SH-waves in the piezoelectric plate at the given
mode number ν has the minimum at k = k∗  ≠ 0. Thus,
at k < k∗ , the formation of the backward SH-wave
becomes possible (∂Ω/∂k < 0). At the same time, the
results obtained in [3–5] indicate that the metallization
of both surfaces of the piezoelectric plate results in the
disappearance of the minimum on the dispersion curves
Ω(k) which belong to the spectrum of the antisymmet-
ric bulk acoustic SH-waves. In this case, the condition
∂Ω/∂k > 0 for the dispersion curves of the transverse
elastic waves is fulfilled irrespectively of the values of
the wave number, the mode number n, and the spatial
structure of their elastic field. Indirectly, this is con-
firmed in [5], where it is shown that the factor respon-
sible for the formation of the backward bulk wave in the
piezoelectric plate is the energy flux related to the elec-
tric field in vacuum. The direction of this flux is oppo-
site to the direction of the phase velocity of the elastic
bulk SH-wave, whereas its absolute value exceeds that
of the energy flux related to the acoustic oscillations.
At the same time, the analysis in [3–5] was performed
for a piezoelectric crystal of the class C6v, which means
that all the specific characteristics of the spectrum of
transverse bulk SH-waves were induced by the pres-
ence of the first-type accompanying surface oscillation.
The effects of the second-type accompanying surface
oscillations on the spectrum of the bulk elastic oscilla-
tions of the SH-type propagating along the piezoelec-
tric plate have not been analyzed as yet. 

In this connection, we had the aim to determine the
condition whose fulfillment in the presence of the sec-
ond-type accompanying surface oscillations (the exist-
ence of the regions with the negative Gaussian curva-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
ture on the refraction surface) would result in the for-
mation of such anomalies in the spectrum of bulk
phonons, which cannot exist either in the model of an
infinite crystal or in a piezoelectric plate with two met-
allized surfaces in which the propagation of an elastic
SH-wave is accompanied by the first-type oscillations
(the Gaussian curvature of the corresponding surface of
the backward phase velocities is positive at all the val-
ues of elastic moduli corresponding to the stability con-
dition for the given elastic state). The study was per-
formed on a cubic piezoelectric plate. 

The article consists of several sections dedicated to
the basic relationships and formulation of the boundary
problem for a cubic piezoelectric plate with two metal-
lized surfaces; the analysis of the characteristics of the
spectrum of bulk SH-type phonons induced by the pres-
ence of a second-type accompanying surface oscilla-
tion propagating along the metallized piezoelectric
plate with mechanically free surfaces; the correspon-
dence between the configuration of the surface of the
wave vectors of shear elastic oscillations of a cubic
piezoelectric plate and the structure of the spectrum of
bulk SH-phonons in the cubic piezoelectric plate; the
main effects caused by the influence of the electrody-
namical boundary conditions on the structure of the
spectrum of the transverse bulk elastic SH-waves con-
sidered in previous sections; and, finally, some conclu-
sions that can be drawn from the results obtained. 

BASIC RELATIONSHIPS 

As an example of a piezoelectric crystal in which the
formation of a second-type accompanying surface
oscillation (i.e. the formation on the surface of back-
ward phase velocities in the regions with the negative
local curvature) is possible, consider here a cubic
piezoelectric crystal with the density of the thermody-
namic potential in the form [1] 

(1)

(2)

where  and  are the piezoelectric-constant and elas-
tic-modulus tensors, respectively. 

If the plane of the elastic-oscillations propagation
coincides with the (010) plane, the solutions of the
equation of piezoacoustics show that the spectrum of
the normal phonon oscillations can be factorized and,
depending on the relative orientation of the lattice-dis-
placement vector u and the normal to the plane of the
wave propagation coinciding with the [010] direction,
the corresponding expressions can be represented in the

form  ≡ c44/ρ and  ≡ 4πe14/(ec44), where ρ is the
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crystal density, e is the dielectric constant of the crystal,
and /k2 ≡ sin2θ; k is the wave vector [1]: 

(3)

(4)

To analyze the spectrum of elastic oscillations of a
piezoelectric plate of the thickness 2d with the surface
normal n (n, k ⊥ [010]), the corresponding boundary
conditions should be fulfilled. Depending on the choice
of n and the orientation of the lattice-displacement vec-
tor u with respect to the sagittal plane (010), two phys-
ically different types of elastic boundary conditions are
possible. We assume that at u || [010] and n || [101],
both surfaces of the piezoelectric plate satisfy the con-
ditions of rigid fixation (ξ is the coordinate along the
surface normal of the film) 

. (5)

At n || [100], the boundary conditions to be fulfilled at
both surfaces of the piezoelectric plate correspond to
the boundary with the tangential sliding [14] (where σik

is the elastic-stress tensor): 

(6)

In terms of physics, this corresponds to the fulfillment
of the conditions for completely incoherent conjugation
[15] at the interface of two media, one of which is abso-
lutely rigid. We also assume that, irrespectively of the
relative orientations of the u and n vectors, both plate
surfaces are metallized (the electrodynamic boundary
conditions): 

(7)

Using Eqs. (3)–(7), one can analyze the spectrum of
acoustic oscillations propagating along an infinite plate
of a cubic piezoelectric at n, k⊥  ⊥  [010] (where k⊥  is the
wave vector along the propagation direction of an elas-
tic wave, k⊥  ⊥ n). 

BULK SH-WAVE

The calculation shows that, depending on the orien-
tation of the surface normal n in the sagittal (010)
plane, the spectrum of a bulk SH-wave can be repre-
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sented in the following way (mν ≡ πν/2d; ν = 1, 2…): 

(8)

(9)

The joint analysis of Eqs. (3), (8), (9) and the piezoa-
coustics equations shows that, in both cases, a propa-
gating transverse elastic wave is accompanied by sec-
ond-type surface oscillations, whose manifestation in
the spectrum of this elastic wave is essentially associ-
ated with the choice of the relative orientation of the
vector n in the (010) plane. In the case of Eq. (8), n ||
[001] and all the dispersion curves irrespectively of the
number ν are the forward waves at any wave number k⊥ .
Thus, being compared with the case of a piezoelectric
crystal (κ2  0), the existence of the accompanying
surface oscillation in this geometry only slightly modi-
fies the spectrum of a bulk SH-wave. The analysis of
Eq. (9) for the spectrum of shear elastic oscillations at

n || [101] shows that if  > 1/3, the existence of the
accompanying surface oscillation at 

(10)

provides the formation of a minimum on the dispersion
curve of the mode ν which belongs to the spectrum of
transverse acoustic oscillations described by Eq. (9). At
k⊥  < k∗ ν, the corresponding dispersion curves Ων(k⊥ )

are the backward waves (∂Ων/∂k⊥  < 0). An additional
characteristic of the spectrum (9) induced by the exist-
ence of the accompanying surface oscillation is the pos-
sible formation of the point of intersection (kνρ) of the

dispersion curve of modes ν and ρ at  > 1/3, i.e.,
Ων(kνρ) = Ωρ(kνρ). In this case, kνρ is the positive root of
the equation 

(11)

As has already been indicated in the Introduction, the
existence of the first- or second-type accompanying
surface oscillation in the piezoelectric crystal is essen-
tially dependent on the configuration of the refraction
surface of the correspondent normal elastic wave in an
infinite crystal. Now, consider the configuration of the
refraction surface of the normal shear oscillations in an
infinite cubic piezoelectric crystal with the anomalies
in the spectrum of bulk SH-phonons in the piezoelectric
plate established above. 
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EFFECT OF THE REFRACTIVE-SURFACE 
SHAPE 

Since the wave vector of the wave in Eqs. (8) and (9)
lies in the (010) plane, the solution of the formulated
problem requires the use of Eq. (3) to study the shape
of the section of the surface of backward phase veloci-
ties of the shear (u || [010]) elastic wave (ω = const) by
the (010) plane in the k space. The corresponding
expression is represented in the following form

( /k2 ≡ sin2θ; k2 ≡  + ): 

(12)

The analysis of the extrema of the curve described by
Eq. (12) [1] and their comparison with the anomalies in
the shape of dispersion curves given by Eqs. (8) and (9)
shows that the existence of the local minimum on the
dispersion curve of the waveguide phonon Eqs. (8) and
(9) is explained by the fact that the corresponding sec-
tion of the refraction surface of an infinite crystal by the
normal shear wave with the same polarization (12) pro-
vides the formation of the regions with the maximum

negative curvature (at  > 1/3), whose position on the
curve given by Eq. (12) in the k space is determined by
the conditions ∂k/∂θ = 0 and is uniquely related to the
frequency ω, the model number ν, the film thickness 2d,
and the wave number k⊥  of the waveguide phonon under
consideration, which is described by Eqs. (8) and (9). 

The analysis of the points common to curve (12) [1]
and their comparison with the straight lines determined
by the condition kx = const or kz = const, which inter-
sect the refraction surface (12), yields the information
on the spectrum structure of the corresponding
waveguide phonon at the given wave number k⊥ , fre-
quency ω, and the mode number ν [in this case, curves
(8) and (9)]. If the direction of the surface normal n of
the film in the kx, kz plane coincides with the ordinate
axis (n || [100]), the number of common points of the
straight line kz = k⊥ , and curve (12) determines the
mode numbers ν of the spectrum of the SH-type bulk
phonons which can propagate along the 0Z axis of the
piezoelectric film of the thickness 2d with the same
wave number k⊥  and the frequency ω (crossover
points). In the same geometry, the existence of common
points of curve (12) and the straight line kx = mν pro-
vides the determination of the wave numbers k⊥  with
which the given-type SH-phonon with the fixed mode
number ν and frequency ω can propagate along the
plate of thickness 2d. Since the outer normal to the
refraction surface coincides with the direction of the
group velocity of the wave [1], the joint analysis of
Eqs. (8), (9), and (12) and the study of the local geom-
etry of the section of isofrequency surface (12) allows
one to determine the type of wave (forward or back-
ward) propagating in the corresponding region of the
dispersion curve of the waveguide phonon with the
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given ω, mν, and k⊥  determined from Eqs. (8) and (9).
In the case under consideration k ⊥ [010] (n || [100]),
the bulk elastic shear wave (9) propagating along the
film is of the backward type if the projection of the
outer normal to this surface onto the 0Z direction at the
point of the intersection of the refraction surface and
the straight line kx = mν has the negative sign. If the pro-
jection is a positive forward wave, the corresponding
wave at the given k⊥ , ω and mν is also a forward wave.
If this projection onto the 0Z axis equals zero, the dis-
persion curve of the mode ν belonging to the spectrum
of bulk oscillations propagating along the surface of the
plate of the thickness 2d (n || [100]) has an extremum at
the frequency ω and k⊥  ≠ 0, but whether or not this
extremum is a maximum or a minimum is determined
by the sign of the local Gaussian curvature of curve (12)
at this point. 

EFFECTS ASSOCIATED WITH THE CHANGE 
OF ELECTRODYNAMIC BOUNDARY 

CONDITIONS 
Up to now, we assumed that the electrostatic poten-

tial φ at both surfaces of the piezoelectric film at ξ = ±d
obeys the condition φ = 0. This allowed us to represent
this potential in the explicit form. The corresponding
dispersion equation for propagating bulk SH-phonons
for certain orientation of n in the (010) plane and
boundary conditions (5) and (6) can be represented in
an explicit form. If these electrodynamic conditions for
the given film geometry (the relative orientations of the
vectors n, k⊥ , and the crystallographic axes n, k⊥  ⊥ [010])
are not satisfied, e.g., for 

(13)

but, as earlier, boundary conditions (5) and (6) are ful-
filled at ξ = ±d, then the spectrum of bulk phonons can
be calculated using the approach developed earlier in
[16, 17] for the analysis of the influence of the magnetic
dipole interaction on the spectrum of the exchange bulk
magnons in a thin ferromagnetic film.1 With this aim,
using Green’s function at k⊥  ⊥ [010] (n || [100]) [010]
(∆ ≡ k⊥ ) 

(14)

and the electrostatic equations under the boundary con-
dition (13), we can determine the relation between the
amplitude of the electrostatic potential φ and the ampli-
tude of oscillation of the yth component of the displace-
ment vector u of the lattice under the assumption that

1 This type of boundary conditions takes place, in particular, for an
SH-wave traveling along a mechanically free piezoelectric plate
with ideal metal screens located at a distance t on both its sur-
faces (φ = 0; ξ = ±(d + t)), and α∗   0 at t  0.
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the spatial distribution of the latter vector along the sur-
face normal of the film is a given function. This allows
the elimination of the variable related to the electro-
static potential from the equations of piezoacoustics.
Thus, in this case, the corresponding boundary problem
is solved only under the elastic boundary conditions set
by Eqs. (5) and (6). Using the method suggested in
[16, 17], the solution of this boundary problem can be
sought as an expansion of eigenfunctions of the elastic
boundary problem. In particular, for Eq. (6), we have 

(15)

where τ is the current coordinate for the wave propagat-
ing along [101]. 

As a result, the dispersion equation which describes
the spectrum of SH-type bulk phonons of the film
(a cubic piezoelectric crystal) at k ∈ XZ, n || [101], and
the boundary conditions (6) and (13) in the electrostatic
approximation can be represented as an infinite system
of algebraic linear equations with respect to the
unknown amplitudes Aν, namely,

(16)

Assuming that α∗  = 0 in (13), we obtain Wνρ(k⊥ ) = 0 and
Wνν(k⊥ ) = Ων(k⊥ ), where Ων(k⊥ ) is set by Eq. (8). Thus,
the nondiagonal elements of the infinite matrix Wνρ(k⊥ )
can be considered as a perturbation with respect to the
zeroth approximation determined by the diagonal ele-
ments of the infinite matrix Wνν(k⊥ ). Thus, it can be
concluded that the structure of the spectrum of bulk
phonon SH-oscillations in the zeroth approximation is
qualitatively equal to one determined earlier from
Eq. (9) for which, along with the boundary conditions

uy r t,( ) Aν mνξ( ) iωt ik ⊥ τ–( ),expsin
ν 1=

∑=

τ 101[ ] ,||

Wνν k ⊥( ) ω2
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ν ρ, ν ρ,≠ 1 2…;,=

Wνν k ⊥( ) s0
2

mν
2

k ⊥
2
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2
Pνρ,= =
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2
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2
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d–

d
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× G ξ t,( ) mνt( ) tdsin
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d

∫ 
 
 

dξ .
C

(6), the condition of two-sided metallization of the film
(7) was fulfilled. Now, for modes with the number ν and
ρ (ν ≠ ρ), no crossover points of the spectrum Ων(k⊥ ) =
Ωρ(k⊥ ) can exist, because Wνρ(k⊥ ) ≠ 0 at α∗  ! 1.
According to the second order of the perturbation the-
ory for degenerate levels, the structure of the SH-
phonon spectrum in the vicinity of a concrete intersec-
tion point can be represented as 

(17)

CONCLUSION 

Thus, the results obtained above allow us to state the
following. 

Depending on the symmetry of a finite piezoelectric
crystal, a backward elastic wave can be formed as well
as the minimum on the dispersion curve of the mode of
the spectrum of the bulk SH-oscillations, and the inter-
section points of the dispersion curves of the modes of
bulk elastic oscillations with the same polarization but
with different numbers. 

Contrary to the results obtained in [3–5], the mech-
anism of formation of a backward shear elastic wave
also takes place if there is no electrostatic-energy flux
associated with the wave outside the film. This is
explained by the fact that the type of surface oscillation
accompanying the bulk SH-wave in the plate cut out
from a cubic piezoelectric crystal is qualitatively differ-
ent from the type of the accompanying surface oscilla-
tions formed during the propagation of the bulk elastic
SH-wave in a plate cut out from a piezoelectric crystal
described by the class C6v [3–5]. 

The mechanism of the formation of the above char-
acteristics in the spectrum of a propagating elastic wave
is not necessarily associated with the effect of an elec-
trostatic or a magnetic field. It is shown that the anom-
alies similar to those formed in the case of a piezoelec-
trically active SH-wave can also be formed if the elastic
waves propagate along the plate are not piezoelectri-
cally active, but the vector of elastic displacements of
the lattice, u, lies in the sagittal plane. In the latter case,
the appearance of these anomalies in the spectrum of a
quasitransverse wave is explained by the formation of
an accompanying surface oscillation at the expense of
the long-range electrostatic field of quasilongitudinal
elastic deformations. 

There exists the one-to-one correspondence
between the characteristics of the spectrum of normal
elastic oscillations of a finite crystal and the local
geometry of the slowness surface of acoustic oscilla-
tions of this type in an infinite crystal. 

It should be emphasized that the formation of a
region with negative local curvature on the surface of
backward phase velocities of elastic waves can occur
only if rather rigid conditions imposed onto the elastic

Wνν k ⊥( ) ω2
–( ) Wρρ k ⊥( ) ω2

–( ) Wνρ
2

k ⊥( )– 0,≈
ν ρ≠( ).
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moduli of the crystal are fulfilled [19–21]. In particular,
in a cubic piezoelectric crystal, the formation of a
region with the negative curvature at u || [010] on the
section of the surface of the wave vectors by the (010)

plane requires the fulfillment of the condition  > 1/3,
whereas in the case u ⊥ [010], the condition η > 1
should be satisfied. It is expected that these conditions
would be satisfied, e.g., in the vicinity of the structural
phase transitions. Thus, in a cubic crystal, the c44 mod-
ulus is “softened” in the vicinity of the Curie point in
the ferroelastic phase transitions for KDP-type or Sei-
gnette-salt crystals, whereas a considerable reduction
of the value of (c11 – c12) is observed in the vicinity of
the structural phase transition for Nb3Sn, V2Si, and
some other crystals [13]. 

In this article, we only studied the case where the
concavity of the surface of the backward phase veloci-
ties “embraces” only one of the symmetry axes (the so-
called axial concavity). If the corresponding region
with negative Gaussian curvature does not embrace the
symmetry axis (the so-called intermediate concavity
[20, 21]), all the anomalies of the spectrum of the cor-
responding type of bulk elastic oscillations still can be
formed. In order to make the dispersion curve of a trav-
eling bulk elastic wave of the given polarization to be
correspondent to the backward (forward)-type wave, it
is necessary that the surface normal of the plate, n, cor-
respond to the direction along which the negative (pos-
itive) Gaussian curvature is formed on the correspond-
ing section of the wave vector surface. The necessary
condition for the formation of the intersection points of
the dispersion curves of the modes belonging to the
spectrum of normal bulk oscillations is the condition of
collinearity of the propagation direction of the elastic
wave under study and the direction along which the
corresponding refraction surface has the maximum
negative Gaussian curvature. 

Up to now, we have considered only the piezoelec-
tric mode of the spectrum of phonon oscillations in the
cubic piezoelectric plate with u || [010]. Naturally, all
the conclusions drawn above could also be extended to
the case of transverse elastic oscillations in piezomag-
netic crystals, because the basic relationships for a
finite piezoelectric medium can also be applied, within
the accuracy of notation, to a finite piezomagnetic crys-
tal of the respective symmetry [2, 18]. It should also be
indicated that the mechanism of formation of the above
characteristics in the spectrum of a propagating bulk
elastic wave is not necessarily related to the electro-
static or magnetostatic fields. In particular, it follows
from Eqs. (4)–(6) that the anomalies similar to those
observed for a piezoelectrically active SH-wave can
also be observed in the case where the elastic waves
propagating along the plate of an anisotropic crystal are
piezoelectrically inactive, if the vector of the elastic
displacements of the lattice u is located in the sagittal
plane. In this case, the above anomalies in the spectrum
of a quasitransverse wave is explained by the formation

κ2
2
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of an accompanying surface oscillation due to a far-
range electrostatic field or quasilongitudinal elastic
deformations. 
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Abstract—Based on the analysis of the K2O–P2O5–D2O solubility phase diagram, the optimum conditions of
KD2PO4 crystallization—the compositions of mother solutions and the temperature range of crystallization—
in the KH2PO4–D2O system have been determined. The technique of K(DxH1 – x)2PO4 growth is developed. The
DKDP single crystals with deuterium concentration up to 88 wt % are grown on DKDP seeds from KH2PO4
solutions in D2O by the method of temperature decrease. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Crystals of the KH2PO4 (KDP) family, in particular
KDP and K(DxH1 – x)2PO4 (DKDP), are widely used in
various electrooptical and nonlinear laser devices. The
DKDP crystals may exist in two polymorphous modifi-
cations—the tetragonal modification (the symmetry

class ) isomorphous to KDP and the monoclinic
one (the symmetry class 2). It is known that the elec-
trooptical properties of tetragonal DKDP crystals are
much better than those of KDP [1]. 

A partial replacement of hydrogen in KH2PO4 by
deuterium leads to the formation of mixed
K(DxH1 − x)2PO4 crystals with physical properties
dependent on the deuterium concentration possessing
ferroelectric phase transitions [1]. 

This study is aimed at (1) the determination of the
optimum growth conditions (the optimum composition
of the mother solutions, the temperature range of crys-
tallization) from the analysis of the known physical and
chemical data of the solubility phase diagrams
K2O−P2O5–H2O, K2O–P2O5–D2O, and KH2PO4–D2O
(25–50°C); (2) the development of the method of
growth of K(DxH1 – x)PO4 crystals in dynamic mode;
and (3) growth of DKDP crystals from solutions in the
KH2PO4–D2O system. 

CHOICE OF THE SOLUTION COMPOSITIONS 
AND GROWTH

OF K(DxH1 – x)2PO4 SINGLE CRYSTALS

Development of the method of K(DxH1 – x)2PO4
growth from the solutions of the K2O-P2O5–
(DxH1 − x)2O system is based on the analysis of the
physical and chemical characteristics of the solubility
phase diagram of the ternary K2O–P2O5–H2O [2, 3] and

42m
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K2O–P2O5–D2O systems [4]. As is shown in [5], the
phase diagrams of the ternary systems can be used to
determine the optimum growth conditions for large sto-
ichiometric solid single crystals of optical quality in the
dynamic mode. The solubility phase diagram of the ter-
nary K2O–P2O5–H2O system [2, 3] has nine branches of
solubility curves corresponding to different composi-
tions of solid phases (Fig. 1). The KH2PO4 solid phase
is dissolved congruently and is stable in the tempera-
ture range from 0 to 50°C. Its solubility curve has a sin-
gular point A corresponding to the molar ratio K2O :
P2O5 = 1 : 1. The solution composition corresponding
to the A point on the solubility curve remains
unchanged with the variation of equilibrium conditions,
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5040302010
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K : P = 1 : 1

Fig. 1. Isotherms of KH2PO4 solubility in the ternary K2O–
P2O5–H2) system [1, 2] at 0 (curve 1), 25 (curve 2), and
50°C (curve 3); A is a singular point. 
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GROWTH OF K(DxH1–x)2PO4 SINGLE CRYSTALS 131
which provides the crystallization of KH2PO4 from the
KH2PO4–H2O solutions in the temperature range from
0 to 50°C [6]. 

20
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K2O, mol %

P2O5, mol %
105
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1
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K : P = 1 : 1

1
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Fig. 2. Solubility isotherms in the ternary (1) K2O–P2O5–
H2O, (2) K2O–P2O5–D2O systems at 25°C; A is a singular
point. 
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In the K2O–P2O5–D2O system, which is studied at
25°C [4] (Fig. 2), eight different solid phases are
formed, and the phase diagram shows a complete anal-
ogy with the branches of the solubility curves of solid
phases in the K2O–P2O5–H2O system [2] with the
KD2PO4 phase being congruently soluble. 

It is found that the KD2PO4 phase dissolves in heavy
water better than the KH2PO4 phase in H2O, which can
be explained by the formation of the stronger deuterium
bonds (more stable with respect to hydrogen ones)

between the  ions and the D2O molecules [4]. 

The determination of the optimum growth condi-
tions for DKDP crystals is based on the closeness of
the physical and the chemical characteristics of the sol-
ubility isotherms of KH2PO4 and KD2PO4 crystals in
the ternary K2O–P2O5–H2O and K2O–P2O5–D2O sys-
tems at 25°C [2, 4] (Fig. 2). Thus, it is possible to con-
struct the solubility branch for KD2PO4 at 50°C, with
due regard for the fact that the KH2PO4 solubility at
50°C is about 5% higher than at 25°C (Fig. 1). 

The solubility isotherms of the K2O–P2O5–H2O sys-
tem at 50°C and the K2O–P2O5–D2O system at 25 and
50°C are shown on the triangular Gibbs diagram in
Fig. 3 to facilitate the use of the concentration data of
their components. On this diagram, point 1 corresponds
to the saturation point of the KH2PO4 solution at 50°C
(K2O = 12.00, P2O5 = 15.00, and H2O = 73.00 wt %);
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Fig. 3. Solubility isotherms of KH2PO4 in the K2O–P2O5–H2 system at 50°C (crosses); KD2PO4 in the K2O–P2O5–D2O system at
25°C (circles) and 50°C (dashed curve); (1) the composition of the saturated KH2PO4 solution at 50°C; (2) the composition of the
saturated KD2PO4 solution at 25°C; (3) the probable saturation point in the KD2PO4 solution at 50°C; and (4) the point correspond-
ing to the KH2PO4 supersaturation in the KH2PO4–D2O system at 50°C. 
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point 2 is the saturation point of the KD2PO4 solution at
50°C; and 4 is the point corresponding to a certain
supersaturation of the KH2PO4 solution in the
KH2PO4–D2O system at 50°C. 

The solubility of KD2PO4 in D2O at 50°C calculated
from the known data [1, 7] is equal to 35.54 wt % of
KDP and 64.46 wt % of D2O, which is close to the com-
position of point 4. The ternary K2O–P2O5–D2O system
used for growth of K(DxH1 – x)2PO4 crystals with differ-
ent deuterium concentration allows one to use K2O,
P2O5, and D2O components (in the form of KOH,
H3PO4, and D2O solutions) in certain weight ratios to
prepare necessary mother solutions. The binary
KH2PO4–D2O system in the ternary K2O–P2O5–D2O
system allows one to use KH2PO4 and D2O as the initial
components for preparing mother solutions. Using this
approach, airtight setup, and a number of necessary
kinetic parameters, we managed to grow
K(DxH1 − x)2PO4 crystals with the maximum possible
deuterium concentration. 

100

40

x, %

t, °C

90

80

70

60
60 80 10020

1

2

Fig. 4. Regions of existence of (1) the monoclinic and (2)
the tetragonal phases in the K(H,D)2PO4 solutions; data
[15] are shown by open circles; data [10], by filled circles;
data [11] by crosses; and x is the degree of solution deuter-
ation. 

Compositions of the solution corresponding to points 2, 3,
and 4 in the K2O–P2O5–D2O and KH2PO4–D2O systems 

Component,
wt %

Points 

2 3 4

K2O–P2O5–D2O

P2O5 13.77 18.80 19.00

K2O 9.37 12.00 13.00

D2O 76.86 69.20 68.00

KH2PO4–D2O

KH2PO4 26.50 34.48 36.65

D2O 73.50 65.52 63.35
C

The solution compositions at points 2, 3, and 4 are
listed in the table and show close values of KH2PO4 and
KD2PO4 solubility in D2O. The compositions of the
components in the KH2PO4–D2O system are deter-
mined by the lever rule [8] and are also listed in the table. 

The data obtained lead to the conclusion that the
compositions of mother solutions used for growing
K(DxH1 – x)2PO4 crystals with the maximum deuterium
concentration from the solutions in the KH2PO4–D2O
system correspond to the compositions of the saturated
solutions at point 3 and certain supersaturation at point 4
on the K2O–P2O5–(H,D)2O solubility phase diagram at
50°C (see table). 

Polymorphism of DKDP crystals hinders the choice
of growth conditions for the tetragonal DKDP crystals,
since the existence of the tetragonal or the monoclinic
phase in the mother solution depends on the tempera-
ture and the deuterium concentration in this solution. 

We analyzed the data [9–17] on the dependence of
crystallization of the tetragonal and the monoclinic
phases of KD2PO4 crystals and their mixture (mainly,
under the conditions of spontaneous crystallization) on
the degree of deuteration (60–100%), pH-value (1.6–
4.2) and the temperature (5–100°C) of the K(H,D)2PO4
solutions in (H,D)2O. 

It is shown that under the above conditions, there are
three crystallization regions—those of the tetragonal
and the monoclinic K(H,D)2PO4 phases and the mix-
ture of these two phases (Figs. 4, 5). The tetragonal
phase is stable below the solubility curve of
K(H,D)2PO4 in the temperature range from 20 to
100°C, pH 4, and the deuteration degree from 60 to
100% (Fig. 4). Similar features are also seen in Fig. 5;
in this case, the decrease in from 4.2 to 1.8 results in the
decrease of the existence region of the tetragonal phase
in terms of temperature (17–50°C) and deuterium con-
centration (85–100%). 

Based on the analysis of the known data and prelim-
inary experiments on DKDP crystallization in the
dynamic mode, we used the mother solutions with the
following characteristics: the temperature ranging
within 40–60°C, pH, ranging within 5–3, and the deu-
teration degree, about 98%. 

The K(DxH1 – x)2PO4 single crystals were grown
from solutions on seeds by the temperature decrease
method. To prepare the mother solution for growing
DKDP single crystals, we used a high-purity grade
KH2PO4 and D2O with the deuterium concentration of
about 98%. The initial composition of the mother solu-
tion corresponded to the composition of point 4: KDP
concentration 36.65 wt % and D2O concentration
63.35 wt %. 

The DKDP single crystals were grown from solu-
tions containing 167 g KDP in 300 ml D2O (i.e., the
composition corresponding to point 4) with the
decrease of the temperature from 50 to 45°C at the rate
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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of temperature decrease equal to 0.11–0.16°C per day
(24 h), and pH ranging within 3–5 (the variation in pH
was attained by addition of (D,H)3PO4). 

The reaction in the solution (50°C) proceeded by the
scheme 

KH2PO4 + D2O  K(DxH1 – x)2PO4 + H2O. (1)D2O

H2O

100

80

xl, %

t, °C
6020 40

90

80

70

100

90

80
0

pH 4.2

pH 1.8

0.2 0.4 0.6 1.00.8
xl

0

1.0

0.8

0.6

0.4

0.2

xs

Fig. 5. Regions of spontaneous crystallization of solid
phases in the K(H,D)2PO4 solutions; the tetragonal phase is
shown by crosses; the monoclinic phase, by triangles; and
the mixture of two phases, by open circles; x is the degree
of solution deuteration. 

Fig. 6. Distribution of deuterium between the K(H,D)2PO4
crystals and the saturated solution. Curves are plotted by the
data reported by different authors in accordance with the
equation given in [7]. Open circles indicate data [14] at
30°C; triangles, data at 45°C; half-filled circles, data at
60°C; rhombuses indicate data [15]; crosses, data [16];
filled circles, data [17]; and xs is the degree of crystal deu-
teration, and xl is the degree of solution deuteration. 
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In comparison with the stoichiometric concentration
of the components in the reaction (1), we had to use an
amount of D2O about 10 times higher in the mother
solutions. 

The deuterium concentration in the crystals grown
was determined from the temperature of the tetragonal–
orthorhombic phase transition and was equal to 87–
88.6 wt %. 

Proceeding from the exchange reaction [13],

H2O + D2O  2HDO (2)

and the deuterium concentration in crystals grown, we
can rewrite reaction (1) in the schematic form as

(3)

It is known that the deuteration degree in
K(DxH1 − x)2PO4 crystals is lower than in mother solu-
tions. This leads to the assumption [19] that the change
in deuterium concentration occurs during crystal
growth. 

Proceeding from data [7] (Fig. 6) and the maximum
deuterium concentration (~88 wt %) in the crystals
grown, we established that in the growth process the
concentration of deuterium in the mother solution was
about 92 wt %. 

CONCLUSIONS 

The analysis of the physical and chemical character-
istics of the formation of the KD2PO4 solid phase in the
K2O–P2O5–D2O and KH2PO4–D2O systems in the tem-
perature range 25–50°C has been performed. 

The method for growing K(DxH1 – x)2PO4 crystals in
dynamic mode has been developed. 

The optimum conditions for growing DKDP crys-
tals have been determined. 

The K(DxH1 – x)2PO4 single crystals with the maxi-
mum deuterium concentration up to 88 wt % have been
grown from the KH2PO4 solutions in (D,H)2O on a
DKDP seed by the temperature decrease method. 
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Abstract—The methodological aspects of the X-ray diffraction diagnostics of thin single-crystal layers on
nonisomorphous substrates have been considered for low-symmetric crystals and nonsingular interfaces. The
methods of their analysis suggested in the article allowed the determination of the stress and strain tensors in
the layer and the precision description of the orientational relationships. The study of the model GaN/LiGaO2
heterostructure with insignificant lattice mismatch showed that the latter is equivalent to the assumption on the
pseudomorphic nature of epitaxial growth at its initial stage. However, the final state of the heterostructure cor-
responds to the deep elastic-energy relaxation. The misfit-dislocation density in the system indicates that the
lattice mismatch is not the factor determining the epitaxial-layer perfection. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION 

In recent years, we have seen evidence an ever
growing practical interest in the creation of perfect het-
erostructures with the layer and substrate materials hav-
ing not only considerably different lattice parameters
but also different symmetries of the crystal lattices and
the types of chemical bonding (including valences).
They are also mutually insoluble which cannot be dis-
solved in one another. This interest is dictated, first and
foremost, by the necessity of creating epitaxial layers
of high-temperature superconductors and A3B5 nitrides
[1–3], the materials that cannot be grown in the form of
single crystals of required quality and dimensions
because of a number of physicochemical factors. 

The main laws of the defect formation in epitaxial
heterostructures in isovalent epitaxy are well known
[4]. At the same time, the experimental verification of
the metric matching along the interface is far from
being trivial even for cubic crystals. The situation
becomes even more complicated if the heterostructure
components are low symmetric or the interface orienta-
tion differs from the orientation described by small
indices [5–7]. 

The above indicated features result in the fact that
the hypothesis of the correlation between the metric
match of the lattices and their crystalline perfection in
epitaxial growth in the case of essentially different lat-
tices of the components has not been verified. 

Today, new single crystals of exotic compounds
with the lattice parameters close to those of the layer
are grown; the layers deposited onto these substrates
1063-7745/02/4701- $22.00 © 20135
provide the measurement of the broadening of X-ray
diffraction lines. As a rule, such broadening is less than
in the layer formation on the traditional substrates
(implicitly, it was assumed that the mismatch in the lat-
tice parameters is responsible for the degree of layer
perfection). 

It should be indicated that the study of growth of
nitrides on various sapphire and aluminum–magnesium
spinel cuts did not revealed any obvious correlation
between the lattice mismatch and the structure perfec-
tion [6–8]. The same conclusion has also been drawn in
the study of epitaxial gallium nitride films on various
substrates [9]. 

Thus, we arrive at the necessity to develop the meth-
ods for exhaustive description of the geometric rela-
tionships (mutual location) of the heterostructure com-
ponents with considerably different crystal lattices and
study possible relation between the lattice mismatch
and the physical characteristics of the layer (the degree
of crystal perfection, strains, stresses, etc.). 

2. METHODOLOGICAL ASPECTS 
OF THE DETERMINATION OF THE CRYSTAL 

GEOMETRY OF HETEROSTRUCTURES 
WITH PRONOUNCEDLY DIFFERENT CRYSTAL 

LATTICES OF THE COMPONENTS 
AND NONSINGULAR INTERFACES 

2.1. Description of the Orientational Relationship 
in an Epitaxial System 

An epitaxial orientational relationship determines
the mutual spatial arrangement of the substrate and
002 MAIK “Nauka/Interperiodica”
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layer lattices and is usually written in the form 

(1)

where (H1H2H3) and (h1h2h3) are the Miller indices of
the parallel planes of the layer and the substrate, respec-
tively, and [K1K2K3] and [k1k2k3] are the Miller indices
of parallel directions. As a rule, the indices (h1h2h3) in
Eq. (1) are the indices of the substrate cut, whereas the
direction usually lies in the cut plane, i.e., hiki = 0 and,
thus,

. (2)

Hereafter, the super- and subscripts belong to counter-
and covariant tensor components, respectively, whereas
the summation is performed over the repeating indices
at various levels. 

Such a description of the orientational relationship
uniquely determines the mutual arrangement of the lat-
tices if both metric tensors of the conjugating crystals
are known. In practice, one often encounters the case
where the metric parameters of, at least, one of the crys-
tals are unknown (e.g., if the layer is elastically
strained). Moreover, the orientational relationship in
the form of Eq. (1) is somewhat ambiguous and does
not allow one to identify the spatially equivalent rela-
tionships because 

(1) the azimuth [k1k2k3] is arbitrary, even with due
regard for Eq. (2); 

(2) there is a large number of symmetrically equiva-
lent but formally different variants of Eq. (1); and 

(3) in practice, similar to the close-packed directions
in the layer and the substrate, the singular planes are
only approximately (with a deviation of several angular
degrees) parallel to one another. 

It was suggested [6] to describe the orientational
relationship with the aid of the linear operator M such
that 

(3)

Similar relationships establish the relation between the
indices of directions

(4)

and the metric tensors of crystals 

(5)

where S and L are the metric tensors of the substrate and
the layer, respectively. This form of the orientational
relationship allows one to avoid the nonuniqueness of
the relationship and considerably simplifies the prob-
lem of the search for the equivalent orientational rela-
tionship [6]. 

When considering the assumptions about the coher-
ence degree of the heteroepitaxial boundary, it is conve-

H1H2H3( ) h1h2h3( )|| ,

K1K2K3[ ] k1k2k3[ ] ,||

HiK
i 0=

hiM j
i H j.=

M j
i K j ki=

Lij Mi
kM j

l Skl,=
C

nient to write the orientational relationship as the con-
straints imposed onto the matrix of the operator M, 

(6)

where k, K and r, R are the indices of two directions at
the interface in the coordinate systems of the substrate
and the layer, respectively, and M is an unknown “ori-
entational-relationship matrix.” 

In what follows, we consider the case where the
shape and the dimensions of the unit cells of the sub-
strate and the layer only slightly differ from one
another. As a rule, this condition is invalid for epitaxial
growth with considerably different crystal lattices of
the matrix and the layer. Therefore, as the first step, one
has to invoke the coincidence-site lattice (CSL) concept
[6, 10]. The use of the CSL concept is equivalent to the
redetermination of the sets on the basis of vectors of the
conjugated crystals, which, in turn, changes the matrix M. 

Whereas the selection rules for the unit parallelepi-
peds for each crystal are strongly defined [11], the ori-
entational-relationship matrix M can be chosen arbi-
trarily. We indicate here only the following property of
the matrix M: 

(7)

where V(L) and V(S) are the unit cell volumes of the layer
and the substrate, respectively. Thus, it is necessary to
redefine one (or both) unit cells which are compared in
order to make the orientational-relationship matrix as
close as possible to the unit matrix. With this aim, one
has either to choose the unit cell with different dimen-
sions or shape in the layer (substrate) lattice or to rede-
fine the basic vectors in the given unit parallelepiped.
The problem of the search for two- and three-dimen-
sional superlattices (sublattices) was considered in a
large number of works (see, e.g., [12–14]). We should
like to emphasize here only the following features: 

(1) The rules of the transition to a new coordinate
system (the calculation of the metric-tensor values, the
indices of the planes, and directions in the transformed
unit cell) are similar to those indicated in (3)–(5); 

(2) the determinant of the transformation matrix T of
the unit cell equals the natural number for a superlattice
(the so-called superlattice order) and the rational frac-
tion for the sublattice; 

(3) two compared transformed unit cells of the sub-
strate and the layer should be of approximately equal
volumes, i.e., 

(8)

Obviously, the triad of the basis vectors (i.e., three
noncoplanar vectors constructed on the unit-cell edges
and having the common origin) can be set by several
ways. The problem of the search for all the nonequiva-
lent ways of the setting of the basis vectors in the unit
cells of various symmetries was considered elsewhere
[3]. It should be indicated that solving the problem
associated with the reduction of the unit cells of the

ki M j
i K j, ri M j

i R j,= =

det M( ) V L( )/V S( ),=

det M( ) 1.≈
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conjugated crystals to the comparable forms, one has to
consider all possible transformations of the basis vector
including those which do not change the metric tensor
of the crystal. For the right-hand triad of the vectors, the
number of such transformation equals 24, whereas the
permutation group of the basis vectors is isomorphic to
the enantiomorphic hemihedral group of the cubic sys-
tem. 

It is logical to consider the following condition as a
criterion of closeness of the resulting matrix M to the
unit matrix I: 

(9)

where Sp is the matrix spur. 

2.2. Method of Determining the Crystallogeometric 
Parameters of an Epitaxial System 

Processing the experimental data and performing
the calculations within the anisotropic linear theory of
elasticity, we used the following assumptions: the het-
erostructure bending can be neglected (which is always
true for sufficiently thin layers); the elastic properties
and the equilibrium lattice parameters are uniform
within the epitaxial layer; and the interface is planar. 

The problem was considered in the following
sequence. Using the experimental X-ray diffraction
data, we determined the crystallogeometric characteris-
tics of the epitaxial system. Then, we calculated the
experimental values of the quantities characterizing the
strained state of the epitaxial layer and the characteris-
tics of the layer under a certain assumption on the
coherence degree of the layer–substrate interface and,
then, compared the data thus obtained with the experi-
mental ones. 

As a result of the X-ray diffraction experiment, one
has to determine the quantities characterizing the
mutual spatial orientation of the atomic planes in the
layer and the substrate. Obviously, these quantities are
ϕ and ψ (the polar angles of the normal to the corre-
sponding reflecting planes in a certain common coordi-
nate system) and the Bragg angles θ for the reflections
from the layer and the substrate. 

If a growing epitaxial layer is parallel to the sub-
strate, the metric mismatch between the substrate and
the layer unit cells is very small (characteristic of isos-
tructural epitaxy), and the problem is solved with the
invocation of the differential scheme of the rocking
curves [15, 16]. This method requires the record of two
X-ray diffraction maxima from the epitaxial layer–sub-
strate system, which correspond to lattice parameters of
the layer and the substrate. The angular distance
between these maxima depends on the difference in the
Bragg angles ∆θ and the difference in the tilt angles ∆ϕ
of the reflecting planes, whose contributions can be
separated by recording the rocking curves in different
geometries [15]. If the metric tensor of an unstrained

Sp M( ) 3,∼
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crystal (substrate) is known reliably, one can determine
the metric tensor of the strained crystal (layer). 

At the same time, this method is inapplicable to a
nonisotructural epitaxial pair, since the unit cells of the
layer and the substrate are usually incommensurate and
the orientational relationship is nontrivial. In this case,
the quantities θ, ϕ, and ψ should be determined sepa-
rately for each of the reflecting planes of the layer and
the substrate. 

The geometrical scheme of the experiment is shown
in Fig. 1. We used a standard goniometric attachment.
The vector n lies in the plane of the drawing corre-
sponding to the equatorial plane of the diffractometer.
The crystallographic plane is brought to the reflecting
position by rotating the specimen by an angle ψ around
its normal n and then by rotating it by an angle ω
around the normal to the equatorial plane of the diffrac-
tometer. 

For each layer and substrate plane, we measured the
angles ω of the reflecting position of the plane (on the
specimen scale) for four different positions of the spec-
imen with respect to the X-ray beam (Fig. 1b). The
polar angles ϕ and ψ and the Bragg angle θ were deter-
mined by averaging the data of four independent mea-
surements. Thus, in accordance with Fig. 1, one can
write the following equations for the measured ω(1),
ω(2), ω(3), and ω(4) angles: 

(10)

where θ is the Bragg angle, ϕ is the angle of deviation
of the plane normal from the specimen-surface normal
(the first polar angle of the plane normal) and ω(0) is the
systematic error of the specimen scale. Obviously, it
follows from Eqs. (10) that 

(11)

At the same time, we also measured the angles ψ(1),
ψ(2), ψ(3), and ψ(4) of the specimen rotation around its
normal, which corresponded to bringing the given
plane to the reflecting position. Then, using these
angles, we determined the second polar angle ψ
between the normal and the plane, 

(12)

where the angle ψ was measured from a certain refer-
ence azimuth r (Fig. 1a) corresponding to the zero
value of the scale. 

The crystallogeometric characteristics of the epitax-
ial system include the metric tensors of the conjugated
crystals, the orientational-relationship matrix, and the
indices of the layer–substrate interface. For the unam-
biguous determination of the crystal geometry of the

ω 1( ) θ ϕ– ω 0( ),+=

ω 2( ) θ ϕ ω 0( ),+ +=

ω 3( ) 180° θ– ϕ ω 0( ),+ +=

ω 4( ) 180° θ– ϕ– ω 0( ),+=

θ ω 1( ) ω 2( ) ω 3( )– ω 4( )– 360°+ +( )/4,=

ϕ ω 2( ) ω 1( )– ω 3( ) ω 4( )–+( )/4.=

ψ ψ 1( ) ψ 2( ) ψ 3( ) ψ 4( ) 360°–+ + +( )/4,=



138 EFIMOV, LEBEDEV
h

ϕ

r ψ

p

n
D D D D

h
h

h

h
n

n

n

n

S S S S

(a) (b)

Fig. 1. Geometric scheme of the diffraction experiment. (a) Notation used for the vectors and the polar angles in the spherical coor-
dinate system; (b) a plane in the reflecting positions: S is the X-ray source, D is the detector, h is the vector normal to the diffraction
plane, and n is the vector normal to the specimen surface. 
system, one has to determine, in accordance with Eqs.
(3)–(5), the metric tensor of one of the crystals, the
interface indices in the coordinate system of one of the
crystals, and the components of the orientational-rela-
tionship matrix M. In reality, the X-ray diffraction data
considered above dictate somewhat different sequence
of the calculations. First, one has to calculate the metric
tensors of both crystals from the experimental data on
the angles θ, ϕ, and ψ, the indices of the interface and
the directions in the interface in the corresponding
coordinate systems, and, finally, the matrix M. 

The components of the metric tensor S of the sub-
strate are related by the following equations (the com-
putations for the layer are similar): 

(13)

where d is the interplanar spacing for the (h1h2h3) plane
of the substrate characterized by the experimental value
of the angle θ. In the general case of a triclinic unit cell,
one has to calculate six independent components Sij

from the system of equations of type (13), which
requires the knowledge of six experimental values of
interplanar spacings in the substrate lattice. In the case
of the linear dependence of the equations, the number
of the experimental points should correspondingly be
increased. As a rule, the metric tensors are calculated by
the least squares method with the number of equations
exceeding the number of the components to be deter-
mined by a factor of two to three. 

The indices ni of the interface in the corresponding
coordinate system can readily be determined by mini-
mizing the following expression: 

(14)

where ϕ is the experimentally determined polar angle hi

of the plane, and the summation is performed over all
the experimentally observed reflections. For definite-
ness, we assume that |n | = 1. 

To determine the indices of a certain direction in the
interface, one has to determine the indices of the pro-

1/d2 hiS
ijh j,=

Σ ϕ nihi/ h–cos( )2
,

C

jections of the vectors h of the normal onto the interface
plane n from the following conditions: 

(15)

where p are the indices of the vector projection h onto
the plane n. Finally, the Miller indices of the sought
direction r with the known polar angles ϕ and ψ are
determined from the condition: 

(16)

where summation is performed over all the experimen-
tal reflections. 

In some cases, one has also to know the indices of
the direction k lying in the interface normally to r. We
have for ki 

(17)

i.e., nirjδijmkm > 0.
The above calculations are equivalent in the coordi-

nate systems of both layer and substrate. 
If the interface indices (h1h2h3) and (H1H2H3) and

the indices of two directions (r1r2r3), (R1R2R3) and
(k1k2k3), (K1K2K3) are known in the coordinate systems
of both substrate and layer, then nine independent com-
ponents of the matrix M of the orientational relation-
ship can be determined from the system of nine inho-
mogeneous linear equations (3) and (4). 

The characteristics of the elastically strained state
are usually defined by the elastic-strain and the stress
tensors and the scalar elastic-energy density. The calcu-
lations are performed in the following sequence: 

First, the components of the elastic-strain tensor are
determined as 

(18)

where Lij(0) are the components of the metric tensor of
unstrained crystal of the layer material. 

hi p
i h 90° ϕ–( ),cos=

ni p
i 0, p 1,= =

Σ pir
i ψcos–( )2

min, nir
i 0, r 1,= =

nik
i 0, r jk

j 0, k 1, k n r×[ ] 0,>= = =

εij Lij Lij 0( )–( )/2,=
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The stress-tensor components are determined as 

(19)

where C is the tensor of elastic moduli of the layer
material. 

The elastic-energy density is determined as 

(20)

In order to calculate the above quantities, one has to
know the value of the metric tensor of unstrained crys-
tal of the layer, i.e., the metric tensor characterizing the
bulk single crystal or a rather thick and completely
relaxed epitaxial layer of the given material. In some
cases, this tensor can be determined directly from the
experimental data. 

The condition of the mechanical equilibrium of a
strained solid at the free surface of a layer can be writ-
ten as 

(21)

where H are the crystallographic indices of the layer
surface (i.e., the indices of the layer–substrate interface
in the coordinate system of the layer). 

Substituting Eq. (18) into Eq. (19) and then Eq. (19)
into Eq. (21), we arrive at the system of three inhomo-
geneous linear equations with respect to Lij(0) 

(22)

The components of the metric tensor of an unstrained
layer can be determined from system of equations (22)
under the following conditions: (i) the number of inde-
pendent components Lij(0) does not exceed three, i.e.,
the crystal has either high or moderate (but not low)
symmetry; (ii) none of Eqs. (22) is degenerate, which
usually takes place if the substrate plane deviates from
the singular face; and (iii) the elastic moduli of the layer
material are determined reliably. 

If conditions (i) and (ii) are not met, the components
of the metric tensor of an unstrained crystal cannot be
determined unambiguously. However, even in this case,
linear relationships between Lij(0 determined by
Eqs. (22) can exist. 

2.3. Calculation of the Epitaxial-Structure Parameters 
for Various Mechanisms of Deformation 

Under the assumption of a certain acting mecha-
nism, the data obtained by the methods described above
allow one to calculate the strained state of the layer cor-
responding to this mechanism and compare the experi-
mental value of the strain tensor with the calculated
one. 

We assume that at the epitaxial temperature, the
layer is elastically strained, whereas the plastic defor-
mation is absent. When cooling the heterostructure to
room temperature, we recorded no relaxation either.
This phenomenon is usually observed if the unit-cell

σpq Cpqijεij,=

E σpqεpq/2.=

σp σpqHq,=

CpqijHq Lij Lij 0( )–( ) 0.=
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parameters of the layer and the substrate are close, i.e.,
if the orientational-relationship matrix can be repre-
sented, without loss of the generality, in the form 

(23)

where  is the Kronecker delta-function. Thus, we
arrive at the following constraint: 

(24)

For a coherent layer at 

condition (6) is transformed to the form 

(25)

i.e., the crystallographic indices of any vector lying in
the interface plane form the orientational-relationship
matrix M with the eigenvalue λ = 1. 

In terms of the O-lattice concept [10], condition (25)
signifies that the lattices of the layer and the substrate
form the O-lattice degenerate in the O-plane with the
interface orientation coinciding with this O-plane. 

Condition (25) imposes certain constraints on the
number of independent components of the matrix M,
namely, 

(26)

where a is a certain vector parameter and H are the
interface indices. Substituting Eq. (26) into Eq. (23)
and then Eqs. (23), (18), (19), and (5) into (21) and tak-
ing into account Eq. (24), we obtain 

(27)

where p = 1…3 and Lij(0) is the metric tensor of an
unstrained crystal layer. 

Using system of Eqs. (27), one can readily deter-
mine the vector parameter a and then, using Eqs. (23)
and (26), also the matrix M. Then, using Eq. (5), one
can also determine the metric tensor of the coherent
layer, and using Eqs. (18)–(20), the characteristics of
the elastically strained layer. 

