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Abstract—It is shown that incommensurate long-period structures formed by two synchronously rotating irre-
ducible magnetic vectors are unstable and split into two interacting superstrucures. The behavior of such states
away from and close to the phase-transition line is considered. © 2002 MAIK “Nauka/Interperiodica”.
1 The possibility of the formation of modulated mag-
netic structures (MMS) was indicated for the first time
in [1–3]. The first MMS was detected experimentally in
MnAu2 [4]. The theory of the formation of MMS pro-
posed in [1–3] was based on the classical analogue of
the Heisenberg Hamiltonian.

Some mechanisms of formation of MMS in magnets
have become clear after the publication of the paper by
Dzyaloshinskiœ [5], which is devoted to the theory of
long-period exchange structures with a spatial period
incommensurate with the period of the crystal lattice.
The density of nonequilibrium thermodynamic poten-
tial (NTDP) was expanded in a power series in the order
parameters (OP) and their derivatives with respect to
coordinates. The latter appear in the expansion only in
the form of antisymmetric combinations (Lifshits
invariants). The competition of terms that are linear in
the first spatial derivatives with quadratic terms in
NTDP leads to the formation of a superstructure. The
approximation of constant moduli of irreducible vec-
tors (IRV) [6, 7] simplifies the solution of the problem,
leading to a linear system of differential equations for
determining the IRV component. It was found that
MMS can be formed only in the case of spontaneous
continuous phase transitions (PT) (which are close in
temperature) in each of the respective IRV involved in
the transition under investigation [6, 7]. The corre-
sponding phase diagrams were constructed [6], the
magnitude of the vector of propagation of MMS was
determined [7], and the behavior of MMS in weak mag-
netic fields was considered taking weak anisotropy into
account [8]. In addition, the possibility of mutual tran-
sitions between cycloidal and spiral structures and the
existence of structures formed by fragments of a super-
structure and separated by domain walls were demon-
strated [8].

The MMS obtained in [6–8] are formed by two syn-
chronously rotating vectors. The phase difference ϕ
1 Presented at the Symposium “Phase Transitions in Solid Solu-

tions and Alloys,” Sochi, Russia, 2001.
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between these vectors was also assumed to be constant
and equal to π/2 or 3π/2 depending on the sign of the
coefficient ∆ of the term that is linear in the first spatial
derivative of the IRV [7]. The correctness of the approx-
imation of constant moduli of IRVs has not been sub-
stantiated so far in connection with MMS. Although
this approximation is applied in the absence of anhar-
monic terms in the NTDP and far away from the PT, the
number of such terms is quite large, which can be veri-
fied by using the method of rational integer basis of
invariants [9]. If anharmonic terms have a much larger
weight in the NTDP than the terms containing deriva-
tives, they determine the “rough” structure in accor-
dance with [5]. Consequently, for ϕ = const, the system
of differential equations is linear, and the approxima-
tion of constant moduli of IRV “operates” (this approx-
imation becomes incorrect for ϕ ≠ const and in the pres-
ence of small anharmonic terms due to the emerging
nonlinearity of the system).

Let us consider the properties of MMS using as an
example the rhombic antiferromagnet Cr2BeO3 (space

group ). In this compound, below 28 K, there exists
a long-period double cycloidal structure with the vector
of propagation along the C axis of the rhombic crystal
[10]. The unit crystallochemical cell in Cr2BeO3 con-
tains two types of crystallographically inequivalent
chromium ions (in the b and c positions). For each type
of ions, we introduce the principal antiferromagnetism
vector G1 = S1 – S2 + S3 – S4 and G2 = S5 – S6 + S7 – S8 ,
where Si (i = 1, …, 8) is the magnetic vector of the ith
ion. These vectors are single-component Ops, since
they are transformed according to one-dimensional
irreducible representations of the transposition group.

We assume that the coefficient of the invariant  is
small and must be taken into account at the second
stage of minimization. The corresponding density of
the NTDP in the exchange approximation has the
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form [10]

(1)

where δ1 = β1(T – T1), δ2 = β2(T – T2), and ∆ and αi (i =
1, 2) are the exchange interaction constants; T1 and T2
are the characteristic temperatures; and β is the anhar-
monic interaction coefficient. The Cartesian z axis coin-
cides with the C axis of the crystal. In this system of
coordinates, the system of Ostrogradski equations
describing the minimum of the NTDP has the form

(2)

Here and below, all derivatives are calculated with
respect to z. The solution of the system of equations (2)
can be chosen in the form

(3)

In the model |G1| = const, |G2| = const, β = 0 for γ =
const, the system of equations (2) is linear and two
equations out of four are independent. The minimiza-
tion of potential (1) in the parameter γ gives the value
γ = π/2 for ∆ < 0 and γ = 3π/2 for ∆ > 0 [7].

Let us consider the stability of the obtained value of
γ. If we remove the requirement of the constancy of γ,
the Ostrogradski system in the polar system of coordi-
nates contains five coupled second-order differential
equations. One of these equations has the form

(4)

For a small variation of the moduli of IRV, i.e., at a large
distance from the PT line, the first and third terms in
Eq. (4) dominate. In the terminology of the theory of
oscillations, the second and fourth terms describe oscil-
lating friction and the last term describes the perturbing
force. Obviously, Eq. (4) for α2 > 0, |2∆k | @ |βG1G2 |,
and any sign of ∆ is analogous to the mathematical pen-
dulum equation with a repulsive force. In the analysis
of Eq. (4), it is convenient to pass to a new variable ϕ
through the relations
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For small values of , , and β, the motion is

virtually identical to the formal case when  = 0,

 = 0, and β = 0. It is well known that, for small ϕ, the
phase trajectories of a representative point on the phase
plane form a family of equilateral hyperbolas [11].
Only two asymptotes of this family pass through the
saddle-type singular point. The representative point is
always at an infinitely long distance from the equilib-
rium position. The only exception is the motion along
the asymptote [11], which is the limiting motion in this
case, i.e., asymptotic relative to the equilibrium state.
For |2∆k| ! |βG1G2|, the external perturbing force
becomes dominant and determines the type of oscilla-
tions. For example, for β ≠ 0, stable states are possible
for γ = ±π/2 depending on the sign. The analysis of
these cases is beyond the scope of this paper.

Thus, in the approximation of constant moduli of
IRV, the incommensurate structure is stable for ∆ > 0
and ∆ < 0. However, this equilibrium becomes unstable
when even small nonlinearities appear (which are
always present in real crystals), which leads to the split-
ting of a single MMS formed by two IRVs into two
independent (β = 0) or interacting (β ≠ 0) superstruc-
tures.

Let us consider this problem in greater detail in a
model of a NTDP of type (1). In order to find the solu-
tion, we will use the Van der Pol method [11]. The solu-
tions of the complete system are sought in the form

(5)

where G11, G12, G21, and G22 are the corresponding
amplitudes depending on z and the phase shifts γ1 and
γ2 are functions of z. If we assume that the IRVs in the
MMS have circular hodographs, i.e., G11 = G12 and
G21 = G22, equations of the form sin2x + cos2x = 0
emerging in the course of calculations have no solu-
tions. Consequently, the crystal can contain only MMS
with an elliptical hodograph, which can be regarded as
two waves with mutually perpendicular planes of vibra-
tions.

Substituting relations (5) into the system of equa-
tions (2) and discarding all “oscillating” terms, we
obtain a system of eight truncated equations. Numerical
solution for small values of β and at a large distance
from the PT line proved that the quantities a, b, c, d, e,
f, g, and h, which are proportional to the amplitudes and
to one of the functions (sinγ or cosγ), vary according to
the sinusoidal law. Such a dependence of these quanti-
ties reflects the linear relation between the quantities γ1
and γ2 and coordinate z, i.e., the small variation of the
amplitudes G11, G12, G21, and G22. Consequently, MMS

G1' G2'

G1'

G2'

G1z = G11 kz γ1+( )cos  = a z( ) kzcos b z( ) kz,sin+

G2z = G21 kz γ2+( )sin–  = –c z( ) kzsin d z( ) kz,cos+

G1y = G12 kz γ1+( )sin  = e z( ) zksin f z( ) kz,cos–

G2y = G22 kz γ2+( )cos  = g z( ) kzcos h z( ) kz,sin+
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has the form of two interacting waves with elliptical
hodographs, each of which is formed by only one of the
IRVs.

As we approach the PT line, the dependence of the
coefficients a, b, c, d, e, f, g, and h on coordinate z
becomes more complex than sinusoidal. This indicates
the development of a strong coordinate dependence of
the amplitudes G11, G12, G21, and G22.

In order to confirm the above conclusions, we car-
ried out a numerical solution of system (2) with the help
of the Stifz function in the Mathcad medium. This
method of solution makes it possible to confirm indi-
rectly the stability of the solutions obtained. The fol-
lowing results were obtained (T2 > T1 and the numerical
value of ∆ is smaller than the numerical values of αi

(i = 1, 2)).
1. A stable superstructure is formed for δ1 < 0 and

δ2 < 0. At a large distance from PT lines and for small
values of ∆, the moduli of IRVs are practically constant,
and the periods of spatial oscillations of vectors G1 and
G2 are different. This means that two different interact-
ing superstructures are present in the crystal. As we
approach the PT lines, a spatial amplitude modulation
(AM) of the components of the “carrier oscillation”
appears because of the coordinate dependence of the
moduli of each irreducible vector. Since the quantity ∆
reflects nonuniformities in the exchange interaction, an
increase in |∆| leads to an additional complex modula-
tion of IRV components. The carrier oscillation
becomes aperiodic at small distances (see Fig. 1a), and
different groups of oscillations participate in two differ-
ent AMs with a phase shift of π. Simultaneously, an AM
with a giant period (hyperperiod) appears, which is
unnoticeable at small distances (see Fig. 1b). If the
value of ∆ is comparable with the value of αi, the AM
whose amplitude increases with z is observed, as
before, for small values of z, and remodulation takes
place for some z values. For large values of z, secondary
modulation dominates, and small-amplitude carrier
oscillations are observed against the background of this
modulation (Fig. 2). In this case, the conventional AM
is decomposed into two components which “glide”
over the remodulation curve with a large spatial period
(hyperperiod) in accordance with a sinusoidal law. The
y components of IRV also exhibit a similar behavior,
but all processes in this case are shifted in space relative
to the z components. As T  T1, remodulation
becomes periodic, but not sinusoidal. No remodulation
is observed for the G2 vector, but the AM for G1 is no
longer symmetric relative to the x axis. As |∆| increases,
the number of periods of remodulation increases.

2. As the value of |T2 – T1| decreases, an additional
AM with a relatively small amplitude and a period that
is an order of magnitude smaller appears below T1 for
large negative values of ∆ against the background of the
giant modulation (Fig. 3). This AM vanishes as we
approach T1, and the frequency of the giant modulation
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Fig. 1. Coordinate dependence of the component G1z at
(a) small and (b) large distances.
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Fig. 2. Coordinate dependence of the component G1z for
large values of ∆.
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Fig. 3. Coordinate dependence of irreducible vectors for
large negative values of ∆ and for small values of |T2 – T1|
below T1 .
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increases significantly. As before, hypermodulation is
accompanied by conventional remodulation, which
also splits into two components. Four components
appear for the same values of the parameters, except for
T1 > T2.

In an eight-sublattice magnet, there are eight irre-
ducible magnetic vectors whose sum is a constant
quantity. Only two of these vectors (G1 and G2) form a
superstructure, and a change in their moduli leads to a
change in the remaining vectors. Only the sum of the
squares of six vectors exhibits a synchronous behavior,
but each of these vectors is not fixed in sign and, hence,
is not ordered.

Thus, in the approximation of constant moduli of
IRV, the long-period structure is found to be unstable.
The variability of the IRV moduli for small values of β
leads to the emergence of two weakly interacting super-
structures each of which is stable. These superstruc-
tures have different spatial periods; consequently, there
is no need to synchronize the phases of rotation of IRV.
The superposition of several temperature-dependent
AMs with different periods is responsible for the com-
plex nature of variation of IRV moduli.
C
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Abstract—Single crystals of the composition PbFe1/2Ta1/2O3 are grown by the method of mass crystallization
from flux. It is established that, unlike the PbFe1/2Ta1/2O3 ceramic, the synthesized single crystals possess pro-
nounced relaxor properties: the maximum of the dielectric constant is diffuse and its temperature, Tm, increases
by more than 70 K with an increase in the frequency from 102 to 106 Hz. It is assumed that the unusual prop-
erties of the PbFe1/2Ta1/2O3 crystals are caused by mesoscopically inhomogeneous compositional ordering and
comparatively high conductivity providing favorable conditions for the appearance of the volume-charge and
thermal electron polarization. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Ternary perovskites of the 1 : 1 type described by the

general formula Pb( )O3, where B3+ = Sc, In,
and Yb and B5+ = Nb and Ta, are the classical model
objects for studying ferroelectric–relaxors, because
their properties can vary over a wide range without
changes in their chemical composition only because of
the variation in the degree of order, S, of B3+ and B5+

ions distributed over the equivalent sites of the crystal
lattice (the compositional order) [1–4]. In a state with a
high degree of order, these oxides undergo a nondiffuse
antiferroelectric (B3+ = In, Yb) or a ferroelectric (B3+ = Sc)
phase transition, whereas in a disordered state, they
possess the properties typical of relaxors [1–5], namely,
both the dielectric constant εm and the temperature of
the maximum ε(T) of Tm are essentially dependent on
the frequency f of the measuring field.

Oxides with B3+ = Fe have a special place among

Pb( )O3 perovskites. Unlike the situation with
other oxides of this series, all the numerous attempts to
synthesize ordered PFT ceramics with the aid of pro-
longed high-temperature annealing [1, 11] gave no rise
to the formation of the superstructure associated with
the ordering of Fe3+ and Nb5+ (í‡5+) ions: the X-ray dif-
fraction method revealed no superstructure either in
êbFe1/2Nb1/2O3 (PFN) or in PbFe1/2Ta1/2O3 (PFT)
[1, 5–11]. At the same time, the experimental values of
the Néel temperature TN for PFN and PFT (~150 K) lie
approximately in the middle between the calculated
values for S ≈ 1 and 0, which is usually interpreted as
evidence of the partial ordering of ions (TN is essen-

1 This work was presented to the Symposium “Order, Disorder and
Properties of Oxides” (ODPO), Sochi, Russia, 2001.
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tially dependent on S because, during ordering, the
number of magnetically active ions in the neighboring
cells changes [5, 6]). Most probably, the ordering of
ions in PFN and PFT occurs locally; i.e., the crystal has
mesoscopic regions several nanometers in size that
have different S values. The small dimensions of the
ordered regions explain the difficulty in observation of
superstructure reflections by X-ray diffraction methods.
A similar situation is also characteristic of the model
relaxor of the composition PbMg1/3Nb2/3O3 [2]. The
role of compositionally ordered nanoregions in the for-
mation of the relaxor properties in perovskites is still
not quite clear, although it is well known that these
regions play an important part as sources of random
local electric and mechanical fields [12].

According to the existing models [13, 14], the
degree of diffusion of the phase transition and the sta-
bility of the relaxor state in ternary perovskites of the
1 : 1 type increase with an increase in the difference
between the ionic radii of B3+ and B5+. These concepts
are consistent with the behavior of PFN, where the
ionic radii of Fe3+ and Nb5+ ions (0.064 and 0.0645 nm,
respectively) differ only insignificantly. Unlike other

disordered Pb( )O3 oxides, both PFN ceramics
and single crystals show a comparatively narrow maxi-
mum of ε(T), whose temperature Tm is practically inde-
pendent of frequency [5, 6, 10]. Since a í‡5+ ion
(0.065 nm) is only slightly larger than Nb5+, one can
expect that the relaxor properties of PFT would be more
pronounced than those of PFN. Indeed, according to
data [7, 10, 11], the temperature Tm of both PFT single
crystals and ceramics increases with an increase in f,
but much less than in the model PbMg1/3Nb2/3O3

relaxor.
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The failure of numerous attempts to synthesize
ordered PFT ceramics with the aid of prolonged high-
temperature annealing [1, 11] led one to the conclusion
that the presence of a small amount of the pyrochloric
phase as an impurity in all the ceramic samples hinders
ordering [11]. In this connection, the growth of ordered
PFT crystals seems to be more promising, because it is

much easier to change the S value of Pb( )O3

crystals by varying the growth conditions than to
change S of the ceramic using high-temperature anneal-
ing [15].

Our aim was to synthesize PFT single crystals and
study their dielectric properties over wide temperature
and frequency ranges. It should be noted that we found
only one publication in which the ε(T) dependence was
studied for PFT [7], which is explained by the high con-
ductivity of these crystals (revealed later in [8, 9]).

EXPERIMENTAL

Single crystals of the composition PbFe1/2Ta1/2O3
were grown by mass crystallization from flux with the

B1/2
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B1/2
5+
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Fig. 1. Temperature dependences of (a) ε' and (b) ε'' for a
PFT crystal obtained at the frequencies (1) 0.1, (2) 1.0,
(3) 10, (4) 100, and (5) 1000 kHz.
C

use of the PbO solvent. The PFT preliminarily synthe-
sized for four hours from the corresponding oxides at
850°C, along with Fe2O3 and PbO, were loaded into a
platinum crucible in the ratio 37.8 : 2.2 : 60. The cruci-
ble was kept for 3 to 6 h at 1200–1220°C, then was
cooled, first, down to 1150–1160°C at a rate of 2–
2.5 K/h, then, down to 1080°C at a rate of 3.5 K/h, and
finally down to 900–950°C at a rate of 6 K/h. Then, the
mother solution was poured out, and we obtained black
cubic crystals with 1.5-mm-long edges faceted along the
(001) planes of the perovskite basis. The X-ray diffrac-
tion studies were made on powders (obtained by crystal
grinding) on a DRON-3 diffractometer (FeKα radiation).

The dielectric measurements were made in the fre-
quency range 102 to 106 Hz with the aid of P5083 and
E7-12 ac bridges. The Aquadag electrodes were applied
to the natural faces of the crystals.

RESULTS AND DISCUSSION

The X-ray diffraction analysis showed that, at room
temperature, the crystals have a perovskite cubic unit
cell with the lattice parameter 0.4008 nm, which is con-
sistent with the known data for PFT crystals [7–9]. The
diffraction patterns of some series of crystals also
showed weak superstructural lines corresponding to the
doubled lattice parameter which, we believe, is associ-
ated with the ordering of Fe3+ and í‡5+ cations. The
degree of order, S, evaluated with respect to the intensi-
ties of the basis (100) and superstructural (1/2, 1/2, 1/2)
lines [1] did not exceed 0.2.

At room temperature, the conductivity γ of the
grown crystals at dc current was about 10–9 Ω–1 cm–1,
i.e., was lower by an order of magnitude than the con-
ductivity of the crystals studied in [8, 9]. The activation
energy of conductivity was 0.17–0.18 eV at T < 70°C
(which agreed quite well with data [8]) and 0.8–0.85 eV
obtained at higher temperatures.

The temperature dependences of the real, ε', and
imaginary, ε'', parts of the dielectric constant of the PFT
crystals measured at the frequencies 102–106 Hz are
shown in Fig. 1. In addition to the minimum corre-
sponding to the diffuse transition from the tetragonal to
the cubic phase, the dependences ε'(T) and ε''(T) also
had bends at temperatures of 40–50 K less than Tm.
These anomalies seem to correspond to the transition
between the monoclinic and tetragonal ferroelectric
phases revealed earlier in the optical and X-ray diffrac-
tion studies of PFT crystals [8, 9]. At T > Tm, with an
increase in the temperature, the decrease in ε' and ε''
changed to an increase. The higher the measurement
frequency, the higher was the temperature at which ε
began to increase. This character of the ε'(T) and ε''(T)
dependences seems to be associated with the volume-
charge or thermal electron polarization and was
observed in numerous perovskites, especially in those
characterized by an oxygen deficit [16, 17].
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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The maximum  value (about 20000 at f = 1 kHz)
is approximately twice as high as the value for the crys-
tals studied in [7] and decreases with an increase in f
especially pronouncedly in the range 103–105 Hz. The
temperature dependence of ε in the vicinity of the max-
imum for many crystals characterized by a diffuse fer-
roelectric phase transition is described by the expres-
sion [5]

(1)

where Tm is the temperature at which ε' attains its max-

imum value  and σ is the parameter of the diffusion
of the transition. As is seen from Fig. 2a, this equation
is valid for PFT over a wide temperature range above
Tm. The value of the parameter of the diffusion of the
transition σ, estimated from the data presented in
Fig. 2a, is almost independent of frequency at f <
10 kHz and equals 20 ± 2 K. At higher frequencies, σ
drastically increases with f, attaining the value of 90 K
at f = 1 MHz. Similar dependence of σ on f was also
observed in numerous relaxors [18].

At temperatures exceeding Tm by more than 100 K,
the Curie–Weiss law is valid: 1/ε' = (T – TCW)/C (C is a
constant) (Fig. 2b). Because of the increase in ε' with
the temperature at T > Tm indicated above, the fulfill-
ment of this law is clearly seen only at the highest fre-
quencies used in the measurements. The Curie–Weiss
temperature TCW obtained by the extrapolation of the
dependence 1/ε'(T) is 145°C, i.e., is much higher than
Tm. Such a proportion between Tm and TCW and the tran-
sition from the square-law dependence 1/ε'(T) to the
linear one observed in the experiments are characteris-
tic of the ferroelectrics with diffuse phase transitions
[2, 5].

As is seen from Fig. 1a, the PFT crystals studied
show considerable frequency dispersion in ε and an
increase in Tm at higher frequencies f of the measuring
field. In the Arrhenius coordinates, the dependence of
Tm on f considerably deviates from the linear one
(Fig. 3a), which indicates the non-Debye character of
the relaxation characteristic of ferroelectric–relaxors
[2, 5, 19]. At the same time, it is seen from Fig. 3b that
the dependence of Tm on f is well described by the
Vogel–Fulcher law [2, 13, 19]

(2)

where f0 is the frequency of the attempts to overcome
the potential barrier E, k is the Boltzmann constant, and
T0 is the Vogel–Fulcher temperature interpreted as the
temperature of static freezing of the electric dipoles or
of the transition to the dipole-glass state [2, 13, 19]. For
PFT crystals, f0 = (0.5–1) × 1011 Hz, which is close
to  the values obtained for other ferroelectric–relaxors
[13, 19]. The value T0 ≈ 170 K, which is lower than the

εm'

1
ε
--- 1

εm

-----
T Tm–( )2

2εmσ2
-----------------------,+=

εm'

f f 0 E/k Tm T0–( )–[ ] ,exp=
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temperature of the transition from the ferroelectric
monoclinic and tetragonal phases. The activation
energy E in the Vogel–Fulcher law (~0.12 eV) and the
difference ∆T between Tm (at the frequency 1 kHz) and
T0 (~80 K) have higher values than the corresponding
values for the crystals of the model PbMg1/3Nb2/3O3
relaxor [2, 13]. The ∆T and E values similar to those for
PFT were also observed in disordered PbIn1/2Nb1/2O3
crystals [19].

It should be indicated that, although the temperature
of the maximum of ε''(T) for PFT increases with an
increase of f monotonically, the value of this maximum
first increases and then, at f > 104 Hz, dramatically
decreases (Fig. 1b). In the same frequency and temper-
ature ranges, a dramatic increase in the frequency
dependence of ε' is observed (Fig. 1a). These data indi-
cate that, in addition to the relaxation processes charac-
teristic of relaxors and provided by the presence of fer-
roelectric nanoregions in the paraelectric matrix [2, 19],
some other relaxation processes also play an important
part in the crystals under study. In particular, the com-
paratively high values of conductivity, in combination
with mesoscopically inhomogeneous composition
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Fig. 2. Dependences of (a) 1/ε on (T – Tm)2 for PFT crystals
at the frequencies of (1) 0.1, (2) 1.0, (3) 10, (4) 100, and
(5) 1000 kHz and (b) temperature dependences of (1) ε' and
(2) 1/ε' for PFT crystals at a frequency of 1 MHz.
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ordering, promote the appearance of the volume-charge
and thermal electron polarizations [16, 17]. This inter-
pretation is confirmed by the considerable enhance-
ment of the dependence Tm( f ) in the PbW1/3Fe2/3O3
ceramic with elevated conductivity observed in [20].

One more maximum of dielectric losses is observed
in PFT above Tm (Fig. 4a), whose temperature increases
with frequency according to the Arrhenius law
(Fig. 4b). The activation energy of the relaxation pro-
cess corresponds to this maximum and equals 0.9 ±
0.05 eV, which is close to the activation energy of con-
ductivity at constant current in this temperature range
(Fig. 4b). The close values of the activation energies of
conductivity and relaxation are considered to be confir-
mation of the fact that the given relaxation process is
provided by the electron polarization associated with
various lattice defects [16, 21].

At the same time, it should be emphasized that,
within the framework of the theory of random fields,
the existence of several groups of the maxima of dielec-
tric constant and dielectric losses in relaxors of the 1 : 1
type was predicted in [22]. The frequency dependence
of the lowest temperature maximum should be
described by the Vogel–Fulcher law; the frequency
dependences of the remaining maxima, by the Arrhe-
nius law. In accordance with the calculations made in
[22] for the 1 : 1 relaxors whose degree of composi-
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Fig. 3. Dependences of (a) the temperature Tm of the maxi-
mum in ε'(T) and (b) the difference Tm – T0 (illustrating the
fulfillment of the Vogel-Fulcher law) on frequency in the
Arrhenius coordinates for PFT crystals.

(b)
C

tional order is such that they are in the vicinity of the
boundary of the states of ferroelectric and dipole
glasses, the temperature Tm of the maximum described
by the Vogel–Fulcher law is 140–200 K, and the differ-
ence Tm – T0 = 90 K, whereas the temperature of the
closest maximum is described by the Arrhenius law and
equals Tm = 360–500 K and the activation energy of the
relaxation process ~0.85 eV. These values are very
close to the experimentally determined values for PFT
crystals in our study. On the other hand, recent studies
[17] showed that, in SrTiO3 with different additions,
there exists a system of relaxation maxima provided by
thermal electron polarization associated with oxygen
vacancies and associates formed by these vacancies
with other lattice defects. In particular, a group of such
maxima is observed in the temperature range 350–
650 K and is characterized by the activation energy of
the relaxation process 0.74–0.86 eV, which is close to
the activation energy of conductivity (0.59–0.78 eV).
The establishment of the details of the relaxor behavior
of a PFT crystal and their description based on various
theoretical models require some additional experimen-
tal studies.

CONCLUSION

The pronounced relaxor properties of partly ordered
PFT crystals seem to be provided by the mesoscopi-
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and the dependence of the temperature T of the maximum
of tanδ on frequency f at T > Tm (2) for PFT crystals.
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cally inhomogeneous ordering and comparatively high
conductivity of these crystals, which creates favorable
conditions for the development of the volume-charge
and thermal electron polarizations.
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LATTICE DYNAMICS
AND PHASE TRANSITIONS
Study of Cation Ordering and Magnetic Phase Transitions 
in Ternary Fe-Containing Perovskite Oxides by Mössbauer 

Spectroscopy1
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Abstract—Nuclear gamma-resonance (NGR) spectra were studied in ceramics of ternary perovskite-type
oxides Pb(Fe2/3W1/3)O3, Pb(Fe1/2Ta1/2)O3, and Pb(Fe1/2Nb1/2)O3 and in the Pb(Fe1/2Sb1/2)O3 oxide synthe-
sized under pressure. A singlet corresponding to compositional-ordering regions was observed in the NGR
spectra for Pb(Fe1/2Sb1/2)O3. Weak doublets associated with paramagnetic regions (in which the degree of cat-
ion ordering is higher than the volume average) were observed in the spectra for Pb(Fe2/3W1/3)O3 and
Pb(Fe1/2Nb1/2)O3 at temperatures 30–70 K below the antiferromagnetic phase transition point. © 2002 MAIK
“Nauka/Interperiodica”.
1 INTRODUCTION

Complex ferroelectric and antiferroelectric perovs-
kite-family oxides Pb( )O3 (m = 1/2, 1/3) have
been studied intensively in recent years [1–6]. Of spe-
cial interest, is the possibility of varying the degree of
ordering of B' and B'' ions over equivalent crystallo-
graphic positions. Such ordering is usually called com-
positional to differentiate it from the ferroelectric and
antiferroelectric order. For the characterization of such
ordering, a long-range order parameter S is usually
introduced, which is equal to unity for a fully ordered
state, and to zero, for a disordered state [2].

The perovskite oxides with Ç3+ = Fe are of particu-
lar interest. The superstructural reflections on X-ray
patterns associated with the ordering of Ç cations have
been observed only in Pb(Fe2/3W1/3)O3 (PFW) [7];
numerous attempts to fabricate ordered ceramics
êbFe1/2Ta1/2O3 (PFT) and êbFe1/2Nb1/2O3 (PFN) by
long annealing at high temperatures have not met with
success [1–6]. At the same time, the experimental val-
ues of the antiferromagnetic Néel temperature TN for
PFW, PFN, and PFT are located approximately halfway
between calculated values of this temperature for S < 1
and S < 0, which is usually interpreted as an evidence
of a partial ordering of B cations (TN depends strongly
on S, because the ordering changes the number of mag-
netic ions in neighboring unit cells [3, 4]). The ordering
of cations in these oxides seems to occur locally; i.e.,
mesoscopic regions of the size of several nanometers

1 This work was presented at the Symposium “Order, Disorder, and
Properties of Oxides” (ODPO), Sochi, Russia, 2001.

B'1 m– B''m
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with different values of S arise in a crystal. Small sizes
of ordered regions are responsible for the difficulties in
observing superstuctural reflections on X-ray diffrac-
tion patterns. The urgent problem is the development of
new methods for detecting local ordering in complex
oxides. One of these methods is nuclear gamma-reso-
nance (NGR) spectroscopy. For example, information
about the presence of ordered regions and the distribu-
tion of TN (and, hence, of S) can be obtained by study-
ing the temperature dependence of the relative intensity
of a paramagnetic NGR spectrum near TN. However,
the temperature dependence of NGR spectra has been
studied in detail only near ferroelectric phase transition
points [4].

The aim of this work was to produce ceramics of ter-
nary Fe- containing complex perovskite-type oxides
with a variable degree of B cations ordering, and to
study the influence of compositional ordering on NGR
spectra and their temperature dependence.

SAMPLE PREPARATION 
AND THE EXPERIMENTAL PROCEDURE

The PFW and PFT ceramics were obtained by solid-
phase synthesis of high-purity PbO, Fe2O3, Ta2O5, and
WO3 oxides. The PFN and Pb(Fe1/2Sb1/2)O3 (PFS)
ceramics were fabricated using solid-phase synthesis
under pressure [8]. Details of the sample preparation
are described in [9]. An X-ray phase analysis did not
reveal the presence of phases other than perovskite in
any ceramics.
2002 MAIK “Nauka/Interperiodica”
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NGR spectra were measured with the aid of an MS-
1104E rapid Mössbauer spectrometer of the latest
design with improved velocity and technological char-
acteristics, using Co57 in a Cr matrix as a source of res-
onance radiation (activity 20 mCi). Calibration was
carried out with a standard α-Fe absorber. The Möss-
bauer spectra were analyzed by using the UNIVEM
computer programs.

The dielectric constant ε was measured for samples
with fired-in silver electrodes using R5082 and E7-12
bridges at frequencies 102–106 Hz.

EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

X-ray diffraction patterns from PFW contained
weak superstructural lines corresponding to a doubled
perovskite unit cell; these lines were likely associated
with the ordering of Fe and W ions. Despite their low
intensity, these lines are comparatively weakly spread;
the average size of the regions of coherent scattering,
estimated by Schering’s formula, is about 30–80 nm.
Such a large size of ordered regions in PFW suggests
that the ordering of Fe and W ions is of the “random-
site” type [1] (with allowance for the formula
Pb[(Fe1/2W2/3)1/2Fe1/2]O3 ensuring the electrical neu-
trality of the ordered clusters).

An NGR spectrum of PFW at 300 K is shown in
Fig. 1. This spectrum is a superposition of two sextets.
Previously, a similar spectrum consisting of two sextets
has been observed only after the firing of PFW ceram-
ics in oxygen, while the spectrum from a sample fired
in air contained a single sextet [7]. The existence of two
sextets in an NGR spectrum for PFW was associated in
[7] with a partial ordering of Fe3+ and W6+ ions and the
formation of two magnetic subsystems due to non-
equivalent surrounding of iron ions in ordered and dis-
ordered regions. According to calculations by the Guil-
laud method, the values of TN at S ≈ 1 and S ≈ 0 for PFW
are 310 and 460 K, respectively [3, 4]. Experimentally,
the values of TN1 ≈ 355 K and TN2 ≈ 425 K were
obtained for PFW ceramics synthesized and sintered in
oxygen, while the sintering in air usually gives TN ≈ 363 K
[4, 7]. Despite the fact that our measurements were
made at a temperature approximately 50 K below TN1,
the NGR spectrum for PFW contained a paramagnetic
component (doublet). This doublet may be associated
with clusters in which the degree of ordering is higher
than the volume average and, hence, the values of TN
are lower.

NGR spectra of the PFN and PFT ceramics mea-
sured at 300 K (Figs. 1, 2) are doublets, which is in
accordance with the published data. The NGR spec-
trum for PFN in a cubic paraelectric phase is also a dou-
blet [4]. The cause of quadrupole splitting in spectra of
PFN and PFT for the cubic phase appears to be the
incompletely ordered distribution of Fe3+ and Nb5+
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
(Ta5+) over octahedral lattice sites [4, 7]. In this case,
the symmetry of the environment of F3+ cations is not
cubic. To verify of this assumption, we synthesized the
perovskite PFS. At atmospheric pressure, PFS crystal-
lizes into the pyrochlore structure; therefore, to obtain
a perovskite modification, we performed synthesis
under pressure of 6 GPa following the procedure
described in [8]. X-ray diffraction patterns for PFS
exhibited superstructural lines corresponding to a dou-
bled perovskite unit cell and were caused by the order-
ing of Fe3+ and Sb5+ ions. The value of S estimated from
the ratio of the intensities of the fundamental and super-
structural lines was 0.7–0.9. Dielectric measurements
showed the existence of a maximum in the ε(T) depen-
dence near 200 K, whose position was independent of
frequency. These data allow one to conclude that PFS,
similarly to other complex perovskite oxides of the

Pb( Sb1/2)O3 family [10], is antiferroelectric.

As distinct from PFN and PFT, the NGR spectrum
of PFS contains a singlet, in addition to a doublet
(Fig. 1b). The singlet likely corresponds to composi-
tionally ordered regions (fairly large in size), whereas
the doublet is associated with regions where the long-
range order in the arrangement of Fe3+ and Sb5+ ions is
disturbed. The values of quadrupole splitting and iso-
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Fig. 1. NGR spectra of (a) the PbFe2/3W1/3O3 enriched by

Fe57, (b) PbFe1/2Sb1/2O3, and (c) PbFe1/2í‡1/2O3 ceramics
measured at 300 K. The decomposition of the experimental
spectra into antiferromagnetic sextets and paramegnetic
doublets and singlets is shown by lines.



1014 RAEVSKIŒ et al.
mer shift of the sextets, doublets, and the singlet in
NGR spectra of all the ceramics studied by us corre-
spond to trivalent iron in an octahedral environment.
Note that the NGR spectrum in the form of a singlet
was obtained in Fe-containing perovskite oxides. These
results support the assumption that the environment of
the octahedral ions in compositionally ordered perovs-
kite oxides possesses cubic symmetry.

A study of dielectric properties showed that the tem-
perature Tm corresponding to the maximum in the ε(T)
dependence for the PEN ceramic prepared under pres-
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Fig. 2. NGR spectra of Pb(Fe0.475 Nb0.515)O3 at (a) 200,
(b) 150, and (c) 100 K; and (d) the temperature dependence
of the relative intensity Ip of a paramagnetic NGR spectrum
for Pb(Fe0.475 Nb0.515)é3 enriched by Fe57 and prepared
using solid-phase synthesis at 1420 K under a pressure of
4 GPa. The measurements were made (1) immediately after
synthesis and (2) after annealing at 1320 K for 2 h.
C

sure is 10–20 K higher than that of the samples pre-
pared without application of a pressure. The tempera-
ture Tm increases with increasing temperature of
ceramic synthesis [9]. The increased temperature Tm for
the ceramic obtained under pressure can be hardly
explained by the effect of residual mechanical stresses,
because isotropic mechanical stresses reduce Tm in fer-
roelectric ceramics pressed at high temperatures [11]. It
appears that the PFN ceramic obtained under pressure
is more disordered than the one prepared using simple
sintering. Indeed, compositional disordering in the
majority of ferroelectrics causes Tm to increase [5, 6]. If
the above assumption is correct, the value of TN in PFN
prepared under pressure at a high temperature should
be higher than in PFN sintered not under pressure at a
lower temperature.

A study of NGR spectra of PEN enriched by the Fe57

isotope, prepared at 1420 K under a pressure of 4 GPa
revealed the presence of a small amount of α-Fe2O3.
This impurity seems to exist in the form of nanoclus-
ters, because an X-ray phase analysis showed the
absence of any phases other than the perovskite ones.
The further analysis consisted of the subtraction of the
α-Fe2O3 spectrum from the total NGR spectra. Figure 2
illustrates the evolution of the NGR spectra of PFN
with temperature. It can be seen that, in accordance
with the data on PFN available in the literature, the
paramagnetic NGR spectrum (doublet) gradually trans-
forms into an antiferromagnetic spectrum (the superpo-
sition of several sextets) on cooling below 200 K. The
temperature dependence of the relative intensity Ip of
the paramagnetic component of the NGR spectra is
shown in Fig. 2d. Assuming (following [4]) that the
average temperature of the magnetic phase transition
corresponds to the middle of the transition region
where the reduction of Ip occurs, we obtain TN ≈ 165 K.
This value of TN is 20–40 K higher than the TN obtained
for PFN from the temperature dependence of the
inverse magnetic susceptibility [3, 4]. To verify the
assumption about the relation of the observed effects to
the ion ordering, the sample obtained under pressure
was ground into powder and annealed at 1320 K for 2 h.
After this procedure, Tm reduced by 10 K and the Ip(T)
dependence became more pronounced and shifted
toward lower temperatures (Fig. 2d, curve 2). These
results are in good agreement with the data presented
above on the difference in Tm between the PFN ceram-
ics prepared under pressure and using conventional sin-
tering. In addition, we note that the paramagnetic com-
ponent of the NGR spectra remains observable below
TN over a considerably wide temperature range. This is
indicative (as for PFW) of the existence of clusters in
this material in which the degree of compositional
ordering of Fe3+ and Nb5+ ions is higher than the vol-
ume average.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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LATTICE DYNAMICS
AND PHASE TRANSITIONS
Improper Superconductivity in Uniaxial Crystals
with Weak Anisotropy in the Basal Plane1
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Abstract—In the context of the Landau theory, we refined the structure and analyzed the phase diagram for d
states of the uniaxial superconductor with weak anisotropy in the basal plane. It was shown that taking into
account improper order parameters makes it possible to reduce to four the degree of polynomial corresponding
to the Landau potential. The gap functions for all phases were found taking into account the improper order
parameters. © 2002 MAIK “Nauka/Interperiodica”.
1 1. IMPROPER SUPERCONDUCTIVITY

Currently, it is generally accepted that most experi-
ments with high-Tc superconductors such as
YBa2Cu3O7 – y can be interpreted under the assumption
that the order parameter is characterized by the symme-
try . The observed deviations of the supercon-

ductor from its ideal behavior lead to the conclusion
that there exist additional states of the Cooper pairs
with s and/or dxy symmetry; these states play an impor-
tant role for the surface and bulk properties of high-Tc
superconductors [1, 2].

It has been shown [3] that superconducting states
with s symmetry can naturally arise in the case of the

 order parameter under the assumption that the

“strong” symmetry of the crystal field YBa2Cu3O7 – y is
cubic. Such an assumption is justified by the fact that
the structure of YBa2Cu3O7 – y can be derived from the
perovskite-type cubic structure [4]. The  compo-

nent of the wave function is a component of the two-
dimensional Eg representation of group Oh. The second
component of this order parameter has the symmetry

. The multidimensionality of the order

parameter plays a key role because the symmetric pow-
ers of a multidimensional representation of any group
always contain nonidentity representations of this
group. In its turn, this leads to the existence of improper
additional orderings in the phases admissible by the
symmetry of the proper order parameter responsible for
the loss of stability in the normal state.

Let us discuss the following example. We assume
that the nth symmetric power of the two-dimensional

1 This work was presented at the Symposium “Order, Disorder, and
Properties of Oxides” (ODPO), Sochi, Russia, 2001.
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irreducible representation related to the (η1, η2) order
parameter contains a certain nonunitary one-dimen-
sional representation related to the ξ order parameter.
Then, there exists at least one invariant of the group
transformation that has the following form:

(1)

where Pn(η1, η2) is the homogeneous polynomial of
degree n. Since |ξ|2 is an invariant, the equation of state
in the Ginzburg–Landau theory for ξ can be written as

(2)

This means that ξ must be nonzero if Pn(η1, η2) ≠ 0.
From Eq. (2), it is clear that the value of improper order
parameter ξ is proportional (to the first approximation)
to the nth (n > 1) power of the proper order parameter.
That is why one usually neglects the improper order
parameters. However, in high-Tc superconductors the
contribution of the s component to the wave function is
small. This can imply that such a contribution can be
described by the improper order parameter.

In this paper, we discuss the role of improper supercon-
ducting order parameters in a hypothetical uniaxial crys-
tal that is isotropic in the basal plane (point group ∞m).
Here, the main channel for pairing is related to the sin-
glet d states. Some experiments with YBa2Cu3O7 – y
suggest that the Bose condensate is insensitive to
anisotropy in the basal plane, whereas the others lead to
the opposite conclusion. The analysis of the isotropic
case should help to clarify the extent to which the crys-
tal field affects the Bose condensate. An additional
stimulus for this study was the argument that the 

and dxy components of spherical harmonics Y2 taken
together form a two-dimensional irreducible represen-

Pn η1 η2,( )ξ* Pn* η1 η2,( )ξ ,+

∂F/∂ξ* αPn η1 η2,( ) βξ+=

+ higher order terms 0.=

d
x

2
y

2
–
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Matrices corresponding to the generators of group G0 in the representation formed by the order parameter (η+, η–, , ) and
in the representations appearing in its symmetric square. The notation in column a is explained in the text; column b presents the
basis functions formed by components of the proper order parameter. The diagonal matrices are shown as the columns consisting
of their diagonal elements

a b gα Cφ σx T

η+ η+ eiα e2iφ

η– η– eiα e–2iφ

e–iα e2iφ

e–iα e–2iφ

ϕ η+η– e2iα 1

ϕ* e–2iα 1

ψ+ e2iα e4iφ

ψ– e2iα e–4iφ

e–2iα e4iφ

e–2iα e–4iφ

(η–)2 1 1

(η–)2 1 1

η+ 1 e4iφ

η– 1 e–4iφ

k+ kx + iky 1 eiφ

k– kx – iky 1 e–iφ

η–* η+*

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

η–* η–*

η+* η+*

1

1
0 1

1 0η–* η+*

η+
2

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

η–
2

ψ–* η–*
2

ψ+* η+*
2

0 1

1 0

0 1

1 0

η–* 0 1

1 0

0 1

1 0η+*

0 1–

1– 0

1–

1–
tation of the point group ∞m. In the context of such an
approach, the expected contribution of the dxy compo-
nents does not seem to be accidental.

2. SYMMETRY AND THE FINE STRUCTURE 
OF THE a  + bdxy STATES 

IN A SUPERCONDUCTOR

The analysis of the symmetry and physical proper-
ties of the ordered d states in a uniaxial superconductor
with zero anisotropy in the basal plane was initiated in
[5]. In this section, we supplement these results with the
description of possible additional improper orderings.

The normal-state symmetry of the superconductor
under study corresponds to the group

where O2 is the two-dimensional complete orthogonal
group in the real space, SO2 is the group of two-dimen-
sional rotations in the spin space, U1 is the group of the
gauge transformations gα, and T is the time reversal.
We consider here the four-dimensional irreducible rep-

d
x

2
y

2
–

G0 O2 SO2 U1 T ,×××=
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resentation of G0 related to the order parameters η± ∝

(  – ) ± 2ikxky and .

The spin rotations do not affect the singlet states,
and group O2 is formed by the two-dimensional rota-
tions Cφ and reflection planes σv normal to the basal
plane; therefore, all matrices of this representation of
group G0 can be represented as products of matrices
corresponding to four generators, gα, Cφ, σx, and T. In
the table, we present the matrices of the generators of
the leading (proper) representation, as well as the
matrices of the generators of representations involved
in its symmetric square. The symmetric square of the
representation according to which η± is transformed
splits into five irreducible representations, two of which
correspond to the superconducting order parameters

(ψ+, ψ–, , , and ϕ, ϕ*), while the others corre-
spond to the nonsuperconducting order parameters.
Later, we discuss only the superconducting order
parameters, since they directly affect the Bose conden-
sate states.

kx
2

ky
2 η±*

ψ–* ψ+*
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It is easy to show that we can construct only two
independent invariants using components of the proper
order parameter; i.e.,

(3)

The superconducting states admissible by the sym-
metry of the proper order parameter (η+, η–, , )
were listed in [5]. According to the Curie principle, if
some structural distortion is admissible by the symme-
try, it must exist. We consider possible phases taking
into account the improper distortions. Sometimes we
use polar coordinates to denote complex parameters
η± = ξ±exp(iΩ±), ψ± = ρ±exp(iω±), and ϕ = λ exp(iΘ).

(I) η– = 0 and η+ ≠ 0. The symmetry of this state cor-
responds to the  + 2idxy component of the wave

function. Its symmetry group H1 can be formed by the
following operations:

Improper order parameters do not affect the symmetry
of the state but refine its structure. The table demon-
strates that the additional orderings described by rela-
tionships ϕ = ψ– = 0, ψ+ ≠ 0, and ω+ = 2Ω+ + 0(π) are
compatible with the H1 symmetry; hence, they exist in
this phase. These relationships can be also obtained
from the equations similar to Eqs. (2). Here, we should
note that ambiguity in the choice of relations between
the phases of the condensates actually means that the
symmetry allows both possibilities, which correspond
to different anti-isostructural phases [6]. Which of them
actually takes place depends on the sign of the constant
of interaction between the proper and improper order
parameters (see Section 4).

(II) |η+ | = |η– | ≠ 0 (cosγ  + sinγdxy, γ = (Ω+ –

Ω–)/2). The symmetry of this superconducting state is
described by the group

Symmetry H2 demands the following additional order-
ings:

The physical meaning of improper order parameters ϕ
and ψ± is clear from the table. The phases of these order
parameters change by 2α under the effect of the gauge
transformation gα. This means that ϕ and ψ± describe
interactions involving complexes of two Cooper pairs
[7]. Transformational properties of improper order
parameters under the effect of rotations Cφ demonstrate
that ϕ and ψ± correspond to the interactions of pairs

J1 η+
2 η–

2
, J2+ η+

2 η–
2
.= =

η–* η+*

d
x

2
y

2
–

H1 g 2φ– Cφ Tσx
C Ω+–,{ } .=

d
x

2
y

2
–

H2 gπCφ/2 Tg Ω+– Ω––( ) σx
C Ω– Ω+–( )/2, ,{ } .=

ϕ 0,≠
Θ Ω+ Ω– 0 π( ),+ +=

ψ+ ψ– 0,≠=

ω± 2Ω± 0 π( ).+=
C

with opposite (s states, L = 0) and unidirectional
(g states, L = 4) orbital moments, respectively.

(III) Phase of the generic type corresponding to the
arbitrary values of η+ and η– (a  + bdxy). The sym-

metry of this state is determined by the kernel of homo-
morphism for the representation according to which the
components of the order parameter (η+, η–, , )
are transformed

In this state, any positive values of ϕ and ψ± are possible
but their phases are strictly correlated with the phases
of the components of the proper order parameter: ω± =
2Ω± + 0(π), Θ = Ω+ + Ω– + 0(π).

3. THE PHASE DIAGRAM FOR d STATES
OF THE UNIAXIAL SUPERCONDUCTOR 

WITHOUT TAKING INTO ACCOUNT IMPROPER 
ORDER PARAMETERS

We discuss the possible mutual arrangement of the
normal state and three superconducting states in the
phase diagram in the context of Landau’s phenomeno-
logical theory. Here, we restrict ourselves to the analy-
sis of homogeneous states and do not take into account
the gradient terms in the Landau potential. In this sec-
tion, we temporarily forget about the existence of
improper order parameters and deal with them in Sec-
tion 4 in order to compare the results.

Further on, we discuss the equations of state and the
stability conditions for their solutions corresponding to
three superconducting phases. Let Φ(J1, J2) be the Lan-
dau potential describing the phase transitions between
possible phases including the normal one. We introduce
notation Φk and Φil for the first and the second deriva-
tives, respectively, of Φ with respect to invariants Jk.
The enumeration of phases coincides with that intro-
duced in Section 2; i.e.,

(I)

Φ1 = 0, Φ2 > 0, Φ11 > 0. (4)

(II)

(5)

(III)

(6)

From the last inequality in (6), we can see that the
expansion of Φ in power series of J1 and J2 should con-

tain the terms with  and  to ensure the existence of
stable solutions to the equations of state corresponding

d
x

2
y

2
–

η–* η+*

H3 gπCφ/2 Tσx
g Ω+– Ω––( )C Ω– Ω+–( )/2,{ } .=

Φ1 η+
2Φ2+ 0,=

Φ2 0, Φ2 2 Φ11 2 η+
2Φ12 η+

4Φ22+ +( ) 0.>+<

Φ1 Φ2 0,= =

Φ22 0, Φ11Φ22 Φ12
2

– 0.> >

J1
2

J2
2
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to phase (III). This means that the minimal model of the
Landau potential should contain the eighth-power
terms in η+ and η–.

(7)

Model (7) involves all possible invariant terms up to
the eighth power in components of the proper order
parameter. To ensure the stability with respect to infi-
nitely large fluctuations, function Φ(η+, η–) should not
have minima at infinity. This implies a positive value of
coefficient a4, and the representative point in the (b2, d)
plane must lie in the shaded region in Fig. 1.

We assume that coefficients a1 and b1 depend on
external effects and the other coefficients are constant.
In Fig. 2, we present the phase diagram corresponding
to potential (7), when the following conditions are met:

(8)

Under these restrictions imposed on the coefficients
of the Landau potential, the phase diagram contains the
maximum number of lines corresponding to the second
order phase transitions. However, as is clear from
Fig. 2, the transition from the normal state to state (II)
is also possible as the first-order phase transition to the
left of point B. The equation determining line BC of the
first-order phase transition can be written as

(9)

Above the BC line, phase (II) exists as a metastable
phase up to the line BA given by the equation

(10)

The phase transitions from states (II), cosγ  +

sinγdxy, and (I),  + 2idxy, to state (III) with an arbi-

trary relationship between the  and dxy conden-

sates are possible as the second-order phase transitions.
It is most convenient to represent the equations for the

Φ a1J1 a2J1
2

b1J2 a3J1
3

+ + +=

+ cJ1J2 a4J1
4

b2J2
2

dJ1
2
J2.+ + +

d 0, c 0, b2 0, a3 0, 4a2b2 c
2

– 0.>> > > >

BC: 27 16a4 4d b2+ +( )2
a1

2

+ 2 4a3 c+( ) 8 4a3 c+( )2[

– 9 16a4 4d b2+ +( ) 4a2 b+( ) ]a1

– 4a3 c+( )2
4a2 b+( )2

+ 16a4 4d b2+ +( ) 4a2 b+( )3
0.=

BA : 108 16a4 4d b2+ +( )2
a1

2

+ 108 4a3 c+( ) 4a3 c+( )2[

– 16a4 4d b2+ +( ) 4a2 b+( ) ]a1

– 9 4a3 c+( )2
4a2 b+( )2

+ 8 16a4 4d b2+ +( ) 4a2 b+( )3
0.=
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corresponding lines in the form of the parametrically
defined functions a1(b1),

(11)

where t is a nonnegative parameter.

Curves OD and OE have a common tangent at the
origin of coordinates

OD : 
a1 4a2t– 12a3 c+( )t

2
– 4 8a4 d+( )t

3
–=

b1 2ct– 2 b2 2d+( )t
2
,–=




OE : 
a1 2a2t– 3a3t

2
– 4a4t

3
–=

b1 ct– dt
2
,–=




da1

db1
--------

2a2

c
--------,=

Fig. 1. The region of stability (shaded in gray) for the Lan-
dau potential (7) with respect to infinitely large fluctuations
of the order parameter. Parabola 1 described by the equation
4a4b2 = d2 and straight line 2 (16a4 + 4d + b2 = 0) are tan-
gent at point K.

a1

b1

A

C
B

D E

O
–4a2

I

II

III

Fig. 2. The phase diagram for the Landau potential (7) in the
space of phenomenological coefficients (a1, b1) when con-
ditions (8) are met. Solid lines indicate the boundaries of the
coexistence between the normal state and phase (II).
Dashed and dotted lines correspond to the first- and second-
order phase transitions, respectively.

16

0
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b2/a4
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i.e., the existence domain for phase (III) near the four-
phase point O is much narrower than that for the other
phases.

4. THE PHASE DIAGRAM FOR THE FOURTH 
POWER MODEL TAKING INTO ACCOUNT 

IMPROPER ORDER PARAMETERS

As mentioned above, only taking account of the
proper order parameter whose components are involved
in invariants (3) results in the need to use the Landau
potential containing the terms up to the eighth power.
For the full phase diagram, this requirement stems from
the need to have all phases that are admissible by the
symmetry of the order parameter. The use of the Lan-
dau potential containing only the terms of lower order
should result in contradictions between the symmetry
analysis based on the group theory and the results of
calculations based on the relevant models.

However, it is necessary to keep in mind that the
phenomenological theory of phase transitions in uncon-
ventional superconductors originated from the general-
ized microscopic Bardeen–Cooper–Schrieffer theory
as a result of using the method of self-consistent field to
average the Hamiltonian that describes the interactions
among quasiparticles [7]. Thus, the applicability of the
Landau theory requires certain validation, which can be
accomplished only by returning to the microscopic
mechanisms of the interactions.

As a rule, the microscopic calculations used in the
modern physics of condensed matter are based on the
methods of quantum field theory. As is well known, the
condition that quantum field theories must be renormal-
izable leads to the exclusion of the Feynman diagrams
containing more than four vertices. Therefore, the
degree of polynomials used in the Lagrangians does not
exceed four [8]. When we pass from the microscopic
models to phenomenological ones, the integration of
the Gibbs partition function can give rise to the terms of
arbitrary order in the series expansion in powers of the
components of the order parameter. However, the coef-
ficients of these terms are not independent and are
determined by a small number of coupling constants. In
other words, the phenomenological theory will be
equivalent, in fact, to the fourth-power Landau poten-
tial.

The improper order parameters help to remove the
contradiction between the group-theory approach and
the requirement imposed on the Landau potential that
only terms of the order no higher than four should be
taken into account. In this section, we demonstrate that
taking the invariants involving improper order parame-
ters into account allows us to include in the phase dia-
gram all phases required by the symmetry of the proper
order parameter.

Using the table, we can find that, in addition to
invariants (3), there also exist the following invariant
C

polynomials:

(12)

Let us choose the Landau potential in the form

(13)

Here, we take into account the terms involving compo-
nents of proper and improper order parameters with
powers no higher than four. The condition for the global
minimum imposes the following restrictions on the
coefficients in (13):

a2 > 0, 4a2 + b > 0, g5 > 0, h > 0. (14)

The ambiguity in the choice of relations between the
phases of the order parameters mentioned in Section 2
is removed by specifying the signs of coefficients g3
and g4 according to the following scheme:

(15)

Nevertheless, the choice among these possibilities does
not affect the phase diagram since only g3 and g4
squared appear in the final expressions.

Here, we discuss only the superconducting states
listed in the previous Section 3; i.e., we assume that the
interactions with the symmetry of order parameters ϕ
and ψ± are not strong enough to form an independent
pairing channel without coupling to the proper order
parameter. Such a requirement allows us to restrict our-
selves to the region of the phase diagram where f > 0,
since at f < 0, the phase determined by conditions ϕ ≠ 0
and η± = ψ± = 0 can exist.

The phase diagram of model (13) is shown in Fig. 3
for the space of coefficients a1 and f. This diagram is topo-
logically equivalent to the phase diagram of model (7)
(see Fig. 2). We retained the same notation for lines and
points and marked them by primes. The coordinates of
these points and the equations of lines are written
below.

J3 η+
2ψ+* η–

2ψ–* η+*
2ψ+ η–*

2ψ–+ + +=

=  2 ξ+
2ρ+ 2Ω+ ω+–( )cos ξ–

2ρ– 2Ω– ω––( )cos+[ ] ,

J4 η+η–ϕ* η+*η–*ϕ+=

=  2ξ+ξ–λ Ω+ Ω– Θ–+( ),cos

J5 ψ+
2 ψ–

2
+ ρ+

2 ρ–
2
,+= =

J6 ϕ 2 λ 2
.= =

ΦI a1J1 a2J1
2

b1J2 f J6+ + +=

+ g3J3 g4J4 g5J5 hJ6
2
.+ + +

g3 0 ω±⇒> 2Ω± π; g3 0 ω±⇒< 2Ω±;=+=

g4 0 Θ⇒> Ω+ Ω– π;+ +=

g4 0 Θ⇒< Ω+ Ω–.+=

O' : a1 0, f
g4

2
g5

b1g5 2g3
2

+
-------------------------;= =
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(16)

Straight line O'E' is parallel to the a1 axis and is tangent
to parabola O'D' at point O'.

(17)

Thus, taking account of improper order parameters
allowed us to avoid involving the high-power terms in
the Landau potential, which are prohibited by the
renormalizability requirement imposed on the theory.

5. CALCULATIONS OF THE GAP 
IN THE ELEMENTARY EXCITATION SPECTRUM 

OF THE BOSE CONDENSATES TAKING 
INTO ACCOUNT IMPROPER ORDER 

PARAMETERS
It is well known that the gap function in the linear

approximation in the components of the order parame-
ter is constructed as the following sum [7]:

(18)

where n and Ψµ(k) are, respectively, the dimension and
the basis function of the representation according to
which the components of the order parameter are trans-
formed.

As was first noted by Yip and Garg [9], we must sup-
plement Eq. (18) with all the terms that are transformed
like Eq. (18) under the effect of elements of group G0.
This is necessary to ensure the full correspondence of
the gap function to the symmetry of the problem and to
avoid, in particular, spurious zeroes prohibited by the
symmetry. To find such terms, we can use the following
theorem.

Let Φ(Jν), ν = 1, …, m, be an arbitrary function of

invariants Jν = Jν(ηµ). Then  = 

transforms as .

For the uniaxial crystal with zero anisotropy in the
basal plane under consideration, the relationship gov-
erning the transformation of the gap function is deter-
mined by the following linear approximation (see table
for the notation):

(19)

B' : a1 0, f
g4

2
g5

4a2 b1+( )g5 2g3
2

–
--------------------------------------------;= =

B'A' : 
1

27h
--------- f

g4
2
g5

4a2 b1+( )g5 2g3
2

–
--------------------------------------------–

 
 
  3

+
g4g5a1

4a2 b1+( )g5 2g3
2

–
-------------------------------------------- 

  2

0.=

O'D' : f
2h

g4
2

------a1
2
.–=

∆ k( ) ηµ*Ψµ k( ),
µ 1=

n

∑=

∂Φ
∂ηµ
--------- ∂Φ

∂Jν
--------

∂Jν

∂ηµ
---------ν 1=

m∑
ηµ*

∆ k( ) η+*k+
2 η–*k–

2
.+=
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To construct the gap function, for simplicity we take
into account only the improper s condensate corre-
sponding to ϕ.

In addition to invariants (3) and (12), we construct
invariants containing the k+ and k– components of the
wavevector; i.e.,

(20)

Then, following the procedure described above, we
find the expression for the gap function in the following
form:

(21)

Here, coefficients Ai are arbitrary functions of all invari-
ants J1, …, J9 . It has been mentioned previously [5] that
∆(k) has no zeroes in phases (I) and (III), whereas there
exists lines of zeroes in phase (II). Let us express the
gap function for phase (II) in polar coordinates as

(22)

where k± = kexp(±iα).
It can be seen from (22) that the lines of zeroes in the

direction α = (Ω+ – Ω–) + (2l + 1)π/4 do not disappear
despite the existence of the additional terms. This is a
direct consequence of the symmetry of phase (II), while
the improper order parameter does not change the sym-
metry of the phases. Nevertheless, modern experimen-
tal techniques provide an opportunity not only to deter-

J7 k+k–,=

J8 k+
4η–η+* k–

4η+η–*,+=

J9 k+
4η+*

2
k–

4η–*
2

+( )ϕ k+
4η–

2
k–

4η+
2

+( )ϕ*.+=

∆ k( ) A1 η+*k+
2 η–*k–

2
+( )=

+ A2η+*η–* η+k–
2 η–k+

2
+( )

+ A3ϕ* η+k–
2 η–k+

2
+( ) A4η+η–ϕ* η+*k+

2 η–*k–
2

+( ).+

∆ k( ) = ξ+k
2

i 2α Ω–+( )–( )exp i 2α Ω+–( )( )exp+( )

× A1 A2ξ+
2

A3λ± A4λξ +
2±+( ),

I

III

II

a1

A'

B'

C'

O'

D' E'

f

Fig. 3. The phase diagram for the Landau potential (13) in
the space of phenomenological coefficients (a1, f). The
notation is the same as in Fig. 2.
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mine the type of zeroes in the elementary excitation
spectrum of the Bose condensates but also to gain more
detailed information on the form of the gap function.
The existence of the distortions in the state of the Bose
condensate caused by improper order parameters can
be significant for the interpretation of such experi-
ments.
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Abstract—The domain structure and its switching mechanism are studied on various cleaved facets of single
crystals of SBN solid solutions. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Single crystals of SrxBa1–xNb2O6 (SBN-x) solid

solutions have the structure of partially disordered
tungsten bronze and are characterized by structural dis-
ordering of Ba and Sr atoms along two structural chan-
nels, in which only five sixths of atomic positions are
occupied [1]. Such disordering results in the spreading
of phase transitions and in considerable nonlinearities
of physical properties. Owing to the ferroelectric nature
of these phase transitions and the comparatively low
values of the transition temperatures, SBN crystals at
room temperature display high values of some parame-
ters, such as electrooptical and nonlinear-optical coeffi-
cients, and, thus, are candidates for applications in
optics. Despite the fact that SBN crystals posses a tet-
ragonal atomic structure and some highly anisotropic
physical properties, there is a temperature (sensitive to
the composition and lying slightly above the transition
temperature) at which these crystals are optically iso-
tropic. In the vicinity of this temperature, SBN crystals
have low birefringence (∆n ≈ 0.01–0.05 at room tem-
perature), which makes it impossible to use them for
frequency multiplication of optical radiation under con-
ditions of true phase synchronism in a spectral band of
up to 2–3 µm [1]. However, SBN crystals could be
potentially used for frequency conversion in a quasi-
phase-matching mode in the presence of regular
domain structures ensuring the spatial modulation of
the sign of nonlinear susceptibility [2, 3]. We note that
due to comparatively low coercive fields, Ec ≈ 1–
4 kV/cm [1], SBN crystals are more attractive for the
formation of regular domain structures than LiNbO3 [2]
(commonly used for this purpose), in which Ec ≈
200 kV/cm.

Several studies were devoted to second-harmonic
generation on regular domain structures in SBN-0.75
and SBN-0.61 [4–6]. During propagation of intense
laser radiation through an SBN-0.6 crystal, diffuse vis-
1063-7745/02/4706- $22.00 © 21023
ible radiation was observed in the bulk of the samples
which was interpreted as a frequency conversion on
incidental domains [3, 7, 8].

In order to estimate the above-mentioned capabili-
ties of the domain structure in SBN, one has to possess
information about the shapes and sizes of domains, the
switching and polarization processes, etc. Only a few
publications on this subject have been devoted to SBN
crystals. Static domain structures in SBN crystals have
been studied using scanning electron microscopy [9],
X-ray diffraction [10], and chemical etching [3]. These
studies revealed in SBN crystals the existence of thin
(spike-shaped) domains about several micrometers in
width and up to 0.5 mm in length. Similar estimates are
yielded from measurements of the intensity of diffuse
frequency-converted radiation [7] and integral scatter-
ing [11]. These data are insufficient for understanding
the mechanisms of organization and switching of
domain ensembles.

The aim of this work is to study the domain structure
of SBN-0.61 and SBN-0.75 crystals by optical methods
at room temperature. The choice of the compositions
was dictated by strong differences in their ferroelectric
phase transition temperatures (approximately 80 and
40°C for SBN-0.61 and SBN-0.75, respectively) which
could not but affect the shape and sizes of domains and
their density.

To avoid a possible misunderstanding in terminol-
ogy, we should note that in relaxor ferroelectrics (to
which the SBN crystals belong [12]) so-called nan-
odomains usually form near a diffuse phase transition,
which were found, for example, for SBN-0.75 [13].
However, the present study deals only with conven-
tional ferroelectric domains, which exist in a much
lower temperature range than Tc and grow in the pres-
ence of an electric field. Of course, one cannot exclude
that the presence of nanodomains affects the nucleation
of conventional domains.
002 MAIK “Nauka/Interperiodica”
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GROWTH OF SINGLE CRYSTALS 
OF SBN SOLID SOLUTIONS

Single crystals of SBN solid solutions were grown
from a melt in the form of volume profiling boules by
using a capillary shaping [14]. The distinctive features
of this method that ensured that crystals of high optical
quality were obtained are (i) the absence of rotation of
a crystal during the growth, (ii) the controlled thermal
conditions of crystallization (the constancy of tempera-
ture gradients in the growth zone due to a precisely
fixed position of the crystallization front), and (iii) the
stability of the cross section of a single-crystal boule.

The typical values of the pulling rate and axial tem-
perature gradient were equal to 6–8 mm/h and
80°C/cm, respectively. The seeds were oriented along
the tetragonal (z) axis. The grown crystals had compo-
sitions SBN-0.61 and SBN-0.75 and dimensions 12 ×
24 × 110 mm.

STATIC DOMAIN STRUCTURE 
OF SBN-0.61 AND SBN-0.75 CRYSTALS

Ferroelectric domains in SBN were observed with
the help of an optical polarizing microscope on glass-
like cleaved facets of two orientations: parallel and per-
pendicular to the polar z axis (nonpolar and polar fac-
ets, respectively).

The preliminarily oriented bars were cleaved by a
direct impact for obtaining nonpolar cleaved facets.
During the impact, a propagating crack is refracted at a
domain wall through a small angle of several degrees.
As a result, the cleaved surface acquires a microrelief,
which can be observed in the reflected light under con-
ditions of normal incidence. This microrelief corre-
sponds to the domain structure at the moment of cleav-
ing and can be well distinguished from the steps and
other cleavage defects.

The domain structure of an SBN-0.61 crystal on a
nonpolar cleaved facet is shown in Fig. 1. The domains

100 µm

Fig. 1. Domains on the (110) plane in the SBN-0.61 crystal.
C

are spike-shaped (with apex angles of about 0.5° or
less) and propagate from the surface deep into the sam-
ple, into a depth range of 0.2–1 mm. Several spike-
shaped domains grow through the whole thickness of
the sample (through domains see the left part of Fig. 1).

For obtaining polar cleavage planes, samples were
subjected to the action of a decreasing sign-alternating
electric field, creating mechanical stresses in crystals
and sometimes resulting in the fracture of a crystal.
Such experiments are described below. The domains of
the polar (001) facet were visualized by decorating with
nematic liquid crystals (NLC) with positive dielectric
anisotropy. This method proved to be very efficient for
studying many ferroelectrics [15–19]. Unfortunately,
the orientational contrast of NLC for domains in SBN
was too weak. Nevertheless, the domain walls were vis-
ible due to the reflection and refraction of light propa-
gating along the walls. This phenomenon is similar to
the Becke effect [20] in crystallooptics, where the role
of the immersion medium is played not by the NLC, but
rather by the solid matrix surrounding the domains, and
the difference in refractive indices is due to the local
electrooptical and piezooptical effects. By focusing the
objective slightly above or below the sample surface,
the Becke strip (which has the form of a domain wall
near the surface) can be positioned such that it enhances
the natural contrast of the NLC (if it exists) or produces
an illusion of three-dimensional relief. The resolution
for this method is 1 µm.

Domain patterns on the (001) plane are shown in
Figs. 2 and 3. The idealized pattern consists of squares

whose sides are parallel to the [110] and [ ] direc-
tions. Taking into account the shape of domains seen on
the nonpolar cleavage surface (Fig. 1), we can conclude
that the idealized spike-shaped domain has the shape of
a sharp tetragonal pyramid (at least at the moment of its
active growth, not during its degradation). One can dis-
tinctly see a periodicity (with a period of 24 µm) in
domain positions along both orthogonal symmetry-
equivalent directions, which results in a chessboard-
type cellular pattern (with a surface domain density of
about 0.5) with a characteristic length of the side of
squares of about 12 µm. In reality, depending on the
method of preparation of the domain structure, the ide-
alized forms become distorted, the angles are rounded,
the periodicity is broken, and the basal planes of pyra-
mids are merged together into multicomponent groups
(Figs. 2 and 3).

Now, we give some details of the preparation of
domain structures observed on the (001) cleavage sur-
faces. A sample (whose structure is shown in Fig. 2)
was prepared by the application of an intense pulse of a
high-ac-voltage discharge to a polished cube with elec-
trodes on the polar faces resulting in the fracture of the
crystal with the formation of the (001) cleaved facet.
This fresh cleavage surface was coated with an NLC. At
the beginning of observation (in the transmitted light) a
regular orthogonal network that looked like a system of

110
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microcracks was seen. After a time, the cells of this net-
work began to be covered with growing domains with a
cross section of several µm, while the microcracks were
being healed. A part of the surface had a chessboard
like arrangement of quasi-square domains. Some of the
domains had tails coinciding with the residual microc-
racks (Fig. 2). The cellular positional long-range order
of domains and the size of cells can be explained by
taking into account growth lamination, the character of
the piezoeffect, and the distribution of elastic strains.
Below (when considering the domain dynamics), it will
again be shown that the domain and growth periods (but
not their directions) are identical.

The domain structure shown in Fig. 3 was obtained
under softer conditions: the sample (cut from the same
crystal) was switched in gradually decreasing (in
amplitude) sign-alternating pulsed electric field and
then was split mechanically and decorated with an NLC
(the orientations in Figs. 2 and 3 differ by 45°, the
frame sides of Fig. 3 are parallel to the [100] and [010]
directions). The resulting domain structure had the
same configuration and average dimensions of quasi-
squared elements as in Fig. 2 (with a surface domain
density of 0.5) but showed no signs of breaking into
microcracks. Besides, the character of the division of
elements into groups was more chaotic, and the long-
range chessboard like order was less pronounced.

