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The trapped flux distribution in thin wafers of both polycrystalline and
granular superconductors having large demagnetization and edge bar-
riers of different heights is measured by means of polarized neutrons. It
is shown that the nature of the critical state in polycrystalline wafers,
unlike that in a ceramic wafer, is not described by the Bean model.
© 1999 American Institute of Physids$0021-364(09)00124-3

PACS numbers: 74.80.Bj, 74.60.Ge, 75:20.

In situations where demagnetization effects can be ignored, the magnetic response of
type Il superconductors is well described by the Bean ntogli¢h the appropriate critical
current densityl(B,T). In this geometry the flux lines are parallel, and the local current
densityJ is governed by the gradient of the magnetic inductn.e.,J=|VB|. On the
other hand, demagnetization effects become significant in a geometry characterized by a
large demagnetization factde.g., thin films in a perpendicular figldFor example, in
situations where the thicknessof the sample is much smaller than its widiti the
current density is essentially determined entirely by the curvature of the flux lines. This
relationship is evident at once from Maxwell's equation7({4)J=VXB=VBXb
+BV X b, whereb=B/B. The first term on the right-hand side of the equation gives the
gradient ofB and is proportional to W; the second term characterizes the curvature of
the flux lines and is proportional tod./

The influence of demagnetization on the way in which the magnetic flux penetrates
a type Il superconductor has been analyzed theoretically in several papers. In the example
of a superconducting strip it has been shéwow the magnetic flux profiles and the
current densities for the Bean model change when demagnetization effects are taken into
account. Three prominent features are discernible in this caséurtent flows in the
entire sample(even in the part where the magnetic field has not penejragdhe
magnetic flux profile exhibits divergence at the edges of the samplde3relationJ
=|VB]| is not satisfied. However, despite all the differences in the distributions of the
magnetic flux and the current density, the magnetic flux also begins to penetrate from the
edges of the sample and advances toward the middle as the external field is increased.

The structure of the critical state in superconducting samples has been analyzed
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theoretically>* not only with demagnetization effects taken into account, but also with
allowance for the edge barrier. It follows from this analysis that when, for example,
superconducting films are placed in a magnetic field perpendicular to their plane, the
critical state should be observed to have a structure that differs fundamentally from the
Bean modet. The main distinguishing feature of this situation is that, without pinning,
the magnetic flux immediately penetrates to the very middle of the film and becomes
concentrated there. The distribution of the magnetic flux along the width of the sample
(along they axig) in this case is described by the equation

2_ 2
How/bi for |y|<b/2,
B(y)= W?—4y?

0 for  b/l2<|y|<WI2,

whereH is the magnitude of the applied magnetic field, &#nd the width of the region
occupied by vortices.

The presence of bulk pinning, on the other hand, has the effect that instead of a
single region occupied by the magnetic flux, there are two such regions separated by a
certain distance, which depends on the pinning fdtbe greater the pinning force, the
greater is this distangeBoth regions broaden as the external magnetic field is increased.
Their outer boundaries approach the edges of the sample, and the inner boundaries
approach the middle, where the two regions merge. For a large pinning force the distance
between the flux-occupied regions can be of the order of the sample width. In this case
the structure of the magnetic flux in the sample is essentially indistinguishable from the
structure described by the Bean model.

We have attempted to compare the magnetic properties of a cefgnaiculay
sample and a quasi-single-crystallifmongranular sample in this geometry. For the
investigation we prepared prism-shaped wafers from these matefigis92 K). The
side surfaces of the polycrystalline sample were reasonably smooth after polishing and
comprised a mosaic of large single-crystalline grains with surface dimensions of the order
of 0.2 cnf each. Their thickness was obviously much smaller than the thickness of the
entire wafer, because the mosaic pattern on the surface of the opposite face was different.
Also visible under a microscope, in addition to the large single-crystalline surfaces, were
streaks of some kind of inclusions with colors that stood out in sharp contrast with the
single-crystalline grains. We regard the object in question as a coarse polycrystalline
block. Initially a wafer of thickness 1.3mm was cut from this block. Once the flux
distribution had been measured in this wafer, it was ground down to a thickness of
0.65mm, and again the flux distribution was measured. The samples had widths of
5-7mm and a height of 25 mm.

Information on the distribution of the magnetic flux trapped by a superconducting
sample before and after application of an external magnetic field was obtained by three-
dimensional neutron polarization analysis. This residual distribution exhibits the manner
in which the field penetrates the sample.

We have described the measurement procedure in an earlier’papeutron beam
was generated by slits of width 0.4 mm and height 7 mm and was directed along the
x axis. After the sample had been cooled to the required temperafstd §), a mag-
netic field directed along the thickness of the waf@ong thex axis) was applied and
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FIG. 1. Experimental results for a polycrystalline sample of thickness 1.3 mm in various applied figlds at
=80 K for half the sample(a) dependence of the angle of rotation of the polarization vector on the coordinate
y; (b—d) behavior of the modulus of the polarization vector as the position of the sample is changed.

then turned off. The sample was oriented across the neutron {@ang they axis), and

the three projections of the polarization vector of the beam transmitted through the
sample were measured at each gitef the sample for each initial polarization vector.
The initial polarization vectors were directed in succession along each of the three mu-
tually perpendicular axe(y, z). After the nine components of the polarization vectors
had been measured, the sample was heatefi>td ., and the entire procedure was
repeated with a new magnitude of the external magnetic field.

The angle of rotationp of the polarization vector is proportional to the magnetic
inductionB (¢=vy/v-B-L, whereL is the length of the segment of the neutron trajectory
with B#0, v is the neutron velocity, ang is the gyromagnetic ratio of the neutpon
Consequently, the magnetic flux distribution in the superconducting sample can be esti-
mated from the dependence of the angle of rotation on the position of the sample relative
to the neutron beam.
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FIG. 2. Experimental results for a polycrystalline sample of thickness 0.65 mm in various applied fi€lds at
=80 K for half the sample(a) dependence of the angle of rotation of the polarization vector on the coordinate
y; (b) behavior of the modulus of the polarization vector when the position of the sample is changed.

The experimental results are shown in Figs. 1 and ZT AB0 K the field begins to
penetrate the polycrystalline sample in a field of approximately 50 Oe. As the external
field is increased, the flux begins to concentrate in the middle of the samplé hm),
the total level increasing slightly throughout the sam(fly. 13.

When the polarization vectd?, was initially directed along thg axis, it remained
unchanged, confirming the alignment of its direction with the fi€lig. 1b. The vectors
Py, and P,, on the other hand, rotated through the angleTheir moduli remained
constant only at the edges of the sample; in the middle, where flux concentration took
place, depolarization was observed, i.e., the modulus decrébigd 1¢c and 1d The
origin of the depolarization remains an open question. At least two causes are possible.
The first is inhomogeneity of the scattered field. In all probability, however, this factor
can be ruled out, because reducing the sample thickness by on@igal®) causes the
depolarization to decrease, even for large sample magnetizations. The second cause is
associated with the fact that the flux penetrates the sample not only along directions
parallel to they axis, but also along directions parallel to thexis. The penetration of
vortices along the axis produces a flux distribution nonuniform in height, whose con-
tribution to the depolarization is governed by the height of the(Blibhm). It is important
to note that if the flux distribution were described by the Bean model, the height-
nonuniform flux distribution could not reach the zone irradiated by the beam. In our
opinion, therefore, the depolarization of the beam is further evidence of concentration of
the flux in the middle of the sample.

The distribution pattern of the trapped flux in a ceramic wafer of thickness 0.8 mm
at T=60K differs from the preceding patterns and is shown in Fig. 3. Suppression of the
edge barrier, as is typical of highs superconductors, and strong pinning probably yield
a distribution described by the Bean model. We have arrived at similar results in an
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FIG. 3. Dependence of the angle of rotation of the polarization vector on the position of a ceramic sample at
T=80 K for various applied fields.

analogous investigation of a ceramic sample in a geometry that minimized demagnetiza-
tion effects’ We note that the external field for which flux trapping commenced in Ref.

5 was~4.50e. In experiments with a thin wafer, on the other hand, the field already
reaches saturation at this magnitude.

In summary, we have used neutron scattering to investigate the magnetic flux struc-
ture formed in superconductors having a large demagnetization factor and a compara-
tively high edge barrier. The final results corroborate the conclusion of Refs. 3 and 4 that
a conceptually new structure of the critical state, manifested by concentration of the
magnetic flux in the middle of the sample, occurs in superconductors having a large
demagnetization factor and a sufficiently high edge barrier. The nature of these structures
depends on the relation between the parameters of the edge barrier and the average bulk
pinning force.

The authors are grateful to I. L. Maksimov, who inspired the setup of the reported
experiments, for a discussion of their results and critical comments, along with D. Yu.
Vodolazov for a discussion of the results of the study.
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Two exotic objects are still not identified experimentally in chiral su-
perfluids and superconductors. These are the half-quantum vortex,
which plays the part of the Alice string in relativistic theorigs S.

Schwarz, Nucl. Phys. B08 141 (1982], and the hedgehog in tHe
field, which is the counterpart of the Dirac magnetic monopole. These
two objects of different dimensionality are topologically connected.
They form a combined object which is called a nekilishn M. Corn-
wall, hep-th/9911125; Phys. Rev. B9, 125015(1999; Phys. Rev. D

58, 105028(1998] or center monopoléN. N. Chernodub, M. I. Po-
likarpov, A. I. Veselov and M. A. Zubkov, Nucl. Phys. Proc. Supf3,
575(1999] in relativistic theories. Such a combination will permit the
observation of half-quantum vortices and monopoles in several realistic
geometries. ©1999 American Institute of Physics.
[S0021-364(99)00224-9

PACS numbers: 67.55.Fa, 74.2¢

In relativistic quantum fields a nexus is a monopole in whithortices of the group
Zy meet at a centefnexug provided that the total flux of vortices adds to zémod
N).2~*In a chiral superfluid with an order parameter of fite-A type, the analog of the
nexus is the hedgehog in thdield, in which 4 vortices meet, each with the circulation
quantum numbeN = 1/2. The total topological charge of the four vorticeis 2, which
is equivalent td\=0 because the homotopy group, which describeSteA vortices,
is m,=2, (Ref. 5, and thusN=0 (mod 2. EachN=1/2 vortex plays the part of a 1/4
fraction of the “Dirac string” terminating on the hedgehog, while the hedgehog i the
field plays the part of the Dirac magnetic monopole: The distribution of the vector
potential of the electromagnetic fiekdin the vicinity of the hedgehog in the electrically
charged version ofHe-A (the chiralp-wave superconductpiis similar to that in the
vicinity of a magnetic monopolésee, e.g., Refs. 638

The order parameter describing the vacuum manifold in a chivedve superfluid/
superconductor’He-A and also possibly the layered superconducteR80;)° is

A,=Ad (eM+iel?). (1)
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Hered is the unit vector of the spin-space anisotrogy? andet® are mutually orthogo-
nal unit vectors in the orbital space; they determine the superfluid velocity of the chiral

condensateys=(ﬁ/2m)éi(1)Véi(2), where 2n is the mass of the Cooper pair; the orbital
momentum vector i$=eMx e?). The half-quantum vortex results from the identifica-
tion of the pointsd, eV +ie® and —d, — (/") +ie?), which correspond to the same
order parameter, Eq1). It is a combination of ther vortex ands disclination in thed
field:

azicos§+§/sin§, e +ie@ =g ?2(x+iy), 2

where ¢ is the azimuthal angle around the string.