At the epitaxial temperature, the layer is completely
relaxed, and elastic stresses can arise only during the
heterostructure cooling down to room temperature
because of the different values of the linear expansion
coefficients of the layer and the substrate. Thus, at the
growth temperature, the conjugated crystals are charac-
terized by equilibrium metric tensors (at the given tem-
perature). If the linear expansion coefficients at the
given temperature are known for both materials, with
the substrate orientation being also known, it is possible
to obtain (from the experimental data or symmetric
considerations) the indices of a definite direction in the
interface simultaneously in the coordinate systems of

M j
i δj

i ∆ j
i ,+=

δj
i

∆ j
i

 ! 1.

RiHi 0,=

Ri M j
i R j,=

∆ j
i aiH j,=

σp CpqijHq Sij Lij 0( ) 2Sika
kH j+–( )/2 0,= =
2



140 EFIMOV, LEBEDEV
both layer and substrate. Then conditions (6) are trans-
formed to

(28)

where the symbols (O, T) indicate that these equations
are valid for the materials of the substrate and the layer
characterized by the equilibrium metric tensors at the
growth temperature T. 

Cooling the specimen from the epitaxial tempera-
ture, we observed no plastic deformation and, there-
fore, despite the temperature dependence on the metric

tensors and the components , condition (28)
remains valid at any temperature, i.e., 

(29)

It should be emphasized that Eqs. (29) include the vec-
tors of the layer whose lengths are determined not by
the equilibrium but by the real metric tensor of the layer
existing at the given temperature. Rewriting (29) with
due regard for Eq. (23), we have 

(30)

Moreover, Equation (21) with due regard for Eqs. (26),
(23), (19), and (18) yields 

(31)

If the unit-cell parameters of the layer and the substrate
are close, the term of the second-order with respect to
∆ can be omitted. Thus, we can determine nine inde-

pendent components  from nine equations (30) and
(31). Then, using Eqs. (18)–(20) with due regard for
Eqs. (23) and (5), we calculate the characteristics of the
elastically strained state of the layer. 

Let the stresses existing in the epitaxial layer be of
the “temperature nature.” Then, with due regard for
Eqs. (28), one can write the following equations at the
epitaxial-growth temperature T 

(32)

with the symbol 0, T having the meaning of “equilib-
rium at the given temperature.” 

If one knows the linear expansion coefficients at a
given temperature, the metric tensors in Eq. (32) can be
written in the numerical form. If the vector components
in Eqs. (29) or (30) are determined experimentally in
the numerical form, then the verification of the hypoth-
esis of the temperature origin of stresses reduces to
checking the validity of Eqs. (32). 

It can happen that the TKl data for one of the crystals
are unknown. Then, there are grounds to believe that

k 0 T,( )
i M j T( )

i K 0 T,( )
j , r 0 T,( )

i M j T( )
i R 0 T,( )

j ,= =

M j
i

ki M j
i K j, ri M j

i R j,= =

ri Ri ∆ j
i R j, ki+ Ki ∆ j

i K j.+= =

σp Cpqij=

× Hq Sij Lij 0( )– 2Sik∆ j
k ∆i

m∆ j
l Sml+ +( )/2 0.=

∆i
m

kiSij 0 T,( )k
j KiLij 0 T,( )K

j,=

riSij 0 T,( )r
j RiLij 0 T,( )R

j,=

riSij 0 T,( )k
j

RiLij 0 T,( )K
j=
C

the temperature approximation is valid and, then, con-
ditions (29) and (32) can be used to evaluate the
unknown metric tensor at the growth temperature. It
should be indicated that in this case the unique solution
of the system is obtained if the number of independent
components of the metric tensor does not exceed three. 

3. “GALLIUM NITRIDE (GAN) ON LITHIUM 
GALLATE (LIGAO2)” HETEROSTRUCTURE 

3.1. Determination of the Crystallogeometric 
Characteristics of the Heterostructure 

from the Experimental Data 

We studied the epitaxial GaN layer grown by the
method of organometallic synthesis on a lithium gallate
substrate β-LiGaO2 under reduced pressure. The
growth temperature was ~800°C, the substrate thick-
ness was ~500 µm, the layer thickness was 0.77 µm,
and the ratio of the layer thickness to the thickness of
the substrate was 0.0015. The estimation of the hetero-
structure curvature at the given thickness ratio deter-
mined by the method suggested in [4] shows that the
variation in the lattice parameters of the substrate and
the layer caused by possible heterostructure curvature
are negligibly small. 

Gallium nitride is hexagonal, sp. gr. P63mc. The
reliable equilibrium lattice parameters of GaN at room
temperature measured on both bulk gallium nitride and
thick (hundreds of micrometers) relaxed epitaxial GaN
layers grown by the method of organometallic synthe-
sis are a = 3.1880 and c = 5.1851 Å [17]. The elastic
moduli of GaN used in the further calculations were 

C11 = 377, C12 = 160, C13 = 114,

C33 = 209, C44 = 81.4 GPa [18].

Lithium gallate β-LiGaO2 is orthorhombic (sp. gr.
Pna21), its lattice parameters are characterized by pro-
nounced scatter: a = 5.402, b = 6.372, and c = 5.007 Å
[19] and a = 5.4063, b = 6.3786, and c = 5.0129 Å [20]. 

The measurements were performed on a standard
DRON-2M diffractrometer with a GUR-8 goniometer,
a Ge(111) monochromator, and the CoKα-radiation. To
increase the accuracy, we also used the CuKα-radiation.
We determined the Bragg angles of reflections and the
polar coordinates of the following planes: for the
LiGaO2-substrate, {205}, {324}, {244}, {002}, {004},
and {006} and for the GaN layer, {10.3}, {10.4},
{10.5}, {00.2}, {00.4}, and {00.6}. The unit-cell
parameters calculated by the least squares method for
standard setting are: for the LiGaO2 substrate, a =
5.4090 ± 0.0007, b = 6.3801 ± 0.0010, c = 5.0112 ±
0.0008, α = 90.001 ± 0.001, β = 89.999 ± 0.002, and γ =
90.000 ± 0.003; for the GaN layer, a = 3.180 ± 0.002,
b = 3.191 ± 0.002, c = 5.187 ± 0.003, α = 89.95 ± 0.01,
β = 90.02 ± 0.01, γ = 119.81 ± 0.05. The substrate lat-
tice is orthogonal, which confirms once again the cor-
rectness of the initial assumptions on negligibly small
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elastic strains in the substrate. It is also essential that the
layer unit cell considerably differs from the equilibrium
hexagonal unit cell, which indicates the strong layer–
substrate interaction. For comparison, we also give here
our data on the lattice parameters of the layer and the
substrate obtained for the heterostructure “GaN layer
grown on the sapphire substrate misoriented from the
(0001) plane”. 

For the α-Al2O3 substrate, a = 4.7583 ± 0.0004, b =
4.7581 ± 0.0004, and c = 12.991 ± 0.002, α = 89.998 ±
0.004, β = 90.001 ± 0.004, and γ = 119.995 ± 0.007. For
the GaN layer, a = 3.1870 ± 0.0005, b = 3.1870 ± 0.005,
c = 5.1885 ± 0.0010, α = 90.003 ± 0.006, β = 89.990
± 0.006, and γ = 120.010 ± 0.009. 

Obviously, because of considerable lattice mis-
match in this system, the layer–substrate interaction is
weakened, and the layer “makes no attempts” to match
the substrate. 

The interface indices in the coordinate systems of
the layer and the substrate were determined by the least
squares method with the use of the experimentally
determined polar angles ϕ and ψ (see Fig. 1). The inter-
face (covariant) indices for the LiGaO2 substrate are n =
(0.2147, –0.1975, and 5.0049); for the GaN layer, the
interface covariant indices are n = (–0.1024, 0.1701,
and 5.1795). 

To determine the azimuthal rotation of the layer
with respect to the substrate, one has to know the coor-
dinates of any vector lying in the interface plane in the
crystallographic coordinate systems of both layer and
substrate. It is convenient to use the vector correspond-
ing to the zero azimuthal coordinate of the goniometric
head. The coordinates of this vector were also deter-
mined by the least squares method using the experi-
mental ψ values. 

The countervariant indices for the LiGaO2 substrate
are: r = [0.0615, –0.1478, –0.0032]. 

The countervariant indices for the GaN layer (in
three-index notation) are: r = [–0.3570, –0.1232,
−0.0030]. 

For the further interpretation of lattice conjugation,
one has to reduce the unit cells of the layer and the sub-
strate to a form providing their comparison. This is
done with the aid of the linear operators of transition to
new coordinate systems (Fig. 2). 

The transition to the substrate sublattice. The
matrix of transition to a new setting is 

The values of the crystallogeometrical parameters
for the new substrate setting are a = 3.1398, b = 3.1900,
c = 5.0112; α = 90.00, β = 90.00, β = 120.53; n =
(−0.0580, –0.0987, 5.0049); r = [0.1229, –0.2341,
−0.0032]. 

T
1/2 0 0

1/4– 1/2 0

0 0 1 
 
 
 
 

.=
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New notation of the layer unit cell. The matrix of
the transition to a new setting is 

The values of the crystallogeometric parameters for
the new layer setting are: a = 3.195, b = 3.180, c =
5.187; α = 90.02, β = 90.03, γ = 119.93; n = (−0.0677,
–0.1024, 5.1794); r = [0.1232, –0.2338, −0.0030]. 

Such a choice of the new settings is based on the
closeness of the crystallogeometric parameters of the
layer and the substrate in these settings, the small
dimensions of the transformed unit cells, and on the
fact that, as will be shown below, the interface is only
slightly incoherent. 

Thus, the experimental values of the components of
the orientational-relationship matrix for the trans-
formed unit cells are 

It should be indicated that the above matrix is close to
the unit matrix. 

T
1– 1 0

1– 0 0

0 0 1 
 
 
 
 

.=

M j
i

1.0184 0.0108 0.0052

0.00163 1.0023 0.00347

0.00169– 0.00056– 1.035 
 
 
 
 

.=

c ' = c

b ' = 0.5b

a ' = –0.25b + 0.5a
a

b

c ' = c

a' = –a – b

b

b ' = a

(b)

(a)

Fig. 2. Illustrating the transition to a new coordinate system:
a, b, and c are the vectors of the “old” unit cell, a', b', and c'
are the vectors of the transformed unit cell; (a) the transition
to the substrate sublattice, (b) the new notation of the unit-
cell of the layer. 
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Now, determine the characteristics of the elastically
strained state of the layer. Using the most reliable unit-
cell parameters of the unstressed layer, a = 3.1880, b =
3.1880, c = 5.1851, α = 90.00, β = 90.00, and γ =
120.00 [17], we arrive at the components of the metric
tensor of unstrained layer of the crystal 

L 0( )

10.1722 5.0861– 0.0

5.0861– 10.1722 0.0

0.0 0.0 26.8898 
 
 
 
 

.=

(a)

(b)

Fig. 3. Illustrating the reconstruction of the translation sym-
metry of the interface plane: (a) gallium nitride layer; the
200 × 200 Å area. The drawing plane in Figs. 3 and 4 coin-
cides with the interface plane; the horizontal side of the
square is parallel to the reference vector. Dark lines indi-
cated by the arrows correspond to the surface steps formed
due to the deviation of the interface from the plane with the
rational indices; (b) the same for the substrate. 
C

Now, using the metric tensor of the strained layer
obtained from the experimental lattice parameters, 

we obtain, in accordance with Eq. (18), the experimen-
tal values of the components of the elastic-strain tensor 

Using Eq. (19) and the known elastic moduli, we
can calculate the stress-tensor components 

and using Eq. (20), also the elastic-energy density, E =
0.0017 GJ/m3. 

3.2. Calculation of Crystallogeometric Characteristics 
in the Approximation of Coherent Interface 

To estimate the closeness of the heterostructure state
to coherent, one has to calculate the crystallogeometry
of the layer under the assumption of the interface coher-
ency with due regard for the experimentally determined
substrate orientation. Using Eqs. (27), (23), and (26),
we determine the components of the matrix of the ori-
entational relationship in the form 

whence, with due regard for Eq. (5), we obtain the lat-
tice parameters of the strained layer, a = 3.1399, b =
3.1900, c = 5.2479, α = 90.05, β = 90.14, and γ =
120.53. 

Then, we can also obtain the elastic strain tensor 

the stress tensor 

and the elastic-energy density E = 0.0668 GJ/m3.

L
10.2081 5.0693– 0.0092–

5.0693– 10.1146 0.0057–

0.0092– 0.0057– 26.9014 
 
 
 
 

,=

ε
0.0179 0.0084 0.0046–

0.0084 0.0288– 0.0029–

0.0046– 0.0029– 0.0058 
 
 
 
 

.=

σ
0.0679 0.0172 0.0048–

0.0172 0.0628– 0.0041–

0.0048– 0.0041– 0.0003 
 
 
 
 

=

M j
i

1.00003 0.00006 0.00282–

0.0 1.00001 0.00032–

0.00055– 0.00093– 1.0472 
 
 
 
 

,=

ε
0.1565– 0.0008– 0.0200–

0.0008– 0.0018 0.0069–

0.0200– 0.0069– 0.3255 
 
 
 
 

;=

σ
0.8317– 0.4156– 0.0186–

0.4156– 0.3889– 0.0135–

0.0186– –0.135 0.0077 
 
 
 
 

;=
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4. DISCUSSION OF RESULTS 

First of all, we should like to emphasize that the data
on the mutual lattice orientation of the layer and the
substrate are consistent with the assumption of inter-
face coherence. The necessary (but not sufficient) con-
dition of the coherency is the coincidence of the crys-
tallographic indices of the interface plane and the refer-
ence direction lying in this plane in the comparable
layer and substrate bases. 

We have the following experimental data. In the
crystallographic coordinate system: the interface indi-
ces are (–0.0677, –0.1024, 5.1794), the reference direc-
tion indices are [0.1232, –0.2338, –0.0030]; in the
coordinate system of the substrate, (–0.0580, –0.0987,
5.0049) and [0.1229, –0.2341, –0.0032]. 

This almost exact (within the measurement error)
coincidence of the indices cannot be accidental. 

On the other hand, the elastic-energy density calcu-
lated under the assumption of the system coherence for
the observed interface orientation is Ecoh = 0.0668 GJ/m3,
whereas its real value, Ecoh = 0.0017 GJ/m3, indicates
deep stress relaxation. This obvious contradiction can
be explained by the fact that, at the initial stages, the
layer growth was coherent, but with an increase of the
layer thickness, the relaxation process occurred.

The further consideration of the interface structure
requires a more detailed analysis of the heterostructure
geometry. To visualize the interface, we cut the crystal
by an arbitrary plane parallel to the interface and color
the plane obtained in such a way that the point is the
brighter, the closer it is to the unit-cell center and the
point is the darker, the closer it is to the interface. Obvi-
ously, the pattern thus obtained is strictly periodic for
rational interfaces with the translation symmetry corre-
sponding to the translation symmetry of the given
plane. The pattern for the irrational planes is quasisym-
metric. Figures 3a and 3b show the thus reconstructed
contacting surfaces of the layer and substrate. Because
the geometry of the heterostructure is close to the
coherent state, one cannot distinguish the boundary
between the drawings with a naked eye. 

To visualize the dislocation structure, we invoked
the Bollmann O-lattice concept [10]. The network of
misfit dislocations at the interface is identified with the
section of the O-cells by the interface plane (the moire
pattern). Similar to Figs. 3a and 3b showing the sec-
tions of the unit cells of the layer and substrate, Figures
4a–4c show the sections of the O-lattice formed by the
interference of the layer and the substrate lattices. It is
seen that to compensate the lattice mismatch, one has to
introduce into consideration three systems of misfit dis-
locations with the average interdislocation distance
along the a–a direction being 108; along the b–b direc-
tion, 780; and along the c–c direction, 2400 Å. Identi-
fying the minimum distance with the dimensions of the
coherent-scattering region, we obtain that the broaden-
ing of the 002 GaN reflection (the ω scan, CoKα radia-
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(a)

(b)

(c)

a-a

b-b

c-c

Fig. 4. Illustrating the reconstruction of the dislocation
structure of the specimen. The orientation is the same as in
Fig. 3. The dark lines indicated by arrows correspond to
three systems of misfit dislocations: (a) the 200 × 200,
(b) the 2000 × 2000, (c) the 10000 × 10000 Å area. 
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tion) would have exceeded the value of several degrees
[21], whereas the data obtained in our and other mea-
surements do not exceed a value of several angular min-
utes. Thus, the geometric lattice mismatch cannot be
regarded as the main factor affecting the structural per-
fection of GaN layers, and the problem of growing
high-quality heterostructures cannot be reduced (at
least at the present level of the technology) only to the
search for an ideal geometrically matching substrates.
This conclusion is also confirmed by the absence of the
explicit relationships between the degree of the geo-
metric matching and the structural perfection in epitax-
ial growth on various substrates [6, 8, 9]. 
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Abstract—Being logically justified, a new algorithm of the interexperimental minimization (IEM) has been
formally described. The IEM method is the generalization of the optimization method to the case of several
independent measurements and is characterized by the following basic features: (1) the structural model refined
is divided into the basic model and the model–perturbation; (2) the goal function of the method has four terms,
of which the first two correspond to independent measurements, the third one, to averaged measurements, and
the fourth one, to the normalized interexperimental difference; (3) in the IEM refinement, the weighting scheme
adequately reflecting the accuracy of the experimental data is automatically formed; (4) the interexperimental
minimization method includes the algorithm for reducing interparametric correlations; (5) the basic criterion of
the IEM method is the statistical test of reproducibility of the results; (6) the IEM method uses the quantum–
mechanical and molecular-dynamics calculations to normalize the experimental data; and (7) the physical reli-
ability of the results obtained upon the refinement by the IEM method also depends on the coupling relations
imposed onto the structural and functional parameters. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

In the first two parts of this article [1–5] dedicated to
a new direction in diffraction studies, which we call the
synthesis–analysis, we reviewed the published data
which indicate the necessity of the appropriate changes
in the methodology of the precision structure studies. In
short, these reasons can be reduced to the following.
First, the level of the relative accuracy of the results
already achieved in the experimental studies of highly
symmetric crystals has not been improved from the
beginning of the 1980s, which is explained by the
unchanged experimental conditions and the theoretical
models. Second, certain progress in an increase of the
level of the result reproducibility is not absolute
because of some objective reasons. Third, the correla-
tion errors in the parameters can make the physical
properties of crystals calculated from the values of the
structural parameters somewhat erroneous (the physi-
cal reliability of the structural results and the “struc-
ture–property” problem). 

It was shown [2, 4] that the use of the new algorithm
of the structural synthesis–analysis can considerably
(by 30–60%) increase the relative accuracy of the
results. The progress is achieved using the conventional
experimental setup only because of an increasing num-
ber of measurements—it is necessary to make the sec-
ond independent experiment [1]. It was also shown [5]
that the minimization of interexperimental differences
increases the level of the result reproducibility. 
1063-7745/02/4701- $22.00 © 20145
There are two aspects in the problem of correlation
between the refined parameters. 

If the model does not take into account some fea-
tures of the scattering process, the errors of the first
order of smallness can arise because of incomplete cor-
respondence of the calculated and the measured struc-
ture factors. Such systematic errors can be caused, e.g.,
by the neglect of the effect of thermal diffuse scattering
(TDS) reducing the atomic-displacement parameters,
with the correlation coefficients being close to 100%.
Most often, this effect cannot be taken into account
because of the absence of information on the elastic
constants of a crystal. To solve the problem, we used
the concepts [6–8] of the profile analysis of reflections
to introduce the empirical correction for thermal diffuse
scattering. The corresponding program for the inte-
grated-profile analysis had became a prototype of the
joint program for primary processing of diffraction data
(i.e., the program reducing the measurements to the
form corresponding to the expression for the structure
factor to be calculated). The first version of this pro-
gram allowed us to calculate the value of the averaged
weighted sound velocity in a crystal from the conven-
tional diffraction data [3]. 

To reduce the effect of correlations, which are of the
mathematical and computational nature (the second
order of smallness), we used the refinement of the cor-
relating parameters by different measured data sets and
the weighting scheme adequately reflecting the accu-
002 MAIK “Nauka/Interperiodica”
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racy of the experimental data (the interexperimental
minimization (IEM) method [2]). 

The application of new algorithms has shown their
high efficiency. Accumulated experience allows us one
to state that the IEM algorithm is quite efficient in the
search for the structural solution based on real experi-
mental data. However, the scheme of a new algorithm
is rather cumbersome and is of a semiempirical nature,
which makes its “reproduction” rather difficult. Below,
we consider the formal description of the IEM algo-
rithm based on the least squares (LS) method and show
its advantages and the possibility of its comparatively
simple implementation. 

SUBSTANTIATION
OF THE IEM ALGORITHM 

First of all, it should be emphasized that the LS and
the IEM methods are aimed at different goals. The LS
method is aimed at the minimization of the “model–
experiment” difference and attainment of the maximum
possible relative accuracy (the minimization of the reli-
ability factor). In the simplest case, the goal function in
the LS method has the form 

(1)

where Yiobs is the ith measurement of the data set with
the weight wi , i = 1…n1, and Yicalc is the corresponding
calculated quantity obtained with the use of the refined
parameters. 

However, the criterion of the relative accuracy is
only one of the possible minimization criteria. It should
be recognized that from the natural standpoint, the cri-
terion of the attainment of the reproducibility and phys-
ical reliability of the structural results is more justified.
The actual criterion is not the coincidence of the theory
and a single experiment, but the coincidence of the the-
ory and a series of independent experiments. 

The insensitivity of the LS method to systematic
errors in the experimental data is explained mainly by
the form of the goal function. In general, the following
theorem is valid: the solution of the LS problem for
nonlinear functions is not unique [9]. The practical
experience also shows that sometimes such a solution
can have no physical sense at all. 

Since the solution is not unique with respect to the
initial data in our possession, we have to search for it
with respect to all the possible sets of experimental
data. Then, it is possible to state that the general part of
the problem solution, 

(2)

will be unique by construction. For understandable rea-
sons, this problem cannot be solved. Nevertheless, it

Φ wi Yi obs Yi calc–( )2
min,

i 1=

n1
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Φ 1
N
---- wi

k( )
Yi obs

k( )
Yi calc

k( )
–( )

2
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i 1=

nk

∑
k 1=

N

∑
N ∞→
lim=
C

seems possible to prove the theorem that reads that for
any ε > 0, there exists such a value of N that the problem
solution differ from solution (2) by less than ε. It seems
that the solution can be obtained with sufficient accu-
racy if the number of the experimental data sets is equal
to the number of the parameters to be refined. More-
over, the method can be used euristically because our
assumptions are practically justified by the induction
method with the consistent use of some additional
experimental data sets [4, 5]. 

Now, let us change the summation order in (2) and
rewrite it in a somewhat different form (for a restricted
number of experiments) 

(3)

In expression (3), we made the change Yicalc =

, which is valid only if the models corre-

sponding to all the experimental data sets are adequate.
However, it is not the case in many practical applica-

tions and the summation Yi  cross =  is

incorrect. Hereafter, the subscript cross indicates the
averaged quantities; the specially obtained average data
set with the special weighting scheme wi  cross of the
dimension ncross = nj1 ∩ nj2 is called the cross set. In par-
ticular, different data sets in the structure analysis have
a priori different energy scales and can also have differ-
ent values of the effects associated with the real struc-
ture of specimens. Thus, it is appropriate to single out
from the model the part common for all the experiments
and to write (3) in the form 

where the cross set is defined as 

whereas the values of interfactors Kw (  ≡ 1) play
the role of the criteria of the accuracy of the experimen-
tal data reduction to the common scale. 
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SEPARATION OF THE MODEL 
INTO THE BASIC MODEL 

AND THE MODEL–PERTURBATION 

Thus, there are physical reasons for separating the
structural model into the basic model (common for all
the data) and the additional model–perturbation. Then,

 has the same meaning as  but depends on
the smaller number of parameters. On the contrary,

now,  is not the initial measured quantity but
the function of the parameters of the model–perturba-
tion. 

It is expedient to construct the basic model (consid-
ered in the structure analysis) using the parameters of
the kinematical model of scattering from an ideal
defect-free crystal (the atomic coordinates and the dis-
placement parameters of the atoms, the coefficients of
multipole expansion). In this case, the parameters of the
model–perturbation are the scale factor, the extinction
parameters, the dimensions and the composition of the
crystal necessary for the precision allowance for
absorption, the efficiency of the monochromator for
allowance for the radiation polarization, the ratio of the
microtwinning partners, the parameters of thermal dif-
fuse scattering (the sound velocity or the elastic con-
stants), the characteristics of the superstructure, the
occupancies of the positions for impurity atoms, any
other defects inherent in the crystal structure or compo-
sition, etc. In fact, the separation of the groups of
parameters can also be made based on any other char-
acteristic. For example, in such a way that highly corre-
lating parameters would belong to different groups. Or
else, in such a way that one group would include the
parameters which are the coefficients of a higher-order
expansion (isotropic–anharmonic displacements, core–
multipole coefficients, etc.). 

Under certain conditions, the separation of parame-
ters can be rather formal. 

Then it is necessary to verify experimentally the
assumption that the attainment of a given degree of
solution reproducibility can be attained with the use of
only two independent data sets and to perform several
runs over the number of possible variants of the model
separation. In this case, it is necessary to minimize not
only the difference between the average measurements
from the basic model, but also the differences between
the average measurement and each normalized mea-
surement, namely, the function 
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GOAL FUNCTION 
IN THE INTEREXPERIMENTAL MINIMIZATION 

METHOD 

Thus, for the case of two independent experimental
data sets of the dimensions n1 and n2, the goal function
in the IEM method is written as a sum of four terms 

(4)

The extension to the case of an arbitrary number of
experiments meets no difficulties. Traditionally, the dif-
fraction data have some “gaps,” but, of course, it is pos-
sible to collect the experimental data in such a way that
all the measurements of one data set would have the
correspondent measurements in another experimental
data set. Hereafter, we assume that this condition is
met, so that n1 = n2 = ncross = n. 

The first two terms of the above function are the tra-
ditional LS-functionals written in the explicit form
indicating that it is just the measured and not the calcu-
lated structure factors that are modified by the scale fac-
tor and the extinction effect. Thus, already at the initial
stage of the study even in the case of the insufficiently
good initial approximation, the IEM algorithm coin-
cides with the LS one (γ = δ = 0). 

The third term or the cross functional is responsible
for the calculation of the basic parameters from the
cross set data; in other words, the basic model should
satisfy the whole set of the experimental data. 

The forth term or the δfunctional “directs” the
search for the global minimum in a way to achieve the
minimization of the interexperimental difference.
Moreover, the δ-functional can also be written in the al-
ternative form when the difference of the individual da-
ta sets and their averaged values are minimized 

At the last stages, only two last terms “work” (α =
β = 0), because they include the measurements reduced
to the absolute scale, the adequate weighting scheme,
and the cross set possessing the highest accuracy not
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attainable by any other experimental or computational
methods. The latter statement should be understood in
the sense that the application of the IEM algorithm to
the already collected data can do nothing but improve
the final results. 

The parameters of the basic model are varied in the
cross functional, whereas the parameters of the model–
perturbation, in the δ-functional. At the first stages, all
the parameters in the α and β-functionals are varied,
whereas, at the later stages, only the parameters of the
model–perturbation are varied. In the general case, the
coefficients α, β, γ, and δ can also be refined as param-
eters. 

MODIFICATION 
OF THE WEIGHTING SCHEME 

The necessity of refining the weighing scheme in the
measurements is determined by the choice of the goal
function. Indeed, the minimization of the cross func-
tional requires the calculation of the weights of the
cross set proceeding from the standard parameter
uncertainties for individual reflections. The additional
possibility for the creation of the weighting scheme
adequately reflecting the accuracy of the experimental
data is the minimization of the δ-functional. For mea-
surements containing only random errors, the set of the
normalized experimental errors (the terms under the
sum sign in Φδ) should have the standardized normal
distribution (which follows from the central limit theo-
rem [10]). The fulfillment of this requirement results in
the random character of the error distribution in the
cross set and provides the refinement with χ2 ≈ 1.0 for
the qualitatively adequate structure models [1]. In this
process, no preliminary information on the model is
used. 

REDUCTION OF THE EFFECT 
OF INTERPARAMETRIC CORRELATIONS 

The efficiency of the above algorithm has been ana-
lyzed theoretically [2] and then verified practically
[2, 4]. In essence, the method reduces to the refinement
of the correlating parameters of different experimental
data sets. For example, the extinction parameters are
calculated by minimizing the interexperimental differ-
ences (the δ-functional), whereas the atomic displace-
ment parameters, by minimizing the cross functional. 

This approach not only provides a solution for cer-
tain shortcomings inherent in the LS method, but also
allows one to include into the refinement process a
group of additional parameters whose joint refinement
was not possible earlier because of their mutual corre-
lations. 

Thus, using the δ-functional, one can refine the fol-
lowing: (a) the dimensions of the crystalline specimens
used for the calculation of absorption and extinction;
(b) the value of the efficiency coefficient of a diffracto-
C

        

meter monochromator (the quantity used to take into
account this effect is usually known only approxi-
mately); (c) the value of the averaged weighted sound
velocity, which later would allow the refinement of the
characteristics of isotropic thermal diffuse scattering
together with the atomic displacement parameters; and
(d) the unit-cell parameters of the crystal within the
errors of their determination from the diffractometric
data. Moreover, we also hope that it would be possible
to determine the anisotropy of polarization effects [11]
from conventional diffractometric data. The use of
reflections obtained in symmetrically independent
regions of the reciprocal space as individual experi-
mental data sets can also be promising for studying
anisotropy in the properties of crystalline specimens. 

REPRODUCIBILITY OF RESULTS 
AND OTHER MINIMIZATION CRITERIA 

The IEM algorithm is aimed at improving the repro-
ducibility of the results obtained. It minimizes the inter-
experimental differences. The criteria of the quantity
reproducibility are given by the mathematical statistics.
We suggest the use of the universal and obvious test
based on the Abrahams–Keve normal probability plots
[12]. The accuracy of the correspondence to the scale of
the basic model can be estimated from the deviation of
the interfactor (Kw) from unity. The degree of the inter-
experimental agreement can be estimated from the cor-
responding reliability factors [1, 2]. Some other possi-
ble criteria were considered in [5]. 

NORMALIZATION 
OF EXPERIMENTAL DATA 

The experimental data can be normalized by at least
five different methods. In the general case, the determi-
nation of the normalizing factor can require the solution
of a rather complicated problem. 

1. The simplest and most accurate method is the
analytical one. The data can be normalized if a nonlin-
ear multiparametric function (structure factor depen-
dent on p parameters) is represented as a product of sin-
gle-parametric functions of the type 

The factorization of the initial function depends on
the real needs associated with singling out the contribu-
tion from the model parameters under consideration.
Normalization to the number of most critical parame-
ters for a stable refinement is performed by the analyti-
cal method. Normalization to the scale factor and the
extinction effect is performed in the conventional way.

Ycalc x1…xp( ) y j x j( ).
j 1=

p

∏=
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In the general case, it is useful to obtain the expansion
in orthogonal functions, 

where θjk are certain fitting parameters. For normaliza-
tion, it is sufficient to make a fitting expansion, e.g.,
into Chebyshev polynomials. However, it is desirable to
select the function type in such a way that the number
of the additional parameters would be minimal and the
results of the expansion would have clear physical
interpretation. 

2. The computational method can yield only approx-
imated values of the normalizing factor, but the method
is simple and universal. The normalized structure factor
is obtained as the ratio of the calculated structure factor
with due regard for the perturbation, to the factor 
without the allowance for this perturbation, Yi calc, as 

The above ratio is valid to the extent to which one
can ignore the correlations between the parameters. 

3. Mathematical method is also universal, but can be
used only for small perturbations of the model, e.g., in
localization of impurities or defects. The structure fac-
tor is expanded into series in the parameter x analyzed
at the point corresponding to the basic model, 

,

and then knorma  values are calculated. 
When using experimental data in the normalization,

we expect that the invocation of the data calculated by
the molecular dynamics and quantum mechanical
methods would also be very useful. On the other hand,
since the cross sets consist of highly accurate data, they,
in turn, can be used for the verification of the data cal-
culated by these methods as well. 

4. Molecular dynamics (MD) method of numerical
experiments with moving molecules has been devel-
oped quite well, including its application to crystals
[13]. Thus, in principle, the problem of comparative
calculations for structures of ideal defect-free crystals
and crystals with defects is solvable. At present, the
accuracy of the MD computations is determined mainly
by the accuracy of the description of atomic interac-
tions. 

5. Quantum-mechanical (QM) method can be used,
first, for calculating potentials of atomic interactions
[14] (for the MD method); second, for the ab initio cal-
culations of the crystal structures (the theory of the den-
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sity potential [15, 16]); and, third, for detalization of the
scattering process and modification of the formula of
the structure factor. 

The high efficiency of the analytical normalization
method is uniquely indicated by the considerable
reduction of the interexperimental reliability factors
[2, 4]. One cannot state a priori which of the possible
normalization methods would provide the best interex-
perimental agreement. The preliminary data indicate
that computational normalization reduces the interex-
perimental reliability factors if the model–perturbation
has from three to eight additional electrons (in compar-
ison with the basic model) per one thousand electrons. 

PHYSICAL RELIABILITY OF RESULTS 

The physical reliability of the results can readily be
verified if some structural parameters or their functions
can be obtained by the independent nondiffraction
physical methods. Unfortunately, this is possible only
for some crystals. 

To satisfy the criterion of the physical reliability is
more difficult than the reproducibility criterion because
the problem is complex and its solution requires the ful-
fillment of at least three conditions. First, some physi-
cal characteristics of the crystal analytically related to
the structural parameters should be measured. Second,
the scattering process should be described fully and
adequately. Obviously, the results are statistically valid
only if the parameters only slightly influencing the
value of the structure factor are determined with a high
accuracy. And, third, the parameters should not be dis-
torted by mutual correlations. Although the develop-
ment of the theory of radiation scattering is beyond
structural synthesis–analysis, the practical application
of various multiparametric models in combination with
this method would yield the best results, because, as has
already been indicated, the IEM algorithm consider-
ably reduces the effect of mutual parameter correlations
refined by different data sets with the weighting scheme
adequately reflecting the accuracy of the experimental
data; in other words, because the third condition is ful-
filled to a large degree. 

If the first two conditions (having no direct relation
to the structural synthesis–analysis) are also met, one
can make another step in modifying the IEM algorithm
in order to ensure the automatic fulfillment of the crite-
rion of the physical reliability of the atomic-model
parameters. 

Let a value characterizing a certain physical prop-
erty, 1, and the analytical expression relating it to the
atomic structural parameters be known. Then, accord-
ing to the “structure–property” method, the refined
results are considered to be reliable if it is possible to
attain a sufficiently good coincidence between the cal-
culated and measured properties 1. In fact, we use here
not an algorithm providing a good result, but the trial
and error method. 
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Within the IEM approach, this leads to a rather
promising method “property 1—structure—property
2.” The above analytical expression is used directly for
the model refinement as a coupling equation for the
atomic-structure parameters. Attributing a number of
parameters to the reference point, we also change the
values of the remaining parameters related to the first
ones by mutual correlations; moreover, these values are
consistent with physical property 1. Thus, most of the
structural parameters become physically reliable and
can now be used for calculating physical property 2 (in
particular, to verify the efficiency of the above algo-
rithm or calculate the crystal characteristics that cannot
be measured directly). 

The existence and the form of the analytical cou-
pling equations are dependent on each concrete crystal.
As an example, consider the relation between the
atomic displacement parameters and some thermody-
namic characteristics of sphalerite-type crystals. 

Using the experimental dependence of specific heat
on temperature, one can calculate the Debye tempera-
ture. The equation relating the atomic displacement
parameters and the Debye temperature for such crystals
can be found in [17]. On the other hand, knowing the
values of the root-mean square deviation of atoms, one
can calculate a number of thermodynamic characteris-
tics, e.g., the activation energy of vacancy formation
[18, 19] or the normal elasticity modulus [20]. 

CONCLUSION 

The test of the IEM algorithm on crystal structures
of two types with the use of eight experimental data sets
proved its high efficiency [1, 2, 4, 5]. Suffice it to say
that the refinement of the structure model of a low-sym-
metric alexandrite crystal yielded an extraordinarily
high relative accuracy R/Rw ~ 0.55/0.45% over 750–
900 reflections, whereas the traditional LS procedures
yielded only R/Rw ~ 1.0–1.5% over 1000–1500 reflec-
tions [4]. 

If the solution of the optimization problem exists, it
is logical to expect that, under certain initial conditions,
various methods (the LS, least moduli [9], material
point [21] simplex [22], Monte-Carlo [23] methods,
etc.) would give a certain approximation to this solution
(with a certain error). At the same time, in principle,
minimization of expression (4) can yield a solution
(and not only with respect to the error) different from
such an approximate solution. Therefore, one can state
that, in terms of computational mathematics, the IEM
method provides the creation of a new class of minimi-
zation algorithms, which not only compare the experi-
mentally measured and theoretically calculated values,
but also the values of different measured data sets.
Thus, the method described in this article should be
called the interexperimental minimization by the least
square method (IEM-LSM). Using the analogy, it is
C

also possible to use the terms EM-LM, MM-simplex,
etc. methods. 

The successful use of the IEM algorithm requires
the normalization of the experimental data and the anal-
ysis of the interexperimental and the intermodel differ-
ences, which can be either larger or smaller than the
model–experiment difference. Thus, in terms of phys-
ics, the IEM is a new method for constructing models
of various physical phenomena. The normalization of
experimental data is, in fact, an instrument for the
quantitative verification of new theories of radiation
scattering and the methods of theoretical calculation of
crystal structures. Singling out the contribution of the
concrete detail of the scattering process from the total
structure factor, one can determine whether this detail
is described appropriately or not prior to the creation of
the exact general theory of scattering. 

It should be emphasized that the separation of the
model to be refined into the basic model and the model–
perturbation, normalization of the experimental data,
and the necessity of using cross sets are the results of
the attempt to obtain the unique solution of the minimi-
zation problem, i.e., of the attempt to obtain reproduc-
ible results by using different experimental setups. The
further formalization of the normalization procedure
should increase the field of the IEM application—it
would be possible to consider minimization over
groups of measurements. The criterion for creating
such groups (normalization) should preferably be
selected based on physical reasons, but the analytical,
computational, and mathematical methods of normal-
ization are also sufficiently abstract. 

In application to structure analysis, the last state-
ment can be illustrated by the following reasoning.
What is the difference between the integrated intensi-
ties of the same reflection from two different data sets?
The answer is their scale factors, the fraction of various
effects, e.g., extinction, and the influence of impurities
and defects. All these characteristics can be refined
upon normalization of the experimental data in the
course of minimization of the interexperimental differ-
ence. What is the difference between the intensities of
two equivalent reflections in one data set? Their energy
scale is the same and, on the whole, the “levels” of the
extinction effects are also equal. Thus, the differences
between their intensities can be caused only by some
anisotropic effects. In other words, there is the possibil-
ity of determining the differences in extinction, absorp-
tion, etc. along different crystallographic directions,
whereas the accuracy of the averaged parameters
remains the same as in the traditional refinement. What
is the difference between the intensities of a reflection
measured using different radiations at different temper-
atures and different external factors? The kinematical
expression for the structure factor does not allow the
analytical normalization to these effects. However, the
solution can be found by the use of the corresponding
expansion in orthogonal functions. And, finally, what is
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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the difference between the intensities of two arbitrarily
chosen reflections of one data set? This question cannot
be answered, but it is clear that the formulas for the
structure factor in this case should be drastically
changed. 

The implementation of the algorithm differs from
expression (4) in that no full-matrix refinement is
needed. In the δ-functional, only the interfactor is var-
ied. Obviously, these features reduce the efficiency of
the respective computations. We hope to overcome the
above shortcomings in the third version of the program. 
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Abstract—A new program for the refinement of models of atomic structures by the X-ray, neutron, and elec-
tron diffraction data has been described. The program is based on a special form of the goal function including
the term responsible for minimizing the difference between the normalized measurements [the interexperimen-
tal minimization (IEM) method] and the adaptive nonlinear algorithm of minimization based on the
Lavrent’ev–Levenberg–Marquardt regularization. As a result, it became possible to determine a new solution
to the problem different from that obtained by the classical least squares method. To a large extent, the program
allows one to overcome the effect of parameter correlations on the procedure of refinement and the results
obtained. The test of the program on 17 experimental data sets showed the fast and stable convergence in all the
cases. Under the identical initial conditions, the new program provided lower reliability factors for most of the
crystals studied. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1–4], we suggested refining crystal struc-
ture by the new method of interexperimental minimiza-
tion (IEM). Every user encountered the situation in
which the same functional minimum in the least square
procedure could correspond to a large number of differ-
ent sets of parameters to be refined.

The theoretical consideration of the problem [1, 4]
showed that a sufficient accuracy of the solution can be
attained by changing the form of the goal function used
by introducing a term corresponding to the interexperi-
mental difference into it. The initial variants of the cor-
responding program [1, 2] yielded the results which
confirmed the efficiency of the new algorithm. How-
ever, the practical implementation of the method turned
out to be rather cumbersome because the minimization
of different terms of the new functional was performed
by various sequentially named programs.

The need for a new program arose in the develop-
ment and the practical use of the program for extended
profile analysis (EPA) [5, 6] in which the initial exper-
imental data (reflection profiles) are divided into the
components corresponding to various aspects of radia-
tion scattering. The first-type profiles corresponding to
Bragg scattering are recalculated into the integrated
intensities and are used for conventional refinement of
the structure model, whereas the second-type profiles
or the phenomenon profiles are used for calculating,
e.g., elastic constants of the crystal, and, potentially,
can also be used for calculating parameters of real
structures (structures with defects) of crystals.
1063-7745/02/4701- $22.00 © 0152
The first computations yielded a considerably
reduced value of the average weighted sound velocity
in an alexandrite crystal, which then was used to intro-
duce the empirical correction for thermal diffuse scat-
tering (TDS) in the isotropic approximation. This signi-
fies that the “phenomenon profiles” include, in addition
to the TDS profile, some other components. It was rea-
sonable to assume that all the significant phenomena
and, first of all, the phenomena of the row “TDS—radi-
ation absorption—extinction—crystal defects” should
be considered not as individual but as mutually related
ones. In the conventional LS procedure, the simulta-
neous refinement of the TDS and the atomic-displace-
ment parameters is very difficult. The IEM algorithm
allows a new approach to the solution of these prob-
lems. Thus, it became necessary to design a program
for refining the parameters of the above-listed phenom-
ena simultaneously with the structural parameters using
the diffraction-reflection profiles. We should like to
emphasize an important characteristic feature of this
new approach which distinguishes it from other
approaches, e.g., from the one described in [7]. The
measurements used in such a program are not only the
counts of quanta composing the profile, but also the
shape of the reflection line (in the extended profile anal-
ysis, the TDS parameters are determined only from the
regular changes in the shape of the reflection line).

Above, we mentioned only the reasons and possible
ways of modifying the methods that can be used in the
structure analysis by reduced data. The importance and
the significance of the problems formulated above are
2002 MAIK “Nauka/Interperiodica”
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obvious as well as its time- and labor-consuming char-
acter. Below, we describe the possibilities provided by
the third version of the IEM program based on the mea-
surements of integrated intensities.

GOAL FUNCTION AND OTHER FEATURES 
OF THE ALGORITHM

The IEM method is based on the theorem according
to which the solution to the LS problem (for nonlinear
functions) is not unique [8], which is confirmed by the
experience of the numerous repeated structural studies
which show that no results are quite reproducible in the
statistical sense.

The attempts of finding the general solution using
several different sets of measurements result in the
change of the form of the goal function and the inclu-
sion into it of the norm of the interexperimental differ-
ence [4]. The extension of the result to an arbitrary
number of repeated measurements allows the modifica-
tion of the goal function to the form

where Yi obs is the ith measurement with the weight wi

and Yi calc is the corresponding value calculated with the
use of the parameters to be refined. Then, either N = 2,
3, 4, … is the number of the independent data sets and
ncross is the number of reflections in the region of the
intersection or N = 2, 4, … 48 is the number of the crys-
tallographically equivalent reflections of only one data
set and then ncross is the number of independent reflec-
tions. To be able to average these data, one has, first, to
reduce them to one scale (i.e., to normalize the super-
script norm in the above formula). Thus, the whole
structure model is divided into two parts—the basis
model and the model-perturbation. Then the cross-set is
defined as

whereas the values of the interfactors Kw (  ≡ 1)
play the role of an accuracy criterion in the reduction of
the experimental data to one scale. The equivalent

Φ Φα Φcross Φδ+ +=

=  
1

2N
------- α wi

k( ) Yi obs
k( ) norm Yi calc

k( ) base–( )2

i 1=

ncross

∑
k 1=

N

∑




+ γ wi cross Yi cross
norm Yi calc

base–( )2

i 1=

ncross

∑

+ δ wi cross Yi obs
j( ) norm KwYi obs

k( ) norm–( )2

i 1=

ncross

∑
j k<

N

∑




,

Yi cross
norm 1

N
---- Kw

k( )Yi obs
k( ) norm,

k 1=

N

∑=

wi cross f wi
k( ) Yi obs

k( ) norm,( ),=

Kw
1( )
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reflections (for only one data set) are normalized to

anisotropic effects so that we always have (  ≡ 1).

The physical sense of individual “links” of the func-
tional was considered in [4], where some other features
of the IEM algorithm were also discussed including the
automatic formation of the adequate weighting scheme,
the algorithm for minimizing the interparametric corre-
lations, the use of the quantum-mechanical and molec-
ular-dynamics computations, the reduction of the struc-
tural parameters to the physical scale, etc.

It should be emphasized once again that the intro-
duction of a new goal function is the consequence of the
attempt to obtain the unique solution of the minimiza-
tion problem. In turn, the form of the goal function
allows one to obtain the solution that differs from that
obtained in the classical LS procedure. This can be seen
from experiments (6–9) on alexandrite crystals (see
below), in which the scale factors differ by 2% from the
initial scale factors with the corresponding changes in
the other parameters.

SOLUTION STABILITY

A “stable working” program provides the full-
matrix refinement and reduces to a minimum labor-
consuming manual operations. The result of the refine-
ment depends, first of all, on how successfully the algo-
rithm “overcomes” the difficulties associated with the
correlations between the parameters. The IEM method
uses two mutually complementing algorithms to mini-
mize the effect of correlations.

In its essence, the IEM method reduces to the refine-
ment of the correlating parameters by different sets of
experimental data. Thus, the extinction parameters are
calculated by minimizing the interexperimental differ-
ences (the δ-functional Φδ), whereas the atomic-dis-
placement parameters, by minimizing the cross-func-
tional Φcross. The efficiency of this algorithm was ana-
lyzed theoretically [1] and verified in practice [1, 2].

Another method of diminishing the effect of corre-
lations is implemented in the adaptive nonlinear mini-
mization algorithm with the use of the Lavrent’ev–Lev-
enberg–Marquardt regularization [9, 10]. Hereafter, for
the sake of brevity, this algorithm is referred to as the
nonlinear LS (N-LS) method.

As is well known, the least square method is one of
the methods of local minimization and is rather effi-
cient in the refinement in the vicinity of a local (or glo-
bal) minimum [11]. If the procedure is started at an
arbitrary point and if the correlations between the
parameters are rather strong, then the model parameters
are characterized by too pronounced displacements
along “wrong” directions and, therefore, the refinement
process can stop prior to the attainment of the global
minimum or can even be interrupted.

In this sense, the most stable LS algorithms are
those written in the 1970s–1980s in which the displace-

Kw
k( )
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Illustration of possibilities provided by the IEM program

No.

General data L-LS N-LS New possibilities provided
by the IEM method (part 3)

crystal radia-
tion

refe-
rence Nrefl/Npar R/Rw , % R/Rw , % refinement Nrefl/Npar R/Rw , %

1 CdTe, 22 C X [24] 209/9 0.915/0.964 0.891/0.957 N-LS 209/19 0.747/0.874

2 CdTe, 218 C X [24] 184/9 1.380/1.192 1.290/1.014 N-LS 184/19 1.021/0.840

3 CdTe, 300 C X [24] 151/9 1.486/1.203 1.426/1.122 N-LS 151/19 1.200/1.018

4 LiNbO3, I X [25] 635/25 1.590/1.590 1.475/1.543 N-LS 635/29 1.141/1.194

5 LiNbO3, II X [25] 695/25 1.390/1.510 1.296/1.515 N-LS 695/29 1.067/1.285

6 Al2BeO4 : Cr, I X [2, 3] 1303/41 1.157/1.257 1.153/1.257 IEM (+9) 1270/41 0.729/0.715

7 Al2BeO4 : Cr, II X [2, 3] 1137/41 1.521/1.552 1.516/1.552 IEM (+8) 789/41 0.807/0.688

8 Al2BeO4 : Cr, III X [2, 3] 972/41 1.040/1.003 1.036/1.002 IEM (+6) 931/41 0.739/0.567

9 Al2BeO4 : Cr, IV X [2, 3] 1596/41 0.990/1.122 0.990/1.122 IEM (+8) 931/41 0.639/0.553

10 La0.96Ba0.04F2.96, I N [26] 406/52 2.342/3.018 2.374/3.028 IEM (+11) 363/52 1.462/1.468

11 La0.96Ba0.04F2.96, II N [26] 443/52 2.974/4.282 2.993/4.263 IEM (+10) 363/52 1.462/1.468

12 Nd0.95Ca0.05F2.95, I N [26] 374/52 2.810/3.422 2.905/3.460 IEM (+13) 329/52 1.432/1.610

13 Nd0.95Ca0.05F2.95, II N [26] 412/52 2.695/3.148 2.727/3.113 IEM (+12) 329/52 1.432/1.610

14 MgO, I X [27] 52/2 1.45/2.44 1.442/1.700 N-LS 52/8 0.986/1.048

15 MgO, II E [28] 30/5 1.40/1.66 1.201/1.387 N-LS 30/7 1.201/1.387

16 LiF E [28] 30/4 0.99/1.36 0.907/0.742 N-LS 30/8 0.907/0.742

17 NaF E [28] 30/5 1.65/2.92 0.766/0.720 N-LS 30/5 0.766/0.720
ments in the parameters are calculated with the aid of
the inverted matrix of normal equations. At pronounced
correlations, the matrix of normal equations is ill-posed
(up to the appearance of zeroth diagonal elements),
which excludes the matrix inversion and can result in an
abend.

As is well known, modern programs envisage no
matrix inversion and the parameter displacements are
calculated upon the reduction of the matrix of normal
equations to the triangular form (the QR factorization).
Such an algorithm is more stable to the effect of corre-
lations between the parameters than the previously used
one, but both algorithms are, in fact, the linear least-
squares (L-LS) methods.

In linear LS (L-LS) methods, the matrix of deriva-
tives (the Jacobian) is obtained by expanding the non-
linear function (where the calculated structure factor
are independent of the model parameters) into a Taylor
series in the vicinity of the initial point so that the terms
higher than those of the first order are rejected. There-
fore, the displacements are determined with consider-
able errors and the trajectory of the motion toward the
minimum is far from being optimal.

In the nonlinearly regularized LS procedure (used in
the IEM method), both the above problems—the selec-
tion of the direction of the search and the negative effect
of the correlations on the degree of matrix condition-
ing—are solved to a large extent. First, the expansion of
the nonlinear function to be minimized takes into
C

account the second derivatives. Second, the Hessian is
calculated by the modified Davidon–Fletcher–Powell
iteration method not requiring matrix inversion. Third,
to avoid unpleasant consequences of possible Hessian
singularity, the method uses the additional Lavrent’ev–
Levenberg–Marquardt regularization. The test of the
algorithm showed its high efficiency.