A domain structure similar to that shown in Fig. 3.
but with finer details and with a lower surface density
of domains was observed in the SBN-0.75 crystal
(Fig. 4). In all cases, the cellular positional long-range
order of domains observed and the cell size (but not the
domain size) seem to be attributable to the growth lam-
ination of the crystal and the corresponding distribution
of elastic strains.

We also studied the effect of high-temperature
annealing (at ≅ 1000°C) on the domain structure of the
SBN crystals; such treatment, as a rule, is used to
improve the optical homogeneity of these crystals. This
annealing was found to be highly critical for the SBN-
0.75 crystals: the annealing not only removed fine sur-
face domains (monodomenization) but also resulted in
the formation (in the bulk) of phase precipitate crystal-
lites (Fig. 5a) which scattered light and had more or less
isometric and chaotically oriented forms when
observed from the outer side of the polar (001) surfaces.
In [1], such phase precipitates in SBN solid solutions
was associated with a centrosymmetrical monoclinic
phase (we do not consider here the symmetry of phase
precipitates). Crystallites by themselves do not take
part in switching. In cross sections parallel to the polar
axis, the crystallites looked elongated along the [001]
direction (Fig. 5b) and consisted of a nucleus (the phase
precipitate proper) and two coatings grown on them
along and opposite to the polarization vector. These
coatings may be considered as domains formed due to
the charged interphase boundaries. These domains are
internal and actually cannot be visualized on outer
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      200
polar surfaces without cutting or deep etching a sample.
An alternative explanation of the pattern shown in
Fig. 5b may be the existence of precipitates of a cen-
trosymmetrical phase, which are rolled out by a purely
elastic interaction [21] in the paraelectric phase during
the cooling of the sample after annealing.

20 µm

Fig. 2. Domains on the (001) plane in the SBN-0.61 crystal
after chock treatment in a strong electric-field pulse.

50 µm

Fig. 3. Domains on the (001) plane in the SBN-0.61 crystal
without preliminary treatment in a strong electric field.
2



 

1026

        

IVANOV 

 

et al

 

.

             
DOMAIN DYNAMICS IN SBN-0.61 CRYSTALS

Video Recording of the Switching Process

Video recording of the switching process allows one
to see this process in real time and to verify the validity
of the above conclusions. The switching was performed

20 µm

Fig. 4. Domains on the (001) plane in the SBN-0.75 crystal.
C

in a field that was increased by small steps in the vicin-
ity of the coercive field. Such a mode ensured the
almost optimal sharpness and contrast of a dynamic
image at the appropriate magnification. It was difficult
to obtain a satisfactory result by this method, because
the image was not located on the surface but was
formed within a relatively thick layer (in transmitted
polarized light). The optimal visualization in this case
was possible only when the domain density was
approximately equal to 0.5. Figure 6 presents some
snapshots (Fig. 6h gives the scale, with the value of
small scale division being 10 µm). Figures 6a–6d corre-
spond to the dynamic domain structure on the polar
(001) surface under observation along the ferroroelec-
tric z axis through the transparent electrodes with NLC
immersion. In this case, a dynamic NLC method was
used to visualize the domain structure [15–17]. As a
rule, the switching front of many domains is visible. In
an inhomogeneous crystal, this front makes border
around more or less large areas with similar dynamic
characteristics (e.g., a threshold switching field). The
topography of the front usually corresponds to the dis-
tribution of growth defects [19]. Figures 6a and 6b cor-
respond to a more homogeneous crystal. In Fig. 6a, the
switching front is long and fragmentated. It separates
growing polydomain (at the top left of the snapshot)
and decreasing monodomain (on the lower right)
regions. Figure 6b shows the continuation of this pro-
cess (the rapid-switching stage). The next pair of snap-
shots (Figs. 6c, 6d) corresponds to an inhomogeneous
crystal. The inhomogeneous area in the center of
Fig. 6c was initially fringed with the distributed NLC
(as the field reached a certain threshold value), then
20 µm(a) 20 µm(b)

Fig. 5. Phase precipitate crystallites on the outer (001) plane of an SBN-075 crystal plate: (a) after annealing and (b) the section of
the same plate by a plane parallel to the [001] polar axis.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. (a–g) Snapshots and (h) the scale of video recording of the switching process in the SBN-0.61 crystal.
(Fig. 6d) the process went on the same way as in Fig. 6b,
through the formation of new domains. The threshold
field was 2–2.5 kV/cm, which is equal to the static coer-
cive field of the crystal.

The snapshots shown in Fig. 6e and 6f are most
interesting. Figure 6f presents growth stripes (the stria-
tions are typical for this crystal) with a period of about
24 µm. The growth stripes are directed normally to the
polar z axis (the [001] axis in Fig. 6f lies horizontally).
Such growth stripe structure is generally typical for
Czochralski-grown SBN crystals [1]. Figure 6e gives
the visualization on the front (110) plane of the switch-
ing process in a laminated homogeneous sample under
LLOGRAPHY REPORTS      Vol. 47      No. 6      2002
the application of a field along the [001] axis (almost
vertical in Fig. 6e). The visualization is caused by a
local transverse electrooptical effect; variations in
brightness in this case are due to surface domains. The
vertical stripes in Fig. 6e are the growing domains. The
process is in a rapid switching stage at a domain density
of about 0.5; therefore, the width and thickness of a
domain stripe are equal (on average) to the width and
thickness of the matrix stripe, and this ensures an opti-
mal contrast. Even a simple calculation of the number
of stripes shows that the periodicity of both systems
(growth and domain stripes) is actually the same,
although these stripe structures are orthogonal to each
other in the crystal. The domains grown through are not
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pyramidal (unlike the static surface domains shown in
Fig. 1), but prismatic ones.

Finally, Fig. 6g illustrates the case of switching an
inhomogeneously layered crystal in the same geometry
as in Fig. 6e. Visualization was performed in the same
way but with the additional use of decoration with
NLC. The use of NLC did not increase the contrast but
additionally brightened the area of switching between the
growth layers due to the perturbation of the NLC by for-
ward-moving charged domain walls (a kind of dynamic
NLC method). It can be seen that the growth layers can
accumulate charges and screen the switching process.

Hysteresis Loops

It is expedient to relate the domain dynamics to the
shape of ferroelectric hysteresis loops. For inhomoge-
neous system, it is desirable to know data on local pro-
cesses. A suitable quasi-local method for recording
hystereis loops is the electrooptical method [19]. We
present the results of measurements of the transverse
linear electrooptical effect in the SBN-0,61 crystals by
using an He–Ne laser (λ = 6328 Å) for the case where
an electric field was applied along the z axis and the
wave vector was directed normal to z. The crystal bars
had the dimensions ratio l/t = 0.366 (l = 1.38 mm is the
crystal width along the wave vector direction, t = 3.77 mm
is the length along the z axis). The diameter of a light
beam was 0.1 mm. The rc(E) dependence was mea-
sured, where rc = r33 – (no/ne)3r13 ≅  r33 for SBN (the
point symmetry group is 4mm). The sample was sub-
jected to a saw-tooth voltage with an amplitude

E

1

2

3

Fig. 7. Example of a local elecrooptocal hysteresis loop in
the SBN-0.61 crystal and (1–3) its behavior under the suc-
cessive cycles of training. The ordinate is proportional to
the electrooptical coefficient rc/rmax.

rc/rmax
C

2.5 times higher than the coercive field. The time of
recording of the complete cycle of an rc(E) loop was
27 min. By scanning the front surface at room temper-
ature, a set of rc(E) loops was obtained at various points
of the crystal. Figure 7 shows the results of measure-
ments for a representative point, for which a hysteresis
loop exhibits the main characteristics typical of other
observed loops. The labels 1, 2, and 3 indicate the suc-
cessive cycles of switching. The static coercive field
was equal to 2 kV/cm, the bias field in the case under
consideration was equal to zero (the latter field can
reach 0.5 kV/cm for other points). The saturated value
of the electrooptical coefficient rc (for a mechanically
free crystal) corresponded to the half-wave voltage
Vλ/2 = 250 V (normalized to the ratio l/t = 1). The values
of Ec and Vλ/2 obtained are in good agreement with the
published data for SBN-0.61 [1]. The observed varia-
tion in the form and amplitude of rc(E) loops during
cyclic switching is in accordance with earlier observa-
tions of loops differing in shape in several initial cycles
of dielectric hysteresis in the case of switching in quasi-
static fields [22]. This difference can be explained by
processes that are typical for inhomogeneous systems:
“the freezing” or “pinning” of domains (in conven-
tional ferroelectrics) or that of polarized areas and clus-
ters (in relaxor ferroelectrics). Being macroscopic and
volume-sensitive, the electrooptical method cannot dis-
tinguish domains and clusters; however, this method
allows one to estimate the volume fraction of the frozen
part of a crystal (within the region illuminated by the
laser beam) and to construct two-dimensional distribu-
tion maps. Preliminary results of electrooptical scan-
ning are in qualitative agreement with the layered
nature of the crystal and with the results of the video
recording of the front surfaces (x, z).

We can point out the following common features of
the switching process, independent of the specific form
of a quasi-local rc(E, x, z) loop:

(i) The beginning of switching has a threshold
nature and goes fast until a polydomain state with a
domain density of about 0.5 or somewhat higher is
reached.

(ii) The final stage of switching proceeds with diffi-
culty and slowly when the domain density varies from
0.9 to 1.

In other words, even independently of training, the
crystal easily breaks into domains but tends to a mon-
odomain state with a great difficulty. Taking into
account the results of the study of static domains, the
fast stage of switching above the threshold can be asso-
ciated with a free forward growth of spikes, until the
walls become pinned on defects. The slow stage is con-
nected with the process of depinning spikes. It should
also be noted that the domain nuclei are small (micron-
and submicron-sized) and, therefore, virtually do not
contribute to the volume effects but increase light scat-
tering by nonuniformities in a field below the threshold.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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DISCUSSION OF RESULTS

Summing up the results of our research into static
domain structure and domain dynamics in the SBN
crystals, we can single out the following regularities.

These crystals tend to form lengthy domain struc-
tures with domains that have the form of sharp tetrago-
nal pyramids (with apex angles of about 0.5°) extend-
ing from the surface into the depth of the sample. The
domains grown through the whole thickness of the
crystal have the form of tetragonal prisms. The cross-
sectional dimension and the length of the domains are
several micrometers and 0.2–1 mm, respectively. The
domains in aged and nontrained samples are mainly
located near the surface, and the inner volume is almost
monodomain.

The study of the domain dynamics and elecrooptical
hysteresis loops (in longitudinal and transverse geome-
try and also after training) testifies to two stages of the
switching process (we do not consider nucleation here,
because it does not contribute to the volume-sensitive
properties): a comparatively easy stage in which the
beginning of the process of getting the polydomain
state up to a domain density of about 0.5 has a pro-
nounced threshold character, and a hindered stage of
getting single-domain state (an order of magnitude
slower and without a threshold) of the residual part
(about 10% of the volume). Thus, the switching process
can be described as a mainly forward growth of spike-
shaped domains. The sideways motion of domain walls
(at least a part of them) is hindered and requires the
application of higher fields.

There is a well-defined positional long-range order
in the domain arrangement. Direct observation and the
video recording of the switching process confirm the
relationship between the one-dimensional periodicity
of the layered growth structure along the tetragonal axis
and the two-dimensional periodicity of the dynamic
domain structure in the perpendicular plane. The corre-
lation in the periodicity of the mutually orthogonal sys-
tems representing growth layers (according to the ter-
minology used in [21], they can be elastic concentration
domains) and that of the growing ferroelectric domains
can be qualitatively explained as follows.

Let us suppose that a plate with a layered structure
exhibiting a highly anisotropic piezoeffect (|d33 | > |d31|)
is placed into a uniform electric field directed along the
polar axis perpendicular to the layer plane. Suppose
also that a thin cylindrical domain exists in an “active”
growth layer (containing a sufficient amount of pinned
charged defects). Owing to the large value of the piezo-
electric modulus d33, there is a misfit between the
domain and matrix lattices along the z axis, which
results in mechanical stresses, for example, compres-
sion along the z axis, localized at the ends of the
domain. The stresses create a sign-alternating deforma-
tion wave in the layer along the x ' axis (decaying with
distance from the source); the spatial Fourier compo-
nent of this wave is equal to the layer thickness. If the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      200
sign of the transverse piezoelectric modulus d31 is oppo-
site to that of d33 (as is the case in SBN crystals [1]), the
deformation wave in the layer is equivalent to a sign-
alternating shear (compression and tension in the mutu-
ally perpendicular principal directions) in the zx ' plane.
The distribution of piezoelectric charges (and their
signs) over the layer surface will also become periodic,
determining the localized nucleation of new domains in
the regions of the increased field and conserving the
matrix in the neighboring regions of the lowered field.
The tetragonal symmetry and the need to preserve con-
tinuity require phase matching, i.e., the fulfillment of
the same conditions in the zy ' plane. This can be
achieved only in a chessboardlike distribution. The
domains localized in such a cellular way in the active
layer grow towards the surface (because this is the dom-
inant switching mechanism) and reproduce their distri-
bution on the surface. The occurrence of microcracks
can be described in the same way.

The choice of the x ' direction in a habit plane is dic-
tated not only by the symmetry, but also by the possi-
bility of minimizing longitudinal elastic deformation
[21]; therefore, the [110] direction (both for domains
and for microcracks) is more preferable than [100].

The above discussion refers to comparatively large
domains in an electric field or just after a shock effect
(Fig. 2). In the case of fine domains (Fig. 4) or after the
complete relaxation of local elastic stresses on microc-
racks and other surfaces and defects (Fig. 3), the sur-
face energy begins to play a dominant role. Unlike the
elastic energy, the surface energy in a tetragonal crystal
is isotropic in a habit plane; therefore, the forms of
cross sections become rounded. Within a macroscopic
approach, one might expect the form of spike-shaped
domains to becomes conical near the apex.

CONCLUSION

The analysis of static and dynamic domain struc-
tures in SBS crystals shows that the crystals of this fam-
ily, in principle, are attractive for the fabrication of sur-
face and deeply penetrated regular domain structures.
At the same time, because of the formation of spike-
like domains, the surface and volume domain densities
differ considerably; The monodomain state in the bulk
of a uniform crystal is more stable than surface config-
urations. The switching process has two stages: a slow
stage and a fast one. The fast stage has a threshold and
corresponds to the forward growth of spike-shaped
domains. The formation of domain walls is accompa-
nied by the piezoelectric effect (clamping) and elastic
interaction. The inhomogeneity of the layers assists the
pinning of domains on defects and hampers getting sin-
gle-domain state. These mechanisms of the interaction
of domains with a real growth structure, as well as the
features of their piezoelectric interaction, should be
taken into account when considering relaxor behavior.
2
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Abstract—X-ray diffraction studies of K2Ba(NO2)4 crystals were performed in the vicinity of the paraelastic–
ferroelastic phase transition. The structural parameters and the behavior of the spontaneous deformation near
the phase transition were determined. The experimental data were analyzed based on a phenomenological the-
ory. It was shown that the high-temperature phase transition is of the first order. © 2002 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Ferroelastic K2Ba(NO2)4 (KBN) crystals undergo
two ferroelastic phase transitions, at Tc = 420 K (from
6/mmm to mmm) and at 200 K [1]. These phase transi-
tions can be characterized as improper second-order
phase transitions of the order–disorder type and are
related to the ordering of three different, crystallo-
graphically inequivalent NO2 groups [1–6]. According
to [7], the transition occurring at a higher temperature
is accompanied by significant changes in the lattice
vibration spectrum, whereas at the lower temperature
transition, the internal-vibration modes of nitrite ions
are changed. At room temperature, KBN crystals
belong to the Pbam space group (Z = 2) and have the
following unit-cell parameters: a = 11.427 Å, b =
6.604 Å, and c = 6.161 Å [4]. The symmetry of the low-
temperature phase is C2/m (Z = 8), and its unit-cell
parameters are am = 13.062 Å, bm = 12.310 Å, cm =
13.06 Å, and β = 120.00° [8]. Measurements of the
elastic moduli of KBN crystals were performed using
the ultrasonic and Brillouin light scattering techniques
[3, 9]. A phenomenological theory of the low-tempera-
ture phase transition was developed in [10], and a
description of the phase transitions in terms of the frus-
tration theory was given in [11]. Studies of the domain
structure [1, 12] have shown that KBN crystals exhibit
three types of domains and, therefore, six types of
domain walls that meet the compatibility conditions for
spontaneous deformations. All domain walls in KBN
crystals belong to the W type, according to the classifi-
cation of Sapriel [13]. However, the space symmetry of
the paraelastic phase has not yet been determined, and
a phenomenological description of the high-tempera-
ture phase transition has not yet been given. Therefore,
1063-7745/02/4706- $22.00 © 21031
the present work was aimed at creating an X-ray dif-
fraction study of the KBN crystal structure in the vicin-
ity of the paraelastic–ferroelastic phase transition and a
group-theoretical analysis of this transition in terms of
phenomenological theory of phase transitions, as well
as an analysis and comparison of the experimental data
with theoretical predictions.

EXPERIMENTAL RESULTS

The structural studies were performed using a
KUMA KM4 automated diffractometer (CuKα radia-
tion, graphite monochromator). In our calculations, we
used computer program HELXTL93, R = 0.0155.

At 432 K, KBN crystals correspond to the P6/mmm
space group (Z = 1) and have the following unit-cell
parameters: ah = bh = 6.6677 Å, ch = 6.1370 Å, V =
236.24(6) Å3, and dcalcd = 2801 kg/m3. Figures 1a and 1b
show projections of the crystal structure onto the XOY
and YOZ planes, respectively. The atomic positional
and thermal parameters of the atoms are listed in the

Positional (×10–4) and thermal parameters (Uequiv × 10–3) of
atoms for KBN crystals

Atom x y z Uequiv

K(1) 3333 6667 0 40(1)

Ba(1) 0 0 5000 32(1)

N(1) 0 5000 5000 84(6)

O(1) 0 4297(16) 3320(18) 53(3)

N(2) 0 0 0 102(11)

O(2) 0 1468(45) 0 113(14)
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Projections of the KBN crystal structure in the paraelastic phase onto planes (a) XOY and (b) YOZ.
table. Difference Fourier diagrams for the electron den-
sity distribution in the vicinity of different nitrogen
atoms are shown in Fig. 2. The temperature depen-
dences of the lattice constants for the ferroelastic
orthorhombic phase below the Curie point are pre-
sented in Fig. 3. It can be seen from Fig. 3, that lattice
constants a and b increase and c decreases with increas-
ing temperature. At T = Tc, the lattice constants undergo
a small jump. Calculations give the following values for

these jumps: ∆e1 = (a – ah)/ ah = –15 × 10–4, ∆e2 =
(b – ah)/ah = 8 × 10–4, and ∆e3 = (c – ch)/ch = 0.8 × 10–4.
Here, a, b, and c and ah, bh, and ch are the lattice con-
stants for the orthorhombic and hexagonal phases,
respectively. The temperature dependence of the spon-
taneous strain deformations in KBN crystals (ε = ε1 =
−ε2), determined from experimental temperature
dependences of the lattice constants by using the rela-

tionship ε(T) = 1/2 [a(T)/b(T) – 1] [12], is shown in
Fig. 4. It is clearly seen that the spontaneous deforma-

3 3

3

C

tion is a linear function of temperature over a range
roughly 20 K wide. At T = Tc, we see a small jump in
the spontaneous deformation, which is a signature of a
first-order phase transition.

The phase transition from P6/mmm ( ) 

Pbam ( ) in K2Ba(NO2)4 crystals results in the hex-
agonal primitive cell doubling in volume. From the
experimental data on the lattice parameters in the
P6/mmm and Pbam phases, it follows that this phase
transition is related to one of wavevectors b1/2, b2/2, or
b3/2 (Fig. 5). The phase transition is characterized by a
three-component order parameter (ϕ1, ϕ2, ϕ3). The ϕ1 ,
ϕ2 , and ϕ3 components are characterized by wavevec-
tors b1/2, b2/2, and b3/2, respectively. The free-energy
expansion for the phase transition from P6/mmm to
Pbam has the form

(1)

D6h
1

D2h
9

F Fϕ Fe Fϕe,+ +=
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(2)

Here, r = α(T – Tc), Tc is the phase transition point, Cij

are the elastic moduli, and ui  and αi are the phenome-
nological coefficients.

Condensation of the order parameter of the types
(ϕ1 ≠ 0, ϕ2 = 0, and ϕ3 = 0), (ϕ1 = 0, ϕ2 ≠ 0, and ϕ3 = 0),
or (ϕ1 = 0, ϕ2 = 0, ϕ3 ≠ 0) is accompanied by the forma-
tion of domains of three different types, shown in
Figs. 5b–5d, respectively. The order parameter is
related to the orientational ordering of NO2 groups. The
possible types of the orientational ordering of these
groups at the P6/mmm  Pbam phase transition will
be discussed in another paper.

The effective free energy describing the phase tran-
sition in domain ϕ ≡ ϕ1 ≠ 0, ϕ2 = 0, and ϕ3 = 0 (Fig. 5b)
has the form

(3)

The temperature dependences of the order parame-
ter and of the spontaneous-deformation tensor is deter-
mined by the set of equations

(4)

From these equations, we find

Fϕ
1
2
---r ϕ1

2 ϕ2
2 ϕ3

2
+ +( ) uϕ1ϕ2ϕ3+=

+
1
4
---u1 ϕ1

4 ϕ2
4 ϕ3

4
+ +( ) 1

6
---u2 ϕ1

6 ϕ2
6 ϕ3

6
+ +( )+

Fe
1
2
---C11 e1

2
e2

2
+( ) 1

2
---C33e3

2 1
2
---C44 e4

2
e5

2
+( )+ +=

+ C12e1e2 C13e3 e1 e2+( )
C11 C12–

4
----------------------e6

2
,+ +

Fϕe ϕ1
2 ϕ2

2 ϕ3
2

+ +( ) α1 e1 e2+( ) α3e3+[ ]=

+
α2

2
----- 2 3 ϕ2

2 ϕ3
2

–( )e6 2ϕ1
2 ϕ2

2
– ϕ3

2
–( ) e1 e2–( )+[ ] .

Feff
1
2
---rϕ2 1

4
---u1ϕ

4 1
6
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6 1
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---C11 e1

2
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2
+( )+ + +=
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2 1
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2
+( ) C12e1e2+ +

+ C13e3 e1 e2+( )
C11 C12–

4
----------------------e6

2
+

+ α1 e1 e2+( ) α3e3+[ ]ϕ 2 α2 e1 e2–( )ϕ2
.+

∂Feff

∂ϕ
----------- 0,=

∂Feff

∂ei

----------- 0, i 1 … 6., ,= =

e1 ϕ2 C33α1– C13α3+
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2

–
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C11 C12–
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Fig. 2. Difference Fourier diagrams for the electron density
distributions in the vicinity of nitrogen atoms (a) N1 and
(b) N2 for the paraelastic phase of the KBN crystal.
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Fig. 3. Temperature dependences of the KBN lattice con-
stants for the ferroelastic Pbam phase.



1034 KIRPICHNIKOVA et al.
(5)

It is clear from Eqs. (5), that the temperature depen-
dence of the spontaneous deformation tensor is com-
pletely determined by the temperature dependence of
the order parameter squared:

(6)

Substituting Eq. (5) into Eq. (6), we find the tempera-
ture dependence of the order parameter. In the case
where u2 = 0, we get

(7)

e2 ϕ2 C33α1– C13α3+

C33 C11 C12+( ) 2C13
2

–
----------------------------------------------------- ϕ2 α2

C11 C12–
----------------------,+=

e3 ϕ22C13α1 C11 C12+( )α3–

C33 C11 C12+( ) 2C13
2

–
---------------------------------------------------------.=

α T Tc–( ) u1ϕ
2

u2ϕ
4

2α1 e1 e2+( )+ + +

+ 2α2 e1 e2–( ) 2α3e3+ 0.=

ϕ2 α Tc T–( )
ũ1

------------------------,=

0
320

ε

T, K
340 380 420

0.002

0.004

0.006

0.008

0.010

360 400

0.012

Fig. 4. Temperature dependence of spontaneous strain ε =
ε1 = –ε2 in the KBN crystal.
C

where  = u1 + 2α1  –

2α2  + 2α3 .

For an adequate description of the phase transition,
it is necessary to take into account the sixth power of
the order parameter in the free-energy expansion (in
this case, we have u2 ≠ 0, and the stability condition
yields u2 > 0). From Eq. (7), we find

(8)

Near the phase transition point (T ≤ Tc), we have

(9)

From Eqs. (8) and (9), it follows that  < 0 and a step-
wise change in the order parameter occurs at T = Tc,
with the value of the corresponding jump being ∆ϕ2 =

. It is this jump of the order parameter at the phase

transition that leads to jumps in the components of the
spontaneous deformation tensor. The temperature
dependences of the elastic moduli are given by the
expressions

ũ1

2C33α1– 2C13α3+

C33 C11 C12+( ) 2C13
2

–
-----------------------------------------------------

2α2

C11 C12–
----------------------

2C13α1 C11 C12+( )α3–

C33 C11 C12+( ) 2C13
2

–
---------------------------------------------------------

ϕ2 ũ1

2u2
--------–

ũ1

2u2
-------- 1

4u2α Tc T–( )
ũ1

2
--------------------------------+ .–=

ϕ2 ũ1

u2
-----–

α Tc T–( )
ũ1

------------------------.–≈

ũ1

ũ1

u2
--------

∆C11 C11 T Tc< C11 T Tc>–≡
2 α1 α2+( )2

ũ
----------------------------,–=

∆C22 C22 T Tc< C11 T Tc>–≡
2 α1 α2–( )2

ũ
----------------------------,–=

∆C12

2 α1
2 α2

2
–( )

ũ
--------------------------, ∆C33–

2α3
2

ũ
---------,–= =
(a) (b)

(c) (d)

b3

b2a2

a1

Y, b2

X

(e)

Fig. 5. (a) Projection of the KBN crystal habit onto (001) planes, orientation of different crystal axes, and the directions of wavevec-
tors at 300 K. (b–d) Model of domains of different types related to the order parameter condensation of the types (ϕ1 ≠ 0, ϕ2 = 0,
ϕ3 = 0), (ϕ1 = 0, ϕ2 ≠ 0, ϕ3 = 0), and (ϕ1 = 0, ϕ2 = 0, ϕ3 ≠ 0), respectively. (e) A photograph of the domain structure in the KBN
crystal at 300 K.
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Using the experimental values of the elastic moduli
C11 = 3.06 × 1010 N/m2, C12 = 1.47 × 1010 N/m2, C33 =
5.75 × 1010 N/m2, C13 = 2.72 × 1010 N/m2, and
C44 = 0.805 × 1010 N/m2 and 2C66 = C11 – C12, we find the
following values for the phenomenological constants:
α2/α1 = 1.37, α3/α1 = 1.05, and  = 5.54 × 10–10 N/m2.

CONCLUSIONS

We have describe the improper ferroelastic
P6/mmm–Pbam phase transition in K2Ba(NO2)4 crys-
tals by using a free-energy expansion. It was demon-
strated that three types of domains corresponding to
different types of condensation of the order parameter
arise in the ferroelastic phase.

The X-ray diffraction studies showed the existence
of small jumps in the lattice constants observed at Tc .
The calculations demonstrated that the value of the
jump in the order parameter at the phase transition point

is given by the relationship ∆ϕ = . This jump

results in the corresponding jumps in the components
of the spontaneous deformation tensor. Thus, the anal-
ysis of the temperature dependences of the lattice
parameters and of the components of the spontaneous
deformation tensor leads to the conclusion that the
P6/mmm–Pbam phase transition is a first-order, close
to a continuous second-order, phase transition. The
jump in the order parameter can be measured using the
neutron diffraction technique by determining the occu-
pation probabilities and the type of orientational bases

∆C13

2α3 α1 α2+( )
ũ

--------------------------------, ũ– u 2u1ϕ
2
.+= =

ũ

ũ1

u2
--------
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for different NO2 groups, as well as the character of the
ordering.
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Abstract—Large-diameter single crystals of TeO2 are grown by the Czochralski method in specially designed
setups with automatic monitoring of the crystal growth. The degree of perfection of the grown crystals is exam-
ined using selective etching and X-ray topography (the Shultz method). The temperature dependence of the
microhardness of TeO2 single crystals is investigated for different crystallographic planes, namely, (001), (100),
and (110). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Among the crystals currently used as acoustooptic
materials, paratellurite α-TeO2 stands out because of its
unique properties. This material is widely used in vari-
ous devices, especially in wide-aperture deflectors,
spectrum analyzers, and noncollinear filters. The con-
siderable interest expressed by many researchers in
α-TeO2 paratellurite is associated with the fact that this
compound belongs to the rare crystal class 422 and has
no close analogues among solids in terms of the combi-
nation of its physical and chemical properties. This crys-
tal is characterized by an extremely strong elastic anisot-
ropy. The ratio between the maximum and minimum
elastic moduli of α-TeO2 is estimated as Emax/Emin ~ 11,
which substantially exceeds the corresponding ratio for
other crystals.

GROWTH OF PARATELLURITE SINGLE 
CRYSTALS

Single crystals of the TeO2 paratellurite were grown
in CROT-M setups [1], which were specially designed
for crystal growth from melt. Setups of this type are
characterized by small dimensions of the growth cham-
ber and automatic monitoring of the Czochralski
growth of the crystals. In this setup, the rotational speed
of the growing crystal can vary from 0.5 to 100 rpm and
the pulling speed ranges from 0.1 to 10 mm/h. The bal-
ance used in the setup makes it possible to measure
crystals weighing as much as 5 kg with an accuracy of
±0.1 g. The growth of crystals to the required diameter
and the subsequent maintenance of a constant diameter
are controlled automatically. The controlling algorithm
developed at the laboratory is based on the calculation
of the diameter of the growing single crystal from the
measured rate of weight increase. All information on
the growth process is stored and then is processed with
1063-7745/02/4706- $22.00 © 21036
the aim of refining the coefficients of the growth con-
troller. The statistical processing and digital filtering of
input data lead to a considerable increase in the signal-
to-noise ratio and ensure reliable control of the crystal
growth at the threshold of sensitivity of the measuring
elements.

Paratellurite single crystals with a diameter ranging
from 42 to 75 mm and a length of the cylindrical part in
the range from 50 to 70 mm were grown using the
above setup. For the most part, the crystals were grown
on a seed oriented along the (110) plane. Moreover, the
crystals oriented along the [100] axis were grown on a
seed oriented along the (100) plane. The crystallization
was performed at atmospheric pressure in air. Accord-
ing to the spectral chemical analysis, iron ions are the
majority impurities in the initial material and the grown
crystal. The iron content remains unchanged and is
approximately equal to 2 × 10–4 wt %. In the initial
batch, the contents of Ca, Si, Mn, Cu, Pb, V, Ni, and Cr
ions are each approximately equal to 2–3 × 10–5 wt %.
Their content in the grown crystals decreases by one order
of magnitude compared to that in the initial material.

INVESTIGATION OF THE DEGREE 
OF PERFECTION OF TeO2 SINGLE CRYSTALS

The dislocation density was studied by selective
etching. For this purpose, a TeO2 single crystal ~60 mm
in diameter was cut perpendicularly to the growth
direction 〈110〉  into plates ~3 mm thick. The plates
were chemically polished in a 12 M KOH solution and
then were selectively etched in a 50% HCl solution.
The dislocation density was examined using optical
microscopy when scanning the sample with a step of
1 mm through the sample center along the 〈001〉  direc-
tion and in the perpendicular direction. It is found that,
in the crystal, the central region 30 mm in diameter
002 MAIK “Nauka/Interperiodica”
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(a) (b)

[001]

[110]

[001]

[110]

Fig. 1. Patterns of selective etching of the (110) surface of the TeO2 single crystal: (a) the density of dislocations in the central region
of the crystal and (b) the density of dislocations in the transition region of the crystal.

0.1 mm 0.1 mm
exhibits a relatively low dislocation density of ~106 m–2

and has no grain boundaries (Fig. 1a). Along the periph-
ery of this central region (on both its sides), there exist
two grain boundaries extended throughout the crystal
along the 〈001〉  direction. In the crystal, the peripheral
regions ~10 mm thick are characterized by a high dis-
location density of ~109–1010 m–2. Moreover, the
peripheral regions contain inclusions that are fre-
quently extended along the 〈001〉  direction. These
inclusions are surrounded by regions with an increased
dislocation density, most likely, due to relaxation of
elastic stresses around the inclusions. The transition
region ~5 mm thick with a dislocation density of ~107–
108 m–2 is located between the central and peripheral
region of the crystal (Fig. 1b). The high dislocation
density in the peripheral region of the TeO2 single crys-
tal can be associated with the presence of thermoelastic
stresses. The degree of strain of the crystal can be rep-
resented by the relationship ε ~ ρbl, where ρ is the dis-
location density, b is the Burgers vector magnitude, and
l is the distance between the obstacles. By assuming
that ε ~ ∂a/a ~ 10–4, b ~ 10–9 m, and l ~ 10–5 m, we obtain
ρ ~ 106 m–2. This result coincides with the dislocation
density observed in the central region of the TeO2 single
crystal in the experiment.

The paratellurite single crystals were studied by
X-ray topography (the Shultz method) with the use of
radiation of a Cu anode. The diffraction spots formed
by a continuous spectrum exhibit a uniform darkening.
The characteristic lines are represented by straight lines
with a well-resolved doublet without noticeable discon-
tinuities and shifts. This suggests that the TeO2 single
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
crystals have a sufficiently high degree of perfection
and contain no grains with grain-boundary angles
larger than 10′′ .

0 100 200 300 400 500 600
T, °C

1000

2000

3000

H, MPa

Fig. 2. Temperature dependences of the microhardness of
the TeO2 single crystal for different crystallographic planes:
(001) (open circles), (100) (closed circles), and (110) (trian-
gles).
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Fig. 3. Indentation patterns on the (a) (100), (b) (110), and (c) (001) planes of the TeO2 single crystal at 650°C.
MICROHARDNESS MEASUREMENTS 
OF PARATELLURITE SINGLE CRYSTALS

Experimental Technique

Plates 10 × 10 × 2 mm in size were cut along the
(100), (010), (001), and (110) planes from the central
part of a TeO2 single crystal 50 mm in diameter. To
accomplish this, the samples were oriented in accor-
dance with the conoscopic interference patterns to an
accuracy of ~0.5°. The plates were subjected to
mechanical and chemical polishing. The indentation
was carried out with a high-temperature microhardness
tester [2] at the load P = 1.5 N in the range from room
temperature to 650°C. The Vickers indenter was ori-
ented in such a way that indentations had well-defined
edges and the edge cracks thus formed did not cause
any cleavage of the surface [3, 4]. The indentation sides
were parallel to the Z[001] and X[100] crystallographic
axes for the (010) plane, the Z[001] and Y[010] axes for
the (100) plane, the X[100] and Y[010] axes for the
(001) plane, and the Z[001] axis and the [110] direction
CRY
K1C, MPa m1/2

Lef 200 EPS 400 500 600
T, °C

0.05

0.10

0.15

Fig. 4. Temperature dependences of the fracture toughness
coefficient K1C of the TeO2 single crystal for different crys-
tallographic planes: (001) (open circles) and (100) (closed
circles).
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for the (110) plane. The crack directions in the indenta-
tion patterns were analyzed using the stereographic
projections constructed for all the planes under investi-
gation.

Experimental Results

The microhardness H was calculated from the for-
mula H = 1854P/d2 [5], where P is the indenter load and
d is the indentation diagonal. Figure 2 depicts the tem-
perature dependences of the Vickers microhardness HV
of the TeO2 single crystal for the (001), (100), (010),
and (110) planes in the range from room temperature to
650°C. As can be seen from Fig. 2, the (001) plane is
the “hardest” plane of the crystal over the entire tem-
perature range. It is worth noting that this pattern is
most pronounced in the range from room temperature
to 300°C. The microhardness HV of the paratellurite
single crystal slightly decreases with an increase in the
temperature to 300°C and drastically decreases from
~3000 to ~1300 MPa with a further increase in the tem-
perature to 650°C. For the crystallographic planes
(100), (010), and (110), the temperature dependences
of the microhardness HV exhibit a kink at T ~ 450°C.
This indicates a sharp crossover of the deformation
mechanism. As follows from structural considerations,
the crystallographic planes (100) and (010) are charac-
terized by an identical microhardness. The highest plas-
ticity is observed in the (110) plane of the studied crys-
tal. This is in good agreement with the data obtained by
Peter et al. [6], according to which the slip elements
calculated theoretically for TeO2 on the basis of the
elastic energy at the minimum correlate well with the
results of macromechanical measurements. As a rule,
the slip planes in covalent crystals can be more properly
chosen from the consideration of chemical bonds, i.e.,
from the nuclear energies rather than from the elastic
energy at the minimum. However, the anisotropy of
TeO2 single crystals is so strong that the elastic
approach gives the true contribution of the dislocation
activity. For a paratellurite single crystal, the
{110}[110], {010}〈100〉 , and (001)〈100〉  slip systems
are the most probable in terms of the elastic energy.
Judging from the indentation patterns obtained at high
temperatures and the temperature dependences of the
microhardness HV for all the studied planes of the TeO2
single crystal, the crystal remains brittle at temperatures
T < 0.7Tmelt, which is a common feature of all covalent
crystals [7]. It is interesting to note that the cracks in the
vicinity of the indentation on the (100), (001), and
(110) planes persist up to a temperature of 650°C
(Figs. 3a, 3b). The slip bands in the [110] direction on
the (001) plane appear at a temperature of 500°C and
cover the whole crystal at temperatures of 600–650°C;
as a consequence, the radial cracks virtually disappear
(Fig. 3c). Apparently, this stems from the fact that the
deformation of the paratellurite single crystal in the
(001) plane is characterized by the {101}〈101〉  slip sys-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
tem, which most clearly manifests itself in a rutile lat-
tice [8]. According to [6], the above Burgers vector cor-
responds to perfect dislocations with a high energy.

The use of the indentation technique provides infor-
mation not only on the microhardness—a characteristic
correlating with the deformation parameters—but also
on the fracture strength of the studied materials. In par-
ticular, this method makes it possible to estimate the
fracture toughness coefficient K1C along the length C of
the radial cracks formed upon indentation. This coeffi-
cient can be determined from the formula K1C =
0.016(E/H)1/2P/C3/2 [9], where P is the indenter load
and E is the Young modulus. The Young moduli in the
range from room temperature to 100°C were calculated

from the measured elastic moduli . For this purpose,
the velocities of longitudinal and transverse ultrasonic
waves were measured by the ultrasonic pulse-phase
method in the crystallographic directions that were nec-
essary for calculating all the independent components
of the Cik tensor describing the elastic properties [10].
Figure 4 shows the temperature dependences of the
fracture toughness coefficient K1C for the (001) and
(100) planes of the TeO2 single crystal. It follows from
analyzing these dependences that the fracture mecha-
nism of the paratellurite crystal changes at T ~ 450°C.
Most probably, the formation of cracks in the vicinity
of the indentation in the temperature range up to 450°C
is caused by residual elastic stresses and the cracks
grow upon unloading the indenter. At temperatures
above 450°C, the mechanisms of formation and growth
of radial cracks can be associated with plastic deforma-
tion (i.e., with the mobility of dislocations at a crack
tip) and, therefore, can be described by the Arrhenius
kinetic equation dC/dt ~ exp(–U/kT), where U is the
activation energy of plastic deformation.

CONCLUSIONS

The laboratory automated setup, which included
monitoring of the diameter of the crystal during growth,
was designed for the purpose of growing large-diame-
ter paratellurite single crystals by the Czochralski
method.

Paratellurite single crystals with a diameter up to
60 mm and a length of the cylindrical part from 50 to
60 mm were grown.

The crystals grown were examined using selective
etching and X-ray topography (the Shultz method). It
was demonstrated that the TeO2 single crystals have a
high degree of perfection (i.e., they are characterized by
a low dislocation density and have no grain boundaries
in the central region).

The temperature dependences of the microhardness
HV and the fracture toughness K1C were investigated for
the (001), (100), (010), and (110) planes of the paratellu-
rite single crystal. It was demonstrated that, at T ~ 450°C,
the mechanisms of deformation and fracture of the

Cik
E
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TeO2 single crystal change and plastic deformation
becomes the dominant mechanism of elimination of the
material from under the indenter.
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Abstract—The topological properties of phase diagrams of liquid crystals with achiral molecules (mesogens)
were studied for transitions from the isotropic to uniaxial and biaxial phases by using the phenomenological
Landau–de Gennes theory. An isostructural phase transition between two uniaxial nematic phases was investi-
gated. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Typical liquid-crystalline compounds consist of
organic molecules with an anisotropic, e.g., rodlike or
disklike, shape [1]. The rodlike molecules form a
calamitic structure, while the disklike molecules form
discotic or calamitic structures. According to Friedel,
the liquid crystals (LCs) composed of achiral mole-
cules are divided into two types: the nematics (N) and
the smectics (Sm) [2]. The phase transition from the
isotropic (I) to the nematic (N) phase has been the
objective of many theoretical and experimental studies
(see, for example [1, 3–18] and references therein). The
basic property that distinguishes the N phase from an
ordinary liquid is a predominant orientation of the long
molecular axes along a certain direction specified by a
vector n called the Frank director, with the disordered
molecullar centers of gravity like an ordinary isotropic
liquid.

An isotropic liquid has a full orientational and trans-
lational symmetry of the group G = T(3) × O(3). At a
transition to the nematic phase, the translational sym-
metry T(3) is preserved, while the rotational symmetry
O(3) is violated. The symmetry of the calamitic or dis-
cotic N phase corresponds, for achiral molecules, to one
of the following subgroups of the D∞h group: D∞h, C∞h,
C∞v, Dnh, Dnd, Cnh, Cnv, and S2n. Hence, it follows that
nematics can be both uniaxial (Na) and biaxial (Nb). The
Nb phase was first observed in lyotropic [5] and then, in
thermotropic [6, 9] LCs. In thermotropic LCs, the
mesophases are formed as the temperature is changed,
while in the lyotropic LCs, these phases are formed

1 This work was presented at the Symposium “Phase Transitions in
Solid Solutions and Alloys” (OMA-II), Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 21041
during the dissolution of the rodlike or disklike mole-
cules in a liquid. Experimental studies [1, 3–8] have
shown that the I–N transition is always of the first order
but is weakly marked thermodynamically (the latent
heat of the transition is about 1 kJ/mol). There are sev-
eral approaches to the theoretical description of this
transition. In the molecular-field theory [10–18], one
starts with choosing a model for the intermolecular-
interaction energy. Then, the anisotropic field acting on
one particle is calculated. Such calculations call for a
knowledge of the pair correlation function. The original
version of the mean-field theory is the model proposed
by Onsager [10], who introduced the repulsive forces
related to the shape anisotropy of solid rods (whose
thickness is much smaller than their length). An orien-
tational order is attained at a certain density of rods: the
free energy minimum corresponds to the I phase at low
density and to the N phase at high density. In the Meier–
Saupe theory, the formation of the ordered N phase is
related to the anisotropic part of an intermolecular
interaction (the shape anisotropy is neglected) [11]. In
[12, 13], both the short-range repulsive forces due to
the solid cores of molecules and the angle-dependent
long-range attractive forces are taken into account. In
recent years, computer modeling methods have become
very popular [14, 15]. However, due to the lack of an
exact expression for the intermolecular interaction, the
results are approximate.

In order to interpret experimental results and predict
new phases, the phenomenological Landau–de Gennes
theory [1] is generally employed. In this theory, the
thermodynamic potential is expressed in terms of an
order parameter and its derivatives. The Landau–de
Gennes theory is most attractive from the physical
002 MAIK “Nauka/Interperiodica”
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standpoint and is mathematically convenient. This the-
ory also offers many advantages in describing phase
diagrams. Despite the widespread application of the
Landau–de Gennes theory to the description of phase
transitions in LCs (in particular, the I–N transition)
[1, 3–8, 16], no complete study of the specific features
of the isotropic–nematic phase diagrams has been per-
formed, as yet. For example, the qualitative phase dia-
gram presented in [16] contains a number of topologi-
cal errors. In this paper, we study all of the specific fea-
tures of the complete phase diagram for the transition
from the I to the N phase (including Na, Nb, and reen-
trant Nr phases) by using the phenomenological Landau
theory of phase transitions.

MODEL THERMODYNAMIC POTENTIAL

In order to describe the behavior of physical quanti-
ties and the specific features of a phase diagram in
terms of the Landau theory of phase transitions, an
order parameter and a model thermodynamic potential
should be chosen. At the I–N transition in a system with
achiral molecules, the order parameter describing the
orientational order transforms according to an irreduc-
ible representation of the group G0 = O(3). The orienta-
tion distribution function of anisotropic molecules
depends on the coordinate r and the director n and can
generally be written as

(1)

where Ylm(n) are spherical functions and ρlm(r) are ten-
sors which transform according to an irreducible repre-
sentation of G0. For a transition to the nematic phase,
we have l = 2. Following [1], we assume the order
parameter to be a symmetric traceless tensor Qnm.

The eigenvalues are taken in the form (–1/2(η1 + η2);

–1/2(η1 – η2); η1). In this case, the integral rational
basis of invariants is

(2)

Generally, the order parameter depends on r and the
free energy must contain derivative-dependent invari-
ants describing the Frank elastic energy

(3)

Here, K1, K2, and K3 are the splay, twist, and bend elas-
tic constants, respectively. For calamitic achiral LCs,
the inequalities K3 > K1 > K2 > 0 usually hold, while for
discotic LCs, we have K2 > K1 > K3 > 0 [8]. In this case,
an equilibrium state corresponds to the solution n =
const. Then, the thermodynamic potential for the I–N

ρ r n,( ) Σρlm r( )Ylm n( ),=

3

3

I1 2/3 Sp Q2( ) η1
2 η2

2
+( );= =

I2 4/3Sp Q3( ) η1
3

3η1η2
2

–( ).= =

Fel 1/2 K1 div n( )2
K2 n rot n( )2

+(=

+ K3 n rot n×( )2 ).
C

transition has the form

(4)

From the set of equations of state

(5)

where Fi = ∂F/∂Ii  (i = 1, 2), we find solutions corre-
sponding to four different phases:

(6)

Here, the solution  (η1 > 0) corresponds to the

uniaxial calamitic phase,  (η1 < 0), to the discotic
phase, and Nb, to the biaxial phase. The stability of the
phases is determined by the condition that the matrices
of the second derivatives Hik = ∂2F/∂ηi∂ηk be positively
definite. The set of equations (5) for the Nb phase can
then be written as

(7)

while the stability condition is F11F22 –  > 0, where
Fik = ∂2F/∂Ii∂Ik. Hence, it follows that, when analysing
the stability of the Nb phase, we have to take into
account the terms of the 2nth order, where n is the high-
est degree of the basis invariants (in our case, n = 3). As
shown below, in order to describe the transition to the
reentrant uniaxial phase, we have to take into account
the terms of the eighth order in η1 and η2:

(8)

Model thermodynamic potential (8) involves nine
phenomenological parameters: a1, a2, a3, a4, b1, b2, c12,
c112, and c122. Let us first consider a simplified (to the
sixth order) model to study the specific features of the
phase diagram that are retained in model (8):

(9)

The model with an account for the sixth-power
terms was discussed previously under the assumption
that c12 = 0 [8]. Below, we show that the inclusion of the
c12I1I2 term allows one to describe two interesting,
experimentally observed phenomena: an isostructural

transition in the uniaxial  phase at c12 > 0 (in the 
phase at c12 < 0) and a first-order transition between
uniaxial phases. Within the model of thermodynamic
potential (9), the global minimum of the solutions to the
set of equations of states (the case where all the phases
are stable for finite values of the order parameter)
requires that a3 + b2 > 0 and a3 > 0. In the Landau theory

Φ η1 η2,( ) F I1 I2,( ).=

∂Φ/∂η1 2F1η1 3F2 η1
2 η2

2
–( )+ 0= =

∂Φ/∂η2 2F1η2 6F2η1η2– 0,= =



I  : η1 0, η2 0; Na
±
: η1 0, η2≠ 0;= = =

Nb: η1 0, η2 0.≠ ≠

Na
+

Na
–

F1 0, F2 0,= =

F12
2

F a1I1 a2I1
2

a3I1
3

a4I1
4

b1I2 b2I2
2

+ + + + +=

+ c12I1I2 c112I1
2
I2 c122I1I2

2
.+ +

F a1I1 a2I1
2

a3I1
3

b1I2 b2I2
2

c12I1I2.+ + + + +=

Na
–

Na
+
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of phase transitions, the temperature dependence of

only one phenomenological parameter, a1 = (T –
T*), is assumed (see, for example, review [8]). In this
work, we study the phase diagram while under the
assumption that three variable parameters, namely, a1,
b1, and a2, depend on external conditions in a thermo-
stat. The nonvariable parameters of the potential are
determined from experimental data. Experimental data
on the following quantities are most frequently used to
study LCs: (1) the transition temperatures, determined
by optical and calorimetric methods; (2) the change in
the density on the transition, ∆ρ, determined by dilato-
metric methods; (3) the entropy and enthalpy of the
transition, measured with the aid of classical adiabatic
calorimetry; (4) the jump in the order parameter at the
transition; and (5) the value dTP/dP, determined from
the dependence of the transition temperature TP on an
external pressure, and the jumps ∆CP, ∆α, and ∆K,
where CP(T), α(T), and K(T) are the specific heat at
constant pressure, the coefficient of thermal expansion,
and isothermal compressibility, respectively. The sin-
gular points on a phase diagram, whose coordinates are
determined by the parameters of the model potential,
are also of interest. In this work, we determine the coor-
dinates of the triple points, the critical point of an isos-
tructural transition of the liquid–vapor type, and the tri-
critical points.

PHASE DIAGRAM

Uniaxial Phases

Let us consider the regions of stability for the 
uniaxial nematic phases. The state equation for these
phases has the form

(10)

For the sake of precision, we assume that c12 > 0 (the
phase diagram for c12 < 0 can be obtained through the
replacements η1  –η1 , b1  –b1). The degeneracy
conditions for the matrices of second derivatives break
into two equations:

(11)

(12)

Equations (10)–(12) determine the bifurcation val-
ues of variable parameters in the space R3 = {a1, b1, a2}.
For convenience, we shall study the phase diagrams in
planar cross sections R2 = {a1, b1} for different values
of a2. From Eqs. (10) and (11), we obtain a curve in the

a1
0

Na
±

η1 2a1 3b1η1 4a2η1
2

5c12η1
3

+ + +[

+ 6 a3 b2+( )η1
4 ] 0.=

3b1 8a2η1
2

15c12η1
3

24 a3 b2+( )η1
4

+ + + 0,=

b1 c12η1
2

2b2η1
3

+ + 0.=
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parametric form (Fig. 1)

(13)

Curve (13) specifies the regions of stability of the
solutions to the equation of state (10); the equilibrium

values of the solutions correspond to the  phases. At

0 ≤ a2 < , there are two cuspidal points, Q

and Q1 (Fig. 1b), in curve (13); their coordinates can be
found by substituting into Eq. (13) the quantity

(14)

It follows from Eq. (11) that the existence of the Q
and Q1 points is possible at c12 > 0 and c12 < 0 for the

 and  phases, respectively (compare with [16]).
In the region bounded by the TQQ1 curve, the state
equations have four solutions (two minima and two

maxima) corresponding to two  (c12 > 0) phases of
the same symmetry but differing in the η1 values. An

isomorphous (I)  (II) phase transition occurs
along the TQ line, terminating at point Q (a critical
point of the liquid–vapor type). There is a jump in the
order parameter at this transition.

The second condition of the degeneracy of Hik

[Eq. (12)] corresponds to the stability of the  phases
against biaxial heterogeneous fluctuations. The topol-
ogy of curves (12) on the R2 = {a1, b1} plane varies in
the following way for changes in the parameter a2: at
a2 > a2(Q), the curves with η1 > 0 and η1 < 0, which

have a common tangent a1 = b1, converge at a qua-

druple point O(0, 0) (Fig. 1a); at a2 <  these curves

intersect (Fig. 1c) at point P:

(15)

where ∆ = 4a2b2 – . In the region bounded by por-

tions OP (η1 > 0) and OP (η1 < 0), the  and 
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4
,+ +=
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Fig. 1. Phase diagrams in the space R2 = (a1, b1) for the potential F(η1, η2) (a–c) in the form of Eq. (9) (at a3 = 0.03, c12 = 1, b2 = 1)
and (d) different a2 values and in the form of Eq. (8). Solid curves represent the first-order transitions; dashed curves, the second-
order transitions; dotted curves correspond to the maximum bistability of the Nb phase [Eq. (20)]; the dot-and-dash curves are the
curves along which the phases become unstable; and the straight lines are thermodynamic paths for different α and β values.
uniaxial phases coexist and a first-order phase transi-

tion –  occurs between them.

Biaxial Nematic Phase

The existence of the biaxial phase Nb was first pre-
dicted in [3], in the framework of the Landau–de
Gennes theory. A transition to the Nb phase was shown
[3] to be possible in a system consisting of a mixture of
cylindrical and disklike molecules. For this system, the
stability region of the Nb phase lies between the stabil-

ity regions of the  (cylinders) and  (disks) phases
and is separated by curves of second-order transitions,
which converge at one point to the curve of the first-

order I–  phase transitions. Experimental studies of
lyotropic [5], thermotropic [6, 7], and polymer LCs
confirmed the possibility of the existence of the Nb

phase. It was assumed in [4, 7] that the thermotropic Nb

phase can be obtained by synthezing molecules

Na
+

Na
–

Na
+

Na
–

Na
±

C

(mesogens) which exhibit the combined properties of
disks and cylinders. In principle, the Nb phase can form
in a single-component system for the following rea-
sons: (1) a change in the effective molecular symmetry,
(2) strong intermolecular interaction resulting in the
formation of molecular aggregates with biaxial symme-
try, (3) the mixing of rodlike and disklike molecules
close in size and shape, and (4) the application of an
external field which affects the effective molecular
symmetry.

In the present work, we consider phase diagrams for
the first two cases. The variable parameters a1, b1, and
a2 are functions of external parameters, namely, the
temperature T and the parameter λ, which specifies the
shape of a molecule. In the first case, the effective
molecular symmetry is changed, due to transitions of
the molecules from the rodlike type to the disklike type.
The second case is realized in lyotropic systems with
amphiphilic (soaplike) molecules dissolved in water. In
such solutions, the molecules form clusters (micelles),
in which the hydrophilic groups are located at the sur-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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face, thus improving contact with water [3, 6]. The
micelles behave like large-sized molecules which
change their shape (depending on the temperature, con-
centration, and, sometimes, an additional solvent) to

form the , , and Nb nematic phases.

Within model (9), the set of equations of state for the
Nb phase has the form

(16)

The determinant of the matrix of second derivatives

Hik =  (i = 1, 2) equals

(17)

From Eq. (17), it follows that, if one of the two con-

ditions, η2 = 0 or  = 3 , is met, the degeneracy con-
ditions for the ||Hik || matrix coincide with Eq. (12). The

second condition at 4a2b2 –  ≤ 0 defines a straight
line, which is tangent to curve (12) at points K1 and K2
(Fig. 1c).

Figure 1a shows the phase diagram for a2 > a2(Q).

The curves of the –Nb and –Nb second-order

phase transitions, as well as the curves of the I–  and

I–  first-order phase transitions, converge at the qua-
druple point O.

At  < a2 < , there is a region of coex-

istence of the (I) and (II) phases on the phase
diagram (Fig. 1b). An isostructural transition between
these phases occurs along the line TQ, terminating at
the critical point Q. At the triple point T, the curve of the
isostructural phase transition is approached by the

curve of the I– (II) first-order phase transition (these
curves have a tangent in common at this point) and, at

an angle, by the curve of the I– (I) first-order phase
transition.

At 0 < a <  (∆ ≤ 0) (Fig. 1c), there is a point P

(15) on the phase diagram at which the two curves of
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the –  and –Nb first-order phase transitions and

the curve of the –Nb second-order phase transition
converge.

DISCUSSION

In order to study the behavior of the order parameter
and other physical quantities during the change of one
external parameter (e.g., the temperature), one has to
choose a thermodynamic path on the phase diagram:

(18)

The position of this line (which specifies the
sequence of phase transitions induced by a change in
temperature) is determined by the α and β values.

The following phase-transition sequence is realized

along the thermodynamic path shown in Fig. 1a: I– –

Nb– –Nbr . At point L1 , the I–  first-order phase

transition takes place. In the  phases, the state equa-
tion (10) admits of the solutions of three types:

(19)

Figures 2a and 2e show equipotential lines of the

thermodynamic potential in the  and  phases,
respectively. Solutions (19) describe three types of

domains in the  phase ( , , and ). For

the  domain, we choose the laboratory system of
coordinates with the z axis parallel to the director,
which specifies the orientation of long molecular axes
in the calamitic phase. In this coordinate system (η1 >
0, η2 = 0), the eigenvalues of the order parameter tensor
Qik have the form: –η1/2, –η1/2, and η1 . The largest
eigenvalue, Qzz = η1 , corresponds to the eigenvector
η1(0, 0, 1), which specifies the director. The second
eigenvalue Qxx = Qyy = –η1/2 is doubly degenerate and
corresponds to an arbitrary vector (λ1, λ2, 0), which lies
in the xy plane normal to the z axis. The projection of
the director onto this plane rotates in an arbitrary way,
having no definite direction (uniaxial symmetry). At
point L2 of the thermodynamic path, the transition to
the Nb phase occurs, in which all the three eigenvalues

are different: 1/2(η1 – η2), –1/2(η1 + η2), and η1.
In the Nb phase, the solutions to the system of equations
admit six types of domains (Figs. 2b–2d). The eigenval-
ues Qxx, Qyy, and Qzz correspond to three eigenvectors,
and the phase symmetry is biaxial. The determination
of the Nb phase biaxiality becomes a nontrivial problem
and depends on the director orientation. We define the
biaxiality as the minimum of the three possible values
bik = Qii – Qkk, where i, k = x, y, z; the director is parallel
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Fig. 2. Equipotential lines for the free energy F(η1, η2) in the form of Eq. (9) (at a3 = 0.03, c12 = 1, b2 = 1) in the space R2 = (η1, η2)
for different parameters a1 and b1: (a) a1 = –0.025 and b1 = –0.04, (b) a1 = –0.125 and b1 = –0.1, (c) a1 = –0.13 and b1 = –0.1,
(d) a1 = –0.2 and b1 = –0.06, (e) a1 = –0.2 and b1 = 0.02, and (f) a1 = –0.0025 and b1 = 0.015.
to the axis normal to the biaxiality plane. In our case,

near to the –Nb transition the biaxiality is bxy = Qxx –
Qyy (domain with η1 > 0, η2 = 0), the director being par-
allel to the z axis. As the external conditions change
along the thermodynamic path (Fig. 1a), the values of
biaxiality become equal at point L3 . From the condi-

tions bxy = bzy = η2 and bzy = 1/2(3η1 + η2), it fol-

lows that η2 = –(1/ )η1 (at η2 = (1/ )η1, we have
bxy = bzx). On the phase diagram, this condition deter-
mines a curve (Fig. 1a)

(20)

Na
+

3 3

3 3

a1 2a2I1– 3a3I1
2
, b1– c12I1,–= =
C

in which two equivalent director orientations exist and
the biaxiality reaches a maximum. As the  phase is
more closely approached, the biaxiality bxy > bzy (or
bxy > bzx). In this case, the director is parallel to the
eigenvector corresponding to the minimum eigenvalue
Qxx (or Qyy). At point L4, the transition to the  phase
occurs. In this phase, the eigenvalues become degener-
ate, Qyy = Qzz (or Qxx = Qzz), and the director of the dis-
cotic phase (normal to the disk plane) is parallel to the
x axis (or y axis); that is, the director rotates through an
angle of π/2 during the transition from the  to the 
phase via the Nb phase.

Na
–

Na
–

Na
+

Na
–
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Figure 1b shows the thermodynamic path that inter-
sects the curve of the isostructural phase transition in

the uniaxial  (c12 > 0) or  (c12 < 0) phases at point
M1. At this transition, the symmetry of the uniaxial
phase, D∞h, persists, but the order parameter exhibits a
jump (η1(I) < η1(II), η2(I) = η2(II) = 0). Within the
region bounded by the coexistence curve of two phases,

(I) and (II), the solutions to the state equation
correspond to two minima of the potential F(η1, η2)
(Fig. 2f), which become equal under the external con-
ditions specified by the point M1 on the phase diagram
(Fig. 1b). The jump in the order parameter at the

(I)  (II) transition results in an increase in
the degree of molecular orientational order. If, for
example, the concentration of molecules in a mixture is
varied, a thermodynamic path can share no common
points with the curve of the isostructural phase transi-
tion that terminates at the critical point Q. In this case,
there will be a smooth anomaly in the temperature
dependence of the order parameter. In [18], such an iso-
structural (N1–Nd) transition was observed in the vicin-
ity of the transition to the smectic-A phase. The transi-
tion predicted by us occurs in the vicinity of the I–Na

transition and terminates at the triple point T (Fig. 1b),

transforming into the I– (II) first-order transition.
Point T is approached, at an angle, by the curve of the

I– (I) first order phase transition. We emphasize that
this transition is only realized in small ranges of the
model parameters and, by analogy with the blue phase
BPIII, can be observed in narrow temperature and con-
centration ranges.

The c12I1I2 invariant is also important for the
description of the transition to the reentrant Nbr phase
(Fig. 1a).

The invariant c112 I2 is important when describing
a transition to the reentrant uniaxial phase (Fig. 1d).
Experimentally, such a sequence was observed in a
potassium laurate–1-decanol–D2O mixture at 25.95 <
CK < 26.1% [5]. In the phase diagram for this case
(Fig. 1d), there are two triple points, T1 and T2, at which

the curves of the   ,   Nb, and  

Nb transitions converge. Here, the   Nb first-
order phase transitions are possible, which transform
into second-order transitions at the tricritical points K1

and K2 (Fig. 1d).

It is worth noting, that at a2 < 0 a direct first-order
phase transition from the isotropic I to the biaxial Nb

phase is possible [19].
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CONCLUSIONS

We have performed a complete analysis of the spe-
cific features of the phase diagram for the model ther-
modynamic potential involving an order parameter Qik

which characterizes the transitions from the isotropic I

to the nematic  and Nb phases. This order parameter
characterizes the long-range orientational order of the
molecules (mesogens). The hierarchy of the levels of
the structural organization in LCs (due to the absence of
translational symmetry, anisotropic shape of mole-
cules, and the possibility of their aggregation) can be
separated into the following three levels of order: the
molecular (short-range), the supermolecular (medium-
range), and the macroscopic (long-range). Each level is
characterized by a set of parameters relevant to the
symmetry and structure of the structural order. For the
segregation of molecules, e.g., in solutions of
amphiphilic molecules and gels, the local order is spec-
ified by the shape of mesogens and gels. It is well
known that the local symmetry of mesogens and gels
can change with the temperature (in thermotropic LCs)
and the solvent concentration (in the lyotropic LCs) [8].
According to the Landau theory, a change in symmetry
must be characterized by an order parameter and can be
considered as a phase transition between different
forms, which are the stable states (phases). The relevant
order parameter ξ = (ξ1, ξ2, …, ξn) (being, generally,
n-component) transforms according to a representation
of the group G0, characterizing the symmetry of the
starting mesogen (gel). A change in the form is dictated,
by analogy with crystals, by instability of the relatively
small homogeneous deformations and is described by a
system of inequalities for the elastic moduli of the sec-
ond and higher orders; that is, a change in the form is
determined by the components of the strain tensor uik

(i, k = x, y, z), which transform according to the sym-
metric square of the vector representation of the G0

symmetry group. Generally, this representation is
reducible and should be decomposed into irreducible
representations. For instance, the representation for a
mesogen with cubic (G0 = Oh) or spherical G0 = O(3)
shape decomposes into three representations: one-
dimensional (A), two-dimensional (E), and three-
dimensional (T) [19]. The one-dimensional, fully sym-
metric representation characterizes transformations of
the order parameter

(21)

which specifies a change in the mesogen volume. The
two-dimensional representation characterizes transfor-
mations of the linear combination of the uik components

(22)

Na
±

ξ1 uxx uyy uzz,+ +=

ξ2 1/ 6( ) 2uzz uxx– uyy–( ),=

ξ3 1/ 2( ) uxx uyy–( ).=
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The integral rational basis of invariants consists of
two functions

(23)

A comparison of Eqs. (2) and (23) shows that the
invariants specifying the homogeneous elastic defor-
mations of the mesogen and the macroscopic orienta-
tion are identical. This implies that the phase diagrams
for Qik in the space R3(a1, b1, a2) and in the space of
elastic moduli are topologically equivalent [20]:

(24)

where Clm, Clmk, and Clmkn are the elastic constants of the
second, third, and fourth order, respectively. The I phase
corresponds to the cubic (spherical) shape of the

mesogen; the  phase, to the tetragonal shape (uniax-
ial ellipsoid); and the Nb phase, to the orthorhombic
shape (biaxial ellipsoid). The three-dimensional repre-
sentation characterizes transformations of the shear
components of the uik tensor

(25)

The description of an effect of the shape of
mesogens and gels on the LC structure involves the
study of a thermodynamic potential which includes
interaction between the order parameters ξ = (ξ1, ξ2, …,
ξn) and Qik. For a two-component order parameter ξ =
(ξ2, ξ3) and for highly symmetric structures, the inter-
action has the form

(26)

The study of this thermodynamic potential is in
progress.

The above approach enables one to explain the
behavior of acrylamide gels dissolved in an acetone–
water mixture [21], where the size varies jumpwise
with temperature and concentration, with the form
being preserved. In this case, ξ1 can be chosen as the
order parameter. Within the model

(27)

the isostructural phase transition involving a change in
ξ1 (volume) is possible [22]. This transition terminates
at a critical point of the liquid–vapor type, which was
actually observed in [21]. The parameters A, B, C, and
D in Eq. (27) are expressed in terms of the elastic con-
stants Clm, Clmk, … [20]. During the preparation of the
manuscript, the authors became acquainted with the
results of the publication [23], in which the properties
of thermotropic liquid-crystalline polymers composed
of hard mesogens linked by “spacers” with different
flexibilities were studied. Two nematic phases (highly
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2 ξ3
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3
3ξ2ξ3
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.–= =
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2

Cξ1
3

Dξ1
4
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nematic phase and weakly nematic phase) were
observed depending on the temperature and spacing
length; these phases differ in the decree of the order.
The phase transition between these phases occurs in a
region close to the isotropic phase, and the phase dia-
gram obtained in the framework of the Flory theory and
the Meier–Saupe model [23] is topologically equivalent
to that shown in Fig. 1b.
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Formation of Zinc Oxide Quasibicrystal Structures1
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Abstract—Quasibicrystal structures with interblock boundaries of epitaxial zinc oxide layers on a sapphire
substrate along a given direction have been obtained for producing submicron electronic devices. It is shown

that the use of the buffer technique allows one to grow on one ( ) α-Al2O3 substrate ZnO layers oriented

in the ( ) and (0001) planes with clearly pronounced interlayer boundaries. The morphology and structural
characteristics of these layers are studied. © 2002 MAIK “Nauka/Interperiodica”.
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1120
1 It is well known that bicrystal substrates are widely
used for the formation of grain boundaries in epitaxial
layers in submicron electronic devices. The Y–Ba–Cu–O
Josephson HTSQ-transitions and their chains [1, 2],
devices with extremely high magnetoresistance based
on rare-earth manganites [3], etc., are, as a rule, much
more efficient (from several times to several orders of
magnitude) than analogous devices manufactured
according to the conventional planar technology. These
devices require searching for special bicrystals and sub-
strates which would provide a clearly pronounced
structural transition along a certain direction.

Below, we propose a method for preparing quasibi-
crystal structures—the formation of grain boundaries in
epitaxial layers along a fixed specified orientation of
the substrate. Such a boundary, or a set of such bound-
aries, can be formed at any part of the substrate depend-
ing on the character of the problem to be solved. We
selected the α-sapphire substrate, which is very popular
in practice, and zinc oxide as an object to form grain
boundaries. It is evident that the choice of both sub-
strate and object is rather arbitrary, and, in fact, any
high-temperature oxide can be used as an object. At the
same time, we believe that zinc oxide is especially
interesting, because the nonlinear conduction of grain
boundaries of special ZnO-based ceramics is success-
fully used in varistors [4]. It seems that the proposed
method can be used as a variant for obtaining planar
varistor devices.

In our experiments, we used ( )-oriented Al2O3

substrates 2 × 2 cm2 in size. Preliminarily, a part of the
substrate was screened, whereas the other part was
coated (magnetron sputtering) with a 20 to 100-nm-thick
zinc oxide film. This method allows one to obtain layers
of basal orientation (at least, at substrate temperatures

1 This study was submitted to the Symposium “Phase Transitions
in Solid Solutions and Alloys” (OMA), Sochi, Russia, 2001.
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of up to 600 K) irrespective of the material and sub-
strate orientation [4, 5]. Then, the substrate was placed
into a flow-type reactor under a low pressure, and zinc
oxide [6] layers were grown by chemical transport in a
hydrogen atmosphere on the whole substrate surface up
to a thickness of 3–5 µm.

The morphology and crystal structure of films thus

grown showed that, on the part of the ( ) oriented
α-Al2O3 substrate with the preliminarily deposited ZnO
film, (0001)-oriented layers grow, whereas on a clean

sapphire surface, ( )-oriented epitaxial ZnO layers
are formed [5, 6].