The hedgehog in the orbital momentum fielleékr, produces the superfluid velocity
field (or the vector potential in the corresponding superconductor

e
Ve=cA A=2 AR 3

whereA? is the vector potential for the Dirac monopole with itk Dirac string with the
topological chargeN, (the number of quanta of circulatiobnChoosing the spherical
coordinate systemr(6,¢) in such a way that the string occupies the lower half axis
z<0, the vector potentiah? of such string can be written &s:

Aa fic N4 1-cosé 4
" der ad sing - @)

The superfluid vorticity and the corresponding magnetic field in superconductor are

fior h R
V><vs=—mr—3§ Na+%§ Nafodrﬁ(r—ra(r)), (5)
hc r
B=—— — E N f dr 8(r—ry(r)), > Ny=-2. (6)
4e r3 a a

Herer,(r) is the position of thath line, assuming that the lines are emanating radially
from the monopole, i.e., the coordinate along the line is the radial coordinate. The regular
part of the magnetic field corresponds to a monopole with magnetic charge/2e; the
magnetic flux 4rg of the monopole is supplied by the Abrikosov vortices. The lowest
energy of the monopole occurs when all the vortices emanating from the monopole have
the lowest circulation nhumber: this means that there must be four vortice\witiN,
=N3=N,=—1/2.

The half-quantum vortices are accompanied by spin disclinations. Assuming that the
d field is confined in the plane, one can characterize the disclinations by the winding
numbersy,, which have valuest 1/2 in half-quantum vortices. The corresponding spin-
superfluid velocityvg, is

4 4

S A S ve=0, @

Veg=—
P mc s a=1
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where the last condition means the absence of the monopole in the spin sector of the
order parameter. Thus we have=v,= —v3=—1,=1/2.

The spin—orbit coupling can be neglected if the size of the bubble is less than
spin—orbit lengthabout 1gum in 3He-A). If it is assumed that the superfluid velocity is
everywhere perpendicular foand has the formvs=V4(6, $)/r, the energy of the nexus
in the spherical bubble of radilR is

R 2 1 2 1 2 1 2 1 2
E= for drf dQ EpsVs'f‘ Epspvsp ZRJ dQ Epsver Epspvsp

= 3R [ 00t ppl (B B2 (B2 R4

+2(ps—psp (A1+A%)(A3+AY),
~ mcr
A%(0,¢)= TAa- 8

In the simplest case, which occurs in the ideal Fermi gas approximation, when the
Fermi liquid corrections are neglected, one has psp.lo In this case the 1/2 vortices
with positive spin current circulation do not interact with 1/2 vortices with negative
The energy minimum occurs when the orientations of two positiv@rtices are oppo-
site, so that these two 1/4 fractions of the Dirac strings form one line along the diameter
(see Fig. 1L The same happens for the other fractions with negativdhe mutual
orientations of the two diameters is arbitrary in this limit. However, in ?ed-A one has
psp<ps (Ref. 10. If pg,is slightly smaller thamps, the positiver and negative strings
repel each other, so that the equilibrium angle between thenfi2isin the extreme case
psp<ps, the ends of four half-quantum vortices form the vertices of a regular tetrahe-
dron.

Such monopole can be experimentally realized in the mitéel*He droplets ob-
tained by the nozzle beam expansion of He gas@he *“He component of the mixture
forms the cluster in a central region of the drogfelf the size of the cluster is compa-
rable with the size of the droplet, the radial distribution of ktvector is stabilized by the
boundary conditions on the surface of the droplet and on the boundary of the ¢hester
Fig. 1). The*He cluster plays the part of the core of the nexus. The half-quantum vortices
emanating from the nexus are well defined if the radius of the droplet exceeds the
coherence lengt§~200-500 A.

In a p-wave superconductor such a monopole will be formed in a thin spherical
layer. In SpRuQ, superconductor the spin—orbit coupling between the spin vectord

crystal lattice seems to align tlievector alond (Ref. 12. In this case the half-quantum
vortices are energetically unfavorable, and instead of 4 half-quantum vortices one would
have 2 singly quantized vortices in the spherical shell.

A monopole of this kind can also be formed in the so-called ferromagnetic Bose
condensate in optical traps. Such a condensate is described by a vector or spinor chiral
order parametef®
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N=-1/2 vortex,

»
N=-1/2 vortex, /

1/4 of Dirac string

FIG. 1. The outward-pointing arrows show the distribution of the orbital mometiieid and simultaneously

the distribution of superfluid vorticity¥ X v in superfluid®*He-A or of the magnetic field in a chiral super-
conductor. The inward-pointing arrows show the direction of the vorticity or magnetic flux concentrated in 4
half-quantum vorticesdashed lines The chargev=*+1/2 is the number of quanta of circulation of the spin
current velocityvg,. The stability of the monopole at the center of the droplet is supported by the cluster of the

“He liquid, which provides the radial boundary condition for theector. The cluster forms the core of the
monopole.

There are interesting properties of the system related to the fermionic spectrum of
such objects. In particular, the number of fermion zero modes oN th&/2 vortex under
discussion is smaller by a factor of two than that on the vortex With1l. This is
because thidl=1/2 vortex can be represented as e 1 vortex in one spin component
with no vortices in another spin component. Thus, according to Ref. 14, in the core of the
N=1/2 vortex there is one fermionic levger 2D layef with exactly zero energy. Since
the zero-energy level can be either filled or empty, there is an entropy (1/2)In 2 per layer
related to the vortex. The factor (1/2) appears because the particle excitation coincides
with the antiparticle(hole) excitation in superconductors, i.e., the quasiparticle is a Ma-
jorana fermion; see also Ref. 15. Such a fractional entropy also arises in the Kondo
problem!® According to Ref. 17, the&=1 vortex has spirB=1/4 per layer, and this
implies a spinS=1/8 per layer for theN=1/2 vortex. Similarly the anomalous fractional
charge of theN=1/2 vortex is 1/2 of that discussed for the=1 vortex*®

| thank M. Feigel’'man and D. Ivanov for discussions. This work was supported in
part by the Russian Fund for Fundamental Research and by the European Science Foun-
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A multicomponent Stark structure corresponding to la;4—4l 5
transition in the 4% shell of EP" ions is observed in hydrogenated
amorphous silicond-Si:H) subjected to low-temperatufé50 °Q an-

neal. The observation of narrow, strong components indicates that the
erbium ions form a highly ordered local surroundifiey—O—Sinano-
cluster$ in the labile, disordered structural network @fSi:H.

© 1999 American Institute of PhysidsS§0021-364(109)00324-3

PACS numbers: 78.55.Ap, 71.70.Ej

A characteristic feature of the electronic structure of rare-earth elements is strong
shielding of the partially filled inner # shell with outer-shell electrons. When ions of
rare-earth elements are situated in a matrix, theshell interacts weakly with the crystal
field generated by nearest-neighbor atoms. The main splittind sfates is the result of
spin-orbit interaction. The crystal field merely lifts the degeneracy of the spin-orbit split
levels.

The atomlike spectra of intern&l-f luminescence in perfect crystalline semicon-
ductor matrices consist of series of Stark multiplets. A Stark structure is scarcely detected
at all in disordered semiconductor matrices, owing to strong, nonuniform broadening of
the individual components of the multiplets.

In the present study the photoluminescence spectrum in a disordered semiconductor
— erbium-doped amorphous hydrogenated silicon — has been observed to have a mul-
ticomponent structure corresponding to an internigh4— 4l 5, transition in the 4*
shell of EP* ions. The minimum width of the Stark components at 77 K attains 2 meV.
This value is consistent with the usual recorded width of the Stark components in the
emission spectra of Ef centers in crystalline silicoh? The structure is sharply en-

0021-3640/99/70(12)/4/$15.00 797 © 1999 American Institute of Physics
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FIG. 1. Photoluminescence spectraTat77 K, of twoa-Si(Er):H films subjected to low-temperatu¢&50 °Q
anneal. The films were prepared by magnetron sputtéengnd PECVD(b).

hanced by a short-terfl0—20 min, low-temperature <200 °Q anneal ofa-Si(Er):H
films.

Figure 1 shows the photoluminescence spectra of &8¥Er):H films thermally
annealed at 150 °C in a liquid nitrogen atmosphere. This anneal temperature is much
lower than the temperatufd00—500 °Q at which the crystallization process is initiated
in a-Si(Er:H.2 The amorphism of the structural network was monitored by Raman
spectroscopy.The films were prepared by the cosputtering of a composite Si—Er target
with simultaneous decomposition of the reactive gas in a magnetron discharge lasma
and by plasma-enhanced chemical vapor deposif&CVD).® The deposition tempera-
ture was 200 °C. The photoluminescence excitation source was an argor4ia3ed
and 5145 A. The photoluminescence signal was recorded by a cooled germanium pho-
todiode.

The observation of such narrow photoluminescence lines is unequivocal evidence
that the erbium ions reside in a highly ordered local surrounding. The dispersion of the
lengths of the interatomic bonds and the angles between them in the nearest-neighbor
local surrounding of EX" ions should not exceed the characteristic values for crystalline
silicon.

Amorphous solids are known to be systems frozen in a metastable state far from the

absolute energy minimurhlt is possible for metastable, highly ordered local atomic
configurations(nanoclustersto form around Et ions imbedded in a labile matrix of
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amorphous silicofi. The observed fine structure of the Stark levels reveals the formation
of such local configurations.

We note that impurity atoms in crystalline silicon are situated at nodes or in inter-
stices of the lattice, which are characterized by a finite number of specific local symme-
tries. For example, in crystalline silicon implanted with erbiumHy/cn?) and oxygen
(10°°0/cn?) and subjected to appropriate thermal anneals, according to extended x-ray
absorption fine structur€EXAFS) data, the nearest-neighbor atoms in the erbium sur-
rounding are 5.6 0.5 oxygen ions at an average distance of 2.02 A. This configu-
ration is very close to the surrounding of erbium ip@js (six oxygen atoms at a distance
of 2.26 A).° Also, the most probable local symmetries of sites occupied By Emns are
T4, C3, andD,q (Ref. 10.