BRIEF DESCRIPTION OF EXPERIMENTS

The test of the IEM method on 17 experimental data
sets (hereafter the experiment numbers are indicated in
parentheses) are listed in the table. The first part of table
shows the initial results obtained by the L-LS proce-
dure using the following complexes of programs:

1. PROMETHEUS (1–14) [12];
2. DSD (JANA) (10–13) [13] which yields the

results coinciding with the results (10–13) obtained by
[12];

3. κ-minimization (for electron diffraction data)
(15–17) [14].

The second part of table yields the results obtained
by the N-LS procedure for the experimental data sets
identical to those used for the first part of table and the
same sets of the parameters to be refined. For experi-
ments (15–17), no comparison was made because, by
different reasons, it was impossible to provide identical
conditions for the refinement of the initial and the IEM
computations. The models for taking into account
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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extinction in microtwin components in experiments
(10–13) were not quite identical either.

The third part of table demonstrates, first, the possi-
bilities of the program in the refinement of different
structure models (of different complexities), which is
seen from a larger number of model parameters in the
corresponding column (1–5, 14–17); second, the results
of the application of the IEM algorithm providing the
simultaneous use of two experimental data sets with the
additional experiment number being indicated in paren-
theses (6–13). The number of the parameters to be
refined was the same as in the initial computations indi-
cated in the first part of table, but the number of mea-
surements can be reduced (because not all the reflec-
tions have the corresponding pair reflection in other
data set and because the inconsistent measurements are
rejected).

All the structural models except for two were auto-
matically refined within one cycle consisting of four to
twelve full-matrix iterations without any analysis of
interparametric correlations. Let us define the change in
the relative precision of the results as δr = 2(r – r0)/(r + r0),
where r = R or r = Rw. At the fixed set of measurements
and the fixed set of parameters to be refined, the use of
the N-LS procedure alone increases the relative preci-
sion by 5 and 4% for R and Rw , respectively (1–5,
part 1).

STRUCTURE MODEL 
IN THE IEM PROGRAM

The IEM program was tested on the following struc-
ture models.

1. Goal function: refinement by |F| values (1–5, 14);
refinement by |F |2 values (6–13, 15–17), and the IEM
refinement (6–13). In the refinement by 2, the R factors
were recalculated to the form corresponding to |F|.

2. Radiation type: X-rays (X) (1–9, 14), neutrons (N)
(10–13), and electrons (E) (15–17).

3. Allowance for the additional symmetry: twinning
by (pseudo)merohedral law (10–13).

4. Effects not taken into account by the kinematical
model of diffraction: extinction correction by Zachari-
asen (4–9) [15] and Becker–Coppens (1–3, 10–13)
[16].

5. Model of atomic displacements: isotropic (14–17)
and anisotropic (6–9) thermal vibrations, Fourier-trans-
form of the Gram–Charlier expansion of the probability
density function up to the fourth (4, 5) and the sixth (1–
3, 10–13) orders.

6. Model of charge-density distribution: Coppens
κ-model (14–17) (9 is not shown) [17].

7. Elemental composition: (4–13).
The considerable part of the program deals with the

refinement of the position occupancies (4–13). It is well
known that these parameters strongly correlate with the
displacement parameters of the same atoms, which hin-
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ders the refinement. The reduction of the effect of such
correlations allowed the refinement of the position
occupancies in the following mode: it was possible to
impose arbitrary constraints on these parameters,
including, nonlinear ones; it was possible to refine both
the total and partial occupancies of the positions simul-
taneously (4, 5); the κ-model provided the description
of each impurity atom by its own set of electron shells;
and the atoms of the same kind occupying different
positions could have either the same or different sets of
electron shells (6–9). The IEM algorithm envisaged
that the position occupancies could be refined by inde-
pendent experimental data (Φα, δ) at the fixed values of
the atomic displacements, whereas the displacement
parameters were refined by the cross-set at the fixed
position occupancies, which considerable reduced the
corresponding correlations.

NONLINEAR LS AND IEM METHODS

Consider the results of experiments (1–5) (computa-
tion by the L-LS and N-LS methods) with those of
experiments (6–13) refined by the L-LS, the N-LL, and
the IEM methods with the use of linear LS procedure
from [12].

The application of N-LS method to (1–5) allows the
considerable approach to the functional minimum. The
situation for sets (6–9) is quite different: either there is
no improvement at all or the improvement attained is
insufficient. The point is that the starting model in all
the refinements (for identical crystal) for (6–9) was the
same—the model obtained in the best IEM refinement
could correspond to the global minimum. Thus, for
crystals (6–9), the refinement was started for the model
corresponding to E and Rw equal to 0.639 and 0.553%,
respectively (the model obtained upon simultaneous
averaging (8) and (9)). Therefore, it is not surprising
that the minimum decrease in the reliability factors is
observed for (6–8), whereas for (9), there is no differ-
ence between the data obtained by the linear and non-
linear least-squares procedures. In other words, exam-
ples obtained for (6–9) lead to the conclusion that,
within a sufficiently close vicinity of the global mini-
mum, the use of the LS or the N-LS algorithm in the
further computations yields the same result.

However, the analysis of (10–13) shows that this
conclusion should be somewhat modified. First of all,
the schemes of the allowance for extinction in the
microtwin components in the IEM and in the method
suggested in [12] slightly differ (the models are not
fully identical). The L-LS refinement for crystals (10–
13) is unstable—the correlations attain a value of up to
98%, no full-matrix refinement is possible, and the
refinement procedure consists of 52 cycles. The full-
matrix N-LS refinement yields somewhat worse results
than sorting of all the groups of parameters in the L-LS
method, although the refinement process converges
quite satisfactorily, especially, for set (13). Thus, under
2
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the above conditions, the N-LS method does not com-
pletely overcome the negative effect of interparametric
correlations. Using the terminology of the material-
point method [18], one can state that, in this case, the
“correlation force” turned out to be strong enough to
overcome the effect of the “force of gravity” in the
refinement and to “lift” the material point from the
region of the minimum. The consistent application of
the L-LS method reduces the correlations between the
parameters to admissible limits and also decreases the
“deviation” of the material point from the vicinity of
the minimum.

Even more pronounced correlations between the
scale factor, the parameters of isotropic thermal dis-
placements, and the occupancies of the valence shells
of the atoms were observed in the refinement by (15–17).
The full-matrix refinement by the N-LS method yields
physically senseless results, but satisfactorily termi-
nates the program at the maximum correlation coeffi-
cient 100.00% [(17), occupancies of the shells of a flu-
orine atom]. Upon the division of all the parameters
into two to three groups, we arrived at the physically
admissible values of the parameters with the R-factors
being close to the minimum ones obtained in the full-
matrix approximation.

ALLOWANCE FOR ADDITIONAL 
CHARACTERISTICS OF THE STRUCTURE 

MODEL

It was shown above that the extremely high values
of correlations between the parameters do not affect the
refinement procedure by the IEM program. The worst
result of such a refinement is the attribution of physi-
cally absurd values to parameters. Our experience in
the refinement of structure models by various programs
led us to the conclusion that in such situations, another
equally deep minimum corresponding to physically
correct values of the parameters should exist. However,
the search for this minimum is somewhat hindered
because of the data correlations and errors. In particu-
lar, studying data (15), we obtained the initial minimum
at the negative parameters of the isotropic atomic dis-
placements, whereas a more thoroughly planned refine-
ment provided the correct solution at equally low R fac-
tors.

Thus, it is possible to organize the search for addi-
tional parameters of structure models. Below, we indi-
cate the additional parameters whose variations can
minimize the functional.

1. For crystals (1), the minimum R factors are
obtained by the refinement of the unit-cell parameter.

2. In the refinement of the structure model by data
(1) (a CdTe crystal at 22°C), we obtained the pro-
nounced functional minimum upon the refinement of
the correction for anomalous scattering (or, rather, the
product of the corrections). The tabulated value of this
parameter is 2.0141. The refined value with the allow-
C

ance for the third-order anharmonicity is equal to –
1.0661, with the reduction of the reliability factors R
and Rw from 1.054 and 1.089% to 0.945 and 0.997,
respectively (using 209 reflections). This parameter
enters the acentric part of the structure factor and,
therefore, the existence of the corresponding minimum
of the functional can be explained either by the igno-
rance of anomalous scattering of a certain impurity
atom, the nonspherical nature of the charge density, or
else by the improperly detailed anharmonicity of
atomic displacements. No matter what causes the addi-
tional minimum, it is clear that we obtain a simple and
fast method for detecting impurities, nonsphericity or
anharmonism without their direct refinement, which
would require preparation of much more complicated
computations. The introduction into the model of the
anharmonism of atomic displacements up to the fourth
order (four additional parameters) reduced the reliabil-
ity factors R and Rw to 0.891 and 0.957%, respectively,
but the new refinement of the anomalous-scattering
coefficient (one parameter) showed that this effect has
not completely been taken into account, because the
reliability factors R and Rw reduced again to the values
0.843 and 0.917%, respectively. The anharmonic model
taking into account the values up to the sixth order of
magnitude did not result in the complete allowance for
this effect either. The study of this effect will be contin-
ued within the framework of the model of a nonspheri-
cal atom.

3. As was indicated earlier, the IEM method allows
the simultaneous refinement of the total and partial
occupancies of the positions of impurity atoms. This
was confirmed in the refinement by data sets (4,5) and
(6–9). In alexandrite crystals (6–9), the introduction of
four additional parameters almost did not change the
reliability factors, whereas the reduction of the total
occupancies by 4–5% was compensated by an increase
of the fraction of more strongly scattering Cr atoms, in
other words, the total scattering power did not change.

4. Somewhat different situation was observed in
Zn-doped LiNbO4 crystals (4, 5). The refinement with
the use of four additional parameters reduced the reli-
ability factors R and Rw from 1.475 and 1.543% to
1.141 and 1.194% by data (4) and from 1.296 and
1.515% to 1.067 and 1.285% by data (5). The refine-
ment of the fractional occupancies by L-LS method
was completed at the R and Rw level of 1.163 and
1.219% by data (4) and 1.236 and 1.442% by data (5),
but the total occupancy could be determined only by the
trial-and-error method.

5. For (9), we determined the functional minimum
from the value of the average weighted sound velocity,
so that we hope to be able to determine the characteris-
tics of isotropic TDS in the course of the structure-
model refinement at unknown values of elastic con-
stants of crystals.

The reduced effect of interparametric correlations
allows the introduction into the refinement of some
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other parameters which, traditionally, were considered
to be crystal or diffractometer constants such as the
monochromator efficiency, the radius of a spherical
specimen, the characteristics of the primary beam, etc.

The use of experimental data for reflections
recorded in the symmetrically nonequivalent regions of
the reciprocal space as the individual experimental data
sets is also a promising method for studying the anisot-
ropy in the properties of crystalline specimens.

For problems where the possibilities of the N-LS
method in the reduction of the parameter correlations
on the final results are only limited, the IEM algorithm
provides the universal scheme for a solution. According
to this scheme, each new parameter is refined by indi-
vidual (independent) data sets, whereas the parameters
correlating with this parameter, by the cross-set [1, 2].

MODIFICATION OF STRUCTURE MODEL

We knew a priori that the structure model initially
used in the program would be constantly modified
because of the use of new parameters to be refined. This
fact was taken into account in the following way.

The program consists of two interacting parts—an
interface and a minimizing program. The universal pro-
gram interface, UPI, written in Delphi generates auto-
matically a system of menus for the input of the initial
data into the minimizing program [19]. To facilitate the
compatibility with numerous libraries of programs for
scientific and technological computations, the second
part of the mimimizing program is written in FOR-
TRAN-90.

The main algorithm [9, 10] almost does not limit the
initiative of the user both in increasing the speed of
computations and in modifying the model. To modify
the structure model, one needs only to code the alge-
braic expression of the structure factor, because there is
no need to calculate the derivatives in the explicit form,
because they are calculated from the finite differences
during the program execution. To increase the compu-
tations speed, it is sufficient to introduce a “branch” for
analytical calculation of the Jacobian.

In this context, it is very important to impose the
appropriate constrains onto the parameters. In doing so,
the most general method of solving the minimizing
problem is the Lagrange principle of lifting these con-
straints [20, p. 253]. However, the practical application
of this principle in the structure analysis is limited by an
increasing number of variables. Therefore, it is more
convenient to use the constraints in the explicit form,
which reduces the problem dimension. The solution of
the problems for linear constraints is considered in
[21, p. 609]. In the IEM method, the constraints are
treated even easier: if the constraints are nonlinear,
then, similar to the case of the structure factors, one has
to set the analytical expression for the constraints in a
special subprogram (the linear constraints are taken
into account by the universal method). The program
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also envisages the constraints imposed in the form of
inequalities.

The above characteristics of the program structure
allowed fast coding of a rather detailed structure model.

SERVICE AND OTHER POSSIBILITIES 
OF IEM PROGRAM

The service possibilities of the program are under-
stood as the methods of setting the input information,
representation of the final results, and convenient use of
the program. In this sense, the UPI flexibility is the
most important characteristic. For the user, the IEM
program is represented in the standard of the opera-
tional system MS Windows with the system of menus
and hot keys. The only difference is that the UPI menus
are dynamical, their configurations are self-adapting to
the structure model used and other software. The mini-
mizing is performed by one of the interface-controlled
programs. Thus, the software consists of a number of
computational and service programs. The fact that the
UPI is written in Delphi provides its easy integration
into the system of the Active X and the COM elements
(and, first of all, the graphical and service ones) and, on
the other hand, the use of FORTRAN-90 as the basic
language in programming numerical computations
allows the adaptation of the software developed by
other programmers.

The computations within the program are per-
formed with double accuracy, all the information is
stored in the random-access memory, and the dimen-
sion of the problem is limited only by the computer
configuration.

The IEM method uses a number of nontraditional
criteria of refinement of which the main one is the inter-
factor value [1, 4]. The evaluation of the effect of indi-
vidual measurements on the final results is made by the
method of regression analysis.

EFFICIENCY OF THE IEM PROGRAM

Today, the N-LS [9, 10] seems to be the most effi-
cient algorithm for local minimization over the real
experimental data (the sum of residues is rather large
[21, p. 600]). The comparison of parts 1 and 2 of the
table shows that the relative accuracy of the results cal-
culated by this algorithm increases by approximately
5%. However, the comparison of parts 2 and 3 of the
table shows that the IEM algorithm for the same models
and the same initial approximations yields the results
with a considerably higher (by 30 to 60%) relative
accuracy.

This can be explained by the influence of the mea-
surement errors on the final results. Both linear and
nonlinear least squares methods are sensitive to the
errors in the experimental data. The refinement yields
the more correct results and uses the more adequate
weighting scheme, which reflects the errors in the ini-
2
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tial data, with the other conditions being the same. In
short, the equally accurate measurements should give
equal contributions into the goal function. If both
strong and weak reflections measured with the same
accuracy are to affect equally the minimization, their
weights should be inversely proportional to the inte-
grated intensity. If the intensities of these reflections are
distorted (e.g., by extinction), the ratio of their weights
should be modified. This example alone helps one to
understand that the use of the adequate weighting
scheme in the traditional refinement depends on scien-
tist’s intuition, because it is impossible to take into
account all the possible sources of errors.

The methods for estimating the standard uncertain-
ties of reflections are considered in a large number of
publications. The new nomenclature of statistical
descriptors introduced by the International Union of
Crystallography [22] only slightly facilitated the prac-
tical work. Our studies show that no universal solution
of this problem has yet been found. The IEM algorithm
provides a solution based on the methods of mathemat-
ical statistics, which allow more appropriate interpreta-
tion of the experimental data.

Insufficient attention given to the problem of correct
evaluation of measurement errors (it is commonly
believed that it is more important to obtain the exact
data, improve the statistics of calculating quanta, etc.)
results in a paradoxical situation. Let us assume that the
experiment quality is inversely proportional to the
R-factor of the refinement. Then, the analysis of data
(6–13) leads to two following conclusions: (a) the IEM
algorithm always provides the improvement of the
results obtained by the LS method and (b) the addition
of the data of a low-quality experiment to the data of a
high-quality one reduces the reliability factors, which is
most clearly seen for data (9) supplied with data (7)
indicated in the table as (9) + (7) and the corresponding
reliability factors R/Rw = 0.872/0.810. These conclu-
sions would be paradoxical if we combined only the
measurements, but the IEM method also uses the stan-
dard uncertainties of these measurements. The accu-
racy of the data cannot be increased by any subsequent
mathematical treatment, but the correct treatment,
especially for an increased volume of the initial infor-
mation, allows one to extract those results from the ini-
tial data which better correspond to the physical reality.
Often, it is more important to estimate adequately the
accuracy of the experimental data (which is provided
by the additional use of low-quality experiments) than
to increase the relative accuracy of the data by increas-
ing the time of the measurements.

IEM AS AN OPTIMIZATION METHOD

The information on the crystal structure is contained
in each individual reflection. However, it is impossible
to extract the structure model based on only one mea-
surement. One can state that there exists only two meth-
C

ods based on different algorithms for constructing the
structure model from the experimental data.

Consider either the linear or the nonlinear problem
in the close vicinity of the minimum upon its lineariza-
tion in this vicinity. As is well known, in this case, the
calculation of the p-parameters of the model requires p
measurements and the unique solution of the system of
p equations with p unknowns (for simplicity, the case of
inconsistent measurements is not considered). It is clear
that the problem is not always solvable and that, in the
general case, other p measurements would yield other
solutions. Here, for the first time, we encounter the non-
unique solution, which depends on the choice of the
data used for its determination (the errors in the initial
data).

If the solution depends on the measurement errors,
it should be averaged over all possible errors. The cor-
responding definition of the notion of a solution was
suggested by Gauss in 1794. This resulted in the cre-
ation of the least squares method providing the determi-
nation of a new type of solution in cases where the
number of measurements, n, exceeds the number of
unknowns, p, and the sum of the residues differs from
zero. Geometrically, the LS method can be interpreted
as the minimization of a certain quantity (norm) upon
the projection of a multidimensional vector of the data
onto the space of solutions of a lower dimension [23].
Two hundred years of the use of the LS method proved
its high efficiency. The main difficulty in its application
is associated with the fact that not all the possible errors
are averaged. The difficulty lies not only in the nonu-
nique solution obtained by the LS method with respect
to possible systematic errors in the experimental data.
The solution is also nonunique with respect to the
whole set of the destabilizing factors in the row “errors
in the data—errors in the estimate of these data–corre-
lation between the parameters,” i.e., it is practically
always nonunique.

The IEM method is the generalization of the LS (or
another minimization method) in which the solutions
are averaged over a large number of the error sources.
In this case, the dimension of the vector of measure-
ments does not increase, instead a new subspace of the
vectors of interexperimental differences is introduced,
and the minimization of the norm of the interexperi-
mental vector is also performed along with minimiza-
tion of other factors. In terms of geometry, the IEM
method uses the solution-vector decomposition in the
basis of measurements. It is clear that if the experimen-
tal data sets are independent and the basis is orthogonal,
the effect of the systematic errors on the solution pre-
sents no problem any more. The reduction of the effect
of other unfavorable factors is not so obvious, but our
studies confirm this conclusion both theoretically [1, 4]
and experimentally [2, 3]. A practically interesting case
is presented by partly independent data. In this
instance, the study is performed using only one set of
the experimental data, and the role of individual mea-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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surements is played by the sets of symmetrically inde-
pendent reflections. In this case, the possibilities of the
IEM method are rather limited and determined by the
angle formed by the measurement vectors and the dif-
ference in the projections of the phenomenon under
study (i.e., of some parameters of the model) on to these
vectors. Under favorable conditions, this method pro-
vides a more accurate determination of anisotropy of
some phenomena accompanying Bragg scattering.

Thus, we have shown the high efficiency of the IEM
program. Of course, the program requires further veri-
fication and its test on various experimental data. We
plan the further improvement and modernization of the
program and call for cooperation with all those who are
interested in the problem considered above. The pro-
gram can be obtained from the author free of charge.
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Abstract—The influence of the laser pump density L on the intensity and the characteristic time constant of
the intermediate-field electromodulation E0 component of photoreflectance spectra in a direct-gap semiconduc-
tor was studied. The experiments were carried out using GaAs samples with carrier concentration n ≈ 1016 cm–3

and laser pump densities in the range L = 100 µW/cm2 – 1 W/cm2. For all of the samples under study, the log-
arithmic dependence of the intensity of the electromodulation signal on the laser radiation density was ascer-
tained. No effect of the attendant variations of the characteristic time constant on the measured signal was
observed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Photoreflectance (PR) spectroscopy is widely used
for studying electronic, optical, and structural proper-
ties of semiconductors because of the comparatively
simple experimental implementation of the method
combined with the great variety of data contained in the
spectra. The main body of information can be extracted
by intermediate- or low-field measurements of the elec-
tromodulation component arising in the region of a
direct-gap (valence band)–(conduction band) transition
[1]. This component stems from the periodic modula-
tion of the surface electric field under laser irradiation
with a photon energy greater than the semiconductor
band gap. According to [2–4], the main parameter that
defines the spectral line shape and the intensity of the
electromodulation signal is the modulation depth of the
surface electric field. Thus, laser pump density (LPD)
turns out to be one of the most important parameters
that affects measurements of the spectra. However, only
the low-field components have been considered in the
studies on LPD influence reported so far [5–7]. There is
little or no information available about the LPD effect
on the characteristic time constant of the τ component,
which is a first approximation of the delay time
between the modulated reflectance signal and the pump
[8, 9].

The aim of this study was to gain insight into the
LPD influence on the intensity and characteristic time
constant of the intermediate-field electromodulation E0
component. The measurements were conducted at
1063-7826/02/3602- $22.00 © 0153
room temperature with the use of the setup described in
[10]. Phase analysis (PA) of spectra [9] from GaAs
samples (E0 = 1.424 eV [4]) with the carrier concentra-
tion n ≈ 1016 cm–3 was carried out with an SR850 two-
channel phase-sensitive amplifier (PSA). LPD values (a
red He–Ne laser) ranged from 100 µW/cm2 to 1 W/cm2.
Lower LPD resulted in such a weak signal that it could
not be measured without switching the PSA amplifica-
tion range. In contrast, for LPD exceeding 10 W/cm2,
saturation of the PR signal intensity and phase angle
was observed for some of the samples. The modulation
frequency was in the range f = 50 – 500 Hz, which
excluded its influence on the modulation signal being
measured.

The line shape of the PR intermediate-field E0 spec-
tra obtained in experiments agrees qualitatively with
that recently published [4]. The one-component charac-
ter of the spectra was proved by simulations in terms of
a generalized multilayer model [4], as well as by plot-
ting the phase diagrams [9].

CHARACTERISTIC TIME CONSTANT

The PR signal measured with a two-channel PSA
can be represented as the square root of the sum of the
squared components, one of which is in phase with the
reference signal and the other is shifted with respect to
the reference signal by 90° [9]. However, the intensity
of the PR signal may differ from the true value ∆R/R(E)
defined by the parameters of modulation. As was shown
in [10], a complex PR signal depends on the cyclic fre-
2002 MAIK “Nauka/Interperiodica”
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quency ω = 2πf, where f is the frequency of modulation,
and on the characteristic time constant τ of the compo-
nent:

(1)

Thus, a necessary condition for the intensity of the
modulation signal obtained in experiment to coincide
with its true value is ωτ ! 1.

In the context of PA, estimating τ from the phase of
delay ϕ implies a strictly specified time shape of the
signal ∆R(t) during the laser irradiation and after the
pump is turned off. One of the most frequently cited
models for ∆R(t) was proposed by Seebauer [8].
According to this model, an increase in the electric field
strength under the laser irradiation is due to the drift
and recombination of the minority carriers with the
majority carriers captured by the surface states of the
traps. Since both the recombination and drift of the
minority carriers occur within a nanosecond time scale,
they cannot ensure a noticeable delay when the density
of nonequilibrium carriers is sufficiently high. In con-
trast, the restoration of the surface charge after the laser
pump is turned off implies the capture of the majority
carriers and, thus, is characterized by the time constants
from the µs–ms interval [11, 12]. Hence, it follows that
the time constant of the PR signal after switching the
pump off is independent of LPD. According to the
model, for 1/ωτ  ∞, we should expect ϕ  0; in
the other limiting case of 1/ωτ  0, ϕ  32.48° is
expected.

Shen et al. [13] attribute modulation of the electric
field to the interaction of the surface states with the
charge carriers of both signs. Recombination with the
photogenerated minority carriers reduces the amount of
charge at the surface states; concurrently with this, cap-
ture of the majority carriers (the so called “restoration”
current) occurs. The time required for these two pro-

∆R
R

-------- E ω τ, ,( ) ∆R
R

------- E( )1 e iπ/ωτ–+

1 ω2τ2+
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7
τ, 10–5 s
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Fig. 1. Characteristic time constant of the electromodulation
E0 component τ vs. laser pump density L. The linear depen-
dence is observed down to L & 100 µW/cm2 (not shown).
cesses to come to equilibrium is the same one that defines
τ. This time is governed by the capacitance-related effects
in the space charge region (SCR), and for low and inter-
mediate depths of modulation it is expressed as

(2)

Here, C and R are the capacitance and resistance of the
surface–SCR system, respectively; Jres is the density of
the restoration current; ε is the permittivity; q is the ele-
mentary charge; d is the thickness of the space charge
layer; k is the Boltzmann constant; T is the temperature;
A is the Richardson constant; Vs = Vs, 0 – Vp, with Vs, 0
being the surface potential in the absence of irradiation;
and Vp is the photovoltage. Since Vs depends on LPD
(in terms of Vp), Eq. (2) predicts a decrease in τ with
LPD. On the assumption that the time constants for the
growth and decay are identical, we derived τ in the fol-
lowing form (see [9, 10]):

(3)

For the spectra being studied, a decrease in LPD
resulted in a reduction in the signal intensity and clock-
wise rotation of the phase diagram. Rotation of the
phase line indicates that the phase angle increases.
Since the measurements were carried out without a pre-
set of the PSA phase, the phase angle ϕ might be deter-
mined as the angle between the phase line and the X
axis [9]. A certain spread in the phase angle was
observed, but it was no greater than a few percent.
Although the values of ϕ obtained in the experiment
were within those predicted by the Seebauer model
(ϕ = 5°–10°), the variations observed are sufficient to
indicate the failure of this model in the case under
study.

In order to check the above-mentioned assumption
of equality between the growth and the decay time con-
stants, the dependence ∆R(t) at a fixed photon energy
was read from an oscilloscope for one of the samples.
Although the signal shape was only slightly different
from a rectangular one, the growth and decay regions
displayed a noticeable delay with respect to the pump
signal. Visually, the growth and decay of ∆R(t) were
judged to be exponential with approximately equal time
constants. This fact allows us to calculate τ from (3).
Figure 1 shows the τ(L) function recalculated for a typ-
ical dependence ϕ(L). As is evident from Fig. 1, the
thus obtained τ(L) can be closely approximated by a
straight line. In view of the logarithmic dependence of
photovoltage on LPD [5, 6], a linear τ(L) dependence is
predicted by (2). This result presents another argument
in favor of the Shen model.

The τ values obtained are within the range of (3–6) ×
10–5 s. According to formula (1), this means that, for the
considered LPD values, the nonzero characteristic time
constant does not noticeably affect the measured signal.
Therefore, the electromodulation signal intensity
obtained in the experiment may be interpreted as a true

τ RC
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dV s
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εε0

d
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q
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value, which is conditioned only by the parameters of
the modulation process.

In order to exclude the influence of the laser wave-
length, we performed a series of experiments with a
blue He–Cd laser (λ = 441.6 nm). No qualitative dis-
agreement with previously obtained results was
observed. With the blue-light irradiation, however, the
values of τ were smaller, which can easily be explained
by shifting the region of nonequilibrium-carrier gener-
ation towards the sample surface.

THE A(L) DEPENDENCE

The concept of an amplitude factor A has, thus far,
only been introduced for a low-field case, when the
spectral line shape depends neither on the electric field
strength nor on its modulation depth. As has been
shown previously [5–7], this case corresponds to a lin-
ear dependence of the electromodulation signal on pho-
tovoltage or on a variation in the surface potential ∆Vs.
From the logarithmic dependence of ∆Vs on both the
current of the photoinduced minority carriers towards
the surface Jpc and the “restoration” current Jres, and
from the linear dependence of Jpc on L, the logarithmic
character of A(L) immediately follows.

For an intermediate-field component, the concept of
amplitude factor may be introduced analytically only
under the conditions of (i) uniformity of the electric
field over the region of PR generation and (ii) complete
suppression of this field by the irradiation [14, 15]. In
this case, the amplitude factor might be defined as a
coefficient of proportionality between the broadened
electrooptical G function [15] and the spectral line
under investigation. As was previously demonstrated
[3, 4], these conditions are actually not satisfiable and
the spectral component shape cannot be described by a
single analytical expression. Nevertheless, the calcula-
tions performed within the generalized multilayer
model [4] suggest that, within the interval of the electric
field modulation depth ξ > 0.05, the line shape, period,
and energy position of Franz–Keldysh oscillations
remain nearly constant and are defined merely by the
electric field in the absence of irradiation and the
energy of the electron–optical transition. In contrast,
within the interval specified above, the signal intensity
only depends on the depth of modulation of the surface
electric field. The above considerations justify using the
magnitude of Franz–Keldysh oscillations as an ampli-
tude factor for an intermediate-field electromodulation
signal.

The dependences A(L) thus determined for several
samples are plotted in Fig. 2. As an amplitude factor,
the magnitude of the second positive Franz–Keldysh
oscillation was used. For a fixed LPD, a considerable
sample-to-sample spread of the amplitude factor was
observed. Because of this, the results were normalized
before being compared. Quantitative analysis indicates
that all of the dependences A(L) found in experiments
SEMICONDUCTORS      Vol. 36      No. 2      2002
can be well approximated by a logarithmic function.
This circumstance led us to the conclusion about a lin-
ear relationship between the amplitude factor of the
intermediate-field electromodulation signal and the
photovoltage or variation in the surface potential ∆Vs
within the LPD range considered.

CONCLUSION

To summarize, we would like to remind the reader
that this study was aimed at gaining insight into the
LPD influence on the characteristic time constant τ
and the intensity of the intermediate-field electromod-
ulation component. Varying LPD within the range L =
100 µW/cm2 – 1 W/cm2 results in a change in τ. This
change, however, has practically no effect on the mea-
sured signal. Using experimental data and the results of
calculations based on the generalized multilayer model,
we introduced a concept of the amplitude factor for the
intermediate-field component and proposed a method
for determining it. For the samples under investigation,
the logarithmic dependence A(L) was established. By
comparing the results obtained with those published
elsewhere, the amplitude factor of the intermediate-
field electromodulation signal was found to be a linear
function of photovoltage. We may conclude that the
typical response of the intermediate-field component to
a change in LPD over a wide range of L values was
obtained.

REFERENCES

1. D. E. Aspnes, Surf. Sci. 37, 418 (1973).
2. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
3. J. P. Estrera, W. M. Duncan, and R. Glosser, Phys. Rev.

B 49, 7281 (1994).
4. R. Kuz’menko, A. Ganzha, É. P. Domashevskaya, et al.,

Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1086 (2000)
[Semiconductors 34, 1045 (2000)].

5. R. Ditchfield, D. Llera-Rodríguez, and E. G. Seebauer,
Phys. Rev. B 61, 13710 (2000).

10–1

A
, a

rb
. u

ni
ts

L, W/cm2100

Fig. 2. Typical dependences of the photoreflectance signal
on laser pump density A(L) for the three samples studied.



156 KUZ’MENKO et al.
6. E. R. Wagner and A. Manselis, Phys. Rev. B 50, 14228
(1994).

7. H. Shen, S. H. Pan, Z. Hang, et al., Appl. Phys. Lett. 53,
1080 (1988).

8. E. G. Seebauer, J. Appl. Phys. 66, 4963 (1989).

9. A. V. Ganzha, W. Kircher, R. V. Kuz’menko, et al., Fiz.
Tekh. Poluprovodn. (St. Petersburg) 32, 272 (1998)
[Semiconductors 32, 245 (1998)].

10. S. Hildebrandt, M. Murtagh, R. Kusmenko, et al., Phys.
Status Solidi A 152, 147 (1995).
11. P. M. Pires, P. L. Souza, and J. P. von der Weid, Appl.
Phys. Lett. 65, 88 (1994).

12. T. Kanata, M. Matsugana, T. Takakura, and Y. Hama-
kawa, J. Appl. Phys. 69, 3691 (1991).

13. H. Shen, M. Dutta, R. Lux, et al., Appl. Phys. Lett. 59,
321 (1991).

14. D. E. Aspnes, Phys. Rev. 147, 554 (1966).
15. D. E. Aspnes, Phys. Rev. 153, 972 (1967).

Translated by A. Sidorova-Biryukova
SEMICONDUCTORS      Vol. 36      No. 2      2002



  

Crystallography Reports, Vol. 47, No. 1, 2002, pp. 160–161. Translated from Kristallografiya, Vol. 47, No. 1, 2002, pp. 172–173.
Original Russian Text Copyright © 2002 by the Editorial Board.

           

OBITUARY

   
Georgiœ Borisovich Bokij
(October 9, 1909–September 4, 2001)
On September 4, 2001, Georgiœ Borisovich Bokij
(Bokii), a well-known crystallographer, Professor, Cor-
responding Member of the Russian Academy of Sci-
ences, one of the creators and organizers of Russian
crystal chemistry, passed away.

G.B. Bokij was born on October 9, 1909 in
St. Petersburg into the family of an outstanding mining
engineer Professor of the Mining Institute Boris
Ivanovich Bokij and studied at the Mining Institute,
where his teachers were A.K. Boldyrev and N.S. Kur-
nakov. Upon successful graduation from the institute in
1930, Bokij started studying the optical properties of
crystals by the Fedorov method under the supervision
of A.V. Shubnikov at the Lomonosov Institute. In 1931,
he also began growing crystals–ferroelectrics at the
Physicotechnical Institute.

Bokij continued improving his crystallographic
knowledge by self-education. Every morning, three
young future celebrities—Bokij, Shubnikov, and
1063-7745/02/4701- $22.00 © 20160
M.P. Shaskol’skaya—delivered in turn lectures on var-
ious aspects of crystallography to one another.

In 1934, the Lomonosov Institute moved to Mos-
cow, where Bokij started working under the guidance
of N.S. Kurnakov. In 1935, he organized the Laboratory
of Crystallography (later, the Laboratory of Crystal
Chemistry) at the Institute of General and Inorganic
Chemistry of the USSR Academy of Sciences and
started studying coordination compounds of the metals
of the platinum group. In 1939, Bokij began studying
crystal structures by the X-ray diffraction method and,
in 1940, solved the NH4IrCl6 structure. In the same
year, he published the book Fundamentals of Crystal-
lography written in coauthorship with Shubnikov and
E.E. Flint. Bokij together with G.G. Lemmlein investi-
gated the rounded diamond crystals. At the same time,
he also determined theoretically the number of physi-
cally different simple crystal forms.

During the Great Patriotic War of 1941–1945, Bokij
was evacuated to Kazan, where, on the initiative of
002 MAIK “Nauka/Interperiodica”
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A.N. Nesmeyanov, he delivered his first course on crys-
tal chemistry to his collegues. In 1942, Bokij defended
his Doctoral Dissertation and, in 1943, became a Pro-
fessor.

Upon his return from Kazan to Moscow, Bokij
started teaching crystallography at the Moscow State
University (1945) and organized there the Chair of
Crystallography and Crystal Chemistry at the Faculties
of Geology and Chemistry. In 1951, Bokij together
with M.A. Porai–Koshits published the first volume of
the handbook entitled Practical Course of X-ray Struc-
ture Analysis, which was used by several generations of
Soviet crystallographers engaged in structure analysis.
In 1954, he completed the study of the quantitative
characteristics of trans-influence in the compounds of
tetravalent platinum. The fundamental theoretical study
entitled To the Theory of Daltonides and Berthollides
was published in Russian in 1956 and in the English
translation in 1958. In 1954, his famous handbook—
Crystal Chemistry—was published, which run three
editions and is still recognized to be the best Russian
book on crystal chemistry. In 1958, Bokij was elected
Corresponding Member of the USSR Academy of Sci-
ences. In the period 1958–1962, Bokij lived and
worked in Siberia, where he became one of the
founders of the Institute of Inorganic Chemistry and
organized the Laboratory of X-ray Diffraction Analy-
sis. In this period, Bokij also organized the Zhournal
Strukturnoœ Khimii (Journal of Structural Chemistry)
and became its Editor-in-Chief.

In 1963, Bokij returned to Moscow and started
working at the Institute of Radio Engineering and Elec-
tronics and later also at the All-Union Institute of Sci-
entific Information (VINITI). Since 1972 and till the
very last days of his life, Bokij worked at the Institute
of Geology of Ore Deposits, Petrography, Mineralogy
and Geochemistry (IGEM) of the USSR (later Russian)
Academy of Sciences. The most remarkable event of
that period was his participation in the study of regular
changes of the structures in the isomorphous series of
AIIIBV semiconductors, which was recorded as a dis-
covery in 1978.

Since 1955 and till the end of his life, Bokij had
made considerable efforts in studying the problems of
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
informatics and systematics of crystal structures, and,
in particular, systematics of minerals. He developed
new principles of mineral classification based on the
Mendeleev Periodic Law—the so-called natural classi-
fication.

In 1976–1981, four volumes of the Mineralogical
Thesaurus were published. In 1979, Bokij became the
Chairman of the Commission on Classification of the
Council of Scientific and Engineering Societies.

In 1993, he headed the work on the publication of
multivolume handbook Minerals, a fundamental work
which contains exhaustive information (including the
structural data) on all the known varieties of minerals.
As a result, no. 3 of Volume IV was published and no.
1 of volume V was prepared for publication. Bokij also
started preparing for publication no. 2 of Volume V. In
1997, VINITI published Bokij’s book Systematics of
Natural Silicates which was followed by the 1998
English edition. In 2000, Systematics of Natural Oxides
was published, and Bokij proceeded to the classifica-
tion of natural borates.

Bokij was the last member of the pleiad of outstand-
ing crystallographers—founders of Russian crystal
chemistry and the related disciplines—N.V. Belov,
A.V. Shubnikov, V.I. Iveronova, G.S. Zhdanov, A.I. Ki-
taigorodsky, M.A. Porai-Koshits, Z.G. Pinsker, and
B.K. Vainshtein. All of them were not only brilliant sci-
entists, but also outstanding and erudite personalities.

Bokij never refused anybody who needed his con-
sultation and helped everyone who addressed him. If
something was necessary for science, he could address
“higher spheres” as was the case with the discovery
mentioned above—first, it found no support and only
Bokijs intervention helped to register it as a discovery.

Bokij was a genuine St. Petersburg intellectual with
a deep self-respect and a fine sense of humor and was
always benevolent to all people.

All those who were fortunate to work and commu-
nicate with Professor Bokij will always miss and
remember him.

Translated by L. Man
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Review of the Handbook X-ray Diffraction of Minerals 
by D. Yu. Pushcharovsky, 

Moscow: Geoinformmark, 2000 (289 pp.)
X-ray, neutron, and electron diffraction analyses as
methods of studying ideal atomic and real (with due
regard for defects) atomic structures of solids have been
developed in depth in structural crystallography. In
turn, crystallography, upon the formulation of its sub-
ject, has separated from mineralogy and become an
independent science. The structural studies are based
on the X-ray, neutron, and electron diffraction methods,
which proved to be a powerful and universal instrument
for the analysis of matter and are now widely used in
structural chemistry, solid state physics, molecular
biology, and, of course, as earlier, in mineralogy. These
methods are successfully applied to various minerals,
metals, and alloys, inorganic and organic compounds,
proteins, nucleic acids, and even viruses. Such a large
variety of objects also inevitably leads to specialization
of the structural methods themselves. Obviously, the
lectures on the methods of structural studies of crystals
for mineralogists, chemists, physicists, and biologists
should be somewhat different. This need is met by a
new handbook entitled X-ray Diffraction Analysis of
Minerals written by the Corresponding Member of the
Russian Academy of Sciences Professor D.Yu. Push-
charovsky published in 2000. Obviously, the handbook
is addressed to students and, I should like to add, also
to all those beginning structural research of the geolog-
ical profile. One more confirmation of the necessity in
highly specialized courses is also the handbook Crys-
tallography with the focus on the structural methods
written by E.V. Chuprunov, A.F. Khokhlov, and
M.A. Faddeev from Nizhniœ Novgorod University obvi-
ously addressed mainly to students-physicists and also
published in 2000.

An attractive feature of the handbook written by
Pushcharovsky is a short excursus into the history of
some fundamental discoveries underlying the science
of crystal structure. For the first time, one can see the
facsimiles of the title pages of the Roentgen manuscript
on the discovery of the new type of radiation and the
published article to the effect. One reads with keen
interest the description of the first experiments on
X-ray diffraction from a single crystal performed by
Laue and his colleagues and the first structural determi-
nation of Bragg-father and Bragg-son. The author of
the handbook have spent more than a few hours at the
University libraries of different countries to find the
1063-7745/02/4701- $22.00 © 20162
original documents on these and many other pioneering
studies of the founders of crystallography.

The structure of the handbook noticeably differs
from the traditional handbooks written in the second
half of the past 20th century. The first Part of the hand-
book is dedicated to the nature and the properties of
X-rays, whereas the principles of their interaction with
matter are considered only in the third Part. The second
Part is dedicated to the X-ray diffraction analysis of
polycrystal materials. Eighty pages are given to the
methods of obtaining powder diffraction patterns in the
Debye–Scherrer and Guinier cameras and in diffracto-
meters for polycrystal specimens, indexing of powder
X-ray diffraction patterns, and the examples of their use
for solving typical problems of mineralogy. The author
considers the phase analysis of mixtures, diagnostics of
feldspars and layer silicates, and the diffraction studies
of pyrite, arsenopyrite, pyrrhotite, and other rock-form-
ing minerals. This Part is concluded by the analysis of
microstresses and the determination of the dimensions
of crystallites from X-ray powder diffraction patterns.
The focus on the studies of polycrystal materials and,
first of all, mineral identification, is quite justified for
mineralogists. It is this diffraction method that can also
be used under field conditions and aboard research ves-
sels. In the third Part of the handbook, the author con-
siders the scattering of X-rays by an electron, atoms,
and crystals. Then, he analyzes the factors that influ-
ence diffraction-reflection intensities. A separate Sec-
tion is devoted to the formation of line intensities on
powder diffraction patterns with due regard for the reg-
ular absences of reflections depending on the character
of unit-cell centering and the presence in crystals of
symmetry elements (screw symmetry axes, symmetry
planes with the glide components). On an example of
fluorite, the author compares the experimental and the
theoretically calculated (according to the structure
model) diffraction patterns.

The fourth Part of the handbook is dedicated to the
structure determinations based on the X-ray diffraction
data. The material in this Part is stated in the chronolog-
ical sequence of the development of various methods of
structure analysis—from the trial-and-error method to
the methods of extraction of structural information
from the Patterson function of interatomic vectors. Nat-
urally, first, the localization of a heavy atom is consid-
ered, then the Harker sections are analyzed, and, finally,
002 MAIK “Nauka/Interperiodica”
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the superposition methods of singling out the structure
from the function of interatomic vectors are stated. The
author begins the consideration of the direct methods of
determining structure-factor phases from the Harker–
Kasper inequalities, which today are of interest only in
the historical aspect. In fact, I have not encountered any
structural study by this method already for several
decades. Today, the phases of structure factors are usu-
ally determined by the direct statistical methods used in
numerous complexes of computer programs. I believe
that this Part of the handbook should be complemented
with a short description of some of the most popular
computer programs widely used in the whole world.

The fifth Part of the handbook stands somewhat sep-
arate. The author considers some recent results
obtained by X-ray diffraction methods in various fields
of the science. It seems that it would be more expedient
to devote this Part completely to the X-ray diffraction
analysis under extreme pressure and temperature con-
ditions on specimens. It would have been better if the
author would have concluded this Part with the data on
the composition of the mantle and the phase transfor-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
mations occurring in it and would have transferred the
data on synchrotron-radiation sources, area-sensitive
detectors, modulated structure, methods of structure
refinement by the data of the Rietveld full-profile anal-
ysis, and deformational electron-density maps into the
corresponding Sections of the first four Parts of the
handbook.

One thing is certain—Russian readers have received
an excellent modern clearly written specialized hand-
book on the X-ray diffraction analysis of minerals.
Each Part of the handbook is ended with well thought-
out problems based on the material considered in the
preceding Part, whose solution should help the reader
to master the material and its active use. I should like to
congratulate both the author and his future readers on
the appearance of a new excellent handbook.

Professor V.I. Simonov

Translated by L. Man
2
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STRUCTURE OF INORGANIC
COMPOUNDS

                               
New Oxygen- and Lead-Deficient Lead Borate 
[BO2.25]2 = 2Pb0.75[BO2.25] 

and Its Relation to Aragonite and Calcite Structures
E. L. Belokoneva, Yu. K. Kabalov, A. G. Al-Ama, O. V. Dimitrova, 

V. S. Kurazhkovskaya, and S. Yu. Stefanovich
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Abstract—Anhydrous oxygen- and lead-deficient lead borate of the composition [BO2.25]2 =
2Pb0.75BO2.25 (sp. gr. P312) has been obtained by the hydrothermal synthesis. New acentric borate possesses
optical nonlinearity comparable with the optical nonlinearity of α-quartz. The crystal structure of new borate
is determined and refined by two X-ray diffraction methods—the single crystal diffractometry and the full-pro-
file analysis. All the positions in the structure, except for those of the boron atom in the triangular coordination,
are occupied only partly; one of the two lead positions is split. It is established that new borate is closely related
to calcium carbonates—aragonite, calcite, and paralstonite. With an increase of the temperature, new borate
undergoes the reversible phase transition into the centrosymmetric, most probably, aragonite-like phase.
© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Despite the fact that it has already been shown that
some lead-containing borates are promising materials
for nonlinear optics, the conditions of their synthesis
and their structures and properties have been studied
insufficiently. At present, this group includes only eight
representatives—PbB4O7 [1], Pb6B10O21 [2]. Pb3B10O18 ·
2H2O [3], Pb5B3O8(OH)3H2O [4], Pb6B12O24 · H2O [5],
centrosymmetric hilgardite Pb2[B5O9](OH) · H2O [6]
and its polar variety Na0.5Pb2[B5O9]Cl(OH)0.5 [7],
Pb[B6O10(OH) · B2O(OH)3] [8], and Pb3(OH)[B9O16] ·
[B(OH)3] [9], of which four [1, 4, 7, and 9] possess con-
siderable optical nonlinearity. This study continues our
investigation of crystal chemistry of lead borates and
the attempts to establish relationships between their
structures and properties.

EXPERIMENTAL

Synthesis of Single Crystals 
and Primary Diagnostics

Single crystals of new lead borate were synthesized
under the hydrothermal conditions in standard 5–
6 cm3-large Teflon-futerated autoclaves. The hydro-
thermal synthesis was performed under the pressure
P ≈ 70 atm in the temperature range T = 270–280°C.
The lower temperature limit was set by the kinetics of
hydrothermal reactions, whereas the upper one, by the
1063-7745/02/4701- $22.00 © 0017
possibilities provided by the apparatus. The experiment
duration (18–20 days) provided complete proceeding
of the reaction. The coefficient of the autoclave filling
was chosen in such a way that the pressure would
remain constant. The crystals were formed at the molar
ratio PbO : B2O3 = 1 : 3. The use of the HCOOH (1M)
mineralizer allowed the formation of colorless turbid
(in some occasions transparent) single crystals in the
shape of hexagonal plates about 1.25 mm in diameter
and up to 0.3–0.4-mm in thickness. The crystals
showed the characteristic perfect cleavage along the
(001) plane. The optical microscopy study of the crys-
tals showed that the uniaxial (i.e., possessing the mod-
erate symmetry) crystals were far from being perfect.

The powder diffraction patterns obtained on a
DRON-UM1 diffractometer (Co-radiation, 40 kV,
25 mA) had no analogues in the PDF data base, which
indicated that the crystals synthesized could be identi-
fied as a new compound. The crystal composition was
determined by qualitative X-ray spectral analysis
(Chair of Petrography, Faculty of Geology, Moscow
State University) on a CAMSCAN 4DV scanning elec-
tron microscope with the LINK attachment for the
energy-dispersive analysis. This analysis confirmed the
presence of lead in the crystals. The test for second-har-
monic generation performed in the reflection mode
with the aid of a pulsed YAG : Nd laser [10] proved the
absence of the center of inversion in new lead borate.
2002 MAIK “Nauka/Interperiodica”
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IR Spectroscopy

We selected a small number of the best crystals
(with the minimum quantities of defects and inclu-
sions) to prepare the specimen as a finely dispersed film
on the KBr substrate. The IR spectrum was recorded on
a Specord-75 IR spectrophotometer in the frequency
ranges 1800–400 cm–1 and 3800–3000 cm–1. The
absence of the characteristic absorption bands of BO4-
tetrahedra, the B–O–B bonds, and the OH-groups and
H2O in the spectra allowed us to conclude that the com-
pound synthesized is anhydrous borate containing iso-
lated BO3 groups. The most intense absorption band at
1190 cm–1 was attributed to the asymmetric stretching
vibrations ν3 of the B–O bonds in BO3 triangles; the
bands at 735 and 715 cm–1 were attributed to nonplanar
bending vibrations ν4 of this triangle. Only one band
was observed for each of the vibration regions ν3 and
ν4 , which indicated the degeneration of the stretching
and bending vibrations and the position symmetry of
the BO3 triangle (not lower than C3). If the triangular
ion had no threefold axis (e.g., in aragonite, the group
C3 and aragonite-like borates), the degeneration of the
ν3 and ν4 vibrations is lifted, and two bands for each of
these vibrations appear in the spectrum. The spectrum
had no band of the symmetric valence vibration ν1,
which indicated the presence of the center of inversion
or a horizontal twofold axes in the space group of the
crystal. Thus, the IR spectroscopy data indicate the fol-
lowing possible space groups—D3, D3d, or D3h. In com-
parison with the spectra of other orthoborates [11], all
the bands of the spectrum of new lead borate are shifted
toward low frequencies. Thus, the band due to ν3 vibra-
tions is shifted by 50 cm–1 and even more, the bands due
to the ν2 and ν4 vibrations, by 30 cm–1 and even more.
Such pronounced shifts of the absorption bands can be
associated with the incorporation of Pb+2 ions into the
structure and weaker boron–oxygen bonds.

1400 1200 1000 800 600 400
ν, cm–1

1265

1190

735
715

605

Fig. 1. Infrared spectrum of (BO2.25)2.Pb0.9
I( )

Pb0.6
II( )
C

Single-Crystal X-ray Diffraction Analysis

The low quality of the crystals and considerable
absorption of the Mo-radiation hindered the determina-
tion of symmetry from the Laue diffraction patterns.
The orientation of the platelet-like specimens normally
to the primary beam and the use of the oscillation dif-
fraction patterns showed that the most probable diffrac-

tion classes are  and . We also observed the
pseudohexagonal symmetry. The diffraction experi-
ment was first made on the most transparent isometric
blocks cleaved from the crystals. However, the diffrac-
tion reflections were considerably blurred because of
the crystal deformation and perfect cleavage, which
hindered the proper centering of the reflections on a
Syntex P-  diffractometer and did not allow the deter-
mination of the lattice parameters and the orientation
matrix necessary for the data set. Thus, we selected a
rather transparent almost isometric 0.022 × 0.022 ×
0.01 mm-large platelet. The trigonal unit-cell parame-
ters were determined and refined on the same diffracto-
meter. The three-dimensional set of Ihkl (about 1260
reflections) for the structure determination was col-
lected within a quarter of the reciprocal space. The pro-

cessing of intensities and their recalculation into 
were made by the PROFIT program [12], with all the
other computations being performed by the CSD com-
plex.