The morphology of both parts of the surface with the
zinc oxide layers is shown in Fig. 1 at a magnification
of ×350 (MII-4 microscope) (a) on a clean sapphire sur-
face and (b) with the use of an intermediate magnetron
deposited layer. One can see the growth figures charac-
teristic of the above orientations—(a) a more pro-

1012

1120

(a) (b)

Fig. 1. Morphology of the epitaxial ZnO layers (a) with the

( ) plane and (b) with the (0001) plane parallel to the

( ) plane of the Al2O3 substrate (magnification ×350).
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nounced growth figure for the ( )-oriented ZnO
layer and (b) a less distinct one for the (0001) orienta-
tion. It should be noted that the clearly seen shadow at
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Fig. 2. Diffraction patterns of ZnO epitaxial layers obtained
by chemical transport (a) on a clean sapphire surface and
(b) with the aid of an intermediate deposited layer.
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Fig. 3. The electron diffraction patterns of ZnO epitaxial
layers grown by chemical transport (a) on a clean sapphire
surface and (b) with the intermediate deposited layer and
correspond to (a) and (b) in Fig. 2.
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the boundary of the two orientations is explained by the
different thickness of the epitaxial layers because of the
much higher growth rate of the layers in the basal orienta-

tion with respect to the ( )-oriented ZnO layers.
An X-ray diffraction study on a DRON-2 diffracto-

meter (monochromatized CuKα-radiation) was per-
formed using a pyrographite crystal. The diffraction
patterns of zinc oxide layers obtained (a) on a clean

( ) α-Al2O3 surface without an intermediate layer
and (b) on the surface part with a preliminarily depos-
ited film are shown in Fig. 2. The diffraction pattern in

Fig. 2a is characteristic of the ( ) ZnO epitaxial
layer, whereas the pattern in Fig. 2b corresponds to the
layers of the basal orientation. The ZnO layers on both
parts of the substrate were also studied on an EMP-100
electron diffraction camera. The electron diffraction
patterns of the ZnO layers are shown in Fig. 3. The
results obtained by both methods on both parts of the
substrate allowed us to determine the degree of perfec-
tion of the structure on both parts of the substrate.

Thus, using the two-stage method, we obtained

epitaxial ZnO layers with two orientations—( )

and (0001)—on the surface of only one ( )-ori-
ented α-Al2O3 substrate. The thickness of the boundary
dividing the differently oriented layers depends on the
accuracy of screening made at the first stage, which
should prevent material deposition onto the screened
part of the substrate. It is also evident that, in order to
obtain a sequence of chains of such transitions, one has
to use the appropriate masks for screening at the first
stage of formation of the structures by the method of
magnetron sputtering.
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Abstract—The surface morphology and structure parameters of the surface layers of the single-crystal
GaAs(001) wafers subjected to He+ ion implantation (E = 300 keV, D = 1016 atoms/cm2) and subsequent elec-
trochemical etching in a 0.5 M H2SO4 aqueous solution are investigated by X-ray reflectometry and double-
crystal X-ray diffractometry. The strain and amorphization profiles over the layer thickness are determined from
X-ray diffraction data. The density of surface layers, their thickness, and the changes of the surface relief upon
etching are evaluated from the reflectometric data. The experimental parameters of the studied layers are com-
pared with the theoretical distributions of implanted impurities and intrinsic point defects, which are calculated
by the Monte Carlo method. A correlation is revealed between the layer thickness and the depth of the maximum
defect concentration. It is found that the electrochemical etching predominantly occurs in strongly amorphized
regions of the surface layer and does not lead to a change in the total layer thickness. The results of X-ray diffrac-
tion investigations are confirmed by scanning electron microscopy. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

High-resolution X-ray diffraction techniques in dif-
ferent diffraction geometries have been widely used
both for characterizing structural distortions in thin
subsurface layers of single crystals after different treat-
ments and for investigating multilayer heterostructures
and thin films [1, 2]. The advent of new materials used
in electronics, for example, porous Si films, has given
impetus to improvements in these techniques with the
aim of determining the strain, density, and pore size in
the samples under investigation [3–7]. In our earlier
work [8], we proposed a technique for characterizing
porous layers on a single-crystal substrate. This tech-
nique is based on analyzing a certain part of small-
angle scattering that experiences subsequent Bragg
reflection. In AIIIBV crystal layers, unlike porous sili-
con, the anodizing does not result in a change in the lat-
tice parameter of the layers and they do not manifest
themselves in the diffraction curve. The X-ray reflecto-
metric technique is characterized by a high sensitivity
to any changes in the surface layers [9, 10] and makes
it possible to evaluate independently the density of sur-
face layers, and, hence, to obtain information comple-
mentary to the results of diffraction investigations.
Moreover, X-ray scattering by porous surface layers
1063-7745/02/4706- $22.00 © 21051
involves a diffuse scattering component [11], which
also provides important information on the structure of
pores, their sizes, and correlation parameters. However,
it should be noted that the Born approximation, which
is traditionally used for the description of scattering, is
invalid for thick porous films, because the contribution
from the diffuse scattering by pores can be several
orders of magnitude larger than that from the specular
scattering. At present, there has been no general theory
of X-ray scattering by porous materials. In this respect,
the aforementioned X-ray techniques should be applied
in combination to characterize porous layers and to
determine their parameters.

Structural defects play a decisive role in many elec-
trophysical and electrochemical processes in surface
layers of crystals and, in particular, affect the formation
of pore structures. In order to elucidate the influence of
defects on the etching, they can be additionally pro-
duced in a sample through the ion implantation, which
is extensively used to modify the semiconductor com-
position, specifically for fabricating doped surface lay-
ers with a conductivity of the specified type and magni-
tude [12]. Over a few last years, this method has also
been applied to synthesize nanometer-sized semicon-
ductor structures [13]. In this case, one of the main
002 MAIK “Nauka/Interperiodica”
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Parameters of the surface layers of the studied samples according to X-ray reflectometry and scanning electron microscopy
Sa

m
pl

e 
no

.

Treatment conditions

Parameters of the layers

σ, nm
li, nm ν = ρ/ρtheor ϑ , arcmin

l1 l2 lSEM ν0 ν1 ν2 νSEM ϑc0 ϑc1 ϑc2 ϑ theor

381 Chemical–mecha-
nical polishing

1.45(5) 1.005(5) 18.5(1) 18.45(2)

382 Implantation
(He+, E = 300 keV,
D = 1016 atoms/cm2)

0.4(1) 3.5(5) 1.02(2) 0.29(3) 18.8(3) 9.9(1) 18.45(2)

383A Implantation
(He+, E = 300 keV,
D = 1016 atoms/cm2 
and anodizing
(current I = 2 mA/cm2;
etching time, 5 min)

>1000 >1300 0.85(5) ~0.8 17.0(2) 18.45(2)

383B Implantation
(He+, E = 300 keV,
D = 1016 atoms/cm2)
and anodizing
(current I = 2 mA/cm2;
etching time, 30 min)

<200 >1000 ~1500 0.21(1) 0.87(2) ~0.7 8.5(3) 17.3(4) 18.45(2)
advantages of ion implantation over other techniques is
the possibility of forming nanoparticles of virtually any
composition. Pavesi et al. [14] and Schmuki et al. [15]
demonstrated that the density of pores, their distribu-
tion, and pore structure can be controlled during the
formation of a required defect profile. For the purpose
of obtaining reliable structural information on porous
layers, it is necessary not only to investigate thoroughly
the structure of implanted layers but also to reveal and
analyze the interrelation between electrochemical etch-
ing and the evolution of defects in the crystal lattice of
modified layers.

In this work, we applied X-ray diffractometry and
X-ray reflectometry to investigate the morphology and
structure of surface GaAs(001) layers subjected to He+

ion implantation (E = 300 keV, D = 1016 cm–2) and sub-
sequent electrochemical etching.

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

Samples 10 × 10 × 0.35 mm in size were prepared
from standard single-crystal n-GaAs(001) wafers
doped with sulfur to the charge carrier concentration
n ~ 3 × 1016 cm–3. Then, the samples were subjected to
implantation by He+ ions with the energy E = 300 keV
at the dose D = 1016 cm–2 on a Heavy Ion Accelerator
(High Voltage Engineering Europa B. V.). The choice of
inert gas ions was motivated by the fact that the
implanted He+ ions only generate defects and should
not substantially affect the electrical and chemical
properties of the studied layers. The electrochemical
etching (anodizing) was performed in a two-compart-
C

ment electrochemical cell with platinum electrodes in a
0.5 M H2SO4 aqueous electrolytic solution. The etching
conditions used for the samples and the reflectometric
parameters of the surface layers are presented in the
table.

The experiments on X-ray reflectometry and dou-
ble-crystal X-ray diffractometry were carried out on a
TRS-1 triple-crystal X-ray diffractometer controlled
using a PC AT through a Matex programmable control-
ler. An X-ray tube with a copper anode (λ = 0.154 nm)
at a power of 1.1 kW was used as a radiation source.
A grooved Ge single crystal with the triple reflection
(004) was used as a crystal monochromator. An X-ray
beam on a collimator exit was formed by a system of
slits with a horizontal size of 0.3 mm and a vertical size
of 2 mm in recording the diffraction reflection curves
and with a horizontal size of 0.02 mm and a vertical size
of 2 mm in recording the reflectometric curves. In order
to decrease the intensity of the diffuse and background
components and to measure only the specular compo-
nent of radiation reflected from the crystal sample, the
narrow horizontal slits were located ahead of the scin-
tillation detector. The angular sizes of these slits in
measurements of the diffraction reflection and reflecto-
metric curves were equal to 3′ and 8′, respectively. The
diffraction reflection curves in the vicinity of the 004
point of the reciprocal lattice and the reflectometric
curves were recorded using an ω/2ϑ scan mode. With
the aim of estimating the intensity of diffuse scattering
and accounting for its effect on the X-ray data, addi-
tional investigations were performed using both tech-
niques in the ϑ and ω scan modes at fixed positions of
the sample and detector, respectively.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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RESULTS AND DISCUSSION

Figure 1a shows the experimental (curve 1) and the-
oretical (curve 2) diffraction reflection curves for sam-
ple no. 382. It is seen that, apart from the principal max-
imum at the exact Bragg angle (∆ϑ  = 0), three addi-
tional intense maxima are observed in the low-angle
range. This diffraction reflection curve indicates that
the layer with an increased lattice parameter and a
thickness comparable to the extinction length Lex is
formed in the vicinity of the surface. In the case of
GaAs, the extinction length for the 004 reflection and
the ëuKαl radiation is equal to 1.57 µm for the σ polar-
ization and 3.88 µm for the π polarization [1]. The con-
siderably intense additional maxima suggest that,
despite a high dose of implanted He+ ions, no notice-
able amorphization occurs in the surface layer, which
can be treated as a quasi-single-crystal layer. (The
amorphization is considered to mean a decrease in the
scattering power of a crystal due to the presence of lat-
tice defects.) The diffraction reflection curves for sam-
ple nos. 383A and 383B (Fig. 1b) almost completely
coincide with those for sample no. 382. Consequently,
the etching in the sulfuric acid solution virtually does
not affect crystal regions of the resulting implanted
layer. The sole difference observed in the diffraction
curves for the studied samples is concerned with the
maximum at the angle ∆ϑ = –340′′  (Fig. 1c). An
increase in the etching time leads to a decrease in the
intensity of this maximum, its shift toward the low-
angle range, and splitting (Fig. 1c, curve 3).

In order to determine the profiles of the strain ∆d/d
and the amorphization f over the layer thickness, it is
necessary to fit the theoretical diffraction reflection
curves to the experimental data [16]. At present, there
exist a number of mathematical techniques for perform-
ing this procedure. We used the fitting procedure based
on the χ2 method proposed in [17]. In the fitting, the
layer with constant parameters over the depth was used
as a starting approximation. The strain was calculated
from the relationship ∆d/d = ∆ϑ = 3.36 × 10–3.
Here, ϑB is the Bragg angle and ∆ϑ  = ϑ  – ϑB = –450′′
is the angular position of the diffraction reflection from
the surface layer. The mean value f = 0.5 was chosen for
the amorphization parameter. Then, the surface layer
was separated into individual sublayers. In the course
of the fitting of the theoretical and experimental curves,
we introduced the corrections for the diffuse scattering
intensity, which was measured by triple-crystal X-ray
diffraction [1, 18]. An additional Ge analyzing crystal
(004 reflection) was placed ahead of the detector. The
diffraction reflection curves were measured at a con-
stant angular position of the crystal sample. Then, we
analyzed the intensity ratio between the Bragg and dif-
fuse components of the total scattering intensity in an
angular range of 8′, which is equivalent to the entrance
slit of the detector in the recording of the diffraction
reflection curves.

ϑ Bcot
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Fig. 1. (a) (1) Experimental and (2) theoretical diffraction
reflection curves for sample no. 382 (χ2 = 2.9), (b) (3) expe-
rimental and (4) theoretical diffraction reflection curves for
sample no. 383B (χ2 = 2.6), and (c) diffraction reflection
curve portions corresponding to the reflection from the
crystal surface layer in sample nos. (1) 382, (3) 383B, and
(5) 383A (400 reflection, CuKα radiation).
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The gradual change in the structure parameters of
the adjacent sublayers served as a criterion for the
choice of a reliable model of the distorted surface
layer. The calculations were terminated when the intro-
duction of additional layers resulted either in a jump-
wise change in the parameters of adjacent layers or in
errors exceeding the corresponding parameters.
Figures 2a and 2b depict the fitted distributions of the
strain ∆d/d and the amorphization f for implanted sam-
ple no. 382 (curves 1, 2) and sample no. 383B etched
for 30 min (curves 3, 4). It can be seen that the strain
distribution (curve 1) exhibits a nonmonotonic behav-
ior. The maximum strain is observed at a depth of
~1200 nm. With a decrease in the depth to 1700 nm, the
strain gradually decreases virtually to zero. The depth
distribution of the amorphization coefficient (curve 2)
is also characterized by specific features. The coeffi-
cient f is small in the vicinity of the sample surface,
which indicates a strong amorphization of the surface
layer due to the implantation. On the whole, an increase
in the depth leads to a monotonic increase in the coeffi-
cient f, except for the region corresponding to the max-
imum strain in which f = 0.8. It is reasonable to assume
that the number of generated secondary defects is max-
imum at this depth. Unfortunately, the strain and amor-

(a)

1

3

6

5

0.4

0.2

0 400 800 1200 1600 2000
z, nm

∆d/d
8

4

0

log(N)

(b)

2

1.0

0.5

f

4

0

Fig. 2. Distributions of (a) the strain ∆d/d and (b) the amor-
phization f in surface layers of sample nos. (1, 3) 382 and
(2, 4) 383B (determined from X-ray diffraction data) and
distributions (right scale, arb. units) of (5) implanted He+

ions and (6) vacancies over the thickness of the surface
GaAs layer (calculated by the Monte Carlo method).
C

phization of layers subjected to the ion implantation are
difficult to estimate numerically, because data on the
subsequent migration of implanted ions and generated
point defects, their annihilation and aggregation into
clusters with an excess number of defects of a particular
type, and other processes are unavailable in the litera-
ture. The depth distributions of He+ ions (curve 5) and
also vacancies and interstitial atoms of the matrix
(curve 6) are depicted in arbitrary units in Fig. 2a. The
calculations were carried out using the Monte Carlo
method [19]. Both distributions of intrinsic point
defects are virtually identical. As can be seen, the depth
of the maximum strain agrees well with the depth of the
maximum concentration of defects. Therefore, the sur-
face layer ~1.6 µm thick with an increased content of
defects was produced in the GaAs(001) sample by
high-dose implantation.

Analysis of the model of the layer in sample
no. 383B (Figs. 2a, 2b, curves 2, 4) demonstrates that
the strain ∆d/d and the static factor f upon anodizing
remain almost unchanged. The observed difference
consists in relieving stresses at the crystal film–sub-
strate interface and decreasing the amorphization factor
f owing to the etching of a scattering crystal material in
the layer 100–200 nm thick at the boundary between
vacuum and the surface region of the crystal. The total
layer thickness after anodizing remains nearly the
same, and a weak variation in the profiles of ∆d/d and f
is associated with insignificant changes in the diffrac-
tion reflection curves (Fig. 1c). However, according to
the estimates made by Gerischer [20], the amount of the
material etched in sample no. 383B should be equiva-
lent to a single-crystal layer 1.17 µm thick. The fact that
the anodizing does not result in a decrease in the thick-
ness of the implanted surface layer indicates a porous
structure of this layer. Since the modification of the
layer is not accompanied by a noticeable change in the
profiles of ∆d/d and f, it can be assumed that the elec-
trochemical etching of GaAs(001) in the 0.5 M H2SO4
aqueous solution affects only strongly amorphized
sample regions, which do not participate in the diffrac-
tion scattering.

It is known that, in the surface layer of semiconduc-
tors, the high-energy He+ ion implantation leads to the
formation of clusters composed of radiation-induced
defects, about which the matrix structure is strongly
distorted [12]. These regions do not contribute to the
Bragg scattering and give rise only to the diffuse scat-
tering component. However, a diffracted wave traveling
through these regions should undergo a phase incre-
ment. At the same time, the wave amplitude should
remain almost unchanged, because the regions have a
small thickness. When the local density (the real and
imaginary parts of the polarizability) of the material in
these regions is changed, for example, by etching, the
phase factors of scattered waves change to a greater
extent than the wave amplitudes. This should result in a
variation in the intensity of interference maxima. It
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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seems likely that this physical phenomenon is observed
in our case. The constancy of both the shape and inten-
sity of the diffraction reflection curves shows that the
anodizing virtually does not affect the crystal regions of
the surface layer (Figs. 1a, 1b) and leads to the etching
of the strongly amorphized regions. Actually, the
parameters of the surface layers in sample no. 383A do
not differ from those in the unetched sample. Upon
anodizing for 30 min (sample no. 383B), the etching
begins to affect the crystal regions in the layer (as
judged from the decrease in the Debye–Waller static
factor in a layer 0–200 nm thick). It can be assumed
that, with an increase in the etching time, this process
will proceed in deeper regions in the sample.

However, the X-ray diffraction data in the case
under consideration cannot uniquely confirm the
decrease in the density of the surface layer. In order to
verify this assumption, we measured the reflectometric
curves and the scattering indicatrices (Fig. 3) [10]. Fig-
ure 3a displays the theoretical specular-reflection
curves for the initial (no. 381) and implanted (no. 382)
samples. The critical angles of total external reflection
ϑci and the relative densities of the surface layers νi =
ρ/ρ0 for the studied samples are listed in the table,
where i is the layer number counting from the surface
and ϑc 0 = 18.4′ and ρ0 are the critical angle and the den-
sity of bulk GaAs. The theoretical and experimental
reflectometric curves were fitted according to the tech-
nique described in [7, 21]. The surface and surface sub-
layer parameters were theoretically calculated within
the model of rough surface for sample no. 381 and the
model of thin rough film on the surface for sample
no. 382. The parameters of the surface layer were esti-
mated in the presence of one and two sublayers with
different densities for sample nos. 383A and 383B,
respectively. The following designations are used in the
table: σ⊥  is the root-mean-square height of surface
roughnesses, νi = ρi /ρtheor, i = 1 and 2 is the sublayer
number, ρ is the density, ϑci is the critical angle of total
external reflection, and li the sublayer thickness.

Analysis of the results obtained demonstrates that
layers with densities differing from the substrate den-
sity are absent on the surface of sample no. 381 (exper-
imental curve 1 and theoretical curve 2 in Fig. 3a),
which is characterized only by a roughness with the
characteristic size σ⊥  = 1.4 nm. In contrast, the curves
for implanted sample no. 382 (Fig. 3a, curves 3, 4)
exhibit a clear-cut thickness oscillation. According to
calculations, this oscillation corresponds to the layer
3.5 ± 0.5 nm thick with the decreased density ν = 0.29.
These results were obtained without regard for the dif-
fuse scattering. Note that the preliminary measure-
ments of the scattering indicatrices for these samples in
the ϑ scan mode showed that the scattering predomi-
nantly consists of the specular component.

The scattering curves for the samples after electro-
chemical etching considerably differ in shape from the
above curves and from each other. In the angle range
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
ϑ  ≤ ϑc0, one critical angle is observed for sample no. 383A
and two critical angles ϑci occur for sample no. 383B
(Fig. 3a, curves 5, 6). It is seen that each etching leads
to the formation of layers with a lower density in the
vicinity of the surface. The critical angles of total exter-
nal reflection are equal to 17.0′ for sample no. 383A and
8.5′ (marked by the vertical arrow) and 17.3′ for sample
no. 383B. In spite of the layer porosity and the related
decrease in the photoelectric absorption coefficient,
X-rays do not reach the bulk of the sample matrix. No
jumps in the reflection at ϑc0 = 18.45′ are observed in
curves 5 and 6 (Fig. 3a). This indicates that layers of
thickness larger than 1 µm are etched across the whole
depth. According to the estimates obtained from analy-
sis of the X-ray absorption, the thickness of the upper
sublayer in sample no. 383B appears to be equal to
~0.2(1) nm. This supports the inference made from the
X-ray diffraction data that the thickness of the surface
layer after anodizing remains unchanged. However, at
angles larger than the critical angle ϑc, the intensity of
specular reflection from the samples subjected to the
anodizing is substantially lower than that from the sam-
ples prior to the etching. In this angular range, the tech-
niques [21, 22] become inapplicable. Figure 3b dis-
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Fig. 3. (a) Experimental (symbols) and theoretical (lines)
curves of specular reflection from sample nos. (1, 2) 381,
(3, 4) 382, (5) 383A, and (6) 383B. (b) Scattering indicatrix
with (1) specular and (2) diffuse peaks for sample no. 383B
at the angle of incidence ϑ i = 0.43° (CuKα radiation).
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plays the intensity distribution of reflected X-rays (scat-
tering indicatrix), which was measured by scanning in
exit angle ϑ f with the detector at the fixed angle of inci-
dence ϑ i = 0.43°. It can be seen that the distribution
exhibits a specular peak at the angle 2ϑ f = 0.87° and an
additional maximum at 2ϑ f = 0.65° with a higher inten-
sity. This intense diffuse scattering corresponds to the
so-called Yoneda peak [23] at the angles 2ϑ f ≈ ϑ i + ϑc.
A critical angle of 16.3′ determined from the location of
the Yoneda peak does not agree with the critical angles
obtained from the positions of the jumps of the reflec-
tion coefficient in the reflectometric curve for sample
383B (see table). This confirms the theoretical conclu-
sions drawn in [9, 10] that the critical angles ϑc can be
determined from the angular location of the jumps in
the reflection coefficient only for ideal surfaces. First,

(a)

(b)

1 µm

2 µm

Fig. 4. SEM images of (a) the surface and (b) the cleavage
of sample no. 383B (FEI Company XL30 scanning electron
microscope; accelerating voltage, 15 kV).
C

this is associated with a change in the shape of the total
external reflection curve due to the influence of the
roughness. Second, owing to the diffuse scattering, an
intense X-ray beam arrives at the entrance slit of the
detector, which leads to the smearing of the angular
position of the reflection jump (Fig. 3a, curves 5, 6). It
should be noted that a decrease in the intensity of the
specular-scattering component and its subsequent com-
plete disappearance (Fig. 3a, curves 5, 6) are caused by
the scattering of the X-ray beam from numerous bound-
aries inside the porous layer. The arising diffuse scatter-
ing provides information on the layer structure.

The results of the investigation performed indicate
that, upon electrochemical etching, the thickness of the
surface crystal layers produced by the ion implantation
in sample nos. 383A and 383B remains unchanged.
These layers are not continuous and contain a large
number of pores etched upon anodizing.

Therefore, the data on the conditions of the sample
preparation and the results of the X-ray investigation
allow us to make the inference that the porous layer
formed has a colonnar structure in which the cross sec-
tion of pores decreases deep into the layer. An increase
in the etching time leads to the separation of the porous
layer into the sublayers with different densities. The
lower the density of the layer, the shorter the distance
between the layer and the surface.

The X-ray diffraction data on the sample structure
were compared with the results of investigations into
the morphology of the surface and cross-sectional
cleavages of the same samples by scanning electron
microscopy (SEM). The SEM images were obtained
using an FEI Company XL30 microscope at an acceler-
ating voltage of 15 kV. Figure 4a shows the image of
the surface of sample no. 383B with bright and dark
regions of mean size 200–300 nm. These are the etched
macropores on the sample surface. According to the
estimates, their area is 20–30% of the surface area. The
image of the cross-sectional cleavage of the surface
layer of sample 383B is depicted in Fig. 4b. The chan-
nels in the direction normal to the surface are observed
in this image. It is seen that they have different depths
and cross sections. The etched holes located predomi-
nantly along the sample surface can be observed at a
depth of approximately 0.8–1.1 µm. The origin of these
holes is not completely clear. Most likely, large-sized
microdefects disappearing as a result of anodizing were
located in these regions. However, the formation of
these holes is undeniably associated with the lower
mechanical strength of the porous layers and their par-
tial fracture upon cleavage. The question of whether
they are formed upon cleavage or are etched in the
course of anodizing calls for further investigation. As
can be seen from the image, the total layer thickness is
equal to 1.5–1.8 µm, which is in agreement with the
X-ray data.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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CONCLUSIONS
Thus, it was demonstrated that the combined use of

X-ray diffractometry and X-ray reflectometry holds
considerable promise for the reliable characterization
of porous layers. This approach made it possible to
investigate thoroughly the crystal layers in the surface
region of the GaAs(001) semiconductor wafers sub-
jected to He+ ion implantation and subsequent electro-
chemical etching. The densities, thicknesses, and pro-
files of the strain and amorphization of the crystal
framework were determined for porous layers. The
structural model of porous layers was proposed on the
basis of the X-ray data. This model was confirmed by
the SEM data. Intense diffuse scattering from the
porous structures studied was revealed. The specific
pore parameters obtained in the study of this scattering
will be published in a separate paper.
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Abstract—The structural characteristics of silicon samples containing one and two Si1 − xGex/Si quantum
wells 1.8 to 15 nm thick were determined by high-resolution X-ray diffraction. A detailed analysis of X-ray
rocking curves made it possible to reproduce the Ge-concentration profiles in the quantum wells. The diffusion
of germanium (up to 20%) into interface layers was observed, with a consequent broadening of the quantum
well interfaces. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In modern silicon technology, complementary
metal–oxide–semiconductor structures prevail in the
market of integral microschemes. These materials are
gaining in popularity due to the rather simple technol-
ogy of their production and their high input resistance.
However, p-channel devices are inferior to n-channel
devices in current and frequency characteristics.
Strained Si1 − xGex/Si heterostructures are very attrac-
tive systems for use in high-speed p-channel devices
due to higher mobility of holes, as compared with a
three-dimensional material [1–3]. The theoretical µp

values are substantially higher than the corresponding
values achieved in experiments because of a decrease in
the effective weight of the holes in the SiGe layers of
the structures. Several mechanisms of carrier scattering
in quantum wells (by ions of both specially introduced
and noncontrolled impurities; fusion scattering and
scattering by roughnesses of the buffer layer–quantum
well–barrier interfaces) constrain the hole mobility.
Earlier, it was demonstrated that the major mechanism
of hole mobility constraint in a quantum well involves
scattering by interface inhomogenieties [4–6]. Hence,
the quality of the interfaces and of the layer of the quan-
tum well by itself (component segregation, diffuse
broadening, etc.) is a very important parameter, which
has a strong effect on the electrophysical properties of
strained heterostructures. For this reason, an indepen-
dent analysis of the quality of the main layers and inter-
faces is of topical importance.
1063-7745/02/4706- $22.00 © 21058
High-resolution X-ray diffraction is a powerful tool
for the analysis of multilayer structures [7–9]. In the
case of rather abrupt interfaces, the X-ray diffraction
curve shows a pronounced interference pattern contain-
ing a large number of minima and maxima, which
allows one to extract abundant quantitative information
on both the main layers of the structure and the inter-
faces.

In this study, we determined the structural parame-
ters of the Si1 − xGex ultrathin quantum wells and their
interfaces in a silicon crystal through high-resolution
X-ray diffraction.

SAMPLE PREPARATION. 
EXPERIMENTAL

Samples of multilayer Si1 − xGex /Si heterostructures
with quantum wells were grown by molecular beam
epitaxy on a RIBER SIVA 45 apparatus at the Institute
for Semiconductor and Solid State Physics of the
Johannes Kepler University of Linz (Austria). The
preepitaxial cleaning was carried out according to a
procedure developed by the Radio Corporation of
America (RCA). The procedure involved alkaline (with
a 1 : 1 : 5 NH4OH : H2O2 : H2O mixture) and acid (with
a 1 : 1 : 5 HCl : H2O2 : H2O mixture) etching of silicon
substrates. The treatment with each etchant was per-
formed in a Teflon bath at 80°C for 15 min, followed by
a 15 min wash with deionized water with a resistance of
no lower than 15 MΩ cm. The thin oxide layer pro-
002 MAIK “Nauka/Interperiodica”
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duced in the acid etchant was removed by heating in a
growth chamber at 1000°C for 5 min. A buffer Si layer
was grown at 750°C. Then the temperature of the sub-
strate was decreased to 500°C, and all subsequent lay-
ers were grown. The Si1 − xGex/Si structures containing
one (sample A) and two (sample B) quantum wells were
thus obtained. The structural parameters specified by
the growth technology are given in Table 1.

The high-resolution X-ray diffraction experiment
was carried out using a double-crystal scheme with a
quasidispersion (m, –n) arrangement of the crystals
(Fig. 1). The X-ray radiation of a copper-anode X-ray
tube (2 kW) was collimated with a planar Ge(004) crys-
tal monochromator. A slit block S1 of the monochroma-
tor was used for the separation of the CuKα1 line (the
slit width in the horizontal plane was 0.2 mm) and the
restriction of the vertical size of the emergent beam (the
slit height was 2 mm). To decrease the contribution of
the diffuse scattering component to the signal, the
angular aperture of the detector was optimized by
mounting a 0.4-mm horizontal S2 slit in front of the
detector. The distance between the sample and the
detector was 310 mm. The optimum geometry of the
experiment allowed us to substantially improve the
ratio of the coherent signal to the diffuse-scattering
background, thus extending the dynamic range of the
measured intensities of the diffraction reflections up to
seven orders of magnitude. The X-ray diffraction curves
were recorded in the θ/2θ scanning mode in a broad
range of incidence angles, namely, –75000 < ∆θ < 70000
(∆θ is the deviation from the exact Bragg angle θB).

RESULTS AND DISCUSSION

Figure 2 shows experimental diffraction curves,
which are represented by vertical bars, that take into
account statistical errors. The curves have numerous
oscillations, which is typical of multilayer systems
characterized by a high quality of the layers and rather
abrupt interfaces.

The diffraction curves were analyzed according to a
known procedure [7, 8]. The parameters of the structure
corresponding to the growth conditions (Table 1) were
used as the initial approximation. The theoretical data
for the structures under examination, which were calcu-
lated within the framework of the dynamical theory of
X-ray diffraction, are shown as solid curves in Fig. 2.
A comparison of the calculated and experimental dif-
fraction curves demonstrated that the parameters of the
structures grown in this study only approximately cor-
respond to the technological characteristics. In regard
to the number of oscillations in the diffraction curves
and their shapes, the theoretical curves adequately
describe the experimental data for the samples A and B.
However, the theoretical curves are evidently inconsis-
tent with the experimental data with regard to, prima-
rily, the positions of the peaks and their amplitudes.
This inconsistency is quantitatively characterized by
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      200
large values of the χ2 parameter (200 and 138 for the
samples A and B, respectively), which must be close to
unity for the correct model. This pronounced inconsis-
tency indicates that the real structure differs from the
specified one.

In subsequent analysis, we varied the thickness of
the layers lj (j is the ordinal number of the layer); the
perpendicular components of the relative change in the

lattice parameter /a, which characterize, in partic-
ular, the germanium concentration in quantum wells,
and the Debye–Waller factors fj characterizing the layer
imperfection. It should be noted that the experimental
data were processed taking into account diffuse scatter-
ing. Unlike diffraction scattering, diffuse scattering is
incoherent, and its angular dependence is not oscillat-
ing. The latter fact makes it possible to approximate the
intensity of diffuse scattering by the piecewise smooth
function

(1)

for θi ∈  (θk, θk + 1), where i is the ordinal number of the
point in the diffraction curve, and k is the ordinal num-
ber of the angle range. The angle ranges (θk, θk + 1), in

∆a j
⊥

Ii
D( ) Bk Bk 1+ Bk–( )

θi θk–
θk 1+ θk–
----------------------+=

D

2

1

S1S2

X

Fig. 1. Experimental scheme: X, X-ray source; 1, mono-
chromator; S1, slit block of the monochromator; 2, sample;
S2, slit in front of the detector for lowering of the diffuse-
scattering background; D, detector.

Table 1.  Parameters of the samples A and B (Å) specified by
the growth conditions

Sample A Sample B

Si , l = 500 Si, l = 500

Si : B+ (1019 cm–3), l = 16 Si : B+ (8 × 1018 cm–3), l = 30

Si, l = 100 Si , l = 100

Si0.7Ge0.3 quantum well,
l = 150

Si0.8Ge0.2 quantum well,
l = 25

Si buffer, l = 3000 Si barrier, l = 35

Si (001) substrate Si0.8Ge0.2 quantum well,
l = 18

Si , l = 100

Si : B+ (8 × 1018 cm–3), l = 30

Si buffer, l = 1000

Si (001) substrate
2
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which the function  has a continuous derivative,
must be much larger than the oscillation periods
observed in diffraction curves. The coefficients Bk are
variable parameters.

Ii
D( )

–1
–6

∆θ/103, arcsec

0

1

2

3

–1

0

1

2

3

–4 –2 0 2 4 6

log I

A

B

Fig. 2. Experimental X-ray diffraction curves from the sam-
ples A and B (statistical errors are represented by vertical
bars) and theoretical curves (solid) calculated for the struc-
ture models with the parameters specified by the growth
conditions (χ2 = 200 and 138, respectively).
C

The calculated diffraction curves for the models are
shown in Fig. 3 (solid curves). As can be seen from
Fig. 3, the calculated curves adequately describe the
experimental diffraction data throughout the ∆θ angle

–1
–6

∆θ/103, arcsec

0

1

2

3

–1

0

1

2

3

–4 –2 0 2 4 6

log I

Ä

B

Fig. 3. Experimental X-ray diffraction curves from the sam-
ples A and B (vertical bars) and calculated curves (solid) for
the resulting models (χ2 = 2.58 and 1.96, respectively).
Table 2.  Parameters of the layers in the resulting models for the samples A and B

Sample A Sample B

Layer lj, Å /a, % fj Layer lj, Å /a, % fj

1 41(3) 0 0.08(1) 1 544.3(2) 0.001(1) 0.95(1)

2 369(2) 0.009(1) 0.96(1) 2 30 –0.03(1) 0.95(1)

3 249(2) –0.006(1) 1.00(1) 3 100 0.037(3) 0.95(2)

4 33(1) 0.32(2) 1.00(2) 4 25 0.94(2) 0.85(2)

5 150 1.829(2) 0.96(2) 5 35 0.12(1) 0.75(3)

6 16(1) 0.49(9) 0.98(2) 6 18 0.95(4) 0.70(3)

7 403(3) –0.013(1) 0.97(1) 7 100 0.036(5) 0.71(2)

8 1047(7) –0.001(1) 0.91(1) 8 30 –0.04(1) 0.71(2)

9 1329(8) –0.002(1) 0.88(1) 9 1000 0.002(1) 0.71(2)

substrate substrate

∆a j
⊥ ∆a j

⊥
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Fig. 4. Histograms of the distributions with depth of the lattice parameter and germanium concentration for the samples A and B
(the errors in the determination of x is shown by parallel lines). The profile of the germanium concentration specified by the growth
conditions is indicated by dashed lines.
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range, which is also confirmed by the χ2 parameter
(2.58 and 1.96 for the samples A and B, respectively).
The parameters of the layers determined by curve fit-
ting are given in Table 2.

For all the oscillations observed in the experimental
diffraction curve for the sample A to be described, we
were led to introduce a larger number of layers (or sub-
layers) into the sought-for model. Thus, we used nine
layers instead of five layers, in accordance with the
growth technology. For the sample B containing the ini-
tially deposited ultrathin nanometer layers, no addi-
tional sublayers were introduced. Moreover, the thick-
ness of the quantum wells in sample B was kept fixed in
the course of fitting, and only the germanium concen-

tration in these wells was varied (or /a was deter-
mined merely for the layers containing no germanium).
This situation is associated with the fact that the direct
contribution of these nanometer layers to the diffraction
scattering is very small, and the shape of the diffraction
curve is determined primarily by the coherent shift of
the atomic planes of the upper rather thick Si layer with
respect to the substrate, which is caused by thin quan-
tum wells. This shift gives rise to an additional phase in
the amplitude of X-ray scattering from the upper layer
relative to the amplitude of scattering by the substrate,
which is the main reason for the appearance of a large
number of oscillations in diffraction curves [10]. The
resulting diffraction pattern is determined by the shift

∆u ≈ ( /a)lj , i.e., two parameters of quantum wells
are interrelated, and their independent variation pro-
vides no additional information.

The parameters of the crystal lattice ∆aj/(x)/a,
which are associated with the replacement of the Si
atoms by the Ge atoms in the quantum wells, are related

to the determined /a values according to the known
equation

(2)

∆a j
⊥

∆a j
⊥

∆a j
⊥

∆a j
⊥ x( )/a
a

-----------------------
∆a j x( )/a

a
----------------------1 ν+

1 ν–
------------,=
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where ν is the Poisson ratio, which depends only
slightly on the concentration x and was taken equal to
0.277. The values x were determined from ∆aj(x)/a
according to the Vegard law. Then the corrections pro-
posed in the study [11] were applied.

The histograms of the distributions with depth of the
lattice parameter and germanium concentration for the
samples under study are shown in Fig. 4; the profiles of
the germanium concentration specified by the growth
conditions are indicated by dashed lines. To summarize
briefly, the following facts should be noted. For the
sample A, the interface layers of the quantum well were
detected. The thicknesses of the upper (with respect to
the quantum well) and lower layers are 3.3 and 1.6 nm,
respectively. A portion of the germanium atoms (about
6%) diffuse into these layers, the germanium concen-
tration in the quantum well being decreased by approx-
imately the same value. As mentioned above, the sam-
ple B contained a large number of thin layers. In the
study of the sample B, the thickness of these layers was
kept fixed, and only the lattice parameters were varied.
The analysis demonstrated that the germanium concen-
tration in the quantum wells decreased by approxi-
mately 20%, and this portion of the germanium dif-
fused into both the layer separating the quantum wells
and the interface layers (Fig. 4). On the whole, the total
amount of germanium in the samples corresponds to
the germanium concentration introduced according to
the technology used.

CONCLUSIONS

To summarize, the multilayer Si1 − xGex/Si hetero-
structures with quantum wells were studied through
high-resolution X-ray diffraction. Optimization of the
geometry of the X-ray diffraction experiment made it
possible to measure the diffraction curves in the
dynamic range of intensities up to seven orders of mag-
nitude (which corresponds to the broad range of inci-
dence angles –7500′′  < ∆θ < 7000′′ ) with the use of a
standard X-ray tube as the X-ray source. The detailed
2
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diffraction pattern thus obtained and the consideration
of the diffuse scattering background allowed us to
determine the structural parameters of the Si1 – xGex

ultrathin quantum wells and their interfaces with high
accuracy. Diffusion of germanium (up to 20%) from the
quantum wells into the interface layers was observed,
with a consequent broadening of the quantum well
interfaces.
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Abstract—The polycrystalline Co/Cu multilayer films are prepared by magnetron sputtering onto Si/SiO2 sub-
strates. The static magnetization and the ferromagnetic resonance (FMR) spectra of these films are investigated.
The microscopic cross-sectional structure of the films is examined using transmission electron microscopy. It
is demonstrated that the differences in the magnetization curves and the ferromagnetic resonance spectra are
associated with the specific structural features governed by the technological parameters of the film sputtering.
The possible structural features that arise during the formation of layered structures and are responsible for the
appearance of additional lines in the FMR spectra are discussed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ultrathin multilayer metallic structures in which fer-
romagnetic layers are separated by a nonmagnetic
interlayer possess a giant magnetoresistance. This phe-
nomenon was revealed in films of compositions Fe/Cr
[1] and Co/Cu [2]. Apart from the interlayer thickness
[3], the structure of an interface—the region separating
magnetic and nonmagnetic layers—has a decisive
effect on the properties of these films. Puik et al. [4] and
Vemon et al. [5] showed that even the power of the
evaporation source affects the atomic distribution at the
interface. As a consequence, even insignificant varia-
tions in the preparation conditions of layered structures
can lead to a qualitative change in their properties. In
particular, such a high sensitivity to preparation condi-
tions of layered structures manifests itself in measure-
ments of the static magnetization and the ferromagnetic
resonance (FMR). The elucidation of the physical
nature of the interactions arising in these structures
necessitates a detailed investigation into the crystal
structure of films and their physical parameters.

For multilayer films, one of these parameters is the
uniaxial anisotropy of magnetic layers. This anisotropy,
apart from the anisotropy typical of bulk materials,
involves the surface component controlled by the layer
thickness and the interface structure. The uniaxial
anisotropy determines the proportionality coefficient in
a linear dependence of the magnetization measured in
the direction perpendicular to the film plane on the
magnetic field and the position of the absorption line
for the acoustic branch of the ferromagnetic resonance.
1063-7745/02/4706- $22.00 © 1063
Another factor affecting the properties of the structures
under consideration is the exchange interaction
between magnetic layers. If this interaction has an anti-
ferromagnetic nature, the dependence of the magneti-
zation measured in the direction parallel to the film
plane on the magnetic field exhibits a nonlinear behav-
ior. In the case of resonance measurements, the
exchange interaction affects only the location of addi-
tional resonance lines—the so-called optical modes
whose intensity is substantially less than that of the
acoustic modes [6]. Apart from these modes, there can
arise lines associated with the spin-wave resonance [7].

We investigated the ferromagnetic resonance in
multilayer structures prepared under slightly different
conditions and observed the qualitative difference in
the experimental spectra. This difference manifests
itself not only in a change in the position of the reso-
nance lines but also in the appearance of additional
lines in the magnetic field directed along the normal to
the film plane. This circumstance lent impetus to a thor-
ough investigation into the microstructure, the FMR
spectra, and the static magnetization of the prepared
samples. The aim of the present work was to investigate
the possible inhomogeneities formed in layered struc-
tures and their influence on the magnetic properties.

SAMPLE PREPARATION

In this work, we studied the structural inhomogene-
ities and magnetic properties of the Co/Cu multilayer
films prepared by magnetron sputtering onto single-
crystal Si/SiO2 substrates. A vacuum chamber for sam-
2002 MAIK “Nauka/Interperiodica”
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ple sputtering was pumped with a thurbomolecular
pump, which provided a way of producing a residual
pressure of 10–6 mbar. The argon pressure in the course
of sputtering was equal to 10–2 mbar. The films were
sputtered using two independent magnetron sources
operating in a dc or ac mode. Sample nos. 1, 2, and 3
were sputtered with a magnetron source operating in
the dc mode, and the source was operated in the ac
mode in the course of sputtering sample no. 1a. Sin-
gle-crystal Si(100) wafers 50 mm in diameter with
applied SiO2 layers served as substrates. Three samples
(nos. 1, 1a, and 2) were sputtered onto the substrate
placed above the source. In this case, 15 pairs of Co/Cu
layers were deposited onto the substrate. The substrate
was continuously rotated at a rate of 2.5 rpm during
sputtering of sample no. 3, which involved 20 pairs of
Co/Cu layers. Al the samples were prepared at room
temperature. The sputtering rate of the films varied
from 1 to 2 Å/s.

The cobalt and copper layer thicknesses given in the
column “sputtering” in Table 1 were calculated from
the times and rates of sputtering. The sputtering rate of
cobalt was refined using the preliminarily obtained
dependences of the magnetization of monolayer films
on the source power and the sputtering time. In these
dependences, the saturation magnetization was taken to
be equal to the saturation magnetization of a bulk sam-
ple MS = 1420 G. The dependences of the film thickness
on the source power and the sputtering time exhibit a
linear behavior and passed through zero at finite powers
and times of sputtering. With the use of these data and
the results of FMR measurements, it was found that a
continuous film is formed on the substrate surface when
the amount of the sputtered material corresponds to a
thickness of 20–25 Å. Most likely, this is the reason
why the giant magnetoresistance was not observed in
our layered structures.

Table 1.  Characteristics of the prepared samples and
magnetron source powers used for their sputtering

Sa
m

pl
e 

no
. Number 

of layer 
pairs

Source
power, W

Co layer
thickness, Å

Cu layer 
thick-

ness, Å

sputtering magneti-
zation sputtering

1 15 Co – 300 30 33 9

Cu – 300

1a 15 Co – 300 30 47 9

Cu – 300

2 15 Co – 200 30 57.3 12

Cu – 200

3 20 Co – 300 6 4 4.8

Cu – 200
C

The Co layer thicknesses listed in the column “mag-
netization” in Table 1 were calculated under the
assumption that the maximum measured magnetization
of the layered films was equal to the saturation magne-
tization of the bulk sample. The power of the source
used for the sample sputtering is also presented in
Table 1. Sample no. 1a differed from sample no. 1 only
in the operating mode of the magnetron source. Sample
no. 2 differed from sample no. 1 in the thickness of the
copper interlayer. The thicknesses of the cobalt and
copper layers in sample no. 3 prepared under dynamic
conditions were considerably smaller and equal to 5
and 6 Å, respectively.

RESULTS OF MAGNETIC MEASUREMENTS 
AND THEIR INTERPRETATION

The magnetization was measured on a vibrating-
sample magnetometer. The FMR spectra were recorded
on a spectrometer operating at a frequency of 9.55 GHz.
The magnetic component of the microwave field was
always perpendicular to the constant magnetic field and
lay in the substrate plane. All the measurements were
carried out at room temperature.

Sample no. 3. The magnetization curves obtained
for the samples in the magnetic fields aligned parallel
and perpendicular to the substrate plane are depicted in
Fig. 1. The dependences of the magnetization on the
magnetic field for sample no. 3 prepared under
dynamic conditions are linear and identical for both
directions (Fig. 1d). The absence of a spontaneous
moment indicates that the film in this sample is com-
posed of individual Co clusters, which are not coupled
by the exchange interaction. The cluster size (the num-
ber n of atoms per cluster) can be estimated using the
Curie formula for the magnetization M, that is,

where NA is the Avogadro number, µ is the molecular
weight, ρ is the density, µB is the Bohr magneton, k is
the Boltzmann constant, and T is the temperature. From
this formula, at the value of g = 2 and the spin S = 1/2,
we have n = 1600, which corresponds to a linear cluster
size of ~40 Å. No resonance absorption is observed for
this sample.

Sample nos. 1, 1a, and 2. The magnetizations of
sample nos. 1, 1a, and 2 in the parallel geometry only
slightly differ from each other, are close to the satura-
tion magnetization, and weakly increase with an
increase in the magnetic field (Figs. 1a–1c). This
increase suggests that the samples also contain Co clus-
ters. In the perpendicular configuration, the depen-
dences M(H) are linear and differ for different samples.
The FMR spectrum at the magnetic field lying in the
film plane consists of single absorption lines, whose
widths and positions are listed in Table 2. At the per-
pendicular orientation, the FMR spectra, which for

M
NAρ/µn( ) gµBn[ ] 2

S S 1+( )
3kT

------------------------------------------------------------------H ,=
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Fig. 1. Magnetization curves for sample nos. (a) 1, (b) 1a, (c) 2, and (d) 3 in magnetic fields aligned parallel (closed symbols) and
perpendicular (open symbols) to the substrate plane.
sample nos. 1 and 2 are shown in Fig. 2, differ consid-
erably. The single absorption line is observed in the
spectrum of sample no. 1a. The spectrum of sample no. 1
involves the main line and several additional lines with
a lower intensity on the left. The FMR spectrum of
sample no. 2 exhibits several narrow lines with close
intensities. The lines observed for sample nos. 1 and 2
in the perpendicular configuration differ qualitatively.
The width of these lines for sample no. 1 is almost ten
times larger than that for sample no. 2. The spacing
between the lines monotonically decreases with a
decrease in the resonance field. The additional absorp-
tion lines for sample nos. 1 and 2 appear only in the
case when the deviation of the magnetic field direction
from the normal to the film is less than 8°. The experi-
mental angular dependences of the location of the uni-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
form resonance lines are plotted in Fig. 3. In this case,
at the perpendicular orientation, the high-field line is
chosen as the line of the uniform resonance for sample
no. 2.

The results obtained demonstrate that the FMR
spectra of sample nos. 1 and 1a are characterized by
close parameters and differ in that there are additional
absorption lines for sample no. 1a in the perpendicular
configuration. At the same time, the FMR spectrum of
sample no. 2 and the line width differ from those
observed for sample nos. 1 and 1a. It should be noted
that the FMR spectra of all the samples taken from dif-
ferent regions of the substrate completely coincide with
each other. This suggests that the film has a good uni-
formity along the surface and the difference observed in
Table 2.  Magnetic characteristics of the samples

Sample no. g factor
Keff Location of FMR line, Oe FMR line width, Oe

FMR magnetization H| | H⊥  H| | H⊥  

1 1.99 6.25 6.1 1160 12300 380 380

1a 2.02 6.55 6.9 1100 12710 300 800

2 1.97 9.58 9.0 830 17080 180 40
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Fig. 2. FMR spectra of sample nos. 1 and 2 in the perpendicular geometry.
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Fig. 3. Theoretical (lines) and experimental (symbols) angular dependences of the location of the FMR lines for sample nos. 1 (n,
solid line), 1a (,, dashed line), and 2 (d, solid line). The inset shows the same dependences on the other scale.
the sample properties is determined by the difference in
the transverse structure.

Since the magnetization of the samples reaches sat-
uration already in low magnetic fields (Fig. 1), the mag-
netic moments of ferromagnetic layers lie in the film
plane and are parallel to each other. In this case, the lay-
ers can be considered monolayer films. Under the
assumption that the z axis is aligned along the normal
to the plane of the film, the density of its energy (includ-
ing the Zeeman, demagnetization, and uniaxial anisot-
ropy contributions) can be written in the form [8]

(0)

where MS is the saturation magnetization and KU is the
uniaxial anisotropy energy constant. Now, we introduce

the designations Keff = 4π + 2KU/ , θH is the angle

E 2π
KU

MS
2

-------+ 
  MZ

2 M– H,⋅=

MS
2

C

between the magnetic field direction and the normal to
the film plane, and θ is the angle between the magnetic
moment direction and the normal to the film plane.
Then, the equilibrium position of the magnetic moment
is defined by the relationship

(1)

From this expression, it follows that the dependence
of the film magnetization on the magnetic field aligned
along the normal to the film plane can be described by
the formula

(2)

The relationship for the uniform resonance absorp-
tion spectrum can be derived from expression (1) in the

H θH θ–( )sin KeffMS θ θ.cossin=

M H/Keff.=
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following form:

(3)

where ω is the frequency and γ is the gyromagnetic
ratio.

With the use of expressions (4) at θ = 0° and 90° and
experimental data on the magnetization, we determined
the values of Keff and the g factors (Table 2). The Keff
values evaluated from the results of static and reso-
nance measurements are in rather good agreement with
each other. This indicates the adequacy of the model
used to interpret our results. Within the limits of exper-
imental error, the g factors for all the samples coincide
with each other and are equal to 2.0. However, this
value differs from g = 2.16 obtained for Co/Cu multi-
layer films under ultrahigh vacuum with a residual
pressure of 10–8 mbar in [9] and g = 2.20 determined in
[10]. On the other hand, the g factor for cobalt mono-
layer films prepared under vacuum with a residual pres-
sure of 10–6 mbar varies from 1.9 to 2.2 [11]. The large
spread of the g factors is explained by the presence of
stresses.

The theoretical (lines) and experimental angular
dependences of the location of the FMR lines for three
samples studied [the theoretical dependences were cal-
culated using relationship (4)] are compared in Fig. 3.
The experimental data for sample nos. 1 and 1a fit the
calculated curves well, whereas the deviation between
the experimental and calculated data for sample no. 2
appears to be considerable in the vicinity of θ = 90°.
This suggests that the high-field FMR line observed for
sample no. 2 in the perpendicular orientation of the
magnetic field is not the uniform resonance line.

According to Heinrich and Cochran [3], the mini-
mum width of the uniform resonance line for single-
crystal Co/Cu films is equal to 20 Oe. The line width for
our samples varies from 40 to 800 Oe. The line widths
in the spectra of sample no. 1 for different geometries
are identical and equal to 380 Oe. At the same time, for
sample no. 1a, the resonance line is broadened by a fac-
tor of 2.7 with a change in the magnetic field direction
from the parallel (∆H|| = 300 Oe) to perpendicular con-
figuration. The broadening of the FMR line observed
for these samples can be caused by the following fac-
tors. In the parallel configuration, the polycrystalline
nature of the samples should lead to the broadening of
the order of the anisotropy field. The broadening can
also be due to the scatter in the values of Keff owing to
the dipole interactions in the interface region. In the
perpendicular geometry, owing to the strong angular
dependence (Fig. 3), the broadening can be associated
with the variations in the directions of the magnetiza-
tion of different macroscopic regions. Reasoning from
the aforesaid, we can infer that the misorientation of the
magnetizations in different layers in sample no. 1a in
perpendicular geometry is substantially larger than that

ω/γ( )2
H θH θ–( )cos KeffMS 2θcos–[ ]=

× H θH θ–( )cos KeffMS θcos–[ ] ,
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in the other samples. A change in the line width for
sample no. 2 depending on the orientation qualitatively
differs from that observed for the above samples. The
line width for the perpendicular direction is almost five
times less than the line width (180 Oe) for the parallel
direction. Analysis of the line widths for the samples
under investigation demonstrates that the relaxation
mechanism responsible for the line width observed in
the spectra of sample no. 2 in the perpendicular geom-
etry essentially differs from the relaxation mechanism
in sample nos. 1 and 1a.

There exist two approaches to the description of
additional modes arising in ferromagnetic films. One
approach uses the concept of spin waves, which occur
in multilayer structures only in the case when the mag-
netic field is aligned normally to the film plane and
whose spectrum at θH = θ = 0 is described by the equa-
tion [12]

(4)

where A is the constant of the order of the exchange
interaction constant and k is the wave vector with a
magnitude proportional to an integer squared. Similar
modes were observed by Wigen and Zhang [10] in
Co/Cu multilayer samples at magnetic field orienta-
tions close to the perpendicular orientation. Their spec-
trum was well represented by relationship (5), and the
intensities of these modes were considerably lower than
the intensity of the uniform resonance line. In our case,
the additional modes in sample no. 1 are also observed
only at orientations close to the perpendicular orienta-
tion; however, the condition of the proportionality to
the integer squared is not satisfied. According to the
second approach, at resonance, the magnetic moments
in each layer are parallel to one another and oscillate in
a certain phase with respect to the moments in other
planes [13]. The narrow lines observed in the spectrum
of sample no. 2 (Fig. 2) are possibly associated with
excitation of oscillations of the magnetic moments in
particular planar formations occurring in the film,
which is nonuniform in thickness. This is evidenced by
the fact that the resonance lines in the spectrum of sam-
ple no. 2 in the perpendicular configuration are substan-
tially narrower than those of sample no. 1.

FILM STRUCTURE AND ITS INFLUENCE 
ON THE MAGNETIC PARAMETERS

Film structure. The planar images and the images
of cross-sectional cleavages of all the samples were
obtained using transmission electron microscopy. An
examination was performed on a Philips LM430ST
microscope at an accelerating voltage of 200 kV. Judg-
ing from the electron diffraction patterns recorded for
different regions in the plane and cross section of the
films (Fig. 4), the samples have a polycrystalline struc-
ture with a face-centered cubic lattice. The images were

ω
γ
---- H KeffMS–

A
MS

-------k2
,–=
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Fig. 4. Diffraction patterns of (a) planar and (b) cross-sectional samples of film no. 1a. The diffraction patterns correspond to a poly-
crystalline structure with the parameters of the face-centered cubic lattices of cobalt and copper.
slightly defocused in order to increase the contrast. The
micrographs of cross-sectional cleavages of all the
samples at different magnifications are shown in Figs. 5
and 6. It is clearly seen that all four samples have a lay-
ered structure. For sample nos. 1, 1a, and 3, the layering
is sufficiently uniform and the number of layers corre-
sponds to their number specified in the course of sput-
tering (Figs. 5a, 5b, 5d). The thickness of individual
layers is equal to 30–50 Å. However, as can be seen
from Fig. 5c, only four layers of different thicknesses
can be assigned to the contrasts observed for sample
no. 2.

There are three characteristic features distinguish-
ing the structure of the samples: the layering, the pres-
ence of crystal grains, and the formation of a columnar
structure corresponding to two vertical contrasts. The
wide dark contrasts are due to columns consisting of
grains 100–200 Å in size. The investigation of the sur-
face of epitaxial multilayer films under a tunneling
microscope [14] revealed that the columnar structure
observed in our case manifests itself as a bumpy sur-
face. The narrow bright contrasts indicated by arrows in
Figs. 6a–6c can be associated either with grains of size
30–50 Å (with orientation differing from the orienta-
tion of grains corresponding to the wide contrasts) or
with holes.

Sample no. 1 (Figs. 5a, 6a) is characterized by a
well-defined layering. The columnar structure and the
related narrow contrasts are weakly pronounced. No
crystal grains are found, and the size of polycrystals
varies from 100 to 200 Å.

The structure of sample no. 1a (Figs. 5b, 6c) is also
layered, but the boundaries between the layers are not
as sharp as in sample no. 1. Moreover, the structure
formed by regularly arranged and approximately iden-
tical columns is observed in the film. The column diam-
eter is equal to 150–200 Å. The columns consist of
crystal grains. The channels that manifest themselves
as bright contrasts and disturb the layer homogeneity
C

are clearly seen. The sizes of the bright contrasts are
equal to ~5–10 Å. At a large magnification (Figs. 7a, 7b),
it is seen that the columns have a twin structure and the
crystal grain faces are tilted at different angles with
respect to the substrate plane. This sample is character-
ized by the most regular structure built up of the col-
umns separated by the regions corresponding to the
vertical narrow contrasts.

Sample no. 2 has an irregular, weakly pronounced,
layered structure, which most likely can be formed
owing to growth processes during the sputtering of the
film. No regular alternation of layers takes place in this
weakly pronounced layered structure. The columnar
structure is observed in sample no. 2. However, unlike
sample no. 1a, the columns occur as irregular inclu-
sions. The boundaries of the columns are considerably
sharper than those in the above samples. The crystal
grains forming the columns are clearly seen. The sizes
of these grains, like the column diameter, vary in a wide
range from 30 to 300 Å.

In sample no. 3 prepared under dynamic conditions,
the observed layered structure is amorphous and
involves Co and Cu individual clusters 30–50 Å in size.
The layer thicknesses are substantially smaller than
those in the other samples. No vertical contrasts and
crystal grains are found.

Relation between the magnetic characteristics
and the structure of samples. Let us analyze the rela-
tion between the magnetic properties of the samples
and the characteristics of their transverse structure. The
magnetization of sample no. 3 composed of Co and Cu
individual particles is isotropic and proportional to the
magnetic field. Despite the layered structure, the mag-
netization is determined only by the paramagnetic sus-
ceptibility of these particles due to the absence of the
interparticle interaction. The physical parameters of
sample nos. 1 and 1a are close to each other. The sole
difference resides in the fact that the FMR spectrum of
sample no. 1 at the perpendicular orientation of the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Fig. 5. Micrographs of cross-sectional cleavages of sample nos. (a) 1, (b) 1a, (c) 2, and (d) 3 on the Si/SiO2 substrate. Film layers
with dark-field and bright-field contrasts correspond to copper and cobalt, respectively.
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Fig. 6. Micrographs of cross-sectional cleavages of sample nos. (a) 1, (b) 2, (c) 1a, and (d) 3 at a larger magnification.
magnetic field exhibits additional resonance lines
located at regular intervals. Structurally, sample no. 1
differs from sample no. 1a in that it has a sharper
boundary between the layers and a less pronounced
columnar structure. Owing to the well-defined colum-
nar structure of sample no. 1a, the FMR line measured
in the perpendicular geometry is broadened and the
additional resonance lines cannot be observed. Unlike
sample nos. 1 and 1a, only four layers with different
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
thicknesses can be distinguished in sample no. 2. The
columns are represented by randomly oriented crystal
grains. Most likely, as a result, the lines observed in the
perpendicular configuration and located at irregular
intervals are not the uniform resonance lines and the
FMR line width for this sample is one order of magni-
tude less than those for sample nos. 1 and 1a.

The question as to the occurrence of narrow reso-
nance lines in the spectrum of the inhomogeneous
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Fig. 7. Micrographs of two characteristic regions of cross-sectional cleavage of sample no. 1a with (a) a columnar structure com-
posed of twinned grains and (b) grain boundaries tilted with respect to the substrate plane.
structure remains open. Note that these lines in the
spectra of the high-quality layered films at an orienta-
tion of the magnetic field that is close to the perpendic-
ular orientation become strongly broadened and disap-
pear at θH = 0. As far as we know, research dealing with
the observation of the FMR spectra of multilayer struc-
tures in the perpendicular geometry is lacking. In our
earlier work [6], an attempt to observe these spectra for
[Fe/Cr]n films also failed. Taking into account the
results obtained in the present work, this can be associ-
ated with the formation of the columnar structure.
Owing to the strong angular dependence of the location
of the FMR lines at orientations of the magnetic field
close to the perpendicular orientation, even an insignif-
icant misorientation of crystal grains in the adjacent
magnetic layers can lead to a substantial broadening of
the FMR lines.

Specific structural features of the layered struc-
tures and their effect on the magnetic properties of
the studied films. Investigation into the morphology of
the prepared structures has revealed that the results of
the magnetic measurements of multilayer films should
be interpreted with due regard for the following specific
features. First, the interlayer thickness under the same
sputtering conditions can vary with an increase in the
number of layers. Second, the formation of the colum-
nar structure leads to the necessity of allowing for the
number and width of the inhomogeneities within the
layer. Third, there is a scatter in the directions of the
uniaxial anisotropy field in different layers. Further-
more, the samples can contain noninteracting nanopar-
ticles and each nanoparticle has a giant magnetic
moment. At sufficiently small thicknesses of magnetic
layers, the film consists of a mixture of these particles.

The aforementioned specific features can affect the
magnetic characteristics as follows. For the spectra in
the perpendicular configuration, the occurrence of the
layered structure results in the appearance of additional
resonance lines located at regular intervals at magnetic
fields lower than the field of the uniform resonance
C

(sample no. 1). In the case of the columnar structure
formed by crystal grains, the line width in these spectra
can appreciably increase, because the planes of crystal
grains are not parallel to the substrate plane (sample
no. 1a). In this case, each layer is characterized by dis-
continuities due to the columnar structure of the films.
The formation of irregular layers can lead to the appear-
ance of nonuniform FMR resonance lines with a width
that is considerably less than that of a uniform reso-
nance line.

CONCLUSIONS

The results of the above investigation allowed us to
draw the following inferences regarding the influence
of the structure on the magnetic characteristics of the
multilayer films.

(i) The g factors for all the samples are determined
to be g = 2.0 ± 0.05, which differs from the value g =
2.2 obtained in [9, 10]. The coincidence of the g factors
for all the samples indicates that this parameter, as well
as the magnetization, is less dependent on the structure
as compared to the other FMR parameters.

(ii) The Keff values determined from the FMR data
agree with those obtained from the experimental data
on the static magnetization and are governed by the
thickness of the nonmagnetic interlayer.

(iii) Owing to the strong angular dependence of the
location of the FMR lines at orientations of the mag-
netic field close to the perpendicular orientation, the
misorientation of crystal grains with respect to each
other in columns leads to a significant broadening of the
FMR lines.

(iv) The FMR spectrum of the strongly inhomoge-
neous sample at the perpendicular orientation of the
magnetic field exhibits several narrow resonance lines
that are not uniform FMR resonance lines. Possibly, the
observed lines are the nonuniform resonance lines asso-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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ciated with the presence of layers that are nonuniform
in thickness.
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Abstract—A correct phenomenological consideration is given to the change in the Gibbs thermodynamic
potential in the course of crystal nucleation. It is proved that this process is described by two activation barriers.
© 2002 MAIK “Nauka/Interperiodica”.
There is a great number of works devoted to the
thermodynamic investigation of crystal nucleation.
Although the first investigations in this direction were
performed by J.W. Gibbs almost 125 years ago, the
problem remains topical up to now. However, the dis-
crepancy observed in the results obtained and their
insufficiently adequate presentation call for further
investigation. In this respect, we attempted to take a
fresh look at this problem in the framework of macro-
scopic thermodynamics.

The initial stage of crystal nucleation can be consid-
ered in terms of two concepts. According to the first
concept, even initially formed particles have a regular
crystal structure. This implies that an accidental
approach of a number of atoms constituting a nucleus
proceeds rather slowly and they immediately form a
crystal building. In other words, no chaotic aggregates
of atoms, which, hereafter, will be referred to as clus-
ters, are formed within this concept of the nucleation.

Crystals should have rounded apices and rounded
edges due to the thermal smoothing of these surface
elements. The edges of a real crystal cannot be formed
by individual rows of atoms, and its apices cannot be
represented by single atoms. The edges of microcrys-
tals were treated as rounded even by Gibbs [1]. The
higher the temperature of the crystal and the closer the
temperature to the melting point of a particular com-
pound, the more pronounced the above smoothing.
Note that the smoothing in solutions, which will be
considered in the present work, is expected to be stron-
ger than that in vapors. The degree of smoothing should
depend on the nature of a given material and, appar-
ently, should increase with an increase in its solubility.
The size of curved segments considerably exceeds sizes
of individual atoms.

According to the Gibbs–Curie principle [2], the
rounding of crystal nuclei is even more probable in the
case when their surface energy is characterized by a rel-
atively weak anisotropy. The rounding should be espe-
cially pronounced under conditions of crystal nucle-
1063-7745/02/4706- $22.00 © 21072
ation in solutions at temperatures close to their melting
point and in melts.

The pressure in the crystal nucleus with planar faces
and sharp edges should be equal to the pressure of an
environment [3]. However, the pressures in two phases
in contact are different if they have a curved interface.
Therefore, the pressure in the crystal should be higher
than that in the surrounding solution when planar sur-
face regions of the nucleus are small in area. Taking
into account the possible scale of the edge smoothing,
the size of the crystal nucleus with an increased pres-
sure most likely does not exceed ten nanometers.

The crystal nucleation can be described in another
way. An accidental approach of atoms constituting an
original nucleus occurs so rapidly that these atoms at
the initial stage of nucleation have no time to form a
crystal and the nucleus can be represented as an amor-
phous liquidlike particle (cluster). Only with time, this
cluster begins to transform into the crystal. At present,
the existence of clusters in supersaturated solutions can
be considered proved by numerous investigations [4–7].
Clusters decay and arise again and, probably, initially
have a diffuse interface. However, they exist for a phys-
ically appreciable time. Only a small number of the
clusters transform into crystals. It is currently believed
that crystal nucleation in solutions most probably pro-
ceeds through the cluster mechanism.

By virtue of its amorphism, a cluster should be
spherical in shape. Therefore, as in the crystal subnu-
cleus with rounded edges, the pressure in the cluster
should be higher than that in the surrounding solution.

According to the most frequently used technique of
thermodynamic analysis of new-phase nucleation,
which goes back to Gibbs, the internal region of the
nucleus and its surface layer are treated as a single sys-
tem. With due regard for the increased pressure in sub-
microscopic particles, the equilibrium internal state of
this system at a constant temperature is described by the
equation [8, p. 320]

(1)Sdσ Vdp mdµ,–=
002 MAIK “Nauka/Interperiodica”
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where S, V, and m are the surface area, volume, and
mass of the particle, respectively. The quantities σ, p,
and µ under the differential sign are the surface tension,
pressure, and chemical potential of the particle. Unlike
the equation in [8], Eq. (1) for simplicity is written for
a single-component material.

Although the crystal nucleus is rounded, it is not a
sphere. However, we assume that the nucleus is a
sphere with a certain mean radius of curvature r. As
applied to this nucleus, Eq. (1) can be rearranged into
the form

(2a)

where the prime indicates the derivatives of the corre-
sponding quantities with respect to r and Ω is the molar
volume of the crystal. This equation also holds for the
cluster.

For a larger sized nucleus in the form of a faceted
crystal, the influence of the curvature of edges and api-
ces can be ignored and the pressure in the crystal is
equal to the pressure in the environment. For simplicity,
it is assumed that, in this case, the nucleus is a cube
with the edge length r. For this nucleus, we have

(2b)

As a rule, the crystal nucleation is considered on the
basis of the Gibbs thermodynamic potential G. The
increments of this potential ∆G and its differential d∆G
in the course of nucleation of a new phase were rigor-
ously derived by Rusanov [8] in the form

(3‡)

(3b)

Here, the subscript l indicates that the corresponding
quantity refers to the solution.

Equations (3) are the simplified variants of the cor-
responding relationships obtained in [8], because they
are written under the assumption that the volume of the
system is considerably larger than the nucleus volume.
This means that the chemical potential µl of the crystal-
lized compound in the solution remains constant during
the crystal nucleation and is equal to the chemical
potential of the initial homogeneous medium.

In Eqs. (3), the term associated with the difference
between the pressures in the medium and the crystal
nucleus is usually omitted (see, for example, [2, 9]).
Note that authors ignoring this difference do not justify
this approach. In particular, Nishioka and Maksimov
[9] examined crystal nuclei in the form of spherical
clusters. They noted that the chemical potential of a
compound depends on the pressure, but the correspond-
ing term in the equation describing the change in the
thermodynamic potential of the nucleus was absent.

The relationship similar to formula (3b) for crystal
nucleation was derived by Semenchenko [10], and the
expression for ∆G was obtained by Skripov and

3σ' r p'
r
Ω
----µ',–=

p' 0; µ' σ' 0.≈ ≈=

∆G pl p–( )V µl µ–( )m– σS,+=

d∆G pl p–( )dV µl µ–( )dm– σdS.+=
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Koverda [11]. The authors of these works allowed for
the pressure difference by considering a flat-faced
nucleus. However, this requires an explanation. Let us
now assume that the crystal is so small that it can be
represented as a surface layer. As was noted above, if
this crystal had sharp edges, the pressure in the crystal
would be equal to that in the surrounding medium.
Gibbs [1] assumed that the pressures in the crystal
nucleus and the solution are equal to each other. He
accounted for the pressure difference only in the case of
the “isotropic” nucleus phase, which was treated as an
amorphous material whose particles were characterized
by a radius of curvature. The difference between the
pressures in the crystal and liquid phases can be
explained only within the concept described above.

It is necessary to analyze, if only qualitatively, the
dependence of the surface tension of the crystal nucleus
on its size. In [6, 12], under the assumption that the
crystal nucleus at the early stage is the cluster, this
dependence was described by the Tolman equation,
which was derived for an equilibrium liquid droplet. As
follows from this equation, the surface tension σ mono-
tonically increases from zero to a certain asymptotic
value with an increase in the radius of curvature of the
particle. However, the dependence of the surface ten-
sion of the nucleus on the nucleus size varying in a wide
range should be more complex in the case of both the
crystal subnucleus and the cluster.