Recent EXAFS results ia-Si(Er):H prepared by sputteridysuggest that the near-
est neighbors of an Ef ion in such an ordered nanocluster could be, for example, two
or three oxygen atom@t an average distance of 2.07—2.14akd silicon atom$3.10—
3.17 A). Consequently, in amorphous silicon under certain conditiorethod of prepa-
ration, cooldown temperature, anneal temperature) #ie. symmetry of the local sur-
rounding of EF* ions, which generates a ligand intracrystalline field, can be lower than
in crystalline silicon. The low symmetry and probably minute dimensions of the resulting
Er—O-Siclusters can also significantly alter the hybridization of band and impurity
states. Consequently, both the energy spectrum of the luminescence centers and the
probabilities of electron transitions change in the highly localitatectron system.
These changes explain why the experimental photoluminescence spectra contain narrow
lines having a comparable intensity, but much shorter wavelength then the wavelength
(15340 A of the transition between the lowest sublevels of theg;4and 4 5, multip-
lets of the E¥* ions in erbium-doped crystalline silicdnt?**The recorded differences in
the ratio between the intensities of the components and in the number of components of
the Stark structure ia-Si(Er):H films prepared by different technologiésig. 1) suggest
the possible existence of several types of low-symmetry erbium-containing centers.

Increasing the anneal temperature to 300 °C almost completely eliminated the fine
structure from the photoluminescence spectra and caused the remaining lines to broaden
considerably. This behavior is attributed to an increase in the efficiency of gettering of
oxygen ions by erbium ion$The high efficiency of this process imparts high mobility to
the impurity atoms in amorphous silicon at the given temperattfést of all, gettering
lowers the density of the lowest-symmetry emission centers, which contain the smallest
number of oxygen atoms in the nearest-neighbor surrounding of the iBns. As a
result, transition lines having a wavelength smaller than 15340 A vanish. The density of
centers containing a large number of oxygen atoms increases accordingly. Second, get-
tering induces an increase in the static disorder of the as-prepared structural network of
amorphous silicon near the boundaries of the ordered®EiSinanoclusters, which leads
to nonuniform broadening of the emission lines. Third, the process increases the
intensity*® of the remaining detectable lines, making it possible to observe an essentially
unstructured, strong, broad photoluminescence band at room tempéeFigurg).

To summarize, Bf ions in a disordered matrix of hydrogenated amorphous silicon
can function as centers for the nucleation of metastable nanoclusters having a highly
ordered structure. Observation of the evolution of Stark splitting of the terms of the
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FIG. 2. Photoluminescence spectrum;Tat 300 K, of ana-Si(Er):H film deposited by magnetron sputtering
and annealed at=350 °C.

highly localizedf-electron system of these ions affords a sensitive investigative probe for
studying the formation and destruction of such clusters.
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The influence of laser irradiation on the photoluminescence spectra of
perfect Gq crystals in the orientationally disordered phase is investi-
gated. It is shown that irradiation of the crystals with low-power light
for short durations alT =200 K produces radical changes in the lumi-
nescence spectrum. The pressure dependences of the spectral bands of
the phototransformed and initi@vithout irradiation spectra differ sig-
nificantly, indicating a photoinduced structural transformation of the X
centers responsible for the luminescence gf.dhe phototransformed

Cgo Crystals are stable against further exposure to light irradiation and
pressure. ©1999 American Institute of Physics.
[S0021-364(09)00424-1

PACS numbers: 78.55.Hx, 62.50p, 71.35.Aa, 61.80.Ba

The low-temperature photoluminescence spectra of high-qualjgycystals are
known to have a line structure attributable to the radiative recombination of Frenkel
excitons localized at so-called X centérsA C band associated with the radiative re-
combination of free Frenkel excitons is also observed in crystals having a relatively low
density of X centers and a low luminescence quantum efficiéfidye properties of X
centers and their relationship to the structure of the luminescence spectrygnooy€ials
are of considerable interest and have been investigated in a number of papers. However,
despite significant progress in research on the electronic stateg ofe real nature of
X centers remains elusive for the most part. Studies of the luminescence spectra of the
purest Gq crystals have shown that the X centers are not associated with impurities,
rather they are more likely attributable to defects of the crystal structure. Regardless of
the degree of structural perfection of the investigated samples, the presence of orienta-
tional defects is a characteristic attribute of fullerite. The occurrence of an orientational
ordering phase transition inggcrystals atT=260K and the cessation of random mo-
lecular rotation below this temperature are well kndhowever, the molecules execute
discrete rotations between two energywise close orientational states down to 80 K, below
which each molecular motion is frozen, and a phase of the orientational glass type is
established.

It is also known that the dimerization of molecules is observed in the orientationally
disordered phase of laser-irradiateg,Cand polymerization of the as-grown material

0021-3640/99/70(12)/6/$15.00 801 © 1999 American Institute of Physics
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takes place when the laser power is incred@sBdtailed studies of the optical spectra and
crystal structure of g have shown that polymerization also takes place under the com-
bined influence of pressure and high temperatures, resulting in the formation of numer-
ous, structurally different phasé8 All these transformations are accompanied by a radi-
cal change in the initial photoluminescence spectrum.

Modification of the luminescence spectra in laser irradiation has also been observed
in the orientationally ordered phase of Crystals at standard pressure and at tempera-
tures of 5K, 77K and 120 K. This phenomenon was achieved by pre-irradiating local
zones of the crystal with a laser beam at power densities ranging from 5AMftm
50 W/cnt and then recording the photoluminescence spectra from the irradiated and
control zones of the crystal @t~5 K and an excitation power densityl W/cn?. It was
established that irradiation of the crystals at temperatures in the vicinity of 5K and 77 K
induces a relative variation of the intensities of the emission bands ahH X; centers,
and irradiation at 120K is accompanied by diminution of the Znd X;-center bands
and enhancement of the intensity of the C b&&imilar results on the influence of laser
irradiation on the photoluminescence spectra in the low-temperature range are also re-
ported in Ref. 10.

Consequently, the existing experimental data indicate that light has a powerful in-
fluence on the spectrum of localized electronic statesggfcG/stals. Photoinduced pro-
cesses in the orientationally ordered phase of fullerite, in particular, the low-temperature,
photoinduced structural transformation of X centers, are of major interest in this regard.
With the latter phenomenon in mind, in the present study we report an investigation of
the combined influence of high pressure and laser irradiation ggrei@stals and show
that a radical transformation of the photoluminescence spectra takes place in the tem-
perature range 140-250 K. We confirm that the pressure dependence of the phototrans-
formed and initial photoluminescence spectra differ significantly, and the phototrans-
formed samples are stable against subsequent light irradiation and pressure. We have
shown that the photinduced structural transformation of X centers also takes place at high
pressure, and when the latter is suddenly dropped to standard pressure, the photolumi-
nescence spectra of the samples transformed at different pressures are identical.

The measurements were carried out on a large seriegqafrgstals grown from the
vapor phase. The photoluminescence spectra were recorded by means of an automated
spectrometer incorporating a DFS-12 dual monochromator, a liquid nitrogen-cooled
FEU-62 photomultiplier, and a 5S1 photon counting system. All the photoluminescence
spectra were normalized to the calibrated spectrum of a tungsten lamp. Luminescence
was excited by a helium-neon laser with its power output limited by optical filters.
High-pressure measurements in liquid nitrogen or helium vapor were performed using a
miniature diamond anvil cell of the Merrill-Bassett type enclosed in a helium optical
thermostat. Pressure was transmitted by means of a 4:1 methanol-ethanol Hiziude,
its value was determined from the position of the ruby luminescdtcdine within
~0.05-GPa error limit$? The measurements were performed on crystals having a mirror
finish and dimensions of 100100x 40 um, which are close to the dimensions of the
working volume of the high-pressure cell.

The photinduced structural transformation was investigated over a wide range of
temperatures on crystals with a relatively high photoluminescence quantum efficiency,
whose spectra were dominated by the emission bands; 0KX and X centers. They
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FIG. 1. Photoluminescence spectra of nonirradidteed and laser-irradiatee—g Cg, Crystals at a tempera-
ture T=80 K and pressures up to 3.0 GPa.

show that the variations of the photoluminescence spectra takes place in the temperature
interval 180-240K and are appreciable even at a very low excitation level
=5x 10 3W/cn?. The temperature dependence of the phototransformation efficiency at
standard pressure is bell-shaped with a maximum in the vicinitf 2200 K. Conse-
quently, atT=200K laser irradiation of the crystal fo=15min at a power density

~0.2 W/cnt leads to radicalmore than 95%restructuring of the initial spectrum. It is
important to note that direct measurements of the photoluminescence spectra were per-
formed atT=80K, i.e., at a temperature where phototransformation is frozen.

Figure 1 shows the initiala) and phototransforme(E) photoluminescence spectra
determined at a pressure0.2 GPa under the above-stated irradiation conditions. The
measurements show that spectr{@nis stable in the presence of further irradiation of the
crystal over the entire temperature range upl'te260 K. Temperature cycling of the
samples in the interval 5—300 K without irradiation by any kind of light does not produce
appreciable changes in the high-temperature photoluminescence spectra. On the other
hand, the irradiation of these crystalsTat 300 K for the sample laser excitation param-
eters alters the low-temperature photoluminescence spectrum in connection with flare-up
and pronounced broadening of the bands of the initial spectrum. Similar effects have been
observed in all the g crystals at our disposal, but irradiation does not have such a
pronounced influence on their photoluminescence spectra.

Figure 1 also shows the photoluminescence spectra of the as-grown and phototrans-
formed crystals at various pressures. Spe@ja(d) refer to the nonirradiated crystal,
and spectrde)—(g) to a crystal preirradiated at a temperatiire 200 K and pressure of
0.2 GPa. It is evident from Fig.(a—d that, apart from an overall shift of the photolu-
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FIG. 2. Pressure dependence of the band positions in the low-temperature photoluminescence spectrum of
nonirradiateddark symbolg and irradiatedlight symbolg Cg, crystals. The dark and light dots represent the
pressure dependence of the position of the C band.

minescence spectrum into the long-wavelength region, its shape also changes as the
pressure is increased. A&=1.2 GPa a band that is scarcely perceptible in the initial
photoluminescence spectrum flares up in the short-wavelength region. On the other hand,
fine structure becomes increasing evident in the broad bands of the initial photolumines-
cence spectrum as the pressure is increased. Such changes have also been observed in the
spectra of the preirradiated crystal, but are not nearly as pronounced.