The correction for pronounced absorption was intro-
duced for a crystal faceted with two simple forms—a
hexagonal prism and a pinacoid. No regular absences of
reflections were revealed. According to the earlier data,
the most probable space groups were P3 and P312 and
we used these groups for the analysis of the equivalent
reflections. The intensities of these reflections indicated
the presence of a threefold axis, however, in the sp. gr.
D3d, the satisfactory convergence was observed even
without averaging the Friedel pairs of reflections,
which could be explained by anomalously high scatter-
ing of the molybdenum radiation by lead atoms.

The vector u = 2/3 v  = 1/3 w = 0.445 on the Puv w

synthesis with the coordinate w different from the fixed
value of 1/2 indicated a possible variant of location of
two Pb atoms in special positions xxx on threefold axes:
the Pb(1) atom in the position (000) with the symmetry
3 or 312 and the Pb(2) atom in the position on another
threefold axis in the position (2/3, 1/3, z) but with the
statistical occupancy not exceeding 1/2 of the occu-
pancy of the position in a more symmetric group. The
refinement of these two Pb atoms provided the satisfac-
tory reliability factor in both space groups. The consid-
eration of a number of difference electron-density syn-
theses in the sp. gr. P3 provided the localization of B
atoms on the threefold axis 1/3. 2/3 at the heights ≈1/4
and ≈3/4. Two independent O atoms were localized in
the general positions provided the triangular coordina-
tion of B atoms at almost the same heights. The struc-
ture model thus obtained corresponded to the symmetry

3 3m1

1

Fhkl
2
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P312, and therefore this space group was selected as the
final one. Locating the Pb(1) atom in the position 1(a),
the Pb(2) atom in the position 2(i) (z = 0.55), the B atom
in the position 2(h) (z = 0.263), and the O atom in the
position 6(l) (x = 0.0475, y = 0.667, z = 0.264), we
obtained two excessive negative charges in the formula
under the condition of 50% occupancy of the Pb(2)
position and 100% occupancy of all the other positions.
The refinement yielded the overestimated thermal cor-
rections for Pb(2) and O atoms. Thus, we concluded
that these positions are occupied statistically with the
occupancies 0.25 for Pb(2) and 0.75 for O, which pro-
vided the electrically neutral structural formula

[BO2.25]2. Considerable absorption and its
pronounced anisotropy required the introduction of the
correction for these factors for a crystal of an arbitrary
shape by the DIFABS program [13] at the final stage of
the study. The overestimated reliability factor R ≈ 0.10
caused by insufficiently high quality of the single crys-
tal and too high absorption, which was difficult to take
into account, and also a considerable deficit of some
atoms in the structure with respect to oxygen gave rise
to some doubts in the results of the structure determina-
tion. Therefore we also used the Rietveld method.

Study of the Structure by the Rietveld Method

The X-ray diffraction spectrum from the powder
sample was recorded on an automated ADP-2 diffracto-
meter (λCo-Kα radiation, Fe filter) by 2θ scanning the
crystal with a step of 0.02° at the exposure of 15 s. The
main characteristics of the experiment and the structure
refinement are listed in Table 1. The spectrum obtained
showed anomalous broadening of peaks and the
absence of any splitting of the Co-Kα1, α2 lines (high-
order reflections). These facts confirmed the presence
of defects in the structure, which could be associated
with the presence of defects and structure disorder
established earlier by single crystal data. All the com-
putations were performed by the WYRIET program,
version 3.3 [14] within the sp. gr. P312. The model con-
sidered above was used as the initial one. The peak
shape was described with the aid of the Pearson func-
tion at 10FWHM, where FWHM is the average peak
width at the half height. We used the ionic scattering
curves. The refinement was performed by gradual
inclusion into the refinement of new parameters at the
constant graphical modeling of the background. The
refinement of the parameter rb of the texture along the
[001] direction with the use of the March–Dollase func-
tion was necessary because of the perfect cleavage of
the crystals. This resulted in a considerable reduction of
Rwp (~5%) and a better convergence of the profile, espe-
cially for the basal (002)-type reflections.

At the concluding stage of the refinement, we con-
structed electron-density syntheses, which revealed all
the peaks corresponding to the atoms of the structure
model with the corresponding heights. The syntheses

Pb1.0
I( ) Pb0.5

II( )
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showed an additional maximum with a height close to
that of the O peak with the coordinates (0, 0, ~0.2),
which corresponded to the position inside the Pb(1)
octahedron close to its triangular base. Taking into
account that the structure is oxygen- and lead-deficient,
this additional maximum can be explained either by the
incorporation of organic radicals into the structure
(from the organic mineralizer in the solution) or with
the distortion of the hexagonal close packing of oxygen
layers.

Thus, the single-crystal diffractometric data pro-
vided the establishment of the major features of the
structure model, however, the pronounced absorption
and the low quality of the crystal did not allow us to
solve the structure completely. The use of the Rietveld
method was very successful and showed the existence
of the pronounced texture in the specimen (r b = 0.519)

Table 1.  Crystallographic data and characteristics of the

experiment and the refinement of the (BO2.25)2
structure by the Rietveld method

Characteristic

Unit-cell parameters

a, Å 4.9253(2)

c, Å 6.3884(2)

Vo, Å3 134.210(8)

Number of formula units, Z 1

Sp. gr. P312

2θ-interval, deg 14–135

Asymmetry, 2θ, deg 80

Number of Bragg reflections 170

Number of points measured 6050

Number of parameters refined 25

Rp, % 2.14

Rwp, % 2.93

Rexp, % 2.20

RB, % 1.56

RF, % 1.09

S 1.33

DWD* 1.12

2.065

Texture parameter r b along [001] 0.519

* Durbin–Watson statistics.
** Factor for calculating standard deviations.

Pb0.9
I( ) Pb0.6

II( )

σx
**
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Fig. 2. Experimental (solid line) and theoretical (asterisks) X-ray diffraction spectra of (BO2.25)2.Pb0.9
I( )

Pb0.6
II( )
associated with the crystal cleavage and allowed us to
take these factors into account. The diffraction data
for  high-order reflections provided the refinement of
the occupancies of the Pb(1) and Pb(2) positions
and    the correction of the structural formula,

[BO2.25]2, and improvement of the spectrum
convergence (Fig. 2). This study confirmed the oxygen-
and lead-deficient structure model. The concluding
atomic coordinates and the corresponding interatomic
distances are listed in Table 2.

Pb0.9
I( ) Pb0.6

II( )
C

Description 

of the [BO2.25]2 = 2Pb0.75[BO2.25] Structure 
and Its Comparison with Aragonite, Calcite, 

and Paralstonite Structures

According to the X-ray diffraction analysis per-
formed, the crystals of new borate are characterized by
the triangular coordination of boron atoms (Figs. 3a
and 3b) with the interatomic B–O distances character-
istic of the B-triangles (Table 3). The formation of reg-
ular triangles (symmetry 3) is also confirmed by the

Pb0.9
I( ) Pb0.6

II( )
Table 2.  Atomic coordinates and thermal factors Bj(Å
2), refined multiplicities of the positions q, and their occupancies p in

the (BO2.25)2 structure

Atom Position x/a y/b z/c Bj q p

Pb(1) 1a 0 0 0 0.80(5) 0.1491(2) 0.8922

Pb(2) 2i 2/3 1/3 0.472(1) 1.7(2) 0.0993(4) 0.1981

B 2h 1/3 2/3 0.265(4) 2.2(5) 0.333 1.

O 6l 0.07(2) 0.68(3) 0.264(1) 3.2(5) 0.750 0.750

Pb0.9
I( ) Pb0.6

II( )
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major lines of the IR spectrum. At the same time, the
hexagonal close packing of oxygen atoms has vacan-
cies because the O positions are occupied for 3/4.
Under the assumption of the statistical disorder, a small
number of boron–oxygen triangles are oxygen-defi-
cient, which is confirmed by the shift of the bands in the
IR spectrum and the appearance of a weak additional
band at 1265 cm–1 interpreted as the band correspond-
ing to the local B–O stretching vibrations in oxygen-
deficient triangles. The anion-deficient structure is also
characteristic of the γ-Bi2O3 = 2BiO1.5 phase with the
fluorite structure [15].

The coordination polyhedra of Pb atoms are octahe-
dra formed by statistically distributed O atoms. The
Pb(1) octahedra are described by the point group 312
and are slightly elongated in the direction of the z-axis
(O–O'' = 3.61 Å and O'–O'' = 4.07 Å) (Table 3) and are
partly occupied by Pb atoms located in their centers
(Table 2). In the Pb(2)-octahedron possessing the same
symmetry and occupied even to a lesser degree than the
Pb(1) octahedron, the central position is split with the
Pb(2)–Pb(2)' distance being 0.364 Å, which results in
the scatter of the Pb(2)–O distances (Table 3).

In terms of the close packing of O atoms, only the
octahedral voids in the structure are filled. In the layer,
these voids are filled according to the anticorundum
(carbonate) motif [16] characteristic of calcite and ara-
gonite. The alternation of the filled and empty voids
along the z-axis corresponds to the aragonite motif: in
two columns (0, 0, z and 2/3, 1/3, z), two occupied octa-
hedra are followed by an empty one, whereas the third
column of octahedra (1/3, 2/3, z) is formed only by
empty octahedra. In the shared horizontal faces of each
pair of empty octahedra, the BO3 triangles are located.
Ignoring the deficiency in the anionic packing, the
occupancy of the octahedral positions, and also the split
central position of the Pb atom of the second octahe-
dron, we can state that new lead borate Pb1.5[BO2.25]2

has a higher symmetry than aragonite Ca2[CO3]2—trig-
onal instead of orthorhombic. Contrary to aragonite,
paralstonite BaCa(CO3)2 from the aragonite group is
characterized by the trigonal symmetry, sp. gr. P321
[17], with its unit cell being slightly smaller than that of
Pb-borate with the parameters c = 6.148 Å and the
parameters a = b = 8.692 Å being slightly larger than
the corresponding diagonal in borate. The identification
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
of the Ca and Ba positions leads to the selection of a
smaller unit cell practically coinciding with the unit cell
of lead borate and with the space group being trans-
formed into sp. gr. P312. Similar to the MBO3 borates
(where M3+ = In, Lu, Sc), rare earth borates LnBO3 [18]
[19] have the structure types of aragonite, calcite, and
vaterite, which is explained by the simple scheme of
heterovalent isomorphism Ca2+ + C4+ = Ln3+ + B3+,
whereas in lead borate, the valence balance is attained
only at partly occupied anionic positions. The search in
the JCPDF data base indicated that the compound stud-
ied is RbGeIO6 possessing the same space group and

(a)

(b)

x y

yx

z

Fig. 3. Crystal structure of (BO2.25)2 in polyhe-

dra: projections of the structure onto the (a) (001) and (b)
(110) planes. One can see (a) Pb-octahedra and B-triangles,
(b) the B-triangles projected onto the (110) plane are
depicted by horizontal solid lines.

Pb0.9
I( )

Pb0.6
II( )
Table 3.  Interatomic distances (Å) in the (BO2.25)2 structure

Pb(1)-octahedron Pb(2)-octahedron B-triangle

Pb(1)–O × 6 – 2.47(3) Pb(2)–O × 3 – 2.26(2) B–O × 3 – 1.32(1)

O' × 3 – 2.49(2) O–O' – 2.29(2)

O–O' × 6 – 3.13(4) O–O' × 6 – 3.18(3)

O–O'' × 3 – 3.61(5) O–O'' × 3 – 3.77(5)

O'–O'' × 3 – 4.07(5) O'–O'' × 3 – 3.30(5)

Pb0.9
I( ) Pb0.6

II( )
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the same unit-cell parameters as new lead borate with
octahedral Pb(1) and Pb(2) positions occupied by Rb
and I atoms, respectively, whereas an empty octahedron
with the faces formed by BO3-triangles being filled
with Ge atoms lying at the same height along the z-axis
as the I atom. Because of the considerable difference in
the ionic radii of Ge4+ and I7+, on the one hand, and a
much larger size of the Rb+1 ion, on the other hand, the
Rb octahedron is considerably elongated in the direc-
tion of the z-axis.

The Study of Pb0.75BO2.25 by the Method 
of Second-Harmonic Generation

In full accordance with the nonsymmetric structure,
new lead borate possesses quadratic optical nonlinear-
ity, which manifests itself in the second-harmonic gen-
eration (SHG). The quantitative determination of opti-
cal nonlinearity was made by comparing the intensity
I2ω of the second-harmonic signal from the powder
specimens of different dispersion with the analogous
specimens cut out from the α-crystal having the same
point group 32 as lead borate under study. The exist-
ence of the only nonzero nonlinearity coefficient, d11,
for both substances allows the direct determination of
nonlinearity from the simple relationship d11 = d11(q)
[I2ω/I2ω(q)]1/2, where d11(q) = 0.364 pm/V is the nonlin-
ear susceptibility of α-quartz and I2ω(q) is the corre-
sponding second-harmonic intensity. The above rela-
tionship is fulfilled most accurately at the minimum
light absorption by the substance, which can be attained
by the use of finely dispersed (3–5 µm) powder speci-
mens. Taking that the SHG value of the quartz powder
of such dispersion is unity and determining the value
I2ω = 0.4 for the analogous powder of Pb0.75BO2.25
experimentally, we obtain that d11 = 0.23 pm/V, i.e., the
nonlinearity value is close to that of quartz.

100 200 300 400
T, °C

1
I2ω, arb. units

Fig. 4. Temperature dependence of the second harmonic for

the (BO2.25)2 powder during heating (the upper

curve) and cooling (the lower line).

Pb0.9
I( )

Pb0.6
II( )
With an increase of the temperature above 240°C,
the SHG signal of the Pb0.75BO2.25 powder rapidly
decreases and practically disappears at 400°C. With a
decrease of the temperature below 100°C, the SHG sig-
nal shows the tendency to restoration (Fig. 4), however,
no complete restoration of the signal is observed
because the rate of the process is too low. Thus, the
transition into the centrosymmetric phase is accompa-
nied by considerable changes in the structure and pro-
nounced ion diffusion at a rate lower than the diffusion
rate during the formation of the nonsentrosymmetric
phase Pb0.75BO2.25 at the temperature lower than that of
the fast process occurring with an increase in the tem-
perature.

CONCLUSIONS

The crystallochemical analysis allows one to
assume the existence of the structure of the high-tem-
perature centrosymmetric modification of lead borate
(the paraelectric phase). The addition of the center of
inversion to the structure does not change the unit cell
and the crystal system but leads to the space groups

with  axes or to the groups with the vertical symmetry
planes, which, in turn, requires the filling with Pb atoms
of empty octahedra alternating with the filled ones
along the z-axis or filling of empty octahedra, whose
upper and lower faces are formed by boron triangles.
Similar structural transformations are rather compli-
cated and can destroy the structure. A more probable
structure transformation would occur with lowering of
the symmetry to orthorhombic and the transformation
of the structure into the lead- and oxygen-deficient ara-
gonite structure. The newly appeared center of inver-
sion provides the equivalence of the Pb(1) and Pb(2)
positions, i.e., reduces splitting of the Pb(2) position to
the value described by the overestimated thermal vibra-
tions analogous to those observed for the Pb(1) posi-
tion. The geometric characteristics of these two Pb-
octahedra should also become symmetrically equiva-

lent ( ).
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Abstract—The crystal structure of a newly synthesized compound Na2Ba2[B10O17(OH)2] has been determined
(Syntex  diffractometer, MoKα radiation, 1784 crystallographically nonequivalent reflections, anisotropic
approximation, R = 1.7%). The parameters of the monoclinic unit cell are a = 11.455(7), b = 6.675(4), c =
9.360(7) Å, β = 93.68(5)°, Z = 2, sp. gr. C2. The structure consists of double pseudohexagonal layers built by
BO4-tetrahedra and BO3-triangles forming three-membered rings of two mutually orthogonal orientations. The
neighboring layers along the [001] direction are bound by Na-polyhedra and hydrogen bonds with participation
of OH groups. The interlayer tunnels along the [100] direction are filled with columns of Ba-polyhedra. The
crystallochemical characteristics of a number of synthetic Ba-borates (to which the structure of new decaborate
is related) are considered in terms of borate building blocks singled out in the structure. © 2002 MAIK
“Nauka/Interperiodica”.

P1
INTRODUCTION

Growth of borate single crystals and their study, and
especially of alkali-earth borates, are associated with
the search for new materials possessing nonlinear opti-
cal properties first observed in β-Ba3[B3O6]2 and
LiB3O5 crystals [1]. These experiments are a part of the
program on the study of crystal chemistry of heavy-ele-
ment borates obtained by hydrothermal synthesis. One
of the first Ba-borate crystals were Ba[B(OH)4]2 ⋅ H2O
[2] and Ba[B(OH)4]2 [3] containing isolated B(OH)4-
tetrahedra. The subsequent refinement of their struc-
tures provided the localization of protons [4, 5]. It was
shown that the structures of anhydrous Ba-borates
Ba[B4O7] [6] and Ba[B8O13] [7] are based on highly
condensed borate frameworks. Recently, a number of
new compounds of this class have been synthesized—
Ba5[B20O33(OH)4] ⋅ H2O [8], Ba[B5O8(OH)] ⋅ H2O and
LiBa2[B10O16(OH)3] [9], and Ba2[B5O9]Cl ⋅ 0.5H2O
and Ba2[B5O8(OH)2](OH) [10]. Despite their similar
compositions, the structural characteristics of these
compounds are different—they have various configura-
tions of anion complexes, different dimensions of cat-
ionic polyhedra, and are characterized by different
coordination numbers of Ba-atoms and differently dis-
torted B-tetrahedra and B-triangles. In this connection,
the study of a new representative of the family of Ba-
borates would be of a considerable interest and would
provide better understanding of the correlations
between the composition and the structure of these
chemically close compounds and would also give new
information on phase formation in the A2O–BaO(PbO)–
B2O3–H2O systems (A = Na, K, Rb, and Cs).
1063-7745/02/4701- $22.00 © 20024
EXPERIMENTAL

Crystals of new decaborate Na2Ba2[B10O17(OH)2]
were synthesized as a part of the investigation of the
phase formation in the Na2O–BaO–B2O3–H2O system
by the hydrothermal method in standard Teflon-futer-
ated autoclaves under a pressure of 100 atm and a tem-
perature of 280°C. The experiment continued for
20 days. The charge was a mixture of Na2O, BaO, and

B2O3 oxides in the proportion 1 : 1 : 2 with  ions
as mineralizers. The Na2Ba2[B10O17(OH)2] crystals
grew in a weakly acid medium. The X-ray diffraction
study (DRON-UM1 diffractometer, λCuKα radiation)
showed that the compound obtained cannot be identi-
fied with any of the known alkali and alkali earth
borates.

The presence of Ba and Na ions in the new borate
structure was confirmed by the electron-probe analysis
(Cameka SX 50 microprobe, 15 kV accelerating volt-
age, 20 mA current).

The IR spectra obtained on a SHIMADZU IR-435
spectrometer confirmed the presence of a borate com-
plex consisting of boron-tetrahedra (the absorption
bands in the range 1100–900 cm–1) and boron-triangles
(absorption bands in the range 1450–1300 cm–1)
(Fig. 1). The absorption bands in the range of 1170 and
790 cm–1 are explained by deformation vibrations of
hydroxyl groups (OH)–.

We synthesized 0.3-mm-long colorless transparent
crystals with a pseudo-orthorhombic isometric habit.
The structural study was performed on a 0.18 × 0.1 ×
0.1-mm-large single crystal. The diffraction data were

CO3
2–
002 MAIK “Nauka/Interperiodica”
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Fig. 1. IR spectrum of Na2Ba2[B10O17(OH)2].
collected on an automated Syntex  diffractometer.
The crystallographic characteristics and the main
parameters of the experiment and refinement are listed
in Table 1.

All the computations, including the correction for
anomalous scattering, were performed by the AREN
program [11]. The structure was solved by the direct
method. The e-synthesis with the minimum R factor
(sp. gr. C2) provided the localization of one Ba and two

P1

b

c

Na(1)

Na(2)
Ba

Fig. 2. The structure of Na2Ba2[B10O17(OH)2] projected
along the [100] direction.
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Na atoms. The B and O atoms were localized from the
difference electron-density syntheses in several stages.
The structure determined was refined in the anisotropic
full-matrix approximation. The calculation of the
valence balance (Table 2) [12] allowed the localization
of the O atoms of the hydroxyl groups OH. One of the
residual maxima on the zeroth electron density synthe-
sis was attributed to the H atom of a hydroxyl group
(the position O(6) was attributed to OH). The structure

B(2)

B(3)
B(1)

B(4)

B(5)

a

b

Fig. 3. Boron–oxygen layer in the Na2Ba2[B10O17(OH)2]
structure with the shaded B-triangles.
2
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Table 1.  Crystallographic and experimental data

Formula Na2Ba2[B10O17(OH)2]

Unit-cell parameters, Å a = 11.455(7)

b = 6.675(4)

c = 9.360(7)

β  = 93.68(5)°

Sp. gr. C2

Unit-cell volume V, Å3 714.2(1)

Number of formula units, Z 2

Calculated density ρ, g/cm3 3.415

Absorption coefficient µ, mm–1 5.827

Molecular weight 1469.48

F000 676.0

Diffractometer Sintex P

Wavelength, Å 0.71069

Total number of reflections 2982

Number of independent reflections 
with |F | > 4σ(F)

1784

Rav, % 3.00

RF in the isotropic approximation, % 3.10

RF in the anisotropic approximation, % 2.71

Extinction parameter E 0.000021(3)

∆ρmax, e/Å3 2.09

∆ρmin, e/Å3 –1.39

1

C

model was tested by the MYSSYM program [13]; no
pseudosymmetry elements was revealed. The final
coordinates of the basic atoms, the atomic thermal
parameters, and the main interatomic distances are
listed in Tables 3 and 4. The final R-factor upon the
refinement of the positional and isotropic thermal
parameters of hydrogen atom corresponds to the for-
mula Na2Ba2[B10O17(OH)2] (Z = 2, ρcalc = 3.415 g/cm).
Two projections of the structure calculated by the sub-
program ATOMS [14] are shown in Figs. 2 and 3.

DESCRIPTION OF THE STRUCTURE
AND DISCUSSION

The crystal structure Na2Ba2[B10O17(OH)2] consists
of two pseudohexagonal boron–oxygen layers
[B10O17(OH)2] normal to the [001] direction. The fun-
damental building block is a pentaborate group formed
by three crystallographically nonequivalent B-tetrahe-
dra and two B-triangles. Similar building blocks were also
found in the structures of ulexite NaCa[B5O6(OH)6] ⋅
5H2O [15], probertite NaCa[B5O7(OH)4] ⋅ 3H2O [16, 17],
KMg2H[B7O8(OH)5]2 ⋅ 4H2O

1 [17], and tuzlaite
NaCa2[B5O8)OH)2] ⋅ 3H2O [18] and also in the struc-
tures of synthetic Ba-borates Ba[B5O8(OH)2] ⋅ H2O,
LiBa2[B10O16(OH)3] [9], Ba5[B20O33(OH)4] ⋅ H2O [8],
and Ba2[B5O9]Cl ⋅ 0.5H2O [10] (the hilgardite structure
type kaliborite KMg).

A decrease in the number of hydroxyl groups in the
composition of pentaborate complexes is accompanied
by a gradual change of their configuration in the transi-
tion from isolated (B,O)-complexes in ulexite to the

1 In kaliborite, the chains of pentaborate complexes are bound by
an additional B-triangle via the vertex of one of the tetrahedra.
Table 2.  Calculation of the valence balance

O(1) O(2) O(3) O(4) O(5) O(6)* O(7) O(8) O(9) O(10) Σ

Ba 0.177 0.204 0.186
0.159

0.186 0.189 0.169
0.164

0.184
0.174

0.201 × 2 1.993

Na(1) 0.178 × 2 0.148 × 2 0.172 × 2 0.996

Na(2) 0.169 × 2 0.183 × 2 0.147 × 2 0.998

B(1) 1.075 1.014 0.909 2.998

B(2) 0.843 0.632 0.812 0.710 2.997

B(3) 0.692 0.622 0.818 0.866 2.998

B(4) 0.954 1.054 0.990 2.998

B(5) 0.673 0.719 0.803 0.803 × 2 2.998

Σ 1.992 1.931 2.058 2.006 1.941 1.095 1.946 1.948 2.058 2.008

* The O(6) position corresponds to OH.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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(B,O)-chains in probertite and kaliborite, then to the
layers in tuzlaite and synthetic Ba[B5O8(OH)2] ⋅ H2O,
and, finally, to the framework in the structures–ana-
logues of hilgardite. The network configuration in the
compound studied in our work is very close to the
boron–oxygen layers in tuzlaite with the only differ-
ence—unlike tuzlaite, the neighboring networks in new
decaborate [related by a twofold axis along the [100]
direction passing through the O(10) vertex of the B(5)-
tetrahedron] form characteristic double layers (Fig. 2).

A similar formation of double boron–oxygen net-
works related by twofold rotation axes was also
observed in gowerite [19] and synthetic Ba-hydrobo-
rate Ba5[B20O33(OH)4] ⋅ H2O [8].

The distances in BO4-tetrahedra and BO3-triangles
are close to their statistically averaged values, 1.476
and 1.370 Å, respectively [20]. The interatomic dis-
tances in BO4-tetrahedra show that the fraction of s-
orbitals in sp3-hybridized bonds is about 24% [20].

The columns of eleven-vertex Ba-polyhedra (with
the Ba–O distances 2.718–2.999 Å) are located in the
intralayer tunnels parallel to the [100] direction,
whereas the Na-octahedra fill the interlayer space and
connect double boron–oxygen layers. These interlayer
contacts are “reinforced” by hydrogen O(6)–H⋅⋅⋅O(8)
bonds with participation of the protons from OH-
groups located at the end vertices of the triangles:
B(1)O2(OH): O⋅⋅⋅O 2.767(3), O–H 0.88(1), H⋅⋅⋅O
1.99(1) Å, O–H⋅⋅⋅O 145.4(1)°.

Boron is an element seldom found in the earth’s
crust, but the processes occurring in the crust provide
its incorporation into numerous minerals with diverse
structures. A new approach to the structural systematics
of borates based on the separation of the fundamental
building blocks (FBB) whose combination leads to the
formation of the most stable structural fragments was
suggested in [20–22]. These fragments are built by the
following building blocks (the number of minerals in
which these blocks are encountered is indicated in
parentheses): isolated tetrahedra (31), isolated com-
plexes (27), chains (10), layers (15), and frameworks
(15). This approach can also be used to consider the
main crystallochemical characteristics of a series of
synthetic Ba-borates and establish their possible simi-
larity to many minerals of this class (Table 5).

Analyzing the data in Table 5, we see that, similar to
natural borates [20], synthetic Ba-borates form charac-
teristic three-membered rings consisting either of two
tetrahedra and one triangle or of two triangles and one
tetrahedron. In Table 5, these rings are indicated by the
pointed brackets. It is these groups sharing a tetrahe-
dron in the structures of Ba-borates that create pentab-
orate clusters consisting either of three tetrahedra and
two triangles or of three triangles and two tetrahedra.2

According to [21], the formation of three-membered

2 This type of combination of three-membered rings in a funda-
mental building block is shown by horizontal etching in Table 6.
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borate rings 〈 〉  is very advantageous energetically,
which is explained by the attainment of the local bal-
ance of valence strengths and the flexibility of these
rings, which provides their contacts with polyhedra of

Table 3.  Coordinates and thermal parameters of basic atoms

Atom x/a y/b z/c Beq, Å2

Ba 0.6689(0) 0 0.8932(0) 0.61(4)

Na(1) 0 0.3084(6) 0.5 1.22(4)

Na(2) 0.5 0.2877(8) 0.5 1.90(6)

B(1) 0.7489(4) 0.0553(9) 0.4695(5) 0.67(6)

B(2) 0.6645(3) 0.017(1) 0.2221(4) 0.61(6)

B(3) 0.8824(4) 0.0602(9) 0.2677(5) 0.58(5)

B(4) 0.5328(4) 0.3272(7) 0.1722(5) 0.46(5)

B(5) 0.0531(4) 0.1943(8) 0.1359(5) 0.64(5)

O(1) 0.4299(3) 0.3559(6) 0.2379(4) 0.79(4)

O(2) 0.9047(3) –0.016(1) 0.8766(3) 0.77(4)

O(3) 0.8591(3) 0.0575(6) 0.4260(4) 0.78(4)

O(4) 0.7739(3) 0.1069(6) 0.1850(3) 0.63(3)

O(5) 0.6504(3) 0.0318(5) 0.3821(3) 0.77(4)

O(6)* 0.2707(4) 0.0823(8) 0.3876(5) 1.46(6)

O(7) 0.9707(3) 0.2115(5) 0.2503(3) 0.60(4)

O(8) 0.1589(3) 0.3105(5) 0.1732(3) 0.66(4)

O(9) 0.5653(2) 0.1317(5) 0.1508(3) 0.63(4)

O(10) 0 0.2650(8) 0 0.67(6)

H 0.211(6) 0.146(4) 0.343(6) 2.16(2)**

  * OH.
** Biso.

Table 4.  Interatomic distances

Bond type c.n.
Interatomic distances, Å

range of variation average

Ba–O 11 2.718(3)–2.999(3) 2.847

Na(1)–O 6 2.396(5)–2.579(4) 2.467

Na(2)–O 6 2.487(6)–2.710(4) 2.589

B(1)–O 3 1.349(6)–1.385(7) 1.364

B(2)–O 4 1.450(6)–1.516(5) 1.478

B(3)–O 4 1.446(6)–1.521(6) 1.480

B(4)–O 3 1.360(6)–1.376(6) 1.370

B(5)–O 4 1.451(5)–1.495(6) 1.471
2
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Table 5.  Fundamental building blocks in the structures of Ba-borates

Borate
complex* Formula of mineral

Method of connection 
of fundamental
building blocks

Type of boron–oxygen 
complex

3n2h Ba[B5O8(OH)]H2O** 〈n2h〉 – 〈2nh〉 Layers

5n5h LiBa2[B10O16(OH)3] 〈n2h〉 – 〈n2h〉
〈n2h〉 – 〈2nh〉

Layers

5n5h Ba5[B20O33(OH)4] · H2O 〈n2h〉 – 〈n2h〉
〈n2h〉 – 〈2nh〉

Double layers

2n3h B2[B5O8(OH)2](OH), NaCa[B5O8(OH)2] · 3H2O tuzlaite 〈n2h〉 – 〈n2h〉 Layers

2n3h Na2Ba2[B10O17(OH)2] 〈n2h〉 – 〈n2h〉 Double layers

2n3h Ba2[B5O8]Cl · 0.5H2O*** 〈n2h〉 – 〈n2h〉 Framework

* n and h denote a triangle and a tetrahedron, respectively.
** Biringuccite structure type.

*** Hilgardite structure type.
different dimensions. Moreover, the widespread occur-
rence of these rings in the structures of a large group of
borates seems to be associated with their presence in
the mineral-forming medium and, thus, also with their
presence in a growing crystal.

Obviously, all the above stated opens new vistas for
studying crystallochemical aspects of crystal genesis of
Ba-borates, many of which are promising materials for
various practical applications.
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Abstract—The neutron diffraction study of Na3H5(SeO4)4 single crystals at 298 and 85 K has confirmed the
positions of nonhydrogen atoms obtained in the X-ray diffraction study. Contrary to the X-ray diffraction data,
the neutron diffraction data indicate that all the three independent protons are ordered and participate in two
asymmetric and one symmetric hydrogen bonds, with the O···O distances being 2.68, 2.61, and 2.48 Å. The
system of hydrogen bonds is built by complicated chains. © 2002 MAIK “Nauka/Interperiodica”.
Crystal structures of alkali metal hydrogen sulfates
and selenates have been studied in sufficient detail only
for their potassium, rubidium, and cesium derivatives.
The intense study of these compounds was undertaken
in connection with the discovery of phase transitions in
Rb and Cs salts accompanied by the appearance of fer-
roelectric properties or high protonic conductivity. The
structures of the compounds formed by light alkali met-
als (lithium and sodium) have been established only
recently because of the considerable experimental dif-
ficulties of their synthesis such as high viscosity of the
solutions used, high concentration of selenic acid, and
high hygroscopicity of the compounds synthesized.
The structures of anhydrous lithium hydrogen sulfates
(LiHSO4 [1], Li2(HSO4)2(H2SO4) [2], Li(HSO4)(H2SO4)3
[3] and sodium hydrogen sulfates (NaHSO4 [3],
Na2(HSO4)2(H2SO4) [4], and Na(HSO4)(H2SO4)2 [4]) are
studied in more detail than those of hydrogen selenates.
The crystal structures of hydrogen selenates have been
determined only for three anhydrous compounds
(LiHSeO4 [5], NaHSeO4 [6], and Na3H5(SeO4)4 [6]) and
one hydrate (Na5H3(SeO4)4 ⋅ 2H2O [7]). While hydrogen
sulfates and selenates of heavier alkali metals are usu-
ally isotypic, lithium and sodium hydrogen selenates
are crystallized in the structure types different from
those of hydrogen sulfates. Also, the stoichiometry of
Na3H5(SeO4)4 “superacid” selenate is unique among
the sodium and other alkali metal superacid sulfates.

In addition to technical difficulties encountered in
the synthesis and the study of lithium and sodium
hydrogen selenates, the determination of their struc-
tures by X-ray diffraction methods also encounters con-
1063-7745/02/4701- $22.00 © 0029
siderable difficulties. This is explained by anomalous
scattering of MoKα radiation by selenium atoms.
Therefore, it is very difficult to determine the positions
of hydrogen atoms in selenates quite reliably, which, in
turn, hinders the analysis of fine characteristics of the
system of hydrogen bonds in these crystals.

At the same time, the positions of hydrogen atoms
in the selenates of the composition MHSeO4 (M = Li,
Na) are determined quite reliably, which cannot be
made for Na3H5(SeO4)4 in which, according to the
X-ray diffraction data [6], one of the three independent
hydrogen atoms is disordered over two positions.
Therefore, we undertook the neutron diffraction study
of single crystals of this compound with the aim to
refine the positions of hydrogen atoms and establish the
specific features of the system of hydrogen bonds in
Na3H5(SeO4)4. The results of this study are presented
below and compared with the corresponding X-ray dif-
fraction data.

EXPERIMENTAL

Long (4–5 mm) Na3H5(SeO4)4 crystals were
obtained upon slow (for two months) removal of water
from the solution prepared by dissolving sodium car-
bonate in the concentrated (seven-times excess in com-
parison with the stoichiometric ratio [6]) selenic acid.
The 5.0 × 4.0 × 2.5 mm-large crystal in the shape of an
oblique-angled parallelipiled was selected for the fur-
ther study. This crystal was fixed with the aid of epoxy
resin in a thin-walled glass capillary tube in a glove box
and then was sealed.
2002 MAIK “Nauka/Interperiodica”
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The neutron diffraction experiment was made on a
four-circle E5 diffractometer on a BER II (BENSC,
Berlin) reactor. The beam monochromatization to λ =
0.889 Å was attained by reflection from the (220) plane
of a copper single crystal. The data were collected with
the use of an area position-sensitive (90 × 90 mm2) 3He-
detector at room temperature (2390 reflections), at 85 K
(2313 reflections), and 11 K (968 reflections). The
intensity measurements at low temperature were hin-
dered by random overlap of measured reflections with
the reflections from the aluminum container. Therefore,
these reflections were not used in the profile analysis.
At room temperature, the structure was refined with the
use of the unit-cell parameters obtained earlier by the
X-ray diffraction method [6]; in the refinement at 85 K,
the unit cell parameters were determined using 200
centered reflections. The measurements at 11 K have
not been completed, therefore, no exact calculations at
this temperature were possible. The coherent neutron-
scattering amplitudes were taken from [8]. The initial
coordinates of nonhydrogen atoms were taken from [6].
All the three independent protons were localized by
strong negative peaks on the Fourier syntheses. The
refinement of the structure model by the SHELXL-93
program [9] was performed in the anisotropic approxi-
mation for all the atoms. The crystallographic data and
the details of the structure refinement are indicated in
Table 1. The atomic coordinates and the anisotropic
displacement parameters for the structures at room

Table 1.  Crystallographic characteristics, experimental
conditions, and details of the refinement of the Na3H5(SeO4)4
structure at 293 and 85 K

Temperature, K 293(2) 85(2)

System Triclinic

Sp. gr. P

a, Å 5.857(1) 5.795(2)

b, Å 7.254(1) 7.229(2)

c, Å 8.943(2) 8.855(3)

α, deg 104.83(2) 104.68(2)

β, deg 91.69(2) 91.65(2)

γ, deg 105.41(2) 105.62(1)

V, Å3 352.15(11) 343.7(2)

Z 1 1

ρcalc, g/cm3 4.102 4.203

Total number of reflections 2390 2313

Number of independent
reflections

2333 2039

Number of reflections 
with I > 2σ(I)

1883 1622

Number of reflection/parame-
ters used in the LS refinement

2008/131 1656/131

R1/wR2 0.0395/0.0979 0.0613/0.1296

1

C

temperature and 85 K are deposited in the Inorganic
Crystal Structure Database (FIZ, Kalsruhe, Germany)
under the registration numbers CSD 411719 and
411720.

RESULTS AND DISCUSSION

The neutron diffraction study of Na3H5(SeO4)4 sin-
gle crystals at room temperature showed that the struc-
tural parameters of all the atoms, including hydrogen
ones, are obtained with a rather high accuracy
(Table 2). Despite the fact that the reliability factor R1
in the X-ray diffraction study [6] is lower (0.032), the
positions of oxygen atoms are determined with a
slightly lower accuracy, whereas hydrogen atoms are
localized with a rather low accuracy. This had to be
expected because of pronounced anomalous scattering
of MoKα radiation by selenium atoms and the difficul-
ties associated with the allowance for absorption in the
crystal. Nevertheless, the interatomic distances for non-
hydrogen atoms obtained by both methods are almost
the same. Both sodium atoms are characterized by
somewhat distorted octahedral environment—six oxy-
gen atoms at the 2.35–2.50 Å distances. The Se–O dis-
tances are essentially dependent on the additional func-
tions performed by the corresponding oxygen atoms.
The longest distances are characteristic of Se–OH
bonds with the O(4) and O(8) oxygen atoms playing the
role of proton donors in hydrogen bonds (Table 3). The

Table 2.  Interatomic distances (Å) in the Na3H5(SeO4)4
structure according to the X-ray and neutron diffraction data

Distance

X-ray diffrac-
tion analysis

Neutron
diffraction

Neutron
diffraction

293 K 293 K 85 K

Se(1)–O(1) 1.620(4) 1.619(1) 1.631(3)

Se(1)–O(2) 1.611(3) 1.609(1) 1.607(2)

Se(1)–O(3) 1.626(3) 1.621(1) 1.619(3)

Se(1)–O(4) 1.708(4) 1.707(1) 1.703(2)

Se(2)–O(5) 1.607(4) 1.603(1) 1.606(3)

Se(2)–O(6) 1.609(4) 1.609(1) 1.610(2)

Se(2)–O(7) 1.659(4) 1.659(1) 1.655(3)

Se(2)–O(8) 1.692(4) 1.689(1) 1.688(2)

Na(1)–O(1) 2.391(4) 2.396(2) 2.375(4)

Na(1)–O(2) 2.380(4) 2.382(2) 2.364(4)

Na(1)–O(2') 2.384(4) 2.380(2) 2.353(4)

Na(1)–O(5) 2.366(4) 2.373(2) 2.345(4)

Na(1)–O(5') 2.450(4) 2.451(2) 2.418(4)

Na(1)–O(6) 2.438(4) 2.440(2) 2.412(4)

Na(2)–O(3) 2.346(4) 2.354(1) 2.329(2)

Na(2)–O(6) 2.390(4) 2.388(1) 2.370(2)

Na(2)–O(7) 2.497(4) 2.503(1) 2.467(2)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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System of hydrogen bonds in the Na3H5(SeO4)4 structure represented as chains of SeO4-tetrahedra connected by hydrogen bonds.
Se–O(7) distance is somewhat shorter because the O(7)
atom is a half-donor and a half-acceptor in the
O(7)···H(2)···O(7') hydrogen bond with H(2) atom
located at the center of inversion. The shortest bonds
are the Se–O bonds with the O(1) and O(3) atoms play-
ing the role of acceptors in hydrogen bonds and also
with O(2), O(5), and O(6) atoms participating only in
weak ionic interactions with sodium atoms.

According to the X-ray diffraction data [6], the H(1)
and H(3) atoms participate in asymmetric hydrogen
bonds, whereas the H(2) atom is disordered over two
positions around the center of inversion. On the con-
trary, the neutron diffraction study showed that all the
protons are ordered, with the H(2) atom being in the
center of inversion and, thus, participating in the sym-
metric linear O(7)···H(2)···O(7') hydrogen bond. In
accordance with the well-known correlations [10], this
hydrogen bond is the shortest, 2.484(2) Å. Two remain-
ing hydrogen bonds are much longer with their lengths,
2.679(2) and 2.610(2) Å, correlating with the angle at
the corresponding hydrogen atoms H(1) (166.9(2) Å)
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
and H(3) (172.5(2) Å). Because of the high accuracy of
localization of hydrogen atoms, it is possible to reveal
a slight reduction in the Se–OH bond lengths with an
increase of the O–H distances, although the difference
in the oxygen distances to the H(1) and H(3) is only
0.01 Å. The difference in the position of the H(2) atom
determined from the neutron and X-ray diffraction
studies demonstrate the specific features of both meth-
ods reflecting the distribution of the nuclear and elec-
tron density in a crystal, respectively. This is the so-
called Kroon–Kanters–McAdam (KKM) effect often
observed for strong (shorter than 2.5 Å) hydrogen
bonds. Different values of the electron and nuclear den-
sity of H (D) atoms were revealed on an example of
acid salts of hydrogen tartrates and succinates [11, 12]
and later also in the structures of acid salts of other
organic acids [13, 14]. Recently, a similar effect was
also established by comparing the neutron and X-ray
diffraction data for potassium hydrogen selenate–phos-
phate K4(HSeO4)3(H2PO4) [15].
2
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Table 3.  Hydrogen bonds in Na3H5(SeO4)4 crystals according to the neutron and X-ray diffraction (italic) data

D–H ⋅ ⋅ ⋅A D–H, Å H ⋅ ⋅ ⋅A, Å D ⋅ ⋅ ⋅A, Å ∠ D–H ⋅ ⋅ ⋅A, deg T, K

O(4)–H(1) ⋅ ⋅ ⋅O(1)* 0.997(2) 1.698(3) 2.679(2) 166.9(2) 293

0.992(5) 1.675(5) 2.648(3) 166.1(4) 85

0.68(7) 2.03(7) 2.679(5) 160(9) 293

O(7) ⋅ ⋅ ⋅H(2) ⋅ ⋅ ⋅O(7)** 1.242(1) 1.242(1) 2.484(2) 180 293

1.229(2) 1.229(2) 2.458(4) 180 85

0.6(1) 2.0(1) 2.505(9) 170(17) 293

O(8)–H(3) ⋅ ⋅ ⋅O(3)*** 1.006(2) 1.609(2) 2.610(2) 172.5(2) 293

1.024(5) 1.578(5) 2.598(3) 173.0(4) 85

0.8(1) 1.8(1) 2.611(5) 175(10) 293

Note: Symmetry transformations: * 1 – x, 2 – y, 2 – z, ** 1 – x, 2 – y, 1 – z, and *** –x, 1 – y, 1 – z.
The comparison of the neutron diffraction data at
293 and 85 K showed that cooling affects the coordina-
tion of selenium atoms only slightly. However, it results
in a considerable (by 0.02–0,03 Å) decrease in the
Na−O distances. All three hydrogen bonds become
slightly shorter, but no considerable differences in the
character of proton distribution is observed. It should
be emphasized that the amplitudes of thermal vibra-
tions of all the atoms are reduced by almost a factor of
two, with the maximum reduction being observed for
the H(2) atom. At room temperature, the ellipsoid of
thermal vibrations of this atoms has the maximum elon-
gation along one of the axes (figure). At 85 K, the max-
imum “contraction” of the ellipsoid is also observed
along this axis, so that all the three protons are charac-
terized by approximately equal axial ratios (about 2 : 1).
The structure refinement performed by the incomplete
experimental data at 11 K indicates the absence of any
phase transitions and considerable changes in the
Na3H5(SeO4)4 structure during crystal cooling to this
temperature.

The system of hydrogen bonds is formed by infinite
chains of SeO4-tetrahedra connected by hydrogen
bonds (figure). When describing the chain structure,
one has to distinguish between two types of dimers
formed by SeO4-tetrahedra. The cyclic centrosymmet-
ric [HSe(1)O4]2 dimers are formed by the pairs of O(4)–
H(1)···O(1) hydrogen bonds, whereas the second-type
centrosymmetric [H(HSe(2)O4)2] dimers consist of two
tetrahedral (HSeO4)– anions bound by the symmetric
O(7)···H(2)···O(7') hydrogen bond. The dimers of both
types are connected by hydrogen bonds O(8)–H(3)···O(3)
and form infinite chains along the [221] direction. With
due regard for the above features of the crystal struc-
ture, the formula of sodium hydrogen selenate studied
above can be written as Na3[H(HSeO4)2](HSeO4)2. The
singly charged anions [H(HSeO4)2]– were revealed only
in this structure, whereas an analogous sulfate anion is
observed in the structure of lithium “superacid” sulfate
Li[H(HSO4)2](H2SO4) [3].
C

REFERENCES

1. E. Kemnitz, C. Werner, H. Worzala, et al., Z. Anorg.
Allg. Chem. 621, 675 (1995).

2. C. Werner, E. Kemnitz, H. Worzala, et al., Z. Anorg.
Allg. Chem. 621, 1266 (1995).

3. C. Werner, S. Troyanov, E. Kemnitz, and H. Worzala, Z.
Anorg. Allg. Chem. 622, 337 (1996).

4. S. Troyanov, C. Werner, E. Kemnitz, and H. Worzala, Z.
Anorg. Allg. Chem. 621, 1617 (1995).

5. M. A. Zakharov, S. I. Troyanov, and E. Kemnitz, Zh.
Neorg. Khim. 44 (8), 1242 (1999).

6. M. A. Zakharov, S. I. Troyanov, V. B. Rybakov, et al., Zh.
Neorg. Khim. 44 (3), 448 (1999).

7. N. P. Kozlova, L. D. Iskhakova, V. V. Marugin, et al., Zh.
Neorg. Khim. 35 (6), 1363 (1990).

8. International Tables of Crystallography, Ed. by
A. J. C. Wilson (Kluwer, Dordrecht, 1992), Vol. C,
p. 383.

9. G. M. Sheldrick, SHELXL93: Program for Crystal
Structure Refinement (University of Göttingen, Göttin-
gen, 1993).

10. I. Olovsson and P.-G. Jönsson, The Hydrogen Bond—
Recent Development in Theory and Experiments, Ed. by
P. Schuster et al. (North-Holland, Amsterdam, 1976),
Vol. II, Chap. 8, p. 393.

11. J. Kroon, J. A. Kanters, and A. F. Peerdeman, Nature
(London), Phys. Sci. 229, 120 (1971).

12. A. McAdam, M. Currie, and J. C. Speakman, J. Chem.
Soc., 1994 (1971).

13. A. L. MacDonald, J. C. Speakman, and D. Had i, J. Chem.
Soc. Perkin Trans. 2, 825 (1972).

14. M. Currie, J. C. Speakman, J. A. Kanters, and J. Kroon,
J. Chem. Soc. Perkin Trans. 2, 1549 (1975).

15. S. I. Troyanov, I. V. Morozov, M. Reehuis, and
E. Kemnitz, Z. Kristallogr. 215, 377 (2000).

Translated by L. Man

z

>

RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002



  

Crystallography Reports, Vol. 47, No. 1, 2002, pp. 33–38. Translated from Kristallografiya, Vol. 47, No. 1, 2002, pp. 40–45.
Original Russian Text Copyright © 2002 by Rabadanov, Ataev.

                

STRUCTURE OF INORGANIC
COMPOUNDS

                                             
Atomic Structure and Enormous Anisotropy of Thermal 
Expansion in NiSi Single Crystals. 
I. Refinement of Structure Models

M. Kh. Rabadanov* and M. B. Ataev**
* Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 117333 Russia
** Dagestan State University, Makhachkala, Dagestan, Russia

e-mail: rab_mur@ns.crys.ras.ru
Received February 26, 2001; in final form, April 13, 2001

Abstract—The atomic structure of NiSi single crystals has been studied by the methods of X-ray diffraction
analysis at 295 and 418 K. The refinement of the structure models with due regard for anharmonicity of atomic
vibrations revealed the pronounced anisotropy of thermal vibrations and the considerable contribution of the
fourth-order anharmonicity. The maps of the probability density function of atomic displacements and single-
particle potentials of both atoms were constructed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It has been established that nickel monosilicide
crystals possess giant anisotropy of thermal expansion
and that with an increase of the temperature, the crys-
tals are “compressed” along one of the crystallographic
axes [1]. At the same time, the information about the
crystallochemical characteristics of these single crys-
tals is rather scarce [2–4]. Therefore it was of consider-
able interest to make precision structural studies of the
crystals at different temperatures, analyze the relation-
ship between the structural characteristics and the enor-
mous anisotropy of their thermal expansion, and estab-
lish the physical sense of the thermal parameters
(including the anharmonic ones) obtained in the LS
refinement of the structure model. The first part of our
article presents the results of the X-ray diffraction stud-
ies of orthorhombic NiSi single crystals at the temper-
atures of 295 and 418 K. We consider the relationships
between the thermal parameters obtained and the ther-
mal expansion. We also plan the further analysis of the
relation between the structural characteristics of the
crystals and enormous anisotropy of thermal expansion
observed.