Let the initial crystal nucleus be so small that the
entire nucleus surface is thermally smoothed and faces
are absent. As long as the nucleus grows, remaining in
this state, the curvature of the nucleus surface decreases
and the surface tension increases (σ' > 0) [8]. The edges
and apices of the crystal have an increased surface
energy. We assume that they make a certain contribu-
tion to the surface tension σ; i.e., the value of σ in
Eqs. (3) is the surface tension averaged over the crystal.
At a certain growth stage, the faces arise in the crystal
and a decrease in the contribution from the energy of
the edges and apices leads to a decrease in the mean
surface tension of the crystal (σ' < 0) [8]. With further
crystal growth, the surface tension asymptotically tends
to a limiting value (σ' < 0) even at small radii r, because
the contribution of the apices and edges rapidly
becomes insignificant. The same behavior of the depen-
dence of the surface tension σ should be observed in the
case when the crystal nucleus at the initial stage is the
cluster. Actually, the surface energy of the cluster is
higher than that of the real faces of the crystal formed
from the cluster. The aforementioned dependence of
the surface tension of the crystal nucleus is displayed in
Fig. 1a. Undeniably, this dependence is obtained under
the conditions that the temperature, pressure, and con-
centrations of solution components remain unchanged.
Note that the nucleus is a nonequilibrium formation. At
the same time, the thermodynamic approach is
restricted to the interpretation of the surface tension of
the crystal that is in equilibrium with the medium.
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Therefore, the thermodynamic inferences can be
treated only as qualitative.

Equation (3b) has the following roots:

The first two roots correspond to the above spherical
nucleus, and root (4.III) refers to the cubic nucleus.
Therefore, relationships (4) can be rewritten in the form

Here, r1 and r2 are the sphere radii and r3 is the edge
length of the cube.

Conditions (5.I) were given in [8] without limitation
imposed on the character of a new phase. Conditions (5.I)
and (5.III) were obtained by Semenchenko [10], who
applied them to describe the equilibrium of a faceted
crystal with a medium. Root (5.I) for crystal nuclei was
found in [11]. Volmer [13] revealed conditions (5.II) for
a liquid droplet in a vapor. He used conditions (5.III) as
a “further simplification” of Eq. (5.II) [13] and, without
any assumptions, changed over to analysis of the crystal
nucleation. In other works (see, for example, [2, 14]), con-
sideration was given only to conditions (5.III) as corre-
sponding to the potential G at a maximum and a critical
crystal nucleus without mention of the other roots of
Eq. (3b). This is the most widely used variant of analy-
sis of crystal nucleation. Note that Gibbs [1] treated
only the flat-faced nucleus corresponding to condi-
tions (5.III).

p1 pl–( )dV σ1dS, µ1 µl;= =

p2 pl–( )dV µ2 µl–( )dm σ2dS;+=

p3 pl, µl µ3–( )dm σ3dS.= =

4.I( )
4.II( )

4.III( )

p1 pl–
2σ1

r1
---------, µ1 µl;= =

p2 pl–
2σ2

r2
---------

µ2 µl–
Ω

----------------;+=

p3 pl,
µl µ3–

Ω
----------------

4σ3

r3
---------.= =

5.I( )

5.II( )

5.III( )

(a) (b)σ

σ∞

∆G

r1 r2 r3 r r1 r2 rr3

Fig. 1. The most probable dependences of (a) the surface
tension and (b) the Gibbs thermodynamic potential for a
crystal nucleus on the nucleus size.
C

Substitution of conditions (5) into Eq. (3a) gives the
relationships

It is seen from these expressions that, in all three
cases, the increment ∆G is positive and does not depend
on the relation between σ and r. Therefore, the incre-
ment ∆G cannot be negative. The negative values of ∆G
found in [6, 12] are explained by the fact that the
authors took into account the dependence of the surface
tension σ on the size r by assuming that the chemical
potential µ of the nucleus is constant. However, these
quantities are related to each other by Eq. (1).

Therefore, the dependences of ∆G on r exhibits
three particular points, which can be either inflection
points or extrema. It is evident that their character can
be revealed by examining the second differential of ∆G.
As far as we know, only Rusanov [8] considered d2∆G
and analyzed only conditions (5.I). Hereafter, for brev-
ity, we will manipulate with the second derivative
of ∆G.

For the spherical subnucleus, we have

(7)

Substitution of relationship (2a) into this equation
leads to the expressions 

(8)

With due regard for relationships (2b), for the cubic
faceted nucleus, we find

(9)

Substituting roots (5.I) and (5.II) into Eq. (8) gives

Let us consider root (5.III). In this case, the equality
of the pressures means that the nucleus is already flat
faced and relatively large. Consequently, root (5.III)
corresponds to the nucleus with the maximum size.
According to the second condition for root (5.III), the
inequality µ3 < µl  is satisfied, because the other vari-
ables in this expression are positive. After substitution

∆G1 4/3( )πr1
2σ1;=

∆G2 4/3( )πr2
2σ2;=

∆G3 2r3
2σ3.=

6.I( )
6.II( )

6.III( )

∆G '' 8π pl p–( )r
8π
Ω
------ µl µ–( )r– 8πσ+=

– 4πr r p'
r
Ω
----µ'– 2σ'– 

  .

∆G '' = 8π pl p–( )r
8π
Ω
------ µl µ–( )r– 8πσ 4πrσ'.–+

∆G ''
6r
Ω
----- µl µ–( ) 12σ.+=

∆G1'' 16πσ1– 4πr1σ1' ;–=

∆G2'' 16πσ2– 4πr2σ2' .–=

10.I( )
10.II( )
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of this root (5.III) into Eq. (9), we obtain

(10)

Since we have µ3 < µl , the maximum of ∆G takes
place in the case of root (5.III).

Now, we examine roots (5.I) and (5.II). Since
root  (5.III) is associated with the maximum of ∆G,
roots (5.I) and (5.II) [or (5.II) and (5.I)] correspond
either to ∆G at a maximum and a minimum or to inflec-
tion points in the dependence of ∆G. We make the sole
assumption that one of these roots falls in the range of
spherical-nucleus sizes in which σ' > 0. This implies
that the corresponding root indicates the maximum
of ∆G. Two maxima should be separated by a mini-
mum. Consequently, the other root is associated with
this minimum, which most likely lies in the range of the
sizes r in which σ' < 0.

The other variant is the occurrence of two inflection
points in the dependence of ∆G below the maximum
corresponding to conditions (5.III). In this case, the val-

ues of ∆  and ∆  should be equal to zero. This
imposes rigid limitations on the quantity σ', which can-
not be explained physically.

The first activation barrier corresponds to the trans-
formation of either the rounded crystal to the faceted
crystal or the cluster to the crystal nucleus and, probably,
has a relatively small height. In the former case, the bar-
rier height should strongly depend on the degree of the
thermal smoothing of apices and edges. This barrier
should be lower than the barrier described by condi-
tions (5.III) (Fig. 1b).

Two barriers in the thermodynamic potential for
crystal nucleation were also found by Pervushin [15]
with the use of statistical thermodynamics. Moreover,
the computer simulation of a change in the Gibbs ther-
modynamic potential during crystal nucleation also
revealed that the number of these barriers should be
more than one [16]. These data confirm the validity of
the results of the aforementioned phenomenological
analysis of this potential.

CONCLUSION

Thus, it was demonstrated that the term associated
with the difference between the pressures in the initial
crystal nucleus and the environment cannot be ignored
in the equation that describes the dependence of the
Gibbs potential on the size of the nucleus, irrespective

∆G ''
3r3

Ω
------- µ3 µl–( ).=

G1'' G2''
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of whether it has a regular crystalline or amorphous
structure. With allowance made for this term, the equa-
tion for the differential of the change in the Gibbs
potential has three roots. This indicates that the crystal
nucleation is characterized by two activation barriers
rather than by one barrier.
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Abstract—A plane decagonal tiling with 3-connected nodes, which is obtained by decorating the Penrose til-
ing, is proposed as the structure of a two-dimensional covalent quasicrystal. The mean energy of the atoms in
the given structure, calculated using the model Tersoff potential for carbon, is found to be close to the energy
of the atoms in fullerene. An octagonal tiling containing 3-connected nodes and even cycles only is also pro-
posed. © 2002 MAIK “Nauka/Interperiodica”.
In 1979, the mathematician Rodger Penrose pro-
posed a new class of plane aperiodic pentagonal tilings
formed by rhombi with acute angles of 2π/5 and 2π/10
[1, 2]. This initiated discussions on the possibility of
using this tiling in crystallography [3, 4]. It is therefore
not surprising that in 1985, when decagonal phases
were detected in Al–Mn and Al-Fe, the authors of this
discovery ascribed them to Penrose tiling [5, 6]. The
only way of connecting the Penrose tiling with the
structure of a decagonal quasicrystal is to set a certain
arrangement of atoms in the bulk and at the boundaries
of the two rhombi forming the tiling, which play, in this
case, a role similar to that of a unit cell in a crystal. In
this paper, we apply this method to describe the struc-
ture of a hypothetical decagonal plane quasicrystal
whose atoms, all have the same coordination number
(three).

In order to obtain a 3-coordinated structure on a
plane, we can divide the plane into triangles and place
one atom in each triangle, assuming that only the atoms
belonging to adjacent triangles are connected. The per-
fection of this structure depends on the ratio of the sides
of the triangles. The structure of graphite in which the
lengths of the bonds, as well as the angles formed by
them, are identical corresponds to the division of the
plane into equilateral triangles. Generally, the closer the
triangles are to equilateral, the more perfect the struc-
ture. For this reason, to apply this method to the Pen-
rose tiling we must divide the rhombi into triangles
along the shorter diagonal. After completing this proce-
dure, we obtain a tiling with 3-connected nodes, which
is formed by pentagons, hexagons, and heptagons. Pen-
tagons and heptagons are encountered in this structure
with the same frequency by virtue of a general theorem
analogous to the Euler relation for polyhedra [7]. This
structure obtained from the Penrose tiling obviously
possesses the decagonal symmetry of the crystallo-
graphic sense. Another method of obtaining a structure
topologically equivalent to the given structure (except
for the lengths of bonds and their directions) is the split-
1063-7745/02/4706- $22.00 © 20897
ting of the Penrose tiling into Voronoi domains (the
polygons in the present case) [3].

Let us consider the possibility of the existence of a
natural quasicrystal whose structure is based on such a
tiling. At present, many structures based on plane
3-connected nets are known [7]. Most structures of this
type are based on a plane hexagonal lattice. Among
such substances, we can find suitable materials for cre-
ating a decagonal 3-connected quasicrystal. It is well
known that pentagon-heptagon pairs can be formed in
graphite; such defects were observed, for example, in
carbonic nanotubes. A plane carbonic structure formed
only by pentagons and heptagons was also proposed
[8]. Obviously, the energy of a decagonal carbonic
structure will be “worse” than that of graphite. Another
possibility is associated with substances having the
structural formula A2X3, in which A atoms occupying
the sites of a plane hexagonal lattice are connected
through X atoms. Among such substances, we can men-
tion B2O3 and As2S3 (mineral orpiment).

Let us consider the first case, when the nodes of a til-
ing are occupied by carbon atoms. In compliance with
the above arguments, we specify the positions of the
two nodes in each rhombus, each of which has three
bonds: one with another node in the rhombus and two
with the nodes in the adjacent rhombi (Fig. 1). For the
sake of convenience, we will distinguish between the
two types of nodes, B and W, which are presented by
black and white circles, respectively, in the figure. Fig-
ure 2a shows a region of the Penrose tiling decorated by
nodes in accordance with the rules illustrated in Fig. 1.
All W nodes lie at the same distance x from the corre-
sponding vertices of the rhombi; for this reason, these
nodes form regular (shaded) pentagons. Parameter y is
chosen so that all BW bonds have the same length. If we
assume that the length of the edges of the initial rhombi

is equal to unity, then y = 1/τ, where τ = (  + 1)/2 is
the golden mean. Henceforth, we assume that x = 1/2.
The structure contains three types of bonds: WW =

5
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2x sin(2π/10) = (1/2) , BB = 2ysin(2π/10) =

(1/τ) , and BW = 2cos(2π/10) – x – y = 1/2. A
noticeable disadvantage of this structure is the consid-
erable spread in the length of the bonds. This difference
can be partly compensated, assuming that the atoms
have a nonzero coordinate in the direction perpendicu-
lar to the plane. For this purpose, we raise or lower each
W atom by h = 1/(2τ) depending on the orientation of
the regular pentagon containing this atom. B atoms
remain on the plane. In this case, the length of the BW
bonds becomes equal to that of the WW bonds, and all
hexagons WWBWWB become regular. In the structure
obtained in this way (Fig. 2b), the angles formed by the
bonds in most atoms are the same as in fullerene, while

3 τ–

3 τ–

x

y x

W
W

B

Fig. 1. Decoration by atoms belonging to the rhombi of the
initial Penrose tiling. Lines indicate the edges of the rhombi
and the inflation rules for Penrose tilings.
C

in the rest these angles are the same as in graphite.
However, the lengths of the BB and WW (BW) bonds
still differ significantly: BB = (2/τ)WW. If we continue
this geometrical analysis, this difference can probably
be minimized at the expense of a certain spread in the
angles.

However, we will confine our analysis to the relax-
ation structure, using the model interatomic Tersoff
potential for carbon [9, 10]. To this end, we must pre-
liminarily scale the tiling so that the distances between
the bonds become typical of carbon. For example, we
can assume that the length of the WW(BW) bond is
equal to the atomic spacing in graphite (1.46 Å); in this
case, the length of the rhombus edge is 2.48 Å. For the
region of the structure for relaxation, we can choose,
for example, a unit cell of a periodic approximant of the
Penrose tiling. However, for this purpose it is more nat-
ural and methodically much more useful to use a rhom-
bus of the Penrose tiling, e.g., a rhombus with an acute
angle 2π/5 to which the inflation operation is applied
several times.

Here, we must explain the term inflation. Inflation of
a tiling is one of the most frequently used methods for
obtaining a quasi-periodic tiling. In this method, all fig-
ures of the given tiling are divided, according to certain
rules, into similar smaller figures, after which the
obtained tiling is inflated uniformly so that the figures
constituting it acquire the initial size. Multiple applica-
tions of inflation make it possible to obtain arbitrarily
large regions of a tiling starting from one or several unit
(a) (b)

Fig. 2. (a) The rhombus obtained as a result of four-fold application of inflation to a unit rhombus of a Penrose tiling with an acute
angle of 2π/5, decorated by nodes in compliance with the rules depicted in Fig. 1. (b) The same rhombus decorated by atoms. All
bonds for 110 atoms belonging to the rhombus, including those with atoms belonging to other rhombi, are indicated.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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tiles. Lines in Fig. 1 show the inflation rules for the unit
rhombi of the Penrose tiling. The rhombus in Fig. 2 is
obtained from a unit rhombus with an acute angle of
2π/5 as a result of four-fold inflation.

It can easily be seen that periodic boundary condi-
tions are inapplicable to the rhombus depicted in Fig. 2.
However, in this case we can use other boundary condi-
tions, which will be conditionally referred to as quasi-
periodic. These conditions are just the matching rules
for rhombi in the initial Penrose tiling. According to
these rules, the opposite sides of the rhombi are not
matched as in the case of periodic boundary conditions,
but adjacent sides are; for the given rhombus, these are
the edges forming angles of 2π/5. The use of a rhombus
with quasi-periodic boundary conditions as an object
for relaxation may have some disadvantages, which
will be discussed below.

After the relaxation of the structure of the rhombus
in Fig. 2b, which was carried out with the help of the
Tersoff potential, we obtained the following results.
The rhombus containing 110 atoms has an edge length
of 17.14 Å. This corresponds to the length of the edge
of a unit rhombus equal to 2.5 Å, which is approxi-
mately equal to the initially chosen value of 2.48 Å. The
distances between neighboring atoms vary from 1.40 to
1.57 Å. The average length of the bond is 1.48 Å. In
spite of the fact that some atoms have a “poor” energy
of –6.27 eV, the average energy of the structure is
−6.89 eV/atom. It should be mentioned, for compari-
son, that the energy of fullerene calculated with this
potential is equal to –6.73 eV/atom (the numerical
parameters of the potential were chosen so that the
energy of graphite coincided with the experimental
value of –7.40 eV/atom [10]).

We must now consider the applicability of quasi-
periodic boundary conditions in our analysis. It should
be noted above all that, using these boundary condi-
tions, it is impossible to fill the plane with a single
rhombus having an acute angle 2π/5. In order to
describe the entire structure, we need both rhombi of
the Penrose tiling with angles 2π/5 and 2π/10. The
relaxation of these rhombi must be carried out simulta-
neously so as to minimize the energy of the entire tiling
as a whole. Here, we must take into account the fre-
quency of the appearance of each rhombus and their
common edges in the structure. In this paper, we con-
fine our analysis to only a small region of the tiling,
which, however, contains all main features of the entire
structure.

The boundary conditions weakly affect the state of
the atoms located at large distances from the bound-
aries if the size of the chosen spatial region is large
enough. In the case of periodic boundary conditions,
which are valid for a unit cell of the crystal, we can
always carry out a parallel translation of the boundaries
so that an arbitrarily chosen atom is at the center of a
unit cell. This means that the energy of an individual
atom in a crystal with a large unit cell weakly depends
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
on the periodicity. On the contrary, the boundaries of
the rhombi in the Penrose tiling cannot be displaced
arbitrarily since it would lead to certain stresses in the
structure. Such stresses must appear at the vertices of
the rhombi, since the atoms located at these sites adjoin
the equivalent atoms in adjacent rhombi. The positions
of equivalent atoms belonging to different unit cells
cannot be changed independently. In particular, this
means that these atoms must have identical coordinates
along the direction perpendicular to the plane. Fortu-
nately, by virtue of the decoration method proposed by
us here, it is advantageous from the energy viewpoint
that the regular pentagons of atoms located at the verti-
ces of the rhombi be parallel to the plane, which con-
firms the self-consistency of the approach used by us
here.

The structure with 3-coordinated atoms considered
above contains, apart from hexagons, closed chains
consisting of five and seven atoms. It was mentioned
above that cycles of 5 and 7 atoms might be contained
as defects in graphite and carbonic nanotubes. How-
ever, the formation of odd cycles is forbidden for a
number of substances with 3-coordinated atoms. For
example, in crystal with the general structural formula
AB (boron nitride BN, GeS, SnS, etc.) this is due to the
required alteration of the A and B atoms. In this case,
cycles of 4 and 8 atoms should be introduced as defects.
An increase in the number of such defects may obvi-
ously elevate the macroscopic symmetry of the struc-
ture, e.g., to the octagonal symmetry.

By way of an example, let us consider an octagonal
tiling composed of squares, regular octagons and equi-
lateral hexagons with angles of 90° and 135°; the infla-

Fig. 3. Inflation rules for an octagonal tiling formed by
squares, regular octagons, and equilateral hexagons with
angles of 90° and 135°.
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tion rules for such a structure are illustrated in Fig. 3.
The splitting of figures occurs in accordance with their
orientations in the plane, which are depicted with the
help of auxiliary triangles plotted on their sides. The

inflation coefficient α = (1 + ).
The obtained tiling has an octagonal macroscopic

symmetry and is formed by figures with an even num-
ber of sides connected in triples at each vertex of the til-
ing (Fig. 4). Squares and octagons are encountered with
equal frequency by virtue of the above-mentioned prin-
ciple [7]. The numbers of octagons and hexagons no and
nh are connected through the relation no/nh = (4 +

2 )/3 ≈ 3.097. It is interesting to establish the relation
between the given tiling and other octagonal tilings.
Hexagons and octagons can be split in such a way that

2

7

Fig. 4. A region of an octagonal tiling with 3-connected
nodes, obtained according to the inflation rules presented in
Fig. 3. Thin lines show the Ammann-Beenker tiling.
C

they form a tiling consisting of squares and rhombi with
acute angles of 45°. Such a splitting lowers the symme-
try of the initial figures (the symmetry of a hexagon is
lowered by half and that of octagon by a factor of 8).
Consequently, using different splitting modes, one can
obtain an infinitely large number of different tilings,
including the well-known Ammann-Beenker octagonal
tiling (see Fig. 4) [11, 12].
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Abstract—The planar and linear complication schemes are constructed for the compositions corresponding to
the phase diagram of BaO : BiO1.5, the compositions of borate radicals, the symbols of reflections with the
intensity 100, the symbols of simple forms, the symbols of planes with a high density of atoms in planar bilayer
structures, the theoretical and realized formulas of binary compounds, and the ratios between the chemical coef-
ficients of two different cations in oxides. The schemes of silicate and borate radicals are compared. It is con-
firmed that the binary ratios obey the law of small numbers. © 2002 MAIK “Nauka/Interperiodica”.
As was shown earlier in [1], in any system, there
exist attributes according to which it is possible to sep-
arate essentially different constituents that are different
in rank and whose combinations can represent all
objects of a four-level system. Goldschmidt [2] pro-
posed to use four series as four constituents that are
most probably realized in the planar complication
scheme. The planar complication scheme is constructed
using the Weiss law. According to this law, a new sym-
bol of the zone, for example, 12, is formed using the
term-by-term summation of two initial symbols 11 and
01, namely, 1 + 0 = 1 and 1 + 1 = 2. Moreover, Gold-
schmidt introduced a shift of new elements downward
by a step. In our previous work [3], the thus obtained
system of ratios between mutually prime numbers was,
on the one hand, simplified (we used only half the
scheme and removed repeated ratios) and, on the other
hand, complicated (we introduced the ratios between
numbers involving the greatest common divisors). As a
consequence, we derived the system of ratios between
arbitrary numbers. The complication included the addi-
tion of exponents (n = 2, 3, 4, …) to each ratio. Num-
bers involved in the ratios between mutually prime
numbers should be multiplied term by term by these
exponents. For example, 111, 2, 3, 4 means the ratios 11,
22, 33, and 44 (1 : 1, 2 : 2, 3 : 3, and 4 : 4). In the planar
complication scheme, the exponents exist in an implicit
form and are given only for the realized ratios.

Goldschmidt believed that it would make no sense
to consider symbols of the fifth and higher series. In [3],
we analyzed most, if not all, the symbols. As a result,
we established the regularities of the formation of arith-
metic series and Fibonacci sequences and revealed the
furcation (differentiation–integration) points. The
application series were represented in the form of arith-
metic sequences with the least initial terms and small
differences. Therefore, many specific features dis-
cussed in Goldschmidt’s work manifested themselves
in the planar complication scheme. Goldschmidt would
1063-7745/02/4706- $22.00 © 20901
have found them by himself if his consideration had not
been restricted to the realization of four series in the
planar complication scheme.

In this work, we constructed the planar complication
scheme for the compositions of the phase diagram of
BaO : BiO1.5 (Fig. 1), which was investigated by three
methods [4]. We obtained the ratios (formulas) for
19 phases identified by electron microscopy, 17 phases
determined by visual polythermal analysis, and
10 phases revealed by differential thermal and thermo-
gravimetric analyses. As can be seen from the planar
complication scheme (Fig. 2a), electron microscopy,
visual polythermal analysis, and differential thermal
and thermogravimetric analyses identified phases up to
the twelfth, eighth, and sixth series, respectively. The
first three series are filled completely. The bifurcation
points are as follows: 12, 13, 23, and 34. The sequences
of layers containing Ba or only Bi atoms were found for
four phases in [4]. Let us designate the layers composed
of Ba atoms by the letter k and the layers comprised of
Bi atoms by the letter g. Then, for the compositions 11,
45, 49, and 13, we obtain the sequences kg, (kg)3kgg,
kggkgkggkgggg, and kggkgggg, which are described by
the Zhdanov formulas 2, 2223, 3235, and 35. The
sequences consist of the previously found dominant
modules kg and kgg and the recessive module kgggg (or
2, 3, and 5).

In order to assign silicates to subclasses, Bokiœ [5]
proposed to use the binary ratios Si : O. The formulas
obtained in [5] are represented in the planar complica-
tion scheme (Fig. 2b). By analogy with silicates, for
borates, we determined the ratios B : (O + OH), B : O,
and O : OH (Fig. 2b). Compared to silicates, the ratios
for borates vary in a considerably wider range. Silicate
radicals virtually do not contain OH groups, whereas
the O : OH ratio in borates varies from 10 to 0.1. The
Si : O ratio in silicates changes from 1 : 2 to 1 : 4, while
the B : (O + OH) ratio in borates varies in a wider range
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Phase diagram of BaO : BiO1.5 according to visual polythermal analysis [4]. Squares are the experimental points.
(from 8 : 11 to 2 : 7). At the same time, the number of
the Si : O ratios in silicates is equal to 25, whereas the
number of the B : (O + OH) ratios in borates is equal to
18, i.e., is smaller, even though silicate radicals contain
only O atoms, while borates involve O atoms and OH
groups.

When analyzing the formulas (symbols) of the faces
of simple forms and the formulas of reflections (sym-
bols of reflections with the intensity 100) in our earlier
work [3], we did not consider many formulas involving
numbers larger than nine. For completeness of the pat-
tern, all the formulas previously omitted are included in
the planar complication scheme (Fig. 2c). The first five
series of the planar complication scheme are filled by
the formulas of reflections and faces. Then, as before,
C

the formulas occur when going along arithmetic series.
The longest series have the form 110(010), 120,
130, …, and 120(110), 230, 340, …. It is easy to sepa-
rate several shorter series. The former series is fused
(without gaps) to the formula 1.12.0. Then, the series
involves gaps. The range of new realized formulas is
regularly complemented when going along arithmetic
sequences in the nearest series. Reflections with orders
larger than unity are not given in the planar complica-
tion scheme. In this respect, we present them as a linear
complication series. This series can be obtained by pro-
jecting the formulas of the planar complication scheme
onto a line. The curly, square, and slant brackets are
used for the formulas of the first four, fifth, and sixth
series, respectively. The exponents are written in angle
brackets. The linear complication series obtained is as
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Fig. 2. Planar complication schemes for (a) the formulas of compositions of the compounds determined in the phase diagram of
BaO : BiO1.5 by visual polythermal analysis (large circles), electron microscopy (small circles), and differential thermal and ther-
mogravimetric analyses (plus signs); (b) the formulas of the ratios Si : O (large circles) for silicates and the ratios B : (O + OH)
(small circles), B : O (exponents), O : OH (coinciding with the ratios B : O) (underlined exponents), and O : OH (plus signs) for
borates; (c) the formulas for the reflections hk0 with the intensity 100 (large circles) and the symbols hk0 of faces (small circles)
(the formulas composed of two indices revealed only in the symbols hkl of reflections and in the symbols hkl of faces are marked
by the plus and minus signs, respectively); (d) the formulas of the compositions determined from the coordination numbers of binary
compounds (the realized compositions are in bold type); and (e) the formulas of the quantitative ratios between the coefficients of
two different cations in oxides.
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follows: {110} 〈1–10〉; 890; 780; 670; /560/; [450];
790; {340} 〈1, 2〉; [570]; {230} 〈1, 2, 3〉; [580]; {350};
[470]; /590/; {120} 〈1, 3, 4〉; /490/; [370]; [380]; {130}
〈1, 3〉; [270]; {140} 〈1, 2, 4〉; /290/; [150] 〈1, 2〉; /160/;
170; 180; 190; 1.10.0; {010} 〈1–18〉.

In [6], the crystallographic planes characterized by
a high degree of occupation with atoms were revealed
in planar structures of sulfides with the symmetry group
Pnma. The symbols of these planes will be considered
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
without regard for signs. The indices (except for zero)
are written in increasing order. The formulas are repre-
sented in the form of the linear complication series. The
curly, square, and slant brackets are used for the formu-
las of the first four, fifth, and sixth series, respectively.
The exponents are written in angle brackets. The third
(smaller) significant indices are given in parentheses.
The linear complication series is represented as {110}
〈1(1), 2(1), 5(0)〉; [450]; {340}; {230} 〈1(0, 1), 2(0)〉;
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{350} 〈1(0, 1)〉; {120} 〈1(0, 1), 2(0, 1), 3(0, 1)〉; [370];
{250} 〈1, 2〉 , {130} 〈1(0, 1), 2(0)〉; {140}; [150]; /160/
〈1(0, 1)〉; 170; 180; 190; {010} 〈2, 4, 6, 8, 10〉 . For
example, the removal of brackets for {110} 〈1(1), 2(1),
5(0)〉  gives 111, 122, and 550. The basic formulas of the
sequence almost completely enter into the composition
of the first four series of the planar complication
scheme.

Finally, let us examine the possible compositions
calculated from the coordination numbers of binary
compounds. As is known, for binary compounds AmBn,
the coefficients m and n (n ≥ m) can be calculated from
the coordination numbers r and s (r ≥ s) of the constit-
uent atoms A and B. This is possible, because the ratio
m : n between the coefficients for crystal structures of
binary compounds is inversely proportional to the ratio
r : s [e.g., for CaF2, m : n = 1 : 2 and r : s = 8 : 4 = k(2 :
1), where k = 4]. Unlike the ratios m : n, the ratios r : s
can have higher orders k (kr : ks). However, the number
of orders of a larger coordination number is restricted
by the upper limit whose experimental value even for
intermetallic compounds does not exceed 24, and a
smaller coordination number is less than or equal to 12
[7]. Therefore, the number of orders decreases with an
increase in the maximum coordination number r and
cannot exceed 24. At the composition 1 : 1, both coor-
dination numbers can be equal to unity but also can
have higher orders 〈2, 3, 4, 5, 6, …, 24〉 , i.e., be charac-
terized by the ratios 2 : 2, 3 : 3, 4 : 4, etc. For the com-
C

position 1 : 2, the ratio between the coordination num-
bers is equal to 2 : 1 and the number of orders decreases
to 12 (r : s = 24 : 12). At the compositions 1 : 3 and 2 :
3, the number of orders decreases to eight (r : s = 24 : 8
and 24 : 16). Figure 2d displays the planar complication
scheme for the formulas of the theoretical ratios m : n
corresponding to mutually prime numbers. This is also
the planar complication scheme for the ratios s : r. All
the first five series are completely filled with formulas.
It should be noted that the ratios of the first several
series most frequently occur when ordering; i.e., these
ratios correspond to the minimum information entropy.
This especially holds true for the compositions of the
first two series: 01, 11, 12, 13, and 23. The orders are
not presented in the planar complication scheme,
because the larger coordination number [1 (24), 2 (12),
3 (8), 4 (6), 5 and 6 (4), 7 and 8 (3), 9–12 (2), and 13–
24 (1)] in the formula determines its maximum order
(given in parentheses). For smaller coordination num-
bers, the maximum order is two times smaller: 1(12)… .

In the case when the A and B atoms each occupy one
position, the coordination sphere of the A atom is com-
posed of the B atoms, the coordination sphere of the B
atom consists of the A atoms, and these coordination
spheres are simple. If the A atom occupies one position
and the B atom occupies several positions, the A atom
has a complex (combined) coordination sphere. When
the coordination numbers of the A and B atoms are
equal to one out of ten position multiplicities (1, 2, 3, 4,
6, 8, 12, 16, 24, and 48), their coordination spheres can
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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be comprised of atoms of the same sort, i.e., can be sim-
ple. If the coordination number of at least one of the
atoms, for example, the B atom, differs from these ten
multiplicities, the coordination sphere of at least the A
atom will be complex (combined).

A change in the coordination number equal to the
above multiplicities due to the multiplication by the
order can lead to a changeover from the simple coordi-
nation sphere to the complex coordination sphere. At a
coordination number of 1 and an order of 5, the coordi-
nation number becomes equal to 5. As a result, the
coordination sphere that is simple at a coordination
number of 1 can be only complex at a coordination
number of 5. The coordination numbers equal to the
multiplicities and the orders, the product of which by
the coordination number leads to complex coordination
spheres instead of simple spheres, are listed below (the
coordination numbers are marked in bold type, and the
orders are given in angle brackets): 1 〈5, 7, 9−11, 13–15,
17–23〉; 2 〈5, 7–11〉; 3 〈3, 5–7, 9−11〉; 4 〈5〉; 6 〈3〉 .

Simple binary structural types—ancestors—involve
atoms that each occupy one position. A.V. Shubnikov
[8] determined the compositions of 13 simple binary
structural types (1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 6, 1 : 8, 1 :
12, 1 : 16, 1 : 24, 1 : 48, 2 : 3, 3 : 4, and 3 : 8, where 1,
2, 3, 4, 6, 8, 12, 16, 24, and 48 are the multiplicities).
Simpler structural types, such as NaCl and CaF2, have
the highest cubic symmetry. The formulas of pseudobi-
nary structural types in which at least one atom occu-
pies one position and the second atom occupies two or
more positions (for example, FeFe2O4) are assigned to
the formulas of simple structural types of second rank.
In this case, the chemical compound involves atoms of
two sorts and one of them (O) has a complex (com-
bined) coordination sphere. These formulas can be rep-
resented using the linear complication series. The curly,
square, and slant brackets are used for the formulas of
the first four, fifth, and sixth series, respectively. The
Shubnikov ratios between the coefficients of atoms are
marked in bold type. The coefficients that can corre-
spond to one position whose multiplicity is equal to one
of the aforementioned ten multiplicities are also
marked in bold type. The second coefficients that are
not equal to the multiplicity of one position are printed
in plain type. The sign plus indicates the realized for-
mulas [9]. The formulas in which numbers marked in
bold type can correspond to one position are denoted by
exclamation points.

The linear complication series is as follows: +!{11},
.12.13, .11.12, +.10.11, 9.10, +89, +78, +67, .11.13,
+!/56/, +9.11, +![45], .11.14, /79/, +.10.13, +!{34},
.11.15, +/8.11/, +[57], .12.17, +/7.10/, +9.13, .11.16,
+!{23}, .11.17, 9.14, /7.11/, +.12.19, +[58], /8.13/,
.11.18, +!{35}, +.10.17, +/.7.12/, +.11.19, +[47], 9.16,
+/59/, +.11.20 +6.11, +7.13, +8.15, +9.17, .10.19,
+.11.21, .12.23, +!{12}, .11.23, +.10.21, 9.19, 8.17,
+7.15, +6.13, 5.11, 9.20, +/49/, +7.16, .10.23, +[37],
8.19, +/5.12/, 7.17, 9.22, +!{25}, 9.23, 7.18, +/5.13/,
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
+8.21, +![38], 7.19, +/4.11/, +5.14, 6.17, +7.20, +8.23,
+!{13}, 7.22, +!6.19, 5.16, +4.13, 7.23, +!/3.10/, 5.17,
7.24, +![27], 5.18, +/3.11/, +!4.15, +5.19, +!6.23,
+!{14}, 5.21, +4.17, +3.13, +5.22, +!/29/, 5.23, +3.14,
+4.19, 5.24, +![15], 4.21, +3.16, +!2.11, +!3.17, +4.23,
+!/16/, +3.19, 2.13, +!3.20, +17, +3.22, +!2.15, +3.23,
+!18, +!2.17, +!19, 2.19, +!1.10, +2.21, +!1.11, 2.23,
+!1.12, +!1.13, 1.14, +!1.15, +!1.16, 1.17, 1.18, +!1.19,
1.20, 1.21, 1.22, 1.23, 1.24.

Analysis of 516 of Shubnikov’s formulas for
1073 binary structural types [10] demonstrated that
there are only 128 of Shubnikov’s formulas (25%) that
correspond to the occupation of one position by either
of two atoms with the following multiplicities: 1 (56,
44%), 2 (23, 18%), 3 (23, 18%), 6 (18, 14%), 4 (7, 6%),
and 12 (1, 1%). Consequently, complex coordination
spheres are characteristic of structural types described
by 75% of Shubnikov’s formulas. These are either
binary structural types of third rank or pseudoternary
structural types. However, 320 of Shubnikov’s formu-
las include multiplicities with indices of 1 or 2. As a
consequence, together with 128 of Shubnikov’s formu-
las, we have 448 of Shubnikov’s formulas (87%).
Therefore, it is worth noting that binary compounds are
only “pseudobinary” compounds. It is also interesting
to note that all the formulas of reflections (without
regard for the orders) are included in many theoretical
formulas of compositions of binary chemical com-
pounds.

With the use of the data taken from [5], we deter-
mined different quantitative ratios between coefficients
of cations in oxides containing two cations (Fig. 2e).
Except for several formulas, all these ratios correspond
to the theoretical binary ratios derived from the coordi-
nation numbers. Four series are completely filled in the
planar complication scheme.

Thus, planar complication schemes were con-
structed for a number of systems. The data obtained are
generalized. This allows one to consider these systems
from a different viewpoint. The schemes are prognos-
tic. All new results will fall into the schemes with due
regard for the law of small numbers.
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Abstract—The process of growth of random graphs with the vertices lying at the points of the plane (i, j) with
integral coordinates has been considered. Computer simulation of the process allowed us to establish that ran-
dom graphs grow in the self-similar mode. The sectorial growth proceeds in such a way that the growth bound-
ary in four sectors consists of two horizontal and two vertical linear segments; in the other four sectors, the
boundary is a part of an ellipse; the real growth boundary lags behind the limited form to which it tends; the
scatter interval along the principal growth diagonal is proportional to the cubic root of the number of the coor-
dination sphere. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The process of crystal formation can be simulated
with the aid of the following simple purely geometric
model. Let a periodic packing of closed domains (e.g.,
polyhedra which should not necessarily be convex) be
set in a three-dimensional space and choose arbitrarily
one or several domains in this packing which would
play the role of a seed. The “growth process” is then
considered as the successive addition to the seeding set
of its coordination sphere—a set of domains neighbor-
ing the seeding set. The neighborhood ratio is deter-
mined by the local rules. For example, a domain neigh-
boring the seeding set is a domain that shares a point,
an edge, or a face with the seeding set. The packing
with the given neighborhood ratio of various domains
determines a three-dimensional periodic graph to each
vertex of which there corresponds one domain of the
packing. The edges connect those vertices to which the
neighboring domains correspond.

Despite the simplicity of the above model, it
allowed us to reveal certain characteristics that are
rather similar to the well-known characteristics of real
processes of crystal formation. Thus, we revealed and
rigorously proved [1] the self-similar nature of
“growth” of a three-dimensional periodic graph [1],
with the growth form being a convex polygon (to which
the growth structure tends) independent of the choice of
the seed and dependent only on the graph structure. The
proof of the self-similarity of the growth form is based
on the sectorial nature of growth of a periodic graph
proven in [1]. These facts are consistent with the con-
cepts of ideal crystal growth commonly accepted in
crystallography. It was indicated that, in the case of
ideal growth, where a crystal remains to be self-similar
from the moment of its nucleation, it is possible to sin-
gle out the domains in the shape of pyramids in the cen-
ter of the crystal, the so-called overgrowth pyramids or
simply growth pyramids [2].
1063-7745/02/4706- $22.00 © 20907
The study of the process of crystal formation under
varying growth conditions gave very interesting results
in terms of the geometry of crystal formation. We rec-
ollect here the well-known studies performed by
G.G. Lemmlein, including the studies of the effect of
impurities on crystal habit (Maltese cross). Therefore,
we believe, that the natural extension of the metric
approach is the incorporation of randomness elements
into the process of crystal formation. These consider-
ations, and also the prognosis of crystallinity (regular-
ity) in the Delaunay (Delone) r–R systems formulated
by Galiulin [3], gave an impetus to the formulation of
the problem of studying the growth of the graph G in
which the boundedness of vertices is determined by the
local rules with fixed probabilities. In this article, we
limit our consideration to the two-dimensional case.

We chose G as a graph with a set of vertices V(G)
from the points lying in the plane (i, j ) and having the
integral coordinates i, j = 0, ±1, ±2, …. Any neighboring
vertices along the vertical or the horizontal are con-
nected by edges with 100% probability, whereas the
vertices (i, j ), (i, j ) ± e and (i, j ), (i, j ) ± e– (where e =
(1, 1) and e– = (–1, 1)) are connected by edges with
probability p. Thus, the vertices of the graph G which
form a square lattice can have one of 24 = 16 possible
first environments with the probabilities pk(1 – p)4 – k,
0 ≤ k ≤ 4 (local rules). The graph G can be brought into
correspondence with the aperiodic packing of closed
figures in the plane. Figure 1 shows a fragment of the
packing corresponding to the random graph G with p =
0.3. The graph vertices are the points lying inside the
figures. The boundaries of these figures are indicated by
solid lines, whereas the edges of the graph G, by thin
lines.

Now, select the origin of the coordinate system
(0, 0) to be a seed and form around this seed the 1st,
2nd, …, nth coordination environments, eq(1, G), eq(2,
G), …, eq(n, G). Limiting ourselves to the periodic
002 MAIK “Nauka/Interperiodica”
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graph Gper, as was indicated earlier, we see that the set
eq(n, Gper) grows in a self-similar way as a certain poly-
gon Pol(n, Gper), with eq(n, Gper) deviating from it at
n  ∞ by not more than the constant c(Gper) [1]. The
periodicity is characterized by a multigonal growth
form in the plane and a multifacial growth form in the
space.

The computer experiment showed that, for a random
graph G, the coordination circumference eq(n, G) at
n  ∞ also grows in a self-similar way, eq(n, G) 
nΓ. In the first quarter, the growth boundary Γ consists
of two rectilinear segments, γ1 and γ3, and the arc of an
ellipse, γ2 (Fig. 2). The growth boundary Γ is extended
to other three quarters by the fourfold axis passing
through the origin of the coordinate system. To prove
the reliability of the results obtained in the computer
experiments, we analyze mathematically both the for-
mulation of the problem of the growth form of the sug-
gested random graphs and its solution.

1. LAYER GROWTH OF GRAPHS

1.1. Probabilistic measure. Denote the denumera-
bly-dimensional random quantity by ξ = (ξij). Its com-
ponents ξij are the independent equivalently distributed
random Bernoulli quantities with the distribution

(1)P ξ ij = 1( ) p, P ξ ij = 0( ) q, p q+ 1.= = =

Fig. 1. Fragment of the aperiodic packing of closed figures
in the plane (the figure boundaries are depicted by solid
lines, the hatched squares indicate the voids) and the corre-
sponding random graph with the probability p = 0.3 (graph
vertices are depicted by the points inside the figures; thin
lines indicate the graph edges).
C

By definition, the random quantity ξ takes the values
from the space Ω of all the number sequences ω = (ωij)
consisting of the elements ωij = 0 or 1. The Bernoulli
measure, i.e., the measure–product of the probabilistic
measures (1) in the space Ω is denoted by P [4],

(2)

where Σ equals the sum  + … + .

1.2. Random graphs. Consider the set Gr = Gr( )
of graphs G (the transition from graphs with a set of
integral vertices in the plane Z2 to the graph with the

vertices from the first quarter of  is possible because
growth proceeds independently in each quarter). Each

graph G has a set of vertices V = , and any two
neighboring vertices (along the horizontal or the verti-
cal) are connected by an edge. The vertices (i, j ) and
(i + 1, j + 1) can be either connected or not connected
by an edge depending on the choice of the graph G. The
graphs from Gr are enumerated by the points ω = (ωij)
of the space Ω with the aid of the mapping

(3)

The vertices (i, j ) and (i + 1, j + 1) in the graph G = G(ω)
are connected by a diagonal only if ωij = 1. This map-
ping allows one to transfer the measure P onto the set
Gr of random graphs G = G(ξ) and, thus, sets the iso-
morphism of the probabilistic spaces

(4)

1.3. Growth curve. A chain x'  …  x with
the minimum number of edges from E = E(G) of the
graph G which connects the vertex x' with x is called the
geodesic g at fixed ω ∈ Ω . The number of edges
d(x', x) = d(x', x; G) sets the metrics on the set of verti-

P ξ  : ξ i1 j1
 = ωi1 j1

… ξ in jn
 = ωin jn

, ,( ) p
Σ
q

n Σ–
,=

ωi1 j1
ωin jn

Z+
2

Z+
2

Z+
2

Ω ω G ω( ) Gr.∈∋ G

Gr P,( ) Ω P,( ).≈

(p, 1)

O'

(1, p)

1/2

O 1/2

e2(0, 1) e(1, 1)

γ3

γ1

γ2

e2(1, 0)

Fig. 2. The structure of the growth boundary Γ in the first
quarter; it consists of two linear segments, γ1 and γ3, and the
arc of the ellipse, γ2.
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ces V = ; the nth coordination circumference or the
equidistant set with the center at the origin

(5)

is the set of vertices spaced by a distance n from the ver-
tex x' = 0. Naturally, eq(n, G) depends on the choice of
random metrics d, i.e., on the choice of an element ω
from the space Ω . Our main goal is to show that eq(n,
G)/n at n  ∞ for almost all the graphs G ∈  Gr tends
to the curve

(6)

consisting of the vertical segment γ1 with the ends
(1, 0), (1, p) (Fig. 2), the horizontal segment γ3 with the
ends (0, 1) and (p, 1), and the arc of the ellipse

(7)

where δ = x + y – 1, d = x – y lies between the points
(1, p) and (p, 1) in the coordinate system e1 = (1, 0), e2 =
(0, 1). This ellipse can conveniently be written in the
coordinate system (δ, d) with the center at O' = (1/2,
1/2) and the basis  = (1/2, –1/2),  = (1/2, 1/2).

1.4. The strong law of large numbers. In order to
formulate rigorously the above statement about the
behavior of the growth boundary eq(n, G), introduce
one more metrics ρ(A, B)—the distance between the
close subsets A and B of the conventional Euclidean
plane R2. For any ε ≥ 0 and point a ∈  A, the circle of
radius ε with the center a is denoted as r (a, ε). Then,
determine the ε neighborhood Aε of the set A as the
combination of the circles r (a, ε) for all the points a ∈
A. The distance ρ(A, B) is assumed to be inf ε for which
the inclusions B ⊂  Aε and A ⊂  Bε are valid.

The computer experiment showed that for the
growth boundary eq(n, G) at n  ∞ in the metrics ρ
the strong law of large numbers is fulfilled, i.e., the fol-
lowing statement is valid:

eq(n, G)  γ. (8)

If one uses the metrics ρ in explicit form, the latter
statement can be written in the form

  0. (9)

For any ε > 0 and ε1 > 0, there exists the natural number
N dependent on ε and ε1 such that the inequality

(10)

is fulfilled for all n ≥ N with the probability

(11)

Z+
2

eq n G,( ) x Z+
2
 : d 0 x; G,( ) = n∈{ } ,=

n 1 2 3 …, , ,=

γ γ1 γ2 γ3,+ +=

δ2

p
----- d

2

q
-----+ 1,=

e1' e2'

1
n
---

ρ 1
n
---eq n G,( ) γ, 

 

ρ 1
n
---eq n G ω( ),( ) γ, 

  ε<

P 1 ε1.–≥
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
1.5. Self-similar growth. Consider two important
corollaries of statement (8), namely:

—the random graph G = G(ξ) grows in a self-similar
way;

—the appropriate averaging 〈eq(m, G)〉  of the num-
ber of vertices of the nth coordination environment
|eq(n, G)| also satisfies the strong law of large numbers.

The self-similar growth of the graph G signifies the
inclusion

(12)

The right-hand side includes the ε(n) neighborhood of
the homothetic image nγ of the curve γ ⊂ R2 with the
coefficient n, and the radius of the neighborhood ε(n)
grows as o(n), i.e., ε(n)/n  0 and n  ∞.

We choose averaging of the number of vertices
|eq(n, G)| over the width ∆n = 2ε(n) for ε(n) from inclu-
sion (12)

Then, the property of self-similar growth of graphs G
(12) for averaging 〈eq(n, G)〉 , yields the convergence

  (13)

1.6. Periodic graphs. Let us separate a sublattice L
of the finite index in an integral square net Z2. We
assume that the sequence ω ∈ Ω (Sect. 1.1) is periodic
with respect to the translations from the sublattice L:
ωij =  if the difference (i, j ) – (i1, j1) belongs to L.
Periodic graphs grow in the form of convex polygons
PolG with a finite number of vertices [1]. In our case,
PolG is a polygon whose boundary consists of vectors
e1, e2 and a convex (upward) broken line  = (ω) con-
necting the vertices (1, 0) and (0, 1) (Fig. 2). We limit
our consideration to square sublattices LN = NZ2 with
the basis Ne1, Ne2 and the scale coefficient N = 1, 2, 3, ….
At fixed N, any sequence ω ∈ Ω  uniquely determines

the periodic sequence ωN, namely,  = ωij for any i,

j < N;  =  if the differences i – i1 and j – j1 are
divisible into N.

With due regard for (3), inclusion (12) provides the
following properties of periodic-graph growth GN =
G(ωN). For any ε > 0 and ε1 > 0, there exists such a nat-
ural number N = N(ε, ε1) that the following inequality
is valid

(14)

Inequality (14) shows that if one chooses a sufficiently
large period N, then the polygonal growth boundary 
of a random periodic graph GN = G(ξN) approximates a

eq n G,( ) nγ( )ε n( ).⊂

eq n G,( )〈 〉 1
∆n
------- eq m G,( ) .

n ε n( )– m n ε n( )+≤ ≤
∑=

1
n
--- eq n G,( )〈 〉 1 p pq q.arcsin+ +

ωi1 j1

γ̂ γ̂

ωij
N

ωij
N ωi1 j1

N

P ω Ω: ρ γ̂ ωN( ) γ,( ) ε≤∈{ } 1 ε1.–≥

γ̂
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smooth growth boundary γ of a random graph G = G(ξ)
quite well.

2. LOWER AND UPPER ESTIMATES 
OF GROWTH BOUNDARIES

Up to now, all attempts to prove the strong law of
large numbers considered in Sect. 1.4 for the growth
boundary eq(n, G) of random graphs G by the conven-
tional methods of the probability theory have failed. We
give here the upper and lower boundaries of the growth
curve γ (6).

2.1. Upper estimates and entropy. We first con-
sider the simpler upper estimates. With this aim, we
consider an arbitrary vertex x = (x1, x2) from the set of
vertices V of the graph G = G(ω), all the possible paths
of this graph w, and the lengths d(w) = n of the paths
connecting the initial vertex Q with the vertex x. We
assume all the paths w to be real if the motion along w
is performed only along the directions e1 and e2 and
along the diagonal direction e = (1, 1) in the case where
the corresponding diagonal edge belongs to the graph G.
The latter condition can be written as w ∈  G. We con-
sider here not only the geodesic paths, but all the paths
w of the graph G. Denote the number of edges in the
path w of the type e1, e2, and e as n1, n2, and n3, respec-
tively. These edges can be uniquely restored from the
coordinate of the path end x and its length n: n1 = n – x2,
n2 = n – x1, and n3 = x1 + x2 – n. In the maximum graph
Gmax = G(ω1), the number of paths w ∈  Gmax for the unit
sequence ω1 with the elements ωij = 1 for all i, j is
described as

Therefore, the mathematical expectation of the
number of all the paths is w(x, n) = : w ∈
G(ω)}|P(ω), where the summation is performed over
the square Ωn = {ω = (ωij): i, j ≤ n, ωij = 0 or 1} and the
probability P determined by (2) is calculated by the for-
mula

(15)

Now, single out the upper triangle C+ containing the
points α = (α1, α2) with the coordinates 0 < α1, α2 ≤ 1,
α1 + α2 ≥ 1 in the single square C stretched onto e1 and
e2. To each point α ∈ C+ there corresponds the proba-
bility distribution p1 = 1 – α1, p2 = 1 – α2, p3 = α1 + α2 – 1,
where pi ≥ 0 and p1 + p2 + p3 = 1. The quantity H(α) =
–(1 – α1)ln(1 – α1) – (1 – α2)ln(1 – α2) – (α1 + α2 –
1)ln(α1 + α2 – 1) is called the entropy of the distribution
p1, p2, p3, which, as is well known, determines the prob-
ability exp(–nH) of the motion along the typical paths
w of the maximum graph Gmax with the probabilities p1,

n!
n x1–( )! n x2–( )! x1 x2 n–+( )!

--------------------------------------------------------------------------.

|{w
ω Ωn∈∑

w x n,( ) = 
n!

n x1–( )! n x2–( )! x1 x2 n–+( )!
-------------------------------------------------------------------------- p

x1 x2 n–+
.

C

p2, p3 of transitions along the e1, e2, e edges. The quan-
tity H(α) is the function varying within the range 0 ≤
H(α) ≤ ln3 and taking the minimum value H(α) = 0 at
the vertices of the C + triangle and the maximum value
H(α) = ln3, at its center of gravity α = (2/3, 2/3). The
inequality H(α, p) = H(α) + (α1 + α2 – 1)lnp ≤ 0 singles
out the domain C+(p) in the triangle C+. This is the

domain in C+ which is intersected by the curve 

(16)

and containing the vertex (1, 1). Let us agree on a con-

dition that the boundary  would not be included in
the domain C+(p). The important part played by the tri-
angle C+ is also emphasized by one more important
property. According to (5), for any graph G ⊂  Gr and

any n, the inclusion eq(n, G) ⊂  C+ is fulfilled.

Theorem 1. If the vertex x = (x1, x2) has the form
(α1(n)n, α2(n)n), where αi(n) = [αin]/n, i = 1, 2 and α =
(α1, α2) belong to the triangle C+, then the mathemati-
cal expectation of the number of all the paths of the ran-
dom graph G ⊂  Gr tends to zero

w(x, n)  0 for n  ∞, (17)

if α belongs to the domain C+(p).
2.2. The optimum single-step strategy. The

method of obtaining lower estimates for the growth
boundary eq(n, G) is illustrated by the example of esti-
mating the growth rate along the main diagonal e =
(1, 1).

We fix the graph G = G(ω) for a certain sequence
ω ∈ Ω and construct on it the path

(18)

originating at the zeroth vertex and consisting of k
atomic chains w(is, js), s = 1, …, k chosen according to
the same repeating principle. The only requirement for
this path is that it should provide the fastest motion
along the diagonal e. Now, consider the linear order on

the set of vertices V =  of the graph G 

(19)

by the two following conditions: i + j < i1 + j1 and if i +
j = i1 + j1, then j < j1. The initial v sequence of the ver-
tices has the form

(0, 0) v (1, 0) v (0, 1) v (2, 0) v (1, 1) v (0, 2) v ….(20)

Thus, to each vertex (i, j ) ∈  V is attributed an ordinal
number from the sequence 1, 2, 3, ….

Order (19) determines the v-strategy: we find the

first vertex ( , ) with the condition  = 1 in

sequence (20), i.e., the vertices ( , ) and (i1, j1) =

( , ) + e = (i1 + 1, j1 + 1) are connected by the edge

γ2
+

H α p,( ) 0=

γ2
+

1
n
---

wk wk ω( ) w i1 j1,( ) … w ik jk,( ),+ += =

Z+
2

i j,( ) v i1 j1,( )

i1' j1' ω
i1' j1'

i1' j1'

i1' j1'
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in the graph G = G(ω). Knowing the vertex ( , ), we
can construct the first atomic chain

(21)

The second chain w(i2, j2) with the origin at the vertex
found (i1, j1) is constructed by the same rule (21), etc.
Within k steps, we construct the path wk = wk(ω) (18). It
is seen from the definition that the v-strategy is the
optimum single-step strategy. It is nonlocal because it
admits the atomic chains w(is, js) of an arbitrarily large
length d(w(is, js)). The local strategies admit individual
steps based on the information on the finite part of
graph G in a circle with the center at the initial vertex
(is, js) and constant radius R (the observation radius, R,
is constant at all the steps).

From the definition of the probability P in Sect. 1.1,
it follows that d(1, ξ) = d(w(i1, j1)), …, d(k, ξ) = d(w(ik,
jk)) are the independent equivalently distributed random
quantities. Therefore, the inequality d(wk(ω)) =

(w(is, js)) yields the mathematical expecta-
tions

(22)

At x = (x1, x2) from R2, we denote the projection of x
on the principal diagonal along the orthogonal vector

(1, –1) as pre(x) =  = (x1 + x2) and, in a sim-

ilar way, the projection of the final vertex of the path
wk(ω) as pre(wk(ω)). Using this notation, we can write

Now, use the following inequality for the mathemat-
ical expectations of the direct and reciprocal quantities

and use equality (22) to obtain the lower estimate

To formulate the final result, introduce the following
additional notation: nk(ω) = d(wk(ω)) is the path length
wk(ω) (18) and maxpre(eq(nk(ω)), G(ω)) is the maxi-
mum projection onto the principal diagonal of all the
vertices of the nth coordination circumference (5) of
the graph G = G(ω).

Theorem 2. The lower estimate of the rate of the
diagonal growth of random graphs G ∈  Gr has the

i1' j1'

w i1 j1,( ) 0 0,( ) … i1' 0,( )=

… i1' j1',( ) i1 j1,( ).

d
1 s k≤ ≤∑

M d wk ξ( )( )/k( ) M d 1 ξ,( )( ).=

x
2

2
-------e, 

  2
2

-------

M
pre wk ξ( )( )
d wk ξ( )( )

--------------------------- 
  2

2
-------

2
2

-------M
d wk ξ( )( )

k
---------------------- 

 
1–

 
  .+=

M
d wk ξ( )( )

k
---------------------- 

 
1–

 
  M

d wk ξ( )( )
k

---------------------- 
 

1–

≥

M
pre wk ξ( )( )
d wk ξ( )( )

--------------------------- 
 

k ∞→
lim 2

2
-------

2
2

------- M d 1 ξ,( )( )[ ] 1–
.+≥
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form:

(23)

The mathematical expectation M(p) = M(d(1, ξ)) is cal-
culated by the formula

(24)

where (n) = n(n – 1)/2, θ2(z) = (z), θ is the Jacobi
function on the set of shifted integers Z + 1/2, and the
variable z is related to q by the exponential dependence
q = exp(πiz).

3. DYNAMICS OF FORMATION OF GROWTH 
BOUNDARY

3.1. Quasinormal distribution. Let us choose
again the direction of the principal diagonal e = (1, 1)
and relate the graph G to a random quantity

(25)

The computer simulation on cellular automata results
in the following hypothetical limiting theorem for this
random quantity

(26)

In the first approximation, the distribution Φquasi(x)
(Fig. 3) is a normal Gaussian distribution Φ(x). The
mathematical expectation MS(n, ξ) is

(27)

with the coefficient me = (1 + ) being deter-

mined by ellipse (7) and the dispersion DS(n, ξ), by

(28)

The exponent equals α = 1/3, and σ(p) is the positive
constant dependent only on the probability p.

3.2. Long-range order. In formula (27), ∆(n) is the
positively defined nonlinear function n of the same
order as that of dispersion (28). The dependence of the
average value of the mathematical expectation on n,
MS(n, ξ)/n = me – ∆(n)/n, indicates that S(n, ξ) cannot be
expanded into a sum of independent random quantities.
The inequality of degree α < 1/2 in dispersion formu-
la (28) can be interpreted as the existence of self-orga-
nization elements in the process of growth of the coor-

M
max pre eq nk ξ( ) G ξ( ),( )( )

nk ξ( )
----------------------------------------------------------------

k ∞→
lim

≥ 2
2

-------
2

2
-------M p( ) 1–

.+

M p( ) q
n( )

n 1=

∞

∑ q
1/8–

2
----------θ2 z/2( ),= =

ΘZ 1/2+

S n ξ,( ) max 2x: x x,( ) eq n G,( )∈{ } .=

p
S n ξ,( ) MS n ξ,( )–

DS n ξ,( )
--------------------------------------------- x≤

 
 
 

Φquasi x( ),

n ∞.

MS n ξ,( ) nme ∆ n( )–=

2
2

------- p

DS n ξ,( ) σ p( )n
α
.=
2
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dination circumferences eq(n, G) (5). Since the ratio
tends to zero, ∆(n)/n  0, at n  ∞, then the limit-
ing distribution (26) yields the strong law of large num-
bers (8) along the principal diagonal e.

RESULTS AND CONCLUSIONS

The present study allowed us to reveal the following
phenomena inherent in the growth process of the ran-
dom graph G = G(ξ):

(1) The growth of coordination circumferences
eq(n, G) is linearized or, in other words, eq(n, G) is

100

0
4300

Number of experiments

S(5000, ω)

200

300

400

500

4308 4316 4324 4332

5000meMS(5000, ξ)

Fig. 3. Histogram of the distribution of the random quantity
S(5000, ξ) for the probability p = 0.05 constructed from the
results of 1500 independent experiments.
C

approximated by the curve nγ, and the random graph
G = G(ξ) grows in a self-similar way.

(2) The growth has a sectorial nature, i.e., the coor-
dination circumferences eq(n, G) are divided into two
crystal sectors, γ1 and γ3, and one elliptical sector, γ2.

(3) The lag of the mathematical expectation MS(n,
ξ)/n behind its limiting value (n, ξ)/n = me.

(4) The narrowing of the range of scatter in

 down to the quantity σ(p)n1/3.
We believe that the main result of our study is the

establishment of the fact that random graph G grows in
a self-similar way, with the growth form being rather
simple and consisting of first- and second-order lines.

Moreover, it is also established that the formation of
the periodic and random structures is characterized by
the following common phenomena: self-similar
growth, sectorial growth, the lag behind the limiting
growth boundary, and the narrowing of the range of
scatter down to cnα with the exponent α < 1/2 (in the
case of periodic structures, α = 0, for a random graph,
α = 1/3).
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Abstract—The well-known bismuth-containing layered perovskite-like oxides (BLPO) of composition
Am − 1Bi2BmO3m + 3 are divided into morphotropic series. In these series, the a, b, and c parameters of the orthor-
hombic unit cells and the Curie temperature (Tc) change monotonically with increasing unstrained interatomic
A–O bond lengths, when A are s elements. For compounds in which A are p elements (PbII or BiIII), the a and
b unit-cell parameters and Tc, unlike the c unit-cell parameter, deviate substantially from these correlations,
with the deviations decreasing with an increase of the m parameter. These facts must be taken into consideration
in the search for new BLPO, whose compositions are predicted with the use of the systematics. © 2002 MAIK
“Nauka/Interperiodica”.
1 INTRODUCTION

Bismuth-containing layered perovskite-like oxides
(BLPO) of the general formula

Am – 1Bi2BmO3m + 3 (1)

are considered. More than 70 individual BLPO contain-
ing one or two different elements in the A position and
up to three different elements in the B position are
known. All BLPO possess ferroelectric properties and
are characterized by phase transitions at rather high
Curie temperatures (íÒ). For some representatives, íÒ
are higher than 1200 K. The compositions, structures,
and properties of BLPO were surveyed in a number of
reviews (see, for example, [1–16]), where the authors
proposed different interpretations of BLPO behavior
depending on their composition.

The main aim of this study is to divide the BLPO
family into morphotropic series, which allow one to
reveal the atomic characteristics exerting an effect on
the lattice parameters and íÒ. The so-called unstrained
interatomic A–O bond lengths [17–21] can be used as
such atomic characteristics. In morphotropic series,
these bond lengths vary depending on the composition
of the A position. The Curie temperature and the a, b,
and c parameters of the orthorhombic unit cell can be
represented as a function of the composition of the
BLPO in the morphotropic series. Hence, the
unstrained interatomic A–O bond length can be used as
a numerical argument of the atomic composition. In
this study, the principles for an adequate systematics of
the known and hypothetical compositions are proposed
for the search for new BLPO.

1 This study was presented at the Symposium “Order, Disorder,
and Properties of Oxides” (ODPO), Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20913
MORPHOTROPIC SERIES OF BLPO 
AND LATTICE PARAMETERS

A system of unstrained interatomic A–O and B–O
bond lengths for perovskite-like complex oxides was
proposed earlier in [17–21]. The perovskite structure is
a parent structure of all perovskite-like compounds
composed of oxygen octahedra. Hence, this self-con-
sistent system of unstrained interatomic bond lengths
(UIBL) can also be used in the case of BLPO, because
the A and B atoms in their perovskite-like layers occupy
positions with the coordination numbers 12 and 6,
respectively, as in perovskite-type structures. For each
particular pair of A and O atoms or pair of B and O
atoms, UIBL were determined [19–21] and are con-
stant.

Let us denote the unstrained interatomic A–O and

B–O bond lengths as  and , respectively. In a
complicated structure, the corresponding interatomic

bonds are deformed as compared to  and , and,
hence, these bonds are strained. Strained interatomic
bond lengths are denoted as LAO and LBO. In the vast
majority of perovskite-like complex oxides, the A–O
are elongated, whereas the B–O bonds are shortened
within certain limits [21–23].

It is of most interest to consider the morphotropic
series in relation to the composition of the A-position
(BiIII can also occupy the A-position), because the A–O
bonds are elongated and most strained, due to which
they are the least stable and most sensitive to changes
in composition [21]. The shortened B–O bonds, which
stabilize the structure as a whole, are more stable and
less strained. The degree of their strain depends only
slightly on the composition as compared to the A–O
bonds. The strains in the A–O and B–O bonds exert an

LAO
0

LBO
0

LBO
0

LAO
0
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effect on the physical properties of BLPO, in particular,
on their Curie temperatures. This effect was observed in
perovskite-like complex oxides [24].

In the known BLPO, large divalent (Ca, Sr, Pb, or
Ba), trivalent (Ho, Pr, La, or Bi), and/or monovalent
(Na or K) atoms are located in the A positions. The B
positions are occupied by small trivalent (Fe or Ga), tet-
ravalent (Ge, Ti, or Mn), pentavalent (Nb or Ta), and/or
heptavalent (W or Mo) atoms.

Each morphotropic series proposed in this study
includes BLPO containing a variable A atom with the
same average valence, all other atoms in formula (1)
being constant. An example is the morphotropic series
with m = 2 and the variable AII atom. This series includes
members with the general formula AIIBi2Nb2O9, namely,
ëaIIBi2Nb2O9, (Na0.5Bi0.5)IIBi2Nb2O9 , SrIIBi2Nb2O9 ,
(K0.5Bi0.5)IIBi2Nb2O9, PbIIBi2Nb2O9, and BaIIBi2Nb2O9.
In some cases, it is reasonable to consider the morpho-
tropic series involving BLPO exclusively with BiIII as
the A atom. The morphotropic series under consider-
ation already contains a compound with a p-type atom
(PbII). The addition of BLPO with BiIII, namely,
Bi3TiNbO9, allows one to follow the influence of the
valence and electronic configuration of the A atom on
the unit-cell parameters and Curie temperature. In such
BLPO, the presence of B atoms of another type as com-
pared to that typical of this morphotropic series has a
less significant effect than the presence of the BiIII atom
in the A positions.

The behavior of compounds containing PbII and BiIII

atoms with p-type electronic configurations of the
valence shells differs from the behavior of compounds
with s-, ds-, or sp-type atoms, as has been demonstrated
in studies of perovskite-like structures [21–23]. The
characteristic features of the electron shells of PbII and
BiIII atoms are responsible for the occurrence of the
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Fig. 1. Plots of the (1) a, (2) b, and (3) c unit-cell parameters

vs. unstrained interatomic bond lengths ( ) in the mor-

photropic series AIIBi2Nb2O9 (m = 2). The data for

TiNbO9 are included.

LAO
0

Bi3
III
C

directed and nonequivalent interatomic distances in the
structure. This fact could have an impact not only on the
possibility of formation of the structure and its charac-
teristic features but also on the physical properties of
the compound.

For all possible morphotropic series, the a, b, and c
parameters of the orthorhombic unit cell were plotted
vs. the unstrained interatomic A–O bond lengths (see,
for example, Figs. 1 and 2). For BLPO with m = 2
(Fig. 1), the a, b, and c parameters increase monotoni-

cally as  increases, if the A position is occupied by
s elements. The monotony of this dependence is broken
at points corresponding to p elements (êbII and BiIII).
The a and b parameters of the corresponding BLPO are
substantially smaller than those expected from the plot
for BLPO containing s elements in the A position. The
maximum deviations from the general monotonic
dependences are observed for the points corresponding
to the Bi3TiNbO9 compound. Smaller deviations are
observed for BLPO characterized by the mixed compo-
sition of the A position, namely, for (Na0.5Bi0.5) and
(K0.5Bi0.5).

In the morphotropic series with m = 4 and the gen-
eral formula AIIBi4Ti4O15 containing the same AII

atoms, drops of the a and b parameters at points corre-
sponding to Ä = PbII or BiIII are much smaller (Fig. 2)
than those observed in the above-considered series. For
the morphotropic series with m = 5, no dropouts from
the general dependence are observed. This behavior of
the a and b parameters is manifested in all morphotro-
pic series to a greater or lesser extent. The c parameter
shows no essential anomalies at any m and in any oxi-
dation states of the A atoms. Thus, this parameter
increases slightly and monotonically in each morpho-
tropic series as the unstrained interatomic A–O bond
length increases. Consequently, the c parameter is vir-
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tually independent of the oxidation state and electronic
configuration of the A atoms but depends on their
dimensional characteristics.

CURIE TEMPERATURE IN MORPHOTROPIC 
SERIES

The relationships between the Curie temperature, on
the one hand, and various crystal-chemical characteris-
tics of the atoms and structure, on the other, were dis-
cussed in several reviews (see, for example, [1–3, 9–12,
20]) and in some original publiatoms. In these studies,
the ionic radii, tolerance factor (t), electronegativities,
and other characteristics were examined with the aim of
revealing correlations. In the present study, the relation-
ships between the unstrained interatomic A–O bond
lengths and íÒ are considered. As an example, the plots
of the Curie temperature vs. the unstrained interatomic
A–O bond lengths for three different morphotropic
series are shown in Figs. 3 and 4. If one s-type A atom
in the morphotropic series is replaced by another atom,
the Curie temperature changes monotonically as the
unstrained interatomic AII-O bond length increases.
When an s-type atom is replaced by a p-type atom (for
example, by PbII or BiIII), the monotony is broken.

At m = 2 (Fig. 3), the Curie temperature of
PbBi2Nb2O9 is higher than that following the general
tendency for s-type atoms. Bismuth-containing layered
perovskite-like oxide containing a BiIII atom in a mixed
A position and especially Bi3TiNb2O9 containing exclu-
sively BiIII in the A position possess even higher Curie
temperatures. However, the observed jumps of the
Curie temperature for such BLPO are diminished as m
increases and virtually disappear at m = 5 (Fig. 4). The
reasons for these phenomena remain unclear and call
for further investigation.

However, it can be assumed that the BLPO structure
becomes more similar to the perovskite structure as the
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thickness of the perovskite-like layer in the BLPO
structure increases with increasing m, on the assump-
tion that the perovskite structure contains an infinite
number of perovskite-like layers (as compared to the
BLPO structures) in the absence of particular interlayer
constructions. Probably, m = 5 is the limiting value for
BLPO. In addition, the interlayer Bi atoms in BLPO
differ from the Bi atoms in the perovskite-like layers.

It can be assumed that small values of m and the
presence of p-type atoms (PbII or BiIII) in the perovs-
kite-like layers lead to an increase in the number of
nonequivalent and directed bonds between these atoms
and the oxygen atoms, as well as in the number of the
bonds between different p-type atoms resulting in sub-
stantial strains in the interatomic bonds. The presence
of strongly strained interatomic bonds in the structure
may facilitate an increase in the Curie temperature [24].
Strains in the interatomic distances, which give rise to
distortions of the BLPO lattice, and a contraction of the
oxygen octahedral framework of the perovskite struc-
ture containing the Pb and Bi atoms are responsible for
the disproportionately small a and b parameters of the
corresponding BLPO structures. The role of interlayer
constructions and interlayer BiIII atoms remains
unclear.