Figure 2 shows the pressure dependence of the positions of the spectral bands in the
photoluminescence spectra of the as-gradark symbolg and phototransformedight
symbolg crystals. It is evident from Fig. 2 that the pressure variations of the bands of
preirradiated and nonirradiated crystals differ significantly in the low-pressure range, but
then they become more alike as the pressure is increased, 8l1a8 GPa they essen-
tially coincide. The difference in the pressure dependence of the photoluminescence
bands of the as-grown and irradiated crystals in the initial pressure range indicates that
what happens during irradiation is not merely a redistribution of the photoluminescence
intensity among different luminescence centers of the as-grown crystal, but a transfor-
mation of the core structure of the crystal. At the same time, the increasing similarity of
the photoluminescence spectra of the as-grown and phototransformed samples with in-
creasing pressure suggests that the latter could be unstable under the influence of high
pressure and revert to the as-grown state. It is also essential to note that pressure-
enhanced band in the spectrum of the nonirradiated crystals is in the same position and
exhibits the same pressure dependence as the C band, which we have previously identi-
fied with the emission of free excitoris.

We have carried out an experiment to answer the question of whether the pho-
totransformed samples are stable and whether phototransformation takes place at high
pressure; the results are shown in Fig. 3. Curi@sand (b) in Fig. 3 represent the
photoluminescence spectra of the nonirradiated crystal at a tempefiat8@ K and
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FIG. 3. Luminescence spectra of&rystals phototransformed at various pressures.

pressures of 0.2 GPa and 2.3 GPa, respectively. The crystal was then irradiated with light
at the above-indicated power and duration at a pressure of 2.3 GPa and tempErature
=200K. The photoluminescence spectrum of this crystalaB0K is shown in Fig.

3(c). On the whole, its shape is quite close to that of the spectrum of the nonirradiated
crystal(b) other than a certain broadening of the bands and diminution of the intensity of
the short-wavelength C band. After the pressure is dropped back to the standard level the
photoluminescence spectrum of this same crystdl=aB0 K acquires the fornfd). It is
evident from the figure that it is not similar to the initial spectr(an but is more like the
characteristic spectrurie) for the crystal preirradiated at standard pressure. The observ-
able difference between specti@d and (e) is probably attributable to the presence of
residual stresses in the crystal and cracking of the crystal after the pressure is dropped to
the standard level, so that the spectral bands broaden, and the contribution of the initial
spectrum increases somewhat. The results of the investigations show that sgegtigim
stable against further irradiation of the crystal upTte 300 K.

Consequently, the results indicate that wheg €ystals are irradiated by a laser
beam in the temperature interval 180—-240K and at pressures up to 2.3 GPa, the photo-
luminescence spectra undergo a radical transformation as a result of restructuring of the
radiative recombination X centers. At standard pressure this process attains its maximum
efficiency atT=200K and falls off sharply near the point of transition to the orienta-
tionally disordered phase. The drop in efficiency of transformation of the centérs at
=260K, when the molecules execute random rotation, is most likely indicative of the
definite role played by the orientation of thgy@nolecules during photoinduced trans-
formation of the X centers.

In closing, the authors are grateful to R. K. Nikolaev for furnishing thgdgystals,
to the Russian Fund for Fundamental Research for partial financial support of the study
(Project #99-02-17555and to the NATO Research Committee for its support under the
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The phenomenon of energy transfer, both monotonic and oscillating,
between the fundamental and higher harmonics of standing acoustic
waves is observed during the laser generation of sound in YEp®-

tals. An analogous phenomenon for traveling light waves is well known
in nonlinear optics. ©1999 American Institute of Physics.
[S0021-364(99)00524-1

PACS numbers: 72.5%s, 43.35.Rw, 75.50.Dd, 43.25.Gf

Magnetoelastic interaction in weak ferromagnets produces an effective acoustic an-
harmonicity several orders of magnitude stronger than the intrinsic anharmonicity of the
crystal. This phenomenon has been mentioned previbasly confirmed experimentally
by the observation of elementary nonlinear effects: acoustic second-harmonic generation
and demodulation in hematftdand in thulium orthoferrite in the spin-flip regidriveak
ferromagnets are therefore attractive for the observation of nonlinear acoustical effects.
However, if high-power laser pulses are used to generate sound, it is possible to observe
more complex nonlinear effects than those investigated in Refs. 2—4. We have used this
technique in the present study.

The sound source was a laser beam having a wavelength of Ari64 pulse
duration of 15ns, and a pulse energy up to 0.03J. The diameter of the laser beam was
1.5mm. The incidence of the pulsed laser beam on a magnetic crystal wafer produced
very large strains %10 %) in it, which were then converted into a standing acoustic
wave. Through magnetoelastic and piezomagnetic interactions the elastic vibrations in-
duced corresponding oscillations of the magnetization of the crystal, which were recorded
by an induction technique using a flat coil having a diameter 3.5 mm and consisting of
3-10 turns, which was placed directly on the surface of the sample. The laser beam
passed through the central opening of the coil without touching its turns. This beam-coil
configuration enabled us to record the time derivative of the magnetization increment
AM in the direction of thez axis, which was perpendicular to the surface of the crystal.
We have used a similar procedure in earlier work to observe the inverse Cotton—Mouton
effect®

The samples of yttrium orthoferrite single crystals comprised plane-parallel wafers
cut perpendicular to thi01] axis and perpendicular to the optical axis, with thicknesses
L=0.055-0.96 mm and a base ar&a=0.5cnt. The wafers were placed in an external
magnetic field perpendicular to the plane of the crystal with an inter$iy500 Oe,

0021-3640/99/70(12)/4/$15.00 807 © 1999 American Institute of Physics
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FIG. 1. Magnetoacoustic oscillations in a wafer of thickness 0.088 mm. Sweep 50 ns/div.

which was sufficient for attaining saturation of the magnetization. The laser beam was
directed onto the sample surface at normal incidence. All the measurements were per-
formed at room temperature.

The signal from the coil, amplified and displayed on the screen of an oscilloscope,
consisted of two parts: an initial pulse matching the laser pulse in shape and duration, and
an oscillating part associated with the standing acoustic wave. The initial pulse has
previously been analyzed in defaihere we confine our discussion to two remarks. First,
both longitudinal and transverse acoustic modes can exist in the wafer, which acts as an
acoustic resonator. Fdb0l)-oriented samples the indicated procedure can be used to
record the magnetization variation associated predominantly with longitudinal strains, but
when the crystal is oriented perpendicular to the optical axis, the variation of the mag-
netization is attributable to both longitudinal and transverse stfaBscond, if the
sample has the same thickness as the flux linkage with the search coil, the total magnetic
flux is zero for even-harmonic standing waves. This result is also associated with the
identical boundary conditions on the front and back surfaces of the @t surfaces
can be regarded as free in our cadeven harmonics can contribute to the observed
signal only when the thickness of the wafer is commensurate with the radius of the coil.

We now analyze the oscillating part of the signal. For test measurements we used
thin wafers (=0.055mm and 0.135mm, cut perpendicular to {{®1] axis; L
=0.088mm and 0.117 mm, cut perpendicular to the optical) akiswhich only the
fundamental acoustic mode was efficiently generated. This condition is readily verified in
light of the fact that for an YFeQcrystal and our choice of optical wavelength the
absorption coefficient is=80 cmi L. It is evident from Fig. 1 that the signal is a sine wave
in this case. It also follows, therefore, that waves propagating parallel to the surface of the
wafer (bulk and surface waveslo not contribute significantly to the observed signal.
Numerical estimates of the acoustic wave velocities2L/T, whereT is the period of
the sine wave, giver=(7+0.4)x10°cm/s for the[001] direction andv=(7.8+0.4)
X 10° cm/s for the direction along the optical axis; these estimates are consistent with the
velocities of longitudinal acoustic waves in an YRg@ystal in the given directions®

For wafers with thicknessds=0.745 mm, 0.80 mm, and 0.96 mfout perpendicu-

lar to the optical axisseveral acoustic harmonics are generated with different relative
strengths. As a result, the recorded signal has a complex profile, as exemplified by the
oscillogram in Fig. 2. Clearly, after initial nonlinear distortions the signal evolves into an
almost regular form of monochromatic oscillations, exhibiting a monotonic transfer of
energy from the acoustic fundamental into the third harmémice again, even harmon-

ics are not recorded by the procedure used)hdieis behavior is qualitatively described

by the theory of nonlinear interaction of a finite set of harmonics as set forth in Refs. 9
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FIG. 2. Magnetoacoustic oscillations in a wafer of thickness 0.96 mm. Sweep 500 ns/div.

and 10. In our case this phenomenon can be identified both with nonlinear interaction
between the transverse acoustic fundamental and second harmonics and with nonlinear
interaction between the longitudinal and transverse acoustic fundamentals. In acoustics a
similar phenomenon has been witnes3eas a monotonic decrease in the ratio of the
intensities of the fundamental at the output and input of a MgO crystal.

An estimate of the wave velocity in the final part of the oscillogram giveq4
+0.2)X10° cm/s, and a like estimate in the initial part gives- (4.4+0.2)X 10° cm/s,
which is quite close to the transverse acoustic wave vel8éity.

The most interesting result from our point of view is the signal obtained for a wafer
of thicknessL =0.58 mm cut perpendicular to the optical axis; see Fig. 3. The signal is
seen as alternating oscillations of high and low frequencies. The only possible interpre-
tation of such a signal is the periodic transfer of acoustic energy between the fundamental
and higher harmonics. The transfer periodis 6 us.

A theoretical analysis showsthat the nonlinear interaction corresponding to energy
transfer of both the monotonic kind shown in Fig. 2 and the oscillating process shown in
Fig. 3 is attributable to the interaction of different acoustic modes. We know that two
transverse acoustic modes having different polarizations and, in general, different veloci-
ties can propagate together with a longitudinal mode in the given direction in crystals.
The small but definitely measurable difference in the sound velocities in the initial and
final parts of the oscillogram in Fig. 2 cannot be attributed to frequency dispersion and
indeed confirms the following interpretation: The nonlinear effects are caused by inter-
action between harmonics associated with different modes. The type of energy transfer
— monotonic or oscillating — depends on the difference in the sound velocities of the
differently polarized waves and the relative strengths of the fundamental and higher
harmonics at the time when they are generated. These facts can account for the different
types of energy transfer observed in Figs. 2 and 3, because wafers having thicknesses of
0.96 mm and 0.58 mm could also have had a small, uncontrollable difference in their
orientations.