EXPERIMENTAL

We studied a NiSi specimen (0.298(9) mm in diam-
eter) chosen from NiSi single crystals rolled to the
spherical shape, which gave the best diffraction pattern.
The experimental sets of diffraction reflections were
obtained on a CAD-4F Enraf Nonius diffractometer
(MoKα radiation, θ/2θ scan) at 295 and 418 K. A spe-
cial high temperature attachment used in experiments
was described elsewhere [5]. The stability of the dif-
1063-7745/02/4701- $22.00 © 0033
fractometer and the functioning of the high-tempera-
ture attachment was checked each 60 minutes by mea-
suring the intensities of two reference reflections. At
418 K, the specimen orientation was checked and
refined upon measurement of each 200 reflections. The
experimental conditions during the refinement of the
unit-cell parameters are indicated in Table 1. It was
established that the b-parameter considerably
decreased, whereas the a- and c-parameters noticeably
increased with an increase of the temperature from 295
to 418 K accompanied by an increase of the unit-cell
volume. The intensities of the recorded reflections were
corrected for the Lorentz factor, polarization, and

Table 1.  Experimental conditions and refined unit-cell pa-
rameters for NiSi single crystals

T, K 295 418

a, Å 5.1752(7) 5.194(1)

b, Å 3.3321(5) 3.3232(8)

c, Å 5.6094(9) 5.629(1)

V, Å3 96.73(1) 97.15(1)

µr 3.002 2.989

Scanning range 1.2 + 0.35tanθ 1.2 + 0.35tanθ
Detector window, mm 3 × 1 3 × 1
sinθ/λ, Å–1 0.13–1.10 0.13–1.10

Number of measured
reflections

2986 3085

Number of independent
reflections

435 432

Rav 1.61 1.92
2002 MAIK “Nauka/Interperiodica”
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Table 2.  Results of the refinement of three structure models of a NiSi single crystal (bij, Å
2; cijk, Å

3; dijkl, Å
4)

T, K
295 418 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

K 8.735 8.741 8.754(10) 8.576 8.556 8.573(10)
Ni: x/a .00779 .00792 .00785(2) .00757 .00757 .00757(2) 

y/b .25 .25 .25 .25 .25 .25
z/c .18752 .18757 .18731(2) .18772 .18773 .18772(2) 
b11 .00249 0.00249 .00237(4) .00528 0.00524 .00507(4)
b22 .00631 0.00635 .00667(4) .00989 0.00985 .01026(4)
b33 .00425 0.00426 .00436(4) .00682 0.00679 .00661(4)
b13 –.00003 –0.00003 –.00002(1) –.00003 –0.00002 –.00001(1)
c111 0.00095 .00030(22) –0.00019 –.00027(22)
c333 –0.00018 –.00195(21) 0.00016 –.00025(24)
c122 0.00009 .00008(15) –0.00039 –.00015(22)
c113 0.00034 –.00018(16) 0.00010 .00013(17)
c133 0.00035 .00026(16) 0.00037 .00044(18)
c223 0.00048 –.00011(16) –0.00014 –.00012(20)
d1111 –.00050(76) –.0034(6)
d2222 .0061(8) .0070(9)
d3333 .0017(7) –.0035(7)
d1113 .00009(38) .00062(48)
d1122 –.00097(44) –.00016(44)
d1133 –.00059(46) .00004(45)
d1223 .00092(25) .00068(38)
d1333 –.00066(41) –.00060(52)
d2233 –.0000(5) –.00047(52)

Si: x/a .32128 .32148 .32152(6) .32099 .32093 .32090(6) 
y/b .75 .75 .75 .75 .75 .75
z/c .08250 .08230 .08166(6) .08163 .08166 .08168(6)
b11 .00335 0.00335 .00304(8) .00621 0.00619 .00599(8)
b22 .00557 0.00560 .00583(7) .00846 0.00849 .00878(8)
b33 .00569 0.00572 .00585(8) .00882 0.00871 .00892(8)
b13 –.00024 –0.00021 –.00022(3) –.00036 –0.00036 –.00029(3)
c111 0.00138 .0016(6) –0.00026 –.00109(61)
c333 –0.00088 –.0048(6) 0.00134 .00179(71)
c122 0.00049 .0008(4) 0.00017 .00042(51)
c113 –0.00021 –.0017(4) –0.00016 –.00022(43)
c133 –0.00018 .0003(4) –0.00033 –.00032(50)
c223 –0.00090 –.0024(4) –0.00112 –.00063(51)
d1111 –.0043(15) –.0012(18)
d2222 .0019(15) .0062(18)
d3333 .0011(15) .0047(17)
d1113 .0006(11) –.0007(12)
d1122 .0004(9) .0003(11)
d1133 –.0012(9) –.0015(10)
d1223 –.0007(7) .0001(10)
d1333 .0009(11) .0031(13)
d2233 .0015(9) –.0005(10)

Rw .0124 .0119 .0104 .0115 .0111 .0103
R .0104 .0101 .0088 .0113 .0110 .0104
S 1.42 1.41 1.27 1.32 1.31 1.25
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absorption. The lack of the necessary information did
not allow the introduction of the correction for thermal
diffuse scattering (TDS).

REFINEMENT OF THE MODELS 
OF THE ATOMIC STRUCTURE 

AND DISCUSSION OF RESULTS

The structure models were refined by the
PROMETHEUS package of programs [6, 7]. The
orthorhombic MnP (or FeP) structure type characteris-
tic of the NiSi structure is pseudohexagonal and can be
described as a distorted NiAs structure type. The space
group is Pnma with four formula units in the unit cell,
Z = 4. Both crystallographically independent atoms
occupy special 4c positions with the symmetry m and
the coordinates Ni (x, 0.25, z) and Si (x, 0.75, z)

The refinement was started with the harmonic
model and isotropic atomic thermal vibrations. The
parameters to be refined were the scale factor K, the
extinction parameter, two positional parameters and
one isotropic thermal parameter for each atom (alto-
gether eight parameters). At both temperatures, this
model was refined only to R = 5%. The allowance for
the anisotropy of thermal vibrations (hereafter referred
to as model 1) reduced the reliability factors to ~2%,
which showed that the atomic thermal displacements in
the single crystals studied are essentially anisotropic. In
this model, we considered four thermal parameters, b11,
b22, b33, and b12, for each atom. The extinction parame-
ter for all the models was introduced in the Becker–
Coppens formalism (isotropic type 1, Lorentzian distri-
bution of the blocks of mosaics), because all the other
methods of allowance for extinction yielded higher val-
ues of reliability factors.

It was of considerable interest to analyze the results
of the refinement of the anharmonic models and estab-
lish the relationship between the anharmonic parame-
ters and the specific characteristics of thermal expan-
sion. The models with due regard for only the third-
order anharmonicity (model 2) and the third- and
fourth-order anharmonicity (model 3) were refined
using the complete set of the structure factors and only
the sets of high-order reflections. For a more reliable
analysis, the refinement was performed by three sets of
high-order reflections with (sinθ/λ)min ≥ 0.7, 0.8, and
0.9 Å–1. The comparative analysis of the results
obtained showed that the model parameters were
almost independent of (sinθ/λ)min. In the further analy-
sis, we used the results obtained in the refinement by
the sets of high-order reflections with (sinθ/λ) ≥ 0.8 Å–1

(Table 2).
In Table 2, the standard deviations of the refined

parameters are listed only for model 3, because the val-
ues of the parameters common to all the models were
almost the same. For a more convenient analysis, we
retained all the anharmonic parameters admitted by the
symmetry of the atomic positions despite the fact that
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
some of these parameters were determined with consid-
erable errors. Table 2 also lists the R/Rw and S factors
for each model.

The scale factor and the extinction parameter were
refined over the complete set of reflections, whereas the
tensors of the thermal parameters were refined only by
the sets of high-order reflections. In the refinement of
model 3, considerable correlations were established
only between the scale factor, harmonic thermal and
anharmonic fourth-order thermal parameters. In this
case, an increase of the scale factor resulted in the dis-
placement of the fourth-order anharmonic parameters
toward negative values. It should also be indicated that
the refinement of models 1 and 2 showed no consider-
able correlations, and the scale factors for these models
were almost the same in all the refinement procedures.
However, the refinement of model 3 with different K
different values (e.g., overestimated by 5–6σ) often
resulted in essentially different values, which were
more pronounced at T = 295 K, probably, because of
insignificant anharmonicity. The refinement of the
model parameters at the fixed overestimated K (K =
8.85, whereas the initial value was K = 8.74(2)) at the
temperature T = 295 K resulted in such an increase of
the negative contributions of the fourth-order anharmo-
nicity parameters to the probability density function
(PDF) of the displacements of Ni atoms from their
equilibrium positions that the values in the PDF center
were negative. In this case, the Rw/R factors increased
only slightly (by 0.02–0.03). This example shows the
necessity of a careful interpretation of the anharmonic
parameters obtained and the analysis of the refined
anharmonic models.

The analysis of the harmonic thermal parameters
obtained shows that, first, only the diagonal parameters
b11, b22, and b33 are significant and, second, the diagonal
parameter b22 has the maximum value for both atoms
(for Ni atoms, it exceeds the b33 value by a factor of
1.5). However, with an increase in the temperature, the
b11-value increased by a factor of about 2.5, the b33
value, by factor of about 2, whereas b22 , only by a factor
of about 1.5.

The ellipsoids of atomic thermal vibrations of Ni
atoms in model 1 are smaller and are rotated about the
crystallographic axes by smaller angles than the ellip-
soids of Si atoms. The thermal vibrations of Ni atoms
are characterized by a more pronounced anisotropy
than those of Si atoms. The ellipsoids of thermal vibra-
tions of Si atoms are close to biaxial. For Ni atoms, the
root-mean square deviation along the crystallographic
direction are maximal along the y-axis and the ellipsoid
is elongated in the direction of this axis, whereas for Si
atoms, the considerable root-mean square deviations
were observed along both y- and z-axes.

Table 2 shows that the third-order anharmonicity of
thermal vibrations is insignificant, whereas some
fourth-order parameters have considerable values. In
this case, the parameters d2222 for both atoms at both
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temperatures are positive, whereas d1111 and d3333 have
either low values or are negative. This result was
obtained in the refinement with the use of both sets of
high-order reflections and the complete set of reflec-
tions.

The results obtained were interpreted physically by
constructing the probability density functions (PDFs)
and calculating the contributions of anharmonicity to
these functions for both atoms in the xy, yz, and xz
planes at both temperatures. As an example, Figures 1
and 2 show the PDFs for Ni and Si atoms in the har-
monic and anharmonic approximations (Figs. 1a, 2a)
and the contribution of the third- (Figs. 1b, 2b) and
fourth-order (Figs. 1c, 2c) anharmonicity in the xy
plane at T = 418 K. The PDF values and the contribu-
tion of anharmonicity are indicated in percent with
respect to the PDF value in the center of equilibrium. In
all the cases, we observed deviations from the harmonic
approximation which correlated with the specific fea-
tures of the atomic environment. The contributions of
C

the fourth-order anharmonicity prevail over those of the
third-order anharmonicity. The analysis of the PDF
maps obtained shows that the allowance for the anhar-
monicity of atomic displacements reduces the PDF val-
ues for both atoms along the direction of the negative
expansion (b-axis) and increase them along two other
axes. If the values of the anharmonicity parameters are
overestimated (which can be caused by correlations,
see above), these effects become even more pro-
nounced.

The knowledge of the PDFs of atomic displace-
ments from their equilibrium positions allows the cal-
culation of single-particle potentials of atoms. Figure 3
shows the single-particle potentials of Ni and Si atoms
along the crystallographic x-, y-, and z-axes at T =
418 K. It is seen that the single-particle potentials of
both atoms with allowance for anharmonicity along the
y-axis are more steep than those calculated in the har-
monic approximation, whereas along the x- and z-axes,
the potentials in the anharmonic approximation are
smoother. Thus, the anharmonicity contributions to the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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single-particle potentials for both atoms along the y-
axis and the x- and z-axes have opposite signs, which is
consistent with the specific features of thermal expan-
sion of the crystals studied.

Thus, the refinement of the models of the atomic
structure provided the determination of relative coordi-
nates and the parameters of thermal vibrations of atoms
in NiSi crystals at 295 and 418 K. It is established that
the thermal vibrations of the Ni and Si atoms are
strongly anisotropic and that the ellipsoids of their ther-
mal vibrations are elongated in the direction of the
y-axis, whereas the linear expansion coefficient along
the y-axis is negative. The results obtained in the refine-
ment of the anharmonic models are consistent with the
experimentally observed thermal expansion and allow
its better understanding and interpretation.
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Abstract—The crystal structure of khanneshite (Na2.75Ca0.23)2.98(Ba1.08Sr0.63Ca0.46Ce0.46La0.18Nd0.15Pr0.04)3.00 ⋅
(CO3)5 found in carbonatites from the Khibiny massif (the Kola Peninsula) was solved by the Rietveld method.
The X-ray diffraction data were collected on a focusing STOE-STADIP diffractometer equipped with a bent
Ge(111) primary-beam monochromator (λMoKα1 radiation, 2.00° < 2θ < 54.98°, 311 reflections). All the cal-
culations were performed within the sp. gr. P63mc; a = 10.5790(1) Å, c = 6.5446(1) Å, V = 634.31(1) Å3, RP =
2.38, Rwp = 3.26, RB = 1.42, RF = 1.79. The atoms of the cations were refined with anisotropic thermal param-
eters. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Khanneshite (Na, Ca)3(Ba, Sr, TR, Ca)3(CO3)5
belongs to the burbankite structural family including
hexagonal and monoclinic pseudohexagonal carbon-
ates of the general formula A3–4B2–3(CO3)5 , where A =
Na, Ca, or h and B = Sr, Ba, TR, or Ca.

Khanneshite, the Ba-dominant member of the fam-
ily, is the most rare of all the burbankite-like minerals.
This mineral was discovered in the Khanneshin carbon-
atite complex (Afghanistan) in 1982. After the first pub-
lication, a number of questions remained open, because
the original material analyzed by the wet method was
substantially contaminated with other carbonates and
barite. Based on the X-ray diffraction powder pattern,
the authors discovered Khanneshite assumed that the
new mineral is structurally similar to burbankite
(Na,Ca)3(Sr,Ca,TR,Ba)3(CO3)5, determined its unit-cell
parameters, and interpreted them within the hexagonal
system (a = 10.65 Å, c = 6.58 Å) [1].

We revised the structure data based on the results of
local X-ray spectral analysis of a holotypic specimen of
khanneshite from Khanneshin. On the one hand, our
investigation confirmed the existence of the Ba-domi-
nant chemical analogue of burbankite and, on the other
hand, demonstrated that the substance under study
occurred as thin concretions of this phase with barium-
rich burbankite, mckelveyite, and barite [2]. This mate-
rial was unsuitable for precision X-ray diffraction
study. Hence, the structure type of khanneshite
remained unknown. We found this mineral also in car-
bonatites from the Khibiny alkaline massif (the Kola
1063-7745/02/4701- $22.00 © 0039
Peninsula). The latter specimens appeared to be homo-
geneous [2]. However, all the attempts to study several
seemingly single-crystal (according to the optical char-
acteristics) grains of khanneshite from the Khibiny
massif by the Laue method have failed: the Laue pat-
terns taken from these grains had no reflections at all.
At the same time, the X-ray diffraction powder patterns
of the mineral had high quality, and their reflections
were adequately indexed within a hexagonal unit cell of
the burbankite type. In this connection, we used the
Rietveld method for determining the structure of this
mineral.

EXPERIMENTAL

Khanneshite from the Khibiny massif was discov-
ered in the only fragment of a core sample from a well
on the shore of the Tul’ilukht gulf located in the east
part of the massif [2]. The mineral was found in the

Table 1.  Chemical composition (wt %) of khanneshite

Na2O 11.86 Ce2O3 10.46

CaO 5.37 Pr2O3 1.01

SrO 9.04 Nd2O3 3.60

BaO 22.99 CO2 (30.59)

La2O3 4.07 Total 98.99

Note: The CO2 concentration was calculated from the stoichiometry.
2002 MAIK “Nauka/Interperiodica”
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form of irregularly shaped grains up to 2 mm in diame-
ter and the bright carrot-red aggregates of such grains
located in a zonal carbonate vein. Khanneshite occurs
in association with magnetite, calcite, and dawsonite.

Table 2.  Unit-cell parameters and characteristics of the re-
finement of the khanneshite structure by the Rietveld method

a, Å 10.5790(1) Rp 2.38

c, Å 6.5446(1) Rwp 3.26

c/a 0.6186 Rexp 5.34

V, Å3 634.31(1) RB 1.42

Sp. gr. P63mc RF 1.79

2θ range, deg 2.00–54.98 s* 1.55

Number of reflections 311 DWD** 0.74

Number of parameters 
to be refined

54 σx*** 1.814

* s = Rwp/Rexp, where Rexp is the expected Rwp value.
** DWD is the Durbin–Watson statistics [9].

*** The multiplier in the calculations of standard deviations [10].
C

The chemical composition of khanneshite (Table 1)
was determined by X-ray spectral analysis (a Camebax
microbeam instrument; analyst I.M. Kulikova, Institute
of Mineralogy, Geochemistry, and Crystal Chemistry
of Rare Elements).

X-ray diffraction study was performed with the use
of homogeneous khanneshite grains. The X-ray spec-
trum of a powdered sample was measured on a focusing
STOE-STADIP diffractometer equipped with a bent
Ge(111) primary-beam monochromator (λMoKα1 radi-
ation, 2.00° < 2θ < 54.98°, 311 reflections). All the cal-
culations were performed with the use of the WYRIET
program (version 3.3) [3] within the sp. gr. P63mc. The
atomic coordinates reported in [4] were used as the
starting model. The ionic scattering curves were used.
The peak profiles were approximated by the Pearson-
VII function with 6FWHM. The asymmetry was
refined at 2θ < 40°. The refinement was made with the
gradual addition of parameters to be refined with the
continuous automatic modeling of the background until
the attainment of stable R factors. The isotropic refine-
ment converged to the Rwp factor of 3.40%.
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Fig. 1. Experimental (solid line) and calculated (dots) X-ray diffraction spectra of khanneshite.
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Table 3.  Coordinates, thermal parameters (Å2), and position occupancies in the khanneshite structure

Atom Characteristic Value Atom Characteristic Value

A x 0.5246(5) C(3) x 1/3

y 0.4754(5) y 2/3

z 0.308(2) z 0.50(2)

Bj 1.1(2) Bj 3(1)

q (Na) 2.57(4) O(1) x 0.379(1)

q (Ca) 0.43(4) y 0.085(1)

B x 0.8403(2) z 0.629(2)

y 0.1597(2) Bj 1.6(3)

z 0 O(2) x 0.928(1)

Bj 0.85(3) y 0.072(1)

q (Sr) 0.63(1) z 0.344(3)

q (TR + Ba) 1.90(1) Bj 3.7(6)

q (Ca) 0.46(1) O(3) x 0.405(1)

C(1) x 0.799(1) y 0.595(1)

y 0.201(1) z 0.486(8)

z 0.541(6) Bj 1.9(4)

Bj 1.4(8) O(4) x 0.774(1)

C(2) x 0 y 0.226(1)

y 0 z 0.359(3)

z 0.838(9) Bj 2.4(5)

Bj 1(1)

Note: The calculations for TR and Ba atoms were made with the use of the f-curve for Ba.
Some selected characteristics of X-ray data collec-
tion and the results of the refinement of the khanneshite
structure with anisotropic (the A and B cations) and iso-
tropic (the oxygen and carbon atoms) thermal parame-
ters are given in Table 2. The experimental (solid line)
and the calculated (dots) X-ray spectra of khanneshite
are shown in Fig. 1. The unindexed reflection (2θ =
14.00°, d = 2.91 Å, I = 4 arb. units) apparently belongs
to a mineral–impurity (probably, clinopyroxene). The
atomic coordinates, the isotropic thermal parameters,
and the occupancies of the positions in the khanneshite
structure are listed in Table 3.

RESULTS AND DISCUSSION

Similar to the burbankite structure [5], the crystal
structure of khanneshite contains two independent cat-
ionic positions corresponding to the eight-vertex
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
A-polyhedron (Na and Ca) and the ten-vertex B-polyhe-
dron (Ba, Sr, TR, and Ca), and three types of triangular
carbonate groups (C(1), C(2), and C(3)) having differ-
ent orientations (Fig. 2). The average distances in the
polyhedra are as follows: A–O, 2.50 Å; B–O, 2.71 Å;
C(1)–O, 1.27 Å; C(2)–O, 1.32 Å; and C(3)–O, 1.31 Å.
The A and B positions are statistically occupied by the
corresponding cations.

The unit-cell parameters of khanneshite are larger
than those of burbankite (a = 10.48–10.53 Å, c = 6.48–
6.53 Å [4, 5]) due to the incorporation of large barium
cations. This also explains the fact that the average
interatomic distance in the ten-vertex B-polyhedron in
khanneshite (2.71 Å) is the largest one of all the analo-
gous distances in the structures of other known repre-
sentatives of the burbankite family: burbankite (2.68–
2.70 Å) [4, 5, 6], calcioburbankite (2.67 Å) (our data),
remondite-(Ce) (2.63 Å) [7], and petersenite-(Ce)
2
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b

a

Fig. 2. The khanneshite structure projected onto the ab plane; the eight-vertex A-polyhedra are indicated by shaded circles, the cen-

ters of the ten-vertex B-polyhedra are indicated by empty circles, and the  triangular anions are indicated by solid circles.CO3
2–
(2.59 Å) [8]. In the transition from burbankite to khan-
neshite, the physical properties also change because of
the replacement of Sr by the heavier Ba cation. The
density and the refractive indices in this series increase
regularly.

CONCLUSIONS

Khanneshite and burbankite form a continuous
series of compositions [2]. Moreover, these two miner-
als are isostructural (P63mc). Thus, contrary to the
replacement of Sr by TR, the incorporation into the
structure of larger Ba ions instead of Sr does not change
the structural type. Indeed, the burbankite-like mineral
remondite Na3(TR, Sr, Ca, Na)3(CO3)5, having a simi-
lar structural motif, is characterized by the monoclinic
symmetry (P21) [7]. However, on the whole, the bur-
bankite structural type is unfavorable for barium-rich
compositions. This is evidenced by the fact that khan-
neshite occurs very rarely in nature against the back-
ground of the rather often occurrence of burbankite
forming commercially important deposits.
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Abstract—The crystal structure of mineral bussenite, Na2Ba2Fe[TiSi2O7][CO3]O(OH)(H2O)F, found in the
Khibiny massif (the Kola Peninsula) has been determined. The parameters of the triclinic unit-cell are a =

5.399(3) Å, b = 7.016(9) Å, c = 16.254(14) Å, α = 102.44(8)°, β = 93.18(6)°, γ = 90.10(7)°, sp. gr. , R =
0.054 for 1418 reflections with |F | > 2.5σ(F). The mineral studied belongs to the family of layered titanosili-
cates, in which, unlike the sulfate- and phosphate-containing representatives of this family, the interlayer spaces
are filled with carbonate groups. © 2002 MAIK “Nauka/Interperiodica”.

P1
A peculiar group of natural compounds crystallizing
from derivates of nepheline–syenite magmas highly
supersaturated with alkaline and volatile components
includes hybrid minerals with the structures consisting
of alternating blocks of essentially silicate and salt
compositions [1, 2]. We studied the crystal structure of
the new mineral, bussenite [2–4], the first carbonate-
containing representative of this group.

Bussenite was discovered in a sodalite–natrolite–
calcite veinlet from the Khibiny alkaline massif (the
Kola Peninsula). The mineral occurs as curved yellowish-
brown micalike platelets 2–5 cm in length and 0.5 mm in
thickness. The mineral is characterized by perfect
cleavage along the (001) plane and moderate cleavage
along the (110) and (1–10) planes. Both visually and in
a microscope, bussenite resembles high-barium lam-
prophyllite Na(Sr, Ba)(Ti, Fe)Ti[Si2O7](O, OH)2 [5].
However, the new mineral differs from the latter by a
number of characteristic features. In particular, the IR
spectrum of the new mineral has absorption bands at
1410 and 1445 cm–1 attributed to vibrations of carbon-
ate groups. The chemical composition of bussenite cor-
responds (the cation sum is 8; Z = 2) to the empirical
formula (Na1.94K0.09)(Ba1.25Sr0.44Ca0.19)( Mn0.44) ·
(Ti0.97Nb0.05) · Si2O7.27(CO3)0.87(OH)2.89F0.98.

The investigation of the mineral structure was hin-
dered by the absence of a single crystal suitable for
X-ray diffraction analysis. Finally, the collaborative
study undertaken by Russian and Chinese researchers
was crowned with the first results of the structure inves-
tigation of bussenite reported earlier [3]. The X-ray dif-

Fe0.63
2+
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fraction study performed on an automated single-crys-
tal AFC5R diffractometer demonstrated that the min-
eral possesses the triclinic structure, which was solved
by the Patterson methods and refined within the acen-
tric sp. gr. P1 to R = 0.070 by the SHELXL93 program
package. Thus, the structural motif of the mineral and
its general crystallochemical formula were established.
However, the formula contradicted a number of essen-
tial details of the chemical analysis.

The subsequent refinement of the structure based on
the construction of mixed scattering curves for some
cationic positions was performed using the AREN pro-
gram [6]. This allowed us to remove the above-men-
tioned inconsistencies and to obtain the adequate crys-

y

x

Ba

F

M(4)

Na

Fig. 1. A bussenite layer having the salt composition pro-
jected onto the (001) plane; CO3 groups are shown by
hatched triangles; large cations are indicated by circles.
002 MAIK “Nauka/Interperiodica”



 

44

        

ZHOU 

 

et al

 

.

                                                                                        
Table 1.  Structural data and details of X-ray diffraction study

Characteristic Value

Unit-cell parameters, Å, deg a = 5.399(3), b = 7.016(9), c = 16.254(14),
α = 102.44(8), β = 93.18(6), γ = 90.10(7)

Unit-cell volume, Å3 V = 600.3

Sp. gr.; Z P ; 1

Density ρexp, ρcal, g/cm3 3.63(2), 3.65
Hardness 4
Radiation; λ, Å MoKα; 0.71073
Crystal dimensions, mm 0.2 × 0.15 × 0.1
Diffractometer AFC5R
Scan mode ω/2θ
sinθ/λ 0.807
Ranges of the indices of measured reflections –8 < h < 8, –11 < k < 10, 0 < l < 25
Total number of reflections 4487
Number of independent reflections 1418 |F | > 2.5σ(F)
R-factor upon anisotropic refinement 0.054
Program for absorption correction AREN [6]

1

Table 2.  Atomic coordinates, equivalent thermal parameters, multiplicities (Q), and occupancies of the positions (q)

Atom x/a y/b z/c Beq, Å2 Q q

Si(1) 0.1911(7) 0.0583(5) 0.6684(2) 0.76(6) 2 1
Si(2) 0.8083(7) 0.3887(5) 0.3315(2) 0.81(6) 2 1
Ti 0.6951(4) 0.3449(3) 0.6897(1) 0.87(4) 2 1
M(1) 0.0073(5) 0.2513(4) 0.5030(1) 0.65(4) 2 1
M(2) 0.5 0 0.5 0.75(7) 1 1
M(3) 0.5 0.5 0.5 0.53(6) 1 1
M(4) 0.2789(7) 0.0938(6) 0.1870(2) 2.50(6) 2 0.53(2)
Ba(1) 0.2234(2) 0.4246(1) 0.8493(1) 1.80(3) 2 1
Ba(2) 0.2933(3) 0.1222(2) 0.2449(1) 1.56(4) 2 0.47(2)
Na(1) 0.733(4) 0.243(2) 0.9527(8) 3.1(3) 2 0.50(2)
Na(2) 0.251(3) 0.289(2) 0.0461(8) 2.4(2) 2 0.50(2)
C 0.758(6) 0.052(3) 0.106(1) 4.6(4) 2 1
F(1) 0.5 0.5 0 3.7(2) 1 1
F(2) 0 0.5 0 5.7(2) 1 1
O(1) 0.957(2) 0.165(1) 0.7119(6) 1.0(2) 2 1
O(2) 0.045(2) 0.451(2) 0.2870(6) 1.4(2) 2 1
O(3) 0.555(2) 0.450(2) 0.2863(6) 1.4(2) 2 1
O(4) 0.449(2) 0.162(2) 0.7134(6) 1.7(2) 2 1
O(5) 0.800(2) 0.150(2) 0.3044(8) 2.0(2) 2 1
O(6) 0.180(2) 0.032(2) 0.5690(6) 2.2(2) 2 1
O(7) 0.822(2) 0.460(2) 0.4302(6) 2.5(2) 2 1
O(8) 0.677(2) 0.292(2) 0.5809(6) 1.7(2) 2 1
O(9) 0.154(5) 0.097(3) 0.902(1) 9.6(2) 2 1
O(10) 0.889(4) 0.213(2) 0.106(1) 7.9(2) 2 1
O(11) 0.555(4) 0.138(3) 0.095(1) 9.4(2) 2 1
OH 0.338(2) 0.215(2) 0.4314(7) 1.8(2) 2 1
H2O 0.719(2) 0.417(2) 0.8360(9) 2.7(2) 2 1
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002



        

CRYSTAL STRUCTURE OF NEW MICALIKE TITANOSILICATE—BUSSENITE 45

  
Table 3.  Characteristics of the coordination polyhedra

Position Composition, Z = 1 Coordination
number

Distance K–A, Å

range average

Si(1) 2Si 4 1.58–1.63 1.60

Si(2) 2Si 4 1.57–1.63 1.60

Ti 1.9Ti + 0.1Nb 6 1.72–2.31 1.98

M(1) 1.0Na + 0.55Mn + 0.45Fe 6 2.17–2.28 2.24

M(2) 0.5Fe + 0.4Na + 0.1Mn 6 2.09–2.35 2.22

M(3) 0.5Na + 0.4Fe + 0.1Mn 6 2.11–2.33 2.22

M(4) 0.64Sr + 0.42Ca 7 2.23–3.02 2.82

Ba(1) 1.6Ba + 0.4K 11 2.57–3.21 2.80

Ba(2) 0.94Ba 9 2.61–3.21 2.81

Na(1) 1.0Na 7 2.22–3.01 2.57

Na(2) 1.0Na 6 2.16–2.49 2.32

C 2C 3 1.13–1.33 1.22
tallochemical formula of bussenite (Z = 1):
{Na2(Ba2.54Sr0.64Ca0.42K0.40)[CO3]2F2}{Na1.90Fe1.35Mn0.75) ·
(OH)2[(Ti1.9Nb0.1)(Si2O7)2]O2 · (H2O)2}. In this for-
mula, the compositions of the salt and titanosilicate
blocks are given in braces. The main characteristics of
the crystal and the details of the X-ray diffraction study
are listed in Table 1. The atomic coordinates corre-
sponding to the final value R = 0.054 (the absorption
was ignored) for the centrosymmetric structure are
listed in Table 2. The main characteristics of polyhedra
are presented in Table 3.

The refinement within the acentric space group
resulted in the correlation between the thermal param-
eters of the atoms related by an inversion center and
resulted in a slightly lower R factor and revealed no
ordering in the sites characterized by mixed composi-
tions.

As can be seen from Figs. 1, 2, and 3, large Ba cat-
ions occupy two positions. One of these positions, is
also filled with K atoms. The distance between the
Ba(2) position and the M(4) (Sr,Ca)-position is
0.917(4) Å. The Na atoms also occupy two positions
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
with 50% occupancy. The possible distribution of the
Mn atoms over three octahedral positions, M(1)–M(3),
corresponds to the average cationic radii in these posi-
tions. The F1– ions occupy the inversion centers in the
interlayer space. The O, F, OH, and H2O were distribu-
ted over fluorine and oxygen positions based on the cal-
culated local balance of valence strengths at the anions.
The water molecule participates in the distorted octahe-
dral coordination of the Ti atom. The distance from the
Ti atom to this water molecule equals 2.31 Å, whereas
the distance of this Ti atom to the O atom at opposite
vertex is shortened (1.72 Å). Such a distortion of the
Ti-octahedron allows one to consider it as a pseudopen-
tagonal pyramid and, thus, to relate this mineral to lam-
prophyllite [5] and monoclinic astrophyllite [7]. In the
latter two minerals, Ti atoms have the coordination
number five.

Bussenite belongs to the family of titanosilicate
micas [8] or, according to the nomenclature proposed in
[9], to heterophyllotitanosilicates. The structures of
these minerals consist of triple layers responsible for
the constant values of the a- and b-parameters of the
x

z

Fig. 2. Bussenite structure projected onto the (010) plane; Si2O7-diortho groups are hatched with solid lines; CO3 groups are rep-
resented by black triangles; cations are indicated by circles (for description, see Fig. 1).
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unit cell. The middle layer in the bussenite structure
consists of the close-packed (Na,Fe,Mn)-octahedra; the
side layers are composed by Ti-octahedra and [Si2O7]-
diortho groups. The latter groups have the standard Si–
O bond lengths, and the Si(1)–O(5)–Si(2) angle charac-
terizing rotation of tetrahedra equals 149.3(8)°. The
character of filling of the space between the triple lay-
ers, which determines the c-parameter of the unit cell,
in the minerals of this group is essentially different.
Comparing the formulas of bussenite and heterophyl-
lotitanosilicates such as lomonosovite {2NaPO ·
Na2}{Na2Ti4Si4O18} [10] and innelite {2BaSO4(Ba,
K)2}{(Na, Ca)3Ti3Si4O18 [11], we see that compositions
of the interlayer considerably differ (the first fragment
enclosed in braces). The [CO3]2– group found in buss-
enite is the new specific component of this fragment.
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Abstract—The (HAgu)2B6H6 · 2H2O compound was synthesized and its crystal structure was determined [R =

0.0385 for 2018 reflections with I > 2σ(I)]. The structure consists of HAgu+ cations, centrosymmetric B6

anions, and water molecules. The anions have an almost regular octahedral structure. The bond lengths and
angles lie within the following narrow ranges: B–B, 1.715–1.726(2) Å; B–H, 1.08–1.14(2) Å; B–B–B, 59.72°–
60.29(9)° and 89.63°–90.20(11)°; and B–B–H, 133.2°–137.0(9)°. The HAgu+ cations and water molecules are
involved in the O–H···O, N–H···O, and N–N···N hydrogen bonds and participate in numerous (N, O)–H···H–B

specific interactions with the B6  anions, which results in splitting and high-frequency shift of the band of
B–H stretching vibrations in the IR spectrum. © 2002 MAIK “Nauka/Interperiodica”.

H6
2–

H6
2–
INTRODUCTION

In recent years, the salts of the closo-borate anions
with organic cations attracted the attention of research-
ers due to the cation–anion interactions revealed in their
crystals [1–4]. These interactions show themselves, in
particular, in splitting and high-frequency shift of the
band of the B–H stretching vibrations in the IR spectra.

The salts of this type with the hexaborate anion B6

have not been studied as yet because all the attempts to
synthesize these salts usually resulted in the formation

of stable compounds with B6  anions. It could be
expected that, owing to the increased charge at the

boron atoms, the B6  anions provide more intense
specific interactions than the salts with larger polyhe-
dral anions.

We synthesized aminoguanidinium closo-hexaborate
and grew single crystals of its dihydrate (HAgu)2B6H6 ·
2H2O (I), where HAgu+ = (NH2)2CNHNH2. In this paper,
the results of the X-ray diffraction study of compound
I are reported.

EXPERIMENTAL

Compound I was obtained by the reaction between
the stoichiometric amounts of Na2B6H6 and
(HAgu)2SO4 in an aqueous solution. The solution was
concentrated on a sand bath and cooled to 0°. Two days

H6
2–

H7
–

H6
2–
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later, colorless prismatic crystals precipitated. Being
kept in air, the crystals became turbid.

Found, %: C, 9.20; H, 9.37; and N, 43.10.

Calculated for (CN4H7)2B6H6 · 2H2O, %: C, 9.34; H,
9.41; and N, 43.58.

The IR absorption spectra were recorded on a
Specord M80 spectrophotometer in the range 4000–
400 cm–1. The specimens were prepared as suspensions
in petrolatum oil.

In the IR spectrum of I, the intense split band with
the maxima at 2468 and 2444 cm–1 is observed in the
range of ν(BH) stretching vibrations. This band is
shifted by ~40 cm–1 to high frequencies with respect to
similar bands in the spectra of the hexaborate salts of
alkali metals [5] but located much lower than the ν(BH)

band in the B6  anion (2535 cm–1 [6]). The bands of
the ν(NH) stretching vibrations in I appear at 3424,
3312, and 3268 cm–1, i.e., at frequencies slightly lower

than those in the spectra of the salts of the B10  and

B12  anions [7].

The crystals suitable for the X-ray experiment were
obtained by recrystallization from an aqueous solution.
The crystals are triclinic, a = 7.304(3) Å, b = 10.132(4) Å,
c = 10.200(3) Å, α = 93.81(3)°, β = 95.85(3)°, γ =
105.12(3)°, V = 721.5(5) Å3, dcalc = 1.184 g/cm3;

µ(Mo) = 0.083 mm–1, sp. gr. , and Z = 2.

H7
–

H10
2–

H12
2–

P1
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Table 1.  Atomic coordinates and parameters of thermal vib-
rations Ueq (for H atoms, Uiso) in structure I

Atom x y z Ueq/Uiso, Å

O(1w) –0.0563(2) 0.2388(1) 0.0788(1) 0.0556(3)

O(2w) 0.3257(2) 0.3084(1) 0.6524(1) 0.0520(3)

N(1) 0.2613(2) 0.0697(1) 0.9068(1) 0.0459(3)

N(2) 0.3497(3) 0.1058(2) 1.1290(2) 0.0578(4)

N(3) 0.1814(2) –0.1090(1) 1.0335(2) 0.0476(4)

N(4) 0.1527(2) –0.0132(1) 0.7960(1) 0.0476(3)

N(5) –0.0630(2) 0.5246(2) 0.7317(1) 0.0467(3)

N(6) –0.1248(3) 0.7099(2) 0.6399(2) 0.0581(4)

N(7) –0.2459(3) 0.4947(2) 0.5306(2) 0.0662(5)

N(8) 0.0256(2) 0.6101(2) 0.8467(1) 0.0480(3)

C(1) 0.2644(2) 0.0218(1) 1.0243(2) 0.0377(3)

C(2) –0.1455(2) 0.5768(2) 0.6341(2) 0.0438(4)

B(1) 0.3405(2) 0.0169(2) 0.4840(2) 0.0390(4)

B(2) 0.5267(2) 0.0610(2) 0.6096(2) 0.0368(4)

B(3) 0.5643(2) 0.1081(2) 0.4537(2) 0.0397(4)

B(4) –0.4922(2) 0.4501(2) 1.1052(2) 0.0381(4)

B(5) –0.4252(2) 0.4170(2) 0.9517(2) 0.0364(4)

B(6) –0.6571(2) 0.4209(2) 0.9664(2) 0.0363(4)

H(1) 0.199(2) 0.035(2) 0.472(2) 0.057(5)

H(2) 0.556(2) 0.116(2) 0.708(2) 0.049(4)

H(3) 0.616(2) 0.203(2) 0.409(2) 0.060(5)

H(4) –0.482(2) 0.408(2) 1.206(2) 0.052(4)

H(5) –0.360(2) 0.342(2) 0.909(1) 0.045(4)

H(6) –0.798(2) 0.351(2) 0.940(1) 0.048(4)

H(1a) 0.304(3) 0.146(2) 0.907(2) 0.065(6)

H(2a) 0.366(3) 0.077(2) 1.204(2) 0.064(6)

H(2b) 0.401(3) 0.185(2) 1.120(2) 0.060(6)

H(3a) 0.132(2) –0.157(2) 0.965(2) 0.045(5)

H(3b) 0.178(3) –0.136(2) 1.106(2) 0.061(6)

H(4a) 0.224(3) –0.017(2) 0.738(2) 0.074(6)

H(4b) 0.060(3) 0.025(2) 0.764(2) 0.089(7)

H(5a) –0.082(3) 0.443(2) 0.728(2) 0.066(6)

H(6a) –0.062(3) 0.758(2) 0.707(2) 0.065(6)

H(6b) –0.179(3) 0.741(2) 0.582(2) 0.077(7)

H(7a) –0.262(3) 0.410(2) 0.533(2) 0.074(7)

H(7b) –0.297(4) 0.526(3) 0.456(3) 0.106(9)

H(8a) –0.043(3) 0.591(2) 0.912(2) 0.079(7)

H(8b) 0.133(3) 0.594(2) 0.872(2) 0.080(7)

H(1w1) 0.047(4) 0.249(2) 0.678(2) 0.077(7)

H(2w1) –0.136(3) 0.191(2) 0.643(2) 0.070(6)

H(1w2) 0.390(3) 0.355(2) 0.716(2) 0.083(7)

H(2w2) 0.379(3) 0.250(2) 0.639(2) 0.074(7)
C

The intensities of the reflections were measured on
a CAD-4 automated diffractometer (λMoKα, graphite
monochromator, ω-scan mode, and 2° < θ < 28°) from
two single crystals. The first crystal was coated with an
epoxy resin film, which, nevertheless, did not prevent it
from decomposition: within a day after the beginning
of data collection, the intensities of the standard reflec-
tions decreased by 50%. The second crystal was pro-
tected more safely, and the intensities did not decrease.
The processing of the first part of the experimental data
included the correction for crystal decomposition.

The structure was solved by the direct method
(SHELXS97 [8]). The positions of the H atoms were
located from the difference Fourier synthesis. The
structure was refined by the least-squares procedure
(SHELXL97 [9]) in the aniso-isotropic approximation
with due regard for secondary extinction [c = 0.046(7)].
The final estimates of the refinement are R1 = 0.0385
and wR2 = 0.0992 for 2018 reflections with I > 2σ(I);
R1 = 0.0923 and wR2 = 0.1196 for the complete set of
3442 reflections; and S = 1.017. The atomic coordinates
are listed in Table 1.

RESULTS AND DISCUSSION

The crystals consist of aminoguanidinium cations,

centrosymmetric B6  anions, and water molecules.
There are two independent structural units of each type
in the unit cell. A fragment of the structure with atomic
numbering is shown in the figure.

The C(1)N(1)N(2)N(3) and C(2)N(5)N(6)N(7)
guanidinium fragments of the cations are planar (the
mean atomic deviations from the planes are 0.001 and
0.002 Å, respectively). The N(4) and N(8) atoms of the
amino substituents deviate from these planes by 0.157
and 0.148 Å.

The anions have an almost regular octahedral struc-
ture. The bond lengths and angles in the anions vary
within the following narrow ranges: B–B, 1.715(2)–
1.726(2) Å; B–H, 1.08(2)–1.14(2) Å; B–B–B,
59.72(9)°–60.29(9)° and 89.63(11)°–90.20(11)°; and
B–B–H, 133.2(9)°–137.0(9)°. Hence, splitting of the
band of the ν(BH) stretching vibrations and its shift to
higher frequencies (see experimental) should be inter-
preted with the invocation of specific intermolecular

interactions of the B6  anions.

In [10], the intense color of the ((HBipy)2B10H10 and
(H2Bipy)B10H10 compounds is attributed to the charge
transfer from the anion to the cation through the
(B)H···H(N) interaction. Later [11], it was found that
the peak in the region of the short (B)H···H(N) contact
[1.91(3) Å] in the map of the difference electron density
of the ((H2Bipy)B10H10 crystal deviates from the H···H
segment and appears between the B–B edge and the N
atom. This allowed the authors to assume that the

charge transfer from the B10  anion to the H2Bipy2+

H6
2–

H6
2–

H10
2–
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O(2W)

O(1W)

N(4)

N(1)

N(3)C(1)

N(2)

B(1)

B(3)

B(2)
N(7)

N(5)
C(2)

N(8)

N(6)

B(6) B(5)

B(4)

The environment of two independent B6  octahedral anions in structure I. The dotted lines indicate the (O,N)–H···B specific

interactions.

H6
2–
cation proceeds through the interaction between the B
and N atoms, whereas the short H···H contact is a con-
sequence of this interaction. We cannot rule out that the
specific interactions, similar to the valence bonds in the
hydroborate anions, are of the multicenter type.

In structure I, some of the H atoms of the HAgu+ cat-
ions and water molecules form conventional O–H···O,
N–H···O, and N–H···N hydrogen bonds. The character-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
istics of the hydrogen bonds are given in Table 2. The
visual and geometric analysis indicates that, most
likely, the remaining H atoms of the cations and water
molecules [except H(4b)] are involved in specific inter-

actions with the B6  anions. Evidently, it is not acci-
dental that the N–H bonds of the cations and the O–H
bonds of water molecules are directed to the vertices,
edges, or faces of the boron octahedra (figure). It is log-

H6
2–
Table 2.  Characteristics of the hydrogen bonds in structure I

X–H ⋅ ⋅ ⋅Y Symmetry code for the Y atom H ⋅ ⋅ ⋅Y, Å X ⋅ ⋅ ⋅Y, Å X–H ⋅ ⋅ ⋅Y, deg

O(1w)–H(1w1) ⋅ ⋅ ⋅O(2w) x, y, z 2.02(3) 2.823(2) 164(2)

N(3)–H(3a) ⋅ ⋅ ⋅N(8) x, y – 1, z 2.47(2) 3.190(2) 147(2)

N(3)–H(3a) ⋅ ⋅ ⋅N(4) x, y, z 2.32(2) 2.677(2) 107(1)

N(3)–H(3b) ⋅ ⋅ ⋅O(1w) –x, –y, 2 – z 2.36(2) 3.130(2) 160(2)

N(5)–H(5a) ⋅ ⋅ ⋅O(1w) x, y, z 2.13(2) 2.904(2) 165(2)

N(6)–H(6a) ⋅ ⋅ ⋅N(8) x, y, z 2.30(2) 2.659(2) 107(2)

N(7)–H(7b) ⋅ ⋅ ⋅O(2w) –x, 1 – y, 1 – z 2.11(3) 2.947(2) 149(2)
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Table 3.  Characteristics of the X–H… H–B (X = O or N) interactions in structure I

X–H ⋅ ⋅ ⋅H–B Symmetry code
for the B atom H ⋅ ⋅ ⋅H, Å H ⋅ ⋅ ⋅B, Å X ⋅ ⋅ ⋅B, Å X–H ⋅ ⋅ ⋅B, Å

O(1w)–H(2w1) ⋅ ⋅ ⋅H(1)–B(1) –x, –y, 1 – z 2.41(3) 2.44(2) 3.252(2) 156(2)

O(1w)–H(2w1) ⋅ ⋅ ⋅H(2)–B(2) x –1, y, z 2.35(3) 2.45(2) 3.133(2) 136(2)

O(1w)–H(2w1) ⋅ ⋅ ⋅H(3)–B(3) x –1, y, z 2.87(3) 2.68(2) 3.516(2) 162(2)

O(2w)–H(1w2) ⋅ ⋅ ⋅H(4)–B(4) –x, 1 – y, 2 – z 2.39(3) 2.51(2) 3.258(2) 157(2)

O(2w)–H(1w2) ⋅ ⋅ ⋅H(5)–B(5) 1 + x, y, z 2.58(3) 2.59(2) 3.349(2) 159(2)

O(2w)–H(1w2) ⋅ ⋅ ⋅H(6)–B(6) 1 + x, y, z 2.78(3) 2.68(2) 3.307(2) 136(2)

O(2w)–H(2w2) ⋅ ⋅ ⋅H(1)–B(1) x, y, z 2.63(3) 2.69(2) 3.349(2) 141(2)

O(2w)–H(2w2) ⋅ ⋅ ⋅H(2)–B(2) x, y, z 2.21(3) 2.45(2) 3.246(2) 175(2)

N(1)–H(1a) ⋅ ⋅ ⋅H(6)–B(6) 1 + x, y, z 2.40(3) 2.74(2) 3.453(2) 157(2)

N(2)–H(2a) ⋅ ⋅ ⋅H(2)–B(2) 1 – x, –y, 2 – z 2.38(3) 2.61(2) 3.418(2) 161(2)

N(2)–H(2a) ⋅ ⋅ ⋅H(3)–B(3) x, y, 1 + z 2.65(3) 2.76(2) 3.512(2) 150(2)

N(2)–H(2b) ⋅ ⋅ ⋅H(4)–B(4) 1 + x, y, z 2.27(3) 2.61(2) 3.410(2) 169(2)

N(4)–H(4a) ⋅ ⋅ ⋅H(2)–B(2) x, y, z 2.50(3) 2.65(2) 3.438(2) 157(2)

N(4)–H(4a) ⋅ ⋅ ⋅H(1)–B(1) x, y, z 2.79(3) 2.82(2) 3.592(2) 154(2)

N(8)–H(8a) ⋅ ⋅ ⋅H(6)–B(6) –1 – x, 1 – y, 2 – z 2.13(3) 2.60(2) 3.415(2) 154(2)

N(8)–H(8b) ⋅ ⋅ ⋅H(5)–B(5) –x, 1 – y, 2 – z 2.58(3) 2.68(2) 3.478(2) 155(2)

N(8)–H(8b) ⋅ ⋅ ⋅H(6)–B(6) 1 + x, y, z 2.76(3) 2.77(2) 3.548(2) 151(2)
ical to characterize the geometry of these interactions
with the same parameters as the geometry of hydrogen
bonds. The (X)H···B, X···B, and (X)H···H(B) contacts
and the X–H···B angles, where X = N or O, are given in
Table 3. It is well known that the energy of weak inter-
actions varies only slightly with distance, and, thus, it is
impossible to determine the limiting distance at which
the secondary interaction disappears. In structure I, the
(X)H···B, O···B, and N···B contacts range within 2.44–
3.08(2), 3.133–3.516(2), and 3.410–3.818(2) Å,
respectively. Table 3 includes the interactions, for
which the X···B distance does not exceed 3.6 Å. Judg-
ing from the values of the contacts, no strengthening of
the specific interatomic interactions in the salt of the

B6  anion in comparison with larger closo-borate
anions is observed, which may be associated with a
large number of interactions.

The total set of intermolecular interactions in the

crystal interlinks the HAgu+ cations, B6  anions, and
water molecules into a three-dimensional framework.
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Abstract—Compound [Co(NioxH)2(PPh3)2]F is synthesized in the CoF2 ⋅ 4H2O–NioxH2–PPh3 system (where
NioxH is the 1,2-cyclohexanedione dioxime monoanion and PPh3 is triphenylphosphine), and its structure is
determined by X-ray diffraction. It is shown that the cobalt atom has the octahedral environment. Two nioxime
residues that are related by the center of symmetry lie in the equatorial plane and are linked by the O–H···O
hydrogen bond. The 1,6-positions of the octahedron are occupied by the phosphorus atoms of the triphe-
nylphosphine ligands. The formation of the crystal structure of this compound is discussed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Compounds of the 3d elements with α-dioximes
have attracted considerable interest due to the wide
variety of stereochemical and electronic structures [1].
The knowledge of their features can be useful for
revealing the generalities in the composition and struc-
ture of these compounds.

The coordination mode of dioximines in their metal
complexes [2–6] is rather stable. The chelates have a
stereotypic structure: two monodeprotonated dioximate
ions lying in the same plane are linked through intramo-
lecular hydrogen bonds. In this respect, the synthesis of
compounds of this type with new ligands that have
more flexible chemical structures is a topical problem.

1,2-Cyclohexanedione dioxime NioxH2 is a reagent
for cobalt determination. This compound readily dis-
solves in water and forms complexes with Co(III)
ions [7].

With the purpose of revealing the specific features
of the Co(III) coordination polyhedron and the crystal
structure as a whole, we studied the structure of
[Co(NioxH)2(PPh3)2]F, which is the product of the reac-
tion in the CoF2 ⋅ 4H2O–NioxH2–PPh3 system (where
NioxH is the 1,2-cyclohexanedione dioxime monoan-
ion and PPh3 is triphenylphosphine).

EXPERIMENTAL

Synthesis of [Co(NioxH)2(PPh3)2]F. A solution of
1,2-cyclohexanedione dioxime (0.14 g, 0.001 mol) in
methanol (20 ml) and a solution of triphenylphosphine
(0.26 g, 0.001 mol) in methanol (30 ml) were added to
1063-7745/02/4701- $22.00 © 20051
a solution of CoF2 ⋅ 4H2O (0.09 g, 0.0005 mol) in meth-
anol (20 ml). The resultant solution was heated in a
water bath in a graphite crucible at 50°C for 5–6 min.
Upon slow cooling, prismatic dark brown crystals pre-
cipitated from the dark brown solution. The yield was
~35%. The compound is soluble in alcohols and
organic solvents but insoluble in water.

For C48H48CoFN4O4P2, anal. calcd. (%): Co, 6.66;
C, 65.17; H, 5.47; N, 6.33. Found (%): Co, 6.04; C,
64.83; H, 5.39; N, 6.21.

X-ray structure determination. A prismatic dark
brown single crystal (0.48 × 0.14 × 0.13 mm in size)
was chosen for the X-ray diffraction experiment. The
crystal is monoclinic. The unit cell parameters are as
follows: a = 9.407(2) Å, b = 15.699(3) Å, c = 14.867(3) Å,
β = 102.43(3)°, space group P21/n, and Z = 2 (for
C48H48CoFN4O4P2) at ρcalcd = 1.429 g/cm3.