The dependence of the Curie temperature on m
deserves attention. When constructing the correspond-
ing plots, the difference in the electron shells of all A
and B atoms must be taken into account. For BLPO
compositions containing different A atoms, the Curie
temperature changes variously as m changes, even if the
valence shells of the A atoms have similar electronic
configurations [12]. For Ca-containing BLPO, the
Curie temperature gradually, though slightly, increases
as m increases. For Sr- and Ba-containing BLPO, the
Curie temperature first increases (with a noticeable
peak at about m = 2.5) and then sharply decreases. At
small m, lead-containing BLPO have Curie tempera-
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tures at approximately the same level, although Tc
slightly increases at m = 4 and then slightly decreases.
For BLPO containing exclusively BiIII atoms in the A
position, the Curie temperature sharply decreases as m
increases, but Tc still remains rather high.

CHOICE OF COMPOSITIONS AND PRINCIPLES 
OF THEIR SYSTEMATICS

The number of known bismuth-containing layered
perovskite-like oxides is rather small (less than 100),
whereas more than 1000 perovskite-like binary and ter-
nary oxides are available [18]. It is expected that the
search for new compositions and the synthesis of new
compounds will lead to an increase in the number of
BLPO. The synthesis must be carried out with consid-
eration for the changes in the structure and properties
revealed from the consideration of the known BLPO.
The directed search for new compounds was developed
in sufficient detail and applied to the perovskite- and
pyrochlore-type structures [25]. The first step of this
procedure involves the choice of a new hypothetical
composition. For this purpose, the systematics of all the
possible compositions of the structures under examina-
tion is called for. To be more precise, a list of general
formulas of the type (1) is required. These formulas are
convenient to use for a choice of appropriate chemical
elements in the desired oxidation states.

It is appropriate to divide BLPO compositions with
the use of the principles that were initially proposed for
perovskite-type structures [18]. These principles are
based on the general conditions for the formation of
complex oxides with various compositions. These prin-
ciples are as follows:

(i) the valence-balancing principle for the chemical
formula of BLPO (an analogue of the electroneutrality
principle for purely ionic compounds);

(ii) the principle of the difference in valences of the
atoms occupying the identical A and/or B positions in
the crystal lattice of complex BLPO;

(iii) the principle of compatibility of oxidation states
in high-temperature solid-state synthesis.

Formula (1) can be transformed into a more general
formula taking into account that A and B can denote
several different atomic sorts simultaneously:

(2)

where 

(3)

Then, taking into account the valences of the atoms
Äi( ) and Çj( ), the valence-balancing condition

Bi2 Aα1

1 …Aα i

i …Aα p

p( ) Bβ1

1 …Bβ j

j …Bβq

q( )O3m 3+ ,

α i

i 1=

p

∑ m 1; β j

j 1=

q

∑– m.= =

n
A

i n
B

j

C

can be written as follows:

(4)

The second condition is required to exclude solid-
solution compositions of isovalent substitutions in the
A and/or B sublattices in structures of complex BLPO,
when p > 1 and/or q > 1. The fulfillment of this condi-
tion leads to a substantial decrease in the number of
possible general formulas in the formal (without this
condition) systematics. This condition involves the
simultaneous fulfillment of two series of inequalities:

(5)

(6)

In this case, such compounds are allowable in which
the valences of particular atoms located in different
positions in the lattice, for example, those of Ak and Bl,
are equal:

(7)

The two first conditions concern the deduction of
general chemical formulas that describe the composi-
tions of hypothetical compounds, including the fixation
of the oxidation states of the A and B components. The
third condition must be taken into account in the choice
of a particular chemical composition of the desired
BLPO. The intended oxidation states of the selected
chemical elements must be stable and compatible under
real synthesis conditions [18]. For example, chemical
elements, whose oxidation states are stable under dif-
ferent atmospheric conditions, cannot be used simulta-
neously in the composition of particular BLPO.

A system for the determination of the characteristics
of compositions, namely, of the valences and fractions
of the atoms, can be formulated from Eqs. (3), (4), and
some other equations (if the compositions are more
complicated). The elaboration of this systematics of
compositions is a problem with the following variables,
which can be changed within certain limits:

(i) the parameter m, which, at first glance, has no
limitations;

(ii) the parameters p and q, which can be limited;

(iii) valences  and ;

(iv) the fractions (αi and βj) calculated according to
the corresponding equations.

These variables can be considered as numerical
parameters in the systematics of compositions, and the
ranges of their changes can be reasonably restricted.

Bismuth-containing layered perovskite-like oxides
with m = 1, 1.5, 2, 2.5, 3, 3.5, 4, and 5 are known. The
synthesis of one BLPO with m = 8 [9] and the prepara-
tion of one BLPO with m = 10 [26] were reported.
However, these data were not confirmed in subsequent
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studies. Hence, it seems reasonable to use m = 5 as the
upper limit of this parameter. In addition, the general
tendency of a decrease in the Curie temperature of the
known BLPO with increasing m should be remem-
bered. An increase in m generally requires an increase
in the number of atomic sorts in the A and/or B posi-
tions, which may also lead to a decrease in the Curie
temperature and complication of the procedure for the
preparation of the corresponding compounds.

The known BLPO contain a limited number of
atoms of different sorts in the A and/or B positions.
Conceivably, this is due to the fact that the composi-
tions of the individual BLPO cannot include a larger
number of different atomic sorts. It is also not improb-
able that no efforts to synthesize more complicated
compositions were made. It seems reasonable to restrict
the number of different sorts of atoms, i.e., to use p = 0,
1, 2, or 3 and q = 1, 2, or 3. In the known BLPO with
different m, the valences of the Äi atoms  = 1, 2, 3,

or 4 and the valences of the Çj atoms  = 3, 4, 5, or 6.

These values are used in the present study as the restric-
tions imposed on the valences of the Äi and Çj atoms in
the systematics of compositions. The corresponding
fractions of the Äi (αi) and Çj (βj) atoms are determined
from the solution of Eqs. (3) and (4) taking into account
inequalities (5) and (6).

Evidently, combinations of these parameters are not
all possible in BLPO compositions. The goal of the sys-
tematics is to choose general formulas for BLPO. As an
example, let us consider the determination of the gen-
eral formulas for BLPO with m = 2 by solving the sys-
tem of Eqs. (3) and (4) at p = 1 and q = 1 and the valence
of the A atom nA = 2 and then at p = 1 and q = 2 and the
valence of the A atom nA = 3:

(1) α = 1; β = 2; nA + 2nB = 12; if nA = 2, nB = 5; the

general formula of BLPO is AIIBi2 O9 .

(2) α = 1; β1 + β2 = 2; β1 = 2 – β2; nA + (2 – β2)  +

β2  = 12; nA = 3; 2  – β2  + β2  = 9; if  =

6 and β1 = 1, β2 = 1 and  = 3; the general formula of

BLPO is AIIIBi2BVIBIIIO9 .

The compositions of certain known BLPO satisfy
the formulas obtained in this study.

ACKNOWLEDGMENTS

This study was supported by the Ministry of Educa-
tion of the Russian Federation, grant no. E00-3.4-560.

REFERENCES

1. E. C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962).
2. Ferroelectrics and Antiferroelectrics, Ed. by G. A. Smo-

lenskiœ (Nauka, Leningrad, 1971).

n
A

i

n
B

j

B2
V

n
B

1

n
B

2 n
B

1 n
B

1 n
B

2 n
B

1

n
B

2

CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      200
3. The Physics of Ferroelectric Phenomena, Ed. by
G. A. Smolenskiœ (Nauka, Leningrad, 1985).

4. M. E. Lines and A. M. Glass, Principles and Applcations
of Ferroelectrics and Related Materials (Clarendon,
Oxford, 1977; Mir, Moscow, 1981).

5. G. A. Smolenskiœ, V. A. Isupov, and A. I. Agranovskaya,
Fiz. Tverd. Tela (Leningrad) 3, 895 (1971) [Sov. Phys.
Solid State 3, 651 (1971)].

6. T. Kikuchi, A. Watanabe, and K. Uchida, Mater. Res.
Bull. 12, 299 (1977).

7. V. G. Osipyan, Structure and Properties of Ferroelec-
trics (Latviœsk. Gos. Univ. im. P. Stuchki, Riga, 1983),
p. 3.

8. V. G. Osipyan, L. I. Savchenko, and I. B. Avakyan,
Dielectrics and Semiconductors (Kievsk. Politekh. Inst.,
Kiev, 1988), Vol. 33, p. 16.

9. V. A. Isupov, Ferroelectrics 189, 211 (1996).
10. V. A. Isupov, Izv. Akad. Nauk, Neorg. Mater. 33, 1106

(1997).
11. L. A. Reznichenko, O. N. Razumovskaya, L. A. Shilkina,

and N. V. Dergunova, Izv. Akad. Nauk, Neorg. Mater. 32,
474 (1996).

12. G. A. Geguzina, E. G. Fesenko, and E. T. Shuvaeva, Fer-
roelectrics 167, 311 (1995).

13. B. Aurivillius, Ark. Kemi 1, 463 (1949).
14. B. Aurivillius, Ark. Kemi 1, 499 (1949).
15. B. Aurivillius, Ark. Kemi 2, 512 (1950).
16. B. Aurivillius and P. H. Fang, Phys. Rev. 126, 893

(1962).
17. V. P. Sakhnenko, E. G. Fesenko, A. T. Shuvaev, et al.,

Kristallografiya 17 (2), 316 (1972) [Sov. Phys. Crystal-
logr. 17, 268 (1972)].

18. E. G. Fesenko, Perovskite Family and Ferroelectricity
(Atomizdat, Moscow, 1972).

19. G. A. Geguzina, V. P. Sakhnenko, E. G. Fesenko, et al.,
Available from VINITI, No. 3049-76 (1976).

20. V. P. Sakhnenko, N. V. Dergunova, and L. A. Rez-
nichenko, Energy Crystal Chemistry of Solid Solutions
of Oxyden-Octahedral Type Compounds and Simulation
of Piezoceramic Materials (Rostovsk. Pedagogich.
Univ., Rostov-on-Don, 1999).

21. G. A. Geguzina, in Advances in Structure Analysis
(Chech and Slovak Crystallographic Association, Pra-
gue, 2000), p. 223.

22. G. A. Geguzina and E. G. Fesenko, Izv. Akad. Nauk
SSSR, Neorg. Mater. 20, 1394 (1984).

23. Ya. E. Cherner, G. A. Geguzina, and E. G. Fesenko, Izv.
Akad. Nauk SSSR, Neorg. Mater. 19, 287 (1983).

24. G. A. Geguzina, O. A. Zhelnova, and A. A. Bokov, Fer-
roelectrics 153, 85 (1994).

25. G. A. Geguzina and Ya. E. Cherner, Izv. Akad. Nauk
SSSR, Neorg. Mater. 27, 1881 (1991).

26. G. I. Ismailzade, V. I. Nesterenko, F. A. Mirishli, and
P. G. Rustamov, Kristallografiya 12 (3), 468 (1967) [Sov.
Phys. Crystallogr. 12, 400 (1967)].

Translated by T. Safonova
2



  

Crystallography Reports, Vol. 47, No. 6, 2002, pp. 918–924. Translated from Kristallografiya, Vol. 47, No. 6, 2002, pp. 987–993.
Original Russian Text Copyright © 2002 by Akulenok, Bagdasarov, Danile

 

œ

 

ko, Lebedeva, Manenkov.

              

CRYSTAL
CHEMISTRY
In memory of V.Ya. Khaimov-Mal’kov

Diffusion of Intrinsic Defects in Dielectric 
and Semiconductor Crystals with Impurities

E. M. Akulenok*, Kh. S. Bagdasarov*, Yu. K. Danileœko**, 
T. P. Lebedeva**, and A. A. Manenkov**

* Shubnikov Institute of Crystallography, Russian Academy of Sciences, 
Leninskiœ pr. 59, Moscow, 119333 Russia

e-mail: dyuk@ran.gpi.ru
** Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 117942 Russia

Received February 27, 2002

Abstract—This paper reports on the results of detailed theoretical investigations into the diffusion of intrinsic
defects in impurity crystals doped with mixed-valence ions. The special case of diffusion stimulated by varia-
tions in the redox properties of the atmosphere at the crystal boundary during high-temperature annealing is
analyzed. The major consideration is given to the following fundamental problems: (i) the dynamics of valence
transitions and the structure of the chemical reaction zone, (ii) the possibility of determining the type of chem-
ical reaction at the crystal–atmosphere interface and the type of diffusing defects, (iii) the effect of dilatation
mechanical stresses arising in the reaction zone on the reaction-zone structure and on the dynamics of diffusion
processes, and (iv) the determination of the diffusion parameters of intrinsic defects and the constants of their
interaction with impurity centers. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Among the large number of theoretical and experi-
mental investigations into the problem of point-defect
diffusion, the studies performed under the supervision
and with the direct participation of V.Ya. Khaimov-
Mal’kov are of fundamental importance [1–3]. The
majority of these studies dealt with the diffusion in sap-
phire crystals. However, the inferences made in these
works can be applied to other crystalline media in
which the diffusion of intrinsic defects in the presence
of impurity atoms is stimulated by concentration inho-
mogeneities, temperature gradients, and force effects
(electric fields and mechanical stresses) [4, 5]. In the
present paper, we consider in more detail the case
described earlier in [1], where the intrinsic point
defects can interact with impurity atoms (centers),
change their valence state and the spatial configuration
of the surrounding lattice, and form an impurity–defect
complex with a low mobility [6]. This interaction leads
to the formation of impurity centers that can appear sta-
ble and not very mobile at a specified temperature; as a
result, the diffusing defects can get out of diffusion. As
a rule, this interaction is described in terms of a solid-
phase chemical reaction. The solid-phase chemical
reaction can considerably change the spatial pattern of
intrinsic-defect diffusion and, therefore, must be taken
into consideration [1]. It should be noted that the solid-
phase chemical reaction can affect the diffusion pro-
ceeding not only in doped crystals but also in crystals
1063-7745/02/4706- $22.00 © 20918
with low concentrations of background impurities,
which in many practical cases substantially exceed the
concentration of intrinsic defects. In the subsequent
discussion, the diffusion attended by a solid-phase
chemical interaction between mobile intrinsic defects
and low-mobility impurity centers will be referred to as
diffusion with traps, as was done in our earlier work [1].

The aim of the present work is to develop the diffu-
sion theory of intrinsic defects, which was proposed in
[1]. The diffusion of intrinsic defects involved in the
solid-phase chemical reaction with impurity atoms is
considered with due regard for the effect of mechanical
stresses arising in this process.

In actual fact, a change in the valence state of an
impurity and, consequently, in the configurational state
of impurity centers leads to a change in their dilatation
volume. In turn, the change in the dilatation volume can
give rise to mechanical stresses that exhibit consider-
able gradients and affect the course of the diffusion.
This is particularly true with regard to the chemical
reaction occurring with a well-defined front. Note that
the distribution of mechanical stresses can be deter-
mined not only by a local distribution of stress sources
but also by the sample shape and external forces acting
on the sample due to a reaction at the support.

From the foregoing, it follows that a theoretical
treatment of diffusion with traps is a complicated non-
linear (by virtue of the chemical reaction) problem in
002 MAIK “Nauka/Interperiodica”
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mathematical physics. This problem is topical both in
solid-state physics and in practical terms. First of all,
this is the case with the growth of crystals and, espe-
cially, their heat treatment. With knowledge of the reg-
ularities of the process of diffusion with traps, it is pos-
sible to choose properly the temperature, time, anneal-
ing atmosphere, and partial pressures of the different
gases involved in this processes. It should be noted that
diffusion with traps controls important processes, such
as the oxidation of dyes with atmospheric oxygen in
solid polymer matrices and the oxidation of drugs in
solid fillers. The elucidation of the mechanisms of these
processes will permit the correct evaluation of the oxi-
dation rates and the development of appropriate meth-
ods for suppressing oxidation for a given time through
the proper choice of the composition and thickness of
the protective shell.

THEORETICAL ANALYSIS

A diffusion process with traps will be analyzed the-
oretically in the framework of the following model. For
simplicity, we consider an isotropic (with respect to dif-
fusion) crystal with a doping impurity that enters into
interactions with intrinsic lattice defects to change the
valence state according to the chemical reaction A +
B  H, where A is a mobile (migrating) intrinsic
Schottky defect, B is a substitutional impurity atom,
and H is a defect–impurity center. In what follows, we
assume that the components B and H possess a low
mobility and do not participate in diffusion. Moreover,
it is assumed that an ensemble of defects in the crystal
is in thermodynamic equilibrium with the atmosphere
surrounding the crystal. The equilibrium is disturbed at
the instant of time t = 0 with a change in the conditions
at the interface. This can be either a change in the com-
position of the atmosphere surrounding the crystal (up
to the complete evacuation of the atmosphere) or an
external action, for example, as a result of ionic bom-
bardment.

Within the above approximations (for a planar inter-
face), we can write the system of equations

(1)

with the following initial and boundary conditions:

(2)

(3)

Here, N is the concentration of diffusing defects in the
initial chemical state, C is the concentration of impuri-
ties in the initial chemical state, C0 is the initial concen-
tration of impurities in the initial valence state, N0 is the
concentration of defects at the interface between the

∂N
∂t
------- D

∂2
N

∂x
2

--------- w N( )C–
C0 C–

η
----------------,+=

∂C
∂t
------- w N( )C–

C0 C–
η

----------------+=

t 0 and x 0 N x 0,( )> 0 C x 0,( ) C0,= = =

t 0 and x> 0 N 0 t,( ) N0.= =
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crystal and the surrounding atmosphere (the physical
meaning of the parameter N0 and the processes deter-
mining its magnitude will be considered below), w(N)
is the probability of trapping (chemical reaction) a
mobile defect by an impurity atom per unit time with
the formation of a defect–impurity center, and η–1 is the
probability of the inverse process occurring.

The system of equations (1) is written for a simple
cubic lattice without regard for the aforementioned
mechanical stresses.

Now, we perform a phenomenological analysis of
the dependence w(N). For this purpose, we assume that
“a narrow bottleneck” determining the reaction rate is
the mean-statistic time required for a defect to meet an
impurity atom during a random walk over the bulk of
the crystal rather than the time required for the interac-
tion between the defect and the impurity atom (the time
of spatial transformation of the impurity center). In
order to define more concretely the dependence w(N),
we will proceed from the following reasoning. Let us
consider the model of an infinite medium (for simplic-
ity, with cubic symmetry) in which impurity atoms with
the mean concentration N are arranged in a random
manner. A single defect will be thrown into the volume
of this medium at random. This defect is able to execute
a random walk (i.e., equally probable jumps with the
frequency ν and with a shift by one lattice constant a0)
along the six crystallographic directions. In the case
when the dilatation energies of the single defect and the
impurity atom are of opposite signs, these particles are
attracted together owing to the elastic interaction. It is
this interaction that causes the impurity atom and the
defect to rapidly approach each other when the defect
executes the random walk and that brings about a
change in the valence state of the impurity due to the
electromagnetic interaction when this interaction
becomes thermodynamically possible. Let rd be the
radius of this elastic interaction. Hereafter, this radius
will be termed the radius of a black sphere in which the
defect becomes bound and, thus, gets out of diffusion.
In our consideration, we introduce the time-dependent
random quantity Vi(t), which is equal to the volume of
a tube of radius rd. The axis of this tube is the mechan-
ical trajectory of the defect executing the random walk
in the crystal. The tube length is equal to the path cov-
ered by the defect beginning with the instant it is
thrown in and ending with the instant of its capture by
an impurity. We leave out cumbersome calculations and
average the random quantity Vi(t) over all the possible
realizations of the random walk with allowance made
for the correlation. For the average value V(t), we
obtain the relationship

(4)

Here, ξ is the coefficient characterizing the correlation
effects for the quantity V(t) in the course of the random
walk. The correlation coefficient ξ was calculated by
Monte Carlo numerical simulation of the random walk

V t( ) ξrd
2
a0νt.=
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process. As a result, we obtained the correlation coeffi-
cient ξ ≅  0.67 in the case when the radius rd of the black
sphere coincided with the radius of the first coordina-
tion sphere, ξ ≅  0.2 when the radius rd coincided with
the radius of the second coordination sphere, and ξ ≅
0.12 if the radius rd coincided with the radius of the
third coordination sphere. Taking into account relation-
ship (4), the probability P(t < T) of entering a single
itinerant defect into an interaction (reaction) with an
impurity atom within the time interval 0 < t < T can be
determined as the probability that at least one impurity
atom involved in an ensemble with the concentration N
will occur in the volume V(T) [7, 8]:

(5)

In this case, the probability w(N) can be defined as 〈T〉–1.
By averaging the time T with the use of the probability

density , we obtain w(N) = kN, where k is the

chemical reaction constant (expressed in units of cm3 s–1):

(6)

Let us now turn our attention to the discussion of the
physical meaning of the parameter N0. As a rule, phys-
ical processes occurring at the interface between a crys-
tal and the surrounding atmosphere, for example, in the
course of evaporation or ionic (atomic) bombardment,
can be characterized by the rate of defect formation F0
at the crystal boundary. The rate of defect formation F0
is defined as the number of defects escaping from a unit
interfacial area into the crystal bulk in a unit time. In
order to estimate the volume concentration of defects in
the surface layer N0 (in what follows, N0 will be treated
as the boundary value of the concentration of diffusing
defects N), we will proceed from the following consid-
erations. It is assumed that structural defects are formed
at the rate F0 on the surface of a crystal occupying a
half-space. These defects diffuse into the crystal bulk
and execute a three-dimensional random walk. Accord-
ing to the theory of Brownian motion, each particle
escaping from a certain surface with a probability equal
to unity must necessarily return to this surface [9]. In
real situations, a structural defect, as a rule, disappears
after escaping from the bulk of the crystal to its surface.
Therefore, a structural defect that was created on the
surface and then diffused into the crystal bulk has a
finite lifetime because of its return to the initial surface.
On this basis, after summing the fluxes of defects that
escape from and arrive at the crystal surface and mak-
ing these fluxes equal to the rate of defect formation F0,
we obtain the following estimate of the surface concen-
tration:

(7)

Here, νsurf is the mean frequency of return of the defect
to the initial surface. It should be noted that, owing to

P t T<( ) 1 V T( )N–( ).exp–=

∂P t T<( )
∂T

-----------------------

k ξrd
2
a0ν .=

N0

F0

νsurfa0
--------------.≅
C

the elastic interaction of a particular defect with the free
surface, the mean frequency νsurf can differ significantly
(toward larger values) from the frequency ν of random
jumps in the bulk of the crystal.

For a further analysis, in the system of equations (1),
we will change over to the dimensionless quantities

and the new function ϕ(y, τ) defined by the equations

(8)

with the following initial and boundary conditions:

(9)

As a consequence, the system of equations (1)
becomes equivalent to the dimensionless equation

(10)

Equation (10) describes the diffusion of point defects
entering into the second-order reaction with an immo-
bile impurity particle and represents a nonlinear inte-
gro-differential equation that has defied exact analyti-
cal solution. However, in the most frequently occurring
real situations, we deal with an impurity concentration
that is considerably higher than the concentration of
point defects (β ! 1) and with a low probability of the
decomposition of the defect–impurity centers formed
as a result of the reaction (θ ! 1). In this case, the
approximate solution to the problem defined by expres-
sions (9) and (10) can be obtained in the form of an
implicit function, that is,

(11)

Figure 1 shows the spatial distributions of the impu-
rity concentration u(y, τ) and the concentration of dif-
fusing defects v (y, τ) for two instants of time τ, which
were calculated using relationships (11). It is worth not-
ing that the functions u(y, τ) and v (y, τ) are indepen-
dent of any parameter of the problem under consider-
ation. Therefore, the changeover to arbitrary dimen-
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sional variables (within the approximations β ! 1 and
θ ! 1) can be treated to be equivalent to a linear defor-
mation along the y axis of the concentration distribu-
tions shown in Fig. 1.

By using relationships (11), we found that the posi-

tion yf of the reaction front at  = 0 corresponds

to the concentration u(yf , τ) ≅  0.417. In this case, the
slope of the spatial distribution of the impurity concen-

tration at the reaction front is determined as  ≅

0.318.
Note that these quantities are universal and indepen-

dent of the distance covered by the reaction front begin-
ning from the crystal boundary. This means that the size
(thickness) of the reaction zone remains unchanged
upon its displacement into the bulk of the sample. The
displacement of the reaction front with time can be
determined from the relationship

(12)

At τ @ 1 (i.e., after the separation of the reaction front

from the crystal boundary), we obtain yf = . The
concentration of diffusing defects at the reaction front
in the course of its displacement deep into the sample
decreases according to the law v (yf , τ) ≅  0.54τ–1/2.

An important remark on the applicability of the
approximate solution (11) needs to be made, because
the use of these relationships in the calculations can
substantially affect the physical picture of the occur-
rence of the reaction under investigation. Reasoning
from the analysis of the dimensionless equation (10),
we can formulate the following mathematical state-
ment: for an arbitrarily small parameter θ, there exists
an instant of time τs beginning from which the solution
to the dimensionless equation (10) will be significantly
different from the solution defined by formulas (11).
The time τs can be estimated from the relationship τs ≅
θ–1. Analysis demonstrates that, in the case of the
dimensionless equation (10), unlike relationship (12),
the slope of the spatial distribution of the impurity con-
centration at the reaction front becomes dependent on
the position of the reaction front at τ @ τs and decreases
in the course of its displacement according to the law

 ≅ , whereas the spatial distribution of

impurities with concentrations up to u(y, τ) ≅  0.5
changes according to the formula u(y, τ) ≅

, where yf ≅ .

It should be noted that, in the case of a sample in the
form of a thin plate when defects are formed only on
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one surface of the plate and escape from the opposite
surface, there exists a certain layer in the vicinity of the
latter surface in which impurities occur in the initial
chemical state. The concentration of impurities on this
surface is equal to the initial concentration. The length
of this layer can be estimated to be ∆y ≅ θ L, where L is
the thickness of the plate [10].

In the above analysis, we ignored the effect of
mechanical stresses (arising in the reaction zone) on the
diffusion process. The origin of these stresses can be
explained in terms of the following two factors: (1) the
difference between the total dilatation volumes of the
reacting defects and the reaction products and (2) the
small size of the chemical reaction zone and, as a con-
sequence, large concentration gradients of the reacting
components and the reaction products.

In the subsequent consideration, we will take into
account the dilatation energy Uelas of the diffusing
defect A in an external (with respect to the defect) elas-

tic field: Uelas = –ωAP, where P = – σkk is the mean

hydrostatic pressure, σkk is the trace of the elastic con-
stant tensor, and ωA is the dilatation volume of the dif-
fusing defect A. In this case, the flux of defects JA in the
elastic force field σkk can be represented by the relation-
ship JA = –µωANgradP, where µ is the mobility of the
diffusing defect A in the elastic force field.

One more remark on the applicability of the subse-
quent treatment is necessary. In many cases, a consid-
erable diffusion of defects in crystals occurs at high
temperatures and, owing to concentration gradients,
stresses arising in the diffusion zone can be very strong.
Consequently, in the diffusion zone and especially in
the chemical reaction zone, there arise effects of stress

1
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Fig. 1. Dependences of (A, B) the normalized concentration
of impurities in the initial state u(y, τ) and (C, D) the nor-
malized concentration of diffusing defects v (y, τ) on the
longitudinal coordinate y for two instants of time: (B, D) τ =
20 and (A, C) τ = 80.
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relaxation. These effects can bring about the formation
(or the spatial redistribution) of an ensemble of struc-
tural defects of a dislocation nature [11]. The discus-
sion of these processes does not enter into the scope of
the present paper. In this respect, we will restrict our
consideration to the case of a comparatively low-tem-
perature diffusion that does not lead to stress relaxation.

As was already mentioned, the nonlinear diffusion-
elastic problem has defied analytical solution. For this
reason, the subsequent treatment will be reduced to a
numerical analysis of the process in the geometry of a
thin long plate. In this case, the system of equations (1)
in the aforementioned dimensionless variables with
allowance made for the fluxes caused by mechanical
stresses takes the form

(13)

where

E is the Young’s modulus, ϑ  is the Poisson ratio, Θ is
the temperature of the crystal (expressed in terms of

energy), and  is the thickness of the plate (expressed

in terms of ). Equation (13) is written for the dis-

tribution of mechanical stresses over the plate, which
was determined within the membrane approximation
[12].
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Fig. 2. Dependences of (A, B) the normalized concentration
of impurities in the initial state u(y, τ) and (C, D) the nor-
malized concentration of diffusing defects v (y, τ) on the
longitudinal coordinate y for two dilatation parameters:
(B, D) γ = 0.02 and (A, C) γ = –0.02.
C

The results of the numerical solution to Eq. (13) for

β ! 1 at different values of the parameters γ and  are
presented in Fig. 2. It is worth noting that the distance
covered by the reaction front depends on the parameter
γ, its sign, and the plate thickness L (i.e., this is a man-
ifestation of the so-called size effect).

RESULTS AND DISCUSSION

It follows from relationship (12) that, in the absence
of mechanical stresses and recombination effects, the
displacement of the reaction front occurs in accordance

with the expression yf = . In dimensional variables,
this expression corresponds to the relationship xf =

. We used the results obtained in [1] for the

Ti3+  Ti4+ valence transition, which is observed in
sapphire crystals upon the interaction of Ti3+ ions with
aluminum vacancies, and found that, in the case
when the temperature in the reaction zone is 1500°C,
the quantity DN0 is approximately equal to 1.9 ×
1014 cm–1 s–1. Unfortunately, it is impossible to deter-
mine the individual quantities D and N0 from the results
reported in [1]. Moreover, the activation energy esti-
mated at 80 kcal mol–1 [1] can be assigned only to the
quantity DN0. Nonetheless, we can use relationship (7)

for N0 and D ≅ ν  and obtain the estimate DN0 ≈

F0a0 .

It should be noted that the rate of defect formation
F0 at the crystal boundary is an anisotropic quantity and
depends on the crystallographic orientation of this
boundary. Moreover, the rate of defect formation F0 can
strongly depend on the degree of structural perfection
of the crystal surface (the surface relief on the atomic
level). These dependences must always be kept in mind
in the interpretation of the results obtained in quantita-
tive investigations of diffusion processes.

Note also that the atmosphere surrounding the crys-
tal under investigation can affect the diffusion of intrin-
sic defects through variations in the rate of defect for-
mation F0 due to chemical reactions proceeding on the
crystal surface. This effect is rather difficult to interpret
because of the great diversity of chemical reactions
occurring on the surface of crystals. In particular, we
analyzed the dependences of the velocity of the chemi-
cal reaction front on the partial oxygen pressure and the
external electric field strength for sapphire crystals [1]
and revealed that the most probable reactions proceed-
ing on the surface are as follows:

O2  2Osurf,

Osurf +   AlO+1↑  + 
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+ 

  Al↑  +  + (3 – n)h+.

Here, Osurf is the atomic oxygen absorbed by the sur-

face,  is the lattice aluminum,  is the alumi-
num vacancy with a positive charge +n, h+ is the hole in
the valence band, and e– is the electron in the conduc-
tion band.

The existence of an AlO+1 ionized molecule in sap-
phire vapors was confirmed by mass spectrometric
investigations [10]. The ratio between the rates of the
second and third reactions determines the dependence

of the parameter F0 (the rate of formation of  alu-
minum vacancies) on the partial oxygen pressure.
According to the results obtained in [1] and the mass
action law, this ratio proves to be approximately equal

to 0.6. The charge of  vacancies can be determined
from the experiment on diffusion in an electric field.
Unfortunately, this could not be done in [1], because
there was an uncertainty in the mobility of aluminum
vacancies in sapphire crystals. It was found with confi-
dence that these vacancies possess an electric charge.
Most probably, this charge is equal to +3.

Now, we return to the analysis of the size of the
chemical reaction zone ∆xf. As follows from the above
discussion, the size of the reaction zone does not
depend on the position of the reaction front and, in
dimensionless variables, is equal to 3.145. In dimen-
sional variables, this value corresponds to the quantity

∆xf = 3.145 . By using formula (6) and assuming

that rd = 2a0, we obtain the estimate ∆xf ≅

0.345l . Here, l is the mean distance between

impurity atoms. Note that the quantity ∆xf is very small.

For example, at the content C0 = 10–4 at. %, we have
∆xf ≅  3 × 10–6 cm.

Such an abrupt front of the chemical reaction virtu-
ally cannot be experimentally investigated using optical
methods. A different situation arises with semiconduc-
tor crystals in which the p–n transition can occur at the
front of interaction between diffusing defects and a
doping impurity [13]. In this case, the thickness of the
reaction front can be determined by electrical methods,
for example, from its amplitude–frequency and volt-
age–capacitance characteristics.

One additional essential remark needs to be made.
In the case of a high concentration of doping impurities
when the thickness of the reaction front is small (of the
order of several tens or hundreds of the lattice con-
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stants), the description of the diffusion in the interac-
tion region in terms of the parabolic equation can turn
out to be a very rough approximation. This situation
requires a more rigorous treatment, for example, in the
framework of the kinetic equation or direct simulation.

As was noted above, mechanical stresses caused by
variations in the dilatation volumes of the interacting
components in the course of the chemical reaction can
substantially affect the diffusion processes under inves-
tigation. This effect is especially pronounced in the
case of low-temperature diffusion. As an illustration,
we consider the low-temperature diffusion of intersti-
tial silicon in single-crystal silicon doped with boron
[13]. In our consideration, we will use the following
constants of the diffusion process: E ≅  1012 dyn cm–2, ϑ =
0.3,  = 4 × 10–23 cm–3, ωB –  ≅  4.6 × 10–23 cm–3, and

C0 = 1018 cm–3. Here,  and  are the dilatation vol-
umes of interstitial silicon and boron, respectively, and
ωB is the dilatation volume of boron at the lattice site
[14]. For these constants, we obtain the parameter γ ≅  –
0.02 [see Eq. (13)]. The thickness of the plate was taken
to be equal to 3 × 10–2 cm, which, in dimensionless vari-

ables, corresponds to the quantity  ≅  104.

Figure 3 presents the calculated time dependences
of the reaction front coordinate for the transition of
boron from a substitutional position to an interstitial
position in two plates of different thicknesses. The
dependence calculated in the absence of mechanical
stresses in the sample is also shown in this figure for
comparison. It can be seen from Fig. 3 that stresses aris-
ing from the difference between the dilatation volumes

ωB –  bring about an appreciable increase in the
velocity of the reaction front and that, in the presence
of mechanical stresses, the velocity of the reaction front
depends on the plate thickness.

One more manifestation of mechanical stresses that
can be observed not only in platelike samples is note-
worthy. The case in point is the instability of the stress
distribution over the reaction front upon its separation
from the surface of the sample. As follows from the
analysis performed in this work, the instability of the
stress distribution over the reaction front stems from the
inhomogeneity of the distribution of lattice-defect gen-
eration centers over the sample surface, which, in turn,
gives rise to sources of local stresses. The local stresses
create channels through which defects can rapidly
escape from local surface sources of their generation.
For a unidirectional generation of intrinsic defects, a
similar situation is observed on the outcropping sur-
face. On this surface, a boron layer is retained in the ini-
tial state owing to the reverse transition of boron from
an interstitial position to a substitutional position (the
parameter θ ≠ 0). This also gives rise to an instability of
the distribution of mechanical stresses due to the for-
mation of local centers (either on the surface or in its
immediate vicinity) through which silicon can effi-

ωSi* ωB*

ωSi* ωB*

L̃

ωB*
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ciently escape from the interstitial position. The sta-
tionary distribution of stresses separates the flow of
interstitial silicon (diffusing from the crystal bulk) into
individual channels that are directed to local centers.
This pattern bears some resemblance to the breakdown
phenomenon. Most likely, a similar situation was
observed in [13].

CONCLUSION

Thus, the investigations performed have demon-
strated that the interaction between impurity atoms and
intrinsic Schottky defects diffusing in a crystalline solid
can substantially change the diffusion pattern. This
interaction can be adequately described in terms of the
chemical reaction, can manifest itself in a large variety
of ways, and must always be taken into account in the

A

B

D

1000

800

600

400

200

0 200 400 600 800 1000
τ, 104

y f
2, 104

Fig. 3. Dependences of the square of the reaction front dis-

placement on the time τ for plates of thicknesses  = 1.0 ×
104 (curve A) and  = 0.6 × 104 (curve B). For comparison,
straight line D shows the dependence calculated in the
absence of mechanical stresses in the sample.

L̃

L̃

C

interpretation of the experimental data on diffusion in
solids.
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Abstract—A new method is proposed for determining the roughness parameters from X-ray diffraction data.
The method is based on a controllable displacement of reflecting planes under an external tangential pressure.
It is shown that the displacement of atomic planes near the rough surface upon sample compression increases
in proportion to the applied stress and strongly depends on the roughness parameters. Rough surfaces with
determinate periodic and random reliefs are considered together with the corresponding features of X-ray rock-
ing curves. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Since the beginning of the twentieth century, X rays
have been widely used for determining the structure
parameters of various crystalline materials. Such exper-
iments usually provide information on the periodic
arrangement of molecules averaged over large volumes
of substances.

Surface studies are usually carried out by the meth-
ods of atomic-force and electron microscopy, which are
characterized by their small depth of penetration into
the sample. The application of X-ray methods for this
purpose requires either the grazing geometry of the
sample or detection of secondary processes with a
small escape depth, e.g., photoelectrons in the method
of standing X-ray waves [1–3]. Relatively recently,
three-crystal X-ray diffractometry was used for the
diagnostics of submicrometer layers [2, 3]; this method
makes it possible to judge the parameters of the stressed
layer and surface of the crystal from the measurements
of amplitude and width of the main peak and pseudo-
peak. However, these methods cannot be used if the
crystal has no volume defects, disoriented films, or
plastic deformations at the surface.

Under standard conditions, roughness affects the
diffraction reflection of X rays so weakly that the crys-
tal surface can be regarded as absolutely plane.
Attempts to introduce a transition layer with smoothly
varying parameters (density, interplanar spacing, etc.)
usually led to physically incorrect results. In this
respect, the following citation is illustrative: although
“the actual structure of the surface (with its steps, oxide
and adsorbed films, and other departures from an ideal-
ized pattern) may introduce a considerable distortion in
the boundary condition scheme, … the problem is
solved experimentally” [4].

This is due to the fact that X rays penetrate a crystal
to a depth of the order of the extinction length (2–
1063-7745/02/4706- $22.00 © 20925
20 µm) even under dynamical diffraction conditions,
while the thickness of atomic layers disordered by
roughness is much smaller. In some cases, the contribu-
tion of the surface (or surface region) may become
comparable with the bulk contribution. For example, in
the grazing geometry of scattering, the main contribu-
tion to the intensity of the scattered wave comes from
the inhomogeneous and damaged surface layer
(Yoneda effect) [5], while substrates that repeat and
enhance morphological features play the leading role in
the reflectometry of multilayerd epitaxial structures [6].

It is well known that in the case of homogeneous
shearing strain, the roughness of the surface relief of
the sample generates supplementary strains in the sur-
face regions of the crystal. It will be shown below that
the high sensitivity of X rays to the elastic distortions of
reflecting planes under diffraction conditions makes it
possible to determine the parameters of the deformed
surface layer and to connect them with the rough sur-
face characteristics.

Under loading, the surface relief peculiarity
becomes a source of elastic stresses; in accordance with
Hooke’s law, the induced displacements are directly
proportional to the applied force. As a result of the sta-
tistical action of the entire relief, a certain distribution
of elastic displacements of reflecting planes is formed,
which results in considerable changes in the shape and
position of the rocking curve.

ROUGHNESS PARAMETERS

In spite of the fact that roughness strongly affects
the user properties of articles, a quality criterion for
estimating roughness was introduced in Russian indus-
try only in 1928: rough surfaces with traces of machin-
ing are marked by n, surfaces with almost indistin-
guishable traces of finishing correspond to nn, finished
002 MAIK “Nauka/Interperiodica”
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surfaces are marked by nnn, and finely finished sur-
faces, by nnnn.

At present, the following two numerical parameters
are commonly used: the arithmetic mean deviation of
the profile from the mean line over length l,

(1)

and the height of profile roughness, which is equal to
the mean distance between the five highest and five
lowest points of the profile over length l,

(2)

where the profile H(x) of the surface is a function of the
coordinate x along the surface. Usually, the category of
finishing to which certain values of Ra and Rz corre-
spond is indicated (Table 1).

In addition, the mean-square deviation ( ), the
number of intersections with the level, the number of
peaks over the interval, the mean slope of the curve, the
duration of the process occurring above the level, as
well as some other parameters are also sometimes used.

It is assumed that a determinate (usually periodic)
relief and a random component, the relation between
which may change over a wide range, appear on the fin-
ished surface of a material.

We will confine our analysis to a one-dimensional
relief for which the surface profile depends only on the

Ra
1
l
--- H xd

0

l

∫ 1
n
--- zi

i 1=

n

∑≈=

Rz
1
5
--- Hi

max
Hi

min
–( ),

i 1=

5

∑=

Rs
2

Table 1.  Roughness parameters and grades of finishing

Finishing class Ra, µm Rz, µm

∆1 80 320

∆2 40 160

∆3 20 80

∆4 10 40

∆5 5 20

∆6 2.5 10

∆7 1.25 6.3

∆8 0.63 3.2

∆9 0.32 1.6

∆10 0.16 0.8

∆11 0.08 0.4

∆12 0.04 0.2

∆13 0.02 0.1

∆14 0.01 0.05
C

coordinate x along the chosen axis. This kind of rough-
ness is formed as a result of the back and forth move-
ment of the tool during polishing. An analysis of the
rough surface formed as a result of circular motion of
the polishing tool requires a 2D mathematical appara-
tus and will be carried out later.

In the general case, the description of the relief of a
rough surface should be based on finite functions of two
variables H(x, r), where r is an elementary event from
a certain probabilistic space and x is the coordinate
along the surface. Having fixed the variable r, we obtain
a certain realization of the surface Hr(x); conversely, by
fixing x, we can determine the statistical set of possible
positions of the surface Hx(r) at this point.

The roughness profile can be presented in the form
of a Fourier integral,

(3)

in which the contribution of each harmonic is deter-
mined by the statistical weight dZ(q).

In order to determine the random function H(x), we
must specify all the momenta of its distribution. How-
ever, the analysis is usually confined to the introduction
of a correlation function K (or the covariation function)
and the mean value m(x):

(4)

We will consider below the following two cases of
practical importance: a rough surface with a determi-
nate relief, when m(x) = m0(q∗ x), and a completely ran-
dom relief, when m(x) = 0.

We assume that the correlation function depends
only on the coordinate difference τ = x – x', which
enables us to use in some cases the Birkhoff-Khinchine
theorem

(5)

Table 2 contains the correlation function used here
and the corresponding spectral densities s(q). The cor-
relation length a introduced in Table 2 is an important
parameter. In order to obtain qualitative estimates of
roughness with a determinate relief, we can use the
relation Ra, s ≈ m0 + a.

ELASTIC STRAINS IN THE VICINITY 
OF A ROUGH SURFACE

Let us suppose that the width and length of the sam-
ple under investigation (x and y axes) are much larger
than its height (z axis), its rough surface has a certain
relief H(x), and it is elastically compressed along the x
axis so that σxx = σ0 in the bulk of the sample. Figure 1
shows the simplest experimental setup in which the

H x( ) iqx( ) Z q( ),dexp∫=

m x( ) E H x( )[ ] ,=

K x x',( ) E H x( ) m–( ) H x'( ) m–( )[ ] .=

K τ( ) iqτ( )s q( ) q.dexp

∞

∞–

∫=
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sample is compressed by the force of gravity of the
load. In order to eliminate bending of the reflecting
planes, it is important to avoid twisting the sample
under loading.

Since the normal n to the rough surface is not
directed strictly along the z axis, n = (nx, 0, nz), the
boundary conditions [7–9]

(6)

lead to the following equation for determining the
stress tensor:

(7)

The solution of this equation can be sought in the
perturbation theory as the sum of the large bulk term

σxx = σ0 and the small term  emerging as a result of
the inclusion of the term linear in H:

(8)

In the general case of a 2D roughness, such a prob-
lem is solved by introducing a local system of coordi-
nates R = R(x', y', z'), in which the region of the surface
under investigation lies at a height z'. In this system, the
normal to the surface has the form [7]

(9)

where Hk are the Lamé coefficients. Substituting this
expression into Eq. (6), we can derive a more general
expression for the surface stress tensor components.

Expressions (7) and (8) can be used for an isotropic
as well as anisotropic solid (crystal). We will confine
our subsequent analysis to the case when stresses are
applied along the principal axes of the crystal, and elas-
tic parameters of the crystal and the isotropic material
coincide.

In the case of symmetric Bragg diffraction, the dif-
fraction vector h is directed along the normal to the sur-
face (z axis), and the solution of averaged Takagi–
Taupin equations requires knowledge of the momen-
tum’s set of distribution of only one component of the
displacement vector. The Fourier component of the
polarizability of the deformed crystal assumes the form

(10)

where χh is the value for a perfect crystal.
Hooke’s law makes it possible to determine easily

the displacement of the reflecting planes of the sample
under the action of the external bulk load σ0:

(11)

niσik 0=

σkz σkx
∂H
∂x
-------– 0.=

σkz
s

σkz
s σ0

∂H
∂x
-------.=

n ez

ex

H1
------∂H

∂x'
-------–

ey

H2
------∂H

∂y'
-------,+=

χh
d χh ihuz( )exp=

≈ χh ihuz( ) h
2

uz
2

uz
2

–( )–{ } ,expexp

uxx σ0/E, uyy uzz νσ0/E,–= = =
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where E is the Young modulus and ν is the Poisson
ratio.

We assume that the external force is applied to one
of the sides of the sample whose length along the direc-
tion of force is equal to L, and the opposite side of the
crystal is pressed; in this case, the displacements have
the form

(12)

The value of the induced strain can easily be con-
trolled either from the displacement of the sample edge,

(13)

or from the change in the Bragg angle,

(14)

which is defined as the center of the rocking curve dur-
ing reflection or transmission diffraction taking refrac-
tion into account.

Thus, we can assume that the tangential force

(15)

is applied to a small element dxdy on the sample sur-
face, and we must determine the displacements.

ux σ0x/E, uz u0 νσ0z/E.–= =

ux L( ) σ0L/E=

δθ uzz,∼

Fx σxz
s

dxdy=

Table 2.  Correlation functions in direct and reciprocal spaces

K(τ) s(q)

K1 = exp(–α1|τ|) s1 = 

K2 = exp(–τ2/a2) s2 = exp(–4q2a2) 

Rs
2 Rs

2α1

π α1
2 q2+( )

--------------------------

Rs
2 aRs

2

2 π
----------

1 kg

k0

kh

h

x

z

H(x)

Fig. 1. Diffraction geometry and experimental setup.
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There exist several approaches to the solution of this
problem [8–10]. We will use the most physically feasi-
ble approach [9], in which the solution is constructed
on the basis of the formalism of point sources (Green’s
tensors) for the equilibrium equation for a semi-infinite
medium.

Under the action of the point force

(16)

The atomic planes are deformed along all the three axes
(i = x, y, z):

(17)

We are interested only in the displacements uz, for
which Green’s function has the form [9]

(18)

where

Summing over all point sources on the surface, we
obtain

(19)

While writing this expression, we have used the spec-
tral representation (3) and introduced the notation

(20)

Taking into account the translation symmetry of the
problem along the y axis, we will consider the displace-
ments at point y = 0 and carry out integration with
respect to y'; this gives

(21)

where

(22)

Fx σ0
dH
dx
-------δ x'( )δ y'( ).=

ui x y z, ,( ) Gix x x'– y y'– z z'–, ,( )Fx x' y' z', ,( ).=

Gzx xT r( ), T r( ) α 1 2ν–
r r z+( )
------------------ z

r
3

----+ 
  ,= =

α 1 ν+( )/2πE,=

r x
2

y
2

z
2

+ + .=

uz r( ) σ0 iqF r q,( ) Z q( ),d∫=

uz r( ) 2 σ0
2

s q( )q
2

q F r q,( ) 2
.d∫=

F r q,( )

=  x' y' x x'–( ) iqx'( )T x x'– y y'– z, ,( ).expd

∞–

∞

∫d

∞–

∞

∫

F r q,( ) x'G x x'– z,( ) iqx'( ),expd

∞–

∞

∫=

G x x'– z,( ) y'T x x'– y' z, ,( )d

∞–

∞

∫=

=  –2α 1 2ν–( ) x x'–( ) z/A( )arccossgn z x x'–( )/A2
+{ } ,

A
2

x x'–( )2
z

2
.+=
C

DETERMINATE RELIEF

Let us suppose that we can single out in the Fourier
expansion (3) of the random function describing the
surface relief an anomalously large harmonic,

(23)

In this case, statistical average displacements of the
reflecting planes have the form

(24)

Figure 2 shows the calculated 3D curves describing
the functions

(25)

in dimensionless coordinates (in units of a = 2π/q∗ ). It
should be noted that the form of the function G weakly
depends on the type of the sample under investigation.
The Poisson ratio is approximately equal to 0.3 for
almost all solids. For example, for germanium (silicon)
subjected to an external action along the crystallo-
graphic axes, we obtain ν = 0.273 (0.278) and E = 0.85
(1.017) × 107 N/cm2 [11].

Figure 2a corresponds to the typical value of the
Poisson ratio ν = 0.3. Figure 2b shows the graph for
ν = 0.5, which corresponds to an incompressible solid.
It can be seen from the figures that the emerging dis-
placements are periodic functions of x (coordinate
along the surface) and decrease quite rapidly in the bulk
of the crystal. It will be shown in the Appendix that the
following expression can be used for approximate cal-
culations:

(26)

It is interesting to note that, in addition to the dam-
aged surface layer, one more stressed region is formed
in the sample at a depth of the order of 3a; between
these regions, the crystal lattice is practically perfect.
Thus, the higher the quality of finishing of the surface
(the larger the parameter a), the more uniform the dis-
tribution of emerging stresses over the volume, which
improves the quality of the working surface.

Let us estimate the effective influence of a periodic
relief on the X-ray diffraction. An estimate of the mean
displacement gives

(27)

where f m is the maximum of function f (a number of the
order of unity).

Let the characteristic amplitude of the relief be m0 =
1 µm (hm0/2π = m0/d = 104, where d is the interplanar
spacing); in this case, displacements become large even
under insignificant loads,

(28)

H x'( ) m0 q*x'( ),sin≈
dZ q( ) 0.5im0 δ q q*–( ) δ q q*+( )–( ).–≈

uz r( ) 0.5σ0m0q* F r q*,( ) F r q*–,( )+( ).=

f z q,( ) uz r( )/σ0m0α=

uz r( ) 0.5σ0m0q* f 0 z( ) f 1 z( ) q*x( )sin+( ).≈

huz M f
m

, M≤ 1 ν+( )hm0

σ0

2πE
----------,=

M 10
4σ0/E.=
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Let us estimate such loads. We assume that the the-
oretical limit of the material strength is approximately
equal to 0.1E. However, the breakdown is usually
observed for a load two or three orders of magnitude
smaller owing to the inhomogeneities of the structure.
The critical loads for single crystals are higher. For
example, for a sapphire whisker, the tensile strength is
σt/E = 0.028. In order to create displacements with M =
0.05 that are detectable in X-ray experiments, we must
apply to a crystal a pressure σ0 = 5 × 10–6E, which
amounts to 5 kgf/cm2 (50 N/cm2) in the case of germa-
nium.

Disregarding the terms quadratic in  in Eq. (10)
and using the well-known expansion, we can present
the polarizability of the crystal in the form

(29)

where Jn is an integer-order Bessel’s function. The scat-
tering potential of this form is typical of superlattices
[10]; the only specific feature is the dependence of the
contribution from each harmonic on coordinate z.

In the case of X-ray scattering from a crystal with a
superlattice, the Takagi–Taupin equations defining the
amplitudes of the transmitted (E0) and diffracted (Eh)
waves,

(30)

split into an infinitely large system of equations in the
new components

(31)

Thus, the initial reflection splits into n individual
reflections that correspond to scattering with the dif-
fraction vector h + nq∗ ex. In the case when the angular
half-width of the principal reflection

(32)

(θ is the Bragg angle) is smaller than the angular dis-
placement of the supplementary reflection

(33)

additional reflections called satellites appear on the
rocking curve.

The fact that satellites emerge indicates that the
relief of the rough surface contains a harmonic with the
period

(34)

huz

χh
d χh ihuz( )exp≈

=  χh Jn M f 1 z( )( ) inq*x( ),exp
n ∞–=

∞

∑

E E0 ik0r( )exp Eh ikhr( )exp+=

E0 h, E0 h,
n

inq*x( ).exp
n ∞–=

∞

∑=

∆θ
2C χh

2θsin
----------------=

δθn nq*/k0 θcos=

a 2π/q* π/k0 θ∆θ.cos<=
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For example, for reflection Si(111) of CuKα radia-
tion, the width of the rocking curve is ∆θ ≈ 1.6 × 10−5,
and the minimal period of the harmonic being detected
is amin ≈ 70 µm. Thus, the value of q∗  can be determined
from the angular position of a satellite, and the mea-
surement of its angular width proportional to

(35)

makes it possible to determine m0 .
By way of an example, Fig. 3 shows the calculated

rocking curves with resolved satellites for the reflection
Si(111) of monochromatic CuKα radiation, where

(36)

Figure 3a shows the theoretical rocking curves for
δθn = ∆θ (the extinction length is equal to two rough-
ness periods) and M = 0.1 and 0.5 (curves 1 and 2). It
can be seen that the contribution from a second-order
satellite (n = 2) is negligibly small. Figure 3b illustrates
the change in the theoretical rocking curves upon a

J1 M f 1( ) M f 1/2,≈

p 2 10
6∆θ× .=
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Fig. 2. Calculated 3D plots describing the dependence of
displacements induced by roughness on coordinates x and z.
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variation of the roughness period δθn/∆θ = 3, 4, and 5
(curves 1, 2, and 3) for M = 0.4.

The diffraction fields in the region of a satellite were
calculated in perturbation theory, disregarding their
effect on the principal reflection. For better visualiza-
tion, the displacement of the center of the rocking
curve (14) was neglected. If the layer in which dis-
placements are concentrated is comparable with the
extinction length for the given reflection, Λn ~ λ/∆θJn,
the reflection is dynamic. For such a reflection, for the
exact Bragg angle, the intensity of the reflected wave is
equal to the intensity of the incident wave, although its
angular width may be very small.

Till now, we have disregarded the terms quadratic in
 in view of their smallness for relatively small

applied pressures. In the case of an indeterminate relief,
their effect on the X-ray diffraction must be taken into
account consistently.

huz

0 50

Ih

p

0.5

0 20

Ih

(a)

40 60

1.0

1 2

–50

1

2
30.5

(b)

Fig. 3. Calculated rocking curves with resolved satellites for
reflection Si(111); CuKα radiation, determinate relief:
(a) extinction length is equal to two roughness periods, M =
0.1 and 0.5 (curves 1 and 2); (b) variation of the roughness
period, δθn/∆θ = 3, 4, and 5 (curves 1, 2, and 3), M = 0.4

(m0 = 1 µm, σ0 = 400 N/cm2).
C

INDETERMINATE RELIEF

In the case of a rough surface without a determinate
relief (m0 = 0), the polarizability of the crystal assumes
the form

(37)

Let the correlation function be defined in the form
K2 (Table 2). We can simplify the calculation of 〈|uz |2〉
by carrying out first the integration with respect to q in
Eq. (19):

(38)

here, we have introduced a function defining the corre-
lation of the first derivative of displacements:

(39)

As the argument increases, the function J(x' – x'')
decreases at a slightly lower rate than the function
K(x' – x'') (Fig. 4). In the limiting case of “coarse”
roughness a ! Rs, we can make the substitution

leading to the expression

(40)

In the case of integration between infinitely large
limits, expression (40) diverges for any external pres-
sure. If we use the exact function J(x' – x''), the integral
diverges even more rapidly. This is due to the fact that
Green’s functions in Eq. (18) decrease slowly with
increasing distance from the point source, and the inte-
gration itself is distributed over the entire surface of the
crystal.

Such a divergence contradicts the experimental data
even if we take into account the fact that we consider
the square of displacements and that computations are
statistical by nature. Although the stresses at the surface
increase upon the application of a load, breakdown usu-
ally occurs along 3D fracture surfaces as a result of
crack initiation and growth. Cleavage occurs along the
crystallographic cleavage planes in the case of a brittle
fracture and through coalescence of microvoids and
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slip due to plastic deformation in the case of a ductile
fracture.

Expression (38) describes displacements only in a
perfect elastic solid; in actual practice, the structure
always contains inhomogeneities. Polycrystalline
materials contain grain boundaries, while single crys-
tals have clusters, impurity inclusions, and cleavage
and twinning planes.

As the external force increases (during sample prep-
aration or under repetitive loading), individual groups
of atoms, especially those constituting defects in crys-
tals, usually experience rearrangements including plas-
tic deformation, during which the local stresses
decrease (“relax”). If the local stress on a certain sur-
face in the bulk of the crystal is higher than the ultimate
strength σt, a microcrack will pass through this surface

0 5
x/a

0.5

1.0
K, J

1

2

Fig. 4. Curves describing the functions K(x) (1) and J(x) (2).

0 10
z/a

0.5

1.0
E 1

2

20

3

4

Fig. 5. Calculated dependences of the Debye–Waller
factor E on the depth z; s = 0.1, 0.5, 1, and 1.5 (curves 1, 2,
3, and 4).
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element. The larger the size of the crack, the higher the
stress concentration. The limiting size of the cluster
(Griffith crack) is determined from the condition that
the energy liberated during the growth of the crack
compensates the expenditures on the formation of the
crack surface,

(41)

where γ is the energy corresponding to the unit surface
area of the material. If a stress σ is applied to the sam-
ple, it is deformed first elastically and then plastically.
In this case, considerable local stresses appear in the
vicinity of structural inhomogeneities (including the
rough surface). The applicability of the theory devel-
oped above is determined precisely by the transition
from elastic to plastic deformation.

Thus, for the limit of integration in Eq. (40), we can
use the length rc, while still remaining in the limits of
applicability of the theory of elasticity. In this approxi-
mation, quadratic displacements can be estimated by
the following expression for s2 , which does not depend
on the applied stress:

(42)

Under standard conditions, the length rc for crystals
is much larger than the extinction length (2–20 µm) and
does not significantly affect the diffraction.

rc Eγ/σ2
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Fig. 6. Calculated rocking curves for reflection Si(111),
CuKα radiation, and indeterminate relief.
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Figure 5 shows the theoretical dependences of the
Debye–Waller factor

(43)

for s = 0.1, 0.5, 1, and 1.5 (curves 1, 2, 3, and 4)
obtained as a result of integration over the surface. It
should be observed that the displacement of atomic
planes increases at a depth of the order of 10a in this
case also. Unfortunately, only qualitative estimates are
available for rc since the surface energy γ in relation (41)
depends considerably on plastic strain and on tempera-
ture effects. For example, for a roughness height Rs =

E s
2
N z( )–( ),exp=

N z( ) 1

2α 2
rc

------------- x G x z,( ) 2
d

rc–

rc

∫=

1.0

0

0.5

2
3

4

5
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–5

0

ud

x/
a

Fig. 7. Two-dimensional displacement field around the
“dipole” created by the period of the relief.
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Fig. 8. Curve describing the dependence of the Fourier
component f1(z) on the depth.
C

0.1 µm, correlation length a = 200 µm, reflection Si
(111), and rc = 602 µm, we obtain s = 1.

Figure 6 shows the theoretical rocking curves for a
symmetric Bragg reflection Si(111) of CuKα radiation
corresponding to s = 0, 0.01, and 0.1 (curves 1, 2, and
3). The calculations were based on a layer-by-layer
solution of the Takagi–Taupin equations on a segment
of z from 0 to a according to the method described in
[12] (the number of layers is 200). It can be seen that as
the applied stresses increase, the rocking curve
becomes broader and displays oscillations that can be
used for numerically determining the rms roughness Rs.

It should be noted that the theory developed here is
applicable for characterizing a surface with the dis-
placement correlation parameter a larger than the
extinction length. Otherwise, the scattering in the sur-
face region is of a kinematic type.

CONCLUSIONS

We have proposed a method for determining the sta-
tistical parameters of a real surface subjected to an
external load creating a macroscopic elastically
deformed layer near the crystal surface. It is shown that
the rocking curve changes significantly when the rough
surface parameters change and a load is applied in the
case of Bragg reflection.

Surfaces with a determinate periodic relief were
considered. It is shown that the rocking curve acquires
satellites if the period of a relief is smaller than its
extinction length. The angular deviation of a satellite
from the exact Bragg angle makes it possible to deter-
mine unambiguously the period of the relief.

The X-ray express method of diagnostics of a rough
surface is attractive in view of the nondestructive action
of X rays and the availability of the X-ray equipment. It
should be noted that, in most cases, the user is inter-
ested in certain averaged parameters of a rough surface
rather than in a detailed pattern of the relief, which is
provided, for example, by atomic-force and electron
microscopy. Consequently, the drawback of all X-ray
methods associated with the averaging of X-ray data
over the area illuminated by an X-ray beam becomes its
advantage. In addition, modern X-ray optics makes it
possible to vary the beam cross section over a wide
range.

In a number of cases, it is more important (from the
user’s point of view) to obtain not an ultrasmooth sur-
face, but a roughness with given (or controllable)
parameters. For example, the flat-top honing of cylin-
ders of internal combustion engines is usually carried
out in two stages [13]. First, a basic roughness with
deep indentations (Rs = 20–30 µm), which are filled
with oil during the engine operation, is created with the
help of coarse-grain hones (a = 100–120 µm). Then, the
protrusions are smoothed with the help of small-grain
hones (12–40 µm) to create the bearing surface. By way
of another example, we consider epitaxial processes,
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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which are determined not only by the atomic structural
and geometric correspondence between the film and the
substrate, the process temperature, etc., but also by the
perfection of the substrate and the finishing of its sur-
face [14]. The epitaxy begins with the emergence of
individual crystallites on the substrate, which coalesce
to form a continuous film. At the initial stage of coales-
cence, it is the indentations of the rough surface that
may serve as active centers of crystallization. Epitaxy
can also take place on a pseudoamorphous substrate
with a crystallographically symmetric microrelief (gra-
phoepitaxy).

The samples subjected to investigation by X-ray
methods are often under the action of uncontrollable
external loads. The sources of such deformations
include

(i) deformations emerging during the fixation of
crystals (gluing, clamping, etc. [15]);

(ii) mismatch between lattice parameters between
the layers in crystalline multilayered systems and sys-
tems using crystalline substrates; and 

(iii) the nonuniform heating of samples under high-
power synchrotron radiation beams.

In this case, the surface roughness may lead to the
formation of macroscopic deformed layers in the crys-
tal, which may considerably deteriorate the interpreta-
tion of the obtained results.

APPENDIX

The form of the calculated field of displacements
(Fig. 2) suggests that the integration over the roughness
period can be replaced by summation over two point
sources located at the points ±π/2q = ±a/4:

(A.1)

Figure 7 shows the displacement field around such a
“dipole.” It can be verified that the field of the “dipole”
decreases in the bulk of the crystal in proportion to 1/z2,
i.e., much more rapidly than the function G proper.

Summing over the “dipoles” closest to the point of
observation, we can easily obtain the analytic expres-
sion

(A.2)

which is in good agreement with the results of calcula-
tions. Taking into account the periodicity of displace-

2uz r( )/σ0m0 F r q*,( ) F r q*–,( )+=

=  x'G x x'– z,( ) qx'( )sind

a/4–

a/4

∫
≈ π/q* G x π/2q* z,+( ) G x π/2q*– z,( )–{ } .

F r q*,( ) F r q*–,( )+

≈ π/q* G x π/2q* Na z,+ +( )
N

∑
– G x π/2q*– Na z,+( ),
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ments along the surface (x axis), we apply again the
approximate integration formula (A.1) to obtain the
Fourier function series

In this approximation, we obtain f0 = 0,

where

(A.3)

Figure 8 shows the curve describing the dependence
f1(z).
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Abstract—The acoustic properties and crystal structure of high-Tc superconducting cuprates and the related
antiferromagnetic phases CuO and Y2BaCuO5 exhibit similar properties at a temperature of about 160 K and
240 K. These properties can be associated with the formation of inhomogeneous state of phase separation.
Analysis of the magnetic properties of Y2BaCuO5 shows that these effects are of a nonmagnetic nature. The
results of EXAFS data for the high-Tc superconducting compound Hg0.8Tl0.2Ba2Ca2Cu3O8.10 show that the phe-
nomenon of phase separation is suppressed by superconductivity. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

The inhomogeneous state (phase separation) in
CuO2 planes in high-Tc superconducting cuprates was
first observed in 1993 by Bianconi [1]. Up to now, the
state of phase separation in the form of stripes was
found in La2 − xNdxCuO4, La2 – xSrxCuO4 + δ [2, 3],
Bi2Sr2CaCu2O8 + δ [4], and YBa2Cu3O7 – δ [5]. However,
no such state was observed in mercury-based high-Tc
cuprates possessing the highest critical temperature and
the smallest distortion of the CuO2 planes [3]. In this
connection the question arises of whether the supercon-
ducting properties and the state of phase separation are
related, i.e., whether the interactions responsible for
these effects are independent, compete, or provide each
other. To find the answer to this question, we studied the
temperature evolution of the crystal structure in the
mercury-based high-Tc compound of the composition
Hg0.8Tl0.2Ba2Ca2Cu3O8.10 in the vicinity of the super-
conducting transition by EXAFS spectroscopy.

Another important problem is the nature of the state
of phase separation. This state can be of either magnetic
[6] or polaron [7] origin. To analyze this problem, we
measured the acoustic and structural parameters and
also the magnetic susceptibility in a wide temperature
range for two Cu(II)-containing antiferromagnetic
materials—CuO and Y2BaCuO5.

1 This work was presented to the Symposium “Order, Disorder, and
Properties of Oxides” (ORDPO), Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20934
RESULTS AND DISCUSSION

The Y2BaCuO5 ceramic and CuO samples were pre-
pared by a solid-state reaction in air at 950°C from
Y2O3, BaCO3, and CuO (of 99.99% purity). The synthe-
sis and the parameters of the Hg0.8Tl0.2Ba2Ca2Cu3O8.10
samples were reported in [8]; their critical temperature
Tc was close to 125 K. The EXAFS measurements were
made in the Novosibirsk Center of Synchrotron Radia-
tion at the VEPP-3 reactor.

The crystal structure of CuO and Y2BaCuO5 is well
known [9, 10]. Copper (II) oxide has a centrosymmetric
structure and is described by the monoclinic space
group C2/c. Each in-plane copper atom is surrounded
by four oxygen atoms forming an almost regular paral-
lelogram, whereas the oxygen coordination corre-
sponds to a distorted tetrahedron formed by copper
atoms. The CuO4 parallelograms are elongated in the

[110] and [ ] directions and form two types of

Cu−O–Cu chains in the [101] and [ ] directions.

In Y2BaCuO5, copper atoms are coordinated by five
oxygen atoms forming almost square pyramids, which,
in turn, form layers alternating with Y−O–Y–chains.
Thus, in contrast to high-Tc superconducting phases
and CuO, here, the copper–oxygen clusters do not form
a bound structure that is separated by the Ba–O and Y–O
fragments inside and outside the layers, respectively.
We failed to find any data on possible structural trans-
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Fig. 1. X-ray diffraction patterns of (a) CuO and (b) Y2BaCuO5 at room temperature. The experimental, calculated, and difference
curves are presented. I is the reflection intensity, λ = 1.5405 Å.

I, 102 arb. units
formations in CuO and Y2BaCuO5 during cooling down
to 4.5 K.

The low-temperature structural studies were per-
formed on a STOE diffractometer (graphite monochro-
mator, CuKα1 radiation, the 2ϑ range was 20°–60° for
Y2BaCuO5 and 20°–80° for CuO, 5° linear position-
sensitive detector, transmission mode) in a cryostat
manufactured by Oxford Instruments. The sample was
placed into a helium atmosphere, the temperature
ranged within 100–300 K, the measurements were per-
formed during sample cooling, the temperature step
was equal to 3–5 K, the cooling rate between the mea-
surements was about 1 K/min, the average time of one
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
measurement was about 40 min. The structural param-
eters were refined using the GSAS program package.
The first-king Chebyshev polynomial with eight
parameters was used to fit the background. The profile
function (the Simpson modification of the pseudo-
Voigt function [11]) had 12 coefficients, of which nine
were adjustable. The X-ray diffraction patterns
obtained at room temperature are shown in Fig. 1.

The structure model described in [10] was used as
the initial model of Y2BaCuO5: sp. gr. Pbnm, four Ba in
the (0.93, 0.90, 1/4) position, four Y1 in the (0.12, 0.29,
1/4) position, four Y2 in the (0.40, 0.07, 1/4) position,
four Cu in the (0.71, 0.66, 1/4) position, eight O1 in the



 

936

        

TITOVA 

 

et al.
(0.16, 0.43, 0) position, eight O2 in the (0.36, 0.23, 0.5)
position, and four O3 in the (0.03, 0.10, 1/4) position.
Unfortunately, for this phase we managed to determine
only the temperature dependence of the unit cell param-
eters owing to the insufficient accuracy of the X-ray dif-
fraction method for determining the oxygen position.
The temperature dependence of the unit-cell volume is
shown in Fig. 2a.

The structure model described in [9] was used as the
initial model for CuO: sp. gr. C2/c, four Cu in the 4a
position (0, 0, 0), and four O in the 4b position (1/2, 1/2,
z). The isotropic thermal parameters of oxygen atoms
were not refined and were taken to be equal to 0.03 Å,
whereas the thermal parameters for copper atoms were
calculated in the anisotropic approximation as
exp[−2π2(U11a*h2 + 2U12a*b*hk + …]. The reliability
factors for all the temperature points were wRp ~ 13–14
and 8–9%, Rp ~ 10–11 and 6.6–6.7%; χ2 ~ 0.30–0.35
and 2.90–2.97 for Y2BaCuO5 and CuO, respectively.
The temperature dependences of the unit-cell volume
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Fig. 2. The temperature dependence of the unit-cell volume
V for (a) Y2BaCuO5 and (b) CuO. For CuO, the Cu–O–Cu
bond angles are also indicated (empty symbols). Hereafter,
the error bars are not shown if the error does not exceed the
symbol size.
C

and of the Cu–O–Cu bond angle for CuO are shown in
Fig. 2b. The results of the structure analysis for the mer-
cury-based high-Tc compound are described in detail
in [8, 12, 13].