Unfortunately, the narrow range of variation of the laser intensity, limited by the
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FIG. 3. Magnetoacoustic oscillations in a wafer of thickness 0.58 mm. Sweep 500 ns/div.
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signal-to-noise ratio at one end and by the fracture threshold of the crystal at the other,
made it impossible to measure the dependence of the type of energy transfer between
acoustic modes on the acoustic power.

The authors are deeply grateful to Prof. N. Bloembergen and Prof. O. V. Rudenko
for their interest in the study and for helpful comments, and also to L. D. Dorofeev, A. A.
Krivchenkova, and V. Ya. Kupershmidt for many profitable discussions.
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It has been predicted by Shelton and SHemys. Rev. A5, 1867
(1972] and observed by Kajikawat al. [Jpn. J. Appl. Phys. LetB1,

L679 (1992] and Yamadaet al. [Appl. Phys. B60, 485 (1995] that

the efficiency of nonlinear-optical frequency conversion increases sig-
nificantly in a nonlinear periodic medium and, accordingly, the inten-
sity of the generated harmonic increases as the fourth power of the
sample thickness, as opposed to the square law observed in homoge-
neous media. In this paper it is shown that the same enhancement of the
efficiency of nonlinear-optical frequency conversion in a nonlinear pe-
riodic medium can be achieved using an ordinary pump wave in the
form of a plane wave when both the pump wave and the harmonics are
diffracted by the periodic structure of the nonlinear medium. The phe-
nomenon is analyzed quantitatively in the example of second-harmonic
generation. ©1999 American Institute of Physics.
[S0021-364(99)00624-9

PACS numbers: 42.65.Ky, 42.70.Nq

1. The nonlinear optics of periodic media has developed at a rapid pace in recent
years'—3 The new possibilities afforded by the nonlinear optics of periodic media beyond
those of homogeneous media were first mentioned in Ref. 4. For the first time attention
was focused primarily on the new possibilities of achieving phase matching in these
media by virtue of the fact that the reciprocal lattice vector of a periodic structure can
become a part of the phase matching conditions. Experiments on the implementation of
such phase matching were reported in papers on second-harmonic generation in a solid-
state periodic structuteand on third-harmonic generation in cholesteric liquid crystals.

It was later confirmed that the advantages of periodic media are also largely attributable
to the theoretically predictéd substantial increase in the efficiency of nonlinear-optical
frequency conversion in them. Such efficiency improvement can be observed if the fre-
quencies of the wave fields are close to the edges of the selective-reflection bands in
periodic structures. It has been shdWtthat definite relations between the parameters of
the nonlinear medium must be established before this phenomenon can be achieved. In
experimental work a major increase in the efficiency of second-harmonic generation has
been observéd under conditions such that the pump frequency is close to the selective-

0021-3640/99/70(12)/8/$15.00 811 © 1999 American Institute of Physics
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reflection band edge in an artificially grown structure. Scakiral 12 have arrived at

the same conclusion of exceedingly large increase in the efficiency of second-harmonic
generation in periodic media. Other autHdt¥’ have also discussed the conditiains-
lations between the optical parameters of the periodic medium, as well as the pump
frequency under which the efficiency of second-harmonic generation increases. The
implementation of the necessary conditions poses a complex experimental problem; of
utmost significance in this light, therefore, is a theoretical pggrrwhich it has been
shown that the efficiency of frequency conversfaith a harmonic intensity proportional

to the fourth power of the sample thicknggsmn be increased, irrespective of the fre-
quency dispersion of the dielectric permittivifgwing to the spatially variable compo-
nent of the nonlinear susceptibiljtyby using a specially configured pump figlid the
simplest case two counterpropagating waves

A significant increase in the efficiency of second-harmonic generation has been
observed~*®in smectic liquid crystals when the harmonic frequency coincided with the
band edge of selective light reflection in these chiral liquid crystals. The phase matching
observed in Refs. 14—16 at the selective-reflection band edge was attributed to the onset
of a standing wave of the pump field in the experiment, and it was postulated that in the
presence of such a wave phase matching and an increase in the efficiency of nonlinear-
optical frequency conversion could be achieved at the selective-reflection band edge
independently of frequency dispersion of the permittivity’!® Specially designed
experiment®® have confirmed the stated mechanism underlying the increased effi-
ciency of nonlinear-optical frequency conversion.

2. The observetf~¢'%increase in the efficiency of nonlinear-optical frequency
conversion should also be manifested in other kinds of periodic media and is of enormous
practical interest. This consideration, in particular, lends a certain urgency to the search
for new conditions amenable to the phenomenon in question. The immediate objective of
the present study is to call attention to a new mechanism for improving the efficiency of
nonlinear-optical frequency conversion with the achievement of phase matching at the
selective-reflection band edge independently of frequency dispersion of the permittivity.
We specifically address the feasibility of implementing the phenomenon in nonlinear
periodic media in the presence of simultaneous diffraction of both the pump wave and the
harmonic wave in the nonlinear medium. For definiteness we discuss the example of
second-harmonic generation in a one-dimensionally periodic medium with harmonic
modulation of the dielectric permittivity and nonlinear-optical characteristics. An analyti-
cal solution of the problem, ignoring pump attenuation, is obtained on the basis of
dynamic diffraction theory?®

3. We consider second-harmonic generation in a periodic medium with one-
dimensional modulation of the dielectric permittivigyand a quadratic nonlinear suscep-
tibility x of the form

€(z2)=eg{1+ 5,08 72+ @1) + 5, O 272+ @)}, (1)

X(2)=xo+ x1 €O 7Z+ @p)}. (2)

We assume that a plane pump wave of frequemayith wavevectok(w) is incident at
a grazing angled on a sample in the form of a plane-parallel plate of thickriess a
situation closely approximating the first-order diffraction scattering conditer Fig. 1L
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FIG. 1. Diagram of second-harmonic generation in the presence of diffraction of the wave fields.

The resulting second-harmonic wave exists under conditions closely approximating
second-order diffraction scattering. The aim of the ensuing analysis is to disclose the
conditions under which second-order diffraction occurs in the presence of phase match-
ing for second-harmonic generation, knowinf that this situation can lead to enhance-
ment of the efficiency of second-harmonic generation.

To describe second-harmonic generation, it is necessary to solve the edqudiicim
will be solved below in the two-wave approximation of dynamic diffraction th&bry

VX VXE(r,20)— (2w/c)2€E(r,20) = (20/c)%x:E(r,0)E(r,0), (3)
whereE(r,2w) andE(r,w) are the second harmonic and pump fields, respectively.

Bearing in mind the above-stated assumption that the pump wave and the second
harmonic are both diffracted, we can seek the harmonic and pump fields in the sample as
superpositions of two plane waves, i.e., in the foffor the second harmonic as an
example

E(r,2m)=(E;exfgik-r]+Esexdik,-r])exd —i2wt]), (4)

wherek,—k,;=27, and 7 is the reciprocal lattice vector of the periodic structure. Sub-
stituting Eq.(4) and the corresponding expression for the pump field into(Byg.we
obtain the following system of equations for the amplitudes of the harmonic field:

(1= (ky/k)?)E 1+ 8,E,= — (411/ €) Py (k1 — 2k(w)),
S5E1+(1—(Ky/k)2)Ey=— (47l €)P.8(ky— 2k(w)), (5)

whereP, andP, are the Fourier harmonics in the expansion of the nonlinear polarization.
To simplify the derivation of Eq9(5), we have assumed that the pump wave is linearly
polarized perpendicular to the scattering plane.

Inasmuch as the pump field in the presence of diffraction is written in a form
analogous to Eg4), to achieve phase matching independent of frequency dispersion of
the dielectric characteristics of the samplet is sufficient to assume, by analogy with
Ref. 13, that only the spatially modulated component of the nonlinear susceptiBjlity
contributes to the nonlinear polarizations in E¢S)., and plane waves represented by
expressions of the typ@) have been substituted into the products of the wave fields on
the right-hand side of Ed3). Here the components of the harmonic wavevectors in the
same direction as the periodicity in Eg) are very close ta- 7, implying the occurrence
of second-order diffraction scattering.
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To investigate the phase matching conditions, we rely on the convenience of stan-
dard parametrization of the solution in solving E@s.for the fundamental and harmonic
waves. For example, we use the following relations for the pump wave:

Kin(@)=—=(72)(1+ 1), v1=1=[(712)*+(k (0))?) (x(®))?, (6)

wherek;,,(w) andk, (w) are the components of the pump wavevector parallel and
perpendicular to the periodicity direction, respectively.

By solving a system of equations analogous to the homogeneous system correspond-
ing to (5), we obtain the following expression far;:

are=* (V3= 89) M (2(vy +sirP0)), @)

Introducing an analogous parametrization for the harmonig g§nd v,) and the
notationn=1-¢€,/e€,,, from the condition of continuity of the tangential components
of the wavevectors we find a relation between the parameters of the pump and harmonic
waves:

vo=v1(1=7n)— 7. (8

The solution of the systertb) for the harmonic represents the superposition of the
particular solution of this system with the normal modes of the corresponding homoge-
neous system with wavevectors governed by the paramegt@&ut the wavevector in the
particular solution is governed by th&functions on the right-hand sides of this system,
whence it follows that its component parallel to the periodicity direction is given by the
expression

kin=—7—(7/2)(a1+ + a;-), (€)

where all combinations of signs fat,. are admissible on the right-hand side of the
equation.

4. The phase matching condition stipulates that the wavevé8iaf the particular
solution coincide with the wavevector of at least one normal mode, i.e.,

(v2)%= (1k(2w))*(@1= + a12)?—(8)*=0. (10

By virtue of Egs.(6)—(8), Eq. (10) gives the value of the parametey corresponding to
phase matching, i.e., the deviation of the angle of incidence of the pump wave from the
exact Bragg angle or, at a fixed angle of incidence, the deviation of the pump frequency
from its exact Bragg value. To maximize the efficiency of second-harmonic generation, it
is necessary that phase matching be attained precisely at the selective-reflection band
edge for the harmonic. The corresponding condition is given by the additional require-
mentv,= %+ §,. This situation occurs, in particular, if the expression in the parentheses in
Egs.(9) and(10) is a4, + a4, which is identically zero. The corresponding value of the
pump parametew; for phase matching is determined from E®&) by substituting

v,= * &, therein, i.e., by setting/;= (£ d,+ n)/(1— 7). If the quantitya,++ a4+ In

Eq. (10 is not identically zero, phase matching with respect to the paramegtes
achieved, in general, irrespective of selective reflection, and the corresponding value of
vy, denoted byv,,, is given by the relation

vip=— (81— 1)2— 5%+ n2I(2(1— n) ). 1D
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It is important to note here that the magnitude of the nonlinear polarization on the
right-hand side of Eq(3) varies considerably in the given situation for small deviations
of the pump wave from the exact Bragg condition.