The experimental data were collected on a CAD4
diffractometer (MoKα radiation, graphite monochro-
mator, θ–2θ scan mode). The structure was solved by
the direct method with the SHELXS86 program pack-
age [8]. The Lorentz and polarization factors were
included in the conversion of the intensities into the
squares of the structure amplitudes. Absorption of
X-rays by the crystal was ignored. A total of 960 unique
reflections with I ≥ 2σ(I) were used for structure deter-
mination and refinement.

The refinement of the non-hydrogen atoms was per-
formed in the full-matrix anisotropic approximation,
and the hydrogen atoms were refined isotropically
within the rigid-group model. The calculations were
performed with the SHELXL93 program package [9].
002 MAIK “Nauka/Interperiodica”
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The final parameters of the refinement are as fol-
lows: R1 = 0.023, wR2 = 0.062, and GOOF = 1.008.
The atomic coordinates and thermal parameters with
e.s.d.'s are listed in the table.

Coordinates (×104) and isotropic thermal parameters
(Å2 × 103) of non-hydrogen atoms

Atom x y z Ueq

Co 5000 5000 5000 26(1)

F(1') –1615(17) 468(10) 3930(10) 120(4)

F(1) 285(6) –302(3) 4533(4) 106(2)

P(1) 3934(1) 3998(1) 3846(1) 30(1)

O(1) 5167(2) 6142(1) 3543(1) 38(1)

O(2) 2577(2) 4722(1) 5851(1) 37(1)

N(1) 4393(2) 5890(1) 4148(1) 30(1)

N(2) 3163(2) 5198(1) 5259(1) 29(1)

C(1) 3172(3) 6256(2) 4197(2) 32(1)

C(2) 2448(3) 5854(2) 4859(2) 31(1)

C(3) 1053(3) 6175(2) 5036(2) 42(1)

C(4) 310(4) 6815(2) 4314(2) 56(1)

C(5) 1374(4) 7432(2) 4057(3) 58(1)

C(6) 2490(4) 6987(2) 3616(2) 44(1)

C(7) 2511(3) 4470(2) 2954(2) 34(1)

C(8) 2604(4) 4560(2) 2040(2) 47(1)

C(9) 1432(4) 4890(2) 1406(2) 64(1)

C(10) 174(4) 5126(2) 1667(3) 64(1)

C(11) 69(4) 5031(2) 2564(3) 56(1)

C(12) 1222(3) 4705(2) 3209(2) 44(1)

C(13) 3017(3) 3056(2) 4176(2) 34(1)

C(14) 3657(4) 2571(2) 4936(2) 45(1)

C(15) 3053(4) 1805(2) 5115(2) 53(1)

C(16) 1814(4) 1513(2) 4547(3) 60(1)

C(17) 1165(4) 1978(2) 3791(3) 66(1)

C(18) 1763(4) 2743(2) 3602(2) 49(1)

C(19) 5297(3) 3541(2) 3283(3) 54(1)

C(20) 5736(3) 2691(2) 3426(2) 41(1)

C(21) 6797(4) 2360(2) 3015(2) 50(1)

C(22) 7407(4) 2857(2) 2440(2) 51(1)

C(23) 6981(3) 3699(2) 2288(2) 47(1)

C(24) 5966(3) 4042(2) 2719(2) 37(1)
C

RESULTS AND DISCUSSION

The IR spectra of the complex exhibit sets of vibra-
tional frequencies that are characteristic of the Co(III)
dioximines in the trans configuration. The ν‡Ò(PC) and
νÒ(PC) frequencies (at ~570 and ~448 cm–1, respec-
tively) indicate that triphenylphosphine is coordinated
in the complex [10].

The UV spectra contain two absorption bands. The
band at 272 nm is attributed to the charge transfer from
the cobalt atom to the chelate ring and corresponds to
the Co(NioxH)2 group. The band at 377 nm is associ-
ated with the triphenylphosphine molecules in the trans
positions relative to each other in the complex.

The structural units of the crystal are the
[Co(NioxH)2(PPh3)2]+ centrosymmetric cationic com-
plex and the statistically disordered F– ion. The struc-
ture of the cationic complex is shown in Fig. 1. The
cobalt atom has the octahedral (4N2P) environment.
Two nioxime residues are located in the equatorial
plane and bound to the metal atom through four nitro-
gen atoms. The Co–N bond lengths are equal to
1.807(2) and 1.890(2) Å. The phosphorus atoms of the
triphenylphosphine ligands occupy the 1,6-positions of
the octahedron. The Co–P distance is 2.384(1) Å. In the
centrosymmetric cationic complex, two nioxime resi-
dues are linked by the intramolecular O–H···O hydro-
gen bond, for which the O···O distance is equal to
2.555 Å, the O–H bond is 0.90 Å, and the angle at the
hydrogen atom is 171.0°. The results obtained agree
with those reported in the literature [6] and with the
data of the spectral analysis.

The CoN(1)C(1)C(2)N(2) equatorial metallocycle
and the C(7)C(8)C(9)C(10)C(11)C(12) phenyl ring of
the triphenylphosphine ligand are arranged relative to
each other in such a way that the dihedral angle
between their planes is 34.6°. By analogy with [6], we
assume that there occurs the intramolecular π−π inter-
action between these two moieties. The atomic devia-
tions from the rms planes of the nioxime residues have
the following values (Å): Co, 0.011; N(1), –0.025;
C(1), 0.028; C(2), –0.014; O(1)*1, 0.071; and O(2)*,
−0.248 Å; and C(1), –0.022; C(2), –0.052; C(3), 0.092;
C(4), –0.302; C(5), 0.342; and C(6), –0.102 Å. There-
fore, the conformation of the cyclohexyl fragment in
the nioxime residue can be considered a twist confor-
mation. The dihedral angle between the above two
planes is 6.3°.

The electronegative fluoride ion plays a significant
role in the formation of the crystal structure (Fig. 2).
This ion is disordered over two equiprobable positions,
F(1) and F(1'). The F(1)···F(1') distance is 2.184 Å.
Apparently, there exists an electrostatic interaction
between the F(1) and C(16) atoms (the F(1)–C(16) dis-

1 Hereafter, the atoms that are not included in the calculation of the
plane are marked with an asterisk.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Fig. 1. Structure of the [Co(NioxH)2(PPh3)2]+ centrosymmetric cation.

Fig. 2. A fragment of the crystal structure of [Co(NioxH)2(PPh3)2]F.
tance is 3.18 Å). The other intermolecular distances in
the structure exceed the relevant sums of the van der
Waals radii.

Thus, the replacement of the [SiF5]– anion in the
crystal studied earlier [11] by the fluoride ion leaves the
configuration and the structure of the cationic complex
unchanged but results in substantial changes in the
crystal structure as a whole.
YSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Abstract—Crystals of [Co(C2H8N2)2(C3H6NO2)]PbCl4 · H2O [a = 7.627(1) Å, b = 11.238(1) Å, c = 11.444(1) Å,

α = 99.125(1)°, β = 103.80(1)°, γ = 94.739(1)°, V = 933.09(1) Å3, Z = 2, and space group ] contain the oc-

tahedral PbCl6 groups that share edges to form infinite [Cl2Pb(µ-Cl)2  chains, in which the terminal Cl at-
oms occupy the cis positions. The Pb–Cl bond lengths are 2.763(1)–3.180(3) Å. In the discrete cationic com-
plexes, the Co atom is coordinated by two ethylenediamine molecules and the 3-aminopropionate anion. In the
enantiomeric complex with the ∆ absolute configuration, the ethylenediamine rings have the λ and δ configu-
rations and the aminopropionate ring has the λ configuration. © 2002 MAIK “Nauka/Interperiodica”.

P1

]n
2n–
INTRODUCTION

X-ray diffraction studies of the crystal structure of
lead complexes with halide ions have been reported in
a large number of publications (see, for example, [1, 2]
and references therein). In most of these crystals, the
cationic part consists of protonated organic amines, and
only some of them contain cationic complexes, namely,
[Co(NH3)6]3+, [Co(En)3]3+ (En is ethylenediamine), or
[Co(CH3NHCH2CH2NH2)2C2O4]+ [3–5]. However, the
use of other cationic complexes can provide a greater
variety of anionic parts owing to the changes in the
1063-7745/02/4701- $22.00 © 20055
coordination sphere of the lead ion and the nonste-
reospecific nature of the halide ions as ligands.

For this purpose, we prepared crystals of
[Co(En)2(Ala)]PbCl4 · H2O (I) (Ala is the anion of β-

alanine, i.e., 3-aminopropionate NH2CH2CH2 )
and determined their structure.

EXPERIMENTAL

An aqueous solution of [Co(En)2(Ala)]Cl2 · 2H2O,
which was synthesized according to the procedure

CO2
–

Table 1.  Atomic coordinates (×104) and equivalent isotropic thermal parameters Ueq (Å2, ×103)

 Atom x y z Ueq Atom x y z Ueq

Pb(1) 2375(1) 5653(1) 9393(1) 29(1) N(3) –4370(6) –2475(4) 5648(4) 30(1)

Co(1) –2512(1) –1272(1) 6854(1) 20(1) N(4) –737(6) –2345(4) 6428(5) 30(1)

Cl(1) 1522(2) 8158(1) 9839(1) 38(1) N(5) –538(6) –142(4) 8030(4) 26(1)

Cl(2) 3715(2) 3389(1) 9084(2) 47(1) C(1) –3714(8) –1252(5) 9004(5) 30(1)

Cl(3) 3034(2) 6087(1) 7217(1) 43(1) C(2) –5144(7) –672(6) 8202(5) 32(1)

Cl(4) –1350(2) 4954(2) 8212(2) 52(1) C(3) –3595(10) –3623(6) 5403(7) 50(2)

O(1) –2385(4) –459(3) 5502(3) 27(1) C(4) –1664(9) –3329(6) 5360(7) 50(2)

O(2) –2163(5) 1155(4) 4626(3) 33(1) C(5) 648(7) 628(5) 7520(5) 31(1)

O(1w) –4277(8) 2482(5) 7051(5) 61(1) C(6) –448(9) 1375(6) 6704(6) 38(1)

N(1) –2917(7) –2094(4) 8178(4) 27(1) C(7) –1738(6) 652(5) 5548(4) 25(1)

N(2) –4366(7) –260(5) 7228(4) 27(1)

Note: Ueq is defined as a one-third of the trace of the orthogonalized Uij tensor.
002 MAIK “Nauka/Interperiodica”
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Cl(2) Cl(3)

Cl(1)

Fig. 1. Asymmetric part of the unit cell in the crystal structure of [Co(En)2(Ala)]PbCl4 · H2O.
described in [6], and equimolar amounts of HCl and
PbCl2 was allowed to evaporate slowly at room temper-
ature until crystallization began. Dark red crystals of I,
suitable for X-ray structure analysis, were chosen from
their mixture with colorless crystals (apparently, PbCl2).
Crystals I are triclinic, a = 7.627(1) Å, b = 11.238(1) Å,
c = 11.444(1) Å, α = 99.125(1)°, β = 103.80(1)°,

Table 2.  Bond lengths (d, Å) in anionic chains

Bond d

Pb–Cl(1) 2.935(1)

Pb–Cl(2) 2.821(2)

Pb–Cl(3) 2.762(1)

Pb–Cl(4) 2.825(2)

Pb–Cl(2') 3.080(2)

Pb–Cl(4') 3.180(3)

Table 3.  Possible hydrogen bonds in the crystal structure of
[Co(En)2(Ala)]PbCl4 · H2O

A ⋅ ⋅ ⋅B Distance, Å Position of the B atom

O(1w) ⋅ ⋅ ⋅Cl(2) 3.16(1) x – 1, y, z

O(1w) ⋅ ⋅ ⋅Cl(4) 3.29(1) x, y, z

N(2) ⋅ ⋅ ⋅O(1w) 3.12(1) x, y, z

N(3) ⋅ ⋅ ⋅O(1w) 3.01(1) –1 – x, –y, 1 – z

N(3) ⋅ ⋅ ⋅O(2) 2.95(1) –1 – x, –y, 1 – z

N(4) ⋅ ⋅ ⋅O(2) 3.07(1) –x, –y, 1 – z

N(5) ⋅ ⋅ ⋅Cl(1) 3.26(1) x, y – 1, z

N(5) ⋅ ⋅ ⋅Cl(1) 3.30(1) –x, 1 – y, 2 – z
C

γ = 94.739(1)°, V = 933.09(1) Å3, Z = 2 (the formula

unit is C7H24Cl4CoN5O3Pb), space group , dcalcd =
2.257 g/cm3, µ = 104.8 cm–1.

The intensities of the reflections were measured on
a Siemens P4 automated diffractometer (λMoKα,
graphite monochromator, ω/2θ scan mode, θmax = 28.3°).

Absorption corrections were applied empirically
(Ψ-scan technique). The structure was solved by the
heavy-atom method and refined by the full-matrix
least-squares procedure in the anisotropic approxima-
tion (the number of parameters was 281). The hydrogen
atoms at the fixed calculated positions were included in
the last cycle of the refinement.

The final estimates of the refinement are R1 =
0.0341, wR2 = 0.0803, and GooF = 1.007 for 4482
reflections with I > 2σ(I). All the calculations were per-
formed with the XP [7] and SHELXTL [8, 9] software
packages. The atomic coordinates and equivalent ther-
mal parameters are listed in Table 1.

RESULTS AND DISCUSSION

The asymmetric part of the unit cell of structure I

contains the cobalt(III) cationic complex, the Pb
anionic group, and the crystallization water molecule
(Fig. 1). The Co atom has the octahedral environment
formed by five nitrogen atoms and the oxygen atom
belonging to two ethylenediamine molecules and the
alanine anion. The En ligands form two five-membered
metallocycles, and the Ala ligand forms the six-mem-
bered ring. The latter ring has the λ configuration, and
the En rings have different configurations (λ and δ).
The mutual arrangement of the three metallocycles

P1

Cl4
2–
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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shown in Fig. 1 corresponds to the ∆ absolute configu-
ration. Since compound I crystallizes in the centrosym-

metric space group P , the crystal contains the
[Co(En)2(Ala)]2+ cationic complexes with the opposite
configuration Λ(δ, λ, δ). The distances Co–N
[1.966(4)–1.980(5) Å] and Co–O [1.935(3) Å] are typ-
ical of the Co(III) complexes. The coordination octahe-
dron of the Co atom is slightly distorted: the endocyclic
angles deviate from an ideal value of 90°. The cationic
complexes are arranged in layers parallel to the x0z
plane.

The PbCl4 groups (Fig. 1) are linked into the

[Cl2Pb(µ-Cl)2  infinite anionic chains, which are
parallel to the x-axis and are located between the cat-
ionic layers (Fig. 2). Two pairs of atoms [Cl(2), Cl(2)'
and Cl(4), Cl(4)'], each related by a center of symmetry,
serve alternately as bridges in the chain. Thus, the Pb
atom has the distorted octahedral environment. The Pb–
Cl distances vary in the range from 2.76 to 3.18 Å

1

]n
2n–

ël(2)

ël(3)

ël(1)

Pb

0 a

b

ël(4)

Fig. 2. Projection of the [Cl2Pb(µ-Cl)2]n chain along the
z-axis in structure I.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
(Table 2), which is close to the Pb–Cl distances in other
polymeric chloroplumbate(II) complexes [3–5].

Several O–H···Cl, N–H···O, and N–H···Cl hydrogen
bonds are likely formed in structure I. These bonds act
within the cationic layers and link the layers to the
anionic chains (Table 3).
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Abstract—The para and ortho isomers of 3,5-dinitro-(4-acetylphenyl)aminobenzoyl (p-bromophenyl)amide
(I and II, respectively) are synthesized, and their physicochemical properties and structure are investigated. The
para isomer I has a higher melting temperature and is less soluble in organic solvents as compared to the ortho
isomer II. The electronic absorption spectra indicate that absorption for molecule I occurs at longer wave-
lengths than for molecule II. A correlation between the physicochemical properties and the crystal structures
of compounds I and II is revealed. Crystals I · 0.5C6H6 are triclinic; the unit cell parameters are a = 11.760(2) Å, b =
13.958(3) Å, c = 15.012(3) Å, α = 108.01(2)°, β = 103.95(1)°, γ = 92.00(2)°, V = 2258.3(8) Å3, space group

, and Z = 4. Crystals II are monoclinic; the unit cell parameters are a = 9.302(2) Å, b = 16.380(3) Å, c =
13.480(3) Å, β = 100.09(3)°, V = 2022.1(7) Å3, space group P21/c, and Z = 4. Structures I · 0.5C6H6 and II are
characterized by intramolecular and intermolecular hydrogen bonds. © 2002 MAIK “Nauka/Interperiodica”.

P1
INTRODUCTION

Pigments based on dinitrobenzoic acid [1] are of
practical interest as hydrophobic organic dyes with sub-
micron particles. They can be used for preparation of
transparent colored polymeric nanocomposites with
improved mechanical and dielectric properties [2].

In order to choose a suitable pigment, it is important
to know its properties (electronic absorption spectra,
crystal structure, etc.). Earlier [3], we studied the struc-
ture and some properties of two derivatives of 3,5-dini-
trobenzoic acid, namely, the para and ortho isomers of
3,5-dinitro-(4-methoxyphenyl)aminobenzoyl (p-bro-
mophenyl)amide.

The purpose of the present work was to investigate
the structure and properties of the para and ortho iso-
mers of 3,5-dinitro-(4-acetylphenyl)aminobenzoyl (p-
bromophenyl)amide.

SYNTHESIS AND PROPERTIES 
OF THE PIGMENTS

The synthesis of the para and ortho isomers of 3,5-
dinitro-(4-acetylphenyl)aminobenzoyl (p-bromophe-
nyl)amide was performed according to the procedure
described in [3]. In order to prepare the target products,
namely, 3,5-dinitro-4-(4-acetylphenyl)aminobenzoyl
1063-7745/02/4701- $22.00 © 0058
(p-bromophenyl)amide (I) and 3,5-dinitro-2-(4-
acetylphenyl)aminobenzoyl (p-bromophenyl)amide (II)

p-anisidine was replaced by p-aminoacetophenone at
the second stage. The rest of the reagents and the syn-
thesis conditions remained unchanged.

The results of the chemical analysis are as follows: 
For C21H15N4O6Br, anal. calcd. (%): C, 50.51; H,

3.03; N, 11.22; Br, 16.01; O, 19.28. 
Found for I (%): C, 50.4; H, 3.1; N, 11.3; Br, 15.3. 
Found for II (%): C, 50.5; H, 3.0; N, 11.0; Br, 15.5.
Both isomers are insoluble in water and almost

insoluble in hexane and CCl4. Their solubility in tolu-
ene, benzene, ethanol, chloroform, ethyl acetate, and
acetone is moderate. The solubility of II is slightly
higher than that of I. The solubility in acetone is the
highest (13.22 and 23.06 mmol/l for I and II, respec-

H3COC NH CONH Br

O2N

O2N

CONH Br

O2N

O2N NH COCH3

(I)

(II)
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tively), whereas the solubility in ethanol is significantly
less (1.00 and 1.69 mmol/l, respectively).

According to differential scanning calorimetry (TA-
3000 equipped with a Mettler DSC-20 attachment;
heating rate, 20 K/min), the melting temperatures Tm of
the fine crystalline samples I and II, which were pre-
pared in an ethanol solution, are equal to 219.4 and
134.1°C, respectively. The heats of melting ∆Hm for I
and II are 100.7 and 96.9 J/g, respectively. Both com-
pounds easily become amorphous upon cooling their
melts at a rate higher than 20 K/min.

ELECTRONIC ABSORPTION SPECTRA

The electronic absorption spectra of compounds I
and II in the UV and visible ranges were recorded on a
Perkin-Elmer Model 402 spectrophotometer. The spec-
tra of the samples prepared in the form of ethanol solu-
tions and nujol (or petrolatum oil) pastes are shown in
Fig. 1. The initial fine crystalline samples I and II were
used in these measurements. The maxima of the
absorption bands and the corresponding extinction
coefficients are given in Table 1.

The data obtained indicate that the absorption of
compound I occurs at longer wavelengths than that of
compound II. The electronic absorption spectra of the
synthesized compounds in the solid and dissolved
states differ substantially. This is probably due to the
difference in the interactions of the pigment molecules
with their environment (i.e., with the pigment mole-
cules in the solid state and the ethanol molecules in
solutions [4, p. 57]). The shift of the long-wavelength
bands (attributed to the particular color) toward the
short-wavelength range upon dissolving the pigments
in ethanol allows us to assign these bands to the n–π*
transitions [4, p. 60].

X-RAY STRUCTURE ANALYSIS

Single crystals suitable for X-ray structure analysis
were obtained by slow evaporation of saturated solu-
tions of compound I in an acetone : benzene (1 : 1) mix-
ture and compound II in acetone. Single crystals of
both pigments have a yellowish color that is hardly dis-
tinguishable by eye. The linear dimensions of the single
crystals chosen for X-ray diffraction analysis did not
exceed 0.6 mm.

Growing single crystals of compound I involved the
greatest difficulties. All our attempts to grow single
crystals free of solvent molecules failed. When employ-
ing the individual solvents in the synthesis of the stud-
ied compounds, we observed the formation of concre-
tions of thin flakes (chloroform), piles of thin needle
crystals (acetone and ethanol), or dendrite-like concre-
tions (toluene, ethyl acetate, and benzene) irrespective
of the conditions of solvent evaporation. With the mix-
tures of acetone and ethanol or benzene, we obtained
well-shaped crystals with dimensions large enough for
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
X-ray diffraction analysis. It turned out that crystals of
both types were crystal solvates. The crystals grown
from the acetone : ethanol (1 : 1) mixture were unstable
in air. For this reason, we failed to perform their com-
plete X-ray structure analysis. Stable solvates between
molecules of compound I and benzene in the 2 : 1 ratio

D, arb. units

(b)

2

1

200 300 400 500 600 700 800
λ, nm

2

1

(a)

Fig. 1. Electronic absorption spectra of compounds (1) I
and (2) II in (a) ethanol and (b) nujol.

Table 1.  Parameters of the electronic absorption spectra of
pigments I and II

Pigment
λ, nm (ε, (l/mol cm) × 10–4)

Ethanol Nujol

I 215 (3.37); 231 (2.17); 307 
(0.98); 352 (0.34); 406 (0.14)

205; 240*; 310; 
440; 660

II 199 (4.98); 228* (2.58); 263 
(248); 360 (1.69)

200; 242*; 300; 
442

* The band reveals itself as a shoulder.
2
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Table 2.  Main crystal data and parameters of data collection and structure refinement for pigments I and II

Parameter Structure I Structure II

Empirical formula C21H15BrN4O6 · 1/2C6H6 C21H15BrN4O6

Molecular weight 538.33 499.28

Crystal form Plate Prism

Crystal system Triclinic Monoclinic

Space group P P21/c

Unit cell parameters

a, Å 11.760(2) 9.302(2)
b, Å 13.958(3) 16.380(3)
c, Å 15.012(3) 13.480(3)
α, deg 108.01(2) 90

β, deg 103.95(1) 100.09(3)
γ, deg 92.00(2) 90

V, Å3 2258.3(8) 2022.1(7)
Z 4 4

ρcalcd, g/cm3 1.583 1.640

Radiation (λ, Å) CuKα (1.54178) CuKα (1.54178)

Absorption coefficient, mm–1 2.920 3.207

Diffractometer Syntex P Enraf–Nonius CAD4

Scan mode θ/2θ θ/2θ
Number of reflections measured 4331 2193

Number of unique reflections with I > 2σ(I) 4146 (Rint = 0.018) 2017 (Rint = 0.063)

2θ range, deg 3.21  57.40 4.29  64.94

Refinement on F2 F2

R(F) 0.041 0.033

wR(F2) 0.102 0.088

S 1.02 1.09

Number of parameters refined 764 350

Extinction coefficient 0.00044(6) 0.0030(2)

1

1

(I · 0.5C6H6) can be formed only from an acetone : ben-
zene mixture. According to the data of differential scan-
ning calorimetry, the crystal solvates grown are stable
to rather high temperatures. The DSC curve exhibits
three endothermal peaks: the first peak is observed at
144.6°C (∆H = 32.3 J/g) and can be considered the limit
of the range of the solvate existence; the second peak,
at 220.0°C (∆H = 3.5 J/g), corresponds apparently to a
crystal–crystal phase transformation; and the third
peak, at 271.2°C (∆H = 107.7 J/g), characterizes melt-
ing of the crystallites formed. Note that the thermal
properties of the initial fine crystalline sample I and the
grown single crystals of the solvate are essentially dif-
ferent. At the same time, the DSC curves of the initial
fine crystalline compound II and its single crystals
C

grown from acetone coincide within the measurement
error.

The main characteristics of the X-ray diffraction
experiment and the crystal data are summarized in
Table 2. The measurements were performed at room
temperature.

The structures were solved by the direct method and
refined in the anisotropic approximation for the non-
hydrogen atoms and in the isotropic approximation for
the hydrogen atoms using the SHELXL97 program
package [5]. The sets of the observed data were cor-
rected for absorption empirically (with allowance made
for crystal habit) using the ABSCOR program, which is
included in the CSD software package [6]. The param-
eters Tmax and Tmin were equal to 0.892 and 0.437 for
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Fig. 2. Pseudocentrosymmetric dimer I and the atomic numbering.
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Fig. 3. Molecule II and the atomic numbering.
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Br
structure I · 0.5C6H6 and 0.523 and 0.349 for structure
II, respectively.

The structures of molecules I and II with the atomic
numbering are shown in Figs. 2 and 3, respectively. The
atomic coordinates and equivalent isotropic thermal
parameters of the non-hydrogen atoms are listed in
Table 3.

RESULTS AND DISCUSSION

Both independent molecules of structure I · 0.5C6H6
(Fig. 2) involve the N–H···O(NO2) intramolecular
hydrogen bonds. These bonds are characterized by the
following parameters: N···O, 2.68(1) and 2.64(1) Å;
YSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
H···O, 2.18(5) and 2.03(5) Å; and the N–H···O angle,
131.9(4)° and 135.0(4)°.

The mean atomic deviation from the plane of the
C(3)C(4)N(2)N(4)O(5)H(2na) fragment is 0.09 Å. The
maximum deviations are observed for the O(5) and
N(4) atoms (+0.13 and –0.17 Å, respectively). The
mean deviation from the plane of the corresponding
fragment in the second molecule is 0.05 Å; in this case,
the maximum deviations are observed for the N(2a) and
H(2n) atoms (+0.08 Å and –0.05 Å, respectively).

In addition to the intramolecular hydrogen bonds,
the structures involve two intermolecular hydrogen
bonds. One of them, N(1a)–H(1na)···O(6), is character-
ized by the following parameters: N(1a)···O(6), 2.88(1) Å;
2
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Table 3.  Coordinates (×104) and isotropic equivalent thermal parameters (Å2 × 103) of the non-hydrogen atoms in struc-
tures I ⋅ 0.5C6H6 and II

Atom x y z Ueq, Å2 Atom x y z Ueq, Å2

Structure I · 1/2C6H6
Br(1) 159(1) 6740(1) 8921(1) 85(1) O(3a) 2908(3) 2637(3) 733(3) 61(1)
O(1) 2533(4) 9148(3) 6259(3) 87(1) O(4a) 6944(4) –235(3) 1114(3) 87(1)
O(2) 5837(3) 6282(2) 4158(2) 56(1) O(5a) 5537(3) –3(2) 1787(3) 64(1)
O(3) 6985(3) 7639(3) 4432(2) 60(1) O(6a) 3020(3) 5474(2) 4842(3) 61(1)
O(4) 2708(3) 10196(3) 3536(3) 70(1) N(1a) 7193(3) 2815(3) –985(3) 45(1)
O(5) 4456(3) 10296(2) 3329(2) 52(1) N(2a) 4472(3) 1648(3) 1910(3) 45(1)
O(6) 7055(3) 4706(2) 445(3) 67(1) N(3a) 3872(3) 3074(3) 838(3) 44(1)
N(1) 2639(3) 7484(3) 6048(3) 46(1) N(4a) 6141(3) 225(3) 1311(3) 46(1)
N(2) 5487(3) 8587(2) 3172(3) 45(1) C(1a) 6279(4) 1932(3) –140(3) 39(1)
N(3) 6014(3) 7184(3) 4277(3) 45(1) C(2a) 6446(4) 1166(3) 269(3) 44(1)
N(4) 3695(4) 9924(3) 3596(3) 47(1) C(3a) 5872(4) 1074(3) 943(3) 38(1)
C(1) 3482(4) 8284(3) 5089(3) 42(1) C(4a) 5039(4) 1729(3) 1237(3) 37(1)
C(2) 3325(4) 9029(3) 4649(3) 42(1) C(5a) 4864(4) 2469(3) 770(3) 38(1)
C(3) 3965(4) 9119(3) 4021(3) 40(1) C(6a) 5487(4) 2590(3) 138(3) 42(1)
C(4) 4855(4) 8497(3) 3798(3) 39(1) C(7a) 6865(4) 1909(3) –920(3) 42(1)
C(5) 5002(4) 7775(3) 4293(3) 38(1) C(8a) 7776(4) 2978(3) –1660(3) 43(1)
C(6) 4328(4) 7649(3) 4881(3) 42(1) C(9a) 7700(4) 3883(4) –1856(4) 49(1)
C(7) 2841(4) 8342(3) 5846(3) 50(1) C(10a) 8286(5) 4095(4) –2478(4) 56(1)
C(8) 2067(4) 7355(3) 6732(3) 42(1) C(11a) 8954(4) 3402(4) –2895(3) 52(1)
C(9) 2212(4) 6488(3) 7000(3) 48(1) C(12a) 9032(5) 2498(4) –2716(4) 56(1)
C(10) 1653(4) 6314(4) 7653(4) 55(1) C(13a) 8460(4) 2283(4) –2091(4) 52(1)
C(11) 944(4) 6988(4) 8032(3) 53(1) C(14a) 3986(4) 2400(3) 2522(3) 38(1)
C(12) 816(4) 7854(4) 7799(4) 60(1) C(15a) 3014(4) 2109(4) 2774(3) 44(1)
C(13) 1363(4) 8032(4) 7143(4) 55(1) C(16a) 2533(4) 2818(3) 3399(4) 46(1)
C(14) 5997(4) 7835(3) 2581(3) 39(1) C(17a) 3007(4) 3827(3) 3783(3) 38(1)
C(15) 6973(4) 8129(3) 2325(3) 44(1) C(18a) 4010(4) 4104(4) 3534(3) 46(1)
C(16) 7478(4) 7399(3) 1727(3) 46(1) C(19a) 4489(4) 3405(3) 2915(3) 45(1)
C(17) 7028(4) 6381(3) 1386(3) 41(1) C(20a) 2529(4) 4609(4) 4480(3) 47(1)
C(18) 6026(4) 6114(3) 1641(3) 43(1) C(21a) 1436(5) 4298(5) 4714(5) 60(2)
C(19) 5513(4) 6825(3) 2230(3) 42(1) C(22) 9518(8) –541(5) 466(8) 92(2)
C(20) 7542(4) 5572(4) 757(3) 46(1) C(23) 10656(7) –39(5) 871(6) 89(2)
C(21) 8660(4) 5839(4) 528(4) 61(1) C(24) 8877(7) –486(6) –394(7) 90(2)
Br(1a) 9821(1) 3686(1) –3722(1) 84(1) C(25) 9302(10) 9183(8) 4572(12) 159(5)
O(1a) 7013(3) 1098(2) –1461(2) 61(1) C(26) 9574(14) 9371(16) 5443(12) 212(8)
O(2a) 4051(3) 3978(2) 946(3) 61(1) C(27) 9744(8) 9705(7) 3773(13) 214(8)

Structure II
Br(1) 2937(1) 2605(1) 2254(1) 74(1) C(6) –3031(6) –111(2) –2677(2) 41(1)
O(1) –2616(3) 65(1) –145(2) 45(1) C(7) –2411(4) 394(2) –927(2) 37(1)
O(2) –2209(6) –849(2) –4293(3) 103(1) C(8) –238(4) 1216(2) –230(2) 35(1)
O(3) –4441(4) –1081(2) –4997(2) 95(1) C(9) 783(4) 1747(2) –500(3) 44(1)
O(4) –8325(4) –395(3) –3360(3) 135(2) C(10) 1744(5) 2158(2) 234(3) 50(1)
O(5) –8105(3) 362(2) –2085(2) 66(1) C(11) 1658(4) 2038(2) 1231(3) 47(1)
O(6) –1923(3) 3168(2) 2164(2) 69(1) C(12) 651(4) 1516(2) 1509(3) 45(1)
N(1) –1248(3) 859(2) 1024(2) 38(1) C(13) –296(4) 1094(2) 778(2) 43(1)
N(2) –5488(4) 811(2) –1128(2) 43(1) C(14) –4662(4) 1431(2) –547(2) 37(1)
N(3) –3522(6) –819(2) –4303(2) 70(1) C(15) –3848(4) 1980(2) –1008(2) 39(1)
N(4) –7558(5) –9(2) –2687(3) 64(1) C(16) –2989(4) 2551(2) –427(2) 39(1)
C(1) –3505(5) 253(2) –1872(2) 36(1) C(17) –2946(4) 2597(2) 605(2) 38(1)
C(2) –5014(5) 373(2) –1861(2) 38(1) C(18) –3835(4) 2075(2) 1037(2) 45(1)
C(3) –5972(5) –13(2) –2663(2) 42(1) C(19) –4685(4) 1497(2) 473(2) 43(1)
C(4) –5492(6) –403(2) –3439(3) 53(1) C(20) –1844(4) 3187(2) 1262(2) 42(1)
C(5) –4042(6) –427(2) –3462(2) 48(1) C(21) –1005(6) 3732(3) 804(4) 65(1)

Note: The equivalent thermal parameter U is defined as a one-third of the sum of equivalent elements of the tensor of thermal vibrations.
The parameters of the anisotropic thermal vibrations of the non-hydrogen atoms and the positional and thermal parameters of the
hydrogen atoms are available from the authors.
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Fig. 4. Molecular packing in structure I · 0.5C6H6.
H(1na)···O(6), 2.11(5) Å; and the N(1a)–H(1na)···O(6)
angle, 177.2(4)°. The second intermolecular bond is
symmetric with respect to the first bond, and its param-
eters are 2.95(1) Å, 2.20(5) Å, and 174.2(4)°, respec-
tively.

These hydrogen bonds link independent molecules I
into pseudocentrosymmetric dimers. The position of
the pseudocenter of symmetry in the dimer is close to
1/2, 1/2, 1/4. It is interesting that both nitro groups
(even the group involved in the intramolecular hydro-
gen bond) are rotated with respect to the phenylene ring
through rather large angles. Actually, the
O(5)N(4)C(3)C(4) and O(3)N(3)C(5)C(4) torsion
angles are equal to 24.8(4)° and –46.0(4)°, respectively.
The corresponding torsion angles in the other indepen-
dent molecule I are 9.1(4)° and –44.1(4)°.

The molecular packing in structure I · 0.5C6H6 is
shown in Fig. 4. The pseudocentrosymmetric dimers
are packed into stacks running along the z-axis. The
stacks are separated by the channels, which accommo-
date the solvate benzene molecules. In the crystal stud-
ied, there are no specific interactions between mole-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
cules I and the solvate benzene molecules: the shortest
distances C(23)···O(1a), C(27)···O(1), C(27)···H(12a),
and C(27)···H(15) [3.23(3), 3.16(2), 2.70(2), and
3.00(4) Å, respectively] correspond to the van der
Waals interactions.

In structure II, the N(2)–H(2n)···O(5) hydrogen
bond is also formed. This bond is characterized by the
N(2)···O(5) [2.65(1) Å] and H(2n)···O(5) [2.14(5) Å]
distances and the N(2)–H(2n)···O(5) angle [116.5(4)°].
The O(5)N(4)C(3)C(2) and O(2)N(3)C(5)C(6) torsion
angles [4.7(4)° and –0.7(4)°, respectively] are signifi-
cantly smaller than those in structure I · 0.5C6H6. The
nitro group that is involved in the intramolecular hydro-
gen bond is rotated with respect to the phenylene ring
to a larger degree as compared to the free group. The
mean atomic deviation from the plane of the
C(2)C(3)N(2)N(4)O(5)H(2n) fragment of the molecule
is 0.08 Å, and the maximum deviations are observed for
the N(2) (+0.15 Å) and H(2n) (–0.18 Å) atoms.

Two intermolecular contacts in structure II, namely,
N(2)–H(2n)···O(1) (1 – x, –y, –z) and N(1)–H(1n)···
O(6) (x, 1/2 – y, z – 1/2) (Fig. 5), can be considered
2
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H(2na)
O(1a)

H(2n)O(1)

H(1n)

O(6c)

O(6) H(1nb)

Fig. 5. A fragment of the molecular packing in crystal II.
rather strong intermolecular hydrogen bonds. Their
parameters have the following values: N(2)···O(1),
3.03(1) Å; H(2n)···O(1), 2.25(5) Å; and the N(2)–
H(2n)···O(1) angle, 146.9(4)°; and N(1)···O(6), 2.89(1) Å;
H(1n)···O(6), 2.11(5) Å; and the N(1)–H(1n)···O(6)
angle, 159.1(4)°. Bonds of the first type link the mole-
cules into the centrosymmetric dimers, whereas bonds
of the second type form a continuous network of inter-
molecular hydrogen bonds in the crystal structure.

CONCLUSION

Based on the data obtained, we can conclude that the
isomerism has a profound effect not only on the crystal
structure but also on the main physicochemical proper-
ties of the synthesized acetyl derivatives of 3,5-dini-
trobenzoic acid. The crystals of the para isomer, which
has elongated molecules, exhibit higher temperature
and greater heat of melting and are less soluble in
organic media in comparison with the crystals of the
ortho isomer. The packing of molecules of the para iso-
mer into stacks in the process of crystal growth is
accompanied by the entrapment of solvent molecules
C

(solvatation), which are located in the free space
formed between the stacks (channels).
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Abstract—The structure of single crystals of 2,4,6-trinitro-N-methyl-N-nitroaniline C7H5N5O8 (I) is deter-
mined by X-ray diffraction analysis. The unit cell parameters are a = 14.137(3) Å, b = 10.621(2) Å, c = 7.376(2) Å,
γ = 95.19 (5)°, space group P21/b, and Z = 4. The structure is solved by the direct method and refined in the
anisotropic approximation to R = 0.051 for 1917 reflections with I > 2σ(I). All hydrogen atoms are located and
refined in the isotropic approximation. The carbon skeleton of the aromatic nucleus of the molecule tends to
adopt the C(2),C(5)-boat conformation. The angle of rotation of the planar NNO2 group with respect to the
plane of the six-membered ring is 123.1(2)°. The NO2 groups that are bonded to the aromatic nucleus of the
molecule are also rotated relative to this plane. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Nitro compounds have attracted considerable inter-
est due to the variety of their properties. In particular,
these compounds are used as starting materials in the
synthesis of dyes and explosives [1] (N-nitro com-
pounds are active in photochemical reactions [2]). An
interesting feature of N-methyl-N-phenylnitroamine
and its derivatives is their ability to undergo a rear-
rangement under the effect of an acid medium and a
high temperature [3]. In the present work, we per-
formed X-ray diffraction investigation of the crystal
and molecular structures of 2,4,6-trinitro-N-methyl-N-
nitroaniline (I)

in order to refine the data obtained in [4] and to reveal
the changes in the structure parameters of the molecule
containing four nitro groups as compared to the param-
eters in other derivatives of N-methyl-N-nitroaniline
[5–8]. 

NO2

O2N NO2

NCH3 NO2

I

1063-7745/02/4701- $22.00 © 20065
EXPERIMENTAL 

Single crystals I were grown from dichloroethane at
room temperature. The compound is characterized by
the following crystallographic data: a = 14.137(3) Å,
b = 10.621(2) Å, c = 7.376(2) Å, γ = 95.19(5)°, space
group P21/b, Z = 4, V = 1103.0(10) Å3, and ρcalcd =
1.729 g/cm3. A set of 3311 reflections was obtained at
room temperature on a Syntex P21 diffractometer (θ/2θ
scan mode, graphite monochromator, MoKα radiation).
After the primary processing, we obtained a set of 2733
unique nonzero structure amplitudes. The structure was
solved by the direct method and refined with the
SHELX97 program [9]. The hydrogen atoms were
located from the difference syntheses of electron den-
sity. The non-hydrogen atoms were refined in the aniso-
tropic approximation, and the hydrogen atoms were
refined isotropically. The final R factor was 0.051 for
1917 reflections with I > 2σ(I) and 0.073 for 2733
reflections. The atomic coordinates are listed in Table 1. 

RESULTS AND DISCUSSION 

The structure of molecule I is shown in Fig. 1. In
molecule I, unlike the molecules reported earlier in [5–
7], the carbon skeleton of the aromatic nucleus is essen-
tially nonplanar and tends to adopt the C(2),C(5)-boat
conformation. The deviations of the C(2) and C(5)
atoms from the plane of the remaining four atoms of the
002 MAIK “Nauka/Interperiodica”
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ring are –0.049(3) and –0.031(3) Å, respectively. The
nitrogen atoms that are attached to the six-membered
ring deviate differently from the plane passing through
all the six atoms of the ring. The N(1) and N(6) atoms
deviate by 0.157(3) and 0.122(3) Å in the same direc-
tion, whereas the N(2) atom deviates by –0.164(3) Å in
the opposite direction. The N(4) atom, which is in the

Table 1.  Atomic coordinates and thermal parameters in the
structure

Atom x/a y/b z/c Ueq/Uiso, Å2

C(1) 0.7633(1) 0.5763(2) –0.0416(3) 0.0330(4)

C(2) 0.7756(1) 0.5272(2) 0.1312(3) 0.0349(4)

C(3) 0.7172(1) 0.4278(2) 0.2030(3) 0.0370(4)

C(4) 0.6399(1) 0.3832(2) 0.1013(3) 0.0345(4)

C(5) 0.6196(1) 0.4321(2) –0.0673(3) 0.0366(4)

C(6) 0.6832(1) 0.5262(2) –0.1371(2) 0.0341(4)

N(1) 0.8345(1) 0.6655(2) –0.1128(3) 0.0426(4)

N(2) 0.8526(1) 0.5829(2) 0.2497(3) 0.0470(4)

N(4) 0.5767(1) 0.2761(2) 0.1720(3) 0.0428(4)

N(6) 0.6643(2) 0.5655(2) –0.3250(3) 0.0478(5)

N(7) 0.8073(2) 0.7792(2) –0.1644(3) 0.0483(5)

O(8) 0.7274(1) 0.8042(2) –0.1201(3) 0.0553(5)

O(9) 0.8652(2) 0.8482(2) –0.2491(4) 0.0789(7)

C(10) 0.9279(2) 0.6316(3) –0.1688(5) 0.0605(7)

O(11) 0.8655(2) 0.6979(2) 0.2566(3) 0.0718(6)

O(12) 0.8956(2) 0.5104(2) 0.3381(3) 0.0719(6)

O(13) 0.6102(1) 0.2066(2) 0.2808(3) 0.0595(5)

O(14) 0.4959(2) 0.2629(2) 0.1162(4) 0.0753(7)

O(15) 0.5839(2) 0.5475(3) –0.3785(3) 0.0924(9)

O(16) 0.7308(2) 0.6112(2) –0.4158(3) 0.0662(6)

H(3) 0.728(2) 0.394(2) 0.314(4) 0.040(6)

H(5) 0.565(2) 0.405(3) –0.138(4) 0.052(7)

H(101) 0.970(3) 0.687(4) –0.120(6) 0.090(13)

H(102) 0.934(3) 0.552(4) –0.129(5) 0.079(11)

H(103) 0.931(3) 0.633(4) –0.308(7) 0.109(15)

Table 2.  Short intramolecular contacts between the atoms (Å) 

Contact Length Contact Length 

N(1) ⋅ ⋅ ⋅O(11) 2.776(4) O(8) ⋅ ⋅ ⋅O(16) 2.997(3)

N(1) ⋅ ⋅ ⋅O(16) 2.707(3) H(3) ⋅ ⋅ ⋅O(12) 2.58(2)

N(6) ⋅ ⋅ ⋅N(7) 3.132(3) H(3) ⋅ ⋅ ⋅O(13) 2.49(2)

N(6) ⋅ ⋅ ⋅O(8) 3.016(3) H(5) ⋅ ⋅ ⋅O(14) 2.54(3)

N(7) ⋅ ⋅ ⋅O(16) 2.728(3) H(5) ⋅ ⋅ ⋅O(15) 2.33(3)
C

para position relative to the planar N-nitro group,
shows the smallest deviation [0.079(3) Å] from this
plane. Comparison of four C(N)–NO2 fragments of the
molecule reveals that the N(1)–N(7)O2 and C(4)–
N(4)O2 fragments have the most planar structures: the
deviations of the N atom from the planes passing
through three adjacent atoms are 0.006(3) and 0.005(2) Å,
respectively. The N(2) atom has the largest deviation
from the plane through the adjacent atoms [0.020(2) Å],
and the deviation of the N(6) atom is 0.010(2) Å. 

In molecule I, the planar NNO2 group is rotated rel-
ative to the plane of the six-membered ring. The C(2)–
C(1)–N(1)–N(7) torsion angle is –123.1(2)°. For com-
parison, in the related compounds, the corresponding
angle has the following values: –72.3° in N-nitro-N-
methyl-4-nitroaniline [5]; –65.6(4)° in 4-chloro-N-
methyl-N-nitroaniline [6]; 73.5° in N-methyl-N-2-chlo-
roaniline [7]; and 42.6°, 63.9°, and 65.4° in three other
nitro derivatives of N-methyl-N-nitroaniline [8]. The
NO2 groups that are attached to the aromatic nucleus of
the molecule are also rotated relative to the six-mem-
bered ring. The C(3)–C(2)–N(2)–O(11) angle is
−135.5(2)°. Two other nitro groups are rotated relative
to the ring to a significantly lesser degree: the C(1)–
C(6)–N(6)–O(15) and C(5)–C(4)–N(4)–O(13) angles
are –159.3(2)° and –154.7(2)°, respectively. The
C(10)–N(1)–N(7)–O(8) and C(10)–N(1)–N(7)–O(9)
torsion angles are 178.0(3)° and –2.9(4)°, respectively;
and the C(1)–N(1)–N(7)–O(9) and C(1)–N(1)–N(7)–
O(8) angles are –169.7(2)° and 11.2(3)°, respectively.
These values indicate that the conformation of the frag-
ment discussed is noticeably distorted relative to simi-
lar fragments in the compounds with the substituents in
the para-position [5, 6]. Similar changes are observed
in the compound in which the Cl substituent is situated
in the ortho position to the N(CH3)–NO2 group [7]. 

The bond lengths and angles agree with the corre-
sponding values in N-nitro-N-methyl-4-nitroaniline [5].
The differences in bond lengths do not exceed 0.02 Å.
The differences in bond angles are more significant: the
N(1)–C(1)–C(6) [124.7(2)°], C(1)–C(2)–C(3)
[123.4(2)°], and C(1)–C(6)–C(5) [122.6(2)°] bond
angles increase by 4.8°, 4.0°, and 3.1°, respectively;
and the C(2)–C(1)–C(6) angle [116.2(2)°] decreases by
5.5°. The increase in the endocyclic bond angles at the
atoms of the aromatic ring that are bound to the nitro
groups was also observed in other compounds [10]. The
difference between the other bond angles is no more
than 1.6°. In molecule I, the C(1)–N(1) bond is asym-
metric with respect to the aromatic ring. The C(2)–
C(1)–N(1) and C(6)–C(1)–N(1) angles are 118.9(2)°
and 124.7(2)°, respectively. A similar situation is
observed in other compounds in which nitro groups are
in the ortho positions relative to the substituent at the
C(1) atom, even if this substituent consists of one atom
(Cl in picrylchloride [10]). The angle of rotation of the
nitro group at the C(2) atom with respect to the aro-
matic ring [43.0(1)°] is larger than the rotation angles
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Fig. 1. Molecular structure of 2,4,6-trinitro-N-methyl-N-
nitroaniline. 
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of the nitro groups at the C(6) [24.8(2)°] and C(4)
[25.2(2)°] atoms. The adjoining angles at the C(4)–
N(4) bond are equal to each other. The N–N bond in
compound I [1.355(3) Å] is significantly longer than
those in azo compounds (1.25 Å) [11] and shorter than
the single N–N bond (1.48 Å) [12]. Its length agrees
well with those of similar bonds in other N-nitro com-
pounds (1.346(3) Å [5], 1.346(3) Å [6], 1.362(2) Å [7],
and 1.352–1.360 Å [8]). The N–O bond lengths fall in
the range from 1.202(3) to 1.228(3) Å, and the N(7)–O(8)
bond in the N–NO2 molecular fragment is the longest
among them. The shortest C–N bond [1.419(2) Å] is
observed in the nitroamino group, and the average
length of the remaining C–N bonds is 1.477(3) Å,
which is 0.06 Å longer than the similar bond between
the aromatic ring and the nitroamino group. The same
difference is also observed in other nitro derivatives of
N-methyl-N-nitroaniline [8]. 

A number of short intramolecular contacts (Table 2),
which are apparently due to both steric and electrostatic
interactions, are observed in molecule I. The quantum-
chemical calculations showed that the N(7) atom of the
nitroamino group bears a large positive charge, whereas
all its neighbors are charged negatively [7]. It was
found [8] that the molecules of the nitro derivatives of
b

0
1/4

a

Fig. 2. Crystal structure of compound I. 
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N-methyl-N-nitroaniline are polar, and their dipole
moments are equal to the vector sum of the dipole con-
tributions of the substituted ring and the nitroamino
group [13]. Undoubtedly, the dipole moments in the
molecule affect the crystal structure. The packing of
molecule I is shown in Fig. 2. In the crystal, the mole-
cules are arranged in such a way that the nitro groups in
the para position to the nitroamino group face each
other and the oxygen atoms of the neighboring mole-
cules form the short contacts O(13)···O(14) (1 – x, 0.5 –
y, 0.5 + z) and O(14)···O(13) (1 – x, 0.5 – y, –0.5 + z),
which are equal to 2.926(4) Å (the sum of the van der
Waals radii of the O atoms is 3.04 Å [14]). Moreover,
the N(2)···O(16) (x, y, 1 + z) and N(6)···O(8) (x, –0.5 +
y, –0.5 – z) distances [3.040(3) and 3.018(3) Å, respec-
tively] are slightly shorter than the sum of the van der
Waals radii of the O and N atoms (3.10 Å [14]). As a
result, the molecules form layers containing the methyl
groups on each side. The thickness of each layer is
equal to the a parameter of the unit cell of the crystal.
The six-membered rings of the molecules that are
related by the inversion center are approximately paral-
lel to each other, and the molecules related by the b
glide plane are inclined to each other at an angle of
~50°. 
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Abstract—The structure of 3-(isonicotinoyl)-2-oxooxazolo[3,2-a]pyridine, C13H8N2O3, (I) is determined by
X-ray powder diffraction analysis. Crystals I are orthorhombic, a = 16.610(2) Å, b = 3.853(1) Å, c = 16.431(2) Å,
Z = 4, and space group Pna21. The structure is solved by the grid search procedure and refined by the Reitveld
method (Rp = 0.086, Rwp = 0.115, Re = 0.030, and χ2 = 11.138). The structure of the product of hydrolysis of
compound I, C12H10N2O2, (II) is determined by the single-crystal X-ray diffraction technique. Crystals II are
orthorhombic, a = 8.755(4) Å, b = 10.526(17) Å, c = 23.088(6) Å, Z = 8, and space group Pc21b. The structure
is solved by the direct method and refined by the full-matrix least-squares procedure to R = 0.0464. A fragment
of two fused heterocycles in I is planar. The dihedral angle between the plane of the pyridine ring in the isoni-
cotinoyl fragment and the plane of the bicyclic system is 51.2(2)°. Both exocyclic CO groups that are adjacent
to the five-membered fragment contain double bonds. The structures of two crystallographically independent
molecules II are almost identical to each other, and the isonicotinoyl fragment is nearly perpendicular to the
plane of the pyridone fragment [84.3(1)° and 87.0(1)°]. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This paper continues a series of our structural inves-
tigations of the heterocyclic compounds that are able to
enter readily into various chemical rearrangements and
reactions of ring transformations [1–12]. In the present
work, we concentrated on the structures of 3-(isonico-
tinoyl)-2-oxooxazolo[3,2-a]pyridine, C13H8N2O3 (I),
which belongs to the class of mesoionic heterocyclic
compounds, and the product of its hydrolysis,
1063-7745/02/4701- $22.00 © 20069
C12H10N2O2 (II). Data on the structures of these mole-
cules are unavailable in the Cambridge Structural Data-
base [13].