The acoustic properties of Y2BaCuO5 and CuO
(internal friction coefficient and sound velocity) were
measured by a double built-up vibrator at a frequency
of 90–100 kHz. The results are shown in Fig. 3. It is
apparent that the acoustic characteristics of both mate-
rials are similar at temperatures of about 160 and 230–
240 K. Furthermore, at these temperatures, the peaks of
ultrasonic absorption were also observed for high-Tc
compounds [14, 17], where they were attributed to the
spin and charge inhomogeneities corresponding to the
phase separation. These phenomena seem to occur in a
similar way in both high-Tc compounds and in the
related antiferromagnetic phases.

The parameters of the crystal structure for the sam-
ples under study exhibit anomalous behavior at the
same temperatures at which the ultrasonic absorption
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200 3000
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Fig. 3. The temperature dependence of the internal friction
δ for (a) CuO and (b) Y2BaCuO5. Empty and filled symbols
correspond to cooling and heating, respectively.

δ × 103
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peaks were observed (about 160 and 240 K) (Fig. 2).
We should also mention the unstable behavior of the
Cu–O–Cu bond angle in the vicinity of 200 K. Earlier,
the unusual behavior of magnetostriction in various
magnetic fields was reported at a temperature of about
203 K [18], where it was explained by the effect of
domain structure.

The magnetic properties of CuO were described in
detail in [19–21]. At TN1 < 230 K, this material becomes
a collinear three-dimensional antiferromagnet with the
spin S = 1/2 directed along the crystallographic b axis.
At temperatures below TN2 =212 K [20], the direction
of the magnetic moment lies in the ac plane [21]. Above
TN1 (up to about 540 K), we observed an increase in
magnetic susceptibility that can be explained by a
quasi-one-dimensional magnetic order in the antifero-

magnetic Cu–O–Cu chains oriented along the [10 ]
direction. In these chains, magnetic correlations exist
above the Néel temperature [19].

The magnetic susceptibility of Y2BaCuO5 was mea-
sured by the Faraday balance technique in the tempera-
ture range 55–600 K in fields up to 13 kOe. The results
obtained for CuO turned out to be in good agreement
with those described above and reported in [20]. In the
temperature range under study, the magnetic suscepti-
bility of Y2BaCuO5 exhibits paramagnetic behavior, χ =
C/(T – θ) with C = (8.9 ± 0.3) × 10−5 K and θ = –31.7 ±
4.0 K. The calculated effective moment equals meff =
1.79 µB and corresponds to the spin S = 1/2 for Cu2+.

The radial distribution function (RDF) for
Hg0.8Tl0.2Ba2Ca2Cu3O8.10 determined by the Fourier
transform of the EXAFS spectra (CuK-edge) at 300,
140, and 110 K is shown in Fig. 4. It is clear that for all
RDF maxima, except for the first one, attributed to the
contribution of Cu–O bonds in the CuO2 planes, the
intensity recorded on cooling is associated with the
temperature factor. However, the maximum intensity of
the first peak (corresponding to the most ordered state
of the corresponding bonds) is observed at 300 K and
the minimum, at about 140 K. Note also that on further
cooling down to the superconducting-transition tem-
perature, the peak height increases again (the degree of
disorder of Cu–O bonds becomes lower).

The anomalous properties of CuO and high-Tc
cuprates in the 160–240 K range are often interpreted in
terms of the phase separation because of spin correla-
tions of the antiferromagnetic type. This idea is associ-
ated with the Néel temperature of CuO in this range and
of spin correlations in high-Tc cuprates in wide ranges
of compositions and temperatures. In this study, we
showed that both anomalies, at ~160 and 240 K, are
determined in Y2BaCuO5 in a pure paramagnetic state,
and, therefore, we prefer to suggest another mechanism
of phase separation, for example, the polaron one [7] or
the model of polar Jahn–Teller centers [22].

1
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Discussing the results of the EXAFS spectroscopy
for high-Tc materials, we should note that a pronounced
distortion of the CuO2 planes is observed in
Bi2Sr2CaCu2O8 + δ, LaCuO4.1 [3, 4], and YBa2Cu3Oy [5]
below the temperature of the superconducting transi-
tion. This distortion, which even increases on cooling in
some cases, was attributed to phase separation. Such a
behavior gave rise to the hypothesis of the existence of
a quantum critical point because of the formation of the
self-organized structure of charged stripes in the high-
Tc compounds. The hypothesis leads to the conclusion
that the critical charge and spin fluctuations in the
vicinity of this point determine the charge-carrier inter-
actions and superconductivity [2]. Our EXAFS spec-
troscopy data (Fig. 4) and high-resolution X-ray dif-
fraction data [8, 13] unambiguously show that the
degree of distortion in CuO2 planes drastically
decreases at T < Tc. Probably, the difference between
our data and the results reported in [4, 5] is explained
by the fact that the samples used in [4, 5] were heavily
irradiated with a photon flux of the order of 1011 s–1.
Earlier, we showed that the observed distortion can be
photoinduced [12] and, therefore, we used a flux that
was less intense by two orders of magnitude.

Thus, the mercury-based high-Tc materials charac-
terized by the highest critical temperatures have much
smaller distortions of CuO2 planes as compared to other
high-Tc systems. These distortions do not increase on
cooling without strong irradiation. This leads to the
conclusion that the formation of stripe structure and
phase separation are not related to the mechanism of
superconductivity.

One of the well-known theories describing the prop-
erties of high-Tc cuprates is based on the concept of
polarons and bipolarons [23]. In the case where the
polaron density is high, the contribution of polarons

1.6
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0.8

0.4

0

2 6 10 r, Å

Radial distribution function (arb. units)

1

3
2

Fig. 4. The radial distribution function obtained by EXAFS
spectroscopy for Hg0.8Tl0.2Ca2Cu3O8.10 at (1) 300, (2) 140,
and (3) 110 K; ëuK edge.
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and bipolarons to the thermodynamic potentials can
exceed the contribution from the crystal lattice. The
characteristic feature of such systems is a nonmono-
tonic temperature dependence of the polaron band-
width. As was shown in [7], close to the temperature
corresponding to the maximum polaron localization
(the collapse point for the polaron band), there exists a
certain stability limit of the homogeneous state of the
material. If the Fermi level in this material is located
between the bottom and the middle of the polaron band,
the homogeneous state decomposes into phases
enriched with and depleted of charge carriers, which
can be explained follows. At the collapse of the polaron
band, the Fermi level of the initial material should go
up, which is equivalent to the negative contribution of
charge carriers to the total entropy. If this contribution
is not compensated with the contribution of the crystal
lattice, decomposition takes place. In the case of the
impurity polarons discussed in [7], the compensation of
the electric-charge redistribution occurs because of the
diffusion-induced redistribution of impurities. In the
case where the temperature corresponding to the col-
lapse of the polaron band is rather low and the mobility
of the impurity (oxygen in high-Tc materials) is insuffi-
cient, the segregation in the form of phase separation
can take place. Of course, the geometric shape of the
stripes for the fractions formed requires additional
interpretation. Alexandrov and Kabanov demonstrated
theoretically [6] that Fröhlich interaction favors the for-
mation of such stripes in doped antiferromagnetic insu-
lators under the condition that the dielectric constant
has a high value; in other words, the Fröhlich interac-
tions enhance the role of short-range antiferromagnetic
and electron–phonon interactions.

Thus, we suggest that the processes occurring at T ~
240 and 160 K are associated with the formation and
redistribution of charge in the separation state. Both
these features are of a nonmagnetic nature. The inho-
mogeneous state with domains (stripes) with different
charge-carrier concentrations and different distortions
of CuO2 planes is the most favorable at temperatures
slightly exceeding the temperature of the superconduct-
ing transition, and it is suppressed during further cool-
ing. The “stripe state” cannot induce superconductivity,
but both these effects are explained by the polaron
nature of the materials under discussion.
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Abstract—The distribution of cations over the positions in the structures of labuntsovite-group minerals was
studied by X-ray diffraction analysis and IR spectroscopy. Several types of cation order over the five key posi-
tions are established depending on cation composition and their force characteristics. © 2002 MAIK
“Nauka/Interperiodica”.
1 INTRODUCTION

Minerals of the labuntsovite group are promising
ion exchangers, sorbents, and catalyst carriers and
therefore can be used in chromatography, catalysis,
water purification, etc. Efforts were made to synthesize
meso- and microporous materials [1–4] with the use of
minerals of the nenadkevichite (representative of the
labuntsovite group) structure type taking into account
the available data on the natural specimens.

Zeolite properties of many Ti-, Nb-, and Zr-alkali
silicates are associated with the differences in the force
characteristics of the cation–oxygen chemical bonds. It
is well known that a quantitative characteristic of a
bond is the force constant derived from the second par-
tial derivative of the total potential energy with respect
to the deviation of the bond length from its equilibrium
value. The corresponding stretching frequencies deter-
mined from IR spectra can be considered as a measure
of force characteristics. The classification of the force
characteristics into “high” and “low” ones is arbitrary.
In this study, the force characteristics of the bonds,
whose cation–oxygen stretching frequencies are either
lower than 400 cm–1, range from 400 to 700 cm–1, or are
higher than 700 cm–1 will be referred to as low, moder-
ate, and high, respectively. It should be noted that the
values of the force characteristics decrease with an
increase in the coordination number and the elongation
of the bond.

Transition elements (along with silicon) possessing
high force characteristics of the bonds with oxygen
play the key role in the structures of most of the miner-
als under consideration and provide the formation of
three-dimensional frameworks, whereas the cations

1 This study was presented at the Symposium “Phase Transitions in
Solid Solutions and Alloys,” Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20939
with low force characteristics and water molecules are
located in their cavities.

CRYSTAL CHEMISTRY OF LABUNTSOVITE-
GROUP MINERALS

The general crystallochemical formula of the mon-
oclinic members of the labuntsovite group with ordered
cations can be written as (Z = 1): A4B4C4 – 2x ·
[Dx(H2O)2x][M8(O,OH)8][Si4O12]4 · nH2O, where n ≈ 8,
x = 0–2, A = Na, Ca, Sr, H3O, or h; B = K, Na, H3O, or
h; C = K, Ba, H3O, or h; D = Mn2+, Fe2+, Mg, Zn, or h;
M = Ti or Nb; and h is a vacancy (letters A, B, C, and D
not only denote the particular set of cations but also cor-
respond to certain structure positions or groups of posi-
tions, if the latter are split).

The labuntsovite group includes more than twenty
minerals, which are widespread in the massifs of the
Kola Peninsula and Greenland. Fourteen minerals of
this group were recognized by the Commission on New
Minerals and Mineral Names of the International Min-
eralogical Association. Their chemical compositions
(wt %) lie within the following ranges: Na2O, 0–14;
K2O, 0–15; CaO, 0–7; Sr–O, 0–8; BaO, 0–17; MgO, 0–
2; FeO, 0–5; MnO, 0–7; ZnO, 0–7; TiO2, 1–27; and
Nb2O5, 0–39. Some structurally studied minerals of the
labuntsovite group are listed in Table 1.

The structures of all the minerals of the labuntsovite
group can be described as mixed frameworks consist-
ing of infinite chains of titanium- or niobium-octahedra
sharing vertices along the a axis. The chains are linked
to each other via the [Si4O12]-rings along two other
directions. The SiO4-tetrahedra share vertices with the
Ti(Nb)O6-octahedra. The structural similarity of the
mixed frameworks is seen from the fact that their unit-
002 MAIK “Nauka/Interperiodica”
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Table 1.  Symmetry and unit-cell parameters of some structurally studied minerals of the labuntsovite group

Mineral Sp. gr. a, Å b, Å c, Å β, deg Reference

Nenadkevichite Pbam 7.41 14.20 7.15 90 [5]

Korobitsynite Pbam 7.35 14.15 7.12 90 [6]

Abuntsovite C2/m 14.18 13.70 7.74 117.0 [7]

Labuntsovite-Mn C2/m 14.29 13.85 7.78 116.8 [8]

Labuntsovite-h C2/m 14.30 13.82 7.79 116.8 [9]

Lemmleinite-K(1) C2/m 14.33 13.83 7.79 117.1 [10]

Lemmleinite-K(2) C2/m 14.42 13.91 7.80 116.9 [10]

Lemmleinite-Ba C2/m 14.22 13.75 7.77 116.7 [11]

Paralabuntsovite I2/m 14.24 13.77 15.57 116.8 [8]

Niobium-rich analogue of labuntsovite Cm 14.45 13.91 7.836 117.4 [12]

Lemmleinite-K(3) C2/m 14.39 13.90 7.83 117.6 [13, 14]

“Monoclinic nenadkevichite” C2/m 14.75 14.37 8.01 117.4 [15]

Vuoriyarvite-K Cm 14.69 14.16 7.86 117.9 [16]

Kuzmenkoite-Mn Cm 14.37 13.91 7.81 117.1 [17, 18]

Alsakharovite Cm 14.45 13.91 7.836 117.4 [19]

Karupmollerite-Ca C2/m 14.64 14.21 7.91 117.4 [20]

Gutkovaite-Mn Cm 14.36 13.89 7.814 117.4 [21]

Tsepinite-Na Cm 14.60 14.27 7.93 117.4 [22]

Note: Data for the monoclinic members of the labuntsovite group are given in the unified setting, which corresponds to the monoclinic angle β.
cell parameters are comparable, even if the representa-
tives of this mineral group are described by different
symmetries (Table 1). Large alkali and alkaline-earth
cations and water molecules occupy the cavities of the
structures.

Framework consisting of the Ti(Nb)O6-octahe-
dra and four-membered rings of the SiO4-tetrahe-
dra. The framework of the composition
[M4(O,OH)4(Si4O12)2] is negatively charged depending
on the Ti : Nb ratio in the M-octahedra. The axes of the
M-octahedra in the chains are tilted with respect to each
other in the ac-plane, which imparts the zigzag shape to
these chains. The M–O–M angles characterizing the
mutual inclination of octahedra in the chains are
approximately equal to (135°–138°) for all the minerals
of the labuntsovite group. However, the directions of
inclination substantially differ as well as the angles of
mutual rotation of octahedra. In orthorhombic struc-
tures, the chains are straightened in the ac-plane, so that
the chain axis is parallel to the x axis of the unit cell. In
monoclinic structures, these structural elements are
more complicated because of the rotation of the octahe-
dra about their axes and the additional inclination with
respect to each other in the ab-plane, so that the axis of
the chain passing through the shared vertices of the
octahedra is bent in a wavelike fashion. In this case,
there are prerequisites for the formation of additional
octahedra at the sites of mutual approach of the chains,
so that the additional octahedra share edges with the
chain octahedra. This transformation of the chains in
C

the monoclinic structures leads to deformation of the
silicon–oxygen rings. As a result, these rings are no
longer planar and symmetrical cycles with Si–O–Si
angles of 150° and 172° (orthorhombic structures). The
angles of rotation of the tetrahedra in the monoclinic
structures now range within 135°–154°, which offers
the possibilities of identifying the minerals of the
labuntsovite group from their IR spectra.

Zeolite-like cavities. The differences in the frame-
works of the orthorhombic (Fig. 1) and monoclinic
(Fig. 2) minerals of the labuntsovite group are reflected
in the character of filling of the zeolite-like cavities.
The orthorhombic minerals (sp. gr. Pbam) include nio-
bium-rich nenadkevichite [5] and its titanium analogue
korobitsynite [6] with the idealized general formula
Na8(Nb,Ti)4(O,OH)4[Si4O12]2 · nH2O, where n ≈ 8
(Z = 1). These structures have relatively small similar
cavities, in which sodium atoms substantially dominate
over other cations. The Na atoms are located in eight-
and nine-vertex coordination polyhedra with the short-
est Na–O distance of 2.2 Å, which hinders the incorpo-
ration of large cations such as K+ and Ba2+ into the
structures of the orthorhombic members of the labunts-
ovite group. All the other members of this group belong
to the monoclinic system. Their structures contain large
cavities of different shapes and sizes, which are
denoted by the letters A, B, and C according to the
nomenclature used for this mineral group [23] and the
letter by D in the case of the formation of additional
octahedral complexes. In all the structurally studied
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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minerals of the labuntsovite group, the selective incor-
poration of extraframework cations into the A, B, C, and
D positions was observed. This makes it possible to
reveal the following characteristic features of the order-
ing of cations and water molecules in the series of
structurally studied minerals of the labuntsovite group.

The A position is occupied predominantly by
sodium atoms. It should be noted that four sodium
atoms provide the maximum possible occupancy.
Although the multiplicity of the A position is equal to 8,
the pairs of crystallographically equivalent positions
are located at such close distances (2.5 Å) that they can-
not be simultaneously occupied by cations. In the mon-
oclinic structures, the single A position can be split into
the A(1) and A(2) subpositions spaced by 1.6–1.7 Å.
One of these positions is still occupied by Na cations,

a

Ò

Na

H2O

Fig. 1. Structure of the orthorhombic representatives of the
labuntsovite group.
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whereas the other position is occupied by larger cat-
ions, such as Sr in the structure of the Zn, Ti-containing
representative of the labuntsovite group [19], K in nio-
bium-rich labuntsovite [12], and H3O in tsepinite-Na
[22]. In most of the labuntsovites, the A(2) position is
occupied by H2O molecules and is involved in the coor-
dination environment around the A(1) position dis-
placed for a longer distance.

The main difference between kuzmenkoite
K4[Mn2(H2O)4][(Ti,Nb)8(O,OH)8][Si4O12]8 · 8H2O
[17, 18] and the minerals with the labuntsovite structure
is that the A(1) position in the former mineral is vacant
because of the low sodium concentration, with the A(2)
position being partly occupied by H3O and H2O. In the
structurally studied calcium-rich labuntsovite-like
minerals [15], the A position is vacant to a large degree
because calcium is not incorporated into this position
at a low sodium concentration. An analogous situation
was also observed in the structure of karupmolle-
rite-Ca h4(K1.03Na0.87)(Ca0.57Na0.30Ba0.02)(Ca1.39Mn0.02) ·
(Nb2.71Ti1.20Fe0.05)(Nb2.63Ti1.28Fe0.05)[Si4O12]4(O,OH)8 ·
11H2O studied by the Rietveld method [20].

An essentially different distribution of the
extraframework cations is observed in the structure of
gutkovaite-Mn, which is a low-sodium and, at the same
time, Ca-containing representative of the labuntsovite
group [21]. The Ca atoms in this mineral are ordered
and occupy one of two positions related by a twofold
axis, whereas these two positions in the structures of
typical labuntsovites are statistically occupied by
sodium. Compared to the Na-nine-vertex polyhedron
(the average Na–O distance is 2.65 Å) in the labuntso-
vite structure, the Ca-polyhedron in gutkovaite-Mn is
reduced to a seven-vertex polyhedron (the average Ca–
O distance is 2.48 Å). In low-potassium (K ≤ 4)
labuntsovites, all the potassium atoms are located in the
B position [10, 23], which can also be split into partly
(a) (b)

a

b b

a

B C H2OA D

Fig. 2. Structure of the monoclinic representatives of the labuntsovite group (a) without an additional complex between the chains
of the MO6-octahedra and (b) with the additional D(H2O)2 complexes.
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occupied subpositions. The structure of vuoriyarvite-K
[16], which differs from most of the other minerals of
the labuntsovite group, is characterized by the presence
of a large number of extraframework positions spaced
by close distances, including the positions around the B
position. The disorder in the structure of this mineral is
seen from the nonequivalence of all the four tetrahedra
of the silicon–oxygen ring and all Nb(Ti)–O bonds in
all the octahedra, the nonsymmetric splitting of the
extraframework partly vacant positions, and, as a con-
sequence, the absence of a center of inversion.

Vuoriyarvite-K is structurally similar to its Na,Ti-
rich analogue—tsepinite-Na (Na, H3O, K, Sr, Ba)2
(Ti,Nb)2[Si4O12](OH,O)2 · 3H2O [22] from the Khibiny
massif. In particular, the structure of tsepinite-Na has
eight extraframework positions occupied by large cat-
ions (Na, K, Ba, Sr, Ca, and H3O+). However, six of
these positions are usually vacant. Two positions have
occupancies of ~0.6. Three other positions contain
H3O+ ions with occupancies of 0.35, 0.26, and 0.39 (the
H3O–O distances are 3.12, 3.19, and 2.93 Å, respec-
tively).

The partial replacement of K by H3O was observed
in some other members of the labuntsovite group, for
example, in the Zn,Ti-containing representative [19].
Direct evidence of the incorporation of oxonium ions
into the labuntsovite structure is lacking. At the same
time, the presence of H3O+ ions in labuntsovites is con-
sistent with the chemical compositions of many speci-
mens (a deficiency of extraframework cations often
accompanied by a high water content), which is con-
firmed by the IR spectroscopy data. The IR spectrum of
the structurally studied specimen of tsepinite-Na [24]
has additional bands at 3250, 2940, and 1700 cm–1 and
is characterized by high absorption intensity in the
region of Si–O–Si stretching vibrations (1000–
1200 cm–1). For the H3O+ ion with the symmetry C3v ,
the calculated frequencies (cm–1) are as follows:
ν1(A1) = 3160; ν2δ(A) = 1050–1140; ν3(A) = 3320, and
ν4δ = 1730–1740. Apparently, the involvement of the
oxonium cations in hydrogen bonding leads to a lower-
ing of their symmetry and induces low-frequency shifts
of their spectral bands. Since the ν2δ(A) band overlaps
with the ν(Si–O–Si) band, the precise determination of
its position is difficult.

The B position is most often surrounded by two
water molecules, H2O(1) and H2O(2), involved in the
coordination sphere of the sodium atoms, and each of
these water molecules is also bound to one of the large
cations (K or Ba).

In monoclinic structures, the chains of the (Ti,Nb)-
octahedra can be cross-linked via additional octahedra
located at the sites where the chains approach each
other (Fig. 2b). These additional octahedra share edges
with the octahedra of the chains. The “cross-linking” D
position can be occupied by both R = Mn2+, Fe2+, Mg,
or Zn ions and the larger ions, such as Ca, Na, or Sr. It
C

should be noted that divalent cations R2+, i.e., the cat-
ions with relatively high force characteristics, are incor-
porated into this position as [R(H2O)2]2+ complexes.
The water molecules involved in these complexes are
located at the vertices of the “cross-linking” octahedron
and occupy the C position. If the positions of the H2O
molecules and C cations in the labuntsovite structure
virtually coincide (the distance between these positions
is no larger than 0.3 Å), an interesting instance of alter-
native isomorphism is observed:

For the labuntsovite group, the continuous isomor-
phism according to this scheme occurs throughout the
range of the occupancies of the C and D cation posi-
tions (i.e., from 0 to 4 and from 2 to 0, respectively). Of
the “D-occupied” (and, consequently, “C-vacant”) min-
erals with a labuntsovite structure, labuntsovite-Mn,
labuntsovite-Fe, and labuntsovite-Mg have already
been described [23].

The fact that the additional (cross-linking) octahe-
dral positions are occupied mainly by the divalent Fe,
Mn, Mg, and Zn cations was confirmed in a series of
structural studies [10, 11]. However, the D position is
often vacant (lemmleinite [13] and tsepinite [22]) and
can also be occupied mainly by sodium (vuoriyarvite
[16]) or calcium (monoclinic nenadkevichite [15]) cat-
ions. The unusual position occupied by strontium with
the occupancy of 0.22 was observed in tsepinite-Na.
This position can be interpreted as octahedral (an ana-
logue of the D position). However, compared to the
usual cross-linking cations, the strontium atoms are dis-
placed from the centers of the squares that are formed
by the oxygen atoms shared by the Ti,Nb-octahedra.
The average, minimum, and maximum Sr–O distances
are 2.35, 2.16, and 2.50 Å, respectively.

The shape of the chain (or the degree of its straight-
ening) depends on the size of the cation in the key D
position. This is reflected in the change in the unit-cell
parameter a along the chain and, to a lesser extent, in
the change in the unit-cell parameter b, which is exem-
plified by several structurally studied minerals of the
labuntsovite group [22]. In particular, the average dis-
tances in the D-octahedra and the unit-cell parameter a
are as follows (A): 2.0–2.1 and 14.2–14.3 in labuntso-
vites, 2.2 and 14.4 in kuzmenkoite-Mn, 2.3 and 14.7 in
vuoriyarvite-K (containing Na in the D position), 2.3
and 14.75 in monoclinic nenadkevichite (Ca), and 2.35
(for Sr) and 14.6 in tsepinite-Na (Sr + vacancy).

As was mentioned above, the B position is occupied
mainly by potassium cations. The excessive (above four
atoms per unit cell) potassium atoms are incorporated
into the C position where they compete with barium
atoms and water molecules. It should be noted that the
potassium atoms virtually share their positions with the
H2O molecules located at the vertices of the D-octahe-

2 K, Ba( ) h 2H2O Mn, Fe, Mg, Zn( ).+ +

C D DC
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dra, whereas the heavy barium atoms are more rigidly
fixed at distances of 0.3 Å from the H2O positions. In a
labuntsovite structure with the more than two Ba atoms
(lemmleinite-Ba) [11], the Na, K, and Ba cations were
demonstrated to be completely ordered in the A, B, and
C positions, respectively, with barium atoms in the lat-
ter position being dominant.

Karupmollerite-Ca [20] is characterized by a sub-
stantial deficiency of extraframework cations (2.8 out
of 12 theoretically possible cations) with a simulta-
neous increase in the H2O content. Although this min-
eral is structurally similar to kuzmenkoite-Mn, the C
position in its structure is occupied by the Ca and Na
cations in contrast to other minerals of the labuntsovite
group, in which this position is occupied by Ba and K
cations. In the structure of karupmollerite-Ca, the C
position is displaced from the D position (“moves
apart” from it, with the D–C distance being 2.41 Å) and
from the H2O position in the vertex of the D-octahedron
(the C–H2O distance is 0.82 Å). For comparison, the
corresponding distances in lemmleinite-Ba are 2.11
and 0.29 Å, respectively. The Ca and Na cations (partly,
Ba cations) statistically (by ~23%) occupy the C posi-
tion and alternate with the D cations, with D dominat-
ing over C (~70 and 23%, respectively).

Lemmleinite-K [10] occupies a special place among
minerals with a labuntsovite structure. This mineral is
the potassium-limiting member of the isomorphous
family described by the above scheme, i.e., contains no
cations in the D positions, whereas the C position is
almost fully occupied by K.

IR SPECTROSCOPY

The fact that the constituent elements of labuntso-
vites have different force characteristics of the cation–
oxygen bonds enables one to successfully use both IR
spectroscopy and X-ray diffraction analysis. Thus, the
force constants can be directly determined from IR
spectroscopic data, because these constants are propor-
tional to the ratio of the squared frequency of the corre-
sponding normal vibrations to the reduced mass of
these vibrations.

The minerals of the labuntsovite group can be iden-
tified from their IR spectra because of the differences in
the Si–O–Si angles in the four-membered silicon–oxy-
gen rings, which, in turn, depend on the deformation of
the octahedra in the chains. In the region of Ti(Nb)–O
stretching vibrations (660–700 cm–1), the IR spectra of
minerals of the labuntsovite group have a strong narrow
band. The fact that this band is not split in the spectra of
multiphase samples throughout the entire range of the
Ti : Nb ratio indicates that the Ti- and Nb-octahedra are
involved in normal chain vibrations as virtually indis-
tinguishable oscillators. The Ti(Nb)–O stretching fre-
quencies depend primarily on the occupancy x/2 of the
cross-linking D-octahedra (see the crystallochemical
formula). The interactions between Ti(Nb)-octahedra
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
in the chains are stronger than those between chain
octahedra and D-octahedra. Therefore, the latter inter-
actions can be considered as perturbations.

According to the theory of vibrations in the cluster
approximation [25], these perturbations for a chain
consisting of N links are described by the dynamic

matrix . This matrix has the dimensionality N × N,
and the elements of its principal diagonal are equal to
∆d0 (with a probability of x/2) or 0 (with a probability
of 1 – x/2). According to the first-order perturbation
theory, the shift of the kth (Ti,Nb)–O stretching band is
described by the following equation [26]:

where g0k is the kth zeroth-order eigenvector, whose ith
component (with due regard for only the short-range

interactions between the octahedra) is  = [2/(N +
1)]1/2sin[ikπ/(N + 1)]. In the IR spectrum, the edge
mode of the frequency branch with k = 1 is active. Con-
sequently, the following equation can be written:

(1)

∆Ď

∆νk N x,( )2
g0k* ∆Dg0k,ˇ=

g0k
i

∆ν N x,( )2

=  2/ N 1+( )[ ] x/2( )∆d0 iπ( )/ N 1+( )[ ] .sin
2

i 1=

N

∑

665

0.1

ν(Ti,Nb)–O
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Fig. 3. Dependence of the position of the (Ti,Nb)-O stretch-
ing-vibration band on the content of D-cations in the miner-
als of the labuntsovite group according to the data of
(a) structural studies and (b) chemical analysis. The experi-
mental points are numbered in correspondence with the fol-
lowing specimens: 1, 2, and 3 (korobitsynite); 4 and
5 (nenadkevichite); 6, 7, 8, and 10 (lemmleinite-K); 9 (tse-
pinite-Na); 11 (paralabuntsovite-h); 12, 14, and 15 (labunts-
ovite-h); 13 (lemmleinite-Ba); 16 (labuntsovite-Fe); 17, 21,
22, and 26 (labuntsovite-Mg); 18 (paralabuntsovite-Mg);
19, 21, and 23 (labuntsovite-Mn); 20 (vuoriyarvite-K);
24 (karupmollerite-Ca); 25, 27, and 30 (kuzmenkoite-Mn);
28 (kuzmenkoite-Zn); 29 (organovaite-Mn); 31 (gutk-
ovaite-Mn); 32 and 33 (organovaite-Zn); 34 (parakuzmen-
koite-Fe).
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Table 2.  Crystallochemical role of cations with different force characteristics of the cation–oxygen bond

Cations Isomorphism Presence of vacancies Splitting of positions Stretching frequencies, cm–1

Si – – – 900–1100

Ti, Nb, Zr, [4]Fe2+, Fe3+ + – – 660–700

Mn,  [6]Fe2+, Mg, Zn, [6]Ca + + – 440–470

Na, K, [>6]Ca, Sr, Ba, H3O+ + + + <400
Summing up from i = 1 to i = N at N  ∞, we obtain

where ν0 is the Ti(Nb)–O stretching frequency in the
case of a completely vacant D position, x is the number
of atoms (per unit cell) in the D position, and c is a con-
stant. If the nondiagonal elements of the dynamic

matrix  that describes the interactions between oscil-
lators are much smaller than the diagonal elements, i.e.,
ν(x) – ν0 ! ν0 , the latter equation can be rewritten as
ν(x) = ν0 + (c/2ν0)x. 

Thus, the position of the Ti(Nb)–O stretching band
must linearly correlate with the occupancy of the D
position. This conclusion was experimentally con-
firmed. We measured IR spectra of all the minerals of
the labuntsovite group characterized either chemically
or structurally. The spectra were recorded on a Specord
75 IR spectrophotometer with the spectral slit width of
1.2 cm–1 (for the wave numbers ranging from 400 to
1200 cm–1). The samples were prepared as pellets with
potassium bromide. The wave numbers were deter-
mined with the use of polystyrene and gaseous ammo-
nia as the standards. For the structurally studied speci-
mens, the occupancies of the D positions plotted on the
graph (Fig. 3) were determined from the experimental
structural data. For the remaining specimens, the occu-
pancies were determined as an excessive (above eight
atoms per unit cell) number of the octahedrally coordi-
nated atoms (Ti, Nb, Fe, Mg, Mn, Zn).

The idealized dependence (1) was determined on
the assumption that the perturbing cross-linking octa-
hedra in the D position are identical, whereas other per-
turbing factors are absent. The first condition implies
that the cross-linking octahedra possess close force
characteristics, thus giving rise to approximately equal
elements of the vibrational dynamic matrix responsible
for the interactions between the links of the adjacent
chains via the cross-linking octahedra. Most likely, the
scatter in the points plotted on the graph in Fig. 3 results
primarily from the differences in the arrangement and
occupancies of the extraframework positions.

The correlation between the stretching frequencies
for the chains and the occupancy of the D position
allows one to make some preliminary conclusions
about the character of the structures of new minerals
belonging to the labuntsovite group without resorting to
X-ray diffraction analysis.

∆ν2
x( ) ν2

x( ) ν0
2

– cx,= =

Ď

C

The differences in the force characteristics of the
cation–oxygen bonds determining the role of the cat-
ions in the structures of the specimens of the labuntso-
vite group can be seen from Table 2, where the cations
are arranged in order of decreasing stretching frequen-
cies. The last column in Table 2 indicates the ranges of
the characteristic stretching vibration frequencies of the
corresponding polyhedra, which reflect the force char-
acteristics of four groups of cations (according to the IR
spectroscopic data). In particular, this table accounts
for the ever more pronounced tendency of Group IV
elements to be replaced by vacancies. Probably, this
tendency is associated with specimen decationization
(in this case, the charge is compensated with the
replacement of H2O with H3O+1 or, e.g., by the oxida-
tion of iron or manganese to the trivalent state). For
Group III elements, the complex isomorphism involves
not only the replacement of both atoms by other atoms
but also the replacement of complexes by other com-
plexes.

CONCLUSIONS

To summarize, the following conclusions can be
drawn.

The D cations give rise to substantial local perturba-
tions of the force field (in the case of complete occu-
pancy of the D position, the observed shifts of the
(Ti,Nb)–O stretching bands in the IR spectra under the
influence of the D cations reach 30 cm–1), so that their
effect must be taken into account, in particular, in the
interpretation of the ion-exchange properties of the
labuntsovite-group minerals.

Perturbations induced by the D cations only slightly
depend on the nature of these cations. Thus, the D posi-
tion can be occupied by Ca, Sr, and Na cations along
with “typical” D cations (Mg, Mn, Fe, and Zn) that
have close ionic radii and a coordination number of 6.

In some cases, IR spectroscopy enables one to
obtain information on the distribution of the cations
that play a dual role in the structures of zeolite-like
minerals, without resorting to X-ray diffraction analy-
sis. This is of particular importance in the cases where
X-ray diffraction studies cannot be performed because
of the poor quality of the crystals. In particular, such
cations as Ca, Sr, or Na can occupy both the D position
(at low coordination numbers) and large cavities of the
framework, where they are characterized by high coor-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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dination numbers. This is particularly true for the rep-
resentatives of the labuntsovite group that are virtually
free of Mg, Mn, Fe, and Zn ions and contain about two
atoms, Ca + Sr, for every 16 Si atoms. The frequencies
in the maxima of the (Ti,Nb)–O stretching bands for
different specimens vary over a wide range, which cor-
responds to the distribution of these cations both over
the D position and the extraframework positions.

Along with the Ca, Sr, and Na cations, some transi-
tion-metal cations can also play a dual role in the struc-
tures of labuntsovite-like minerals. For example, the
total amount of manganese and zinc in some specimens
is substantially higher than the theoretical limit for the
D cations (two atoms for every 16 silicon atoms) and
can be equal to three or more atoms. The presence of
excessive Mn + Zn ions does not lead to a substantial
increase in the ν(Ti,Nb–O) frequency, and, hence, the
excessive ions act as typical extraframework ions.
Apparently, in this case the potassium or barium ions in
the C position are replaced by complexes of the
[Zn(H2O)2]2+ type.
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Abstract—The influence of Y2O3 and CdO content on the phase composition, structure, and electrical proper-
ties of Y2O3–CdO–BaO–CuO ceramics was studied. The concentration limits of the existence of the orthorhom-
bic perovskite-like YxBa2 – xCdyCu1 – yO3 + δ solid solutions (where 0.20 ≤ x ≤ 0.37 and y ≤ 0.2) and their unit-
cell parameters are determined. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

The compound Ba2CuO3, one of the components for
synthesis of high-temperature superconductors, is
hygroscopic and readily decomposes in the presence of
a small quantity of carbon dioxide and water [1, 2]. At
810°C, this barium cuprate undergoes a phase transi-
tion (associated with the change in the oxygen content)
from the orthorhombic (Sr2CuO3 structural type) to the
tetragonal (K2NiF4 structural type) phase, melting
incongruently at 920°C [3, 4]. The stabilization of the
perovskite-like Ba2CuO3 structure by various dopants
was observed earlier [5] and was then studied in detail
for barium cuprate doped with rare-earth oxides [6–8].

Below we describe the study of the existence ranges
and crystallographic parameters of stable barium
cuprate-based perovskite-like YxBa2 – xCdyCu1 – yO3 + δ
solid solutions.

EXPERIMENTAL

The solid solutions based on Ba2CuO3 were synthe-
sized by the standard ceramic technique from a charge
of composition (x'/2)Y2O3 · (2 – x')BaO · y'CdO · (1 –
y')CuO (where x' ranges from 0.2 to 0.4 and y', from 0
to 0.4 at a step of 0.01 both for x' and y'). The necessary
quantities of BaO2 (analytical grade), Y2O3 (Y–1), CuO
(high-purity grade), and CdO (high-purity grade) were
mixed in an agate mortar with the addition of ethyl
alcohol and then the mixture was annealed for 40 h in
air at 930°C. The samples were cooled to 20°C in a fur-
nace and quenched in an ice-cooled oil of the trademark
D-1.

1 This work was presented to the Symposium “Order, Disorder, and
Properties of Oxides” (ODPO), Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20946
The synthesized phases were identified on a DRON-
3M X-ray powder diffractometer at 20°C (CuKα radia-
tion, Ni filter). The accuracy of the determination of the
unit-cell a, b, and c parameters and unit-cell volume V
was ±0.002, ±0.003, ±0.006 Å, and ±0.20 Å3 , respec-
tively.

The phase composition and microstructure of the
samples were studied by electron-probe microanalysis
on a JEOL Superprobe instrument (probe diameter 1
µm; accelerating voltage 20 kV; accuracy of cation
identification 1%). The standards were polycrystalline
YBa2Cu3O6.9 and CdO samples. The conducting layer
was a ~200-Å-thick aluminum foil deposited onto the
sample surface in vacuum. Quantitative calculations
were performed using the ZAF-program for metals,
which was applied to the instrument.

RESULTS AND DISCUSSION

The doping of barium cuprate with yttrium oxide
results in the formation of two types of substitutional
solid solutions of the type YxBa2 – xCuO3 + δ with a per-
ovskite-like structure: (1) the tetragonal structure
(0.20 ≤ x ≤ 0.25) and (2) the orthorhombic structure
(0.33 ≤ x ≤ 0.38) with the doubled c-parameter existing
within a wide temperature range [8]. The transition
from the tetragonal to orthorhombic phase is accompa-
nied by a change in the yttrium content. The samples
obtained from a charge of composition 0.25 < x' < 0.33
consisted of a mixture of the tetragonal and orthorhom-
bic phases. For the monophase samples, the x and x' val-
ues coincide.

The X-ray diffraction and electron-probe data
showed that the interaction of the YxBa2 – xCuO3 + δ
solid solutions with CdO at high temperatures results in
the formation of the substitutional solid solutions
002 MAIK “Nauka/Interperiodica”
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YxBa2 – xCdyCu1 – yO3 + δ (where 0.20 ≤ x ≤ 0.37 and
y ≤ 0.2) with a perovskite-like orthorhombic structure.
Yttrium ions incorporated into the Ba2CuO3 structure
occupy the barium positions, whereas cadmium ions
occupy the copper positions, thus stabilizing the per-
ovskite-like orthorhombic structure. It is worth noting
that no perovskite-like phases were formed upon
replacement of barium by cadmium ions in the sample
obtained from the 1.67BaO · 0.33CdO · CuO charge.

Typical X-ray diffraction patterns of the studied
solid solutions with tetragonal and orthorhombic struc-
tures are shown in Fig. 1 (curves 1–3). In the composi-
tion range 0.20 ≤ x ≤ 0.25, upon the replacement of
some copper ions by larger cadmium ones (Fig. 1,
curves 1, 2) the tetragonal structure YxBa2 − xCuO3 + δ is
transformed into an orthorhombic one. In the composi-
tion range of the charge 0.25 < x < 0.33, the samples
consisted, in the absence of cadmium, of a mixture of
tetragonal and orthorhombic phases; doping with cad-
mium oxide resulted in the formation of the orthorhom-
bic phase alone. Figure 1 shows that the diffraction
maxima of the cadmium-doped orthorhombic phase
(curve 2, x = 0.2 and y = 0.2) and the tetragonal phase
without cadmium (curve 1, x = 0.2 and y = 0) are
slightly broadened. With the approach of the solubility
limit of yttrium and cadmium in barium cuprate, the
diffraction reflections of the solid solutions narrowed
with the  doubles being resolved at large diffrac-
tion angles, which indicates a higher degree of order
(Fig. 1, curve 3).

The solubility limit of cadmium in the solid solu-
tions studied was determined by local X-ray spectro-
scopic microanalysis of the samples synthesized by the
ceramic technique (T = 930°C and t = 40 h) from the
YxBa2 – xCuO3 + δ : CdO = 1 : 1 charge. The X-ray phase
analysis showed that the samples obtained from this
charge were mixtures of the P, CdO, and CuO (trace
amount) phases. The electron-probe microanalysis
showed that an increase in the yttrium content (x) in the
solid solutions reduced the solubility limit of cadmium.
At x = 0.2 and 0.33, the solubility limit was 0.2 and 0.15
atomic fractions, respectively.

Kα1 2,
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
The X-ray diffraction patterns of all the solid solu-
tions were indexed by analogy with the
YxBa2 − xCuO3 + δ solid solutions studied earlier [8]. The
unit-cell parameters of the solid solutions determined
from the set of diffraction reflections recorded in the
range of 2ϑ  angles 30°–75°, the unit-cell volumes, and
the b/a ratios are listed in the table. For comparison,
this table also lists the crystallographic data of the ini-

I, arb. units

10 15 20 25 30 35
θ, deg

1

2

3

Fig. 1. X-ray diffraction patterns of
YxBa2 − xCdyCu1 − yO3 + δ solid solutions synthesized for
40 h at 930°C and cooled in the furnace: (1) the tetragonal
phase with x = 0.2 and y = 0.0 and the orthorhombic phases
with (2) x = 0.2 and y = 0.2 and (3) x = 0.33 and y = 0.15.
Crystallographic parameters and resistivity of the YxBa2 – xCdyCu1 – yO3 + δ solid solutions with a perovskite-like structure de-
pending on the yttrium and cadmium content at 20°ë

YxBa2 – xCdyCu1 – yO3 + δ
a, Å b, Å c, Å V, Å3 b/a ρ, Ω m

x y

0.20 0.00 4.045 4.047 8.092 132.47 1.0005 1.1

0.20 0.10 4.003 4.109 8.223 135.25 1.0265 17.9

0.20 0.20 4.000 4.106 8.209 134.83 1.0265 212.0

0.33 0.00 3.997 4.095 8.195 134.13 1.0245 30.9

0.33 0.10 4.000 4.107 8.215 134.96 1.0268 13.1

0.33 0.15 4.005 4.102 8.205 134.80 1.0242 11.4
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tial tetragonal and orthorhombic phases with x = 0.20
and 0.33, respectively.

The replacement of Cu2+ ions by larger Cd2+ ions in
the solid-solution structure results in an increase in the
unit-cell volume and a higher degree of its orthorhom-
bicity. For example, the unit-cell volume and the
orthorhombicity are 132.47 Å3 and 1.0005 and
135.25 Å3 and 1.0265 at x = 0.2, y = 0 and at x = 0.2,
y = 0.1, respectively. The observed unit-cell expansion
is consistent with the ratio of the Cu2+ and Cd2+ ionic
radii equal to 0.62 and 0.84 Å at the coordination num-
ber 4 [9]. A further increase in the cadmium content in
the solid solutions at x = const results in an anomalous
unit-cell “compression” along the c axis. For example,
the volumes V are 135.25 and 134.83 Å3 at x = 0.2, y =
0.1 and x = 0.2, y = 0.2, respectively. This compression
can be attributed to microstresses caused by the large
difference in the ionic radii of the cations and, hence,

è, arb. units

1000500 1500 2000 2500
ν, cm–1

1

2

3

4

5

Fig. 2. Infrared spectra of YxBa2 − x CdyCu1 – yO3 + δ solid
solutions synthesized for 40 h at 930°C and cooled in the
furnace (KBr pellet and 4-mg weight): (1) x = 0.2 and y =
0.0, (2) x = 0.33 and y = 0.0, (3) x = 0.2 and y = 0.1, (4) x =
0.27 and y = 0.1, and (5) x = 0.33 and y = 0.1.
C

the rearrangement of the electronic structure of the
crystal lattice.

The X-ray diffraction pattern of the
YxBa2 − xCdyCu1 – yO3 + δ solid solutions hardened from
the experimental temperature down to 20°C and then
slowly cooled in the furnace showed that the orthor-
hombic perovskite-like structure is stable in the range
from the temperature of synthesis to room temperature.

The structural studies of the yttrium and cadmium
oxide-doped barium cuprate-based solid solutions are
complemented by the infrared (IR) spectra in the range
400–2200 cm–1 at 20°C (Specord 75 spectrometer, KBr
pellets, 4-mg weight). The infrared spectra of the solid
solutions with and without cadmium contain a broad
(460–700 cm–1) intense absorption band at 600–
610 cm–1 corresponding to the Cu–O vibrations and
three weak absorption bands at 840, 850, and 870 cm–1

attributed to the appearance of oxygen incorporated
into the lattice as a result of the heterovalent replace-
ment of Ba2+ by Y3+ ions to provide the electrical neu-
trality of the system (Fig. 2, curves 1–5). The absorp-
tion band at 1400 cm–1 corresponds to vibrations of the
adsorbed OH group [10]. The frequency position of the
IR absorption bands (ν) is almost independent of the
yttrium and cadmium content, which only changes the
intensity of these bands.

The incorporation of oxygen into the barium cuprate
lattice during the heterovalent replacement of some
Ba2+ ions by Y3+ ions and the replacement of Cu2+ ions
by larger Cd2+ ions result in the formation of a stable
perovskite-like orthorhombic structure within wide
concentration and temperature ranges.

YxBa2 – xCdyCu1 – yO3 + δ solid solutions are semicon-
ductor ceramics with a resistivity ranging within 1.1–
212.0 Ω m depending on their composition at 20°C (see
table).

CONCLUSIONS

Thus, the formation of barium cuprate-based
YxBa2 – xCdyCu1 – yO3 + δ solid solutions is established
and ranges of their homogeneity are determined. The
X-ray diffraction and electron-probe studies showed
that in these solid solutions a perovskite-like structure
with different degrees of order is stabilized in the com-
position range 0.20 ≤ x ≤ 0.37 and y ≤ 0.20 with the
double c-period in a wide temperature range (up to
930°C).

The concentration dependence of the crystallo-
graphic parameters of YxBa2 – xCdyCu1 – yO3 + δ solid
solutions was also studied.

It is established that the above solid solutions stud-
ied are semiconductor materials.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Abstract—A structure model of Al and K-containing tobermorite is proposed based on the results obtained by
different methods—powder X-ray diffraction analysis, microdiffraction in an electron microscope, etc. The fac-
tors responsible for the stability of the structure modules typical of the specimens of this family are discussed.
Most of the microcrystals were demonstrated to consist of two phases characterized by a high degree of silicon–
oxygen radical condensation. The examination of two-phase microcrystals in an electron microscope by the
method of diffraction contrast allowed us to propose the mechanism of change of the degree of condensation
of the tobermorite structures under an electron beam. Heating the starting crystals results in their transformation
into an amorphous state with a simultaneous increase in the degree of condensation of the silicon–oxygen rib-
bons in the structure. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Early structural studies. Mineral tobermorite is a
potassium hydrosilicate of practical interest in view of
the fact that its synthetic analogue is one of the compo-
nents of portlandcement. Until recently, the detailed
structure of this mineral was unknown. In the late
1990s, S. Merlino et al. [1–4] reported structural data
on several varieties of the so-called 11-Å tobermorites.
Besides these, there exist 14- and 9-Å varieties (plom-
bierites and riversideites, respectively).

The first structure model of tobermorite was pro-
posed by Megow [5] in 1956. However, the first com-
plete structure solution was reported only in 1997. The
lapse of more than 40 years between these two investi-
gations is explained by the fact that the crystals of most
specimens are imperfect, and the corresponding single
crystals are either absent or occur very rarely.

In [6] (published prior to the structure determina-
tion), natural specimens of the mineral were examined
by the diffraction (X-ray diffraction and microdiffrac-
tion), chemical (electron microprobe, Kevex), IR spec-

* This study was presented at the Symposium “Phase Transitions in
Solid Solutions and Alloys,” Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20950
troscopic, optical, and thermal methods. It was demon-
strated that the major absorption band (almost at
1000 cm–1) associated with the silicon–oxygen motif
does not preserve its position in the IR spectra from dif-
ferent mineral specimens. The frequency of this band
depends on the degree of condensation of the silicon–
oxygen tetrahedra. It was concluded that the latter char-
acteristic slightly varies in different tobermorites. Thus,
11-Å tobermorites contain double three-membered sil-
icon–oxygen chains that are like those observed in
xonotlite but have a different configuration. In some
specimens, the degree of their binding to each other is
higher, which is equivalent to an increase in the degree
of silicon–oxygen tetrahedra condensation.

Microdiffraction studies of microcrystals of various
tobermorites accompanied by the determination of their
chemical composition (Kevex attachment) confirmed
that the structures of microcrystals are often imperfect
[7]. In all cases, microtwinning perpendicular to the
(100) or (010) planes was observed as well as charac-
teristic blurring of the reflections with k ≠ 2n in the
(hk0) section of the reciprocal lattice. In addition, infi-
nite diffuse rods along the Z*-direction were found in
the patterns of many microcrystals. If microcrystals are
002 MAIK “Nauka/Interperiodica”
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rotated about the X* axis, the reflections with k ≠ 0 are
continuous, which is associated with the disorder in the
mutual arrangement of the structure modules, namely,
with a possible displacement by ±b/2 of the ribbons
with respect to the core or with variations in the struc-
tural motif in the (001) plane. The existence of parallel
atomic planes that are equidistant from each other and
possess the same translational characteristics within the
layer leads (according to Guinier [8]) to the formation
of diffuse rods in the reciprocal space in the direction
normal to these planes. Such rods are often observed in
diffraction patterns of many microcrystals.

Prior to the studies performed by Merlino, Hamid
[9] made the second (after Megow) step toward a better
understanding of the characteristic features of the struc-
ture of tobermorite. Hamid determined the structure of
tobermorite for a subunit with unit-cell parameters a
and b that were twice as small (the most widespread
true unit cell has the parameters a = 5.2 × 2 Å, b =
3.68 × 2 Å, c = 22.7 Å).

The results of the studies performed by Hamid and
Merlino confirmed the assumptions made by Megow
[5]. The structure of tobermorite contains a core of Ca-
polyhedra, which, within the first approximation, are
trigonal prisms. The Ca atoms are located at two levels.
The three-membered ribbons of the silicon–oxygen tet-
rahedra are on the opposite sides of the core. The rib-
bons can be displaced by ±b/2 with respect to each
other. Megow believed that these structure elements are
single chains rather than ribbons. In the model pro-
posed by Hamid, both chains and ribbons are equally
probable because of the probable displacement of the
chains. Such a displacement can occur because the
translation characterizing the three-membered silicon-
oxygen ribbon in tobermorite (7.3 Å) is equal to the size
of two Ca-polyhedra of the core.

Merlino was the first to state that all the specimens
consisted of at least two components belonging to the
same group of OD structures. The existence of more
than one mineral variety in all our specimens was indi-
cated in [6]. We also noted that specimens character-
ized by a higher degree of condensation belong to Al-
containing tobermorites. Unfortunately, this variety is
most difficult to uncrystallize, so its single crystals have
not been found as yet. However, its structure is of spe-
cial interest because of the ability of this variety to
absorb and retain cesium [10].

THERMAL TRANSFORMATIONS
IN TOBERMORITE

Heating 14-Å tobermorite to 90 and 300°C led to its
transformation into 11-Å tobermorite and 9-Å riversi-
deite, respectively, with its main structure modules
being retained [11]. In all cases, the Ca-core remained
intact. The double three-membered chains are adjacent
to the core both in plombierite and tobermorite. The
three-membered chains in riversideite are linked to the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
core in a similar fashion. The minerals differ in the
number of water molecules and Ca cations located
between their layers. Decondensation of the double
chains into single chains was first observed by IR spec-
troscopy. Recently, this fact was confirmed by Merlino
et al. [3], who determined the structure of tobermorite.
The structure of plombierite remains to be studied.
However, it is evident that the silicon–oxygen motif in
the latter mineral is similar to that in tobermorite.

The 11-Å tobermorites are classified into two
groups (normal and anomalous). The aluminum-con-
taining varieties belong to anomalous tobermorites and
are not transformed into riversideite upon calcination.
In addition, specimens of 11-Å minerals have different
numbers of interlayer Ca cations and water molecules.

Our studies [12] of the thermal behavior of tober-
morites demonstrated that these minerals underwent
various structural changes during heating. However, the
characteristic features of these changes are still
unknown.

Generally, the Al-containing tobermorites incorpo-
rate not only Al but also K. All the Al,K-containing
tobermorites are formed at higher temperatures and
belong to the anomalous minerals more often than
tobermorites that are free of these elements. In addition,
the Al,K-containing tobermorites are more condensed.
Their powder X-ray patterns differ from those of all the
other specimens only in that they have weak reflections,
with the d001 distance remaining constant (11.3 Å).

A representative collection of tobermorites of vari-
ous compositions was examined in [12]. The products
of their hydration, dehydration, and heating were inves-
tigated. The results of this study demonstrated that the
changes in the structure of the silicon–oxygen radical
occurring in these processes can lead to either the
decondensation or the further condensation of the sili-
con–oxygen tetrahedra. In some instances, these pro-
cesses occur simultaneously. The pathway of these pro-
cesses depends on the quantitative ratio between two
crystallographically nonequivalent hydroxy groups in
different specimens. One hydroxy group is bound to the
calcium cation, whereas the other one is bound to the
free vertex of a silicon–oxygen tetrahedron. All these
low-energy processes take place at ~300°C. These con-
clusions were made based on the results of X-ray phase
analysis, IR spectroscopy, derivatography, and microd-
iffraction study, together with data on the chemical
compositions of the specimens. In the case of tober-
morites with a high Al and K content, the degree of con-
densation increased upon heating to 300–400°C. How-
ever, this change of the structure was not significantly
reflected in the powder X-ray diffraction patterns. Only
an overall decrease in the line intensities was observed
at the early stages. Subsequent heating caused the
transformation of the compound into an amorphous
state.

In this study, we examined the topotaxial transfor-
mation observed for microcrystals of Al,K-containing
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tobermorites in an electron microscope and constructed
the model of a possible mechanism of this transforma-
tion.

STRUCTURE MODEL OF (Al,K)-CONTAINING 
TOBERMORITE

The averaged crystallochemical formula of Al-con-
taining tobermorite is Ca4.5[(Si6 – x,Alx)O15(OH)2 – y] ·
nH2O, where n = 5–6, 0.5 < x < 1.2, and the y value is
determined by the valence balance (for the normal and
maximum condensed tobermorites, y is 0 and 1, respec-
tively). According to the IR spectroscopy data, the
degree of condensation of the silicon–oxygen chains in
all the Al-containing tobermorites is higher than that in
the normal tobermorite.

We studied three natural specimens of Al-containing
tobermorite from different deposits. The specimens
were examined by electron microscopy (microdiffrac-
tion and an approximate estimation of the chemical
composition). In each specimen, three types of microc-
rystals were revealed, namely, usual tobermorite with a
C-pseudocentered unit cell (a = 11.8 Å, b = 7.3 Å, c =
22.7 Å), unknown condensed tobermorite with a
C-centered orthorhombic unit cell (the doubled a
parameter), and microcrystals containing the above-
described phases twinned along the (100) plane. The
new variety of tobermorite has a different arrangement
of reflections on both odd and even layer lines. The
twinned microcrystals constitute the major portion of
the specimen. All three types of microcrystals contain
Al and K atoms. Each of these types has its own char-
acteristic features. Thus, the reflections with any indi-
ces in the X-ray patterns of usual tobermorite are gen-
erally sharp and have the shape of spots, which indi-
cates that the corresponding crystals are obviously
crystallized. Microcrystals with two components are
usually characterized by reflections with k = 2n ± 1,
which are blurred and elongated in the direction per-
pendicular to the Y* axis. Apparently, this corresponds
to the small thickness of the microvolumes of the
twinned phase with the doubled unit cell. Initially, we
characterized the crystals providing the above-men-
tioned sharp spot reflections as single crystals. How-
ever, the subsequent microdiffraction studies demon-
strated that all these crystals were twins. In the X-ray
patterns of microcrystals of the second and third
groups, the strongest reflections with k = 2n (in the X-
ray patterns of microcrystals of the first group, only the
reflections with k + h = 4n are present) are surrounded
by satellites, which remove the restrictions inherent in
the first group of crystals within the same metrics.

The disorder in the structures of tobermorite is
explained by the displacement of the layers parallel to
the (001) plane with respect to each other and also by
their possible nonequivalence. This is associated with
the fact that, as mentioned above, having the same
dimensions of the elementary rectangle and density of
C

the silicon–oxygen tetrahedra, the double silicon–oxy-
gen chains may have different mutual displacements,
orientations, and mutual arrangement.

Consideration of the possible mutual arrangement
of the tobermorite ribbons enabled us to construct a
structure model of Al-containing tobermorite with the
maximum possible degree of condensation. When con-
structing the model, we assumed that all the structures
contain doubled CaO2-networks composed of oxygen
polyhedra, double chains linked with the Ca-core in the
same fashion, and ambiguity in the mutual linkage of
the ribbons and the core in the case of their mutual dis-
placement by ±b/2. Two projections of the known 11-Å
tobermorites are schematically shown in Figs. 1 and 2
together with a new model for the Al-containing vari-
ety.

The new model is characterized by broad channels
along the Y axis, which can incorporate both alkali cat-
ions and water molecules, because the width of the
channels is 1.5 times larger than in the conventional
tobermorite variety (Fig. 2). The channels can be
formed via additional cross-linking of the adjacent rib-
bons along the X axis after the rearrangement of the
chains of tetrahedra linking the silicate diortho groups.
The possibility of such cross-linking correlates with an
increase in the average size of a tetrahedron in the
tobermorite ribbons because of incorporation of Al
atoms. The resulting structure has more pronounced
zeolite properties than conventional tobermorite.

The structure model was tested and refined by two
diffraction methods. The intensities of the hk0 reflec-
tions were estimated by single-crystal electron microd-
iffraction and then were used in the refinement of the
atomic positions on the xy0 projection using the AREN
program. All the atomic parameters of the model were
refined by the Rietveld method (the JOUNG-98 pro-
gram) based on powder X-ray diffraction data (syn-
chrotron radiation, λ = 1.5423 Å; the Novosibirsk
Research Center).

The refinement with the use of single-crystal X-ray
data showed that the crystals are microtwinned.

The Rietveld refinement of the atomic coordinates
was performed for a two-phase specimen within the sp.
gr. Imm2 based on the subcell of Hamid’s model [9].
The refinement converged to R = 15.25%. One phase
was shown to be usual tobermorite, whereas the other
phase was highly condensed tobermorite. The results
obtained in the refinement can be improved if one
determines the coordinates of the interlayer calcium
atoms and water molecules in the condensed tober-
morite specimen.

INFLUENCE OF TEMPERATURE 
ON THE STRUCTURAL CHARACTERISTICS 

OF (Al,K)-CONTAINING TOBERMORITES

The thermal transformations of the structure were
examined [13] for two microcrystals (courtesy of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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(a) (b) (c)

Fig. 1. Schemes of the elementary structure modules of Al-containing tobermorites projected onto the (001) plane: (a) usual tober-
morite; (b) one of the possible modes of the ordered arrangement of double ribbons; (c) the proposed model of the structure of highly
condensed tobermorite; calcium atoms are indicated by solid circles.

(a) (b) (c)

Fig. 2. Scheme of the mutual arrangement of the tobermorite ribbons along the [010] direction: (a) clinotobermorite; (b) usual tober-
morite; (c) highly condensed tobermorite.
A.P. Khomyakov). The microdiffraction study revealed
the presence of both phases not only by the X-ray dif-
fraction method but also by the method of diffraction
contrast [14]. The latter technique allows one to study
different defects, including the defects in a real crystal,
using a beam incident onto the crystal and reflected
from the surface plane. The images were obtained in the
(600) reflection indicated by an arrow (Fig. 3b) located
before the first intense reflection, (800).

This method proved to be very fruitful for examin-
ing our specimens. The microdiffraction patterns and
the images with the diffraction contrast obtained in the
transmission mode are shown in Fig. 3. The microdif-
fraction pattern can be interpreted as the pattern from
two epitaxially intergrown phases. Each basic reflec-
tion with k = 2n from the unit cell with a = 11.3 Å is
accompanied by several less intense satellite reflec-
tions, which lead to unit-cell doubling along the X axis.
At k = 2n + 1, the basic reflections from a single unit
cell are sharp, whereas the reflections giving rise to the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
doubling of the unit-cell parameter a are elongated
along the X* axis. The image with the diffraction con-
trast showed that the phase with the doubled parameter
a is the accumulation of dark regions elongated in the
direction of the Y axis and incorporated into a lighter
matrix of usual tobermorite. All the microcrystals
examined in an electron microscope were heated,
which could change their state upon irradiation with an
electron beam in vacuum. Actually, the dark regions
partly vanished, which was accompanied by corre-
sponding changes in the diffraction pattern (Fig. 3d).
Thus, the main portion of the satellite reflections with
odd k of the second phase disappeared. The satellite
reflections with even k were retained. This indicates
that the modulation superimposed on the structure of
Hamid’s single unit cell was retained. The most proba-
ble mechanism of modulation involves ordering the
core cations, including ordering the vacancies, together
with the characteristic features of the structure of the
silicon–oxygen radical with a high degree of condensa-
tion.
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(a)

(b)

(d)
(c)

(600)

Fig. 3. Electron microscopy study of a microcrystal of tobermorite from the Khibiny massif: (a) image obtained by the method of
diffraction contrast and (b) the microdiffraction patterns of the unirradiated crystal; analogous (c) image and (d) microdiffraction
pattern of the irradiated crystal.
The hk0 reflections for the highly condensed phase
could be indexed with due regard for twinning in the C-
centered monoclinic unit cell. The vectors of the orthor-
hombic lattice with the doubled unit-cell parameter a
are related to those of Hamid’s lattice characterizing the
epitaxial insertion as follows: / 4 1 0 /, / 0 1 0 /, / 0 0 1 /.

It is essential that the number of sharp satellite
reflections with even k are consistent with the “new”
unit cell. The contributions of these reflections must be
summed with due regard for their intensities. For the
orthorhombic unit cell with a = 22.536 Å, b = 7.384 Å,
C

c = 22.961 Å, all the angles are right. For the mono-
clinic unit cell derived on the condition of centering the
large orthorhombic unit cell, we obtain a = 5.884 Å, b =
7.392 Å, c = 22.9601 Å, β = 108.32°.

The comparison of this unit cell with the unit cells
of the known structures of 11-Å tobermorites allowed
us to draw the conclusion that the observed reduction of
the number of satellite reflections is associated with the
changes occurring in the most mobile portion of the
structure of tobermorite, namely, in the interlayer space
occupied by cations and water molecules.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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1 µm 1 µm

(a) (b)

(c)

Fig. 4. Electron microscopy of the second tobermorite crystal from the Khibiny massif: (a) and (b) images of the crystal obtained
by the method of diffraction contrast (a) before and (b) after irradiation; (c) microdiffraction pattern of the crystals.
In all the known tobermorite structures, the arrange-
ment of these cations and water molecules projected
onto the (001) plane agrees with the metrics determined
in the microdiffraction study.

An inconsistency of the reflections with odd and
even k can be attributed to the fact that the interlayer
space includes a fragment of the structure possessing its
own unit-cell parameters that difffer from those of the
framework. This fragment is epitaxially related to this
framework.

The presence of satellite reflections in Al-containing
specimens indicates that the most mobile portions of
their structures are determined by a high degree of con-
densation of the (Si,Al)-tetrahedra.

Another example of the behavior of a microcrystal
containing condensed silicon–oxygen radicals is shown
in Fig. 4. This microcrystal was also examined with the
use of the diffraction contrast method. Unlike the crys-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
tal considered above, the photograph shown in Fig. 4
revealed that a crystal characterized by a high degree of
condensation of tetrahedra is, on the one hand, more
perfect and, on the other hand, provides the formation
of additional reflections on the diffraction patterns
along the A* axis, incommensurate with the main unit
cell. Most likely, these reflections are associated with
the presence of a large potassium cation. One of these
reflections was used along with the (600) reflection in
the electron microscopy study with the use of diffrac-
tion contrast.

Dark regions are arranged strictly parallel to the
Y axis and regularly alternate along the X axis. These
regions form two groups in different regions of the
crystal with periods of 200 and 450 Å. This fact indi-
cates regular changes in the conditions of crystal
growth. Heating the crystal results in the destruction of
dark regions but without noticeable changes in the cor-
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responding diffraction patterns. Hence, it can be con-
cluded that the presence of potassium stabilizes the
structure.

CONCLUSIONS
We proposed a model of the hypothetical structure

of Al,K-containing tobermorite characterized by a high
degree of condensation. The structural formula of this
mineral variety is changed, because the silicon–oxygen
tetrahedra share their free vertices. As a result, the
structure has broad channels along the Y axis. These
channels can be occupied by large cations. Apparently,
the matrix of usual tobermorite also has inclusions of
this variety.

The structures of tobermorites are complex forma-
tions. They show the following features: displacement
of the silicon–oxygen radical with respect to the Ca-
core by b/2, widespread microtwinning along the (100)
plane, parallel displacements of the core, and the prob-
able ordering of the vacancies in the core.

The examination of the structural changes in micro-
crystals upon heating at 300–400°C demonstrated that
the initial stage of the structural changes is associated
with the most mobile structure portion, namely, with
the interlayer cations and water molecules. Amorphiza-
tion of Al,K-containing tobermorite occurs at 300–
400°C.

The next stage is, apparently, associated with
changes in the silicon–oxygen radical. This characteris-
tic feature was indicated by Taylor [15, 16]. The fact
that “hoppings” of silicon atoms in silicate structures
frequently occur was repeatedly indicated by
N.V. Belov [17]. Recently, Bailay observed this phe-
nomenon [18] in layered silicates. The latter minerals
undergo the serpentine–chlorite transformation accom-
panied by the rotation of the silicate layer. Like the
specimen from the Khibiny massif, the specimen from
Mokraya Synya showed an increase in the degree of
condensation of the silicon–aluminum–oxygen radical
during subsequent heating.

Apparently, the fact that sharp satellites of reflec-
tions with k = 2n are preserved upon heating indicates
the retention of the framework structure, the most sta-
ble portion of the structure of the tobermorite minerals.
C
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Abstract—Synthetic varieties of murataites (M5 and M8) were studied by transmission electron microscopy.
One of the varieties was additionally investigated by high-resolution electron microscopy. It was demonstrated
that the atoms possessing the strongest scattering properties are nonuniformly distributed over the unit cells of
both varieties, and the distribution follows the laws of replacement and displacement modulations of cations in
the ideal fluorite structure. © 2002 MAIK “Nauka/Interperiodica”.
1 Murataite is a very rare mineral belonging to a group
of complex oxides of titanium, niobium, rare-earth ele-
ments, calcium, and zinc. Chemical analysis of this
mineral and its structure solution [1] gave the formula
(Y, Na)6(Zn, Fe)5Ti12O29(O, F)10F4.

The structure of the mineral belongs to the cubic
system (space group F4–3m) with the unit-cell param-
eter a = 14.86 ± 0.01 Å.

Synthetic murataite was first found in ceramics
developed for the conservation of highly active arms
waste [2–4]. Later on, synthetic murataite was also dis-
covered in molten ceramic destined for the immobiliza-
tion of highly active waste [5].

The compositions of synthetic murataites are trans-
formed into the formula A4B2C7O22, where A = Ca, Mn,
TR, or U; B = Mn, Ti, or Zr; and C = Ti, Al, or Fe. This
formula differs from that of natural murataite.

The structure of natural murataite [1] is composed
of 12-membered clusters formed from the M1O6 octa-
hedra, where M1 = Ti, Nb, or Na. Previously, this fun-
damental structural unit was known as the Keggin unit
present in synthetic molybdates and tungstates [6]. The
tetrahedral cavities present in the centers of the clusters
(T positions) are occupied by Zn and Si atoms [4]. The
12-membered clusters are linked to form a zeolite-like
framework. The octahedral cavities in the framework
(X positions) each contain six Y atoms occupying the
vertices of the octahedra.

It is evident, that the structure of natural murataite
belongs to the fluorite type with a sublattice a/3 pos-
sessing oxygen and metal vacancies, which are accom-
panied by atomic displacements. Hence, we proposed
that the varieties of murataite (three varieties are pres-
ently known, namely, one natural murataite and two
synthetic phases) be denoted with respect to the size of

1 This study was presented at the Symposium “Order, Disorder,
and Properties of Oxides” (ODPO), Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 20957
the fluorite unit cell. Thus, natural murataite was
denoted as M3. This characteristic feature is well man-
ifested in the X-ray diffraction patterns, which show all
X-ray lines from the sublattice and only some weak
lines from the superlattice. Strong reflections observed
in the X-ray patterns determine the cubic sublattice,
whose parameters are close to those of fluorite. Weaker
reflections define the true unit-cell parameters [7].

Microdiffraction patterns of a synthetic specimen
obtained on a JEM100C + KEVEX5100 transmission
electron microscope [5, 8] demonstrated that this spec-
imen contained new varieties of murataite as major
phases (Figs. 1–3).

Some ceramics contain not only the major varieties
of fluorite-type murataites with fivefold and eightfold
unit cells (5a and 8a, respectively), but also single
microcrystals characterized by a different arrangement
of superstructure reflections. Both quantitatively pre-
dominant phases can be considered as superstructures
of the face-centered unit cell of fluorite, as a result of
which the most intense reflections observed in the

202

220

022
202

022

(111)*

Fig. 1. Microdiffraction pattern from murataite M3 along
the [111] axis.
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X-ray and microdiffraction patterns belong to the sub-
lattices (due to differences in the chemical composi-
tion, the sublattices have different dimensions resulting
in the splitting of sublattice reflections). The splitting of
reflections in the small-angle region is insignificant
because of a small difference in the sublattice dimen-
sions.