5. The nonlinear polarization on the right-hand side of E3).is proportional to a
quadratic combination of the amplitudes of the normal modes superimposed to form the
pump wave in the sample. These amplitudes exhibit different dependences on the thick-
ness of the sample and are given by the equations

Ci=[Eoér-explia; 112)]/(&1-exp(—iay |/2)— & explias1/2)),
C_=[Eoér+expliar 1/2)J/(§1-exp(—ia;_1/2)— & expliag 1 1/2)), 12)

whereEy is the amplitude of the pump wave outside the samipterL is the dimen-
sionless thickness of the sampies E, /E is the ratio of the amplitudes of the two plane
waves comprised in the normal mods,.. is given by Eq.(7), the plus sign in subscripts
refers to a normal mode that decays into the depth of the sample, and the minus sign
refers to a normal mode that grows in the direction from the entrant surface of the
sample. As the sample thickness tends to infinity, we l@ve Eo andC _=0. Since the
phase matching conditiofl0) involves the quantitiesy;. + a1 in various combina-

tions, for different phase matching conditiofi®) the nonlinear polarizations in E¢3)

are proportional to different combinations of the coefficie@ts. In light of the previ-

ously mentioned appreciable difference in the dependence of the coeffiCients the
thickness, the same is true of the intensity of second-harmonic generation for the separate
components of the nonlinear polarization.

6. Finally, we obtain the following equations for the amplitudes of the harmonics
emanating from the exit and entrant surfaces of the sample:

Ei(z=L)={eoexpli(a+ + a1.)l/2) +[eg(é —€-)
+2ie;sin(asl )/ (é_exp(—iayl)— & expiasl))}/D,

Ex(z=0)={e;+[e1(&; — &)+ 2iepsin(asl) /(€ _exp(—iasl)
—&rexpliayl))}/D, (13

where a,= (v5— 63) Y2 (2(v,+ sir6)), and v, is related tov, by Eq.(8);

Ee=—8)l[vyral, D=vi—(/k(2w))*(@rs +a12)°— &,

v2=1-[(7)?+(2k (@) (k(2w))?],

eo=—[(vo+ (7/k(2w))* (a1 + a;:))Po—P,5,],

e1=—[(r2— (7k(2w))*(a1. + a1.))P,—Pods], (14)

and the quantitie®, andP ., according to Eq93) and(5), are expressed in terms gf
and products oC.. .

7. We now give the results of numerical calculations for specific values of the
parameters of the problem. The following values of the parameters are used in the
calculations:5,=0.07, 8,=0.057, 8= w/6, »=0.001, and it is assumed that the permit-
tivity outside the sample coincides with the average permittivity of the sample.
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FIG. 2. Dependence of the second-harmonic generation ampliydd) and the corresponding nonlinear
polarizationP, _ (2) on the parameter, /5, (at a fixed pump frequency this graph corresponds to the depen-
dence on the proximity of the pump wave to the Bragg condition with respect to its angle of ingidenae
sample of thicknesk=100 (E, is equal toE; in this cas¢

Figures 2(graph2), 4 (graph3), and 5(graph3) show the behavior of the nonlinear
polarizations for deviations of the pump wave from the Bragg condition. The polariza-
tionsP.,, P, _, P__ rise sharply at the selective-reflection band edge of the pump
wave. The calculations of the second-harmonic generation amplitude for the polarization
P, _ Figs. 2(graphl) and 3(graphl) show that its maximum occurs near the selective-
reflection band edge for the doubled frequency independently of frequency dispersion,
i.e., under conditions conducive to enhancement of the efficiency of second-harmonic
generatiorf.-%131718The graphs of the amplitudes as functionsgf can also have
maxima wheny, corresponds to the selective-reflection band edge for the pump wave.
The dependence of the second-harmonic generation amplitude on the sample thickness is
shown in Fig. 3(graphl), which, as expected, gives a maximum of the second-harmonic
generation amplitude for a finite sample thickness.

In general, the other phase matching conditions corresponding to the nonlinear po-
larizationsP__ and P . lead to phase matching far from the selective-reflection band
edge(see Fig. 4 For phase matching to be achieved near the selective-reflection band
edge the parameters of the nonlinear periodic medium must satisfy certain relations,
deduced from Eqg8) and(11), between the parameters of the nonlinear periodic me-
dium. The coincidence of the phase matching conditions with the selective-reflection
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FIG. 3. Dependence of the second-harmonic generation amplitudebitrary unit$ E; (1) (E,=E,) and the
corresponding nonlinear polarizatiéh, _ (2) on the sample thickness for the parametefs,;=—0.81.
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| =100 and the value of the paramet®r=0.0691 for phase matching at the selective-reflection band edge.
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band edge in this case and the high efficiency of second-harmonic generation are illus-
trated by Fig. 5, which shows the results of calculations for almost identical values of the
parameterss; and &s.

8. The foregoing results demonstrate the possibilities for achieving highly efficient
nonlinear-optical frequency multiplication in nonlinear periodic media in the presence of
diffraction of the fundamental and harmonic fields. Despite our investigation of the
problem in the example of second-harmonic generation for a simple model of a nonlinear
periodic medium, the qualitative results pertaining to the increased efficiency of
nonlinear-optical frequency conversion have more general implications and are appli-
cable both to other types of periodic media and to other nonlinear frequency multiplica-
tion processesgsee, e.g., Ref.)8
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It is shown that one-dimensional photonic bandgap structures are ca-
pable of simultaneously satisfying the phase and group-velocity match-
ing conditions for second-harmonic generation involving extremely
short light pulses. When these conditions are satisfied, an optical fre-
qguency doubler utilizing photonic bandgap structures provides a means
for increasing the rate of growth of the second-harmonic signal as a
function of the nonlinear-optical interaction length relative to structures
designed for quasi-matched interactions and affords possibilities for
enhancing the frequency doubling efficiencies independently of the
matching length in the bulk nonlinear material. 99 American
Institute of Physicg.S0021-364(109)00724-7

PACS numbers: 42.70.Qs, 42.65.Ky, 42.65.Re

To increase the efficiency of frequency conversion is a long-standing goal of non-
linear optics'? Today the widespread proliferation of compact, low-cost femtosecond
solid-state laser systems and the enormous difficulties encountered in doubling the fre-
quency of ultrashort laser pulses underscore the impact of new possibilities for enhancing
the efficiency of second-harmonic generation in application to extremely short light
pulses. One of the foremost basic problems of second-harmonic generation for ultrashort
laser pulses is the need to achieve phase and group-velocity matching. Periodically in-
homogeneous crystals, in which quasi-phase-matched interaction conditions are achieved
by modulating the quadratic susceptibility of the medium with a spatial period of the
order of the coherent nonlinear-optical interaction lerigtare widely used nowadays to
enhance the efficiency of second-harmonic generdtimconcept of quasi-phase match-
ing was proposed years ago in a 1962 groundbreaking paper on nonlinear)optics

The feasibility of increasing the efficiency of second-harmonic generation by estab-
lishing phase matching in one-dimensional structures with photonic bandgaps, i.e., pho-
tonic crystals, is a topic of heated discussion at the present®tinte.contrast with
crystals used for quasi-matched interaction, photonic bandgap structures are characterized
by spatially periodic modulation of the refractive index rather than the nonlinear-optical
susceptibility. The characteristic space scale of the variation of the refractive index in
photonic bandgap structures is of the order of the optical wavelength, i.e., it is signifi-
cantly smaller than the modulation period of the nonlinear-optical susceptibility in struc-

0021-3640/99/70(12)/7/$15.00 819 © 1999 American Institute of Physics
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tures used for quasi-matched interaction. The notion of utilizing the dispersion of peri-
odic structures to compensate the material dispersion of the medium as a means of
establishing phase matching conditions for second-harmonic generation and nonlinear-
optical frequency shifting was advanced some time%#gbthe present stage of nonlin-

ear optics, however, the simultaneous implementation of group-velocity and phase
matching conditions poses a timely objective in connection with the frequency conver-
sion problem for ultrashort laser pulses. This paper addresses the solution of the stated
problem.

To illustrate the concept of second-harmonic generation in a field of ultrashort
pulses in photonic crystals with phase and group-velocity matched photonic crystals, we
consider the dispersive properties of a model infinite photonic bandgap structure consist-
ing of periodically alternating layers with dimensioasandb and refractive indices,
and n,, respectively. It will be shown below by comparing the results of analytical
calculations with numerical data that the model of an infinite photonic bandgap structure
affords the capability of adequately reproducing the basic properties of nonlinear-optical
interactions involving comparatively short pulses when the number of periods of the field
in the pulse is much smaller than the number of periods of the photonic bandgap struc-
ture. We assume that the layers with indgxare endowed with quadratic nonlinearity,
which leads to second-harmonic generation. We first consider the case of second-
harmonic generation in a one-dimensional photonic bandgap structure without dispersion
on the part of the materials constituting the structure; we then generalize these results to
photonic bandgap structures with material dispersion taken into account.

The phase matching condition for the wavevectdrs,) andk(2wg) of the pump
and second-harmonic waves involved in the process of second-harmonic generation are
written in the form

K(2wg) = 2K(wg). (1)

The wavevectors at the fundamental and the second-harmonic frequencies can be deter-
mined from the dispersion relation for the investigated infinite one-dimensional photonic
bandgap structure:

Ko d) = cod ©° ©o na+ny [ wg il 0 b 2
cog (a)o) )=co Fnaa co ?I’lb Tanbsm ?naa Sin ?nb ) 2
k 2 d _ 2(1)0 2(1)0 b n§+ng ) 2(1)0 i 2(})0 b

cogk(2wg)d)=co Tnaa co Tnb —Tanbsm Tnaa sin Tnb .

()

Taking Egs.(2) and(3) into account, we can write the phase matching conditiprin
the form

cog(Aky) +cog(Bky) — co(Aky)cog(Bky) =1, (4)

where ko= wg/c, and we have introduced the notatigx=n,a, B=nyb, N=(nf1
+nd)/2n,ny, .

Equation(4) is satisfied if and only if one of the cosines squared is equal to unity.
Assuming for definiteness that ¢¢&ky,)=1, we obtain

a=\l/2n,, 5
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wherel is an integer.