Our interest in the structure and properties of the
molecules belonging to mesoionic compounds, such as
I, is due to, first, the unusual (ilide) structural type of
their heterocycles [9] and, second, the possibility of
ready opening of the oxazolone ring and its transforma-
tion into the oxazolium ring [14] according to the I–IV
conversion:
N

O

COOH

N

O+

O–

COR

N

O

COR

N N

O+

R

IIII II

IV

R =

Ac2O/Et3N

RCOCl
HO–

H3O+

H3O+
A number of representatives of the mesoionic het-
erocycles with the general formula C13H8N2O3 (I) and
aliphatic or aromatic R residues have been described in
the literature. We prepared the first representative of
this series with a heterocyclic residue R (γ-pyridyl).
Compound I was obtained from pyridonacetic acid III
according to the procedure analogous to that used in
[14] (R = Ar) with isonicotinoyl chloride as an acylating
002 MAIK “Nauka/Interperiodica”
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Table 1.  Atomic coordinates (×104) and isotropic thermal parameters Biso (Å2) for structure I

Atom x y z Biso Atom x y z Biso

C(1) 1991(5) 5229(18) –405 3.55 C(14) 439(4) 1779(21) –1279(7) 5.70

C(2) 1456(5) 3740(18) 186(6) 3.55 N(1) 1947(4) 3072(16) 863(4) 3.55

C(3) 1744(5) 1900(21) 1618(6) 3.55 O(1) 2741(3) 5340(11) –24(4) 3.55

C(4) 2349(5) 1259(22) 2183(5) 3.55 O(2) 1945(3) 6360(12) –1082(4) 6.25

C(5) 3134(5) 2245(22) 1986(6) 3.55 O(3) 270(3) 1934(13) 833(4) 3.06

C(6) 3324(5) 3616(21) 1249(6) 3.55 H(3) 1222(27) 1036(159) 1758(36) 4.0

C(7) 2721(5) 4139(18) 699(6) 3.55 H(4) 2236(36) 335(135) 2691(31) 4.0

C(8) 612(4) 3033(22) 184(6) 3.55 H(5) 2540(31) 1951(175) 2378(30) 4.0

C(9) 191(5) 3327(22) –533(6) 5.70 H(6) 3854(28) 4289(129) 1126(33) 4.0

C(10) –576(6) 5040(21) –491(6) 5.70 H(10) –730(23) 5917(115) 10(35) 4.0

C(11) –1022(4) 5424(27) –1178(7) 5.70 H(11) –1527(26) 6437(128) –1144(35) 4.0

N(12) –767(4) 3916(19) –1938(5) 5.70 H(13) 157(31) 1329(145) –2462(33) 4.0

C(13) –10(6) 2390(28) –1975(7) 5.70 H(14) 935(25) 666(138) –1324(35) 4.0
agent. The yield of compound I was 47%, even though
the reaction was accompanied by a substantial resinifi-
cation. Heating of compound I with an aqueous solu-
tion of sodium carbonate resulted in the hydrolytic
cleavage of the oxazolone ring and the formation of
pyridone II. Note that it is impossible to prepare pyri-
done II by another procedure. For example, it would be
difficult to follow the standard strategy for preparation
of these compounds by the reaction of pyridone-2 with
the corresponding bromoketone, because the suitable
bromoketone, 4-bromoacetylpyridine, contains both
the heteroatom of the pyridine ring and the alkylating
fragment, and, therefore, it is capable of self-quater-
nization.

The transformation of α-amino acids into α-amino
ketones under the effect of acid halides is usually called
the Dakin–West reaction. The step-by-step transforma-
tion of pyridonacetic acid III (formally, an α-amino
acid) into pyridone II (formally, an α-amino ketone)
through the stage of formation of the stable mesoionic
heterocycle I, which we have accomplished, should
also be considered as a Dakin–West reaction.

Our attempts to carry out acid cyclodehydration of
pyridone II into bicyclic cation IV were unsuccessful.
Under standard conditions, which provide for an
oxazolium ring closure with the other 1-phenacylpyri-
dones (successive treatment with sulfuric and perchlo-
ric acids), pyridone II formed the stable perchlorate. In
the latter compound, the nitrogen heteroatom of the
isonicotinoyl fragment, apparently, served as a center
of protonation. A similar perchlorate of pyridone II was
also isolated in an attempt to perform recyclization of
mesoionic oxazolopyridine I in the acid medium by
analogy with the transformation revealed earlier for the
case of R = Ar [14]. Thus, we have at least in part drawn
the boundaries of applicability of the recyclization of
mesoionic oxazolopyridines into cationoid systems.
C

Earlier, we characterized systems of types I and II
with Ar = C6H5 [3, 9] and para-NO2-C6H4 [8, 11] by the
X-ray powder and single-crystal diffraction techniques.
The present study of one more complementary pair of
molecules supplements the data on the structures of
mesoionic systems and the products of their hydrolysis
and provides one more example of the X-ray mapping
of chemical reactions [5–7, 11, 12].

EXPERIMENTAL

The X-ray diffraction experiment for I was per-
formed in an evacuated Enraf–Nonius Guinier–Johans-
son FR552 camera (λCuKα1 , quartz monochromator).
The intensities and angle parameters of the X-ray spec-
trum were measured using an LS18 densitometer in
0.01° steps. The unit cell parameters were determined
according to the ITO indexing program [15] in the 2θ
angle range 4°–86° and the index ranges 0 ≤ h ≤ 13; 0 ≤
k ≤ 3, 0 0 ≤ l ≤ 13. The space group was determined
from the systematic absences of reflections. Crystals I
are orthorhombic, a = 16.610(2) Å, b = 3.853(1) Å, c =
16.431(2) Å, V = 1051.6(3) Å3, dcalcd = 1.436 g/cm3,
µ(λCu) = 8.89 cm–1, Z = 4, and space group Pna21.

Structure I was solved by the grid search procedure
[16] using the given molecular fragments. The full-pro-
file refinement of the structure was performed by the
Reitveld method with the MRIA program [17]. The
pseudo-Voigt function was used as a profile shape func-
tion, and the background was approximated by the Che-
byshev polynomials of the fifth order. The parameters
of the texture in the [010] direction were refined within
the March–Dollase model [18]. The final refinement
parameters are as follows: Rp = 0.086, Rwp = 0.115, Re =

0.030, and χ2 = 11.138, where Rp =  – Ic |/ ,

Rwp =  – Ic |/ , Re = / ; Io is

|Io∑ Io∑
w|Io∑ wIo∑ σIo∑ Io∑
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Table 2.  Atomic coordinates (×104) and equivalent isotropic thermal parameters Ueq (Å2 × 103) for structure II

Atom x y z Ueq Atom x y z Ueq

N(1A) 2515(2) 8000(2) 8031(1) 48(1) C(9B) 3677(2) 10598(2) 1727(1) 49(1)

C(2A) 1987(3) 6861(2) 8234(1) 73(1) C(10B) 4385(2) 9734(2) 1367(1) 53(1)

O(2A) 1588(2) 6042(2) 7876(1) 99(1) C(11B) 4500(3) 10009(3) 792(1) 75(1)

C(3A) 1910(3) 6746(2) 8837(1) 87(1) N(12B) 4008(2) 11056(2) 534(1) 86(1)

C(4A) 2353(3) 7668(3) 9192(1) 83(1) C(13B) 3352(4) 11873(3) 892(1) 104(1)

C(5A) 2886(2) 8805(2) 8969(1) 66(1) C(14B) 3157(3) 11706(2) 1472(1) 94(1)

C(6A) 2941(2) 8969(2) 8400(1) 59(1) H(3A) 1452(16) 6081(17) 8983(6) 43(5)

C(7A) 2556(2) 8171(2) 7410(1) 52(1) H(4A) 2360(20) 7600(20) 9573(9) 118(9)

C(8A) 1018(2) 8316(2) 7142(1) 44(1) H(5A) 3320(20) 9570(20) 9262(8) 99(8)

O(8A) –94(1) 8508(1) 7440(1) 64(1) H(6A) 3310(30) 9750(20) 8165(9) 125(9)

C(9A) 860(2) 8207(2) 6511(1) 46(1) H(7A1) 3105(17) 8840(20) 7319(7) 62(6)

C(10A) –426(2) 8675(2) 6240(1) 72(1) H(7A2) 3070(20) 7520(20) 7223(7) 81(7)

C(11A) –541(3) 8557(3) 5654(1) 91(1) H(10A) –1249(19) 8970(20) 6485(7) 72(6)

N(12A) 483(2) 8031(2) 5308(1) 81(1) H(11A) –1415(19) 8860(10) 5453(7) 70(6)

C(13A) 1714(3) 7602(2) 5576(1) 67(1) H(13A) 2474(18) 7325(18) 5314(7) 73(7)

C(14A) 1946(2) 7643(2) 6159(1) 58(1) H(14A) 2790(20) 7330(20) 6319(8) 86(7)

N(1B) 2442(2) 10839(1) 3307(1) 46(1) H(3B) 4471(17) 11115(19) 4465(7) 67(6)

C(2B) 3687(2) 11161(2) 3631(1) 47(1) H(4B) 2344(15) 10235(15) 4846(6) 35(4)

O(2B) 4809(2) 11629(2) 3383(1) 62(1) H(5B) 328(18) 9553(17) 4283(7) 55(6)

C(3B) 3611(2) 10883(2) 4226(1) 57(1) H(6B) 365(18) 10010(18) 3314(7) 54(5)

C(4B) 2377(3) 10337(2) 4458(1) 62(1) H(7B1) 1432(13) 11137(14) 2540(6) 23(4)

C(5B) 1169(3) 9984(2) 4110(1) 71(1) H(7B2) 2890(20) 12030(20) 2672(8) 98(7)

C(6B) 1220(2) 10253(2) 3552(1) 63(1) H(10B) 4680(20) 8880(30) 1554(8) 112(8)

C(7B) 2454(2) 11184(2) 2700(1) 52(1) H(11B) 5040(20) 9540(20) 550(8) 82(7)

C(8B) 3423(2) 10284(2) 2346(1) 47(1) H(13B) 2820(30) 12440(30) 706(12) 151(11)

O(8B) 3962(1) 9335(1) 2551(1) 59(1) H(14B) 2690(20) 12230(20) 1716(8) 80(7)
the observed intensity, and Ic is the calculated intensity.
The atomic coordinates and isotropic thermal parame-
ters are listed in Table 1.

The unit cell parameters of II were determined and
refined using 25 reflections in the θ range 14°–16° on a
CAD4 automated diffractometer [19] (λMoKα, graph-
ite monochromator). Crystals II are orthorhombic, a =
8.755(4) Å, b = 10.526(17) Å, c = 23.088(6) Å, V =
2128(4) Å3, dcalcd = 1.337 g/cm3, µ(λMo) = 0.093 mm–1,
Z = 8, space group Pc21b. A set of 1266 reflections with
I ≥ 2σ(I) was collected by the ω-scan technique in the
range θ ≤ 21.96° on the same diffractometer. The pre-
liminary processing of the diffraction data set was per-
formed with the WinGX98 program [20]. The structure
was solved by the direct method and refined by the
least-squares procedure in the anisotropic approxima-
tion using the SHELX97 program package [21]. The
hydrogen atoms were located from the electron-density
difference synthesis and refined in the isotropic approx-
imation. The final discrepancy factors are R1 = 0.0461
and wR2 = 0.0868. The residual electron density lies
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
between ∆ρmax = 0.139 and ∆ρmin = –0.116 e/Å3 . The
atomic coordinates and equivalent thermal parameters
are listed in Table 2.

The spatial arrangements of atoms in molecules I
and II with atomic numberings are shown in Figs. 1 and
2, respectively. The figures were drawn using the
PLUTON96 graphical program package [22].

RESULTS AND DISCUSSION

The angle between the planes of oxazolo[3,2-
a]pyridine bicycle and the six-membered pyridine ring
in molecule I is equal to 51.2(2)°. The C(1)–C(2) bond
(1.44 Å) appeared to be significantly longer than the
expected double bond, whereas the exocyclic C(1)–
O(2) bond is 1.20 Å. It follows from these bond lengths
that the geometry of the C(2)–C(1)=O(2) fragment is
similar to that of the exocyclic C(2)–C(8)=O(3) keto
group. The parameters of the O(2)=C(1)–C(2)–
C(8)=O(3) structural fragment correspond to a combi-
nation of two ordinary carbonyl groups linked through
2
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Fig. 1. Structure of molecule I with the atomic numbering and interatomic distances (A).
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Fig. 2. Structure of molecule II with the atomic numbering and interatomic distances (A; the upper value refers to molecule A, and
the lower value refers to molecule B).
the C(2) atom. This can be explained by the localization
of the negative charge at the C(2) atom of the mesoionic
molecule. The positive charge is delocalized in the
N(1)–C(7)–O(1) chain and does not touch the pyridine
fragment of the mesoionic bicycle. We revealed a simi-
lar but more pronounced delocalization of the positive
C

charge in the molecule of the chemical analogue of I,
which was described earlier in [9].

Earlier, we investigated the structures of N-substi-
tuted pyridones-2, in which the phenacyl [3] and para-
nitrophenacyl groups are located at the nitrogen atom
[8]. The structure of II agrees closely with the molecu-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Table 3.  Parameters of the interatomic contacts* in structure I

D–H d(D–H), Å d(D ⋅ ⋅ ⋅A), Å d(H ⋅ ⋅ ⋅A), Å ω(D–H⋅⋅⋅A), deg A [symmetry code]

C(3)–H(3) 0.96(5) 2.77(1) 2.22(5) 115(3) O(3) [x, y, z]

C(10)–H(10) 0.93(6) 2.85(1) 2.64(5) 94(3) O(3) [x, y, z]

C(14)–H(14) 0.93(5) 3.08(1) 2.79(5) 99(3) O(2) [x, y, z]

C(4)–H(4) 0.93(5) 3.08(1) 2.46(5) 124(4) O(2) [1/2 – x, y – 1/2, 1/2 + z]

C(5)–H(5) 0.94(5) 3.20(1) 2.67(5) 116(4) O(2) [1/2 – x, y – 1/2, 1/2 + z]

C(14)–H(14) 0.93(5) 3.27(1) 2.39(5) 158(4) O(2) [x, y – 1, z]

* D is a donor, A is an acceptor, and H is a hydrogen atom.

Table 4.  Parameters of the interatomic contacts* in structure II

D–H d(D–H), Å d(D ⋅ ⋅ ⋅A), Å d(H ⋅ ⋅ ⋅A), Å ω(D–H⋅⋅⋅A), deg A (symmetry code)

C(7A)–H(7A2) 0.93(2) 2.626(4) 2.52(2) 86(1) O(2A) [x, y, z]

C(10A)–H(10A) 0.97(2) 2.791(3) 2.48(2) 99(1) O(8A) [x, y, z]

C(5B)–H(5B) 0.95(2) 3.498(4) 2.86(2) 125(1) N(12A) [x, y, z]

C(7B)–H(7B2) 0.97(2) 2.638(3) 2.39(2) 94(1) O(2B) [x, y, z]

C(10B)–H(10B) 1.03(2) 2.790(3) 2.44(2) 99(1) O(8B) [x, y, z]

C(3B)–H(3B) 0.97(2) 3.674(3) 2.81(2) 150(1) N(12B) [1 – x, y, z + 1/2]

C(7A)–H(7A1) 0.88(2) 3.302(3) 2.68(2) 130(1) O(8B) [1 – x, y, z + 1/2]

C(6A)–H(6A) 1.04(3) 3.424(5) 2.62(3) 134(2) O(2B) [1 – x, y, z + 1/2]

C(6A)–H(6A) 1.04(3) 3.378(3) 2.81(2) 114(1) O(8B) [1 – x, y, z + 1/2]

C(7A)–H(7A1) 0.88(2) 3.207(5) 2.71(2) 117(2) O(2A) [x, y + 1/2, 3/2 + z]

C(7A)–H(7A2) 0.93(2) 3.363(3) 2.51(2) 153(2) O(2B) [1 – x, y – 1/2,1 –  z]

C(14A)–H(14A) 0.89(2) 3.213(3) 2.33(2) 171(2) O(2B) [1 – x, y – 1/2,1 –  z]

C(13A)–H(13A) 0.95(2) 3.640(3) 2.72(2) 163(1) N(12B) [x, y – 1/2,1/2 –  z]

C(10B)–H(10B) 1.03(2) 3.340(6) 2.38(3) 155(2) O(2B) [x, y – 1/2,1/2 –  z]

C(6B)–H(6B) 0.96(2) 3.307(3) 2.57(2) 133(1) O(8A) [–x, y, z – 1/2]

C(7B)–H(7B2) 0.97(2) 3.218(4) 2.91(2) 100(1) O(8A) [–x, y + 1/2,1 –  z]

C(7B)–H(7B1) 0.97(1) 3.218(4) 2.76(2) 110(1) O(8A) [–x, y + 1/2,1 –  z]

C(7B)–H(7B1) 0.97(1) 3.783(3) 2.82(1) 177(1) O(2A) [–x, y + 1/2,1 –  z]

C(7B)–H(7B2) 0.97(2) 3.617(5) 2.66(2) 172(2) O(8B) [x, y + 1/2,1/2 –  z]

* D is a donor, A is an acceptor, and H is a hydrogen atom.
lar structures of these phenacylpyridones. For example,
molecules A and B in structure II are almost identical to
each other, and the O(2) and C(7) atoms (the pyridone
fragment), as well as the C(8) and O(8) atoms (the acyl
fragment), lie in the planes of the corresponding hetero-
cycles.

In the pyridone fragment, the partially single and
partially double bonds alternate with the formation of
the quasi-diene C(3)=C(4)–C(5)=C(6) structural frag-
ment.

The plane of the heterocycle of the acyl fragment is
nearly perpendicular to the plane of the pyridone frag-
ment; the dihedral angles are 84.34(8)° and 86.96(8)°
for molecules A and B, respectively. The mutual
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
arrangement of the six-membered rings in the molecule
almost coincides with that in phenacylpyridone
[87.55(6)°] [8]. In para-nitrophenacylpyridone [3], the
corresponding dihedral angle [77.21(1)°] is, on aver-
age, 10° smaller than that in molecules A and B. Hence,
we can conclude that the geometry of the molecule does
not depend on the type of the acyl radical (phenyl,
para-nitrophenyl, or γ-pyridyl).

In the crystal structures of compounds I and II, the
systems of interatomic contacts involving hydrogen,
nitrogen, and oxygen atoms are formed (Tables 3 and
4). These contacts were calculated with the PARST95
program [23].
2
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Abstract—The crystal structure of 3β-acetoxy-cholest-5-ene-7-one (C29H46O3) has been determined by X-ray
diffraction methods. The compound crystallizes in the monoclinic crystal system (space group P21) with the
unit cell parameters a = 9.632(1) Å, b = 12.280(1) Å, c = 23.099(2) Å, β = 99.52(1)°, and Z = 4. The structure
has been solved by direct methods and refined to an R-value of 0.065 for 3927 observed reflections [F0 >
4σ(F0)]. Two crystallographically independent molecules (I and II) in the asymmetric unit have been observed.
In both molecules, rings A and C of the steroid nucleus exist in a chair conformation. Ring B of molecule I
adopts a 5α,6β half-chair conformation, and ring B of molecule II shows a 6α sofa conformation. Ring D
adopts a 13α,14β half-chair conformation in molecule I and a 13α,14β half-chair conformation in molecule II.
The crystal structure is stabilized by the intramolecular and intermolecular ë–ç···é interactions. © 2002 MAIK
“Nauka/Interperiodica”.
** INTRODUCTION

Steroids are of considerable interest due to their bio-
logical properties [1–3]. Recent studies have shown
some remarkable properties exhibited by a variety of
steroids, and most notable among these have found
place in antiulcer [4], immunoassay [5], and dermato-
logical and ophthalmological activities [6]. The present
work is a part of our systematic research on the synthe-
sis and structure analysis of a variety of steroidal mole-
cules [7–16].

EXPERIMENTAL

The title compound was synthesized by adding a
solution of t-butyl chromate [from t-butyl alcohol
(60 ml), CrO3 (20 g), acetic acid (84 ml), and acetic
anhydride (10 ml)] at 0°C to a solution of 3β-acetoxy-
cholest-5-ene (8 g) in carbon tetrachloride (150 ml),
acetic acid (30 ml), and acetic anhydride (10 ml). The
contents were refluxed for 3 h and then were diluted
with water. The organic layer was washed with a
sodium bicarbonate solution (5%) and water and then
were dried over anhydrous sodium sulfate. Evaporation
of the solvent under reduced pressure yielded oil, which
was crystallized in methanol to give the ketone.

* This article was submitted by the authors in English.
**Author for correspondence.
1063-7745/02/4701- $22.00 © 20075
Transparent rectangular platelike crystals of 3β-ace-
toxy-cholest-5-ene-7-one (the melting point is 436 K)
were obtained. Three-dimensional intensity data were
collected on an Enraf–Nonius CAD4 diffractometer
(CuKα radiation, λ = 1.5418 Å, ω/2θ scan mode). A
total of 5306 reflections were measured, of which 4992
reflections were found to be unique (0 ≤ h ≤ 11, 0 ≤ k ≤
14, –27 ≤ l ≤ 27) and 3927 reflections were observed

[F0 > 4σ(F0)]. Two standard reflections (  and )
measured every 100 reflections showed no significant
variation in the intensity data. The reflection data were
corrected for Lorentz and polarization effects. Absorp-
tion and extinction corrections were not applied.

The structure was solved by the direct method using
the SHELXS97 program [17]. Two crystallographi-
cally independent molecules were found in the asym-
metric unit. All the non-hydrogen atoms of the mole-
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Fig. 1. Chemical structure of the molecule.
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Table 1.  Crystal data and structure refinement details

Crystal habit Rectangular plates

Empirical formula C29H46O3

Molecular weight 442.66

Crystal system, space group Monoclinic, P21

Unit cell parameters: a = 9.632(1) Å, b = 12.280(1) Å, c = 23.099(2) Å, β = 99.51(1)°
Volume 2694.4(4) Å3

Z, density (calcd) 4, 1.091 Mg/m3

F(000) 976

Crystal size 0.3 × 0.2 × 0.1 mm

Reflections collected/unique 5306/4992

Maximum and minimum transmission 0.99 and 0.95

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4992/1/578

Goodness-of-fit on F2 1.052

Final R factors R = 0.065, wR = 0.169

R factors (all data) R = 0.080, wR = 0.193

Absolute structure parameter 0.0(4)

Residual (maximum and minimum) electron densities 0.244 and –0.258 e Å–3
cule were located from the E-map. The refinement of
the structure was carried out by the full-matrix least-
squares method using the SHELXL97 program [18].
The positional and thermal parameters of the non-
hydrogen atoms were refined isotropically, and the
R-factor converged at 12.7%. All the hydrogen atoms
were fixed stereochemically. The anisotropic refine-
ment in the final cycle brought down the R-factor of
0.065 with wR(F2) = 0.169. The maximum and mini-
mum residual electron densities were equal to 0.24 and
–0.26 e Å–3, respectively. The atomic scattering factors
were taken from the International Tables for Crystal-
lography (1992, Vol. C Tables 4.2.6.8 and 6.1.1.4). The
crystallographic data are listed in Table 1.
C

RESULTS AND DISCUSSION

The final atomic positions and equivalent isotropic
displacement parameters for all the non-hydrogen
atoms for both molecules are listed in Table 2. The
endocyclic torsion angles are presented in Table 3. The
chemical structure of the molecule is shown in Fig. 1. A
general view of the molecule with the atomic number-
ing (thermal ellipsoid drawn at 50% probability) is
shown in Fig. 2 [19]. The geometric calculations were
performed using the PARST program [20].

In both crystallographically independent molecules,
the bond distances and angles are in good agreement
with analogous structures [7–16, 21]. The mean bond
lengths, C(sp3)−C(sp3) = 1.530(8) Å [1.530(7) Å for mol-
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Fig. 2. A general view of the molecule with the atomic numbering. 
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Table 2.  Atomic coordinates and equivalent isotropic thermal parameters (Å2) for non-hydrogen atoms (e.s.d.’s are given in
parentheses)

Atom x y z Atom x y z

Molecule I Molecule II
O(1) 1.0099(6) 0.8092(3) –0.2028(2) 0.111(2) O(1') 0.3850(5) 0.0156(3) 0.2612(2) 0.101(2)

O(2) 0.9641(1) 0.5080(3) 0.0516(1) 0.072(1) O(2') 0.5100(6) 0.3041(5) 0.5321(2) 0.132(2)

O(3) 0.8432(5) 0.6622(3) 0.0559(2) 0.102(2) O(3') 0.6241(13) 0.1498(9) 0.5585(3) 0.221(5)

C(1) 0.9598(4) 0.4191(3) –0.1030(2) 0.064(1) C(1') 0.5533(6) 0.3877(5) 0.3812(2) 0.083(2)

C(2) 0.9728(5) 0.4092(4) –0.0363(2) 0.069(1) C(2') 0.5349(7) 0.3996(5) 0.4461(2) 0.096(2)

C(3) 0.9518(4) 0.5199(3) –0.0115(2) 0.063(1) C(3') 0.5344(7) 0.2891(6) 0.4724(2) 0.100(2)

C(4) 1.0621(4) 0.6003(4) –0.0260(2) 0.067(1) C(4') 0.4172(7) 0.2195(5) 0.4396(2) 0.094(2)

C(5) 1.0567(4) 0.6078(3) –0.0922(2) 0.058(1) C(5') 0.4228(5) 0.2132(4) 0.3740(2) 0.073(2)

C(6) 1.0457(4) 0.7057(4) –0.1174(2) 0.067(1) C(6') 0.4087(5) 0.1191(4) 0.3460(2) 0.077(2)

C(7) 1.0433(5) 0.7209(3) –0.1807(2) 0.068(2) C(7') 0.3983(5) 0.1058(4) 0.2829(2) 0.069(1)

C(8) 1.0784(4) 0.6221(3) –0.2152(2) 0.061(1) C(8') 0.3987(4) 0.2087(3) 0.2464(2) 0.059(1)

C(9) 1.0103(4) 0.5202(3) –0.1920(2) 0.059(1) C(9') 0.4870(4) 0.2966(4) 0.2831(2) 0.063(1)

C(10) 1.0620(4) 0.5014(3) –0.1249(2) 0.056(1) C(10') 0.4379(4) 0.3188(4) 0.3432(2) 0.066(1)

C(11) 1.0251(6) 0.4203(4) –0.2293(2) 0.075(1) C(11') 0.4984(6) 0.3994(4) 0.2472(2) 0.081(2)

C(12) 0.9744(6) 0.4402(4) –0.2955(2) 0.078(2) C(12') 0.5504(5) 0.3778(4) 0.1897(2) 0.072(1)

C(13) 1.0532(5) 0.5357(4) –0.3180(2) 0.068(1) C(13') 0.4584(3) 0.2953(3) 0.1518(2) 0.055(1)

C(14) 1.0277(4) 0.6356(3) –0.2809(2) 0.062(1) C(14') 0.4534(4) 0.1911(3) 0.1890(2) 0.055(1)

C(15) 1.0812(5) 0.7321(4) –0.3135(2) 0.080(2) C(15') 0.3805(5) 0.1081(4) 0.1442(2) 0.073(2)

C(16) 1.0438(6) 0.6984(5) –0.3788(2) 0.084(2) C(16') 0.4371(5) 0.1377(4) 0.0877(2) 0.071(1)

C(17) 0.9911(5) 0.5779(4) –0.3801(2) 0.071(1) C(17') 0.5167(4) 0.2472(3) 0.0986(2) 0.054(1)

C(18) 1.2111(6) 0.5092(6) –0.3138(3) 0.096(2) C(18') 0.3110(5) 0.3435(4) 0.1308(2) 0.080(2)

C(19) 1.2126(4) 0.4569(5) –0.1119(2) 0.081(2) C(19') 0.2954(6) 0.3798(6) 0.3352(2) 0.096(2)

C(20) 1.0161(7) 0.5178(5) –0.4356(2) 0.097(2) C(20') 0.5098(4) 0.3140(3) 0.0418(2) 0.060(1)

C(21) 0.9707(14) 0.4005(6) –0.4360(3) 0.168(5) C(21') 0.5844(7) 0.4232(4) 0.0522(2) 0.096(2)

C(22) 0.9420(7) 0.5762(5) –0.4901(2) 0.098(2) C(22') 0.5794(4) 0.2479(4) –0.0020(2) 0.067(1)

C(23) 0.9742(9) 0.5371(7) –0.5485(2) 0.124(3) C(23') 0.5557(5) 0.2918(5) –0.0647(2) 0.078(2)

C(24) 0.8874(9) 0.5991(6) –0.5993(3) 0.121(3) C(24') 0.6225(5) 0.2222(4) –0.1066(2) 0.074(2)

C(25) 0.9099(14) 0.5655(8) –0.6590(3) 0.160(5) C(25') 0.6086(5) 0.2656(5) –0.1684(2) 0.083(2)

C(26) 0.8000(12) 0.6222(14) –0.7045(4) 0.201(7) C(26') 0.4617(7) 0.2736(11) –0.1994(2) 0.159(5)

C(27) 1.0486(12) 0.5967(12) –0.6738(4) 0.203(7) C(27') 0.4955(7) 0.1960(7) –0.2036(3) 0.117(3)

C(28) 0.9050(6) 0.5857(5) 0.0802(2) 0.083(2) C(28') 0.5668(16) 0.2367(11) 0.5718(3) 0.171(3)

C(29) 0.9203(8)  0.5653(6) 0.1439(2) 0.114(3) C(29') 0.5348(14) 0.2653(10) 0.6324(3) 0.203(6)

* Ueq = (1/3) .

Ueq
* Ueq

*

Uijai
*a j

* aia j( )
j

∑
i
∑

ecule II], [C(sp3)–C(sp2)] = 1.508(6) Å [1.517(8) Å],
[C(sp2)–C(sp2)] = 1.401(6) Å [1.387(7) Å], [C(sp2)=O] =
1.210(6) Å [1.238(12) Å], [C(sp2)–O] = 1.340(7) Å
[1.288(12) Å], [Csp3–O] = 1.450(5) Å [1.448(7) Å] are
quite close to their theoretical values [22, 23].

In molecule I, the endocyclic bond angles in the ste-
roid nucleus fall in the range from 106.7(4)° to
124.6(4)° [the average value is 112.9(4)°] for the six-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
membered rings and from 100.1(4)° to 107.1(4)° [the
average value is 103.5(4)°] for the five-membered ring
[the corresponding average values for both kinds of
rings in the case of molecule II are 113.2(4)° and
103.4(3)°, respectively]. In both molecules, the ring A
adopts a chair conformation, the asymmetry parame-
ters are ∆C2 [C(2)–C(3)] = 2.19 and ∆Cs [C(3)] = 3.85
[for molecule II, the corresponding values are ∆C2
[C(2)–C(3)] = 3.07 and ∆Cs [C(2)] = 3.07] [24]. Ring B
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Table 3.  Endocyclic torsion angles (deg) for non-hydrogen atoms (e.s.d.’s are given in parentheses)

Molecule I Molecule II

C(2)–C(1)–C(10)–C(5) –48.3(5) C(2')–C(1')–C(10')–C(5') –50.5(6)
C(10)–C(1)–C(2)–C(3) 56.8(5) C(10')–C(1')–C(2')–C(3') 58.6(6)
C(1)–C(2)–C(3)–C(4) –60.0(5) C(1')–C(2')–C(3')–C(4') –58.7(6)
C(2)–C(3)–C(4)–C(5) 57.6(5) C(2')–C(3')–C(4')–C(5') –54.6(7)
C(3)–C(4)–C(5)–C(10) –51.3(5) C(3')–C(4')–C(5')–C(10') –48.8(6)
C(4)–C(5)–C(10)–C(1) 45.4(5) C(4')–C(5')–C(10')–C(1') 45.4(6)
C(6)–C(5)–C(10)–C(9) –16.0(6) C(6')–C(5')–C(10')–C(9') –19.9(6)
C(10)–C(5)–C(6)–C(7) –2.6(7) C(10')–C(5')–C(6')–C(7') –3.5(8)
C(5)–C(6)–C(7)–C(8) –9.9(8) C(5')–C(6')–C(7')–C(8') –2.2(7)
C(6)–C(7)–C(8)–C(9) 39.4(5) C(6')–C(7')–C(8')–C(9') 30.7(5)
C(7)–C(8)–C(9)–C(10) –58.3(4) C(7')–C(8')–C(9')–C(10') –54.4(5)
C(9)–C(8)–C(14)–C(13) –55.8(5) C(9')–C(8')–C(14')–C(13') –55.9(5)
C(14)–C(8)–C(9)–C(11) 49.8(5) C(14')–C(8')–C(9')–C(11') 51.3(5)
C(8)–C(9)–C(10)–C(5) 46.5(4) C(8')–C(9')–C(10')–C(5') 49.2(5)
C(8)–C(9)–C(11)–C(12) –51.5(5) C(8')–C(9')–C(11')–C(12') –52.9(5)
C(9)–C(11)–C(12)–C(13) 56.9(5) C(9')–C(11')–C(12')–C(13') 56.2(5)
C(11)–C(12)–C(13)–C(14) –57.8(5) C(11')–C(12')–C(13')–C(14') –55.7(5)
C(12)–C(13)–C(14)–C(8) 59.4(5) C(12')–C(13')–C(14')–C(8') 57.5(4)
C(14)–C(13)–C(17)–C(16) 41.0(4) C(14')–C(13')–C(17')–C(16') 40.7(4)
C(17)–C(13)–C(14)–C(15) –47.5(4) C(17')–C(13')–C(14')–C(15') –48.1(4)
C(13)–C(14)–C(15)–C(16) 34.5(4) C(13')–C(14')–C(15')–C(16') 36.1(4)
C(14)–C(15)–C(16)–C(17) –8.1(5) C(14')–C(15')–C(16')–C(17') –10.1(5)
C(15)–C(16)–C(17)–C(13) –20.8(5) C(15')–C(16')–C(17')–C(13') –19.3(5)

Table 4.  Torsion angles about the bonds in the C8H17 side chain

Torsion bond Molecule I 
(torsion angle)

Molecule II 
(torsion angle)

Molecule I 
(conformation)

Molecule II 
(conformation)

C(13)–C(17)–C(20)–C(21) 55.5(7) 57.7(5) +sc +sc
C(21)–C(20)–C(22)–C(23) –64.1(8) –69.0(5) –sc –sc
C(20)–C(22)–C(23)–C(24) 177.2(6) –178.3(4) ap ap
C(22)–C(23)–C(24)–C(25) –179.2(7) –176.8(4) ap ap
C(23)–C(24)–C(25)–C(26) –70.7(11) –62.9(7) –sc –sc

Note: The designations sc and ap refer to syn-clinal and anti-periplanar, respectively.
of molecule I exists in a 5α,6β half-chair conformation
[∆C2 [C(5)–C(6)] = 6.62], while the same ring assumes
a 6α sofa conformation [∆Cs [C(6)] = 6.96] in molecule
II. Ring C adopts a chair conformation for both mole-
cules [∆C2 [C(8)–C(9)] = 3.52 (2.31) and ∆Cs [C(9)] =
1.49(1.40)]. The five-membered ring D occurs in a dis-
torted 13α,14β half-chair conformation [∆C2 [C(13)–
C(14)] = 10.09] in molecule I, while it exists in a
13β,14α half-chair [∆C2 [C(13)–C(14)] = 7.27] in mol-
ecule II, the phase angle of pseudorotation ∆ = –4.86°
(–3.56° for molecule II), and the maximum angle of
torsion ϕm = –47.5° (–48.1° in molecule II) [25].
C

Table 5.  Geometry of intra- and intermolecular C–H···O in-
teractions (e.s.d.’s are given in parentheses)

C–H···O H···O (Å) C···O (Å) C–H···O (°)

C(3)–H(3)···O(3) 2.418 2.667 93.7
C(4)–H(4A)···O3 2.670 3.150 111.0
C(15)–H(15B)···O(1) 2.436 2.913 110.0
C(3')–H(3')···O(3') 2.362 2.657 96.5
C(4')–H)4'2)···O(3') 2.796 3.230 108.0
C(15')–H(15D)···O(1') 2.472 2.925 108.3
C(2')–H2'2···O3' 2.704 2.427 131.6

Note: Symmetry code: (i) –x + 1, y + 1/2, –z + 1.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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For both crystallographically independent mole-
cules, the conformational designations of the single
bond at the C(17) position are presented in Table 4 [26–
27]. There exists intra- and intermolecular ë–ç···O
interactions (see Table 5), which contribute to the sta-
bility of the crystal structure.
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Abstract—The crystal structures of dimethyl 4-phenylthiosemicarbazidediacetate C13H17N3O4S (I) and its
adduct [C8H12O8Rh2 (C13H17N3O4S)2] (II) with rhodium(II) acetate are determined by X-ray diffraction anal-
ysis. The unit cell parameters of crystals I are as follows: a = 8.066(6) Å, b = 15.812(6) Å, c = 24.977(8) Å,
β = 94.88(3)°, space group P21/n, and Z = 8. The unit cell parameters of crystals II are a = 8.513(1) Å, b =
16.055(1) Å, c = 16.071(3) Å, β = 104.99(1)°, space group P21/c, and Z = 2. In structure I, two crystallograph-
ically independent molecules considerably differ from each other in the mutual orientation of the structural
fragments containing the ester groups. In the centrosymmetric dimeric complex II, the organic molecule I acts
as a monodentate thio ligand and adopts only one conformation. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Thiosemicarbazidediacetic acid [1] is a polydentate
multifunctional ligand that forms different complexes
with transition and post-transition metals, depending
on the synthesis conditions. The data on structures of
24 coordination compounds with this ligand are avail-
able in the Cambridge Structural Database (version
5.20, October 2000) [2]. Analysis of these data demon-
strates that the tetradentate tripodal ligand coordination
with the metal chelation through a group of the S, N, O,
and O donor atoms occurs most frequently. 4-Phenylth-
iosemicarbazidediacetic acid participates in the coordi-
nation in a similar manner [3]. For the purpose of
changing the donor properties of these ligands and
increasing their selectivity, we synthesized dimethyl 4-
phenylthiosemicarbazidediacetate (Es, I). In our earlier
work [4], we succeeded in preparing the copper(II)
complex with this compound. It should be noted that, in
the [CuCl2Es] compound, the ester adds through a
group of the S, N, O, and O donor atoms in a tripodal
manner.

The aim of the present work was to determine the
crystal and molecular structures of dimethyl 4-phe-
nylthiosemicarbazidediacetate (I) and its adduct (II)
with rhodium(II) acetate.
1063-7745/02/4701- $22.00 © 20080
EXPERIMENTAL

Synthesis of the complex. The reaction between
warm methanol solutions of [Rh2(CH3COO)4(H2O)2]
and Es resulted in the formation of a dark violet solu-
tion. Upon cooling of this solution, dark brown crystals
precipitated. The yield was 40%.

For C34H46Rh2N6O16S2, anal. calcd. (%): C, 38.36;
H, 4.32; N, 7.89.

Found (%): C, 38.40; H, 4.50; N, 8.02.

X-ray diffraction analysis. Transparent, colorless,
prismatic single crystals of compound I belong to the
monoclinic crystal system (space group P21/n). A sam-
ple 0.2 × 0.3 × 0.7 mm in size was chosen for X-ray
structure analysis. The intensities of experimental
reflections were collected at room temperature on a
DAR-UMB automated inclined diffractometer (MoKα
radiation, graphite monochromator). The unit cell
parameters refined from 15 reflections in the θ range
9.3°–16.4° are as follows: a = 8.066(6) Å, b =
15.812(6) Å, c = 24.977(8) Å, β = 94.88(3)°, V =
3174(5) Å3, dcalcd = 1.303 g/cm3, and Z = 8
(C13H17N3O4S). The intensities of 1728 unique reflec-
tions with I ≥ 2σ(I) were measured in the ω-θ/2θ scan
mode. The structure was solved by the direct method
and refined by the least-squares procedure in the aniso-
tropic approximation for the non-hydrogen atoms. The
002 MAIK “Nauka/Interperiodica”
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Table 1.  Atomic coordinates (×104) and equivalent thermal parameters in structure I

Atom
Molecule Ia Molecule Ib

x/a y/b z/c Beq, Å2 x/a y/b z/c Beq, Å2

S(1) 1877(2) 1509(2) 1422(1) 4.37(7) 408(2) 1939(2) 5553(1) 4.17(7)

O(21) 6584(11) 1331(6) 2650(3) 9.6(3) –4435(7) 2939(5) 4224(3) 6.8(2)

O(31) 7532(8) 2642(5) 2577(3) 7.1(3) –6364(8) 3738(4) 4571(3) 7.2(3)

O(22) 5938(8) –524(4) 1133(3) 6.3(2) –5514(7) 1672(4) 6134(2) 5.4(2)

O(32) 6960(8) –196(4) 364(2) 5.7(2) –6207(7) 319(4) 5956(3) 6.4(2)

N(1) 5050(7) 1391(5) 1395(3) 4.1(2) –2841(7) 1992(4) 5397(3) 3.5(2)

N(2) 6681(6) 1088(4) 1546(3) 3.6(2) –4380(7) 1836(4) 5095(3) 3.5(2)

N(3) 4017(8) 396(5) 1935(3) 4.2(2) –1537(7) 1592(5) 4671(3) 4.4(2)

C(1) 3721(9) 1048(6) 1608(3) 3.3(3) –1416(9) 1834(6) 5178(3) 3.4(2)

C(2) 2987(10) –153(6) 2213(3) 4.5(3) –127(9) 1406(7) 4346(4) 4.5(3)

C(3) 3643(13) –919(7) 2366(5) 7.0(4) 326(11) 560(7) 4299(4) 5.5(4)

C(4) 2750(20) –1476(9) 2653(6) 9.2(5) 1623(14) 389(9) 3975(5) 7.5(5)

C(5) 1210(20) –1253(12) 2800(6) 10.0(6) 2373(14) 1026(12) 3723(6) 8.3(6)

C(6) 56(20) –480(12) 2645(6) 9.8(6) 1890(14) 1847(10) 3776(5) 7.9(5)

C(7) 1428(11) 87(8) 2356(4) 7.0(4) 610(11) 2040(7) 4101(4) 6.2(4)

C(21) 7641(9) 1765(6) 1819(3) 4.2(3) –5440(9) 2577(6) 5070(4) 4.1(3)

C(31) 7168(9) 1880(7) 2386(4) 5.2(3) –5325(9) 3096(6) 4570(4) 4.5(3)

C(41) 7110(20) 2799(10) 3130(5) 10.3(6) –6404(15) 4319(9) 4123(6) 10.9(6)

C(22) 7411(9) 792(6) 1069(4) 4.0(3) –5133(9) 1053(6) 5266(4) 4.0(3)

C(32) 6678(9) –40(6) 871(4) 4.4(3) –5604(9) 1074(6) 5839(3) 3.9(3)

C(42) 6301(13) –986(7) 134(4) 7.2(4) –6754(14) 218(9) 6501(5) 8.9(5)
hydrogen atoms were located from the electron-density
difference synthesis and refined in the isotropic approx-
imation. The final R factor was equal to 0.0548 (ele-
mentary weighting scheme). The calculations were per-
formed according to the CSD program package [5].

Dark brown, nontransparent, needle-shaped single
crystals of compound II belong to the monoclinic crys-
tal system (space group P21/c). The unit cell parameters
and reflection intensities were measured on a KM-4
automated four-circle diffractometer (KUMA Diffrac-
tion, Poland) (CuKα radiation, graphite monochroma-
tor) for a single-crystal sample 0.04 × 0.06 × 0.4 mm in
size. The unit cell parameters refined from 32 reflec-
tions in the θ range 12.8°–32.2° are as follows: a =
8.513(1) Å, b = 16.055(1) Å, c = 16.071(3) Å, β =
104.99(1)°, V = 2121.8(5) Å3, dcalcd = 1.667 g/cm3, and
Z = 2 (C34H46N6O16Rh2S2). The intensities of 4052
reflections [3906 unique reflections with Rint = 0.0292
and 2377 reflections with I ≥ 2σ(I)] were measured
using the θ/2θ scan mode in the range 3.96° ≤ θ ≤
70.10°.

The structure was solved by the direct method and
refined on F2 in the full-matrix anisotropic approxima-
tion for the non-hydrogen atoms according to the
SHELX97 software package [6]. All the hydrogen
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
atoms were located from the difference synthesis calcu-
lated at this stage. In further structure refinements of the
methyl groups, only the orientation of the hydrogen
atoms for an ideal CH3 group was determined from the
difference Fourier synthesis and then was refined by the
least-squares procedure. The remaining hydrogen
atoms were placed at calculated ideal positions and
refined as if they were rigidly bound to the relevant car-
bon atoms. The isotropic thermal parameters for the
hydrogen atoms were taken equal to 1.2Ueq (or 1.5Ueq
for the methyl groups), where Ueq is the equivalent iso-
tropic thermal parameter for the non-hydrogen atom
bonded to the refined hydrogen atom. The final discrep-
ancy factors are R = 0.044, Rw = 0.120, and S = 1.028.
The atomic coordinates and equivalent isotropic ther-
mal parameters for structures I and II are listed in
Tables 1 and 2, respectively. The selected torsion angles
are given in Table 3.

RESULTS AND DISCUSSION

In crystal I, the asymmetric part of the unit cell
involves two crystallographically independent mole-
cules Ia and Ib. The structures of these molecules are
shown in Figs. 1a and 1b, respectively. Three structural
fragments can be distinguished in molecule I: a 4-phe-
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Table 2.  Atomic coordinates (×104) and equivalent thermal
parameters (Å2 × 104) in complex II

Atom x/a y/b z/c Ueq

S(1) –100(2) 7693(1) 197(1) 28(1)

O(21) 3633(5) 6818(3) –1286(3) 38(1)

O(31) 4359(5) 7944(3) –1894(3) 36(1)

O(22) –1785(6) 8283(3) –3105(3) 38(1)

O(32) –3620(6) 7268(4) –3547(3) 50(1)

N(1) 40(6) 7532(3) –1402(3) 24(1)

N(2) 403(6) 7099(3) –2111(3) 22(1)

N(3) 880(6) 6389(3) –587(3) 23(1)

C(1) 309(6) 7165(3) –626(3) 21(1)

C(2) 1489(7) 5862(3) 125(3) 23(1)

C(3) 880(8) 5832(4) 848(4) 29(1)

C(4) 1556(9) 5288(4) 1509(4) 35(2)

C(5) 2774(8) 4743(4) 1442(4) 36(2)

C(6) 3350(8) 4751(4) 716(5) 37(2)

C(7) 2687(8) 5303(4) 58(4) 32(1)

C(21) 1650(7) 7524(4) –2405(4) 28(1)

C(31) 3283(7) 7377(4) –1790(4) 27(1)

C(41) 5982(8) 7855(5) –1348(6) 51(2)

C(22) –1055(7) 6857(4) –2750(4) 25(1)

C(32) –2157(7) 7562(4) –3147(3) 30(1)

C(42) –4811(1) 7871(6) –3988(6) 67(3)

Ph(1) –43(1) 9249(1) 1(1) 22(1)

O(1a) –1425(5) 9313(2) –1238(3) 29(1)

O(2a) 1397(5) 9285(2) 1237(3) 30(1)

C(1a) –1807(7) 10014(4) –1577(4) 28(1)

C(2a) –2875(9) 10040(4) –2484(4) 43(2)

O(1‚) –2049(5) 9354(3) 470(3) 31(1)

O(2‚) 1952(5) 9248(3) –484(3) 32(1)

C(1‚) –2522(8) 10064(4) 636(4) 32(1)

C(2‚) –3933(8) 10095(5) 1048(5) 40(2)

Table 3.  Selected torsion angles (deg)

Atoms Ia Ib II

S(1)–C(1)–N(3)–C(2) 4(1) –2(1) –9.8(9)

C(1)–N(3)–C(2)–C(3) 158(1) 97(1) 36.4(9)

S(1)–C(1)–N(1)–N(2) 176.4(6) –174.8(6) 179.0(4)

C(1)–N(1)–N(2)–C(21) –115.9(8) –126.0(8) –117.1(5)

N(1)–N(2)–C(21)–C(31) 76.2(8) 95.8(8) 75.6(6)

N(2)–C(21)–C(31)–O(21) 26(1) –1(1) 21.2(8)

C(1)–N(1)–N(2)–C(22) 121.1(1) 102.6(8) 109.2(6)

N(1)–N(2)–C(22)–C(32) –74.0(9) 64.1(9) 59.6(6)

N(2)–C(22)–C(32)–O(22) –19(1) 5(1) 15.3(8)
C

nylthiosemicarbazide fragment and two methyl diace-
tate groups. Their mutual arrangement is characterized
by the torsion angles about the N(1)–N(2), N(2)–C(21),
and N(2)–C(22) bonds. The torsion angles about the
first two bonds are responsible for the mutual arrange-
ment of the thiosemicarbazide fragment and one of the
ester groups. These angles in molecules Ia and Ib differ
from each other by no more than 20° (Table 3). The
main conformational difference between the crystallo-
graphically independent molecules resides in the orien-
tation of the second ester group. The N(1)–N(2)–
C(22)–C(32) torsion angles in two molecules are close
in magnitude but opposite in sign. In molecule Ia, the
oxygen and carbon atoms of both ester groups are
located in virtually the same plane (the out-of-plane
deviation is no more than 0.145 Å). In this case, the
ester groups are symmetrically arranged with respect to
the thiosemicarbazide fragment. A similar conforma-
tion of these ester groups in the molecule was observed
in the structures of its adduct with copper(II) chloride
[4] and the closest analogues of compound I, namely,
dimethyl 4-phenyl-S-methylisothiosemicarbazidedi-
acetate [7] and 4-phenylthiosemicarbazidediacetic acid
[8]. In molecule Ib, the ester groups are noncoplanar:
the angle between the root-mean-square planes is equal
to 52.1°. The mutual arrangement of the ester groups
with respect to the thiosemicarbazide fragment is
asymmetric and similar to those revealed in the struc-
ture of thiosemicarbazidediacetic acid [1] and in one of
two different conformers in the structure of 4-phe-
nylthio-semicarbazidediacetic acid dihydrazide [9].

Analysis of the mutual arrangement of the molecu-
lar fragments in the aforementioned compounds shows
that, in all the structures, the thio or semicarbazide frag-
ment and one of the side group retain their orientation,
even though they undergo a substantial modification
[10]. At the same time, the third group is conformation-
ally mobile. Different conformation mobilities of two
side groups were also noted by Burshteœn et al. [11],
who compared the molecular structure of dimethyl
semicarbazidediacetate in the crystalline state and the
theoretical structure calculated by the molecular
mechanics method.