Along with the above-mentioned evident difference
in intensities of the reflections of different types, yet
another characteristic feature of each sample was
observed in the microdiffraction patterns of the phases
measured along the [110] direction (Figs. 2 and 3).
Thus, among weak superstructure reflections, the
reflections with hkl = 5n ± 2 and hkl = 5n ± 3 appeared
to be systematically strong in the X-ray patterns of
murataite 5a (M5). In the X-ray patterns of murataite 8a
(M8), the reflections with hkl = 8n ± 3 and hkl = 8n ± 5
were systematically strong.

The analysis showed that the reflections with the
above-mentioned indices can be considered as satellite
reflections, whereas even weaker reflections, which do
not follow these rules, can be either interpreted as
higher-order satellite reflections or attributed to sec-
ondary diffraction. The positions of the latter reflec-
tions in reciprocal space indicate that the atoms pos-
sessing the strongest scattering properties are nonuni-
formly distributed over the unit cells (in direct space) of
both varieties, and the distribution follows the laws of
replacement and displacement modulations of cations
in the ideal fluorite structure. Thus, the 222 and 333
reflections are strong in the X-ray pattern from the
phase with the 5a unit cell. In direct space, these reflec-
tions correspond to the planes intercepting 5/2 and 5/3
portions on the diagonal of the large M5 unit cell per-
pendicular to the [111] direction, i.e., the former plane
intersects 2.5 small unit cells, and the latter plane inter-
sects 1.66 unit cells, which corresponds to 1/3 of the

555

333

10.10.0

0010

Fig. 2. Microdiffraction pattern from murataite M5 along
the [110] axis.
C

diagonal. At the same time, the fact that the M5 unit cell
is face-centered must lead to the appearance of planes
dividing the spatial diagonal of the cube into three
parts. If the first-order satellite is assigned to the
333 reflection in the coordinates of the large reciprocal
unit cell, than the 222 reflection is a satellite of the
555 reflection with the opposite sign with respect to
that of the first reflection (for the large unit cell, this is
the 555 reflection). In this case, the (nnn) planes are
separated by 1/3 of the spatial diagonal. The cations
possessing strong scattering properties, among other
atoms, are located on these planes. Since various cat-
ions of the synthetic murataite under consideration dif-
fer substantially in scattering ability, this arrangement
must be manifested in high-resolution electron-micro-
scope images. In the structures of all the varieties, the
atoms possessing strong scattering properties must be
located between the planes of the close packing of the
oxygen atoms at distances of 1/3 of the spatial diagonal
from each other. Actually, the six-membered clusters of
the Y-polyhedra are located on these planes (more pre-
cisely, nearby these planes) in the crystal structure of
natural murataite M3 (Fig. 4a).

For the satellite reflection with the indices
333 observed in the microdiffraction pattern from
murataite M8, the respective distance from the origin of
the coordinates in direct space is equal to 8/3 (the first-
order satellite). The 555 reflection is a satellite of the
888 reflection. The corresponding planes are shown in
the schematic representation of the idealized M8 struc-

ture projected along the [ ] axis (Fig. 4b), where the
cations of the fluorite subcells are indicated by solid cir-
cles, and the projections of the planes containing the
cations are shown by dashed lines.

Two possible alternatives for the projections of M5

along the [ ] axis with the origin of the coordinates

110

110

0016 888

16.16.0

Fig. 3. Microdiffraction pattern from murataite M8 along
the [110] axis.
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[001]

[111]

[110]

[001] [111]

[110]

[001]

(a) (b)

(c) (d)
[111][001]

[110][110]

[111]

Fig. 4. Structures of murataites projected along the [ ] axis: (a) M3, only yttrium atoms are shown; (b) schematic representation
of the projections of M8 (the cations of the fluorite sublattice are indicated by solid circles, the projections of the planes containing
the electron-rich atoms are shown by dashed lines); (c) and (d) schematic representations of the projections of M5 (two alternative
origins of coordinates).

110
at the position occupied by the cation and at the posi-
tion without the cation (the latter alternative is observed
in the structure of M3, see Fig. 4a) are shown in
Figs. 4c and 4d, respectively.

The high-resolution electron-microscope image of a
microcrystal of murataite M8 is shown in Fig. 5. The
image has pronounced lines, which form rhombi anal-
ogous to those shown by dashed lines in Fig. 4. This
corresponds to the predominant arrangement of the
heavy atoms on the (111) planes.

Other characteristic features of the distribution of
superstructure reflections for other microcrystals are
also of interest. Analysis of the geometric arrangement
of these reflections led us to a conclusion about the
incommensurate modulation in the corresponding crys-
tals.

The results of our study provide evidence that all
murataites, including synthetic specimens, can be con-
sidered as modulated structures with commensurate or
incommensurate modulations. However, the proportion
of microcrystals with incommensurate modulation in
the material under study is at least an order of magni-
tude smaller than the proportion of microcrystals with
commensurate modulation. The replacement and dis-
placement modulation with a period of one-third of the
spatial diagonal was revealed. This conclusion was
reached taking into account the presence of satellites of
the primary beam and the ratio of the intensities of the
satellite reflections located on both sides of strong
reflections at different distances relative to the primary
electron beam. The reflections located closer to the pri-
mary beam appeared to be stronger, which indicates
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
that the larger atom replaces the smaller atom, the scat-
tering ability of the latter being smaller [9].

In the studies of the Bi5O3–Nb2O5 and Bi5O3–Ta2O5
double oxides [3, 10, 11], the authors described com-
mensurate or incommensurate structures characterized
by microdiffraction patterns analogous to those of
murataites. The projection along the [110] direction
showed periodic planar components, which are
bounded by the (111) planes and inserted into a matrix.

The study [11] deserves special consideration. In the
cited study, the one-dimensional modulation wave was
revealed for oxide (Bi2O3)0.8(Nb2O5)0.2 in the projection

0.01 µm

Fig. 5. Fragment of the high-resolution electron-micro-

scope image of murataite M8 along the [ ] direction; the

magnifying power is 1.08 × 106.
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along the [111] direction. The modulation wave was
calculated taking into account the intensities of the
(nnn)-type reflections, which were distributed analo-
gously to those in M8. If it is assumed that the Nb atom
(Z = 41, the atomic radius is 0.69 Å) replaces the Bi
atom (Z = 83, the atomic radius is 0.74 Å), then the
above-mentioned rule consistent with the experimental
data is obeyed. Four modulation waves (replacement
and displacement waves), including two waves for cat-
ions and two waves for anions, were constructed [11].
These waves differ in phases and amplitudes.

A similar one-dimensional representation of modu-
lations (apparently, in a complicated form) would be
expected for M8, because the number of components in
the specimen is no less than that in M3.

The results of investigation of the phase diagram of
two-component oxide Bi2O3–Nb2O5 were described in
detail [12]. Niobium atoms were introduced into a bis-
muth matrix. The microdiffraction patterns, which
were obtained for samples containing different
amounts of niobium, evidenced commensurate fluorite-
like 5a and 8a microcrystals along with incommensu-
rate varieties. The niobium content was demonstrated
to be linearly dependent on the modulation vector in the
composition range from x = 0.1 to x = 0.3 (x is the frac-
tion of niobium atoms), which corresponds to a change
in the modulation vector q from 0.36 to 0.38. Hence, it
follows that the changes in the modulation vector
observed in the above-described murataites are, appar-
ently, associated primarily with the changes in the com-
position of these specimens.
C
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Abstract—Hydrogen sulfate hydrates ä4{MII[H(SO4)2]2(H2O)2}, where MII = Mn or Zn, are synthesized, and
their single-crystal structures are determined by X-ray diffraction. The structural units of the orthorhombic

crystals (space group Pccn) are potassium and MII cations,  and  anions, and water molecules.
Strong (2.52 Å) and moderate-in-strength (2.71–2.75 Å) hydrogen bonds link the anions and water molecules
into hexamers. The MII cations, which have the octahedral environment (Mn–O, 2.14–2.19 Å and Zn–O, 2.07–
2.11 Å), link the hexamers into flat layers. The structures of bimetallic hydrogen chalcogenate hydrates with
different compositions are compared. © 2002 MAIK “Nauka/Interperiodica”.

SO4
2– HSO4

–

INTRODUCTION

The crystal structures of alkali metal hydrogen sul-

fates and selenates MIHXO4 and H(XO4)2 (MI = Rb
or Cs and X = S or Se) have been studied in detail,
because some of them exhibit high protonic conductiv-
ity at elevated temperatures [1–4]. Acid and superacid
sulfates and selenates of bivalent metals MII(HXO4)2

and MII(HXO4)2(H2XO4)2 [5, 6], as well as MII(HXO4)2 ·
H2O hydrates [6, 7], have been studied systematically.
Acid salts that contain metal cations in different
valence states have been studied to a significantly
lesser      degree. Only one structural type,
MIMII[H(XO4)2](H2O)2 (MI = K or Cs, MII = Mg, Mn,
Zn, or Fe and X = S or Se) [8–10], is known for the com-
bination of monovalent and bivalent metals. In the liter-
ature, there are data on the preparation, spectral charac-
teristics, and magnetic properties of a compound with a
different ratio MI : MII, namely, ä4MnH2(SO4)4 · 2H2O
[11, 12]. We managed to obtain this heterobimetallic
hydrogen sulfate and an analogous compound of potas-
sium and zinc. In this paper, the crystal structures of
both compounds are reported.

EXPERIMENTAL

Synthesis. Compounds of the composition
ä4MII[H(SO4)2]2(H2O)2 (MII = Mn or Zn) were pre-
pared by crystallization from aqueous solutions of
K2SO4 and MIISO4 sulfates that were acidified with sul-
furic acid. The molar ratio of the reactants was varied in
order to optimize the synthesis conditions. It was found
that the ä4MII[H(SO4)2]2(H2O)2 phases with MII =

M3
I

1063-7745/02/4706- $22.00 © 20961
Mn (I) and Zn (II) crystallize at the molar ratio 4 : 1 and
a slight excess of acid. In some syntheses, KHSO4 was
used instead of potassium sulfate and the amount of sul-
furic acid was correspondingly reduced. Less acid solu-
tions afforded crystals of the MIISO4 sulfates, and at
lesser ratios between K2SO4 and MIISO4 , other hetero-
bimetallic hydrogen sulfates, äMII[H(SO4)2](H2O)2
[9], precipitated. The phase purity of the samples pre-
pared was checked using X-ray powder diffraction. In
order to grow large (up to 5 mm) single crystals, the
solutions were concentrated and crystallization was
performed at 50–60°C. The crystals obtained are not
hygroscopic, but in air, they lose water over several
months.

In the systems with magnesium or cadmium sul-
fates, similar crystallization experiments did not result
in the formation of bimetallic hydrogen sulfates. The
X-ray powder diffraction analysis of the crystallization
products revealed the initial sulfates MIISO4 or their
mixtures with KHSO4.

X-ray diffraction study. The X-ray diffraction
study of single crystals of I and II was performed at
180 K on a STADI-4 (Stoe) four-circle automated dif-
fractometer (MoKα radiation, graphite monochromator,
λ = 0.71073 Å, ω-2θ scan mode). The crystallographic
parameters and details of structure refinement are sum-
marized in Table 1. The correction for absorption was
performed by the empirical method on the basis of ψ
scans of four reflections (I) or by the numerical method
with allowance made for the real crystal shape (II).

The structures were solved by the direct method
[13]. The non-hydrogen atoms were refined by the full-
matrix least-squares procedure in the anisotropic
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystal data and details of data collection and structure refinement for K4MII[H(SO4)2]2(H2O)2

Compound K4Mn[H(SO4)2]2(H2O)2 K4Zn[H(SO4)2]2(H2O)2

Molecular weight 633.63 644.06

Crystal system Orthorhombic Orthorhombic

Space group Pccn Pccn

a, Å 7.482(2) 7.442(3)

b, Å 20.908(5) 20.981(7)

c, Å 10.755(3) 10.585(4)

V, Å3 1682.4(8) 1653(1)

Z 4 4

ρcalcd, g/cm3 2.502 2.588

µ(MoKα), mm–1 2.362 3.092

Crystal size, mm 0.50 × 0.30 × 0.20 0.68 × 0.40 × 0.36

T, K 180(2) 180(2)

θmax, deg 29.0 29.0

No. of reflections measured/unique 2849/2237 2125/2125

No. of reflections with [I > 2σ(I)] 1686 1692

No. of reflections/parameters in
the least-squares refinement

1813/136 1784/136

R1 [I > 2σ(I)]/wR2 (all reflections) 0.0233/0.0668 0.0243/0.0861

∆ρmax/∆ρmin, e/Å3 0.426/–0.418 0.441/–0.634
approximation [14]. The hydrogen atoms were located
from difference electron-density syntheses and refined
by the least-squares procedure in the isotropic approxi-
mation. The atomic coordinates and equivalent (isotro-
pic for H atoms) thermal parameters for structures I and
II are listed in Table 2. Since the two compounds are
isostructural, the same system of atomic numbering is
used for both structures. The interatomic distances in
the coordination environment of the S, K, and MII

atoms and lengths of the hydrogen bonds are listed in
Table 3.

RESULTS AND DISCUSSION

The crystal structure determination of the
ä4MII[H(SO4)2]2(H2O)2 acid salts of manganese (I) and
zinc (II) revealed that they are isostructural to each
other and differ essentially from compounds of the
structural type of bimetallic acid salts with a different
composition that were studied earlier,
MIMII[H(XO4)2](H2O)2 (MI = K or Cs, MII = Mg, Mn, or
Zn, and X = S or Se) [8–10]. The asymmetric unit con-
tains two K+ cations, a medium-size M2+ cation (Mn
or  Zn), which occupies a special position on the two-
fold axis, two types of sulfate anions, and a water mol-
ecule (Fig. 1a). If the size of the coordination polyhe-
C

dron of potassium is limited by the longest K–O dis-
tance of 3.30 Å, the coordination number of K(1) in
structure I is equal to eight (the mean K–O distance is
2.875 Å), whereas in structure II, the coordination
number is nine (2.910 Å) (Table 3). The coordination
number of the K(2) atom in both structures is nine; the
mean K–O distances (2.916 and 2.925 Å) correlate with
the slightly increased radius upon changeover of the
coordination number from eight to nine [15].

The almost regular octahedral coordination of the
MII cations includes four O atoms of the S(2)O4 groups
[O(5) and O(6)] and two O atoms of water molecules
[O(9)w] at close MII–O distances. The mean Mn–O dis-
tance is 0.08 Å longer than the mean Zn–O distance,
which agrees with the ionic radii of the metals [15].

In the SO4 tetrahedra, the S–O bond lengths depend
on the additional structural functions of the oxygen
atoms (Table 3). In the S(1)O4 tetrahedra, the distances
to the O(1) and O(2) atoms, which contact only with K
atoms, are the shortest (1.43–1.44 Å). The distances to
the O(3) atom, which acts as a hydrogen acceptor in the
O(9)–H(2)···O(3') bond, are slightly longer (1.45–1.46 Å).
The S–O(4) bond is significantly longer (1.57 Å),
because the O(4) atom acts as a donor in the O(4)–
H(1)···O(7) hydrogen bond. In the S(2)O4 tetrahedra,
the S(2)–O(7) and S(2)–O(8) bond lengths (1.47 Å) are
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002



BIMETALLIC HYDROGEN SULFATES 963
Table 2.  Atomic coordinates and equivalent (isotropic for H atoms) thermal parameters in the crystal structures of
K4MII[H(SO4)2]2(H2O)2

Atom x y z Ueq, Å2

I, MII = Mn

Mn 0.25 0.25 0.15500(3) 0.0090(1)

K(1) 0.59815(6) 0.33368(2) 0.86031(4) 0.0172(1)

K(2) 0.22442(6) 0.05519(2) 0.16098(4) 0.0158(1)

S(1) 0.75882(6) 0.42815(2) 0.61155(4) 0.0122(1)

S(2) 0.36781(6) 0.33828(2) 0.40644(4) 0.0084(1)

O(1) 0.5922(2) 0.42381(8) 0.6781(1) 0.0250(3)

O(2) 0.8722(2) 0.47946(8) 0.6514(1) 0.0242(3)

O(3) 0.8535(2) 0.36741(7) 0.6082(1) 0.0262(3)

O(4) 0.7134(2) 0.44365(7) 0.4726(1) 0.0159(3)

O(5) 0.2663(2) 0.32411(6) 0.2917(1) 0.0129(3)

O(6) 0.2517(2) 0.32394(6) 0.5139(1) 0.0147(3)

O(7) 0.4075(2) 0.40702(6) 0.4063(1) 0.0158(3)

O(8) 0.5328(2) 0.30048(6) 0.4126(1) 0.0131(3)

O(9) 0.5420(2) 0.25517(7) 0.6523(1) 0.0130(3)

H(1) 0.623(4) 0.430(2) 0.453(3) 0.039(9)

H(2) 0.587(4) 0.220(2) 0.645(2) 0.027(7)

H(3) 0.560(5) 0.272(2) 0.591(3) 0.049(10)

II, MII = Zn

Zn 0.25 0.25 0.15525(3) 0.0114(1)

K(1) 0.60163(7) 0.33289(3) 0.85751(5) 0.0188(1)

K(2) 0.22348(7) 0.05561(2) 0.15920(5) 0.0179(1)

S(1) 0.75645(8) 0.42833(3) 0.61062(5) 0.0144(1)

S(2) 0.36269(7) 0.33619(3) 0.40569(5) 0.0105(1)

O(1) 0.5892(2) 0.4252(1) 0.6784(2) 0.0266(4)

O(2) 0.8719(2) 0.47987(9) 0.6483(2) 0.0258(4)

O(3) 0.8502(3) 0.36730(9) 0.6104(2) 0.0279(4)

O(4) 0.7103(3) 0.44219(9) 0.4690(2) 0.0186(4)

O(5) 0.2616(2) 0.32220(8) 0.2884(2) 0.0151(3)

O(6) 0.2461(2) 0.32142(8) 0.5150(2) 0.0164(3)

O(7) 0.4003(2) 0.40504(8) 0.4059(2) 0.0167(4)

O(8) 0.5303(2) 0.29931(8) 0.4117(1) 0.0148(3)

O(9) 0.5295(2) 0.25370(8) 0.6516(2) 0.0144(3)

H(1) 0.627(6) 0.430(2) 0.456(5) 0.065(11)

H(2) 0.551(5) 0.272(2) 0.581(3) 0.035(9)

H(3) 0.569(5) 0.217(2) 0.644(3) 0.034(9)
determined by the function of the O(7) and O(8) atoms
as acceptors in hydrogen bonds. The S(2)–O(5) and
S(2)–O(6) bonds involving the O atoms that coordinate
the MII atom are slightly longer (1.48 Å). The metal
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
coordination produces a more pronounced effect on the
S–O bond lengths as compared to the acceptor function
of the oxygen atoms, because the radii of the Mn2+ and
Zn2+ dications are relatively small. In the structures of
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hydrogen sulfates that contain only the singly charged
cations (K, Rb, or Cs), the ratio of these effects is
inverse [2–4].

One of the three independent hydrogen bonds,
O(4)–H(1)···O(7), is strong (2.52–2.53 Å), whereas the
bonds in which hydrogen donors are water molecules
are weaker (2.71–2.75 Å). The hydrogen-bond system
links the SO4 anions and water molecules into hexam-
eric units (Fig. 1b). Due to the coordination of the MII

atoms through the water molecules and the O(5) and
O(6) atoms, the hexamers are linked into layers parallel
to the x0z plane. In structures I and II, in distinction to
those in the MIMII[H(XO4)2](H2O)2 structural type, all
the H atoms are involved in hydrogen bonding. This is
explained by the larger number of anions per MII atom
in the former structures as compared to the latter struc-
tures (four and two, respectively).

Table 3.  Interatomic distances (Å) in the crystal structures
of K4MII[H(SO4)2]2(H2O)2

M II(r, Å)*, distance I, Mn(0.820) II, Zn(0.745)

S(1)–O(1) 1.440(2) 1.438(2)

S(1)–O(2) 1.433(2) 1.438(2)

S(1)–O(3) 1.455(2) 1.458(2)

S(1)–O(4) 1.566(1) 1.565(2)

S(2)–O(5) 1.479(2) 1.481(2)

S(2)–O(6) 1.477(2) 1.479(2)

S(2)–O(7) 1.467(2) 1.472(2)

S(2)–O(8) 1.467(2) 1.469(2)

M II–O(5) 2.140(1) 2.071(2)

M II–O(6) 2.166(1) 2.110(2)

M II–O(9)w 2.188(1) 2.082(2)

M II–O (mean) 2.165 2.088

K(1)–O (range) 2.72-3.10 2.71-3.28

K(1)–O (mean); c.n. 2.875; 8 2.910; 9

K(2)–O (range) 2.74-3.26 2.72-3.26

K(2)–O (mean); c.n. 2.925; 9 2.916; 9

O(4)–H(1) ⋅ ⋅ ⋅O(7)** 2.517(2) 2.525(3)

O(9)w–H(2) ⋅ ⋅ ⋅O(3')** 2.721(2) 2.727(2)

O(9)w–H(3) ⋅ ⋅ ⋅O(8)** 2.747(2) 2.713(3)

* The cationic radii for MII with C.N. = 6 and K+ with C.N. = 8 and
     9 are taken from [15].
** The O ⋅ ⋅ ⋅O distances in the hydrogen bonds. The symmetry code
     for O(3') is 1.5 – x, 0.5 – y, z.
C

In the structural type of bivalent metal hydrogen
chalcogenate monohydrates MII(HXO4)2 · H2O (MII =
Mg, Mn, or Cd [6, 7, 16]), hydrogen bonds between the
anions are absent and water molecules act as both
donors and acceptors of the H atoms in hydrogen
bonds. In the absence of water molecules in structures

MII(HXO4)2, hydrogen bonds link the HX  anions to
form infinite zigzag chains, which are connected by the
MIIO6 octahedra into a three-dimensional framework
[6, 17].

Thus, two structural types are known for bimetallic
acid chalcogenate hydrates, namely,

O4
–

(a)

(b)

O(2)
O(4)

O(7)

H(2)
O(9)

H(3)

O(8)

K(2)

K(1)

b

c

a

c

Fig. 1. Crystal structure of K4Mn[H(SO4)2]2(H2O)2 (I):
(a) Projection along the a axis and (b) a layer of the struc-
ture in the projection along the b axis (K atoms are omitted).
The coordination environments of the Mn and S atoms are
shown as octahedra and tetrahedra, respectively.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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MIMII[H(XO4)2](H2O)2 and ä4MII[H(SO4)2]2(H2O)2.
Compounds of these types have essentially different
systems of hydrogen bonds and show different modes
of connection of tetrahedra and octahedra into a two-
dimensional or three-dimensional structure, respec-
tively. We hope to obtain hydrogen selenates of the sec-
ond type and heterobimetallic compounds with other
metal combinations.
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Abstract—It is shown that paraazoxyanisole has four solid-crystal forms. The heats and temperatures of melt-
ing and transition are related by the following five equations: Qm(IV) = Qm(II); Qm(IV) = Qm(I) + Qm(III);
Tm(IV) = Tm(III); Ttr(II–III) = Tm(I); and Qtr(II–III) = Qm(I), Qm(SCIV) = 52.0 ± 0.3 kJ/mol. Earlier, similar
relationships were established for the third homologue of paraazoxyanisole, Qm[SCIV(C3)] = 48.2 kJ/mol. It is
found that for paraazoxyphenetole, Qm[SCIV(C2)] = 46.0 kJ/mol. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations into the molecular structures and
packings of solid-crystalline mesogenes furnish
insights into the self-arrangement of molecules in the
mesophase. Paraazoxyanisole (PAA, 4,4'-dimethoxya-
zoxybenzene; found in Chemical Abstracts as diazene
or bis(4-methoxyphenyl)-1-oxide) was the first and
most often used object of these studies. It is agreed that
PAA is a model nematogene. The crystal structure of
PAA was studied by X-ray [1–3] and neutron [4] dif-
fraction techniques. A large number of studies have
been concerned with the solid-crystal polymorphism of
PAA [4–6]. Even the first comparison between the
structures of the solid and liquid crystals required a
decision to be made between two solid-crystal forms
(forms that are stable and metastable at room tempera-
ture). Based on optical observations, the metastable
form was preferred over the stable from [1]. Later, three
solid-crystal forms of PAA were found in [4, 5] and the
fourth form was found in [6]. What form should be used
for comparison?

In many papers devoted to mesogenes that have
three or four solid-crystal forms, some of which are
characterized by X-ray diffraction, the question is
posed as to whether the solid-crystal structure can serve
as a prototype for the liquid-crystal structure [7]. We
find a positive answer for the molecules that contain
highly polar groups, for example, the CN group. On the
other hand, we find the following opinion: “The solid-
crystal state was obtained from the mesophase, but it is
on no account its prototype” [8]. Later, a more logical
conclusion was drawn, namely, “Characterization of
different solid phases (including the homologues) can
help us understand more precisely the short-range order
in the liquid-crystal state” [9]. The evolution of the
1063-7745/02/4706- $22.00 © 20966
views on the comparison of the solid-crystal and liquid-
crystal states to date led to the following statement:
“Crystal polymorphism is the result of a very fine equi-
librium between various intermolecular interactions”
[10–12]. To date, information on the arrangement of
molecules in the mesophase gained from a complete
knowledge of the structure of three solid-crystal forms
of the simplest molecule (belonging to the series of
alkyl- or alkoxycyanobiphenyls) and a knowledge of
the structure of one or two solid-crystal forms for all the
homologues of the same and the related series is no
larger than the information gained from a complete
knowledge of the structure of a separate molecule and
its conformers.

At present, we have the following data on the solid-
crystal forms of PAA. The usual stable solid-crystal
(SC) form SCIII, which was prepared by crystalliza-
tion from a solution or obtained upon long storage of a
sample that solidified from a melt, melts at Tm(III) =
117–119°C [13] with the heat absorption ∆Hm(III) =
29.6–30.5 kJ/mol [13]. The metastable SCI form,
which was obtained by rapid cooling of the nematic or
isotropic phase, melts at 103–105°C [4, 5, 13]. Another
metastable form, SCII, was found in a solidified melt
against the melting temperature Tm(II) = 113°C [4, 6]
with a thermal microscope [4, 5] and by the anomalous
behavior of heat capacity just above 112.5°C [14]. The
melting heat of SCII is unknown. The indications of
one more PAA form are reported in [6]. Its melting heat
is estimated as ∆Hm(IV) ≥ 1.4 × ∆Hm(III), and the melt-
ing point Tm(IV) lies near Tm(III). In this study, we
obtained additional characteristics of solid-crystal
forms of PAA based on the notion of binary mixtures of
these molecules [15], which follows from the discrete-
statistical model of the mesophase [16, 17], and using
002 MAIK “Nauka/Interperiodica”
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the thermomicroscopic observations of phase transfor-
mations in pure PAA and its binary mixtures with other
compounds of the PAA homologous series.

EXPERIMENTAL

The studies were performed with commercial sub-
stances. If necessary, they were additionally purified by
recrystallization from ethanol or hexane or by separa-
tion with a chromatographic column (silica gel as a
filler and benzene as an eluent). Additional application
of zone melting did not give noticeable results. The
degree of purity was evaluated by comparison of the
melting and clearing points with those reported in the
literature with regard for the widths of these transitions.
The phase state and the transitions were observed visu-
ally using a microscope equipped with a Mettler Toledo
FP82 heating stage. The thermostatic control and the
adjustment of a rate of heating (cooling) over a wide
range (0.2–30 K/min) was performed with an FP90 pro-
cessor of the same company. The accuracy and repro-
ducibility of the temperature measurements using an
instrument was ±0.1°C. The experimental error was
determined by the reproducibility of the thermal past
history of a sample. When specifying the temperature
of an event, we should mention at what rate of temper-
ature change it was observed; it was also desirable to
mention the temperature at which this change began
and the duration of staying at this temperature.

The observations of phase transformations in pure
PAA revealed the following features. The substance
was placed between the slide and the cover glass with-
out any spacer. During the initial heatings at a rate of
5 K/min, noticeable melting began at 117.5–117.7°C
and was completed at 118.3–118.4°C. Upon one more
application to a column and threefold recrystallization
from hexane (within three or four days), the PAA sam-
ples were first heated at a rate of 3 K/min, which
resulted in a transformation into the nematic state at
117.5°C. Upon melting, small dark grains were
observed (remained after the melting or appeared in the
course of melting) against the light yellow background
of the nematic. These grains were easily distinguished,
since they moved in the liquid. On further heating, the
grains melted (disappeared) at 118.3°C. If at this stage
we reduced the heating rate to 1 K/min, the process
repeated, but the melting of the crystals was completed
somewhat earlier at 118.2°C. If the temperature of
117.5°C was maintained for 5–7 min, the new crystals
did not disappear and melted as before at 118.2°C.
These observations indicate that the melting of the sta-
ble SCIII form of PAA is possibly a composite process
that includes two events, namely, the melting of the
crystals of one type and, simultaneously (or immedi-
ately after that), the formation and disappearance of the
crystals of the other type. This fact agrees with the ear-
lier measurements in [6]. The former melting point of
PAA was reported by many authors [13], whereas the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
latter point was reported only in [18] as the melting
point of the absolutely pure substance.

If we begin to cool the PAA sample at a rate of
9 K/min immediately after melting (for example, at
118.8°C), abrupt crystallization can occur near 80°C.
On heating at a rate of 5–9 K/min, this polycrystalline
mass melts at 104–106°C; at a rate of 3 K/min, the
melting begins at 103.6°C and is completed at 104.5°C.
On heating at a rate of 1.0–0.5 K/min, the melting
begins at 103.3–103.1°C and is completed at 104.2–
104.1°C. The clearing point Tcl of this sample can serve
as a characteristic of its purity. On heating or cooling at
a rate of 1.0–1.5 K/min, the points of the beginning of
transitions coincide, Tcl(N  I) = Tcl(I  N) =
133.5°C. The sample whose purity corresponds to
Tcl(N  I) = Tcl(I  N) = 134.5°C behaves near
103–104°C at the same rates of heating and cooling in
a different way. On heating at a rate of 3 K/min starting
from 100°C (previously heated from 80° to 100°C at a
rate of 9 K/min), it undergoes an abrupt (jumpwise)
SC–SC transition at 102.9°C (on further heating, the
sample melts at Tm(III) without noticeable beginning
of melting). On heating from 101–102°C at a rate of
1 K/min, we observe melting at 103.9°C and abrupt
crystallization at 104.3°C. At a rate of 0.5 K/min, we
observe abrupt recrystallization at 103.9°C, which is
preceded by the noticeable evolution of the solid-crys-
tal texture and not visible melting.

Now, we pass on to the measurements of Tm(PAA)
in the binary mixtures with the homologues and other
related compounds. Under certain conditions for the
components of the mixture, the dependence of Tm on
the concentration of the substance in the mixture is
described by the formula

(1)

where X is the mole part of the excess component, and

Tm(1) and  are the absolute temperature and heat of
melting (J/mol) of the pure substance [19]. It was
shown that the mixtures of such molecules can exhibit
a simple eutectic, whereas the relative stability of the
solid-crystal forms of one or both components of the
mixture can change noticeably [15]. Experimental evi-
dence was obtained for the third and fifth homologues
of PAA [15]. The measured T–X diagrams of the binary
mixtures of PAA and its homologues, from the second
to the seventh one, agree with those calculated accord-

ing to formula (1) for  = 29.6–30.2 kJ/mol and
Tm(1) = 118.2–119.5°C [20, 21]; that is, in these mix-
tures, PAA exists as the stable SCIII form. In [13], the
eutectic line and the branch of the liquidus curve corre-
sponding to the metastable SCI form of PAA were mea-
sured for a mixture of PAA with paraazoxyphenetole
(PAPh). It follows from the aforesaid that, in order to
reveal other solid-crystal forms of PAA, we should look

Tm X( ) Tm 1( )/ 1 8.314 Tm 1( )/Qm
0( ) Xln–( ),=

Qm
0

Qm
0
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for similar molecules outside the homologous series
and use other similarity criteria.

On heating at a rate of 5 K/min, a layer of the PAA +
PAPh mixture with X(PAA) = 0.80 noticeably and
abruptly clears up at 96.8°C, which corresponds to par-
tial melting and wetting of the remaining polycrystal-
line mass. The temperature of the eutectic line for this
mixture is 97.0°C (with the following values substi-

tuted in (1): for PAPh, Tm(1) = 409.75 K and  =
28 890 J/mol [22]; and for PAA, Tm(1) = 391.35 K and

 = 29 570 J/mol [18]). Further heating (5 K/min)
revives the melting at 109.3°C, and the last crystal dis-
appears at 109.8°C. According to formula (1), Tm(PAA,
SCIII, X = 0.80) = 108.9°C. For the same concentration
X(PAA) = 0.808 when paraazoanisole (PaA) is used as
the admixture, the changes on passing the eutectic tem-
perature Teu(PAA, SCIII + PaA) = 109.1°C are invisible
to the human eye (the following parameters for PaA

were borrowed from [22]: Tm(1) = 437.15 K and  =
41500 J/mol). The transition into the nematic state is
completed at 113.0 ± 0.2°C for a heating rate of 1–
2 K/min. This point in the T–X plane lies in curve (1)

with Tm(1) = 118.2°C and  = (SCIII) + (SCI).
Similar tests for the PAA + PaA mixture with X(PAA) =
0.820, 0.840, and 0.875 led to the same result. The val-
ues of Tm(PAA) in the PAA + PaA mixture that were
reported in the well-known paper [22] also fall on the
above curve. Thus, in the mixture with PaA, PAA
behaves as a crystal form, and it is reasonable to iden-
tify it with SCIV and to characterize it with the specific
value of melting heat, Qm(PAA, SCIV) = 52.0 ±
0.3 kJ/mol.

RESULTS AND DISCUSSION

The existence of the PAA form under the conditions
corresponding to a liquid solution suggests the virtual
existence of the SCIVVir form of the pure substance.
The elevated melting heat [6] at Tm(SCIII) indicates
that it is possible to obtain a stable enough solid poly-
crystalline SCIVReal sample, if not a single crystal, of
pure PAA corresponding to SCIVVir. The formation
energy of SCIV is equal to the sum of the two other
heats of phase transitions, which suggests the existence
of the SC(Z) form that undergoes the SC(Z) 
SC(III) transition with the heat absorption Qtr(Z 
III) = Qm(I) at Tm(I). Hence, the formation heat of this
SC(Z) form of PAA is the same as that of SCIV. Should
we consider that these forms are identical with a solid-
crystal form that can be rearranged and decompose at
different temperatures, or are they different solid-crys-
tal forms that have identical melting heats but different
structures and, as a consequence, different stabilities
and Tm values? We find the answer for PAA in addi-
tional experimental facts; a precedent is already known:

Qm
0

Qm
0

Qm
0

Qm
0 Qm

0 Qm
0

C

the “stepping” isoenthalpic solid-crystal states were
found for the third homologue of PAA (parapropoxya-
zoxybenzene).

Based on the above assumptions on SC(Z), we find
from the relationships Qm(Z) = Qtr(Z  III) + Qm(III)
and ∆Sm(Z) = ∆Str(Z  III) + ∆Sm(III) that

(2)

Substituting the measured values of Tm(III) =
391.35 K and Qm(III) = 29570 J/mol from [20], Tm(I) =
377.25 K (own measurements), and Qm(I) =
22733 J/mol (the average of the values reported in [13,
23]) in (2), we obtain Tm(Z) = 385.32 K (112.17°C).
This value is close to 113°C reported in [5] and 112.5°C
reported in [14], which refer to Tm(II). In addition to
our arguments, the possibility of the SCII  SCIII
transition occurring near Tm(I) is supported by the
observations in [4]: on slow heating, the metastable
SCI form transforms near Tm(I) into another metastable
form, which, in turn, under different conditions (rapid
heating upon cooling) with equal probability either
transforms into SCIII or melts into the nematic. It is
asserted in [4] that there is competition between these
two processes of phase transformation. It is pertinent to
note the observation that was not mentioned in the
experimental section. On heating of the PAA + PAPh
mixture with X(PAA) = 0.950 at a rate of 9 K/min, the
excess PAA begins to melt at 111.9°C. The pro-
nounced effect of minor admixtures (0.1–0.2%) on the
relative stability of states and, hence, the probability of
observing transformations between them is discussed
in [13, 24]. The coincidence (within the accuracy and
reproducibility of the measurements) of the Tm(Z) value
calculated with formula (2) and the observed Tm(II)
value supports our suggestions embedded in formula (2).
Thus, the data obtained are sufficient to assert that PAA
exists in four solid-crystal forms, which are related
thermodynamically as follows: Qm(IV) = Qm(II) =
Qm(I) + Qm(III)—relationships (1) and (2); Tm(IV) =
Tm(III)—relationship (3); and Ttr(II–III) = Tm(I),
Qtr(II–III) = Qm(I)—relationships (4) and (5).

CONCLUSIONS

The relationships between the solid-crystal forms of
PAA can be considered as general properties of meso-
genes even for the reason that they were observed for
different compounds. Relationship (3) is exhibited by
many of the mesogenes belonging to the binary series
of p-n-alkoxybenzylidene–p'-n-alkoxyaniline homo-
logues [25–27], and relationships (1) and (2) are exhib-
ited by alkyl- and alkoxycyanobiphenyls [28]. Three of
the four solid-crystal forms of trans-4-n-heptyl-(4'-
cyanophenyl)cyclohexane (PhCH-7) and two of the

Tm Z( ) = Qm Z( )/ Qtr/T tr Qm III( )/Tm III( )+( )
=  Qm I( ) Qm III( )+( )/ Qm I( )/Tm I( )(

+ Qm III( )/Tm III( ) ).
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three forms of PhCH-3 have identical melting heats
(relationship 1) [29]. All five relationships are observed
for the C(3) and C(5) homologues of PAA. The impor-
tance of the relationships that determine the mesogenic
nature of the solid-crystalline forms lies in the fact that
the studies of the molecular behavior in the mesophase
are extended to the solid-crystal states. For example,
relationship 3 requires that the lowest temperature
solid-crystal forms should be used for comparison
between the short-range orders in the solid and liquid
crystals. The physical meaning of the relationships
should be considered elsewhere. Some of them can
appear to be equivalent, and relationship 5 looks the
most “improbable.”

Polymorphism is a necessary indication of the
mesogenic behavior, despite the fact that many of the
evident enantiotropic mesogenes, such as PAPh, do not
exhibit solid-crystal polymorphism. The solid-crystal
polymorphism can be hidden (virtual) under ambient
conditions of observation and real in the melt, that is,
according to the discrete-statistical model [16, 17],
under the conditions of coexistence of crystal struc-
tures. Thus, the solid-crystal form of PAPh with
Qm(IV) = 46.0 kJ/mol, which is not known up to now,
manifests itself under specific conditions, whereas for
the known stable form, Qm(III) = 26.87 kJ/mol [18].
The Tm values of both forms are the same, and there-
fore, they can exist in the melt with equal probability.
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Abstract—The crystal structure of the [La(DMSO)6(H2O)PW12O40] · C2H5OH complex (I) (where DMSO is
dimethyl sulfoxide) is determined by X-ray diffraction analysis. The coordination polyhedron of the La atom
is a distorted tricapped trigonal prism in which two cap sites are occupied by oxygen atoms of the heteropoly-
anions. For these atoms, the La–O distances [2.760(9) and 2.801(9) Å] are considerably longer than the other
distances [ranging from 2.441(10) to 2.569(10) Å] in the environment of the La atom. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Although the complex formation of trivalent and tet-
ravalent f elements with unsaturated heteropolyanions
(HPA) has been investigated in sufficient detail [1], the
interaction between rare-earth elements and unsatur-
ated heteropolyanions with a Keggin structure, i.e.,
homologs of unsaturated heteropolyanions, is less well
understood. There is some evidence for low coordina-
tion capacities of heteropolyanions with a Keggin

structure, in particular, SiW12  [2]. However, recent
X-ray structure investigations have revealed that the

PW12  anions can be coordinated to the trivalent
rare-earth ions [3, 4]. The present paper reports on the
results of X-ray structure analysis of one more complex
between a rare-earth element with a phosphorus het-
eropolyanion and a molecular organic ligand, namely,
the [La(DMSO)6(H2O)PW12O40] ⋅ C2H5OH complex (I)
(where DMSO is dimethyl sulfoxide).

EXPERIMENTAL

Synthesis. Complex I was synthesized according to
the following procedure. A solution of the heteropolya-
nion and then a solution of DMSO in specified amounts
were added to an acidified solution of lanthanum
nitrate. The initial water solutions were as follows:
1.0 mol/l La(NO3)3, 0.1 mol/l Na2HPW12O40, and
1.0 mol/l DMSO. A mixing of the solutions of the
aforementioned reactants in the molar ratio La : HPA :
DMSO in the range from 1 : 1 : 1 to 1 : 1 : 8 led to the
precipitation of curds. Then, these curds were dissolved
by the addition of ethanol (up to ~50% by volume). The
resultant solutions were allowed to stand at room tem-

O40
4–

O40
3–
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perature until colorless crystalline products precipi-
tated. The crystalline products were washed with water
in small amounts and dried in air. The most stable crys-
tals, which were suitable for X-ray diffraction analysis,
precipitated from a solution containing no more than
1 mol/l HNO3 at the molar ratio La : HPA : DMSO =
1 : 1 : 6.

X-ray diffraction analysis. The composition of the
[La(DMSO)6(H2O)PW12O40] ⋅ C2H5OH complex was
determined using X-ray diffraction analysis. The X-ray
diffraction experiment was performed with a single
crystal 0.16 × 0.14 × 0.12 mm in size. A set of experi-
mental data was collected on an Enraf–Nonius Kap-
paCCD area-detector diffractometer (MoKα radiation,
graphite monochromator). The unit cell parameters
were determined using ten images with ∆ϕ = 1° and
were then refined over the entire set of experimental
data. Crystals of I are monoclinic; at 20°C, the unit cell
parameters are as follows: a = 14.0656(1) Å, b =
17.0617(2) Å, c = 25.2247(3) Å, β = 99.861(1)°, Z = 4,
dcalcd = 3.952 g cm–3, and space group P21/c. The inten-
sities of reflections were measured for a hemisphere of
the reciprocal space with the maximum angle θ = 27.5°.
A total of 50 856 reflections were measured, of which
13632 were unique reflections, including 11769 reflec-
tions with I > 2σ(I). The large number of equivalent
reflections made it possible to introduce absorption cor-
rections according to the MULABS procedure included
in the PLATON software package [5]. The structure
was solved by the direct method (SHELXS86 [6]) and
refined in the anisotropic approximation for the non-
hydrogen atoms with the use of the full-matrix least-
square procedure on F2 (SHELXL93 [7]) for all the
reflections involved. All the non-hydrogen atoms of the
002 MAIK “Nauka/Interperiodica”
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heteropolyanions and molecular ligands were located
from the electron-density difference Fourier synthesis.
Three peaks remaining in the electron-density differ-
ence Fourier map were assigned to the ethanol mole-
cule. The position of the O atom in the ethanol mole-
cule was determined using the shortened contact with
the O atom of coordinationally bound water. Among the
six DMSO molecules, two molecules were disordered
and involved two S sites with occupancies of 0.61 and
0.39. The hydrogen atoms (except for those involved in
the disordered molecules of DMSO, the water mole-
cule, and the ethanol OH group) were placed in the geo-
metrically calculated positions. In this case, the thermal
parameters of the hydrogen atoms were assumed to be
1.5 times larger than the equivalent thermal parameters
of the C atoms to which the hydrogen atoms were
attached (for the central C atom of the ethanol mole-
cule, the coefficient was equal to 1.2). The final refine-
ment (758 parameters) converged to R1 = 0.0503 and
wR2 = 0.1158 [for reflections with I > 2σ(I)].

RESULTS AND DISCUSSION

In structure I, the coordination number of the La
atom is nine. The environment of the La atom involves
six O atoms of the DMSO molecules, the molecule of
coordinationally bound water, and two terminal O

atoms of two PW12  heteropolyanions. It can be seen

from the table that, for the O atoms of the PW12  het-
eropolyanions, the La–O distances are significantly
longer than the other distances in the environment of

O40
3–

O40
3–
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the La atom. The coordination of the heteropolyanions
to the La atoms leads to the formation of electroneutral
zigzag chains (Fig. 1).

The coordination polyhedron of the La atom can be
represented as a distorted tricapped trigonal prism
(Fig. 2). Both oxygen atoms of the heteropolyanions
occupy two cap sites. In the [Nd(DMAA)6PW12O40]
complex (where DMAA is dimethylacetamide) studied
in our earlier works [3, 4], two O atoms of the het-
eropolyanions are also involved in the coordination
polyhedron of the Nd atom and the relevant Nd–O dis-
tances also substantially exceed (by ~0.2 Å) the Nd–O
distances for the O atoms of the molecular ligands. The
coordination polyhedron of the Nd atom in the

Interatomic distances (Å) in the environment of the La atom

La–O(1) 2.533 (10) 

La–O(2) 2.459 (10) 

La–O(3) 2.462 (10) 

La–O(4) 2.500 (10) 

La–O(5) 2.514 (11) 

La–O(6) 2.441 (10) 

La–Ow 2.569 (10) 

La–O(45) 2.760 (9) 

La–O(39A) 2.801 (9) 

Note: The O(1), O(2), O(3), O(4), O(5), and O(6) atoms belong to
the DMSO molecules, and the O(45) and O(39A) atoms are
involved in the heteropolyanions.
Fig. 1. An [La(DMSO)6(H2O)PW12O40]n electroneutral chain in structure I. The hydrogen atoms are not shown. For disordered
molecules of DMSO, only one position of the S atom is depicted. Dashed lines indicate the presumed hydrogen bonds. Designations:
( ) La, (s) W, ( ) P, ( ) S, (s) O, and ( ) C.
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[Nd(DMAA)6PW12O40] complex was described as a
bicapped trigonal prism in which both oxygen atoms of
the heteropolyanions occupy cap sites. It should be
noted that, in the complexes of lanthanides with iodo-
and telluromolybdates [8, 9], all the Ln–O distances are
nearly identical and the O atoms of these anions do not
occupy specific sites in the coordination polyhedra of
the Ln atoms.

The molecule of coordinationally bound water is
involved in hydrogen bonds with one of the bridging
(with respect to the W atoms) oxygen atoms of the het-
eropolyanions [Ow···O(34), 2.864(14) Å] and the O(47)
atom of the ethanol molecule [Ow···O(47), 2.65(2) Å].
It seems likely that the ethanol molecule participates as
a proton donor in the weak hydrogen bond with the
bridging oxygen atom of the heteropolyanion
[O(47)···O(17), 2.95 Å].

Ow

O(45)O(4)

La

O(3)

O(5)

O(1)

O(2)

O(6)

O(39A)

Fig. 2. A coordination polyhedron of the La atom.
C

CONCLUSION

Our investigation confirmed that the PW12

anions can be coordinated to the trivalent rare-earth
ions. It was demonstrated that the difference in the bond
strengths for the oxygen atoms involved in the het-
eropolyanions and organic molecular ligands is respon-
sible for the existence of the specific sites occupied by
the oxygen atoms of the heteropolyanions in the coor-
dination polyhedra of the rare-earth atoms.
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Abstract—The single-crystal structures of two aminodienes containing an oxazole fragment, namely, 1-pip-
eridyl-4-[5-(4-nitrophenyl)-oxazol-2-yl]-buta-1,3-diene C18H19N3O3 (IIa) and 1-hexamethyleneimine-4-[5-(4-
nitrophenyl)-oxazol-2-yl]-buta-1,3-diene C19H21N3O3 (IIb), are studied by X-ray diffraction. Structures IIa
[a = 16.181(6) Å, b = 5.939(3) Å, c = 17.337(9) Å, β = 96.13(2)°, Z = 4, and space group P21] and IIb [a =
7.4704(11) Å, b = 10.9904(19) Å, c = 43.434(6) Å, β = 91.24(1)°, Z = 8, and space group P21/c] are solved by
the direct method and refined to R = 0.060 and 0.238, respectively. Although the ring sizes of the cyclic amines
in compounds IIa and IIb are different, the designs of two structures are identical. Each structure contains two
topologically identical but crystallographically independent molecules. In structure IIa, the intramolecular
hydrogen bonds between the N atoms of the oxazole fragments and the H atoms of the diene fragments are
formed. In structure IIb, similar bonds are absent. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This study continues the series of our structural
investigations of heterocyclic compounds that are able
to enter readily into different rearrangements and ring-
transformation reactions [1–20]. By analogy with our
previous studies, we determined step-by-step the struc-
tures of all the intermediates and final products of the
multistage cyclization and recyclization reactions. The
1063-7745/02/4706- $22.00 © 20973
data on the molecular structures of 1-piperidyl-4-[5-(4-
nitrophenyl)-oxazol-2-yl]-buta-1,3-diene C18H19N3O3

(IIa) and 1-hexamethyleneimine-4-[5-(4-nitrophenyl)-
oxazol-2-yl]-buta-1,3-diene C19H21N3O3 (IIb), which
are considered in this paper, are not available in the
Cambridge Structural Database (version 11.01) [21].

Compound IIa was synthesized by scheme 11
N+

O

O

NO2

N
H N N

O

NO2Br–

Ia IIa

CH3CN
75%
according to the following procedure: 1-(4-Nitrophen-
acyl)-2-phenoxypyridinium bromide (0.1 g, 0.24 mmol)
was dissolved in acetonitrile. Piperidine (0.04 g,
0.48 mmol) was added on stirring at room temperature
to the yellow solution obtained. The solution became
dark red. The mixture was allowed to stand at room
temperature for two days. Violet needle crystals that
precipitated were filtered off and washed with an ether.
An additional amount of pure product could be isolated
by the dilution of the filtrate with water followed by
filtration of the precipitate. The yield was 0.06 g (75%)
of 1-piperidyl-4-[5-(4-nitrophenyl)-oxazol-2-yl]}-buta-

1 With the participation of T.A. Smirnova.
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1,3-diene (IIa). The synthesis and other transforma-
tions of the initial pyridinium salt will be reported else-
where.
C

The synthesis of compound IIb by scheme 2 was
described earlier in [22]: 
N+

Cl

O

NO2

N
H N N

O

NO2
CH3CN

Ia IIa

Br–
According to [23], compounds IIa and IIb exhibit
an antimicrobal activity. For this reason, their crystal
structures have been studied in detail. The structural
characteristics of these compounds are also of particu-
lar interest from the standpoint of X-ray mapping of the
structures, because we studied earlier the structures of
a series of 2-substituted N-phenacylpyridinium salts
and the products of their transformations, which belong
to various classes of heterocycles, for example, pyri-
done derivatives such as oxazolopyridine [1, 2, 6], cat-
ionic thiazolopyridine [24], and indolizine [4, 11].

EXPERIMENTAL

The intensities of diffraction reflections for IIa were
measured at room temperature on a CAD4 four-circle
diffractometer [25] (MoKα radiation, graphite mono-
chromator, ω scan mode). The experimental data for

Table 1.  Crystallographic characteristics and details of the
X-ray diffraction experiment and structure-refinement para-
meters for IIa and IIb

Compound C18H19N3O3 (IIa) C19H21N3O3 (IIb)

Crystal system Monoclinic Monoclinic

Space group P21 P21/c

a, Å 16.181(6) 7.470(1)

b, Å 5.939(3) 10.990(2)

c, Å 17.337(9) 43.434(6)

β, deg 96.13(2) 91.24(1)

V, Å3 1656.5(13) 3565.2(10)

Z 4 8

ρcalcd, g/cm3 1.305 1.265 

µ(MoKα), cm–1 0.091 0.087 

Crystal size, mm 0.35 × 0.40 × 0.45 0.10 × 0.12 × 0.02

θmax, deg 28 30

No. of reflections 
with I ≥ 2σ(I)/No.
of parameters

4218/290 2131/177 

R1/wR2 0.062/0.130 0.238/0.462 

∆ρmax/∆ρmin, e/Å3 0.172/–0.130 0.322/–0.320 
IIb were collected at room temperature in the dynamic
mode on a KM4-CCD four-circle diffractometer [26]
(MoKα radiation, graphite monochromator, CCD

Table 2.  Bond lengths d (Å) in structures IIa and IIb
(molecules A and B)

Bond
d

IIa IIb

N(1)–C(2) 1.486(8) 1.473(12)

N(1)–C(6) 1.403(8)

N(1)–C(7) 1.473(12)

N(1)–C(8) 1.351(4) 1.43(2)

C(2)–C(3) 1.433(8) 1.436(10)

C(3)–C(4) 1.533(11) 1.436(10)

C(4)–C(5) 1.479(11) 1.436(10)

C(5)–C(6) 1.417(7) 1.436(10)

C(6)–C(7) 1.436(10)

C(8)–C(9) 1.335(4) 1.37(2)

C(9)–C(10) 1.409(4) 1.408(18)

C(10)–C(11) 1.345(4) 1.36(2)

C(11)–C(12) 1.421(4) 1.45(2)

C(12)–N(2) 1.309(3) 1.278(18)

C(12)–O(1) 1.372(3) 1.356(16)

C(13)–O(1) 1.380(3) 1.401(14)

C(13)–C(14) 1.350(4) 1.275(19)

C(13)–C(15) 1.441(4) 1.52(2)

C(14)–N(2) 1.360(4) 1.39(2)

C(15)–C(16) 1.407(7) 1.457(13)

C(15)–C(20) 1.380(7) 1.457(13)

C(16)–C(17) 1.359(10) 1.349(16)

C(17)–C(18) 1.344(7) 1.404(13)

C(18)–C(19) 1.400(7) 1.404(13)

C(18)–N(3) 1.458(4) 1.44(2)

C(19)–C(20) 1.356(11) 1.349(15)

N(3)–O(31) 1.214(2) 1.248(11)

N(3)–O(32) 1.214(2) 1.248(11)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002



CRYSTALLO

X-RAY MAPPING IN HETEROCYCLIC DESIGN 975
C(5)

C(4)

C(3)
C(2)

N(1)

C(6)

C(9)

C(8)

C(10)
C(11)

C(12)

N(2)

C(14)

C(13)

O(1)

C(16)

C(15)
C(20) C(19)

C(18)

C(17)
N(3)

O(32)

O(31)

Fig. 1. Molecular structure of IIa and the atomic numbering.
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Fig. 2. Molecular structure of IIb and the atomic numbering.
detector, crystal-to-detector distance 51.7 mm). The
unit cell parameters were determined and refined using
25 reflections in the θ range 14°–16° for IIa and 9640
reflections with I > 6σ(I) from the whole data-collec-
tion range for IIb. The main experimental parameters
and crystal data for compounds IIa and IIb are summa-
rized in Table 1.

Since the crystals of the compounds studied were
small and had small coefficients of linear absorption,
the correction for absorption was not introduced. The
primary processing of the experimental data for IIa was
performed with the WinGX98 program package [27].
The integral intensities for IIb were obtained and pri-
marily processed with the KM4 program package [28].
All the following calculations were performed with the
SHELX97 program package [29]. The crystal struc-
tures were solved by the direct method. All the non-
hydrogen atoms in structures IIa and IIb were refined
in the anisotropic and isotropic approximations, respec-
tively. The system of atomic numbering in the two com-
pounds is the same. Since structures IIa and IIb con-
tained two crystallographically independent molecules
(A and B), the full-matrix least-squares refinement was
performed under the restriction that the lengths of the
analogous bonds in each structure were identical. The
thermal parameters of the corresponding atoms were
also kept equal. The hydrogen atoms in both structures
were located from geometric considerations and refined
GRAPHY REPORTS      Vol. 47      No. 6      2002
within a rider model together with the corresponding
carbon atoms. The thermal parameters of the hydrogen
atoms were calculated from those of the corresponding
carbon atoms [Uiso(H) = 1.2Uiso/eq(C)]. The structural
data for crystals IIa and IIb (CIF files) were deposited
in the Cambridge Structural Database [21], CCDC
nos. 191971 and 191972. The interatomic distances in
structures IIa and IIb are listed in Table 2. The draw-
ings of the molecular structures IIa and IIb obtained
with the PLUTON96 program [30] are shown in Figs. 1
and 2, respectively. The interatomic and intermolecular
contacts involving hydrogen atoms for structures IIa
and IIb, which were calculated using the PARST95
program [31], are listed in Tables 3 and 4, respectively.

RESULTS AND DISCUSSION

The compositions of the compounds studied differ
only in the size of the cyclic amine, which is the six-
membered piperidine ring in IIa and the seven-mem-
bered hexamethyleneimine ring in IIb. However, the
three-dimensional structures of the compounds studied
differ fundamentally. Compound IIa is the 1E,3Z-iso-
mer, whereas compound IIb has the 1E,3E-configura-
tion of the substituted diene fragment. The formation of
the E,Z- and E,E-isomers was discussed earlier in [22].
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Table 3.  Parameters of interatomic contacts in IIa

D–H d(D–H) d(D ⋅ ⋅ ⋅A) d(H ⋅ ⋅ ⋅A) ωDHA A Symmetry operation

C(9A)–H(9A) 0.93 3.07(1) 2.490(8) 120.8(5) N(2A) [x; y; z]

C(16A)–H(16A) 0.93 2.88(1) 2.590(6) 98.7(5) O(1A) [x; y; z]

C(17A)–H(17A) 0.93 2.71(1) 2.408(8) 98.4(6) O(31A) [x; y; z]

C(19A)–H(19A) 0.93 2.71(1) 2.445(7) 96.5(5) O(32A) [x; y; z]

C(9B)–H(9B) 0.93 3.10(1) 2.501(8) 122.4(5) N(2B) [x; y; z]

C(17B)–H(17B) 0.93 2.72(1) 2.411(7) 99.1(5) O(31B) [x; y; z]

C(19B)–H(19B) 0.93 2.74(1) 2.484(8) 96.0(6) O(32B) [x; y; z]

C(20B)–H(20B) 0.93 2.84(1) 2.505(6) 101.1(6) O(1B) [x; y; z]

C(3A)–H(3A1) 0.97 3.76(1) 2.975(6) 139.2(6) N(3B) [1 – x; 1/2 + y; 2 – z]

C(3A)–H(3A1) 0.97 3.71(1) 2.781(7) 160.6(6) O(32B) [1 – x; 1/2 + y; 2 – z]

C(3A)–H(3A2) 0.97 3.73(1) 2.786(8) 164.1(6) O(32B) [1 – x; y – 1/2; 2 – z]

C(5A)–H(5A1) 0.97 3.61(1) 2.745(7) 148.6(6) O(31B) [1 – x; y – 1/2; 2 – z]

C(11A)–H(11A) 0.93 3.33(1) 2.675(7) 128.3(5) O(31A) [2 – x; y + 3/2; 2 – z]

C(10A)–H(10A) 0.93 3.38(1) 2.757(5) 125.4(5) O(31A) [2 – x; y + 3/2; 2 – z]

C(17A)–H(17A) 0.93 3.62(1) 2.848(5) 140.6(5) O(1A) [2 – x; y – 1/2; 2 – z]

C(19A)–H(19A) 0.93 3.36(1) 2.529(6) 148.8(5) O(31B) [x; y – 2; z]

C(3B)–H(3B1) 0.97 3.61(1) 2.763(6) 146.1(6) O(32A) [2 – x; y + 1/2; 1 – z]

C(5B)–H(5B2) 0.97 3.69(1) 2.959(8) 132.9(7) O(31A) [2 – x; y – 1/2; 1 – z]

C(11B)–H(11B) 0.93 3.32(1) 2.694(7) 125.1(5) O(32B) [1 – x; y – 3/2; 1 – z]

C(10B)–H(10B) 0.93 3.32(1) 2.704(5) 124.2(5) O(32B) [1 – x; y – 3/2; 1 – z]

C(14B)–H(14B) 0.93 3.66(1) 2.988(6) 130.4(5) O(32A) [x; 1 + y; z]

C(17B)–H(17B) 0.93 3.41(1) 2.561(6) 151.1(5) O(32A) [x; y + 2; z]

C(19B)–H(19B) 0.93 3.59(1) 2.780(5) 145.6(5) O(1B) [1 – x; y + 1/2; 1 – z]

Note: D is a donor, A is an acceptor, and H is a hydrogen atom; the d distances and ω angles are given in Å and degrees, respectively.
The structure of molecules IIa is convenient for the
formation of the C(9)H(9)···N(2) intramolecular hydro-
gen bond (Table 3, Fig. 1), which cannot be formed in
the molecules of compound IIb (Fig. 2). Moreover,
molecule IIb is longer than molecule IIa (the differ-
ence in the lengths of the similar N(1)···N(3) fragments
is 0.836 Å). As a consequence of these two factors, the
molecular packings and the habits of the crystals are
different. For example, compound IIa crystallizes as
dark red well-edged prisms, whereas crystals IIb are
C

very fine plates that are colored dark red, almost black,
and exhibit metallic iridescence. Because of the very
small size of crystals IIb, we managed to collect a rel-
atively satisfactory set of intensities (suitable only for
the determination of the model) using a highly sensitive
CCD detector. It was assumed earlier [22] that the
intense crystal color is due to the intramolecular charge
transfer from the amino group to the nitro group via the
azapolyene system according to scheme 3 (illustrated
by the example of 1E,3Z-isomer).
N N
O

NO2

N+ N
O

N+

O–

O–

1 2
The data of the X-ray diffraction study reveal the
degree of contribution of the charge-transfer structures
to the structures of the dienes under consideration.
Now, we compare the bond lengths in the conjugation
chains between the amino and nitro groups obtained in
this study with those in the hypothetical resonance
structures 1 and 2. First, let us consider the nitrophenyl
group. The C–N distances between the phenyl radical
and the NO2 group and the N–O distances in crys-
tals IIa and IIb are slightly different, but in both crys-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Table 4.  Parameters of interatomic contacts in IIb

D–H d(D–H) d(D ⋅ ⋅ ⋅A) d(H ⋅ ⋅ ⋅A) ωDHA A Symmetry operation

C(7A)–H(7A2) 0.97 3.82(6) 2.89(1) 161(3) O(31B) [x; y; z]

C(10A)–H(10A) 0.93 3.13(3) 2.93(2) 94(1) N(2A) [x; y; z]

C(16A)–H(16A) 0.93 2.91(2) 2.59(1) 101(1) O(1A) [x; y; z]

C(17A)–H(17A) 0.93 2.75(2) 2.48(2) 97(1) O(31A) [x; y; z]

C(19A)–H(19A) 0.93 2.73(2) 2.43(2) 99(1) O(32A) [x; y; z]

C(3B)–H(3B1) 0.97 3.65(4) 2.75(3) 154(2) O(32A) [x; y; z]

C(7B)–H(7B2) 0.97 3.85(6) 2.93(3) 158(2) O(31A) [x; y; z]

C(10B)–H(10B) 0.93 3.09(2) 2.85(2) 96(1) N(2B) [x; y; z]

C(16B)–H(16B) 0.93 2.97(2) 2.65(1) 101(1) O(1B) [x; y; z]

C(17B)–H(17B) 0.93 2.70(2) 2.40(2) 98(1) O(31B) [x; y; z]

C(19B)–H(19B) 0.93 2.78(3) 2.51(2) 97(1) O(32B) [x; y; z]

C(2A)–H(2A1) 0.97 3.54(2) 2.63(1) 157(1) O(31A) [1 – x; y – 1/2; 1/2 – z]

C(8A)–H(8A) 0.93 3.52(3) 2.72(2) 145(1) O(31A) [1 – x; y – 1/2; 1/2 – z]

C(2A)–H(2A2) 0.97 3.71(4) 2.94(3) 137(2) O(32B) [x – 1; y; z]

C(6A)–H(6A2) 0.97 3.51(2) 2.73(2) 138(1) O(32A) [x – 1; y; z]

C(16A)–H(16A) 0.93 3.64(3) 2.86(2) 142(1) N(2A) [x – 1; y; z]

C(2B)–H(2B1) 0.97 3.34(2) 2.51(2) 144(1) O(31B) [2 – x; y – 1/2; 1/2 – z]

C(8B)–H(8B) 0.93 3.50(3) 2.64(1) 155(1) O(31B) [2 – x; y – 1/2; 1/2 – z]

C(14A)–H(14A) 0.93 3.74(3) 2.93(2) 146(1) O(1B) [2 – x; y – 1/2; 1/2 – z]

C(16B)–H(16B) 0.93 3.57(2) 2.69(2) 159(1) N(2B) [2 – x; y + 1/2; 1/2 – z]

C(11B)–H(11B) 0.93 3.81(3) 2.98(2) 150(1) N(2A) [2 – x; y + 1/2; 1/2 – z]

C(6B)–H(6B2) 0.97 3.54(3) 2.73(1) 142(1) O(32B) [2 – x; y + 1/2; 1/2 – z]

Note: D is a donor, A is an acceptor, and H is a hydrogen atom; the d distances and ω angles are given in Å and degrees, respectively.
tals, their values correspond better to structure 1. The
phenyl ring is slightly distorted, and its geometric
parameters correspond better to structure 2, because the
C(16)–C(17) and C(19)–C20) bonds [1.35(2) Å] are
significantly shorter than all the other bonds in the ring
[1.40(2)–1.46(2) Å]. Second, we consider the oxazole
fragment. The five-membered rings in molecules IIa
and IIb have different geometries. Actually, in mole-
cule IIa, the double bonds in the C(12)N(2)C(14)C(13)
azadiene fragment are evidently delocalized, since the
C(12)–N(2), N(2)–C(14), and C(13)–C(14) distances
are smoothened [1.31(1), 1.36(1), and 1.35(2) Å,
respectively]. In the similar azadiene structural frag-
ment of molecule IIb, the corresponding bond lengths
alternate to a larger degree [1.28(2), 1.39(2), and
1.28(2) Å, respectively], which counts in favor of the
contribution of structure 1 to the structure of the five-
membered ring. Third, consider the diene fragment.
The lengths of the formally single and double bonds in
the butadiene fragments of both molecules agree more
closely with structure 1, but the bond-length alternation
in this fragment of compound IIa is more pronounced
than that in IIb. It is difficult to draw a more definite
conclusion regarding the contribution of structures 1
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
and 2 to the geometry of the molecules because of the
poor quality of the experimental data for crystal IIb. 

It follows from the totality of data obtained that
structure 2, in which charge transfer is observed, con-
tributes to the structures of both the compounds consid-
ered; however, the real molecular structures are inter-
mediate between the resonance structures 1 and 2.

Conformational analysis of the cyclic amines was
not the object of this study; however, the parameters of
ring puckering can be calculated from the atomic coor-
dinates.
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Abstract—The domain structure of single-crystal and ceramic samples of Na1 – xLixNbO3 solid solutions (at
x ≤ 0.14) in the orthorhombic ferroelectric and antiferroelectric phases at room temperature is investigated by
optical and electron microscopies and X-ray diffraction. The characteristic feature of the domain structure is
the formation of 90° complexes consisting of laminar domains with a specific orientation relative to the lattice
of the initial cubic phase. Consideration is given to the specific features in packing of these complexes and
typical configurations of domains in the crystals. Observations revealed that the domain structure can involve
90°, 60°, 120°, and 180° boundaries, as well as (hhl) boundaries of the S type whose orientation depends
on the cell distortion and changes with a variation in x. The indices of these boundaries are determined.
The density of 180° boundaries in the ferroelectric phase is very low compared to that of non-90° boundaries.
© 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

This paper reports on the results of investigations
into the domain structure of single-crystal and hot-
pressed ceramic samples of Na1 – xLixNbO3 (NLN)
solid solutions at x ≤ 0.14. Among the perovskite
oxides, crystals of NaNbO3 (NN) and NaNbO3-based
solid solutions stand out as materials undergoing a large
number of phase transitions [1, 2] and exhibiting high
sensitivity of their properties to preparation conditions
and different-type defects. In the above concentration
range, NLN crystals at room temperature have a mono-
clinically distorted perovskite cell with the parameters
a = c > b and α = γ = 90° < β. The true symmetry is
orthorhombic. The vectors A and C of the orthorhom-
bic cell are as follows: A = a – c and C = a + c. The vec-
tor B is parallel to the b axis of the perovskite cell. An
increase in the lithium concentration results in a transi-
tion from the antiferroelectric state (B = 4b, mmm, M4
phase) to the ferroelectric state (B = 2b, 2mm, M2
phase) [3–7]. In NLN and NN crystals, unlike the
majority of perovskite antiferroelectrics [1], the direc-
tion of the spontaneous antipolarization ±Ps is parallel
to the long diagonal of the ac face of the perovskite cell
(the A axis). Note that the spontaneous polarization
vector Ps in the ferroelectric phase M2 is also aligned
with the long diagonal of the ac face. The phases M4
and M2 are similar to the phases P [8] and Q [9] in the
NN crystal. In this crystal, the Q phase either exists in
the metastable state or is induced by an electric field
and the P and Q phases can coexist [10–12]. In a narrow

1 This paper was presented at the Symposium “Order, Disorder,
and Properties of Oxides,” Sochi, Russia, 2001.
1063-7745/02/4706- $22.00 © 0979
concentration range in the vicinity of x = 0.12, the
phase is rhombohedral (the concentration x = 0.145
corresponds to the solubility limit of lithium in the NN
crystal) [13, 14].

According to the X-ray structure investigations per-
formed in our earlier works [5–7], the ferroelectric M2
and antiferroelectric M4 phases in NLN solid solutions
coexist in the concentration ranges 0.01  ≤ x ≤ 0.05 for
crystals and 0.032  ≤ x ≤ 0.0375 for ceramic samples.
The results of electrical measurements carried out with
ceramic materials indicate the presence of ferroelectric
clusters whose size and amount can increase upon
polarization of NN ceramic samples and introduction
of the second component into them [13–16]. Pozdnya-
kova et al. [17] showed that the antiferroelectric and
ferroelectric phases coexist in the concentration range
0.015 < x < 0.0225. Moreover, Sadel et al. [18, 19] and
Zhong et al. [20] studied NLN single crystals with x =
0.02–0.03 and revealed that the spontaneous polariza-
tion Ps is directed parallel to the b axis. All these find-
ings, including the data on the ferroelastic properties of
NN compounds, have given impetus to the investiga-
tion into the domain structure of NLN solid solutions,
especially as only the crystal optical data on the domain
structure of crystals at x = 0.02 [18] are available in the
literature.