Consequently, when one of the subsystems of the infinite one-dimensional photonic
bandgap structure is a set of half-wave plates, i.e., when the paramétechosen
according to Eq(5), phase matching is always achieved for second-harmonic generation.
We now show that the group-velocity matching condition is automatically satisfied as
well in this case:

IKk(w)
Jw

Jk(w)

_(?w

(6)

w=o0q =20,

When condition(5) holds, the reciprocal group velocities at the fundamental and second-
harmonic frequencies can be written as follows on the basis of Bgand (3):

Ik(w)
Jw

_ =(B+AN)

cd @)

0=, Zwo

Allowing for the fact that waves transmitted through the photonic bandgap structure
correspond to positive values of the group velocity, we find that the group-velocity
matching conditions are also satisfied for a nondispersive photonic bandgap structure
with parameters satisfying E().

We now extend the above results to a photonic bandgap structure in which not only
the dispersion of the structure, but also the dispersion of the medium must be taken into
account, and we determine the phase and group-velocity matching conditions for this
case. For simplicity we consider a photonic bandgap structure consisting of layers of
thicknessa with a refractive indexh,, no nonlinearity, and negligible dispersion, alter-
nating with quadratically nonlinear layers of thickndssvith a frequency-independent
refractive indexn,. In this case the wavevectors at the pump and second-harmonic
frequencies can be written in the form

2 2
o wo NatNyp . [wo [ wo
cos(k(wo)d)—cos( c Nad cos( c nlbb) N sm( c Nad sm( c nlbb), (€]
2(1)0 2(1)0 n§+ngb ) 2(,1)0 ) 2(1)0
cos(k(ZwO)d)—co{Tnaa cos(Tan )—m n Tnaa Si Tanb .
C)

Here ny, andn,, are the refractive indices of the nonlinear medium at the pump and
second-harmonic frequencies, respectively. The phase matching condition is the same as
before; see Eql).

The reciprocal group velocities of the pump and second-harmonic pulses are given
by the equations
Jk(w) 3 1
do | cdsin(k(wg)d)
a)fwo

((B1+AN;)cod Aky)

Xsin(B1kg) +(A+B;N;)sin(Aky)cog B ko)), (10
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IK(w) 3 1
dw wo_ cdsin(k(2wg)d)

((B2+ANz)cogAko)
w=2

X sin(Bykg) + (A+B,N,)sin(Aky)cog Bykg)), 11

whereA=n,a, By ,=n; b, andN; ;= (n3+nZ »)/2n,n; 5 . The group-velocity match-
ing condition is written in the forn{6).

Consequently, the condition for efficient second-harmonic generation in a one-
dimensional photonic bandgap structure with material dispersion and negligible group-
velocity dispersion stipulates the simultaneous satisfaction ofEtdor the quantitie$8)
and(9) and of Eq.(6) for the quantitieg10) and(11). For a given pump wavelength and
given values of the refractive indices,, ny,, andn,, the indicated system of two
equationg1) and(6) can be solved for the parameterandb. It is therefore possible for
the phase and group-velocity matching conditions to be satisfied simultaneously. It is
obvious, however, that the transcendental system of equations does not have a solution
for all values of the refractive indices,, n;,, andn,,. In particular, it is readily
verified by direct substitution of the values @fjiven by condition(5) into (10) and(11)
that phase matching is impossible in a photonic bandgap structure in which one of the
subsystems is a set of half-wave plates and in which the nonlinear medium exhibits
dispersion of the refractive index.

From the physical standpoint phase and group-velocity matching for second-
harmonic generation in a photonic bandgap structure containing a nonlinear material
characterized by dispersion of the refractive index is achieved as a result of compensation
of the material dispersion by the dispersion of the periodic structure. Consequently,
increasing the dispersion of the nonlinear medium to compensate the attendant increase
of the phase and group-velocity mismatches requires ever-increasing contrast of the re-
fractive index of the media constituting the photonic bandgap structure. The dependence
of the minimum contrash,,/n, of the refractive indices such for the existence of a
simultaneous solution of the system of equatiofi3, (6) on the quantity €y,
—n4,)/Ny,, Which represents the difference between the refractive indices of the non-
linear medium at the second-harmonic and fundamental frequencies, normalized to the
latter index, can be determined by solving the system of equations numerically by the
gradient method. This dependence for a photonic bandgap structurenyithl.5 is
plotted in Fig. 1. It is evident from the results of the calculations shown in this figure that
the dispersion of photonic bandgap structures with index contrasts obtainable by existing
technologies can be exploited to compensate the phase and group-velocity mismatches
for second-harmonic generation over a fairly broad range of dispersion of the nonlinear
medium.

The calculation of the amplitude of the second-harmonic field produced by the
second-harmonic generation process in a photonic bandgap structure poses a complex
physical problem. We have therefore calculated numerically the amplitude of the second
harmonic resulting from the second-harmonic generation process by solving Maxwell's
equations numerically using the finite-difference time-dom@&BTD) algorithm?® This
approach is an effective method for the analysis of nonlinear-optical interactions involv-
ing ultrashort light pulses in photonic crystafs.

The FDTD method for a cubically nonlinear, dispersive medium is described in Ref.
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FIG. 1. Dependence of the minimum contragt /n, of the refractive indices for simultaneous satisfaction of
the phase and group-velocity matching conditi¢hisand (6) on the quantity (,,—nq,)/Nqp, -

11. We have implemented the FDTD algorithm for a quadratically nonlinear medium
with local response of the nonlinearity and dispersion of the dielectric permittivity de-
scribed by a Lorentzian line profile(w) =€, + (es— €.,.)/(1— wzlmf), wherew, is the
resonance frequency,, is the permittivity of the medium in the high-frequency limit,
and e, is the permittivity of the medium in the low-frequency limit.

Without frequency dispersion the maximum efficiency of second-harmonic genera-
tion is attained in a structure with the parameters

a=\/2n,, b=\4n,. (12

This result is fully consistent with the above analytical investigation for an infinite one-
dimensional structure. The first of the equati¢h®) establishes phase and group-velocity
matching, and it is readily shown by means of E@.and(3) that the second condition
stipulates zero dispersion of the group velocity at the fundamental and second-harmonic
frequencies. A numerical simulation for Gaussian pulses of extremely short duration
propagating in a photonic bandgap structure wifs-2 andn,=1 has shown that when
conditions (12) are satisfied, the dependence of the second-harmonic generation effi-
ciency (defined as the ratio of the energy of the second-harmonic pulses at the output of
the photonic bandgap structure to the pump energy at the)imputhe length of the
structure is close to quadratic at wavelengths of the order -l periods of the
structure for pulses having a duratienequal to at least ten periods of the pump field
(solid curve in Fig. 2 For shorter durations, such that the width of the pulse spectrum
becomes of the same order or greater than that of the range of allowed photon energies,
the second-harmonic generation efficiency increases far more slowly than the square of
the length of the photonic bandgap structashed and dotted curves in Fig. Zhis

effect is attributable to the inability of the phase and group-velocity matching conditions
to be satisfied over such a broad spectral range. Another significant factor for short pulses
is dispersion spreading of the pulse, because the dispersion of higher orders attains large
values near the band edge.

As mentioned above, the matching technique for nonlinear-optical interactions in
photonic bandgap structures is fundamentally different in nature from the matching in
structures for quasi-phase-matched interactions. The quasi-matched interaction regime is
established by changing the sign of the quadratic susceptibility of the nonlinear material
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FIG. 2. Dependence of the efficiency of second-harmonic generation on the number of periods of a photonic

bandgap structure for pulses of various durations:10T, (solid curve; 5T, (dashed curve 2T, (dotted
curve; (T, is the period of the pump field

within a characteristic space scale of the order of the coherence length. A typical graph of
the second-harmonic generation efficiency as a function of the length of the nonlinear
medium for the given frequency conversion regime is represented by the dot-dash curve
in Fig. 3. Matched second-harmonic generation in photonic bandgap structures is estab-
lished by modulating the refractive index over a characteristic space scale smaller than
the optical wavelength, a technique that permits both phase matching and group-velocity
matching and affords possibilities for attaining high second-harmonic generation efficien-
cies independently of the matching length in the bulk nonlinear material. This consider-
ation is of utmost importance in regard to practical applications.

A major difference in the phase-locked second-harmonic generation regime pro-
posed in this paper for photonic bandgap structures from the second-harmonic generation
regime discussed in Refs. 6 and 7 for photonic crystals is that the width of the spectral
range of efficiency second-harmonic generation in our case is not restricted by the reso-
nance width in the transmission spectrum of a one-dimensional photonic bandgap struc-
ture with a finite number of periods. Because one-dimensional photonic bandgap struc-

0.25 T vi
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®_ o020t ---PM ’
o -----
=t
S 0A5F = =
> QPM
g
3 o.10}
E
W oost
05700

Number of periods

FIG. 3. Dependence of the efficiency of second-harmonic generation on the length of the nonlinear medium
(expressed in periods of the photonic bandgap structimrea photonic bandgap structufeolid curve, a
structure designed for quasi-matched interactdot-dash curvg and a nonlinear medium with an uncompen-
sated phase and group-velocity mismatdhtted curveé The dashed curve represents a quadratic dependence
on the length of the medium, corresponding to matched second-harmonic generation.
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tures subject to the above-determined conditions can be used to satisfy the phase and
group-velocity matching conditions simultaneously, the matched second-harmonic gen-
eration regime can be achieved for extremely sharfew periods of the light field

pulses using long photonic bandgap structures.

In summary, one-dimensional photonic bandgap structures provide a means for es-
tablishing not only phase matching conditions, but also group-velocity matching condi-
tions for second-harmonic generation involving light pulses having a duration of a few
periods of the optical field. When these conditions are satisfied, optical frequency dou-
blers incorporating photonic bandgap structures can be used to increase the rate of growth
of the second-harmonic signal as a function of the nonlinear-optical interaction length
relative to structures utilizing quasi-matched interaction, and they offer capabilities for
attaining high frequency doubling efficiencies independently of the matching length in
the bulk nonlinear material.

These investigations are supported by the Constellation Group GmbH, the Interna-
tional Association for the Promotion of Cooperation with Scientists from the Independent
States of the Former Soviet UnidiNTAS Grant #97-0369 and the Moscow Govern-
ment(Grant #A059.
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[S0021-364(99)00824-5
PACS numbers: 42.65.Wi, 42.25.Bs

In a recent papérkKuznetsova considered the case of a cylindrical waveguide con-
taining an amplifying medium and concluded that there is no frequency cutoff for such a
case: for an arbitrary small radiasof the waveguidébut smaller than the cutoff radius
aq,) and an arbitrary small amplificatiof (thus the complex permittivity of a medium is
x=¢€—10), light can propagate through such a waveguide with an amplification. This
possibility, if it exists, of course, would be of extreme importance for near-field optics
and fiber communications.