In both molecules, the thiosemicarbazide fragment
has a conventional conformation with the N(2) and
N(3) nitrogen atoms in the cis positions with respect to
the C(1)–N(1) bond, which is stabilized by the N(3)–
H···N(2) intramolecular hydrogen bond. In molecules
Ia and Ib, the N(3)···N(2) distances are equal to 2.67
and 2.64 Å, the N(3)–H distances are 1.08 and 0.90 Å,
the H···N(2) distances are 2.15 and 2.21 Å, and the
N(3)–H···N(2) angles are 106° and 108°, respectively.
A similar hydrogen bond in the thiosemicarbazide frag-
ment was observed earlier in [9, 12].

The phenyl rings in both crystallographically non-
equivalent molecules Ia and Ib exhibit different orien-
tations and form dihedral angles with the thiosemicar-
bazide fragment planes (21.4° and 95.8°, respectively).
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Fig. 1. Structures of the conformers in compound I: (a) molecule Ia and (b) molecule Ib. (c) Structure of the organic ligand in com-
plex II.
These orientations are responsible for different degrees
of the π-conjugation of these fragments and, corre-
spondingly, for different N(3)–C(2) bond lengths,
which, in molecules Ia and Ib, are equal to 1.42(1) and
1.48(1) Å, respectively. The other interatomic distances
in both molecules coincide to within the experimental
error. They have normal values for compounds of this
class.

Compound I enters into the reaction with rhod-
ium(II) acetate to form the centrosymmetric dimeric
complex II, whose structure is depicted in Fig. 2. In this
complex, the organic molecule acts as a monodentate
thio ligand and adds to the rhodium atom at the apical
position through the sulfur atom. The structural data for
two binuclear rhodium(II) acetates of the composition
[Rh2(O2CMe)4 · 2L] (where L is N,N-dimethylthiofor-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
mamide or N,N-dimethyl-O-ethylthiocarbamide) are
available in the literature [13]. In these compounds, the
Rh–Rh distances are equal to 2.409 and 2.418 Å and the
Rh–S distances are 2.614 and 2.546 Å, respectively. In
complex II, the bond lengths Rh(1)–Rh(1)' [2.413(1) Å]
and S(1)–Rh(1) [2.519(2) Å] agree and the Rh(1)–
S(1)–C(1) angle (112.8°) is slightly larger than the cor-
responding parameters observed for two rhodium
dimers with the S=C grouping at the apical position
[13]. In the aforementioned dimers, the Rh–S=C angles
are 98.3° and 103.6° [13]. An increase in the Rh–S=C
angle in structure II is most likely caused by steric fac-
tors. The mutual arrangement of the organic ligand and
the rhodium(II) acetate dimer is stabilized by the N(1)–
H···O(1a) intramolecular hydrogen bond. The N(1)–
H···O(1a) intramolecular hydrogen bond [3.158(6) Å]
2
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O(32) O(22)

N(2)
O(21)

O(31) C(2a)
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Rh(1)

O(2a)

O(1b)
S(1)

C(1)

N(1)

N(3)

C(1b)

C(2b)

Fig. 2. Structure of complex II.
is characterized by the following parameters:
H···O(1a), 2.33 Å; N(1)–H, 0.86 Å; and the N(1)–
H···O(1a) angle, 162.7°.

Figure 1c shows the structure of the organic thio
ligand in complex II. The thio ligand adopts a confor-
mation with an asymmetric arrangement of the ester
groups, which almost coincides with the conformation
of molecule Ib in structure I (Table 3). The asymmetric
arrangement of the acetate groups was also observed in
a related compound, namely, thiosemicarbazidediacetic
acid coordinated as a monodentate thio ligand in the
complexes with rhodium [14] and cobalt [15, 16].

In complex II, the dihedral angle between the phe-
nyl ring and the thiosemicarbazide fragment plane is
equal to 27.8°. The N(3)–C(2) bond length is 1.410(7) Å
and corresponds to a greater degree of the π-conjuga-
tion of these fragments, as is the case with molecule Ia
in compound I. The other interatomic distances in the
ligand and uncoordinated molecules coincide to within
two or three standard deviations. The N(3)–H···N(2)
intramolecular hydrogen bond [N(3)···N(2), 2.635(6) Å;
N(3)–H, 0.86 Å; H···N(2), 2.18 Å; and the N(3)–
H···N(2) angle, 112°] is retained in the ligand. It is
interesting to note that the participation of the sulfur
atom in the coordination of the rhodium atom does not
affect the S–C bond length, which is equal to
1.682(5) Å in complex II and 1.686(8) [1.684(8)] Å in
molecule Ia (Ib) in compound I.

The structure investigation revealed that the dime-
thyl 4-phenylthiosemicarbazidediacetate molecule
exhibits sufficiently stable conformations with respect
to the mutual (symmetric and asymmetric) orientation
of the ester groups. Upon the complex formation, one
of the conformations is retained independently of the
structural (tetradentate tripodal or monodentate) func-
C

tion of the ligand. A similar behavior is observed for
structural analogues of compound I.

The methylation of the carboxyl groups in com-
pound I leads to a decrease in its complexation ability
as compared to that of 4-phenylthiosemicarbazidedi-
acetic acid. As was noted above, the structural data are
available only for the copper(II) complex with dimethyl
4-phenylthiosemicarbazidediacetate [4]. The formation
of this complex is favored by the ability of copper(II) to
form the coordination environment of the 4 + 2 and 4 +
1 + 1 types. As a result, the oxygen atoms of the ester
groups can act as weakly bound ligands located at api-
cal positions [4, 7]. Moreover, the substitution of the
methyl groups for the hydrogen atoms in the acetate
fragments makes impossible the deprotonation of the
ligand through the carboxyl groups upon coordination.
In this situation, molecule I universally acts as a neutral
ligand.

The monodentate coordination of molecule I and
other sulfur-containing ligands with rhodium(II) ace-
tate should be governed primarily by the stability of the
Rh2(O2CMe)4 lantern fragment; as a result, the coordi-
nation should occur only through the apical positions.
In two rhodium(II) acetate complexes described earlier
in [13], all the donor atoms in the sulfur-containing
multifunctional ligands, except the sulfur atom of the
C=S group, cannot be involved in the coordination. As
a consequence, the L ligand can be coordinated to the
central atom only through the sulfur atom. On the other
hand, it uniquely follows from the structure of the
[CuCl2Ef ] copper complex that at least four donor cen-
ters in molecule I can participate in the coordination.
Note that, according to the hard–soft–acid–base princi-
ple [17–19], the coordination of the sulfur-containing
ligands through the sulfur atom in the rhodium com-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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plexes can also be associated with the fact that rhodium
acts as a weak acid with respect to the sulfur atom (a
weak base).
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Abstract—The crystal structures of two host–guest molecular complexes of 18-crown-6 with 2-aminobenzoic
acid hydrazide monohydrate (the ratio host : guest : H2O = 1 : 2 : 2) (complex I) and 5-amino-1-benzyl-1,2,3-
triazole-4-carboxylic acid hydrazide (the host : guest ratio = 1 : 2) (complex II) are determined by X-ray dif-
fraction analysis. Crystals I are monoclinic, a = 8.468(2) Å, b = 17.378(3) Å, c = 10.517(2) Å, β = 96.88(3)°,
space group P21/n, and R = 0.0393 for 6692 reflections. Crystals II are orthorhombic, a = 18.489(1) Å, b =
10.192(3) Å, c = 20.412(2) Å, space group Pbca, and R = 0.0540 for 3513 reflections. In both complexes, the
centrosymmetric 18-crown-6 and guest molecules are joined together through the NH···O(crown) hydrogen
bonds, which involve all the hydrogen atoms of the hydrazine group. The NH···O=C intramolecular hydrogen
bond is observed in the guest molecule. In structure I, the water molecule serves as a bridge between the guest
molecules related by the glide-reflection plane and combines the guest–host–guest complexes into layers. In
structure II, the guest molecules are linked into chains through hydrogen bonds of the NH···O=C type; in turn,
the chains composed of guest molecules and the crown ether molecules bonded to these chains form a layered
structure. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A considerable amount of structural information on
the host–guest complexes of 18-crown-6 with neutral
proton-donating molecules has been accumulated to
date. This makes it possible to draw certain inferences
concerning the guest coordination and the structure
(monomeric, dimeric, or chain) of these complexes [1].
Both hydrogen atoms of a particular amino group in the
guest, as a rule, are coordinated to the first and third
oxygen atoms of the macrocycle, and the guest–host–
guest centrosymmetric complex is stabilized through
four NH···O hydrogen bonds [2]. One hydrogen atom
each of two amino groups in an urea molecule in the
complex with a ratio of 1 : 5 [3] (or in a thiourea mole-
cule in the complex with a ratio of 1 : 4 [4]) is involved
in the interaction with the neighboring oxygen atoms in
the crown ether ring. In the 1 : 2 complex of 18-crown-
6 with thiourea, three hydrogen atoms of two amino
groups form the NH···O hydrogen bonds with three
crystallographically independent oxygen atoms of the
crown ether [5]. Therefore, the cooperative system of
interactions involves all oxygen atoms of the crown
ether. In the 1 : 1 complex of 18-crown-6 with hypothi-
1063-7745/02/4701- $22.00 © 20086
azide, two NH groups separated by the methylene
group in the guest form short contacts with the oxygen
atoms also separated by the hydroxyethylene fragment,
and the crown ether molecule adopts an unusual con-
formation [6]. The hydrogen atoms of the adjacent
chemically equivalent amino groups in the diaminoox-
adiazole molecule are asymmetrically distributed
among the two nearest-neighbor crown ether molecules
in the guest molecule; as a result, the coordination num-
bers of oxygen in the 15-crown-5 and 18-crown-6 mol-
ecules are equal to three and four, respectively [7, 8].
All three hydrogen atoms of the –NH–NH2 hydrazine
group in molecules of 2,4-dinitrophenylhydrazine [9]
and 4-(2-chloroethylamino)-1,2,5-oxadiazole-3-car-
boxylic acid hydrazide [10] participate in the interac-
tion with 18-crown-6, and all six oxygen atoms of the
centrosymmetric host molecule are involved in the
coordination.

It is of interest to elucidate how the proton-donating
group adjacent to the hydrazine group in the ring of the
guest molecule affects the ability of the hydrazine
group to participate in coordination with the crown
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystal data, data collection, and refinement parameters for the crystal structure of complexes I and II 

Complex I II

Empirical formula C13H23N3O5 C32H48N12O8

Molecular weight 301.34 728.82

Crystal system Monoclinic Orthorhombic

Space group P21/n Pbca

Unit cell parameters:

a, Å 8.468(2) 18.489(1)

b, Å 17.378(3) 10.192(3)

c, Å 10.517(2) 20.412(2)

β, deg 96.88(3)

V, Å3 1536.5(5) 3846.4(1)

Z 4 4

dcalcd, g/cm3 1.303 1.259

µ, mm–1 0.100 0.093

F(000) 648 1552

Crystal size, mm 0.2 × 0.20 × 0.30 0.10 × 0.30 × 0.30

θ range, deg 2.69–34.95 2.00–25.69

Index ranges 0 < h < 13, –27 < k < 27,
–16 < l < 16

0 < h < 22, 0 < k < 12,
–24 < l < 0

Scan mode ω ω/2θ
Number of reflections measured 12981 3513

Number of unique reflections [R(int)] 6692 [0.017] 3513 [0.000]

Refinement technique Full-matrix, based on F2

Goodness-of-fit S on F2 1.024 0.967

Final R factors for reflections with I > 2σ(I) R1 = 0.0393, wR2 = 0.1067 R1 = 0.0540, wR2 = 0.1457

Final R factors for all reflections R1 = 0.0502, wR2 = 0.1128 R1 = 0.1139, wR2 = 0.1722

w = 1/[σ2(Fo)2 + (ap)2 + bp], p = /3

a =  0.0592 a = 0.1050

b = 0.24 b = 0.0

Residual (maximum and minimum) electron densities
∆ρmax, ∆ρmin, e Å–3

0.397 and –0.216 0.220 and –0.220

Fo
2 2Fc

2+( )
ether and to analyze the molecular architecture in the
complexes with bulk guest molecules.

In the present work, we investigated the crystal
structures of two novel complexes of 18-crown-6 with
2-aminobenzoic acid hydrazide (complex I) and
5-amino-1-benzyl-1,2,3-triazole-4-carboxylic acid
hydrazide (complex II).

EXPERIMENTAL

Synthesis of complex I. 2-Aminobenzoic acid
hydrazide (15 mg, 0.1 mmol) and 18-crown-6 (26 mg,
0.1 mmol) were dissolved in methanol (1 ml) at a tem-
perature of 64°C. Then, benzene (2.5 ml) was added to
the solution, and the resultant solution was allowed to
stand for some time for spontaneous evaporation of the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
solvents. Colorless prismatic crystals precipitated. The
melting temperature was 57–58°C.

The results of elemental analysis are as follows.
For C26H46N6O10 (complex I), anal. calcd. (%): C,

51.82; H, 7.69; N, 13.94.
Found (%): C, 51.90; H, 7.65; N, 14.00.
Synthesis of complex II. 5-Amino-1-benzyl-1,2,3-

triazole-4-carboxylic acid hydrazide was synthesized
according to the procedure described in [11]. The prod-
uct obtained was the colorless compound with a melt-
ing temperature of ~212–214°C. 5-Amino-1-benzyl-
1,2,3-triazole-4-carboxylic acid hydrazide (23 mg,
0.1 mmol) and 18-crown-6 (26 mg, 0.1 mmol) were
dissolved in methanol (1 ml) at a temperature of 64°C.
Then, benzene (2.5 ml) was added to the solution, and
the resultant solution was allowed to stand for some
2
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time for spontaneous evaporation of the solvents. Col-
orless needle-shaped crystals precipitated. The melting
temperature was 138–140°C.

The results of elemental analysis are as follows.

For C32H48N12O8 (complex II), anal. calcd. (%): C,
52.74; H, 6.64; N, 23.06.

Found (%): C, 52.67; H, 6.70; N, 23.14.

X-ray diffraction analysis. The main crystal data,
data collection, and refinement parameters for the stud-
ied compounds are presented in Table 1. X-ray diffrac-
tion analysis of compound I was performed on a Non-
ius CCD diffractometer (MoKα radiation, graphite
monochromator). The experimental data were pro-
cessed using the DENZO program [12]. The experi-
mental data for compound II were collected on a
KUMA KM-4 diffractometer (CuKα radiation). The
unit cell parameters were refined by the least-squares
method for 35 reflections in the θ range 13.7° < θ <

Table 2.  Coordinates of non-hydrogen atoms (×104) and
equivalent isotropic thermal parameters Ueq (Å2 × 103) for
complex I

Atom x y z Ueq

C(1g) 6154(1) 1088(1) 4971(1) 17(1)

C(2g) 5183(1) 1244(1) 3715(1) 16(1)

C(3g) 4692(1) 2003(1) 3382(1) 17(1)

C(4g) 3807(1) 2129(1) 2180(1) 21(1)

C(5g) 3402(1) 1525(1) 1350(1) 24(1)

C(6g) 3852(1) 773(1) 1687(1) 24(1)

C(7g) 4735(1) 642(1) 2866(1) 20(1)

O(1g) 5949(1) 1447(1) 5959(1) 25(1)

N(1g) 7254(1) 533(1) 4930(1) 19(1)

N(2g) 8293(1) 340(1) 6041(1) 20(1)

N(3g) 5106(1) 2624(1) 4181(1) 24(1)

O(1w) 7679(1) 1067(1) 8442(1) 32(1)

O(1) 11183(1) 1347(1) 6298(1) 25(1)

C(2) 12405(1) 1212(1) 7325(1) 28(1)

C(3) 11857(1) 610(1) 8193(1) 29(1)

O(4) 11574(1) –92(1) 7510(1) 23(1)

C(5) 10917(1) –663(1) 8267(1) 29(1)

C(6) 10804(1) –1410(1) 7542(1) 28(1)

O(7) 9721(1) –1325(1) 6411(1) 25(1)

C(8) 9645(1) –2005(1) 5659(1) 29(1)

C(9) 8372(1) –1923(1) 4547(1) 29(1)
C

19.8°. Both structures were solved by the direct meth-
ods and refined according to the SHELX97 software
package [13]. The hydrogen atoms of the CH2 and CH
groups were placed at calculated ideal positions and
refined as if they were rigidly bound to the correspond-
ing carbon atoms. The isotropic thermal parameters for
the hydrogen atoms were taken equal to 1.2Ueq, where
Ueq is the equivalent isotropic thermal parameter for the
corresponding carbon atom. The hydrogen atoms of the
hydrazine groups and water molecule were located
from the electron-density difference synthesis and
refined in the isotropic approximation. The refinement
was carried out by the full-matrix least-squares proce-
dure on F2 with the use of the weighting scheme given
in Table 1. The final coordinates of the non-hydrogen
atoms are listed in Tables 2 and 3. The geometric
parameters of the hydrogen bonds are presented in
Table 4. The crystal data (cif files) for structures I and

Table 3.  Coordinates of non-hydrogen atoms (×104) and
equivalent isotropic thermal parameters Ueq (Å2 × 103) for
complex II

Atom x y z Ueq

O(1g) 181(1) 3310(2) 2080(1) 60(1)

N(1g) –155(1) 3519(2) 1019(1) 63(1)

N(2g) 331(2) 4574(2) 899(1) 67(1)

N(3g) –537(2) 1253(3) 2839(1) 69(1)

N(4g) –1372(1) 350(2) 2070(1) 59(1)

N(5g) –1595(1) 575(2) 1442(1) 73(1)

N(6g) –1203(1) 1538(2) 1213(1) 68(1)

C(1g) –199(1) 2987(2) 1611(1) 51(1)

C(2g) –731(1) 1933(2) 1682(1) 52(1)

C(3g) –836(1) 1182(2) 2241(1) 52(1)

C(4g) –1743(2) –639(3) 2467(1) 69(1)

C(5g) –2440(1) –129(2) 2752(1) 58(1)

C(6g) –2447(2) 939(3) 3156(2) 82(1)

C(7g) –3081(2) 1393(2) 3428(2) 95(1)

C(8g) –3717(2) 773(4) 3294(2) 95(1)

C(9g) –3720(2) –965(4) 2880(2) 106(1)

C(10g) –3090(2) –703(3) 2612(2) 88(1)

O(1) 1432(1) 4235(3) –313(1) 114(1)

C(2) 1876(2) 5351(6) –444(3) 135(2)

C(3) 1792(2) 6288(5) 90(2) 130(2)

O(4) 1088(1) 6763(2) 113(1) 89(1)

C(5) 1000(3) 7838(4) 551(2) 125(2)

C(6) 253(3) 8344(4) 481(2) 124(2)

O(7) –239(2) 7377(2) 667(1) 107(1)

C(8) –977(3) 7779(5) 626(3) 153(2)

C(9) 1457(3) 3319(7) –818(3) 153(2)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Table 4.  Geometric parameters for hydrogen bonds in complexes I and II

D–H ⋅ ⋅ ⋅A, Å d(D–H), Å d(H ⋅ ⋅ ⋅A), Å d(D ⋅ ⋅ ⋅A), Å ∠ (DHA)°

Complex I
N(1g)–H(1N1) ⋅ ⋅ ⋅O(4)i 0.88(1) 2.08(1) 2.961(1) 174(1)

N(2g)–H(1N2) ⋅ ⋅ ⋅O(1) 0.89(1) 2.16(1) 2.995(1) 158(1)

N(2g)–H(2N2) ⋅ ⋅ ⋅O(7) 0.90(1) 2.29(1) 3.141(1) 157(1)

N(3g)–H(1N3) ⋅ ⋅ ⋅O(1g) 0.89(1) 2.11(1) 2.806(9) 134(1)

N(3g)–H(2N3) ⋅ ⋅ ⋅O(1w)ii 0.88(1) 2.24(1) 3.102(1) 169(1)

O(1w)–H(1w1) ⋅ ⋅ ⋅N(2g) 0.86(1) 2.07(2) 2.925(1) 174(2)

O(1w)–H(2w1) ⋅ ⋅ ⋅O(1g) 0.87(2) 2.30(2) 2.913(1) 128(2)

Complex II
N(1g)–H(1N1) ⋅ ⋅ ⋅O(4)iii 0.90(3) 2.01(3) 2.897(3) 170(3)

N(2g)–H(1N2) ⋅ ⋅ ⋅O(1) 0.88(4) 2.39(4) 3.223(4) 159(3)

N(2g)–H(2N2) ⋅ ⋅ ⋅O(7) 1.08(4) 2.09(4) 3.082(4) 151(3)

N(3g)–H(1N3) ⋅ ⋅ ⋅O(1g) 0.88(3) 2.35(3) 2.925(3) 123(2)

N(3g)–H(2N3) ⋅ ⋅ ⋅N(1g)iv 0.78(3) 2.37(3) 3.116(4) 160(3)

N(3g)–H(2N3) ⋅ ⋅ ⋅O(1g)iv 0.78(3) 2.55(3) 3.075(3) 126(2)

Note: Symmetry codes: (i) –x + 2, –y, –z + 1; (ii) x – 1/2, –y + 1/2, z – 1/2; (iii) –x, –y + 1, –z; (iv)  –x, y – 1/2, –z + 1/2.
II have been deposited with the Cambridge Structural
Database (CCDC, nos. 160249 and 160250).

RESULTS AND DISCUSSION

Complex I. The guest–host–guest centrosymmetric
complex (Fig. 1) is stabilized by six NH···O hydrogen
bonds. These bonds involve three hydrogen atoms of
the hydrazine fragment in the guest molecule and all
oxygen atoms of the macrocycle. The N···O distances
fall in the range 2.961(1)–3.141(1) Å (Table 4). The
hydrazide group of the guest is arranged with respect to
the 18-crown-6 molecule in such a manner that the
deviations of the N(1g) and N(2g) nitrogen atoms from
the plane passing through the oxygen atoms of the mac-
rocycle are equal to 2.352(1) and 1.920(1) Å, respec-
tively. The hydrogen atoms of the hydrazine group are
located at the cis positions with respect to the N–N
bond due to their participation in the coordination with
the crown ether molecule. In phenylhydrazide monohy-
drate [14], unlike complex I, the hydrogen atoms at the
neighboring nitrogen atoms exhibit a trans orientation
relative to the N–N bond, because they are involved in
the hydrogen bonds with different molecules. The dihe-
dral angle between the aromatic ring of the guest mol-
ecule and the plane passing through the oxygen atoms
of the crown ether molecule is equal to 23.5(4)°.

The hydrogen atoms of the water molecule form the
hydrogen bonds with a lone electron pair of the nitro-
gen atom of the NH2 group and the carbonyl oxygen
atom of the 2-aminobenzoic acid hydrazide molecule
[O(1w)···N(2g), 2.925(1) Å and O(1w)···O(1g),
2.913(1) Å], thus closing the seven-membered hetero-
cycle H(1w1)O(1w)H(2w1)O(1g)C(2g)N(1g)N(2g).
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This cycle is virtually planar: the out-of-plane devia-
tions of atoms do not exceed 0.043 Å. In complex I, the
electron pair (as a proton acceptor) of the water mole-
cule is involved in the formation of a weak hydrogen
bond with the amino group of the guest molecule
related by the basal glide-reflection plane
[N(3g)···O(1w)(x – 1/2, –y + 1/2, z – 1/2) 3.102(1) Å].
The guest–host–guest complexes and water molecules
are linked by the hydrogen bonds into layers bound to
one another through only the van der Waals contacts
(Fig. 2). Each layer is composed of the centrosymmet-
ric associates, which, in turn, consist of four crown
ether molecules, six guest molecules, and four water
molecules. Each associate is stabilized by 32 NNH···O
hydrogen bonds, which can be identified as the
NH···O(crown) and NH···O(water) contacts.

In complex I, the bond lengths and angles in the 2-
aminobenzoic acid hydrazide molecule have standard
values [15]. The amino group in the ortho position with
respect to the hydrazide fragment participates in the
formation of the intramolecular hydrogen bond with
the O(1g) carbonyl oxygen atom [N(3g)···O(1g),
2.806(9) Å] (Fig. 1). This leads to the formation of the six-
membered ring H(1N3)N(3g)C(3g)C(2g)C(1g)O(1g),
which is fused with the aromatic ring through the
C(2g)–C(3g) bond. The aromatic and hydrogen-con-
taining rings (with mean atomic deviations of 0.072 and
0.054 Å, respectively) form a nearly planar bicyclic
system in which the dihedral angle between the rings is
1.50(3)°. Similar hydrogen-containing rings with ortho
hydroxyl oxygen atoms were also observed in other
derivatives of aromatic acids, for example, in the struc-
tures of o-hydroxybenzoic acid [16] and 2,5-diacetyl-
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Fig. 1. Profile projection of the structure of complex I.
hydroquinone [17] with close parameters of the hydro-
gen bonds (O···O, 2.533 and 2.58 Å).

The crown ether molecule in complex I is cen-
trosymmetric and can be described in terms of a con-
ventional geometry [15] with the following mean inter-
atomic distances and the mean bond angles: C–O,
1.421(1) Å; C–C, 1.500(1) Å; C–C–0, 109.4(5)°; and
C–O–C, 111.5(6)°. The molecular conformation exhib-
its a symmetry similar to D3d . The gauche torsion angles
about the C–C bonds fall in the range 62.8(1)°–
71.5(2)°, and the maximum difference between the
trans torsion angles about the C–O bonds and the
straight angle is equal to 11°. The O···O transannular
distances lie in the range from 5.536(5) to 5.716(5) Å.
The oxygen atoms deviate from their mean plane in
opposite directions by 0.22 Å.

Complex II. In centrosymmetric complex II, as in
complex I, two guest molecules identically interact
with the crown ether molecule (Fig. 3). These contacts
involve all hydrogen atoms of the hydrazine group. The
primary amino group forms two NH···O hydrogen
bonds with the O(1) and O(7) oxygen atoms separated
by one hydroxyethylene fragment in the crown ether
[N(2g)···O(1), 3.223(4) Å and N(2g)···O(7), 3.082(4) Å].
C

The secondary amino group forms the NH···O hydro-
gen bond with the O(4) oxygen atom [N(1g)···O(4)(–x,
–y + 1, –z), 2.897(3) Å]. The N(1g) and N(2g) nitrogen
atoms deviate from the plane passing through all the
oxygen atoms of the macrocycle by 2.433(2) and
1.929 Å, respectively.

The 18-crown-6 molecules are oriented with respect
to the guest molecules in such a manner that the dihe-
dral angle between the plane passing through six oxy-
gen atoms of the macrocycle and the triazole ring of the
guest is equal to 76.8(1)°. This arrangement is typical
of the host–guest complexes of eighteen-membered
crown ethers (for example, 18-crown-6 and the A and B
isomers of dicyclohexyl-18-crown-6) with amino
derivatives of benzene and five-membered heterocy-
cles. In the majority of these complexes, the dihedral
angle between the cyclic fragment of the guest and the
mean plane of crown ether heteroatoms is close to 90°
[2, 15].

Figure 4 shows a fragment of the packing of com-
plex II. The guest molecules related by a twofold screw
axis form chains through the NH···O and NH···N
hydrogen bonds [N(3g)···O(1g)(–x, y – 1/2, –z + 1.2)
3.075(3) Å and N(3g)···N(2g)(–x, y – 1/2, –z + 1/2)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      2002
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Fig. 2. A fragment of the packing of complex I (the hydrogen atoms of the crown ether molecule are omitted for the benefit of clar-
ity).
3.075(3) Å]. Six guest and two 18-crown-6 ether mole-
cules are joined into the centrosymmetric associate
(−guest–guest–guest–host–)2, which is stabilized by 16
intermolecular hydrogen bonds of the NH···O(crown)
and NH···O=C types. These associates are combined
into a layer.

In the guest molecule of complex II, both (triazole
and aromatic) rings are almost planar: the non-hydro-
gen atoms in these rings are coplanar to within 0.009
and 0.003 Å, respectively. The geometry of the triazole
ring is similar to that described for related compounds
containing the benzotriazole fragment [18, 19]. The
C(4g) methylene bridging atom deviates from the tria-
zole ring plane by 0.026(3) Å. The N(4g) atom involved
in a slightly pyramidal conformation deviates from the
N(5g)C(3g)C(4g) plane by 0.065 Å. The C(4g)–C(5g)
and C(4g)–N(4g) bonds are almost mutually perpendic-
ular as judged from the corresponding torsion angles:
N(5g)–N(4g)–C(4g)–C(5g), –80.09°; C(3g)–N(4g)–
C(4g)–C(5g), 95.90°; N(4g)–C(4g)–C(5g)–C(6g),
−59.29°; and N(4g)–C(4g)–C(5g)–C(10g), 119.92°.
The dihedral angle between the aromatic and triazole
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 1      200
rings is 76.76°, which is characteristic of compounds of
this class [18–20]. The NH···O=C intramolecular
hydrogen bond [N(3g)···O(1g), 2.925 Å] is observed in
the molecule (Fig. 3). The geometric parameters of this
bond are close to those of the hydrogen bonds found in
2-aminobenzoic acid hydrazide (complex I), 4-(2-chlo-
roethylamino)-1,2,5-oxadiazole-3-carboxylic acid hydra-
zide, and 4-amino-1,2,5-oxadiazole-3-carboxylic acid
amide [10]. In the six-membered virtually planar
hydrogen-containing ring, the H(2N3), N(3g), C(3g),
C(2g), C(1g), and O(1g) atoms are coplanar to within
0.054 Å. The triazole heterocycle and six-membered
hydrogen-containing ring form a planar system in
which the dihedral angle between these rings is equal to
1.06°.

The molecular conformation of 18-crown-6 has a
symmetry similar to D3d. The gauche torsion angles
about the C–C bonds fall in the range 63.1(1)–71.8(2)°,
and the maximum difference between the trans torsion
angles about the C–O bonds and the straight angle is
10°. The O···O transannular distances lie in the range
from 5.413(5) to 5.666(5) Å. The oxygen atoms
2



92 SIMONOV et al.
O(1)

O(4)

O(7)

O(1g)

N(1g)

N(2g)

N(3g)

N(6g) N(5g)
N(4g)

Fig. 3. Projection of the structure of molecular complex II onto the plane passing through the oxygen atoms of the macrocycle.

z
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0
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Fig. 4. A fragment of the packing of complex II (the hydrogen atoms of the crown ether molecule are omitted for the benefit of
clarity).
involved in a crownlike conformation deviate from
their mean plane by ±0.179 Å.

Complexes I and II can be considered prototypes of
organic sieves, which can be used, for example, for fix-
ation of small-sized organic molecules (methanol, chlo-
roform, etc.). In these compounds, the size of meshes in
the organic layer can be increased by modifying the
C

skeleton of the guest molecule, for example, by increas-
ing the length of the substituent chain.
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Abstract—The system of hydrogen bonds in the high-pressure phases of CsHSO4 crystals has been constructed
on the basis of the group-theoretical analysis of the systems of hydrogen bonds in the CsHSO4 phases with the
known symmetry. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The compounds described by the general formula
MXAO4 with M = Cs and Rb, X = H and D, and A = S
and Se are characterized by the phase transition into the
superionic phase accompanied by an increase in the
ionic-conductivity value by several orders of magni-
tude [1].

In addition to high conductivity with respect to
hydrogen (deuterium) ions, the superionic phases also
possess superplasticity. The mechanical and polariza-
tion–optical studies showed that, similar to clay and
modeling clay, a CsHSO4 crystal can readily change its
shape [2].

The transition into the superionic phase is still
actively studied [3] but the microscopic nature of this
transition is still not clear. The reorientation of SO4-tet-
rahedra in the superionic phase results in the dynamic
disordering of the network of hydrogen bonds, which,
in turn, leads to high plasticity [2] and ionic conductiv-
ity in CsHSO4 crystals.

Thus, it is assumed that the microscopic mechanism
of the transition into the phase with high conductivity is
associated either with the disordering of hydrogen ions
or with the orientational disordering of SO4-tetrahedra,
with both phenomena being closely related.

The variation of temperature and pressure can give
rise to some other phase transitions in a CsHSO4 crystal
including the transitions into the phases with high pro-
tonic conductivity (phases I, VI, and VII [4, 5], Fig. 1).
To understand the microscopic nature of these phase
transitions, one has to know the crystal structure and,
most importantly, the structure of the system of hydro-
gen bonds in various phases. The crystal structure of the
phases under the atmospheric pressure (phases I, II, and
III) was determined by the neutron [7−9] and X-ray
[10, 11] diffraction methods. Despite experimental dif-
ficulties, the first neutron diffraction studies of high-
pressure CsHSO4 phases [12, 13] provided the determi-
nation of the symmetry groups of phases IV and V, but,
1063-7745/02/4701- $22.00 © 20094
the crystal structures of the high-pressure phases have
not been determined. The preliminary theoretical anal-
ysis of a possible symmetry of high-pressure phases
[14] and the experimental data obtained in [12, 13] pro-
vided the determination of the symmetry of all the high-
pressure phases [6] and the development of the phe-
nomenological theory of possible phase transitions
between these phases [15]. Moreover, the systems of
hydrogen bonds in phases II and III under atmospheric
pressure suggested in [15] were confirmed by the
experimental observations [8, 10].

Below, we constructed the systems of hydrogen
bonds in high-pressure phases of CsHSO4 crystals by
the approach suggested in [15].

V
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I VI
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III III'

0.4 0.8 1.2 1.6 2.0 P, GPa
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0

80
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160
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240

280

T, °C

Fig. 1. Phase diagram of a CsHSO4 crystal in the pressure–
temperature coordinates. The phases are denoted by Roman
numerals from I to VIII. The continuous lines show the
experimentally determined phase boundaries [4, 5]. The
dashed lines indicate possible extrapolation of the phase
boundaries. The dash-dotted line shows schematically the
boundary of possible new phase VIII [6].
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SYMMETRY OF HIGH-PRESSURE
PHASES

The crystal structure of the superionic CsHSO4

phase (I) having the symmetry  (Fig. 2) was deter-
mined by the diffraction methods [9, 11]. The primitive
unit cell of the lattice with the translation vectors
a1 = (−τ, τ, τz), a2 = (τ, –τ, τz), and a3 = (τ, τ, –τz) (the
zeroth primitive unit cell) contains two CsHSO4 for-
mula units, where τ = a/2, τz = c/2, and a = 0.5729(9),
c = 1.421(1) nm [11].

The transition of phase I into phase II results in the
doubling of the unit-cell volume and the lowering of the

symmetry from   . The twofold axis of the

monoclinic phase ( ) is directed along the [110] or

the [ ] crystallographic direction of the tetragonal

phase ( ). Being compared to phase I, phase III has

the same monoclinic symmetry  and a double unit-
cell volume; however, the twofold axis in phase III is
directed either along the [100] or the [010] direction of
tetragonal phase I [10].

To explain a double increase of the unit-cell volume

upon the phase transition   , one has to con-
sider the wave vectors k1 = π(1/2, 1/2, 0), k2 = π(1/2,
−1/2, 0), and k3 = π(0, 0, 1) at the boundary of the Bril-
louin zone. The phase transition with the wave vector k1

(or k2) leads to the monoclinic symmetry  with the
twofold axis coinciding with the [110] direction (phase
II). The phenomenological theory of this phase transi-
tion was developed in [16]. The monoclinic phase with

the symmetry  and the twofold axis coinciding with
the [100] direction (phase III) arises as a result of the
phase transition with the wave vector k3 [14].

The table indicates all possible phase transitions
undergone by phase I associated with the wave vector
k3 . It is seen that the phase transition according to the

irreducible representation τ2 results in the sp. gr. 

with the monoclinic subgroup (x) and the twofold
symmetry axis directed along the crystallographic x-

axis. The analogous monoclinic subgroup (y) with
the twofold symmetry axis directed along the crystallo-

graphic y-axis is possessed by the group  (irreduc-
ible representation τ4). Thus, phase III with the mono-

clinic symmetry  and the twofold axis along the
crystallographic [100] or [010] direction can arise as a
result of the following chain of phase transformations:

    (x) or    

(y).

D4h
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In fact, two order parameters describing the phase

transformation of the orthorhombic phase  to the

monoclinic phases (x) and (y) (table, irreduc-
ible representation τ2) form a two-component order

parameter of the tetragonal phase . A similar situa-
tion also takes place for two phase transitions from the

phase  to the monoclinic phases (x) and (y)
(irreducible representation τ4). Thus, the variations of

D2h
16

C2h
5

C2h
2

D4h
19

D2h
6

C2h
4

C2h
5

Ò
x

y

a3
a

a1

a2

z

SO4

Cs

Fig. 2. The unit cell of superionic phase I of a CsHSO4 crys-
tal. The dashed lines show possible hydrogen bonds only for
one central SO4-tetrahedron. Filled circles indicate eight
possible positions of two hydrogen ions in the primitive unit
cell of the crystal.

Possible phase transformations from phase I associated with
the wave vector k3 = π(001) at the Brillouin-zone boundary

Phase I  Irreducible
representation Low-symmetry phases

τ1

τ2

τ3

τ4

Note: The monoclinic subgroups with the highest symmetry are
indicated in braces. The directions of the twofold symmetry
axes in monoclinic subgroups are indicated in parentheses.

D4h
19 D2h

7 C2h
1 x( ) C2h

4 y( ) C2h
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temperature, pressure, or some other parameter deter-
mining the state of a CsHSO4 crystal can give rise to

phase transitions   (y) or   (x).
The experimental studies [12, 13] showed that high-

pressure phase IV has the symmetry , whence we
can draw the conclusion that the following chain of

phase transitions occur in CsHSO4 crystals:  

  (x). Thus, phase VI has the symmetry

 [6].

It should be indicated that, in fact, the order param-

eter in the    phase transition (the transi-
tion between phases I and VI) and the order parameter

in the    phase transition (the transitions
between phases I and II) form the order parameter for

the parental phase  of a CsHSO4 crystal [17]. This
leads to the conclusion [14] that of two possible

sequences of phases transitions (    

(x) and     (y)), the former
sequence is more probable.

According to experimental data [12, 13], phase V

has either the symmetry  or , with the unit-cell
volume being equal to double the volume of the primi-
tive unit cell of phase I. Let us analyze the possible for-

mation of the phase with the symmetry  or . The
analysis of the table shows that the monoclinic phase

 can be formed only as a result of the chain of phase

transitions     (y) (irreducible rep-
resentation τ3). Upon the analysis similar to that made

for the phase transitions I  VI  IV (  

  (y)) with the irreducible representation
τ2), we draw the conclusion that phase VII has the sym-

metry  and that the   (x) phase transi-
tion is also possible [6]. The boundary of possible new

phase VIII with the symmetry  is schematically
shown by the dash-dotted line in Fig. 1.

Now, consider the case where phase V has the sym-

metry . The group–theoretical analysis of the high-
pressure phase [14] shows that the phase with the sym-

metry  can arise as an intermediate one between the

nonconducting phase II (sp. gr. , the twofold axis
coincides with the [110] direction) and a certain new

phase with the symmetry . In this case, it can be

assumed that phase VIII has the symmetry . 
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This variant of the symmetry analysis does not allow
the determination of the symmetry of phase VII. The
fact that phase V is not adjacent to phase II (Fig. 1)
leads to the conclusion that the most probable symme-

try group of phase V is . It should also be indicated
that only experimental determination of the direction of
the twofold symmetry axis in phase V could confirm the

symmetry of phase V. Thus, in the  group, the two-
fold symmetry axis is directed either along the [100] or

the [010] direction, whereas in the group , it is
directed along [110].

Now, discuss the symmetry of phase III' established
in [5, 18–20]. The position of this phase on the phase
diagram lead to the assumption that phase III' is an
intermediate phase between phases III and IV. Then, the

symmetry group of phase III' is  [6]. Phase III' can
also appear as a result of the phase transition II  III'.
The above symmetry analysis of the phase transition
shows that CsHSO4 crystals have at least two order
parameters that differ by their symmetries. Thus, for the
wave vector k3 , these are two order parameters with the
symmetries τ2 and τ3 . The conditions of compatibility
of irreducible representations [14] shows that these
order parameters for the wave vector k1 have the sym-
metries τ1 and τ2, respectively. The condensation of the
order parameter with the symmetry τ2 (the wave vector
k1) results in the phase transition I  II. The further
condensation of the order parameter of symmetry τ1
can result in the phase transition II  III'. In this case,

phase III' has the symmetry .

In the next section, we construct the system of
hydrogen bonds in high-pressure phases of CsHSO4
crystals using the approach developed in [15].

SYSTEMS OF HYDROGEN BONDS 
IN HIGH-PRESSURE PHASES

Now, construct the systems of hydrogen bonds in
phases II and III determined in diffraction experiments
[8, 10]. Figure 2 shows eight possible positions of
hydrogen ions in the zeroth primitive unit cell of phase
I with two CsHSO4 formula units. These positions are
randomly occupied by two hydrogen ions but with the
same probabilities. Therefore, phase I is characterized
by a random dynamically disordered network of hydro-
gen bonds. It is convenient to attribute eight proton
positions to one central SO4-tetrahedron (Fig. 2) and
not to two tetrahedra contained in the zeroth primitive
unit cell of phase I [21]. Then, the positions in other
primitive unit cells are obtained from the positions
shown in Fig. 2 with the aid of lattice translations (with
due regard for the phase factor, see below). It should
also be noted that a hydrogen ion in the hydrogen bond

C2h
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C2h
2

C2
2

Ci
1

C2
2
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(a) (b) (c) (d)

Fig. 3. System of hydrogen bonds in phase II: (a) partial ordering of hydrogen ions due to condensation of the secondary order
parameter with the symmetry B2g and the wave vector k = 0. Filled circles indicate the positions occupied by hydrogen ions, light
circles indicate free positions; (b) further ordering of hydrogen ions due to condensation of the secondary order parameter with sym-
metry E2g and the wave vector k = 0; (c) complete ordering of two hydrogen ions due to condensation of the primary parameter of
symmetry τ2 and the wave vector k1 = π(1/2, 1/2, 0); and (d) the system of hydrogen bonds of the central and four nearest SO4-
tetrahedra (see Fig. 2). The arrows indicate the displacements of hydrogen ions to one of the two positions of the two-well potential
of the hydrogen bond.
can be located in a two-well potential, then the number
of positions is doubled.

Figure 3 illustrates the process of ordering of hydro-
gen ions in the zeroth primitive unit cell due to conden-
sation of the primary and two secondary order parame-
ters [15]. Two secondary order parameters have the
wave vector k = 0 and, therefore, hydrogen ions are
ordered in the similar way in all the primitive unit cells.
Condensation of the secondary order parameter with
the symmetry B2g results in ordering of hydrogen ions
in one of the two possible positions in the two-well
potential (Fig. 3a). Another secondary order parameter
with the symmetry Eg (Fig. 3b) lead to further partial
ordering of hydrogen ions. Condensation of the pri-
mary order parameter with the wave vector k1 = π(1/2,
1/2, 0) results in complete ordering of two hydrogen
ions in the zeroth primitive unit cell (Fig. 3c). Since the
wave vector has the nonzero value k1 ≠ 0, the occupied
and the free positions in an arbitrary primitive unit cell
with the radius-vector Rn = n1a1 + n2a2 + n3a3 (where ni

are integers) (Fig. 3c) exchange their positions depend-
ing on the phase factor exp(–ik1Rn) = ±1. The system
of hydrogen bonds in phase II of a CsHSO4 crystal is
shown in Fig. 3d, where hydrogen bonds are oriented

along the [ ] direction (in low-symmetric phase II,
four domains with different orientations of hydrogen
bonds with respect to the [111] direction can be
formed), which is consistent with the experimental
results obtained in [9].

Now, construct the system of hydrogen bonds in
phase III. According to the above symmetry analysis,
phase III arises as a result of the following phase trans-
formations I  VI  III. Figure 4a shows partial
ordering of two hydrogen ions in the zeroth primitive

111
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unit cell occurring due to condensation of the second-
ary order parameter with the symmetry B1g and the
wave vector k = 0. The further partial ordering of two
hydrogen ions due to condensation of the primary order
parameter with the symmetry τ2 and the wave vector
k3 = π(0, 0, 1) is shown in Fig. 4b. The final system of
hydrogen bonds in superionic phase VI is shown in
Fig. 4c. This system can be formed only if a hydrogen
bond is characterized by a two-well potential. The fur-
ther condensation of the order parameter with the sym-
metry B3g and the wave vector k = 0 results in the
VI  III phase transition (the corresponding system
of hydrogen bonds is shown in Fig. 4d), whereas the
condensation of the order parameters with the symme-
try B2g, to the VI  IV transition (Fig. 4e). As is seen
from Fig. 4d, hydrogen bonds in phase III are oriented
along the crystallographic x-axis (Fig. 2). The twofold
symmetry axis of monoclinic phase III is also directed
along the x-axis, which is confirmed by the experimen-
tal observations [10].

It was shown above that phase III' (Fig. 1) can be an
intermediate phase between phases III and IV. In this
case, the system of hydrogen bonds in phase III' should
be similar to the system shown in Fig. 4d but with the
break of some hydrogen bonds and the formation of
dimers by the nearest SO4 tetrahedra at the sites of bond
breaks (Fig. 4e). If phase III' is formed due to the II 
III' transition, the system of hydrogen bonds is similar
to the system shown in Fig. 3d.

Now, construct the system of hydrogen bonds in
phases V, VII, and VIII. These phases are formed as a
result of the following transitions: I  VII, VII 
V, and VII  VIII. Partial ordering of two hydrogen
ions in the zeroth primitive unit cell due to the conden-



98 BESKROVNIŒ, SHAKHMATOV
(a) (b) (c) (d) (e)

Fig. 4. System of hydrogen bonds in phases VI, III, and IV: (a) partial ordering of two hydrogen ions in the primitive unit cell due
to condensation of the secondary order parameter with the symmetry B1g and the wave vector k = 0; (b) further partial ordering of
hydrogen ions due to condensation of the primary order parameter with the symmetry τ2 and the wave vector k3; (c) dynamically
disordered network of hydrogen bonds in superionic phase VI constructed based on the distribution (b); the arrow indicates the dis-
placement of a hydrogen ion to one of two positions of the two-well potential of the hydrogen bond; (d) a system of hydrogen bonds
in phase III; (e) dimers formed by hydrogen bonds in phase IV.

(a) (b) (c) (d) (e) (f)

Fig. 5. Systems of hydrogen bonds in phases VII, V, and VIII: (a) partial ordering of two hydrogen ions in the zeroth primitive unit
cell due to condensation of the secondary order parameter with the symmetry B1g and the wave vector k = 0; (b and c) two variants
of possible partial ordering of hydrogen ions due to condensation of the primary order parameter with the symmetry τ3 and the wave
vector k3; (d) dynamically disordered network of hydrogen bonds in superionic phase VII constructed based on the distribution (c);
(e) the system of hydrogen bonds in phase V; (f) system of hydrogen bonds in phase VIII.
sation of the secondary order parameter with the sym-
metry B1g and the wave vector k = 0 is shown in Fig. 5a.
The condensation of the primary order parameter with
the symmetry τ3 and the wave vector k3 can lead to two
variants of partial ordering of hydrogen ions (Figs. 5b
and 5c). Figure 5d shows the system of hydrogen bonds
in superionic phase VII constructed on the basis of
ordering of hydrogen ions shown in Fig. 5c. It should be
indicated that ordering shown in Fig. 5b is less probable
because of the generation of the charge-density wave
associated with hydrogen ions. In this case, all the posi-
tions (shown by half-filled circles) in the primitive unit
cell are either occupied by four hydrogen ions (with
probability 1/2) or are empty depending on the phase
factor exp(–ik3Rn) = ±1. Figures 5e and 5f show the
systems of hydrogen bonds in phases V and VIII, which
represent two different types of complete ordering of
hydrogen ions arising from the configuration shown in
Fig. 5d.

Concluding this Section, consider a network of
hydrogen bonds in phase VIII for the case where this
C

phase has the symmetry . The condensation of three
secondary order parameters with the symmetries A1u ,
B2g, and B2u and the wave vector k = 0 results in partial
ordering of two hydrogen ions in the zeroth primitive
unit cell shown in Fig. 6a. It should be indicated that a
configuration is possible in which either the positions
closest to the SO4-tetrahedron or the distant positions
are occupied (the filled and the empty circles in
Fig. 6a). The condensation of the primary order param-
eter with the symmetry τ2 and the wave vector k1 =
π(1/2, 1/2, 0) results in complete ordering of hydrogen
ions in the zeroth primitive unit cell. The symmetry
analysis admits two configurations shown in Figs. 6b
and 6c. These two types of ordering can take place for
both closest and distant positions and, therefore, Fig-
ures 6b and 6c show only one position on the hydrogen
bond. Figure 6d shows the system of hydrogen bonds
constructed on the basis of the configuration shown in
Fig. 6b, with the use of only the closest positions. For
the distant positions, the directions of the arrows in
Fig. 6 should be changed to opposite ones. It should

D2
5
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(a) (b) (c) (d)

Fig. 6. System of hydrogen bonds in phase VIII with the symmetry : (a) partial ordering of two hydrogen ions in the zeroth

primitive unit cell due to condensation of three secondary order parameters with the symmetries A1u , B2g, and B2u and the wave
vector k = 0; (b and c) two possible types of complete ordering of hydrogen ions in the primitive unit cell due to condensation of
primary parameter of the symmetry τ2 with the wave vector k1 = π(1/2, 1/2, 0); (d) system of hydrogen bonds in phase VIII con-
structed based on the configuration corresponding to (c).

D2
5

also be indicated that the displacement of the origin of
the coordinate system by the vector (0, τ, τz/2) (Fig. 2)
results in the formation of the system of hydrogen
bonds that can be constructed based on the configura-
tion shown in Fig. 6c. As is seen from Fig. 6d, the
hydrogen bonds are directed along the [111] directions.
Intermediate phase V in this variant of the analysis has
the system of hydrogen bonds shown in Fig. 3d, with
the breaks and restructuring of bonds in the sites of
these breaks (Fig. 6d).

DISCUSSION OF RESULTS 
AND CONCLUSIONS

Using the group–theoretical methods, we con-
structed the systems of hydrogen bonds in all of the
high-pressure phases of CsHSO4 crystals. The systems
of hydrogen bonds in phases II and III are consistent
with the experimental data determined by the diffrac-
tion methods [7–11]. In superionic phases VI (the sym-

metry ) and VII (the symmetry ), the hydrogen
bonds are partly ordered. The fully ordered systems of

hydrogen bonds should be formed in phases IV ( ),

V ( ), and VIII ( ). The system of hydrogen

bonds in the intermediate phase III' ( ) is character-
ized by a break of hydrogen bonds and the formation of
dimers in the sites of these breaks.

The system of hydrogen bonds in this study was
constructed with the use of the 16h positions located
between the closest SO4 tetrahedra (Fig. 2). Moreover,
we took into account the two-well potential of the
hydrogen bond, which resulted in a doubling of the
total number of positions (denoted as 16h ⊕ 16h in
[15]). The symmetry analysis shows that only the use of

D2h
16

D2h
5

C2h
2

C2h
2

C2h
1

Ci
1
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doubled positions allows the construction of the net-
work of hydrogen bonds in superionic phase VI with

the symmetry . Thus, in this high-pressure phase,
the anharmonic effects in the dynamics of hydrogen
ions should take place. Since the experimental studies
[13] revealed only the harmonic behavior of hydrogen
ions in the nonconducting high-pressure phase V adja-
cent to phase VI in the phase diagram (Fig. 1), one can
assume that the anharmonic effects in superionic phase
VI would be less noticeable than the anharmonic effects
revealed in phases II and III [13].

It is also of interest to study experimentally the
effect of other possible types of proton positions (e.g.,
8e positions [22]) on the static and dynamic properties
of the system of hydrogen bonds. Possibly, the 8e posi-
tion can play a certain role in high protonic conductiv-
ity [22] and therefore the effect of the 8e positions on
proton diffusion can be studied on superionic phases VI
and VII.
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