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

The NLN crystals studied in this work were
grown using the flux (crystals I with concentrations
x ≤ 0.04) and Czochralski methods (crystals II with
2002 MAIK “Nauka/Interperiodica”
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Parameters of the perovskite unit cell of the NLN crystals under investigation and the values of Rx = (I211 + I230/I102)/R0

x, % a, nm b, nm β, deg Rx x, % a, nm b, nm β, deg Rx

Crystals I 3.5 0.39200 0.38782 90.62 0.24

1.2 0.39142 0.38799 90.67 1.00 3.7 0.39200 0.38781 90.63 0.17

2.0 0.39153 0.38760 90.66 0.85 4.0 0.39197 0.38784 90.63 0.12

2.5 0.39154 0.38766 90.66 0.80 Crystals II
3.0 0.39163 0.38758 90.63 0.70 7.5 0.39184 0.38764 90.69 0.00

3.2 0.39180 0.38780 90.62 0.30
x ≈ 0.075).2 Moreover, we examined NLN ceramic
samples (x ≤ 0.14) prepared through the solid-phase
two-stage synthesis from Nb2O5 pentoxide and Na2CO3
and Li2CO3 carbonates (at a temperature of 800°C for
5 h and at 850°C for 5 h), followed by sintering under
hot pressing at 200 kg/cm2 for 40 min in the temper-
ature range 1050–1200°C depending on the composi-
tion. The previously studied system Na2CO3–Nb2O5–
B2O3 served as an initial system for preparing crystals I
[21]. This system was also used to grow NN crystals.
The NLN crystals were synthesized through partial
replacement of Na2CO3 by Li2CO3 in the initial batch.
Crystals I were transparent plates (1.5 × 1.5 × 0.3 mm3

in mean size) or elongated parallelepipeds (0.3 × 0.3 ×
1.5 mm3 in mean size) with the {100} faces.3 Crystals II
were semitransparent colorless boules 7 × 7 × 20 mm3

in mean size. The crystal compositions were evaluated
from the concentration dependence of the temperature
of the phase transition between the orthorhombic (M4
or M2) phase and the lower temperature rhombohedral
ferroelectric phase N observed in the NN compound [2].
This concentration dependence was constructed
according to the data taken from [20, 22, 23]. X-ray
structure investigations were performed on a DRON-3
diffractometer [FeKα radiation, θ/2 (2θ) scan and ω
scan (at a fixed counter) modes] and a Weissenberg
goniometer (CuKα radiation). The domain structures
were examined with an Nu-2E optical polarizing
microscope (crystals I)4 and an ÉMV-100B transmis-
sion electron microscope with the use of direct plati-
num–carbon replicas (crystals II and ceramic samples).
The samples under investigation were preliminarily
etched. The optimum results were obtained by etching
in a mixture of concentrated nitric and hydrofluoric
acids in the ratio 3 : 2 at temperatures of 80–100°C for
2–4 h. The deposit of etching products was removed
using additional treatment in nitric acid at 80°C for
30 min. However, the crystal surface in places was cov-

2 Crystals II were grown by L.M. Kazaryan, a researcher from the
Institute of Physical Research, Academy of Sciences of Armenia,
Armenia.

3 The indices hkl and hklm refer to the pseudocubic and monoclini-
cally distorted perovskite cells, respectively.

4 All the micrographs presented below were obtained in crossed
nicols in the transmitted light. The orientation of the nicols is
shown with respect to the {100} facet of the crystal.
C

ered with a thin film that could be formed upon pouring
of the melt and was not completely removed during
etching.

X-RAY DIFFRACTION INVESTIGATIONS 
OF CRYSTALS

The table presents the parameters of the perovskite
cells of the single crystals studied and the quantities
Rx = (I211 + I230/I102)/R0 , which give rough estimates of
the volume ratio of the phases M4 and M2 in the crystal.
Here, I211 and I230 are the experimental intensities of the
(211) and (230) superstructure reflections observed
only in the M4 phase, I102 is the experimental intensity
of the (102) reflection observed in both phases (the
reflection indices correspond to an orthorhombic cell,
and the reflection intensities were determined from the
X-ray diffraction patterns of single crystals in pow-
dered form), and R0 ≈ 2.2 is the aforementioned inten-
sity ratio for the NN crystal. Note that the quantity Rx is
a characteristic averaged over the crystals prepared
from a particular batch with a certain value of x and can
change from crystal to crystal.

Instead of single reflections, the X-ray diffraction
patterns of the studied crystals exhibit groups of reflec-
tions, each associated with diffraction by different twin
components (domains). Figures 1a–1d display the char-
acteristic splitting patterns of reflections (reciprocal lat-
tice points) of the (h00) type. Two characteristic angu-
lar splittings ∆ω of the reflections are observed in the
experiment. Their magnitudes depend on the unit cell
parameters of a particular crystal and amount, on aver-
age, to 0.3° and 0.6°.

Let us now introduce a coordinate system (x, y, z)
whose axes coincide with the axes of the cubic cell.
Figure 1e shows the schematic diagram of splitting of
the h00 reciprocal lattice points, which is repeated
(wholly or in part) from crystal to crystal. The observed
splitting can be explained by the fact that twins (90°
ferroelectric or antiferroelectric domains) with the
(100)m or (001)m twinning planes aligned parallel to the
(100) planes of the cubic phase are formed by displac-
ing the lattice of the prototype phase through the angle
µ = β – 90°. As a result, six complexes of orientational
domains of the S1 and S2 type are formed in the crystal
(Fig. 1f). For definiteness, we choose the axes of the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Fig. 1. (a–d) Experimental splittings of the h00 reflections and (e–h) splitting schemes of the reciprocal lattice points for
Na1 − xLixNbO3 crystals. (a) The 300 reflection in the Weissenberg photograph of a zero layer line upon rotation of the crystal
around the [010] axis (ı ≈ 0.012). (b–d) Fragments of the X-ray diffraction patterns (ω scan mode) for the 020m (at the top) and
200m (at the bottom) reflections of crystals (b) II and I at ı ≈ (c) 0.02 and (d) 0.04. Dashed lines indicate the origin of the coordinates
and the peaks corresponding to the twin components. (e) Typical splitting diagram of the h00 points. (f–h) Twin complexes (at the

top) with the twining planes (f) (100) and (g, h) (011)m and ( )m for the components S5 and S6 at (g) (001)m || (100) and (h)

( )m || ( ) and the corresponding orientations of the reciprocal vectors (at the bottom) for (f) the components S1 and S2 and

(g, h) upon twinning along the ( )m plane.

011

011 110

011
monoclinically distorted cells in such a way that the a
axes in the contiguous domains lie in the twinning
plane. Each complex brings about the splitting of the
h00m point lying along the direction perpendicular to
the twinning plane into two points. In this case, the ‡*
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
axes of the components make the angle 2µ, and the
other points 00hm and 0h0m located on the perpendicu-
lar coordinate axes remain nonsplit. Additional split-
ting of the h00 points occurs through the components S'
and S'' arising upon twinning along the (011)m planes
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Fig. 2. (a) Optical indicatrix and types of domains at different extinction positions for the parallel polarized light (arrows indicate
the possible orientations of the vectors Ps or ±Ps). (b–h) Main types of boundaries for 90° and 60° (120°) domains in the orthor-
hombic phase with a monoclinically distorted perovskite subcell (three different types of surfaces denoted as g, e, and f according
to the notation proposed by Wood et al. [11] are represented for 90° domains).

(hhl)–
(60° and 120° ferroelectric or antiferroelectric
domains), as can be seen, for example, for the com-
plexes S5 and S6 in Fig. 1g. These planes in the contig-
uous 90° domains are parallel to each other and belong
to the same [100]m zone with the twining plane (001)m

but do not coincide with the corresponding planes of
the cubic phase. The angle ψ can be calculated from the
formula ψ =  – 90°. Since we can
write the approximate equality ψ ≈ µ ≈ 0.6° for NLN
crystals in the concentration range studied (see table)
and an insignificant deviation of the vectors a* of the
components S' and S'' from the coordinate planes can be
ignored, the splitting of the h00 point for the above six
complexes each in the case of twinning along the
(011)m planes can be represented by the schematic dia-
gram depicted in Fig. 1e. The experimental patterns of
diffraction reflection splitting (Figs. 1a–1c) contain
reflections from part of the components shown in
Fig. 1e. Similar patterns of the reflection splitting were
also observed earlier for a number of crystals of the per-
ovskite type, KDP, etc. [24–27]. The other possible
(110)m planes that can be involved in the formation of
60° domains are not parallel for components of the
complex with the (001)m twinning plane and bring
about the formation of incoherent strained boundaries.

The experimental angular splittings ∆ω ≈ 0.3° are
explained by the twinning along the (011)m planes,
which coincide with the (110) planes of the cubic cell
of the prototype phase (Figs. 1d, 1h). In this case, the

2 c µ/bcos( )arctan
C

angle of the deviation of the vectors b* and c* from the
coordinate axes is equal to ψ/2 and, correspondingly, the
splitting shown in Fig. 1e should increase by ∆ω ≈ 0.3.
The twinning planes (011)m || (110) are characteristic of
distortions at which the cubic lattice transforms into the
tetragonal lattice [27]. However, the tetragonal phase in
NLN and NN crystals is observed at higher tempera-
tures [2, 7]. The existence of the aforementioned planes
can be due to a specific structural “memory” fixed by
the defects. Note that, unlike the idealized schemes
depicted in Figs. 1e–1h, the real crystals are character-
ized by more complex patterns associated with differ-
ent-type defects (Figs. 1a–1d).

MICROSCOPIC INVESTIGATIONS
OF THE DOMAIN STRUCTURE

Now, we assume that the z axis of the chosen coor-
dinate system is perpendicular to the observation plane,
i.e., to the developed face of the plate. According to the
optical indicatrix whose axes coincide with the axes of
the orthorhombic cell (nB > nC > nA for the NN crystal
[28, 29]) and the extinction positions in the polarized
light with crossed nicols, the domains observed can be
classified into two types (Fig. 2a): the bz (b || z) domains
with the vectors Ps(±Ps) parallel to the observation
plane and the bx (b || x) and by (b || y) domains with the
vectors Ps(±Ps) parallel to the xz and yz plane, respec-
tively. The bz domains are characterized by an extinc-
tion that is symmetric with respect to the crystal face-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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(a) (b)
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Fig. 3. (a) Micrograph of the crystal (ı ≈ 0.012) with strained bright boundaries. Typical configurations of the tapered lenslike 60°
(120°) bx and by domains formed in crystals with ı ≈ (b) 0.02 (M4 phase), (c) 0.037 (M2 phase), (d) 0.012 (M4 phase), and (e) 0.04
(M2 phase).
ting {100}, and the bx and by domains give the parallel
extinction. The possible boundaries between the con-
tiguous domains are determined by symmetry and the
conditions of mechanical matching [30–32]. With the
use of the data obtained in earlier investigations of the
domain structure of the NN crystals and the observa-
tions of the present work, the main types of the 90°,
60°, and 120° domain boundaries that differ in orienta-
tion with respect to the observation plane are schemat-
ically represented in Figs. 2b–2h. The (hhl) and (110)
boundaries are noncharged for the 60° and 120° ferro-
electric domains, respectively.5 The former boundaries
are S-type boundaries with temperature-dependent
Miller indices [31].

Optical observations of the domain structure
revealed that the complexes of 90° laminar domains are
predominant in crystals I, as is the case with NN crys-
tals [11, 28, 33]. It is evident that the presence of com-
plexes with different orientations of boundaries leads to
the appearance of considerable mechanical stresses.
The crystals are composed of separate blocks of
domains whose sizes vary, on average, from 20 to 150
µm. The blocks often have strained boundaries that are
sometimes bright when observed with a polarizing

5 In this work, we are dealing with regular domain structures and
typical domain configurations; however, the experimental data
have defied unambiguous interpretation. For this reason, hereaf-
ter, the domain structure in the ferroelectric M2 phase will be
described in terms of 60° or 120° domains for noncharged bound-
aries.
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microscope at the extinction position (Fig. 3a). The
width of the domains in 90° complexes is equal to 20 µm
or less. A high density of boundaries and the develop-
ment of tapered forms and intersections are characteris-
tic of the domain structure. This complex domain struc-
ture is formed during the preparation of the crystals due
to the phase transitions that occur under extremely non-
equilibrium conditions arising at the instant of melt
pouring: the occurrence of large temperature gradients,
the formation of complex phase fronts, and their prop-
agation over the crystal. Below, we will consider the
domain configurations most frequently observed in the
crystals under investigation.

Figures 3b–3e show the typical regions of interaction
between the bx and by domains observed in the M4 and
M2 phases. The wedge-shaped, relatively wide (10–
70 µm) regions of polysynthetically twinned 90°
domains 15 µm in size can be seen in Fig. 3b. The
region of the 90° bx domains alternates with the region
of the 90° by domains, which are the 60° domains with
respect to the former domains and form curved dis-
torted boundaries along the (110) planes. These
domains correspond to the 90° complexes separated by
the (011)m boundaries shown in Fig. 1g. The 60° and
120° domains are often formed at the grain boundary
junctions (Figs. 3c, 3d). As is known, this is one of the
factors that favor a decrease in the elastic energy with
the formation of small-sized tapered domains and zig-
zag boundaries. There are lenslike domains extended
along the [110] directions, which most likely have no
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Fig. 4. (a–c) Micrographs of 90° bz domains: (a) large-sized regions with mutually perpendicular (100) boundaries, (b) the region
of 90° bz domains at the extinction position, and (c) the boundaries between the regions of 90° domains. (d) Micrograph of the hhl
tilt boundaries between the bz and by domains and (e) scheme of their orientation (ı ≈ 0.012, M4 phase). (f) Scheme of the orien-
tation of the hhl boundary for the antiferroelectric (at the top) and ferroelectric (at the bottom) phases. (g) Calculated dependence
of the angle ϕ on the concentration x for Na1 – xLixNbO3 crystals.
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time to collapse upon sharp cooling of the crystals. An
increase in the concentration x, i.e., in the volume of the
ferroelectric phase is attended by an increase in the vol-
ume fraction of 120° tapered domains in the crystals
(Fig. 3e).

Figure 4a shows large-sized regions of polysynthetic
laminar 90° bz domains with mutually perpendicular
boundaries (100) and (010), which correspond to the
complexes depicted in Fig. 1f. At the extinction posi-
tion, the contiguous 90° domains are not extinct at once
due to the low monoclinic distortion of the cell (Fig. 4b).
The blocks form boundaries along the (100) planes or
C

stepped boundaries that have an arbitrary orientation
and involve mutually intersected regions with wedging-
out of individual domains and planar regions of the
(100) type (Fig. 4c). The resulting boundaries are inco-
herent and should contain strongly distorted structural
regions in boundary layers. These boundaries are some-
times bright at the extinction position. It can be
believed [26] that the relaxation of stresses along these
boundaries is provided by transition regions with an
intermediate orientation of lattices.

The bright region of bz domains with wedged nar-
row regions of 90° bz domains in the form of mutually
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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perpendicular dark stripes can be seen in the micro-
graph represented in Fig. 4d. At the bottom of this fig-
ure, we can see the wide dark region (with bright bz
domains against its background) characterized by the
hhl boundaries. This can be judged from the angle
(equal to 53°) formed by the boundary trace on the sur-
face with the [100] direction and also from the interfer-
ence fringes arising from a boundary tilt. The value of
h/l can be calculated using the formula derived from the
coherence condition for domains that are in contact at a
planar boundary [34]; that is,

(1)

where ηa – 1, ηb – 1, and η are the components of the
strain matrix describing the distortion of the cubic lat-
tice. Substitution of ηa = acos(µ/2)/a0, ηb = b/a0 , and
η = asin(µ/2)/a0 (where µ = (β – 90°)), a0 = V 1/3, and V
is the perovskite cell volume) gives

(2)

As can be seen from Fig. 4f, formula (2) has a sim-
ple geometric meaning and can be reduced to an equal-
ity between the magnitudes of the lattice vectors (for
the contiguous domains) parallel to the boundary trace
on the faces with a mixed extinction; that is,

(3)

The dependence of the angle ϕ of the boundary ori-
entation on x [where ϕ = ] according
to the data presented in the table is plotted in Fig. 4g.
The angles ϕ calculated by formula (2) are very close
to those calculated from the relationship ϕ =

, where b' = (acos(µ/2) – a0)/a0 and
d ' =  [32], in which the first orders of the dis-
tortions are taken into account. A similar boundary with
ϕ = 54°44′ was observed in the NN crystals [29, 35, 36].6

Zhelnova and Fesenko [35] were the first to observe a
change in the orientation of this boundary with a varia-
tion in the temperature. The indices of the boundary
were not determined. In [29], the authors assigned irra-
tional indices to this boundary at room temperature.
However, the calculation of the ratio h/l according
to  the aforementioned formula for ϕ leads to the indi-
ces (7.7.10).

On this basis, we constructed the scheme (Fig. 4e)
illustrating the orientation of the hhl boundary observed
in the crystal (Fig. 4d) and the directions of the vector
±Ps. The ratio h/l calculated for this boundary is equal
to 0.746, which, taking into account the error, corre-
sponds to the (334) plane.

6 The direction of the vector ±Ps is not always correctly given in
the twin structure schemes reported in [29, 36] (the angle ϕ ≈ 54°
on the ab face should be subtended by the b axis), whereas the
experimental conoscopic patterns obtained in [29] correspond to
the scheme depicted in Fig. 4f.

h/l ηa
2 ηb

2– η2+( )/4ηη a,=

h/l a2 b2–( )/ 2a2 µsin( )= .

a/l( )2 b/h( )2+

=  a/h( )2 a/l( )2
+ 2a2 180° β–( )cos / hl( ).–

bl/ ah( )( )arctan

2d '/3b '( )arctan
µ/2( )tan
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The crystal region with a mixed extinction can be
seen at the center in Figs. 5a and 5b. The observed
domain structure, as a whole, is explained by the
scheme displayed in Fig. 5c. The large-sized prismatic
bz domains of the order of 50 µm wide are contiguous
with the bx and by domains, which are the 60° domains
with respect to the bz domains. The (011) and (111)
inclined planes bound the connected region of the bz
domains and are responsible for the interference fringes
at the boundaries. The surface is smooth in the region
that is contiguous with the bz domains. Note that this
region is slightly bright at the extinction position. As
was noted by Wood et al. [11] for the NN crystals, a
similar effect is characteristic of the e surfaces (Fig. 2e)
and can be associated with lattice deformations in the
vicinity of 90° boundaries parallel to the observation
plane. Microcracks are observed at the SS '' boundary
between the 90° complexes of the bx and by domains.
This boundary corresponds to the aforementioned inco-
herent 60° (110)m boundary between the complexes of
90° domains. The (111) boundary is the (hhl) boundary
with the angle ϕ ≈ 45° (see Fig. 4g, x ≈ 0.03). Zigzag
boundaries formed by these planes between the 90° bz
and by (bx) complexes frequently occur in the M2 and
M4 phases in boundary regions between large-sized
domain complexes. For example, the small-sized lami-
nar bz domains, which, together with 90° bx domains,
form the 60° boundaries whose trace on the crystal sur-
face makes an angle of approximately 45° with the
boundaries of the 90° domains, can be seen in the
micrograph of the crystal (Fig. 5d) in the region with a
mixed extinction. At the parallel position, numerous
interference fringes indicating the boundary tilt are
observed in the region of the bz domains. The scheme
for the formation of these domain configurations for
noncharged boundaries is represented in Fig. 5e. Simi-
lar boundaries were observed by Chen and Feng [12] in
the Q phase of the NN crystals.

Figure 6 shows the electron micrographs of the
etched surfaces of the (100) cleavages of crystals II. As
could be expected, the domain structure of these crys-
tals is less complex and more regular than that of crys-
tals I. We examined three mutually perpendicular (100)
cleavages parallel and perpendicular to the boule axis.
It should be noted that the domain structures observed
on these surfaces are characterized by different main
structural motifs. The layered structures (with a layer
thickness of 0.1 µm or less) oriented, for the most part,
normally to the boule axis can be seen in the cleavages
parallel to the boule axis. As follows from the etch
relief, these cleavages correspond to the f (Fig. 6a) and
g (Fig. 6b) surfaces of the 90° domains. The region of
intersection between the orthogonal complexes of the
90° domains can be seen at the top left of Fig. 6b. This
region is similar to those observed in Fig. 4c. The cleav-
age perpendicular to the boule axis (Fig. 6c) predomi-
nantly corresponds to the e surface. The cleavage frag-
ment in which the f surface is dominant is displayed in
Fig. 6d. We can see the layers of 90° domains with the
2
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Fig. 5. (a, b) Micrographs of prismatic bz domains with the (110) and (111) tilt boundaries in the region with a mixed extinction
(ı ≈ 0.03, M4 phase) and (c) scheme for the formation of the domain structure observed. (d) Micrograph of the zigzag boundaries
between the 90° complexes of the bz and bx domains (ı ≈ 0.04, M2 phase) and (e) scheme for the formation of these configurations.
(001)m boundaries, which are transversely crossed by
the 180° (010)m walls or 180° wedges. In the last case,
the boundaries should involve charged regions, because
only the (010)m plane is parallel to the vectors Ps in the
contiguous 90° domains. The alternation of 180°
(010)m walls results in the formation of specific stag-
gered structures (Figs. 6e, 6f). The boundaries between
the smooth surface and the region of the 90° domains
whose traces are parallel to their 90° boundaries can be
seen in Fig. 6d. Most likely, these are the traces of the
(100) boundary that connects the orthogonal complexes
of the 90° domains (Fig. 4c).

The micrographs of the ceramic samples cleaved
parallel to the direction of the pressure applied in the
course of hot pressing are represented in Fig. 7. The
cleavage surface is rough and, as a rule, has a stepped
structure. There are 60°, 120°, 90°, and 180° domains.
As in the case of single crystals, the domain structure is
predominantly built up of blocks consisting of lami-
nar 90° domains with (100) boundaries (Figs. 7a–7c).
C

The mean width of the laminar domains varies from
0.05 to 0.5 µm, and the domains form boundaries along
the (110) planes. These boundaries can be seen at the
center of Fig. 7a and at the left of Fig. 7b in the oblique
section close to the (111) plane. The tendency of
the   twinning planes (100) of the laminar arrays of
90° domains to be arranged along the same direction is
observed in certain cleavages (Fig. 7c). This correlates
with the X-ray diffraction data obtained, according to
which the X-ray diffraction patterns of the cleavages
parallel and perpendicular to the direction of the
applied pressure are often characterized by the textures
along the [010]m and [100]m directions, respectively
(Fig. 1g). This is consistent with the fact that a number
of crystal grains, in accord with the Le Chatelier prin-
ciple, tend to have such an orientation that the axis cor-
responding to the smallest parameter of the perovskite
cell is parallel to the direction of the pressure applied in
the course of hot pressing. Possibly, this was the reason
for the anisotropy previously revealed in the properties
of NN-based ceramic materials in the directions per-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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Fig. 6. Micrographs of the domain structure on the cleavages of crystals II: (a) the f surface and (b) the g surface of the (100) cleav-
ages parallel to the boule axis, (c) the e surface of the cleavage perpendicular to the boule axis, and (d, e) fragments of the 90° and
180° domain structures on the cleavage parallel to the boule axis. (f) Scheme of staggered configurations formed upon intersection
of 90° domains by 180° domain walls.
pendicular and parallel to the direction of the pressure
applied [37, 38].

The 180° domain structure (Fig. 7d) manifests itself
beginning with x = 0.02 and is similar to the domain
structures observed for crystals II (Figs. 6d, 6e). On the
whole, the 180° domain structure is characterized by a
small scale and can only sometimes be seen on the
cleavage surfaces. The very small-scale regular struc-
ture can also be seen in Fig. 7e. This structure can cor-
respond either to a staggered 180° domain structure or
to the alternation of 120° domains with the (110)
boundaries.

As the concentration x increases, there appears a
tendency toward an increase in the size of crystal grains
and, as in the case with crystals I, toward a decrease in
the volume occupied by the complexes of 90° domains.
In the concentration range under investigation, the
grain size varies up to 18 µm and, on average, is of the
order of 4 µm. Starting with x = 0.10, the rough surfaces
are observed in large-sized grains. These surfaces are
formed upon cracking in the grain bulk, appear as fan-
shaped divergent stripes, and are associated with a high
density of dislocations in these regions (Figs. 7b, 7f, on
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
the right). Edge splitting is frequently observed at the
boundaries of these regions, which suggests high
stresses arising at the boundaries. On the whole, the
degree of structure imperfection increases in this con-
centration range close to the solubility limit of lithium
and to the narrow range of the existence of the rhombo-
hedral phase [13, 14]. An increase in the grain size
often leads to the spontaneous destruction of the
ceramic samples, as was noted by Reznichenko et al.
[39, 40], who studied the influence of this factor and the
decrease in the volume concentration of 90° domains in
samples on the strength characteristics of ceramic
materials.

The interlayers forming double boundaries between
grains are observed in certain cases. For example, such
an interlayer (indicated by the arrow) in the form of a
dark stripe can be seen at the boundary of a cuboocta-
hedral grain in Fig. 7h. These interlayers correspond to
the phase that is in the liquid state during the sintering
of the ceramic sample. As was previously found in [41],
the formation of this phase is characteristic of ceramic
materials based on alkali metal niobates in distinction
to PZT-based ceramic materials.
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Fig. 7. (a–f, h) Micrographs of the cleavages of Na1 – xLixNbO3 hot-pressed ceramic samples at concentrations x = (a) 0.0225,
(b) 0.1025, (c) 0.04, (d) 0.02, (e) 0.03, and (f, h) 0.014. (g) X-ray diffraction profiles for the cleavages perpendicular (on the left)
and parallel (on the right) to the direction of the pressure applied in the course of hot pressing for the sample with x = 0.04.
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CONCLUSIONS

Thus, in this work, we investigated the domain
structures of hot-pressed ceramic materials and crystals
grown using the flux and Czochralski methods. The
preparation conditions and the solid state of these
objects differ significantly. However, their domain
structures have a common feature, namely, the predom-
inance of the regions composed of polysynthetic lamel-
lar twins (90° domains) with the specific orientation
[(001)m || (001)] relative to the lattice of the initial cubic
phase, which is characteristic of materials undergoing
martensitic phase transitions [42]. With an increase in x
C

and the relative concentration of the M2 phase, there is
a tendency for the volume occupied by the tapered 120°
domains with (110) boundaries to increase.

It was found that the matching of the complexes of
the 90° domains is characterized by the following spe-
cific features. The (100) and (011) boundaries between
these domains occur most frequently. The (011)m and
(110)m planes [at the 90° (001)m boundary] are not
equivalent with respect to the formation of the 60° and
120° boundaries between the complexes in contrast
with single domains. The former plane is coherent,
whereas the latter plane is incoherent. Boundaries of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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the former type (planar or strained, curved in the elastic
strain field of contiguous regions) are universal in
occurrence. Boundaries of the latter type are very rarely
observed, and microcracks are formed along these
boundaries. Instead of these boundaries, the 90° com-
plexes are often characterized by hhl boundaries (in com-
bination with (011)m boundaries) or zigzag hhl bound-
aries. The above features are responsible for the partic-
ular splittings of the reflections in the X-ray diffraction
patterns of the crystals under investigation. These split-
tings correspond to a set of orientational states that
restore the m3m symmetry of the prototype phase.

The hhl boundaries in NLN crystals were observed
in our work for the first time. The concentration depen-
dence of the orientation of these boundaries was calcu-
lated from the parameters of the perovskite cell. This
dependence is in good agreement with the experimental
data. Note that, when the angle of the spontaneous dis-
placement obeys the relationship 2sinµ ≥ 1 – (b/a)2 [see
formula (2)], we have h/l ≤ 1, which holds for the stud-
ied crystals. If the above relationship is not satisfied, we
obtain h/l > 1. The latter case is true for KNbO3 crystals,
in which the (772) and (331) boundaries were observed
by Chen et al. [43].

The 180° domain boundaries corresponding to the
ferroelectric M2 phase were observed in the crystals
grown by the Czochralski method and the ceramic sam-
ples. As was noted above, the X-ray diffraction data
obtained for the ceramic samples indicate the presence
of the M2 phase beginning with x = 0.032. At the same
time, the results of electrical measurements demon-
strate the existence of ferroelectric clusters even at
ı ≥ 0 [15]; moreover, the macroscopic ferroelectric
properties manifest themselves at x > 0.015 [13, 14]. An
examination of the cleavages of the ceramic samples
revealed that the 180° domain structure is observed
beginning with x = 0.02. Note that, in the P (M4) phase
of the NN (NLN) compounds, the atomic structure
along the b axis is characterized by the alternation of
pairs of octahedra rotated about this axis in different
directions. This alternation of the octahedron pairs
coincides with the alternation in the directions of dis-
placements of Nb ions along the A axis. The breaking
of the strict order in the alternation can lead to the struc-
ture of the ferroelectric Q (M2) phase, in which the
octahedra are rotated in the same direction and Nb ions
are displaced unidirectionally [7–9]. Chen and Feng
[12] observed satellite reflections along the b* direction
of the reciprocal lattice due to the translational domain
walls in the P and Q phases. These structural distortions
can be responsible for the formation of ferroelectric
phase microregions at low concentrations x whose
existence is indicated by the results of electrical mea-
surements. As the concentration x increases, the M2
phase becomes stable and these microregions grow and
transform into macroregions. At concentrations below
x = 0.032, the volume of the ferroelectric phase is too
small to be recorded by the X-ray methods. However,
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this phase already manifests itself in the form of the
180° domain structure on the cleavages of the ceramic
samples. It should be noted that the density of the 180°
domain walls increases with an increase in the concen-
tration x but remains very low compared to the density
of non-180° boundaries. This confirms the data
obtained by Fesenko et al. [44], who, judging from a
decrease in ε upon polarization, made the inference that
domain orientations differing from the 180° orientation
are predominant in NN-based solid solutions. In our
single crystals grown by the flux method, the 180°
domain structure was not observed even in the con-
centration range in which the M2 phase is predomi-
nant according to the X-ray diffraction data. This can
be explained by the fact that the 180° domain structure
is of very small scale and cannot be seen with the use
of optical methods. Possibly, this situation is associ-
ated with the high electrical conductivity (up to 10–4–
10–2 Ω–1 cm–1) of the crystals under investigation as
compared to the conductivity of the crystals grown by
the Czochralski method and the ceramic samples (10–10–
10–13 Ω–1 cm–1) and also with the influence of screen-
ing. Such an electrical conductivity is characteristic of
the NN crystals prepared using a NaBO2 solvent [21].

The data for NLN crystals (with x = 0.02–0.03)
grown using the flux [18, 19] and Czochralski [20]
methods are available in the literature. As was noted
above, the experimental data on the pyroelectric current
along the b axis [19, 20] and the hysteresis loops [20],
as well as the observations of the domain structure in
electric fields [18] allowed these authors to draw the
conclusion that spontaneous polarization Ps is present,
i.e., that the M4 phase in the NLN compounds is ferro-
electric. Note that the spontaneous polarizations Ps

determined in [19] and [20] differ by one order of mag-
nitude (25 and 2.5 µC/cm2, respectively). The polariza-
tion Ps obtained in [19] exceeds the polarization Ps in
the Q phase of the NN compound (≈10 µC/cm2 [45]). It
should be noted that the anomalies in the temperature
dependences of the permittivity ε(T) for our crystals
upon phase transitions agree with the data reported by
Zhong et al. [20]. In particular, unlike the results
obtained in [19], the maximum in the dependence ε(T)
in the vicinity of 350°C upon phase transition between
the orthorhombic phases is well defined and is not
smeared. This suggests a high concentration of defects
in the crystals studied in [18, 19]. Since the crystals
investigated in the present work were similar in their
properties to the crystals obtained in [20], we quite pos-
sibly did not observe etch patterns associated with Ps || b
due to the low spontaneous polarization Ps. However, it
cannot be ruled out that the effects indicating this polar-
ization are associated with the heterophase structure of
the crystals under consideration and their inhomogene-
ity, as was repeatedly noted earlier for NN crystals
[10, 12, 46].
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Abstract—The structural transformations of Sr6Ta2O11 and Sr5.92Ta2.08O11.12 oxygen-deficient cryolites with
variations in the partial pressures of oxygen p(O2) and water vapor p(H2O) are investigated using X-ray diffrac-
tion, thermogravimetry, and electrical conductivity measurements. It is found that a change in the oxygen partial
pressure leads to a phase transition accompanied by the transformation of the cubic cell into the tetragonal cell,
most probably, due to ordering of oxygen vacancies. The intercalation of water into the matrix of the complex
oxides under investigation results in a structural–chemical transformation during which the solid solution
undergoes a transition to an oxyhydrate phase of variable composition and the cubic cell transforms into the
orthorhombic cell. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

In recent years, oxygen-deficient complex oxides of
the general formula ABO3 – δ with a perovskite-like
structure have been investigated extensively, because
these materials can possess a considerable oxygen ion
conductivity at high temperatures and a protonic con-
ductivity at low temperatures [1, 2]. The nature of the
predominant charge carriers depends on the ambient
conditions [T, p(O2), and p(H2O)]. Within the quasi-
chemical formalism, the formation of these carriers can
be described by the following reactions of dissolution
of oxygen or water vapors in the oxide, provided the
matrix structure is retained:

, (1)

(2)

where  is the oxygen vacancy,  is the oxygen

atom at a regular lattice site,  is the hydroxy group
with an effective positive charge in the oxygen sublat-
tice, and  is the hole. Consequently, the oxides can
either absorb or release O2 (or H2O), depending on the
partial pressure of oxygen (or water vapors) in the
atmosphere.

In the general case, apart from the ambient condi-
tions responsible for the charge carrier concentration,

1 This paper was presented at the Symposium “Phase Transforma-
tions in Solid Solutions and Alloys,” Sochi, Russia, 2001.
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the degree of disordering δ of the oxide (concentration
of oxygen vacancies) also directly correlates with the
particular (oxygen ion or protonic) type of conduction.
From this viewpoint, it is of interest to consider oxides
with a large oxygen deficit for the purpose of attaining
an appreciable degree of unipolar ionic conduction.

However, since the structure is capable of accumu-
lating high concentrations of defects, the interaction of
the oxide with components of the gaseous medium (O2
and H2O) can be accompanied by different phase trans-
formations. In turn, these transformations can manifest
themselves in an anomalous (i.e., nonlinear) behavior
of the phase-sensitive properties.

Among the materials with a perovskite-like struc-
ture, there are oxygen-deficient cryolites (double per-
ovskites) of the general formula åÂ6å2é11 , where Me
is an alkaline-earth metal and M is Nb or Ta. The unit
cell of these compounds contains four formula units
ABO3; hence, one in every twelve sites in the oxygen
sublattice is unoccupied [3, 4]. It is these specific struc-
tural features that provide unipolar oxygen ion transfer
at high temperatures in dry atmospheres and proton
transfer at temperatures below 600°C in moist atmo-
spheres [5, 6]. Therefore, by varying the thermody-
namic parameters over a wide range, it is possible to
determine the stability range of a particular structure,
on the one hand, and to reveal the factors responsible
for the formation of new structures, on the other.

In the present work, we elucidated how the changes
in the temperature T and the partial pressures of oxygen
p(O2) and water vapor p(H2O) affect the electrical and
002 MAIK “Nauka/Interperiodica”
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thermogravimetric characteristics and the structure of
the compound Sr6Ta2O11 and its solid solution
Sr5.92Ta2.08O11.12.

EXPERIMENTAL

Samples of Sr6Ta2O11 and Sr5.92Ta2.08O11.12 were pre-
pared by solid-phase synthesis from the initial reactants
SrCO3 (special-purity grade) and Ta2O5 (special-purity
grade). The temperature increased stepwise in 100-K
intervals in the range 800–1300°C, followed by isother-
mal treatment for 10–20 h and intermediate grinding
after each stage of the synthesis.

X-ray structure investigation was performed on a
DRON UM1 diffractometer (CuKα radiation, Ni filter).
The structure was refined by the Rietveld full-profile
method according to the GSAS software package [7].
The data collection was carried out in the 2θ range 10°–
80° with a step of 0.02° and an exposure time of 10 s
per point.
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Fig. 1. Dependences of the conductivity isotherm of
Sr6Ta2O11 on the partial pressures (a) p(O2) and
(b) p(H2O). Temperature, °C: (a) (1) 500, (2) 600, (3) 700,
(4) 800, (5) 885, and (6) 1200 and (b) (1) 475, (2) 500, and
(3) 600.
C

The electrical measurements were carried out by the
two-point probe method with the use of samples pre-
pared in the form of pellets with fired Pt electrodes
under variations in the temperature and the partial pres-
sures of oxygen and water vapors. The resistance of the
studied samples was measured using impedance spec-
troscopy on a Zahner Electric IM6 impedance spec-
trometer in the frequency range from 0.5 Hz to 1 MHz
with ac voltage amplitudes ranging from 10 to 50 mV.
The bulk resistance was calculated according to the
Bouckamp program.

The thermogravimetric measurements were per-
formed by continuous weighing in an atmosphere with
a specified moisture content on a setup consisting of an
ADV-200 analytical balance, a furnace, and a tempera-
ture controller.

In order to produce the dry atmosphere, atmospheric
air was passed sequentially through a concentrated sul-
furic acid and a P2O5 powder [p(H2O) ≈ 10–5 atm]. The
moist atmosphere was obtained by bubbling atmo-
spheric air through a saturated KBr solution [p(H2O) =
0.023 atm]. Atmospheres with intermediate moisture
contents were prepared by bubbling atmospheric air
through a temperature-controlled vessel with water at a
specified temperature. 

The partial pressure of oxygen was varied and con-
trolled with the use of a pump and a detector prepared
from stabilized ZrO2.

RESULTS AND DISCUSSION

The electrical conductivity of Sr6Ta2O11 and
Sr5.92Ta2.08O11.12 samples was investigated in a dry air
atmosphere [p(H2O) ≈ 10–5 atm] at temperatures of
500–1300°C over a wide range of oxygen partial pres-
sures. It was found that the electrical conductivity does
not depend on the oxygen partial pressure p(O2). This
confirms the assumption that the electrical conduction
predominantly occurs through the oxygen ion mecha-
nism without a noticeable contribution of electron
transfer (Fig. 1a). However, in the limited temperature
range 700–1100°C at low pressures p(O2) < 10–12 atm,
the conductivity undergoes a reversible jumpwise
decrease to a constant value and then remains
unchanged; i.e., no noticeable increase in the electronic
component of the conductivity occurs in the low-con-
duction state. This allows us to assume that the
observed effect is unrelated to changes in the oxidation
states of elements that are in the highest stable oxida-
tion states in the compounds. The temperature of the
transition under investigation regularly increases with
an increase in the oxygen partial pressure p(O2). X-ray
diffraction analysis of the Sr5.92Ta2.08O11.12 sample
quenched at a temperature of 800°C and an oxygen par-
tial pressure p(O2) < 10–12 atm revealed insignificant
tetragonal distortions (a = b = 8.2602 ± 0.0003 Å and
c = 8.3017 ± 0.0003 Å) as compared to the initial cubic
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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lattice (a = 8.3237 ± 0.0003 Å). Most likely, this is
caused by the ordering of oxygen vacancies. Since this
ordering is certain to be due to a transformation occur-
ring in the B sublattice containing atoms of different
sorts (Sr and Ta) with low mobilities, the above effect
cannot be observed at relatively low temperatures
(below 700°C) and, naturally, at high temperatures
(above 1200°C) at which defects are arranged predom-
inantly in a random manner. It is assumed that the effect
under consideration is caused by an increase in the con-
centration of minority carriers with a decrease in the
oxygen partial pressure p(O2) (thermally activated oxy-
gen vacancies and electrons).

In a moist air atmosphere [p(H2O) ≈ 10–2 atm], the
studied compounds at T < 600°C exhibit a predomi-
nantly protonic conductivity [5]. In this respect, the
intercalation of water was examined at temperatures
below 600°C under variations in the partial pressure of
water vapors. The conductivity isotherms and the
dependences of the content of water intercalated into
the Sr6Ta2O11 sample on the partial pressure of water
vapors are depicted in Figs. 1b and 2, respectively. It
can be seen that the intercalation of water in small
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Fig. 2. Dependences of the content of water intercalated
into the Sr6Ta2O11 sample on the partial pressure of water
vapors. Temperature, °C: (1) 550, (2) 500, (3) 450, (4) 430,
(5) 400, and (6) 300.
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amounts (up to 0.3–0.4 mol) is attended by a monotonic
change in the properties, but the matrix structure of the
complex oxide remains unchanged. As the partial pres-
sure of water vapors increases, the conductivity and the
sample weight jumpwise increase in the vicinity of
p(H2O) ≈ 10–2 atm at temperatures of 450–475°C. The
total water content at 300°C is equal to 0.9 mol H2O per
formula unit. This is close to a theoretical value of
1 mol, which corresponds to the complete filling of oxy-
gen vacancies with water molecules in accordance with
reaction (2). Similar dependences were obtained for the
Sr5.92Ta2.08O11.12 sample; however, the total water con-
tent amounted to 60% of the theoretically predicted
value.

The thermogravimetric investigations performed in
moist atmospheres of oxygen and argon upon slow
cooling at a rate of 1 K/h also demonstrated that the
sample weight monotonically increases beginning with
1000°C and then jumpwise increases at 475°C. A fur-
ther decrease in the temperature results in an insignifi-
cant absorption of water. The results obtained for a
sample weighing ~1 g are presented in Fig. 3. It can be

400 500 600 700 800 900
T, °C

–33

–30

–27

–24

–21

–18

m, mg

1

2

Fig. 3. Thermogravimetric curves for the Sr6Ta2O11 sample
upon cooling in moist atmospheres of (1) oxygen and
(2) argon. p(H2O) = 0.02 atm.
Table 1.  Results of the structure refinement of Sr5.92Ta2.08O11.12 prepared in dry air 

Atoms Positions
Coordinates

Filling factors Thermal
parameters, Å2

x y z

Ta 4a 0 0 0 1.00 0.002(3)

Sr(1) 4b 0 0 0.50 1.00 0.077(5)

Sr(2) 8c 0.25 0.25 0.25 1.00 0.067(5)

O 24e 0.222(6) 0 0 0.849(6) 0.185(5)
2
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seen that the composition of the atmosphere used does
not substantially affect the thermograms.

According to X-ray diffraction analysis, the
Sr5.92Ta2.08O11.12 sample prepared in a dry air atmo-
sphere has a cubic symmetry with space group Fm3m
(Fig. 4a, Table 1). The unit cell parameters are as fol-
lows: a = b = c = 8.3237 ± 0.0003 Å and α = β = γ = 90°.
The thermal parameters were calculated in the isotropic
approximation according to the formula
exp(−8π2Bsin2θ/λ2). The results obtained are in good
agreement with the description of the cryolite structure
as a perovskite superstructure, i.e., as the double per-
ovskite A2(B'B'')X6 with an ordered arrangement of
large-sized octahedra [SrO6] and small-sized octahedra
[TaO6] [8]. The high symmetry of this compound
allows us to draw the conclusion that oxygen vacancies
are arranged in a random manner. It should be noted
that the filling factor for the oxygen sublattice is less
than unity. This confirms the inference that the com-
pounds under investigation have an oxygen deficit and
that their structures are adequately described as struc-
turally disordered phases.

X-ray structure analysis of the samples containing
the maximum amount of water (according to the ther-
mogravimetric data) demonstrated that the (200),
(220), and (311) diffraction reflections of the initial
cubic cell are split into three lines, whereas the (222)
reflection is not split. This suggests that the samples
studied have a single-phase composition and that their
structures undergo orthorhombic distortions. The
Rietveld full-profile refinement of the structure of the
hydrated Sr5.92Ta2.08O11.12 sample revealed that this
compound crystallizes in the orthorhombic crystal sys-
tem with space group Fmmm (Fig. 4b, Table 2). The
unit cell parameters are as follows: a = 8.2236 ±
0.0003 Å, b = 8.3172 ± 0.0003 Å, c = 8.3659 ± 0.0003 Å,
and α = β = γ = 90°. It should be noted that X-ray dif-
fraction analysis is characterized by a low sensitivity to
scattering by light atoms. As a consequence, the oxygen
atoms were located with a large error (up to 0.006 Å)
and the positions of hydrogen atoms in the sample pre-
pared in the moist air atmosphere were not determined.
A comparison of the data presented in Tables 1 and 2
shows that the second sample has a higher total oxygen
C

content, which agrees with the thermogravimetric data.
Moreover, the filling of oxygen vacancies with water
molecules occurs in a preferential direction. This
results in the lowering of the symmetry of the structure.
The large discrepancy factors can be explained in terms
of the strongly defective structure of the samples. Note
that the intercalation of water molecules leads to an
increase both in the half-width at half-maximum

3

2

1

0

–1

I, pulses × 104

–1

0

1

20 30 40 50 60 70
2θ, deg

20 30 40 50 60 70
2θ, deg

(a)

(b)

I, pulses × 104

Fig. 4. Observed, calculated, and difference X-ray diffrac-
tion profiles for the anhydrous Sr5.92Ta2.08O11.12 sample (a)
prior to and (b) after treatment in moist oxygen at p(H2O) =
0.02 atm.
Table 2.  Results of the structure refinement of Sr5.92Ta2.08O11.12 · 0.6H2O prepared in moist oxygen 

Atoms Positions
Coordinates

Filling factors Thermal
parameters, Å2

x y z

Ta 4a 0 0 0 1.00 0.003(3)

Sr(1) 4b 0 0 0.5 1.00 0.104(5)

Sr(2) 8c 0.25 0.25 0.25 1.00 0.054(5)

O(100) 8e 0.232(6) 0 0 0.83(6) 0.275(5)

O(010) 8g 0 0.258(6) 0 1.00 0.275(5)

O(001) 8h 0 0 0.156 0.83(6) 0.275(5)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
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(HWHM) for X-ray reflections over the entire 2θ range
(Fig. 5) and in the discrepancy factors (Tables 1, 2).

Therefore, the change in the thermodynamic condi-
tions results in variations in the chemical composition
of the system, which, in turn, leads to a structural trans-
formation. Since the solid–solid structural transition is
accompanied by a jumpwise change in the chemical
composition, it can be conventionally described as a
morphotropic transition. On the other hand, the hydra-
tion is attended by a chemical transformation. On this
basis, we can propose the following scheme of the
chemical reaction:

(3)

According to scheme (3), this process can be treated
as a transformation of the solid solution, most probably,
into an oxyhydrate phase of variable composition. Note
that scheme (3) involves conventional chemical formu-
las, because the discussion of the nature of hydrogen-
containing particles does not enter into the scope of this
paper. The transformation of the crystal structure can be
governed by a number of factors. Actually, the interca-
lation of water into the matrix of the complex oxide and
the filling of oxygen vacancies result in (i) a change in
the ratio between octahedra and tetrahedra, (ii) the for-
mation of energetically nonequivalent oxygen atoms
(and, consequently, OH groups), and (iii) a change in
the acid–base properties of the oxide. The problem of
revealing these subtle effects calls for further investiga-
tion. This problem is of particular importance, because
its solution can provide a way of elucidating the mech-
anism of proton transfer in complex oxide systems.

Sr6Ta2O11 xH2O( ) y x–( )H2O +

⇔ Sr6Ta2O11 yH2O.⋅

1

2

1.4

1.0

0.6

0.2

0
10 20 30 40 50 60 70 80

w

2θ, deg

Fig. 5. Experimental dependences of the half-width at half-
maximum for X-ray reflections on their angular position for
the anhydrous Sr5.92Ta2.08O11.12 sample (a) prior to and
(b) after treatment in moist oxygen at p(H2O) = 0.02 atm.
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CONCLUSIONS

Thus, it was found that oxygen-deficient cryolites
can undergo structural and chemical transformations
due to variations in the partial pressures of oxygen and
water vapors.

In a dry atmosphere and at low oxygen partial pres-
sures p(O2) < 10–12 atm, the Sr6Ta2O11 and
Sr5.92Ta2.08O11.12 compounds containing oxygen vacan-
cies undergo a phase transition in the limited tempera-
ture range 700–1100°C. In this case, the oxygen ion
transfer remains predominant and the symmetry of the
unit cell is lowered from cubic to tetragonal. It was
assumed that this transition is caused by an ordering of
the oxygen sublattice.

It was demonstrated that the intercalation of water
into the compounds studied (at low temperatures and a
high moisture content) results in structural transforma-
tion. This is accompanied by a lowering of the symme-
try from cubic to orthorhombic and a chemical reaction
with the formation of a new oxyhydrate phase of vari-
able composition.
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Abstract—The thermodynamic and crystallochemical conditions determining the types of the rotational phase
transitions and their sequence in cubic perovskites are established. It is shown that a decrease in the tolerance
factor and a change of the A-cation and its charge stimulates the softening of the rotational-vibrational mode M3.
As an example, the compounds AxNa1 – xNbO3 (A = K, Li) are considered. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Perovskites described by the general formula
ABX3 have a simple cubic lattice of symmetry

. Their structure consists of a three-dimen-
sional framework formed by BX6 octahedra that share
vertices and whose voids are occupied by A-cations.
The anions are either the halide ions X– = F–, Cl–, Br–,
…, then A+ = K+, Rb+, Cd+, Tl+, … and B2+ = Pb2+, Cd2+,
Ca2+, Mn2+, …, or oxygen ions X2– = é2–, then the fol-
lowing combinations of cations are possible: A+B5+,
A2+B4+, and A3+B3+, where A+ = Na+ and K+; B5+ = Nb5+

and Ta5+; A2+ = Sr2+, Pb2+, Ba2+, Ca2+, …; B4+ = Ti4+,
Zr4+, Gf4+, …; A3+ = La3+, Pr3+, Sm3+, …; and B3+ = Al3+,
… [1, 2].

The crystals of this family undergo numerous phase
transitions caused by the rotation of octahedra (crum-
pling or rotational phase transitions) and are character-
ized by the formation of various types of order [2–4].
The rotational phase transitions in a number of com-
pounds were theoretically studied elsewhere [2, 5–8].
However, the analysis and systematization of the exper-
imental data accumulated by now require a more gen-
eral approach that would allow one to study the whole
variety of the types of order. Below, the rotational phase
transitions are considered within the framework of the
phenomenological theory. We studied the effect of vari-
ous crystallochemical characteristics of compounds,
such as the tolerance factor t [2] and the charge of A-cat-
ions, on the formation of various phase states.

The whole set of rotational distortions in perovs-
kites is described by two three-component order param-
eters [2, 6], of which one, ψ, belongs to the three-ray

star of the vector k = (b1 + b2), where bi are the recip-

1 This study was presented to the Symposium “Order, Disorder and
Properties of Oxides” (ODPO), Sochi, Russia, 2001.

Pm3m–Oh
1

1
2
---
1063-7745/02/4706- $22.00 © 20996
rocal-lattice vectors, whereas the other, ϕ, belongs to

the one-ray star of the vector k = (b1 + b2 + b3). These

order parameters are transformed according to irreduc-
ible transformations 3 and 7, respectively [9]. To each
of these order parameters there correspond its own lat-
tice-vibration mode—M3 to ψ and R25 to ϕ.

The table lists the types of order observed in crystals
and provided by the condensation of the order parame-
ters ψ and ϕ borrowed from [2–4, 10–12]. According to
[2], these types of order have the following symmetries:

000 – Z = 1,

00ϕ –  I4/mcm Z = 4,

ϕϕϕ – Z = 2,

00ψ –  P4/mbm Z = 2,

0ψϕ –  Cmcm Z = 8,

ϕϕψ –  Pncm Z = 4,

ψ1ψ2ϕ –  Pmmn Z = 8,

ϕ1ϕ2ψ –  P21/m Z = 8,

where Z is the number of formula units per unit cell,
ZA is the charge of the A-cation, t is the tolerance factor

equal to t = RAX/ , where RNL is the distance
between the N and L ions equal to the sum of their ionic
radii with due regard for the coordination number (the
values of the ionic radii were taken from [13]), Tj is the
temperature of the jth rotational phase transition, and Gi

is a set of order parameters characterizing the ith dis-
symmetric phase.

1
2
---

Oh
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PHASE STATES IN ROTATIONALLY DISTORTED PEROVSKITES 997
Successive phase transitions from the cubic phase (000) in some crystals caused by the condensation of the order parameter
ψ (mode M3) and ϕ (mode R25)

Compound T1, K G1 T2, K G2 T3, K G3 ZA t

AlF3 ϕϕϕ 0

ReO3 ϕϕϕ 0

LaAlO3 700 ϕϕϕ 3 0.93

PrAlO3 1320 ϕϕϕ 205 ϕ0ϕ 151 ϕ10ϕ2 3 0.91

SmAlO3 2100 ϕϕϕ 1100 ϕϕψ 3 0.90

SrTiO3 110 00ϕ 2 0.96

SrZrO3 1440 00ϕ 1130 ψ0ϕ 1000 ψϕϕ 2 0.88

CaTiO3 1533 ϕϕψ 2 0.85

RbCdF3 124 00ϕ 1 0.95

TlCdF3 191 00ϕ 1 0.94

RbCaF3 198 00ϕ 50 0ψϕ 1 0.93

KCdF3 487.5 00ψ 472.7 ϕϕψ 1 0.92

KCaF3 560 0ϕψ 551 ϕϕψ 1 0.90

RbCdCl3 387 00ψ 383 0ϕψ 340 ϕϕψ 1 0.90

CsPbCl3 320 00ψ 314 ϕ0ψ 310 ϕϕψ 1 0.87

CsPbBr3 403 00ψ 361 ϕϕψ 1 0.84

CsSrCl3 386 00ψ 381 ϕ0ψ 362 ϕ1ϕ2ψ 1 0.86

NaNbO3 914 00ψ 848 ϕ0ψ 793 ϕψ1ψ2 1 0.87

NaTaO3 903 00ψ 838 ϕ0ψ 758 ϕϕψ 1 0.86
If t < 1 , the dimensions of the A-cations are less than
the dimensions of the cavity formed by the octahedra.
In most occasions, the rotational phase transitions are
observed in precisely such crystals, which signifies that
this discrepancy in the crystallochemical parameters of
the compound components in the perovskite structure is
the necessary condition for the formation of an instabil-
ity resulting in structure “crumpling.”

Analyzing the data indicated in the table, we see that
inside the group of compounds with similar chemical
bonds such as AëdF3 (A = K, Tl, Rb), CsPbX3 (X = Cl,
Br), ATiO3 (A = Sr, Ca), and AAlO3 (A = La, Pr, Sm),
the type of the phase states depends on the sequence of
phase formation and the tolerance factor t. Comparing
the order observed in various groups, we see that an
important role is also played by the charge of the A-cat-
ion. In order to establish in what way various crystal-
lochemical factors influence the formation of phase
states, one has first to determine the conditions provid-
ing the formation of various sequences of order and
then to single out the major parameters determining
their formation.

PHENOMENOLOGICAL THEORY 
OF ROTATIONAL PHASE TRANSITIONS

At the first stage of the study of phase transitions,
we shall ignore the details of the thermodynamic
behavior of compounds, i.e., where possible, we
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 6      2002
assume that the transformation is either a second-order
phase transition or a first-order phase transition close to
a second-order one. The model thermodynamic poten-
tial used to describe all the possible rotational phase
transitions provided by the condensation of M3 and R25
has the form

(1)

where

Φ ΦM ΦR ΦMR,+ +=

ΦM α1MG1M α2MG1M
2 β1MG2M …,+ + +=

ΦR α1RG1R α2RG1R
2 β1RG2R+ +=

+ σRG1RG2R ωRG3R β2RG2R
2 …,+ +

ΦMR γ1G1MG1R γ2 γ1–( ) ϕ i
2ψi

2

i 1=

3

∑+=

+ k1Σψi
2ϕ j

2ϕk
2

k2G1MG2R k3Σϕ i
2ψ j

2ψk
2

+ +

+ k4G1RG2M …,+

G1M ψi
2
,

i 1=

3

∑=
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and, in all the cases, i < j < k.
This potential has the terms characterizing the con-

tributions that come from each order parameter, ΦM(ψ)
and ΦR(ϕ), and also the mixed invariants that describe
the interaction between these order parameters
ΦMR(ϕ, ψ). The thermodynamic potential ΦR is written
with an accuracy which provides the analysis of the
solutions of the type ϕ1ϕ2ψ3. Using this thermody-
namic potential, we have to determine the conditions
for the formation of the following chains of ordering (in
all cases, the initial symmetric phase is cubic ϕ = ψ = 0,

sp. gr. ):

1. 000  00ψ  0ϕψ  ϕϕψ,

2. 000  00ψ  ϕϕψ,

3. 000  00ψ  0ϕψ  ψ1ϕψ3,

4. 000  0ϕψ  ϕϕψ, (2)

5. 000  00ϕ  0ψϕ  ϕϕψ,

6. 000  ϕϕϕ   ϕϕψ,

7. 000  ϕϕψ.

The analysis of this set of phases shows that both
order parameters are critical, i.e., α1M  0 and
α1R  0; then, in some instances, first, the order
parameter ψ (α1M < α1R) appears, whereas in some
other instances, ϕ (α1R < α1M) appears. Moreover, upon
condensation, the order parameters become orthogonal
to one another. This signifies that γ1 < 0 and γ2 > 0. It
should also be indicated that in all cases, except for case
3, one can assume that β1M has a high value because all
the types of ordering are characterized by not more than
one component of the order parameter ψ. Later, it will
be shown that the assumption that α 2R > 0, α 2M > 0,
σR < 0, k = k1 + k2 < 0, ωR < 0, and ωM < 0 can be used
to describe the types of ordering considered here.

Figures 1 and 2 show the diagrams of the phase
states for various relationships between the coefficients
of thermodynamic potential (1).

The sequence of ordering is formed in the following
way. If α1M < α1R, then first the M3 mode is condensed
and the 00ψ3 order appears. Since γ1 < 0 and γ2 > 0, the
existence of the order parameter ψ3 “softens” the sys-
tem with respect to ϕ1 and ϕ2 and makes it more “rigid”

with respect to ϕ3. The order parameter ϕ (ϕ2 =  + )
arises at α1R = –γ1(–α1M/2α 2M). If Γ > 0, where Γ =

G2M ψi
2ψ j

2
, G3M

i j<
∑ ψ1

2ψ2
2ψ3

2
, ψ M3,∈= =

G1R ϕ i
2
, G2R

i 1=

3

∑ ϕ i
2ϕ j

2
,

i j<
∑= =

G3R ϕ1
2ϕ2

2ϕ3
2
, ϕ R25∈=

Oh
1

ϕ1
2 ϕ2

2

C

4α 2Mα 2R – , the phase transition is of the second
order; if Γ < 0, it is of the first order. The phase diagram
(Fig. 1a) has a triple point, where the 00ψ3, ϕ10ψ3, and
ϕϕψ3 phases coexist. In this case, if ∆R < 0 and ∆R =

4α 2Rβ2R – , the phases ϕ10ψ3 and ϕϕψ3 are sepa-
rated by the line of fourth-order phase transitions; if
∆R > 0, then between these phases the phase ϕ1ϕ2ψ3 is
formed. This diagram was studied in [7], where, in par-
ticular, it was shown that this sequence of phases
observed in CsSrCl3 [4] could be described under the
assumption that ∆R > 0.

If α1M ~ α1R and Γ < 0, the appearance of one order
parameter destabilizes the system with respect to the
other order parameter, and therefore both order param-

eters, ψ and ϕ, appear simultaneously (ϕ2 =  + ).
The diagram in Fig. 1b illustrates a possible direct tran-
sition from the symmetric phase into the phase with a
complex condensate (ψ, ϕ) along the line of the first-
order phase transitions. This diagram also has a triple
point, but it is located at the boundary with the symmet-
ric phase.

If α1R < α1M, then, first, the order parameter ϕ
appears (Fig. 1c). If ψ = 0 (α1M > 0) under the condition
that ωR < 0, the stable phases can be only ϕ00 and ϕϕϕ
[14]. The phase ϕϕ0 is unstable for all α1R and β1R,
because the stability regions with respect to ϕ1 – ϕ2 = 0
and ϕ3, which are determined by the relationships

do not overlap at ωR < 0.

The appearance of ψ3 (α1M * α1R) is accompanied
by the transformation of the phase ϕϕ0 into ϕϕψ3 and
results in the formation of a slight kink at the stability
boundary of the phase ϕϕψ3 with respect to ϕ1 – ϕ2 = 0:

On the contrary, the appearance of ψ3 drastically
changes the direction of the stability boundary with
respect to ϕ3:

γ1
2

σR
2

ϕ1
2 ϕ2

2

β1R β1R
1( )≤ σR

α1R–
2α2R

------------ 
 –

∆R

8α2R

------------
α1R–

2α2R

------------ 
 

2

,–=

β1R β1R
2( )≥ α R

ωR

2
------+ 

  α1R–
2α2R

------------ 
  ,–=

β1R
3( ) β1R

1( ) 2α2Rx σRγ1–
Γ

-------------------------------- α1M– α1M
1( )

+( ),–=

α1M
1( ) γ1

α1R–
2α2R

------------ 
  , σ1M– α1M

1( )
.<=

β1R
4( ) β1R

2( )
=

+
2α2R γ2 γ1–( )

4α2Mα2R γ1 2γ1 γ2–( )–
---------------------------------------------------------

α1R

2α2R

------------– 
  1–

α1M α1M
1( )

–( ).
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Fig. 1. Diagrams of the phase states of thermodynamic potential (1) in the α1β1 plane. The solid and dashed lines indicate the lines
of the first- and second-order phase transitions, respectively. Thin solid lines indicate the thermodynamic paths along which the
sequences of phases from set (2) are formed (they are enumerated in the same way as in set (2)): (a) α1M & α1R, Γ > 0, ∆R < 0,

 = –k ; (b) α1M ~ α1R , Γ < 0; (c) α1R & α1M, Γ > 0, ∆R < 0,  = – ; and (d) α1M & α1R, Γ > 0,

β1R > 0, ∆M > 0.

β1R
0( ) α1M

0( )
–

2α2M
--------------

 
 
 

β1R
0( ) σR

ωR

9
-------– 

  α1R
0( )

–

2α2R
-------------

 
 
 

β1M
The line  becomes almost parallel to the β1R axis

even at a slight deviation of α1å from , because
(−α1R/2α2R) ! 1. This results in the intersection of the

boundaries  and  and the formation of the
region in which the phase ϕϕψ is stable. If ∆R < 0, the
phases ϕ0ψ3 and ϕϕψ3 are adjacent along the line of
first-order phase transitions; if ∆R > 0, then, the phase
ϕ1ϕ2ψ3 arises between these phases.

The phase diagram in Fig. 1d is similar to that in
Fig. 1c under the condition that ∆R > 0 (i.e., in the pres-
ence of the phase ϕ1ϕ2ψ3) with the replacement of ϕi by

β1R
4( )

α1M
1( )

β1R
4( ) β1R

3( )
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ψi and ψi by ϕi and the introduction of the correspond-
ing new notation for the coefficients. Thus, instead of
β1R we have β1M, instead of ∆R > 0, we have 4α2Mβ2M –

 > 0. It should be indicated that this analogy is pos-
sible only because thermodynamic potential (1) is sym-
metric with respect to this replacement and the corre-
sponding new notation.

Figure 2 shows the diagrams of the phase states in
the plane α1M, α1R. To each sequence of ordering enter-
ing set (2) there corresponds its own thermodynamic
path indicated by the same number on the phase plane
(Figs. 1, 2). Thus, on the path 1 (Figs. 1a, 2a), the

σM
2

2
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α1M

ϕϕϕ
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(c)
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ϕ0ψ
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ϕ0
0 000

00ψ

α1R

α1M

8 6

ϕϕϕ

0 α1R

000
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Fig. 2. Diagrams of phase states of thermodynamic potential (1) in the α1Mα1R plane: (a) β1R > 0, Γ > 0; (b) β1R > 0, Γ < 0; and
(c) β1R < 0.
sequence of phases is formed which was really
observed in RbCdCl3, CsPbCl3, and NaTaO3; on the
path 2 (Figs. 1a, 2a, 2b), the sequence is formed that
was observed in KCdF3 and CsPbBr3; on path 3 (Fig. 1d),
the sequence that was observed in NaNbO3; on path 4
(Figs. 1b, 2b), the sequence that was observed in
KëaF3; on path 5 (Figs. 1c, 2a, 2b), the sequence that
was observed in SrZrO3; on path 6 (Figs. 1c, 2c), the
sequence that was observed in SmAlO3; and, finally, on
path 7 (Figs. 1b, 2b), the sequence that was observed
in CaTiO3.

DISCUSSION OF RESULTS

Analyzing the changes in the paths depending on the
crystallochemical parameters, we can state the follow-
ing:

—In compounds where the A-cation is absent, MF3
(M = Al, Ti, …), ReO3, etc., only one rotationally dis-
torted phase is observed, which arises as a result of the
C

condensation of three components of the mode R25 –
ϕϕϕ  [10, 12]. This type of ordering can be described
with the aid of thermodynamic potential (1) under the
condition that α1R changes its sign, α1M > 0, and β1R < 0
(path 8, Fig. 2c);

—in the compounds with ZA = 3 at t > 0.91, ordering
of type ϕϕϕ  is observed. A decrease in t (t & 0.9) results
in the fact that, in addition to R25, also the mode M3 is
condensed (sequence 6 in set (2)). In this case, α1R and
α1M change their signs, but α1R < α1M and β1R < 0
(Figs. 1c, 2c);

—at ZA = 2 and at t & 1, only one component of the
mode R25, 00ϕ, is condensed (α1R changes its sign,
α1M > 0 and β1R > 0, path 9 (Figs. 2a, 2b)). At t & 0.9,
first R25 is condensed and then M3 (sequence 5 in set (2))
(Figs. 1c, 2a, 2b); in other words, both α1R and α1M

change their signs, but α1R & α1M and β1R > .
Finally, at t ~ 0.85 , both modes M3 and R25 are con-
densed simultaneously (sequence 7 from (2)); i.e., α1R

β1R
0( )
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and α1M change their signs, α1M ~ α1R, β1R < , Γ < 0
(Figs. 1b, 2b);

—in compounds with ZA = 1 at t & 1, only one type
of ordering is observed, 00ϕ, which is induced by the
mode R25; with a decrease in t (t & 0.93), first R25 is
condensed and then M3 (α1R and α1M change their signs,

α1R & α1M, β1R > ). A further decrease in t (t ~ 0.9)
results in the fact that the modes R25 and M3 are con-
densed simultaneously (sequence 4 from (2) (Figs. 1b,
2b), α1R and α1M change their signs, α1å ~ α1R, β1R >

, and Γ < 0). Finally, if t decreases even more
(t ~ 0.87), the mode M3 becomes softer and first the
order parameter ψ appears and then the parameter ϕ
(mode R25) (sequences 1 and 2 from (2)); i.e., α1R and

α1M change their signs, α1M & α1R and β1R *  for 1

from (2) or β1R &  for 2 from (2) (Fig. 1a). It should
be emphasized that the variant in which first the mode
M3 is condensed and only then the mode R25 was not
observed in the compounds with ZA = 2.3.

Thus, with a decrease in t, the sequences of the
phase states and the corresponding thermodynamic
paths are transformed in the following way:

at ZA = 1 9  5  4  1  2 (Figs. 2a, 2b),

at ZA = 2 9  5  7 (Figs. 2a, 2b),

at ZA = 3 8  6 (Fig. 2c).

This signifies that with a decrease in t, the tempera-
ture of the condensation of the mode M3 increases faster
than the temperature of condensation of the mode R25,
although at t & 1 the latter was higher. At sufficiently
low t (t ~ 0.9, ZA = 1), both M3 and R25 modes are con-
densed simultaneously. Then, at t ~ 0.87, first M3 and
only then R25 are condensed. A similar pattern is also
observed in compounds with ZA = 2. However, the latter
variant of condensation—first of M3 and only then of
R25—is not observed in these compounds because,
hypothetically, this could happen only at t < 0.85, but
at such t values even the existence of the cubic perovs-
kite structure is dubious.

At the same time, with a change in the ZA value, the
coefficient β1R noticeably changes. Thus, at ZA = 0,
we have β1R < 0; at ZA = 1, 2, we have β1R > 0; and at
ZA = 3, the coefficient β1R becomes negative again. In
other words, the coefficient β1R depends on ZA in a com-
plicated nonmonotonic way.

It follows from the above consideration that the key
factor for the formation of the phase sequence is, first,
the relationship between α1M and α1R and, second, the
location of the thermodynamic path with respect to the
multicritical N-tuple point α1 = 0, β1R = 0. The effect of
the crystallochemical parameters on these relationships
is as follows: an increase in t at ZA = const ≠ 0, stimu-

β1R
0( )

β1R
0( )

β1R
0( )

β1R
0( )

β1R
0( )
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lates the system softness with respect to M3 to a higher
degree than with respect to R25, and, in a similar way, a
decrease in ZA (ZA ≠ 0) at t = const also stimulates the
system softness with respect mainly to M3.

Now, consider the factors that promote the forma-
tion of this dependence. A decrease in t (t < 1) signifies
that the dimensions of the cavity formed by octahedra
increase in comparison with the dimensions of an
A-cation. This creates favorable conditions for the rota-
tion of BX6 octahedra and an increase in the root-mean
square deviation of A-cations from the centers of the
cavities, i.e., promotes an increase in the degree of its
localization. At the rotations corresponding to the M3
mode, the local field with the symmetry of a quadrupole
moment arises in the cavity and interacts with the delo-
calized A-cations, thus decreasing the energy of this
mode and providing its condensation. The R25 mode
interacts with the delocalized A-cations to a much
lesser degree, because it creates a field with the symme-
try of the third-order multipole moment at the center of
the cavity. Therefore, an increase in delocalization stim-
ulates system softening with respect to M3 to a larger
degree than with respect to R25. A decrease in ZA in the
presence of a “free space” for an A-cation inside the
cavity reduces the attraction of A-cations to the cavity
center, which also increases its delocalization and pro-
motes system softening with respect to M3.

The above considerations allow one to explain the
character of the dependence of the temperature of the
rotational phase transitions in the solid solutions
AxNa1 – xNbO3 at x ! 1 (where A = K, Li) on the concen-
tration x. In the cubic lithium niobate phase, two soft
modes are present, M3 and R25 [12]. Since the factor t in
NaNbO3 is t ≈ 0.87, ZA ≈ 1, then first the mode M3 is
condensed and only then the R25 mode (sequence 3 in
set (2), Fig. 4). The replacement of Na+ by a larger K+

results in a considerable reduction of the free space for
both A-cation and anions. Therefore, with an increase
in x, the temperatures of all the rotational phase transi-
tions drastically decrease (∆TÒ ~ 15–20°C at ∆x ~ 0.01)
[15]. On the contrary, the replacement of Na+ by a
smaller Li+ should be accompanied by an increase in
the temperatures of all the rotational phase transitions.
Indeed, according to the data obtained for
Na1 − xLixNbO3 single crystals [16], at x * 0.04, the tem-
peratures of the rotational phase transitions start notice-
ably increasing; however, in the 0 & x & 0.04 region,
they remain practically constant. The existence of a pla-
teau at x & 0.04 seems to be associated with the interac-
tion of Li with the structural defects in a NaNbO3 crystal.
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