But it is not the case, because the analysis given in Ref. 1 is incorrect. The conclu-
sions derived there are based on the use of the cylindrical wave equation to describe the
electric fieldE for the spherically symmetric TE mode this comment we follow the
notation and concrete example given in Ref. 1; the analysis is similar for all waveguide
modes:

9°E (9(1 d

1)
—+ +e—E= 1
9z° dp\p dp €C2 0 @)

whose solution for the boundary condition
E(p=a,z)=0 2
for the case of a real permittivity is well knowtE=AJy(qp)exppP2). Here Jy is the

zero-order Bessel functio,=3.834, andp can be found from the relation:
2

w
pP=a’—ez. &)

Kuznetsova generalized E(B) to the case of a complex permittivifand thus the
complex coefficienp can be found as the square root of the right-hand sid&)dfand
arrived at the aforementioned conclusions thar@pagating and amplifiesvave exists
for such a waveguide. This conclusion is wrong and results from the incorrect selection

0021-3640/99/70(12)/2/$15.00 826 © 1999 American Institute of Physics
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of signs of the real and imaginary parts of the coefficignhade on the unclear basis that
“it is evident that ... the direction of growth of the wave is the same as the direction of
propagation.”

This mistake can be easily understood from the following example. For the case
whena<a,, and é is arbitrarily small, Kuznetsova found that the amplification of the
wave inside the waveguide is approximately equal toghes., the same as the damping
for the case of small losses or an empty waveguide, and explained that this is due to the
fact that “the wave propagates almost perpendicularly to the waveguide walls,” thus
acquiring the necessary gain coefficient during this long path in an amplifying medium.
But does that mean that the damping for the case of posttil@sse$ is also due to such
a “perpendicular” propagation? And what does one do when there are no losses at all but
the damping is the same?

Indeed, the correct selection of signs of the real and imaginary parts of the coeffi-
cient p is different from that given in Ref. 1(This is especially clear if one directly
substitutes the expressidii=AJ(p)expp’z+ip”2) into (1) and then uses the theorem
that Bessel functions of order greater tharl have only real zeroéso fulfill the
boundary conditiong2). We will not do it here for lack of spageThere is only one
physically reasonable solution:

7 2

w 0 w
2+ 4+2 ) I/:
VENY @] P 20 &

and the negative sign should be used when fingihgrom the square rootHere 2
=0°— e (w?/c?) is the square of the damping constant for an empty waveg(@ge
which is positive whera<ag.)

1
(p )2=§

This solution describes an evanescent nonpropagating wave decreasing exponen-
tially as exp{|p|'2) for the case of a waveguide with radius smaller than the cutoff radius
ac,t- Moreover, the rate of damping of this wave does not depend on the sigard is
larger for both amplifying and absorbing media in comparison with an empty waveguide.
Indeed, this is not so surprising, because physically the cutoff phenomenon is nothing
more than areflection of the propagating wave from subwavelength apertures and is
governed by the phase relations. The existence of an amplifying medium on the other
side of the aperture cannot fundamentally alter the conditions of such a reflection. What
it can do is to increase the reflectivity coefficient, which can be higher than unity, as
happens, for example, in the case of total internal reflection of light from an amplifying
medium?® some amount of energy can be added to the reflected light for such a case.
Thus, unfortunately, bright subwavelength-size sources of light cannot be produced by
small subwavelength-aperture waveguides filled with an amplifying medium, and other
ways to solve this fundamental problem for near-field optics must be found.

1T, 1. Kuznetsova, JETP Let69, 917 (1999.

2G. N. WatsonA Treatise on the Theory of Bessel FunctioBambridge Univ. Press, Cambrid¢e958, p.
482.

3F. Schuller, G. Niehnuis, and M. Ducloy, Phys. Rev43, 443(1991).

Published in English in the original Russian journal. Edited by Steve Torstveit.
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In this note additional details and equations are furnished to support the validity of
the conclusions drawn in Ref. 1.

1. A wave of the formE=AJ;(gp)expp2) (see footnotd) is discussed in Ref. 1.
The waveguide is assumed to be circular and to have perfectly reflecting walls. The
observed monochromatic field is characterized by the expressidhdxe(—iwt)}. With
this choice of time factor and fo6>0 the dielectric permittivitye=1—i4 implies
amplification. The quantity in the argument of the exponential is given by the equation

p=p’+ip"=q’— (w?/c?) +i8(w?lc?). (1)

From this equation we can infer at once thet and p” have the same sign, because
squaring both sides of Eq1) and then comparing the imaginary parts yields' R’

= 8(w?/c?). In an amplifying waveguide, therefore, the intensity increases in the direc-
tion of wave propagation.

We now give more detailed equations for andp”. Denoting bya,, the critical (at
the frequencyw) waveguide radius, and by the instantaneous radius, we set

c q aCI’
%=, a @

Using the transformatiof2), we obtain the roots of the complex numigy in the form

c \/ 1ay\* , 1
= == +&+=
Py, 4\ a 2
. c 1/ag\* , 1
Py =(sgr(9)) 2\ 3 793

P2)=—P(1):  P(2= P (4)
The arithmetic values of the roots are tacitly understood everywhere in(BqsThe
resulting solutiong3) and(4) are equally justified in every respect — contrary to what is

stated in the comment — and there is no foundation for assigning preference to either
over the other. These are the equations used to plot the graphs in the original article

Acr 2
—) ; (3a)
a

a 2
—”) , (3b)
a

0021-3640/99/70(12)/3/$15.00 828 © 1999 American Institute of Physics
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showing the quantitiep(;,c/w and p(;)c/w@ as functions of the dimensionless radius
ala. . For the sake of brevity the equations themselves are not given in the article. The
graphs are given for the first solutigigs. (3)]. This choice was simply a matter of
practicality in composing the figures. In the explanatory text relating to the figures it is
stated that each of the quantitips andp” changes sign for the second solution.

The authors of the comment insist that the first solufiggs. (3)] must be rejected,
leaving the second solutidiEq. (4)] as “the only physically reasonable” one. However,
it is impossible to distinguish either solution so long as the symmetry of the problem is
preserved. The substitution——2z maps one solution into the other and maps the
waveguide into itself. It is not so remarkable here that one of the waves grows along the
z axis. The important consideration is that for each wave the growth of the intensity and
the motion of the constant-phase surface take place in the same dirgrtiandp” have
the same sign

2. The comment touches casually on the coupling of the waveguide with free space.
This problem is indeed important; for practical devices not only is wave transmission
along the waveguide important, but so is wave reflection at the junctions of a finite
segment of the waveguide with contiguous elements of the optical train. These consid-
erations pose an independent problem and could not be combined with a different prob-
lem within the confines of a short publication. Techniques for matching a supercritical
amplifying waveguide with other optical elements are currently under investigation. |
should mention that the results of the investigation can affect only the input wave am-
plitudes in the waveguide, but not the growth rate and motion of the phase front, which
are the topics treated in Ref. 1.

3. In regard to an absorbing waveguide it must be stated, contrary to the misgivings
set forth in the comment, that here, as in an amplifying waveguide, the wavevector is
almost perpendicular to the walls and has a small longitudinal component. To illustrate
the matter, consider the electromagnetic energy flux associated with the wave. For the
radiated Tk; mode it is equal to

¢ [ _oE* _ GE :
Se= 16me 9z dz) ©®
Using the expression fdE and Eq.(5), we find
C2
S,=g——P"|Al*[J1(ap)]°exp(2p2). (6)

87w

It follows from Eg. (6) that for p”>0 the flux is positive, i.e., moves in the direction of
increasing intensitysigns ofp’ andp”). These directions are the opposite in an absorb-
ing medium. In both cases the flux is proportional to the small quamtitywhich
contains the small parametér The flux becomes equal to zero 6+ 0. The expression

for the flux further emphasizes that the investigated waves propagate and grow in the
direction of propagation in the amplification ca&nd decay in this direction in the
absorption casge Therefore, the properties of the wave modes of an active waveguide
have been derived and presented correctly.
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DHereJ, is the first-order Bessel function. The function used in the commely, iwhich satisfies neither Eq.

(1) in the comment nor Eq1) in Ref. 1.

7. I. Kuznetsova, JETP Let69, 917 (1999.

Translated by James S. Wood
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V. F. MASTEROQV, contributing author in this issue of the journal to the article
“Observation of fine structure in the photoluminescence spectrum of an Er 3*jon in an
amorphous silicon matrix”

On January 28, 1999, Professor Vadim Fedorovich Masterov, Doctor of Physico-
mathematical Sciences and Chairman of the Experimental Physics Department of St.
Petersburg State Technical University, died unexpectedly at the age of 58. Prof. Master-
ov’'s experimental and theoretical papers on the electronic structure of deep multiple-
electron centers in semiconductors and the high-temperature superconductivity of com-
plex metal oxides of copper and metallic fullerenes have earned worldwide recognition.
Prof. Masterov’s scientific career has been permanently linked with preeminent science
centers in Russia and in many foreign countries. He served as a member of organizing
committees and program committees of many international and Russian conferences, as a
member of the editorial board of the Jourriatika i Tekhnika Poluprovodnikofpub-
lished in English asSemiconducto)s and as a member of scientific councils of a great
many state programs. Sixteen candidate’s dissertations have been successfully defended
under the sponsorship of V. F. Masterov, and four of his students have defended doctoral
dissertations. The radiant memory of Vadim Fedorovich Masterov — an outstanding
scientist and human being — will remain always with his innumerable students, col-
leagues, and friends.

V. D. NEGRIT, contributing author in this issue of the journal to the article “Photoinduced
transformation of luminescence centers in C ¢ crystals at high pressure”

On November 29, 1999, the gifted experimental physicist, Vialemitrievich Ne-
grii, Chief Scientist of the Institute of Solid-State Physics of the Russian Academy of
Sciences, died unexpectedly at the age of 60. He has published a vast number of papers
on the optical spectroscopy of defects in semiconductors and dielectrics. His name is well
known among scientists engaged in research on wide-gap II-VI semiconductors. One of
his achievements in this field was the direct observation of photoluminescence of indi-
vidual dislocations in CdS crystals and the investigation of distinctive characteristics of
the motion and multiplication of dislocations in these crystals at low temperatures, in-
cluding the laser stimulation of such processes. The most recent series of investigations
reported by V. D. Negtihas been concerned with the photoluminescence of fullerene
crystak — a new and intriguing class of organic semiconductors, where he discovered
many interesting phenomena associated with photostimulated reactions of defects in these
crystals.

0021-3640/99/70(12)/1/$15.00 831 © 1999 American Institute of Physics
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